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Abstract

We study the possible numbers of nonconstant invariant polyno-
mials of the matrix commutator XA−AX, when X varies.

Let F be a field, A,B ∈ F n×n and denote by i(A) the number of noncon-
stant invariant polynomials of A.

In [7], it was proved that, if there exists X such that A + XBX−1 is
nonderogatory (i. e., i(A+XBX−1) = 1), then i(A)+i(B) ≤ n+1; and it was
conjectured that the converse is true, under rather slight restrictions on F.
This conjecture was proved in a theorem [9] that gives necessary and sufficient
conditions for the existence of X such that i(A+XBX−1) ≤ t, where t is a
positive integer. Later [11], all the possible values of i(A + XBX−1), when
X varies, were described, assuming that F is algebraically closed. In general
fields, this is an open problem.

The possible numbers of nonconstant invariant polynomials of partially
given matrices were also studied in several papers, e. g., [1, 4, 5, 10].

Some properties of the commutator XA − AX, when X varies, have al-
ready been studied. Suppose that D is a division ring and A ∈ Dn×n. The
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rank of XA − AX, when X runs over Dn×n, was studied in [2]. The same
problem, when X runs over the set of the nonsingular matrices of Dn×n, was
studied in [8]. The eigenvalues of XA−AX, when X runs over F n×n and also
when X runs over the set of the nonsingular matrices of F n×n, were studied
in [6].

Given A ∈ F n×n, the following theorem solves the problem of characteriz-
ing the possible values of i(XA−AX), when X varies, assuming that all the
irreducible polynomials in F [x] have degree ≤ 2. In particular, the problem
is solved for algebraically closed fields and for the field of real numbers, lR.
We shall prove Theorem 1 later. Observe that a field F such that all the
irreducible polynomials in F [x] have degree ≤ 2 has to be infinite.

From now on, A denotes an n × n matrix over F , f1(x) | · · · | fr(x),
r = i(A), are the nonconstant invariant polynomials of A, and t ∈ {1, . . . , n}.
We assume that the invariant polynomials are always monic.

Theorem 1 Suppose that F is a field such that all the irreducible polyno-
mials in F [x] have degree ≤ 2. Let A ∈ F n×n, t ∈ {1, . . . , n}. The following
conditions are equivalent:

(a1) There exists a nonsingular matrix X ∈ F n×n such that i(XA−AX) = t.

(b1) There exists X ∈ F n×n such that i(XA− AX) = t.

(c1) One of the following conditions holds:

(i1) fr(x) is irreducible of degree 2 and t is even.

(ii1) fr(x) is irreducible of degree 2 and t ≤ n/2.

(iii1) fr(x) is not irreducible of degree 2 and 2i(A) ≤ n+ t.

Corollary 2 Suppose that F is an algebraically closed field. Then (a1), (b1)
and the following condition (c2) are equivalent:

(c2) 2i(A) ≤ n+ t.

Given a polynomial f(x) = xk−ak−1x
k−1−· · ·−a1x−a0, denote by d(f)

the degree of f and denote by C(f) the companion matrix[
0 Ik−1

a0 a1 · · · ak−1

]
.
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Let F̄ be an algebraically closed extension of F. Let

RF̄ (A) = min
λ∈F̄

rank(A− λIn).

Lemma 3 [7] RF̄ (A) = n− i(A).

It is well-known that A is nonderogatory if and only if i(A) = 1. It
follows, from the previous lemma, that A is nonderogatory if and only if
RF̄ (A) = n− 1.

Lemma 4 [2, 8] Suppose that either F 6= {0, 1} or n 6= 2. Let ρ ∈ {0, . . . , n}.
The following statements are equivalent:

(a4) There exists a nonsingular matrix X ∈ F n×n such that rank(XA −
AX) = ρ.

(b4) There exists X ∈ F n×n such that rank(XA− AX) = ρ.

(c4) One of the following conditions holds:

(i4) fr(x) is irreducible of degree 2 and ρ is even.

(ii4) fr(x) is irreducible of degree ≥ 3 and ρ 6= 1.

(iii4) fr(x) is not irreducible of degree ≥ 2 and ρ ≤ 2RF̄ (A).

Remark 1 In the original papers, Lemma 4 was established, with a slightly
different statement, for arbitrary division rings. More precisely, [2] gives
a necessary and sufficient condition for (b4) and [8] gives a necessary and
sufficient condition for (a4).

Lemma 5 [6] Let c1, . . . , cn be elements of F such that c1 + · · ·+ cn = 0. If
2i(A) ≤ n and d(fr) ≥ 3, then there exists a nonsingular matrix X ∈ F n×n

such that XA− AX has eigenvalues c1, . . . , cn.

If A′ ∈ F n×n is similar to A and Z ∈ F n×n is a nonsingular matrix such
that A′ = Z−1AZ, then RF̄ (A) = RF̄ (A′) and, for every X ∈ F n×n, XA−AX
and (Z−1XZ)A′ − A′(Z−1XZ) are similar. Therefore, in the proofs of the
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following lemmas and in the proof of Theorem 1, we can replace A by any
similar matrix and we shall assume, without loss of generality, that

A = C(f1)⊕ · · · ⊕ C(fr). (1)

Assume that A has the form (1). Then, for every λ ∈ F̄ , rank(A−λIn) ≥
n − r. The equality holds if and only if λ is a root of f1(x). Note that this
argument gives a proof for Lemma 3. The eigenvalues of A are the roots of
f1(x) · · · fr(x). We call primary eigenvalues of A to the roots of f1(x).

If A has a primary eigenvalue λ ∈ F, then RF̄ (A) = RF̄ (A − λIn) and,
for every X ∈ F n×n, XA− AX = X(A− λIn)− (A− λIn)X. Therefore, in
the proofs of the following lemmas and in the proof of Theorem 1, if A has
a primary eigenvalue in F, we shall also assume, without loss of generality,
that 0 is a primary eigenvalue of A. Note that, in this case, the first column
of C(fi), i ∈ {1, . . . , r}, is equal to zero.

Corollary 6 Suppose that F is an infinite field. Let c ∈ F. If n ≥ 4, 2i(A) ≤
n and d(fr) ≥ 3, then there exists a nonsingular matrix X ∈ F n×n such that
XA− AX is nonderogatory and c is eigenvalue of XA− AX.

Proof. As F is infinite and n ≥ 4, there exist distinct elements c1, . . . , cn ∈
F such that c1 = c and c1+· · ·+cn = 0. According to Lemma 5, there exists a
nonsingular matrix X ∈ F n×n such that XA−AX has eigenvalues c1, . . . , cn.
Clearly, XA− AX is nonderogatory.

The following corollary is also easy to prove.

Corollary 7 Suppose that F is an infinite field. Let G be a finite subset of F.
If 2i(A) ≤ n and d(fr) ≥ 3, then there exists a nonsingular matrix X ∈ F n×n

such that XA − AX is nonderogatory and does not have any eigenvalue in
G.

Lemma 8 Suppose that F is an infinite field. If C ∈ F 2×2 is nonderogatory,
then the set of the values det(XC − CX), where X runs over the set of
the nonsingular matrices of F 2×2 such that XC − CX is nonderogatory, is
infinite.
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Proof. Without loss of generality, suppose that

C =

[
0 1
a b

]
. (2)

Choose u ∈ F \ {0, 1}. For every v ∈ F, let

Xv =

[
u− 1 0
v u

]
.

Then Xv is nonsingular, XvC−CXv is nonderogatory and det(XvC−CXv) =
−v2− bv+a. For every λ ∈ F, the quadratic equation, in v, −v2− bv+a = λ
has, at most, 2 roots. Therefore {−v2 − bv + a : v ∈ F} is infinite.

Lemma 9 Suppose that F is an infinite field. Let G be a finite subset of F̄ .
If d(f1) = · · · = d(fr) = 2, then there exists a nonsingular matrix X ∈ F n×n

such that XA − AX is nonderogatory and does not have any eigenvalue in
G.

Proof. We have f1 = · · · = fr. Let C = C(f1). It follows, from Lemma
8, that there exists an infinite list of nonsingular matrices X1, X2, . . . , in
F 2×2, such that Di := XiC − CXi is nonderogatory and detDi 6= detDj,
i, j ∈ {1, 2, . . .}, i 6= j. As all the matrices Di have trace equal to zero, it
is easy to deduce that, if i 6= j, then Di and Dj do not have a common
eigenvalue. Without loss of generality, we may assume that none of the
matrices D1, . . . , Dr has an eigenvalue in G. Then XA − AX, where X =
X1 ⊕ · · · ⊕Xr, is nonderogatory and does not have any eigenvalue in G.

Lemma 10 Suppose that F 6= {0, 1}. Let ρ ∈ {2, . . . , n − 1}. If A is non-
derogatory, then there exists a nonsingular matrix X ∈ F n×n such that
XA− AX is nilpotent and RF̄ (XA− AX) = ρ.

Proof. According to a previous assumption, A = C(f1). If ρ is even, let X
be the n×n matrix with the principal entries, and the entries (2k+1, 2k−1),
k ∈ {1, . . . , ρ/2}, equal to 1.

If ρ is odd, let e ∈ F \ {0, 1} and let X be the n × n matrix with the
principal entries, and the entries (2k+1, 2k−1), k ∈ {1, . . . , (ρ−1)/2}, equal
to 1 and the entry (ρ+ 1, ρ− 1) equal to e.
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For any value of ρ, XA−AX is lower triangular with the principal entries
equal to zero, the entries (i + 1, i), i ∈ {1, . . . , ρ}, different from zero, and
the columns ρ + 1, . . . , n equal to zero. Clearly, XA − AX is nilpotent and
RF̄ (XA− AX) = ρ.

Lemma 11 Suppose that F is an infinite field. Let ρ ∈ {0, . . . , n − 1}.
Condition (c4) is equivalent to any of the following conditions:

(a11) There exists a nonsingular matrix X ∈ F n×n such that RF̄ (XA −
AX) = rank(XA− AX) = ρ.

(b11) There exists X ∈ F n×n such that RF̄ (XA−AX) = rank(XA−AX) =
ρ.

Proof. We only need to prove that (c4) implies (a11). This proof is by
induction on n. Suppose that (c4) is satisfied. Note that, if ρ = 0, then (a11)
is trivial. Thus, suppose that ρ > 0. Then (c4) implies that A is nonscalar.

Suppose that ρ = 1. According to Lemma 4, there exists a nonsingular
matrix X ∈ F n×n such that rank(XA−AX) = 1. Then RF̄ (XA−AX) = 1.

We have already proved Lemma 11 when n ≤ 2.
Suppose that n ≥ 3 and that ρ ≥ 2. The case r = 1 follows, immediately,

from Lemma 10. Then, we also suppose that r ≥ 2.

Case 1. Suppose that ρ = n− 1.

Subcase 1.1. Suppose that d(fr) ≥ 3. As r ≥ 2, we have n ≥ 4. From
(c4), it follows that 2i(A) ≤ n+ 1. If 2i(A) ≤ n, then, according to Corollary
6, there exists a nonsingular matrix X ∈ F n×n such that XA− AX is non-
derogatory and 0 is eigenvalue of XA − AX, that is, (a11) is satisfied, with
ρ = n− 1.

Now suppose that 2i(A) = n+1. Then f1(x) has degree 1 and A = [c]⊕A0,
where c ∈ F and A0 = C(f2) ⊕ · · · ⊕ C(fr). According to Corollary 7,
there exists a nonsingular matrix X0 ∈ F (n−1)×(n−1) such that X0A0 −A0X0

is nonderogatory and nonsingular. Taking X = [1] ⊕ X0, XA − AX is
nonderogatory and 0 is eigenvalue of XA− AX, that is, (a11) is satisfied.

Subcase 1.2. Suppose that d(fr) = 2. As (c4) is satisfied, fr(x) is reducible
and, therefore, A has a primary eigenvalue in F. According to a previous
assumption, 0 is a primary eigenvalue of A.

Note that, if n is even, then r = n/2 and f1(x) = · · · = fr(x); and, if n is
odd, then r = (n+ 1)/2, f1(x) = x and f2(x) = · · · = fr(x).
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Let A1 = C(f1) and A2 = C(f2) ⊕ · · · ⊕ C(fr). If n is even, then there
exists, as we have already seen, a nonsingular matrix X1 ∈ F 2×2 such that
RF̄ (X1A1−A1X1) = rank(X1A1−A1X1) = 1. If n is odd, letX1 = [1] ∈ F 1×1.

In any case, according to Lemma 9, there exists a nonsingular matrix
X2 ∈ F n′×n′

, where n′ is the largest even integer less than n, such that
X2A2−A2X2 is nonderogatory and does not have any eigenvalue in common
with X1A1 − A1X1.

Let X = X1 ⊕X2. Then RF̄ (XA− AX) = rank(XA− AX) = n− 1.

Case 2. Suppose that ρ < n − 1. Let δ = d(f1), ρ1 = min{δ − 1, ρ},
ρ2 = ρ−ρ1, A1 = C(f1), A2 = C(f2)⊕· · ·⊕C(fr). Then RF̄ (A1) = δ−1 and
RF̄ (A2) = RF̄ (A)− δ + 1. If δ = 1, we have 2RF̄ (A2) = 2RF̄ (A) ≥ ρ = ρ2. If
δ > 1 and ρ1 = δ − 1, we have 2RF̄ (A2) ≥ n− δ > ρ− δ + 1 = ρ2. If ρ1 = ρ,
then ρ2 = 0 and we also have 2RF̄ (A2) ≥ ρ2.

If the induction assumption can be used, then there exist nonsingular
matrices X1 ∈ F δ×δ, X2 ∈ F (n−δ)×(n−δ) such that RF̄ (X1A1 − A1X1) =
rank(X1A1−A1X1) = ρ1 and RF̄ (X2A2−A2X2) = rank(X2A2−A2X2) = ρ2.
Let X = X1 ⊕X2. Clearly, RF̄ (XA− AX) = rank(XA− AX) = ρ.

Now suppose that the induction assumption cannot be used in the previ-
ous argument. Then one, at least, of the following conditions is satisfied:

(a′11) f1(x) is irreducible and ρ1 = 1.

(b′11) fr(x) is irreducible and ρ2 = 1.

Subcase 2.1. Suppose that (a′11) is satisfied.

Subcase 2.1.1. Suppose that ρ < n − 2. Note that, if ρ1 = ρ, then (c4)
implies that fr(x) is reducible; and that, if ρ1 = δ− 1 < ρ and ρ is odd, then
(c4) also implies that fr(x) is reducible. In any situation, according to the
induction assumption, there exists a nonsingular matrix X2 ∈ F (n−δ)×(n−δ)

such that RF̄ (X2A2 − A2X2) = rank(X2A2 − A2X2) = ρ. Let X = Iδ ⊕X2.
Then RF̄ (XA− AX) = rank(XA− AX) = ρ.

Subcase 2.1.2. Suppose that ρ = n − 2. Then 1 = ρ1 = δ − 1 < ρ.
According to Corollary 7 or Lemma 9, there exists a nonsingular matrix
X2 ∈ F (n−2)×(n−2) such that X2A2 − A2X2 is nonderogatory and 0 is not
eigenvalue of X2A2 − A2X2. Let X = Iδ ⊕ X2. Then RF̄ (XA − AX) =
rank(XA− AX) = ρ.

Subcase 2.2. Suppose that (a′11) is false and that (b′11) is satisfied. Then
1 < ρ1 = δ − 1 < ρ.
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Firstly, suppose that ρ1 > 2. According to the induction assumption,
there exist nonsingular matrices X1 ∈ F δ×δ and X2 ∈ F (n−δ)×(n−δ) such
that RF̄ (X1A1 − A1X1) = rank(X1A1 − A1X1) = ρ − 2 and RF̄ (X2A2 −
A2X2) = rank(X2A2−A2X2) = 2. Let X = X1⊕X2. Then RF̄ (XA−AX) =
rank(XA− AX) = ρ.

Now suppose that ρ1 = 2. According to Corollary 7, there exists a non-
singular matrix X1 ∈ F 3×3 such that X1A1−A1X1 is nonderogatory and 0 is
not eigenvalue of X1A1−A1X1. Let X = X1⊕ In−3. Then RF̄ (XA−AX) =
rank(XA− AX) = 3 = ρ.

Now suppose that C ∈ F 2×2 is a matrix of the form (2) and that the
characteristic polynomial of C is irreducible. According to [3], K = F [C] is
a field and, according to [2], there exists B ∈ F 2×2 such that U = BC −CB
is nonsingular and

{XC − CX | X ∈ F 2×2} = UK = KU.

Let S = [Si,j ] ∈ F̄ 2p×2p, where the blocks Si,j are of size 2× 2. We shall
say that S is a ?-matrix if Si,j ∈ UK, whenever i ≤ j.

Lemma 12 With the previous notation, suppose that b 6= 0. Let S = [Si,j ] ∈
F̄ 2p×2p, Si,j ∈ F̄ 2×2, be a ?-matrix and λ ∈ F̄ \{0}. Then rank(S−λI2p) ≥ p.

Proof. By induction on p. Firstly, note that a commutator XC − CX is
not scalar, unless it is the zero matrix. Therefore, the lemma is true when
p = 1.

Suppose that p ≥ 2. Suppose that S1,j = 0, for every j ∈ {2, . . . , p}.
Considering S as a p× p matrix with entries in F̄ 2×2, let S0 be the principal
submatrix obtained from S by deleting the first row and the first column.
Using the induction assumption,

rank(S − λI2p) ≥ rank(S1,1 − λI2) + rank(S0 − λI2p−2) ≥ p.

Now suppose that S1,j 6= 0, for some j ∈ {2, . . . , p}. Choose the maximum
v ∈ {2, . . . , p} such that S1,v 6= 0. Consider S − λI2p as a p × p matrix
with entries in F̄ 2×2. For each w ∈ {2, . . . , v − 1}, subtract the vth column
multiplied by S−1

1,vS1,w from the wth column. It is not hard to see that the
matrix obtained has the form S ′ − λI2p, where S ′ = [S ′i,j], S

′
i,j ∈ F̄ 2×2,

is a ?-matrix. Clearly, rank(S − λI2p) = rank(S ′ − λI2p). If p = 2, then
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rank(S ′ − λI4) ≥ rankS ′1,2 = 2. Suppose that p ≥ 3. Considering S ′ as a
matrix with entries in F̄ 2×2, let S0 be the principal submatrix obtained from
S ′ by deleting the first and the vth rows and columns. Using the induction
assumption,

rank(S ′ − λI2p) ≥ rank(S0 − λI2p−4) + rankS ′1,v ≥ p.

Lemma 13 Suppose that fr(x) is irreducible of degree 2. If ρ < n/2 and ρ
is odd, then there is no matrix X ∈ F n×n such that RF̄ (XA− AX) = ρ.

Proof. Suppose that RF̄ (XA−AX) = ρ, where X ∈ F n×n, ρ < n/2 and
ρ is odd. Take λ ∈ F̄ such that rank(XA − AX − λIn) = ρ. As ρ < n/2, it
can be deduced that λ ∈ F.

According to [6], the eigenvalues of XA − AX can be joined in pairs so
that the sum of the two eigenvalues of each pair is 0. Therefore 2λ = 0.
Assuming that F has characteristic different from 2, we have λ = 0 and
rank(XA− AX) = ρ, what contradicts Lemma 4.

Suppose that the companion matrix of fr(x) has the form (2).
Suppose that b 6= 0. As A has the form C ⊕ · · · ⊕ C, XA − AX is a ?-

matrix. According Lemmas 4 and 12, the equality rank(XA−AX−λIn) = ρ
is impossible.

Finally, suppose that F has characteristic 2 and that b = 0. Take

Y =

[
1 0
λ 1

]
⊕ · · · ⊕

[
1 0
λ 1

]
∈ F n×n.

Then Y A − AY = λIn and (X − Y )A − A(X − Y ) = XA − AX − λIn has
rank ρ, what contradicts Lemma 4.

Bearing in mind Lemma 3, it is clear that Theorem 1 follows, immediately,
from the following lemma.

Lemma 14 Let F be a field such that all the irreducible polynomials in F [x]
have degree ≤ 2. Let A ∈ F n×n, ρ ∈ {0, . . . , n− 1}.

The following statements are equivalent:

(a14) There exists a nonsingular matrix X ∈ F n×n such that RF̄ (XA −
AX) = ρ.

(b14) There exists X ∈ F n×n such that RF̄ (XA− AX) = ρ.
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(c14) One of the following conditions holds:

(i14) fr(x) is irreducible of degree 2 and ρ is even.

(ii14) fr(x) is irreducible of degree 2 and ρ ≥ n/2.

(iii14) fr(x) is not irreducible of degree 2 and ρ ≤ 2RF̄ (A).

Proof. Suppose that (b14) is satisfied. Suppose that fr(x) is irreducible of
degree 2. According to Lemma 13, ρ is even or ρ ≥ n/2. Now suppose that
fr(x) is not irreducible of degree 2. Then, using Lemma 4,

ρ = RF̄ (XA− AX) ≤ rank(XA− AX) ≤ 2RF̄ (A).

Conversely, suppose that (c14) is satisfied, in order to prove (a14). If one
of the conditions (i14), (iii14) is satisfied, then, according to Lemma 11, (a14)
holds. Now suppose that fr(x) is irreducible of degree 2 and ρ ≥ n/2. Let s :=
n− ρ ≤ n/2 = r. We have A = C⊕· · ·⊕C, where C = C(f1) = · · · = C(fr).
Let Y ∈ F 2×2 be a nonsingular matrix such that Y C−CY is nonderogatory.
Let λ1, λ2 ∈ F̄ be the eigenvalues of Y C−CY. Let X1 = Y ⊕· · ·⊕Y ∈ F 2s×2s.

If s = r, let X = X1.
If s < r, let A1 = C(f1) ⊕ · · · ⊕ C(fs), A2 = C(fs+1) ⊕ · · · ⊕ C(fr).

According to Lemma 9, there exists a nonsingular matrix X2 ∈ F 2s×2s such
that X2A2 − A2X2 is nonderogatory and does not have any eigenvalue in
{λ1, λ2}. Let X = X1 ⊕X2.

For any value of s, it is not hard to deduce that

ρ = RF̄ (XA− AX) = rank(XA− AX − λ1In).
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