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palavras-chave

resumo

Controlo 6ptimo, principio do maximo de Pontryagin, problemas de tempo
minimo, controlos bang-bang, procedimentos de regulariza¢do, método de tiro
simples, tempos conjugados.

Consideramos o problema de controlo 6ptimo de tempo minimo para sistemas
de controlo mono-entrada e controlo afim num espaco de dimenséo finita com
condicdes inicial e final fixas, onde o controlo escalar toma valores num
intervalo fechado. Quando aplicamos o método de tiro a este problema, varios
obstaculos podem surgir uma vez que a fungdo de tiro ndo é diferenciavel
guando o controlo é bang-bang. No caso bang-bang os tempos conjugados
sdo teoricamente bem definidos para este tipo de sistemas de controlo,
contudo os algoritmos computacionais directos disponiveis sdo de dificlil
aplicacdo. Por outro lado, no caso suave 0 conceito teérico e pratico de
tempos conjugados é bem conhecido, e ferramentas computacionais eficazes
estdo disponiveis.

Propomos um procedimento de regularizacdo para o qual as solu¢des do
problema de tempo minimo correspondente dependem de um parametro real
positivo suficientemente pequeno e séo definidas por funcbes suaves em
relagdo a variavel tempo, facilitando a aplicacdo do método de tiro simples.
Provamos, sob hipéteses convenientes, a convergéncia forte das solu¢des do
problema regularizado para a solugao do problema inicial, quando o parametro
real tende para zero. A determinacdo de tempos conjugados das trajectdrias
localmente éptimas do problema regularizado enquadra-se na teoria suave
conhecida. Provamos, sob hipéteses adequadas, a convergéncia do primeiro
tempo conjugado do problema regularizado para o primeiro tempo conjugado
do problema inicial bang-bang, quando o parametro real tende para zero.
Consequentemente, obtemos um algoritmo eficiente para a computacdo de
tempos conjugados no caso bang-bang.






keywords

abstract

Optimal control, Pontryagin maximum principle, minimal time problems, bang-
bang controls, regularization procedures, single shooting methods, conjugate
times.

In this thesis we consider a minimal time control problem for single-input
control-affine systems in finite dimension with fixed initial and final conditions,
where the scalar control take values on a closed interval. When applying a
shooting method for solving this problem, one may encounter numerical
obstacles due to the fact that the shooting function is non smooth whenever the
control is bang-bang. For these systems a theoretical concept of conjugate time
has been defined in the bang-bang case, however direct algorithms of
computation are difficult to apply. Besides, theoretical and practical issues for
conjugate time theory are well known in the smooth case, and efficient
implementation tools are available.

We propose a regularization procedure for which the solutions of the
minimal time problem depend on a small enough real positive parameter and
are defined by smooth functions with respect to the time variable, facilitating the
application of a single shooting method. Under appropriate assumptions, we
prove a strong convergence result of the solutions of the regularized problem
towards the solution of the initial problem, when the real parameter tends to
zero. The conjugate times computation of the locally optimal trajectories for the
regularized problem falls into the standard theory. We prove, under appropriate
assumptions, the convergence of the first conjugate time of the regularized
problem towards the first conjugate time of the initial bang-bang control
problem, when the real parameter tends to zero. As a byproduct, we obtain an
efficient algorithmic way to compute conjugate times in the bang-bang case.

2010 Mathematics Subject Classification: 49K21, 49M15, 49N60.






mots-clés

résumé

Contréle optimal, principe du maximum de Pontryagin, probléme de temps
minimal, contrdle bang-bang, procédures de régularisation, méthode de tir
simple, temps conjugué.

On considére le probleme de contréle optimal de temps minimal pour des
systemes affine et mono-entrée en dimension finie, avec conditions initiales et
finales fixées, ou le contrdle scalaire prend ses valeurs dans un intervalle
fermé. Lors de l'application d'une méthode de tir pour résoudre ce probléme,
on peut rencontrer des obstacles numériques car la fonction de tir n'est pas
lisse lorsque le contrble est bang-bang. Pour ces systémes, dans le cas bang-
bang, un concept théorique de temps conjugué a été défini, toutefois les
algorithmes de calcul direct sont difficiles a appliquer. En outre, les questions
théoriques et pratiques de la théorie du temps conjugué sont bien connues
dans le cas lisse, et des outils efficaces de mise en ceuvre sont disponibles.

On propose une procédure de régularisation pour laquelle les solutions du
probléeme de temps minimal dépendent d'un parameétre réel positif
suffisamment petit et sont définis par des fonctions lisses en temps, ce qui
facilite l'application de la méthode de tir simple. Sous des hypothéses
convenables, nous prouvons un résultat de convergence forte des solutions du
probleme régularisé vers la solution du probleme initial, lorsque le paramétre
réel tend vers zéro. Le calcul des temps conjugués pour les trajectoires
localement optimales du probléme régularisé est standard. Nous prouvons,
sous des hypotheses appropriées, la convergence du premier temps conjugué
du probleme régularisé vers le premier temps conjugué du probléme de
contréle bang-bang initial, quand le paramétre réel tend vers zéro. Ainsi, on
obtient une procédure algorithmique efficace pour calculer les temps conjugués
dans le cas bang-bang.
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Introduction

In this thesis, we investigate the minimal time Optimal Control Problem (OCP) for

single-input control-affine systems in R"

T =X(z)+uwYi(x),

with fixed initial and final times conditions

z(0) =20, x(ty) =21,
where X and Y7 are smooth vector fields, and the control w; is a measurable scalar function
satisfying the constraint
lui ()| <1, Vte[0,ty]

with £ the final time. We develop regularization procedures in order to compute smooth
approximations of the above bang-bang control problem, and to compute conjugate times.

The first conjugate time of a trajectory x(-) is the time at which it loses its local optimality.
The definition and computation of conjugate points are an important topic in the theory of
calculus of variations (see e.g. [13]). In [99] the investigation of the definition and computation
of conjugate points for minimal time control problems is based on the study of necessary
and/or sufficient second order conditions. In [II0], the theory of envelopes and conjugate
points is used for the study of the structure of locally optimal bang-bang trajectories for the
problem (OCP) in IR? and R3; these results were generalized in [60]. In [8I,I00] first and
second order sufficient optimality conditions are derived in terms of a quadratic form @, for
a minimal time control problem with control-affine systems. In [I00] L'-local optimality is
considered and in [8I] strong local optimality. In [5] the authors derive second order sufficient
conditions, under the same regularity assumptions as [81], for an optimal control problem
in the Mayer form with fixed final time, with control-affine systems and bang-bang optimal
controls. In [90] the authors proved the equivalence of the second order sufficient conditions
given in [81] with the ones given in [5]. In [95] an analogous quadratic form to the one in [5]
is defined, but the sufficient optimality conditions derived are valid for a stronger kind of
optimality (state local optimality).

The combination of necessary and sufficient conditions for bang-bang extremals provided
in [3L58187,95] allows to relate the local strong optimality status of a trajectory x(-) with the



existence of conjugate times. More precisely, if the strict bang-bang Legendre condition holds
for a bang-bang extremal trajectory z(-) and the quadratic form Q) is positive definite on [0, ¢],
then x(-) is locally optimal for problem (OCP) in the C° topology on [0, ( [5,81,87,95]).
If we assume moreover, that z(-) has a unique extremal lift (up to a multiplicative scalar)
(z(-),p(-),p°, u1(-)), which is moreover normal (p" = —1) and z(-) is locally optimal in C°
topology for problem (OCP) on [0, ] then @Q; is nonnegative ( [3]). Under these assumptions,
the times t, t > 0, such that the quadratic form @Q; has a trivial kernel are isolated and can
only consist of some switching times of the bang-bang extremal control (see [5]); the first
conjugate time t. of a bang-bang strong locally optimal trajectory x(-) (starting from &) is
then defined by

te = sup{t | Q. is positive definite} = inf{t | Q; is indefinite} .

The point z(t.) is called the first conjugate point of the trajectory z(-).

Sufficient optimality conditions are developed in [87] (see also [I13]) based on the method
of characteristics and the theory of extremal fields. Sufficient optimality conditions are given
for embedding a reference trajectory into a local field of broken extremals. In [IL4,5,95], using
Hamiltonian methods and the extremal field theory, the authors construct, under certain
conditions, a non-intersecting field of state extremals that covers a given extremal trajectory
z(+). In [5L6IL87] the authors associate the occurrence of a conjugate point with a fold point
of the flow of the extremal field, that is, a so-called overlap of the flow near the switching
surface.

The computation of conjugate times in the bang-bang case is difficult in practice. In the last
years works have been developed on the numerical implementation of second order sufficient
optimality conditions (see, e.g., [61,78,[8I] and references cited therein). These procedures
allow the characterization of the first conjugate time, for bang-bang optimal control problems
with control-affine systems, whenever it exists and is attained at a j' switching time. However,
in practice, if j is too large then the numerical computation may become very difficult. Besides,
theoretical and practical issues for conjugate time theory are well known in the smooth case

(see e.g. [21[86]), and efficient implementation tools are available (see [15]).

The contributions of this thesis are the following.

We propose a regularization procedure which permits to use the efficient tools of compu-
tation of conjugate times in the smooth case provided in [I5] for the computation of the first
conjugate time of the problem (OCP). The regularization procedure is the following. Let e
be a positive real parameter and let Ya,...,Y,, be m —1 arbitrary smooth vector fields on IR",
where m > 2 is an integer. We consider the minimal time problem (OCP), for the control

system
m

(1) = X (2°(1) + ui ()3 (2°(1) + e Y uf()Yi (2°(1)) ,
1=2



under the constraint .
Y wm)?<,
i=1
with the fixed boundary conditions x°(0) = &o, 2°(ty) = &1 of the initial problem (OCP).

In the next theorem we derive nice convergence properties.

Theorem 0.0.1 (cf. Chapter 2, p. [61)). Assume that the problem (OCP has a unique
solution x(-), defined on [0,tf], associated with a control ui(-) on [0,t¢]. Moreover, assume
that x(-) has a unique extremal lift (up to a multiplicative scalar), that is moreover normal,
and denoted (xz(-),p(+),—1,u1(+)).

Then, under the assumption Span{Y; | i =1,...,m} = IR", there exists €9 > 0 such that,
for every € € (0,e9), the problem (OCP),_ has at least one solution x°(-), defined on [0,15]

£

) satisfying the constraint

with t5% < tr, associated with a smooth control u* = (uj,...,u
f f7 1
m

Z (us (t))* < 1, every extremal lift of which is normal. Let (z°(-),p(-), —1,uc(-)) be such a
i=1
normal extremal lift. Then, as € tends to 0,

. t? converges to ty;
o 2°(-) converges uniformly to x(-), and p°(-) converges uniformly to p(-) on [0,ts];
o uS(-) converges weakly to ui(-) for the weak L*(0,t¢) topology.

If the control uy(-) is moreover bang-bang, i.e., if the (continuous) switching function p(t) =

p(t), Y1(x(t))) does not vanish on any subinterval of [0,t¢], then uj(:) converges to ui(-) and
! 1

£
U,

strong L*(0,t¢) topology.

(+), i =2,...,m, converge to 0 almost everywhere on [0,ts], and thus in particular for the

We provide an example where the optimal control of the initial system is not bang-bang
(it has a singular arc) and for which the almost everywhere convergence fails.

Among the numerous numerical methods that exist to solve optimal control problems, the
shooting methods consist in solving, via Newton-like methods, the two-point or multi-point
boundary value problem arising from the application of the Pontryagin maximum principle.
For the minimal time problem (OCP), optimal controls may be discontinuous, and it follows
that the shooting function is not smooth on R" in general. Actually it may be non differen-
tiable on switching surfaces. This implies two difficulties when using a shooting method. First,
if one does not know a priori the structure of the optimal control, then it may be very diffi-
cult to initialize properly the shooting method, and in general the iterates of the underlying
Newton method will be unable to cross barriers generated by switching surfaces (see e.g. [71]).

Second, the numerical computation of the shooting function and of its differential may be

'This Theorem remains valid if we consider z(0) € My and z(1) € M; where My and M; are two compact
sets of R"™ (see Chapter [2]).



intricate since the shooting function is not continuously differentiable. This observation is one
of the possible motivations of the regularization procedure considered in this thesis. Indeed,
the shooting functions related to the smooth optimal control problems (OCP),_ are smooth.

From Theorem [0.0.I] under appropriate assumptions, the optimal controls of problem
(OCP), are smooth, therefore the computation of associated conjugate points x°(t) falls
into the standard smooth theory. Our next result asserts the convergence, as € tends to 0, of

tZ towards the conjugate time t. of the initial bang-bang optimal control problem.

Theorem 0.0.2 (cf. Chapter 3], p.05). Assume that the problem (OCP) has a unique solution
x(+), associated with a bang-bang control ui(-), on a mazimal interval I. Moreover, assume
that x(-) has a unique extremal lift (up to a multiplicative scalar), which is moreover normal,
and denoted by (x(-),p(-), —1,u1(+)). If the extremal (z(-),p(-), —1,ui(-)) satisfies, moreover,
the strict bang-bang Legendre condition on [0,t.], then the first geometric conjugate time t

converges to the first conjugate time t. as € tends to 0.

This result permits to use the available efficient implementation procedures for the smooth
case, like for instance the free package COT C’OY@ (see [15]), to compute conjugate times in
the bang-bang case. We claim that when applying the smooth procedures to the regularized
procedure, it is not needed to consider very small values of € to estimate the first conjugate time
t.. Indeed, a conjugate time of a locally bang-bang trajectory can only occur at a switching
time and, under our assumptions, switching times are isolated. From Theorem [0.0.2] the first
geometric conjugate time ¢ converges to t., when ¢ tend to 0. Therefore, as soon as € is small
enough so that ¢ is in a (not necessarily so small) neighborhood of some switching time 7
of the bang-bang trajectory x(-), this means that the bang-bang conjugate time t. is equal to

that switching time 5.

This thesis is organized in the following way.

In the first chapter we recall some important definitions and theorems of linear and nonlin-
ear optimal control theory. In Chapter Blwe propose a regularization procedure for bang-bang
optimal control problems with single-input control-affine systems and prove, under appropri-
ate assumptions, convergence properties of the optimal solutions of the regularized problem
towards the solutions of the initial problem. These convergence results are illustrated in sev-
eral examples. In Chapter Bl the regularization procedure introduced in Chapter 2lis used and
we prove the convergence of the first geometric conjugate time ¢2 of the regularized problem
to the first conjugate time of ¢, of the bang-bang optimal trajectory, as € tends to 0. Several
examples are provided where the convergence properties proved in Theorems [0.0.1] and
are illustrated. In Appendix[Alwe recall first and second order sufficient optimality conditions

proved in [78H8I] and apply them to one of the examples considered in Chapter Bl

2Conditions of Order Two, COnjugate Times, http://apo.enseeiht.fr/cotcot/



Chapter 1

Preliminaries on Optimal Control

Theory

1.1 Introduction

In this chapter some important definitions and results of the optimal control theory are given.
We start with general explanations of the main elements of an optimal control problem and
give some motivations for the study of these problems. Section §I.2] gives a brief historical
overview of the optimal control theory. In §I.3] we present some important results of the linear
optimal control theory and an example of a linear optimal control problem. Some results
of the nonlinear optimal control theory are presented in §I.4] together with two examples.
For both linear and nonlinear general optimal control problems the Pontryagin maximum
principle is formulated and in §L.5 a proof of this theorem is given for a general nonlinear
minimal time optimal control problem, using needle-like variations which are needed to derive
the main result of Chapter [2] (Theorem 2.5.1]). In §I.6l we derive the maximization condition of
Pontryagin maximum principle for a minimal time problem using Gamkrelidze’s generalized

controls.

All of us already tried, in some occasion, to keep in balance a ball on a finger (i.e., solve
the problem of the inverted pendulum). However it is much more difficult to keep in balance
a double inverted pendulum, that is, a system composed by two balls one over the other,
specially if we close our eyes. The control theory allows to do it, if we dispose of a suitable
mathematical model that describes the physical process.

The main elements of an optimal control problem are: the mathematical model which
relates the state x to the input or control u by a differential system; the initial point or
state xg and a final point x1 or target S; the output of the system which characterize the
process, i.e., the state of the controlled object at each instant of time; a set of admissible

inputs or controls which determine the course of the process; the cost functional (also called



performance index, or objective functional, or effort) that consists of a quantitative criteria
for the efficiency of each admissible control; and the length of time ¢y required to reach the
terminal state.

A control system is a dynamical system, which evolves over time, on which we can work
through a command function or a control, and their origin is vast (mechanics, electronic,
biology, economy, etc.). Some examples of control systems which can be modeled and treated
by the theory of control systems are: a computer that allows the user to perform a series of
basic commands; an ecosystem on which we can act promoting a particular situation to achieve
a balance; nerve tissues forming a network controlled by the brain processing the stimuli from
outside and having an effect on the body; a robot performing a specific task; a car that we
can command with the accelerator, brake and wheel; a satellite or a spacecraft.

The control theory analyzes the properties of such systems, with the aim of steering an
initial state to a certain final state, eventually respecting certain restrictions. The objective
can be also to stabilize the system making it insensitive to some perturbations (stabilization
problem), or even to compute the optimal solutions for a certain optimization criteria (optimal
control problem). For the construction of the control system model, we can make use of
differential equations, functional integrals, finite differences, partial derivatives, etc. For this
reason the control theory is the interconnection of many mathematical areas (see, e.g., [21]38),
13936585, 106]).

The dynamics of a system define the system possible transformations, occurring in time
in a deterministic or random way. An equation is given, or typically a system of differential
equations, relating the variables and modeling the dynamics of the system. The examples
already given show that the structure and dynamics of a control system may have very different
meanings. In particular, the control system can be described by discrete, continuous, or hybrid
transformations or, more generally, on a time scale or measure chain [43,45,[72].

Consider a control system whose state at a given moment is represented by a vector. The
controls are functions or parameters, usually subject to restrictions, which act on the system in
the form of outside forces that affect the dynamics. Given the system of differential equations
which models the dynamics of the system, it is then necessary to use the available information
and features of the problem to construct the appropriate controls that will enable us to attain
our objective. For example, when we travel in our car acting accordingly to the code of the
road (at least this is advisable) and we construct the travel plan to reach our destination,
there are some restrictions on the trajectory and/or on the controls, which must be taken into
consideration.

A control system is called controllable if we can steer it (in a finite time) from a given
initial state to any final state. Kalman proved in 1949 an important result on controllability
which characterizes controllable linear control systems of finite dimension (Theorem [[.3.9).
For nonlinear systems the controllability problem is much more difficult and remains an active

domain of research.



Once the controllability problem is solved, we may wish to go from an initial state to a
final state minimizing or maximizing a specific criteria. In this case we are speaking about
an optimal control problem. For example, a driver going from Lisbon to Porto may wish to
travel in minimal time, and in that case he will take the highway and spend more money
and fuel. Another optimal control problem is obtained if the driver chooses as a crite-
ria spend less money as possible. The solution to this problem implies to chose secondary
roads, for free, and he will take a lot more time to his destination (following the internet site
http://www.google.pt/maps| choosing the highway the driver takes 3h from Lisbon to Porto
and by the secondary roads 6h45m).

The theory of optimal control is of great importance in aerospace engineering, in particular
for conduction problems, aero-assisted transfer orbits, development of recoverable launchers
(the financial aspect here is very important) and problems of atmospheric reentry, such as the
famous project Mars Sample Return from the European Space Agency (ESA) which consists

in sending a spacecraft to Mars with the objective of bringing to Earth martian samples

(Figure [LT]).

Figure 1.1: Optimal control theory has an important role in the aeroespacial engineering.

1.2 Short historical overview

The calculus of variations was born in the seventeen century with the contribution of Bernoulli,
Fermat, Leibniz and Newton. Some mathematicians as H.J. Sussmann and J.C. Willems de-
fend that the origin of optimal control coincides with the birth of calculus of variations, in
1697, date of the publication of the solution of the brachistochrone problem by the mathemati-
cian Johann Bernoulli [IT4]. The brachistochrone problem (in Greek brakhistos, “the shortest”,
and chronos, “time”) was studied by Galileu in 1638. The aim was to determine the curve
between two points on a vertical plane that is covered in the least time by a sphere that starts

at the first point A with zero speed and is constrained to move along the curve to the second


http://www.google.pt/maps

point B, under the action of constant gravity and assuming no friction (optimal sliding, see

Figure [[2). In contrast to what could be our intuitive first answer, the shortest time path

Figure 1.2: Brachistochrone problem.

between two points is not a straight line! Galileo believed (wrongly) that the required curve
was an arc of a circle, but he had already noticed that the straight line is not the shortest time
path. In 1696, Jean Bernoulli posed the problem as a challenge to the best mathematicians of
his time. Jean Bernoulli himself found the solution, as well as his brother Jacques Bernoulli,
Newton, Leibniz and the Marquis de ’'Hopital. The solution is a cycloid arc starting with a
vertical tangent [641[114]. Skateboarding ramps, as well as the fastest decreases of aqua-parks,
have the form of cycloid (Figure [L3]).

Figure 1.3: Cycloid arcs lead to fastest decreases and maximal adrenaline.

Some authors go further, remarking that Newton’s problem of aerodynamical resistance,
proposed and solved by Isaac Newton in 1686, in his Principia Mathematica, is a typical
optimal control problem (see §I.4.8 and e.g. [L02/[118]).

In mathematics, optimal control theory emerged after the Second World War responding
to practical needs of engineering, particularly in the field of aeronautics and flight dynamics.
The formalization of this theory raised several new questions. For example, the theory of
optimal control motivated the introduction of new concepts for generalized solutions in the
theory of differential equations and generated new results on the existence of trajectories.

In general, it is considered that the theory of optimal control has emerged in the late



fifties in the former Soviet Union, with the formulation and demonstration of the Pontryagin
maximum principle by L.S. Pontryagin (Figure [[4]) and his group of collaborators in 1956:
V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko [96].

Figure 1.4: Lev Semenovich Pontryagin (3/September/1908 — 3/May/1988)

Pontryagin and his associates introduced an importante point: they generalized the theory
of calculus of variations to curves that take values on closed sets (with boundary). The theory
of optimal control is closely related to classical mechanics, in particular variational principles
(Fermat’s principle, Euler-Lagrange, etc.). In fact the maximum principle of Pontryagin gener-
alizes the necessary conditions of Euler-Lagrange and Weierstrass. Some strengths of the new
theory was the discovery of the dynamic programming method, the introduction of functional
analysis to the theory of optimal systems and the discovery of links between the solutions of
an optimal control problem and the results on stability of Lyapunov theory [120,[122]. Later
came the foundations of stochastic control and filtering in dynamic systems, game theory,
control of partial differential equations and hybrid control systems, which are some among the

many areas of current research [2,[106].

1.3 Linear optimal control

The optimal control theory is much more simple when the control system under study is linear.
The nonlinear optimal control theory will be recalled in Section [[L4l Even in our days the

linear control theory is one of the areas more used in engineering and its applications (see

e.g. [8).

1.3.1 Statement of the problem

Let M, ,(IR) denote the set of matrices with n rows and p columns, with entries in IR. Let

1
loc

I be an interval of R; A, B,r three locally integrable mappings on I (A, B € L; ), taking



values respectively in M, ,(RR), M, ,»(R) and M, 1(R). Let Q be a subset of R™, and let
xo € R"™. We consider the linear control system

#(t) = A(t)z(t) + Btyu(t) +r(t), Vtel, "

where the controls u are mensurable locally bounded mappings over I, taking values on a
subset 2 C R™.

The existence theorem for solutions of differential equations ensures (see e.g. [121), Chapter
11]), for every control u, the existence of a unique, absolutely continuous, solution z(-) : [ —
R" for the system (LII). Let M(-) : I — M, »(IR) be the fundamental matrix solution of the
homogeneous linear system @(t) = A(t)z(t), defined by M(t) = A(t)M(t), M(0) = Id. Note
that if A(t) = A is constant over I, then M(t) = e*4. Therefore, the solution z(-) of system
(LI) associated to the control u is given by

x(t) = M(t)xo + /0 M ()M (s)~! (B(s)u(s) +7(s)) ds,

for every t € I.
This mapping depends on the control u. Therefore, if we change the function u we obtain
a different trajectory t — x(t) in R" (see Figure [L3]).

Lo

Figure 1.5: The trajectory solution of the control system (II) depends on the choice of the

control w.

In this context, some questions arise naturally:
(i) Given a point x1 € IR", is there a control u such that the associated trajectory x steers

xo to x1 in a finite time ¢;7 (see Figure [[L6) This is the controllability problem.

/\_/wl = a(ty)
xo

a(t)

Figure 1.6: Controllability problem.
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(ii) If the previous question is satisfied, is there a control whose associated trajectory
steers xo to x; and minimizes a given functional C(u) (See Figure [[L7). It is an optimal
control problem. The functional C(u) is the optimization criteria, and we call it cost. For
example if the cost is the transfer time from x( to x1, then we have the so-called minimal time

problem.

xy = x(ty)
0

Figure 1.7: Optimal control problem

1.3.2 Controllability: definition and accessible set

Consider the linear control system ([I)). In what follows we introduce a very important set:

the accessible set, also called attainable set or reachable set (see e.g. [5362]).

Definition 1.3.1. The set of accessible points from ¢ in time 7" > 0 is denoted by A(zo,T)
and defined by

Ao, T) = {xu(T) | w e L>([0,T],9Q)},
where x,(-) is the solution of system (LI]) associated to the control w.

In other words, A(zo,T) is the set of endpoints of the solutions of (LI) in time 7', when
the control u varies (see Figure [[L8). We set A(zo,0) = {xo}.

A(xo,n

Figure 1.8: Accessible set.

In what follows some properties of the accessible set for linear control systems are given
(see, e.g. [62[121] for the respective proofs).

11



Theorem 1.3.2. Consider the linear control system in R™
x(t) = A(t)z(t) + B(t)u(t) + r(t)

where @ C IR™ is compact. Let T > 0 and o € R". Then for every t € [0,T], A(zo,t) is

compact, convex and varies continuously with t in [0,T].

Corollary 1.3.3. If we note by Aq(xq,t) the accessible set starting at xo in time t for controls
taking values in €2, then we set
AQ(.’L’O, t) = ACOnV(Q) (‘T07 t) )

where Conv(QY) is the convex envelope of Q. In particular, we have Ago(xo,t) = Aq(wo,t),
where 082 is the boundary of 2.

This last result illustrates the bang-bang principle (see Theorem [[L3I5]). In fact, in many
optimal control problems the optimal controls take values always on the boundary 9€) of the

control constraint set €.

Remark 1.3.4. We observe that if » = 0 and z¢p = 0, then the solution of © = Ax + Bu,
z(0) = 0, is given by

¢
x(t) = M(t)/ M ()" B(s)u(s)ds,
0
and is linear with respect to w.

This remark lead us to the following proposition.

Proposition 1.3.5. Suppose that r =0, 29 = 0 and Q = IR™. Then,
1. ¥Vt >0 A(0,t) is a vectorial subspace of IR"™. Moreover,
2. Vi1, ta, s.t. 0 <ty <tg, A(0,t1) C A(0,t2).

Definition 1.3.6. The set A(0) = U;>0A(0,¢) is the set of accessible points (at any time)

starting at the origin.

Corollary 1.3.7. The set A(0) is a vectorial subspace of IR".

The controllability definition for linear control systems follows.

Definition 1.3.8. The control system @(t) = A(t)x(t)+B(t)u(t)+r(t) is said to be controllable
in time T if A(zg,T) = R", that is, for every zg,x; € R", there exists a control u such that

the associated trajectory steers z to x; in time 7" (see Figure [[9]).

The following theorem give us a necessary and sufficient condition for controllability, in
the case where A and B do not depend of ¢t and there are no constraints on the control
(u(t) € R™).

12



o
Figure 1.9: Controllability

Theorem 1.3.9 (Kalman condition). Suppose that Q = IR™ (no constraints on the control).
The system ©(t) = Ax(t) + Bu(t) + r(t) is controllable in time T (arbitrary) if and only if the
matriz C = (B, AB,--- , A" 1B) is of rank n.

The matrix C is called the Kalman matriz.

Remark 1.3.10. The Kalman condition does not depend on T neither on xg. In other words,
if an autonomous linear system is controllable in time T starting at xg, then is controllable in

any time starting at any point.

In Theorem [[.3.91 no constraint on the control is considered. The next theorem is a con-

trollability result when the control is scalar, i.e., m =1, and u(t) € Q C R.

Theorem 1.3.11. Let b € R" and Q2 C IR an interval having 0 in its interior. Consider the
system (t) = Az(t) + bu(t), with u(t) € Q. Then every point of IR" can be steered to the
origin in finite time if and only if the couple (A,b) satisfies the Kalman condition and the real

part of each eigenvalue of A is less or equal than zero.

1.3.3 Minimal time problem

We start by formalizing, with the help of the accessible set A(xg,t), the notion of minimal
time.

Consider the control system on R"
&(t) = A(t)z(t) + B(t)u(t) + r(t),

where the controls u take values in a compact set 2 C R with nonempty interior. Let xg, z1
be two points of IR". Suppose that z; is accessible from zq, i.e., suppose that there exists
at least one trajectory steering zg to 1. Between all the trajectories that steer xp to x; we

would like to characterize the one that does it in minimal time ¢; (see Figure [[I0).
zy = a(tf)

o

Figure 1.10: Which is the trajectory x with minimal time?
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If #; is the minimal time, then for every ¢ < f;, m1 & A(zo,t) (in effect, otherwise z;
would be accessible from zg in a time smaller than #; and ; would not be the minimal time).
Therefore,

l?f = inf{t >0 | T € A(l‘o,t)} . (1.2)

The value of ¢ ¢ is well defined because, from Theorem [[.3.2, A(zo,t) varies continuously with
t, thus {t > 0|z € A(xzo,t)} is closed in R. In particular the infimum in (L2]) is a minimum.
The time ¢ = £ is the first instant such that A(wo,t) contains 7 (see Figure [LTI]).

QIR

A(l‘o, t)

Figure 1.11: Minimal time.
On the other hand, we have
xr] € 8A(xo, tAf) = A(xo, ff)\int A(xo, tAf) .

In fact, if z; belongs to the interior of A(mo,ff), then for t < ff close to ff, x1 also
belongs to A(zg,t) since A(x,t) varies continuously with #. This contradicts the fact that ¢

is minimal time.

The next theorem states that if a minimal time problem with a linear control system in

IR" is controllable then it has at least one solution.

Theorem 1.3.12. If the point x1 is accessible from xqg then there exists a minimal time

trajectory steering xo to x1.

Remark 1.3.13. We can also consider the steering problem to a target that does not reduce
to a single point. Therefore, let (M (t))o<t<t ; be a family of compact subsets of R" varying
continuously with t. As before, we see that if there exists a control u taking values in {2
steering o to Mi(ts), then there exists a minimal time control defined on [0,#] steering z
to M(ty).

This remark give us a geometric vision of the notion of minimum time and lead us to the

following definition.

14



Definition 1.3.14. The control u is an extremal on [0,t] if the trajectory of system (L)
associated to w satisfies x(t) € 9 A(zo, t).

Every minimal time control is an extremal. The converse does not hold in general.

Optimality condition: maximum principle in the linear case

The next theorem give us a necessary and sufficient condition in order that extremal controls

are also optimal controls.

Theorem 1.3.15. Consider the linear control system

&(t) = A(t)x(t) + B(t)u(t) +r(t),

where the domain of control constraints Q0 C IR™ is compact. Let t; > 0. The control u
is an exstremal on [0,tf] if and only if there exists a nontrivial solution p(t) of the equation
p(t) = —p(t)A(t) such that

p(t)B(t)u(t) = maxp(t) B(t)w (1.3)

for every t € [0,t¢]. The row vector p(t) € IR" is called the adjoint vector.

Remark 1.3.16. In the case of a scalar control, and if moreover 2 = [—a, a] where a > 0, the
maximization condition ([L3]) implies immediately that u(t) = asign(p(t), B(t)). The function
o(t) = (p(t), B(t)) is called a switching function, and the time ts at which the extremal control

u(t) change its sign is called a switching time. It is, in particular, a root of the function ¢.

The initial condition p(0) depends on x;. As this condition is not directly known, the
application of Theorem [[.3.15]is mostly done indirectly. Let us see an example.
1.3.4 Example: optimal control of an harmonic oscillator (linear case)

Consider a punctual mass m, forced to move along an axis (Ox), attached to a spring (see

Figure [ 12).

v
 ——
i
m

NAANANANANANAN

Figure 1.12: A spring
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The mass is then drawn towards the origin by a force that is assumed equal to —ki(x —
I) — ko(z — )3, where [ is the length of the spring at rest, and ki, ko are the coefficients of
stiffness. We apply to this mass point an external horizontal force u(t)f The laws of physics

give us the motion equation
mE(t) + ki (x(t) — 1) + ka(2(t) — 1)* = u(t). (1.4)
Moreover we impose a constraint on the external force,
lu(t)] <1, Vt.

This means we can not apply any external horizontal force to the point mass: the external
force can only take values on the interval [—1, 1], reflecting the fact that our power of action
is limited.

Assume that the initial position and velocity of the object are, respectively, 2(0) = xg and
#(0) = yo. The problem consists in driving the point mass to the equilibrium position x =1
in minimal time controlling the external force u(t) that is applied to this object, and taking

into account the constraint |u(t)| < 1. The function w is the control.

Problem 1.3.17. Given the initial conditions z(0) = x¢ and #(0) = yo, the goal is to find
a function w(t) which allows the movement of the point mass to its equilibrium position in

minimal time.

Mathematic modeling

To simplify the presentation, we will suppose that m = 1kg, k; = 1 N.m~! and [ = 0m (we
pass to [ = 0 by translation). The equation of motion (L.4]) is equivalent to the controlled

differential system

(1.5)
g(t) = —(t) — kow(t)® + u(t)
with 2(0) = xg and £(0) = yo.
Writing (LL3)) in matricial notation we have
X(t) = AX(t) + f(X(t)) + Bu(t), X(0) = Xo, (1.6)

where



In this section we are considering linear control systems, therefore we fixe ko = 0, and
we do not take into account the nonlinear conservative effects (in Section [[.4] we consider
nonlinear control systems and take ko # 0). If ko = 0 then f(X) = 0 and the control system
(LE) has the form of (LI (linear control system). We wish to answer the two following

questions.

1. Is there always, for any initial condition x(0) = z¢ and #(0) = yo, an horizontal exterior
force (a control) that allows to move, in finite time ¢y, the point mass to its equilibrium

position x(ty) = 0 and &(ty) = 07

2. If the answer to the first question is affirmative, which is the force (which is the control)

that minimizes the transfer time of the point mass to its equilibrium position?

System controllability

Our system writes in the form
X = AX + Bu
X(0) = Xy

0 1 0
withAz( ) 0>andB:<1>.Wehavethen

1
rank (B, AB) = rank ( (i 0 ) =2

and the eigenvalues of A have zero real part. Therefore, from Theorem [[L3.11] the system is
controllable, that is, there exist controls u satisfying the constraint |u(t)| < 1 such that the
associated trajectories steer Xy to 0. We answered affirmatively to the first question.

This answer corresponds to the physical interpretation of the problem. In fact, if we do not
apply an exterior force, that is, if u = 0 then the motion equation is & + z = 0 and the point
mass will continues to oscillate, never stopping, in a finite time, at its equilibrium position.
On the other hand, when exterior forces are applied, we tend to dampen the oscillations. The

control theory predicts that we can stop the object in a finite time.

Computation of the optimal control

We know that there exist controls that allow to steer the system from Xy to 0 in finite time.
Now we want to compute, concretely, which one of these controls does it in minimal time. To
do so we apply the Theorem [1.3.15] and obtain

u(t) = sign ({p(t), B)) ,
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p1(t) .
() > Then, u(t) = sign (p2(t))

and p1 = pa, po = —p1, that is, fo + pa = 0. Thus po(t) = Acost + psint. Therefore, the

where p(t) € IR? is the solution of p = —pA. Let p(t) = (

optimal control is piecewise constant in intervals of size 7w and take alternately the values +1.

o If u = —1, we get the differential system

T=1y,
Y (L.7)
y=—-x—1.
o If u=+1, we get
T=1y,
Y (1.8)
y=—-xc+1.

The optimal trajectory, steering Xy to 0, consists in concatenated pieces of solutions of (.7
and (L8). The solutions of (L) and (L8] are obtained easily: from equation (7)) we have
(x +1)2 + y? = const = R? and we conclude that the solution curves of (LT) are circles
centered on x = —1 and y = 0 of period 27 (in fact, x(¢) = —1 + Rcost and y(t) = Rsint);
as solutions of (L8 we get z(t) = 1+ Rcost and y(t) = Rsint, i.e., the solutions of (L8] are
circles centered in z = 1 and y = 0 of period 2.

The optimal trajectory that steers X to 0 follows alternately an arc of a circle centered in
x = —1and y = 0 and an arc of a circle centered in z = 1 and y = 0. The detailed study of the
optimal trajectory and its numerical implementation, for every X, can be founded in [121].

See also Section where the optimal control problem is solved.

1.4 Nonlinear optimal control

We now present some techniques to analyze nonlinear optimal control problems (the proofs
of the presented results can be found, for example, in [62][121]). In particular, we enunciate
the Pontryagin maximum principle in a more general form than the one we have seen in

Section [[L3] The nonlinear example of the spring will be one of the application examples.

1.4.1 Statement of the problem

From a general point of view, the problem should be presented in a manifold M, but our point
of view will be local and we work on an open V of IR" small enough. The general optimal

control problem is the following. Consider the control system

@(t) = f(t,2(t),u(t)), x(to) = o, (1.9)
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where f is a mapping of class C! [ from I x V x U into IR, I is an interval of R, V is an
open set of R™, U is an open set of R™, (tg,z¢) € I x V. We suppose that the controls u(-)
belong to a subset of LS (I,IR™).

These hypotheses assure, for every control u(-), the existence and uniqueness of a maximal
solution z,,(-) over an interval J C I, of the Cauchy problem (L9) (see e.g. [12I, Chapter 11]).

In what follows we will consider, without loss of generality, {o = 0.

Definition 1.4.1. Let ¢ty > 0, ty € I. A control function u(-) € L*([0,t7],IR™) is said
admissible on [0,tf] if the trajectory x(-), solution of (L9) associated to u(-), is well defined
on [0,tf]. The set of admissible controls on [0,#] is denoted U;, g, and the set of admissible
controls on [0,#] taking their values in €2 is denoted U, o.

In what follows we will abbreviate the notation for admissible controls taking value in R™
writing Uy, .

Let f9 be a function of class C! over I x V x U, and g a continuous function over V. For
every control u(-) € Uy, we define the cost of the associated trajectory z,(-) over the interval

ty
Cltpu) = [ [t zu(t),u(®)dt + g(ty, zulty)) .
0

Let My and My be two subsets of V. The optimal control problem is to compute the trajec-

tories xy() solutions of
$u(t) = f(t7 xu(t)’ u(t)) )

such that x,,(0) € Mo, z,(tf) € My, and minimizing the cost C(t,u). We say that the optimal
control has free final time if the final time t; is free, otherwise we say that the problem has
fized final time.

1.4.2 End-point mapping

Consider for the system (L9]) the following optimal control problem: given a point x; € R",
find a time ¢; and a control u over [0,t] such that the trajectory z, associated to the control
u, solution of (L)), satisfies

2,(0) =z, wu(ty) =x1.

This leads us to the following definition.

'F.H. Clarke is the author of the so-called Nonsmooth Analysis created in the seventies which allows the
study of more general optimal control problems, where the used functions are not necessarily differentiable
in the classic sense. For a detailed study on Nonsmooth Analysis see, e.g., [30H33] and the references cited
therein.
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Definition 1.4.2. Let t; > 0. The end-point mapping in time t; of the control system (L)
starting in zq is the mapping
By o Uy, — R"
U — Ty (tf) .
In other words, the end-point mapping in time ¢y associes to a control u the final point of
the trajectory associated to the control u (see Figure [[L.13)).
Remark 1.4.3. We also can denote the end-point mapping by E(xo,ts,u) (see, e.g., Section

§L.5).

o

u('? :1:0)
$u(tf7 l‘o)

Figure 1.13: End-point mapping.

A very important issue in the theory of optimal control is the study of the map Ei,,
describing its image, singularities, regularity, etc. The answer to these questions depends,
obviously, on the space U, and on the shape of the system (on the function f). With all the
generality we have the following result (see, e.g., [16,53,106]).

Proposition 1.4.4. Consider the system (L9) where f is C?, p > 1, and let Uy, C L>([0, 2], IR™)

be the domain of E,, that is, the set of controls whose associated trajectory is well defined

over [0,tf]. Then Uy, is an open set of L>([0,ts], IR™), and Ey, is CP in the L> sense.
Moreover the Fréchet differential of Ey, at a point u € Uy, is giwen by the linearized system

at u in the following way. Let, for every t € [0,t¢],

A0 = Lt u) B = 2Lt a(0),u(t)

The linearized control system
yv(t) = A(t)yv(t) + B(t)v(t)
yp(0) =0
is called the linearized system along the trajectory .. The Fréchet differential of Ey, at u is
then the mapping dEy,(u) such that, for every v € L*°([0,ts], R™),
ty

dE, (u) - v =yy(ty) = M(ty) ; M~Y(s)B(s)v(s)ds
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where M is the fundamental matriz of the linearized system, i.e., the matricial solution of
M = AM, M(0) = Id.
The previous result can be improved for control-affine systems (see [106],119]).

Definition 1.4.5. A control-affine system is a system of the form
() = folw(t) + > us(t) filx(1)),
i=1

where f; are vector fields of R™.

Proposition 1.4.6. Consider a smooth control-affine system, and let Uy, be the domain of
Ey,.

the L? sense, and is analytic if the vector field are analytic.

Then Uy, is an open set of L%([0,ts], R™), and the end-point mapping Ey, is smooth in

1.4.3 Accessible set and controllability

Definition 1.4.7. The accessible set in a time ty for the system (L9), denoted by A(zo,ty),
is the set of all extremities in time ¢y of the solutions of the system starting at xg in time

t = 0. In other words, is the image of the end-point mapping in time ;.
Theorem 1.4.8. Consider the control system
&= f(t,z,u), x(0)=uxzp,

where the function f is C* over R'™™ ™ and the controls u belong to the set Ui, 0 of mea-

surable functions taking values in a compact Q C R™. We suppose that

- there exists a positive real b such that the associated trajectory is uniformly bounded by
b over [0,ty], i.e.,
3b>0|Vuel Vtel0,ty] |zu(t)] <D, (1.10)

- for every (t,x), the set of velocity vectors
V(t,z) ={f(t,z,u)|u e Q} (1.11)
1S convew.
Then the set A(zg,t) is compact and varies continuously in t over [0,t5].

Remark 1.4.9. The hypothesis (LI0) is not a consequence of the other hypotheses and is
indispensable. In fact, consider the system & = 22 + u, #(0) = 0, where we suppose that
lu(t)] < 1 and that the final time is t; = 5. Then for every control u constant equal to c,
with 0 < ¢ < 1, the trajectory associated is z.(t) = y/ctan\/ct, therefore is well defined over
[0,¢], but when ¢ tends to 1 then z.(ty) tends to +o00 (see Figure [[14). On the other hand
it is easy to see that in this example the set of admissible controls, taking values in [—1, 1], is

the set of measurable functions such that u(t) € [—1, 1].
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Figure 1.14: Trajectory z.(t) of example in Remark [.4.9, for ¢ € [0, ] and ¢ = 0.5;0.75;0.9.

Remark 1.4.10. Analogously, the convexity hypothesis ([LII)) is necessary (see [62], Exam-
ple 2,pag. 244]).

Definition 1.4.11. The system (I.9)) is said to be controllable (in an arbitrary time) starting
at g if

U Az, T) =R™.

T>0

The system (L9) is said to be controllable in time T if A(xo,T) = R".

Arguments based on the implicit function theorem allow to deduce results on local con-
trollability of the starting system by the study of the controllability of the linearized system
(see, e.g., [62]). For example, we deduce from the controllability theorem in the linear case

the following proposition.

Proposition 1.4.12. Consider the control system (L9) where f(xg,ug) = 0. Let A =
%(l‘oauo) and B = %(mo,uo). If

rank (B|AB|---|A""'B) =n
then the nonlinear system (LL9)) is locally controllable at xy.

In general the controllability problem is difficult. Different approaches are possible. Some
of them make use of Analysis, others Geometry, others Algebra, etc. The controllability
problem is connected, for example, to the question of knowing when a given semi-group acts
transitively. There are also some techniques to prove, in some cases, global controllability.

One of them, an important one, is called enlargement technique (see [53]).
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1.4.4 Singular controls

Definition 1.4.13. Let u be a control defined on [0,%;] such that the associated trajectory
x, starting at £(0) = ¢ is defined on [0,t¢]. We say that a control u (or the trajectory ) is
singulart] over [0,ty] if the Fréchet derivative dF;,(u) of the end-point mapping at the point

u is not surjective. Otherwise we say that u is regular.

Proposition 1.4.14. Let xg and ty be fized. If u is a regular control, then Ei, is an open

map n a neighborhood of u.

In other words, at a point z1 accessible in time ¢ from x by a regular trajectory z(-), the
accessible set A(xo,ts) is locally open, i.e., is a neighborhood of the point x;. In particular
this implies that the system is locally controllable in a neighborhood of the point ;. We also

say controllability along the trajectory x(-). The next proposition follows.

Proposition 1.4.15. Ifu is a reqular control over [0,tf], then the system is locally controllable

along the trajectory associated to that control.

Corollary 1.4.16. Let u be a control defined on [0,t¢] such that the associated trajectory x,
starting at £(0) = xq is defined over [0,tf] and satisfies at time t;

x(tf) S 8A(xo,tf) .
Then the control u is singular over [0,t¢].

Remark 1.4.17. The system can be locally controllable along a singular trajectory. This is the

case of the scalar system @ = u?, where the control u = 0 is singular.

1.4.5 Existence of optimal trajectories

More than a control problem, we consider also an optimization problem: between all the
solutions of the system (L9 steering 0 to z1, find a trajectory that minimizes (or maximizes)
a certain cost function C(tf,u). Such a trajectory, if it exists, is called optimal for that cost.
The existence of optimal trajectories depende on the regularity of the system and of the cost.
For a general existence theorem see, e.g., [53,[62]. It can also happen that an optimal control
does not exist in the class of considered controls, but there exists in a wider space . This
question leads us to an important area: the study of regularity of optimal trajectories. An
important contribution in this area is given in [34L36,123|, where a systematic study of the
Lipschitizian regularity of the minimizers on the linear optimal control is introduced. General
results on the Lipschitizian regularity of minimizing trajectories for nonlinear control systems
can be founded in [117].

%In this chapter the term “singular” is associated to a geometric control theory definition. On the other
hand, please note that, in Chapter 2l“singular control” is associated to control-affine systems when the switching

function vanishes on a nontrivial interval.
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The following theorem applies to general control systems, eventually, with state constraints.

Theorem 1.4.18. Consider the control system

#(t) = f(t,2(t),u(t))

where f is C' from R*™™ into R™, the controls u take values in a compact Q C R™, and

where there exist, eventually, constraints on the state variable
ci(z(t)) <0,...,c(x(t) <0 VOt <ty=t(u),

where c1,...,¢. are continuous functions in IR". Let My and My be two compacts subsets of
R" such that My is accessible from My. Let U be the set of controls taking values in § steering
My to My. Let fO be a C' function over R ™ and g a continuous function over IR"™. We

consider the cost
t(u)

C(u) = ; FOt, (), u(t))dt + g(t(u), z(t(w))),
where t(u) > 0 is such that x(t(u)) € My. We suppose that

- there exists a positive real b such that every trajectory associated to a control u € Uy, 1is

uniformly bounded by b over [0,t(u)], i.e.

36> 0|Vu e U Ve [0,tw)] |za(®)] <b,

- for every (t,x) € R'™ the augmented set of velocity vectors
Vit,x) = {(fO(t,z,u), f(t,2,u)) |u € Q}
1S COnver.

Then there exists an optimal control u over [0,t(u)] such that the associated trajectory steers

My to My in time t(u) with minimal cost.

For an optimal control problem with fixed final time we impose t(u) = t¢ (in particular

we suppose that the target M; is accessible from My in time ).

Remark 1.4.19. A more general result can be stated where the sets My and M; depend on the

time ¢, as well as the domain of the control constraints (see [62]).
For control-affine systems the following result holds.

Proposition 1.4.20. Consider the affine system in R™
m
&= folx) + Y uifi(x), x(0) ==, x(ts) = =1,
i=1
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with the cost

m

Gyl = [ 3oy
=1

where ty > 0 is fived and the class Uy, of admissible controls is the subset of L2([0,ts], R™)
such that

1. Yuel x, is well defined over [0,t5];
2. 3By, [Vu el Vte[0,ty] [|zu]l < By,

If 21 1s accessible from xo in time ty, then there exist an optimal control steering xqg to 1.

1.4.6 Pontryagin maximum principle

Given an optimal control problem for which existence and regularity conditions are satisfied
for the optimal solution, how to find the optimal processes? The answer to this question is
given by the well known Pontryagin Mazimum Principle. For a detailed study on necessary
optimality conditions we suggest [30L105]12T].

We start by showing that a singular trajectory can be parametrized as a projection of a
solution of an hamiltonian system subject to a constraint equation. Consider the Hamiltonian
for the control system (L.9):

H:R"xR"{0} x R" - R
(@,p,u) = H(z,p,u) = (p, f(z,u))
where (, ) denotes the usual inner product of R".

Proposition 1.4.21. Let u be a singular control and x o singular trajectory associated to this
control on [0,t¢]. Then, there exists a continuous row vector p : [0,tf] — IR"\{0} such that

the following equations are satisfied for almost every t € [0,tf]:

() = S @ (0).p(0), (1)
5(0) = ~ 90 (a(t) p(e), (1),
%—Z(m(t),p(t),u(t)) =0 (constraint equation)

where H is the Hamiltonian of the system.
Proof. By Definition [L4T3] the pair (z,u) is singular over [0,;] if dE;, (u) is not surjective.
Therefore, there exists a row vector p € R™\{0} such that

tr

Vo(-) € L=([0,t5]) (p,dEi;(u)-v) =p ; M(t;)M ™" (s)B(s)v(s)ds = 0.
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Thus,

pM(t;)M~1(s)B(s) = 0 for almost every point of [0,,].
Let p(t) = pM (t;)M~L(t), t € [0,t7]. We have that p is a row vector of R™\{0} and p(ts) = p.
Differentiating, we get

5(0) = —p(0) 92 (a(0), ul)).

Introducing the Hamiltonian H (z,p,u) = (p, f(x,u)) we conclude that

w(t) = fx(t), u(t)) = %—Iz(w(t),p(t),U(t))

and
5(0) = ~pl) 92 (a(0). u(t) = ~ T (a(0).plt) u(t)
The constraint equation comes from p(t)B(t) = 0 because B(t) = %(:E(t), u(t)). O

Definition 1.4.22. The row vector p : [0,%5] — R™\{0} of Proposition.Z.21lis called adjoint
vector of the system (L3)).

Weak maximum principle

Counsider the Lagrange problem given by the control system

x(t) = f(t7x(t)7u(t))7 (1'12)

where the controls u(-) € Uy, are defined in [0,%;] and take values in 3 = R™ (there are no
restrictions on the values of the control). The associated trajectories must satisfy z(0) =

and z(tf) = x1. The problem consist in minimizing a cost of the form

cw= | "0 2(t), u(t))dt (1.13)

where 7 is fixed.
Associate to the system ([LI2]) the following augmented system

w(t) = f(t x(t), u(t))

(1.14)
i0(t) = fOt,z(t),u(t))

and use the notation # = (z,2°) and f = (f, f°). The problem is reduced to finding a trajec-
tory solution of ([LI4) with g = (z0,0) and &1 = (x1,2%(tf)) such that the last coordinate
2%(ts) is minimized.

The set of accessible states starting at Zg for the system (II4) is A(Z, ty) = UuZ(ts, To,u).

The following Lemma is crucial.

Lemma 1.4.23. If the control u associated to the control system (LI2)) is optimal for the cost
(LI3), then it is singular on [0,t;] for the augmented system (L14).
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Proof. Let u be a control and Z the associated trajectory, solution of the augmented system
(LI4) starting at o = (x0,0). If u is optimal for the criteria (II3), then the point Z(ty)
belongs to the boundary of the set A(&o, tr). In fact, if that was not the case then there would
exist a neighborhood of the point #(t;) = (w1,2°(ts)) in A(Zo,ts) containing a point §(ts)
solution of system ([I4) and such that y°(tf) < 2°(¢s), which contradicts the optimality of
the control u (see Figure [[LI5)). Therefore, by Proposition [[L4.14] the control @ is singular for
the augmented system (L.I4). O

A(io,tf)

Figure 1.15: If u is optimal, then #(t;) € QA (%o, ty).

Under the assumptions of the previous lemma, following Proposition [LZ2T], there exists a

map p : [0,¢¢] — R"™\{0} such that (Z,},1) is solution of the Hamiltonian system

. OH ,, _ . _ . OH = _ .
l‘(t) - a—ﬁ(tv$(t)’p(t)’u(t)) ) p(t) - —%(t,x(t),p(t),u(t)) )
OH , _ .
%(t I‘(t),p(t), u(t)) =0
where H(t,Z,p,u) = (p, f(t, %, u)).

Writing p = (p,p?) € (R™ x R)\{0}, where p" is called the dual variable of the cost, we
get

(pp°)=—<pp°)< 7 0>.
) ) ai 0

In particular, p°(t) = 0, that is, p° is constant in [0,¢¢]. As the vector p(t) is defined up to
a multiplicative scalar, we chose p® < 0. On the other hand, H = (p, f(t,z,u)) = pf + p°f,
thus

OH of  ,0f°
Ju VTP TP

We get the following result.
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Theorem 1.4.24 (Weak maximum principle — Hestenes’s theorem [49]). If the control u
associated to the system (LI2) is optimal for the cost (LI3), then there exists a map p(-)
absolutely continuous on [0,tf], taking values in IR", called adjoint vector, and a real number
p? <0, such that the couple (p(-),p%) is nontrivial, and the following equations are satisfied
for almost every t € [0,ty]

OH

(0) = S 1,20, 501 u(0)
5(6) =~ 2020, p(0). 5, ), (1.15)

o by (0), (0, 8, (0) =0,

where H is the Hamiltonian

H(t7$’p’p0’u) = <p7 f(t7$’u)> +p0f0(t7$’u)
associated to the system (LI2) and to the cost (LI3]).

The Theorem has its origin in the works of Graves of 1933, being firstly obtained
by Hestenes in 1950 [49]. It is a particular case of Pontryagin Maximum Principle where no

restrictions on the controls are considered (i.e., u(t) € Q with Q = R™).

Pontryagin maximum principle (strong version of Theorem [1.4.24))

The Pontryagin maximum principle is a strong version of Theorem where restrictions
on the values of the controls are allowed (2 C IR™ can be a closed set). The existence of such
restrictions are imposed by applications and change completely the nature of the solutions.
The Pontryagin maximum principle is much more difficult to prove than Hestenes’s Theorem
(see, e.g., [62,96]).

The general formulation is the following.

Theorem 1.4.25 (Pontryagin maximum principle). Consider the control system in IR"

z(t) = f(t,z(t),u(t)), (1.16)

where f : IR x R™ x R™ — IR™ is of class C' and the controls are bounded mensurable
mappings defined on the interval [0,t¢(u)] of IRT and taking values in Q@ C IR™. Let M
and My be two subsets of IR". We denote by Uy,).q the set of admissible controls u whose
associated trajectories steer an initial point of My to a final point of My in time t(u) < tf(u).

For such a control we define the cost of a control u on [0,t] by
¢
Cw = [ Fsva(s).us)ds + glt.x(t).
0
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where fO: IR x R" x R™ — IR and g : IR x IR" — IR are of class C', and x is the trajectory
solution of (LI6l) associated to the control u.

We consider the following optimal control problem: determine a trajectory steering My to
My and minimizing the cost. The final time ty can be fived or not.

If the control u(-) € Uy, o associated to the trajectory x(-) is optimal on [0,ty], then there
exists a mapping p(-) : [0,ty] — IR" absolutely continuous called adjoint vector, and a real
number p° < 0, such that the pair (p(-),p%) is nontrivial, and such that, for almost every
t € [0,ty],

B(0) = S 0,0, p(0). 8, ul0). -
5(0) =~ (t,2(0),pl0), 1, ()

where H(t,z,p,p°,u) = (p, f(t,z,u)) + p*fO(t,z,u) is the Hamiltonian of the system and we
have the mazimization condition almost everywhere on [0,ty]
H(t,2(t), p(t), p°, ult)) = max H(t, z(t), p(t), p°, w) . (1.18)
If the final time to steer the target My is not fized, we have the condition
0 099
max H(ty,x(tp), p(ty), p" w) = —p - (t7, z(ty)) (1.19)
weN ot

at the final time t;.
If My and M,y (or just one of these two sets) are manifolds in IR" having tangent spaces
at x(0) € My and x(tf) € My, then the adjoint vector can be constructed in such a way that

the transversality conditions hold at both extremities (or at just one of them):
p(0) LT 50y Mo (1.20)

and
099
pty) =9 gt (tg) LTy M - (1.21)
Remark 1.4.26. Under the conditions of Theorem [[LZ.25], we have moreover that

OH

%H(tx(t),p(t),po,U(t)) = 57 (6(®),p(), 7", u(t))

for almost every t € [0,¢f]. In particular if the augmented system is autonomous, i.e., if f and

f° do not depend on ¢, then H does not depend on ¢, and we have

max H(z(t),p(t),p’, w) = constant ¥Vt € [0,tf].
we

Note that this equality is then true everywhere on [0,¢f] (in fact this function of ¢ is Lips-

chitzian).
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Remark 1.4.27. The convention p® < 0 lead us to the mazimum principle. The convention
p’ > 0 will lead to the minimum principle, i.e., the condition (LI8) will be a minimum
condition.

Remark 1.4.28. In the case where 2 = IR™, i.e., when there are no constraints on the control,

the maximization condition (LI8]) becomes %—’Z = 0, and we find the weak maximum principle

(Theorem [[.4.2]).

Definition 1.4.29. An extremal for the optimal control problem is a 4-tuple (x(-), p(+), p%, u(-))
solution of the equations (ILI7) and (LI8). If py = 0, we say that the extremal is abnormal,

and if p® # 0 the extremal is said to be normal.

The designation abnormal is historical. We know nowadays that abnormal minimizers are
usually “normal” in many optimization problems. For a study on abnormal extremals see,
e.g., [7].

Remark 1.4.30. When © = IR™, i.e., when there is no constraint on the control, then the
trajectory z(-) associated to the control u(-) is a singular trajectory of the system (.I6]) if
and only if it is the projection of an abnormal extremal (z(-),p(+),0,u(-)).

This results on the Hamiltonian characterization of singular trajectories (cf. Proposition
[LZ21). Note that once p° = 0, the trajectories do not depend on the cost. They are intrinsic
to the system. The fact that they can be optimal can be explained in the following way: in
general, a singular trajectory has a rigidity property, i.e., it’s the only trajectory joining two
extremities, and therefore in particular it is optimal, independently of the chosen optimization
criteria.

This relation between abnormal extremals and singular trajectories, for 2 = R™, shows

very well the difficulty of proving the existence of such trajectories.

Definition 1.4.31. The conditions ([.20) and (L2I)) are called transversality conditions on

the adjoint vector. The condition (LI19) is called transversality condition on the Hamiltonian.

Remark 1.4.32. The minimal time problem corresponds to the case where f =1 and g =0,

or f=0and g(t,z) = t. In these two cases the transversality conditions are the same.

Remark 1.4.33. The transversality condition over the Hamiltonian (II9]) is valid only if the
final time ¢ to attain the target is not fixed. In this case, if the function g does not depend on

time ¢ (which is true, for example, for the Lagrange problem), then condition (.I9]) becomes

maXH(tf’ l‘(tf),p(tf),po, w) =0,
we

or even, if u is continuous at time ¢y,
H(tg,x(ty),p(ts),p’,w) = 0.

In other words, the Hamiltonian vanishes at the final time.
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Moreover, if the augmented system is autonomous, i.e., if f and f° do not depend on t,
then from Remark [[L4.26] we have

max H (x(t), p(t),p’,w) = 0 ¥Vt € [0,t/]

along any extremal.

The Pontryagin maximum principle is a deep and important result in contemporary Math-
ematics, with many applications in Physics, Biology, Management, Economy, Social Sciences,
Enginery, etc. (see, e.g., [21]). There are other more general versions of the maximum principle

for non smooth or hybrid dynamics (see for example [30,111L112] and the references therein).

1.4.7 Example: optimal control of an harmonic oscillator (nonlinear case)

Consider again the example (nonlinear) of the spring, modeled by the control system

() = y(t),
(1) = —2(t) — 22(t)* + u(t),

where we admit as controls every function u(-) piecewise continuous such that |u(t)] < 1. The
aim is to move the spring from any initial position (xg,yo = Zo) to its equilibrium position
(0,0) in minimal time t,.
Let us apply the Pontryagin maximum principle to this problem. The Hamiltonian is given
by
H(x,Y, pr, Py, P° ) = oy + py(—x — 22° + ) + p°.
If (:E,y,pm,py,po,u) is an extremal, then

i OH )
Pz = T or :py(l + 6352) and p, = _8—y = —DPx-

Notice that since the adjoint vector (ps, py, p°) should be nontrivial, py can not vanish on an
interval (otherwise we would also have p, = —p, = 0 and, by the vanishing of the Hamiltonian,

we would have also p° = 0). On the other hand, the maximization condition give us

py(t)u(t) = llgul‘gpy(t)w-

In particular, the optimal controls are successively equal to =1, that is, the bang-bang principle
holds (see, e.g., [62,[65]). Concretely, we can say that

By(t) +py()(1 + 62(t)%) =0

u(t) = sign(py(t)) where p, is the solution of
py(te) = cosa, py(ty) = —sina,

a € [0,27].

31



Considering the time inversion (¢t — —t) our problem is equivalent to the minimal time

problem for the system

a(t) = —y(t)

y(t) = x(t) + 22(t)* — sign(py(t))
py(t) = pe(1)

Pz(t) = —py (£)(1 + 62(2)?).

Given the initial conditions xg and &y (state and initial velocity of the mass), the problem
is easily solved. In [I2I] a resolution of the system is done using the Computer Algebra
System (CAS) Maple. For the use of Maple on the calculus of variations and optimal control

see, e.g., [47,164].

1.4.8 Example: Newton’s problem of minimal resistance

Newton’s problem of minimal resistance is one of the first problems of optimal control: it was
proposed, and its solution given, by Isaac Newton in his masterful Principia Mathematica, in
1686. The problem consists of determining, in dimension three, the shape of an axis-symmetric
body, with assigned radius and height, which offers minimum resistance when it is moving
in a resistant medium. The problem has a very rich history and is well documented in the
literature (see e.g. [101]).

Newton has indicated in the Mathematical principles of natural philosophy the correct
solution to his problem (see Figure [[L10]). He has not explained, however: how such solution
can be obtained; how the problem is formulated in the language of mathematics. This has
been the work of many mathematicians since Newton’s time (see e.g. [22/[TT5/[118]). Extensions
of Newton’s problem is a topic of current intensive research, with many questions remaining
open challenging problems. Recent results, obtained by relaxing Newton’s hypotheses, include:
non-symmetric bodies [23]; one-collision non-convex bodies [37]; collisions with friction [51];
multiple collisions allowed [92]; temperature noise of particles [93,04]. Here we are interested

in the classical problem, under the classical hypotheses considered by Newton.

Newton’s problem of minimal resistance in dimension three

Newton’s aerodynamical problem, in dimension three, is a classic problem (see e.g. [11L[44/57]).
It consists in joining two given points (0,0) and (7', h) of the plane by a curve’s arc that, while
turning around a given axis, generate the body of revolution offering the least resistance when
moving in a fluid in the direction of the axis.

In the classical three dimensional Newton’s problem of minimal aerodynamical resistance,
the resistance force is given by R [&(-)] fo T +x TR0 dt. Minimization of this functional is a

typical problem of the calculus of variations. Most part of the old literature wrongly assume the
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Figure 1.16: Newton’s solid.

classical Newton’s problem to be “one of the first applications of the calculus of variations”. The
truth, as Legendre first noticed in 1788 (see [12]), is that some restrictions on the derivatives
of admissible trajectories must be imposed: #(t) > 0, t € [0,7]. This restriction is crucial,
because without it there exists no solution, and the problem suffers from Perron’s paradox [125],
§10]: since the a priori assumption that a solution exists is not fulfilled, does not make any
sense to try to find it by applying necessary optimality conditions. It turns out that, with the
necessary restriction, the problem is better considered as an optimal control one (see [116] p. 67|

and [I18]). Correct formulation of Newton’s problem of minimal resistance in dimension three

is (cf. e.g. [44)115]):

T
R [u(") :/0 b gt min,
(1.22)

where we minimize the resistance R in the class of continuous functions z : [0,7] — R with
piecewise continuous derivative.

According to Pontryagin Maximum Principle (see Theorem [[L425]) if (x(-), u(+)) is a mini-
mizer of problem (L22), then there exists a non-zero pair (p%, p(-)), where p® < 0 is a constant
and p(-) is an absolutely continuous function on [0, 7], such that the following conditions are

satisfied for almost all ¢ in [0, T:

5(0) = =5 (ult), 2, p(1)) = 0 (1.23)
H (", p(t), u(t)) = maxH (p", p(t), w) (1.24)

where the Hamiltonian H is defined by

H(p°,p,u) = pu+p° (1.25)

1+u2’
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The adjoint equation ([L23]) asserts that p(t) = ¢, with ¢ a constant. From the maximization
condition (L24) it follows that p® # 0 (there are no abnormal extremals for problem ([L22)).

Proposition 1.4.34. All the Pontryagin extremals (z(-),p°,p(-), u(-)) of problem ([[22) are

normal extremals (p° # 0), with p(-) a negative constant: p(t) = -\, A >0, t € [0, 7.

Proof. The Hamiltonian H for problem (.22, H (po,p, u) = pu + p° T +tu2, does not depend
on . Therefore, by (L.23) we conclude that

5(0) = 2L (10,0, u(t) = 0,

that is, p(t) = ¢, ¢ a constant, for all t € [0,T]. If ¢ = 0, then p” < 0 (because one can not
have both p° and p zero) and the maximization condition (I.24]) simplifies to

t t

0 0

— = . 1.26
Iy ?J%{purw?} (1.26)
From ([.26) we conclude that the maximum is not achieved (w — oo). Therefore ¢ # 0.

Similarly, for ¢ > 0 the maximum

t
cu(t) +p°

t
_ = 0
P 1+ u?(t) Iful%{cmrp 1+w2}

does not exist, and we conclude that ¢ < 0. We can fix p(t) = —\, with A € R". It remains

to prove that p® # 0. If we assume that p” = 0, then the maximization condition reads
—u(t) = max{— w}, Ac€RT, (1.27)
w>0

and it follows u(t) = 0 and x(t) = ¢, c2 a constant (&(t) = w(t)). This is not possible,
given the boundary conditions z(0) = 0 and z(T) = h with A > 0. Therefore p # 0 and we

conclude that there exists no abnormal Pontryagin extremals. O

Remark 1.4.35. If (z(-),p% p(-),u()) is an extremal, then (z(-),vp%,vp(-),u()) is also a Pon-

tryagin extremal, for all v > 0. Therefore one can fix, without loss of generality, p° = —1.

From Proposition [[L4.34] and Remark [L4.35] the Hamiltonian (.25 takes the form

t
H(u) = —du— =g, A>0. (1.28)
For u > 0, if follows from the maximization condition, H (¢, u(t)) = max,so {—)\w ~ T }
that OH 2tu(t) tu(t) A
u u
- ut) =06 A+ —— e =06 —— T =3
5, (Lult)) * (1 + u(t))? (I+u(t)? 27
that is,
% = ith g a strictly positive constant (1.29)
(1+u2(t))2—q7 with g a strictly positive constant. '
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The conservation law (.29) is known as Newton’s differential equation.

It is not easy to prove the existence of a solution for problem ([.22)) with classical argu-
ments. We will use a different approach. We will show, following [118], that for problem (L.22)
the Pontryagin extremals are absolute minimizers. This means that to solve problem (I.22])

it is enough to identify its Pontryagin extremals.
Theorem 1.4.36. Pontryagin extremals for problem (L22)) are absolute minimizers.

Proof. Let 4(-) be a Pontryagin extremal control for problem (L[22]). We want to prove that

T t T t
- dt> —at
/0 1+ u2(t) —/0 1+ 42(t)

for any admissible control u(-). Given (L28]), we conclude from the maximization condition

(L24) that

~

t
1+a2(t) = 14 u?(t)
) defined in [0, T'] satisfying u(t) > 0. Having in mind
u(-)) of (L22)) satisty

T T
/ u(t)dt:/ B(0)dt = 2(T) — 2(0) = h,
0 0

we only need to integrate (I.30) to conclude that 4(-) is an absolute control minimizer:

/T<A“) 1+;@Qdﬂ>/T<A“) 1+Z@th
@A/ dt+/ dt<)\/ dt+/0 %uz(t)dt
<=>)\h+/0 %u()dt<)\h+/o mdt

T t T t
@/ 7dt</ b
o L+a2(t)  — Jy 14u(t)?

Rla()] < Rlu(-)],

and 4(-) is a absolute minimizer for Newton’s problem of minimal resistance. O

— Na(t) — > —Au(t) — (1.30)

+
for all piecewise continuous functions w(-

that all the admissible processes (z(-),

We conclude,

Theorem 1.4.37 (Solution of Newton’s problem of minimal resistance). The solution Z(-)
for Newton’s problem of minimal resistance (L22]) is given by (t) = 0 for 0 < t < £ and,
when & <t < T, it is given in the parametric form by

t(u) =3 (3 +2u+u?),
(1.31)
z(u) =5 (—lnu+u?+ 3t - 22

where the constant A is defined by the boundary condition x(T) = h and & = 2.
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Proof. Let Z(-) be the solution of Newton’s problem of minimal resistance (L22)).

The solution, Z(-), is given by two different conditions: first is a line segment with start
point at the origin of the frame of reference tOx and end point at the point (£,0) in the
positive semi-axis tt; after the point (£,0), Newton’s solution follows the so-called Newton’s
curve.

Let us study in detail each one of the parts of the solution of Newton’s problem.

As we have observed, in Newton’s problem ([.22) the controls take values in a closed
interval of IR, thus two cases must be taken in consideration: v = 0 and u > 0.

When u = 0 the solution is given by z(t) = 0: if u(t) = 0 then, as u(t) = &(t), we have that
&(t) = 0, therefore z(t) = ¢, with ¢ a real constant; from the boundary condition x(0) = 0 we
conclude that ¢ = 0. The absolute minimizer (cf. Theorem [[L4.30]) starts with the line segment
z(t) =0, with ¢t € [0,¢] and 0 < £ < T (after some point (£,0), u > 0 since z(T') = h > 0).

On the other hand, when u > 0, we can define in a parametric form the solution of
Newton’s problem from Newton’s differential equation (.29) (which derives from Pontryagin
maximization condition).

From equation (L.29) we can write ¢ as a function of the parameter u, that is,

tu A A1
 —laout= N1+l et=2( =42 2.
eI 5 & 2u 1+v) & 5 (u—i- u+u

We define in a parametric form ¢(-) by

A1

To define in a parametric form z(-), recall the chain rule

d dz dt dt
— = g

@x(t(u)) = Jdu T’

since 92 = y. Therefore, z(u) = fuj—idu. We have,

dt
dt A 1
- - 2 9 2
du(u) 2( u2+ —|—3u> ,

thus,

1
z(u) = / U <—? + 2+ 3u2> du = % <—1nu+u2 + zu4> +m, (1.32)

where m is a constant.
To compute the constant m on the previous equation, we must compute £. At (£,0), by
continuity of #(-), both branches coincide.

Let 4(t) be the minimizing control of Newton’s problem. Then,
H(&,0) = H (& u()) - (1.33)
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By definition of the Hamiltonian for Newton’s problem of minimal resistance, we have

k0 __& AE) = —Ni(E) - &
H(E0) = A0~ =255 = =€ and HEa(6) = —X(0) ~ 2
Therefore, from (L33]), we have
H(E0) = H () & € = Xi(6) + oy (134)
On the other hand, %(§) must satisfy Newton’s differential equation (.29)), thus
IO .
(1+ (@(©)?)
Let us solve equation (L34]) in order to compute the constant A,
= () E e nag e HELEEOR)
= wé) e ———— = \u() & =\
1+ (a(8))? 1+ (a(6))? 1+ (@(¢))?
N 2 N
) SRR T I
1+ (a(8)) 1+ (a(¢))
That is, the constant A is given by condition
ga(g
A= . 1.36
1+ (a(¢))? (136
Replacing (L36)) into (L33]) we get

(1+@@r) 2(1+@e)?)

as i(z) > 0, then 42(¢) = 1 = a(¢) = 1.

As Newton stated in his Principia, “the tangent to the graphic at the break point is equal
to 17. That is, say that at the break point, namely, at the point (£,0), the tangent is 1, is
equivalent to say that 4(§) =1 (tana =1<@(§) =1 < a(§) =1).

Inserting @(§) = 1 into equation (L35]) we have OT%QTZ = %, that is, £ = 2.

We are in condition to determine the constant m of equation (L.32]). This is possible if we
take into account that at the point (§,0), 4(§) =1 and z (a(£)) = 0. Then,

A A
x(&({))zO@x(l):O©§(—lnl+1+%>+m:0<:>%:—m,

that is, m = —%.
Finally, we can conclude that in the case u > 0, the solution of Newton’s problem of
minimal resistance is given in a parametric form by equations (I.31]), as we wanted to prove.

O
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The obtained curve from (L31]) is called Newton’s curve.

Is important to remark the reason why Newton’s problem solution starts with z(¢) = 0 for
t €1]0,¢], 0 <& =2\, and for x € [£,T] by (L3I). In fact, if Newton’s problem solution was
given by equations (IL3T]) for every ¢ € [0,7] the boundary condition z(0) = 0 would not be
satisfied.

Let us now see how we can obtain the graphic representation of Newton’s problem solution,
given a radius and an height.

The first part of the solution is given by z(t) = 0 for every t € [0,£], with £ = 2\, and its
graphic representation is easily obtained.

With respect to the second part, ¢ € [£,T], in order to represent graphically Newton’s
curve the value of A, the break point (£,0) and variation interval of the parameter u must be
determined for a radius and an height previously given. In practice, when we compute the
value of the constant A the point (£,0) is automatically determined, because £ = 2.

The variation interval of the parameter u is given by the inequalities
A1l 3
E<t(u)<T <:>£§§ —4+2u+u ) <T,
U
that is, as & = 2\,

A< <1+2u+u3> <T.
2 \u

From inequality 2\ < % (% + 2u + u3), we observe that the minimal value taken by the
parameter u is 1, independently from the value of the radius and the height of the solid, which,
once more, leads us to Newton’s statement that the tangent to the graphic at the break point
15 equal to 1. The maximal value taken by the parameter u can be found simultaneously with
the constant A solving the system

t(u) =T T =% (2 +2u+u?
=
r(u)=h h=3%(—lnu+u?+3ut) -2
since the constant A is computed using the boundary condition z(7") = h.

The previous system is easily solved by Maple (see, e.g., [L01]), as well as the graphical
representation of Newton’s problem of minimal resistance. In Figure [[.I7 the graphics (ob-
tained with Maple) of Newton’s problem solution are given for a fixed radius 7' = 1 and an
height h=0.5, h=1, h =2, h =5.

Newton’s problem of minimal resistance in dimension two

At first glance, one suspects that the two dimensional case should be well known, in [102]

it is shown that the two dimensional problem is more rich than the classical one being, in
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Figure 1.17: Newton’s problem solution

some sense, more interesting. The novelties are: (i) while in the classical three-dimensional
problem ([.22]) only the restricted case makes sense (without restriction on the monotonicity
of admissible functions the problem doesn’t admit a local minimum), in dimension two the
unrestricted problem is also well-posed when the ratio height versus radius of base is greater
than a given quantity; (ii) while in three dimensions the (restricted) problem has a unique
solution, in the restricted two-dimensional problem the minimizer is not always unique —
when the height of the body is less or equal than its base radius, there exists infinitely many
minimizing functions.

The formulation of Newton’s problem of minimal resistance in dimension two is given by

(see [118]):

Rlu

—~

T 1
M= [ — at '
)] /0 Tru@2® M

z(t) =u(t), wu(t)e,
z(0)=0, z(T)=h, h>0.

(1.37)

We consider two cases: (i) unrestricted problem, where no restriction on the admissible tra-
jectories z(-) other than the boundary conditions z(0) = 0, z(T") = h is considered (2 = R);
(ii) restricted problem, where the admissible functions must satisfy the restriction @(t) > 0,
t € [0,7] (2 = RY). While for the classical three-dimensional problem only the restricted
problem admits a minimizer, the two-dimensional problem (L.37]) is more rich: the unrestricted
case also admits a minimizer when the given height h of the body is big enough. Also in the
restricted case the two-dimensional problem is more interesting: if 7' > h, then infinitely
many different minimizers are possible, while in the classical three-dimensional problem the

minimizer is always unique.

According to Pontryagin Maximum Principle (see Theorem [L4.25) if (z(-),u(+)) is a mini-
mizer of problem (L37), then there exists a non-zero pair (p®, p(+)), where p® < 0 is a constant

and p(-) is an absolutely continuous function on [0,77], such that the following conditions are
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satisfied for almost all ¢ in [0, T

_90H
Ox

H@",p(t),u(t) = maxH ®°,p(t),w);

where the Hamiltonian H is defined by

p(t) = (u(t),p°,p(t)) =0

H(p",pyu) = putp' =g

Proposition 1.4.38. All the Pontryagin extremals (x(-),p°,p(-), u(-)) of problem (L3T) are
normal extremals (p° # 0), with p(-) a negative constant: p(t) = —\, A >0, t € [0,T).

Theorem 1.4.39. Pontryagin extremals for problem (L3T)) are absolute minimizers.

The proofs of Proposition [L4.38 and Theorem [[.4.39 valid for the two dimensional New-
ton’s problem ([L37) are analogous to the proofs of Proposition [[L4.34] and Theorem [[.4.30]
respectively, valid for the three dimensional Newton’s problem (L22)).

Unrestricted problem (2 = IR) The following standard result of calculus (see e.g. [42])

will be used in the sequel.

Theorem 1.4.40. Let n > 2 and 2 C R be an open set. If f : Q — R is n — 1 times
differentiable on 0 and n times differentiable at some point a € Q where f(k)(a) = 0 for
k=0,....,n—1 and f™(a) # 0, then:

o cither n is even, and f(-) has an extremum at a, that is a mazimum in case ™ (a) < 0

and a minimum in case f(a) > 0;
e orn is odd, and f(-) does not attain a local extremum at a.

From Theorem [[L4.391the problem (L37)) can be reduced to the study of the one-dimensional
maximization problem:
- 1
Iilgé{H(u)—lglgé( —m—)\u , A>0. (1.38)
We are considering now the unrestricted two-dimensional Newton’s problem of minimal

resistance, that is, Q@ = R in (IL37). A necessary (sufficient) condition for u to be a local
maximizer for problem (L38)) is given by H' (u) =0 and H” (u) <0 (H” (u) < 0), where

2
H (1) = ——— —
(14 u?)
2 _
H”(U)Z_QL{%‘
(1+u?)
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From the first order condition (maximization condition (L[24])) it follows that

Lru2@)? 2 (1+2(0)°

u) A _;ﬁL__%, (1.39)

Using the boundary conditions z(0) = 0 and 2(T) = h, we conclude that z(t) = &t (u = £)

is a local candidate for the solution of the unrestricted problem (\ = (ng-fh};)z)' However, by
Theorem [[L440] we conclude that such u is a maximizer only when h > @T. For h < @T

the value u = £ corresponds to a local minimizer of H (u) since H” > 0; for h = @r function
H (u) has neither local maximum nor minimum since H” (@T) =0 and H"” (@T) =

27v3
el

Theorem 1.4.41. If h > @T, then function x(t) = %t is a (local) minimum for the unre-
stricted problem (L37)). For h < @T the problem has no solution.

Remark 1.4.42. The unrestricted problem (L37) does not admit global minimum. Indeed, let

us take, for large values of the parameter a, the control function

: T h
a lfOStéi—{—%

—a if T+L<t<T.

This gives R[u(t)] = H% which vanishes as a — oo, showing that no global solution can exist.

By the symmetry with respect to the xx axis, the solution to the unrestricted two-
dimensional Newton’s problem of minimal resistance with A > @T is a triangle, with value

. TS
for resistance R equal to ToRe -

Restricted problem (2 = R}) We now study problem (L37) with Q = R}. In this case
the optimal control can take values on the boundary of the admissible set of control values €2
(u = 0). If the optimal control u(-) is always taking values in the interior of Q, u(t) > 0V
t € [0,T], then the optimal solution must satisfy (L39) and it corresponds to the one found

for the unrestricted problem:

h
u(t) = T vt € [0,T7], (1.40)
with resistance
T3
= — 1.41
R T2 + h? (1.41)

We show next that this is solution of the restricted problem only for h > T for h < T the
minimum value for the resistance is R =T — %
It is clear, from the boundary conditions z(0) =0, (T') = h, T > 0, h > 0, that u(t) = 0,

vV t € ]0,T], is not a possibility: there must exist at least one non-empty subinterval of [0, 7]
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for which u(t) > 0 (otherwise x(t) would be constant, and it would be not possible to satisfy

simultaneously x(0) = 0 and x(T") = h). The simplest situations are given by

0 if 0<t<g,

u(t) = (1.42)
%ﬁ if €<t<T,
or
h .
hoif 0<t<E€,
u(t) =1 ¢ sr=s (1.43)
0 if £<t<T.
We get (L40) from (L42) taking { = 0; (L40) from (L43) with £ = 7. For (L42) the
(T-&)°

resistance is given by R(§) = £ + EILEE that has a minimum value for € =T — h > 0:
R(T—h)=T-14,

0 if 0<t<T—h,
u(t) = (1.44)
1 if T—h<t<T.

For T'= h (.44) coincides with (L40); for T > h
h T h(T — h)?
T——-|— =— ( ) <0,
2 T2 + h? 2(T? + h?)
and (L44) is better than (L40). Similarly, for (L43) the resistance is given by

53
BGERG

R(&) +T-¢, (1.45)

that has minimum value for £ = h > O:
i <t
u(t) = (1.46)
i <T

R(h) =T — %, which coincides with the value for the resistance obtained with (LZ4). If one

compares directly (LZI) with (L45) one get the conclusion that (I40) is better than (T43)
precisely when 7' < h:

T3 3 h? (T? —T& — h?
2 12 2E s tT=¢) = : (2 252 )2’ (1.47)

T2+ h &+ h (T —€)%2+ h?| (T2 + h?)

and since —h? < T? — T¢ — h? < T? — h?, ([L47) is negative if T < h, that is, for T' < h (L.40)

is better than (L43]). For 7' = h ([46]) coincide with (L40), for 7' > h (L48) is better than

(L40) and as good as (L44).

We now show that for 7' > h it is possible to obtain the resistance value T—% from infinitely

many other ways, but no better (smaller) value than this quantity. Generic situation is given
by

0 i fy <t <foirq, i=0,....n,
(1) = & 2i41 (1.48)

% it §2i+1StS€2i+27 i:07”’7n_17
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wheren e N0 =¢ <6 < <&pp1=T,0=pp < p1 < -+ < pyp = h. We remark that
for the simplest case n = 1 (.48) simplifies to

0 if 0<t<&,
ur(t) = ﬁ if & <t<&,
0 if & <t<T,

which covers all the previously considered situations: for & = 0, & = T we obtain ([.40);
for & =T (L42); and for & = 0 one obtains (.43]). All Pontryagin control extremals of the
restricted problem are of the form (L48)), and by Theorem also the minimizing controls.
The resistance force R,, associated with (L48) is given by

Rn (507 o 7§2n+17N07- .. 7”71)

- = (&2i42 — E2i11)°
= i+1 — &2i) + : : 1.49
=0 (Caivs = 2 Zz:% (Eaiva — E2ig1)” + (ptis1 — i) (1.49)

It is a simple exercise of calculus to see that function (I.49) has three critical points: two of
them not admissible, the third one a minimizer. The first critical point is defined by p; = 0,
1 =20,...,n, which is not admissible given the fact that u, = h > 0. The second critical point
is given by p; — pi—1 = €251 — &2, © = 1,...,n, which is not admissible since p; — p;—1 > 0,
Eoi1 —&9; <0, and p; = pi—1, 1 =1,...,n, is not a possibility given p, = H > pg = 0. The
third critical point is

i — i1 = &2 —&2i-1, t=1,...,n, (1.50)

which is a minimizer for h < T. Thus, all the minimizing controls for the restricted two-

dimensional problem with h < T are of the following form:

’Z,L(t)_ 0 if €2iStS€2i+17 i:07”’7n7 (151)
! 1 if €2i+1StS€2i+27 i:07”’7n_17

n=12...,0=§ <& < - < &pt1 =r. For u,(t) given by (LEI) the resistance (L.49)
reduces to R, =T — %, VneN.

Theorem 1.4.43. The restricted two-dimensional Newton’s problem of minimal resistance

always admits a solution:
o the unique solution associated to control (LAQ), when h > T';
e infinitely many solutions associated to the controls (L5I)), when h < T.

. . . 3 .
In the case h > T the minimum value for the resistance is T2T—+h2’ otherwise T — %
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1.5 Proof of the Pontryagin maximum principle for a general

minimal time problem

In this section, we recall elements of a standard proof of the maximum principle for a gen-
eral minimal time problem using needle-like variations (see e.g. [96]). Some definitions and

properties of this section will be used in Chapter 2

Consider a general control system

@(t) = f(z(t), u(t)), z(0) = zo, (1.52)

where g € R" is fixed, f : R" xR™ — IR" is smooth, the control u is a bounded measurable
function taking its values in a measurable subset 2 of R™.

Consider the set of admissible controls on [0, 7], U s Rm, and the set of admissible controls
on [0,ts] taking their values in Q, Uy, o

The set Uy, gm, endowed with the standard topology of L*°([0,¢],IR™), is open, and the
end-point mapping E(zo,tr,u) = x(ty) is smooth on Uy, gm.

Let 1 € R™. Counsider the optimal control problem (P) of determining a trajectory
solution of (L52) steering x¢ to x; in minimal tlmel In other words, this is the problem
of minimizing ¢y among all admissible controls v € L>([0,tf],Q) satisfying the constraint
E(xo,tf,u) = 1.

For every t > 0, consider the accessible set Aq(xg,t) previously defined as the image of
the mapping E(xo,t,-) : Uy — R", with the agreement Aq(xo,0) = {zo}.

Moreover, define

Aq(xg, < t) U Aq(zo, s

The set Aq(zo, < t) coincides with the image of the mapping E(xo, ) : [0,t] x Uy — R" (see

Figure [ I8]).

Figure 1.18: Accessible set Aq(xg, < t).

3Note that we consider here a problem with fixed extremities, for simplicity of presentation. All what
follows however easily extends to the case of initial and final subsets (see e.g. [62]).
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Let u be a minimal time control on [0,%¢s] for the problem (P), and denote by x(-) the
trajectory solution of ([52]) associated to the control w on [0,t¢]. Then the point x; = x(ty)
belongs to the boundary of Aq(xg, < t¢). This geometric property is at the basis of the proof
of the Pontryagin maximum principle (see Figure [L.19]).

NI

Aq(zo,t) Aq(zo,ty)

Figure 1.19: x1 € 0Aq(xo,1y).

Theorem 1.5.1 (Pontryagin maximum principle). If the trajectory x(-), associated to a control
u € Uy, 0, is optimal on [0,t¢], then there exists a nonpositive real number p° and an absolutely
continuous mapping p(-) on [0,t;], called adjoint vector, satisfying (p(-),p°) # (0,0), such that
there holds

0OH
" op

50 = ~ 900 (a(6), p(0) 1, (1),

(t) ((t), p(1), 0°, u(?)),

almost everywhere on [0,ts], where H(z,p,p°,u) = (p, f(x,u)) + p° is the Hamiltonian, and

H(x(t),p(t),p°, u(t)) = max H(x(t), p(t),p°, w)

holds almost everywhere on [0,ts]. Moreover, maxyeq H (x(t), p(t),p°,w) = 0 for every t €
[07tf]'

We next recall the standard concepts of needle-like variations and of Pontryagin cone which

permit to derive a standard proof of the maximum principle.

1.5.1 Needle-like variations

Let t; € [0,t) and u; € Q. For m; > 0 such that t; + 1 < ty, the needle-like variation
m1 = {t1,m1,u1} of the control u is defined by

v ()=l @ if t € [t1,t1 +m),
ke u(t) otherwise

(see Figure [[.20).
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1o

0 nh T it

Figure 1.20: Needle variation .

The control u,, takes its values in Q. It is not difficult to prove that, if n; > 0 is small
enough, then the control u,, is admissible, i.e., the trajectory z,(:) associated with u,, and
starting from zr, (0) = xg is well defined on [0,t¢]. Moreover, z,(-) converges uniformly to
x(-) on [0,t¢] whenever 7; tends to 0.

Recall that ¢ is a Lebesgue point of the function ¢ — f(z(t),u(t)) on [0,%) whenever

lim 1
h—0 h

t1+h
/t Fla(t),u®)dt = f(x(tr), u(tr)),

and that almost every point of [0,t) is a Lebesgue point.

Definition 1.5.2. Let ¢; be a Lebesgue point on [0,%f), let 7, > 0 be small enough, and wu,,
be a needle-like variation of w, with 71 = {t1,m1,u1}. For every t € [t1,t;], define the variation

vector vg, (t) as the solution on [ti,ts] of the Cauchy problem

bea(1) = 92 (a(t), (t))m, (1), (153)

Uy (t1) = f(2(t1),ur) — f((te), u(ty)).

Lemma 1.5.3 (see e.g. [96]). Let t; be a Lebesque point on [0,ty), let n1 > 0 be small enough,

and ug, be a needle-like variation of u, with my = {t1,m,u1}. Then,

Tr (tf) = x(ts) + mom, (tr) +0(m). (1.54)
Proof. By definition of u,, and z,, we have x,, (t1) = (¢1). Then
ti+m ty
sty =ot) + [ fam @it [ fan(®).ut)at.

t1 t1+m
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By definition of Lebesgue point, we have

t1+m
/t Fm (8), un)dt = my f (), un) + o)

1

and
tf tf t1+m
/ P @u@)dt = [ e (0) u(t))dt - / F e (£), u(t)) dt
t1+m t1 t1
-/ " Py (), ul®))dt — m f (), ult)) +o(m)

since @, (t1) — x(t1) when n — 0. We deduce that

Ty (tr) = (1) + m(f(z(t1),w) — f(@(t1),u(tr))) + t ' f(@r (), u(t))dt + o(m).

On the other hand,
t
wlty) = alt) + [ Fla(),u(t))dt

t1
thus

= U (t1) +—
m 1 (t1) o

From (LL53) we have

r(t) — x(ty) ! / L (P m (6), () — F((8), u(t)))dt

t1

ty 8f

th (9:1:

Uy () = vmy (f1) + (@ (), u(t))vr, (t)dt .

Taking the difference, we easily deduce from Gronwall lemma’s that the quotient W

admits a unique limit when 7, — 0, 77 > 0, and this limit is equal to vy, (t¢). O

Remark 1.5.4. The sign of n; is important. In fact, for n; of an arbitrary sign, if we define

the perturbation m = {t1,m1,u1} by

wp if t€[ty,t1+m] andif nm >0,
Ur, (t) = Quy if t €[ty +n1,t] andif m <0,
u(t) otherwise,

then

2 (t7) = wlty) + Il (Fa(t)ow) — Fla(t) ut) + [ Flam (0),u(t)t.

t1

In particular, the function 1 — @, (tf) is right and left differentiable when 1; = 0, but is not
differentiable at this point.
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Remark 1.5.5. For every a > 0, the variation {t1,an;,u;} generates the variation vector awy, .

It follows that the set of variation vectors at time ¢ is a cone of vertex z(t).

Definition 1.5.6. For every t € (0,tf], the first Pontryagin cone at time ¢, denoted K(t), is
the smallest closed convex cone containing all variation vectors vy, (t) for all Lebesgue points
t1 such that 0 < t; < t.

An immediate iteration leads to the following generalization of Lemma [[.5.3

Lemma 1.5.7. Let t; < ty < --- < t, be Lebesque points of the function t — f(z(t),u(t))
on (0,tf), and uy, ..., u, be points of Q. Let ny,...,n, be small enough positive real numbers.
Consider the variations m; = {t;,n;,u;}, and denote by vy, () the associated variation vectors,

defined as above. Define the variation

T={t1,. .., tp, My Mpy UL, Up )

of the control u on [0,t¢] by

i it <t<t; s .:1)"'>>
uw(t):{ ui of T P (1.55)

u(t) otherwise.

Let 2.(-) be the solution of (I.52) corresponding to the control ur on [0,ts] and such that
z(0) = zo. Then,
P P
walty) = a(ty) + > mvn,(tg) + o Do m). (1.56)
i=1 i=1
The variation formula (L50) shows that every combination with positive coefficients of

variation vectors (taken at distinct Lebesgue points) provides the point z(t) 4+ v, (t), where
p
ve(t) =D mivm, (1), (1.57)
i=1

which belongs, up to the remainder term, to the accessible set Aqg(xo,t) at time ¢ for the
system (L52) starting from the point zp. In this sense, the first Pontryagin cone serves as an

estimate of the accessible set Aq(zo,t).

Since we deal with a minimal time problem, we must rather consider the set Aq(zg, < t),
which leads to introduce also oriented time variations, as follows. Assume first that x(-) is
differentiable at time ¢ fH Let 6 > 0 be small enough; then, with the above notations,

Tty —0) = x(ty) + Y mivw,(tr) — 6f (x(ts), ulty)) + 0(5 +y m)- (1.58)

i=1 i=1

“This holds true e.g. whenever ¢; is a Lebesgue point of the function t — f(2(t),u(t)).
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Definition 1.5.8. The cone K;(ty) is the smallest closed convex cone containing K (t¢) and
the vector —f(x(ty), u(ty)).

See Figure [L2] for the convex cone Kq(t¢).

Remark 1.5.9. If z(-) is not differentiable at time ¢7, then the above construction is slightly
modified, by replacing f(x(ts),u(ty)) with any closure point of the corresponding difference

quotient in an obvious way.

T
2o ty)
Aq(zo,ty)

Figure 1.21: Cone K;(ty)

1.5.2 Conic Implicit Function Theorem

We next provide a conic implicit function theorem, which is at the basis of the proof of the
maximum principle (see e.g. [2] for a proof).

Recall the following definition of differentiability in the sense of Gateaux .

Definition 1.5.10. Let F, F be two locally convex topological vector spaces, f : E — F,
xg € E and h € E. The Gateaux derivative df (zg) - h at xo with the direction h is defined as

df (xo) - h = lim f(zo + tht) — f(zo)

if the limit exists.
If the limit exists for all h € E and it is equal to a linear map g,,(h), then one says that f is

Gateaux differentiable at g and

df (x) - h = guo(h) .-

Lemma 1.5.11. Let C C R™ be a convex subset of R™ with nonempty interior, of vertex 0,
and F : C — IR" be a Lipschitzian mapping such that F(0) =0 and F is differentiable in the
sense of Gateauzr at 0. Assume that dF(0) - Cone(C) = R", where Cone(C) stands for the
(convex) cone generated by elements of C. Then 0 belongs to the interior of F(V N C), for
every neighborhood V' of 0 in IR™.
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1.5.3 Lagrange multipliers and Pontryagin maximum principle

We next restrict the end-point mapping to time and needle-like variations. Let p be a positive
integer. Set
1
R = {(6,m1,...,mp) € RFTH | 5> 0,m >0,...,n, >0}

Let t; < --- < t, be Lebesgue points of the function t — f(z(t), u(t)) on (0,t¢), and u1, ..., u,
be points of Q. Let V be a small neighborhood of 0 in IRP. Define the mapping F' : Vﬂ]R{le —
R"™ by

F(0,m1,...,mp) = zx(ty —0),

where 7 is the variation m = {t1,...,tp,m,..., 0, U1,...,up} and § > 0 is small enough so
that t, < ty —d. If V is small enough, then F' is well defined; moreover this mapping is
clearly Lipschitzian, and F(0) = z(ty). From (L58)), F' is Gateaux differentiable on the conic
neighborhood V N ]R’jrJrl of 0.

If the cone Ki(ty) would coincide with IR"™, then there would exist 6 > 0, an integer p
and variations m; = {t;,m;,u;}, © = 1,...,p, such that F(SRTFI = R"”, and then Lemma [[.5.11]
would imply that the point (¢ ;) would belong to the interior of the accessible set Aq(xo, < t),
which would raise a contradiction.

Therefore the convex cone K (ts) is not equal to R". As a consequence, there exists ¢ €
R™\{0} called Lagrange multiplier such that (1, v(ty)) < 0 (see Figure[.22) for every variation
vector v(ty) € K(ty) and (¢, f(x(ty),u(ty))) > 0 (at least whenever z(-) is differentiable at
time ¢ ¢; otherwise replace f(x(ty), u(ts)) with any closure point of the corresponding difference

quotient).

Aq(zo,t5)

Figure 1.22: (¢, f(x(ty),u(ty))) >0

These inequalities then permit to prove the maximum principle (see [96]), according to
which the trajectory z(-), associated to the optimal control u(+), is the projection of an eztremal
(z(-),p(-),p°, u(-)) (called extremal lift), where p® < 0 and p(-) : [0,¢;] — R" is a nontrivial

absolutely continuous mapping called adjoint vector, such that

B0) = S (al0), 1), (D), 5(0) =~ (w(0). 900, u0),
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almost everywhere on [0,¢7], where H(z,p,u) = (p, f(z,u)) + p° is the Hamiltonian, and
H(x(t),p(t),p°,u(t)) = M(x(t),p(t),p") almost everywhere on [0, ], where M (2(t), p(t),p") =
glggH(x(t),p(t),po,w). Moreover, the function ¢ — M (z(t),p(t),p°) is identically equal to
zero on t € [0,f].

The relation between the Lagrange multiplier v and p(-), p¥ is

¢ =p(ty) and p’=— mac(e), f(x(tg), w)). (1.59)

In particular, the Lagrange multiplier ¢ is unique (up to a multiplicative scalar) if and only
if the trajectory z(-) admits a unique extremal lift (up to a multiplicative scalar).
In the case of a normal extremal, i.e., p° < 0, since the Lagrange multiplier is defined up

to a multiplicative scalar, it is usual to normalize it so that p® = —1.

Remark 1.5.12. The trajectory x(-) has an abnormal extremal lift (z(-),p(-),0,u(-)) on [0,t¢]
if and only if there exists a unit vector ¢» € R™ such that (¢, v) < 0 for every v € K(ts) and
ma532<<1/), f(z(ty),w)) = 0. In that case, one has p(ty) = 1), up to a multiplicative scalar.

we

Definition 1.5.13. The first extended Pontryagin cone K (t) along x(-) is the smallest closed
convex cone containing Ki(t) and f(x(t),u(t)) (at least whenever z(-) is differentiable at
time t; otherwise replace f(x(t),u(t)) with any closure point of the corresponding difference

quotient).

Note that 2(-) does not admit any abnormal extremal lift on [0,¢,] if and only if K (t;) =
R".

The following remark easily follows from the above considerations.

Remark 1.5.14. For the optimal trajectory z(-), the following statements are equivalent:

e The trajectory z(-) has a unique extremal lift (up to a multiplicative scalar); moreover,

the extremal lift is normal.
e Ki(t;) is a half-space and K(t;) = R™.
o K(ty) is a half-space and glgg(lb,f(x(tf),w» > 0.
This remark permits to translate the assumptions of the main result of Chapter 2 (Theo-
rem [25.7]) into geometric considerations.
1.6 Generalized controls

Following Gamkrelidze arguments in [46], we can expand the class of admissible controls

introducing the generalized controls.
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1.6.1 Generalized control definition

Let 4, t € R be a family of Radon measures on R™ that depend on the parameter ¢ € R and
g(t,u) a continuous (scalar- or vector-valued) function of its arguments ¢t € R and u € R™

with a compact support in u for every fixed ¢ € R (the support can depend on t).

Definition 1.6.1. Integrating g(t,u) with respect to u¢, we obtain the following function of
t:
ho) = [ gtwdu = [ gltu)de, ter.

If the function h(t) is Lebesgue measurable for an arbitrary g(t,u) of this type, then we say
that the family u, t € R, is weakly measurable (with respect to t).

Definition 1.6.2. If there exists a compact set K C R™ that does not depend on ¢t € R and
is such that the measures j; are concentrated on K for almost all ¢t € R (in the sense of the

Lebesgue measure on R), then the family u, t € R, is said to be finite.

The result of the integration of a continuous function g(t,u) with respect to a measure py

can be denoted by

<:u'tyg(t7u)> = / g(tyu) dﬂt .

m

An admissible control taking values in a subset of R™, w(t) € Uy, can be considered as
a family of Dirac measures (a Dirac measure is a unit, positive measure concentrated at a
point) on R™ that depend on time ¢ € R. Indeed, the value u(t) of the control at the time
t, corresponds to the unit, positive measure d,(;) which is concentrated at the point u(t) eU

and acts on an arbitrary continuous function g(¢,u) in accordance with the formula

Burat.) = [ altu) s = gft.u(0).

The family of measures d,; is finite and weakly measurable.

Conversely, if we assume that d,(, t € R is an arbitrary, weakly measurable finite family
of Dirac measures, where the measure d,(; is concentrated at the point v(t) € U at the time
t, then the function v(t), ¢t € R, is essentially bounded. Setting g(¢,u) = wu, we obtain the

measurable function

(By(y,u) =v(t) €U.

Thus, we have established a natural correspondence between admissible controls u(t) € Uy
and weakly measurable and finite families of Dirac measures d,), t € R, concentrated on the
set U C R™.

Definition 1.6.3. Any weakly measurable and finite family of probability measures, i.e., unit,
positive, Radon measures p; with ¢ € R that are concentrated on the set U C R™, is said to

be a generalized control.
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We denote the set of all generalized controls by My and call it the class of generalized
controls. Subsequently, p; with ¢ € R will always denote a generalized control. Moreover, we
have Uy C My.

Remark 1.6.4. The reason for taking a probability measure, and not an arbitrary Radon
measure in the definition of a generalized control, is that only families of probability mea-
sures have the property that makes them useful in control problems and that is expressed in

Gamkrelidze’s approximation lemma (see [46, Chapter 3]).

1.6.2 Minimal time problem

Consider the minimal time problem (P) that consists in finding a control u(-) € Uy such that

the associated trajectory x(-) is solution of the control system

@(t) = f(x(t), u(t)) (1.60)
with u(t) € U and where f : R" x R™ — RR" is a continuous function and has continuous

derivative with respect to , and steers the point zy = x(0) to 1 = 2(ts) in minimal time ¢;.

Substituting a generalized control p; for w on the control system (L60) we obtain the
following differential equation

&= (p, f(z,u)) = . [, u) dp (1.61)

which is analogous to equation (LLG60). If the initial condition x(0) = z¢ is given, then the

equation obtained is equivalent to the integral equation

¢
o) = a0+ [ e flats) )i,
which has a uniquely determined solution defined on a neighborhood of the point ¢ = 0
(see [46] Chapter 4]).
The minimal time optimal control problem (Pg) consists in finding a generalized control
ut € My such that the associated trajectory is solution of the differential equation (L61]) and
steers x9 = 2(0) to 1 = x(t) in minimal time t;. The problem (Pg) will also be called the

convez optimal problem which corresponds to the optimal problem (P).

Remark 1.6.5. The set of all generalized controls My and the set of right-hand-sides of equa-
tion (L6T)), us € My are convex. In particular, the set of all possible phase velocities of the

control system (L61]), with fixed ¢ and =z, is also convex in R™.

1.6.3 Variation of generalized controls and Pontryagin maximization con-
dition

Let fi; be an arbitrary generalized control, and let Z(t), to < t < tf, be a trajectory of the

equation
&= (u, f(z,u) =F(z). (1.62)
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The function F(z) is defined on the entire space R™, continuously differentiable with

respect to = and bounded on any compact set K C R™ (see [46]).

Definition 1.6.6. Any difference

Ope = pue — e, pe € My,
will be called a wvariation or a perturbation of the generalized control ji;.

The set of all variations of the control fi; will be denoted by 0 M,. The set 6. M, is convex

(see |46] for an intensive and complete study).

Definition 1.6.7. We shall say that a sequence of generalized controls ugi) converges weakly*

to a generalized control py as i — oo if we have

/ (. g(t, u)) dt — / (gt u)) dt, (i — o)
R R

for an arbitrary continuous function g(t,u) with compact support.

Let u € My and define the end-point mapping
E:C(Ltf(u) : MU — R"
p— x(ty)
where x is solution of & = (u(t), f(z(t),u)) with z(0) = xo.

Proposition 1.6.8. [}6, Chapter 5] The end-point mapping Eqot, 1s Gateauz differentiable
for the weak* topology and

@By (0) -6 = M(ty) [ 27 (960 flal) s, Ve My (163)

Pontryagin maximization condition In what follows we derive the maximization condi-

tion of Pontryagin maximum principle for the minimal time problem (Pg).

Let (z(t), put) be optimal for the problem (Pg), then (x(t), i) is singular for the augmented
system (see Lemma [[.4.23])

B(t) = (e, f(2(t), u))
#0(t) = (ue, fO(x(t),u)) -
By the conic implicit function theorem (Theorem [L5.11))

dE;, ¢, : Cone(Q — p) — R"

0,tf
op — dx(ty)
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is not surjective. Therefore, there exists 1 € R™\{0} such that

- By, (1) - 6 < 0.

From Proposition [LE.8] [17 M (t7)M(t)~ (dp, f(x(t),w))dt < 0.
Let us denote p(t) = M (tf)M(t)~'. Then,

p(t) (e, fla(t),uw)) <0

holds almost everywhere on [0, t¢], for every Lebesgue point ¢ and for every du; of Cone(Q2—p).
In particular, if §u; = 8, — 6, (where v € Uy ), then

p(t) - (f (z(t),v) = f(z(t),u(t)) < 0. (1.64)

Therefore
Yo € Uy, p(t) - f(z(t),v) <p(t)- f(z(t),u)), (1.65)
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Chapter 2

Smooth regularization of bang-bang

optimal control problems

2.1 Introduction

In this chapter we consider the minimal time control problem for a single-input control-affine
system # = X(z) + u1Y1(z) in R", where the scalar control uq(-) satisfies the constraint
lui(t)] < 1, for every t € [0,ty].

We propose the following smoothing procedure. For € > 0 small and Y7,...,Y,, arbitrary

given vector fields, we consider the minimal time problem for the control system & = X (z) +

m
uiYi(z) + EZ u;Y; (x), where the scalar controls u(-), i =1,...,m, with m > 2, satisfy the
=2

m
constraint Z (us(t))? < 1.
i=1

One of the possible motivations for this regularization procedure is the use of shooting
methods. Among the numerous numerical methods that exist to solve optimal control prob-
lems, the shooting methods consist in solving, via Newton-like methods, the two-point or
multi-point boundary value problem arising from the application of the Pontryagin maximum
principle. More precisely, a Newton method is applied in order to compute a zero of the
shooting function associated to the problem (see e.g. [109]).

For the initial problem, optimal controls may be discontinuous, and it follows that the shooting
function is not smooth on IR"™ in general. Actually it may be non differentiable on switching
surfaces. This implies two difficulties when using a shooting method. First, if one does not
know a priori the structure of the optimal control, then it may be very difficult to initialize
properly the shooting method, and in general the iterates of the underlying Newton method
will be unable to cross barriers generated by switching surfaces (see e.g. [71]). Second, the nu-
merical computation of the shooting function and of its differential may be intricate since the

shooting function is not continuously differentiable. However, the shooting function related
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to the proposed regularized optimal control problem is smooth.

In the main result of this chapter (Section §2.5] Theorem [2.5.1]) we prove, under appropri-
ate assumptions, that the optimal controls of the latter system, depending on &, are smooth
functions of ¢, and converge weakly to the optimal control of the initial system; moreover
the associated trajectories converge uniformly. If the optimal control of the initial system is
moreover bang-bang, then the convergence of the regularized control holds almost everywhere;
this property may however fail whenever the bang-bang property does not hold.

In Section §2.6examples and counterexamples are provided which illustrate Theorem 2.5.11

2.2 Statement of the problem

Consider the single-input control-affine system in IR"
= X(x) 4+ u1Yi(x), (2.1)

where X and Y7 are smooth vector fields, and the control u; is a measurable scalar function
satisfying the constraint
lur(t)] <1, Vte0,ty]. (2.2)
Let My and M, be two compact subsets of IR™. Assume that M; is reachable from My, that
is, there exist a time 7' > 0 and a control function u;(-) € L*°(0,T) satisfying the constraint
(22)), such that the trajectory x(-), solution of (21 with z(0) € My, satisfies x(T) € M.

We consider the optimal control problem (OCP) of determining, among all solutions of
2I)-2.2)) steering My to M in minimal time.

2.3 Pontryagin extremals

Agsume that the subset Mj is reachable from My; it follows that the optimal control problem
(OCP) admits a solution z(-), associated to a control ui(-), on [0,tf], where t; > 0 is the

minimal time (see e.g. |26, Chapter 9] for optimal control existence theorems).

According to the Pontryagin maximum principle (see [96] and Chapter [I),there exist a
real number p® < 0 and a nontrivial absolutely continuous mapping p(-) : [0,¢;] — R", called
adjoint vector, with (p(-),p°) # 0 and such that

OH

plt) = = (@0, p(0). ", u(t)

_ <p(t), %—f(az(t))> —u(t) <p(t), %(m(t))>

where the function H(z,p,p°,u) = (p, X + uYi(x)) + p® is called the Hamiltonian, and the

maximization condition

H(x(t),p(t), 0%, ult)) = max H{(x(t), p(t),p°, w) (2.4)

(2.3)
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holds almost everywhere on [0,¢7]. Moreover, max), <1 H(z(t),p(t),p°,w) = 0 for every
t €[0,ty]. It follows from (24) that

u (t) = sign{p(t), Y1(z(t))) (2.5)

for almost every ¢, provided the (continuous) switching function ¢(t) = (p(t), Y1(x(t))) does
not vanish on any subinterval of [0,¢¢]. In that case, ui(t) only depends on x(t) and on the
adjoint vector, and it follows from (23] that the extremal (x(-),p(-),p", ui(+)) is completely
determined by the initial adjoint vector p(0). The case where the switching function may
vanish on a subinterval I is related to singular trajectorie. In that case, derivating the
relation (p(t),Y1(z(t))) = 0 on I leads to (p(t), [ X, Y1](x(t))) = 0 on I, and a second derivation
leads to (p(t), [X, [X, Y1]](z(2)))+u1 (t)(p(t), [Y1,[X, Y1]](x(t))) = 0 on I, which permits, under
generic assumptions on the vector fields X and Y (see [27H29)] for genericity results related
to singular trajectories), to compute the singular control w;(-) on I. Under such generic
assumptions, the extremal (z(-),p(-),p°,u1(-)) is still completely determined by the initial
adjoint vector.

Note that, since x(-) is optimal on [0,¢f], and since the control system under study is
autonomous, it follows that x(-) is solution of the optimal control problem of steering the
system (ZI)-(22) from z¢ = x(0) to z(¢) in minimal time.

2.4 Regularization procedure

Let € be a positive real parameter and let Y5,...,Y,, be m — 1 arbitrary smooth vector fields

on IR™, where m > 2 is an integer. Consider the control-affine system

#°(1) = X (2°(1)) + ui(®)V1 (@°(8) + ¢ D uf ()Y; (2°(1)) (2.6)
=2
where the control u®(t) = (uj(t),...,us,(t)) satisfies the constraint

> (W)’ <1 (2.7)

Consider the optimal control problem (OCP)_ of determining a trajectory z°(-), solution of
Z8)-@.1) on [0,t%], such that 2°(0) € Mo and 2°(t3) € My, and minimizing the time of
transfer t?. The parameter ¢ is viewed as a penalization parameter, and it is expected that
any solution z°(-) of (OCP). tends to a solution z(-) of (OCP) as ¢ tends to zero. It is our
alm to derive such a result.

According to the Pontryagin maximum principle, any optimal solution z°(-) of (OCP)_,

associated with controls (uf,...,uS,) satisfying the constraint (7)), is the projection of an

'Recall that here the term “singular” has a different meaning from the one used in Chapter [I (see page 23).
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extremal (2°(-), p°(+),p%, u(-)) such that

5(0) = = T (0,57 (0,1, (1)
= (0. 5 @) = i) (700 G 0 28)
< Y
—> i (70, 2o )
2 <p 0 >

where He(z,p,p% u) = (p, X (z) + mY1(z) + e > ity u;Yi(z)) + p° is the Hamiltonian, and

H(a*(1), p°(t), ™, u*(1)) = nl}laqu(iEE(t)apa(t),poaaw) (2.9)

i=1 W5

almost everywhere on [0,¢%]. Moreover, the maximized Hamiltonian is equal to 0 on [0,#%].

The maximization condition (2.9) turns into

m

ui (D" (1), Yi(2° (1)) + € D s (6)(p° (8), Yi(a® (1))

1=2

=  max (m(pe(?«‘)%(:ﬂe(?ﬁ)»+€Zwi<p€(t)%($€(t))>>,

m 2<
! 1=2

(2.10)

i=1 Wi'S

and two cases may occur: either the maximum is attained in the interior of the domain, or
it is attained on the boundary. In the first case, there must hold (p°(¢),Y;(z°(t))) = 0, for
every i € {1,...,m}; in particular, if the m functions ¢t — (p°(t),Y;(z°(¢))), i = 1,...,m,
do not vanish simultaneously, then the maximum is attained on the boundary of the domain.

Throughout this thesis, we make the following assumption.
Assumption 2.4.1. The integer m and the vector fields Ya, ..., Y., are chosen such that
Span{Y; |i=1,...,m} = R".

Under this assumption, the maximization condition ([ZI0]) yields

(p° (1), 1 (2°(¢)))

ui(t) = ;
(1), Yi(a=()))? + 2 ) _(° (1))
1=2
(2.11)
£
(1) = e(p°(t), Yi(x® (1)) Ci—o....m
(p=(t), Y1 (2= (t +€QZ (1))
for almost every ¢ € [0,¢5], and moreover the control functions u:(-), i = 1,...,m are smooth

functions of ¢ (so that the above formula holds actually for every ¢ €

O,t‘}]) Indeed, to prove
), i = 1,...,m do not

[
this fact, it suffices to prove that the functions ¢t +— (p(t), Y;(z°(t)
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vanish simultaneously. The argument goes by contradiction: if these functions would vanish
simultaneously, then, using the Assumption 2.4.1] this would imply that p°(¢) = 0 for some ¢;
combined with the fact that the maximized Hamiltonian is equal to zero along any extremal,
it would follow that p° = 0, and this would raise a contradiction since the adjoint vector

(p°(+), p%) of the maximum principle must be nontrivial.

From (ZIT), it is expected that uj(-) converges to u;(-) and ui(-), ¢ = 2,...,m, tend to

zero, in some topology to specify. This fact is derived rigorously in the next section.

2.5 Convergence results

The main result of this chapter is the following theorem.

Theorem 2.5.1. Assume that the problem (OCP) has a unique solution x(-), defined on

[0,tf], associated with a control uq(-) on [0,t¢]. Moreover, assume that x(-) has a unique ez-

tremal lift (up to a multiplicative scalar), that is moreover normal, and denoted by (z(-),p(+), —1,u1 (*)).
Then, under the Assumption [2.4.1) there exists eg > 0 such that, for every € € (0,¢),

the problem (OCP), has at least one solution x°(-), defined on [0,t3] with t3 < ty, associated

with a smooth control u® = (u3,...,us,) satisfying the constraint [2.7), every extremal lift of

which is normal. Let (x°(-),p°(:),—1,u%(-)) be such a normal extremal lift. Then, as € tends

to 0,

° t? converges to ty;

e x°(+) converges um’formlgE to x(-), and p*(-) converges uniformly to p(-) on [0,ty];
o uj(-) converges weakl to ui(-) for the weak L(0,ts) topology.

If the control uy is moreover bang-bang, i.e., if the (continuous) switching function o(t) =
(p(t),Y1(x(t))) does not vanish on any subinterval of [0,tf], then ui(-) converges to ui(-) and
15

U=

°(-), i =2,...,m, converge to 0 almost everywhere on [0,t¢], and thus in particular for the

strong L*(0,t¢) topology.

Remark 2.5.2. We provide in Section §2.6] examples with numerical simulations in order to
illustrate Theorem 250l The first example is the Rayleigh problem, on which the minimal
time trajectory is bang-bang, and almost everywhere convergence of the regularized control
can be observed in agreement with our main result. Our second example involves a singular
arc and we prove and observe that oscillations appear, so that the regularized control weakly

converges, but fails to converge almost everywhere.

*We consider any continuous extension of z(-) on [0,#f].
31t means that fotf ui(t)g(t)dt — Otf w1 (t)g(t)dt as € — 0, for every g € L*(0,ts), and where the function

ui(-) is extended continuously on [0, ¢y].
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Remark 2.5.3. It is assumed that the problem (OCP) has a unique solution z(-), having a
unique extremal lift that is normal. Such an assumption holds true whenever the minimum
time function (the value function of the optimal control problem) enjoys differentiability prop-
erties (see e.g. [9,35] for a precise relationship, see also [24,[97,98|[108] for results on the size
of the set where the value function is differentiable).

If one removes these uniqueness assumptions, then the following result still holds, pro-
vided that every extremal lift of every solution of (OCP) is normal. Consider the topo-
logical spaces X = C°([0,t],IR™), endowed with the uniform convergence topology, and
Y = L*(0,ty;[—1,1]), endowed with the weak star topology. In the following statement,
the space X x X x ) is endowed with the resulting product topology. For every e € (0,¢¢),
let 2°(-) be a solution of (OCP)_, and let (x(-),p°(-), —1,u°(:)) be a (normal) extremal lift
of 2°(-). Then, every closure point in X x X x ) of the family of triples (z°(-),p(-), uj(-))

e

is a triple (Z(-),p(+),@1(:)), where Z(+) is an optimal solution of (OCP), associated with the
control @; (), having as a normal extremal lift the 4-tuple (Z(-), p(:), —1,u1(-)). The rest of the

statement of Theorem 2.5.7] still holds with an obvious adaptation in terms of closure points.

Remark 2.5.4. When applying a shooting method to the problem (OCP)_, one is not ensured
to determine an optimal solution, but only an extremal solution that is not necessarily opti-
malH Notice however that the arguments of the proof of Theorem 5.1l permit to prove the
following statement. Assume that there is no abnormal extremal among the set of extremals
obtained by applying the Pontryagin maximum principle to the problem (OCP); then, for
e > 0 small enough, every extremal solution of (OCP)_ is normal, and, using the notations
of the previous remark, every closure point of such extremal solutions is a normal extremal

solution of (OCP).

Remark 2.5.5. There is a large literature dealing with optimal control problems depending
on some parameters, involving state, control or mixed constraints, using a stability and sen-
sitivity analysis in order to investigate the dependence of the optimal solution with respect
to parameters (see e.g. [40,48,56166,67,74,[76,81,82,84] and references therein). In the sensi-
tivity approach, under second order sufficient conditions, results are derived that prove that
the solutions of the parametrized problems, as well as the associated Lagrange multipliers,
are Lipschitz continuous or directionally differentiable functions of the parameter. We stress
however that Theorem 2.5.1] cannot be derived from these former works. Indeed, in these ref-
erences, the results rely on second order sufficient conditions and certain regularity conditions
on the initial problem. In our work we do not assume any second order sufficient condition;
our approach is different from the usual sensitivity analysis and is rather, in some sense, a

topological approach.

4This fact is well known, due to the fact that the Pontryagin maximum principle is only a first order
necessary condition for optimality; sufficient conditions do exist but this is outside the scope of this Chapter
(see Section §3.1.3lfor sufficient conditions).
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In what follows several lemmas will be proved. The proof of Theorem 2.5.1] follows from
Lemmas 2.5.6H2.5. 18]

From now on, assume that all assumptions of Theorem [2.5.Thold. We denote the end-point

mapping for the system (2.6) by
E(e,zo,tp,u®) = x°(ty),

where z°(+) is the solution of (Z2.6]) associated with the control u®(-) = (uj(-),...,u$,(:)) and
such that 2°(0) = xy. By extension, the end-point mapping for the system (2.I)) corresponds
toe =0,

E(0,z0,tf,(u1,0,...,0)) = x(ts),

where z(-) is the solution of (2.1)) associated with the control u;(-) and such that x(0) = .
It will be also denoted E(xq,t¢,u1) = E(0,z0,tf, (u1,0,...,0)) = x(ty).

In the sequel, we denote by w1(-) the minimal time control steering the system (2] from
Moy to My in time t;.

We first derive the following existence result.

Lemma 2.5.6. For every € > 0 the problem (OCP), admits at least one solution z°(-),
associated with a control u®(-) = (ui(:),...,up,(+)) satisfying the constraint 2.1) on [0,1%].
Moreover, 0 < tje <ty.

Proof. Knowing that the constrained minimization problem
minty
|U1| S 1, E(O,:Eo,tf, (ul,O, e ,0)) =T
X € Mo, xr1 € M1

has a solution, it is our aim to prove that the problem

min %
m

ut = (ug,...,u,), (u5)? < 1, E(e,z0,t7,u") = 21
i=1

xo € My, 1 € My

has a solution, for every € > 0. First of all, we claim that, for every € > 0, the subset M is

reachable from the subset My, i.e., it is possible to solve the equation

E(e, 0,13,u") = 21

with a control u® = (uf,...,us,) satisfying the constraint Y i (u5)? < 1, and with some

xo € My and z7 € M;. Indeed, if uf =0, i = 2,...,m, then the system (2Z.6)) coincides with

®Note that ¢ is not needed to be small.
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the system (2.I), and it suffices to choose uj = w; and the corresponding initial and final
points. The existence of a minimal time control steering the system (2.6]) from My to M is
then a standard fact to derive for such a control-affine system (see e.g. [26] Chapter 9], and
note that My and M; are compact). Moreover, the minimal time t% for the problem (ocp),

is less or equal than the minimal time ¢y for the initial problem. O

As explained in Section 2.4], for € > 0 fixed, and with Assumption 2.4.T] satisfied, it follows
from the Pontryagin maximum principle applied to (OCP), that 2°(-) is the projection of an
extremal (2°(-), p°(+), p%, u(-)) such that

70 = (570 G ) ) i) {700, 52 7))

—eY a0 (0. 5w 0)

and

(p*(1), Y1 (25 (1))

Y
m

(P (1), Ya(22(1))% + 2 y_(p°(2), Yi(a*(1)))?
2

1=

1
) €
uE(t) = (), Vi@ (1) L i=2..m.

(P (1), Y (22 (1)))? + 2 Y (0" (1), Yi(a®(1)))?
1=2

We stress the fact that the controls uj, i = 1,...,m, are continuous functions of ¢.

Lemma 2.5.7. If ¢ > 0 tends to 0, then t? converges to ty, uj(-) converges to ui(-) in
L>(0,t¢) for the weak star topology, and x°(-) converges to x(-) uniformly on [0,ts].

Proof. Let (en)nen be an arbitrary sequence of positive real numbers converging to 0 as n
tends to +oo. From Lemma 2356 0 < t‘}" < ty, hence, up to a subsequence, (t‘;”)ne]N
converges to some 1" > 0 such that 7" < t¢. By definition, the sequence of controls (u7"(:))nen
is bounded in L*°(0,ty) (with the agreement that the function ui"(-) is extended on (¢, /]
e.g. by 0). Therefore, up to subsequence, it converges weakly to some control @;(-) € L>(0,ty)
for the weak star topology. In particular, it converges weakly to u1(-) € L?(0, ty) for the weak
topology of L(0,t¢). The limit control @ (-) satisfies | (¢)| < 1 almost everywhere on [0,#].

To prove this fact, consider the set
V={ge€L*0,tf) | |g(t)] <1 almost everywhere on [0,¢]}.

For every integer n, ui"(-) € V; moreover V is a convex closed (for the strong topology) subset
of L?(0,ts), and hence is a convex closed (for the weak topology) subset of L?(0,ts). It follows
that w1 € V.
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Since My and M; are compact, it follows that, up to a subsequence, x°"(0) converges to
some To € My, and z~ (t;}") converges to some 1 € Mj.

Let Z(-) denote the solution of the system (2.1]), associated with the control @;(-) on [0, T,
and such that z(0) = Zg. Since the control systems under consideration are control-affine, it
is not difficult to prove that the weak convergence of controls implies the uniform convergence
of corresponding trajectories (see [I19] for details). In particular, it follows that z(T") = ;.

Therefore, we have proved that the control @ on [0, 7] steers the system (2.1I)) from Mj to
M in time T. Since T' < ty and the problem (OCP) has a unique solution, we infer that
T =ty, 41 =w and Z(-) = z(-).

To conclude, it suffices to remark that the above reasoning proves that (ts,ui(-),z(-)) is
the unique closure point of (¢, u7"(-),2°"(-)), where (en)new is any sequence of positive real

numbers converging to 0. O

Remark 2.5.8. If one does not assume the uniqueness of the optimal solution of (OCP), then
the following statement still holds. If € > 0 tends to 0, then ¢5 still converges to the minimal
time ¢¢, the family (uj(-)). has a closure point % (-) in L*°(0,ts) for the weak star topology,
and the family (2°(-)). has a closure point Z(-) in C°([0,#],IR™) for the uniform convergence
topology, where Z(-) is the solution of the system (2] corresponding to the control u(-) on
[0,t], such that Z(0) € My and Z(t) € M;. This means that Z(-) is another possible solution
of (OCP).

In other words, every closure point of a family of solutions of (OCP), is a solution of
(OCP).

The next lemma will serve as a technical tool to derive Lemma 2.5.101

Lemma 2.5.9. Let T > 0, and let (g:)e>0 be a family of continuous functions on [0,T]
converging weakly to some g € L?(0,T) as ¢ tends to 0, for the weak topology of L*(0,T).
Then, for every t € (0,T), there exists a family (t:)eso of points of [t,T) such that t- — t and
ge(te) — g(t) as e — 0.

Proof. First of all, note that, since g. converges weakly to g on [0,77], its restriction to any
subinterval of [0,7] converges weakly, as well, to the corresponding restriction of g. Let us
prove that, for every § > 0, for every o > 0 (small enough so that t + a < T'), there exists
g0 > 0 such that, for every e € (0,eq), there exists t. € [t,t + a] such that |g-(t:) — g(t)] < 5.
The proof goes by contradiction. Assume that there exist § > 0 and « > 0 such that, for
every integer n, there exists €, € (0,1/n) such that, for every 7 € [t,t + «], there holds
|ge, (1) — g(t)] > (. Since g, is continuous, it follows that either g., (7) > g(t) + 3 for every
T € [t,t+al, or g, (1) < g(t) —  for every T € [t,t + a]. This inequality contradicts the weak
convergence of the restriction of g., to [t,t + «] towards the restriction of g to [t,t +«]. O

In what follows, we denote by K (t), K;(t), K(t), the Pontryagin cones along the trajectory
x(+) solution of (OCP), defined as in the previous Section §L.5l Similarly, for every € > 0,
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we denote by K*(t), K{(t), K*(t) the Pontryagin cones along the trajectory x°(-), which is a
solution of (OCP)..

Lemma 2.5.10. For every v € K(ty), for every € > 0, there exists v° € Ke(tjc) such that v®

converges to v as € tends to 0.

Proof. By construction of K(ty), it suffices to prove the lemma for a single needle-like varia-
tion. Assume that v = vr(ts), where the variation vector v.(-) is the solution on [t1,¢f] of the

Cauchy problem
in(t) = (G (0 + (O w0 ) ol

vr(t1) = (41 —wa(2))Y1(z(t1)),
where 1 is a Lebesgue point of [0,t¢), 41 € [—1, 1], and the needle-like variation 7 = {t1, 71, 41 }

(2.12)

of the control u; is defined by

wpa(t) = ap  ift €[ty ty +ml,
" u1(t) otherwise.

For every € > 0, consider the control u® = (uj,...,u5,) of Lemma [Z5.6] solution of (OCP)..
It satisfies the constraint > v (u$)? < 1. From Lemma [Z5.7] the continuous control function
u§ converges weakly to uy in L?(0,¢s). It then follows from Lemma 259l that, for every ¢ > 0,
there exists t. > ¢; such that ¢ — ¢; and uj(t;) — ui(t1) as ¢ — 0.

For every € > 0, consider the needle-like variation 7€ = {t§, 71, (41,0, ...,0)} of the control

(ug,...,u,) defined, for i =2,...,m, by@

i if t € [t5,t5 ,
ety = { ®TIET 0]
uj(t) otherwise,
and
e (1) :{ 0 Hrelisitm]

ui(t) otherwise

Let the variation vector vz<(-) be the solution on [t7, t7] of the Cauchy problem

@wsa):(@;j( (1) + i () 2 +€Zu

))) Ure (1)
(2.13)

vre (£5) = (W1 — ui(#))V1 - eZu (#) (@ (£1))-

From Lemma 2.5.7] t converges to ¢y, uj(-) converges weakly to ui(-), z°(-) converges uni-
formly to x(-); moreover, eu (-) converges weakly to 0, eug (¢7) converges to 0, fori = 2,...,m,
and u§(t1) converges to uj(t1). As in the proof of Lemma [Z5.7 we infer the uniform conver-
gence of v5(+) to vy (-) (see [119] for details), and the conclusion follows. O

®Note that ¢i is a Lebesgue point of the function t — X (2°(t)) + ui(t)Y1(2z°(t)) + e > i, uf (t)Yi(z*(t))

since the controls u; are continuous functions of ¢.
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The next lemma will be useful in the proof of Lemma 2.5.12

Lemma 2.5.11. Let m be a positive integer, g be a continuous function on IR x R™, and C

be a compact subset of R™. For every € > 0, set M(e) = mac)gg(s,u), and M = maécg(o,u).
ue ue

Then, M(e) tends to M as € tends to 0.

Proof. For every € > 0, let u. € C such that M(e) = g(¢,u.), and let u € C such that
M = ¢g(0,u). Note that u. does not necessarily converge to u, however we will prove that
M () tends to M, as € tends to 0. Let ug € C be a closure point of the family (u.)s~o. Then,
by definition of M, one has ¢g(0,up) < M. On the other hand, since g is continuous, g(e,u)
tends to g(0,u) = M as ¢ tends to 0. By definition, g(e,u) < M(e) = g(e,u.) for every € > 0.
Therefore, passing to the limit, one gets M < g(0,ug). It follows that M = g(0,ug). We have
thus proved that the (bounded) family (M (g)).>0 of real numbers has a unique closure point,

which is M. The conclusion follows. O

Lemma 2.5.12. There exists €9 > 0 such that, for every € € (0,e0), every extremal lift
(25(-),p°(+), P, u?(-)) of any solution z(-) of (OCP). is normal.

Proof. We argue by contradiction. Assume that, for every integer n, there exist €, € (0,1/n)
and a solution z°"(-) of (OCP)_ having an abnormal extremal lift (z="(-), p™(-),0,u"(-)).
Set 1pn = p°n (tjc"), for every integer n. Then, from Remark [L5.12] one has

(o, vr) <0,

for every v™» € K*(t3"), and

Men) = e (7X@ (07)) + wn (07, Vala (1))

ben Yo (v, Yl (5))) =
=2

for every integer n. Since the final adjoint vector (p°» (tjc"), p°¢7) is defined up to a multiplica-
tive scalar, and p*» = 0, we assume that 1)°* is a unit vector. Then, up to a subsequence, the
sequence (") eN converges to some unit vector ¢. Using Lemmas 2.5.7], 2.5.10] and 2511,
we infer that

<¢7v> S 07
for every v € K(ty), and

M = max (4, X (a(ty))) + w1 (i, Ya(2(t7)))) = 0.

|w1\§1

It then follows from Remark [[.L5.12] that the trajectory x(-) has an abnormal extremal lift.
This is a contradiction since, by assumption, z(-) has a unique extremal lift, which is moreover

normal. O
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Remark 2.5.13. If we remove the assumption that the optimal trajectory z(-) has a unique
extremal lift, which is moreover normal, then Lemma [2.5.12] still holds provided that every

extremal lift of z(-) is normal.

With the notations of Lemma 2.5.12] from now on we normalize the adjoint vector so that

p¢ = —1, for every ¢ € (0,&p).

Lemma 2.5.14. In the setting of LemmalZ.5.13, the set of all possible p*(t3), with € € (0,0),

18 bounded.

Proof. The proof goes by contradiction. Assume that there exists a sequence (gy,)nen of

positive real numbers converging to 0 such that |[p* (¢3")|| tends to +oo. Since the sequence

FRAGRIl

Using the Lagrange multipliers property and (L59]), there holds

en (g5 . . . .
<u> is bounded in R™, up to a subsequence it converges to some unit vector .
nelN

{7 (57"),v™") <0,

for every v™» € K*n(t3"), and

nax ( <p5” (t5), X (z* (tjc"))> +wy <p8n(t~;n), Yl(xan(t;n))>

be S () Yila (7)) = L
=2

for every integer n. Dividing by [[p*(¢5")||, and passing to the limit, using Lemmas 2.5.7] 2.5.101
and 25111 and Remark [[L5.12] the same reasoning as in the proof of the previous lemma yields

that the trajectory z(-) has an abnormal extremal lift, which is a contradiction. O
Remark 2.5.15. Remark 2.5.13] applies as well to Lemma 2.5.14]

Lemma 2.5.16. For every ¢ € (0,¢9), let z°(-) be a solution of (OCP)_, and let (z°(-),p°(+), —1,u%(+))
be a (normal) estremal lift of x°(-). Then p*(-) converges uniformly] to p(-) on [0,t¢] as €
tends to 0, where (x(-),p(+), —1,u(-)) is the unique (normal) extremal lift of =(-).

Proof. For every € > 0, set ¢° = p°(t7). The adjoint equation of the Pontryagin Maximum

Principle is

70 == (0. S0 ) - i) (370, S ) )
- sgum) (0. G

with p(t3) = ¢°. Moreover, there holds

(4%, 0%) <0,

"We consider any continuous extension of p°(-) on [0, ty].
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for every v° € K*°(t%), and

max <<T/)€,X($ ))>+w1<¢ Yi(z +6Zw2<1/) Yi(x >):1.

S w2l

i=1 Wi'S

From Lemma 25.14] the family of all ¢¢, 0 < € < &g, is bounded. Let 1) be a closure point of
that family, and (e,),eN @ sequence of positive real numbers converging to 0 such that ¢°"
tends to . Using Lemma 257 and as in the proof of this lemma, we infer that the sequence

(p°"(+))nen converges uniformly to the solution z(-) of the Cauchy problem

£(0 == (+(0, S a0) ) — ) (20, 5Ha0)) . s(t)=v.

Moreover, passing to the limit as in the proof of Lemma 2.5.14

<¢7 'U> S 07

for every v € K(ty), and

max ({4, X (w(t7))) + w1 (4, Yi(a(ty))) = 1.

|w1\§1

It follows that (x(-),2(:),—1,u1(:)) is an extremal lift of z(-), and from the uniqueness as-

sumption we infer that z(-) = p(-). The conclusion follows. O

Remark 2.5.17. If one removes the assumptions of uniqueness of the solution of (OCP) and
uniqueness of the extremal lift, then the following result still holds, provided that every ex-
tremal lift of every solution of (OCP) is normal. Consider the topological spaces X =
CO([0,¢¢],R™), endowed with the uniform convergence topology, and Y = L>(0,ts;[—1,1]),
endowed with the weak star topology. In the following statement, the space X x X x Y is
endowed with the resulting product topology. For every e € (0,gq), let 2°(-) be a solution
of (OCP)_, and let (z°(-),p°(-),—1,u°(-)) be a (normal) extremal lift of 2°(-). Then, every
closure point of the family (z°(-),p°(-),uj(-)) in X x X x Y is a triple (Z(-), p(-), u1(-)), where
Z(+) is an optimal solution of (OCP), associated with the control u(+), having as a normal
extremal lift the 4-tuple (Z(-),p(-), —1,@1(-)). This statement indeed follows from Remarks
25.8], 2513 and

Lemma 2.5.18. If the control uy is moreover bang-bang, i.e., if the (continuous) switching
function o(t) = (p(t),Y1(z(t))) does not vanish on any subinterval of [0,t¢], then ui(-) con-
verges to ui(-) and u5(-), i = 2,...,m, converge to 0 almost everywhere on [0,t¢], and thus in

particular for the strong L*(0,t;) topology.

Proof. Using the expression ([Z.I1)) of the controls uj and u, ¢ = 2,...,m, the expression (2.5])
of the control u;, and from Lemmas 2.5.7 and 2.5.T6], it is clear that u5(t) converges to u(t)
and u$(t), i = 2,...,m, converge to 0 as ¢ tends to 0, for almost every ¢ € [0,t¢]. Since the

controls are bounded by 1, the strong L' convergence follows from the dominated convergence
theorem (see e.g. [20]). O
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This last lemma ends the proof of Theorem 2.5.11

Remark 2.5.19. Assumption 2.4.T] requires that m > n. One may however wish to choose
m = 2, i.e., to add only one new vector field Y, in the regularization procedure. In that
case, the Assumption [2.4.1] does not hold whenever n > 3, and then two problems may occur:
first, in the maximization condition (2.I0) the maximum is not necessarily obtained at the
boundary, i.e., the expressions (ZI1]) do not necessarily hold, and second, the controls u$(-),
i = 1,...,m are not necessarily continuous (the continuity is used in a crucial way in the
proof of our main result). These two problems are however not likely to occur, in what follows
we provide some comments on the generic validity of (ZII]) and on the smoothness of the
regularized controls, in the case m = 2.

Let m = 2, that is, consider only one arbitrary additional smooth vector field Y5. For
e > 0 fixed, the maximization condition from the Pontryagin maximum principle applied to
the problem (OCP), is

ui (8)(p* (1), Y1(2°(t)) + euq(t)(p° (1), Ya(2* (1))

= g (50, V0 (0) + e (0,12 ()
almost everywhere on [O,t*j[]. There are two cases: either the maximum is attained in the
interior of the domain, or it is attained at the boundary. The proof of our main result requires
this maximum to be attained at the boundary (see (2.I1])), and the corresponding controls to
be continuous. This fact depends on the choice of the vector field Ys.

A simple example where this holds true is the case Y5 = X. In that case it is indeed
possible to ensure that both functions ¢ — (p(¢),Y1(2%(¢)) and ¢t — (p°(t), Y2(2*(t)) do not
vanish simultaneously for e > 0 small enough (and this implies the desired conclusion). To
prove this assertion, we argue by contradiction and assume that, for every n € IN, there exists a
sequence (ey,)pen converging to 0 and a sequence (t°")pen such that (p* (t°7), X (x°» (t*))) =
(P (t=), Yo (2" (t°"))) = 0. Combined with the fact that the Hamiltonian is constant along
any extremal, and vanishes at the final time, these equalities imply that p®» = 0. This
contradicts the conclusion of Lemma

More generally, and although such a statement may be nontrivial to derive, we conjecture
that this fact holds true for generic vector fields Y5 (see [27H29] for such genericity statements).
Note that, for generic triples of vector fields (X, Y7,Y3), this fact holds true. Indeed, to derive
this statement it suffices to combine the fact that any totally singular minimizing trajectory
must satisfy the Goh condition (see [2] and [15, Theorem 1.9] for details) and the fact that,
for generic (in the strong sense of Whitney) triplets of vector fields (X, Y7,Y3), the associated
control-affine system does not admit nontrivial Goh singular trajectories (see [29, Corollary
2.7)).
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2.6 Examples

2.6.1 The Rayleigh minimal time control problem

To illustrate our results, we consider the minimal time control problem for the Rayleigh control
system described in [76],

11'71(25) = :Eg(t),

) (2.14)
:i?g(t) = —l‘l(t) + $2(t)(1.4 — 0.141E2(t) ) + Ul(t),
with initial and final conditions
xl(O) = xQ(O) = —5, a;l(tf) = xg(tf) = O, (2.15)
and the control constraint
lui(t)| <4, Vte [O,tf]. (2.16)

According to the Pontryagin maximum principle, any optimal solution z(-) of (2.14])-(2.10])
is the projection of an extremal (z(-),p(+),p°,u1(+)) such that

p1(t) = pa(t)
Pa(t) = —p1(t) — pa(t) (1.4 — 0.42z5(t)?)

and the maximization condition pa(t)ui(t) = max|,|<4 (p2(t)w) holds almost everywhere on
[0,tf]. It is easy to see that pa(-) cannot vanish on some subinterval, and it follows that the
optimal control u;(-) is bang-bang, equal to u(t) = 4sign(p2(t)).

Applying a shooting method to problem (Z14)-(ZI6) (with p® = —1), we determine the
initial adjoint vector p(0) ~ (0.12234128;0.08265161), and observe that the trajectory has two
switching times 7 ~ 1.12050659 and 75 ~ 3.31004697 on [0, %], that is, ui(-) is given by

+4 for 0<t<m
ui(t) =< —4 for 1 <t <m

+4 for TgStStf,

with a final time t; ~ 3.66817338 (see Figures 2.IH2.4). Furthermore, x(-) is the unique
minimal time solution and has a unique extremal lift (up to a multiplicative scalar), which is
moreover normal (see [76]).

We propose the regularized control system

(2.17)
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Control
T

Figure 2.1: Optimal trajectory Figure 2.2: Optimal control

Figure 2.3: Adjoint vector p Figure 2.4: Adjoint vector p2

with the same initial and final conditions, and where the control u®(-) = (uj(-),u5(+)) satisfies
the constraint
(w5 (1)* + (u5(1))* < 16. (2.18)

Any optimal solution z°(-) of [ZI5)), (2I7), (ZI]) is the projection of an extremal (z°(-), p=(-), p*, u(-))
such that

Pit) = pa(?)
p5(t) = —pi(t) — pa(t) (1.4 — 0.4225(1)%) .

The Assumption [2.4.1] is verified, and the controls that satisfy the Pontryagin maximization
condition (2.I0) are given by

V02 + w02

All assumptions of Theorem 2.5.1] are satisfied.

4epi(t) ‘
V(05(1))? + 2(p5(1))?

Wi (t) = (2.19)
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Applying a shooting method to the problem 2.I5]), (2.17), [2.I8]), we determine the op-
timal trajectory of the regularized problem, and we indeed observe the expected convergence
of (z°(-),p°(+),—1,u®) towards (z(-),p(:),—1,u1), as € tends to 0, in agreement with Theo-
rem 2.5.1] (see Figures 23], and 27). In this example, the minimal time control solution of
2I4)-(2I0) is bang-bang, and we indeed observe, on the numerical simulations, the almost

everywhere convergence of the regularized control.

T T
— epsilon=0
= = =epsilon=0.1 |
------- epsilon=0.05

-5 -1.2 -12
-7 -6 -5 -4 -3 -2 -1 0 1 1 2 3 4 1 2 3 4
Figure 2.5: Trajectory Figure 2.6: Adjoint vector
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Figure 2.7: Control

2.6.2 Minimal time optimal control problem involving a singular arc

In the example provided in this subsection, the minimal time control u(-) is singular. It is
then not expected a priori that the regularized control uj(-) converges almost everywhere to

u1(-) along the singular arc. Our main result only asserts a weak convergence property along
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this arc. In the example presented below, the regularized control uj(-) converges weakly to
u1(+) but not almost everywhere. We then provide some numerical simulations, on which we
indeed observe that the almost everywhere convergence property fails along the singular arc,

and we observe an oscillating property, which is a typical feature of weak convergence.

Consider the minimal time control problem for the system

il(t) =1- xg(t)2,

‘ (2.20)
do(t) = w1 (t),
with initial and final conditions
1‘1(0) = ZEQ(O) = 0, l‘l(tf) = 1, :Eg(tf) = 0, (2.21)
and the control constraint
lui(t)] <1, Vtelo,ty] (2.22)

It is clear that the solution of this optimal control problem is unique, and is provided by the
singular control u;(t) = 0, for every t € [0,ts], with ¢; = 1. The corresponding trajectory is
given by x1(t) =t and z2(t) = 0.

We claim that this optimal trajectory has a unique extremal lift (up to a multiplicative
scalar), which is moreover normal. Indeed, denoting by p = (p1,p2) the adjoint vector, the
Hamiltonian of the above optimal control problem is H = pi(1 — ZE%) + pour + p°, and the
differential equations of the adjoint vector are p; = 0, p2 = 2z9p1. Since x2(t) = 0, it follows
that the adjoint vector of any extremal lift of the optimal trajectory is constant. Moreover,
the Hamiltonian vanishes at the final time, and hence there must hold p; (t) +p° = 0, for every
t € [0,t¢]. Since the singular control u;(t) = 0 is optimal and belongs to the interior of the
domain of constraint (2.22)), the maximization condition yields g—ﬂ = 0, and thus, p2(t) =0
for every t € [0,¢7]. Then, since the adjoint vector is nontrivial, p° cannot be equal to 0, and
up to a multiplicative scalar we assume that p° = —1. The assertion is thus proved, and the

unique (normal) extremal lift is given by (z1(t), z2(t), p1(¢), p2(t), %, u1(t)) = (¢,0,1,0,—1,0).
We propose the following regularization of the problem ([2.20)-(222]). Let g(-) and h(-) be

smooth functions, to be chosen; consider the minimal time control problem for the system

5(t) =1 — x5(t)? 4+ eus(t)g(25 (1)),
1(t) 5(t) 5()g(x1(t)) (2.23)
#5(t) = ui(t) + eus(t)h(z1(t)),
with initial and final conditions
25(0) = a5(0) = 0, a5(t5) = 1, a5(t5) =0, (2.24)
and the control constraint
(ui(t)® + (u5(t))* < 1, Ve [0,t7]. (2.25)



Since the function g to be chosen below vanishes at some points, the Assumption 2.4.1]
does not hold everywhere. We claim however that, if the function g may only vanish on a
subset of zero measure, and if € > 0 is small enough, then the formula (Z.IT]) holds, and the
regularized controls are continuous, so that we are in the framework of Theorem 2.5.11

Indeed, the Hamiltonian of this regularized optimal control problem is
H = pi(1 — (25)*) + phui + eus(pig(f) + p3h(ai)) +p*,
and the adjoint equations are

Pit) = —eus(t)(pi(t)g (1 (1)) + P (1A' (21 (1)),

pa(t) = 2a5()pi(t).
It is not difficult to see that, for € > 0 small enough, the optimal trajectory must be such
that #5(¢) > 0; hence, z5(-) is an increasing function of ¢. Now, argue by contradiction, and
assume that the optimal control takes its values in the interior of the domain ([2.25)), for t € I,
where [ is a subset of [O,t?] of positive measure. Then, the maximization condition yields
gf% = gfé = 0, and hence p5(t) = 0 and pj(t)g(z](t)) + p5(t)h(z5(t)) = 0, for t € I. It

follows that pj(t)g(z5(t)) = 0, for ¢t € I. Since the function g may only vanish on a subset

of zero measure, and since zj(-) is increasing, it follows that there exists ¢; € I such that
g(zi(t1)) # 0, and therefore pi(t1) = p5(t1) = 0. Since the Hamiltonian vanishes almost
everywhere, this yields moreover p% = 0, which is a contradiction.

Therefore, under the above assumption on g, the formula (ZI1]) holds, and the optimal

controls are given by

() = pilt) |
VPR + €2 (i (0)gta () + p3(0)h(as (1) (220
u§(t) e (p5(t)g(x5 (1)) + p5(t)h(z5 (1)) .

VRS0 + 2 (05 (Dg (a5 (1)) + p5(0)h(as (1))
for almost every ¢ € [0,¢%].

Let us prove that the controls u(-) and u5(-) are smooth functions of ¢. For this purpose,
we prove hereafter that the function p§(-) does not vanish on any subset of positive measure.
Argue by contradiction and assume that there exists a subset I of [0, 5] on which p5(-) vanishes.
Then, on one part, (2.20]) implies that u5 () = 0 and u§(t) = sign(pj(t)g(z (t))+p5(t)h(z5(t))),
for almost every t € I. On the other part, using the adjoint equations, we have x5(t)p5 (t) = 0,
for ¢t € I. The scalar pj(t) cannot vanish, for any ¢ € I; indeed otherwise there would hold
p5(t) = p5(t) = 0, and since the Hamiltonian vanishes, it would follow that p° = 0, which is
a contradiction with the normality of the extremal lift (see Lemma 2.5.12). Hence, 25(t) = 0
for t € I, and thus, by differentiation, uj(t) + eu5(t) = 0. This contradicts the equalities
i(t) = 0 and u3(t) = sign(p§ ()95 (1)) + 3 (DR (1))

From Theorem 2.5.1], we can assert that, as € tends to 0,

0]



o z5(-) (resp., z5(+)) converges uniformly to z1(-) (resp., z2(+)) on [0, 1],

e pi(-) (resp., p5(-)) converges uniformly to pi(-) =1 (resp., p2(-) = 0),
e uj(-) converges weakly to ui(-) = 0.

Let us next prove that, for certain choices of the functions ¢(-) and A(-), the regularized control
uj(-) does not converge almost everywhere to u;(-). We choose a smooth function g(-) defined

on IR that is strongly oscillating in the neighborhood of 1/2, for instance,

o) = h(x)sin 75

and a flat function h so that g is indeed smooth, for instance,

h(z) = exp (ﬁ) .

If ¢ is small enough, then z5(t) is close to t, pj(¢) is close to 1, p5(t) is close to 0, and hence

the sign of u5(t), that is equal to the sign of

. 1
(e (0) (51(0)sin sy + 5500
is close to the sign of sin ﬁ Therefore, the control u§(-) strongly oscillates between —1 and

1 for t close to 1/2. Since u§(-) and u5(+) are continuous and satisfy (u§(t))? + (u5(t))? = 1,
for every ¢ € [0, 1], it follows that the control uj(-) strongly oscillates as well between —1 and
1 for ¢ close to 1/2.

This oscillation feature is similar to what happens with chattering controls, and illustrates
the fact that uj(-) weakly converges to u;(-) = 0 as ¢ tends to 0, but does not converge almost
everywhere.

Numerical simulations lead to Figures 2.8 and [2.9] on which we can observe the oscillating
properties of the regularized controls. Note that these numerical simulations are difficult
to obtain with the above function A, because of its flatness. First of all, in our numerical
simulations we rather choose the function h(x) = (x — 1/2)3, that is not so flat, but for which
the system is however not smooth (but this does not change anything to the result). Second,
it is difficult to make converge the shooting method for small values of ¢, and we had to make
use of a continuation method, starting with a large value of € and decreasing that value step

by step.

2.6.3 The harmonic oscillator problem (linear case)

This example was considered in Section §1.4.71 Here we propose to solve the harmonic oscilla-
tor problem (in the linear case) using a single shooting method. We illustrate the convergence

result of Theorem 2.5.1] for this minimal time problem.
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Figure 2.8: Control u§ (e = 0.01) Figure 2.9: Control u§ (¢ = 0.01)

Consider the minimal time control problem for the system

(2.27)
y(t) = —a(t) + ui(t),
with initial and final conditions
z(0) =3, 0)=1,
(0) y(0) (2.28)
a;(tf) =0, y(tf) =0,
and the control constraint
|U,1(t)| <1, Vte [O,tf] . (2.29)
We propose the regularized control system
= (t) = y=(t) +eus(t)
yE(t) = —2=(t) + ui(t),
with the same initial conditions, and where the control u®(-) = (uj(-),u5(-)) satisfies the

constraint
(Wi(®)? + (us(1)* <1, Vte[0,t5].

All assumptions of Theorem [2.5.1] are satisfied (the minimal time problem (2.27)(2.29)
has a unique solution (x(-),y(-)), defined on [0,¢¢], associated with a control u;(-) on [0,%].
And (z(-),y(-)) has a unique extremal lift (up to a multiplicative scalar), that is moreover
normal). In Figures and [2Z.11] we can observe the optimal trajectory and optimal bang-
bang control with minimal time is ¢ ~ 5.202346. The adjoint vector (ps,p,) associated to
the optimal trajectory is represented in Figures and 2.13]
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Figure 2.10: Optimal trajectory for Z27)-
229) Figure 2.11: Optimal control for Z27)—Z.29)

Figure 2.12: p, for (Z27)—(229) Figure 2.13: p, for [227)-(2.29)

Applying a shooting method to the regularized problem we observe, like in the first example
of this chapter, the convergence of the trajectories, the adjoint vectors and the optimal controls
towards the optimal trajectory, adjoint vector and optimal control of the minimal time problem
problem (2.27)-(229), respectively, as ¢ tends to 0 (see Figures Z.IT4H2I7 for ¢ = 0.2 and
e = 0.5 and Figures 2. I8H2. 2] for ¢ = 0.1 and € = 0.05). We report on Table 2.1] the values of
the final time ¢% of the optimal trajectory 2¢(+), for different values of . We observe that, as

expected, t? converges to ty ~ 5.202346 as € tends to 0.
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€ t?

0.1 5.140856...
0.05 | 5.183549...
0.001 | 5.202331...

Table 2.1: Values of t*‘;}
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2.6.4 Minimal time control of a Van der Pol oscillator

This optimal control problem (see e.g. [81]) consist in minimizing the final time ¢; subject to

the control system

i1(t) = z2(1),
da(t) = —a1(t) + 2(t) (1 — 23(t) + ua(t)
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with the initial and final conditions

1‘1(0) = —0.4,
z1(ty) =06,

and the control constraint
i (t)] <1,

We propose the regularized control system

with the same initial conditions, and where the control u®(-)
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= (uj(-),u5(-)) satisfies the

vVt e [0,t%].




Analogously to examples in Sections §2.6.1land §2.6.3] the assumptions and the convergence
results of Theorem 2.5.7] are verified (see Figures 2.22H2.25]).
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Chapter 3

Asymptotic approach on conjugate

points for bang-bang control problems

3.1 Introduction

In this chapter we focus on the problem of determining an efficient procedure to compute
the first conjugate time ¢, for the minimal time control problem considered in Chapter 2] for
single-input control-affine systems & = X (z) + u1Y1(x) in R"™ with fixed initial and final time
conditions x(0) = &g, x(tf) = &1, and where the scalar control u; satisfies the constraint
lui (t)] < 1, for every t € [0,t¢]. For these systems a theoretical concept of conjugate time
tc has been defined in e.g. [5,[81,87,05] in the bang-bang case, however direct algorithms
of computation are difficult to apply. Besides, theoretical and practical issues for conjugate
time theory are well known in the smooth case (see e.g. [2,86]), and efficient implementation
tools are available (see [I5]). The first conjugate time along an extremal is the time at
which the extremal loses its local optimality. We use the asymptotic approach developed in
Chapter lwhich consists in adding new smooth vector fields Y3, ..., Y, and a small parameter
e > 0, so as to come up with the minimal time problem (OCP), for the system & = X (x) +
u§Yi(z) + e >, ufY(x), under the control constraint Y it (u$(t))? < 1, with the same
boundary conditions as the initial problem, and investigate the convergence properties of
conjugate times. From Theorem 2.5.1] under appropriate assumptions, the optimal controls
of the latter problem, depending on &, are smooth functions of ¢, and the theoretical and
practical results for the conjugate time theory that are well known in the smooth case can
be applied to the regularized problem. In our main result (Section §3.2] Theorem B.2.])) we
prove that the first conjugate time ¢ of regularized problem converges to the first conjugate
time t. of the initial problem, when ¢ tends to 0. We thus get as a byproduct an efficient way
to compute conjugate times in the bang-bang case.

In Section §3.1.3] we consider the bang-bang case and recall two different approaches to

derive second order necessary and/or sufficient conditions for strong local optimality and their
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relation with the existence of conjugate times. In Section §3.1.4] we recall the regularization
procedure introduced in Section §2.41 of Chapter 2l In Section §3.1.5 we recall a sufficient opti-
mality conditions in the smooth case and the concept of geometric conjugate time. These two
sections are very important for the formulation and prove of our main result (Theorem B.2.1))
in Section §3.21 In Section §3.3] we provide two examples to illustrate the main results of this

thesis (Theorems [Z5.1] and B:27T).

3.1.1 Statement of the problem
Consider the single-input control-affine system in R"
T = X(a:) + ulYl(a;), (31)

where X and Y7 are smooth vector fields, and the control u; is a measurable scalar function
satisfying the constraint
\ul(t)\ <1, Vte [O,tf]. (32)

Let Zg and 21 be two points of R"™. Assume that #; is reachable from Zg, that is, there
exists a time 7" > 0 and a control function ui(-) € L*>(0,T) satisfying the constraint (3.2,
such that the trajectory z(-), solution of ([B.1]) with x(0) = %o, satisfies z(T") = 1.

We consider the optimal control problem (OCP) of determining a solution Z(-) associated
to a control u(-), on [0,%], satisfying (B.I)-([B.2) and steering Zo to #; in minimal time ¢;.
We assume that such a solution &(-) for (OCP) exists

3.1.2 Bang-bang Pontryagin extremals

Recalling Section §2.3] we know that, following the Pontryagin maximum principle (see [96]),
there exists an absolutely continuous mapping p(-) : [0,t¢] — R", called adjoint vector, and a
real number p® < 0, with (p(-),p") # (0,0), such that

== <ﬁ(t), %—f(:ﬁ(t))> — i (t) <ﬁ(t), %(i‘(t))> 33

where the function H(z,p,p% u1) = (p, X (2) + w1 Y1(z)) + p¥ is called the Hamiltonian, and

the maximization condition

H(&(t),p(t), p°, i (t)) = ﬁ%ﬂ(ﬁf(t),ﬁ(t),po,w) (3.4)
holds almost everywhere on [0,%f]. Moreover, max;,|<i H(2(t),p(t),p°, w) = 0 for every
t € [0,tf]. It follows from (3.4]) that

a1 (t) = sign(p(t), Y1(2(t))) (3.5)

!See e.g. [26] for existence results of optimal solutions.
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for almost every ¢, provided that the (continuous) switching function

pr(t) = (), Y1(2(2)))

does not vanish on any subinterval of [O,tf]E Such an extremal (2(-),p(-),p", @1(+)) is then
completely determined by the initial adjoint vector p(0). This extremal is a priori defined
on the time interval [0,¢f], but since it is completely determined by the differential system
BI)-(B3) and its initial condition, it may be extended forward on a maximal time interval
I of [0,+00), containing [0,¢s]. In this way, we consider the trajectory &(-) on this maximal
interval 1.

Note that, since Z(-) is optimal on [0,¢f], and since the control system under study is
autonomous, it follows that Z(-) is as well optimal for the problem of steering the system (3.1I)
from 2(0) = &g to z(t), for every t € (0,%y].

Assumption 3.1.1. We assume that the extremal (2(-),p(+),p°, 41(+)) is bang-bang on the

wnterval I, that is, the switching function p1 does not vanish on any subinterval of I.
Denote by 71,...,7s, ... the zeros of p1 on I (possibly in infinite number).

Assumption 3.1.2. We assume moreover that the extremal (2(-),p(-),p° 41(-)) satisfies the

strict bang-bang Legendre condition, that is,

for every 7; with j =1,...,s.

The Assumption B.1.21implies that the times 7y, ..., 75 are isolated and are in finite number
on every compact subinterval of I. In particular, we assume that there are exactly s switching
times on the interval [0,%f], such that 0 < 71 < ... < 7, < ty. Moreover, the Assumption 312l

implies that each 71, ..., 7, is a switching time of the control and hence the control is given by

1 if (,Dl(t) > 0,
—1 if (,Dl(t) <0,

for every t € I.

Definition 3.1.3. Let T'> 0, T' € I. The trajectory z(-) is said to be locally minimal time on
[0, 7] in C° topology if there exist a neighborhood W of the trajectory #(-) in R" and a real
number 7 > 0 such that, for every trajectory y(-) that is solution of (B.I), contained in W,
associated with a control v on [0,7 + 7] satisfying the constraint ([3.2)), satisfying y(0) = %o
and y(t1) = &(T) with t; € [0,T + 7], there holds t; > T.

2The case where the switching function may vanish on a subinterval is related to singular trajectories, and
is outside of the scope of this chapter where we focus on the bang-bang case.

85



The C© local optimality is also called strong local optimality. The notion of global opti-
mality is defined similarly, with W = R" and n = +o0.

The Pontryagin maximum principle mentioned formerly is a necessary first order condition
for optimality; conversely, extremals are not necessarily locally optimal, and there have been
many works on high order necessary optimality conditions (see e.g. [L8]) and on sufficient (first

and second order) optimality conditions detailed in the next section.

3.1.3 Second order optimality conditions and bang-bang conjugate times

Consider the extremal (2(-),p(:),p%, @1(:)) of the problem (OCP) introduced previously.

Definition 3.1.4. The cut time tcu(2o) is defined as the first positive time of I beyond which
the trajectory &(-) loses its global optimality status for the problem of steering the system
BI)-B.2) from & to &1 in minimal time, with the agreement that tey;(29) = +0o whenever
#(-) is globally optimal on every interval [0,7], T > 0, T € I. The point &(tcu(Z0)) is called

a cut point.

Whereas such a global optimality status is difficult to characterize, the local optimality
status of a trajectory may be characterized using the concept of conjugate time, that is,
the time at which the optimal trajectory Z(-) loses its local optimality. We next recall well
known facts on first conjugate times of solutions Z(-) of the optimal control problem (OCP)
associated to bang-bang controls 4 (+).

The definition and computation of conjugate points are an important topic in the theory of
calculus of variations (see e.g. [13]). In [99] the investigation of the definition and computation
of conjugate points for minimal time control problems is based on the study of second order
conditions. In fact, second order necessary and/or sufficient conditions are crucial for study of
the first conjugate time of the problem (OCP). In [110], the theory of envelopes and conjugate
points is used for the study of the structure of locally optimal bang-bang trajectories for the
problem (OCP) in R? and R?; these results were generalized in [60].

Second order optimality conditions

When the optimal control problem has a nonlinear control system and the extremal controls
are continuous, the literature on first and/or second order sufficient conditions is vast; see
e.g. |14L41168,75,77,79,83],86],126] and references therein. In this case numerical procedures
are available to test second order sufficient conditions; see e.g. [10,[70,77]. For second or-
der necessary and/or sufficient conditions of optimal control problems with nonlinear control
systems and discontinuous controls see e.g. [89] and references therein.

We will next focus on second order necessary and/or sufficient optimality conditions for

optimal control problems with affine-control systems and bang-bang optimal controls.

86



In [100] a minimal time control problem for control-affine systems is considered and first
and second order sufficient optimality conditions are derived, for bang-bang Pontryagin ex-
tremal controls which are L!-locally optimal. In [81] the same optimal control problem is
studied and the authors provide sufficient conditions for strong local optimality and develop
numerical methods to test the positive definiteness of a specific quadratic form. In both pa-
pers [100] and [81], the sufficient optimality conditions are expressed in terms of quadratic
forms, however although the same critical subspace is used, the quadratic form in [I00] is a
lower bound for the one in [81]. In fact, the second order sufficient optimality condition in [81]
is always fulfilled whenever the corresponding condition in [I00] is.

In [78[81] optimization methods are given to test second order sufficient optimality con-
ditions for optimal control problems with bounded scalar controls [81], and vector-valued
controls [78].

In [5] the authors derive second order sufficient conditions, under the same regularity
assumptions as [81], for an optimal control problem in the Mayer form with fixed final time,
with affine-control systems and bang-bang optimal controls. In [90] the authors showed that,
in certain cases, the second order sufficient conditions given in [81] are equivalent to the ones
in [5]. In the cases where the equivalence holds, the results obtained in [90] extend those in [5]
to the problem of free final time, with mixed initial and terminal conditions of equality and
inequality type. The detailed proofs of the main results in [90] are given in [9I]. In [5] a
finite-dimensional subproblem is considered which consists in moving the switching times and
a second variation is defined as a certain quadratic form associated to this subproblem; then,
finding a conjugate time consists in testing the positivity of that quadratic form. The authors
prove that this can only happen at a switching time.

In [95] the minimal time problem for control-affine systems is studied. An analogous
quadratic form to the one in [5] is defined, but the kind of optimality studied is a stronger

one (state local optimality).

Quadratic forms

As mentioned above the quadratic forms defined in [581] are equivalent (see [90L91]), although
the way they are defined is different. In this chapter we only give a brief sketch of a possible
procedure to define the quadratic form (see Appendix [Al where the quadratic form deduced

in [81] is recalled).

Let F(t;71,...,7s) = x(t; 71, ..., Ts) be the mapping associated with the finite-dimensional
problem corresponding to (OCP) that consists in moving the switching times 7,..., 7
in a neighborhood of the reference switching times 71,...,7s (see [5,[78,90L091,95]), where
x(t;71,...,Ts) is the trajectory solution of ([B.I]), on [0,¢], with x(0) = %o, associated to the
bang-bang control wi(-) with switching times 71, ...,7s and such that it coincides with the

reference trajectory Z(-) whenever 7; = 7; for every i. Note that the trajectory z(-;7,...,7s)
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is not the projection of an extremal whenever 7; # 7;. The mapping F' is well defined for ¢
in a neighborhood of ¢y and 7; in a neighborhood of 7; for every 4, and is the composition of

smooth mappings, therefore is differentiable. Denoting 7 = (71, ..., 75), one has

(). g
oT1 Ctt OTs
oF
o (t; 71y ey Ts) = : Do 7

ae() gm0

and
oF

ot
Since Z(-) is optimal, it follows that

(t;71y ey Ts) = Bt 71, oy Ts)-

F
rank (88_7'(t; 7, ...,%8)> <n-—1.

Indeed, otherwise, if rank (%—f(t; 71, ...,%8)) = n then F' would be a local submersion, which
contradicts the optimality of &(-). Therefore, there exists a multiplier ¢y € IR"\{0} such that
Yy - %—f(t; T1,...,7s) = 0. Denote by @, the intrinsic second derivative of the mapping F', defined
by

PF .
Qr =Py - W(t; Ty ey Ts)

(3.6)

ker g—f(t;'ﬁ17,,,7fs) ’
Explicit formulas of ), are given in [3L5,8195]; in particular formulas in terms of Lie brackets

of the vector fields can be derived.

The next theorem, combination of several known results, provides a necessary and/or

sufficient condition for strong local optimality.

Theorem 3.1.5 ( [3)58187.05]). Let (2(-),p(-), p*, 11(-)) be a bang-bang extremal for (OCP)
defined on a mazimal time interval I of [0,+00) containing [0,tf]. If this extremal satisfies
the strict bang-bang Legendre condition on I (see Assumption[31.23), then for every t € I, the
following holds:

o If the quadratic form Qy is positive definite then #(-) is a local minimizer in the C°

topology on [0,¢].

o Assume moreover that () has a unique extremal lift (up to a multiplicative scalar)
(#(-),p(-), p°, 1 (+)), which is moreover normal (p° = —1). If 2(-) is locally optimal in
the C° topology on [0,t] then Q; given by (3.6) is nonnegative.

Remark 3.1.6. Under the assumptions of the Theorem [B.1.5] the set
{t > 0| Q¢has a nontrivial kernel}

is discrete and can only consist of some switching times (see [5]). This remark permits to

define the notion of first conjugate time.

88



Definition 3.1.7. The first conjugate time t. of Z(-) is defined by
te = sup{t | Q; is positive definite} = inf{t | Q; is indefinite} .
The point #(t.) is called the first conjugate point of the trajectory Z(-).

Remark 3.1.8. A conjugate time can only occur at a switching time.

Extremal field approach

Sufficient optimality conditions for a general optimal control problem are provided in [87] (see
also [595]) with a different point of view than the one recalled in the previous paragraph. In
[87] the authors study local optimality conditions for both continuous and piecewise continuous
(including bang-bang) controls. The sufficient conditions developed in that article are based
on the method of characteristics and the theory of extremal fields. Sufficient optimalit

conditions are given for embedding a reference trajectory into a local field of broken extremalsé
The occurrence of a conjugate point is related with a so-called overlap of the flow near the
switching surface. Second order sufficient optimality conditions stated in [87] have been tested
numerically for bang-bang control problems; see e.g. [61]. See also [113] where sufficient

optimality conditions for bang-bang controls based on the extremal field approach are studied.

In [114)5], using Hamiltonian methods and the extremal field theory, it is constructed, under
certain conditions, a non-intersecting field of state extremald? that covers a given extremal
trajectory Z(-). In [5] the authors associate the occurrence of a conjugate point with a fold

point of the flow of the extremal field. We next recall the Hamiltonian approach presented
in [5,95].

For every zp = (x0,po) € R™ x R", let z(-, 20) = (x(-,20),p(+, 20)) denote the solution of
the system of equations (B.I) and (B83)), with the control ([B.5]), such that z(0,z9) = 2zp. The
exponential mapping is then defined by

exp(t, zo) = x(t, 29).

In (OCP) as in the problems considered in [5] and [95] the initial point is not free (Zg is a
fixed point of IR™). To apply the Hamiltonian approach presented in [5,95], we consider a C?
function o : R™ — R such that o/(d) = po, where o/(z¢) denotes 9% (z) and po = pH(0).
The function « represents a penalization on the initial point £y and a new finite-dimensional
subproblem is considered, with free initial point «(Z¢), that consists in moving the switching

times and minimizing «(Zg) + t;.

3Broken extremals are associated to piecewise continuous controls.
“By non-intersecting extremals we mean that for any fixed ¢ € (0,%.) and any extremal trajectories z(-),
y(+) with initial points zo, yo, respectively, with zo, yo close to Zo, we have z(t) # y(t).
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The existence of a function « in the previous conditions was proved in [50]. Moreover,
in [95] the authors proved that if the quadratic form (3.6) is positive definite, then the quadratic
form associated to the finite-dimensional subproblem of moving the switching times with free

initial point is also positive definite.

Let O be a neighborhood of the initial point Zy. Let x¢ € O; define the switching time
functions 7; : O — IR with

To(xo) =0 and Tj(fo) = 7A'j, j = 1, ey S,
such that

@1(7j(w0)) = (p(75(20), 20, & (20)), Y1 (2(7j(20), 0, &' (20)))) =0, j=1,...,5.

In other words, 7;(z¢) is the j*B-switching time of the extremal (-, zg, o/ (20)), p(-, Zo, &/ (20))
starting from (xq, ' (z9)), with zq close to Zp.
Since Z(+) is a minimal time trajectory, there holds |m‘ax H (%0, po,p°, w) = 0. Consider the
w|<1
set

X ={zp€ O] ‘mlzgi H(zo, (z0), p°, w) = 0}.
YRS
We claim that X is a (n — 1)-dimensional manifold Indeed, consider the map

G:0-=R

xo — G(xg) = \mf?i H(zg,0a (20),p° w) (3.7)

and the vector field hy(xg) = X (z¢) + u1Y1(x0) that defines the extremal trajectory z(-) on
the interval [0,71(zp)), associated to the value u; that satisfies the maximization condition
B4) on the referred interval. Proving that X is a (n — 1)-dimensional manifold amounts to
prove that, for every function o € C? such that o/(xg) = po, there holds dG(xg) # 0 before
the first conjugate time ¢.. The second variation formula given in [95] p. 275, equation (12)]
taken at (0x,e) = (h1(zg), —1,0,...,0) is equal to, after some simplifications, dG(zg) - hy(x0).
Since the second variation is positive definite on (0, ) then dG(zo) - hi(xo) # 0 before t.. The

claim is proved.

Define the j* switching surface %, for j =1,..., s, as the image of the mapping

ZTo = eXp(Tj($0)) Zo, O/($0)) 5

where g € X.

Remark 3.1.9. If the strict bang-bang Legendre condition holds, then the flow associated to

the maximized Hamiltonian crosses the switching surface X; at the instant 7; transversally,
for j =1,...;s (see [3]).

’The argument that follows is due to L. Poggiolini.
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Theorem 3.1.10 ( [5,80,81,87]). Let (&(-),p(-), p", 1 (-)) be a bang-bang extremal for (OCP)
that satisfies the strict bang-bang Legendre condition on [0,t.), with t. < +oc. The trajectory
#() is strong locally optimal if and only if there ewists a function o € C? with o/ (Zg) = po
such that:

e the trajectory z(-) can be embedded into the field of non-intersecting (broken) extremals

(t,z0) — exp(t,xo, &/ (xg)) where xg € O;

o this field of extremals crosses the switching surfaces X, transversally, for j = 1,...,s,

and for j =1,....s + 1, with 7s41(Zo) = t., the mapping
(7j—1(20), 7j(20)) x X — R"
(t, ) — exp(t, xq, ’(70))
is of rank n.

Remark 3.1.11. In the conditions of Theorem B.I.TI0] at the first conjugate point #(t.), the
flow of the extremal field reflects off the switching surface, causing an overlap of the flow near
this surface (see Figure B.I]- switching surface 4,1, and see [61,[87]).

ES Es—i—l

Figure 3.1: Field of extremals

Remark 3.1.12. Let f;(z0) = X(x0) 4+ u;Y1 (o), for j =1,...,5s +2 and xg € O, be the vector
fields that define the extremal trajectory x(-) on (7;—1(z0), 7j(20)), with 7s41(Zo) = t. and
where u; is the value (1 or —1) of the control that satisfies the maximization condition (3.4) in

each respective interval. If we take 29 € X and j =1, ..., s+1, then for (t,z0) € (1j—1,7) x X

det (exp(t, zo, ' (20)), fj(z0))

has constant sign (see [95]).

Moreover, the determinants

d
det [ — exp(t, zo, o/
¢ <de exp(t, @o a(JCO))‘(t@o)E(Ts(xo)JsH(xO))><X

,fs+1(<170)>
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and

det (di exp(t, o, o (7)) ) fs+2(a:0)>

1oy (t,20)€(Ts+1(0),Ts42(w0)) x X

have different signs (see [95]).

The computation of conjugate times in the bang-bang case is difficult in practice. In
the last few years several methods have been developed for the numerical implementation of
second order sufficient optimality conditions (see, e.g., [78,[81] and references cited therein).
These numerical procedures allow the computation of the first conjugate time, for bang-bang
optimal control problems with affine-control systems, whenever it exists and is attained at a
7™ switching time. Besides, in the smooth case, efficient tools are available; see e.g. [15]. We
next propose a regularization procedure which allows the use of these tools for the computation
of the first conjugate time for the problem (OCP). However, in practice, if j is too large then
the numerical computation of the first conjugate time may become very difficult either using

the methods for bang-bang or smooth controls.

3.1.4 Regularization procedure

Recall the regularization procedure introduced in Section §2.4] of Chapter [2
Let € be a positive real parameter and let Ys,...,Y,, be m — 1 arbitrary smooth vector

fields on R", where m > 2 is an integer. Consider the control-affine system
a5 (t) = X (2°(1)) + ui (Y1 +€Zu (1)), (3.8)

where the control u®(t) = (uj(t),...,u,(t)) satisfies the constraint

> (us (3.9)

i=1
Consider the optimal control problem (OCP)_ of determining a trajectory x°(-), solution
of B.8)-B.9) on [0,¢7], such that 2°(0) = &9 and 2°(t7) = #1, and minimizing the time of
transfer t6 The parameter ¢ is viewed as a penalization parameter. The existence of at least
one solutlon for (OCP), is proved in Lemma 5.6 (Chapter [2).

In Theorem 2511 (Section §2.5] of Chapter 2) we prove that if the problem (OCP) has
a unique solution &(-), defined on [0,%f], associated with a bang-bang control 4 (-) on [0,%y],
and if, moreover, #(-) has a unique extremal lift (up to a multiplicative scalar), which is
moreover normal, denoted (z(-),p(-), —1, 41 (+)), then, under the Assumption 2.4.1], the optimal
controls of (OCP)_ are smooth functions of ¢ and converge almost everywhere on [0,t¢] to
the optimal control of (OCP). Moreover, the associated trajectories 2°(-) and adjoint vectors

p°(-) converge uniformly to () and p(-), respectively, on [0,t¢], when € tends to 0.

Remark 3.1.13. This result remains true if we extend forward the interval [0,¢¢] on an interval

[0,T] for T € I, where I is a maximal time interval of [0, +0c) containing [0,%y].
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3.1.5 Conjugate times in the smooth case

We recall how to define the concept of first conjugate time for the smooth optimal control
problem (OCP)_. A first possible definition of conjugate times is in terms of a quadratic
form, which is the second order intrinsic derivative of the end-point mapping defined by
E(e, 15,20, u®) = 2°(t3) where ¢t — 2°(e,t,20,u) is the trajectory solution of ([B.8), asso-
ciated to the control u®, such that z¢(g,0, g, u®) = &o. Testing a conjugate time amounts to
testing the positivity of that quadratic form. However, this definition requires a corank one
assumption, and we will rather use a geometric concept of conjugate time, defined below. We
refer the reader to [15] for a survey on that theory and to [2] for extensive explanations and

for the more general Morse index theory.

Geometric conjugate time

Definition 3.1.14. Let xg € O. The point 2°(t5) is geometrically conjugate to x°(0) if and
only if the mapping xg — exp®(t5, zo, /(o)) is not immersive, that is,
d
det <— exp® (s, o, a'(:no))) =0.
dl‘o

The time ¢ is called a geometric conjugate time.

A

Remark 3.1.15. Given an extremal (2°(-),p°(-),p", u®(-)), the notion of geometric conjugate
time coincides with the notion of conjugate time defined in terms of quadratic form, provided

the following assumptions hold:

e the strong Legendre condition holds along the extremal, that is, there exists v > 0 such
that e
H .
5oz @), 61 () - (v,0) < =l

for every v € R™;

e the control u is of corank one on every subinterval (assumption of strong regularity,
see [99]).

Moreover, in that case the first conjugate time ¢° characterizes the optimality status of the
extremal: the trajectory Z°(-) is strongly locally optimal on [0, ], for every t < t; for t > 2,
the trajectory °(-) is not locally optimal on [0,t] (see, e.g., [2L15,99]).

Remark 3.1.16. None of the two assumptions of the previous remark will be made for the
extremal (2°(-),p°(-),p%, (). In fact, our aim is to prove that the first geometric conjugate
time ¢2 converges to the first conjugate time ¢, of the bang-bang case, when ¢ tends to 0. This
result, derived in Theorem B.2.1] (Section §3.2]), will permit to use as well in the bang-bang
case the available efficient implementation procedures that exist in the smooth case, like for
instance the free package COTCOTH (see [19]).

5Conditions of Order Two, COnjugate Times, http://apo.enseeiht.fr/cotcot/
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For normal extremals (z°(-),p°(-), —1,u®(-)) that satisfy the strong Legendre condition,
the absence of conjugate points is a sufficient condition for local optimality (see e.g. [2]). This

sufficient optimality condition will be expressed using the extremal field approach.

Extremal field approach

From Theorem 251l every extremal lift of the problem (OCP), is normal (p* = —1). Anal-
ogously to the bang-bang case, the aim is to construct a family of extremals containing the

reference normal extremal (2°(-), p°

(1), —1,4°(-)), sharing nice non-intersection propertied| be-
fore the first conjugate time.

For every zp = (x0,po) € R" x R", let 2°(+, 20) = (2°(, 20),p° (-, 20)) be the solution of the
system of equations (3.8) and (2.8]), with the controls (2.11), such that 2°(0, z9) = 2z9. The

exponential mapping associated to (OCP), is defined by
exp®(t, z9) = x°(t, 2p).

Let 79 € O and of : R"” — IR be a C? function such that a*'(zg) = p°(0), and such that
the family of functions (o) converges to the function « associated with the problem (OCP)
in C? topology, as ¢ tends to 0. As in the bang-bang case, define

X = {$O S O| max Ha(xo’ael(mo)’ _wa;‘) = O} :

2
Yt wist

For € > 0 small enough, X¢ is a (n — 1)-dimensional manifold. Indeed, let G° be defined on
O by G¢(xp) = maxs~m ,2< He(xg,d/ (x), —1,w*). It follows from Theorem 251] that G*
converges to G ([B.7) (defined in Section B.L3)) as e goes to 0, and therefore, for a € C? such
that o/(zg) = po, there holds dG*(xg) # 0, since dG(z) # 0.

Theorem 3.1.17 ( [2]). If the normal extremal (2°(-),p°(:), —1,4°(-)) satisfies the strong Leg-
endre condition and, moreover, can be embedded into the family of extremals exp®(t, xg, o' (z0))

such that the mapping
(0,5) x X* — R"
(t,z0) — exp®(t,z0,a" (x0))

is of rank n, then (2°(:),p°(-), —1,4°(")) is a local minimum in C° topology for the problem

(ocp)..

Remark 3.1.18. The typical behavior of the flow of the extremal field at the first conjugate
point is a fold point (see Figure 3.2] and see [2,[54]).

"By nice non-intersection properties we mean a non-intersecting field of extremals (cf. footnote in page [§9).
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Figure 3.2: Field of extremals in the smooth case

Remark 3.1.19. If one considers xy € X¢, then a°(t%) is geometrically conjugate to z°(0) if

and only if

det <i expe(ti,azo,ae'(azo))Xe,fa(x0)> =0,
d:L'()

m

where f¢(xg) = X (2°(z0)) + 6Zu§:(:no,a€/(:no)) and u$(xo,a'(z0)) are smooth functions
1=1

that satisfy the maximization condition (2.I0).

Remark 3.1.20. Note that, as long as the minimum time function is differentiable at the point

#%(t), the optimal trajectory 2°(-) can be embedded into a non-intersecting extremal field.

Remark 3.1.21. To derive a necessary optimality condition, a corank one assumption is re-
quired for the extremal (2°(-),p°(-),p",@°(+)) (see [I5]).

3.2 Convergence results

We first recall the context. Let Z(-) denote the strong locally optimal trajectory of (OCP),
corresponding to the control @; on [0,tf]. In particular, t¢ is the minimal time so that
(0) = o and &(ty) = &1. We extend Z(-) on a maximal interval I C [0,400) containing
[0,2f], and denote by t. its first conjugate time. For every € > 0, let 2°(-) denote an optimal
trajectory solution of (OCP)e, corresponding to a control 4° = (af,...,4y5,) on [0,t7]. In
particular, ¢ is the minimal time so that 2°(0) = %o and 2°(t3) = #1. We extend 2°(:)
on a maximal interval of [0,400) containing [0,¢%], and denote by ¢Z its first geometrically
conjugate time.

The main theorem of this chapter is the following theorem.

Theorem 3.2.1. Assume that the problem (OCP) has a unique solution &(-), associated
with a bang-bang control 1(-), on a mazximal interval I. Moreover, assume that Z(-) has a

unique extremal lift (up to a multiplicative scalar), which is moreover normal, and denoted by
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(z(+),p(+),—1,41(-)). If the extremal (Z(-),p(-), —1,41(-)) satisfies, moreover, the strict bang-
bang Legendre condition on [0,t.], then the first geometric conjugate time t& converges to the

first conjugate time t. as € tends to 0.

Remark 3.2.2. Let tcy; denote the cut time along the extremal (£(-), p(-), p*, @(-)). Analogously
to the bang-bang case, we can define the cut time tS , of the optimal trajectory (-) for the
problem (OCP). as the first time at which #°(-) loses its optimality. We claim that, under
the assumptions of Theorem 251, there holds limsup ¢S, . < teut.

cut =
e—0

The next proposition is the key result to derive Theorem B.2.11

Proposition 3.2.3. Let O be a neighborhood of g and xo € O. The exponential mapping
(t, m0) +— exp®(t, g, (z0)) converges to (t,xq) — exp(t,zo, ' (wg)) piecewise in C* topology
on I x O, with Ts41(Z9) = tc, as € tends to 0. More precisely, on every compact subinterval
of (tj—1(x0),7j(x0)) x O, with (Tj—1(x0),7j(x0)) C I and j € IN, the mapping (t,zo) —
exp® (t, zo, o' (z0)) converges to (t,xq) — exp(t, zo, o’ (o)) uniformly in the C topology.

Proof. In what follows, when it is convenient, we simplify the notation and write exp(¢, xg) or
x(t, o) (respectively, exp®(t, zo) or 2 (¢, zo)) for exp(t, xo, o’ (o)) (respectively, for exp®(t, xg, o' (z0))).
Let € > 0 be small enough. For zy € O, consider the function

(101(5’ t ‘/EO) = <p(€’ t, ‘/EO)v Yi($(57 t, $0))>

For (e,t,x0) = (0,7}, 20), by definition of the switching time, one has ¢1(0,7;,z9) = 0,
and by the strict bang-bang Legendre condition, %(0,7}-,:170) # 0. By the implicit function
theorem there exists a neighborhood (—ep,ep) of 0 € IR, such that for ¢ € (—eg,¢¢), there
exists a C'! function 75 (z0) = 75 (e, 0), With j = 1,..., s, satisfying ¢1(, 75 (z0)) = 0 and such
that, as e tends to 0, 75 (z¢) converges to 7;(z¢), and g—Z(azo) converges to g—g(xo).

Analogously to the definition of switching time function of an extremal trajectory z(-), we

have thus defined some functions T;() : O — IR, that are however not switching functions.

Lemma 3.2.4. The mapping (t,zo) — exp®(t, g, (xg)) converges to (t,zg) — exp(t, g,/ (z0))
uniformly in the C* topology on J x O, where J is any compact subinterval of [0,71(x)), as
e tends to 0.

Proof. Let J be a compact subinterval of [0, 71(zg)). The uniform C° convergence on J x O
of the mapping (¢,x9) — exp®(t,zo) to (t,z0) — exp(t,zg), as € tends to 0, is a direct
consequence of Theorem 2511 We have
0 exp®
ot
where @°(t,zo) is given by (B.8). From Theorem 2Z51] 4°(t,z¢) converges to &(t,zp) =
%(t, xo) as € tends to 0. On the other hand,

(tv $0) = jja(t’ l‘o)

0 exp®
Ipo

0 exp®

“org (t, o, o' (w0))a™" (z0) ,

— exp®(t, zg, 0"’ (x0)) = (t, 20,0 (20)) +

d:L'()
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£ £ . . .
where 85;013 (t, o, (z9)), and 65;5’ (t, 70,0 (zg)) are solutions of the linearized system as-

sociated with the Hamiltonian system, for the problem (OCP),_ on [0, ], given by

F(0) = X (@5(0) +ui (0¥ (25(0) + € D ui ()Y (a7(0)
=2
70 == (70, S =0 ) - i) {370, S ) )
S Y,
<>t (0, Do)
E <p du >

From Theorem Z5.T] (2°(-),p°(-)) converges uniformly to the solution of the Hamiltonian
system associated with the problem (OCP) as ¢ tends to 0. This convergence clearly holds
as well for the solutions of the linearized system associated with the Hamiltonian system for

(OCP)_; therefore, as € tends to 0, agzope (t, 20, (z9)) (respectively, ag;gg (t, 20, (z0)))
Jexp
dpo

0 exp
oxg

(t, 0,0/ (x0))) uniformly on [0, ¢]. O

converges to (t,z0,0(x0)) (respectively,

In what follows, the notation 7;"(xq) (resp. 7. (zg)) stands for the right limit (resp. the

j j
left limit). For zp € O and j = 1, ..., s, we call the jump of 8;;? (t,z0) at 7j(xo) the difference

aexp( n 0 exp

75 (20), z0) —

(5 (o), o)

Oxg Oxq

which is, according to [87, Equation 3.10, p. 123|, given by

8;;;13 (17 (20), ) — 8;;20 (75 (%0), o)
= (117} (20), 20) = w77 (20). ) Yi ({1 (0). ) 52 (o) (3.10)

= (sten(i (7)) —sign(e1 (7 ) Vi(o(ry(a0). 50) 52 (o).

Due to this jump condition one cannot expect to get a C'' convergence result on the whole

interval. We will next estimate the difference

0 exp®

0 exp®
L (7% (o) +n, 20) - Fag (T (¥0) = . 0), (3.11)

8:170

for n > 0 small, and show that it converges to (8.10]), whenever ¢ tends to 0, and then 7 tends
to 0.

Lemma 3.2.5. There holds

0 exp® 0 exp®
i i (2258 55 4. 0) — 222 17 0) — 10
n—0e—0 8%0 8%0 (3 12)
Jexp dexp, _ '
= oz (11" (w0), 20) — O (11 (w0), 20)



Proof. One has

gt (gl’ (t,$0)> = (g—ﬁ](gje(t’$0)) +ui(t’x0)g—i:l)(l‘€(t,$o))

= . oY; , . ozt
+E;ui(t’x0)8—xo(x (t,azo))>a—xo(t,xo)
+ Yy (2°(t, ))%(t x )—I—siY-(xE(t x ))%(t xo)
BT G T T L TR AT g T
It follows that
0x® , . dz° | .
8%0 (Tl (.’I’o) + T],IL'()) - axo (Tl (.’I’o) - T,axO) =
(xo)+n , 9X 6 oY, .- G oY; , . 0xf
/Tf(mo)—n (8—%@ (t,z0)) + uj(t, xo)axo( (t,z0)) +6;ui (t’$0)8—:m)(x (t,:no)))a—%(t,:no)dt
i (z0)+7 Oue i (o) + 3 e
+/ Yl(:na(t,xo))—l(t,:no)dt—l—/ STVt w0)) L (1, )t
i (z0)—7 Ao £(z0)—n Z dxg

It is easy to see that the limit when 7 tends to zero of the limit when € tends to zero of the

first and third term of the right-hand side of the last equation is equal to zero. Only the limit
term

i (z0)+n €

ou
: : 5 1
lim ling . Yi(x (t7$o))—axo(t,wo)dt

deserves a special attention. Let us denote

05 (t, x0) = (p°(t, x0), Yi(z°(t, x0))), i =1,...,m.

From (2.I1]), we compute easily

n ] R
ot g2 (gwo (t xO) Z Pi (t7 .’1’0)2 — ¥ (ta ‘TO) Z Pi (t7 .’I'()) aio (t7 ‘TO))
dxg (t:20) = ‘- i
(wg (t,20)% + €2 Z ; (t, xo)z)
=2

We will consider asymptotic expansions of these quantities around 7§ (x). Since ¢f (75 (z0), o) =
0 for every xg, it follows that

07
8:170

R 0¥, . ors
(11 (z0),20) = — 8751 (1 (1150)71170)6—332(1170)-
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In what follows, denote 75 = (7§ (z0), zo). One has

T
/T Yi(x (t,mo))a—xé(t,mo)dt

i

T1+n
:/ (Y1(25(§)) + O(t — 1§)) -

N
[ & (B85 +0(t =) D (w5 (5) + Ot — 7))

Op5

=2
. 2\ 3/2
<(W(Tf)(t ol —m) + ey (v + S ) - o)+ olt — 7)) )
1=2

& (G (r5) + Ot — 7)) S (5 () + Ot — 7)) (g—gj@ +O(t—7f)>

=2
m - 2 3/2}
((%Tf)(t ~ ) olt = 10)) 42t Y (i) + o) o)+ olt — 1)) )
=2

and simplifying the last expression (the terms of order O((t — 75)*) and o((t — 7§)!), with
k=2,3 and [ = 1,2, 3, are omitted) we get

dt

T +n €
/1 Yf(xe(taﬂfo))aul(tawo)dt

<y Oxg
/Tl+’7 (Y1(z*(1))) _6285? T 3/2 ?(wo)
T <<(%(Tf)>2 + 52N2> (t—75)% + e2N3(t — 75) + E2Nl> "
e2(M; — Mp)O(t — 7) — 2288 (75 ) N1 978 () Ot — 75) o
(D) + 2w = o2+ omate - ) + s2N1)3/2

where

- - 6 ? - e/ € azE 5
Ny ZZ(% (m1)7 Z< " > » N3 22%(71) Oi (1)
=2 =2 =2
05 o) S < (0 o)
M :28(‘01(1 Z +Z (107, 7_1 ) 2_Z<8x0(7—1)>
=2 =2 =2

Notice that the denominator never vanishes, since by Assumption [2.4.1] the functions (¢, z¢)
vi(t,z0), i =1,...,m do not vanish simultaneously.

The limit when 7 tends to zero of the limit when € tends to zero, of the first and second
term of the right-hand side of the last equality are respectively equal to

(sign(e1(r77)) — sign(e1(r1))) Yl(iﬂ(ﬁ(fl?o),wo))%(xo) and 0.

0

99



Since
or{ o1y

(w0) = 5. (@0),

lim
e—0 0xg

it follows that

iyl (G )+ )~ G ) =)
= (sign(p1 (")) — sign(p1 (1)) Ya(z(m (330):“70))2—;(1)(330)7

and the lemma follows. O

Jexp
Jpo

yond the first switching time; the extension of Lemma B.24] to every further interval (7;_1,7;)

A similar lemma holds for . This result permits to extend the convergence result be-

is then straightforward. This proves the proposition. U

We are now in a position to prove Theorem B.2.I] From Theorem B.I.I0] the trajectory
#(+) can be embedded into the field of extremals ¢ — exp(t, zg, @' (zg)) with zg € O and the

mapping
(0,t.) x X - R"

(t,z0) — exp(t, zo, o' (20))

is of rank n, where X = {z¢ € O| |m\{?§ H{(zg, (z0),p°, w) = 0}, O is a neighborhood of Z,
w|<

and t. is the first conjugate time of Z(-).
From Remark 3.1.12] the determinants

det <i exp(t, zo, o/(xo))‘ ) fs+1(330)>

dxg (t,20)€(Ts (20),Tax1 (T0)) X X

and

det (di exp(t, o, o (7)) ) fs+2(a:0)>

L0 ‘(t7r0)6(7s+1(wo),Terz(wo))XX
have different signs, with 7541 (Zo) = ..
By Definition B.I.T4], the point z°(75(xzg)) is geometrically conjugate to 2°(0) = z, with
xo € X°, if and only if
d > el 15
det [ — €xp (t7 Zo, (.’130)), f (‘TO)L’EQEXE =0
dxo

for t = 75(x0). Let zy € X°. We have

9 exp® 0 exp® or
;;(f (75 (w0), 20, 2 (20)) = e(;;p (T£($0)’$0’a6/($0))8;0 (zo)
8 £
86;((1;) (7% (20), w0, &' (0))
8 £
ae};(f) (7—6($0)7$07a€/(x0))a6//($0)'
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Since 868’?5 (7%(z0), z0, ' (20)) = 2°(x0) = f¢(x0), there holds,

det (866}?6 (Te(azo),xo,aa/(xo))g;z (xo),fe(x0)> = 0.

Thus, it follows that

det (di exp® (7% (20), z0, o' (20)), f€($0)>

Z0
0 exp®
Ipo

8 £
= det ( ;;((I; (Ta(xo),xo,aa’(xo)) +

(7 (au) 0.0 (av))” z0), /(o)
= det (di exp® (t, 2, o’ (z0)), fa(xo)>

Lo

for t = 7°(x¢). By Proposition B:2Z3] on every compact subinterval of (7;_1(xo), (o)), the
mapping (t,x9) — exp®(t,xg,ac (zg)) converges to (t,zg) — exp(t,zo, ' (zo)) uniformly in

C' topology, therefore the determinants

d
det | — exp®(t, zg, o' (x ‘
(dxo S A e

,fa(xo)>

and

det (dio exvf (170, 07/ (20)|

f€($0)>

have different signs before and after 75,,(xo). Therefore, by continuity, the function ¢ —

M
(t,x0)€(T51 1 (z0),75 4 2 (w0)) X X©

det <ﬁ exp®(t, zo, o' (x0)), f¢(x0) ) vanishes for some time, close to 75, ,(29). By Defini-
tion BI.T4] this time t5(xg) is a geometrically conjugate time, and when e tends to 0, t5()
converges to the bang-bang conjugate time ¢t. = 7541(%o). This ends the proof of the Theo-
rem [3.2.1]

3.3 Examples

In this section we illustrate Theorem [B2.1] with two examples of minimal time control prob-
lems.

3.3.1 First example: Rayleigh minimal time control problem

We consider the minimal time control problem for the Rayleigh control system (see e.g. [T6}81]),

il (t) = X9 (t),

(3.13)
:i?g(t) = —l‘l(t) + $2(t)(1.4 — 0.141E2(t)2) + ul(t),

with the control constraint

i () <4, Vte[0,t] (3.14)
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and with boundary conditions given by
a;l(O) = —4, xQ(O) = —3, a;l(tf) = xg(tf) =0. (315)

According to the Pontryagin maximum principle, any optimal solution Z(-) of (B.I3)-(B.I5) is
the projection of an extremal (&(-),p(-),p°, @1 (-)) such that

pit) = pa(t)

, (3.16)
Pa(t) = —pa(t) — Pa(t) (1.4 — 0.4225(t)?)

and the maximization condition pa(t)i1(t) = max|,|<4 (P2(t)w) holds almost everywhere on
[0,t7]. It is easy to see that ps(-) cannot vanish on some subinterval, and it follows that
the optimal control 4;(-) is bang-bang, equal to 4(t) = 4sign(p2(t)). Applying a shooting
method to problem @I3)-(BI5) (with p® = —1), we determine the initial adjoint vector
p(0) ~ (0.53095052; 0.34206485), and observe that the trajectory has only one switching time
71 =~ 0.57613128 on [0,%y], that is, @ (-) is given by

+4 for 0<t<H

—4 for 7A'1 §t§tf,

with a final time ¢ty ~ 2.97812917 (see Figures 3.3 and B.4). Furthermore, Z(-) is the unique
minimal time solution and has a unique extremal lift (up to a multiplicative scalar), which is

moreover normal.

-3t

-4

Figure 3.3: Optimal trajectory Figure 3.4: Optimal control

Prolongating the trajectory &(-) to the interval [0, 4], we observe a second switching time
at 7o =~ 3.14750955.
Notice that the second-order sufficient conditions of [T8-81] are satisfied before 7o, con-

firming the local optimality status of the trajectory, but are no longer satisfied beyond this
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second switching time; we can thus expect the trajectory not to be locally optimal beyond 7
(see Appendix [A]). To investigate this optimality status we use the extremal field approach.
From Theorem B.II0] and Remark BTl the first conjugate point #(t.) is an overlap
point of the extremal field emanating from the horizontal one-dimensional manifold X =
{z0 € O] |I11”1‘a<)§ H(xg,d (zg),—1,w) = 0}. In practice, the function « is not known, and
we rather use the field of extremals emanating from the vertical manifold X, = {py €
O, | ﬁul\ag)i H(Zo,po, —1,w) = 0} (see [I5,95]), where O, is a neighborhood of the initial value of
the adjoint vector p(0). The characterization in terms of fold point still holds for this vertical
manifold (see [95]). We observe on Figures and that this field of extremals reflects off
the switching surface at the second switching time; the point &(7) is a fold point and the first

conjugate time is equal to the second switching time, ¢, = 7o ~ 3.14750955.

-0.4 -0.2 0 0.2 0.4

Figure 3.5: Extremal field for ¢ € [0, 4] Figure 3.6: Overlap of the flow

We next propose a regularization procedure, for which we compute the first geometric
conjugate time t2 and check that it indeed converges to the first conjugate time t. of the

bang-bang case as € tends to 0.

We consider the regularized control system

) (3.17)
(t) = —aS (t) + a5() (1.4 — 0.1425()?) + S (),

with the boundary conditions (8.I5]), and where the control u®(-) = (uj(+),u5(+)) satisfies the

constraint

(ui(t)® + (u5(t))* <16, Vt € [0,t5]. (3.18)
Any optimal solution Z°(-) of (BI3), BI7) and (BIT7) is the projection of an extremal
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(2°(-), p°(+), "¢, 4°(-)) such that

B (1) = 330
B(t) = —45(1) — $3(1) (1.4 — 0.4235(1)%) |

~

The Assumption [2.4.1] is verified, and the controls that satisfy the Pontryagin maximization
condition (2.I0) are given by

455 (t) a5t = 4ep5 (1) |
VEEOZ @2 0 JB0)2 + 20 (1)?

Applying a shooting method to this problem, we determine the optimal trajectory of the

@ (t) = (3.19)

regularized problem, and we indeed observe the expected convergence of (2°(-),p(+), —1, )
towards (Z(-),p(+), —1,41), as € tends to 0, in agreement with Theorem Z5.1] (see Figures B

59).

3 T 1 0.4
“““ ) =—— epsilon=0 ) = epsilon=0
e - 1o epsilon=0.1 0.2} oo epsilon=0.1
2 ’, - = = = epsilon=0.01| | = = = epsilon=0.01
v of 3
4
A4 A -0.2
1’
i L -0.4
o ¥ o ]
&~ OF r & S 0.6
< o =X
-0.8
s
1)
-1.2r
ol
145
-3 . . . . -15 : . -16
-5 -4 -3 -2 -1 0 1 0 1 2 3 0 1 2 3
xEPs t t
1
Figure 3.7: Trajectory Figure 3.8: Adjoint vector

The optimal controls (3I9) are smooth functions of ¢, therefore the algorithms presented
in [I5] to compute the first conjugate time along a smooth extremal curve can be applied.
Here we will apply the test for conjugate times explained in [I5] when the final time is free
and the extremal is normal. Let us briefly recall this test. The maximized Hamiltonian writes

as

462]55
HE(2%,5°) = 3 | 35+ —=——=
' (P5)? + e2(p7)?

4AE
+ 5 <_¢§ + 25(1.4 — 0.14(&:3)2) + b2 (A€)2> - L
by

(P3)? + €
The aim is to compute the solution Z¢(-) = (d25(-),025(-), 6p5 (), op5(-))T of the so-called
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&+ 0
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al
o 05‘ 1 15 2 25 3
Figure 3.9: Control
variational system Z¢(t) = V (t)Z%(t) along the extremal (&°(-), p°(-)), where
82H5 02HE (., A
( oo (2°(1),9°(1)) T (8°(8), (1) )
82HE e 02HE (., .
e ),p°(t) — ama; (25(t),p°(1))
with initial conditions (625 (0),0x5(0)) = (0,0) and (6p5(0),0p5(0)) such that the scalar prod-
uct ((f£(0), f5(0)), (6p(0), 6p5 (0))> is equal to 0, where (ff, f5) is the dynamics, given by

con . £2pi(t)
110 =20+ Jarremor:

A . c _ e 2 4p§(t)

The first geometric conjugate time is then the first positive zero of the function
t = det (07(t) 0x5(t), f1(t) f3(t))
(see Figure B.10).

We report on Table B.3.1] the values of the first geometric conjugate time of the optimal
trajectory 2°(-), for different values of €. We observe that, as expected, t5 converges to
t. >~ 3.14750955 as ¢ tends to 0.

Another possible test (see [15]) is to compute numerically solutions
Zi(+) = (623;(-), 629 (), 0pLi (), 0p% (1)), 1= 1,2,

of the variational system considered previously, with initial conditions (dpj,(0),p5,(0)) =
(1,0) and (dp35(0),6p55(0)) = (0, 1), and then to compute the rank of the matrix

Ja(t): 5‘Ti1(t) (51’51@)
d5y(t) dagy(t))
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Figure 3.10: det (625(¢) d25(¢), ff(t) £5(¢)), e = 0.01

€ s

0.1 3.26735859
0.01 3.1559626
0.001 | 3.14844987
0.0001 | 3.14760515

Table 3.1: Values of t]

This rank must be equal to 1 outside a conjugate time, and 0 at a conjugate time. In order
to compute it, we use a singular value decomposition of J¢(¢); then, a conjugate time occurs

whenever the first singular value of J*(t) vanishes (see Figure B.IT]).

14

12F

10F

Figure 3.11: First singular value of J*(t) (¢ = 0.01)
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In this first example, the first conjugate time ¢, of the optimal bang-bang trajectory &(-) co-
incides with the second switching time. We next provide an example where the first conjugate
time is equal to the third switching time.

3.3.2 Second example

Consider the minimal time control problem for the control system

#1(t) = sin(xo(t)),

. . (3.20)
Bo(t) = —sin(z1(t)) + wa(t),
with the control constraint
|U1(t)‘ <1, Vte [Ovtf] ) (321)
and with the boundary conditions
a;l(O) = LL’Q(O) = 0, a;l(tf) = 2.9, xg(tf) =0.1. (3.22)

From the Pontryagin maximum principle, any optimal solution Z(-) of (B.20)-([322) is the
projection of an extremal ((-),p(-),p% @1(-)) such that

P1(t) = pa(t) cos(@1(t)),
Pa(t) = —p1(t) cos(@a(t)),

and the maximization condition pa(t)d1(t) = max|,|<; (P2(t)w) must hold almost everywhere
on [0,t7]. It is easy to see that po(-) cannot vanish on some subinterval, and it follows
that the optimal control 44 (-) is bang-bang, equal to 4 (t) = sign(p2(t)). Applying a shooting
method to problem (3:20)-(322) (with p® = —1),we determine the initial adjoint vector p(0) =
(—0.5,1), and observe that the trajectory has one switching time 77 ~ 3.26174615 on [0,t¢],
that is, 41 (+) is given by

i (t) = +1 for 0 <t <7y,

—1 for 7y <t <ty

with a final time ¢y ~ 4.07756604 (see Figures and B13). Furthermore, Z(-) is the unique
minimal time solution and has a unique extremal lift (up to a multiplicative scalar), which is
moreover normal.

Prolongating the trajectory () to the interval [0, 11], we observe a second switching time
at 7o ~ 6.21787838, and a third one at 73 ~ 10.46930198. Considering as in the previous
example the extremal field emanating from the vertical manifold, we observe on Figures B.14]
and 3.5 that the extremal field crosses transversally the second switching surface, but reflects
off the third switching surface, and it follows from Theorem B.I.10] that the first conjugate

time t. is equal to T3.
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Figure 3.15: Zoom on the overlap of the flow at
Figure 3.14: Extremal field, ¢ € [0, 11] the third switching time

We propose the following regularization. Consider the control system

27 (t) = sin(x5(t)) + eus(t), (3.23)
25(t) = —sin(z1(t)) + ui(d),
with the control constraint
(ui(t)® + (uz(t)* <1, Vte[0,t5], (3.24)

and the initial and final conditions ([8:22)). Any optimal solution Z°(-) of ([B.22)-(B.24)) is the
projection of an extremal (2°(-),p°(-), p*,4°(-)) such that

pi(t) = P5() cos(25 (1)),
p5(t) = = (1) cos(@5(t)),
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and the maximization condition implies that the extremal controls are given by

o 550 o hi (1)
O=Tmrreeor VT Veorreeor 0 0P

Applying a shooting method to this problem, we determine the optimal trajectory of the

regularized problem, and we indeed observe the expected convergence of (2°(-),p°(+), —1, a)
towards (z(-),p(-), —1,41), as € tends to 0, in agreement with Theorem 2.5 (see Figures 316l

B.I8).

1.4 T T T T T T 1.4 1.2

— epsilon=0
1.2 1 | '+ epsilon=0.1
1.2 = = = epsilon=0.01
1 0.8
ir 0.8 0.6
sl 0.6 0.4+
g £. 04 £a 02
2 o =
0.6 0.2 or
04l 0 -0.2
-0.2 -0.4F
0.2
-0.4 -0.6
0 -0.6 -0.8
-0.5 2 4 6 0 2 4 6
t t
Figure 3.16: Trajectory Figure 3.17: Adjoint vector

e <

—— epsilon=0 1

0.8F ' epsilon=0.1 o
= = = epsilon=0.01 E

Figure 3.18: Control

As in the previous example, the controls ([8.25]) are smooth functions of ¢, and we apply the
algorithm described in [15], computing as before the determinant det (6x§(t) 0x5(t), f5(t) f5(t))
(see Figure B.19). We report on Table [3.3.2] the values of the first geometric conjugate time
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20

det

Figure 3.19: det (625 (¢) 625(¢), f{ (t) f5(t)), e = 0.1

of the optimal trajectory °(-), for different values of £. We observe that, as expected, tZ

converges to t. as € tends to 0.

€ o
0.1 10.01593283
0.01 10.3164905

0.001 10.41858121
0.0001 | 10.45291892
0.00001 | 10.46419119

Table 3.2: Values of t¢

Remark 3.3.1. We observe on both previous examples that it is not needed to consider very
small values of € to estimate the first conjugate time ¢.. Indeed, a conjugate time of a locally
bang-bang trajectory can only occur at a switching time (see Remark B.I.8]) and, under our
assumptions, switching times are isolated (see Remark B.1.0). From Theorem B.2.1] the first
geometric conjugate time t° converges to ¢., when ¢ tend to 0. Therefore, as soon as ¢ is small
enough so that ¢ is in a (not necessarily so small) neighborhood of some switching time 7
of the bang-bang trajectory Z(-), this means that the bang-bang conjugate time ¢. is equal to

that switching time 75.
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Conclusion and open problems

In this PhD thesis we focused on the problem of determining an efficient procedure to compute
the first conjugate time t. for the minimal time problem for single-input control-affine systems
&= X(x) +u1Y1(x) in R™ with the control constraint |u;(t)| <1, for every t € [0,¢y].

We proposed a smoothing procedure which consists in adding new smooth vector fields
Yo, ..., Y, and a small parameter € > 0, so as to come up with the minimal time problem for
the system & = X (z) +u§ Yy (x) +¢e Y 1ty ufYi(x), under the control constraint > 1%, (uf(t))? <
1, with the same boundary conditions as the initial problem. We proved, under appropriate
assumptions, that the optimal controls of the latter problem, depending on &, are smooth
functions of ¢, and converge weakly to the optimal control of the initial system; moreover
the associated trajectories converge uniformly. If the optimal control of the initial system is
moreover bang-bang, then the convergence of the regularized control holds almost everywhere;
this property may however fail whenever the bang-bang property does not hold. We provided
examples and counterexamples to illustrate our result. Moreover, we proved that the first
geometric conjugate time of regularized problem converges to the first conjugate time initial
problem, when ¢ tends to 0. This convergence result, allowed us to use theoretical and practical
results for the conjugate time theory that are well known in the smooth case and apply them
to the regularized problem in order to compute, consequently, conjugate times of the initial
bang-bang problem. Note that our results still hold if the control-affine system is considered
on a manifold (in this work we considered R" for the sake of simplicity).

An open question is to extend the results proved in Chapters 2l and [Blto general nonlinear
control systems. In our point of view, this extension seems difficult, because it may be not
obvious to generalize the nice expression (2.I1]) (see Chapter 2] Section §2.4]) to more general
situations and, on the other hand, Lemma does not hold a priori for general control
systems, moreover, it is not clear how to derive Lemma 257 and the subsequent results.
Although, it would be interesting if we could extend our results to multi-input control-affine
systems & = X(z) + >¢ ; w;Y;(z) in R", where u = (u1,...,up) € L®([0,tf],A) and A is
a polyhedron (see [95]), or a convex polyhedron (see [8I]), or a convex compact polyhedron
(see [I00]) of RP. For p > 1, it would be interesting to consider the case where multiple
switching times may occur, that is, when at least two control functions switch at the same

time. Another open question concerns the generalization to general cost functions.
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Appendix A

First and second order sufficient
optimality conditions in the normal

case

First and second order necessary and/or sufficient optimality conditions have a crucial role in
the study of first conjugate times for bang-bang minimal time optimal control problems with
control-affine systems. In [3[5,81,95/100] first and second order necessary and/or sufficient
optimality conditions are given in terms of a quadratic form Q. As we recalled in Section §3.1.3I
of Chapter [ the quadratic form in [100] is a lower bound for the one given in [81], and in
certain cases the quadratic form in [81] is equivalent to the one in [5] (see [90]). In [95] an
analogous quadratic form to the one in [5] is defined. Here we recall the first and second order
sufficient optimality conditions given in [8I] and apply them to the Rayleigh minimal time
control problem with fixed initial and final conditions (see Sections §2.6.1] and §3.3.1).

In [78481] sufficient optimality conditions are provided for a minimal time problem for

multi-input control-affine systems in IR"
P
#=X(tx)+ > uYi(t )
i=1

with fixed initial and final conditions
z(0) =xo, x(tf) =1,

and where u = (u1,...,up) € L*([0,tf], A) and A is a convex polyhedron of IR?.

Here we will formulate the first and second order sufficient optimality conditions given
in [7T8-811[86] for the optimal control problem (OCP) considered in Chapters 2] and Bl The
optimal control problem (OCP) consists of determining a solution x(-) associated to a control

u1(-), on [0,ts], satisfying the single-input control-affine system in IR"

= X(x) 4+ u1Yi(x), (A1)
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where X and Yj are smooth vector fields, the constraint
|U1(t)| él’ vt € [O’tf])

and steering xo = 2(0) to 1 = 2(t;) in minimal time ¢.
From Pontryagin maximum principle, there exists a non trivial absolutely continuous map-
ping p(-) : [0,¢7] — R" (adjoint vector) and a real number p° < 0, with (p(-),p°) # (0,0),

such that
30 == (p(0). @)~ (0) (900 G2 w0 (22)

where the Hamiltonian function is given by

H($apap07u1) = <p7f($’ul)> = <p7X($) +U1Yi($)> +p07

and the maximization condition

H(x(t),p(t), p°, () = max H(xz(t),p(t),p’, w) (A.3)
holds almost everywhere on [0,¢7]. Moreover, max), <1 H(z(t),p(t),p°,w) = 0 for every

t € [0,tf].
It follows from ([A.3]) that

u(t) = sign(p(t), Y1(z(t)))

for almost every ¢, provided that the (continuous) switching function

p1(t) = (p(t), Y1(z(t)))

does not vanish on any subinterval of [0,¢].

Here we will only consider the case where the Pontryagin extremal (z(-),p(-), p", u1(+)) is
normal (p® = —1). The abnormal case is also considered in [T8-81}86].
The extremal (z(-),p(-), —1,u1(-)) may be extended forward on a maximal time interval
I of [0,400), containing [0,tf] (see Section §3.1.2, Chapter B)). Let the Assumption BIT]
hold, that is assume that the extremal (x(-),p(:),—1,u1(:)) is bang-bang on the interval I,
i.e., the switching function ¢ does not vanish on any subinterval of I. Let 71,...,7s be the
switching times of the bang-bang trajectory z(-), that is, 71, ..., 7s are zeros of ¢1 on I, such
that 0 < 71 < ... < 75. There holds
1 if ng(t) > 0,
uy (t) = _
-1 if ¢i(t) <0,
for every t € I.
For j = 1,...s, let ui(7;) = wi(r; — 0) and u1(7'jJr
left-hand and the right-hand side of the control u;(t) at 7;.

) = ui(7; + 0) be, respectively, the
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Critical subspace. Let us now introduce the critical subspace K.

Denote by PyC1([0,ts],IR™) be the space of piecewise continuous functions
z(-) : [0,tf] — R”

that are continuously differentiable on each interval of the set [0,t¢]\f, where 6 = {71,..., 75}

is the set of switching times. Putting
zZ = (Ef7£)j) with Z?f €ER, (= (517"'a£s) € RS7 S Pecl([()’tf]’IR'n))

we have

z€ Z(0) = R x R® x PpC*([0,¢;],R").

Let K be the set of all z € Z(0) satistying the following conditions

Kl

(t) = fola(t),w ())2(t), 2(rf) —2(r]) = (g;«(T;) - j;(Tj—)) &, j=1,.s,
z(0) =0, z(ty) =0.
The set K is a finite-dimensional subspace of Z(#) and is called the critical subspace.

There holds Z(t) = 0 on [0,71) and (7s,ts]. Thus, Z(r; ) = Z(7;7) =0, for all z € K.

Consider the variational (linearized) system

Y= fm(t)y

and for each j = 1,..., s, define the vector functions 37(t) as the solutions of the system

)= fo)y, y(r) = (@(7]) —2(r))), t €t

For t < 7; put y/(t) = 0 which yields yj(TjJr) - yj(Tj_) = :L"(T]Jr) — &(7; ). Denote by
z(t,m1, ..., Ts) the solution of (A.I]) associated to the bang-bang optimal control with switching
times 71, ..., 7s. The derivatives of the trajectories x (¢, 11, ..., 7s) with respect to the switching

times are given by

Ox ; .
%(L‘,Tl,...ﬁs) =—y/(t) for t>t;, j=1,..,s.
j

Proposition A.0.2. [78181,[86] Assume that one of the following conditions are satisfied
(or 1P = 1)

(a) the s vectors y/(tg) = —%(tf), j=1,...s, are linearly independen,
(b) the bang-bang control has one switching time, i.e., s = 1.

Then the critical subspace is K = {0}.

'Tf the abnormal case is considered then another condition that implies X = {0} is the s + 1 wvectors
yi(ty) = —%(tf), j=1,....s, &(ts), are linearly independent,
J
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Quadratic form. Let (z(),p(-), —1,u1(-)) be a Pontryagin extremal, and z € Z. Define
Q) = Y- ((~emnr) —uly 0) & +2 (5o - G0 et + 20,
j=1
Ts 92
+/ <%713(t):z~(t),:ﬁ(t)>dt.

(A4)

A stronger version of the next theorem is given in [81,[86] where the abnormal case is also

considered.

Theorem A.0.3. [78481,86] Let (xz(-),p(-),—1,u1(:)) be a normal extremal for the problem
(OCP) on [0,ty], such that

(a) uyi(-) is a bang-bang control, that is, the Assumption [T 11 holds;

(b) the strict bang-bang Legendre condition holds, that is, p(1j) # 0 for j = 1,...,s (see
Chapter[3);

(c) max Qi(p,z) >0 Vz e L\{0}.
Then (x(-),u1(+)) is a strong local mz’m’mum.

This theorem provides a second order sufficient condition for strong local optimality.

Remark A.0.4. If K = {0} then the condition (c) is automatically fulfilled. Therefore, the

property K = {0} is a first order sufficient condition for strong local optimality.

Remark A.0.5. If there exists a vector p(-) solution of (AJ)—-(A2) such that

Qt(pv Z) >0 VZ € K\{O}v

then the condition (c) is satisfied.

The next theorem follows from Proposition [A.0.21 and Theorem [A.0.3] and it provides a

sufficient condition for bang-bang control with one switching time.

Theorem A.0.6. [78481,86] Let (z(-),p(-),—1,u1(:)) be a normal extremal for the problem
(OCP) on [0,ty], such that

(a) ui(-) is a bang-bang control with one switching point;

(b) —p(m1) (ur(rh) —wa () <O.

Then (z(-),u1(+)) is a strong local mimmum.H

%In fact, (z(-),u1(-)) is a strict strong local minimum.
3In fact, (x(-),u1(-)) is a strict strong local minimum.
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For the case of two switching times, assume that &(7;") —(7; ) # 0 and (75" ) —d(ry ) # 0.
This imply that y'(t;) = 0 and y*(t;) = 0 where y' (respectively y?) is the solution of
g=folt)y, y(n)=i(r) —i(r), ten,ty]
(respectively, ¥ = fo(t)y, y(r2) = @(r3") — @(r5 ), t € [r2,tf]). From the superposition

principle for linear ordinary differential equations there holds

2

2(t) =Y v (1)¢,
j=1
therefore,
0=2(ty) =y (tp) +y*(t5)Es . (A.5)

Assume, furthermore that K # {0}. Then from (AJ]) the nonzero vectors y'(t;) and y*(¢ )

are collinear, i.e.,
v (ty) = ay'(ty) (A.6)

for some a # 0. The functions y'(¢) and y?(t) are continuous solutions of the system ¢ =
fo(t)y in (72,t7], thus the relation y*(t) = ay!(t) is valid for all ¢t € (72,¢s]. In particular,
y%(m2 +0) = ay'(m2) and thus

i(ry) — i(r3) = ay'(m)

which is equivalent to (A.6). From (AL5]) and (A6]) there holds

1
§o=——&.
«
Using the previous formulas and %—5(7’;) - %—J;I(Tj_) =—(p(r{") = (7)), j = 1,2, in the
quadratic form (A.4) we have
Q = péi

where
p=(—¢(r) (ur (") —wi(r]")) = B(riH) = p(r ) (@ () — (7))

4 (molm) () = () + (605) - bl () — ) + [

t1

to 82H

(Wyl,ylﬂlt-

(A7)

Proposition A.0.7. [78181,86] Let (x(-),p(:),—1,u1(:)) be a normal extremal for the prob-
lem (OCP) on [0,t;]. Assume that ui(-) has two switching times, @(t") — @(ry) # 0,
i(ry) —@(ry) # 0, and y*(ts) = ay'(ty) with some factor o. Then the condition of pos-
itwe definiteness of Q on K is equivalent to the inequality p < 0, where p is defined by (A.T).
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A.1 Example: Rayleigh minimal time control problem

Consider the Rayleigh minimal time control problem considered in Section [B.3.1in Chapter [3],

for the control system

il (t) = X9 (t),

(A8)
:i?g(t) = —l‘l(t) + $2(t)(1.4 — 0.141E2(t)2) + ul(t),

with the control constraint
]ul(t)] < 4, YVt € [O,tf] (Ag)

and with boundary conditions given by
xl(O) = xQ(O) = Xy, xl(tf) = xg(tf) =X .

In [8I] the authors consider Rayleigh minimal time control problem with the boundary

conditions
a;l(O) = LL’Q(O) = —5, xl(tf) = xg(tf) =0

and verified that Proposition [A.0.7]is satisfied for the trajectory z(-) associated to the control

+4 for 0<t <7
u(t) =4 —4 for 7 <t <y

+4 for TQStStf

where 71 ~ 1.12, 7 ~ 3.31 are the switching times and ¢y ~ 3.668 is the minimal time (see

Section §2.6.11 of Chapter [2]).

Here we will consider the boundary conditions considered in Section [3.3.1] of Chapter [3]
given by
:El(O) = —4, ZEQ(O) = —3, :El(tf) = l‘Q(tf) =0. (A.lO)

According to the Pontryagin maximum principle, any optimal solution z(-) of (A.8)—(A9),
(A.I0) is the projection of an extremal (z(-),p(-),p°,u1(-)) such that

OH

T on

_ S—Z(t)Pz(t) = —p1(t) — pa(t) (14 — 0.4215(t)°)

(t) = p1(t) = pa(t)

and the maximization condition pa(t)ui(t) = max|,|<4 (p2(t)w) holds almost everywhere on
[0,2f]. The optimal control w;(-) is bang-bang, equal to ui(t) = 4sign(pa(t)).

Recall Section §3.3.1] where we applied a shooting method to problem (A.8)-(A10) (with
p’ = —1), and determined the initial adjoint vector p(0) ~ (0.53095052;0.34206485). We
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observe that the trajectory has only one switching time 7 ~ 0.57613094 on [0,%y], that is,
uy(+) is given by

+4 for 0<t<m

(5% (t) =

—4 for T1 § t § tf,

with a final time t; ~ 2.97812917 (see Figures B3] and [3.4] Chapter [3]).
We will now apply the sufficient optimality condition Theorem [A.0.6] and verify that this

trajectory is optimal.

Integrating the system

(A.11)

3
1\
~
Il
[
e
=
—
~
N~—
|
3
1\
—~
~
SN—
—
—
IS
|
=]
IS
[\~
8
N
—~
~
SN—
N~—

\

in the interval [0,7;] (with u;(f) = 44 and initial conditions (z1(0),x2(0)) = (—4,—3) and
(p1(0), p2(0)) =~ (0.53095052; 0.34206485)) we have (p1(71),pa2(71)) ~ (0.6504275;0). There-
fore,

—p(m1) = —p2(71) = p1(m1) =~ 0.6504275

and
—o(m1) (wa (") — ur(ry)) = 0.6504275 - (—8) ~ —5.20342003 < 0.

And from Theorem [A.0.6] the trajectory z(-) associated to the control uj(-) with one switching
time 7 ~ 0.5761 and final time ¢; ~ 2.9781, is strong locally optimal on [0,%y].

Prolongating the trajectory &(-) to the interval [0, 4], we observe a second switching time at
79 ~ 3.1475101. Let us apply the Proposition [A.0.7 to the trajectory z(-) with two switching
times.

For j = 1,2 define the vector functions 3/ € IR™ solution of the system

J

1
() = =yl (1) + (1.4 — 0.4223 (1) )yh (t)
with

(yi (1), 95(m)) = (&1(71") = @1(ry), d2(r)") — da(7y))
=(0,-8), for te [m,ty],

and

(13 (1), 95 (11)) = (d1.(73)) — @175 ), dea(7) — dia(73))
= (0,8), for t € [Tg,tf],
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Let us see if the vectors (y1(72), y2(2)) and (y3(72), y3(m2)) are collinear, with (y2(m2), y3(12)) =
(0,8). To compute (yi(72),ys(2)) we integrate the system

x1(t) = wa(t)
Bo(t) = —21(t) + 22(t) (1.4 — 0.4222(t)) — 4
p1(t) = pa(t)
pa(t) = —p1(t) — pa(t)(1.4 — 0.4225(1))
gi(t) = y3(t)
93(t) = —yi(t) + y3(£)(1.4 — 0.4223(t))
in the interval [r1, 2] where u1(t) = —4, and with initial conditions (y1(m1),y3(m1)) = (0, —8)

and (z1(m1), 22(m)) = (—4.52075342; 1.53745036), (p1(r1),p2(1)) =~ (0.6504275;0) follows
from integrating the system (ALI1) in the interval [0,71] (with ui(t) = +4). We have
(yi(72),y4(72)) =~ (0;10.73906251). The vectors are indeed collinear, since y*(r2) = ay'(m)
with a ~ 0.74494398. We can proceed and compute p given by equation (A7),

p=(—¢(r) (ur(r{") —ui(r{")) — B(r") = p(r)) (@ () — d(77)))

t2 92
+ o3 () () — () + GG — 3 D) = ) + [ (G ot
ta 92
= —5.20342003 + m (—e(m2) (wa(r5) —ur(r3))) + /tl <%7I§yl,y1>dt.

We have

—o(72) (w1 (13) —ur(75)) = —pa(72)-(4+4) = p1(72)-8 ~ —1.31854472-8 ~ —10.54835772 < 0,

and
0’H 0 0
—— (1) = :
Oz 0 —0.84p2(t)a:2(t)
Therefore,
T2
/ —0.84p5 (1) 22 (t) (y2 (1)) 2dt = 27.66812969492819
T1
and

10.54835772187732
= —5.20342 4014 — 27.66812969492819 = 3.4 45601652 .
p 5.203420038740 0.7119139828133 12 +27.66812969492819 = 3.45665745601652 > 0

The Proposition [A.0.7] is not satisfied, although we can not assure that the trajectory is not

longer locally optimal beyond 7. We confirmed this, using the extremal field approach, in

Section §3.3.1] of Chapter Bl
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