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palavras-chave 
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dihidroprogesterona, tetrahidroprogesterona, cinases, fosfatases, proteína Tau 

resumo 
 
 

O presente trabalho propõe-se esclarecer o papel que a progesterona e os 
seus metabolitos exercem no sistema nervoso central. Nos últimos anos, com 
a descoberta da síntese local de esteróides no cérebro, a progesterona, assim 
como outras hormonas sexuais, ganharam uma relevância crescente em 
fenómenos tais como plasticidade neuronal e neuroprotecção. Ainda que já se 
comece a entender o papel de muitas hormonas no cérebro, tal como o 
estrogénio, o papel da progesterona continua menos conhecido. Deste modo, 
o nosso trabalho centrou-se na elucidação dos efeitos da progesterona em 
fenómenos de sobrevivência celular, plasticidade neuronal/sináptica. 
Graças à colaboração com um grupo pioneiro em estudos sobre hormonas 
sexuais neuroactivas, o presente trabalho fornece uma importante contribuição 
ao entendimento do papel desta hormona no sistema nervoso central.  
Este trabalho fornece novos dados, relativamente ao papel da progesterona e 
dos seus metabolitos reduzidos na regulação de vias de sinalização 
associadas com sobrevivência celular, tal como Akt/PI3K e ERK. Também é 
analisado o efeito do tratamento hormonal na expressão e estado de 
fosforilação da proteína Tau, sendo ainda motivo de estudo cinases e 
fosfatases envolvidas nestes mecanismos. 
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abstract 
 

The present work has as its main aim, to unveil the role of progesterone and its 
reduced metabolites in the central nervous system. In the last years, with the 
discovery of local synthesis of steroids in the brain, progesterone, as well as 
other sexual hormones, acquired a new importance in brain phenomena like 
neuronal plasticity and neuroprotection. Although the role of many hormones in 
the brain, like the estrogen, is starting to be well known, the role of 
progesterone was less studied. Therefore, our work aim was to study the 
progesterone effects in the brain regarding cellular survival and 
neuronal/synaptic plasticity. 
Thanks to the collaboration with a group pioneer in neuroactive sexual 
hormones studies, the present works provides an important contribution on the 
role of this hormone in the central nervous system. 
This work offers new data regarding the role of progesterone and its reduced 
metabolites in the regulation of signaling pathways associated with cellular 
survival, like the Akt/PI3K and ERK. It is also studied the effect of hormonal 
treatment in the expression and phosphorylation state of Tau protein, as well as 
the kinases and phosphatases involved in these mechanisms. 
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ABBREVIATIONS 
 

3α-HSD 3α-hydroxysteroid dehydrogenase 

3β-HSD 3β-hydroxysteroid dehydrogenase 

AD  Alzheimer disease 

Akt  protein kinase B 

BAD  Bcl-2-associated death promoter 

BDNF  brain derived neurotrophic factor 

b.w.  body weight 

cAMP  cyclic adenosine monophosphate 

CNS  central nervous system 

CREB  cAMP response element-binding protein  

DHP  5α-dihydroprogesterone  

EDTA  ethylenediaminetetraacetic acid 
ERK  extracellular-signal regulated kinase 

GABA  gamma-aminobutyric acid 

GAPDH glyceraldehyde-3-phosphate-dehydrogenase 
GSK3  glycogen-synthase kinase-3 

IGF-I  insulin-like growth factor-I 

i.p.  intraperitoneal 

IRS-1  insulin receptor substrate-1 

LTD  long-term depression 

LTP  long-term potentiation 

MAPs  microtubule associated proteins 

MAPK  mitogen-activated protein kinase 

MEK  MAPK/ERK kinase or MKK 

MTs   microtubules 

mTOR  mammalian target of rapamycin 

NaCl  sodium chloride 

NF-KB nuclear factor kappa-light-chain-enhancer of activated B cells 

NGF  nerve growth factor 

NIH  National Institute of Health of United States of America 

NP-40  tergitol-type NP-40, nonyl phenoxylpolyethoxylethanol  

p42  ERK2 
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p44  ERK1 

p85  PI3K regulatory subunit 

p110  PI3K catalytic subunit 

P450scc cytochrome 450 side-chain cleavage 

PDK1  3-phosphoinositide dependent kinase 1 

PDZ  postsynaptic density protein, Drosophila disc large tumor suppressor, zonula 

occludens-1 protein structural domain 
PI3K  phosphoinositide-3 kinase 

PIP3  phosphatidylinositol (3,4,5) – trisphosphate/PtdIns-P3 

PKC  protein kinase C 

PNS   peripheral nervous system 

PP2A  protein phosphatase 2 

PP2AC  protein phosphatase 2 catalytic subunit 

PR  progesterone receptor 

PTEN  phosphatase and tensin homolog deleted on chromosome 10 

Raf  proto-oncogene serine/threonine-protein kinase 

Ras  protein subfamily of small GTPases/G-proteins 

RTK  receptor of tyrosine kinase 

SDS-PAGE sodium dodecylsulphate-polyacrylamide gel electrophoresis 

THP  3α,5α-tetrahydroprogesterone 

Tris-HCl tris(hydroxymethyl)aminomethane-hydrochloric acid 

Trk  tyrosine kinase-type receptor 

Tween 20 polysorbate 20 
VEGF  vascular endothelial growth factor 
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I- INTRODUCTION 

 

I.1 PROGESTERONE AND THE BRAIN 

 
I.1.1 PROGESTERONE AND ITS METABOLITES 

 

Progesterone is a product of cholesterol metabolism. Cholesterol is metabolized on 

pregnenolone by the cytochrome P450scc enzyme, located in the mitochondria.  

Pregnenolone is then metabolized to progesterone in the smooth endoplasmic reticulum by 

the enzyme 3-beta-hydroxysteroid dehydrogenase (Jung-Testas et al.,1989). In turn, 

progesterone can be reduced to 5α-dihydroprogesterone (DHP) by the enzyme 5α-

reductase (Compagnone and Melon, 2000). DHP can be further reduced to 3α,5α-

tetrahydroprogesterone (allopregnenolone or THP) by 3α-hydroxysteroid dehydrogenase 

(3α-HSD) or to 3β,5α-tetrahydroprogesterone (3β,5α-THP) by 3β-hydroxysteroid 

dehydrogenase (3β-HSD). The products of the DHP reduction are steroisomers 

(Compagnone and Melon, 2000). Furthermore, the conversion from DHP to THP is 

reversible, since THP is able to oxidize DHP in a reaction mediated by an isoform of the 

enzyme 3α-HSD (Melcangi et al., 1993; Dupont et al., 1994). 

 

 
 Figure I.1 - The metabolism of progesterone 
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I.1.2 PROGESTERONE SIGNALING IN THE CENTRAL NERVOUS SYSTEM 

 

It is known that classical progesterone receptors control the actions exerted by the 

hormone and by its metabolite DHP in the brain (Brinton et al., 2008; Mani, 2008). 

Classical progesterone receptors are located intracellularly and are able to modulate the 

expression of genes that have progesterone response elements in their promoters (Roemer 

et al., 2006). For instance, progesterone regulates in some brain regions the expression of 

genes involved in the control of sexual behavior (Blaustein and Feder, 1979). There are 

two isoforms of the progesterone receptor, PR-A and PR-B, which although structurally 

similar are functionally different (Mani et al., 1994). PR-A that is a shorter form of PR-B, 

exerts a negative action in the transcription of PR-B, estrogen and glucocorticoids 

receptors. This negative regulation of estrogen receptors may explain why progestins 

antagonize some effects of estrogens (Bikle et al., 1992).  

In addition, progesterone, as well as estradiol, can exert its actions through 

alternative mechanisms to the genomic actions mediated by classical nuclear receptors. A 

membrane progesterone receptor, with some features of the G-protein coupled receptors, 

has been recently discovered (Zhu et al., 2003b). There is also another membrane 

progesterone receptor, the 25Dx, which is expressed in some brain regions that are 

traditionally associated with sexual behavior (Krebs et al., 2000). Furthermore, the reduced 

metabolite of progesterone, THP, has high affinity for specific regions of the hydrophobic 

domain of the GABAA receptor, increasing the flux of chloride ions through the channel 

(Rupprecht et al., 1993; Belelli and Lambert, 2005). Therefore, the mechanisms of action 

of progesterone in the central nervous system involve genomic and non genomic actions 

which are in part mediated by its metabolites.  

The membrane initiated signaling of progesterone may interact in the central 

nervous system with the signaling of growth factors and neurotrophins. For instance, there 

is evidence that progesterone may affect the activity of PI3K/Akt and ERK signaling in 

cortical explants (Singh, 2001), primary hippocampal cultures (Nilsen and Brinton, 2003) 

and retinal glial cells (Swiatek-De Lange et al., 2007). To further explore these 

interactions, in this study we have assessed the regulation of several kinases and 

phosphatases involved in signal transduction in the central nervous system.   
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I.1.3. ACTIONS OF PROGESTERONE IN THE CENTRAL NERVOUS SYSTEM 

 

In addition to being a hormonal signal that acts in the brain to control 

neuroendocrine secretions and reproduction (Pfaff 1989; Etgen et al., 2006; Beyer, 2007), 

progesterone is a local paracrine factor synthesized by neural cells (Garcia-Segura and 

Melcangi, 2006). Progesterone and progesterone metabolites regulate synaptic 

development, plasticity and function in the cerebellum (Smith et al., 1987a,b,c; Smith, 

1989, 1991; Sakamoto et al., 2001, 2002; Tsutsui et al., 2004), the hypothalamus (Perez et 

al., 1993; Garcia-Segura et al., 1994) and the hippocampus (Woolley and McEwen, 1993), 

among other brain regions, and are involved in the differentiation of neurons and glial cells 

and in the formation of myelin (Baulieu and Schumacher, 2000; Schumacher et al., 2004; 

Tsutsui et al., 2004; Ghoumari et al., 2005; Brinton et al., 2008). Progesterone is also a 

neuroprotective factor both in the peripheral and the central nervous system (Schumacher 

et al., 2007; Roglio et al., 2008; Cekic et al., 2009; DeNicola et al., 2009; Sayeed and 

Stein, 2009). In fact it has been shown the neuroprotective and anti-inflammatory 

properties of progesterone, in different experimental models of neurodegeneration (Ganter 

Figure I.2 - Mechanisms of action of the reduced metabolites of progesterone 
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Figure I.3 – Neuroprotective actions of progesterone 
 
 

et al., 1992; Garcia-Estrada et al., 1993; Drew and Chavis, 2000; Schumacher et al., 2004; 

Ciriza et al., 2004; Stein, 2005; Ciriza et al., 2006; Brinton et al., 2008). Finally, 

progesterone and its metabolites also affect adult neurogenesis in the hippocampus (Galea 

et al., 2006). 

 

 
 
I.2. KINASES AND PHOSPHATASES 

 
I.2.1. PI3K/AKT SIGNALING  

 

The phosphoinositide 3-kinase (PI3K) is member of a large family of PI3K-related 

kinases or PIKK, involved in cellular functions like cell growth, proliferation and survival. 

Another notable member of this family is the mammalian target of rapamycin (mTOR). All 

possess the characteristic PI3K homologous domain and a highly conserved carboxyl-

terminal tail, however only PI3K is known to have an endogenous lipid substrate 

(Kuruvilla and Schreiber, 1999). PI3K is able to phosphorylate the 3 position hydroxyl 

group of the inositol ring of phosphatidylinositol (PtdIns), therefore these enzymes are also 

known as phosphatidylinositol-3 kinases. The PIK3 family is divided in three classes, 
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accordingly with its primary structure, regulation and in vitro lipid substrate specificity 

(Leevers et al., 1999). The majority of research on the PI3K has been focused on the Class 

I PI3K, that are heterodimeric molecules composed of a regulatory subunit known as p110 

and catalytic subunit that can be related to either p85 or p101 (Songyang et al., 1993; 

Yoakim et al., 1994). The PI3K can be activated by G-protein coupled receptors and 

receptors of tyrosine kinase (RTK) (Leevers et al., 1999). 

The serine threonine protein kinase Akt (also known as protein kinase B, PKB) 

mediates many of the effects downstream of the PI3K. Akt is an important protagonist in 

cell fate determination with many regulatory circuits operating in cell survival, migration, 

differentiation as well apoptosis (Kim and Chung, 2002; Song et al., 2005). Activation of 

Akt is a multistep process involving both membrane binding and phosphorylation. Upon 

PI3K activation and formation of phosphatydilinositol (3,4,5) – triphosphate (PtdnIns –P3 

or PIP3), Akt is recruited to the plasma membrane where it binds to these 

phosphoinositides through its pH domain (Franke et al., 1997). Activation is then thought 

to involve a conformational change and two residues phosphorylation. One such 

phosphorylation site is contained in the kinase domain activation loop (Thr 308) and it is 

phosphorylated by another pH-domain containing protein, the 3-phosphoinositide 

dependent protein kinase 1 (PDK1) (Alessi, 2001). This is thought to be the major 

activating phosphorylation event. All in all, PI3K activation, induced by stimulation of 

growth factors, lead to Akt activation (Hooshmand-Rad et al., 2000; Thomas et al., 2002; 

Milburn et al., 2003). Conversely PI3K inactivation (i.e. using chemical inhibitors like 

wortmannin) leads to Akt inactivation. After activation, Akt can phosphorylate a variety of 

substrates involved in regulation of cellular key functions, like glycogen synthase kinase 3 

(GSK3), Insulin Receptor Substrate-1 (IRS-1), BAD, human caspase 9, the mitogen 

stimulated Raf protein kinase, Forkhead and NF-KB transcription factors (Altiok et al., 

1999; Datta et al., 1999; Galetic et al., 1999; Zhou et al., 2001).  
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Figure I.4 – The PI3K/Akt signaling pathways 
 

 
 

 

 
I.2.2. MAPK SIGNALING  

 

Growth factors, through receptor tyrosine kinases, recruit cellular signaling 

proteins, to execute their cellular programs. The first of these signaling pathways to be 

discovered was the Ras-Raf-ERK signal transduction cascade, defined by extracellular-

signal regulated kinases (ERKs) 1 and 2. (Seger and Krebs, 1995). The ERK cascade 

regulates cellular proliferation, differentiation and survival (Pagès et al., 1999). Also 

known as mitogen-activated protein kinases (MAPK) 3 and 1, the MAP kinases ERK1 and 

ERK2 are 44 and 42 KDa serine threonine kinases, respectively with 90% sequence 

identity in mammals. Initially isolated and cloned as kinases activated in response to 

insulin and nerve growth factor (NGF), ERK 1 and ERK2 are expressed in most tissues, 

with ERK2 levels generally higher than ERK1 (Boulton et al., 1990; Boulton et al., 1991).  

ERKs require both threonine and tyrosine phosphorylation, for full activity, and the finding 

that several phosphatases are able to inactivate ERKs, suggests that the duration and extent 

of activation is controlled by the balanced activites from MAPK/ERK kinases (MEKs or 

MKKs) and these phosphatases (Camps et al., 2000). Downstream, activated ERK 

regulates growth-factor responsive targets in the cytosol and also translocate to the nucleus 

where it phosphorylates several transcription factors, regulating gene expression. In fact 
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upon phosphorylation, ERK translocation to the nucleus is critical for both gene expression 

and DNA replication induced by growth factors (Brunet et al., 1999). Finally, cellular 

growth and proliferation require protein synthesis and the ERK cascade has been 

demonstrated to directly link growth-factor signaling to ribosome biogenesis (Stefanovsky 

et al., 2001). 

 
I.2.3. PI3K/AKT AND MAPK SIGNALING IN THE CENTRAL NERVOUS SYSTEM  

 

Many of the effects of neuroprotective compounds are mediated through the 

activation of the PI3K/Akt pathway and ERK signaling. For example, it has been shown 

that PI3K mediates the neuroprotective effects of estrogen in cultured cortical neurons 

(Honda et al., 2000). Furthermore, estrogen is able to attenuate ischemic oxidative damage 

in hippocampal neurons, in a process that involves Akt activation (Zhang et al., 2009). 

Insulin/PI3K signaling is able to protect dentate neurons from oxygen-glucose deprivation 

in organotypic slice cultures. (Sun et al., 2010). Astrocytes protect oligodendrocytes 

precursor cells via MEK/ERK and PI3K/Akt signaling (Arai and Lo, 2010) and stem cell 

factors protect against neuronal apoptosis by activating Akt/ERK in diabetic mice (Li et 

al., 2009). 

Interestingly, inhibition of the receptor tyrosine kinases signaling inhibits the 

protective effects of progesterone against glutamate-induced toxicity in organotypic 

explants of the cerebral cortex (Kaur et al., 2007). Furthermore, the activation of PI3K and 

MAPK signaling are necessary for the manifestation of the neuroprotective effects of 

progesterone in vitro (Nilsen and Brinton, 2003; Kaur et al 2007; Brinton et al 2008). In 

fact, neuroprotective effects of progesterone against glutamate-induced toxicity in 

organotypic cultures of the cerebral cortex are inhibited by the MEK1/2 inhibitor UO126 

(Kaur et al., 2007) and translocation of phosphorylated ERK to the cell nucleus appears to 

be an essential step in the neuroprotective mechanism of progesterone in primary 

hippocampal neurons (Nilsen and Brinton, 2003). 
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I.2.4. GSK3B AND TAU 

 

Tau is a low molecular weight component of cytoskeletal structures and is known 

as one of the microtubule associated proteins (MAPs). Neuronal MAPs, which consist of 

tau and MAP2, regulate the assembly of microtubules (MTs). Although tau and MAP2 are 

thought to have similar functions, intracellular localization of tau largely differs from 

MAP2. The mRNAS encoding tau proteins are expressed predominantly in neurons, where 

tau proteins are localized mostly to axons of the central nervous system (CNS) and 

peripheral nervous system (PNS) under normal physiological conditions (Binder et al., 

1985; Couchie et al., 1992). Tau is a phosphoprotein that can be phosphorylated at multiple 

sites, and under physiological conditions, changes in tau phosphorylation state are 

probably involved in the regulation of neuritic growth, synaptogenesis and synaptic 

plasticity. However, sustained phosphorylation of tau reduces its ability to bind and to 

stabilize microtubules, resulting in destabilization of the cytoskeleton and perturbation of 

axonal transport (Lindwall and Cole, 1984). Pathological hyperphosphorylation of Tau is 

associated to several neurodegenerative diseases (Buee et al., 2000; Avila et al., 2002, 

2004). Several epitopes of phosphorylation of tau have been identified, like the PHF-1, that 

consists of the serine residues 396 and 404 (Otvos et al., 1994), the Tau-1 (Szendrei et al., 

1993) and the serine 262 (Lauckner et al., 2003). 

Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine protein 

kinase and key regulator of several cellular functions like glycogen metabolism, apoptosis, 

intracellular vesicular transport, transcription and cytoskeletal regulation. Two isoforms of 

GSK3 are reported in mammals: a 51 KDa GSK3a and a 47 KDa GSK3β. These two 

isoforms exhibit about 98% homology in their kinase domains, but only 36% homology in 

the last 36 aminoacid residues of the C-terminal (Woodgett, 1990; Cohen and Goedert, 

2004). GSK3β is constitutively active in resting cells, and treatment of cells with an agent, 

such as insulin, is shown to cause GSK3β inactivation through a PI3K-dependent 

mechanism. PI3K induced activation of AKT results in phosphorylation of Ser9 on GSK3β 

which inhibits its activity (Cohen and Frame, 2001) Tau is one of the substrates of GSK3β 

(Ferrer et al., 2005), which is involved in the phosphorylation of Tau-1 and PHF-1 

epitopes. GSK3β is highly expressed in the central nervous system (Takahashi et al., 

1994), including the cerebellar cortex and the Purkinje cells of the cerebellum (Yao et al., 
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Figure I.5 – GSK3 and Tau signaling pathways 
 
 

 

2002). 

 

 

 
I.2.5. PROTEIN PHOSPHATASES: PP2A AND PTEN 

 

PP2 or PP2A (Protein phosphatase 2) is a ubiquitous heterometric protein 

phosphatase. It is a well conserved serine/threonine phosphatase with broad substrate 

specificity and diverse cellular functions like DNA replication, translation, transcription, 

cell cycle division and apoptosis (Millward et al., 1999; Zolnierowicz, 2000; Janssens and 

Goris, 2001). For example, several of the targets of PP2A are proteins of signaling 

cascades such as MEK and AKT (Ory et al., 2003).The core enzyme consists of a catalytic 

C and a regulatory A, subunits (Janssens and Goris, 2001). In addition, there can be more 

regulatory subunits, that belong to four families of unrelated proteins, the regulatory 

subunits B, B’’, B’’’ and B’’’’. These B regulatory subunits competitively bind to a shared 

binding site on the core A subunit (Janssens and Goris, 2001). The huge amount of 

holoenzyme components, especially B regulatory subunits, allows PP2A to exert several 
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functions. PP2A function can be regulated by expression, localization, set of subunits 

attached and post-translational modification. It has been reported that phosphorylation of 

PP2A at tyr307 occurs in response to epidermal growth factor (EGF) or insulin and results 

in substantial reduction of PP2A activity (Chen et al., 1992). Also, reversible methylation 

on the carboxyl group of Leu309 of PP2A has been observed (Turowski et al., 1995; Lee et 

al., 1996). Methylation alters the conformation of PP2A, as well its location and 

association with B regulatory subunits (Lee et al., 1996; Yu et al., 2001). 

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor 

suppressor gene (Li and Sun, 1997). The resulting protein is both a protein and lipid 

phosphatase (Vazquez and Sellers, 2000) and encompasses a phosphatase domain with 

homology to protein tyrosine phosphatases, dual specificity phosphatases and tensin and 

auxilin (Steck et al., 1997). This phosphatase is involved in the regulation of the cell cycle, 

preventing cells from growing and dividing too rapidly (Chu and Tarnawski, 2004).  The 

lipid phosphatase activity of PTEN can dephosphorylate the PtdIns PIP2 and PIP3, the 

lipid products of PI3K lipid kinase activity (Maehama and Dixon, 1998). Thus PTEN 

antagonizes the classical PI3K/Akt signaling pathway. In fact, cells lacking PTEN 

function, exhibit two fold increase in PIP3 levels (Stambolic et al., 1998). PTEN has a C-

terminal tail that contains a PDZ domain. PDZ domains are protein-protein interaction 

modules that play a critical role in the organization of diverse cell signaling complexes. 

The phosphorylation of three residues (S380, T382 and T383) within the C-terminal tail is 

necessary for maintaining PTEN stability and also acts inhibiting PTEN function 

(Georgescu et al., 2000; Vazquez et al., 2000).  The unphosphorylated form of PTEN is in 

an “open” conformation” that allows PTEN recruitment to high molecular weight 

complexes (Vazquez et al., 2001). These complexes comprise PDZ-domain containing 

proteins and are important for PTEN localization to the plasma membrane (Wu et al., 

2000; Vazquez et al., 2001) where it can exert its phospholipid phosphatase activity. 
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Figure I.6 – PP2A and PTEN signaling pathways 
 

 
 

 

 

I.3. SPECIFIC AIMS 

 

Our general aim was to analyze new signaling mechanism of progesterone in the 

central nervous system. In particular, our specific aims were: 

 

1. To determine whether progesterone and its metabolites regulate MAPK and 

PI3K/Akt signaling in the central nervous system. 

2. To determine whether progesterone and its metabolites regulate the state of 

phosphorylation of tau protein in the central nervous system, by the analysis of 

the phosphorylation of tau at epitopes Tau-1, PHF-1 and Ser262 

3. To determine whether progesterone and its metabolites regulate the 

phosphorylation of GSK3 and therefore its activity in the central nervous 

system. 

4. To determine whether progesterone and its metabolites regulate the 

phosphatases PP2A and PTEN expression and activity in the central nervous 

system. 
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CHAPTER II 
 

REGULATION OF THE PHOSPHOINOSITIDE-3 KINASE AND MITOGEN-

ACTIVATED PROTEIN KINASE SIGNALING PATHWAYS BY 
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II - REGULATION OF THE PHOSPHOINOSITIDE-3 KINASE AND 

MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING PATHWAYS BY 

PROGESTERONE AND ITS REDUCED METABOLITES IN THE RAT BRAIN 

 

 

II.1 ABSTRACT 

 

Several growth factors, such as vascular endothelial growth factor, brain derived 

neurotrophic factor and insulin-like growth factor-I are involved in the actions of 

progesterone in the central nervous system. Previous studies in neuronal and glial cultures 

have shown that progesterone may regulate growth factor signaling, increasing the 

phosphorylation of extracellular-signal regulated kinase (ERK) and the phosphorylation of 

Akt, components of the mitogen-activated protein kinase (MAPK) and the 

phosphoinositide-3 kinase (PI3K) signaling pathways, respectively. In this study we have 

evaluated whether progesterone and its reduced metabolites, dihydroprogesterone and 

tetrahydroprogesterone regulate PI3K and MAPK signaling in the brain of ovariectomized 

rats in vivo. Significant increases in the phosphorylation of ERK, in the expression of the 

catalytic (p110) and the regulatory (p85) subunits of PI3K and in the phosphorylation of 

Akt were observed in the hypothalamus, the hippocampus and the cerebellum, 24 h after 

progesterone administration. Progesterone metabolites partially mimicked the effect of 

progesterone and had a stronger effect on MAPK and PI3K signaling in the hypothalamus 

than in the other brain regions. These findings suggest that progesterone regulates MAPK 

and PI3K signaling pathways in the central nervous system in vivo by direct hormonal 

actions and by mechanisms involving progesterone metabolites. 
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II.2 INTRODUCTION 
 

In addition to be a hormonal signal that acts in the brain to control neuroendocrine 

secretions and reproduction (Pfaff 1989; Etgen et al., 2006; Beyer, 2007), progesterone is a 

local paracrine factor synthesized by neural cells (Garcia-Segura and Melcangi, 2006). 

Furthermore, progesterone is metabolized in the nervous system to the neuroactive steroids 

dihydroprogesterone (DHP) and tetrahydroprogesterone (THP) via the enzymatic complex 

formed by the 5α-reductase and the 3α-hydroxysteroid dehydrogenase (Melcangi et al., 

2008). Progesterone and progesterone metabolites regulate synaptic development, 

plasticity and function in the cerebellum (Smith et al., 1987a,b,c; Smith, 1989, 1991; 

Sakamoto et al., 2001, 2002; Tsutsui et al., 2004) the hypothalamus (Perez et al., 1993; 

Garcia-Segura et al., 1994) and the hippocampus (Woolley and McEwen, 1993), among 

other brain regions, and are involved in the differentiation of neurons and glial cells and in 

the formation of myelin (Baulieu and Schumacher, 2000; Schumacher et al., 2004; Tsutsui 

et al., 2004; Ghoumari et al., 2005; Brinton et al., 2008). Progesterone and its metabolites 

also affect adult neurogenesis in the hippocampus (Galea et al., 2006), modulate cognition 

and affection (Barbaccia et al., 2001; Vallee et al., 2001;  Rupprecht, 2003; Birzniece et al., 

2006; Frye, 2007; Brinton et al., 2008) and have neuroprotective and anti-inflammatory 

properties in different experimental models of neurodegeneration (Ganter et al., 1992; 

Garcia-Estrada et al., 1993; Drew and Chavis, 2000; Ciriza et al., 2004; Schumacher et al., 

2004; Stein, 2005; Ciriza et al., 2006; Brinton et al., 2008). Progesterone and its 

metabolites have also anesthetic (Selye, 1941) and analgesic (Patte-Mensah et al., 2005) 

properties and influence sleep and feeding (Engel and Grant, 2001),  

Growth factors, including vascular endothelial growth factor (VEGF) (Swiatek-De 

Lange et al., 2007), brain derived neurotrophic factor (BDNF) (Gonzalez et al., 2004, 

2005; DeNicola et al., 2006; Gonzalez Deniselle et al., 2007; Kaur et al., 2007) and 

insulin/insulin-like growth factor-I (IGF-I) (Dueñas et al., 1994; Jung-Testas et al., 1994; 

Cardona-Gomez et al., 2000; Etgen, 2003; El-Bakri et al., 2004; Etgen et al., 2006) are 

involved in the mechanisms of action of progesterone in the central nervous system. 

Progesterone regulates the function of the retina by increasing the expression of VGEF by 

Muller glial cells (Swiatek-De Lange et al., 2007) and induces the expression of BDNF in 

ventral horn motoneurons from rats with spinal cord injury (Gonzalez et al., 2004, 2005; 
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DeNicola et al., 2006), in motoneurons of Wobbler mouse (Gonzalez Deniselle et al., 

2007), a model of motoneuron degeneration, and in organotypic explants of the cerebral 

cortex (Kaur et al., 2007). IGF-I is involved in the regulation of gonadotropin release and 

sexual behavior by progesterone (Etgen, 2003; Etgen et al., 2006) and progesterone 

interacts with insulin in the induction of the expression of myelin basic protein by 

oligodendrocytes (Jung-Testas et al., 1994) and regulates IGF-I levels in the hypothalamus 

(Dueñas et al., 1994). Progesterone regulates also the expression of growth factor 

receptors, such as the IGF-I receptor (Cardona-Gomez et al., 2000; El-Bakri et al., 2004) 

and TrkB (DeNicola et al., 2006) in the central nervous system and inhibition of Trk 

signaling prevents the protective effects of progesterone against glutamate-induced toxicity 

in organotypic explants of the cerebral cortex (Kaur et al., 2007). In addition, progesterone 

regulates the intracellular signaling of growth factor receptors in vitro. In mouse cerebral 

cortical explants, progesterone increases the phosphorylation of Akt and the 

phosphorylation of extracellular-signal regulated kinase (ERK) (Singh, 2001), components 

of the phosphoinositide-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) 

pathways, respectively. In hippocampal neurons in culture progesterone promotes a rapid 

and transient activation of ERK and induces the translocation of phosphorylated ERK to 

the cell nucleus (Nilsen and Brinton, 2003). The activation of PI3K and MAPK signaling 

are necessary for the manifestation of the neuroprotective effects of progesterone in vitro 

(Nilsen and Brinton, 2003; Kaur et al., 2007; Brinton et al., 2008). Given the importance of 

growth factor signaling in the actions of progesterone in vitro, in this study we have 

explored whether progesterone affects PI3K and MAPK signaling in the brain in vivo and 

the possible role of progesterone metabolites in these effects.  

 

  



Progesterone actions in protein phosphorylation in the central nervous system                                   Chapter II 

Centre for Cell Biology of University of Aveiro 
Cajal Institute CSIC Madrid 
 

23 

II.3 MATERIALS AND METHODS 

 

 
II.3.1 ANIMALS 

 

Wistar albino female rats from our in-house colony were kept in a 12:12 h light-

dark cycle and received food and water ad libitum. Animals were handled in accordance 

with the guidelines published in the NIH Guide for the Care and Use of Laboratory 

Animals, the principles presented in the Guidelines for the Use of Animals in Neuroscience 

Research by the Society for Neuroscience and following the European Union 

(86/609/EEC) legislation. Experimental procedures were approved by our Institutional 

Animal Use and Care Committee (Spanish National Research Council Animal 

Experimentation Committee). Special care was taken to minimize animal suffering and to 

reduce the number of animals used to the necessary minimum.  

 

 

II.3.2 EXPERIMENTAL TREATMENTS 

 

All the animals used in this study were bilaterally ovariectomized at the age of two 

months under 2,2,2-tribromoethanol anesthesia (0.2 g/kg body weight (b.w.), Fluka 

Chemika, Buchs, Switzerland). Rats were then housed in plastic cages and randomly 

assigned to the different treatments. Ten days after surgery, rats received one i.p. injection 

of progesterone (n=5) (2 mg/Kg b.w., Sigma, St. Louis, MO), DHP (n=5) (0.25 mg/kg 

b.w., Sigma), THP (n=5) (2 mg/kg b.w., Sigma) or vehicle (n=4) (0.2 ml of 20% [2-

hydroxypropyl]-β-cyclodextrin, Fluka Chemika, Buchs, Switzerland). The selected doses 

of progesterone, DHP and THP were those showing optimal neuroprotective effects in 

previous studies in vivo (Ciriza et al., 2004, 2006) and result in physiological levels of 

these molecules in the plasma of ovariectomized rats (Ciriza et al., 2006). The animals 

were killed by decapitation 24 h after the administration of the steroids. The hippocampus, 

the hypothalamus and the cerebellum were quickly removed and immediately processed 

for protein extraction. 
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II.3.3 WESTERN BLOT ANALYSIS 

 

Tissue samples were homogenized in lysis buffer (150 nM NaCl, 20 mM Tris-HCl, 

10% glycerol, 5 mM EDTA, 1% NP-40, Roche, Mannhein, Germany) supplemented with 

protease and phosphatase inhibitors (50 μg/ml of phenyl methyl sulfonyl fluoride, 10 μg/ml 

aprotinin, 25 μg/ml leupeptin and 100 nM orthovanadate, all from Sigma). Proteins were 

obtained by centrifugation for 15 min at 15,000 rpm at 4°C and supernatant quantified by 

with a modified Bradford assay (BioRad, Munchen, Germany). Proteins (30 µg) were 

resolved using sodium dodecylsulphate-polyacrylamide gel electrophoresis (12% SDS-

PAGE) with a Mini-Protean system (BioRad) and electrophoretically transferred to 

nitrocellulose membranes (GE Healthcare, formerly Amersham Bioscience, Piscataway, 

NJ, USA). The membranes were blocked with 5% non-fat dry milk diluted in 0.05% 

Tween-20 Tris-buffered saline and incubated overnight with the primary antibodies. Pre-

stained markers (BioRad) were included for size determination.  

 
 

II.3.4 ANTIBODIES 

 

The following antibodies were used: rabbit polyclonal antibody against ERK-1/2 

(Santa Cruz, diluted 1:1,000); mouse monoclonal antibody against phosphorylated ERK-

1/2 (Santa Cruz, diluted 1:1,000); mouse monoclonal antibody against the p85 regulatory 

subunit of phosphoinositide 3-kinase (PI3K) (Upstate, diluted 1:1,000); rabbit polyclonal 

antibody against the p110 catalytic subunit of PI3K (Santa Cruz, diluted 1:1,000); rabbit 

polyclonal antibody against Akt (Santa Cruz, diluted 1:1,000); rabbit polyclonal antibody 

against phosphorylated Akt (Cell Signaling, diluted 1:1,000); and mouse monoclonal 

antibody against anti-glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, Chemicon, 

diluted 1:1,000). After incubation with the primary antibody, membranes were washed and 

incubated with horseradish peroxidase-coupled secondary antibodies (Jackson 

ImmunoResearch Laboratories Inc., West Grove, PA; diluted 1:15,000). Immunoreactive 

bands were detected using an enhanced chemiluminescence system (GE Healthcare-

Amersham). When needed, membranes were stripped using a commercial solution 

(Chemicon).  Films were analyzed using the ImageQuant software version 3.22 
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(computing densitometer model 300A; Molecular Dynamics, Buckinghamshire, UK). The 

density of each band of different primary antibodies was normalized to its loading control 

(GAPDH). In order to minimize inter-assay variations, samples from all animals groups, in 

each experiment, were processed in parallel. 

 

 

II.3.5 STATISTICAL ANALYSIS 

 

Data were analyzed by using a one way analysis of variance (ANOVA) followed by 

a post hoc analysis with the Tukey’s test. Prism 2.01 program (Graph Pad, CA) was used 

for calculating probability values. Values of p<0.05 were considered statistically 

significant. 
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Figure II.1 - Examples of Western blots from (A), hypothalamic; (B), hippocampal and (C), 

cerebellar samples of ovariectomized rats treated with vehicle (Ct), progesterone (P), 

dihydroprogesterone (D) or tetrahydroprogesterone (T).  The figure shows examples of bands 

immunodetected with a rabbit polyclonal antibody against ERK-1/2 (ERK 44/42), mouse 

monoclonal antibody against phosphorylated ERK-1/2 (p-ERK 44/42) and a mouse monoclonal 

antibody against anti-glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), used as loading 

control. 

 

II.4 RESULTS 
 

 

II.4.1 ERK-1/2 

 

Figure 1 shows examples of Western blots from total and phosphorylated ERK in 

the hypothalamus (Fig. 1A), the hippocampus (Fig. 1B) and the cerebellum (Fig. 1C).  
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The results of the densitometric analysis of the bands are shown in figures 2 to 4. 

The expression of ERK1/2 was unaffected by progesterone, DHP and THP in the three 

brain regions studied. In contrast, progesterone and its two metabolites, DHP and THP, 

significantly increased the phosphorylation of ERK-1 and ERK-2 in the hypothalamus 

(Fig. 2). 

 
 

 

Figure II.2 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, 

n=5) and tetrahydroprogesterone 

(THP, n=5) on the expression and the 

phosphorylation of ERK (ERK 44 

and ERK 42) in the hypothalamus. 

A) Values of total ERK normalized 

to GAPDH. 

B) Values of phosphorylated ERK 

(p-ERK) normalized to GAPDH. 

C) Values of phosphorylated ERK 

(p-ERK) normalized to total ERK. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of control 

rats. 
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Progesterone treatment resulted also in a significant increase in the phosphorylation 

of ERK-1 and ERK-2 in the hippocampus (Fig. 3). A similar effect was observed in the 

animals treated with DHP (Fig. 3). In contrast, the treatment with THP did not affect the 

phosphorylation of ERK-1/2 in the hippocampus (Fig. 3).  

 

 

 

Figure II.3 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, 

n=5) and tetrahydroprogesterone 

(THP, n=5) on the expression and the 

phosphorylation of ERK (ERK 44 and 

ERK 42) in the hippocampus. 

A) Values of total ERK normalized to 

GAPDH. 

B) Values of phosphorylated ERK (p-

ERK) normalized to GAPDH. 

C) Values of phosphorylated ERK (p-

ERK) normalized to total ERK. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of rats 

treated with vehicle or THP. 
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In the cerebellum, only progesterone resulted in a significant increase in the 

phosphorylation of ERK-1 and ERK-2 (Fig. 4). 

 

 

 

 

 

 

 

 

Figure II.4 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, n=5) 

and tetrahydroprogesterone (THP, 

n=5) on the expression and the 

phosphorylation of ERK (ERK 44 and 

ERK 42) in the cerebellum. 

A) Values of total ERK normalized to 

GAPDH. 

B) Values of phosphorylated ERK (p-

ERK) normalized to GAPDH. 

C) Values of phosphorylated ERK (p-

ERK) normalized to total ERK. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of rats 

treated with vehicle, DHP or THP. 

 



Progesterone actions in protein phosphorylation in the central nervous system                                   Chapter II 

Centre for Cell Biology of University of Aveiro 
Cajal Institute CSIC Madrid 

 

30 

II.4.2 PI3K 

 

Examples of Western blots for the subunits p110 and p85 of the PI3K in the 

hypothalamus, the hippocampus and the cerebellum are presented in figure 5.  

  

Figure II.5 - Examples of Western blots from (A), hypothalamic; (B), hippocampal and (C), 

cerebellar samples of ovariectomized rats treated with vehicle (Ct), progesterone (P), 

dihydroprogesterone (D) or tetrahydroprogesterone (T). The figure shows examples of bands 

immunodetected with a rabbit polyclonal antibody against the p110 catalytic subunit of PI3K 

(p110-PI3K), a mouse monoclonal antibody against the p85 regulatory subunit of PI3K (p85-

PI3K) and a mouse monoclonal antibody against GAPDH, used as loading control. 
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The results of the densitometric analysis of the bands are shown in figures 6 and 7. 

Progesterone, DHP and THP induced a significant increase in the levels of p110-PI3K in 

the hypothalamus (Fig. 6A). The effect of DHP was significantly higher than the effect of 

THP (Fig. 6A). In the hippocampus progesterone treatment resulted in a significant 

increase in the levels of p110-PI3K (Fig. 6B). In contrast, DHP and THP did not affect the 

levels of p110-PI3K in this brain region. In the cerebellum, the levels of p110-PI3K 

showed a significant increase after the treatment with either progesterone, DHP or THP 

(Fig. 6C).  

Figure II.6 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, 

n=5) and tetrahydroprogesterone 

(THP, n=5) on the expression of 

p110-PI3K in the hypothalamus (A), 

the hippocampus (B) and the 

cerebellum (C). All values are 

normalized to GAPDH. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of control 

rats. 

Plus (+) - significant difference 

(p<0.05) versus the value of the 

animals treated with DHP. 
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Treatment with progesterone also resulted in a significant increase in the expression 

of p85-PI3K in the hypothalamus, the hippocampus and the cerebellum (Fig. 7A, B, and 

C). In addition, progesterone metabolites increased the expression of p85-PI3K in the 

hypothalamus and the hippocampus, but not in the cerebellum (Fig. 7A, B and C).   

 

 

 

 

 

Figure II.7 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, 

n=5) and tetrahydroprogesterone 

(THP, n=5) on the expression of p85-

PI3K in the hypothalamus (A), the 

hippocampus (B) and the cerebellum 

(C). All values are normalized to 

GAPDH. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of control 

rats (in A and B) and versus the 

values of rats treated with vheicle, 

DHP or THP (in C). 
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II.4.3 AKT 

 

The administration of progesterone also affected the phosphorylation of Akt in the 

hypothalamus, the hippocampus and the cerebellum. Examples of Western blots for total 

and phosphorylated Akt are shown in figure 8.  

  

Figure II.8 - Examples of Western blots from (A), hypothalamic; (B), hippocampal and (C), 

cerebellar samples of ovariectomized rats treated with vehicle (Ct), progesterone (P), 

dihydroprogesterone (D) or tetrahydroprogesterone (T). The figure shows examples of bands 

immunodetected with a rabbit polyclonal antibody against Akt, a rabbit polyclonal antibody 

against phosphorylated Akt (p-Akt) and a mouse monoclonal antibody against GAPDH, used as 

loading control. 
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The densitometric data are shown in figures 9 to 11. As observed for basal ERK1/2 

levels, neither progesterone nor its metabolites affected the basal levels of expression of 

Akt. However, both progesterone and THP resulted in a significant increase in the 

phosphorylation of Akt in the hypothalamus (Fig. 9). 

 

 

 

 

 

Figure II.9 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, 

n=5) and tetrahydroprogesterone 

(THP, n=5) on the expression and the 

phosphorylation of Akt in the 

hypothalamus. 

A) Values of total Akt normalized to 

GAPDH. 

B) Values of phosphorylated Akt (p-

Akt) normalized to GAPDH. 

C) Values of phosphorylated Akt (p-

Akt) normalized to total Akt. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of rats 

treated with vehicle or DHP. 
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The same behavior was observed in the hippocampus, with progesterone and THP 

treatment, increasing Akt phosphorylation. Again the basal levels of the total protein were 

unaffected with hormonal treatment (Fig.10). 

 

 

 

 

 

 

Figure II.10 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, 

n=5) and tetrahydroprogesterone 

(THP, n=5) on the expression and the 

phosphorylation of Akt in the 

hippocampus.  

A) Values of total Akt normalized to 

GAPDH. 

B) Values of phosphorylated Akt (p-

Akt) normalized to GAPDH. 

C) Values of phosphorylated Akt (p-

Akt) normalized to total Akt. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of rats 

treated with vehicle or DHP. 
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In contrast, only progesterone was able to increase the phosphorylation of Akt in 

the cerebellum. Again the basal levels of the total protein remained unaffected by 

hormonal treatment (Fig. 11).   

 

 

 

 

 

 

 

 

Figure II.11 - Effects of vehicle 

(CONT, n=4), progesterone (PROG, 

n=5), dihydroprogesterone (DHP, 

n=5) and tetrahydroprogesterone 

(THP, n=5) on the expression and the 

phosphorylation of Akt in the 

cerebellum. 

A) Values of total Akt normalized to 

GAPDH. 

B) Values of phosphorylated Akt (p-

Akt) normalized to GAPDH. 

C) Values of phosphorylated Akt (p-

Akt) normalized to total Akt. 

Asterisk (*) - significant differences 

(p<0.05) versus the values of rats 

treated with vehicle, DHP or THP. 
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II.5 DISCUSSION 

 

The findings of the present study indicate that progesterone administration to young 

ovariectomized rats results in (i), an increased phosphorylation of ERK-1, ERK-2; (ii), an 

increased expression of the catalytic and regulatory subunits of PI3K and (iii), an increased 

phosphorylation of Akt. These effects were detected in the hippocampus, the hypothalamus 

and the cerebellum, assessed 24 h after the hormonal administration. Our results extend 

previous in vitro evidence of increased phosphorylation of ERK and/or Akt in cortical 

explants (Singh, 2001), primary hippocampal cultures (Nilsen and Brinton, 2003) and 

retinal glial cells (Swiatek-De Lange et al., 2007) treated with progesterone and suggest 

that the hormone may exert in the brain in vivo a sustained activation of the intracellular 

signaling of growth factor receptors, such as the IGF-I and BDNF (TrkB) receptors. In 

addition, our findings indicate that progesterone not only affects the phosphorylation of 

ERK and Akt, but also the expression of PI3K. Previous analyses have shown that the dose 

and pattern of administration of progesterone used in the present study results in plasma 

levels of the hormone that are within the ranges observed in diestrus and/or estrus rats and 

in hippocampal levels analogous to those observed during estrus (Ciriza et al., 2006). 

Therefore, the effects of progesterone on the phosphorylation of ERK-1, ERK-2 and Akt 

and on the expression of PI3K detected in the present study may represent a physiological 

action. 

The finding that progesterone increases the phosphorylation of ERK-1, ERK-2 and 

Akt and the expression of PI3K in all brain regions studied, suggests that the MAPK and 

PI3K pathways are involved in widespread actions of the hormone through the brain. 

Given the important role of ERK 1/2 on the regulation of neuronal growth and survival, 

synaptic plasticity, learning and memory (Fukunaga and Miyamoto, 1998; Curtis and 

Finkbeiner, 1999; Grewal et al., 1999; Sweatt, 2001; Giovannini, 2006), it is conceivable 

that progesterone may affect these events in different brain regions by the activation of the 

MAPK signaling pathway. In fact, neuroprotective effects of progesterone against 

glutamate-induced toxicity in organotypic cultures of the cerebral cortex are inhibited by 

the MEK1/2 inhibitor UO126 (Kaur et al., 2007) and translocation of phosphorylated ERK 

to the cell nucleus appears to be an essential step in the neuroprotective mechanism of 

progesterone in primary hippocampal neurons (Nilsen and Brinton, 2003). In addition, the 
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MAPK pathway is involved in the effects of progesterone on sexual behavior, since the 

infusion of a MAPK inhibitor in the hypothalamus of estradiol-primed rats blocks 

progestin facilitation and sequential inhibition of lordosis and proceptive behaviors (Etgen 

et al., 2006). The PI3K signaling pathway is involved in the regulation of neuronal 

development, neuronal survival, synaptic plasticity, synaptic transmission and cognition 

(Skeberdis et al., 2001; Arimura and Kaibuchi, 2005; van der Heide et al., 2006; Zhao et 

al., 2006; Vetiska et al., 2007) and PI3K appears to mediate neuroprotective effects of 

progesterone in organotypic cultures of the cerebral cortex (Kaur et al., 2007). In the 

cerebellum, progesterone regulates the activity of glycogen synthase kinase-3 (GSK3) and 

the phosphorylation of the microtubule-associated protein Tau (Guerra-Araiza et al., 2007). 

These effects of progesterone, which could influence axonal transport and axonal growth 

and remodeling (Lindwall and Cole, 1984; Avila et al., 2004), may be in part mediated by 

the hormonal modulation of the PI3K/Akt signaling pathway, since Akt is upstream of 

GSK3, which, in turn, regulates the phosphorylation of Tau (Guerra-Araiza et al., 2007).   

Progesterone is rapidly metabolized in the brain by the enzyme 5α-reductase into its 

reduced derivative dihydroprogesterone (DHP), which subsequently is further reduced to 

tetrahydroprogesterone (THP, also known as allopregnanolone) by the enzyme 3α-

hydroxysteroid dehydrogenase (Garcia-Segura and Melcangi, 2006). Progesterone 

administration at the dose used in the present study results in a significant increase in the 

brain levels of DHP and THP (Ciriza et al., 2006). The reduced metabolites of 

progesterone mediate several of the effects of the hormone in the brain, including affective, 

cognitive and neuroprotective actions (Frye, 1995; Frank and Sagratella, 2000; Frye and 

Scalise, 2000; Ciriza et al., 2004; Djebaili et al., 2004; He et al., 2004; Rhodes and Frye, 

2004; Rhodes et al., 2004; Djebaili et al., 2005; Ciriza et al., 2006). Our findings, showing 

that the reduced derivatives of progesterone affect the phosphorylation of ERK-1/2 and 

Akt and the expression of PI3K in some brain regions, suggest that progesterone 

metabolism may be involved in the hormonal effects on the MAPK and PI3K signaling 

pathways. Thus, DHP mimicked the effect of progesterone on the phosphorylation of 

ERK-1/2 in the hypothalamus and the hippocampus, while THP mimicked the effect of 

progesterone in the phosphorylation of ERK-1/2 in the hypothalamus (Fig. 12 A,B). 

However, none of the metabolites mimicked the effect of progesterone on the 

phosphorylation of ERK-1/2 in the cerebellum (Fig. 12 C). Concerning the PI3K pathway, 
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both progesterone metabolites increased the expression of p110-PI3K in the hypothalamus 

and cerebellum and the expression of p85-PI3K in the hypothalamus and the hippocampus 

(Fig. 12). However, DHP and THP did not affect the expression of p110-PI3K in the 

hippocampus and the expression of p85-PI3K in the cerebellum (Fig. 12).  

Figure II.12 - Summary of the effects of the metabolites of progesterone on the expression of 

p110-PI3K (p110) and p85-PI3K (p85) and on the phosphorylation of ERK (p-ERK-1/2) and Akt 

(p-Akt) in the hypothalamus (A), the hippocampus (B) and the cerebellum (C).  
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Furthermore, Akt phosphorylation was unaffected by DHP and was increased by 

THP in the hypothalamus and hippocampus but not in the cerebellum (Fig. 12). Therefore, 

DHP and THP did not fully mimic the effect of the hormone on MAPK and PI3K signaling 

pathways. Our findings do not exclude that progesterone metabolites may affect ERK and 

Akt phosphorylation in some brain regions at shorter times than progesterone does. 

However, our results suggest that acute administration of DHP and THP is not able to 

maintain a sustained activation of ERK and Akt in some brain regions, at least for a period 

of 24 h after the administration of the steroids. The functional significance of the regional 

differences in the effects of progesterone metabolites on the regulation of the MAPK and 

PI3K signaling pathways is unknown. However, it is of interest to note that progesterone 

metabolites seem to exert a stronger regulation of the MAPK and PI3K signaling pathways 

in the hypothalamus, a target for hormonal (Pfaff 1989; Ronnekleiv and Kelly, 2005; Etgen 

et al., 2006; Beyer, 2007) and paracrine (Micevych and Sinchak, 2008) reproductive 

actions of progesterone, than in the hippocampus and the cerebellum, brain regions in 

which non-reproductive actions of progesterone predominate.   

Progesterone, DHP and THP act by complementary mechanisms in the brain. THP 

is an allosteric agonist of GABAA receptors (Puia et al., 1990; Majewska, 1992; Follesa et 

al., 2001; Lambert et al., 2003; Belelli and Lambert, 2005; Belelli et al., 2006) and may 

increase the phosphorylation of ERK-1/2 and Akt in the hypothalamus and the 

phosphorylation of Akt in the hippocampus via membrane effects. Brain regional 

differences in the subunit composition of GABAA receptors (Heldt and Ressler, 2007), 

which is known to affect the response to THP (Belelli and Lambert, 2005; Belelli et al., 

2006), may explain the regional specific effects of THP on the MAPK and PI3K pathway. 

At difference to THP, progesterone and DHP bind to classical nuclear progesterone 

receptors (Rupprecht et al., 1993; Melcangi et al., 1999). Therefore, regulation of 

progesterone receptor mediated transcription may potentially be involved on the effects of 

DHP on the phosphorylation of ERK-1/2 in the hippocampus and the hypothalamus. Thus, 

the different regional effects of DHP and progesterone may be in part the consequence of 

the different regional expression of nuclear progesterone receptor isoforms within the brain 

(Guerra-Araiza et al., 2003). Furthermore, progesterone and DHP may also exert their 

effects by acting at the plasma membrane or the cytoplasm. Indeed, previous studies have 

shown that the classical progesterone receptor may be associated with p42 MAPK and 
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PI3K in Xenopus oocytes (Bagowski et al., 2001) and that a membrane-impermeable 

progesterone conjugate induces calcium influx and subsequent PI3K-mediated 

phosphorylation of PKC and ERK-1/2 in retinal Muller glial cells (Swiatek-De Lange et 

al., 2007). Classical progesterone receptors located at extranuclear sites are also involved 

in the regulation of the activity of the MAPK pathway (Boonyaratanakornkit et al., 2008). 

In addition, membrane effects may be mediated by the receptor 25-Dx (Krebs et al., 2000; 

Sakamoto et al., 2004; Meffre et al., 2005; Swiatek-De Lange et al., 2007; Brinton et al., 

2008; Guennoun et al., 2008), a steroid binding protein that is also known as membrane-

associated progesterone receptor component 1, ratp28 and inner zone antigen (Swiatek-De 

Lange et al., 2007). Another target of progesterone that is involved in rapid signaling 

mechanisms is the σ1 receptor, a cytoplasmic molecule expressed in the nervous system 

and that binds several steroids, including progesterone (Maurice et al., 1999; Alonso et al., 

2000; Waterhouse et al., 2007). Actions of progesterone and its metabolites may also be 

mediated by a recently discovered family of membrane progesterone receptors (Zhu et al., 

2003a,b; Hanna et al., 2006; Thomas, 2008). Regional differences in the expression of 

membrane progesterone receptors (Krebs et al., 2000; Guennoun et al., 2008) may also 

explain the regional differences in the effects of progesterone and its metabolites in the 

PI3K and MAPK pathways. In addition, since the enzyme 3α-hydroxysteroid 

dehydrogenase can either reduce DHP to THP or oxidize THP back to DHP (Garcia-

Segura and Melcangi, 2006) differences in the inter-conversion of DHP and THP may also 

contribute to the regional specific effects of progesterone metabolites (Fig. 12). Finally, 

since both neurons and glial cells are targets for progesterone and its metabolites (Brinton 

et al., 2008; Guennoun et al., 2008; Melcangi et al., 2008), the final effect of these steroids 

on MAPK and PI3K signaling in the brain may result from the integration of actions 

elicited by different molecular mechanisms on different cell types.  

The effects of progesterone and its metabolites on the MAPK and PI3K signaling 

pathways may have important functional implications for the regulation of the actions of 

growth factors in the brain. The interaction of progesterone and its metabolites with the 

intracellular signaling of growth factors, such as VEGF, BDNF and IGF-I, may modulate 

the actions of these factors on glial and neuronal development, physiological function and 

response to brain injury. In addition, progesterone and its metabolites may interact with 

other regulators of growth factor signaling, including the ovarian hormone estradiol. 
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Estradiol is known to regulate the activity of MAPK and PI3K signaling pathways in the 

brain (Etgen and Acosta-Martinez, 2003; Marin et al., 2005; Mannella and Brinton, 2006) 

and to affect the actions of different growth factors, such as nerve growth factor, basic 

fibroblast growth factor, glial cell line-derived neurotrophic factor, BDNF and IGF-I 

(Etgen and Garcia-Segura, 2009). Therefore, acting on MAPK and PI3K, progesterone and 

estradiol may potentially interact in the regulation of growth factor signaling in the brain 

and this may be part of the mechanisms involved in the coordinated regulation of brain 

function, brain plasticity, neuroendocrine and behavioral events by ovarian hormones. 

In conclusion, our findings indicate that physiological levels of progesterone 

increase the phosphorylation of ERK-1/2 and Akt and the expression of the p85 regulatory 

subunit and of the p110 catalytic subunit of PI3K in all brain regions explored in 

ovariectomized rats: the hypothalamus, the hippocampus and the cerebellum. These results 

suggest that activation of MAPK and PI3K signaling is involved in the effects of 

progesterone in the central nervous system in vivo. Furthermore, progesterone metabolites 

exert a regulation of the MAPK and PI3K signaling with regional specificity, with marked 

differences between the hypothalamus, a target for the reproductive actions of progesterone 

and the other brain regions. This suggests that the final regulatory action of progesterone 

on MAPK and PI3K signaling in the brain is the result of a combination of mechanism 

directly activated by progesterone and mechanisms activated by its metabolites. 
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CHAPTER III 
 

EFFECTS OF PROGESTERONE AND ITS REDUCED METABOLITES, 

DIHYDROPROGESTERONE AND TETRAHYDROPROGESTERONE, ON THE 

EXPRESSION AND PHOSPHORYLATION OF GLYCOGEN SYNTHASE 

KINASE-3 AND THE MICROTUBULE-ASSOCIATED PROTEIN TAU IN THE 

RAT CEREBELLUM 
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III - EFFECTS OF PROGESTERONE AND ITS REDUCED METABOLITES, 

DIHYDROPROGESTERONE AND TETRAHYDROPROGESTERONE, ON THE 

EXPRESSION AND PHOSPHORYLATION OF GLYCOGEN SYNTHASE 

KINASE-3 AND THE MICROTUBULE-ASSOCIATED PROTEIN TAU IN THE 

RAT CEREBELLUM 

 

 

III.1 ABSTRACT 

 

Progesterone exerts a variety of actions in the brain, where it is rapidly metabolized 

to 5α-dihydroprogesterone (DHP) and 3α,5α-tetrahydroprogesterone (THP). The effect of 

progesterone and its metabolites on the expression and phosphorylation of the microtubule-

associated protein Tau and glycogen synthase kinase-3β  (GSK3β), a kinase involved in 

Tau phosphorylation, were assessed in two progesterone-sensitive brain areas: the 

hypothalamus and the cerebellum. Administration of progesterone, DHP and THP to 

ovariectomized rats did not affect Tau and GSK3β assessed in whole hypothalamic 

homogenates. In contrast, progesterone and its metabolites resulted in a significant 

decrease in the expression of Tau and GSK3β in the cerebellum. Furthermore, 

progesterone administration resulted in an increase in the phosphorylation of two epitopes 

of Tau (Tau-1 and PHF-1) phosphorylated by GSK3β, but did not affect the 

phosphorylation of an epitope of Tau (Ser262) that is GSK3β insensitive. These effects 

were accompanied by a decrease in the phosphorylation of GSK3β in serine, which is 

associated to an increase in its activity, suggesting that the effect of progesterone on Tau-1 

and PHF-1 phosphorylation in the cerebellum is mediated by GSK3β. The regulation of 

Tau expression and phosphorylation by progesterone may contribute to the hormonal 

regulation of cerebellar function by the modification of neuronal cytoskeleton.   
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III.2 INTRODUCTION 

 

Tau is a microtubule-associated protein that regulates the assembly and stabilization 

of neuronal and glial microtubules and influences axonal growth, axonal shape and 

microtubule-associated axonal transport (Buee et al., 2000; Avila et al., 2002, 2004). Under 

physiological conditions, changes in the phosphorylation of Tau are probably involved in 

the regulation of neuritic growth, synaptogenesis and synaptic plasticity. However, 

sustained phosphorylation of Tau reduces its ability to bind and to stabilize microtubules, 

resulting in destabilization of the cytoskeleton and perturbation of axonal transport 

(Lindwall and Cole, 1984). Pathological hyperphosphorylation of Tau is associated to 

several neurodegenerative diseases (Buee et al., 2000; Avila et al., 2002, 2004). 

Gonadal hormones promote axonal growth and neuronal plasticity (Garcia-Segura 

et al., 1994; Parducz et al., 2006) and the regulation of Tau expression and phosphorylation 

may be involved in these hormonal actions. Estradiol increases the expression of Tau in 

primary neuronal cultures (Ferreira and Caceres, 1991; Alvarez-de-la-Rosa et al., 2005) an 

effect that is associated to an increase in axonal growth (Ferreira and Caceres, 1991). In 

addition, estradiol decreases Tau phosphorylation in primary cortical and hippocampal 

neurons, in hippocampal slice cultures and in the hippocampus in vivo (Cardona-Gomez et 

al., 2004; Alvarez-de-la-Rosa et al., 2005; Goodenough et al., 2005). All these findings 

suggest that estradiol may affect axonal growth and synaptic plasticity regulating Tau 

expression and phosphorylation. Furthermore, estradiol decreases total and phosphorylated 

Tau in the entorhinal cortex of Ts65Dn mice, an animal model of Down's syndrome 

(Hunter et al., 2004), suggesting that the hormone may also decrease the pathological 

hyperphosphorylation of Tau that is associated to several neurodegenerative diseases (Buee 

et al., 2000; Avila et al., 2002, 2004). Testosterone also decreases the 

hyperphosphorylation of Tau induced by heat shock in the rat brain (Papasozomenos, 

1997; Papasozomenos and Papasozomenos, 1999; Papasozomenos and Shanavas, 2002). 

While these data indicate that testosterone and estradiol may affect the expression and/or 

the activity of Tau, it is unknown whether progesterone, another neuroactive gonadal 

steroid may exert similar effects. 

The effects of progesterone in the central nervous system are not limited to the 

control of neuroendocrine regulation and reproduction (Baulieu and Scumacher, 2000; 
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Birzniece et al., 2006). Progesterone regulates synaptic function (Smith et al., 1987a), 

promotes neuronal and glial differentiation (Tsutsui et al., 2004; Ghoumari et al., 2005) 

and has neuroprotective properties in different experimental models of neurodegeneration 

(Schumacher et al., 2004; Stein, 2005; De Nicola et al., 2006). In the central nervous 

system, progesterone is rapidly metabolized to 5α-dihydroprogesterone (DHP) by the 

enzyme 5α-reductase, and DHP is further reduced to 3α,5α-tetrahydroprogesterone (THP) 

by the enzyme 3α-hydroxysteroid dehydrogenase (Stoffel-Wagner et al., 1998; Melcangi et 

al., 2001; Mellon et al., 2001). Progesterone metabolites are involved in the effects of 

progesterone in the central nervous system (Melcangi et al., 2001; Giachino et al., 2003: 

Rhodes et al., 2004; Matsumoto et al., 2005; Patte-Mensah et al., 2005; Ciriza et al., 2006).  

In this study we have assessed whether progesterone and its metabolites DHP and 

THP may affect Tau expression and phosphorylation in the rat brain. We have selected two 

different brain areas for analysis: the hypothalamus, a classical target for progesterone 

neuroendocrine and reproductive actions (Ronnekleiv and Kelly, 2005) and the cerebellum 

a brain area involved in motor control that is also affected by the hormone (Smith et al., 

1987a,c; Smith, 1989, 1991; Sakamoto et al., 2001, 2002; Tsutsui et al., 2004). Since 

glycogen synthase kinase-3β (GSK3β) is one of the kinases that regulate Tau 

phosphorylation (Ferrer et al., 2005) and appears to be involved in the effects of 

testosterone and estrogen on Tau phosphorylation in the rat brain (Papasozomenos and 

Shanavas, 2002; Cardona-Gomez et al., 2004), we have also assessed the effects of 

progesterone and its metabolites on the phosphorylation of this kinase.  

 

  



Progesterone actions in protein phosphorylation in the central nervous system                                 Chapter III 

Centre for Cell Biology of University of Aveiro 
Cajal Institute CSIC Madrid 
 

47 

III.3 MATERIAL AND METHODS 

 

 

III.3.1 ANIMALS 

 

Wistar albino female rats from our in-house colony were kept in a 12:12 h light-

dark cycle and received food and water ad libitum. Animals were handled in accordance 

with the guidelines published in the NIH Guide for the Care and Use of Laboratory 

Animals, the principles presented in the Guidelines for the Use of Animals in Neuroscience 

Research by the Society for Neuroscience and following the European Union 

(86/609/EEC) legislation. Experimental procedures were approved by our Institutional 

Animal Use and Care Committee (Spanish National Research Council Animal 

Experimentation Committee). Special care was taken to minimize animal suffering and to 

reduce the number of animals used to the necessary minimum. Two month-old rats were 

bilaterally ovariectomized under 2,2,2-tribromoethanol anesthesia (0.2 g/kg body weight 

(b.w.), Fluka Chemika, Buchs, Switzerland). Rats were then housed in plastic cages and 

randomly assigned to the different treatments. 

 

 

III.3.2 EXPERIMENTAL TREATMENTS 

 

Ten days after surgery, rats received one i.p. injection of progesterone (n=5) (2 

mg/kg b.w., Sigma, St. Louis, MO), DHP (n=5) (0.25 mg/kg b.w., Sigma), THP (n=5) (2 

mg/kg b.w., Sigma) or vehicle (n=4)  (0.2 ml of 20% [2-hydroxypropyl]-β-cyclodextrin, 

Fluka Chemika, Buchs, Switzerland). These doses of progesterone, DHP and THP result in 

physiological levels of these molecules in the plasma of ovariectomized rats (Ciriza et al., 

2006). The animals were killed by decapitation 24 h after the administration of the steroids. 

The cerebellum and the whole hypothalamus, limited by the optic chiasm and the caudal 

portion of the mammillary bodies, were quickly removed and immediately processed for 

protein extraction. 
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III.3.3 WESTERN BLOT ANALYSIS 

 

Hypothalamic and cerebellar samples were homogenized in lysis buffer (150 nM 

NaCl, 20 mM Tris-HCl, 10% glycerol, 5 mM EDTA, 1% NP-40, Roche, Mannhein, 

Germany) supplemented with protease and phosphatase inhibitors (50 μg/ml of phenyl 

methyl sulfonyl fluoride, 10 μg/ml aprotinin, 25 μg/ml leupeptin and 100 nM 

orthovanadate, all from Sigma). Proteins were obtained by centrifugation for 15 min at 

15,000 rpm at 4°C and supernatant quantified by with a modified Bradford assay (BioRad, 

Munchen, Germany). Proteins (30 µg) were resolved using sodium dodecylsulphate-

polyacrylamide gel electrophoresis (12% SDS-PAGE) with a Mini-Protean system 

(BioRad) and electrophoretically transferred to nitrocellulose membranes (GE Healthcare, 

formerly Amersham Bioscience, Piscataway, NJ, USA). The membranes were blocked 

with 5% non-fat dry milk diluted in 0.05% Tween-20 Tris-buffered saline and incubated 

overnight with the primary antibodies (diluted 1:1000). Pre-stained broad range markers 

(BioRad) were included for size determination.  

 

 
III.3.4 ANTIBODIES 

 

The following antibodies were used: rabbit anti-Tau polyclonal antibody (H-150, 

Santa Cruz Biotechnology, Santa Cruz, CA), which recognizes six Tau isoforms of 46-80 

kDa molecular weight; rabbit polyclonal antibody that recognizes phosphorylation in 

serine 262 of Tau (p-Tau Ser 262, Santa Cruz Biotechnology); mouse monoclonal antibody 

that recognized the anti-dephosphorylated Tau-1 epitope of Tau (TAU-1, Chemicon, 

Temecula, CA); rabbit polyclonal antibody that recognizes phosphorylation in the PHF-1 

epitope of Tau (a gift of Dr. Peter Davies, Albert Einstein College of Medicine, Bronx, 

NY, USA); mouse anti-GSK3β monoclonal antibody (BD Biosciences Pharmingen, San 

Diego, CA); mouse anti-phosphorylated GSK3β monoclonal antibody (pSer9 GSK3β, 

Sigma), mouse anti-βIII tubulin monoclonal antibody (Promega, Madison, WI) and mouse 

anti- glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, Chemicon). After incubation 

with the primary antibody, membranes were washed and incubated with horseradish 

peroxidase-coupled secondary antibodies (Jackson ImmunoResearch Laboratories Inc., 
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West Grove, PA; diluted 1:15,000). Immunoreactive bands were detected using an 

enhanced chemiluminescence system (GE Healthcare-Amersham). When needed, 

membranes were stripped using a commercial solution (Chemicon).  Films were analyzed 

using the ImageQuant software version 3.22 (computing densitometer model 300A; 

Molecular Dynamics, Buckinghamshire, UK). The density of each band of different 

primary antibodies was normalized to its respective loading control. Two different 

molecules were used as loading controls: βIII tubulin and GAPDH. Identical results were 

obtained with both controls. The numerical data presented in the figures correspond to 

values normalized with GAPDH. In order to minimize inter-assay variations, samples from 

all animals groups, in each experiment, were processed in parallel. 

 

 
III.3.5 STATISTICAL ANALYSIS 

 

Data were analysed by using a one way analysis of variance (ANOVA) followed by 

a post hoc analysis with the Tukey’s test. Prism 2.01 program (Graph Pad, CA) was used 

for calculating probability values. Values of p<0.05 were considered statistically 

significant. 
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III.4 RESULTS 

 

 
III.4.1 TAU 

 

Figure 1 shows examples of Western blots from hypothalamic samples. The 

expression of total Tau and the amount of phosphorylated Tau at epitopes Ser262, Tau-1 

and PHF-1 were unaffected by progesterone, DHP and THP in the hypothalamus. 
 

 
 

 

 

 

 

 

 

 

In contrast, progesterone treatment resulted in a significant decrease in the In    

Figure III.1 - Examples of Western blots from hypothalamic samples of ovariectomized rats 

treated with progesterone (PROG), dihydroprogesterone (DHP), tetrahydroprogesterone (THP) or 

vehicle (CONT).  The figure shows examples of bands immunodetected with the following 

antibodies: A, anti-Tau antibody; B, antibody that recognizes phosphorylation in serine 262 of Tau; 

C, antibody that recognized the anti-dephosphorylated Tau-1 epitope of Tau; D, antibody that 

recognizes phosphorylation in the PHF-1 epitope of Tau;  E, anti-GSK3β antibody; F, antibody that 

recognizes GSK3β phosphorylated in serine 9; G, antibody that recognizes βIII tubulin and H, 

antibody that recognizes GAPDH. βIII tubulin and GAPDH were used as loading controls. The two 

bands shown in panels A and C are specific and were both included in the densitometric analysis.  
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In contrast, progesterone treatment resulted in a significant decrease in the 

expression of Tau in the cerebellum (Figs. 2 and 3A). This effect was also observed after 

the administration of DHP and THP (Figs. 2 and 3A). The amount of phosphorylated Tau 

at epitope Ser262 was not affected by the steroid treatments in the cerebellum (Fig. 2). 
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Figure III.2 - Examples of Western blots from cerebellar samples of ovariectomized rats treated 

with progesterone (PROG), dihydroprogesterone (DHP), tetrahydroprogesterone (THP) or vehicle 

(CONT).  The figure shows examples of bands immunodetected with the following antibodies: A, 

anti-Tau antibody; B, antibody that recognizes phosphorylation in serine 262 of Tau; C, antibody 

that recognized the anti-dephosphorylated Tau-1 epitope of Tau; D, antibody that recognizes 

phosphorylation in the PHF-1 epitope of Tau; E, anti-GSK3β antibody; F, antibody that recognizes 

GSK3β phosphorylated in serine 9; G, antibody that recognizes βIII tubulin and H, antibody that 

recognizes GAPDH. βIII tubulin and GAPDH were used as loading controls. The two bands shown 

in panels A and C are specific and were both included in the densitometric analysis. 
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However, the amount of Tau dephosphorylated at the Tau-1 epitope in the 

cerebellum was decreased after the treatment with progesterone, DHP and THP (Figs. 2 

and 3B). Furthermore, the ratio of Tau dephosphorylated at the Tau-1 epitope versus total 

Tau showed a significant decrease in the cerebellum of rats treated with progesterone (Fig. 

3C). 

 

 

 

 

 

 

 

 

 

Figure III.3 - Effects of progesterone (PROG, n=5), dihydroprogesterone (DHP, n=5) and 

tetrahydroprogesterone (THP, n=5) on the expression of Tau and on its phosphorylation at epitopes 

Tau-1 and PHF-1 in the cerebellum of ovariectomized rats. A, levels of total Tau; B, 

dephosphorylated Tau-1 epitope; C, the ratio of dephosphorylated Tau-1 epitope versus total Tau; 

D, phosphorylation of the PHF-1 epitope; E, the ratio of phosphorylated PHF-1 epitope versus total 

Tau. Control rats (CONT, n=4) were treated with vehicle. Data were normalized to GADPH values 

and are expressed as the mean±SEM. Asterisk, significant differences (p<0.05) versus the values 

of control rats. 
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This ratio was not affected by DHP or THP (Fig. 3C), indicating that the effects of 

these metabolites were limited to the expression of Tau while progesterone regulated both 

the expression of Tau and its phosphorylation at the Tau-1 epitope. Progesterone also 

increased the phosphorylation of Tau at the PHF-1 epitope (Fig. 3D) and the ratio of 

phosphorylation of Tau at the PHF-1 epitope versus total Tau (Fig. 3E). DHP and THP did 

not affect phosphorylation at the PHF-1 epitope.  

 

 

IV.4.2 GSK3β 

 

GSK3β is the major kinase that regulates Tau phosphorylation. Tau-1 and PHF-1 

epitopes of Tau are phosphorylated by GSK3β. In contrast, GSK3β does not affect the 

phosphorylation of Ser262 epitope. Therefore, the expression of GSK3β and the levels of 

phosphorylated GSK3β were assessed to determine whether changes in Tau-1 and PHF-1 

phosphorylation were associated to modifications in the phosphorylation of GSK3β.  
 

 

 

 

 

 

 

 

As it was observed for Tau, the expression and the phosphorylation of GSK3β were 

not affected in the hypothalamus by the treatments with progesterone, DHP or THP (Fig. 

1). In contrast, progesterone, DHP and THP resulted in a significant decrease in the 

Figure III.4 - Effects of progesterone (PROG, n=5), dihydroprogesterone (DHP, n=5) and 

tetrahydroprogesterone (THP, n=5) on the expression of GSK3β and on its phosphorylation at 

serine 9 in the cerebellum of ovariectomized rats. A, levels of total GSK3β; B, phosphorylated 

GSK3β at serine 9; D, ratio of phosphorylated versus total GSK3β. Control rats (CONT, n=4) were 

treated with vehicle. Data were normalized to GADPH values and are expressed as the 

mean±SEM. Asterisk, significant differences (p<0.05) versus the values of control rats. 
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expression of GSK3β in the cerebellum (Figs. 2 and 4A). This effect was associated to a 

significant decrease in the levels of phosphorylated GSK3β in serine in the animals treated 

with these steroids (Figs. 2 and 4B). The ratio of phosphorylated versus total GSK3β was 

significantly decreased in the cerebellum of the animals treated with progesterone and was 

not affected by the treatments with DHP and THP (Fig. 4C). Therefore, as it was observed 

for Tau, the effects of DHP and THP were limited to the expression of GSK3β while 

progesterone regulated both the expression and the phosphorylation of this molecule. 

 

 

III.5 DISCUSSION 

 

Morphological and electrophysiological actions of progesterone have been 

characterized in Purkinje cells of the cerebellar cortex. Progesterone administration 

significantly enhances inhibitory responses of Purkinje cells to GABA and suppressed 

glutamate excitation (Smith et al., 1987a,c; Smith, 1989, 1991) an effect that may be in 

part mediated by progesterone metabolites (Smith et al., 1987b; Follesa et al., 2000). 

Furthermore, progesterone promotes dose-dependent outgrowth of Purkinje cell dendrites 

and dendritic spines, and an increase in the density of Purkinje spine synapses during 

cerebellar development (Sakamoto et al., 2001, 2002; Tsutsui et al., 2004). In addition, 

progesterone may affect cerebellar glial cells and increases myelin basic protein expression 

by cerebellar oligodendrocytes (Ghoumari et al., 2003) and the proliferation of cerebellar 

oligodendrocyte precursors (Ghoumari et al., 2005). 

Our findings, showing that progesterone treatment results in a decrease in the 

expression of Tau in the cerebellum, extend the results of previous studies showing that 

this brain area is a target for progesterone. The effect of progesterone on Tau expression 

seems to have anatomical specificity, since it was not observed in the hypothalamus and 

previous studies have shown that progesterone does not alter Tau expression in the 

hippocampus (Reyna-Neyra et al., 2002). In addition, progesterone administration resulted 

in an increase in the phosphorylation of Tau, at the Tau-1 and PHF-1 epitopes, in the 

cerebellum. Once more, this effect was not observed in the hypothalamus. These data 

suggest that progesterone may have specific effects in Tau expression and phosphorylation 

in the cerebellum. However, it cannot be excluded that progesterone might affect Tau 
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expression and/or phosphorylation in specific regions of the hypothalamus and that these 

possible regional changes would be undetectable by the analysis of homogenates from the 

whole hypothalamus. Thus, the differences between hypothalamus and cerebellum may be 

quantitative rather than qualitative. In addition, many of the progesterone effects on the 

hypothalamus require prior estrogen treatment, which was not done in the present 

experiments carried out in estrogen-depleted female rats.  

The different effects of progesterone in the cerebellum and the hypothalamus may 

be in part due to differences in the expression of progesterone receptors. Classical 

progesterone receptors are expressed in the hypothalamus (Warembourg, 1978; 

Warembourg et al., 1986; Olster and Blaustein, 1990; Guerra-Araiza et al., 2001, 2002; 

Lonstein and Blaustein, 2004) and the cerebellum (Kato et al., 1993, 1994; Sakamoto et al., 

2001; Curran-Rauhut and Petersen, 2002; Guerra-Araiza et al., 2001, 2002; Sakamoto et 

al., 2003). However, the expression of the isoforms A (PR-A) and B (PR-B) of the 

progesterone receptor differs between these two brain areas, at least in male rats, where in 

adults PR-A predominates in the hypothalamus and PR-B predominates in the cerebellum 

(Guerra-Araiza et al., 2001). Another target of progesterone that is expressed at different 

levels in the hypothalamus and cerebellum is the σ1 receptor, a cytoplasmic molecule 

involved in rapid signaling that is antagonized by progesterone (Maurice et al., 1999; 

Alonso et al., 2000). The effects of progesterone may also be mediated by 25-Dx, a 

putative membrane progesterone receptor expressed in the hypothalamus and cerebellum 

(Krebs et al., 2000; Sakamoto et al., 2004; Meffre et al., 2005) or by mPRβ, a membrane 

protein expressed in the brain that is homologous to a fish membrane progestin receptor 

(Zhu et al., 2003a).  

The effect of progesterone on the phosphorylation of the Tau-1 and PHF-1 epitopes 

in the cerebellum was not observed when another Tau epitope, Ser 262, was assessed. Tau 

is one of the substrates of GSK3β (Ferrer et al., 2005), which is involved in the 

phosphorylation of Tau-1 and PHF-1 epitopes, while the phosphorylation of the Ser262 

epitope, involved in Tau binding to microtubules (Biernat et al., 1993), is GSK3β 

insensitive. GSK3β is highly expressed in the central nervous system (Takahashi et al., 

1994), including the cerebellar cortex and the Purkinje cells of the cerebellum (Yao et al., 

2002). Therefore, one of the possible mediators involved in the effect of progesterone on 

cerebellar Tau phosphorylation at the Tau-1 and PHF-1 epitopes is GSK3β. Our findings 
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indicate that the increase in Tau-1 and PHF-1 phosphorylation in the cerebellum as a result 

of progesterone administration is accompanied by a decrease in the phosphorylation of 

GSK3β in serine, which is associated to an increase in its activity (Cohen and Frame, 

2001). In contrast, in the hypothalamus, where progesterone was unable to affect Tau-1 

and PHF-1 phosphorylation, GSK3β phosphorylation was also unaffected by the hormone. 

Therefore, our findings suggest that progesterone increases Tau-1 and PHF-1 

phosphorylation in the cerebellum by decreasing the phosphorylation of GSK3β in serine.  

Progesterone metabolism may be involved in the effects of the hormone on Tau and 

GSK3β. Progesterone is converted within the central nervous system to DHP, by the 

enzyme 5α-reductase and DHP is metabolized to THP by the enzyme 3α-hydroxysteroid 

dehydrogenase. DHP is a ligand of progesterone receptors and THP an allosteric agonist of 

GABAA receptors (Puia et al., 1990; Majewska, 1992; Melcangi et al., 2001; Lambert et 

al., 2003). Progesterone metabolites may in part mediate the effect of progesterone on the 

expression of Tau and GSK3β in the cerebellum since both DHP and THP had similar 

effects to progesterone on these parameters and since the enzymes 5α-reductase and 3α-

hydroxysteroid dehydrogenase are expressed by Purkinje cells (Agis-Balboa et al., 2006). 

However, only progesterone regulated the phosphorylation of Tau and GSK3β, suggesting 

that the final effect of progesterone on these molecules may be the result of a combination 

of effects directly mediated by progesterone and effects mediated by its metabolites. 

Progesterone and DHP may regulate the expression of Tau and GSK3β in the cerebellum 

acting on progesterone receptors. According to this hypothesis, the effect of THP may be 

explained by a retro-conversion into DHP by the reversible enzyme 3α-hydroxysteroid 

dehydrogenase. Alternatively, progesterone may be metabolized to DHP and this steroid in 

THP. Then, THP may modulate the expression of Tau and GSK3β by a mechanism 

mediated by its interaction with the GABAA receptor. Thus, both progesterone receptors 

and GABAA receptors may potentially mediate the effects of progesterone, DHP and THP 

on the expression of Tau and GSK3β. However, another mechanism should be responsible 

for the action of progesterone on the phosphorylation of Tau and GSK3β, since in this case 

the lack of the effect of DHP and THP seem to discard the involvement of progesterone 

and GABAA receptors, respectively. Therefore, alternative mechanisms of action of 

progesterone, including the interaction with putative membrane steroid receptors, such as 

25-Dx or mPRβ, may be postulated for the effects of the hormone on the phosphorylation 
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of Tau and GSK3β in the cerebellum. 

The effect of progesterone on the expression and phosphorylation of GSK3β and 

Tau may be highly relevant for cerebellar function. Progesterone may affect GSK3β and 

Tau by paracrine or autocrine actions, since the rat cerebellum expresses cytochrome P450 

side-chain cleavage (P450scc), the enzyme that transforms cholesterol in pregnenolone 

(Sanne and Krueger, 1995; Ukena et al., 1998; Tsutsui et al., 2004; Lavaque et al., 2006) 

and 3beta-hydroxysteroid dehydrogenase/delta5-delta4-isomerase (3betaHSD), the enzyme 

that transforms pregnenolone in progesterone (Guennoun et al., 1995; Ukena et al., 1999). 

Locally produced or hormonal progesterone may affect the cytoskeleton in cerebellar cells 

by regulating Tau expression and phosphorylation, since Tau regulates the dynamic 

instability of microtubules, its growth and bundling (Paglini et al., 2000). In addition, Tau 

is involved in the regulation of vesicle transport, the interaction of microtubules with the 

plasma membrane and the intracellular localization of proteins such fyn, 14-3-3 and 

protein phosphatase 2A (Stoothoff and Johnson, 2005). By its actions on Tau, progesterone 

may alter the function of cerebellar neurons and oligodendrocytes, since both cell types 

express Tau (LoPresti et al., 1995; Stoothoff and Johnson, 2005) and both cell types are a 

target for the actions of the steroid (Tsutsui et al., 2004; Ghoumari et al., 2005). The 

expression and subcellular distribution of Tau in cerebellar neurons in culture is highly 

correlated with the morphological development of axons (Paglini et al., 2000) and 

cerebellar neurons failed to extend axon-like processes when Tau expression is blocked 

(Caceres and Kosik, 1990). Furthermore, one of the most important alterations detected in 

the brain of Tau-deficient mice is a reduction in the number and density of microtubules in 

cerebellar parallel fibers (Harada et al., 1994). Progesterone may increase phosphorylation 

of Tau-1 and PHF-1 in the cerebellum by decreasing GSK3β phosphorylation, which 

results in an increased activity of the kinase. In turn, phosphorylation of Tau by GSK3β 

alters Tau distribution between axon and cell body, reduces its binding to microtubules, 

promotes its aggregation and increases its susceptibility to proteolysis. All these changes 

could influence axonal transport and axonal growth and remodeling in cerebellar cells 

(Lindwall and Cole, 1984; Avila et al., 2004) and may contribute to the physiological 

regulation of synaptic cerebellar function by progesterone (Tsutsui, 2006). 
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CHAPTER IV 
 

PROGESTERONE REGULATES THE PHOSPHORYLATION OF PROTEIN 

PHOSPHATASES IN THE BRAIN 
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IV- PROGESTERONE REGULATES THE PHOSPHORYLATION OF 

PROTEIN PHOSPHATASES IN THE BRAIN 

 

 

IV.1 ABSTRACT 

 

Previous studies have shown that progesterone modulates the activity of different 

kinases and the phosphorylation of Tau in the brain. These actions of progesterone may be 

involved in the hormonal regulation of neuronal differentiation, neuronal function, and 

neuroprotection. However, the action of progesterone on protein phosphatases in the 

nervous system has not been explored previously. In this study we have assessed the effect 

of the administration of progesterone to adult ovariectomized rats on protein phosphatase 

2A (PP2A) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in the 

hypothalamus, the hippocampus, and the cerebellum. Total levels of PP2A, the state of 

methylation of PP2A, and total levels of PTEN were unaffected by the hormone in the 

three brain regions studied. In contrast, progesterone significantly increased the levels of 

PP2A phosphorylated in tyrosine 307 in the hippocampus and the cerebellum and 

significantly decreased the levels of PTEN phosphorylated in serine 380 in the 

hypothalamus and in the hippocampus compared with control values. Estradiol priming 

blocked the effect of progesterone on PP2A phosphorylation in the hippocampus and on 

PTEN phosphorylation in the hypothalamus and the hippocampus. In contrast, the action of 

progesterone on PP2A phosphorylation in the cerebellum was not modified by estradiol 

priming. These findings suggest that the regulation of the phosphorylation of PP2A and 

PTEN may be involved in the effects of progesterone on the phosphorylation of Tau and 

on the activity of phophoinositide-3 kinase and mitogen-activated protein kinase in the 

brain. 
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IV.2 INTRODUCTION 

 

Progesterone acts in the nervous system as a hormone and as a locally produced 

neuroactive steroid (Melcangi et al., 2008; Micevych and Sinchak, 2008). Neural actions of 

progesterone participate in a variety of events, including the control of reproduction 

(Micevych and Sinchak, 2008; Mani and Portillo, 2010), the regulation of neuronal and 

glial development and function (Melcangi et al., 2008; Tsutsui, 2008), the release of 

neurotransmitters (Zheng, 2009), and the modulation of nonreproductive behaviors (Frye, 

2009). Progesterone is also a neuroprotective factor in both the peripheral and the central 

nervous systems (Schumacher et al., 2007; Roglio et al., 2008; Cekic et al., 2009; 

DeNicola et al., 2009; Sayeed and Stein, 2009). 

Progesterone acts in the nervous system in part through classical steroid nuclear 

receptors (Brinton et al., 2008; Mani, 2008). Ligand binding to nuclear steroid receptors 

results in their activation, allowing the recruitment of transcriptional coregulators to 

control the transcription of target genes. In addition, progesterone activates membrane 

progesterone receptors PR , PR , and PR  (Brinton et al., 2008; Guennoun et al., 2008; 

Sakamoto et al., 2008; Thomas, 2008), which are involved in the regulation of 

membrane/cytoplasmic signaling. Therefore, progesterone mdulates the phosphorylation of 

kinases such as extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinases 

(PI3K), Akt, and glycogen synthase kinase 3 (GSK3) (Singh, 2001; Nilsen and Brinton, 

2003; Ballaré et al., 2006; Guerra-Araiza et al., 2007, 2009; Dressing et al., 2009). These 

kinases participate in the actions of progesterone to control neuronal differentiation, 

neuronal function, reproductive behavior, and neuroprotection (Acosta-Martínez et al., 

2006; Kaur et al., 2007; Cai et al., 2008; Koulen et al., 2008; Hwang et al., 2009; Liu et al., 

2009; Mani and Portillo, 2010; Zhang et al., 2010). However, the mechanisms involved in 

the regulation of ERK and PI3K/Akt/GSK3 signaling by progesterone in the nervous 

system remain unidentified. Potential targets of the hormone on which to exert this 

regulation are protein phosphatases. 

Protein phosphatase 2 (PP2A) is an antagonist of ERK activity (Haccard et al., 

1990; Alessi et al., 1995; Silverstein et al., 2002; Yu et al., 2004; Junttila et al., 2008). 

Indeed, treatment of different cell types with okadaic acid, a well-known selective inhibitor 

of PP2A, causes activation of ERK (Gause et al., 1993; Sonoda et al., 1997). PP2A is also 
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capable of dephosphorylating Akt at T308 (Millward et al., 1999) and regulates Tau 

phosphorylation in the nervous tissue directly and via GSK3  (Quian et al., 2010). PP2A is 

also an essential modulator of long-term potentiation (LTP) and long-term depression 

(LTD) (Jouvenceau et al., 2003; Sun et al., 2003) and is involved in the mechanisms of 

learning and memory (Bennet et al., 2001; Woo and Nguyen, 2002; Yamashita et al., 

2006). Rats with reduced levels of PP2A, resulting from chronic pharmacological 

treatments, show memory impairments (Arendt et al., 1995). Furthermore, immunoblotting 

and immunohistochemical analyses have revealed that there is a significant reduction in the 

amount of PP2A in the frontal and temporal cortex of Alzheimer's disease (AD) patients 

that is correlated with a decreased PP2A activity (Sontag et al., 2004). In addition, PP2A 

inactivation by phosphorylation in Y307 has been associated with AD neurofibrillary 

pathology and Tau hyperphosphorylation (Liu et al., 2008). 

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor 

suppressor protein with phosphatase properties. PTEN regulates the PI3K/Akt/GSK3 

canonical pathway, where PTEN dephosphorylates phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) and promotes its inhibition (Myers et al., 1998; Wu et al., 1998; 

Vazquez and Sellers, 2000). PTEN is expressed in neurons in human, mouse, and rat brains 

(Kyrilenko et al., 1999; Sano et al., 1999; Lachyankar et al., 2000). PTEN is involved in 

the regulation of neuronal migration (Marino et al., 2002), differentiation (Lachyankar et 

al., 2000), neuronal volume (Backman et al., 2001; Kwon et al., 2001), and apoptosis 

(Kyrilenko et al., 1999). Furthermore, PTEN, like PP2A, regulates Tau phosphorylation, in 

a mechanism independent of the classical PI3K/Akt pathway, possibly by reducing 

ERK1/2 activity (Kerr et al., 2006). There is evidence that phosphorylation of PTEN at its 

carboxyl-terminal results in loss of phosphatase activity (Vazquez et al., 2000; Torres and 

Pulido, 2001; Guzeloglu-Kayisli et al., 2003; Ning et al., 2006; Odriozola et al., 2007). 

Although the effect of progesterone on the phosphorylation of different kinases 

(Singh, 2001; Nilsen and Brinton, 2003; Guerra-Araiza et al., 2007, 2009) and on the 

phosphorylation of Tau (Carroll et al., 2007; Guerra-Araiza et al., 2007) has been 

previously characterized, it is unknown whether progesterone modulates PP2A and PTEN 

in the brain. Therefore, in this study, we have assessed whether progesterone regulates the 

expression, phosphorylation, and methylation of PP2A and the expression and 

phosphorylation   of   PTEN   in   three  different  brain  regions,  the  hippocampus,  the 

hypothalamus, and the cerebellum. 
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IV.3 MATERIALS AND METHODS 

 

 

IV.3.1 ANIMALS 

 

Wistar albino female rats from our in-house colony were kept on a 12:12-hr light-

dark cycle and received food and water ad libitum. Animals were handled in accordance 

with the guidelines published in the NIH Guide for the care and use of laboratory animals, 

the principles presented in the Guidelines for the use of animals in neuroscience research 

by the Society for Neuroscience, and following the European Union (86/609/EEC) 

legislation. Experimental procedures were approved by our Institutional Animal Use and 

Care Committee. Special care was taken to minimize animal suffering and to reduce the 

number of animals used to the minimum necessary. 

 

 
IV.3.2 EXPERIMENTAL TREATMENTS 

 

All the animals used in this study were bilaterally ovariectomized at the age of 2 

months under 2,2,2-tribromoethanol anesthesia [0.2 g/kg body weight (b.w.); Fluka 

Chemika, Buchs, Switzerland]. Rats were then housed in plastic cages and randomly 

assigned to the different treatments. Nine days after surgery, rats received one i.p. injection 

of estradiol (n = 4; 50 g/Kg b.w.) or vehicle (n = 4; 0.2 ml of 20% [2-hydroxypropyl]- -

cyclodextrin; Fluka Chemika). Twenty-four hours after the administration of estradiol or 

vehicle, animals received one i.p. injection of progesterone (n = 4; 2 mg/kg b.w.; Sigma, 

St. Louis, MO) or one injection of vehicle. The selected dose of progesterone results in 

physiological levels of this molecule in the plasma of ovariectomized rats (Ciriza et al., 

2006). The animals were killed by decapitation 24 hr after the second injection. The 

hippocampus, hypothalamus, and cerebellum were quickly removed and immediately 

processed for protein extraction. 
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IV.3.3 WESTERN BLOT ANALYSIS 

 

Tissue samples were homogenized in lysis buffer (150 nM NaCl, 20 mM Tris-HCl, 

10% glycerol, 5 mM EDTA, 1% NP-40; Roche, Mannhein, Germany) supplemented with 

protease and phosphatase inhibitors (50 g/ml phenylmethylsulfonyl fluoride, 10 g/ml 

aprotinin, 25 g/ml leupeptin, and 100 nM orthovanadate; all from Sigma). Proteins were 

obtained by centrifugation for 15 min at 15,000 rpm at 4°C, and the supernatant was 

quantified with a modified Bradford assay (Bio-Rad, Munchen, Germany). Proteins (30 

g) were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (12% 

SDS-PAGE) with a Mini-Protean system (Bio-Rad) and electrophoretically transferred to 

nitrocellulose membranes (GE Healthcare; formerly Amersham Bioscience, Piscataway, 

NJ). The membranes were blocked with 5% nonfat dry milk diluted in 0.05% Tween-20 

Tris-buffered saline and incubated overnight with the primary antibodies. Prestained 

markers (Bio-Rad) were included for size determination. 

 

 

IV.3.4 ANTIBODIES 

 

The following antibodies were used: mouse monoclonal antibody against PP2A C  

(BD Transduction Laboratories, San Diego, CA; diluted 1:1,000), rabbit polyclonal 

antibody against phosphorylated PP2Ay307 (Santa Cruz Biotechnology, Santa Cruz, CA; 

diluted 1:500), mouse monoclonal antibody against the nonmethylated PP2A C (Cell 

Signaling, Beverly, MA; diluted 1:1,000), mouse monoclonal antibody against the 

methylated PP2A C (Upstate Biotechnology, Lake Placid, NY; diluted 1:100), mouse 

monoclonal antibody against PTEN (Santa Cruz Biotechnology; diluted 1:500), rabbit 

polyclonal antibody against the phosphorylated PTENser380 (Cell Signaling, Beverly, 

MA; diluted 1:2,000), mouse monoclonal antibody against III-tubulin (Promega, 

Madison, WI; diluted 1:10,000), and mouse monoclonal antibody against glyceraldehyde-

3-phosphate-dehydrogenase (GAPDH; Chemicon, Temecula, CA; diluted 1:3,000). After 

incubation with the primary antibody, membranes were washed and incubated with 

horseradish peroxidase-coupled secondary antibodies (Jackson Immunoresearch, West 
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Grove, PA; diluted 1:15,000). Immunoreactive bands were detected by using an enhanced 

chemiluminescence system (GE Healthcare-Amersham). The density of each band of 

different primary antibodies was normalized to its loading control (tubulin or GAPDH). 

Different loading controls were used to avoid coincidence of their molecular weights with 

those of the analyzed proteins. Thus GAPDH was used when the analyzed protein and 

tubulin had a similar molecular weight. Conversely, tubulin was used when the analyzed 

protein and GAPDH had a similar molecular weight. Phosphorylated forms of PP2A and 

PTEN were first normalized to their loading controls and then to total protein values of 

PP2A and PTEN, respectively. To minimize interassay variations, samples from all 

animals groups, in each experiment, were processed in parallel. 

 

 
IV.3.5 STATISTICAL ANALYSIS 

 

The N used for statistical analysis was the number of animals. Data were analyzed 

via one-way ANOVA, followed by a post hoc analysis with the Tukey's test. The Prism 

2.01 program (GraphPad, San Diego, CA) was used for calculating probability values. 

P < 0.05 was considered statistically significant. 
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IV.4 RESULTS 

 

 

IV.4.1 PP2A 

 

The levels of PP2A were unaffected by the treatments with progesterone, estradiol, 

or estradiol and progesterone in the three brain regions studied, the hypothalamus, 

hippocampus, and cerebellum (Figs. 1, 2A,C,E). In contrast, treatments with progesterone 

alone significantly increased the levels of PP2A phosphorylated in tyrosine 307 in the 

hippocampus (Figs. 1, 2D) and the cerebellum (Figs. 1, 2F) compared with control values. 

The levels of PP2A phosphorylated in tyrosine 307 were not significantly affected in the 

hypothalamus (Figs. 1, 2B) or hippocampus (Figs. 1, 2D) of the animals treated with 

estradiol alone or with progesterone after estradiol priming. However, in these animals, a 

significant increase in the levels of PP2A phosphorylated in tyrosine 307 was detected in 

the cerebellum (Figs. 1, 2F) in comparison with control values. The state of methylation of 

PP2A was unaffected by the treatment with progesterone, estradiol, or estradiol and 

progesterone in the three brain regions studied (data not shown).  

 
 

 

 

 

 

 

 

 

 

 

 

  Figure IV.1 - Examples of Western blots from hypothalamic (A,B), hippocampal (C,D), and 

cerebellar (E,F) samples of ovariectomized rats treated with vehicle (c), progesterone (p), 

estradiol (e), or estradiol and progesterone (e + p). Examples of bands immunodetected with a 

mouse monoclonal antibody against PP2A (A,C,E), a rabbit polyclonal antibody against 

PP2A phosphorylated in tyrosine 307 (PP2Ay307; B,D,F), and a mouse monoclonal antibody 

against III-tubulin, used as loading control. 

 

http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG1#FIG1
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG2#FIG2
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG1#FIG1
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG2#FIG2
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG1#FIG1
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG2#FIG2
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG1#FIG1
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG2#FIG2
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG1#FIG1
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG2#FIG2
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG1#FIG1
http://www3.interscience.wiley.com/cgi-bin/fulltext/123549622/main.html,ftx_abs#FIG2#FIG2


Progesterone actions in protein phosphorylation in the central nervous system                                 Chapter IV 

Centre for Cell Biology of University of Aveiro 
Cajal Institute CSIC Madrid 
 

67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.2 - Results of the densitomeytic analysis from PP2A in the hypothalamus (A,B), 

hippocampus (C,D), and cerebellum (E,F). A,C,E: Total PP2A, normalized to tubulin. B,D,F: 

PP2A phosphorylated in tyrosine 307 (PP2Ay307), first normalized to tubulin and then normalized 

to total PP2A. CONT, control animals; PROG, animals injected with progesterone; EST, estradiol; 

E + P, animals treated with estradiol and progesterone. The number of animals was 4 (N = 4) in all 

experimental groups. *Significant difference vs. control values at P < 0.05. 
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IV.5.2 PTEN 

 

The levels of PTEN were unaffected by the treatment with progesterone, estradiol, 

or estradiol and progesterone compared with control values in the three brain regions 

studied (Figs. 3, 4A,C,E). In contrast, progesterone administration in the absence of 

estradiol priming significantly decreased the levels of PTEN phosphorylated in serine 380 

in the hypothalamus and in the hippocampus compared with control values (Figs. 3, 4B,D). 

Administration of estradiol alone also resulted in a significant decrease in PTEN 

phosphorylation in the hypothalamus but did not affect PTEN phosphorylation in the 

hippocampus and the cerebellum compared with control values. In the animals treated with 

estradiol and progesterone, the levels of PTEN phosphorylated in serine 380 were not 

significantly different from control values in the brain regions studied (Figs. 3, 4B,D,F). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.3 - Examples of Western blots from hypothalamic (A,B), hippocampal (C,D), and 

cerebellar (E,F) samples of ovariectomized rats treated with vehicle (c), progesterone (p), estradiol (e), 

or estradiol and progesterone (e + p). Examples of bands immunodetected with a mouse monoclonal 

antibody against PTEN (A,C,E), a rabbit polyclonal antibody against PTEN phosphorylated in serine 

380 (PTENs380; B,D,F), and a mouse monoclonal antibody against glyceraldehyde-3-phosphate-

dehydrogenase (GAPDH), used as loading control. 
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Figure IV.4 - Results of the densitomeytic analysis from PTEN in the hypothalamus (A,B), the 

hippocampus (C,D), and the cerebellum (E,F). A,C,E: Total PTEN, normalized to GAPDH. B, D,F: 

PTEN phosphorylated in serine 380 (PTENs380), first notmalized to GAPDH and then normalized to 

total PTEN. CONT, control animals; PROG, animals injected with progesterone; EST, estradiol; E + P, 

animals treated with estradiol and progesterone. The number of animals was 4 (N = 4) in all 

experimental groups. *Significant difference vs. control values at P < 0.05. **Significant difference vs. 

control values at P < 0.01. 
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IV.5 DISCUSSION 

 

The findings of the present study indicate that progesterone regulates the 

phosphorylation of PP2A and PTEN in a regionally specific manner in the brain of young 

ovariectomized rats. Progesterone administration results in an increased phosphorylation of 

PP2A in tyrosine 307 in the hippocampus and cerebellum and in a decrease in the 

phosphorylation of PTEN in serine 380 in the hypothalamus and in the hippocampus. In 

contrast, the state of methylation of PP2A and the basal levels of PP2A and PTEN were 

unaffected by the administration of progesterone. These effects were detected 24 hr after 

the hormonal treatment. Insofar as progesterone is metabolized in the nervous system to 

the neuroactive steroids dihydroprogesterone and tetrahydroprogesterone (Melcangi et al., 

2008), it is conceivable that some of the effects of the hormone on PP2A and PTEN 

phosphorylation are mediated by its metabolites. 

Our findings provide novel information regarding PP2A modulation in the brain 

and extend previous evidences of the regulation of PTEN by progesterone in other tissues, 

such as the human endometrium (Guzeloglu-Kayisli et al., 2003). Previous analyses have 

shown that the dose and pattern of progesterone treatment used in this study result in 

hormonal levels that are within the ranges observed in the plasma and the hippocampus of 

estrus rats (Ciriza et al., 2006). Therefore, the effects of progesterone on the 

phosphorylation of PP2A and PTEN may represent a physiological action, suggesting that 

some of the neural actions of the hormone may be mediated by the regulation of the 

mechanisms of dephosphorylation in which these two protein phosphatases are involved. 

Progesterone regulates in the brain many of the functions controlled by PP2A and 

PTEN. For instance, progesterone regulates in the brain the phophoinositide-3 kinase and 

the mitogen-activated protein kinase pathways (Guerra-Araiza et al., 2009), which are 

targets for PP2A and PTEN. PP2A and PTEN may also be involved in the regulation of 

Tau phosphorylation by progesterone (Guerra-Araiza et al., 2007). Interestingly, our 

present findings indicate that PP2A phosphorylation is down-regulated by progesterone in 

the cerebellum and unchanged in the hypothalamus, which is in accordance with previous 

observations of an increase in Tau phophorylation in the cerebellum but not in the 

hypothalamus of progesterone-treated rats (Guerra-Araiza et al., 2007). 

The effects of progesterone on PP2A and PTEN might also have important 
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functional implications for the regulation of the actions of growth factors in the brain. The 

interaction of progesterone with the intracellular signaling of growth factors, such as 

VEGF, BDNF and IGF-I, via the regulation of PP2A and PTEN, may modulate the actions 

of these factors on glial and neuronal development, physiology, and pathology. In addition, 

progesterone may interact with other regulators of growth factor signaling, including the 

ovarian hormone estradiol. Estradiol is known to exert several actions in the brain that are 

mediated by PP2A and PTEN (Yi et al., 2005, 2009; Yi and Simpkins, 2008) and to affect 

the actions of several growth factors, such as nerve growth factor, glial cell line-derived 

neurotrophic factor, BDNF, and IGF-I (Etgen and Garcia-Segura, 2009). Therefore, acting 

on PP2A and PTEN, progesterone may potentially interact with estradiol in the control of 

neuroendocrine and behavioral events by the regulation of growth factor signaling. In this 

regard, the regulation exerted by estradiol on the actions of progesterone on PP2A and 

PTEN in the brain is of interest. Our findings indicate that estradiol priming prevents the 

effect of progesterone on PP2A phosphorylation in the hippocampus and on PTEN 

phosphorylation in the hypothalamus and the hippocampus. In contrast, the action of 

progesterone on PP2A phosphorylation in the cerebellum is unaffected by estradiol 

priming. This suggests that the changes in the levels of estradiol and progesterone 

associated with different endocrine conditions, such as puberty, reproductive cycles, 

pregnancy, or menopause, may contribute to regulate phosphatase activity in the brain with 

regional specificity. 
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CHAPTER V 
 

DISCUSSION 
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V- GENERAL DISCUSSION: NEW SIGNALING MECHANISMS OF 
PROGESTERONE IN THE CNS 

 

The studies presented here have explored new molecular mechanisms of 

progesterone signaling in the central nervous system. We will now discuss our findings in 

the context of previous knowledge on the actions of progesterone in the brain. 

 
 
V.1 PROGESTERONE REGULATION OF THE PI3K/AKT AND MAPK 
SIGNALING IN THE RAT BRAIN 

 

Our findings indicate that a physiological dose of progesterone regulates PI3K/Akt 

and MAPK signaling in the central nervous system. Progesterone administration to young 

ovariectomized rats results in increased phosphorylation of ERK1/2, in increased 

expression of the catalytic and regulatory subunits of PI3K and in increased 

phosphorylation, and therefore activation of Akt (Chapter II). Progesterone effects were 

detected in the hippocampus, the hypothalamus and the cerebellum, assessed 24 h after the 

hormonal administration. These findings extend previous in vitro evidence of increased 

phosphorylation of ERK and/or Akt in cortical explants (Singh, 2001), primary 

hippocampal cultures (Nilsen and Brinton, 2003) and retinal glial cells (Swiatek-De Lange 

et al., 2007) treated with progesterone and suggest that the hormone may exert in the brain 

in vivo a sustained activation of the intracellular signaling of growth factor receptors, such 

as the IGF-I and BDNF (TrkB) receptors.  

We have also observed that reduced derivatives of progesterone affect the phosphorylation 

of ERK-1/2 and Akt and the expression of PI3K in some brain regions, suggesting that 

progesterone metabolism may be involved in the hormonal effects on the MAPK and PI3K 

signaling pathways. For example, DHP mimicked the effect of progesterone on the 

phosphorylation of ERK-1/2 in the hypothalamus and the hippocampus, while THP 

mimicked the effect of progesterone in the phosphorylation of ERK-1/2 in the 

hypothalamus. However, none of the metabolites mimicked the effect of progesterone on 

the phosphorylation of ERK-1/2 in the cerebellum. Concerning the PI3K pathway, both 

progesterone metabolites increased the expression of p110-PI3K in the hypothalamus and 

cerebellum and the expression of p85-PI3K in the hypothalamus and the hippocampus. 

However, DHP and THP did not affect the expression of p110-PI3K in the hippocampus 
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and the expression of p85-PI3K in the cerebellum. Furthermore, Akt phosphorylation was 

unaffected by DHP and was increased by THP in the hypothalamus and hippocampus but 

not in the cerebellum. Therefore, DHP and THP did not fully mimic the effect of the 

hormone on MAPK and PI3K signaling pathways (Chapter II). 

 

 

V.2 PROGESTERONE REGULATION OF TAU AND GSK3B IN THE RAT 
BRAIN 

 

Our findings indicate that a physiological dose of progesterone results in a decrease 

in the expression of Tau and in an increase in the phosphorylation of Tau, at the Tau-1 and 

PHF-1 epitopes but not of Ser262 epitope (Chapter III) The increase in Tau-1 and PHF-1 

phosphorylation as a result of progesterone administration is accompanied by a decrease in 

the phosphorylation of GSK3β in serine, which is associated to an increase in its activity 

(Chapter III). Progesterone effects were detected only in the cerebellum and assessed 24 h 

after the hormonal administration. Our findings provide novel information regarding 

regulation of Tau protein by progesterone, after other studies showed the importance of 

another gonadal hormone, the estradiol, in the regulation of Tau. In fact, estradiol increases 

the expression of Tau in primary neuronal cultures (Ferreira and Caceres, 1991; Alvarez-

de-la-Rosa et al., 2005) an effect that is associated to an increase in axonal growth 

(Ferreira and Caceres, 1991). In addition, estradiol decreases Tau phosphorylation in 

primary cortical and hippocampal neurons, in hippocampal slice cultures and in the 

hippocampus in vivo (Cardona-Gomez et al., 2004; Alvarez-de-la-Rosa et al., 2005; 

Goodenough et al., 2005) Therefore our findings suggest that progesterone may be highly 

relevant for cerebellar function by regulating Tau expression and phosphorylation, since 

Tau regulates the dynamic instability of microtubules, its growth and bundling (Paglini et 

al., 2000) which ultimately leads to regulation of  axonal transport, axonal growth and 

synaptic plasticity. 

We have also observed that reduced derivatives of progesterone affect the 

expression of Tau in the cerebellum, suggesting that progesterone metabolism may be 

involved in the hormonal effects on the regulation of Tau protein (Chapter III). However, 

only progesterone regulated the phosphorylation of Tau and GSK3β, suggesting that the 

final effect of progesterone on these molecules may be the result of a combination of 
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effects directly mediated by progesterone and effects mediated by its metabolites (Chapter 

III). 

 

 

V.3 PROGESTERONE REGULATION OF PP2A AND PTEN IN THE RAT 
BRAIN 

 

Our findings indicate that a physiological dose of progesterone regulates the 

phosphorylation of PP2A and PTEN in the brain of young ovariectomized rats. 

Progesterone administration results in an increased phosphorylation of PP2A in tyrosine 

307 in the hippocampus and cerebellum and in a decrease in the phosphorylation of PTEN 

in serine 380 in the hypothalamus and in the hippocampus (Chapter IV). In contrast, the 

state of methylation of PP2A and the basal levels of PP2A and PTEN were unaffected by 

the administration of progesterone. These effects were observed 24 h after the hormonal 

treatment and provide novel information regarding PP2A modulation in the brain by 

progesterone and extend previous evidences of the regulation of PTEN by progesterone in 

other tissues, such as the human endometrium (Guzeloglu-Kayisli et al., 2003). The effects 

of progesterone on PP2A and PTEN, suggest that the interaction of progesterone with the 

intracellular signaling of growth factors, such as VEGF, BDNF and IGF-I and their actions 

in glial and neuronal development, physiology and pathology may be mediated via the 

regulation of PP2A and PTEN. In addition, progesterone may interact with other regulators 

of growth factor signaling, including the ovarian hormone estradiol which is known to 

exert several actions in the brain that are mediated by PP2A and PTEN (Yi et al., 2005, 

2008, 2009), and to affect the actions of several growth factors, such as nerve growth 

factor, glial cell line-derived neurotrophic factor, BDNF and IGF-I (Etgen and Garcia-

Segura, 2009). 

We also observed that estradiol priming prevents the effect of progesterone on 

PP2A phosphorylation in the hippocampus and on PTEN phosphorylation in the 

hypothalamus and the hippocampus. In contrast, the action of progesterone on PP2A 

phosphorylation in the cerebellum is unaffected by estradiol priming (Chapter IV). 

Furthermore, reduced derivatives of progesterone were unable to affect the state of 

phosphorylation of these phosphatases, with the exception of the phosphorylation of PP2A 

in the cerebellum, where THP was able to mimic progesterone effects (data not shown). 
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V.4 SUMMARY AND CONCLUSIONS 
 

Considering the previous data regarding the progesterone effect in the MAPK and 

the PI3K signaling pathways, we expected that PTEN, like PP2A, would be downregulated 

by progesterone administration. However, we observed exactly the opposite. Progesterone 

not only did not downregulate PTEN, but upregulated its activity, by reducing the 

phosphorylated (inactive) form of PTEN in its protein pool. Although the meaning of this 

event is not known yet, our findings suggest that the upregulation of Akt by progesterone is 

independent of PTEN. It can to be excluded, however, that PTEN activity may be unable to 

antagonize another more potent kinase activity acting in parallel to Akt. One possible 

explanation on how progesterone may upregulate Akt and PTEN activities at the same 

time, may reside in a PI3K independent mechanism, by which Akt is activated. For 

instance, it has been shown that dopamine is able to promote Akt activation, even when 

PI3K inhibitor wortmannin is used. Furthermore the overexpression of a mutant Akt that 

cannot be phosphorylated, impaired the cAMP Response Element-Binding Protein (CREB) 

phosphorylation induced by dopamine (Brami-Cherrier et al., 2002). Interestingly steroid 

hormone treatment has been shown to promote phosphorylation of CREB in the 

anteroventral periventricular nucleus (Gu et al., 1996). 

Our findings suggest that GSK3 activation and tau phosphorylation by progesterone 

are also independent from PTEN. PTEN overexpression was shown to reduce tau 

phosphorylation (Kerr et al., 2006), however progesterone administration resulted in higher 

levels of active PTEN in our study and at the same time increased GSK3 activity and tau 

phosphorylation (Guerra-Araiza et al., 2007). Furthermore, it was shown that PTEN, acting 

as classical PI3K pathway suppressor, promotes GSK3 activation by Akt inhibition. This is 

not the case in our study, since higher levels of active PTEN promoted by progesterone 

treatment did not result in the inactivation of Akt but in its activation (Guerra-Araiza et al., 

2009). Therefore, our findings suggest that in the brain progesterone induces GSK3 

activation and tau phosphorylation by a mechanism that is independent of the canonical 

PI3K/Akt pathway. An interesting alternative route is the Wnt pathway, that could explain 

how progesterone is able to promote Akt phosphorylation and at the same time GSK3 

activation. Previous work showed that in the inhibition of Wnt pathway, as the inhibition 

of PI3K signaling increases GSK3 activity and tau phosphorylation (Mercado-Gomez et 

al., 2008) and that the two pathways are independent (Ng et al., 2009). Supporting this 
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hypothesis, it was shown that Dickkopf-1, an inhibitor of Wnt signaling is upregulated by 

progesterone treatment in human endometrial stromal cells (Tulac et al., 2006). Further 

studies should determine whether Wnt pathway is involved in the effects of progesterone 

in the brain. 
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