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Abstract

In this paper the periodic integer-valued autoregressive model of order one with period T ,

driven by a periodic sequence of independent Poisson-distributed random variables, is stud-

ied in some detail. Basic probabilistic and statistical properties of this model are discussed.

Moreover, parameter estimation is also addressed. Specifically, the methods of estimation

under analysis are the method of moments, least squares-type and likelihood-based ones.

Their performance is compared through a simulation study.
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1 Introduction

Since their introduction by Bennett (1958) and Gladyshev (1961, 1963) much attention has

been given to periodically correlated (or ciclostationary) processes, partially because of their

wide applicability to hydrology (Vecchia 1985, Salas 1993, and Tesfaye et al. 2006), economics

(Franses 1994, Franses and Paap 2004, and Haldrup et al. 2007), meteorology (Bloomfield et

al. 1994, Lund et al. 1995, and Lund et al. 2007), and signal processing (Gardner et al. 2006).

Further examples can be found in Hurd and Miamee (2007) and the references therein. A large

part of the literature on this topic is devoted to the so-called periodic autoregressive moving

average (PARMA) models which are extensions of the commonly used ARMA models, having

parameters which vary periodically in time. The analysis of basic probabilistic properties of

PARMA models as well as statistical inference and forecasting techniques, have been addressed

by Lund et al. (2006), Shao (2006), Basawa et al. (2004), Shao and Ni (2004), Basawa and

Lund (2001), Lund and Basawa (2000), and Bentarzi and Hallin (1994) among other authors.

It is worth to mention that all references given in the previous paragraph deal with the case

of continuous-valued (i.e. conventional) periodically correlated processes. In contrast, however,

the analysis of periodically correlated series of counts has not received much attention in the

literature. This paper aims to give a contribution towards this direction. Motivation to include

discrete data models comes from the need to account for the discrete nature of certain data

sets, often counts of events, objects or individuals. Examples of applications can be found in

the analysis of the number of rainy days (Cui and Lund, 2009), time series of count data that

are generated from stock transactions (Quoreshi, 2006) where each transaction refers to a trade

between a buyer and a seller in a volume of stocks for a given price, statistical control pro-

cess (Weiß, 2009), telecommunications (Weiß, 2008), and also in the analysis of optimal alarm

systems (Monteiro et al., 2008), experimental biology (Zhou and Basawa, 2005), social science

(McCabe and Martin, 2005), and queueing systems (Ahn et al. 2000).

In this paper, we investigate basic probabilistic and statistical properties of the Periodic INteger-

valued AutoRegressive process of order one with period T (hereafter PINAR(1)T ) defined by
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the recursive equation

Xt = φt ◦Xt−1 + Zt, t ∈ IN (1)

with φt = αj ∈ (0, 1) for t = j + kT, (j = 1, . . . , T, k ∈ IN0), where the thinning operator ◦ is

defined as

φt ◦Xt−1
d=

Xt−1∑

i=1

Ui,t(φt),

being (Ui,t(φt)), for i = 1, 2, . . . , a periodic sequence of independent Bernoulli random variables

(r.v’s) with success probability P (Ui,t(φt) = 1) = φt. Furthermore, it is assumed that (Zt)

constitutes a periodic sequence of independent Poisson-distributed random variables with mean

υt (Zt ∼ P (υt)) with υt = λj for t = j + kT, (j = 1, . . . , T, k ∈ IN0), which are assumed to be

independent of Xt−1 and φt◦Xt−1. To avoid ambiguity, T is taken as the smallest positive integer

satisfying (1). It is important to stress the fact that discreteness of the process (Xt) is ensured

by the ◦-operator since this operator incorporates the discrete nature of the variates and acts

as the analogue of the standard multiplication used in the continuous-valued moving average

model. The concept of thinning is well known in classical probability theory and has been in

use in the Bienaymé-Galton-Watson branching processes literature as well as in the theory of

stopped-sum distributions. Potential applications of INAR processes with periodic structure can

be found in the analysis of demographic or labor market data set. As an illustrative example we

display in Figure 1 the time series trace plot of the monthly number of short-term unemployed

people in Penamacor County (Portugal), from January 1997 to December of 2007.

(Figure 1 about here)

Figure 2 displays the sample means, the sample variances by months of the year, and the

autocorrelation function.

(Figure 2 about here)

Further examples can be found in the analysis of international tourism demand (Brännäs et al.

2002 and Brännäs and Nordström 2006). In general, the data exhibits a strong from of periodic

variation over the day of the week in addition to a strong seasonal variation over the year, with

a peak in July-August.

3



The rest of the paper is organized as follows: in Section 2, we demonstrate the existence of

an almost surely unique non-negative integer-valued periodically stationary process satisfying

(1). Expressions for the periodic mean and autocovariance of the periodically stationary distri-

bution are also given. Parameter estimation is covered in Section 3. In Section 4 the results are

illustrated through a simulation study. Finally, some concluding remarks are given in Section 5.

2 Basic properties of the PINAR model

The analysis of the existence and uniqueness of a periodically stationary and causal PINAR(1)T

process can be obtained via the analysis of the multivariate integer-valued autoregressive process

introduced by Latour (1997). Note that equation (1) admits the representation

Yt = A ◦Yt−1 + ζt (2)

with Yt = (X1+tT , X2+tT , · · · , XT+tT )′, where ′ denotes matrix transpose,

A =




0 0 . . . α1

...
...

...
...

0 0 . . .

T−1∏

k=0

αT−k




and

ζt = B ◦ Zt =




1 0 0 . . . 0 0

α2 1 0 . . . 0 0

α3α2 α3 1 . . . 0 0
...

...
...

...
...

...
T−3∏

j=0

αT−1−j

T−4∏

j=0

αT−1−j

T−5∏

j=0

αT−1−j . . . 1 0

T−2∏

j=0

αT−j

T−3∏

j=0

αT−j

T−4∏

j=0

αT−j . . . αT 1




◦




Z1+tT

Z2+tT

...

ZT+tT




with (ζt) being a sequence of i.i.d. integer-valued random vectors independent of the operators,

with finite mean given by E(ζt) = B(λ1, λ2, · · · λT )′ and V (ζt) = B
∑

Z B′ where
∑

Z =

Cov(Zt,Zt+j) = diag(λ1, . . . , λT ). In view of the fact that the eigenvalues of the matrix A are

lesser than one and that ζt is independent of Ys ( s < t), it follows by Proposition 3.1 in Latour
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(1997, p. 236) that there exist an almost surely unique non-negative integer-valued stationary

process satisfying (2). Next we obtain the periodically stationary distribution of (Xt). First,

however, we prove the following result. For simplicity in notation we define

βt,i =





i−1∏

j=0

φt−j i > 0

1 i = 0

,

which can be rewritten as

βt,i =





βt,jβ
k
T,T , i = j + kT ; j = 1, 2, . . . , T

1, i = 0
.

Note that the sequence (βt,i) is periodic with period T .

Proposition 2.1. For a fixed value of j = 1, . . . , T , with T ∈ IN, the process (Xt) for t = j +kT

and k ∈ IN0 is an irreducible, aperiodic and positive recurrent (and hence ergodic) Markov chain.

Moreover, the stationary distribution of (Xt) is given by that of

Vj =
+∞∑

m=1

T−1∑

a=0

(
βj,jβT,aβ

m−1
T,T

)
◦ ZT (m+1)−a +

j−1∑

m=0

βj,m ◦ Zj−m,

where the series converges almost surely and also in L2.

Proof. See Appendix A.

Now we are prepared to obtain the periodic mean and autocovariance function of (Xt).

Lemma 2.1. For a fixed value of j = 1, . . . , T , with T ∈ IN, t = j + kT and k ∈ IN0

µj = µt = E(Xt) = V (Xt) =

j−1∑

k=0

βj,kλj−k + βj,j

T−j−1∑

i=0

βT,iλT−i

1− βT,T
(3)

with the convention
∑−1

i=0 = 0. Moreover, for j = 1, . . . , T and h ≥ 0, γj+kT (h) = γj(h) =

βj+h,hµj and γj+kT (−h) = γj(−h) = βj+kT,hµj+kT−h.

Note that the mean µj can be calculated recursively through the expression

µj = βj,j(µT +
1

βj,j

j−1∑

k=0

βj,kλj−k), j = 1, . . . , T.
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Moreover, in contrast to the autocovariance function of a stationary series, γj(·) is not symmetric

in h; however γt(−h) = γt−h(h) and γt(h) = γt+h(−h). Furthermore, in view of the fact that h

can be rewritten in the form h = i+mT , for some i ∈ {1, . . . , T} and m ∈ IN, the autocovariance

function takes the form γj(h) = βm
T,T βj+i,iµj and γj(−h) = βm

T,T βj+T,iµj+T−i. The main result

of this section is given in Theorem 2.1 below.

Theorem 2.1. The marginal distribution of (Xt), with t = j + kT for a fixed value of j =

1, . . . , T , with T ∈ IN, and k ∈ IN0, is Poisson with mean µj if and only if (Zt) forms a sequence

of independent Poisson-distributed random variables with mean λj.

Proof. See Appendix A.

3 Parameters estimation

Let (X1, . . . , XNT ) be a sequence of r.v’s satisfying (1) being θ = (α1, λ1, . . . , αT , λT ) the vector

of unknown parameters. The notation used assumes N complete cycles of observations. Without

lost of generality we assume that X0 = x0. The methods of estimation under analysis in this

section are the method of moments, least squares-type and likelihood-based ones.

3.1 Moments-based estimators

In this section we discuss Yule-Walker estimators (YW) for the vector of parameters θ which

consist in the solution to the Yule-Walker type equations




µi = αiµi−1 + λi

γi+kT (1) = βi+1,1σ
2
i

, (4)

for i = 1, . . . , T and µ0 = µT , with γi+kT (1), µi, and σ2
i replaced by their corresponding empirical

counterparts. Hence, the YW-estimators, α̂i,Y W and λ̂i,Y W , of αi and λi, for i = 1, . . . , T are
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given by

α̂i,Y W =





N
N−1∑

k=0

(XkT −XT,N )(X1+nT −X1,N )

(N − 1)
N∑

k=0

(XkT −XT,N )2
, i = 1

N−1∑

k=0

(Xi−1+kT −Xi−1,N )(Xi+kT −Xi,N )

N−1∑

k=0

(Xi−1+kT −Xi−1,N )2
, i = 2, . . . , T

and

λ̂i,Y W =





Xi,N − α̂iXi−1,N , i = 2, . . . , T

X1 − α̂1XT,N , i = 1

with

X̄i,N =





1
N

N−1∑

k=0

Xi+kT i = 1, . . . , T − 1

1
N+1

N∑

k=0

XkT i = T

.

3.2 Conditional Least Squares Estimators (CLS)

The CLS-estimators θ̂CLS = (α̂1,CLS , λ̂1,CLS , . . . , α̂T,CLS , λ̂T,CLS) of θ are obtained by minimiz-

ing the expression

Q(θ) =
N−1∑

k=0

T∑

i=1

(Xi+kT − αiXi+kT−1 − λi)
2 ,

yielding

α̂i,CLS =

N
N−1∑

k=0

Xi+kT Xi−1+kT −
N−1∑

k=0

Xi+kT

N−1∑

k=0

Xi−1+kT

N

N−1∑

k=0

X2
i−1+kT −

(
N−1∑

k=0

Xi−1+kT

)2

and

λ̂i,CLS = N−1

(
N−1∑

k=0

Xi+kT − α̂i,CLS

N−1∑

k=0

Xi−1+kT

)
,
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for i = 1, . . . , T. It is easy to check that α̂i,Y W = α̂i,CLS , for i = 2, . . . , T whereas λ̂i,Y W = λ̂i,CLS ,

for i = 2, . . . , T − 1. However, it follows from straightforward modifications of the proof of

Theorem 3 in Freeland and McCabe (2005) that α̂1,CLS = α̂1,Y W +op(1), λ̂1,CLS = λ̂1,Y W +op(1)

and λ̂T,CLS = λ̂T,Y W + op(1). In obtaining the asymptotic distribution of θ̂CLS , we first prove

the following lemma.

Lemma 3.1. Let SN (θ) =
∑N−1

k=0 ξk(θ) with

ξk(θ) =
T∑

i=1

Ui+kT

(
∂Ui+kT

∂θ

)
,

being Ui+kT = Xi+kT − αiXi+kT−1 − λi. As N →∞

N−1 ∂SN (θ)
∂θ

P→ A1 (5)

with

A1 =




Ψ1 02 02 . . . 02

02 Ψ2 02 . . . 02

...
...

. . .
...

...

02 02 02 . . . ΨT




,

being Ψi =


 µi−1 + µ2

i−1 µi−1

µi−1 1


 for i=1,. . . ,T, with µ0 = µT . Moreover

N−1
N−1∑

k=0

ξk(θ)ξk(θ)
′ P→ A2 (6)

with

A2 =




Ω1 02 02 . . . 02

02 Ω2 02 . . . 02

...
...

. . .
...

...

02 02 02 . . . ΩT




,

being

Ωi =


 αi(1− αi)mi−1,3 + λimi−1,2 αi(1− αi)mi−1,2 + λiµi−1

αi(1− αi)mi−1,2 + λiµi−1 αi(1− αi)µi−1 + λi


 ,
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and mi,j = E[Xj
i+kT ], m0,j = E[Xj

kT ], α0 = αT and λ0 = λT , for i = 1, . . . , T . Finally

N−1SN (θ) P→ ~0 (7)

with ~0 = (0, . . . , 0)
′
of dimension 2T × 1.

Proof. See Appendix A.

The following result establishes the asymptotic distribution of the CLS-estimators.

Theorem 3.1. Under the conditions above

N
1
2 (θ̂CLS − θ) D→ N(~0, A−1

1 A2A
−1
1 ).

Proof. See Appendix A.

3.3 Weighted Conditional Least Squares Estimators (WCLS)

The WCLS-estimators θ̂WCLS = (α̂1,WCLS , λ̂1,WCLS , . . . , α̂T,WCLS , λ̂T,WCLS) of θ are obtained

by minimizing the sum of the squared error between the observations and its conditional mean

and weighted by the inverse of the conditional variance, given by

Q(θ) =
N−1∑

k=0

T∑

i=1

(Xi+kT − αiXi+kT−1 − λi)
2

α̂i(1− α̂i)Xi+kT−1 + λ̂i

,

yielding

α̂i,WCLS =

∑N−1
k=0

1
V̂ (θ̂,Xi+kT−1)

∑N−1
k=0

Xi+kT Xi+kT−1

V̂ (θ̂,Xi+kT−1)
−∑N−1

k=0
Xi+kT

V̂ (θ̂,Xi+kT−1)

∑N−1
k=0

Xi+kT−1

V̂ (θ̂,Xi+kT−1)

N−1∑

k=0

1

V̂ (θ̂, Xi+kT−1)

N−1∑

k=0

X2
i+kT−1

V̂ (θ̂, Xi+kT−1)
−

(
N−1∑

k=0

Xi+kT−1

V̂ (θ̂, Xi+kT−1)

)2 ,

λ̂i,WCLS =

N−1∑

k=0

Xi+kT − α̂i,WCLS

N−1∑

k=0

Xi+kT−1

N−1∑

k=0

1

V̂ (θ̂, Xi+kT−1)

,

being V̂ (θ̂, Xi+kT−1) = α̂i,CLS(1− α̂i,CLS)Xi+kT−1 + λ̂i,CLS , for i = 1, . . . , T .
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3.4 Conditional Maximum Likelihood Estimation (CML)

The conditional likelihood function for the PINAR(1)T model can be shown to be

L(θ|X1, . . . , XNT ) =
N−1∏

k=0

T∏

i=1

pi(xi+kT |xi−1+kT )

with

pi(xi+kT |xi−1+kT ) = e−λi

min(xi+kT ,xi−1+kT )∑

m=0

C
xi−1+kT
m αm

i (1− αi)xi−1+kT−m λ
xi+kT−m
i

(xi+kT −m)!
.

The CML-estimators θ̂CML = (α̂1,CML, λ̂1,CML, . . . , α̂T,CML, λ̂T,CML) are obtained maximizing

the conditional log-likelihood function

l(θ|X1, . . . , XNT ) =
N−1∑

k=0

T∑

i=1

ln (pi(xi+kT |xi−1+kT )) ,

yielding the systems




N−1∑

k=0

(xi+kT − αixi−1+kT ) = λi

N−1∑

k=0

pi(xi+kT − 1|xi−1+kT )
pi(xi+kT |xi−1+kT )

N−1∑

k=0

pi(xi+kT − 1|xi−1+kT )
pi(xi+kT |xi−1+kT )

= N

, (8)

for i = 1, . . . , T . In order to solve this system, numerical procedures have to be employed. Note,

however, that the CML estimates for the λi’s are readily available from that for the αi’s through

the following expression

λ̂i,CML =
1
N

N−1∑

k=0

(xi+kT − α̂i,CMLxi−1+kT ).

Large sample distribution of the CLM-estimators is given below.

Theorem 3.2. The CML-estimators are asymptotically Normal, i.e.

√
N




α̂1,CML − α1

λ̂1,CML − λ1

...

α̂T,CML − αT

λ̂T,CML − λT




D→ N(~0, I−1), (9)
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being

I =




M1 02 02 . . . 02

02 M2 02 . . . 02

...
...

. . .
...

...

02 02 02 . . . MT




, Mi =


 −E[∂

2l(θ)
∂α2

i
] −E[ ∂2l(θ)

∂αi∂λi
]

−E[∂
2l(θa)

∂αi∂λi
] −E[∂2l(θ)

∂λ2
i

]




with

−E[
∂2l(θ)
∂α2

i

] =

= − N

α2
i (1− αi)2

+∞∑
xi+T

+∞∑
xi−1+T

P (Xi−1+T = xi−1+T )×

× {
[(2αi − 1)xi+T − α2

i xi−1+T ]pi(xi+T |xi−1+T ) +

+ 2(1− αi)λipi(xi+T − 1|xi−1+T ) + λ2
i pi(xi+T − 2|xi−1+T )− λ2

i

p2
i (xi+T − 1|xi−1+T )
pi(xi+T |xi−1+T )

}
,

−E[
∂2l(θ)
∂αi∂λi

] =

=
N

αi(1− αi)

+∞∑
xi+T

+∞∑
xi−1+T

P (Xi−1+T = xi−1+T )×

× {pi(xi+T − 1|xi−1+T ) + λipi(xi+T − 2|xi−1+T )− λi
p2(xi+T − 1|xi−1+T )

p(xi+T |xi−1+T )

}

and

−E[
∂2l(θ)
∂λ2

i

] =

= −N

+∞∑
xi+T

+∞∑
xi−1+T

P (Xi−1+T = xi−1+T )×
{

pi(xi+T − 2|xi−1+T )− p2
i (xi+T − 1|xi−1+T )
pi(xi+T |xi−1+T )

}
.

Proof. See Appendix A.

4 Simulation study

The aim of this section is to illustrate the theoretical findings given in Section 3 and to assess

the small, moderate and large sample behavior of the YW, CLS, WCLS and CML estimators.
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Throughout the analysis it shall be assumed that T = 4. The simulation study contemplates

the following combination of λ’s and α’s: α = (0.85, 0.50, 0.76, 0.63) and λ = (4, 1, 3, 2). We

simulated time series of length n = NT = 80, 400, 2000 with 1000 independent replicates. The

results are summarized in Table 1.

(Table 1 about here)

A closer look at the table shows the superiority of the CML method in terms of both bias and

mean square error (MSE) when the sample size increases. The simulation study also reveals that

there is no gain in considering the WCLS method over the CLS method, being the differences

between their sample means and their mean square errors negligible. Note that the YW, CLS

and WCLS estimates of α, componentwise, tend to be biased to the left and negatively skewed;

see Figure 3. The bias and skewness, however, are reduced when the sample size increases. This

is in contrast with the YW, CLS and WCLS estimates of λ which tend to be biased to the right

and positively skewed, specially for the largest values of the λ’s. As expected, both the bias and

the skewness are also reduced when the sample size increases; see Figure 4. This is in agreement

with the asymptotic properties of the estimators: unbiasedness and consistency.

(Figure 3 about here)

(Figure 4 about here)

5 Conclusions

This paper has presented the periodic integer-valued autoregressive model of order one with pe-

riod T , driven by a periodic sequence of independent Poisson-distributed random variables, by

extending the conventional periodic autoregressive model. The stationarity and ergodicity of the

process are established. Method of moments, least squares-type and likelihood-based estimators

of the model parameters are derived and their asymptotic properties obtained. Moreover, an

important issue in fitting conventional PARMA models to periodic time series lies with parsi-

mony. Even very simple PARMA models can have an inordinately large number of parameters.

This is also true when dealing with PINAR models. Therefore, the developments of procedures

for dimensionality reduction is an impeding problem. This remains a topic of future research.
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6 Appendix A

Proof of Proposition 2.1. It is easy to see that Xt is a Markov chain on IN0 with the following

transition probabilities

P
(1)
ab = P (Xt = b|Xt−1 = a) =

min(b,a)∑

m=0

φm
t (1− φt)a−me−υt

υb−m
t

(b−m)!
> 0. (10)

From (10) it follows that (Xt) is an irreducible and aperiodic Markov chain. Thus, it is either

positive recurrent or lim
k→+∞

P
(j+kT )

ab = 0, for any a, b ∈ IN0. By iterating equation (1) and after

rearranging some terms, it follows that

Xj+kT
d= βj+kT,j+kT ◦X0 +

k∑

m=1

T−1∑

a=0

(βj,jβT,aβ
m−1
T,T ) ◦ ZT (m+1)−a +

j−1∑

m=0

βj,m ◦ Zj−m (11)

= Yj+kT , say.

The equality in distribution holds both unconditionally and conditionally given X0 = x0, say.

Note that the first term on the right-hand side of (11) is op(1), both unconditionally and condi-

tionally.

Next we show that Yj+kT converges almost surely. For all ε > 0 and k, n ∈ IN0

P

(
max
1≤l≤n

|Yj+kT − Yj+T (k+l)| > ε

)

≤ ε−1 · E
[
βj,jβ

k
T,T ◦X0 − βj,jβ

k+n
T,T ◦X0 +

n∑

m=1

T−1∑

a=0

(βj,aβT,aβ
m+k−1
T,T ) ◦ ZT (m+k+1)−a

]

= ε−1 · (βj,jβ
k
T,T (1− βn

T,T )E(X0) + βj,jβ
k−1
T,T

n∑

m=1

T−1∑

a=0

βT,aβ
m
T,T λT−a) −→ 0, as k → +∞.

Note that the variable V
(k)
j =

k∑

m=1

T−1∑

a=0

βj,jβT,aβ
m−1
T,T ◦ZT (m+1)−a +

j−1∑

m=0

βj,m ◦Zj−m, converges in

distribution (both unconditionally and conditionally) to the same limit. Hence, it follows that

lim
k→+∞

P (Xj+kT = b|X0 = a) = lim
k→+∞

P (Yj+kT = b|X0 = a) = lim
k→+∞

P (V (k)
j = b)

= lim
k→+∞

P (Yj+kT = b) = lim
k→+∞

P (Xj+kT = b),

since V
(k)
j is independent of X0. Suppose now that lim

k→+∞
P

(j+kT )

ab = 0 = P (Y ∗
j = b), for any

a, b ∈ IN0, where Y ∗
j represents the almost sure limit of Yj+kT . However, this contradicts the fact

13



that P (Y ∗
j < ∞) = 1. This proves the first part of the proposition. Almost sure convergence of

V
(k)
j follows by the same argument as above. We skip the details. Finally, in order to prove the

convergence in L2, we proceed as follows:

E

[(
V

(k)
j − V

(k+n)
j

)2
]

=
n∑

m=1

n∑

l=1
l 6=m

T−1∑

a=0

T−1∑

b=0

β2
j,jβT,aβT,bβ

m+l+2k−2
T,T λT−aλT−b

+
n∑

m=1

T−1∑

a=0

(
βj,jβT,aβ

m+k−1
T,T λT−a + β2

j,jβ
2
T,aβ

2m+2k−2
T,T λ2

T−a

)

+
n∑

m=1

T−1∑

a=0

T−1∑

b=0
b 6=a

β2
j,jβT,aβT,bβ

2m+2k−2
T,T λT−aλT−b.

After some tedious calculations, we obtain

E
[(

Vj+kT − Vj+T (k+n)

)2
]

= β2k+1
T,T β2

j,j × (constant) + βk
T,T βj,j × (constant)

+ β2k
T,T β2

j,j × (constant) −→ 0, k → +∞.

Therefore, for all n > 0, E
[∣∣Vj+kT − Vj+T (k+n)

∣∣2
]
−→ 0, as k → +∞. This concludes the proof.

Proof of Theorem 2.1. We first prove the if part: assume that Zj+kT ∼ P (λj). Note

that Xj+kT can be rewritten as

Xj+kT = βT,T ◦Xj+T (k−1) +
j−1∑

i=0

βj,i ◦ Zj−i +
T−j−1∑

i=0

βj,jβT,i ◦ ZT−i

︸ ︷︷ ︸
Y ∗j

.

Since
∑kT−1

m=0 βj+kT,m ◦Zj+kT−m ∼ P ((1−βk
T,T )µj), it follows that Y ∗

j ∼ P ((1−βT,T )µj). More-

over, the probability generating function of Xj+kT takes the form PXj+kT
(r) = PXj+T (k−1)

(1 −
βT,T + βT,T r)× PY (r) which implies that

PXj+kT
(r)

PXj+T (k−1)
(1− βT,T + βT,T r)

= e−µj(1−βT,T )(1−r) =
e−µj(1−r)

e−µj(1−(1−βT,T +βT,T r))
,

which lead us to conclude that PXj+kT
(r) = e−µj(1−r) is the probability generating function of a

Poisson-distributed random variable of mean µj . Finally, we prove the only if part. If Xj+kT is

a Poisson random variable, then

e−µj(1−r) = PXj+T (k−1)
(1− βT,T + βT,T r)× PY (r) = e−µjβT,T (1−r) × PY (r),

14



providing that

PY (r) =
j−1∏

i=0

e−βj,iλj−i(1−r)
T−j−1∏

i=0

e−βj,jβT,iλT−i(1−r) (12)

=
j−1∏

i=0

PZj−i(1− βj,i + βj,ir)
T−j−1∏

i=0

PZT−i
(1− βj,jβT,i + βj,jβT,ir), (13)

which is the probability generating function of a Poisson r.v. of mean µ∗j =
∑j−1

m=0 βj,mλj−m +

βj,j
∑T−j−1

m=0 βT,mλT−m. By (12) and (13) it follows that

PZj−i(1− βj,i + βj,ir) = e−λj−i(1−1−βj,i+βj,ir)

and

PZT−i
(1− βj,jβT,i + βj,jβT,ir) = e−λT−i(1−1+βT,iβj,j−βT,iβj,jr).

Thus, PZj−i(s) = e−λj−i(1−s) and PZT−i
(r) = e−λT−i(1−r) which implies Zi ∼ P (λi), for i =

1, . . . , T . This completes the proof.

Proof of Lemma 3.1. First, note that E[N−1 ∂SN (θ)
∂θ ] = A1. Thus the proof of (5) is con-

cluded if we show that

V [N−1 ∂SN (θ)
∂θ

] = E

[
N−2

(
∂SN (θ)

∂θ

)2
]
−A2

1 → 02T . (14)

In proving (14) observe that

N−2

(
∂SN (θ)

∂θ

)2

=




M1,N 02 02 . . . 02

02 M2,N 02 . . . 02

...
...

. . .
...

...

02 02 02 . . . Ms,N




with

Mi,N = N−2
N−1∑

n=0

N−1∑

k=0


 X2

i−1+nT X2
i−1+kT + Xi−1+nT Xi−1+sk X2

i−1+snXi−1+sk + Xi−1+sn

Xi−1+nT X2
i−1+kT + Xi−1+kT N−2Xi−1+nT Xi−1+kT + 1


 .

After some tedious but straightforward calculations it is possible to prove that for r, w = 0, 1, 2

lim
N→+∞

N−2
N−1∑

n=0

N−1∑

k=0

E[Xr
i−1+nT Xw

i−1+kT ] =
1
2

(
I{r=0} + I{r=1}mi−1,1 + I{r=2}mi−1,2

)
mi−1,w

+
1
2

(
I{w=0} + I{w=1}mi−1,1 + I{w=2}mi−1,2

)
mi−1,r.
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Hence,

lim
N→+∞

E[Mi,N ] = Ψ2
i =


 m2

i−1,2 + m2
i−1,1 mi−1,2mi−1,1 + mi−1,1

mi−1,2mi−1,1 + mi−1,1 m2
i−1,1 + 1


 ,

for i = 1, . . . , T , providing

lim
N→+∞

E

[(
N−1 ∂SN (θ)

∂θ
−A1

)(
N−1 ∂SN (θ)

∂θ
−A1

)T
]

= 02T .

This proves the result in (14). To prove (6) we proceed as follows: by symmetry of the matrix

in (6)

N−1
N−1∑

k=0

ξk(θ)ξk(θ)
′
= N−1

N−1∑

k=0




Ck11 Ck12 Ck13 . . . Ck1T

Ck12 Ck22 Ck23 . . . Ck2T

...
...

. . .
...

...

Ck1T Ck2T Ck3T . . . CkTT




(15)

with

Ckij =


 Ui+kT Xi−1+kT Uj+kT Xj−1+kT Ui+kT Uj+kT Xj−1+kT

Ui+kT Xi−1+kT Uj+kT Ui+kT Uj+kT


 , j ≥ i.

Note that the (m, l)th entry of the matrix Ckij , denoted by (Ckij)ml, for j, i = 1, . . . , T, j 6= i

and l, m = 1, 2, can be expressed in the form (Ckij)ml = Ui+kT X2−l
i−1+kT Uj+kT X2−m

j−1+kT whereas

(Ckii)ml = U2
j+kT X4−m−l

i−1+kT . Consequently,

E[(CN ij)ml] = E[Ui+kT X2−l
i−1+kT X2−m

j−1+kT E[Uj+kT |Xi−1+kT , Ui+kT , Xj−1+kT ]︸ ︷︷ ︸
0

] = 0

and

E[(CN ii)ml] = E[X4−m−l
i−1+kT E[(Xi+kT − αiXi−1+kT − λi)2|Xi−1+kT ]︸ ︷︷ ︸

V [Xi+kT |Xi−1+kT ]

]

= αi(1− αi)mi−1,(5−m−l) + λimi−1,(4−m−l).

Thus, it follows that E[N−1
∑N−1

k=0 ξk(θ)ξk(θ)
′
] = A2. Again, after some tedious but straight-

forward calculations it can be prove that

E




(
N−1

N−1∑

k=0

ξk(θ)ξk(θ)
′ −A2

)(
N−1

N−1∑

k=0

ξk(θ)ξk(θ)
′ −A2

)′
 → 02T ,
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as N → ∞. This proves the result in (6). The proof of Lemma 3.1 is complete upon show-

ing the result in (7). In doing so, first note that E[Ui+kT ] = 0 and E[Ui+kT Xi−1+kT ] =

E[Xi−1+kT E[Ui+kT |Xi−1+kT ]] = 0, for i = 1, . . . , T , leading to

E[N−1SN (θ)] = ~0.

In order to calculate the variance-covariance matrix of N−1SN (θ), the following preliminary

results are needed

N−1SN (θ)
(
N−1SN (θ)

)′
= N−2

N−1∑

n=0

N−1∑

k=0
k 6=n

E
[
ξn(θ)ξk(θ)

′]
+ N−2

N−1∑

n=0

ξn(θ)ξn(θ)
′

with

N−1∑

n=0

N−1∑

k=0
k 6=n

ξn(θ)ξk(θ)
′

=
N−1∑

n=0

N−1∑

k=0
k 6=n




F1,1 F1,2 F1,3 . . . F1,T

F2,1 F2,2 F2,3 . . . F2,T

...
...

. . .
...

...

FT,1 FT,2 FT,3 . . . FT,T




,

being Fi,j , for i, j = 1, . . . , T , zero-mean (2× 2) matrices with (m, l)th entry given by

(Fi,j)ml = Ui+nT X2−l
i−1+nT Uj+kT X2−m

j−1+kT , m, l = 1, 2.

Thus, the variance-covariance matrix of N−1SN (θ) takes the form

E[N−1SN (θ)
(
N−1SN (θ)

)′
] = N−2

N−1∑

n=0

E[ξn(θ)ξn(θ)
′
] = N−1A2 → 02T ,

as N →∞. The proof is complete.

Proof of Theorem 3.1. Let Fk−1 = σ (XkT , XkT−1, . . .). Since E[ξk(θ)|Fk−1] = ~0 it turns out

that ξk(θ) is a zero-mean martingale with respect to Fk. By (6) it follows that the central limit

theorem for martingales (Hall and Heyde, 1980) applies to Sk(θ), providing

N
−1
2 SN (θ) D→ N(~0, A2), N →∞. (16)

Now consider the first-order Taylor expansion

SN (θ̂CLS) = SN (θ) +
(

∂SN (θ)
∂θ

)
(θ̂CLS − θ) + RN , (17)
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being the remainder term RN = Op(1), as N →∞. Now use SN (θ̂CLS) = 0 in (17) to get

N1/2(θ̂CLS − θ) = −
(

N−1 ∂SN (θ)
∂θ

)−1

N−1/2SN (θ) + op(1). (18)

By (5) in Lemma 3.1, equation (16) and Slutzky’s Theorem in equation (18) the result follows.

Proof of Theorem 3.2. The proof follows easily as a generalization, for the periodic case,

of the arguments given by Franke and Seligmann (1993, pp. 325-6). We omit the details.
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Figure 1: Monthly number of short-term unemployed people in Penamacor County (Portugal),

from January 1997 to December of 2007.
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Figure 2: Sample means (top row, left) and variances (top row, right) by months of the year and

the autocorrelation function (bottom row, left) of the monthly number of unemployed people in

Penamacor County (Portugal), from January 1997 to December of 2007.
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α λ

n = 80 YW 0.737 0.423 0.706 0.597 4.717 1.771 3.291 2.264
(0.039) (0.018) (0.036) (0.028) (1.965) (1.728) (1.356) (1.488)

CLS 0.740 0.423 0.706 0.597 4.697 1.771 3.291 2.255
(0.037) (0.018) (0.036) (0.028) (1.882) (1.728) (1.356) (1.488)

WCLS 0.741 0.422 0.706 0.597 4.692 1.786 3.289 2.259
(0.037) (0.018) (0.036) (0.027) (1.886) (1.685) (1.356) (1.452)

CML 0.838 0.493 0.769 0.649 3.995 1.078 2.885 1.846
(0.009) (0.006) (0.013) (0.011) (0.577) (0.434) (0.524) (0.547)

n = 400 YW 0.837 0.492 0.754 0.628 4.080 1.079 3.040 2.018
(0.007) (0.003) (0.008) (0.006) (0.326) (0.297) (0.277) (0.311)

CLS 0.837 0.492 0.754 0.628 4.078 1.079 3.040 2.020
(0.007) (0.003) (0.008) (0.006) (0.323) (0.297) (0.277) (0.310)

WCLS 0.838 0.492 0.754 0.627 4.077 1.083 3.039 2.023
(0.007) (0.003) (0.008) (0.006) (0.321) (0.276) (0.275) (0.305)

CML 0.854 0.502 0.764 0.635 3.960 0.975 2.975 1.963
(0.002) (0.002) (0.003) (0.002) (0.131) (0.129) (0.108) (0.125)

n = 2000 YW 0.847 0.499 0.759 0.629 4.017 1.014 3.005 2.004
(0.002) (0.001) (0.002) (0.001) (0.074) (0.071) (0.056) (0.065)

CLS 0.847 0.499 0.759 0.629 4.016 1.014 3.005 2.005
(0.002) (0.001) (0.002) (0.001) (0.074) (0.071) (0.057) (0.065)

WCLS 0.847 0.499 0.760 0.629 4.015 1.017 3.003 2.004
(0.002) (0.001) (0.001) (0.001) (0.073) (0.064) (0.055) (0.062)

CML 0.849 0.500 0.761 0.631 4.003 0.998 2.993 1.991
(0.001) (0.0003) (0.001) (0.0004) (0.028) (0.026) (0.024) (0.025)

Table 1: Sample mean and mean square error (in brackets) for the model α =

(0.85, 0.50, 0.76, 0.63) and λ = (4, 1, 3, 2).
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Figure 3: Boxplots of the biases for α considering the set of parameters α =

(0.85, 0.50, 0.76, 0.63) and λ = (4, 1, 3, 2).
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Figure 4: Boxplots of the biases for λ considering the set of parameters α =

(0.85, 0.50, 0.76, 0.63) and λ = (4, 1, 3, 2).
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