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palavras-chave 

 

Controlo óptimo, princípio do máximo de Pontryagin, problemas de tempo 
mínimo, controlos bang-bang, procedimentos de regularização, método de tiro 
simples, tempos conjugados.  
 

resumo 
 

 

Consideramos o problema de controlo óptimo de tempo mínimo para sistemas 
de controlo mono-entrada e controlo afim num espaço de dimensão finita com 
condições inicial e final fixas, onde o controlo escalar toma valores num 
intervalo fechado. Quando aplicamos o método de tiro a este problema, vários 
obstáculos podem surgir uma vez que a função de tiro não é diferenciável 
quando o controlo é bang-bang. No caso bang-bang os tempos conjugados 
são teoricamente bem definidos para este tipo de sistemas de controlo, 
contudo os algoritmos computacionais directos disponíveis são de difícil 
aplicação. Por outro lado, no caso suave o conceito teórico e prático de 
tempos conjugados é bem conhecido, e ferramentas computacionais eficazes 
estão disponíveis. 
       Propomos um procedimento de regularização para o qual as soluções do 
problema de tempo mínimo correspondente dependem de um parâmetro real 
positivo suficientemente pequeno e são definidas por funções  suaves em 
relação à variável tempo, facilitando a aplicação do método de tiro simples. 
Provamos, sob hipóteses convenientes, a convergência forte das soluções do 
problema regularizado para a solução do problema inicial, quando o parâmetro 
real tende para zero. A determinação de tempos conjugados das trajectórias 
localmente óptimas do problema regularizado enquadra-se na teoria suave 
conhecida. Provamos, sob hipóteses adequadas, a convergência do primeiro 
tempo conjugado do problema regularizado para o primeiro tempo conjugado 
do problema inicial bang-bang, quando o parâmetro real tende para zero. 
Consequentemente, obtemos um algoritmo eficiente para a computação de 
tempos conjugados no caso bang-bang. 
 
 
 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 

Optimal control, Pontryagin maximum principle, minimal time problems, bang-
bang controls, regularization procedures, single shooting methods, conjugate 
times. 
 

abstract 

 

In this thesis we consider a minimal time control problem for single-input 
control-affine systems in finite dimension with fixed initial and final conditions, 
where the scalar control take values on a closed interval. When applying a 
shooting method for solving this problem, one may encounter numerical 
obstacles due to the fact that the shooting function is non smooth whenever the 
control is bang-bang. For these systems a theoretical concept of conjugate time 
has been defined in the bang-bang case, however direct algorithms of 
computation are difficult to apply. Besides, theoretical and practical issues for 
conjugate time theory are well known in the smooth case, and efficient 
implementation tools are available. 
       We propose a regularization procedure for which the solutions of the 
minimal time problem depend on a small enough real positive parameter and 
are defined by smooth functions with respect to the time variable, facilitating the 
application of a single shooting method. Under appropriate assumptions, we 
prove a strong convergence result of the solutions of the regularized problem 
towards the solution of the initial problem, when the real parameter tends to 
zero. The conjugate times computation of the locally optimal trajectories for the 
regularized problem falls into the standard theory. We prove, under appropriate 
assumptions, the convergence of the first conjugate time of the regularized 
problem towards the first conjugate time of the initial bang-bang control 
problem, when the real parameter tends to zero. As a byproduct, we obtain an 
efficient algorithmic way to compute conjugate times in the bang-bang case. 
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mots-clés 

 

Contrôle optimal, principe du maximum de Pontryagin, problème de temps 
minimal, contrôle bang-bang, procédures de régularisation, méthode de tir 
simple, temps conjugué. 
 

résumé 

 

On considère le problème de contrôle optimal de temps minimal pour des 
systèmes affine et mono-entrée en dimension finie, avec conditions initiales et 
finales fixées, où le contrôle scalaire prend ses valeurs dans un intervalle 
fermé. Lors de l'application d'une méthode de tir pour résoudre ce problème, 
on peut rencontrer des obstacles numériques car la fonction de tir n'est pas 
lisse lorsque le contrôle est bang-bang. Pour ces systèmes, dans le cas bang-
bang, un concept théorique de temps conjugué a été défini, toutefois les 
algorithmes de calcul direct sont difficiles à appliquer. En outre, les questions 
théoriques et pratiques de la théorie du temps conjugué sont bien connues 
dans le cas lisse, et des outils efficaces de mise en  œuvre sont disponibles.  
       On propose une procédure de régularisation pour laquelle les solutions du 
problème de temps minimal dépendent d’un paramètre réel positif 
suffisamment petit et sont définis par des fonctions lisses en temps, ce qui 
facilite l’application de la méthode de tir simple. Sous des hypothèses 
convenables, nous prouvons un résultat de convergence forte des solutions du 
problème régularisé vers la solution du problème initial, lorsque le paramètre 
réel tend vers zéro. Le calcul des temps conjugués pour les trajectoires 
localement optimales du problème régularisé est standard. Nous prouvons, 
sous des hypothèses appropriées, la convergence du premier temps conjugué 
du problème régularisé vers le premier temps conjugué du problème de 
contrôle bang-bang initial, quand le paramètre réel tend vers zéro. Ainsi, on 
obtient une procédure algorithmique efficace pour calculer les temps conjugués 
dans le cas bang-bang. 
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Introdu
tion
In this thesis, we investigate the minimal time Optimal Control Problem (OCP) forsingle-input 
ontrol-a�ne systems in IRn

ẋ = X(x) + u1Y1(x),with �xed initial and �nal times 
onditions
x(0) = x̂0 , x(tf ) = x̂1 ,where X and Y1 are smooth ve
tor �elds, and the 
ontrol u1 is a measurable s
alar fun
tionsatisfying the 
onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]with tf the �nal time. We develop regularization pro
edures in order to 
ompute smoothapproximations of the above bang-bang 
ontrol problem, and to 
ompute 
onjugate times.The �rst 
onjugate time of a traje
tory x(·) is the time at whi
h it loses its lo
al optimality.The de�nition and 
omputation of 
onjugate points are an important topi
 in the theory of
al
ulus of variations (see e.g. [13℄). In [99℄ the investigation of the de�nition and 
omputationof 
onjugate points for minimal time 
ontrol problems is based on the study of ne
essaryand/or su�
ient se
ond order 
onditions. In [110℄, the theory of envelopes and 
onjugatepoints is used for the study of the stru
ture of lo
ally optimal bang-bang traje
tories for theproblem (OCP) in IR2 and IR3; these results were generalized in [60℄. In [81, 100℄ �rst andse
ond order su�
ient optimality 
onditions are derived in terms of a quadrati
 form Qt, fora minimal time 
ontrol problem with 
ontrol-a�ne systems. In [100℄ L1-lo
al optimality is
onsidered and in [81℄ strong lo
al optimality. In [5℄ the authors derive se
ond order su�
ient
onditions, under the same regularity assumptions as [81℄, for an optimal 
ontrol problemin the Mayer form with �xed �nal time, with 
ontrol-a�ne systems and bang-bang optimal
ontrols. In [90℄ the authors proved the equivalen
e of the se
ond order su�
ient 
onditionsgiven in [81℄ with the ones given in [5℄. In [95℄ an analogous quadrati
 form to the one in [5℄is de�ned, but the su�
ient optimality 
onditions derived are valid for a stronger kind ofoptimality (state lo
al optimality).The 
ombination of ne
essary and su�
ient 
onditions for bang-bang extremals providedin [3,5,81,87,95℄ allows to relate the lo
al strong optimality status of a traje
tory x(·) with the1



existen
e of 
onjugate times. More pre
isely, if the stri
t bang-bang Legendre 
ondition holdsfor a bang-bang extremal traje
tory x(·) and the quadrati
 form Qt is positive de�nite on [0, t],then x(·) is lo
ally optimal for problem (OCP) in the C0 topology on [0, t] ( [5, 81, 87, 95℄).If we assume moreover, that x(·) has a unique extremal lift (up to a multipli
ative s
alar)
(x(·), p(·), p0, u1(·)), whi
h is moreover normal (p0 = −1) and x(·) is lo
ally optimal in C0topology for problem (OCP) on [0, t] then Qt is nonnegative ( [3℄). Under these assumptions,the times t, t > 0, su
h that the quadrati
 form Qt has a trivial kernel are isolated and 
anonly 
onsist of some swit
hing times of the bang-bang extremal 
ontrol (see [5℄); the �rst
onjugate time tc of a bang-bang strong lo
ally optimal traje
tory x(·) (starting from x̂0) isthen de�ned by

tc = sup{t | Qt is positive de�nite} = inf{t | Qt is inde�nite} .The point x(tc) is 
alled the �rst 
onjugate point of the traje
tory x(·).Su�
ient optimality 
onditions are developed in [87℄ (see also [113℄) based on the methodof 
hara
teristi
s and the theory of extremal �elds. Su�
ient optimality 
onditions are givenfor embedding a referen
e traje
tory into a lo
al �eld of broken extremals. In [1,4,5,95℄, usingHamiltonian methods and the extremal �eld theory, the authors 
onstru
t, under 
ertain
onditions, a non-interse
ting �eld of state extremals that 
overs a given extremal traje
tory
x(·). In [5, 61, 87℄ the authors asso
iate the o

urren
e of a 
onjugate point with a fold pointof the �ow of the extremal �eld, that is, a so-
alled overlap of the �ow near the swit
hingsurfa
e.The 
omputation of 
onjugate times in the bang-bang 
ase is di�
ult in pra
ti
e. In the lastyears works have been developed on the numeri
al implementation of se
ond order su�
ientoptimality 
onditions (see, e.g., [61, 78, 81℄ and referen
es 
ited therein). These pro
eduresallow the 
hara
terization of the �rst 
onjugate time, for bang-bang optimal 
ontrol problemswith 
ontrol-a�ne systems, whenever it exists and is attained at a jth swit
hing time. However,in pra
ti
e, if j is too large then the numeri
al 
omputation may be
ome very di�
ult. Besides,theoreti
al and pra
ti
al issues for 
onjugate time theory are well known in the smooth 
ase(see e.g. [2, 86℄), and e�
ient implementation tools are available (see [15℄).The 
ontributions of this thesis are the following.We propose a regularization pro
edure whi
h permits to use the e�
ient tools of 
ompu-tation of 
onjugate times in the smooth 
ase provided in [15℄ for the 
omputation of the �rst
onjugate time of the problem (OCP). The regularization pro
edure is the following. Let εbe a positive real parameter and let Y2, . . . , Ym be m−1 arbitrary smooth ve
tor �elds on IRn,where m ≥ 2 is an integer. We 
onsider the minimal time problem (OCP)ε for the 
ontrolsystem

ẋε(t) = X (xε(t)) + uε
1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t)) ,2



under the 
onstraint
m
∑

i=1

(uε
i (t))

2 ≤ 1 ,with the �xed boundary 
onditions xε(0) = x̂0, xε(tf ) = x̂1 of the initial problem (OCP).In the next theorem we derive ni
e 
onvergen
e properties.Theorem 0.0.1 (
f. Chapter 2, p. 61). Assume that the problem (OCP)1 has a uniquesolution x(·), de�ned on [0, tf ], asso
iated with a 
ontrol u1(·) on [0, tf ]. Moreover, assumethat x(·) has a unique extremal lift (up to a multipli
ative s
alar), that is moreover normal,and denoted (x(·), p(·),−1, u1(·)).Then, under the assumption Span{Yi | i = 1, . . . ,m} = IRn, there exists ε0 > 0 su
h that,for every ε ∈ (0, ε0), the problem (OCP)ε has at least one solution xε(·), de�ned on [0, tεf ]with tεf ≤ tf , asso
iated with a smooth 
ontrol uε = (uε
1, . . . , u

ε
m) satisfying the 
onstraint

m
∑

i=1

(uε
i (t))

2 ≤ 1, every extremal lift of whi
h is normal. Let (xε(·), pε(·),−1, uε(·)) be su
h anormal extremal lift. Then, as ε tends to 0,
• tεf 
onverges to tf ;
• xε(·) 
onverges uniformly to x(·), and pε(·) 
onverges uniformly to p(·) on [0, tf ];
• uε

1(·) 
onverges weakly to u1(·) for the weak L1(0, tf ) topology.If the 
ontrol u1(·) is moreover bang-bang, i.e., if the (
ontinuous) swit
hing fun
tion ϕ(t) =

〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε
1(·) 
onverges to u1(·) and

uε
i (·), i = 2, . . . ,m, 
onverge to 0 almost everywhere on [0, tf ], and thus in parti
ular for thestrong L1(0, tf ) topology.We provide an example where the optimal 
ontrol of the initial system is not bang-bang(it has a singular ar
) and for whi
h the almost everywhere 
onvergen
e fails.Among the numerous numeri
al methods that exist to solve optimal 
ontrol problems, theshooting methods 
onsist in solving, via Newton-like methods, the two-point or multi-pointboundary value problem arising from the appli
ation of the Pontryagin maximum prin
iple.For the minimal time problem (OCP), optimal 
ontrols may be dis
ontinuous, and it followsthat the shooting fun
tion is not smooth on IRn in general. A
tually it may be non di�eren-tiable on swit
hing surfa
es. This implies two di�
ulties when using a shooting method. First,if one does not know a priori the stru
ture of the optimal 
ontrol, then it may be very di�-
ult to initialize properly the shooting method, and in general the iterates of the underlyingNewton method will be unable to 
ross barriers generated by swit
hing surfa
es (see e.g. [71℄).Se
ond, the numeri
al 
omputation of the shooting fun
tion and of its di�erential may be1This Theorem remains valid if we 
onsider x(0) ∈ M0 and x(1) ∈ M1 where M0 and M1 are two 
ompa
tsets of IRn (see Chapter 2). 3



intri
ate sin
e the shooting fun
tion is not 
ontinuously di�erentiable. This observation is oneof the possible motivations of the regularization pro
edure 
onsidered in this thesis. Indeed,the shooting fun
tions related to the smooth optimal 
ontrol problems (OCP)ε are smooth.From Theorem 0.0.1, under appropriate assumptions, the optimal 
ontrols of problem(OCP)ε are smooth, therefore the 
omputation of asso
iated 
onjugate points xε(tεc) fallsinto the standard smooth theory. Our next result asserts the 
onvergen
e, as ε tends to 0, of
tεc towards the 
onjugate time tc of the initial bang-bang optimal 
ontrol problem.Theorem 0.0.2 (
f. Chapter 3, p. 95). Assume that the problem (OCP) has a unique solution
x(·), asso
iated with a bang-bang 
ontrol u1(·), on a maximal interval I. Moreover, assumethat x(·) has a unique extremal lift (up to a multipli
ative s
alar), whi
h is moreover normal,and denoted by (x(·), p(·),−1, u1(·)). If the extremal (x(·), p(·),−1, u1(·)) satis�es, moreover,the stri
t bang-bang Legendre 
ondition on [0, tc], then the �rst geometri
 
onjugate time tεc
onverges to the �rst 
onjugate time tc as ε tends to 0.This result permits to use the available e�
ient implementation pro
edures for the smooth
ase, like for instan
e the free pa
kage COTCOT 2 (see [15℄), to 
ompute 
onjugate times inthe bang-bang 
ase. We 
laim that when applying the smooth pro
edures to the regularizedpro
edure, it is not needed to 
onsider very small values of ε to estimate the �rst 
onjugate time
tc. Indeed, a 
onjugate time of a lo
ally bang-bang traje
tory 
an only o

ur at a swit
hingtime and, under our assumptions, swit
hing times are isolated. From Theorem 0.0.2, the �rstgeometri
 
onjugate time tεc 
onverges to tc, when ε tend to 0. Therefore, as soon as ε is smallenough so that tεc is in a (not ne
essarily so small) neighborhood of some swit
hing time τsof the bang-bang traje
tory x(·), this means that the bang-bang 
onjugate time tc is equal tothat swit
hing time τs.This thesis is organized in the following way.In the �rst 
hapter we re
all some important de�nitions and theorems of linear and nonlin-ear optimal 
ontrol theory. In Chapter 2 we propose a regularization pro
edure for bang-bangoptimal 
ontrol problems with single-input 
ontrol-a�ne systems and prove, under appropri-ate assumptions, 
onvergen
e properties of the optimal solutions of the regularized problemtowards the solutions of the initial problem. These 
onvergen
e results are illustrated in sev-eral examples. In Chapter 3 the regularization pro
edure introdu
ed in Chapter 2 is used andwe prove the 
onvergen
e of the �rst geometri
 
onjugate time tεc of the regularized problemto the �rst 
onjugate time of tc of the bang-bang optimal traje
tory, as ε tends to 0. Severalexamples are provided where the 
onvergen
e properties proved in Theorems 0.0.1 and 0.0.2are illustrated. In Appendix A we re
all �rst and se
ond order su�
ient optimality 
onditionsproved in [78�81℄ and apply them to one of the examples 
onsidered in Chapter 3.2Conditions of Order Two, COnjugate Times, http://apo.enseeiht.fr/
ot
ot/4



Chapter 1Preliminaries on Optimal ControlTheory
1.1 Introdu
tionIn this 
hapter some important de�nitions and results of the optimal 
ontrol theory are given.We start with general explanations of the main elements of an optimal 
ontrol problem andgive some motivations for the study of these problems. Se
tion �1.2 gives a brief histori
aloverview of the optimal 
ontrol theory. In �1.3 we present some important results of the linearoptimal 
ontrol theory and an example of a linear optimal 
ontrol problem. Some resultsof the nonlinear optimal 
ontrol theory are presented in �1.4 together with two examples.For both linear and nonlinear general optimal 
ontrol problems the Pontryagin maximumprin
iple is formulated and in �1.5 a proof of this theorem is given for a general nonlinearminimal time optimal 
ontrol problem, using needle-like variations whi
h are needed to derivethe main result of Chapter 2 (Theorem 2.5.1). In �1.6 we derive the maximization 
ondition ofPontryagin maximum prin
iple for a minimal time problem using Gamkrelidze's generalized
ontrols.All of us already tried, in some o

asion, to keep in balan
e a ball on a �nger (i.e., solvethe problem of the inverted pendulum). However it is mu
h more di�
ult to keep in balan
ea double inverted pendulum, that is, a system 
omposed by two balls one over the other,spe
ially if we 
lose our eyes. The 
ontrol theory allows to do it, if we dispose of a suitablemathemati
al model that des
ribes the physi
al pro
ess.The main elements of an optimal 
ontrol problem are: the mathemati
al model whi
hrelates the state x to the input or 
ontrol u by a di�erential system; the initial point orstate x0 and a �nal point x1 or target S; the output of the system whi
h 
hara
terize thepro
ess, i.e., the state of the 
ontrolled obje
t at ea
h instant of time; a set of admissibleinputs or 
ontrols whi
h determine the 
ourse of the pro
ess; the 
ost fun
tional (also 
alled5



performan
e index, or obje
tive fun
tional, or e�ort) that 
onsists of a quantitative 
riteriafor the e�
ien
y of ea
h admissible 
ontrol; and the length of time tf required to rea
h theterminal state.A 
ontrol system is a dynami
al system, whi
h evolves over time, on whi
h we 
an workthrough a 
ommand fun
tion or a 
ontrol, and their origin is vast (me
hani
s, ele
troni
,biology, e
onomy, et
.). Some examples of 
ontrol systems whi
h 
an be modeled and treatedby the theory of 
ontrol systems are: a 
omputer that allows the user to perform a series ofbasi
 
ommands; an e
osystem on whi
h we 
an a
t promoting a parti
ular situation to a
hievea balan
e; nerve tissues forming a network 
ontrolled by the brain pro
essing the stimuli fromoutside and having an e�e
t on the body; a robot performing a spe
i�
 task; a 
ar that we
an 
ommand with the a

elerator, brake and wheel; a satellite or a spa
e
raft.The 
ontrol theory analyzes the properties of su
h systems, with the aim of steering aninitial state to a 
ertain �nal state, eventually respe
ting 
ertain restri
tions. The obje
tive
an be also to stabilize the system making it insensitive to some perturbations (stabilizationproblem), or even to 
ompute the optimal solutions for a 
ertain optimization 
riteria (optimal
ontrol problem). For the 
onstru
tion of the 
ontrol system model, we 
an make use ofdi�erential equations, fun
tional integrals, �nite di�eren
es, partial derivatives, et
. For thisreason the 
ontrol theory is the inter
onne
tion of many mathemati
al areas (see, e.g., [21,38,39, 65, 85, 106℄).The dynami
s of a system de�ne the system possible transformations, o

urring in timein a deterministi
 or random way. An equation is given, or typi
ally a system of di�erentialequations, relating the variables and modeling the dynami
s of the system. The examplesalready given show that the stru
ture and dynami
s of a 
ontrol system may have very di�erentmeanings. In parti
ular, the 
ontrol system 
an be des
ribed by dis
rete, 
ontinuous, or hybridtransformations or, more generally, on a time s
ale or measure 
hain [43, 45, 72℄.Consider a 
ontrol system whose state at a given moment is represented by a ve
tor. The
ontrols are fun
tions or parameters, usually subje
t to restri
tions, whi
h a
t on the system inthe form of outside for
es that a�e
t the dynami
s. Given the system of di�erential equationswhi
h models the dynami
s of the system, it is then ne
essary to use the available informationand features of the problem to 
onstru
t the appropriate 
ontrols that will enable us to attainour obje
tive. For example, when we travel in our 
ar a
ting a

ordingly to the 
ode of theroad (at least this is advisable) and we 
onstru
t the travel plan to rea
h our destination,there are some restri
tions on the traje
tory and/or on the 
ontrols, whi
h must be taken into
onsideration.A 
ontrol system is 
alled 
ontrollable if we 
an steer it (in a �nite time) from a giveninitial state to any �nal state. Kalman proved in 1949 an important result on 
ontrollabilitywhi
h 
hara
terizes 
ontrollable linear 
ontrol systems of �nite dimension (Theorem 1.3.9).For nonlinear systems the 
ontrollability problem is mu
h more di�
ult and remains an a
tivedomain of resear
h. 6



On
e the 
ontrollability problem is solved, we may wish to go from an initial state to a�nal state minimizing or maximizing a spe
i�
 
riteria. In this 
ase we are speaking aboutan optimal 
ontrol problem. For example, a driver going from Lisbon to Porto may wish totravel in minimal time, and in that 
ase he will take the highway and spend more moneyand fuel. Another optimal 
ontrol problem is obtained if the driver 
hooses as a 
rite-ria spend less money as possible. The solution to this problem implies to 
hose se
ondaryroads, for free, and he will take a lot more time to his destination (following the internet sitehttp://www.google.pt/maps 
hoosing the highway the driver takes 3h from Lisbon to Portoand by the se
ondary roads 6h45m).The theory of optimal 
ontrol is of great importan
e in aerospa
e engineering, in parti
ularfor 
ondu
tion problems, aero-assisted transfer orbits, development of re
overable laun
hers(the �nan
ial aspe
t here is very important) and problems of atmospheri
 reentry, su
h as thefamous proje
t Mars Sample Return from the European Spa
e Agen
y (ESA) whi
h 
onsistsin sending a spa
e
raft to Mars with the obje
tive of bringing to Earth martian samples(Figure 1.1).

Figure 1.1: Optimal 
ontrol theory has an important role in the aeroespa
ial engineering.1.2 Short histori
al overviewThe 
al
ulus of variations was born in the seventeen 
entury with the 
ontribution of Bernoulli,Fermat, Leibniz and Newton. Some mathemati
ians as H.J. Sussmann and J.C. Willems de-fend that the origin of optimal 
ontrol 
oin
ides with the birth of 
al
ulus of variations, in1697, date of the publi
ation of the solution of the bra
histo
hrone problem by the mathemati-
ian Johann Bernoulli [114℄. The bra
histo
hrone problem (in Greek brakhistos, �the shortest�,and 
hronos, �time�) was studied by Galileu in 1638. The aim was to determine the 
urvebetween two points on a verti
al plane that is 
overed in the least time by a sphere that startsat the �rst point A with zero speed and is 
onstrained to move along the 
urve to the se
ond7

http://www.google.pt/maps


point B, under the a
tion of 
onstant gravity and assuming no fri
tion (optimal sliding, seeFigure 1.2). In 
ontrast to what 
ould be our intuitive �rst answer, the shortest time path
Figure 1.2: Bra
histo
hrone problem.between two points is not a straight line! Galileo believed (wrongly) that the required 
urvewas an ar
 of a 
ir
le, but he had already noti
ed that the straight line is not the shortest timepath. In 1696, Jean Bernoulli posed the problem as a 
hallenge to the best mathemati
ians ofhis time. Jean Bernoulli himself found the solution, as well as his brother Ja
ques Bernoulli,Newton, Leibniz and the Marquis de l'Hopital. The solution is a 
y
loid ar
 starting with averti
al tangent [64,114℄. Skateboarding ramps, as well as the fastest de
reases of aqua-parks,have the form of 
y
loid (Figure 1.3).

Figure 1.3: Cy
loid ar
s lead to fastest de
reases and maximal adrenaline.Some authors go further, remarking that Newton's problem of aerodynami
al resistan
e,proposed and solved by Isaa
 Newton in 1686, in his Prin
ipia Mathemati
a, is a typi
aloptimal 
ontrol problem (see �1.4.8 and e.g. [102, 118℄).In mathemati
s, optimal 
ontrol theory emerged after the Se
ond World War respondingto pra
ti
al needs of engineering, parti
ularly in the �eld of aeronauti
s and �ight dynami
s.The formalization of this theory raised several new questions. For example, the theory ofoptimal 
ontrol motivated the introdu
tion of new 
on
epts for generalized solutions in thetheory of di�erential equations and generated new results on the existen
e of traje
tories.In general, it is 
onsidered that the theory of optimal 
ontrol has emerged in the late8



�fties in the former Soviet Union, with the formulation and demonstration of the Pontryaginmaximum prin
iple by L.S. Pontryagin (Figure 1.4) and his group of 
ollaborators in 1956:V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mish
henko [96℄.

Figure 1.4: Lev Semenovi
h Pontryagin (3/September/1908 � 3/May/1988)Pontryagin and his asso
iates introdu
ed an importante point: they generalized the theoryof 
al
ulus of variations to 
urves that take values on 
losed sets (with boundary). The theoryof optimal 
ontrol is 
losely related to 
lassi
al me
hani
s, in parti
ular variational prin
iples(Fermat's prin
iple, Euler-Lagrange, et
.). In fa
t the maximum prin
iple of Pontryagin gener-alizes the ne
essary 
onditions of Euler-Lagrange and Weierstrass. Some strengths of the newtheory was the dis
overy of the dynami
 programming method, the introdu
tion of fun
tionalanalysis to the theory of optimal systems and the dis
overy of links between the solutions ofan optimal 
ontrol problem and the results on stability of Lyapunov theory [120, 122℄. Later
ame the foundations of sto
hasti
 
ontrol and �ltering in dynami
 systems, game theory,
ontrol of partial di�erential equations and hybrid 
ontrol systems, whi
h are some among themany areas of 
urrent resear
h [2, 106℄.1.3 Linear optimal 
ontrolThe optimal 
ontrol theory is mu
h more simple when the 
ontrol system under study is linear.The nonlinear optimal 
ontrol theory will be re
alled in Se
tion 1.4. Even in our days thelinear 
ontrol theory is one of the areas more used in engineering and its appli
ations (seee.g. [8℄).1.3.1 Statement of the problemLet Mn,p(IR) denote the set of matri
es with n rows and p 
olumns, with entries in IR. Let
I be an interval of IR; A,B, r three lo
ally integrable mappings on I (A,B ∈ L1

loc), taking9



values respe
tively in Mn,n(IR), Mn,m(IR) and Mn,1(IR). Let Ω be a subset of IRm, and let
x0 ∈ IRn. We 
onsider the linear 
ontrol system

ẋ(t) = A(t)x(t) +B(t)u(t) + r(t) , ∀t ∈ I ,

x(0) = x0 ,
(1.1)where the 
ontrols u are mensurable lo
ally bounded mappings over I, taking values on asubset Ω ⊂ IRm.The existen
e theorem for solutions of di�erential equations ensures (see e.g. [121, Chapter11℄), for every 
ontrol u, the existen
e of a unique, absolutely 
ontinuous, solution x(·) : I →IRn for the system (1.1). Let M(·) : I → Mn,n(IR) be the fundamental matrix solution of thehomogeneous linear system ẋ(t) = A(t)x(t), de�ned by Ṁ(t) = A(t)M(t), M(0) = Id. Notethat if A(t) = A is 
onstant over I, then M(t) = etA. Therefore, the solution x(·) of system(1.1) asso
iated to the 
ontrol u is given by

x(t) = M(t)x0 +

∫ t

0
M(t)M(s)−1 (B(s)u(s) + r(s)) ds ,for every t ∈ I.This mapping depends on the 
ontrol u. Therefore, if we 
hange the fun
tion u we obtaina di�erent traje
tory t 7→ x(t) in IRn (see Figure 1.5).

x0

Figure 1.5: The traje
tory solution of the 
ontrol system (1.1) depends on the 
hoi
e of the
ontrol u.In this 
ontext, some questions arise naturally:(i) Given a point x1 ∈ IRn, is there a 
ontrol u su
h that the asso
iated traje
tory x steers
x0 to x1 in a �nite time tf? (see Figure 1.6) This is the 
ontrollability problem.

x0
x(t)

x1 = x(tf )

Figure 1.6: Controllability problem.10



(ii) If the previous question is satis�ed, is there a 
ontrol whose asso
iated traje
torysteers x0 to x1 and minimizes a given fun
tional C(u) (See Figure 1.7). It is an optimal
ontrol problem. The fun
tional C(u) is the optimization 
riteria, and we 
all it 
ost. Forexample if the 
ost is the transfer time from x0 to x1, then we have the so-
alled minimal timeproblem.
x0

x1 = x(tf )

Figure 1.7: Optimal 
ontrol problem1.3.2 Controllability: de�nition and a

essible setConsider the linear 
ontrol system (1.1). In what follows we introdu
e a very important set:the a

essible set, also 
alled attainable set or rea
hable set (see e.g. [53, 62℄).De�nition 1.3.1. The set of a

essible points from x0 in time T > 0 is denoted by A(x0, T )and de�ned by
A(x0, T ) = {xu(T ) | u ∈ L∞([0, T ],Ω)} ,where xu(·) is the solution of system (1.1) asso
iated to the 
ontrol u.In other words, A(x0, T ) is the set of endpoints of the solutions of (1.1) in time T , whenthe 
ontrol u varies (see Figure 1.8). We set A(x0, 0) = {x0}.

x0
A(x0, T )

Figure 1.8: A

essible set.In what follows some properties of the a

essible set for linear 
ontrol systems are given(see, e.g. [62, 121℄ for the respe
tive proofs). 11



Theorem 1.3.2. Consider the linear 
ontrol system in IRn

ẋ(t) = A(t)x(t) +B(t)u(t) + r(t)where Ω ⊂ IRm is 
ompa
t. Let T > 0 and x0 ∈ IRn. Then for every t ∈ [0, T ], A(x0, t) is
ompa
t, 
onvex and varies 
ontinuously with t in [0, T ].Corollary 1.3.3. If we note by AΩ(x0, t) the a

essible set starting at x0 in time t for 
ontrolstaking values in Ω, then we set
AΩ(x0, t) = AConv(Ω)(x0, t) ,where Conv(Ω) is the 
onvex envelope of Ω. In parti
ular, we have A∂Ω(x0, t) = AΩ(x0, t),where ∂Ω is the boundary of Ω.This last result illustrates the bang-bang prin
iple (see Theorem 1.3.15). In fa
t, in manyoptimal 
ontrol problems the optimal 
ontrols take values always on the boundary ∂Ω of the
ontrol 
onstraint set Ω.Remark 1.3.4. We observe that if r = 0 and x0 = 0, then the solution of ẋ = Ax + Bu,

x(0) = 0, is given by
x(t) = M(t)

∫ t

0
M(s)−1B(s)u(s)ds ,and is linear with respe
t to u.This remark lead us to the following proposition.Proposition 1.3.5. Suppose that r = 0, x0 = 0 and Ω = IRm. Then,1. ∀ t > 0 A(0, t) is a ve
torial subspa
e of IRn. Moreover,2. ∀t1, t2, s.t. 0 < t1 < t2, A(0, t1) ⊂ A(0, t2).De�nition 1.3.6. The set A(0) = ∪t≥0A(0, t) is the set of a

essible points (at any time)starting at the origin.Corollary 1.3.7. The set A(0) is a ve
torial subspa
e of IRn.The 
ontrollability de�nition for linear 
ontrol systems follows.De�nition 1.3.8. The 
ontrol system ẋ(t) = A(t)x(t)+B(t)u(t)+r(t) is said to be 
ontrollablein time T if A(x0, T ) = IRn, that is, for every x0, x1 ∈ IRn, there exists a 
ontrol u su
h thatthe asso
iated traje
tory steers x0 to x1 in time T (see Figure 1.9).The following theorem give us a ne
essary and su�
ient 
ondition for 
ontrollability, inthe 
ase where A and B do not depend of t and there are no 
onstraints on the 
ontrol(u(t) ∈ IRm). 12



x0
x1Figure 1.9: ControllabilityTheorem 1.3.9 (Kalman 
ondition). Suppose that Ω = IRm (no 
onstraints on the 
ontrol).The system ẋ(t) = Ax(t) +Bu(t) + r(t) is 
ontrollable in time T (arbitrary) if and only if thematrix C = (B,AB, · · · , An−1B) is of rank n.The matrix C is 
alled the Kalman matrix.Remark 1.3.10. The Kalman 
ondition does not depend on T neither on x0. In other words,if an autonomous linear system is 
ontrollable in time T starting at x0, then is 
ontrollable inany time starting at any point.In Theorem 1.3.9 no 
onstraint on the 
ontrol is 
onsidered. The next theorem is a 
on-trollability result when the 
ontrol is s
alar, i.e., m = 1, and u(t) ∈ Ω ⊂ IR.Theorem 1.3.11. Let b ∈ IRn and Ω ⊂ IR an interval having 0 in its interior. Consider thesystem ẋ(t) = Ax(t) + bu(t), with u(t) ∈ Ω. Then every point of IRn 
an be steered to theorigin in �nite time if and only if the 
ouple (A, b) satis�es the Kalman 
ondition and the realpart of ea
h eigenvalue of A is less or equal than zero.1.3.3 Minimal time problemWe start by formalizing, with the help of the a

essible set A(x0, t), the notion of minimaltime.Consider the 
ontrol system on IRn

ẋ(t) = A(t)x(t) +B(t)u(t) + r(t) ,where the 
ontrols u take values in a 
ompa
t set Ω ⊂ IRm with nonempty interior. Let x0, x1be two points of IRn. Suppose that x1 is a

essible from x0, i.e., suppose that there existsat least one traje
tory steering x0 to x1. Between all the traje
tories that steer x0 to x1 wewould like to 
hara
terize the one that does it in minimal time t̂f (see Figure 1.10).
x0

x1 = x(tf )

Figure 1.10: Whi
h is the traje
tory x with minimal time?13



If t̂f is the minimal time, then for every t < t̂f , x1 6∈ A(x0, t) (in e�e
t, otherwise x1would be a

essible from x0 in a time smaller than t̂f and t̂f would not be the minimal time).Therefore,
t̂f = inf{t > 0 |x1 ∈ A(x0, t)} . (1.2)The value of t̂f is well de�ned be
ause, from Theorem 1.3.2, A(x0, t) varies 
ontinuously with

t, thus {t > 0 |x1 ∈ A(x0, t)} is 
losed in IR. In parti
ular the in�mum in (1.2) is a minimum.The time t = t̂f is the �rst instant su
h that A(x0, t) 
ontains x1 (see Figure 1.11).
x0

x1

A(x0, tf )

A(x0, t)Figure 1.11: Minimal time.On the other hand, we have
x1 ∈ ∂ A(x0, t̂f ) = A(x0, t̂f )\intA(x0, t̂f ) .In fa
t, if x1 belongs to the interior of A(x0, t̂f ), then for t < t̂f 
lose to t̂f , x1 alsobelongs to A(x0, t) sin
e A(x0, t) varies 
ontinuously with t. This 
ontradi
ts the fa
t that t̂fis minimal time.The next theorem states that if a minimal time problem with a linear 
ontrol system inIRn is 
ontrollable then it has at least one solution.Theorem 1.3.12. If the point x1 is a

essible from x0 then there exists a minimal timetraje
tory steering x0 to x1.Remark 1.3.13. We 
an also 
onsider the steering problem to a target that does not redu
eto a single point. Therefore, let (M1(t))0≤t≤tf be a family of 
ompa
t subsets of IRn varying
ontinuously with t. As before, we see that if there exists a 
ontrol u taking values in Ωsteering x0 to M1(tf ), then there exists a minimal time 
ontrol de�ned on [0, t̂f ] steering x0to M(t̂f ).This remark give us a geometri
 vision of the notion of minimum time and lead us to thefollowing de�nition. 14



De�nition 1.3.14. The 
ontrol u is an extremal on [0, t] if the traje
tory of system (1.1)asso
iated to u satis�es x(t) ∈ ∂ A(x0, t).Every minimal time 
ontrol is an extremal. The 
onverse does not hold in general.Optimality 
ondition: maximum prin
iple in the linear 
aseThe next theorem give us a ne
essary and su�
ient 
ondition in order that extremal 
ontrolsare also optimal 
ontrols.Theorem 1.3.15. Consider the linear 
ontrol system






ẋ(t) = A(t)x(t) +B(t)u(t) + r(t) ,

x(0) = x0 ,where the domain of 
ontrol 
onstraints Ω ⊂ IRm is 
ompa
t. Let tf > 0. The 
ontrol uis an extremal on [0, tf ] if and only if there exists a nontrivial solution p(t) of the equation
ṗ(t) = −p(t)A(t) su
h that

p(t)B(t)u(t) = max
w∈Ω

p(t)B(t)w (1.3)for every t ∈ [0, tf ]. The row ve
tor p(t) ∈ IRn is 
alled the adjoint ve
tor.Remark 1.3.16. In the 
ase of a s
alar 
ontrol, and if moreover Ω = [−a, a] where a > 0, themaximization 
ondition (1.3) implies immediately that u(t) = a sign〈p(t), B(t)〉. The fun
tion
ϕ(t) = 〈p(t), B(t)〉 is 
alled a swit
hing fun
tion, and the time ts at whi
h the extremal 
ontrol
u(t) 
hange its sign is 
alled a swit
hing time. It is, in parti
ular, a root of the fun
tion ϕ.The initial 
ondition p(0) depends on x1. As this 
ondition is not dire
tly known, theappli
ation of Theorem 1.3.15 is mostly done indire
tly. Let us see an example.1.3.4 Example: optimal 
ontrol of an harmoni
 os
illator (linear 
ase)Consider a pun
tual mass m, for
ed to move along an axis (Ox), atta
hed to a spring (seeFigure 1.12).

xm

~ι

O Figure 1.12: A spring15



The mass is then drawn towards the origin by a for
e that is assumed equal to −k1(x −
l) − k2(x − l)3, where l is the length of the spring at rest, and k1, k2 are the 
oe�
ients ofsti�ness. We apply to this mass point an external horizontal for
e u(t)~l. The laws of physi
sgive us the motion equation

mẍ(t) + k1(x(t) − l) + k2(x(t) − l)3 = u(t) . (1.4)Moreover we impose a 
onstraint on the external for
e,
|u(t)| ≤ 1 , ∀ t .This means we 
an not apply any external horizontal for
e to the point mass: the externalfor
e 
an only take values on the interval [−1, 1], re�e
ting the fa
t that our power of a
tionis limited.Assume that the initial position and velo
ity of the obje
t are, respe
tively, x(0) = x0 and

ẋ(0) = y0. The problem 
onsists in driving the point mass to the equilibrium position x = lin minimal time 
ontrolling the external for
e u(t) that is applied to this obje
t, and takinginto a

ount the 
onstraint |u(t)| ≤ 1. The fun
tion u is the 
ontrol.Problem 1.3.17. Given the initial 
onditions x(0) = x0 and ẋ(0) = y0, the goal is to �nda fun
tion u(t) whi
h allows the movement of the point mass to its equilibrium position inminimal time.Mathemati
 modelingTo simplify the presentation, we will suppose that m = 1 kg, k1 = 1N.m−1 and l = 0m (wepass to l = 0 by translation). The equation of motion (1.4) is equivalent to the 
ontrolleddi�erential system






ẋ(t) = y(t)

ẏ(t) = −x(t) − k2x(t)
3 + u(t)

(1.5)with x(0) = x0 and ẋ(0) = y0.Writing (1.5) in matri
ial notation we have
Ẋ(t) = AX(t) + f(X(t)) +Bu(t) , X(0) = X0 , (1.6)where

A =

(

0 1

−1 0

)

, B =

(

0

1

)

,

X =

(

x

y

)

, X0 =

(

x0

y0

)

, f(X) =

(

0

−k2x
3

)

.16



In this se
tion we are 
onsidering linear 
ontrol systems, therefore we �xe k2 = 0, andwe do not take into a

ount the nonlinear 
onservative e�e
ts (in Se
tion 1.4, we 
onsidernonlinear 
ontrol systems and take k2 6= 0). If k2 = 0 then f(X) ≡ 0 and the 
ontrol system(1.6) has the form of (1.1) (linear 
ontrol system). We wish to answer the two followingquestions.1. Is there always, for any initial 
ondition x(0) = x0 and ẋ(0) = y0, an horizontal exteriorfor
e (a 
ontrol) that allows to move, in �nite time tf , the point mass to its equilibriumposition x(tf ) = 0 and ẋ(tf ) = 0?2. If the answer to the �rst question is a�rmative, whi
h is the for
e (whi
h is the 
ontrol)that minimizes the transfer time of the point mass to its equilibrium position?System 
ontrollabilityOur system writes in the form






Ẋ = AX +Bu

X(0) = X0with A =

(

0 1

−1 0

) and B =

(

0

1

). We have then
rank (B,AB) = rank

(

0 1

1 0

)

= 2and the eigenvalues of A have zero real part. Therefore, from Theorem 1.3.11, the system is
ontrollable, that is, there exist 
ontrols u satisfying the 
onstraint |u(t)| ≤ 1 su
h that theasso
iated traje
tories steer X0 to 0. We answered a�rmatively to the �rst question.This answer 
orresponds to the physi
al interpretation of the problem. In fa
t, if we do notapply an exterior for
e, that is, if u = 0 then the motion equation is ẍ+ x = 0 and the pointmass will 
ontinues to os
illate, never stopping, in a �nite time, at its equilibrium position.On the other hand, when exterior for
es are applied, we tend to dampen the os
illations. The
ontrol theory predi
ts that we 
an stop the obje
t in a �nite time.Computation of the optimal 
ontrolWe know that there exist 
ontrols that allow to steer the system from X0 to 0 in �nite time.Now we want to 
ompute, 
on
retely, whi
h one of these 
ontrols does it in minimal time. Todo so we apply the Theorem 1.3.15 and obtain
u(t) = sign (〈p(t), B〉) ,17



where p(t) ∈ IR2 is the solution of ṗ = −pA. Let p(t) =

(

p1(t)

p2(t)

). Then, u(t) = sign (p2(t))and ṗ1 = p2, ṗ2 = −p1, that is, p̈2 + p2 = 0. Thus p2(t) = λ cos t + µ sin t. Therefore, theoptimal 
ontrol is pie
ewise 
onstant in intervals of size π and take alternately the values ±1.
• If u = −1, we get the di�erential system







ẋ = y ,

ẏ = −x− 1 .
(1.7)

• If u = +1, we get






ẋ = y ,

ẏ = −x+ 1 .
(1.8)The optimal traje
tory, steering X0 to 0, 
onsists in 
on
atenated pie
es of solutions of (1.7)and (1.8). The solutions of (1.7) and (1.8) are obtained easily: from equation (1.7) we have

(x + 1)2 + y2 = const = R2 and we 
on
lude that the solution 
urves of (1.7) are 
ir
les
entered on x = −1 and y = 0 of period 2π (in fa
t, x(t) = −1 + R cos t and y(t) = R sin t);as solutions of (1.8) we get x(t) = 1 +R cos t and y(t) = R sin t, i.e., the solutions of (1.8) are
ir
les 
entered in x = 1 and y = 0 of period 2π.The optimal traje
tory that steers X0 to 0 follows alternately an ar
 of a 
ir
le 
entered in
x = −1 and y = 0 and an ar
 of a 
ir
le 
entered in x = 1 and y = 0. The detailed study of theoptimal traje
tory and its numeri
al implementation, for every X0, 
an be founded in [121℄.See also Se
tion 2.6 where the optimal 
ontrol problem is solved.1.4 Nonlinear optimal 
ontrolWe now present some te
hniques to analyze nonlinear optimal 
ontrol problems (the proofsof the presented results 
an be found, for example, in [62, 121℄). In parti
ular, we enun
iatethe Pontryagin maximum prin
iple in a more general form than the one we have seen inSe
tion 1.3. The nonlinear example of the spring will be one of the appli
ation examples.1.4.1 Statement of the problemFrom a general point of view, the problem should be presented in a manifoldM , but our pointof view will be lo
al and we work on an open V of IRn small enough. The general optimal
ontrol problem is the following. Consider the 
ontrol system

ẋ(t) = f(t, x(t), u(t)) , x(t0) = x0 , (1.9)18



where f is a mapping of 
lass C1 1 from I × V × U into IRn, I is an interval of IR, V is anopen set of IRn, U is an open set of IRm, (t0, x0) ∈ I × V . We suppose that the 
ontrols u(·)belong to a subset of L∞
loc(I, IRm).These hypotheses assure, for every 
ontrol u(·), the existen
e and uniqueness of a maximalsolution xu(·) over an interval J ⊂ I, of the Cau
hy problem (1.9) (see e.g. [121, Chapter 11℄).In what follows we will 
onsider, without loss of generality, t0 = 0.De�nition 1.4.1. Let tf > 0, tf ∈ I. A 
ontrol fun
tion u(·) ∈ L∞([0, tf ], IRm) is saidadmissible on [0, tf ] if the traje
tory x(·), solution of (1.9) asso
iated to u(·), is well de�nedon [0, tf ]. The set of admissible 
ontrols on [0, tf ] is denoted Utf ,IRm , and the set of admissible
ontrols on [0, tf ] taking their values in Ω is denoted Utf ,Ω.In what follows we will abbreviate the notation for admissible 
ontrols taking value in IRmwriting Utf .Let f0 be a fun
tion of 
lass C1 over I × V ×U , and g a 
ontinuous fun
tion over V . Forevery 
ontrol u(·) ∈ Utf we de�ne the 
ost of the asso
iated traje
tory xu(·) over the interval

[0, tf ] by
C(tf , u) =

∫ tf

0
f0(t, xu(t), u(t))dt + g(tf , xu(tf )) .Let M0 and M1 be two subsets of V . The optimal 
ontrol problem is to 
ompute the traje
-tories xu(·) solutions of

ẋu(t) = f(t, xu(t), u(t)) ,su
h that xu(0) ∈M0, xu(tf ) ∈M1, and minimizing the 
ost C(tf , u). We say that the optimal
ontrol has free �nal time if the �nal time tf is free, otherwise we say that the problem has�xed �nal time.1.4.2 End-point mappingConsider for the system (1.9) the following optimal 
ontrol problem: given a point x1 ∈ IRn,�nd a time tf and a 
ontrol u over [0, tf ] su
h that the traje
tory xu asso
iated to the 
ontrol
u, solution of (1.9), satis�es

xu(0) = x0 , xu(tf ) = x1 .This leads us to the following de�nition.1F.H. Clarke is the author of the so-
alled Nonsmooth Analysis 
reated in the seventies whi
h allows thestudy of more general optimal 
ontrol problems, where the used fun
tions are not ne
essarily di�erentiablein the 
lassi
 sense. For a detailed study on Nonsmooth Analysis see, e.g., [30�33℄ and the referen
es 
itedtherein. 19



De�nition 1.4.2. Let tf > 0. The end-point mapping in time tf of the 
ontrol system (1.9)starting in x0 is the mapping
Etf : Utf −→ IRn

u 7−→ xu(tf ) .In other words, the end-point mapping in time tf asso
ies to a 
ontrol u the �nal point ofthe traje
tory asso
iated to the 
ontrol u (see Figure 1.13).Remark 1.4.3. We also 
an denote the end-point mapping by E(x0, tf , u) (see, e.g., Se
tion�1.5).
x0

xu(·, x0)

xu(tf , x0)Figure 1.13: End-point mapping.A very important issue in the theory of optimal 
ontrol is the study of the map Etf ,des
ribing its image, singularities, regularity, et
. The answer to these questions depends,obviously, on the spa
e Utf and on the shape of the system (on the fun
tion f). With all thegenerality we have the following result (see, e.g., [16, 53, 106℄).Proposition 1.4.4. Consider the system (1.9) where f is Cp, p ≥ 1, and let Utf ⊂ L∞([0, tf ], IRm)be the domain of Etf , that is, the set of 
ontrols whose asso
iated traje
tory is well de�nedover [0, tf ]. Then Utf is an open set of L∞([0, tf ], IRm), and Etf is Cp in the L∞ sense.Moreover the Fré
het di�erential of Etf at a point u ∈ Utf is given by the linearized systemat u in the following way. Let, for every t ∈ [0, tf ],
A(t) =

∂f

∂x
(t, xu(t), u(t)) , B(t) =

∂f

∂u
(t, xu(t), u(t)) .The linearized 
ontrol system

ẏv(t) = A(t)yv(t) +B(t)v(t)

yv(0) = 0is 
alled the linearized system along the traje
tory xu. The Fré
het di�erential of Etf at u isthen the mapping dEtf (u) su
h that, for every v ∈ L∞([0, tf ], IRm),
dEtf (u) · v = yv(tf ) = M(tf )

∫ tf

0
M−1(s)B(s)v(s)ds20



where M is the fundamental matrix of the linearized system, i.e., the matri
ial solution of
Ṁ = AM , M(0) = Id.The previous result 
an be improved for 
ontrol-a�ne systems (see [106, 119℄).De�nition 1.4.5. A 
ontrol-a�ne system is a system of the form

ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)) ,where fi are ve
tor �elds of IRn.Proposition 1.4.6. Consider a smooth 
ontrol-a�ne system, and let Utf be the domain of
Etf . Then Utf is an open set of L2([0, tf ], IRm), and the end-point mapping Etf is smooth inthe L2 sense, and is analyti
 if the ve
tor �eld are analyti
.1.4.3 A

essible set and 
ontrollabilityDe�nition 1.4.7. The a

essible set in a time tf for the system (1.9), denoted by A(x0, tf ),is the set of all extremities in time tf of the solutions of the system starting at x0 in time
t = 0. In other words, is the image of the end-point mapping in time tf .Theorem 1.4.8. Consider the 
ontrol system

ẋ = f(t, x, u) , x(0) = x0 ,where the fun
tion f is C1 over IR1+n+m, and the 
ontrols u belong to the set Utf ,Ω of mea-surable fun
tions taking values in a 
ompa
t Ω ⊂ IRm. We suppose that- there exists a positive real b su
h that the asso
iated traje
tory is uniformly bounded by
b over [0, tf ], i.e.,

∃b > 0 | ∀u ∈ U ∀t ∈ [0, tf ] ‖xu(t)‖ ≤ b , (1.10)- for every (t, x), the set of velo
ity ve
tors
V (t, x) = {f(t, x, u) |u ∈ Ω} (1.11)is 
onvex.Then the set A(x0, t) is 
ompa
t and varies 
ontinuously in t over [0, tf ].Remark 1.4.9. The hypothesis (1.10) is not a 
onsequen
e of the other hypotheses and isindispensable. In fa
t, 
onsider the system ẋ = x2 + u, x(0) = 0, where we suppose that

|u(t)| ≤ 1 and that the �nal time is tf = π
2 . Then for every 
ontrol u 
onstant equal to c,with 0 < c < 1, the traje
tory asso
iated is xc(t) =

√
c tan

√
ct, therefore is well de�ned over

[0, tf ], but when c tends to 1 then xc(tf ) tends to +∞ (see Figure 1.14). On the other handit is easy to see that in this example the set of admissible 
ontrols, taking values in [−1, 1], isthe set of measurable fun
tions su
h that u(t) ∈ [−1, 1[.21



Figure 1.14: Traje
tory xc(t) of example in Remark 1.4.9, for t ∈ [0, π
2 ] and c = 0.5; 0.75; 0.9.Remark 1.4.10. Analogously, the 
onvexity hypothesis (1.11) is ne
essary (see [62, Exam-ple 2,pag. 244℄).De�nition 1.4.11. The system (1.9) is said to be 
ontrollable (in an arbitrary time) startingat x0 if

⋃

T≥0

A(x0, T ) = IRn .The system (1.9) is said to be 
ontrollable in time T if A(x0, T ) = IRn.Arguments based on the impli
it fun
tion theorem allow to dedu
e results on lo
al 
on-trollability of the starting system by the study of the 
ontrollability of the linearized system(see, e.g., [62℄). For example, we dedu
e from the 
ontrollability theorem in the linear 
asethe following proposition.Proposition 1.4.12. Consider the 
ontrol system (1.9) where f(x0, u0) = 0. Let A =
∂f
∂x(x0, u0) and B = ∂f

∂u (x0, u0). If
rank (B|AB| · · · |An−1B) = nthen the nonlinear system (1.9) is lo
ally 
ontrollable at x0.In general the 
ontrollability problem is di�
ult. Di�erent approa
hes are possible. Someof them make use of Analysis, others Geometry, others Algebra, et
. The 
ontrollabilityproblem is 
onne
ted, for example, to the question of knowing when a given semi-group a
tstransitively. There are also some te
hniques to prove, in some 
ases, global 
ontrollability.One of them, an important one, is 
alled enlargement te
hnique (see [53℄).22



1.4.4 Singular 
ontrolsDe�nition 1.4.13. Let u be a 
ontrol de�ned on [0, tf ] su
h that the asso
iated traje
tory
xu starting at x(0) = x0 is de�ned on [0, tf ]. We say that a 
ontrol u (or the traje
tory xu) issingular2 over [0, tf ] if the Fré
het derivative dEtf (u) of the end-point mapping at the point
u is not surje
tive. Otherwise we say that u is regular.Proposition 1.4.14. Let x0 and tf be �xed. If u is a regular 
ontrol, then Etf is an openmap in a neighborhood of u.In other words, at a point x1 a

essible in time tf from x0 by a regular traje
tory x(·), thea

essible set A(x0, tf ) is lo
ally open, i.e., is a neighborhood of the point x1. In parti
ularthis implies that the system is lo
ally 
ontrollable in a neighborhood of the point x1. We alsosay 
ontrollability along the traje
tory x(·). The next proposition follows.Proposition 1.4.15. If u is a regular 
ontrol over [0, tf ], then the system is lo
ally 
ontrollablealong the traje
tory asso
iated to that 
ontrol.Corollary 1.4.16. Let u be a 
ontrol de�ned on [0, tf ] su
h that the asso
iated traje
tory xustarting at x(0) = x0 is de�ned over [0, tf ] and satis�es at time tf

x(tf ) ∈ ∂A(x0, tf ) .Then the 
ontrol u is singular over [0, tf ].Remark 1.4.17. The system 
an be lo
ally 
ontrollable along a singular traje
tory. This is the
ase of the s
alar system ẋ = u3, where the 
ontrol u = 0 is singular.1.4.5 Existen
e of optimal traje
toriesMore than a 
ontrol problem, we 
onsider also an optimization problem: between all thesolutions of the system (1.9) steering 0 to x1, �nd a traje
tory that minimizes (or maximizes)a 
ertain 
ost fun
tion C(tf , u). Su
h a traje
tory, if it exists, is 
alled optimal for that 
ost.The existen
e of optimal traje
tories depende on the regularity of the system and of the 
ost.For a general existen
e theorem see, e.g., [53, 62℄. It 
an also happen that an optimal 
ontroldoes not exist in the 
lass of 
onsidered 
ontrols, but there exists in a wider spa
e . Thisquestion leads us to an important area: the study of regularity of optimal traje
tories. Animportant 
ontribution in this area is given in [34, 36, 123℄, where a systemati
 study of theLips
hitizian regularity of the minimizers on the linear optimal 
ontrol is introdu
ed. Generalresults on the Lips
hitizian regularity of minimizing traje
tories for nonlinear 
ontrol systems
an be founded in [117℄.2In this 
hapter the term �singular� is asso
iated to a geometri
 
ontrol theory de�nition. On the otherhand, please note that, in Chapter 2 �singular 
ontrol� is asso
iated to 
ontrol-a�ne systems when the swit
hingfun
tion vanishes on a nontrivial interval. 23



The following theorem applies to general 
ontrol systems, eventually, with state 
onstraints.Theorem 1.4.18. Consider the 
ontrol system
ẋ(t) = f(t, x(t), u(t)) ,where f is C1 from IR1+n+m into IRn, the 
ontrols u take values in a 
ompa
t Ω ⊂ IRm, andwhere there exist, eventually, 
onstraints on the state variable

c1(x(t)) ≤ 0, ..., cr(x(t)) ≤ 0 ∀ 0 ≤ t ≤ tf = t(u) ,where c1, ..., cr are 
ontinuous fun
tions in IRn. Let M0 and M1 be two 
ompa
ts subsets ofIRn su
h that M1 is a

essible from M0. Let U be the set of 
ontrols taking values in Ω steering
M0 to M1. Let f0 be a C1 fun
tion over IR1+n+m, and g a 
ontinuous fun
tion over IRn. We
onsider the 
ost

C(u) =

∫ t(u)

0
f0(t, x(t), u(t))dt + g(t(u), x(t(u))) ,where t(u) ≥ 0 is su
h that x(t(u)) ∈M1. We suppose that- there exists a positive real b su
h that every traje
tory asso
iated to a 
ontrol u ∈ Utf isuniformly bounded by b over [0, t(u)], i.e.

∃b > 0 | ∀u ∈ U ∀t ∈ [0, t(u)] ‖xu(t)‖ ≤ b ,- for every (t, x) ∈ IR1+n, the augmented set of velo
ity ve
tors
Ṽ (t, x) = {(f0(t, x, u), f(t, x, u)) |u ∈ Ω}is 
onvex.Then there exists an optimal 
ontrol u over [0, t(u)] su
h that the asso
iated traje
tory steers

M0 to M1 in time t(u) with minimal 
ost.For an optimal 
ontrol problem with �xed �nal time we impose t(u) = tf (in parti
ularwe suppose that the target M1 is a

essible from M0 in time tf ).Remark 1.4.19. A more general result 
an be stated where the setsM0 and M1 depend on thetime t, as well as the domain of the 
ontrol 
onstraints (see [62℄).For 
ontrol-a�ne systems the following result holds.Proposition 1.4.20. Consider the a�ne system in IRn

ẋ = f0(x) +

m
∑

i=1

uifi(x) , x(0) = x0, x(tf ) = x1 ,24



with the 
ost
Ctf (u) =

∫ tf

0

m
∑

i=1

u2
i (t)dt ,where tf > 0 is �xed and the 
lass Utf of admissible 
ontrols is the subset of L2([0, tf ], IRm)su
h that1. ∀u ∈ U xu is well de�ned over [0, tf ];2. ∃Btf | ∀u ∈ U ∀t ∈ [0, tf ] ‖xu‖ ≤ Btf .If x1 is a

essible from x0 in time tf , then there exist an optimal 
ontrol steering x0 to x1.1.4.6 Pontryagin maximum prin
ipleGiven an optimal 
ontrol problem for whi
h existen
e and regularity 
onditions are satis�edfor the optimal solution, how to �nd the optimal pro
esses? The answer to this question isgiven by the well known Pontryagin Maximum Prin
iple. For a detailed study on ne
essaryoptimality 
onditions we suggest [30, 105, 121℄.We start by showing that a singular traje
tory 
an be parametrized as a proje
tion of asolution of an hamiltonian system subje
t to a 
onstraint equation. Consider the Hamiltonianfor the 
ontrol system (1.9):

H : IRn × IRn\{0} × IRm → IR
(x, p, u) 7→ H(x, p, u) = 〈p, f(x, u)〉where 〈 , 〉 denotes the usual inner produ
t of IRn.Proposition 1.4.21. Let u be a singular 
ontrol and x a singular traje
tory asso
iated to this
ontrol on [0, tf ]. Then, there exists a 
ontinuous row ve
tor p : [0, tf ] → IRn\{0} su
h thatthe following equations are satis�ed for almost every t ∈ [0, tf ]:

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)) ,

ṗ(t) = −∂H
∂x

(x(t), p(t), u(t)) ,

∂H

∂u
(x(t), p(t), u(t)) = 0 (
onstraint equation)where H is the Hamiltonian of the system.Proof. By De�nition 1.4.13, the pair (x, u) is singular over [0, tf ] if dEtf (u) is not surje
tive.Therefore, there exists a row ve
tor p̄ ∈ IRn\{0} su
h that

∀ v(·) ∈ L∞([0, tf ]) 〈p̄, dEtf (u) · v〉 = p̄

∫ tf

0
M(tf )M−1(s)B(s)v(s)ds = 0 .25



Thus,
p̄M(tf )M−1(s)B(s) = 0 for almost every point of [0, tf ] .Let p(t) = p̄M(tf )M−1(t), t ∈ [0, tf ]. We have that p is a row ve
tor of IRn\{0} and p(tf ) = p̄.Di�erentiating, we get

ṗ(t) = −p(t)∂f
∂x

(x(t), u(t)) .Introdu
ing the Hamiltonian H(x, p, u) = 〈p, f(x, u)〉 we 
on
lude that
ẋ(t) = f(x(t), u(t)) =

∂H

∂p
(x(t), p(t), u(t))and

ṗ(t) = −p(t)∂f
∂x

(x(t), u(t)) = −∂H
∂x

(x(t), p(t), u(t)) .The 
onstraint equation 
omes from p(t)B(t) = 0 be
ause B(t) = ∂f
∂u(x(t), u(t)).De�nition 1.4.22. The row ve
tor p : [0, tf ] → IRn\{0} of Proposition1.4.21 is 
alled adjointve
tor of the system (1.9).Weak maximum prin
ipleConsider the Lagrange problem given by the 
ontrol system

ẋ(t) = f(t, x(t), u(t)) , (1.12)where the 
ontrols u(·) ∈ Utf are de�ned in [0, tf ] and take values in Ω = R
m (there are norestri
tions on the values of the 
ontrol). The asso
iated traje
tories must satisfy x(0) = x0and x(tf ) = x1. The problem 
onsist in minimizing a 
ost of the form

C(u) =

∫ tf

0
f0(t, x(t), u(t))dt , (1.13)where tf is �xed.Asso
iate to the system (1.12) the following augmented system

ẋ(t) = f(t, x(t), u(t))

ẋ0(t) = f0(t, x(t), u(t))
(1.14)and use the notation x̃ = (x, x0) and f̃ = (f, f0). The problem is redu
ed to �nding a traje
-tory solution of (1.14) with x̃0 = (x0, 0) and x̃1 = (x1, x

0(tf )) su
h that the last 
oordinate
x0(tf ) is minimized.The set of a

essible states starting at x̃0 for the system (1.14) is Ã(x̃0, tf ) = ∪u(·)x̃(tf , x̃0, u).The following Lemma is 
ru
ial.Lemma 1.4.23. If the 
ontrol u asso
iated to the 
ontrol system (1.12) is optimal for the 
ost(1.13), then it is singular on [0, tf ] for the augmented system (1.14).26



Proof. Let u be a 
ontrol and x̃ the asso
iated traje
tory, solution of the augmented system(1.14) starting at x̃0 = (x0, 0). If u is optimal for the 
riteria (1.13), then the point x̃(tf )belongs to the boundary of the set Ã(x̃0, tf ). In fa
t, if that was not the 
ase then there wouldexist a neighborhood of the point x̃(tf ) = (x1, x
0(tf )) in Ã(x̃0, tf ) 
ontaining a point ỹ(tf )solution of system (1.14) and su
h that y0(tf ) < x0(tf ), whi
h 
ontradi
ts the optimality ofthe 
ontrol u (see Figure 1.15). Therefore, by Proposition 1.4.14 the 
ontrol ũ is singular forthe augmented system (1.14).

x

x0

x1

x0(tf )

Ã(x̃0, tf )

Figure 1.15: If u is optimal, then x̃(tf ) ∈ ∂Ã(x̃0, tf ).Under the assumptions of the previous lemma, following Proposition 1.4.21, there exists amap p̃ : [0, tf ] → IRn+1\{0} su
h that (x̃, p̃, ũ) is solution of the Hamiltonian system
˙̃x(t) =

∂H̃

∂p̃
(t, x̃(t), p̃(t), u(t)) , ˙̃p(t) = −∂H̃

∂x̃
(t, x̃(t), p̃(t), u(t)) ,

∂H̃

∂u
(t, x̃(t), p̃(t), u(t)) = 0where H̃(t, x̃, p̃, u) = 〈p̃, f̃(t, x̃, u)〉.Writing p̃ = (p, p0) ∈ (IRn × IR)\{0}, where p0 is 
alled the dual variable of the 
ost, weget

(ṗ, ṗ0) = −(p, p0)

(

∂f
∂x 0
∂f0

∂x 0

)

.In parti
ular, ṗ0(t) = 0, that is, p0 is 
onstant in [0, tf ]. As the ve
tor p̃(t) is de�ned up toa multipli
ative s
alar, we 
hose p0 ≤ 0. On the other hand, H̃ = 〈p̃, f̃(t, x, u)〉 = pf + p0f ,thus
∂H̃

∂u
= 0 = p

∂f

∂u
+ p0 ∂f

0

∂u
.We get the following result. 27



Theorem 1.4.24 (Weak maximum prin
iple � Hestenes's theorem [49℄). If the 
ontrol uasso
iated to the system (1.12) is optimal for the 
ost (1.13), then there exists a map p(·)absolutely 
ontinuous on [0, tf ], taking values in IRn, 
alled adjoint ve
tor, and a real number
p0 ≤ 0, su
h that the 
ouple (p(·), p0) is nontrivial, and the following equations are satis�edfor almost every t ∈ [0, tf ]

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)),

ṗ(t) = −∂H
∂x

(t, x(t), p(t), p0, u(t)),

∂H

∂u
(t, x(t), p(t), p0, u(t)) = 0,

(1.15)where H is the Hamiltonian
H(t, x, p, p0, u) = 〈p, f(t, x, u)〉 + p0f0(t, x, u)asso
iated to the system (1.12) and to the 
ost (1.13).The Theorem 1.4.24 has its origin in the works of Graves of 1933, being �rstly obtainedby Hestenes in 1950 [49℄. It is a parti
ular 
ase of Pontryagin Maximum Prin
iple where norestri
tions on the 
ontrols are 
onsidered (i.e., u(t) ∈ Ω with Ω = IRm).Pontryagin maximum prin
iple (strong version of Theorem 1.4.24)The Pontryagin maximum prin
iple is a strong version of Theorem 1.4.24 where restri
tionson the values of the 
ontrols are allowed (Ω ⊂ IRm 
an be a 
losed set). The existen
e of su
hrestri
tions are imposed by appli
ations and 
hange 
ompletely the nature of the solutions.The Pontryagin maximum prin
iple is mu
h more di�
ult to prove than Hestenes's Theorem(see, e.g., [62, 96℄).The general formulation is the following.Theorem 1.4.25 (Pontryagin maximum prin
iple). Consider the 
ontrol system in IRn

ẋ(t) = f(t, x(t), u(t)) , (1.16)where f : IR × IRn × IRm → IRn is of 
lass C1 and the 
ontrols are bounded mensurablemappings de�ned on the interval [0, tf (u)] of IR+ and taking values in Ω ⊂ IRm. Let M0and M1 be two subsets of IRn. We denote by Ut(u),Ω the set of admissible 
ontrols u whoseasso
iated traje
tories steer an initial point of M0 to a �nal point of M1 in time t(u) < tf (u).For su
h a 
ontrol we de�ne the 
ost of a 
ontrol u on [0, t] by
C(u) =

∫ t

0
f0(s, x(s), u(s))ds + g(t, x(t)) ,28



where f0 : IR× IRn × IRm → IR and g : IR× IRn → IR are of 
lass C1, and x is the traje
torysolution of (1.16) asso
iated to the 
ontrol u.We 
onsider the following optimal 
ontrol problem: determine a traje
tory steering M0 to
M1 and minimizing the 
ost. The �nal time tf 
an be �xed or not.If the 
ontrol u(·) ∈ Utf ,Ω asso
iated to the traje
tory x(·) is optimal on [0, tf ], then thereexists a mapping p(·) : [0, tf ] → IRn absolutely 
ontinuous 
alled adjoint ve
tor, and a realnumber p0 ≤ 0, su
h that the pair (p(·), p0) is nontrivial, and su
h that, for almost every
t ∈ [0, tf ],

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)) ,

ṗ(t) = −∂H
∂x

(t, x(t), p(t), p0, u(t)) ,

(1.17)where H(t, x, p, p0, u) = 〈p, f(t, x, u)〉 + p0f0(t, x, u) is the Hamiltonian of the system and wehave the maximization 
ondition almost everywhere on [0, tf ]

H(t, x(t), p(t), p0, u(t)) = max
w∈Ω

H(t, x(t), p(t), p0, w) . (1.18)If the �nal time to steer the target M1 is not �xed, we have the 
ondition
max
w∈Ω

H(tf , x(tf ), p(tf ), p0, w) = −p0∂g

∂t
(tf , x(tf )) (1.19)at the �nal time tf .If M0 and M1 (or just one of these two sets) are manifolds in IRn having tangent spa
esat x(0) ∈ M0 and x(tf ) ∈ M1, then the adjoint ve
tor 
an be 
onstru
ted in su
h a way thatthe transversality 
onditions hold at both extremities (or at just one of them):

p(0)⊥T x(0)M0 (1.20)and
p(tf ) − p0 ∂g

∂x
(tf , x(tf ))⊥T x(tf )M1 . (1.21)Remark 1.4.26. Under the 
onditions of Theorem 1.4.25, we have moreover that

d

dt
H(t, x(t), p(t), p0, u(t)) =

∂H

∂t
(t, x(t), p(t), p0, u(t))for almost every t ∈ [0, tf ]. In parti
ular if the augmented system is autonomous, i.e., if f and

f0 do not depend on t, then H does not depend on t, and we have
max
w∈Ω

H(x(t), p(t), p0, w) = constant ∀t ∈ [0, tf ] .Note that this equality is then true everywhere on [0, tf ] (in fa
t this fun
tion of t is Lips-
hitzian). 29



Remark 1.4.27. The 
onvention p0 ≤ 0 lead us to the maximum prin
iple. The 
onvention
p0 ≥ 0 will lead to the minimum prin
iple, i.e., the 
ondition (1.18) will be a minimum
ondition.Remark 1.4.28. In the 
ase where Ω = IRm, i.e., when there are no 
onstraints on the 
ontrol,the maximization 
ondition (1.18) be
omes ∂H

∂u = 0, and we �nd the weak maximum prin
iple(Theorem 1.4.24).De�nition 1.4.29. An extremal for the optimal 
ontrol problem is a 4-tuple (x(·), p(·), p0, u(·))solution of the equations (1.17) and (1.18). If p0 = 0, we say that the extremal is abnormal,and if p0 6= 0 the extremal is said to be normal.The designation abnormal is histori
al. We know nowadays that abnormal minimizers areusually �normal� in many optimization problems. For a study on abnormal extremals see,e.g., [7℄.Remark 1.4.30. When Ω = IRm, i.e., when there is no 
onstraint on the 
ontrol, then thetraje
tory x(·) asso
iated to the 
ontrol u(·) is a singular traje
tory of the system (1.16) ifand only if it is the proje
tion of an abnormal extremal (x(·), p(·), 0, u(·)).This results on the Hamiltonian 
hara
terization of singular traje
tories (
f. Proposition1.4.21). Note that on
e p0 = 0, the traje
tories do not depend on the 
ost. They are intrinsi
to the system. The fa
t that they 
an be optimal 
an be explained in the following way: ingeneral, a singular traje
tory has a rigidity property, i.e., it's the only traje
tory joining twoextremities, and therefore in parti
ular it is optimal, independently of the 
hosen optimization
riteria.This relation between abnormal extremals and singular traje
tories, for Ω = IRm, showsvery well the di�
ulty of proving the existen
e of su
h traje
tories.De�nition 1.4.31. The 
onditions (1.20) and (1.21) are 
alled transversality 
onditions onthe adjoint ve
tor. The 
ondition (1.19) is 
alled transversality 
ondition on the Hamiltonian.Remark 1.4.32. The minimal time problem 
orresponds to the 
ase where f0 = 1 and g = 0,or f0 = 0 and g(t, x) = t. In these two 
ases the transversality 
onditions are the same.Remark 1.4.33. The transversality 
ondition over the Hamiltonian (1.19) is valid only if the�nal time tf to attain the target is not �xed. In this 
ase, if the fun
tion g does not depend ontime t (whi
h is true, for example, for the Lagrange problem), then 
ondition (1.19) be
omes
max
w∈Ω

H(tf , x(tf ), p(tf ), p0, w) = 0 ,or even, if u is 
ontinuous at time tf ,
H(tf , x(tf ), p(tf ), p0, w) = 0 .In other words, the Hamiltonian vanishes at the �nal time.30



Moreover, if the augmented system is autonomous, i.e., if f and f0 do not depend on t,then from Remark 1.4.26 we have
max
w∈Ω

H(x(t), p(t), p0, w) = 0 ∀ t ∈ [0, tf ]along any extremal.The Pontryagin maximum prin
iple is a deep and important result in 
ontemporary Math-emati
s, with many appli
ations in Physi
s, Biology, Management, E
onomy, So
ial S
ien
es,Enginery, et
. (see, e.g., [21℄). There are other more general versions of the maximum prin
iplefor non smooth or hybrid dynami
s (see for example [30,111,112℄ and the referen
es therein).1.4.7 Example: optimal 
ontrol of an harmoni
 os
illator (nonlinear 
ase)Consider again the example (nonlinear) of the spring, modeled by the 
ontrol system
ẋ(t) = y(t) ,

ẏ(t) = −x(t) − 2x(t)3 + u(t) ,where we admit as 
ontrols every fun
tion u(·) pie
ewise 
ontinuous su
h that |u(t)| ≤ 1. Theaim is to move the spring from any initial position (x0, y0 = ẋ0) to its equilibrium position
(0, 0) in minimal time t∗.Let us apply the Pontryagin maximum prin
iple to this problem. The Hamiltonian is givenby

H(x, y, px, py, p
0, u) = pxy + py(−x− 2x3 + u) + p0 .If (x, y, px, py, p

0, u) is an extremal, then
ṗx = −∂H

∂x
= py(1 + 6x2) and ṗy = −∂H

∂y
= −px .Noti
e that sin
e the adjoint ve
tor (px, py, p

0) should be nontrivial, py 
an not vanish on aninterval (otherwise we would also have px = −ṗy = 0 and, by the vanishing of the Hamiltonian,we would have also p0 = 0). On the other hand, the maximization 
ondition give us
py(t)u(t) = max

|w|≤1
py(t)w .In parti
ular, the optimal 
ontrols are su

essively equal to ±1, that is, the bang-bang prin
ipleholds (see, e.g., [62, 65℄). Con
retely, we 
an say that

u(t) = sign(py(t)) where py is the solution of 


p̈y(t) + py(t)(1 + 6x(t)2) = 0

py(t∗) = cosα, ṗy(t∗) = − sinα ,

α ∈ [0, 2π[. 31



Considering the time inversion (t 7→ −t) our problem is equivalent to the minimal timeproblem for the system






























ẋ(t) = −y(t)
ẏ(t) = x(t) + 2x(t)3 − sign(py(t))

ṗy(t) = px(t)

ṗx(t) = −py(t)(1 + 6x(t)2) .Given the initial 
onditions x0 and ẋ0 (state and initial velo
ity of the mass), the problemis easily solved. In [121℄ a resolution of the system is done using the Computer AlgebraSystem (CAS) Maple. For the use of Maple on the 
al
ulus of variations and optimal 
ontrolsee, e.g., [47, 64℄.1.4.8 Example: Newton's problem of minimal resistan
eNewton's problem of minimal resistan
e is one of the �rst problems of optimal 
ontrol: it wasproposed, and its solution given, by Isaa
 Newton in his masterful Prin
ipia Mathemati
a, in1686. The problem 
onsists of determining, in dimension three, the shape of an axis-symmetri
body, with assigned radius and height, whi
h o�ers minimum resistan
e when it is movingin a resistant medium. The problem has a very ri
h history and is well do
umented in theliterature (see e.g. [101℄).Newton has indi
ated in the Mathemati
al prin
iples of natural philosophy the 
orre
tsolution to his problem (see Figure 1.16). He has not explained, however: how su
h solution
an be obtained; how the problem is formulated in the language of mathemati
s. This hasbeen the work of many mathemati
ians sin
e Newton's time (see e.g. [22,115,118℄). Extensionsof Newton's problem is a topi
 of 
urrent intensive resear
h, with many questions remainingopen 
hallenging problems. Re
ent results, obtained by relaxing Newton's hypotheses, in
lude:non-symmetri
 bodies [23℄; one-
ollision non-
onvex bodies [37℄; 
ollisions with fri
tion [51℄;multiple 
ollisions allowed [92℄; temperature noise of parti
les [93, 94℄. Here we are interestedin the 
lassi
al problem, under the 
lassi
al hypotheses 
onsidered by Newton.Newton's problem of minimal resistan
e in dimension threeNewton's aerodynami
al problem, in dimension three, is a 
lassi
 problem (see e.g. [11,44,57℄).It 
onsists in joining two given points (0, 0) and (T, h) of the plane by a 
urve's ar
 that, whileturning around a given axis, generate the body of revolution o�ering the least resistan
e whenmoving in a �uid in the dire
tion of the axis.In the 
lassi
al three dimensional Newton's problem of minimal aerodynami
al resistan
e,the resistan
e for
e is given by R [ẋ(·)] =
∫ T
0

t
1+ẋ(t)2 dt. Minimization of this fun
tional is atypi
al problem of the 
al
ulus of variations. Most part of the old literature wrongly assume the32



Figure 1.16: Newton's solid.
lassi
al Newton's problem to be �one of the �rst appli
ations of the 
al
ulus of variations�. Thetruth, as Legendre �rst noti
ed in 1788 (see [12℄), is that some restri
tions on the derivativesof admissible traje
tories must be imposed: ẋ(t) ≥ 0, t ∈ [0, T ]. This restri
tion is 
ru
ial,be
ause without it there exists no solution, and the problem su�ers from Perron's paradox [125,�10℄: sin
e the a priori assumption that a solution exists is not ful�lled, does not make anysense to try to �nd it by applying ne
essary optimality 
onditions. It turns out that, with thene
essary restri
tion, the problem is better 
onsidered as an optimal 
ontrol one (see [116, p. 67℄and [118℄). Corre
t formulation of Newton's problem of minimal resistan
e in dimension threeis (
f. e.g. [44, 115℄):
R [u(·)] =

∫ T

0

t

1 + u(t)2
dt −→ min ,

ẋ(t) = u(t) , u(t) ≥ 0 ,

x(0) = 0 , x(T ) = h , h > 0 ,

(1.22)where we minimize the resistan
e R in the 
lass of 
ontinuous fun
tions x : [0, T ] → R withpie
ewise 
ontinuous derivative.A

ording to Pontryagin Maximum Prin
iple (see Theorem 1.4.25) if (x(·), u(·)) is a mini-mizer of problem (1.22), then there exists a non-zero pair (p0, p(·)), where p0 ≤ 0 is a 
onstantand p(·) is an absolutely 
ontinuous fun
tion on [0, T ], su
h that the following 
onditions aresatis�ed for almost all t in [0, T ]:̇
p(t) = −∂H

∂x
(u(t), p0, p(t)) = 0 (1.23)

H(p0, p(t), u(t)) = max
w≥0

H(p0, p(t), w) (1.24)where the Hamiltonian H is de�ned by
H(p0, p, u) = pu+ p0 t

1 + u2
. (1.25)33



The adjoint equation (1.23) asserts that p(t) ≡ c, with c a 
onstant. From the maximization
ondition (1.24) it follows that p0 6= 0 (there are no abnormal extremals for problem (1.22)).Proposition 1.4.34. All the Pontryagin extremals (x(·), p0, p(·), u(·)
) of problem (1.22) arenormal extremals (p0 6= 0), with p(·) a negative 
onstant: p(t) ≡ −λ, λ > 0, t ∈ [0, T ].Proof. The Hamiltonian H for problem (1.22), H (p0, p, u

)

= pu + p0 t
1+u2 , does not dependon x. Therefore, by (1.23) we 
on
lude that

ṗ(t) = −∂H
∂x

(

p0, p(t), u(t)
)

= 0 ,that is, p(t) ≡ c, c a 
onstant, for all t ∈ [0, T ]. If c = 0, then p0 < 0 (be
ause one 
an nothave both p0 and p zero) and the maximization 
ondition (1.24) simpli�es to
p0 t

1 + u2(t)
= max

w≥0

{

p0 t

1 + w2

}

. (1.26)From (1.26) we 
on
lude that the maximum is not a
hieved (w → ∞). Therefore c 6= 0.Similarly, for c > 0 the maximum
cu(t) + p0 t

1 + u2(t)
= max

w≥0

{

cw + p0 t

1 + w2

}does not exist, and we 
on
lude that c < 0. We 
an �x p(t) ≡ −λ, with λ ∈ IR+. It remainsto prove that p0 6= 0. If we assume that p0 = 0, then the maximization 
ondition reads
− λu(t) = max

w≥0
{−λw} , λ ∈ IR+ , (1.27)and it follows u(t) ≡ 0 and x(t) ≡ c2, c2 a 
onstant (ẋ(t) = u(t)). This is not possible,given the boundary 
onditions x(0) = 0 and x(T ) = h with h > 0. Therefore p0 6= 0 and we
on
lude that there exists no abnormal Pontryagin extremals.Remark 1.4.35. If (x(·), p0, p(·), u(·)

) is an extremal, then (x(·), γp0, γp(·), u(·)
) is also a Pon-tryagin extremal, for all γ > 0. Therefore one 
an �x, without loss of generality, p0 = −1.From Proposition 1.4.34 and Remark 1.4.35 the Hamiltonian (1.25) takes the form

H (u) = −λu− t

1 + u2
, λ > 0 . (1.28)For u > 0, if follows from the maximization 
ondition, H(t, u(t)) = maxw>0

{

−λw − t
1+w2

}that
∂H

∂u
(t, u(t)) = 0 ⇔ −λ+

2tu(t)

(1 + u2(t))2
= 0 ⇔ tu(t)

(1 + u2(t))2
=
λ

2
,that is,

tu(t)

(1 + u2(t))2
= q , with q a stri
tly positive 
onstant. (1.29)34



The 
onservation law (1.29) is known as Newton's di�erential equation.It is not easy to prove the existen
e of a solution for problem (1.22) with 
lassi
al argu-ments. We will use a di�erent approa
h. We will show, following [118℄, that for problem (1.22)the Pontryagin extremals are absolute minimizers. This means that to solve problem (1.22)it is enough to identify its Pontryagin extremals.Theorem 1.4.36. Pontryagin extremals for problem (1.22) are absolute minimizers.Proof. Let û(·) be a Pontryagin extremal 
ontrol for problem (1.22). We want to prove that
∫ T

0

t

1 + u2(t)
dt ≥

∫ T

0

t

1 + û2(t)
dtfor any admissible 
ontrol u(·). Given (1.28), we 
on
lude from the maximization 
ondition(1.24) that

− λû(t) − t

1 + û2(t)
≥ −λu(t) − t

1 + u2(t)
(1.30)for all pie
ewise 
ontinuous fun
tions u(·) de�ned in [0, T ] satisfying u(t) ≥ 0. Having in mindthat all the admissible pro
esses (x(·), u(·)) of (1.22) satisfy

∫ T

0
u(t)dt =

∫ T

0
ẋ(t)dt = x(T ) − x(0) = h ,we only need to integrate (1.30) to 
on
lude that û(·) is an absolute 
ontrol minimizer:

∫ T

0

(

−λû(t) − t

1 + û2(t)

)

dt ≥
∫ T

0

(

−λu(t) − t

1 + u2(t)

)

dt

⇔ λ

∫ T

0
û(t)dt +

∫ T

0

t

1 + û2(t)
dt ≤ λ

∫ T

0
u(t)dt +

∫ T

0

t

1 + u2(t)
dt

⇔ λh+

∫ T

0

t

1 + û2(t)
dt ≤ λh+

∫ T

0

t

1 + u2(t)
dt

⇔
∫ T

0

t

1 + û2(t)
dt ≤

∫ T

0

t

1 + u(t)2
dt .We 
on
lude,

R[û(·)] ≤ R[u(·)] ,and û(·) is a absolute minimizer for Newton's problem of minimal resistan
e.Theorem 1.4.37 (Solution of Newton's problem of minimal resistan
e). The solution x̂(·)for Newton's problem of minimal resistan
e (1.22) is given by x̂(t) = 0 for 0 ≤ t ≤ ξ and,when ξ ≤ t ≤ T , it is given in the parametri
 form by










t(u) = λ
2

(

1
u + 2u+ u3

)

,

x(u) = λ
2

(

− lnu+ u2 + 3
4u

4
)

− 7λ
8

(1.31)where the 
onstant λ is de�ned by the boundary 
ondition x(T ) = h and ξ = 2λ.35



Proof. Let x̂(·) be the solution of Newton's problem of minimal resistan
e (1.22).The solution, x̂(·), is given by two di�erent 
onditions: �rst is a line segment with startpoint at the origin of the frame of referen
e tOx and end point at the point (ξ, 0) in thepositive semi-axis tt; after the point (ξ, 0), Newton's solution follows the so-
alled Newton's
urve.Let us study in detail ea
h one of the parts of the solution of Newton's problem.As we have observed, in Newton's problem (1.22) the 
ontrols take values in a 
losedinterval of IR, thus two 
ases must be taken in 
onsideration: u = 0 and u > 0.When u = 0 the solution is given by x(t) = 0: if u(t) = 0 then, as u(t) = ẋ(t), we have that
ẋ(t) = 0, therefore x(t) = c, with c a real 
onstant; from the boundary 
ondition x(0) = 0 we
on
lude that c = 0. The absolute minimizer (
f. Theorem 1.4.36) starts with the line segment
x(t) = 0, with t ∈ [0, ξ] and 0 < ξ < T (after some point (ξ, 0), u > 0 sin
e x(T ) = h > 0).On the other hand, when u > 0, we 
an de�ne in a parametri
 form the solution ofNewton's problem from Newton's di�erential equation (1.29) (whi
h derives from Pontryaginmaximization 
ondition).From equation (1.29) we 
an write t as a fun
tion of the parameter u, that is,

tu

(1 + u2)2
=
λ

2
⇔ 2ut = λ(1 + u2)2 ⇔ t =

λ

2

(

1

u
+ 2u+ u3

)

.We de�ne in a parametri
 form t(·) by
t(u) =

λ

2

(

1

u
+ 2u+ u3

)

.To de�ne in a parametri
 form x(·), re
all the 
hain rule
d

du
x(t(u)) =

dx

dt

dt

du
= u

dt

du
,sin
e dx

dt = u. Therefore, x(u) =
∫

u dt
dudu . We have,

dt

du
(u) =

λ

2

(

− 1

u2
+ 2 + 3u2

)

,thus,
x(u) =

∫

λ

2
u

(

− 1

u2
+ 2 + 3u2

)

du =
λ

2

(

− lnu+ u2 +
3

4
u4

)

+m, (1.32)where m is a 
onstant.To 
ompute the 
onstant m on the previous equation, we must 
ompute ξ. At (ξ, 0), by
ontinuity of x̂(·), both bran
hes 
oin
ide.Let û(t) be the minimizing 
ontrol of Newton's problem. Then,
H(ξ, 0) = H (ξ, û(ξ)) . (1.33)36



By de�nition of the Hamiltonian for Newton's problem of minimal resistan
e, we have
H(ξ, 0) = −λ× 0 − ξ

1 + 02
= −ξ and H(ξ, û(ξ)) = −λû(ξ) − ξ

1 + (û(ξ))2
.Therefore, from (1.33), we have

H(ξ, 0) = H (ξ, û(ξ)) ⇔ ξ = λû(ξ) +
ξ

1 + (û)2
. (1.34)On the other hand, û(ξ) must satisfy Newton's di�erential equation (1.29), thus

ξû(ξ)
(

1 + (û(ξ))2
)2 =

λ

2
. (1.35)Let us solve equation (1.34) in order to 
ompute the 
onstant λ,

ξ =
ξ

1 + (û(ξ))2
+ λû(ξ) ⇔ − ξ

1 + (û(ξ))2
+ ξ = λû(ξ) ⇔

−ξ + ξ
(

1 + (û(ξ))2
)

1 + (û(ξ))2
= λû(ξ)

⇔ ξ (û(ξ))2

1 + (û(ξ))2
= λû(ξ) ⇔ ξû(ξ)

1 + (û(ξ))2
= λ .That is, the 
onstant λ is given by 
ondition

λ =
ξû(ξ)

1 + (û(ξ))2
. (1.36)Repla
ing (1.36) into (1.35) we get

ξû(ξ)
(

1 + (û(ξ))2
)2 =

ξû(ξ)

2
(

1 + (û(ξ))2
) ⇔ û2(ξ) = 1 ,as û(x) ≥ 0, then û2(ξ) = 1 ⇒ û(ξ) = 1.As Newton stated in his Prin
ipia, �the tangent to the graphi
 at the break point is equalto 1�. That is, say that at the break point, namely, at the point (ξ, 0), the tangent is 1, isequivalent to say that û(ξ) = 1 (tanα = 1 ⇔ ẋ(ξ) = 1 ⇔ û(ξ) = 1).Inserting û(ξ) = 1 into equation (1.35) we have ξ

(1+12)2
= λ

2 , that is, ξ = 2λ.We are in 
ondition to determine the 
onstant m of equation (1.32). This is possible if wetake into a

ount that at the point (ξ, 0), û(ξ) = 1 and x (û(ξ)) = 0. Then,
x (û(ξ)) = 0 ⇔ x(1) = 0 ⇔ λ

2

(

− ln 1 + 1 +
3

4

)

+m = 0 ⇔ 7λ

8
= −m,that is, m = −7λ

8 .Finally, we 
an 
on
lude that in the 
ase u > 0, the solution of Newton's problem ofminimal resistan
e is given in a parametri
 form by equations (1.31), as we wanted to prove.37



The obtained 
urve from (1.31) is 
alled Newton's 
urve.Is important to remark the reason why Newton's problem solution starts with x(t) = 0 for
t ∈ [0, ξ], 0 < ξ = 2λ, and for x ∈ [ξ, T ] by (1.31). In fa
t, if Newton's problem solution wasgiven by equations (1.31) for every t ∈ [0, T ] the boundary 
ondition x(0) = 0 would not besatis�ed.Let us now see how we 
an obtain the graphi
 representation of Newton's problem solution,given a radius and an height.The �rst part of the solution is given by x(t) = 0 for every t ∈ [0, ξ], with ξ = 2λ, and itsgraphi
 representation is easily obtained.With respe
t to the se
ond part, t ∈ [ξ, T ], in order to represent graphi
ally Newton's
urve the value of λ, the break point (ξ, 0) and variation interval of the parameter u must bedetermined for a radius and an height previously given. In pra
ti
e, when we 
ompute thevalue of the 
onstant λ the point (ξ, 0) is automati
ally determined, be
ause ξ = 2λ.The variation interval of the parameter u is given by the inequalities

ξ ≤ t(u) ≤ T ⇔ ξ ≤ λ

2

(

1

u
+ 2u+ u3

)

≤ T ,that is, as ξ = 2λ,
2λ ≤ λ

2

(

1

u
+ 2u+ u3

)

≤ T .From inequality 2λ ≤ λ
2

(

1
u + 2u+ u3

), we observe that the minimal value taken by theparameter u is 1, independently from the value of the radius and the height of the solid, whi
h,on
e more, leads us to Newton's statement that the tangent to the graphi
 at the break pointis equal to 1. The maximal value taken by the parameter u 
an be found simultaneously withthe 
onstant λ solving the system










t(u) = T

x(u) = h

⇔











T = λ
2

(

1
u + 2u+ u3

)

h = λ
2

(

− lnu+ u2 + 3
4u

4
)

− 7λ
8sin
e the 
onstant λ is 
omputed using the boundary 
ondition x(T ) = h.The previous system is easily solved by Maple (see, e.g., [101℄), as well as the graphi
alrepresentation of Newton's problem of minimal resistan
e. In Figure 1.17 the graphi
s (ob-tained with Maple) of Newton's problem solution are given for a �xed radius T = 1 and anheight h = 0.5, h = 1, h = 2, h = 5.Newton's problem of minimal resistan
e in dimension twoAt �rst glan
e, one suspe
ts that the two dimensional 
ase should be well known, in [102℄it is shown that the two dimensional problem is more ri
h than the 
lassi
al one being, in38
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0.2 0.4 0.6 0.8 1Figure 1.17: Newton's problem solutionsome sense, more interesting. The novelties are: (i) while in the 
lassi
al three-dimensionalproblem (1.22) only the restri
ted 
ase makes sense (without restri
tion on the monotoni
ityof admissible fun
tions the problem doesn't admit a lo
al minimum), in dimension two theunrestri
ted problem is also well-posed when the ratio height versus radius of base is greaterthan a given quantity; (ii) while in three dimensions the (restri
ted) problem has a uniquesolution, in the restri
ted two-dimensional problem the minimizer is not always unique �when the height of the body is less or equal than its base radius, there exists in�nitely manyminimizing fun
tions.The formulation of Newton's problem of minimal resistan
e in dimension two is given by(see [118℄):
R [u(·)] =

∫ T

0

1

1 + u(t)2
dt −→ min ,

ẋ(t) = u(t) , u(t) ∈ Ω ,

x(0) = 0 , x(T ) = h , h > 0 .

(1.37)We 
onsider two 
ases: (i) unrestri
ted problem, where no restri
tion on the admissible tra-je
tories x(·) other than the boundary 
onditions x(0) = 0, x(T ) = h is 
onsidered (Ω = R);(ii) restri
ted problem, where the admissible fun
tions must satisfy the restri
tion ẋ(t) ≥ 0,
t ∈ [0, T ] (Ω = R

+
0 ). While for the 
lassi
al three-dimensional problem only the restri
tedproblem admits a minimizer, the two-dimensional problem (1.37) is more ri
h: the unrestri
ted
ase also admits a minimizer when the given height h of the body is big enough. Also in therestri
ted 
ase the two-dimensional problem is more interesting: if T ≥ h, then in�nitelymany di�erent minimizers are possible, while in the 
lassi
al three-dimensional problem theminimizer is always unique.A

ording to Pontryagin Maximum Prin
iple (see Theorem 1.4.25) if (x(·), u(·)) is a mini-mizer of problem (1.37), then there exists a non-zero pair (p0, p(·)), where p0 ≤ 0 is a 
onstantand p(·) is an absolutely 
ontinuous fun
tion on [0, T ], su
h that the following 
onditions are39



satis�ed for almost all t in [0, T ]:̇
p(t) = −∂H

∂x
(u(t), p0, p(t)) = 0

H(p0, p(t), u(t)) = max
w∈Ω

H(p0, p(t), w) ;where the Hamiltonian H is de�ned by
H(p0, p, u) = pu+ p0 1

1 + u2
.Proposition 1.4.38. All the Pontryagin extremals (x(·), p0, p(·), u(·)

) of problem (1.37) arenormal extremals (p0 6= 0), with p(·) a negative 
onstant: p(t) ≡ −λ, λ > 0, t ∈ [0, T ].Theorem 1.4.39. Pontryagin extremals for problem (1.37) are absolute minimizers.The proofs of Proposition 1.4.38 and Theorem 1.4.39 valid for the two dimensional New-ton's problem (1.37) are analogous to the proofs of Proposition 1.4.34 and Theorem 1.4.36,respe
tively, valid for the three dimensional Newton's problem (1.22).Unrestri
ted problem (Ω = IR) The following standard result of 
al
ulus (see e.g. [42℄)will be used in the sequel.Theorem 1.4.40. Let n ≥ 2 and Ω ⊆ R be an open set. If f : Ω → R is n − 1 timesdi�erentiable on Ω and n times di�erentiable at some point a ∈ Ω where f (k)(a) = 0 for
k = 0, . . . , n − 1 and f (n)(a) 6= 0, then:

• either n is even, and f(·) has an extremum at a, that is a maximum in 
ase f (n)(a) < 0and a minimum in 
ase f (n)(a) > 0;
• or n is odd, and f(·) does not attain a lo
al extremum at a.From Theorem 1.4.39 the problem (1.37) 
an be redu
ed to the study of the one-dimensionalmaximization problem:

max
u∈Ω

H (u) = max
u∈Ω

{

− 1

1 + u2
− λu

}

, λ > 0 . (1.38)We are 
onsidering now the unrestri
ted two-dimensional Newton's problem of minimalresistan
e, that is, Ω = R in (1.37). A ne
essary (su�
ient) 
ondition for u to be a lo
almaximizer for problem (1.38) is given by H ′ (u) = 0 and H ′′ (u) ≤ 0 (H ′′ (u) < 0), where
H ′ (u) =

2u

(1 + u2)2
− λ ,

H ′′ (u) = −2
3u2 − 1

(1 + u2)3
.40



From the �rst order 
ondition (maximization 
ondition (1.24)) it follows that
u(t)

(1 + u2(t))2
=
λ

2
⇔ ẋ(t)

(1 + ẋ2(t))2
=
λ

2
. (1.39)Using the boundary 
onditions x(0) = 0 and x(T ) = h, we 
on
lude that x(t) = h

T t (u = h
T )is a lo
al 
andidate for the solution of the unrestri
ted problem (λ = 2T 3h

(T 2+h2)2
). However, byTheorem 1.4.40, we 
on
lude that su
h u is a maximizer only when h > √

3
3 T . For h < √

3
3 Tthe value u = h

T 
orresponds to a lo
al minimizer of H (u) sin
e H ′′ > 0; for h =
√

3
3 r fun
tion

H (u) has neither lo
al maximum nor minimum sin
e H ′′
(√

3
3 T
)

= 0 and H ′′′
(√

3
3 T
)

=

−27
√

3
16 6= 0.Theorem 1.4.41. If h > √

3
3 T , then fun
tion x(t) = h

T t is a (lo
al) minimum for the unre-stri
ted problem (1.37). For h ≤
√

3
3 T the problem has no solution.Remark 1.4.42. The unrestri
ted problem (1.37) does not admit global minimum. Indeed, letus take, for large values of the parameter a, the 
ontrol fun
tion

ũ(t) =











a if 0 ≤ t ≤ T
2 + h

2a

−a if T
2 + h

2a ≤ t ≤ T .This gives R[ũ(t)] = T
1+a2 whi
h vanishes as a→ ∞, showing that no global solution 
an exist.By the symmetry with respe
t to the xx axis, the solution to the unrestri
ted two-dimensional Newton's problem of minimal resistan
e with h > √

3
3 T is a triangle, with valuefor resistan
e R equal to T 3

T 2+h2 .Restri
ted problem (Ω = R
+
0 ) We now study problem (1.37) with Ω = R

+
0 . In this 
asethe optimal 
ontrol 
an take values on the boundary of the admissible set of 
ontrol values Ω(u = 0). If the optimal 
ontrol u(·) is always taking values in the interior of Ω, u(t) > 0 ∀

t ∈ [0, T ], then the optimal solution must satisfy (1.39) and it 
orresponds to the one foundfor the unrestri
ted problem:
u(t) =

h

T
, ∀t ∈ [0, T ] , (1.40)with resistan
e

R =
T 3

T 2 + h2
. (1.41)We show next that this is solution of the restri
ted problem only for h ≥ T : for h ≤ T theminimum value for the resistan
e is R = T − h

2 .It is 
lear, from the boundary 
onditions x(0) = 0, x(T ) = h, T > 0, h > 0, that u(t) = 0,
∀ t ∈ [0, T ], is not a possibility: there must exist at least one non-empty subinterval of [0, T ]41



for whi
h u(t) > 0 (otherwise x(t) would be 
onstant, and it would be not possible to satisfysimultaneously x(0) = 0 and x(T ) = h). The simplest situations are given by
u(t) =







0 if 0 ≤ t ≤ ξ ,

h
T−ξ if ξ ≤ t ≤ T ,

(1.42)or
u(t) =







h
ξ if 0 ≤ t ≤ ξ ,

0 if ξ ≤ t ≤ T .
(1.43)We get (1.40) from (1.42) taking ξ = 0; (1.40) from (1.43) with ξ = T . For (1.42) theresistan
e is given by R(ξ) = ξ + (T−ξ)3

(T−ξ)2+h2 , that has a minimum value for ξ = T − h ≥ 0:
R(T − h) = T − h

2 ,
u(t) =







0 if 0 ≤ t ≤ T − h ,

1 if T − h ≤ t ≤ T .
(1.44)For T = h (1.44) 
oin
ides with (1.40); for T > h

(

T − h

2

)

−
(

T 3

T 2 + h2

)

= − h(T − h)2

2(T 2 + h2)
< 0 ,and (1.44) is better than (1.40). Similarly, for (1.43) the resistan
e is given by

R(ξ) =
ξ3

ξ2 + h2
+ T − ξ , (1.45)that has minimum value for ξ = h > 0:

u(t) =







1 if 0 ≤ t ≤ h ,

0 if h ≤ t ≤ T ,
(1.46)

R(h) = T − h
2 , whi
h 
oin
ides with the value for the resistan
e obtained with (1.44). If one
ompares dire
tly (1.41) with (1.45) one get the 
on
lusion that (1.40) is better than (1.43)pre
isely when T < h:

T 3

T 2 + h2
−
(

ξ3

ξ2 + h2
+ T − ξ

)

=
ξh2

(

T 2 − Tξ − h2
)

[(T − ξ)2 + h2] (T 2 + h2)
, (1.47)and sin
e −h2 ≤ T 2 −Tξ−h2 ≤ T 2 −h2, (1.47) is negative if T < h, that is, for T < h (1.40)is better than (1.43). For T = h (1.46) 
oin
ide with (1.40), for T > h (1.46) is better than(1.40) and as good as (1.44).We now show that for T > h it is possible to obtain the resistan
e value T− h

2 from in�nitelymany other ways, but no better (smaller) value than this quantity. Generi
 situation is givenby
un(t) =







0 if ξ2i ≤ t ≤ ξ2i+1 , i = 0, . . . , n ,

µi+1−µi

ξ2i+2−ξ2i+1
if ξ2i+1 ≤ t ≤ ξ2i+2 , i = 0, . . . , n− 1 ,

(1.48)42



where n ∈ N, 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξ2n+1 = T , 0 = µ0 ≤ µ1 ≤ · · · ≤ µn = h. We remark thatfor the simplest 
ase n = 1 (1.48) simpli�es to
u1(t) =



















0 if 0 ≤ t ≤ ξ1 ,

h
ξ2−ξ1

if ξ1 ≤ t ≤ ξ2 ,

0 if ξ2 ≤ t ≤ T ,whi
h 
overs all the previously 
onsidered situations: for ξ1 = 0, ξ2 = T we obtain (1.40);for ξ2 = T (1.42); and for ξ1 = 0 one obtains (1.43). All Pontryagin 
ontrol extremals of therestri
ted problem are of the form (1.48), and by Theorem 1.4.39 also the minimizing 
ontrols.The resistan
e for
e Rn asso
iated with (1.48) is given by
Rn (ξ0, . . . , ξ2n+1, µ0, . . . , µn)

=

n
∑

i=0

(ξ2i+1 − ξ2i) +

n−1
∑

i=0

(ξ2i+2 − ξ2i+1)
3

(ξ2i+2 − ξ2i+1)
2 + (µi+1 − µi)

2 . (1.49)It is a simple exer
ise of 
al
ulus to see that fun
tion (1.49) has three 
riti
al points: two ofthem not admissible, the third one a minimizer. The �rst 
riti
al point is de�ned by µi = 0,
i = 0, . . . , n, whi
h is not admissible given the fa
t that µn = h > 0. The se
ond 
riti
al pointis given by µi − µi−1 = ξ2i−1 − ξ2i, i = 1, . . . , n, whi
h is not admissible sin
e µi − µi−1 ≥ 0,
ξ2i−1 − ξ2i ≤ 0, and µi = µi−1, i = 1, . . . , n, is not a possibility given µn = H > µ0 = 0. Thethird 
riti
al point is

µi − µi−1 = ξ2i − ξ2i−1 , i = 1, . . . , n , (1.50)whi
h is a minimizer for h ≤ T . Thus, all the minimizing 
ontrols for the restri
ted two-dimensional problem with h ≤ T are of the following form:
un(t) =







0 if ξ2i ≤ t ≤ ξ2i+1 , i = 0, . . . , n ,

1 if ξ2i+1 ≤ t ≤ ξ2i+2 , i = 0, . . . , n− 1 ,
(1.51)

n = 1, 2, . . ., 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξ2n+1 = r. For un(t) given by (1.51) the resistan
e (1.49)redu
es to Rn = T − h
2 , ∀ n ∈ N.Theorem 1.4.43. The restri
ted two-dimensional Newton's problem of minimal resistan
ealways admits a solution:

• the unique solution asso
iated to 
ontrol (1.40), when h > T ;
• in�nitely many solutions asso
iated to the 
ontrols (1.51), when h ≤ T .In the 
ase h > T the minimum value for the resistan
e is T 3

T 2+h2 , otherwise T − h
2 .43



1.5 Proof of the Pontryagin maximum prin
iple for a generalminimal time problemIn this se
tion, we re
all elements of a standard proof of the maximum prin
iple for a gen-eral minimal time problem using needle-like variations (see e.g. [96℄). Some de�nitions andproperties of this se
tion will be used in Chapter 2.Consider a general 
ontrol system
ẋ(t) = f(x(t), u(t)), x(0) = x0, (1.52)where x0 ∈ IRn is �xed, f : IRn×IRm −→ IRn is smooth, the 
ontrol u is a bounded measurablefun
tion taking its values in a measurable subset Ω of IRm.Consider the set of admissible 
ontrols on [0, tf ], Utf ,IRm , and the set of admissible 
ontrolson [0, tf ] taking their values in Ω, Utf ,Ω.The set Utf ,IRm , endowed with the standard topology of L∞([0, tf ], IRm), is open, and theend-point mapping E(x0, tf , u) = x(tf ) is smooth on Utf ,IRm .Let x1 ∈ IRn. Consider the optimal 
ontrol problem (P) of determining a traje
torysolution of (1.52) steering x0 to x1 in minimal time.3 In other words, this is the problemof minimizing tf among all admissible 
ontrols u ∈ L∞([0, tf ],Ω) satisfying the 
onstraint

E(x0, tf , u) = x1.For every t ≥ 0, 
onsider the a

essible set AΩ(x0, t) previously de�ned as the image ofthe mapping E(x0, t, ·) : Ut → IRn, with the agreement AΩ(x0, 0) = {x0}.Moreover, de�ne
AΩ(x0,≤ t) =

⋃

0≤s≤t

AΩ(x0, s).The set AΩ(x0,≤ t) 
oin
ides with the image of the mapping E(x0, ·, ·) : [0, t]×Ut → IRn (seeFigure 1.18).
x0

x(t1)

AΩ(x0, t1)

x(t)

x(t2)

AΩ(x0, t2)Figure 1.18: A

essible set AΩ(x0,≤ t).3Note that we 
onsider here a problem with �xed extremities, for simpli
ity of presentation. All whatfollows however easily extends to the 
ase of initial and �nal subsets (see e.g. [62℄).44



Let u be a minimal time 
ontrol on [0, tf ] for the problem (P), and denote by x(·) thetraje
tory solution of (1.52) asso
iated to the 
ontrol u on [0, tf ]. Then the point x1 = x(tf )belongs to the boundary of AΩ(x0,≤ tf ). This geometri
 property is at the basis of the proofof the Pontryagin maximum prin
iple (see Figure 1.19).
x0

x(t1)

AΩ(x0, t) AΩ(x0, tf )Figure 1.19: x1 ∈ ∂AΩ(x0, tf ).Theorem 1.5.1 (Pontryagin maximum prin
iple). If the traje
tory x(·), asso
iated to a 
ontrol
u ∈ Utf ,Ω, is optimal on [0, tf ], then there exists a nonpositive real number p0 and an absolutely
ontinuous mapping p(·) on [0, tf ], 
alled adjoint ve
tor, satisfying (p(·), p0) 6= (0, 0), su
h thatthere holds

ẋ(t) =
∂H

∂p
(x(t), p(t), p0, u(t)) ,

ṗ(t) = −∂H
∂x

(x(t), p(t), p0, u(t)) ,almost everywhere on [0, tf ], where H(x, p, p0, u) = 〈p, f(x, u)〉 + p0 is the Hamiltonian, and
H(x(t), p(t), p0, u(t)) = max

w∈Ω
H(x(t), p(t), p0, w)holds almost everywhere on [0, tf ]. Moreover, maxw∈ΩH(x(t), p(t), p0, w) = 0 for every t ∈

[0, tf ].We next re
all the standard 
on
epts of needle-like variations and of Pontryagin 
one whi
hpermit to derive a standard proof of the maximum prin
iple.1.5.1 Needle-like variationsLet t1 ∈ [0, tf ) and u1 ∈ Ω. For η1 > 0 su
h that t1 + η1 ≤ tf , the needle-like variation
π1 = {t1, η1, u1} of the 
ontrol u is de�ned by

uπ1
(t) =

{

u1 if t ∈ [t1, t1 + η1],

u(t) otherwise(see Figure 1.20). 45
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u

0 tf

u1

t1 t1 + η1

Figure 1.20: Needle variation π1.The 
ontrol uπ1
takes its values in Ω. It is not di�
ult to prove that, if η1 > 0 is smallenough, then the 
ontrol uπ1

is admissible, i.e., the traje
tory xπ1
(·) asso
iated with uπ1

andstarting from xπ1
(0) = x0 is well de�ned on [0, tf ]. Moreover, xπ1

(·) 
onverges uniformly to
x(·) on [0, tf ] whenever η1 tends to 0.Re
all that t1 is a Lebesgue point of the fun
tion t 7→ f(x(t), u(t)) on [0, tf ) whenever

lim
h→0

1

h

∫ t1+h

t1

f(x(t), u(t))dt = f(x(t1), u(t1)),and that almost every point of [0, tf ) is a Lebesgue point.De�nition 1.5.2. Let t1 be a Lebesgue point on [0, tf ), let η1 > 0 be small enough, and uπ1be a needle-like variation of u, with π1 = {t1, η1, u1}. For every t ∈ [t1, tf ], de�ne the variationve
tor vπ1
(t) as the solution on [t1, tf ] of the Cau
hy problem

v̇π1
(t) =

∂f

∂x
(x(t), u(t))vπ1

(t) , (1.53)
vπ1

(t1) = f(x(t1), u1) − f(x(t1), u(t1)) .Lemma 1.5.3 (see e.g. [96℄). Let t1 be a Lebesgue point on [0, tf ), let η1 > 0 be small enough,and uπ1
be a needle-like variation of u, with π1 = {t1, η1, u1}. Then,

xπ1
(tf ) = x(tf ) + η1vπ1

(tf ) + o(η1) . (1.54)Proof. By de�nition of uπ1
and xπ1

, we have xπ1
(t1) = x(t1). Then

xπ1
(tf ) = x(t1) +

∫ t1+η1

t1

f(xπ1
(t), u1)dt +

∫ tf

t1+η1

f(xπ1
(t), u(t))dt .46



By de�nition of Lebesgue point, we have
∫ t1+η1

t1

f(xπ1
(t), u1)dt = η1f(x(t1), u1) + o(η1) ,and

∫ tf

t1+η1

f(xπ1
(t), u(t))dt =

∫ tf

t1

f(xπ1
(t), u(t))dt −

∫ t1+η1

t1

f(xπ1
(t), u(t))dt

=

∫ tf

t1

f(xπ1
(t), u(t))dt − η1f(x(t1), u(t1)) + o(η1) ,sin
e xπ1

(t1) → x(t1) when η → 0. We dedu
e that
xπ1

(tf ) = x(t1) + η1(f(x(t1), u1) − f(x(t1), u(t1))) +

∫ tf

t1

f(xπ1
(t), u(t))dt + o(η1) .On the other hand,

x(tf ) = x(t1) +

∫ tf

t1

f(x(t), u(t))dtthus
xπ1

(tf ) − x(tf )

η1
= vπ1

(t1) +
1

η1

∫ tf

t1

(f(xπ1
(t), u(t)) − f(x(t), u(t)))dt .From (1.53) we have

vπ1
(tf ) = vπ1

(t1) +

∫ tf

t1

∂f

∂x
(x(t), u(t))vπ1

(t)dt .Taking the di�eren
e, we easily dedu
e from Gronwall lemma's that the quotient xπ1
(tf )−x(tf )

η1admits a unique limit when η1 → 0, η1 > 0, and this limit is equal to vπ1
(tf ).Remark 1.5.4. The sign of η1 is important. In fa
t, for η1 of an arbitrary sign, if we de�nethe perturbation π1 = {t1, η1, u1} by

uπ1
(t) =























u1 if t ∈ [t1, t1 + η1] and if η1 > 0 ,

u1 if t ∈ [t1 + η1, t1] and if η1 < 0 ,

u(t) otherwise ,then
xπ1

(tf ) = x(tf ) + |η1|(f(x(t1), u1) − f(x(t1), u(t1))) +

∫ tf

t1

f(xπ1
(t), u(t))dt .In parti
ular, the fun
tion η1 7→ xπ1

(tf ) is right and left di�erentiable when η1 = 0, but is notdi�erentiable at this point. 47



Remark 1.5.5. For every α > 0, the variation {t1, αη1, u1} generates the variation ve
tor αvπ1
.It follows that the set of variation ve
tors at time t is a 
one of vertex x(t).De�nition 1.5.6. For every t ∈ (0, tf ], the �rst Pontryagin 
one at time t, denoted K(t), isthe smallest 
losed 
onvex 
one 
ontaining all variation ve
tors vπ1

(t) for all Lebesgue points
t1 su
h that 0 < t1 < t.An immediate iteration leads to the following generalization of Lemma 1.5.3.Lemma 1.5.7. Let t1 < t2 < · · · < tp be Lebesgue points of the fun
tion t 7→ f(x(t), u(t))on (0, tf ), and u1, . . . , up be points of Ω. Let η1, . . . , ηp be small enough positive real numbers.Consider the variations πi = {ti, ηi, ui}, and denote by vπi

(·) the asso
iated variation ve
tors,de�ned as above. De�ne the variation
π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up}of the 
ontrol u on [0, tf ] by

uπ(t) =

{

ui if ti ≤ t ≤ ti + ηi, i = 1, . . . , p,

u(t) otherwise. (1.55)Let xπ(·) be the solution of (1.52) 
orresponding to the 
ontrol uπ on [0, tf ] and su
h that
xπ(0) = x0. Then,

xπ(tf ) = x(tf ) +

p
∑

i=1

ηivπi
(tf ) + o

(

p
∑

i=1

ηi

)

. (1.56)The variation formula (1.56) shows that every 
ombination with positive 
oe�
ients ofvariation ve
tors (taken at distin
t Lebesgue points) provides the point x(t) + vπ(t), where
vπ(t) =

p
∑

i=1

ηivπi
(t), (1.57)whi
h belongs, up to the remainder term, to the a

essible set AΩ(x0, t) at time t for thesystem (1.52) starting from the point x0. In this sense, the �rst Pontryagin 
one serves as anestimate of the a

essible set AΩ(x0, t).Sin
e we deal with a minimal time problem, we must rather 
onsider the set AΩ(x0,≤ t),whi
h leads to introdu
e also oriented time variations, as follows. Assume �rst that x(·) isdi�erentiable at time tf .4 Let δ > 0 be small enough; then, with the above notations,

xπ(tf − δ) = x(tf ) +

p
∑

i=1

ηivπi
(tf ) − δf(x(tf ), u(tf )) + o

(

δ +

p
∑

i=1

ηi

)

. (1.58)4This holds true e.g. whenever tf is a Lebesgue point of the fun
tion t 7→ f(x(t), u(t)).48



De�nition 1.5.8. The 
one K1(tf ) is the smallest 
losed 
onvex 
one 
ontaining K(tf ) andthe ve
tor −f(x(tf ), u(tf )).See Figure 1.21 for the 
onvex 
one K1(tf ).Remark 1.5.9. If x(·) is not di�erentiable at time tf , then the above 
onstru
tion is slightlymodi�ed, by repla
ing f(x(tf ), u(tf )) with any 
losure point of the 
orresponding di�eren
equotient in an obvious way.
x1

x0

x(·)

AΩ(x0, tf )

K1(tf )

f

−f

Figure 1.21: Cone K1(tf )1.5.2 Coni
 Impli
it Fun
tion TheoremWe next provide a 
oni
 impli
it fun
tion theorem, whi
h is at the basis of the proof of themaximum prin
iple (see e.g. [2℄ for a proof).Re
all the following de�nition of di�erentiability in the sense of Gâteaux .De�nition 1.5.10. Let E, F be two lo
ally 
onvex topologi
al ve
tor spa
es, f : E → F ,
x0 ∈ E and h ∈ E. The Gâteaux derivative df(x0) · h at x0 with the dire
tion h is de�ned as

df(x0) · h = lim
t→0

f(x0 + th) − f(x0)

tif the limit exists.If the limit exists for all h ∈ E and it is equal to a linear map gx0
(h), then one says that f isGâteaux di�erentiable at x0 and

df(x0) · h = gx0
(h) .Lemma 1.5.11. Let C ⊂ IRm be a 
onvex subset of IRm with nonempty interior, of vertex 0,and F : C → IRn be a Lips
hitzian mapping su
h that F (0) = 0 and F is di�erentiable in thesense of Gâteaux at 0. Assume that dF (0) · Cone(C) = IRn, where Cone(C) stands for the(
onvex) 
one generated by elements of C. Then 0 belongs to the interior of F (V ∩ C), forevery neighborhood V of 0 in IRm. 49



1.5.3 Lagrange multipliers and Pontryagin maximum prin
ipleWe next restri
t the end-point mapping to time and needle-like variations. Let p be a positiveinteger. Set IRp+1
+ = {(δ, η1, . . . , ηp) ∈ IRp+1 | δ ≥ 0, η1 ≥ 0, . . . , ηp ≥ 0}.Let t1 < · · · < tp be Lebesgue points of the fun
tion t 7→ f(x(t), u(t)) on (0, tf ), and u1, . . . , upbe points of Ω. Let V be a small neighborhood of 0 in IRp. De�ne the mapping F : V ∩IRp+1

+ →IRn by
F (δ, η1, . . . , ηp) = xπ(tf − δ),where π is the variation π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up} and δ ≥ 0 is small enough sothat tp < tf − δ. If V is small enough, then F is well de�ned; moreover this mapping is
learly Lips
hitzian, and F (0) = x(tf ). From (1.58), F is Gâteaux di�erentiable on the 
oni
neighborhood V ∩ IRp+1

+ of 0.If the 
one K1(tf ) would 
oin
ide with IRn, then there would exist δ ≥ 0, an integer pand variations πi = {ti, ηi, ui}, i = 1, . . . , p, su
h that F ′
0IRp+1

+ = IRn, and then Lemma 1.5.11would imply that the point x(tf ) would belong to the interior of the a

essible set AΩ(x0,≤ tf ),whi
h would raise a 
ontradi
tion.Therefore the 
onvex 
one K1(tf ) is not equal to IRn. As a 
onsequen
e, there exists ψ ∈IRn\{0} 
alled Lagrange multiplier su
h that 〈ψ, v(tf )〉 ≤ 0 (see Figure 1.22) for every variationve
tor v(tf ) ∈ K(tf ) and 〈ψ, f(x(tf ), u(tf ))〉 ≥ 0 (at least whenever x(·) is di�erentiable attime tf ; otherwise repla
e f(x(tf ), u(tf )) with any 
losure point of the 
orresponding di�eren
equotient).
x1

AΩ(x0, tf )

−f
f

x0

ψ

Figure 1.22: 〈ψ, f(x(tf ), u(tf ))〉 ≥ 0These inequalities then permit to prove the maximum prin
iple (see [96℄), a

ording towhi
h the traje
tory x(·), asso
iated to the optimal 
ontrol u(·), is the proje
tion of an extremal
(x(·), p(·), p0, u(·)) (
alled extremal lift), where p0 ≤ 0 and p(·) : [0, tf ] → IRn is a nontrivialabsolutely 
ontinuous mapping 
alled adjoint ve
tor, su
h that

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)), ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)),50



almost everywhere on [0, tf ], where H(x, p, u) = 〈p, f(x, u)〉 + p0 is the Hamiltonian, and
H(x(t), p(t), p0, u(t)) = M(x(t), p(t), p0) almost everywhere on [0, tf ], whereM(x(t), p(t), p0) =

max
w∈Ω

H(x(t), p(t), p0, w). Moreover, the fun
tion t 7→ M(x(t), p(t), p0) is identi
ally equal tozero on t ∈ [0, tf ].The relation between the Lagrange multiplier ψ and p(·), p0 is
ψ = p(tf ) and p0 = −max

w∈Ω
〈ψ, f(x(tf ), w)〉. (1.59)In parti
ular, the Lagrange multiplier ψ is unique (up to a multipli
ative s
alar) if and onlyif the traje
tory x(·) admits a unique extremal lift (up to a multipli
ative s
alar).In the 
ase of a normal extremal, i.e., p0 < 0, sin
e the Lagrange multiplier is de�ned upto a multipli
ative s
alar, it is usual to normalize it so that p0 = −1.Remark 1.5.12. The traje
tory x(·) has an abnormal extremal lift (x(·), p(·), 0, u(·)) on [0, tf ]if and only if there exists a unit ve
tor ψ ∈ IRn su
h that 〈ψ, v〉 ≤ 0 for every v ∈ K(tf ) and

max
w∈Ω

〈ψ, f(x(tf ), w)〉 = 0. In that 
ase, one has p(tf ) = ψ, up to a multipli
ative s
alar.De�nition 1.5.13. The �rst extended Pontryagin 
one K̃(t) along x(·) is the smallest 
losed
onvex 
one 
ontaining K1(t) and f(x(t), u(t)) (at least whenever x(·) is di�erentiable attime t; otherwise repla
e f(x(t), u(t)) with any 
losure point of the 
orresponding di�eren
equotient).Note that x(·) does not admit any abnormal extremal lift on [0, tf ] if and only if K̃(tf ) =IRn.The following remark easily follows from the above 
onsiderations.Remark 1.5.14. For the optimal traje
tory x(·), the following statements are equivalent:
• The traje
tory x(·) has a unique extremal lift (up to a multipli
ative s
alar); moreover,the extremal lift is normal.
• K1(tf ) is a half-spa
e and K̃(tf ) = IRn.
• K(tf ) is a half-spa
e and max

w∈Ω
〈ψ, f(x(tf ), w)〉 > 0.This remark permits to translate the assumptions of the main result of Chapter 2 (Theo-rem 2.5.1) into geometri
 
onsiderations.1.6 Generalized 
ontrolsFollowing Gamkrelidze arguments in [46℄, we 
an expand the 
lass of admissible 
ontrolsintrodu
ing the generalized 
ontrols. 51



1.6.1 Generalized 
ontrol de�nitionLet µt, t ∈ R be a family of Radon measures on R
m that depend on the parameter t ∈ R and

g(t, u) a 
ontinuous (s
alar- or ve
tor-valued) fun
tion of its arguments t ∈ R and u ∈ R
mwith a 
ompa
t support in u for every �xed t ∈ R (the support 
an depend on t).De�nition 1.6.1. Integrating g(t, u) with respe
t to µt, we obtain the following fun
tion of

t:
h(t) =

∫

Rm

g(t, u) dµt(u) =

∫

Rm

g(t, u) dµt , t ∈ R .If the fun
tion h(t) is Lebesgue measurable for an arbitrary g(t, u) of this type, then we saythat the family µt, t ∈ R, is weakly measurable (with respe
t to t).De�nition 1.6.2. If there exists a 
ompa
t set K ⊂ R
m that does not depend on t ∈ R andis su
h that the measures µt are 
on
entrated on K for almost all t ∈ R (in the sense of theLebesgue measure on R), then the family µt, t ∈ R, is said to be �nite.The result of the integration of a 
ontinuous fun
tion g(t, u) with respe
t to a measure µt
an be denoted by

〈µt, g(t, u)〉 =

∫

Rm

g(t, u) dµt .An admissible 
ontrol taking values in a subset of R
m, u(t) ∈ UU , 
an be 
onsidered asa family of Dira
 measures (a Dira
 measure is a unit, positive measure 
on
entrated at apoint) on R

m that depend on time t ∈ R. Indeed, the value u(t) of the 
ontrol at the time
t, 
orresponds to the unit, positive measure δu(t) whi
h is 
on
entrated at the point u(t) ∈ Uand a
ts on an arbitrary 
ontinuous fun
tion g(t, u) in a

ordan
e with the formula

〈δu(t), g(t, u)〉 =

∫

Rm

g(t, u) dδu(t) = g(t, u(t)) .The family of measures δu(t) is �nite and weakly measurable.Conversely, if we assume that δv(t), t ∈ R is an arbitrary, weakly measurable �nite familyof Dira
 measures, where the measure δv(t) is 
on
entrated at the point v(t) ∈ U at the time
t, then the fun
tion v(t), t ∈ R, is essentially bounded. Setting g(t, u) = u, we obtain themeasurable fun
tion

〈δv(t), u〉 = v(t) ∈ U .Thus, we have established a natural 
orresponden
e between admissible 
ontrols u(t) ∈ UUand weakly measurable and �nite families of Dira
 measures δu(t), t ∈ R, 
on
entrated on theset U ⊂ R
m.De�nition 1.6.3. Any weakly measurable and �nite family of probability measures, i.e., unit,positive, Radon measures µt with t ∈ R that are 
on
entrated on the set U ⊂ R

m, is said tobe a generalized 
ontrol. 52



We denote the set of all generalized 
ontrols by MU and 
all it the 
lass of generalized
ontrols. Subsequently, µt with t ∈ R will always denote a generalized 
ontrol. Moreover, wehave UU ⊂ MU .Remark 1.6.4. The reason for taking a probability measure, and not an arbitrary Radonmeasure in the de�nition of a generalized 
ontrol, is that only families of probability mea-sures have the property that makes them useful in 
ontrol problems and that is expressed inGamkrelidze's approximation lemma (see [46, Chapter 3℄).1.6.2 Minimal time problemConsider the minimal time problem (P) that 
onsists in �nding a 
ontrol u(·) ∈ UU su
h thatthe asso
iated traje
tory x(·) is solution of the 
ontrol system
ẋ(t) = f(x(t), u(t)) (1.60)with u(t) ∈ U and where f : IRn × IRm → IRn is a 
ontinuous fun
tion and has 
ontinuousderivative with respe
t to x, and steers the point x0 = x(0) to x1 = x(tf ) in minimal time tf .Substituting a generalized 
ontrol µt for u on the 
ontrol system (1.60) we obtain thefollowing di�erential equatioṅ

x = 〈µt, f(x, u)〉 =

∫

Rm

f(x, u) dµt , (1.61)whi
h is analogous to equation (1.60). If the initial 
ondition x(0) = x0 is given, then theequation obtained is equivalent to the integral equation
x(t) = x0 +

∫ tf

0
〈µs, f(x(s), u)〉ds ,whi
h has a uniquely determined solution de�ned on a neighborhood of the point t = 0(see [46, Chapter 4℄).The minimal time optimal 
ontrol problem (PG) 
onsists in �nding a generalized 
ontrol

µt ∈ MU su
h that the asso
iated traje
tory is solution of the di�erential equation (1.61) andsteers x0 = x(0) to x1 = x(tf ) in minimal time tf . The problem (PG) will also be 
alled the
onvex optimal problem whi
h 
orresponds to the optimal problem (P).Remark 1.6.5. The set of all generalized 
ontrols MU and the set of right-hand-sides of equa-tion (1.61), µt ∈ MU are 
onvex. In parti
ular, the set of all possible phase velo
ities of the
ontrol system (1.61), with �xed t and x, is also 
onvex in R
n.1.6.3 Variation of generalized 
ontrols and Pontryagin maximization 
on-ditionLet µ̃t be an arbitrary generalized 
ontrol, and let x̃(t), t0 ≤ t ≤ tf , be a traje
tory of theequation

ẋ = 〈µ̃t, f(x, u)〉 = F (x) . (1.62)53



The fun
tion F (x) is de�ned on the entire spa
e R
n, 
ontinuously di�erentiable withrespe
t to x and bounded on any 
ompa
t set K ⊂ R

n (see [46℄).De�nition 1.6.6. Any di�eren
e
δµt = µt − µ̃t , µt ∈ MU ,will be 
alled a variation or a perturbation of the generalized 
ontrol µ̃t.The set of all variations of the 
ontrol µ̃t will be denoted by δMµ̃t . The set δMµ̃t is 
onvex(see [46℄ for an intensive and 
omplete study).De�nition 1.6.7. We shall say that a sequen
e of generalized 
ontrols µ(i)

t 
onverges weakly*to a generalized 
ontrol µt as i→ ∞ if we have
∫

R

〈µ(i)
t , g(t, u)〉 dt →

∫

R

〈µt, g(t, u)〉 dt , (i→ ∞)for an arbitrary 
ontinuous fun
tion g(t, u) with 
ompa
t support.Let µ ∈ MU and de�ne the end-point mapping
Ex0,tf (µ) : MU −→ R

n

µ 7−→ x(tf )where x is solution of ẋ = 〈µ(t), f(x(t), u)〉 with x(0) = x0.Proposition 1.6.8. [46, Chapter 5℄ The end-point mapping Ex0,tf is Gâteaux di�erentiablefor the weak* topology and
dEx0,tf (µ) · δµ = M(tf )

∫ tf

0
M−1(s)〈δµ, f(x(s), u)〉ds , ∀δµ ∈ MU . (1.63)Pontryagin maximization 
ondition In what follows we derive the maximization 
ondi-tion of Pontryagin maximum prin
iple for the minimal time problem (PG).Let (x(t), µt) be optimal for the problem (PG), then (x(t), µt) is singular for the augmentedsystem (see Lemma 1.4.23)







ẋ(t) = 〈µt, f(x(t), u)〉
ẋ0(t) = 〈µt, f

0(x(t), u)〉 .By the 
oni
 impli
it fun
tion theorem (Theorem 1.5.11)
dEx0,tf : Cone(Ω − µ) −→ R

n

δµ 7−→ δx(tf )54



is not surje
tive. Therefore, there exists ψ ∈ R
n\{0} su
h that

ψ · dEx0,tf (µ) · δµ ≤ 0 .From Proposition 1.6.8, ∫ tf
0 ψM(tf )M(t)−1〈δµ, f(x(t), u)〉 dt ≤ 0.Let us denote p(t) = ψM(tf )M(t)−1. Then,

p(t)〈δµt, f(x(t), u)〉 ≤ 0holds almost everywhere on [0, tf ], for every Lebesgue point t and for every δµt of Cone(Ω−µ).In parti
ular, if δµt = δv − δµ(t) (where v ∈ UU ), then
p(t) · (f(x(t), v) − f(x(t), u(t))) ≤ 0 . (1.64)Therefore

∀v ∈ UU , p(t) · f(x(t), v) ≤ p(t) · f(x(t), u(t)) , (1.65)but
p(t) · f(x(t), v) = H (x(t), p(t), v) and p(t) · f(x(t), u(t)) = H (x(t), p(t), u(t)) . (1.66)It follows that

H (x(t), p(t), u(t)) = max
v∈Ω

H (x(t), p(t), v) . (1.67)
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Chapter 2Smooth regularization of bang-bangoptimal 
ontrol problems
2.1 Introdu
tionIn this 
hapter we 
onsider the minimal time 
ontrol problem for a single-input 
ontrol-a�nesystem ẋ = X(x) + u1Y1(x) in IRn, where the s
alar 
ontrol u1(·) satis�es the 
onstraint
|u1(t)| ≤ 1, for every t ∈ [0, tf ].We propose the following smoothing pro
edure. For ε > 0 small and Y1, . . . , Ym arbitrarygiven ve
tor �elds, we 
onsider the minimal time problem for the 
ontrol system ẋ = X(x) +

uε
1Y1(x) + ε

m
∑

i=2

uε
iYi (x), where the s
alar 
ontrols uε

i (·), i = 1, . . . ,m, with m ≥ 2, satisfy the
onstraint m
∑

i=1

(uε
i (t))

2 ≤ 1.One of the possible motivations for this regularization pro
edure is the use of shootingmethods. Among the numerous numeri
al methods that exist to solve optimal 
ontrol prob-lems, the shooting methods 
onsist in solving, via Newton-like methods, the two-point ormulti-point boundary value problem arising from the appli
ation of the Pontryagin maximumprin
iple. More pre
isely, a Newton method is applied in order to 
ompute a zero of theshooting fun
tion asso
iated to the problem (see e.g. [109℄).For the initial problem, optimal 
ontrols may be dis
ontinuous, and it follows that the shootingfun
tion is not smooth on IRn in general. A
tually it may be non di�erentiable on swit
hingsurfa
es. This implies two di�
ulties when using a shooting method. First, if one does notknow a priori the stru
ture of the optimal 
ontrol, then it may be very di�
ult to initializeproperly the shooting method, and in general the iterates of the underlying Newton methodwill be unable to 
ross barriers generated by swit
hing surfa
es (see e.g. [71℄). Se
ond, the nu-meri
al 
omputation of the shooting fun
tion and of its di�erential may be intri
ate sin
e theshooting fun
tion is not 
ontinuously di�erentiable. However, the shooting fun
tion related57



to the proposed regularized optimal 
ontrol problem is smooth.In the main result of this 
hapter (Se
tion �2.5, Theorem 2.5.1) we prove, under appropri-ate assumptions, that the optimal 
ontrols of the latter system, depending on ε, are smoothfun
tions of t, and 
onverge weakly to the optimal 
ontrol of the initial system; moreoverthe asso
iated traje
tories 
onverge uniformly. If the optimal 
ontrol of the initial system ismoreover bang-bang, then the 
onvergen
e of the regularized 
ontrol holds almost everywhere;this property may however fail whenever the bang-bang property does not hold.In Se
tion �2.6 examples and 
ounterexamples are provided whi
h illustrate Theorem 2.5.1.2.2 Statement of the problemConsider the single-input 
ontrol-a�ne system in IRn

ẋ = X(x) + u1Y1(x), (2.1)where X and Y1 are smooth ve
tor �elds, and the 
ontrol u1 is a measurable s
alar fun
tionsatisfying the 
onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]. (2.2)LetM0 andM1 be two 
ompa
t subsets of IRn. Assume thatM1 is rea
hable fromM0, thatis, there exist a time T > 0 and a 
ontrol fun
tion u1(·) ∈ L∞(0, T ) satisfying the 
onstraint(2.2), su
h that the traje
tory x(·), solution of (2.1) with x(0) ∈M0, satis�es x(T ) ∈M1.We 
onsider the optimal 
ontrol problem (OCP) of determining, among all solutions of(2.1)�(2.2) steering M0 to M1 in minimal time.2.3 Pontryagin extremalsAssume that the subset M1 is rea
hable from M0; it follows that the optimal 
ontrol problem(OCP) admits a solution x(·), asso
iated to a 
ontrol u1(·), on [0, tf ], where tf > 0 is theminimal time (see e.g. [26, Chapter 9℄ for optimal 
ontrol existen
e theorems).A

ording to the Pontryagin maximum prin
iple (see [96℄ and Chapter 1),there exist areal number p0 ≤ 0 and a nontrivial absolutely 
ontinuous mapping p(·) : [0, tf ] → IRn, 
alledadjoint ve
tor, with (p(·), p0) 6= 0 and su
h that

ṗ(t) = −∂H
∂x

(x(t), p(t), p0, u(t))

= −
〈

p(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

p(t),
∂Y1

∂x
(x(t))

〉 (2.3)where the fun
tion H(x, p, p0, u) = 〈p,X + uY1(x)〉 + p0 is 
alled the Hamiltonian, and themaximization 
ondition
H(x(t), p(t), p0, u(t)) = max

|w|≤1
H(x(t), p(t), p0, w) (2.4)58



holds almost everywhere on [0, tf ]. Moreover, max|w|≤1H(x(t), p(t), p0, w) = 0 for every
t ∈ [0, tf ]. It follows from (2.4) that

u1(t) = sign〈p(t), Y1(x(t))〉 (2.5)for almost every t, provided the (
ontinuous) swit
hing fun
tion ϕ(t) = 〈p(t), Y1(x(t))〉 doesnot vanish on any subinterval of [0, tf ]. In that 
ase, u1(t) only depends on x(t) and on theadjoint ve
tor, and it follows from (2.3) that the extremal (x(·), p(·), p0, u1(·)) is 
ompletelydetermined by the initial adjoint ve
tor p(0). The 
ase where the swit
hing fun
tion mayvanish on a subinterval I is related to singular traje
tories1. In that 
ase, derivating therelation 〈p(t), Y1(x(t))〉 = 0 on I leads to 〈p(t), [X,Y1](x(t))〉 = 0 on I, and a se
ond derivationleads to 〈p(t), [X, [X,Y1 ]](x(t))〉+u1(t)〈p(t), [Y1, [X,Y1]](x(t))〉 = 0 on I, whi
h permits, undergeneri
 assumptions on the ve
tor �elds X and Y1 (see [27�29℄ for generi
ity results relatedto singular traje
tories), to 
ompute the singular 
ontrol u1(·) on I. Under su
h generi
assumptions, the extremal (x(·), p(·), p0, u1(·)) is still 
ompletely determined by the initialadjoint ve
tor.Note that, sin
e x(·) is optimal on [0, tf ], and sin
e the 
ontrol system under study isautonomous, it follows that x(·) is solution of the optimal 
ontrol problem of steering thesystem (2.1)�(2.2) from x0 = x(0) to x(t) in minimal time.2.4 Regularization pro
edureLet ε be a positive real parameter and let Y2, . . . , Ym be m− 1 arbitrary smooth ve
tor �eldson IRn, where m ≥ 2 is an integer. Consider the 
ontrol-a�ne system
ẋε(t) = X (xε(t)) + uε

1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t)) , (2.6)where the 
ontrol uε(t) = (uε

1(t), . . . , u
ε
m(t)) satis�es the 
onstraint
m
∑

i=1

(uε
i (t))

2 ≤ 1. (2.7)Consider the optimal 
ontrol problem (OCP)ε of determining a traje
tory xε(·), solution of(2.6)�(2.7) on [0, tεf ], su
h that xε(0) ∈ M0 and xε(tεf ) ∈ M1, and minimizing the time oftransfer tεf . The parameter ε is viewed as a penalization parameter, and it is expe
ted thatany solution xε(·) of (OCP)ε tends to a solution x(·) of (OCP) as ε tends to zero. It is ouraim to derive su
h a result.A

ording to the Pontryagin maximum prin
iple, any optimal solution xε(·) of (OCP)ε,asso
iated with 
ontrols (uε
1, . . . , u

ε
m) satisfying the 
onstraint (2.7), is the proje
tion of an1Re
all that here the term �singular� has a di�erent meaning from the one used in Chapter 1 (see page 23).59



extremal (xε(·), pε(·), p0ε, uε(·)) su
h that
ṗε(t) = −∂H

ε

∂x
(xε(t), pε(t), p0ε, uε(t))

= −
〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε

m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

(2.8)
where Hε(x, p, p0, u) = 〈p,X(x) + u1Y1(x) + ε

∑m
i=2 uiYi(x)〉 + p0 is the Hamiltonian, and

H(xε(t), pε(t), p0ε, uε(t)) = max
∑m

i=1
w2

i ≤1
H(xε(t), pε(t), p0ε, w) (2.9)almost everywhere on [0, tεf ]. Moreover, the maximized Hamiltonian is equal to 0 on [0, tεf ].The maximization 
ondition (2.9) turns into

uε
1(t)〈pε(t), Y1(x

ε(t))〉 + ε
m
∑

i=2

uε
i (t)〈pε(t), Yi(x

ε(t))〉

= max
∑m

i=1
w2

i ≤1

(

w1〈pε(t), Y1(x
ε(t))〉 + ε

m
∑

i=2

wi〈pε(t), Yi(x
ε(t))〉

)

,

(2.10)and two 
ases may o

ur: either the maximum is attained in the interior of the domain, orit is attained on the boundary. In the �rst 
ase, there must hold 〈pε(t), Yi(x
ε(t))〉 = 0, forevery i ∈ {1, . . . ,m}; in parti
ular, if the m fun
tions t 7→ 〈pε(t), Yi(x

ε(t))〉, i = 1, . . . ,m,do not vanish simultaneously, then the maximum is attained on the boundary of the domain.Throughout this thesis, we make the following assumption.Assumption 2.4.1. The integer m and the ve
tor �elds Y2, . . . , Ym are 
hosen su
h that
Span{Yi | i = 1, . . . ,m} = IRn.Under this assumption, the maximization 
ondition (2.10) yields

uε
1(t) =

〈pε(t), Y1(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

,

uε
i (t) =

ε〈pε(t), Yi(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

, i = 2, . . . ,m,

(2.11)
for almost every t ∈ [0, tεf ], and moreover the 
ontrol fun
tions uε

i (·), i = 1, . . . ,m are smoothfun
tions of t (so that the above formula holds a
tually for every t ∈ [0, tεf ]). Indeed, to provethis fa
t, it su�
es to prove that the fun
tions t 7→ 〈pε(t), Yi(x
ε(t)〉, i = 1, . . . ,m do not60



vanish simultaneously. The argument goes by 
ontradi
tion: if these fun
tions would vanishsimultaneously, then, using the Assumption 2.4.1, this would imply that pε(t) = 0 for some t;
ombined with the fa
t that the maximized Hamiltonian is equal to zero along any extremal,it would follow that p0ε = 0, and this would raise a 
ontradi
tion sin
e the adjoint ve
tor
(pε(·), p0ε) of the maximum prin
iple must be nontrivial.From (2.11), it is expe
ted that uε

1(·) 
onverges to u1(·) and uε
i (·), i = 2, . . . ,m, tend tozero, in some topology to spe
ify. This fa
t is derived rigorously in the next se
tion.2.5 Convergen
e resultsThe main result of this 
hapter is the following theorem.Theorem 2.5.1. Assume that the problem (OCP) has a unique solution x(·), de�ned on

[0, tf ], asso
iated with a 
ontrol u1(·) on [0, tf ]. Moreover, assume that x(·) has a unique ex-tremal lift (up to a multipli
ative s
alar), that is moreover normal, and denoted by (x(·), p(·),−1, u1(·)).Then, under the Assumption 2.4.1, there exists ε0 > 0 su
h that, for every ε ∈ (0, ε0),the problem (OCP)ε has at least one solution xε(·), de�ned on [0, tεf ] with tεf ≤ tf , asso
iatedwith a smooth 
ontrol uε = (uε
1, . . . , u

ε
m) satisfying the 
onstraint (2.7), every extremal lift ofwhi
h is normal. Let (xε(·), pε(·),−1, uε(·)) be su
h a normal extremal lift. Then, as ε tendsto 0,

• tεf 
onverges to tf ;
• xε(·) 
onverges uniformly2 to x(·), and pε(·) 
onverges uniformly to p(·) on [0, tf ];
• uε

1(·) 
onverges weakly3 to u1(·) for the weak L1(0, tf ) topology.If the 
ontrol u1 is moreover bang-bang, i.e., if the (
ontinuous) swit
hing fun
tion ϕ(t) =

〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε
1(·) 
onverges to u1(·) and

uε
i (·), i = 2, . . . ,m, 
onverge to 0 almost everywhere on [0, tf ], and thus in parti
ular for thestrong L1(0, tf ) topology.Remark 2.5.2. We provide in Se
tion �2.6 examples with numeri
al simulations in order toillustrate Theorem 2.5.1. The �rst example is the Rayleigh problem, on whi
h the minimaltime traje
tory is bang-bang, and almost everywhere 
onvergen
e of the regularized 
ontrol
an be observed in agreement with our main result. Our se
ond example involves a singularar
 and we prove and observe that os
illations appear, so that the regularized 
ontrol weakly
onverges, but fails to 
onverge almost everywhere.2We 
onsider any 
ontinuous extension of xε(·) on [0, tf ].3It means that ∫ tf

0
uε

1(t)g(t)dt →
∫ tf

0
u1(t)g(t)dt as ε → 0, for every g ∈ L1(0, tf ), and where the fun
tion

uε
1(·) is extended 
ontinuously on [0, tf ]. 61



Remark 2.5.3. It is assumed that the problem (OCP) has a unique solution x(·), having aunique extremal lift that is normal. Su
h an assumption holds true whenever the minimumtime fun
tion (the value fun
tion of the optimal 
ontrol problem) enjoys di�erentiability prop-erties (see e.g. [9, 35℄ for a pre
ise relationship, see also [24, 97, 98, 108℄ for results on the sizeof the set where the value fun
tion is di�erentiable).If one removes these uniqueness assumptions, then the following result still holds, pro-vided that every extremal lift of every solution of (OCP) is normal. Consider the topo-logi
al spa
es X = C0([0, tf ], IRn), endowed with the uniform 
onvergen
e topology, and
Y = L∞(0, tf ; [−1, 1]), endowed with the weak star topology. In the following statement,the spa
e X × X × Y is endowed with the resulting produ
t topology. For every ε ∈ (0, ε0),let xε(·) be a solution of (OCP)ε, and let (xε(·), pε(·),−1, uε(·)) be a (normal) extremal liftof xε(·). Then, every 
losure point in X × X × Y of the family of triples (xε(·), pε(·), uε

1(·))is a triple (x̄(·), p̄(·), ū1(·)), where x̄(·) is an optimal solution of (OCP), asso
iated with the
ontrol ū1(·), having as a normal extremal lift the 4-tuple (x̄(·), p̄(·),−1, ū1(·)). The rest of thestatement of Theorem 2.5.1 still holds with an obvious adaptation in terms of 
losure points.Remark 2.5.4. When applying a shooting method to the problem (OCP)ε, one is not ensuredto determine an optimal solution, but only an extremal solution that is not ne
essarily opti-mal.4 Noti
e however that the arguments of the proof of Theorem 2.5.1 permit to prove thefollowing statement. Assume that there is no abnormal extremal among the set of extremalsobtained by applying the Pontryagin maximum prin
iple to the problem (OCP); then, for
ε > 0 small enough, every extremal solution of (OCP)ε is normal, and, using the notationsof the previous remark, every 
losure point of su
h extremal solutions is a normal extremalsolution of (OCP).Remark 2.5.5. There is a large literature dealing with optimal 
ontrol problems dependingon some parameters, involving state, 
ontrol or mixed 
onstraints, using a stability and sen-sitivity analysis in order to investigate the dependen
e of the optimal solution with respe
tto parameters (see e.g. [40,48,56,66,67,74,76,81,82,84℄ and referen
es therein). In the sensi-tivity approa
h, under se
ond order su�
ient 
onditions, results are derived that prove thatthe solutions of the parametrized problems, as well as the asso
iated Lagrange multipliers,are Lips
hitz 
ontinuous or dire
tionally di�erentiable fun
tions of the parameter. We stresshowever that Theorem 2.5.1 
annot be derived from these former works. Indeed, in these ref-eren
es, the results rely on se
ond order su�
ient 
onditions and 
ertain regularity 
onditionson the initial problem. In our work we do not assume any se
ond order su�
ient 
ondition;our approa
h is di�erent from the usual sensitivity analysis and is rather, in some sense, atopologi
al approa
h.4This fa
t is well known, due to the fa
t that the Pontryagin maximum prin
iple is only a �rst orderne
essary 
ondition for optimality; su�
ient 
onditions do exist but this is outside the s
ope of this Chapter(see Se
tion �3.1.3 for su�
ient 
onditions). 62



In what follows several lemmas will be proved. The proof of Theorem 2.5.1 follows fromLemmas 2.5.6�2.5.18.From now on, assume that all assumptions of Theorem 2.5.1 hold. We denote the end-pointmapping for the system (2.6) by
E(ε, x0, tf , u

ε) = xε(tf ),where xε(·) is the solution of (2.6) asso
iated with the 
ontrol uε(·) = (uε
1(·), . . . , uε

m(·)) andsu
h that xε(0) = x0. By extension, the end-point mapping for the system (2.1) 
orrespondsto ε = 0,
E(0, x0, tf , (u1, 0, . . . , 0)) = x(tf ),where x(·) is the solution of (2.1) asso
iated with the 
ontrol u1(·) and su
h that x(0) = x0.It will be also denoted E(x0, tf , u1) = E(0, x0, tf , (u1, 0, . . . , 0)) = x(tf ).In the sequel, we denote by u1(·) the minimal time 
ontrol steering the system (2.1) from

M0 to M1 in time tf .We �rst derive the following existen
e result.Lemma 2.5.6. For every ε > 0,5 the problem (OCP)ε admits at least one solution xε(·),asso
iated with a 
ontrol uε(·) = (uε
1(·), . . . , uε

m(·)) satisfying the 
onstraint (2.7) on [0, tεf ].Moreover, 0 ≤ tεf ≤ tf .Proof. Knowing that the 
onstrained minimization problem










min tf

|u1| ≤ 1, E(0, x0, tf , (u1, 0, . . . , 0)) = x1

x0 ∈M0, x1 ∈M1has a solution, it is our aim to prove that the problem






















min tεf

uε = (uε
1, . . . , u

ε
m),

m
∑

i=1

(uε
i )

2 ≤ 1, E(ε, x0, t
ε
f , u

ε) = x1

x0 ∈M0, x1 ∈M1has a solution, for every ε > 0. First of all, we 
laim that, for every ε > 0, the subset M1 isrea
hable from the subset M0, i.e., it is possible to solve the equation
E(ε, x0, t

ε
f , u

ε) = x1with a 
ontrol uε = (uε
1, . . . , u

ε
m) satisfying the 
onstraint ∑m

i=1(u
ε
i )

2 ≤ 1, and with some
x0 ∈ M0 and x1 ∈ M1. Indeed, if uε

i = 0, i = 2, . . . ,m, then the system (2.6) 
oin
ides with5Note that ε is not needed to be small. 63



the system (2.1), and it su�
es to 
hoose uε
1 = u1 and the 
orresponding initial and �nalpoints. The existen
e of a minimal time 
ontrol steering the system (2.6) from M0 to M1 isthen a standard fa
t to derive for su
h a 
ontrol-a�ne system (see e.g. [26, Chapter 9℄, andnote that M0 and M1 are 
ompa
t). Moreover, the minimal time tεf for the problem (OCP)εis less or equal than the minimal time tf for the initial problem.As explained in Se
tion 2.4, for ǫ > 0 �xed, and with Assumption 2.4.1 satis�ed, it followsfrom the Pontryagin maximum prin
iple applied to (OCP)ε that xε(·) is the proje
tion of anextremal (xε(·), pε(·), p0ε, uε(·)) su
h that

ṗε(t) = −
〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε
m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉and
uε

1(t) =
〈pε(t), Y1(x

ε(t))〉
√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

,

uε
i (t) =

ε〈pε(t), Yi(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

, i = 2, . . . ,m.We stress the fa
t that the 
ontrols uε
i , i = 1, . . . ,m, are 
ontinuous fun
tions of t.Lemma 2.5.7. If ε > 0 tends to 0, then tεf 
onverges to tf , uε

1(·) 
onverges to u1(·) in
L∞(0, tf ) for the weak star topology, and xε(·) 
onverges to x(·) uniformly on [0, tf ].Proof. Let (εn)n∈IN be an arbitrary sequen
e of positive real numbers 
onverging to 0 as ntends to +∞. From Lemma 2.5.6, 0 ≤ tεn

f ≤ tf , hen
e, up to a subsequen
e, (tεn

f )n∈IN
onverges to some T ≥ 0 su
h that T ≤ tf . By de�nition, the sequen
e of 
ontrols (uεn

1 (·))n∈INis bounded in L∞(0, tf ) (with the agreement that the fun
tion uεn
1 (·) is extended on (tεn

f , tf ]e.g. by 0). Therefore, up to subsequen
e, it 
onverges weakly to some 
ontrol ū1(·) ∈ L∞(0, tf )for the weak star topology. In parti
ular, it 
onverges weakly to ū1(·) ∈ L2(0, tf ) for the weaktopology of L2(0, tf ). The limit 
ontrol ū1(·) satis�es |ū1(t)| ≤ 1 almost everywhere on [0, tf ].To prove this fa
t, 
onsider the set
V = {g ∈ L2(0, tf ) | |g(t)| ≤ 1 almost everywhere on [0, tf ]}.For every integer n, uεn

1 (·) ∈ V; moreover V is a 
onvex 
losed (for the strong topology) subsetof L2(0, tf ), and hen
e is a 
onvex 
losed (for the weak topology) subset of L2(0, tf ). It followsthat ū1 ∈ V. 64



Sin
e M0 and M1 are 
ompa
t, it follows that, up to a subsequen
e, xεn(0) 
onverges tosome x̄0 ∈M0, and xεn(tεn

f ) 
onverges to some x̄1 ∈M1.Let x̄(·) denote the solution of the system (2.1), asso
iated with the 
ontrol ū1(·) on [0, T ],and su
h that x̄(0) = x̄0. Sin
e the 
ontrol systems under 
onsideration are 
ontrol-a�ne, itis not di�
ult to prove that the weak 
onvergen
e of 
ontrols implies the uniform 
onvergen
eof 
orresponding traje
tories (see [119℄ for details). In parti
ular, it follows that x̄(T ) = x̄1.Therefore, we have proved that the 
ontrol ū on [0, T ] steers the system (2.1) from M0 to
M1 in time T . Sin
e T ≤ tf and the problem (OCP) has a unique solution, we infer that
T = tf , ū1 = u1 and x̄(·) = x(·).To 
on
lude, it su�
es to remark that the above reasoning proves that (tf , u1(·), x(·)) isthe unique 
losure point of (tεn

f , u
εn

1 (·), xεn(·)), where (εn)n∈IN is any sequen
e of positive realnumbers 
onverging to 0.Remark 2.5.8. If one does not assume the uniqueness of the optimal solution of (OCP), thenthe following statement still holds. If ε > 0 tends to 0, then tεf still 
onverges to the minimaltime tf , the family (uε
1(·))ε has a 
losure point ū1(·) in L∞(0, tf ) for the weak star topology,and the family (xε(·))ε has a 
losure point x̄(·) in C0([0, tf ], IRn) for the uniform 
onvergen
etopology, where x̄(·) is the solution of the system (2.1) 
orresponding to the 
ontrol ū1(·) on

[0, tf ], su
h that x̄(0) ∈M0 and x̄(tf ) ∈M1. This means that x̄(·) is another possible solutionof (OCP).In other words, every 
losure point of a family of solutions of (OCP)ε is a solution of
(OCP).The next lemma will serve as a te
hni
al tool to derive Lemma 2.5.10.Lemma 2.5.9. Let T > 0, and let (gε)ε>0 be a family of 
ontinuous fun
tions on [0, T ]
onverging weakly to some g ∈ L2(0, T ) as ε tends to 0, for the weak topology of L2(0, T ).Then, for every t ∈ (0, T ), there exists a family (tε)ε>0 of points of [t, T ) su
h that tε → t and
gε(tε) → g(t) as ε→ 0.Proof. First of all, note that, sin
e gε 
onverges weakly to g on [0, T ], its restri
tion to anysubinterval of [0, T ] 
onverges weakly, as well, to the 
orresponding restri
tion of g. Let usprove that, for every β > 0, for every α > 0 (small enough so that t + α ≤ T ), there exists
ε0 > 0 su
h that, for every ε ∈ (0, ε0), there exists tε ∈ [t, t+ α] su
h that |gε(tε) − g(t)| ≤ β.The proof goes by 
ontradi
tion. Assume that there exist β > 0 and α > 0 su
h that, forevery integer n, there exists εn ∈ (0, 1/n) su
h that, for every τ ∈ [t, t + α], there holds
|gεn(τ) − g(t)| ≥ β. Sin
e gεn is 
ontinuous, it follows that either gεn(τ) ≥ g(t) + β for every
τ ∈ [t, t+α], or gεn(τ) ≤ g(t)−β for every τ ∈ [t, t+α]. This inequality 
ontradi
ts the weak
onvergen
e of the restri
tion of gεn to [t, t+ α] towards the restri
tion of g to [t, t+ α].In what follows, we denote by K(t), K1(t), K̃(t), the Pontryagin 
ones along the traje
tory
x(·) solution of (OCP), de�ned as in the previous Se
tion �1.5. Similarly, for every ε > 0,65



we denote by Kε(t), Kε
1(t), K̃ε(t) the Pontryagin 
ones along the traje
tory xε(·), whi
h is asolution of (OCP)ε.Lemma 2.5.10. For every v ∈ K(tf ), for every ε > 0, there exists vε ∈ Kε(tεf ) su
h that vε
onverges to v as ε tends to 0.Proof. By 
onstru
tion of K(tf ), it su�
es to prove the lemma for a single needle-like varia-tion. Assume that v = vπ(tf ), where the variation ve
tor vπ(·) is the solution on [t1, tf ] of theCau
hy problem
v̇π(t) =

(

∂X

∂x
(x(t)) + u1(t)

∂Y1

∂x
(x(t))

)

vπ(t)

vπ(t1) = (ū1 − u1(t1))Y1(x(t1)),

(2.12)where t1 is a Lebesgue point of [0, tf ), ū1 ∈ [−1, 1], and the needle-like variation π = {t1, η1, ū1}of the 
ontrol u1 is de�ned by
u1,π(t) =

{

ū1 if t ∈ [t1, t1 + η1],

u1(t) otherwise.For every ε > 0, 
onsider the 
ontrol uε = (uε
1, . . . , u

ε
m) of Lemma 2.5.6, solution of (OCP)ε.It satis�es the 
onstraint ∑m

i=1(u
ε
i )

2 ≤ 1. From Lemma 2.5.7, the 
ontinuous 
ontrol fun
tion
uε

1 
onverges weakly to u1 in L2(0, tf ). It then follows from Lemma 2.5.9 that, for every ε > 0,there exists tε ≥ t1 su
h that tε → t1 and uε
1(tε) → u1(t1) as ε→ 0.For every ε > 0, 
onsider the needle-like variation πε = {tε1, η1, (ū1, 0, . . . , 0)} of the 
ontrol

(uε
1, . . . , u

ε
m) de�ned, for i = 2, . . . ,m, by6

uε
1,πε(t) =

{

ū1 if t ∈ [tε1, t
ε
1 + η1],

uε
1(t) otherwise,and

uε
i,πε(t) =

{

0 if t ∈ [tε1, t
ε
1 + η1],

uε
i (t) otherwiseLet the variation ve
tor vπε(·) be the solution on [tε1, t

ε
f ] of the Cau
hy problem

v̇πε(t) =

(

∂X

∂x
(xε(t)) + uε

1(t)
∂Y1

∂x
(xε(t)) + ε

m
∑

i=2

uε
i (t)

∂Yi

∂x
(xε(t))

)

vπε(t)

vπε(tε1) = (ū1 − uε
1(t

ε
1))Y1(x

ε(tε1)) − ε

m
∑

i=2

uε
i (t

ε
1)Yi(x

ε(tε1)).

(2.13)From Lemma 2.5.7, tεf 
onverges to tf , uε
1(·) 
onverges weakly to u1(·), xε(·) 
onverges uni-formly to x(·); moreover, εuε

i (·) 
onverges weakly to 0, εuε
i (t

ε
1) 
onverges to 0, for i = 2, . . . ,m,and uε

1(t1) 
onverges to u1(t1). As in the proof of Lemma 2.5.7, we infer the uniform 
onver-gen
e of vε
π(·) to vπ(·) (see [119℄ for details), and the 
on
lusion follows.6Note that tε

1 is a Lebesgue point of the fun
tion t 7→ X(xε(t)) + uε
1(t)Y1(x

ε(t)) + ε
∑m

i=2
uε

i (t)Yi(x
ε(t))sin
e the 
ontrols uε

i are 
ontinuous fun
tions of t. 66



The next lemma will be useful in the proof of Lemma 2.5.12.Lemma 2.5.11. Let m be a positive integer, g be a 
ontinuous fun
tion on IR× IRm, and Cbe a 
ompa
t subset of IRm. For every ε > 0, set M(ε) = max
u∈C

g(ε, u), and M = max
u∈C

g(0, u).Then, M(ε) tends to M as ε tends to 0.Proof. For every ε > 0, let uε ∈ C su
h that M(ε) = g(ε, uε), and let u ∈ C su
h that
M = g(0, u). Note that uε does not ne
essarily 
onverge to u, however we will prove that
M(ε) tends to M , as ε tends to 0. Let u0 ∈ C be a 
losure point of the family (uε)ε>0. Then,by de�nition of M , one has g(0, u0) ≤ M. On the other hand, sin
e g is 
ontinuous, g(ε, u)tends to g(0, u) = M as ε tends to 0. By de�nition, g(ε, u) ≤M(ε) = g(ε, uε) for every ε > 0.Therefore, passing to the limit, one gets M ≤ g(0, u0). It follows that M = g(0, u0). We havethus proved that the (bounded) family (M(ε))ε>0 of real numbers has a unique 
losure point,whi
h is M . The 
on
lusion follows.Lemma 2.5.12. There exists ε0 > 0 su
h that, for every ε ∈ (0, ε0), every extremal lift
(xε(·), pε(·), p0ε, uε(·)) of any solution xε(·) of (OCP)ε is normal.Proof. We argue by 
ontradi
tion. Assume that, for every integer n, there exist εn ∈ (0, 1/n)and a solution xεn(·) of (OCP)εn

having an abnormal extremal lift (xεn(·), pεn(·), 0, uεn (·)).Set ψεn = pεn(tεn

f ), for every integer n. Then, from Remark 1.5.12, one has
〈ψεn , vεn〉 ≤ 0,for every vεn ∈ Kεn(tεn

f ), and
M(εn) = max

∑m
i=1

w2
i ≤1

(〈

ψεn ,X(xεn(tεn

f ))
〉

+ w1

〈

ψεn , Y1(x
εn(tεn

f ))
〉

+εn

m
∑

i=2

wi

〈

ψεn , Yi(x
εn(tεn

f ))
〉)

= 0,for every integer n. Sin
e the �nal adjoint ve
tor (pεn(tεn

f ), p0 εn) is de�ned up to a multipli
a-tive s
alar, and p0 εn = 0, we assume that ψεn is a unit ve
tor. Then, up to a subsequen
e, thesequen
e (ψεn)n∈IN 
onverges to some unit ve
tor ψ. Using Lemmas 2.5.7, 2.5.10 and 2.5.11,we infer that
〈ψ, v〉 ≤ 0,for every v ∈ K(tf ), and

M = max
|w1|≤1

(〈ψ,X(x(tf ))〉 + w1 〈ψ, Y1(x(tf ))〉) = 0.It then follows from Remark 1.5.12 that the traje
tory x(·) has an abnormal extremal lift.This is a 
ontradi
tion sin
e, by assumption, x(·) has a unique extremal lift, whi
h is moreovernormal. 67



Remark 2.5.13. If we remove the assumption that the optimal traje
tory x(·) has a uniqueextremal lift, whi
h is moreover normal, then Lemma 2.5.12 still holds provided that everyextremal lift of x(·) is normal.With the notations of Lemma 2.5.12, from now on we normalize the adjoint ve
tor so that
p0 ε = −1, for every ε ∈ (0, ε0).Lemma 2.5.14. In the setting of Lemma 2.5.12, the set of all possible pε(tεf ), with ε ∈ (0, ε0),is bounded.Proof. The proof goes by 
ontradi
tion. Assume that there exists a sequen
e (εn)n∈IN ofpositive real numbers 
onverging to 0 su
h that ‖pεn(tεn

f )‖ tends to +∞. Sin
e the sequen
e
(

pεn (tεn
f

)

‖pεn (tεn
f

)‖

)

n∈IN is bounded in IRn, up to a subsequen
e it 
onverges to some unit ve
tor ψ.Using the Lagrange multipliers property and (1.59), there holds
〈pεn(tεn

f ), vεn〉 ≤ 0,for every vεn ∈ Kεn(tεn

f ), and
max

∑m
i=1

w2
i ≤1

(〈

pεn(tεn

f ),X(xεn(tεn

f ))
〉

+ w1

〈

pεn(tεn

f ), Y1(x
εn(tεn

f ))
〉

+εn

m
∑

i=2

wi

〈

pεn(tεn

f ), Yi(x
εn(tεn

f ))
〉)

= 1,for every integer n. Dividing by ‖pεn(tεn

f )‖, and passing to the limit, using Lemmas 2.5.7, 2.5.10and 2.5.11, and Remark 1.5.12, the same reasoning as in the proof of the previous lemma yieldsthat the traje
tory x(·) has an abnormal extremal lift, whi
h is a 
ontradi
tion.Remark 2.5.15. Remark 2.5.13 applies as well to Lemma 2.5.14.Lemma 2.5.16. For every ε ∈ (0, ε0), let xε(·) be a solution of (OCP)ε, and let (xε(·), pε(·),−1, uε(·))be a (normal) extremal lift of xε(·). Then pε(·) 
onverges uniformly7 to p(·) on [0, tf ] as εtends to 0, where (x(·), p(·),−1, u(·)) is the unique (normal) extremal lift of x(·).Proof. For every ε > 0, set ψε = pε(tεf ). The adjoint equation of the Pontryagin MaximumPrin
iple is
ṗε(t) = −

〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε
m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

,with pε(tεf ) = ψε. Moreover, there holds
〈ψε, vε〉 ≤ 0,7We 
onsider any 
ontinuous extension of pε(·) on [0, tf ].68



for every vε ∈ Kε(tεf ), and
max

∑m
i=1

w2
i ≤1

(

〈

ψε,X(xε(tεf ))
〉

+ w1

〈

ψε, Y1(x
ε(tεf ))

〉

+ ε

m
∑

i=2

wi

〈

ψε, Yi(x
ε(tεf ))

〉

)

= 1.From Lemma 2.5.14, the family of all ψε, 0 < ε < ε0, is bounded. Let ψ be a 
losure point ofthat family, and (εn)n∈IN a sequen
e of positive real numbers 
onverging to 0 su
h that ψεntends to ψ. Using Lemma 2.5.7, and as in the proof of this lemma, we infer that the sequen
e
(pεn(·))n∈IN 
onverges uniformly to the solution z(·) of the Cau
hy problem

ż(t) = −
〈

z(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

z(t),
∂Y1

∂x
(x(t))

〉

, z(tf ) = ψ.Moreover, passing to the limit as in the proof of Lemma 2.5.14
〈ψ, v〉 ≤ 0,for every v ∈ K(tf ), and

max
|w1|≤1

(〈ψ,X(x(tf ))〉 + w1 〈ψ, Y1(x(tf ))〉) = 1.It follows that (x(·), z(·),−1, u1(·)) is an extremal lift of x(·), and from the uniqueness as-sumption we infer that z(·) = p(·). The 
on
lusion follows.Remark 2.5.17. If one removes the assumptions of uniqueness of the solution of (OCP) anduniqueness of the extremal lift, then the following result still holds, provided that every ex-tremal lift of every solution of (OCP) is normal. Consider the topologi
al spa
es X =

C0([0, tf ], IRn), endowed with the uniform 
onvergen
e topology, and Y = L∞(0, tf ; [−1, 1]),endowed with the weak star topology. In the following statement, the spa
e X × X × Y isendowed with the resulting produ
t topology. For every ε ∈ (0, ε0), let xε(·) be a solutionof (OCP)ε, and let (xε(·), pε(·),−1, uε(·)) be a (normal) extremal lift of xε(·). Then, every
losure point of the family (xε(·), pε(·), uε
1(·)) in X ×X ×Y is a triple (x̄(·), p̄(·), ū1(·)), where

x̄(·) is an optimal solution of (OCP), asso
iated with the 
ontrol ū1(·), having as a normalextremal lift the 4-tuple (x̄(·), p̄(·),−1, ū1(·)). This statement indeed follows from Remarks2.5.8, 2.5.13 and 2.5.15.Lemma 2.5.18. If the 
ontrol u1 is moreover bang-bang, i.e., if the (
ontinuous) swit
hingfun
tion ϕ(t) = 〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε
1(·) 
on-verges to u1(·) and uε

i (·), i = 2, . . . ,m, 
onverge to 0 almost everywhere on [0, tf ], and thus inparti
ular for the strong L1(0, tf ) topology.Proof. Using the expression (2.11) of the 
ontrols uε
1 and uε

i , i = 2, . . . ,m, the expression (2.5)of the 
ontrol u1, and from Lemmas 2.5.7 and 2.5.16, it is 
lear that uε
1(t) 
onverges to u1(t)and uε

i (t), i = 2, . . . ,m, 
onverge to 0 as ε tends to 0, for almost every t ∈ [0, tf ]. Sin
e the
ontrols are bounded by 1, the strong L1 
onvergen
e follows from the dominated 
onvergen
etheorem (see e.g. [20℄). 69



This last lemma ends the proof of Theorem 2.5.1.Remark 2.5.19. Assumption 2.4.1 requires that m ≥ n. One may however wish to 
hoose
m = 2, i.e., to add only one new ve
tor �eld Y2, in the regularization pro
edure. In that
ase, the Assumption 2.4.1 does not hold whenever n > 3, and then two problems may o

ur:�rst, in the maximization 
ondition (2.10) the maximum is not ne
essarily obtained at theboundary, i.e., the expressions (2.11) do not ne
essarily hold, and se
ond, the 
ontrols uε

i (·),
i = 1, . . . ,m are not ne
essarily 
ontinuous (the 
ontinuity is used in a 
ru
ial way in theproof of our main result). These two problems are however not likely to o

ur, in what followswe provide some 
omments on the generi
 validity of (2.11) and on the smoothness of theregularized 
ontrols, in the 
ase m = 2.Let m = 2, that is, 
onsider only one arbitrary additional smooth ve
tor �eld Y2. For
ε > 0 �xed, the maximization 
ondition from the Pontryagin maximum prin
iple applied tothe problem (OCP)ε is

uε
1(t)〈pε(t), Y1(x

ε(t)〉 + εuε
2(t)〈pε(t), Y2(x

ε(t)〉
= max

w2
1
+w2

2
≤1

(w1〈pε(t), Y1(x
ε(t)〉 + εw2〈pε(t), Y2(x

ε(t)〉)almost everywhere on [0, tεf ]. There are two 
ases: either the maximum is attained in theinterior of the domain, or it is attained at the boundary. The proof of our main result requiresthis maximum to be attained at the boundary (see (2.11)), and the 
orresponding 
ontrols tobe 
ontinuous. This fa
t depends on the 
hoi
e of the ve
tor �eld Y2.A simple example where this holds true is the 
ase Y2 = X. In that 
ase it is indeedpossible to ensure that both fun
tions t 7→ 〈pε(t), Y1(x
ε(t)〉 and t 7→ 〈pε(t), Y2(x

ε(t)〉 do notvanish simultaneously for ε > 0 small enough (and this implies the desired 
on
lusion). Toprove this assertion, we argue by 
ontradi
tion and assume that, for every n ∈ IN, there exists asequen
e (εn)n∈IN 
onverging to 0 and a sequen
e (tεn)n∈IN su
h that 〈pεn(tεn),X(xεn(tεn))〉 =

〈pεn(tεn), Y2(x
εn(tεn))〉 = 0. Combined with the fa
t that the Hamiltonian is 
onstant alongany extremal, and vanishes at the �nal time, these equalities imply that p0εn = 0. This
ontradi
ts the 
on
lusion of Lemma 2.5.12.More generally, and although su
h a statement may be nontrivial to derive, we 
onje
turethat this fa
t holds true for generi
 ve
tor �elds Y2 (see [27�29℄ for su
h generi
ity statements).Note that, for generi
 triples of ve
tor �elds (X,Y1, Y2), this fa
t holds true. Indeed, to derivethis statement it su�
es to 
ombine the fa
t that any totally singular minimizing traje
torymust satisfy the Goh 
ondition (see [2℄ and [15, Theorem 1.9℄ for details) and the fa
t that,for generi
 (in the strong sense of Whitney) triplets of ve
tor �elds (X,Y1, Y2), the asso
iated
ontrol-a�ne system does not admit nontrivial Goh singular traje
tories (see [29, Corollary2.7℄). 70



2.6 Examples2.6.1 The Rayleigh minimal time 
ontrol problemTo illustrate our results, we 
onsider the minimal time 
ontrol problem for the Rayleigh 
ontrolsystem des
ribed in [76℄,
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.14x2(t)
2) + u1(t),

(2.14)with initial and �nal 
onditions
x1(0) = x2(0) = −5, x1(tf ) = x2(tf ) = 0, (2.15)and the 
ontrol 
onstraint

|u1(t)| ≤ 4 , ∀t ∈ [0, tf ]. (2.16)A

ording to the Pontryagin maximum prin
iple, any optimal solution x(·) of (2.14)�(2.16)is the proje
tion of an extremal (x(·), p(·), p0, u1(·)) su
h that
ṗ1(t) = p2(t)

ṗ2(t) = −p1(t) − p2(t)
(

1.4 − 0.42x2(t)
2
)and the maximization 
ondition p2(t)u1(t) = max|w|≤4 (p2(t)w) holds almost everywhere on

[0, tf ]. It is easy to see that p2(·) 
annot vanish on some subinterval, and it follows that theoptimal 
ontrol u1(·) is bang-bang, equal to u1(t) = 4 sign(p2(t)).Applying a shooting method to problem (2.14)�(2.16) (with p0 = −1), we determine theinitial adjoint ve
tor p(0) ≃ (0.12234128; 0.08265161), and observe that the traje
tory has twoswit
hing times τ1 ≃ 1.12050659 and τ2 ≃ 3.31004697 on [0, tf ], that is, u1(·) is given by
u1(t) =



















+4 for 0 ≤ t ≤ τ1

−4 for τ1 ≤ t ≤ τ2

+4 for τ2 ≤ t ≤ tf ,with a �nal time tf ≃ 3.66817338 (see Figures 2.1�2.4). Furthermore, x(·) is the uniqueminimal time solution and has a unique extremal lift (up to a multipli
ative s
alar), whi
h ismoreover normal (see [76℄).We propose the regularized 
ontrol system
ẋε

1(t) = xε
2(t) + εuε

2(t) ,

ẋε
2(t) = −xε

1(t) + xε
2(t)(1.4 − 0.14xε

2(t)
2) + uε

1(t),
(2.17)71
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Figure 2.1: Optimal traje
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Figure 2.2: Optimal 
ontrol
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Figure 2.3: Adjoint ve
tor p1

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t

p 2

Figure 2.4: Adjoint ve
tor p2with the same initial and �nal 
onditions, and where the 
ontrol uε(·) = (uε
1(·), uε

2(·)) satis�esthe 
onstraint
(uε

1(t))
2 + (uε

2(t))
2 ≤ 16. (2.18)Any optimal solution xε(·) of (2.15), (2.17), (2.18) is the proje
tion of an extremal (xε(·), pε(·), p0ε, uε(·))su
h that

ṗε
1(t) = pε

2(t)

ṗε
2(t) = −pε

1(t) − pε
2(t)

(

1.4 − 0.42xε
2(t)

2
)

.The Assumption 2.4.1 is veri�ed, and the 
ontrols that satisfy the Pontryagin maximization
ondition (2.10) are given by
uε

1(t) =
4pε

2(t)
√

(pε
2(t))

2 + ε2(pε
1(t))

2
, uε

2(t) =
4εpε

1(t)
√

(pε
2(t))

2 + ε2(pε
1(t))

2
. (2.19)All assumptions of Theorem 2.5.1 are satis�ed.72



Applying a shooting method to the problem (2.15), (2.17), (2.18), we determine the op-timal traje
tory of the regularized problem, and we indeed observe the expe
ted 
onvergen
eof (xε(·), pε(·),−1, uε) towards (x(·), p(·),−1, u1), as ε tends to 0, in agreement with Theo-rem 2.5.1 (see Figures 2.5, 2.6 and 2.7). In this example, the minimal time 
ontrol solution of(2.14)�(2.16) is bang-bang, and we indeed observe, on the numeri
al simulations, the almosteverywhere 
onvergen
e of the regularized 
ontrol.
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Figure 2.5: Traje
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Figure 2.7: Control2.6.2 Minimal time optimal 
ontrol problem involving a singular ar
In the example provided in this subse
tion, the minimal time 
ontrol u1(·) is singular. It isthen not expe
ted a priori that the regularized 
ontrol uε
1(·) 
onverges almost everywhere to

u1(·) along the singular ar
. Our main result only asserts a weak 
onvergen
e property along73



this ar
. In the example presented below, the regularized 
ontrol uε
1(·) 
onverges weakly to

u1(·) but not almost everywhere. We then provide some numeri
al simulations, on whi
h weindeed observe that the almost everywhere 
onvergen
e property fails along the singular ar
,and we observe an os
illating property, whi
h is a typi
al feature of weak 
onvergen
e.Consider the minimal time 
ontrol problem for the system
ẋ1(t) = 1 − x2(t)

2,

ẋ2(t) = u1(t),
(2.20)with initial and �nal 
onditions

x1(0) = x2(0) = 0, x1(tf ) = 1, x2(tf ) = 0, (2.21)and the 
ontrol 
onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]. (2.22)It is 
lear that the solution of this optimal 
ontrol problem is unique, and is provided by thesingular 
ontrol u1(t) = 0, for every t ∈ [0, tf ], with tf = 1. The 
orresponding traje
tory isgiven by x1(t) = t and x2(t) = 0.We 
laim that this optimal traje
tory has a unique extremal lift (up to a multipli
atives
alar), whi
h is moreover normal. Indeed, denoting by p = (p1, p2) the adjoint ve
tor, theHamiltonian of the above optimal 
ontrol problem is H = p1(1 − x2

2) + p2u1 + p0, and thedi�erential equations of the adjoint ve
tor are ṗ1 = 0, ṗ2 = 2x2p1. Sin
e x2(t) = 0, it followsthat the adjoint ve
tor of any extremal lift of the optimal traje
tory is 
onstant. Moreover,the Hamiltonian vanishes at the �nal time, and hen
e there must hold p1(t)+p
0 = 0, for every

t ∈ [0, tf ]. Sin
e the singular 
ontrol u1(t) = 0 is optimal and belongs to the interior of thedomain of 
onstraint (2.22), the maximization 
ondition yields ∂H
∂u1

= 0, and thus, p2(t) = 0for every t ∈ [0, tf ]. Then, sin
e the adjoint ve
tor is nontrivial, p0 
annot be equal to 0, andup to a multipli
ative s
alar we assume that p0 = −1. The assertion is thus proved, and theunique (normal) extremal lift is given by (x1(t), x2(t), p1(t), p2(t), p
0, u1(t)) = (t, 0, 1, 0,−1, 0).We propose the following regularization of the problem (2.20)�(2.22). Let g(·) and h(·) besmooth fun
tions, to be 
hosen; 
onsider the minimal time 
ontrol problem for the system

ẋε
1(t) = 1 − xε

2(t)
2 + εuε

2(t)g(x
ε
1(t)),

ẋε
2(t) = uε

1(t) + εuε
2(t)h(x

ε
1(t)),

(2.23)with initial and �nal 
onditions
xε

1(0) = xε
2(0) = 0, xε

1(t
ε
f ) = 1, xε

2(t
ε
f ) = 0, (2.24)and the 
ontrol 
onstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 1 , ∀t ∈ [0, tεf ]. (2.25)74



Sin
e the fun
tion g to be 
hosen below vanishes at some points, the Assumption 2.4.1does not hold everywhere. We 
laim however that, if the fun
tion g may only vanish on asubset of zero measure, and if ε > 0 is small enough, then the formula (2.11) holds, and theregularized 
ontrols are 
ontinuous, so that we are in the framework of Theorem 2.5.1.Indeed, the Hamiltonian of this regularized optimal 
ontrol problem is
H = pε

1(1 − (xε
2)

2) + pε
2u

ε
1 + εuε

2(p
ε
1g(x

ε
1) + pε

2h(x
ε
1)) + p0ε,and the adjoint equations are

ṗε
1(t) = −εuε

2(t)(p
ε
1(t)g

′(xε
1(t)) + pε

2(t)h
′(xε

1(t))),

ṗε
2(t) = 2xε

2(t)p
ε
1(t).It is not di�
ult to see that, for ε > 0 small enough, the optimal traje
tory must be su
hthat ẋε

1(t) > 0; hen
e, xε
1(·) is an in
reasing fun
tion of t. Now, argue by 
ontradi
tion, andassume that the optimal 
ontrol takes its values in the interior of the domain (2.25), for t ∈ I,where I is a subset of [0, tεf ] of positive measure. Then, the maximization 
ondition yields

∂H
∂uε

1

= ∂H
∂uε

2

= 0, and hen
e pε
2(t) = 0 and pε

1(t)g(x
ε
1(t)) + pε

2(t)h(x
ε
1(t)) = 0, for t ∈ I. Itfollows that pε

1(t)g(x
ε
1(t)) = 0, for t ∈ I. Sin
e the fun
tion g may only vanish on a subsetof zero measure, and sin
e xε

1(·) is in
reasing, it follows that there exists t1 ∈ I su
h that
g(xε

1(t1)) 6= 0, and therefore pε
1(t1) = pε

2(t1) = 0. Sin
e the Hamiltonian vanishes almosteverywhere, this yields moreover p0ε = 0, whi
h is a 
ontradi
tion.Therefore, under the above assumption on g, the formula (2.11) holds, and the optimal
ontrols are given by
uε

1(t) =
pε
2(t)

√

pε
2(t)

2 + ε2 (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

2
,

uε
2(t) =

ε (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

√

pε
2(t)

2 + ε2 (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

2
,

(2.26)for almost every t ∈ [0, tεf ].Let us prove that the 
ontrols uε
1(·) and uε

2(·) are smooth fun
tions of t. For this purpose,we prove hereafter that the fun
tion pε
2(·) does not vanish on any subset of positive measure.Argue by 
ontradi
tion and assume that there exists a subset I of [0, tεf ] on whi
h pε

2(·) vanishes.Then, on one part, (2.26) implies that uε
1(t) = 0 and uε

2(t) = sign(pε
1(t)g(x

ε
1(t))+p

ε
2(t)h(x

ε
1(t))),for almost every t ∈ I. On the other part, using the adjoint equations, we have xε

2(t)p
ε
1(t) = 0,for t ∈ I. The s
alar pε

1(t) 
annot vanish, for any t ∈ I; indeed otherwise there would hold
pε
1(t) = pε

2(t) = 0, and sin
e the Hamiltonian vanishes, it would follow that p0ε = 0, whi
h isa 
ontradi
tion with the normality of the extremal lift (see Lemma 2.5.12). Hen
e, xε
2(t) = 0for t ∈ I, and thus, by di�erentiation, uε

1(t) + εuε
2(t) = 0. This 
ontradi
ts the equalities

uε
1(t) = 0 and uε

2(t) = sign(pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t))).From Theorem 2.5.1, we 
an assert that, as ε tends to 0,75



• xε
1(·) (resp., xε

2(·)) 
onverges uniformly to x1(·) (resp., x2(·)) on [0, 1],
• pε

1(·) (resp., pε
2(·)) 
onverges uniformly to p1(·) ≡ 1 (resp., p2(·) ≡ 0),

• uε
1(·) 
onverges weakly to u1(·) ≡ 0.Let us next prove that, for 
ertain 
hoi
es of the fun
tions g(·) and h(·), the regularized 
ontrol

uε
1(·) does not 
onverge almost everywhere to u1(·). We 
hoose a smooth fun
tion g(·) de�nedon IR that is strongly os
illating in the neighborhood of 1/2, for instan
e,

g(x) = h(x) sin
1

x− 1/2
,and a �at fun
tion h so that g is indeed smooth, for instan
e,

h(x) = exp

( −1

(x− 1/2)2

)

.If ε is small enough, then xε
1(t) is 
lose to t, pε

1(t) is 
lose to 1, pε
2(t) is 
lose to 0, and hen
ethe sign of uε

2(t), that is equal to the sign of
h(xε

1(t))

(

pε
1(t) sin

1

xε
1(t) − 1/2

+ pε
2(t)

)is 
lose to the sign of sin 1
t−1/2 . Therefore, the 
ontrol uε

2(·) strongly os
illates between −1 and
1 for t 
lose to 1/2. Sin
e uε

1(·) and uε
2(·) are 
ontinuous and satisfy (uε

1(t))
2 + (uε

2(t))
2 = 1,for every t ∈ [0, 1], it follows that the 
ontrol uε

1(·) strongly os
illates as well between −1 and
1 for t 
lose to 1/2.This os
illation feature is similar to what happens with 
hattering 
ontrols, and illustratesthe fa
t that uε

1(·) weakly 
onverges to u1(·) = 0 as ε tends to 0, but does not 
onverge almosteverywhere.Numeri
al simulations lead to Figures 2.8 and 2.9, on whi
h we 
an observe the os
illatingproperties of the regularized 
ontrols. Note that these numeri
al simulations are di�
ultto obtain with the above fun
tion h, be
ause of its �atness. First of all, in our numeri
alsimulations we rather 
hoose the fun
tion h(x) = (x− 1/2)3, that is not so �at, but for whi
hthe system is however not smooth (but this does not 
hange anything to the result). Se
ond,it is di�
ult to make 
onverge the shooting method for small values of ε, and we had to makeuse of a 
ontinuation method, starting with a large value of ε and de
reasing that value stepby step.2.6.3 The harmoni
 os
illator problem (linear 
ase)This example was 
onsidered in Se
tion �1.4.7. Here we propose to solve the harmoni
 os
illa-tor problem (in the linear 
ase) using a single shooting method. We illustrate the 
onvergen
eresult of Theorem 2.5.1 for this minimal time problem.76
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Figure 2.9: Control uǫ
2 (ε = 0.01)Consider the minimal time 
ontrol problem for the system







ẋ(t) = y(t) ,

ẏ(t) = −x(t) + u1(t) ,
(2.27)with initial and �nal 
onditions

x(0) = 3 , y(0) = 1 ,

x(tf ) = 0 , y(tf ) = 0 ,
(2.28)and the 
ontrol 
onstraint

|u1(t)| ≤ 1 , ∀ t ∈ [0, tf ] . (2.29)We propose the regularized 
ontrol system






ẋε(t) = yε(t) + εuε
2(t) ,

ẏε(t) = −xε(t) + uε
1(t) ,with the same initial 
onditions, and where the 
ontrol uε(·) = (uε

1(·), uε
2(·)) satis�es the
onstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 1 , ∀t ∈ [0, tεf ] .All assumptions of Theorem 2.5.1 are satis�ed (the minimal time problem (2.27)�(2.29)has a unique solution (x(·), y(·)), de�ned on [0, tf ], asso
iated with a 
ontrol u1(·) on [0, tf ].And (x(·), y(·)) has a unique extremal lift (up to a multipli
ative s
alar), that is moreovernormal). In Figures 2.10 and 2.11 we 
an observe the optimal traje
tory and optimal bang-bang 
ontrol with minimal time is tf ≃ 5.202346. The adjoint ve
tor (px, py) asso
iated tothe optimal traje
tory is represented in Figures 2.12 and 2.13.77
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Figure 2.11: Optimal 
ontrol for (2.27)�(2.29)
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Figure 2.13: py for (2.27)�(2.29)
Applying a shooting method to the regularized problem we observe, like in the �rst exampleof this 
hapter, the 
onvergen
e of the traje
tories, the adjoint ve
tors and the optimal 
ontrolstowards the optimal traje
tory, adjoint ve
tor and optimal 
ontrol of the minimal time problemproblem (2.27)�(2.29), respe
tively, as ε tends to 0 (see Figures 2.14�2.17 for ε = 0.2 and

ε = 0.5 and Figures 2.18�2.21 for ε = 0.1 and ε = 0.05). We report on Table 2.1 the values ofthe �nal time tεf of the optimal traje
tory x̂ε(·), for di�erent values of ε. We observe that, asexpe
ted, tεf 
onverges to tf ≃ 5.202346 as ε tends to 0.78



ε tεf
0.1 5.140856...

0.05 5.183549...

0.001 5.202331...Table 2.1: Values of tεf

−2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

xeps

yep
s

 

 
epsilon=0
epsilon=0.2
epsilon=0.5

Figure 2.14: (xε, yε)
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Figure 2.15: pε
x
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Figure 2.16: pε
y
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Figure 2.17: uε
12.6.4 Minimal time 
ontrol of a Van der Pol os
illatorThis optimal 
ontrol problem (see e.g. [81℄) 
onsist in minimizing the �nal time tf subje
t tothe 
ontrol system







ẋ1(t) = x2(t) ,

ẋ2(t) = −x1(t) + x2(t)
(

1 − x2
1(t)
)

+ u1(t)79
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Figure 2.18: (xε, yε)
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Figure 2.19: uε
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Figure 2.20: pε
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Figure 2.21: pε
ywith the initial and �nal 
onditions

x1(0) = −0.4 , x2(0) = 0.6 ,

x1(tf ) = 0.6 , x2(tf ) = 0.4 ,and the 
ontrol 
onstraint
|u1(t)| ≤ 1 , ∀ t ∈ [0, tf ] .We propose the regularized 
ontrol system







ẋε
1(t) = xε

2(t) + εuε
2(t) ,

ẋε
2(t) = −xε

1(t) + xε
2(t)

(

1 − (xε
1(t))

2
)

+ uε
1(t)with the same initial 
onditions, and where the 
ontrol uε(·) = (uε

1(·), uε
2(·)) satis�es the
onstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 1 , ∀ t ∈ [0, tεf ] .80



Analogously to examples in Se
tions �2.6.1 and �2.6.3 the assumptions and the 
onvergen
eresults of Theorem 2.5.1 are veri�ed (see Figures 2.22�2.25).
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Figure 2.22: Traje
tory (xε
1(·), xε

2(·))
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Figure 2.23: Control uε
1(·)
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Figure 2.24: Adjoint ve
tor pε
x1
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Figure 2.25: Adjoint ve
tor pε
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Chapter 3Asymptoti
 approa
h on 
onjugatepoints for bang-bang 
ontrol problems
3.1 Introdu
tionIn this 
hapter we fo
us on the problem of determining an e�
ient pro
edure to 
omputethe �rst 
onjugate time tc for the minimal time 
ontrol problem 
onsidered in Chapter 2, forsingle-input 
ontrol-a�ne systems ẋ = X(x) + u1Y1(x) in IRn with �xed initial and �nal time
onditions x(0) = x̂0, x(tf ) = x̂1, and where the s
alar 
ontrol u1 satis�es the 
onstraint
|u1(t)| ≤ 1, for every t ∈ [0, tf ]. For these systems a theoreti
al 
on
ept of 
onjugate time
tc has been de�ned in e.g. [5, 81, 87, 95℄ in the bang-bang 
ase, however dire
t algorithmsof 
omputation are di�
ult to apply. Besides, theoreti
al and pra
ti
al issues for 
onjugatetime theory are well known in the smooth 
ase (see e.g. [2, 86℄), and e�
ient implementationtools are available (see [15℄). The �rst 
onjugate time along an extremal is the time atwhi
h the extremal loses its lo
al optimality. We use the asymptoti
 approa
h developed inChapter 2 whi
h 
onsists in adding new smooth ve
tor �elds Y2, . . . , Ym and a small parameter
ε > 0, so as to 
ome up with the minimal time problem (OCP)ε for the system ẋ = X(x) +

uε
1Y1(x) + ε

∑m
i=2 u

ε
iYi(x), under the 
ontrol 
onstraint ∑m

i=1(u
ε
i (t))

2 ≤ 1, with the sameboundary 
onditions as the initial problem, and investigate the 
onvergen
e properties of
onjugate times. From Theorem 2.5.1, under appropriate assumptions, the optimal 
ontrolsof the latter problem, depending on ε, are smooth fun
tions of t, and the theoreti
al andpra
ti
al results for the 
onjugate time theory that are well known in the smooth 
ase 
anbe applied to the regularized problem. In our main result (Se
tion �3.2, Theorem 3.2.1)) weprove that the �rst 
onjugate time tεc of regularized problem 
onverges to the �rst 
onjugatetime tc of the initial problem, when ε tends to 0. We thus get as a byprodu
t an e�
ient wayto 
ompute 
onjugate times in the bang-bang 
ase.In Se
tion �3.1.3 we 
onsider the bang-bang 
ase and re
all two di�erent approa
hes toderive se
ond order ne
essary and/or su�
ient 
onditions for strong lo
al optimality and their83



relation with the existen
e of 
onjugate times. In Se
tion �3.1.4 we re
all the regularizationpro
edure introdu
ed in Se
tion �2.4 of Chapter 2. In Se
tion �3.1.5 we re
all a su�
ient opti-mality 
onditions in the smooth 
ase and the 
on
ept of geometri
 
onjugate time. These twose
tions are very important for the formulation and prove of our main result (Theorem 3.2.1)in Se
tion �3.2. In Se
tion �3.3 we provide two examples to illustrate the main results of thisthesis (Theorems 2.5.1 and 3.2.1).3.1.1 Statement of the problemConsider the single-input 
ontrol-a�ne system in IRn

ẋ = X(x) + u1Y1(x), (3.1)where X and Y1 are smooth ve
tor �elds, and the 
ontrol u1 is a measurable s
alar fun
tionsatisfying the 
onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ]. (3.2)Let x̂0 and x̂1 be two points of IRn. Assume that x̂1 is rea
hable from x̂0, that is, thereexists a time T > 0 and a 
ontrol fun
tion u1(·) ∈ L∞(0, T ) satisfying the 
onstraint (3.2),su
h that the traje
tory x(·), solution of (3.1) with x(0) = x̂0, satis�es x(T ) = x̂1.We 
onsider the optimal 
ontrol problem (OCP) of determining a solution x̂(·) asso
iatedto a 
ontrol û1(·), on [0, tf ], satisfying (3.1)�(3.2) and steering x̂0 to x̂1 in minimal time tf .We assume that su
h a solution x̂(·) for (OCP) exists.13.1.2 Bang-bang Pontryagin extremalsRe
alling Se
tion �2.3 we know that, following the Pontryagin maximum prin
iple (see [96℄),there exists an absolutely 
ontinuous mapping p̂(·) : [0, tf ] → IRn, 
alled adjoint ve
tor, and areal number p0 ≤ 0, with (p̂(·), p0) 6= (0, 0), su
h that

˙̂p(t) = −∂H
∂x

(x̂(t), p̂(t), p0, û1(t))

= −
〈

p̂(t),
∂X

∂x
(x̂(t))

〉

− û1(t)

〈

p̂(t),
∂Y1

∂x
(x̂(t))

〉 (3.3)where the fun
tion H(x, p, p0, u1) = 〈p,X(x) + u1Y1(x)〉 + p0 is 
alled the Hamiltonian, andthe maximization 
ondition
H(x̂(t), p̂(t), p0, û1(t)) = max

|w|≤1
H(x̂(t), p̂(t), p0, w) (3.4)holds almost everywhere on [0, tf ]. Moreover, max|w|≤1H(x̂(t), p̂(t), p0, w) = 0 for every

t ∈ [0, tf ]. It follows from (3.4) that
û1(t) = sign〈p̂(t), Y1(x̂(t))〉 (3.5)1See e.g. [26℄ for existen
e results of optimal solutions.84



for almost every t, provided that the (
ontinuous) swit
hing fun
tion
ϕ1(t) = 〈p̂(t), Y1(x̂(t))〉does not vanish on any subinterval of [0, tf ].2 Su
h an extremal (x̂(·), p̂(·), p0, û1(·)) is then
ompletely determined by the initial adjoint ve
tor p̂(0). This extremal is a priori de�nedon the time interval [0, tf ], but sin
e it is 
ompletely determined by the di�erential system(3.1)�(3.3) and its initial 
ondition, it may be extended forward on a maximal time interval

I of [0,+∞), 
ontaining [0, tf ]. In this way, we 
onsider the traje
tory x̂(·) on this maximalinterval I.Note that, sin
e x̂(·) is optimal on [0, tf ], and sin
e the 
ontrol system under study isautonomous, it follows that x̂(·) is as well optimal for the problem of steering the system (3.1)from x̂(0) = x̂0 to x̂(t), for every t ∈ (0, tf ].Assumption 3.1.1. We assume that the extremal (x̂(·), p̂(·), p0, û1(·)) is bang-bang on theinterval I, that is, the swit
hing fun
tion ϕ1 does not vanish on any subinterval of I.Denote by τ̂1, . . . , τ̂s, ... the zeros of ϕ1 on I (possibly in in�nite number).Assumption 3.1.2. We assume moreover that the extremal (x̂(·), p̂(·), p0, û1(·)) satis�es thestri
t bang-bang Legendre 
ondition, that is,
ϕ̇1(τ̂j) =

d

dt
〈p̂(t), Y1(x̂(t))〉

∣

∣

∣

t=τ̂j

6= 0,for every τ̂j with j = 1, ..., s.The Assumption 3.1.2 implies that the times τ̂1, . . . , τ̂s are isolated and are in �nite numberon every 
ompa
t subinterval of I. In parti
ular, we assume that there are exa
tly s swit
hingtimes on the interval [0, tf ], su
h that 0 < τ̂1 < ... < τ̂s < tf . Moreover, the Assumption 3.1.2implies that ea
h τ̂1, . . . , τ̂s is a swit
hing time of the 
ontrol and hen
e the 
ontrol is given by
û1(t) =







1 if ϕ1(t) > 0,

−1 if ϕ1(t) < 0,for every t ∈ I.De�nition 3.1.3. Let T > 0, T ∈ I. The traje
tory x̂(·) is said to be lo
ally minimal time on
[0, T ] in C0 topology if there exist a neighborhood W of the traje
tory x̂(·) in IRn and a realnumber η > 0 su
h that, for every traje
tory y(·) that is solution of (3.1), 
ontained in W ,asso
iated with a 
ontrol v on [0, T + η] satisfying the 
onstraint (3.2), satisfying y(0) = x̂0and y(t1) = x̂(T ) with t1 ∈ [0, T + η], there holds t1 ≥ T .2The 
ase where the swit
hing fun
tion may vanish on a subinterval is related to singular traje
tories, andis outside of the s
ope of this 
hapter where we fo
us on the bang-bang 
ase.85



The C0 lo
al optimality is also 
alled strong lo
al optimality. The notion of global opti-mality is de�ned similarly, with W = IRn and η = +∞.The Pontryagin maximum prin
iple mentioned formerly is a ne
essary �rst order 
onditionfor optimality; 
onversely, extremals are not ne
essarily lo
ally optimal, and there have beenmany works on high order ne
essary optimality 
onditions (see e.g. [18℄) and on su�
ient (�rstand se
ond order) optimality 
onditions detailed in the next se
tion.3.1.3 Se
ond order optimality 
onditions and bang-bang 
onjugate timesConsider the extremal (x̂(·), p̂(·), p0, û1(·)) of the problem (OCP) introdu
ed previously.De�nition 3.1.4. The 
ut time t
ut(x̂0) is de�ned as the �rst positive time of I beyond whi
hthe traje
tory x̂(·) loses its global optimality status for the problem of steering the system(3.1)�(3.2) from x̂0 to x̂1 in minimal time, with the agreement that t
ut(x̂0) = +∞ whenever
x̂(·) is globally optimal on every interval [0, T ], T > 0, T ∈ I. The point x̂(t
ut(x̂0)) is 
alleda 
ut point.Whereas su
h a global optimality status is di�
ult to 
hara
terize, the lo
al optimalitystatus of a traje
tory may be 
hara
terized using the 
on
ept of 
onjugate time, that is,the time at whi
h the optimal traje
tory x̂(·) loses its lo
al optimality. We next re
all wellknown fa
ts on �rst 
onjugate times of solutions x̂(·) of the optimal 
ontrol problem (OCP)asso
iated to bang-bang 
ontrols û1(·).The de�nition and 
omputation of 
onjugate points are an important topi
 in the theory of
al
ulus of variations (see e.g. [13℄). In [99℄ the investigation of the de�nition and 
omputationof 
onjugate points for minimal time 
ontrol problems is based on the study of se
ond order
onditions. In fa
t, se
ond order ne
essary and/or su�
ient 
onditions are 
ru
ial for study ofthe �rst 
onjugate time of the problem (OCP). In [110℄, the theory of envelopes and 
onjugatepoints is used for the study of the stru
ture of lo
ally optimal bang-bang traje
tories for theproblem (OCP) in IR2 and IR3; these results were generalized in [60℄.Se
ond order optimality 
onditionsWhen the optimal 
ontrol problem has a nonlinear 
ontrol system and the extremal 
ontrolsare 
ontinuous, the literature on �rst and/or se
ond order su�
ient 
onditions is vast; seee.g. [14, 41, 68, 75, 77, 79, 83, 86, 126℄ and referen
es therein. In this 
ase numeri
al pro
eduresare available to test se
ond order su�
ient 
onditions; see e.g. [10, 70, 77℄. For se
ond or-der ne
essary and/or su�
ient 
onditions of optimal 
ontrol problems with nonlinear 
ontrolsystems and dis
ontinuous 
ontrols see e.g. [89℄ and referen
es therein.We will next fo
us on se
ond order ne
essary and/or su�
ient optimality 
onditions foroptimal 
ontrol problems with a�ne-
ontrol systems and bang-bang optimal 
ontrols.86



In [100℄ a minimal time 
ontrol problem for 
ontrol-a�ne systems is 
onsidered and �rstand se
ond order su�
ient optimality 
onditions are derived, for bang-bang Pontryagin ex-tremal 
ontrols whi
h are L1-lo
ally optimal. In [81℄ the same optimal 
ontrol problem isstudied and the authors provide su�
ient 
onditions for strong lo
al optimality and developnumeri
al methods to test the positive de�niteness of a spe
i�
 quadrati
 form. In both pa-pers [100℄ and [81℄, the su�
ient optimality 
onditions are expressed in terms of quadrati
forms, however although the same 
riti
al subspa
e is used, the quadrati
 form in [100℄ is alower bound for the one in [81℄. In fa
t, the se
ond order su�
ient optimality 
ondition in [81℄is always ful�lled whenever the 
orresponding 
ondition in [100℄ is.In [78, 81℄ optimization methods are given to test se
ond order su�
ient optimality 
on-ditions for optimal 
ontrol problems with bounded s
alar 
ontrols [81℄, and ve
tor-valued
ontrols [78℄.In [5℄ the authors derive se
ond order su�
ient 
onditions, under the same regularityassumptions as [81℄, for an optimal 
ontrol problem in the Mayer form with �xed �nal time,with a�ne-
ontrol systems and bang-bang optimal 
ontrols. In [90℄ the authors showed that,in 
ertain 
ases, the se
ond order su�
ient 
onditions given in [81℄ are equivalent to the onesin [5℄. In the 
ases where the equivalen
e holds, the results obtained in [90℄ extend those in [5℄to the problem of free �nal time, with mixed initial and terminal 
onditions of equality andinequality type. The detailed proofs of the main results in [90℄ are given in [91℄. In [5℄ a�nite-dimensional subproblem is 
onsidered whi
h 
onsists in moving the swit
hing times anda se
ond variation is de�ned as a 
ertain quadrati
 form asso
iated to this subproblem; then,�nding a 
onjugate time 
onsists in testing the positivity of that quadrati
 form. The authorsprove that this 
an only happen at a swit
hing time.In [95℄ the minimal time problem for 
ontrol-a�ne systems is studied. An analogousquadrati
 form to the one in [5℄ is de�ned, but the kind of optimality studied is a strongerone (state lo
al optimality).Quadrati
 formsAs mentioned above the quadrati
 forms de�ned in [5,81℄ are equivalent (see [90,91℄), althoughthe way they are de�ned is di�erent. In this 
hapter we only give a brief sket
h of a possiblepro
edure to de�ne the quadrati
 form (see Appendix A where the quadrati
 form dedu
edin [81℄ is re
alled).Let F (t; τ1, ..., τs) = x(t; τ1, ..., τs) be the mapping asso
iated with the �nite-dimensionalproblem 
orresponding to (OCP) that 
onsists in moving the swit
hing times τ1, . . . , τsin a neighborhood of the referen
e swit
hing times τ̂1, . . . , τ̂s (see [5, 78, 90, 91, 95℄), where
x(t; τ1, ..., τs) is the traje
tory solution of (3.1), on [0, t], with x(0) = x̂0, asso
iated to thebang-bang 
ontrol u1(·) with swit
hing times τ1, ..., τs and su
h that it 
oin
ides with thereferen
e traje
tory x̂(·) whenever τi = τ̂i for every i. Note that the traje
tory x(·; τ1, ..., τs)87



is not the proje
tion of an extremal whenever τi 6= τ̂i. The mapping F is well de�ned for tin a neighborhood of tf and τi in a neighborhood of τ̂i for every i, and is the 
omposition ofsmooth mappings, therefore is di�erentiable. Denoting τ = (τ1, ..., τs), one has
∂F

∂τ
(t; τ1, ..., τs) =









∂x1

∂τ1
(·) . . . ∂x1

∂τs
(·)... ... ...

∂xn

∂τ1
(·) . . . ∂xn

∂τs
(·)









,and
∂F

∂t
(t; τ1, ..., τs) = ẋ(t; τ1, ..., τs).Sin
e x̂(·) is optimal, it follows that

rank

(

∂F

∂τ
(t; τ̂1, ..., τ̂s)

)

≤ n− 1.Indeed, otherwise, if rank
(

∂F
∂τ (t; τ̂1, ..., τ̂s)

)

= n then F would be a lo
al submersion, whi
h
ontradi
ts the optimality of x̂(·). Therefore, there exists a multiplier ψt ∈ IRn\{0} su
h that
ψt · ∂F

∂τ (t; τ̂1, ..., τ̂s) = 0. Denote by Qt the intrinsi
 se
ond derivative of the mapping F , de�nedby
Qt = ψt ·

∂2F

∂τ2
(t; τ̂1, ..., τ̂s)

∣

∣

∣

ker ∂F
∂τ

(t;τ̂1,...,τ̂s)
. (3.6)Expli
it formulas of Qt are given in [3,5,81,95℄; in parti
ular formulas in terms of Lie bra
ketsof the ve
tor �elds 
an be derived.The next theorem, 
ombination of several known results, provides a ne
essary and/orsu�
ient 
ondition for strong lo
al optimality.Theorem 3.1.5 ( [3,5,81,87,95℄). Let (x̂(·), p̂(·), p0, û1(·)) be a bang-bang extremal for (OCP)de�ned on a maximal time interval I of [0,+∞) 
ontaining [0, tf ]. If this extremal satis�esthe stri
t bang-bang Legendre 
ondition on I (see Assumption 3.1.2), then for every t ∈ I, thefollowing holds:

• If the quadrati
 form Qt is positive de�nite then x̂(·) is a lo
al minimizer in the C0topology on [0, t].
• Assume moreover that x̂(·) has a unique extremal lift (up to a multipli
ative s
alar)

(x̂(·), p̂(·), p0, û1(·)), whi
h is moreover normal (p0 = −1). If x̂(·) is lo
ally optimal inthe C0 topology on [0, t] then Qt given by (3.6) is nonnegative.Remark 3.1.6. Under the assumptions of the Theorem 3.1.5, the set
{t > 0 | Qt has a nontrivial kernel}is dis
rete and 
an only 
onsist of some swit
hing times (see [5℄). This remark permits tode�ne the notion of �rst 
onjugate time. 88



De�nition 3.1.7. The �rst 
onjugate time tc of x̂(·) is de�ned by
tc = sup{t | Qt is positive de�nite} = inf{t | Qt is inde�nite} .The point x̂(tc) is 
alled the �rst 
onjugate point of the traje
tory x̂(·).Remark 3.1.8. A 
onjugate time 
an only o

ur at a swit
hing time.Extremal �eld approa
hSu�
ient optimality 
onditions for a general optimal 
ontrol problem are provided in [87℄ (seealso [5,95℄) with a di�erent point of view than the one re
alled in the previous paragraph. In[87℄ the authors study lo
al optimality 
onditions for both 
ontinuous and pie
ewise 
ontinuous(in
luding bang-bang) 
ontrols. The su�
ient 
onditions developed in that arti
le are basedon the method of 
hara
teristi
s and the theory of extremal �elds. Su�
ient optimality
onditions are given for embedding a referen
e traje
tory into a lo
al �eld of broken extremals.3The o

urren
e of a 
onjugate point is related with a so-
alled overlap of the �ow near theswit
hing surfa
e. Se
ond order su�
ient optimality 
onditions stated in [87℄ have been testednumeri
ally for bang-bang 
ontrol problems; see e.g. [61℄. See also [113℄ where su�
ientoptimality 
onditions for bang-bang 
ontrols based on the extremal �eld approa
h are studied.In [1,4,5℄, using Hamiltonian methods and the extremal �eld theory, it is 
onstru
ted, under
ertain 
onditions, a non-interse
ting �eld of state extremals4 that 
overs a given extremaltraje
tory x̂(·). In [5℄ the authors asso
iate the o

urren
e of a 
onjugate point with a foldpoint of the �ow of the extremal �eld. We next re
all the Hamiltonian approa
h presentedin [5, 95℄.For every z0 = (x0, p0) ∈ IRn × IRn, let z(·, z0) = (x(·, z0), p(·, z0)) denote the solution ofthe system of equations (3.1) and (3.3), with the 
ontrol (3.5), su
h that z(0, z0) = z0. Theexponential mapping is then de�ned by

exp(t, z0) = x(t, z0).In (OCP) as in the problems 
onsidered in [5℄ and [95℄ the initial point is not free (x̂0 is a�xed point of IRn). To apply the Hamiltonian approa
h presented in [5,95℄, we 
onsider a C2fun
tion α : IRn → IR su
h that α′(x̂0) = p̂0, where α′(x0) denotes dα
dx (x0) and p̂0 = p̂(0).The fun
tion α represents a penalization on the initial point x̂0 and a new �nite-dimensionalsubproblem is 
onsidered, with free initial point α(x̂0), that 
onsists in moving the swit
hingtimes and minimizing α(x̂0) + tf .3Broken extremals are asso
iated to pie
ewise 
ontinuous 
ontrols.4By non-interse
ting extremals we mean that for any �xed t ∈ (0, tc) and any extremal traje
tories x(·),

y(·) with initial points x0, y0, respe
tively, with x0, y0 
lose to x̂0, we have x(t) 6= y(t).89



The existen
e of a fun
tion α in the previous 
onditions was proved in [50℄. Moreover,in [95℄ the authors proved that if the quadrati
 form (3.6) is positive de�nite, then the quadrati
form asso
iated to the �nite-dimensional subproblem of moving the swit
hing times with freeinitial point is also positive de�nite.Let O be a neighborhood of the initial point x̂0. Let x0 ∈ O; de�ne the swit
hing timefun
tions τj : O → IR with
τ0(x0) = 0 and τj(x̂0) = τ̂j , j = 1, ..., s,su
h that

ϕ1(τj(x0)) = 〈p(τj(x0), x0, α
′(x0)), Y1(x(τj(x0), x0, α

′(x0)))〉 = 0 , j = 1, ..., s .In other words, τj(x0) is the jth-swit
hing time of the extremal x(·, x0, α
′(x0)), p(·, x0, α

′(x0))starting from (x0, α
′(x0)), with x0 
lose to x̂0.Sin
e x̂(·) is a minimal time traje
tory, there holds max

|w|≤1
H(x̂0, p̂0, p

0, w) = 0. Consider theset
X = {x0 ∈ O | max

|w|≤1
H(x0, α

′(x0), p
0, w) = 0}.We 
laim that X is a (n − 1)-dimensional manifold.5 Indeed, 
onsider the map

G : O → IR
x0 7→ G(x0) = max

|w|≤1
H(x0, α

′(x0), p
0, w)

(3.7)and the ve
tor �eld h1(x0) = X(x0) + u1Y1(x0) that de�nes the extremal traje
tory x(·) onthe interval [0, τ1(x0)), asso
iated to the value u1 that satis�es the maximization 
ondition(3.4) on the referred interval. Proving that X is a (n − 1)-dimensional manifold amounts toprove that, for every fun
tion α ∈ C2 su
h that α′(x0) = p0, there holds dG(x0) 6= 0 beforethe �rst 
onjugate time tc. The se
ond variation formula given in [95, p. 275, equation (12)℄taken at (δx, ε) = (h1(x0),−1, 0, ..., 0) is equal to, after some simpli�
ations, dG(x0) · h1(x0).Sin
e the se
ond variation is positive de�nite on (0, tc) then dG(x0) ·h1(x0) 6= 0 before tc. The
laim is proved.De�ne the jth swit
hing surfa
e Σj, for j = 1, ..., s, as the image of the mapping
x0 7→ exp(τj(x0), x0, α

′(x0)) ,where x0 ∈ X.Remark 3.1.9. If the stri
t bang-bang Legendre 
ondition holds, then the �ow asso
iated tothe maximized Hamiltonian 
rosses the swit
hing surfa
e Σj at the instant τ̂j transversally,for j = 1, ..., s (see [5℄).5The argument that follows is due to L. Poggiolini.90



Theorem 3.1.10 ( [5,80,81,87℄). Let (x̂(·), p̂(·), p0, û1(·)) be a bang-bang extremal for (OCP)that satis�es the stri
t bang-bang Legendre 
ondition on [0, tc), with tc < +∞. The traje
tory
x̂(·) is strong lo
ally optimal if and only if there exists a fun
tion α ∈ C2 with α′(x̂0) = p̂0su
h that:

• the traje
tory x̂(·) 
an be embedded into the �eld of non-interse
ting (broken) extremals
(t, x0) 7→ exp(t, x0, α

′(x0)) where x0 ∈ O;
• this �eld of extremals 
rosses the swit
hing surfa
es Σj transversally, for j = 1, ..., s,and for j = 1, ..., s + 1, with τs+1(x̂0) = tc, the mapping

(τj−1(x0), τj(x0)) ×X −→ IRn

(t, x0) 7−→ exp(t, x0, α
′(x0))is of rank n.Remark 3.1.11. In the 
onditions of Theorem 3.1.10, at the �rst 
onjugate point x̂(tc), the�ow of the extremal �eld re�e
ts o� the swit
hing surfa
e, 
ausing an overlap of the �ow nearthis surfa
e (see Figure 3.1 - swit
hing surfa
e Σs+1, and see [61, 87℄).

Σs Σs+1

Figure 3.1: Field of extremalsRemark 3.1.12. Let fj(x0) = X(x0) + ujY1(x0), for j = 1, ..., s + 2 and x0 ∈ O, be the ve
tor�elds that de�ne the extremal traje
tory x(·) on (τj−1(x0), τj(x0)), with τs+1(x̂0) = tc andwhere uj is the value (1 or −1) of the 
ontrol that satis�es the maximization 
ondition (3.4) inea
h respe
tive interval. If we take x0 ∈ X and j = 1, ..., s+1, then for (t, x0) ∈ (τj−1, τj)×X

det
(

exp(t, x0, α
′(x0)), fj(x0)

)has 
onstant sign (see [95℄).Moreover, the determinants
det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs(x0),τs+1(x0))×X
, fs+1(x0)

)91



and
det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs+1(x0),τs+2(x0))×X
, fs+2(x0)

)have di�erent signs (see [95℄).The 
omputation of 
onjugate times in the bang-bang 
ase is di�
ult in pra
ti
e. Inthe last few years several methods have been developed for the numeri
al implementation ofse
ond order su�
ient optimality 
onditions (see, e.g., [78, 81℄ and referen
es 
ited therein).These numeri
al pro
edures allow the 
omputation of the �rst 
onjugate time, for bang-bangoptimal 
ontrol problems with a�ne-
ontrol systems, whenever it exists and is attained at a
jth swit
hing time. Besides, in the smooth 
ase, e�
ient tools are available; see e.g. [15℄. Wenext propose a regularization pro
edure whi
h allows the use of these tools for the 
omputationof the �rst 
onjugate time for the problem (OCP). However, in pra
ti
e, if j is too large thenthe numeri
al 
omputation of the �rst 
onjugate time may be
ome very di�
ult either usingthe methods for bang-bang or smooth 
ontrols.3.1.4 Regularization pro
edureRe
all the regularization pro
edure introdu
ed in Se
tion �2.4 of Chapter 2.Let ε be a positive real parameter and let Y2, . . . , Ym be m − 1 arbitrary smooth ve
tor�elds on IRn, where m ≥ 2 is an integer. Consider the 
ontrol-a�ne system

ẋε(t) = X (xε(t)) + uε
1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t)) , (3.8)where the 
ontrol uε(t) = (uε

1(t), . . . , u
ε
m(t)) satis�es the 
onstraint
m
∑

i=1

(uε
i (t))

2 ≤ 1. (3.9)Consider the optimal 
ontrol problem (OCP)ε of determining a traje
tory xε(·), solutionof (3.8)�(3.9) on [0, tεf ], su
h that xε(0) = x̂0 and xε(tεf ) = x̂1, and minimizing the time oftransfer tεf . The parameter ε is viewed as a penalization parameter. The existen
e of at leastone solution for (OCP)ε is proved in Lemma 2.5.6 (Chapter 2).In Theorem 2.5.1 (Se
tion �2.5 of Chapter 2) we prove that if the problem (OCP) hasa unique solution x̂(·), de�ned on [0, tf ], asso
iated with a bang-bang 
ontrol û1(·) on [0, tf ],and if, moreover, x̂(·) has a unique extremal lift (up to a multipli
ative s
alar), whi
h ismoreover normal, denoted (x̂(·), p̂(·),−1, û1(·)), then, under the Assumption 2.4.1, the optimal
ontrols of (OCP)ε are smooth fun
tions of t and 
onverge almost everywhere on [0, tf ] tothe optimal 
ontrol of (OCP). Moreover, the asso
iated traje
tories x̂ε(·) and adjoint ve
tors
p̂ε(·) 
onverge uniformly to x̂(·) and p̂(·), respe
tively, on [0, tf ], when ε tends to 0.Remark 3.1.13. This result remains true if we extend forward the interval [0, tf ] on an interval
[0, T ] for T ∈ I, where I is a maximal time interval of [0,+∞) 
ontaining [0, tf ].92



3.1.5 Conjugate times in the smooth 
aseWe re
all how to de�ne the 
on
ept of �rst 
onjugate time for the smooth optimal 
ontrolproblem (OCP)ε. A �rst possible de�nition of 
onjugate times is in terms of a quadrati
form, whi
h is the se
ond order intrinsi
 derivative of the end-point mapping de�ned by
E(ε, tεf , x̂0, u

ε) = xε(tεf ) where t 7→ xε(ε, t, x̂0, u
ε) is the traje
tory solution of (3.8), asso-
iated to the 
ontrol uε, su
h that xε(ε, 0, x̂0, u

ε) = x̂0. Testing a 
onjugate time amounts totesting the positivity of that quadrati
 form. However, this de�nition requires a 
orank oneassumption, and we will rather use a geometri
 
on
ept of 
onjugate time, de�ned below. Werefer the reader to [15℄ for a survey on that theory and to [2℄ for extensive explanations andfor the more general Morse index theory.Geometri
 
onjugate timeDe�nition 3.1.14. Let x0 ∈ O. The point xε(tεc) is geometri
ally 
onjugate to xε(0) if andonly if the mapping x0 7→ expε(tεc, x0, α
′(x0)) is not immersive, that is,

det

(

d

dx0
expε(tεc, x0, α

′(x0))

)

= 0.The time tεc is 
alled a geometri
 
onjugate time.Remark 3.1.15. Given an extremal (x̂ε(·), p̂ε(·), p0ε, uε(·)), the notion of geometri
 
onjugatetime 
oin
ides with the notion of 
onjugate time de�ned in terms of quadrati
 form, providedthe following assumptions hold:
• the strong Legendre 
ondition holds along the extremal, that is, there exists γ > 0 su
hthat

∂2H

∂u2
(x̂ε(·), p̂ε(·), p0ε, uε

1(·)) · (v, v) ≤ −γ‖v‖2,for every v ∈ IRm;
• the 
ontrol uε is of 
orank one on every subinterval (assumption of strong regularity,see [99℄).Moreover, in that 
ase the �rst 
onjugate time tεc 
hara
terizes the optimality status of theextremal: the traje
tory x̂ε(·) is strongly lo
ally optimal on [0, t], for every t < tεc; for t > tεc,the traje
tory x̂ε(·) is not lo
ally optimal on [0, t] (see, e.g., [2, 15, 99℄).Remark 3.1.16. None of the two assumptions of the previous remark will be made for theextremal (x̂ε(·), p̂ε(·), p0ε, ûε(·)). In fa
t, our aim is to prove that the �rst geometri
 
onjugatetime tεc 
onverges to the �rst 
onjugate time tc of the bang-bang 
ase, when ε tends to 0. Thisresult, derived in Theorem 3.2.1 (Se
tion �3.2), will permit to use as well in the bang-bang
ase the available e�
ient implementation pro
edures that exist in the smooth 
ase, like forinstan
e the free pa
kage COTCOT 6 (see [15℄).6Conditions of Order Two, COnjugate Times, http://apo.enseeiht.fr/
ot
ot/93



For normal extremals (xε(·), pε(·),−1, uε(·)) that satisfy the strong Legendre 
ondition,the absen
e of 
onjugate points is a su�
ient 
ondition for lo
al optimality (see e.g. [2℄). Thissu�
ient optimality 
ondition will be expressed using the extremal �eld approa
h.Extremal �eld approa
hFrom Theorem 2.5.1 every extremal lift of the problem (OCP)ε is normal (p0ε = −1). Anal-ogously to the bang-bang 
ase, the aim is to 
onstru
t a family of extremals 
ontaining thereferen
e normal extremal (x̂ε(·), p̂ε(·),−1, ûε(·)), sharing ni
e non-interse
tion properties7 be-fore the �rst 
onjugate time.For every z0 = (x0, p0) ∈ IRn × IRn, let zε(·, z0) = (xε(·, z0), pε(·, z0)) be the solution of thesystem of equations (3.8) and (2.8), with the 
ontrols (2.11), su
h that zε(0, z0) = z0. Theexponential mapping asso
iated to (OCP)ε is de�ned by
expε(t, z0) = xε(t, z0).Let x0 ∈ O and αε : IRn → IR be a C2 fun
tion su
h that αε′(x0) = pε(0), and su
h thatthe family of fun
tions (αε) 
onverges to the fun
tion α asso
iated with the problem (OCP)in C2 topology, as ε tends to 0. As in the bang-bang 
ase, de�ne

Xε = {x0 ∈ O | max
∑m

i=1
w2

i ≤1
Hε(x0, α

ε′(x0),−1, wε) = 0} .For ε > 0 small enough, Xε is a (n − 1)-dimensional manifold. Indeed, let Gε be de�ned on
O by Gε(x0) = max∑m

i=1
w2

i ≤1H
ε(x0, α

′(x0),−1, wε). It follows from Theorem 2.5.1 that Gε
onverges to G (3.7) (de�ned in Se
tion 3.1.3) as ε goes to 0, and therefore, for α ∈ C2 su
hthat α′(x0) = p0, there holds dGε(x0) 6= 0, sin
e dG(x0) 6= 0.Theorem 3.1.17 ( [2℄). If the normal extremal (x̂ε(·), p̂ε(·),−1, ûε(·)) satis�es the strong Leg-endre 
ondition and, moreover, 
an be embedded into the family of extremals expε(t, x0, α
ε′(x0))su
h that the mapping

(0, tεc) ×Xε → IRn

(t, x0) 7→ expε(t, x0, α
ε′(x0))is of rank n, then (x̂ε(·), p̂ε(·),−1, ûε(·)) is a lo
al minimum in C0 topology for the problem(OCP)ε.Remark 3.1.18. The typi
al behavior of the �ow of the extremal �eld at the �rst 
onjugatepoint is a fold point (see Figure 3.2, and see [2, 54℄).7By ni
e non-interse
tion properties we mean a non-interse
ting �eld of extremals (
f. footnote in page 89).94



Figure 3.2: Field of extremals in the smooth 
aseRemark 3.1.19. If one 
onsiders x0 ∈ Xε, then xε(tεc) is geometri
ally 
onjugate to xε(0) ifand only if
det

(

d

dx0
expε(tεc, x0, α

ε′(x0))|Xε , f ε(x0)

)

= 0 ,where f ε(x0) = X(xε(x0)) + ε

m
∑

i=1

uε
i (x0, α

ε′(x0)) and uε
i (x0, α

ε′(x0)) are smooth fun
tionsthat satisfy the maximization 
ondition (2.10).Remark 3.1.20. Note that, as long as the minimum time fun
tion is di�erentiable at the point
x̂ε(t), the optimal traje
tory x̂ε(·) 
an be embedded into a non-interse
ting extremal �eld.Remark 3.1.21. To derive a ne
essary optimality 
ondition, a 
orank one assumption is re-quired for the extremal (x̂ε(·), p̂ε(·), p0ε, ûε(·)) (see [15℄).3.2 Convergen
e resultsWe �rst re
all the 
ontext. Let x̂(·) denote the strong lo
ally optimal traje
tory of (OCP),
orresponding to the 
ontrol û1 on [0, tf ]. In parti
ular, tf is the minimal time so that
x̂(0) = x̂0 and x̂(tf ) = x̂1. We extend x̂(·) on a maximal interval I ⊂ [0,+∞) 
ontaining
[0, tf ], and denote by tc its �rst 
onjugate time. For every ε > 0, let x̂ε(·) denote an optimaltraje
tory solution of (OCP)ε, 
orresponding to a 
ontrol ûε = (ûε

1, . . . , û
ε
m) on [0, tεf ]. Inparti
ular, tεf is the minimal time so that x̂ε(0) = x̂0 and x̂ε(tεf ) = x̂1. We extend x̂ε(·)on a maximal interval of [0,+∞) 
ontaining [0, tεf ], and denote by tεc its �rst geometri
ally
onjugate time.The main theorem of this 
hapter is the following theorem.Theorem 3.2.1. Assume that the problem (OCP) has a unique solution x̂(·), asso
iatedwith a bang-bang 
ontrol û1(·), on a maximal interval I. Moreover, assume that x̂(·) has aunique extremal lift (up to a multipli
ative s
alar), whi
h is moreover normal, and denoted by95



(x̂(·), p̂(·),−1, û1(·)). If the extremal (x̂(·), p̂(·),−1, û1(·)) satis�es, moreover, the stri
t bang-bang Legendre 
ondition on [0, tc], then the �rst geometri
 
onjugate time tεc 
onverges to the�rst 
onjugate time tc as ε tends to 0.Remark 3.2.2. Let t
ut denote the 
ut time along the extremal (x̂(·), p̂(·), p0, û(·)). Analogouslyto the bang-bang 
ase, we 
an de�ne the 
ut time tε
ut of the optimal traje
tory x̂ε(·) for theproblem (OCP)ε as the �rst time at whi
h x̂ε(·) loses its optimality. We 
laim that, underthe assumptions of Theorem 2.5.1, there holds lim sup
ε→0

tε
ut ≤ t
ut.The next proposition is the key result to derive Theorem 3.2.1.Proposition 3.2.3. Let O be a neighborhood of x̂0 and x0 ∈ O. The exponential mapping
(t, x0) 7→ expε(t, x0, α

ε′(x0)) 
onverges to (t, x0) 7→ exp(t, x0, α
′(x0)) pie
ewise in C1 topologyon I × O, with τs+1(x̂0) = tc, as ε tends to 0. More pre
isely, on every 
ompa
t subintervalof (τj−1(x0), τj(x0)) × O, with (τj−1(x0), τj(x0)) ⊂ I and j ∈ IN, the mapping (t, x0) 7→

expε(t, x0, α
ε′(x0)) 
onverges to (t, x0) 7→ exp(t, x0, α

′(x0)) uniformly in the C1 topology.Proof. In what follows, when it is 
onvenient, we simplify the notation and write exp(t, x0) or
x(t, x0) (respe
tively, expε(t, x0) or xε(t, x0)) for exp(t, x0, α

′(x0)) (respe
tively, for expε(t, x0, α
ε′(x0))).Let ε > 0 be small enough. For x0 ∈ O, 
onsider the fun
tion

ϕ1(ε, t, x0) = 〈p(ε, t, x0), Y1(x(ε, t, x0))〉.For (ε, t, x0) = (0, τ̂j , x0), by de�nition of the swit
hing time, one has ϕ1(0, τ̂j , x0) = 0,and by the stri
t bang-bang Legendre 
ondition, ∂ϕ1

∂t (0, τ̂j , x0) 6= 0. By the impli
it fun
tiontheorem there exists a neighborhood (−ε0, ε0) of 0 ∈ IR, su
h that for ε ∈ (−ε0, ε0), thereexists a C1 fun
tion τ ε
j (x0) = τ ε

j (ε, x0), with j = 1, ..., s, satisfying ϕ1(ε, τ
ε
j (x0)) = 0 and su
hthat, as ε tends to 0, τ ε

j (x0) 
onverges to τj(x0), and ∂τε
j

∂x0
(x0) 
onverges to ∂τj

∂x0
(x0).Analogously to the de�nition of swit
hing time fun
tion of an extremal traje
tory x(·), wehave thus de�ned some fun
tions τ ε

j (·) : O → IR, that are however not swit
hing fun
tions.Lemma 3.2.4. The mapping (t, x0) 7→ expε(t, x0, α
ε′(x0)) 
onverges to (t, x0) 7→ exp(t, x0, α

′(x0))uniformly in the C1 topology on J ×O, where J is any 
ompa
t subinterval of [0, τ1(x0)), as
ε tends to 0.Proof. Let J be a 
ompa
t subinterval of [0, τ1(x0)). The uniform C0 
onvergen
e on J ×Oof the mapping (t, x0) 7→ expε(t, x0) to (t, x0) 7→ exp(t, x0), as ε tends to 0, is a dire
t
onsequen
e of Theorem 2.5.1. We have

∂ expε

∂t
(t, x0) = ẋε(t, x0)where ẋε(t, x0) is given by (3.8). From Theorem 2.5.1, ẋε(t, x0) 
onverges to ẋ(t, x0) =

d exp
dt (t, x0) as ε tends to 0. On the other hand,

d

dx0
expε(t, x0, α

ε′(x0)) =
∂ expε

∂x0
(t, x0, α

ε′(x0)) +
∂ expε

∂p0
(t, x0, α

ε′(x0))α
ε′′(x0) ,96



where ∂ expε

∂x0
(t, x0, α

ε′(x0)), and ∂ expε

∂p0
(t, x0, α

ε′(x0)) are solutions of the linearized system as-so
iated with the Hamiltonian system, for the problem (OCP)ε on [0, t], given by
ẋε(t) = X (xε(t)) + uε

1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t))

ṗε(t) = −
〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε
m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

.From Theorem 2.5.1, (xε(·), pε(·)) 
onverges uniformly to the solution of the Hamiltoniansystem asso
iated with the problem (OCP) as ε tends to 0. This 
onvergen
e 
learly holdsas well for the solutions of the linearized system asso
iated with the Hamiltonian system for(OCP)ε; therefore, as ε tends to 0, ∂ expε

∂x0
(t, x0, α

ε′(x0)) (respe
tively, ∂ expε

∂p0
(t, x0, α

ε′(x0)))
onverges to ∂ exp
∂x0

(t, x0, α
′(x0)) (respe
tively, ∂ exp

∂p0
(t, x0, α

′(x0))) uniformly on [0, t].In what follows, the notation τ+
j (x0) (resp. τ−j (x0)) stands for the right limit (resp. theleft limit). For x0 ∈ O and j = 1, ..., s, we 
all the jump of ∂ exp

∂x0
(t, x0) at τj(x0) the di�eren
e

∂ exp

∂x0
(τ+

j (x0), x0) −
∂ exp

∂x0
(τ−j (x0), x0) ,whi
h is, a

ording to [87, Equation 3.10, p. 123℄, given by

∂ exp

∂x0
(τ+

j (x0), x0) −
∂ exp

∂x0
(τ−j (x0), x0)

=
(

u1(τ
+
j (x0), x0) − u1(τ

−
j (x0), x0)

)

Y1(x(τ1(x0), x0))
∂τj
∂x0

(x0)

=
(

sign(ϕ1(τ
+
j )) − sign(ϕ1(τ

−
j ))
)

Y1(x(τj(x0), x0))
∂τj
∂x0

(x0) .

(3.10)Due to this jump 
ondition one 
annot expe
t to get a C1 
onvergen
e result on the wholeinterval. We will next estimate the di�eren
e
∂ expε

∂x0
(τ ε

j (x0) + η, x0) −
∂ expε

∂x0
(τ ε

j (x0) − η, x0), (3.11)for η > 0 small, and show that it 
onverges to (3.10), whenever ε tends to 0, and then η tendsto 0.Lemma 3.2.5. There holds
lim
η→0

lim
ε→0

(

∂ expε

∂x0
(τ ε

1 (x0) + η, x0) −
∂ expε

∂x0
(τ ε

1 (x0) − η, x0)

)

=
∂ exp

∂x0
(τ+

1 (x0), x0) −
∂ exp

∂x0
(τ−1 (x0), x0).

(3.12)97



Proof. One has
∂

∂t

(

∂xε

∂x0
(t, x0)

)

=
( ∂X

∂x0
(xε(t, x0)) + uε

1(t, x0)
∂Y1

∂x0
(xε(t, x0))

+ ε

m
∑

i=2

uε
i (t, x0)

∂Yi

∂x0
(xε(t, x0))

)∂xε

∂x0
(t, x0)

+ Y1(x
ε(t, x0))

∂uε
1

∂x0
(t, x0) + ε

m
∑

i=2

Yi(x
ε(t, x0))

∂uε
i

∂x0
(t, x0).It follows that

∂xε

∂x0
(τ ε

1 (x0) + η, x0) −
∂xε

∂x0
(τ ε

1 (x0) − η, x0) =

∫ τε
1
(x0)+η

τε
1
(x0)−η

(∂X

∂x0
(xε(t, x0)) + uε

1(t, x0)
∂Y1

∂x0
(xε(t, x0)) + ε

m
∑

i=2

uε
i (t, x0)

∂Yi

∂x0
(xε(t, x0))

)∂xε

∂x0
(t, x0)dt

+

∫ τε
1 (x0)+η

τε
1
(x0)−η

Y1(x
ε(t, x0))

∂uε
1

∂x0
(t, x0)dt +

∫ τε
1 (x0)+η

τε
1
(x0)−η

ε
m
∑

i=2

Yi(x
ε(t, x0))

∂uε
i

∂x0
(t, x0)dt .It is easy to see that the limit when η tends to zero of the limit when ε tends to zero of the�rst and third term of the right-hand side of the last equation is equal to zero. Only the limitterm

lim
η→0

lim
ε→0

∫ τε
1 (x0)+η

τε
1
(x0)−η

Y1(x
ε(t, x0))

∂uε
1

∂x0
(t, x0)dtdeserves a spe
ial attention. Let us denote

ϕε
i (t, x0) = 〈pε(t, x0), Yi(x

ε(t, x0))〉, i = 1, ...,m.From (2.11), we 
ompute easily
∂uε

1

∂x0
(t, x0) =

ε2

(

∂ϕε
1

∂x0
(t, x0)

m
∑

i=2

ϕε
i (t, x0)

2 − ϕε
1(t, x0)

m
∑

i=2

ϕε
i (t, x0)

∂ϕε
i

∂x0
(t, x0)

)

(

ϕε
1(t, x0)2 + ε2

m
∑

i=2

ϕε
i (t, x0)

2

)3/2
.

We will 
onsider asymptoti
 expansions of these quantities around τ ε
1 (x0). Sin
e ϕε

1(τ
ε
1 (x0), x0) =

0 for every x0, it follows that
∂ϕε

1

∂x0
(τ ε

1 (x0), x0) = −∂ϕ
ε
1

∂t
(τ ε

1 (x0), x0)
∂τ ε

1

∂x0
(x0).98



In what follows, denote τ ε
1 = (τ ε

1 (x0), x0). One has
∫ τε

1
+η

τε
1
−η

Y ε
1 (xǫ(t, x0))

∂uε
1

∂x0
(t, x0)dt

=

∫ τε
1
+η

τε
1
−η

(Y1(x
ε(τ ε

1 )) +O(t− τ ε
1 )) ·

[

ε2
(

∂ϕε
1

∂x0
(τ ε

1 ) +O(t− τ ε
1 )
)

m
∑

i=2

(ϕε
i (τ

ε
1 ) +O(t− τ ε

1 ))2

(

(

∂ϕε
1

∂t (τ ε
1 )(t− τ ε

1 ) + o(t− τ ε
1 )
)2

+ ε2
m
∑

i=2

(

ϕε
i (τ

ε
1 ) +

∂ϕε
i

∂t
(τ ε

1 )(t− τ ε
1 ) + o(t− τ ε

1 )

)2
)3/2

−
ε2 (ϕε

1(τ
ε
1 ) +O(t− τ ε

1 ))

m
∑

i=2

(ϕε
i (τ

ε
1 ) +O(t− τ ε

1 ))

(

∂ϕε
i

∂x0
(τ ε

1 ) +O(t− τ ε
1 )

)

(

(

∂ϕε
1

∂t (τ ε
1 )(t− τ ε

1 ) + o(t− τ ε
1 )
)2

+ ε2
m
∑

i=2

(

ϕε
i (τ

ε
1 ) +

∂ϕε
i

∂t
(τ ε

1 )(t− τ ε
1 ) + o(t− τ ε

1 )

)2
)3/2

]

dtand simplifying the last expression (the terms of order O((t − τ ε
1 )k) and o((t − τ ε

1 )l), with
k = 2, 3 and l = 1, 2, 3, are omitted) we get
∫ τε

1
+η

τε
1
−η

Y ε
1 (xǫ(t, x0))

∂uε
1

∂x0
(t, x0)dt

=

∫ τε
1 +η

τε
1
−η

(Y1(x
ε(τ ε

1 )))
−ε2 ∂ϕε

1

∂t (τ ε
1 )N1

((

(

∂ϕε
1

∂t (τ ε
1 )
)2

+ ε2N2

)

(t− τ ε
1 )2 + ε2N3(t− τ ε

1 ) + ε2N1

)3/2

∂τ ε
1

∂x0
(x0)

+
ε2(M1 −M2)O(t− τ ε

1 ) − ε2
∂ϕε

1

∂t (τ ε
1 )N1

∂τε
1

∂x0
(x0)O(t− τ ε

1 )
((

(

∂ϕε
1

∂t (τ ε
1 )
)2

+ ε2N2

)

(t− τ ε
1 )2 + ε2N3(t− τ ε

1 ) + ε2N1

)3/2
dt ,where

N1 =

m
∑

i=2

(ϕε
i (τ

ε
1 ))2 , N2 =

m
∑

i=2

(

∂ϕε
i

∂t
(τ ε

1 )

)2

, N3 = 2

m
∑

i=2

ϕε
i (τ

ε
1 )
∂ϕε

i

∂t
(τ ε

1 ),

M1 = 2
∂ϕε

1

∂x0
(τ ε

1 )
m
∑

i=2

ϕε
i (τ

ε
1 ) +

m
∑

i=2

(ϕε
i (τ

ε
1 ))2 , M2 =

m
∑

i=2

(

∂ϕε
i

∂x0
(τ ε

1 )

)2

.Noti
e that the denominator never vanishes, sin
e by Assumption 2.4.1 the fun
tions (t, x0) 7→
ϕi(t, x0), i = 1, . . . ,m do not vanish simultaneously.The limit when η tends to zero of the limit when ε tends to zero, of the �rst and se
ondterm of the right-hand side of the last equality are respe
tively equal to

(

sign(ϕ1(τ
+
1 )) − sign(ϕ1(τ

−
1 ))
)

Y1(x(τ1(x0), x0))
∂τ1
∂x0

(x0) and 0 .99



Sin
e
lim
ε→0

∂τ ε
1

∂x0
(x0) =

∂τ1
∂x0

(x0),it follows that
lim
η→0

lim
ε→0

(

∂xε

∂x0
(τ ε

1 (x0) + η, x0) −
∂xε

∂x0
(τ ε

1 (x0) − η, x0)

)

=
(

sign(ϕ1(τ
+
1 )) − sign(ϕ1(τ

−
1 ))
)

Y1(x(τ1(x0), x0))
∂τ1
∂x0

(x0),and the lemma follows.A similar lemma holds for ∂ exp
∂p0

. This result permits to extend the 
onvergen
e result be-yond the �rst swit
hing time; the extension of Lemma 3.2.4 to every further interval (τj−1, τj)is then straightforward. This proves the proposition.We are now in a position to prove Theorem 3.2.1. From Theorem 3.1.10, the traje
tory
x̂(·) 
an be embedded into the �eld of extremals x0 7→ exp(t, x0, α

′(x0)) with x0 ∈ O and themapping
(0, tc) ×X → IRn

(t, x0) 7→ exp(t, x0, α
′(x0))is of rank n, where X = {x0 ∈ O | max

|w|≤1
H(x0, α

′(x0), p
0, w) = 0}, O is a neighborhood of x̂0,and tc is the �rst 
onjugate time of x̂(·).From Remark 3.1.12, the determinants

det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs(x0),τs+1(x0))×X
, fs+1(x0)

)and
det

(

d

dx0
exp(t, x0, α

′(x0))
∣

∣

∣

(t,x0)∈(τs+1(x0),τs+2(x0))×X
, fs+2(x0)

)have di�erent signs, with τs+1(x̂0) = tc.By De�nition 3.1.14, the point xε(τ ε
c (x0)) is geometri
ally 
onjugate to xε(0) = x0, with

x0 ∈ Xε, if and only if
det

(

d

dx0
expε(t, x0, α

ε′(x0)), f
ε(x0)|x0∈Xε

)

= 0for t = τ ε
c (x0). Let x0 ∈ Xε. We have

∂ expε

∂x0
(τ ε(x0), x0, α

ε′(x0)) =
∂ expε

∂t
(τ ε(x0), x0, α

ε′(x0))
∂τ ε

∂x0
(x0)

+
∂ expε

∂x0
(τ ε(x0), x0, α

ε′(x0))

+
∂ expε

∂p0
(τ ε(x0), x0, α

ε′(x0))α
ε′′(x0).100



Sin
e ∂ expε

∂t (τ ε(x0), x0, α
ε′(x0)) = ẋε(x0) = f ε(x0), there holds,

det

(

∂ expε

∂t
(τ ε(x0), x0, α

ε′(x0))
∂τ ε

∂x0
(x0), f

ε(x0)

)

= 0.Thus, it follows that
det

(

d

dx0
expε(τ ε(x0), x0, α

ε′(x0)), f
ε(x0)

)

= det

(

∂ expε

∂x0
(τ ε(x0), x0, α

ε′(x0)) +
∂ expε

∂p0
(τ ε(x0), x0, α

ε′(x0))α
ε′′(x0), f

ε(x0)

)

= det

(

d

dx0
expε(t, x0, α

ε′(x0)), f
ε(x0)

)for t = τ ε(x0). By Proposition 3.2.3, on every 
ompa
t subinterval of (τj−1(x0), τj(x0)), themapping (t, x0) 7→ expε(t, x0, α
ε′(x0)) 
onverges to (t, x0) 7→ exp(t, x0, α

′(x0)) uniformly in
C1 topology, therefore the determinants

det

(

d

dx0
expε(t, x0, α

ε′(x0))
∣

∣

∣

(t,x0)∈(τε
s (x0),τε

s+1
(x0))×Xε

, f ε(x0)

)and
det

(

d

dx0
expε(t, x0, α

ε′(x0))
∣

∣

∣

(t,x0)∈(τε
s+1

(x0),τε
s+2

(x0))×Xε
, f ε(x0)

)have di�erent signs before and after τ ε
s+1(x0). Therefore, by 
ontinuity, the fun
tion t 7→

det
(

d
dx0

expε(t, x0, α
ε′(x0)), f

ε(x0)
) vanishes for some time, 
lose to τ ε

s+1(x0). By De�ni-tion 3.1.14, this time tεc(x0) is a geometri
ally 
onjugate time, and when ε tends to 0, tεc(x̂0)
onverges to the bang-bang 
onjugate time tc = τs+1(x̂0). This ends the proof of the Theo-rem 3.2.1.3.3 ExamplesIn this se
tion we illustrate Theorem 3.2.1 with two examples of minimal time 
ontrol prob-lems.3.3.1 First example: Rayleigh minimal time 
ontrol problemWe 
onsider the minimal time 
ontrol problem for the Rayleigh 
ontrol system (see e.g. [76,81℄),
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.14x2(t)
2) + u1(t),

(3.13)with the 
ontrol 
onstraint
|u1(t)| ≤ 4, ∀t ∈ [0, tf ] (3.14)101



and with boundary 
onditions given by
x1(0) = −4, x2(0) = −3, x1(tf ) = x2(tf ) = 0 . (3.15)A

ording to the Pontryagin maximum prin
iple, any optimal solution x̂(·) of (3.13)�(3.15) isthe proje
tion of an extremal (x̂(·), p̂(·), p0, û1(·)) su
h that

˙̂p1(t) = p̂2(t)

˙̂p2(t) = −p̂1(t) − p̂2(t)
(

1.4 − 0.42x̂2(t)
2
)

(3.16)and the maximization 
ondition p̂2(t)û1(t) = max|w|≤4 (p̂2(t)w) holds almost everywhere on
[0, tf ]. It is easy to see that p̂2(·) 
annot vanish on some subinterval, and it follows thatthe optimal 
ontrol û1(·) is bang-bang, equal to û1(t) = 4 sign(p̂2(t)). Applying a shootingmethod to problem (3.13)�(3.15) (with p0 = −1), we determine the initial adjoint ve
tor
p̂(0) ≃ (0.53095052; 0.34206485), and observe that the traje
tory has only one swit
hing time
τ̂1 ≃ 0.57613128 on [0, tf ], that is, û1(·) is given by

û1(t) =







+4 for 0 ≤ t ≤ τ̂1

−4 for τ̂1 ≤ t ≤ tf ,with a �nal time tf ≃ 2.97812917 (see Figures 3.3 and 3.4). Furthermore, x̂(·) is the uniqueminimal time solution and has a unique extremal lift (up to a multipli
ative s
alar), whi
h ismoreover normal.
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Figure 3.3: Optimal traje
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Figure 3.4: Optimal 
ontrolProlongating the traje
tory x̂(·) to the interval [0, 4], we observe a se
ond swit
hing timeat τ̂2 ≃ 3.14750955.Noti
e that the se
ond-order su�
ient 
onditions of [78�81℄ are satis�ed before τ̂2, 
on-�rming the lo
al optimality status of the traje
tory, but are no longer satis�ed beyond this102



se
ond swit
hing time; we 
an thus expe
t the traje
tory not to be lo
ally optimal beyond τ̂2(see Appendix A). To investigate this optimality status we use the extremal �eld approa
h.From Theorem 3.1.10 and Remark 3.1.11, the �rst 
onjugate point x̂(tc) is an overlappoint of the extremal �eld emanating from the horizontal one-dimensional manifold X =

{x0 ∈ O | max
|w|≤1

H(x0, α
′(x0),−1, w) = 0}. In pra
ti
e, the fun
tion α is not known, andwe rather use the �eld of extremals emanating from the verti
al manifold Xp = {p0 ∈

Op | max
|w|≤1

H(x̂0, p0,−1, w) = 0} (see [15,95℄), where Op is a neighborhood of the initial value ofthe adjoint ve
tor p̂(0). The 
hara
terization in terms of fold point still holds for this verti
almanifold (see [95℄). We observe on Figures 3.5 and 3.6 that this �eld of extremals re�e
ts o�the swit
hing surfa
e at the se
ond swit
hing time; the point x̂(τ̂2) is a fold point and the �rst
onjugate time is equal to the se
ond swit
hing time, tc = τ̂2 ≃ 3.14750955.
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Figure 3.5: Extremal �eld for t ∈ [0, 4]
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Figure 3.6: Overlap of the �owWe next propose a regularization pro
edure, for whi
h we 
ompute the �rst geometri

onjugate time tεc and 
he
k that it indeed 
onverges to the �rst 
onjugate time tc of thebang-bang 
ase as ε tends to 0.We 
onsider the regularized 
ontrol system
ẋε

1(t) = xε
2(t) + εuε

2(t),

ẋε
2(t) = −xε

1(t) + xε
2(t)(1.4 − 0.14xε

2(t)
2) + uε

1(t),
(3.17)with the boundary 
onditions (3.15), and where the 
ontrol uε(·) = (uε

1(·), uε
2(·)) satis�es the
onstraint

(uε
1(t))

2 + (uε
2(t))

2 ≤ 16 , ∀t ∈ [0, tεf ]. (3.18)Any optimal solution x̂ε(·) of (3.15), (3.17) and (3.17) is the proje
tion of an extremal103



(x̂ε(·), p̂ε(·), p0ε, ûε(·)) su
h that
˙̂pε
1(t) = p̂ε

2(t)

˙̂pε
2(t) = −p̂ε

1(t) − p̂ε
2(t)

(

1.4 − 0.42x̂ε
2(t)

2
)

.The Assumption 2.4.1 is veri�ed, and the 
ontrols that satisfy the Pontryagin maximization
ondition (2.10) are given by
ûε

1(t) =
4p̂ε

2(t)
√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
, ûε

2(t) =
4εp̂ε

1(t)
√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
. (3.19)Applying a shooting method to this problem, we determine the optimal traje
tory of theregularized problem, and we indeed observe the expe
ted 
onvergen
e of (x̂ε(·), p̂ε(·),−1, ûε)towards (x̂(·), p̂(·),−1, û1), as ε tends to 0, in agreement with Theorem 2.5.1 (see Figures 3.7�3.9).
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Figure 3.7: Traje
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Figure 3.8: Adjoint ve
torThe optimal 
ontrols (3.19) are smooth fun
tions of t, therefore the algorithms presentedin [15℄ to 
ompute the �rst 
onjugate time along a smooth extremal 
urve 
an be applied.Here we will apply the test for 
onjugate times explained in [15℄ when the �nal time is freeand the extremal is normal. Let us brie�y re
all this test. The maximized Hamiltonian writesas
Hε

r (x̂ε, p̂ε) = p̂ε
1

(

x̂ε
2 +

4ε2p̂ε
1

√

(p̂ε
2)

2 + ε2(p̂ε
1)

2

)

+ p̂ε
2

(

−x̂ε
1 + x̂ε

2(1.4 − 0.14(x̂ε
2)

2) +
4p̂ε

2
√

(p̂ε
2)

2 + ε2(p̂ε
1)

2

)

− 1.The aim is to 
ompute the solution Zε(·) = (δxε
1(·), δxε

2(·), δpε
1(·), δpε

2(·))T of the so-
alled104
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Figure 3.9: Control
variational system Żε(t) = V (t)Zε(t) along the extremal (x̂ε(·), p̂ε(·)), where

V (t) =

(

∂2Hε
r

∂x∂p (x̂ε(t), p̂ε(t)) ∂2Hε
r

∂p2 (x̂ε(t), p̂ε(t))

−∂2Hε
r

∂x2 (x̂ε(t), p̂ε(t)) −∂2Hε
r

∂x∂p (x̂ε(t), p̂ε(t))

)with initial 
onditions (δxε
1(0), δx

ε
2(0)) = (0, 0) and (δpε

1(0), δp
ε
2(0)) su
h that the s
alar prod-u
t 〈(f ε

1 (0), f ε
2 (0)), (δpε

1(0), δp
ε
2(0))〉 is equal to 0, where (f ε

1 , f
ε
2 ) is the dynami
s, given by











f ε
1 (t) = xε

2(t) +
4ε2pε

1(t)√
(pε

2
(t))2+ε2(pε

1
(t))2

,

f ε
2 (t) = −xε

1(t) + xε
2(t)(1.4 − 0.14xε

2(t)
2) +

4pε
2(t)√

(pε
2
(t))2+ε2(pε

1
(t))2

.The �rst geometri
 
onjugate time is then the �rst positive zero of the fun
tion
t 7→ det (δxε

1(t) δx
ε
2(t), f

ε
1 (t) f ε

2 (t))(see Figure 3.10).We report on Table 3.3.1 the values of the �rst geometri
 
onjugate time of the optimaltraje
tory x̂ε(·), for di�erent values of ε. We observe that, as expe
ted, tεc 
onverges to
tc ≃ 3.14750955 as ε tends to 0.Another possible test (see [15℄) is to 
ompute numeri
ally solutions

Zi(·) = (δxε
1i(·), δxε

2i(·), δpε
1i(·), δpε

2i(·)) , i = 1, 2 ,of the variational system 
onsidered previously, with initial 
onditions (δpε
11(0), δp

ε
21(0)) =

(1, 0) and (δpε
12(0), δp

ε
22(0)) = (0, 1), and then to 
ompute the rank of the matrix

Jε(t) =

(

δxε
11(t) δxε

21(t)

δxε
12(t) δxε

22(t)

)

.105
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Figure 3.10: det (δxε
1(t) δxε

2(t), f
ε
1 (t) fε

2 (t)), ε = 0.01

ε tεc

0.1 3.26735859

0.01 3.1559626

0.001 3.14844987

0.0001 3.14760515Table 3.1: Values of tεcThis rank must be equal to 1 outside a 
onjugate time, and 0 at a 
onjugate time. In orderto 
ompute it, we use a singular value de
omposition of Jε(t); then, a 
onjugate time o

urswhenever the �rst singular value of Jε(t) vanishes (see Figure 3.11).
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Figure 3.11: First singular value of Jε(t) (ε = 0.01)106



In this �rst example, the �rst 
onjugate time tc of the optimal bang-bang traje
tory x̂(·) 
o-in
ides with the se
ond swit
hing time. We next provide an example where the �rst 
onjugatetime is equal to the third swit
hing time.3.3.2 Se
ond exampleConsider the minimal time 
ontrol problem for the 
ontrol system
ẋ1(t) = sin(x2(t)),

ẋ2(t) = − sin(x1(t)) + u1(t),
(3.20)with the 
ontrol 
onstraint

|u1(t)| ≤ 1 , ∀t ∈ [0, tf ] , (3.21)and with the boundary 
onditions
x1(0) = x2(0) = 0, x1(tf ) = 2.9, x2(tf ) = 0.1. (3.22)From the Pontryagin maximum prin
iple, any optimal solution x̂(·) of (3.20)�(3.22) is theproje
tion of an extremal (x̂(·), p̂(·), p0, û1(·)) su
h that

˙̂p1(t) = p̂2(t) cos(x̂1(t)),

˙̂p2(t) = −p̂1(t) cos(x̂2(t)),and the maximization 
ondition p̂2(t)û1(t) = max|w|≤1 (p̂2(t)w) must hold almost everywhereon [0, tf ]. It is easy to see that p̂2(·) 
annot vanish on some subinterval, and it followsthat the optimal 
ontrol û1(·) is bang-bang, equal to û1(t) = sign(p̂2(t)). Applying a shootingmethod to problem (3.20)�(3.22) (with p0 = −1),we determine the initial adjoint ve
tor p̂(0) =

(−0.5, 1), and observe that the traje
tory has one swit
hing time τ̂1 ≃ 3.26174615 on [0, tf ],that is, û1(·) is given by
û1(t) =







+1 for 0 ≤ t ≤ τ̂1,

−1 for τ̂1 ≤ t ≤ tf ,with a �nal time tf ≃ 4.07756604 (see Figures 3.12 and 3.13). Furthermore, x̂(·) is the uniqueminimal time solution and has a unique extremal lift (up to a multipli
ative s
alar), whi
h ismoreover normal.Prolongating the traje
tory x̂(·) to the interval [0, 11], we observe a se
ond swit
hing timeat τ̂2 ≃ 6.21787838, and a third one at τ̂3 ≃ 10.46930198. Considering as in the previousexample the extremal �eld emanating from the verti
al manifold, we observe on Figures 3.14and 3.15 that the extremal �eld 
rosses transversally the se
ond swit
hing surfa
e, but re�e
tso� the third swit
hing surfa
e, and it follows from Theorem 3.1.10 that the �rst 
onjugatetime tc is equal to τ̂3. 107
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Figure 3.12: Optimal traje
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Figure 3.13: Optimal 
ontrol
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Figure 3.14: Extremal �eld, t ∈ [0, 11]
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Figure 3.15: Zoom on the overlap of the �ow atthe third swit
hing timeWe propose the following regularization. Consider the 
ontrol system
ẋε

1(t) = sin(xε
2(t)) + εuε

2(t),

ẋε
2(t) = − sin(xε

1(t)) + uε
1(t),

(3.23)with the 
ontrol 
onstraint
(uε

1(t))
2 + (uε

2(t))
2 ≤ 1 , ∀t ∈ [0, tεf ] , (3.24)and the initial and �nal 
onditions (3.22). Any optimal solution x̂ε(·) of (3.22)�(3.24) is theproje
tion of an extremal (x̂ε(·), p̂ε(·), p0ε

, ûε(·)) su
h that
˙̂pε
1(t) = p̂ε

2(t) cos(x̂ε
1(t)),

˙̂pε
2(t) = −p̂ε

1(t) cos(x̂ε
2(t)),108



and the maximization 
ondition implies that the extremal 
ontrols are given by
ûε

1(t) =
p̂ε
2(t)

√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
, ûε

2(t) =
εp̂ε

1(t)
√

(p̂ε
2(t))

2 + ε2(p̂ε
1(t))

2
. (3.25)Applying a shooting method to this problem, we determine the optimal traje
tory of theregularized problem, and we indeed observe the expe
ted 
onvergen
e of (x̂ε(·), p̂ε(·),−1, ûε)towards (x̂(·), p̂(·),−1, û1), as ε tends to 0, in agreement with Theorem 2.5.1 (see Figures 3.16�3.18).
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Figure 3.16: Traje
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Figure 3.17: Adjoint ve
tor
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Figure 3.18: ControlAs in the previous example, the 
ontrols (3.25) are smooth fun
tions of t, and we apply thealgorithm des
ribed in [15℄, 
omputing as before the determinant det (δxε
1(t) δx

ε
2(t), f

ε
1 (t) f ε

2 (t))(see Figure 3.19). We report on Table 3.3.2 the values of the �rst geometri
 
onjugate time109
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Figure 3.19: det (δxε
1(t) δxε

2(t), f
ε
1 (t) fε

2 (t)), ε = 0.1of the optimal traje
tory x̂ε(·), for di�erent values of ε. We observe that, as expe
ted, tεc
onverges to tc as ε tends to 0.
ε tεc

0.1 10.01593283

0.01 10.3164905

0.001 10.41858121

0.0001 10.45291892

0.00001 10.46419119Table 3.2: Values of tεcRemark 3.3.1. We observe on both previous examples that it is not needed to 
onsider verysmall values of ε to estimate the �rst 
onjugate time tc. Indeed, a 
onjugate time of a lo
allybang-bang traje
tory 
an only o

ur at a swit
hing time (see Remark 3.1.8) and, under ourassumptions, swit
hing times are isolated (see Remark 3.1.6). From Theorem 3.2.1, the �rstgeometri
 
onjugate time tεc 
onverges to tc, when ε tend to 0. Therefore, as soon as ε is smallenough so that tεc is in a (not ne
essarily so small) neighborhood of some swit
hing time τ̂sof the bang-bang traje
tory x̂(·), this means that the bang-bang 
onjugate time tc is equal tothat swit
hing time τ̂s.
110



Con
lusion and open problemsIn this PhD thesis we fo
used on the problem of determining an e�
ient pro
edure to 
omputethe �rst 
onjugate time tc for the minimal time problem for single-input 
ontrol-a�ne systems
ẋ = X(x) + u1Y1(x) in IRn with the 
ontrol 
onstraint |u1(t)| ≤ 1, for every t ∈ [0, tf ].We proposed a smoothing pro
edure whi
h 
onsists in adding new smooth ve
tor �elds
Y2, . . . , Ym and a small parameter ε > 0, so as to 
ome up with the minimal time problem forthe system ẋ = X(x)+uε

1Y1(x)+ε
∑m

i=2 u
ε
iYi(x), under the 
ontrol 
onstraint∑m

i=1(u
ε
i (t))

2 ≤
1, with the same boundary 
onditions as the initial problem. We proved, under appropriateassumptions, that the optimal 
ontrols of the latter problem, depending on ε, are smoothfun
tions of t, and 
onverge weakly to the optimal 
ontrol of the initial system; moreoverthe asso
iated traje
tories 
onverge uniformly. If the optimal 
ontrol of the initial system ismoreover bang-bang, then the 
onvergen
e of the regularized 
ontrol holds almost everywhere;this property may however fail whenever the bang-bang property does not hold. We providedexamples and 
ounterexamples to illustrate our result. Moreover, we proved that the �rstgeometri
 
onjugate time of regularized problem 
onverges to the �rst 
onjugate time initialproblem, when ε tends to 0. This 
onvergen
e result, allowed us to use theoreti
al and pra
ti
alresults for the 
onjugate time theory that are well known in the smooth 
ase and apply themto the regularized problem in order to 
ompute, 
onsequently, 
onjugate times of the initialbang-bang problem. Note that our results still hold if the 
ontrol-a�ne system is 
onsideredon a manifold (in this work we 
onsidered IRn for the sake of simpli
ity).An open question is to extend the results proved in Chapters 2 and 3 to general nonlinear
ontrol systems. In our point of view, this extension seems di�
ult, be
ause it may be notobvious to generalize the ni
e expression (2.11) (see Chapter 2, Se
tion �2.4) to more generalsituations and, on the other hand, Lemma 2.5.6 does not hold a priori for general 
ontrolsystems, moreover, it is not 
lear how to derive Lemma 2.5.7 and the subsequent results.Although, it would be interesting if we 
ould extend our results to multi-input 
ontrol-a�nesystems ẋ = X(x) +

∑p
i=1 uiYi(x) in IRn, where u = (u1, ..., up) ∈ L∞([0, tf ],∆) and ∆ isa polyhedron (see [95℄), or a 
onvex polyhedron (see [81℄), or a 
onvex 
ompa
t polyhedron(see [100℄) of IRp. For p > 1, it would be interesting to 
onsider the 
ase where multipleswit
hing times may o

ur, that is, when at least two 
ontrol fun
tions swit
h at the sametime. Another open question 
on
erns the generalization to general 
ost fun
tions.111
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Appendix AFirst and se
ond order su�
ientoptimality 
onditions in the normal
aseFirst and se
ond order ne
essary and/or su�
ient optimality 
onditions have a 
ru
ial role inthe study of �rst 
onjugate times for bang-bang minimal time optimal 
ontrol problems with
ontrol-a�ne systems. In [3, 5, 81, 95, 100℄ �rst and se
ond order ne
essary and/or su�
ientoptimality 
onditions are given in terms of a quadrati
 formQt. As we re
alled in Se
tion �3.1.3of Chapter 3 the quadrati
 form in [100℄ is a lower bound for the one given in [81℄, and in
ertain 
ases the quadrati
 form in [81℄ is equivalent to the one in [5℄ (see [90℄). In [95℄ ananalogous quadrati
 form to the one in [5℄ is de�ned. Here we re
all the �rst and se
ond ordersu�
ient optimality 
onditions given in [81℄ and apply them to the Rayleigh minimal time
ontrol problem with �xed initial and �nal 
onditions (see Se
tions �2.6.1 and �3.3.1).In [78�81℄ su�
ient optimality 
onditions are provided for a minimal time problem formulti-input 
ontrol-a�ne systems in IRn

ẋ = X(t, x) +

p
∑

i=1

uiYi(t, x)with �xed initial and �nal 
onditions
x(0) = x0 , x(tf ) = x1 ,and where u = (u1, ..., up) ∈ L∞([0, tf ],∆) and ∆ is a 
onvex polyhedron of IRp.Here we will formulate the �rst and se
ond order su�
ient optimality 
onditions givenin [78�81, 86℄ for the optimal 
ontrol problem (OCP) 
onsidered in Chapters 2 and 3. Theoptimal 
ontrol problem (OCP) 
onsists of determining a solution x(·) asso
iated to a 
ontrol

u1(·), on [0, tf ], satisfying the single-input 
ontrol-a�ne system in IRn

ẋ = X(x) + u1Y1(x), (A.1)113



where X and Y1 are smooth ve
tor �elds, the 
onstraint
|u1(t)| ≤ 1 , ∀t ∈ [0, tf ] ,and steering x0 = x(0) to x1 = x(tf ) in minimal time tf .From Pontryagin maximum prin
iple, there exists a non trivial absolutely 
ontinuous map-ping p(·) : [0, tf ] → IRn (adjoint ve
tor) and a real number p0 ≤ 0, with (p(·), p0) 6= (0, 0),su
h that

ṗ(t) = −
〈

p(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

p(t),
∂Y1

∂x
(x(t))

〉 (A.2)where the Hamiltonian fun
tion is given by
H(x, p, p0, u1) = 〈p, f(x, u1)〉 = 〈p,X(x) + u1Y1(x)〉 + p0 ,and the maximization 
ondition

H(x(t), p(t), p0, u1(t)) = max
|w|≤1

H(x(t), p(t), p0, w) (A.3)holds almost everywhere on [0, tf ]. Moreover, max|w|≤1H(x(t), p(t), p0, w) = 0 for every
t ∈ [0, tf ].It follows from (A.3) that

u1(t) = sign〈p(t), Y1(x(t))〉for almost every t, provided that the (
ontinuous) swit
hing fun
tion
ϕ1(t) = 〈p(t), Y1(x(t))〉does not vanish on any subinterval of [0, tf ].Here we will only 
onsider the 
ase where the Pontryagin extremal (x(·), p(·), p0, u1(·)) isnormal (p0 = −1). The abnormal 
ase is also 
onsidered in [78�81, 86℄.The extremal (x(·), p(·),−1, u1(·)) may be extended forward on a maximal time interval

I of [0,+∞), 
ontaining [0, tf ] (see Se
tion �3.1.2, Chapter 3). Let the Assumption 3.1.1hold, that is assume that the extremal (x(·), p(·),−1, u1(·)) is bang-bang on the interval I,i.e., the swit
hing fun
tion ϕ1 does not vanish on any subinterval of I. Let τ1, . . . , τs be theswit
hing times of the bang-bang traje
tory x(·), that is, τ1, . . . , τs are zeros of ϕ1 on I, su
hthat 0 < τ1 < . . . < τs. There holds
u1(t) =







1 if ϕ1(t) > 0,

−1 if ϕ1(t) < 0,for every t ∈ I.For j = 1, ..., s, let u1(τ
−
j ) = u1(τj − 0) and u1(τ

+
j ) = u1(τj + 0) be, respe
tively, theleft-hand and the right-hand side of the 
ontrol u1(t) at τj.114



Criti
al subspa
e. Let us now introdu
e the 
riti
al subspa
e K.Denote by PθC
1([0, tf ], IRn) be the spa
e of pie
ewise 
ontinuous fun
tions

x̄(·) : [0, tf ] → IRnthat are 
ontinuously di�erentiable on ea
h interval of the set [0, tf ]\θ, where θ = {τ1, ..., τs}is the set of swit
hing times. Putting
z̄ = (t̄f , ξ, x̄) with t̄f ∈ IR , ξ = (ξ1, ..., ξs) ∈ IRs , x̄ ∈ PθC

1([0, tf ], IRn) ,we have
z̄ ∈ Z(θ) = IR× IRs × PθC

1([0, tf ], IRn) .Let K be the set of all z̄ ∈ Z(θ) satisfying the following 
onditions
˙̄x(t) = fx(x(t), u1(t))x̄(t) , x̄(τ+

k ) − x̄(τ−j ) =
(

ẋ(τ+
j ) − ẋ(τ−j )

)

ξj , j = 1, ..., s ,

x̄(0) = 0 , x̄(tf ) = 0 .The set K is a �nite-dimensional subspa
e of Z(θ) and is 
alled the 
riti
al subspa
e.There holds x̄(t) ≡ 0 on [0, τ1) and (τs, tf ]. Thus, x̄(τ−1 ) = x̄(τ+
s ) = 0, for all z̄ ∈ K.Consider the variational (linearized) system

ẏ = fx(t)yand for ea
h j = 1, ..., s, de�ne the ve
tor fun
tions yj(t) as the solutions of the system
ẏ = fx(t)y , y(τj) = (ẋ(τ+

j ) − ẋ(τ−j )) , t ∈ [τj , tf ] .For t < τj put yj(t) = 0 whi
h yields yj(τ+
j ) − yj(τ−j ) = ẋ(τ+

j ) − ẋ(τ−j ). Denote by
x(t, τ1, ..., τs) the solution of (A.1) asso
iated to the bang-bang optimal 
ontrol with swit
hingtimes τ1, ..., τs. The derivatives of the traje
tories x(t, τ1, ..., τs) with respe
t to the swit
hingtimes are given by

∂x

∂tj
(t, τ1, ..., τs) = −yj(t) for t ≥ tj , j = 1, ..., s .Proposition A.0.2. [78�81, 86℄ Assume that one of the following 
onditions are satis�ed(for p0 = −1):(a) the s ve
tors yj(tf ) = − ∂x

∂tj
(tf ), j = 1, ...s, are linearly independent1,(b) the bang-bang 
ontrol has one swit
hing time, i.e., s = 1.Then the 
riti
al subspa
e is K = {0}.1If the abnormal 
ase is 
onsidered then another 
ondition that implies K = {0} is the s + 1 ve
tors

yj(tf ) = − ∂x
∂tj

(tf ), j = 1, ..., s, ẋ(tf ), are linearly independent,115



Quadrati
 form. Let (x(·), p(·),−1, u1(·)) be a Pontryagin extremal, and z̄ ∈ Z. De�ne
Qt(p, z̄) =

s
∑

j=1

(

(

−ϕ̇(τj)(u1(τ
+
j ) − u1(τ

−
j ))
)

ξ2j + 2

(

∂H

∂x
(τ+

j ) − ∂H

∂x
(τ+

j )

)

1

2
(x̄(τ−j ) + x̄(τ−j ))ξj

)

+

∫ τs

τ1

〈∂
2H

∂x2
(t)x̄(t), x̄(t)〉dt . (A.4)A stronger version of the next theorem is given in [81,86℄ where the abnormal 
ase is also
onsidered.Theorem A.0.3. [78�81,86℄ Let (x(·), p(·),−1, u1(·)) be a normal extremal for the problem

(OCP) on [0, tf ], su
h that(a) u1(·) is a bang-bang 
ontrol, that is, the Assumption 3.1.1 holds;(b) the stri
t bang-bang Legendre 
ondition holds, that is, ϕ̇(τj) 6= 0 for j = 1, ..., s (seeChapter 3);(
) max
p
Qt(p, z̄) > 0 ∀z̄ ∈ K\{0}.Then (x(·), u1(·)) is a strong lo
al minimum.2This theorem provides a se
ond order su�
ient 
ondition for strong lo
al optimality.Remark A.0.4. If K = {0} then the 
ondition (
) is automati
ally ful�lled. Therefore, theproperty K = {0} is a �rst order su�
ient 
ondition for strong lo
al optimality.Remark A.0.5. If there exists a ve
tor p(·) solution of (A.1)�(A.2) su
h that

Qt(p, z̄) > 0 ∀z̄ ∈ K\{0} ,then the 
ondition (
) is satis�ed.The next theorem follows from Proposition A.0.2 and Theorem A.0.3 and it provides asu�
ient 
ondition for bang-bang 
ontrol with one swit
hing time.Theorem A.0.6. [78�81,86℄ Let (x(·), p(·),−1, u1(·)) be a normal extremal for the problem
(OCP) on [0, tf ], su
h that(a) u1(·) is a bang-bang 
ontrol with one swit
hing point;(b) −ϕ̇(τ1)

(

u1(τ
+
1 ) − u1(τ

−
1 )
)

< 0.Then (x(·), u1(·)) is a strong lo
al minimum.32In fa
t, (x(·), u1(·)) is a stri
t strong lo
al minimum.3In fa
t, (x(·), u1(·)) is a stri
t strong lo
al minimum.116



For the 
ase of two swit
hing times, assume that ẋ(τ+
1 )−ẋ(τ−1 ) 6= 0 and ẋ(τ+

2 )−ẋ(τ−2 ) 6= 0.This imply that y1(tf ) = 0 and y2(tf ) = 0 where y1 (respe
tively y2) is the solution of
ẏ = fx(t)y , y(τ1) = ẋ(τ+

1 ) − ẋ(τ−1 ) , t ∈ [τ1, tf ](respe
tively, ẏ = fx(t)y , y(τ2) = ẋ(τ+
2 ) − ẋ(τ−2 ) , t ∈ [τ2, tf ] ). From the superpositionprin
iple for linear ordinary di�erential equations there holds

x̄(t) =
2
∑

j=1

yj(t)ξj ,therefore,
0 = x̄(tf ) = y1(tf )ξ1 + y2(tf )ξ2 . (A.5)Assume, furthermore that K 6= {0}. Then from (A.5) the nonzero ve
tors y1(tf ) and y2(tf )are 
ollinear, i.e.,

y2(tf ) = αy1(tf ) (A.6)for some α 6= 0. The fun
tions y1(t) and y2(t) are 
ontinuous solutions of the system ẏ =

fx(t)y in (τ2, tf ], thus the relation y2(t) = αy1(t) is valid for all t ∈ (τ2, tf ]. In parti
ular,
y2(τ2 + 0) = αy1(τ2) and thus

ẋ(τ+
2 ) − ẋ(τ−2 ) = αy1(τ2)whi
h is equivalent to (A.6). From (A.5) and (A.6) there holds

ξ2 = − 1

α
ξ1 .Using the previous formulas and ∂H

∂x (τ+
j ) − ∂H

∂x (τ−j ) = −
(

ṗ(τ+
1 ) − ṗ(τ−1 )

), j = 1, 2, in thequadrati
 form (A.4) we have
Q = ρξ21where

ρ =
(

−ϕ(τ1)
(

u1(τ
+
1 ) − u1(τ

+
1 )
)

− (ṗ(τ+
1 ) − ṗ(τ−1 ))(ẋ(τ+

1 ) − ẋ(τ−1 ))
)

+
1

α2

(

−ϕ(τ2)
(

u1(τ
+
2 ) − u1(τ

+
2 )
)

+ (ṗ(τ+
2 ) − ṗ(τ−2 ))(ẋ(τ+

2 ) − ẋ(τ−2 ))
)

+

∫ t2

t1

〈∂
2H

∂x2
y1, y1〉dt .(A.7)Proposition A.0.7. [78�81,86℄ Let (x(·), p(·),−1, u1(·)) be a normal extremal for the prob-lem (OCP) on [0, tf ]. Assume that u1(·) has two swit
hing times, ẋ(τ+

1 ) − ẋ(τ−1 ) 6= 0,
ẋ(τ+

2 ) − ẋ(τ−2 ) 6= 0, and y2(tf ) = αy1(tf ) with some fa
tor α. Then the 
ondition of pos-itive de�niteness of Q on K is equivalent to the inequality ρ < 0, where ρ is de�ned by (A.7).117



A.1 Example: Rayleigh minimal time 
ontrol problemConsider the Rayleigh minimal time 
ontrol problem 
onsidered in Se
tion 3.3.1 in Chapter 3,for the 
ontrol system
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.14x2(t)
2) + u1(t),

(A.8)with the 
ontrol 
onstraint
|u1(t)| ≤ 4 , ∀t ∈ [0, tf ] (A.9)and with boundary 
onditions given by

x1(0) = x2(0) = x0, x1(tf ) = x2(tf ) = x1 .In [81℄ the authors 
onsider Rayleigh minimal time 
ontrol problem with the boundary
onditions
x1(0) = x2(0) = −5 , x1(tf ) = x2(tf ) = 0and veri�ed that Proposition A.0.7 is satis�ed for the traje
tory x(·) asso
iated to the 
ontrol

u(t) =



















+4 for 0 ≤ t ≤ τ1

−4 for τ1 ≤ t ≤ τ2

+4 for τ2 ≤ t ≤ tfwhere τ1 ≃ 1.12, τ ≃ 3.31 are the swit
hing times and tf ≃ 3.668 is the minimal time (seeSe
tion �2.6.1 of Chapter 2).Here we will 
onsider the boundary 
onditions 
onsidered in Se
tion 3.3.1 of Chapter 3,given by
x1(0) = −4, x2(0) = −3, x1(tf ) = x2(tf ) = 0 . (A.10)A

ording to the Pontryagin maximum prin
iple, any optimal solution x(·) of (A.8)�(A.9),(A.10) is the proje
tion of an extremal (x(·), p(·), p0, u1(·)) su
h that
− ∂H

∂x1
(t) = ṗ1(t) = p2(t)

− ∂H

∂x2
(t)ṗ2(t) = −p1(t) − p2(t)

(

1.4 − 0.42x2(t)
2
)and the maximization 
ondition p2(t)u1(t) = max|w|≤4 (p2(t)w) holds almost everywhere on

[0, tf ]. The optimal 
ontrol u1(·) is bang-bang, equal to u1(t) = 4 sign(p2(t)).Re
all Se
tion �3.3.1 where we applied a shooting method to problem (A.8)�(A.10) (with
p0 = −1), and determined the initial adjoint ve
tor p(0) ≃ (0.53095052; 0.34206485). We118



observe that the traje
tory has only one swit
hing time τ1 ≃ 0.57613094 on [0, tf ], that is,
u1(·) is given by

u1(t) =







+4 for 0 ≤ t ≤ τ1

−4 for τ1 ≤ t ≤ tf ,with a �nal time tf ≃ 2.97812917 (see Figures 3.3 and 3.4, Chapter 3).We will now apply the su�
ient optimality 
ondition Theorem A.0.6 and verify that thistraje
tory is optimal.Integrating the system






























ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.42x2
2(t)) + 4

ṗ1(t) = p2(t)

ṗ2(t) = −p1(t) − p2(t)(1.4 − 0.42x2
2(t))

(A.11)in the interval [0, τ1] (with u1(t) = +4 and initial 
onditions (x1(0), x2(0)) = (−4,−3) and
(p1(0), p2(0)) ≃ (0.53095052; 0.34206485)) we have (p1(τ1), p2(τ1)) ≃ (0.6504275; 0). There-fore,

−ϕ̇(τ1) = −ṗ2(τ1) = p1(τ1) ≃ 0.6504275and
−ϕ̇(τ1)

(

u1(τ
+
1 ) − u1(τ

−
1 )
)

≃ 0.6504275 · (−8) ≃ −5.20342003 < 0 .And from Theorem A.0.6 the traje
tory x(·) asso
iated to the 
ontrol u1(·) with one swit
hingtime τ1 ≃ 0.5761 and �nal time tf ≃ 2.9781, is strong lo
ally optimal on [0, tf ].Prolongating the traje
tory x̂(·) to the interval [0, 4], we observe a se
ond swit
hing time at
τ̂2 ≃ 3.1475101. Let us apply the Proposition A.0.7 to the traje
tory x(·) with two swit
hingtimes.For j = 1, 2 de�ne the ve
tor fun
tions yj ∈ IRn solution of the system

ẏj
1(t) = yj

2(t)

ẏj
2(t) = −yj

1(t) + (1.4 − 0.42x2
2(t))y

j
2(t)with

(

y1
1(τ1), y

1
2(τ1)

)

=
(

ẋ1(τ
+
1 ) − ẋ1(τ

−
1 ), ẋ2(τ

+
1 ) − ẋ2(τ

−
1 )
)

= (0,−8) , for t ∈ [τ1, tf ] ,and
(

y2
1(τ1), y

2
2(τ1)

)

=
(

ẋ1(τ
+
2 ) − ẋ1(τ

−
2 ), ẋ2(τ

+
2 ) − ẋ2(τ

−
2 )
)

= (0, 8) , for t ∈ [τ2, tf ] ,119



Let us see if the ve
tors (y1
1(τ2), y

1
2(τ2)) and (y2

1(τ2), y
2
2(τ2)) are 
ollinear, with (y2

1(τ2), y
2
2(τ2)) =

(0, 8). To 
ompute (y1
1(τ2), y

1
2(τ2)) we integrate the system























































ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.42x2
2(t)) − 4

ṗ1(t) = p2(t)

ṗ2(t) = −p1(t) − p2(t)(1.4 − 0.42x2
2(t))

ẏ1
1(t) = y1

2(t)

ẏ1
2(t) = −y1

1(t) + y1
2(t)(1.4 − 0.42x2

2(t))in the interval [τ1, τ2] where u1(t) = −4, and with initial 
onditions (y1
1(τ1), y

1
2(τ1)) = (0,−8)and (x1(τ1), x2(τ1)) ≃ (−4.52075342; 1.53745036), (p1(τ1), p2(τ1)) ≃ (0.6504275; 0) followsfrom integrating the system (A.11) in the interval [0, τ1] (with u1(t) = +4). We have

(y1
1(τ2), y

1
2(τ2)) ≃ (0; 10.73906251). The ve
tors are indeed 
ollinear, sin
e y2(τ2) = αy1(τ2)with α ≃ 0.74494398. We 
an pro
eed and 
ompute ρ given by equation (A.7),

ρ =
(

−ϕ(τ1)
(

u1(τ
+
1 ) − u1(τ

+
1 )
)

− (ṗ(τ+
1 ) − ṗ(τ−1 ))(ẋ(τ+

1 ) − ẋ(τ−1 ))
)

+
1

α2

(

−ϕ(τ2)
(

u1(τ
+
2 ) − u1(τ

+
2 )
)

+ (ṗ(τ+
2 ) − ṗ(τ−2 ))(ẋ(τ+

2 ) − ẋ(τ−2 ))
)

+

∫ t2

t1

〈∂
2H

∂x2
y1, y1〉dt

= −5.20342003 +
1

0.744943982

(

−ϕ(τ2)
(

u1(τ
+
2 ) − u1(τ

+
2 )
))

+

∫ t2

t1

〈∂
2H

∂x2
y1, y1〉dt .We have

−ϕ(τ2)
(

u1(τ
+
2 ) − u1(τ

+
2 )
)

= −ṗ2(τ2)·(4+4) = p1(τ2)·8 ≃ −1.31854472·8 ≃ −10.54835772 < 0 ,and
∂2H

∂x2
(t) =

[

0 0

0 −0.84p2(t)x2(t)

]

.Therefore,
∫ τ2

τ1

−0.84p2(t)x2(t)(y
1
2(t))

2dt = 27.66812969492819and
ρ = −5.20342003874014− 10.54835772187732

0.744943982843812
+27.66812969492819 = 3.45665745601652 > 0 .The Proposition A.0.7 is not satis�ed, although we 
an not assure that the traje
tory is notlonger lo
ally optimal beyond τ̂2. We 
on�rmed this, using the extremal �eld approa
h, inSe
tion �3.3.1 of Chapter 3.
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