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1. Introduction

Physics and control on an arbitrary time scale is an
area of strong current research that unifies discrete,
continuous, and quantum results and generalize the
theory to more complex domains [1 – 3]. The new cal-
culus on time scales has been applied, among others,
in physics and control of population, quantum calcu-
lus, economics, communication networks, and robotic
control (see [4] and references therein). The variational
approach on time scales is a fertile area under strong
current research [5 – 12]. In this paper we study prob-
lems in Lagrange form with an action functional and a
velocity vector without boundary conditions x(a) and
x(b). The considered problems are more general be-
cause of the dependence of the Hamiltonian on x(a)
and x(b). Such possibility is not covered by the lit-
erature. Our study is done using the nabla approach
to time scales, which seems promising with respect to
applications (see, e.g., [13 – 15]). This work is moti-
vated by the recent advancements obtained by Cruz
et al. [16] and Malinowska and Torres [17] about nec-
essary optimality conditions for the problem of the cal-
culus of variations with a free endpoint x(T ) but whose
Lagrangian depends explicitly on x(T ). Such problems
seem to have important implications in physical appli-
cations [16]. In contrast to authors of [16,17], we adopt
here a backward perspective, which has proved useful,
and sometimes more natural and preferable, with re-
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spect to several applications [13 – 15, 18, 19]. The ad-
vantage of the here promoted backward approach be-
comes evident when one considers that the time scales
analysis can also have important implications for nu-
merical analysts, who often prefer backward differ-
ences rather than forward differences to handle their
computations due to practical implementation reasons
and also for better stability properties of implicit dis-
cretizations [19, 20].

The paper is organized as follows. Section 2
presents the necessary definitions and concepts of the
calculus on time scales; our results are formulated,
proved, and illustrated through examples in Section 3.
Both Lagrangian (Section 3.1) and Hamiltonian (Sec-
tion 3.2) approaches are considered. Main results of
the paper include necessary optimality conditions with
new transversality conditions (Theorems 3.2 and 3.9)
that become sufficient under appropriate convexity as-
sumptions (Theorem 3.14).

2. Time Scales Calculus

For a general introduction to the calculus on time
scales we refer the reader to the books [21, 22]. Here
we only give those notions and results needed in the
sequel. In particular we are interested in the back-
ward nabla differential approach to time scales [19].
As usual R, Z, and N denote, respectively, the set of
real, integer, and natural numbers.
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A time scale T is an arbitrary nonempty closed
subset of R. Thus, R, Z, and N, are trivial exam-
ples of times scales. Other examples of times scales
are: [−1,4]

⋃
N, hZ := {hz|z ∈ Z} for some h > 0,

qN0 := {qk|k ∈ N0} for some q > 1, and the Cantor
set. We assume that a time scale T has the topology
that it inherits from the real numbers with the standard
topology.

The forward jump operator σ : T→ T is defined by
σ(t) = inf {s ∈ T : s > t} if t 6= sup T, and σ(sup T) =
sup T. The backward jump operator ρ : T→ T is de-
fined by ρ(t) = sup {s ∈ T : s < t} if t 6= inf T, and
ρ(inf T) = inf T.

A point t ∈ T is called right-dense, right-scattered,
left-dense, and left-scattered if σ(t) = t, σ(t) > t,
ρ(t) = t, and ρ(t) < t, respectively. We say that t is
isolated if ρ(t) < t < σ(t), that t is dense if ρ(t) =
t = σ(t). The (backward) graininess function ν : T→
[0,∞) is defined by ν(t) = t−ρ(t), for all t ∈T. Hence,
for a given t, ν(t) measures the distance of t to its
left neighbour. It is clear that when T = R one has
σ(t) = t = ρ(t), and ν(t) = 0 for any t. When T = Z,
σ(t) = t +1, ρ(t) = t−1, and ν(t) = 1 for any t.

In order to introduce the definition of nabla deriva-
tive, we define a new set Tκ which is derived from T
as follows: if T has a right-scattered minimum m, then
Tκ = T\{m}; otherwise, Tκ = T.

Definition 2.1. We say that a function f : T→ R is
nabla differentiable at t ∈Tκ if there is a number f ∇(t)
such that for all ε > 0 there exists a neighbourhood U
of t (i.e., U =]t−δ , t +δ [∩T for some δ > 0) such that

| f (ρ(t))− f (s)− f ∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,

for all s ∈U .

We call f ∇(t) the nabla derivative of f at t. Moreover,
we say that f is nabla differentiable on T provided
f ∇(t) exists for all t ∈ Tκ .

Theorem 2.2. (Theorem 8.39 in [21]) Let T be a time
scale, f : T→ R, and t ∈ Tκ . If f is nabla differen-
tiable at t, then f is continuous at t. If f is continu-
ous at t and t is left-scattered, then f is nabla differ-
entiable at t and f ∇(t) = f (t)− f (ρ(t))

t−ρ(t) . If t is left-dense,
then f is nabla differentiable at t if and only if the limit
lims→t

f (t)− f (s)
t−s exists as a finite number. In this case,

f ∇(t) = lims→t
f (t)− f (s)

t−s . If f is nabla differentiable at

t, then f (ρ(t)) = f (t)−ν(t) f ∇(t).

Remark 2.3. When T = R, then f : R → R is
nabla differentiable at t ∈ R if and only if f ∇(t) =
lims→t

f (t)− f (s)
t−s exists, i.e., if and only if f is differ-

entiable at t in the ordinary sense. When T = Z, then
f : Z→ R is always nabla differentiable at t ∈ Z and
f ∇(t) = f (t)− f (ρ(t))

t−ρ(t) = f (t)− f (t−1) =: ∇ f (t), i.e., ∇

is the usual backward difference operator defined by
the last equation above. For any time scale T, when f
is a constant, then f ∇ = 0; if f (t) = kt for some con-
stant k, then f ∇= k.

In order to simplify expressions, we denote the com-
position f ◦ρ by f ρ.

Theorem 2.4. (Theorem 8.41 in [21]) Suppose f ,g :
T→ R are nabla differentiable at t ∈ Tκ . Then, the
sum f +g : T→R is nabla differentiable at t and ( f +
g)∇(t) = f ∇(t)+g∇(t); for any constant α , α f : T→R
is nabla differentiable at t and (α f )∇(t) = α f ∇(t);
the product f g : T → R is nabla differentiable at t
and ( f g)∇(t) = f ∇(t)g(t) + f ρ(t)g∇(t) = f ∇(t)gρ(t) +
f (t)g∇(t).

Definition 2.5. Let T be a time scale, f : T→ R. We
say that function f is ν-regressive if 1−ν(t) f (t) 6= 0
for all t ∈ Tκ .

Definition 2.6. A function F : T→R is called a nabla
antiderivative of f : T→ R provided F∇(t) = f (t) for
all t ∈ Tκ . In this case we define the nabla integral of
f from a to b (a,b ∈ T) by

∫ b
a f (t)∇t := F(b)−F(a).

In order to present a class of functions that possess
a nabla antiderivative, the following definition is intro-
duced.

Definition 2.7. Let T be a time scale, f : T→ R. We
say that function f is ld-continuous if it is continuous at
left-dense points and its right-sided limits exist (finite)
at all right-dense points.

Theorem 2.8. (Theorem 8.45 in [21]) Every ld-
continuous function has a nabla antiderivative. In par-
ticular, if a ∈ T, then the function F defined by F(t) =∫ t

a f (τ)∇τ , t ∈ T, is a nabla antiderivative of f .

The set of all ld-continuous functions f : T → R
is denoted by Cld(T,R), and the set of all nabla dif-
ferentiable functions with ld-continuous derivative by
C1

ld(T,R).
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Theorem 2.9. (Theorem 8.46 in [21]) If f ∈Cld(T,R)
and t ∈ Tκ , then

∫ t
ρ(t) f (τ)∇τ = ν(t) f (t).

Theorem 2.10. (Theorem 8.47 in [21]) If a,b,
c ∈ T, a ≤ c ≤ b, α ∈ R, and f ,g ∈ Cld(T,R),
then

∫ b
a ( f (t)+g(t))∇t =

∫ b
a f (t)∇t +

∫ b
a g(t)∇t;∫ b

a α f (t)∇t = α
∫ b

a f (t)∇t;
∫ b

a f (t)∇t = −
∫ a

b f (t)∇t;∫ a
a f (t)∇t = 0;

∫ b
a f (t)∇t =

∫ c
a f (t)∇t +

∫ b
c f (t)∇t.

If f (t) > 0 for all a < t ≤ b, then
∫ b

a f (t)∇t > 0;∫ b
a f ρ(t)g∇(t)∇t = [( f g)(t)]t=b

t=a −
∫ b

a f ∇(t)g(t)∇t;∫ b
a f (t)g∇(t)∇t = [( f g)(t)]t=b

t=a−
∫ b

a f ∇(t)gρ(t)∇t.

Remark 2.11. Let a,b ∈ T and f ∈ Cld(T,R). For
T = R, then

∫ b
a f (t)∇t =

∫ b
a f (t)dt, where the integral

on the right side is the usual Riemann integral. For

T = Z, then
∫ b

a
f (t)∇t =

b

∑
t=a+1

f (t) if a < b,∫ b

a
f (t)∇t = 0 if a = b, and

∫ b

a
f (t)∇t = −

a

∑
t=b+1

f (t)

if a > b.

Let a,b ∈ T with a < b. We define the interval [a,b]
in T by [a,b] := {t ∈ T : a ≤ t ≤ b}. Open intervals
and half-open intervals in T are defined accordingly.
Note that [a,b]κ = [a,b] if a is right-dense and [a,b]κ =
[σ(a),b] if a is right-scattered.

Lemma 2.12. ([18]) Let f ,g ∈ Cld([a,b],R). If∫ b
a

(
f (t)ηρ(t)+g(t)η∇(t)

)
∇t = 0 for all η ∈

C1
ld([a,b],R) such that η(a) = η(b) = 0, then g is

nabla differentiable and g∇(t) = f (t) ∀t ∈ [a,b]κ .

3. Main Results

Throughout we let A,B ∈ T with A < B. Now let
[a,b] be a subinterval of [A,B], with a,b ∈ T and
A < a. The problem of the calculus of variations on
time scales under our consideration consists of mini-
mizing or maximizing

L [x] =
∫ b

a
f (t,xρ(t),x∇(t),x(a),x(b))∇t,

(x(a) = xa), (x(b) = xb)
(1)

over all x ∈ C1
ld([A,b],R). Using parentheses around

the endpoint conditions means that the conditions may
or may not be present. We assume that f (t,x,v,z,s) :
[A,b]×R4→R has partial continuous derivatives with
respect to x,v,z,s for all t ∈ [A,b], and f (t, ·, ·, ·, ·)

and its partial derivatives are ld-continuous for all
t ∈ [A,b].

A function x ∈C1
ld([A,b],R) is said to be an admis-

sible function provided that it satisfies the endpoints
conditions (if any is given). Let us consider the follow-
ing norm in C1

ld([A,b],R): ‖x‖1 = sup t∈[A,b] |xρ(t)|+
sup t∈[A,b]

∣∣x∇(t)
∣∣.

Definition 3.1. An admissible function x̃ is said to be
a weak local minimizer (respectively weak local maxi-
mizer) for (1) if there exists δ > 0 such thatL [x̃]≤L [x]
(respectively L [x̃] ≥ L [x]) for all admissible x with
‖x− x̃‖1 < δ .

3.1. Lagrangian Approach

Next theorem gives necessary optimality conditions
for the problem (1).

Theorem 3.2. If x̃ is an extremizer (i.e., a weak local
minimizer or a weak local maximizer) for the problem
(1), then

f ∇

x∇(t, x̃ρ(t), x̃∇(t), x̃(a), x̃(b))

= fxρ(t, x̃ρ(t), x̃∇(t), x̃(a), x̃(b))
(2)

for all t ∈ [a,b]κ . Moreover, if x(a) is not specified, then

fx∇(a, x̃ρ(a), x̃∇(a), x̃(a), x̃(b))

=
∫ b

a
fz(t, x̃ρ(t), x̃∇(t), x̃(a), x̃(b))∇t;

(3)

if x(b) is not specified, then

fx∇(b, x̃ρ(b), x̃∇(b), x̃(a), x̃(b))

=−
∫ b

a
fs(t, x̃ρ(t), x̃∇(t), x̃(a), x̃(b))∇t.

(4)

Proof. Suppose that L has a weak local extremum at
x̃. We can proceed as Lagrange did, by considering the
value of L at a nearby function x = x̃+εh, where ε ∈R
is a small parameter, h ∈ C1

ld([A,b],R). We do not re-
quire h(a) = 0 or h(b) = 0 in case x(a) or x(b), respec-
tively, is free (it is possible that both are free). Let

φ(ε) = L[(x̃+ εh)(·)]

=
∫ b

a
f (t, x̃ρ(t)+ εh(t), x̃∇(t)

+ εh∇(t), x̃(a)+ εh(a), x̃(b)+ εh(b))∇t.
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A necessary condition for x̃ to be an extremizer is given
by

φ
′(ε)
∣∣
ε=0 = 0

⇔
∫ b

a

[
fxρ(· · ·)hρ(t)+ fx∇(· · ·)h∇(t)

+ fz(· · ·)h(a)+ fs(· · ·)h(b)
]
∆t = 0 ,

(5)

where (· · ·) =
(
t, x̃ρ(t), x̃∇(t), x̃(a), x̃(b)

)
. Integration

by parts gives

0 =
∫ b

a

(
fxρ(· · ·)− f ∇

x∇(· · ·)
)

hρ(t)∇t

+h(b)
(

fx∇(· · ·)|t=b +
∫ b

a
fs(· · ·)∇t

)
+h(a)

(
− fx∇(· · ·)|t=a +

∫ b

a
fz(· · ·)∇t

)
.

(6)

We first consider functions h(t) such that h(a) =
h(b) = 0. Then, by Lemma 2.12, we have

fxρ(· · ·)− f ∇

x∇(· · ·) = 0 (7)

for all t ∈ [a,b]κ . Therefore, in order for x̃ to be an
extremizer for the problem (1), x̃ must be a solution of
the nabla differential Euler–Lagrange equation. But if
x̃ is a solution of (7), the first integral in expression (6)
vanishes, and then the condition (5) takes the form

h(b)
(

fx∇(· · ·)|t=b +
∫ b

a
fs(· · ·)∇t

)
+h(a)

(
− fx∇(· · ·)|t=a +

∫ b

a
fz(· · ·)∇t

)
= 0.

If x(a) = xa and x(b) = xb are given in the formulation
of problem (1), then the latter equation is trivially sat-
isfied since h(a) = h(b) = 0. When x(a) is free, then
(3) holds; when x(b) is free, then (4) holds; since h(a)
or h(b) is, respectively, arbitrary. �

Letting T = R in Theorem 3.2 we immediately ob-
tain the corresponding result in the classical context of
the calculus of variations.

Corollary 3.3. (cf. [16, 17]) If x̃ is an extremizer for

L [x] =
∫ b

a
f (t,x(t),x′(t),x(a),x(b))dt,

(x(a) = xa), (x(b) = xb),

then

d
dt

fx′(t, x̃(t), x̃
′(t), x̃(a), x̃(b))

= fx(t, x̃(t), x̃′(t), x̃(a), x̃(b))

for all t ∈ [a,b]. Moreover, if x(a) is free, then

fx′(a, x̃(a), x̃′(a), x̃(a), x̃(b))

=
∫ b

a
fz(t, x̃(t), x̃′(t), x̃(a), x̃(b))dt;

(8)

if x(b) is free, then

fx′(b, x̃(b), x̃′(b), x̃(a), x̃(b))

=−
∫ b

a
fs(t, x̃(t), x̃′(t), x̃(a), x̃(b))dt.

(9)

Example 3.4. Consider a river with parallel straight
banks, b units apart. One of the banks coincides with
the y-axis, the water is assumed to be moving parallel
to the banks with speed v that depends, as usual, on the
x-coordinate, but also on the arrival point y(b) (y(b) is
not given and is part of the solution of the problem).
A boat with constant speed c (c2 > v2) in still water is
crossing the river in the shortest possible time, using
the point y(0) = 0 as point of departure. The endpoint
y(b) is allowed to move freely along the other bank
x = b. Then one can easily obtain that the time of pas-
sage along the path y(x) is given by

T [y] =
∫ b

0

(√
c2(1+(y′(x))2)− v2(x,y(b))

− v(x,y(b))y′(x)
)(

c2− v2(x,y(b))
)−1

dx,

where v = v(x,y(b)) is a known function of x and y(b).
This is not a standard problem because the integrand
depends on y(b). Corollary 3.3 gives the solution.

Remark 3.5. In the classical setting f does not depend
on x(a) and x(b), i.e., fz = 0 and fs = 0. In that case
(8) and (9) reduce to the well known natural boundary
conditions fx′ (a, x̃(a), x̃′(a)) = 0 and fx′ (b, x̃(b), x̃′(b))
= 0.

Similarly, we can obtain other corollaries by choos-
ing different time scales. The next corollary is obtained
from Theorem 3.2 letting T = Z.
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Corollary 3.6. If x̃ is an extremizer for

L[x] =
b

∑
t=a+1

f (t,x(t−1),∇x(t),x(a),x(b)),

(x(a) = xa), (x(b) = xb),

then fx (t, x̃(t−1),∇x̃(t), x̃(a), x̃(b)) = ∇ fv(t, x̃(t− 1),
∇x̃(t), x̃(a), x̃(b)) for all t ∈ [a+1,b]. Moreover,

fv(a, x̃(a−1),∇x̃(a), x̃(a), x̃(b))

=
b

∑
t=a+1

fz(t, x̃(t−1),∇x̃(t), x̃(a), x̃(b)),

if x(a) is not specified and

fv(b, x̃(b−1),∇x̃(b), x̃(a), x̃(b))

=−
b

∑
t=a+1

fs(t, x̃(t−1),∇x̃(t), x̃(a), x̃(b)),

if x(b) is not specified.

Let T = qN0 , q > 1. To simplify notation, we use ∇q

for the q-nabla derivative ∇qx(t) = x(t)−x(tq−1)
t(1−q−1) .

Corollary 3.7. If x̃ is an extremizer for

L[x] = (1−q−1) ∑
t∈(a,b]

t f
(
t,x(q−1t),∇qx(t),x(a),x(b)

)
,

(x(a) = xa), (x(b) = xb),

then fx(t, x̃(q−1t),∇qx̃(t), x̃(a), x̃(b)) =∇q fv(t, x̃(q−1t),
∇qx̃(t), x̃(a), x̃(b)) for all t ∈ (a,b]. Moreover, if x(a)
is free, then

fv
(
a, x̃(aq−1),∇qx̃(a), x̃(a), x̃(b)

)
=(1−q−1) ∑

t∈(a,b]
t fz
(
t, x̃(q−1t),∇qx̃(t), x̃(a), x̃(b)

)
;

if x(b) is free, then

fv
(
b, x̃(bq−1),∇qx̃(b), x̃(a), x̃(b)

)
=−(1−q−1) ∑

t∈(a,b]
t fs
(
t, x̃(q−1t),∇qx̃(t), x̃(a), x̃(b)

)
.

We illustrate the application of Theorem 3.2 with an
example.

Example 3.8. Consider the problem

minimize L [x] =
∫ 1

0

(
(x∇(t))2

+αx2(0)+β (x(1)−1)2)
∇t,

(10)

where α,β ∈R+. If x̃ is a local minimizer of (10), then
conditions (2) – (4) must hold, i.e.,

(2x̃∇(t))∇= 0, (11)

2x̃∇(0) =
∫ 1

0
2αx(0)∇t,

2x̃∇(1) =−
∫ 1

0
2β (x(1)−1)∇t.

(12)

Equation (11) implies that there exists a constant c∈R
such that x̃∇(t) = c. Solving this equation we obtain
x̃(t) = ct + x̃(0). In order to determine c and x̃(0) we
use the natural boundary conditions (12) which we can
now rewrite as a system of two equations:

c−α x̃(0) = 0, c+β (c+ x̃(0)−1) = 0. (13)

The solution of (13) is c = αβ

α+β+αβ
and x̃(0) =

β

α+β+αβ
. Hence, x̃(t) = c(α,β )t + x̃(0,α,β ) is a

candidate for minimizer (see Fig. 1). We note that
limα,β→∞ c(α,β ) = 1, limα,β→∞ x̃(0,α,β ) = 0, and in
the limit α,β → ∞ the solution of (10) coincides with
the solution of the following problem with fixed ini-
tial and terminal points: minL [x] =

∫ 1
0 (x∇(t))2∇t, sub-

ject to x(0) = 0 and x(1) = 1. Expression αx2(0) +
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Fig. 1. Extremal x̃(t) = c(α,β )t + x̃(0,α,β ) of Example 3.8
for different values of parameters α and β .
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β (x(1)− 1)2 added to the Lagrangian (x∇(t))2 works
like a penalty function when α and β go to infin-
ity. The penalty function itself grows and forces the
merit function (10) to increase in value when the con-
straints x(0) = 0 and x(1) = 1 are violated, and causes
no growth when constraints are fulfilled.

3.2. Hamiltonian Approach

Now let us consider the more general variational
problem of optimal control on time scales: to minimize
(maximize) the functional

L [x,u] =
∫ b

a
f (t,xρ(t),uρ(t),x(a),x(b))∇t, (14)

subject to

x∇(t) = g(t,xρ(t),uρ(t),x(a),x(b)),
(x(a) = xa), (x(b) = xb),

(15)

where xa,xb ∈ R, f (t,x,v,z,s) : [A,b]×R4 → R and
g(t,x,v,z,s) : [A,b]×R4 → R have partial continuous
derivatives with respect to x,v,z,s for all t ∈ [A,b], and
f (t, ·, ·, ·, ·), g(t, ·, ·, ·, ·) and their partial derivatives are
ld-continuous for all t. We also assume that the func-
tion gx is ν-regressive.

A necessary optimality condition for problem
(14) – (15) can be obtained from a general Lagrange
multiplier theorem in space of infinite dimension. We
form a Lagrange function f + λ ρ(g− x∇) by introduc-
ing a multiplier λ : [A,b] → R. In what follows we
shall assume that λ ρ is a nabla differentiable function
on [a,b]. For examples of time scales for which the
composition of a nabla differentiable function with ρ

is not nabla differentiable, we refer the reader to [21].
Note that we are interested in the study of normal ex-
tremizers only. In general one needs to replace f in
f +λ ρ(g−x∇) by λ0 f . Normal extremizers correspond
to λ0 = 1 while abnormal ones correspond to λ0 = 0.

Theorem 3.9. If (x̃, ũ) is a normal extremizer for the
problem (14) – (15), then there exists a function p̃ such
that the triple (x̃, ũ, p̃) satisfies the Hamiltonian system

x∇(t) = Hp(t,xρ(t),uρ(t), p(t),x(a),x(b)), (16)

(p(t))∇=−Hxρ(t,xρ(t),uρ(t), p(t),x(a),x(b)), (17)

the stationary condition

Huρ(t,xρ(t),uρ(t), p(t),x(a),x(b)) = 0, (18)

for all t ∈ [a,b]κ , and the transversality condition

p(a) =−
∫ b

a
Hz(t,xρ(t),uρ(t), p(t),x(a),x(b))∇t,

(19)

when x(a) is free; the transversality condition

p(b) =
∫ b

a
Hs(t,xρ(t),uρ(t), p(t),x(a),x(b))∇t, (20)

when x(b) is free, where the Hamiltonian
H(t,x,v, p,z,s) : [A,b]×R5→ R is defined by

H(t,xρ,uρ, p,x(a),x(b)) = f (t,xρ,uρ,x(a),x(b))
+ pg(t,xρ,uρ,x(a),x(b)).

Proof. Let (x̃, ũ) be a normal extremizer for the prob-
lem (14) – (15). Using the Lagrange multiplier rule, we
form the expression λ ρ(g− x∇) for each value of t (we
are assuming that T is a time scale for which λ ρ is
a nabla differentiable function on [a,b]). The replace-
ment of f by f +λ ρ(g−x∇) in the objective functional
gives us a new problem: minimize (maximize)

I [x,u,λ ] =
∫ b

a

{
f (t,xρ(t),uρ(t),x(a),x(b))

+λ
ρ(t)
[
g(t,xρ(t),uρ(t),x(a),x(b))

− x∇(t)
]}

∇t,

(x(a) = xa), (x(b) = xb). (21)

Substituting

H(t,xρ,uρ,λ ρ,x(a),x(b))
= f (t,xρ,uρ,x(a),x(b))+λ

ρg(t,xρ,uρ,x(a),x(b))

into (21), we can simplify the new functional to the
form

I [x,u,λ ] =
∫ b

a
[H(t,xρ,uρ,λ ρ,x(a),x(b))

−λ
ρ(t)x∇(t)]∇t.

(22)

The choice of λ ρ will produce no effect on the value
of the functional I , as long as the equation x∇(t) =
g(t,xρ(t),uρ(t),x(a),x(b)) is satisfied, i.e., as long as

x∇(t) = Hλ ρ(t,xρ(t),uρ(t),λ ρ(t),x(a),x(b)). (23)

Therefore, we impose (23) as a necessary condition for
the minimizing (maximizing) of the functional I . Un-
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der condition (23) the free extremum of the I is identi-
cal with the constrained extremum of the functional L .
In view of (22), applying Theorem 3.2 to the problem
(21) gives

(λ ρ(t))∇=−Hxρ(t,xρ(t),uρ(t),λ ρ(t),x(a),x(b)), (24)

Huρ(t,xρ(t),uρ(t),λ ρ(t),x(a),x(b)) = 0, (25)

for all t ∈ [a,b]κ , and the transversality conditions

λ
ρ(a) =−

∫ b

a
Hz(t,xρ(t),uρ(t),λ ρ(t),x(a),x(b))∇t,

λ
ρ(b) =

∫ b

a
Hs(t,xρ(t),uρ(t),λ ρ(t),x(a),x(b))∇t,

(26)

in case x(a) and x(b) are free. Note that (24) is a first
order nonhomogeneous linear equation and from the
assumptions on f and g, the solution λ̃ ρ exists (see
Theorem 3.42 in [22]). Therefore the triple (x̃, ũ, λ̃ ρ)
satisfies the system (23) – (25) and the transversal-
ity conditions (26) in case x(a) and x(b) are free.
Putting p̃ = λ̃ ρ we obtain the intended conditions
(16) – (20). �

Remark 3.10. Theorem 3.9 covers the case when (x̃, ũ)
is a normal extremizer for the problem (14) – (15). We
do not consider problems with abnormal extremizers,
but in general such extremizers are possible. Let us
consider the problem

minimize L [x,u] =
∫ 1

0
(u(t))2 dt,

x′(t) =0,

x(0) = 0, x(1) = 0

(27)

defined on T = R. Then, the pair (x̃(t), ũ(t)) = (0,0)
is abnormal minimizer for this problem. Observe that
I [x̃(t), ũ(t),λ ] = 0 for all λ ∈ C1([0,1],R). However,
for the triple (x(t),u(t),λ (t)) = (t2 − t,0,2t − 1) we
have I [x(t),u(t),λ (t)] =

∫ 1
0 −(2t−1)2 dt =− 1

3 < 0.

Example 3.11. Consider the problem

minimize L [x,u] =
∫ 3

0
(uρ(t))2 + t2(x(3)−1)2

+ t2(x(0)−1)2
∇t,

x∇(t) =uρ(t).

(28)

To find candidate solutions for the problem, we start by
forming the Hamiltonian function

H(t,xρ,uρ, p,x(0),x(3))

= (uρ)2 + t2(x(3)−1)2 + t2(x(0)−1)2 + puρ.

Candidate solutions (x̃, ũ) are those satisfying the fol-
lowing conditions:

(p(t))∇= 0, uρ(t) = x∇(t),

2uρ(t)+ p(t) = 0,
(29)

p(0) =−
∫ 3

0
2t2(x(0)−1)∇t,

p(3) =
∫ 3

0
2t2(x(3)−1)∇t.

(30)

From (29) we conclude that p(t) = c and a possible
solution is x̃(t) =− c

2 t +d, where c, d are constants of
nabla integration. In order to determine c and d, we use
the transversality conditions (30) that we can write as

c =−
∫ 3

0
2t2(d−1)∇t,

c =
∫ 3

0
2t2
(
−3c

2
+d−1

)
∇t.

(31)

The values of the nabla integrals in (31) depend on
the time scale. Notwithstanding this fact, substituting∫ 3

0 t2∇t = k, k ∈R, into (31) we can simplify the equa-
tions to the form

c =−2k(d−1), c = 2k

(
−3c

2
+d−1

)
. (32)

Equations (32) yield c = 0 and d = 1. Therefore, the
extremal of the problem (28) is x̃(t) = 1 on any time
scale.

When T = R we obtain from Theorem 3.9 the fol-
lowing corollary.

Corollary 3.12. Let (x̃, ũ) be a normal extremizer for

L[x,u] =
∫ b

a
f (t,x(t),u(t),x(a),x(b))dt

subject to

x′(t) = g(t,x(t),u(t),x(a),x(b))
(x(a) = xa) (x(b) = xb),
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where a,b ∈ R, a < b. Then there exists a function p̃
such that the triple (x̃, ũ, p̃) satisfies the Hamiltonian
system

x′(t) = HL , p′(t) =−Hx,

the stationary condition

Hu = 0,

for all t ∈ [a,b] and the transversality condition

p(a) =−
∫ b

a
Hz dt,

when x(a) is free; the transversality condition

p(b) =
∫ b

a
Hs dt,

when x(b) is free, where the Hamiltonian H is defined
by

H(t,x,u, p,z,s) = f (t,x,u,z,s)+ pg(t,x,u,z,s).

We illustrate the use of Corollary 3.12 with an ex-
ample.

Example 3.13. Consider the problem

minimize L [x,u] =
∫ 1

−1
(u(t))2 dt,

x′(t) = u(t)+ x(−1)t + x(1)t.
(33)

We begin by writing the Hamiltonian function

H(t,x,u, p,x(−1),x(1)) = u2 + p(u+ x(−1)t + x(1)t).

Candidate solutions (x̃, ũ) are those satisfying the fol-
lowing conditions:

p′(t) = 0, (34)

x′(t) = u(t)+ x(−1)t + x(1)t, (35)

2u(t)+ p(t) = 0, (36)

p(−1) =−
∫ 1

−1
p(t)t dt,

p(1) =
∫ 1

−1
p(t)t dt.

(37)

Equation (34) has the solution p̃(t) = c, −1 ≤ t ≤ 1,
which upon substitution into (37) yields

c =
∫ 1

−1
ct dt = 0.

From the stationary condition (36) we get ũ(t) = 0.
Therefore, L [x̃, ũ] = 0. Finally, substituting the optimal
control candidate back into (35) yields

x̃′(t) = x̃(−1)t + x̃(1)t. (38)

Integrating (38), we obtain

x̃(t) =
1
2

t2(x̃(−1)+ x̃(1))+d. (39)

Substituting t = 1 and t = −1 into (39), we get d = 0
and x̃(−1) = x̃(1). Therefore, extremals of the problem
(33) are x̃(t) = t2x̃(1), where x̃(1) is any real number.

Theorem 3.14. Let (xρ,uρ,z,s)→ f (t,xρ,uρ,z,s) and
(xρ,uρ,z,s) → g(t,xρ,uρ,z,s) be jointly convex (con-
cave) in (xρ,uρ,z,s) for any t. If (x̃, ũ, p̃) is a solution
of system (16) – (20) and p̃(t)≥ 0 for all t ∈ [a,b], then
(x̃, ũ) is a global minimizer (maximizer) of problem
(14) – (15).

Proof. We shall give the proof for the convex case.
Since f is jointly convex in (xρ,uρ,z,s) for any admis-
sible pair (x,u), we have

L [x,u]−L [x̃, ũ]

=
∫ b

a

[
f (t,xρ(t),uρ(t),x(a),x(b))

− f (t, x̃ρ(t), ũρ(t), x̃(a), x̃(b))
]
∇t

≥
∫ b

a

[
fxρ(t, x̃ρ(t), ũρ(t), x̃(a), x̃(b))(xρ(t)− x̃ρ(t))

+ fuρ(t, x̃ρ(t), ũρ(t), x̃(a), x̃(b))(uρ(t)− ũρ(t))
+ fz(t, x̃ρ(t), ũρ(t), x̃(a), x̃(b))(x(a)− x̃(a))

+ fs(t, x̃ρ(t), ũρ(t), x̃(a), x̃(b))(x(b)− x̃(b))
]
∇t.

Because the triple (x̃, ũ, p̃) satisfies (17) – (20), we ob-
tain

L [x,u]−L [x̃, ũ]

≥
∫ b

a

[
−p̃(t)gxρ(· · ·)(xρ(t)− x̃ρ(t))

− (p̃(t))∆(xρ(t)− x̃ρ(t))
− p̃(t)guρ(· · ·)(uρ(t)− ũρ(t))
− p̃(t)gz(· · ·)(x(a)− x̃(a))

− p̃(t)gs(· · ·)(x(b)− x̃(b))
]
∇t

+ p̃(b)(x(b)− x̃(b))− p̃(a)(x(a)− x̃(a)),
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where (· · ·) = (t, x̃ρ(t), ũρ(t), x̃(a), x̃(b)). Integrating by
parts the term in (p̃)∆, we get

L [x,u]−L [x̃, ũ]

≥
∫ b

a
p̃(t)

[
x∇(t)− x̃∇(t)−gxρ(· · ·)(xρ(t)− x̃ρ(t))

−guρ(· · ·)(uρ(t)− ũρ(t))−gz(· · ·)(x(a)− x̃(a))

−gs(· · ·)(x(b)− x̃(b))
]
∇t.

Using (16), we obtain

L [x,u]−L [x̃, ũ]

≥
∫ b

a
p̃(t)

[
g(t,xρ(t),uρ(t),x(a),x(b))

−g(t, x̃ρ(t), ũρ(t), x̃(a), x̃(b))
−gxρ(· · ·)(xρ(t)− x̃ρ(t))
−guρ(· · ·)(uρ(t)− ũρ(t))−gz(· · ·)(x(a)− x̃(a))

−gs(· · ·)(x(b)− x̃(b))
]
∇t.

Note that the integrand is positive due to p̃(t) ≥ 0 for
all t ∈ [a,b] and joint convexity of g in (xσ ,uσ ,z,s).
We conclude that L [x,u]≥ L [x̃, ũ] for each admissible
pair (x,u). �

Example 3.15. Consider the problem (33) in Exam-
ple 3.13. The integrand is independent of (x,z,s) and
convex in u. The right-hand side of the control system

is linear in (u,z,s) and independent of x. Hence,

x̃(t) = t2x̃(1), x̃(1) ∈ R,

ũ(t) = 0

gives, by Theorem 3.14, the global minimum to the
problem.

Example 3.16. Consider again the problem from Ex-
ample 3.8. Replacing x∇ by uρ we can rewrite problem
(10) as

minimize L [x,u] =
∫ 1

0
((uρ(t))2 +αx2(0)

+β (x(1)−1)2)∇t

subject to x∇(t) = uρ(t). Function f is independent
of x and convex in (u,z,s). The right-hand side of
the control system is linear in u and independent of
(x,z,s). Therefore, x̃(t) = c(α,β )t + x̃(0,α,β ) is, by
Theorem 3.14, a global minimizer of the problem.
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time scales, Birkhäuser Boston, Boston, MA 2001.

[22] M. Bohner and A. Peterson, Advances in dynamic
equations on time scales, Birkhäuser Boston, Boston,
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