Connectedness and Compactness on Standard Sets

Ricardo Almeida ricardo.almeida@ua.pt

Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

We present a nonstandard characterization of connected compact sets

Mathematics Subject Classification 2010: 26E35, 54D05, 54D30.

Keywords: Nonstandard analysis, Connected set, Compact sets

1 Introduction

There is as yet no simple nonstandard characterization of connectedness, and little work has been done in that direction. In [4], Steven Leth presents a sufficient condition for a set $A \subseteq \mathbb{R}^n$ to be connected. As Leth remarked, however, it is not a necessary condition. His hypothesis involves internal polygonal paths joining distinct points. We will work with hyper-finite sets instead of polygonal paths, thus eliminating the implicit local path-connectedness that is present in [4]. We mention also the work of Sérgio Rodrigues [5] characterizing connectedness in nonstandard terms using the monad of a set.

The paper is organized as follows. In section 2 we collect some necessary background for the reader's convenience. In section 3 we present new results about connectedness and compactness on standard sets; we introduce a new concept, the discrete infinitesimal path, which will be used to characterize connected compact sets in metric spaces.

2 Preliminaries

All the sets which come up in classical analysis have nonstandard extensions using a map denoted by "*". For example, if \mathbb{R} denotes the set of real numbers, \mathbb{R} will be its nonstandard extension. This extension contains "ideal elements", like infinitesimals and infinite numbers, but also a copy of the set of real numbers, denoted by the symbol $\sigma \mathbb{R}$. It is not our intention to give a full exposition on this subject, we will just fix notation and present some results needed. For further details, the reader is referred to [2, 3, 6, 8].

Definition 1. Let $x, y \in {}^*\mathbb{R}$. We say that

- 1. x is infinitesimal if $|x| < \epsilon$, for all positive real number ϵ and we write $x \approx 0$;
- 2. x is finite if, for some positive real number ϵ , $|x| < \epsilon$;
- 3. x is infinite (or infinitely large) if it is not finite, i.e., for any positive real number ϵ , $|x| > \epsilon$; we write $x \approx \infty$;
- 4. x, y are infinitely close if x y is infinitesimal; we write $x \approx y$.

In the following, (X, d) is a metric space.

Definition 2. For $x \in {}^*X$, the monad of x is the subset of *X given by

$$\mu(x) := \{ y \in {}^*X \, | \, d(x, y) \approx 0 \}.$$

As before, the nonstandard extension of X contains a copy of the original set, which we denote by ${}^{\sigma}X$ (elements of ${}^{\sigma}X$ are called standard). A point $y \in {}^{*}X$ is *nearstandard* if there exists some standard $x \in {}^{\sigma}X$ such that $y \in \mu(x)$; in this case we say that x is the *standard part* of y and write st(y) = x. We say that $x, y \in {}^{*}X$ are *infinitely close*, and write $x \approx y$, if $d(x, y) \approx 0$. If x and y are not infinitely close, we write $x \not\approx y$.

The set of the nearstandard points of *X is

$$ns(^*X) := \bigcup \{ \mu(x) \mid x \in {}^{\sigma}X \}.$$

Theorem 1. [3] Let $A \subseteq X$. Then

- 1. A is open if and only if for all $a \in {}^{\sigma}A$, $\mu(a) \subseteq {}^{*}A$ holds;
- 2. A is closed if and only if, whenever $a \in {}^*A$ and $a \approx x$ for some $x \in {}^{\sigma}X$, we have $x \in {}^{\sigma}A$;
- 3. A is compact if and only if for all $a \in {}^*A$, there is an $x \in {}^{\sigma}A$ with $a \approx x$;

In every metric space, monads of distinct standard points are disjoint (see [3]). Therefore, for all $x \in ns(*X)$, there exists exactly one element in $^{\sigma}X$, called st(x), infinitely close to x. Hence we have a well-defined function

$$\begin{array}{rccc} st: & ns(^*X) & \to & {}^{\sigma}X \\ & x & \mapsto & st(x) \end{array}$$

called the standard part function.

Theorem 2. [3] Let X and Y be two topological spaces and $f : X \to Y$ a function. Then f is continuous if and only if

$$\forall x \in {}^{\sigma}X \quad f(\mu(x)) \subseteq \mu(f(x)),$$

or equivalently,

$$\forall x \in {}^{\sigma}X \,\forall y \in {}^{*}X \quad [x \approx y \Rightarrow f(x) \approx f(y)].$$

3 Main results

In what follows, (X, d_X) and (Y, d_Y) will denote two metric spaces, and $A \subseteq X$ a nonempty subset. To simplify notation, we will denote both metrics by the same symbol d. Given two points $x, y \in {}^*A$, we define the set (possibly external)

$$\mathcal{P}_{x,y}^{^{*}A} := \{ u = (u_n)_{n=1,\dots,N} \mid N \in {}^{*}\mathbb{N}, u_1 = x, u_N = y, u_n \in {}^{*}A$$

and $u_n \approx u_{n+1}$, for all $n \in \{1, ..., N-1\}\}.$

We call the hyper-finite sequence $u = (u_n)_{n \in \{1,...N\}}$ a discrete infinitesimal path (abbreviation d.i.p.) joining x to y in *A. We define a binary relation on *A by $x \sim y$ if $\mathcal{P}_{x,y}^{*A}$ is nonempty; it is easy to prove that \sim is an equivalence relation.

We will simply write $\mathcal{P}_{x,y}$ instead of $\mathcal{P}_{x,y}^{*A}$ whenever there is no danger of confusion.

The existence of (standard) discrete paths joining points on connected sets is known. In fact, it can be proved that if A is a connected set and ϵ is a (standard) real, then for all $x, y \in A$, there exists a finite sequence of points, all lying in A,

$$x = u_1, u_2, \dots, u_n = y$$

such that the distance between any two successive points in this sequence is less than ϵ .

The next result follows from the compactness of A and the consequent uniform continuity of f.

Theorem 3. Let $f : X \to Y$ be a function. If f is continuous, then for any subset $A \subseteq X$ satisfying

 $\forall x, y \in {}^*A \exists u \in \mathcal{P}_{x,y} \text{ with } u_n \in ns({}^*X) \text{ and } st(u_n) \in {}^{\sigma}A, \text{ for all } n$ (1)

the following condition is valid

$$\forall z, w \in {}^*f(A) \exists v \in \mathcal{P}_{z,w} \text{ with } v_n \in ns({}^*Y) \text{ and } st(v_n) \in {}^{\sigma}f(A), \text{ for all } n.$$

Proof. Let A be a set that satisfies condition (1). Given z and w in ${}^*f(A)$, let z = f(x) and w = f(y), for some $x, y \in {}^*A$. Then, there exists $u = (u_n)_{n=1,...,N} \in \mathcal{P}_{x,y}$, such that $u_n \in ns({}^*X)$ and $st(u_n) \in {}^{\sigma}A$, for all n = 1, ..., N. Define $v_n := f(u_n)$, for all n = 1, ..., N. It is easy to see that $v = (v_n)$ satisfies the necessary conditions.

Theorem 4. The set A is connected if

$$\forall x, y \in {}^{\sigma}A \exists u \in \mathcal{P}_{x,y} \text{ with } u_n \in ns({}^*X) \text{ and } st(u_n) \in {}^{\sigma}A, \text{ for all } n.$$

$$(2)$$

Proof. Assume that A is not connected. Then A has a subset $B \notin \{\emptyset, A\}$ that is simultaneously relatively open and closed. Pick $x \in {}^{\sigma}B$, $y \in {}^{\sigma}(A - B)$ and $u = (u_n)_{n=1,...,N} \in \mathcal{P}_{x,y}$ such that $u_n \in ns({}^*X)$ and $st(u_n) \in {}^{\sigma}A$, for all n, and define the internal set

$$K := \{ n \in \{1, \dots, N\} \mid u_n \in {}^*B \}.$$

Since K is nonempty (for example, $1 \in K$), it has a maximum. Let $k := \max K$. Since $y \notin B$ then $k \neq N$. Besides this, $u_k \in B$ and $u_{k+1} \in (A - B)$. Since B and A - B are both closed, $st(u_k) \in B$ and $st(u_{k+1}) \in A - B$.

Since $u_k \approx u_{k+1}$, the point $st(u_k) = st(u_{k+1}) \in {}^{\sigma}B \cap {}^{\sigma}(A-B)$, which ends the proof. \Box

The previous condition is not enough to assert that A is path connected; e.g. take the set

$$\{(x, \sin(1/x)) \mid x > 0\} \cup (\{0\} \times [-1, 1]).$$

However, if A is path connected then condition (2) is satisfied. Indeed, if we fix $x, y \in {}^{\sigma}A$, then by hypothesis there exists a continuous path $\alpha : [0,1] \to A$ with $\alpha(0) = x$ and $\alpha(1) = y$. Take an infinite $N \in {}^*\mathbb{N}$ and define $u_n := \alpha(\frac{n}{N})$ for $n \in \{0, \ldots, N\}$. It is easy to check that (u_n) satisfies condition (2).

The converse of Theorem 4 is false in general, however we will obtain a related result.

Theorem 5. If A is a connected set then for all $x, y \in {}^*A$ the condition $\mathcal{P}_{x,y} \neq \emptyset$ holds.

Proof. Fix $x, y \in {}^{\sigma}A$ and $\epsilon \in {}^{\sigma}\mathbb{R}^+$. Then there exists an ϵ -chain that joins x and y (c.f. [7], pag 120). Therefore

$$\forall x, y \in {}^{\sigma}A \,\forall \epsilon \in {}^{\sigma}\mathbb{R}^+ \,\exists N \in {}^{\sigma}\mathbb{N} \,\exists \{u_2, \dots, u_{N-1}\} \subset {}^{\sigma}A \\ \forall i \in \{1, \dots, N-1\} \quad d(u_i, u_{i+1}) < \epsilon,$$

where $u_1 := x$ and $u_N := y$. Now, pick two points $x, y \in {}^*A$. By the Transfer Principle, condition holds with $\epsilon \approx 0$.

Observe that we actually proved that, for all infinitesimal ϵ , there exists $u \in \mathcal{P}_{x,y}$ satisfying $d(u_i, u_{i+1}) < \epsilon$.

Unfortunately, the *d.i.p.* need not to be nearstandard in A, as is shown in the next example. Let A be the subset of \mathbb{R}^2 defined by

$$([0,1] \times \{0\}) \cup \left\{ \left(\frac{1}{n}, y\right) \mid n \in \mathbb{N}, y \in [0,1] \right\} \cup \{(0,0), (0,1)\}.$$

The set A is connected but there is no d.i.p. joining the points (0,0) to (0,1) nearstandard in the set.

Corollary 1. Let A be a compact set. Then A is connected if and only if

 $\forall x, y \in {}^{\sigma}A \exists u \in \mathcal{P}_{x,y} \text{ such that } u_n \in ns({}^*X) \text{ and } st(u_n) \in {}^{\sigma}A, \text{ for all } n.$

Proof. Follows from Theorems 4 and 5 and the fact that, for the nonstandard extension of compact sets, all points are nearstandard on the set. \Box

In conclusion, we have now a nice characterization of connected compact sets.

Corollary 2. Let A be a non-empty set. Then A is connected and compact if and only if

$$\forall x, y \in {}^{*}A \exists u \in \mathcal{P}_{x,y} \text{ such that } u_n \in ns({}^{*}X) \text{ and } st(u_n) \in {}^{\sigma}A, \text{ for all } n.$$
(3)

Proof. We only need to prove that condition (3) implies the compactness condition. Fix $x \in {}^{*}A$. By condition (3), there exists some $u \in \mathcal{P}_{x,x}$ nearstandard on A. So $u_1 = x \in ns({}^{*}X)$ and $st(x) \in {}^{\sigma}A$.

Acknowledgments

Work supported by *Centre for Research on Optimization and Control* (CEOC) from the "Fundação para a Ciência e a Tecnologia" (FCT), cofinanced by the European Community Fund FEDER/POCI 2010.

References

- [1] R. Almeida, On the continuity of functions, Appl. Sci. (9), pp 1–4 (2007).
- [2] R. Almeida and D.F.M. Torres, Relaxed optimality conditions for mu-differentiable functions, Int. J. Appl. Math. & Stat. (14), No. M09 pp 53–66 (2009).
- [3] A.E. Hurd and P.A. Loeb, An Introduction to Nonstandard Real Analysis, Pure and Applied Mathematics, 118. Orlando etc., Academic Press, Inc. (1995).
- [4] S.C. Leth, Some Nonstandard Methods in Geometric Topology, in N.J. Cutland, V. Neves, F. Oliveira and J. Sousa-Pinto (Eds.), Developments in Nonstandard Mathematics, Pitman Research Notes in Mathematics Series. 336, New York (1995).
- [5] S. Rodrigues, Propriedades da Separação, Conexão e Real-compacidade, Master's thesis, University of Aveiro (2001).
- [6] A. Robinson, Non-Standard Analysis, North- Holland Publishing Company, Amsterdam (1974).
- [7] W. Sierpinski, *General topology*, (translated by C. Krieger), Dover Publications, Inc., Mineola, New York, (2000).
- [8] K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of Infinitesimals, Pure Appl. Math. 72 New York-San Francisco-London, Academic Press (1976).