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Abstract The present PhD work aims the research and development of materials that 
exhibit multiferroic properties, in particular having a significant interaction 
between ferromagnetism and ferroelectricity; either directly within an intrinsic 
single phase or by combining extrinsic materials, achieving the coupling of 
properties through mechanic phenomena of the respective magnetostriction 
and piezoelectricity. 

These hybrid properties will allow the cross modification of magnetic and 
electric polarization states by the application of cross external magnetic and/or 
electric fields, giving way to a vast area for scientific investigation and potential 
technological applications in a new generation of electronic devices, such as 
computer memories, signal processing, transducers, sensors, etc. 

Initial experimental work consisted in chemical synthesis of nano powders 
oxides by urea pyrolysis method: A series of ceramic bulk composites with 
potential multiferroic properties comprised: of LuMnO3 with La0.7Sr0.3MnO3 and 
BaTiO3 with La0.7Ba0.3MnO3; and a series based on the intrinsic multiferroic 
LuMn1-zO3 phase modified with of Manganese vacancies. 

The acquisition of a new magnetron RF sputtering deposition system, in the 
Physics Department of Aveiro University, contributed to the proposal of an 
analogous experimental study in multiferroic thin films and multilayer samples. 
Besides the operational debut of this equipment several technical upgrades 

were completed like: the design and construction of the heater electrical 
contacts; specific shutters and supports for the magnetrons and for the 
substrate holder and; the addition of mass flow controllers, which allowed the 
introduction of N2 or O2 active atmosphere in the chamber; and the addition of a 
second RF generator, enabling co-deposition of different targets. 

Base study of the deposition conditions and resulting thin films characteristics 
in different substrates was made from an extensive list of targets. Particular 
attention was given to thin film deposition of magnetic phases La1-xSrxMnO3, 
La1-xBaxMnO3 and Ni2+x-yMn1-xGa1+y alloy, from the respective targets: 
La0.7Sr0.3MnO3, La0.7Ba0.3MnO3; and NiGa with NiMn. 

Main structural characterization of samples was performed by conventional and 
high resolution X-Ray Diffraction (XRD); chemical composition was determined 
by Electron Dispersion Spectroscopy (EDS); magnetization measurements 
recur to a Vibrating Sample Magnetometer (VSM) prototype; and surface 
probing (SPM) using Magnetic-Force (MFM) and Piezo-Response (PFM) 
Microscopy. 

(continue on back page) 



 

  

Abstract (cont.) Results clearly show that the composite bulk samples (LuM+LSM and 
BTO+LBM) feat the intended quality objectives in terms of phase composition 
and purity, having spurious contents below 0.5 %. SEM images confirm 
compact grain packaging and size distribution around the 50 nm scale. Electric 
conductivity, magnetization intensity and magneto impedance spreading 
response are coherent with the relative amount of magnetic phase in the 
sample. The existence of coupling between the functional phases is confirmed 
by the Magnetoelectric effect measurements of the sample 
“78%LuM+22%LSM” reaching 300% of electric response for 1 T at 100 kHz; 
while in the “78%BTO+22%LBM” sample the structural transitions of the 
magnetic phase at ~350 K result in a inversion of ME coefficient the behavior. 

A functional Magneto-Resistance measurement system was assembled from 
the concept stage until the, development and operational status; it enabled to 
test samples from 77 to 350 K, under an applied magnetic field up to 1 Tesla 
with 360º horizontal rotation; this system was also designed to measure Hall 
effect and has the potential to be further upgraded. 

Under collaboration protocols established with national and international 
institutions, complementary courses and sample characterization studies were 
performed using Magneto-Resistance (MR), Magneto-Impedance (MZ) and 
Magneto-Electric (ME) measurements; Raman and X-ray Photoelectron 
Spectroscopy (XPS); SQUID and VSM magnetization; Scanning Electron 
Microscopy (SEM) and Rutherford Back Scattering (RBS); Scan Probe 
Microscopy (SPM) with Band Excitation Probe Spectroscopy (BEPS); Neutron 
Powder Diffraction (NPD) and Perturbed Angular Correlations (PAC). 

Additional collaboration in research projects outside the scope of multiferroic 
materials provided further experience in sample preparation and 
characterization techniques, namely VSM and XPS measurements were 
performed in cubane molecular complex compounds and enable to identify the 
oxidation state of the integrating cluster of Ru ions; also, XRD and EDS/SEM 
analysis of the acquired targets and substrates implied the devolution of some 
items not in conformity with the specifications. 

Direct cooperation with parallel research projects regarding multiferroic 
materials, enable the assess to supplementary samples, namely a preliminary 
series of nanopowder Y1-x-yCaxØyMn1O3 and of Eu0.8Y0.2MnO3, a series of 
micropowder composites of LuMnO3 with La0.625Sr0.375MnO3 and of BaTiO3 with 
hexagonal ferrites; mono and polycrystalline samples of Pr1-xCaxMnO3, La1-

xSrxMnO3 and La1-xCaxMnO3. 
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Resumo 

 
O trabalho de doutoramento presente tem por objectivo a pesquisa e 
desenvolvimento de materiais que manifestem propriedades multiferróicas, em 
particular com uma significativa interacção entre os fenómenos de 
ferromagnetismo e ferroelectricidade; seja de forma intrínseca em 
determinados materiais singulares, ou extrínseca ao combinar materiais que 
apresentam respectivamente fenómenos magnetoestritivo e de 
piezoelectricidade e em que geralmente o acoplamento se processa 
mecanicamente entre as fases. 

Esta hibridação de propriedades permite a modificação dos estados de 
polarização magnética ou eléctrica por aplicação dos campos externos 
complementares (eléctricos e/ou magnéticos), dando origem a uma vasta área 
de investigação científica e potenciais aplicações tecnológicas numa nova 
geração de dispositivos electrónicos como memórias, processadores, 
transdutores, sensores, etc.  

O trabalho experimental inicial consistiu na síntese química de óxidos sob a 
forma de pós nanométricos, pelo método de pirólise da ureia; As séries de 
compósitos maciços com potenciais propriedades multiferróicas 
compreendem: LuMnO3 com La0.7Sr0.3MnO3 e BaTiO3 com La0.7Ba0.3MnO3; e 
uma série baseada na modificação com lacunas de Manganésio da fase 
multiferróica intrínseca LuMn1-zO3. 

A aquisição de um novo sistema de deposição por RF sputtering, no 
Departamento de Física da Universidade de Aveiro, contribuiu para a proposta 
de estudo análogo de amostras multiferróicas sob a forma de filmes finos e 
multicamadas. Além da estreia operacional do equipamento foram efectuadas 
algumas melhorias técnicas e funcionais de que se destacam: o desenho e 
construção das ligações eléctricas do aquecedor; de portadas, protecções e 
respectivos suportes para os magnetrões e para o “porta substratos”; a adição 
de dois controladores de fluxo de gás permitindo a introdução controlada de 
Árgon e de atmosfera activa de O2 ou N2 durante a deposição; e a adição de 
uma segunda fonte e controlador RF permitindo a co-deposição simultânea de 
filmes a partir de dois alvos diferentes. 

O estudo base sobre as condições de deposição e das características dos 
filmes finos resultantes em diferentes substratos foi efectuada a partir de uma 
extensa lista de alvos. Atenção particular foi dada à deposição de filmes finos 
das fases magnéticas de La1-xSrxMnO3, La1-xBaxMnO3 e da liga Ni2+x-yMn1-

xGa1+y a partir dos correspondentes alvos La0.7Sr0.3MnO3; La0.7Ba0.3MnO3 e 
NiGa com NiMn. 

(continua na página seguinte) 



 

  

Resumo (cont.) 

 
A caracterização estrutural das amostras foi efectuada com Difractometria por 
Raios-X (XRD) convencional e de elevada resolução; determinação da 
composição química foi essencialmente realizada por Espectroscopia de 
Dispersão de Electrões (EDS); medidas de magnetização foram executadas 
com recurso a um protótipo de Magnetometro por Vibração da Amostra (VSM) 
e as medidas de análise de superfície utilizaram Microscopia de Ponta (SPM) 
nas vertentes de piezo resposta (PFM) e de força magnética (MFM). 

Os resultados obtidos nos compósitos maciços (LuM+LSM e BTO+LBM) 
demonstram claramente que as amostras satisfazem os objectivos propostos 
em termos de composição pureza das fases, com eventual conteúdo em óxidos 
espúrios inferior a 0.5%. Imagens obtidas por SEM confirmam a compactação 
dos grãos e distribuição de tamanhos em torno dos 50 nm. Condutividade 
eléctrica, intensidade da magnetização e a dispersão da resposta em Magneto-
Impedância são coerentes com a proporção relativa da fase magnética em 
cada amostra. A existência de um acoplamento entre as fases funcionais é 
evidenciada por medidas de efeito Magneto-Eléctrico na amostra  
“78%LuM+22%LSM” que apresenta uma resposta eléctrica de ~300% para 1 
Tesla a 100 kHz; enquanto que na amostra “78%BTO+22%LBM” se assinala a 
transição estrutural da fase magnética a ~350 K resulta na inversão do 
comportamento do coeficiente ME. 

Um sistema de Medidas de Magneto-Resistência foi totalmente desenvolvido e 
montado desde a fase conceptual até ao estado operacional; permite testar 
amostras de 77 a 350 K em função do campo magnético até 1 Tesla, e rotação 
horizontal de 360º; o sistema foi também desenhado para poder efectuar 
medidas de efeito de Hall e permitir upgrades. 

Ao abrigo de protocolos de colaboração estabelecidos com diversas 
instituições nacionais e internacionais, foram realizados cursos de formação 
complementar e caracterização de amostras em técnicas como Magneto 
Resistência (MR), Magneto Impedância (MZ) e efeito Magneto Eléctrico (ME); 
Espectroscopia Raman e Fotoelectrónica de Raios-X (XPS); Magnetização via 
sistemas SQUID e VSM; Microscopia de Ponta em Piezo resposta (PFM) e 
Espectroscopia de excitação em largura de banda (BEPS); Espectroscopia de 
Rutherford por Retro dispersão (RBS); Difracção de Neutrões em pós (NPD) e 
Correlações de Perturbação Angular (PAC) 

Colaboração em projectos de investigação fora do âmbito dos materiais 
multiferróicos permitiu ampliar e versatilizar experiencia em técnicas de 
preparação e caracterização de amostras, nomeadamente medidas de VSM e 
XPS permitiram identificar os estados de oxidação dos clusters de iões de 
Ruténio que integram complexos moleculares utilizados em catalisadores; A 
certificação por XRD e SEM/EDS do conjunto dos alvos e amostragem dos 
substratos adquiridos implicou a devolução de alguns itens com por falta de 
conformidade com as especificações. 

Cooperação directa em projectos de investigação paralelos sobre materiais 
multiferróicos permitiu o acesso a amostras suplementares, nomeadamente a 
uma série nano pós de Y1-x-yCaxØyMn1O3 e de Eu0.8Y0.2MnO3; a series de 
compósitos microestruturados de LuMnO3 com La0.625Sr0.375MnO3 e de BaTiO3 
com ferrites hexagonais; e a diversas amostras poli- e mono-cristalinas de Pr1-

xCaxMnO3, La1-xSrxMnO3 e La1-xCaxMnO3. 
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PPRREEFFAACCEE  

 

The role of science and technology is, beyond any doubt, of ever growing 

importance in human life, to the point that the advances in the field of information 

technologies have made possible the development of what we now call the ―information 

society‖. 

The need for faster, smaller and lighter devices with better performance in data 

storage and processing has now driven the scientific and engineering research to downscale 

such functional devices into the nanometer range. Concurrently, the expansion of computer 

simulation models, the resolution enhancements of several characterization systems and 

improvements in the quality of materials open the possibility to study and manufacture 

sophisticated materials at nearly molecular scales. At such nanometric dimensions, the 

physical properties of materials change dramatically when compared to those of their 

macroscopic counterparts; in fact, they exhibit new or crossover phenomena connected 

with quantum size effects. 

The intensive interest in understanding and manipulating ―in deep‖ the nano-

structured materials in regard to their interacting electric, magnetic and structural 

properties has led the scientific community to greatly focus in the research of their design, 

synthesis, characterization and potential applications, supported by a great expectation in 

industry that these exciting scientific breakthroughs can be exploited in a new generation 

of high-technology devices. 

Relatively recent science fields and terminologies have been introduced to refer to 

these new phenomenological aspects: magneto-electronics, spintronics, spin-valve, 

magneto-resistance, magneto-electric, multiferroics, tunneling effect, exchange bias, 

oscillatory magnetic coupling, etc.; in fact, many of these fields have already found 

applications in magneto sensors, electronics, data storage, computer hard disk heads, single 

electron devices, microwave electronic devices, RAM chips, etc. 

Thus, this generic nanotechnology will inevitably have great impact on a wide 

range of industrial sectors and on the everyday human lives. In other words, one of the 

pillars of industry in the 21st century involves the field of nanoscale materials [0.0.1]. 



Multiferroic Materials 

14 

CCOONNTTEENNTTSS  

 

DISSERTATION            3 

JURY              5 

ACKNOWLEDGMENTS           7 

ABSTRACT             9 

PREFACE           13 

OBJECTIVES          16 

MOTIVATION          17 

THESIS STRUCTURE         18 

SYMBOLS AND ACRONYMS        19 

I INTRODUCTION          25 

1. Materials Structure         27 

2.  Electrical properties         31 

2.1. Conductors         33 

2.2. Semiconductors        35 

2.3. Dielectrics         36 

3.  Magnetic properties         44 

3.1. Magnetic States         48 

3.2.  Magnetoelastic effect        54 

3.3. Magnetism Units        56 

4. State of the Art         57 

4.1. Multiferroic Materials        57 

4.2. Perovskite Manganites        62 

4.3. Ferroelectric Perovskites:       65 

4.4. Ferroelectric Hexagonal Manganites      68 

4.5. Magnetostrictive Ni2MnGa Heusler alloy     70 

II EXPERIMENTAL METHODS        73 

5. Samples preparation Methods       73 

5.1. Ceramics Powders Sintering       74 

5.1.1. Solid State Synthesis       75 

5.1.2. Coprecipitation Synthesis      76 

5.1.3. Sol-Gel Synthesis       76 

5.1.4. Combustion Synthesis       77 

5.2. Thin Films         78 

5.2.1. Film growth        78 

5.2.2. Deposition Processes       80 

5.2.3. Deposition by RF Magnetron Sputtering    83 



Fábio G. N. Figueiras 

15 

 

 

6. Characterization Methods        85 

6.1. Scanning electron Microscopy - SEM      86 

6.2. Energy Dispersive X-Ray Spectroscopy – EDS     87 

6.3. Scanning Probe Microscopy – SPM (PFM, MFM, BEPS)   89 

6.4. X-Ray Diffraction – XRD and Reflectometry – XRR    92 

6.5. Neutron Powder Diffraction – NPD      94 

6.6. Rietveld Refinement        95 

6.7. Raman Spectroscopy        97 

6.8. Magneto-Resistance – MR       99 

6.9. Magneto-Electric – ME      101 

6.10. Magneto-Impedance – MZ     102 

6.11. Vibrating Sample Magnetometer – VSM   102 

6.12. Superconductor Quantum Interference Device – SQUID  103 

6.13. X-Ray Photoelectron Spectroscopy – XPS   105 

6.14. Rutherford Backscattering Spectroscopy – RBS   106 

III EXPERIMENTAL WORK       107 

7. Experimental Systems Development     107 

7.1. Magneto Resistance measurements system   107 

7.2. RF Sputtering System      119 

8. Powders synthesis       123 

8.1. 2 inch Targets manufacture     123 

8.2. BaTiO3 + La0.7Ba0.3MnO3 series     126 

8.3. LuMnO3 + La0.7Sr0.3MnO3 series    127 

8.4. LuMn1-zO3 Intrinsic Multiferroic series    128 

9. Thin Film Deposition by Magnetron RF Sputtering System  129 

9.1. La0.7Sr0.3MnO3 phase series     134 

9.2. Ni2MnGa phase series      134 

10. Samples Measurements, Conditions and Parameters   138 

IV EXPERIMENTAL RESULTS AND ANALYSIS   149 

11. Powder samples       149 

11.1. LuMnO3 + La0.7Sr0.3MnO3 composites series   151 

11.2. Bulk LuMn1-zO3 Intrinsic Multiferroic series   172 

11.3. BaTiO3 + La0.7Ba0.3MnO3 composites series   184 

11.4. SPM study of Induced Ferroelectricity in C.O. Manganites 196 

12. Thin Film samples       212 

12.1. La0.7Sr0.3MnO3 phase series     212 

12.2. Ni2MnGa phase series @ IENM    227 

12.3. Ni2MnGa phase series @ UA     239 

IV CONCLUSIONS        257 

V FURTHER WORK        265 

VI REFERENCES        267 

VII COMMUNICATIONS AND PUBLICATIONS LIST   275 

VIII ATTACHMENTS        279 



Multiferroic Materials 

16 

OOBBJJEECCTTIIVVEESS  

 

With the main objective of achieving and measure potential magneto-electric 

coupling effects, compositions and structure of the samples were preferably sought in order 

to attain systems exhibiting appreciable magnetic and ferroelectric properties with relevant 

transitions near room temperature, making possible to broaden the diversity of 

characterization techniques applicable enabling to measure the complementary properties 

that may describe the potential conditions to obtain multiferroic composites. 

- Research and development of experimental tools as well as interpretation models that 

make it possible to design, manufacture and characterize functional multiferroic 

materials and devices. 

- To apply different manufacturing methods for nano-structured materials envisaging 

functional magneto-electric properties; in particular, nano powders Sol-gel synthesis 

and thin film deposition by RF Sputtering. 

- To understand and make use of several characterization techniques: Structural (XRD 

XRR and HR-XRD, Raman, TEM, NPD), Chemical (EDS, RBS, ICP, XPS), Magnetic 

(VSM, SQUID), Electric (MR, ME, MZ), Surface (SEM, SPM, PFM, MFM, V-I, 

BEPS). 

- Conception, design, construction and assembly of experimental hardware setups for: 

- Magneto-resistance and Hall Effect measurements 

- Magnetron RF Sputtering system 
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MMOOTTIIVVAATTIIOONN  

 

The scientific work expressed within this thesis, while focused on multiferroic 

materials, represents only a part of the personal and professional experience attained 

during the PhD graduation period; in these four years, there has been a long list of 

activities and collaborations in complementary scientific projects, as part of the intricacy of 

working in a dynamic research group in a Physics Department belonging to a forceful 

network laboratory like CICECO and within an active academic institution like the 

University of Aveiro. 

The previous scientific and technical background acquired during the Physics 

graduate course specializing on solid state matter, as well as during a Masters‘ course, 

investigating doping and thermal manipulation effects on the properties of CMR 

manganites, was proven relevant when selecting a topic to progress on PhD studies. 

Further participation in some national and international congresses and courses was 

significant in meeting research colleagues and recognizing our group scientific and 

technical work as being comparable to the state of the art worldwide. 

Given the wide spectra of their structural and functional phases, manganites became 

among the selected materials to further explore, modify and combine for their versatility 

and potential to attain magneto-electric coupling properties. 

Besides the preceding know-how in sample preparation by solid-state sintering, 

Sol-Gel nano-powder oxides synthesis by Pechini and coprecipitation methods along with 

thin film deposition using PLD and MOCVD systems, it was possible to extend technical 

knowledge to new experimental techniques, samples were prepared using a nano powder 

oxides synthesis by Sol-Gel Urea Combustion method, while thin film deposition was 

performed using by Magnetron RF sputtering. 

Adding to the former capabilities with characterization methods including XRD, 

RBS, EDS, SEM, TEM, SQUID and MR, further training was implemented regarding also 

several other measurement techniques: Raman spectroscopy, magneto impedance (MZ), 

magneto-electric effect (ME) and scanning probe microscopy (PFM, MFM, BEPS), special 

concern was given to magnetization using a new VSM system prototype and the 

development of a Magneto Resistance (MR) measurements setup. There was also the 
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opportunity to perform hyperfine interactions (PAC) [0.0.2] and X-Ray Photoelectron 

Spectroscopy (XPS) measurements in complementary samples. 

Based on the support given by supervisors, colleagues and academic institutions 

alike, there‘s a firm expectation to be able to give a valid contribution to the R&D of 

multiferroic materials. In addition, to be of assistance in the supervision of several 

academic students in their Bachelor‘s and Master‘s courses was a gratifying pedagogical 

opportunity, validating the personal scientific background. 

 

 

SSTTRRUUCCTTUURREE  

 

This work begins by introducing some physics background concerning structural, 

electric and magnetic properties of materials, then follows a more specific discussion about 

the state of the art regarding multiferroics in particular and of materials having extrinsic 

properties which combined may lead to potential magneto-electric coupling. The principles 

behind the experimental techniques for both preparation and characterization of nano-sized 

materials are described, focusing on the methods employed during this research work. 

The experimental work is expressed into the samples synthesis procedures, 

technical developments performed in specific instrumental systems and the different 

characterization methods used. The experimental results are organized according to each 

series of samples, enabling to compare and analyze the observations from different 

characterization methods. The conclusions reached are complemented by some trends for 

future research and mention for some potential technical applications of multiferroic 

systems. Finally, a comprehensive list of the completed publications and communications 

illustrates some of the complementary work performed in the context of PhD project. 

The chapters‘ configuration was selected in order to establish a direct relation 

between the identification number of each section and the respective figures, tables, notes 

and references, thus avoiding the conventional long list of sequential entries detached from 

the respective context. 
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SSYYMMBBOOLLSS  AANNDD  AACCRROONNYYMMSS  

 

This section provides a coherent summary of symbols, units, constants, some 

conversion factors and acronyms, which will be used within this work [0.0.3]. 

Symbol Definition Type Usual Value and Units  

    

Ø Vacancy, empty stoichiometric -- 

A Amplitude, Intensity scalar -- 

A Ampere electric current unit 1 A = 1 C.s
-1 

a ,  b ,  c Cell parameters length scalar Å 

a0 Bohr Radius constant 5.29177*10
-11

 m 

Å Angstrom length unit 1 Å = 10
-10

 m 

α ,  β,  γ proportion coefficients general -- 

αe (Electric) polarizability scalar, tensor C.m
2
.V

-1
 = A

2
.s

4
.kg

-1
 

B Magnetic Induction vector T 

β Gain scalar -- 

c Speed of light constant 2.9992458*10
8
 m.s

-1
 

C Coulomb charge unit 1 C = 1 A.s 

C Capacitance scalar F 

C Curie Constant materials‘ K 

ºC Celsius temperature unit ºC = K + 273.15 

…º Degree angle unit 2.π rd = 360º 

d Diameter, distance scalar m 

dij Piezoelectric coefficient tensor m.V
-1

 

dhkl Distance between crystalline planes scalar Å 

D Electric flux density or displacement vector C.m
-2

 

∆… variation, difference, change operator -- 

∂… differential, derivative operator -- 

δ small change, skin depth, loss general -- 

… Nabla: ux.∂…/∂x + uy.∂…/∂y + uz.∂…/∂z operator -- 

E Energy scalar J 

Ep , Ek Potential , Kinetic Energy scalar J 

EF , EC , EV Fermi, Conduction, Valence Energy levels  materials‘ J 

E Electric Field vector V.m
-1

 

℮ Napier base constant 2.71828182846… 

e
(…)

 , exp(…) Exponential of base ℮ operator -- 

e
-
 Electron charge  constant -1.602177*10

-19
 C 

emu Electro-magnetic unit CGS unit 1 emu = 10
-3

 A.m
2
 

ε Electric permittivity materials‘ J
-1

.C
2
.m

-1
 = C.V

-1
.m

-1
 

ε0 Vacuum electric permittivity constant 8.854*10
-12

 J
-1

.C
2
.m

-1
 

εr relative electric permittivity materials‘ εr = ε/ε0 

f Frequency scalar s
-1

 

F Force vector 1 N = Kg.m.s
-2 
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Symbol Definition Type Usual Value and Units  

    

F Faraday capacitance unit 1 F = 1 C.V
-1

 

φ phase angle scalar rd 

g gram mass unit 1 g = 10
-3

 kg 

G Gauss (magnetic induction) CGS unit 1 G = 10
-4

 T 

ge Electron gyromagnetic factor constant 2.00232 

gJ Landé factor scalar -- 

h Plank Constant constant 6.62608*10
-34

 J.s 

ħ Plank Constant (dashed) constant ħ = h/2.π 

h Height scalar (vertical) m 

H Magnetic Field vector A.m
-1

 (or kOe in CGS) 

Hz Hertz frequency unit 1 Hz = 1 s
-1

 

i ,  j Indexes, integer variable general -- 

i Imaginary unit (i
2
 = -1) complex number  i = √-1  

i Instantaneous current vector A 

I Nucleus total moment vector (quantum) -- 

J Joule energy unit 1 J = 1 kg.m
2
.s

-2
 

Je Current density  vector A.m
-2

 

J Total angular moment vector (quantum) J = L + S 

(h k l) Crystallography Miller notation planes vector integers 

k… kilo prefix unit 10
+3

 

kB Boltzmann Constant constant 1.38065*10
-23

 J.K
-1

 

K Kelvin temperature unit -- 

Kem Electro-mechanic energy conversion factor materials‘ -- 

kg kilogram mass unit -- 

l Length scalar (longitudinal) m 

L Total angular moment vector (quantum) -- 

λ wavelength scalar m 

lg(…) , log(…) logarithm base 10 operator  

ln(…) logarithm base ℮ operator  

m meter length unit -- 

m Mass scalar kg 

me Electron mass constant 9.10939*10
-31

 kg 

mn Neutron mass constant 1.67493*10
-27

 kg 

mp Proton mass constant 1.67262*10
-27

 kg 

M… mega prefix unit 10
+6

 

M Magnetization (Volume) vector A.m
-1

 

Mrem Remanent Magnetization scalar A.m
-1

 

Msat Saturation Magnetization scalar A.m
-1

 

M(…) specific atomic or molecular mass scalar g.mol
-1

 

mol mole quantity unit 6.02214*10
23

 

ml , ms angular, spin, moment projection scalar (quantum) -- 

mz magnetic moment projection scalar (quantum) -- 

μ… micro prefix unit 10
-6
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Symbol Definition Type Usual Value and Units  

    

μ magnetic permeability materials‘ J.s
2
.C

-2
.m

-1
 

μ0 absolute permeability constant 4.π *10
-7

 J.s
2
.C

-2
.m

-1
 

μr relative permeability materials‘ μr = μ/μ0 

μB Bohr magneton constant 9.2732*10
-24

 J.T
-1

 

μm magnetic dipole moment vector A.m
2
 

n… nano prefix unit 10
-9

 

n number of mol scalar mol 

N Quantity, total number of entities scalar -- 

N Newton  force unit 1 N = 1 kg.m.s
-2

 

n
0 

Neutron charge constant 0 

ñ Wave number scalar 10
-2

/λ cm
-1 

NA Avogadro constant constant 6.02214*10
23

 mol
-1

 

η efficiency scalar -- 

Oe Oersted (magnetic field) CGS unit 1 Oe = 10
3
/4  A.m

-1
 

P Pressure (force perpendicular to surface) vector Pa
 

P Polarization (P = ∑p/V) vector C.m
-2 

p Electric dipole moment vector C.m 

P Power scalar W 

p
+
 Proton charge constant 1.602177*10

-19
 C 

Pa Pascal pressure unit 1 Pa = 1 N.m
2
 

π pi constant 3.14159265359… 

q Charge scalar C 

Q Quality factor scalar -- 

r radius distance scalar m 

r position vector vector m, rd 

(r, φ, θ) Spherical position coordinates vector m, rd, rd 

R Resistance (real component of Z) scalar Ω 

R’ Reactance (imaginary component of Z) scalar Ω 

rd radians angle unit -- 

ρ Electrical resistivity (ρ = R.S/l) scalar Ω.m 

ρ Density, specific mass scalar kg.m
-3

 

ρe Charge density scalar C.m
-3

 

(ρ, φ, z) cylindrical position coordinates vector M, rd, m 

s second time unit -- 

s Strain (s = δl/l) (deformation) vector -- 

S section, surface area scalar m
2
 

∑… Sum operator -- 

∫… Integral operator -- 

S total Spin moment vector (quantum) -- 

ζ Electric conductivity (ζ = 1/ρ) scalar, tensor Ω
-1

.m
-1 

t Time scalar s 

T Tesla magnetic unit 1 T = 1 N.A
-1

.m
-1

 

T Stress (force parallel to surface, Tension) vector Pa = N.m
2 
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Symbol Definition Type Value and Units  

    

T Absolute Temperature scalar K 

Tc Critical transition Temperature materials‘ K 

TC Curie temperature materials‘ K 

TN Neel temperature materials‘ K 

θ angle scalar Rd 

η time constant scalar S 

v velocity, speed vector m.s
-1

 

V Volt voltage unit -- 

V Voltage, electric potential scalar V 

V Volume scalar m
3
 

x ,  y ,  z arbitrary variables general -- 

(x, y, z)  Cartesian position coordinates vector m 

xx , yy , zz Cartesian longitudinal, lateral, vertical axis m 

ux ,  uy ,  uz Cartesian versors vectors 1 

χ Magnetic susceptibility (volume) materials‘ -- 

χm Mass magnetic susceptibility materials‘ A.m
2
.kg

-1
 

χe electric susceptibility materials‘ -- 

χij Magnetoelectric susceptibility coupling materials‘ -- 

w wide scalar (lateral) m 

ω angular frequency vector rd.s
-1

 

W Watt power unit 1 W = 1 J.s
-1

 

Ψ(…) wave function, orbital operator -- 

Y Young‘s Elastic Modulus (T = Y.s) material‘s Pa 

Z Atomic number, proton number  scalar -- 

Z Impedance Z = R + i.R’ Complex number Ω 

Ω Ohm resistance unit Ω =V.A
-1

=Kg.m
2
.s

-3
.A

-2 
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Abbreviations Meaning 

  

a.c. Alternating current 

AFM Antiferromagnetic (phase) 

…
© 

Copyright (software) 

BEPS Band Excitation Probe Spectroscopy 

CEMUP Centre of Materials of Universidade of Porto (Portugal) 

CERN European Laboratory for Particle Physics (Genève, Switzerland) 

CICECO Centre for Research in Ceramics and Composite Materials (Aveiro, Portugal) 

CNMS Center for Nanophase Materials Sciences (TN, USA) 

CVD Chemical Vapor Deposition 

C.O. Charge Order 

d.c. Direct current 

EDS Energy Dispersive Spectroscopy 

…eff Effective, efficient 

FE Ferroelectric (phase) 

FI Ferrimagnetic (phase) 

FM Ferromagnetic (phase) 

GPIB General Propose Interface Bus (IEEE-488) 

IEMN Institute of Electronics, Microelectronics and Nanotechnology (Lille, France) 

IFIMUP Institute of Materials Physics, University of Porto (Portugal) 

ISOLDE Isotope Separator On Line (CERN, Genève, Switzerland) 

ITN Nuclear and Technological Institute (Lisbon, Portugal) 

JT Jahn-Teller (electronic 3d level degeneracy, MnO6 distortion) 

ME Magneto-Electric 

MFM Magnetic Force Microscopy 

M-I Metal-Insulator (transition) 

MOCVD Metallic Organic Chemical Vapor Deposition 

MR Magneto-Resistance 

MZ Magneto-Impedance 

n.a. Non applicable, non available 

NPD Neutron Powder Diffraction 

O.O. Orbital Order 

ORNL Oak Ridge National Laboratory (TN, USA) 

PFM Piezo Force Microscopy 

PM Paramagnetic (phase) 

…® registered trademark or service mark tag 

R&D Research and Development 

RF Radio Frequency (GHz band) 

RKKY Ruderman-Kittel-Kasuya-Yoshida (magnetic model) 

SC Spin canted 

SEM Scanning Electron Microscopy 

S.I. International System (m, kg, s, A, K, cd, mol) 

S.G. Space Group (Crystallographic Symmetry) 

SPM Scanning Probe Microscopy 
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TEM Transmission Electron Microscopy 

…
TM 

Unregistered trade mark tag 

UA University of Aveiro (Portugal) 

UP University of Porto (Portugal) 

UTAD University of Trás-os-Montes e Alto Douro (Vila Real, Portugal) 

UHV Ultra High Vacuum 

XPS X-Ray Photo-electron Spectroscopy 

XRD X-Ray Diffraction Spectroscopy 

XRR X-Ray Reflectometry 
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II  IINNTTRROODDUUCCTTIIOONN  

 

This chapter provides a resume of the most relevant concepts, theories, terms and 

units that are essential for understanding the scientific background of multiferroic 

materials; although some aspects of the presented models are rather simplistic with limited 

applicability, when used in an adequate context, they provide a basis and a 

phenomenological description of the mechanisms involved in particular aspects of the 

materials. 

 

Following the boom of semiconductors microelectronics, electron-charge-based 

information processing systems have become victims of their own success; as the 

downscaling process has further advanced, the ability to pack more transistors and to 

operate them at higher speeds has given rise to circuits approaching a power density ~100 

W/cm
2
; besides that, heat dissipation problems at channel lengths below 5 nm, quantum 

effects like tunneling and over-barrier transitions result in atypical behavior for 

conventional electronics. 

If we start from the basic physics and chemistry subjacent to the structural, electric 

and magnetic properties of materials on the macroscopic scale, we will find that, once the 

dimensions decrease down to the nanometer scale, materials start to exhibit additional 

phenomena, mainly due to quantum size effects. Actually, even the intrinsic properties of 

the materials become extrinsic (size dependent) and some parameters can be tailored, 

which virtually allows for a wide range of values for them; moreover, the possibility to 

combine several nano-structured elements in a single electronic component can further 

complement some physical functionalities, which could not be achieved by using 

macroscopic materials alone [I.0.1]. 

There are endless possibilities for scientists to research new phenomena and 

develop high-technology devices by understanding the complex effects on these systems 

and reducing their size to the nanometric scale, cutting down the dimensional layout from 

the ―3D‖ bulk materials particularly to ―2D‖ (films, quantum wells), but also to ―1D‖ 

(wires) and even ―0D‖ (quantum dots). 
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Inherent to the nano-scale of the systems, minor imperfections, like chemical 

inhomogeneity or impurities, crystalline structural defects, interfaces and external 

morphology, etc., have significant effects upon the physical properties; therefore, very high 

quality materials should be designed and implemented in order to get a device with the 

desired characteristics. 

Research and development of new materials for alternative vectors in information 

processing has to achieve at least performances one order of magnitude higher than the 

established in order to progress to a new technological paradigm shift. In any case, it must 

be perceptive to five essential and integrated aspects [I.0.2]: 

- Distinguishability between logic states (materials having asymmetric states) 

- Thermodynamic stability (store, noise, life cycle, switching energy and speed between 

states) 

- Information assessment and transport (data transfer process) 

- Thermal management (energy consumption and dissipation in the nano scale) 

- Manufacturing costs (use of widespread materials and preference for self assembly 

systems) 

In fact, nanotechnology research has advanced rapidly over the last decades; the 

structural, electric and magnetic properties of materials have been shown to become 

controllable in such low dimensions as well. Part of this research is directed at using ―spin‖ 

in some form as the information vector; under the general heading of ―spintronics‖ [I.0.3], 

one may find areas like correlated spin systems, magnetic domains, single-spin logic, and 

particularly a class of materials labeled as multiferroics that can conjugate magneto-

electric-elastic coupling properties. 

 

 



Fábio G. N. Figueiras 

27 

1 Materials Structure 

 

The fundamental concept about matter is that it is made of atoms. An atom is the 

basic unit of an element that can undergo a chemical change; in the simplest model, it 

consists of a nucleus about 10
-14

 m in diameter, accounting for almost all the mass of the 

atom, with a Z number of protons (p
+
) and an approximate number of neutrons (n

0
). 

The volume of the atom, typically in the order of 10
-10

 m, is imposed by the cloud 

of Z electrons (e
-
). The electrons are arranged in a spatial distributions (x, y, z) 

configuration and quantified energy (E) described by wave functions represented in figure 

1.0.1, that are solutions of the Schrödinger equation Ψ.     a) 

 0),,(..
.2

),,(.2 zyxΨEE
m

zyxΨ p
e


   (Schrödinger equation) 

The electrons states are described by the quantum mechanics theory in a set of four 

quantum numbers: principal or shell (n = 1, 2, 3,…), orbital (l = 0, 1, 2, …, n-1), orbital 

magnetic (m = -l, -l+l,…, 0, …, l-l, l) and spin (s = -1/2 or +1/2), arranged in rising energy 

levels that cannot be repeated (Pauli‘s exclusion principle) while spreading the spatial 

distribution within the same orbital (Hund‘s rule) [1.0.1].     b) 

The valence electrons, occupying the outer shell, play the most important role in 

defining the substance chemical behavior and most of its physical properties; in fact, the 

different columns in the periodic table of elements are arranged according to the number 

and orbital disposition of valence electrons, whilst the rows are linked to the total number 

of shells, as depicted in figure 1.0.2.  

The atoms tend to bond with each other forming more stable energy configurations 

as molecules; some kind of bonds can be relatively strong, in the case that electrons are 

shared or transferred between neighboring atoms, forming three different classes of solids: 

covalent, metallic or ionic. As a result, there is a redistribution of electrons near each atom, 

modifying its properties in relation to the isolated state [1.0.2].    c) 

________________________________________________________________________________________________ 

a) Ψ As developed by Erwin Schrodinger (1887–1961) 

b) A letter has been assigned to each orbital quantum number “l”: 1 ≡ s, 2 ≡ p, 3 ≡ d and 4 ≡ f 

c) Although there are weaker bonds due to permanent or fluctuating polarization of the electron clouds in the atoms or 
molecules, the present work is mainly concerned with the stronger and more stable bonds responsible for solid state 
materials. 
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Fig. 1.0.1: Schematics of |Ψ|
2
 and labels of 

electrons‘ orbitals in the Hydrogen atom. 

Fig. 1.0.2: The Periodic Table is an indispensable 

tool in materials research (from NIST). 

In the solid state, the atoms or molecules will be spatially arranged according to 

their relative amount and forces between them; if there is a repeating pattern, we are in the 

presence of a crystalline structure. When describing the periodic entities as points in a 3D 

network, there are a limited number of possibilities for their relative disposition, leading to 

seven distinct crystal systems [1.0.3], as represented in figure 1.0.3.  

Many of the properties of materials depend directly on the crystallographic 

symmetries, directions and distances between particular planes of atoms; in order to 

identify these features, we use the Miller Indices‘ convention: 

Taking a, b and c cell parameters and the respective axis of the crystal system as a 

referential, we represent, by the set of normalized integer numbers, the vector [h k l] 

perpendicular to the family of planes (h k l) that intercepts the framework; this is 

exemplified in figure 1.0.4. The separation between planes (dhkl) and the angle (α) between 

two directions [h1 k1 l1] and [h2 k2 l2] can be found by the expressions [1.0.3]: 

 2

2
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      (Separation between planes) 
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    (Angle between planes) 

However, there is no such thing as a perfect crystal; the periodicity can be affected 

by several types of point and line defects that generate strain field distortions in the matrix, 

as represented in figures 1.0.5 and 1.0.6. These also have a strong influence in modifying 

the materials‘ properties [1.0.3]. 
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a = b = c
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Tetragonal
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α = β = γ = 90º

Orthorhombic

a ≠ b ≠ c

α = β = γ = 90º

Hexagonal

a = b ≠ c

α = β = 90º; γ = 120º

Rhombohedral

a = b = c

α = β = γ ≠ 90º

Triclinic

a ≠ b ≠ c

α ≠ β ≠ γ ≠ 90º

Monoclinic

a ≠ b ≠ c

α = γ = 90º; β ≠ 90º

Al, Cu, Fe, Pb, Si

In, Sn,

Cd, Mg, Zn

S, U, Pt, Ga, I

B, Bi, Sb, Hg 

P, Se

P

P

P

I

I

I

F

FC

CP  
Fig. 1.0.3: The seven crystal systems, their respective symmetry relations and some typical examples of 

elements that are structured in such geometry. The fourteen Bravais Lattices are designated: P as primitive, I 

as body-centered, F as face-centered and C (or A or B) as opposite sides centered unit cells. 
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Fig. 1.0.4: Examples for defining directions [h k l] and family of planes (h k l) in a crystallographic system. 
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In effect, the crystals‘ surfaces represent the most radical break of periodicity, 

leaving partially unbounded atoms able to adsorb and absorb other atoms or molecules or 

even to be corroded or dislodged from the matrix; as such, usually the surfaces are covered 

with various imperfections, impurities and rearrangements that usually lead to local 

changes in the material‘s properties in relation to the bulk. Moreover, most solid materials 

are polycrystalline, i.e., an aggregate of many micro or nano-sized crystallites with random 

orientations, resulting in a sequence of mismatches and defects all across the grain 

boundaries due to the drastic changes in crystallographic directions in adjacent grains. 

“Perfect Crystal” Vacancy Displacement

 Substitutional Impurity

(larger atom)

 Substitutional Impurity

(smaller atom)

 Interstitial Impurity

 

Edge Dislocation

Screw Dislocation
 

Fig. 1.0.5: Schematics of a ―perfect crystal‖ and point defects Fig. 1.0.6: Schematics of line defects 

Single and polycrystalline solids exhibit a particular phase if the structure and 

properties are homogeneous all over the material. When different materials come to 

contact, there can be thermodynamic conditions to merge in a solid solution and generate a 

new phase, or else to be immiscible and produce a mixture keeping the individual phases 

separate, though some relevant interface phenomena may be established. The specific state 

and phases of a material system are usually expressed in terms of phase diagrams as 

function of parameters like microstructure, composition, temperature and pressure under 

equilibrium conditions. 

An important aspect about mixtures and composites is the connectivity between the 

different fractions: if it assumes a 0D (dots), 1D (lines), 2D (layers) or 3D (powders) 

distribution, if there are percolation patterns for each phase and if there is an epitaxial 

connection between the different phases; these factors are fundamental in defining both 

how the phases interact and the conjugated properties of the composite [1.0.4]. 
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2 Electrical Properties 

 

Starting from the indispensable electromagnetism equations proposed in 1864 by 

James Clerk Maxwell [2.0.1]: 

t

D
JH e       (Ampére‘s law) 

eD        (Gauss‘ law) 

t

B
E        (Faraday‘s law) 

0B        (Gauss‘s law for Magnetism) 

The merit of Maxwell‘s equations is that a wide range of electromagnetic 

phenomena can be described using only a few variables: 

- Ampere‘s law states that an external magnetic field (H) can be generated by a free 

electric current density (Je) or a variation in the electric flux density (D); 

- Gauss‘ law states that a charge density (ρe) generates a electric flux density (D) 

gradient; 

- Faraday‘s law states that a variation in the magnetic flux density (B) will induce an 

external electric field (E); 

- The fourth law states that the magnetic flux lines form closed loops thus no magnetic 

monopoles have yet been discovered. 

 

We postpone the discussion of magnetic properties for the next chapter, and 

proceed by further describing some of the electric principles governing the properties of 

materials: 

Materials can be basically classified as conductors, semiconductors or insulators, 

(whereas the particular case of superconductors is out of the scope of this work), each 

exhibiting particular and extensive phenomena and possessing their own interpretative 

models; some select theories are introduced in this chapter as indispensable tools to 

understand the context of the thesis work. 
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All types of electronic systems are made from a complex assemblage of these three 

kinds of materials, each performing a specific function according to the motion behavior of 

charges under the influence of an applied electric field, for instance: conductors for current 

feeding, semiconductors in diodes and amplifiers, and dielectrics for insulation or capacitor 

fillings, optical media, etc. 

Although valuable, the absolute value of conductivity, examplified in figure 2.0.1, 

is not the only criterion used to distinguish between materials‘ electrical character or 

transitions [2.0.2]; in fact, the structural mechanisms that affect carrier‘s mobility and its 

temperature dependence become fundamental to understand the electrical properties and 

respective applications for each material. In the case of ―free atoms‖, the available states 

for electrons have discrete energies, whereas for solid materials the superimposition of the 

electrons wave functions result in a distribution of energy states in the form of bands 

(figure 2.02). The electrons can belong to the valence band and be ―trapped‖ in ionic or 

covalent bonds, or be excited to the conduction band, available for electric conduction 

complemented by the vacancies left at the valence band (figure 2.0.3) or for metallic 

bonding. 

In insulators, the valence band are separated by a relatively large gap from the 

conduction band (∆E > 4 eV), while in semiconductors the difference is small enough that 

thermal or other excitations can bridge the gap easily at room temperature (kB.T = 0.026 

 
Fig. 2.0.1: Example of typical conductivity (ζ) 

ranges for several classes of electrical materials 

[2.0.2] 
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Fig. 2.0.2: Energy band diagrams for solids 
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Fig. 2.0.3: Fermi distribution for T =0 K and T > 0 K 
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eV); in conductors, like metals, the valence band overlaps the conduction band as 

represented in figure 2.0.2. 

The concept of the Fermi energy (EF) and chemical potential is also important for 

understanding the electrical and thermal properties of solids. At absolute zero the electrons 

pack into the lowest available energy states up to the Fermi level, while at higher 

temperatures a certain fraction f(E) will exist above and transfer to the conduction band 

(figure 2.0.3). 

1.
)1e()(

TkB

F

f       (Fermi function) 

 

 

2.1. Conductors 

 

Typical conductors like metals contain a large number of ―free‖ electrons per 

volume (N/V) that are able to move within the material when accelerated by an electric 

field (E), attaining an average ―drift‖ velocity (vd) which is limited by the mean free time 

(η) between collisions of the electrons with the lattice vibrations, defects, impurities, etc., 

as represented in figure 2.1.1. The free current density (Je) as explained by Drude‘s theory 

[2.1.1] under a d.c. electric field (E): 

t

q
Je

.S
E

m

eN
v

N
e

e

ee
d

e

.V

..
.

V
.

2

    (Drude‘s Theory) 

EJe .  or EJe      (Ohm‘s law) 

 

 

 

 
 

 

Fig. 2.1.1: Schematics of charge flow 

(Je) in a conductor due to electrons 

mobility (e
-
) in the presence of an 

applied electric field (E). 

 
Fig. 2.1.2: Thermal conductivity vs. conductivity for some 

metals at 20ºC. The solid line represents the WFL law [2.0.2]. 
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Given that the amplitude of the lattice vibrations increases with the thermal energy 

available, the resistivity (ρ) is temperature (T) dependent, aproximatly by the equation: 

 000 1       (Metals‘ resistivity) 

Within limited temperature range, above 100 K and bellow fusion and magnetic 

phase transitions, the thermal coefficient α0 is of the order of 10
-2

/K for most pure metals, 

where the reference resistivity ρ0 is usually defined at T0 = 273 K. Within this simplified 

model, electrons also govern the process of heat transport in metals and the electronic 

thermal conductivity (κ) is given by the Wiedemann-Franz-Lorenz law [2.0.2]: 

 ..
.3

.
2

22

e

kB       (WFL law),  

With  
2

22

.3

.

e

kB = 2.45x10
-8

 W.Ω.K
-2

     (Lorenz number) 

For a metallic material with length l and cross section S, this result is equivalent 

expressions for electrical Ohm‘s law (i = ΔV/R) and heat (E) thermal conductivity: 

 
V

lt

q
.

S
 and .

SE

lt
  (Similarity between Ohm‘s and Fourier‘s laws) 

The resistivity decreases more rapidly below 100 K in a ρ = αr.T
5
 + ρr dependence, 

where is a αr constant and ρr is the residual resistivity which in the exceptional case of 

superconductors can vanishes. 

For a conductor under a.c. excitation, most of the current flows in the surface 

region of depth δ (of the order of µm) defined as a function of conductivity (ζ), angular 

frequency (ω) of the applied field and absolute permeability (μ): 

2
1

...
2

1
     (Normal Conduction depth) 

In the case of thin films, the thickness (δ) is smaller than the mean free path of the 

electrons (vd.η) in the bulk material. Consequently, in polycrystalline films, the additional 

scattering from the surfaces and a more significant contribution from scattering effects due 

to the morphology (grain size, stress, etc.) may lead to an increased resistivity, whereas 

high quality films with epitaxial or preferred orientation structure usually show higher 

conductivity [2.0.2]. 
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2.2. Semiconductors 

 

As mentioned before, semiconductors constitute the backbone of conventional 

electronics, due to the high flexibility they exhibit regarding the manipulation of their 

conductive behavior. This very same characteristic also renders them very sensitive to 

impurities and crystal defects, making necessary a level of extreme chemical purity, 

precise chemical doping and high crystalline perfection in order to achieve predictable and 

reliable electrical properties. 

At the normal ranges of temperature and pressure, the dominant charge carriers in 

an intrinsic semiconductor are mainly generated by thermal excitation in the bulk, because 

the semiconductor has a relatively small energy band gap (ΔE = Ec - Ev); hence, a small 

amount of energy is sufficient to excite electrons from full valence band to an upper empty 

conduction band, leaving behind a broken bond (or hole) with a localized positive charge. 

 
 

Fig. 2.2.1: Schematics of electron and hole 

conduction for an intrinsic semiconductor. 
Fig. 2.2.2: Conductivity (ζ) vs. inverse temperature 

dependence for n-type semiconductor [2.2.1], 

highlighting the most important regimes. 

Both the conduction electrons and the holes displacements (by tunneling electrons 

from neighboring bonds) contribute to electric conduction in presence of an applied field 

(figure 2.2.1). The effective concentration of electrons in the conduction band (n), which 

corresponds to an equal number of holes (p) in the valence band, is temperature dependent 

[2.0.2]: 

.2/3**322 ......2.4. Bk

E

ehBi emmhknpn    (Mass action law) 
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In extrinsic semiconductors, doping elements are added to the matrix material: 

―donors‖ to contribute to excess electrons (n-type) or ―acceptors‖ to produce excess holes 

(p-type), resulting in a dislocation of the Fermi energy level and imposing the electrical 

work performed by each kind of carrier under conduction regime. 

The conductivity of extrinsic semiconductors has three distinct regimes as a 

function of temperature as exemplified in figure 2.2.2: at low temperature range (T < Ts), 

is dominated by the progressive ionization of the donor (or acceptor) elements up to the 

respective saturation at Ts; for intermediate temperature ranges (Ts < T < Ti), the system 

becomes more stable (extrinsic); for temperatures above the intrinsic limit (Ti), the 

conduction is dominated by electron excitation of the matrix semiconductor, overcoming 

the dopant contribution [2.2.1]. 

 

 

2.3. Dielectrics 

 

 As the electrons are strongly bound to the 

respective atoms or molecules, external fields, such as 

electromagnetic fields, mechanical stress, or temperature 

gradients, only result in a local distortion of the charge 

cloud. Eventual charge carriers are mainly injected from 

electrical contacts or other external sources or result from 

the dielectric breakdown [2.3.1]. Under linear reponse to 

an electric field (E), the centers of distribution of positive 

(+q) and negative charges (-q) are displaced from their 

equilibrium position and become separate by a finite 

distance (l), inducing an electric dipole moment: 

Elqp e..      (Electric dipole moment) 

with: 2

0

2

.

.

e

e
m

eZ
      (Electronic polarizability) 

Given that the electrostatic restoring force is proportional to the displaced charge 

(Z) and the distance (l), after the removal of the field, the electronic cloud executes a 

simple harmonic motion about the nucleus with a characteristic angular frequency (ω0). 

 

 
 

 

Fig. 2.3.1: Electronic polarization 

under electric field and dipole 

moment definition. 
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Making 
0.V

. e

e

N
      (Electronic dipole susceptibility) 

and er 1       (Relative permittivity) 

where 
-12-1-12 .m.CJ 10*8.854e

 (or F.m
-1

)   (Vacuum permittivity) 

This allows the calculation of the macroscopic property εr from the microscopic 

electronic or ionic polarization (αe) phenomena: 

thus yielding 
0V3

1

2

1 e

r

r N
     (Clausius-Mossotti equation) 

In the case of molecules with permanent dipole moments (p0), like for example 

liquid crystals, there is orientational polarization under the effect of an electric field, with: 

.3

1 2

0

e

d
k

p
      (Orientational polarizability) 

Other polarization mechanisms may comprise accumulation of charge at interfaces 

between two regions, like at the contact area between the dielectric and the electrodes or 

within the material itself (αi) such as the case of grain boundaries, defects, impurities, etc. 

The total linear response polarization (P) will be the sum of all existing 

contributions, with dependencies on the dielectric material‘s geometry, microstructure, 

temperature, mobility and electronic bonds of the molecules, etc: 

local
N

i

i

N

i

i i
EpP

11

..
V

1

V

1
    (Total polarization) 

Or the bulk: 

 

EP e .. 0       (Polarization) 

Defining the overall electrical susceptibility as: 

E

P
e

.0

      (Electric susceptibility)   a) 

One of the most common uses of polarization is to enhance capacitance (C0 to C) 

due to the rise of the electric displacement (D) in the medium, resulting in a higher charge 

accumulation (q0 to q) between electrode plates for the same voltage (ΔV), area (S) and 

distance (d) conditions, as represented in figure 2.3.2. 

________________________________________________________________________________________________ 

a) In practice, for χe >>1: εr ≈ χe ≈ χe+1  
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EEPED e .).1.(. 00    (Electric displacement) 

dVqC S.000      (Capacitance in free space) 

r
q

q

C

C

E

D
... 0

0

0

0

0
   (Medium dielectric permittivity) 

The polarization generates a depolarizing field (Edep) that depends on the shape 

factor (Ndep) of the dielectric, reducing the effective electric field inside the material: 

0.PNE depdep
     (Polarization for dc field) 

Due to damping factors like the materials lattice thermal agitation, the dielectric 

material responds with some delay to the alignment or formation of the dipoles as a result 

of an applied field variation and assumes a more general frequency dependent form: 

EP e .. 0      (Polarization vector for a.c. field) 

For ideal non-interacting dipoles, the permittivity (ε) is expressed as a complex 

number (ε = ε’+i.ε”) function of the field frequency (ω), as exemplified in figure 2.3.3. 

..i1

0
   (Debye dielectric relaxation model) 

Where η is the characteristic relaxation time of the medium, ε(ω∞) is the 

permittivity at the high frequency limit and ε(ω0) at the static condition. The influence of 

ε(ω) in voltage and current amplitude and relative phases is described in terms of 

impedance (Z); for the plain capacitor example, it introduces pure reactive impedance 

inversely proportional to the signal frequency and a π/2 delay between voltage and current: 

 
C

ZC
..i

1
     (Capacitor impedance) 

 

 
Fig. 2.3.2: Polarization contribution 

for capacitance enhancement. 

 
Fig. 2.3.3: Frequency dependence of real and imaginary 

parts of the dielectric constant in the presence of 

different polarization mechanisms [2.2.1]. 
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Thus, the electric polarization leads to the occurrence of resonance, relaxation, 

energy storage, energy dissipation phenomena, and extends to a panoply of thermal, 

mechanical, and optical effects and their interrelations. On the other hand, to mention a 

few limitations, dielectric materials can suffer electrical aging and destructive breakdown, 

especially when used as insulators or capacitor fillers under high power a.c. fields. 

Dielectric materials may be classified into two major categories according to the 

presence or not of a concomitant (ferroic) polarization order, as seen in figure 2.3.4: 

Non-ferroic dielectrics are also 

known as normal dielectrics or paraelectrics, 

can be found either in gas, liquid or solid 

phases and may be divided into three classes: 

nonpolar (that have only electronic 

polarization), polar (have both electronic and 

ionic polarization) and dipolar (have all three 

fundamental polarizations: electronic, ionic, 

and orientational). 

Ferroic dielectrics have spontaneous polarization and must be in single crystalline 

or polycrystalline form; when subjected to an external field, undergo a change in electric 

polarization that also result in a small change in unit cell dimensions, depending on the 

specific symmetry of the unit cells, determines whether the crystal exhibits piezoelectric, 

pyroelectric, ferroelectric, electro-optic or even non linear effects [2.3.2]. 

Piezoelectric crystals become strained when an electric field is applied and 

conversely, while for a pyroelectric crystal a change in temperature produces a change in 

polarization and specific ferroelectric crystals possess a reversible spontaneous 

polarization over a certain temperature range.      a) 

 

________________________________________________________________________________________________ 

a) The term “ferroelectrics” can also be used to designate the “ferroic dielectrics” category of materials when understood 
in the broad context of ferroic phenomena in analogy to ferromagnetism, in opposition to the specific properties of 
“ferroelectric materials” with reversible spontaneous polarization, meaning that the polarization has a nonzero value in 
the absence of an applied electric field, and that the direction of the spontaneous polarization can be reversed by 
applying a field in opposite direction. 

Dielectrics

Piezoelectrics

Pyroelectrics

FerroelectricsDipolar

Polar

Nonpolar

FerroicNon-ferroic

elastic / polarization

coupling

+ thermal / polarization

coupling

+ field / polarization

reversal

electronic polarization

+ ionic polarization

+ orientational 

polarization

 
Fig. 2.3.4: Dielectrics classification 
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On the basis of crystallographic symmetry elements there are 230 space groups, 

these break down into 32 classes, from which 21 are non-centrosymmetric and of these 20 

can exhibit piezoelectric effect and only 10 can be pyroelectric with a subgroup also 

ferroelectric. Materials exhibiting these effects imply that phase transitions involve 

asymmetric displacements of atoms inside the crystal arrangement, albeit the cubic system 

possesses symmetry characteristics which can combine to give no piezoelectric effect. 

 

2.3.1. Ferroelectrics 

The most prominent properties of ferroelectrics are the hysteresis and nonlinearity 

in the relation between the polarization (P) and the applied electric field (E), as scheme in 

figure 2.3.5; and anomalously high dielectric constants (εr up to 10
5
), especially near the 

critical Curie temperature (TC), as examples in figure 2.3.6; while at T > TC the behavior 

of the electric susceptibility (χe) follows the Curie-Weiss law mean field approximation: 

 

C

e

C
       (Curie-Weiss law) 

The transition to a polarizated state also induces a mechanical strain, tending to 

change the volume and the shape of the material body. The direction of spontaneous 

polarization, also referred to as the ferroelectric polar axis, is along the direction of the unit 

cell‘s elongation. The direction of the polarization (P) can be reversed by a sufficiently 

high electric field (E) of opposite polarity, distinguishing it as a ferroelectric material. This 

possibility makes it also capable of piezoelectric, pyroelectric and electro-optic behavior. 

Because a ceramic is composed of a large number of randomly oriented crystallites, it is 

normally bserved an isotropic response whereas single crystals have anisotropic responses. 

The conventional poling process, which is reversible, consists in forcing the polar 

axis as near to the field direction as possible, within the mechanical and electric breakdown 

limits of the material, by the application of a external static electric field for some time, 

enough to bring the specimen to the saturation polarization and then allowed to relax back 

to the remanent condition. Poling is usually carried out at temperatures as high as the Curie 

threshold temperature allows. It should be noted that a poling process is often necessary 

even with single-crystal ferroelectric bodies because they contain randomly oriented 

domains. 
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Fig. 2.3.5: Schematic diagram of a 

typical ferroelectric hysteresis loop. 

Fig. 2.3.6: Schematics of the dielectric constant εr and the spontaneous 

polarization Psat with the temperature for three typical FE crystals [2.2.1]. 

Ferroelectrics have been traditionally divided into 2 different types of transitions: 

- Displacive ferroelectrics where the discrete symmetry group is broken at TC and the 

ferroelectric transition can be described as the result instability of the anharmonic 

crystal lattice against soft polar lattice vibration (e.g., BaTiO3). 

- Order–disorder-type ferroelectrics where a discrete symmetry group is broken due to 

the ordering of the ions or molecules in a rigid lattice potential (e.g., KH2PO4).  

The extensive diversity of phases can be classified as: 

- Ferroelectric liquid crystals where a continuous symmetry group is broken at TC and 

the relaxational soft mode of the high-temperature phase splits below TC. 

- Relaxors where there is no macroscopic symmetry breaking and where, in view of 

―site‖ and ―charge‖ disorder, there is an extremely broad distribution of correlation 

times. The longest correlation time diverges at the freezing transition whereas other 

correlation times are still finite (e.g., PbMg1/3Nb2/3O3). 

- Ferrielectrics behavior is related to the relative spatial distribution of entire polar 

molecules and can be found for example in quiral liquid crystals. 

- Antiferroelectrics do not show a net spontaneous polarization below TN, but are 

characterized by the existence of a superstructure described in terms of two sublattices 

having equal but opposite polarization; practically show a paraelectric response to 

fields and the dielectric constant is considerably low. Some antiferroelectric materials 

may also be induced to become ferroelectric under the application of a suitable electric 

field. 
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It is worth mentioning that upon repeated switching of the polarization of the 

crystals, spontaneous polarization becomes clamped or decreases, and the coercive field 

increases. This phenomenon is referred to as the fatigue or decay of the crystal and it has 

been attributed to the build-up of the space charge near the crystal surfaces and the 

interaction of this space charge with domain walls. 

 

 

2.3.2. Piezoelectric phenomena 

The direct effect of the piezoelectricity is the generation of electric polarization by 

a mechanical stress, while the converse effect is the mechanical displacement actuated by 

an electric field. The effects are reversible and convertible in relation to the direction of the 

electric field (E) and the mechanical distortion (s = Δl/l); whereas the electrostriction 

phenomenon is not inversive and the resulting strain is proportional to the square of the 

field. Combining the polarization (P = χe.ε.E) and Hooke‘s law (T = Y.s) we define the 

piezoelectric coefficient tensor (dij) 

jiji TdP .   iiji Eds .   (Piezoelectric coefficient definition) 

The tensor dij assumes maximum value for d33 when the relation between 

polarization and stress or strain and electric field are considered in the same direction, as 

represented in figure 2.3.7. 

The electro-mechanic energy conversion factor (Kem) is given by: 

)/(

)/(

2

mechanicalelectrical

in

electricalmechanical

out
emK    (Electro-mechanic energy conversion factor) 

Crystal 
d33 

10
-12

.m.V
-1

 

Kem 

~ 
ρ 

g.cm
-1

 

 

Quartz (SiO2)     2.3 0.1 2.65 
Rochelle Salt 350 0.8 1.77 
BaTiO3 190 0.4 5.70 
NaNbO3   49 0.4 4.45 
PZT (PbTi0.5Zr0.5O3) 480 0.7 7.70 
KH2PO4 (KDP) 107 0.1 2.31 
Kynar (PVDF)     4 0.1 1.78 

Table 2.3.1: Some examples of materials  

and typical values of dij and Kem. [2.3.2] 

Fig.2.3.7: Illustration of the piezoelectric effect 
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There are two principal mechanisms for piezoelectricity. 

- The linear piezoelectric effect may occur, in first approximation, if the crystal has no 

center of symmetry and when under the unstrained condition the dipole moments of the 

material mutually cancel each other. 

- For ferroelectric piezoelectricity, the variation of the mechanical strain with the applied 

electric field follows the change of polarization in the hysteresis loop shown in Figure 

2.3.5. The dipole moment memory effect adds to the resulting moment along a polar 

axis of the unit cell, so the occurrence of piezoelectricity is accompanied by 

pyroelectricity, involving spontaneous polarization. 

During the poling process, there is a small expansion of the material along the 

poling direction and a contraction in perpendicular directions as examples in figure 2.3.8. 

 

 

 
 

Fig. 2.3.8: Schematic illustration of the variation of mechanical strain with electric field for electrostriction, 

ideal piezoelectricity and ferroelectric piezoelectricity in poling and lateral directions [2.2.1]. 
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3 Magnetic Properties 

 

One of the simplest models [3.0.1] to describe the magnetic dipole moment (μm) is 

the perpendicular vector generated by an electric current (i) looping the surface (S), as 

shown in figure 3.0.1. 

zm ui .S.       (Classic magnetic moment model) 

Given that the atoms in a material are composed of protons (p
+
) and neutrons (n

0
) in 

the nucleus, having overall quantum angular moment (I), and electrons (e
-
), each with 

orbital (L) and intrinsic spin (S) moments, represented in figure 3.0.2, it follows that the 

entire atom responds to an external magnetic field with a net magnetic moment (μF): 

iI

Z

i

N
iSiL

Z

i

B
F IgSgLg ...


  (Atom‘s magnetic moment) 

The comparatively higher mass of protons and neutrons implies that the magnitude 

of the nucleus‘ momentum is 1000 times smaller than that of the electrons; for specific 

isotopes, the sum over the electrons magnetic moments is nul, whereas the nuclear moment 

is present and can be detected by Nuclear Magnetic Resonance (NMR) systems. Under 

most circumstances, it is possible to consider mainly the electrons‘ contribution and the 

total angular momentum [3.0.2]: 

SLJ       (Russell–Saunders coupling) 

Calculated according Hund's rule and Pauli's principle, usually J = L - S for less 

than half filled shells (like most lanthanide elements) or J = L + S for more than half full 

shells. 

 

 
Fig. 3.0.1: Magnetic dipole moment concept Fig. 3.0.2: Orbiting electron and spinning electron 
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The Landé factor (gJ) relates J and μm and is a function of the quantum numbers L 

and S with respective gyromagnetic factors (gL ≈ 1) and (gS ≈ 2), as described by Alfred 

Landé in 1921. 

)1(.2

)1()1()1(
1

JJ

LLSSJJ
g J

  (Landé factor) 

For transition metals, due to quenching in a crystal, L usually takes the minimum 

allowed values and, in general, L ≈ 0, J ≈ S, gJ ≈ 2. The respective precession of the 

projection μm along the direction of an external field is given by: 

zJBi

Z

i

J
B

m mgJg ....


   (Quantified magnetic moment) 

Where mz=-|J|, -|J|+1,…, 0,…, |J|-1, |J|, with mz taking (2.|J|+1) possible integral 

values. The resulting magnetization per unit volume (M) is 

m

N

i

m
V

N

V
M

i
.

1

1

     (Magnetization per volume) 

Considering that the magnetostatic dipole interactions are very weak (μB/kB = 0.672 

K/T) and temperatures of the order of 1K are sufficient to destroy the established 

ferromagnetic order, the main forces responsible for the magnetization are the quantum 

mechanic exchange interactions between the moments of the nearest neighbor atoms (Sj). 

This can be written as resulting from local magnetic field (Hi) acting on the i-th spin, 

described by the Heisenberg Hamiltonian: 

i

iiB

ji

jiij SHgSSJ .....2H 0    (Heisenberg Hamiltonian) 

When applicable, the total spins interaction sum can be approximated to an average 

molecular field (Hm) proportional to the magnetization: 

MNH Wm .        (Weiss molecular mean field) 

The total ―field‖ experienced by the magnetic moments comprises the external field 

(Hext) and the internal Weiss field (Hm): 

mext HHH       (Total Magnetic Field) 

At high temperatures, above the critical asymptotic paramagnetic Curie temperature 

(ΘPM or TC) the expression for the magnetization can be approximated by: 
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)..(. MNH
C

HM Wext     (Magnetization) 

or 

PMw

C

CN

C

H

M

.
    (Curie-Weiss Law) 

Where 

B

eff

B

BJ

k

N

k

JJgN
C

3

.

3

.1.. 22

    (Curie's constant) 

and  
H

M

C
N

H

C
W

0
lim       (Weiss constant) 

When T = ΘPM, the susceptibility diverges, and there may be a spontaneous 

magnetization for T < ΘPM even under no external magnetic field. 

To determine the magnetization between 0 and TC, we introduce the concept of 

magnetic induction or flux density (B), which results from the external field (Hext) in free 

space and the respective magnetization (M) in the material, and is a measure of the 

effective force (F) exerted on charge (q) moving at the velocity v inside the effectual field: 

extrextext HHMHB ...1.. 000   (Magnetic induction) 

BvqF .        (Magnetic force) 

Hence, the magnetic interaction energy (Em) between the total angular momentum 

of an atom (μm) and the surrounding average magnetic field (B) tends to be minimized and 

align the vectors μm with B, whilst the thermal energy (kB.T) tends to randomize it: 

BmgB zJBmm ....E      (Magnetostatic Energy) 

Making: 
.

..

B

JB

k

Bg
x        (Partition function variable) 

becomes: xBJg

e

eBmg

JJBJ

Jm

xm

J

Jm

xm

BJ

m ...

....

.

.

  (Average moment) 

with xxJJ
J

xBJ .
2

1
coth.

2

1
.

2

1
coth.

2

1
.

1
 (Brillouin function) 

These calculations assume particular simplifications under certain limits. At very 

high fields, the Brillouin function goes to 1 and the magnetization saturates, with the 

magnetic moments completely aligned with the applied field as the temperature tends to 

zero. 



Fábio G. N. Figueiras 

47 

JgJBsatm ..      (Saturation moment) 

giving 
N

kC
JJg B

JBeff

..3
1..    (Effective moment) 

 

 

3.0.1. Demagnetizing Field Correction 

The formal linear magnetization equation M = χ.H yields a classification into 

paramagnets (χ>0) and diamagnets (χ<0) for small values of M and H; however, for most 

materials the relationship between M and H is generally nonlinear, therefore a more 

precise definition of the susceptibility is the tensor form χij = ∂Mi/∂Hj, measured at H  0. 

Due to magnetostatic dipolar effects depending on the sample‘s finite size shape 

and susceptibility, the actual internal field inside the material (H) is distorted: 

MNHH dext .      (Internal magnetic field correction) 

And the actual magnetization is found by: 

ext

d

H
N

HM .
.1

.     (Demagnetizing field correction) 

Where Nd is the demagnetizing coefficient that depends of the sample geometry; in 

relation to the Hext direction; for very elongated rod or toroid forms Nd is <10
-2

; but if χ 

assumes very high values (>10
3
) like in the case of ideal ferromagnets, the magnetization 

tends to depend only on the geometry: 

ext

d

H
N

M .
1

lim    (Extrinsic magnetization in strong ferromagnets) 
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3.1. Magnetic States 

 

Given that the magnetic moments are intrinsic to the orbital and spin motions of 

electrons, all materials have magnetic properties; the main distinctions lie in how the 

electrons are ordered and interact collectively according to the exchange interaction 

principle [3.1.1] and how this affects the materials‘ response to magnetic fields. 

In compounds, the interatomic bonding results in the dislocation or hybridization of 

the electrons‘ orbitals; from the competition between the electrons exchange coupling and 

the Coulomb repulsion, the spins become interactively oriented depending on parameters 

such as the interatomic distance, the geometry and the number of electrons per atom 

accounting for the Pauli‘s exclusion principle, that imposes an antiparallel (↑↓) spin 

structure within a single double-electron ground-state, or the Hund‘s rule that favors the 

parallel (↑↑) spin distribution of electrons occupying one-electron excited states.  

For many metals, and for some nano-composites, interactions between local 

moments are fairly well approximated by the RKKY model [3.1.2], which yields an 

oscillatory exchange mediated by conduction electrons; such as a) Nano-composites 

consisting of low dimensional systems that may include arrangements of magnetic 

molecules or nanosized objects; such as, metal-based dots, wires or layers distributed 

within a paramagnetic matrix, which are in the in forefront in the development of high TC 

ferromagnets in particular for the design of spin electronics, magnetic sensors and 

magnetic recording media. 

In oxides, indirect exchange mechanisms are mediated by the 2p electrons of the 

O
2−

 anions separating transition metal ions: one is the ―super-exchange‖ between identical 

ions; another is the ―double-exchange‖ mechanism, which can be interpreted as electron 

hopping with spin memory between mixed valence ions (further detailed in chapter 4). 

Although the exchange-coupling usually dominates neighboring atoms magnetic 

interaction, a key role in the nature of the magnetic ordering results from the long range 

magnetostatic (dipolar) and the anisotropic effects on the material. 

The origin, size, and relative orientation of the magnetic moments can translate into 

cooperative alignment order in ferromagnetics (FM) or the formation of magnetic 

sublattices, which may balance in antiferromagnetic (AFM) or involve nonequivalent 
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crystallographic sites with uncompensated moments in ferrimagnetics (FI). There can be 

also noncollinear spin structures due to competing exchange interactions resulting in more 

complex spins arrangements, some of which can be comensurated and other turn to be 

incommensurate, like helical configurations (HS), spin canted (SC), or even disordered 

spin glass (SG), as illustrated in figure 3.1.0 and briefly summarized below [3.1.3]: 

DiaMagnetic ParaMagnetic

AntiFerroMag.

FerroMagnetic

Spin CantedSpin Spiral

FerriMagnetic

Spin Glass

 
Compensated ; Non compensated and independent ;Atomic Moments: Non compensated with exchange interactions

 
Fig. 3.1.0: Conceptual illustrations of magnetic moments arrangements for some different magnetic states. 

 

 

3.1.1. Diamagnetism 

Usually mistaken as non-magnetic, most materials that don‘t seem to react to 

magnetic fields, are in fact diamagnetic, composed of atoms or molecules where the 

moment contributions of electrons tend to cancel each other (i.e. all the orbital shells are 

filled and there are no unpaired electrons). Due to the non-cooperative behavior of orbiting 

electrons when exposed to an applied magnetic field, a very weak negative magnetization 

is produced, and therefore the materials become in fact repelled by magnetic field gradient 

in opposition to the case of PM or FM materials. Except for the extreme case of 

superconductors that assume a true diamagnetic behavior with χ = -1, the characteristic 

susceptibility (χ) of materials is negative, generally small (of the order of 10
-5

 to 10
-4

) and 

temperature independent. Some examples are presented in table 3.1.1 and figures 3.1.1. 
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Material χ 

Bismuth -16.7 

Copper -1.0 

Graphite -1.6 

SiO2 (quartz) -0.62 

Water -0.91 

Table 3.1.1: Examples of 

diamagnetic materials in 

10
-5

 m
3
/kg units. Fig. 3.1.1: Typical behavior of diamagnetic materials 

 

 

3.1.2. Paramagnetism 

If some of the atoms or ions in the material have a net magnetic moment due to 

unpaired electrons in partially filled orbitals, there is now a progressive alignment of the 

atomic magnetic moments in the direction of an external magnetic field, although these do 

not interact with each other and are highly susceptive to the randomizing effects of 

temperature. The net positive magnetization and the temperature dependent susceptibility 

are known as Curie‘s Law described previously. Unless the temperature is very low 

(<<100 K) or the field is very high, the paramagnetic susceptibility is relatively small and 

independent of the applied field (figure 3.1.2). Some examples are presented in table 3.1.2: 

  

 

Material χ 

Aluminum 2.2 

Lithium 1.4 

Magnesium 1.2 

Oxygen 0.19 

Platinum 26 

Table 3.1.2: Examples of 

paramagnetic materials in 

10
-8

 m
3
/kg units. Fig. 3.1.2: Typical behaviour of paramagnetic materials 

 

 

3.1.3. Ferromagnetism 

Ferromagnetic materials exhibit parallel alignment of moments, resulting in large 

spontaneous magnetization even in the absence of a magnetic field. The most 

representative magnetic materials, like iron, nickel or cobalt and many of their alloys, 

exhibit very strong interactions between atomic moments, resulting from intense electronic 

H

M

T1 

< 

T2 
< 

T3 

1

T

H

M

T



Fábio G. N. Figueiras 

51 

exchange forces due to the relative orientation of the spins of electrons. The magnetism of 

the iron-series transition-metal elements is caused by extended, delocalized, or itinerant 

electrons owned by all atoms, so that the moment per atom is not necessarily an integer, 

such as the 2.2 μB for Fe, 1.7 μB for Co, and 0.6 μB for Ni. Rare-earth transition-metal 

intermetallics such as SmCo5 and Nd2Fe14B exhibit both itinerant (3d) and localized (4f) 

features and reflect RKKY-type interactions. 

  
  

  T < TC 

Fig. 3.1.3: Typical behavior of ferromagnetic materials 

The saturation magnetization (Msat) is the maximum limit of magnetic moment that 

can be obtained; this is an intrinsic property, independent of particle size but dependent on 

temperature. In addition, ferromagnets can retain a memory or remanence (Mrem) of the 

applied field even after its removal. This hysteresis implies that a coercive field (Hcor or 

Bcor) must be applied to reduce the magnetization to zero. Hysteresis is a complex 

nonlinear, nonequilibrium, and extrinsic phenomenon dependent of the magnetization 

process history, caused by magnetic anisotropy energy barriers and metastable 

magnetostatic energy minima (EK1) associated with real-structure features, such as 

metallurgical and chemical inhomogeneities, grain size, domain state distribution, stresses 

and temperature factors. 

In order to reduce the magnetostatic energy, ferromagnetic and ferrimagnetic 

materials adopt a magnetic domain structure separated by domain walls, reflecting the 

competition between exchange and anisotropy and leading to zero net magnetization in the 

demagnetized state: 

B

M
Msat 

Mrem 

Bcor 

TTC 

1
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M T1 ~ 0 K 

T2 > 0 K 
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2/1

K1ex )E/E.(l       (Domain wall width) 

If the particle size is smaller than the critical threshold of a single domain range, at 

high temperatures the particles become superparamagnetic. Analogous to paramagnetism, 

instead of a single atom, nanometric particles have a net magnetic moment in zero field 

and at T >0 K, which averages to zero. In an applied field, there will be a net statistical 

alignment of magnetic moments, revealing a much higher susceptibility than simple 

paramagnetism. Under such particular circumstances the Brillouin function can be 

simplified into: 

x
xxL

1
coth  with 

.

..

B

JB

k

Bg
x    (Langevin function) 

 

 

3.1.4 Antiferromagnetism 

The appearance of an antiparallel arrangement of the magnetic moments below TN 

shows as a maximum in thermal variation of susceptibility; in the simplest cases the 

magnetic frustration is distributed into two compensating sublattices, having equal and 

opposite magnetization. Due to negative exchange interactions between neighboring atoms 

results zero magnetization in the absence of magnetic field. At high temperature, thermal 

agitation overcomes interaction effects, and the system transit to a paramagnet above TN; 

typical behavior examples are presented in figure 3.1.4. 

  low field detail 

  

  T < TN 

Fig. 3.1.4: Typical behaviour of antiferromagnetic materials 
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In fact many antiferromagnetic substances feature more complex magnetic 

structures, especially compensated non collinear structures; also no global moment result 

in the extreme case of the frustrated configurations where the magnetic moments will 

freeze with random orientations below a characteristic temperature, since no long-range 

order occurs, it is said to behave like a spin glass. 

 

 

3.1.5 Ferrimagnetism 

More complex forms of magnetic ordering can occur in oxides and ionic 

compounds as a result of the crystal structure. Typically the magnetic structure can be 

composed of two magnetic sublattices (A and B) where the super-exchange interactions 

result in an antiparallel alignment of spins; however, the magnetic moments are not equal 

like in the antiferromagnetic case and result in a net magnetic moment. Therefore 

ferrimagnetism exhibits all the hallmarks of ferromagnetism like Curie temperature and 

remanence; though hysteresis cycles and susceptibility thermal variation usually exhibit 

much less monotonous behavior (figure 3.1.5). A large number of materials which exhibit 

non collinear magnetic structures, and/or which are made of several types of magnetic 

atoms with different values of moments, can be classified as ferrimagnets. 

  
  

 T < TC 

Fig. 3.1.5: Typical behaviour of ferrimagnetic materials 
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3.2. Magnetoelastic Effect 

 

In a magnetic material, the interatomic distances can vary with the intensity and the 

orientation of magnetization this direct magnetoelastic effect is also called 

magnetostriction. Conversely, in the inverse magnetoelastic effect, the magnetic state of 

the material is sensitive to mechanical influences, leading for example, to the distortion of 

hysteresis loops under mechanical stress. 

Magnetostrictive materials have an advantage in sensor and actuators applications 

over piezo-electric ceramics, principally because of the possibility to detect the signals 

from a distance and without wires. 

The most common effect, called Joule magnetostriction, occurs when the 

dimensional change is associated with a distribution of distorted magnetic domains present 

in the magnetically ordered material, leading to dimensional changes when an external 

field causes a rotation of the magnetization direction within a domain, and/or a growth of 

domains and depending on the initial and final direction of the magnetization as well as the 

anisotropic properties of the material. 

Hll ./       (Magnetostriction effect) 

When a magnetic field H is applied to a sphere having compensated magnetic 

domains (ΣMs = 0) it suffers an anisotropic deformation at constant volume and changes 

into an ellipsoid of revolution along the field axis. The relative variation in length 

measured along the field direction is determined by λ//, while λ.|. occurs perpendicularly, as 

represented in figure 3.2.1. The saturation magnetostriction constant (λs) is defined: 

.2//s     (Isotropic saturation magnetostriction constant) 

Below saturation, anisotropic magnetostriction is very sensitive to the magnetic 

field. Beyond saturation, a small variation ∂λs/∂H is sometimes observed. Magnetostrictive 

characteristics vary with magnetic field as represented in figure 3.2.2, and analog to 

magnetization with temperature collapse near TC. 
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The microscopic origin of magnetostrictive effects is not only related to the 

dependencies of the exchange or dipolar energies with the variation of interatomic spacing; 

it can also arise from the relation between magnetocrystalline anisotropy and crystal-field-

induced anisotropy, resulting that the spontaneous straining of the lattice lowers the 

magnetic energy more than it raises the elastic. 

Magnetostriction is very sensitive to a material's symmetry and the effects depend 

on the relative orientation of the crystalline axis, magnetization and applied field: 

- In polycrystalline materials although isotropic, i.e. as aggregates or randomly oriented 

grains, due to the local anisotropic character of each crystallite the variations in 

magnetostriction with magnetic field or temperature can involve anomalies; hence it 

cannot be correctly described by a single λs value and should be calculated from the 

average deformation for each grain. 

- In thin films the contribution from the surface symmetry break superimposes on the 

bulk magnetostriction; in epitaxially grown thin film over substrates this generally 

leads to the existence of huge stresses (GPa), a change in the magneto-elastic-

crystalline anisotropy coefficients and magnetization easy direction. The application of 

a magnetic field will lead to a complex deformation of the bimorph coupled system of 

the film and its substrate. 

s

sH  = 0

zz

H M = 0

M

M
s

s

l//

l

l_|_

l//

l_|_

s

 

 

Fig. 3.2.1: The magnetostriction constant sign for an isotropic 

sphere leads to a prolate or oblate ellipsoid deformation. 

Fig. 3.2.2: Butterfly shape of λ// 

dependence with H. 
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3.3. Magnetism Units 

 

No other scientific discipline as electromagnetism generates such endless 

discussion and confusion on the topic of units. Until the 1970‘s, numerous scientific 

literature used the Gaussian (cgs) system of units. Like all systems of units and 

dimensions, it is totally arbitrary. It uses three base units: centimeter, gram, and second; 

and a combination of two subsets: the electrostatic units (esu) and electromagnetic units 

(emu). As a result, the permeability of free space (μ0) and the permittivity of free space (ε0) 

become dimensionless, equal to unity, and often ignored, while the velocity of light in 

vacuum (c) appeared explicitly in some equations dealing with magnetic and electric 

effects. This resulted in a cumbersome set of units with ―inconvenient‖ magnitudes for 

practical electrical units such as the Volt, Ohm, and Ampere. Even if it is now common 

ground to use the SI system units, that uses four base units: meter, kilogram, second, and 

Ampere (MKSA), ε0, μ0 now take on dimensions and numerical values much different 

from unity. A summary of terms, units and conversion factors is presented in table 3.3.1. 

Quantity Symbol Comment SI units CGS Units Conversion 

Magnetic 

Induction 
B 

Generates a force on a moving charge: 

F = q.v B 
T (Tesla) = 

N.A
-1

.m
-1

 

G 

(Gauss) 
1 T = 10

4
 G 

Magnetic Field H Due to external field or currents only A.m
-1

 
Oe 

(Oersted) 

1 A.m
-1

 = 

4 *10
-3

 Oe 

Magnetic 

Moment 
μm 

In general, generated by a moving 

charge: μm = q.v r  
A.m

2
 = 

J.T
-1

 
emu 

1 A.m
2
 = 

10
3
 emu

 

(Volume) 

Magnetization 
M M = Σ<μm>/V , Within the material A.m

-1
 emu.cm

-3 1 A.m
-1

 = 

10
-3

 emu.cm
-3

 

(Volume) 

Susceptibility 
χ M = χ.H  χ = M/H  none none 

1 (SI) = 

1/4  (CGS) 

Mass 

Magnetization 
Mm related to mass: Mm = χm.H A.m

2
.kg

-1 
emu.g

-1 1 A.m
2
.kg

-1
 = 

1 emu.g
-1

 

Mass 

Susceptibility 
χm χm = χ.ρ

-1 
m

3
.kg

-1 
emu.Oe

-1
.g

-1 4 .m
3
.kg

-1
 = 

10
3
 emu.Oe

-1
.g

-1
 

Vacuum 

permeability 
μ0 μ0 = B0/H = 4 *10

-7
 N.A

-2
 

N.A
-2

 = 

kg.m.s
-2

.A
-2 G.Oe

-1 1 N.A
-2

 = 

10
7
/4  G.Oe

-1
 

Absolute 

permeability 
μ μ = μ0.(1+χ)  μ = B/H   

N.A
-2

 = 

kg.m.s
-2

.A
-2 G.Oe

-1 1 N.A
-2

 = 

10
7
/4  G.Oe

-1
 

Relative 

permeability 
μr 

Depends on the material  

μr = 1+χ = μ/μ0 
none none none 

Bohr 

magneton 
μB 

Due to intrinsic electron spin: 

μB = 9.27402*10
-24

 J.T
-1 A.m

2
 emu 

1 A.m
2
 = 

10
3
 emu 

Nuclear 

magneton 
μN 

Due to intrinsic proton spin: 

μN= 5.05079*10
-27

 J.T
-1

 
A.m

2
 emu 

A.m
2
 = 

10
3
 emu 

Magnetostatic 

Energy 
Em 

Interaction between moment and field: 

Em = <μm>.B 
J erg 

1 J = 

10
7
 erg 

Table 3.3.1: Summary of terms, units and conversion factors used in magnetism 
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4 State of the Art on Relevant materials research 

 

4.1. Multiferroic Materials 

 

Multiferroics represent an exceptional class of multifunctional materials that 

simultaneously exhibit at least two ferroic orders, such as ferroelasticity, ferroelectricity 

and ferromagnetism, suggesting that even a weak strictive-magneto-electric interaction can 

lead to extraordinary cross-coupling effects; hence it is expected to bring about novel 

physical phenomena models and potential technological applications in sensors, 

transducers, information storing and processing. In addition to the essential ferroelectricity 

and ferromagnetism dependences with the respective fields, the underlying scientific and 

technological relevance of multiferroic materials focus in a supplementary traverse control 

and modeling level provided via conjugated applied fields due to the magnetoelectric (ME) 

coupling, that may occur directly between the two order parameters or indirectly via strain 

[4.1.1], as illustrated in figure 4.1.1.        a) 

Whereas the relativistic magnetoelectric interaction is a discrete but intrinsic 

phenomenon of matter in the response to electromagnetic fields also the magnetoelectric 

susceptibility is supposed to be small to most materials; considering the phenomenological 

free energy expansion approximately: 

........
2

1
...

2

1
....),( 000 jiijjijjjiijjiijjiijF HEHHEEHMEPHE  

Ignoring higher-order terms and considering stable phase and temperature 

conditions, a large linear ME coupling (χij) is expected to occur in some multiferroics 

having both strong ferroelectric (large ε) and ferri-ferromagnetic (large μ) properties 

[4.1.2]: 

.....

......

jmjjii

jijjijei

F

F

HEM

HEP

MH

PE
 (Linear magnetoelectric coupling) 

jjiiij ... 00

2
     (linear ME relation to ε and μ) 

 

________________________________________________________________________________________________ 

a) Higher-order nonlinear ME couplings can become relevant if ε and μ have small values, under this circumstances 
reducing the dimensionality of the material promotes the persistence of magnetic order up to higher temperatures than in 
3D systems. 
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The respective cross susceptibilities tensors χij and χji must follow the symmetry 

rules of each ferroic properties: 

MtM 1       (Time reversal of magnetization) 

PrP 1       (Spatial inversion of polarization) 

1111

1

1

rttr
r

t

jiij

jiji

ijij

 (Multiferroics symmetry rule) 

As suggested in figure 4.1.2, electric polarization and a magnetically ordered state 

rarely coexist in a single phase material; essentially because the most suitable molecular, 

electronic and structural conditions that enhance one particular ferroic order tend to discard 

the counterpart mechanisms that originate the complementary ferroic effect [4.1.3]. 

However, the possible combinations of elements, structures and fundamental physics 

studies provide a wide range of theoretical and experimental areas still uncharted. 

T

E

H

P

s M

d
ij ijP

ie
zo

el
ec

tr
ic

ity

M
agnetoelectricity

Magnetoelasticity

ijY

e

m

 

Ferro

magnetic

Ferro

electric

Multi

ferroic

Magnetically

Polarizable

Electrically

Polarizable

Magnetoelectric
 

Fig. 4.1.1: Schematic interaction between 

properties and fields in materials. 

Fig. 4.1.2: Schematic relation between 

multiferroic and magnetoelectric materials. 

Given that the magnetization order is systematically based upon the exchange 

interaction between localized electrons (and respective unpaired spins) on partially filled d 

or f shells of transition metals or rare earth elements; multiferroic materials are usually 

categorized according to table 4.1.1 by the different phenomenological origin of the 

ferroelectric behavior [4.1.4]. 

Among relevant results, the most studied intrinsic multiferroic systems basically 

include compounds based on the perovskite structure specially BiFeO3 that has FE and 

AFM order at room temperature [4.1.5]; on the other hand, The RMnO3 manganites with R 

= La, Pr, Bi, Y, Tb, Dy, Ho, Eu, … [4.1.6] possess magnetic order at temperatures 
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typically below 150 K and recurring to doping by other rare earths or metallic elements 

like Ca, Sr, Ba, Fe, etc, it is possible to promote limited piezo- or ferroelectric response. 

In particular, based upon existing 

studies for manganite systems, with Mn
4+

 

doping below 0.5, having charge and bond 

ordering mechanisms leading to a breaking of 

the inversion symmetry [4.1.7], it becomes 

possible to strengthen these dipolar polaronic 

states coupling with the magnetic ordering 

thus generating multiferroic properties[4.1.8], 

as represented in figure 4.1.3. 

Of related composition, the hexagonal manganites with R = Sc, Y, In, Ho, Er, Tm, 

Yb, Lu [4.1.9] due to the coexistence of ferroelectric and multiple antiferromagnetic 

ordering, reveal magnetoelectric bulk effects by the interplay of magnetic exchange, wall 

magnetization, and ferroelectric distortion. 

 
 

Fig. 4.1.4: Magnetic field dependence of ε (a) and 

P (b) as function of the in TbMn2O5 [4.1.10]. 

Fig. 4.1.5: Temperature dependence of P and ε’ 

(a) and the M and 1/χ (b) of CdCr2S4 [4.1.13]. 

Alternative structures such as TbMn2O5, demonstrated a highly reproducible 

electric polarization reversal and permanent polarization imprint actuated by an applied 

magnetic field, as illustrated in figure 4.1.4 [4.1.10]; Other RMn2O5 systems with (R = Y, 

Tb, Ho, Er, Tm, Dy, Lu) [4.1.11], [4.1.12] show simultaneous magnetic and dielectric 

ordering phase transitions, suggesting that the long-range commensurate order of Mn
3+

 and 

 
Fig. 4.1.3: Combining charge (a) with bond (b) 

orders may lead to polarization (c) [4.1.8]. 
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Mn
4+

 in a transverse spiral spin structure propagating along the c-axis induces a 

ferroelectric moment through a cooperative packaging of the neighboring asymmetric 

Jahn–Teller Mn
3+

O6. Other studies reveal the coexistence of FM and proper FE in the 

CdCr2S4 spinel [4.1.13] producing a colossal magnetocapacitive effect (~500%) below TC 

~ 100 K, as exemplified in figure 4.1.5. Among other intrinsic compounds, worth mention 

that also display some significant ME effects at low temperatures are the RFe2O4 system 

(R = Y, In, Sc and Dy to Lu), MnWO4, Bi2FeCrO6, Ni3V2O8, BaNiF4, etc [4.1.14]. 

Indirect ME coupling via strain can be significant or even the dominant effect. For 

example, the contribution of piezoelectricity/electrostriction (dij) and piezomagnetism/ 

magnetostriction (λij) generate additional mixed terms in the free energy expression 

proportional to strain that may vary linearly or quadratically with Hi or Ei. 

Type: Mechanism: Ferroelectricity origin description: Examples: 
∂E/∂H 

(mV/cm.Oe) 

I 

―lone pair 

order‖ 

In perovskite type ABO3, the A ion has a 

pair polarizable electrons. 

BiFeO3 [4.1.5], 

BiMnO3 [4.1.6] 

 

 

―charge 

order‖ 

Non-centrosymmetric arrangement of 

charge and bond ordered sites. 

TbMn2O5 [4.1.10] 

LuMn2O4 [4.1.12] 

 

3E-6 @ 4 K 

―geometric 

order‖ 

Cooperative dipolar interactions in the 

structure. 

YMnO3  

LuMnO3 [4.1.9] 

 

 

II 
―magnetic 

order‖ 

Non-centrosymmetric arrangement of 

spins structure. 

TbMnO3, Ni3V2O8, 

MnWO4 [4.1.14] 

 

 

III ―composites‖ 
Combinations of FE phase with FM phase 

having ME effect via strain propagation. 

BaTiO3+CoFe2O4 [4.1.15] 

PZT+NiFe2O4 [4.1.16] 

2500 @ RT 

1500 @ RT 

Table 4.1.1: Classification of multiferroics 

Special attention should be given to the combination of two materials having each 

an enhanced ferroelectric/piezoelectric or ferromagnetic/magnetostrictive property. 

Complex multiferroic systems can be achieved from the interaction between extrinsic 

materials in the form of nanometric granular composites [4.1.15], columnar, laminated 

heterostructures or epitaxial multilayers [4.1.16], [4.1.17], as depicted in figure 4.1.6.  

It becomes possible to take advantage of field induced structural transitions 

enhancing the resulting materials strain and conjugated ferroic property; for example, some 

Permendur–PZT laminated layers, as an external magnetic fields induce the reorientation 

of ferromagnetic domains which in turn mechanically drive the ferroelectric compound 

structure, it is possible to achieve ME voltage coefficient in the vicinity of 

electromechanical resonances of ~90 V.cm
−1

.Oe
−1

 which largely exceeds the responses of 

any single-phase compounds [4.1.18]. Composites can conjugate a variety of piezoelectric 
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materials, as shown in section 4.3 and magnetostrictive alloys, like in particular Ni2MnGa 

[4.1.19] which is further detailed in section 4.5. 

The effectiveness of such indirect coupling is not only related to the respective 

piezoelectric or piezomagnetic strength of each phase but mostly how the two phases 

entwine and how efficient the mechanical expansion/contraction is propagated from one 

component to the other, consequently dependent on the frequency of the a.c. electric or 

magnetic field applied. It becomes essential in the design to account for adequate 

electrodes insertion and to avoid short circuiting over the ferroelectric component. 

Although heterostructures are very sensitive to substrate clamping and damping from size 

or texture effects, under the suitable design, the ME coupling can surpass that of single-

phase systems by several orders of magnitude (from 5 to 5000 mV.cm
-1

.Oe
-1

) [4.1.1] and 

achieve above room temperature performances. 

 
Granular   Columnar   Laminated   Epitaxial layers 

Fig. 4.1.6: Some representative construction geometries for composites combining two functional phases. 

While multiferroic intrinsic single-phase systems are essential for understanding the 

several fundamental mechanisms behind the magnetoelectric effect, composites systems, 

combining a FE and a FM phase, present a more promising approach to achieve a synergy 

of properties, as figure 4.1.7 may suggest, and a relevant technological proof of concept. 

Multiferroic materials that show two independent hysteresis behaviors, may allow 4 

distinct logic states (P
+
M

+
; P

+
M

-
; P

-
M

+
; P

-
M

-
) in a single element, eventually leading to a 

whole new range of innovative information processing functions and devices. In the case 

the two order parameters are directly coupled, in principle this would can be used to 

increase the quality of data storing and to explore independent processes for an electrical 

data writing and magnetic data reading of the same memory bit, taking advantage of the 

best features of the ferroelectric random access memory (FeRAMs) and the magnetic data 

storage devices. 
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4.2. Perovskite Manganites 

 

At present, the perovskite manganites are the most representative materials system 

which can show versatile unconventional electronic-lattice structural changes or insulator–

metal transitions, including CMR, upon external stimulation, not only by magnetic field 

but also by pressure, light, x-rays irradiation as well as current injection. 

In the parent LnMnO3 pseudo perovskite represented in figure 4.2.1, the ―Ln‖ 

represents a rare earth element such as La, Pr, Nd, Sm, etc. with 12 O
2- 

ions coordination 

(A site); while the Mn
3+

 ion has an enclosing configuration of 6 oxygen ions (B site). Each 

Mn
3+

 ion has an electronic configuration [Ar]3d
4
, the crystal-field splits the five-fold 

degenerate atomic 3d levels into three electrons in the t2g-state and one electron in the eg-

state; due to Hund‘s rule the spins are coupled ferromagnetically (S = 2); a Jahn–Teller 

effect further lifts the orbital degeneracy giving rise to the apical distortion of the 

octahedron (MnO6) [4.2.1], as represented in figure 4.2.2. 

Stoichiometric LaMnO3 is insulator and antiferromagnetic (TN ~ 150 K) due to the 

super-exchange interaction mediated by the O
2-

 between two adjacent Mn
3+

 ions. When the 

compound is doped either by replacing some of La
3+

 ions with divalent (Sr
2+

, Ca
2+

, Ba
2+

, 

…) or monovalent (Na
1+

, Ag
1+

, …) ions, or by introducing excess Mn, leaving cationic ―A 

site‖ vacancies (ØA
0
), or else by reducing Mn content leaving ―B site‖ vacancies (ØB

0
) a 

correspondent amount of Mn
4+

 ions are formed and an eg-electron from a neighboring 

Mn
3+

 can hop by double-exchange hopping under strong Hund‘s rule coupling. These 

electronic states become highly mobile above a percolation threshold and are usually 

termed as polarons because in addition to the intrinsic charge and spin transport, there are 

interrelated effects of strong electron-correlation and electron–lattice coupling. 

 
A B 

O2- 

 

3d

Mn Mn4+ 3+

eg

t2g

dz2

dx  - y2 2

dxy

dxzdyz ,

E
JT

 

 
Fig. 4.2.2: Crystal-field splitting of 3d levels 

into lower t2g triplet and eg doublet
 
and the 

JT distortion of the MnO6 octahedra [4.2.1]. Fig. 4.2.1: Two equivalent representations of the perovskite. 
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Besides the two important electronic parameters, bandwidth and band-filling that 

can be finely controlled with the crystal chemistry, the collective Jahn–Teller interaction 

promotes the orbital ordering through the displacement of oxygen in a cooperative manner 

and induces properties anisotropy and lattice distortion, as exemplified in figure 4.2.3. The 

packing of MnO6 octahedra and the resulting perovskite distortion can be interpreted by 

the tolerance factor tf : 

OBOA .2 rrrrt f
    (Tolerance factor) 

Where <rA>, <rB>,<rO>,are the average ionic radii of each element in the respective 

site of the perovskite structure, as listed in table 4.2.1. The cubic perovskite structure is 

observed when tf ~ 1; as <rA> decreases, the lattice structure transforms to the 

rhombohedral (0.96 < tf < 1) and then to the orthorhombic structure (tf < 0.96), as 

progressively the Mn–O–Mn bond angle (θ) bents from 180º. This bond angle distortion 

also affects the relative spin orientation between neighboring Mn ions and the electron 

transfer process via O
-2

 2p state is decreased from the ideal perovskite situation (t0) [4.2.1]: 

)2/cos(.0tt       (Transfer integral) 

 

 

A site 

<rA> 

La3+ 
1.36 

Pr3+ 
1.29 

Nd3+ 
1.27 

Sm3+ 
1.24 

Eu3+ 
1.23 

Gd3+ 
1.21 

A site 

<rA> 
Ba2+ 
1.61 

Pb2+ 
1.49 

Sr2+ 
1.44 

Ca2+ 
1.34 

Y3+ 
1.18 

Bi3+ 
0.96 

B site 

<rB> 
Mn3+ 
0.645 

Mn4+ 
0.53 

Ti4+ 
0.605 

Fe3+ 
0.645 

Ga3+ 
0.62 

Al3+ 
0.535 

O site 

<rO> 

O2− 
1.40 

     

Fig. 4.2.3: Structures of distorted perovskites of manganites: 

orthorhombic Pnma (left) and rhombohedral R-3c (right).
 

Table 4.2.1: Ionic radii (in Å) for some 

ions involved in manganites [4.2.1]. 

The phase diagrams of figure 4.2.4 and 4.2.5 are representative of how the 

successive transport, magnetic and structural phases can be organized according to the 

filling of the eg electrons (which mediate the ferromagnetic double-exchange interaction), 

the tolerance factor (which influence the charge transfer bandwidth) [4.2.2] and the 

temperature [4.2.3]. The possibility of phase inhomogeneities and phases competition, i.e. 

in terms of separation/percolation of clusters in a matrix, should also considered as one of 

the inherent features for understanding the physics of manganites properties and 

transitions. All these versatility at structural, magnetic ordering and transport behavior in 

such simple perovskite system can produce a rich variety of phases and phenomena. 
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Of particular relevance became the Rhombohedric La manganites doped with ~1/3 

of Sr [4.2.4] or Ba [4.2.5] having FM and CMR behavior above room temperature, as 

shown by the respective phase diagrams of figure 4.2.6. 

  

Fig. 4.2.5: Generic manganites phase 

diagram of as function of A site radii 

and T [4.2.3]. 

Fig. 4.2.6: Magnetic and conductivity phase diagrams as function 

of doping (x) and temperature for: 

La1-xSrxMnO3 [4.2.4] (left) and La1-xBaxMnO3 [4.2.5] (right). 

 
 

Fig. 4.2.4: Bandwidth versus hole concentration phase diagram at the ground state of Ln1-x(Ca,Sr)xMnO3 and 

schematic views of the eg orbitals (lobes) and spins (arrows) on Mn sites for the respective phases [4.2.2]. 

Ln1-x(Ca,Sr)xMnO3 

x 
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4.3. Ferroelectric Perovskites: BaTiO3, PZT and PMN-PT 

 

4.3.1. BaTiO3 

BaTiO3 belongs to the ABO3 Perovskite family, described in the previous chapter, 

with Ti
4+

 forming octahedral cages with the O
2-

 ions as represented in figure 4.3.1. BaTiO3 

shows three relevant structural phase transitions with temperature also affecting the 

dielectric constant εr and respective frequency dependences as represented in figure 4.3.2 

[4.3.1]; also the dielectric behavior, which is isotropic in the cubic nonpolarized phase, 

becomes strongly anisotropic in the polarized phases. 

 

 
Fig. 4.3.1: Cubic-tetragonal ion 

displacements of BaTiO3 [2.3.2]. 
 

Fig. 4.3.2: a and c axis and dielectric constant of BaTiO3 [4.3.1]. 

In the high temperature cubic Pm3m paraelectric state, the Ti ions are dynamically 

disordered and off-center the O6 octahedra. At around TC = 408 K it undergoes to 

ferroelectric transition to the tetragonal P4mm: the Ba
2+

 ions shift 0.05 Å upward from 

their original position, the Ti
4+

 ions shift upward by 0.1 Å, and the O
2-

 ions downward by 

0.04 Å. As a result of the ion shifts, the centroids of the positive and negative charges no 

longer coincide, spontaneously forming permanent dipoles, therefore, the unit cells become 

permanently polarized, as shown in figure 4.3.1. Within the ferroelectric state two further 

structural transitions  occur with temperature, at 278 K the structure becomes 

orthorhombic, C2mm; and at 183 K a transition into the rhombohedral low-temperature 

R3m phase occurs as exemplified in figure 4.3.3.  

The hysteresis loop of BaTiO3 single crystals with a single domain is a square loop, 

having a spontaneous polarization Psat ~26 mC.cm
-2

 and a coercive field Ecoe ~1 kV.cm
-1

 at 

room temperature. Depending to a great extent on the preparation of the ceramic 
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specimens, polycrystalline BaTiO3 has random directions of the crystallographic axes, 

internal strains and other defects that limit the motion of domain walls and the extent to 

which spontaneous polarization can be developed. The hysteresis loop more rounded, 

having Psat of about 7 mC.cm
-2

 and Ecoe of about 4 kV.cm
-1

. 

 
 

Fig. 4.3.3: The temperature dependence of the structure of the unit cell [2.3.2] 

 

 

4.3.2. PZT 

PZT ceramics are in fact a solid solution of two components: PbZrO3 and PbTiO3 

that belong to the perovskite family; similar to BaTiO3 in their structure and ferroelectric 

properties, by controlling the composition and microstructure of the PZT, it is possible to 

tailor their properties to suit particular applications [2.3.2]. The PZT system is used mostly 

in piezoelectric devices taking advantage of these crystal morphology transitions and high 

TC. The Curie temperature (TC) depends on the composition of the system but is notably 

higher than that of BaTiO3; the main reason is that the Pb
2+

 ion has two more outer 

electrons beyond the last full shell of Ba
2+

, which contribute to covalent bonding with 

neighboring oxygen ions, thus a greater thermal energy is required to convert the polarized 

state into an unpolarized state. A typical equilibrium phase diagram for the Pb(Zr1-xTix)O3 

system is shown in figure 4.3.4, it has some prominent features worth mentioning: 

- The rich Zr region has a low TC and an interesting antiferroelectric (AFE) structure. 

- The rhombohedral phase has two different directions of polarization according to the 

high (HT) or low (LT) temperature region. 

- The cubic paraelectric phase can be distorted and transit from the unpolarized to the 

polarized state by application of a suitable electric field. 
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- At x ~ 0.5 occurs a morphological boundary between the rhombohedral and tetragonal 

phases, also a local maximum in the piezoelectric coupling coefficient due to the easier 

transformation between the two structures and the conformation from 6 to 8 easy 

directions of polarization. 

 
 

Property Value 

Coupling coefficient, k31 0.35 

Coupling coefficient, k33 0.69 

Density 7.5 to 7.6 g/cm3 

Dielectric constant, εr 1700 

Strain coefficient, d31 1.8E-10 m/V 

Strain coefficient, d33 3.6E-10 m/V 

Strain constant 1.1E-10 m/V 

Voltage coefficient, g31 0.011V.m/N 

Voltage coefficient, g33 0.025 V.m/N 

Young's Modulus, Y11 63 GPa 

Young's Modulus, Y33 49 GPa 

Table: 4.3.1: Typical values Piezoelectric 

properties of Pb(Zr55Ti45)O3 single crystal 

[4.3.2]. 

Fig. 4.3.4: The equilibrium phase diagram of the PZT 

system and the unit cell for different phases [2.3.2]. 

 

 

 

4.3.3. PMN-PT Relaxors 

Classical relaxors are perovskite solid solutions like Pb(Mg1/3Nb2/3)O3 (PMN) and 

PbTiO3 (PT), which exhibit the presence of site and charge disorder that merge into a 

broad correlation resulting in a distribution of the dipole moments forming clusters of 

nanometric size [4.3.3]. 

The enhanced ferroelectric interactions [4.3.4] may be explained by the presence of 

A site polar ions, like Pb
2+

 in the relatively random environment, contributing to increase 

the required bias for the transition between states. The Pb
2+

 also establish a closer coupling 

to the usually larger ferroelectrically inactive B‘ cations through oxygen bonding, leaving 

the ferroelectrically active B‖ cations relatively free for further ferroelectric coupling. 

Instead of relatively ―stable‖ polar tetragonal cells, PMN remains pseudo-cubic to the 

lowest temperatures measured, however the hopping times of the various constitutive ions 

between different off-center sites is much shorter than the lifetime of the polar nanoclusters 
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determining the dynamical ferroelectric properties of relaxors. There is convincing 

evidence that in the relaxor two or more types of polar clusters coexist [4.3.5]: 

- Low-frequency (1–10
5
Hz) contribution to the broad ε-maximum that usually is 

interpreted as ―reorientation of dipole moments of polar nanoregions‖, accounted for a 

strong electromechanical coupling which electrostriction to piezoelectric effect. 

- High-frequency (10
8
–10

10
Hz) contribution to the ε-maximum that commonly is 

explained as a motion of the ―frozen paraelectricity‖ in the nanoregions boundaries, 

due to the multidomain structure. 

Relaxors are used as low or non-hysteresis actuator materials applied in micro-

mechanics and as microdrivers for microwave mechanically tunable filters and phase 

shifters. The strain energy density is 6 to 10 times that of PZT, peak d33 is of the order of 1 

nm/V [4.3.6]. The response characteristics of relaxor-based devices is determined by its 

size and the sound speed in the relaxor material imposed by the electromechanical 

coupling of polar clusters 

 

 

4.4. Ferroelectric Hexagonal Manganites 

 

Manganites of the LnMnO3 formula with Ln = Ho, Er, Tm, Yb, Lu, Y and Sc, 

which have smaller ionic radius, crystallize in a hexagonal structure [4.4.1]. Each Mn
3+

 is 

surrounded by 5 O
2-

 forming a bipyramid and having at least 3 non-equivalent Mn-O bonds 

and in-plane angles Mn-O-Mn close to 120º; the bipyramids are stacked in alternated 

directions in each layer and sandwiched between distorted planes of Ln ions, as 

represented in figure 4.4.1.  

As example, in the LuMnO3 compound the non-centrosymmetric space group 

P63cm, makes it possible to find ferroelectric ordering up to very high temperatures (TC > 

800 K) [4.4.2]. Large local dipole moments are originated from the two non equivalent 

LuO7 coordination sites, nonetheless a 0.02 Å difference between the apical Mn-O1 and 

Mn-O2 bonds lengths can create a less significant local dipole moment, parallel to the c 

axis [4.4.3] as can be observed in figure 4.4.1. 
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Typical FE properties at 2400 V are a maximum polarization Psat = 0.189 mC/cm
2
, 

remnant polarization Prem = 0.096 mC/cm
2
 and coercive field Ecoe= 12.13 kV/cm. 

 

 

 

 

Fig. 4.4.1: The unit cell of hexagonal manganite. The 

ions displacements are represented by arrows [4.4.2]. 

Fig. 4.4.2: Representation of a dual plane having 

triangular magnetic frustration in the P63cm system. 

The coexistence of the two order parameters is a rarity in oxides and opens up the 

possibility for electric–magnetic interactions. Particularly for T < TN (~ 90 K), as 

indication in figure 4.4.3, the triangular frustrated antiferromagnetic ordering of Mn
3+

 ions 

spins [4.4.4] represented in figure 4.4.2, may be also associated with a magnetostrictive 

effect and involve the ferroelectric structure or the domain wall mobility [4.4.5], as 

evidenced in figure 4.4.4. 

 
 

Fig. 4.4.3: Magnetic susceptibility χ of LuMnO3. 

Inset: 1/χ and respective High-T Curie-Weiss fit. 

Fig. 4.4.4: Dielectric constant of YMnO3 and LuMnO3 

at 1MHz, the arrows point the respective TN [4.4.5]. 

O2- 

Mn3+ 

z 
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O2- 
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4.5. Magnetostrictive Ni2+xMn1-xGa Heussler Alloy 

 

Ni2MnGa alloy is one of the most extensively studied ferromagnetic shape memory 

compounds; some of the most relevant phases and transitions of this compound is complex 

phase diagram are described [4.5.1], [4.5.2]; at 400 K the compound has the austenitic 

cubic L21 structure having a = 5.825 Å (figure 4.5.1), it orders ferromagnetically at TC ≈ 

370 K. Specific magnetization at 265 K is 58 emu/g; given its mass density of 8.3 g/cm
3
, 

this translates to a saturation flux density of 4πMs 56 kG. On cooling below 260 K appears 

a pre-martensitic phase. Another structural phase transition occur at TM ≈ 200 K consisting 

in ~1% decrease in cell volume (c/a ≈ 0.94) and an increase in the magnetic anisotropy, 

changing to the ―5M‖ martensitic tetragonal (I4/mmm) which exhibits giant field-induced 

strain of near 6%, or even at ~100 K the ―7M‖ orthorhombic (Pnnm) unit cell that can 

reach ~10% field-induced strain [4.5.3]. 

 

 
Ni1 represent original Ni position 

Ni2 replaces Mn original position 

 

Fig. 4.5.1: Unit cell of Ni2.25Mn0.75Ga, austenitic cubic 

phase (a) and tetragonal martensitic phase (b) in face 

centered or body centered (dash) representations [4.5.4]. 

Fig. 4.5.2: Magnetic Shape Memory effect 

due to the redistribution of martensitic 

variants with the magnetic field [4.5.5]. 

The Ni2MnGa Heusler alloy magnetic shape memory effect (MSM) can be 

described within the martensitic phase as a reversible macroscopic deformation resultant 

from the redistribution of the self-accommodated martensitic variants coincident with 

magnetic domains aligning with an external magnetic field as represented in figure 4.5.2 

[4.5.5], [4.5.6]. Also if the material is plastically deformed in the low temperature 

martensitic phase and the external load removed it will regain its original shape when 

heated above the transition temperature. 
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Fig. 4.5.3: Phase diagram of Ni2+xMn1-xGa Heuler alloy showing 

critical temperatures dependence with composition for martensitic 

(Tm), Curie (TC) and pre-martensitic transitions (TP) [4.5.8]. 

 
Fig. 4.5.4: Lattice parameters a, c, a/c 

ratio and volume for Ni2+xMn1-xGa 

with 0.15 ≤ x ≤ 0.35 in the martensitic 

tetragonal phase [4.5.4]. 

Bulk Ni2MnGa can be prepared by melting high purity elements in an arc furnace. 

In order to obtain volume homogeneity, the ingot can be remelted, annealed at 1300 K up 

to 48 hr preferably in Argon atmosphere and then slowly cooled [4.5.1], [4.5.2]. In this 

basic form is too brittle and its transition temperature TM too low for convenient use; it‘s 

possible to maximize the magnetostrictive potential of these material and optimize the 

magnetization properties by changing the stoichiometry either by controlled substitution 

for other elements like Fe, Co, Al [4.5.7], or most important, by self doping as in the case 

Ni2+xMn1−xGa [4.5.4], [4.5.8], exemplified in figure 4.5.3 and 4.5.4 and table 4.5.1. 

 
Table. 4.5.1: SG and a, c lattice parameters at 293 K, TM and TC of Ni2+xMn1-xGa for 0.15 ≤ x ≤ 0.35 [4.5.4] 
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The electronic states near the Fermi-level are associated to the Ni ions, making the 

most influent contribution to the magnetostrictive performance of the system; the Mn-

states are at lower energies making Mn less important concerning both structural and 

transition properties, although the magnetic moment are mainly originated from the Mn 

ions, Mn excess atoms substituted at Ga or Ni sites will couple antiferromagnetically to the 

normal Mn sites. [4.5.9]. The magnetization behaviour as function of Ni2+xMn1−xGa 

composition and temperature can be illustrated in figure 4.5.5: 

 
Fig. 4.5.5: Magnetization jumps at the martensitic transition in magnetic fields of 3 T (stared line) and 5 T 

(solid line). For compositions Ni2+xMn1-xGa 0 ≤ x ≤ 0.16 measured upon heating. For the composition. 

For x = 0.19 a temperature hysteresis loop of the magnetization observed upon cooling [4.5.10]. 
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IIII  EEXXPPEERRIIMMEENNTTAALL  MMEETTHHOODDSS  

 

5 Samples Preparation Methods 

 

Starting with the objective of producing samples with particular properties, it is 

indispensable to understand the respective material‘s phase‘s formation diagrams, which 

describe the relations between a particular equilibrium state, structure, and other 

fundamental characteristics of the compound, as function of the thermodynamic 

parameters: composition, temperature, atmosphere, hydraulic pressure, to refer the most 

common. The sample properties will depend also on other essential features, like shape and 

mechanical stability, chemical homogeneity, crystalline growth, grain size distribution, 

surface texture, epitaxy, among other aspects, which are strongly dictated by the 

mechanisms and limitations of the synthesis process; in it‘s turn the selection of a 

determined preparation technique depends on the available experimental capabilities to 

achieve the suitable thermodynamic conditions necessary for the formation of the intended 

phase and sample characteristics. 

In order to achieve successful scientific research and eventual practical applications 

based on a sample results, it is also fundamental to assure reproducibility of the preparation 

conditions, leading to a controlled stoichiometry, microstructure and properties of the 

material. In fact, the preparation techniques themselves become a subject of research and 

development: the discover of a new synthesis method that enable the access to new 

material phases usually become a relevant scientific breakthrough; pertinent simplification 

or modification of a conventional routes may have laboratorial or industrial production 

impact; and frequently, extensive studies are carried out to understand and control each of 

the processes variables to the resulting sample properties. 

Bearing in mind that the advantages or disadvantages of each technique are 

evaluated in terms of the objectives proposed for the resulting samples properties, the main 

issue becomes to swiftly recognize the limitations and inadequacy of some routes and to 

focus on methods that not only can reach the right conditions to achieve the intended 

material‘s phase, but also the potential to further explore innovative aspects of the material 

or of the method itself. 
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This section provides a brief 

description of some experimental 

methods used in this work to manufacture 

bulk and thin film samples, for which 

there is practical technical access and 

expertise in the context of this thesis: 

- Micro-powder oxides by Solid-State 

sintering route; 

- Nano-powder oxides synthesis by Co-precipitation; by Pechini Sol-Gel and by Sol-Gel 

urea combustion methods; 

- Thin films deposition by Magnetron Radio Frequency Sputtering Physical Vapor 

Deposition (PVD) 

 

 

5.1 Ceramics Powders Sintering 

 

In the preparation of pure or 

composite materials in the form of 

powders or bulk pieces, all methods go 

through stages at very high temperature in 

vacuum or in the presence of air or some 

pure gas atmosphere (Ar, O2, N2, etc.).  

This essential sintering process, can be undertaken below (<60-70%) the melting 

temperature of the elements composing the precursors matrix, preferably preventing the 

full segregation of any liquid phase; it is also essential to achieve a tight contact between 

the precursor particles, by starting from a compact and/or applying pressure during the 

sintering procedure, in order to promote the exchange of elements across the grains 

surfaces that ensures diffusion and homogeneous distribution of the components, as well 

resulting into the coalescence of the original agglomerates into larger grains (figure 5.1.1). 

Processing

Structure

Properties

Composition

 
Figure 5.0.1: Correlation between materials‘ processing 

and resulting structure, composition and properties. 

 
 

Fig. 5.1.1: Schematic of the sintering evolution. 

Diffusion and 

coalescence 

Precursor 
powders 

Densification and 
Pores filling 
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Once reaching the thermodynamic conditions for the formation of the equilibrium 

phase the system can be frozen in a metastable state by performing a rapid cooling to room 

or even lower temperature (quenching), or else allow gradual cooling down, achieving 

equilibrium with environment conditions. 

Further heat treatments (or annealing) involve in summary the same physical 

mechanisms present in the sintering process, although already within the intended ceramic 

phase; the controlled high temperature stage can be used to enhance grain growth; 

densification; to recover or further enhance crystalline or chemical homogeneity of the 

sample; or yet, to modify the oxidation state of the compound cations: either increasing the 

Oxygen content by using limited temperatures (from 400º to 800º C) in air or O2 

atmosphere or reducing it by applying higher temperatures (above 1000º C) under vacuum, 

Argon or even in air [5.1.1]. 

 

 

5.1.1 Solid State Synthesis 

In this process simple compounds or granular composites are usually directly 

prepared from laboratorial reagents powders [5.1.1]; in some cases it may become 

necessary use a binder or to perform a preliminary step to alter the chemical composition 

of a reagent to some other precursor form, more suited to form a solid solution with the 

other components (or for safety reasons), in general the procedure has few simple steps: 

-  Weighting the reagents; 

- Grinding, disperse and mixing the powders in ethanol (or other appropriate dispersant) 

by manual or mechanical balls milling process; 

- Calcination stage at ~600º to 700º C in air for at least 2 hours to eliminate all 

carbonated contends. 

- Intermediate grinding, sieving and pressing into pellets; 

- Successive sintering stages at raising temperatures ~900º, ~1200º, ~1500º C, etc. under 

the selected atmosphere, according to the material intended composition and phase, 

usually for periods of ~24 hours or more (the higher the temperature less time is 

required), until achieving the desired oxidation state, grain size and densification. 
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This process has the advantage of comprising straightforward routines and the most 

basic laboratorial material, nevertheless to achieve good degree of chemical homogeneity 

in the samples it becomes necessary to perform repetitive grinding steps, extended 

sintering time and raising temperatures above 1200º C to enhance elements diffusion; 

under these conditions there is a considerable grain growth typically in the 1 to 10 µm 

range that compromises oxygen stoichiometry between the grains surface and core. 

 

 

5.1.2 Coprecipitation Synthesis 

The coprecipitation method [5.1.2] is a wet chemical technique that has three main 

variants: a) direct solution-coprecipitation route; b) reverse solution-coprecipitation route 

and c) pH controlled reverse solution-coprecipitation route, as indicated in figure 5.1.2. 

The resulting precipitated salts have in principle a good distribution of chemical species in 

amorphous agglomerates of nanometric size, which are then dried and calcinated. The 

starting precursors small size ensures an easier sintering/densification process requiring 

lower temperatures and time than the solid-state route, resulting better chemical 

homogeneity, control over Oxygen stoichiometry, and an important management of the 

grain size growth (from ~5 nm for limited sintering at ~700º C; up to ~500 nm for 

extensive sintering under pressure above 1100º C) 

 

 

5.1.3 Sol-Gel Synthesis 

Introduced by Pechini in 1967 [5.1.3] this method for producing nano-sized oxides 

powders, and its many subsequent modifications, is focused on dissolving the reagent salts 

in suitable solvents; addition of an organic compounds (citric acid plus ethylene glycol and 

ethanol mix) that will form polymerizable complex precursors with the cationic elements 

in solution; heating to allow the solvent evaporation and the polyesterification resulting in 

a amorphous gel; this intermediary resin is later calcinated and transformed into fine 

powder oxides (figure 5.1.3). Chemical homogeneity and grain size distribution results are 

comparable to the previous coprecipitation method. 
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Fig. 5.1.2: Coprecipitation method procedure [5.1.3]. Fig. 5.1.3: Pechini method procedure [5.1.3]. 

 

 

5.1.4 Combustion Synthesis 

An alternative chemical process uses urea as combustible gel precursor to 

synthesize the metallic oxides, since it is known to produce powders with grain size 

distribution between 10 and 50 nm [5.1.4] [5.1.5]. This method presents the benefit of 

comprising an extended stage of homogenous aqueous solution of the metallic salts; the 

ions remain dispersed until the solvent full evaporation, followed by the decomposition 

and auto combustion of the deposit into the ceramic pre-product. Effective 

formation/segregation of the ceramic phases is achieved after calcination and sintering 

stages. A more detailed description of this technique application can be found in section 

7.1. 
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5.2 Thin Films Preparation 

 

Thin film technology may find its roots to the ancient craft of gold leaf beating 

since Egyptians time almost four thousands years ago. Gold can be beaten by a skilled 

craftsman down to 0.05 micron leaf, and even at this extraordinary thinness, its beauty and 

resistance to chemical degradation have earmarked its use for durable ornamentation and 

protection purposes [5.2.1]. 

The study of thin films is focused in 2D aspect materials, usually having a thickness 

below 1 µm down to 1 atomic layer, thin films can be either continuous or patterned, 

bonded to relatively thick substrates, stacked as multilayers, or even as free-standing; all 

became nowadays a crucial component for the new generation of technological devices. 

The special interest of ultrathin films is that they make it possible to research and 

develop new science and applications making use of properties coupling (optical-electro-

magneto-elastic) in new artificial structures, consisting of thin layers of different, 

sometimes non-miscible compounds, This ―clamped‖ growth of a thin films typically 

results in internal stress that also modify the original properties of the material in bulk 

form. 

 

 

5.2.1. Thin Film growth 

The most important stage in thin film deposition is the desired material growth 

mechanism onto the substrate which will dictate the thin film outcome characteristics. The 

normal course of action for film formation is represented in figure 5.2.1. 

 
Figure 5.2.1: Schematic showing the atomistic formation of a film onto a substrate [5.2.2]. 
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The atomic species arriving to the substrate may have enough energy to be 

adsorbed, otherwise can re-evaporate; suitable substrate temperature improves atoms 

diffusion on the surface, as the number of atoms rises, there are collisions and merging that 

develop into nucleation sites which grow into islands and as coalescence occurs all surface 

is covered and the film thickens.  

According to the growth progression, the thin film outcome: 

- Chemical composition can directly transpose the targets (or precursors) and atmosphere 

nominal composition, or reflect the distinct incorporation behavior into film of 

different elements. 

- Microstructure onto the substrate can range from single crystal, bilayer of epitaxial and 

relaxed phase; preferable orientation growth in columnar or twined grains; random 

polycrystalline with varied kind of grain size and shape; or a basically amorphous 

layer. 

- Surface can have a smooth vitreous or mirror like aspect, to have regular patterns or 

rough granular texture, to present porosity or show irregularities, have defects or even 

to detach from substrate. 

- The thin film material can form in the expected phase and present the suitable 

properties, but it‘s also possible to develop other metastable phases. 

In order to achieve the intended thin film characteristics, it is necessary to conjugate 

the most suitable deposition process and conditions that promote the adequate thin film 

growth. Although the bulk materials‘ phase diagrams may reveal some guide lines in terms 

of temperature and pressure for the formation of a selected phase, it is not directly 

applicable to the specific aspects of thin film formation, epitaxy and substrate induced 

stress; for that reason thin film deposition usually goes through an extensive preliminary 

empirical procedure. A series of experimental depositions are performed with controlled 

variation of operational parameters and the produced samples are characterized in the 

respective pertinent features, in order to estimate the appropriate deposition conditions that 

will lead to the final thin film properties. 
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5.2.2. Thin Film Deposition processes 

The surface growth of a film being deposited onto a substrate is achieved by 

transference of the material in the vapor form or liquid dispersion from a precursor source; 

the deposition process is normally carried out in a vacuum chamber to enable control of the 

vapor composition. The way in which the film is formed classifies the method as: 

- Chemical Deposition a vapor (CVD) or a volatile liquid precursor (CLD) undergoes a 

chemical reaction on the surface of substrate (combustion or reduction).  

- Physical Vapor Deposition (PVD) the atoms are directly transported from source to the 

substrate through gas or plasma phase. 

The route how the vapor is created and transported from the precursor target 

subdivides these two basic methods into several different processes, most relevant are 

presented in table 5.2.1 and figure 5.2.2, each having advantages and disadvantages 

according to the specific purpose of the thin film application, in terms of reproducibility, 

reliability, atmosphere and temperature constrains, production velocity, and of course, cost 

ratios. 

Method Process designation Operational principle Vacuum 
Vapor Kinetic 

Energy 

C
D

 

L
 

Direct injection (DLI) Precursor solution is sprayed by injectors. >10-3 mbar Very low 

Spin Coating Precursor solution is spread by centrifugation. ~1 bar Very low 

Dip Coating Substrate is temporarily immersed in the solution ~1 bar Very low 

Screen Printing Lithography (use of templates over substrates) ~1 bar Very low 

V
 

Metal-Organic 
(MOCVD) 

Ultrasonic evaporation of liquid metal-organic 
precursor and aerosol transport by inert gas flux. 

Reactive 
>10-3 mbar 

Very low 

Combustion (CCVD) Vapor derived from flame-based technique at open-
atmosphere. 

Reactive 
~1 bar 

High 

Plasma-Enhanced 
(PECVD) - variant - 

Plasma discharge near substrate enhances chemical 
reaction of precursors. 

Reactive 
>10-3 mbar 

High 

P
V

D
 

Evaporation 

Thermal 
Resistive heating of target, evaporation from melting 
or sublimation results in high vapor pressure. 

High 
<10-5 mbar 

Low 

E-beam 
Target heating by electron bombardment. 
 

Ultra High 
<10-8 mbar 

High 

Sputtering 

DC 
Plasma discharge and bias voltage drives Argon ions 
bombardment and atoms ejection from target. 

Ultra High 
<10-8 mbar 
+ Argon 
>10-3 mbar 

Very high 
RF 
Magnetron 

Electrons plasma confinement near target improves 
Argon ions acceleration to target. 

Pulsed Laser 
Deposition(PLD) 

High power laser ablates material from the target into 
a plasma plume. 

Ultra High 
<10-8 mbar 

Very high 

Reactive PVD 
- variant - 

Introduction of a reactive gas in chamber (O2, N2, F2, 
…) to deposit oxides, nitrides, fluorides, etc. 

Reactive 
>10-3 mbar 

High 

Table 5.2.1: Basic aspects of most used thin film deposition processes. 
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Figure 5.2.2: Diagrams showing the basic components of the several thin film deposition processes. 
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Each of these processes enables some degree of control over the following factors: 

- The architecture between target, substrate and vapor flow relates to film homogeneity. 

- The generated vapor pressure affects the nucleation progress of the film. 

- The vapor particles energy arriving on substrate is essential for the formation of the 

intended film phase. 

- The substrate temperature influences atoms diffusion and rate of film growth. 

- The compatibility of substrate crystallographic parameters and orientation with the 

deposited film phase induces the epitaxial growth. 

- The appropriate reactive atmosphere pressure during deposition imposes the film 

stoichiometry. 

- The deposition chamber and vacuum quality affects the presence of impurities in the 

film that may include incorporation of the inert gas used in plasma discharge. 

- In situ annealing is advisable in order to, promote re-crystallization, adjust 

stoichiometry and reduce defects and stress. 

The most important limitations associated with the several thin film deposition 

processes are generally: 

- CVD methods usually result in polycrystalline or amorphous structured films due to the 

high rate of deposition, hence are normally employed in industrial production. Special 

concerns should be given about the efficient exhaust of the reaction byproducts. 

- Thermal evaporation is typically only applicable to relatively low melting/sublimation 

temperature materials (<1500º C), slow deposition rates and very low kinetic energy of 

the vapor (~0.1 eV/atom) results poor crystalline formation of films there is also the 

possibility of contamination due to the simultaneous heating of the crucible sustaining 

the target. 

- Target Ablation by Pulsed Laser generates high energy plasma, the point source and 

high deposition rates compromise the good uniformity and crystalline formation of the 

film; in addition, ballistic droplets can eject from the target and splat in the substrate. 
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- E-Beam evaporation has not so many limitations as the previous described processes; it 

enables some management of deposition rate and vapors kinetic energy within a 

restricted range; never the less, distinct elements evaporate at different rates and 

complex composition films usually present poor stoichiometry and uniformity. 

- DC bias sputtering can only be used in conductive targets in order to close the plasma 

discharge circuit; dc magnetron sputtering can provide high deposition rates since 

power supplies can be built up to 20 kW. 

- Conventional RF sputtering has the risk of re-sputtering the film. 

 

 

5.2.3 Magnetron RF Sputtering PVD 

Magnetron RF Sputtering turns to be one of the most versatile PVD techniques 

because it enables an ample control of the conditions and parameters that lead to the 

successful deposition of all kind of elements and compounds in a variety of thin films 

phases. Most systems allow reactive deposition, by introducing an oxidizing (O2, N2, 

S2,…) or even a reducer (CO, H2,…) gas which combines with the sputtered material and 

deposits as compound films. 

Sputter deposition is performed at moderately low pressures (>10
-3

, <10
-1

 mbar) in 

an inert gas (generally Argon) atmosphere. The plasma is sustained by RF current with 

densities between 10 - 100 mA/cm
2
; the Argon positive ions are generated by collisions of 

the neutral atoms with the plasma electrons. 

The magnetron consist of a configuration of permanent magnets behind the planar 

target that create a magnetic field with flux lines (B) parallel to the target surface while the 

RF electric field (E) is perpendicular; this conjunction establishing a continuous path for 

the trapped "hopping" electrons. Even if RF power supplies are limited to <3 kW, the 

magnetron increases the plasma density near the target surface by confining the electrons 

which cause ionizing collisions; due to the induced bias voltage resulting from the 

electrons spatial gradient across the plasma, that can reach a few hundred volts; the Argon 

ions suffer additional acceleration towards the target resulting in a more efficient sputtering 

process. 
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The highly energetic Argon ions bombard the target and dislodge (sputter) atoms or 

molecules which are ejected with considerable kinetic energy (up to 10
2
 eV/atom), 

contributing to better adhesion and denser crystalline films; hence thin film formation can 

occur even when substrate is kept at normal room temperature; however, heating is widely 

used. 

Most elements are sputtered with similar rates, favoring direct thin film 

stoichiometry to target nominal composition. Planar and parallel geometry of target and 

substrate and broad directionality of the sputtered atoms offers a better control of the thin 

film uniformity and step coverage. Thin film purity is minimized by ensuring previous 

quality of vacuum (<10
-8

 mbar) and by recurring to a pre-sputtering procedure that cleans 

eventual contaminants adsorbed by the target surface, nevertheless Argon gas can be 

implanted in the film. 
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6 Characterization Methods 

 

There is a wide range of experimental techniques to characterize most kind of 

sample‘s properties, depending on the nature of the qualitative or quantitative information 

to access and the degree of accuracy necessary for the research objectives. 

Most characterization methods involve a probing process, usually can be either: 

ions, electrons or photons which interact directly or indirectly with the material to be 

analyzed resulting in some aspects of the probing to be modified, for example: momentum, 

frequency, angle, polarization, etc. and then monitored with a specific acquisition system; 

the information is correlated to a particular property according an appropriate calibration, 

systematization and observation of the data. More conclusive analysis may require the use 

of complementary techniques or combination of several measurements. 

Technique 
Main 

information 

depth 

probed 

min. area 

probed 

Accuracy 

resolution 

Operational 

range 

Operational 

requirements 

Typical sample 

requirements 

SEM 
surface  

imaging 
< 1 µm < 5 nm

2 > 1 nm 
room T 

High vacuum conductive 

surface or coating 

EDS 
composition 

mapping 
~ 1 µm 10 nm

2
 

> 0.1% 

~ 0.2 µm 
room T 

High vacuum 

liquid N2 

Z > 3 

XRD 
structure 

phases 
~ 1 µm > mm

2
 

> 0.001º 

 

77-600 K 

or room T 

vacuum, liquid 

N2 or nothing 

> 20 mm
2 

HR-XRD 
structure 

phases profile 
< 1 µm > mm

2
 

> 0.001º 

 
room T 

careful 

alignment 

Thin films 

> 20 mm
2
 

XRR 
Film thickness 

 
< 1 µm > mm

2
 

> 0.001º 

~ 1 nm 
room T 

careful 

alignment 

Thin films 

> 20 mm
2
 

NPD 
structure 

magnetic phase 
> 1 µm > cm

2 > 0.001º 

 
4-300 K 

High vacuum Bulk, crystalline 

> 50 g 

RAMAN 

 

structure 

phases 
~ 1 µm > mm

2
 

~ 0.5 cm
-1 

4-300 K 
Vacuum, 

liquid N2 

> 20 mm
2
 

PFM 

BEPS 

dielectric phase 

mapping 
< 1 µm 10 nm

2 < 20 nm 
room T 

Mechanical 

stability 

smooth surfaces 

MFM 
magnetic phase 

mapping 
< 1 µm 10 nm

2
 

< 20 nm 
room T 

Mechanical 

stability 

smooth surfaces 

XPS 
Composition 

Bond energy 
< 0.1 µm > mm

2
 

~ 0.5 cm
-1

 
room T 

High vacuum > 20 mm
2
 

RBS 
composition 

depth profile 
< 2 µm ~ mm

2 ~ 0.01% 

~ 10 nm 
room T 

High vacuum > 20 mm
2
 

VSM 
magnetic 

moment 
> cm > mm

2
 

0.001 T 

> 10
-5

 emu 
4-310 K 

vacuum, He < 1 cm long 

> 0.05 g 

SQUID 
Magnetic 

moment 
> cm > mm

2
 

0.001 T 

< 10
-7

 emu 
4-310 K 

vacuum, He < 1 cm long 

> 0.05 g 

MR 
magneto-

resistance 
> 1 µm 5 mm

2
 

~ 100 nV 4-320 K 

77-400 K 

vacuum, He 

or liquid N2 

> 20 mm
2 

MZ 
magneto-

impedance 
> mm 5 mm

2
 

~ 100 nV 
4-310 K 

vacuum, He > 20 mm
2
 

ME 
magneto-

electric effect 
> mm 5 mm

2 ~ 100 nV 4-310 K 

100-500K 

vacuum, He 

or liquid N2 

> 20 mm
2
 

Table 6.0.1: Summary of the basic functions of the measurement systems utilized. 
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Many microanalytical techniques specialize in very fine dimensions, like interfaces 

and thin films where there is often very low quantity of material to analyze; though the 

practical distinction of ―surface‖ from ―bulk‖ or ―thin‖ from ―thick‖ depends on the 

properties and applications of interest in the sample [6.0.1]. In thin-film technology 

requirements can range to layers some µm thick, which for the majority of analytical 

techniques constitute like bulk material, whereas only a few techniques have suitable 

depths ranges to examine layers thinner than 10 Å or even the detail of epitaxial 

relationship between the last atomic layers of single crystal material interfaces. 

The table 6.0.1 summarizes and compares the features of the several measurement 

systems operated during the present research. 

 

 

6.1 Scanning Electron Microscope – SEM 

 

To observe features that are beyond the resolution of 

the human eye (about 100 µm), and require far superior 

spatial resolution and depth of focus than the optical 

microscope, the Scanning Electron Microscope (SEM) is 

one of the most versatile analytical instruments and is often 

the preferred starting tool for materials studies [6.0.1]. 

The mechanism is based on a vacuum chamber, an 

electron source and a system of focusing condensers and 

deflection coils to raster the probe beam of electrons over 

the surface of the sample. The output can be almost directly 

used to modulate the brightness of a cathode ray tube 

(CRT) and correlated to the sample‘s surface mapping; the 

magnification can be easily adjusted by the ratio between 

the voltages applied to the deflection amplifiers and the 

CRT; the resolution can reach the nm scale. 

 

 
 

 

Fig. 6.1.1: Basic SEM schematics 
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Most SEM equipments usually require sample‘s compatibility with vacuum and 

preferably clean and conductive surfaces, in case the material is insulator it can be coated 

with a DC sputtered carbon or gold film (~10 nm). 

The SEM images can be separated into secondary electron images, backscattered 

electron images, and elemental X-ray maps; each is collected by appropriate detectors: 

Emitted secondary electrons (SE) are produced from inelastic scattering with 

atomic electrons, have much lower energy (<50 eV) and result from the first few nm of the 

sample‘s surface, providing excellent topographical contrast. Backscattered electrons 

(BSE) are considered to be the electrons that undergo elastic scattering with the atomic 

nucleus and exit the specimen with an energy comparable to the energy of the primary 

beam (>50 eV). The higher the atomic number of a material, the more likely it is that 

backscattering will occur, thus image contrast is caused by elemental differences. 

An additional electron interaction of major importance occurs when the primary 

electron collides and ejects a core electron from an atom in the solid. The excited atom will 

decay to its ground state by emitting a characteristic X-ray photon and sorted by energy in 

an energy dispersive X-ray detector. These signals can be used to trace the spatial 

distribution of particular elements in the image, although the resolution of this type of 

image will rarely be better than 0.5 µm. 

 

 

6.2. Energy Dispersive X-Ray Spectroscopy – EDS 

 

When an inner shell electron is removed from an atom, to recover to an ionized 

ground state, an electron from a higher energy outer shell fills the vacant inner shell and, in 

the process, releases an amount of quantified energy as an X-ray photon equal to the 

potential energy difference between the two shells, each transition or cascade transitions 

are specific for element [6.0.1]. 

The energy-dispersive X-ray detectors used for elemental detection in the SEM 

maps can also produce an output signal proportional to the number of X-ray photons in the 

area under electron bombardment. With an EDS the output is displayed as a histogram of 

counts versus X-ray energy. With modern detectors and electronics most EDS systems can 
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detect X rays from all the elements in the periodic table above beryllium, Z = 4, if present 

in sufficient quantity. In practice the minimum detection limit (MDL) is ~200 ppm for 

most elements (Z > 11) under ideal conditions; however, because of a high background 

count and overlapped broad peaks, the accuracy may be generally 1-2% wt. 

For bulk samples it is more important to maximize 

X-ray production and use an acceleration voltage of the 

electron beam ~2.5 greater than the critical ionization 

voltage (Ei) for the X-ray line of interest, while in the study 

of thin films it is usually desirable to minimize the electron 

penetration in the sample and use a moderate voltage of 5 to 

15 keV, ultimately being able to detect even a monolayer of 

metal film on a substrate using Kα lines. 

The heart of the energy-dispersive spectrometer is usually a diode made from a 

silicon crystal with diffused lithium atoms, having thin layers of gold evaporated onto the 

front and back surface of the diode. Detectors are maintained under vacuum at liquid 

nitrogen temperature to reduce electronic noise and to inhibit diffusion of the lithium when 

a bias voltage is applied. When an X-ray photon enters the intrinsic region of the detector 

through the p type end, there is a high probability that it will ionize a silicon atom through 

the photoelectric effect. The cascade outcome will produce a particular number of electron-

hole pairs that are drawn to the detector contacts under the action of an applied reverse bias 

field (100-1000 V). The signal acquisition is made at the gate of a specially designed field 

effect transistor (FET) mounted directly behind the detector crystal; then the signal is 

amplified (AMP) and filtered to a level that can be processed by a multi-channel analyzer 

(MCA), as represented in figure 6.2.1. 

EDS systems are easy to use and controlled by computer (PC), the basic operations 

include spectrum collection, peak identification, and background subtraction, while peaks 

deconvolution and quantitative analysis is software processed. 

 

 
 

 

 Fig. 6.2.1: Basic EDS schematics 

e- 

N2(liq) 

dewar 

RX 

Sample 

FET 

Si(Li) 
diode 

AMP MCA PC 

2 4 6 8 10 12 14
keV

0

2

4

6

8

10

12

14

16

18

20

 cps/eV

 Ni  Ni  Mn 
 Mn 

 Ga 

 Ga 

Display 



Fábio G. N. Figueiras 

89 

6.3. Scanning Probe Microscopy – SPM 

 

The expanding family of instruments commonly termed Scanning Probe 

Microscopes (SPMs) started in 1981 when Gerd Binnig and Heinrich Rohrer invented the 

Scanning Tunneling Microscopy (STM) at IBM, Zurich, for which they earned the Nobel 

Prize for Physics in 1986. This powerful real-space imaging technique can produce 

topographic images within atomic resolution in all three dimensions; it measures a 

quantum-mechanical tunneling current between the tip within a few Å distance of a 

conducting surface; therefore is more suitable to study conductive materials under 

ultrahigh-vacuum condition since any surface oxide or other contaminant will complicate 

operation under ambient conditions. 

The derived Scanning Force Microscopy 

(SFM) has much more flexibility, able to operate 

under normal environments and measure any type 

of samples, minimizing system setup, samples‘ 

preparation and acquisition time; further reducing 

the cost and complexity of the microscope. With 

vertical sub-Å resolution and fields of view 

ranging from 10 nm features recognition to greater 

than 250 x 250 m scans this research tools 

become of increasing importance for atomic-

imaging applications in surface science. 

Scanning Force Microscopes use a sharp tip mounted on a flexible cantilever; when 

the tip comes within a few Å of the sample's surface it establishes electric, magnetic or Van 

der Waals forces between the atoms of the tip and those on the sample, causing the 

cantilever to deflect in a power law dependence on the tip-to-sample distance (d). SFM 

employs a beam-bounce detection system, using the light from a laser diode reflected from 

the back of the cantilever into a very position-sensitive (about 0.1 Å) photodiode; a 

piezoelectric transducer operating in feedback loop ensures the constant distance between 

the tip and the sample and the accurate scan across the surface, as depicted in figure 6.3.1. 

 

 
 

 Fig. 6.3.1: Basic SFM‘ schematics 
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In the Piezo-response Force Microscopy (PFM) [6.3.1] a conductive AFM tip is 

brought into contact with the surface of ferroelectric or piezoelectric material; by applying 

a pre-set voltage (< 1 V) through the tip the sample stimulated region expands or contracts 

(inverse piezoelectric effect) according to the relation between the local piezoelectric 

properties and the electric field. The deformation provokes the cantilever deflection, as 

schematized in figure 6.3.2. 

The use of a small modulated a.c. field (|Ein(ω)| < Ecoerc.), close to the electro-

mechanic resonance of the system, enables to trace the correlated response in amplitude 

Aout(ω) and phase θout(ω) correlated to the sample local polarization, whilst the cantilever 

deflection associated with the topographic features of the sample surface are distinguished 

as crossing Ein(ω) = 0. 

Typically there can be three images modes for PFM: Out-of-plane polarization as a 

direct measure of the tip vertical deflection, In-plane polarization detected as lateral 

motion of the tip and finally the Vectorial, integrating the 3 orthogonal components of the 

polarization and topological information making possible to charter the correlation 

between grain size, location and shape with the polarization domains. PFM can also be 

used for micro lithography applications, since by forcing at the tip a bias electric field 

higher than the local coercive field of a ferroelectric sample it is possible to write single 

domains and even complex patterns; under certain limitations, the control of mechanical 

pressure can even be used to dig topographic changes in the sample surface if required. 

                            a                                                 b                                                                 c                             

 

 
 

Fig. 6.3.2: Diagram of PFM operation principle a) topographic default at E = 0, 

b) out-of-plane and c) in-plane local polarization measurement at E < Ecoerc.. 
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Magnetic Force Microscopy (MFM) use similar operating principles though 

changing the tip function to be in off-contact mode and sensitive to the magnetic moment 

coupling between the tip and the area of the sample under measurement. 

Information on local ferroelectric behavior such as imprint, switching work, 

nucleation biases, etc, can be obtained as function of the local hysteresis loops generated 

by PFM Spectroscopy Mapping mode; however technical limitations related to tip 

positioning and drift restrain the number of points and acquisition time in the sample. A 

particular option developed by ORNL and Asylum Research
TM

 Company is Band 

Excitation Piezo-Response Spectroscopy (BEPS) [6.3.2], able to monitor responses 

simultaneously at a wide and continuous band of frequencies, improving acquisition time 

and scope of parameters as function of frequency. BEPS mode requires a modulated 

waveform (Vin = Vdc + Vac.sin(ω.t)), as exemplified in figure 6.3.3; high-speed data 

acquisition and FFT signal processing hardware as well as specially developed software. 

The resulting data array has terms of amplitude, phase, voltage, resonance and dissipation 

response to each frequency bin at each mapped point, as represented in figure 6.3.4; data 

processing and conversion reveals maps of local hysteresis loops and most significant 

ferroelectric parameters (figure 6.3.4), as well as mapping FE domains and respective 

nucleation, imprint, switching polarization and work. 

t
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V dc
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Fig. 6.3.3: Typical BEPS driving signal. 

 
 

Fig. 6.3.4: Fitting model for piezo-response 

cycle with BEPS parameters determined at 

each point for each frequency bin and 

voltage bias step [6.3.2]. 
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6.4. X-ray Diffraction – XRD and Reflectometry – XRR 

 

XRD is the most widely used technique for general crystalline material 

characterization; it has the advantage to be a powerful noncontact and nondestructive 

technique that can be used in most environments and is comparatively less expensive and 

practical to operate than other techniques that provide structural information, namely: 

Extended X-ray Absorption Fine-Structure (EXAFS), Low-Energy Electron Diffraction 

(LEED), Reflection High-Energy Electron Diffraction (RHEED), X\-ray Photoelectron 

Diffraction (XPD), Neutron Powder Diffraction (NPD), Transmission Electron Microscopy 

(TEM), etc. 

Owing to the huge data bank available covering practically every phase of every 

known material (powder diffraction patterns), from XRD patterns it becomes possible to 

routinely identify phases in polycrystalline bulk material and to quantify the respective 

fraction present in material. The diffractogram peaks positions enables to resolve the long-

range order information like space group symmetries and determine average unit cell 

dimensions, atomic positions and theoretical unit cell density; by further analyzing the 

broadening and splitting of peaks other structural informations like strain state, grain size, 

epitaxy, preferred orientation, and even defect structure can be accessed [6.0.1]. 

XRD does not allow identifying directly atoms composing the individual crystalline 

phases present on a sample, but enables to evaluate the correlation between the structure 

and the expected chemical composition of a phase. In their ―usual‖ form, XRD is used for 

bulk samples, since X rays can probe many microns deep; however, there are ways to 

make XRD more surface sensitive. Since it offers unparalleled accuracy in the 

measurement of atomic spacing it can also be used to resolve atomic arrangements in 

amorphous materials (including polymers) and at interfaces and is the technique of choice 

for determining strain states and particle size in thin films (both produce distinguishable 

peak broadenings). 

For completely random polycrystalline thin films down to thicknesses of 100 Å, 

phase identification and relative amounts are also easily determined, using standard 

equipment and diffraction geometries. Once preferred orientations occur (texturing) it 

requires the collection of much more data or the introduction of more sophisticated 

equipment with different diffraction geometries so that the orientations can be ―seen‖ 
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effectively. These diffraction geometries include Grazing Incidence XRD (GIXRD), in 

which case the X-ray probing depth is greatly reduced greatly improving surface sensitivity 

and allowing a depth profiling mode (50 A to microns) by varying the incidence angle. 

Because of small diffracted intensities, thin-film XRD generally requires large specimens 

(>20 mm
2
) and the information acquired is an average over a large area. 

The fundamental principle of XRD is the constructive interference from X-rays 

scattered by the atomic planes in a crystal; the diffracted intensity is measured as a 

function of 2θ (angle between the incident and diffracted X-rays) and the orientation of the 

specimen as illustrated in figure 6.4.1. The condition for constructive interference from 

planes with spacing dhkl (from Eq. 1.0.1) is given by Bragg's law: 

hklhkld sin..2        (Bragg‘s law) 

The X-ray wavelength λ is normally 0.7-2 Å, (corresponding to energies of 8.7 - 

24.8 keV) and the most used is the monochromatic λ(CuKα1) = 1.5405980 Å. 

The degree of crystallite orientation in a thin film can vary from epitaxial, to 

complete fiber texture, to preferred orientation, to randomly distributed (powder); this not 

only influences the thin-film properties but also has important consequences on the method 

of measurement and on the difficulty of identifying the phases present. For a single crystal 

or an epitaxial thin film, there is only one specimen orientation for each (hkl) plane where 

these diffraction conditions are satisfied. The crystal must be oriented so that the normal to 

the diffracting plane is coplanar with the incident and diffracted X-rays and so that the 

angle between the diffracting plane and the incident X rays is equal to the Bragg angle. 

Polycrystalline thin films or bulk samples consist of many grains or crystallites having a 

random distribution of orientations; then diffraction occurs from any crystallite that 

happens to have the proper orientation to satisfy the diffraction conditions. The diffracted 

X-rays emerge as cones about the incident beam with an opening angle of 2θhkl creating a 

―powder‖ diffraction pattern. 

The X-ray Reflectometry (XRR) mode is a highly accurate method for determining 

the layer thickness of thin films (preferably < 200 nm) deposited in plain substrates. Very 

similar to the Bragg-Brentano configuration but with less geometry restrictions in order to 

adjust the incident beam to the sample critical angle and the measurement is performed 

within a grazing angle of 0.01 < θ < 6º. 
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Fig. 6.4.1: Basic schematics of Bragg- Brentano 

XRD configuration and goniometry movements 

Fig. 6.4.2: Reflectivity and interference effect 

due to the interfaces of different materials. 

In this technique, the reflectance of the sample is measured as a function of the 

grazing incidence angle of the X-rays. Due to interference effects of the radiation reflected 

at the two interfaces as illustrated in figure 6.4.2, oscillations occur in the reflectance curve 

and are correlated with thickness according to the Bragg equation. While the oscillation 

amplitude (at fixed photon energy) depends on the densities and the surface and interface 

roughness, the oscillation period is mainly determined by the layer thickness. 

 

 

6.5. Neutron Powder Diffraction – NPD 

 

Neutron diffraction is a nondestructive technique that can be used to determine the 

positions of atoms in crystalline materials (similar to X-ray and electron techniques but 

with enhanced sensitivities). Other uses are phase identification and quantification, residual 

stress measurements, and average particle-size estimations for crystalline materials. 

Major advantages of neutron diffraction comprise: sensitivity to the special 

arrangement of magnetically active atoms, since neutrons possess a magnetic moment; 

detailed structural information averaged over thousands of Å (up to 50 μm) due to the 

extraordinarily greater penetrating nature of the neutron; and structural analysis with 

distinction of materials containing atoms of widely varying atomic number, such as heavy 

metal oxides, due to the specific interaction of neutrons with different nuclei. 
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The greater penetration of neutrons may allow to study larger samples and to use 

thick ancillary devices, such as furnaces or pressure cells, without seriously affecting the 

quality of diffraction data; the main consequence become to ensure health and safety 

requirements by shielding neutron sources and instruments with several meters of 

absorbing material (usually steel, concrete, or boron-containing materials), implying 

installations and investments orders of magnitude larger than the corresponding X-ray 

devices [6.5.1]. 

 

 

6.6. Rietveld Refinement 

 

The standard method for analyzing the diffractograms results (intensity vs. 

scattering angle 2θ) of a neutron powder or X-ray diffraction experiments is known as 

"Rietveld profile refinement", developed by Hugo M. Rietveld in 1969. This mathematical 

process is based on a non-linear minimization algorithm of least squares in order to obtain 

the best fit of a crystalline structure model and the acquisition conditions simulation (ycalc), 

to the experimental measured diffraction pattern (yobs). The practical application of this 

method only became viable due to the modern increase in computing power. 

k

k

k

ikbackicalci yy I.G
p

p

,,

2

1

     (Rietveld method equation) 

Where yi,calc the net intensity calculated at point i in the pattern, yi,back is the 

background intensity, Gik is a normalized peak profile function, Ik is the intensity of the k
th

 

Bragg reflection, k1 ... k2 are the reflections contributing to the intensity at point i, and the 

superscript p corresponds to the possible phases present in the sample. 

The number of adjusted model parameters (P) most common in a Rietveld 

refinement software analysis can be divided into several categories; the user selects the 

fitting strategy, the order, variables and parts of the model should be refined: 

- Fundamental experimental features like radiation source, wavelengths (λ), system 

geometry and presence of beam adjustment devices, acquisition range (2θi-2θf) and 

step (Δθ), instrument alignment, sample height, surface roughness among other factors. 

- Description of the peaks‘ profile shape function (Gik), relative line broadening, 

presence of asymmetries, corrections and polarization. 
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- Number of expected phases, respective symmetry group (SG) and unit cell parameters 

(a, b, c, α, β, γ); determining the allowed reflections and consequently the positions and 

relative intensities of the Bragg peaks. 

- Atom positions within the unit cell (x, y, z), magnetic moments components (Mx, My, 

Mz), site occupancies factor (SOF) as well as anisotropic (Uij) and isotropic (B) 

temperature factors responsible for atoms displacements, collectively determine the 

atomic scattering factors (Fhkl) and the integrated intensities of peaks. 

- Change of peaks relative intensity due to sample aspect (bulk, film, wire, dots) and 

eventual preferable crystalline orientation due to epitaxial growth. 

- Contributions to the peaks broadening due to small grain size and strain effects 

- Description of the relatively smooth "background" scattering that lies between and 

below the Bragg peaks, that may include coherent and/or incoherent contributions from 

the sample and its environment, electronic noise, and other unwanted sources. 

- The method only works well if the starting model is close enough to the samples 

characteristics, sometimes restrain of bond distances or bond angles and constrains in 

phase composition are necessary to avoid divergence. 

The minimization is undertaken over all data points contributing to the peaks and 

(when refined) the background. 

2

,,wR
i

calciobsii yy    (Least square Newton-Raphson algorithm) 

Where wi is the weight assigned to each observation; having N as the number of 

acquisition points. The agreement between the observations and the model can be assessed 

during the course of the refinement by the ratios: 
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2/1
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     (Expected R-factor) 
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       (Fit quality) 

The most important judgment is in all cases the visual judgment of the 

diffractograms and residues, low indices mean nothing if the fit does not look convincingly 

similar to the original data [6.6.1]. 

 

 

6.7. Raman Spectroscopy 

 

The molecular and crystal mechanical vibrations (phonons) occur at frequencies 

ranges 10
12

-10
14

 Hz, which is in the infrared (IR) region of the electromagnetic spectrum. 

The Raman spectrum arises from an indirect coupling of high frequency radiation 

(ultraviolet, visible or near infrared) with the energy levels of the phonons, whereas direct 

coupling to incident infrared radiation produces the infrared absorption spectrum (FTIR). 

Both spectroscopies measure the vibrational spectra of materials and should be considered 

complementary given that the physical processes and the selection rules that determine 

which of the vibrational modes are excited are different. Raman spectroscopy is primarily a 

structural characterization tool more sensitive to the lengths, strengths, and arrangement of 

bonds in a material than it is to the chemical composition. 

When monochromatic radiation is incident upon a sample it interacts with the 

electron clouds and may be reflected, absorbed or scattered: The main scattering process 

occurs without a change of frequency (Rayleigh scattering), however, in the order of 10
-7

 

of these photons have some change in the frequency (Raman scattering) shifted either to 

higher (Anti-Stokes) or lower (Stokes) frequencies, as illustrated in figure 6.7.1. 

Unless circumstances such as materials‘ fluorescence, specific absorption edge or 

photodecomposition of the sample, it‘s standard to use high frequency laser lines to 

perform Raman spectroscopy, commonly continuous gas laser like the Argon ion laser 

(488 nm or 514.5 nm), He-Ne lasers (632.8 nm) and the Krypton laser (647.1 nm). 
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  Fig. 6.7.1: Basic diagram of Raman‘ scattering effect. 

 

Fig. 6.7.2: Examples of MnO6 octahedra 

distortions in perovskite like structure that 

may confer Raman active modes [6.7.2]. 

The system geometrical arrangement and assembly of focusing optics and slits, 

direct the laser spot to the sample surface and collect the scattered light at 90º angle; since 

Raman spectra is extremely dim, the system must be protected from stray light entering the 

detectors. Photomultipliers are used in single-channel instruments, whilst array detectors 

either linear diodes or charge-coupled devices allow partial or the entire spectrum to be 

captured at one time, although with limited resolution. The Raman spectrum consists of a 

plot of intensity of scattered light versus energy shift, typically in cm
-1

 wave number (ñ = 

10
-2

/λ) units. 

The relative intensity of Stokes and Anti-Stokes lines depends on the 

thermodynamic distribution and degeneracy (gi) of the fundamental and excited energy 

states of the molecules: 
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From Heisenberg uncertainty principle (δE = ħ/η), the band broadening (δñ) is 

inversely proportional to the lifetime (η) of the energy states involved: 
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The scattered radiation occurs over all directions and may also have observable 

changes in polarization along with its wavelength; the separation from the Rayleigh line is 

a direct measure of the vibrational state and electronic level transitions of the molecules 

from which it is possible to infer the respective structural and chemical information [6.0.1]. 

The fundamental selection rule for Raman transitions is that the molecules must be 

anisotropically polarizable (α┴ ≠ α//), i.e. the structural distortion depends on the direction 

of the electric field from the incident photon. In structural terms, the species have a 

quadratic (x
2
, xy, etc) form or no symmetric inversion centre. 

Of particular interests is the pseudocubic structure of perovskite manganites which 

shows some Raman active modes related to the orientational disorder of Mn-O bonds 

intrinsic to the Jahn-Teller (JT) displacements and on rotations of the MnO6 octahedra as 

represented in figure 6.7.2; these distortions and lattice dynamics are allowed within a 

range of the phase diagrams of some manganites (Not considering eventual spurious 

phases that may confuse the spectra.), displaying ferromagnetic, antiferromagnetic, charge-

ordering and metal-insulator transitions [6.7.2].      a) 

 

 

6.8. Magneto-Resistance – MR 

 

Magneto-resistance (MR) is a term widely used to mean the change in the electric 

resistance due to the presence of a magnetic field, having different characteristics in 

metallic, semiconducting and insulating materials [6.8.1]; commonly defined by the 

coefficient: 

 
)0(

)0()(
 MR

R

RHR
     (Magneto resistance) 

Where R(H) is the materials resistance under magnetic field and R(0) without. 

Conventional anisotropic magneto-resistance (AMR) effect can be found in 

ferromagnetic materials with metallic conductance. The dependence of conductance on the 

relative angle between the electric current and magnetization is fairly small, a few percent 

for Ni0.8Fe0.2 (permalloy) at room temperature, nevertheless very useful in some technical 

applications like sensors. On ferromagnetic thin films a small resistance change is 

generally observed in the vicinity of the magnetization reversal field where domain walls 
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spin directions are deviated from the easy direction and the non-collinear spin structure 

formed acts as electron scattering centers influencing on conductance [6.8.2]. 
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Fig. 6.8.1: Simplified Diagram of a MR measurement setup. 

Giant magneto-resistance (GMR) was first observed in Fe/Cr multilayers by the 

group of Fert in 1988 [6.8.3], subsequent to the work Grünberg et al. [6.8.4]. The GMR 

mechanism can be explained by considering the spin-dependent scattering of conduction 

electrons at the interface of the ferromagnetic layers. When an external magnetic field 

overcomes the existence of a strong antiferromagnetic interlayer coupling between Fe 

layers (separated by the Cr spacer), the collinear spin electrons will have a long mean-free 

path in the magnetic aligned layers resulting in a higher conductance. The key behind the 

discovery of GMR is to utilize spin structure manipulation. The anti-parallel alignment of 

Fe layers‘ magnetizations at zero fields and the reorientation into parallel alignment by an 

increase in the external field, that is, the resistance in anti-ferromagnetic state can be 20-

30% larger than that in ferromagnetic state. In only 10 years, through the studies on the 

oscillatory interlayer coupling behavior, between the FM layers and spacer thickness our 

understanding of the electronic structure of thin metal films has advanced remarkably, 

given rise to hard disks and read devices based on GMR. 

In tunneling magneto-resistance, (TMR) two magnetic electrodes are separated by 

an insulating barrier and the difference of conductance can surpass 100% [6.8.5] between 

the states of parallel and anti-parallel magnetizations as the electrons tunnel through the 

barrier or are blocked by the spacer. 

Colossal magneto-resistance (CMR) phenomena can be observed in the perovskite-

type hole-doped manganites in which the charge–orbital ordered antiferromagnetic phase 

and the double-exchange ferromagnetic metal phase compete with each other, giving rise 

to insulator–metal transitions induced by the magnetic field [4.2.2]. 
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6.9. Magneto-Electric Effect – ME 

 

The dynamic Magneto-Electric effect (ME) method measures the electric voltage 

signal (Va.c.
out

) generated between the sample electrodes (d) due to the polarization induced 

by a weak a.c. magnetic field (Ha.c.) oscillating in the presence of a strong magnetic bias 

field (Ha.c.<< Hd.c.) [6.9.1], as represented in figure 6.9.1.  
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Fig. 6.9.1: Simplified Diagram of the ME measurement setup. 
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  (Magneto-Electric coefficient) 

By recurring to a well-defined frequency and a lock-in amplifier working in 

differential mode, the noise is dramatically reduced and the calibration problem is avoided. 

A weak point of this method is the eventual charge accumulation or electrical discharging 

through the sample, either due to resistive or capacitive process, depending on the 

frequency used.  

ME behavior may include higher order manifestations, including second harmonic 

generation that can be used to further investigate the coupling between electric and 

magnetic domain structures; although with this kind of setup only one of the facets 

(∂E/∂H) of the ME effect, it can be evaluated under different time scale responses of the 

magnetostrictive component by changing the frequency of the AC field and explore 

different working points of the sample by changing the DC magnetic bias field.  

Other means of studying the ME effect may use static or quasi-static methods, the 

induced linear or nonlinear optical polarization and dispersion effects due to the complex 

changes in the electric and magnetic susceptibilities of the material subject to magnetic or 

electric fields. 
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6.10. Magneto-Impedance – MZ 

 

Magneto-Impedance (MZ) is a general technique related to the previous described 

magneto-resistance (MR); by measuring the dissipative effects of resistance (R) and the 

phase shit due to the reactance (R’) of a sample as function of applied a.c. voltage 

frequency (f) and d.c. external magnetic field (H); the analogous definition: 

 
)0(

)0()(
 (H)MZ

f

ff

f
Z

ZHZ
     (Magneto-Impedance) 

Where '.Ri RZ   making 22 'R RZ   (Impedance) 
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Fig. 6.10.1: Simplified Diagram of the MZ measurement setup. 

The origin of the MZ effect can be understood in a context of classical 

electrodynamics on the basis of the impedance dependence on classic skin penetration 

depth δ = (π.f.ζ.μ)
-½

 as referred in section 2.1, where all the relevant parameters are 

directly involved: frequency, conductivity and magnetic permeability [6.10.1]. 

Giant MZ is also a promising effect for developing sensors highly sensitive to 

magnetic fields, like CMR, with the addition of being frequency discriminatory, with 

potential applications as selective detectors and transducers in communication technology. 

 

 

6.11. Vibrating Sample Magnetometer – VSM 

 

The basic principle of the VSM for measuring the magnetic moment of a sample 

can be summarized as the sample placed inside a uniform magnetic field (H0) is 

magnetized, and subjected to a sinusoidal oscillation (f) by means of a piezoelectric 

transducer. The induced voltage (V) in a couple of calibrated pickup coils (n turns, S 

section) is proportional to the sample's magnetic moment (M) and independent of the 

magnetic field, being measured through the use of a lock-in amplifier using the vibration 
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frequency as reference signal; figure 6.9.1 gives a schematic representation of a VSM 

setup. 
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Fig. 6.11.1: Simplified Diagram of the ME measurement setup. 

This experimental technique was patented in 1956 by Simon Foner (1925-2007) 

[6.11.1], VSM can perform susceptibility and magnetization studies, common 

measurements are: hysteresis loops, susceptibility or saturation magnetization as a function 

of temperature (thermo magnetic analysis), magnetization curves as a function of angle 

(anisotropy), and as a function of time.  

Magnetic moment sensitivity is usually ≥5*10
-5

 emu, since the acquired signal is 

susceptible to drifts due to minor shifts in frequency or amplitude of the vibrations and 

usually implies complex hardware/software corrections to minimize errors sources. 

 

 

6.12. Superconducting Quantum Interference Device – SQUID 

 

The basic element in a SQUID magnetometer is a ring of superconducting material 

having one or two Josephson junctions that are highly sensitive to variations in the 

magnetic flux (∫∫B.dS) associated to the Meissner effect. As result of interference effects of 

cooper electron-pairs wave functions, the critical current in an array of these devices 

become periodic and quantified in h/2.e field units (= 2.0679 x10
-15

 Tesla.m
2
). 

ehdB .2/.nS.      (Magnetic flux quantum)  
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SQUID magnetometers usually use the extremely sensitive current-to-voltage-

conversion occurring at the Josephson junctions, as represented in figure 6.12.1. 

As the sample moves through the superconducting detection coils (second-order 

gradiometer), the flux variation induces an electric current that is converted by the coupled 

SQUID detection circuit into an output voltage proportional the magnetic moment of 

sample. The SQUID high sensitivity can reach 10
-8

 emu or detect magnetic fields as small 

as 10
-15

 Tesla. There are two main versions of this principle [6.12.1]: 

- The d.c. SQUID is based on a pair of Josephson junctions having a d.c. current applied; 

using a modulated RF field enables to correlate the minimal magnetic flux variations to 

the changes in the persistent current. 

- The a.c. SQUID is based on a simple ring with only one Josephson junction, it is 

coupled with a sensitive resonator circuit that undergo a change in impedance due to 

any variation in the magnetic flux. Driven by a RF current source also feeding-back a 

lock-in amplifier that will detect and compare the minimal frequency and amplitude 

variation and measure the respective magnetic flux. 

h

Ve
f

..2
       (a.c. Josephson effect) 

This phenomenon is adopted to define the standard for 1 Volt across a Josephson 

junction corresponding to a RF current of = 483.5979 THz, independent on the nature of 

the superconductor material [2.2.1]. 
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Fig. 6.12.1: Simplified diagram of the Josephson junction (left) and of the a.c. SQUID magnetometer system 

(right). 
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6.13. X-ray Photoelectron Spectroscopy – XPS 

 

The photoelectric process, discovered by Heinrich Hertz in 1887 and explained by 

Albert Einstein in 1905 was only developed for analytical purposes by Kai Siegbahn's 

group in the 1960s. 

BindingE.E RXKinetic fh      (Photoelectric effect) 

The kinetic energy (EKinetic) of the photoelectrons emitted is exactly the energy of 

the incident photon h.f minus the material's binding energy (EBinding); the coherent light 

source can be a UV laser, a XR discharge tube, or an adjustable high frequency radiation 

from a synchrotron source. 

  
Fig. 6.13.1: Schematic of a typical XPS 

spectrometer showing also a hemispherical 

electrostatic electron energy analyzer [6.0.1]. 

Fig. 6.13.2: Approximate Binding Energies of the 

different electron shells as a function of atomic number 

up to the Al Kα radiation of 1486.6 eV [6.0.1]. 

A typical electron energy analyzer uses an electric field to change the directions of 

photo emitted electrons depending on their kinetic energies (figure 6.13.1). In a simplified 

approximation the resulting spectrogram has a number of peaks corresponding to the 

number of occupied energy levels in the atoms whose EBinding < h.f; the position of the 

peaks directly measures the EBinding of the electrons in the orbitals and identifies the atom 

concerned; the intensities of the peaks depend on the number of atoms present and on the 

orbital concerned (figure 6.13.2). The emitted electrons can travel only short distances 

through gas or solids before being scattered and losing energy in collisions with atoms; for 

this reason XPS is a technique basically sensitive to the materials surface and is necessarily 

performed in a high-vacuum environment [6.0.1]. 
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6.14. Rutherford Backscattering Spectroscopy- RBS 

 

RBS is a nondestructive characterization technique that typically uses high-energy 

He or H ions (usually 1-3.4 MeV energies) which penetrate well into the sample (up to 2 

μm for He
2+

 ions; 20 μm for H
+
) [6.0.1]. As the incident ions (mass Mi) go through the 

sample, a part loses initial energy (Ei) in a continuous manner through a series of 

electronic scattering events dependent on the depth traveled; eventually some ions are back 

scattered, at angle θ, from ―frontal‖ collisions with the sample atoms‘ nucleus, and the 

large energy loss (Ef) is atom specific (Ma) due to the discrete momentum transfer. 
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RBS has much better mass resolution for light elements than for heavy elements, 

because as the mass of the target atom increases, less momentum is transferred from the 

incident particle and the energy of the backscattered particle asymptotically approaches the 

energy (Ei). The backscattering cross section is essentially proportional to Z
2
 and therefore 

heavy elements have much better detection limits: 
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By measuring the height of different peaks and normalizing by the scattering cross 

section of the respective element, the ratio of elements can be obtained for a given depth in 

the film. A particle that backscatters from some depth in a sample will have measurably 

less energy (>100 eV/nm) than a particle that backscatters from the same element on the 

sample's surface. The depth-resolution can go from 2 to 20 nm depending on ion energy, 

angle of incidence and depth below the surface. The overall energy spectrum of the 

emerging backscattered ions reveals both the elemental composition and the depth 

distribution of those elements. RBS channeling works by aligning the ion beam with a 

crystallographic direction in a single crystal sample, the first few surface layers shadow 

bulk atoms below and the resulting signal can be used to determine the extent of crystalline 

defects. RBS systems are extremely expensive, requiring an ion accelerator and take up 

large laboratories. 
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IIII  EEXXPPEERRIIMMEENNTTAALL  WWOORRKK  

 

Section 7 provides a detailed description of the most relevant work developed in the 

concept and assembly of new instrumental/mechanical laboratorial support systems and 

their specific use. 

The following sections 8 and 9 refer to the specific experimental methods and 

conditions used in the preparation of samples. 

Section 10 describes the specific characterization systems employed. 

 

 

7 Experimental systems development 

 

 

7.1 Magneto-resistance Measurement System 

 

7.1.1. Background 

The study of the electric transport behavior as a function of temperature and 

magnetic field is essential to characterize and understand the properties of materials of 

areas such as multiferroics, superconductivity, spintronics, magnetoelectric, 

magnetocaloric and magnetoresistance effects, among other. 

The University of Aveiro hosts research workgroups actively studying a wide range 

of materials exhibiting magnetic functionalities; however, it did not possess a magneto-

resistance (MR) measurement system. To provide the Department of Physics and CICECO 

with an autonomous magneto-resistance measurement system, the project took in 

consideration a few points: 

- To employ a previously existing Multimag® - Magnetic Solutions magnetic field 

generation system which comprises a computer control subsystem and a motorized 

arrangement of NdFeB permanent magnets able to be geometrically combined to 

generate a continuous magnetic field of up to 1 Tesla intensity and a 360º horizontal 

orientation. This system has the advantage of being able to produce an autonomous 
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magnetic field, without electric powering or cooling needs. The effective field is 

approximately situated 20 cm high from base of the magnet, at the center of a 52 mm 

diameter by ~30 cm long tube. 

- Making the system versatile enough so that it can subsequently be further enhanced 

with the capability to perform measurements of dielectric properties as function of 

temperature and magnetic field, allowing also for the reconversion between both types 

of measurements. 

- Coordinating the design and use of this new system in order to meet the needs arising 

not only from the immediate work, but also from future projects and other research 

workgroups. 

- To maximize the effective temperature range available for measurements. Presently 

ranging from 77 K (liquid nitrogen) up to 400 K. 

- To simplify sample holders design and construction to provide a sufficient number of 

interchangeable operational units and enable expedite thermal, mechanic and electric 

contact setting up in the cryostat. 

- To consider that the resistance for different samples can comprise values below 1 Ω up 

to 10
5
 Ω. 

 

 

7.1.2. Course of action 

A first year period was dedicated to the concept, design and selection of equipment; 

once the available hardware was identified, several studies were made in order to 

determine the necessary components to complete an optimal MR measurement system, 

having in consideration cost/benefits compromises and some budget limitations. An 

extensive research took place in order to identify the adequate equipment and materials and 

chose the most suitable suppliers according to price/quality criteria. Most electrical and 

mechanical components where build or modify in the Physics Department workshops 

facilities. 
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The First project approach consisted in designing the MR measurement system as 

an ―add on‖ setup on an existing closed cycle Helium cryostat able to reach 4 to 300 K, 

currently used as part of a dielectric measurements setup, making use of the installed 

temperature controller and vacuum systems, most part of the measuring instruments and 

adapting the control and acquisition software. Complementary equipment consisted in 

designing a sample holder able to match the cold tip configuration (figure 7.1.2) and 

assembling the respective electric cabling; designing the necessary thermal and vacuum 

shields customized to fit the magnetic source equipment internal dimensions (figure 7.1.1); 

furthermore, to acquire a winch and propose a mechanical support to positioning the ~40 

kg magnetic source box over the cryostat. Since it was not possible to access or acquire 

another closed cycle Helium cryostat, there were no conditions to proceed in this line of 

concept; although the designed components may provide a reference for a future 

application. 

  
Fig 7.1.1: Design of the copper sample holder 

adapted to the close cycle He Cryostat. 

Fig 7.1.2: Design of the vacuum and 

thermal shields customized for the He 

cryostat and magnetic source equipment 

The project was reformulated based now on a liquid N2 ―open cryostat‖, required to 

extend the list of necessary equipment and to design more complex support components 

and introduce some innovative solutions: 

- The MR setup used high precision measurement instruments previously available 

within the research group: an Agilent 34420A 7½® Nanovolt/Micro-ohm Meter and a 

Keithley 6221® stabilized electric current source. 
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- It became necessary to acquire a Lakeshore 325® temperature controller: capable of 

0.001 K precision, dual temperature reading from a thermo-couple and a platinum 

gauge with internal references and function to feed a heater element up to 1 A, 24 V dc. 

- Standard IEEE-488 GPIB was used to connect to the instruments to a computer for 

control and data registration. 

- A custom made dewar flask with reference LN2 9-S1® from KGW-Isotherm (figure 

7.1.3) was acquired, having the suitable dimensions to fit the space inside the magnet 

source system and to carry an adequate volume liquid N2. The available diameter for 

the sample holder and shields became constrained to <32 mm, while lengthening the 

respective armrest to ~70 cm. 

- The vacuum shielding was made using a 31 mm diameter glass tube, with 1 mm wall 

thick and 80 cm long, closed at one end and able to fit the dewar center line; a specific 

sealing adaptor made from Aluminum was custom designed and built at the Criolab 

Lda. (figure 7.1.5), connecting the open top of the glass tube to a four way ISO KF40 

nylon cross used for connecting subsystems to top and used as mechanical support. 

- Expecting regular assembly and disassembly of components 

that require a practical and reusable interfacing method, the 

ISO KF connections vacuum system was chosen since it 

employs metric interface dimensions (figure 7.1.4) which 

have been defined by the International Standards 

Organization (ISO). This ensures a high degree of 

compatibility between commonly used components obtained 

from different sources and standard dimensions references 

to design and machine the necessary custom fittings, feed-

through and accessories. Each vacuum seal is made by 

compression of an O-ring on a centering ring between 

mating flanges. The seal is made in seconds by finger-

closure of a wing nut on the all-metal hinged aluminum 

clamp. Assemblies are usable to 10
-8

 mbar and maximum 

temperature for sustained use is 150° C (figure 7.1.4). 

 
Fig. 7.1.3: DIN/ISO 3585 

compliance LN2 bath 

cryostats made from 

DURAN borosilicate glass 

3.3 from KGW-Isotherm  
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- An additional four way ISO KF40 to KF25 reducing nylon cross was placed on top of 

the previous, to allow a more balanced mass distribution of the connected subsystems, 

although extending by more 9 cm the armrest of the sample holder. 

- A 20 mm long by 55 mm diameter non magnetic steel disk was machined to comply 

with KF40 dimensions in one side, also welded in the center to a 10 mm diameter by 

855 mm long steel tube serving as support to the sample holder at the end; the external 

side is fitted with two 9 mm screw openings, one for fitting a security exhaust valve 

and other for an electric cabling feed-through (figure 7.1.5). 

- To safely install and vertically drive the fragile glass shield inside the dewar, and this, 

inside the magnet cavity, it was necessary to build a set of vertical rails and support 

table firmly attach and aligned to the magnet block. The respective hauler was made 

from aluminum plates providing alignment and rigidity staked between foam blocks 

carved to serve as mechanical and thermal protection for the dewar and also as support 

to align the glass shield group (figure 7.1.6).  

 

 20.0 mm

v

 

 

 

Fig. 7.1.4: ISO KF typical 

installation seal (top) and 

standard dimensions for KF25 

(left) and KF40 (right) flanges. 

Fig. 7.1.5: Scale ½ sketches of the 

wires feed-through and KF40 crown 

support (top), and adaptor (center) 

for sealing the glass shield (bottom). 
Fig. 7.1.6: Frame schematics of 

the support table, rails and hauler. 

- A Vacuumbrand MD1® diaphragm vacuum pump able to reach 1.5 mbar is used to 

drain the air inside the glass shield tube, either to prevent ice or water condensing at 

lower temperatures, that can reach ~77 K due to the liquid N2 bath in the cryostat; or, 
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on the other hand, to avoid eventual over pressure or hot vapor damage of any installed 

components, when raising temperature up to ~400 K security limit. 

- KF25 blank flanges were custom modified to interface with the 8 mm internal diameter 

flexible hose connecting to the vacuum pump and a 5 dm
3
 He gas balloon; each hose 

branch has a respective butterfly sealing type valve. 

- To perform the heat exchange between the N2 bath and the sample holder heater it is 

also necessary to use Helium gas inside the glass shield tube. 

- To permanently verify the air or He pressure inside the MR system we recur to a Pirani 

Alcatel PA101® manometer able to measure from 10
2
 to 10

-3
 mbar, having the 

respective sensor probe fitted to a KF25 blank flange. 

- Stable vacuum links are appropriately reinforced with Teflon
TM

 tape, whereas for non-

permanent connections is applied Apiezon® vacuum grease to interfaces and Viton
TM

 

O-rings. 

- The main electric cabling is composed of five pairs of 0.4 mm copper wire with varnish 

insulation; the wires are twisted together and run the top feed-through sealed by 

vacuum wax and then introduced along the interior of the steel tube. The couplings are 

made by soldering the wires to standard male/female crimp contacts then cased and 

tagged by PVC thermal sleeves. In the interior, the connectors are organized in a top 

and bottom 25 mm diameter Teflon
TM

 ring that also have the function of lining up the 

steel tube inside the glass shield; the thermocouple wires and the specific plugs are 

fixed outside the steel tube. 

- Externally, another thermocouple plug was placed adjacent to a standard DA-15 socket 

D-Sub female connector used for terminating the wires coming out from the top feed-

through; whereas, from the respective male connector emerge the independent coaxial 

cables relaying to the measurement instruments (figure 7.1.7). 

- The sample carrier head is constrained to less than 25 mm diameter; besides the 

conventional installation of three pairs of electrical wires for sample current feed and 

voltage assessment, the prototype had also to carry all the necessary temperature 

management elements consisting of: a heat sink body to stabilize the temperature; 
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provision to install a K type thermo-couple; an additional temperature platinum gauge 

(for calibration procedures); a heating resistance and all the respective electric cabling. 

     
Fig. 7.1.7: Male and female standard connectors: from left to right:  

Thermocouple plugs; 15 socket D-Sub connectors, D-Sub crimps and a IC socket. 

- As an alternative to using a conventional copper mass, the heat sink volume was made 

from a 20 mm diameter by 50 mm long cylinder of Shapal-M
TM

 ceramic, purchased 

from Ceramic Substrates CO. With a basic composition of Aluminium Nitride (AlN), 

this advanced material has a very good thermal conductivity (~100 W.m
-1

.K
-1

) and low 

thermal expansion (4.4 x 10
-4

 C
-1

) with the advantage of being insulating (10
12

 Ω.m), 

diamagnetic and chemical stable up to 1000 K (even in hazardous environments); 

besides, it is also ductile enough to be machined like a common steel piece, enabling to 

insert and insulate the electric wires and contacts by directly drill holes or cut grooves 

in the ceramic. 

- The heating resistance intended to have ~35 Ω was hand made from ~50 cm manganine 

wire covered with fiber glass insulation, glued with GE-varnish
TM

 around a M5 x 45 

mm brass screw; the head of this screw is also used as support for connecting the 

current feeding wires protected with fiber-glass sleeve. The element is then positioned 

and fixed with more GE-varnish
TM

 in a 7 mm diameter x 45 mm hole drilled in the 

center of the ceramic cylinder body (figure 7.1.8). 

- The electric pins geometry is based on the arrangement of two crossing 2x8 way IC 

DILP sockets used as chip carriers in printed circuit boards (PCB) (figure 7.1.7). 

- The interchangeable sample holders are made from 20 mm diameter by 2 mm thick 

Shapal-M
TM

 disks with sets of IC pins glued with M-Bond
TM

 adhesive, matching 

respective the pins holes located in the face of the heat sink cylinder, (figure 7.1.9). 

- One of the holders has a specific designed for Hall Effect measurements, with 

perpendicular 20x10x2 mm Shapal-M
TM

 slab fixed with M-Bond
TM

, (figure 7.1.9). 
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- A 20 mm diameter by 5 mm thick Shapal-M
TM

 disks was adapted for carrying a Pt100 

resistance temperature gauge (size 15 x 2 mm) in a central groove, (figure 7.1.9). 

- Samples are fixed to the holder using GE-varnish
TM

, and electric contacts are made 

through thin 0.1 mm copper wires and Silver paint from the connectors; size is limited 

to ~15x15 mm. 

- From a 25 mm diameter brass rod were milled two components: a terminal support to 

align and fasten the ceramic cylinder to the steel tube and feed-through the electric 

wires; and a cover for thermal homogeneity of the sample holder group (figure 7.1.8). 

 30º cut 0º cut vertical

view

lateral

view

 cover 

cut

20.0mm

 

Pt 100

gauge 

holder

Hall Effect 

sample 

holder

top 

view

down 

view

cut 

view
MR 

sample 

holder

 

Fig. 7.1.8: Scale ½ sketches for the heater body (left), 

Teflon
TM

 ring and connectors (top), terminal support 

and cover (right). 

Fig. 7.1.9: Scale ½ sketches for the MR sample 

holder (left), support for the Pt 100 temperature 

gauge (center) and Hall Effect sample holder (right). 

During the second year, parts of the necessary materials were acquired and most 

components were under manufacturing/assembly phase. Having most of the system ready 

by the third year, some substantial setbacks delayed the system operational come through: 

- Non compliance of a first contractor to deliver a suitable NI Labview
®

 custom software 

application of control a data acquisition for the MR system; 

- Shipment delay of the manganine wire and the Lakeshore temperature controller; 

- The Magnetic Solutions Company only provided a default control software and did not 

develop drivers for any other O.S.; hence it was necessary to find a competent 

collaboration to write a specific software emulation program that virtually commands 

the Multimag
®

 system by a NI Labview
®

 application and to employ a specific NI 

adaptor interfacing a RS-232 connector signals to an USB port. 
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7.1.3. Operational set 

The system was completely assembled during the end of third year (figure 7.1.11), 

yielding the integration of all the measurement devices with a desktop personal computer 

running O.S. Microsoft Windows XP®, and the development of an integrated, coherent and 

original NI Labview® application able to address and control the indispensable devices 

functions and with the adequate versatility to perform several modes of data acquisition: 

- V vs. i: (-100 mA < i < +100 mA) with T, θB and B set; 

- V vs. θB: (0 < θB < 360º) in horizontal plane, with i, T and B set; 

- V vs. B: (-1 T < H < +1 T) with i, θB and T set; 

- V vs. T: (77 K < T < 400 K) with i, θB and B set at 0 or 1 tesla. 

First operational tests of the MR measurement system were successful, nonetheless 

some technical improvements in the system were performed, namely: debugging the 

developed NI Labview® software application; revising and replacing some of the electrical 

cabling feeding the sample holder; securing the support components and repositioning 

vacuum connectors and valves; manufacturing more sample holders and spare heating 

resistances; acquiring indispensable support and maintenance material; carry out 

temperature calibration tests; a specific transport bench was made and the installation was 

assigned to a dedicated laboratory room in CICECO building. 

The system became fully operational during the end of the fourth year and some 

specific safety and efficiency procedures were established: 

1) To engage and disengage the glass shield inside the dewar or the dewar inside the 

magnet by using the support hauler and the vertical rails only. 

2) Before remove or installing any sample verify if the heater is at room temperature and 

if the shield is at room air pressure; confirm if the dewar is empty of liquid N2 and turn 

off the electric feed of all devices. 

3) Verify the conductivity quality of the electric contact pins, if necessary clean eventual 

oxidation or dirt accumulated on the pins. 
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4) Measure sample dimensions (l, w, h), mount it in the 

center of the sample holder and apply a four probe 

linear disposition as depicted in figure 7.1.10; measure 

the distance (d) between the internal Voltage contacts. 

5) Verify and register the sample and contacts alignment 

in relation to the heater support direction. 

6) Before performing a V vs. T mode measurements, 

previously run a set of experiments at room temperature 

and room pressure to validate the sample correct 

mounting: 

6.1) By running a V vs. i at B = 0; chose a suited current for the sample minimizing 

Joule heating and checking voltage signal output preferably below 1 volt dc. 

6.2) Adjust the default angle of magnetic field in relation to the alignment of the 

sample contacts by running a V vs. θB 360º cycle at the suitable i, stable T and B 

set at 1 Tesla; 

6.3) Observe (if relevant at room T) the MR response running a few V vs. B cycles 

from -1 to + 1 tesla with i, θB and T set. 

7) To perform measurements above 300 K implies having the dewar empty of liquid N2 

and constant vacuum pumping ~2 mbar. 

8) To achieve stable measurements as function of temperature imply heating rates ≤ 0.5 

K/min. 

9) Before filling the dewar with liquid N2, in order to perform measurements below 300 

K, implies previously reaching ~2 mbar pumping minimum, turning off the heater, 

perform a He purge and use a He gas pressure near 2 to 5 mbar and do not surpass 

~200 mbar inside the glass shield. 

 Voltage Output

Current Input

Sample

Silver paste

Shappal M

Copper

wire

 
Fig. 7.1.10: Sample holder layout. 
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Fig. 7.1.11: Photograph of the complete and operational MR measurement system at CICECO‘s Laboratory 

of Aveiro University. 
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_______________________________________________________________________________ 

Further details of cited companies and respective products specifications can be found in the respective Internet sites: 

 

Agilent 34401A 6½®: http://cp.literature.agilent.com/litweb/pdf/5968-0162EN.pdf 

Apiezon® Vacuum Grease: http://www.apiezon.com/document-library.htm 

Ceramic Substrates CO: www.ceramic-substrates.co.uk 

Criolab: Equipamento Criogénico e de Laboratório, Lda. 

D-Sub connector: http://en.wikipedia.org/wiki/D-sub 

GE-varnish™: GE/IMI 7031 from CMR: http://www.cmr-direct.com/images/products/02-33-001/gespecs.pdf 

IEEE-488 GPIB: http://en.wikipedia.org/wiki/GPIB 

Keithley 6221®: http://www.keithley.com/products/dcac/currentsource/highperfor/?mn=6221 

KF (Klein Flange) ISO standard: http://www.caburn.com/resources/downloads/pdfs/sec1.2.pdf 

ISO (International Standards Organization): www.iso.org/ 

LN2 9-S1® KGW-Isotherm: http://www.kgw-isotherm.com/produkte/kryostat/ln2eng.html 

Lakeshore 325® temperature controller: http://www.lakeshore.com/temp/cn/325po.html 

Multimag® - Magnetic Solutions: http://www.magnetic-solutions.com/varfld.html 

M-Bond™ adhesive: http://www.2spi.com/catalog/spec_prep/glue.shtml 

NI Labview® software: http://www.ni.com/labview/ 

PCB DILP IC sockets: http://en.wikipedia.org/wiki/Dual_in-line_package 

Pirani manometer: A. Ellett and R. M. Zabel, Phys. Rev. 37, Issue 9, (1931) 1102–1111 

Pt100 temperature sensor: http://www.iqinstruments.com/iqshop/technical/pt100.html 

Alcatel PA101®: http://www.adixen.com/ 

Shapal-MTM: http://www.bilact.ru/new/pdf/shapal.pdf 

Silver Paint: http://www.2spi.com/catalog/spec_prep/silver-paint.shtml#2 

TeflonTM: http://en.wikipedia.org/wiki/Teflon 

Vacuumbrand MD1® diaphragm vacuum pump: http://www.vacuubrand.net/pages/MD1.html 

VitonTM: http://en.wikipedia.org/wiki/Viton 

 

 

http://en.wikipedia.org/wiki/Viton
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7.2 Magnetron RF Sputtering System for Thin Films Deposition 

 

The RF Sputtering system in the Physics Department of Aveiro University was 

custom built from the technical specifications proposed by Professor Armando Lourenço. 

Since the project first designs throughout suppliers selection, shipments of the acquired 

components (figure 7.2.1) and constructing some specific elements recurring to the 

mechanics workshop in the Physics Department of Aveiro University, a period of almost 4 

years was necessary until the system could become operational (figure 7.2.2).  

Special consideration was given to the UHV chamber design; envisage a more 

homogeneous distribution of eventual charge accumulation, gas pressure and temperature 

in a spherical symmetry, when compared to conventional cylindrical chambers. Other 

advantages become from the alignment of the access ports to the chamber geometric center 

and the leveled dimensions of the perpendicular walls for all ports, simplifying the design 

and movement of components. 

 
 

Fig. 7.2.1: Vacuum pumps and 

electrical systems installation. 

Fig.7.2.2: Image of the 1
st
 operational setup of the RF sputtering system for 

thin film deposition. 

Main components consist of:  

- An ultra high vacuum (UHV) 30 cm diameter spherical main chamber custom made by 

CABURN MDC, with 14 access ports, based in a 6 way cross main ports and 8 diagonal 

secondary ports; 
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- Installation for three 2‖ diameter RF sputtering planar magnetrons in a co-focal 

configuration pointing at 10º to 420 mm from flange center, enabling independent 

adjustment of the distance to the substrate; two ION’X-2” 9027 designed to work with 

ferromagnetic targets and one ION’X-2” 9020 for conventional targets; 

- Two RF generators PFG-300-RF operating at a nominal frequency of 13.56 MHz up to 

300 Watt and two respective PFM-1500-A matchboxes for impedance matching to 

plasma load, both supplied by HÜTTINGER Elektronik GmbH. These two independent 

magnetron feeds enable to perform co-deposition from two independent 

magnetrons/targets: by operating the magnetrons power ratio it becomes possible to 

adjust the composition of the thin films; or by alternate deposition implement the 

deposition of buffer layers or multilayers films. 

- A close cycle water cooling system for magnetrons refrigeration feeding 3 l/min to 

each magnetron; 

- A 2‖ substrate heater SU200HH supplied by US Inc. able to operate up to 950º C under 

reactive O2 or N2 atmosphere. Positioned at 270 mm from magnetrons port, it is 

connected to a xyz positioning stage and can be mounted either on-axis or off-axis 

geometry; 

- A SM 7020-D d.c. power supply from DELTA ELEKTRONIKA BV able to reach 700 

Watt ranging 70 V and 10 A to feed the substrate heater and a EUROTHERM model 

2216e temperature controller; 

- A combined system of vacuum pumps consisting in a conventional rotary pump and a 

TURBOVAC TW 701 turbo molecular pump (visible in figure 7.2.1) able to reach ~10
-8

 

mbar vacuum quality; 

- Dual manometer system based in a 959 Hot Cathode Controller from MKS 

Instruments, Inc. capable of monitoring between 10
-10

 to 10
-3

 mbar and Pirani gauges 

used to check the internal atmosphere from 10
-3

 to 10
+3

 mbar. 

- Two sets of MKS type 1179A Mass-Flo
®

 controller connected to a respective leak valve 

and a MKS type 246C single channel Power Supply/Readout unit enables to adjust 

Argon and O2 (or N2) gas flow up to 100 cm
3
/min and down to 0.5 cm

3
/min min. 



Fábio G. N. Figueiras 

121 

- Four UHV rotary motion feed-through systems, three E-BRM-133 from CABURN 

MDC in order to control independently the shutters at each magnetron face (figure 

7.2.3) and one E-MBR-133 from CABURN MDC to control the movement of the 

shutter for the substrate heater front (figure 7.2.4). 

 
 

Fig 7.2.3: Back view of the heater installation, 

showing the bearing for the shield and shutter and 

the supports for electrical connectors. 

Fig 7.2.3: Front view of the 3 co-focal magnetron 

guns assembly and one of the shutters installation. 

 

 

 

 

 

 

 

 

 

 

 

________________________________________________________________________________________________ 

Note: Most of the components were acquired through intermediation of Criolab Lda. 
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8 Nano-powders synthesis 

 

The synthesis of pure and composite materials of LuMn1-zO3, La0.7Sr0.3MnO3 and 

La0.7Ba0.3MnO3 was made by the urea combustion process previously described. BaTiO3 

was prepared from the reagents powders by solid state sintering route. 

Information about the molar mass of the elements, products as well as supplier and 

purity of reagents used in the experimental work are listed in table 8.0.1. The detailed 

quantity of reagents and specific preparation process for each manufactured sample is 

explained in the respective entries. 

Elements Z Mr 

(g/mol) 

 Chemical 

Reagents 

Mr 

(g/mol) 

Supplier Purity 

 

 Compounds 

Products 

Mr 

(g/mol) 

H 1 1.008 HNO3 62.02 Riedel-deHaën 65% a.r. H2O 18.02 

C 6 12.01 (NH2)2CO3 (Urea) 60.06 Panreac > 99.0% CO2 46.01 

N 7 14.01 NH3 17.03 Merck Min. 25% p.a. N2 28.02 

O 8 16.00 TiO2 79.87 Merck >99%   

Ti 22 47.87 La2O3 325.81 CERAC 99.999%   

Mn 25 54.94 SrCO3 147.63 Merck > 99% p.a. BaTiO3 233.21 

Sr 38 87.62 BaCO3 197.35 Merck > 99% p.a. La0.7Sr0.3MnO3 226.46 

Ba 56 137.34 MnCO3 115.04 Aldrich > 99.9% La0.7Ba0.3MnO3 241.38 

La 57 138.06 Mn(NO3)*4H2O 251.01 ABCR > 98% LuMn0.94O3 274.61 

Lu 71 174.97 Lu(NO3)3*3.6H2O 425.84 Aldrich 99.999 LuMnO3 277.91 

Table 8.0.1: Molar mass of the elements and compounds intervening in the synthesis experimental work. 

 

 

8.1. Manufacture of 2” circular planar targets for RF sputtering 

 

A series of compounds were prepared with the specific aim to manufacture ceramic 

disks with 2 inches (~51 mm) diameter and only 4 to 5 mm thick intended to be applied 

subsequently as targets for thin film deposition by means of a magnetron RF sputtering 

system. The approximate volume of a target is ~10 cm
3
 implying a minimum estimated 

mass of > 60 g for each powder. The respective reagents, synthesis route used and products 

nominal compositions and calculated mass are listed in table 8.1.1. 

The La0.7Sr0.3MnO3 and the La0.7Ba0.3MnO3 compounds were prepared by the Urea 

combustion route represented in figure 8.1.1; the equipment is listed in table 8.1.3 and the 

procedure steps described in table 8.1.2. 
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Nominal 

composition: 

Estimated 

density 

(g/cm
3
) 

Synthesis 

route: 

Specific 

reagents 

used: 

Reagents 

mass 

(g): 

Cations 

presence 

(mol) 

Final 

product 

mass (g): 

 

La0.7Sr0.3MnO3 

 

6.32 

 

Urea 

combustion 

MnCO3 
La2O3 
SrCO3 

(NH2)2CO3 (Urea) 

  67.302(7) 

  66.767(0) 

  25.929(6) 

210.990 

[Mn]= 0.5850(4) 

[La]=  0.4098(5) 

[Sr]=   0.1756(4) 

[Urea]=   3.51(3) 

 

~ 131.7 g 

 

La0.7Ba0.3MnO3 

 

6.60 

 

Urea 

combustion 

Mn(NO3)*4H2O 
La2O3 
BaCO3 

(NH2)2CO3 (Urea) 

  71.000 

  32.255 

  16.746 

101.93 

[Mn]= 0.2828(6) 

[La]=  0.1980(0) 

[Ba]=  0.0848(5) 

[Urea]=   1.69(7) 

 

~   68.1 g 

 

BaTiO3 

 

 

5.99 

 

Solid state 

BaCO3 
TiO2 

  85.426 

  34.574 

[Ba]=  0.4328(7) 

[Ti]=   0.4328(7) 

 

 

~ 100.9 g 

Table 8.1.1: Molar mass of the elements and compounds intervening in the synthesis experimental work. 

 

Basic Material 
 

- Exhaust chamber 

- Microgram scale 

- Goblets 

- Thermometer 

- Glass steering rod 

- Oven with magnetic steering 

- magnetic steering rod 

- pH meter 

- Pipettes 

- Crucibles 

- Programmable Furnace 

- Mortar and pestle, 

- Sieves 

- Hydraulic press  

- Molds 

 

Basic Reagents: 
 

- H2O (Desionized water), 

- HNO3 (Nitric acid aqueous solution) 

- NH3 (Ammonia aqueous solution) 

- (NH2)2CO3 (Urea) 
Transfer to crucible

Solution

metallic 

salt 

reagent

HNO3

Water

Solution

Diluted

NH3

Urea 

salt 

reagent

60 C60 C

Mixing

Solution

pH ~ 5.2

25 C

Evaporationtion

metallic 

salt 

reagent

HNO3

Water

Decomposition

Combustion

Drying ~300 C

Calcination ~700 C

Grinding + Sieving

Pressing

Sintering ≥800 C

Ceramic 

Sample

>150 C

Solution

 
Table 8.1.2: Basic material and reagents required 

for ceramics synthesis by urea combustion method. 

Fig. 8.1.1: Basic schematics of the ceramics synthesis 

by urea combustion method. 

The specific solid state sintering procedure used for the BaTiO3 compound can be 

summarized in table 8.1.4: 
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- Disperse and mixing the reagents powders in ethanol 

- Heating at ~90 C to dry the mix from the ethanol 

- Calcination stage at ~700º C for 24 hours 

- Grinding, sieving with a 108 µm mesh and pressing into pellets 

- Second calcination stage at ~900º C for 16 hours to completely remove carbonates 

- Grinding, sieving and pressing into pellets 

- Thermal treatment stage at ~1100º C for 40 hours 

- Grinding, sieving and pressing into pellets 

- Slow heating to sintering stage at ~1300º C for 20 h. 

- Grinding and sieving 

Table 8.1.4: Procedure steps used for the synthesis of BaTiO3 ceramic by solid state method. 

Given that the sintering process reduces the initial volume of the molded material in 

about 20%, a suitable fraction of each synthesized powder was pressed at about 10 MPa 

into an appropriate 60 mm diameter mold with a maximum thickness of 6 mm. It was 

indispensable to mix some droplets of polyvinyl alcohol solution (2% PVA in water) to the 

powder, to make possible to hold the disk together and transfer it to a custom made 

alumina crucible, as illustrated in figure 8.1.2. To prevent buckling of the targets‘ shape, 

the sintering procedure was programmed through a series of stages with slow 

heating/cooling rates and intermediate long steps of uniform temperature as depicted table 

8.1.5 and in figure 8.1.3. 

Due to the extreme shape factor of such disk it tends to be brittle, that's why the 

BaTiO3 and La0.7Ba0.3MnO3 targets were not successfully employed; these targets 

presented some fissures and shattered when trying to install them onto the magnetrons. 

- Define the mass and molecular composition of ceramic sample to synthesize; 

- Calculate the respective molar number of the metallic elements; 

- Precise weight each metallic salt reagent taking in account purity and hydration factors; 

- Precise weight the urea reagent equivalent to 3 times the molar number of the metallic ions; 

- Dissolve each metallic salt quantity separately in a goblet at ~60º C, adding the necessary desionized 

water and HNO3 solution; 

- Mix the previous solutions into a single goblet, keep stirring and temperature within 25º C; 

- Add the Urea mass to the solution, verifying full solubility and pH level; 

- Correct the pH to ~5.2 by adding (NH3) aqueous solution, avoiding the formation of precipitates; 

- Raise the temperature to ~110º C to achieve water evaporation; 

- Raise the temperature to ~150-200º C and wait for the urea decomposition, ignition and full 

combustion; 

- Remove the powder to an alumina crucible and perform calcination at 600 – 700º C for ~2 hours in the 

a furnace at air; 

- Grinding with a mortar and pestle; 

- Sieving of the calcinated power through a 38 µm mesh sieve; 

- For samples processing: Further grinding and sieving; molding and pressing into 20 mm pellets (300 

MPa) and thermal treatment at 800-900º C for 48 h or more; 

- Cut the pellet into samples approximately ~10x5x2 mm 

- For targets processing: Molding to 60 mm targets, pressing and sintering at 1300-1400º C. 

- Storage the samples in a desiccator or muffle (>60º to <200º C). 

Table 8.1.3: Procedure steps used for ceramics synthesis by urea combustion method. 
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- 6 hour stage at 150º C to allow all moist to evaporate 

- 6 hours heating ramp to 800º C to avoid temperature gradients in the target 

- 24 hour threshold at 800º C to promote oxygen incorporation 

- Slow heating during 6 hours up to 1400º C 

- 24 hour threshold at 1400º C to promote grain growth and hardening of the target 

- 6 hours slow cooling down to 800º C 

- 12 hour threshold at 800º C to recover oxygen incorporation 

- 12 hours slow cooling down to room temperature 

Table 8.1.5: Procedure steps used for the preparation of the 5 cm diameter RF targets . 
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Fig. 8.1.2: scaled representation of the mold (left) and alumina 

crucible used (right); target size before and after sintering (center)  

Fig. 8.1.3: Sintering procedure diagram 

used for the targets manufacture. 

 

 

8.2. Bulk BaTiO3 + La0.7Ba0.3MnO3 Multiferroic composites series 

 

Since the targets manufacture did not employ all the existing BaTiO3 (BTO) and 

La0.7Ba0.3MnO3 (LBM) powders, part of the surplus was used to perform the experimental 

preparation of potential multiferroic composite samples based on simple mixing and solid-

state sintering process according to the list presented in table 8.2.1: 

Sample 

Designation 

Nominal 

Composition 

Compound mass (g): Final mass 

(g): 

Query: 

LBM BTO 

BTO100 
 

BaTiO3 0 5.00 5.00 Reference sample 

BTO89LBM 
“T89” 

0.89BaTiO3 + 
0.11La0.7Ba0.3MnO3 

0.5310 4.1516 4.68 g Isolation of the LBM phase in BTO 

BTO78LBM 
“T78” 

0.78BaTiO3 + 
0.22La0.7Ba0.3MnO3 

1.0620 3.6385 4.69 g Below percolation of the LBM phase in BTO 

BTO50LBM 
“T50” 

0.50BaTiO3 + 
0.50La0.7Ba0.3MnO3 

2.4138 2.3324 4.74 g Above percolation of the LBM phase in BTO 

LBM100 
 

La0.7Ba0.3MnO3 5.00 0 5.00 Reference sample 

Table 8.2.1: List of samples prepared by solid state mixing of BaTiO3 + La0.7Ba0.3MnO3 composites. 
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Even expecting total immiscibility of these two phases, the preparation procedure 

listed in table 8.2.2 intends to mechanically maximize the dispersion and tight contact of 

the two compounds; the long annealing at ~900 C was chosen in order to prevent further 

grains growth or segregation, yet ensuring some diffusion of elements, intended to promote 

partial merging between the two phase‘s grains boundaries: 

- Transfer the precursor powders to a 150ml glass balloon; 

- Add 50 ml ethanol plus ~20 ml dionized water; 

- Mixing under ultrasonic bath for ~10 min; 

- Mixing until drying in a heater at ~80º C; 

- Transfer the mix to a crucible and dry it in oven at ~150º C; 

- Pressing the mixture in 20 mm diameter pellets under 15 ton; 

- Thermal treatment stage at ~800º C in air for 72 hours; 

- Grinding, sieving and pressing into pellets; 

- 6 hours heating ramp up to a sintering stage at ~900º C in air for 90 hours; 

- Quenching to room temperature ~10 min; 

- Cutting the pellets into several samples approximately 10 x 5 x 2 mm size. 

Table 8.2.2: Procedure steps used for nano-powder oxides synthesis by solid state method. 

 

 

8.3. Bulk LuMnO3 + La0.7Sr0.3MnO3 Multiferroic Composites 

 

The synthesis of pure, doped and composite ceramics of the LuMn1-zO3 hexagonal 

FE manganite (LuM) and the La0.7Sr0.3MnO3 rhombohedric FM manganite (LSM) was 

performed via the urea combustion procedure previously described. Instead of recurring to 

the amalgamation of the two independent powders, like the one used for the BTO+LBM 

composites, the mixing of the several precursors was perform in the solubility stage of the 

synthesis process; this innovative approach relies on the immiscible character of the two 

distinct phases, expecting the efficient segregation into distinct grains for each phase 

during the subsequent heat treatments stages at temperatures of 800 and 900º C, as 

described in table 8.3.1. This limited temperature were preferred in order to avoid 

prominent grain growth, yet promoting elements diffusion to enhance segregation and 

homogeneity within each phase while ensuring a close contact between grain boundaries in 

order to achieve a high degree of interpenetration of the mixed powders  

The quantity of this first series of samples was determined by the limited amount of 

Lu reagent available, whereas composition was established in order to contribute to answer 

the objectives mentioned in table 8.3.2. 
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- Calcination for 21 hours at 600 ºC plus 3 hours at 700 ºC 

- Grinding procedures and passage of the powder through sieves of successive smaller mesh, 

- Pressing the powder in 13 mm diameter pellets under 2 ton; 

- Sintering stage at ~800 C in air for 98 hours; 

- Quenching to room temperature ~10 min; 

- Grinding, sieving and pressing the mixture in 13 mm diameter pellets under 3 ton; 
- Sintering stage at ~900 C in air for 90 hours; 

- Cutting the pellets into several samples approximately 8 x 4 x 1 mm size. 

Table 8.3.1: Procedure steps used for nano-powder oxides synthesis by solid state method. 

 

 

 

8.4. Bulk LuMn1-zO3 Intrinsic Multiferroic series 

 

With the purpose to study controlled modifications into the parent LuMnO3 

compound that may lead to enhancements of its multiferroic properties, in particular by 

frustrating the former antiferromagnetic behavior by introducing some Mn
4+

 cations, while 

trying to keep the structure and ferroelectric properties unharmed; It was proposed to 

synthesize samples with a limited amount of Manganese vacancies. The preparation 

method for the first series of samples was similar to the described in the previous section. 

The second series sample identified as ―LuM098‖ was prepared specially to be measured 

in NPD and had to be made in more substantial quantity as listed in table 8.4.1. 

Sample 

 
z 

Nominal 

Composition: 

Elements molar proportion: Final 

mass: 

Query: 

Lu Mn Urea 

LuM100 
(1st series) 

0.00 LuMnO3 1 1 6.00 1.5 g Reference sample 

LuM094 
(1st series) 

0.06 LuMn0.94O3 1 0.94 5.88 1.5 g Study of 6% Mn vacancies effect 

LuM098 
(2nd series) 

0.02 LuMn0.98O3 1 0.98 5.94 6.7 g NPD study of Mn vacancies effect 

Table 8.4.1: List of samples prepared by Urea combustion based on LuMn1-zO3 

Sample 

Designation 

Nominal 

Composition 

Element/reagent molar proportion: Final 

mass 

Query: 

 Lu La Sr Mn Urea 

Lu96LSM 
0.96 LuMnO3 + 

0.04 La0.7Sr0.3MnO3 
0.96 0.028 0.012 1 6 1.5 g 

Study of LSM solubility in 
LuMnO3 

Lu89LSM 
0.89 LuMnO3 + 

0.11 La0.7Sr0.3MnO3 
0.89 0.077 0.033 1 6 1.7 g 

Isolation of the LSM phase 
in Lu 

Lu78LSM 
0.78 LuMnO3 + 

0.22 La0.7Sr0.3MnO3 
0.78 0.154 0.066 1 6 2.0 g 

Below percolation of LSM 
phase in Lu 

Lu04LSM 
0.04 LuMnO3 + 

0.96 La0.7Sr0.3MnO3 
0.04 0.672 0.288 1 6 2.0 g 

Study of Lu solubility in 
LSM 

Table 8.3.2: List of samples prepared by Urea combustion based on LuMnO3 + La0.7Sr0.3MnO3 composites. 
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9. Thin Film Depositions by Magnetron RF Sputtering 

 

9.0.1. Targets 

Since March 2006 the RF Magnetron Sputtering system achieved operational 

capability. Throughout the years of 2007 and 2008 it was used for several projects under 

the scope of collaboration protocols held by CICECO associated Laboratory. The 

preliminary experimental research works were mostly dedicated to accompanying the 

depositions of thin films from targets of ZnO semiconductor, MgB2 superconductor and 

the BN compound for structural reinforcement of steel tools. 

According to the work plan concerning the study of potential multiferroic thin films 

composites, the RF Sputtering deposition system was then used to obtain and develop thin 

films and multilayers from targets of the ferroelectric BaTiO3; La0.7Ba0.3MnO3 or 

La0.7Sr0.3MnO3 manganites and Ni-Mn-Ga alloys. From the first batch of prepared targets 

(as described in section 8.1): a La0.7Sr0.3MnO3 target was successfully employed in a 

deposition series, until the disks broken due to plasma exposure, becoming unviable further 

utilization. In order to expedite the experimental work it was preferred to proceed to the 

acquisition of commercial targets as listed in table 9.0.1: 

Designation 

Composition 

Supplier Purity Thickness 

(‖) 

BaTiO3 Kurt J. Lesker Co. 99.9 0.125 

La0.7Ba0.3MnO3 Kurt J. Lesker Co. 99.9 0.125 

Ni50Mn50 Testbourne Ltd 99.9 0.125 

Ni60Mn40 Testbourne Ltd 99.9 0.125 

Ni50Ga50 ACI Alloys, Inc 99.9 0.125 

Table 9.0.1: List of  targets and respective parameters 

All the targets went through a certification procedure by XRD, SEM and EDS to 

attest the phase, surface and composition of the targets and further comparison with the 

respective resulting films. First batch of acquired La0.7Ba0.3MnO3 and BaTiO3, Ni50Mn50 

and Ni60Mn40 targets was returned to suppliers due to non conformity with the declared 

chemical composition. Suitable new La0.7Ba0.3MnO3 and BaTiO3 targets were not available 

in useful time to be included in this work. 
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9.0.2. Substrates 

Preliminary depositions tests were usually made onto 30x30x1 mm
3
 laminated 

glass substrates, in order to establish the basic conditions that verify the correct phase and 

composition of the film. 

The principal criterion to select the composition and orientation of substrates is the 

lattice matching to the crystalline structure of film phase to be deposited, in order to 

promote the epitaxial growth of the thin film. Commercial substrates are usually cut to 

10x10x0.5 or 10x5x0.5 mm
3
. Table 9.0.2 summarizes some of the substrates available. 

Designation 

Orientations 

Supplier SG ρ 

g/cm
3 

Crystalline Parameters: 

a (Å) b (Å) c (Å) α (º) β (º) γ (º) 

MgO (100) Crystec Cubic Fm3m (225) 3.585 4.212 4.212 4.212 90 90 90 

SrTiO3 (100), (110) Crystec Cubic Pm-3m (221) 5.175 3.905 3.905 3.905 90 90 90 

LaAlO3 (100)C Crystec Hexagonal R-3c (167) 6.518 5.365 5.365 13.111 90 90 120 

Al2O3 (0001)H Crystec Hexagonal R-3c (167) 3.69 4.757 4.757 12.983 90 90 120 

Si (100) Crystec Cubic Fd-3m (227) 2.329 5.431 5.431 5.431 90 90 90 

PMN-PT (100) Crystec Cubic Pm-3m (221) 7.5 4.04 4.04 4.04 90 90 90 

Table 9.0.2: List of substrates and respective parameters 

Precautions should be taken for the correct storing in a dry and clean environment 

and a careful handling to prevent touching or scratching the polished oriented surface. 

Most common inconvenients detected in thin films related to substrates, arise from 

inappropriate cleaning. Nevertheless some substrates are particularly sensitive to loose 

their features: 

- Water adsorption into MgO can form bulges and roughness stains in the surface, due to 

the formation of hydroxides and carbonates; long storage periods will increase this 

problem [9.1.1]; 

-  Air adsorption creates a thin layer of amorphous SiO2 on top of Si substrates; when 

required, it is possible to eliminate this layer by performing HF last etching or >10 min 

of reversed sputtering in the substrate, although the substrate surface quality becomes 

compromised. 

- In the case of LaAlO3 a structural phase transitions to Cubic Pm-3m at ~544º C [9.1.2] 

leaves maculae or twins in the substrate surface; hence films deposited above this 

temperature may encompass additional defects. 
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9.0.3. Deposition Operational Procedures 

1. Substrate cleaning is performed in ultrasonic bath in three sequential stages of 15 min 

in acetone and ethanol; direct dry under pure N2 gas; careful handling and positioning 

the substrates in the frame at heater front, (minimal use of silver paste when necessary) 

and tight fixing of the masks. 

2. Previous to sputtering procedure, the heater is set at 600-700º C for 60 to 90 min to 

evaporate any residual water in substrates, while proceeding to pumping the chamber. 

3. The effective substrates temperature chosen during deposition procedure is calculated 

according to the calibration shown in figure 9.0.1, within ±5º C 

4. At the present, magnetrons have a co-focal disposition with 10º inclination, as seen in 

figure 7.2.3, facing the heater front where the substrate are fixed (figure 7.2.5). 

Distance is usually set to 100 mm for a single targets employ, and constrained to 125 

mm for dual (or triple) targets use. 
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Fig. 9.0.1: Substrate temperature vs. heater 

temperature for different conditions. 

Fig. 9.0.2: Chamber Ar pressure vs. flux for gate 

valve apertures. 

5. First stage for performing vacuum inside the chamber starts by using the rotary pump 

up to ~10
-2

 mbar and then turning the turbo pump at 100 % performance for reaching at 

least ~10
-7

 mbar. 

6. The chamber Ar pressure is managed by controlling the turbo pump at 75 % from full 

power, positioning the gate valve dish before sealing (open at 3 handle turns), in order 

to reduce the gas load on the turbine front;  

7. The stabilized Ar admission and pressure is achieved by adjusting the leak valves and 

mass flow controllers (respectively O2 or N2 when applicable), as graph in figure 9.0.2. 
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8. Pirani manometer reading of Ar pressure (and other monatomic gases) is 1/2 of the real 

pressure, while for O2, N2 or Air the scaling is direct, 

9. For most targets plasma ignition is typically achieved at ~5 watt power and ~5x10
-2

 

mbar of Ar, pre-sputtering and deposition is usually performed at ~5x10
-3

 mbar of Ar. 

10. Pre-sputtering is undertaken for at least 15 min having all shields closed, under the 

same power and Argon pressure parameters as the subsequent deposition process itself. 

11. Deposition time is accounted during plasma exposure when both shutters from targets 

and substrates are in the opening position. It is essential to keep continuous monitoring 

of magnetron power feeding, Argon (and other gases) pressure and heater temperature, 

confirming stabilized parameters or registering eventual alterations. 

12. Non oxidizing in-situ annealing can be performed up to 950º C usually in vacuum, 

whereas Oxidizing in-situ annealing is usually performed under ~10
-2

 mbar of O2 

limiting the temperature set up to 850º C due to additional heat generated by the 

oxygen presence. 

13. Cooling time is constrained by the chamber venting. 

Laboratorial work concerning thin films deposition was focused in finding the 

experimental conditions to achieve high quality films that have the adequate composition, 

functional properties and structural epitaxy with the substrate or buffers, which enables the 

strictive-magneto-electric interaction between layers leading to magnetoelectric effect 

properties. As the system becomes technically improved by incorporating new devices and 

capabilities, also the management of deposition conditions progressed, making possible to 

undertake more complex thin films compositions and architectures, validating further 

investment in a broad selection of targets with different compositions and in a widespread 

of high quality and functional substrates. 
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The corresponding experimental characterization of these thin films was performed 

using several complementary techniques, namely XRD, SEM, TEM, EDS, RBS, VSM, 

MR and RAMAN, aiming to understand most pertinent features: 

- Surface quality and homogeneity; 

- Thickness and growth rate; 

- Adhesion to substrate; 

- Crystalline structure; 

- Substrate induced epitaxial growth; 

- Chemical composition. 

- Related functional properties (electrical, magnetic, optical or mechanical). 

With the systematization and analysis of the characterization results it becomes 

possible to interactively optimize the succeeding deposition conditions, enhancing the 

quality and respective parameters intended for each series of thin films produced. The most 

relevant adjustable configurations and conditions applicable to the system concern: 

- Ensuring correct substrates quality, cleaning and drying. 

- Positioning of substrates in heater (use or not of thermal paste) 

- Alignment and distance from targets to substrates 

- Achieving the lowest possible vacuum in chamber previous to deposition 

- Suiting the heater temperature for each kind of target, substrate and intended thin film. 

- Defining pre-sputtering period and stipulating the deposition time 

- Finding a suitable Argon pressure to achieve plasma stability during deposition. 

- Selecting each magnetron power feed and resulting plasma energy. 

- Setting chamber active O2 (or N2) flux and pressure during film growth (when 

applicable). 

- Deciding the in-situ treatment after deposition (annealing temperature and time; Ar, O2 

or N2 pressure; cooling rate or rapid quenching). 
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9.1. La0.7Sr0.3MnO3 phase Thin Film series 

The initial series of thin films were deposited using the prepared 51 mm 

La0.7Sr0.3MnO3 target, under supervision of Prof. Dr. Armando Lourenço. The prepared 

samples and respective conditions are listed in table 9.1.1: 
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LSM1a SrTiO3 (100) 7.8 9.8 0.7 75 215 75 90 687 300 

LSM1b MgO (100) 7.8 9.8 0.7 75 215 75 90 687 300 

LSM2a SrTiO3 (100) 29.0 7.0 0.5 70 207 75 90 711 390 

LSM2b MgO (100) 29.0 7.0 0.5 70 207 75 90 711 390 

LSM3a SrTiO3 (110) 6.9 8.0 0.4 71 201 75 90 697 510 

LSM3b MgO (100) 6.9 8.0 0.4 71 201 75 90 697 510 

LSM4a MgO (100) 4.8 6.8 0.4 70 200 75 90 697 510 

LSM4b SrTiO3 (100) 4.8 6.8 0.4 70 200 75 90 697 510 

LSM5a ITO n.a. 3.6 5.0 0.4 74 196 100 70 668 74 

LSM5b Glass n.a. 3.6 5.0 0.4 74 196 100 70 668 74 

LSM6a MgO (100) 6.2 5.0 2.0 73 200 100 70 697 520 

LSM6b LaAlO3 (100)c 6.2 5.0 2.0 73 200 100 70 697 520 

LSM6c SrTiO3 (100) 6.2 5.0 2.0 73 200 100 70 697 520 

LSM6d Al2O3 (0001)h 6.2 5.0 2.0 73 200 100 70 697 520 

Table 9.1.1: List of samples deposited by RF Magnetron Sputtering from La0.7Sr0.3MnO3 target. 

 

 

9.2. Ni2MnGa phase Thin Film series 

The second part of this experimental work became focused on the deposition and 

characterization of the magnetoelastic Ni2MnGa phase-like alloy. 

An extensive roll of thin film samples was prepared at the IEMN, University of 

Lille, France using a standard "Plassys MP 600" RF Sputtering deposition system. This 

system has six magnetrons, three of which in a co-focal geometry that can be operated 

independently by three RF generators. 

Deposition process was performed from preparatory pressures below 10
-7

 mbar in 

the vacuum chamber. Then the Ar pressure in the chamber was adjusted between 2.5 and 

70x10
-3

 mbar range. The RF power applied to the magnetrons ranges from 50 up to 300 W 
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(maximum). Pre-sputtering treatment was done during 15 minutes, the axis distance to 

substrate holder was 8 cm, and deposition procedure took from 30 up to 90 minutes. The 

substrate temperature was maintained at approximately 10 ºC, using a cooling water circuit 

holder, or left to rise under plasma heating effect (up to 100 ºC), as monitored by 

thermocouple. 

The first set of test samples was deposited using a single 76.2 mm target with a 

nominal alloy composition of Ni0.5Mn0.33Ga0.17 in order to optimize the deposition 

conditions of this type of alloy onto bare Si (100) substrates and onto PZT layer deposited 

onto a LaNiO3 buffer on Si(100) substrates, as listed in table 9.2.1. 
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NMG01 Si (100) 0 13.3 100 90 10 NO  

NMG02 Si (100) 0 13.3 200 90 10 NO  

NMG03 Si (100) 0 66.5 100 90 10 NO  

NMG04 Si (100) 0 13.3 100 90 420 NO  

NMG05 Si (100) 0 13.3 200 90 420 NO  

NMG06 Si (100) 0 13.3 300 90 10 NO  

NMG07 Si (100) 0 2.66 200 60 10 NO  

NMG08 Si (100) 0 6.65 300 90 10 NO  

NMG09 Si (100) 0 6.65 100 90 68 510 120 

NMG10 Si (100) 0 6.65 200 90 86 640 60 

NMG11 Si (100) 0 13.3 300 90 94 NO  

NMG12 Si (100) 35 13.3 300 90 94 NO  

NMG13 Si (100) 75 13.3 300 90 94 NO  

NMG14 Si (100) 43 13.3 300 45 77 NO  

NMG15 Si (100) 43 13.3 300 45 77 NO  

NMG16 Si (100) 0 13.3 300 45 77 NO  

NMG17 Si (100) 0 13.3 300 45 77 NO  

NMG18 Si (100) 0 13.3 300 45 77 NO  

NMG19 Si (100) 0 66.5 200 45 60 NO  

NMG20 Si (100) 43 66.5 200 45 60 NO  

NMG21 Si (100) 0 39.9 200 45 61 NO  

NMG22 Si (100) 43 39.9 200 45 61 NO  

NMG23 Si (100) 0 13.3 50 90 43 NO  

NMG24 Si (100) 43 13.3 50 90 43 NO  

PZTNMG1 Si/LNO/PZT (100) 0 13.3 300 45 77 NO  

PZTNMG2 Si/LNO/PZT (100) 43 13.3 300 45 77 NO  

PZTNMG3 Si/LNO/PZT (100) 0 39.9 200 45 61 NO  

PZTNMG4 Si/LNO/PZT (100) 43 39.9 200 45 61 NO  

PZTNMG5 Si/LNO/PZT (100) 0 13.3 50 90 43 NO  

PZTNMG6 Si/LNO/PZT (100) 43 13.3 50 90 43 NO  

Table 9.2.1: List of samples deposited by RF Magnetron Sputtering from Ni0.50Mn0.33Ga0.17 target. 
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The procedure to deposit the perovskite PZT layer make use of an Addax 

magnetron sputtering machine and is described in reference [8.2.1]. The LaNiO3 thin film 

grown on the top of the Si (100) substrate serves both as bottom electrode and also as 

buffer for the growth of (100) oriented PZT film. 

The second set of films was also deposited onto bare Si (100) substrates and onto 

LaNiO3/PZT buffered Si (100) substrates, using con-focal sputtering of three independent 

targets configuration (100% Ni, 100% Mn and 50:50% NiGa alloy) allowing power ratio 

variation for targets as listed in table 9.2.2. 

S
a

m
p

le
s 

S
u

b
st

ra
te

 

O
ri

en
ta

ti
o

n
 

R
F

 P
o

w
er

 

N
i 

(W
at

t)
 

R
F

 P
o

w
er

 

M
n

 (
W

at
t)

 

R
F

 P
o

w
er

 

N
iG

a
 (

W
at

t)
 

A
rg

o
n

 

(1
0

-3
 m

b
ar

) 

S
u

b
st

ra
te

 

O
ff

 c
e
n

te
r 

 

p
o

si
ti

o
n

 (
m

m
) 

T
im

e
 

(m
in

.)
 

T
em

p
er

a
tu

re
 

S
u

b
st

ra
te

 (
ºC

) 

NMG25 Si (100) 50 50 100 13.3 0 30 59 

NMG26 Si (100) 50 50 100 13.3 35 30 59 

NMG27 Si (100) 100 100 200 13.3 0 30 74 

NMG28 Si (100) 100 100 200 13.3 35 30 74 

NMG29 Si (100) 150 150 300 13.3 0 30 98 

NMG30 Si (100) 150 150 300 13.3 35 30 98 

NMG31 Si (100) 200 200 200 13.3 0 30 102 

NMG32 Si (100) 200 200 200 13.3 35 30 102 

NMG33 Si (100) 50 50 100 66.5 0 30 51 

NMG34 Si (100) 50 50 100 66.5 35 30 51 

NMG35 Si (100) 87 163 200 13.3 0 30 86 

NMG36 Si (100) 87 163 200 13.3 0 30 86 

NMG37 Si (100) 87 163 200 13.3 35 30 86 

NMG38 Si (100) 130 244 300 13.3 0 30 113 

NMG39 Si (100) 130 244 300 13.3 0 30 113 

NMG40 Si (100) 130 244 300 13.3 0 30 113 

NMG41 Si (100) 130 244 300 13.3 0 30 113 

NMG42 Si (100) 43 82 100 66.5 0 30 55 

NMG43 Si (100) 43 82 100 66.5 0 30 55 

NMG44 Si (100) 43 82 100 66.5 0 30 55 

NMG45 Si (100) 43 82 100 66.5 0 30 55 

PZTNMG6 Si/LNO/PZT (100) 100 100 200 13.3 0 30 77 

PZTNMG8 Si/LNO/PZT (100) 100 100 200 13.3 35 30 77 

PZTNMG9 Si/LNO/PZT (100) 87 163 200 13.3 0 30 79 

PZTNMG10 Si/LNO/PZT (100) 87 163 200 13.3 0 30 79 

Table 9.2.2: List of samples deposited by RF Magnetron co-Sputtering from Ni, Mn and Ni50Ga50 targets. 
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Taking advantage of the know-how gathered in the two previous series results, a 

third series of depositions was performed in the Physics Dep. of Aveiro University using 

the magnetron RF sputtering deposition system described in section 8.1. Co-sputtering 

conditions from a Ni50Mn50 and a Ni50Ga50 targets onto several different substrates as listed 

in table 9.2.3: 
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NG1g glass 124 5.0 0 25 15 

NG2g glass 124 5.0 0 25 30 
NG3g glass 45 5.0 0 25 10 

NM1g glass 293 5.0 71 0 60 

NM2g glass 43 5.0 50 0 20 

NM3g glass 157 5.0 50 0 15 
NM4g glass 125 5.0 25 0 15 

NMG01g glass 120 5.0 23 22 30 

NMG02g glass 200 5.0 21 20 35 

NMG03g glass 290 5.0 23 20 49 

NMG04g glass 370 5.0 19 16 40 

NMG05g glass 370 5.0 16 11 60 

NMG06g glass 450 5.0 16 11 90 

NMG07g glass 150 7.0 16 12 120 

NMG08g glass 450 7.0 13 10 120 

NMG09a Al2O3 (0001) 

540 7.0 10 8 102 
NMG09b Si (100) 

NMG09c SrTiO3 (100) 

NMG09d MgO (100) 

NMG10a Al2O3 (0001) 

400 5.0 12 10 102 
NMG10b Si (100) 

NMG10c SrTiO3 (100) 

NMG10d MgO (100) 

NMG11a Al2O3 (0001) 

420 5.0 16 14 90 
NMG11b Si (100) 

NMG11c SrTiO3 (100) 

NMG11d MgO (100) 

NMG12a Al2O3 (0001) 

400 2.5 16 14 90 
NMG12b Si (100) 

NMG12c SrTiO3 (100) 

NMG12d MgO (100) 

NMG13a Al2O3 (0001) 

420 5.0 14 14 17 
NMG13b MgO (100) 

NMG13c SrTiO3 (100) 

NMG13d Si (100) 

Table 9.2.3: List of samples deposited by RF Magnetron co-Sputtering from Ni50Mn50 and Ni50Ga50 targets. 
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10. Experimental Measurements Conditions 

 

 

SEM and EDS 

An extensive number of bulk and thin film samples were analyzed by SEM with 

respective composition measured by EDS; samples are usually attached with carbon tape to 

aluminum holders ensuring conductive samples short-circuit to the holder in order to avoid 

charge accumulation, while non-conductive samples need a nanometric layer of carbon 

(deposited by DC sputtering)  

High resolution analytic SEM model Hitachi SU-70
®

, using Schottky emission (SE) 

with acceleration voltages from 0.1 up to 30 kV, fitted with secondary and backscattering 

electrons detectors, X-Ray/EDS micro analysis system Bruker Quantax 400
®
 with detector 

XFlash 4010
®

 of 133 eV resolution was used at the Ceramics and Glass Engineering 

Department of Aveiro University. 

Philips-FEI/Quanta 400
®
 system was used at the University of Trás-os-Montes e 

Alto-Douro, Vila Real. 

 

 

Fig. 10.0.1: Photo of the Hitachi SU-70
®

 system. Fig. 10.0.2: Photo of a Philips-FEI
®

 system. 
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XRD, HRXRD, XRR 

X-ray diffraction (XRD XRR and HRXRD) measurements were made at Central 

Analisys Labs (LCA) from Aveiro University and at UTAD facilities, comprising a 

Siemens D5000, Rigaku Geigerflex D/MAX-B
®
, a Philips X’Pert MPD

®
 and Philips X’Pert 

4-circles MRD
®

 diffractometers systems from PANALYTICAL all using standard Cu-Kα1 

radiation = 1.540598 Å, tension of 40 kV and current of 50 mA, conventional XRD 

measurements range 2θ from 10º to 120º and Ω from 10º to 80º, with step size ∆θ = 0.02; 

while XRR and HRXRD can use low 2θ angles from 0 to 6º and ∆θ = 0.01º. 

  

Fig. 10.0.3: XRD system from X’Pert PRO
®

 image. Fig. 10.0.4: detail of the goniometric system. 

Rietveld analysis is performed using open source software like Rietica and 

PowderCell; whereas XRR is processed using X'Pert Epitaxy
©
 licensed to U.A. 

 

NPD 

Neutron diffraction measurements were carried out by D. Karpinsky on a high 

resolution E9
®
 (FIREPOD) powder neutron diffractometer of the BERII research reactor at 

the Berlin Neutron Diffraction Center (BENSC), HZB (Helmholtz-Zentrum Berlin fur 

Materialien und Energie GmbH). The neutron wavelength was λ = 1.797 Å (reflection 

(511) of vertical focusing Ge monochromator). The sample was placed in a cylindrical 

vanadium container 8 mm in diameter. Neutron diffraction patterns were recorded in the 

range 10º < 2θ < 150º. The neutron diffraction data was processed using the FullProf 

Suite
©

 software [10.0.1]. 
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Raman Spectroscopy 

Raman-scattering studies were done at IFIMUP under supervision of Prof. A. 

Moreira. Measurements in a series of thin film samples deposited by the RF sputtering 

technique from the La0.7Sr0.3MnO3 target were performed at room temperature; while for 

the series of bulk samples comprising LuMnO3 and La0.7Sr0.3MnO3 compounds were 

measured as function of temperature; in this case pellets maximum size cannot surpass 

3x4x5 mm, the exposed surface is polished with silk fabric, secured to the sample holder 

with silver paste and enclosed with a cooper mask setup in order to ensure temperature 

homogeneity.  

The closed-cycle helium cryostat operates in the 10–300 K temperature range with 

a temperature stability <0.2 K. The temperature of the sample was estimated to differ by 

less than 1 K from the temperature measured with a silicon diode attached to the sample 

holder. 

The 632.8 nm polarized red line of a He-Ne laser was used for excitation with an 

incident power of about 5 mW impinging on the sample. The unpolarized Raman spectra 

are measured in the pseudo backscattering geometry. The scattered light is analyzed using 

a T64000 Jobin-Yvon
®
 spectrometer, illustrated in figure 10.0.5, operating in triple 

subtractive mode with a resolution <1 cm
-1

; it is equipped with liquid nitrogen cooled 

charge-coupled and photon-counting devices. 

 
 

Fig. 10.0.5: image of the T64000 Jobin-Yvon
®

 

spectrometer system. 

Fig. 10.0.6: Image of the ESCALAB 200A
®

 from VG 

Scientific XPS system. 
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XPS 

The XPS analysis was performed at CEMUP by Dr. Carlos Sá, using an ESCALAB 

200A
®
 from VG Scientific (UK), illustrated in figure 10.0.6, with PISCES

©
 software for 

data acquisition and analysis. For the analysis, an achromatic Al (Kα) X-ray source 

operating at 15kV (300 W) was used, and the spectrometer, calibrated with reference to Ag 

3d
5/2

 (368.27 eV), was operated in CAE mode with 20eV pass energy. Spectra analysis was 

performed using peak fitting with Gaussian-Lorentzian peak shape and Shirley type 

background subtraction (or linear taking in account the data). 

Peak reference data was taken from: Handbook of X-Ray Photoelectron 

Spectroscopy [10.0.2]; specific application and results of this characterization method were 

subject of publication in the article [10.0.3]. 

 

 

RBS 

A restricted number of thin film samples Deposited by RF Magnetron Sputtering 

from La0.7Sr0.3MnO3 target onto several substrates, were measured by RBS at the Physics 

Department of the Nuclear Technologic Institute, Lisbon under supervision of Dr. Carlos 

P. Marques and Dr. Eduardo Alves. 

RBS studies were performed with a 2.0 MeV He
+
 beam at normal and tilted 

incidences, to characterize the composition of the samples. The backscattered particles 

were detected at 140º (standard) and close to 180º (annular) using silicon surface barrier 

detectors with resolutions of 13 and 18 keV respectively. The beam current was measured 

on target and kept below 4 nA in order to minimize the effects of charge accumulation at 

the surface during analysis. No attempt to measure the hydrogen content was made. 

The data were analyzed with the IBA DataFurnace NDF v8.0 x
®
. All spectra of a 

given sample were analyzed simultaneously in a self-consistent manner, to ensure all 

information is properly taken into account to obtain the final result. ZBL 2000
®
 stopping 

powers were used [10.0.4], [10.0.5]. 



Multiferroic Materials 

142 

VSM 

An extensive roll of magnetization measurements, as function of temperature from 

2 up to 320 K and applied field up to 10 tesla, were performed in a vibrating sample 

magnetometer (VSM) prototype equipment from CRYOGENIC Limited
®
 installed at the 

Physics Dep. labs of Aveiro University. The sample cavity and of superconducting coils 

responsible for the magnetic field are refrigerated system by means of a close cycle He 

cryostat. Samples were positioned with the longer axis in plane to the magnetic field. 

The fact that this equipment was still in the prototype stage implied that some of its 

functionalities were not operational or did not comply supplier specifications; several 

technical bugs were detected during experimental measurements, namely: 

- Although the technical specifications announce a resolution near 10
-6

 emu, the 

equipment was far from corresponding with any precision bellow 10
-5

 emu. 

- The ―high temperature‖ sample carrier oven measurement subsystem (~300 to 700 K) 

was never functional. 

- The amplification subsystem introduced additional noise and significant noise and 

jumps were also found to be introduced by the automatic scale selection function 

during magnetization signal acquisition particularly during external magnetic field 

crossing over the ―zero‖. 

- The superconductor magnet can generate up to 0.02 Tesla at the supposed ―zero‖ field 

depending on the previous use, there is no automatic protocol to compensate this bias. 

The ―zero‖ magnetic field is only attainable above 23 K once the coils go through a 

forced transition to normal conductor. 

- The inductive detection coils were found not to be properly shielded introducing an 

additional magnetization bias proportional to M•B, as exemplified in figure 10.0.7. 

- Sample temperature uniformity was detected only to be reliable below variation rates 

of <0.5 K/min. implying that a standard M vs. T measurements from 5 to >300 K could 

take more than 10 hours. 

For most of these problems it was necessary to implement time consuming 

empirical diagnostic procedures, report and request to the supplier suitable software or 
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even hardware rectifications, consequently it was usually needed to implement new 

calibration procedures and even to repeat many samples‘ measurements. 

A relevant example of how the original signal can appear distorted by noise and 

deviations picked up at the detector coil or due to problems in hardware/software 

processing can be observed in the sequence of figure 10.0.7; the graphs were obtained from 

the measurements of a polycrystalline manganite sample of Eu0.8Y0.2MnO3 and is 

elucidative of the experimental data processing necessary to detect some of the VSM 

system acquisition shortcomings. In fact, the raw data obtained can mask the true behavior 

of a magnetic phase in the sample. 

  

 

Fig. 10.0.7: Graphs representing VSM measurements and necessary corrections: Original data (top left); 

asymmetry detected after subtraction of the PM contribution (top right); systematic error proportional to the 

moment and the field (bottom left); effective AFM response of the sample. 

The analysis of the magnetization as function magnetic field or temperature should 

account for the several phases composing the samples, like the case of powder composites 

or thin films and substrates; generally PM, DM or AFM phases introduce a constant 

magnetic moment contribution clearly visible as a slope over the saturation of the FM 

phase which alone has a horizontal behavior. 
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HMM
phasephase

AFMsampleFM .     (Magnetization correction) 

When applicable, Microcal Origin
©

 software was also used to implement fitting 

procedures (in S.I. units). High temperature M vs. T curves can be simulated using the 

Curie-Weiss model given by the formulation: 

―y = Md+(C0*H)/(x-TC);‖ 

Where: y = M, x = T, Md = Diamagnetic contribution, C0 = Curie constant, H = 

Magnetic field, TC = Curie temperature Whereas the M vs. B curves can be approximated 

by the Brilluoin model: 

―y=(C1*x)+(C2*x^2)+M1*(1/S1)*((S1+0.5)*(cosh((S1+0.5)*G2*x)/sinh((S1+0.5)*G2*x))-

0.5*(cosh(G2*x/2)/sinh(G2*x/2)));‖ 

Where: y = M, x = (μB.B/kB.T), S1 = J, G2 = g, M1 = N.μB.J.g = Msat, C1 = 

Diamagnetic factor, C2 = quadratic calibration factor. 

Specific application and results of these methods was subject of publication also in 

the article [10.0.3]. 

 

 

Fig. 10.0.8: VSM system from Cryogenic Limited
®

. Fig. 10.0.9: SQUID MPMS from Quantum Design
®
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SQUID Magnetometer 

In some cases when the samples do not have enough magnetic moment to be 

detected by the VSM system, it was possible to recur to the Quantum Interference Device 

Magnetometer (SQUID) MPMS from Quantum Design at IFIMUP. This system illustrated 

in figure 10.0.9 can operate in the temperature range from 2 to 400 K and under magnetic 

fields up to 5.5 Tesla and a sensitivity reaching 10
-8

 emu. 

 

 

MZ 

Magneto-impedance measurements were carried out by Dr. Soma Das in the 

Thermophysical Properties Measurements Laboratory, Cryogenic Engineering Centre, 

Indian Institute of Technology, Kharagpur, India. The set up uses the impedance analyzer 

of Wayne-Kerr model 6520A
®
 in the frequency range from 1 kHz to 15 MHz and an 

electromagnet to get the biasing dc field up to 4 kOe. The technique used is non-inductive 

and an approximate cylindrical-shaped sample is used for measurement of impedance. A 

signal coil of 25 turns was wound over the midpoint of the sample (diameter = 3 mm, 

length = 10 mm) and the impedance of the coil with and without the sample is measured 

with the impedance analyzer. The sample impedance is obtained after correcting it with 

respect to empty coil impedance. The biasing dc field up to 4 kOe is applied parallel to the 

exciting ac field. The resistive and reactive components of impedance are measured up to 

15 MHz. All measurements are performed using excitation voltage of 0.5 V resulting in an 

ac field of ~0.09 T. 

 

 

ME 

The measurement of the voltage generated between the sample electrodes is 

performed by lock-in technique in a feed back loop with a wave generator operating in a 

frequency range of 1 to 100 kHz which feeds the small coils that produce a probe a.c. field 

(Hac) of 10 Oe in amplitude, superimposed onto a magnetic bias field generated by the 

main electromagnets up to15 kOe, checked by a Hall probe, The custom made setup is 
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based in an Bruker ESP 300E
®
 system at the Physics Department of UA operated under 

supervision of Dr. N. Sobolev. 

The sample can be rotated in relation to the field direction, in order to obtain the 

longitudinal and transverse components of the M effect. The magnetoelectric voltage 

across sample (Vout) is measured in the lock-in amplifier using an input resistance of 100 

MΩ and transferred to a computer with NI Labview
©

 software using a specific data 

acquisition interface also developed by M. Peres. 

 

 

SFM 

AFM, PFM and MFM measurements were performed by I. Bdikin and D. 

Karpinsky at CICECO labs UA under supervision of Dr. A. Kholkin using VEECO
®
, 

PicoPlus
TM

, Agilent
®
 SFM systems. 

A specific set of mono and poly crystalline manganites bulk samples was selected 

to be measured at CNMS ORNL Labs under supervision of Dr. S. Kalinin, using the 

Asylum MFP-3D
®
 SPM system represented in figure 10.0.10; this system enables to 

perform experimental measurements on samples surfaces like conventional topographic 

scan, PFM, micro lithography, BEPS, and I-V curves. The system handling comprise 

delicate hardware procedures that include selecting and assemble a suitable conductive tip 

in the holder, mount the MFP-3D
®
 head unit in support table and with the aid of a optical 

microscope perform the laser alignment with the cantilever and engage the tip in the 

sample surface; system management and conventional PFM scans acquisition is performed 

via ―Igor Pro
©

‖ software interface; whereas configuration of the wave function generator, 

lock-in amplifier and BEPS data acquisition is performed via specially developed interface 

with NI LabView
©

 software.  

The topographic, deflection and piezo-response amplitude and phase images can be 

visualized and compared via Nanotec WSxM
©

 software; a specific program was under 

development using MathLab
©

 software, in order to convert the complex multidimensional 

data resulting from BEPS measurements and present it in the form of maps showing the 

several polarization parameters accessed. 
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Fig. 10.0.10: Asylum MFP-3D® SPM system 

Experimental course of action on samples began with a conventional topographic 

scan over a 20x20 µm area from which a 5x5 µm region with the most regular topology is 

selected, successive scans are necessary in order to adjust the resonance frequency and bias 

voltage of the tip to the sample surface stiffness in order to achieve some amplitude and 

phase contrast during the scans. 

Lithographic frame was based on close pairs of 1 µm length lines at different bias 

voltages (±5, ±10, ±15, ±20 V) each at ~0.5 µm distance; further PFM scan enable to trace 

the sample surface reaction to the electrical stimulus. A representative area within the 

stimulated region is selected to performing BEPS grid measurements with respective 

resonance frequency and applied a.c. voltage in the limits of the observed threshold d.c. 

voltage based on the previous results (<20 V). 

  
Fig. 10.0.11: Asylum MFP-3D specific ORCA® sample mount (left) and cantilever holder (right) 

Some limited I-V curves probing tests were performed using the more sensitive 

TUNA
®
 contact mode setup from a VEECO

®
 Atomic Force Microscope system, the results 

were sufficient inspiring to proceed to more systematic measures using the ORCA
®

 contact 

mode setup from the MFP-3D
®

 system; some complementary hardware, shown in figure 

10.0.11, system calibration and software adjustments were necessary to perform these 

experiments. This sub system can operate up to ±10 V in a ramp or cycle mode from 0.01 

to 10 Hz, has a sensitivity of 0.2 nA and noise level around 1 pA. 
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IIIIII  EEXXPPEERRIIMMEENNTTAALL  RREESSUULLTTSS  AANNDD  AANNAALLYYSSIISS  
 

 

 

11 Powder samples 

 

Results of structural, chemical, magnetic and electric properties characterization of 

the prepared bulk ceramic samples are presented and commented through this section 11. 

In the framework of multiferroic materials research performed in Aveiro University 

it was possible to participate directly in preceding and parallel experimental works which 

resulted in overall relevant information useful for this thesis work, shortly summarized: 

- Preceding studies on nano powder manganite based on a series of La0.85Ca0.15Mn1+zO3-δ 

with z = 0.00, 0.18, 0.24, 0.44, 0.56, 0.88; samples were prepared by coprecipitation 

method which underwent systematic heat treatments as function of temperature and 

time. TEM and nano gauge EDS was used in order to understand the chemical and 

structural uniformity of the system; XRD was used to trace grain size and formation of 

spurious phases; and thermal gravimetry (TG) to understand Oxygen intake in the 

system. Main results and conclusions were relevant to advise long annealing 

procedures (>96 h) between 800º C to 900º C in air, adequate to increase the Oxygen 

content and to promote sufficient elements diffusion within the manganite compounds 

while constraining grain growth bellow 50 nm [11.0.1]. 

- Studies on composite samples of (x)La0.625Sr0.375MnO3+(1−x)LuMnO3 prepared by the 

conventional solid state route from La2O3, Lu2O3, SrCO3, and Mn2O3 powder 

precursors [11.0.2] validate that there is a very limited solubility ~2% of Lu in the 

perovskite phase. Repeated milling and sintering at 1300º C steps are necessary for 

successful formation and segregation of the two different hexagonal and rhombohedric 

phases [11.0.3], [11.0.4]; the grain average size was comprised around ~5 µm 

distribution, preventing efficient oxygen diffusion and reducing surface contact 

between the different phases. 
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- Composites based on the hexagonal ferrites BaFe12O19 (BaM), SrFe12O19, 

Ba3Co2Fe24O41 and the ferroelectric perovskite BaTiO3 (BTO), also prepared by solid 

state route [11.0.5], shown grain size between 0.5 to 5 µm, some incidence of 

impurities (<5%) and likely deficient oxygen stoichiometry for the magnetic phase. A 

faint magnetoelectric coupling localized between grain boundaries of the different 

phases was detected by means of piezoresponse force microscopy [11.0.6], [11.0.7]; 

confirming the multiferroic potential of these composites, even though the 

magnetoelectric coupling for such micrometer sized grains becomes marginal. 

Overall these two processes involved extensive effort in multiple grinding, sintering 

and analysis steps to confirm the intended ceramic composite. The grains overgrown 

morphology also renders the thermodynamic diffusion of ions more difficult, contributing 

to the appearance of spurious phases and delaying the formation/segregation of the 

immiscible phases. 

- Pechini and Co-precipitation Sol-Gel routes [5.1.2] were tried in the synthesis of nano-

structured ceramic samples with nominal composition YMnO3, Y0.86Ca0.14MnO3, 

Y0.86MnO3, intended for testing the effectiveness of these methods in achieving typical 

Yttrium manganites‘ hexagonal structure and properties. The resulting grain size 

distribution was in the order of 50 nm as expected; however XRD and Raman [11.0.8] 

characterization studies revealed also a high amount of Y2O3 spurious phase [11.0.9], 

even after repeated milling and sintering procedures, rendering this samples unsuitable 

for the proposes of this thesis research. 

The former results and respective analysis and conclusions represent valuable data 

that lead to some of the approaches and improvements selected in the preparation of new 

materials and implement of new characterization techniques used in this thesis work. 
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11.1. Nano Powder Composites of LuMnO3 + La0.7Sr0.3MnO3 

 

The single compounds LSM100 and LuM100 and the series of samples LuM+LSM 

synthesized by the Urea Combustion method described in table 8.3.2, were measured by 

XRD and EDS –SEM after heat treatment in air at 800 ºC during 98 hours; In order to 

understand the limits of miscibility between the two phases and the eventual role such 

fraction of material may have in the properties of the composite. 
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Fig. 11.1.1: Comparative XRD patterns for ―LuM+LSM‖ samples series after 98 h heat treatment at 800C. 
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θ-2θ powder diffractograms are shown in figure 11.1.1 and respective Rietveld 

refinement results presented in table 11.1.1, which overall confirm the hexagonal P63cm 

(185) structure of LuMnO3 indexed to the ICSD file #280779 [4.4.2]; the La0.7Sr0.3MnO3 

hexagonal R-3c (167) phase is indexed to ICSD file #50217 [11.1.2], having a = 5.52 and c 

= 13.37 Å; In the composites a reduced presence of spurious phases was detected, with 

possible indexations to LuMn2O5 <4 % [11.1.2] and to Lu2O3 <<1 % [11.1.3]. 

Sample Lu96LSM shows that La and Sr had substantial solubility in the dominant 

LuMnO3 phase; in the other extreme, sample Lu04LSM, a segregation of ~5% of the 

LuMnO3 phase from the La0.7Sr0.3MnO3 matrix was identified which is within the margin 

error of the method, considering a intended nominal composition of 4% Lu. 

Phases: 

Sample: 

LuMnO3 

P63cm 

% 

La0.7Sr0.3 

MnO3  

R-3c % 

LuMn2O5 

Pbam 

% 

Lu2O3 

I213 

% 

S.G. 
a 

(Å) 

b 

(Å) 

c 

(Å) 

grain 

(nm) 
Rp Rwp χr

2 

LSM100 0 100 n.a. n.a. R-3c 5.51 5.51 13.37 33 6.51 8.67 0.06 

Lu04LSM 5.1 94.9 n.a. n.a. P63cm 6.039 6.039 11.374 66 3.50 4.65 0.25 

 5.1 94.9 n.a. n.a. R-3c 5.524 5.524 13.374 33    

 3.5 96.4 n.a. 0.1 I213 10.398 10.398 10.398 98 3.74 4.96 1.80 

Lu78LSM ~81 ~19 n.a. n.a. P63cm 6.058 6.058 11.373 67 2.41 3.08 0.83 

 ~81 ~19 n.a. n.a. R-3c 5.509 5.509 13.402 32    

 >75 >18 <4 n.a. Pbam 7.315 8.665 5.774 162 2.92 3.78 1.22 

 >75 >18 <4 <1 I213 10.404 10.404 10.404 98 4.51 5.98 0.34 

Lu89LSM ~92 ~8 n.a. n.a. P63cm 6.059 6.059 11.446 49 8.51 11.7 0.14 

 ~92 ~8 n.a. n.a. R-3c 5.528 5.528 13.443 n.a.    

 >85 >9 <4 <1 Pbam 7.39 8.665 5.736 n.a. 2.87 3.72 1.18 

 >85 >9 <4 <1 I213 10.404 10.404 10.404 n.a.    

Lu96LSM ~100 n.a. n.a. n.a. P63cm 6.042 6.042 11.373 67 4.19 5.71 0.67 

 99.8 0.2 n.a. n.a. R-3c 5.552 5.552 13.038 n.a. 2.67 3.39 0.87 

LuM100 ~100 n.a. n.a. n.a. P63cm 6.048 6.048 11.389 56 4.83 6.35 0.10 

Table 11.1.1: Rietveld Refinement Results for ―LuM+LSM‖ samples series after 98 h, 800ºC heat treatment. 

Additional grinding and annealing is expected to further reduce their presence 

[11.1.4], nevertheless these composite samples exhibit a definite level of crystallization 

and phase‘s segregation to be able to develop potential magnetoelectric effects. 

Representative examples of SEM images of the samples series are presented in 

figures 11.1.2 and the outcome of EDS measurements using Philips-FEI/Quanta 400 

system and recalibrated composition values for samples are presented in table 11.1.2. 
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Figs. 11.1.2: SEM images of samples surface for series ―LuM+LSM‖ after sintering stage at 800C for 98 h 

Surface survey of samples found reduced presence of precipitates (<<1/100 μm
2
) 

having 0.2 to 0.5 µm size; correlated EDS probing of some of these scattered particles 

reveals partial deviation from the nominal composition of the main expected phases, 

indicating the presence of the spurious LuMn2O5 phase previously detected by XRD 

indexation, in particular for samples Lu78LSM and Lu89LSM. 

EDS probing over μm
2
 area reveal a higher degree of error in Lu parameterization 

(>2%) compared to the other metallic elements (~0.5%); in fact, alternative measurements 

using SEM model Hitachi SU-70 and EDS analysis system Bruker Quantax 400, also show 

a discrepancy of ~0.64 between Lu to Mn ratio for sample LuMn100. In order to find 

coherent values, plausible with the samples nominal composition, a renormalization 

criterion was based on the high reliability of the LuMnO3 stoichiometry on the LuMn100 

sample, assuming Lu/Mn ~ 1 rate. 

LuMn100 LuMn94 

Lu89LSM Lu78LSM 
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The consistency of the recalibrated composition values found for all samples enable 

to trust these results within a 3% error margin; a critical case became the LuMn98 sample; 

like the LuMn94 sample was also intentionally prepared to have Mn deficit, hence the 

composition LuMn0.98O3 is more plausible than a composition of Lu0.99MnO3 obtained 

previously to calibration. Still according to this model, sample Lu04LSM may have ~50% 

more Lu than the originally intended, corresponding actually to a composition of 

Lu0.06(La0.66Sr0.34)0.94MnO3; this is clearly compatible with the ~5% of the LuMnO3 phase 

results previously referred from XRD Rietveld refinement, denoting that the solubility of 

Lu within the LSM pseudo perovskite phase could be within a ~1%. 

Sample: LuMn100 LuMn94 LuMn98 Lu96LSM Lu89LSM Lu78LSM Lu04LSM 

Element (label): At. % At. % At. % At. % At. % At. % At. % 

O (K) 54.58 53.34 62.42 52.99 53.89 53.98 51.07 

Mn (K) 23.01 22.91 18.89 24.75 23.025 22.78 23.37 

Lu (L) 22.41 23.745 18.69 22.27 19.88 17.46 1.36 

La (L)     1.86 3.57 15.77 

Sr (K)     1.34 2.22 8.45 

relative Lu/Mn 0.974 1.036 0.989 0.900 0.863 0.766 0.058 

Mn/[Lu+La+Sr] 1.027 0.965 1.011 1.112 0.998 0.980 0.914 

if Lu/Mn ≡ 1 @ LuMn100 Recalibration assuming 1/0.974 correction factor for Lu/Mn 

recalibrated Lu/Mn ≡ 1 1.06 1.02 0.93 0.89 0.78 0.06 

renorm Mn/[Lu+La+Sr] ≡ 1 0.94 0.98 1.08 0.98 1.00 0.94 

Table 11.1.2: EDS results obtained by Philips-FEI/Quanta 400 SEM system for ―LuM+LSM‖ series and 

renormalization assuming Mn/Lu ~1 for the stoichiometric composition LuMnO3 of sample LuMn100. 

The typical La0.7Sr0.3MnO3 R-3c symmetry result in a rather poor Raman spectra, as 

observed on the left graph of figure 11.1.3, with a group of peaks at ~200 cm
-1

 and a 

relevant peak at ~420 cm
-1

 corresponding to an A1g mode [11.1.5]. 

The hexagonal LuMnO3 in its ferroelectric phase P63cm contains six formula units 

and can have up to 38 Raman active phonon modes (9A1 +14E1 +15E2) some of them have 

substantial frequency shifts around the Néel temperature ~90 K at ~119 (A1), ~226 (A1), 

~382 (E1), ~482 (A1) and specially at ~ 697 (A1) cm
-1

 [11.1.6]. A typical example of a 

Raman spectrogram of LuMnO3 can be observed on the right graph of figure 11.1.3. 
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cm-1 

Fig.11.1.3: Left graph: Raman spectra of La0.7Sr0.3MnO3 at room temperature in parallel (top line) and 

perpendicular (lower line) polarized geometry [11.1.5]. Right graph: Raman spectra of LuMnO3 at 77 K (top 

line) and at 150 K (lower line) [11.1.6]. 

The rather poor Raman response of sample LuM100 essentially composed of 

LuMnO3 and of sample Lu04LSM having La0.7Sr0.3MnO3 as main phase, can be observed 

in figure 11.1.4. The most characteristic A1g mode of the La0.7Sr0.3MnO3 main phase can be 

identified at ~439 cm
-1

, whereas the peaks found near 650 cm
-1

 can belong to the LuMnO3 

phase; the systematic peak observed at ~188 cm
-1

 can be attributed to a laser line 

resonance. 
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Fig.11.1.4: Raman spectrograms for sample Lu04LSM (left) and LuM100 (right) for several temperatures. 

In the spectra from sample LuM100 are perceptible the A1 modes at ~440 and ~480 

cm
-1

, E2 at ~650 cm
-1

 and particularly relevant is the A1 mode peak near 699 cm
-1

 whose 

behavior with temperature suffers a patent deviation from the original trend from 300 to 

100 K, as can be observed in figure 11.1.5 (guiding black line fitted according to the 

models discussed in [11.1.7]), to a ~1 cm
-1

 higher frequency from 100 to 0 K which can be 

explained by additional stiffness of the structure due to the appearance of the AFM order. 
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This shift [11.1.7] below Néel temperature confirms the typical PM-AFM transition 

at ~90 K expected for the stoichiometric LuMnO3 phase present in the sample. 

694

695

696

697

698

699

700

0 50 100 150 200 250 300

T(K)

w
a

v
e

n
u

m
b

e
r 

(c
m

-1
)

T (K) 
Fig.11.1.5: Dependence of the A1 Raman mode with temperature for sample 

LuM100. Different color dots correspond to independent measurements. 

Raman spectroscopy measurements of the composite samples Lu78LSM and 

Lu89LSM, reveal a surprising enrichment of the spectrogram, in particularly below 100 K 

with the manifestation of many new peaks and unfolding modes, observed in figure 11.1.6. 
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Fig.11.1.6: Raman spectra for composites Lu89LSM (left) and Lu78LSM (right) at several temperatures. 

The possible contribution of the very small percentage (<2%) of solid solution 

phase of Lu in La0.7Sr0.3MnO3 or La and Sr in LuMnO3 can result in broadening of the 

dominant phase peaks. The La0.7Sr0.3MnO3 phase A1 mode is relatively stable at ~439 cm
-1

 

with temperature, but is clearly broader than that seen for sample Lu04LSM. 
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Considering the typical Lu2O3 phase cubic Ia3 structure no Raman response is 

expected; on the other hand, it is possible that small traces of orthorhombic LuMn2O5 

Pbam phase may appear in the Raman diffractograms, similar to other RMn2O5 

compounds patterns [11.1.8], [11.1.9]; nonetheless, this phase most relevant FE transition 

occurring at 34 K [11.1.10] was not noticeable and considering the XRD indexation results 

and the relatively low amount of such contaminant, it seems insufficient to justify the 

overrated appearance of so numerous and explicit unidentified modes. 

In its turn, most modes related to the LuMnO3 phase that were not detected in 

sample LuM100 can be recognized in the composite samples principally for measurements 

bellow 100 K (identified with light blue arrows in figure 11.1.7). These peaks also suffer 

relative shifts, broadening and convolutions with new unidentified modes, as can be 

observed in the left graph of figure 11.1.7. The Raman spectral distribution of the LuMnO3 

phase seems altered particularly in relation to the previously predominant A1 mode close to 

700 cm
-1

 that appears only bellow 100 K and is very faint when compared to overgrown 

and unfolded peaks coincident with E modes near 299, 379 and 642 cm
-1

. 

The emergence of new modes can be seen especially between 500 to 600 cm
-1

 and 

above 700 cm
-1

, outlined (red arrows) in the left graph of figure 11.1.7. Most of these 

unidentified peaks also show relevant shifts and unfolding modes evolution with 

temperature as can be observed in figure 11.1.6. Some of these unknown peaks seem to 

follow the behaviour of the peaks indexed to the LuMnO3 phase only appearing or 

unfolding below 100 K as the case of the modes at ~583, ~687 and ~753 cm
-1

. 

In the sequence of diffractograms of the composite sample Lu89LSM shown in 

figure 11.1.6 it is possible to discriminate about 24 distinct modes. In order to trace the 

evolution of some representative peaks with temperature we used a Lorentz peak shape 

function fit performed at each peak. As can be seen in the examples of figure 11.1.7 

(bottom), in general we observe at each mode the normal decrease in peak area and 

intensity, as temperature rises; the estimated peaks half width remains overall regular and 

some peaks have relevant position variation between 50 to 100 K. 

Since the XRD patterns indexations exclude the presence of any other unpredicted 

crystalline phase, one of the possible justifications for the rich Raman spectra found for the 

sample Lu89LSM and Lu78LSM could be attributed to a more efficient refraction and 
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detection of the comprehensive Raman spectra formerly attributed to the LuMnO3 phase 

found in sample LuM100 and eventually to some LuMn2O5. In fact one of the factors 

affecting the acquisition sensitivity for Raman measurements is the sample surface 

characteristics which impose the conditions for the observable reflection/ absorption/ 

refraction of the laser line. Although the experimental preparation procedure for the 

surfaces was identical for all samples, the near single phase samples seem to impose 

substantial absorption upon the incident laser, whereas the composites samples surface 

having heterogeneous grains and interfaces may present more favorable conditions to the 

laser refraction. 
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Fig.11.1.7: Comparative Raman spectra at 10 K of samples LuM100, Lu89LSM and Lu78LSM (top); 

Examples of the evolution of some peaks position and intensity with temperature (bottom). 
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Under this scope, it is possible that the particular environment of the surface at the 

interfaces between grains of the two different structural phase‘s may concentrate 

metastable atomic arrangements linking the two distinct lattices; this interstitial layer has 

small expression in volume as a phase itself, but its presence is expected to be 

disseminated over most of the LSM minority phase grains surface and can contribute to 

new active Raman modes. 

In the La0.7Sr0.3MnO3 plus LuMnO3 composite samples the two distinct perovskite 

and hexagonal crystalline structures turn out to be in contact at the grains interfaces; the 

entanglement of the two different phases may suggest linking MnO6 and MnO5 groups 

sharing a common O
-2

 ion, as illustrated in figure 11.1.8, these metastable arrangements do 

not necessarily form a new structural phase, but constitute locally obvious non centre-

symmetric molecular configurations which can originate specific Raman-active vibrational 

modes not found in the single parent phases. 

           

Fig.11.1.8: Schematics of possible in-plane (left) and apical (right) connections for MnO6 Octahedra and 

MnO5 bipyramid groups (angular variants and multiple dispositions of Jahn-Teller‘s distortion not shown). 

Although the relative amount of such atypical O5Mn—O—MnO4 arrangements can 

be very small, they have a privileged spatial distribution at the surface of the 

La0.7Sr0.3MnO3 grains, since it composes a minority phase enclosed by the dominant 

LuMnO3 phase, as happens in samples Lu78LSM and Lu89LSM, hence a considerable part 

of the sample surface (roughly estimated >10%) may exhibit these special arrangements 

that became exposed to the laser stimulation, revealing active Raman modes and 

contributing to the rich spectra found in these samples, not found in the single phase‘s 

perovskite or hexagonal compounds. 

A deeper insight about these possible structural arrangements and properties would 

require a more extended and specific research to substantiate this hypotesis. 
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VSM measurements of the magnetic moment as function of temperature (M vs. T) 

for three of the composite samples and the single phase LSM100 and LuM100 samples are 

presented in figure 11.1.9. The AFM-PM transition of the LuMnO3 phase can be easily 

recognized and enhanced in graph (c) by subtraction from the original M vs. T curve the 

linear fit found in the range from 85 to 95 K. Samples Lu78LSM and Lu89LSM also 

exhibit patent perturbations in the range 80 to 100 K, respectively zoomed in graphs (a) 

and (b) of same figure. These amplified disturbances can be attributed to the high 

susceptibility of the dispersed La0.7Sr0.3MnO3 phase (under low magnetic field) easily 

responsive to local changes in the magnetic environment originated in the neighboring 

LuMnO3 phase matrix. Sample Lu96LSM and sample LSM100 reveal the presence of a 

small magnetic transition near 40 K possibly due to a marginal contamination of Mn3O4 

phase [11.1.11], although not perceptible in the XRD diffractograms indexations. 
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Fig.11.1.9: Magnetization (in emu/g) as function of temperature (at low B) Sample LSM100 (top left), 

composites and LuM100 samples (bottom left). Detail of M vs. T over region 50 to 125 K (right) for 

Lu78LSM (a), Lu89LSM (b) samples and enhancement of AFM transition at ~90 K for LuM100 sample (c). 
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Fig.11.1.10: M (in emu/g) as function of external field B (in Tesla) for several temperatures: Lu96LSM (top 

left), LSM100 (top right); Lu89LSM (center) and Lu78LSM (bottom) with respective hysteresis loop details. 
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From M vs. B measurements shown in figure 11.1.10 it is possible to observe that 

the increasing ferromagnetic moment in each sample is directly proportional to the 

La0.7Sr0.3MnO3 phase present in each sample and fully compatible with the nominal 

composition sequence of these samples series. 

The saturation magnetic moment obtained at 90 K under 1 Tesla for sample 

Lu78LSM is ~16 emu/g and for sample Lu89LSM is ~8 emu/g; these values are coherent 

with the estimated mass (~22% and ~11% respectively) presence of the La0.7Sr0.3MnO3 

phase, which in the plain LSM100 sample reaches the expected ~90 emu/g [11.1.12]. The 

non percolative distribution and some isolated nano particles of this ferromagnetic phase 

inside the paramagnetic matrix (above 100 K) could explain the (super)paramagnetic 

contribution found at higher magnetic fields in the composite samples. 

VSM measurements of magnetic moment as function of field (M vs. B) for the 

same three composite samples and the single phase LSM100 sample (only at 5 K) are 

compared in figure 11.1.10. The presence and proportion of the LuMnO3 phase is detected 

either by the PM (above 100 K) or AFM (below ~100 K) response, both adding a linear 

contribution in M proportional to B, clearly visible over the typical ferromagnetic behavior 

of the LSM phase. In its turn, from the hysteresis loops also detailed in figure 11.1.10, it is 

possible to observe equivalent coercive fields (Bcoer.) for the same temperatures in each 

sample. These details corroborate the similarity of the La0.7Sr0.3MnO3 phase in both 

samples. 

Only the two samples of this series which are mainly composed by the 

La0.7Sr0.3MnO3 phase, have sufficiently low resistivity to perform magneto–resistance 

measurements (MR) in the available setup. The set of measurements performed in sample 

LSM100 are presented in figure 11.1.11; and for sample Lu04LSM in figure 11.1.12. 

From figure 11.1.11 R(B) vs. T graph it is possible to recognize the M-I transition 

at ~291 K and a subtle rise in resistivity trend above 330 K due to the regular PM transition 

without magnetic field, whereas under 1 Tesla field the long range FM order endures up to 

~380 K keeping the former resistivity trend, which originate an accessional trend in MR up 

to 380 K. The room temperature MR ~2% at 1 T falls within the expected CMR 

performance for the La0.7Sr0.3MnO3 phase [11.1.13]. 
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Fig.11.1.11: Magneto-Resistance measurements performed for sample LSM100: R as function of the angle 

between the magnetic field and the d.c. current going through the sample (top left); R as function of T at 0 and 

under 1 Tesla field (center left) and respective graph of MR as function of temperature (low left); R as 

function of B at 101 K (top right), 273 K (center right) and 320 K (low right).  

For sample Lu04LSM the R(B) vs. T graph clearly shows two relative maxima, one 

at ~238 K corresponding also to a relative increase in MR associated to the M-I transition 

and another at ~342 K associated to the PM transition. The resistivity increase relatively to 

the single phase sample is justified by the additional scattering introduced by the 

dispersion of dielectric LuMnO3 nanometric grains in the La0.7Sr0.3MnO3 matrix; in its 

turn, this may contribute to localized inhomogeneities in the manganite main phase and 

explain the appearance of two resistivity peaks. 
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Fig.11.1.12: Magneto-Resistance measurements performed for sample Lu04LSM: R as function of the angle 

between the magnetic field and the d.c. current going through the sample (top left); R as function of T at 0 and 

under 1 Tesla field (center left) and respective graph of MR as function of temperature (low left); R as 

function of B at 80 K (top right), 292 K (center right) and 387 K (low right). 

Comparing both samples graphs of MR vs. T, we observe that the ripples detected 

at 100-120 K can be attributed to noise originated by the beginning of liquid N2 bath 

evaporation during measurements; it is patent that both samples‘ present a regular MR 

drop from low temperature reaching the relative minima at ~280 K, then keeping a smooth 

variation up to ~330 K, after which there is a stronger change in the MR trend suggesting 

the occurrence of the FM-PM transition.  
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These results substantiate the endurance of the FM state beyond the 300 K 

measured with the VSM system and is in close agreement with a Curie temperature above 

330 K [11.1.14] intended for the La0.7Sr0.3MnO3 nominal composition, as recognized in the 

respective La1-xSrxMnO3 phase diagram described in section 4.2. 

As the samples are cycled through -1 to +1 tesla, either in angle (R vs. θ graphs 

showing approximately an anisotropic MR of ~0.4 % at room temperature) or in intensity 

(R vs. B graphs), a progressive drop in resistivity can be observed; this memory effect is a 

natural result of the magnetic hysteresis, magnetostriction and structural anisotropies 

mechanisms of the material, leading to a non reproducible history of the Bloch Walls 

displacements, enhancing the cumulative percolation of the magnetic domains which 

volume distribution is correlated to the electrical conduction paths, eventually stabilizing 

after some cycles. 

Different magneto-resistance mechanisms operating in the La0.7Sr0.3MnO3 phase 

can be observed in the succession of R vs. B graphs obtained at different temperatures, 

present in figures 11.1.11 and 11.1.12. Besides the intrinsic double-exchange model that 

explains the conductivity by means of electron hoping dependency on the alignment of 

neighboring Mn ions spins, there is also the role of the electron-phonon coupling (polaron), 

mediated by the Jahn-Teller splitting, giving rise to additional structural interactions that 

modify the charge carriers mobility and justify the more complex behavior of the 

resistivity as function of temperature or magnetic field [11.1.15]. 

For T below the Curie transition, and for polycrystalline samples, the MR response 

is strongly influenced by the tunneling effect through the grains boundaries barrier and 

mediated by the charge carries spin and the relative orientation of the magnetic moment of 

each grain [11.1.16]. The progressive alignment of the grains magnetic moment gives rise 

to a sharp MR response at low magnetic fields; then as the grains reach a common 

alignment the MR tends to stabilize near a linear relation to the external magnetic field 

dominated by the intrinsic mechanisms described above. 

For T above the paramagnetic transition (~330 K) the cooperative spin mediated 

mechanisms disappear and the MR follows a quadratic dependence with the B field 

characteristic of the conventional paramagnetic scattering mechanism described in section 

6.8. 
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Magneto-Impedance (MZ) measurements performed at room temperature as 

function of the applied electric field frequency and the external magnetic field for the four 

composite samples and the single phase LSM100 and LuM100 samples are presented in 

figure 11.1.13. 

In table 11.1.3 are represented some illustrative impedance measurements 

performed on samples‘ at 10
3
, 10

5
 and 10

7
 Hz for 0 and 0.5 Tesla, plus the resulting MZ 

value; at 10
3
 Hz under zero magnetic field the values were calibrated/normalized to 

resistance (R) ~0.262 Ω and reactance (R‘) ~0.01 Ω. As for the magnetization, it becomes 

possible to trace a pattern for the magneto-impedance response along the series of samples, 

coherent with the series nominal composition sequence. 

Samples LSM100 and Lu04LSM have equivalent behaviors since the similar 

La0.7Sr0.3MnO3 bulk phase is governed both samples response; the MZ increases in relation 

to the applied magnetic field from 3 kHz up to 100 kHz, and then stabilizes up to 10 MHz. 

The most significant enhancement of the MZ variation with frequency is obtained at 

moderated fields up to 0.1 Tesla, consistent with the respective susceptibility behavior 

inferred from the figure 11.1.10; whereas the convergence of the MZ response at higher 

fields is a result of reaching the material magnetic saturation as can be observed in figure 

11.1.14. 

Sample: Frequency 

(s
-1

) 

R(B = 0) 

(Ω) 

R’(B = 0) 

(Ω) 

Z(B = 0) 

(Ω) 

R(B = .5 T) 

(Ω) 

R’(B = .5 T) 

(Ω) 

Z(B = .5 T) 

(Ω) 

MZ 

% 

 103 0.264 0.010 0.264 0.264 0.008 0.264 0.050 

LSM100 105 0.273 1.207 1.238 0.271 0.969 1.006 18.735 

 107 36.354 114.591 120.220 28.761 91.985 96.376 19.833 

 103 0.262 0.011 0.262 0.262 0.008 0.262 0.049 

Lu04LSM 105 0.271 1.330 1.357 0.269 0.967 1.003 26.073 

 107 40.342 127.396 133.631 28.655 91.984 96.344 27.903 

 103 0.262 0.008 0.262 0.262 0.008 0.262 0.006 

Lu78LSM 105 0.272 1.008 1.044 0.271 0.980 1.017 2.631 

 107 36.240 105.924 111.952 35.387 103.241 109.137 2.598 

 103 0.261 0.008 0.261 0.261 0.008 0.261 0.021 

Lu89LSM 105 0.269 0.972 1.009 0.268 0.958 0.995 1.348 

 107 31.230 90.062 95.323 30.835 89.002 94.192 1.186 

 103 0.262 0.008 0.262 0.262 0.008 0.262 0.002 

Lu96LSM 105 0.270 0.967 1.004 0.269 0.961 0.998 0.588 

 107 25.314 80.331 84.225 25.256 80.118 84.005 0.261 

 103 0.261 0.007 0.261 0.261 0.008 0.261 0.014 

LuM100 105 0.269 0.963 1.000 0.268 0.959 0.996 0.407 

 107 31.484 88.598 94.026 31.376 88.562 93.956 0.074 

Table 11.1.3: Illustrative values of MZ measurements at room temperature for the LuM+LSM samples series. 
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Fig.11.1.13: Graphs of Magneto-Impedance response with frequency and magnetic field at room 

temperature, for the LuM+LSM samples‘ series. 
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Sample Lu04LSM MZ response is ~40% superior to that of LSM100 under 

equivalent magnetic fields, owing mostly to the small presence of the LuMnO3 dielectric 

phase which contributes to higher electrical impedance at ground magnetic field. In the 

other range of compositions the sample‘s MZ response is dominated by the preponderance 

of the LuMnO3 dielectric/paramagnetic phase; for sample LuM100, MZ grows 

proportionally to the external magnetic field from 10 kHz up to 100 KHz then inflects and 

drops to ~1/4
th

 of the maximum value previously reached until 1 MHz, then the decay 

slows down to ~1/6
th

 until 10 MHz. The paramagnetic nature of the bulk LuMnO3 phase is 

consistent with the regular spacing between successive MZ curves obtained for increasing 

magnetic fields, since the sample doesn‘t reach magnetic saturation. This paramagnetism 

has asufficent susceptiblity to the bias magnetic field contributing to the real component of 

magneto-impedance response (~0.3 % at 10
5
 Hz, 5 kG as seen in figure 11.1.13 for sample 

LuM100 MZ graph), the strong frequency dependent electrical response effect arrises from 

the ferroelectric nature of the material, in this case, the circuits established tend to resonate 

near ~10
5
 Hz.  

The analysis of the MZ behavior of samples Lu96LSM, Lu89LSM and Lu78LSM 

can be summarized as the sum of the two distinct MZ curves obtained for sample LSM100 

and LuM100, in relation to the phase‘s proportion found in each sample.  

Due to the typical magneto-resistive manganites‘ character of the pseudo perovskite 

La0.7Sr0.3MnO3 phase, a significant decrease in samples‘ resistance under the effect of an 

external magnetic field was expected. The outcome of applying an a.c. electrical field 

follows similar explanation, within a given frequency, as the material‘s electrons spins 

align with the bias magnetic field, the overall resistance lowers (as explained in section 6.8 

and 6.8 and 6.10), due to the conductive behavior the reactance also drops, and hence the 

impedance. 

The composite sample Lu78LSM was selected to undergo more specific analysis, 

considering upon the lack of electric conductivity (d.c.) and previous MZ results which 

proven the overall dielectric behavior of sample implying a non percolated distribution of 

the La0.7Sr0.3MnO3 phase in the LuMnO3 matrix; VSM also confirms the higher content in 

this FM phase; in addition SEM-EDS and Raman spectroscopy suggest an homogeneous 

dispersion and close contact between grains surfaces. 
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Fig.11.1.14: Magneto-Impedance response for the LuM+LSM samples‘ 

series with magnetic field at 10
5
 Hz and room temperature 

Magneto-impedance becomes a complementary measurement to magneto-

resistance since measurements can be performed in non conductive samples and has the 

advantage not to depend on setting a bias electrical current through the sample, on the 

other hand, the acquired data only makes sense for frequencies above 10
3
 or 10

4
 Hz. 

Magnetic Force Microscopy surface measurements performed in sample Lu78LSM 

are depicted in figure 11.1.15. In a rather smooth surface region of 5x5 µm, as can be 

observed by the deflection scan, it is possible to identify by the magnetic amplitude scan 

small group of independent magnetic domains; considering the relative size of these 

domains in the order of ~0.5 to 1 µm, in principle each one is constituted by a small cluster 

of grains resulting from the segregation of the La0.7Sr0.3MnO3 phase from the LuMnO3 

matrix.  

The neighboring LuMnO3 region of one of the magnetic clusters was subjected to a 

20 V bias electric field; the expected electrostriction had a direct influence in the cluster 

magnetic easy direction, forcing the original domain orientation by ~0.8º; as can prove the 

phase measurements performed on the region cross section going through two independent 

domains. 
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Fig. 11.1.15: Magnetic Force Microscopy of sample LuM78LSM at 25º C: Magnetic amplitude (top left) and 

respective tip deflection (top right); detail of region before and after being subject to electric poling: 

amplitude (bottom left) and cross section phase measurement (bottom right). 

It was also only possible to perform magneto-electric effect measurements at room 

temperature in this sample. The graphical results of the experimental ME effect 

measurements are presented in figure 11.1.16. The initial drop in the electric response for 

small bias magnetic field, <0.3 Tesla at 25 and 50 kHz and for <0.2 Tesla at 100 kHz, is 

likely influenced by the incomplete magnetization of the La0.7Sr0.3MnO3, in close relation 

to the previous VSM magnetic measurements, only when this phase becomes magnetically 

saturated, there can be a cooperative effect of the modulation imposed by the small a.c. 

magnetic field stimulation, augmenting with the bias external magnetic field intensity. 

These results validate that the composite sample Lu78LSM has in fact magneto-

electric effect properties reaching ~150 mV/m.Oe; the material stimulated with 10
5
 Hz 

magnetic field of only 10 Gauss amplitude, can generate a correlated a.c. electric field 

~300% higher under a bias external field of 1 Tesla than without the field.  
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This ME coefficient was validated by an independent measurement system, 

obtaining 113 mV/m.Oe at 10
5
 Hz and using a bias Magnetic field of only 500 Oe. 
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Fig. 11.1.16: Magneto-Electric effect for sample Lu78LSM as function of bias magnetic field up to 1 Tesla, 

for 3 frequencies at 10 Gauss a.c. stimulation field. Inset: ME coefficient as function of frequency at 500 Oe. 

Most studies performed on analogous LuMnO3 and La1-xSrxMnO3 composites are 

incipient when concerning the investigation of magnetoelectric effects in such potential 

multiferroic system. The previously referred [11.0.2], [11.0.3], [11.0.4] and also [11.1.17], 

[11.1.18] are mainly concerned with structural aspects, some relevant transport and 

magnetic measurements can be found in [11.1.19], where the authors consider an 

improbable Lu0.7Sr0.3MnO3 hexagonal phase without any evidence to sustain such claim; 

on the other hand in [4.1.17], the influence of the LuMnO3 phase transition at ~90 K is 

clearly visible in the resistivity vs. temperature response, but the authors state that such 

composite system seems "chemically unfeasible in the bulk" which we hereby prove 

otherwise. 
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11.2. Self doped LuMn1-zO3-δ (z= 0.00, 0.02, 0.06) Nano Powders 

 

In the sequence of the previous studies on non-stoichiometric manganites [11.2.1], 

the relevance of self-doping has been proven useful for modifying specific characteristics 

like magneto-resistive response, critical temperature, conductive behavior, magnetic 

structure, etc.; as well minimizing the need for introducing extrinsic elements. 

The LuMnO3 compound presents intrinsic multiferroic proprieties below the Néel 

temperature (TN ~90 K), where the ferroelectric behavior coexists with the canted 

antiferromagnetic ordering; further investigation on Mn deficient LuMn1-zO3-δ was carried 

out in order to study the role of the competing interactions between the Mn ions moments 

in complex magnetic orders. In order to keep the overall crystalline structure and to 

preserve the fundamental ferroelectric mechanisms from the parent LuMnO3 compound, 

only a minor percentage of Manganese atoms are removed; the accommodation of such 

low Mn vacancies (z <<10%) should not have major implication in the compound Oxygen 

stoichiometry, hence it is estimated the presence of a correlated number (3.z) of Mn
4+

 ions 

which will locally shift the regular AFM (Mn
3+

--O--Mn
3+

) ―super-exchange‖ coupling to a 

FM (Mn
3+

--O--Mn
4+

) ―double-exchange‖. Thus the Mn
4+

 magnetic moment tends to align 

with a neighboring Mn
3+

, although the triangular disposition (θ ~120º) result a weaker 

electron transfer integral compared to the (150º< θ <180º) found on perovskite manganites. 

In addition, according to the model described in [11.2.2], the triangular spins 

geometry, found in such hexagonal manganites, induces an electric dipole given by the 

correlation: 

)(

.2)(

321

32321

SSSP

SSSSSP

y

x
 (Polarization from spins in triangular geometry) 

The vacancies and particularly the presence of Mn
4+

 ions will tend to hamper the 

magnetic frustration of the former Mn
3+

 ions triangular lattice; the new spins configuration 

is also expected to have a direct impact into the intrinsic magneto-electric coupling of the 

material; besides, eventual long range coordination of the resulting magnetic moments 

modifies the material magnetic susceptibility; hence new multiferroic phases may be 

anticipated in the self doped system. In order to support this thesis, a more specific study of 

samples LuMn100, LuMn098 and LuMn094 was carried out, comparing experimental 

results with referenced data on the LuMnO3 manganite. 
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XRD diffractograms and respective Rietveld refinement results are presented in 

figure 11.2.1 and table 11.2.1: 
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Fig. 11.2.1: XRD patterns and Rietveld refinements for the series of samples LuMn1-zO3. 
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It is possible to discriminate a small volume contraction as the number of Mn 

vacancies increase, although this tendency can be less significant when only three 

experimental samples are considered and these cell parameters found are consistent and 

comprised within the LuMnO3 referenced data variance, as described in table 11.2.1. 

Having in mind that for a system with identical nominal composition the resulting structure 

can have deviations on the purity, homogeneity, grain size, and Oxygen incorporation, 

depending on the sample preparation method and thermal treatments. 

sample Synthesis 

method 

Sintering-

anneal T/C 
<crystal> 

type 

a, b 

Å 

c 

Å 

Volume 

Å
3
 

χ
2
 H field 

kOe 
T 

K 

M 
emu/g 

PM: 

μB/Mn
3+

 

LuMnO3 
[4.4.1] 

Solid State 1000-1300 
poly 

>>1 μm3 
6.038 11.361 358.70 --   --  

LuMnO3 
[4.4.2] 

Flux in Bi2O3 1250-1450 
single 

>>1 mm3 
6.042 11.362 359.21 --   --  

LuMnO3 
[4.4.5] 

Solid State 1100-1400 
poly 

>>1 μm3 
    1 5 0.02 4.8 

LuMnO3 
[11.2.3] 

Floating-zone 1200-1350 
single 

>>1 mm3 
6.048 11.411 361.47 -- 1 5 0.02  

LuMnO3 
[11.2.4] 

Solid State 1400-  800 
poly 

>>1 μm3 
6.039 11.367 359.01 -- 0.1 5 0.02  

LuMnO3 
[11.2.5] 

Solid State 1300-1300 
poly 

>>1 μm3 
6.044 11.371 359.73 -- 1 5 0.02 4.9 

LuMnO3 
[11.2.6] 

Floating-zone 1300-1300 
single 

>>1 mm3 
6.05 11.4 361.37 -- 1 5 0.02  

LuMnO3 
[11.2.7] 

Solid State 1100-1400 
poly 

>>1 μm3 
6.053 11.3704 360.76  1 5 0.02  

LuMnO3 
[11.2.8] 

EDTA 1000-1300 
poly 

>>1 μm3 
6.047 11.372 360.08 -- 1 5 0.02  

LuMnO3 
[11.2.9] 

Solid State 1200-1350 
poly 

>>1 μm3 
6.046 11.407 361.11 --    3.1 

LuMnO3 
[11.2.10] 

Flux in Bi2O3 1250-1450 
single 

>>1 mm3 
6.042 11.370 359.46 --   --  

LuMnO3 
[11.2.11] 

Solid State 1100-1100 
poly 

< 1 μm3 
6.087 11.384 365.29 -- 5 5 0.13 3.2 

LuMnO3 
[11.2.12] 

Solid State   900-1300 
poly 

>1 μm3 
6.046 11.370 359.896 -- 1 40 0.11 -- 

LuMnO3 
[11.2.13] 

hydrothermal    250-    80 40x400 nm 6.055 11.389 361.61 --     

LuMnO3 
[11.2.14] 

hydrothermal    750 - 750 32 nm    -- 0.01 5 0.16 -- 

LuMn100 
Sol-Gel Urea 
Combustion 

  800 - 900 56 nm 6.048 11.389 360.79 0.2 3 5 0.34 4.70 

LuMn098 
Sol-Gel Urea 
Combustion 

1200-  900 92 nm 6.046 11.366 359.82 3.4 3 5 0.07 5.27 

LuMn094 
Sol-Gel Urea 
Combustion 

  800-  900 46 nm 6.040 11.374 359.38 0.3 3 5 0.14 5.04 

Table 11.2.1: Comparison of P63cm S.G. cell parameters at 300 K and Magnetization at ~5 K for LuMnO3 

compounds in referenced data and for the 3 LuMn1-zO3-δ samples. 
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Most pertinent modification on the original LuMnO3 magnetic behavior is put in 

evidence by VSM measurements as shown in figure 11.2.2: 

VSM M vs. T measurements obtained at 0.3 tesla, expressed as 1/M vs. T in left 

graph of figure 11.2.2, clearly reveal a magnetic anomaly at ~90 K typically recognized as 

the characteristic PM to AFM transition LuMnO3 phase. 

This set of experimental samples LuMn1-zO1-δ exhibits a net paramagnetic moment 

listed in table 11.2.1 calculated by applying the Curie-Weiss model above 150 K. For the 

LuM100 sample the magnetic moment by Mn ion is ~4.7 µB in close agreement to the 

LuMnO3 phase referenced in [4.4.5] and [11.2.5]. The two self-doped samples show a 

significant increase in the effective magnetization surpassing 5 µB; this higher value could 

be explained by the presence of Mn
4+

 ions, although with a lower magnetic moment, the 

preferential/instantaneous FM coupling with a neighboring Mn
3+

 magnetic moment 

promotes a higher average alignment with the small external magnetic field even in the 

paramagnetic regime. 

A higher mass magnetization below the Néel transition can also be traced to 

LuMnO3 nanopowders reported in [11.2.11] and [11.2.14]; these samples were synthesized 

at lower temperatures, resulting smaller grain size and implying a wider specific surface; in 

addition, the phase diagram of manganites synthesis [11.1.4], [11.2.15], also attest that 

relatively low annealing temperature (<1000º C) promotes Oxygen intake while the small 

grain size facilitates the diffusion. Such factors generates localized Mn
4+

 ions which can 

couple ferromagnetically to neighboring Mn
3+

 ions, hence contributing to the higher 

overall magnetization of LuMnO3 AFM phase nano-powders in relation to micron sized 

powders, as reported in [4.4.5] and [11.2.3 to 11.2.8]; as summarized in table 11.2.1. 
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Fig. 11.2.2: VSM measurements of the LuMn1-zO3 samples 1/M vs. T at 0.03 T (left), M vs. B at 5 K (right). 
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The dominant antiferromagnetic ordering state can be also observed in the discrete 

mass magnetic moment exhibited, not achieving saturation even at 10 T in the M vs. B 

measurements at ~5 K, shown in right graph of figure 11.2.2. While samples LuM094 and 

LuM098 show a weak and rather linear magnetic susceptibility, the LuM100 sample 

reveals at low B field (<0.5 Tesla) a higher susceptibility trend suggesting an additional 

and distinct magnetic order state in the structure; this feature is also substantiated by the 

small anomalies detected at ~25 K and ~65 K in M vs. T response obtained below the 

conventional TNéel at ~90 K, as attest the derivatives in the left graph of figure 11.2.3. In 

comparison, similar magnetic anomalies on nanometric LuMnO3 powders were detected at 

~40 K [11.2.12] and at ~12 and ~44 K [11.2.14] as depicted in the example of the right 

graph of figure 12.2.3. 

Besides the grain size and surface thermodynamics aspects affecting magnetization, 

the anomalies observed below TNéel suggest rearrangements of the antiferromagnetic 

ordering structure in particularly under low magnetic fields, concurrent with the original 

and more conventional AFM phase that dominates at higher magnetic fields (>1000 Oe) 

[12.2.14]. 

The hexagonal LuMnO3 structure allows various analogous triangular ordered 

antiferromagnetic arrangements. As temperature decreases the differences and adjustments 

in the basal and apical Mn--O--Mn bond lengths and angles lead to the appearance of 

subtle variations in Mn
3+

--O--Mn
3+

 super-exchange interactions highly sensitive to low 

applied magnetic field, but which are damped at higher fields. 
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Fig. 11.2.3: Sample LuM100 M vs. T and derivatives (left); sample LuMnO3 M vs. T from [12.2.14] (right). 
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In order to investigate this aspect, sample LuM098 was measured by NPD 

performed at 2 and 300 K as described in section 10, represented in figure 11.2.4: 
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Fig. 11.2.4: NPD measurements of LuM098 sample performed 2 K (top) and at 300 K (center) with 

respective Rietveld refinements; comparison between the two diffractograms (bottom) marking the 

appearance of reflections from magnetic ordering (arrows). 
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Like in XRD, NPD measurements of sample LuM098 performed at ~300 K do not 

show distinctive features when compared to the parent stoichiometric LuMnO3 

paramagnetic phase [11.2.11]. At 2 K, a close inspection of the NPD diffractogram reveals 

the appearance a set of reflections related to magnetic neutron scattering not consistent 

with the crystal unit cell contributions; the dominant AFM coupling between adjacent Mn 

ions is confirmed by the strong intensity of the peaks (111), (103), (201) peculiar for 

antiferromagnetic order; in addition some peaks characteristic of ferromagnetic 

interactions (012), (112), (110) appear or become effectively amplified in comparison with 

the stoichiometric compound. 

The presence of a small amount of Mn
4+

ions in sample LuM098 justifies the 

discrepancy between the magnetic moment mean value of ~2.84 µB ± 0.1 per Mn ion 

calculated for the NPD diffractogram performed at 2 K, in relation to the ~3.1 µB measured 

by NPD described for the stoichiometric compound [11.2.9]. 

The calculated magnetic moments differentiated for each of the 6 Mn sites in the 

unit cell are illustrated in figure 11.2.5 alongside the structural lattice, and parameters 

described in table 11.2.2. 

 

Formula LuMnO3 Z 6 

M (g/mol) 277.9 g/mol ρ (g/cm
3) 7.708  

System Hexagonal S.G. P63cm (185) 

Cell 

(Å) 
a =   6.02794 
c = 11.36182 

Volume 

(Å
3
) 

357.53 

 

label type Wyck. x/a y/b z/c S.O.F. 

Lu1 Lu+3 2a 0 0 0.2723 1 

Lu2 Lu+3 4b 1/3 2/3 0.2297 1 

Mn1 Mn+3 6c 0.3157 0 0 1 

O1 O-2 6c 0.3086 0 0.1665 1 

O2 O-2 6c 0.6383 0 0.3388 1 

O3 O-2 2a 0 0 0.4754 1 

O4 O-2 4b 1/3 2/3 0.0217 1 
 

label x/a y/b z/c Mx My Mz 

Mn1 0.3320 0 0 -2.779 -3.038 0.101 

Mn2 0 0.3320 0 -0.011 -2.877 0.101 

Mn3 0.6680 0.6680 0 2.299 3.055 0.104 

Mn4 0.3320 0.3320 0.5 -1.887 1.261 0.104 

Mn5 0.6680 1.0000 0.5 1.246 -2.035 0.101 

Mn6 1.0000 0.6680 0.5 -1.246 2.03 0.101 

ΣMi    -2.378 -1.604 0.612 

 

Fig. 11.2.5: Unit cell structure and Mn magnetic 

moments orientation determined for LuM098 

sample from NPD measurements performed 2 K 

Table 11.2.2: Unit cell and Mn magnetic moments 

parameters determined for LuM098 sample from 

NPD measurements performed 2 K. 
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Both XRD and NPD Rietveld refinements were not conclusive in determining 

preferential structural positions for vacancies or Mn
4+

 ions, neither to precise Manganese 

or Oxygen vacancies correspondent to the expected nominal composition of LuM098 

sample. Nevertheless, cell volume is ~0.8 % smaller relatively to the average cells present 

in table 11.2.1, pointing to eventual vacancies. The particular periodic distribution (long 

range coupling) of a non-compensated Mn ion magnetic moment is decisive to explain the 

anomalous ferromagnetic coupling detected in NPD diffractogram of the LuM098 sample 

at low temperatures. This distortion of the original magnetic frustration found in the 

LuMnO3 stoichiometric phase could be interpreted either as a periodic distribution of Mn
4+

 

ions within the system; or result of a small deformation in the bipyramids structures due to 

the combined effect of Manganese and Oxygen vacancies. 

As consequence of this asymmetric and non-compensated new disposition of 

magnetic moments a significant enhancement of the anisotropic electric polarization in the 

basal (ab) plane is expected, at least 3-4 times, when compared to magnetic frustrated 

configurations, as elucidate the sketches and values indicated in figure 11.2.6. 

 

A 

|∑mi| = 0 

Px = 0 

Py = 0 

B 

|∑mi| = 0 

Px = -2.02•Const. 

Py = -6.05•Const. 

C 

|∑mi| = 0 

Px = 8.06•Const. 

Py = 0 

D 

|∑mi| ~ 2.93 μB 

Px = 22.09•Const. 

Py = 14.61•Const. 

Fig. 11.2.6: Sketches of the Mn ions planes present in the LuMnO3 in the P63cm unit cell and respective 

planar polarization due to the triangular disposition of moments, considering an average magnetization for 

each Mn ion ~2.84 μB. A, B and C represent possible magnetic frustration configurations [11.2.9], [11.2.16], 

[11.2.17]; D represents the configuration determined by NPD for the LuMn098 sample. 
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The polycrystalline LuM100 sample was used as an essay to perform experimental 

PFM measurements and use the innovative BEPS technique developed at CNMS-ORNL 

labs. Although the LuMnO3 phase a relatively weak FE compared to PZT or PMN-PT, 

from the conventional PFM scan depicted in figure 11.2.7 it is possible to recognize in the 

surface some regions with piezoresponse amplitude and phase shift. Localized poling 

experiments up to 40 V offset bias reveled no lithographic effects; these regions are not 

necessarily fully polarized domains and may also result of the grains orientation, 

presenting easy or hard polarization axis relatively to the stimulation electric field. 

 

Topography 

 

Amplitude 

 

Phase 

Fig. 11.2.7: PFM scan over a 5x5 µm region of LuM100 sample‘ surface. 

More thorough measurements by BEPS method sustain this hypothesis; in figure 

11.2.8 it is possible to observe examples of scans showing that distinct regions have 

different resonant frequency dependence, implying different structural/elastic response. 

The respective local piezoresponse loops obtained are far from reaching full cycle in 

saturation and remanence reversal, even when subjecting the sample up to 80 V bias. 

The system asymmetrical response in amplitude and phase delay to the external 

bias voltage signal is result of the relative orientation to the local polarization state; 

whereas the local resonance frequency dependence and loop energy dissipation results 

essentially of generating and switching the small polarization precession relatively to the 

easy and hard directions on the local structure orientation. 
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Fig. 11.2.8: Examples of BEPS scans of LuM100 sample. Each pixel corresponds to the local piezoresponse 

under the applied frequency and bias voltage: 5x5 µm surface piezoresponse at +30 Vdc and 311 kHz (top 

left) and piezoresponse at +30 Vdc and 301 kHz (center left). Respective delimited regions (black encircles) 

averaged piezoresponse, amplitude and phase dependence to frequency (right) and loops as function of bias 

voltage (bottom). 
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Although the characterization is not complete because it was not possible to force 

polarization saturation during BEPS experiments, data processing presented in figure 

11.2.9 confirms that sample LuM100 has in fact ferroelectric properties, with a small 

piezoresponse of the order ~10
-4

 nm/V. The ―V+‖, ―V-‖, ―imprint and ―switching 

polarization‖ maps of figure 11.2.8 also confirm the multidomain state (although not 

necessarily full saturated) of the polycrystalline system. 

 
Fig. 11.2.9: PFM BEPS fitted piezoresponse coefficients maps over LuM100 5x5 µm sample‘ surface. 

It was not possible to access such comprehensive BEPS characterization for 

samples LuM098 or LuM094. Results of conventional PFM measurements performed in 

sample LuM094 at 50 kHz and ~10 Vac are shown in figure 11.2.10. Like sample LuM100, 

this sample also reveals a week piezoresponse with amplitude and phase contrast 

coincident with crystallites both before and after subjecting the region to a +-50 Vdc cycle. 

In the experimental hysteresis loop obtained the system seems to saturate at 20 V bias. 
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Fig. 11.2.10: PFM scans over LuM094 sample 17x17 µm surface (top); local hysteresis loop at 0.1 Hz +-50 V 

cycle (center); PFM scans over a 5x5 µm area after subjecting the region to the hysteresis loop (bottom). 

PFM measurements in sample LuM094 confirm that the small Mn vacancy doping 

did not destroy the ferroelectric properties of the phase. In order to comfirm this 

observation it is necessary to perform macroscopic polarization measurements  

As expected from the hexagonal structure symmetry, preferential polarization axis 

are imposed by the crystallites orientation, hence grain boundaries delimit polarization 

domains. 
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11.3. Bulk Composites series of BaTiO3 + La0.7Ba0.3MnO3 

 

Most research on composite multiferroics has been focused on FE perovskites like 

BaTiO3 or PZT and FM spinels (Co,Ni,Zn)Fe2O4, taking advantage of the insulating 

electrical properties of these oxides [11.3.1]. Among the first research works on 

magnetoelectric coupling effects between two perovskite ferroic materials was the bulk 

composites (1-x)BaTiO3+(x)LaMnO3 [11.3.2], [11.3.3] prepared by solid state method 

above 1100 ºC; by keeping the conductive phase bellow percolation threshold; this system 

demonstrated the coexistence of ferroelectricity and ferromagnetism at room temperature 

and the potential to achieve an electric field-induced magnetization change due to the 

emergent formation of the CMR La1-xBaxMnO3 phase. The authors defend that the 

composites ME performance improves when the diffusion of Ba ions into the LaMnO3 

phase conveniently reaches the La0.7Ba0.3MnO3 composition (TCurie ~350 K), noticing 

partial degradation of the FE properties of the BaTiO3 phase due to the La-Ba and ions 

exchange. 

Taking into consideration these results, we sought to investigate the properties of 

nano powders composites by mixing BaTiO3 with the optimized La0.7Ba0.3MnO3 

composition, not recurring to high temperature synthesis or thermal treatments procedures 

in order to prevent inter phases‘ ions diffusion and extensive grain growth, yet taking 

advantage of the favourable phases interpenetration and inter connectivity namely by 

means of sharing an Oxygen ion between the different phases (O5Ti—O—MnO5) 

octahedrons along the grain boundaries. 

The BTO+LBM series of samples, listed in table 8.2.1 and prepared as described in 

table 8.2.2, were measured by XRD, respective θ-2θ powder diffractograms are shown in 

figure 11.3.1 and Rietveld refinements are summarized in table 11.3.1. Structural results 

present excellent overall reliability (χr
2
 <<1) confirming the tetragonal P4mm (99) structure 

of BaTiO3 phase indexed to the ICSD file #73643 [4.3.1], having cell parameters a = b = 

3.993 and c = 4.036 Å, average crystallites size estimate 100 to 120 nm; the 

La0.7Ba0.3MnO3 hexagonal R-3c (167) phase is indexed to ICSD file #91185 [11.3.4], 

having a = b = 5.532 and c = 13.489 Å with average crystallites size between 40 to 50 nm. 
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No specific traces of BaO [11.3.5], TiO [11.3.6], TiO2 (neither in the Rutile, 

Anatase [11.3.6] or Brookite [11.3.8] phases) or Ti2O3 [11.3.9] were detected in the series 

of diffractograms; also no Mn3O4 [11.3.10] or other spurious phases due to miscibility of 

the BaTiO3 and the La0.7Ba0.3MnO3 compounds were detected. 
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Fig. 11.3.1: XRD patterns for the series of samples BTO+LBM 
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Phase: BaTiO3 La0.7Ba0.3MnO3 

Rp Rwp Rexp 
Sample: a b ρ scf % Vol a b ρ scf % Vol 

LBM100 -- -- -- -- 0% 5.526 13.448 6.605 2.574 ~100% 8.16 10.49 0.76 

BTO50LBM50 3.998 4.017 6.031 1.3398 ~62% 5.534 13.539 6.604 0.7996 ~38% 6.64 8.84 0.14 

BTO78LBM22 3.999 4.019 5.996 1.0132 ~88% 5.535 13.498 6.605 0.1356 ~12% 6.85 9.17 0.29 

BTO89LBM11 3.999 4.019 5.995 1.1183 ~95% 5.531 13.509 6.581 0.062 ~5% 7.48 10.07 0.30 

BTO100 3.999 4.023 5.989 1.114 ~100% -- -- -- -- 0% 8.89 12.52 0.23 

Table 11.3.1: Rietveld refinements results for the series of samples BTO+LBM. 

Some minor unidentified peaks can be found at 2θ ~23º and ~24º in the BTO100 

sample diffractogram, this eventual contamination has less relevance for the composite 

samples; also EDS-SEM measurements, exemplified in figure 11.3.2 and listed in table 

11.3.2, do not detect other elements than the anticipated. 

 
KeV 

 

Sample: 

EDS @ 30 keV 
Element: 

 
LBM100 

 % atm. 

BTO50 
LBM50 

 % atm. 

BTO78 
LBM22 

 % atm. 

BTO89 
LBM11 

 % atm. 

BTO100 
 

 % atm. 

O (K)  56.96 57.12 56.63 56.43 57.39 

Ba (L) 6.88 14.60 19.12 20.45 22.18 

Ti (K) -- 12.91 18.28 19.66 20.43 

La (L) 14.79 6.48 2.65 1.49 -- 

Mn (K) 21.37 8.89 3.33 1.98 -- 

Normalized: phase % phase % phase % phase % phase % 

BaTiO3 -- ~59 ~84 ~91 ≡100 

(LaBa)MnO3 ≡100 ~41 ~16 ~9 -- 

Fig. 11.3.2: Example of the EDS-SEM 

spectrogram obtained for sample BTO50LBM50. 
Table 11.3.2: EDS results and samples composition 

normalization. 

The EDS results have a typical error of ~1% for each element; for the LBM100 

compound was found an adequate proportion for La:Ba:Mn of 0.69/0.32/1.00, for the 

BTO100 sample there is a ~10% discrepancy of Ba over Ti, whereas for the composites the 

Mn:Ti normalization indicates that the fraction of La0.7Ba0.3MnO3 compound is ~80% of 

the projected nominal composition; These statistics have correspondence to the respective 

scale factors estimated by XRD Rietveld refinement; consequently it becomes evident that 

the composites mixtures contain a small excess of the BaTiO3 phase than the initially 

intended, nevertheless this does not alter the percolative distribution envisaged for the 

La0.7Ba0.3MnO3 phase in sample BTO50LBM50, while for samples BTO78LBM22 and 

BTO89LBM11 this phase fraction is bellow percolation limit as it is further confirmed by 

MR measurements. 
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SEM images shown in figure 11.3.3, obtained following a fresh fracture of samples, 

confirm the submicron dimensions of both phases‘ grains, thus not permitting sufficient 

contrast to perform an EDS mapping; it is possible to observe only sparse porosity 

indicating that the selected pressing and thermal treatments procedures resulted in 

perceptible sintering phenomenon which promoted each phase densification and inter 

phase‘s close packing. 

  

Fig. 11.3.3: SEM surface image for sample BTO78LBM22 (left) and BTO50LBM50 (right). 

Isothermal magnetic moment measurements as function of the external field (M vs. 

B), performed by VSM are presented in figure 11.3.4. The conventional FM behavior of 

the La0.7Ba0.3MnO3 bulk compound has the typical saturation ~100 emu/g at 5 K and 

although the critical PM transition is beyond 300 K (not possible to access with VSM 

measurements), the magnetization at room temperature was ~4 times lower than 

anticipated [11.3.12]. The smooth paramagnetic contribution observed for the composite 

samples BTO78LBM22 (~0.2 emu/g.T) and BTO50LBM50 (~0.5 emu/g.T) after the 

normal FM saturation behavior can be attributed to a dispersion in the BaTiO3 matrix of 

independent nanometric grains of La0.7Ba0.3MnO3 phase with anisotropic magnetization 

axis anchored to the aleatory crystallite orientation in relation to the magnetic field. 

The small ferromagnetic contribution of ~0.04 emu/g.T at low magnetic fields 

(<0.1 Tesla) detected in the BaTiO3 nanopowders can be explained by the off-balance 

oxidation state of some Ti
4+

 to Ti
3+

 at the grain boundaries [11.3.11], [11.3.12], [11.3.13]; 

at higher fields it becomes masked by the common diamagnetic behavior (~0.008 emu/g.T) 

of the bulk compound. 
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Fig.11.3.4: Samples‘ isothermal magnetization as function of external field: BTO100 (top left), LBM100 (top 

right), BTO50LBM50 (bottom left), BTO78LBM22 (bottom right). 

Also witnessed in figure 11.3.5, the 

excess of magnetic moment found in the 

composite samples in relation to the one 

expected from the simple presence of the 

bulk La0.7Ba0.3MnO3 phase, can be 

explained by the contribution of the 

superparamagnetism of isolated nanometric 

grains of La0.7Ba0.3MnO3 phase, and in less 

extent the role of uncompensated Ti
4+

 at the 

grain boundaries of the BaTiO3 nanometric 

phase that clearly registers ~3.5x10
-3

 emu/g 

at 300 K under 0.1 T. 
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Fig.11.3.5: Samples‘ M as function of T. 
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Magneto–resistance d.c. measurements could only be performed in samples 

LBM100 and BTO50LBM50 which have sufficient La0.7Ba0.3MnO3 conductive phase to 

ensure percolative paths for the current. 

The LBM100 sample resistance and MR responses as function of temperature are 

presented in figure 11.3.6. The MR at 100 K under 1 Tesla reaches ~11%, which is within 

the estimated order of magnitude, falling rapidly to ~7% at 150 K (neglecting the noise 

introduced by the liquid nitrogen evaporation at ~120 K). The critical I-M transition occurs 

at ~240 K is marginally observable in the MR by a small dive from ~4 to ~3 % at ~250 K; 

further declining to ~2 % at room temperature differs from the expected CMR behavior 

[11.3.14] and the MR endurance only to ~325 K points to the critical TCurie below the 

estimated 340 K. Comparable results described in references [11.3.15] and [11.3.16] allow 

us to evaluate the bare manganite La0.7Ba0.3MnO3 phase that constitutes this sample; 

suggesting that the incidence of Mn
4+

 could differ from the intended 30%, since the 

thermal treatments at ~900º C performed in these series of samples exclude the possibility 

of Oxygen deficiency [11.3.17], it is most probable that the Mn
4+

 surpass 40%. Eventual 

improvement of the MR performance could be reached by a slight reduction in Oxygen 

content in the sample, by means of further thermal treatments at higher temperature (1000 

to 1200º C) or at 800-900º C under vacuum or Ar atmosphere. 
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Fig.11.3.6: Magneto-Resistance measurements for sample LBM100 as function of temperature for 0 and 1 T. 
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In figure 11.3.7 are shown the MR measurements performed in sample 

BTO50LBM50. The overall sample M-I resistance transition seems to fall to ~110 K; 

although masked in the resistance measurements, the influence of the specific M-I 

transition from the La0.7Ba0.3MnO3 phase is patent in the faster decrease of MR near ~250 

K. The regular decline of MR with temperature has a patent slump around ~160 K 

consistent with the structural rhombohedric-orthorhombic [4.3.1] transition of the BaTiO3 

phase that partially composes the sample. In its turn, the BaTiO3 tetragonal-cubic structural 

transition explains the sudden drop in resistivity above ~380 K, showing in the top-right 

graph of figure 11.3.7, leading to the total failure of polarization at ~391 K and 

consequently to a drastic change in the dielectric response, promoting current losses of 

previously accumulated charge and partially contributing to the drop in resistivity. 

The MR also survives at least up to ~320 K pointing to some weakening of the long 

range magnetic order due to the dispersion in diamagnetic BaTiO3 matrix. 

The MR as function of field shown in the top left and center of figure 11.3.7 

respectively changes from a typical sharp response dominated by inter grain polarized 

tunneling effect at low T, to a smooth magnetization dependency above TI-M, as described 

previously in section 11.1. 
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Fig.11.3.7: MR measurements for sample BTO50LBM50 as function of temperature up to 1 Tesla. 
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Magneto impedance measurements at room temperature of the BTO+LBM samples 

series shown in figure 11.3.8 follow the overall pattern previously found for the 

LuM+LSM series described in section 11.1, since the two manganites compounds have 

analogous properties. 

The MZ profile increases rapidly with frequency from 3 kHz up to 100 kHz 

reaching the maximum near 10 MHz; beyond this frequency it is progressively attenuated 

in relation to the percentage of ferroelectric phase in each composite sample. 

When the plain manganite reaches the magnetic saturation at higher fields (>0.3 T) 

the MZ response converge to a maximum ~16% under 10
5
 Hz; whereas for the three 

composite samples the super-paramagnetic contribution spreads the MZ more regularly 

beyond 0.2 T. Although the percolation of the conductive La0.7Ba0.3MnO3 phase, due to the 

presence of the ferroelectric BaTiO3 phase sample BTO50LBM50 has a drastic decrease in 

MZ response to 1/4 of that found in sample LBM100, in opposition to the d.c. MR 

behavior. 

The simple diamagnetic response of the BaTiO3 bulk compound cannot explain the 

relative variation of the magneto impedance by 3 orders of magnitude, from <10
-4

 to ~10
-1

 

%, between 0.025 to 0.1 Tesla for the of the BTO100 sample. The fact that the BaTiO3 

grain boundaries also play a pertinent role in the charge accumulation under polarization or 

electric field stimulation makes these localized environments more sensitive to the 

influence of the small positive magnetic susceptibility at low magnetic fields as can be 

observed in figure 11.3.8 (bottom right). By comparison, this effect is less visible for the 

LuMnO3 compound (MZ varies <10
-2

 to ~10
-1

 % as can be observed in figure 11.1.14) 

since the preferential AFM or PM behavior dilutes such intrinsic MZ coupling. 

Besides the MR and MZ responses the La0.7Ba0.3MnO3 phase can also exhibit the 

ferromagnetic antiresonance (FMAR) phenomenon which can also induce large changes in 

surface resistivity upon moderate applied fields [11.3.18]. 

ME effect measurements obtained for sample BTO78LBM22, at low stimulation 

and low bias B field, are represented in figure 11.3.9. Both transitions of the 

La0.7Ba0.3MnO3 phase previously found (I-M at ~250 K and FM-PM at ~340 K) can be 

recognized independently in ME amplitude or ME phase measurements by clear changes 

of the respective graphical profiles. 
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Fig.11.3.8: Magneto-Impedance measurements as function of applied a.c. electric field and bias magnetic 

field for the series BTO+LBM at room temperature. Comparison of ME response at 10
5
 Hz (bottom-right). 
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Fig. 11.3.9: Magneto-Electric effect amplitude (top) and phase difference (low) for sample BTO78LBM as 

function of temperature under low d.c. and a.c. magnetic field stimulation. 

MFM measurements of sample BTO50LBM50 presented in figure 11.3.10, confirm 

that the La0.7Ba0.3MnO3 phase is clearly ferromagnetic at room temperature, whereas for 

scans performed at above 328 K most FM contrast is lost in particular for the bigger 

clusters of the phase, while the smaller clusters or isolated grains keep the some remanent 

magnetization. 

 
Topography 

 
MFM mode T = 25C 

 
 

 
T = 50C 

 
diffused MFM contrast, TC ~55º C 

 

Fig. 11.3.10: Force Microscopy Topographic (left) and Magnetic scans of sample BTO50LBM50 surface 

performed at 25 C (top) and 55 C (bottom); detail of MFM cross-section signal for a LBM cluster.  
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In figure 11.3.11 are illustrated some lithographic experiments and MFM scans 

performed at room temperature, that are elucidative of the topographic and magnetic 

modifications on the BTO78LBM22 sample surface under electric field bias stimulation. 

The strong mechanical distortion experienced by the BaTiO3 matrix is transmitted to the 

La0.7Ba0.3MnO3 cluster altering its shape and partially the magnetization axis. Due to the 

irregular geometry of the grains and non uniform electric stimulation, the deformation of 

the surface it is not reproducible over a bias field cycle. Whereas application of a low 

electric field under |Vd.c.| <5 V have restricted effect over the composite, under stronger 

fields the surface reacts and deforms irreversibly and part of the phase contrast obtained 

from the MFM scan is in fact cross talk due to the local BaTiO3 polarization. 

  

  

  
Fig. 11.3.11: MFM measurements BTO78LBM22 composite sample: Topography (left) and 

respective phase (right) near a LBM phase cluster. Before lithographic tests (right), after bias 

stimulation with 50 nm spaced 10x10 points grid at +5 Vd.c. (center) and then -9 Vd.c. (bottom). 
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Subsequent to the relevant work reported in 2007 by W. Eerenstein et al. [11.3.19] 

on BaTiO3 and CMR manganites composites systems based in thin film layers, several 

authors [11.3.20], [11.3.21], [11.3.22] and [11.3.23] study similar systems without bringing 

yet any deeper insight on the magnetoelectric effect measurements or the strictive 

mechanisms mediating the multiferroic properties of such composites, which still deserve 

further research. 

As overall conclusion, the widespread characterization of this BTO+LBM samples 

series exposed hereby are indicative that besides the predicted strictive interaction channel 

between the two phases, the discrete FM character of the BaTiO3 grain boundaries have 

themselves local multiferroic properties and can couple directly with the magnetic moment 

orientation of neighboring La0.7Ba0.3MnO3 grains, favoring a supplementary 

magnetoelectric effect route. 
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11.4. PFM studies of Induced Ferroelectricity in C.O. Manganites 

 

Manganites present a wide spectrum of structural and functional phases, and so 

they become excellent test ground for materials modification R&D. In addition to chemical 

doping and thermal manipulation, phase transitions can also be induced by means of 

external fields; under certain circumstances, localized bias magnetic or electrical fields 

should induce ferroelectricity in magnetic manganites mediated by charge order 

mechanisms. Theoretically under certain circumstances C.O. may result in simultaneous 

inequivalent sites and bond dimerization which can break inversion symmetry, resulting in 

FE. Although the calculated phase diagram may allow such coexistence CO states, the 

energy levels are in general very close to one another [4.1.7], [11.4.1]. 

As illustrated in figure 11.4.1 for the respective phase diagrams of Pr1-xCaxMnO3, 

La1-xSrxMnO3 and La1-xCaxMnO3 manganites, each system presents a particular doping 

composition (x) corresponding to regions having rich transition thresholds between 

insulating and/or C.O. properties states (enhanced with red strips). The sensitive C.O. 

states are also correlated to Insulating-Metal conductivity and magnetic order phases and 

transitions; these can be also easily affected by external perturbations like pressure or 

temperature variation and external magnetic or electric fields, which could give rise to 

colossal dielectric response behaviors [4.2.2], [11.4.2].  

However the finite conductivity of these materials in the bulk form renders difficult 

to observe directly the latent FE response by conventional dielectric/polarization 

measurement methods. On the other hand, FE localized phenomena can be studied via 

PFM techniques and may also is an important scientific promise for creating artificial 

multiferroic materials and memory states. 

   

Fig. 11.4.1: Phase diagrams as function of doping (x) and temperature for Manganites: Pr1-xCaxMnO3 

[11.4.3] (left) La1-xSrxMnO3 [4.2.4] (center) and La1-xCaxMnO3 [11.4.4] (right), showing sensitive phase 

transition C.O. regions (shadowed). 
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Inspiring research studies can be found in the works of Tomioka et al. [11.4.5] for 

magnetic field induced phase transitions, and especially of Jooss et al. [11.4.6], which 

identifies localized bias induced structural transitions and introduces a further insight of the 

Pr1-xCaxMnO3 system, having C.O. phases extending for 0.3 <x <0.85 (with a 

commensurate ordering at x <0.5) and magnetic order only setting below C.O. transition 

temperature, can be classified as a type I multiferroic. In addition, electric field gradient 

(EFG) studies of A. Lopes et al. [11.4.7] across the Pr1-xCaxMnO3 phase diagram, using 

PAC measurements with 
111m

Cd, revealed typical signatures of a phase transition involving 

long-range ordering of local dipoles over the entire C.O./O.O. region. 

Exploratory and preceding work performed at Aveiro University in the framework 

of multiferroic materials research was able to create and detect local bias induced charged 

states in manganites using Piezoresponse Force Microscopy (PFM) PicoPlus
TM

, Agilent
®
 

and Veeco
®
 systems, patent in figures 11.4.2 through 11.4.5. 

For the particular composition Pr0.6Ca0.4MnO3, the C.O. and AFM orders prevents 

electron hoping, the magnetic correlations can survive locally as ―Zener polarons‖ up to 

TCO = 235 K (even if TN = 160 K); under this circumstances Mn ions and Mn--Mn bonds 

become inequivalent and in fact the space group is the non-centrosymmetric P11m, for 

those reasons it should be an intrinsic multiferroic, making it one of the best candidates to 

prove the model of induced FE effects in manganites. 

In figure 11.4.2 are shown PFM scans performed in a single crystal Pr0.6Ca0.4MnO3 

manganite measured at room temperature in the paramagnetic phase and above the CO 

transition. Experimental lithographic bias point poling at -15 Vd.c. during 50 seconds gave 

rise to a patent piezoelectric contrast evidencing the formation of a local polar state, 

without visible effects on the sample' surface topology. The polarization relaxes after a few 

hours, a time scale much longer than the expected for transient trapped charges. 

Displayed in figure 11.4.3 are examples of the PFM measures performed in the 

surface of a Pr0.6Ca0.4MnO3 polycrystalline sample; opposite polarization responses are 

observed from the lithographic lines made at positive or negative 10 Vd.c. biases, without 

visible topological effects. 
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Topography 

before lithography 

800nm

 

Piezoresponse 

before lithography 

800nm

 

Topography after point 

poling -15Vd.c. for 50 sec. 

800nm

 

Piezoresponse after point 

poling -15Vd.c. for 50 sec. 

800nm

 

Temporal sequence showing the piezoresponse decay after point poling -15Vd.c. for 50 sec. 

 

Fig. 11.4.2: Topographic and piezoresponse image (top) of a 3x3 µm region of a Pr0.60Ca0.40MnO3 

monocrystalline sample before (left) and after (right) point poling lithography at -15Vd.c. for 50 sec. 

Temporal sequence of piezoresponse images (low) showing the decay of the induced polarization. 

 

Topography 

 

 

Piezoresponse Amplitude 

before lithography 

 

Piezoresponse after lithography 

+10               -10 Vd.c. 

 

Fig. 11.4.3: Topographic (left) and piezoresponse image (center) of a 10x10 μm region of a Pr0.60Ca0.40MnO3 

polycrystalline sample; PFM map after performing a lithographic frame of ±10 Vd.c. (right). 

Similar procedure was tested in La0.89Sr0.11MnO3 single crystals at room 

temperature [11.4.8]. Although a non charge-ordered manganite, the insulating properties 

and the proximity to a spin canted state transition allows to display local ferroelectric states 

and hysteresis like response induced by the bias lithographic paths with piezoelectric 

contrast reversed by the applied field. The lifetime of these non-equilibrium states 

exceeded 100 hours, as illustrated in figure 11.4.4. 
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Topography 

 

 

Piezoresponse after lithography  

       -10           +10 Vd.c. 

 

Piezoresponse after ~100 h 

   -10           +10 Vd.c. 

1.4µm

 
Fig. 11.4.4: Topographic (left) and PFM scans of the La0.89Sr0.11MnO3 monocrystalline sample after 

lithographic paths of ±10 Vd.c. (center) and decay of the induced polarization after ~100 hours (right). 

In figure 11.4.5 are shown some measurements performed in a La0.50Ca0.50MnO3 

polycrystalline sample. In the sequence it is possible to observe a Mn3O4 spurious grain 

that does not react to the lithographic stimulation in contrast to the manganite matrix which 

exhibit a definitive piezocontrast for the region subjected to a strong positive bias electric 

field (+30 V), while the region subjected to negative bias has marginal response. The 

induced polarization also revealed time dependence decay in the order of hours. 

Topography 

 

 

Combined Topography + 

Piezoresponse Amplitude 

before lithography 

 

Piezoresponse after lithography 

+30                                -30 Vd.c. 

 
Fig. 11.4.5: Conventional topographic (left) and combined PFM image (center) of a 50x50 µm region of the 

La0.50Ca0.50MnO3 monocrystalline sample; PFM map after performing a lithographic frame of ±30 Vd.c. (right) 

showing a Mn3O4 grain having nil piezoresponse. 

This particular experiment reveals important evidences supporting the model for 

bias induced polarization in C.O. manganites; the asymmetric poling and strong piezo 

contrast under positive bias stimulation points to a phase transition into the |Mn
4+

| >50% 

doping of the La1-xCaxMnO3 phase diagram, inside the C.O. region [11.4.9]; whereas the 

negative bias stimulation can form more Mn
3+

 polarons bringing the material into the 

metallic conductive phase preventing charge accumulation and polarization phenomena. 

Grain Mn3O4 

Matrix 

La0.5Ca0.5MnO3 



Multiferroic Materials 

200 

The presented preliminary results obtained at room temperature showed a clear 

piezocontrast which can be associated with the presence of nanoscopic C.O. regions, well 

above the C.O. transition, evidencing that the bias-induced ferroelectricity studied via PFM 

may also be an important for creating artificial multiferroic materials and memory cells. In 

this experimental work we propose to artificially induce the appearance of localized 

metastable nanoscopic C.O. regions at room temperature (above the C.O. transition) in the 

samples surface using localized bias voltage stimulation by means of a PFM lithographic 

mode. 

The set of mono and polycrystalline manganites samples of La1-xSrxMnO3 (x = 

0.11, 0.40), Pr1-xCaxMnO3 (x = 0.11, 0.35, 0.40, 0.85) and La1-xCaxMnO3 (x = 0.05 

[11.4.10]; 0.33; 050), that also include some non-C.O. control samples, was gathered under 

the scope of these previous research works, and were specially selected for their potential 

to undergo localized phase transitions under the effect of a bias electric field applied by 

means of lithographic experiments performed by scanning probe microscopy performing 

PFM and BEPS scans [11.4.11] using an Asylum MFP-3D
®

 SPM system at CNMS ORNL 

labs. 

We expect that the dielectric nature of these materials metaphases may locally 

expose some ferroelectric behavior, that can be measured by the PFM and which may 

reveal latent multiferroic phenomena. The experimental course of action, previously 

described in section 10, goes through an initial survey of the sample surface, afterward the 

lithographic frame procedure and further PFM scan to enable to trace the sample surface 

reaction to the localized d.c. electrical stimulus. A representative area enclosing the 

stimulated region was selected to perform BEPS grid measurements in a ~60 kHz band of 

the respective resonance frequency up to a maximum a.c. voltage of 20 V. 

Some elucidative examples of the measurements performed in the Pr0.60Ca0.40MnO3 

monocrystalline sample are detailed in figures 11.4.6 through 11.4.10; the surface response 

to the lithographic test frame is patent in figure 11.4.6; in this case for the bias paths made 

at ±5 and +10 V no visible or measurable reaction was observed; whereas other bias paths 

resulted in a restricted mechanical deformation of the sample surface (with or without 

eventual electrochemical reaction), as observed in the topographic image, specially for the 

bias voltage +20 V (top lines), and for the succession -10, -15 and -20 V (bottom lines). 



Fábio G. N. Figueiras 

201 

Topography 

litho +10       +15       +20 Vd.c. 

 
                      -10       -15      -20 V 

Piezoresponse Amplitude 

litho +10       +15       +20 Vd.c. 

 
                      -10       -15      -20 V 

Piezoresponse Phase 

litho +10       +15       +20 Vd.c. 

 
                      -10       -15      -20 V 

Fig. 11.4.6: Topographic (left), amplitude (center) and phase (right) PFM maps of a 5x5 μm region of the 

Pr0.60Ca0.40MnO3 monocrystalline sample after performing a lithographic frame of ±10, ±15, ±20 Vd.c.. 

 

 
Fig. 11.4.7: BEPS Map section obtained at 332 kHz and -10V bias field. 
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Fig. 11.4.8: Average response from 

the red and blue regions as function 

of the bias voltage at 332 kHz 
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Fig. 11.4.9: Spectrograms of the blue (left) and red (center) sub regions: amplitude and phase (top), real and 

imaginary components (bottom). Profile of the average amplitude and phase spectral response at -10V bias. 
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As attest the sectional map acquired at 332 kHz and -10 bias of figure 11.4.7, the 

sub region stimulated with -15 Vd.c. (red like pixels) revealed in the subsequent BEPS 

measurements a particular enhanced piezoresponse both in amplitude and phase when 

compared to non-stimulated regions (blue like pixels) either as function of the applied 

modulated bias voltage (figure 11.4.8) and of the probing frequency (figure 11.4.9). The 

sub regions stimulated with ±20 Vd.c. had more discrete FE performance. 

From the extensive sequence of amplitude and phase data gathered for each pixel as 

function of the probing frequency and bias voltage, it becomes possible to trace the 

different sub regions having piezoresponse properties. Resulting BEPS maps, shown in 

figure 11.4.10, confirm the ferroelectric like response of the stimulated regions, 

configuring hysteresis cycles, nucleation sites, imprint and energy dissipation due to a 

finite polarization switching under inversion of the bias field. Subsequent PFM scans show 

no visible alteration of the sample surface after several hours or even after a second BEPS 

procedure using relatively high modulated voltage (>15 V). 

 
Fig. 11.4.10: BEPS maps Pr0.60Ca0.40MnO3monocrystalline sample after lithographic tests. 
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Similar PFM, lithographic and BEPS experiments were carried out in the several 

samples, subsequent to the d.c. lithographic tests it is usually observed very circumspect or 

even no mechanical deformation of the samples surface, as observed in figures 11.4.11, 

11.4.13 and 11.4.15; some of piezoresponse amplitude signals are traceable to the 

respective lithographic paths without correspondence to modifications in the topological 

aspect; such results confirm that the ferroelectric character detected it is not due to cross-

talk effects of the PFM scan and also lessen the likelihood of local electrochemical 

reaction. 

In the case of the experiments performed in the Pr0.60Ca0.40MnO3 polycrystalline 

sample the most relevant effect was detected in the lithographic path stimulated at +20 

Vd.c., although the amplitude and phase piezoresponse maps shown in figure 11.4.11 do not 

evidence such features, BEPS scans shown in figure 11.4.12 reveal a strong FE response. 

Topography  

 
litho    +20     +10     -10     -20 Vd.c. 

Piezoresponse Amplitude 

 
litho    +20     +10     -10     -20 Vd.c. 

Piezoresponse Phase 

 
litho    +20     +10     -10     -20 Vd.c. 

Fig. 11.4.11: Topographic (left), piezo response amplitude (center) and phase (right) PFM maps of a 5x5 µm 

region of the Pr0.60Ca0.40MnO3 polycrystalline sample after performing lithographic paths of +10, 10 V. 

Lithographic paths performed ±10 Vd.c. bias had no impact in the sample, at -20 

Vd.c. a partial surface bulging was observed but it proven not to be associated to any FE 

response detected from the PFM or BEPS scans. The interpretation of this sample results 

must consider two experimental factors: 

- A systematic drift in the MFP-3D
®
 SPM system was detected in the sequence of this 

sample scans; this technical problem implied the recalibration of the MFP-3D
®
 SPM 

system and was corrected for the remaining samples experiments. Although some 

accuracy limitations of the tip positioning, such disturbance translates the supposed 

original vertical bias lithographic lines into diagonal features to be distinctively read in 

the BEPS maps coefficients of figure 11.4.12. 
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- The fact that the sample has a polycrystalline (>2 µm size grains) structure leads to an 

anisotropic piezoresponse from each crystallite to the perpendicular bias field 

stimulation (<100 nm size resolution); hence additional noise can be observed in the 

amplitude and phase maps due to tip crossing through different crystalline orientations 

and grain boundaries, as can be observed in the maps of figures 11.4.11 and 11.4.12. 

 
Fig. 11.4.12: BEPS Maps of the Pr0.60Ca0.40MnO3 polycrystalline sample. 

The researches presented in [11.4.12] to [11.4.15] give some indications of the 

polaronic mechanisms (modulated strain/electron/spin) leading to different C.O. ordering 

states and localized phase transitions, embedded in the host phase, that give rise to the 

formation of specific structural insulating domains which are susceptible to develop FE 

properties under the proper external bias field stimulation. 
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For the experiments performed in the La0.89Sr0.11MnO3 mono crystalline sample, the 

PFM scans of figure 11.4.13 and BEPS maps of figure 11.4.14 testify how local piezo-

response signals are directly traceable to the lithographic paths stimulated regions.  

Topography 

 
litho    +15     -15     +10     -10 Vd.c. 

Deflection 

 
litho    +15     -15     +10     -10 Vd.c. 

Piezoresponse Amplitude 

 
litho    +15     -15     +10     -10 Vd.c. 

Fig. 11.4.13: Topographic (left), amplitude (center) and phase (right) PFM maps of a 5x5 µm region of the 

La0.89Sr0.11MnO3 monocrystalline sample after performing a lithographic frame of ±15 and ±10 Vd.c. lines. 

 

 
Fig. 11.4.14: BEPS maps results of La0.89Sr0.11MnO3 monocrystalline sample after lithographic tests. 
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It is possible to observe that the lithographic paths made under negative bias 

voltage induce stronger piezoresponse behavior on the sample surface than the positive 

bias; such asymmetric response of the sample is visible in the remanence values found for 

the fitted narrow FE cycles (―+R‖ ~ 2.5 x 10
-4

 V and ―-R‖ ~ 7 x 10
-4

 V) in particular for the 

path stimulated at -15 Vd.c. which also emerge distinctively in the BEPS parameters of 

nucleation, work (~ 2.5 x 10
-4

 J) and polarization switching (-4 V). This bias dependent 

response is also detected in the i-V experiments described and analyzed further in this 

section. 

No reaction was detected from the +10 Vd.c. litho path; a punctual surface alteration 

can be identified at the end of the path made at -10 Vd.c. due to a delayed positioning of the 

lithographic tip and should not be considered relevant, since the bulging is not extended to 

the rest of the line. 

The results obtained from PFM and BEPS measurements over the surface of the 

La0.95Ca0.05MnO3 polycrystalline sample are summarized in figures 11.4.15 and 11.4.16. 

Even if the litho path performed at +10 Vd.c. resulted in a minor surface scratching, 

the relevant piezoresponse in amplitude and phase maps corroborate the material dielectric 

properties modification across the litho paths at -5 and -10 Vd.c.; this last path promoted a 

subtle enhancement of the nucleation bias, however the hysteresis cycles turn to be too 

narrow to determine an inversion field, and in fact there is a finite range of the polarization 

remanence in relation to the ground level of the non stimulated regions, translated in ~0.01 

V for R
+
 and ~0.03 V for R

-
 and also changing the switching polarization by ~0.03 V. 

Deflection 

      +5       -5       +10     -10 Vd.c. 

 

Piezoresponse Amplitude 

      +5       -5       +10     -10 Vd.c. 

 

Piezoresponse Phase 

      +5       -5       +10     -10 Vd.c. 

 
Fig. 11.4.15: Deflection (left), piezoresponse amplitude (center) and phase (right) PFM maps of a 5x5 µm 

region of the La0.95Ca0.05MnO3 polycrystalline sample after performing a lithographic frame of ±5, ±10 Vd.c.. 
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Fig. 11.4.16: BEPS maps results of La0.95Ca0.05MnO3 polycrystalline sample after lithographic tests. 

For the remaining manganite samples having compositions that also allow C.O. 

type states, namely a monocrystalline PrMnO3 and another of Pr0.65Ca0.35MnO3 and a 

polycrystalline Pr0.15Ca0.85MnO3, it was not possible to perform complete or conclusive 

mapping measurements by the BEPS technique; nevertheless in figure 11.4.17 are 

respectively represented the most relevant results of the PFM scans obtained for each 

sample surface after the lithographic experiments; in general, these images reveal some 

piezoresponse amplitude contrast traceable to the negative lithographic paths.  

In detail, the monocrystalline Pr0.65Ca0.35MnO3 sample does not have significant 

reaction to lithographic bias fields smaller than |±20| Vd.c.; some scarce surface bulging 

from the tip passage at -20 Vd.c. can be observed; even if some cross talk is plausible, the 

piezoresponse amplitude contrast is homogeneous along all the path, attesting the 

correlation to a change in the dielectric properties and not due to mechanical features; for 

the +20 Vd.c. parallel litho path the piezoresponse amplitude contrast changes signal, 

pointing again to different effects on the material structure depending on the bias voltage 

signal. 
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       +20      -20        +15      -15 Vd.c. 
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        +5        +10         -5      -10 Vd.c. 

Piezoresponse Amplitude 

 

Piezoresponse Amplitude 

 

Piezoresponse Amplitude 

 
PrMnO3 Pr0.65Ca0.35MnO3 Pr0.15Ca0.85MnO3 

Fig. 11.4.17: PFM deflection (top) and respective piezoresponse amplitude (bottom) for monocrystalline 

samples PrMnO3 (left) and Pr0.65Ca0.35MnO3 (center) and polycrystalline Pr0.15Ca0.85MnO3 (right) after 

performing lithographic experiments. 

In comparison to the Pr1-xCaxMnO3 samples with x = 0.45, these manganite samples 

with x = 0.00, 0.35, 0.85 have a much weaker piezoresponse, since these compositions 

imply that the respective C.O. states lie at a much lower temperature (<120 K in contrast to 

~235 K for x = 0.40). The eventual local bias induced polarization becomes easily 

dispersed by the room temperature thermodynamic conditions. 

These reckonable alterations of the samples dielectric properties under the 

lithographic bias stimulation were definitively not possible (and very improbable) to obtain 

in control manganite samples such as the mono crystals of La0.67Ca0.33MnO3 and 

La0.60Sr0.40MnO3, due to their higher electric conductivity that renders any charge 

accumulation induced by the PFM tip to be rapidly dispersed through the material and 

dissipated to the system sample holder. 
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Besides the PFM and BEPS scans that enabled to recognize and characterize the 

local induced changes on the samples surface due to lithographic tests, it was also possible 

to implement some probing i-V measurements in order to bring some additional insight 

over the effect of the voltage signal on the nature of charge carriers injected into the 

samples‘ surface through the PFM tip. 

The typical high resistivity found at the surface of the C.O. type manganites 

samples (>10
3
Ω.mm), imply that it was only possible to establish a quantifiable current 

(0.1 nA < i < 20 nA) within a distance of few µm between tip and sample holder electrode 

across the sample surface, Hence i-V measurements performed for most samples were not 

successful, besides many essays having nil current detection, it was also observed some 

inconsistent pA charge/discharge loops when the sample‘s dielectric behavior allowed 

established an equivalent capacitor circuit with the PFM system. 

The samples surface generally have a non conductive barrier formed by an oxide 

and hydration adsorption layer, meaning that the tip contact must surpass this barrier, 

demanding a certain amount of over pressure besides the bias offset voltage in the tip 

contributing for its wearing. Due to the highly localized measures (<50 nm
2
) and eventual 

surface inhomogeneities it is also possible a localized or even a progressive degradation of 

the sample surface due to current leakage and eventual electrochemical reaction, making 

irreversible damage that prevent cycling through the i-V curve, therefore these tests are 

repeated in several different points of the sample surface; the data acquired is not 

reproducible and should be validated and interpreted according to the common trends 

detected in the i-V curves that became specific associated with each sample. 

Although the point effect of the probe bias voltage on the sample surface may 

induce some localized FE phase transition (as previously described for some samples), this 

phenomena is not expected since a current is established and any charge carriers injection 

is dissipated through the electrodes. In figure 11.4.18 are only summarized the coherent 

and interesting results obtained. 

The semi-dielectric nature of these manganites is patent in the delay of the current 

in relation to low bias in particular for negative voltages, as the electric potential difference 

grows between the tip and the holder electrode, more charge carriers can be injected in the 

material and a more conventional linear resistive behavior may develop. 
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Fig. 11.4.18: surface i-V curves measurements at different surface points of the monocrystalline sample 

La0.89Sr0.11MnO3 (left), polycrystalline samples Pr0.60Ca0.40MnO3 (center) and La0.95Ca0.05MnO3 (right). 

An asymmetric shape and hysteresis of the current curve in relation to the bias 

voltage applied is observable in the three samples. These asymmetries can be related to the 

different availability and mobility of the charge carriers, polarons (electrons) or holes in 

the material. In its turn, the current inversion hysteresis can be associated to the FE 

domains inversion. 

In Conclusion, for a particular class of manganites possessing C.O. properties, it is 

possible to induce localized FE metastable states corresponding to an extension of the 

phase diagram under additional thermodynamic variables that comprise bias voltage 

stimulation within restricted time and spatial frames. These non equilibrium 

thermodynamic conditions can be generated by means of PFM lithographic writing using 

contact mode and suitable bias voltage. 

The bias induced C.O. state stimulated volume near the samples surface may vary 

from 1 µm to 100 nm across depending on the intensity and time interval of the 

lithographic impingement, for a point it's assumed a half sphere spreading of the electric 

field, which involves roughly 10
7
 to 10

8
 Mn ions which are subjected to a new (ordered) 

charge redistribution and assume a new metastable structural rearrangement. Local charge 

injection by the tip (~10 nm
2
 contact area) is estimated of the order of 10

5
 electrons (within 

a few ms) and such low current cannot be detected by the ORCA SPM system. 

On the lithographic writing, the piezoresponse asymmetry on negative or positive 

bias voltage can be correlated to how the material‘s electronic structure accommodates 

additional charge built, locally injected through the PFM tip, respectively electrons or 

holes; and how these are locally and temporarily ordered and frozen within the network, 

taking advantage of the dielectric nature and C.O. mechanisms that stabilize this carriers as 

a redistribution of the Mn
3+

/Mn
4+

 ratio and Jahn-Teller distortions rearrangements 
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(polarons entrapment). Due to the correlated magnetic nature of the polarons, it leads to an 

intrinsic multiferroic behavior system. 

The localized poling effect induces a transition to a metastable phase having a 

broken inversion symmetry structure distinctive by assuming a detectable self sustained FE 

state (slow decay time) 

BEPS measurements are a useful tool to confirm and quantify the presence of 

locally induced piezo/ferroelectric parameters, mapping ferroelectric cycles and switching 

in the studied samples. The BE method described here when compared to single frequency 

SPM, enables data acquisition having unambiguous decoupling of the conservative and 

dissipative interactions, removing topographic cross-talk and allowing identification of 

non-linear responses. Local response can be probed as a function of variables such as 

electric potential, temperature, or time, giving rise to multidimensional spectroscopic SPM 

methods probing dynamic materials functionality beyond classical data acquisition. 

Combined with other techniques, like PAC, hyperfine spectroscopy and theoretical 

modeling, it can bring new insights on correlated electrons systems, opening new pathways 

to study local scale multiferroic phenomena originated on complex charge/orbital ordering 

effects in materials particularly susceptible to phase transitions under localized bias 

electrical disturbance. 

Further studies and measurements are in progress to obtain new clues to understand 

the mechanisms that underlie such complex process and optimize the technical procedures 

and materials design in order to reach room temperature stabilization of the modifications. 
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12. Thin Films deposited by RF Sputtering 

 

 

 

12.1. (La,Sr)MnO3 phase Thin Films deposited by RF Sputtering 

 

Preceding research work performed on deposition of (La, Sr)MnO3 films 

employing MOCVD method and samples characterization recurring to XRD, EDS-SEM, 

VSM, MR and MFM measurement techniques. Overall results shown that the adjustment 

of the organo-metallic precursors composition and the management of deposition 

conditions enabled to control and obtain polycrystalline thin films of the rhombohedric 

La0.7Sr0.3MnO3 manganite phase into LaAlO3 (100) and MgO (100) substrates, having 

average grain size ~ 0.2 µm, surface roughness ~13 nm, ρ ~0.1 Ω.cm at 300K and the 

distinctive Tcritical ~355 K. The unsatisfactory epitaxial growth of the film phase onto the 

substrates and the inadequacy of the MOCVD method to be employed in the deposition of 

multilayers and metallic alloys are the major limitations that compel the research to recur 

to PVD methods [12.1.1]. 

The experience gathered in the characterization and recognition of this manganite 

phase in the thin film form became an important asset that simplified the definition of 

technical objectives and interpretation of results of a new series of thin film depositions 

using Magnetron RF sputtering system. 

The experimental thin films deposition of the (La,Sr)MnO3 manganite (LSM) 

comprise some of the initial work performed with the updated RF sputtering system 

configured in section 7.2. 

The deposition conditions and glass substrates selected for the 5
th

 series of samples, 

as described in table 9.1.1, were found not to be suited to achieve proper growth of the (La, 

Sr)MnO3 phase in the different substrates, as can be observed from the XR diffractograms 

examples of figure 12.1.1. Although it was observed a partial melting of these amorphous 

substrates, no relevant chemical reaction is evident from the spectrograms and the presence 

of a policrystaline rhombohedric LSM phase can be recognized; another feature of these 

series is the insufficient annealing temperature, performed at 74º C that leads to deficient 

oxidation and presence of spurious SrO and Mn3O4 in the film. 
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Fig.12.1.1: θ-2θ XR Diffractograms for samples LSM5a/ITO, LSM5b/glass; XRD Data base patterns for 

La0.7Sr0.3MnO3 [ICSD#50712] and SrO [CPDS#3382] (bottom) 

Preliminary XRD measurements performed for the 3
rd

 series of samples suggested 

homogeneous and epitaxial manganite films that grow in the rhombohedric phase 

justifying further characterization by High Resolution XRD. 

For the sample LSM3b deposited onto MgO (100) substrate, indexing procedures 

enable to identify the rhombohedric R-3c symmetry group common peaks like (012) at 2θ 

~22.8º and (024) at ~46.5º, as observed on top of in figure 12.1.2, giving a lattice 

parameter of a =5.52 Å. The distinctive rhombohedric ―double‖ pattern due to the 

diffraction of some particular planes like (110) and (104) should not be mistaken with the 

double peaks observed in the rocking curve at 2θ ~46.5º, corresponding to a single (024) 

reflection.  
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Although the d024 remains the same, there are two slightly different alignment 

directions for the crystallites growth, revealed by the two peaks (with ΔΩ ~1º) visible on 

the rocking curve of figure 12.1.2 centre right. 
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Fig.12.1.2: HR-XRD of sample LSM3b/MgO(100); top: θ-2θ scans details at 22.8º, 43.0º and 46.5º; 

Φ scan at 2θ = 78.89º, Ω = 38.94º; centre right: Rocking curve at 2θ = 46.46º (centre left); 

XRD Data base patterns for La0.7Sr0.3MnO3 [ICSD#50712] and MgO [PDF#45-0946] (bottom). 

This dual orientated growth feature is imposed to the LSM phase by epitaxial 

adjustments to the substrate lattice; it can also be traced in the Φ scan of figure 12.1.2 at 

centre left, where appears two sets of planes (134), rotated by ΔΦ ~37º, resulting from the 

film 4 reflections at left, plus 4 reflections at right siding the MgO substrate (222) peaks. a) 

Further confirmation is shown on the reciprocal space scan presented on figure 

12.1.3, the lower peak is originated the (200) reflection from the MgO substrate while the 

film has a twined oriented growth in close directions. 

 

________________________________________________________________________________________________ 

a) Note: this scheme could also be valid to (128) planes, that have a reflection at 2θ ~78.9º, rotated by ~23º in relation to 
the similar (134) planes, but that are not in the same Φ axis. 
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Fig.12.1.3: ―Qx.Qy‖ HR-XRD of LSM3a/MgO(100) 

Similar results and interpretation are recognizable in the θ-2θ graphs and Rocking 

curves of sample LSM6a also deposited onto MgO (100) substrate as depicted in figure 

12.1.4, giving a lattice parameter of a =5.51 Å. For sample LSM6b, deposited onto LaAlO3 

(100), whose XRD graphs are depicted on figure 12.1.5, the lattice parameter a approaches 

~5.57 Å.  
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Fig.12.1.4: HR-XRD of sample LSM6a/MgO(100): θ-2θ scans details at 43.0º and 46.5º (top); Rocking 

curve at 2θ = 46.46º(top right); XRD data base patterns for La0.7Sr0.3MnO3 and MgO (bottom). 
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Fig.12.1.5: HR-XRD of sample LSM6a/LaAlO3(100) (top): θ-2θ scans details near 40º and 47º (left and 

centre); Rocking curve at 2θ = 46.0º (right); data base patterns for La0.7Sr0.3MnO3 and LaAlO3 (bottom). 

For the sample LSM3a deposited onto SrTiO3 (110) substrate, the HR-X-Ray 

diffractograms depicted on figure 12.1.6 may be identified once more to the SG R-3c. 

indexed to planes (110) and (104) at 2θ ~ 32.49º, that became distinguishable by 

performing a rocking curve from 15 to 17º in Ω range, as observed in centre left graph. 
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Fig.12.1.6: HR-XRD of LSM3b/SrTiO(110) top: θ-2θ scans details (top): Rocking curve at 2θ = 32.49º 

(centre right); Φ scan at 2θ = 58.23º, Ω = 29.12º (centre left); XRD Data base patterns for La0.7Sr0.3MnO3 

and SrTiO3 (bottom). 
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The similarity between the rhombohedric planes of the LSM phase to the cubic 

substrate planes is also substantiated by Φ scans performed for the film and the substrate as 

shows the superposition of both diffractograms seen at centre right of figure 12.1.6, where 

the (214) planes from the film lay on the (211) planes from the substrate.  

It is possible to observe a peculiar broadening of the SrTiO3 peaks patent on the θ-

2θ diffractograms; a more detailed HR-XRD represented in the reciprocal space graph of 

figure 12.1.7 enable us to recognize that the substrate itself present some crystallites 

spreading from the main (110) orientation, certainly due to maculae in the surface, giving 

rise to a distribution of related satellite peaks from the epitaxial growth of LSM phase. 

Despite of the uncertain quality of the substrate, the particular experimental 

deposition conditions lead to an effective epitaxial growth of the LSM phase, which 

follows even the minority of stray crystallites, revealing the preponderance of the substrate 

in the behavior of the film LSM phase formation. 

 
Fig.12.1.7: ―Qx.Qy‖ HR-XRD of LSM3a/SrTiO(110) 

From TEM pictures on figures 12.1.8 it‘s possible to observe on the film upper 

surface the presence of a ~20 nm jagged layer that justifies the polycrystalline diffraction 

rings in the TEM diffraction pattern of figure 12.1.9, obtained in the perpendicular 

direction to the film surface. The film seems to grow epitaxially near the substrate and 

becomes polycrystalline towards the surface. 



Multiferroic Materials 

218 

Due to the substrate square lattice symmetry in the direction 110, the epitaxy of the 

LSM phase also presents a = b ~5.48 Å in the plane parallel to the substrate surface, 

corroborating the previous two XRD Φ scans, showing the coincidence of the film and 

substrate peaks, as previously seen on figure 12.1.6. 

  
Fig.12.1.8: TEM Cross section image of sample 

LSM3a/SrTiO3(110) 

Fig.12.1.9: TEM Diffraction pattern of sample 

LSM3a/SrTiO3(110) 

SEM images from representative samples are presented in figures 12.1.10 to 13. It 

is patent from top surface images the tight reticulated arrangement of the film phase 

composed of ~50 nm grains. From the transverse fractures images it is possible to confirm 

the film surface higher rugosity of the 3
rd

 series of samples while a clear improvement on 

the film uniformity and smoothness for the 6
th

 series. 

  
Fig.12.1.10: SEM images of sample LSM3a/MgO(100): top surface (right); transverse fracture (left). 

Comparing the several samples film thickness for the same deposition conditions of 

the 6
th

 series, it is observable that the film grown on SrTiO3 substrate has ~150 nm thick, 

around 50% higher than the ~100 nm of film grown on MgO substrate, whereas the film 

grown on Al2O3 substrate has grown up to ~1 µm thick. 
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Further confirmation that the film phase growth rate noticeably depends on the 

nature of the substrate is also detected from the RBS measurements illustrated in figure 

12.1.14 of the 3
rd

 series of samples, sample LSM3a grown on SrTiO3 is ~20% thicker and 

~2% denser than sample LSM3a grown on MgO, even deposited simultaneously under 

same conditions and having similar La/Mn content. 

  
Fig.12.1.11: SEM images of sample LSM6a/MgO(100): top surface (right); cross section (left). 

  
Fig.12.1.12: SEM images of sample LSM6c/SrTiO3(100): top surface (right); cross section (left). 

  
Fig.12.1.13: SEM images of sample LSM6d/Al2O3(0001): transverse fracture (left); cross section (right ). 

The RBS chemical composition results are presented in table 12.1.1 and 12.1.2, the 

elements ratio can be traced to the target composition, with some preponderance of the 

Lanthanum over Strontium and Manganese. 
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Fig.12.1.14: RBS measurements and fittings for samples LSM3b (left) and LSM6a
 
(right) in MgO(100) 

 

thick MgO La Mn O Sr La/Mn Sr/Mn 

90 nm - 15.7 21.4 59.2 3.7 0.73 0.17 
130 nm - 16.4 21.7 56.4 5.5 0.76 0.26 
115nm - 14.9 18.3 59.8 7.0 0.81 0.38 

>425 nm 100 - - - - - - 

 

layer MgO La Mn O Sr La/Mn Sr/Mn 

728 nm 0 6.5 8.4 55.9 0.8 0.77 0.1 
114 nm 0 45.8 52.8 1.3 0.1 0.87 0.002 

- 100 - - - - - - 

Table 12.1.1: Sample LSM3b/MgO(100) RBS results Table 12.1.2: Sample LSM6a/MgO(100) RBS results 

In figures 12.2.15 and 12.2.16 are shown some illustrative graphs corresponding to 

EDS-SEM measurements summarized in table 12.1.3 for the pertinent thin film elements; 

overall results the percentage of Sr is bellow the expected 30% nominal from the target, 

pointing to a deficient incorporation of this element in the film phase. 

Sample EDS La (% at.) Sr (% at.) Mn (% at.) La/Mn Sr/Mn 

 kV      line: L L K   

LSM1a/STO(100) 20 3.97 n.a. 7.35 0.54 n.a. 
LSM1b/MgO(100) 20 5.08 0.83 6.13 0.83 0.14 
LSM2a/STO(100) 20 5.19 n.a. 8.96 0.58 n.a. 
LSM2b/MgO(100) 20 7.06 0.98 8.22 0.86 0.12 
LSM3a/MgO(100) 15 5.78 ± 0.8 0.58 ± 0.1 8.63 ± 0.5 0.67 0.07 
LSM6a/MgO(100) 15 2.21 ± 0.4 0.25 ± 0.1 3.16 ± 0.3 0.70 0.08 
LSM6b/LAO(100) 15 n.a. 0.17 ± 0.0 7.22 ± 0.3 n.a. 0.02 
LSM6c/STO(100) 15 n.a. n.a. 6.85 ± 0.3 n.a. n.a. 
LSM6d/AlO(0001) 15 2.99 ± 0.5 0.45 ± 0.2 4.72 ± 0.4 0.63 0.10 

Table 12.1.3: Chemical composition of samples from EDS (SEM) measurements. 

Only the composition of samples LSM3a and LSM6a were measured by both EDS 

and RBS methods; however, these results cannot be directly compared since RBS is depth 

sensitive while the EDS probes throughout the film thickness well into the substrate; in 

addition the composition accuracy is affected by additional factors related to the film 

surface roughness, thickness, density and the higher the electrons beam acceleration 

voltage the deeper it reaches the substrate; rendering meaningless the estimation of 

common elements both present in the substrates and films. 
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Fig.12.1.15: Examples of EDS acquisition graphs from the surface of samples identified; it is also possible 

to observe the different spectral contributions from the distinct substrates. 
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Fig.12.1.16: Surface EDS measurement (left); EDS map of LSM6d/Al2O3(0001) fracture point from 

respective SEM image in figure 12.2.14 (right). 
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Raman spectroscopy was performed in the 6
th

 series of films in order to corroborate 

the identification of the LSM phase structure [12.1.2], because the XRD characterization 

does not exclude the possibility that the usual rhombohedric symmetry could suffer some 

partial orthorhombic or tetragonal distortion due to the epitaxial growth of the film onto the 

substrates. In fact these space groups have analogous distribution of main peaks, although 

indexed to different planes they lay within the analyzed regions 2θ ~33º, ~47º and ~58º of 

the XRD diffractograms. As illustrated in the four examples of figure 12.1.17, the Raman 

spectra from the film phase (dark lines) conceals the original Raman response from the 

respective clean substrates (light lines), the intense peak detected at ~320 cm
-1

 cannot be 

interpreted as intrinsic to the LSM phase since it appears also in some of the distinct 

substrates, it rather results from the UV 325 nm laser line constructive interference with 

the sensor grid.  

 
Fig.12.1.17: UV Raman spectroscopy diagrams for samples of the 6

th
 series. 

Eventual Raman peaks originated from the LSM phase to be considered are 

identified for each sample in the respective graphs of figure 12.1.17; the most significant 

are centered at 433 cm
-1

 and 487 cm
-1

 in sample LSM6c deposited onto SrTiO3 substrate. 

These bands are usually assigned to the antisymmetric stretching (Ag) associated with the 

MnO6 Jahn Teller distortion that are normally found in the Pbnm orthorhombic manganites 
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structure; nevertheless, these modes are compatible with the R-3c structure, particularly in 

case of the La0.7Sr0.3MnO3 phase having a density of states that allow similarities between 

the bands [12.1.2], [12.1.3]. Hence, considering the lack of a more numerous and definitive 

peaks exclusive of the orthorhombic phase, it's assumed a dominant presence of the 

rhombohedric phase. 

Representative magnetization measurements as function of temperature and 

magnetic field performed by VSM are presented in figure 12.1.18. The M vs. B Graphs 

clearly show the diamagnetic contribution from substrate, masking the small FM thin film 

contribution particularly above 3-4 Tesla external field. The M vs. T measurements had to 

be performed at a relatively high B of 0.5 Tesla in order to obtain an adequate VSM signal 

from the samples; as consequence the actual thin films magnetic moment has more 

~0.25x10
-3

 emu than the observed in the respective graphs. The thin films are also 

approximately under magnetic saturation condition; hence the observed 230-240 K for the 

PM transitions can be slightly over estimated due to the imposed FM state. 
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Fig.12.1.18: VSM measurements of magnetization as function of T (left) and B (right), for samples LSM1a 

(top) and LSM2a (low) deposited onto SrTiO3 (100) substrates. 
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Figure 12.1.19 shows the magneto-resistance characterization performed only in the 

6
th

 series of samples, since they present the finest composition, structure and magnetic 

properties achieved. The temperature dependence of the resistivity without and under 0.8 

Tesla magnetic field for the samples is presented in left and the correspondent MR% vs. T 

graphs are presented on the right of the same figure. 

 
Fig.12.1.19: Magneto resistance measurements on the 6

th
 series of LSM samples: Left Voltage vs. 

Temperature graphs at 0 and 0.8 Tesla and 1 mA dc; Right: respective MR percentage vs. temperature 
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graphs. 

It is clear that the LSM phase growing epitaxially on MgO has better MR 

performance than on the SrTiO3 substrate, both in critical temperature: 268 K compare to 

257 K and maximum intensity: 33% to 29%; the LSM film deposited onto Al2O3 presents a 

significant MR response above 5% down to 100 K while the other samples drastically drop 

the MR response at 200 K, while onto the LaAlO3 substrate the MR reaches the 37% 

maximum. In practical terms the 6
th

 series of LSM phase thin films have a MR average 

critical temperature ~260 K ± 5% of an order of 10 to 30 % within a 50 K range and 

disappears above 300 K; these values should be compared to the polycrystalline 

La0.7Sr0.3MnO3 bulk phase from the target that is characterized on previous section 11.1, 

whose MR performance is much lower, only of ~6% at 300 K, reducing to ~4.5% at 350 K 

and still active at 370 K with ~3% MR. 

When evaluated whit the previous VSM magnetization measurements it is evident 

the progress of the ferromagnetic transition temperature (TC) of the thin film LSM phase 

with the adjustments of the deposition conditions in order to improve the films‘ quality. 

The magnetization is mostly dominated by the chemical composition and structural 

homogeneity of the films which dictate the ratio of Mn
4+

 to Mn
3+

 that in turn has a major 

influence in the magnetic ordering phase (FM/AFM); whereas the electric transport 

behavior depends strongly on the electrons transfer integral correlated to the manganite 

phase structure which, in its turn, is imposed by the epitaxy to the substrate lattice, in 

addition factors such as crystallographic defects, grain size and hopping effects between 

grains interfaces have also a direct role on resistivity. 

Overall results analysis indicate that the epitaxial growth of the LSM phase is 

proven more efficient onto the SrTiO3 than the other substrates, the lattices similarities 

both in planes distances and directions play a fundamental role in the film growth, as can 

attest the comparison between the respective data base diffractograms depicted on figure 

bottom of figure 12.1.6.  

The MgO, LaAlO3 and Al2O3 substrates are less suitable templates to the growth of 

epitaxial LSM phase due to the mismatch between lattices; consequently, part of the 

thermal energy of the vaporized elements from the sputtering process is channelled for 

compensate the higher Gibbs energy toll necessary to for nucleation and growth process of 
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the film phase onto the less matching substrates. Hence, less kinetic energy is available for 

diffusion of the film elements through the substrate surface and to balance the mechanical 

stress induced by the forced epitaxy to the substrate, as result the film grows in a more 

multifaceted structure having twined grains. 

On the other hand, the less demanding Gibbs energy toll for formation of the LSM 

phase onto SrTiO3 substrate means that a wider range of momentum distribution of 

elements from the plasma arriving to the substrate in will have prompt adhesion to the film 

phase, thus the superior growth rate when compared to the MgO, LaAlO3 and Al2O3 

substrates for which the distribution of species from the plasma with sufficient kinetic 

energy is reduced and more will rebound and cannot be incorporated in the film. 

The best conditions to perform thin films deposition by magnetron RF sputtering of 

the LSM phase was found empirically in the 6
th

 series of samples, where the film 

approaches the nominal composition of the target (La/Mn ~0.7 and Sr/Mn ~0.3), the 

surface presents a smooth and uniform aspect and the film grows epitaxially onto the 

substrate in a typical rhombohedral regular structure in particular with lattice compatible 

SrTiO3 substrates. 

The specific parameters were found by lowering the Argon pressure to 5 x10
-3

 

mbar, raising O2 pressure to 2 x10
-3

 mbar, setting the RF power to 73 Watt with 200 V 

bias, the substrate heater at ~700° C and ending by slow cooling in a 0.5 mbar of O2 

atmosphere. By implementing a proficient Magnetron RF sputtering system that enables a 

high degree of control of deposition parameters it was possible to achieve the successful 

deposition of high quality epitaxial thin films of the La0.7Sr0.3MnO3 phase onto SrTiO3 

perovskite substrates, opening the perspectives to further research multiferroic multilayers 

systems namely using also the La0.7Ba0.3MnO3 manganite and the FE BaTiO3. 
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12.2.  Ni2MnGa thin Films deposited by RF Sputtering (@ IENM) 

 

The objectives of this experimental work section were: i) to prove the viability of 

achieving the Ni2MnGa phase like Heusler alloy as thin films deposited by Magnetron RF 

sputtering near ambient temperatures conditions (~300 to ~400 K); ii) to determine the 

specific deposition conditions to achieve the most suited composition and crystalline phase 

of the Ni2MnGa thin films grown into PZT buffers on Si substrates. 

The first run of experimental depositions was based on a single 3‖ target available, 

with nominal composition Ni0.5Mn0.33Ga0.17. The surface of this target appears non 

homogeneous, presenting a mosaic of relatively large grains in different gray shades and 

textures as shown in figure 12.2.1. Although the chemical composition of this target was 

far from the conventional Ni0.5Mn0.25Ga0.25 stoichiometry for producing functional shape 

memory Heusler alloy films, it was possible to find the most adequate (relative) deposition 

parameters to obtain films onto Si (100) substrates having the similar crystalline phase like 

of the metallic Ni2MnGa alloy. In this initial run of depositions, only basic XRD structural 

characterization was foreseen. 

The deposition parameters to be studied included the magnetron power, Argon 

pressure, substrate temperature and position and how these influence the crystallization of 

the alloy thin films onto Si substrates. 

  
Fig. 12.2.1: Photograph of the single 3‖ target 

available for first run of depositions, having 

nominal Ni0.5Mn0.33Ga0.17 composition. 

Fig. 12.2.2: Photograph of a film delaminating from 

substrate after being under temperatures above 400° 

C or high fields during magnetic measurements. 
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The first sets of experimental results indicate that high pressure during sputtering 

reduces the plasma energy suppressing crystallization and leading to film detachment as 

exemplified in figure 12.2.2. On the other hand, the plasma becomes unstable under very 

low Ar pressure which results in the growth of inhomogeneous films. Some investigations 

were performed to study the film crystallization at different off-axis distances. Equivalent 

parameters were found for the films deposited at stabilized substrate temperature of 10° C, 

as well as around 100° C under plasma heating effect. 

Basic θ-2θ scans exemplified on figure 12.2.3 indicate the presence of a single 

Bragg peak between ≈42.5 to ≈43° which can be indexed to the (220)C [12.2.1] austenitic 

cubic phase of the alloy [12.2.2] or as (112)T tetragonal setting of Ni2.16Mn0.84Ga [12.2.3]. 
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Fig. 12.2.3: Comparative diffractograms of Ni2MnGa 

phase peak indexed to (220)C or (112)T. 

Fig. 12.2.5: Dependence of film thickness with 

deposition time x power and substrate position. 

The cubic cell parameter estimated for these films between a ≈5.79 to ≈5.94 Å 

cannot be attributed to the epitaxial effect of the smaller lattice parameter of the Si 
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substrate a ≈5.431 Å and in fact corroborates the higher concentration of Mn in relation to 

the stoichiometric Ni2MnGa phase [12.2.4]. 

The peak intensity, sharpness and position depends mainly on the RF power 

suggesting that the additional energy of the plasma increases the crystallization of the film 

during sputtering and induces the formation of other phases. In fact, with a RF power of 

300 W a Bragg peak appear at 49.5º which can be indexed as (111)C of the Mn0.8Ni0.2 alloy 

cubic phase [12.2.5]. It means that, in addition to the composition of the film, the structure 

and lattice parameters are strongly dependent on the RF power applied as depicted in graph 

from figure 12.2.4.  

Films thickness was measured with a conventional profilometer, for an on-axis 

substrate position and under 300 W magnetron power the films have ~8.5 µm for a 90 min 

sputtering time under different Argon pressures, which indicates a deposition rate ~95 

nm/min. figure 12.2.5 film illustrates the decrease in the deposition rate as consequence of 

the relative off-axis position of substrate. 

At a later time this experimental work was complemented with a more 

comprehensive analysis of some previously obtained samples; it was possible to perform 

HR-RXD, SEM, and EDS at the University of Aveiro, while SQUID measurements were 

made in Duisburg University, Germany. 

A more in-depth characterization of one film was performed by HR-XRD, at a low 

angle measurement Ω = 2º, as represented in figure 12.2.6 curve (c). It indicates 

segregation of Mn0.8Ni0.2 alloy [12.2.5] and Mn1.5Ni1.5O4 [12.2.6] at the surface of the film 

and even the presence of metallic gallium [12.2.7]. In an attempt to identify the Ni-Mn-Ga 

phases in one of the films deposited on bulk silicon substrate, more careful structure 

investigations were performed using high resolution four-circle diffractometer. The 

orientation of the films was investigated by Φ scans for an asymmetrical reflection (Ψ = 

45º) at 2θ = 63.67º which corresponds without any doubts to the (400)C peak of the cubic 

phase of the Ni2MnGa phase. An example of such a 3D pole figure is given in Figure 

12.2.7 for a film grown on Si (100). Four peaks are clearly observed at 90° from each 

other, indicating a fourfold symmetry as expected for the (220)C oriented cubic film of 

austenite Ni2MnGa alloy. Overall XRD studies showed good crystallization and deduced 

cubic lattice parameters are presented on table 12.2.1. 
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Fig. 12.2.6: XRD scans performed on NMG17 

sample: (a) bare Si substrate, (b) film, (c) grazing 

incidence at Ω = 2º to analyze film surface. 

Fig. 12.2.7: Pole figure around the (400)c peak (  = 

44.3º to 47.3º at 2  = 63.67º) confirming film cubic 

symmetry oriented in (220)C onto Si (100) substrate 

SEM examination shows overall smooth and flat surface quality of deposited films, 

(figures 12.2.8 and 12.2.9) with a preferential and regular columnar growth of the metallic 

film; respective EDS measurements confirm the relatively higher Mn composition of film, 

as listed on table 12.2.1. 
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Fig. 12.2.8: SEM image of sample NMG14 cross section and respective surface EDS measurement. 
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Fig. 12.2.9: SEM image of sample NMG17 cross section and respective surface EDS measurement. 
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Next step in this work was to study the growth, adhesion, and properties of the Ni-

Mn-Ga films deposited onto a (100) oriented PZT thick film; this perovskite layer was 

previously deposited onto Si (100) substrates having a top LaNiO3 (LNO) semiconductor 

thin film serving as epitaxial buffer and bottom electrode for the PZT film, as described in 

[12.2.8], using a dedicated magnetron sputtering Addax system. 

The standard quality of these PZT films was verified using SEM and XRD 

analyses. The performed measurements confirmed that the thickness of this buffer layer is 

about ~1 µm. Good surface quality is patent in Figure 12.2.10. The films were deposited 

onto this perovskite type buffer applying the previously optimized sputtering parameters 

used for the deposition on Si (100) substrates. With the aim to compare the data with our 

previous results obtained on bare Si (100) substrates, extensive structural investigations 

were performed on NMGPZT6 sample. 
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Fig. 12.2.10: SEM image of PZT buffer surface on Si substrate and respective EDS measurement. 

 

  
Fig. 12.2.11: SEM image of sample NMGPZT1 surface and respective EDS map showing the several layers. 
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Fig. 12.2.12: SEM image of sample NMGPZT6 cross section and surface showing the layers stacking. 

 

  

Fig. 12.2.13: SEM image of sample NMGPZT6 surface and respective EDS map showing the several layers. 

Using high resolution four-circles diffractometer a θ-2θ measurements of Ni-Mn-

Ga films deposited on PZT buffer layer indicate the presence of both structures (cubic and 

tetragonal). The orientation of the films was also investigated by Φ scans for two different 

asymmetrical reflection Ψ = 41 to 50º at 2θ = 62.71º which corresponds to the (400) 

parameter of the cubic phase of the Ni2MnGa phase alloy [12.2.2] (Figure 12.2.14 a) and Ψ 

= 45º to 50º at 68.38º which corresponds to the (220)T parameter of the tetragonal structure 

of Ni2.16Mn0.84Ga [12.2.3] (112)T-oriented on the substrate (Figure 12.2.14 b). In both cases 

four peaks are observed separated at 90°, indicating the specific fourfold deconvolution 

expected for each kind of symmetry group. Thus a part of the film crystallizes in the 

martensitic phase with lattice parameters a = 3.846 Å and c = 6.672 Å. This study shows 

that both structures are present in the films; however, this kind of measurements is not able 

to determine the predominant phase in the film. 

Si 

PZT 

Ni-Mn-Ga 
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(c) 

 

Fig. 12.2.14: (a) Pole figure recorded around the (400)C peak (  = 41 to 50º at 2  = 62.71º) confirming cubic 

symmetry of the film (220) oriented on the PZT buffer Si (100) substrate. (b) Pole figure recorded around the 

(220)T peak (  = 45º to 50º at 2θ = 68.38º) confirming tetragonal symmetry of the film (112)-oriented on the 

PZT buffer. (c) 3D Pole figure detail of the (400)C peak at 2θ = 44.4° 

In the sequence of the experimental depositions described in table 9.2.1, the most 

relevant composition and structural results are systematized on table 12.2.1. The thickness 

and roughness of the prepared films were also verified with a profilometer. The graphs of 

figure 12.2.15 enable to observe that the Argon atmosphere has some noteworthy 

discriminator effect on the elements travel from the target through the plasma; probably by 

an added screening effect over the dominant vapor of Ni atoms than that of the Mn and Ga; 

on the other hand, the effect of RF magnetron power in the 50 to 300 watt range has a 

negligible effect (<0.5%) on the thin film composition. 
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Fig. 12.2.15: Thin films composition dependence with Argon pressure and RF power during deposition. 
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Observations: 

Ni % Mn % Ga % 

NMG01 Si (100) 2.55 55.66 30.18 14.16 5.917 0.450 113  

NMG02 Si (100) 5.56 54.04 31.17 14.78 5.971 0.262 1124  

NMG03 Si (100) 1.14 50.63 32.30 17.07 5.844 2.684 64  

NMG04 Si (100)     n.a.   no crystallization 

NMG05 Si (100)     n.a.   no crystallization 

NMG06 Si (100) 8.44 52.22 32.09 15.63 5.987 0.358 2778  

NMG07 Si (100) 3.58 57.54 29.02 13.45 5.970 0.642 899  

NMG08 Si (100) 8.93    5.994 0.640 1045  

NMG09 Si (100)     n.a.   no crystallization 

NMG10 Si (100)     n.a.   crushed 

NMG11 Si (100) 8.75 51.95 32.69 15.36 n.a.   no crystallization 

NMG12 Si (100) 5.94 52.32 31.56 16.12 n.a.   no crystallization 

NMG13 Si (100) 1.55 54.05 29.29 16.66 n.a.   no crystallization 

NMG14 Si (100) 2.41    5.936 1.440 1378  

NMG15 Si (100)     n.a.   no crystallization 

NMG16 Si (100)     5.953 1.153 678  

NMG17 Si (100) 3.96 53.54 31.09 15.37 5.959 1.122 4238 good crystallization 

NMG18 Si (100)     5.947 1.269 380  

NMG19 Si (100)  51.02 32.28 16.69 5.956 0.788 91  

NMG20 Si (100)     n.a.   no crystallization 

NMG21 Si (100)  51.99 31.73 16.28 5.961 0.589 73  

NMG22 Si (100)     5.939 0.725 24  

NMG23 Si (100) 0.93    5.944 0.318 533  

NMG24 Si (100) 0.52 54.48 31.69 13.83 5.942 0.571 23  

NMGPZT1 Si/LNO/PZT (100) 3.98 53.48 31.3 15.26 5.753 0.232 3350 0.50 μm PZT buffer 

NMGPZT2 Si/LNO/PZT (100) 2.92    5.769 0.194 188  

NMGPZT3 Si/LNO/PZT (100)  53.22 30.1 16.68 5.772 0.174 191  

NMGPZT4 Si/LNO/PZT (100) 1.06    5.772 0.196 465  

NMGPZT5 Si/LNO/PZT (100) 0.90 54.85 32.10 13.07 5.770 0.194 403  

NMGPZT6 Si/LNO/PZT (100) 0.62    5.763 0.239 8127 0.75 μm PZT buffer 

Table 12.2.1: List of samples deposited by RF Magnetron Sputtering from Ni0.50Mn0.33Ga0.17 target. 

To improve the control of the film composition, the second step of investigation 

consisted of depositing Ni-Mn-Ga films by co-sputtering from three complementary 

targets: Ni, Mn, and Ni:Ga (50:50), which allowed to vary the elements ratio of the 

sputtered film in a wide range of concentrations. Since the physical properties of the Ni-

Mn-Ga alloy depend strongly on composition, an extensive empirical calibration of 

deposition parameters is required to obtain the desired composition of the films. Several 

trial samples were deposited at different RF power ratios applied to each magnetron and 

the composition of the films grown was measured using EDS analysis.  
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Under these specific conditions, with three targets operating with respective 

magnetron power PNi= 130, PMn= 244, PNiGa= 300 W, and Ar pressure of 10 mTorr, it was 

possible to achieve a film composition of Ni2.16Mn0.98Ga0.98 as estimated by EDS. 

Examples of surface morphology, microstructure, and cross-section of such a near 

stoichiometric sample are presented in Figure 12.2.16 to 19. SEM images of the film cross-

section show a thickness of ~3 µm for a deposition time of 30 min which indicates a 

sputtering rate of ~100 nm/min. Furthermore, XRD study also confirmed the presence of 

Ni2MnGa phase with cubic structure. 

All studied films demonstrated typical behavior of Ni-Mn-Ga alloy, even though 

the respective magnetization is very low in comparison with similar films deposited by 

other methods at much higher temperatures [12.2.9]. Figures 12.2 20 and 12.2.21 illustrate 

two examples of SQUID measurements of samples, after subtracting the diamagnetic 

contribution of substrates. Magnetization is lower than 0.1 emu/g for films grown on bare 

  
Fig. 12.2.16: SEM image of sample NMG38 over a 

fracture zone. 

Fig. 12.2.17: SEM image of sample NMG44 over a 

fracture zone. 

 

 

 

 
Fig. 12.2.18: SEM image of sample NMG40 over a 

fracture zone. 

Fig. 12.2.19: SEM image of sample NMG40 over a 

polished cross section. 



Multiferroic Materials 

236 

Si substrate (inset of figure 12.2.20) and around 5 emu/g for the film grown on Si with 

LNO/PZT buffer layer (figure 12.2.21) while bulk Ni-Mn-Ga alloy magnetization can 

reach 70 emu/g [12.2.10]. This possibly means that the films are mostly composed of the 

cubic Ni2MnGa alloy. However, no anomalies are observed in the temperature dependence 

of the magnetization in the range 10-300 K measured under sufficiently weak (1 kOe) 

magnetic field. (figure 12.2.20 and inset of figure 12.2.21). These measurements also 

confirmed that the transition to the paramagnetic phase is above room temperature.  

The weak magnetization of the films can be due to the fact that the film is mostly 

composed of the cubic Ni2MnGa alloy phase, to significant disordering of Ni, Mn and Ga 

sublattices, or to partial segregation of Mn0.8Ni0.2 alloy that contributes to lower Mn 

content in the Ni-Mn-Ga phase. In spite of the low magnetization, the films still exhibit 

magnetostrictive deformation under elevated magnetic field (>1 Tesla) resulting in the 

visible delamination of the films from the substrate during measurements (Figure 12.2.2). 

Annealing experiments performed on the films at T ~300 ºC showed that films 

delaminate from the substrate. This behavior is probably induced by the expected 

martensite-austenite phase transition that occurs in the Ni2MnGa phase-like film while the 

parameters of the substrate remain constant. 
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Fig. 12.2.20: Representative temperature dependence 

of magnetization of a Ni-Mn-Ga film on Si substrate; 

in Zero Field cooling (ZFC) and Field cooling (FC) 

modes under 1 kOe magnetic field.  

Inset: M vs. H hysteresis loops at 10 and 100 K. 

Fig. 12.2.21: Hysteresis loop of representative Ni-

Mn-Ga film on Si/LNO/PZT substrate. 

Inset: M vs. T dependence under 1 kOe. 
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A mechanism of the film damage at magnetic measurements might be similar to 

that under heating described above. This behavior indicates a clear potential of such films 

for multiferroic applications in which high deformation (either with increasing temperature 

or with magnetic field) can be used in the cantilever-type structures or freestanding films. 
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Ni 

(%) 
Mn 

(%) 
Ga 

(%) 

NMG25 Si (100) 0.49 55.93 12.20 31.83 5.740 2.586 588 

NMG26 Si (100) 0.47 56.46 12.27 31.26    

NMG27 Si (100) 1.34 58.01 14.63 27.36 5.831 1.954 2742 

NMG28 Si (100) 1.09 58.65 14.61 26.74    

NMG29 Si (100) 1.63 60.01 13.91 26.09    

NMG30 Si (100) 1.95 60.34 13.68 25.98    

NMG31 Si (100) 1.73 58.78 23.17 18.06 5.884 1.464 1455 

NMG32 Si (100) 1.46 62.02 16.99 20.98    

NMG33 Si (100) 0.30 47.76 2.75 49.49    

NMG34 Si (100)  51.77 5.04 43.19    

NMG35 Si (100)  47.56 32.00 20.45 5.813 0.740 1011 

NMG36 Si (100)        

NMG37 Si (100)        

NMG38 Si (100)  45.90 33.27 20.83 5.796 0.656 2367 

NMG39 Si (100)        

NMG40 Si (100)  53.24 23.40 23.36 5.788 0.802 2172 

NMG41 Si (100)        

NMG42 Si (100)     5.870 0.765 825 

NMG43 Si (100)        

NMG44 Si (100)  49.74 8.68 41.58 5.827 0.953 143 

NMG45 Si (100)        

PZTNMG6 Si/LNO/PZT (100)  59.24 13.96 26.8 5.775 0.214 2893 

PZTNMG8 Si/LNO/PZT (100)        

PZTNMG9 Si/LNO/PZT (100)  50.39 25.7 23.9 5.770 0.218 3783 

PZTNMG10 Si/LNO/PZT (100)        

Table 12.2.2: Samples deposited by RF Magnetron co-sputtering from 3 targets: Ni, Mn and Ni0.50Ga0.50. 

After comparing more than fifty samples prepared under different deposition 

conditions and primarily characterized by XRD and EDS analysis, it became possible to 

approach the desired composition and structure for the Ni-Mn-Ga films deposited on-axis 

geometry, and low Ar pressure (10 mTorr) at preferably high RF power (>200 W). 

From the experimental depositions described in table 9.2.2, the resulting thin films‘ 

data is compiled on table 12.2.2. As can be observed in the graphs of figure 12.2.22 it is 

possible to relate the films composition to the ratio between each magnetron RF power and 

respective target: [Ni]/[Ga] ~ 2.23*(PNi/PNiGa) and [Mn]/[Ga] ~ 1.3*(PMn/PNiGa). 
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Fig. 12.2.22: Graphs of dependence of composition with RF magnetron power for three targets co-sputtering. 

As the film/substrate adhesion is not yet optimized, the structural 

austenitic/martensitic transformation usually leads to the delaminating of the films, either 

in the cases when the crystallization takes place above TM under annealing, and the 

structural phase transition occurs during cooling, or in the cases the intense magnetic field 

causes the transformation. The expansion of the unit cell along c-axis coming from this 

phase transition is compensated by a decrease of a and b lattice parameters which will 

result in a twinning of the Ni-Mn-Ga alloy [12.2.11] not accompanied by the rigid Si 

substrate.  

An article [12.2.12] was published based on these experimental results and further 

research is carried out autonomously in the CNRS-IEMN center. 
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12.3 . Ni2MnGa thin films deposited by RF Sputtering (@ UA) 

 

As listed in table 4.5.1 and table 12.3.1, most research performed so far on 

Ni2+xMn1-xGa Heusller alloy, either in bulk or thin film form, recurs to a variety of sample 

preparation methods that are generally chemically constrained to a single precursor or 

target composition and use synthesis or annealing temperatures above 800º C. 

Composition (at. %) Preparation method Film thick T annealing TMartensitic TCurie MSat  Ref. 

Ni Mn Ga  Substrate º C K K 
emu

/cm
3 

 

55.0 20.0 25.0 arc melting ingot 827 334 334  [4.5.8] 

58.0 16.8 25.6 arc melting ingot 827 508 331  [4.5.8] 

58.8 16.5 24.5 arc melting ingot 827 537 320  [4.5.8] 

53.6 23.4 23.0 1 target RF sputtering 0.1 µm, Al2O3 800 377 354 438 [12.2.10] 

53.6 23.4 23.0 1 target RF sputtering 0.4 µm, Al2O3 800 343 346 500 [12.2.10] 

53 22 25 arc-melting ingot  275 318 410 [12.2.11] 

55 20 25 arc-melting ingot  319 306 352 [12.2.11] 

54.9 23.8 21.3 solid state at 980º C ingot 800 541 360  [12.3.10] 

54.3 20.5 25.2 Induction melting ingot  276 341  [12.3.11] 

50 25 25 1 target DC sputtering 0.1 µm, Al2O3 500 276 360 450 [12.3.12] 

50 25 25 1 target DC sputtering 0.1 µm, MgO 500 220 360  [12.3.12] 

56.4 21.8 21.8 1 target DC sputtering 0.1 µm, Mica 800 330 350 500 [12.3.13] 

50 25 25 1 target MBE 0.5 µm, GaAs 585  350 200 [12.3.14] 

55 23 22 1 target PLD 0.2 µm, Si 500 270 340 380 [12.3.15] 

Table 12.3.1: Comparison of critical properties for similar Ni2+x+yMn1-xGa1-y composition samples prepared 

by different methods. 

In this new series of thin films samples, the experimental depositions, 

measurements and results analysis take advantage of the preceding work developed in the 

IENM labs described in the previous section, demonstrating that it is possible the 

formation of the Ni2MnGa crystalline phase onto Si substrates and oriented PZT buffers 

close to room temperature. This new research path was carried out at the Dep. of Physics 

of Aveiro University, performing thin film deposition of the Ni2+xMn1-xGa phase 

magnetostrictive Heussler alloy by RF magnetron co-sputtering from two complementary 

targets, Ni50Mn50 and Ni50Ga50, onto a variety of substrates at relatively low temperatures 

(>100º to <550º C) as described in table 9.2.3. This investigation also intended to 

recognize the most suitable deposition conditions to achieve high quality epitaxial thin 

films of the Ni2+xMn1-xGa alloy within the composition 0.1< x <0.3 onto the different 

substrates in order to enhance the magnetostrictive properties and the martensitic transition 

temperature.  
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Experimental work first focused on SEM characterization and representative 

images of cross sections and upper surfaces are presented in figures 12.3.1 through 12.3.3. 

Comparison between overall surface and cross section of different samples series, 

identified in table 9.2.3, attest that films deposited onto substrates at relatively higher 

temperature (293º C for NM1g sample or 43º C for sample NM2g) reveal superior quality 

in terms of thickness uniformity, surface smoothness and crystallites growing; this 

temperature parameter has a more evident influence than the effect of the different 

substrates in the films texture, as can be seen when comparing samples within each series.  

  

  

Fig. 12.3.1: SEM cross sections images of samples NM1g (top left) and NM2g (top right) onto glass 

substrate and of sample NMG12b onto Si(100) substrate. 

In figure 12.3.2 it is possible to observe for the 10
th

 series of films the effect of a 

small Oxygen contamination during deposition process at 420º C, leading to an amorphous 

microstructure and a visibly low gloss film; in figure 12.3.4 it is possible to compare the 

relevance of deposition time on layer thickness, crystallization and continuity of the film 

phase; insufficient exposure (<20 min, as in the case of series NMG13) leads to incomplete 

coverage of the substrate, as some 100-200 nm gaps in the film surface are visible. 

NM1g / glass NM2g / glass 

glass glass 

NMG12b / Si NMG12b / Si 

Si 
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Longer deposition time (>90 min) leads to nucleation of the Ni-Mn-Ga phase into 

crystallites <100 nm size. 

  

  

Fig. 12.3.2: SEM images comparison of samples surface deposited onto Al2O3 (0001) substrates: NMG10a 

(top left), NMG11a (down left) and onto Si (100) substrates: NMG10b (top right), NMG11b (down right). 

 

  

Fig. 12.3.3: SEM images comparison of samples surface deposited onto SrTiO3 (100): NMG11d (left) and 

NMG13d (right) 

NMG10a / Al2O3 NMG10b / Si 

NMG11a / Al2O3 NMG11b / Si 

NMG11d / SrTiO3 NMG13d / SrTiO3 



Multiferroic Materials 

242 

Table 12.3.2 summarizes some relevant preliminary observations of the produced 

thin films samples. The chemical composition measured by EDS-SEM is displayed as 

function of the magnetrons power ratio applied to targets, as can be seen in figure 12.3.4: 
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Fig. 12.3.4: Graph relating the thin film chemical composition with the co-deposition power ratio of the 

targets defined as X = P(NiMn)/[P(NiMn)+/P(NiGa)]. 

It is patent that the relation between films composition and the sputtering power 

applied to the respective targets is not linear; binary alloy films depositions performed at 

different power feed and temperatures made from single targets, either Ni50%:Ga50% or 

Ni50%:Mn50% (atomic ratio), result for the respective thin film composition outcome in a 

roughly ~5% excess of Mn over Ni and ~5% of Ni over Ga; furthermore, within the 

experimental parameters used (0.5 < Ptarget/Starget < 1 W.cm
-2

; 10
-3

 < PArgon < 10
-2

 mbar; 40 

< Tsubstrate < 540º C) it became evident that the efficiency of the film deposition process in 

this co-focal horizontal on-axis geometry from the NiMn target was barely ~65% than that 

from the NiGa target. 

These experimental results enable to effectively achieve a control over the 

stoichiometry of Ni-Mn-Ga thin films by managing the magnetrons feed the power ratio 

between targets defined as X= PNiMn/(PNiGa+ PNiMn); consequently, in order to achieve a 

composition near the intended Ni55Mn20Ga25, this ratio was found within 0.50 to 0.52. 
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Film 

Thick 

(nm) 

Error 

±(nm) 

Composition (EDS) 

Observations Ni 
(%) 

Mn 
(%) 

Ga 
(%) 

NG1g glass 45 1 55.4 0 44.6 Films appear uniform with shine metallic mirror 
like aspect NG2g glass 103 5 56.6 0 43.4 

NG3g glass 36 3 56.8 0 43.2 

NM1g glass 455 5 41.0 59.0 0 Film has semi gloss brown color 

NM2g glass 200 5 42.3 57.7 0 Films appear uniform with shine metallic mirror 
like aspect NM3g glass 103 7   0 

NM4g glass 36 2   0 

NMG01g glass 111 4 54.3 20.5 25.2 Sample heater oscillating ±10 C and shut down. 

NMG02g glass 90 6 54.2 20.7 25.1 Films appear uniform with shine metallic mirror 
like aspect NMG03g glass   54.9 23.7 21.4 

NMG04g glass 35 1 55.4 21.9 22.7 Sample heater shut off during deposition 

NMG05g glass   55.8 26.1 18.1 Films appear uniform with shine metallic mirror 
like aspect NMG06g glass   55.4 28.0 16.6 

NMG07g glass 196 6 55.3 23.6 21.2 

NMG08g glass   54.0 24.4 21.6 

NMG09a Al2O3 (0001) 80  53.5 19.7 26.8 Due to overload of magnetron, successive 
system power shut down occur. 

Plasma interruption and restart occur 5 times 
during deposition procedure. 

NMG09b Si (100) 80  53.3 19.9 26.8 

NMG09c SrTiO3 (100)      

NMG09d MgO (100)      

NMG10a Al2O3 (0001)   52.7 18.5 28.9 Error due to O2 gas leak into the chamber 
through mass flow controller. 

Resulting films show smooth surface but appear 
in a semi gloss brown color. 

NMG10b Si (100)   53.3 18.9 27.8 

NMG10c SrTiO3 (100)   54.5 19.1 26.4 

NMG10d MgO (100)   54.0 18.9 27.1 

NMG11a Al2O3 (0001)   56.4 18.9 24.6 Films appear uniform with shine metallic mirror 
like aspect NMG11b Si (100)   55.5 19.6 25.0 

NMG11c SrTiO3 (100)   55.8 18.7 25.5 

NMG11d MgO (100)   55.3 19.7 25.0 

NMG12a Al2O3 (0001)   56.2 18.9 24.9 Films appear uniform with shine metallic mirror 
like aspect 

Thickness interpolated by SEM cross section 
NMG12b Si (100) 120 10 55.7 18.6 25.7 

NMG12c SrTiO3 (100)   55.1 16.3 28.7 

NMG12d MgO (100)   57.1 21.2 21.7 

NMG13a Al2O3 (0001) 31 1 54.8 19.0 26.2 Power failure, deposition time limited to 17 min. 

Thinner films having a metallic semitransparent 
aspect 

NMG13b MgO (100) 24 1 57.8 20.9 21.3 

NMG13c SrTiO3 (100) 35 1 56.2 18.6 25.2 

NMG13d Si (100) 10   a) 1 54.7 17.9 27.4 

Table 12.3.2: List of samples and respective thickness estimated by XRR measurements; composition results 

obtained by EDS-SEM and observation of overall visual aspect and occurrences during deposition procedure. 

________________________________________________________________________________________________ 

a) Note: This thickness value corresponds most probably to the refraction bands originated from the common SiO2 layer 
over Si substrate and not from the film itself. 
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Figure 12.3.5 gathers examples of XRR measurements performed in samples. Thin 

film thickness was estimated recurring to the software X’Pert Epitaxy 4.1
©

 that performs a 

simple average of the distance corresponding by the Bragg Law to the angle pace between 

successive fringes identified in the diffractograms.  
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Fig. 12.3.5: X-Ray Reflectometry of some of the deposited thin film samples 
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Accurate estimation of thickness requires a simulation model that includes the film 

density and more precise XRR measurements with a rigorous alignment of the XRD 

goniometer in a grazing ―low angle‖ with the thin film sample, this experimental condition 

is not always possible to achieve since the XRD systems used are not yet equipped with 

specific XRR auxiliary devices that allow automated measurements, thus results in table 

12.3.2 are not successfully extended to all samples; nonetheless it is possible to recognize a 

trend between the film thickness and the key conditions used during deposition, namely, 

time x magnetron power feed and substrate temperature, as represented in figure 12.3.6. 

Typical rate of deposition for the conditions used for samples of the series 08 to 13 was ~1 

nm/min. 

Conventional XRD measurements of 

the samples enable a basic structural analysis 

of the deposited thin films and to recognize 

the eventual epitaxial effect of the respective 

substrate. 

Figure 12.3.7 shows some of the 

diffractograms obtained from the first series 

of samples deposited in plain glass substrates. 

As expected, the amorphous structure of this 

substrate does not favour the ordered growth 

of the Ni-Mn-Ga phase.  

The deposition parameters (Tsubstrate <290º C, ∆tdeposition <50 min, Ptarget/Starget >2 

W.cm
-2

) selected for samples NMG 01g, 02g and 03g were proven inadequate to allow any 

crystallization of the alloy phase. Once deposition conditions were adapted to Tsubstrate 

>370º C, ∆tdeposition >60 min, Ptarget/Starget ~1 W.cm
-2

, it was possible to discriminate a 

couple of XRD peaks characteristic of the Ni2MnGa phase like alloy; the tetragonal (112) 

at 2θ ≈43º [12.3.2] and the cubic (220) at 2θ ≈44º [12.3.3]. Clearly the NMG06g and 

NMG08g films (Tsubstrate ~450º C) present the concomitance of both phases, in comparison 

NMG07g film (Tsubstrate ~150º C) present a dominance of the tetragonal phase, possibly 

influenced by the limited substrate temperature. 
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Fig. 12.3.6: 3D graph of thin films thickness in 

relation to deposition time, magnetron power 

and substrate temperature. 
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Fig. 12.3.7: XRD diffractograms of the series of samples deposited onto glass substrate. 

XRD scans from the different series of films deposited onto Al2O3 (0001) substrates 

are shown in figure 12.3.8. The strong and sharp reflection distinctive of the (006) planes 

from the substrate can be observed at 2θ ≈41.7º [12.3.4]; the broadening of the peak at 2θ 

≈43.5º observed in the diffractograms can be explained by the convolution of the 

reflections from the (220) cubic planes and the (112) tetragonal planes of the Ni2MnGa 

phases. 
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Fig. 12.3.8: XRD diffractograms of the series of samples deposited onto Al2O3 (0001) substrate. 

In the case of sample NMG12a it is possible to observe a displacement of the 

reflections group centre, suggesting a larger contribution of the cubic Ni2MnGa austenite 

phase, whereas on sample NMG09a and NMG13a the tetragonal martensitic phase seems 

more preponderant; the amount of each phase could be correlated to the area ratio between 

the peaks, however this information remains qualitative since it is expected that the films 

are only partially crystalline and contain a significant amount of amorphous alloy. 
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The deposition conditions selected for the NMG12 series of samples, namely lower 

substrate temperature (~400º C) and lowest Argon pressure (~5 10
-3

 bar), seem to favour 

the growth of the cubic Ni2MnGa austenite phase over the tetragonal phase. Under the 

described conditions the two phases do not seem to be concomitant in each sample; figure 

12.3.9 compares the appearance of the (110) tetragonal reflection at 2θ ≈32.8º in NMG09b 

sample while in NMG12b sample prevails a reflection at 2θ ≈44.1º indexed to the (220) 

planes of the cubic phase. The equivalent planes orientation of both phases growth 

confirms the role of the Si [12.3.5] substrate structure in the epitaxial growth of the film 

leading to a ~5% tightening of the alloy cell parameters when compared to the bulk form. 
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12.3.9: XRD diffractograms of NMG09b and NMG12b samples deposited onto Si (100) substrates. 

XRD diffractograms of the series of thin films deposited onto SrTiO3 (100) or (110) 

substrates [12.3.6] are depicted in figure 12.3.10. Sample NMG13c diffractogram confirms 

the low amount of alloy deposited and poor crystalline formation by the presence of an 

insipient peak at 2θ =43.5º. The Oxygen contamination detected on sample NMG10c may 

justify the deficient spectra found. 
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Fig. 12.3.10: XRD diffractograms of the series of samples deposited onto SrTiO3 substrates. 

Although indexation to the cubic or the tetragonal phases is not straightforward for 

the XRD diffractograms from samples NMG09c and NMG12c, the differences observed 

worth further analysis. A more distorted structure such as the monoclinic I12/m1 phase of 

the Ni-Mn-Ga alloy [12.3.7] could be associated as (112) peaks at 2θ ≈51º; for sample 

NMG09c it can also justify the reflections from (021) planes near 2θ ≈40º and (222) or 

(113) at 2θ ≈73º. 
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As for sample NMG12c the peak found at 2θ ≈44º could be related either to the 

(200) and (002) reflections or due to the concomitance with the previous referred cubic 

phase. It is not utterly clear if these two samples have equivalent monoclinic phases. 

Finally for the thin films deposited onto MgO [12.3.8], the diffractogram present in 

figure 12.3.11 suggests the presence of the cubic Ni2MnGa phase, although the overlap of 

the XRD reflections from the substrate (100) planes with the main peaks of the tetragonal 

and cubic SG difficults the distinction and does not exclude the occurrence of both phases. 
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Fig. 12.3.11: XRD diffractograms of the NMG12d sample deposited onto MgO (100) substrate. 

These collections of results reveal that the Ni2+xMn1-xGa Heusller alloy can be 

deposited in thin film form via RF magnetron sputtering under the deposition conditions: 

Tsubstrate ~450º C; ∆tdeposition ~90 min; Ptarget/Starget ~1 W.cm
-2

; PArgon ~5 μbar. Depending on 

the epitaxial correlation to the substrate used the alloy can form initially amorphous, 

tetragonal or even monoclinic phases; as the film thickens the epitaxial effect of the 

substrate is attenuated and the alloy tends to stabilize in the FM austenite cubic phase, 

hence this cubic phase can be concomitant with previously formed phases. 

Due to the small magnetic signal found in the samples, the magnetization 

measurements were performed via SQUID. Original data exemplified in figure 12.3.12 and 

12.3.13 reveal that the substrates significant diamagnetic contribution subtracts to that of 

the alloy ferromagnetic signal below ~340 K and paramagnetic response beyond. 
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Fig. 12.3.12: Graphs of Magnetization vs. Temperature for samples NMG06g; and NMG12 series (left); 

respective detail showing the magnetic transition (right) once subtracted the diamagnetic contribution. 
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The similarity between the films phases, deposited under comparable conditions, 

within the NMG12 series and the NMG06g film is attested by the magnetization 

dependence in temperature, as can be observed in figure 12.3.12; the magnetization drops 

rapidly above ~335 K, and the films become paramagnetic above TC ~350 K. The smooth 

magnetic increase detected below ~80 K for sample NMG06g and at ~64 K for samples 

NMG12b and NMG12d could be related to the formation of modulated superstructures 

with orthorhombic symmetry [4.5.1] justifying the strong enhancement of the FM signal at 

5 K. 
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Fig. 12.3.13: SQUID measurements M vs. H for samples NMG06g; 13c and 12a, b, c, d. 
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Figure 12.3.13 also confirm the distinct behavior of the magnetization at very low 

temperatures (curves at 5 K) for samples NMG06g, NMG12b and NMG12d where the 

magnetization of these films surpass the diamagnetic response of the substrate. 

Figure 12.3.14 presents detailed graphs of isothermal magnetization as function of 

field obtained for the NMG12 series, normalized to each sample film volume and 

excluding the substrate effect. Aside subtle differences, these hysteresis loops have an 

overall similarity, having at room temperature, Msaturation ~200 emu.cm
-3

, Mremanence ~100 

emu.cm
-3

 and Bcoercive ~0.015 Tesla. These values are double at 150 K. 

Assuming an alloy density of ~8.16 g.cm
-3

, the ferromagnetic behaviour of these 

films correspond to ~25 emu.g
-1

, which is near half the magnetization of the bulk 

stoichiometric Ni2MnGa martensitic phase [12.3.9]. This result is most likely due to the 

lower FM contribution of the amorphous fraction formed in the films resulting from the 

low temperature deposition. 
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Fig. 12.3.14: VSM M vs. B measurements at 300 K and 150 K details of the hysteresis loops of NMG12 

samples series between -0.4 to 0.4 T, subtracted from the diamagnetic contribution from substrates. 
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Magnetic Force Microscopy scan are exemplified in figure 12.3.15, the phase 

contrast images clearly presents magnetic domain patterns common of a large 

perpendicular magnetocrystalline anisotropy in films. The configuration of domains wide 

and contrast is much larger than the expected from similar films [12.2.10]; the observed 

domains clearly reoriented and grow in the direction of an external magnetic field.  

        

          

Fig. 12.3.15: Representative topographic (left) and MFM phase images (right) of sample NMG12a surface, 

before (top) and after (down) application of a ~1 kOe stimulation field 

In comparison to previous films obtained at IENM labs from 3 independent targets 

(Ni, Mn and Ni:Ga) which allowed a good control of the composition of the deposited 

films, but generally resulted in the formation of the Ni2MnGa alloy in an incipient 

amorphous phase, as described in previous 12.2 section, we conclude that the films 

obtained from 2 targets sputtering (Ni:Mn and Ni:Ga) prove the advantage of departing 

from the two semi-alloy precursors in order to obtain thin films deposited at relatively low 

temperature forming a viable Heusler crystalline phase that exhibits ferromagnetic 

properties. 

The interpretation seems rather simple; since the bond energy necessary for the 

formation of the three elements alloy is partially present in each of the binary precursor 

targets, the sputtering process allows to transfer and to use this energy on the alloy 
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formation into the substrate. However when performing sputtering from single element 

targets, the indispensable energy for the alloy formation is redirected from the kinetics of 

the elements arriving to substrate, hence less thermal energy is available for diffusion and 

suitable crystallization of the alloy. 

In conclusion, the process hereby described confirms that it is feasible to deposit 

the Ni2+xMn1-xGa Heusler alloy onto a variety of substrates at low temperature by RF co 

sputtering method from binary targets, with good control of the phase composition and 

thermodynamic conditions to achieve the suitable crystalline structure (austenitic phase), 

resulting functional ferromagnetic properties at room temperature; without need for post-

deposition annealing or any further thermal treatment, enabling a relevant requirement for 

device fabrication onto sensitive oxide materials. 

Hence this experimental deposition process can be safely extended onto active 

substrates like PZT or PMN-PT [12.3.16] avoiding the deterioration of this piezoelectric 

materials, with good perspectives to achieve some magnetoelectric coupling effect. 
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IIVV  CCOONNCCLLUUSSIIOONNSS  

 

 

The multiferroic materials research area has recently gathered international 

momentum within the field of R&D of Materials Science and Engineering, having 

nonetheless already showed an enormous potential for scientific and technological 

development. Under this scope the research of materials with strong electronic 

correlations, namely magnetic oxides like manganites has been, for quite some time, the 

subject of several international projects in which have been involved CICECO, the Physics 

Dep. of UA and the Chemistry Centre of UTAD, also in close collaborations with IFIMUP, 

ITN and ISOLDE at CERN. The experience gathered through participation in many of 

these projects and institutions and the know-how acquired during a Master‘s course in 

Materials Science and Engineering at UA were proven fundamental and fully applied in 

the present thesis work. 

The aim of the present thesis included preparing potential multiferroic samples. A 

two-prong approach was taken: on one hand, studying the manganite-type oxides either 

intrinsically exhibiting multiferroic/magneto-electric effects (although this behavior can be 

better observed at low temperatures), or through materials‘ modification by conventional 

chemical doping or a more sophisticated phase induced transitions by means of biased 

lithography; on the other hand, studying materials that might exhibit such effects at room 

temperature constructed as composites containing extrinsic ferroelectric and ferromagnetic 

phases, whether these are in a bulk form or as multilayered thin films. 

The samples surface, structural, magnetic and electric properties characterization 

was performed using several different tools, from state of the art SEM, XRD, SQUID, 

SPM, recurring to prototype stage systems like VSM and BEPS, or even implementing 

new MR and ME measuring systems. The way the samples preparation conditions and 

measured properties correlate and can develop magnetoelectric effects were studied and 

interpreted, making use of the relevant theoretical models. 
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Hence this multiferroic materials‘ study initiated with several different approaches 

as the experimental work and relevance of each preparation method, characterization 

technique and samples results progressed, some of the research themes deserve more 

focused interested, having a potential scientific and technological interest that ensures 

further research continuity in upcoming projects. The most relevant conclusions are 

summarized below. 

 

 

13.1. Bulk Ceramics Synthesis and proprieties 

 

Preceding researches results attained with prospective multiferroic composites of 

La0.6.75Sr0.325MnO3+LuMnO3 and BaFe12O19+BaTiO3 prepared by solid state route have 

confirmed that the high temperatures (>1200º C) required for sintering the precursors 

oxides and carbonates into the final ceramic phases give rise to a deficient Oxygen 

stoichiometry and extensive grain growth to the order of µm size, implying reduced 

surface to volume ratio and fade of an eventual magneto-elastic-electric interaction via 

interface of distinct grains. In its turn, some Sol-Gel synthesis methods based on a slow 

nucleation/precipitation chemical reaction stage of the ceramic phases may give rise to 

inhomogeneities in the grains compositions due to the different reaction velocities of each 

metallic ion and the progressive deviation of the solution concentration during the reaction 

process. 

Therefore the above methods demonstrated not to be the most adequate to prepare 

composites with the required grain size or chemical quality for propose of studying 

multiferroic interactions between combining phases. Hence the Urea combustion route was 

successful elected to perform the chemical synthesis of nano-powder oxides of 

La0.6Sr0.3MnO3, La0.6Ba0.3MnO3 and LuMn1-zO3-d. This method was proven to be more 

suitable for achieving single and composite ceramics with high chemical purity and 

nanometric grain size distribution (<<100 nm) when compared to the conventional solid 

state sintering or the Pechini and co-precipitation Sol-Gel routes. 

Reducing the grain size to nanometer scale becomes fundamental to achieve a 

better densification of the ceramic samples and enable further control of the grains growth 
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according to the sintering or thermal treatments temperature. The relative increase in the 

available surface of grains facilitates the thermodynamic diffusion of ions, thus yielding a 

better chemical homogeneity within a phase and consequently a more effective segregation 

of immiscible phases, greater interconnectivity between grains that will promote the 

interaction between functionalities of the different crystalline phases. For this reason a 

limited sintering temperature between 800º and 900º C was implemented since it avoids 

prominent grain growth while promoting oxygen incorporation in the phase. 

Special consideration must be taken to avoid the percolation of the conductive 

phase, keeping the FM manganite phase below the 30 % volume of the sample; otherwise 

the charge accumulation between electrodes and the ferroelectric response of the sample 

would be neutralized through electric current loss. This is valid even when using FM 

ferrites (like BaFe12O19) which have much lower conductivity than the manganites. 

The bulk composites based in manganites involving one ferromagnetic 

(rhombohedric La0.7Sr0.3MnO3) and another ferroelectric (hexagonal LuMnO3) took 

advantage of the immiscibility of the two structural/compositional phases; therefore the 

conditions for forming intimate mechanical contact between phases are implemented by 

spontaneous segregation mechanisms from precursors in solution, afterward controlling the 

nucleation and particles size by thermal treatments.  

The most pertinent result comes from the ME effect measurements performed in 

sample Lu78LSM, confirming the effective (mechanical and eventually chemical) 

connection between the two different phases giving rise to a ME effect at room 

temperature reaching ~150 mV/m.Oe under 1 Tesla bias field and 10
5
 Hz 10 Oe a.c. field. 

The observation of extraordinary Raman modes at the composites Lu78LSM and 

Lu89LSM suggests the presence of extraordinary atomic arrangements structures having a 

strong non-centro-symmetric geometry giving rise to a series of new Raman active modes 

not present in the pure phases. A tight interconnectivity between the manganites hexagonal 

and the rhombohedric phases may lead to the formation of a perfusion of O4Mn—O—

MnO5 (Octahedra connecting bipyramid) molecular arrangements along the grain 

boundaries which can justify such modes; besides configuring new polaronic states and 

extending accessible angles for the Mn
3+

—O
2-

—Mn
4+

 transfer integral, such metastable 

structures also suggest a high multiferroic functional potential. Further experiments and 
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simulation will be required to identify the actual atomic/molecular arrangements that 

originate such modes and inherent FE and FM properties; for example, to prepare a sample 

based on thin film deposition of a bilayer LuMnO3 onto La0.7Sr0.3MnO3 having epitaxial 

growth and perform TEM diffraction measurements in the interlayer boundary. 

Bulk composites based in perovskites materials may take advantage of using typical 

ferroelectric oxides like BaTiO3 and the ferromagnetic manganite La0.7Ba0.3MnO3; some 

degree of miscibility was expected and ensures better interface connection of the functional 

grains, however, in order to prevent excessive diffusion of atomic species between the two 

phases and avoid chemical reaction of spurious phases, a more innocuous mechanical 

mixture and hot pressing of the independent powders was chosen. 

The observed FM character of the BaTiO3 phase grain boundaries enables to 

establish an additional and direct coupling route with the magnetic moment orientation of 

neighboring La0.7Ba0.3MnO3 phase grains, besides the strictive interaction between the two 

phases. 

Composites recurring to high performance piezoelectric PZT or PMN-PT oxides 

imply additional safety procedures since dealing with Pb based materials, usually 

demanding dedicated synthesis equipment like crucibles and furnaces. 

The results obtained from the series of nano powder samples LuMn1-zO3-δ from 

NPD, VSM and PFM measurements point in the direction that intrinsic multiferroics based 

on the RMnO3 (R = Er, Ho, Y, Lu…) hexagonal manganites, which exhibit ferroelectric 

and antiferromagnetic order in the same phase below the respective critical Néel 

temperature are candidate materials to perform selective nonstoichiometry doping, either 

by anionic or cationic vacancies, generating a limited amount of Mn
4+

 ions within the 

structure and promoting a break in the AFM spin frustration geometry, promoting a partial 

FM state, while keeping FE proprieties, and converting the material into a proper 

multiferroic. 

An interesting tool was found of particular relevance in the study of multiferroic 

phenomena, the case of Raman active modes shifts due to the appearance of an ordered 

magnetic spins state and how this additional periodicity affects the lattice vibrations within 

the onset of electric polarization, The detailed analysis of the Raman spectra of the single 

phase LuMnO3 sample revealed the presence of the shift in the trend of the A1 mode 
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frequency with temperature correlated with phonon anomalies across the magnetic phase 

transition near 90 K. 

The most promising experimental breakthrough may come from the PFM studies 

performed in several C.O. manganite samples and the possibility to induce localized FE 

phases by means of surface bias lithography. The innovative BEPS scan procedure proved 

to be a useful and versatile measurement method to identify the formation of ferroelectric 

domains traceable to previous lithographic paths (stimulated with d.c. voltage up to ±20 

V); revealing a piezoresponse enhancement in relation to the non stimulated dielectric 

regions of the order of 500 % for the La0.89Sr0.11MnO3 and Pr0.60Ca0.40MnO3 samples and of 

the order of 50 % for the La0.50Ca0.50MnO3 sample. 

Lithographic bias induced structural/magnetic/electro/chemical phase transitions is 

a promising alternative technological process for manufacturing permanent or temporary 

localized FE and or FM single domains paths onto nano circuit‘s chips made from a single 

material base, widening the possibilities for high density signal processing or storage 

applications.  

The extent of differentiated states and functionalities can range:  

- 2 opposing ferromagnetic polarizations,  

- 2 due to antiferromagnetic or paramagnetic state,  

- 2 opposing electric polarizations,  

- 2 conduction behaviors: metallic or as paraelectric insulator 

- In addition to this multiferroic diversity of states, such manganites offer the possibility 

to select charge carriers from polarons or non polarized electrons and also vacancies; 

Such broad phenomenological possibilities make these manganites materials a 

potential test ground to design spintronics devices and even explore the new fields of 

magnonics [13.1.1]. 
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13.2. Thin Films deposited by Magnetron RF Sputtering 

 

Magnetron RF sputtering proved to be an exceptional technique for deposition of 

high quality single thin films or multilayers, due to the high degree of control and precision 

of fabrication parameters, being able to manipulate targets to substrate distance and 

geometry; to perform single target sputtering or two targets co-sputtering with independent 

magnetron feeding power (affecting plasma acceleration); to select from a wide range of 

possible substrate temperature; to choose chamber atmosphere gas and pressure and also 

in-situ thermal treatments. Once established the targets and substrates to be employed, by 

performing a limited number of deposition essays and the respective samples thorough 

characterization, it becomes possible an empirical assessment of the system capabilities 

and/or limitations to achieve the desired thin film characteristics. The choice of the most 

adequate conditions for the subsequent depositions result from interpolations assessment, 

enabling to manage the rate of deposition, thin film composition, adhesion to substrate, 

layer thickness, epitaxy, preferred orientation, degree of crystallization and surface texture, 

that will ultimately dictate the sample properties. In order to produce high quality films 

particularly for multiferroic materials R&D, the experimental work implemented included 

both the installation of auxiliary devices to improve the management of the RF sputtering 

system and an extensive inventory of thin films produced using a variety of targets, 

substrates and depositions conditions. 

Under this scope the best conditions to achieve high quality epitaxial thin films of 

the rhombohedral La0.7Sr0.3MnO3 phase onto SrTiO3 perovskite substrates, were found to 

be: Argon pressure 5 x10
-3

 mbar; O2 pressure 2 x10
-3

 mbar; RF power 73 Watt with 200 V 

bias; substrate heater at ~700° C and finalizing with slow cooling in 0.5 mbar O2 

atmosphere. 

Most relevant and successful results were obtained at U.A. with the series of thin 

films of the Ni2MnGa phase like shape memory Heusler alloy deposited by magnetron RF 

co-sputtering from Ni50Mn50 and Ni50Ga50 targets using moderate power of 16 and 14 Watt 

respectively, onto a variety of substrates at ~400º C; achieving a film phase composition of 

Ni56Mn19Ga25 (±1 % for each element), with good adhesion and epitaxial growth; 

crystallization in the austenite phase; a martensitic transition temperature of ~350 K and a 
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magnetic remanence of ~25 emu.g
-1

, in the same order of magnitude of the similar bulk 

phase prepared by melting methods which needs temperatures of ~1000º C. 

To be able to prepare the Ni2MnGa Heusler alloy functional phase at such relatively 

low temperatures offers new opportunities for the fabrication of multiferroic layered 

structures onto ferroelectric PZT or PMN-PT substrates, taking advantage from the 

combination of the enhanced functional magnetostriction and piezoelectric properties of 

each material while avoiding eventual Oxygen migration or Pb contamination from the 

substrate ceramics, resulting degradation of both materials. 

 

 

13.3. Characterization Systems 

 

This research work employed an extensive list of characterization methods, some of 

which benefited from previous knowhow, while some others were subject of new and 

comprehensive study taken as crucial for the study of multiferroic materials. 

The implement of an autonomous MR and ME measuring systems in the CICECO 

and Physics Dep. of Aveiro University are factual accomplishments in the technical and 

operational point of view, an indispensable team work was essential to implement such 

systems hardware and software, gathering the necessary tools from each researcher in these 

common objectives. Generally both systems make possible to perform a high precision 

voltage measurements in samples as function of bias magnetic field, temperature and radial 

orientation of the sample in relation to the d.c. field; specifically the MR measurements 

depend on the d.c. current applied to the samples terminals, whereas the ME depends on a 

stimulation a.c. magnetic field. 

In addition to the widespread EDS-SEM compositional analysis, it was possible to 

explore some of the specific advantages of the XPS technique particularly to distinguish 

some cations oxidation state; in it‘s turn, RBS probing allowed to trace composition and 

gradients in thin films within few tenths nm thickness. 

Standard powders crystallographic XRD analysis can be complemented with NPD 

for an additional insight of the magnetic structure of the sample: In the case of thin film 
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samples, the practical XRR razing angle scan enables a highly precise measure of the thin 

films thickness (within nm range up to ~0.2 µm); whereas recurring to a HRXRD it 

becomes possible to identify epitaxial effects of substrates and to uncover layers 

crystallographic orientation. 

VSM and SQUID magnetometers are indispensable tools to access the magnetic 

states and phase transition temperatures of samples; parallel results acquired from methods 

like MZ, MR and ME measurements involving magnetic or temperature dependences have 

been proven valuable to compare, and confirm samples transitions and correlate properties 

trends 

Scanning probe microscopy in the PFM version also enabling lithography, BEPS 

and I-V modes or in the MFM variant; were proven fundamental tools to investigate the 

sample‘s surface features that are both an outcome of the material bulk proprieties and 

localized boundary phenomena. With these tools it became possible to identify surface 

textures, distinguish grain boundary‘s and most important, to trace FE or FM domains 

allocation and evolution. 
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VV  FFUURRTTHHEERR  SSTTUUDDIIEESS  

 

 

The work performed for the deposition of La0.7Sr0.3MnO3 and Ni2MnGa phase like 

thin films was fundamental in establishing the magnetron RF sputtering system capabilities 

to further implement the experimental deposition of multiferroic perovskite systems based 

on multilayers of La0.7Sr0.3MnO3 or La0.7Ba0.3MnO3 manganite and FE BaTiO3 buffers or 

PMN-PT substractes. 

These researches are still in progress under the scope of the R&D project 

―Multiceral‖, and intends to design and development a micro chip architecture based on 

the integration of FE and FM complementary functional materials (either bulk composites 

or thin films multilayers) in order to demonstrate a proof of concept magneto electric 

functional device that is able to operate as a sensor/transducer or composing a memory 

element. 

Further research is planned to be carried in collaboration with CNMS ONRL, TN-

USA labs, namely to perform additional PFM and BEPS experiments, to perform low 

temperature PFM scans in high vacuum environment in order to understand the role of the 

C.O. phase transitions and reduce the probability of electrochemical reaction or Oxygen 

adsorption at samples surface. Another experiments also planned are to micro-Raman 

spectroscopy on the FE regions generated by the bias lithography stimulation and 

comparison to the regular phase. 

So far the SPM equipment suppliers separate the MFM and PFM variants by means 

of independent data acquisition modes, cantilever holders and selection of adequate tips; 

the act of replacing these subsystems renders very difficult to retrieve the previous 

analyzed area of the sample. It is most pertinent for the study of multiferroic materials to 

develop a new common system able to operate consecutively in the MFM (non contact) 

and in the PFM mode (tapping), performing alternate modes scans without the need to 

replace the scanning subsystems. By matching the piezoresponse and magnetic domain 

maps it would become possible to observe unequivocally localized magnetoelectric effects 

(either in intrinsic or composite materials), moreover by comparing the FE and FM 

domains co-evolution resulting from a external electric or magnetic field stimulus or if 



Multiferroic Materials 

266 

possible taking advantage of the more precise biased lithographic writing and BEPS 

analysis. 

Since single phase compounds can hardly combine strong spontaneous ferroelectric 

and ferromagnetic properties (due to the ruling out of the polarizable pd hybridization with 

the 3d magnetic ions), future research will certainly be concentrated to improve efficiency 

of the contact and to establish the best nano-geometry between the piezoelectric and 

magnetostrictive constituents of composite structures. Special attention should be devoted 

to progress to nano-structures manufacture procedures and develop techniques for self-

assembled materials growth. 

Microwave devices, sensors, transducers and heterogeneous read/write devices are 

among the suggested technical implementations of the composite ME effect. 

 

 

 

14. Closure Note 

 

Although the rapid evolution of science and technology will render any research 

work obsolete in a few decades or years, I hope the broad-spectrum description of 

fundamental and experimental concepts present in this thesis can be useful for future 

reference and the experimental work and results may contribute to spawn new knowledge, 

even if in a small measure help, it will serve a useful function. 

 

―To open new windows even where there are no walls‖ 

 

Fábio Gabriel Nazário Figueiras 
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Abstract 

A new multiferroic composite ceramics with the general formula (x)Ba(Sr)Fe12O19-(1-x)BaTiO3 (x =0.1, 0.5) 

was synthesized via a simple solid-state reaction technique. Crystal structure analysis performed for both 

materials revealed the presence of two crystalline phases pertinent to the initial composite components. X-ray 

diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to 

testify the crystallinity, microstructure, and local magnetoelectric interactions between ferroelectric and 

ferromagnetic grains. Magnetic measurements revealed that the saturation magnetization is proportional to 

the volume fraction of ferrite phase. Dielectric studies demonstrated strong frequency relaxation due to space 

charge polarization and high conductivity loss making macroscopic magnetoelectric measurements difficult. 

Novel nanoscale magnetoelectric effect observed by AFM is discussed. 
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F. Figueiras, E. Rauwel, V. S. Amaral, N. Vyshatko, A. L. Kholkin, C. Soyer, D. Remiens, V. V. 

Shvartsman, P. Borisov, and W. Kleemann 

 

Abstract 

Film deposition of Ni2MnGa phaselike alloy by radio frequency (rf) magnetron sputtering was performed 

onto bare Si(100) substrates and LaNiO3/Pb(Ti,Zr)O3 (LNO/PZT) ferroelectric buffer layer near room 

temperature. The prepared samples were characterized using conventional x-ray diffraction (XRD), 

superconducting quantum interference device, and electron dispersive x-ray spectroscopy from scanning 

electron microscope observations. The optimized films deposited under high rf power and low argon pressure 

present good surface quality and highly textured phase crystallization. The positioning distance between the 

substrate and the target-holder axis has some limited effect on the film‘s composition due to the specific 

diffusion behavior of each element in the sputtering plasma. Extended four pole high resolution XRD 

analysis allowed one to discriminate the intended Ni–Mn–Ga tetragonal martensitic phase induced by the 

(100) LNO/PZT oriented buffer. This low temperature process appears to be very promising, allowing 

separate control of the functional layer‘s properties, while trying to achieve high electromagnetoelastic 

coupling. 
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Abstract 

Novel ruthenium multi-substituted polyoxometalate compounds of general formulae 

K6Na[SiW9O37RuIII4(H2O)3Cl3]·nH2O (α- and β-SiW9O34 isomers) were synthesised via the reactions of the 

trilacunary Keggin α- and β-[SiW9O34]
10−

 anions with RuCl3 in aqueous solution. Characterisation was 

performed by analytical, spectroscopic, magnetic, and electrochemical techniques. The results are in 

accordance with the new polyoxometalates having the trivacant Keggin anion (α or β isomer) linked to a 

cubane-type Ru4O4 cluster. The co-ordination sphere of ruthenium is completed with water molecules and 

chloride anions. Magnetic measurements showed that the majority of the molecules have the Ru ions cluster 

in a compensated configuration constrained to an antiferromagnetic alignment at very low temperature and 

following a Curie-Weiss like behaviour. For both isomers, cyclic voltammetry revealed quasi-reversible 

redox processes at the ruthenium centres, namely Ru
IV/III

 and Ru
III/II

, which were found to be pH dependent. 

The novel polyoxotungstates incorporate the highest content of ruthenium (W:Ru = 2.25:1) ever reported for 

Keggin-, Dawson or sandwich-type transition metal-substituted polyoxometalates and may find promising 

applications as oxidative catalysts. 
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Abstract 

Low temperature (400°C) deposition of ferromagnetic Ni-Mn-Ga thin films is successfully performed via rf 

magnetron sputtering technique using co-deposition of two targets Ni50Mn50 and Ni50Ga50 on sapphire 

(0001) and Si (100) substrates. The films are in part amorphous with significant degree of crystallinity. The 

obtained crystallographic structure is shown to be substrate-dependent. Films on both substrates are 

ferromagnetic at room temperature (Curie temperature ~332.5K) with well-defined hysteresis loops, low 

coercivity (~100 Oe) and a saturation magnetization of ~200 emu/cc. At low temperature (5 K), both films 

show increased magnetization value with wider hysteresis loops having higher coercivity and remanent 

magnetization. The process is therefore effective in achieving the appropriate thermodynamic conditions to 

deposit thin films of the Ni-Mn-Ga austenitic phase (highly magnetic at room temperature) at relatively low 

substrate temperature without the need for post-deposition annealing or further thermal treatment, which is 

prerequisite for the device fabrication. 
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Since March 2006 the RF Sputtering [1] system of the Physics Department at Aveiro University 

became operational. This custom made RF Sputtering system consists on a spherical UHV chamber, 3 

magnetron guns in a confocal configuration operating at 13.56 MHz RF up to 300 Watt.  The substrate heater 

is able to operate up to 950 C in a Oxygen atmosphere; mounted on-axis, it can also adopt off-axis geometry 

if required. Full pressure control of Oxygen and Argon can be obtained from 10
-5

 mbar up to 1 atm; there is 

also provision for additional gas entrances and mass flow controllers, 0.5 sccm minimum flux. 

Characterizations of the first thin films of La0.7Sr0.3MnO3 deposited in different substrates are made by 

several complementary techniques [2], like RXD [3], EDS-SEM, RBS, VSM, and Raman spectroscopy. 

Based on the results attain by this first series of thin films structural, chemical and physical properties, further 

optimization of the RF Sputtering system deposition conditions is still under development. 

Future work will be developed in several different targets, for the management of the deposition rates 

according to the target/substrate distance, Argon partial pressure and RF power. 
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Abstract.  

The structural characterization of doped hexagonal manganites is an essential part of the research and 

development of new functional magnetoelectric materials, with potential applications in sensors, memory 

storing and reading, as well data processing. The identical chemical formula of the manganites, AMnO3, can 

present different crystalline structures, corresponding to different properties: hexagonal (P63/mmc), with A = 

Y, Ho to Lu, are mainly ferroelectric, while Orthorhombic (Pmna) or Rhombohedric (R-3c) with A = La to 

Dy, Ba, Sr, Ca,… are ferro or antiferromagnetic. A reference YMnO3 hexagonal ceramic powder and two 

other derived samples, doped with 14 % Ca and with 16% Mn excess, were produced by the co-precipitation 

method and treated in air at 900ºC for more than 48 h. Our aim is to partially form Mn
4+

 and point defects to 

promote locally modify structural arrangements with potential intrinsic magnetoelectric properties. Samples 

were analyzed by XRD and Raman spectroscopy. Besides the expected structural hexagonal symmetry and 

some secondary phase formation like Y2O3, we report the effects of the chemical doping. 
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Abstract  

The deposition of RF Sputtering film of Ni-Mn-Ga ferromagnetic shape memory alloy onto plain Si 

substrates and Si with LNO/PZT ferroelectric buffer was performed. The controlling parameters RF power 

ratio and Argon pressure in the chamber were varied to establish the most favourable parameters to perform a 

successful film deposition at low temperature conditions (near room temperature). 

Extensive characterization by SEM, EDS, AFM and XRD of the NMG films show good surface quality and 

crystallization of the film in high textured (110)c martensitic tetragonal phase. Composition of the films were 

varied according to the relative position of the substrate to deposition axis. SQUID and magneto-optic 

measurements showed a typical hysteresis, anisotropy and a spin glass like behaviour with low magnetization 

in comparison with a bulk NMG alloy. This low temperature fabrication is very promising in order to 

minimize oxygen diffusion effects between NMG and PZT interfacing surface, to improve magnetoelectric 

applications [1] [2]: ferromagnetism and shape memory effect characteristic of the martensitic phase 

transition coupling to a ferroelectric layer.  

 

The work was performed within EC-funded project ―Multiceral‖ (NMP3-CT-2006-032616). 

 

References 

[1] H. Zeng et al., Science 303, 661 (2004). 

[2] W. Eerenstein et al., Nature Materials 6, 348 (2007). 

 

Full Address of Contact Author: 

Fábio Gabriel Nazário Figueiras 

Departamento de Física & CICECO 

Universidade de Aveiro 

3810 Aveiro, Portugal 

Phone: +351 234 378 110 

e-mail: ffigueiras@ua.pt 

 

Proposed Symposium: FM 

 



Fábio G. N. Figueiras 

293 

Poster: F. Figueiras, N. P. Vyshatko, H. Romain, C. Soyer, D. Remiens, V. V. Shvartsman, P. Borisov, W. 

Kleemann, V. S. Amaral, A. L. Kholkin, ―Study of Ni-Mn-Ga Phase Formation by Low Temperature RF 

Sputtering Film Deposition onto Si Substrates and LNO/PZT Buffer‖, JEMS‘08, Joint European Magnetic 

Symposia, Sept. 14-19, 2008, Dublin – Ireland 

 



Multiferroic Materials 

294 

Abstract: F. Figueiras , V. S. Amaral, A.L. Kholkin, S. V. Kalinin, ―SPM study of charge ordered 

multiferroic manganites‖, VII CICECO Meeting, January 28-29th, 2010, Department of Physics, University 

of Aveiro – Portugal. 

 

 

SPM study of charge ordered multiferroic manganites 

 

*F. Figueiras
 1,3

, V. S. Amaral
 1,3

, A.L. Kholkin
 2,3

, S. V. Kalinin
 4
, 

 
1
 Physics’ Department,  University of Aveiro, Portugal 

2
 Ceramics’ and Glass Eng. Department, University of Aveiro, Portugal 

3
 CICECO, University of Aveiro, Portugal 

4
 CNMS ORNL, Oak Ridge, TN, USA 

 

The manganites present a wide spectra of structural and functional phases, Besides doping and thermal 

manipulation. Localized Magnetic/Electrical induced phase transitions have a potential use for materials 

modification. Under certain circumstances Charge Order mechanisms can induce Ferroelectricity in magnetic 

material [1]. 

A set of mono and polycrystalline manganites samples of La1-xSrxMnO3 (x=0.11, 0.40) [2] and Pr1-xCaxMnO3 

(x=0.11, 0.35, 0.40, 0.85) [3] was selected for their potential CO multiferroic properties Although the finite 

conductivity of these material renders difficult to observe directly its FE response, preliminary results 

demonstrated a clear piezocontrast at room temperature, which may be associated with the presence of 

nanoscopic CO regions (above the CO transition). We believe that the bias-induced ferroelectricity studied 

via PFM may also be an important for creating artificial multiferroic materials and memory cells.  

With collaboration of CNMS at ORNL, TN USA, experimental AFM scans were performed on samples 

using Asylum MFP-3D SPM system. Selecting a 5x5 µm region with regular topology, perform a 

lithographic frame based on 1 µm length vertical lines 0.5 µm apart at different dc bias voltages (±5, ±10, 

±15, …); further PFM scan enable to trace the sample surface reaction to the electrical stimulus. A 

representative area within the stimulated region is selected to performing Band Excitation (BEPS) [4] grid 

measurements in a ~100 kHz window of the respective resonance frequency and maximum applied ac 

voltage up to 20 V. 

Some samples show local piezo-response traceable to the stimulated regions by the DC lithographic tests; the 

BEPS maps confirm partial ferroelectric behavior of these regions with configuration of nucleation sites and 

energy dissipation in polarization switching. No sample surface electrochemical reaction to the AC voltage 

after the BEPS process was detected. 
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The manganites present a wide spectra of structural and functional phases, Besides doping and 

thermal manipulation. Localized Magnetic/Electrical induced phase transitions have a potential use for 

materials modification. Under certain circumstances Charge Order mechanisms can induce Ferroelectricity in 

magnetic material [1]. 

A set of mono and polycrystalline manganites samples of La1-xSrxMnO3 (x=0.11, 0.40) [2] and Pr1-

xCaxMnO3 (x=0.11, 0.35, 0.40, 0.85) [3] was selected for their potential CO multiferroic properties Although 

the finite conductivity of these material renders difficult to observe directly its FE response, preliminary 

results demonstrated a clear piezocontrast at room temperature, which may be associated with the presence of 

nanoscopic CO regions (above the CO transition). We believe that the bias-induced ferroelectricity studied 

via PFM may also be an important for creating artificial multiferroic materials and memory cells.  

With collaboration of CNMS at ORNL, TN USA, experimental AFM scans were performed on 

samples using Asylum MFP-3D SPM system. Selecting a 5x5 µm region with regular topology, perform a 

lithographic frame based on 1 µm length vertical lines 0.5 µm apart at different dc bias voltages (±5, ±10, 

±15, …); further PFM scan enable to trace the sample surface reaction to the electrical stimulus. A 

representative area within the stimulated region is selected to performing Band Excitation (BEPS) [4] grid 

measurements in a ~100 kHz window of the respective resonance frequency and maximum applied ac 

voltage up to 20 V. 

Some samples show local piezo-response traceable to the stimulated regions by the DC lithographic 

tests; the BEPS maps confirm partial ferroelectric behavior of these regions with configuration of nucleation 

sites and energy dissipation in polarization switching. No sample surface electrochemical reaction to the AC 

voltage after the BEPS process was detected. 
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Ferromagnetic shape memory alloy thin films were prepared by rf sputtering co-deposition of two targets of 

Ni50Mn50 and Ni50Ga50 on (0001) sapphire and (100) Si substrates at 400 ºC. SEM (scanning electron 

microscopy) cross-section of the films reveals a thickness of approximately 120 nm and a columnar type 

structural growth. Energy dispersive X-ray spectroscopy confers an atomic composition of the films of 

Ni56Mn19Ga25. 

Conventional XRD (x-ray diffraction) analysis at room temperature shows for both films the co-existence of 

a significant amorphous structure along with a low degree of crystalline structure. However, we can clearly 

identify both cubic and tetragonal phases on sapphire whereas film on Si shows mainly the tetragonal phase. 

Magnetic measurements (in-plane M-H hysteresis loops) using VSM (Vibrating Sample Magnetometer) 

showed highly ferromagnetic behavior with well-defined hysteresis loops of similar shape either at room 

temp (300 K) or at low temperature (150 K). Both the films possess narrow hysteresis loops, low coercivity 

(~100 Oe) and high saturation magnetization of ~200 emu/cc.  

Ferromagnetic resonance measured in the X-band (~9.47 GHz) in the temperature range from 280 K to 400 K 

revealed a Curie temperature of approx. 350 K for both the cases. In-plane and out-of-plane angular 

dependences of the FMR spectra were measured. No in-plane anisotropy was detected. The absence of in-

plane anisotropy and the similarity in magnetic behavior indicates that the as-deposited structure is 

independent of substrate and is completely governed by the co-deposition procedure and corresponding 

conditions. 

This study also reveals that co-sputtering of the complementary targets enables to manage the Mn/Ga 

composition by the ratio of magnetron power during the co-deposition. The process is effective in achieving 

the thermodynamic conditions to deposit at relatively low substrate temperature thin films of the Ni-Mn-Ga 

austenitic phase (highly magnetic at room temperature) without need for post-deposition annealing or further 

thermal treatment, which is a relevant requirement for processing device fabrication. 

Work performed within EC-funded project ―Multiceral‖ (NMP3-CT-2006-032616). 
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