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resumo 
 
 

O melanoma deriva da transformação maligna de melanócitos e é 
frequentemente encontrado na pele e na região ocular. A identificação de 
marcadores moleculares que inequivocamente indiquem a agressividade do 
tumor ou que possam prever a resposta/resistência a uma terapia é uma 
prioridade da comunidade científica que estuda esta patologia. Mutações do 
gene do BRAF, maioritariamente V600E e mutações do gene do NRAS têm 
sido implicadas no desenvolvimento de melanoma cutâneo. Enquanto, 
mutações nos genes do GNAQ e GNA11 são encontradas com elevada 
frequência em melanomas uveais. Todas estas mutações podem levar à 
activação da via de sinalização das MAP cínases, conduzindo ao aumento da 
proliferação celular 
O objectivo deste estudo foi a identificação de mutações genéticas frequentes 
como indicadores de prognósticos ou de previsão de resposta a uma terapia 
de inibição da via do mTOR e avaliar o potencial de efectores desta via como 
biomarcadores terapêuticos em melanomas cutâneos e oculares. 
A existência de alterações genéticas nos genes do BRAF e NRAS foi 
determinada em 13 casos de melanoma cutâneo. O estado mutacional dos 
genes GNAQ e GNA11 foi avaliado em 34 casos de melanoma ocular. A 
análise mutacional foi realizada com recurso a PCR e sequenciação. A 
associação entre o estado mutacional e as características clínico-patológicas 
foi também estudada. Um conjunto de linhas celulares de melanoma com 
diferentes perfis genéticos foi tratado com um fármaco inibidor do mTOR, 
RAD001. A proliferação celular e apoptose foram avaliadas com os ensaios 
SRB e TUNEL, respectivamente, a expressão de efectores da via do mTOR foi 
detectada por immunoblotting. 
G361, uma linha celular derivada de melanoma cutâneo com mutação 
BRAFV600E, apresentou a maior inibição de crescimento após tratamento 
com RAD001. RAD001 não induziu um aumento de apoptose em nenhuma 
das linhas celulares utilizadas neste estudo, sugerindo que o RAD001 não 
induz alterações no processo de apoptose. 
Este estudo apresenta a mutação BRAFV600E como um possível marcador 
terapêutico do fármaco, RAD001, para pacientes com melanoma cutâneo mas 
não para pacientes com melanoma ocular, podendo no futuro ser uma 
ferramenta útil na selecção de pacientes para uma terapia baseada na inibição 
do mTOR. 
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abstract 

 
Melanoma results from the malignant transformation of melanocytes and is 
frequently found in the skin and ocular region. The identification of molecular 
biomarkers, which unequivocally indicate the aggressiveness of the tumour or 
predict the response/resistance to a therapy, is of high priority in the field of 
melanoma research. 
BRAF gene mutations, predominantly V600E, and mutations in the NRAS gene 
have been implicated in the development of cutaneous melanoma. Mutations in 
the GNAQ and GNA11 genes are found frequently in ocular melanoma, 
particularly in the uveal subtype. These mutations can lead to the activation of 
the MAPK pathway, which can lead to growth-promoting activities. 
The aim of this study was to identify frequent mutations that can be used as 
prognosis or predictive markers for mTOR pathway inhibition. In addition, the 
potential of mTOR pathway effectors as therapeutic biomarkers in cutaneous 
and ocular melanoma was also addressed. 
Genetic alterations in the BRAF and NRAS genes were determined in 13 
cutaneous melanoma tumour samples and GNAQ and GNA11 genes 
mutational status were evaluated in a series of 34 tumour samples of ocular 
melanoma. Mutational analysis was done by PCR/Sequencing. The mutational 
status and its correlation to clinical-pathologial features was then assessed. A 
panel of melanoma cell lines with different BRAF, GNAQ and GNA11 
mutational status were treated with RAD001, an mTOR pathway inhibitor. Cell 
viability and apoptosis were assessed by SRB assay and TUNEL assay, 
respectively, mTOR pathway effectors expression levels were detected by 
immunoblotting. 
G361, a cutaneous melanoma-derived cell line, which harbours BRAFV600E, 
showed the highest level of cell growth inhibition after treatment with RAD001. 
RAD001 did not induce increased levels of apoptosis in any of the cell lines 
treated, suggesting that RAD001 does not induce alterations in the apoptosis 
process. 
This study supports BRAF mutational status as a possible predictive biomarker 
to RAD001 treatment in cutaneous melanoma but not in ocular melanoma 
patients and as a promising tool to select patients to mTOR inhibition therapy. 
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4E-BP1 eIF4E Binding Protein 1 

AKT Protein kinase B 

ALM Acral Lentiginous Melanoma 

ARF Alternative reading frame 

BCL-2 B-cell lymphoma 2 

BRAF v-Raf murine sarcoma viral oncogene homolog B 

CDKN Cyclin-dependent kinase inhibitor 2 

CM Cutaneous Melanoma 

DAG Diacylglycerol 

eEF2K Eukaryotic Elongation Factor-2 Kinase 

EGFR Epidermal Growth Factor Receptor 

FBS Fetal Bovine Serum 

FDA Food And Drug Administration 

FGF-2 Fibroblast growth factor-2 

FGFR Fibroblast Growth Factor Receptor 

GAP GTPase-Activating Protein 

GNAQ Guanine Nucleotide-binding protein G(q) subunit alpha 

GPCR G protein-Coupled Receptor 

Gq Q Class of Heterotrimeric GTP Binding Protein 

HIF-1 Hypoxia-inducible factor 1 

IL-8 Interleukin 8 

INK4 Inhibitor of CDK4 

IP3 Inositol Trisphosphate 

IRS-1 Insulin Receptor Substrate 1 

LDH Lactic Dehydrogenase 

LMM Lentigo Maligna Melanoma 

MAP4K3 MAP Kinase Kinase Kinase Kinase-3 

MAPK Mitogen-Activated Protein Kinase 
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MC1R Melanocortin receptor-1 

MITF Microphthalmia-associated transcription factor 

mLST8 Mammalian lethal with SEC13 protein 8 

mTOR Mammalian Target of Rapamycin 

mTORC1 mTOR Complex 1 

mTORC2 mTOR Complex 2 

MYC Myelocytomatosis viral oncogene 

NF-kB Nuclear factor-kB 

NM Nodular Melanoma 

NRAS Neuroblastoma RAS viral (v-Ras) oncogene homolog 

PBS Phosphate buffered saline 

PDCD4 Programmed Cell Death 4 

PDGFR Platelet-Derived Growth Factor Receptor 

PDK-1 3′Phosphoinositide-Dependent Kinase 1 

PH Pleckstrin Homology 

PIP2 Phosphatidylinositol-4,5-Bisphosphate 

PI(3,4)P2 Phosphatidylinositol-3,4-Bisphosphate 

PIP3 Phosphatidylinositol-3,4,5-Triphosphate 

PI3K Phosphatidylinositol 3-Kinase 

PIP2 Phosphatidylinositol Bisphosphate 

PKC Protein Kinase C 

PLCb B-Isoforms Of Phospholipase C 

PRAS40 Proline-Rich AKT Substrate 40 

PTEN Phosphatase and Tensin Homolog 

RSK 90 kDa Ribosomal Protein S6 Kinase 

RTK Receptor Tyrosine Kinase 

S6K1 S6 Kinase 1 

SSM Superficial Spreading Melanoma 

TGF-α Transforming growth factor alpha (TGF-α) 
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TSC 1/2 Tuberous Sclerosis Complex 1/2 

UM Uveal Melanoma 

UVR Ultraviolet Radiation 

VEGFR Vascular Endothelial Growth Factor Receptor 



17 

 

 

 

 

3 Introduction  



18 

 

 

3  Introduction 

Malignant melanoma derives from the transformation of the pigment-producing 

cells (melanocytes) that are found in the skin, ocular region, gastrointestinal and genito-

urethral mucosal surfaces and in the meninges.1 

 

3.1 History of Melanoma 

Probably, the first mention to melanoma was made by the ancient Greek physician 

Hippocrates in the 5th century B. C., referring to it as “black herpetic type lesions”.2, 3 

However, the first description of the disease was made several centuries later by René 

Laënnec, the inventor of the stethoscope. He presented melanoma as a disease entity to 

the Faculté de Médecine in Paris in 1806. Despite this, the word “Melanoma” was used by 

him only 6 years later when he reported a case of a disseminated melanoma. About five 

decades later, William Norris published a report in which he stated some principles about 

the clinical management and epidemiology of melanoma. Norris proposed for the very 

first time, an hereditary disposition for this disease, several years before the genetic 

paradigm articulated by Mendel in 1866. In his report, Norris also suggested a possible 

relationship between moles and cutaneous melanoma.4 
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3.2 Cutaneous and Ocular Melanoma: incidence and risk factors 

Cutaneous melanoma 

According to the Portuguese 

Association of Cutaneous Cancer (APCC), it 

is estimated that in Portugal the incidence of 

cutaneous melanoma is of 10 new cases per 

100,000 habitants per year, which means 

about 1000 new cases per year 

(http://www.apcc.online.pt/ - 21/06/2011). 

This incidence is similar to that observed in 

countries in Southern Europe (Figure 1). 

 

 

Figure 1: Age-standardized incidence of 

melanoma in people aged under 55 years in 

selected European countries in the year 

2000. Taken from WHO (2009)  

 

Melanoma has proven to be disproportionately lethal considering its potential for 

cure in the early stages and its relatively low incidence compared with non-melanoma 

skin cancers. Since the 1960’s, cutaneous melanoma (CM) incidence has increased by 3-8% 

per year in most European countries, with the greatest increases observed in elderly men.5 

Several environmental and endogenous conditions had been proved to correlate with 

higher risk of developing CM such as: 

Environmental 

 Severe childhood sunburn despite sun exposure control in later life; 

 High levels of childhood sun exposure despite absence of sunburn; 

 Adult exposure particularly in individuals with non-acclimatised skin; 

 Sunbed and sunlamp exposures.3 
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Endogenous 

 The fair, freckled and Caucasian skin types; 

 Genetic predisposition; 

 Familial history of melanoma. 

Melanoma development involves the accumulation of genetic abnormalities in 

known signalling pathways. These pathways can be induced by Ultraviolet Radiation 

(UVR), which can damage the cells’ DNA leading to mutations, and by the production of 

reactive oxygen species that will also result in DNA damage and can suppress apoptosis 

or reduce the cutaneous immune defences.5, 6 

The lag-time between the exposure to UVR and the development of melanoma can 

be decades apart, making it harder for prevention campaigns to succeed (primary 

prevention). Therefore, these initiatives need to be persistent and reiterative, keeping in 

mind that their impact will only be recognised several years later. The secondary 

prevention of CM focuses on the diagnosis of thinner tumours. Early diagnosis and 

excision of thin in situ lesions are the best hope for short term mortality reduction , while 

primary prevention may provide long-term results.5 

The pattern of geographic distribution of CM shows that its incidence is increasing 

as the latitude decreases , in other words, CM incidence rates in Caucasian populations 

increase with proximity to the Equator.5, 7 Interestingly, this relationship is not observed in 

Western Europe (Figure 1) where mortality from melanoma is four to six times higher in 

Nordic than in the Mediterranean countries (in which Portugal is included). This may be 

due to the combination of a light skin type with  excessive intermittent exposure to UVR, 

during periods spent in Southern Europe on the Summer.5, 7 
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Ocular melanoma 

Primary ocular melanoma can occur in four tissues of the ocular region: in the 

uveal tract (uvea), conjunctiva, eyelid and orbit.8 Although ocular melanoma is very 

uncommon compared with CM, it is deadly as well. UM (Uveal Melanoma) is the most 

common ocular melanoma in the western world, with 7 new cases per 1 million 

individuals per year.9 In the USA, it develops in approximately 2500 North Americans 

annually and conjunctival melanoma produces 200 new cases per year.8 The incidence of 

UM has been kept relatively stable in recent decades.  

The most important factor in the development of UM is the presence of congenital 

ocular melanocytosis, also known as nevus of Ota, when the eyelid skin is affected. White 

individuals with this condition have a 1 in 400 chance for the development of uveal 

melanoma in their lifetime. Another risk factor for the development of UM is the presence 

of an uveal nevus. The incidence of uveal melanoma increases with age, reaching its 

maximum between the 6th and 7th decade of life. It is slightly more common in males and 

uncommon in children and dark-skinned individuals. Unlike CM, the inexistence of a 

geographic pattern for the distribution of UM indicates that chronic and occupational 

UVR exposures are non-significant risk factors in this case. More studies are required to 

identify environmental risk factors that trigger the development of UM.10 A possible 

genetic predisposition is implied by the number of patients with bilateral uveal 

melanoma, which is greater than would be predicted by chance alone.8, 10 

Conjunctival melanoma is a rare form of ocular melanoma, accounting only for 2% 

- 3% of all diagnosed cases. In contrast to UM, environmental exposure to UVR has been 

pointed as a possible explanation to an increasing incidence of conjunctival melanoma 

from 0.24 to 0.8 per million per year in Caucasians.11 A higher incidence was identified in 

individuals with mean age of presentation of the pathology between 50 and 60 years. 

Although, conjunctival nevus and primary acquired melanosis are predisposing factors, 

the development of malignant melanoma of the conjunctiva can occur without a precursor 

lesion.8, 11 
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3.3 Clinical aspects of Cutaneous and Ocular Melanoma 

Cutaneous melanoma 

Cutaneous melanoma can be classified according to clinical, histopathological, 

epidemiological and molecular criteria. Clinically, there are four distinct subtypes: 

Superficial Spreading Melanoma (SSM), Nodular Melanoma (NM), Acral Lentiginous 

Melanoma (ALM) and Lentigo Maligna Melanoma (LMM). Table 1 shows their major 

differences regarding frequency, common body areas, sun exposure, age of diagnosis and 

morphologic features.12 The most common subtypes are associated with intermittent sun 

exposure, with SSM being the most common (70%) followed by NM (30%). Although both 

types develop in common body areas, which are the most exposed to UVR (trunk and 

legs), they have distinct morphologic features.13-15 

Table 1: Clinical classification of cutaneous melanoma. Adapted from McGovern (1982); Chin et 

al. (1998) and Ghosh et al (2009). 

Subtype Frequency 
Common Body 

Areas 

Sun 

Exposure 

Median 

Age of 

Diagnosis 

Morphologic 

features 

SSM 70% 

 Trunk (men) 

 Legs (women) 

 Proximal 

extremities 

Intermittent 44 

 Spreading 

pigmented 

macule 

 Flat or very 

slightly raised 

NM 10-30% 
 Trunk (men) 

 Legs (women) 
Intermittent 53 

Polypoid or 

dome-shaped 

ALM Rare  

 Palms 

 Nail beds 

 Soles of the 

feet 

Absent 65 
Spreading 

pigmented patch 

LMM < 5% 

 Face 

 Head 

 Neck 

Chronic 65 

Darkly 

pigmented raised 

papule or nodule 
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Histological classification is performed based on the location and/or depth of 

involvement. Melanoma progression occurs by the evolution of an in situ growth that 

starts to get thicker and invades vertically (the underlying skin layers), spreads to regional 

lymph nodes and finally, metastasizes.15 As can be seen in Figure 2, CM progression can 

begin with the development of either dysplastic or benign nevi. These can then evolve to 

in situ melanoma, which is characterized by a radial growth pattern and its primary 

confinement to the epidermis. At this stage the cells are still dependent on growth factors 

and are not tumourigenic. The vertical growth phase of malignant melanoma, which 

denotes a transition to a more aggressive and lethal condition, is characterized by tumour 

invasion into the underlying dermis, subcutis and upper epidermis. At this stage, cells are 

not dependent of growth factors and often metastasise to distant sites, such as liver, lung, 

brain, bone or small intestine.14, 15 

 

 

 

 

 

 

 

 

 

Figure 2: Stages of histopathologic progression in melanocyte transformation. (A) Normal skin.  

The dendritic melanocytes are evenly distributed throughout the basal layer. (B) Benign 

proliferation of melanocytes. Nevoid melanocytes are organized into uniform nests in a compound 

nevus. (C) Melanocyte dysplasia. Dysplastic nevus has irregular and bridging nests of large 

atypical melanocytes. (D) In situ melanoma, radial growth phase (RGP). Single cells are in the 

upper layer of the epidermis. (E) Malignant melanoma, vertical growth phase (VGP). Taken from 

Chin et al. (1998). 
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Ocular melanoma 

Conjunctival melanoma 

Conjunctival melanoma presents substantial clinical variability that comprises 

asymptomatic raised pigmented plaque, maculae, or tumours ranging from small lesions 

to higher dimension tumour masses.8, 16 The clinical features pointing to melanoma 

include large size, variegated appearance, lack of mobility in relation to the sclera, 

extension onto cornea, presence of large feeder vessels and evidence of canalicular 

obstruction.11 The colour ranges from light to dark brown and in rare cases can be 

amelanotic. An association between increased risk of conjunctival melanoma 

development in patients with a genetic predisposition for the development of cutaneous 

melanoma has not been established.11 

Histologically, conjunctival melanoma can be composed by a single cell type or by 

different proportions of four cell types: small polyhedral cells, epithelioid cells, balloon 

cells, and spindle cells. The subtypes are classified as malignant when significant 

cytologic atypia, including large nuclear size, prominent nucleoli or mitotic activity, is 

observed. Additionally, the cell type involved may confer a higher or lower level of 

malignancy, for instance tumours composed uniquely by spindle cells have been 

classified as less aggressive, while the presence of epithelioid cells have been used as an 

indication of poor prognosis.11 

Uveal melanoma 

The uvea is a vascular layer within the eye that is divided into three anatomic 

compartments, the iris, ciliary body and choroid. The majority of UM cases occur in the 

choroid, representing 90% of intraocular melanoma. Iris melanoma, the rarer type of UM, 

is associated with a more benign diagnosis when compared to choroidal and ciliary body 

melanomas.8-10, 17 Their main features are summarized in Table 2.10 

Patients with uveal melanoma may have visual loss, but many do not present 

symptoms and the condition is frequently only discovered on routine ocular examination. 
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Table 2: Clinical classification of uveal melanoma. Adapted from Laver et al. (2010) and van den 

Bosch (2010). 

Subtype Location 
Clinical 

Variations 
Clinical Presentation 

Iris 

Melanoma 

Inferior 

portion of 

the iris 

Circumscribed 
 Variable pigmentation. 

 Well-defined mass in the iris stroma. 

Diffuse 
 Clinical picture of acquired hyperchromic 

heterochromia and secondary glaucoma. 

Tapioca 
 Multiple hard nodules giving a surface 

appearance of tapioca pudding. 

Trabecular-

meshwork 

 Diffuse growth around the anterior 

chamber angle without producing a 

distinct mass. 

 Presentation of ipsilateral glaucoma. 

Ciliary 

Body 

Melanoma 

 Iridociliary 

(growth into the 

iris) 

Ciliochoroidal 

(growth into the 

choroid) 

 Possibility of large size tumour. 

 Dome-shaped mass in the affected area or 

diffuse circumferential growth pattern, 

known as ring melanoma.  

Choroidal 

Melanoma 

Under the 

retina 

 

 Sessile or dome-shaped mass. 

 Surface orange pigment at the level of the 

retinal pigment epithelium. 

 Retinal detachments can be seen secondary 

to the tumour growth.  

 Absence or presence of pigmentation. 

 Possibility of diffuse growth pattern with 

only minimal tumour thickness. 
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3.4 Prognostic Factors of Cutaneous and Ocular Melanoma 

Cutaneous melanoma 

Over time, dermatopathologists developed systems to determine the prognosis for 

non-metastatic CM, establishing melanoma thickness, location, histological type, gender 

and ulceration as important indicators of patient prognosis.5 

In 1970, Breslow developed a system in which the best independent determinant, 

among several factors assessed, is the total tumour thickness. Breslow’s system measures 

tumour thickness from the upper layer of the epidermis to the innermost depth of tumour 

invasion (Figure 3). Due to its simplicity, reproducibility and objectivity, it became the 

classification system of choice. 

Wallace Clark also developed a 

classification system. In his system, 

he established a correlation between 

anatomic level of invasion, mitotic 

index and prognosis (Figure 3). In 

comparison with Breslow’s system, 

this system provides more 

information but may lack on 

reproducibility.14 

Figure 3: Pathological classification of 

melanoma by Clark's levels and Breslow depth. 

Taken from www.med-ars.it (21/06/2011) 

In 2009, the American Joint Committee on Cancer Staging System for Cutaneous 

Melanoma was published, in which the TNM categories were defined according to the 

prognosis of the patients (Table 3).18 The tumour thickness (measured in milimeters), the 

mitotic rate per mm2 and the presence or absence of ulceration are the primary criteria of 

T classification. In 2009, primary tumour mitotic rate was added as a new covariate after a 

multifactorial analysis, which revealed that proliferation of the primary melanoma was 

the second most determinant predictor of survival, after tumour thickness. Melanoma 
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ulceration is defined as the traumatic disruption of the epidermis overlying a major 

portion of the primary melanoma. A higher risk for metastasis is predicted by melanoma 

ulceration, therefore, its presence worsens the prognosis in these patients, compared with 

those who have melanomas of similar thickness without ulceration.18, 19 

The number of metastatic nodes is primarily defined by the N category. Within 

this category, there are two patient groups with significantly different survival rates: the 

patients with micrometastasis and the patients with macrometastasis. The first group does 

not have clinical or radiologic evidence of lymph node metastasis but has pathologically 

documented nodal metastasis. In contrast, patients with macrometastasis have both 

clinically detectable nodal metastasis and pathologic examination that confirms the 

number of nodal metastasis.19 

The M categories were defined using as main criteria the number and site(s) of 

distant metastasis, and the elevated serum levels of lactic dehydrogenase (LDH), being 

attibuted the worst prognosis to patients with higher number of distant metastasis, with 

metastasis not located in the skin, subcutaneous tissue or distant lymph nodes and with 

high levels of serum LDH.19 
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Table 3: Cutaneous Melanoma TNM Classification. Table from Balch et al. (2009). 

T classification Thickness Ulceration Status 

T1 ≤1.0 mm 
a: without ulceration and mitosis < 1/mm2 

b: with ulceration and mitosis ≥ 1/mm2 

T2 1.01 – 2.0 mm 
a: without ulceration 

b: with ulceration 

T3 2.01 – 4.0 mm 
a: without ulceration 

b: with ulceration 

T4 ≥ 4 mm 
a: without ulceration 

b: with ulceration 

N classification No. of Metastatic Nodes Nodal Metastatic Mass 

N0 0 Not applicable 

N1 1  
a: micrometastasis 

b: macrometastasis 

N2 2-3  

a: micrometastasis 

b: macrometastasis 

c: in transit met(s)/satellite(s) without 

metastatic nodes 

N3 

4 or more metastatic nodes, or 

matted nodes, or in transit 

met(s)/satellite(s) with 

metastatic node(s) 

 

M classification Site Serum Lactate Dehydrogenase 

M0 No distant metastasis Not applicable 

M1a 
Distant skin, subcutaneous, 

or nodal metastasis 
Normal 

M1b Lung metastasis Normal 

M1c 
All other visceral metastasis 

Any distant metastasis 

Normal 

Elevated 
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Table 4: Prognostic indicators for cutaneous 

melanoma. Taken from de Vries (2004). 

In summary, Table 4 shows the 

best prognostic factors in CM. As 

already mentioned, the most important 

prognostic indicator of survival is 

thickness. Age is another factor, as 

younger people show better prognostics 

compared with older people even when 

tumour thickness is the same. If age and 

tumour thickness are the same,, the female gender has better prognosis over the male 

gender. SSM generally have better prognosis than the other histological subtypes, because 

they usually have a thin Breslow thickness. The absence of ulceration and a low mitotic 

index are also indicators of a good prognosis.5 

Ocular Melanoma 

Conjunctival melanoma 

In conjunctival melanoma there is no established system to ascertain the prognosis. 

Worse outcome may be indicated by: nonbulbar (fornix, palpebral) location, involvement 

of the caruncle and skin (rich in lymphatic tissue), invasion into the eye or brain, local 

recurrence, and large tumour size. Conjunctival melanoma of any thickness can 

metastasize due to the close proximity of lymphatic channels to the superficial substantia 

propria. Fatal conjunctival melanoma is associated with metastasis to the liver, lung, brain, 

skin, and peritoneum.11 

A pagetoid growth pattern, mitotic activity greater than 5 mitotic figures per 10 

high-power fields, cell type morphology different from spindle cell and the absence of an 

inflammatory response were all suggested to be associated with a poorer prognosis.8, 11 

Prognostic factor Most favorable when: 

Breslow thickness Thin (< 1,51 mm) 

Histology SSM 

Age Young 

Gender Female 

Ulceration Absent 

Mitotic activity index Low 
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Uveal melanoma 

Metastatic uveal melanomas are typically resistant to therapy and within a year of 

the onset of the systemic symptoms patients die. Therefore, there is much interest in the 

development of an accurate predictive testing that may allow systemic prophylaxis in 

high-risk patients.17 

The most important factors (histopathologic and genetic) for predicting metastatic 

disease are: basal tumour diameter, tumour height, ciliary body involvement, transcleral 

extension, epithelioid melanoma cytomorphology, high mitotic rate, extravascular matrix 

patterns such as closed loops, microvascular density, chromosome 3 deletion and 

chromosome 8q gain.17 

From the parameters presented, tumour size is the most suitable for prediction of 

metastatic disease, considering that mortality rate gradually increases with increasing 

tumour thickness (Table 5).10 

Table 5: Uveal melanoma classification and prognosis based on tumour 

size. Table based in Laver et al. (2010). 

Classification Thickness Diameter 5-year Mortality 

Small ≤ 3mm <10mm 16% 

Medium 3 - 5 mm 10 - 15 mm 32% 

Large > 5 mm >15 mm 53% 

 

The cell type of UM also relates to prognosis. Currently, there is a cytologic 

classification of UM dividing it into 3 main tumour types: spindle-cell, mixed-cell and 

epithelioid-cell type (Table 6).10 UM with low mitotic activity have better prognosis; while 

tumour infiltration by lymphocytes has been associated with decreased survival. There 

are other histopathologic parameters that can be evaluated, namely the size of nucleoli, 

specific extracellular matrix patterns and expression of various cell surface markers, such 

as metalloproteinases, gangliosides, adhesion molecules, and immunologic markers.10 
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Table 6: Cytologic classification of uveal melanoma. Table based in Laver et al. (2010) 

Classification Cell Growth Prognosis 

Spindle-cell 

 Compact cohesive fashion. 

 Surrounded by a dense reticulin 

framework. 

Better prognosis 

Epithelioid-cell 
 Less cohesively fashion. 

 Not surrounded by a network of reticulin. 
Worse prognosis 

Mixed-cell  Mixture of the two previous cell types. Worse prognosis 
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3.5 Genetic Alterations in Melanoma 

Tumourigenesis is a multistep process and some of these steps reflect genetic 

alterations that progressively drive normal cells to transform into highly malignant ones. 

In 2011, in “The Hallmarks of Cancer: the next generation”, Hanahan and 

Weinberg suggest ten essential alterations in cell physiology that all together condemn 

normal cell to malignant growth (Figure 4): 

1. Insensitivity to growth-inhibitory signals; 

2. Deregulation of cellular energetic; 

3. Self-sufficiency in growth signals; 

4. Avoidance of immune destruction; 

5. Limitless replicative potential; 

6. Tumour promotion of inflammation; 

7. Evasion of programmed cell death; 

8. Tissue invasion and metastasis;  

9. Sustained angiogenesis; 

10. Genome instability and mutation. 

Figure 4: Acquired capabilities of cancer. 

Figure from Hanahan and Weinberg (2011). 

To achieve each of these novel capabilities, cells have to successfully overcome 

anti-cancer defense mechanisms established in the cells and tissues.20  

Some of these generic cancer cell features are altered in a similar fashion in CM 

and UM. For instance, both tumours are highly metastatic, which is illustrated by the 

early initiation of metastasis.9, 10 The chromosomal regions frequently observed to be 

amplified or deleted in both of these types of melanocytic tumours are similar even 

though the exact frequencies in which they occur differ. As an example, loss of 

chromosome 3 is much more frequent in UM than in CM, gain of 8q is found in 40% of 

UM and in 25% of the CM cases and in both UM and CM genetic alterations (gain or loss) 

were reported in chromosome 6. On the other hand, monosomy of chromosome 10 is 

more frequently encountered in CM than in UM, 60% and 27%, respectively9, 10, 21 Other 
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similarities between UM and CM include gene expression status: many of the genes found 

to be frequently overexpressed or underexpressed in CM are also observed in UM (for 

example, MYC, BCL-2 and PTEN).9 Although some of the genetic changes underlying the 

development of CM and UM have been characterized, the role of oncogenes or tumour 

suppressor genes in the pathogenesis of UM is less well established. Alterations in the 

CDKN2A familial melanoma locus (which encodes for INK4A and ARF) (CM exclusive), 

receptor tyrosine kinase (RTK) function, activation of MAPK pathway components 

(commonly at the levels of BRAF and NRAS particularly in CM), and activation of the 

PI3K-AKT pathway through loss of PTEN are the main genetic changes that have been 

identified through genomic structure and sequence analysis.15 

Mutations affecting progression of cell cycle 

CDKN2A 

The establishment of familial history of melanoma as a strong predictor of 

melanoma development led to the identification of 9p21 as an important locus in 

melanoma, with loss of heterozygosity or mutation at 9p21 occurring in melanoma prone 

families. Within this region are the CDKN2A and CDKN2B genes. CDKN2A encodes two 

tumour suppressor proteins, INK4A (p16INK4A) and ARF (p14ARF in humans and 

p19ARF in mice). 15 INK4A is a cyclin-dependent kinase inhibitor that activates the 

tumour suppressor retinoblastoma gene (RB) via negative regulation of Cdk4/6. The INK4 

proteins ensure that RB remains in a complex with the E2F transcription factor. This 

complex promotes and represses transcription of target genes, leading to G1 arrest.22 25–

40% of familial melanoma forms have mutations in the INK4A coding region.23 The role of 

this genetic alteration in UM development has not been established.9, 15, 24 The p14ARF 

protein acts on the p53 cell cycle control pathway by stabilization of p53 and so allowing 

cell cycle arrest at the G1/G2 phase. Loss-of-function INK4A /p14ARF mutations occur in 

30-70% of the sporadic cutaneous melanomas.25, 26 
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Figure 5: Overview of PI3K signalling. Based 

in Fecher et al (2008). ES – Extracellular 

signal; TF – Transcription Factor 

Mutations involved in cell signalling cascades deregulation 

According to Hanahan and Weinberg, one of the ten essential alterations in cell 

physiology for cancer development is the self-sufficiency in growth signals.20 While a 

growth factor may offer a degree of signalling stimulation, robust activation of signalling 

can arise from the activation of individual signalling molecules. Therefore, the disruption 

in these signalling pathways may result in aberrant cell proliferation and/or apoptosis, 

and eventual tumour development. Two major signalling cascades have been linked to 

melanoma development: the RAS/RAF/MEK/ERK and the PI3K pathways.27 

MAP Kinase and PI3K Signalling 

The RAS/RAF/MEK/ERK mitogen-activated protein (MAP) kinase pathway has 

been the most directly linked to the development of melanoma due to its growth-

promoting outputs. MAPK signalling is initiated by extracellular signals through their 

binding to receptor tyrosine kinases (RTKs), and subsequent activation of RAS, a 

membrane-bound GTPase. The RTKs that interact with RAS, or other members of the RAS 

superfamily are several and include: epidermal growth factor receptor (EGFR), c-KIT, 

platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor 

receptor (VEGFR) and fibroblast growth factor receptor (FGFR).1, 15, 28-30 

RAS activation occurs when it is 

localized in the plasma membrane and binds 

to GTP. RAS can initiate signalling via 

different proteins/pathways, being RAF and 

phosphatidylinositol-3-kinase (PI3K) the 

downstream effectors better described. 

Activation of PI3K by RTKs or by RAS leads 

to phosphorylation of phosphatidylinositol-

4,5-biphosphate (PIP2) and subsequent 

generation of phosphatidylinositol-3,4,5-
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Figure 6: Overview of MAPK signalling. 

Based in Fecher et al (2008). ES – 

Extracellular signal; TF – Transcription 

Factor 

triphosphate (PIP3) and results in the activation of AKT (protein kinase B) (Figure 5). This 

pathway is involved in cellular survival, apoptosis, cytoskeletal rearrangement and 

tumour cell chemo-resistance.29 

BRAF, a member of the RAF family of 

serine/threonine protein kinases is recruited to 

the membrane by activated RAS. Once at the cell 

membrane, BRAF is phosphorylated and in turn, 

phosphorylates and activates MEK. Activated 

MEK phosphorylates and activates ERK. ERK by 

phosphorylation propagates this signal through 

cytoplasmic and nuclear targets (Figure 6). In 

melanoma, the broad downstream effects of 

activated ERK include transcription of genes 

involved in melanoma cell proliferation (e.g. 

FGF-2, IL-8, and HIF-1a), down-regulation of 

cyclin-dependent kinases, actin organization 

and cell motility, increased survival and protection against FAS induced apoptosis, 

invasion and metastasis due to extracellular matrix remodelling, and angiogenesis.29 

A sustained hyper-activation of the pathway can theoretically be achieved by 

activating mutations of any signalling mediator upstream of ERKs and there are clear 

tumour type specific patterns of mutational activation.23-25 
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Receptor tyrosine kinases  

Hyperactive extracellular signal-regulated kinases (ERKs) are common in various 

cancers. The RAS/RAF/MEK/ERK pathway is activated by various receptors, including 

EGFR, c-KIT and c-MET. These molecules are possible targets to alterations leading to 

changes in the associated signalling cascades.1, 15 

The EGFR can be activated by EGF, TGF-α, amphiregulin and heparin-binding 

EGF. Such binding can then activate the MAPK and PI3K signalling cascades. The EGFR 

gene is located on chromosome 7 and copy number gains of chromosome 7 have been 

observed in the later stages of CM.1, 15 

The c-KIT gene encodes a RTK that binds to stem cell factor. The KIT receptor can 

activate the MAPK, PI3K and phospholipase C signalling cascades. In melanocytes, it has 

been associated with migration, survival, proliferation and differentiation processes. This 

receptor has been used to support the potential utilization of the status of a gene to define 

a subpopulation of melanomas. Therefore, there are some reports correlating the 

frequency of mutation in c-KIT gene and in cutaneous melanoma subtypes. In 2006, a 

screen for mutations in melanoma subtypes found that 39% of mucosal, 36% of acral and 

28% of the melanomas on chronically sun-damaged skin have KIT mutations, whereas 

melanomas on intermittent exposure sites did not.31 In choroidal melanoma, c-KIT 

expression was found in most of the tumours studied, although no correlation to 

parameters such as cell type, largest macroscopic tumour dimension, scleral invasion or 

pigmentation were observed.32 

The c-MET is a multifaceted regulator of growth, motility and invasion in a 

number of cell lineages. It is involved in three main pathways: MAPK signalling, 

responsible for proliferation; PI3K signalling involved in scattering; and STAT signalling 

(in association with the previous two signalling pathways).1 In cutaneous melanoma, no 

mutations have been identified in c-MET gene but its importance in melanoma 

progression was showed by the upregulation of the receptor expression in metastatic 

melanoma.15 
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RAS Family 

The RAS genes are among the most frequently mutated genes in human cancers, 

but different malignancies display different frequencies and spectra of mutations in 

NRAS, HRAS and KRAS. So, in contrast to other solid tumours, activating mutations of 

RAS genes are relatively infrequent in CM ranging from low to 15–25% incidence.9 

The RAS family members have distinct roles in melanoma. While activated HRAS 

expression on an INK4A, ARF or p53 mutation background promotes nonmetastatic 

melanoma in a mouse model, NRAS expression in INK4A/ARF deficient mice promotes 

metastasis of cutaneous melanoma with high penetrance and short latency.23-25, 28-29 CM 

presents mutations almost exclusively in NRAS, with 90% of mutations localizing to 

codon 61.28 Activating NRAS mutations have been correlated with chronic sun damage 

and nodular lesions and are rarely found in dysplastic nevi, one of the potential starting 

points for CM.9 In UM, the absence of NRAS mutations was reported by Zuidervaardt 

and co-workers30 and Pópulo and co-workers.33  

Oncogenic HRAS point mutations and genomic locus 11p amplification have only 

been identified in Spitz nevi, a benign lesion that does not progress to melanoma.34 

Mutations of KRAS gene have not been reported in human melanocytic lesions.1 

RAF Family 

RAF family proteins lie downstream of RAS and mediate its signal transduction. 

The RAF family is composed by the cytosolic serine-threonine kinases ARAF, BRAF and 

CRAF.1, 15 

BRAF can regulate various aspects of cell growth and survival, while its inhibition 

sensitizes cells to apoptosis.35 In a systematic genetic screen, BRAF mutations were 

identified in a variety of tumour cell lines, with the highest incidence in CM derived-cell 

lines.36 Mutations in BRAF are found most frequently in melanomas at sites with 

intermittent UV exposure37 and occur in approximately 11% of lentigo maligna 

melanomas (arising from chronically sun-exposed areas).15, 30 BRAF mutation is associated 

with germline variants of the MCR1 gene, which promotes melanin production.38 The 

melanocortin receptor 1 (MC1R) is the receptor for α-melanocyte-stimulating hormone, 
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which is stimulated by UV radiation, suggesting a degree of interplay between BRAF and 

UV exposure. In this regard, it is interesting that BRAF mutations are the most prevalent 

in melanomas associated with intermittent sun exposure. Alterations in BRAF seem to be 

an early somatic event. Mutations in BRAF are not commonly found in familial 

melanoma, neither in UM.9 The role of BRAF in melanoma is unclear as demonstrated by 

the fact that BRAF mutations are also frequently found in benign and dysplastic nevi. 

These nevi often remain growth-arrested for their lifetime and rarely progress to 

melanoma.28-30 

Sequencing revealed that up to 67% of CM samples had a BRAF mutation, being 

the amino acid substitution V600E, by far, the most commonly found in both cell lines and 

tumour samples.36 It has been suggested that BRAFV600E-induced checkpoint 

mechanisms operate to constrain malignant transformation. In fact, congenital nevi that 

sustained BRAFV600E expression are positive for the senescence marker β-galactosidase 

and for INK4A. The BRAF effect is an example of oncogene-induced senescence – a 

mechanism by which premalignant lesions are inhibited to progressing. Therefore, it is 

believed that BRAFV600E expression alone is not sufficient to transform human 

melanocytes, requiring the cooperation of other determinants to drive melanoma 

formation.39 

The majority of BRAF mutations occur in areas of the protein with defined 

biochemical functions. The single phosphomimetic substitution of V600E inserts a 

negatively charged residue (Valine  Glutamic Acid), in the kinase activation domain. 

This mutation renders the enzyme constitutively active.36 BRAFV600E stimulates 

constitutive ERK signalling and directly and/or indirectly regulates the expression and 

function of several genes critical to proliferation and survival of melanoma cells. These 

include transcription factors, such as microphthalmia-associated transcription factor 

(MITF), NF-kB, and the cell cycle regulators Cyclin D1, INK4A, and p27Kip1.1 

Of note, BRAF and NRAS mutations are mutually exclusive in melanoma, and in 

fact, the occurrence of mutations in one gene or the other may be specific to certain 

subtypes of melanoma.37 This suggests that there are innate differences in the roles that 

BRAF and NRAS may play in melanoma and this may be reflected in shifts in signalling.15 



39 

 

 

Figure 7: Activation of RAF/MEK/ERK signalling 

pathway by Gq protein. ES – Extracellular sinal. Based 

on Raamsdonk et al (2009).  

In BRAF mutant cells, BRAF is required for ERK signalling. However, in melanoma cells, 

in the context of NRAS mutation, a switch in signalling from BRAF to CRAF accompanied 

by disruption in cyclic AMP signaling occurs.40 

GNAQ 

The q class of heterotrimeric GTP binding protein (Gq) family members (Gq, G11, 

G14, and G15/16) are composed of three subunits that switch between inactive and active 

states in response to guanine nucleotides.41 GNAQ encodes the α subunit of Gq that 

mediates signals between G-protein-coupled receptors (GPCRs) and stimulates all b-

isoforms of phospholipase C (PLCb) to initiate inositol lipid signalling. Nearly 40% of 

GPCRs rely upon Gqα family members to stimulate inositol lipid signalling. These 

include more than 50 subtypes of receptors responsive to a range of hormones, 

neurotransmitters, neuropeptides, chemokines, autocrine and paracrine molecules.41 

PLCb enzymes catalyze the 

hydrolysis of the PIP2, releasing 

inositol trisphosphate (IP3) and 

diacylglycerol (DAG). These second 

messengers propagate and amplify 

the Gα-mediated signal through 

stimulation of protein kinase C 

(PKC). As a result of phospholipase 

C stimulation, protein kinase C is 

activated and can then activate 

RAF/MEK/ERK (Figure 7) and other 

signalling pathways.42 

GNAQ has been suggested 

to be a regulator of cell growth through a RAS independent or RAS dependent signalling 

mechanism involving the PKC-dependent ERK pathway because of the ability of this 

mechanism to mimic growth factor signalling stimulation and, in the absence of BRAF 

and NRAS mutations, to trigger the MAPK pathway implying this pathway as an early 
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event in neoplasms.41, 42 GNAQ is also linked to endothelin signalling, which is essential 

for melanocyte survival early during development and is also required for the migration 

of melanoblasts. Gq signalling may also contribute to the association observed for 

melanoma invasion and metastasis.41, 42 

GNAQ mutations were reported to occur in 83% of blue nevi, 50% of “malignant 

blue nevi”, and 46% of uveal melanomas. All mutations in GNAQ lead to constitutive 

activation and occur almost exclusively at codon 209.42 In this position, within the RAS-

like domain of GNAQ, the glutamine amino acide is substituted by a proline or a leucine 

causing the constitutive activation of the molecule. This scenario resembles the loss of 

GTPase activity in the corresponding residue of RAS (residue 61).42 

In UM, activating GNAQ mutation at codon 209 was found in 49% of primary 

UMs, 22% of iris melanomas and 54% of posterior UMs. GNAQ mutation was not 

associated with any clinical, pathologic or molecular features associated with tumour 

progression (e.g. age, gender, cytological type, pT group, mitotic rate, largest tumour 

diameter and scleral extension), reinforcing the idea that the GNAQ mutation may be an 

early event in UM development.43, 44 Additionally, in 2009, Bauer and co-workers showed 

that disease-free survival did not significantly correlated with GNAQ mutation status. 

Therefore, GNAQQ209L are not suitable to predict the clinical outcome in uveal 

melanoma.45 

The establishment of GNAQ as the first oncogene in uveal melanoma lead Lamba 

and co-workers (2009) to study the presence of mutations in exon 5 of GNAQ and GNA11, 

which encodes a G-protein, from the same class as GNAQ (Gq class), that harbours a 

residue equivalent to Q209 of GNAQ, in other human tumours. No mutations of GNAQ 

exon 5 were found in any tumour types studied, other than blue nevi. Lamba and co-

workers also did not detected mutations in exon 5 of GNA11.41 More recently, GNA11 

somatic mutations were found to be well represented in UM. Somatic mutations in both 

GNA11 and GNAQ, affecting Q209 (exon 5) and R183 (exon 4) were found in a mutually 

exclusive pattern. Although, there is no difference in survival and disease-free survival 

between tumours with GNAQ mutations and tumours with GNA11 mutations, but more 

studies are required in larger series of tumours for this to be confirmed.46 
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Due to the high frequency of GNAQ mutations, targeting either the mutated 

protein or the oncogenic signalling pathway controlled by GNAQ may open up new 

therapeutic possibilities in UM. 

PTEN 

Phosphatase and tensin homologue (PTEN), a genuine tumour suppressor, is 

another important genetic alteration in signal transduction molecules in melanoma. 

The lipid phosphatase PTEN opposes the activity of PI3K by dephosphorylating 

phosphoinositides. The lipid phosphatase activity of PTEN and its ability to act as an 

“off” switch for PI3K signalling, suggests that PTEN functions as a tumour suppressor by 

directly antagonizing the activity of the PI3K signalling pathway. Therefore, expression of 

PTEN can inhibit AKT phosphorylation, promote apoptosis and inhibit growth. Loss of 

PTEN activity (by mutations, deletions or promoter methylation) is often registered in 

primary and metastatic human cancers.15, 28, 47 In metastatic melanoma samples, the 

frequency of PTEN mutation ranges from 7% to 19%.48, 49 However, melanoma cell lines 

have a high frequency of PTEN mutations or PTEN loss. Loss of heterozygosity of 10q, 

where the PTEN gene is located, has been observed in various cancers, including CM and 

UM.9 

NRAS and PTEN overlapping functions have been suggested, because it was 

verified that cell lines or uncultured melanoma tumours can carry a mutation in NRAS, or 

in PTEN, or neither, but not in both.1, 15, 28 At variance BRAF and PTEN mutations are 

found concurrently in 20% of CM.1 PTEN loss is correlated with increasing Breslow depth 

and tumour progression.15, 28, 47 
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3.6 The Mammalian Target of Rapamycin (mTOR) Signalling in Melanoma 

mTOR is a cytoplasmic serine-threonine kinase that acts as a sensor of mitogens, 

energy and nutrients. Its pathway has a pivotal role in cell growth, protein translation, 

autophagy, motility and metabolism. mTOR is composed by two different multiprotein 

complexes: mTOR complexes 1 and 2 (mTORC1 and mTORC2).50 

mTORC1 consists of mTOR, mammalian LST8 (mLST8), proline-rich AKT 

substrate 40 (PRAS40), and Raptor. Its activity depends on the availability of nutrients 

such as glucose, oxygen and amino acids.50 mTORC1 signalling cascade is activated 

through the phosphatidylinositol 3-kinase (PI3K)/AKT pathway (Figure 8). PI3K, is a lipid 

kinase that can be activated by multiple mechanisms, such as binding of growth factors to 

receptor tyrosine kinases, activation of G-protein-coupled receptors, and by oncogenes 

such as Ras. Activated PI3K phosphorylates phosphoinositides, generating the 

biologically active lipids phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) and PIP3.50 

PIP3 binds to the pleckstrin homology (PH) domain of the serine-threonine kinase 

AKT, promoting its translocation to the cell membrane. AKT is then activated by 

sequential phosphorylation at Thr308 and Ser473 residues. Phosphorylation at Thr308 is 

mediated by PDK-1 (3′phosphoinositide dependent kinase 1), which itself is activated by 

the binding of PIP3 to its PH domain and subsequently translocated to the cell membrane. 

The activation of AKT is complete after phosphorylation of the Ser473 residue by 

mTORC2. Active AKT phosphorylates PRAS40 and tuberous sclerosis complex 2 (TSC2) 

at Ser939 and Thr1462. TSC2, phosphorylated at these sites and in a heterodimeric 

complex formed with TSC1, inhibits the GAP (GTPase-activating protein) activity of this 

complex. The TSC2 carboxy terminus, which has a conserved GAP domain, suppresses 

the activity of the Ras-related GTPase Rheb, a selective activator of mTORC1. Therefore, 

TSC2 inhibition by AKT results in activation of mTORC1 (Figure 8).50, 51 
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Figure 8: mTOR regulation by the PI3K/AKT pathway. 

Based on Memmott et al (2009). 

The Ras/MAPK signalling is another pathway that activates mTOR through the 

direct inhibition of TSC2. TSC2 is a direct substrate of ERK (Ser664) and is also a substrate 

of the downstream ribosomal protein S6 kinase (RSK; Ser1798). ERK-dependent 

phosphorylation negatively regulates TSC2 function by blocking its interaction with 

TSC1. RSK-dependent phosphorylation inhibits the ability to deactivate Rheb.50, 52 

Additionally, TSC2 is regulated by the cellular energy sensor AMPkinase. When 

cellular energy stores are reduced, due to hypoxia, nutrient deprivation or increase of 

AMP levels, AMPK is activated, phosphorylating TSC2 and causing its activation. TSC is 

phosphorylated in Ser1227 and Ser1345, which are distinct from the sites phosphorylated 

by Akt/ERK. Activated TSC2 inhibits mTOR signalling, reducing protein synthesis.50 

There are multiple mechanisms by which amino acids, in particular leucine and 

isoleucine, activate the mTOR pathway. One of them is the increase of the MAP kinase 

kinase kinase kinase-3 (MAP4K3) activity, which correlates with increased 

phosphorylation of S6 kinase 1 (S6K1).40 Another mechanism by which amino acids 
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stimulate the mTOR pathway is related to the class III PI3K, hVps34. This mechanism is 

independent of TSC2 or Rheb and also leads to activation of S6K1.50, 53 

mTORC1 activation results in phosphorylation of its effectors: eIF4E binding 

protein 1 (4E-BP1) and S6K1. A specific motif (the TOS motif) found in both 4E-BP1 and 

S6K1 mediates direct binding of these proteins to Raptor, allowing them to be 

phosphorylated by the mTORC1 complex. 4E-BP1 hyperphosphorylation leads to 

inhibition of 4E-BP binding to eukaryotic initiation factor 4E (eIF4E), activating 

translation. eIF4E enhances cell proliferation, survival, and angiogenesis through selective 

translation of mRNA such as cyclin D1, Bcl-2, Bcl-xL and vascular endothelial growth 

factor (VEGF) as well as the nucleocytoplasmic transport of selected mRNA such as cyclin 

D1. S6K1 is a key regulator of cell growth. It phosphorylates ribosomal protein S6 and, in 

some models, enhances the translation of mRNAs possessing a 5’ terminal 

oligopyrimidine tract. S6K1 also phosphorylates other important targets, including insulin 

receptor substrate 1 (IRS-1), eIF4E, programmed cell death 4 (PDCD4), eukaryotic 

elongation factor-2 kinase (eEF2K), glycogen synthase kinase 3, and S6K1 Aly/REF-like 

target.44 Both eIF4E and S6K1 overexpression has been linked to poor cancer prognosis 

(Figure 9) due to their implication in cellular transformation.54, 55 

mTORC2 is composed of mTOR, Rictor, mSin1, PRR5 (protor) and mLST8(GßL). 

mTORC2 can regulate cell polarity and the spatial control of cell growth by the assembly 

of the actin cytoskeleton in response to mitogenic signals through phosphorylation and 

activation of PKCα. mTORC2 also phosphorylate AKT at Ser473, giving mTOR a dual role 

as a substrate and as an effector in the AKT signalling pathway. Because AKT promotes 

cell proliferation, survival and inhibits apoptosis, activation of AKT by mTORC2 could be 

another important mechanism by which mTOR promotes tumourigenesis.51, 56 

 



45 

 

 

 

Figure 9: mTOR signalling network. Taken from Meric-Bernstam (2009). 

In the literature, there are several reports showing a strong association between 

mTOR activation and malignant melanoma. For instance, Pópulo and co-workers (2010) 

reported an overexpression of the mTOR pathway effectors and their phosphorylated 

forms in most of the cases of ocular melanomas, indicating a role for the mTOR pathway 

activation in the pathogenesis of ocular melanoma.57 Karbowniczek and co-workers (2007) 

showed that mTOR activation occurs during the pathogeneses of the majority of 

cutaneous melanomas. In addition, hyperphosphorylation of ribosomal protein S6 is more 

associated with malignant versus benign melanocytic lesions than any other single 

marker.58 Recently, Pópulo and co-workers (2010) found an association between the 

expression of several proteins of the mTOR pathway and a poorer prognosis in CM. This 

association suggests a relationship between mTOR pathway activation and aggressive 

CM, being pS6 linked to several clinicopathological parameters of the disease.33 Currently, 

a high number of reports exist that support the importance of mTOR signalling in 

melanoma development and the role for mTOR pathway as a therapeutic target. 
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3.7 Inhibitors of mTOR signalling pathway 

mTOR, as the name implies, is inhibited by rapamycin. Rapamycin is a natural 

antibiotic derived from the organism Streptomyces hygroscopicus found on Easter Island 

(also known as Rapa Nui).47 

Rapamycin and its analogs bind to FK506 binding protein, and this complex binds 

to mTOR, inhibiting downstream signalling. Rapamycin has several effects. It has been 

shown to be capable of inducing cell cycle arrest in a variety of tumour types and, in 

addition to its antitumour properties, rapamycin also inhibits endothelial cell 

proliferation, hypoxia inducible factor 1 and VEGF expression, angiogenesis and vascular 

permeability.51 

The two complexes that form mTOR have different responses to rapamycin 

exposure. mTORC1 is rapamycin-sensitive, and rapamycin causes the dephosphorylation 

of 4E-BP1 and S6K1. In contrast, mTORC2 was originally thought to be rapamycin-

insensitive. However, rapamycin regulates rictor phosphorylation, indicating that 

components of mTORC2 may be regulated by rapamycin. Further, long-term treatment of 

mammalian cells with rapamycin reduces mTORC2 levels and inhibits AKT.51 

Despite the importance of mTOR in the biological processes, rapalogs have been 

generally well tolerated in the oncologic clinical trials performed, leading predominantly 

to disease stabilization rather than tumour regression. The higher doses administrated in 

some studies were the cause of the toxicity reported. Toxicity includes asthenia, mucositis, 

nausea, cutaneous toxicity, diarrhea, hypertriglyceridemia, thrombocyopenia, 

hypercholesterolemia, elevated transaminases, hyperglycemia and pneumonitis. mTOR 

was accepted, by Food and Drug Administration (FDA) in 2007, as a valid therapeutic 

target for renal cell carcinoma. Rapalogs have also been evaluated in clinical trials in other 

cancer types, including melanoma.51 

Given its lack of positive results in tumour regression for most tumour types, 

mTOR-targeted therapies will likely be used in combination therapy. This strategy aims to 

induce a cytotoxic rather than a cytostatic response, and subsequent tumour regression. 
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For example, the combination of rapamycin with chemotherapy has shown to enhance 

apoptosis in vitro and to enhance antitumour efficacy in vivo.51 

There is a number of mTOR inhibitors developed, including: Temsirolimus (CCI-

779; Wyeth-Ayerst, Madison, NJ), Everolimus (RAD001, Novartis, Basel, Switzerland) and 

AP-23573 (Ariad Pharmaceuticals, Cambridge, MA).59 RAD001 is esterified and thus an 

orally available rapamycin derivative. It was already shown to act as an inhibitor of 

mTOR, being capable of inhibiting the proliferation and the growth of a broad spectrum 

of tumour cell lines and tumours. Studies have also demonstrated the drug’s potential for 

inhibiting endothelial proliferation, thus emphasizing its potential anti-angiogenic 

activity.47, 60  

There are new mTOR-targeted therapies being developed, such as dual inhibition 

and the use of AMPK activators. The main difference of dual inhibition by rapalogs is the 

capability to inhibit both mTORC1 and mTORC2. The inhibition will affect the AKT 

activation, making these agents dual PI3K/mTOR inhibitors. These agents may bypass 

feedback loops, potentially increasing their efficacy compared with rapalogs. BEZ235 

(Novartis, East Hanover, NJ) and EX147 (Exelixis, San Francisco, CA) are examples of this 

new class of therapeutic agents. The tolerability and efficacy of these agents are currently 

being tested in clinical trials. There is another type of therapy being evaluated in clinical 

trials and based on downregulation of mTOR signalling, which is the use of the 

antidiabetic drug metformin—an activator of AMPK.50, 51 
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4 Aims 

The most critical biological questions to be answered by the melanoma research 

include: 

 Which are the environmental factors that contribute to and/or modulate the risk of 

melanoma development? 

 Which are the genetic events that underlie melanoma development, progression 

and metastasis? 

 Which are the biological features (biomarkers) in early lesions that can be used to 

predict the propensity for metastasis? 

 Which are the genetic alterations that can be used to predict therapeutic response? 

 Are there biological or molecular pathways/networks that might prove amenable 

to therapeutic intervention? 

Focusing on the last two questions, the general aims of this study were the 

identification of frequent mutations as prognosis or as predictive markers and evaluation 

if mTOR pathway inhibition can be used as therapeutic tool in patients (or subsets of 

patients) suffering from malignant melanoma. 

For that purpose, we approached the following specific aims: 

 In order to determine if specific genetic alterations can lead to the activation of 

mTOR pathway, we established the genetic profile of 2 series of human malignant 

melanomas (cutaneous and ocular melanomas). 

 To evaluate the impact of an mTOR inhibitor analogous of rapamycin, RAD001, on 

the growth of melanoma-derived cell lines, their proliferation and apoptosis were 

assessed. We also evaluated the expression of elements of mTOR pathway, using 

several melanoma-derived cell lines treated with different concentrations of 

RAD001 at different time points.  

 Finally, we intended to verify if there is any correlation between the genetic profile 

of primary and metastatic melanoma cell lines, the sensitivity to RAD001 and the 

expression of mTOR pathway effectors. 
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5 Methods 

5.1 Cell lines and reagents 

The human-derived cell lines Mewo and G361 cutaneous melanoma cell lines were 

kindly provided by Dr. Marc Mareel, from the Department of Radiotherapy and Nuclear 

Medicine, Ghent University Hospital, Belgium. 92.161, OCM-162, OMM-163, OMM-2.364 and 

Mel 28565 uveal melanoma cell lines were kindly provided by Dr. Martine Jager, from the 

laboratory of Ophthalmology, Leiden University, The Netherlands. The antibodies used 

were as follows: anti-PTEN, anti-phospho-AKT (Ser473), anti-phospho-mTOR (Ser2448), 

anti-phospho-4E-BP1 (Thr37/46), anti-phospho-S6 (Ser 235/236), anti-Raptor, anti-

phospho-ERK1/2 (Thr202/Tyr204) (all from Cell Signalling Technology, Beverly, MA, 

USA), anti-GNAQ, anti-BRAF, anti-actin (all from Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) and anti-rictor (Abnova, Taipei City, Taiwan). RAD001 (Everolimus) was 

kindly provided by Novartis Pharma AG, Basel, Switzerland, and was dissolved in 

DMSO to yield a stock solution of 5 x10-3 M, which was stored at −20°C. On the day of 

experiments and immediately before treatment of the cells, the stock solutions were 

diluted with medium to the final concentrations. The controls were prepared as 

appropriate, using the same vehicle as for the drug. 

5.2 Cell cultures 

The cells were grown at 37°C, in its 

approppriate medium (Table 7) and 

maintained in a humidified atmosphere (5% 

CO2). The cells were grown in T25 tissue 

culture flasks and passaged once every 7–10 

days on a ratio of 1:5. Routinely, media were 

supplemented with 10% fetal bovine serum 

(FBS) (Gibco/BRL – Invitrogen, San Diego, CA, 

USA), 100U/mL of Penicillin, 100ug/mL 

Streptomycin (Gibco/BRL - Invitrogen, San 

Diego,CA, USA) and 0.5% Fungizone (Gibco/BRL - Invitrogen, San Diego, CA, USA). 

Cell Line Medium 

Mewo DMEM 

G361 McCoy 

92.1 RPMI 

Mel285 RPMI 

OCM-1 RPMI 

OMM-1 RPMI 

OMM-2.3 RPMI 

Table 7: Cell lines and approppriate 

media (Gibco/BRL - Invitrogen, San 

Diego, CA, USA). 
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5.3 Clinicopathological features 

Clinical pathological data regarding the cutaneous melanomas were retrieved 

from the files from Hospital de São Marcos, Braga, Portugal. The procedures were in 

accordance with the institutional ethical standards. 13 cutaneous melanomas were 

formalin-fixed and paraffin-embedded. The gender, subtype, Breslow thickness, Clark’s 

Level, mitotic rate, epidermal ulceration, necrosis and pT staging19 of the cases are 

summarized in Table 8.  

After mutational analysis, a possible correlation was determined between each 

feature and the mutational status of the studied genes. 

 

The ocular melanoma patient series used in this study has been previously 

described.33 Briefly, 34 enucleated ocular melanomas (6 located in the conjunctiva and 28 

located in the uvea) and the clinicopathological data were retrieved from the Department 

of Pathology and the Oncology Registry of Hospital S João (HSJ), Porto, Portugal. The 

procedures were in accordance with institutional ethical standards. The median age, 

gender, subtype, cytological type (epithelioid, spindle or mixed) of the tumours, pT 

staging (according to AJCC66), mitotic rate, median/range of the largest diameter of the 

tumour and sclera extension of the cases are summarised in Table 9. None of the cases had 

clinicopathological evidence of lymph node involvement and/or distant metastasis at 

diagnosis. 

 



54 

 

 

Table 8: Clinicopathological features of cutaneous melanomas 

Clinicopathological features Cutaneous Melanoma 

Number of cases, n 13 

Gender, n (%)  

Male 8 (61.5) 

Female 5 (38.5) 

Subtype, n (%)  

Acral 2 (15.4) 

Lentigno Maligna Melanoma 2 (15.4) 

Superficial Spreading Melanoma 8 (61.6) 

Breslow thickness, n (%)  

≤ 1.0 mm 4 (36.4) 

1.01-2 mm 3 (27.3) 

2.01-4 mm 

 

2 (18.2) 

≥ 4.01 mm 2 (18.2) 

Clark’s Level, n (%)  

II 5 (45.5) 

III 2 (18.2) 

IV 1 (9.1) 

V 3 (27.3) 

Mitotic Rate, n (%)   

≤ 1 mitosis/mm2 6 (60.0) 

>1 mitosis/mm2 4 (40.0) 

Ulceration, n (%)  

Absent 7 (77.8) 

Present 2 (22.2) 

Necrosis, n (%)  

Absent 12 (92.3) 

Present 1 (7.7) 

pT, n (%)  

pT1 5 (41.7) 

pT2 3 (25.0) 

pT3 2 (16.7) 

pT4 2 (16,.7) 

SD, standard deviation 



55 

 

 

Table 9: Clinicopathological features of ocular melanomas 

Clinicopathological features Ocular Melanomas 

Number of cases, n 34 

Median age (± SD) 59 (20.5) 

Gender, n (%)  

Male 10 (34.5) 

Female 19 (65.5) 

Location, n (%)  

Conjunctiva 6 (17.7) 

Uvea 28 (82.3) 

Cytological type, n (%)  

Spindle-cell 12 (35.3) 
 

Epithelioid-cell 10 (29.4) 

Mixed-cell 12 (35.3) 

pT, n (%)  

pT1 3 (8.8) 

pT2 20 (58.8) 

pT3 9 (26.5) 

pT4 2 (5.9) 

Mitotic Rate, n (%)  

≤ 1 mitosis/mm2 22 (68.8) 

>1 mitosis/mm2 10 (31.3) 

Median basal tumour diameter, mm (range) * 11.1 (3-18) 

Tumour scleral involvement, n (%) *  

Absent 21 (75.0) 

Present 7 (25.0) 

SD, standard deviation 

* Features evaluated exclusively in uveal melanoma 
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5.4 BRAF, NRAS, GNAQ and GNA11 mutation analysis 

Mutation analysis of BRAF, NRAS, GNAQ and GNA11 genes was performed in 

cutaneous melanoma cell lines (G361 and Mewo) and in ocular melanoma cell lines (Mel 

285, OCM-1, 92.1, OMM-1 and OMM-2.3). BRAF and NRAS mutational status was 

studied in cutaneous melanoma tumours. In ocular melanoma tumours, mutation analysis 

of GNAQ and GNA11 genes was performed. 

Tumour DNA was extracted from manually dissected 10 µm whole sections of 

paraffin-embedded material using the Invisorb spin tissue mini KIT (Invitek, Berlin, 

Germany) following the manufacturer’s instructions. 

Fragments encompassing BRAF exon 15, NRAS exon 2, GNAQ exon 4 and GNA11 

exons 4 and 5 were amplified by polymerase chain reaction (PCR) with the primers 

presented in Table 9. DNA from thyroid cancer cell lines was used as positive control and 

included in all analyses. PCR consisted of an initial denaturation step for 5 min at 950C, 

followed by 40 cycles of 950C for 30 s, annealing temperature (Ta) (Table 10) for 40 s and 

720C for 45 s, ending with elongation for 10 min at 720C. 

All PCR products were purified and directly sequenced on an ABI Prism 3130 xl 

Automatic sequencer (Perkin-Elmer, Foster City, California, USA) using the ABI Prism 

Dye Terminator Cycle sequencing KIT (Perkin-Elmer). The sequencing reaction was 

performed in a forward direction, and an independent PCR amplification, in both 

directions, was performed in samples that were inconclusive or mutated. 
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Table 10: Primers, sequences and corresponding annealing temperatures. 

Gene Sequence Ta 

GNA11 Q209 
5’‐ gtcctgggattgcagattg ‐3’ 

5’‐ atacgaccaagtcctggtgg ‐3’ 
580C 

GNA11 R183 
5’‐gtgctgtgtccctgtcctg‐3’ 

5’‐ggcaaatgagcctctcagtg‐3’ 
600C 

GNAQ Q209 
5’‐ttttccctaagtttgtaagtagtgc‐3’ 

5’- cgtggagtcagacaatgagg ‐3’ 
57.50C 

GNAQ R183 
5’‐tggtgtgatggtgtcactgacattctcat‐3’ 

5’‐agctgggaaataggtttcatggactcagt‐3’ 
580C 

BRAF V600 
5’‐tgcttgctctgataggaaaa‐3’ 

5’- ttgaacagttgtctggatcc ‐3’ 
560C 

NRAS Q61 
5’‐gattcttacagaaaacaagtggttatagat‐3’ 

5’- aatacatgaggacaggcgaagg ‐3’ 
570C 

Ta – annealing temperature 
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5.5 Measurement of cell viability - Sulphorodamine B (SRB) assay 

Due to the optimal range of optic density, a previous determination of most 

adequate cell concentration had to be performed. For cell viability assays, cells were 

seeded as triplicates in 96-well plates at a density of 6000 cells per well for cutaneous 

melanoma cell lines, 8000 cells per well for ocular melanoma cell lines and 2000 cells per 

well for OCM-1 cell line, in 200 µl medium. The following day, culture medium was 

replaced by fresh medium with different concentrations of RAD001 for 24h and 48h. 

RAD001 was dissolved in DMSO and was added to the culture medium. Two different 

concentrations were tested (20 nM and 50 nM). Melanoma cells incubated in culture 

medium with DMSO were used as control, whereas culture medium with DMSO alone 

was used as blank calibration. 

Human cultured cell viability for each cell line was assessed in the appropriate 

medium, containing also 10% FBS. Cells were incubated for 24h and 48h, fixed in 50 µl of 

cold 50% TCA (Trichloroacetic acid) for 1 h at 4ºC, washed with distilled water, and air 

dried. 150 µl of a SRB (Sigma-Aldrich, St. Louis, MO, USA) solution at 0.1% in 1% acetic 

acid was then added. The plates were incubated for 30 min at room temperature and 

washed with 1% acetic acid and air dried. Finally, 150 µl of 10 mM Tris-base buffer was 

added, plates were shaken and measured at 560 nm, using a Synergy Mx microplate 

reader (BioTek Instruments, Inc., Winooski, VT, USA). Cell viability was calculated based 

on the optical density of the solution, as previously described.66 In mild-acidic condition, 

SRB binds to basic aminoacids residues of tricloroacetic TCA-fixed cells. 

Results were expressed as percentage of the growth relative to the control. All 

assays were performed in triplicates and were repeated at least three times. 
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5.6 Measurement of apoptosis - TUNEL (Terminal deoxynucleotidyl 

transferase dUTP nick end labeling) assay 

Cells were plated in 6 cm cell culture dishes and subjected to treatments with 20 

nM or 50 nM RAD001 for 24h and 48h. DMSO solution of the same volume and 

concentration used to dissolve RAD001 was used as control. Cells were fixed with 4% 

paraformaldehyde (15 min) at room temperature, washed in PBS and permeabilised with 

0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) in 0.1% sodium citrate (2 min) on 

ice. TUNEL analysis was performed using the “In situ cell death detection kit, 

fluorescein” from Roche, following the manufacturer’s instructions. The proportion of 

TUNEL-positive nuclei was determined from counting at least 500 cells. 

5.7 Protein extraction 

Cells were seeded in 6 cm cell culture plates and subjected to the indicated 

treatments with RAD001 for 24h and 48h. Cells were scraped and washed with Phosphate 

buffered saline (PBS). Whole-cell lysates were prepared by adding RIPA (Radio-

Immunoprecipitation Assay) buffer supplemented with protease and phosphatase 

inhibitors (4% and 1%, respectively) to each well plate, as appropriate, followed by 

incubation for 15 min at 4º C. All tubes were centrifuged at 14,000 rpm for 10 min at 40C 

and the supernatant was stored at −200C. Protein yield was quantified in triplicates using 

the Bradford protein assay KIT Dc Protein Assay (BioRad, Hercules, CA, USA). 

5.8 Immunoblotting (IB) analysis 

Total cell lysates (50 μg) were denatured and separated by electrophoresis on an 

SDS-PAGE gel (7 and 12%, depending on molecular weight of the protein of interest) and 

electroblotted to a Hybond ECL membrane (Amersham Biosciences, Amersham, UK). 

The membrane was subsequently incubated with the primary antibody in 5% non-

fat dry milk in PBS/Tween 20, or 5% bovine serum albumin in PBS/Tween 20 (Table 11), 

overnight at 40C. After 3 washes in PBS/Tween 20 (Sigma-Aldrich, St. Louis, MO, USA), 

the membranes were re-incubated with the secondary antibody for 45 min, as 

appropriate. Immunodetection of the immunoblots was performed using an ECL 

http://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
http://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
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detection solution (Amersham Biosciences, Amersham, UK). Membranes were re-

incubated with a goat polyclonal anti-actin antibody that served as a loading protein 

control. 

The optical density of the bands of interest was measured using Bio-Rad Quantity 

One 1-D Analysis software (4.6.6 version). The optical density of β-actin bands was used 

as a normalizing factor. For each blot, the normalized values were used for statistical 

evaluation. 

 

Table 11: List of primary antibodies. 

Target Antibody IB conditions 

PTEN 
Ref. 9559 Cell Signalling Technology 

Rabbit 

1:1000 BSA 

4oC, Overnight 

phospho-AKT 

(Ser473) 

Ref. 3787 Cell Signalling Technology 

Rabbit 

1:1000 BSA 

4oC, Overnight 

phospho-mTOR 

(Ser2448) 

Ref. 2971 Cell Signalling Technology 

Rabbit 

1:1000 BSA 

4oC, Overnight 

phospho-4E-BP1 

(Thr37/46) 

Ref. 2855 Cell Signalling Technology 

Rabbit 

1:1000 BSA 

4oC, Overnight 

phospho-S6 (Ser 

235/236) 

Ref. 4856 Cell Signalling Technology 

Rabbit 

1:1000 BSA 

4oC, Overnight 

Raptor 
Ref. 2280 Cell Signalling Technology 

Rabbit 

1:1000 BSA 

4oC, Overnight 

phospho-ERK1/2 

(Thr202/Tyr204) 

Ref. 9101 Cell Signalling Technology 

Rabbit 

1:1000 BSA 

4oC, Overnight 

Rictor 
Ref. H00253260-M01 Abnova 

Mouse 

1:1500 Milk 

4oC, Overnight 

GNAQ 
Ref. SC-392 Santa Cruz Biotechnology 

Rabbit 

1:350 Milk 

4oC, Overnight 

BRAF 
Ref. SC-166 Santa Cruz Biotechnology 

Rabbit 

1:500 Milk 

4oC, Overnight 

Actin 
Ref. SC-1616 Santa Cruz Biotechnology 

Goat 

1:2000 Milk 

4oC, Overnight 
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5.9 Statistical analysis 

The statistical analysis was performed using STAT VIEW-J 5.0 (SAS Institute, Inc., 

Cary, North Carolina, USA). The possible association between mutational status of the 

genes studied and clinicopathological features was analyzed by the Fisher’s exact test. The 

data obtained in the experiments with cell lines was analysed by the two-tailed unpaired 

Student’s t-test. A p value < 0.05 was considered statistically significant. 
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6 Results 
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6 Results 

6.1 BRAF, NRAS, GNAQ and GNA11 mutation analysis 

The most frequent gene mutations in cutaneous and ocular melanoma were studied by 

PCR/sequencing, the sequence primers and corresponding annealing temperature are 

described in Methods (5.4 - BRAF, NRAS, GNAQ and GNA11 mutation analysis). To 

evaluate their prognostic biomarker potential, BRAF and NRAS mutational status was 

studied in cutaneous melanoma tumours. In ocular melanoma tumours, a mutation 

analysis of GNAQ and GNA11 genes was performed. 

The genetic profile of the set of cell lines was established by mutation analysis of 

BRAF, NRAS, GNAQ and GNA11 in cutaneous melanoma cell lines (G361 and Mewo), 

and in ocular melanoma cell lines (Mel 285, OCM-1, 92.1, OMM-1 and OMM-2.3).  

Only BRAF V600E showed a correlation with a clinicopathological feature in cutaneous 

melanoma  

BRAF 

In cutaneous melanoma tumours, gene sequencing was successful for the assessment 

of BRAF status in 12 tumours. V600E mutation was found in 25% of the 12 cases analysed 

(Figure 10). 

 

  

 

 

 

To evaluate a possible association between BRAF mutational status and 

prognostic parameters of the cutaneous melanoma cases, a relationship between the 

presence or absence of BRAF V600E mutation and clinicopathological features was 

Figure 10: Mutational analysis of BRAF gene. Representative 

electropherograms of BRAF gene sequencing from a case with wild-type 

V600 sequence and a case with heterozygous V600E mutation; both were 

obtained by PCR/Sequencing (Methods). 

 



65 

 

 

studied by statistical analysis as described in Methods (5.9 - Statistical analysis). The 

results are summarised in Table 12. 

Gender was the only clinicopathological feature with significant correlation with 

BRAF mutational status. In the series studied, 3 of 5 (60%) women presented the V600E 

mutation of BRAF, while all men had the wild-type form of BRAF. 

Table 12: Clinicopathological features and BRAF mutational status in cutaneous melanoma. 

Clinicopathological features 
BRAFwt 

n (%) 

BRAFV600E 

n (%) 
p 

Gender    

Male 7 (100.0) 0 
0.046 

Female 2 (40.0) 3 (60.0) 

Breslow’s thickness    

≤ 1.0 mm 3 (75.0) 1 (25.0) 

0.854 1.01-2.0 mm 2 (66.7) 1 (33.3) 

2.01-4.0 mm 1 (50.0) 1 (50.0) 

≥ 4.01 mm 2 (100.0) 0  

Mitotic Rate     

<1 mitosis/mm2 4 (66.7) 2 (33.3) 
>0.999 

≥1 mitosis/mm2 3 (75) 1 (25) 

Ulceration    

Absent 5 (71.4) 2 (28.6) 
>0.999 

Present 2 (100.0) 0 

Necrosis    

Absent 8 (73.7) 3 (27.3) 
>0.999 

Present 1 (100.0) 0 

pT    

pT1 /pT2 5 (71.4) 2 (28.6) 
>0.999 

pT3 /pT4 3 (75.0) 1 (25.0) 

wt, wild-type form. Clinicopathological features were evaluated by a pathologist from Hospital 

de São Marcos, Braga, Portugal. The clinicopathological features chosen to study the correlation 

with BRAF mutation are recommended by staging classification system.18 Fisher’s exact test was 

used and differences were considered as statistically significant when p<0.05. 
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NRAS 

In cutaneous melanoma tumours, 

the sequencing for the assessment of the 

NRAS gene status was successful in 13 

tumours. The substitution CAACTA 

has been identified in only one case 

(7.8%) (Figure 11). Due to the absence of 

an adequate number of NRAS mutated 

cases, a correlation between mutational 

status and clinicopathological features 

was impossible to establish. 

Mutation analysis of BRAF and NRAS in cutaneous melanoma tumour samples 

showed only one correlation between BRAF and clinicopathological feature. No 

evaluation of correlation of NRAS mutational status was possible to perform. 

Neither GNAQ nor GNA11 mutational status correlates to the clinicopathological 

feature tested of ocular melanoma 

GNAQ  

In ocular melanoma tumours, the sequencing was successful for the assessment of 

GNAQR183 status in 28 tumours. None of the studied cases showed GNAQR183 

mutations. 

GNA11 

In ocular melanoma tumours, the sequencing was successful for the assessment of 

the status of GNA11 exon 4 and exon 5, in 24 and 31 tumours, respectively. The 

substitution CAGCTG has been identified in 4 (12.9%) of the 31 cases (Figure 12). None 

of the cases studied showed GNA11R183 mutations. 

Figure 11: Mutational analysis of NRAS gene. 

Representative electropherograms of NRAS gene 

sequencing from a case with wild-type Q61 

sequence and a case with heterozygous Q61L 

mutation; both were obtained by 

PCR/Sequencing (Methods). 
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Table 13: Clinicopathological features and GNA11 mutational status in uveal melanoma 

Clinicopathological features 
GNA11wt 

n (%) 

GNA11Q209L 

n (%) 
p 

Median age     

< 59 8 (72.7) 3 (27.3) 
0.317 

≥59 15 (93.75) 1 (6.25) 

Gender    

Male 7 (70) 3 (30) 
0.281 

Female 16 (94.1) 1 (5.9) 

Cytological type    

Spindle-cell 8 (72.7) 3 (27.3) 

0.375 Epithelioid-cell 9 (100) 0 

Mixed-cell 10 (90.9) 1 (9.1) 

pT    

pT1/ pT2 18 (85.7) 3 (14.3) 
>0.999 

pT3/ pT4 9 (90) 1 (10) 

Mitotic Rate    

<1 mitosis/mm2 15 (78.9) 4 (21.1)  
0.2768 

≥ 1 mitosis/mm2 10 (100) 0 

Median basal tumour diameter    

<11mm  8 (88.9)  1 (11.1) 
>0.999 

≥11 mm  14 (82.4) 3 (17.6) 

Tumour scleral involvement    

Absent 16 (80) 4 (20) 
0.546 

Present 7 (100) 0 

wt, wild-type form. Clinicopathological features were evaluated by a pathologist from Hospital 

de São João, Porto, Portugal. The clinicopathological features chosen to study the correlation with 

GNA11Q209L are described in the Introduction Fisher’s exact test was used and differences were 

considered as statistically significative when p<0.05. 

 

Figure 12: Mutational analysis of GNA11 gene. Representative electropherograms of 

GNA11 gene sequencing from a case with wild-type Q209 sequence and a case with 

heterozygous Q209L mutation, both were obtained by PCR/Sequencing (Methods). 



68 

 

 

Figure 13: Mutational analysis of GNA11 gene 

in cell lines. Representative electropherograms 

of GNA11 gene sequencing from a cell line with 

wild-type Q209 sequence and a cell line with 

Q209L homozygous mutation; both were 

obtained by PCR/Sequencing (Methods). 

 

Since all conjunctival melanoma cases presented the wild-type form of GNA11, 

only uveal melanoma cases were considered to study a possible association between 

GNA11 mutational status and prognostic parameters, as described in Methods (5.9 - 

Statistical analysis). The results, summarised in Table 13, show no significant correlation 

between the GNA11 mutational status and any clinicopathological feature. 

Mutation analysis of GNAQ and GNA11 in ocular melanoma tumour samples 

showed that none of the genes evaluated correlated to any clinicopathological feature. 

 

Genetic profile establishment of the melanoma cell lines used in this study 

BRAFV600E was identified in 

G361 and OCM-1 cell lines. The 92.1 cell 

line presented a Q209L mutation of the 

GNAQ gene. The OMM-1 cell line showed 

a homozygous Q209L mutation of the 

GNA11 gene (Figure 13). No alterations 

were detected in the NRAS gene. The 

mutational status of the genes studied in 

the cell lines is summarised in Table 14. 

Table 14: BRAF, NRAS, GNAQ and GNA11 mutational status in melanoma cell lines. 

Location Cell Line 
BRAF NRAS GNAQ GNA11 

V600 Q61 Q209 R183 Q209 R183 

Cutaneous 

Melanoma 

G361 V600E WT WT WT WT WT 

Mewo WT WT WT WT WT WT 

Uveal 

Melanoma 

Mel 285 WT WT WT WT WT WT 

OCM-1 V600E WT WT WT WT WT 

92.1 WT WT Q209L WT WT WT 

Sub-cutaneous 

Metastases of 

UM 

OMM-1 WT WT WT WT Q209L WT 

Liver 

Metastases of 

UM 

OMM-2.3 WT WT Q209L WT WT WT 

WT, wild-type form. 
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6.2 Identification of predictive biomarkers to RAD001 treatment of 

melanoma. 

The G361 cell line showed the highest level of cell growth inhibition after RAD001 

exposure. 

In this study, seven melanoma cell lines were used, two cutaneous melanoma cell 

lines and five ocular melanoma cell lines, with different genetic profiles (Table 14). The 

effect of RAD001 treatment on growth inhibition of the this panel of cell lines was 

evaluated by the SRB assay, which indirectly estimates cell number, by staining total 

cellular protein with the dye SRB (Methods, 5.5 - Measurement of cell viability - 

Sulphorodamine B (SRB) assay).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Growth inhibition rates in melanoma cell lines after treatment with RAD001. The 

percentage of cell growth inhibition relative to control was determined by the SRB assay. 

Melanoma cell lines were treated with RAD001 at (a) 20nM and (b) 50 nM. SRB assay was 

performed 24h and 48h later. Cells in control condition received treatment of DMSO solution of 

the same volume and concentration used to dissolve RAD001. The assay results shown are the 

mean (± standard deviation) of three independent experiments. Differences between growth 

inhibition rates of G361 and the other melanoma cell lines for 20 nM and 50 nM RAD001 after 24h 

and 48h of exposure to the drug were evaluated by Student’s t-test. All p-values were <0.05. 

a 

b 
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The two concentrations tested, 20 nM and 50 nM, of RAD001 caused different 

growth inhibition in all cell lines at the time points chosen, 24h and 48h (Figure 14). The 

cutaneous melanoma-derived cell line G361 presented a growth inhibition rate of 38% 

after 24h and 52% after 48h of exposure to 20 nM RAD001. Growth inhibition rates of 

G361 at 24h and at 48h of exposure to 20 nM RAD001 were always significantly higher 

than the other cell lines tested. With a higher concentration of RAD001 (50 nM), G361 

presented again as the most sensitive of the cell lines used in the study. The growth 

inhibition rates after 24h and 48h of exposure to the drug were 48% and 60%, respectively. 

Concerning exposure for 24h and 48h periods with this RAD001 concentration, growth 

inhibition rates of G361 were always significantly higher than the other cell lines studied 

(p<0.01). No differences were found on growth inhibition rates induced by RAD001 in the 

ocular melanoma cell line OCM-1 presenting the BRAF V600E mutation compared to the 

other ocular melanoma cell lines. 

No significant differences were found between growth inhibition rates of cell 

lines harbouring Q209L mutations of GNAQ or GNA11 and WT cell lines. 

The G361 cell line appeared to be more sensitive to RAD001 than any of the other 

cell lines tested. 

RAD001 did not induced apoptosis in the cell lines studied. 

To assess if growth inhibition resulted from cell death, the effect of RAD001 

treatment on apoptosis of the panel of cell lines used was evaluated by a TUNEL assay. 

Due to the higher sensitivity of G361 cells to RAD001, this cell line was an obvious choice 

for this assay. Mewo cells were chosen as a control, since this cell line harbours no 

mutation of any of the genes studied. OMM-1 is a cell line isolated from an ocular 

melanoma skin metastasis and for that reason TUNEL assay was used to verify if RAD001 

increased the number of apoptotic cells in a metastatic cell line. 

When compared to RAD001 solvent, DMSO, 20 nM and 50 nM of RAD001 caused 

no significant differences on the number of apoptotic cells, in all cell lines at 24h and 48h 

of exposure (Figure 15). 
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Figure 15: Apoptosis measurement in melanoma cell lines exposed to RAD001. Melanoma cell 

lines were treated with DMSO, 20 nM RAD001 or 50 nM RAD001. TUNEL assay was performed 

(a) 24h and (b) 48h later. Cells in control condition received DMSO solution of the same volume 

and concentration used to dissolve RAD001. The assay results shown are the mean (± standard 

deviation) of three independent experiments. Differences of death cell rates between melanoma 

cell lines for 20 nM and 50 nM RAD001 after 24h and 48h of exposure were evaluated by 

Student’s t-test. All p-values were ≥0.05. 

a 

b 
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RAD001 altered the expression of mTOR pathway effectors in all cell lines tested. 

To evaluate the potential of mTOR pathway effectors as therapeutic markers of 

RAD001 treatment, the effect of RAD001 exposure in the expression of mTOR pathway 

effectors was studied in melanoma-derived cell lines treated with two concentrations of 

the drug for 24h and 48h, by immunoblotting (Methods, 5.8 – Immunoblotting (IB) 

analysis). The results are presented in Figure 16 and Figure 17 – section 3, Appendix. 

Information about statistical significances can be found in Figure 17. 

In all cell lines, PTEN, an inhibitor of the mTOR pathway15, Rictor, a constituent 

of the mTORC251 and BRAF, which activation leads to mTOR pathway activation33, 

showed no alteration in their expression after RAD001 treatment, with both RAD001 

concentrations, in two time points. Expression of Raptor, one of the elements of 

mTORC151, was not altered in 92.1, G361 and Mewo cell lines, but it was increased in Mel 

285 cells at 24h and 48h with 50 nM and 20 nM RAD001, respectively, it was also 

increased in both concentrations after 48h of exposure, in OMM-1 cells. The expression of 

p-mTOR was decreased in all cell lines, but was significantly inhibited by RAD001 in 

G361 and Mewo cells after 24h and in 92.1, Mel285 and OMM-1 cells after 48h. The 

phosphorylation of two downstream effectors of mTORC1, S6 and 4E-BP1, was assessed 

by the level of expression of their phosphorylated forms. There was an efficient inhibition 

of the phosphorylation of S6 in all cell lines and conditions, while partial inhibition of 

phosphorylation of 4E-BP1 was observed at 24h in OMM.1 and at 48h in Mel 285 with 

both RAD001 concentrations. mTORC2 phosphorylates AKT at Ser47350, therefore an 

antibody anti-p-AKT(Ser473) was used to assess the level of AKT specifically activated by 

the mTOR pathway. Treatment with RAD001 induced an increase in expression of p-

AKT(Ser473) after 24h in the cell line G361, and after 48h in 92.1 and Mewo cells. The 

effect of RAD treatment in the activation of the MAPK pathway was evaluated by the 

phosphorylated forms of ERK1/2 expression. An increase in p-ERK1/2 was observed in 

Mel285, at 48h, after treatment with 20 nM RAD001; in G361, at 24h, after 20 nM RAD001 

treatment and in OMM-1, at 48h, after treatment with both RAD001 concentrations. 

The results showed that RAD001 treatment induced alterations in expression 

levels of most of the mTOR pathway effectors studied. 
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Figure 16: Expression of mTOR pathway effectors in 92.1, Mel285, G361 and OMM-1 cell lines 

after RAD001 exposure. Cells were exposed to 20 nM and 50 nM of RAD001 for 24 h and 48h. In 

control condition, cells received treatment of DMSO solution of the same volume and concentration 

used to dissolve RAD001. Total cell lysates (50 μg) were separated by SDS–PAGE, blotted to 

nitrocellulose membranes and probed with antibodies. β-Actin served as a loading control. Due to 

the similarity between Mewo’s and G361 cells results, image correspondent to Mewo cells was 

omitted. The lack of results to the expression of some proteins at 24h, in OMM-1 cell lines, was 

caused by technical problems that could not be solved in the period of time given to develop the 

study. 
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7 Discussion 

7.1  BRAF, NRAS, GNAQ and GNA11 are not suitable prognostic 

biomarkers 

Biomarkers are molecules used as indicators of a normal or pathologic biological 

state (diagnostic/prognosis markers) or as markers of therapeutic response to a 

pharmacological agent (predictive markers).67 In the setting of metastatic melanoma, there 

are few prognostic factors, and those fail to effectively discriminate between the large 

subpopulation of patients with an aggressive disease course and the small population 

with a relatively indolent natural history.68 Therefore, it is of great importance to search 

for molecular markers of metastatic potential that in combination with other factors 

would provide the most accurate prognosis possible. 

In this study, the mutational status of some genes previously reported as 

frequently mutated in CM (BRAF 36 and NRAS 69) and OM (GNAQ42 and GNA1146) was 

evaluated in two series of melanoma tumour samples. The CM series showed a frequency 

of BRAF mutation (25% of 12 cases) similar to those reported in two previous studies 

(27%-28%)70, 71 but significantly lower than reported in other studies.36, 71, 72 Correlation 

analysis between BRAF mutational status and clinicopathological features was performed, 

though there were some limitations due to the small number of available samples to 

analyse. The mutation observed (BRAFV600E) showed no correlation to most 

clinicopathological features, being gender the only exception. BRAFV600E appeared to 

have a higher incidence in the female gender (60%, p=0.046). The absence of a significant 

association of BRAF mutation with clinicopathological parameters, including clinical 

stage at diagnosis, subtype of melanoma, presence of epidermal ulceration, presence of 

necrosis, Clark’s level and tumour thickness has also been reported by Pópulo and co-

workers (2011)33, Shinozaki and co-workers (2004)73 and Saldanha and co-workers (2006)74. 

The other gene which its mutational status was evaluated in cutaneous melanoma tumour 

samples was NRAS. BRAF and NRAS activate the same signalling pathway and that is the 

reason why mutations in these two genes did not coexist in any of the cases. Although we 

were expecting this mutually exclusive behaviour, in this series of cutaneous melanoma 

tumour samples, NRAS mutation revealed and unexpected lower frequency of mutation 
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(7.8%), since in the literature the reported frequencies were considerably higher.69, 75 As 

there was only one case with NRAS mutation identified in this study, it was not possible 

to perform a correlation analysis between NRAS mutational status and clinicopathological 

features. 

The genes chosen to be studied in the ocular melanoma tumour samples were 

GNAQ and GNA11. These two genes encode members of the q class of heterotrimeric G-

protein α subunit and have overlapping functions in melanocytes , possibly due to 91% 

identity at the amino acid level.46 Only very recently, mutations in exon 5 of the GNA11 

gene have been reported in about 31.9% of uveal melanomas.46 Interestingly, in our series 

of uveal melanomas, the frequency of GNA11 mutations identified at exon 5 was 

considerably lower (15.4%) and none of the cases harboured simultaneously mutations in 

GNA11 and GNAQ. Like other mutually exclusive mutations, this pattern is probably 

caused by the overlapping functions of the two proteins. This high similarity between the 

two proteins may explain the resemblance between the results that Pópulo and co-

workers (2010) have reported to this case series about the mutations in codon 209 of 

GNAQ44, and the absence of association of mutation in GNA11 gene with any of the 

clinicopathological features tested (age, gender, cytological type, pT group, mitotic rate, 

largest tumour diameter and sclera extension) that is described in this study. Van 

Raamsdonk and co-workers recently described that the frequency of mutations affecting 

exon 4 of GNAQ and GNA11 was 2.8% and 2.1% of the 145 cases of primary uveal 

melanoma studied, respectively. These mutations, in R183, revealed to be less prevalent 

than mutations in Q209.46 In the present study, no mutations of GNAQR183 or 

GNA11R183 were observed, possibly due to the smaller number of cases evaluated in 

comparison to the study of Van Raamsdonk et al.46 

This series of ocular melanoma has been previously characterized regarding the 

expression of MAPK and mTOR pathway effectors and no association with the GNAQ 

mutational status was found (unpublished data). After the evaluation of GNA11 

mutational status, the same association study was performed and a similar lack of 

correlation between levels of expression of MAPK and mTOR pathway effectors and the 

mutational status of GNA11 was obtained, which may indicate the existence of other 
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unknown genetic mechanisms that may play a role in MAPK activation in uveal 

melanoma. 

In conclusion, none of the gene mutations studied gave evidence that it could be a 

useful biomarker to establish a reliable prognosis in CM or OM. 

 

7.2 BRAF is a potential therapeutic biomarker 

Besides the difficulty of establishment of accurate molecular prognostic factors, 

the identification of effective treatments is also a constant problem in the melanoma 

research. The probability to find a marker for melanoma metastasis or to design a uniform 

approach to treat such a heterogeneous disease is still very remote. To overcome this, the 

genetic heterogeneity of melanoma has to be always taken into account. 

One of the features shared by ocular and cutaneous melanoma is the constitutive 

activation of the MAPK pathway. BRAF, in cutaneous melanoma29, and GNAQ and 

GNA11, in ocular melanoma42, 44, can be responsible for this pathway’s constitutive 

activation. The link between MAPK and mTOR pathways has already been established by 

Li Ma and co-workers (2005)76. They demonstrated that MAPK activation leads to 

phosphorylation of TSC2 by ERK 1/2, which results in TSC1-TSC2 complex dissociation. 

This dissociation markedly impairs TSC2 ability to inhibit mTOR signalling, indicating 

that the MAPK pathway functions upstream of the TSC complex and cooperates with the 

PI3K pathway to modulate mTOR signalling.76 Very recently the connection between 

these signalling pathways was identified by our group in a series of CM. In our study, in 

tumours with BRAFV600E, high levels of mTOR pathway activation were identified by 

significantly increased expression of pS6 and p4E-BP1 and significantly decreased levels 

of the mTOR pathway inhibitor, PTEN.33 Although there was activation of both pathways 

in a series of ocular melanoma57, no connection was established between the GNAQ 

mutational status and mTOR pathway expression effectors (unpublished data). The 

impact of RAD001, an mTOR pathway inhibitor, on cell proliferation, cell apoptosis and 

signalling effector expression was studied to determine if any of the genes in question 
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(BRAF, GNAQ and GNA11) could be used as a tool to predict therapeutic responses and 

to select patients for the most suitable and effective treatment. 

Due to the connection between BRAFV600E and increased mTOR pathway 

activation in cutaneous melanoma, the result obtained with the G361 cell line that showed 

the highest growth inhibition after RAD001 treatment, was already expected. The 

BRAFV600E effect in cells sensitivity to RAD001, was also studied in an ocular melanoma 

cell line, OCM-1. Even though this cell line harbours a BRAFV600E mutation, it had a 

growth inhibition similar to BRAF wild-type cell lines. These results indicate that higher 

level of growth inhibition, after RAD001 treatment, of cell lines harbouring BRAFV600E 

might be specific to cutaneous melanoma-derived cell lines. Thus, constitutive activation 

of BRAF may not play a role as relevant in ocular melanoma as it does in cutaneous 

melanoma. 

Cells from primary ocular melanoma harbouring mutations in exon 5 of the 

GNAQ gene showed no significant differences in growth inhibition when compared to 

wild-type cells for GNAQ exon 5. These results are coherent with previous findings from 

our group44, 57 and suggest that the mutational status of this gene is not related to the 

response to RAD001 exposure. Growth inhibition of two metastatic cell lines, harbouring 

GNAQQ209L or GNA11Q209L mutation, was also evaluated after exposure to the same 

drug. No significantly different responses were observed, indicating that metastatic cells 

do not show higher sensitivity than cell lines with GNAQ or GNA11 wild-type, neither 

when compared to cell lines from primary tumours with GNAQQ209L. 

The responses to RAD001 by cells with mutations in BRAF or GNAQ genes 

confirm previous indications of MAPK constitutive activation in both types of melanoma 

(cutaneous and ocular) and subsequent divergence to different and unknown pathways 

resulting in different responses to this drug. 

After the observations related to growth inhibition after RAD001 treatment, the 

levels of apoptosis were assessed. In previous reports, RAD001 showed to be unable of 

induce apoptosis in cell lines from different types of cancers, such as breast cancer, 

ovarian cancer 77, medullary thyroid carcinoma 60 and melanoma 78-80, being described in 

some studies an accumulation in G1 resulting from cell cycle arrest due to blocking of 
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mTOR.81, 82 Confirming the results described in the literature, 78-81 in this study, the cell 

lines selected for apoptosis evaluation showed no differences in the number of apoptotic 

cells over time or in a dose-dependent manner. 

Analysis of the expression of mTOR pathway effectors revealed some interesting 

differences between cell responses to RAD001 treatment. More importantly, all cell lines 

studied showed a partial or complete inhibition of phosphorylation of S6. Taking into 

account the results obtained with the SRB assay and the immunoblotting, we can 

conclude that p-S6 levels can only give an indication of the efficiency of RAD001 in mTOR 

signalling inhibition and cannot be used to give information of sensitivity to the 

treatment, since the most sensitive cell line was G361, but the cell line with higher 

inhibition of phosphorylation of S6 was OMM-1. Similar effects in sensitive and 

insensitive cell lines have been described.83 Taken together, the similar levels of inhibition 

of S6 phosphorylation in all cell lines and the major impact of that inhibition in the 

impairment of G361 (harbouring BRAFV600E) growth, we can suggest a higher 

dependence of cell growth in mTOR pathway activation induced by BRAF constitutive 

activation, in the cutaneous melanoma cell line. This high inhibition of S6 

phosphorylation may be caused by the lack of activation of S6K by the mTORC1 complex. 

Since S6K is related to protein translation, particularly in G1 phase,84 the inhibition of this 

protein may explain the absence of increased levels of apoptosis in the cells used in this 

study and suggest an arrest in G1 phase after RAD001 treatment. However, further 

studies, including cytometry analysis must be performed to verify this hypothesis, since 

the lack of protein translation would induce a cell cycle arrest in G1 phase. 

4E-BP1 is another downstream target regulated by mTORC1 complex. Although, 

most of the cell lines show no significant differences in global expression of p-4E-BP1, all 

of them present, in immunoblotting analysis, many bands representing different stages of 

phosphorylation, being clear a decrease in the expression of the higher stages. Therefore, 

like levels of p-S6, levels of p-4E-BP1 will only be useful to assess the inhibition of mTOR 

pathway, but not to predict responses to RAD001 treatment. To support this, OMM-1 and 

Mel285 were the only cell lines in which the global levels of p-4E-BP1 decreased after 24h 
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and 48h, respectively, being this decrease insufficient to increase these cell lines’ 

sensitivity. 

In the past, loss of PTEN and activation of Akt have been used as markers with 

predictive value of responses to mTOR inhibitors.86 However, in my study, both p-Akt 

and PTEN showed to be useless to predict melanoma cell line sensitivity. RAD001 induces 

a relief of the negative feedback loop, that through S6K activation, and degradation of 

insulin receptor-substract-1, attenuates PI3K signalling, decreasing AKT levels.81 Due to 

the disruption of this feedback loop, the presence of the drug induces in CM cell lines, 

G361 and Mewo an increase in p-AKT levels. Besides AKT, ERK phosphorylation also 

showed an increase in some of the cell lines tested. In 2008, Wang and co-workers 

reported an increase of p-ERK levels in some human lung cancer cell lines after prolonged 

treatment with rapamycin.85 In our study, after 24h of treatment all cells lines showed 

increased levels of p-ERK, but only 20 nM RAD001 during 48h of exposure could 

significantly induce activation of MAPK pathway in Mel285. Together, the increase in p-

AKT and p-ERK levels indicate that RAD001 may induce the activation of at least two 

important survival pathways, MAPK and PI3K, which may explain the relatively low 

effect in growth inhibition in most of the cell lines studied. Neither AKT nor ERK 

phosphorylation levels showed specificity, therefore they are not suitable to predict 

resistance to RAD001 treatment. Instead, these results show the importance of designing 

and test different combinatorial anticancer therapies. In literature two major strategies 

were described and encouraging results were obtained: optimal blockade of mTOR 

signalling pathway by combination of compounds that inhibit different components 

within this pathway80 and combined targeting of mTOR signalling pathway and MAPK 

signalling pathway85. 

Susceptibility of melanoma cells to the inhibition of signaling pathways have been 

also linked to the micro-environment. Meier and co-workers have showed that when 

metastatic melanoma cells are grown in tri-dimensional spheroids, they exhibited a 

resistance to the inhibition of only one pathway, being killed only by the simultaneous 

inhibition of PI3K and MAPK pathways.87 Therefore, after confirmation of the predictive 

value of BRAF mutation, the cytotoxicity should be evaluated in a tri-dimensional model. 
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In conclusion, from this study a new molecular prognostic marker has not 

emerged, in the genes selected, but it was possible to identify a candidate genetic marker 

to predict responses to RAD001 treatment. The obtained results suggest that BRAF 

mutational status could be used as marker to predict treatment response in CM patients, 

but not in OM patients. This is possibly a more reliable biomarker than expression levels 

of mTOR pathway effectors. Since it is a genetic marker, BRAF mutational status will not 

be affected by previous chemotherapy treatments, as p-S6 or AKT expression levels are.84 

All these features give to BRAF mutation status a high potential of utilization in selection 

of patients to mTOR inhibition therapies. Further studies in vitro and in vivo with a broad 

set of ramapycin analogs and with other CM cell lines harbouring BRAFV600E, should be 

conducted to confirm these data. 
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9 Appendix 

Section 1: Frequently used buffers 

PBS (pH 7.4): 

137 mM NaCl 

2.7 mM KCl 

12.7 mM Na2HPO4.2H2O 

1,76 mM KH2PO4 

1 L H2O 

 

Sulforhodamine B assay 

Tris-base Buffer (10 mM, pH= 10.5): 

0.6 g Tris-base 

500 mL H2O 

 

TCA solution: 

50% TCA 

50% H2O 

 

SRB 0.1%: 

0.1 g SRB 

100 mL 1% glacial acetic acid 

 

TUNEL assay 

Permeabilization solution: 

0.1g Sodium Citrate 

100 µL Triton X-100 

100 mL H2O 
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Immunoblotting 

RIPA Buffer: 

1% NP-40  

150 nM NaCl 

50 mM Tris (pH 7.5) 

2 mM EDTA  

 

Loadding Buffer:  

90% Laemmli 4x  

5% β-Mercaptoethanol 

5% Bromophenol Blue 

 

Running Buffer (pH 8.3): 

25 mMTris 

192 mM Glycine 

0.1% SDS 

 

PBS/Tween 20 0.5%: 

995 mL PBS 

5 mL Tween 20 

 

Transfer Buffer (pH 8.1-8.4): 

25 mM Tris Base 

192 mM Glycine 

10% Methanol 

1.8 L H2O  



96 

 

 

Section 2: Equipment 

Table 15: Equipment and manufacturers. 

Equipment Company 

Synergy Mx microplate reader BioTek Instruments, Inc., Winooski, USA 

ABI Prism 3130 xl Automatic sequencer 
Perkin-Elmer, Foster City, California, 

USA 

Centrifuge 5417 F Eppendorf AG, Hamburg, Germany 

Mycycler™ Thermal cycler 
BioRad Laboratories Inc,Hercules, 

California, USA 

Immunoblotting system 
BioRad Laboratories Inc,Hercules, 

California, USA 
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Section 3: Quantitative analysis of Immunoblotting 
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Figure 17: Quantitative analysis of expression of mTOR pathway effectors treatment with DMSO, 

20 nM RAD001 or 50 nM RAD001, in 92.1, Mel285, G361 and OMM-1 cell lines. Cells were exposed 

to 20 nM and 50 nM of RAD001 for (a) 24 h and (b) 48h. In control condition received treatment of 

DMSO solution of the same volume and concentration used to dissolve RAD001. Total cell lysates (50 

μg) were separated by SDS–PAGE, blotted to nitrocellulose membranes and probed with antibodies. 

β-Actin served as a loading control. Due to the similarity between Mewo’s and G361 cells results, 

quantitative analysis correspondent to Mewo cell line was omitted. The lack of results to the 

expression of some proteins at 24h, in OMM-1 cell lines, was caused by technical problems that could 

not be solved in the period of time given to develop the study. Student’s t-test was used to assess 

statisticall differences in protein expression. * = p-values <0.05. 
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Section 4: Communication in scientific meeting and publication related to this 

study 
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