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palavras-chave 

 

Controlo óptimo, princípio do máximo de Pontryagin, problemas de tempo 
mínimo, controlos bang-bang, procedimentos de regularização, método de tiro 
simples, tempos conjugados.  
 

resumo 
 

 

Consideramos o problema de controlo óptimo de tempo mínimo para sistemas 
de controlo mono-entrada e controlo afim num espaço de dimensão finita com 
condições inicial e final fixas, onde o controlo escalar toma valores num 
intervalo fechado. Quando aplicamos o método de tiro a este problema, vários 
obstáculos podem surgir uma vez que a função de tiro não é diferenciável 
quando o controlo é bang-bang. No caso bang-bang os tempos conjugados 
são teoricamente bem definidos para este tipo de sistemas de controlo, 
contudo os algoritmos computacionais directos disponíveis são de difícil 
aplicação. Por outro lado, no caso suave o conceito teórico e prático de 
tempos conjugados é bem conhecido, e ferramentas computacionais eficazes 
estão disponíveis. 
       Propomos um procedimento de regularização para o qual as soluções do 
problema de tempo mínimo correspondente dependem de um parâmetro real 
positivo suficientemente pequeno e são definidas por funções  suaves em 
relação à variável tempo, facilitando a aplicação do método de tiro simples. 
Provamos, sob hipóteses convenientes, a convergência forte das soluções do 
problema regularizado para a solução do problema inicial, quando o parâmetro 
real tende para zero. A determinação de tempos conjugados das trajectórias 
localmente óptimas do problema regularizado enquadra-se na teoria suave 
conhecida. Provamos, sob hipóteses adequadas, a convergência do primeiro 
tempo conjugado do problema regularizado para o primeiro tempo conjugado 
do problema inicial bang-bang, quando o parâmetro real tende para zero. 
Consequentemente, obtemos um algoritmo eficiente para a computação de 
tempos conjugados no caso bang-bang. 
 
 
 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 

Optimal control, Pontryagin maximum principle, minimal time problems, bang-
bang controls, regularization procedures, single shooting methods, conjugate 
times. 
 

abstract 

 

In this thesis we consider a minimal time control problem for single-input 
control-affine systems in finite dimension with fixed initial and final conditions, 
where the scalar control take values on a closed interval. When applying a 
shooting method for solving this problem, one may encounter numerical 
obstacles due to the fact that the shooting function is non smooth whenever the 
control is bang-bang. For these systems a theoretical concept of conjugate time 
has been defined in the bang-bang case, however direct algorithms of 
computation are difficult to apply. Besides, theoretical and practical issues for 
conjugate time theory are well known in the smooth case, and efficient 
implementation tools are available. 
       We propose a regularization procedure for which the solutions of the 
minimal time problem depend on a small enough real positive parameter and 
are defined by smooth functions with respect to the time variable, facilitating the 
application of a single shooting method. Under appropriate assumptions, we 
prove a strong convergence result of the solutions of the regularized problem 
towards the solution of the initial problem, when the real parameter tends to 
zero. The conjugate times computation of the locally optimal trajectories for the 
regularized problem falls into the standard theory. We prove, under appropriate 
assumptions, the convergence of the first conjugate time of the regularized 
problem towards the first conjugate time of the initial bang-bang control 
problem, when the real parameter tends to zero. As a byproduct, we obtain an 
efficient algorithmic way to compute conjugate times in the bang-bang case. 
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mots-clés 

 

Contrôle optimal, principe du maximum de Pontryagin, problème de temps 
minimal, contrôle bang-bang, procédures de régularisation, méthode de tir 
simple, temps conjugué. 
 

résumé 

 

On considère le problème de contrôle optimal de temps minimal pour des 
systèmes affine et mono-entrée en dimension finie, avec conditions initiales et 
finales fixées, où le contrôle scalaire prend ses valeurs dans un intervalle 
fermé. Lors de l'application d'une méthode de tir pour résoudre ce problème, 
on peut rencontrer des obstacles numériques car la fonction de tir n'est pas 
lisse lorsque le contrôle est bang-bang. Pour ces systèmes, dans le cas bang-
bang, un concept théorique de temps conjugué a été défini, toutefois les 
algorithmes de calcul direct sont difficiles à appliquer. En outre, les questions 
théoriques et pratiques de la théorie du temps conjugué sont bien connues 
dans le cas lisse, et des outils efficaces de mise en  œuvre sont disponibles.  
       On propose une procédure de régularisation pour laquelle les solutions du 
problème de temps minimal dépendent d’un paramètre réel positif 
suffisamment petit et sont définis par des fonctions lisses en temps, ce qui 
facilite l’application de la méthode de tir simple. Sous des hypothèses 
convenables, nous prouvons un résultat de convergence forte des solutions du 
problème régularisé vers la solution du problème initial, lorsque le paramètre 
réel tend vers zéro. Le calcul des temps conjugués pour les trajectoires 
localement optimales du problème régularisé est standard. Nous prouvons, 
sous des hypothèses appropriées, la convergence du premier temps conjugué 
du problème régularisé vers le premier temps conjugué du problème de 
contrôle bang-bang initial, quand le paramètre réel tend vers zéro. Ainsi, on 
obtient une procédure algorithmique efficace pour calculer les temps conjugués 
dans le cas bang-bang. 
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Introdution
In this thesis, we investigate the minimal time Optimal Control Problem (OCP) forsingle-input ontrol-a�ne systems in IRn

ẋ = X(x) + u1Y1(x),with �xed initial and �nal times onditions
x(0) = x̂0 , x(tf ) = x̂1 ,where X and Y1 are smooth vetor �elds, and the ontrol u1 is a measurable salar funtionsatisfying the onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]with tf the �nal time. We develop regularization proedures in order to ompute smoothapproximations of the above bang-bang ontrol problem, and to ompute onjugate times.The �rst onjugate time of a trajetory x(·) is the time at whih it loses its loal optimality.The de�nition and omputation of onjugate points are an important topi in the theory ofalulus of variations (see e.g. [13℄). In [99℄ the investigation of the de�nition and omputationof onjugate points for minimal time ontrol problems is based on the study of neessaryand/or su�ient seond order onditions. In [110℄, the theory of envelopes and onjugatepoints is used for the study of the struture of loally optimal bang-bang trajetories for theproblem (OCP) in IR2 and IR3; these results were generalized in [60℄. In [81, 100℄ �rst andseond order su�ient optimality onditions are derived in terms of a quadrati form Qt, fora minimal time ontrol problem with ontrol-a�ne systems. In [100℄ L1-loal optimality isonsidered and in [81℄ strong loal optimality. In [5℄ the authors derive seond order su�ientonditions, under the same regularity assumptions as [81℄, for an optimal ontrol problemin the Mayer form with �xed �nal time, with ontrol-a�ne systems and bang-bang optimalontrols. In [90℄ the authors proved the equivalene of the seond order su�ient onditionsgiven in [81℄ with the ones given in [5℄. In [95℄ an analogous quadrati form to the one in [5℄is de�ned, but the su�ient optimality onditions derived are valid for a stronger kind ofoptimality (state loal optimality).The ombination of neessary and su�ient onditions for bang-bang extremals providedin [3,5,81,87,95℄ allows to relate the loal strong optimality status of a trajetory x(·) with the1



existene of onjugate times. More preisely, if the strit bang-bang Legendre ondition holdsfor a bang-bang extremal trajetory x(·) and the quadrati form Qt is positive de�nite on [0, t],then x(·) is loally optimal for problem (OCP) in the C0 topology on [0, t] ( [5, 81, 87, 95℄).If we assume moreover, that x(·) has a unique extremal lift (up to a multipliative salar)
(x(·), p(·), p0, u1(·)), whih is moreover normal (p0 = −1) and x(·) is loally optimal in C0topology for problem (OCP) on [0, t] then Qt is nonnegative ( [3℄). Under these assumptions,the times t, t > 0, suh that the quadrati form Qt has a trivial kernel are isolated and anonly onsist of some swithing times of the bang-bang extremal ontrol (see [5℄); the �rstonjugate time tc of a bang-bang strong loally optimal trajetory x(·) (starting from x̂0) isthen de�ned by

tc = sup{t | Qt is positive de�nite} = inf{t | Qt is inde�nite} .The point x(tc) is alled the �rst onjugate point of the trajetory x(·).Su�ient optimality onditions are developed in [87℄ (see also [113℄) based on the methodof harateristis and the theory of extremal �elds. Su�ient optimality onditions are givenfor embedding a referene trajetory into a loal �eld of broken extremals. In [1,4,5,95℄, usingHamiltonian methods and the extremal �eld theory, the authors onstrut, under ertainonditions, a non-interseting �eld of state extremals that overs a given extremal trajetory
x(·). In [5, 61, 87℄ the authors assoiate the ourrene of a onjugate point with a fold pointof the �ow of the extremal �eld, that is, a so-alled overlap of the �ow near the swithingsurfae.The omputation of onjugate times in the bang-bang ase is di�ult in pratie. In the lastyears works have been developed on the numerial implementation of seond order su�ientoptimality onditions (see, e.g., [61, 78, 81℄ and referenes ited therein). These proeduresallow the haraterization of the �rst onjugate time, for bang-bang optimal ontrol problemswith ontrol-a�ne systems, whenever it exists and is attained at a jth swithing time. However,in pratie, if j is too large then the numerial omputation may beome very di�ult. Besides,theoretial and pratial issues for onjugate time theory are well known in the smooth ase(see e.g. [2, 86℄), and e�ient implementation tools are available (see [15℄).The ontributions of this thesis are the following.We propose a regularization proedure whih permits to use the e�ient tools of ompu-tation of onjugate times in the smooth ase provided in [15℄ for the omputation of the �rstonjugate time of the problem (OCP). The regularization proedure is the following. Let εbe a positive real parameter and let Y2, . . . , Ym be m−1 arbitrary smooth vetor �elds on IRn,where m ≥ 2 is an integer. We onsider the minimal time problem (OCP)ε for the ontrolsystem

ẋε(t) = X (xε(t)) + uε
1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t)) ,2



under the onstraint
m
∑

i=1

(uε
i (t))

2 ≤ 1 ,with the �xed boundary onditions xε(0) = x̂0, xε(tf ) = x̂1 of the initial problem (OCP).In the next theorem we derive nie onvergene properties.Theorem 0.0.1 (f. Chapter 2, p. 61). Assume that the problem (OCP)1 has a uniquesolution x(·), de�ned on [0, tf ], assoiated with a ontrol u1(·) on [0, tf ]. Moreover, assumethat x(·) has a unique extremal lift (up to a multipliative salar), that is moreover normal,and denoted (x(·), p(·),−1, u1(·)).Then, under the assumption Span{Yi | i = 1, . . . ,m} = IRn, there exists ε0 > 0 suh that,for every ε ∈ (0, ε0), the problem (OCP)ε has at least one solution xε(·), de�ned on [0, tεf ]with tεf ≤ tf , assoiated with a smooth ontrol uε = (uε
1, . . . , u

ε
m) satisfying the onstraint

m
∑

i=1

(uε
i (t))

2 ≤ 1, every extremal lift of whih is normal. Let (xε(·), pε(·),−1, uε(·)) be suh anormal extremal lift. Then, as ε tends to 0,
• tεf onverges to tf ;
• xε(·) onverges uniformly to x(·), and pε(·) onverges uniformly to p(·) on [0, tf ];
• uε

1(·) onverges weakly to u1(·) for the weak L1(0, tf ) topology.If the ontrol u1(·) is moreover bang-bang, i.e., if the (ontinuous) swithing funtion ϕ(t) =

〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε
1(·) onverges to u1(·) and

uε
i (·), i = 2, . . . ,m, onverge to 0 almost everywhere on [0, tf ], and thus in partiular for thestrong L1(0, tf ) topology.We provide an example where the optimal ontrol of the initial system is not bang-bang(it has a singular ar) and for whih the almost everywhere onvergene fails.Among the numerous numerial methods that exist to solve optimal ontrol problems, theshooting methods onsist in solving, via Newton-like methods, the two-point or multi-pointboundary value problem arising from the appliation of the Pontryagin maximum priniple.For the minimal time problem (OCP), optimal ontrols may be disontinuous, and it followsthat the shooting funtion is not smooth on IRn in general. Atually it may be non di�eren-tiable on swithing surfaes. This implies two di�ulties when using a shooting method. First,if one does not know a priori the struture of the optimal ontrol, then it may be very di�-ult to initialize properly the shooting method, and in general the iterates of the underlyingNewton method will be unable to ross barriers generated by swithing surfaes (see e.g. [71℄).Seond, the numerial omputation of the shooting funtion and of its di�erential may be1This Theorem remains valid if we onsider x(0) ∈ M0 and x(1) ∈ M1 where M0 and M1 are two ompatsets of IRn (see Chapter 2). 3



intriate sine the shooting funtion is not ontinuously di�erentiable. This observation is oneof the possible motivations of the regularization proedure onsidered in this thesis. Indeed,the shooting funtions related to the smooth optimal ontrol problems (OCP)ε are smooth.From Theorem 0.0.1, under appropriate assumptions, the optimal ontrols of problem(OCP)ε are smooth, therefore the omputation of assoiated onjugate points xε(tεc) fallsinto the standard smooth theory. Our next result asserts the onvergene, as ε tends to 0, of
tεc towards the onjugate time tc of the initial bang-bang optimal ontrol problem.Theorem 0.0.2 (f. Chapter 3, p. 95). Assume that the problem (OCP) has a unique solution
x(·), assoiated with a bang-bang ontrol u1(·), on a maximal interval I. Moreover, assumethat x(·) has a unique extremal lift (up to a multipliative salar), whih is moreover normal,and denoted by (x(·), p(·),−1, u1(·)). If the extremal (x(·), p(·),−1, u1(·)) satis�es, moreover,the strit bang-bang Legendre ondition on [0, tc], then the �rst geometri onjugate time tεconverges to the �rst onjugate time tc as ε tends to 0.This result permits to use the available e�ient implementation proedures for the smoothase, like for instane the free pakage COTCOT 2 (see [15℄), to ompute onjugate times inthe bang-bang ase. We laim that when applying the smooth proedures to the regularizedproedure, it is not needed to onsider very small values of ε to estimate the �rst onjugate time
tc. Indeed, a onjugate time of a loally bang-bang trajetory an only our at a swithingtime and, under our assumptions, swithing times are isolated. From Theorem 0.0.2, the �rstgeometri onjugate time tεc onverges to tc, when ε tend to 0. Therefore, as soon as ε is smallenough so that tεc is in a (not neessarily so small) neighborhood of some swithing time τsof the bang-bang trajetory x(·), this means that the bang-bang onjugate time tc is equal tothat swithing time τs.This thesis is organized in the following way.In the �rst hapter we reall some important de�nitions and theorems of linear and nonlin-ear optimal ontrol theory. In Chapter 2 we propose a regularization proedure for bang-bangoptimal ontrol problems with single-input ontrol-a�ne systems and prove, under appropri-ate assumptions, onvergene properties of the optimal solutions of the regularized problemtowards the solutions of the initial problem. These onvergene results are illustrated in sev-eral examples. In Chapter 3 the regularization proedure introdued in Chapter 2 is used andwe prove the onvergene of the �rst geometri onjugate time tεc of the regularized problemto the �rst onjugate time of tc of the bang-bang optimal trajetory, as ε tends to 0. Severalexamples are provided where the onvergene properties proved in Theorems 0.0.1 and 0.0.2are illustrated. In Appendix A we reall �rst and seond order su�ient optimality onditionsproved in [78�81℄ and apply them to one of the examples onsidered in Chapter 3.2Conditions of Order Two, COnjugate Times, http://apo.enseeiht.fr/otot/4



Chapter 1Preliminaries on Optimal ControlTheory
1.1 IntrodutionIn this hapter some important de�nitions and results of the optimal ontrol theory are given.We start with general explanations of the main elements of an optimal ontrol problem andgive some motivations for the study of these problems. Setion �1.2 gives a brief historialoverview of the optimal ontrol theory. In �1.3 we present some important results of the linearoptimal ontrol theory and an example of a linear optimal ontrol problem. Some resultsof the nonlinear optimal ontrol theory are presented in �1.4 together with two examples.For both linear and nonlinear general optimal ontrol problems the Pontryagin maximumpriniple is formulated and in �1.5 a proof of this theorem is given for a general nonlinearminimal time optimal ontrol problem, using needle-like variations whih are needed to derivethe main result of Chapter 2 (Theorem 2.5.1). In �1.6 we derive the maximization ondition ofPontryagin maximum priniple for a minimal time problem using Gamkrelidze's generalizedontrols.All of us already tried, in some oasion, to keep in balane a ball on a �nger (i.e., solvethe problem of the inverted pendulum). However it is muh more di�ult to keep in balanea double inverted pendulum, that is, a system omposed by two balls one over the other,speially if we lose our eyes. The ontrol theory allows to do it, if we dispose of a suitablemathematial model that desribes the physial proess.The main elements of an optimal ontrol problem are: the mathematial model whihrelates the state x to the input or ontrol u by a di�erential system; the initial point orstate x0 and a �nal point x1 or target S; the output of the system whih haraterize theproess, i.e., the state of the ontrolled objet at eah instant of time; a set of admissibleinputs or ontrols whih determine the ourse of the proess; the ost funtional (also alled5



performane index, or objetive funtional, or e�ort) that onsists of a quantitative riteriafor the e�ieny of eah admissible ontrol; and the length of time tf required to reah theterminal state.A ontrol system is a dynamial system, whih evolves over time, on whih we an workthrough a ommand funtion or a ontrol, and their origin is vast (mehanis, eletroni,biology, eonomy, et.). Some examples of ontrol systems whih an be modeled and treatedby the theory of ontrol systems are: a omputer that allows the user to perform a series ofbasi ommands; an eosystem on whih we an at promoting a partiular situation to ahievea balane; nerve tissues forming a network ontrolled by the brain proessing the stimuli fromoutside and having an e�et on the body; a robot performing a spei� task; a ar that wean ommand with the aelerator, brake and wheel; a satellite or a spaeraft.The ontrol theory analyzes the properties of suh systems, with the aim of steering aninitial state to a ertain �nal state, eventually respeting ertain restritions. The objetivean be also to stabilize the system making it insensitive to some perturbations (stabilizationproblem), or even to ompute the optimal solutions for a ertain optimization riteria (optimalontrol problem). For the onstrution of the ontrol system model, we an make use ofdi�erential equations, funtional integrals, �nite di�erenes, partial derivatives, et. For thisreason the ontrol theory is the interonnetion of many mathematial areas (see, e.g., [21,38,39, 65, 85, 106℄).The dynamis of a system de�ne the system possible transformations, ourring in timein a deterministi or random way. An equation is given, or typially a system of di�erentialequations, relating the variables and modeling the dynamis of the system. The examplesalready given show that the struture and dynamis of a ontrol system may have very di�erentmeanings. In partiular, the ontrol system an be desribed by disrete, ontinuous, or hybridtransformations or, more generally, on a time sale or measure hain [43, 45, 72℄.Consider a ontrol system whose state at a given moment is represented by a vetor. Theontrols are funtions or parameters, usually subjet to restritions, whih at on the system inthe form of outside fores that a�et the dynamis. Given the system of di�erential equationswhih models the dynamis of the system, it is then neessary to use the available informationand features of the problem to onstrut the appropriate ontrols that will enable us to attainour objetive. For example, when we travel in our ar ating aordingly to the ode of theroad (at least this is advisable) and we onstrut the travel plan to reah our destination,there are some restritions on the trajetory and/or on the ontrols, whih must be taken intoonsideration.A ontrol system is alled ontrollable if we an steer it (in a �nite time) from a giveninitial state to any �nal state. Kalman proved in 1949 an important result on ontrollabilitywhih haraterizes ontrollable linear ontrol systems of �nite dimension (Theorem 1.3.9).For nonlinear systems the ontrollability problem is muh more di�ult and remains an ativedomain of researh. 6



One the ontrollability problem is solved, we may wish to go from an initial state to a�nal state minimizing or maximizing a spei� riteria. In this ase we are speaking aboutan optimal ontrol problem. For example, a driver going from Lisbon to Porto may wish totravel in minimal time, and in that ase he will take the highway and spend more moneyand fuel. Another optimal ontrol problem is obtained if the driver hooses as a rite-ria spend less money as possible. The solution to this problem implies to hose seondaryroads, for free, and he will take a lot more time to his destination (following the internet sitehttp://www.google.pt/maps hoosing the highway the driver takes 3h from Lisbon to Portoand by the seondary roads 6h45m).The theory of optimal ontrol is of great importane in aerospae engineering, in partiularfor ondution problems, aero-assisted transfer orbits, development of reoverable launhers(the �nanial aspet here is very important) and problems of atmospheri reentry, suh as thefamous projet Mars Sample Return from the European Spae Ageny (ESA) whih onsistsin sending a spaeraft to Mars with the objetive of bringing to Earth martian samples(Figure 1.1).

Figure 1.1: Optimal ontrol theory has an important role in the aeroespaial engineering.1.2 Short historial overviewThe alulus of variations was born in the seventeen entury with the ontribution of Bernoulli,Fermat, Leibniz and Newton. Some mathematiians as H.J. Sussmann and J.C. Willems de-fend that the origin of optimal ontrol oinides with the birth of alulus of variations, in1697, date of the publiation of the solution of the brahistohrone problem by the mathemati-ian Johann Bernoulli [114℄. The brahistohrone problem (in Greek brakhistos, �the shortest�,and hronos, �time�) was studied by Galileu in 1638. The aim was to determine the urvebetween two points on a vertial plane that is overed in the least time by a sphere that startsat the �rst point A with zero speed and is onstrained to move along the urve to the seond7
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point B, under the ation of onstant gravity and assuming no frition (optimal sliding, seeFigure 1.2). In ontrast to what ould be our intuitive �rst answer, the shortest time path
Figure 1.2: Brahistohrone problem.between two points is not a straight line! Galileo believed (wrongly) that the required urvewas an ar of a irle, but he had already notied that the straight line is not the shortest timepath. In 1696, Jean Bernoulli posed the problem as a hallenge to the best mathematiians ofhis time. Jean Bernoulli himself found the solution, as well as his brother Jaques Bernoulli,Newton, Leibniz and the Marquis de l'Hopital. The solution is a yloid ar starting with avertial tangent [64,114℄. Skateboarding ramps, as well as the fastest dereases of aqua-parks,have the form of yloid (Figure 1.3).

Figure 1.3: Cyloid ars lead to fastest dereases and maximal adrenaline.Some authors go further, remarking that Newton's problem of aerodynamial resistane,proposed and solved by Isaa Newton in 1686, in his Prinipia Mathematia, is a typialoptimal ontrol problem (see �1.4.8 and e.g. [102, 118℄).In mathematis, optimal ontrol theory emerged after the Seond World War respondingto pratial needs of engineering, partiularly in the �eld of aeronautis and �ight dynamis.The formalization of this theory raised several new questions. For example, the theory ofoptimal ontrol motivated the introdution of new onepts for generalized solutions in thetheory of di�erential equations and generated new results on the existene of trajetories.In general, it is onsidered that the theory of optimal ontrol has emerged in the late8



�fties in the former Soviet Union, with the formulation and demonstration of the Pontryaginmaximum priniple by L.S. Pontryagin (Figure 1.4) and his group of ollaborators in 1956:V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishhenko [96℄.

Figure 1.4: Lev Semenovih Pontryagin (3/September/1908 � 3/May/1988)Pontryagin and his assoiates introdued an importante point: they generalized the theoryof alulus of variations to urves that take values on losed sets (with boundary). The theoryof optimal ontrol is losely related to lassial mehanis, in partiular variational priniples(Fermat's priniple, Euler-Lagrange, et.). In fat the maximum priniple of Pontryagin gener-alizes the neessary onditions of Euler-Lagrange and Weierstrass. Some strengths of the newtheory was the disovery of the dynami programming method, the introdution of funtionalanalysis to the theory of optimal systems and the disovery of links between the solutions ofan optimal ontrol problem and the results on stability of Lyapunov theory [120, 122℄. Laterame the foundations of stohasti ontrol and �ltering in dynami systems, game theory,ontrol of partial di�erential equations and hybrid ontrol systems, whih are some among themany areas of urrent researh [2, 106℄.1.3 Linear optimal ontrolThe optimal ontrol theory is muh more simple when the ontrol system under study is linear.The nonlinear optimal ontrol theory will be realled in Setion 1.4. Even in our days thelinear ontrol theory is one of the areas more used in engineering and its appliations (seee.g. [8℄).1.3.1 Statement of the problemLet Mn,p(IR) denote the set of matries with n rows and p olumns, with entries in IR. Let
I be an interval of IR; A,B, r three loally integrable mappings on I (A,B ∈ L1

loc), taking9



values respetively in Mn,n(IR), Mn,m(IR) and Mn,1(IR). Let Ω be a subset of IRm, and let
x0 ∈ IRn. We onsider the linear ontrol system

ẋ(t) = A(t)x(t) +B(t)u(t) + r(t) , ∀t ∈ I ,

x(0) = x0 ,
(1.1)where the ontrols u are mensurable loally bounded mappings over I, taking values on asubset Ω ⊂ IRm.The existene theorem for solutions of di�erential equations ensures (see e.g. [121, Chapter11℄), for every ontrol u, the existene of a unique, absolutely ontinuous, solution x(·) : I →IRn for the system (1.1). Let M(·) : I → Mn,n(IR) be the fundamental matrix solution of thehomogeneous linear system ẋ(t) = A(t)x(t), de�ned by Ṁ(t) = A(t)M(t), M(0) = Id. Notethat if A(t) = A is onstant over I, then M(t) = etA. Therefore, the solution x(·) of system(1.1) assoiated to the ontrol u is given by

x(t) = M(t)x0 +

∫ t

0
M(t)M(s)−1 (B(s)u(s) + r(s)) ds ,for every t ∈ I.This mapping depends on the ontrol u. Therefore, if we hange the funtion u we obtaina di�erent trajetory t 7→ x(t) in IRn (see Figure 1.5).

x0

Figure 1.5: The trajetory solution of the ontrol system (1.1) depends on the hoie of theontrol u.In this ontext, some questions arise naturally:(i) Given a point x1 ∈ IRn, is there a ontrol u suh that the assoiated trajetory x steers
x0 to x1 in a �nite time tf? (see Figure 1.6) This is the ontrollability problem.

x0
x(t)

x1 = x(tf )

Figure 1.6: Controllability problem.10



(ii) If the previous question is satis�ed, is there a ontrol whose assoiated trajetorysteers x0 to x1 and minimizes a given funtional C(u) (See Figure 1.7). It is an optimalontrol problem. The funtional C(u) is the optimization riteria, and we all it ost. Forexample if the ost is the transfer time from x0 to x1, then we have the so-alled minimal timeproblem.
x0

x1 = x(tf )

Figure 1.7: Optimal ontrol problem1.3.2 Controllability: de�nition and aessible setConsider the linear ontrol system (1.1). In what follows we introdue a very important set:the aessible set, also alled attainable set or reahable set (see e.g. [53, 62℄).De�nition 1.3.1. The set of aessible points from x0 in time T > 0 is denoted by A(x0, T )and de�ned by
A(x0, T ) = {xu(T ) | u ∈ L∞([0, T ],Ω)} ,where xu(·) is the solution of system (1.1) assoiated to the ontrol u.In other words, A(x0, T ) is the set of endpoints of the solutions of (1.1) in time T , whenthe ontrol u varies (see Figure 1.8). We set A(x0, 0) = {x0}.

x0
A(x0, T )

Figure 1.8: Aessible set.In what follows some properties of the aessible set for linear ontrol systems are given(see, e.g. [62, 121℄ for the respetive proofs). 11



Theorem 1.3.2. Consider the linear ontrol system in IRn

ẋ(t) = A(t)x(t) +B(t)u(t) + r(t)where Ω ⊂ IRm is ompat. Let T > 0 and x0 ∈ IRn. Then for every t ∈ [0, T ], A(x0, t) isompat, onvex and varies ontinuously with t in [0, T ].Corollary 1.3.3. If we note by AΩ(x0, t) the aessible set starting at x0 in time t for ontrolstaking values in Ω, then we set
AΩ(x0, t) = AConv(Ω)(x0, t) ,where Conv(Ω) is the onvex envelope of Ω. In partiular, we have A∂Ω(x0, t) = AΩ(x0, t),where ∂Ω is the boundary of Ω.This last result illustrates the bang-bang priniple (see Theorem 1.3.15). In fat, in manyoptimal ontrol problems the optimal ontrols take values always on the boundary ∂Ω of theontrol onstraint set Ω.Remark 1.3.4. We observe that if r = 0 and x0 = 0, then the solution of ẋ = Ax + Bu,

x(0) = 0, is given by
x(t) = M(t)

∫ t

0
M(s)−1B(s)u(s)ds ,and is linear with respet to u.This remark lead us to the following proposition.Proposition 1.3.5. Suppose that r = 0, x0 = 0 and Ω = IRm. Then,1. ∀ t > 0 A(0, t) is a vetorial subspae of IRn. Moreover,2. ∀t1, t2, s.t. 0 < t1 < t2, A(0, t1) ⊂ A(0, t2).De�nition 1.3.6. The set A(0) = ∪t≥0A(0, t) is the set of aessible points (at any time)starting at the origin.Corollary 1.3.7. The set A(0) is a vetorial subspae of IRn.The ontrollability de�nition for linear ontrol systems follows.De�nition 1.3.8. The ontrol system ẋ(t) = A(t)x(t)+B(t)u(t)+r(t) is said to be ontrollablein time T if A(x0, T ) = IRn, that is, for every x0, x1 ∈ IRn, there exists a ontrol u suh thatthe assoiated trajetory steers x0 to x1 in time T (see Figure 1.9).The following theorem give us a neessary and su�ient ondition for ontrollability, inthe ase where A and B do not depend of t and there are no onstraints on the ontrol(u(t) ∈ IRm). 12



x0
x1Figure 1.9: ControllabilityTheorem 1.3.9 (Kalman ondition). Suppose that Ω = IRm (no onstraints on the ontrol).The system ẋ(t) = Ax(t) +Bu(t) + r(t) is ontrollable in time T (arbitrary) if and only if thematrix C = (B,AB, · · · , An−1B) is of rank n.The matrix C is alled the Kalman matrix.Remark 1.3.10. The Kalman ondition does not depend on T neither on x0. In other words,if an autonomous linear system is ontrollable in time T starting at x0, then is ontrollable inany time starting at any point.In Theorem 1.3.9 no onstraint on the ontrol is onsidered. The next theorem is a on-trollability result when the ontrol is salar, i.e., m = 1, and u(t) ∈ Ω ⊂ IR.Theorem 1.3.11. Let b ∈ IRn and Ω ⊂ IR an interval having 0 in its interior. Consider thesystem ẋ(t) = Ax(t) + bu(t), with u(t) ∈ Ω. Then every point of IRn an be steered to theorigin in �nite time if and only if the ouple (A, b) satis�es the Kalman ondition and the realpart of eah eigenvalue of A is less or equal than zero.1.3.3 Minimal time problemWe start by formalizing, with the help of the aessible set A(x0, t), the notion of minimaltime.Consider the ontrol system on IRn

ẋ(t) = A(t)x(t) +B(t)u(t) + r(t) ,where the ontrols u take values in a ompat set Ω ⊂ IRm with nonempty interior. Let x0, x1be two points of IRn. Suppose that x1 is aessible from x0, i.e., suppose that there existsat least one trajetory steering x0 to x1. Between all the trajetories that steer x0 to x1 wewould like to haraterize the one that does it in minimal time t̂f (see Figure 1.10).
x0

x1 = x(tf )

Figure 1.10: Whih is the trajetory x with minimal time?13



If t̂f is the minimal time, then for every t < t̂f , x1 6∈ A(x0, t) (in e�et, otherwise x1would be aessible from x0 in a time smaller than t̂f and t̂f would not be the minimal time).Therefore,
t̂f = inf{t > 0 |x1 ∈ A(x0, t)} . (1.2)The value of t̂f is well de�ned beause, from Theorem 1.3.2, A(x0, t) varies ontinuously with

t, thus {t > 0 |x1 ∈ A(x0, t)} is losed in IR. In partiular the in�mum in (1.2) is a minimum.The time t = t̂f is the �rst instant suh that A(x0, t) ontains x1 (see Figure 1.11).
x0

x1

A(x0, tf )

A(x0, t)Figure 1.11: Minimal time.On the other hand, we have
x1 ∈ ∂ A(x0, t̂f ) = A(x0, t̂f )\intA(x0, t̂f ) .In fat, if x1 belongs to the interior of A(x0, t̂f ), then for t < t̂f lose to t̂f , x1 alsobelongs to A(x0, t) sine A(x0, t) varies ontinuously with t. This ontradits the fat that t̂fis minimal time.The next theorem states that if a minimal time problem with a linear ontrol system inIRn is ontrollable then it has at least one solution.Theorem 1.3.12. If the point x1 is aessible from x0 then there exists a minimal timetrajetory steering x0 to x1.Remark 1.3.13. We an also onsider the steering problem to a target that does not redueto a single point. Therefore, let (M1(t))0≤t≤tf be a family of ompat subsets of IRn varyingontinuously with t. As before, we see that if there exists a ontrol u taking values in Ωsteering x0 to M1(tf ), then there exists a minimal time ontrol de�ned on [0, t̂f ] steering x0to M(t̂f ).This remark give us a geometri vision of the notion of minimum time and lead us to thefollowing de�nition. 14



De�nition 1.3.14. The ontrol u is an extremal on [0, t] if the trajetory of system (1.1)assoiated to u satis�es x(t) ∈ ∂ A(x0, t).Every minimal time ontrol is an extremal. The onverse does not hold in general.Optimality ondition: maximum priniple in the linear aseThe next theorem give us a neessary and su�ient ondition in order that extremal ontrolsare also optimal ontrols.Theorem 1.3.15. Consider the linear ontrol system






ẋ(t) = A(t)x(t) +B(t)u(t) + r(t) ,

x(0) = x0 ,where the domain of ontrol onstraints Ω ⊂ IRm is ompat. Let tf > 0. The ontrol uis an extremal on [0, tf ] if and only if there exists a nontrivial solution p(t) of the equation
ṗ(t) = −p(t)A(t) suh that

p(t)B(t)u(t) = max
w∈Ω

p(t)B(t)w (1.3)for every t ∈ [0, tf ]. The row vetor p(t) ∈ IRn is alled the adjoint vetor.Remark 1.3.16. In the ase of a salar ontrol, and if moreover Ω = [−a, a] where a > 0, themaximization ondition (1.3) implies immediately that u(t) = a sign〈p(t), B(t)〉. The funtion
ϕ(t) = 〈p(t), B(t)〉 is alled a swithing funtion, and the time ts at whih the extremal ontrol
u(t) hange its sign is alled a swithing time. It is, in partiular, a root of the funtion ϕ.The initial ondition p(0) depends on x1. As this ondition is not diretly known, theappliation of Theorem 1.3.15 is mostly done indiretly. Let us see an example.1.3.4 Example: optimal ontrol of an harmoni osillator (linear ase)Consider a puntual mass m, fored to move along an axis (Ox), attahed to a spring (seeFigure 1.12).

xm

~ι

O Figure 1.12: A spring15



The mass is then drawn towards the origin by a fore that is assumed equal to −k1(x −
l) − k2(x − l)3, where l is the length of the spring at rest, and k1, k2 are the oe�ients ofsti�ness. We apply to this mass point an external horizontal fore u(t)~l. The laws of physisgive us the motion equation

mẍ(t) + k1(x(t) − l) + k2(x(t) − l)3 = u(t) . (1.4)Moreover we impose a onstraint on the external fore,
|u(t)| ≤ 1 , ∀ t .This means we an not apply any external horizontal fore to the point mass: the externalfore an only take values on the interval [−1, 1], re�eting the fat that our power of ationis limited.Assume that the initial position and veloity of the objet are, respetively, x(0) = x0 and

ẋ(0) = y0. The problem onsists in driving the point mass to the equilibrium position x = lin minimal time ontrolling the external fore u(t) that is applied to this objet, and takinginto aount the onstraint |u(t)| ≤ 1. The funtion u is the ontrol.Problem 1.3.17. Given the initial onditions x(0) = x0 and ẋ(0) = y0, the goal is to �nda funtion u(t) whih allows the movement of the point mass to its equilibrium position inminimal time.Mathemati modelingTo simplify the presentation, we will suppose that m = 1 kg, k1 = 1N.m−1 and l = 0m (wepass to l = 0 by translation). The equation of motion (1.4) is equivalent to the ontrolleddi�erential system






ẋ(t) = y(t)

ẏ(t) = −x(t) − k2x(t)
3 + u(t)

(1.5)with x(0) = x0 and ẋ(0) = y0.Writing (1.5) in matriial notation we have
Ẋ(t) = AX(t) + f(X(t)) +Bu(t) , X(0) = X0 , (1.6)where

A =

(

0 1

−1 0

)

, B =

(

0

1

)

,

X =

(

x

y

)

, X0 =

(

x0

y0

)

, f(X) =

(

0

−k2x
3

)

.16



In this setion we are onsidering linear ontrol systems, therefore we �xe k2 = 0, andwe do not take into aount the nonlinear onservative e�ets (in Setion 1.4, we onsidernonlinear ontrol systems and take k2 6= 0). If k2 = 0 then f(X) ≡ 0 and the ontrol system(1.6) has the form of (1.1) (linear ontrol system). We wish to answer the two followingquestions.1. Is there always, for any initial ondition x(0) = x0 and ẋ(0) = y0, an horizontal exteriorfore (a ontrol) that allows to move, in �nite time tf , the point mass to its equilibriumposition x(tf ) = 0 and ẋ(tf ) = 0?2. If the answer to the �rst question is a�rmative, whih is the fore (whih is the ontrol)that minimizes the transfer time of the point mass to its equilibrium position?System ontrollabilityOur system writes in the form






Ẋ = AX +Bu

X(0) = X0with A =

(

0 1

−1 0

) and B =

(

0

1

). We have then
rank (B,AB) = rank

(

0 1

1 0

)

= 2and the eigenvalues of A have zero real part. Therefore, from Theorem 1.3.11, the system isontrollable, that is, there exist ontrols u satisfying the onstraint |u(t)| ≤ 1 suh that theassoiated trajetories steer X0 to 0. We answered a�rmatively to the �rst question.This answer orresponds to the physial interpretation of the problem. In fat, if we do notapply an exterior fore, that is, if u = 0 then the motion equation is ẍ+ x = 0 and the pointmass will ontinues to osillate, never stopping, in a �nite time, at its equilibrium position.On the other hand, when exterior fores are applied, we tend to dampen the osillations. Theontrol theory predits that we an stop the objet in a �nite time.Computation of the optimal ontrolWe know that there exist ontrols that allow to steer the system from X0 to 0 in �nite time.Now we want to ompute, onretely, whih one of these ontrols does it in minimal time. Todo so we apply the Theorem 1.3.15 and obtain
u(t) = sign (〈p(t), B〉) ,17



where p(t) ∈ IR2 is the solution of ṗ = −pA. Let p(t) =

(

p1(t)

p2(t)

). Then, u(t) = sign (p2(t))and ṗ1 = p2, ṗ2 = −p1, that is, p̈2 + p2 = 0. Thus p2(t) = λ cos t + µ sin t. Therefore, theoptimal ontrol is pieewise onstant in intervals of size π and take alternately the values ±1.
• If u = −1, we get the di�erential system







ẋ = y ,

ẏ = −x− 1 .
(1.7)

• If u = +1, we get






ẋ = y ,

ẏ = −x+ 1 .
(1.8)The optimal trajetory, steering X0 to 0, onsists in onatenated piees of solutions of (1.7)and (1.8). The solutions of (1.7) and (1.8) are obtained easily: from equation (1.7) we have

(x + 1)2 + y2 = const = R2 and we onlude that the solution urves of (1.7) are irlesentered on x = −1 and y = 0 of period 2π (in fat, x(t) = −1 + R cos t and y(t) = R sin t);as solutions of (1.8) we get x(t) = 1 +R cos t and y(t) = R sin t, i.e., the solutions of (1.8) areirles entered in x = 1 and y = 0 of period 2π.The optimal trajetory that steers X0 to 0 follows alternately an ar of a irle entered in
x = −1 and y = 0 and an ar of a irle entered in x = 1 and y = 0. The detailed study of theoptimal trajetory and its numerial implementation, for every X0, an be founded in [121℄.See also Setion 2.6 where the optimal ontrol problem is solved.1.4 Nonlinear optimal ontrolWe now present some tehniques to analyze nonlinear optimal ontrol problems (the proofsof the presented results an be found, for example, in [62, 121℄). In partiular, we enuniatethe Pontryagin maximum priniple in a more general form than the one we have seen inSetion 1.3. The nonlinear example of the spring will be one of the appliation examples.1.4.1 Statement of the problemFrom a general point of view, the problem should be presented in a manifoldM , but our pointof view will be loal and we work on an open V of IRn small enough. The general optimalontrol problem is the following. Consider the ontrol system

ẋ(t) = f(t, x(t), u(t)) , x(t0) = x0 , (1.9)18



where f is a mapping of lass C1 1 from I × V × U into IRn, I is an interval of IR, V is anopen set of IRn, U is an open set of IRm, (t0, x0) ∈ I × V . We suppose that the ontrols u(·)belong to a subset of L∞
loc(I, IRm).These hypotheses assure, for every ontrol u(·), the existene and uniqueness of a maximalsolution xu(·) over an interval J ⊂ I, of the Cauhy problem (1.9) (see e.g. [121, Chapter 11℄).In what follows we will onsider, without loss of generality, t0 = 0.De�nition 1.4.1. Let tf > 0, tf ∈ I. A ontrol funtion u(·) ∈ L∞([0, tf ], IRm) is saidadmissible on [0, tf ] if the trajetory x(·), solution of (1.9) assoiated to u(·), is well de�nedon [0, tf ]. The set of admissible ontrols on [0, tf ] is denoted Utf ,IRm , and the set of admissibleontrols on [0, tf ] taking their values in Ω is denoted Utf ,Ω.In what follows we will abbreviate the notation for admissible ontrols taking value in IRmwriting Utf .Let f0 be a funtion of lass C1 over I × V ×U , and g a ontinuous funtion over V . Forevery ontrol u(·) ∈ Utf we de�ne the ost of the assoiated trajetory xu(·) over the interval

[0, tf ] by
C(tf , u) =

∫ tf

0
f0(t, xu(t), u(t))dt + g(tf , xu(tf )) .Let M0 and M1 be two subsets of V . The optimal ontrol problem is to ompute the traje-tories xu(·) solutions of

ẋu(t) = f(t, xu(t), u(t)) ,suh that xu(0) ∈M0, xu(tf ) ∈M1, and minimizing the ost C(tf , u). We say that the optimalontrol has free �nal time if the �nal time tf is free, otherwise we say that the problem has�xed �nal time.1.4.2 End-point mappingConsider for the system (1.9) the following optimal ontrol problem: given a point x1 ∈ IRn,�nd a time tf and a ontrol u over [0, tf ] suh that the trajetory xu assoiated to the ontrol
u, solution of (1.9), satis�es

xu(0) = x0 , xu(tf ) = x1 .This leads us to the following de�nition.1F.H. Clarke is the author of the so-alled Nonsmooth Analysis reated in the seventies whih allows thestudy of more general optimal ontrol problems, where the used funtions are not neessarily di�erentiablein the lassi sense. For a detailed study on Nonsmooth Analysis see, e.g., [30�33℄ and the referenes itedtherein. 19



De�nition 1.4.2. Let tf > 0. The end-point mapping in time tf of the ontrol system (1.9)starting in x0 is the mapping
Etf : Utf −→ IRn

u 7−→ xu(tf ) .In other words, the end-point mapping in time tf assoies to a ontrol u the �nal point ofthe trajetory assoiated to the ontrol u (see Figure 1.13).Remark 1.4.3. We also an denote the end-point mapping by E(x0, tf , u) (see, e.g., Setion�1.5).
x0

xu(·, x0)

xu(tf , x0)Figure 1.13: End-point mapping.A very important issue in the theory of optimal ontrol is the study of the map Etf ,desribing its image, singularities, regularity, et. The answer to these questions depends,obviously, on the spae Utf and on the shape of the system (on the funtion f). With all thegenerality we have the following result (see, e.g., [16, 53, 106℄).Proposition 1.4.4. Consider the system (1.9) where f is Cp, p ≥ 1, and let Utf ⊂ L∞([0, tf ], IRm)be the domain of Etf , that is, the set of ontrols whose assoiated trajetory is well de�nedover [0, tf ]. Then Utf is an open set of L∞([0, tf ], IRm), and Etf is Cp in the L∞ sense.Moreover the Fréhet di�erential of Etf at a point u ∈ Utf is given by the linearized systemat u in the following way. Let, for every t ∈ [0, tf ],
A(t) =

∂f

∂x
(t, xu(t), u(t)) , B(t) =

∂f

∂u
(t, xu(t), u(t)) .The linearized ontrol system

ẏv(t) = A(t)yv(t) +B(t)v(t)

yv(0) = 0is alled the linearized system along the trajetory xu. The Fréhet di�erential of Etf at u isthen the mapping dEtf (u) suh that, for every v ∈ L∞([0, tf ], IRm),
dEtf (u) · v = yv(tf ) = M(tf )

∫ tf

0
M−1(s)B(s)v(s)ds20



where M is the fundamental matrix of the linearized system, i.e., the matriial solution of
Ṁ = AM , M(0) = Id.The previous result an be improved for ontrol-a�ne systems (see [106, 119℄).De�nition 1.4.5. A ontrol-a�ne system is a system of the form

ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)) ,where fi are vetor �elds of IRn.Proposition 1.4.6. Consider a smooth ontrol-a�ne system, and let Utf be the domain of
Etf . Then Utf is an open set of L2([0, tf ], IRm), and the end-point mapping Etf is smooth inthe L2 sense, and is analyti if the vetor �eld are analyti.1.4.3 Aessible set and ontrollabilityDe�nition 1.4.7. The aessible set in a time tf for the system (1.9), denoted by A(x0, tf ),is the set of all extremities in time tf of the solutions of the system starting at x0 in time
t = 0. In other words, is the image of the end-point mapping in time tf .Theorem 1.4.8. Consider the ontrol system

ẋ = f(t, x, u) , x(0) = x0 ,where the funtion f is C1 over IR1+n+m, and the ontrols u belong to the set Utf ,Ω of mea-surable funtions taking values in a ompat Ω ⊂ IRm. We suppose that- there exists a positive real b suh that the assoiated trajetory is uniformly bounded by
b over [0, tf ], i.e.,

∃b > 0 | ∀u ∈ U ∀t ∈ [0, tf ] ‖xu(t)‖ ≤ b , (1.10)- for every (t, x), the set of veloity vetors
V (t, x) = {f(t, x, u) |u ∈ Ω} (1.11)is onvex.Then the set A(x0, t) is ompat and varies ontinuously in t over [0, tf ].Remark 1.4.9. The hypothesis (1.10) is not a onsequene of the other hypotheses and isindispensable. In fat, onsider the system ẋ = x2 + u, x(0) = 0, where we suppose that

|u(t)| ≤ 1 and that the �nal time is tf = π
2 . Then for every ontrol u onstant equal to c,with 0 < c < 1, the trajetory assoiated is xc(t) =

√
c tan

√
ct, therefore is well de�ned over

[0, tf ], but when c tends to 1 then xc(tf ) tends to +∞ (see Figure 1.14). On the other handit is easy to see that in this example the set of admissible ontrols, taking values in [−1, 1], isthe set of measurable funtions suh that u(t) ∈ [−1, 1[.21



Figure 1.14: Trajetory xc(t) of example in Remark 1.4.9, for t ∈ [0, π
2 ] and c = 0.5; 0.75; 0.9.Remark 1.4.10. Analogously, the onvexity hypothesis (1.11) is neessary (see [62, Exam-ple 2,pag. 244℄).De�nition 1.4.11. The system (1.9) is said to be ontrollable (in an arbitrary time) startingat x0 if

⋃

T≥0

A(x0, T ) = IRn .The system (1.9) is said to be ontrollable in time T if A(x0, T ) = IRn.Arguments based on the impliit funtion theorem allow to dedue results on loal on-trollability of the starting system by the study of the ontrollability of the linearized system(see, e.g., [62℄). For example, we dedue from the ontrollability theorem in the linear asethe following proposition.Proposition 1.4.12. Consider the ontrol system (1.9) where f(x0, u0) = 0. Let A =
∂f
∂x(x0, u0) and B = ∂f

∂u (x0, u0). If
rank (B|AB| · · · |An−1B) = nthen the nonlinear system (1.9) is loally ontrollable at x0.In general the ontrollability problem is di�ult. Di�erent approahes are possible. Someof them make use of Analysis, others Geometry, others Algebra, et. The ontrollabilityproblem is onneted, for example, to the question of knowing when a given semi-group atstransitively. There are also some tehniques to prove, in some ases, global ontrollability.One of them, an important one, is alled enlargement tehnique (see [53℄).22



1.4.4 Singular ontrolsDe�nition 1.4.13. Let u be a ontrol de�ned on [0, tf ] suh that the assoiated trajetory
xu starting at x(0) = x0 is de�ned on [0, tf ]. We say that a ontrol u (or the trajetory xu) issingular2 over [0, tf ] if the Fréhet derivative dEtf (u) of the end-point mapping at the point
u is not surjetive. Otherwise we say that u is regular.Proposition 1.4.14. Let x0 and tf be �xed. If u is a regular ontrol, then Etf is an openmap in a neighborhood of u.In other words, at a point x1 aessible in time tf from x0 by a regular trajetory x(·), theaessible set A(x0, tf ) is loally open, i.e., is a neighborhood of the point x1. In partiularthis implies that the system is loally ontrollable in a neighborhood of the point x1. We alsosay ontrollability along the trajetory x(·). The next proposition follows.Proposition 1.4.15. If u is a regular ontrol over [0, tf ], then the system is loally ontrollablealong the trajetory assoiated to that ontrol.Corollary 1.4.16. Let u be a ontrol de�ned on [0, tf ] suh that the assoiated trajetory xustarting at x(0) = x0 is de�ned over [0, tf ] and satis�es at time tf

x(tf ) ∈ ∂A(x0, tf ) .Then the ontrol u is singular over [0, tf ].Remark 1.4.17. The system an be loally ontrollable along a singular trajetory. This is thease of the salar system ẋ = u3, where the ontrol u = 0 is singular.1.4.5 Existene of optimal trajetoriesMore than a ontrol problem, we onsider also an optimization problem: between all thesolutions of the system (1.9) steering 0 to x1, �nd a trajetory that minimizes (or maximizes)a ertain ost funtion C(tf , u). Suh a trajetory, if it exists, is alled optimal for that ost.The existene of optimal trajetories depende on the regularity of the system and of the ost.For a general existene theorem see, e.g., [53, 62℄. It an also happen that an optimal ontroldoes not exist in the lass of onsidered ontrols, but there exists in a wider spae . Thisquestion leads us to an important area: the study of regularity of optimal trajetories. Animportant ontribution in this area is given in [34, 36, 123℄, where a systemati study of theLipshitizian regularity of the minimizers on the linear optimal ontrol is introdued. Generalresults on the Lipshitizian regularity of minimizing trajetories for nonlinear ontrol systemsan be founded in [117℄.2In this hapter the term �singular� is assoiated to a geometri ontrol theory de�nition. On the otherhand, please note that, in Chapter 2 �singular ontrol� is assoiated to ontrol-a�ne systems when the swithingfuntion vanishes on a nontrivial interval. 23



The following theorem applies to general ontrol systems, eventually, with state onstraints.Theorem 1.4.18. Consider the ontrol system
ẋ(t) = f(t, x(t), u(t)) ,where f is C1 from IR1+n+m into IRn, the ontrols u take values in a ompat Ω ⊂ IRm, andwhere there exist, eventually, onstraints on the state variable

c1(x(t)) ≤ 0, ..., cr(x(t)) ≤ 0 ∀ 0 ≤ t ≤ tf = t(u) ,where c1, ..., cr are ontinuous funtions in IRn. Let M0 and M1 be two ompats subsets ofIRn suh that M1 is aessible from M0. Let U be the set of ontrols taking values in Ω steering
M0 to M1. Let f0 be a C1 funtion over IR1+n+m, and g a ontinuous funtion over IRn. Weonsider the ost

C(u) =

∫ t(u)

0
f0(t, x(t), u(t))dt + g(t(u), x(t(u))) ,where t(u) ≥ 0 is suh that x(t(u)) ∈M1. We suppose that- there exists a positive real b suh that every trajetory assoiated to a ontrol u ∈ Utf isuniformly bounded by b over [0, t(u)], i.e.

∃b > 0 | ∀u ∈ U ∀t ∈ [0, t(u)] ‖xu(t)‖ ≤ b ,- for every (t, x) ∈ IR1+n, the augmented set of veloity vetors
Ṽ (t, x) = {(f0(t, x, u), f(t, x, u)) |u ∈ Ω}is onvex.Then there exists an optimal ontrol u over [0, t(u)] suh that the assoiated trajetory steers

M0 to M1 in time t(u) with minimal ost.For an optimal ontrol problem with �xed �nal time we impose t(u) = tf (in partiularwe suppose that the target M1 is aessible from M0 in time tf ).Remark 1.4.19. A more general result an be stated where the setsM0 and M1 depend on thetime t, as well as the domain of the ontrol onstraints (see [62℄).For ontrol-a�ne systems the following result holds.Proposition 1.4.20. Consider the a�ne system in IRn

ẋ = f0(x) +

m
∑

i=1

uifi(x) , x(0) = x0, x(tf ) = x1 ,24



with the ost
Ctf (u) =

∫ tf

0

m
∑

i=1

u2
i (t)dt ,where tf > 0 is �xed and the lass Utf of admissible ontrols is the subset of L2([0, tf ], IRm)suh that1. ∀u ∈ U xu is well de�ned over [0, tf ];2. ∃Btf | ∀u ∈ U ∀t ∈ [0, tf ] ‖xu‖ ≤ Btf .If x1 is aessible from x0 in time tf , then there exist an optimal ontrol steering x0 to x1.1.4.6 Pontryagin maximum prinipleGiven an optimal ontrol problem for whih existene and regularity onditions are satis�edfor the optimal solution, how to �nd the optimal proesses? The answer to this question isgiven by the well known Pontryagin Maximum Priniple. For a detailed study on neessaryoptimality onditions we suggest [30, 105, 121℄.We start by showing that a singular trajetory an be parametrized as a projetion of asolution of an hamiltonian system subjet to a onstraint equation. Consider the Hamiltonianfor the ontrol system (1.9):

H : IRn × IRn\{0} × IRm → IR
(x, p, u) 7→ H(x, p, u) = 〈p, f(x, u)〉where 〈 , 〉 denotes the usual inner produt of IRn.Proposition 1.4.21. Let u be a singular ontrol and x a singular trajetory assoiated to thisontrol on [0, tf ]. Then, there exists a ontinuous row vetor p : [0, tf ] → IRn\{0} suh thatthe following equations are satis�ed for almost every t ∈ [0, tf ]:

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)) ,

ṗ(t) = −∂H
∂x

(x(t), p(t), u(t)) ,

∂H

∂u
(x(t), p(t), u(t)) = 0 (onstraint equation)where H is the Hamiltonian of the system.Proof. By De�nition 1.4.13, the pair (x, u) is singular over [0, tf ] if dEtf (u) is not surjetive.Therefore, there exists a row vetor p̄ ∈ IRn\{0} suh that

∀ v(·) ∈ L∞([0, tf ]) 〈p̄, dEtf (u) · v〉 = p̄

∫ tf

0
M(tf )M−1(s)B(s)v(s)ds = 0 .25



Thus,
p̄M(tf )M−1(s)B(s) = 0 for almost every point of [0, tf ] .Let p(t) = p̄M(tf )M−1(t), t ∈ [0, tf ]. We have that p is a row vetor of IRn\{0} and p(tf ) = p̄.Di�erentiating, we get

ṗ(t) = −p(t)∂f
∂x

(x(t), u(t)) .Introduing the Hamiltonian H(x, p, u) = 〈p, f(x, u)〉 we onlude that
ẋ(t) = f(x(t), u(t)) =

∂H

∂p
(x(t), p(t), u(t))and

ṗ(t) = −p(t)∂f
∂x

(x(t), u(t)) = −∂H
∂x

(x(t), p(t), u(t)) .The onstraint equation omes from p(t)B(t) = 0 beause B(t) = ∂f
∂u(x(t), u(t)).De�nition 1.4.22. The row vetor p : [0, tf ] → IRn\{0} of Proposition1.4.21 is alled adjointvetor of the system (1.9).Weak maximum prinipleConsider the Lagrange problem given by the ontrol system

ẋ(t) = f(t, x(t), u(t)) , (1.12)where the ontrols u(·) ∈ Utf are de�ned in [0, tf ] and take values in Ω = R
m (there are norestritions on the values of the ontrol). The assoiated trajetories must satisfy x(0) = x0and x(tf ) = x1. The problem onsist in minimizing a ost of the form

C(u) =

∫ tf

0
f0(t, x(t), u(t))dt , (1.13)where tf is �xed.Assoiate to the system (1.12) the following augmented system

ẋ(t) = f(t, x(t), u(t))

ẋ0(t) = f0(t, x(t), u(t))
(1.14)and use the notation x̃ = (x, x0) and f̃ = (f, f0). The problem is redued to �nding a traje-tory solution of (1.14) with x̃0 = (x0, 0) and x̃1 = (x1, x

0(tf )) suh that the last oordinate
x0(tf ) is minimized.The set of aessible states starting at x̃0 for the system (1.14) is Ã(x̃0, tf ) = ∪u(·)x̃(tf , x̃0, u).The following Lemma is ruial.Lemma 1.4.23. If the ontrol u assoiated to the ontrol system (1.12) is optimal for the ost(1.13), then it is singular on [0, tf ] for the augmented system (1.14).26



Proof. Let u be a ontrol and x̃ the assoiated trajetory, solution of the augmented system(1.14) starting at x̃0 = (x0, 0). If u is optimal for the riteria (1.13), then the point x̃(tf )belongs to the boundary of the set Ã(x̃0, tf ). In fat, if that was not the ase then there wouldexist a neighborhood of the point x̃(tf ) = (x1, x
0(tf )) in Ã(x̃0, tf ) ontaining a point ỹ(tf )solution of system (1.14) and suh that y0(tf ) < x0(tf ), whih ontradits the optimality ofthe ontrol u (see Figure 1.15). Therefore, by Proposition 1.4.14 the ontrol ũ is singular forthe augmented system (1.14).

x

x0

x1

x0(tf )

Ã(x̃0, tf )

Figure 1.15: If u is optimal, then x̃(tf ) ∈ ∂Ã(x̃0, tf ).Under the assumptions of the previous lemma, following Proposition 1.4.21, there exists amap p̃ : [0, tf ] → IRn+1\{0} suh that (x̃, p̃, ũ) is solution of the Hamiltonian system
˙̃x(t) =

∂H̃

∂p̃
(t, x̃(t), p̃(t), u(t)) , ˙̃p(t) = −∂H̃

∂x̃
(t, x̃(t), p̃(t), u(t)) ,

∂H̃

∂u
(t, x̃(t), p̃(t), u(t)) = 0where H̃(t, x̃, p̃, u) = 〈p̃, f̃(t, x̃, u)〉.Writing p̃ = (p, p0) ∈ (IRn × IR)\{0}, where p0 is alled the dual variable of the ost, weget

(ṗ, ṗ0) = −(p, p0)

(

∂f
∂x 0
∂f0

∂x 0

)

.In partiular, ṗ0(t) = 0, that is, p0 is onstant in [0, tf ]. As the vetor p̃(t) is de�ned up toa multipliative salar, we hose p0 ≤ 0. On the other hand, H̃ = 〈p̃, f̃(t, x, u)〉 = pf + p0f ,thus
∂H̃

∂u
= 0 = p

∂f

∂u
+ p0 ∂f

0

∂u
.We get the following result. 27



Theorem 1.4.24 (Weak maximum priniple � Hestenes's theorem [49℄). If the ontrol uassoiated to the system (1.12) is optimal for the ost (1.13), then there exists a map p(·)absolutely ontinuous on [0, tf ], taking values in IRn, alled adjoint vetor, and a real number
p0 ≤ 0, suh that the ouple (p(·), p0) is nontrivial, and the following equations are satis�edfor almost every t ∈ [0, tf ]

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)),

ṗ(t) = −∂H
∂x

(t, x(t), p(t), p0, u(t)),

∂H

∂u
(t, x(t), p(t), p0, u(t)) = 0,

(1.15)where H is the Hamiltonian
H(t, x, p, p0, u) = 〈p, f(t, x, u)〉 + p0f0(t, x, u)assoiated to the system (1.12) and to the ost (1.13).The Theorem 1.4.24 has its origin in the works of Graves of 1933, being �rstly obtainedby Hestenes in 1950 [49℄. It is a partiular ase of Pontryagin Maximum Priniple where norestritions on the ontrols are onsidered (i.e., u(t) ∈ Ω with Ω = IRm).Pontryagin maximum priniple (strong version of Theorem 1.4.24)The Pontryagin maximum priniple is a strong version of Theorem 1.4.24 where restritionson the values of the ontrols are allowed (Ω ⊂ IRm an be a losed set). The existene of suhrestritions are imposed by appliations and hange ompletely the nature of the solutions.The Pontryagin maximum priniple is muh more di�ult to prove than Hestenes's Theorem(see, e.g., [62, 96℄).The general formulation is the following.Theorem 1.4.25 (Pontryagin maximum priniple). Consider the ontrol system in IRn

ẋ(t) = f(t, x(t), u(t)) , (1.16)where f : IR × IRn × IRm → IRn is of lass C1 and the ontrols are bounded mensurablemappings de�ned on the interval [0, tf (u)] of IR+ and taking values in Ω ⊂ IRm. Let M0and M1 be two subsets of IRn. We denote by Ut(u),Ω the set of admissible ontrols u whoseassoiated trajetories steer an initial point of M0 to a �nal point of M1 in time t(u) < tf (u).For suh a ontrol we de�ne the ost of a ontrol u on [0, t] by
C(u) =

∫ t

0
f0(s, x(s), u(s))ds + g(t, x(t)) ,28



where f0 : IR× IRn × IRm → IR and g : IR× IRn → IR are of lass C1, and x is the trajetorysolution of (1.16) assoiated to the ontrol u.We onsider the following optimal ontrol problem: determine a trajetory steering M0 to
M1 and minimizing the ost. The �nal time tf an be �xed or not.If the ontrol u(·) ∈ Utf ,Ω assoiated to the trajetory x(·) is optimal on [0, tf ], then thereexists a mapping p(·) : [0, tf ] → IRn absolutely ontinuous alled adjoint vetor, and a realnumber p0 ≤ 0, suh that the pair (p(·), p0) is nontrivial, and suh that, for almost every
t ∈ [0, tf ],

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)) ,

ṗ(t) = −∂H
∂x

(t, x(t), p(t), p0, u(t)) ,

(1.17)where H(t, x, p, p0, u) = 〈p, f(t, x, u)〉 + p0f0(t, x, u) is the Hamiltonian of the system and wehave the maximization ondition almost everywhere on [0, tf ]

H(t, x(t), p(t), p0, u(t)) = max
w∈Ω

H(t, x(t), p(t), p0, w) . (1.18)If the �nal time to steer the target M1 is not �xed, we have the ondition
max
w∈Ω

H(tf , x(tf ), p(tf ), p0, w) = −p0∂g

∂t
(tf , x(tf )) (1.19)at the �nal time tf .If M0 and M1 (or just one of these two sets) are manifolds in IRn having tangent spaesat x(0) ∈ M0 and x(tf ) ∈ M1, then the adjoint vetor an be onstruted in suh a way thatthe transversality onditions hold at both extremities (or at just one of them):

p(0)⊥T x(0)M0 (1.20)and
p(tf ) − p0 ∂g

∂x
(tf , x(tf ))⊥T x(tf )M1 . (1.21)Remark 1.4.26. Under the onditions of Theorem 1.4.25, we have moreover that

d

dt
H(t, x(t), p(t), p0, u(t)) =

∂H

∂t
(t, x(t), p(t), p0, u(t))for almost every t ∈ [0, tf ]. In partiular if the augmented system is autonomous, i.e., if f and

f0 do not depend on t, then H does not depend on t, and we have
max
w∈Ω

H(x(t), p(t), p0, w) = constant ∀t ∈ [0, tf ] .Note that this equality is then true everywhere on [0, tf ] (in fat this funtion of t is Lips-hitzian). 29



Remark 1.4.27. The onvention p0 ≤ 0 lead us to the maximum priniple. The onvention
p0 ≥ 0 will lead to the minimum priniple, i.e., the ondition (1.18) will be a minimumondition.Remark 1.4.28. In the ase where Ω = IRm, i.e., when there are no onstraints on the ontrol,the maximization ondition (1.18) beomes ∂H

∂u = 0, and we �nd the weak maximum priniple(Theorem 1.4.24).De�nition 1.4.29. An extremal for the optimal ontrol problem is a 4-tuple (x(·), p(·), p0, u(·))solution of the equations (1.17) and (1.18). If p0 = 0, we say that the extremal is abnormal,and if p0 6= 0 the extremal is said to be normal.The designation abnormal is historial. We know nowadays that abnormal minimizers areusually �normal� in many optimization problems. For a study on abnormal extremals see,e.g., [7℄.Remark 1.4.30. When Ω = IRm, i.e., when there is no onstraint on the ontrol, then thetrajetory x(·) assoiated to the ontrol u(·) is a singular trajetory of the system (1.16) ifand only if it is the projetion of an abnormal extremal (x(·), p(·), 0, u(·)).This results on the Hamiltonian haraterization of singular trajetories (f. Proposition1.4.21). Note that one p0 = 0, the trajetories do not depend on the ost. They are intrinsito the system. The fat that they an be optimal an be explained in the following way: ingeneral, a singular trajetory has a rigidity property, i.e., it's the only trajetory joining twoextremities, and therefore in partiular it is optimal, independently of the hosen optimizationriteria.This relation between abnormal extremals and singular trajetories, for Ω = IRm, showsvery well the di�ulty of proving the existene of suh trajetories.De�nition 1.4.31. The onditions (1.20) and (1.21) are alled transversality onditions onthe adjoint vetor. The ondition (1.19) is alled transversality ondition on the Hamiltonian.Remark 1.4.32. The minimal time problem orresponds to the ase where f0 = 1 and g = 0,or f0 = 0 and g(t, x) = t. In these two ases the transversality onditions are the same.Remark 1.4.33. The transversality ondition over the Hamiltonian (1.19) is valid only if the�nal time tf to attain the target is not �xed. In this ase, if the funtion g does not depend ontime t (whih is true, for example, for the Lagrange problem), then ondition (1.19) beomes
max
w∈Ω

H(tf , x(tf ), p(tf ), p0, w) = 0 ,or even, if u is ontinuous at time tf ,
H(tf , x(tf ), p(tf ), p0, w) = 0 .In other words, the Hamiltonian vanishes at the �nal time.30



Moreover, if the augmented system is autonomous, i.e., if f and f0 do not depend on t,then from Remark 1.4.26 we have
max
w∈Ω

H(x(t), p(t), p0, w) = 0 ∀ t ∈ [0, tf ]along any extremal.The Pontryagin maximum priniple is a deep and important result in ontemporary Math-ematis, with many appliations in Physis, Biology, Management, Eonomy, Soial Sienes,Enginery, et. (see, e.g., [21℄). There are other more general versions of the maximum priniplefor non smooth or hybrid dynamis (see for example [30,111,112℄ and the referenes therein).1.4.7 Example: optimal ontrol of an harmoni osillator (nonlinear ase)Consider again the example (nonlinear) of the spring, modeled by the ontrol system
ẋ(t) = y(t) ,

ẏ(t) = −x(t) − 2x(t)3 + u(t) ,where we admit as ontrols every funtion u(·) pieewise ontinuous suh that |u(t)| ≤ 1. Theaim is to move the spring from any initial position (x0, y0 = ẋ0) to its equilibrium position
(0, 0) in minimal time t∗.Let us apply the Pontryagin maximum priniple to this problem. The Hamiltonian is givenby

H(x, y, px, py, p
0, u) = pxy + py(−x− 2x3 + u) + p0 .If (x, y, px, py, p

0, u) is an extremal, then
ṗx = −∂H

∂x
= py(1 + 6x2) and ṗy = −∂H

∂y
= −px .Notie that sine the adjoint vetor (px, py, p

0) should be nontrivial, py an not vanish on aninterval (otherwise we would also have px = −ṗy = 0 and, by the vanishing of the Hamiltonian,we would have also p0 = 0). On the other hand, the maximization ondition give us
py(t)u(t) = max

|w|≤1
py(t)w .In partiular, the optimal ontrols are suessively equal to ±1, that is, the bang-bang prinipleholds (see, e.g., [62, 65℄). Conretely, we an say that

u(t) = sign(py(t)) where py is the solution of 


p̈y(t) + py(t)(1 + 6x(t)2) = 0

py(t∗) = cosα, ṗy(t∗) = − sinα ,

α ∈ [0, 2π[. 31



Considering the time inversion (t 7→ −t) our problem is equivalent to the minimal timeproblem for the system






























ẋ(t) = −y(t)
ẏ(t) = x(t) + 2x(t)3 − sign(py(t))

ṗy(t) = px(t)

ṗx(t) = −py(t)(1 + 6x(t)2) .Given the initial onditions x0 and ẋ0 (state and initial veloity of the mass), the problemis easily solved. In [121℄ a resolution of the system is done using the Computer AlgebraSystem (CAS) Maple. For the use of Maple on the alulus of variations and optimal ontrolsee, e.g., [47, 64℄.1.4.8 Example: Newton's problem of minimal resistaneNewton's problem of minimal resistane is one of the �rst problems of optimal ontrol: it wasproposed, and its solution given, by Isaa Newton in his masterful Prinipia Mathematia, in1686. The problem onsists of determining, in dimension three, the shape of an axis-symmetribody, with assigned radius and height, whih o�ers minimum resistane when it is movingin a resistant medium. The problem has a very rih history and is well doumented in theliterature (see e.g. [101℄).Newton has indiated in the Mathematial priniples of natural philosophy the orretsolution to his problem (see Figure 1.16). He has not explained, however: how suh solutionan be obtained; how the problem is formulated in the language of mathematis. This hasbeen the work of many mathematiians sine Newton's time (see e.g. [22,115,118℄). Extensionsof Newton's problem is a topi of urrent intensive researh, with many questions remainingopen hallenging problems. Reent results, obtained by relaxing Newton's hypotheses, inlude:non-symmetri bodies [23℄; one-ollision non-onvex bodies [37℄; ollisions with frition [51℄;multiple ollisions allowed [92℄; temperature noise of partiles [93, 94℄. Here we are interestedin the lassial problem, under the lassial hypotheses onsidered by Newton.Newton's problem of minimal resistane in dimension threeNewton's aerodynamial problem, in dimension three, is a lassi problem (see e.g. [11,44,57℄).It onsists in joining two given points (0, 0) and (T, h) of the plane by a urve's ar that, whileturning around a given axis, generate the body of revolution o�ering the least resistane whenmoving in a �uid in the diretion of the axis.In the lassial three dimensional Newton's problem of minimal aerodynamial resistane,the resistane fore is given by R [ẋ(·)] =
∫ T
0

t
1+ẋ(t)2 dt. Minimization of this funtional is atypial problem of the alulus of variations. Most part of the old literature wrongly assume the32



Figure 1.16: Newton's solid.lassial Newton's problem to be �one of the �rst appliations of the alulus of variations�. Thetruth, as Legendre �rst notied in 1788 (see [12℄), is that some restritions on the derivativesof admissible trajetories must be imposed: ẋ(t) ≥ 0, t ∈ [0, T ]. This restrition is ruial,beause without it there exists no solution, and the problem su�ers from Perron's paradox [125,�10℄: sine the a priori assumption that a solution exists is not ful�lled, does not make anysense to try to �nd it by applying neessary optimality onditions. It turns out that, with theneessary restrition, the problem is better onsidered as an optimal ontrol one (see [116, p. 67℄and [118℄). Corret formulation of Newton's problem of minimal resistane in dimension threeis (f. e.g. [44, 115℄):
R [u(·)] =

∫ T

0

t

1 + u(t)2
dt −→ min ,

ẋ(t) = u(t) , u(t) ≥ 0 ,

x(0) = 0 , x(T ) = h , h > 0 ,

(1.22)where we minimize the resistane R in the lass of ontinuous funtions x : [0, T ] → R withpieewise ontinuous derivative.Aording to Pontryagin Maximum Priniple (see Theorem 1.4.25) if (x(·), u(·)) is a mini-mizer of problem (1.22), then there exists a non-zero pair (p0, p(·)), where p0 ≤ 0 is a onstantand p(·) is an absolutely ontinuous funtion on [0, T ], suh that the following onditions aresatis�ed for almost all t in [0, T ]:̇
p(t) = −∂H

∂x
(u(t), p0, p(t)) = 0 (1.23)

H(p0, p(t), u(t)) = max
w≥0

H(p0, p(t), w) (1.24)where the Hamiltonian H is de�ned by
H(p0, p, u) = pu+ p0 t

1 + u2
. (1.25)33



The adjoint equation (1.23) asserts that p(t) ≡ c, with c a onstant. From the maximizationondition (1.24) it follows that p0 6= 0 (there are no abnormal extremals for problem (1.22)).Proposition 1.4.34. All the Pontryagin extremals (x(·), p0, p(·), u(·)
) of problem (1.22) arenormal extremals (p0 6= 0), with p(·) a negative onstant: p(t) ≡ −λ, λ > 0, t ∈ [0, T ].Proof. The Hamiltonian H for problem (1.22), H (p0, p, u

)

= pu + p0 t
1+u2 , does not dependon x. Therefore, by (1.23) we onlude that

ṗ(t) = −∂H
∂x

(

p0, p(t), u(t)
)

= 0 ,that is, p(t) ≡ c, c a onstant, for all t ∈ [0, T ]. If c = 0, then p0 < 0 (beause one an nothave both p0 and p zero) and the maximization ondition (1.24) simpli�es to
p0 t

1 + u2(t)
= max

w≥0

{

p0 t

1 + w2

}

. (1.26)From (1.26) we onlude that the maximum is not ahieved (w → ∞). Therefore c 6= 0.Similarly, for c > 0 the maximum
cu(t) + p0 t

1 + u2(t)
= max

w≥0

{

cw + p0 t

1 + w2

}does not exist, and we onlude that c < 0. We an �x p(t) ≡ −λ, with λ ∈ IR+. It remainsto prove that p0 6= 0. If we assume that p0 = 0, then the maximization ondition reads
− λu(t) = max

w≥0
{−λw} , λ ∈ IR+ , (1.27)and it follows u(t) ≡ 0 and x(t) ≡ c2, c2 a onstant (ẋ(t) = u(t)). This is not possible,given the boundary onditions x(0) = 0 and x(T ) = h with h > 0. Therefore p0 6= 0 and weonlude that there exists no abnormal Pontryagin extremals.Remark 1.4.35. If (x(·), p0, p(·), u(·)

) is an extremal, then (x(·), γp0, γp(·), u(·)
) is also a Pon-tryagin extremal, for all γ > 0. Therefore one an �x, without loss of generality, p0 = −1.From Proposition 1.4.34 and Remark 1.4.35 the Hamiltonian (1.25) takes the form

H (u) = −λu− t

1 + u2
, λ > 0 . (1.28)For u > 0, if follows from the maximization ondition, H(t, u(t)) = maxw>0

{

−λw − t
1+w2

}that
∂H

∂u
(t, u(t)) = 0 ⇔ −λ+

2tu(t)

(1 + u2(t))2
= 0 ⇔ tu(t)

(1 + u2(t))2
=
λ

2
,that is,

tu(t)

(1 + u2(t))2
= q , with q a stritly positive onstant. (1.29)34



The onservation law (1.29) is known as Newton's di�erential equation.It is not easy to prove the existene of a solution for problem (1.22) with lassial argu-ments. We will use a di�erent approah. We will show, following [118℄, that for problem (1.22)the Pontryagin extremals are absolute minimizers. This means that to solve problem (1.22)it is enough to identify its Pontryagin extremals.Theorem 1.4.36. Pontryagin extremals for problem (1.22) are absolute minimizers.Proof. Let û(·) be a Pontryagin extremal ontrol for problem (1.22). We want to prove that
∫ T

0

t

1 + u2(t)
dt ≥

∫ T

0

t

1 + û2(t)
dtfor any admissible ontrol u(·). Given (1.28), we onlude from the maximization ondition(1.24) that

− λû(t) − t

1 + û2(t)
≥ −λu(t) − t

1 + u2(t)
(1.30)for all pieewise ontinuous funtions u(·) de�ned in [0, T ] satisfying u(t) ≥ 0. Having in mindthat all the admissible proesses (x(·), u(·)) of (1.22) satisfy

∫ T

0
u(t)dt =

∫ T

0
ẋ(t)dt = x(T ) − x(0) = h ,we only need to integrate (1.30) to onlude that û(·) is an absolute ontrol minimizer:

∫ T

0

(

−λû(t) − t

1 + û2(t)

)

dt ≥
∫ T

0

(

−λu(t) − t

1 + u2(t)

)

dt

⇔ λ

∫ T

0
û(t)dt +

∫ T

0

t

1 + û2(t)
dt ≤ λ

∫ T

0
u(t)dt +

∫ T

0

t

1 + u2(t)
dt

⇔ λh+

∫ T

0

t

1 + û2(t)
dt ≤ λh+

∫ T

0

t

1 + u2(t)
dt

⇔
∫ T

0

t

1 + û2(t)
dt ≤

∫ T

0

t

1 + u(t)2
dt .We onlude,

R[û(·)] ≤ R[u(·)] ,and û(·) is a absolute minimizer for Newton's problem of minimal resistane.Theorem 1.4.37 (Solution of Newton's problem of minimal resistane). The solution x̂(·)for Newton's problem of minimal resistane (1.22) is given by x̂(t) = 0 for 0 ≤ t ≤ ξ and,when ξ ≤ t ≤ T , it is given in the parametri form by










t(u) = λ
2

(

1
u + 2u+ u3

)

,

x(u) = λ
2

(

− lnu+ u2 + 3
4u

4
)

− 7λ
8

(1.31)where the onstant λ is de�ned by the boundary ondition x(T ) = h and ξ = 2λ.35



Proof. Let x̂(·) be the solution of Newton's problem of minimal resistane (1.22).The solution, x̂(·), is given by two di�erent onditions: �rst is a line segment with startpoint at the origin of the frame of referene tOx and end point at the point (ξ, 0) in thepositive semi-axis tt; after the point (ξ, 0), Newton's solution follows the so-alled Newton'surve.Let us study in detail eah one of the parts of the solution of Newton's problem.As we have observed, in Newton's problem (1.22) the ontrols take values in a losedinterval of IR, thus two ases must be taken in onsideration: u = 0 and u > 0.When u = 0 the solution is given by x(t) = 0: if u(t) = 0 then, as u(t) = ẋ(t), we have that
ẋ(t) = 0, therefore x(t) = c, with c a real onstant; from the boundary ondition x(0) = 0 weonlude that c = 0. The absolute minimizer (f. Theorem 1.4.36) starts with the line segment
x(t) = 0, with t ∈ [0, ξ] and 0 < ξ < T (after some point (ξ, 0), u > 0 sine x(T ) = h > 0).On the other hand, when u > 0, we an de�ne in a parametri form the solution ofNewton's problem from Newton's di�erential equation (1.29) (whih derives from Pontryaginmaximization ondition).From equation (1.29) we an write t as a funtion of the parameter u, that is,

tu

(1 + u2)2
=
λ

2
⇔ 2ut = λ(1 + u2)2 ⇔ t =

λ

2

(

1

u
+ 2u+ u3

)

.We de�ne in a parametri form t(·) by
t(u) =

λ

2

(

1

u
+ 2u+ u3

)

.To de�ne in a parametri form x(·), reall the hain rule
d

du
x(t(u)) =

dx

dt

dt

du
= u

dt

du
,sine dx

dt = u. Therefore, x(u) =
∫

u dt
dudu . We have,

dt

du
(u) =

λ

2

(

− 1

u2
+ 2 + 3u2

)

,thus,
x(u) =

∫

λ

2
u

(

− 1

u2
+ 2 + 3u2

)

du =
λ

2

(

− lnu+ u2 +
3

4
u4

)

+m, (1.32)where m is a onstant.To ompute the onstant m on the previous equation, we must ompute ξ. At (ξ, 0), byontinuity of x̂(·), both branhes oinide.Let û(t) be the minimizing ontrol of Newton's problem. Then,
H(ξ, 0) = H (ξ, û(ξ)) . (1.33)36



By de�nition of the Hamiltonian for Newton's problem of minimal resistane, we have
H(ξ, 0) = −λ× 0 − ξ

1 + 02
= −ξ and H(ξ, û(ξ)) = −λû(ξ) − ξ

1 + (û(ξ))2
.Therefore, from (1.33), we have

H(ξ, 0) = H (ξ, û(ξ)) ⇔ ξ = λû(ξ) +
ξ

1 + (û)2
. (1.34)On the other hand, û(ξ) must satisfy Newton's di�erential equation (1.29), thus

ξû(ξ)
(

1 + (û(ξ))2
)2 =

λ

2
. (1.35)Let us solve equation (1.34) in order to ompute the onstant λ,

ξ =
ξ

1 + (û(ξ))2
+ λû(ξ) ⇔ − ξ

1 + (û(ξ))2
+ ξ = λû(ξ) ⇔

−ξ + ξ
(

1 + (û(ξ))2
)

1 + (û(ξ))2
= λû(ξ)

⇔ ξ (û(ξ))2

1 + (û(ξ))2
= λû(ξ) ⇔ ξû(ξ)

1 + (û(ξ))2
= λ .That is, the onstant λ is given by ondition

λ =
ξû(ξ)

1 + (û(ξ))2
. (1.36)Replaing (1.36) into (1.35) we get

ξû(ξ)
(

1 + (û(ξ))2
)2 =

ξû(ξ)

2
(

1 + (û(ξ))2
) ⇔ û2(ξ) = 1 ,as û(x) ≥ 0, then û2(ξ) = 1 ⇒ û(ξ) = 1.As Newton stated in his Prinipia, �the tangent to the graphi at the break point is equalto 1�. That is, say that at the break point, namely, at the point (ξ, 0), the tangent is 1, isequivalent to say that û(ξ) = 1 (tanα = 1 ⇔ ẋ(ξ) = 1 ⇔ û(ξ) = 1).Inserting û(ξ) = 1 into equation (1.35) we have ξ

(1+12)2
= λ

2 , that is, ξ = 2λ.We are in ondition to determine the onstant m of equation (1.32). This is possible if wetake into aount that at the point (ξ, 0), û(ξ) = 1 and x (û(ξ)) = 0. Then,
x (û(ξ)) = 0 ⇔ x(1) = 0 ⇔ λ

2

(

− ln 1 + 1 +
3

4

)

+m = 0 ⇔ 7λ

8
= −m,that is, m = −7λ

8 .Finally, we an onlude that in the ase u > 0, the solution of Newton's problem ofminimal resistane is given in a parametri form by equations (1.31), as we wanted to prove.37



The obtained urve from (1.31) is alled Newton's urve.Is important to remark the reason why Newton's problem solution starts with x(t) = 0 for
t ∈ [0, ξ], 0 < ξ = 2λ, and for x ∈ [ξ, T ] by (1.31). In fat, if Newton's problem solution wasgiven by equations (1.31) for every t ∈ [0, T ] the boundary ondition x(0) = 0 would not besatis�ed.Let us now see how we an obtain the graphi representation of Newton's problem solution,given a radius and an height.The �rst part of the solution is given by x(t) = 0 for every t ∈ [0, ξ], with ξ = 2λ, and itsgraphi representation is easily obtained.With respet to the seond part, t ∈ [ξ, T ], in order to represent graphially Newton'surve the value of λ, the break point (ξ, 0) and variation interval of the parameter u must bedetermined for a radius and an height previously given. In pratie, when we ompute thevalue of the onstant λ the point (ξ, 0) is automatially determined, beause ξ = 2λ.The variation interval of the parameter u is given by the inequalities

ξ ≤ t(u) ≤ T ⇔ ξ ≤ λ

2

(

1

u
+ 2u+ u3

)

≤ T ,that is, as ξ = 2λ,
2λ ≤ λ

2

(

1

u
+ 2u+ u3

)

≤ T .From inequality 2λ ≤ λ
2

(

1
u + 2u+ u3

), we observe that the minimal value taken by theparameter u is 1, independently from the value of the radius and the height of the solid, whih,one more, leads us to Newton's statement that the tangent to the graphi at the break pointis equal to 1. The maximal value taken by the parameter u an be found simultaneously withthe onstant λ solving the system










t(u) = T

x(u) = h

⇔











T = λ
2

(

1
u + 2u+ u3

)

h = λ
2

(

− lnu+ u2 + 3
4u

4
)

− 7λ
8sine the onstant λ is omputed using the boundary ondition x(T ) = h.The previous system is easily solved by Maple (see, e.g., [101℄), as well as the graphialrepresentation of Newton's problem of minimal resistane. In Figure 1.17 the graphis (ob-tained with Maple) of Newton's problem solution are given for a �xed radius T = 1 and anheight h = 0.5, h = 1, h = 2, h = 5.Newton's problem of minimal resistane in dimension twoAt �rst glane, one suspets that the two dimensional ase should be well known, in [102℄it is shown that the two dimensional problem is more rih than the lassial one being, in38
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0.2 0.4 0.6 0.8 1Figure 1.17: Newton's problem solutionsome sense, more interesting. The novelties are: (i) while in the lassial three-dimensionalproblem (1.22) only the restrited ase makes sense (without restrition on the monotoniityof admissible funtions the problem doesn't admit a loal minimum), in dimension two theunrestrited problem is also well-posed when the ratio height versus radius of base is greaterthan a given quantity; (ii) while in three dimensions the (restrited) problem has a uniquesolution, in the restrited two-dimensional problem the minimizer is not always unique �when the height of the body is less or equal than its base radius, there exists in�nitely manyminimizing funtions.The formulation of Newton's problem of minimal resistane in dimension two is given by(see [118℄):
R [u(·)] =

∫ T

0

1

1 + u(t)2
dt −→ min ,

ẋ(t) = u(t) , u(t) ∈ Ω ,

x(0) = 0 , x(T ) = h , h > 0 .

(1.37)We onsider two ases: (i) unrestrited problem, where no restrition on the admissible tra-jetories x(·) other than the boundary onditions x(0) = 0, x(T ) = h is onsidered (Ω = R);(ii) restrited problem, where the admissible funtions must satisfy the restrition ẋ(t) ≥ 0,
t ∈ [0, T ] (Ω = R

+
0 ). While for the lassial three-dimensional problem only the restritedproblem admits a minimizer, the two-dimensional problem (1.37) is more rih: the unrestritedase also admits a minimizer when the given height h of the body is big enough. Also in therestrited ase the two-dimensional problem is more interesting: if T ≥ h, then in�nitelymany di�erent minimizers are possible, while in the lassial three-dimensional problem theminimizer is always unique.Aording to Pontryagin Maximum Priniple (see Theorem 1.4.25) if (x(·), u(·)) is a mini-mizer of problem (1.37), then there exists a non-zero pair (p0, p(·)), where p0 ≤ 0 is a onstantand p(·) is an absolutely ontinuous funtion on [0, T ], suh that the following onditions are39



satis�ed for almost all t in [0, T ]:̇
p(t) = −∂H

∂x
(u(t), p0, p(t)) = 0

H(p0, p(t), u(t)) = max
w∈Ω

H(p0, p(t), w) ;where the Hamiltonian H is de�ned by
H(p0, p, u) = pu+ p0 1

1 + u2
.Proposition 1.4.38. All the Pontryagin extremals (x(·), p0, p(·), u(·)

) of problem (1.37) arenormal extremals (p0 6= 0), with p(·) a negative onstant: p(t) ≡ −λ, λ > 0, t ∈ [0, T ].Theorem 1.4.39. Pontryagin extremals for problem (1.37) are absolute minimizers.The proofs of Proposition 1.4.38 and Theorem 1.4.39 valid for the two dimensional New-ton's problem (1.37) are analogous to the proofs of Proposition 1.4.34 and Theorem 1.4.36,respetively, valid for the three dimensional Newton's problem (1.22).Unrestrited problem (Ω = IR) The following standard result of alulus (see e.g. [42℄)will be used in the sequel.Theorem 1.4.40. Let n ≥ 2 and Ω ⊆ R be an open set. If f : Ω → R is n − 1 timesdi�erentiable on Ω and n times di�erentiable at some point a ∈ Ω where f (k)(a) = 0 for
k = 0, . . . , n − 1 and f (n)(a) 6= 0, then:

• either n is even, and f(·) has an extremum at a, that is a maximum in ase f (n)(a) < 0and a minimum in ase f (n)(a) > 0;
• or n is odd, and f(·) does not attain a loal extremum at a.From Theorem 1.4.39 the problem (1.37) an be redued to the study of the one-dimensionalmaximization problem:

max
u∈Ω

H (u) = max
u∈Ω

{

− 1

1 + u2
− λu

}

, λ > 0 . (1.38)We are onsidering now the unrestrited two-dimensional Newton's problem of minimalresistane, that is, Ω = R in (1.37). A neessary (su�ient) ondition for u to be a loalmaximizer for problem (1.38) is given by H ′ (u) = 0 and H ′′ (u) ≤ 0 (H ′′ (u) < 0), where
H ′ (u) =

2u

(1 + u2)2
− λ ,

H ′′ (u) = −2
3u2 − 1

(1 + u2)3
.40



From the �rst order ondition (maximization ondition (1.24)) it follows that
u(t)

(1 + u2(t))2
=
λ

2
⇔ ẋ(t)

(1 + ẋ2(t))2
=
λ

2
. (1.39)Using the boundary onditions x(0) = 0 and x(T ) = h, we onlude that x(t) = h

T t (u = h
T )is a loal andidate for the solution of the unrestrited problem (λ = 2T 3h

(T 2+h2)2
). However, byTheorem 1.4.40, we onlude that suh u is a maximizer only when h > √

3
3 T . For h < √

3
3 Tthe value u = h

T orresponds to a loal minimizer of H (u) sine H ′′ > 0; for h =
√

3
3 r funtion

H (u) has neither loal maximum nor minimum sine H ′′
(√

3
3 T
)

= 0 and H ′′′
(√

3
3 T
)

=

−27
√

3
16 6= 0.Theorem 1.4.41. If h > √

3
3 T , then funtion x(t) = h

T t is a (loal) minimum for the unre-strited problem (1.37). For h ≤
√

3
3 T the problem has no solution.Remark 1.4.42. The unrestrited problem (1.37) does not admit global minimum. Indeed, letus take, for large values of the parameter a, the ontrol funtion

ũ(t) =











a if 0 ≤ t ≤ T
2 + h

2a

−a if T
2 + h

2a ≤ t ≤ T .This gives R[ũ(t)] = T
1+a2 whih vanishes as a→ ∞, showing that no global solution an exist.By the symmetry with respet to the xx axis, the solution to the unrestrited two-dimensional Newton's problem of minimal resistane with h > √

3
3 T is a triangle, with valuefor resistane R equal to T 3

T 2+h2 .Restrited problem (Ω = R
+
0 ) We now study problem (1.37) with Ω = R

+
0 . In this asethe optimal ontrol an take values on the boundary of the admissible set of ontrol values Ω(u = 0). If the optimal ontrol u(·) is always taking values in the interior of Ω, u(t) > 0 ∀

t ∈ [0, T ], then the optimal solution must satisfy (1.39) and it orresponds to the one foundfor the unrestrited problem:
u(t) =

h

T
, ∀t ∈ [0, T ] , (1.40)with resistane

R =
T 3

T 2 + h2
. (1.41)We show next that this is solution of the restrited problem only for h ≥ T : for h ≤ T theminimum value for the resistane is R = T − h

2 .It is lear, from the boundary onditions x(0) = 0, x(T ) = h, T > 0, h > 0, that u(t) = 0,
∀ t ∈ [0, T ], is not a possibility: there must exist at least one non-empty subinterval of [0, T ]41



for whih u(t) > 0 (otherwise x(t) would be onstant, and it would be not possible to satisfysimultaneously x(0) = 0 and x(T ) = h). The simplest situations are given by
u(t) =







0 if 0 ≤ t ≤ ξ ,

h
T−ξ if ξ ≤ t ≤ T ,

(1.42)or
u(t) =







h
ξ if 0 ≤ t ≤ ξ ,

0 if ξ ≤ t ≤ T .
(1.43)We get (1.40) from (1.42) taking ξ = 0; (1.40) from (1.43) with ξ = T . For (1.42) theresistane is given by R(ξ) = ξ + (T−ξ)3

(T−ξ)2+h2 , that has a minimum value for ξ = T − h ≥ 0:
R(T − h) = T − h

2 ,
u(t) =







0 if 0 ≤ t ≤ T − h ,

1 if T − h ≤ t ≤ T .
(1.44)For T = h (1.44) oinides with (1.40); for T > h

(

T − h

2

)

−
(

T 3

T 2 + h2

)

= − h(T − h)2

2(T 2 + h2)
< 0 ,and (1.44) is better than (1.40). Similarly, for (1.43) the resistane is given by

R(ξ) =
ξ3

ξ2 + h2
+ T − ξ , (1.45)that has minimum value for ξ = h > 0:

u(t) =







1 if 0 ≤ t ≤ h ,

0 if h ≤ t ≤ T ,
(1.46)

R(h) = T − h
2 , whih oinides with the value for the resistane obtained with (1.44). If oneompares diretly (1.41) with (1.45) one get the onlusion that (1.40) is better than (1.43)preisely when T < h:

T 3

T 2 + h2
−
(

ξ3

ξ2 + h2
+ T − ξ

)

=
ξh2

(

T 2 − Tξ − h2
)

[(T − ξ)2 + h2] (T 2 + h2)
, (1.47)and sine −h2 ≤ T 2 −Tξ−h2 ≤ T 2 −h2, (1.47) is negative if T < h, that is, for T < h (1.40)is better than (1.43). For T = h (1.46) oinide with (1.40), for T > h (1.46) is better than(1.40) and as good as (1.44).We now show that for T > h it is possible to obtain the resistane value T− h

2 from in�nitelymany other ways, but no better (smaller) value than this quantity. Generi situation is givenby
un(t) =







0 if ξ2i ≤ t ≤ ξ2i+1 , i = 0, . . . , n ,

µi+1−µi

ξ2i+2−ξ2i+1
if ξ2i+1 ≤ t ≤ ξ2i+2 , i = 0, . . . , n− 1 ,

(1.48)42



where n ∈ N, 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξ2n+1 = T , 0 = µ0 ≤ µ1 ≤ · · · ≤ µn = h. We remark thatfor the simplest ase n = 1 (1.48) simpli�es to
u1(t) =



















0 if 0 ≤ t ≤ ξ1 ,

h
ξ2−ξ1

if ξ1 ≤ t ≤ ξ2 ,

0 if ξ2 ≤ t ≤ T ,whih overs all the previously onsidered situations: for ξ1 = 0, ξ2 = T we obtain (1.40);for ξ2 = T (1.42); and for ξ1 = 0 one obtains (1.43). All Pontryagin ontrol extremals of therestrited problem are of the form (1.48), and by Theorem 1.4.39 also the minimizing ontrols.The resistane fore Rn assoiated with (1.48) is given by
Rn (ξ0, . . . , ξ2n+1, µ0, . . . , µn)

=

n
∑

i=0

(ξ2i+1 − ξ2i) +

n−1
∑

i=0

(ξ2i+2 − ξ2i+1)
3

(ξ2i+2 − ξ2i+1)
2 + (µi+1 − µi)

2 . (1.49)It is a simple exerise of alulus to see that funtion (1.49) has three ritial points: two ofthem not admissible, the third one a minimizer. The �rst ritial point is de�ned by µi = 0,
i = 0, . . . , n, whih is not admissible given the fat that µn = h > 0. The seond ritial pointis given by µi − µi−1 = ξ2i−1 − ξ2i, i = 1, . . . , n, whih is not admissible sine µi − µi−1 ≥ 0,
ξ2i−1 − ξ2i ≤ 0, and µi = µi−1, i = 1, . . . , n, is not a possibility given µn = H > µ0 = 0. Thethird ritial point is

µi − µi−1 = ξ2i − ξ2i−1 , i = 1, . . . , n , (1.50)whih is a minimizer for h ≤ T . Thus, all the minimizing ontrols for the restrited two-dimensional problem with h ≤ T are of the following form:
un(t) =







0 if ξ2i ≤ t ≤ ξ2i+1 , i = 0, . . . , n ,

1 if ξ2i+1 ≤ t ≤ ξ2i+2 , i = 0, . . . , n− 1 ,
(1.51)

n = 1, 2, . . ., 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξ2n+1 = r. For un(t) given by (1.51) the resistane (1.49)redues to Rn = T − h
2 , ∀ n ∈ N.Theorem 1.4.43. The restrited two-dimensional Newton's problem of minimal resistanealways admits a solution:

• the unique solution assoiated to ontrol (1.40), when h > T ;
• in�nitely many solutions assoiated to the ontrols (1.51), when h ≤ T .In the ase h > T the minimum value for the resistane is T 3

T 2+h2 , otherwise T − h
2 .43



1.5 Proof of the Pontryagin maximum priniple for a generalminimal time problemIn this setion, we reall elements of a standard proof of the maximum priniple for a gen-eral minimal time problem using needle-like variations (see e.g. [96℄). Some de�nitions andproperties of this setion will be used in Chapter 2.Consider a general ontrol system
ẋ(t) = f(x(t), u(t)), x(0) = x0, (1.52)where x0 ∈ IRn is �xed, f : IRn×IRm −→ IRn is smooth, the ontrol u is a bounded measurablefuntion taking its values in a measurable subset Ω of IRm.Consider the set of admissible ontrols on [0, tf ], Utf ,IRm , and the set of admissible ontrolson [0, tf ] taking their values in Ω, Utf ,Ω.The set Utf ,IRm , endowed with the standard topology of L∞([0, tf ], IRm), is open, and theend-point mapping E(x0, tf , u) = x(tf ) is smooth on Utf ,IRm .Let x1 ∈ IRn. Consider the optimal ontrol problem (P) of determining a trajetorysolution of (1.52) steering x0 to x1 in minimal time.3 In other words, this is the problemof minimizing tf among all admissible ontrols u ∈ L∞([0, tf ],Ω) satisfying the onstraint

E(x0, tf , u) = x1.For every t ≥ 0, onsider the aessible set AΩ(x0, t) previously de�ned as the image ofthe mapping E(x0, t, ·) : Ut → IRn, with the agreement AΩ(x0, 0) = {x0}.Moreover, de�ne
AΩ(x0,≤ t) =

⋃

0≤s≤t

AΩ(x0, s).The set AΩ(x0,≤ t) oinides with the image of the mapping E(x0, ·, ·) : [0, t]×Ut → IRn (seeFigure 1.18).
x0

x(t1)

AΩ(x0, t1)

x(t)

x(t2)

AΩ(x0, t2)Figure 1.18: Aessible set AΩ(x0,≤ t).3Note that we onsider here a problem with �xed extremities, for simpliity of presentation. All whatfollows however easily extends to the ase of initial and �nal subsets (see e.g. [62℄).44



Let u be a minimal time ontrol on [0, tf ] for the problem (P), and denote by x(·) thetrajetory solution of (1.52) assoiated to the ontrol u on [0, tf ]. Then the point x1 = x(tf )belongs to the boundary of AΩ(x0,≤ tf ). This geometri property is at the basis of the proofof the Pontryagin maximum priniple (see Figure 1.19).
x0

x(t1)

AΩ(x0, t) AΩ(x0, tf )Figure 1.19: x1 ∈ ∂AΩ(x0, tf ).Theorem 1.5.1 (Pontryagin maximum priniple). If the trajetory x(·), assoiated to a ontrol
u ∈ Utf ,Ω, is optimal on [0, tf ], then there exists a nonpositive real number p0 and an absolutelyontinuous mapping p(·) on [0, tf ], alled adjoint vetor, satisfying (p(·), p0) 6= (0, 0), suh thatthere holds

ẋ(t) =
∂H

∂p
(x(t), p(t), p0, u(t)) ,

ṗ(t) = −∂H
∂x

(x(t), p(t), p0, u(t)) ,almost everywhere on [0, tf ], where H(x, p, p0, u) = 〈p, f(x, u)〉 + p0 is the Hamiltonian, and
H(x(t), p(t), p0, u(t)) = max

w∈Ω
H(x(t), p(t), p0, w)holds almost everywhere on [0, tf ]. Moreover, maxw∈ΩH(x(t), p(t), p0, w) = 0 for every t ∈

[0, tf ].We next reall the standard onepts of needle-like variations and of Pontryagin one whihpermit to derive a standard proof of the maximum priniple.1.5.1 Needle-like variationsLet t1 ∈ [0, tf ) and u1 ∈ Ω. For η1 > 0 suh that t1 + η1 ≤ tf , the needle-like variation
π1 = {t1, η1, u1} of the ontrol u is de�ned by

uπ1
(t) =

{

u1 if t ∈ [t1, t1 + η1],

u(t) otherwise(see Figure 1.20). 45



t

u

0 tf

u1

t1 t1 + η1

Figure 1.20: Needle variation π1.The ontrol uπ1
takes its values in Ω. It is not di�ult to prove that, if η1 > 0 is smallenough, then the ontrol uπ1

is admissible, i.e., the trajetory xπ1
(·) assoiated with uπ1

andstarting from xπ1
(0) = x0 is well de�ned on [0, tf ]. Moreover, xπ1

(·) onverges uniformly to
x(·) on [0, tf ] whenever η1 tends to 0.Reall that t1 is a Lebesgue point of the funtion t 7→ f(x(t), u(t)) on [0, tf ) whenever

lim
h→0

1

h

∫ t1+h

t1

f(x(t), u(t))dt = f(x(t1), u(t1)),and that almost every point of [0, tf ) is a Lebesgue point.De�nition 1.5.2. Let t1 be a Lebesgue point on [0, tf ), let η1 > 0 be small enough, and uπ1be a needle-like variation of u, with π1 = {t1, η1, u1}. For every t ∈ [t1, tf ], de�ne the variationvetor vπ1
(t) as the solution on [t1, tf ] of the Cauhy problem

v̇π1
(t) =

∂f

∂x
(x(t), u(t))vπ1

(t) , (1.53)
vπ1

(t1) = f(x(t1), u1) − f(x(t1), u(t1)) .Lemma 1.5.3 (see e.g. [96℄). Let t1 be a Lebesgue point on [0, tf ), let η1 > 0 be small enough,and uπ1
be a needle-like variation of u, with π1 = {t1, η1, u1}. Then,

xπ1
(tf ) = x(tf ) + η1vπ1

(tf ) + o(η1) . (1.54)Proof. By de�nition of uπ1
and xπ1

, we have xπ1
(t1) = x(t1). Then

xπ1
(tf ) = x(t1) +

∫ t1+η1

t1

f(xπ1
(t), u1)dt +

∫ tf

t1+η1

f(xπ1
(t), u(t))dt .46



By de�nition of Lebesgue point, we have
∫ t1+η1

t1

f(xπ1
(t), u1)dt = η1f(x(t1), u1) + o(η1) ,and

∫ tf

t1+η1

f(xπ1
(t), u(t))dt =

∫ tf

t1

f(xπ1
(t), u(t))dt −

∫ t1+η1

t1

f(xπ1
(t), u(t))dt

=

∫ tf

t1

f(xπ1
(t), u(t))dt − η1f(x(t1), u(t1)) + o(η1) ,sine xπ1

(t1) → x(t1) when η → 0. We dedue that
xπ1

(tf ) = x(t1) + η1(f(x(t1), u1) − f(x(t1), u(t1))) +

∫ tf

t1

f(xπ1
(t), u(t))dt + o(η1) .On the other hand,

x(tf ) = x(t1) +

∫ tf

t1

f(x(t), u(t))dtthus
xπ1

(tf ) − x(tf )

η1
= vπ1

(t1) +
1

η1

∫ tf

t1

(f(xπ1
(t), u(t)) − f(x(t), u(t)))dt .From (1.53) we have

vπ1
(tf ) = vπ1

(t1) +

∫ tf

t1

∂f

∂x
(x(t), u(t))vπ1

(t)dt .Taking the di�erene, we easily dedue from Gronwall lemma's that the quotient xπ1
(tf )−x(tf )

η1admits a unique limit when η1 → 0, η1 > 0, and this limit is equal to vπ1
(tf ).Remark 1.5.4. The sign of η1 is important. In fat, for η1 of an arbitrary sign, if we de�nethe perturbation π1 = {t1, η1, u1} by

uπ1
(t) =























u1 if t ∈ [t1, t1 + η1] and if η1 > 0 ,

u1 if t ∈ [t1 + η1, t1] and if η1 < 0 ,

u(t) otherwise ,then
xπ1

(tf ) = x(tf ) + |η1|(f(x(t1), u1) − f(x(t1), u(t1))) +

∫ tf

t1

f(xπ1
(t), u(t))dt .In partiular, the funtion η1 7→ xπ1

(tf ) is right and left di�erentiable when η1 = 0, but is notdi�erentiable at this point. 47



Remark 1.5.5. For every α > 0, the variation {t1, αη1, u1} generates the variation vetor αvπ1
.It follows that the set of variation vetors at time t is a one of vertex x(t).De�nition 1.5.6. For every t ∈ (0, tf ], the �rst Pontryagin one at time t, denoted K(t), isthe smallest losed onvex one ontaining all variation vetors vπ1

(t) for all Lebesgue points
t1 suh that 0 < t1 < t.An immediate iteration leads to the following generalization of Lemma 1.5.3.Lemma 1.5.7. Let t1 < t2 < · · · < tp be Lebesgue points of the funtion t 7→ f(x(t), u(t))on (0, tf ), and u1, . . . , up be points of Ω. Let η1, . . . , ηp be small enough positive real numbers.Consider the variations πi = {ti, ηi, ui}, and denote by vπi

(·) the assoiated variation vetors,de�ned as above. De�ne the variation
π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up}of the ontrol u on [0, tf ] by

uπ(t) =

{

ui if ti ≤ t ≤ ti + ηi, i = 1, . . . , p,

u(t) otherwise. (1.55)Let xπ(·) be the solution of (1.52) orresponding to the ontrol uπ on [0, tf ] and suh that
xπ(0) = x0. Then,

xπ(tf ) = x(tf ) +

p
∑

i=1

ηivπi
(tf ) + o

(

p
∑

i=1

ηi

)

. (1.56)The variation formula (1.56) shows that every ombination with positive oe�ients ofvariation vetors (taken at distint Lebesgue points) provides the point x(t) + vπ(t), where
vπ(t) =

p
∑

i=1

ηivπi
(t), (1.57)whih belongs, up to the remainder term, to the aessible set AΩ(x0, t) at time t for thesystem (1.52) starting from the point x0. In this sense, the �rst Pontryagin one serves as anestimate of the aessible set AΩ(x0, t).Sine we deal with a minimal time problem, we must rather onsider the set AΩ(x0,≤ t),whih leads to introdue also oriented time variations, as follows. Assume �rst that x(·) isdi�erentiable at time tf .4 Let δ > 0 be small enough; then, with the above notations,

xπ(tf − δ) = x(tf ) +

p
∑

i=1

ηivπi
(tf ) − δf(x(tf ), u(tf )) + o

(

δ +

p
∑

i=1

ηi

)

. (1.58)4This holds true e.g. whenever tf is a Lebesgue point of the funtion t 7→ f(x(t), u(t)).48



De�nition 1.5.8. The one K1(tf ) is the smallest losed onvex one ontaining K(tf ) andthe vetor −f(x(tf ), u(tf )).See Figure 1.21 for the onvex one K1(tf ).Remark 1.5.9. If x(·) is not di�erentiable at time tf , then the above onstrution is slightlymodi�ed, by replaing f(x(tf ), u(tf )) with any losure point of the orresponding di�erenequotient in an obvious way.
x1

x0

x(·)

AΩ(x0, tf )

K1(tf )

f

−f

Figure 1.21: Cone K1(tf )1.5.2 Coni Impliit Funtion TheoremWe next provide a oni impliit funtion theorem, whih is at the basis of the proof of themaximum priniple (see e.g. [2℄ for a proof).Reall the following de�nition of di�erentiability in the sense of Gâteaux .De�nition 1.5.10. Let E, F be two loally onvex topologial vetor spaes, f : E → F ,
x0 ∈ E and h ∈ E. The Gâteaux derivative df(x0) · h at x0 with the diretion h is de�ned as

df(x0) · h = lim
t→0

f(x0 + th) − f(x0)

tif the limit exists.If the limit exists for all h ∈ E and it is equal to a linear map gx0
(h), then one says that f isGâteaux di�erentiable at x0 and

df(x0) · h = gx0
(h) .Lemma 1.5.11. Let C ⊂ IRm be a onvex subset of IRm with nonempty interior, of vertex 0,and F : C → IRn be a Lipshitzian mapping suh that F (0) = 0 and F is di�erentiable in thesense of Gâteaux at 0. Assume that dF (0) · Cone(C) = IRn, where Cone(C) stands for the(onvex) one generated by elements of C. Then 0 belongs to the interior of F (V ∩ C), forevery neighborhood V of 0 in IRm. 49



1.5.3 Lagrange multipliers and Pontryagin maximum prinipleWe next restrit the end-point mapping to time and needle-like variations. Let p be a positiveinteger. Set IRp+1
+ = {(δ, η1, . . . , ηp) ∈ IRp+1 | δ ≥ 0, η1 ≥ 0, . . . , ηp ≥ 0}.Let t1 < · · · < tp be Lebesgue points of the funtion t 7→ f(x(t), u(t)) on (0, tf ), and u1, . . . , upbe points of Ω. Let V be a small neighborhood of 0 in IRp. De�ne the mapping F : V ∩IRp+1

+ →IRn by
F (δ, η1, . . . , ηp) = xπ(tf − δ),where π is the variation π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up} and δ ≥ 0 is small enough sothat tp < tf − δ. If V is small enough, then F is well de�ned; moreover this mapping islearly Lipshitzian, and F (0) = x(tf ). From (1.58), F is Gâteaux di�erentiable on the onineighborhood V ∩ IRp+1

+ of 0.If the one K1(tf ) would oinide with IRn, then there would exist δ ≥ 0, an integer pand variations πi = {ti, ηi, ui}, i = 1, . . . , p, suh that F ′
0IRp+1

+ = IRn, and then Lemma 1.5.11would imply that the point x(tf ) would belong to the interior of the aessible set AΩ(x0,≤ tf ),whih would raise a ontradition.Therefore the onvex one K1(tf ) is not equal to IRn. As a onsequene, there exists ψ ∈IRn\{0} alled Lagrange multiplier suh that 〈ψ, v(tf )〉 ≤ 0 (see Figure 1.22) for every variationvetor v(tf ) ∈ K(tf ) and 〈ψ, f(x(tf ), u(tf ))〉 ≥ 0 (at least whenever x(·) is di�erentiable attime tf ; otherwise replae f(x(tf ), u(tf )) with any losure point of the orresponding di�erenequotient).
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Figure 1.22: 〈ψ, f(x(tf ), u(tf ))〉 ≥ 0These inequalities then permit to prove the maximum priniple (see [96℄), aording towhih the trajetory x(·), assoiated to the optimal ontrol u(·), is the projetion of an extremal
(x(·), p(·), p0, u(·)) (alled extremal lift), where p0 ≤ 0 and p(·) : [0, tf ] → IRn is a nontrivialabsolutely ontinuous mapping alled adjoint vetor, suh that

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)), ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)),50



almost everywhere on [0, tf ], where H(x, p, u) = 〈p, f(x, u)〉 + p0 is the Hamiltonian, and
H(x(t), p(t), p0, u(t)) = M(x(t), p(t), p0) almost everywhere on [0, tf ], whereM(x(t), p(t), p0) =

max
w∈Ω

H(x(t), p(t), p0, w). Moreover, the funtion t 7→ M(x(t), p(t), p0) is identially equal tozero on t ∈ [0, tf ].The relation between the Lagrange multiplier ψ and p(·), p0 is
ψ = p(tf ) and p0 = −max

w∈Ω
〈ψ, f(x(tf ), w)〉. (1.59)In partiular, the Lagrange multiplier ψ is unique (up to a multipliative salar) if and onlyif the trajetory x(·) admits a unique extremal lift (up to a multipliative salar).In the ase of a normal extremal, i.e., p0 < 0, sine the Lagrange multiplier is de�ned upto a multipliative salar, it is usual to normalize it so that p0 = −1.Remark 1.5.12. The trajetory x(·) has an abnormal extremal lift (x(·), p(·), 0, u(·)) on [0, tf ]if and only if there exists a unit vetor ψ ∈ IRn suh that 〈ψ, v〉 ≤ 0 for every v ∈ K(tf ) and

max
w∈Ω

〈ψ, f(x(tf ), w)〉 = 0. In that ase, one has p(tf ) = ψ, up to a multipliative salar.De�nition 1.5.13. The �rst extended Pontryagin one K̃(t) along x(·) is the smallest losedonvex one ontaining K1(t) and f(x(t), u(t)) (at least whenever x(·) is di�erentiable attime t; otherwise replae f(x(t), u(t)) with any losure point of the orresponding di�erenequotient).Note that x(·) does not admit any abnormal extremal lift on [0, tf ] if and only if K̃(tf ) =IRn.The following remark easily follows from the above onsiderations.Remark 1.5.14. For the optimal trajetory x(·), the following statements are equivalent:
• The trajetory x(·) has a unique extremal lift (up to a multipliative salar); moreover,the extremal lift is normal.
• K1(tf ) is a half-spae and K̃(tf ) = IRn.
• K(tf ) is a half-spae and max

w∈Ω
〈ψ, f(x(tf ), w)〉 > 0.This remark permits to translate the assumptions of the main result of Chapter 2 (Theo-rem 2.5.1) into geometri onsiderations.1.6 Generalized ontrolsFollowing Gamkrelidze arguments in [46℄, we an expand the lass of admissible ontrolsintroduing the generalized ontrols. 51



1.6.1 Generalized ontrol de�nitionLet µt, t ∈ R be a family of Radon measures on R
m that depend on the parameter t ∈ R and

g(t, u) a ontinuous (salar- or vetor-valued) funtion of its arguments t ∈ R and u ∈ R
mwith a ompat support in u for every �xed t ∈ R (the support an depend on t).De�nition 1.6.1. Integrating g(t, u) with respet to µt, we obtain the following funtion of

t:
h(t) =

∫

Rm

g(t, u) dµt(u) =

∫

Rm

g(t, u) dµt , t ∈ R .If the funtion h(t) is Lebesgue measurable for an arbitrary g(t, u) of this type, then we saythat the family µt, t ∈ R, is weakly measurable (with respet to t).De�nition 1.6.2. If there exists a ompat set K ⊂ R
m that does not depend on t ∈ R andis suh that the measures µt are onentrated on K for almost all t ∈ R (in the sense of theLebesgue measure on R), then the family µt, t ∈ R, is said to be �nite.The result of the integration of a ontinuous funtion g(t, u) with respet to a measure µtan be denoted by

〈µt, g(t, u)〉 =

∫

Rm

g(t, u) dµt .An admissible ontrol taking values in a subset of R
m, u(t) ∈ UU , an be onsidered asa family of Dira measures (a Dira measure is a unit, positive measure onentrated at apoint) on R

m that depend on time t ∈ R. Indeed, the value u(t) of the ontrol at the time
t, orresponds to the unit, positive measure δu(t) whih is onentrated at the point u(t) ∈ Uand ats on an arbitrary ontinuous funtion g(t, u) in aordane with the formula

〈δu(t), g(t, u)〉 =

∫

Rm

g(t, u) dδu(t) = g(t, u(t)) .The family of measures δu(t) is �nite and weakly measurable.Conversely, if we assume that δv(t), t ∈ R is an arbitrary, weakly measurable �nite familyof Dira measures, where the measure δv(t) is onentrated at the point v(t) ∈ U at the time
t, then the funtion v(t), t ∈ R, is essentially bounded. Setting g(t, u) = u, we obtain themeasurable funtion

〈δv(t), u〉 = v(t) ∈ U .Thus, we have established a natural orrespondene between admissible ontrols u(t) ∈ UUand weakly measurable and �nite families of Dira measures δu(t), t ∈ R, onentrated on theset U ⊂ R
m.De�nition 1.6.3. Any weakly measurable and �nite family of probability measures, i.e., unit,positive, Radon measures µt with t ∈ R that are onentrated on the set U ⊂ R

m, is said tobe a generalized ontrol. 52



We denote the set of all generalized ontrols by MU and all it the lass of generalizedontrols. Subsequently, µt with t ∈ R will always denote a generalized ontrol. Moreover, wehave UU ⊂ MU .Remark 1.6.4. The reason for taking a probability measure, and not an arbitrary Radonmeasure in the de�nition of a generalized ontrol, is that only families of probability mea-sures have the property that makes them useful in ontrol problems and that is expressed inGamkrelidze's approximation lemma (see [46, Chapter 3℄).1.6.2 Minimal time problemConsider the minimal time problem (P) that onsists in �nding a ontrol u(·) ∈ UU suh thatthe assoiated trajetory x(·) is solution of the ontrol system
ẋ(t) = f(x(t), u(t)) (1.60)with u(t) ∈ U and where f : IRn × IRm → IRn is a ontinuous funtion and has ontinuousderivative with respet to x, and steers the point x0 = x(0) to x1 = x(tf ) in minimal time tf .Substituting a generalized ontrol µt for u on the ontrol system (1.60) we obtain thefollowing di�erential equatioṅ

x = 〈µt, f(x, u)〉 =

∫

Rm

f(x, u) dµt , (1.61)whih is analogous to equation (1.60). If the initial ondition x(0) = x0 is given, then theequation obtained is equivalent to the integral equation
x(t) = x0 +

∫ tf

0
〈µs, f(x(s), u)〉ds ,whih has a uniquely determined solution de�ned on a neighborhood of the point t = 0(see [46, Chapter 4℄).The minimal time optimal ontrol problem (PG) onsists in �nding a generalized ontrol

µt ∈ MU suh that the assoiated trajetory is solution of the di�erential equation (1.61) andsteers x0 = x(0) to x1 = x(tf ) in minimal time tf . The problem (PG) will also be alled theonvex optimal problem whih orresponds to the optimal problem (P).Remark 1.6.5. The set of all generalized ontrols MU and the set of right-hand-sides of equa-tion (1.61), µt ∈ MU are onvex. In partiular, the set of all possible phase veloities of theontrol system (1.61), with �xed t and x, is also onvex in R
n.1.6.3 Variation of generalized ontrols and Pontryagin maximization on-ditionLet µ̃t be an arbitrary generalized ontrol, and let x̃(t), t0 ≤ t ≤ tf , be a trajetory of theequation

ẋ = 〈µ̃t, f(x, u)〉 = F (x) . (1.62)53



The funtion F (x) is de�ned on the entire spae R
n, ontinuously di�erentiable withrespet to x and bounded on any ompat set K ⊂ R

n (see [46℄).De�nition 1.6.6. Any di�erene
δµt = µt − µ̃t , µt ∈ MU ,will be alled a variation or a perturbation of the generalized ontrol µ̃t.The set of all variations of the ontrol µ̃t will be denoted by δMµ̃t . The set δMµ̃t is onvex(see [46℄ for an intensive and omplete study).De�nition 1.6.7. We shall say that a sequene of generalized ontrols µ(i)

t onverges weakly*to a generalized ontrol µt as i→ ∞ if we have
∫

R

〈µ(i)
t , g(t, u)〉 dt →

∫

R

〈µt, g(t, u)〉 dt , (i→ ∞)for an arbitrary ontinuous funtion g(t, u) with ompat support.Let µ ∈ MU and de�ne the end-point mapping
Ex0,tf (µ) : MU −→ R

n

µ 7−→ x(tf )where x is solution of ẋ = 〈µ(t), f(x(t), u)〉 with x(0) = x0.Proposition 1.6.8. [46, Chapter 5℄ The end-point mapping Ex0,tf is Gâteaux di�erentiablefor the weak* topology and
dEx0,tf (µ) · δµ = M(tf )

∫ tf

0
M−1(s)〈δµ, f(x(s), u)〉ds , ∀δµ ∈ MU . (1.63)Pontryagin maximization ondition In what follows we derive the maximization ondi-tion of Pontryagin maximum priniple for the minimal time problem (PG).Let (x(t), µt) be optimal for the problem (PG), then (x(t), µt) is singular for the augmentedsystem (see Lemma 1.4.23)







ẋ(t) = 〈µt, f(x(t), u)〉
ẋ0(t) = 〈µt, f

0(x(t), u)〉 .By the oni impliit funtion theorem (Theorem 1.5.11)
dEx0,tf : Cone(Ω − µ) −→ R

n

δµ 7−→ δx(tf )54



is not surjetive. Therefore, there exists ψ ∈ R
n\{0} suh that

ψ · dEx0,tf (µ) · δµ ≤ 0 .From Proposition 1.6.8, ∫ tf
0 ψM(tf )M(t)−1〈δµ, f(x(t), u)〉 dt ≤ 0.Let us denote p(t) = ψM(tf )M(t)−1. Then,

p(t)〈δµt, f(x(t), u)〉 ≤ 0holds almost everywhere on [0, tf ], for every Lebesgue point t and for every δµt of Cone(Ω−µ).In partiular, if δµt = δv − δµ(t) (where v ∈ UU ), then
p(t) · (f(x(t), v) − f(x(t), u(t))) ≤ 0 . (1.64)Therefore

∀v ∈ UU , p(t) · f(x(t), v) ≤ p(t) · f(x(t), u(t)) , (1.65)but
p(t) · f(x(t), v) = H (x(t), p(t), v) and p(t) · f(x(t), u(t)) = H (x(t), p(t), u(t)) . (1.66)It follows that

H (x(t), p(t), u(t)) = max
v∈Ω

H (x(t), p(t), v) . (1.67)
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Chapter 2Smooth regularization of bang-bangoptimal ontrol problems
2.1 IntrodutionIn this hapter we onsider the minimal time ontrol problem for a single-input ontrol-a�nesystem ẋ = X(x) + u1Y1(x) in IRn, where the salar ontrol u1(·) satis�es the onstraint
|u1(t)| ≤ 1, for every t ∈ [0, tf ].We propose the following smoothing proedure. For ε > 0 small and Y1, . . . , Ym arbitrarygiven vetor �elds, we onsider the minimal time problem for the ontrol system ẋ = X(x) +

uε
1Y1(x) + ε

m
∑

i=2

uε
iYi (x), where the salar ontrols uε

i (·), i = 1, . . . ,m, with m ≥ 2, satisfy theonstraint m
∑

i=1

(uε
i (t))

2 ≤ 1.One of the possible motivations for this regularization proedure is the use of shootingmethods. Among the numerous numerial methods that exist to solve optimal ontrol prob-lems, the shooting methods onsist in solving, via Newton-like methods, the two-point ormulti-point boundary value problem arising from the appliation of the Pontryagin maximumpriniple. More preisely, a Newton method is applied in order to ompute a zero of theshooting funtion assoiated to the problem (see e.g. [109℄).For the initial problem, optimal ontrols may be disontinuous, and it follows that the shootingfuntion is not smooth on IRn in general. Atually it may be non di�erentiable on swithingsurfaes. This implies two di�ulties when using a shooting method. First, if one does notknow a priori the struture of the optimal ontrol, then it may be very di�ult to initializeproperly the shooting method, and in general the iterates of the underlying Newton methodwill be unable to ross barriers generated by swithing surfaes (see e.g. [71℄). Seond, the nu-merial omputation of the shooting funtion and of its di�erential may be intriate sine theshooting funtion is not ontinuously di�erentiable. However, the shooting funtion related57



to the proposed regularized optimal ontrol problem is smooth.In the main result of this hapter (Setion �2.5, Theorem 2.5.1) we prove, under appropri-ate assumptions, that the optimal ontrols of the latter system, depending on ε, are smoothfuntions of t, and onverge weakly to the optimal ontrol of the initial system; moreoverthe assoiated trajetories onverge uniformly. If the optimal ontrol of the initial system ismoreover bang-bang, then the onvergene of the regularized ontrol holds almost everywhere;this property may however fail whenever the bang-bang property does not hold.In Setion �2.6 examples and ounterexamples are provided whih illustrate Theorem 2.5.1.2.2 Statement of the problemConsider the single-input ontrol-a�ne system in IRn

ẋ = X(x) + u1Y1(x), (2.1)where X and Y1 are smooth vetor �elds, and the ontrol u1 is a measurable salar funtionsatisfying the onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]. (2.2)LetM0 andM1 be two ompat subsets of IRn. Assume thatM1 is reahable fromM0, thatis, there exist a time T > 0 and a ontrol funtion u1(·) ∈ L∞(0, T ) satisfying the onstraint(2.2), suh that the trajetory x(·), solution of (2.1) with x(0) ∈M0, satis�es x(T ) ∈M1.We onsider the optimal ontrol problem (OCP) of determining, among all solutions of(2.1)�(2.2) steering M0 to M1 in minimal time.2.3 Pontryagin extremalsAssume that the subset M1 is reahable from M0; it follows that the optimal ontrol problem(OCP) admits a solution x(·), assoiated to a ontrol u1(·), on [0, tf ], where tf > 0 is theminimal time (see e.g. [26, Chapter 9℄ for optimal ontrol existene theorems).Aording to the Pontryagin maximum priniple (see [96℄ and Chapter 1),there exist areal number p0 ≤ 0 and a nontrivial absolutely ontinuous mapping p(·) : [0, tf ] → IRn, alledadjoint vetor, with (p(·), p0) 6= 0 and suh that

ṗ(t) = −∂H
∂x

(x(t), p(t), p0, u(t))

= −
〈

p(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

p(t),
∂Y1

∂x
(x(t))

〉 (2.3)where the funtion H(x, p, p0, u) = 〈p,X + uY1(x)〉 + p0 is alled the Hamiltonian, and themaximization ondition
H(x(t), p(t), p0, u(t)) = max

|w|≤1
H(x(t), p(t), p0, w) (2.4)58



holds almost everywhere on [0, tf ]. Moreover, max|w|≤1H(x(t), p(t), p0, w) = 0 for every
t ∈ [0, tf ]. It follows from (2.4) that

u1(t) = sign〈p(t), Y1(x(t))〉 (2.5)for almost every t, provided the (ontinuous) swithing funtion ϕ(t) = 〈p(t), Y1(x(t))〉 doesnot vanish on any subinterval of [0, tf ]. In that ase, u1(t) only depends on x(t) and on theadjoint vetor, and it follows from (2.3) that the extremal (x(·), p(·), p0, u1(·)) is ompletelydetermined by the initial adjoint vetor p(0). The ase where the swithing funtion mayvanish on a subinterval I is related to singular trajetories1. In that ase, derivating therelation 〈p(t), Y1(x(t))〉 = 0 on I leads to 〈p(t), [X,Y1](x(t))〉 = 0 on I, and a seond derivationleads to 〈p(t), [X, [X,Y1 ]](x(t))〉+u1(t)〈p(t), [Y1, [X,Y1]](x(t))〉 = 0 on I, whih permits, undergeneri assumptions on the vetor �elds X and Y1 (see [27�29℄ for generiity results relatedto singular trajetories), to ompute the singular ontrol u1(·) on I. Under suh generiassumptions, the extremal (x(·), p(·), p0, u1(·)) is still ompletely determined by the initialadjoint vetor.Note that, sine x(·) is optimal on [0, tf ], and sine the ontrol system under study isautonomous, it follows that x(·) is solution of the optimal ontrol problem of steering thesystem (2.1)�(2.2) from x0 = x(0) to x(t) in minimal time.2.4 Regularization proedureLet ε be a positive real parameter and let Y2, . . . , Ym be m− 1 arbitrary smooth vetor �eldson IRn, where m ≥ 2 is an integer. Consider the ontrol-a�ne system
ẋε(t) = X (xε(t)) + uε

1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t)) , (2.6)where the ontrol uε(t) = (uε

1(t), . . . , u
ε
m(t)) satis�es the onstraint
m
∑

i=1

(uε
i (t))

2 ≤ 1. (2.7)Consider the optimal ontrol problem (OCP)ε of determining a trajetory xε(·), solution of(2.6)�(2.7) on [0, tεf ], suh that xε(0) ∈ M0 and xε(tεf ) ∈ M1, and minimizing the time oftransfer tεf . The parameter ε is viewed as a penalization parameter, and it is expeted thatany solution xε(·) of (OCP)ε tends to a solution x(·) of (OCP) as ε tends to zero. It is ouraim to derive suh a result.Aording to the Pontryagin maximum priniple, any optimal solution xε(·) of (OCP)ε,assoiated with ontrols (uε
1, . . . , u

ε
m) satisfying the onstraint (2.7), is the projetion of an1Reall that here the term �singular� has a di�erent meaning from the one used in Chapter 1 (see page 23).59



extremal (xε(·), pε(·), p0ε, uε(·)) suh that
ṗε(t) = −∂H

ε

∂x
(xε(t), pε(t), p0ε, uε(t))

= −
〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε

m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

(2.8)
where Hε(x, p, p0, u) = 〈p,X(x) + u1Y1(x) + ε

∑m
i=2 uiYi(x)〉 + p0 is the Hamiltonian, and

H(xε(t), pε(t), p0ε, uε(t)) = max
∑m

i=1
w2

i ≤1
H(xε(t), pε(t), p0ε, w) (2.9)almost everywhere on [0, tεf ]. Moreover, the maximized Hamiltonian is equal to 0 on [0, tεf ].The maximization ondition (2.9) turns into

uε
1(t)〈pε(t), Y1(x

ε(t))〉 + ε
m
∑

i=2

uε
i (t)〈pε(t), Yi(x

ε(t))〉

= max
∑m

i=1
w2

i ≤1

(

w1〈pε(t), Y1(x
ε(t))〉 + ε

m
∑

i=2

wi〈pε(t), Yi(x
ε(t))〉

)

,

(2.10)and two ases may our: either the maximum is attained in the interior of the domain, orit is attained on the boundary. In the �rst ase, there must hold 〈pε(t), Yi(x
ε(t))〉 = 0, forevery i ∈ {1, . . . ,m}; in partiular, if the m funtions t 7→ 〈pε(t), Yi(x

ε(t))〉, i = 1, . . . ,m,do not vanish simultaneously, then the maximum is attained on the boundary of the domain.Throughout this thesis, we make the following assumption.Assumption 2.4.1. The integer m and the vetor �elds Y2, . . . , Ym are hosen suh that
Span{Yi | i = 1, . . . ,m} = IRn.Under this assumption, the maximization ondition (2.10) yields

uε
1(t) =

〈pε(t), Y1(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

,

uε
i (t) =

ε〈pε(t), Yi(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

, i = 2, . . . ,m,

(2.11)
for almost every t ∈ [0, tεf ], and moreover the ontrol funtions uε

i (·), i = 1, . . . ,m are smoothfuntions of t (so that the above formula holds atually for every t ∈ [0, tεf ]). Indeed, to provethis fat, it su�es to prove that the funtions t 7→ 〈pε(t), Yi(x
ε(t)〉, i = 1, . . . ,m do not60



vanish simultaneously. The argument goes by ontradition: if these funtions would vanishsimultaneously, then, using the Assumption 2.4.1, this would imply that pε(t) = 0 for some t;ombined with the fat that the maximized Hamiltonian is equal to zero along any extremal,it would follow that p0ε = 0, and this would raise a ontradition sine the adjoint vetor
(pε(·), p0ε) of the maximum priniple must be nontrivial.From (2.11), it is expeted that uε

1(·) onverges to u1(·) and uε
i (·), i = 2, . . . ,m, tend tozero, in some topology to speify. This fat is derived rigorously in the next setion.2.5 Convergene resultsThe main result of this hapter is the following theorem.Theorem 2.5.1. Assume that the problem (OCP) has a unique solution x(·), de�ned on

[0, tf ], assoiated with a ontrol u1(·) on [0, tf ]. Moreover, assume that x(·) has a unique ex-tremal lift (up to a multipliative salar), that is moreover normal, and denoted by (x(·), p(·),−1, u1(·)).Then, under the Assumption 2.4.1, there exists ε0 > 0 suh that, for every ε ∈ (0, ε0),the problem (OCP)ε has at least one solution xε(·), de�ned on [0, tεf ] with tεf ≤ tf , assoiatedwith a smooth ontrol uε = (uε
1, . . . , u

ε
m) satisfying the onstraint (2.7), every extremal lift ofwhih is normal. Let (xε(·), pε(·),−1, uε(·)) be suh a normal extremal lift. Then, as ε tendsto 0,

• tεf onverges to tf ;
• xε(·) onverges uniformly2 to x(·), and pε(·) onverges uniformly to p(·) on [0, tf ];
• uε

1(·) onverges weakly3 to u1(·) for the weak L1(0, tf ) topology.If the ontrol u1 is moreover bang-bang, i.e., if the (ontinuous) swithing funtion ϕ(t) =

〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε
1(·) onverges to u1(·) and

uε
i (·), i = 2, . . . ,m, onverge to 0 almost everywhere on [0, tf ], and thus in partiular for thestrong L1(0, tf ) topology.Remark 2.5.2. We provide in Setion �2.6 examples with numerial simulations in order toillustrate Theorem 2.5.1. The �rst example is the Rayleigh problem, on whih the minimaltime trajetory is bang-bang, and almost everywhere onvergene of the regularized ontrolan be observed in agreement with our main result. Our seond example involves a singularar and we prove and observe that osillations appear, so that the regularized ontrol weaklyonverges, but fails to onverge almost everywhere.2We onsider any ontinuous extension of xε(·) on [0, tf ].3It means that ∫ tf

0
uε

1(t)g(t)dt →
∫ tf

0
u1(t)g(t)dt as ε → 0, for every g ∈ L1(0, tf ), and where the funtion

uε
1(·) is extended ontinuously on [0, tf ]. 61



Remark 2.5.3. It is assumed that the problem (OCP) has a unique solution x(·), having aunique extremal lift that is normal. Suh an assumption holds true whenever the minimumtime funtion (the value funtion of the optimal ontrol problem) enjoys di�erentiability prop-erties (see e.g. [9, 35℄ for a preise relationship, see also [24, 97, 98, 108℄ for results on the sizeof the set where the value funtion is di�erentiable).If one removes these uniqueness assumptions, then the following result still holds, pro-vided that every extremal lift of every solution of (OCP) is normal. Consider the topo-logial spaes X = C0([0, tf ], IRn), endowed with the uniform onvergene topology, and
Y = L∞(0, tf ; [−1, 1]), endowed with the weak star topology. In the following statement,the spae X × X × Y is endowed with the resulting produt topology. For every ε ∈ (0, ε0),let xε(·) be a solution of (OCP)ε, and let (xε(·), pε(·),−1, uε(·)) be a (normal) extremal liftof xε(·). Then, every losure point in X × X × Y of the family of triples (xε(·), pε(·), uε

1(·))is a triple (x̄(·), p̄(·), ū1(·)), where x̄(·) is an optimal solution of (OCP), assoiated with theontrol ū1(·), having as a normal extremal lift the 4-tuple (x̄(·), p̄(·),−1, ū1(·)). The rest of thestatement of Theorem 2.5.1 still holds with an obvious adaptation in terms of losure points.Remark 2.5.4. When applying a shooting method to the problem (OCP)ε, one is not ensuredto determine an optimal solution, but only an extremal solution that is not neessarily opti-mal.4 Notie however that the arguments of the proof of Theorem 2.5.1 permit to prove thefollowing statement. Assume that there is no abnormal extremal among the set of extremalsobtained by applying the Pontryagin maximum priniple to the problem (OCP); then, for
ε > 0 small enough, every extremal solution of (OCP)ε is normal, and, using the notationsof the previous remark, every losure point of suh extremal solutions is a normal extremalsolution of (OCP).Remark 2.5.5. There is a large literature dealing with optimal ontrol problems dependingon some parameters, involving state, ontrol or mixed onstraints, using a stability and sen-sitivity analysis in order to investigate the dependene of the optimal solution with respetto parameters (see e.g. [40,48,56,66,67,74,76,81,82,84℄ and referenes therein). In the sensi-tivity approah, under seond order su�ient onditions, results are derived that prove thatthe solutions of the parametrized problems, as well as the assoiated Lagrange multipliers,are Lipshitz ontinuous or diretionally di�erentiable funtions of the parameter. We stresshowever that Theorem 2.5.1 annot be derived from these former works. Indeed, in these ref-erenes, the results rely on seond order su�ient onditions and ertain regularity onditionson the initial problem. In our work we do not assume any seond order su�ient ondition;our approah is di�erent from the usual sensitivity analysis and is rather, in some sense, atopologial approah.4This fat is well known, due to the fat that the Pontryagin maximum priniple is only a �rst orderneessary ondition for optimality; su�ient onditions do exist but this is outside the sope of this Chapter(see Setion �3.1.3 for su�ient onditions). 62



In what follows several lemmas will be proved. The proof of Theorem 2.5.1 follows fromLemmas 2.5.6�2.5.18.From now on, assume that all assumptions of Theorem 2.5.1 hold. We denote the end-pointmapping for the system (2.6) by
E(ε, x0, tf , u

ε) = xε(tf ),where xε(·) is the solution of (2.6) assoiated with the ontrol uε(·) = (uε
1(·), . . . , uε

m(·)) andsuh that xε(0) = x0. By extension, the end-point mapping for the system (2.1) orrespondsto ε = 0,
E(0, x0, tf , (u1, 0, . . . , 0)) = x(tf ),where x(·) is the solution of (2.1) assoiated with the ontrol u1(·) and suh that x(0) = x0.It will be also denoted E(x0, tf , u1) = E(0, x0, tf , (u1, 0, . . . , 0)) = x(tf ).In the sequel, we denote by u1(·) the minimal time ontrol steering the system (2.1) from

M0 to M1 in time tf .We �rst derive the following existene result.Lemma 2.5.6. For every ε > 0,5 the problem (OCP)ε admits at least one solution xε(·),assoiated with a ontrol uε(·) = (uε
1(·), . . . , uε

m(·)) satisfying the onstraint (2.7) on [0, tεf ].Moreover, 0 ≤ tεf ≤ tf .Proof. Knowing that the onstrained minimization problem










min tf

|u1| ≤ 1, E(0, x0, tf , (u1, 0, . . . , 0)) = x1

x0 ∈M0, x1 ∈M1has a solution, it is our aim to prove that the problem






















min tεf

uε = (uε
1, . . . , u

ε
m),

m
∑

i=1

(uε
i )

2 ≤ 1, E(ε, x0, t
ε
f , u

ε) = x1

x0 ∈M0, x1 ∈M1has a solution, for every ε > 0. First of all, we laim that, for every ε > 0, the subset M1 isreahable from the subset M0, i.e., it is possible to solve the equation
E(ε, x0, t

ε
f , u

ε) = x1with a ontrol uε = (uε
1, . . . , u

ε
m) satisfying the onstraint ∑m

i=1(u
ε
i )

2 ≤ 1, and with some
x0 ∈ M0 and x1 ∈ M1. Indeed, if uε

i = 0, i = 2, . . . ,m, then the system (2.6) oinides with5Note that ε is not needed to be small. 63



the system (2.1), and it su�es to hoose uε
1 = u1 and the orresponding initial and �nalpoints. The existene of a minimal time ontrol steering the system (2.6) from M0 to M1 isthen a standard fat to derive for suh a ontrol-a�ne system (see e.g. [26, Chapter 9℄, andnote that M0 and M1 are ompat). Moreover, the minimal time tεf for the problem (OCP)εis less or equal than the minimal time tf for the initial problem.As explained in Setion 2.4, for ǫ > 0 �xed, and with Assumption 2.4.1 satis�ed, it followsfrom the Pontryagin maximum priniple applied to (OCP)ε that xε(·) is the projetion of anextremal (xε(·), pε(·), p0ε, uε(·)) suh that

ṗε(t) = −
〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε
m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉and
uε

1(t) =
〈pε(t), Y1(x

ε(t))〉
√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

,

uε
i (t) =

ε〈pε(t), Yi(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

, i = 2, . . . ,m.We stress the fat that the ontrols uε
i , i = 1, . . . ,m, are ontinuous funtions of t.Lemma 2.5.7. If ε > 0 tends to 0, then tεf onverges to tf , uε

1(·) onverges to u1(·) in
L∞(0, tf ) for the weak star topology, and xε(·) onverges to x(·) uniformly on [0, tf ].Proof. Let (εn)n∈IN be an arbitrary sequene of positive real numbers onverging to 0 as ntends to +∞. From Lemma 2.5.6, 0 ≤ tεn

f ≤ tf , hene, up to a subsequene, (tεn

f )n∈INonverges to some T ≥ 0 suh that T ≤ tf . By de�nition, the sequene of ontrols (uεn

1 (·))n∈INis bounded in L∞(0, tf ) (with the agreement that the funtion uεn
1 (·) is extended on (tεn

f , tf ]e.g. by 0). Therefore, up to subsequene, it onverges weakly to some ontrol ū1(·) ∈ L∞(0, tf )for the weak star topology. In partiular, it onverges weakly to ū1(·) ∈ L2(0, tf ) for the weaktopology of L2(0, tf ). The limit ontrol ū1(·) satis�es |ū1(t)| ≤ 1 almost everywhere on [0, tf ].To prove this fat, onsider the set
V = {g ∈ L2(0, tf ) | |g(t)| ≤ 1 almost everywhere on [0, tf ]}.For every integer n, uεn

1 (·) ∈ V; moreover V is a onvex losed (for the strong topology) subsetof L2(0, tf ), and hene is a onvex losed (for the weak topology) subset of L2(0, tf ). It followsthat ū1 ∈ V. 64



Sine M0 and M1 are ompat, it follows that, up to a subsequene, xεn(0) onverges tosome x̄0 ∈M0, and xεn(tεn

f ) onverges to some x̄1 ∈M1.Let x̄(·) denote the solution of the system (2.1), assoiated with the ontrol ū1(·) on [0, T ],and suh that x̄(0) = x̄0. Sine the ontrol systems under onsideration are ontrol-a�ne, itis not di�ult to prove that the weak onvergene of ontrols implies the uniform onvergeneof orresponding trajetories (see [119℄ for details). In partiular, it follows that x̄(T ) = x̄1.Therefore, we have proved that the ontrol ū on [0, T ] steers the system (2.1) from M0 to
M1 in time T . Sine T ≤ tf and the problem (OCP) has a unique solution, we infer that
T = tf , ū1 = u1 and x̄(·) = x(·).To onlude, it su�es to remark that the above reasoning proves that (tf , u1(·), x(·)) isthe unique losure point of (tεn

f , u
εn

1 (·), xεn(·)), where (εn)n∈IN is any sequene of positive realnumbers onverging to 0.Remark 2.5.8. If one does not assume the uniqueness of the optimal solution of (OCP), thenthe following statement still holds. If ε > 0 tends to 0, then tεf still onverges to the minimaltime tf , the family (uε
1(·))ε has a losure point ū1(·) in L∞(0, tf ) for the weak star topology,and the family (xε(·))ε has a losure point x̄(·) in C0([0, tf ], IRn) for the uniform onvergenetopology, where x̄(·) is the solution of the system (2.1) orresponding to the ontrol ū1(·) on

[0, tf ], suh that x̄(0) ∈M0 and x̄(tf ) ∈M1. This means that x̄(·) is another possible solutionof (OCP).In other words, every losure point of a family of solutions of (OCP)ε is a solution of
(OCP).The next lemma will serve as a tehnial tool to derive Lemma 2.5.10.Lemma 2.5.9. Let T > 0, and let (gε)ε>0 be a family of ontinuous funtions on [0, T ]onverging weakly to some g ∈ L2(0, T ) as ε tends to 0, for the weak topology of L2(0, T ).Then, for every t ∈ (0, T ), there exists a family (tε)ε>0 of points of [t, T ) suh that tε → t and
gε(tε) → g(t) as ε→ 0.Proof. First of all, note that, sine gε onverges weakly to g on [0, T ], its restrition to anysubinterval of [0, T ] onverges weakly, as well, to the orresponding restrition of g. Let usprove that, for every β > 0, for every α > 0 (small enough so that t + α ≤ T ), there exists
ε0 > 0 suh that, for every ε ∈ (0, ε0), there exists tε ∈ [t, t+ α] suh that |gε(tε) − g(t)| ≤ β.The proof goes by ontradition. Assume that there exist β > 0 and α > 0 suh that, forevery integer n, there exists εn ∈ (0, 1/n) suh that, for every τ ∈ [t, t + α], there holds
|gεn(τ) − g(t)| ≥ β. Sine gεn is ontinuous, it follows that either gεn(τ) ≥ g(t) + β for every
τ ∈ [t, t+α], or gεn(τ) ≤ g(t)−β for every τ ∈ [t, t+α]. This inequality ontradits the weakonvergene of the restrition of gεn to [t, t+ α] towards the restrition of g to [t, t+ α].In what follows, we denote by K(t), K1(t), K̃(t), the Pontryagin ones along the trajetory
x(·) solution of (OCP), de�ned as in the previous Setion �1.5. Similarly, for every ε > 0,65



we denote by Kε(t), Kε
1(t), K̃ε(t) the Pontryagin ones along the trajetory xε(·), whih is asolution of (OCP)ε.Lemma 2.5.10. For every v ∈ K(tf ), for every ε > 0, there exists vε ∈ Kε(tεf ) suh that vεonverges to v as ε tends to 0.Proof. By onstrution of K(tf ), it su�es to prove the lemma for a single needle-like varia-tion. Assume that v = vπ(tf ), where the variation vetor vπ(·) is the solution on [t1, tf ] of theCauhy problem
v̇π(t) =

(

∂X

∂x
(x(t)) + u1(t)

∂Y1

∂x
(x(t))

)

vπ(t)

vπ(t1) = (ū1 − u1(t1))Y1(x(t1)),

(2.12)where t1 is a Lebesgue point of [0, tf ), ū1 ∈ [−1, 1], and the needle-like variation π = {t1, η1, ū1}of the ontrol u1 is de�ned by
u1,π(t) =

{

ū1 if t ∈ [t1, t1 + η1],

u1(t) otherwise.For every ε > 0, onsider the ontrol uε = (uε
1, . . . , u

ε
m) of Lemma 2.5.6, solution of (OCP)ε.It satis�es the onstraint ∑m

i=1(u
ε
i )

2 ≤ 1. From Lemma 2.5.7, the ontinuous ontrol funtion
uε

1 onverges weakly to u1 in L2(0, tf ). It then follows from Lemma 2.5.9 that, for every ε > 0,there exists tε ≥ t1 suh that tε → t1 and uε
1(tε) → u1(t1) as ε→ 0.For every ε > 0, onsider the needle-like variation πε = {tε1, η1, (ū1, 0, . . . , 0)} of the ontrol

(uε
1, . . . , u

ε
m) de�ned, for i = 2, . . . ,m, by6

uε
1,πε(t) =

{

ū1 if t ∈ [tε1, t
ε
1 + η1],

uε
1(t) otherwise,and

uε
i,πε(t) =

{

0 if t ∈ [tε1, t
ε
1 + η1],

uε
i (t) otherwiseLet the variation vetor vπε(·) be the solution on [tε1, t

ε
f ] of the Cauhy problem

v̇πε(t) =

(

∂X

∂x
(xε(t)) + uε

1(t)
∂Y1

∂x
(xε(t)) + ε

m
∑

i=2

uε
i (t)

∂Yi

∂x
(xε(t))

)

vπε(t)

vπε(tε1) = (ū1 − uε
1(t

ε
1))Y1(x

ε(tε1)) − ε

m
∑

i=2

uε
i (t

ε
1)Yi(x

ε(tε1)).

(2.13)From Lemma 2.5.7, tεf onverges to tf , uε
1(·) onverges weakly to u1(·), xε(·) onverges uni-formly to x(·); moreover, εuε

i (·) onverges weakly to 0, εuε
i (t

ε
1) onverges to 0, for i = 2, . . . ,m,and uε

1(t1) onverges to u1(t1). As in the proof of Lemma 2.5.7, we infer the uniform onver-gene of vε
π(·) to vπ(·) (see [119℄ for details), and the onlusion follows.6Note that tε

1 is a Lebesgue point of the funtion t 7→ X(xε(t)) + uε
1(t)Y1(x

ε(t)) + ε
∑m

i=2
uε

i (t)Yi(x
ε(t))sine the ontrols uε

i are ontinuous funtions of t. 66



The next lemma will be useful in the proof of Lemma 2.5.12.Lemma 2.5.11. Let m be a positive integer, g be a ontinuous funtion on IR× IRm, and Cbe a ompat subset of IRm. For every ε > 0, set M(ε) = max
u∈C

g(ε, u), and M = max
u∈C

g(0, u).Then, M(ε) tends to M as ε tends to 0.Proof. For every ε > 0, let uε ∈ C suh that M(ε) = g(ε, uε), and let u ∈ C suh that
M = g(0, u). Note that uε does not neessarily onverge to u, however we will prove that
M(ε) tends to M , as ε tends to 0. Let u0 ∈ C be a losure point of the family (uε)ε>0. Then,by de�nition of M , one has g(0, u0) ≤ M. On the other hand, sine g is ontinuous, g(ε, u)tends to g(0, u) = M as ε tends to 0. By de�nition, g(ε, u) ≤M(ε) = g(ε, uε) for every ε > 0.Therefore, passing to the limit, one gets M ≤ g(0, u0). It follows that M = g(0, u0). We havethus proved that the (bounded) family (M(ε))ε>0 of real numbers has a unique losure point,whih is M . The onlusion follows.Lemma 2.5.12. There exists ε0 > 0 suh that, for every ε ∈ (0, ε0), every extremal lift
(xε(·), pε(·), p0ε, uε(·)) of any solution xε(·) of (OCP)ε is normal.Proof. We argue by ontradition. Assume that, for every integer n, there exist εn ∈ (0, 1/n)and a solution xεn(·) of (OCP)εn

having an abnormal extremal lift (xεn(·), pεn(·), 0, uεn (·)).Set ψεn = pεn(tεn

f ), for every integer n. Then, from Remark 1.5.12, one has
〈ψεn , vεn〉 ≤ 0,for every vεn ∈ Kεn(tεn

f ), and
M(εn) = max

∑m
i=1

w2
i ≤1

(〈

ψεn ,X(xεn(tεn

f ))
〉

+ w1

〈

ψεn , Y1(x
εn(tεn

f ))
〉

+εn

m
∑

i=2

wi

〈

ψεn , Yi(x
εn(tεn

f ))
〉)

= 0,for every integer n. Sine the �nal adjoint vetor (pεn(tεn

f ), p0 εn) is de�ned up to a multiplia-tive salar, and p0 εn = 0, we assume that ψεn is a unit vetor. Then, up to a subsequene, thesequene (ψεn)n∈IN onverges to some unit vetor ψ. Using Lemmas 2.5.7, 2.5.10 and 2.5.11,we infer that
〈ψ, v〉 ≤ 0,for every v ∈ K(tf ), and

M = max
|w1|≤1

(〈ψ,X(x(tf ))〉 + w1 〈ψ, Y1(x(tf ))〉) = 0.It then follows from Remark 1.5.12 that the trajetory x(·) has an abnormal extremal lift.This is a ontradition sine, by assumption, x(·) has a unique extremal lift, whih is moreovernormal. 67



Remark 2.5.13. If we remove the assumption that the optimal trajetory x(·) has a uniqueextremal lift, whih is moreover normal, then Lemma 2.5.12 still holds provided that everyextremal lift of x(·) is normal.With the notations of Lemma 2.5.12, from now on we normalize the adjoint vetor so that
p0 ε = −1, for every ε ∈ (0, ε0).Lemma 2.5.14. In the setting of Lemma 2.5.12, the set of all possible pε(tεf ), with ε ∈ (0, ε0),is bounded.Proof. The proof goes by ontradition. Assume that there exists a sequene (εn)n∈IN ofpositive real numbers onverging to 0 suh that ‖pεn(tεn

f )‖ tends to +∞. Sine the sequene
(

pεn (tεn
f

)

‖pεn (tεn
f

)‖

)

n∈IN is bounded in IRn, up to a subsequene it onverges to some unit vetor ψ.Using the Lagrange multipliers property and (1.59), there holds
〈pεn(tεn

f ), vεn〉 ≤ 0,for every vεn ∈ Kεn(tεn

f ), and
max

∑m
i=1

w2
i ≤1

(〈

pεn(tεn

f ),X(xεn(tεn

f ))
〉

+ w1

〈

pεn(tεn

f ), Y1(x
εn(tεn

f ))
〉

+εn

m
∑

i=2

wi

〈

pεn(tεn

f ), Yi(x
εn(tεn

f ))
〉)

= 1,for every integer n. Dividing by ‖pεn(tεn

f )‖, and passing to the limit, using Lemmas 2.5.7, 2.5.10and 2.5.11, and Remark 1.5.12, the same reasoning as in the proof of the previous lemma yieldsthat the trajetory x(·) has an abnormal extremal lift, whih is a ontradition.Remark 2.5.15. Remark 2.5.13 applies as well to Lemma 2.5.14.Lemma 2.5.16. For every ε ∈ (0, ε0), let xε(·) be a solution of (OCP)ε, and let (xε(·), pε(·),−1, uε(·))be a (normal) extremal lift of xε(·). Then pε(·) onverges uniformly7 to p(·) on [0, tf ] as εtends to 0, where (x(·), p(·),−1, u(·)) is the unique (normal) extremal lift of x(·).Proof. For every ε > 0, set ψε = pε(tεf ). The adjoint equation of the Pontryagin MaximumPriniple is
ṗε(t) = −

〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε
m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

,with pε(tεf ) = ψε. Moreover, there holds
〈ψε, vε〉 ≤ 0,7We onsider any ontinuous extension of pε(·) on [0, tf ].68



for every vε ∈ Kε(tεf ), and
max

∑m
i=1

w2
i ≤1

(

〈

ψε,X(xε(tεf ))
〉

+ w1

〈

ψε, Y1(x
ε(tεf ))

〉

+ ε

m
∑

i=2

wi

〈

ψε, Yi(x
ε(tεf ))

〉

)

= 1.From Lemma 2.5.14, the family of all ψε, 0 < ε < ε0, is bounded. Let ψ be a losure point ofthat family, and (εn)n∈IN a sequene of positive real numbers onverging to 0 suh that ψεntends to ψ. Using Lemma 2.5.7, and as in the proof of this lemma, we infer that the sequene
(pεn(·))n∈IN onverges uniformly to the solution z(·) of the Cauhy problem

ż(t) = −
〈

z(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

z(t),
∂Y1

∂x
(x(t))

〉

, z(tf ) = ψ.Moreover, passing to the limit as in the proof of Lemma 2.5.14
〈ψ, v〉 ≤ 0,for every v ∈ K(tf ), and

max
|w1|≤1

(〈ψ,X(x(tf ))〉 + w1 〈ψ, Y1(x(tf ))〉) = 1.It follows that (x(·), z(·),−1, u1(·)) is an extremal lift of x(·), and from the uniqueness as-sumption we infer that z(·) = p(·). The onlusion follows.Remark 2.5.17. If one removes the assumptions of uniqueness of the solution of (OCP) anduniqueness of the extremal lift, then the following result still holds, provided that every ex-tremal lift of every solution of (OCP) is normal. Consider the topologial spaes X =

C0([0, tf ], IRn), endowed with the uniform onvergene topology, and Y = L∞(0, tf ; [−1, 1]),endowed with the weak star topology. In the following statement, the spae X × X × Y isendowed with the resulting produt topology. For every ε ∈ (0, ε0), let xε(·) be a solutionof (OCP)ε, and let (xε(·), pε(·),−1, uε(·)) be a (normal) extremal lift of xε(·). Then, everylosure point of the family (xε(·), pε(·), uε
1(·)) in X ×X ×Y is a triple (x̄(·), p̄(·), ū1(·)), where

x̄(·) is an optimal solution of (OCP), assoiated with the ontrol ū1(·), having as a normalextremal lift the 4-tuple (x̄(·), p̄(·),−1, ū1(·)). This statement indeed follows from Remarks2.5.8, 2.5.13 and 2.5.15.Lemma 2.5.18. If the ontrol u1 is moreover bang-bang, i.e., if the (ontinuous) swithingfuntion ϕ(t) = 〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε
1(·) on-verges to u1(·) and uε

i (·), i = 2, . . . ,m, onverge to 0 almost everywhere on [0, tf ], and thus inpartiular for the strong L1(0, tf ) topology.Proof. Using the expression (2.11) of the ontrols uε
1 and uε

i , i = 2, . . . ,m, the expression (2.5)of the ontrol u1, and from Lemmas 2.5.7 and 2.5.16, it is lear that uε
1(t) onverges to u1(t)and uε

i (t), i = 2, . . . ,m, onverge to 0 as ε tends to 0, for almost every t ∈ [0, tf ]. Sine theontrols are bounded by 1, the strong L1 onvergene follows from the dominated onvergenetheorem (see e.g. [20℄). 69



This last lemma ends the proof of Theorem 2.5.1.Remark 2.5.19. Assumption 2.4.1 requires that m ≥ n. One may however wish to hoose
m = 2, i.e., to add only one new vetor �eld Y2, in the regularization proedure. In thatase, the Assumption 2.4.1 does not hold whenever n > 3, and then two problems may our:�rst, in the maximization ondition (2.10) the maximum is not neessarily obtained at theboundary, i.e., the expressions (2.11) do not neessarily hold, and seond, the ontrols uε

i (·),
i = 1, . . . ,m are not neessarily ontinuous (the ontinuity is used in a ruial way in theproof of our main result). These two problems are however not likely to our, in what followswe provide some omments on the generi validity of (2.11) and on the smoothness of theregularized ontrols, in the ase m = 2.Let m = 2, that is, onsider only one arbitrary additional smooth vetor �eld Y2. For
ε > 0 �xed, the maximization ondition from the Pontryagin maximum priniple applied tothe problem (OCP)ε is

uε
1(t)〈pε(t), Y1(x

ε(t)〉 + εuε
2(t)〈pε(t), Y2(x

ε(t)〉
= max

w2
1
+w2

2
≤1

(w1〈pε(t), Y1(x
ε(t)〉 + εw2〈pε(t), Y2(x

ε(t)〉)almost everywhere on [0, tεf ]. There are two ases: either the maximum is attained in theinterior of the domain, or it is attained at the boundary. The proof of our main result requiresthis maximum to be attained at the boundary (see (2.11)), and the orresponding ontrols tobe ontinuous. This fat depends on the hoie of the vetor �eld Y2.A simple example where this holds true is the ase Y2 = X. In that ase it is indeedpossible to ensure that both funtions t 7→ 〈pε(t), Y1(x
ε(t)〉 and t 7→ 〈pε(t), Y2(x

ε(t)〉 do notvanish simultaneously for ε > 0 small enough (and this implies the desired onlusion). Toprove this assertion, we argue by ontradition and assume that, for every n ∈ IN, there exists asequene (εn)n∈IN onverging to 0 and a sequene (tεn)n∈IN suh that 〈pεn(tεn),X(xεn(tεn))〉 =

〈pεn(tεn), Y2(x
εn(tεn))〉 = 0. Combined with the fat that the Hamiltonian is onstant alongany extremal, and vanishes at the �nal time, these equalities imply that p0εn = 0. Thisontradits the onlusion of Lemma 2.5.12.More generally, and although suh a statement may be nontrivial to derive, we onjeturethat this fat holds true for generi vetor �elds Y2 (see [27�29℄ for suh generiity statements).Note that, for generi triples of vetor �elds (X,Y1, Y2), this fat holds true. Indeed, to derivethis statement it su�es to ombine the fat that any totally singular minimizing trajetorymust satisfy the Goh ondition (see [2℄ and [15, Theorem 1.9℄ for details) and the fat that,for generi (in the strong sense of Whitney) triplets of vetor �elds (X,Y1, Y2), the assoiatedontrol-a�ne system does not admit nontrivial Goh singular trajetories (see [29, Corollary2.7℄). 70



2.6 Examples2.6.1 The Rayleigh minimal time ontrol problemTo illustrate our results, we onsider the minimal time ontrol problem for the Rayleigh ontrolsystem desribed in [76℄,
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.14x2(t)
2) + u1(t),

(2.14)with initial and �nal onditions
x1(0) = x2(0) = −5, x1(tf ) = x2(tf ) = 0, (2.15)and the ontrol onstraint

|u1(t)| ≤ 4 , ∀t ∈ [0, tf ]. (2.16)Aording to the Pontryagin maximum priniple, any optimal solution x(·) of (2.14)�(2.16)is the projetion of an extremal (x(·), p(·), p0, u1(·)) suh that
ṗ1(t) = p2(t)

ṗ2(t) = −p1(t) − p2(t)
(

1.4 − 0.42x2(t)
2
)and the maximization ondition p2(t)u1(t) = max|w|≤4 (p2(t)w) holds almost everywhere on

[0, tf ]. It is easy to see that p2(·) annot vanish on some subinterval, and it follows that theoptimal ontrol u1(·) is bang-bang, equal to u1(t) = 4 sign(p2(t)).Applying a shooting method to problem (2.14)�(2.16) (with p0 = −1), we determine theinitial adjoint vetor p(0) ≃ (0.12234128; 0.08265161), and observe that the trajetory has twoswithing times τ1 ≃ 1.12050659 and τ2 ≃ 3.31004697 on [0, tf ], that is, u1(·) is given by
u1(t) =



















+4 for 0 ≤ t ≤ τ1

−4 for τ1 ≤ t ≤ τ2

+4 for τ2 ≤ t ≤ tf ,with a �nal time tf ≃ 3.66817338 (see Figures 2.1�2.4). Furthermore, x(·) is the uniqueminimal time solution and has a unique extremal lift (up to a multipliative salar), whih ismoreover normal (see [76℄).We propose the regularized ontrol system
ẋε

1(t) = xε
2(t) + εuε

2(t) ,

ẋε
2(t) = −xε

1(t) + xε
2(t)(1.4 − 0.14xε

2(t)
2) + uε

1(t),
(2.17)71
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Figure 2.2: Optimal ontrol
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Figure 2.3: Adjoint vetor p1
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Figure 2.4: Adjoint vetor p2with the same initial and �nal onditions, and where the ontrol uε(·) = (uε
1(·), uε

2(·)) satis�esthe onstraint
(uε

1(t))
2 + (uε

2(t))
2 ≤ 16. (2.18)Any optimal solution xε(·) of (2.15), (2.17), (2.18) is the projetion of an extremal (xε(·), pε(·), p0ε, uε(·))suh that

ṗε
1(t) = pε

2(t)

ṗε
2(t) = −pε

1(t) − pε
2(t)

(

1.4 − 0.42xε
2(t)

2
)

.The Assumption 2.4.1 is veri�ed, and the ontrols that satisfy the Pontryagin maximizationondition (2.10) are given by
uε

1(t) =
4pε

2(t)
√

(pε
2(t))

2 + ε2(pε
1(t))

2
, uε

2(t) =
4εpε

1(t)
√

(pε
2(t))

2 + ε2(pε
1(t))

2
. (2.19)All assumptions of Theorem 2.5.1 are satis�ed.72



Applying a shooting method to the problem (2.15), (2.17), (2.18), we determine the op-timal trajetory of the regularized problem, and we indeed observe the expeted onvergeneof (xε(·), pε(·),−1, uε) towards (x(·), p(·),−1, u1), as ε tends to 0, in agreement with Theo-rem 2.5.1 (see Figures 2.5, 2.6 and 2.7). In this example, the minimal time ontrol solution of(2.14)�(2.16) is bang-bang, and we indeed observe, on the numerial simulations, the almosteverywhere onvergene of the regularized ontrol.
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Figure 2.7: Control2.6.2 Minimal time optimal ontrol problem involving a singular arIn the example provided in this subsetion, the minimal time ontrol u1(·) is singular. It isthen not expeted a priori that the regularized ontrol uε
1(·) onverges almost everywhere to

u1(·) along the singular ar. Our main result only asserts a weak onvergene property along73



this ar. In the example presented below, the regularized ontrol uε
1(·) onverges weakly to

u1(·) but not almost everywhere. We then provide some numerial simulations, on whih weindeed observe that the almost everywhere onvergene property fails along the singular ar,and we observe an osillating property, whih is a typial feature of weak onvergene.Consider the minimal time ontrol problem for the system
ẋ1(t) = 1 − x2(t)

2,

ẋ2(t) = u1(t),
(2.20)with initial and �nal onditions

x1(0) = x2(0) = 0, x1(tf ) = 1, x2(tf ) = 0, (2.21)and the ontrol onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]. (2.22)It is lear that the solution of this optimal ontrol problem is unique, and is provided by thesingular ontrol u1(t) = 0, for every t ∈ [0, tf ], with tf = 1. The orresponding trajetory isgiven by x1(t) = t and x2(t) = 0.We laim that this optimal trajetory has a unique extremal lift (up to a multipliativesalar), whih is moreover normal. Indeed, denoting by p = (p1, p2) the adjoint vetor, theHamiltonian of the above optimal ontrol problem is H = p1(1 − x2

2) + p2u1 + p0, and thedi�erential equations of the adjoint vetor are ṗ1 = 0, ṗ2 = 2x2p1. Sine x2(t) = 0, it followsthat the adjoint vetor of any extremal lift of the optimal trajetory is onstant. Moreover,the Hamiltonian vanishes at the �nal time, and hene there must hold p1(t)+p
0 = 0, for every

t ∈ [0, tf ]. Sine the singular ontrol u1(t) = 0 is optimal and belongs to the interior of thedomain of onstraint (2.22), the maximization ondition yields ∂H
∂u1

= 0, and thus, p2(t) = 0for every t ∈ [0, tf ]. Then, sine the adjoint vetor is nontrivial, p0 annot be equal to 0, andup to a multipliative salar we assume that p0 = −1. The assertion is thus proved, and theunique (normal) extremal lift is given by (x1(t), x2(t), p1(t), p2(t), p
0, u1(t)) = (t, 0, 1, 0,−1, 0).We propose the following regularization of the problem (2.20)�(2.22). Let g(·) and h(·) besmooth funtions, to be hosen; onsider the minimal time ontrol problem for the system

ẋε
1(t) = 1 − xε

2(t)
2 + εuε

2(t)g(x
ε
1(t)),

ẋε
2(t) = uε

1(t) + εuε
2(t)h(x

ε
1(t)),

(2.23)with initial and �nal onditions
xε

1(0) = xε
2(0) = 0, xε

1(t
ε
f ) = 1, xε

2(t
ε
f ) = 0, (2.24)and the ontrol onstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 1 , ∀t ∈ [0, tεf ]. (2.25)74



Sine the funtion g to be hosen below vanishes at some points, the Assumption 2.4.1does not hold everywhere. We laim however that, if the funtion g may only vanish on asubset of zero measure, and if ε > 0 is small enough, then the formula (2.11) holds, and theregularized ontrols are ontinuous, so that we are in the framework of Theorem 2.5.1.Indeed, the Hamiltonian of this regularized optimal ontrol problem is
H = pε

1(1 − (xε
2)

2) + pε
2u

ε
1 + εuε

2(p
ε
1g(x

ε
1) + pε

2h(x
ε
1)) + p0ε,and the adjoint equations are

ṗε
1(t) = −εuε

2(t)(p
ε
1(t)g

′(xε
1(t)) + pε

2(t)h
′(xε

1(t))),

ṗε
2(t) = 2xε

2(t)p
ε
1(t).It is not di�ult to see that, for ε > 0 small enough, the optimal trajetory must be suhthat ẋε

1(t) > 0; hene, xε
1(·) is an inreasing funtion of t. Now, argue by ontradition, andassume that the optimal ontrol takes its values in the interior of the domain (2.25), for t ∈ I,where I is a subset of [0, tεf ] of positive measure. Then, the maximization ondition yields

∂H
∂uε

1

= ∂H
∂uε

2

= 0, and hene pε
2(t) = 0 and pε

1(t)g(x
ε
1(t)) + pε

2(t)h(x
ε
1(t)) = 0, for t ∈ I. Itfollows that pε

1(t)g(x
ε
1(t)) = 0, for t ∈ I. Sine the funtion g may only vanish on a subsetof zero measure, and sine xε

1(·) is inreasing, it follows that there exists t1 ∈ I suh that
g(xε

1(t1)) 6= 0, and therefore pε
1(t1) = pε

2(t1) = 0. Sine the Hamiltonian vanishes almosteverywhere, this yields moreover p0ε = 0, whih is a ontradition.Therefore, under the above assumption on g, the formula (2.11) holds, and the optimalontrols are given by
uε

1(t) =
pε
2(t)

√

pε
2(t)

2 + ε2 (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

2
,

uε
2(t) =

ε (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

√

pε
2(t)

2 + ε2 (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

2
,

(2.26)for almost every t ∈ [0, tεf ].Let us prove that the ontrols uε
1(·) and uε

2(·) are smooth funtions of t. For this purpose,we prove hereafter that the funtion pε
2(·) does not vanish on any subset of positive measure.Argue by ontradition and assume that there exists a subset I of [0, tεf ] on whih pε

2(·) vanishes.Then, on one part, (2.26) implies that uε
1(t) = 0 and uε

2(t) = sign(pε
1(t)g(x

ε
1(t))+p

ε
2(t)h(x

ε
1(t))),for almost every t ∈ I. On the other part, using the adjoint equations, we have xε

2(t)p
ε
1(t) = 0,for t ∈ I. The salar pε

1(t) annot vanish, for any t ∈ I; indeed otherwise there would hold
pε
1(t) = pε

2(t) = 0, and sine the Hamiltonian vanishes, it would follow that p0ε = 0, whih isa ontradition with the normality of the extremal lift (see Lemma 2.5.12). Hene, xε
2(t) = 0for t ∈ I, and thus, by di�erentiation, uε

1(t) + εuε
2(t) = 0. This ontradits the equalities

uε
1(t) = 0 and uε

2(t) = sign(pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t))).From Theorem 2.5.1, we an assert that, as ε tends to 0,75



• xε
1(·) (resp., xε

2(·)) onverges uniformly to x1(·) (resp., x2(·)) on [0, 1],
• pε

1(·) (resp., pε
2(·)) onverges uniformly to p1(·) ≡ 1 (resp., p2(·) ≡ 0),

• uε
1(·) onverges weakly to u1(·) ≡ 0.Let us next prove that, for ertain hoies of the funtions g(·) and h(·), the regularized ontrol

uε
1(·) does not onverge almost everywhere to u1(·). We hoose a smooth funtion g(·) de�nedon IR that is strongly osillating in the neighborhood of 1/2, for instane,

g(x) = h(x) sin
1

x− 1/2
,and a �at funtion h so that g is indeed smooth, for instane,

h(x) = exp

( −1

(x− 1/2)2

)

.If ε is small enough, then xε
1(t) is lose to t, pε

1(t) is lose to 1, pε
2(t) is lose to 0, and henethe sign of uε

2(t), that is equal to the sign of
h(xε

1(t))

(

pε
1(t) sin

1

xε
1(t) − 1/2

+ pε
2(t)

)is lose to the sign of sin 1
t−1/2 . Therefore, the ontrol uε

2(·) strongly osillates between −1 and
1 for t lose to 1/2. Sine uε

1(·) and uε
2(·) are ontinuous and satisfy (uε

1(t))
2 + (uε

2(t))
2 = 1,for every t ∈ [0, 1], it follows that the ontrol uε

1(·) strongly osillates as well between −1 and
1 for t lose to 1/2.This osillation feature is similar to what happens with hattering ontrols, and illustratesthe fat that uε

1(·) weakly onverges to u1(·) = 0 as ε tends to 0, but does not onverge almosteverywhere.Numerial simulations lead to Figures 2.8 and 2.9, on whih we an observe the osillatingproperties of the regularized ontrols. Note that these numerial simulations are di�ultto obtain with the above funtion h, beause of its �atness. First of all, in our numerialsimulations we rather hoose the funtion h(x) = (x− 1/2)3, that is not so �at, but for whihthe system is however not smooth (but this does not hange anything to the result). Seond,it is di�ult to make onverge the shooting method for small values of ε, and we had to makeuse of a ontinuation method, starting with a large value of ε and dereasing that value stepby step.2.6.3 The harmoni osillator problem (linear ase)This example was onsidered in Setion �1.4.7. Here we propose to solve the harmoni osilla-tor problem (in the linear ase) using a single shooting method. We illustrate the onvergeneresult of Theorem 2.5.1 for this minimal time problem.76
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Figure 2.8: Control uǫ
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Figure 2.9: Control uǫ
2 (ε = 0.01)Consider the minimal time ontrol problem for the system







ẋ(t) = y(t) ,

ẏ(t) = −x(t) + u1(t) ,
(2.27)with initial and �nal onditions

x(0) = 3 , y(0) = 1 ,

x(tf ) = 0 , y(tf ) = 0 ,
(2.28)and the ontrol onstraint

|u1(t)| ≤ 1 , ∀ t ∈ [0, tf ] . (2.29)We propose the regularized ontrol system






ẋε(t) = yε(t) + εuε
2(t) ,

ẏε(t) = −xε(t) + uε
1(t) ,with the same initial onditions, and where the ontrol uε(·) = (uε

1(·), uε
2(·)) satis�es theonstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 1 , ∀t ∈ [0, tεf ] .All assumptions of Theorem 2.5.1 are satis�ed (the minimal time problem (2.27)�(2.29)has a unique solution (x(·), y(·)), de�ned on [0, tf ], assoiated with a ontrol u1(·) on [0, tf ].And (x(·), y(·)) has a unique extremal lift (up to a multipliative salar), that is moreovernormal). In Figures 2.10 and 2.11 we an observe the optimal trajetory and optimal bang-bang ontrol with minimal time is tf ≃ 5.202346. The adjoint vetor (px, py) assoiated tothe optimal trajetory is represented in Figures 2.12 and 2.13.77
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Figure 2.11: Optimal ontrol for (2.27)�(2.29)
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Figure 2.13: py for (2.27)�(2.29)
Applying a shooting method to the regularized problem we observe, like in the �rst exampleof this hapter, the onvergene of the trajetories, the adjoint vetors and the optimal ontrolstowards the optimal trajetory, adjoint vetor and optimal ontrol of the minimal time problemproblem (2.27)�(2.29), respetively, as ε tends to 0 (see Figures 2.14�2.17 for ε = 0.2 and

ε = 0.5 and Figures 2.18�2.21 for ε = 0.1 and ε = 0.05). We report on Table 2.1 the values ofthe �nal time tεf of the optimal trajetory x̂ε(·), for di�erent values of ε. We observe that, asexpeted, tεf onverges to tf ≃ 5.202346 as ε tends to 0.78



ε tεf
0.1 5.140856...

0.05 5.183549...

0.001 5.202331...Table 2.1: Values of tεf
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Figure 2.14: (xε, yε)
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Figure 2.17: uε
12.6.4 Minimal time ontrol of a Van der Pol osillatorThis optimal ontrol problem (see e.g. [81℄) onsist in minimizing the �nal time tf subjet tothe ontrol system







ẋ1(t) = x2(t) ,

ẋ2(t) = −x1(t) + x2(t)
(

1 − x2
1(t)
)

+ u1(t)79
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Figure 2.19: uε
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Figure 2.20: pε
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Figure 2.21: pε
ywith the initial and �nal onditions

x1(0) = −0.4 , x2(0) = 0.6 ,

x1(tf ) = 0.6 , x2(tf ) = 0.4 ,and the ontrol onstraint
|u1(t)| ≤ 1 , ∀ t ∈ [0, tf ] .We propose the regularized ontrol system







ẋε
1(t) = xε

2(t) + εuε
2(t) ,

ẋε
2(t) = −xε

1(t) + xε
2(t)

(

1 − (xε
1(t))

2
)

+ uε
1(t)with the same initial onditions, and where the ontrol uε(·) = (uε

1(·), uε
2(·)) satis�es theonstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 1 , ∀ t ∈ [0, tεf ] .80



Analogously to examples in Setions �2.6.1 and �2.6.3 the assumptions and the onvergeneresults of Theorem 2.5.1 are veri�ed (see Figures 2.22�2.25).
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Figure 2.23: Control uε
1(·)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t

p x1ep
s

 

 
epsilon=0
epsilon=0.1
epsilon=0.01

Figure 2.24: Adjoint vetor pε
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Chapter 3Asymptoti approah on onjugatepoints for bang-bang ontrol problems
3.1 IntrodutionIn this hapter we fous on the problem of determining an e�ient proedure to omputethe �rst onjugate time tc for the minimal time ontrol problem onsidered in Chapter 2, forsingle-input ontrol-a�ne systems ẋ = X(x) + u1Y1(x) in IRn with �xed initial and �nal timeonditions x(0) = x̂0, x(tf ) = x̂1, and where the salar ontrol u1 satis�es the onstraint
|u1(t)| ≤ 1, for every t ∈ [0, tf ]. For these systems a theoretial onept of onjugate time
tc has been de�ned in e.g. [5, 81, 87, 95℄ in the bang-bang ase, however diret algorithmsof omputation are di�ult to apply. Besides, theoretial and pratial issues for onjugatetime theory are well known in the smooth ase (see e.g. [2, 86℄), and e�ient implementationtools are available (see [15℄). The �rst onjugate time along an extremal is the time atwhih the extremal loses its loal optimality. We use the asymptoti approah developed inChapter 2 whih onsists in adding new smooth vetor �elds Y2, . . . , Ym and a small parameter
ε > 0, so as to ome up with the minimal time problem (OCP)ε for the system ẋ = X(x) +

uε
1Y1(x) + ε

∑m
i=2 u

ε
iYi(x), under the ontrol onstraint ∑m

i=1(u
ε
i (t))

2 ≤ 1, with the sameboundary onditions as the initial problem, and investigate the onvergene properties ofonjugate times. From Theorem 2.5.1, under appropriate assumptions, the optimal ontrolsof the latter problem, depending on ε, are smooth funtions of t, and the theoretial andpratial results for the onjugate time theory that are well known in the smooth ase anbe applied to the regularized problem. In our main result (Setion �3.2, Theorem 3.2.1)) weprove that the �rst onjugate time tεc of regularized problem onverges to the �rst onjugatetime tc of the initial problem, when ε tends to 0. We thus get as a byprodut an e�ient wayto ompute onjugate times in the bang-bang ase.In Setion �3.1.3 we onsider the bang-bang ase and reall two di�erent approahes toderive seond order neessary and/or su�ient onditions for strong loal optimality and their83



relation with the existene of onjugate times. In Setion �3.1.4 we reall the regularizationproedure introdued in Setion �2.4 of Chapter 2. In Setion �3.1.5 we reall a su�ient opti-mality onditions in the smooth ase and the onept of geometri onjugate time. These twosetions are very important for the formulation and prove of our main result (Theorem 3.2.1)in Setion �3.2. In Setion �3.3 we provide two examples to illustrate the main results of thisthesis (Theorems 2.5.1 and 3.2.1).3.1.1 Statement of the problemConsider the single-input ontrol-a�ne system in IRn

ẋ = X(x) + u1Y1(x), (3.1)where X and Y1 are smooth vetor �elds, and the ontrol u1 is a measurable salar funtionsatisfying the onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]. (3.2)Let x̂0 and x̂1 be two points of IRn. Assume that x̂1 is reahable from x̂0, that is, thereexists a time T > 0 and a ontrol funtion u1(·) ∈ L∞(0, T ) satisfying the onstraint (3.2),suh that the trajetory x(·), solution of (3.1) with x(0) = x̂0, satis�es x(T ) = x̂1.We onsider the optimal ontrol problem (OCP) of determining a solution x̂(·) assoiatedto a ontrol û1(·), on [0, tf ], satisfying (3.1)�(3.2) and steering x̂0 to x̂1 in minimal time tf .We assume that suh a solution x̂(·) for (OCP) exists.13.1.2 Bang-bang Pontryagin extremalsRealling Setion �2.3 we know that, following the Pontryagin maximum priniple (see [96℄),there exists an absolutely ontinuous mapping p̂(·) : [0, tf ] → IRn, alled adjoint vetor, and areal number p0 ≤ 0, with (p̂(·), p0) 6= (0, 0), suh that

˙̂p(t) = −∂H
∂x

(x̂(t), p̂(t), p0, û1(t))

= −
〈

p̂(t),
∂X

∂x
(x̂(t))

〉

− û1(t)

〈

p̂(t),
∂Y1

∂x
(x̂(t))

〉 (3.3)where the funtion H(x, p, p0, u1) = 〈p,X(x) + u1Y1(x)〉 + p0 is alled the Hamiltonian, andthe maximization ondition
H(x̂(t), p̂(t), p0, û1(t)) = max

|w|≤1
H(x̂(t), p̂(t), p0, w) (3.4)holds almost everywhere on [0, tf ]. Moreover, max|w|≤1H(x̂(t), p̂(t), p0, w) = 0 for every

t ∈ [0, tf ]. It follows from (3.4) that
û1(t) = sign〈p̂(t), Y1(x̂(t))〉 (3.5)1See e.g. [26℄ for existene results of optimal solutions.84



for almost every t, provided that the (ontinuous) swithing funtion
ϕ1(t) = 〈p̂(t), Y1(x̂(t))〉does not vanish on any subinterval of [0, tf ].2 Suh an extremal (x̂(·), p̂(·), p0, û1(·)) is thenompletely determined by the initial adjoint vetor p̂(0). This extremal is a priori de�nedon the time interval [0, tf ], but sine it is ompletely determined by the di�erential system(3.1)�(3.3) and its initial ondition, it may be extended forward on a maximal time interval

I of [0,+∞), ontaining [0, tf ]. In this way, we onsider the trajetory x̂(·) on this maximalinterval I.Note that, sine x̂(·) is optimal on [0, tf ], and sine the ontrol system under study isautonomous, it follows that x̂(·) is as well optimal for the problem of steering the system (3.1)from x̂(0) = x̂0 to x̂(t), for every t ∈ (0, tf ].Assumption 3.1.1. We assume that the extremal (x̂(·), p̂(·), p0, û1(·)) is bang-bang on theinterval I, that is, the swithing funtion ϕ1 does not vanish on any subinterval of I.Denote by τ̂1, . . . , τ̂s, ... the zeros of ϕ1 on I (possibly in in�nite number).Assumption 3.1.2. We assume moreover that the extremal (x̂(·), p̂(·), p0, û1(·)) satis�es thestrit bang-bang Legendre ondition, that is,
ϕ̇1(τ̂j) =

d

dt
〈p̂(t), Y1(x̂(t))〉

∣

∣

∣

t=τ̂j

6= 0,for every τ̂j with j = 1, ..., s.The Assumption 3.1.2 implies that the times τ̂1, . . . , τ̂s are isolated and are in �nite numberon every ompat subinterval of I. In partiular, we assume that there are exatly s swithingtimes on the interval [0, tf ], suh that 0 < τ̂1 < ... < τ̂s < tf . Moreover, the Assumption 3.1.2implies that eah τ̂1, . . . , τ̂s is a swithing time of the ontrol and hene the ontrol is given by
û1(t) =







1 if ϕ1(t) > 0,

−1 if ϕ1(t) < 0,for every t ∈ I.De�nition 3.1.3. Let T > 0, T ∈ I. The trajetory x̂(·) is said to be loally minimal time on
[0, T ] in C0 topology if there exist a neighborhood W of the trajetory x̂(·) in IRn and a realnumber η > 0 suh that, for every trajetory y(·) that is solution of (3.1), ontained in W ,assoiated with a ontrol v on [0, T + η] satisfying the onstraint (3.2), satisfying y(0) = x̂0and y(t1) = x̂(T ) with t1 ∈ [0, T + η], there holds t1 ≥ T .2The ase where the swithing funtion may vanish on a subinterval is related to singular trajetories, andis outside of the sope of this hapter where we fous on the bang-bang ase.85



The C0 loal optimality is also alled strong loal optimality. The notion of global opti-mality is de�ned similarly, with W = IRn and η = +∞.The Pontryagin maximum priniple mentioned formerly is a neessary �rst order onditionfor optimality; onversely, extremals are not neessarily loally optimal, and there have beenmany works on high order neessary optimality onditions (see e.g. [18℄) and on su�ient (�rstand seond order) optimality onditions detailed in the next setion.3.1.3 Seond order optimality onditions and bang-bang onjugate timesConsider the extremal (x̂(·), p̂(·), p0, û1(·)) of the problem (OCP) introdued previously.De�nition 3.1.4. The ut time tut(x̂0) is de�ned as the �rst positive time of I beyond whihthe trajetory x̂(·) loses its global optimality status for the problem of steering the system(3.1)�(3.2) from x̂0 to x̂1 in minimal time, with the agreement that tut(x̂0) = +∞ whenever
x̂(·) is globally optimal on every interval [0, T ], T > 0, T ∈ I. The point x̂(tut(x̂0)) is alleda ut point.Whereas suh a global optimality status is di�ult to haraterize, the loal optimalitystatus of a trajetory may be haraterized using the onept of onjugate time, that is,the time at whih the optimal trajetory x̂(·) loses its loal optimality. We next reall wellknown fats on �rst onjugate times of solutions x̂(·) of the optimal ontrol problem (OCP)assoiated to bang-bang ontrols û1(·).The de�nition and omputation of onjugate points are an important topi in the theory ofalulus of variations (see e.g. [13℄). In [99℄ the investigation of the de�nition and omputationof onjugate points for minimal time ontrol problems is based on the study of seond orderonditions. In fat, seond order neessary and/or su�ient onditions are ruial for study ofthe �rst onjugate time of the problem (OCP). In [110℄, the theory of envelopes and onjugatepoints is used for the study of the struture of loally optimal bang-bang trajetories for theproblem (OCP) in IR2 and IR3; these results were generalized in [60℄.Seond order optimality onditionsWhen the optimal ontrol problem has a nonlinear ontrol system and the extremal ontrolsare ontinuous, the literature on �rst and/or seond order su�ient onditions is vast; seee.g. [14, 41, 68, 75, 77, 79, 83, 86, 126℄ and referenes therein. In this ase numerial proeduresare available to test seond order su�ient onditions; see e.g. [10, 70, 77℄. For seond or-der neessary and/or su�ient onditions of optimal ontrol problems with nonlinear ontrolsystems and disontinuous ontrols see e.g. [89℄ and referenes therein.We will next fous on seond order neessary and/or su�ient optimality onditions foroptimal ontrol problems with a�ne-ontrol systems and bang-bang optimal ontrols.86



In [100℄ a minimal time ontrol problem for ontrol-a�ne systems is onsidered and �rstand seond order su�ient optimality onditions are derived, for bang-bang Pontryagin ex-tremal ontrols whih are L1-loally optimal. In [81℄ the same optimal ontrol problem isstudied and the authors provide su�ient onditions for strong loal optimality and developnumerial methods to test the positive de�niteness of a spei� quadrati form. In both pa-pers [100℄ and [81℄, the su�ient optimality onditions are expressed in terms of quadratiforms, however although the same ritial subspae is used, the quadrati form in [100℄ is alower bound for the one in [81℄. In fat, the seond order su�ient optimality ondition in [81℄is always ful�lled whenever the orresponding ondition in [100℄ is.In [78, 81℄ optimization methods are given to test seond order su�ient optimality on-ditions for optimal ontrol problems with bounded salar ontrols [81℄, and vetor-valuedontrols [78℄.In [5℄ the authors derive seond order su�ient onditions, under the same regularityassumptions as [81℄, for an optimal ontrol problem in the Mayer form with �xed �nal time,with a�ne-ontrol systems and bang-bang optimal ontrols. In [90℄ the authors showed that,in ertain ases, the seond order su�ient onditions given in [81℄ are equivalent to the onesin [5℄. In the ases where the equivalene holds, the results obtained in [90℄ extend those in [5℄to the problem of free �nal time, with mixed initial and terminal onditions of equality andinequality type. The detailed proofs of the main results in [90℄ are given in [91℄. In [5℄ a�nite-dimensional subproblem is onsidered whih onsists in moving the swithing times anda seond variation is de�ned as a ertain quadrati form assoiated to this subproblem; then,�nding a onjugate time onsists in testing the positivity of that quadrati form. The authorsprove that this an only happen at a swithing time.In [95℄ the minimal time problem for ontrol-a�ne systems is studied. An analogousquadrati form to the one in [5℄ is de�ned, but the kind of optimality studied is a strongerone (state loal optimality).Quadrati formsAs mentioned above the quadrati forms de�ned in [5,81℄ are equivalent (see [90,91℄), althoughthe way they are de�ned is di�erent. In this hapter we only give a brief sketh of a possibleproedure to de�ne the quadrati form (see Appendix A where the quadrati form deduedin [81℄ is realled).Let F (t; τ1, ..., τs) = x(t; τ1, ..., τs) be the mapping assoiated with the �nite-dimensionalproblem orresponding to (OCP) that onsists in moving the swithing times τ1, . . . , τsin a neighborhood of the referene swithing times τ̂1, . . . , τ̂s (see [5, 78, 90, 91, 95℄), where
x(t; τ1, ..., τs) is the trajetory solution of (3.1), on [0, t], with x(0) = x̂0, assoiated to thebang-bang ontrol u1(·) with swithing times τ1, ..., τs and suh that it oinides with thereferene trajetory x̂(·) whenever τi = τ̂i for every i. Note that the trajetory x(·; τ1, ..., τs)87



is not the projetion of an extremal whenever τi 6= τ̂i. The mapping F is well de�ned for tin a neighborhood of tf and τi in a neighborhood of τ̂i for every i, and is the omposition ofsmooth mappings, therefore is di�erentiable. Denoting τ = (τ1, ..., τs), one has
∂F

∂τ
(t; τ1, ..., τs) =









∂x1

∂τ1
(·) . . . ∂x1

∂τs
(·)... ... ...

∂xn

∂τ1
(·) . . . ∂xn

∂τs
(·)









,and
∂F

∂t
(t; τ1, ..., τs) = ẋ(t; τ1, ..., τs).Sine x̂(·) is optimal, it follows that

rank

(

∂F

∂τ
(t; τ̂1, ..., τ̂s)

)

≤ n− 1.Indeed, otherwise, if rank
(

∂F
∂τ (t; τ̂1, ..., τ̂s)

)

= n then F would be a loal submersion, whihontradits the optimality of x̂(·). Therefore, there exists a multiplier ψt ∈ IRn\{0} suh that
ψt · ∂F

∂τ (t; τ̂1, ..., τ̂s) = 0. Denote by Qt the intrinsi seond derivative of the mapping F , de�nedby
Qt = ψt ·

∂2F

∂τ2
(t; τ̂1, ..., τ̂s)

∣

∣

∣

ker ∂F
∂τ

(t;τ̂1,...,τ̂s)
. (3.6)Expliit formulas of Qt are given in [3,5,81,95℄; in partiular formulas in terms of Lie braketsof the vetor �elds an be derived.The next theorem, ombination of several known results, provides a neessary and/orsu�ient ondition for strong loal optimality.Theorem 3.1.5 ( [3,5,81,87,95℄). Let (x̂(·), p̂(·), p0, û1(·)) be a bang-bang extremal for (OCP)de�ned on a maximal time interval I of [0,+∞) ontaining [0, tf ]. If this extremal satis�esthe strit bang-bang Legendre ondition on I (see Assumption 3.1.2), then for every t ∈ I, thefollowing holds:

• If the quadrati form Qt is positive de�nite then x̂(·) is a loal minimizer in the C0topology on [0, t].
• Assume moreover that x̂(·) has a unique extremal lift (up to a multipliative salar)

(x̂(·), p̂(·), p0, û1(·)), whih is moreover normal (p0 = −1). If x̂(·) is loally optimal inthe C0 topology on [0, t] then Qt given by (3.6) is nonnegative.Remark 3.1.6. Under the assumptions of the Theorem 3.1.5, the set
{t > 0 | Qt has a nontrivial kernel}is disrete and an only onsist of some swithing times (see [5℄). This remark permits tode�ne the notion of �rst onjugate time. 88



De�nition 3.1.7. The �rst onjugate time tc of x̂(·) is de�ned by
tc = sup{t | Qt is positive de�nite} = inf{t | Qt is inde�nite} .The point x̂(tc) is alled the �rst onjugate point of the trajetory x̂(·).Remark 3.1.8. A onjugate time an only our at a swithing time.Extremal �eld approahSu�ient optimality onditions for a general optimal ontrol problem are provided in [87℄ (seealso [5,95℄) with a di�erent point of view than the one realled in the previous paragraph. In[87℄ the authors study loal optimality onditions for both ontinuous and pieewise ontinuous(inluding bang-bang) ontrols. The su�ient onditions developed in that artile are basedon the method of harateristis and the theory of extremal �elds. Su�ient optimalityonditions are given for embedding a referene trajetory into a loal �eld of broken extremals.3The ourrene of a onjugate point is related with a so-alled overlap of the �ow near theswithing surfae. Seond order su�ient optimality onditions stated in [87℄ have been testednumerially for bang-bang ontrol problems; see e.g. [61℄. See also [113℄ where su�ientoptimality onditions for bang-bang ontrols based on the extremal �eld approah are studied.In [1,4,5℄, using Hamiltonian methods and the extremal �eld theory, it is onstruted, underertain onditions, a non-interseting �eld of state extremals4 that overs a given extremaltrajetory x̂(·). In [5℄ the authors assoiate the ourrene of a onjugate point with a foldpoint of the �ow of the extremal �eld. We next reall the Hamiltonian approah presentedin [5, 95℄.For every z0 = (x0, p0) ∈ IRn × IRn, let z(·, z0) = (x(·, z0), p(·, z0)) denote the solution ofthe system of equations (3.1) and (3.3), with the ontrol (3.5), suh that z(0, z0) = z0. Theexponential mapping is then de�ned by

exp(t, z0) = x(t, z0).In (OCP) as in the problems onsidered in [5℄ and [95℄ the initial point is not free (x̂0 is a�xed point of IRn). To apply the Hamiltonian approah presented in [5,95℄, we onsider a C2funtion α : IRn → IR suh that α′(x̂0) = p̂0, where α′(x0) denotes dα
dx (x0) and p̂0 = p̂(0).The funtion α represents a penalization on the initial point x̂0 and a new �nite-dimensionalsubproblem is onsidered, with free initial point α(x̂0), that onsists in moving the swithingtimes and minimizing α(x̂0) + tf .3Broken extremals are assoiated to pieewise ontinuous ontrols.4By non-interseting extremals we mean that for any �xed t ∈ (0, tc) and any extremal trajetories x(·),

y(·) with initial points x0, y0, respetively, with x0, y0 lose to x̂0, we have x(t) 6= y(t).89



The existene of a funtion α in the previous onditions was proved in [50℄. Moreover,in [95℄ the authors proved that if the quadrati form (3.6) is positive de�nite, then the quadratiform assoiated to the �nite-dimensional subproblem of moving the swithing times with freeinitial point is also positive de�nite.Let O be a neighborhood of the initial point x̂0. Let x0 ∈ O; de�ne the swithing timefuntions τj : O → IR with
τ0(x0) = 0 and τj(x̂0) = τ̂j , j = 1, ..., s,suh that

ϕ1(τj(x0)) = 〈p(τj(x0), x0, α
′(x0)), Y1(x(τj(x0), x0, α

′(x0)))〉 = 0 , j = 1, ..., s .In other words, τj(x0) is the jth-swithing time of the extremal x(·, x0, α
′(x0)), p(·, x0, α

′(x0))starting from (x0, α
′(x0)), with x0 lose to x̂0.Sine x̂(·) is a minimal time trajetory, there holds max

|w|≤1
H(x̂0, p̂0, p

0, w) = 0. Consider theset
X = {x0 ∈ O | max

|w|≤1
H(x0, α

′(x0), p
0, w) = 0}.We laim that X is a (n − 1)-dimensional manifold.5 Indeed, onsider the map

G : O → IR
x0 7→ G(x0) = max

|w|≤1
H(x0, α

′(x0), p
0, w)

(3.7)and the vetor �eld h1(x0) = X(x0) + u1Y1(x0) that de�nes the extremal trajetory x(·) onthe interval [0, τ1(x0)), assoiated to the value u1 that satis�es the maximization ondition(3.4) on the referred interval. Proving that X is a (n − 1)-dimensional manifold amounts toprove that, for every funtion α ∈ C2 suh that α′(x0) = p0, there holds dG(x0) 6= 0 beforethe �rst onjugate time tc. The seond variation formula given in [95, p. 275, equation (12)℄taken at (δx, ε) = (h1(x0),−1, 0, ..., 0) is equal to, after some simpli�ations, dG(x0) · h1(x0).Sine the seond variation is positive de�nite on (0, tc) then dG(x0) ·h1(x0) 6= 0 before tc. Thelaim is proved.De�ne the jth swithing surfae Σj, for j = 1, ..., s, as the image of the mapping
x0 7→ exp(τj(x0), x0, α

′(x0)) ,where x0 ∈ X.Remark 3.1.9. If the strit bang-bang Legendre ondition holds, then the �ow assoiated tothe maximized Hamiltonian rosses the swithing surfae Σj at the instant τ̂j transversally,for j = 1, ..., s (see [5℄).5The argument that follows is due to L. Poggiolini.90



Theorem 3.1.10 ( [5,80,81,87℄). Let (x̂(·), p̂(·), p0, û1(·)) be a bang-bang extremal for (OCP)that satis�es the strit bang-bang Legendre ondition on [0, tc), with tc < +∞. The trajetory
x̂(·) is strong loally optimal if and only if there exists a funtion α ∈ C2 with α′(x̂0) = p̂0suh that:

• the trajetory x̂(·) an be embedded into the �eld of non-interseting (broken) extremals
(t, x0) 7→ exp(t, x0, α

′(x0)) where x0 ∈ O;
• this �eld of extremals rosses the swithing surfaes Σj transversally, for j = 1, ..., s,and for j = 1, ..., s + 1, with τs+1(x̂0) = tc, the mapping

(τj−1(x0), τj(x0)) ×X −→ IRn

(t, x0) 7−→ exp(t, x0, α
′(x0))is of rank n.Remark 3.1.11. In the onditions of Theorem 3.1.10, at the �rst onjugate point x̂(tc), the�ow of the extremal �eld re�ets o� the swithing surfae, ausing an overlap of the �ow nearthis surfae (see Figure 3.1 - swithing surfae Σs+1, and see [61, 87℄).

Σs Σs+1

Figure 3.1: Field of extremalsRemark 3.1.12. Let fj(x0) = X(x0) + ujY1(x0), for j = 1, ..., s + 2 and x0 ∈ O, be the vetor�elds that de�ne the extremal trajetory x(·) on (τj−1(x0), τj(x0)), with τs+1(x̂0) = tc andwhere uj is the value (1 or −1) of the ontrol that satis�es the maximization ondition (3.4) ineah respetive interval. If we take x0 ∈ X and j = 1, ..., s+1, then for (t, x0) ∈ (τj−1, τj)×X

det
(

exp(t, x0, α
′(x0)), fj(x0)

)has onstant sign (see [95℄).Moreover, the determinants
det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs(x0),τs+1(x0))×X
, fs+1(x0)

)91



and
det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs+1(x0),τs+2(x0))×X
, fs+2(x0)

)have di�erent signs (see [95℄).The omputation of onjugate times in the bang-bang ase is di�ult in pratie. Inthe last few years several methods have been developed for the numerial implementation ofseond order su�ient optimality onditions (see, e.g., [78, 81℄ and referenes ited therein).These numerial proedures allow the omputation of the �rst onjugate time, for bang-bangoptimal ontrol problems with a�ne-ontrol systems, whenever it exists and is attained at a
jth swithing time. Besides, in the smooth ase, e�ient tools are available; see e.g. [15℄. Wenext propose a regularization proedure whih allows the use of these tools for the omputationof the �rst onjugate time for the problem (OCP). However, in pratie, if j is too large thenthe numerial omputation of the �rst onjugate time may beome very di�ult either usingthe methods for bang-bang or smooth ontrols.3.1.4 Regularization proedureReall the regularization proedure introdued in Setion �2.4 of Chapter 2.Let ε be a positive real parameter and let Y2, . . . , Ym be m − 1 arbitrary smooth vetor�elds on IRn, where m ≥ 2 is an integer. Consider the ontrol-a�ne system

ẋε(t) = X (xε(t)) + uε
1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t)) , (3.8)where the ontrol uε(t) = (uε

1(t), . . . , u
ε
m(t)) satis�es the onstraint
m
∑

i=1

(uε
i (t))

2 ≤ 1. (3.9)Consider the optimal ontrol problem (OCP)ε of determining a trajetory xε(·), solutionof (3.8)�(3.9) on [0, tεf ], suh that xε(0) = x̂0 and xε(tεf ) = x̂1, and minimizing the time oftransfer tεf . The parameter ε is viewed as a penalization parameter. The existene of at leastone solution for (OCP)ε is proved in Lemma 2.5.6 (Chapter 2).In Theorem 2.5.1 (Setion �2.5 of Chapter 2) we prove that if the problem (OCP) hasa unique solution x̂(·), de�ned on [0, tf ], assoiated with a bang-bang ontrol û1(·) on [0, tf ],and if, moreover, x̂(·) has a unique extremal lift (up to a multipliative salar), whih ismoreover normal, denoted (x̂(·), p̂(·),−1, û1(·)), then, under the Assumption 2.4.1, the optimalontrols of (OCP)ε are smooth funtions of t and onverge almost everywhere on [0, tf ] tothe optimal ontrol of (OCP). Moreover, the assoiated trajetories x̂ε(·) and adjoint vetors
p̂ε(·) onverge uniformly to x̂(·) and p̂(·), respetively, on [0, tf ], when ε tends to 0.Remark 3.1.13. This result remains true if we extend forward the interval [0, tf ] on an interval
[0, T ] for T ∈ I, where I is a maximal time interval of [0,+∞) ontaining [0, tf ].92



3.1.5 Conjugate times in the smooth aseWe reall how to de�ne the onept of �rst onjugate time for the smooth optimal ontrolproblem (OCP)ε. A �rst possible de�nition of onjugate times is in terms of a quadratiform, whih is the seond order intrinsi derivative of the end-point mapping de�ned by
E(ε, tεf , x̂0, u

ε) = xε(tεf ) where t 7→ xε(ε, t, x̂0, u
ε) is the trajetory solution of (3.8), asso-iated to the ontrol uε, suh that xε(ε, 0, x̂0, u

ε) = x̂0. Testing a onjugate time amounts totesting the positivity of that quadrati form. However, this de�nition requires a orank oneassumption, and we will rather use a geometri onept of onjugate time, de�ned below. Werefer the reader to [15℄ for a survey on that theory and to [2℄ for extensive explanations andfor the more general Morse index theory.Geometri onjugate timeDe�nition 3.1.14. Let x0 ∈ O. The point xε(tεc) is geometrially onjugate to xε(0) if andonly if the mapping x0 7→ expε(tεc, x0, α
′(x0)) is not immersive, that is,

det

(

d

dx0
expε(tεc, x0, α

′(x0))

)

= 0.The time tεc is alled a geometri onjugate time.Remark 3.1.15. Given an extremal (x̂ε(·), p̂ε(·), p0ε, uε(·)), the notion of geometri onjugatetime oinides with the notion of onjugate time de�ned in terms of quadrati form, providedthe following assumptions hold:
• the strong Legendre ondition holds along the extremal, that is, there exists γ > 0 suhthat

∂2H

∂u2
(x̂ε(·), p̂ε(·), p0ε, uε

1(·)) · (v, v) ≤ −γ‖v‖2,for every v ∈ IRm;
• the ontrol uε is of orank one on every subinterval (assumption of strong regularity,see [99℄).Moreover, in that ase the �rst onjugate time tεc haraterizes the optimality status of theextremal: the trajetory x̂ε(·) is strongly loally optimal on [0, t], for every t < tεc; for t > tεc,the trajetory x̂ε(·) is not loally optimal on [0, t] (see, e.g., [2, 15, 99℄).Remark 3.1.16. None of the two assumptions of the previous remark will be made for theextremal (x̂ε(·), p̂ε(·), p0ε, ûε(·)). In fat, our aim is to prove that the �rst geometri onjugatetime tεc onverges to the �rst onjugate time tc of the bang-bang ase, when ε tends to 0. Thisresult, derived in Theorem 3.2.1 (Setion �3.2), will permit to use as well in the bang-bangase the available e�ient implementation proedures that exist in the smooth ase, like forinstane the free pakage COTCOT 6 (see [15℄).6Conditions of Order Two, COnjugate Times, http://apo.enseeiht.fr/otot/93



For normal extremals (xε(·), pε(·),−1, uε(·)) that satisfy the strong Legendre ondition,the absene of onjugate points is a su�ient ondition for loal optimality (see e.g. [2℄). Thissu�ient optimality ondition will be expressed using the extremal �eld approah.Extremal �eld approahFrom Theorem 2.5.1 every extremal lift of the problem (OCP)ε is normal (p0ε = −1). Anal-ogously to the bang-bang ase, the aim is to onstrut a family of extremals ontaining thereferene normal extremal (x̂ε(·), p̂ε(·),−1, ûε(·)), sharing nie non-intersetion properties7 be-fore the �rst onjugate time.For every z0 = (x0, p0) ∈ IRn × IRn, let zε(·, z0) = (xε(·, z0), pε(·, z0)) be the solution of thesystem of equations (3.8) and (2.8), with the ontrols (2.11), suh that zε(0, z0) = z0. Theexponential mapping assoiated to (OCP)ε is de�ned by
expε(t, z0) = xε(t, z0).Let x0 ∈ O and αε : IRn → IR be a C2 funtion suh that αε′(x0) = pε(0), and suh thatthe family of funtions (αε) onverges to the funtion α assoiated with the problem (OCP)in C2 topology, as ε tends to 0. As in the bang-bang ase, de�ne

Xε = {x0 ∈ O | max
∑m

i=1
w2

i ≤1
Hε(x0, α

ε′(x0),−1, wε) = 0} .For ε > 0 small enough, Xε is a (n − 1)-dimensional manifold. Indeed, let Gε be de�ned on
O by Gε(x0) = max∑m

i=1
w2

i ≤1H
ε(x0, α

′(x0),−1, wε). It follows from Theorem 2.5.1 that Gεonverges to G (3.7) (de�ned in Setion 3.1.3) as ε goes to 0, and therefore, for α ∈ C2 suhthat α′(x0) = p0, there holds dGε(x0) 6= 0, sine dG(x0) 6= 0.Theorem 3.1.17 ( [2℄). If the normal extremal (x̂ε(·), p̂ε(·),−1, ûε(·)) satis�es the strong Leg-endre ondition and, moreover, an be embedded into the family of extremals expε(t, x0, α
ε′(x0))suh that the mapping

(0, tεc) ×Xε → IRn

(t, x0) 7→ expε(t, x0, α
ε′(x0))is of rank n, then (x̂ε(·), p̂ε(·),−1, ûε(·)) is a loal minimum in C0 topology for the problem(OCP)ε.Remark 3.1.18. The typial behavior of the �ow of the extremal �eld at the �rst onjugatepoint is a fold point (see Figure 3.2, and see [2, 54℄).7By nie non-intersetion properties we mean a non-interseting �eld of extremals (f. footnote in page 89).94



Figure 3.2: Field of extremals in the smooth aseRemark 3.1.19. If one onsiders x0 ∈ Xε, then xε(tεc) is geometrially onjugate to xε(0) ifand only if
det

(

d

dx0
expε(tεc, x0, α

ε′(x0))|Xε , f ε(x0)

)

= 0 ,where f ε(x0) = X(xε(x0)) + ε

m
∑

i=1

uε
i (x0, α

ε′(x0)) and uε
i (x0, α

ε′(x0)) are smooth funtionsthat satisfy the maximization ondition (2.10).Remark 3.1.20. Note that, as long as the minimum time funtion is di�erentiable at the point
x̂ε(t), the optimal trajetory x̂ε(·) an be embedded into a non-interseting extremal �eld.Remark 3.1.21. To derive a neessary optimality ondition, a orank one assumption is re-quired for the extremal (x̂ε(·), p̂ε(·), p0ε, ûε(·)) (see [15℄).3.2 Convergene resultsWe �rst reall the ontext. Let x̂(·) denote the strong loally optimal trajetory of (OCP),orresponding to the ontrol û1 on [0, tf ]. In partiular, tf is the minimal time so that
x̂(0) = x̂0 and x̂(tf ) = x̂1. We extend x̂(·) on a maximal interval I ⊂ [0,+∞) ontaining
[0, tf ], and denote by tc its �rst onjugate time. For every ε > 0, let x̂ε(·) denote an optimaltrajetory solution of (OCP)ε, orresponding to a ontrol ûε = (ûε

1, . . . , û
ε
m) on [0, tεf ]. Inpartiular, tεf is the minimal time so that x̂ε(0) = x̂0 and x̂ε(tεf ) = x̂1. We extend x̂ε(·)on a maximal interval of [0,+∞) ontaining [0, tεf ], and denote by tεc its �rst geometriallyonjugate time.The main theorem of this hapter is the following theorem.Theorem 3.2.1. Assume that the problem (OCP) has a unique solution x̂(·), assoiatedwith a bang-bang ontrol û1(·), on a maximal interval I. Moreover, assume that x̂(·) has aunique extremal lift (up to a multipliative salar), whih is moreover normal, and denoted by95



(x̂(·), p̂(·),−1, û1(·)). If the extremal (x̂(·), p̂(·),−1, û1(·)) satis�es, moreover, the strit bang-bang Legendre ondition on [0, tc], then the �rst geometri onjugate time tεc onverges to the�rst onjugate time tc as ε tends to 0.Remark 3.2.2. Let tut denote the ut time along the extremal (x̂(·), p̂(·), p0, û(·)). Analogouslyto the bang-bang ase, we an de�ne the ut time tεut of the optimal trajetory x̂ε(·) for theproblem (OCP)ε as the �rst time at whih x̂ε(·) loses its optimality. We laim that, underthe assumptions of Theorem 2.5.1, there holds lim sup
ε→0

tεut ≤ tut.The next proposition is the key result to derive Theorem 3.2.1.Proposition 3.2.3. Let O be a neighborhood of x̂0 and x0 ∈ O. The exponential mapping
(t, x0) 7→ expε(t, x0, α

ε′(x0)) onverges to (t, x0) 7→ exp(t, x0, α
′(x0)) pieewise in C1 topologyon I × O, with τs+1(x̂0) = tc, as ε tends to 0. More preisely, on every ompat subintervalof (τj−1(x0), τj(x0)) × O, with (τj−1(x0), τj(x0)) ⊂ I and j ∈ IN, the mapping (t, x0) 7→

expε(t, x0, α
ε′(x0)) onverges to (t, x0) 7→ exp(t, x0, α

′(x0)) uniformly in the C1 topology.Proof. In what follows, when it is onvenient, we simplify the notation and write exp(t, x0) or
x(t, x0) (respetively, expε(t, x0) or xε(t, x0)) for exp(t, x0, α

′(x0)) (respetively, for expε(t, x0, α
ε′(x0))).Let ε > 0 be small enough. For x0 ∈ O, onsider the funtion

ϕ1(ε, t, x0) = 〈p(ε, t, x0), Y1(x(ε, t, x0))〉.For (ε, t, x0) = (0, τ̂j , x0), by de�nition of the swithing time, one has ϕ1(0, τ̂j , x0) = 0,and by the strit bang-bang Legendre ondition, ∂ϕ1

∂t (0, τ̂j , x0) 6= 0. By the impliit funtiontheorem there exists a neighborhood (−ε0, ε0) of 0 ∈ IR, suh that for ε ∈ (−ε0, ε0), thereexists a C1 funtion τ ε
j (x0) = τ ε

j (ε, x0), with j = 1, ..., s, satisfying ϕ1(ε, τ
ε
j (x0)) = 0 and suhthat, as ε tends to 0, τ ε

j (x0) onverges to τj(x0), and ∂τε
j

∂x0
(x0) onverges to ∂τj

∂x0
(x0).Analogously to the de�nition of swithing time funtion of an extremal trajetory x(·), wehave thus de�ned some funtions τ ε

j (·) : O → IR, that are however not swithing funtions.Lemma 3.2.4. The mapping (t, x0) 7→ expε(t, x0, α
ε′(x0)) onverges to (t, x0) 7→ exp(t, x0, α

′(x0))uniformly in the C1 topology on J ×O, where J is any ompat subinterval of [0, τ1(x0)), as
ε tends to 0.Proof. Let J be a ompat subinterval of [0, τ1(x0)). The uniform C0 onvergene on J ×Oof the mapping (t, x0) 7→ expε(t, x0) to (t, x0) 7→ exp(t, x0), as ε tends to 0, is a diretonsequene of Theorem 2.5.1. We have

∂ expε

∂t
(t, x0) = ẋε(t, x0)where ẋε(t, x0) is given by (3.8). From Theorem 2.5.1, ẋε(t, x0) onverges to ẋ(t, x0) =

d exp
dt (t, x0) as ε tends to 0. On the other hand,

d

dx0
expε(t, x0, α

ε′(x0)) =
∂ expε

∂x0
(t, x0, α

ε′(x0)) +
∂ expε

∂p0
(t, x0, α

ε′(x0))α
ε′′(x0) ,96



where ∂ expε

∂x0
(t, x0, α

ε′(x0)), and ∂ expε

∂p0
(t, x0, α

ε′(x0)) are solutions of the linearized system as-soiated with the Hamiltonian system, for the problem (OCP)ε on [0, t], given by
ẋε(t) = X (xε(t)) + uε

1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t))

ṗε(t) = −
〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε
m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

.From Theorem 2.5.1, (xε(·), pε(·)) onverges uniformly to the solution of the Hamiltoniansystem assoiated with the problem (OCP) as ε tends to 0. This onvergene learly holdsas well for the solutions of the linearized system assoiated with the Hamiltonian system for(OCP)ε; therefore, as ε tends to 0, ∂ expε

∂x0
(t, x0, α

ε′(x0)) (respetively, ∂ expε

∂p0
(t, x0, α

ε′(x0)))onverges to ∂ exp
∂x0

(t, x0, α
′(x0)) (respetively, ∂ exp

∂p0
(t, x0, α

′(x0))) uniformly on [0, t].In what follows, the notation τ+
j (x0) (resp. τ−j (x0)) stands for the right limit (resp. theleft limit). For x0 ∈ O and j = 1, ..., s, we all the jump of ∂ exp

∂x0
(t, x0) at τj(x0) the di�erene

∂ exp

∂x0
(τ+

j (x0), x0) −
∂ exp

∂x0
(τ−j (x0), x0) ,whih is, aording to [87, Equation 3.10, p. 123℄, given by

∂ exp

∂x0
(τ+

j (x0), x0) −
∂ exp

∂x0
(τ−j (x0), x0)

=
(

u1(τ
+
j (x0), x0) − u1(τ

−
j (x0), x0)

)

Y1(x(τ1(x0), x0))
∂τj
∂x0

(x0)

=
(

sign(ϕ1(τ
+
j )) − sign(ϕ1(τ

−
j ))
)

Y1(x(τj(x0), x0))
∂τj
∂x0

(x0) .

(3.10)Due to this jump ondition one annot expet to get a C1 onvergene result on the wholeinterval. We will next estimate the di�erene
∂ expε

∂x0
(τ ε

j (x0) + η, x0) −
∂ expε

∂x0
(τ ε

j (x0) − η, x0), (3.11)for η > 0 small, and show that it onverges to (3.10), whenever ε tends to 0, and then η tendsto 0.Lemma 3.2.5. There holds
lim
η→0

lim
ε→0

(

∂ expε

∂x0
(τ ε

1 (x0) + η, x0) −
∂ expε

∂x0
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1 (x0) − η, x0)

)

=
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(3.12)97



Proof. One has
∂

∂t

(

∂xε

∂x0
(t, x0)

)

=
( ∂X

∂x0
(xε(t, x0)) + uε
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(t, x0).It follows that
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Y1(x
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∂uε
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∂x0
(t, x0)dt +
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τε
1
(x0)−η

ε
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i=2

Yi(x
ε(t, x0))

∂uε
i

∂x0
(t, x0)dt .It is easy to see that the limit when η tends to zero of the limit when ε tends to zero of the�rst and third term of the right-hand side of the last equation is equal to zero. Only the limitterm

lim
η→0

lim
ε→0

∫ τε
1 (x0)+η

τε
1
(x0)−η

Y1(x
ε(t, x0))

∂uε
1

∂x0
(t, x0)dtdeserves a speial attention. Let us denote

ϕε
i (t, x0) = 〈pε(t, x0), Yi(x

ε(t, x0))〉, i = 1, ...,m.From (2.11), we ompute easily
∂uε

1

∂x0
(t, x0) =

ε2

(

∂ϕε
1

∂x0
(t, x0)

m
∑

i=2

ϕε
i (t, x0)

2 − ϕε
1(t, x0)

m
∑

i=2

ϕε
i (t, x0)

∂ϕε
i

∂x0
(t, x0)

)

(

ϕε
1(t, x0)2 + ε2

m
∑

i=2

ϕε
i (t, x0)

2

)3/2
.

We will onsider asymptoti expansions of these quantities around τ ε
1 (x0). Sine ϕε

1(τ
ε
1 (x0), x0) =

0 for every x0, it follows that
∂ϕε

1

∂x0
(τ ε

1 (x0), x0) = −∂ϕ
ε
1

∂t
(τ ε

1 (x0), x0)
∂τ ε

1

∂x0
(x0).98



In what follows, denote τ ε
1 = (τ ε

1 (x0), x0). One has
∫ τε

1
+η

τε
1
−η

Y ε
1 (xǫ(t, x0))

∂uε
1

∂x0
(t, x0)dt

=

∫ τε
1
+η

τε
1
−η

(Y1(x
ε(τ ε

1 )) +O(t− τ ε
1 )) ·

[

ε2
(

∂ϕε
1

∂x0
(τ ε

1 ) +O(t− τ ε
1 )
)

m
∑

i=2

(ϕε
i (τ

ε
1 ) +O(t− τ ε

1 ))2

(

(

∂ϕε
1

∂t (τ ε
1 )(t− τ ε

1 ) + o(t− τ ε
1 )
)2

+ ε2
m
∑

i=2

(

ϕε
i (τ

ε
1 ) +

∂ϕε
i

∂t
(τ ε

1 )(t− τ ε
1 ) + o(t− τ ε

1 )

)2
)3/2

−
ε2 (ϕε

1(τ
ε
1 ) +O(t− τ ε

1 ))

m
∑

i=2

(ϕε
i (τ

ε
1 ) +O(t− τ ε

1 ))

(

∂ϕε
i

∂x0
(τ ε

1 ) +O(t− τ ε
1 )

)

(

(

∂ϕε
1

∂t (τ ε
1 )(t− τ ε

1 ) + o(t− τ ε
1 )
)2

+ ε2
m
∑

i=2

(

ϕε
i (τ

ε
1 ) +

∂ϕε
i

∂t
(τ ε

1 )(t− τ ε
1 ) + o(t− τ ε

1 )

)2
)3/2

]

dtand simplifying the last expression (the terms of order O((t − τ ε
1 )k) and o((t − τ ε

1 )l), with
k = 2, 3 and l = 1, 2, 3, are omitted) we get
∫ τε

1
+η

τε
1
−η

Y ε
1 (xǫ(t, x0))

∂uε
1

∂x0
(t, x0)dt

=

∫ τε
1 +η

τε
1
−η

(Y1(x
ε(τ ε

1 )))
−ε2 ∂ϕε

1

∂t (τ ε
1 )N1

((

(

∂ϕε
1

∂t (τ ε
1 )
)2

+ ε2N2

)

(t− τ ε
1 )2 + ε2N3(t− τ ε

1 ) + ε2N1

)3/2

∂τ ε
1

∂x0
(x0)

+
ε2(M1 −M2)O(t− τ ε

1 ) − ε2
∂ϕε

1

∂t (τ ε
1 )N1

∂τε
1

∂x0
(x0)O(t− τ ε

1 )
((

(

∂ϕε
1

∂t (τ ε
1 )
)2

+ ε2N2

)

(t− τ ε
1 )2 + ε2N3(t− τ ε

1 ) + ε2N1

)3/2
dt ,where

N1 =

m
∑

i=2

(ϕε
i (τ

ε
1 ))2 , N2 =

m
∑

i=2

(

∂ϕε
i

∂t
(τ ε

1 )

)2

, N3 = 2

m
∑

i=2

ϕε
i (τ

ε
1 )
∂ϕε

i

∂t
(τ ε

1 ),

M1 = 2
∂ϕε

1

∂x0
(τ ε

1 )
m
∑

i=2

ϕε
i (τ

ε
1 ) +

m
∑

i=2

(ϕε
i (τ

ε
1 ))2 , M2 =

m
∑

i=2

(

∂ϕε
i

∂x0
(τ ε

1 )

)2

.Notie that the denominator never vanishes, sine by Assumption 2.4.1 the funtions (t, x0) 7→
ϕi(t, x0), i = 1, . . . ,m do not vanish simultaneously.The limit when η tends to zero of the limit when ε tends to zero, of the �rst and seondterm of the right-hand side of the last equality are respetively equal to

(

sign(ϕ1(τ
+
1 )) − sign(ϕ1(τ

−
1 ))
)

Y1(x(τ1(x0), x0))
∂τ1
∂x0

(x0) and 0 .99



Sine
lim
ε→0

∂τ ε
1

∂x0
(x0) =

∂τ1
∂x0

(x0),it follows that
lim
η→0

lim
ε→0

(

∂xε

∂x0
(τ ε

1 (x0) + η, x0) −
∂xε

∂x0
(τ ε

1 (x0) − η, x0)

)

=
(

sign(ϕ1(τ
+
1 )) − sign(ϕ1(τ

−
1 ))
)

Y1(x(τ1(x0), x0))
∂τ1
∂x0

(x0),and the lemma follows.A similar lemma holds for ∂ exp
∂p0

. This result permits to extend the onvergene result be-yond the �rst swithing time; the extension of Lemma 3.2.4 to every further interval (τj−1, τj)is then straightforward. This proves the proposition.We are now in a position to prove Theorem 3.2.1. From Theorem 3.1.10, the trajetory
x̂(·) an be embedded into the �eld of extremals x0 7→ exp(t, x0, α

′(x0)) with x0 ∈ O and themapping
(0, tc) ×X → IRn

(t, x0) 7→ exp(t, x0, α
′(x0))is of rank n, where X = {x0 ∈ O | max

|w|≤1
H(x0, α

′(x0), p
0, w) = 0}, O is a neighborhood of x̂0,and tc is the �rst onjugate time of x̂(·).From Remark 3.1.12, the determinants

det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs(x0),τs+1(x0))×X
, fs+1(x0)

)and
det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs+1(x0),τs+2(x0))×X
, fs+2(x0)

)have di�erent signs, with τs+1(x̂0) = tc.By De�nition 3.1.14, the point xε(τ ε
c (x0)) is geometrially onjugate to xε(0) = x0, with

x0 ∈ Xε, if and only if
det

(

d

dx0
expε(t, x0, α

ε′(x0)), f
ε(x0)|x0∈Xε

)

= 0for t = τ ε
c (x0). Let x0 ∈ Xε. We have

∂ expε

∂x0
(τ ε(x0), x0, α

ε′(x0)) =
∂ expε

∂t
(τ ε(x0), x0, α

ε′(x0))
∂τ ε

∂x0
(x0)

+
∂ expε

∂x0
(τ ε(x0), x0, α

ε′(x0))

+
∂ expε

∂p0
(τ ε(x0), x0, α

ε′(x0))α
ε′′(x0).100



Sine ∂ expε

∂t (τ ε(x0), x0, α
ε′(x0)) = ẋε(x0) = f ε(x0), there holds,

det

(

∂ expε

∂t
(τ ε(x0), x0, α

ε′(x0))
∂τ ε

∂x0
(x0), f

ε(x0)

)

= 0.Thus, it follows that
det

(

d

dx0
expε(τ ε(x0), x0, α

ε′(x0)), f
ε(x0)

)

= det

(

∂ expε

∂x0
(τ ε(x0), x0, α

ε′(x0)) +
∂ expε

∂p0
(τ ε(x0), x0, α

ε′(x0))α
ε′′(x0), f

ε(x0)

)

= det

(

d

dx0
expε(t, x0, α

ε′(x0)), f
ε(x0)

)for t = τ ε(x0). By Proposition 3.2.3, on every ompat subinterval of (τj−1(x0), τj(x0)), themapping (t, x0) 7→ expε(t, x0, α
ε′(x0)) onverges to (t, x0) 7→ exp(t, x0, α

′(x0)) uniformly in
C1 topology, therefore the determinants

det

(

d

dx0
expε(t, x0, α

ε′(x0))
∣

∣

∣

(t,x0)∈(τε
s (x0),τε

s+1
(x0))×Xε

, f ε(x0)

)and
det

(

d

dx0
expε(t, x0, α

ε′(x0))
∣

∣

∣

(t,x0)∈(τε
s+1

(x0),τε
s+2

(x0))×Xε
, f ε(x0)

)have di�erent signs before and after τ ε
s+1(x0). Therefore, by ontinuity, the funtion t 7→

det
(

d
dx0

expε(t, x0, α
ε′(x0)), f

ε(x0)
) vanishes for some time, lose to τ ε

s+1(x0). By De�ni-tion 3.1.14, this time tεc(x0) is a geometrially onjugate time, and when ε tends to 0, tεc(x̂0)onverges to the bang-bang onjugate time tc = τs+1(x̂0). This ends the proof of the Theo-rem 3.2.1.3.3 ExamplesIn this setion we illustrate Theorem 3.2.1 with two examples of minimal time ontrol prob-lems.3.3.1 First example: Rayleigh minimal time ontrol problemWe onsider the minimal time ontrol problem for the Rayleigh ontrol system (see e.g. [76,81℄),
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.14x2(t)
2) + u1(t),

(3.13)with the ontrol onstraint
|u1(t)| ≤ 4, ∀t ∈ [0, tf ] (3.14)101



and with boundary onditions given by
x1(0) = −4, x2(0) = −3, x1(tf ) = x2(tf ) = 0 . (3.15)Aording to the Pontryagin maximum priniple, any optimal solution x̂(·) of (3.13)�(3.15) isthe projetion of an extremal (x̂(·), p̂(·), p0, û1(·)) suh that

˙̂p1(t) = p̂2(t)

˙̂p2(t) = −p̂1(t) − p̂2(t)
(

1.4 − 0.42x̂2(t)
2
)

(3.16)and the maximization ondition p̂2(t)û1(t) = max|w|≤4 (p̂2(t)w) holds almost everywhere on
[0, tf ]. It is easy to see that p̂2(·) annot vanish on some subinterval, and it follows thatthe optimal ontrol û1(·) is bang-bang, equal to û1(t) = 4 sign(p̂2(t)). Applying a shootingmethod to problem (3.13)�(3.15) (with p0 = −1), we determine the initial adjoint vetor
p̂(0) ≃ (0.53095052; 0.34206485), and observe that the trajetory has only one swithing time
τ̂1 ≃ 0.57613128 on [0, tf ], that is, û1(·) is given by

û1(t) =







+4 for 0 ≤ t ≤ τ̂1

−4 for τ̂1 ≤ t ≤ tf ,with a �nal time tf ≃ 2.97812917 (see Figures 3.3 and 3.4). Furthermore, x̂(·) is the uniqueminimal time solution and has a unique extremal lift (up to a multipliative salar), whih ismoreover normal.
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Figure 3.4: Optimal ontrolProlongating the trajetory x̂(·) to the interval [0, 4], we observe a seond swithing timeat τ̂2 ≃ 3.14750955.Notie that the seond-order su�ient onditions of [78�81℄ are satis�ed before τ̂2, on-�rming the loal optimality status of the trajetory, but are no longer satis�ed beyond this102



seond swithing time; we an thus expet the trajetory not to be loally optimal beyond τ̂2(see Appendix A). To investigate this optimality status we use the extremal �eld approah.From Theorem 3.1.10 and Remark 3.1.11, the �rst onjugate point x̂(tc) is an overlappoint of the extremal �eld emanating from the horizontal one-dimensional manifold X =

{x0 ∈ O | max
|w|≤1

H(x0, α
′(x0),−1, w) = 0}. In pratie, the funtion α is not known, andwe rather use the �eld of extremals emanating from the vertial manifold Xp = {p0 ∈

Op | max
|w|≤1

H(x̂0, p0,−1, w) = 0} (see [15,95℄), where Op is a neighborhood of the initial value ofthe adjoint vetor p̂(0). The haraterization in terms of fold point still holds for this vertialmanifold (see [95℄). We observe on Figures 3.5 and 3.6 that this �eld of extremals re�ets o�the swithing surfae at the seond swithing time; the point x̂(τ̂2) is a fold point and the �rstonjugate time is equal to the seond swithing time, tc = τ̂2 ≃ 3.14750955.
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Figure 3.5: Extremal �eld for t ∈ [0, 4]
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Figure 3.6: Overlap of the �owWe next propose a regularization proedure, for whih we ompute the �rst geometrionjugate time tεc and hek that it indeed onverges to the �rst onjugate time tc of thebang-bang ase as ε tends to 0.We onsider the regularized ontrol system
ẋε

1(t) = xε
2(t) + εuε

2(t),

ẋε
2(t) = −xε

1(t) + xε
2(t)(1.4 − 0.14xε

2(t)
2) + uε

1(t),
(3.17)with the boundary onditions (3.15), and where the ontrol uε(·) = (uε

1(·), uε
2(·)) satis�es theonstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 16 , ∀t ∈ [0, tεf ]. (3.18)Any optimal solution x̂ε(·) of (3.15), (3.17) and (3.17) is the projetion of an extremal103



(x̂ε(·), p̂ε(·), p0ε, ûε(·)) suh that
˙̂pε
1(t) = p̂ε

2(t)

˙̂pε
2(t) = −p̂ε

1(t) − p̂ε
2(t)

(

1.4 − 0.42x̂ε
2(t)

2
)

.The Assumption 2.4.1 is veri�ed, and the ontrols that satisfy the Pontryagin maximizationondition (2.10) are given by
ûε

1(t) =
4p̂ε

2(t)
√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
, ûε

2(t) =
4εp̂ε

1(t)
√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
. (3.19)Applying a shooting method to this problem, we determine the optimal trajetory of theregularized problem, and we indeed observe the expeted onvergene of (x̂ε(·), p̂ε(·),−1, ûε)towards (x̂(·), p̂(·),−1, û1), as ε tends to 0, in agreement with Theorem 2.5.1 (see Figures 3.7�3.9).
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Figure 3.8: Adjoint vetorThe optimal ontrols (3.19) are smooth funtions of t, therefore the algorithms presentedin [15℄ to ompute the �rst onjugate time along a smooth extremal urve an be applied.Here we will apply the test for onjugate times explained in [15℄ when the �nal time is freeand the extremal is normal. Let us brie�y reall this test. The maximized Hamiltonian writesas
Hε

r (x̂ε, p̂ε) = p̂ε
1

(

x̂ε
2 +

4ε2p̂ε
1

√

(p̂ε
2)

2 + ε2(p̂ε
1)

2

)

+ p̂ε
2

(

−x̂ε
1 + x̂ε

2(1.4 − 0.14(x̂ε
2)

2) +
4p̂ε

2
√

(p̂ε
2)

2 + ε2(p̂ε
1)

2

)

− 1.The aim is to ompute the solution Zε(·) = (δxε
1(·), δxε

2(·), δpε
1(·), δpε

2(·))T of the so-alled104
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Figure 3.9: Control
variational system Żε(t) = V (t)Zε(t) along the extremal (x̂ε(·), p̂ε(·)), where

V (t) =

(

∂2Hε
r

∂x∂p (x̂ε(t), p̂ε(t)) ∂2Hε
r

∂p2 (x̂ε(t), p̂ε(t))

−∂2Hε
r

∂x2 (x̂ε(t), p̂ε(t)) −∂2Hε
r

∂x∂p (x̂ε(t), p̂ε(t))

)with initial onditions (δxε
1(0), δx

ε
2(0)) = (0, 0) and (δpε

1(0), δp
ε
2(0)) suh that the salar prod-ut 〈(f ε

1 (0), f ε
2 (0)), (δpε

1(0), δp
ε
2(0))〉 is equal to 0, where (f ε

1 , f
ε
2 ) is the dynamis, given by











f ε
1 (t) = xε

2(t) +
4ε2pε

1(t)√
(pε

2
(t))2+ε2(pε

1
(t))2

,

f ε
2 (t) = −xε

1(t) + xε
2(t)(1.4 − 0.14xε

2(t)
2) +

4pε
2(t)√

(pε
2
(t))2+ε2(pε

1
(t))2

.The �rst geometri onjugate time is then the �rst positive zero of the funtion
t 7→ det (δxε

1(t) δx
ε
2(t), f

ε
1 (t) f ε

2 (t))(see Figure 3.10).We report on Table 3.3.1 the values of the �rst geometri onjugate time of the optimaltrajetory x̂ε(·), for di�erent values of ε. We observe that, as expeted, tεc onverges to
tc ≃ 3.14750955 as ε tends to 0.Another possible test (see [15℄) is to ompute numerially solutions

Zi(·) = (δxε
1i(·), δxε

2i(·), δpε
1i(·), δpε

2i(·)) , i = 1, 2 ,of the variational system onsidered previously, with initial onditions (δpε
11(0), δp

ε
21(0)) =

(1, 0) and (δpε
12(0), δp

ε
22(0)) = (0, 1), and then to ompute the rank of the matrix

Jε(t) =

(

δxε
11(t) δxε

21(t)

δxε
12(t) δxε

22(t)

)

.105
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Figure 3.10: det (δxε
1(t) δxε

2(t), f
ε
1 (t) fε

2 (t)), ε = 0.01

ε tεc

0.1 3.26735859

0.01 3.1559626

0.001 3.14844987

0.0001 3.14760515Table 3.1: Values of tεcThis rank must be equal to 1 outside a onjugate time, and 0 at a onjugate time. In orderto ompute it, we use a singular value deomposition of Jε(t); then, a onjugate time ourswhenever the �rst singular value of Jε(t) vanishes (see Figure 3.11).
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Figure 3.11: First singular value of Jε(t) (ε = 0.01)106



In this �rst example, the �rst onjugate time tc of the optimal bang-bang trajetory x̂(·) o-inides with the seond swithing time. We next provide an example where the �rst onjugatetime is equal to the third swithing time.3.3.2 Seond exampleConsider the minimal time ontrol problem for the ontrol system
ẋ1(t) = sin(x2(t)),

ẋ2(t) = − sin(x1(t)) + u1(t),
(3.20)with the ontrol onstraint

|u1(t)| ≤ 1 , ∀t ∈ [0, tf ] , (3.21)and with the boundary onditions
x1(0) = x2(0) = 0, x1(tf ) = 2.9, x2(tf ) = 0.1. (3.22)From the Pontryagin maximum priniple, any optimal solution x̂(·) of (3.20)�(3.22) is theprojetion of an extremal (x̂(·), p̂(·), p0, û1(·)) suh that

˙̂p1(t) = p̂2(t) cos(x̂1(t)),

˙̂p2(t) = −p̂1(t) cos(x̂2(t)),and the maximization ondition p̂2(t)û1(t) = max|w|≤1 (p̂2(t)w) must hold almost everywhereon [0, tf ]. It is easy to see that p̂2(·) annot vanish on some subinterval, and it followsthat the optimal ontrol û1(·) is bang-bang, equal to û1(t) = sign(p̂2(t)). Applying a shootingmethod to problem (3.20)�(3.22) (with p0 = −1),we determine the initial adjoint vetor p̂(0) =

(−0.5, 1), and observe that the trajetory has one swithing time τ̂1 ≃ 3.26174615 on [0, tf ],that is, û1(·) is given by
û1(t) =







+1 for 0 ≤ t ≤ τ̂1,

−1 for τ̂1 ≤ t ≤ tf ,with a �nal time tf ≃ 4.07756604 (see Figures 3.12 and 3.13). Furthermore, x̂(·) is the uniqueminimal time solution and has a unique extremal lift (up to a multipliative salar), whih ismoreover normal.Prolongating the trajetory x̂(·) to the interval [0, 11], we observe a seond swithing timeat τ̂2 ≃ 6.21787838, and a third one at τ̂3 ≃ 10.46930198. Considering as in the previousexample the extremal �eld emanating from the vertial manifold, we observe on Figures 3.14and 3.15 that the extremal �eld rosses transversally the seond swithing surfae, but re�etso� the third swithing surfae, and it follows from Theorem 3.1.10 that the �rst onjugatetime tc is equal to τ̂3. 107
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Figure 3.12: Optimal trajetory 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

u 1

Figure 3.13: Optimal ontrol

0 0.5 1 1.5 2 2.5 3
−5

−4

−3

−2

−1

0

1

2

x
1

x 2

Figure 3.14: Extremal �eld, t ∈ [0, 11]
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Figure 3.15: Zoom on the overlap of the �ow atthe third swithing timeWe propose the following regularization. Consider the ontrol system
ẋε

1(t) = sin(xε
2(t)) + εuε

2(t),

ẋε
2(t) = − sin(xε

1(t)) + uε
1(t),

(3.23)with the ontrol onstraint
(uε

1(t))
2 + (uε

2(t))
2 ≤ 1 , ∀t ∈ [0, tεf ] , (3.24)and the initial and �nal onditions (3.22). Any optimal solution x̂ε(·) of (3.22)�(3.24) is theprojetion of an extremal (x̂ε(·), p̂ε(·), p0ε

, ûε(·)) suh that
˙̂pε
1(t) = p̂ε

2(t) cos(x̂ε
1(t)),

˙̂pε
2(t) = −p̂ε

1(t) cos(x̂ε
2(t)),108



and the maximization ondition implies that the extremal ontrols are given by
ûε

1(t) =
p̂ε
2(t)

√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
, ûε

2(t) =
εp̂ε

1(t)
√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
. (3.25)Applying a shooting method to this problem, we determine the optimal trajetory of theregularized problem, and we indeed observe the expeted onvergene of (x̂ε(·), p̂ε(·),−1, ûε)towards (x̂(·), p̂(·),−1, û1), as ε tends to 0, in agreement with Theorem 2.5.1 (see Figures 3.16�3.18).
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Figure 3.17: Adjoint vetor
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Figure 3.18: ControlAs in the previous example, the ontrols (3.25) are smooth funtions of t, and we apply thealgorithm desribed in [15℄, omputing as before the determinant det (δxε
1(t) δx

ε
2(t), f

ε
1 (t) f ε

2 (t))(see Figure 3.19). We report on Table 3.3.2 the values of the �rst geometri onjugate time109
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2 (t)), ε = 0.1of the optimal trajetory x̂ε(·), for di�erent values of ε. We observe that, as expeted, tεconverges to tc as ε tends to 0.
ε tεc

0.1 10.01593283

0.01 10.3164905

0.001 10.41858121

0.0001 10.45291892

0.00001 10.46419119Table 3.2: Values of tεcRemark 3.3.1. We observe on both previous examples that it is not needed to onsider verysmall values of ε to estimate the �rst onjugate time tc. Indeed, a onjugate time of a loallybang-bang trajetory an only our at a swithing time (see Remark 3.1.8) and, under ourassumptions, swithing times are isolated (see Remark 3.1.6). From Theorem 3.2.1, the �rstgeometri onjugate time tεc onverges to tc, when ε tend to 0. Therefore, as soon as ε is smallenough so that tεc is in a (not neessarily so small) neighborhood of some swithing time τ̂sof the bang-bang trajetory x̂(·), this means that the bang-bang onjugate time tc is equal tothat swithing time τ̂s.
110



Conlusion and open problemsIn this PhD thesis we foused on the problem of determining an e�ient proedure to omputethe �rst onjugate time tc for the minimal time problem for single-input ontrol-a�ne systems
ẋ = X(x) + u1Y1(x) in IRn with the ontrol onstraint |u1(t)| ≤ 1, for every t ∈ [0, tf ].We proposed a smoothing proedure whih onsists in adding new smooth vetor �elds
Y2, . . . , Ym and a small parameter ε > 0, so as to ome up with the minimal time problem forthe system ẋ = X(x)+uε

1Y1(x)+ε
∑m

i=2 u
ε
iYi(x), under the ontrol onstraint∑m

i=1(u
ε
i (t))

2 ≤
1, with the same boundary onditions as the initial problem. We proved, under appropriateassumptions, that the optimal ontrols of the latter problem, depending on ε, are smoothfuntions of t, and onverge weakly to the optimal ontrol of the initial system; moreoverthe assoiated trajetories onverge uniformly. If the optimal ontrol of the initial system ismoreover bang-bang, then the onvergene of the regularized ontrol holds almost everywhere;this property may however fail whenever the bang-bang property does not hold. We providedexamples and ounterexamples to illustrate our result. Moreover, we proved that the �rstgeometri onjugate time of regularized problem onverges to the �rst onjugate time initialproblem, when ε tends to 0. This onvergene result, allowed us to use theoretial and pratialresults for the onjugate time theory that are well known in the smooth ase and apply themto the regularized problem in order to ompute, onsequently, onjugate times of the initialbang-bang problem. Note that our results still hold if the ontrol-a�ne system is onsideredon a manifold (in this work we onsidered IRn for the sake of simpliity).An open question is to extend the results proved in Chapters 2 and 3 to general nonlinearontrol systems. In our point of view, this extension seems di�ult, beause it may be notobvious to generalize the nie expression (2.11) (see Chapter 2, Setion �2.4) to more generalsituations and, on the other hand, Lemma 2.5.6 does not hold a priori for general ontrolsystems, moreover, it is not lear how to derive Lemma 2.5.7 and the subsequent results.Although, it would be interesting if we ould extend our results to multi-input ontrol-a�nesystems ẋ = X(x) +

∑p
i=1 uiYi(x) in IRn, where u = (u1, ..., up) ∈ L∞([0, tf ],∆) and ∆ isa polyhedron (see [95℄), or a onvex polyhedron (see [81℄), or a onvex ompat polyhedron(see [100℄) of IRp. For p > 1, it would be interesting to onsider the ase where multipleswithing times may our, that is, when at least two ontrol funtions swith at the sametime. Another open question onerns the generalization to general ost funtions.111
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Appendix AFirst and seond order su�ientoptimality onditions in the normalaseFirst and seond order neessary and/or su�ient optimality onditions have a ruial role inthe study of �rst onjugate times for bang-bang minimal time optimal ontrol problems withontrol-a�ne systems. In [3, 5, 81, 95, 100℄ �rst and seond order neessary and/or su�ientoptimality onditions are given in terms of a quadrati formQt. As we realled in Setion �3.1.3of Chapter 3 the quadrati form in [100℄ is a lower bound for the one given in [81℄, and inertain ases the quadrati form in [81℄ is equivalent to the one in [5℄ (see [90℄). In [95℄ ananalogous quadrati form to the one in [5℄ is de�ned. Here we reall the �rst and seond ordersu�ient optimality onditions given in [81℄ and apply them to the Rayleigh minimal timeontrol problem with �xed initial and �nal onditions (see Setions �2.6.1 and �3.3.1).In [78�81℄ su�ient optimality onditions are provided for a minimal time problem formulti-input ontrol-a�ne systems in IRn

ẋ = X(t, x) +

p
∑

i=1

uiYi(t, x)with �xed initial and �nal onditions
x(0) = x0 , x(tf ) = x1 ,and where u = (u1, ..., up) ∈ L∞([0, tf ],∆) and ∆ is a onvex polyhedron of IRp.Here we will formulate the �rst and seond order su�ient optimality onditions givenin [78�81, 86℄ for the optimal ontrol problem (OCP) onsidered in Chapters 2 and 3. Theoptimal ontrol problem (OCP) onsists of determining a solution x(·) assoiated to a ontrol

u1(·), on [0, tf ], satisfying the single-input ontrol-a�ne system in IRn

ẋ = X(x) + u1Y1(x), (A.1)113



where X and Y1 are smooth vetor �elds, the onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ] ,and steering x0 = x(0) to x1 = x(tf ) in minimal time tf .From Pontryagin maximum priniple, there exists a non trivial absolutely ontinuous map-ping p(·) : [0, tf ] → IRn (adjoint vetor) and a real number p0 ≤ 0, with (p(·), p0) 6= (0, 0),suh that

ṗ(t) = −
〈

p(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

p(t),
∂Y1

∂x
(x(t))

〉 (A.2)where the Hamiltonian funtion is given by
H(x, p, p0, u1) = 〈p, f(x, u1)〉 = 〈p,X(x) + u1Y1(x)〉 + p0 ,and the maximization ondition

H(x(t), p(t), p0, u1(t)) = max
|w|≤1

H(x(t), p(t), p0, w) (A.3)holds almost everywhere on [0, tf ]. Moreover, max|w|≤1H(x(t), p(t), p0, w) = 0 for every
t ∈ [0, tf ].It follows from (A.3) that

u1(t) = sign〈p(t), Y1(x(t))〉for almost every t, provided that the (ontinuous) swithing funtion
ϕ1(t) = 〈p(t), Y1(x(t))〉does not vanish on any subinterval of [0, tf ].Here we will only onsider the ase where the Pontryagin extremal (x(·), p(·), p0, u1(·)) isnormal (p0 = −1). The abnormal ase is also onsidered in [78�81, 86℄.The extremal (x(·), p(·),−1, u1(·)) may be extended forward on a maximal time interval

I of [0,+∞), ontaining [0, tf ] (see Setion �3.1.2, Chapter 3). Let the Assumption 3.1.1hold, that is assume that the extremal (x(·), p(·),−1, u1(·)) is bang-bang on the interval I,i.e., the swithing funtion ϕ1 does not vanish on any subinterval of I. Let τ1, . . . , τs be theswithing times of the bang-bang trajetory x(·), that is, τ1, . . . , τs are zeros of ϕ1 on I, suhthat 0 < τ1 < . . . < τs. There holds
u1(t) =







1 if ϕ1(t) > 0,

−1 if ϕ1(t) < 0,for every t ∈ I.For j = 1, ..., s, let u1(τ
−
j ) = u1(τj − 0) and u1(τ

+
j ) = u1(τj + 0) be, respetively, theleft-hand and the right-hand side of the ontrol u1(t) at τj.114



Critial subspae. Let us now introdue the ritial subspae K.Denote by PθC
1([0, tf ], IRn) be the spae of pieewise ontinuous funtions

x̄(·) : [0, tf ] → IRnthat are ontinuously di�erentiable on eah interval of the set [0, tf ]\θ, where θ = {τ1, ..., τs}is the set of swithing times. Putting
z̄ = (t̄f , ξ, x̄) with t̄f ∈ IR , ξ = (ξ1, ..., ξs) ∈ IRs , x̄ ∈ PθC

1([0, tf ], IRn) ,we have
z̄ ∈ Z(θ) = IR× IRs × PθC

1([0, tf ], IRn) .Let K be the set of all z̄ ∈ Z(θ) satisfying the following onditions
˙̄x(t) = fx(x(t), u1(t))x̄(t) , x̄(τ+

k ) − x̄(τ−j ) =
(

ẋ(τ+
j ) − ẋ(τ−j )

)

ξj , j = 1, ..., s ,

x̄(0) = 0 , x̄(tf ) = 0 .The set K is a �nite-dimensional subspae of Z(θ) and is alled the ritial subspae.There holds x̄(t) ≡ 0 on [0, τ1) and (τs, tf ]. Thus, x̄(τ−1 ) = x̄(τ+
s ) = 0, for all z̄ ∈ K.Consider the variational (linearized) system

ẏ = fx(t)yand for eah j = 1, ..., s, de�ne the vetor funtions yj(t) as the solutions of the system
ẏ = fx(t)y , y(τj) = (ẋ(τ+

j ) − ẋ(τ−j )) , t ∈ [τj , tf ] .For t < τj put yj(t) = 0 whih yields yj(τ+
j ) − yj(τ−j ) = ẋ(τ+

j ) − ẋ(τ−j ). Denote by
x(t, τ1, ..., τs) the solution of (A.1) assoiated to the bang-bang optimal ontrol with swithingtimes τ1, ..., τs. The derivatives of the trajetories x(t, τ1, ..., τs) with respet to the swithingtimes are given by

∂x

∂tj
(t, τ1, ..., τs) = −yj(t) for t ≥ tj , j = 1, ..., s .Proposition A.0.2. [78�81, 86℄ Assume that one of the following onditions are satis�ed(for p0 = −1):(a) the s vetors yj(tf ) = − ∂x

∂tj
(tf ), j = 1, ...s, are linearly independent1,(b) the bang-bang ontrol has one swithing time, i.e., s = 1.Then the ritial subspae is K = {0}.1If the abnormal ase is onsidered then another ondition that implies K = {0} is the s + 1 vetors

yj(tf ) = − ∂x
∂tj

(tf ), j = 1, ..., s, ẋ(tf ), are linearly independent,115



Quadrati form. Let (x(·), p(·),−1, u1(·)) be a Pontryagin extremal, and z̄ ∈ Z. De�ne
Qt(p, z̄) =

s
∑

j=1

(

(

−ϕ̇(τj)(u1(τ
+
j ) − u1(τ

−
j ))
)

ξ2j + 2

(

∂H

∂x
(τ+

j ) − ∂H

∂x
(τ+

j )

)

1

2
(x̄(τ−j ) + x̄(τ−j ))ξj

)

+

∫ τs

τ1

〈∂
2H

∂x2
(t)x̄(t), x̄(t)〉dt . (A.4)A stronger version of the next theorem is given in [81,86℄ where the abnormal ase is alsoonsidered.Theorem A.0.3. [78�81,86℄ Let (x(·), p(·),−1, u1(·)) be a normal extremal for the problem

(OCP) on [0, tf ], suh that(a) u1(·) is a bang-bang ontrol, that is, the Assumption 3.1.1 holds;(b) the strit bang-bang Legendre ondition holds, that is, ϕ̇(τj) 6= 0 for j = 1, ..., s (seeChapter 3);() max
p
Qt(p, z̄) > 0 ∀z̄ ∈ K\{0}.Then (x(·), u1(·)) is a strong loal minimum.2This theorem provides a seond order su�ient ondition for strong loal optimality.Remark A.0.4. If K = {0} then the ondition () is automatially ful�lled. Therefore, theproperty K = {0} is a �rst order su�ient ondition for strong loal optimality.Remark A.0.5. If there exists a vetor p(·) solution of (A.1)�(A.2) suh that

Qt(p, z̄) > 0 ∀z̄ ∈ K\{0} ,then the ondition () is satis�ed.The next theorem follows from Proposition A.0.2 and Theorem A.0.3 and it provides asu�ient ondition for bang-bang ontrol with one swithing time.Theorem A.0.6. [78�81,86℄ Let (x(·), p(·),−1, u1(·)) be a normal extremal for the problem
(OCP) on [0, tf ], suh that(a) u1(·) is a bang-bang ontrol with one swithing point;(b) −ϕ̇(τ1)

(

u1(τ
+
1 ) − u1(τ

−
1 )
)

< 0.Then (x(·), u1(·)) is a strong loal minimum.32In fat, (x(·), u1(·)) is a strit strong loal minimum.3In fat, (x(·), u1(·)) is a strit strong loal minimum.116



For the ase of two swithing times, assume that ẋ(τ+
1 )−ẋ(τ−1 ) 6= 0 and ẋ(τ+

2 )−ẋ(τ−2 ) 6= 0.This imply that y1(tf ) = 0 and y2(tf ) = 0 where y1 (respetively y2) is the solution of
ẏ = fx(t)y , y(τ1) = ẋ(τ+

1 ) − ẋ(τ−1 ) , t ∈ [τ1, tf ](respetively, ẏ = fx(t)y , y(τ2) = ẋ(τ+
2 ) − ẋ(τ−2 ) , t ∈ [τ2, tf ] ). From the superpositionpriniple for linear ordinary di�erential equations there holds

x̄(t) =
2
∑

j=1

yj(t)ξj ,therefore,
0 = x̄(tf ) = y1(tf )ξ1 + y2(tf )ξ2 . (A.5)Assume, furthermore that K 6= {0}. Then from (A.5) the nonzero vetors y1(tf ) and y2(tf )are ollinear, i.e.,

y2(tf ) = αy1(tf ) (A.6)for some α 6= 0. The funtions y1(t) and y2(t) are ontinuous solutions of the system ẏ =

fx(t)y in (τ2, tf ], thus the relation y2(t) = αy1(t) is valid for all t ∈ (τ2, tf ]. In partiular,
y2(τ2 + 0) = αy1(τ2) and thus

ẋ(τ+
2 ) − ẋ(τ−2 ) = αy1(τ2)whih is equivalent to (A.6). From (A.5) and (A.6) there holds

ξ2 = − 1

α
ξ1 .Using the previous formulas and ∂H

∂x (τ+
j ) − ∂H

∂x (τ−j ) = −
(

ṗ(τ+
1 ) − ṗ(τ−1 )

), j = 1, 2, in thequadrati form (A.4) we have
Q = ρξ21where

ρ =
(

−ϕ(τ1)
(

u1(τ
+
1 ) − u1(τ

+
1 )
)

− (ṗ(τ+
1 ) − ṗ(τ−1 ))(ẋ(τ+

1 ) − ẋ(τ−1 ))
)

+
1

α2

(

−ϕ(τ2)
(

u1(τ
+
2 ) − u1(τ

+
2 )
)

+ (ṗ(τ+
2 ) − ṗ(τ−2 ))(ẋ(τ+

2 ) − ẋ(τ−2 ))
)

+

∫ t2

t1

〈∂
2H

∂x2
y1, y1〉dt .(A.7)Proposition A.0.7. [78�81,86℄ Let (x(·), p(·),−1, u1(·)) be a normal extremal for the prob-lem (OCP) on [0, tf ]. Assume that u1(·) has two swithing times, ẋ(τ+

1 ) − ẋ(τ−1 ) 6= 0,
ẋ(τ+

2 ) − ẋ(τ−2 ) 6= 0, and y2(tf ) = αy1(tf ) with some fator α. Then the ondition of pos-itive de�niteness of Q on K is equivalent to the inequality ρ < 0, where ρ is de�ned by (A.7).117



A.1 Example: Rayleigh minimal time ontrol problemConsider the Rayleigh minimal time ontrol problem onsidered in Setion 3.3.1 in Chapter 3,for the ontrol system
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.14x2(t)
2) + u1(t),

(A.8)with the ontrol onstraint
|u1(t)| ≤ 4 , ∀t ∈ [0, tf ] (A.9)and with boundary onditions given by

x1(0) = x2(0) = x0, x1(tf ) = x2(tf ) = x1 .In [81℄ the authors onsider Rayleigh minimal time ontrol problem with the boundaryonditions
x1(0) = x2(0) = −5 , x1(tf ) = x2(tf ) = 0and veri�ed that Proposition A.0.7 is satis�ed for the trajetory x(·) assoiated to the ontrol

u(t) =



















+4 for 0 ≤ t ≤ τ1

−4 for τ1 ≤ t ≤ τ2

+4 for τ2 ≤ t ≤ tfwhere τ1 ≃ 1.12, τ ≃ 3.31 are the swithing times and tf ≃ 3.668 is the minimal time (seeSetion �2.6.1 of Chapter 2).Here we will onsider the boundary onditions onsidered in Setion 3.3.1 of Chapter 3,given by
x1(0) = −4, x2(0) = −3, x1(tf ) = x2(tf ) = 0 . (A.10)Aording to the Pontryagin maximum priniple, any optimal solution x(·) of (A.8)�(A.9),(A.10) is the projetion of an extremal (x(·), p(·), p0, u1(·)) suh that
− ∂H

∂x1
(t) = ṗ1(t) = p2(t)

− ∂H

∂x2
(t)ṗ2(t) = −p1(t) − p2(t)

(

1.4 − 0.42x2(t)
2
)and the maximization ondition p2(t)u1(t) = max|w|≤4 (p2(t)w) holds almost everywhere on

[0, tf ]. The optimal ontrol u1(·) is bang-bang, equal to u1(t) = 4 sign(p2(t)).Reall Setion �3.3.1 where we applied a shooting method to problem (A.8)�(A.10) (with
p0 = −1), and determined the initial adjoint vetor p(0) ≃ (0.53095052; 0.34206485). We118



observe that the trajetory has only one swithing time τ1 ≃ 0.57613094 on [0, tf ], that is,
u1(·) is given by

u1(t) =







+4 for 0 ≤ t ≤ τ1

−4 for τ1 ≤ t ≤ tf ,with a �nal time tf ≃ 2.97812917 (see Figures 3.3 and 3.4, Chapter 3).We will now apply the su�ient optimality ondition Theorem A.0.6 and verify that thistrajetory is optimal.Integrating the system






























ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.42x2
2(t)) + 4

ṗ1(t) = p2(t)

ṗ2(t) = −p1(t) − p2(t)(1.4 − 0.42x2
2(t))

(A.11)in the interval [0, τ1] (with u1(t) = +4 and initial onditions (x1(0), x2(0)) = (−4,−3) and
(p1(0), p2(0)) ≃ (0.53095052; 0.34206485)) we have (p1(τ1), p2(τ1)) ≃ (0.6504275; 0). There-fore,

−ϕ̇(τ1) = −ṗ2(τ1) = p1(τ1) ≃ 0.6504275and
−ϕ̇(τ1)

(

u1(τ
+
1 ) − u1(τ

−
1 )
)

≃ 0.6504275 · (−8) ≃ −5.20342003 < 0 .And from Theorem A.0.6 the trajetory x(·) assoiated to the ontrol u1(·) with one swithingtime τ1 ≃ 0.5761 and �nal time tf ≃ 2.9781, is strong loally optimal on [0, tf ].Prolongating the trajetory x̂(·) to the interval [0, 4], we observe a seond swithing time at
τ̂2 ≃ 3.1475101. Let us apply the Proposition A.0.7 to the trajetory x(·) with two swithingtimes.For j = 1, 2 de�ne the vetor funtions yj ∈ IRn solution of the system
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ẏj
2(t) = −yj

1(t) + (1.4 − 0.42x2
2(t))y

j
2(t)with

(

y1
1(τ1), y

1
2(τ1)

)

=
(
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ẋ1(τ
+
2 ) − ẋ1(τ
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= (0, 8) , for t ∈ [τ2, tf ] ,119



Let us see if the vetors (y1
1(τ2), y

1
2(τ2)) and (y2

1(τ2), y
2
2(τ2)) are ollinear, with (y2

1(τ2), y
2
2(τ2)) =

(0, 8). To ompute (y1
1(τ2), y

1
2(τ2)) we integrate the system























































ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.42x2
2(t)) − 4

ṗ1(t) = p2(t)

ṗ2(t) = −p1(t) − p2(t)(1.4 − 0.42x2
2(t))

ẏ1
1(t) = y1

2(t)

ẏ1
2(t) = −y1

1(t) + y1
2(t)(1.4 − 0.42x2

2(t))in the interval [τ1, τ2] where u1(t) = −4, and with initial onditions (y1
1(τ1), y

1
2(τ1)) = (0,−8)and (x1(τ1), x2(τ1)) ≃ (−4.52075342; 1.53745036), (p1(τ1), p2(τ1)) ≃ (0.6504275; 0) followsfrom integrating the system (A.11) in the interval [0, τ1] (with u1(t) = +4). We have

(y1
1(τ2), y

1
2(τ2)) ≃ (0; 10.73906251). The vetors are indeed ollinear, sine y2(τ2) = αy1(τ2)with α ≃ 0.74494398. We an proeed and ompute ρ given by equation (A.7),
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= −5.20342003 +
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+
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2H
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y1, y1〉dt .We have

−ϕ(τ2)
(

u1(τ
+
2 ) − u1(τ

+
2 )
)

= −ṗ2(τ2)·(4+4) = p1(τ2)·8 ≃ −1.31854472·8 ≃ −10.54835772 < 0 ,and
∂2H

∂x2
(t) =

[

0 0

0 −0.84p2(t)x2(t)

]

.Therefore,
∫ τ2

τ1

−0.84p2(t)x2(t)(y
1
2(t))

2dt = 27.66812969492819and
ρ = −5.20342003874014− 10.54835772187732

0.744943982843812
+27.66812969492819 = 3.45665745601652 > 0 .The Proposition A.0.7 is not satis�ed, although we an not assure that the trajetory is notlonger loally optimal beyond τ̂2. We on�rmed this, using the extremal �eld approah, inSetion �3.3.1 of Chapter 3.
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