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Abstract: We obtain a method to compute effective first inte-
grals by combining Noether’s principle with the Kozlov-Kolesnikov
integrability theorem. A sufficient condition for the integrability by
quadratures of optimal control problems with controls taking val-
ues on open sets is obtained. We illustrate our approach on some
problems taken from the literature. An alternative proof of the inte-
grability of the sub-Riemannian nilpotent Lie group of type (2, 3, 5)
is also given.
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1. Introduction

Optimal control problems, with controls taking values on an open set, are now
a subject of intensive investigation because of their recent applications to mod-
ern technology, like in “smart materials” (Lasiecka, 2004). Geodesics of (sub)-
Riemannian manifolds can also be seen as solutions of a class of these problems
(Bonnard and Chyba, 2003). Meanwhile, solutions of optimal control problems
are closely related with solutions of Hamiltonian equations through the Pontrya-
gin Maximum Principle (Pontryagin et al., 1962). In the literature, Hamiltonian
equations are usually classified as integrable or non-integrable. However, it was
not always clear in what sense a system is (non)integrable, as the following
quotations confirm (Arnold, Kozlov, Něıshtadt, 1993; Goriely, 2001): Birkhoff
comment “when, however, one attempts to formulate a precise definition of
integrability, many possibilities appear, each with a certain intrinsic theoretic
interest”; and the dictum of Poincaré “a system of differential equations is only
more or less integrable”. The reasons are the existence of three main approaches
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to study integrability (the dynamical system approach through bifurcation the-
ory, the analytic approach using singularity analysis and Painlevé property, and
the algebraic approach through differential geometry), which are not always
compatible, and the stratification of the phase space in regions that may be
integrable with different notions.

In the Control Theory setting, integrability concerns the existence of a fo-
liation as the collection of all maximal integral manifolds of the underlying
distribution (see Frobenius and Nagano-Sussmann theorems, Sussmann, 1973).
On the other hand, integration by quadratures of a differential equation is the
search for representing the solutions by a finite number of algebraic operations,
inversion of functions, and calculations of integrals of known functions (“quadra-
tures”); where a precise meaning of integrability defines the allowed operations
and the set of known functions. Hence, an optimal control problem is integrable
by quadratures if the corresponding Hamiltonian equations are integrable by
quadratures. Since an optimal control problem can be, simultaneously, inte-
grable and not integrable by quadratures, and it is frequent to shortcut inte-
gration by quadratures to integration, we will adopt the word “solvability” to
mean “integrability by quadratures” of optimal control problems.

In the algebraic approach, verification of solvability of an optimal control
problem frequently requires the existence of a set of first integrals (or conser-
vation laws) of the true Hamiltonian equations, and an appropriate method
of reduction. The process can be divided in three steps: (i) find a sufficient
number of first integrals; (ii) verify that such first integrals imply the exis-
tence of quadratures; and (iii) apply a method to find the quadratures. The
first step can be attained by methods such as the Noether’s theorem, find-
ing Casimirs, or even solving the PDE that appear in the definition of varia-
tional symmetry. The second step can be accomplished by using theorems such
as Bour-Liouville, Liouville-Arnold (abelian case), Mishchenko-Fomenko (non-
abelian case), or Kozlov-Kolesnikov. Last step is usually a consequence of the
choices on the first and second steps, e.g. Liouville-Poincaré method, Cartan
method, or Prykarpastsky method. Notice that step (i), alone, is not enough
to solve the problem, since any C1 function of a set of first integrals is a first
integral (Goriely, 2001), meaning that there exists plenty of first integrals that
are useless.

In this work, we use the algebraic approach to derive in Section 3 a method
for computing effective first integrals (steps (i) and (ii)) for optimal control prob-
lems by combining Noether’s symmetry theorem with the Kozlov-Kolesnikov
integrability theorem (recalled in Section 2). Main result gives a sufficient con-
dition for the solvability of a given optimal control problem (Theorem 4). A
key issue is the construction of a system of algebraic equations, whose solutions
determine the set of effective first integrals, based on the simple observation
that for optimal control problems Noether’s theorem usually gives a paramet-
ric family of first integrals. The proposed method is applied in Section 4 to
concrete optimal control problems from the literature. An alternative proof to
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Sachkov (2004) for the solvability of the sub-Riemannian nilpotent Lie group of
type (2, 3, 5) is presented in Section 5.

2. Preliminaries

2.1. The problem

The optimal control problem consists in minimizing a cost functional

I [x(·), u(·)] =

∫ b

a

L (t, x(t), u(t)) dt (1)

subject to a control system described by ordinary differential equations

ẋ(t) = ϕ (t, x(t), u(t)) (2)

together with certain appropriate endpoint conditions. The Lagrangian L :
[a, b] × Rn × Rm → R and the velocity vector ϕ : [a, b] × Rn × Rm → Rn are
given, and assumed to be smooth: L(·, ·, ·), ϕ(·, ·, ·) ∈ C1. We are interested in
the case where the control set is open: u(t) ∈ U ⊆ Rm, with U an open set. We
denote the problem by (P ). In the particular case of ϕ(t, x, u) = u, one obtains
the fundamental problem of the calculus of variations, which covers all classical
mechanics. The choice of the classes X and U , respectively of the state x :
[a, b]→ Rn and control variables u : [a, b]→ Rm, are important for the problem
to be well-defined. We will assume, for simplicity, that X = PC1 ([a, b]; Rn) and
U = PC ([a, b]; Rm).

The Pontryagin Maximum Principle (Pontryagin et al., 1962) is a necessary
optimality condition which can be obtained from a general Lagrange multiplier
theorem in spaces of infinite dimension. Introducing the Hamiltonian function

H(x, u, ψ, t) = −L(t, x, u) + ψ · ϕ(t, x, u) , (3)

where ψi, i = 1, . . . , n, are the “Lagrange multipliers” or the “generalized mo-
menta”, the multiplier theorem asserts that the optimal control problem is
equivalent to the maximization of the augmented functional

J [x(·), u(·), ψ(·)] =

∫ b

a

(H (x(t), u(t), ψ(t), t) − ψ(t) · ẋ(t)) dt .

Let
(

x̃(·), ũ(·), ψ̃(·)
)

solve the problem, and consider arbitrary C1-functions

h1 , h3 : [a, b]→ Rn, h1(·) vanishing at a and b (h1(·) ∈ C
1
0 ([a, b])), and arbitrary

continuous h2 : [a, b]→ Rm. Let ε be a scalar. By the definition of maximizer,
we have

J
[

(x̃+ εh1)(·), (ũ + εh2)(·), (ψ̃ + εh3)(·)
]

≤ J
[

x̃(·), ũ(·), ψ̃(·)
]

,
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and one has the following necessary condition:

d

dε
J
[

(x̃+ εh1)(·), (ũ + εh2)(·), (ψ̃ + εh3)(·)
]
∣

∣

∣

ε=0
= 0 . (4)

Differentiating (4) gives

0 =

∫ b

a

[

∂H

∂x

(

x̃(t), ũ(t), ψ̃(t), t
)

· h1(t) +
∂H

∂u

(

x̃(t), ũ(t), ψ̃(t), t
)

· h2(t)

+
∂H

∂ψ

(

x̃(t), ũ(t), ψ̃(t), t
)

· h3(t)− h3(t) · ˙̃x(t)− ψ̃(t) · ḣ1(t)

]

dt .

Integrating the ψ̃(t) · ḣ1(t) term by parts, and having in mind that h1(a) =
h1(b) = 0, one derives

∫ b

a

[(

∂H

∂x

(

x̃(t), ũ(t), ψ̃(t), t
)

+ ˙̃ψ(t)

)

· h1(t) +
∂H

∂u

(

x̃(t), ũ(t), ψ̃(t), t
)

· h2(t)

+

(

∂H

∂ψ

(

x̃(t), ũ(t), ψ̃(t), t
)

− ˙̃x(t)

)

· h3(t)

]

dt = 0 . (5)

Note that (5) was obtained for any variation h1(·), h2(·), and h3(·). Choosing
h1(t) = h2(t) ≡ 0, and h3(·) arbitrary, one obtains the control system (2):

˙̃x(t) =
∂H

∂ψ

(

x̃(t), ũ(t), ψ̃(t), t
)

, t ∈ [a, b] . (6)

With h1(·) arbitrary, and h2(t) = h3(t) ≡ 0, we obtain the adjoint system:

˙̃ψ(t) = −
∂H

∂x

(

x̃(t), ũ(t), ψ̃(t), t
)

, t ∈ [a, b] . (7)

Finally, with h2(·) arbitrary, and h1(t) = h3(t) ≡ 0, the stationary condition is
obtained:

∂H

∂u

(

x̃(t), ũ(t), ψ̃(t), t
)

= 0 , t ∈ [a, b] . (8)

Hence, a necessary optimality condition for (x̃(·), ũ(·)) to be a minimizer of
problem (P ) is given by the Pontryagin Maximum Principle: there exists ψ̃(·)

such that the 3-tuple
(

x̃(·), ũ(·), ψ̃(·)
)

satisfies all the conditions (6), (7), and

(8). Observe that we are interested in the study of normal extremals. Additional
extremals, known as abnormal, which correspond to the Lagrangian multiplied
by zero in the Hamiltonian (3), may occur in some situations. For instance, in
Example 3 abnormal extremals occur but with no consequence in the application
of the proposed method, since the abnormal extremals are also normal.
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We recall that conditions (6), (7), and (8) imply the equality

d

dt
H
(

x̃(t), ũ(t), ψ̃(t), t
)

=
∂H

∂t

(

x̃(t), ũ(t), ψ̃(t), t
)

. (9)

We assume, without loss of generality, that there exist at least one k ∈ N0

such that

∃ (x, ψ, t) ∈M :
∂

∂u

dk

dtk
∂H

∂u
(x, u, ψ, t) 6≡ 0. (10)

Further, we denote by ku the smallest of such k and by ū the solution of the
equation

dku

dtku

∂H

∂u
(x, u, ψ, t) = 0 (11)

with respect to u; giving as true Hamiltonian the expression

H(x, ψ, t) = H (x, ū, ψ, t) . (12)

A mapping F (x, ψ, t) is a first integral of the Hamiltonian equations with Hamil-
tonian H(x, ψ, t) if

∂F

∂t
+ {H, F} = 0, (13)

where {·, ·} denotes the canonical Poisson bracket.

Remark 1 The restriction for the control set to be open is crucial. For closed
control sets U the stationary condition (8) becomes a more general maximal-
ity condition H(x̃(t), ũ(t), ψ̃(t)) = maxv∈U H(x̃(t), v, ψ̃(t)), and for such cases
the true Hamiltonian may be discontinuous. Our approach, through symplectic
geometry, can only deal with at least C1 Hamiltonians.

Remark 2 If there exists a mapping G(x, ψ) such that {H, G} = cH for some
c ∈ R, then F (x, ψ, t) = G(x, ψ)−c tH(x, ψ) is a (nonautonomous) first integral.

Remark 3 In this work we will consider nonautonomous problems, for this rea-
son we define the extended cotangent space of Rn by M = Rn{x}× (Rn)∗{ψ}×
R{t}. However, notice that a nonautonomous Hamiltonian on Rn is not sig-
nificantly different from an autonomous Hamiltonian on Rn+1, since a nonau-
tonomous Hamiltonian H(x, ψ, t) with the Hamiltonian system

ẋ =
∂H

∂ψ
and ψ̇ = −

∂H

∂x

can be transformed into an autonomous Hamiltonian K(x, ψ, θ, t) = H(x, ψ, t)−
θ with Hamiltonian equations

ẋ =
∂K

∂ψ
, ψ̇ = −

∂K

∂x
, θ̇ =

∂K

∂t
and ṫ = −

∂K

∂θ
.
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The reverse procedure partially justifies the statement that an autonomous Hamil-
tonian is always a first integral for the problem, so the equations of an au-
tonomous Hamiltonian can be dimension-reduced. Furthermore, a system with
only one degree of freedom is always integrable.

2.2. Noether’s theorem

In 1918 Emmy Noether established the key result to find conservation laws in the
calculus of variations (Noether, 1971). We sketch here the standard argument
used to derive Noether’s theorem and conservation laws in the optimal control
setting (see, e.g., Djukic, 1973; Torres, 2002).

Let us consider a one-parameter group of C1-transformations of the form

hs(x, u, ψ, t) =
(

hxs (x, u, ψ, t), h
u
s (x, u, ψ, t), h

ψ
s (x, u, ψ, t), hts(x, u, ψ, t)

)

, (14)

where s denotes the independent parameter of the transformations. We require
that to the parameter value s = 0 correspond the identity transformation:

h0(x, u, ψ, t) =
(

hx0(x, u, ψ, t), hu0 (x, u, ψ, t), hψ0 (x, u, ψ, t), ht0(x, u, ψ, t)
)

= (x, u, ψ, t) .
(15)

Associated to the group of transformations (14) we consider the infinitesimal
generators

T (x, u, ψ, t) =
d

ds
hts(x, u, ψ, t)

∣

∣

∣

∣

s=0

, X(x, u, ψ, t) =
d

ds
hxs (x, u, ψ, t)

∣

∣

∣

∣

s=0

,

(16)

U(x, u, ψ, t) =
d

ds
hus (x, u, ψ, t)

∣

∣

∣

∣

s=0

, Ψ(x, u, t, ψ) =
d

ds
hψs (x, u, ψ, t)

∣

∣

∣

∣

s=0

.

Definition 1 The optimal control problem (P ) is said to be invariant under a
one-parameter group of C1-transformations (14) if, and only if,

d

ds

{

[

H (hs (x(t), u(t), ψ(t), t))

−hψs (x(t), u(t), ψ(t), t) ·
dhx

s
(x(t),u(t),ψ(t),t)

dt
dht

s
(x(t),u(t),ψ(t),t)

dt

]

dhts (x(t), u(t), ψ(t), t)

dt

}∣

∣

∣

∣

∣

s=0

= 0 ,

(17)

with H the Hamiltonian (3).

Having in mind (15), condition (17) is equivalent to

∂H

∂t
T +

∂H

∂x
·X+

∂H

∂u
·U +

∂H

∂ψ
·Ψ−Ψ · ẋ(t)−ψ(t) ·

d

dt
X+H

d

dt
T = 0 ,

(18)
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where all functions are evaluated at (x(t), u(t), ψ(t), t) whenever not otherwise
indicated. Along a Pontryagin extremal (x(·), u(·), ψ(·)) equalities (6), (7), (8),
and (9) are in force, and (18) reduces to

dH

dt
T − ψ̇(t) ·X − ψ(t) ·

dX

dt
+H

dT

dt
= 0⇔

d

dt
(ψ(t) ·X −HT ) = 0 . (19)

Therefore, we have just proved Noether’s theorem for optimal control problems.

Theorem 1 (Noether’s Theorem) If the optimal control problem is invariant
under (14), in the sense of Definition 1, then

ψ(t) ·X (x(t), u(t), ψ(t), t)−H (x(t), u(t), ψ(t), t) T (x(t), u(t), ψ(t), t) = const

(20)

(t ∈ [a, b]; T and X are given according to (16); H is the Hamiltonian (3)) is
a conservation law, that is, (20) is valid along all the minimizers (x(·), u(·)) of
(P ) which are Pontryagin extremals.

2.3. Solvability and reduction

E. Bour and J. Liouville, in the middle of the 19th century, obtained funda-
mental concepts and results concerning integrability by quadratures of differ-
ential equations. Namely, the notion of elementary function: a Cn function
that belongs to the set Λ of elementary functions. The set Λ is obtained from
rational functions on Ck (k ∈ N0), using a finite number of the following oper-
ations: (i) algebraic operations (if f1, f2 ∈ Λ then f1 ⋆ f2 ∈ Λ, where ⋆ is either
the addition, subtraction, multiplication, or division); (ii) solutions of algebraic
equations with coefficients in Λ; (iii) differentiation; and (iv) exponential and
logarithm operations. The set of elementary functions together with the opera-
tion of integration (if f ∈ Λ then

∫

f(x) dx ∈ Λ) is called the set of Liouvillian
functions. Liouville showed that the solution of the equation ẋ(t) = tα − x2 is
only Liouvillian for α = −2 and α = 4k/(1− 2k) (k ∈ N).

There is a concrete method that permits not only to verify that solutions
of the Hamiltonian system are Liouvillian functions, but also to reduce the
system in order to obtain the extremals. We describe it briefly. Let M =
Rn{x}× (Rn)∗{ψ}×R{t} and f : M → R be a first integral of the Hamiltonian
system with Hamiltonian H. If df(q) 6= 0, then in some neighborhood of the
point q ∈M there exist symplectic coordinates (x̃, ψ̃, θ̃, t̃) such that f(x̃, ψ̃, t̃) =
ψ̃1. In these coordinates H does not depend on x̃1, therefore if we fix a value
f = ψ̃1 = c, then the Hamiltonian system will only have n−1 degrees of freedom.
In order to have an effective reduction of dimension by a set of first integrals,
this method requires the first integrals to be independent and in involution

{fi, fj} = 0 ∀ i, j ∈ {1, . . . , N}.
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E. Cartan (1971) extended Liouville’s method for the case where the algebra
L of first integrals is not commutative, and possible infinite-dimensional. Cartan
assumed that the first integrals satisfy the relation

{fi, fj} = ζij(f1, . . . , fN) ∀ i, j ∈ {1, . . . , N} (21)

for some (nonlinear) functions ζij : RN → R. His method is based on the
following theorem.

Theorem 2 (S.Lie - E.Cartan, Cartan, 1971) Let F = (f1, . . . , fN ). Suppose
that the point c ∈ RN is not a critical value of the mapping F and that in
its neighborhood the rank of the matrix (ζij) is constant. Then, in a small
neighborhood U ⊂ RN of c, one can find N independent functions φj : U → R

such that the functions Φj = φj ◦ F : V → R, where V = F−1(U), satisfy the
relations

{Φ1,Φ2} = · · · = {Φ2η−1,Φ2η} = 1,

whereas the remaining brackets vanish, and the rank of the matrix (ζij) is 2η.

Using Theorem 2 we can lower the order of the system in the following
way: the level set Mc = {(x, ψ) ∈ M : Φj(x, ψ) = cj , 1 ≤ j ≤ N}, where c =
(c1, . . . , cN ) satisfies the theorem, is a smooth (2n−N)-dimensional submanifold
ofM . The theorem also implies that there is an action of the commutative group
Rl (l = N−2η) on Mc, generated by the phase flows of the Hamilton’s equations
with Hamiltonians Φj for j > 2η. Now, thanks to the functional independence
of the integrals Φj, this action has no fixed points. Hence, if its orbits are
compact, then the quotient space Mred = Mc/R

l is a smooth manifold with
dimension 2(n − N + η) endowed with a natural symplectic structure. Let H ′

denote the restriction of the Hamiltonian H to the level set Mc of the first
integrals. Since H ′ is constant on the orbits of the group Rl, there is a smooth
function Hred : Mred → R such that the diagram

Mc
pr
−→Mred

Hred−→ R
H′

←−Mc

commutes. To end, let us observe that one can obtain Liouville’s method from
Cartan’s method by choosing ζij ≡ 0 and η = 0. Locally, they give the same
result, however the factorization by Cartan method can be accomplished globally
only under more restrictive assumptions.

Kozlov and Kolesnikov (1979) proved an intermediate result, considering
that Poisson brackets of first integrals are a linear combination of first integrals.
In fact, this result is more suitable for our purposes.

Theorem 3 (Kozlov-Kolesnikov) Suppose that the Hamiltonian H : Rn ×
(Rn)∗ × R → R has n first integrals F1, . . . , Fn : Rn × (Rn)∗ × R → R that
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satisfy relation

∃ ξij ∈ R
n : {Fi, Fj} =

n
∑

s=1

ξijs Fs ∀i, j ∈ {1, . . . , n}, (22)

where ξij = (ξij1 , . . . , ξ
ij
n )T . Additionally, assume that

1. on the set Mf = {(x, ψ, t) ∈M : Fi(x, ψ, t) = ri, 1 ≤ i ≤ n} the functions
F1, . . . , Fn are independent;

2. (r1, . . . , rn)ξij = 0 for all i, j = {1, . . . , n};
3. the Lie algebra L of linear combination

∑

i ciFi, ci ∈ R, is solvable.
Then the solutions of the Hamiltonian system lie on Mf and can be found by
quadratures.

3. Main results – effective first integrals

In order to use Noether’s theorem (Theorem 1) to obtain effective first integrals
for the Hamiltonian equations, we need to compute the solutions of the first
order partial differential equation (19) considering the optimal control ū, i.e.

dH(x, ψ, t)

dt
T (x, ψ, t)− ψ̇(t) · X (x, ψ, t)

− ψ(t) ·
dX (x, ψ, t)

dt
+H(x, ψ, t)

dT (x, ψ, t)

dt
= 0, (23)

where X (x, ψ, t) ≡ X (x, ū, ψ, t) and T (x, ψ, t) ≡ T (x, ū, ψ, t). A particular
solution (if it exists) can be found, e.g. by the well known method of (additive)
separation of variables for PDE, assuming

T (x, ψ, t) = T 0(t) + T x1(x1) + · · ·+ T xn(xn) + T ψ1(ψ1) + · · ·+ T ψn(ψn),

X (x, ψ, t) = X 0(t) + X x1(x1) + · · ·+ X xn(xn) + Xψ1(ψ1) + · · ·+ Xψn(ψn).

In particular, we will consider that each independent component of T and X
have a polynomial structure with degree ≤ pd, hence

T (x, ψ, t) =

pd
∑

µ=0

(

CT
0 (µ)tµ +

∑

ν

CT
ν (µ)(qν)

µ

)

, (24)

Xi(x, ψ, t) =

pd
∑

µ=0

(

CX
0 (i, µ)tµ +

∑

ν

CX
ν (i, µ)(qν)

µ

)

, (25)

for some constants CT
0 (µ), CT

ν (µ), CX
0 (i, µ), CX

ν (i, µ) ∈ R and X = (X1, . . . ,Xn).
Now, since equation (23) has to be valid for every extremal (x(t), ψ(t), t) ∈

M , this particular choice for the structure of solutions will transform the PDE
problem for T ,X into an algebraic system of equations for the constants CT

0 (µ),
CT
ν (µ), CX

0 (i, µ), CX
ν (i, µ) ∈ R. The algebraic system is under-determined,
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because we have one equation for two unknowns, T and X . Therefore, if such
system has a nontrivial solution, we have a family of first integrals. Let us define
the mapping ̥ : Rm → C(M,R) by

̥(λ)(x, ψ, t) = ψ · X −HT (26)

for λ ∈ Rm. ̥ is a linear mapping, whereas T and X are linear with respect
to the constants, the PDE (23) is a linear first order equation (superposition of
solutions is a solution), and equation (20) is a linear functional combination of
T and X . We resume our statements in the following lemma.

Lemma 1 Assume that equation (23) has nontrivial solutions T (x, ψ, t) and
X (x, ψ, t) of the form (24) and (25), respectively. Then the mapping ̥ is a
linear m-parametric family of first integrals with respect to λ ∈ Rm, i.e. it
depends on m ∈ N0 arbitrary constants λ1, . . . , λm and

∀λ ∈ R
m :

∂̥(λ)

∂t
+ {H,̥(λ)} = 0. (27)

Considering the previous lemma, it makes sense to assume that ̥ has the
following structure

̥(λ)(x, ψ, t) =

m
∑

k=1

̥k(x, ψ, t)λk, (28)

where λ = (λ1, . . . , λm) ∈ Rm. We call ̥k the components of the family of first
integrals ̥(λ).

Let n be the dimension of the phase space (x ∈ Rn), m the number of
parameters on the family ̥(λ), and m ≥ n. The existence of n effective first
integrals (in the sense of Kozlov-Kolesnikov) will be related to the existence of a
nontrivial solution of a system of algebraic equations involving the components
of ̥ and their canonical Poisson brackets. Consider the following system of
algebraic equations

(λi)T A(x, ψ, t) λj = (ξij)T







(λ1)T

...
(λn)T






b(x, ψ, t), i < j ∈ {1, . . . , n}, (29)

where λ1, . . . , λn ∈ Rm and ξij ∈ Rn,

A(x, ψ, t) = ({̥p,̥q})
m

p,q=1 and b(x, ψ, t) = [̥1, . . . ,̥m]
T
.

By a solution of the system of equations (29) we mean a set of constant vectors
(λ1, . . . , λn), (ξ12, . . . , ξ(n−1)n) that satisfies the system. A nontrivial solution
is a solution for which all λk (k = 1, . . . , n) are different. From a nontrivial
solution, we have the set of first integrals {̥(λ1), . . . ,̥(λn)}. Comparing with
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relation (21), ζij are linear functions. Therefore, the space of linear combinations
L = span{̥(λ1), . . . ,̥(λn)} forms a noncommutative but finite-dimensional
Lie algebra, where the first integrals define a basis and the coordinates of ξij

are the structure constants.

Proposition 1 If there exists a nontrivial solution (λ1, . . . , λn), (ξ12, . . . ,
ξ(n−1)n) to the system (29), then the set of first integrals {̥(λ1), . . . ,̥(λn)}
satisfy relation (22).

Proof. The set {̥(λ1), . . . ,̥(λn)} is a set of first integrals of the Hamiltonian
H, since ̥(c1, . . . , cm)(x, ψ, t) is a first integral for any (c1, . . . , cm) ∈ Rm; by
Theorem 1 and Lemma 1. Relation (22) is satisfied, using the definition of ̥

(28), properties of the bracket, and relation (29). For i < j ∈ {1, . . . , n}, we
have:

{̥(λi),̥(λj)} =

(
mX

p=1

̥pλ
i
p,

mX
q=1

̥qλ
j
q

)
=

mX
p=1

mX
q=1

λ
i
pλ

j
q{̥p,̥q} = (λi)T

A(x, ψ, t)λj

= (ξij)T

264 (λ1)T

...
(λm)T

375 b(x, ψ, t) = (ξij)T

264 ̥(λ1)
...

̥(λm)

375 =
nX

s=1

ξ
ij
s ̥(λs).

Proposition 2 Assume that the set of first integrals {̥(λ1), . . . ,̥(λn)} satisfy
relation (22). Let S = {(a, b, p, q, i, j) ∈ {1, . . . , n}4 × {1 . . . ,m}2 : a < b, p <
q, a < p, i < j}. If

ξabi ξ
pq
j = ξpqi ξ

ab
j ∀ (a, b, p, q, i, j) ∈ S, (30)

then the Lie algebra L of linear combination
∑

s cs̥(λs), cs ∈ R, is solvable.

Proof. Let L0 ≡ L. We recall that a Lie algebra L is solvable if the descent
series is nilpotent, i.e.

∃k̄ ∈ N : Lk̄ ≡ 0 where Lk = [Lk−1, Lk−1]. (31)

For our purpose it will be enough to consider k̄ = 2. Let us observe that the
Liouville method (first integrals in involution) is the case k̄ = 1. Hence, for
k = 1 and using relation (22),(X

a

αḁ(λa),
X

b

βb̥(λb)

)
=

X
a<b

(αaβb − βaαb){̥(λa),̥(λb)}

=
X

i

X
a<b

(αaβb − βaαb)ξ
ab
i ̥(λi),
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and, for k = 2,(X
i

X
a<b

(αaβb − βaαb)ξ
ab
i ̥(λi),

X
j

X
p<q

(αpβq − βpαq)ξ
pq

j ̥(λj)

)
=
X

s

X
i<j

  X
a<b

(αaβb − βaαb)ξ
ab
i

! X
p<q

(αpβq − βpαq)ξ
pq
j

!
−

 X
p<q

(αpβq − βpαq)ξ
pq

i

! X
a<b

(αaβb − βaαb)ξ
ab
j

!!
ξ

ij
s ̥(λs)

=
X

s

X
i<j

X
a<b

X
p<q

(αaβb − βaαb)(αpβq − βpαq)
�
ξ

ab
i ξ

pq
j − ξ

pq
i ξ

ab
j

�
ξ

ij
s ̥(λs).

We are now in a condition to present the main result of the paper: a practical
method to find effective first integrals for optimal control problems. Theorem 4
is a direct consequence of Propositions 1 and 2, and the Kozlov-Kolesnikov
theorem.

Theorem 4 Assume that the optimal control problem (1)-(2) has a solution,
and there exists an m-parametric family of first integrals ̥, given by Lemma 1,
with the form

̥(λ)(x, ψ, t) =
m
∑

k=1

̥k(x, ψ, t)λk,

where λ=(λ1, . . . , λm)∈Rm. Let S={(a, b, p, q, i, j)∈{1, . . . , n}4×{1 . . . ,m}2 :

a<b, p<q, a<p, i< j}, A(x, ψ, t)= ({̥p,̥q})
m

p,q=1, Λ=
[

(λ1)T , . . . , (λn)T
]T
∈

Mn×m, and b(x, ψ, t) = [̥1, . . . ,̥m]
T
.

If there exists a solution (λ1, . . . , λn, ξ12, . . . , ξ(n−1)n, r1, . . . , rn) (with λi ∈
Rm, ξij ∈ Rn, ri ∈ R and i < j ∈ {1, . . . , n}) of the algebraic system of
equations






(λi)T A(x, ψ, t) λj − (ξij)TΛ b(x, ψ, t) = 0, for ∀ i < j ∈ {1, . . . , n},
ξabi ξ

pq
j − ξ

pq
i ξ

ab
j = 0, for ∀ (a, b, p, q, i, j) ∈ S,

∑n
s=1 rsξ

ij
s = 0, for ∀ i < j ∈ {1, . . . , n},

and

rank [∇(x,ψ)̥(λ1), . . . ,∇(x,ψ)̥(λn)] = n (32)

on the manifold M̥ = {α ∈ M : ̥(λi)(α) = ri}, then the optimal control
problem (1)-(2) is solvable on M̥.

Although simple, the arguments behind Lemma 1 and Theorem 4 give a
powerful method that can be applied with success to several problems of optimal
control.
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4. Illustrative examples

We now present three interesting applications, many others can be chosen from
the literature. Families of first integrals (Lemma 1) were obtained using the
Maple package described in Gouveia, Torres and Rocha (2006).

Example 1 Let us show the integrability by quadratures (solvability) of the
following optimal control problem

1

2

∫ b

a

u1(t)
2 + u2(t)

2 dt→ min ,







ẋ1(t) = u1(t) cos(x3(t))
ẋ2(t) = u1(t) sin(x3(t))
ẋ3(t) = u2(t)

which is known as the Dubin’s model for the kinematics of a car (Martin, Murray,
Rouchon, 2002, pp. 750–751). The true Hamiltonian is

H =
1

2

(

[cos (x3(t))ψ1(t) + sin (x3(t))ψ2(t)]
2 + [ψ3(t)]

2
)

.

It is clear that the problem has three trivial first integrals (f.i.) {H, ψ1, ψ2}
in involution. Notice that an autonomous Hamiltonian is always a f.i. by Re-
mark 3, and the other f.i. follow from Remark 2. However, by computing ̥(λ)
due to Lemma 1 and by applying Theorem 4, we obtain the trivial f.i. and an
extra effective f.i. F = −ψ1x2 + ψ2x1 + ψ3. Therefore, the set {ψ1, ψ2, F} can
also be used to prove the solvability of the problem.

Example 2 An interesting variation of the previous problem is the model
of a car with one-trailer (Fuka and Susta, 1992), parameterized by constants
(a, b, c) ∈ R,

∫ b

a

u2
1 + u2

2 dt→ min ,



















ẋ1 = u1 cos(x3)

ẋ2 = u1 sin(x3)

ẋ3 = 1
c
u1 tan(u2)

ẋ4 = 1
b
u1

(

a
c

tan(u2) cos(x3 − x4)− sin(x3 − x4)
)

.

The necessary and sufficient condition of invariance is satisfied with the following
generators {T = C2,X1 = −C1x2 + C4,X2 = C1x1 + C3,X3 = C1,X4 = C1}. It
follows that, for C = (C1, C2, C3, C4) ∈ R4,

̥(C)(x, ψ, t) = (C4 − C1x2)ψ1 + (C3 + C1x1)ψ2 +C1ψ3(t) +C1ψ4−C2H.

Therefore, a possible solution of the algebraic system of Theorem 4 is λ1 =
(1, 0, 0, 0), λ2 = (0, 0, 1, 0), λ3 = (0, 0, 0, 1), λ4 = (0, 1, 0, 0), ξ12 = (0, 0,−1, 0),
ξ13 = (0, 1, 0, 0), ξ23 = (0, 0, 0, 0), ξi4 = (0, 0, 0, 0) for i = 1, 2, 3, and r =
(c1, 0, 0, c4) for any c1, c4 ∈ R. The set of effective first integrals is

{̥(λ1) = −ψ1x2 + ψ2x1 + ψ3 + ψ4,̥(λ2) = ψ2,̥(λ3) = ψ1,̥(λ4) = H}.
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Comparing with the last example, which is linear in control, this problem is
not only nonlinear in control as it has a very complicated true Hamiltonian.
However, the set of first integrals is just an extension of the previous one, where
the only change is ̥(λ1) = F + ψ4.

Example 3 We now consider the so-called flat Martinet problem (Bonnard,
Chyba, Trélat, 1998):

∫ b

a

u2
1 + u2

2 dt→ min ,















ẋ1 = u1

ẋ2 =
u2

1 + αx1
,

ẋ3 = x2
2u1

α ∈ R .

For α = 0 the problem is clearly integrable by using the trivial set of first
integrals {H, ψ1, ψ3} in involution (remarks 2 and 3). In the α 6= 0 case, one has
the invariance-generators

{

X2 = 0,Ψ2 = 0, T = 2λ1t+ λ3,Ψ1 = −λ1ψ1, U1 =
−λ1u1,Ψ3 = −λ1ψ3, U2 = −λ1u2, X3 = λ1x3 +λ2, X1 = λ1(α−1 + x1)}, which,
after solving the algebraic system of Theorem 4 gives the following set of effective
first integrals

{

F1 = H, F2 =

(

1

α
+ x1

)

ψ1 + x3ψ3 − 2tH, F3 = ψ3

}

.

This example shows that the method not only generates mappings F (x, ψ) ver-
ifying {F,H} = 0, but also satisfying the more relaxed condition {F,H} = cH
for some c ∈ R (see Remark 1). We observe that a nonautonomous first integral
(F2) is required to prove integrability of the problem, in spite of the fact that
the problem is autonomous.

5. The sub-Riemannian nilpotent case (2, 3, 5)

The sub-Riemannian (SR) problem is to characterize geodesics in some n dimen-
sional SR-manifold M , i.e. to find absolutely continuous curves t 7→ q(t) ∈ M ,
0 ≤ t ≤ T , minimizing the length

l(q) =

∫ T

0

< q̇(t), q̇(t) >
1

2 dt

such that q̇(t) ∈ ∆(q(t))\{0} a.e. t, where ∆ is a constant rank m ≤ n distrib-
ution with a (degenerate) Riemannian metric g on ∆, and < ·, · > is the scalar
product induced by g. The SR-problem can be locally formulated as an optimal
control problem (Bonnard and Chyba, 2003): let (U, q) be a chart on which ∆ is
generated by an orthogonal basis {X1, . . . , Xm}, then the SR-problem (U,∆, g)
is equivalent to

1

2

∫ T

0

(

m
∑

i=1

u2
i (t)

)

dt −→ min , q̇(t) =

m
∑

i=1

ui(t)Xi(q(t)).
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The nilpotent case (2, 3, 5) is the instance where m = 2, n = 5, and the
Lie algebra generated by X1 and X2 is a complete nilpotent Lie algebra of
nildegree 3. In other words, if [·, ·] denotes the Lie bracket of vector fields,
X3 = [X1, X2],X4 = [X1, X3] andX5 = [X2, X3], the SR-problem is nilpotent of
type (2, 3, 5) if Xi(0) = ci

∂
∂xi

for some ci 6= 0 ∈ R and i ∈ {1, . . . , 5}; which gives
dim({X1, X2}) = 2, dim({X1, X2, X3}) = 3 and dim({X1, X2, X3, X4, X5}) =
5. The true Hamiltonian is then given by H(q, ψ) = 1

2

∑m
i=1 h

2
i (t), where

hi(t) =< ψ(t), Xi(t) > for i ∈ {1, . . . ,m}, and the Poincaré system is a system of
equations on T ∗U , given by completing the set {X1, . . . , Xm} to form a smooth
basis of TU . Such vector fields are obtained by extending hi(t) =< ψ(t), Xi(t) >
to i ∈ {1, . . . , n} and computing ḣi =

∑m
i=1{hi, hj} hj, where {·, ·} is the n

bracket.
Y. Sachkov (2004) proved that the optimal control associated with the sub-

Riemannian nilpotent case (2, 3, 5) is solvable, by obtaining three first integrals
and using them to reduce the Hamiltonian system to the differential equation
θ̈(t) = c1 cos(θ(t)) + c2 sin(θ(t)) for c1, c2, θ(t) ∈ R. Hence, the solvability is ob-
tained from previous works showing that such differential equation is integrable
by quadratures using Jacobian Elliptic Functions. The autonomous Hamil-
tonian H is one of the first integrals used, and the other two, h4 and h5, are
obtained as a direct consequence of the fact that the Lie algebra is nilpotent,
since {hi, hj} =< ψ, [Xi, Xj ](q) > imply that ḣ4(t) = 0 and ḣ5(t) = 0 along
solutions.

With the method presented in this work, we can obtain enough first integrals
to directly prove the solvability of the problem. In fact, we will consider a more
general problem, parameterized by constants α, β ∈ {0, 1}. Consider the SR
nilpotent case (2, 3, 3 + α+ β) with local generators for ∆ given by

X1 =
∂

∂x1
and X2 =

∂

∂x2
+ x1

∂

∂x3
+
α

2
x1

2 ∂

∂x4
+ βx1x2

∂

∂x5
.

The distribution ∆ is known as the nilpotent Heisenberg distribution (α = 0
and β = 0), the nilpotent Engel distribution (α = 1 and β = 0), or the Cartan
distribution (α = 1 and β = 1). The Pontryagin maximum principle gives the
true Hamiltonian

Hα,β =
1

2

[

ψ2
1 + (ψ2 + x1ψ3 +

α

2
x2

1ψ4 + βx1x2ψ5)
2
]

.

This class of problems admit the following set of generators (see Gouveia,
Torres, Rocha, 2006):

{

Ψ5 = −
3

4
λ1ψ5,Ψ1 = −

1

2
λ1ψ1,Ψ2 = −

1

2
ψ2λ

1,Ψ3 = −λ1ψ3 − λ
2ψ5,

T = λ1t+ λ4,Ψ4 = −
3

2
λ1ψ4, X1 =

1

2
λ1x1, U1 = −

1

2
λ1u1, X2 =

1

2
λ1x2 +

1

β
λ2,
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U2 =
1

2
λ1u2, X5 = λ2x3 +

3

2
λ1x5 + λ3, X4 =

3

2
λ1x4 + λ5, X3 = λ1x3 + λ6

}

.

Computing ̥(λ) on Lemma 1 and finding solutions for Theorem 4, we have the
effective first integrals (not in involution)

{Hα,β, ψ2 + βψ5x3, ψ3, αψ4, βψ5}.

Lemma 2 The sub-Riemannian nilpotent cases (2, 3) (α = 0 and β = 0), (2, 3, 4)
(α = 1 and β = 0), and (2, 3, 5) (α = 1 and β = 1), are integrable by quadra-
tures.

It is not difficult to find a first integral F whereas the set {H, F, ψ3, ψ4, ψ5}
is involutive. Such first integral should satisfy the relations {H, F} = 0 and
{F, ψi} = 0 for i ∈ {3, 4, 5}. If we consider a priori that F does not depend
on x3, x4 or x5, then last condition is trivially verified. Hence, it just remains
to solve {H, F (x1, x2, ψ1, . . . , ψ5)} = 0, which by a direct calculation gives the
first integral

F = −ψ1ψ5 + ψ2ψ4 − (ψ3 +
1

2
ψ5x2)x2ψ5.

Therefore, the solutions of the sub-Riemannian nilpotent case (2, 3, 5) are Liou-
villian, using the first integrals {H, F, ψ3, ψ4, ψ5} in involution.

Although the present method can be applied to other hard problems, such
as the sub-Riemannian nilpotent cases (2, 3, 5, 8) or (2, 3, 5, 8, 14), for which
the solvability is still unknown, because of its complexity (8 and 14 effective
first integrals are needed, respectively), their study is left for a forthcoming
publication. Here we just notice that the Maple package described in Gouveia,
Torres, Rocha (2006) is unable to find a sufficiently rich family of first integrals
for the case (2, 3, 5, 8, 14). Therefore, they need to be found by other theoretical
procedure.
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