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We present a direct construction of retroreflecting curves by means of
Nonstandard Analysis. We construct non self-intersecting curves which
are of class C1, except for a hyper-finite set of values, such that the
probability of a particle being reflected from the curve with the velocity
opposite to the velocity of incidence, is infinitely close to 1. The con-
structed curves are of two kinds: a curve infinitely close to a straight
line and a curve infinitely close to the boundary of a bounded convex
set. We shall see that the latter curve is a solution of the problem: find
the curve of maximum resistance infinitely close to a given curve.
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1 Introduction

A. A retroreflector is an optical device that sends incident beams of light
back to their origin. If the retroreflector is much smaller than the size of
the source of light, it actually reverses the direction of light. We proceed to
define a mathematical retroreflector.

Consider a set with piecewise smooth boundary, and the billiard in the
complement of this set. The set is called mathematical retroreflector (or just
retroreflector), if almost all incident particles are reflected in such a way
that the velocity of reflection is opposite to the velocity of incidence. In
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this paper we shall construct two-dimensional retroreflectors by means of
Nonstandard Analysis.

As far as we know, it is the first time that nonstandard analysis tech-
niques are used within the framework of mathematical retroreflectors theory.
In [6], an asymptotically retroreflecting sequence of sets was constructed.
More precisely, the sets in the sequence presented in [6] are contained in
one fixed bounded convex set and contain another one. “Asymptotically
retroreflecting” means that the sum of the incidence velocity and the reflec-
tion velocity converges in measure to zero, with both the velocities being
considered as functions on the (measurable) set of all incident particles. In
[5], an asymptotically retroreflecting sequence of unbounded sets was con-
structed, each of them containing a fixed half-plane and contained in another
one.

One can easily construct a partial retroreflector; from Figure 1, one can
see that only a part of the incident particles is reversed.

Figure 1: A partial retroreflector

B. Let us formulate the main results of the paper. First, consider a set
Ω with piecewise smooth boundary, contained in the lower half-plane,

Ω ⊂ {(x, y) | y ≤ 0} ⊂ R2

and define the mapping (ξ, θ) 7→ θ+
Ω(ξ, θ) as follows (see Figure 2).

Consider the billiard in R2 \ Ω. Tag billiard particles incident on Ω by
their point of the first intersection with the straight line y = 0 and by the
velocity at the moment of intersection. That is, let a particle intersect the
line at the point (ξ, 0) and let the velocity at this point be v = −(cos θ, sin θ);
then tag this particle by (ξ, θ) ∈ R×[0, π]. The particle makes several reflec-
tions from ∂Ω and finally intersects the line y = 0 again and moves freely
afterwards. Denote the final velocity by v+ = (cos θ+

Ω (ξ, θ), sin θ+
Ω(ξ, θ)).

The mapping (ξ, θ) 7→ θ+
Ω(ξ, θ) is defined on a subset of R× [0, π].
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Figure 2: Angle of reflection

Theorem 1 There exists Ω such that its boundary ∂Ω is a non self-intersecting
curve infinitely close to the line y = 0 and invariant with respect to the shift
(x, y) 7→ (x + 1, y). Moreover, for all (ξ, θ) ∈ [0, 1]× [0, π], θ+

Ω (ξ, θ)− θ ≈ 0
holds, except for a set of measure ≈ 0.

Theorem 1 means that nearly all incident particles almost reverse direc-
tion, and the reflecting set is obtained from the half-plane by an infinitely
small modification near its boundary.

C. Now fix a convex bounded set B ⊂ R2 with nonempty interior and
consider a set Λ ⊂ B with piecewise smooth boundary ∂Λ. Define the
mapping (ξ, θ) 7→ θ+

Λ (ξ, θ) in a similar way. Namely, consider the billiard in
R2 \Λ. Let an incident particle intersect ∂B for the first time at the point ξ
and let the velocity at this point form the angle θ with the tangent to ∂B at
ξ. The particle makes several reflections from Λ, then intersects ∂B again
and finally moves freely, the final velocity making the angle θ+

Λ (ξ, θ) with
the tangent.

The mapping θ+
Λ is defined on a subset of ∂B × [0, π].

Theorem 2 There exists a set Λ∗ such that the boundary ∂Λ∗ is a closed
non self-intersecting curve infinitely close to ∂B and such that for all (ξ, θ) ∈
∂B × [0, π], θ+

Λ∗(ξ, θ)− θ ≈ 0 holds, except for a set of measure ≈ 0.

D. There is an application of these results in Newtonian aerodynamics.
Suppose that a body Λ moves forward through a highly rarefied medium,
and at the same time slowly rotates. Due to elastic collisions between the
body and the medium particles, a braking force acting on the body in the
direction opposite to its motion is created. This force is called the force of
aerodynamic resistance, or just resistance.

The mean value of resistance is given by the formula

R(Λ) =
3
8

∫

∂B

∫ π

0

(
1 + cos(θ+

Λ (ξ, θ)− θ)
)
sin θ dθ dξ; (1)
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the factor 3/8 is chosen in such a way that substituting Λ = B one gets
R(B) = |∂B|, that is, resistance of the convex set B is just its perimeter.

Consider the problem: maximize R(Λ) over all sets Λ ⊂ B such that ∂Λ
is near ∂B. The solution is given, say dynamically, by the sets Λ∗ determined
in Theorem 2, for which R(Λ∗) ≈ 1.5.

The paper is organized as follows. Theorems 1 and 2 are proved in
sections 3 and 4, respectively. In section 5 the maximization problem is
examined in more detail.

2 Self-intersecting mirrors

We present a rather elementary direct approach to this problem by means of
(nonstandard) Infinitesimal Calculus. As in [5], we use the basic reflection
property of the ellipse (Figure 3):

rays which hit between the foci are also reflected between the foci.

F F
1 2

f

Figure 3: Reflection in an ellipse

In particular, if the ellipse has foci F1(−c, 0), F2(c, 0), equation

x2

a2
+

y2

b2
= 1,

and eccentricity c/a ≈ 0, then the angle of reflection φ is infinitesimal, i.e.,
reflection is almost opposite to incidence.

Assume light rays may have any direction whatsoever from above a line
segment of length 1 and fix internal sequences Mi, Ni ∈ ∗N∞ for i ∈ ∗N
(where ∗N∞ denotes the set of infinite hypernatural numbers).

Divide the segment [0, 1] in N1 equal parts and in each of them define
an ellipse with the major axis on the initial segment, as shown in Figure 4,
where F2i−1,1 and F2i,1 denote the foci of the i− th ellipse, i = 1, . . . , N1.
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Figure 4: First step

Each of the N1 ellipses verifies the following conditions for exactness of
subdivision.

k1 = 2N1

(
1 +

1
M1

)
,

a1 =
1
k1

+
1

k1M1
, b1 =

1
k1

√
1 +

2
M1

, c1 =
1

k1M1
.

Therefore the eccentricity e1 ≈ 0 as required; but the probability P1 that
a light ray falls out of the foci window is given by

P1 = N1 · 2
k1

=
M1

M1 + 1
≈ 1.

Next define new elipses in each of the segments [(j− 1)/N1, F2j−1,1] and
[F2j,1, j/N1] for j = 1, . . . , N1. Note that both segments have length 1/k1

and divide each of them into N2 equal parts wherein elipses are defined
again with foci F2i−1,2 and F2i,2, i = 1, . . . , N2 according to the following
conditions

k2 = 22N1N2

(
1 +

1
M1

)(
1 +

1
M2

)
,

a2 =
1
k2

+
1

k2M2
, b2 =

1
k2

√
1 +

2
M2

, c2 =
1

k2M2
.

The probability P2 that a light ray falls out of the foci windows is given
by

P2 = 2N1N2
2
k2

=
(

M1

M1 + 1

)(
M2

M2 + 1

)
.
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Iteration of this procedure follows the pattern

ki = 2i
i∏

j=1

Nj

i∏

j=1

(
1 +

1
Mj

)
,

ai =
1
ki

+
1

kiMi
, bi =

1
ki

√
1 +

2
Mi

, ci =
1

kiMi
.

Interestingly enough, whatever the sequence Ni might be

Pi =
i∏

j=1

Mj

Mj + 1

In particular, if for some fixed N ∈ ∗N∞ all the Mj = N , then

PN2 =
(

1− 1
N + 1

)N2

≈ e−
N2

N+1 ≈ 0. (2)

Assume from now on that for some fixed N ∈ ∗N∞, Mj ≡ N so that (2)
holds.

The possibility that a ray entering a foci window hits one of the smaller
elipses and is not reflected conveniently must also be considered. The follow-
ing discusses this situation. Consider Figure 5, where one elipse is centered
at the origin of coordinates for simplicity.

Let the light ray r pass through the window [F1,i−1F2,i−1] with inclina-
tion θ.

2/(k  N)i-1

F1,i-1 F2,i-1-ai

-bi

q

r

E

Figure 5: Avoiding inconvenient hits
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As a matter of notational simplification, define

A := 2Ki−1Ni and B :=
Ki−1N

2
.

The centered ellipse is given by

x2

a2
i

+
y2

b2
i

= 1 with ai =
1
A

and bi =
N

A(N + 1)

√
1 +

2
N

.

An equation of the light ray is

yt = tan θ

(
x− 1

A
− t

B

)
for some t ∈]0, 1[.

The light ray intersects the ellipse at a point (x, yt) when

θ = arctan

( √
1− x2A2

B + At−ABx
·B ·

√
N(N + 2)
N + 1

)

necessarily with
0 < x < 1/A;

but then

0 < θ < arctan

(
B

At
·
√

N(N + 2)
N + 1

)

= arctan

(
N

Nit
·
√

N(N + 2)
4(N + 1)

)

therefore θ ≈ 0 as long as
N

Nit
≈ 0 and this happens whenever t ≥ 1

N
and

Ni = N3, thus the probability that the entering light rays hit a smaller
ellipse is approximately

N2−1∑

j=1

2j+1

N2kj

j∏

i=1

Ni =
2

N2

N2−1∑

j=1

(
N

N + 1

)j

=

2
N

(
1−

(
N

N + 1

)N2−1
)
≈ 2

N

(
1− e−

N2−1
N+1

)

hence infinitesimal. Summarizing:

7



As long as all the Mi = N and Ni = N3, for some N ∈ ∗N∞, the
N2-th step of the foregoing procedure entails a self-intersecting
”mirror” which reflects light rays along lines infinitely near the
incidence lines with probability infinitely near 1.

Although self-intersecting, our curve is ∗ − continuous and infinitely
resistant.

3 Simple mirrors

From now on we will take all the Ni = N3.
We eliminate self-intersections “indirectly” as illustrated in Figure 6: ex-

tend the mirror infinitesimally towards the center of each ellipse [−ci,−P ]∪
[P, ci], and connect with the ellipse itself by means of two straight line seg-
ments r and r of adequate inclination φ.

-c
i

f

r

c
i

P

r

Figure 6: Eliminating self-intersections

The angle φ must of course be infinitesimal, but also such that the line
r, and its symmetric r, do not intersect any of the inner ellipses. Finally,
having thus created more “reflective” regions, their total length must be
infinitesimal. We now sketch calculations

ci =
1

kiN
ai+1 =

1
2kiN3
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bi+1 =
1

2(N + 1)kiN2

√
1 +

2
N

For some positive ε to be determined, the center C of the first inner
ellipse and the end point P verify

C = ci + ai+1 =
2N2 + 1
2kiN3

P =
ci

1 + ε
.

The line r and inner ellipse E satisfy

r ≡ y = tanφ (x− P ) E ≡ (x− C)2

a2
i+1

+
y2

b2
i+1

= 1

The angle τ for which r is tangent to E is given by

τ = arctan
− bi+1

ai+1

√
a2

i+1 − (x− C)2

x− P
(ci < x < C).

Now, τ ≈ 0 whenever

√
a2

i+1 − (x− C)2

x− P
≈ 0; but,

0 ≤

√
a2

i+1 − (x− C)2

x− P
≤ ai+1

x− P
≤ ai+1

ci

1 + ε

ε
≤ 1

N2ε

and τ ≈ 0 when ε = 1
N . Any infinitesimal angle φ > τ may be used to

eliminate the self-intersection. Moreover, as

ci − P =
1

kiN(N + 1)
<

1
N

2
kiN

the probability of a ray being inadequately reflected by this procedure is
infinitesimal.

Summarizing, the probability of a ray being reflected with opposite di-
rection of incidence is given by

P̂N2 ≈ 1−
(

e−
N2

N+1 +
2
N

(
1− e−

N2−1
N+1

))
≈ 1.
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4 Convex mirrors

As a matter of making terminology more precise, let σ : ∗[0, 1] → ∗R2 be
the curve thus defined in section 3.

When one wants to take into account the size and the position of the
mirror an affine transformation is in order: given distinct points P and Q
in R2, let

(v1, v2) := Q− P

M :=
[
v1 −v2

v2 v1

]

σPQ(t) := P + Mσ(t) (t ∈ ∗[0, 1]);

σPQ describes the (simple plane) mirror positioned along −→v , which we
may re-parametrize in I := [a, b] (a < b) by

σI
PQ(t) := σPQ

(
t− a

b− a

)
(t ∈ I). (3)

Suppose now that α : [0, `] ⊆ R→ R2 is a C1 regular curve parameterized
by arc length1. Let the “reflective side” of α be its convex side as illustrated
in Figure 7.

a´´

Figure 7: Convex mirror

A mirror of almost maximum resistance adjusted to the curve may be
described the following way

1Actually it suffices that α is rectifiable so that the following general procedure may
be adapted.

10



1. Pick an infinite N ∈ ∗N∞ and define for 0 ≤ j ≤ 2N

aj :=

{
j/2
N if j is even
(j+1)/2

N − 1
N2 if j is odd

bj := `aj

so that

[0, `] =
2N⋃

j=1

[bj−1, bj ]

bj − bj−1 =

{
`

N2 j is even
`
N − `

N2 j is odd
(1 ≤ j ≤ 2N)

2. Define

Pj := α(bj) (0 ≤ j ≤ 2N)
Ij := [bj , bj+1] (0 ≤ j ≤ 2N − 1)

and consider the polygon [P0, P1, · · · , P2N ]. Also define, for j ∈ {0, . . . , 2N−
1} (vide (3) above)

µj(t) :=




σ
Ij

PjPj+1
(t) if t ∈ Ij & j is even

Pj +
N2

`
(t− bj)(Pj+1 − Pj) if t ∈ Ij & j is odd

Finally µ0 + · · ·+µ2N−1 is a mirror of almost maximum resistance whose
standard part is α. Under infinite magnification, the geometry between Pj

and Pj+2 with j even is exemplified in Figure 8 below.

5 Calculus of the resistance

We will now evaluate the resistance of the curve obtained in section 3 by
minimizing R. To do so, we must maximize the angle θ+ − θ. We assume
that the light ray hits one inner ellipse between the foci, so that the di-
rection of the reflected ray is almost inverted (elsewhere the probability is
approximately zero). Therefore the angle of reflection θ+−θ is less than the
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l/N
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Figure 8: Curve under infinitesimal microscope

angle of reflection when a ray light hits one of the foci (and consequently
the ray is reflected to the second foci).

Let us consider the general case (the i-step) and let φ be half of the
maximum angle of reflection, as exemplified in Figure 9.

F
1

F
2

f

Figure 9: Maximizing the angle of reflection

Therefore
tanφ =

ci

bi
=

1√
N(N + 2)

and so

cos(θ+ − θ) ≥ cos

(
2 arctan

1√
N(N + 2)

)

= 1− 2
(N + 1)2

and

R >∼
3
8

(
2− 2

(N + 1)2

) ∫ 1

0

∫ π

0
sin θ dθ dξ

=
3
4

(
2− 2

(N + 1)2

)
≈ 1.5.
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We also remark that the maximum resistance of any curve infinitely close
to the segment [0, 1]× {0} is 1.5.

Acknowledgments. The work was supported by Centre for Research on
Optimization and Control (CEOC) from the ”Fundação para a Ciência e a
Tecnologia” FCT, cofinanced by the European Community Fund FEDER/POCTI.

References

[1] F. Bagarello, S. Valenti : Nonstandard Analysis in Classical Physics
and Quantum Formal Scattering. Internat. J. Theoret. Phys 27, 557-
566 (1988)

[2] F. Bagarello: Non-standard Variational Calculus with Applications to
Classical Mechanics 1: An existence criterion. Internat. J. Theoret.
Phys 38, 1569-1592 (1999)

[3] F. Bagarello: Nonstandard Variational Calculus with Applications to
Classical Mechanics. 2. The Inverse Problem and More. Internat. J.
Theoret. Phys 38, 1593-1615 (1999)

[4] A.E. Hurd, P.A. Loeb: An Introduction to Nonstandard Real Analysis.
Pure and Applied Mathematics, 118, Orlando etc., Academic Press,
Inc. (1995)

[5] A.Y. Plakhov : Billiards inverting the direction of particles’motion. Rus-
sian Math. Surveys 61, 179-180 (2006)

[6] A.Y. Plakhov, P.F. Gouveia: Problems of maximal mean resistance on
the plane. Nonlinearity 20, 2271-2287 (2007)

[7] K.D. Stroyan, W.A.J. Luxemburg: Introduction to the theory of In-
finitesimals. Pure and Applied Mathematics, 72, Academic Press (1976)

For any contact
Ricardo Almeida

Dep. of Mathematics, University of Aveiro, Campus Universitário de San-
tiago, 3810-193 Aveiro, Portugal
E-mail: ricardo.almeida@ua.pt

13


