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Abstract. We study a system of nonlinear partial differential equations
resulting from the traditional modelling of oil engineering within the frame-
work of the mechanics of a continuous medium. Existence and regularity
of the optimal solutions for this system is established.
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§1. Introduction

We are interested to the existence and regularity of optimal solution for the fol-
lowing “dead oil isotherm” problem:





∂tu−∆ϕ(u) = div (g(u)∇p) in QT = Ω× (0, T ) ,

∂tp− div (d(u)∇p) = f in QT = Ω× (0, T ) ,

u|∂Ω = 0 , u|t=0 = u0 ,

p|∂Ω = 0 , p|t=0 = p0 ,

(1.1)

where Ω is an open bounded domain in R2 with a sufficiently smooth boundary.
Equations (1.1) serve as a model of an incompressible biphasic flow in a porous

medium, with applications in the industry of exploitation of hydrocarbons. To under-
stand the optimal control problem we consider here, some words about the recovery
of hydrocarbons are in order. At the time of the first run of a layer, the flow of the
crude oil towards the surface is due to the energy stored in the gases under pressure
or in the natural hydraulic system. To mitigate the consecutive decline of production
and the decomposition of the site, water injections are carried out, before the normal
exhaustion of the layer. The water is injected through wells with high pressure, by
pumps specially drilled with this end. The pumps allow the displacement of the crude
oil towards the wells of production. The wells must be judiciously distributed, which
gives rise to a difficult problem of optimal control: how to choose the best installation
sites of the production wells? The cost functional to be minimized comprises all the
important parameters that intervene in the processes.
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Existence and uniqueness to the system (1.1), for the case when the term ∂tp is
missing but for more general boundary conditions, is established in [3]. Optimal con-
trol of systems governed by partial differential equations is investigated in literature
by many authors, we can refer to [2, 7, 9]. To study existence and regularity of solu-
tions which provide Gâteaux differentiability of the nonlinear operator corresponding
to (1.1), we are forced to assume more regularity on the control f as well as to impose
compatibility conditions between initial and boundary conditions. The considered
cost functional comprises four terms and has the form

J(u, p, f) =
1
2
‖u− U‖22,QT

+
1
2
‖p− P‖22,QT

+
β1

2
‖f‖2q0

2q0,QT
+

β2

2
‖∂tf‖22,QT

(1.2)

where 1 < q0 < 2, β1 > 0 and β2 > 0 are two coefficients of penalization; U and P are
given data. Here u is the reduced saturation of the phase oil at the moment t. The
initial saturation is known and p is the total pressure. The first two terms in (1.2)
make possible to minimize the difference between the reduced saturation of oil and a
given U , respectively the global pressure and a known initial pressure P . We remark
that the choice of the objective functional is not unique. We can always add further
terms of penalization to take into account other properties which one may want to
control. The paper is organized as follows. In Section we set up the notation, the
functional spaces and some important lemmas used throughout the work. Section is
devoted to the existence of optimal solutions. We obtain necessary estimates on the
sequence minimizing the cost functional which allows us to pass to the limit. Finally,
in Section we establish a regularity theorem.

§2. Notation and functional spaces

In the sequel we suppose that ϕ, g and d are real valued C1-functions satisfying:

(H1) 0 < c1 ≤ d(r), ϕ(r) ≤ c2; |d′(r)|, |ϕ′(r)|, |ϕ′′(r)| ≤ c3 ∀r ∈ R.

(H2) u0, p0 ∈ C2
(
Ω̄

)
, U , P ∈ L2(QT ), where u0, p0 : Ω → R, U, P : QT → R, and

u0|∂Ω = p0|∂Ω = 0.

We consider the following spaces:

W 1,0
p (QT ) := Lp

(
0, T,W 1

p (Ω)
)

= {u ∈ Lp(QT ), ∇u ∈ Lp(QT )} ,

endowed with the norm ‖u‖W 1,0
p (QT ) = ‖u‖p,QT

+ ‖∇u‖p,QT
;

W 2,1
p (QT ) :=

{
u ∈ W 1,0

p (QT ), ∇2u , ∂tu ∈ Lp(QT )
}

,

with the norm ‖u‖W 2,1
p (QT ) = ‖u‖W 1,0

p (QT ) +
∥∥∇2u

∥∥
p,QT

+ ‖∂tu‖p,QT
;

V :=
{

u ∈ W 1,0
2 (QT ), ∂tu ∈ L2

(
0, T,W−1

2 (Ω)
)}

.

We now state some important lemmas that are used later. Lemma 2.1 is needed
in the proof of our existence result.
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Lemma 2.1 ([1]). Assume Ω ⊂ Rn is a bounded domain with a C1-boundary,
and a matrix A(x, t) = (Aij(x, t)) satisfying the conditions

∃γ0 > 0 such that Aij(x, t)ξiξj ≥ γ0|ξ|2 ∀ξ ∈ Rn ,

Aij ∈ L∞(QT ) , Aij = Aji .
(2.3)

Assume also that f ∈ L2q0(QT ), u0 ∈ W 1
2q0

(Ω) for some q0 > 1 and let u ∈
C

(
[0, T ]; L2(Ω)

) ∩W 1,0
2 (QT ) be a weak solution to the equation

∂tu− div (A(x, t)∇u) = f in QT ,

u|∂Ω = 0 , u|t=0 = u0 .
(2.4)

Then, there exists a constant q > 1, depending on n, q0, γ0, QT , and ‖A‖∞,QT
, such

that u ∈ W 1,0
2q (QT ) and the estimate

‖∇u‖2q,QT
≤ c

(
‖f‖2q,QT

+ ‖u0‖W 1
2q(Ω)

)

holds.

We use the following two lemmas to get some regularity of weak solutions.

Lemma 2.2 (De Giorgi-Nash-Ladyzhenskaya-Uraltseva theorem [6]). Assume
QT = Ω× (0, T ), Ω ⊂ Rn a C1-bounded domain; let f ∈ Ls,r(QT ) = Ls(0, T, Lr(Ω)),
u0 ∈ Cα(Ω̄) for some α0 > 0, u0|∂Ω = 0 and

1
r

+
n

2s
< 1 .

Assume (2.3) holds and let u ∈ W 1,0
2 (QT ) be a weak solution of (2.4). Then, there

exists α > 0 such that u ∈ Cα, α
2 (Q̄T ) and

‖u‖
Cα, α

2 (Q̄T )
≤ c

(
‖f‖Ls,r(QT ) + ‖u0‖Cα(Ω̄)

)
.

Lemma 2.3 ([6]). For any function u ∈ Cα, α
2 (Q̄T )∩L2

(
0, T ;

◦
W 1

2 (Ω) ∩W 2
2 (Ω)

)

there exist numbers N0, %0 such that for any % ≤ %0 there is a finite covering of Ω by
sets of the type Ω%(xi), xi ∈ Ω̄, such that the total number of intersections of different
Ω2%(xi) = Ω ∩B2%(xi) does not increase N0. Hence, we have the estimate

‖∇u‖44,QT
≤ c ‖u‖2

Cα, α
2 (Q̄T )

%2α

(∥∥∇2u
∥∥2

2,QT
+

1
%2
‖∇u‖22,QT

)
.

§3. Existence of the optimal solution

We denote by (P ) the problem of minimizing (1.2) subject to (1.1) in the class
(u, p, f) ∈ W 2,1

1 (QT )× V × L2(QT ).
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Theorem 3.4. Under hypotheses (H1)-(H2) there is a q > 1, depending on the
data of the problem, such that there exists an optimal solution

(
ū, p̄, f̄

)
of problem

(P ) verifying:

ū ∈ W 2,1
q (QT ) ,

p̄ ∈ C
(
[0, T ];L2(Ω)

) ∩W 1,0
2q (QT ) , ∂tp̄ ∈ L2

(
0, T, W−1

2 (Ω)
)

,

f̄ ∈ L2q0(QT ) , ∂tf̄ ∈ L2(QT ) .

Proof. Let (um, pm, fm) ∈ W 2,1
1 (QT ) × V × L2q0(QT ) be a sequence minimizing

J(u, p, f). Then we have

(fm) is bounded in L2q0(QT ),

(∂tf
m) is bounded in L2(QT ).

Using the parabolic equation governed by the global pressure p and Lemma 2.1, we
know that there exists a number q > 1 such that

‖∇pm‖2q,QT
≤

(
‖fm‖2q,QT

+ ‖u0‖W 1
2q(Ω)

)
.

Multiplying the second equation of (1.1) by p, using the hypotheses and Young’s
inequality, we get

sup
t
‖pm‖22,Ω + ‖∇pm‖22q,QT

≤ c‖fm‖22,QT
.

Furthermore, we have that ∂tp
m is bounded in L2(0, T ; W−1

2 (Ω)). By Aubin’s Lemma
[8], (pm) is compact in L2(QT ). Using now the first equation of (1.1) we have

∂tu
m − ϕ′(um)4um − ϕ′′(um)|∇um|2 = div(g(um)∇pm).

Hence
‖um‖W 2,1

q (QT ) ≤ c,

where all the constants c are independent of m. Using the Lebesgue theorem and the
compacity arguments of J. L. Lions [8] we can extract subsequences, still denoted by
(pm), (um) and (fm), such that

pm → p weakly in W 1,0
2q (QT ),

∂tp
m → ∂tp weakly in L2(0, T ; W−1

2 (Ω),

pm → p strongly in L2(QT ),

pm → p a.e. in L2(QT ),

um → u a.e. in L2(QT ),

fm → f weakly in L2q0(QT ),

∂tf
m → ∂tf weakly in L2(QT ).

The existence of an optimal solution (u, p, f) follows, in a standard way, by passing
to the limit in problem (1.1) and by using the fact that J is lower semicontinuous
with respect to the weak convergence.
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§3. The regularity of solutions

We now prove some regularity to the solutions predicted by Theorem 3.4.

Theorem 4.5. Suppose that (H1) and (H2) are satisfied and let
(
ū, p̄, f̄

)
be an

optimal solution of our problem (P ). Then, there exist a α > 0 such that the following
regularity conditions are verified:

p̄ ∈ Cα, α
2

(
Q̄T

)
,(4.5)

ū, p̄ ∈ W 1,0
4 (QT ) ,(4.6)

ū, p̄ ∈ W 2,1
2 (QT ) ,(4.7)

∂tū, ∂tp̄ ∈ L∞
(
0, T ;L2(Ω)

) ∩W 1,0
2 (QT ) ,(4.8)

ū ∈ C
1
4 (QT ) ,(4.9)

ū ∈ W 2,1
2q0

(QT ) , p̄ ∈ W 2,1
2q0

(QT ) .(4.10)

Proof. First, we remark that (4.5) is an immediate consequence of Lemma 2.2. To
show the other results, we begin by proving the following lemma.

Lemma 4.6. Consider (u, p, f) solution of (1.1). Assume that hypotheses (H1)
and (H2) hold. Then,

sup
t∈(0,T )

‖∇p‖22,Ω +
∥∥∇2p

∥∥2

2,QT
≤ c

(
‖∇p‖44,QT

+ ‖∇u‖44,QT

)
+ c

where c depend on u0 and f .

Proof. ¿From the second equation of (1.1) we have

∂tp− d(u)∆p = d′(u)∇u.∇p + f .

Multiplying this equation by ∂tp and integrating over Ω, we obtain

‖∂tp‖22 +
c

2
∂

∂t
‖∇p‖2 ≤ c

∫

Ω

|∇p∇u∂tp| dx +
∫

Ω

|f∂tp| dx .

Using Young’s inequality and integrating in time, we get the desired estimate.

To continue the proof of Theorem 4.5 we need to estimate ‖∇u‖4,QT in function
of ‖∇p‖4,QT

. Then, taking into account the first equation of (1.1), it is well known

that u ∈ W
1, 1

2
4 (QT ) and

‖∇u‖4,QT
≤ c‖∇p‖4,QT

(4.11)

(see [4]). Using Lemma 2.3, we have that for any % < %0

‖∇p‖44,QT
≤ c ‖p‖2

Cα, α
2 (Q̄T )

%2α

{
‖∇p‖44,QT

+
1
%2
‖∇p‖22,QT

}
+ Cu0,p0,f0 .

Calling Lemma 2.2, we then get (4.6) for an eligible choice of %. After using (4.11)
we obtain that u ∈ W 1,0

4 (QT ). On the other hand, we have by the first equation of
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(1.1) and (4.6) that u ∈ W 2,1
2 (QT ). Moreover, it follows by Lemma 4.6 and the fact

that u ∈ W 2,1
2 (QT ) that p ∈ W 2,1

2 (QT ).
Now, in order to prove (4.8), we differentiate both equations of (1.1) with respect

to time:

(4.12) ∂ttu− div (ϕ′(u)∇∂tu)− div (ϕ′′(u)∇∂tu∇u)
= div (g′(u)∂tu∇p) + div (g(u)∇∂tp) ,

∂ttp− div (d(u)∇∂tp)− div (d′(u)∇∂tu∇p) = ∂tf.(4.13)

Multiplying (4.13) by ∂tp and integrating over Ω we get

∂

∂t
‖∂tp‖22,Ω + c‖∂t∇p‖22,Ω ≤ cf + c‖∂tp‖22,Ω + c

∫

Ω

|∂tu∇p∇∂tp| dx.

By Young’s inequality we have
∫

Ω

|∂tu∇p∇∂tp| dx ≤ ‖∂tu∇p‖2,Ω‖∂t∇p‖2,Ω

≤ c‖∂tu∇p‖22,Ω +
c

2
‖∂t∇p‖22,Ω.

On the other hand, by Holder’s inequality we obtain

‖∂tu∇p‖22,Ω =
∫

Ω

|∂tu|2|∇p|2

≤
(∫

Ω

|∂tu|4
) 1

2
(∫

Ω

|∂tp|4
) 1

2

= ‖∂tu‖24,Ω‖∇p‖24,Ω.

Using the following multiplicative inequality [5]

‖∂tu‖24,Ω ≤ c‖∂tu‖2,Ω‖∂t∇u‖2,Ω ∀u ∈ W 1
2 (Ω),

we obtain
∫

Ω

|∂tu∇p∇∂tp| dx ≤ c‖∂tu‖24,Ω‖∇p‖24,Ω +
c

2
‖∂t∇p‖22,Ω

≤ c‖∂tu‖2,Ω‖∂t∇u‖2,Ω‖∇p‖24,Ω +
c

2
‖∂t∇p‖22,Ω

≤ c‖∂tu‖22,Ω‖∇p‖44,Ω + c‖∂t∇u‖22,Ω +
c

2
‖∂t∇p‖22,Ω.

Then,

(4.14)
∂

∂t
‖∂tp‖22,Ω + c‖∂t∇p‖22,Ω

≤ cf + c‖∂tp‖22,Ω + c‖∂t∇u‖22,Ω + c‖∂tu‖22,Ω‖∇p‖44,Ω.
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Multiplying (4.12) by ∂tu and integrating over Ω, we get

∂

∂t
‖∂tu‖22,Ω + c‖∂t∇u‖22,Ω

≤ −
∫

Ω

ϕ′′(u)∂tu∇u∂t∇u−
∫

Ω

g′(u)∂tu∇p∇u−
∫

Ω

g(u)∂t∇p∇u.

Similar as before, we have:
∣∣∣∣
∫

Ω

ϕ′′(u)∂tu∇u∂t∇u

∣∣∣∣ ≤ c‖∂tu‖22,Ω‖∇u‖44,Ω + c‖∂t∇u‖22,Ω,

∣∣∣∣
∫

Ω

g′(u)∂tu∇p∇u

∣∣∣∣ ≤ c‖∂tu‖22,Ω‖∇p‖44,Ω + c‖∇u‖22,Ω,

∣∣∣∣
∫

Ω

g(u)∂t∇p∇u

∣∣∣∣ ≤ c‖∂t∇p‖22,Ω + c‖∇u‖22,Ω.

It follows by using (4.11) that

∂

∂t
‖∂tu‖22,Ω + c‖∂t∇u‖22,Ω ≤ c‖∂tu‖22,Ω‖∇p‖44,Ω + c‖∂t∇p‖22,Ω + c‖∇u‖22,Ω.(4.15)

Calling (4.14) and (4.15) together, it yields

d

dt

{‖∂tu‖22,Ω + ‖∂tp‖22,Ω

}
+ ‖∂t∇u‖22,Ω + ‖∂t∇p‖22,Ω

≤ c
(
1 + ‖∇p‖44,Ω

) {‖∂tu‖22,Ω + ‖∂tp‖22,Ω

}
+ cu0,p0,f .

We thus obtain (4.8) by applying Gronwall lemma. On the other hand, we have

‖∂tu‖24,Ω ≤ c‖∂tu‖2,Ω‖∂t∇u‖2,Ω,

and from (4.8) we obtain ∂tu ∈ L4(QT ). Using (4.6) and the fact that W 1
4 (QT ) ↪→

C
1
4 (QT ), the regularity estimate (4.9) follows. Finally, the right hand side of the first

equation of (1.1) belongs to L4(QT ) ↪→ L2q0(QT ) as 2q0 ≤ 4. Using thus (4.7) we get
u ∈ W 2,1

2q0
(QT ). Since f ∈ L2q0(QT ), the same estimate follows for p from the second

equation of the system (1.1) and we conclude with (4.10).
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