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OPTIMAL CONTROL OF NEWTON-TYPE PROBLEMS
OF MINIMAL RESISTANCE

Abstract. We address Newton-type problems of minimal resistance from an optimal control
perspective. It is proven that for Newton-type problems the Pontryagin maximum principle
is a necessary and sufficient condition. Solutions are then computed for concrete situations,
including the new case when the flux of particles is non-parallel.

In 1686, in his celebrated Principia Mathematica, Isaac Newton propounded
the problem of determining the profile of a body of revolution, moving along its axis
with constant speed, through some resisting medium, which would minimize the total
resistance (see [9, 14]). Problems of this kind find application in the building of high-
speed and high-altitude flying vehicles, such as in the design of missiles or artificial
satellites. Newton has given the correct answer to his problem, in the situation of a
“rare” medium of perfectly elastic particles with constant mass and at equal distances
from each other, the resisting pressure at a surface point of the body being proportional
to the square of the normal component of its velocity, but without explaining how he
obtained it. He didn’t write, however, “I have a great proof, but no space for it in
the margins of this book”. A proof “from the Book™ was waiting for the Pontryagin
maximum principle.

When one writes the resistance force R associated to Newton’s problem,

. T 1
R[X(')]=/O tmdt,

one obtains an integral functional of the type of those studied throughout the history
of the calculus of variations. However, due to the restrictions on the derivatives of
admissible trajectories, X (t) > 0, no satisfactory theory is available within the calculus
of variations framework (see [1, 25, 26]). As first noticed by Legendre in 1788 (see
[2] and references therein), without such restrictions on the derivatives the problem
has no solution (the infimum is zero), since one can obtain arbitrarily small values for
the integral resistance R [X(-)] by choosing a zig-zag function x (-) wildly oscillating,
with large derivatives in absolute value. To make the problem physically consistent
one must take into account the monotonicity of the profile, and this means, as was first
remarked by V.M. Tikhomirov (cf. [1, 24]), that Newton’s problem belongs to optimal
control:

T 1 )
R[U()]:‘/O tmdt—)l’ﬂln,

(D X(t) =u), u() =0,
x(0)=0, x(T)=H.
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Most part of the literature wrongly assume Newton’s problem to be “one of the first ap-
plications of the calculus of variations” but, in spite of this, the same literature correctly
asserts the birth of the calculus of variations: 1697, the publication date of the solution
to the brachystochrone problem, and not 1686, the publication date of the solution to
Newton’s problem of minimal resistance.

In 1997 H. J. Sussmann and J. C. Willems, in the beautiful paper [23], defended
the polemic thesis that the brachystochrone date 1697 marks not only the birth of the
calculus of variations but also the birth of optimal control. The truth seems to be deeper:
optimal control was born in 1686, before the calculus of variations, with Newton’s
problem of minimal resistance. The restriction on the control u(-), which appear in
Newton’s problem (1), is a common ingredient of the optimal control problems. Such
constraints appears naturally in practical engineering control problems, and are treated
with the Pontryagin maximum principle — the central result of optimal control theory,
first conjectured by L. S. Pontryagin, and then proved, in the late 1950’s, by him and
his collaborators, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko [22].
In an optimal control problem, the control functions take values on a set which is,
in general, not a vector space. This is precisely what happens in Newton’s classical
problem (1), and the reason why Newton’s problem must be classified as an optimal
control problem, and not as a problem of the calculus of variations.

Newton’s problem has been widely studied, and the literature about it is ex-
tensive. The main difficulty is that of existence [8]: the Lagrangian L (t,u) = 14:7
associated to Newton’s problem (1) is neither coercive nor convex, and Tonelli’s di-
rect method (see [10]) fails. In order to prove existence, several different classes of
admissible functions have been proposed. The question is now usually treated with the
help of relaxation techniques (see [5]), although direct arguments are also possible (see
[16, 17]). As we shall prove (§2), for the Newton-type problems, the existence of a
minimizer follows easily from the Pontryagin maximum principle: one can show that
the Pontryagin extremals are, for such problems, absolute minimizers (cf. Theorem 2).

Several extensions of Newton’s problem have been considered in recent years.
This revival of interest in Newton’s problem, and in the study of many variations around
it, has been motivated by the paper [9] of G. Buttazzo and B. Kawohl. Recent results
on Newton-type problems include: bodies without rotational symmetry (nonsymmetric
cases) [4, 7, 15]; unbounded body (resistance per unit area) with one-impact assump-
tion [12]; bodies with rotational symmetry and one-impact assumption, but not convex
[11]; friction between particles and body (non-elastic collisions) [13]; bodies with pre-
scribed volume [3]; multiple collisions allowed [16, 17]; unbounded body and multiple
collisions allowed [20]. More recently, Newton-type problems have been related with
problems of mass transportation [18, 19]. For a good survey on mass optimization
problems and open problems, we refer the reader to [6].

Here we consider convex d-dimensional bodies of revolution with Height H and
radius of maximal cross section T, and treat them using an optimal control approach.
We will not be restricted to two-dimensional or three-dimensional bodies, considering
bodies of arbitrary dimension d > 2. We also introduce a different point of view.
For us the body does not move, and the particles are the ones who move. The body is
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situated in a flux of infinitesimal particles, the flux being invariant with respect to trans-
lations and rotations around the symmetry axis of the body. This new point of view is,
in our opinion, physically more realistic. Newton has considered the particles with no
temperature (not moving). When the particles have temperature, they move, and the
flux of particles is not necessarily falling vertically downwards the body, as considered
by Newton. We will be considering new interesting situations with a non-parallel flux
of particles. We obtain complete solution to this class of Newton-type problems, by
showing that, under some physically relevant assumptions on the Lagrangian, a control
is an absolute minimizing control for the problem if, and only if, it is a Pontryagin
extremal control. Thus, for the Newton-type problems we are dealing with, Pontrya-
gin maximum principle holds not only as a necessary optimality condition, but also
as a sufficient condition. As very special situations, one obtains the solution found
by Newton himself (§3.2), and solutions to Newton’s problem in higher-dimensions

(§3.2).

1. Optimal control

The optimal control problem in Lagrange form consists in the minimization of an inte-
gral functional

@ IxOu01 = [ LX)
among all the solutions of a differential equation

3 X'(t) = (t,x(),u®), tel0,T]
subject to the boundary conditions

) X0 =a, x(T)=4.

The Lagrangian L and the velocity function ¢ are defined on [a, b] x R" x Q, where
Q C R is called the control set. The main difference between the problems of optimal
control and those of the calculus of variations, is that Q2 is in general not an open set. In
the case ¢ (t, X, U) = U, and Q = R", one gets the fundamental problem of the calculus
of variations. For the Newton problem, we have n =1 = 1, Q = R(')" o, x,u) =
Uya =0, 8 > 0,and L(t,x,u) = 1—:u2' Typically, L(t, x, u) and ¢(t, X, u) are
continuous with respect to all arguments and have continuous derivatives with respect
to X; the admissible processes (X(-), U(-)) are formed by absolutely continuous state
trajectories X () and measurable and bounded controls u(-), taking values on the control
set Q and satisfying (3)-(4).

The Pontryagin maximum principle is a first-order necessary optimality con-
dition, which provides a generalization of the classical Euler-Lagrange equations and
Weierstrass condition, to problems in which upper and/or lower bounds are imposed
on the control variables.
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THEOREM 1 (Pontryagin maximum principle). Let (x(-), u(-)) be a minimizer
of the optimal control problem. Then there exists a pair (wg, v (-)), where yy < 0isa
constant and  (-) an n-vector absolutely continuous function with domain [0, T], not
all zero, such that the following holds true for almost all t on the interval [0, T]:

(i) the Hamiltonian system

X'(t) = 2L (t, x(®), u(t), yo, w (1)) ,
w'(®) = =G (& X(1), u®), wo, ¥ (1) ;

(ii) the maximality condition

) H(t, x (), u(t), wo, () = IlfleaéH(t’ X (1), U, wo, () ;

where the Hamiltonian H is defined by
H(t, X, u, wo, y) = ol (t, X, u) + y - o(t, X, u).

The first equation in the Hamiltonian system is just the control equation (3).
The second equation is known as the adjoint system.

DEFINITION 1. A quadruple (x(-), u(:), wo, w(-)) satisfying the Hamiltonian
system and the maximality condition is called a Pontryagin extremal. The control u(-)
is said to be an extremal control. The extremals are said to be abnormal when wog =0
and normal otherwise.

REMARK 1. If (X(+), u(-), wo, w(-)) is a Pontryagin extremal, then, for any y >
0, (X(),u(-), y wo, y w(-)) is also a Pontryagin extremal. From this simple observation
one can consider, without any loss of generality, that /9o = —1 in the normal case.

REMARK 2. The fact that Theorem 1 asserts the existence of Hamiltonian mul-
tipliers wg and  (-) not vanishing simultaneously is of primordial importance: without
this condition, all admissible pairs (X(-), u(-)) would be Pontryagin extremals.

In some situations, it may happen that functions L and/or ¢ depend upon some
parameters w € W C RK. In this case, given a control u(-), the corresponding state
trajectory X(-) and the cost functional J will in general depend on the choice of the
parameters w. The problem in then to choose the parameters w in W for which there
exists an admissible pair (X(-), G(-)) such that J [)?(-), ag), 1])] < J[x(-),u(-), w] for
all w € W and corresponding admissible pairs (X(-), u(-)). The parameter problem
can be reformulated in the format (2)—(3) by considering w as a state variable with
dynamics w’(t) = 0 and initial condition w(0) € W.

2. Optimal control of Newton-type problems

The standard method to solve a problem in optimal control proceeds by first proving
that a solution to the problem exists; then assuring the applicability of the Pontryagin
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maximum principle; and, finally, identifying the Pontryagin extremals (the candidates).
Further elimination, if necessary, identifies the minimizer or minimizers of the prob-
lem. It is not easy to prove existence for Newton’s problem with the classical argu-
ments, because the Lagrangian L (t, u) = ltT is not coercive and it is not convex with
respect to U for u > 0. Here we will make use of a different approach. We will show,
by a simple and direct argument, that for Newton-type problems (6)—(7) the Pontryagin
extremals are absolute minimizers. This means that, in order to solve a Newton-type
problem, it is enough to identify the Pontryagin extremals (cf. Theorem 2).

We begin to show that there are no abnormal extremals for a Newton-type prob-
lem.

PROPOSITION 1. Let L(t, u) be a continuous function satisfying the following
conditions:

(6) Lt,uy>&>0 V(t,u)€lo,TI xRS,
Jim Ltwy=¢ vte[0,T].

Then all Pontryagin extremals (x(-), u(-), wo, w(-)) of the Newton-type problem

T
Ju@)] =/ L (t,u(t))dt — min,
0

(7 x'(t)y=u(), u()=0,
x(0) = 0,x(T) = Awith > 0,

are normal extremals (o = —1) with y a negative constant (w (t) = —4, 2 > 0).

Proof. As far as the Hamiltonian does not depend on X,

H(t,u, wo, w) = wol (t,u) + wu,

we conclude from the adjoint system that w (t) = c, with C a constant. If ¢ is equal to
zero, then wo < O (they are not allowed to be both zero) and the maximality condition
(5) simplifies to

wol (t,u(t)) = Iggg{t/IoL(t, u} .

Under the hypotheses (6) the maximum is not achieved (U — +o00) and we conclude
that ¢ # 0. Similarly, for ¢ > 0 the maximum

max {yoL(t,u) + cu}
u>0

does not exist and one concludes that ¢ < 0. It remains to prove that vy is different
from zero. Indeed, if o = 0, (5) reads

cu(t) = max {cu} ,
u>0

and follows that u(t) = 0 and x(t) = constant. This is not a possibility since f > 0.
The proof is complete. O]
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Theorem 2 reduces the procedure of solving a Newton-type problem to the com-
putation of Pontryagin extremals.

THEOREM 2. The control ((-) is an absolute minimizing control for the New-
ton-type problem (6)—(7), i.e., J[G()] < J[u()]forallu(-) € L ([0, T1,RY), if, and
only if, it is an extremal control.

Proof. Theorem 2 is a direct consequence of the maximality condition. From Proposi-
tion 1 one can write (5) as

® —L(t, 0(t)) — Au(t) = —L(t, u(t)) — Au(t)

for all admissible controls u(-) and for almost all t € [0, T]. Having in mind that all
admissible processes (X(+), U(-)) of the problem (7) satisfy

/OT u(t)dt = /OT x'(t)dt = 8,

it is enough to integrate (8) to obtain the desirable conclusion:

T T
/L(t,U(t))dtf/ L(t, u(t))dt.
0 0
O

The required optimal solutions of the Newton-type problem (6)—(7) are exactly
the Pontryagin extremals. This means, essentially, that we have reduced a dynamic
optimization problem (a minimization problem in the space of functions) to the static
optimization problem given by the maximality condition.

COROLLARY 1. Finding the solutions for the Newton-type problem (6)—(7)
amounts to find the minimum of the function h(u) = L(t,u) + Au,t € [0, T], 4 > 0,
foru > 0.

3. An application

Consider a d-dimensional body of revolution

(G0, &) = & € 10, HI, [€] < D(&)) C RY,

whered > 2, & = (&1,...,&—1), © is a non-negative function defined on [0, H].
Denote by T the radius of maximal cross section of the body, T = maxo<-<H @ ({).
Let us assume that the body is convex, then the function @ is concave, and there exists
¢ € [0, H] such that ®(¢) is monotone increasing as { < ¢, and monotone decreasing
as > C.

We suppose that the body is unmovable and is situated in a flux of infinitesimal
particles. The flux is invariant with respect to translations and rotations around the
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¢o-axis, which is the symmetry axis of the body. So, the specific pressure of the flux
on an infinitesimal element of the body surface depends only on the value of @’ at that
element. It is convenient to consider, instead of @, two functions that are generalized
inverses of ®; denote them by X_(t) and H — X4 (t). They are defined in the follow-
ing way: X_(t) = O ast € [0, ®(0)], and x_(t) is inverse to the strictly monotone
increasing branch of ® ast € [®(0), T]; X+ (t) =0ast € [0, ®(H)], and H — x4 (t)
is inverse to the strictly monotone decreasing branch of ® ast € [®(H), T]. The ob-
tained functions X_ and X4 are convex, continuous, and monotone increasing, besides
X—-(0) = x4(0) =0, x_(T) < ¢, X4(T) < H — c. In such a representation, the
specific pressure is a function of x/_ or of x__, if the point belongs to the front or to the
rear part of surface, respectively; we denote the corresponding functions by p4(-) and
—p_().
The pressure on an element d9-!s of the front part of surface is dp; =

p+(x;)dd_ls. The projection of the pressure vector to the &y-axis equals dpy =

dpy/4/1+ xf, and the projection of the surface element to Rgl__} ot has area d9-1¢ =

dd-1s/ /1 + Xf. Thus, the &-projection of pressure corresponding to the element

dd-1¢ is dpg = p4 (Xg_)dd_lf . Passing to polar coordinates and integrating over the
ball {|¢] < T}, one obtains the resistance R+ of the front part of body to the flux:

:
Rl Ol =vacr [ pro0)ate

here vg—1 stands for the volume of (d — 1)-dimensional unit ball. Similarly, the re-
sistance of the rear part of body to the flux (which is positive) equals —R_[X_(-)],
where

)
R_X_()] = vd_1 /0 p_ (' (t)) dte~!.

So, the resistance of body to the flux is R[X1(-), X_(-)] = Ro[X+ ()] + R_[x_()].

It is required to minimize R[X4(-), X—(-)] over all pairs (X4 (-), X_(-)) of con-
vex monotone increasing functions defined on [0, T], provided X4 take values in
[0, f+], where f— = ¢, f+ = H —c, T and H are fixed, and C varies between 0
and H.

We are acting as follows. First we fix the sign "+ or , minimize R4+ over
monotone increasing functions X : [0, T] — [0, f+], with S fixed, and verify that

among all the solutions, the convex one is unique; denote it by Xii. Then we minimize

the sum R+[Xﬁ+ OI+R- [Xf‘ ()] over all positive T and f~ such that S+~ = H.

5% 9

3.1. Solving the problem in general case

In what follows, we assume that the functions py and p_ satisfy the following condi-
tions:

(i) p+ € C'[0, +00);
(ii) there exist limy— o0 P+ (U);
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(iii) Pl (0) = limy—s 00 P (U) = 0;
(iv) for some 0 > 0, pl. is strictly monotone decreasing on [0, U], and
strictly monotone increasing on [U4, +00).

3% 9

For simplicity, we further put vq—1 = 1. Let us fix the sign ”+” or , and

introduce shorthand notations

pr=p, Be=8 Ri=R, xi*=x’.

PROPOSITION 2. There exists a unique solution u® of the problem

PO — pW) _
u

max,

besides u® > 0.

Proof. Denote q(u) = p(0) — p(u) and B = sup,.¢(q(u)/u). From (i)—(iv) it follows
that the function q(u)/u, u > 0 is continuous, positive, and satisfies the relations
limy— o+ (q(u)/u) = limy_ 450 (q(u)/u) = 0, hence 0 < B < +00, and there exists a
value u® > 0 such that q(u®)/u® = B. Obviously, at u = u® one has (q(u)/u)’ = 0,
hence q'(u®) = q(u®)/u®. At some § € (0, 1) one has q(u®)/u® = g’(Qu®), hence
q’(u® = q’(u®). This implies that q’ is not strictly monotone on [0, u®]; thus, by
virtue of (iv), u® > .

It remains to prove that the value u®, solving the equation q(u)/u = B, is
unique. Suppose that q(u®)/u® = qu')/u! = B, u® < u'. Then q(u®) = u®q’u%),
qul) =ulqg’h). Atsome u € (u°, u'), one has qu') — qu® =q’(u) u' —u;
this implies that g’(u) (u! —u® =ulq’u!) —u®q’(®), hence

©9) u @'’ —q'u)) +u' @@ —qg'@)) =o.

One has u® > 0, hence q’ is strictly monotone decreasing as u > u’, so both terms in
(9) are positive. The obtained contradiction proves the proposition. O

Let us denote
_ pO) —pu)
=— =

B —p'(u).

PROPOSITION 3. (a) As At2~9 > B, the unique solution of the problem
(10) t9-2 p(u) + AU — min;

isu=0.

(b) As 1 t2~9 = B, there are two solutions: u = 0and u = u®,

(c) As At2~9 < B, the solution @ is unique, besides G > u®, and p’((i) =
—t>d,
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Proof. (a) and (b) are obvious; let us prove (c). Denote 7= 124, By definition of
B, for0 < u < u° one has

PO —pW) _ o _ pO) —pw’
u o uo
pu®) + Bu® = p(0) < p(u) + Bu,

>

hence
p) — pu’) > B U’ —u) > 1’ —u),

and thus,
p(u) + Au > pu®) + 2u°.

On the other hand, one has B = —p’ (uo), therefore
pPu®+1<o;

moreover the function p(u) + Au is convex on [u°, +oc0) and tends to infinity as U —
+00. All this implies that the solution U of (10) is unique, satisfies the equation p’(0)+
A =0,and 0 > u°. O

From Corollary 1 we know that if X (-) is a solution of the minimization prob-
lem R[x(-)] — min, X : [0, T] — [0, p], then for some 4, the values U = Xﬁ/(t),
t € [0, T] satisfy the equation (10). According to propositions 2 and 3, one should
distinguish between three cases: (a) if Jt279 > B, thenu = 0; (b) if 1t>~9 = B,
thenu =0 oru = u; (c) if At29 < B, thenu > u®, and p/(u) = —At2-9,

Consider two different cases: d = 2 (two-dimensional problem) and d > 3 (the
problem in three or more dimensions).

Two-dimensional problem (d = 2)

If A > B, the unique solution of (10) is u = 0, hence x# = 0. This implies that f = 0.
If 4 = B, there are two solutions: U = 0 and u = u®, therefore any absolutely
continuous function X(-), X(0) = 0, x(T) = B, such that x'(t) takes the values 0 and
u®, minimizes R. A convex solution x” has monotone increasing derivative, hence for
somety € [0, T], x#'(t) =0ast € [0, to], and x#'(t) = u® ast € [ty, T]. Thus,

0 ast e [0, t

an x(t) = Wt —ty) ast e[[to, TO]]

Taking into account that x#(T) = £, one concludes that #/T < u®andty = T —g/u®.
If 2 < B, there is a unique solution G, hence x/(t) = Gt, and /T =0 > u°.
Summarizing, one gets that

(i) as /T < u®, the convex solution x#(t) is given by (11);

(i)as /T > u®, xA(t) =pt/T.
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As /T < uP, one has
to T
RiCO1= [ poydt+ [ pad)at
0 to

and taking into account that ty = T — £/u® and (p(0) — p(u®))/u® = B, one gets
R’ ()1 =T p(0) - p B.
As /T > uP, one has R[x# ()] = T p(f/T). Introduce the function

p(0) —Bu, if 0<u<ud,
p(u), if u>u°,

o=

then
RIX()1=T p(B/T).

Thus, the minimization problem RJr[xﬁJr O]+ R,[Xf ~(-)] — min is reduced to the
problem

(12) ph(2) = p+ (@) + p-(h—2) > min, 0=<z<h,

where h = H/T. The introduced functions p+(u) are continuously differentiable on
[0, +00), and

—By if 0<u<uY,

pi(u) if u>ul.

Using that u(i > U+, one concludes that P, (u) is monotone increasing, hence py,(z),
0 <z < h is also monotone increasing.

pL(u) = [

From now and until the end of subsection 3.1, we shall assume that p’, (U) <
p__(u), u > 0, hence By > B_. Denote by U, a positive value such that p/, (uy) =
—B_. This value is unique, and U, > ug. Consider four cases:

DO <h<ul; 2)u} <h<uyg 3Hu, <h<u,+u’; and4) h > u, +ul.

In the cases 1) and 2) one has

ph@) < ph(h)y =P, (h)+B_ <0 as 0<z<h,
hence the minimum of (12) is achieved at z = h. Therefore, the optimal value of f_ is
Z€ero, so Xf’ = 0.

In the case 1) one has 8. /T = h < ug, hence xﬁ+ () is given by (11), with
to=T( — h/u?r). So, the optimal body is a trapezium.

In the case 2) one has X_lff (t) = ht, hence the optimal body is an isosceles
triangle.

In the cases 3) and 4), one has p/, (h) > —B_ > —B, = ﬁ;(u&), hence
h > u&. Further, one has

pr(h) = pi(h) — B- > 0;
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on the other hand,
ph(us) = Py () — pL(h —u}) < —B4+ + B_ <0.

It follows that the minimum of pp is achieved at an interior point of [u9r, h], so the
optimal value of f_ satisfies the relation u‘i < B+/T <h, and Xﬁ* O =tp+/T.

In the case 3), denoting h= max{0, h — u‘l}, one has h < U, hence
ph(A) = p,(R) — P (h — R) < B, (A) + B_ <0,

hencg the minimum of Py, is reached at an interior point of [ﬁ, h], thus 0 < B_/T <
h—h<u_, and

(1) = 0 iftef[o, T —p_/u%]
STl W =T+ ifte[T =g, T

The optimal body here is the union of a triangle and a trapezium turned over.

In the case 4), one has py,(h —u%) = P/ (h—u_)+B_ > 0, hence the minimum
of pp is reached at a point of [u(J)r, h—u®). Thus, _/T > u°, and Xﬁf O=tp_/T.
The optimal body is a union of two isosceles triangles with common base.

Problem in three or more dimensions (d > 3)

Here we additionally assume that pi+ € C?[0, 4+00) and pf(u) >0asu > u9r.

Denote w = 1/(d — 2) and ty = (1/B)®. As 0 <t < tp, the unique solution of
(10)is u = 0, hence Xﬁ(t) =0. Asty <t < T, the solution u satisfies the relation

92 p'(u) + 1 =0,

and u > 0.

If T < ty, one has x# = 0 and B = 0. Let, now, tp < T using that p’ is
negative, continuous, and strictly monotone increasing on [u®, +00), one concludes
that x/ /(t) = U is also continuous, and is strictly monotone increasing on [tp, T)]
from x/ /(to +) = u° to the value U defined from the relation

T2p'U)+21=0, U>u.

Thus, x# (+) is convex; moreover, asty <t < T, x# can be represented as a function
of u € [u%, U]. Using that Xﬂ/(t) = U and that
/’{a)
(13) t=—r—,
[p/(u)|®
one gets
dx#  dx? dt » d 1
—_— = U — ),
du dt du du \|p’(u)|®
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hence

u 1
Xﬂz/l“’/ vd( - );
uo p’(w)|®

using that | p’(u%)| = B, one obtains

o — 0 u _uo_/“ dv
- pWle B2 Jp lpPo)e )

In particular, substituting u = U, one has
U uo U 4
(14) 2 /——__/ ——_)=3.
lp’W)le  B®  Jy [p'M)|®
Introduce the function
s =[ =
o 1P

Using that |p’(v)| = Bas0 <v < u® and p’(v) = p'(v) as v > u°, one gets

u® U dy
u =—+/ v
=5t | PP

and using that

A/C()
T=—71—,
[p'(U)|®
from (14) one gets
(15) ézu —p'(U)[“g).

The minimal resistance equals
T T
RICOI= [ pu®)dt® = po + [ pumydt.
0 )

Using that u(T) = U, u(to) = u®, |p'(’)| =B, p(0)— pu’) = BU’, to = A*/B,
and also the formula (13), one finds

p(0) p(V) _|o(u0)_/U dp(u)
BIFe T p )t B T Tp(W)[F

_ e U0 pW) +/U du |
B " [P T o [p'W)”

RIXP ()]
Td—l

RIxP ()] = AlH+e ’

This implies

(16) = pU) +[p' W) g).
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Denote Uy =z, U_ = z_. Using (15) and (16), one comes to the following
problem of conditional minimum

r(z_,zy) :=
D (z) + 1P @) g4 @) + p-(zo) +1p.z)""” g_(z-) — min,
under the conditions

A7) - = |p @) 9-(2-) + 24 — [P @I 9+ (zp) =h, z- =1, z; > u’

From (17), taking into account that |p/(z4+)|® g/.(z+) = 1, one obtains that z is a
differentiable function of z_, and

dzy _ L)' p”(z2-)g-(z-)

dz- L @Ol ) 942
Now,
d dz ,
5 (@ 2@ == L+ o) 1P @I Pl E4) 94.C)

—(1+w) |p () pl(z-)9-(z-)
=+ |p @) pl@)g-(zo) - (p(z2) — P @z4)).

Note that z, is a monotone decreasing function of z_, hence the function p’ (z_) —
P’ (24 (z-)) is monotone increasing as z_ > u’, z(z_) > u°.
Recall that uy is the value satisfying p, (U,) = —B_. Denote

h* = Uy — BZ g-'r(u*)-

Consider two cases.

1) h < h,. One has z; (u%) < uy, hence p’ (%) — p/, (z+(%) > —B_ —
P (uy) = 0. Tt follows that as z_ > u®, p’_(z_) — p/,(z4(z-)) > 0, so the minimum
of r(z_, z;)is attained at z_ = 0.

2) h > h,. One has z;(U%) > u,, hence p_(u% — p’.(z+(u%) < 0. On
the other hand, as Z_ = z,(Z_), one has p’ (Z_) — p/.(Z-) < 0, hence at some
7_eW’ 7)), plz) = P’ (z4(z-)), and so, the minimum of resistance is attained.

3.2. Examples

We have given in §3.1 complete description of the solutions to the formulated Newton-
type problem. We now consider, for illustration purposes, various particular cases
of the problem. All the calculations can easily be done with the help of a computer
algebra system. We have used Maple to implement a procedure which, given functions
p+(-) and p_(-) and the values for T and H, gives the optimal shape for the respective
problem.
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Non-parallel flux of particles

Let us consider the two-dimensional case (d = 2). As proved in §3.1, there exist four
possible cases. To illustrate this we choose, as an example, the pressure of the front
part of the surface to be p+ = ﬁ + 0.5; the pressure on the rear part given by

p- = 0 5 T of the maximal cross section of the body to be two
(T = 2) and then we choose different values for the height H of the body. Applying
the formulas given in §3.1 one obtains that for H = 1 the solution is a trapezium
(Fig. 1); for H = 2 a triangle (Fig. 2); for H = 4 the union of a triangle and a
trapezium turned over (Fig. 3); and for H = 6 the union of two triangles with common
base (Fig. 4).

We remark that in Newton’s problem one has p; = ﬁ and p_ = O (parallel
flux), and only the first two situations occur: solution to Newton’s two-dimensional
problem is either a trapezium or a triangle.

The two-dimensional problem under a non-parallel flux of particles with density
of distribution over velocities circular gaussian, with biased mean, is studied in [21].

Newton’s classical problem

We now obtain the well-known Newton’s solution. For that we fix d = 3, p4(u) =
1/(1+u?), and p_(u) = 0. Applying the method described in §3.1, after some algebra
one obtains Uy = l/\/§, ud =1, B+ = 1/2, f = H, and the optimal solution X (t) is
given in parametric form by

X 4 3U4+u Inu !
— — —n —_——
2\ 4 4"
A 3 1
t==—(u+2u+-), 1<u<U,
2 u

all in agreement with classical formulas. Expressing the formulas with respect to U
and T one obtains:

. 2TU " 4TU ’B_TU(—7+4U2+3U4—4ln(U))

1+u2? T v 4(1+U2)° ’
t_Tu(1+u2)2 L TU (740 430t — 4inw))
u(1+U2)? " 4(1+U2)? ’

T2 (17U2 4+ 2+ 10U* + 3U° + 4 In(U)U?)
4(1+U02)?* '

4+ =

In this case R_ = 0.
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Solutions of the two-dimensional Newton-type problem with p; = ﬁ +0.5, p- =

0'52 — 0.5 (non-parallel flux of particles), T = 2, and different values for the height
u

1+
H of the body.
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Newton’s problem in higher dimensions

Our approach to Newton’s problem is valid for an arbitrary d > 2. For example, for
d = 4 (problem in dimension four) one gets:

. 2T2U 4T2U -5U +3U3+2\/U)
T (1+u2? (1102 5(1+U?) ’
t_T\/j 1+u? . (=5 JU+3u7242)

- u\1+u2 )’ 5(1+u2) ’

T2 (1+3U2
2(14+U?)
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