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Abstract

We present a nonstandard characterization of connected compact sets
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1 Introduction

There is as yet no simple nonstandard characterization of connectedness, and little work has been
done in that direction. In [4], Steven Leth presents a sufficient condition for a set A ⊆ Rn to be
connected. As Leth remarked, however, it is not a necessary condition. His hypothesis involves
internal polygonal paths joining distinct points. We will work with hyper-finite sets instead of
polygonal paths, thus eliminating the implicit local path-connectedness that is present in [4]. We
mention also the work of Sérgio Rodrigues [5] characterizing connectedness in nonstandard terms
using the monad of a set.

The paper is organized as follows. In section 2 we collect some necessary background for the
reader’s convenience. In section 3 we present new results about connectedness and compactness
on standard sets; we introduce a new concept, the discrete infinitesimal path, which will be used
to characterize connected compact sets in metric spaces.

2 Preliminaries

All the sets which come up in classical analysis have nonstandard extensions using a map denoted
by ”∗”. For example, if R denotes the set of real numbers, ∗R will be its nonstandard extension.
This extension contains ”ideal elements”, like infinitesimals and infinite numbers, but also a copy
of the set of real numbers, denoted by the symbol σR. It is not our intention to give a full
exposition on this subject, we will just fix notation and present some results needed. For further
details, the reader is referred to [2, 3, 6, 8].

Definition 1. Let x, y ∈ ∗R. We say that

1. x is infinitesimal if |x| < ε, for all positive real number ε and we write x ≈ 0;

2. x is finite if, for some positive real number ε, |x| < ε;

3. x is infinite (or infinitely large) if it is not finite, i.e., for any positive real number ε, |x| > ε;
we write x ≈ ∞;

4. x, y are infinitely close if x− y is infinitesimal; we write x ≈ y.

In the following, (X, d) is a metric space.
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Definition 2. For x ∈ ∗X, the monad of x is the subset of ∗X given by

µ(x) := {y ∈ ∗X | d(x, y) ≈ 0}.

As before, the nonstandard extension of X contains a copy of the original set, which we denote
by σX (elements of σX are called standard). A point y ∈ ∗X is nearstandard if there exists some
standard x ∈ σX such that y ∈ µ(x); in this case we say that x is the standard part of y and write
st(y) = x. We say that x, y ∈ ∗X are infinitely close, and write x ≈ y, if d(x, y) ≈ 0. If x and y
are not infinitely close, we write x 6≈ y.

The set of the nearstandard points of ∗X is

ns(∗X) :=
⋃
{µ(x) |x ∈ σX}.

Theorem 1. [3] Let A ⊆ X. Then

1. A is open if and only if for all a ∈ σA, µ(a) ⊆ ∗A holds;

2. A is closed if and only if, whenever a ∈ ∗A and a ≈ x for some x ∈ σX, we have x ∈ σA;

3. A is compact if and only if for all a ∈ ∗A, there is an x ∈ σA with a ≈ x;

In every metric space, monads of distinct standard points are disjoint (see [3]). Therefore, for
all x ∈ ns(∗X), there exists exactly one element in σX, called st(x), infinitely close to x. Hence
we have a well-defined function

st : ns(∗X) → σX
x 7→ st(x)

called the standard part function.

Theorem 2. [3] Let X and Y be two topological spaces and f : X → Y a function. Then f is
continuous if and only if

∀x ∈ σX f(µ(x)) ⊆ µ(f(x)),

or equivalently,
∀x ∈ σX ∀y ∈ ∗X [x ≈ y ⇒ f(x) ≈ f(y)].

3 Main results

In what follows, (X, dX) and (Y, dY ) will denote two metric spaces, and A ⊆ X a nonempty
subset. To simplify notation, we will denote both metrics by the same symbol d. Given two points
x, y ∈ ∗A, we define the set (possibly external)

P
∗A
x,y := {u = (un)n=1,...,N |N ∈ ∗N, u1 = x, uN = y, un ∈ ∗A

and un ≈ un+1, for all n ∈ {1, . . . , N − 1}}.
We call the hyper-finite sequence u = (un)n∈{1,...N} a discrete infinitesimal path (abbreviation

d.i.p.) joining x to y in ∗A. We define a binary relation on ∗A by x ∼ y if P∗A
x,y is nonempty; it is

easy to prove that ∼ is an equivalence relation.
We will simply write Px,y instead of P∗A

x,y whenever there is no danger of confusion.

The existence of (standard) discrete paths joining points on connected sets is known. In fact,
it can be proved that if A is a connected set and ε is a (standard) real, then for all x, y ∈ A, there
exists a finite sequence of points, all lying in A,

x = u1, u2, . . . , un = y,

such that the distance between any two successive points in this sequence is less than ε.

The next result follows from the compactness of A and the consequent uniform continuity of
f .
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Theorem 3. Let f : X → Y be a function. If f is continuous, then for any subset A ⊆ X
satisfying

∀x, y ∈ ∗A∃u ∈ Px,y with un ∈ ns(∗X) and st(un) ∈ σA, for all n (1)

the following condition is valid

∀z, w ∈ ∗f(A)∃v ∈ Pz,w with vn ∈ ns(∗Y ) and st(vn) ∈ σf(A), for all n.

Proof. Let A be a set that satisfies condition (1). Given z and w in ∗f(A), let z = f(x) and
w = f(y), for some x, y ∈ ∗A. Then, there exists u = (un)n=1,...,N ∈ Px,y, such that un ∈ ns(∗X)
and st(un) ∈ σA, for all n = 1, . . . , N . Define vn := f(un), for all n = 1, . . . , N . It is easy to see
that v = (vn) satisfies the necessary conditions.

Theorem 4. The set A is connected if

∀x, y ∈ σA∃u ∈ Px,y with un ∈ ns(∗X) and st(un) ∈ σA, for all n. (2)

Proof. Assume that A is not connected. Then A has a subset B /∈ {∅, A} that is simultaneously
relatively open and closed. Pick x ∈ σB, y ∈ σ(A−B) and u = (un)n=1,...,N ∈ Px,y such that
un ∈ ns(∗X) and st(un) ∈ σA, for all n, and define the internal set

K := {n ∈ {1, . . . , N} |un ∈ ∗B}.

Since K is nonempty (for example, 1 ∈ K), it has a maximum. Let k := maxK. Since y /∈ ∗B
then k 6= N . Besides this, uk ∈ ∗B and uk+1 ∈ ∗(A−B). Since B and A − B are both closed,
st(uk) ∈ B and st(uk+1) ∈ A−B.

Since uk ≈ uk+1, the point st(uk) = st(uk+1) ∈ σB ∩ σ(A−B), which ends the proof.

The previous condition is not enough to assert that A is path connected; e.g. take the set

{(x, sin(1/x)) |x > 0} ∪ ({0} × [−1, 1]).

However, if A is path connected then condition (2) is satisfied. Indeed, if we fix x, y ∈ σA, then
by hypothesis there exists a continuous path α : [0, 1]→ A with α(0) = x and α(1) = y. Take an
infinite N ∈ ∗N and define un := α( nN ) for n ∈ {0, . . . , N}. It is easy to check that (un) satisfies
condition (2).

The converse of Theorem 4 is false in general, however we will obtain a related result.

Theorem 5. If A is a connected set then for all x, y ∈ ∗A the condition Px,y 6= ∅ holds.

Proof. Fix x, y ∈ σA and ε ∈ σR+. Then there exists an ε-chain that joins x and y (c.f. [7], pag
120). Therefore

∀x, y ∈ σA∀ε ∈ σR+ ∃N ∈ σN ∃{u2, . . . , uN−1} ⊂ σA

∀i ∈ {1, . . . , N − 1} d(ui, ui+1) < ε,

where u1 := x and uN := y. Now, pick two points x, y ∈ ∗A. By the Transfer Principle, condition
holds with ε ≈ 0.

Observe that we actually proved that, for all infinitesimal ε, there exists u ∈ Px,y satisfying
d(ui, ui+1) < ε.

Unfortunately, the d.i.p. need not to be nearstandard in A, as is shown in the next example.
Let A be the subset of R2 defined by

([0, 1]× {0}) ∪
{(

1

n
, y

)
|n ∈ N, y ∈ [0, 1]

}
∪ {(0, 0), (0, 1)} .

The set A is connected but there is no d.i.p. joining the points (0, 0) to (0, 1) nearstandard in
the set.
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Corollary 1. Let A be a compact set. Then A is connected if and only if

∀x, y ∈ σA ∃u ∈ Px,y such that un ∈ ns(∗X) and st(un) ∈ σA, for all n.

Proof. Follows from Theorems 4 and 5 and the fact that, for the nonstandard extension of compact
sets, all points are nearstandard on the set.

In conclusion, we have now a nice characterization of connected compact sets.

Corollary 2. Let A be a non-empty set. Then A is connected and compact if and only if

∀x, y ∈ ∗A∃u ∈ Px,y such that un ∈ ns(∗X) and st(un) ∈ σA, for all n. (3)

Proof. We only need to prove that condition (3) implies the compactness condition. Fix x ∈ ∗A.
By condition (3), there exists some u ∈ Px,x nearstandard on A. So u1 = x ∈ ns(∗X) and
st(x) ∈ σA.
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