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resumo 
 

 

Os sistemas aquáticos naturais podem estar sujeitos frequentemente a entrada 
de tóxicos, quer seja através da lixiviação dos campos agrícolas ou da 
descarga por parte de unidades industriais. Avaliar o impacto potencial destes 
contaminantes nos sistemas aquáticos é muito importante, porque pode 
promover consequências sérias no balanço ecológico dos ecossistemas. Os 
efeitos de níveis sub-letais destes tóxicos nas populações aquáticas são 
detectados, em muitos casos, somente após diversas gerações, dependendo 
da espécie e do contaminante. O comportamento animal é considerado como 
sendo a primeira linha de defesa perante estímulos ambientais, e pode ser 
uma representação de alterações fisiológicas no organismo, sendo portanto 
um indicador excelente de alterações ambientais. O desenvolvimento dos 
sistemas de aviso prévio que integram parâmetros comportamentais pode 
ajudar a prever mais rapidamente possíveis alterações ao nível das 
populações naturais, do que a utilização de testes ecotoxicológicos padrão 
com a mesma finalidade. O conhecimento acerca de possíveis implicações 
devido a alterações comportamentais, em organismos bentónicos e em 
populações do campo sujeitas a tóxicos, é ainda escasso. Sabendo isto, neste 
estudo pretendeu-se investigar como o comportamento de Chironomus riparius 
– usando um biomonitor em tempo real – e outros parâmetros tais como 
crescimento, emergência de adultos, bioacumulação e biomarcadores, são 
afectados pela exposição a imidacloprid e ao mercúrio, que foram 
seleccionados como contaminantes. Os resultados demonstraram que a 
exposição às concentrações sub-letais de imidacloprid afecta o crescimento e 
o comportamento dos quironomídeos e que estes organismos podem 
recuperar de uma exposição curta ao insecticida. O comportamento que 
corresponde à ventilação de C. riparius revelou-se como um parâmetro mais 
sensível do que a locomoção e do que as respostas bioquímicas, quando as 
larvas foram sujeitas ao imidacloprid. Larvas de C. riparius expostas a 
concentrações sub-letais de mercúrio apresentaram uma tendência de 
diminuição de actividade comportamental, em testes com concentrações 
crescentes do tóxico; o crescimento das larvas foi também prejudicado, e as 
taxas de emergência de adultos e o tempo de desenvolvimento apresentaram 
retardamento. Estes organismos podem bioacumular rapidamente o mercúrio 
em condições de não alimentação e apresentam uma lenta depuração deste 
metal. Estes efeitos podem, em último caso, conduzir a prováveis 
repercussões ao nível da população e das comunidades. As reduções em 
actividades comportamentais, mesmo em concentrações baixas, podem 
diminuir a quantidade de tempo gasta na procura de alimento, produzindo 
efeitos aos níveis morfo-fisiológicos, e assim afectar severamente o 
desempenho dos quironomídeos no ambiente. O uso destes factores 
comportamentais como um parâmetro ecotoxicológico sub-letal relevante ao 
nível da toxicologia aumentará a versatilidade dos testes, permitindo uma 
resposta comportamental mensurável e quantitativa ao nível do organismo, 
utilizando uma avaliação não destrutiva, e assim certificando que esta 
aproximação pode ser usada em testes ecotoxicológicos futuros. 
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abstract 

 
Natural aquatic systems can be frequently subjected to toxicant inputs, either 
by runoff from agriculture fields or discharge from industrial plants. Assessing 
the potential impact of these contaminants on aquatic systems is an asset, as it 
can elicit serious consequences to the ecosystem balance. The effects of sub-
lethal levels of these contaminants at the aquatic population levels are only 
detected, in many cases, after several generations, depending on the species 
and contaminant. Behaviour is considered to be the first line of defence 
towards environmental stimuli, and being a representation of physiological 
alterations in the organism it can be an excellent indicator of environmental 
changes. The development of early warning systems comprising behavioural 
endpoints can help to predict possible alterations at the field population levels 
even faster than conventional standard ecotoxicological tests.  
The knowledge on the implication of behavioural disturbance by toxicants in 
benthonic organisms and in field populations is still scarce. Bearing this in 
mind, this study aimed to investigate how Chironomus riparius’ behaviour – 
using an online biomonitor – and other parameters such as growth, emergence, 
bioaccumulation and biomarker effect, are affected by exposure to the selected 
toxicants imidacloprid and mercury.  
Results have shown that exposure to sub-lethal concentrations of imidacloprid 
affects growth and behaviour of chironomids and the organisms can recover 
from a short exposure to the insecticide. C. riparius ventilation behaviour 
appeared as a more sensitive endpoint than locomotion and biochemical 
responses when larvae were subjected to imidacloprid. Sub-lethal 
concentrations of mercury on C. riparius elicited a trend of impairment in 
behavioural patterns with increasing concentrations of the toxicant; growth was 
also impaired and delayed emergence rates / development time were noticed. 
These organisms can also quickly bioaccumulate mercury in unfed conditions 
and present a slow depuration of the heavy metal. These effects may in last 
instance lead to probable repercussions at the population and community level. 
Reductions in behavioural activities even at low concentrations might decrease 
the amount of time spent foraging, producing effects at the morpho-
physiological levels, and thus severely affecting the chironomids performance 
in the environment. 
The use of these behavioural endpoints as a sub-lethal ecotoxicogical relevant 
parameter in toxicology will increase the versatility of the tests, allowing a 
measurable and quantitative behavioural response at the whole-organism level 
in a non-destructive assessment, thus certifying that this approach can be used 
in further assays. 
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1. GENERAL INTRODUCTION 

 

 

1.1. Preamble 

 

Many surface water bodies are now contaminated due to the increasing usage of 

pesticides, mainly in agriculture, and to heavy metal contaminations from industry 

and/or natural sources. This contamination may cause impairment of ecological 

functions (Fleeger et al., 2003) and decline of non-target species (Rohr et al., 

2006).  

Ecotoxicology is interested in studying the effects of toxicants on the ecosystems. 

Pollutants matter because of their effects on populations and communities, 

through their effects on individual organisms (Moriarty, 1993). Since the immediate 

effects of pollutants are on organisms, either indirect (through habitat alterations) 

or direct (toxic effects of chemicals at the organismal level), one needs to assess 

what happens at the individual level to understand the impact on populations. The 

direct effect on individuals may range from rapid death through sub-lethal effects 

to no effects at all (Moriarty, 1993).  

Ecotoxicology tests are needed to anticipate how toxicants are likely to impact 

ecological systems and to assess what changes are taking place in these systems 

under the influence of released toxic substances (Calow, 1997). When assessing 

the effects of a certain pollutant on a test species, the endpoints generally used 

are mortality (quantal type of data), and sub-lethal parameters like growth, 

reproduction, bioaccumulation and/or biomarker expression (continuous data), 

among others (Adams and Rowland, 2003). These responses can be ecologically 

relevant, as they are important components of fitness and determine the health, 

structure and dynamics of populations (Sibley et al., 1997). 

In aquatic ecotoxicology the effects of anthropogenic (and natural) toxicants on 

aquatic biota are studied. These contaminants enter (and can be deposited) in the 

aquatic environment either from direct discharge from effluents, terrestrial runoff, 

or atmospheric deposition. Biomonitoring of these effects may be done by routine 
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monitoring (identify unanticipated contamination and effects) or by targeted 

monitoring (focused on specific, known contaminant situations) (Grue et al., 2002). 

In the aquatic environments, biomonitoring may involve sampling of organisms as 

an indication of possible contamination, and in situ tests by assessing acute and 

chronic toxicity in caged organisms exposed to either contaminated water, 

sediment or both. Laboratory toxicity tests are also an asset, either by transposing 

and assessing in the laboratory field organisms and/or contaminated 

water/sediment; by using test species cultured in the laboratory with field 

contaminated water/sediment; or by assessing test species with artificially 

contaminated sediment/water. One must also bear in mind the ecological 

relevance of the experimental approach, in order to reach a compromise between 

realistic exposure situations and the scientific interest of the study.  

Tested species can be representatives of the studied populations or model 

organisms that are regularly used in toxicity tests, with well studied endpoints. In 

this thesis the benthonic midge larvae of Chironomus riparius (Meigen) were used 

as model organisms. Several guidelines (e.g. EPA, 2000; OECD, 2004) are in use 

for this species, in order to standardize ecotoxicological tests and allow the 

replicability, repeatability and reproducibility of the experiments, thus increasing 

the test precision and uniformity among laboratories. 

One of the drawbacks in using benthic macroinvertebrates for biomonitoring and 

assessment of water quality is the amount of effort required to process the 

samples, either in in situ tests (e.g. sorting animals in the sediment, 

measurements at the laboratory) or in laboratory tests where, in chronic tests, 

quantitative results on toxicity are only available at the end of the experimental 

period. For instance, to assess sub-lethal toxicity of pollutants on chironomids in 

laboratory, results on the effects on growth are only available after several days 

[e.g. 10 days and larvae still need to be measured (OECD, 2004)]; on emergence, 

after 20-28 days (OECD, 2004); on head-capsule deformity induction after several 

days [e.g. 10 days and still needs to mount the larvae (Meregalli et al., 2001)]; and 

to assess biomarker effects one needs to process the samples and quantify 

biomarker activities (Domingues et al., 2007), which can be time consuming. 

Survival is measured daily (one need to bear in mind that dead larva may be in the 
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sediment, thus not visible), but only at the end of the experimental period one can 

have certainties about mortalities. Ecotoxicologists want to use bioassays that are 

quick and easy, giving valuable information readily on contaminant effects on 

individual organisms, in order to make predictions about long-term impacts at an 

ecological level. In fact, Forbes et al. (2006) referred the need to devote more 

effort in developing and improving methods that directly measure effects of 

chemical impacts on populations, communities and ecosystems, and that less 

effort must be invested on measures that, at best, can only ever be suggestive of 

risks. 

Beitinger and McCauley (1990) suggested that responses to environmental 

changes can be divided in four categories: passive – no response, when the 

stimulus is not sensed or occurs too rapidly thus leading to a decrease in 

performance capacities or even death; behavioural reactions – when subjected to 

certain chemicals, animals usually react in seconds or minutes, avoiding stress 

and trying to obtain a favourable position relative to the level of stimulus; 

physiological responses – organisms suffer internal changes in various 

physiological processes, including adjustments in physiological rate functions and 

tolerance acclimation enhancement, which may occur within hours to weeks; and 

biochemical responses – synthesis of new molecules like ―stress‖ proteins in 

response to environmental change, in order to restore homeostasis within genetic 

constrains, which may take from days to weeks. So, adding behaviour as an 

endpoint can help to formulate a quantitative minute-to-minute or hour-to-hour 

assessment of how tested species are (re)acting towards the toxicant 

concentration, bearing in mind that behaviour can be classified as the cumulative 

interaction of a variety of biotic and abiotic factors that represents the animal’s 

response to internal (physiological) and external (environmental, social) factors 

and that relates one organism to another (Dell’Omo, 2002). Behaviour provides an 

insight into various levels of biological organization, being a result and determinant 

of molecular, physiological, and ecological aspects of toxicology (Scott and 

Sloman, 2004). Therefore, behavioural responses may reflect biochemical 

changes in the individual organism and subsequently promote alterations in 
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communities, which can be translated into ecological consequences (Lagadic et 

al., 1994). 

In former studies (e.g. with fish) behavioural parameters (considering swimming, 

ventilation, and foraging) have been suggested to be more sensitive than other 

endpoints (Beitinger, 1990; Beitinger and McCauley, 1990; Dell’Omo, 2002; 

Gerhardt, 2007). However, few studies have been made linking behavioural 

parameters to other biological (physiological, morphological) and ecological 

responses. 

 

 

1.2. Behaviour as an endpoint 

 

Behavioural responses comprise the first line of defence against adverse stimuli, 

since they can come into play within seconds after a stimulus is encountered 

(Beitinger, 1990). Behaviour can therefore be classified in different ways 

(Gerhardt, 2007): internal biochemical / physiological processes / mechanisms 

(neurobiological, hormonal, etc.); external ecological effects / consequences / 

purpose (e.g., avoidance, mating); degree of complexity such as from foraging 

behaviour; the distinction between individual (locomotion, foraging, learning with 

increasing complexity) and interactive behaviour (interspecific interactions such as 

predator-prey, or intraspecific interaction such as aggregation, territoriality, social 

interaction, reproduction related behaviours such as courtship, mating, spawning 

and parental care, etc.).  

The study of behaviour in ecotoxicology, or behavioural ecotoxicology, is a 

comprehensive field which is the summation of many interactive disciplines, like 

ethology, ecology and toxicology (Fig. 1.1; Dell’Omo, 2002), studying how 

behaviour is modified by environmental pollutants. 

The integrative nature of this parameter has some advantages: short response 

times (early warning responses), its non-invasive and non-destructive 

sensitiveness, and presents ecological relevance in laboratory toxicity tests 

(Depledge and Fossi, 1994; Gerhardt et al., 1994). 
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The objective of a behavioural bioassay is to determine whether a stimulus elicits 

an abnormal or adverse behavioural change outside the normal range of variability 

in an organism, which will adversely affect its survival, growth or reproduction 

(Beitinger, 1990). When an organism is subjected to an adverse stimulus, if there 

is no immediate physiological shock, usually that organism may behaviourally 

avoid the stimulus and effectively reduce exposure (Beitinger, 1990). If there is no 

avoidance capacity, organisms may suffer impairment of physiological responses, 

translated into a decrease in behavioural activities, making them less fit to 

avoid/hide from predators and/or foraging, thus increasing the lethality probability. 

The development of behavioural endpoints in toxicity assessment has improved 

the sensitivity and versatility of these studies, providing a unique toxicological 

perspective because they link biochemical causes of pollutants with ecological 

consequences on the population and community levels (Little, 1990). 

Behaviour responses can be addressed by using avoidance tests, by empirical 

observation or by using biomonitors. Avoidance tests are mainly focused on 

ecological risk assessment using soil organisms (Loureiro et al., 2005; Natal-da-

Luz et al., 2008). Empirical visual observation and manual data analysis is 

commonly used in toxicological tests to assess location of the animals during the 

experimental period (Pestana et al., 2009). However, avoidance is only measured 

Ethology 

Toxicology Ecology 

Behavioural 
ecotoxicology 

Figure 1.1 - Relationship between behavioural ecotoxicology 

and other disciplines [adapted from Dell’Omo (2002)]. 
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at the end of the experiment while visual observations, although applied during the 

tests, do not give us a measurable and discriminated response. Besides, these 

observations are very time-consuming and many times even impossible (e.g. 

benthonic animals that are inside the sediment may exhibit deleterious behaviour 

and cannot be observed). Behavioural biomonitors are employed to provide a 

visual and, therefore, measurable and quantitative behavioural response at the 

whole-organism level, offering an ecologically relevant, sensitive, fast and non-

destructive assessment. There are several types of biomonitors that have been 

employed in multiple ecology and toxicology tests in the past decade. Most 

frequently used biomonitors in ecotoxicology experiments are: using video/image 

by computer-aided video tracking system [e.g. locomotor activity of isopods, in soil 

(Engenheiro et al., 2005)]; or using test chambers based on quadropole 

impedance technique [(Gerhardt et al., 1994) e.g. behavioural activities of benthic 

invertebrates (Gerhardt et al., 2005; Macedo-Sousa et al., 2007), including tests 

with chironomids (Janssens de Bisthoven et al., 2004)]. 

 

 

1.3. Selection of the test species 

 

The selection of the studied species was based on the following criteria: easiness 

of handling and keeping the organisms in the laboratory under controlled 

conditions; the organisms must live in the sediment, but need to evidence 

drifting/swimming behaviour; evidence of early studies comprising measured 

behaviour in biomonitors; and need to be sensitive towards the selected toxicants. 

 

1.3.1. Chironomids: Ecology, biology and toxicology 

 

Chironomidae (Insecta, Diptera), frequently referred to as non-biting midges, are 

opportunistic tube-dwelling detritivores (Pinder, 1986) that play an important part in 

freshwater ecosystems, as they are ubiquitous and often dominate the benthic 
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communities of lotic and lentic environments, preferring eutrophic and organic 

enriched waters (Armitage et al., 1995; Vos, 2001). 

They are able to invade habitats from where other species (e.g. competitors and 

predators) are often excluded (Pinder, 1986) and act many times as a major food 

source for other animals (Armitage et al., 1995; Rieradevall et al., 1995; Garcia-

Berthou, 1999), playing an important part in bioturbation and nutrient cycling 

(Svensson and Leonardson, 1996) in these ecosystems. 

Chironomids have a short life cycle (Fig. 1.2), comprising eggs, four larval stages, 

pupal stage (aquatic phases), and an adult stage (terrestrial/aerial phase). Adult 

females after swarming and mating lay the gelatinous egg batches (arranged 

helicoidally) on the water surface attached to several substrates, like plants or 

rocks. After the hatching, first instar larvae (white/transparent) are mainly pelagic. 

The following instars often inhabit the upper layer of the sediment, building 

protecting tubes from sediment particles.  

 

 

The later instars are red coloured due to the presence of haemoglobin, that allows 

the midges to be tolerant to poorly oxygenated conditions (Ewer, 1942; Pinder, 

1986) and increases the probability of a possible adaptation of the larvae to 

environmental changes, due to the response flexibility of haemoglobin (Ha and 

Choi, 2008). Larval stage can vary from few weeks to several years, being strongly 

related with temperature and food quality/quantity (Pinder, 1986). Pupal stage 

lasts for a few days, until adult emergence. Adults have a very quick existence.  

1 

2 

3 

4 

Figure 1.2 - Chironomid life cycle, displaying 

the egg stage (1), larval stage (2), pupal stage 

(3) and terrestrial imago (4) [adapted from 

Ristola (2000)]. 
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Despite being benthonic organisms, larvae can be often found in the water column 

(Takagi et al., 2005) and can evidence drifting behaviour (Boothroyd, 1995), a 

probable strategy to colonize other areas, avoid predators or escape from 

contaminated sites. These midges exhibit characteristic motile activities like 

swimming, wholebody respiratory undulations and crawling. Both swimming and 

respiratory undulation are fast movements that involve body bending in a head-to-

tail direction, while crawling combines the alternating use of the abdominal and 

prothoracic pseudopods as anchorage points, producing a form of locomotion 

analogous to caterpillar-looping (Brackenbury, 2000).  

This study focused on Chironomus riparius that, along with C. tentans, are among 

some of the test species recognized as useful tools to study sediment toxicity 

(Ankley et al., 1994), being frequently used to assess the toxicity of natural (Péry 

et al., 2003; Faria et al., 2007) or spiked (Milani et al., 2003; Åkerblom et al., 2008) 

sediments. They can also be used in water only toxicity tests (Lydy et al., 2000; 

Stuijfzand et al., 2000) or in tests simulating contamination events either by aerial 

dispersion or runoff from agricultural fields (Agra and Soares, 2009; Pestana et al., 

2009). For the assessment of pesticide toxic effects, several standardized 

methods using chironomids have been developed (ASTM, 2000; EPA, 2000; 

OECD, 2004). These multiple procedures and assessments are possible due to its 

multivoltine life cycle (Groenendijk et al., 1998); to the above mentioned 

widespread occurrence and ecological relevance; easiness to rear under 

laboratory conditions (Péry et al., 2002); and because during the larval 

development they are frequently in contact with the sediment (Goodyear and 

McNeill, 1999). Thus, these larvae have a high potential to play an important role 

as sentinel organisms in environmental monitoring (Choi et al., 1998). 

The C. riparius Meigen larvae used in experiments were originated from our 

laboratory culture, which has been maintained for several years, genetically 

enriched episodically.  
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1.4. Tested chemicals: Insecticide (Imidacloprid) and a heavy metal 

(Mercury) 

 

1.4.1. Imidacloprid 

 

One of the most innovative and growing group of pesticides is the neonicotinoids 

(Tomizawa and Casida, 2003). These pesticides are chemically related to nicotine 

and epibatidine that are agonists of the natural nicotinic acetylcholine receptor 

(nAChR) (Matsuda et al. 2001). Imidacloprid (IMI) is a chloronicotinoid insecticide 

that belongs to this new class of pesticides and is already commonly and 

worldwide applied in order to control sucking insects in crops (Tomizawa and 

Casida, 2005; Tomlin, 2000).  

 

Developed and patented by Bayer CropScience® AG (Monheim, Germany), IMI [1-

[(6-chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine (C9H10ClN5O2)] (Fig. 1.3) 

is very neurotoxic, acting via direct contact or ingestion and subsequent binding to 

the postsynaptic nAChRs of insects. IMI prevents acetylcholine from binding to the 

same receptor and, because it is not promptly degraded by acetylcholinesterase, 

promotes overstimulation of the insects’ nervous systems, causing tremors, lack of 

muscular coordination, decreased activity, desensitization and blocking of the 

receptors leading to modified behaviours and probable death of insects (Matsuda 

et al., 2001; Tomizawa and Casida, 2003). Neonicotinoids present higher 

selectivity factors for insects versus mammals, which is attributable to both target 

site specificity and detoxification. Nicotinoids (e.g. nicotine) are cationic and 

consequently selective for the mammalian nAChR, while neonicotinoids are not 

protonated and selective to insect nAChR (Tomizawa and Casida, 2005). 

Figure 1.3 - Structure of the synthetic insecticide 

imidacloprid [adapted from Matsuda et al., 

(2001)]. 
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Confidor®, Admire® and Gaucho® are some examples of commercial systemic 

insecticides that have IMI as the active ingredient and are used worldwide to 

control sucking insect pests, soil insects, termites, and some chewing insects, 

being also effective against adult and larval stages. In fact, IMI is used in urban 

areas to control turf pests in household lawns, parks, athletic fields, golf courses, 

etc., and this type of use appears to be increasing (CCME, 2007).  

Nowadays the use of neonicotinoids is rising quicker than that of any other 

insecticides (e.g. organophosphates, pyrethroids) (Matsuda et al., 2001) and 

annual sales of neonicotinoids already account for 11%–15% of the total 

insecticide market (Tomizawa and Casida, 2005). This is mainly owed to their 

outstanding plant systemic activity and because the use of other neuroactive 

insecticides is declining due to selection of resistant insect strains and increasing 

restrictions based on human safety considerations (Tomizawa and Casida, 2005). 

Due to the boost in the use of IMI, it has been frequently detected in aquatic 

systems (surface and groundwater), especially during rainfall events and in 

shallow wells (CCME, 2007), increasing the awareness on possible effects of low 

concentrations in aquatic life. Since it’s applied in terrestrial habitats it can reach 

surface and ground waters via drift, leaching or dissolved runoff (Fossen, 2006; 

Gupta et al., 2002). IMIs’ physical-chemical characteristics might promote this 

contamination: persistent in soils [soil photolysis half life is 38.9 days and soil 

aerobic half life is 997 days (ExToxNet, 1998)]; high solubility in water [0.514 g L-1 

at 20 ºC and pH 7 (ExToxNet, 1998)]; has a long water and sediment half life [66 

days (Sanchez-Bayo and Goka, 2005)], with a slow hydrolysis [half life >30 days, 

depending on formulation, pH and temperature (Sarkar et al., 1999), and can 

reach almost 1 year (CCME, 2007)], but with a fast aquatic photolysis [half life of 

CONFIDOR® is 2.1h at λ=280 (Wamhoff and Schneider, 1999)]; low log Kow [low 

octanol-water partition coefficient – 0.57 (ExToxNet, 1998), with a low 

accumulation potential in aquatic species]. In natural field conditions, 

concentrations ranging from 0.13 to 11.9 μg L-1 of IMI have been registered 

(Phillips and Bode, 2004; CCME, 2007). 

Nauen et al. (2002) refers that P450-monooxygenases are important in IMI 

detoxification and resistance development in insects, and studies with the aerial 
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insects Apis mellifera (Suchail et al., 2003) and Musca domestica (Nishiwaki et al., 

2004) showed that IMI is metabolised very quickly and thoroughly, but its 

metabolites may extend the action of the insecticide. 

Regarding toxicity, IMI can wield lethal and sublethal effects on non target species, 

being extremely toxic to aquatic invertebrates even at low concentrations. Daphnia 

magna shows a 48 h LC50 varying from 17.36 mg L-1 (Song et al., 1997) until 85 

mg L-1 (ExToxNet, 1998); for Lumbriculus variegatus, a 96h EC50 for 

immobilization of 6.2 μg L-1 was reported by Alexander et al. (2007); for 

chironomids, Stoughton et al. (2008) found a 96h LC50 for Chironomus tentans 

using the formulated product of IMI (Admire®) of 5.40 μg L-1, whilst for Chironomus 

riparius a 96h EC50 for mortality of 12.94 μg L-1 was reported by Pestana et al. 

(2009). 

The exposure to the active ingredient compared to commercial products might 

yield different levels of toxicity to aquatic organisms, generating diverse results as 

this could vary depending on the formulation of several products, endpoints and 

species tested (CCME 2007; Jemec et al., 2007; Stoughton et al., 2008).  

 

 

1.4.2. Mercury 

 

The Minamata and Niigata (Japan) incidents in the 1950s and 1960s focused 

worldwide attention and concerns on environmental mercury pollution, when many 

people were poisoned by methylmercury after eating fish and shellfish highly 

contaminated by mercury from direct industrial sources (Wiener et al., 2003; Ekino 

et al., 2007). Despite the actual imposed legislations have intended to minimize 

and eliminate mercury discharges to the environment in the last decades, mercury 

legacy in sediments and soils continues to be a worldwide concern. 

Mercury (Hg) is a non-essential metal (Group B), showing lack of specific binding 

to organic ligands, and form strong covalent bonds (Mason and Jenkins, 1995), 

presenting a high toxicity to all biota. As an elementary substance, mercury is 

persistent and cannot be degraded into harmless products. It will therefore be 
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permanently recycled in the physical, chemical and biological processes in the 

environment (OSPAR, 2000). 

This heavy metal occurs naturally and is very common in the environment, 

deriving from both natural processes and anthropogenic activities (Wolfe et al., 

1998; EPA, 2001; Wiener et al., 2003). In case of natural activities, the major 

occurrence is derived from fallout of atmospheric gases from volcanic activity and 

geothermic emissions or emissions from deep-hydrothermal vents. Anthropogenic 

emissions of mercury, like mine tailings or industry, have since pre-industrial times 

resulted in a deposition rate increase by a factor of 2-10 in the most industrialized 

regions (Europe, North America, south-eastern China) during the last 200 years 

(Hylander, 2001). Due to its high volatility, it can also be dispersed via atmospheric 

transportation and deposited in other regions (Morel et al. 1998; Boening 2000) 

mainly as Hg(II) (EPA, 1997), being in this way available to biota even in regions 

far away from any pollution source. As so, two cycles are believed to be involved 

in the environmental transport and distribution of mercury: a global atmospheric 

circulation of elemental mercury vapour from sources on land to the oceans, while 

locally transport and distribution depend on the methylation processes of inorganic 

mercury from mainly anthropogenic sources (Boening, 2000). 

Despite declining use, mercury has many applications, like extracting gold from 

ores (using liquid metallic mercury); treatment of diseases such as syphilis (until 

the 20th century) and parasitic infections; as fungicides in agriculture (Clarkson et 

al., 2003); use in chlor-alkali plants [manufacture of chlorine and caustic soda from 

brine for, amongst other applications, use in the food industry, textile production, 

cleaning agents, water treatment and pharmaceuticals, as well as intermediates in 

manufacturing other substances (OSPAR, 2009)], industry that produces nearly 

90% of European anthropogenic Hg emissions to the atmosphere (Hylander, 

2001). 

The extensive past industrial use of the metal and its compounds together with 

widespread agricultural application of organochemicals has frequently resulted in 

serious contamination of surface water and sediments (Ullrich et al., 2001). 

Mercury can occur in three valence states (0, +1 and +2) and may be present in 

various physical and chemical forms in the environment. For instance, can form 
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salts in two ionic states: mercury (I) and mercury (II). The environmental cycle of 

mercury has four strongly interconnected compartments (atmospheric, terrestrial, 

aquatic and biotic). The atmospheric compartment is dominated by gaseous 

elemental mercury (Hg0); the terrestrial compartment is dominated by Hg (II), 

sorbed to organic matter in soils. On the other hand, the aquatic compartment is 

dominated by Hg (II)-ligand pairs in water and Hg (II) in sediments, whilst the biotic 

compartment is dominated by methylmercury (including in the higher trophic levels 

of the aquatic food web). Mercury is highly reactive in the environment and cycles 

readily among these compartments (Wiener et al., 2003). Metallic mercury (Hg) 

can be oxidized to mercury ions (Hg2+) which have a high affinity to sediments and 

which are easily transformed in the environment into mercuric ions (OSPAR, 

2000). Elemental mercury (Hg0) in surface waters occurs mainly from the reduction 

of Hg (II) compounds by aquatic organisms, and oxidation of Hg0 can conversely 

form Hg (II) (Ullrich, 2001). Since Hg0 is very volatile (Morel et al., 1998), it can be 

readily lost from the aquatic environment at normal temperatures, playing an 

important part in the global Hg cycle, since its atmospheric transport in the vapor 

phase represents one of the major pathways of global deposition. The inorganic 

Hg forms, then again, can be transformed into methylmercury (MeHg) by chemical 

processes and microorganisms like sulfate-reducing bacteria – methylation 

(Wiener et al., 2003). Subsequent exposure of biota to the newly formed MeHg, a 

potent neurotoxin that is readily accumulated by aquatic biota due to its lipophilic 

and protein-binding properties, may pose a threat to humans and other fish-eating 

(Ullrich et al., 2001).  

Contamination of biota from freshwater ecosystems by this heavy-metal is 

therefore a chronic and widespread environmental problem (Eisler, 1987; Boening, 

2000). At high exposures Hg causes behavioural modifications, growth inhibition, 

reproductive impairment, decreased embryo/larval survival, and a variety of 

neurological and enzymatic dysfunctions in aquatic species (Zillioux et al., 1993).  

Mercury bioaccumulation usually starts by exposure through direct contact, 

breathing or by ingestion and subsequent retention on a tissue or organ (Fisher 

and Reinfelder, 1995) and can happen even at low concentrations, exhibiting high 

toxicity towards aquatic organisms (Suchanek et al., 1995; Tremblay and Lucotte, 
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1997). In fact, because it can be biomagnified through the trophic chain (Morel et 

al., 1998), mercury bioaccumulation can present an ecological risk. The majority of 

the toxicological studies assessing the effects of Hg in aquatic biota have, 

therefore, focused on bioaccumulation and trophic transfer of the heavy-metal 

(Mason et al., 1995; Wong et al., 1997; Vázquez-Núñez et al., 2007; Žižek et al., 

2007). 

Lethal and sub-lethal toxicological endpoints in freshwater organisms have also 

been reported. Boening (2000) describes several LC50 values:  96h LC50 for fish 

ranges between 33 and 400 µg L-1; for Hydropsyche betteni, 96h LC50 is 2000 µg 

L-1; for Daphnia magna, the 48h LC50 is 3610 µg L-1. Vidal and Horne (2003) also 

reported a 96h LC50 of 0.18 mg L-1 for Tubifex tubifex, while Rossaro et al. (1985) 

accounted for a 48h LC50 of 750 µg L-1 for C. riparius.  

So, mercury can have deleterious effects on biota, is easily bioaccumulated and 

very persistent in the environment, with the nature and reactions of the Hg species 

determining the solubility, transport and toxicity of Hg in aquatic ecosystems. 

 

 

1.5. Research goals and thesis outline 

 

The information on the implications of the disturbance of complex behaviours by 

toxicants in benthonic organisms and in field populations is still scarce. The 

development and validation of behavioural tests to provide early warning 

information on these organisms’ behavioural reactions to the potential impact of 

contaminants (in this study: mercury and imidacloprid) is very important, especially 

during discharge or runoff periods, in order to evaluate potential effects on field 

communities. 

This thesis aimed to investigate how Chironomus riparius’ behaviour (a new 

approach, using an online biomonitor) and other endpoints (e.g. growth, 

emergence, bioaccumulation and biomarker effect) are affected by exposure to the 

selected contaminants. Results are expected to improve the knowledge of the 

effects of imidacloprid and mercury exposure on benthic larvae, and to assess the 

sensitiveness of the endpoints chosen for this study. 
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In this research, the null hypothesis tested was that mercury and imidacloprid do 

not affect the normal behaviour nor compromise the development of Chironomus 

riparius.  

To address this, four separate chapters are organized in order to focus on these 

issues, followed by a general conclusion with final remarks. 

 

Chapter two: ―Behaviour and growth of Chironomus riparius Meigen (Diptera: 

Chironomidae) under Imidacloprid pulse and constant exposure scenarios‖, we 

focused on the effects of the insecticide on growth and behaviour of the 

chironomids when subjected to a constant and a pulse (followed by a recovery 

period) exposure to the pesticide. 

 

Chapter three: we address the ―Effects of imidacloprid exposure on Chironomus 

riparius Meigen larvae: linking acetylcholinesterase activity to behaviour‖. In this 

study we perform a link between parameters with ecological relevance at 

individual level (behavioural parameters) with biochemical responses, to fully 

understand xenobiotics’ mode of action. 

 

Chapter four: ―Effects of mercury on growth, emergence and behaviour of 

Chironomus riparius Meigen (Diptera: Chironomidae)‖, we assessed the effects of 

mercury on C. riparius, simulating a mercury discharge. Growth was measured 

after 8 days exposure, while behaviour was measured at days 4 and 10, and 

emergence and development time were also assessed.  

 

Chapter five:  ―Bioaccumulation and elimination of mercury in the midge larvae 

Chironomus riparius Meigen (Diptera: Chironomidae): a link to behaviour‖, 

mercury toxicokinetics (uptake and elimination) was evaluated using C. riparius 

under a water-only exposure. Behavioural parameters were monitored during the 

experimental (uptake and elimination) period. 

 

Chapter six: general conclusions and final remarks. 
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Abstract 

 

Imidacloprid is a new insecticide that mimics nicotine, combining its insecticidal 

activity with a reduced persistence in the environment. The toxicity of imidacloprid 

to Chironomus riparius Meigen using the formulated product Confidor® from 

Bayer®, in pulse and continuous exposure was evaluated in this study. The 

behavioural response of the midge after toxicant exposure using an online 

biomonitor was also investigated. Early second instar C. riparius larvae were 

exposed in either constant (10 days) or pulse (4 days, followed by 6 days post 

exposure in clean medium) conditions. Imidacloprid constant exposure resulted in 

a decrease in growth and impairment of the behavioural pattern of the midge 

larvae. Pulsed exposure followed by a recovery period revealed a recovery of 

midge physiological conditions, by reaching a stabilization of normal behavioural 

activities and growth among treatments. Moreover, ventilation showed to be a 

more sensitive parameter by revealing a faster recovery than locomotion. 

Behaviour alterations may weaken the ability to escape from predators, and 

reduce food acquisition with consequent growth impairment. These effects may 

have an impact at the population and community level. 

 

 

Keywords Insecticide; Biomonitor; Confidor; Behavioral Response; Post-

exposure; Recovery 
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2.1. Introduction 

 

The application of pesticides in agriculture fields can frequently contaminate 

nearby freshwater ecosystems (Crane et al., 1995). Usually they occur in short 

time spans either by field runoff, ground water flows, spray drift or accidental 

spillage (Liess et al., 1999). Therefore, aquatic macroinvertebrates present in 

those systems can be continuously or episodically exposed to inputs of lethal or 

sub-lethal concentrations of pesticides that might cause a loss of biodiversity and 

impair ecosystem function.. Several efforts have been carried out to reduce the 

effects of pesticides to non-target organisms, such as the development of new 

chemicals that do not require airborne spraying and that are specific for a certain 

plague. One of the most common and worldwide used pesticides in the control of 

sucking insects is imidacloprid [IMI; 1-[(6-chloro-3-pyridinyl)methyl]-N-nitro-2-

imidazolidinimine (C9H10ClN5O2)], developed by Bayer CropScience® AG 

(Monheim, Germany). This insecticide shows selective toxicity for insects since it 

binds to their postsynaptic nicotinic acetylcholine receptors, causing its 

overstimulation by mimicking acetylcholine action in the central nervous system 

(Tomizawa and Casida, 2005). IMI might also be toxic towards non-target insects, 

such as Apis mellifera [LD50 of IMi at 24 and 48 h were about 5ng/bee (Suchail et 

al., 2000)], Daphnia magna [LC50 of IMI at 48 h was 10.44 mg L-1 (Song et al., 

1997)], Hyallela azteca [LC50 of IMI at 96 h was 0.526 mg L-1 (SERA, 2005)], 

Simulium vittatum [LC50 of IMI at 48 h was 6.74 – 9.45 µg L-1 (Overmyer et al., 

2005)], or even chironomids [LC50 of IMI at 96 h for Chironomus tentans, using the 

technical Imidacloprid and the formulated product Admire® were 5.75 and 5.40 µg 

L-1, respectively (Stoughton et al., 2008); 96 h EC50 of IMI for C. riparius was 12.94 

µg L-1 (Pestana et al., 2009a)]; and also toxic to other macroinvertebrates [LC50 of 

IMI after 14 days were 3.74 mg kg−1 dry soil for Aporrectodea nocturna and 2.81 

mg kg−1 dry soil for A. icterica (Capowiez et al., 2005)]. IMI is typically applied in 

agricultural fields only once or twice in a season, so any transport to surface 

waters is likely to occur in short-duration pulses, followed by dissipation and 

biodegradation (CCME, 2007). In samples collected in natural field conditions, 

concentrations ranging from 0.5 to 11.9 μg L-1 of IMI have been measured in 
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agricultural runoff; and concentrations of 6.4 μg L-1 were detected in groundwater 

(CCME, 2007). A maximum of 0.13 μg L-1 of IMI was detected in river water in 

summer months and during the growing season, which could reflect a nearly 

constant application of these in a variety of settings (Phillips and Bode, 2004). The 

persistence of this chemical in aquatic systems is also dependent of several 

factors such as light, temperature, and microbial communities (Liess et al., 1999). 

IMI is highly soluble in water [0.514 g L-1 at 20 ºC and pH 7 (ExToxNet, 1998)];  

with a fast aquatic photolysis [half life of CONFIDOR® is 2.1h at λ=280 (Wamhoff 

and Schneider, 1999)]; with a low log Kow [low octanol-water partition coefficient – 

0.57 (ExToxNet, 1998), with a low accumulation potential in aquatic species].The 

majority of laboratory toxicity studies assessing the effects of pesticides use 

constant concentrations and measure effects after a short period of exposure 

(Pestana et al., 2009a; Agra and Soares, 2009; Stoughton et al., 2008). They do 

not take into consideration more realistic and relevant exposure scenarios, as 

pulse exposures, thus do not allow a real understanding of when the toxic starts to 

act on the organism and what is happening to the organism throughout the 

experimental period. 

To assess the effects of the exposure to a toxicant, one may recur to organisms’ 

behavioural responses, which has been the subject of an increasing body of work 

(Natal-da-Luz et al., 2004; Loureiro et al., 2005; Pestana et al., 2009a). Being the 

result of the interaction of an organism with the surrounding environment, 

behaviour integrates the complexity of individual physiological processes and 

mechanisms with the environmental stimuli that cause them (Dell’Omo, 2002). 

Behaviour can thus be considered the first line of defence to environmental stimuli 

(Beitinger, 1990), and it is regarded as one of the most sensitive indicators of 

chemical stress (Gerhardt et al., 1994). Behavioural biomonitors are used to 

record animal activities and are, therefore, employed to provide a measurable 

response at the organism level (e.g. Engenheiro et al., 2005; Macedo-Sousa et al., 

2007; Azevedo-Pereira and Soares, 2010 – Chapter 4). In fact, online biomonitors 

can generate quick and early-stage data that can be linked to higher levels of 

biological organization, even at the population and community level (Gerhardt, 

1995). 
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Chironomids are opportunistic tube-dwelling detritivores that play an important role 

in aquatic ecosystems, not only due to its predominance on benthic communities 

of almost all freshwater environments (Vos, 2001; Péry et al., 2002) but also 

because they are a major food source for fish and aquatic birds (Rieradevall et al., 

1995). For the above mentioned and because of the easiness to rear under 

laboratory conditions, the larvae of the midge Chironomus riparius Meigen are 

widely used test organisms in acute and chronic toxicity tests (e.g. Faria et al., 

2006, 2007; Agra and Soares, 2009), For the assessment of pesticide toxic 

effects, several standardized methods using sediment-dwelling organisms such as 

chironomids have been developed (e.g. ASTM – E1706, 2000; EPA – EPA/600/R-

99/064, 2000; OECD – guideline 219, 2004). 

Here, C. riparius’ behaviour and growth were studied after different IMI exposure 

regimes by exposing the organisms in a 10 days constant exposure and 4 days 

exposure followed by 6 days in clean medium, where the organisms’ recovery 

after the exposure was also assessed. 

 

 

2.2. Material and Methods 

 

2.2.1. Test organisms 

 

C. riparius midges were obtained from our laboratory culture established for 3 

years. The cultures were maintained in standard conditions at 20 ± 2 ºC, in a 16 h 

light-8 h dark cycle, in an enclosed transparent acrylic box that contains several 

plastic beakers. Each beaker contained a 2 cm layer of acid-washed burned 

commercial river sand (< 1 mm), approximately 2.5 L of reconstituted hard water 

ASTM (ASTM – E1706, 2000), and a constant and gentle inflow of oxygen. This 

system allows the whole life cycle of the chironomids to occur, including swarming 

and copulation of emerged adults (OECD, 2004). Freshly laid egg masses are 

transferred onto crystallizing dishes with culture medium until hatching occurs, 

after approximately 2–3 days, and the hatched F1 larvae were used either to start 
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a new culture or to use in bioassays. Water and sediment were renewed every 

week and larvae were fed (1 mg animal-1 day-1) twice a week with a suspension of 

ground Tetramin® (Tetrawerke, Germany). 

 

 

2.2.2. Imidacloprid 

 

Confidor® 200 SL was acquired from Bayer CropScience® AG (Monheim, 

Germany) and was used to prepare the stock solution of imidacloprid with Milli-Q 

water, which was stored at 4 ºC and protected from light. The concentration 

determined for the stock solution was 494 μg of IMI L-1. Tests solutions used in the 

bioassays were prepared by adding the relevant amount of stock solution in ASTM 

hard water.  

The nominal concentrations used for both presented bioassays were 0.00 (control) 

0.50, 1.50 and 4.50 μg of IMI L-1, selected after previous results from an acute 

testing [48h LC50 (95.0 % Confidence Interval) was 19.90 µg of IMI L-1 (14.64 – 

27.16 µg of IMI L-1)] and bibliography (Stoughton et al., 2008; Pestana et al., 

2009a). Chemical analyses of the IMI samples from the stock solution and 

bioassays were conducted by Terracon Laboratorium für Umwelt- und 

Pestizidanalytik GmbH (Jütterborg, Germany), using a HPLC-PDA-System 

equipped with 2 HPLC pumps Model LC-10ADvp, Autosampler SIL-10ADvp, 

column oven CTO-10ASvp, and a photodiodenarray-detector (PDA) SPD-M10Avp 

(Shimadzu, Japan). Procedure consisted in: all samples containing high IMI 

concentrations (e.g. stock solutions) were diluted with deionised water, while 

samples with lower concentrations were extracted from 100–200 mL water 

samples (flow of 0.5 mL min−1) using solid phase extraction (SPE cartridges 

Supelclean ENVI-18, Supelco, Schnelldorf, Germany) and acetonitrile (1:1 v:v) for 

elution. 10 µL acetonitrile-extracts were then applied to a chromatography column 

(LUNA C18, Phenomenex, Aschaffenburg, Germany), at a flow rate of 0.4 mL 

min−1 using water, 0.1 % formic acid and acetonitrile as eluents. Detection was 

carried out at 270 nm with a limit of quantification of 0.1 µg L−1. 
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2.2.3. Acute toxic experiments 

 

Mortality of C. riparius exposed to the pesticide was estimated to establish a range 

of sub-lethal concentrations to be used in chronic bioassays and to estimate the 

sensitivity of this species to IMI. The solutions of imidacloprid used in the test were 

prepared in ASTM hard water and comprised nominal concentrations of 1.25, 

2.50, 5.00, 10.00, 15.00, 20.00, 30.00 and 40.00 µg L-1. Twenty-five 7 days old 

larvae divided by 5 replicates were exposed in glass beakers containing 150 mL of 

pesticide solutions with no addition of food. After 48 h exposure, mortality was 

determined by mechanical stimulation. Animals that did not respond to this 

stimulation were considered dead.  

 

 

2.2.4. Organisms’ exposure 

 

To simulate an insecticide contamination by runoff from agricultural fields, 

experiments were performed as an adaptation of the OECD guideline sediment-

water chironomid toxicity test using spiked water (OECD – guideline 219, 2004). 

Two bioassays were performed: one comprising 10 days of exposure to a gradient 

of pesticide concentrations, and the other with 4 days of pesticide exposure 

followed by 6 days of exposure to clean medium (sediment and water). The 

experiments were performed using 200 mL glass vials (10 replicates per 

treatment), with five 2nd instar larvae (four days old) per replicate. Each replicate 

contained 40 g of acid-washed inorganic fine sediment (granulometry <1 mm) and 

150 mL of test solution.  

Every 48 h, 75 mL of the test solution was renewed and organisms were fed with 

ground Tetramin® (0.5 mg animal-1 day-1). Tests were performed in same 

conditions as described for the cultures. In the recovery test, after 4 days of 

exposure the larvae were gently removed from the test vessels and placed in 

beakers with clean medium and sediment, until the end of the experiment. 
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2.2.5. Chronic toxicity assessment 

 

Behaviour and total length of larvae were used as the response parameters. 

Replicates were examined daily. Growth was calculated as the difference between 

the final and the initial size of the larvae divided by the number of test days. In the 

post exposure test, additional replicates were used to measure growth on day four. 

Five replicates were used to measure larvae body length using a stereo dissecting 

microscope (MS5, Leica Microsystems, Houston, USA) with a built-in calibrated 

eye-piece micrometer. 

Behaviour patterns were measured as a function of animal movements recorded 

by an online biomonitor (Multispecies Freshwater Biomonitor, MFB). The MFB was 

developed by Gerhardt et al. (1994) and is based on a quadropole impedance 

technique where the organism moves freely inside a chamber that contains two 

pairs of stainless steel plates attached to the inner walls that serve as electrodes. 

One pair of electrodes generates a high frequency alternating current perturbation 

while the other pair measures changes of the impedance and its frequency within 

the chamber due to the organism movements (Gerhardt, 2000). The data 

generated is registered in the measuring device and processed in the equipment 

software, and presenting the result as the percentage of time spent in each activity 

(Gerhardt, 2000). The MFB allows 4 minutes recordings every 10 minutes 

(equivalent to 6 recordings per hour). Preliminary studies (unpublished data) 

showed that C. riparius exhibits  a regular behavioural pattern in water: a lower 

frequency behaviour (0.5-2.5 Hz) – the larvae generally exhibit locomotion and 

other low frequency movements, and higher frequency behaviour (3.0-8.0 Hz) – 

the larvae presented faster movements such as undulating with the body in a 

regular pattern (ventilation). These frequencies are in accordance with the ones 

described for the same species by Janssens de Bisthoven et al. (2004). For this 

study, five larvae from each concentration and from the control were chosen 

randomly, placed individually in the MFB chambers with ASTM hard water, and 

behaviour was recorded during 2 h (n=12 recordings per replicate), every 48 h 

after the initial 96 h exposure and until the end of the test. 
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2.2.6. Statistics 

 

LC50 was determined using the PROBIT method (Finney, 1971). All data were 

checked for normality and homoscedascity. Two-way ANOVA’s were performed, 

using IMI concentrations and days as factors. Data from behavioural experiments 

were arcsin square root transformed to stabilise variances across treatments (Zar, 

1996). Whenever significant differences were observed, a Tukey post hoc test was 

used for multiple pairwise comparisons to assess which treatments were 

significantly different. Where applicable, results are presented as mean ±SE. For 

all statistical tests the significance level was set at p≤0.05. All calculations were 

performed with SigmaStat software package (Systat Software Inc., 2006). 

 

 

2.3. Results 

 

Despite the replacement of 50% of the test medium every 48 hours, at the end of 

the constant exposure test there was a 22%, 51% and 52% decrease in the first, 

second and third concentrations, respectively, when compared with the nominal 

concentrations used. For a better understanding, the analytical concentrations 

detected are used in graphs, results and discussion (0.39, 0.74 and 2.15 μg of IMI 

L-1). 

In the acute experiments, conducted without sediment or food, the larvae did not 

present any sign of cannibalism and no mortality was observed in the control 

treatments. 

More than 80% survival was registered in the controls for all the exposure periods, 

thus validating the experiments. In acute tests, the 48 h LC50 (95.0 % Confidence 

Interval) was 19.90 µg of IMI L-1 (14.64 – 27.16 µg of IMI L-1). C. riparius growth 

decreased with higher concentrations of IMI, being statistically significantly 

different for 2.15 μg of IMI L-1 - 43 and 34% less growth after 96 and 240 h of 

exposure respectively [ANOVA, Tukey’s test: q= 14.726, p<0.05 (for 96 h); and 

q=6.120, p<0.05, (for 240 h); Fig. 2.1]. 
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Contrastly, when exposed for 4 days and transferred to clean medium for 6 days, 

the larvae showed no differences in growth compared to control (ANOVA, Tukey’s 

test: q=0.549, p=0.980; Fig. 2.1) showing a recovery in growth compared to those 

exposed to the constant 10 day exposure, which revealed statistically significant 

differences for concentration of 2.15 μg of IMI L-1 (ANOVA, Tukey’s test: q=4.375, 

p=0.006; Fig. 2.1). 

When exposed for 96 h to IMI, behavioural patterns of the larvae were affected - 

reduced, being statistically significantly different for 2.15 µg of IMI L-1 in both 

locomotion and ventilation frequencies (ANOVA, Tukey’s test: q=5.710, p<0.001; 

and q= 6.255, p<0.001, respectively; Fig. 2.2A and 2.3A). This reduction in 

behavioural patterns lasts even after the 10 day exposure period being statistically 

significant for concentration 2.15 µg of IMI L-1 in both locomotion and ventilation 
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Figure 2.1 - Average growth of Chironomus riparius when exposed to imidacloprid for a period of 

96 and 240 h and when exposed for a period of 96 hours followed by a post-exposure period of 

144 h in clean water. (a,b,c) same letters represent differences between treatments at a 

significance level p<0.05 (ANOVA, Tukey’s test). 
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frequencies (ANOVA, Tukey’s test: q=11.524, p<0.001; and q=8.252, p<0.001, 

respectively; Fig. 2.2A and 2.3A). 

 

 

 

Despite the inhibition of the behavioural patterns after 4 days exposure to 2.15 µg 

of IMI L-1 in locomotion frequencies, at the end of the 6 day post-exposure period 

in clean medium, larvae showed a tendency to recover in this concentration when 
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Figure 2.2 - Average activity frequencies of locomotion of Chironomus riparius when exposed for a 

period of 4, 6, 8, and 10 days to imidacloprid (A), and when exposed for a period of four days to 

imidacloprid, followed by a post-exposure period of 2, 4, and 6 days in clean water (B). 

Concentrations used are expressed in the XX axis, as well as the days of recording in the 

Multispecies Freshwater Biomonitor. (*) represent significance level p<0.001 (ANOVA, Tukey’s 

test). 
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comparing to control – no statistically significant differences (ANOVA, Tukey’s test: 

q=0.691, p=0.962; Fig. 2.2B). As for the larvae’s ventilation frequencies, no 

statistically significant differences from control were found, hence recovery 

occurred, from post-exposure day 8 onward (ANOVA, Tukey’s test: q=3.294, 

p=0.229; Fig. 2.3B).  

 

 

Figure 2.3 - Average activity frequencies of ventilation of Chironomus riparius when exposed for a 

period of 4, 6, 8, and 10 days to imidacloprid (A), and when exposed for a period of four days to 

imidacloprid, followed by a post-exposure period of 2, 4, and 6 days in clean water (B). 

Concentrations used are expressed in the XX axis, as well as the days of recording in the 

Multispecies Freshwater Biomonitor. (*) represent significance level p<0.001 (ANOVA, Tukey’s 

test). 
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2.4. Discussion 

 

The effects of sub-lethal concentrations of IMI on growth and behaviour of C. 

riparius were assessed under two different exposure scenarios occurring in natural 

conditions. The experimental design employed in this study aimed to assess the 

effects of formulated IMI on organisms, closely matching methods commonly used 

in ecotoxicological hazard assessment. The concentrations used are 

environmentally relevant, but one could use a broader range of concentrations, in 

order to reach a more comprehensive assessment on the effects of IMI in these 

organisms. 

Previous studies have shown effects of sub-lethal concentrations of IMI in aquatic 

non-target macroinvertebrates, such as Daphnia magna, Simulium vittatum, 

Lumbriculus variegatus, Chironomus tentans and C. riparius (Song et al., 1997; 

Overmyer et al., 2005; Alexander et al., 2007; Jemec et al., 2007; Stoughton et al., 

2008; Pestana et al., 2009b). Experiments with C. riparius exposed to the same 

compound report a 96 h LC50 of 12.94 µg of IMI L-1 (Pestana et al., 2009a). A 96 

h LC50 of 5.40 µg of IMI L-1  for C. tentans exposed to Admire® (Stoughton et al., 

2008) and a 48 h LC50 of 9.45 – 6.74 µg of IMI L-1  for Simulium vittatum exposed 

to technical IMI (Overmyer et al., 2005) are also described. These results are 

consistent with our acute responses.  

The lower concentrations of IMI detected in the experimental period are probably 

due to bacterial growth in the beakers due to continuous food addition, which can 

increase the degradation rate of imidacloprid (CCME, 2007). 

Although it cannot be completely excluded that IMI toxicity is also due to unknown 

compounds included in the formulation of Confidor®, previous studies have 

confirmed that both commercial formulation (Confidor® 200 SL) and its active 

ingredient (IMI) show similar toxicity to other organisms (e.g., Daphnia magna; 

Jemec et al., 2007). 

Neonicotinoids, such as IMI, act as agonists at the postsynaptic nicotinic 

acetylcholine receptors (Matsuda et al., 2001) disrupting the neural processes of 

the organisms. Even low doses of IMI can provoke alterations in behaviour activity, 

and if concentrations are high enough they can cause uncontrolled muscular 
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tremors, which can limit foraging and subsequent growth of aquatic insects 

(Alexander et al., 2007; Pestana et al., 2009b), with probable consequences at the 

population level – emergence / reproduction (Alexander et al., 2008). Exposing C. 

riparius larvae for a 10 day period to IMI significantly reduced growth, which is in 

accordance with literature for the terrestrial pea aphid, Acyrthosiphon pisum 

(Laskowski, 2001), and the aquatic insects C. tentans, Hyalella azteca, and C. 

riparius (Stoughton et al., 2008; Pestana et al., 2009a). After 4 days exposure the 

results were similar, with midges presenting a decrease in total length (for the 

same concentrations; see Fig. 2.1). After being transferred to a clean medium for 6 

days, larvae were able to recover from the pulse exposure, exhibiting a similar 

growth to the control. Stoughton et al. (2008) found similar results in a 96 h pulse 

exposure with C. tentans subject to 3.5 µg of IMI L-1, with a recovery of the 

midge’s growth after the subsequent 6 days in clean medium. 

To evaluate the physiological effects of the insecticide, midge behaviour was 

measured throughout the experimental period, giving a sensitive representation of 

the organisms’ physiological response to environmental factors (Dell’Omo, 2002). 

Although chironomids are mainly benthic organisms, they can frequently travel 

considerable distances by drifting, exhibiting a characteristic swimming behaviour 

(Armitage et al., 1995; Brackenbury, 2000). Chironomids’ behavioural patterns 

indicated a clear sub-lethal toxic stress, which may be due to an overstimulation of 

larvae neural activities caused by IMI exposure (Buckingham et al., 1997). During 

the exposure experiment, larvae showed lower locomotion and ventilation 

activities at the highest IMI concentration throughout the test. Using a more 

classical visual methodology, Pestana et al. (2009a) also evidenced a significant 

impairment of the burrowing behaviour of the midge larvae exposed to IMI. This 

response may be linked with the uncontrolled muscular activity provoked by the 

insecticide that would diminish the animals’ ability to burrow and dislocate, either 

by abdominal and prothoracic pseudopod movements or by undulated body 

movements. In fact, locomotion impairment was recorded throughout all the 

exposure period. Moreover, ventilation at day 10 was almost inexistent. This is 

probably due to the continuous stimulation of the nervous system, which in turn 

might reduce the ability and time spent in foraging, and therefore reduced intake of 
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energy to supply a highly energetic demanding type of behaviour, as discussed in 

Penttinen and Holopainen (1995). Studies concerning behaviour with other aquatic 

macroinvertebrates have also described an impairment of behavioural activity 

when the organisms where under other toxic sources such as metals or 

pharmaceuticals (Gerhardt et al., 2005; De Lange et al., 2006). Organisms can 

also present other behavioural responses, such as an increase in activity, usually 

linked with attempts to escape from contaminated areas (Janssens de Bisthoven 

et al., 2004; 2006). These different responses might be related not only to the 

toxicant concentrations tested but also to its mode of action and surely to the fact 

that different species were used. 

After the 4 day exposure and removal to clean medium for 6 days, larvae that 

were exposed to 2.15 µg of IMI L-1 exhibited an increase of locomotory and 

ventilatory movements when compared to the larvae that were continuously 

exposed to 2.15 µg of IMI L-1 for 10 days. Moreover, a complete recovery of both 

locomotion and ventilation parameters at the last day of post-exposure was found, 

indicating that at day 10 the larvae fully recovered from the initial 4 days exposure 

to the insecticide - ventilation revealed this recovery sooner, by day 8. These 

behavioural post-exposure data are thus in accordance with the growth parameter 

data. This recovery might be linked to the resuming of normal neural activities and 

therefore picking up the normal foraging activity and subsequent energy uptake 

that enables the restart of high energy costly behaviours such as those described 

here. Behavioural effects can be related to fitness of individuals and therefore 

have population-level impacts (Capowiez et al., 2003). To enlighten the above 

mentioned wider picture of the effects of the pesticide, further testing should 

consider both the energy intake and metabolic and fitness costs. 

Our results are in agreement with the work of Sanchez-Bayo and Goka (2006) that 

assessed the ecological changes caused by IMI in experimental paddy fields. 

Although referring the need for further studies, they suggested that IMI toxicity 

towards aquatic arthropods is reversible and may not affect the long-term ecology 

of those ecosystems.  

In natural conditions, concentrations ranging from 0.13 to 12 μg of IMI L-1 have 

been measured in freshwaters (Phillips and Bode, 2004; CCME, 2007; Jemec et 
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al., 2007). The concentrations used in this study are thus conservative and 

ecologically relevant, and together with the exposures regimes assessed, might 

represent real environmental scenarios. The results support that C. riparius larvae 

can recover if the exposure to IMI is short. However, one also needs to take into 

consideration that IMI has negative effects on aquatic insects, especially in the 

case of high concentrations or even repeated pulses of contamination (Pestana et 

al. 2009b). Exposure to IMI affects the growth and behaviour of the midge larvae, 

and organisms can in fact recover from the exposure to the insecticide. Thus, it 

can be added that carefully planned pesticide application intervals should be 

considered in order to give aquatic organisms the possibility to recover from these 

pulses, contrary to continuous applications that might have more severe 

population implications. Furthermore, it is also shown the reliability of using 

behavioural endpoints and online biomonitoring as a sub-lethal ecotoxicogical 

relevant parameter.  

 



Behaviour and growth of C. riparius under IMI pulse and constant exposure scenarios 

 

41 
 

References 

 

 

Agra, A.R. and Soares, A.M.V.M., 2009. Effects of Two Insecticides on Survival, Growth and 

Emergence of Chironomus riparius Meigen. Bull. Environ. Contam. Toxicol. 82, 501-504. 

Alexander, A.C., Culp, J.M., Liber, K. and Cessna, A.J., 2007. Effects of insecticide exposure on 

feeding inhibition in mayflies and oligochaetes. Environ. Toxicol. Chem. 26, 1726-1732. 

Alexander, A.C., Heard, K.S. and Culp, J.M., 2008. Emergent body size of mayfly survivors. 

Freshwat. Biol. 53, 171–180. 

Armitage, P.D., Cranston, P.S. and Pinder, L.C.V., 1995. The Chironomidae: The biology and 

ecology of non-biting midges. Armitage, P.D., Cranston, P.S., Pinder, L.C.V. (Eds.) 

Chapman & Hall, London, UK. 

ASTM, 2000. Standard test methods for measuring the toxicity of sediment-associated 

contaminants with freshwater invertebrates (E1706). In: Annual Book of ASTM standards, 

vol 11.05, Philadelphia 

Azevedo-Pereira, H.M.V.S. and A.M.V.M. Soares, 2010. Effects of Mercury on Growth, 

Emergence, and Behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Arch. 

Environ. Contam. Toxicol.. 59, 216-224. 

Beitinger, T.L., 1990. Behavioral reactions for the assessment of stress in fishes. J. Great Lakes 

Res. 16, 495–528. 

Brackenbury, J., 2000. Locomotory modes in the larva and pupa of Chironomus plumosus (Diptera, 

Chironomidae). J. Insect Physiol. 46, 1517-1527. 

Buckingham, S., Lapied, B., Corronc, H. and Sattelle, F., 1997. Imidacloprid actions on insect 

neuronal acetylcholine receptors. J. Evol. Biol. 200, 2685-2692. 

Capowiez, Y., Rault, M., Mazzia, C. and Belzunces, L., 2003. Earthworm behaviour as a biomarker 

- a case study using Imidacloprid. Pedobiologia 47, 542–547. 

Capowiez, Y., Rault, M., Costagliola, G. and Mazzia, C., 2005. Lethal and sublethal effects of 

Imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophora 

icterica). Biol. Fert. Soils. 41, 135-143. 

CCME. 2007. Canadian Water Quality Guidelines: Imidacloprid. Scientific Supporting Document. 

Canadian Council of Ministers of the Environment, Winnipeg. 

Crane, M., Delaney, P., Mainstone, C. and Clarke, S., 1995. Measurement by in situ bioassay of 

water quality in an agricultural catchment. Water Res. 29, 2441-2448. 

De Lange, H.J., Noordoven, W., Murk, A.J., Lurling, M. and Peeters, E.T.H.M., 2006. Behavioural 

responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of 

pharmaceuticals. Aquat. Toxicol. 78, 209-216. 



Chapter 2 

 

42 
 

Dell'Omo, G., 2002. Behavioural Ecotoxicology. Dell'Omo, G. (Eds.) John Wiley & Sons, Inc., 

Hoboken, New Jersey, USA. 

Drobne, D., Blazic, M., Van Gestel C.A.M., Leser, V., Zidar, P., Jemec, A. and Trebse, P., 2008. 

Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). 

Chemosphere 71, 1326-1334. 

Engenheiro, E.L., Hankard, P.K., Sousa, J.P., Lemos, M., Weeks, J.M. and Soares, A.M.V.M., 

2005. Influence of dimethoate on acetylcholinesterase activity and locomotor function in 

terrestrial isopods. Environ. Toxicol. Chem. 24, 603-609. 

EPA - United States Environmental Protection Agency, 2000, Methods for Measuring the Toxicity 

and Bioaccumulation of Sediment-associated Contaminants with Freshwater 

Invertebrates - Second Edition. EPA/600/R-99/064. 

ExToxNet – Extension Toxicology Network (1998) Imidacloprid Pesticide Information Profile. 

[Online]. Available at http://extoxnet.orst.edu/pips/imidaclo.htm. (Verified March 2010). 

Oregon State University, Corvallis, OR 

Faria, M.S., Ré,  A., Malcato, J., Silva, P.CL.D., Pestana, J., Agra, A.R., Nogueira, A.J.A. and 

Soares, A.M.V.M., 2006. Biological and functional responses of in situ bioassays with 

Chironomus riparius larvae to assess river water quality and contamination. Sci. Total 

Environ. 371, 125-137. 

Faria, M.S., Nogueira, A.J.A. and Soares, A.M.V.M., 2007. The use of Chironomus riparius larvae 

to assess effects of pesticides from rice fields in adjacent freshwater ecosystems. 

Ecotoxicol. Environ. Saf. 67, 218-226. 

Finney, D.J., 1971. Probit Analysis. Cambridge University Press, London. 

Gerhardt, A., Svensson, E., Clostermann, M. and Fridlund, B., 1994. Monitoring of behavioral 

patterns of aquatic organisms with an impedance conversion technique. Environ. Int. 20, 

209-219. 

Gerhardt, A., 1995. Monitoring behavioral responses to and effects of metals in Gammarus pulex 

(Crustacea) with impedance conversion. Environ. Sci. Pollut. Res. 2, 15–23. 

Gerhardt, A., 2000. Recent trends in biomonitoring for water quality control. In: Gerhardt, A. (Ed.), 

Biomonitoring of Polluted Water. Trans Tech Publications Ltd., Zürich. 

Gerhardt, A., Janssens de Bisthoven, L. and Soares, A.M.V.M., 2005. Effects of acid mine 

drainage and acidity on the activity of Choroterpes picteti (Ephemeroptera: 

Leptophlebiidae). Arch. Environ. Contam. Toxicol. 48, 450-458. 

Janssens de Bisthoven, L., Gerhardt, A. and Soares, A.M.V.M., 2004. Effects of acid mine 

drainage on larval Chironomus (Diptera, Chironomidae) measured with the Multispecies 

Freshwater Biomonitor. Environ. Toxicol. Chem. 23, 1123-1128. 

Janssens de Bisthoven, L., Gerhardt, A., Guhr, K. and Soares, A.M.V.M., 2006. Behavioral 

changes and acute toxicity to the freshwater shrimp Atyaephyra desmaresti Millet 

(Decapoda: Natantia) from exposure to acid mine drainage. Ecotoxicology 15, 215-227. 



Behaviour and growth of C. riparius under IMI pulse and constant exposure scenarios 

 

43 
 

Jemec, A., Tišler, T., Drobne, D., Sepčić, K., Fournier, D. and Trebše, P., 2007. Comparative 

toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target 

arthropod, the microcrustacean Daphnia magna. Chemosphere 68, 1408-1418. 

Laskowski, R., 2001. Why short-term bioassays are not meaningful—effects of a pesticide 

(Imidacloprid) and a metal (Cadmium) on pea aphids (Acyrthosiphon pisum Harris). 

Ecotoxicology 10, 177-183. 

Liess, M., Schulz, R., Liess, M.H.D., Rother, B. and Kreuzig, R., 1999. Determination of insecticide 

contamination in agricultural headwater streams. Water Res. 33, 239-247. 

Loureiro, S., Soares, A.M.V.M. and Nogueira, A.J.A., 2005. Terrestrial avoidance behaviour test as 

screening tools to assess soil contamination. Environ. Pollut. 138, 121-131 

Macedo-Sousa, J.A., Pestana, J.L.T., Gerhardt, A., Nogueira, A.J.A. and Soares, A.M.V.M., 2007. 

Behavioural and feeding responses of Echinogammarus meridionalis (Crustacea, 

Amphipoda) to acid mine drainage. Chemosphere 67, 1663-1670. 

Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M. and Sattelle, D.B., 2001. 

Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends 

Pharmacol. Sci. 22, 573-580. 

Natal-da-Luz, T., Ribeiro, R. and Sousa, J.P., 2004. Avoidance tests with collembola and 

earthworms as early screening tools for site specific assessment of polluted soils. 

Environ. Toxicol. Chem. 23, 2188-2193. 

OECD, 2004. Guideline 219 - Sediment-water chironomid toxicity test using spiked water (Paris, 

France). 

Overmyer, J.P., Mason, B.N. and Armbrust, K.L., 2005. Acute Toxicity of Imidacloprid and Fipronil 

to a Nontarget Aquatic Insect, Simulium vittatum Zetterstedt cytospecies IS-7. Bull. 

Environ. Contam. Toxicol. 74, 872-879. 

Penttinen, O.P. and I.J. Holopainen, , 1995. Physiological energetics of a midge, Chironomus 

riparius Meigen (Insecta, Diptera): normoxic heat output over the whole life cycle and 

response of larva to hypoxia and anoxia. Oecologia 103, 419-424. 

Péry, A.R.R., Mons, R., Flammarion, P., Lagadic, L. and Garric, J., 2002. A modeling approach to 

link food availability, growth, emergence, and reproduction for the midge Chironomus 

riparius. Environ. Toxicol. Chem. 21, 2507-2513. 

Pestana, J.L.T., Loureiro, S., Baird, D.J. and Soares, A.M.V.M., 2009a. Fear and loathing in the 

benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence 

of chemical signals of predation risk. Aquat. Toxicol. 93, 138-149. 

Pestana, J.L.T., Alexander, A.C., Baird, D.J., Cessna, A. and Soares, A.M.V.M., 2009b. Structural 

and functional responses of benthic invertebrates to Imidacloprid in outdoor stream 

mesocosms. Environ. Pollut. 157, 2328-2334. 

Phillips, P. J. and R.W. Bode, 2004. Pesticides in surface water runoff in south-eastern New York 

State, USA: seasonal and stormflow effects on concentrations. Pest Manag. Sci. 60, 531-

543. 



Chapter 2 

 

44 
 

Rieradevall, M., García-Berthou, E, and Prat, N., 1995. Chironomids in the diet of fish in Lake 

Banyoles (Catalonia, Spain). Cranston, P. (ed). Chironomids: from genes to ecosystems. 

CSIRO, Melbourne, Australia. 

Sanchez-Bayo, F. and Goka, K., 2006. Ecological effects of the insecticide imidacloprid and a 

pollutant from antidandruff shampoo in experimental rice fields. Environ. Toxicol. Chem. 

25, 1677-1687. 

SERA (Syracuse Environmental Research Associates, Inc.), 2005. Imidacloprid – human health 

and ecological risk assessment – final report; prepared for USDA, Forest Service, USA 

(SERA TR 05-43-24-03a). 

http://www.fs.fed.us/foresthealth/pesticide/pdfs/122805_Imidacloprid.pdf 

Song M.Y., Stark J.D. and Brown J.J., 1997. Comparative toxicity of four insecticides, including 

imidacloprid and tebufenozide, to four aquatic arthropods. Environ. Toxicol. Chem. 16, 

2494-2500. 

Stoughton, S., Liber, K., Culp, J. and Cessna, A., 2008. Acute and Chronic Toxicity of Imidacloprid 

to the Aquatic Invertebrates Chironomus tentans and Hyalella azteca under Constant- 

and Pulse-Exposure Conditions. Arch. Environ. Contam. Toxicol. 54, 662-673. 

Suchail, S., Guez, D. and Belzunces, L.P., 2000. Characteristics of imidacloprid toxicity in two Apis 

mellifera subspecies. Environ. Toxicol. Chem. 19, 1901-1905. 

Systat Software Inc., 2006. SigmaStat for Windows (version 3.5). Chicago, IL, USA. 

Tomizawa, M. and J.E. Casida,  2005. Neonicotinoid insecticide toxicology: Mechanisms of 

Selective Action. Annu. Rev. Pharmacol. Toxicol. 45, 247-268. 

Vos, J.H., 2001. Feeding of detritivores in freshwater sediments. PhD Thesis. University of 

Amsterdam, Amsterdam, The Netherlands. 

Wamhoff, H. and Schneider, V., 1999. Photodegradation of imidacloprid. Journal of Agricultural and 

Food Chemistry. 47: 1730-1734. 

Zar, J.H., 1996. Biostatistical Analysis. Prentice-Hall International, Inc., New Jersey. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 
 

 

Effects of imidacloprid exposure on Chironomus 

riparius Meigen larvae: linking acetylcholinesterase 

activity to behaviour 



 

 

 

 

 

 

 



Effects of imidacloprid exposure on C. riparius larvae: linking AChE activity to behaviour 

 

47 
 

3. EFFECTS OF IMIDACLOPRID EXPOSURE ON CHIRONOMUS RIPARIUS 

MEIGEN LARVAE: LINKING ACETYLCHOLINESTERASE ACTIVITY TO 

BEHAVIOUR 

 

 

Henrique M.V.S. Azevedo-Pereira1, Marco F.L. Lemos1,2 & Amadeu M.V.M. 

Soares1 

 

 
1
 CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 

3810-193 Aveiro, Portugal 

2
 ESTM, GIRM, Instituto Politécnico de Leiria, 2520 – 641 Peniche, Portugal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: This chapter has been accepted in the journal Ecotoxicology and Environmental Safety (it is 

in the format required for the cited journal). 



Chapter 3 
 

48 
  

Abstract 

 

Imidacloprid (IMI) is an insecticide that interferes with the transmission of stimuli in 

the nervous system of insects. It is neurotoxic by mimicking nicotine through its 

binding to the nicotinic acetylcholine receptor. In this work, experiments 

comprising 96 hours exposure followed by 48 hours in clean medium were 

conducted to evaluate the toxicity of IMI to Chironomus riparius and its potential 

recovery. Behavioural parameters and AChE activity were assessed. After 96 

hours exposure to IMI, AChE activity, and the behaviour parameters ventilation 

and locomotion were reduced. There were no signs of recovery after removal to 

clean water for 48 hours. Ventilation behaviour was the most sensitive parameter 

and the one with the highest correlation to AChE activity. Despite the possibility 

that IMI might be having an indirect effect on AChE activity, the behavioural 

endpoint showed a higher sensitivity than the biochemical response itself. This 

work highlights the importance of linking parameters with ecological relevance at 

individual level (behavioural parameters) with biochemical responses, to unravel 

xenobiotics’ mode of action. 

 

 

Keywords Neonicotinoids; neurotoxicity; behavioural parameters; ecotoxicology; 

linking biomarkers 
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3.1.  Introduction 

 

Pesticides used in agriculture are designed to affect target organisms – plagues – 

but due to their nature they may also affect non-target organisms present in the 

application site or even in nearby freshwater ecosystems (Crane et al. 1995). To 

reduce the pesticide’s impact in these non-target species, new chemicals have 

been developed that minimize the compounds’ resilience time and maintain the 

pest control effectiveness. One of these innovative and fastest growing groups of 

pesticides is the neonicotinoids (Tomizawa and Casida 2003). Imidacloprid [IMI; 1-

[(6-chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine], developed by Bayer 

CropScience® AG, is a very common and worldwide used neonicotinoid employed 

in the control of sucking insects in crops (Tomizawa and Casida 2005; Tomlin 

2000). IMI was designed to act as an agonist of the post-synaptic nicotinic 

acetylcholine receptors (Buckingham et al. 1997; Matsuda et al. 2001), causing 

their overstimulation and therefore affecting neuronal processes which may lead to 

overall impairment and even death. This neurotoxicity is produced through the 

binding or partial binding to specific sub-sites or protein subunits of the nicotinic 

acetylcholine receptor (nAChR), which in turn activates nAChR activity (SERA, 

2005). IMI can enter freshwater bodies by leach or runoff from agricultural fields 

and can lead to local point-source contaminations (Fossen 2006; Gupta et al. 

2002). Concentrations ranging from 0.13 to 12 μg IMI L-1 have been reported for 

natural field scenarios (CCME 2007; Phillips and Bode 2004). Pesticide 

persistence in aquatic systems is very variable and can occur in short time spans, 

depending on several abiotic (e.g. light) and biotic (e.g. microbial communities) 

factors (Liess et al. 1999). Research has been carried out to assess the toxicity of 

IMI to non-target aquatic macroinvertebrates, focusing not only on ecological 

relevant pulse exposure scenarios (Stoughton et al. 2008) but also on constant 

exposure scenarios (Pestana et al. 2009a; Pestana et al. 2009b). These studies 

highlighted the morphophysiological effects (survival, growth, emergence and 

behaviour) of IMI on the tested species, while few studies have assessed the 

biochemical/molecular toxic effects of this insecticide on aquatic 

macroinvertebrates (Jemec et al. 2007). Molecular biomarkers are being 
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increasingly used as early warning tools in laboratory and field experiments (e.g. 

Domingues et al. 2007; Lemos et al. 2009; Lemos et al. 2010a), since they allow 

the detection of effects at the subcellular level before they are apparent at higher 

levels of biological organization (Lemos et al. 2010b). To more accurately predict 

the direct consequences, to an organism or population, of the exposure to a 

known amount of a toxicant, a particular biomarker response should be related to 

impairment of growth, reproduction or metabolic function directly related to the 

survival of the organism (Depledge and Fossi 1994). One of the most employed 

biochemical biomarkers is cholinesterase (ChE) activity. Cholinesterases are 

nervous system enzymes that have a key role in the maintenance of the normal 

nerve functions. Acetylcholinesterase (AChE) is the enzyme responsible for the 

hydrolysis of the neurotransmitter acetylcholine that generates postsynaptic 

potentials. In its absence, acetylcholine continues to stimulate the postsynaptic 

neuron, leading to uncoordinated movements. Several studies have assessed the 

inhibition of AChE activity by several toxicants in aquatic organisms (Beauvais et 

al. 1999; Kallander et al. 1997; Rakotondravelo et al. 2006), linking this biomarker 

to other endpoints  such as behaviour, feeding rate or larval emergence 

(Domingues et al. 2007; García-de la Parra et al. 2006).  

At the individual level, behaviour is considered an early warning tool in 

ecotoxicology since it is one of the most sensitive indicators of chemical stress 

(Gerhardt et al. 1994) and the first line of defence to environmental stimuli 

(Beitinger 1990). Assessing behaviour alterations allows the integration of 

individual physiological processes and mechanisms with the environmental stimuli 

that are causing them (Dell'Omo 2002). Some authors have linked behavioural 

endpoints (like locomotion) to biochemical biomarkers (such as ACHE), on 

edaphic (Capowiez et al. 2003; Engenheiro et al. 2005; Jensen et al. 1997) and 

aquatic organisms (García-de la Parra et al. 2006).  

Chironomids are an ecologically diverse group and are one of the most ubiquitous 

insects within freshwater ecosystems, dominating (in number and biomass) the 

benthic communities of lotic and lentic environments (Péry et al. 2002), and are 

being a major food source for other animals (García-Berthou 1999). They are 
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easily maintained in the laboratory and are commonly used as model organisms 

for sediment toxicity tests (EPA 2000; OECD 1984).  

These organisms depend mostly on locomotion and ventilation (whole-body 

undulation in the water column) to perform all activities that enable them to 

dislocate, find food, emerge and avoid predators. Due to the above mentioned 

relation of AChE activity and behaviour, it is especially important to assess the 

effects of toxicants on AChE activity that might lead to the disruption of vital 

behavioural parameters. Despite AChE activity being usually used for 

organophosphate and carbamate exposure, previous studies using IMI and AChE 

activity have showed that AChE activity can be a sensitive biomarker, but not an 

early, sensitive biomarker of stress, (Jemec et al. 2007). 

The aim of this study was to assess how sublethal exposure to IMI affects both 

Chironomus riparius’ behaviour and AChE activity, in different periods throughout 

the exposure and even after the exposure episode.  

 

 

3.2. Material and Methods 

 

3.2.1. Test organism 

 

C. riparius midges were obtained from laboratory cultures established at the 

University of Aveiro for 3 years. The cultures were maintained in an enclosed 

transparent acrylic box containing several plastic beakers holding a 2cm layer of 

acid-washed and burned commercial sand (< 1mm), and approximately 2.5 L of 

reconstituted hard water ASTM (ASTM 2000). A gentle aeration was provided in 

each beaker. This system permits the occurrence of the whole life cycle of the 

chironomids, by allowing the swarming and copulation of emerged adults (OECD 

1984). The culture was maintained in standard conditions, at 20±2ºC and with a 

16h-8h light-dark photoperiod. Freshly laid egg masses are transferred onto 

crystallizing dishes with culture medium until hatching, and the first instar larvae 

are used either to start a new culture or in bioassays. Water and sediment were 
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renewed every week and larvae were fed (1 mg animal-1 day-1) twice a week with a 

suspension of ground Tetramin® (Tetrawerke, Germany). 

 

 

3.2.2. Imidacloprid 

 

Confidor® 200 SL (Bayer CropScience AG, Monheim, Germany) was used to 

prepare the stock solution of IMI dissolved in ultra-pure water. The analytical 

concentration of the stock solution was 0.725 mg L-1. From this stock solution, 

several nominal concentrations of IMI were prepared: 0.00 (control) 0.50, 1.50 and 

3.00 μg of IMI L-1 (nominal concentrations). Chemical analyses of the IMI samples 

from the stock solution and bioassays were conducted by Terracon Laboratorium 

für Umwelt- und Pestizidanalytik GmbH (Jütterborg, Germany), using a HPLC-

PDA-System equipped with 2 HPLC pumps Model LC-10ADvp, Autosampler SIL-

10ADvp, column oven CTO-10ASvp, and a photodiodenarray-detector (PDA) 

SPD-M10Avp (Shimadzu, Japan). Procedure consisted in: all samples containing 

high IMI concentrations (e.g. stock solutions) were diluted with deionised water, 

while samples with lower concentrations were extracted from 100–200 mL water 

samples (flow of 0.5 mL min−1) using solid phase extraction (SPE cartridges 

Supelclean ENVI-18, Supelco, Schnelldorf, Germany) and acetonitrile (1:1 v:v) for 

elution. 10 µL acetonitrile-extracts were then applied to a chromatography column 

(LUNA C18, Phenomenex, Aschaffenburg, Germany), at a flow rate of 0.4 mL 

min−1 using water, 0.1 % formic acid and acetonitrile as eluents. Detection was 

carried out at 270 nm with a limit of quantification of 0.1 µg L−1. 

 

 

3.2.3. Organisms’ exposure 

 

The bioassay comprised 96 hours exposure to IMI and subsequent 48 hours in 

clean medium. The experiments were performed in the same temperature and 

photoperiod conditions as in the cultures, using 200 mL glass beakers (10 
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replicates per treatment) with five late 3rd instar larvae (ten days old) per replicate. 

Each beaker contained 40g of acid-washed inorganic fine sand (<1 mm) and 150 

mL of test solution. Organisms were fed with macerated Tetramin® (0.5 mg animal-

1 day-1) every 48 hours until the end of the experiment. Replicates were examined 

daily for mortality. Forty eight hours after the beginning of the experiment, and 

before feeding, half of the test solution in each beaker was renewed. After 96 

hours of exposure, larvae were removed from the test beakers and transferred to 

beakers with clean medium, sediment and food as described above, until the end 

of the experiment. Acetylcholine activity and behaviour of larvae were measured 

as response parameters at 48h exposure, 96h exposure and 48h after removing to 

clean medium. 

 

 

3.2.4. Behaviour 

 

Behavioural patterns were recorded by the Multispecies Freshwater Biomonitor 

(MFB) that was developed by Gerhardt et al. (1994). Description of the technology 

can be found in Azevedo-Pereira et al. (2010 – Chapter 4). Five larvae from each 

concentration and from the control were randomly chosen and placed individually 

in the MFB chambers with ASTM hard water. Behaviour was recorded during 2 

hours (n=12 recordings per chamber) every 48h until the end of the test. 

 

 

3.2.5. Biochemical analysis 

 

Parallel to behaviour recording, a set of organisms were withdrawn from the 

experience and frozen in liquid nitrogen (n between 8 and 12). Within two weeks, 

the entire frozen animal was used to determine AChE activity. Each C. riparius 

was homogenised with 500 µL of phosphate buffer (0.1M, pH 7.2), using an 

electrical homogeniser and then centrifuged for 3 minutes at 5000 rpm and pellet 

discarded. AChE analyses were performed following Ellmans’ method (Ellman et 
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al. 1961) adapted to a microplate reader, and absorbance values read at 404 nm 

(Guilhermino et al. 1996; Ribeiro et al. 1999) (Labsystems Multiskan EX plate 

reader - Helsinki, Finland). The enzyme activity was expressed as nmol ml-1 mg 

prot-1 min-1. The total quantity of protein was determined following the method of 

Bradford (1976), adapted to microplate reader (Ribeiro et al. 1999) and absorption 

measured at 595 nm (Labsystems Multiskan EX plate reader - Helsinki, Finland).  

 

 

3.2.6. Statistics 

 

For behavioural experiments, one-way ANOVA’s were calculated for each 

recording period and a two-way ANOVA was used to compare data throughout the 

experimental period, using IMI concentrations and days as factors for both enzyme 

activity and behavioural data, testing for IMI concentrations, exposure and 

recovery periods, and their interactions.. Data from behavioural experiments were 

arcsine square root transformed to stabilise variances across treatments (Zar 

1996). The Spearman Rank Correlation was calculated between AChE activity and 

each behavioural parameter for all sampling periods. Whenever significant 

differences were observed, a Tukey post hoc test was used for multiple pairwise 

comparisons to assess which treatments were significantly different. For all 

statistical tests, the significance level was set at p≤0.05. All calculations were 

performed with SigmaStat (2006). 

 

 

3.3. Results 

 

Less than 20% mortality was found for the controls for all the exposure periods, 

thus validating the experiments (EPA 2000). 

IMI degraded throughout the 96h experimental period. At the end of the exposure 

period there was 40 (0.30 µg of IMI L-1), 63 (0.55 µg of IMI L-1) and 60 (1.20 µg of 

IMI L-1) % less compound in the first, second and third concentrations, 
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respectively, when compared with the nominal concentrations used. For a better 

understanding, the analytical concentrations detected are used in figures, results 

and discussion (0.30, 0.55 and 1.20 μg of IMI L-1). The behavioural response 

patterns of the midges were affected by the presence of the toxicant (Fig. 3.1 and 

3.2). After 48h exposure, the larvae exposed to 0.55 µg of IMI L-1 showed a 

statistically significant increase in the locomotory activity, when compared to the 

control (Tukey’s test: q= 4.685, p=0.005; Fig. 3.1), while animals exposed to the 

higher two concentrations suffered statistically significant changes in ventilation, 

when comparing to control [Tukey’s test: q= 5.450, p<0.001 (0.55 µg of IMI L-1); q= 

7.698, p<0.001 (1.20 µg of IMI L-1); Fig. 3.2]. After 96h of exposure, the ventilation 

activities decreased with increasing concentrations of IMI, with a LOEC of 0.55 µg 

of IMI L-1 [Tukey’s test: q= 6.949, p<0.001 (0.55 µg of IMI L-1); q= 18.675, p<0.001 

(1.20 µg of IMI L-1); Fig. 3.2]. For the 96h exposure period, there was a trend to 

increase locomotion activity in the lowest concentrations tested although without 

statistically significant differences to the control [Tukey’s test: q= 3.257, p=0.097 

(0.30 µg of IMI L-1); q= 3.554, p=0.058 (0.55 µg of IMI L-1); Fig. 3.1], whereas in 

animals exposed  to 1.20 µg of IMI L-1 locomotion was impaired in the midges, 

being statistically significant when compared to the control (Tukey’s test: q= 9.244, 

p<0.001; Fig. 3.1). 

After the 48 hours post-exposure period (144 hours of total time), behavioural 

activities demonstrated that the organisms where still affected by the stress agent. 

Locomotory activity at 1.20 µg of IMI L-1 was still significantly reduced when 

compared to the control (Tukey’s test: q= 6.200, p<0.001; Fig. 3.1). C. riparius 

ventilation activity was still impaired after this post-exposure period, with 

statistically significant differences for all concentrations tested when compared to 

the control [Tukey’s test: q= 4.580, p=0.007 (0.30 µg of IMI L-1); q= 5.333, p<0.001 

(0.55 µg of IMI L-1); q= 8.744, p<0.001 (1.20 µg of IMI L-1); Fig. 3.2]. 

No differences were found in the control animals between ventilation activity at the 

end of the exposure period and the post-exposure recording period (Tukey’s test: 

q=1.254, p=0.649). Nevertheless, although still being statistically different from 

control, animals exposed to 1.20 µg of IMI L-1 had an increase of ventilation 
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activities comparing the exposure and post-exposure periods (Tukey’s test: 

q=8.678, p<0.001).  

 

When comparing the post-exposure with the exposure period, an increase of 

locomotion frequencies was found being statistically significantly different [Tukey’s 

test: q= 7.113, p<0.001 (48h); q= 4.467, p=0.005 (96h); Fig. 3.1]. No statistically 

significant differences for ventilation frequencies were found when comparing 

exposure and post-exposure periods – between 96 and 144h (Tukey’s test: q= 

1.933, p=0.358; Fig. 3.2).  
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Figure 3.1 - Average activity frequencies of locomotion of Chironomus riparius exposed to 

imidacloprid for a period of two and four days, followed by a post exposure period of two days in 

clean water. (*) represents significance level p<0.01 and (**) represents significance level p<0.001 

in comparison with the control (ANOVA, Tukey’s test). (†) represents significance level p<0.01 for 

the comparison between times of exposure (ANOVA, Tukey’s test). 
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Acetylcholinresterase activity in chironomids exposed for 96h to IMI was reduced, 

being statistically significant at the highest concentration tested (Tukey’s test: q= 

4.607, p=0.008; Fig. 3.3).  When transferred to clean water, for the 48h post-

exposure period a decrease of AChE activity was also observed, being statistically 

significant for all treatments tested when compared to the control group [Tukey’s 

test: q= 8.281, p<0.001 (0.30 µg of IMI L-1); q=9.098, p<0.001 (0.55 µg of IMI L-1); 

and q= 12.445, p<0.001 (1.20 µg of IMI L-1); Fig. 3.3]. Statistically significant 

differences for AChE activity during exposure (48 and 96h) were found (Tukey’s 

test: q= 5.169, p<0.001; Fig. 3.3), while no statistically significant differences for 

AChE activity were found when comparing exposure and post-exposure periods – 

between 96 and 144h (Tukey’s test: q= 1.562, p=0.514; Fig. 3.3).  
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Figure 3.2 - Average activity frequencies of ventilation of Chironomus riparius exposed to 

imidacloprid for a period of two and four days, followed by a post exposure period of two days in 

clean water. (*) represents significance level p<0.01 and (**) represents significance level p<0.001 

in comparison with the control (ANOVA, Tukey’s test). (†) represents significance level p<0.01 for 

the comparison between times of exposure (ANOVA, Tukey’s test). 
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The relation between AChE activity and the behavioural parameters were also 

assessed. Despite AChE activity did not show any significant relation with 

locomotion [r=-0.034, P=0.889 (48h); r=0.105, P=0.662 (96h); r=0.196, P=0.403 

(144h)], a strong and significant correlation with ventilation was found for 96 and 

144h [r=-0.164, P=0.508  (48h); r=0.546, P=0.016  (96h); r=0.553, P=0.011 

(144h)].  
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Figure 3.3 - Average acetylcholinesterase activity, of Chironomus riparius exposed to imidacloprid 

for a period of two and four days, followed by a post exposure period of two days in clean water. (*) 

represents significance level p<0.01 and (**) represents significance level p<0.001 in comparison 

with the control (ANOVA, Tukey’s test). (†) represents significance level p<0.01 for the comparison 

between times of exposure (ANOVA, Tukey’s test). 
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3.4. Discussion 

 

In the present study laboratory ecotoxicology tests are encouraged, as aquatic 

organisms can be subjected to exposure to contaminants in levels depending not 

only on natural conditions but also on pesticide persistence in the environment, in 

order to apply an environmentally relevant procedure for pesticides testing. One 

should bear in mind that contamination of aquatic environments by pesticides is 

often due to agricultural fields’ runoff, spray drift or even ground water flows (Liess 

et al. 1999); and that these inflows of pesticide to aquatic systems can be variable 

according to their application in farming soils and might be followed by periods of 

long-term exposure to low concentrations of the pesticides (Naddy et al. 2000). 

Previous acute tests (Chapter 2), showed a 48h LC50 (95.0% Confidence Interval) 

of 19.90 µg of IMI L-1 (14.64 – 27.16 µg L-1), and Pestana et al (2009b) also 

reports a 96-h LC50 (95% CI) for C. riparius of 12.94 µg of IMI L-1 (9.74–18.22) 

under same exposure conditions. The values here obtained are in accordance with 

the previous studies The lower concentrations of IMI when compared with the 

nominal concentrations, detected at the end experimental period, were probably 

due to bacterial growth in the beakers due to food addition, which can increase the 

degradation rate of imidacloprid (CCME 2007). 

The chironomids’ behaviour was affected by exposure to sublethal doses of IMI. 

During the exposure period, animals exposed to the highest concentration 

exhibited a decrease in locomotory activity, while those exposed to the lower 

concentrations exhibited a small increase in locomotion in the first 48 hours of 

exposure (Fig. 3.1). This non-monotonic dose-response behaviour is probably due 

to the lower toxicity in lower concentrations not impairing the larvae’s attempt to 

escape from the contaminated medium. The increased mobility thus probably 

reflects avoidance behaviour, as stated by De Bisthoven et al. (2004), while in 

higher concentrations the compounds’ toxicity weakens the larvae’s ability to 

respond and escape.  

Similarly to locomotion, ventilation involves characteristic swimming movements 

(Brackenbury 2000) that allows the larvae to travel considerable distances by 

drifting (e.g. to escape from contaminated sites), thus the same non-monotonic 
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trend observed in the ventilatory activities may be explained by the same rationale. 

This increased mobility to avoid toxicant in the lowest concentration was then 

reduced as toxicity increased, i.e., longer exposure period. 

Forty-eight hours after the exposure period, the animals did not show signs of 

recovery. Although in clean water, it is possible that the IMI presence (or its 

metabolites) within the midge is still sufficient to be mimicking acetylcholine at the 

postsynaptic nicotinic acetylcholine receptors (nAChR), thus affecting the larvae, 

but no assessment of internal IMI body burdens were made to fully understand 

this. Nevertheless, in another study (Chapter 2), midges subjected to the same 

exposure period revealed a behavioural recovery after 6 days of post-exposure. 

This period might be what it takes for the excretion of residual IMI and its 

metabolites.  Although in some insects (e.g. houseflies) IMI may readily be 

excreted, it can also be metabolised and its main metabolites can also present 

insecticidal activity and therefore extend the toxicity of the pesticide (Nishiwaki et 

al. 2004; Suchail et al. 2004). The chironomids exposed to the highest 

concentration, although not fully recovering to values compared to the control, 

have a significant increase of AChE activity after transferring to clean water. A 

longer post-exposure period could allow for the organism to fully recover, as seen 

with the behaviour recovery after 6 days of post-exposure in clean water (Chapter 

2). 

In this study, the AChE activity of the larvae decreased with increasing 

concentrations of IMI from the 96h exposure onward (including after the short 

post-exposure period; Fig. 3.3). To our knowledge, few data about AChE activity 

related with IMI are available in the literature: acute testing with the earthworms 

Aporrectodea nocturna and Allolobophora icterica (Capowiez et al. 2003) showed 

no effects on AChE activity. On the other hand, chronic testing with the daphnid 

Daphnia magna (Jemec et al. 2007) reported a clear impairment of the enzyme 

activity with increasing concentrations of IMI.  

In uncontamined conditions acetylcholine (ACh) binds its receptor (AChR), leading 

to the activation of the ion channel, and afterwards is hydrolyzed by AChE 

(Tomizawa and Casida 2003). The neonicotinoid-binding site in AChR is the same 

as or closely coupled to that of ACh, and displays saturable and reversible binding 
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with fast kinetics (Tomizawa and Casida 2003). This way it is possible that the 

binding of the neonicotinoid to the receptor in the AChR and subsequent non-

connection of the neurotransmitter ACh to the nicotinic receptor will cause the 

inhibition of AChEs’ activity, as seen here. 

This constant stimulation of the nicotinic AChR receptors by this agonist (IMI) 

incites the general physiological impairment of endpoints related to the nervous 

function, thus leading to a decrease of both ventilation and locomotion as well as 

AChE activities. In this work, a high correlation between AChE and ventilation 

activity was found which would strength the reasoning of the link of this enzyme 

activity and behavioural patterns and thus with more ecological relevant levels. 

Nevertheless, this decrease of AChE activity is most probably a consequence of 

the agonistic activity of IMI to the receptor, and the ventilation impairment is 

probably due to the continuous stimulation of the receptor, conferring it an 

independent relation.  

Changes in behaviour due to the continuous stimulation of the nervous system by 

xenobiotic provokes uncontrolled muscular tremors that by reducing locomotion 

will most probably interfere with foraging activities, reducing the input for the high 

energy demanding ventilation activities (Penttinen and Holopainen 1995), as well 

as the energy budget needed for the overall physiological processes such as 

growth and emergence (Alexander et al. 2008). Moreover, the ability to drift or 

escape from predators which in turn are due to have important impacts at the 

population and community level will also be affected (Alexander et al. 2008; 

Engenheiro et al. 2005, Pestana et al. 2009b).  

 

 

3.5. Conclusion 

 

Our results suggest that ventilation is a more sensitive endpoint than locomotion. 

Furthermore, this work highlights the understanding of the behaviour responses 

(as an early warning system) in relation with biochemical responses, giving a 

sensitive representation of the organism physiological response to environmental 

factors. Despite AChE activities give us a picture of IMI’s mode of action in the 
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organism, this work suggests that behaviour, and more specifically ventilation, is a 

more sensitive parameter than biochemical responses. Added to its higher 

ecological relevance, ventilation be used as a relevant endpoint for ecotoxicology 

testing. 
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Abstract 

 

Mercury is a pervasive toxicant that can be found in the environment due to 

anthropogenic activity as well as natural sources. The majority of studies in 

freshwater environments focus mainly on bioaccumulation, population dynamics 

and biomagnification. Here, we study the effects of mercuric chloride on 

Chironomus riparius Meigen, simulating a mercury discharge on a freshwater 

ecosystem. Growth, emergence, development time and behaviour were the 

endpoints assessed. Growth was measured after 8 days exposure and behaviour 

was recorded at day 4 and day 10 of the experimental period. The behavioural 

responses of C. riparius to different mercury treatments were recorded with an 

online biomonitor that allows a more objective and precise behavioural 

understanding than visual observation. Mercury exposure resulted in reductions in 

growth, emergence, delayed development time and a decrease in locomotory 

activity of the larvae. Our results demonstrate that mercury exposure can impair 

life-history responses of chironomids.  

 

 

Keywords Mercury; Chironomus riparius; Growth; Emergence; Behavioural 

Response 
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4.1. Introduction 

 

In aquatic ecosystems, most toxicants accumulate in aquatic sediments (Ingersoll, 

1995; Burton and Landrum, 2003) and organisms that live in close contact with 

these sediments are exposed to the chemicals either directly or by food intake. 

Mercury (Hg) is a non-essential metal (Group B), highly reactive, showing lack of 

specific binding to organic ligands, and form strong covalent bonds (Mason and 

Jenkins, 1995) such as cadmium (Walker, Hopkin, Sibly and Peakall, 2006). Hg is 

a pervasive and neurotoxic contaminant that can induce deficiencies of essential 

elements through competition at active sites in biologically important molecules 

(Walker, Hopkin, Sibly and Peakall, 2006) affecting the central nervous system of 

biota (Wolfe, 1998), and can be found in the environment due to anthropogenic 

activity as well as natural sources such as volcanic eruptions and forest fires 

(Eisler, 1987; Rasmussen, 1994; EPA, 1997; Weiner, Krabbenhoft, Heinz and 

Scheuhammer, 2003; Hammerschmidt and Fitzgerald, 2005). Due to its high 

volatilization properties (Schroeder et al., 1989; Morel et al., 1998; Wallschläger et 

al., 2000) mercury can appear in sites remotely located from any point source 

through long-range atmospheric transport, affecting the biotic freshwater 

communities (Evans et al., 2005; Chételat et al., 2008).  

Contamination of biota from freshwater ecosystems by this heavy-metal is 

therefore a chronic and widespread environmental problem (Eisler, 1987; Boening, 

2000). Several studies have assessed the ecotoxicological effects of Hg on biota 

resultant from anthropogenic activities such as mining (Žižek et al., 2007; 

Chibunda et al., 2008) or chlor-alkali plants (Pereira et al., 2008). 

It has become important to understand not only the chemical cycle and the 

environmental dynamic of mercury, but also to assess the effects of this heavy 

metal in the biota that is subjected to its exposure. The majority of the studies 

assessing the effects of Hg in aquatic biota have focused on bioaccumulation and 

trophic transfer of the heavy-metal (Mason et al., 1995; Wong et al., 1997; 

Vázquez-Núñez et al., 2007; Žižek et al., 2007), while others have focused on 

lethal and sub-lethal toxicological endpoints in fish (Dave and Xiu, 1991; Samson 
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and Shenker, 2000) and macroinvertebrates (Vidal and Horne, 2003; Jensen et 

al., 2007).  

Among freshwater benthonic macroinvertebrates, Chironomus riparius (C. riparius) 

are commonly used as test species to assess the toxicity of sediments because of 

its widespread occurrence and ecological relevance (Armitage et al., 1995), 

easiness of culture under laboratory conditions (Péry et al., 2002) and because 

during the larval development they are in contact with the sediment (Goodyear and 

McNeill, 1999). Few studies have assessed the acute and sub-lethal toxicity 

effects of Hg on C. riparius (Rossaro et al., 1986; Vermeulen et al., 2000; 

Chibunda et al., 2008).  

Several tests can be used to assess both lethal and sub-lethal toxicity effects of 

prolonged exposure of chemicals that usually persist in this compartment over 

long time periods to these sediment-dwelling larvae. One of the most commonly 

used tests is the OECD Guideline 219 (OECDa, 2004) in which the exposure 

scenario is water spiking. Here, we intended to simulate an effluent drift event 

containing Hg, trying to reproduce a peak of concentrations in pore water, and 

understand its sub-lethal toxicity effects on C. riparius larvae, using growth, 

behaviour and emergence as endpoints. Growth is commonly used to study the 

chronic toxicity of contaminants, and is considered to be a very sensitive 

parameter regarding midges (Sibley et al. 1997). Adult emergence of chironomids 

is also a successful endpoint to be used in toxicity tests (Péry et al., 2002) for the 

assessment of pesticides (Sibley et al., 1997) and heavy-metals (Sildanchandra 

and Crane, 2000) toxicity.  

Behavioural parameters have been reported as an alternative endpoint to assess 

toxic effects of contaminants on aquatic and soil organisms, being regarded as 

one of the most sensitive indicators of chemical stress (Dell’Omo, 2000). 

Behaviour is considered as an integration of the physiological processes and 

mechanisms with the environmental stimuli that cause them (Dell’Omo, 2000). 

Behaviour analysis as early screening tools allows obtaining quick and sub-lethal 

answers which can be assessed by using avoidance tests, by empirical 

observation or by using biomonitors. Avoidance tests are mainly focused on 

ecological risk assessment using soil organisms (Loureiro et al., 2005; Natal-da-
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Luz et al., 2008). Empirical visual observation is commonly used in toxicological 

tests to assess location of the animals during the experimental period (Pestana et 

al., 2009). However, avoidance is only measured at the end of the experiment 

while visual observations, although applied during the tests, do not give us a 

measurable and discriminated response. Behavioural biomonitors are employed to 

provide a visual and measurable behavioural response at the whole-organism 

level. They have been used in multiple ecology and toxicology tests in the past 

decade (Engenheiro et al., 2005; Gerhardt et al., 2005; Macedo-Sousa et al., 

2007), including tests with chironomids (Janssens de Bisthoven et al., 2004).  

In this context, the aim of this study was to assess the effects of mercury exposure 

on C. riparius larvae in environmentally realistic concentrations. Effects of mercury 

on growth, emergence ratio, development time, and behaviour were assessed.  

 

 

4.2. Material and Methods 

 

4.2.1. Test organism 

 

The midges used in the experiments were collected from our laboratory cultures. 

Larvae are kept in various small 4L aquaria that contain a layer of inorganic acid-

washed fine sediment (< 1mm) as substrate and ASTM (1980) hard water, 

provided with aeration. Water and sediment are renewed on a weekly basis. In the 

culture, the midges are separated according to their life stage, thus facilitating the 

sampling for new tests. Sediment was bought as commercial sand, being 

subjected to a 24h acid wash (10% HNO3) in order to remove any heavy metal 

ions, after which it was rinsed thoroughly with distilled water and the organic 

matter was removed by loss-on-ignition combustion for 8h at 450ºC. Organisms 

were fed twice a week ad libitum with macerated fish flakes, Tetramin® 

(Tetrawerke, Melle, Germany). 

Prior to the experiment, two egg ropes were removed from the culture and 

transferred into a crystallizing dish with ASTM hard water, and placed at 20ºC. 
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When the larvae ecloded they were transferred into a beaker containing acid-

washed inorganic fine sediment as substrate and ASTM hard water until they 

reached the size needed for the tests. 

 

 

4.2.2. Test chemical 

 

Mercuric (II) Chloride (HgCl2) was purchased from Merck KGaA (Darmstadt, 

Germany) and was used to prepare the appropriate stock solutions of mercury 

with Milli-Q water. The actual concentration for the stock solution was 8,946 mg L-

1. Stock solution was stored at room temperature, protected from light and 

periodically analysed. Tests solutions were prepared by adding the appropriate 

amount of stock solution in ASTM hard water, in order to reach the pre-established 

concentrations. 

 

 

4.2.3. Water-only exposures: Range finding test / LC50 determination 

 

LC50 was estimated through the natural sensitivity of C. riparius to the metal, to 

establish a range of sub-lethal concentrations to be used in the experiment. We 

used five replicates with one organism (3rd instar - 8 days old) per treatment. Test 

solutions of mercury were prepared in ASTM hard water as mentioned above. 

Eight treatments and a control were used. Organisms were exposed individually in 

glass beakers containing 40 ml of test solutions and no food. After 48 h exposure, 

mortality was determined by mechanical stimulation, and animals that did not 

respond to this stimulation were considered dead. All tests were conducted at 20 ± 

1 ºC, with a photoperiod of 16 h light: 8 h dark. Concentrations to be used in the 

chronic experiments derived from the results of this acute assay combined with the 

LC50 results from earlier studies with the same species and contaminant (Rossaro 

et al., 1986). 
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4.2.4. Chronic experiments 

 

To simulate an effluent discharge from a chlor-alkali plant some modifications 

were done to the procedures of the OECD Guideline 219 (OECDa, 2004). All 

replicates (16 per concentration) were prepared in 200-ml glass beakers 

containing 40 gr. of inorganic acid-washed fine sediment (<1mm; Table 4.1) and 

150 ml of test solution (prepared in ASTM hard water as previously mentioned). 

One control and five concentrations (initial water concentrations were 12.65; 

21.20; 40.88; 78.41 and 148.35 µg L-1 Hg) were used.  

 

Table 4.1 - Grain size fractions of the inorganic acid-washed fine sediment. 

 

 

 

 

 

 

 

 

Throughout the paper we established these initial concentrations as the 

comparable measurements between treatments.  Medium and substrate were 

allowed to pre-stabilise for 24h, to allow some binding of the metal species to 

sediment particles. During this period, sediment and water samples were analysed 

to check the concentrations in each compartment before adding the animals, using 

additional replicates. After this, we carefully transferred five 2nd instar larvae into 

each test vessel using a plastic pipette. Thirty of these 2nd instar larvae obtained 

from our culture were preserved in 70% Ethanol and its body length was 

measured as the initial body length of the test animals. Each beaker was supplied 

with ground Tetramin® as food every 48h, at a ration of 0.5 mg larvae-1 day-1. We 

considered the start of the experimental period when at least 50% of the test 

organisms were placed in the beakers. All replicates received gentle aeration 12 

hours after placing the animals, to minimize disturbance of the sediment and to 

Fraction (mm) % 

1.000 > 0.500 59 

0.500 > 0.250 37 

0.250 > 0.125 2 

0.125 > 0.063 2 

0.063 > 0.000 < 0.1 

Total 100 
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allow for a constant input of oxygen in the system. These bioassays were 

conducted at 20 ± 1 ºC, with a photoperiod of 16 h: 8 h, light: dark. All replicates 

where examined daily and any evaporated water was replaced with Milli-Q water. 

Physical-chemical parameters were measured at the beginning and every 48h 

until the end of test. 

Growth was estimated after 8 days of exposure, using 7 replicates per 

concentration, by measuring the total body length of each larva using a stereo 

microscope (MS5, Leica Microsystems, Houston, USA) fitted with a calibrated eye-

piece micrometer. Midges were removed after 8 days exposure and preserved in 

70% Ethanol before growth measurements, instead of the usual 10 days, because 

larvae in the control were at this point already late fourth instar, thus pupal stage 

could start before day 10. Larval growth was calculated by subtracting the average 

initial length from each individual final length. 

A transparent plastic paper cup with a 0.5mm mesh net was attached to the top of 

5 other beakers, in order to capture emerged midges. Afterwards, the number of 

emerged adults was recorded on a daily basis. Emergence ratio (number of 

midges emerged per vessel / number of larvae introduced per vessel) and 

development time (1 / development rate) were calculated according to the 

formulas suggested by the OECD Guideline 219 (OECDa, 2004). For the 

calculation of the development time, the age of the larvae at the time of their 

introduction in the experiment was also considered. 

Behaviour patterns were recorded at day 4 and day 10 of the experimental period, 

using the Multispecies Freshwater Biomonitor (MFB) (Gerhardt et al., 1994, 1998). 

This equipment allows the organism to move freely inside a chamber that contains 

two pairs of electrodes attached to the inner walls. One of the pairs generates a 

high frequency alternating current generated and the other pair detects and 

measures the subsequent current changes and frequency due to the organism’s 

movements (Gerhardt, 2000). The MFB allows 4 minutes recordings every 10 

minutes (equivalent to 6 recordings per hour) and the data generated is therefore 

created from the percentage of time that the organism spends on each activity. For 

this study, three larvae from each concentration and control were chosen 

randomly from the replicates, placed individually in the MFB chambers with ASTM 
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hard water and behaviour was recorded during 2 hours (n=12 recordings per 

replicate). After the recordings, larvae were replaced in the respective beakers 

from which they were removed. For C. riparius, regular movement patterns in 

water were summarized in two types of behaviour: locomotion – corresponding to 

lower frequency behaviour (0.5-2.5 Hz), and ventilation – higher frequency 

behaviour (3.0-8.0 Hz). These frequencies are in accordance with the ones 

described for the same species by Janssens de Bisthoven et al. (2004). 

 

 

4.2.5. Mercury analysis 

 

All test solutions were analysed before being added to the test vessels. After 24 

hours the water and sediment from one beaker of each concentration were 

analysed, prior to the addition of the biota. Before placing the larvae in the test 

beakers we also analysed 25 unexposed midges in order to determine the initial 

Hg concentration in biota. At 36, 96 and 192 hours exposure, water (40 µl), biota 

(compound sample of 5 organisms) and sediment (10 mg) from one randomly 

chosen replicate of the lowest, middle and higher treatments were analysed for 

determination of mercury concentration. 

All samples were analysed directly by atomic absorption spectrometry (AAS) with 

thermal decomposition of the sample and collection of the mercury vapour on a 

gold amalgamator, using an Advanced Mercury Analyser (AMA254 – Mercury 

Analyser) from LECO (St. Joseph, Michigan, USA), as described by Hall and 

Pelchat, 1997. We, however, changed the operational conditions, by applying a 

drying time of 60 seconds, a decomposition time of 150 seconds and a waiting 

time of 45 seconds, in accordance with the volume and weight of the material we 

used. The accuracy of the data was carried out using the reference materials: 

DORM-3 (fish protein certified reference material for trace metals) from the 

National Research Council Canada. 
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4.2.6. Statistical analysis 

 

LC50 values were calculated using the probit method (Minitab, 2006). The EC50 

and EC20 determination was calculate also by the probit method, but in this case 

we used the ToxRat Software (2003). For all other tests, one-way ANOVAs were 

performed using mercuric chloride concentrations as treatments. Whenever 

significant differences were observed, Dunnett post hoc test was used for multiple 

comparisons to determine which treatments were significantly different from the 

control. All statistical analyses were performed using the Minitab 14.0 statistical 

package (Minitab, 2006). Data from emergence ratio and behavioural patterns 

were arcsine square root transformed to stabilise variances across treatments (Zar 

1996).  

 

 

4.3. Results 

 

In the chronic experiments, the physical parameters pH, dissolved oxygen and 

conductivity averaged 7.61 ± 0.16, 7.99 mg L-1 ± 0.9, 528 µS cm-1 ± 46, 

respectively, during the whole test duration. 

In the acute experiments, the 48h LC50 (95.0% Confidence Interval) was 3.26 mg 

L-1 (2.17 – 6.10). Based on these results and on bibliography (Rossaro et al., 

1986), we selected the above mentioned concentrations to be used on the chronic 

experiments. 

The 24h resting period allowed a mercury chemical interaction between 

glassware, water and sediment. After this period, mercury was found in water 

(concentration averaged approximately 45% of the initial concentration for all 

treatments) and sediment (concentration averaged approximately 35% of the initial 

concentration for all treatments) (Fig. 4.1A,B). Until the end of the experiment, 

almost all Hg in water was adsorbed to the sediment or was accumulated by the 

animals (Fig. 4.1A-C). A large loss of Hg from the test beakers was also reported. 
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Table 4.2 – ANOVA results 

Factor df F p LOEC 

Growth     

 8 days exposure     

        [Hg] 5 70.74 < 0.001 40.88 µg/L 

Emergence ratio     

 18 days exposure     

  [Hg] 4 3.85 < 0.05 78.41 µg/L 

Development time     

 18 days exposure     

  [Hg] 4 11.75 < 0.001 40.88 µg/L 

Locomotion     

       4 days exposure     

        [Hg] 5 11.00 < 0.001 149.35 µg/L 

       10 days exposure     

        [Hg] 5 10.66 < 0.001 40.88 µg/L 

Ventilation     

 4 days exposure     

  [Hg] 5 9.06 < 0.001 21.20 µg/L 

 10 days exposure     

  [Hg] 5 1.67 > 0.05 - - - 

 

 

In the chronic experiments, survival averaged 82% in the controls. Growth was 

impaired when larvae were exposed to increasing sub-lethal concentrations of the 

heavy metal (Table 4.2, Fig. 4.2), with significant effects at 40.88 μg L-1 (LOEC) 

and succeeding concentrations. The EC50 and EC20 (95.0% Confidence Interval) 

for growth after 8 days exposure were, respectively, 87.66 μg L-1 (56.87 - 184.79) 

and 31.77 μg L-1 (7.50 - 50.30). 
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Figure 4.1 - Mercury (ng Hg) fluctuation throughout the experimental period. A – ng 

Hg dynamic in water; B – ng Hg dynamic in sediment; C – ng Hg dynamic in biota. 
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Midge adult emergence started at day 12 for the controls, and animals exposed to 

the toxicant emerged in the subsequent days. No emergence was recorded in the 

148.35 µg L-1, therefore this treatment was excluded from the statistical analysis of 

emergence. The results reveal a significant delay in development time, relative to 

controls, for larvae exposed to 40.88 μg L-1 (LOEC) and 78.41 μg L-1 (Table 4.2, 

Fig. 4.3). 

Effects on emergence ratio for the tested concentrations were also found for 

larvae exposed to 78.41 μg L-1 (LOEC; Table 4.2, Fig. 4.4). In fact, the total adult 

emergence was reduced in 75% for animals exposed to 78.41 μg L-1, when 

compared with the emerged adults from the control. 
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Figure 4.2 - C. riparius growth measurements represented by body length at day 8 subtracted by 

the initial body length (mean + SD) after exposure to mercury chloride. Asterisks highlight treatments 

that are significantly different from the control (p<0.05). 
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Figure 4.3 - C. riparius average development time (mean ± SD). Asterisks 

highlight treatments that are significantly different from the control (p<0.05)  
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Figure 4.4 - C. riparius mean emergence ratio (Mean ± SE). Asterisks highlight 

treatments that are significantly different from the control (p<0.05). 
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Animals that were subjected to a 10 day mercury exposure presented a decrease 

in their behavioural activities with increasing concentrations. Behavioural 

[Hg] µg/L

0.00 12.65 21.20 40.88 78.41 148.35

A
v
e

ra
g

e
 F

re
q

u
e

n
c
y
 (

%
)

0

10

20

30

40

50

60 Locomotion

Ventilation

* * * 

* 

[Hg] µg/L

0.00 12.65 21.20 40.88 78.41 148.35

A
v
e

ra
g

e
 F

re
q

u
e

n
c
y
 (

%
)

0

10

20

30

40

50

60

70 Locomotion

Ventilation

* 

* 

A 

B 

Figure 4.5 - Average activity frequencies of locomotion and ventilation of C. riparius when 

exposed to mercury for a period of 4 days (A) and 10 days (B). Vertical bars represent 

Standard Error (SE). Asterisks highlight treatments that are significantly different from the 

control (p<0.05). 
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recordings made after 4 days exposure showed a significant decrease of the 

locomotory activity of the larvae at 148.35 μg L-1, while ventilatory activities 

suffered a trend of impairment with increasing concentrations, with statistically 

significant differences after 21.20 μg L-1 when compared with the control (Table 

4.2, Fig. 4.5A).  

At day 10, ventilatory frequencies stabilize among treatments, showing no 

significant differences with the control. Locomotion is significantly affected by 

mercury exposure, with an impairment trend in animals exposed to concentrations 

higher than 40.88 μg L-1 (Fig. 4.5B).  

 

 

4.4. Discussion 

 

Our results indicate that C. riparius development can be severely impaired by 

exposure to mercuric chloride. The 48h LC50 was higher than the reported in the 

bibliography for C. riparius (IV instar): values of 750 μg L-1 and 1800 μg L-1 were 

reported by Rossaro el al. (1986) and Qureshi et al. (1980), respectively. This 

result might be due to the sensitivity of the species in our culture or due to the low 

number of organisms that was used in this experiment experiment (since the aim 

was to do a range finding test), where only five replicates per concentration, with 

one organism each, were used. Hence, when selecting the concentrations to be 

used in the sub-lethal experiments, the 48h LC50 values reported in the 

bibliography (as shown above) were also taken into account. 

In the sub-lethal experiments, midges responded to mercury exposure in a 

concentration-dependent manner, i.e., responses were stronger when exposed to 

higher concentrations of the toxicant. Performing constant exposure scenarios 

using spiked sediments is a common procedure in laboratory toxicity experiments 

(Martinez et al., 2004; OECDb, 2004; Servia et al., 2006). These tests give us an 

understanding of how sediment-associated metals can be toxic to benthic 

organisms, by assessing the effects of prolonged exposure of the contaminants to 

the select species, intended to reproduce accumulated levels of chemicals 

persisting in the sediment. In this study, a mercury discharge was simulated to 
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understand how chironomids were affected throughout the exposure route. Further 

tests should consider a shorter pre-stabilization period, in order to have a more 

accurate understanding of the exposure route, since in our test after 24 hours 

around 50% of the metal was already adsorbed to the sediment.   

The Hg from the test solutions accumulated in the sediment and organisms during 

the experimental period, but a large portion was also volatized (by evaporation and 

due to the aeration) and a smaller portion is considered to be adsorbed to the 

glassware, as we did not covered the top of the beakers, thus allowing for some 

evaporation (unaccounted). These findings were also reported by Vázquez-Núñez, 

R. et al., (2007). The selected concentrations were environmentally relevant, as 

they are comparable to those found in sediments from contaminated sites (Eisler, 

1987; Chibunda et al., 2008) and in water and sediment from non-polluted sites 

(Eisler, 1987). 

Information regarding the effects of mercury in invertebrates, especially benthic 

organisms, is scarce. Most literature related with mercury and chironomids is 

focused mainly in bioaccumulation (Qureshi et al., 1980; Rossaro et al., 1986), 

trophic transfer (Tremblay et al., 1998; Chételat et al., 2008; Eagles-Smith et al., 

2008), deformities (Vermeulen et al., 2000) and population impact (Suchanek et 

al., 1995), so it does not assess the main physiological endpoints. 

Here, C. riparius showed a significant impairment of growth when exposed to 

mercuric chloride for 8 days. These results were consistent with other tests using 

mercury contaminated sediment (Chibunda et al., 2008). Previous studies 

comprising toxic effects of other heavy metals (cadmium, zinc and/or copper) on 

Chironomids have also reported their negative effects on larval growth (e.g. 

Timmermmans et al., 1992; Postma et al., 1995; Gillis et al., 2002; Milani et al., 

2003; Faria et al., 2006).  Growth is a very important ecological endpoint, an 

important component of fitness and determinant of population health (Sibley et al., 

1997), therefore any individual effect that can be translated on population decline 

or viability will affect the freshwater ecosystem. 

Besides growth, other physiological parameters were affected by mercury 

exposure. The percentage of emergence found in the controls met the OECD 

criterion of 50% of adult emergence for acceptability of the test (OECDa, 2004). 
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Significantly delayed emergence rates and a delay in development time were 

found after exposure to the toxicant. Previous studies comprising mercury and 

other group B metals physiological effects also reported the same delay in 

development time and emergence (Timmermans et al., 1992; Vermeulen et al., 

2000; Chibunda et al., 2008). 

Behaviour can be referred to be the sensitive response of the organism to 

physiological and environmental factors (Dell’Omo, 2000). We used behavioural 

analysis as an endpoint to infer how the heavy metal exposure was physiologically 

affecting the midge larvae. Behaviour was assessed at two different periods 

throughout the experimental procedure, in order to have a sensitive representation 

and understanding of how animals were responding to different heavy metal 

concentrations. The MFB allows the recording of these parameters online, 

providing a measurable, replicable and non-destructive sub-lethal response of the 

organisms (Gerhardt et al., 2006), giving a representation of how physiological 

functions are affected. No sediments were used inside the test chambers because 

previous unpublished experimental data from our laboratory revealed confounding 

results upon which one could not distinguish the type of behaviour that the animal 

was undertaking at the measured time. So, here only water was used inside the 

chambers. Although the chironomids are mainly benthonic organisms they can be 

found in the water column, exhibiting whipping movements (Armitage et al., 1995; 

Gerhardt and Janssens de Bisthoven, 1995; Brackenbury, 2000). A trend of 

impairment in behavioural patterns with increasing concentrations of mercury was 

also found in this study. Although only three animals per concentration and time 

were used, results clearly show an impairment trend in locomotion and ventilation 

patterns after 4 days exposure to the toxicant. At lower concentrations (12.65 μg L-

1) the locomotion of the animals is higher than the control, probably due to a need 

of the animal to escape from the contaminant or to a need of increase the foraging 

activity to supply any metabolic costs. After 10 days the ventilation patterns reflect 

an adaptation of the animals to the toxicant, despite the locomotion patterns at 

higher concentrations point to a trend of activity impairment. Therefore, continuous 

mercury exposure can affect behaviour of C. riparius. Previous studies using the 

same equipment and chironomids, subjected to acid mine drainage, but with 



Effects of mercury on growth, emergence and behaviour of C. riparius  

 

87 
 

different exposure and recording periods, also reported an impairment of the 

organism locomotion patterns (Janssens de Bisthoven et al., 2004). For a more 

precise assessment of how mercury affects the behaviour of chironomids, further 

tests should take into account more replicates (with less treatments) and shorter 

time gaps, each 24 hours. 

After 8 days exposure to high concentrations of mercury C. riparius were 

significantly smaller, probably due to the reported reductions in behavioural 

activities that can impair the time spent foraging, particularly important for insects 

with short adult stages because fecundity is determined by the size of larva upon 

metamorphosis and especially by female size (Sibley et al. 2001). Thus, lack of 

activity might impair foraging, leading to decreased growth and consequently to a 

delay of the development rates and emergence. Mercury, especially its organic 

form methylmercury (MeHg), has been shown to induce several neurotoxic effects 

that might translate in behavioural responses (Eisler, 1987; Gilbert and Grant-

Webster, 1995). MeHg content, that can be synthesised by bacteria from inorganic 

Hg compounds present in the water or in the sediments (Eisler, 1987), was not 

measured (but only the total Hg present in each compartment) and the influence of 

MeHg in the organisms physiological status could not be determined. Therefore, 

our data point for effects of the total Hg (mercuric chloride) present in the 

compartments. 

Due to the fact that chironomids are one of the most widespread and abundant 

macroinvertebrates in freshwaters ecosystems (Ristola, 2000; Péry et al., 2002), 

and are also important preys for other species like fish and aquatic birds 

(Rieradevall et al., 1995), any effect that can affect the population (growth 

reduction or a delay in development time) may produce a negative impact on the 

freshwater ecosystem. Here, the effects of sublethal concentrations of mercury on 

Chironomus riparius by using an experimental design that intends to simulate a 

mercury discharge. In our opinion, this provides a more holistic view of the midge 

life cycle, when comparing with the standard ecotoxicological tests, by adding 

behaviour and a more environmentally relevant exposure route. We recommend 

that further tests take into account a shorter pre-stabilisation period and that MeHg 
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concentration and effects should be accounted for if one aims to assess the link 

between neurotoxic effects and behaviour. 
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Abstract 

 

The benthonic midges Chironomus riparius (Meigen) lives in close contact with 

water and as a result it should not be neglected as an exposure pathway. In this 

study we assessed mercury kinetics and behavioural effects in larvae of under a 

water-only exposure. Both uptake and elimination of waterborne mercury were 

effectively described by using a one-compartment kinetic model. After the 

exposure period, test solutions were replaced by clean ASTM hard water. Results 

show that the midges were able to readily accumulate the heavy metal, presenting 

a very fast uptake, while its elimination was very slow, with only ~39% of the total 

mercury in the larvae being depurated after 48 hours in clean ASTM hard water. 

Behaviour did not present differences upon exposure or elimination, but a trend to 

increase ventilation was noticed during the exposure period. 

 

 

Keywords Toxicokinetics; Chironomus riparius; Bioaccumulation; Behaviour; 

Mercury 
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5.1. Introduction 

 

The Minamata (Japan) incident in the 1950’s (Ekino et al., 2007) triggered the 

global concerns regarding mercury contamination. This metal is very common in 

the environment and can have natural sources – such as volcanism – or 

anthropogenic origins such as mine tailings or industrial effluents (Wolfe et al., 

1998; Wiener et al., 2003). Due to its high volatility, it can also be dispersed via 

atmospheric transportation and deposited in other regions (Morel et al., 1998; 

Boening, 2000) mainly as Hg(II) (EPA, 1997), thus being available to biota even in 

regions far away from any point source. In spite imposed legislation have 

reduced/minimize and intend to eliminate mercury discharges to the environment 

in the last decades, mercury legacy in sediments and soils continue to be a matter 

of great concern at global scale, because mercury is a persistent contaminant that 

bioaccumulates even at low concentrations and exhibits high toxicity towards 

aquatic organisms (Suchanek et al., 1995; Tremblay and Lucotte, 1997; Azevedo-

Pereira and Soares, 2010 – Chapter 4). In fact, mercury bioaccumulation can 

present an increased ecological risk because it can be biomagnified through the 

trophic chain (Morel et al., 1998). In aquatic environments, benthic fauna plays an 

important role in the food web (Armitage et al., 1995), representing a link with 

higher trophic levels. This way, metal contamination affecting these ecological 

communities can affect the distribution and abundance of benthic fauna and any 

deleterious effects of metals on these organisms can be consequently reflected in 

the whole ecosystem (Hare, 1992; Fleeger et al., 2003).  

One of the most ubiquitous benthic groups is Chironomus spp.. Its a cosmopolitan 

aquatic diptera that can be found in both lotic and lentic environments (Armitage et 

al., 1995) which play an important role as preys for fish or aquatic birds (Garcia-

Berthou, 1999). These larvae also have a high potential to play an important role 

as sentinel organisms in environmental monitoring (Choi et al., 1998) and are 

consequently used to assess sediment toxicity in situ and in the laboratory (OECD, 

2004; Faria et al., 2007) but can also be used in water only toxicity tests (Lydy et 

al., 2000; Stuijfzand et al., 2000). 
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Previous tests regarding the effects of mercury on chironomids have focused on 

bioaccumulation (Rossaro et al., 1986) or morpho-physiological and behavioural 

parameters (Vermeulen et al., 2000; Azevedo-Pereira and Soares, 2010 – Chapter 

4). Because accumulation of mercury by aquatic organisms is rapid, its depuration 

is slow and has a high potential for biomagnification (Eisler, 1987), assessing 

bioaccumulation and relate it with other parameters is important to understand 

how toxic agents and their concentration in the tissues can affect the organism 

physiological responses. 

Any contaminant affecting an organism implies an uptake of the toxicant and is 

associated to the capability that the organism has to accumulate and eliminate the 

substance. According to Nuutinen et al. (2003; after McCarty and Mackay, 1993), 

toxicological processes may comprise three general phases: the first one includes 

the period of time upon which an organism is exposed to a certain chemical and 

the relative bioavailability of that chemical during the exposure (exposure phase); 

the second includes the uptake, distribution, metabolism, and elimination of the 

bioavailable portion of the toxicant (toxicokinetics phase); and the third involves 

the biological response resulting from the chemical arriving at the site(s) of toxic 

action in the organism and acting to produce its toxic effect(s) in a time dependant 

manner (toxicodynamics phase). Since behaviour is considered to be one of the 

most sensitive indicators of chemical stress and the first line of defence to 

environmental stimuli (Beitinger, 1990), integrating the organism physiological 

processes and mechanisms with the environmental stimuli that cause them 

(Dell’Omo, 2002), by understanding when an environmental perturbation (e.g. 

metal accumulation) induces a behavioural response of the organism can help to 

reach a comprehensive perception of what happens in contaminated ecosystems.  

These behavioural alterations can be measured by using biomonitors, giving us a 

quick, measurable and discriminated sub-lethal response. In the past decade, 

several biomonitors have been used in multiple ecotoxicological tests (Engenheiro 

et al., 2005; Macedo-Sousa et al., 2007) also including tests with chironomids 

(Janssens de Bisthoven et al., 2004). 

The study aimed to evaluate the kinetic performance (bioaccumulation and 

elimination) of waterborne mercuric choride in the benthic invertebrate 
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Chironomus riparius Meigen and to establish a relationship between toxicokinetics 

and organisms’ behaviour. 

 

 

5.2. Material and Methods 

 

5.2.1. Test organism 

 

Chironomus riparius Meigen (Diptera, Chironomidae) larvae were obtained from a 

laboratory culture established for more than four years in standard conditions at 

20ºC and in a 16-8h light-dark period. Midges were kept in various small 4L 

aquaria and separated according to their life stage, placed inside a large acrylic 

container to allow adult swarming. All aquaria had a layer of acid-washed 

inorganic fine sediment as substrate and ASTM hard water (ASTM, 1980), 

provided with aeration. Sediment was bought as commercial sand, being 

subjected to a 24h acid wash (10% HNO3) in order to remove any heavy metal 

ions, after which it was washed thoroughly with distilled water and the organic 

matter was removed by loss-on-ignition combustion for 8h at 450ºC. Water and 

sediment were renewed on a weekly basis. Organisms were fed twice a week ad 

libitum with macerated fish flakes, Tetramin® (Tetrawerke, Melle, Germany). Prior 

to the test, two egg ropes were removed from the culture and transferred into a 

crystallizing dish with hard water ASTM medium and placed at 20ºC. When the 

larvae ecloded we re-transferred them into a beaker with acid-washed inorganic 

fine sediment as substrate and ASTM hard water until they reached the size 

needed for the tests. 
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5.2.2. Test chemical 

 

Mercuric (II) Chloride (HgCl2; Merck KGaA, Darmstadt, Germany) was used to 

prepare the appropriate stock solutions of mercury with ultra-pure water, and the 

concentration determined by a Mercury Analyser from LECO – AMA254  (St. 

Joseph, Michigan, USA). Stock solution concentration was 9,113 mg Hg L-1 and it 

was stored at room temperature, protected from light and periodically analysed. 

Tests solutions were prepared by diluting the stock solution in ASTM hard water, 

in order to reach the pre-established concentration (38 µg Hg L-1). 

 

 

5.2.3. Uptake experiment 

 

This bioassay was performed in static conditions, at 20 ± 1 ºC with a 16h:8h 

light:dark photoperiod, as a water only toxicity test. No substrate was used in the 

uptake experiments to avoid possible sorption to sediment. Forty 350-ml plastic 

beakers containing 150 ml of test solution were prepared. One control and one 

concentration (38 µg L-1 Hg) were used, separated in 20 beakers per medium. The 

concentration was chosen based on the EC20 for growth, obtained in previous 

tests with the same species (Azevedo-Pereira & Soares, 2010 – Chapter 4): EC20 

95%-CL = 31.77 µg L-1 (7.50 – 50.30). Medium and plastic beakers were allowed 

to stabilize for 4h, upon which five 3rd instar larvae were carefully transferred into 

each test vessel with a plastic pipette. The larvae were previously unfed for 24 

hours in order to clear the guts of any organic particles, obtained from our 

laboratory culture. The larvae remained unfed until the end of the test. All beakers 

were covered with perforated Parafilm™ in order to slow evaporation. Tests began 

when 50% of the tests organisms were placed in the beakers. 

Replicates were analysed at 1.30, 3, 6, 12 and 24 hours after the beginning of the 

exposure period. These sample times were chosen from preliminary tests. Three 

replicates per concentration were removed and water and animals were analysed. 

Animals were removed and placed in a crystallizing dish with clean ASTM water 
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for 5 minutes, in order to remove any possible Hg particles they might have 

adsorbed to their surface. Afterwards, the animals were quickly passed through 

filter paper to remove any superficial water and weighed (fresh weight) on a Kern 

ALS220-4N analytical balance before being analysed as a composite sample of 5 

animals per replicate. Forty ml of the test solutions were acidified (pH<2.00, HNO3 

65% Fluka, Switzerland) and preserved for a maximum period of 96h. Forty µl of 

each test solution was then analyzed as a measure of waterborne Hg. 

Simultaneously, a behavioural study using the Multispecies Freshwater Biomonitor 

(MFB) was conducted: this equipment records online the behaviour of aquatic 

species quantitatively, by measuring the changes in impedance caused by 

organisms that move freely inside test chambers (acrylic tubes with 7cm/2cm 

length/diameter) with electrodes that generate an alternating current and detect 

the changes in this electrical field (Gerhardt et al., 1994). As a result of these 

changes in the electrical field, different chironomid behaviours can be assigned to 

different frequencies, such as locomotion (low frequency movements like crawling, 

on the range 0.5-2.5 Hz) or ventilation (high frequency movements which involve 

undulation of the body in a regular pattern, on the range 3.0-8 Hz). These 

frequencies are obtained by previous tests comprising visual observation and 

simultaneous recording with the equipment. The data generated is created from 

the percentage of time that the organism spends on each activity. 

In this behavioural study, the test chambers were placed in 3L plastic beakers with 

the respective concentration (one beaker for control – ASTM hard water – and 

another for the 38 µg L-1 Hg concentration). Seven animals for control and ten 

animals for the 38 µg L-1 Hg concentration were exposed individually in the 

chambers. For each beaker, three additional empty chambers were added as 

blank replicates. The MFB recorded automatically for 4 minutes in every 10 

minutes (equivalent to 6 recordings per hour) during a 24 hour period. After that 

period, 3 larvae were removed and analysed for mercury, following the procedures 

stated above. Water samples from the beakers containing the chambers were also 

acidified for posterior analysis.  

Bioconcentration factor (BCF) was also estimated, at 24h, using the following 

equation: 
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w

a

C

C
BCF      (1) 

 

Where Ca = concentration of mercuric chloride in the animal (µg g-1) and Cw = 

concentration of mercuric chloride in the water (µg g-1). 

 

 

5.2.4. Elimination experiment 

 

After 24h of exposure, larvae were gently removed from each test beaker, placed 

in a crystallizing dish with clean ASTM water and transferred to glass vials with 

clean hard water ASTM, following the procedure adopted in the previous 

contaminated replicates. The larvae remained unfed. A time frame was 

established to analyse elimination of Hg in these specimens. Three replicates 

were removed per treatment and water and biological samples were analysed at 3, 

6, 12, 24, 48 and 72 hours after being placed in clean medium. Animals were 

removed from the beakers and transferred to a crystallizing dish with clean ASTM 

water for 5 minutes. Afterwards, the animals were blotted dry on filter paper to 

remove any superficial water and weighed (fresh weight) before being analysed as 

a pooled sample of 5 animals per replicate. 40 ml of the test solutions were 

acidified (pH < 2, HNO3 65% Fluka) and preserved for a maximum period of 96h. 

40 µl of each test solution were then analysed for waterborne Hg. 

Regarding the behavioural patterns, the animals that were inside the MFB test 

chambers during the exposure experiments were removed, rinsed through ASTM 

hard water and then transferred individually into new test chambers that were 

placed inside 3L plastic beakers containing clean ASTM hard water, using the 

same procedure adopted in the previous contaminated test chambers. During this 

procedure, the MFB was turned off for 45 minutes, in order to fulfil all the 

procedures. The MFB maintained the same recording patterns as described 

above, until the end of the post-48h exposure period. Physical-chemical 

parameters were measured at the beginning and every 48h until the end of test. 
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5.2.5. Mercury analysis 

 

The test solutions that were used to contaminate the medium were analysed 

before being added to the test vessels. All samples, including biota and preserved 

acidified water samples, were analysed directly by atomic absorption spectrometry 

(AAS), using an Advanced Mercury Analyser (AMA254 – Mercury Analyser from 

LECO, St. Joseph, Michigan, USA). This procedure involves a thermal 

decomposition of the sample and collection of the mercury vapour on a gold 

amalgamator, as described by Hall and Pelchat (1997). Our procedure, however, 

involved different time periods (drying time 60 seconds, decomposition time of 150 

seconds and waiting time of 45 seconds), in accordance with the volume and 

weight of the material we used here. The accuracy of the data was assessed using 

the reference materials: DORM-3 (fish protein certified reference material for trace 

metals) from the National Research Council Canada. 

 

 

5.2.6. Kinetics 

 

In these experiments, the uptake and elimination kinetics of mercuric chloride in 

the organisms was described using a one-compartment model, allowing a 

simultaneous estimation of the assimilation (a) and elimination (k) rates. We used 

the constant exposure model (Sousa et al., after Van Brummelen & Van Straalen, 

2000), applying the following equations: 

For   

     kt

t e
k

a
Q  1   (2) 

 

And for   

     )(
1 cc ttkkt
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k

a
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Where Qt = concentration in the organisms at time t (µg Hg g-1 animal); a = 

assimilation rate (µg Hg g-1 animal d-1); k = elimination rate constant (d-1); t = time 

(d); and tc = time at which the animals were transferred to uncontaminated 

medium (d). 

 

 

5.2.7. Statistical analysis 

 

The parameters used in the toxicokinetics model were estimated using the 

nonlinear estimation module of STATISTICA© 7.0 statistical package (StatSoft, 

Inc., 2004) with the Quasi-Newton method for calculating least squares. Data from 

behavioural experiments were arcsin square root transformed to stabilise 

variances across treatments (Zar, 1996) and two-way ANOVA’s were performed 

using the Minitab 14.20 statistical package (Minitab, 2006), with mercuric chloride 

concentrations and hours as treatments. Where applicable, results are presented 

as mean ± SE. For all statistical tests the significance level was set at p≤0.05. 

 

 

5.3. Results 

 

In the uptake and elimination experiments the physical parameters pH, dissolved 

oxygen and conductivity averaged 7.86 ± 0.11, 6.67 mg L-1 ± 0.3, 500 µS cm-1 ± 

2.9, respectively, during the whole test duration. Upon stabilization, concentrations 

in the contaminated beakers were maintained relatively constant throughout the 

uptake experimental period (31 ± 3 µg L-1). Mortality was measured as 

immobilization and was observed in exposed beakers only at 48 hours test period, 

with 13% mortality for controls at the end of the test. Cannibalism among 

chironomids was registered at 96 hours, hence observations made at that time 

were not considered because results could be flawed. 

 



Bioaccumulation and elimination of mercury in the midge larvae C. riparius: a link to behaviour 

 

107 
 

 

The uptake of mercuric chloride by the test organisms was rapid, being detected at 

the first sampling period just after initial exposure (Fig. 5.1), reaching an average 

value of 13.1 µg Hg g-1 animal at the end of this period. During the elimination 

phase, mercury concentration in the organisms started to decrease mildly just after 

they were transferred to clean ASTM hard water.  

 

Within the 48h time frame upon which the elimination period occurred, the 

organisms were not able to effectively eliminate the mercury, reaching an average 

value of 8.03 µg Hg g-1 animal at the end of this period (only ~39% of the total 

mercury was eliminated). The estimated kinetic parameters were 0.663 µg Hg g-1 
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Figure 5.1 - Kinetic behaviour of mercuric chloride in Chironomus riparius during uptake and 

elimination phases. Organisms were exposed to contaminated ASTM hard water during the first 

24h. Data was fitted by nonlinear regression (see text for further explanation). 
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Figure 5.2 - Average activity frequencies of locomotion of Chironomus riparius when exposed to 

a concentration of 31 µg L
-1

 [Hg] for a period of 72h. Dashed line represents the end of the 

uptake phase and the beginning of the elimination phase. 
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animal day-1 for the assimilation rate (a) and 0.012 day-1 for the elimination rate 

constant (k). The BCF value found for mercury was 450. 

 

The behavioural pattern responses of the midges were not affected by the 

presence of the stress agent. No statistically significant differences were found for 

locomotion or ventilation, neither among the experiment time frame (two-way 

ANOVA, p>0.05), nor between exposed and control organisms (two-way ANOVA, 

p>0.05). In fact, a very similar pattern was found between the control and exposed 

midges in locomotion activities, in both uptake and elimination phases (Fig. 5.2).  

During the uptake phase, organisms exposed to the stress agent presented a 

higher ventilation activity frequency than the ones that were in clean test medium, 

albeit showing no significant differences with the control; when placed in clean 

ASTM hard water during the elimination phase, ventilation activities of both control 

and pre-exposed midges stabilized (Fig. 5.3). 

 

 

5.4. Discussion 

 

Our preliminary tests indicated that a 24h exposure period was sufficiently long to 

ensure adequate accumulation of mercury in the midges and to reach an 
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Figure 5.3 - Average activity frequencies of ventilation of Chironomus riparius when exposed to 

a concentration of 31 µg L
-1

 [Hg] for a period of 72h. Dashed line represents the end of the 

uptake phase and the beginning of the elimination phase. 
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accumulation plateau, thus the experiments were designed to last for 24 hours. 

This short term bioassay was planned to understand the toxicokinetics of 

waterborne mercury, avoiding the integration of possible confounding factors such 

as metal adsorption by sediment or inorganic contaminated particles ingestion, as 

well as food intake by the organisms. Other short term kinetic bioassays with 

chironomids, with no sediment or food addition, have been successful in 

determining toxicokinetic parameters and developing kinetic models that describe 

uptake and elimination of other chemicals such as DDE and 2-chlorobiphenyl 

(Lydy et al., 2000). 

The use of a one compartment model allowed the simultaneous estimation of the 

uptake and elimination rates in ASTM hard water. The rate of Hg uptake in C. 

riparius larvae was a quite rapid process and comparable with the cadmium (Cd; 

Group B metal, like Hg) bioaccumulation in the same species (Timmermans et al., 

1992) and Hg bioaccumulation rate in other invertebrates, like marine 

macrobenthonic species [Scrobicularia plana and Hediste diversicolor (Cardoso et 

al., 2009)]. The elimination rate (0.012 day-1) was however substantially lower than 

the one found for the same species in Cd toxicokinetic studies [0.20 day-1 for 

larvae from non-adapted populations (Postma et al., 1996)]. In our experiments, 

only ~39% of the total mercury was eliminated. Tsui and Wang (2007) also 

predicted a slow elimination of Hg for Daphnia magna and Vázquez-Núñez et al. 

(2007) reported a similar pattern for the marine fireworm Eurythoe complanata. 

The BCF found for mercury in our experiment was 450, much lower than the BCF 

found for Cd (6850) by Timmermans et al. (1992) and the BCF found for Hg (1657; 

unpublished data). Both experiments comprised feeding and the presence of 

substrate (paper fibers for the first and sediment for the latter). The low BCF in this 

experiment might be due not only to the fact that we established a small 

elimination period, but also because this metal was relatively less bioavailable, 

since the midges were not fed nor had sediment in the beakers. 

Any possible adsorption of Hg to the exoskeleton that could influence the results of 

the AAS analysis (and consequently have an impact on the elimination phase 

results) was not measured, but other authors also reported that metal adsorption 

to the exoskeleton was low compared with the uptake in internal tissues, like Cd 
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uptake in the same species, where only an insignificant portion was adsorbed to 

the exoskeleton (Timmermans et al., 1992) or where 90% of the metal was found 

in the guts (Postma et al., 1996); and Hg uptake in crustaceans (Wright et al., 

1991; Ruelas-Inzunza et al., 2004), where the exoskeleton was one of the 

structures that accumulated less Hg. Even rinsing larvae in ASTM hard water in 

spite of acidified water did not prove to have significant differences among 

concentrations of metal obtained from exposed larvae (Timmermans et al., 1992, 

for Cd).  

Faster elimination rates of metals in studies with feeding might be related with 

desorption and repartioning of the metal between the gut and clean sediment 

particles passing through it or even with higher excretion rates (since food intake 

can lead to higher metabolic rates). In fact, Tsui and Wang (2007) refer that for 

Daphnia magna assimilation efficiency of Hg is somewhat dependent on food 

density. Without feeding, one can find a high risk of false positives (Ankley et al., 

1994), thus in this work any confounding factors that could affect waterborne 

bioaccumulation were avoided (as stated above), since fine sediments particles 

could adsorb Hg and therefore affect water concentration, as well as could be 

ingested by the larvae (Pinder, 1986) influencing the excretion of non tissue 

adsorbed metals. 

In this research, no statistical significant differences where found for either 

behavioural parameters among treatments (e.g. exposed and control midges) and 

among the experimental period. This is probably due to the fact that 24 hours 

toxicant exposure was not enough to produce significant effects on either 

locomotion or ventilation of the midges. Azevedo-Pereira and Soares (2010, 

Chapter 4) also did not found statistical significant differences for C. riparius 

locomotion at a similar concentration (40.88 µg Hg L-1) after 4 days exposure to 

the same toxicant, reporting effects only after 10 days exposure. During the first 24 

hours, ventilation activities of the exposed midges were higher than the ones in 

clean medium, and this is usually linked with attempts to escape from 

contaminated areas (Janssens de Bisthoven et al., 2004). After being transferred 

to clean medium, pre-exposed larvae rapidly normalised their behavioural 

activities when compared with non-exposed larvae, thus suggesting that a quick 
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contamination period is not enough to produce different behavioural effects on 

exposed midges. 

This type of experiments does not always represent ecologically realistic 

scenarios, but are important to know the evolutionary pattern of a chemical in the 

environment and in the organisms with time, evidencing the importance of the 

exposure route. The model developed for this study underestimates the feeding 

exposure route, since in water environments the conjugation with particles 

dominates the movement and fate of mercury (Schoellhamer after Jones, 1996), 

but highlights the toxic effects of waterborne Hg, as well as gives us an 

understanding of how C. riparius slowly eliminates Hg. This rapid bioaccumulation 

and slow elimination can promote serious consequences at higher trophic levels. 
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6. GENERAL CONCLUSIONS AND FINAL REMARKS 

 

 

The focus of the present thesis was to investigate behavioural responses and 

other standard endpoints of the benthic invertebrate Chironomus riparius towards 

mercury and imidacloprid exposure. In the previous chapters, it has been noticed 

that the behavioural responses are an important tool to rapidly and non-

destructively assess toxicity towards the chosen model species. A causal link 

between altered behaviour and environmental equilibrium is also addressed here. 

In ecotoxicology, the use of standard guideline tests using know and reliable 

endpoints under controlled laboratory conditions has proven to be an efficient 

process to assess the toxicity of chemicals towards model species. In this thesis, a 

new behavioural approach was developed and added as an additional endpoint to 

link the underlying physiological and ecological consequences of potential 

environmental contamination. With the use of online biomonitors we can get fast 

and sensitive results (registering behaviour as an early warning parameter), and 

can obtain results at ecological relevant concentrations (e.g. concentrations often 

found in the field). This is particularly important since ecotoxicologists have strived 

to use bioassays that can quickly give valuable information of contaminant effects 

on organisms. By improving our understanding of behavioural responses and by 

obtaining a quantifiable measure of behaviour we can acquire these answers. 

Being the first line of defence towards environmental stimuli (Beitinger, 1990), 

animal behaviour is an excellent indicator of environmental changes or inflow of 

toxicants, as well as by being a representation of physiological alterations in the 

organism. Behaviour can be assessed in the laboratory by using the Multispecies 

Freshwater Biomonitor (MFB), developed by Gerhardt et al., (1994), in short term 

studies (Janssens de Bisthoven et al., 2004), in long term studies with constant 

recordings (Macedo de Sousa et al., 2007) or in long term tests with phased 

recordings as shown in this thesis. 

Regarding the model species, benthic invertebrates like C. riparius combine the 

features of living in the sediment, can be often found in the water column, are a 

major food source for other species, and are distributed worldwide, thus making 
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them strong candidates for sentinel species for these types of pollutants in aquatic 

environments. In this thesis, evidence was provided that sub-lethal concentrations 

of the selected contaminants can promote significant harmful consequences to this 

species. 

Our results support that exposure to imidacloprid (IMI) will affect the growth and 

behaviour of the midge larvae and that organisms can in fact recover from a short 

exposure to the insecticide. But one also needs to take into consideration that IMI 

has negative effects on aquatic insects, especially in the case of high 

concentrations or even repeated pulses of contamination (Pestana et al. 2009). 

Thus, carefully planned pesticide application intervals in agricultural fields should 

be considered, because if runoff occurs it will give aquatic organisms the 

possibility to recover from these pulses, contrary to continuous applications that 

might have more severe population implications. The results also show that when 

subjected to IMI, C. riparius ventilation behaviour is a more sensitive endpoint than 

locomotion and biochemical responses. 

Sub-lethal concentrations of mercury on C. riparius promoted a trend of 

impairment in behavioural patterns with increasing concentrations of the toxicant. 

Growth was also impaired and delayed emergence rates / development time were 

also noticed. This was probably due to reductions in behavioural activities that 

even at low concentrations can decrease the amount of time spent foraging, 

producing effects at the morpho-physiological levels, and thus severely affecting 

the chironomid performance in the environment. Besides, these larvae can quickly 

bioaccumulate mercury in unfed conditions and present a slow depuration of the 

heavy metal, which can elicit serious consequences to the ecosystem balance. 

Due to the fact that chironomids are one of the most widespread and abundant 

macroinvertebrates in freshwater ecosystems, being important preys for higher 

trophic levels (e.g. fish and aquatic birds), any factor that can affect the population 

(behavioural impairment  decreased foraging  growth reduction + delay in 

development time) may promote a negative impact on the freshwater ecosystem. 

Since the effects of sub-lethal levels of contaminants at the population levels are 

only detected, in many cases, after several generations, the development and 

validation of early warning systems like these behavioural assessments – 
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behaviour, as an adaptive response to a particular level of stimuli, can be 

obliterated or produce an aberrant response when the animal is exposed to a 

higher (or different) level of stimulation (Beitinger, 1990) – can help to predict 

possible alterations at the field population levels even faster than conventional 

standard ecotoxicological tests (survival, growth or emergence). 

Integrating behaviour with regularly used endpoints in ecotoxicology evidences the 

sensitivity and non lethality of this endpoint, allowing (in the case of online 

biomonitors) not only an evaluation of toxicity at the end of the test, but also a 

continuous, quantifiable and real time measurement of how the animals are 

reacting during the experiments. Despite the non-use of sediment in the test 

chambers, the selected species presented excellent and reliable behavioural 

responses towards the toxicity at which they were subjected, not only because it 

was a short term quantifiable measurement of behaviour in select periods 

throughout the experiment, but also because these larvae also exhibit good 

swimming and locomotor activities in water. In fact, these results highlighted the 

understanding of the chironomids’ behaviour responses as an early warning 

parameter. 

 

The use of these behavioural endpoints and online biomonitoring as a sub-lethal 

ecotoxicogical relevant parameter in toxicology will therefore increase the 

versatility of the tests, allowing a measurable and quantitative behavioural 

response at the whole-organism level, giving a representation of the organism 

physiological response to environmental factors by offering an ecologically 

relevant, integrative, sensitive, fast and non-destructive assessment, thus 

certifying that this approach can be used in further assays. 

Further studies should bear in mind more ecologically relevant behavioural studies 

using online biomonitors like MFB: when assessing toxicity on long term 

contamination of sediment organisms, the behavioural approach revealed in this 

study can produce reliable results, but if there is the possibility to use more 

replicates, one could assess sediment toxicity by applying a two compartment 

chamber (water and sediment, as referred by Gerhardt and Schmidt, 2002), 

measuring percentages of time that the animals stays in each compartment 
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(somewhat like measuring avoidance for 24 hours during 7 days); and when 

assessing water toxicity, this equipment reveals ideal conditions to do long term 

monitoring of water column model species (e.g. Daphnia magna; Danio rerio), 

using flow-through devices and the possibility of establishing pollution pulses 

intercalated with clean periods. 
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