
A STRONG FORM OF ALMOST DIFFERENTIABILITY
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Abstract. We present an uniformization of Reeken’s macroscopic differentia-

bility ([5]), discuss its relations to uniform differentiability ([6]) and classical
continuous differentiability, prove corresponding Chain Rule, Taylor’s Theo-

rem, Mean Value Theorem and Inverse Mapping Theorem. An attempt at

comparison with observability ([1, 4]) is made too.

1. A summary

In section 2 we establish the main context and language and also review Stroyan’s
S-uniform differentiability ([6]) for it not only is important for the matter at hand
but also because we see it as a touchstone, or at least a basic paradigm, for other
notions either finite or infinite dimensional. In section 3, we establish the uni-
formization we call mu-differentibility (definition 3.3), and explore its relation to
S-continuity (theorem 3.6), S-uniform differentiability (theorems 3.8 and 3.13) and
classical continuous differentiability (theorem and 3.9 and corollary 3.11). Section
3 also includes a short discussion of mu-differentiability of higher order (theorem
3.12).

In sections 4, 5, 6 and 7 we treat the remaining theorems in the order given in
the abstract.

In section 8 we sketch a line along which a comparison of observability and
macroscopic differentiability might be studied.

2. Preliminaries

Our presentation is made in a poly-saturated model of Robinson’s Nonstan-
dard Analysis, as given for instance in [7] or [2]. Definitions and theorems in this
introduction aim at making the article self-contained, at least on what regards
terminology.

Unless otherwise specified, E and F are two arbitrary normed spaces with non-
standard extensions ∗E and ∗F , and U an open subset of E. We begin by presenting
some basic notions and theorems.

Definition 2.1. Let x and y be two vectors of ∗E. We say that

(1) x is infinitesimal if |x| < r for all positive real numbers r, and we write
x ≈ 0;

(2) x is finite if, for some positive real number r, |x| < r; the set of the finite
vectors of ∗E will be denoted by fin(∗E);

(3) x is infinite if it is not finite, and write x ≈ ∞;
(4) x and y are infinitely close if x− y is infinitesimal, and we write x ≈ y;
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(5) x is nearstandard if there exists a standard z ∈ σE with x ≈ z, and we
write z = st(x); in this case we say that z is the standard part of x. The
set of the nearstandard vectors of ∗E will be denoted by ns(∗E);

(6) The monad of x is the set µ(x) := {z ∈ ∗E| z ≈ x}.

The set of infinitesimal vectors is the monad of zero. ∗N∞ denotes the set of
infinitely large positive integers, ∗N∞ = ∗N \σN. ∗Z+

∞,∗Z−
∞,∗Z∞, ∗R∞, etc are

defined analogously.

Theorem 2.2. The inclusion ns(∗E) ⊆ fin(∗E) holds. Moreover, E is finite
dimensional if and only if ns(∗E) = fin(∗E).

In infinite dimensional spaces, finite vectors need not be nearstandard. For
example, let E = l1(R) and take x = (xn) ∈ ∗l1(R), (n ∈ ∗N) where

xn =
{

0 n 6= ω
1 n = ω

and ω ∈ ∗N∞. Then x is finite (|x| = 1) but its distance to any standard element
is not infinitesimal.

Theorem 2.3. Spillover Principle Let A be an internal subset of ∗R. If A
contains all positive infinitesimal numbers, then A contains a positive standard
number.

Definition 2.4. Let f : ∗U → ∗F be an internal function. We say that f is S-
continuous at a ∈ ∗U if x ≈ a implies f(x) ≈ f(a). If this is true for all a ∈ σU ,
f is called S-continuous. If it still holds for all a ∈ ∗U , then we say that f is
SU-continuous.

Theorem 2.5. A standard function f is continuous (resp. uniformly continuous)
if and only if it is S-continuous (resp. SU-continuous).

For instance, f(x) = x2, x ∈ R is not uniformly continuous since if ω is an infinite
hyper-real number, then

f

(
ω +

1
ω

)
= ω2 +

1
ω2

+ 2 6≈ ω2 = f(ω).

In the following we will denote

ns(∗U) := {x ∈ ∗U |x ∈ ns(∗E) ∧ st(x) ∈ σU}

Given an internal linear operator L ∈ ∗L(E,F ), we say that L is finite if
L(fin(∗E)) ⊆ fin(∗F )

Definition 2.6. Let f : ∗U → ∗F be an internal function and a ∈ σU . We say
that f is S-differentiable at a if it satisfies both conditions

(1) f(ns(∗U)) ⊆ ns(∗F ).
(2) there exists a finite linear operator Dfa ∈ ∗L(E,F ) such that, for each

x ≈ a there exists some η ≈ 0 satisfying

f(x)− f(a) = Dfa(x− a) + |x− a|η

We say that f is a S-differentiable function if it is S-differentiable at all a ∈ σU .
Finally, we say that f is SU-differentiable if the previous condition is true for every
a ∈ ns(∗U).

Theorem 2.7. A standard function f : U → F is differentiable (resp. continuously
differentiable) if and only if it is S-differentiable (resp. SU-differentiable).



A STRONG FORM OF ALMOST DIFFERENTIABILITY 3

Theorem 2.8. An internal function f : ∗U → ∗F is SU-differentiable if and only
if for all a ∈ σU , there exists a finite linear operator La ∈ ∗L(E,F ) such that,
whenever y ≈ x ≈ a, there exists an infinitesimal vector η satisfying

f(x)− f(y) = La(x− y) + |x− y|η.

It is well known that a real function of one real variable f is differentiable with
derivative f ′, then it is of class C1 if and only if

f ′(x) ≈ f(x + η)− f(x)
η

whenever η is infinitesimal and x is near standard (see [7, 5.7.6]); this idea is already
extended in the following theorem (2.9) and was even more extended in [6].

We proceed to present a nonstandard version of Taylor’s theorem. Note that
it provides a necessary and sufficient condition for a function to be of class Ck.
Denote SLh(E,F ) the symmetric h-linear operators from E × . . . × E = Eh into
F .

Theorem 2.9. Let f : U → F be a function. Then f is of class Ck if and only if
there exist unique maps Lh

(.) : U → SLh(E,F ), h ∈ {1, . . . , k} such that, whenever
a ∈ ns(∗U) and x ≈ a, there is an infinitesimal η ∈ ∗F satisfying

f(x) =
k∑

h=0

1
h!

Lh
a(x− a)(h) + |x− a|kη.

The unique maps Lh are the h-th derivatives of f also denoted Dhf .

3. mu-differentiability of an internal function

In this section treat a new kind of differentiability, we call mu-differentiability.
We will see that mu-differentiability contrary to SU-differentiability demands less
smoothness on f , but still approaches class C1, namely when we deal with pertur-
bations of classical functions (see Theorem 3.9 below).

In 1992, M. Reeken defined a new macroscopic differentiability (m-differentiability
for short). The notion was used essentially for the definition of quasi-manifolds and
we know of no developments other than the hereby presented. For standard func-
tions, the m-derivative is the Fréchet derivative, but m-differentiability of internal
functions does appear to be more adapted to physics ([5]).

Definition 3.1. Let f : ∗U → ∗F be an internal function. We say that f is
m-differentiable at a ∈ σU if it satisfies both conditions

(1) f(ns(∗U)) ⊆ ns(∗F ).
(2) there exists an infinitesimal δa ∈ ∗R+ and a finite linear operator Dfa ∈

∗L(E,F ) such that, for all x ∈ ∗U , where δa < |x − a| ≈ 0, there is some
η ≈ 0 such that

f(x)− f(a) = Dfa(x− a) + |x− a|η

The function f is called m-differentiable if it is m-differentiable at all a ∈ σU .

Since f(ns(∗U)) ⊆ ns(∗F ), it makes sense to define the standard function

st(f) : σU → σF
x 7→ st(f(x))

Let us denote st(f) by f ; this is merely a device to emphasize the fact that
standard parts are actually extensions of classical objects, in particular the notation
st(f) is bound to hide the fact that st(f) = ∗g, for some classical g.
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If g is a standard differentiable function and sup
x∈∗U

|f(x) − g(x)| ≈ 0, then f is

m-differentiable. Actually, it can be proved that

Theorem 3.2. [5] If E and F are standard finite dimensional normed spaces, K
a standard compact subset of E and f : ∗K → ∗F an internal function, then the
following statements are equivalent:

(1) f is S-continuous and m-differentiable;
(2) There exists a differentiable standard function g : K → F such that

sup
x∈∗K

|f(x)− g(x)| ≈ 0.

This result played a very important role in the characterization of nonstandard
manifolds as presented in [5]: under some conditions, the internal transition func-
tions ϕij are S-continuous, m-differentiable with S-continuous m-derivative if and
only if there exist standard C1 transition functions infinitely close to ϕij .

Here we extend the last result for m-uniformly differentiable functions as well
as study other properties of this differentiability. First we introduce the notion of
mu-differentiability (short for m-uniformly differentiability).

Definition 3.3. Let f : ∗U → ∗F be an internal function. We say that f is
mu-differentiable if

(1) f(ns(∗U)) ⊆ ns(∗F ).
(2) There exists an internal function from ∗U into ∗L(E,F ), x 7→ Dfx such

that
(a) when x is near-standard in ∗U , Dfx is a finite map.
(b) for each a ∈ σU , there exists a positive infinitesimal δa for which, when

x, y ≈ a ∈ σU , some infinitesimal vector η verifies

|x− y| > δa ⇒ f(x)− f(y) = Dfx(x− y) + |x− y|η.

Since a ∈ µ(a), every mu-differentiable function is m-differentiable.
For example, let

(1) f(x) =
{

0 if x 6= 0
ε if x = 0

where ε is a positive infinitesimal number. Then f is mu-differentiable and (we can
choose) f ′(x) ≈ 0 for every x ∈ ns(∗R). In fact, let a = 0 (the case 0 6= a ∈ σR is
obvious) and let x ≈ y ≈ 0 with |x− y| > δ0 :=

√
ε. Then∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ ε√
ε
≈ 0.

Observe that f is not S-differentiable (nor SU-differentiable) since

f(ε2)− f(0)
ε2 − 0

= − ε

ε2

is infinite.
In the next example the choice of δa is independent of the choice of a.
Let [x] denote the largest integer less than or equal to x. The function f(x) =

[x]ε, x ∈ ∗R, where ε is any positive infinitesimal, is mu-differentiable and f ′(x) = 0,
for every x ∈ ns(∗R). In fact, we suppose a ∈ σR and choose a positive infinitesimal
δ such that ε/δ is still infinitesimal (for example, δ =

√
ε). If x, y ≈ a with |x−y| > δ

then

(1) if a 6∈ Z then
f(x)− f(y)

x− y
= 0;

(2) if a ∈ Z and x, y ≥ a or x, y < a then
f(x)− f(y)

x− y
= 0;
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(3) in the other cases,
∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ ε

δ
≈ 0.

Actually one encompassing δ may be taken in Definition 3.3, i.e., the following
holds.

Theorem 3.4. Let f : ∗U → ∗F be an internal function; f is mu-differentiable if
and only if all the following conditions are verified

(1) f(ns(∗U)) ⊆ ns(∗F ).
(2) There exist an internal function from ∗U into ∗L(E,F ), x 7→ Dfx and a

positive infinitesimal δ such that
(a) when x is near-standard in ∗U , Dfx is a finite map.
(b) when x and y are near-standard in ∗U , some infinitesimal vector η

verifies

|x− y| > δ ⇒ f(x)− f(y) = Dfx(x− y) + |x− y|η.

Proof. It is obvious that the existence of one δ as above implies mu-differentiability.
Suppose that f is mu-differentiable as in Definition 3.3 and define

ν :=
⋃

a∈σU

]0, δa].

ν is a union of a family of internal sets whose cardinal does not exceed the cardinal
of the contextual classical model of analysis from which the poly-saturated nonstan-
dard model is obtained; let µ denote the monad of zero in ∗R, so that ν ⊆ µ. The
proof that actually ν ⊂ µ is an easy exercise on poly-saturation. Any infinitesimal
δ ∈ µ \ ν may be chosen. �

The following is obvious

Theorem 3.5. Let f and g be two mu-differentiable functions and k ∈ ns(∗R).
Then f + g and kf are mu-differentiable.

We shall prove

Theorem 3.6. If the function f : ∗U → ∗F is mu-differentiable then

∀x, y ∈ ns(∗U) x ≈ y ⇒ f(x) ≈ f(y),

i.e., the function is S-continuous.

Proof. Let us fix x, y ∈ ns(∗U) with x ≈ y and let a := st(x). Since x, y ∈ µ(a),
there exist two finite linear operators Dfx, Dfy ∈ ∗L(E,F ) such that, for all z ∈
µ(a)

• |x− z| > δa ⇒ f(x)− f(z) = Dfx(x− z) + |x− z|η1,
• |y − z| > δa ⇒ f(y)− f(z) = Dfy(y − z) + |y − z|η2,

with η1 ≈ η2 ≈ 0. Choose any z ∈ µ(a) with min{|x− z|, |y − z|} > δa. Then

f(x)− f(z) ≈ 0 ≈ f(y)− f(z)

so that f(x) ≈ f(y), which concludes the proof. �

Remark 3.7. m-differentiability of a function does not imply S-continuity. Let

f : ∗]− 1, 1[ −→ ∗R

x 7→
{

0 if x 6= ε
1 if x = ε

where ε is a positive infinitesimal number. Then f is m-differentiable at x = 0 (take
δ0 ≥ ε) but it is not S-continuous.

The next theorem shows that derivatives of mu-differentiable functions are S-
continuous:
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Theorem 3.8. Let f be a mu-differentiable function, x, y ∈ ns(∗U) with x ≈ y.
Then for all d ∈ ∗E with |d| = 1, Dfx(d) ≈ Dfy(d).

Proof. Let a = st(x) and d ∈ ∗E with |d| = 1. We will divide the proof in two
cases. The first part of our proof is inspired by Stroyan’s argument in the proof of
[6, Proposition (2.4)].

First Case: |x− y| > δa

Let ε :=
√
|x− y| and z := εd + x = ε

(
d + x−y

ε

)
+ y. Since

(1) 0 ≈ |x− y| > δa;
(2) 0 ≈ |z − x| = ε > δa;
(3) 0 ≈ |z − y| ≥ ε(1− ε) > δa;

the following hold for some ηi:
(1) f(x)− f(y) = Dfy(x− y) + εη1, η1 ≈ 0;
(2) f(z)− f(x) = εDfx(d) + εη2, η2 ≈ 0;
(3) f(z)− f(y) = εDfy(d) + Dfy(x− y) + εη3, η3 ≈ 0.

So we conclude that, for some infinitesimal η,

Dfy(x− y) + εη1 = f(x)− f(y) = ε(Dfy(d)−Dfx(d)) + Dfy(x− y) + εη

and thus Dfx(d) ≈ Dfy(d).
Second Case: |x− y| ≤ δa

Let w ∈ ∗U be such that

0 ≈ |x− w| > δa & 0 ≈ |y − w| > δa

Similarly to the first case, one can prove that for all d ∈ ∗E with |d| = 1

Dfx(d) ≈ Dfw(d) ≈ Dfy(d).

�

We now present the main result of this chapter. It extends Theorem 3.2 for
mu-differentiable functions. As one might expect, in this case, the internal function
is infinitely close to a C1 standard function.

Theorem 3.9. Let f : ∗U → ∗F be an internal function. Then:
(1) If F is a finite dimensional space and f is a mu-differentiable function, then

f : U → F is a C1 function and Dfa = st(Dfa) for a ∈ σU . Furthermore,
if E is also finite dimensional then

∀a ∈ σU ∃η0 ≈ 0∀x ≈ a |f(x)− f(x)| ≤ η0.

(2) If there exists a C1 standard function g : U → F with

∀a ∈ σU ∃η0 ≈ 0∀x ≈ a |f(x)− g(x)| ≤ η0,

then f is mu-differentiable. Moreover, g = f .

Proof. (1) Suppose that F is a finite dimensional normed space and f is mu-
differentiable. We will begin by proving that f is classically differentiable
at a ∈ σU with derivative x 7→ st(Dfa(x)).

∀η ∈ σR+ ∃ε ∈ σR+ ∀h ∈ σE 0 < |h| < ε ⇒ |f(a + h)− f(a)− st(Dfa(h))|
|h|

< η.

Fix η ∈ σR+ and let

A :=
{
ε ∈ ∗R+ | ε ≤ δa ∨ [∀h ∈ ∗E

δa < |h| < ε ⇒ |f(a + h)− f(a)−Dfa(h)|
|h|

<
η

2

]}
.
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Since A is an internal set and contains all positive infinitesimal numbers,
by the Spillover Principle there exists ε ∈ σR+ such that ε ∈ A. Choose
now h ∈ σE with 0 < |h| < ε. As h is standard, δa < |h| < ε; therefore

|f(a + h)− f(a)−Dfa(h)|
|h|

<
η

2
.

Taking standard parts one gets

|f(a + h)− f(a)− st(Dfa(h))|
|h|

< η.

So f is differentiable and Dfa = st(Dfa) for a ∈ σU .
Next we will prove that the function x 7→ Dfx is classically continuous,

i.e.,
∀a ∈ σU ∀η ∈ σR+ ∃ε ∈ σR+ ∀x ∈ σU ∀d ∈ σE

[|x− a| < ε ∧ |d| = 1] ⇒ |Dfx(d)−Dfa(d)| < η.

Choose any a ∈ σU and η ∈ σR+ and let

B :=
{
ε ∈ ∗R+ | ∀x ∈ ∗U ∀d ∈ ∗E

[|x− a| < ε ∧ |d| = 1] ⇒ |Dfx(d)−Dfa(d)| < η

2

}
.

Again the internal set B contains all positive infinitesimals. In fact, if
0 < ε ≈ 0, for any x ∈ ∗U and d ∈ ∗E with |d| = 1 and |x − a| < ε, by
Theorem 3.8, one has Dfx(d) ≈ Dfa(d) and so

|Dfx(d)−Dfa(d)| < η

2
.

So B must contain a positive standard ε. Choose now x ∈ σU and d ∈ σE
satisfying |d| = 1 and |x− a| < ε; hence

|Dfx(d)−Dfa(d)| < η

2
,

which implies
|Dfx(d)−Dfa(d)| < η,

proving that f is a C1 function.
Assume now that E is finite dimensional. Observe that for a ∈ σU and

x ≈ a, both f(x) ≈ f(a), by theorem 3.6, and f(x) ≈ f(a), as we just saw,
therefore

f(x)− f(x) ≈ f(a)− f(a) = f(a)− st(f(a)) ≈ 0.

Therefore f(x) ≈ f(x) for every x ∈ ns(∗U).
Moreover, for every a ∈ σU , we can choose n ∈ σN such that B2/n(a) ⊆

U . So, if we define K as being the closed ball B1/n(a), we have

a ∈ K ⊆ U.

Let y ∈ ∗K. Since K is compact, st(y) belong to σK ⊆ σU . Define

η0 := sup
y∈∗K

|f(y)− f(y)|.

It is easy to verify that η0 ≈ 0, which ends the proof of 1.
(2) Let g ∈ C1(U,F ). Fix any a ∈ σU and let δa :=

√
η0. Choose any

x, y ∈ µ(a) with δa < |x − y|. Since g is continuously differentiable, there
exists a finite linear operator Dgx which satisfies the condition

g(x)− g(y) = Dgx(x− y) + |x− y|η
for some η ≈ 0.
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For ε1 := g(x)−f(x) and ε2 := g(y)−f(y), it is true that max{|ε1|, |ε2|} ≤
η0 and

f(x)− f(y) = Dgx(x− y) + |x− y|η + ε2 − ε1.

Furthermore, we also have

|ε1 − ε2|
|x− y|

≤ |ε1|+ |ε2|
|x− y|

≤ 2η0√
η0

≈ 0.

To see that g = f , note that both are standard functions and for every
a ∈ σU , g(a) = f(a).

�

Remark 3.10. The previous theorem is false if we replace mu-differentiability by
SU-differentiability. Of course 1 still holds since SU-differentiability is a stronger
condition, but 2 may fail. For example, suppose g(x) = 0, x ∈ R and f(x) = 0, if
x ∈ ∗R\{0} and f(0) = ε with 0 6= ε ∈ µ(0). Then g is a standard C1 function
infinitely close to f but f is not SU-differentiable.

It is easy to prove that

Corollary 3.11. For a standard function f : U → F , the following conditions are
equivalent:

(1) f is of class C1;
(2) f is mu-differentiable.

A mu-differentiable function f : ∗U → ∗F , internal, by definition, has an internal
derivative x 7→ Dfx ∈∗ L(E,F ), determined up to an infinitesimal map ([6]) called
the mu-derivative of f . As L(E,F ) is still a standard normed space, we may define
higher-order derivatives. We say that f is twice mu-differentiable provided f
and Df(·) are both mu-differentiable.

Recursively, f is k-times mu-differentiable if f is mu-differentiable and there
exist mu-differentiable functions Df(·), ...,Dk−1f(·) such that all Djf(·) are a mu-
derivative of Dj−1f(·), j = 1, . . . , k − 1.

Theorem 3.12. Let f : ∗U → ∗F be an internal function. Then:
(1) If F is a finite dimensional space and f is k-times mu-differentiable, then

f : U → F is a Ck function and for each a ∈ σU , Djfa = st(Djfa) for
j = 1, 2, . . . , k. Furthermore, if E is also finite dimensional,

∀a ∈ σU ∃η0 ≈ 0∀x ≈ a |f(x)− f(x)| ≤ η0

and

∀j ∈ {1, 2, . . . , k − 1} ∀a ∈ σU ∃ηj ≈ 0 ∀x ≈ a |Djfx −Djfx| ≤ ηj .

(2) If there exists a Ck standard function g : U → F with

∀a ∈ σU ∃η0 ≈ 0∀x ≈ a |f(x)− g(x)| ≤ η0

and

∀j ∈ {1, 2, . . . , k − 1} ∀a ∈ σU ∃ηj ≈ 0∀x ≈ a |Djfx −Djgx| ≤ ηj

then f is k-times mu-differentiable. Moreover, g = f .

Proof. The proof is by induction on k as follows:
For k = 1: it was proved in Theorem 3.9 that 1 and 2 hold.
For k ⇒ k + 1:
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We will begin by proving that 1 holds. Assume then that f is (k + 1)-times
mu-differentiable. By hypothesis of induction, f is of class Ck and satisfies the
other conditions of 1. Since

Dkf(·) : ∗U → ∗Lk(E,F )
x 7→ Dkfx

is still mu-differentiable, its standard part

st(Dkf(·)) : σU → σLk(E,F )
x 7→ st(Dkfx)

is of class C1 and, for every a ∈ σU , Dst(Dkfa) = st(D(Dkfa)). But since, when
a is standard, st(Dkfa) = Dkfa,

• Dkf (·) is also of class C1 and so f is of class Ck+1;
• Dk+1fa = st(Dk+1fa).

Furthermore, for a ∈ σU and x ≈ a,

Dkfx ≈ Dkfa ≈ Dkfa ≈ Dkfx.

Similarly, as in the proof of Theorem 3.9, we can prove that there exists an infini-
tesimal number ηk for which holds

|Dkfx −Dkfx| ≤ ηk

whenever x ≈ a and E is a finite dimensional normed space, which ends the first
part of the proof.

To prove 2, assume that g is a Ck+1 satisfying the conditions in 2. Then f is
k-times mu-differentiable. Besides this, Dkg(·) is a C1 function and

∀a ∈ σU ∃ηk ≈ 0∀x ≈ a |Dkfx −Dkgx| ≤ ηk.

By Theorem 3.9, Dkf(·) is mu-differentiable and so f is (k+1)-times mu-differentiable.
�

From the previous result one can see that there exist functions k-times mu-
differentiable which are not k-times SU-differentiable. For example, let f be the
function defined in (1), pag. 4. Since f is infinitely close to g, where g(x) :=
0, x ∈ R, and g is of class Ck, then f is k-times mu-differentiable yet is not SU-
differentiable.

The next theorem establishes a relation between mu-differentiability and a con-
dition similar to SU-differentiability (see Definition 2.6).

Theorem 3.13. For every mu-differentiable function f : ∗U → ∗F we have

(2) ∀x ∈ ns(∗U)∃δx ≈ 0∃Dfx ∈ ∗L(E,F )∀y ∈ ∗U ∃η ≈ 0

|Dfx| is finite ∧ [δx < |x− y| ≈ 0 ⇒ f(x)− f(y) = Dfx(x− y) + |x− y|η] .

Proof. For any x ∈ ns(∗U), define a := st(x) and δx := δa. The proof follows
easily. �

The reverse of Theorem 3.13 is false, as shown in the following example.
Let f be the real valued function

f(x) =
{

x2 sin 1
x if x 6= 0

0 if x = 0

Since f is not continuously differentiable, it can not be mu-differentiable. But it
satisfies condition (2). Indeed, if x ≈ 0 (the other cases are obvious), for δx := |x|
and y ∈ ∗R with 0 ≈ |x− y| > δx, we get

f(x)− f(y)
x− y

=
x2

x− y

(
sin

1
x
− sin

1
y

)
+

x2 − y2

x− y
sin

1
y
≈ 0
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since ∣∣∣∣ x2

x− y

∣∣∣∣ ≤ x2

|x|
≈ 0 &

x2 − y2

x− y
= x + y ≈ 0.

As a consequence of the continuity of the derivative, we have (compare with
Theorem 2.8)

Theorem 3.14. Let f : ∗U → ∗F be an internal function. Then conditions 1 and
2 are equivalent:

(1) f is mu-differentiable.
(2) (a) f(ns(∗U)) ⊆ ns(∗F ).

(b)
∀a ∈ σU ∃δa ≈ 0∃Dfa ∈ ∗L(E,F )∀x, y ∈ µ(a)

|Dfa| is finite ∧ [|x− y| > δa ⇒ f(x)− f(y) = Dfa(x− y) + |x− y|η]
for some η ≈ 0;

Proof. Let us fix a ∈ σU and 0 < δa ≈ 0 satisfying

∀x, y ∈ µ(a) |x− y| > δa ⇒
f(x)− f(y)
|x− y|

≈ Dfx

(
x− y

|x− y|

)
.

By Theorem 3.8 it follows that

Dfx

(
x− y

|x− y|

)
≈ Dfa

(
x− y

|x− y|

)
which proves that 1⇒2.

To prove the converse, let a ∈ σU and δa as in 2(a) Then, given x ∈ µ(a), define
Dfx := Dfa. The proof follows. �

Theorem 3.15. If f : ∗U → ∗F is a mu-differentiable function, then for all
standard a ∈ σU , there exists a positive δ ≈ 0 such that, for all d ∈ ∗E with |d| = 1,
there exists k ∈ fin(∗F ) for which

∀x ∈ ∗U x ≈ a ⇒ f(x + δd)− f(x)
δ

≈ k

holds.

Proof. Fix a ∈ σU and define δ := 2δa. Fix an unit vector d and let k := Dfa(d).
Then for x ≈ a

f(x + δd)− f(x)
δ

≈ Dfx(d) ≈ Dfa(d) = k.

�

4. The Chain Rule

Mu-differentiable functions are m-differentiable, but not conversely thus making
the latter a weaker notion, which nevertheless still verifies the chain rule below;
actually the proof is generalizable to mu-differentiable functions (theorem 4.3).

Theorem 4.1. Chain Rule Let g and f be two m-differentiable functions at a
and g(a), respectively, where a and g(a) are two standard vectors. In addition, if
Dga is invertible and

∥∥(Dga)−1
∥∥ is finite, then f ◦ g is m-differentiable at a and

D(f ◦ g)a = Dfg(a) ◦Dga.

Proof. Define δ = max{δa, 2δg(a)

∥∥(Dga)−1
∥∥} and choose x with δ < |x− a| ≈ 0.

Since 0 ≈ |x− a| > δa then g(x) ≈ g(a). On the other hand, for some η1 ≈ 0,

|g(x)− g(a)| = |Dga(x− a) + |x− a|η1|

= |x− a|
∣∣∣∣Dga

(
x− a

|x− a|

)
+ η1

∣∣∣∣ > 2δg(a)|(Dga)−1|
∣∣∣∣Dga

(
x− a

|x− a|

)
+ η1

∣∣∣∣ ≥
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2δg(a)

∣∣∣∣(Dga)−1

(
Dga

(
x− a

|x− a|

)
+ η1

)∣∣∣∣ = 2δg(a)

∣∣∣∣ x− a

|x− a|
+ (Dga)−1(η1)

∣∣∣∣ > δg(a).

So we conclude that δg(a) < |g(x)− g(a)| ≈ 0. Hence there exists η2 ≈ 0 such that

f(g(x))− f(g(a)) = Dfg(a)(g(x)− g(a)) + |g(x)− g(a)|η2

= Dfg(a)(Dga(x− a) + |x− a|η1) + |Dga(x− a) + |x− a|η1|η2

= Dfg(a)Dga(x− a) + |x− a|
(

Dfg(a)(η1) +
∣∣∣∣Dga

(
x− a

|x− a|

)
+ η1

∣∣∣∣ η2

)
with

Dfg(a)(η1) +
∣∣∣∣Dga

(
x− a

|x− a|

)
+ η1

∣∣∣∣ η2 ≈ 0.

�

Remark 4.2. Suppose that g and f are two m-differentiable functions at a and
g(a), respectively. This is not sufficient to guarantee that f◦g is also m-differentiable
at a, as it will be shown in the following example.

Let ε be a positive infinitesimal,

g : ∗R → ∗R
x 7→ εx

and
f : ∗R → ∗R

x 7→
{

1 if 0 < x < ε
0 if x ≤ 0 ∨ x ≥ ε

.

It is easy to verify that g is m-differentiable at x = 0 and f is m-differentiable
at g(0) = 0. But

f ◦ g : ∗R → ∗R

x 7→
{

1 if 0 < x < 1
0 if x ≤ 0 ∨ x ≥ 1

is not m-differentiable at x = 0.

Theorem 4.3. Chain Rule II Let g and f be two mu-differentiable functions. If
Dgx is invertible and

∥∥(Dgx)−1
∥∥ is finite, whenever x is nearstandard, then f ◦ g

is mu-differentiable and D(f ◦ g)x = Dfg(x) ◦Dgx.

Proof. Sketch of proof: To make it simple, denote δf and δg the infinitesimals
as in Theorem 3.4 (with obvious meanings). Given a nearstandard x, let δ :=
max{δg, 2δf

∥∥(Dgx)−1
∥∥}. Replacing a by x and x by y (where y ≈ x) in the proof

of Theorem 4.1, the proof follows. �

5. Taylor’s Theorem

We can now formulate Taylor’s Theorem for a mu-differentiable function defined
on finite dimensional spaces. We will prove two different versions of this theorem;
the first Taylor’s expansion is made with internal functions and the second with
standard functions.

Theorem 5.1. Taylor’s Theorem Let E and F be two standard finite dimen-
sional spaces, U ⊂ E a standard open set and f : ∗U → ∗F an internal function
k-times mu-differentiable, for some k ∈ σN. Then,
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(1) for every x ∈ ns(∗U), there exists ε ≈ 0 such that, whenever y ∈ ∗U with
ε < |y − x| ≈ 0, there exists η ≈ 0 satisfying

f(y) = f(x) + Dfx(y − x) +
1
2!

D2fx(y − x)(2) + ... +
1
k!

Dkfx(y − x)(k) + |y − x|kη.

(2) for every x ∈ ns(∗U), there exists ε ≈ 0 such that, whenever y ∈ ∗U with
ε < |y − x| ≈ 0, there exists η ≈ 0 satisfying

f(y) = f(x) + Dfx(y − x) +
1
2!

D2fx(y − x)(2) + ...

+
1
k!

Dkfx(y − x)(k) + |y − x|kη.

Proof. (1) Let us begin by fixing x ∈ ns(∗U) and let a := st(x) ∈ σU . By
Theorem 3.12, we know that f is of class Ck,

∃η0 ≈ 0∀y ≈ a |f(y)− f(y)| ≤ η0

and for each j = 1, 2, . . . , k − 1,

∃ηj ≈ 0∀y ≈ a sup
di∈∗E,|di|=1

|Djfy(d1, ..., dj)−Djfy(d1, ..., dj)| ≤ ηj .

Define ε = max{η
1

k+1
0 , η

1
k
1 , ..., η

1
2
k−1} and take y ∈ ∗U with ε < |y−x| ≈ 0.

Define the finite sequence (εi)i=−1,...,k−1 by
• f(y) = f(y) + ε−1,
• f(x) = f(x) + ε0,
• Dfx(y − x) = Dfx(y − x) + |y − x|ε1,
• D2fx(y − x)(2) = D2fx(y − x)(2) + |y − x|2ε2,
• ...
• Dk−1fx(y − x)(k−1) = Dk−1fx(y − x)(k−1) + |y − x|k−1εk−1.
Furthermore, since the maps x 7→ Dkfx and x 7→ Dkst(f)x are both

S-continuous, we also have

Dkfx

(
y − x

|y − x|

)(k)

≈ Dkfa

(
y − x

|y − x|

)(k)

≈

Dkfa

(
y − x

|y − x|

)(k)

≈ Dkfx

(
y − x

|y − x|

)(k)

,

so there exists εk ≈ 0 with

Dkfx(y − x)(k) = Dkfx(y − x)(k) + |y − x|kεk.

Using the fact that f is a Ck function, one has

f(y) = f(x) + Dfx(y − x) +
1
2!

D2fx(y − x)(2) + ...

+
1
k!

Dkfx(y − x)(k) + |y − x|kη,

that is

f(y) = f(x) + Dfx(y − x) +
1
2!

D2fx(y − x)(2) + ... +
1
k!

Dkfx(y − x)(k) + |y − x|kη

+ε−1 − ε0 − |y − x|ε1 − |y − x|2ε2 − ...− |y − x|k−1εk−1 − |y − x|kεk.

If

ε−1 − ε0 − |y − x|ε1 − |y − x|2ε2 − ...− |y − x|k−1εk−1 = |y − x|kη1,

then η1 is infinitesimal since

|η1| ≤
|ε−1|

|y − x|k
+

|ε0|
|y − x|k

+
|ε1|

|y − x|k−1
+

|ε2|
|y − x|k−2

+ . . . +
|εk−1|
|y − x|
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≤ η0

η
k

k+1
0

+
η0

η
k

k+1
0

+
η1

η
k−1

k
1

+
η2

η
k−2
k−1
2

+ ... +
ηk−1

η
1
2
k−1

≈ 0.

(2) Analogously, if we take ε := η
1

k+1
0 , the result follows.

�

6. The Mean Value Theorem

We give now a Mean Value Theorem for mu-differentiable functions.

Theorem 6.1. Mean Value Theorem Let U be a standard open convex subset
of E and f : ∗U → ∗R an internal mu-differentiable function. Take δ as given by
Theorem 3.4. Then, for all x, y ∈ ns(∗U) with |x− y| > δ,

∃c ∈ [x, y] f(x)− f(y) = Dfc(x− y) + |x− y|η
for some η ≈ 0.

Proof. If x ≈ y, it is clear. If not, define a hyper-finite sequence {xn | n ∈
{1, . . . , N + 1}} by the formula

xn := x + (n− 1)
y − x

N
,

where N ∈ ∗N∞ and N <
|y − x|

δ
≈ ∞.

Then

f(x)− f(y) =
N∑

n=1

(f(xn)− f(xn+1)) =

=
N∑

n=1

Dfxn
(xn − xn+1) +

N∑
n=1

|xn − xn+1|ηn.

If
N∑

n=1

|xn − xn+1|ηn = |y − x|η,

for some η, then η ≈ 0. Indeed, by the convexity property of the norm

|η| ≤
∑N

n=1 |xn − xn+1||ηn|
|y − x|

=
∑N

n=1 |xn − xn+1||ηn|∑N
n=1 |xn − xn+1|

≤ max
n∈{1,...,N}

{|ηn|} ≈ 0.

We will prove now that there exists c ∈ [x, y] such that

Dfc

(
x− y

|x− y|

)
≈

∑N
n=1 Dfxn

(xn − xn+1)
|x− y|

.

Letting d :=
x− y

|x− y|
, it is true that∑N

n=1 Dfxn(xn − xn+1)
|x− y|

=
∑N

n=1 Dfxn(xn − xn+1)∑N
n=1 |xn − xn+1|

=
∑N

n=1 Dfxn(d)
N

.

Choosing m,M ∈ {x1, ..., xN} with

Dfm(d) = min
1≤n≤N

Dfxn
(d) & DfM (d) = max

1≤n≤N
Dfxn

(d),

we get

Dfm(d) ≤
∑N

n=1 Dfxn
(d)

N
≤ DfM (d).

So, there exists c ∈ [m,M ] ⊆ [x, y] with

Dfc(d) ≈
∑N

n=1 Dfxn
(d)

N
.
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�

We can formulate Theorem 6.1 for functions taking values in a normed space:

Theorem 6.2. Let U be a standard open convex subset of E and f : ∗U → ∗F an
internal mu-differentiable function. Take δ as given by Theorem 3.4. Then, for all
x, y ∈ ns(∗U) with |x− y| > δ,

∃c ∈ [x, y] |f(x)− f(y)| ≤ |Dfc(x− y)|+ |x− y|η

for some η ≈ 0.

Proof. Following the proof of Theorem 6.1, it is true that:
For some η1, ..., ηN ≈ 0,

|f(x)− f(y)| =

∣∣∣∣∣
N∑

n=1

(f(xn)− f(xn+1))

∣∣∣∣∣
≤

N∑
n=1

|f(xn)− f(xn+1)| =
N∑

n=1

|Dfxn(xn − xn+1) + |xn − xn+1|ηn|

≤
N∑

n=1

|Dfxn
(xn − xn+1)|+

N∑
n=1

|xn − xn+1| · |ηn|.

Again, choose m,M ∈ {x1, ..., xN} with

|Dfm(d)| = min
1≤n≤N

|Dfxn
(d)| & |DfM (d)| = max

1≤n≤N
|Dfxn

(d)|.

Since

|Dfm(d)| ≤
∑N

n=1 |Dfxn
(d)|

N
≤ |DfM (d)|

there exists c ∈ [x, y] with

|Dfc(d)| ≈
∑N

n=1 |Dfxn
(d)|

N
.

�

7. The Inverse Mapping Theorem

A full Inverse Mapping Theorem is not expected. In fact, take for example the
C1 function g(x) = x. By Theorem 3.9, any internal function infinitely close to g
is mu-differentiable. So the 1 − 1 condition may easily fail. Nevertheless, we have
some form of injectivity as the next theorem states.

Theorem 7.1. Inverse Mapping Theorem Let f : ∗U → ∗F be an internal
mu-differentiable function. Assume that, for a certain a ∈ σU , Dfa is invertible
and ‖(Dfa)−1‖ is finite. Then there exists a standard neighborhood ∗V of a such
that f is 1-to-1 on the standard elements of ∗V , i.e.,

∀x, y ∈ σV x 6= y ⇒ f(x) 6= f(y).

Proof. Let

A :=
{
ε ∈ ∗R+ | ∀x, y ∈ Bε(a) |x− y| > δa ⇒ f(x) 6= f(y)

}
.

Then A contains all positive infinitesimal numbers since, for 0 < ε ≈ 0 and x, y ∈
Bε(a) with |x− y| > δa, by Theorem 3.14,

f(x)− f(y)
|x− y|

≈ Dfa

(
x− y

|x− y|

)
.
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But

1 =
∣∣∣∣(Dfa)−1Dfa

(
x− y

|x− y|

)∣∣∣∣ ≤ ‖(Dfa)−1‖
∣∣∣∣Dfa

(
x− y

|x− y|

)∣∣∣∣ .

Consequently, ∣∣∣∣Dfa

(
x− y

|x− y|

)∣∣∣∣ ≥ 1
‖(Dfa)−1‖

6≈ 0.

Therefore f(x) 6= f(y). Using the Spillover Principle we can guarantee the existence
of ε ∈ σR with ε ∈ A. Define V := Bε(a) and take two standard elements of ∗V
with x 6= y. Since the distance between two distinct standard vectors is always
greater than any infinitesimal number, one obtains f(x) 6= f(y). �

Remark 7.2. With the previous conditions we can not conclude that f is 1-to-1
on ∗V . In fact, consider

f(x) =
{

x if x 6= 0
ε if x = 0

where ε is any non-zero infinitesimal number. This function is mu-differentiable (it
is infinitely close to g(x) = x) but it is never injective in any standard neighborhood
of zero.

8. A note on observable functions

Harthong defined, and together with Reder treated observable functions (see
[1, 4]). Although that concept was presented and treated in the context of Internal
Set Theory, there might a bridge between observable and observation functions on
the one hand and mu-differentiable functions on the other hand, in that a function
might be “strongly observable” if and only if its anti-derivative is m-differentiable.
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giers, 1985.

[5] K. Schlesinger, Generalized manifolds, Addison Wesley Longman, 1997.
[6] K. Stroyan, Infinitesimal calculus on locally convex spaces: 1. Fundamentals, Trans. Amer.

Math. Soc., 240, (1978): 363-383.
[7] K. Stroyan, W. Luxemburg, Introduction to the theory of infinitesimals, Academic Press,

1976.
[8] A. Troesch, E. Urlacher, Perturbations singulières et analyse non standard, C. R. Acad.

Sci. Paris Sér. A-B, 287 (14), (1978).
[9] E. Urlacher, Un système rapidement oscillant, Mathématiques finitaires et analyse non
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