On the Number of Invariant Polynomials of Matrix Commutators

Enide Andrade Martins *‡ Fernando C. Silva †‡

March 4, 1996

Abstract

We study the possible numbers of nonconstant invariant polynomials of the matrix commutator XA - AX, when X varies.

Let F be a field, $A, B \in F^{n \times n}$ and denote by i(A) the number of nonconstant invariant polynomials of A.

In [7], it was proved that, if there exists X such that $A + XBX^{-1}$ is nonderogatory (i. e., $i(A+XBX^{-1}) = 1$), then $i(A)+i(B) \leq n+1$; and it was conjectured that the converse is true, under rather slight restrictions on F. This conjecture was proved in a theorem [9] that gives necessary and sufficient conditions for the existence of X such that $i(A + XBX^{-1}) \leq t$, where t is a positive integer. Later [11], all the possible values of $i(A + XBX^{-1})$, when X varies, were described, assuming that F is algebraically closed. In general fields, this is an open problem.

The possible numbers of nonconstant invariant polynomials of partially given matrices were also studied in several papers, e. g., [1, 4, 5, 10].

Some properties of the commutator XA - AX, when X varies, have already been studied. Suppose that D is a division ring and $A \in D^{n \times n}$. The

^{*}Departamento de Matemática, Universidade de Aveiro, 3800 Aveiro, Portugal.

[†]Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1700 Lisboa, Portugal.

[‡]This work was partially supported by the Praxis Program (project "Álgebra e Matemáticas Discretas") and was done within the activities of the Centro de Álgebra da Universidade de Lisboa.

rank of XA - AX, when X runs over $D^{n \times n}$, was studied in [2]. The same problem, when X runs over the set of the nonsingular matrices of $D^{n \times n}$, was studied in [8]. The eigenvalues of XA - AX, when X runs over $F^{n \times n}$ and also when X runs over the set of the nonsingular matrices of $F^{n \times n}$, were studied in [6].

Given $A \in F^{n \times n}$, the following theorem solves the problem of characterizing the possible values of i(XA - AX), when X varies, assuming that all the irreducible polynomials in F[x] have degree ≤ 2 . In particular, the problem is solved for algebraically closed fields and for the field of real numbers, \mathbb{R} . We shall prove Theorem 1 later. Observe that a field F such that all the irreducible polynomials in F[x] have degree ≤ 2 has to be infinite.

From now on, A denotes an $n \times n$ matrix over F, $f_1(x) \mid \cdots \mid f_r(x)$, r = i(A), are the nonconstant invariant polynomials of A, and $t \in \{1, \ldots, n\}$. We assume that the invariant polynomials are always monic.

Theorem 1 Suppose that F is a field such that all the irreducible polynomials in F[x] have degree ≤ 2 . Let $A \in F^{n \times n}$, $t \in \{1, \ldots, n\}$. The following conditions are equivalent:

- (a₁) There exists a nonsingular matrix $X \in F^{n \times n}$ such that i(XA AX) = t.
- (b₁) There exists $X \in F^{n \times n}$ such that i(XA AX) = t.
- (c_1) One of the following conditions holds:
 - (i_1) $f_r(x)$ is irreducible of degree 2 and t is even.
 - (ii) $f_r(x)$ is irreducible of degree 2 and $t \leq n/2$.
 - (*iii*₁) $f_r(x)$ is not irreducible of degree 2 and $2i(A) \le n+t$.

Corollary 2 Suppose that F is an algebraically closed field. Then (a_1) , (b_1) and the following condition (c_2) are equivalent:

 $(c_2) \ 2i(A) \le n+t.$

Given a polynomial $f(x) = x^k - a_{k-1}x^{k-1} - \cdots - a_1x - a_0$, denote by d(f) the degree of f and denote by C(f) the companion matrix

$$\left[\begin{array}{c|c|c} 0 & I_{k-1} \\ \hline a_0 & a_1 & \cdots & a_{k-1} \end{array}\right].$$

Let \overline{F} be an algebraically closed extension of F. Let

$$R_{\bar{F}}(A) = \min_{\lambda \in \bar{F}} \operatorname{rank}(A - \lambda I_n)$$

Lemma 3 [7] $R_{\bar{F}}(A) = n - i(A)$.

It is well-known that A is nonderogatory if and only if i(A) = 1. It follows, from the previous lemma, that A is nonderogatory if and only if $R_{\bar{F}}(A) = n - 1$.

Lemma 4 [2, 8] Suppose that either $F \neq \{0, 1\}$ or $n \neq 2$. Let $\rho \in \{0, ..., n\}$. The following statements are equivalent:

- (a₄) There exists a nonsingular matrix $X \in F^{n \times n}$ such that rank $(XA AX) = \rho$.
- (b₄) There exists $X \in F^{n \times n}$ such that rank $(XA AX) = \rho$.
- (c_4) One of the following conditions holds:
 - (i_4) $f_r(x)$ is irreducible of degree 2 and ρ is even.
 - (ii₄) $f_r(x)$ is irreducible of degree ≥ 3 and $\rho \neq 1$.
 - (*iii*₄) $f_r(x)$ is not irreducible of degree ≥ 2 and $\rho \leq 2R_{\bar{F}}(A)$.

Remark 1 In the original papers, Lemma 4 was established, with a slightly different statement, for arbitrary division rings. More precisely, [2] gives a necessary and sufficient condition for (b_4) and [8] gives a necessary and sufficient condition for (a_4) .

Lemma 5 [6] Let c_1, \ldots, c_n be elements of F such that $c_1 + \cdots + c_n = 0$. If $2i(A) \leq n$ and $d(f_r) \geq 3$, then there exists a nonsingular matrix $X \in F^{n \times n}$ such that XA - AX has eigenvalues c_1, \ldots, c_n .

If $A' \in F^{n \times n}$ is similar to A and $Z \in F^{n \times n}$ is a nonsingular matrix such that $A' = Z^{-1}AZ$, then $R_{\bar{F}}(A) = R_{\bar{F}}(A')$ and, for every $X \in F^{n \times n}$, XA - AX and $(Z^{-1}XZ)A' - A'(Z^{-1}XZ)$ are similar. Therefore, in the proofs of the

following lemmas and in the proof of Theorem 1, we can replace A by any similar matrix and we shall assume, without loss of generality, that

$$A = C(f_1) \oplus \dots \oplus C(f_r). \tag{1}$$

Assume that A has the form (1). Then, for every $\lambda \in \overline{F}$, rank $(A - \lambda I_n) \ge n - r$. The equality holds if and only if λ is a root of $f_1(x)$. Note that this argument gives a proof for Lemma 3. The eigenvalues of A are the roots of $f_1(x) \cdots f_r(x)$. We call *primary* eigenvalues of A to the roots of $f_1(x)$.

If A has a primary eigenvalue $\lambda \in F$, then $R_{\bar{F}}(A) = R_{\bar{F}}(A - \lambda I_n)$ and, for every $X \in F^{n \times n}$, $XA - AX = X(A - \lambda I_n) - (A - \lambda I_n)X$. Therefore, in the proofs of the following lemmas and in the proof of Theorem 1, if A has a primary eigenvalue in F, we shall also assume, without loss of generality, that 0 is a primary eigenvalue of A. Note that, in this case, the first column of $C(f_i)$, $i \in \{1, \ldots, r\}$, is equal to zero.

Corollary 6 Suppose that F is an infinite field. Let $c \in F$. If $n \ge 4$, $2i(A) \le n$ and $d(f_r) \ge 3$, then there exists a nonsingular matrix $X \in F^{n \times n}$ such that XA - AX is nonderogatory and c is eigenvalue of XA - AX.

Proof. As F is infinite and $n \ge 4$, there exist distinct elements $c_1, \ldots, c_n \in F$ such that $c_1 = c$ and $c_1 + \cdots + c_n = 0$. According to Lemma 5, there exists a nonsingular matrix $X \in F^{n \times n}$ such that XA - AX has eigenvalues c_1, \ldots, c_n . Clearly, XA - AX is nonderogatory.

The following corollary is also easy to prove.

Corollary 7 Suppose that F is an infinite field. Let G be a finite subset of F. If $2i(A) \leq n$ and $d(f_r) \geq 3$, then there exists a nonsingular matrix $X \in F^{n \times n}$ such that XA - AX is nonderogatory and does not have any eigenvalue in G.

Lemma 8 Suppose that F is an infinite field. If $C \in F^{2\times 2}$ is nonderogatory, then the set of the values det(XC - CX), where X runs over the set of the nonsingular matrices of $F^{2\times 2}$ such that XC - CX is nonderogatory, is infinite.

Proof. Without loss of generality, suppose that

$$C = \begin{bmatrix} 0 & 1\\ a & b \end{bmatrix}.$$
 (2)

Choose $u \in F \setminus \{0, 1\}$. For every $v \in F$, let

$$X_v = \left[\begin{array}{cc} u - 1 & 0 \\ v & u \end{array} \right].$$

Then X_v is nonsingular, $X_vC - CX_v$ is nonderogatory and $\det(X_vC - CX_v) = -v^2 - bv + a$. For every $\lambda \in F$, the quadratic equation, in $v, -v^2 - bv + a = \lambda$ has, at most, 2 roots. Therefore $\{-v^2 - bv + a : v \in F\}$ is infinite.

Lemma 9 Suppose that F is an infinite field. Let G be a finite subset of \overline{F} . If $d(f_1) = \cdots = d(f_r) = 2$, then there exists a nonsingular matrix $X \in F^{n \times n}$ such that XA - AX is nonderogatory and does not have any eigenvalue in G.

Proof. We have $f_1 = \cdots = f_r$. Let $C = C(f_1)$. It follows, from Lemma 8, that there exists an infinite list of nonsingular matrices X_1, X_2, \ldots , in $F^{2\times 2}$, such that $D_i := X_i C - CX_i$ is nonderogatory and det $D_i \neq \det D_j$, $i, j \in \{1, 2, \ldots\}, i \neq j$. As all the matrices D_i have trace equal to zero, it is easy to deduce that, if $i \neq j$, then D_i and D_j do not have a common eigenvalue. Without loss of generality, we may assume that none of the matrices D_1, \ldots, D_r has an eigenvalue in G. Then XA - AX, where $X = X_1 \oplus \cdots \oplus X_r$, is nonderogatory and does not have any eigenvalue in G.

Lemma 10 Suppose that $F \neq \{0, 1\}$. Let $\rho \in \{2, ..., n-1\}$. If A is nonderogatory, then there exists a nonsingular matrix $X \in F^{n \times n}$ such that XA - AX is nilpotent and $R_{\overline{F}}(XA - AX) = \rho$.

Proof. According to a previous assumption, $A = C(f_1)$. If ρ is even, let X be the $n \times n$ matrix with the principal entries, and the entries (2k+1, 2k-1), $k \in \{1, \ldots, \rho/2\}$, equal to 1.

If ρ is odd, let $e \in F \setminus \{0, 1\}$ and let X be the $n \times n$ matrix with the principal entries, and the entries $(2k+1, 2k-1), k \in \{1, \ldots, (\rho-1)/2\}$, equal to 1 and the entry $(\rho+1, \rho-1)$ equal to e.

For any value of ρ , XA - AX is lower triangular with the principal entries equal to zero, the entries (i + 1, i), $i \in \{1, \ldots, \rho\}$, different from zero, and the columns $\rho + 1, \ldots, n$ equal to zero. Clearly, XA - AX is nilpotent and $R_{\bar{F}}(XA - AX) = \rho$.

Lemma 11 Suppose that F is an infinite field. Let $\rho \in \{0, ..., n-1\}$. Condition (c_4) is equivalent to any of the following conditions:

- (a₁₁) There exists a nonsingular matrix $X \in F^{n \times n}$ such that $R_{\bar{F}}(XA AX) = \operatorname{rank}(XA AX) = \rho$.
- (b₁₁) There exists $X \in F^{n \times n}$ such that $R_{\bar{F}}(XA AX) = \operatorname{rank}(XA AX) = \rho$.

Proof. We only need to prove that (c_4) implies (a_{11}) . This proof is by induction on n. Suppose that (c_4) is satisfied. Note that, if $\rho = 0$, then (a_{11}) is trivial. Thus, suppose that $\rho > 0$. Then (c_4) implies that A is nonscalar.

Suppose that $\rho = 1$. According to Lemma 4, there exists a nonsingular matrix $X \in F^{n \times n}$ such that $\operatorname{rank}(XA - AX) = 1$. Then $R_{\bar{F}}(XA - AX) = 1$. We have already proved Lemma 11 when $n \leq 2$.

Suppose that $n \ge 3$ and that $\rho \ge 2$. The case r = 1 follows, immediately, from Lemma 10. Then, we also suppose that $r \ge 2$.

Case 1. Suppose that $\rho = n - 1$.

Subcase 1.1. Suppose that $d(f_r) \geq 3$. As $r \geq 2$, we have $n \geq 4$. From (c_4) , it follows that $2i(A) \leq n+1$. If $2i(A) \leq n$, then, according to Corollary 6, there exists a nonsingular matrix $X \in F^{n \times n}$ such that XA - AX is nonderogatory and 0 is eigenvalue of XA - AX, that is, (a_{11}) is satisfied, with $\rho = n - 1$.

Now suppose that 2i(A) = n+1. Then $f_1(x)$ has degree 1 and $A = [c] \oplus A_0$, where $c \in F$ and $A_0 = C(f_2) \oplus \cdots \oplus C(f_r)$. According to Corollary 7, there exists a nonsingular matrix $X_0 \in F^{(n-1)\times(n-1)}$ such that $X_0A_0 - A_0X_0$ is nonderogatory and nonsingular. Taking $X = [1] \oplus X_0$, XA - AX is nonderogatory and 0 is eigenvalue of XA - AX, that is, (a_{11}) is satisfied.

Subcase 1.2. Suppose that $d(f_r) = 2$. As (c_4) is satisfied, $f_r(x)$ is reducible and, therefore, A has a primary eigenvalue in F. According to a previous assumption, 0 is a primary eigenvalue of A.

Note that, if n is even, then r = n/2 and $f_1(x) = \cdots = f_r(x)$; and, if n is odd, then r = (n+1)/2, $f_1(x) = x$ and $f_2(x) = \cdots = f_r(x)$.

Let $A_1 = C(f_1)$ and $A_2 = C(f_2) \oplus \cdots \oplus C(f_r)$. If *n* is even, then there exists, as we have already seen, a nonsingular matrix $X_1 \in F^{2 \times 2}$ such that $R_{\bar{F}}(X_1A_1 - A_1X_1) = \operatorname{rank}(X_1A_1 - A_1X_1) = 1$. If *n* is odd, let $X_1 = [1] \in F^{1 \times 1}$.

In any case, according to Lemma 9, there exists a nonsingular matrix $X_2 \in F^{n' \times n'}$, where n' is the largest even integer less than n, such that $X_2A_2 - A_2X_2$ is nonderogatory and does not have any eigenvalue in common with $X_1A_1 - A_1X_1$.

Let $X = X_1 \oplus X_2$. Then $R_{\bar{F}}(XA - AX) = \operatorname{rank}(XA - AX) = n - 1$.

Case 2. Suppose that $\rho < n-1$. Let $\delta = d(f_1)$, $\rho_1 = \min\{\delta - 1, \rho\}$, $\rho_2 = \rho - \rho_1$, $A_1 = C(f_1)$, $A_2 = C(f_2) \oplus \cdots \oplus C(f_r)$. Then $R_{\bar{F}}(A_1) = \delta - 1$ and $R_{\bar{F}}(A_2) = R_{\bar{F}}(A) - \delta + 1$. If $\delta = 1$, we have $2R_{\bar{F}}(A_2) = 2R_{\bar{F}}(A) \ge \rho = \rho_2$. If $\delta > 1$ and $\rho_1 = \delta - 1$, we have $2R_{\bar{F}}(A_2) \ge n - \delta > \rho - \delta + 1 = \rho_2$. If $\rho_1 = \rho$, then $\rho_2 = 0$ and we also have $2R_{\bar{F}}(A_2) \ge \rho_2$.

If the induction assumption can be used, then there exist nonsingular matrices $X_1 \in F^{\delta \times \delta}$, $X_2 \in F^{(n-\delta) \times (n-\delta)}$ such that $R_{\bar{F}}(X_1A_1 - A_1X_1) = \operatorname{rank}(X_1A_1 - A_1X_1) = \rho_1$ and $R_{\bar{F}}(X_2A_2 - A_2X_2) = \operatorname{rank}(X_2A_2 - A_2X_2) = \rho_2$. Let $X = X_1 \oplus X_2$. Clearly, $R_{\bar{F}}(XA - AX) = \operatorname{rank}(XA - AX) = \rho$.

Now suppose that the induction assumption cannot be used in the previous argument. Then one, at least, of the following conditions is satisfied:

 (a'_{11}) $f_1(x)$ is irreducible and $\rho_1 = 1$.

 (b'_{11}) $f_r(x)$ is irreducible and $\rho_2 = 1$.

Subcase 2.1. Suppose that (a'_{11}) is satisfied.

Subcase 2.1.1. Suppose that $\rho < n-2$. Note that, if $\rho_1 = \rho$, then (c_4) implies that $f_r(x)$ is reducible; and that, if $\rho_1 = \delta - 1 < \rho$ and ρ is odd, then (c_4) also implies that $f_r(x)$ is reducible. In any situation, according to the induction assumption, there exists a nonsingular matrix $X_2 \in F^{(n-\delta)\times(n-\delta)}$ such that $R_{\bar{F}}(X_2A_2 - A_2X_2) = \operatorname{rank}(X_2A_2 - A_2X_2) = \rho$. Let $X = I_{\delta} \oplus X_2$. Then $R_{\bar{F}}(XA - AX) = \operatorname{rank}(XA - AX) = \rho$.

Subcase 2.1.2. Suppose that $\rho = n - 2$. Then $1 = \rho_1 = \delta - 1 < \rho$. According to Corollary 7 or Lemma 9, there exists a nonsingular matrix $X_2 \in F^{(n-2)\times(n-2)}$ such that $X_2A_2 - A_2X_2$ is nonderogatory and 0 is not eigenvalue of $X_2A_2 - A_2X_2$. Let $X = I_{\delta} \oplus X_2$. Then $R_{\bar{F}}(XA - AX) = \operatorname{rank}(XA - AX) = \rho$.

Subcase 2.2. Suppose that (a'_{11}) is false and that (b'_{11}) is satisfied. Then $1 < \rho_1 = \delta - 1 < \rho$.

Firstly, suppose that $\rho_1 > 2$. According to the induction assumption, there exist nonsingular matrices $X_1 \in F^{\delta \times \delta}$ and $X_2 \in F^{(n-\delta) \times (n-\delta)}$ such that $R_{\bar{F}}(X_1A_1 - A_1X_1) = \operatorname{rank}(X_1A_1 - A_1X_1) = \rho - 2$ and $R_{\bar{F}}(X_2A_2 - A_2X_2) = \operatorname{rank}(X_2A_2 - A_2X_2) = 2$. Let $X = X_1 \oplus X_2$. Then $R_{\bar{F}}(XA - AX) = \operatorname{rank}(XA - AX) = \rho$.

Now suppose that $\rho_1 = 2$. According to Corollary 7, there exists a nonsingular matrix $X_1 \in F^{3\times 3}$ such that $X_1A_1 - A_1X_1$ is nonderogatory and 0 is not eigenvalue of $X_1A_1 - A_1X_1$. Let $X = X_1 \oplus I_{n-3}$. Then $R_{\bar{F}}(XA - AX) =$ rank $(XA - AX) = 3 = \rho$.

Now suppose that $C \in F^{2\times 2}$ is a matrix of the form (2) and that the characteristic polynomial of C is irreducible. According to [3], K = F[C] is a field and, according to [2], there exists $B \in F^{2\times 2}$ such that U = BC - CB is nonsingular and

$$\{XC - CX \mid X \in F^{2 \times 2}\} = UK = KU.$$

Let $S = [S_{i,j}] \in \overline{F}^{2p \times 2p}$, where the blocks $S_{i,j}$ are of size 2×2 . We shall say that S is a \star -matrix if $S_{i,j} \in UK$, whenever $i \leq j$.

Lemma 12 With the previous notation, suppose that $b \neq 0$. Let $S = [S_{i,j}] \in \bar{F}^{2p \times 2p}$, $S_{i,j} \in \bar{F}^{2 \times 2}$, be a \star -matrix and $\lambda \in \bar{F} \setminus \{0\}$. Then $\operatorname{rank}(S - \lambda I_{2p}) \geq p$.

Proof. By induction on p. Firstly, note that a commutator XC - CX is not scalar, unless it is the zero matrix. Therefore, the lemma is true when p = 1.

Suppose that $p \geq 2$. Suppose that $S_{1,j} = 0$, for every $j \in \{2, \ldots, p\}$. Considering S as a $p \times p$ matrix with entries in $\overline{F}^{2 \times 2}$, let S_0 be the principal submatrix obtained from S by deleting the first row and the first column. Using the induction assumption,

$$\operatorname{rank}(S - \lambda I_{2p}) \ge \operatorname{rank}(S_{1,1} - \lambda I_2) + \operatorname{rank}(S_0 - \lambda I_{2p-2}) \ge p.$$

Now suppose that $S_{1,j} \neq 0$, for some $j \in \{2, \ldots, p\}$. Choose the maximum $v \in \{2, \ldots, p\}$ such that $S_{1,v} \neq 0$. Consider $S - \lambda I_{2p}$ as a $p \times p$ matrix with entries in $\bar{F}^{2\times 2}$. For each $w \in \{2, \ldots, v-1\}$, subtract the vth column multiplied by $S_{1,v}^{-1}S_{1,w}$ from the wth column. It is not hard to see that the matrix obtained has the form $S' - \lambda I_{2p}$, where $S' = [S'_{i,j}], S'_{i,j} \in \bar{F}^{2\times 2}$, is a \star -matrix. Clearly, rank $(S - \lambda I_{2p}) = \operatorname{rank}(S' - \lambda I_{2p})$. If p = 2, then

 $\operatorname{rank}(S' - \lambda I_4) \geq \operatorname{rank} S'_{1,2} = 2$. Suppose that $p \geq 3$. Considering S' as a matrix with entries in $\overline{F}^{2\times 2}$, let S_0 be the principal submatrix obtained from S' by deleting the first and the vth rows and columns. Using the induction assumption,

$$\operatorname{rank}(S' - \lambda I_{2p}) \ge \operatorname{rank}(S_0 - \lambda I_{2p-4}) + \operatorname{rank} S'_{1,v} \ge p.$$

Lemma 13 Suppose that $f_r(x)$ is irreducible of degree 2. If $\rho < n/2$ and ρ is odd, then there is no matrix $X \in F^{n \times n}$ such that $R_{\overline{F}}(XA - AX) = \rho$.

Proof. Suppose that $R_{\bar{F}}(XA - AX) = \rho$, where $X \in F^{n \times n}$, $\rho < n/2$ and ρ is odd. Take $\lambda \in \bar{F}$ such that $\operatorname{rank}(XA - AX - \lambda I_n) = \rho$. As $\rho < n/2$, it can be deduced that $\lambda \in F$.

According to [6], the eigenvalues of XA - AX can be joined in pairs so that the sum of the two eigenvalues of each pair is 0. Therefore $2\lambda = 0$. Assuming that F has characteristic different from 2, we have $\lambda = 0$ and rank $(XA - AX) = \rho$, what contradicts Lemma 4.

Suppose that the companion matrix of $f_r(x)$ has the form (2).

Suppose that $b \neq 0$. As A has the form $C \oplus \cdots \oplus C$, XA - AX is a \star -matrix. According Lemmas 4 and 12, the equality $\operatorname{rank}(XA - AX - \lambda I_n) = \rho$ is impossible.

Finally, suppose that F has characteristic 2 and that b = 0. Take

$$Y = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix} \in F^{n \times n}.$$

Then $YA - AY = \lambda I_n$ and $(X - Y)A - A(X - Y) = XA - AX - \lambda I_n$ has rank ρ , what contradicts Lemma 4.

Bearing in mind Lemma 3, it is clear that Theorem 1 follows, immediately, from the following lemma.

Lemma 14 Let F be a field such that all the irreducible polynomials in F[x]have degree ≤ 2 . Let $A \in F^{n \times n}$, $\rho \in \{0, \dots, n-1\}$. The following statements are equivalent:

- (a₁₄) There exists a nonsingular matrix $X \in F^{n \times n}$ such that $R_{\bar{F}}(XA AX) = \rho$.
- (b₁₄) There exists $X \in F^{n \times n}$ such that $R_{\bar{F}}(XA AX) = \rho$.

 (c_{14}) One of the following conditions holds:

- (i_{14}) $f_r(x)$ is irreducible of degree 2 and ρ is even.
- (ii₁₄) $f_r(x)$ is irreducible of degree 2 and $\rho \ge n/2$.
- (iii₁₄) $f_r(x)$ is not irreducible of degree 2 and $\rho \leq 2R_{\bar{F}}(A)$.

Proof. Suppose that (b_{14}) is satisfied. Suppose that $f_r(x)$ is irreducible of degree 2. According to Lemma 13, ρ is even or $\rho \ge n/2$. Now suppose that $f_r(x)$ is not irreducible of degree 2. Then, using Lemma 4,

$$\rho = R_{\bar{F}}(XA - AX) \le \operatorname{rank}(XA - AX) \le 2R_{\bar{F}}(A).$$

Conversely, suppose that (c_{14}) is satisfied, in order to prove (a_{14}) . If one of the conditions (i_{14}) , (iii_{14}) is satisfied, then, according to Lemma 11, (a_{14}) holds. Now suppose that $f_r(x)$ is irreducible of degree 2 and $\rho \ge n/2$. Let s := $n - \rho \le n/2 = r$. We have $A = C \oplus \cdots \oplus C$, where $C = C(f_1) = \cdots = C(f_r)$. Let $Y \in F^{2\times 2}$ be a nonsingular matrix such that YC - CY is nonderogatory. Let $\lambda_1, \lambda_2 \in \overline{F}$ be the eigenvalues of YC - CY. Let $X_1 = Y \oplus \cdots \oplus Y \in F^{2s \times 2s}$. If s = r, let $X = X_1$.

If s < r, let $A_1 = C(f_1) \oplus \cdots \oplus C(f_s)$, $A_2 = C(f_{s+1}) \oplus \cdots \oplus C(f_r)$. According to Lemma 9, there exists a nonsingular matrix $X_2 \in F^{2s \times 2s}$ such that $X_2A_2 - A_2X_2$ is nonderogatory and does not have any eigenvalue in $\{\lambda_1, \lambda_2\}$. Let $X = X_1 \oplus X_2$.

For any value of s, it is not hard to deduce that

$$\rho = R_{\bar{F}}(XA - AX) = \operatorname{rank}(XA - AX - \lambda_1 I_n).$$

References

- I. Cabral, Matrices with prescribed submatrices and number of invariant polynomials, Linear Algebra Appl. 219 (1995), 207–224.
- [2] R. Guralnick and C. Lanski, The rank of a commutator, Linear Multilin. Algebra 13 (1983), 167–175.
- [3] T. J. Laffey, A basis theorem for matrix algebras, Linear Multilin. Algebra 8 (1980), 183–187.

- [4] M. G. Marques, The number of invariant polynomials of a matrix with prescribed off-diagonal blocks, Linear Algebra Appl., to appear.
- [5] M. G. Marques, F. C. Silva and Zhang Yu Lin, The number of invariant polynomials of a matrix with prescribed complementary principal submatrices, Linear Algebra Appl., to appear.
- [6] E. A. Martins and F. C. Silva, Eigenvalues of matrix commutators, Linear Multilin. Algebra 39 (1995), 375–390.
- [7] G. N. Oliveira, E. M. Sá and J. A. Dias da Silva, On the eigenvalues of the matrix $A + XBX^{-1}$, Linear Multilin. Algebra 5 (1977), 119–128.
- [8] E. M. Sá, The rank of the difference of similar matrices, Portugaliae Math. 46 (1989), 177–187.
- [9] F. C. Silva, On the number of invariant polynomials of the matrix $XAX^{-1} + B$, Linear Algebra Appl. 79 (1986), 1–21.
- [10] F. C. Silva, On the number of invariant polynomials of partially prescribed matrices, Linear Algebra Appl. 197 (1994), 709–754.
- [11] F. C. Silva and W. So, Possible numbers of invariant polynomials for the difference of two similarity classes, Linear Multilin. Algebra, to appear.