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ABSTRACT. We make use of the Guo-Krasnoselskii fixed point theorem on cones to prove ex-
istence of positive solutions to a non localp-Laplacian boundary value problem on time scales
arising in many applications.

Key words and phrases:Time scales,p-Laplacian, Positive solutions, Existence.

2000Mathematics Subject Classification.34B18, 39A10, 93C70.

1. I NTRODUCTION

The purpose of this paper is to prove the existence of positive solutions for the following non
localp-Laplacian dynamic equation on a time scaleT:

(1.1) −
(
φp(u

4(t))
)∇

=
λf(u(t))

(
∫ T

0
f(u(τ))∇τ)k

, ∀t ∈ (0, T )T = T ,

subject to the boundary conditions

(1.2)
φp(u

4(0))− βφp(u
4(η)) = 0, 0 < η < T,

u(T )− βu(η) = 0,

whereφp(·) is thep-Laplacian operator defined byφp(s) = |s|p−2s, p > 1, (φp)
−1 = φq with q

the Hölder conjugate ofp, i.e. 1
p

+ 1
q

= 1. The function

(H1) f : (0, T )T → R+∗ is assumed to be continuous
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(R+∗ denotes the positive real numbers);λ is a dimensionless parameter that can be identified
with the square of the applied potential difference at the ends of a conductor;f(u) is the tem-
perature dependent resistivity of the conductor;β is a transfer coefficient supposed to verify
0 < β < 1. Different values forp andk are connected with a variety of applications for both
T = R andT = Z. Whenk > 1, equation (1.1) represents the thermo-electric flow in a con-
ductor [20]. In the particular casep = k = 2, (1.1) has been used to describe the operation of
thermistors, fuse wires, electric arcs and fluorescent lights [11, 12, 18, 19]. Fork = 1, equa-
tion (1.1) models the phenomena associated with the occurrence of shear bands (i) in metals
being deformed under high strain rates [6, 7], (ii) in the theory of gravitational equilibrium of
polytropic stars [17], (iii) in the investigation of the fully turbulent behavior of real flows, us-
ing invariant measures for the Euler equation [10], (iv) in modelling aggregation of cells via
interaction with a chemical substance (chemotaxis) [22].

The theory of dynamic equations on time scales (or, more generally, measure chains) was
introduced in 1988 by Stefan Hilger in his PhD thesis (see [14, 15]). The theory presents a
structure where, once a result is established for a general time scale, then special cases include
a result for differential equations (obtained by taking the time scale to be the real numbers) and
a result for difference equations (obtained by taking the time scale to be the integers). A great
deal of work has been done since 1988, unifying and extending the theories of differential and
difference equations, and many results are now available in the general setting of time scales –
see [1, 2, 3, 4, 8, 9] and the references therein. We point out, however, that results concerning
p-Laplacian problems on time scales are scarce [21]. In this paper we prove the existence of
positive solutions to the problem (1.1)-(1.2) on a general time scaleT.

2. PRELIMINARIES

Our main tool to prove the existence of positive solutions (Theorem 3.5) is the Guo-Krasnoselskii
fixed point theorem on cones.

Theorem 2.1(Guo-Krasnoselskii fixed point theorem on cones [13, 16]). Let X be a Banach
space andK ⊂ E be a cone inX. Assume thatΩ1 andΩ2 are bounded open subsets ofK with
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and thatG : K → K is a completely continuous operator such that

(i) either‖Gw‖ ≤ ‖w‖, w ∈ ∂Ω1, and‖Gw‖ ≥ ‖w‖, w ∈ ∂Ω2; or
(ii) ‖Gw‖ ≥ ‖w‖, w ∈ ∂Ω1, and‖Gw‖ ≤ ‖w‖, w ∈ ∂Ω2.

Then,G has a fixed point inΩ2\Ω1.

Using the properties off on a bounded set(0, T )T, we construct an operator (an integral
equation) whose fixed points are solutions to the problem (1.1)-(1.2).

Now we introduce some basic concepts of time scales that are needed in the sequel. For
deeper details, the reader can see, for instance, [1, 5, 8]. A time scaleT is an arbitrary nonempty
closed subset ofR. Theforward jumpoperatorσ and thebackward jumpoperatorρ, both from
T to T, are defined in [14]:

σ(t) = inf{τ ∈ T : τ > t} ∈ T, ρ(t) = sup{τ ∈ T : τ < t} ∈ T .

A point t ∈ T is left-dense, left-scattered, right-dense, or right-scattered ifρ(t) = t, ρ(t) < t,
σ(t) = t, orσ(t) > t, respectively. IfT has a right scattered minimumm, defineTk = T−{m};
otherwise setTk = T. If T has a left scattered maximumM , defineTk = T− {M}; otherwise
setTk = T.

Let f : T → R and t ∈ Tk (assumet is not left-scattered ift = sup T), then the delta
derivative off at the pointt is defined to be the numberf∆(t) (provided it exists) with the
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property that for eachε > 0 there is a neighborhoodU of t such that∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)
∣∣ ≤ |σ(t)− s|, for all s ∈ U .

Similarly, for t ∈ T (assumet is not right-scattered ift = inf T), the nabla derivative off at
the pointt is defined to be the numberf∇(t) (provided it exists) with the property that for each
ε > 0 there is a neighborhoodU of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ |ρ(t)− s|, for all s ∈ U .

If T = R, thenx∆(t) = x∇(t) = x′(t). If T = Z, thenx∆(t) = x(t + 1)− x(t) is the forward
difference operator whilex∇(t) = x(t)− x(t− 1) is the backward difference operator.

A function f is left-dense continuous (ld-continuous) iff is continuous at each left-dense
point inT and its right-sided limit exists at each right-dense point inT. Let f beld-continuous.
If F∇(t) = f(t), then the nabla integral is defined by∫ b

a

f(t)∇t = F (b)− F (a) ;

if F∆(t) = f(t), then the delta integral is defined by∫ b

a

f(t)∆t = F (b)− F (a) .

In the remainder of this articleT is a closed subset ofR with 0 ∈ Tk, T ∈ Tk; E =
Cld([0, T ], R), which is a Banach space with the maximum norm‖u‖ = max[0,T ]T |u(t)|.

3. M AIN RESULTS

By a positive solution of (1.1)-(1.2) we understand a functionu(t) which is positive on(0, T )T
and satisfies (1.1) and (1.2).

Lemma 3.1. Assume that hypothesis (H1) is satisfied. Then,u(t) is a solution of(1.1)-(1.2) if
and only ifu(t) ∈ E is solution of the integral equation

u(t) = −
∫ t

0

φq (g(s))4s + B,

where

g(s) =

∫ s

0

λh(u(r))∇r − A,

A = φp(u
4(0)) = − λβ

1− β

∫ η

0

h(u(r))∇r,

h(u(t)) =
λf(u(t))(∫ T

0
f(u(τ))∇τ

)k
,

B = u(0) =
1

1− β

{∫ T

0

φq(g(s))4s− β

∫ η

0

φq(g(s))4s

}
.

Proof. We begin by proving necessity. Integrating the equation (1.1) we have

φp(u
4(s)) = φp(u

4(0))−
∫ s

0

λh(u(r))∇r.

On the other hand, by the boundary condition (1.2)

φp(u
4(0)) = βφp(u

4(η)) = β

(
φp(u

4(0))−
∫ η

0

λh(u(r))∇r

)
.
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Then,

A = φp(u
4(0)) =

−λβ

1− β

∫ η

0

h(u(r))∇r.

It follows that

u4(s) = φq

(
−λ

∫ s

0

h(u(r))∇r + A

)
= −φq(g(s)).

Integrating the last equation, we obtain

(3.1) u(t) = u(0)−
∫ t

0

φq(g(s))4s.

Moreover, by (3.1) and the boundary condition (1.2), we have

u(0) = u(T ) +

∫ T

0

φq(g(s))4s

= βu(η) +

∫ T

0

φq(g(s))4s

= β

(
u(0)−

∫ η

0

φq(g(s))4s

)
+

∫ T

0

φq(g(s))4s.

Then,

u(0) = B =
1

1− β

(
−β

∫ η

0

φq(g(s))4s +

∫ T

0

φq(g(s))4s

)
.

Sufficiency follows by a simple calculation, taking the delta derivative ofu(t). �

Lemma 3.2. Suppose (H1) holds. Then, a solutionu of (1.1)-(1.2) satisfiesu(t) ≥ 0 for all
t ∈ (0, T )T.

Proof. We haveA = −λβ
1−β

∫ η

0
h(u(r))∇r ≤ 0. Then,g(s) = λ

∫ s

0
h(u(r)) − A ≥ 0. It follows

thatφp(g(s)) ≥ 0. Since0 < β < 1, we also have

u(0) = B =
1

1− β

{∫ T

0

φq(g(s))4s− β

∫ η

0

φq(g(s))4s

}
≥ 1

1− β

{
β

∫ T

0

φq(g(s))4s− β

∫ η

0

φq(g(s))4s

}
≥ 0

and

u(T ) = u(0)−
∫ T

0

φq(g(s))4s

=
−β

1− β

∫ η

0

φq(g(s))4s +
1

1− β

∫ T

0

φq(g(s))4s−
∫ T

0

φq(g(s))4s

=
−β

1− β

∫ η

0

φq(g(s))4s +
β

1− β

∫ T

0

φq(g(s))4s

=
β

1− β

{∫ T

0

φq(g(s))4s−
∫ η

0

φq(g(s))4s

}
≥ 0.
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If t ∈ (0, T )T,

u(t) = u(0)−
∫ t

0

φq(g(s))4s

≥ −
∫ T

0

φq(g(s))4s + u(0) = u(T ) ≥ 0 .

�

Lemma 3.3. If (H1) holds, thenu(T ) ≥ ρu(0), whereρ = β T−η
T−βη

≥ 0.

Proof. We haveφp(u
4(s)) = φp(u

4(0)) −
∫ s

0
λh(u(r))∇r ≤ 0. SinceA = φp(u

4(0)) ≤ 0,
thenu4 ≤ 0. This means that‖u‖ = u(0), inft∈(0,T )T u(t) = u(T ). Moreover,φp(u

4(s)) is
non increasing which implies, with the monotonicity ofφp, thatu4 is a non increasing function
on (0, T )T. It follows from the concavity ofu(t) that each point on the chord between(0, u(0))
and(T, u(T )) is below the graph ofu(t). We have

u(T ) ≥ u(0) + T
u(T )− u(η)

T − η
.

Alternatively,
Tu(η)− ηu(T ) ≥ (T − η)u(0).

Using the boundary condition (1.2), it follows that(
T

β
− η

)
u(T ) ≥ (T − η)u(0).

Then,

u(T ) ≥ β
T − η

T − βη
u(0).

�

In order to apply Theorem 2.1, we define the coneK by

K =

{
u ∈ E, u is concave on(0, T )T and inf

t∈(0,T )T
u(t) ≥ ρ‖u‖

}
.

It is easy to see that (1.1)-(1.2) has a solutionu = u(t) if and only if u is a fixed point of the
operatorG : K → E defined by

(3.2) Gu(t) = −
∫ t

0

φq (g(s))4s + B,

whereg andB are defined as in Lemma 3.1.

Lemma 3.4. LetG be defined by(3.2). Then,

(i) G(K) ⊆ K;
(ii) G : K → K is completely continuous.

Proof. Condition(i) holds from previous lemmas. We now prove(ii). Suppose thatD ⊆ K is
a bounded set. Letu ∈ D. We have:

|Gu(t)| =
∣∣∣∣−∫ t

0

φq (g(s))4s + B

∣∣∣∣
=

∣∣∣∣∣−
∫ t

0

φq

(∫ s

0

λf(u(r))

(
∫ T

0
f(u(τ))∇τ)k

∇r − A

)
4s + B

∣∣∣∣∣
J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 69, 10 pp. http://jipam.vu.edu.au/
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≤
∫ T

0

φq

(∫ s

0

λ supu∈D f(u)

(T infu∈D)k
∇r − A

)
4s + |B|,

|A| =
∣∣∣∣ λβ

1− β

∫ η

0

h(u(r))∇r

∣∣∣∣
=

∣∣∣∣∣ λβ

1− β

∫ η

0

f(u(r))

(
∫ T

0
f(u(τ))∇r)k

∇r

∣∣∣∣∣
≤ λβ

1− β

supu∈D f(u)

(T infu∈D)k
η.

In the same way, we have

|B| ≤ 1

1− β

∫ T

0

φq(g(s))4s

≤ 1

1− β

∫ T

0

φq

(
λ supu∈D f(u)

(T infu∈D)k

(
s +

β

1− β
η

))
4s .

It follows that

|Gu(t)| ≤
∫ T

0

φq

(
λ supu∈D f(u)

(T infu∈D)k

(
s +

βη

1− β

))
4s + |B|.

As a consequence, we get

‖Gu‖ ≤ 2− β

1− β

∫ T

0

φq

(
λ supu∈D f(u)

(T infu∈D)k

(
s +

βη

1− β

))
≤ 2

1− β
φq

(
λ supu∈D f(u)

(T infu∈D)k

)∫ T

0

φq

(
s +

βη

1− β

)
4s .

We conclude thatG(D) is bounded. Item(ii) follows by a standard application of the Arzela-
Ascoli and Lebesgue dominated theorems. �

Theorem 3.5(Existence result on cones). Suppose that (H1) holds. Assume furthermore that
there exist two positive numbersa andb such that

max
0≤u≤a

f(u) ≤ φp(aA1),(H2)

min
0≤u≤b

f(u) ≥ φp(bB1),(H3)

where

A1 =
1− β

T (2− β)
φp

(
1

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

))
and

B1 =
1− β

β(T − η)
φp(η)φp

(
λ(

T sup0≤u≤b f(u)
)k
)

.

Then, there exists0 < λ∗ < 1 such that the non localp-Laplacian problem(1.1)-(1.2) has at
least one positive solutionu, a ≤ u ≤ b, for anyλ ∈ (0, λ∗).
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Proof. Let Ωr = {u ∈ K, ‖u‖ ≤ r}, ∂Ωr = {u ∈ K, ‖u‖ = r}. If u ∈ ∂Ωa, then0 ≤ u ≤ a,
t ∈ (0, T )T. This impliesf(u(t)) ≤ max0≤u≤a f(u) ≤ φp(aA). We can write that

‖Gu‖ ≤
∫ T

0

φq(g(s))4s + B

≤
∫ T

0

φq

(∫ s

0

λf(u(r))

(
∫ T

0
f(u(τ))∇τ)k

∇r − A

)
4s + B ,

|A| = λβ

1− β

∫ η

0

f(u(r))

(
∫ T

0
f(u(τ))∇τ)k

∇r ≤ λβ

1− β

(aA1)
p−1

(T inf0≤u≤a f(u))k
η ,

g(s) ≤ λ(aA1)
p−1

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

)
.

Then,

∫ T

0

φq(g(s))4s ≤ φq

(
λ(aA1)

p−1

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

))
T

= aA1Tφq

(
λ

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

))
.

Moreover,

B =
1

1− β

(∫ T

0

φq(g(s))4s− β

∫ η

0

φq(g(s))4s

)
≤ 1

1− β

(∫ T

0

φq(g(s))4s

)
≤ aA1

T

1− β
φq

(
λ

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

))
.

ForA1 as in the statement of the theorem, it follows that

‖Gu‖ ≤ aA1T
2− β

1− β
φq

(
λ

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

))
≤ φq(λ)aA1T

2− β

1− β
φq

(
1

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

))
≤ φq(λ∗)aA1T

2− β

1− β
φq

(
1

(T inf0≤u≤a f(u))k

(
T +

βη

1− β

))
≤ φq(λ∗)a

≤ a = ‖u‖.
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If u ∈ ∂Ωb, we have

‖Gu‖ ≥ −
∫ T

0

φq (g(s))4s + B

≥ −
∫ T

0

φq (g(s))4s +
1

1− β

∫ T

0

φq (g(s))4s− β

1− β

∫ η

0

φq (g(s))4s

≥ β

1− β

∫ T

0

φq (g(s))4s− β

1− β

∫ η

0

φq (g(s))4s

≥ β

1− β

∫ T

η

φq (g(s))4s.

SinceA ≤ 0, we have

g(s) = λ

∫ s

0

h(u(r))∇r − A ≥ λ

∫ s

0

h(u(r))∇r

≥ λ

∫ s

0

f(u)

(T sup0≤u≤b f(u))k

≥ λ
(bB1)

p−1

(T sup0≤u≤b)
k
s.

Using the fact thatφq is nondecreasing we get

φq(g(s)) ≥ φq

(
λ

(bB1)
p−1

(T sup0≤u≤b)
k
s

)
≥ bB1φq

(
λ

(T sup f(u))k

)
φq(s).

Then, using the expression ofB1,

‖Gu‖ ≥ β

1− β
bB1φq

(
λ

(T sup f(u))k

)∫ T

η

φq(s)4s

≥ bB1
β

1− β
φq

(
λ

(T sup f(u))k

)
φq(η)(T − η)

≥ b = ‖u‖.

As a consequence of Lemma 3.4 and Theorem 2.1,G has a fixed point theoremu such that
a ≤ u ≤ b. �

4. AN EXAMPLE

We consider a functionf which arises with the negative coefficient thermistor (NTC-thermistor).
For this example the electrical resistivity decreases with the temperature.

Corollary 4.1. Assume (H1) holds. If

f0 = lim
u→0

f(u)

φp(u)
= 0 , f∞ = lim

u→∞

f(u)

φp(u)
= +∞,

or
f0 = +∞ , f∞ = 0 ,

then problem(1.1)-(1.2)has at least one positive solution.
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Proof. If f0 = 0 then∀ A1 > 0 ∃ a such thatf(u) ≤ (A1u)p−1, 0 ≤ u ≤ a. Similarly as
above, we can prove that‖Gu‖ ≤ ‖u‖, ∀ u ∈ ∂Ωa. On the other hand, iff∞ = +∞, then∀
B1 > 0, ∃ b > 0 such thatf(u) ≥ (B1u)p−1, u ≥ b. As in the proof of Theorem 3.5, we have
‖Gu‖ ≥ ‖u‖, ∀ u ∈ ∂Ωb. By Theorem 2.1,G has a fixed point. �

For the NTC-thermistor, the dependence of the resistivity to the temperature can be expressed
by

(4.1) f(s) =
1

(1 + s)k
, k ≥ 2 .

Forp = 2, we have

f0 = lim
u→0

f(u)

φp(u)
= +∞ , f∞ = lim

u→∞

f(u)

φp(u)
= 0 .

It follows from Corollary 4.1 that the boundary value problem (1.1)-(1.2) withp = 2 andf as
in (4.1) has at least one positive solution.
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