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Palavras-chave Dimensionamento de redes ópticas, redes ópticas de transporte,

gerador de topologias, redes sobreviventes.

Resumo Este trabalho apresenta um estudo sobre o dimensionamento

de redes ópticas, com vistas a obter um modelo de

dimensionamento para redes de transporte sobreviventes.

No estudo utilizou-se uma abordagem estatística em detrimento

à determinística.

Inicialmente, apresentam-se as principais tecnologias e

diferentes arquitecturas utilizadas nas redes ópticas de

transporte. Bem como os principais esquemas de sobrevivência

e modos de transporte.

São identificadas variáveis necessárias e apresenta-se um

modelo dimensionamento para redes de transporte, tendo-se

dado ênfase às redes com topologia em malha e considerando

os modos de transporte opaco, transparente e translúcido.

É feita uma análise rigorosa das características das topologias

de redes de transporte reais, e desenvolve-se um gerador de

topologias de redes de transporte, para testar a validade dos

modelos desenvolvidos. Também é implementado um algoritmo

genético para a obtenção de uma topologia optimizada para um

dado tráfego.

São propostas expressões para o cálculo de variáveis não

determinísticas, nomeadamente, para o número médio de

saltos de um pedido, coeficiente de protecção e coeficiente

de restauro. Para as duas últimas, também é analisado o

impacto do modelo de tráfego. Verifica-se que os resultados

obtidos pelas expressões propostas são similares às obtidas

por cálculo numérico, e que o modelo de tráfego não influencia

significativamente os valores obtidos para os coeficientes.

Finalmente, é demonstrado que o modelo proposto é útil para o

dimensionamento e cálculo dos custos de capital de redes com

informação incompleta.





Keywords Dimensioning of optical networks, optical transport networks,

topology generator, survivable networks.

Abstract This work presents a study on the dimensioning of optical

networks, aiming to obtain a dimensioning model for survivable

optical transport networks. The study relies on a statistical

approach rather than a deterministic approach.

Initially, enabling technologies and different architectures usually

employed in optical transport networks are presented. The main

survivability schemes and transport modes are also presented.

Useful variables are identified and a transport network

dimensioning model is presented, with emphasis on mesh-based

network topologies, and considering opaque, transparent and

translucent transport modes.

A rigorous analysis on the characteristics of real-world transport

networks is done, and a topology generator is developed.

The topology generator is used for testing and validating the

developed models. A genetic algorithm for obtaining an optimized

topology for a given traffic load is implemented as well.

Expressions for calculating non-deterministic variables are

proposed, namely for the average number of hops per demand,

protection and restoration coefficient. For the last two, the impact

of the traffic model was analyzed. It is shown that results

obtained from the proposed expressions are quite similar to the

ones obtained from numeric calculation. Moreover, the traffic

model does not influence significantly the values obtained for the

coefficients.

Finally, it is shown that the proposed model is useful for the

dimensioning and calculation of capital expenditures of networks

in absence of complete information.
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Chapter 1

Introduction

T
ELECOMMUNICATION networks play an important role in the today’s society. They

connect business and end users across the world, and they support services of

voice, video and data together with mobile services. This blend of services is known as

quad-play. As Internet traffic grows and new services are introduced, network operators

continually face the increasing of bandwidth requirements [1]. Hence, the network

dimensioning task becomes critical and the goal of operators is to be able to dimension

their networks to offer the bandwidth requirements in the most cost effective manner.

The network Total Cost of Ownership (TCO) can be divided into Capital

Expenditures (CAPEX) and Operational Expenditures (OPEX) [2]. CAPEX contributes

to the required infrastructure. This includes buildings (to host equipment and staff),

network infrastructure (such as routers, switches, fiber) and software (network

management systems). OPEX contributes to the costs to keep the network working,

including maintenance, the provisioning of services, service management, pricing,

billing, rents (such as buildings or fibers), ongoing network planning and marketing.

Optical transport network problems may be classified into three categories: traffic

engineering, network engineering and network planning. Traffic engineering consists

of allocating the traffic on the existing network resources in order to meet traffic

performance objectives. It is essentially a routing problem, where the traffic to

be routed could be packets, packet flows, or lightpaths. Traffic engineering is a

dynamic problem whose decision-making time may be in the order of milliseconds to

seconds [3]. Network engineering concerns on efficient allocation of network resources

to a traffic demand and deal with network exhaustion due to traffic growth or variation.

Commonly the goal is to find a network configuration and resource allocation that

makes a cost-efficient use of resources, i.e., minimizing CAPEX. The decision-make time

of network engineering is on the order of weeks or months. The network planning

description is similar to the network engineering, except that in this category the
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network topology may not be known and traffic is forecasted. Network planning

corresponds to the dimensioning of a network from scratch, with a decision-making

timescale of perhaps a few years [3]. In this thesis we study problems mainly in

the network planning category. The dimensioning problems are mathematically hard

and generally beyond formal optimization techniques (e.g., linear programming) for

realistic sized problems [4]. The tools for that task usually rely on iterative heuristics

that reflect an acceptable degree of accuracy and may be applicable to a large class of

problems.

In the classical network dimensioning, which uses a numerical dimensioning tool, a

set of information (called input parameters) must be given before designing a network.

Then the tool processes those information and generates a variety of outputs (such as

reports and configuration files). Figure 1.1 illustrates the dimensioning process.

Dimensioning 

tool

Network physical data

Traffic matrices

Costs of network elements

Specialized rules Updating files

Configuration files

Instalation reports

Bill of material

O
u

tp
u

tsIn
p

u
ts

Figure 1.1: Classical dimensioning phases.

As shown in Figure 1.1, input parameters generally include: a physical network

topology. A set of traffic matrices that the network must accommodate. The costs of

each component, and a set of configurations (specialized rules) such as transport mode,

routing, survivability, and grooming schemes.

The output data include the bill of materials, in which is reported the links and

nodes equipment such as port cards, Digital Cross Connects (DXCs) and Optical Cross

Connects (OXCs), transponders, Optical Amplifiers (OAs) and regenerators. Installation

reports, files for configurations and updates, and reports with overall performance

analyses and for the total cost of the network. After a set of scenarios are dimensioned,

the designers (or the software tool) must compare each other and then chose the one

that better meets the objective. Usually the objective is to dimension a network with a

minimum CAPEX, given a set of constraints.
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1.1 Related Work

In this section, a brief review of the state-of-art for dimensioning optical networks

without complete information is presented. The problem of dimensioning optical

networks is an active research area. In order to determine the amount of resources

that must be employed on the network, operators make use of software tools such as

OPNET Transport Planner [5], but detailed information about the network is required.

Furthermore, especially for larger networks, this task may require a lot of time and

effort. However, sometimes network designers need to evaluate the feasibility of a

network (e.g., in terms of costs) in less time and without having complete information

about the network. For that reason, some researchers are devoting efforts to obtain

models allowing a preliminary evaluation and verification of the network feasibility.

This would be particularly useful for comparisons between different solutions before

considering a full numerical analysis.

In this context, a semi-empirical formulation for calculating CAPEX of optical

networks is described in [6, 7]. The authors present a model which includes the

calculation of the mean value of key network quantities which may be applied to a wide

range of topologies and architectures. In the study, the authors considered heuristics

favoring quasi-regular network topologies (i.e., networks with small difference between

the number of hops of working and backup paths). In [8], the authors present a

collection of approximation formulas to estimate the size of mesh optical networks

with limited inputs. In particular, it provides a set of equations that relate number

of sites, average fiber connectivity, demand load and capacity for mesh protection

architectures. The aim of their work is to quickly estimate the amount of traffic that

can be carried over a given network, or, conversely, given the traffic to be supported, to

assess the characteristics of the topology required. In [9], the author describes a model

to dimension optical transport networks and present new expressions to calculate the

restoration coefficient and the average number of hops per demand. The proposed

expressions were obtained from statistical methods.

These approaches usually perform simulations and analysis considering computer

generated topologies. Network topology generators are extensively available in the

literature. In [10], the author presents a model for generating random graphs in

which the nodes are distributed over a plane, and links are added to the graph using

a probability function based on the Euclidean distance between the nodes. In [11]
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and [12], the multi-level hierarchy found in the Internet is used to generate Internet-

like topologies. In [13], the authors extract the autonomous system and router level

topologies from the Internet and from that realistic core, topologies are generated.

In [14], the authors show that the nodal degree distribution of the autonomous system

level topologies follow a power-law. From that, several topology generators have been

built based on power laws [15–18]. These efforts have been focused on topologies

resembling the Internet, which is a scale-free network [19].

Another problem that has attracted the attention of researcher is the topological

design problem, which consists of determining the least-cost topology for a given traffic

load. In this context, many studies have addressed this problem through Integer Linear

Programming models [20, 21]. In [22–24], genetic algorithms are used in the design

of telecommunication networks. In [22], a genetic algorithm is presented to route and

dimension dynamic optical networks, without considering the network survivability.

In [23], a genetic algorithm is used to design survivable networks. It is assumed that

the topology is given. The genetic algorithm presented in [24] minimizes the CAPEX of

an all-optical network, considering physical impairments.

1.2 Motivation and Objectives

In the early planning phase of a network, designers must make some predictions

such as the traffic demand and the suitable architecture. These predictions will

be useful to forecast the total cost of the network which is usually a restriction.

Usually total costs will determine the overall feasibility of the network and it is a

very important issue. Many studies of the economics of network structures focus on

numerical simulation methods. However, this approach requires a detailed knowledge

of the network to be build, and it is a time consuming task (in the order of days or

months). In this context, the possibility to provide fast approximated results for the

preliminary evaluation and design of such networks is very helpful in the dimensioning

process because alternative approaches can easily be compared, hence it could speed

up the decision-making.

In this context, the main objective of this thesis is to contribute to the field of optical

network dimensioning, with incomplete information. We are not concerned with every

single network element, but rather into obtain the expected network cost without the

requirements of detailed information about the network and traffic demand. Therefore,
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the strategy that we follow is to investigate the dimensioning problem considering also

statistical models instead of purely deterministic ones. This approach is not supposed

to be a substitute for the current numerical approaches (which leads to exact results),

but a complement to speed up the decision-making when a variety of possibilities are

on the table, e.g., the use of alternative types of network elements or transport modes.

To achieve this goal, we firstly analyze the relationship between key variables of the

dimensioning problem, aiming at obtaining expressions to fast calculate the quantities

and costs of network elements required to transport a traffic demand. In the lack

of complete information, such as network topology and traffic pattern, we develop

useful expressions to forecast those quantities and costs. We are aware that a statistical

approach depends on high quality data base about real/realistic optical transport

network topologies. Therefore, another target is to investigate the characteristics of

real transport networks and how to represent them in a simulation environment.

1.3 Contributions

In the opinion of the author, the most important results of thesis are the following:

• Development of expressions to calculate the quantities and costs of network

elements for opaque, transparent and translucent transport modes, in survivable

optical transport networks [25–29].

• Identification of key variables of real transport networks and development of a

reliable network topology generator [30].

• Improved approximations for the average number of hops, restoration and

protection coefficient for optical transport networks [26,27,31–33].

• Proposal of a genetic algorithm that can be used to determine the least cost

network topology [34–36].

• Determination of robustness of CAPEX calculations in relation to network

topology [28,37,38].

• Proposal of a model for the dimensioning and calculation of cost of networks,

without requiring complete information [28,29,32,37–41].
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1.4 Thesis Outline

This thesis is structured as follows. Chapter 2 consists of a literature review

about optical transport networks. We first describe some architectures and enabling

technologies, then we present a few survivability techniques, based on protection and

restoration strategies. Thereafter we present the main characteristics relative to the

opaque, transparent and translucent transport modes.

Then, the problem of dimensioning optical transport networks is analyzed in

Chapter 3. The problem consists in determining the key variables and the quantities of

network elements required to transport the traffic demand. We first present expressions

to calculate the network costs, which are further divided into costs of links and costs

of nodes. A small network topology is used to illustrate the model. Thereafter we show

how to obtain the number of channels per link, the number of hops per demand, and

survivability coefficients, which are essential for obtaining the network costs. We also

present the variables that are affected when survivability is considered, and a case study

for calculating the capital expenditures of a network, considering different transport

modes and survivability schemes.

In order for obtaining a meaningful data set to perform statistic analysis we

present in Chapter 4 a method to generate realistic optical transport networks. We

first present an extensive analysis of real-world transport networks and their relevant

characteristics. Then we present the proposed model and its validation by comparing

the variables of real-world and computer generated networks.

A genetic algorithm that can be used to obtain the most cost efficient network

topology is also presented in this Chapter. As the convergence of the genetic algorithms

depends on the used genetic operators, we analyze their impact on the quality of

the obtained solutions. We also compare the performance of different generators of

initial population, selection methods, crossover operators and population sizes. The

performance of the proposed heuristic is evaluates using an ILP model, and a set of

real-world transport networks.

As the exact values of some key variables are not deterministic, we have to rely on

approximations. Thus, in Chapter 5 we first generate an appropriate set of networks

using the proposed topology generator. Next, we present a study on estimating the

average number of hops for working and protection paths. Moreover, we present

a similar study for the survivability coefficients. We also compare our proposed
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expressions with previous works. Since the traffic demand in optical transport networks

exhibit a non-uniform statistical behavior, we investigate the impact of traffic model on

survivability coefficient. Then, we study the impact of approximations for calculating

CAPEX in optical networks. Finally, the main conclusions and suggestions for future

directions are presented in Chapter 6.
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Chapter 2

Optical Core Transport Networks

In this Chapter we offer a brief introduction to optical core transport networks, also

known as backbone networks. This class of network aggregates the traffic of metro and

access networks and transport it to longer distances.

2.1 Introduction

Current optical transport networks comprise a set of network elements, connected

by optical fiber links, with the functionality necessary to provide transport,

multiplexing, routing, supervision, and survivability of service layer signals.

From 90’s, after the first generation of Synchronous Optical Network/Synchronous

Digital Hierarchy (SONET/SDH) was standardized, the Plesiochronous Digital

Hierarchy (PDH) based transport networks were replaced by SONET/SDH. This latter

technology allowed transporting voice and data traffic over the same fiber and

fulfilled synchronization and Operation, Administration and Maintenance (OA&M)

requirements. With the emergence of optical amplifiers and Wavelength Division

Multiplexing (WDM) technology for optical transport, in which several channels are

combined and transmitted over a single fiber, SONET/SDH networks took advantage of

this technology to provide economic higher capacities. Thus, operators began to deploy

WDM transmission systems to mitigate capacity exhaustion in transport networks.

Notice that SONET/SDH systems are today limited to 40 Gbps [1], and WDM systems

allow hundreds of Gbps to be carried per fiber (which means that multiple SONET/SDH

channels may be transported into a single fiber). Nevertheless, most of the transport

network functionality was maintained as a responsibility of the SONET/SDH layer.

Due to the growing bandwidth demand for different types of services, operators

were forced to converge their networks in order to support both data and wavelength
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services, along with traditional circuit services. Thus, operators introduced a new type

of multiplexer in the network (called Reconfigurable Optical Add/Drop Multiplexer

(ROADM)), which enables the support for a variety of network topologies and provide

protocol transparency. For instance, SONET/SDH, Ethernet and other services may

coexist in the same WDM network.

Despite the high efficiency increase provided by WDM, operators are under pressure

to lower the cost per bit transported [2]. Future directions of transport networks

include reducing Optical-Electrical-Optical (OEO) conversions in the networks, which

reduce the number of costly OEO converters (e.g., transponders). Actually the

technology that is driving the evolution to improve network performance and to deal

with the next generation of fixed line telecommunication networks is the Optical

Transport Network (OTN) standard (an International Telecommunication Union -

Telecommunication Standardization Sector (ITU-T) standard). ITU-T developed the

OTN with the intention of combining the benefits of SONET/SDH technology with

the bandwidth expansion capabilities offered by WDM technology. Additionally, it has

provided a standardized way for managing the optical channels in the optical layer.

Thus, transport, multiplexing, routing, supervision, and survivability are supported

predominantly at optical layer [3, 4]. Another key advantage of OTN include stronger

Forward Error Correction (FEC) to improve error performance and enable longer

optical spans.

Current optical networks may stack a variety of technologies such as SONET/SDH,

ATM, OTN, Ethernet, IP. One problem of stacking layers is the resulting lower efficiency

in bandwidth utilization [5]. This occurs because the grooming of the traffic of each

layer into the adjacent lower layer may not fit perfectly, so the more layers we stack

the less efficiency in bandwidth utilization we obtain. Operators create multilayer

structures because they do not want to replace the legacy infrastructures (due to the

costs) when new network capabilities are implemented. However, as networks become

more Internet Protocol (IP) data centric and IP and WDM evolve, the SONET/SDH

layer may be eventually removed [2,5].

As the number of channels multiplexed into higher-rate signal increases, failures

which occur may cause huge losses of data and great influence on a large number of

users. Therefore, the survivability of networks become increasingly important. In this

thesis we are concerned with the dimensioning of survivable optical core transport

networks. The work presented here does not depend on a specific implementation
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technology so it should be valid for any network that follows the generic functional

architecture presented in the ITU-T Recommendation G.805 [6], such as SDH-based

transport networks, which is described in ITU-T Recommendation G.803 [7] and OTN

as in ITU-T Recommendation G.872 [8]. Nevertheless we use the OTN terminology

in the majority or our examples, and make reference to other terminology when

appropriate.

2.2 Enabling Technologies

In order to make this thesis more “self-sufficient”, in this section we present a brief

description of the network elements, that will be considered throughout this work, and

their use in optical transport networks.

2.2.1 WDM

In optical communications, WDM is an enabling technology that allows multiple

optical signals to be combined (multiplexed) and transmitted simultaneously into a

single fiber. In a WDM system, as illustrated in Figure 2.1, a transponder accepts an
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Figure 2.1: A point-to-point WDM transmission system (adapted from [9]).

input from different physical media, protocols, and traffic types. Then the input signal

is mapped to a WDM wavelength, which supports a single communication channel

operating at a given bit rate (10, 40 or 100 Gbps today). The WDM non-overlapping

wavelengths from the transponders are then multiplexed into a single optical signal

and launched into an optical fiber. The system might include the ability to accept direct

optical signals to the multiplexer [9]. In the source Optical Line Terminal (OLT) a post-

amplifier may be employed to strengthen the optical signal as it leaves the system.
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Depending on the length of the optical fiber, optical amplifiers may be periodically

installed along the fiber to compensate for signal losses. At the receiving OLT a

pre-amplifier may be employed to boost the signal before it enters the end system.

Then the multiplexed signals are demultiplexed to allow individual utilization of the

transported wavelengths. Next, each individual wavelength is mapped to the required

output type, using a transponder. As a result WDM increases the used bandwidth of the

fiber proportionally to the number of wavelengths multiplexed into the fiber, allowing

several orders of magnitude increase when compared with current electronic networks.

Currently, WDM systems are divided in different wavelength patterns, that

differ on capabilities and costs: Wide Wavelength Division Multiplexing (WWDM),

Coarse Wavelength Division Multiplexing (CWDM) and Dense Wavelength Division

Multiplexing (DWDM) [10,11]. WWDM supports a channel wavelength spacing greater

than or equal to 50 nm, which is suitable for use in Passive Optical Networks (PONs).

Devices operating in this pattern typically separate a channel in one conventional

transmission window (e.g., 1310 nm) from another (e.g., 1550 nm), also known as

O-band and C-band, respectively.

CWDM supports multiple wavelengths spaced at 20 nm from each other. According

to ITU-T Recommendation G.694.2 [12], eighteen CWDM wavelengths are specified

for the spectral range of 1271 nm to 1611 nm, so it uses O, E, S, C and L-band.

Transmitters, optical multiplexers and demultiplexers are at defined wavelengths, but

they do not need to be tightly controlled, which translates into lower costs when

compared to DWDM. CWDM systems can realize cost-effective applications and are

suitable for use in transport networks in metropolitan areas for a variety of clients,

services and protocols.

DWDM is characterized by narrower channel spacing than CWDM as defined in the

ITU-T Recommendation G.671 [10]. ITU-T Recommendation G.694.1 [13] provides

a frequency grid for DWDM applications. The reference set of frequencies support

a variety of channel spacings ranging from 12.5 GHz to 100 GHz and wider for C

and L-band. Therefore, hundreds of channels are possible. The frequencies of today’s

practical DWDM systems are spaced at 100 GHz (approximately 8 nm) which allow

about 40 wavelengths in C-band [11]. In general the transmitters employed in DWDM

applications require a control mechanism to enable them to meet the application’s

frequency stability requirements, in contrast to CWDM transmitters which are generally

uncontrolled in this respect. DWDM is suitable for long-haul applications.
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For ease of explanation, from now on we use the term WDM independently of the

number of wavelengths or optical range supported.

According to ITU-T recommendation G.872 [4], an OTN using the WDM technology

is defined as a layered structure that comprises four sublayers: Optical Channel (OCh),

Optical Multiplex Section (OMS), Optical Transmission Section (OTS), and Physical

Media, also presented in Figure 2.2. These layers and their functions are distributed

along the network and their termination points are illustrated in Figure 2.2b.

OCh - Optical Channel

W
D

M

Electronic Layers

OMS - Optical Multiplex Section

OTS - Optical Transmission Section

Physical Media (Optical Fiber)

(a)

fiber

OMS

OCh

O
L
T

O
L
T

OTS OTS OTS

(b)

Figure 2.2: Sublayers of the WDM layer (adapted from [14]).

The lowest layer is the Physical Media that works as a server of the OTS and is

a defined optical fiber. The highest sublayer is the OCh (also referred to as a path

sublayer), which deals with individual connections or lightpaths in an end-to-end basis

across the network. It is used, for instance, for adding/dropping wavelengths and

for routing the optical channels [15]. Optical channels, i.e., lightpaths, are therefore

the main entities that are managed in this sublayer. An optical channel may span

multiple fiber links to interconnect a pair of nodes. Each intermediate node in the

optical channel provides an optical bypass facility to support the optical channel [16].

Notice that some literature have referred to an optical channel as an all-optical entity.

However, nowadays we can refer to an optical channel even when intermediate

nodes perform OEO conversion. An optical channel may traverses many links in the

network, wherein it may be multiplexed with many other optical channels, since their

wavelengths differ from one another [14]. End-to-end networking functionality is

provided to the optical channels transparently transporting client signals of varying

formats (e.g., SONET/SDH, Asynchronous Transfer Mode (ATM), etc.) between 3R
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regeneration (re-amplification, reshaping and retiming) sites in the network.

The sublayer OMS controls the multiplexing of all the optical channels that traverse

a single optical fiber, each one carried by a distinct wavelength. Therefore, it provides

the networking functionality for a multi-wavelength optical signal. Each OMS in

turn consists of several link segments, being each segment the span between optical

amplifiers, or between an optical amplifier and an optical line terminal. Each of these

portions is an OTS. Optical amplifiers are periodically introduced for compensating the

loss in optical power, while the signal travels along the fiber. The OTS consists of the

OMS along with an additional Optical Supervisory Channel [15]. Moreover, the OTS

sublayer is the lowest section sublayer. The managed entity is the same of the OMS,

but here it provides functionality for transmission of optical signals on optical media

of various types (e.g., G.652, G.653 and G.655 fiber), and manage and supervise the

optical transmission devices, such as OAs and transponders [4].

2.2.2 Optical Transponder

An optical transponder is typically a plug-in card or module that integrates a

receiver, an electronic regenerator and an optical transmitter. Transponders may

be characterized by their different capabilities and goals. For instance, short-reach

transponders (also called gray or non-WDM interfaces) provide an interface to signals

from the client equipment (e.g., SONET/SDH signals) [17]. Long-reach transponders

(also called colored interfaces) convert a gray optical signal to a specific WDM

wavelength. They provide an interface to the WDM transmission systems [18,19].

Receiver 3R Transmitter

ITU Compliant wavelengthnon-ITU wavelength

Figure 2.3: Transponder functions (adapted from [9]).

An optical transponder may also receive an optical signal at an arbitrary

wavelength, such as a short-reach SONET/SDH signal at 1310 nm, and convert it to an

electrical form, then it regenerates the signal and transmits it at a suitable International

Telecommunication Union (ITU) WDM wavelength [2] (commonly known as the ITU

grid), see Figure 2.3. Likewise, the reverse process is also possible, i.e., the transponder

receives a signal from a WDM link and outputs it at another format, such as short-
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reach SONET/SDH at 1310 nm. It commonly has flexibility in terms of data rates,

protocols and WDM options (e.g., CWDM or DWDM) through pluggable optics for both

client and trunk sides [20]. Besides the adaptation of wavelength, most transponders

are equipped with 3R (regeneration, reshaping, and retiming) and FEC functionality.

Actually transponders are designed to interface with a variety of signals, such as

SONET/SDH, Ethernet and GbEthernet.

2.2.3 Optical Amplifier

In optical networks, the signal attenuates as it traverses the fiber links, then OAs

are incorporated in optical fiber at periodic intervals to boost optical signals and reach

longer distances [21]. An OA counteracts fiber attenuation over a complete spectral

range at once, so several channels can be amplified at the same time. This is one of the

major advantages of optical amplifiers.

Before the emergence of the optical amplifiers the standard method to compensate

the power loss in optical fiber was to periodically regenerate the signal in the electrical

domain along the transmission link. The use of regeneration has the advantage that

the transmission impairments such as noise, dispersion and nonlinearities effects do

not accumulate along the link [22]. However, system upgrades, such as bit rates

and modulation formats are expensive and difficult to implement because all the

regenerators of the link have to be replaced. Furthermore, the huge bandwidth of

the optical fiber cannot be exploited properly. Optical amplifiers are transparent to

modulation and bit rate. This means that the modulation scheme and bit rate of each

channel can be changed without replacing the OAs.

Today, the most deployed amplifier is the Erbium Doped Fiber Amplifier (EDFA),

of which a possible configuration consists of an erbium-doped silica fiber, one optical

isolator at each end point of the erbium doped fiber, a fiber coupler and an optical

pump, which is in most cases a semiconductor laser. Figure 2.4 illustrates an EDFA

diagram. EDFAs can amplify signals in the conventional band, or C-band, from

approximately 1525 nm to 1565 nm, and the Long band, or L-band, from approximately

1570 nm to 1610 nm, independently on the number of channels. The main difference

between C- and L-band amplifiers is that a longer length of doped fiber is used in

L-band amplifiers.

Other types of amplifiers can also be used, such as Semiconductor Optical Amplifier
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Figure 2.4: Schematic diagram of a possible configuration of an erbium-doped fiber amplifier
(EDFA) (adapted from [20]).

(SOA) and Raman Amplifiers [21]. An SOA is an optical amplifier that is built on

a single chip and can be integrated into multifunction optical chips. It can be less

expensive than EDFAs, but the performance is still not comparable with the EDFA

because of a higher noise. However, SOAs are attractive for optical signal processing

(e.g., all-optical switching, wavelength conversion) and because the possibility for gain

in different wavelength regions from the EDFA.

A Raman amplifier uses a powerful laser source to boost the signal power in

standard optical fiber [21]. The signal is intensified based on the stimulated Raman

scattering phenomenon. Differently from EDFA and SOA the amplification effect is

obtained by a nonlinear interaction between the signal and a pump laser within the

optical fiber. The pump power required for Raman amplification is higher than the

required on EDFAs, but the main advantage of Raman amplification is its ability to

provide gain in any transmission window.

Notice that OAs amplify the signals and add noise, but they do not perform the 3R

regeneration as a regenerator does. Thus, the signals may still need to be regenerated

periodically [9].

2.2.4 Optical Line Terminal

OLTs are devices used at the ends of a point-to-point WDM link. In case of opaque

optical networks, they can be composed of transponders, wavelength multiplexers

and optical amplifiers [15]. However, in this thesis we consider the transponders as

components of nodes. Figure 2.5 shows the possible functional elements inside an OLT.

At the transmission side the signal coming out from a transponder is multiplexed with

signals of other transponders at different wavelengths using a wavelength multiplexer.
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Then the bundle of multiplexed wavelengths is fed into an optical fiber. Besides that, an

optical amplifier may be used to boost the signal power if needed. At the receiving side,

the signal is amplified again before it is sent through a demultiplexer where individual

wavelengths are extracted. The wavelengths are again terminated at a transponder

or connected directly to the client equipment. This structure is generally used when

client nodes are SONET/SDH, Add-Drop Multiplexers (ADMs), DXCs or IP routers

and the traffic has to be processed at the electric domain [23]. Transponders are not
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Figure 2.5: Functional elements of an Optical Line Terminal (adapted from [15]).

needed if the client equipment can directly send and receive signals compatible with

the WDM link. Moreover, the interface between the client and the transponder may

vary depending on the client, bit rate, and distance between client and transponder.

2.2.5 Optical Add/Drop Multiplexer

An Optical Add/Drop Multiplexer (OADM) is used at locations where some fraction

of the wavelengths need to be terminated locally and others need to be routed to

other destinations [24]. The device drops one or more pre-selected wavelengths from

an input signal, and adds one or more pre-selected wavelengths into the outgoing

signal. In todays’ networks, the traffic that is to be passed through a node, i.e., the

transit traffic, can be large at many of the network nodes. In this context, OADMs

perform an important function of passing through this traffic in a cost-effective manner,

since the number of conversions between the electrical and optical domains and frame

processing time are reduced [20].

A traditional OADM consists of an optical demultiplexer, an optical multiplexer, a

method of reconfiguring the paths between the optical demultiplexers, and a set of

ports for adding and dropping signals. They are typically deployed in linear or ring

topologies, and supports a variety of client types, such as IP routers, Ethernet switches
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and SONET terminals. OXCs perform a similar function but on a much larger scale in

terms of number of ports and wavelengths involved.

A very desirable attribute in an OADM is reconfigurability, which is the ability to

drop and add the desired wavelengths on the fly, as opposed to having to plan ahead

and deploy appropriate equipment [24]. This attribute allows lightpaths to be set up

and taken down dynamically as needed in the network. An OADM with this attribute is

called Reconfigurable Optical Add/Drop Multiplexer (ROADM). Moreover, this type of

device may be employed in a variety of topologies, such as ring and mesh topologies.

The switching or reconfiguration functions of an ROADM can be achieved using

a variety of switching technologies including MEMS and tunable optical filter

technologies.

2.2.6 Optical Cross Connect

OADMs can be used to handle a relative modest number of wavelengths [24]. In

order to handle more complex mesh topologies and a large number of wavelengths,

an OXC is required. This device is used to build mesh wide-area networks [25] and

it can terminate several fiber links, each carrying a large number of wavelengths. The

provisioning of lightpaths is performed in an automated manner, without depending on

manual patch panel connections. The role of an OXC in an optical network includes to

switch individual optical signals, based on a routing matrix, arriving from an input

fiber to output fibers, and perform regeneration and wavelength conversion when

needed (the latter two actions are usually performed by transponders). Additionally,

multiplexing and grooming capabilities may also be incorporated into an OXC to deal

with finer granularities [26].

Although the term “optical” is used, an OXC may be internally equipped with a pure

optical or an electrical switch fabric. Then, depending on the switching technology

and the use of Optical-Electrical (OE) and OEO conversions, OXCs are commonly

implemented into three main configurations: opaque, transparent, and translucent.

The OXCs are installed between the client equipment (e.g., SONET/SDH equipment,

IP router, ATM switches) and the OLTs, or between OLTs in transit nodes. Thus, since

some OXC ports are connected to OLTs and other ports to client equipment, the OXC

provides cost-effective passthrough for transit traffic, i.e., wavelengths that do not need

to be terminated in that location but rather passed through to another destination, as
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well as collecting traffic from client equipment into the network.

If the OXC is implemented as opaque, the optical signal is converted to the electrical

domain as it passes through the node. An advantage is that the optical signals are

regenerated, so they leave the node free of dispersion and attenuation. The switching

module can be based either on electrical or optical technology surrounded by OEO

components (e.g., transponders).

EXC

LR

LR

λ1, λ2, ..., λn  

LR

LR

λ1, λ2, ..., λn  

LR

LR

λ1, λ2, ..., λn  

λ1, λ2, ..., λn  

λ1, λ2, ..., λn  

λ1, λ2, ..., λn  

λ1  

 λn
S

R

S
R... ...

In
p

u
t 
fi
b

e
rs

O
u

tp
u

t 
fi
b

e
rs

Short reach 

transponders

Long reach

  transponders
Wavelength

demultiplexers

Wavelength

multiplexers

Add Drop

Optical

switch

Figure 2.6: Functional diagram of an opaque OXC with an optical switching matrix (adapted
from [5] and [15]).

If an electrical switching module is used, the input signals coming out of a

demultiplexer are first converted into electronic signals before switching. Thereafter,

the electronic signals are converted again into optical signals and multiplexed into

output optical fibers. In this case sub-wavelength switching granularities can be

supported, by providing grooming capabilities, for more efficient bandwidth utilization.

Nonetheless, the cost of a port on an electrical switch increases with the bit rate and is

dependent on interface type (e.g., 10 Gbps Ethernet or 10 Gbps SONET/SDH), and at

higher bit rates the use of optical switch becomes more cost-effective.

If an optical switching module is used, the input signals coming out of a

demultiplexer are optically switched and then go through OEO conversion before

multiplexing into output optical fibers. In contrast to electrical switching, optical switch

does not care whether it is switching a 10 Gbps Ethernet or a 10 Gbps SONET/SDH
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signal. Moreover, for optical switching of 10 or 40 Gbps we can consider the optical

switch is independent on bit-rate, which allows switching both signals at the same cost.

In this thesis we consider all OXCs are equipped with optical switching matrices, as

illustrated in Figure 2.6.

Transparent OXCs are implemented in the optical domain, so it can also be

characterized as an Optical-Optical-Optical (OOO) component. In this design after the

signals are demultiplexed they are switched by optical switch modules. Thereafter, the

optical signals are multiplexed onto output fibers by optical multiplexers. Since signals

are kept in the optical format, this design offers transparency to a variety of bit rates

and protocols, but optical signal quality monitoring is harder. A functional diagram of

a transparent OXC is illustrated in Figure 2.7.
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Figure 2.7: Functional diagram of a transparent OXC (adapted from [5] and [15]).

Because OAs add noise as well as boost any incoming noise with the signal,

and other fiber and amplifier related impairments accumulate in the lightpath,

a regeneration process is required after a number of amplifications. The needed

regeneration limits the transparency in optical networks [5]. A regeneration is

performed before the Maximum Transparency Length (MTL) is exceeded. Therefore,

as a compromise between opaque and totally transparent, there exists a hybrid OXC

that can function as both opaque and transparent, which is called a translucent

OXC. Essentially, as illustrated in Figure 2.8, this OXC is implemented with an
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optical switch module and a pool of transponders to perform the wavelength

conversion or regeneration. Notice that regeneration is usually performed by back-

to-back transponders. In this thesis we do not consider wavelength conversion and

represent a regenerator as a triangular shape. In this case, after the optical signals are
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Figure 2.8: Functional diagram of a translucent OXC (adapted from [5] and [15]).

demultiplexed they are switched through the transponders pool and then multiplexed

to the next appropriate fiber, or they are switched directly (transparently) to the

output fibers. If wavelength conversions for the local channels are needed they can

also be performed this way, eliminating the need for separate transponders between

the OXC and Eletrical Cross Connect (EXC). As an alternative, the OXC might be

implemented with two switch modules, one optical and one electronic. Then, optical

signals traversing the device can be switched either optically or electronically. Generally

the optical switch is preferred due to transparency, but in case the optical switch is all

busy or an optical signal needs to be regenerated the electronic switch is then used.

2.3 Survivability in Optical Core Transport Networks

Society relies more and more on telecommunications services. Current optical

transport networks carry a huge amount of data, and the demand continues to
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increase. Thus, an interruption of a high-bit-rate link, even for a few seconds, means a

considerable loss of data, which in turn may affect the work and revenue of both users

and operators. For these reasons, network survivability is a critical aspect of transport

networks, that reflects the ability of a network to maintain the services working in

the presence of failures. There exist a variety of network elements along the lightpath

connections that are susceptible to failures (e.g., transponders, OXCs, OAs, fibers), and

survivability mechanisms are engineered to protect the networks against different types

of failures, such as single link, multiple link or node failures. In this thesis we are

concerned with single link failures, since the probability of a multiple link failure or a

node failure is much smaller than single link failures [14].

Most of the actual transport networks are implemented with SONET/SDH as a

client layer of the WDM layer. Before WDM recovery was defined SONET/SDH recovery

mechanisms were mainly adopted to guarantee optical network survivability. However,

when failures occur at the optical network layer, the recovery is preferably performed in

the optical layer because it may recover the affected connections in group. The recovery

action is also fast and easier to manage than recovering each affected connection

individually in the client layer [23]. Furthermore, managing survivability at a lower

protocol layer allows the control system to have a direct knowledge of the physical

topology and behavior of the network. For example, information about optical circuit

performance (such as Bit Error Rate (BER), optical power and wavelength value) does

not need to be mediated by many layers. As a consequence, the bandwidth consumed

by control system overhead is reduced and the signaling-data format is simplified.

These benefits contribute to increase the speed and effectiveness of the survivability,

and justify the efforts to employ survivability at the optical layer.

A distinction that can be made in survivability techniques for mesh-based networks

is between protection and restoration, as illustrated in Figure 2.9.

In a survivable network we call working paths the ones that carry traffic under

normal operation, and backup paths the ones that provide an alternate route to

carry the traffic in case of failures (or network maintenance). Working and backup

paths are usually disjointly routed so that both paths are not affected in case of a

single failure [15]. The survivability techniques for the WDM layer can operate at two

different sublayers: OMS or OCh. If survivability is implemented in the OMS sublayer,

the entire group of lightpaths on a transmission system is recovered at once (i.e., the

multiplexed collection of WDM channels), in case of failures, and individual lightpaths
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Survivability techniques
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Figure 2.9: Different schemes for surviving single-link failures (adapted from [27]).

cannot be recovered separately. On the other hand, if survivability is implemented in the

OCh sublayer, the lightpath is the entity to be protected, so one lightpath is recovered

at a time [24]. Figure 2.10 illustrates the two implementation modes considering

dedicated protection. In case of a failure, the receiving end-point of the OMS switch
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Figure 2.10: Survivability techniques for: (a) 1+1 at OMS layer (link based recovery) and
(b) 1+1 at OCh layer (path based recovery). In order to consider shared protection (1:1),
splitters are replaced by switches.
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selects the backup path around the failed link. Notice that in this case only the affected

part of the working path is replaced and all the lightpaths crossing a failed link are

re-routed together. In case of survivability at OCh layer, each single affected lightpath

is individually switched to its backup path.

Since optical cross connects can also provide both OCh and OMS layer

survivability [24], in this thesis we use simple unprotected WDM point-to-point systems

and rely on the OXCs to perform the survivability functions.

Survivability techniques implemented at OMS layer are classified as link based

recovery schemes, whereas the ones implemented at OCh layer are classified as path

based recovery schemes. It has been shown that path based recovery typically requires

less spare capacity when compared to link based recovery because backup paths in link

based recovery are in general longer [23]. Furthermore, survivability at the OCh level

allows recovery from node failures (notice that OMS does not cross the nodes).

2.3.1 Protection

Protection is a proactive technique in which spare capacity is reserved during

connection setup [28], i.e., recovery paths are preplanned and fully signaled before

a failure occurs. Hence, when a failure occurs, no additional signaling is needed to

establish the protection path [23,29]. This is essential for rapid reconfiguration and to

assure a time limit to recovering from faults.

The protection technique can be applied in both OMS and OCh sublayers (which

is also known as link-based protection and path-based protection), and it can be

implemented as dedicated backup protection or shared backup protection. In dedicated

backup protection spare resources are reserved exclusively to each working entity,

(e.g., a link for survivability implemented at the OMS sublayer or a lightpath for

OCh). There exist a few variants for dedicated protection: 1+1 and 1:1. In 1+1 the

backup path is reserved and the cross connection matrices at intermediate nodes are

fully configured before a failure occurs. Thus, the optical signal is simultaneously

transmitted through both the working and the backup path. The destination node

selects the stronger one from both received signals and, in the case of a link failure,

only the destination node needs to perform the switching from the failing to the active

signal. The advantage of 1+1 protection is that the switching time is fast and easy, but

a disadvantage is that the backup resources are permanently occupied. Regarding 1:1

30



Claunir Pavan 2.3. Survivability in Optical Core Transport Networks

protection, the resources for backup path are reserved only to ensure recovery when

a failure occurs. In a failure-free condition the spare resources can even be used to

transport low priority traffic (that are dropped when recovery is needed). However,

switching has to be done at both source and destination nodes, which takes more

time when compared with 1+1 protection. As an example, Figure 2.11a illustrates a

dedicated protection over a six-node network with two lightpaths, one interconnecting

the nodes (1-6) having the nodes 2 and 4 as intermediate, and another lightpath

interconnecting the nodes (4-5) having no intermediate nodes (see the bold solid lines).

In the case a link failure along the lightpath (1-6), the lightpath is switched to its

dedicated backup path, which follows the route (1-3-5-6). In the case of a failure in the

link (4-5), the lightpath (4-5) is switched to its dedicated backup path, which follows

the route (4-6-5). Notice that the two represented lightpaths are not affected by the

same failure, even though the link (5-6) holds spare capacity to support failure on both

lightpaths.
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Figure 2.11: Protection techniques: (a) dedicated backup protection and (b) shared backup
protection.

In contrast, in shared backup protection the spare resources are shared among

multiple backup paths for a number of working entities, since they are not affected

by the same failure. Notice that the backup paths are established only after the

failure has occurred. There exist also two variants for shared protection: 1:N and M:N

(with M < N). In 1:N protection each backup path is shared between N working paths.

In M:N, M backup paths are shared between N working paths, being this scheme more

complex than 1:N. Figure 2.11b shows an example of shared protection over a six-node

network with two lightpaths. Notice that the spare capacity reserved on the link (5-6)

can be used to recover from a failure along the lightpath between the nodes (1-6) or

from a failure along the lightpath between the nodes (4-5).
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Dedicated backup protection is computationally simpler than shared backup

protection, but less efficient in terms of resource utilization, which depends on the

extent to which extra resources can be shared. Shared methods increase switching

times because the switches on the backup path must be configured after the failure.

2.3.2 Restoration

Restoration is a reactive scheme which implies either preplanning or dynamic

discovery of spare capacity in the network to restore the lightpaths affected by a

failure [23]. Restoration can be applied to both link and path recovery, depending on

the layer in which it is implemented. It is called link based restoration and path based

restoration for implementations at OMS and OCh sublayers, respectively.

The resources used for recovery are not reserved at the time of connection set up

but are chosen from available shared resources after a failure occurs, i.e., the backup

path is provided only when a failure has occurred, thus additional signaling will be

needed [30]. This scheme is typically more efficient than protection, in terms of spare

capacity requirements, but the recovery time takes longer due to the intense activity of

the network management system to set up new connections [31].

In preplanning restoration the computation of backup routes is done before a

failure occurs, while in dynamic restoration is done after. Additionally, with dynamic

restoration, the restoration route resulting from the calculation scheme may be

different from the one that was supposed to be during the network design process.

As a consequence, even if enough spare capacity is provided to the network overall,

some failures may not be recovered. On the other hand, dynamic restoration will

allow recovering from unexpected failures, which is not the case with preplanned

restoration [23]. Because a preplanned restoration scheme does not spend time for

route calculation, it usually recover faster than dynamic restoration.

2.4 Transport Modes

An optical transport network can operate in three different transport modes,

depending on the number of all-optical fragments in a single lightpath, i.e., a transport

mode is identified in function of its utilization of OEO conversions. The modes are

known as opaque, transparent and translucent [32]. In the following we briefly describe

the main characteristics of them.
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2.4.1 Opaque Transport Mode

A network configured in opaque transport mode performs OEO conversion of the

signals at the end of each transmission system [32]. It is also called an opaque

network. In this kind of networks the signals are regenerated at every node since

they have to be converted to the electronic domain. An advantage of this mode it that

it eliminates cascading of physical impairments, allows multi-vendor interoperability

and full flexibility in signal routing [33]. Furthermore, it provides good performance

monitoring capability because the details of the frames are accessible at nodes, and it

can improve capacity utilization of wavelength channels by providing subwavelength

traffic grooming.

However, because every node needs to carry out OEO conversion, a pair of

transponders are required for each single WDM channel, which increases the CAPEX

of the network. In addition, because the transponders are not transparent to the

data rate of optical channels, the network upgrade is costly. New electronic switch

nodes and higher-bit-rate optical transponders need to be deployed when the network

has to support higher-bit-rates. Figure 2.12 illustrates an example of opaque mode

configuration, with and without survivability.
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Figure 2.12: Nodes in opaque transport mode. (a) without survivability, (b) with dedicated
protection, and (c) with shared restoration.

Each node comprises a non-blocking OXC equipped with an optical switch and an

EXC as the access station. The OXC switches wavelengths whereas the EXC switches

client traffic such as SONET/SDH or IP, and performs traffic grooming. Short-reach

transponders (SR) interconnect the OXCs tributary ports with the EXCs trunk ports.

Long-reach transponders (LR) make the interface between OLTs and OXC trunk ports.

The client traffic enters from the tributary ports of EXCs and is groomed before

being routed through the network. Add and drop traffic have to go through both the

EXC and OXC, whereas transit traffic is kept in the transport domain, i.e., transit traffic
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is not processed on EXCs. Alternative opaque mode configurations can be realized. For

instance, using a fixed patch panel in the node to connect WDM transmission systems

equipped with optical transponders; or using an opaque switching node with electrical

switch fabrics. More details can be found in [33,34].

In order to provide dedicated protection at the optical layer, we may use a short-

reach protection transponder outside the OXC, see Figure 2.12b. Since the OXC cannot

broadcast an input signal through two output ports, the protection transponder takes

one signal as input and splits the signal into a working and a backup signal. Each

signal is then fed into a tributary port of the OXC. The OXC switches the working and

the protection paths to the appropriate trunk ports, which are connected to different

transmission systems. This method is known as single-ended switching since only the

destination node does switching, while the source node duplicates the traffic.

For the case of shared protection or shared restoration at the optical layer,

the protection transponder is not required, see Figure 2.12c. A regular short-reach

transponder takes one client signal as input and feeds the signal into a tributary port of

the OXC. The OXC drives the signal toward the trunk port of the working path. In case

of a failure, the OXC switches the signal toward the trunk port of the backup path. This

method is known as dual-ended switching because both source and destination nodes

have to perform switching in case of failures. Notice that the OXC trunk port used for

the backup path can be shared with other backup paths.

2.4.2 Transparent Transport Mode

A network operating in a fully transparent mode keeps the signal of a source-

destination connection in the optical domain at every intermediate nodes, i.e., except

in the end nodes the signal does not undergo OEO conversion. Regeneration capacity

is not present as well. Networks operating in this mode are also called transparent

networks [33]. As the signal must remain on the same wavelength until it reaches

the destination node, this architecture implies end-to-end bit rate and protocol

transparency. Additionally, it is easy to upgrade the network to higher-bit-rates since

only a transmitter and a receiver per end-to-end connection need to be replaced.

However, because the absence of OEO conversion, the quality of the optical signals

degrade as they traverse the optical components along the route between the source-

destination nodes. In addition, longer lightpaths are sensitive to various nonlinear
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optical impairments, especially when considering high-bit-rates (> 10 Gbps) [35]. The

MTL of a system, which is the maximum distance that light can travel without 3R

regeneration, puts a limit on the size of a completely transparent network.
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Figure 2.13: Nodes in transparent transport mode. (a) without survivability, (b) with dedicated
protection, and (c) with shared restoration.

Figure 2.13 illustrates a possible transparent configuration. The OXCs are equipped

with transparent optical switches and its interface with WDM transmission systems

do not contain transponders. The EXCs that are attached to OXCs function as access

stations. Long-reach transponders make the interface between the OXCs and EXCs,

but they are used only for local add-drop traffic. Dedicated protection at the optical

layer is provided by long-reach protection transponders, see Figure 2.13b. Whereas

shared protection or restoration is provided by the OXC, which switches the client signal

toward the appropriate trunk port, see Figure 2.13c.

2.4.3 Translucent Transport Mode

In order to take the advantages of the two above mentioned types of networks, an

alternative to fully opaque networks and fully transparent networks was first proposed

in [32] and termed translucent networks. In this architecture the signals travel through

the network “as far as possible” in the optical domain.

The signals are regenerated only when the lightpaths reach their MTL, or when a

different wavelength must be assigned. OEO signal regeneration may be performed to

provide just 3R regeneration, but may include subwavelength traffic grooming. Notice

that the signal can be regenerated several times in the network before it reaches its

destination. Furthermore, a lightpath in a translucent network could span one or more

fiber links and may even span the entire source-destination path. This case is similar

to the transparent one in that the BER is first estimated on an available lightpath.

However, if that lightpath is unavailable (either because of unavailable resources or
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because the BER turns out to be above the acceptable limit), then the lightpath is

broken into smaller fragments. At each fragment the signal is regenerated [32].

Translucent networks can be configured into a number or ways. For example, a) it

can be equipped with sparsely opaque switch nodes among transparent switch nodes;

b) equipped with all translucent switch nodes, in which each node is equipped with

electronic and optical switches; c) equipped with sets of opaque nodes, translucent

nodes, and transparent nodes.
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Figure 2.14: Nodes in translucent transport mode. (a) without survivability, (b) with dedicated
protection, and (c) with shared restoration.

In this thesis we consider the setup presented in Figure 2.14. The network is

based on translucent OXCs, equipped with an all optical non-blocking switching fabric

together with a number of transponders.

Long-reach transponders are installed at the OXC tributary ports for local traffic.

Additionally, a pool of regenerators is attached to the OXC for regeneration and

wavelength conversion purposes, see the triangular shape in Figure 2.14. Alternatively,

regeneration could be performed through the attached EXC, then the tributary ports

can be assigned to either local or transit traffic that requires regeneration.

Similarly to the transparent mode, dedicated protection survivability at the optical

layer is provided by long-reach protection transponders, see Figure 2.14b. Whereas

shared protection or restoration is provided by the OXC, see Figure 2.14c.

Knowing the three network transport modes, Table 2.1 summarizes the main

characteristics relative to opaque, transparent and translucent networks [36].
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Table 2.1: Features related to the opaque, transparent and translucent networks.

Opaque Transparent Translucent

OEO at each
node

No OEO at
intermediary
nodes

Possible OEO
at intermediary
nodes

Flexibility to bit rate No Partial Partial
Flexibility to reconfiguration Yes Possible Possible
OEO regeneration devices Yes No Possible
OEO wavelength conversion devices Yes No Possible
Physical impairment consideration in
routing tools

No Yes Yes

Impairment compensation devices Simple Complex Complex
Network upgradeability Complex Easy Easy
Network extension Unlimited Limited Unlimited
Network monitoring Simple Complex Complex
Optimization of electronics No Yes Yes

2.5 Chapter Summary

This chapter provides an overview of the optical core transport networks. We

started by presenting a description of enabling technologies. Then we presented a

few survivability techniques, based on protection and restoration strategies. Finally,

we presented the three transport modes in which a network may operate, which are

opaque, transparent and translucent modes.
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Chapter 3

Network Cost Model

3.1 Introduction

The dimensioning of optical networks involves identifying the needed resources,

their quantities, and Capital Expenditures. Since most decisions are taken based on

costs, CAPEX is a key factor for the evaluation of alternative solutions. Therefore, a

network model is important to identify the most cost-efficient network design that

meets the operator’s necessity. A model to calculate the exact CAPEX depends on

detailed information such as the network architecture, topology, traffic load, transport

mode, routing and survivability schemes. Moreover, we have to know how those inputs

relate to each other. In this Chapter we focus on the installation cost of survivable

networks. We present a cost model for CAPEX in optical transport networks. We start

from the work presented in [1], which can be used for networks in opaque transport

mode with restoration survivability schemes. As our main contribution to that effort we

extended the model by considering transparent and translucent transport modes, and

protection survivability schemes.

In section 3.2, we present a network and traffic representation. Then, we present

expressions to calculate the network costs, in section 3.3, which are further divided

into cost of links, in section 3.4, and cost of nodes, in section 3.5. To illustrate the use

of the model we consider a four-node mesh network with five links. Since the costs are

dependent on the number of channels in the network, we show how to calculate the

number of channels per link in section 3.6. Furthermore, the calculation of the number

of channels on links require information about the number of hops per demand. Then,

we present how to obtain the number of hops in section 3.7. We also present how to

obtain survivability coefficients, section 3.8, which are used to calculate the costs of

networks operating with capacity for survivability. Finally we present the variables that
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are affected when survivability is considered, for links in section 3.9 and for nodes in

section 3.10. In section 3.11 we calculate CAPEX of a network, considering survivability

and opaque, translucent, and transparent transport mode.

3.2 Network and Traffic Representation

A network topology is generally represented as a graph G(N,L), where N and L are

the number of nodes and links in the network, respectively [2]. Each node corresponds

to a number of physical modules and links to the transmission systems between the

nodes. Figure 3.1 shows a physical topology of a four-node and five-link network.

1

3

2

4

300

300

424

3
0
0

3
0
0

Figure 3.1: The physical network as a weighted graph. The numbers close to links represent the
fiber length (e.g. in km).

The network topology can also be represented as an N × N adjacency matrix [g]

in which the elements (gi,j) hold the number 1 or 0 to indicate whether the source-

destination node pair (i, j) is adjacent or not, respectively. The adjacency matrix for

the network in Figure 3.1 is given by

[g] =













0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0













. (3.1)

The number of nodes and links are not independent quantities. In fact, according to

the graph theory a complete graph, i.e., a graph in which there exists one link between

each pair of nodes, has exactly N(N − 1)/2 links (assuming no parallel links). On the

other hand, for having a connected graph it is required at least N − 1 links [3]. If

disjoint path between node pairs is required, the graph must have at least N links.
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Notice, however, that this condition is necessary but not sufficient for path disjointness.

Although some networks may implement, in this thesis we do not consider parallel links

(i.e., multiple links between the same pair of nodes), nor self-loops (links with i = j).

3.2.1 Nodal Degree

The degree of a node, δn, is defined as the number of physical connections or links

that the node has to other nodes. The nodes may have two different degrees if the links

are considered to be unidirectional (the incoming and outgoing degrees). However, in

this thesis we consider that all links are bidirectional. Therefore, using a matrix [g] the

degree of a node n can be calculated with

δn =

N
∑

j=1

gi,j. (3.2)

Considering the adjacency matrix of the network presented in (3.1), the nodal degree

of node 1 is δ1 = 3. Considering all nodes we can calculate the average nodal degree,

which is the summation over all node degrees divided by the number of nodes,

〈δ〉 = 1

N

N
∑

n=1

δn. (3.3)

Since one node is attached at each endpoint of a link, each link contributes twice to the

nodal degree. Then, another way to calculate the same average is

〈δ〉 = 2L

N
. (3.4)

Notice that the expression (3.4) is exact and does not depend on the network topology

and demand model (e.g., uniform or random). Considering our example network,

Figure 3.1, and the expression (3.4), we obtain 〈δ〉 = 2.5.

3.2.2 Traffic Model

A demand di,j is the capacity, in units of transmission (e.g., one STM-1), that

a pair of nodes (i, j) require to transport data from node i to node j. The traffic
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demand between the network nodes can be represented as a matrix [d] in which the

elements di,j represent the number of demands between the source node i to the

destination node j. Traffic matrices reflect the volume of traffic that flows between all

possible pairs of sources and destinations in a network [4]. We consider the assumption

that the currently deployed transport core networks contain bidirectional optical line

systems [5] and the traffic is symmetric. Hence, in this work we consider that all

demands are bidirectional, then di,j = dj,i and [d] is a symmetric matrix. A possible

traffic matrix for the network in Figure 3.1 is

[d] =













0 1 1 1

1 0 2 1

1 2 0 1

1 1 1 0













. (3.5)

The summation over the elements in [d] yields the number of unidirectional demands

D1, which can be written as

D1 =
N
∑

i=1

N
∑

j=1

di,j. (3.6)

Assuming [d] as a symmetric matrix, the summation of all elements of the upper

(or lower) triangular part of the matrix yields the number of bidirectional demands

D which can be written as

D =
N−1
∑

i=1

N
∑

j=i+1

di,j =
D1

2
. (3.7)

Dividing the number of unidirectional demands by the number of nodes we obtain the

average number of bidirectional demands per node, which can be written as

〈d〉 = D1

N
=

2D

N
. (3.8)

We should note that for a uniform and unitary traffic model the average number of

demands that is originated in a given node is

〈d〉 = N − 1. (3.9)
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Using (3.8) we obtain

D1 = N〈d〉, (3.10)

and

D =
N〈d〉
2

. (3.11)

Considering the network presented in Figure 3.1, in which N = 4, and the traffic load

presented in (3.5) we obtain D = 7 and 〈d〉 = 3.5.

3.3 Network Costs

The total cost of a network (CT ) can be calculated as the summation of the costs

of all constituent components. In this thesis we divide the costs into two major groups.

The cost of links (CL) that is related to the transmission systems, and the cost of nodes

(CN) that is related to the bandwidth management. Considering this statement we can

write the total cost of a network as

CT = CL + CN . (3.12)

The total costs with links is the summation of the costs of every links in the network,

which can be written as

CL =
L
∑

l=1

cl, (3.13)

where L is the number of links in the network and cl the cost of a single link l. Similarly,

the cost of nodes is the summation of the costs of all nodes in the network, which can

be written as

CN =
N
∑

n=1

cn, (3.14)

where N is the number of nodes in the network and cn the cost of a single node n.

From (3.12), (3.13) and (3.14) we obtain

CT =
L
∑

l=1

cl +
N
∑

n=1

cn. (3.15)
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We can also calculate the costs considering the average values, without loss of accuracy.

Notice that we can rewrite (3.15) as

CT =
L

L

L
∑

l=1

cl +
N

N

N
∑

n=1

cn. (3.16)

Considering the definition of average

〈q〉 = 1

M

M
∑

m=1

qm, (3.17)

we obtain

CT = L〈cl〉+N〈cn〉, (3.18)

where

〈cl〉 =
1

L

L
∑

l=1

cl, (3.19)

and

〈cn〉 =
1

N

N
∑

n=1

cn, (3.20)

are the average cost of links and nodes, respectively. Equations (3.15) and (3.18) are

equivalent and no approximations are involved.

3.4 Cost of Links

Each link is composed of one or more transmission systems. Each transmission

system is composed of two bidirectional Optical Line Terminals (OLTs), a bidirectional

optical fiber and a number of bidirectional Optical Amplifiers (OAs). Therefore, the cost

of a link l is given by

cl = cOLT
l + cAl + cFl , (3.21)

where cOLT
l is the cost of OLTs for all transmission system in the link l, cAl is the cost of

OAs for all transmission system in the link l, and cFl is the cost of optical fibers for all

transmission system in the link l.
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3.4.1 Cost of OLTs per Link

We consider that the cost of an OLT is fixed and includes a WDM

multiplexer/demultiplexer and a pre- and post-amplifier. Therefore, the cost of OLTs

per link is given by,

cOLT
l = 2nS

l γ
OLT , (3.22)

where nS
l is the number of transmission systems in the link l, and γOLT is the cost of an

OLT. The number of transmission systems in a link depends on the traffic demand and

the maximum capacity of the WDM terminal multiplexer, and can be written as

nS
l =

⌈wl

S

⌉

, (3.23)

where wl is the number of optical channels (or demands) that traverse the link l, and

S is the maximum capacity of the WDM terminal multiplexer used in the transmission

systems, e.g., 40 channels. The calculation of wl is further discussed in section 3.6.

The number of OLTs in the network is obtained with

NOLT =
L
∑

l=1

2nS
l , (3.24)

and the average number of OLTs per link with

〈nOLT 〉 = NOLT

L
= 2〈nS〉, (3.25)

where 〈nS〉 is the average number of transmission system per link, which can be written

as

〈nS〉 = 1

L

L
∑

l=1

nS
l . (3.26)

The term 〈nS〉 in (3.25) is multiplied by two because each transmission system uses

two OLTs (one on each end). From (3.25) we can obtain the average cost of OLTs per

link with

〈cOLT 〉 = 〈nOLT 〉γOLT . (3.27)
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3.4.2 Cost of Optical Amplifiers per Link

The costs of optical amplifiers in a transmission system is a function of the link

length and the span between amplifiers. Considering this cost per link we have,

cAl = nA
l γ

A, (3.28)

where nA
l is the number of OAs in the link l and γA is the cost of an OA. We can obtain

the number of OAs per link as

nA
l =

(

⌈νl
∂

⌉

− 1

)

nS
l , (3.29)

where νl is the length of the link l and ∂ is the span, i.e., the distance between optical

amplifiers (or between an OA and an OLT). Summing over all links we obtain the total

number of amplifiers,

NA =
L
∑

l=1

nA
l . (3.30)

Dividing (3.30) by the number of links we obtain the average number of optical

amplifiers per link, which can be written as

〈nA〉 = NA

L
. (3.31)

The average cost of OAs per link is, therefore,

〈cA〉 = 〈nA〉γA. (3.32)

Considering our example network, and ∂ = 100, we obtain 〈nA〉 = 2.4 per link.

3.4.3 Cost of Optical Fiber per Link

The cost of a pair of optical fibers in a link is a function of the link length, νl, which

can be written as

cFl = 2νln
S
l γ

F , (3.33)
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where γF is the cost of a unit of length of optical fiber. Notice that we multiply the first

term by two because a transmission system uses a pair of optical fibers. Summing over

all links we obtain the total quantity of optical fiber in the network, which is

NF =

L
∑

l=1

2νln
S
l , (3.34)

and dividing (3.34) by L we obtain the average quantity of optical fiber per link,

〈nF 〉 = NF

L
. (3.35)

Using (3.35) we can obtain the average cost of optical fiber per link with

〈cF 〉 = 〈nF 〉γF . (3.36)

Considering our example network, in Figure 3.1, and assuming just one transmission

system per link, we have 〈nF 〉 = 649.6, which is twice the average link length.

Considering (3.27), (3.32), (3.36) we can write,

CL = L
(

〈cOLT 〉+ 〈cA〉+ 〈cF 〉
)

, (3.37)

and

〈cl〉 = 〈cOLT 〉+ 〈cA〉+ 〈cF 〉. (3.38)

Nowadays, a number of entities own optical cables. For instance, besides the

telecom operators, operators of railways lay optical fiber cables along the railway

tracks. Electrical power companies use the existing electrical power infrastructure to

lay optical fiber cables along the power lines. In this scenario, telecom operators tend to

lease fiber optical cables instead of installing or expand their infrastructures. Therefore,

in this thesis we do not consider the cost of optical fibers since we assume that a

sufficient amount of dark fibers is already available, and the costs of leasing cables

are OPEX.
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3.5 Cost of Nodes

The nodes of a transport network may be implemented in a variety of manners.

Usually, the nodes receive traffic coming from the metro/access networks via their

tributary ports, and traffic coming from adjacent core nodes via their trunk ports. In this

thesis we assume the node architectures presented in Chapter 2. We assume that client

traffic is added from an EXC where it is groomed and sent to the tributary ports of an

OXC. The OXC switches the local traffic wavelengths between the OXC tributary ports

and the WDM links and the transit traffic between different WDM links. Moreover, the

nodes are implemented in three ways: opaque OXC, using OEO conversion and optical

switch core; totally transparent OXC, using optical switch and no OEO conversion; and

translucent core OXC, using optical switch core and some OEO conversions.

Therefore, the cost of nodes depends on the costs of EXCs, OXCs, transponders, and

regenerators, which can be written as

cn = cEXC
n + cOXC

n + cTSP
n + cREG

n , (3.39)

where cEXC
n is the cost of the EXC, cOXC

n the cost of the OXC, cTSP
n the cost of

transponders, and cREG
n is the cost of regenerators, at node n. Using the averages we

can write

〈cn〉 = 〈cEXC〉+ 〈cOXC〉+ 〈cTSP 〉+ 〈cREG〉, (3.40)

to obtain the average cost of nodes. Multiplying (3.40) by the number of nodes we

obtain the total cost of nodes,

CN = N〈cn〉. (3.41)

3.5.1 Cost of EXCs

We assume that the cost of an EXC consists of a fixed cost and a cost that grows

linearly on the number of trunk ports. Therefore we can write,

cEXC
n = γEXC + nTP

exc,nγ
TP
exc . (3.42)

where γEXC is the base cost of an EXC, nTP
exc,n is the number of trunk ports in the EXC n,

and γTP
exc is the cost of a trunk port.
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The number of trunk ports depends on client traffic and the multiplexing factor.

However, we consider that the given traffic demand is already groomed from client

layer to optical layer. Each demand occupies a trunk port. Therefore, the number of

trunk ports in an EXC node n can be written as

nTP
exc,n = nD

n , (3.43)

where nD
n is the number of demands that originate or terminate at the node n.

Considering all nodes we obtain the number of EXC trunk ports in the network with

NTP
exc =

N
∑

n=1

nD
n = D1, (3.44)

and the average number of EXC trunk ports per node is

〈nTP
exc〉 =

D1

N
= 〈d〉. (3.45)

Considering our example network and traffic presented in (3.5) we have 〈nTP
exc〉 = 3.5.

From (3.42) and (3.45) we obtain the average cost of an EXC with

〈cEXC〉 = γEXC + 〈nTP
exc〉γTP

exc . (3.46)

3.5.2 Cost of OXCs

We assume that the cost of an OXC consists of a fixed base cost and a cost dependent

on the number of channels it has to switch. This number of channels determines

size of the switching matrix, and is dependent on the traffic and transport mode.

In the following we show how to obtain cost of equipped OXCs considering opaque,

transparent and translucent transport modes.

3.5.2.1 Cost of OXCs in Opaque Transport Mode

In order to obtain the cost of an OXC, we start with the cost of OXC at node n:

cOXC
op,n = γOXC + nCH

op,nγ
SW . (3.47)
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where γOXC is the base cost of an OXC, nCH
op,n the number of bidirectional channels that

are processed in the opaque node n, and γSW is the cost of switching a channel. The

“op” index indicates opaque mode. We can obtain nCH
op,n with:

nCH
op,n =

1

2

(

nD
n +

N
∑

j=1

wn,j

)

, (3.48)

where nD
n is the number of demands that originate or terminate at node n, wn,j is

the number of channels transported in each link connected to node n, being wn,j = 0

when the pair of nodes n, j is not directly connected. Notice that the expression

(3.48) is divided by two because each channel always enters and exit the OXC. In

order to illustrate the calculation of (3.48), let’s consider our example network, in

Figure 3.1, and three bidirectional demands: one demand interconnecting nodes 1-2,

one interconnecting nodes 1-3, and one interconnecting nodes 2-3. Figure 3.2

illustrates the routing of the three demands. The demand {1-2} is represented as a

blue line; demand {1-3} as a green line and demand {2-3} as a red line. Notice the

demand {2-3} traverses the node 1.

1 2

3 4

Figure 3.2: The example network in opaque mode and with three demands. Routing performed
through the shortest path (in number of hops).

Now let’s calculate the number of channels in node 1, with (3.48). We have nD
1 = 2

and w1,1 = 0, w1,2 = 2, w1,3 = 2, and w1,4 = 0. Thus, can write

nCH
op,1 =

1

2
(2 + (0 + 2 + 2 + 0)) = 3.
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This result can also be obtained by counting the number of channels directly in the

node 1 of Figure 3.2. Considering all nodes we obtain the total number of channels in

opaque OXCs, which can be written as

NCH
op =

N
∑

n=1

nCH
op,n =

1

2

N
∑

n=1

(

nD
n +

N
∑

j=1

wn,j

)

=
1

2

(

N
∑

n=1

nD
n +

N
∑

n=1

N
∑

j=1

wn,j

)

=
D1 + 2W

2
,

(3.49)

where W is the total number of channels on links. Notice that the term 2W in (3.49)

appears because each channel contributes twice in the summation of the number of

channels transported in each link. Dividing (3.49) by the number of nodes we obtain

the average number of channels per node, which is

〈nCH
op 〉 =

NCH
op

N
=
D1 + 2W

2N

=
D1

2N
+
L

L

2W

2N

=
〈d〉
2

+ 〈δ〉W
2L
,

(3.50)

where W/L is the average number of channels per link, 〈w〉. In the last expression,

(3.50), we have taken into account the equation (3.4) and (3.8). Then we have,

〈nCH
op 〉 = 〈d〉+ 〈δ〉〈w〉

2
. (3.51)

Considering our example network, Figure 3.1, with the demand matrix (3.5), we obtain

〈nCH
op 〉 = 4. From (3.47) and (3.51) we obtain the average cost per OXC with

〈cOXC
op 〉 = γOXC + 〈nCH

op 〉γSW . (3.52)
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3.5.2.2 Cost of OXCs in Transparent Transport Mode

In transparent mode the OXC requires the same capabilities of opaque mode. In

fact, the difference between the transport modes is the placement of transponders.

Therefore, we can rewrite the expressions used for opaque mode, but only changing

the index “op” to “tr” to indicate the transparent mode. Thus, we have

cOXC
tr,n = γOXC + nCH

tr,nγ
SW , (3.53)

nCH
tr,n =

1

2

(

nD
n +

N
∑

j=1

wn,j

)

, (3.54)

NCH
tr =

N
∑

n=1

nCH
tr,n =

1

2

N
∑

n=1

(

nD
n +

N
∑

j=1

wn,j

)

=
1

2

(

N
∑

n=1

nD
n +

N
∑

n=1

N
∑

j=1

wn,j

)

=
D1 + 2W

2
,

(3.55)

〈nCH
tr 〉 = 〈d〉+ 〈δ〉〈w〉

2
. (3.56)

Obviously, considering our example network we obtain 〈nCH
tr 〉=4. The average cost per

OXC is obtained with

〈cOXC
tr 〉 = γOXC + 〈nCH

tr 〉γSW . (3.57)

3.5.2.3 Cost of OXCs in Translucent Transport Mode

In translucent mode, we have to consider the number of demands that need

regeneration. Each regeneration requires one additional capacity for switching, because

the demand has to be dropped through an OXC tributary port and re-added through

another OXC tributary port. The number of regenerations that a demand d has to suffer

can be calculated with

nR
d =

⌈

Pd

Λ

⌉

− 1, (3.58)
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where Pd is the path length of demand d, and Λ is the MTL. Considering all demands

we obtain the number of regenerators in the network with

NR =
D
∑

d=1

nR
d =

N
∑

n=1

nDR
n , (3.59)

where nDR
n is the number of demands that need regeneration at node n. Dividing (3.59)

by N we obtain the average number of regenerators per node, then we have

〈nR〉 = NR

N
. (3.60)

We can calculate the cost of a translucent OXC with

cOXC
tl,n = γOXC + nCH

tl,nγ
SW . (3.61)

where nCH
tl,n is the number of channels that are processed in the node n. Notice the “tl”

index to indicate translucent mode configuration. We can obtain nCH
tl,n with

nCH
tl,n =

1

2

(

nD
n + 2nDR

n +

N
∑

j=1

wn,j

)

, (3.62)

In order to illustrate the calculation of (3.62), let’s consider our example network, in

Figure 3.1, and three bidirectional demands. Figure 3.3 illustrates the routing of the

three demands. One demand interconnects nodes 1-2 (represented as a blue line), one

interconnects nodes 1-3 (as a green line), and one interconnects nodes 3-4 (the orange

line). Notice the demand {3-4} was not routed through the shortest path (it is just to

show the regeneration). Considering the Maximum Transparency Length as Λ = 600 the

demand {3-4} has to suffer one regeneration in the node 1, since its length is 724 km

(notice the regenerator as a triangle shape above the node 1).

Now let’s calculate the number of channels processed in node 1, with (3.62). We

have nD
1 = 2, nDR

1 = 1 and w1,1 = 0, w1,2 = 1, w1,3 = 2, and w1,4 = 1. Thus, can write

nCH
tl,1 =

1

2
(2 + 2 + (0 + 1 + 2 + 1)) = 4.

This result can also be obtained by counting the number of channels directly in the
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node 1 of Figure 3.3.

1 2

3 4

300 km

424 km

300 km

3
0

0
 k

m

3
0

0
 k

m

R

Figure 3.3: The example network in translucent mode and with three demands.

Considering all nodes we obtain the total number of channels in translucent OXCs,

which can be written as

NCH
tl =

N
∑

n=1

nCH
tl,n =

1

2

N
∑

n=1

(

nD
n + 2nDR

n +
N
∑

j=1

wn,j

)

=
1

2

(

N
∑

n=1

nD
n +

N
∑

n=1

2nDR
n +

N
∑

n=1

N
∑

j=1

wn,j

)

=
D1 + 2NR + 2W

2
,

(3.63)

Dividing (3.63) by N we obtain the average number of channels per translucent OXC,

which is

〈nCH
tl 〉 = NCH

tl

N
=
D1 + 2NR + 2W

2N

=
D1

2N
+

2NR

2N
+
L

L

2W

2N

=
〈d〉+ 2〈nR〉

2
+ 〈δ〉W

2L

=
〈d〉+ 2〈nR〉+ 〈δ〉〈w〉

2
.

(3.64)
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Considering our example network, in Figure 3.1, and the demand matrix in (3.5) we

have 〈nR〉 = 0 and 〈nCH
tl 〉 = 4. From (3.61) and (3.64) we obtain the average cost of a

translucent OXC with

〈cOXC
tl 〉 = γOXC + 〈nCH

tl 〉γSW . (3.65)

3.5.3 Cost of Transponders

The number of transponders per node also depends on the traffic and the transport

mode. In the next three sections we show how to obtain the cost of transponders in

networks with opaque, transparent and translucent transport mode.

3.5.3.1 Cost of Transponders in Opaque Transport Mode

In order to provide an interface to signals coming from the client equipment, opaque

networks may use short-reach transponders at the tributary ports of the OXC. One long-

reach transponder is used at each OXC trunk port. Therefore, the cost of transponders

for a node n in opaque networks is given by

cTSP
op,n = nSR

n γSR + nLR
n γLR, (3.66)

where nSR
n is the number of short-reach transponders in the node n, γSR is the cost of

a short-reach transponder, nLR
n is the number of long-reach transponders in the node n

and γLR is the cost of a long-reach transponder.

Since each add/drop channel uses a short-reach transponder we can write

nSR
n = nD

n , (3.67)

and summing over all the nodes we obtain the total number of short-reach transponders

in the network with

NSR =

N
∑

n=1

nSR
n = D1. (3.68)

Dividing (3.68) by the number of nodes we obtain the average number of short-reach

transponders per node, which can be written as

〈nSR〉 = NSR

N
=
D1

N
= 〈d〉. (3.69)
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Notice that, if the EXC trunk cards have the capability to interface directly with the

OXC, short-reach transponders are not necessary. Considering our example network,

Figure 3.1, and the demand matrix in (3.5) we obtain 〈nSR〉 = 3.5.

In order to calculate the number of long-reach transponders, we have to know the

number of channels per node. Since long-reach transponders are used only on the trunk

ports, using (3.48) we can obtain the number of long-reach transponders for an opaque

node n with

nLR
op,n = 2nCH

op,n − nD
n =

N
∑

j=1

wn,j. (3.70)

Notice that we have to multiply the first term by two because each channel uses one

input and one output ports. Considering all nodes we have

NLR
op =

N
∑

n=1

nLR
op,n =

N
∑

n=1

N
∑

j=1

wn,j = 2W, (3.71)

and dividing (3.71) by the number of nodes we obtain the average number of

transponders per node,

〈nLR
op 〉 =

NLR
op

N
=
L

L

2W

N
= 〈δ〉〈w〉. (3.72)

Considering our example network, Figure 3.1 and traffic matrix (3.5) we have an

average of 〈nLR
op 〉 = 4.5 long-reach transponders per node. From (3.66), (3.69) and

(3.72) we obtain the average cost with transponders per node, in opaque networks,

with

〈cTSP
op 〉 = 〈nSR〉γSR + 〈nLR

op 〉γLR. (3.73)

3.5.3.2 Cost of Transponders in Transparent Transport Mode

Short-reach transponders are not used in transparent mode. Long-reach

transponders are placed at the tributary ports of OXCs, where they guide the signal

into the network. Therefore, for transparent networks have

nLR
tr,n = nD

n , (3.74)
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and summing over all the nodes we obtain the total number of long-reach transponders

in the network with

NLR
tr =

N
∑

n=1

nLR
tr,n = N〈d〉. (3.75)

Considering the averages we obtain the average number of long-reach transponders

per node, in transparent networks, with

〈nLR
tr 〉 = NLR

tr

N
= 〈d〉. (3.76)

For our example network, Figure 3.1, and demand matrix (3.5) we obtain 〈nLR
tr 〉 = 3.5,

and from (3.76) we can obtain the average cost of transponders per node, in

transparent networks, with

〈cTSP
tr 〉 = 〈nLR

tr 〉γLR. (3.77)

3.5.3.3 Cost of Transponders in Translucent Transport Mode

In translucent networks, the number of long-reach transponders is calculated as in

transparent networks. Therefore we have

nLR
tl,n = nD

n = 〈d〉, (3.78)

Summing over all the nodes we obtain the total number of long-reach transponders in

the network with

NLR
tl =

N
∑

n=1

nLR
tl,n = N〈d〉. (3.79)

Considering the averages we obtain the average number of long-reach transponders

per node, in translucent network, with

〈nLR
tl 〉 = NLR

tl

N
= 〈d〉. (3.80)

And the average cost of transponders per node, in translucent networks, can be written

as

〈cTSP
tl 〉 = 〈nLR

tl 〉γLR. (3.81)
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3.5.4 Cost of Regenerators

In opaque networks the signal is regenerated at every nodes. In transparent

networks there is no regeneration, and in translucent networks the signal is regenerated

only when necessary, i.e., when the length of a demand is longer than an Λ. The cost

of regenerators for a node n in translucent networks is given by

cREG
n = nDR

n γREG, (3.82)

where nDR
n is the number of demands that need regeneration in node n, and γREG is

the cost of a bidirectional regenerator. The total number of regenerators in a network

can be calculated with (3.59), and using (3.60) we can obtain the average cost of

regenerators per node with

〈cREG〉 = 〈nR〉γREG. (3.83)

3.6 Number of Channels per Link

In order to evaluate the costs in a network, we need firstly to calculate the number

of channels per link, which we denoted by W . Diviging W by the number of links L we

obtain the average number of channels per link. In this section we show how to obtain

the values for these variables.

The demands are routed across the network according to a routing algorithm (such

as shortest path). Each demand occupies a unit of transmission capacity on each of the

links interconnecting the source and destination nodes, i.e., if a source node is three

hops away from the destination, a demand needs three units of capacity (one for each

link). In this thesis a unit of transmission capacity is also called a channel. Because

several solutions may exist for the same routing strategy, the number of channels in

a specific link may differ from solution to solution [6, 7]. Therefore, as a preliminary

evaluation, it makes sense to calculate the average number of channels per link.

One way to obtain the average number of channels per link is starting by obtaining

the number of different routing solutions R for a given demand matrix [d], which can

be obtained by using the matrix [d] and a routes matrix [r]. The routes matrix [r] is

an N ×N matrix being each element (ri,j) the number of different candidate routes

(paths) to interconnect the nodes i and j. The matrix [r] can be obtained from a

60



Claunir Pavan 3.6. Number of Channels per Link

searching algorithm. In (3.84) we show a routes matrix for the network presented

in Figure 3.1. The searching for the routes follow the shortest path strategy in number

of hops.

[r] =













0 1 1 1

1 0 2 1

1 2 0 1

1 1 1 0













(3.84)

Given the matrices [r] and [d] we can obtain the number of different routing solutions

with

R =
N−1
∏

i=1

N
∏

j=i+1

di,jri,j, ∀ di,j 6= 0. (3.85)

For our example network, Figure 3.1, we obtain R = 4.

Giving an integer number to represent each single demand presented in (3.5), as in

Node pair 1-2 1-3 1-4 2-3 2-3 2-4 3-4

Demand label 1 2 3 4 5 6 7

we can show the possible routings in Figure 3.4. Notice that the node pair (2− 3)

appears twice, since there exist two single demands between them.

Each routing solution, χr, may be represented by L unidimensional vectors (one

for each link l). Each unidimensional vector ll holds D binary values (one for each

demand, d), in which the value is 1 for a demand d that is carried through the link ll or

0 otherwise. The structure of each routing solution χr may be defined as

χr











l1 → d1 d2 . . . dD
l2 → d1 d2 . . . dD
. . . → d1 d2 . . . dD
lL → d1 d2 . . . dD

and each element of the routing solution is defined as χr,l,d, that is, χr,l,d = 1 if the

demand d is carried through the link l at the routing solution r.

Considering the routings presented in Figure 3.4 and the link order presented in

Figure 3.5, we have the following four possible routing solutions:
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Figure 3.4: The four possible routing solutions for the network in Figure 3.1 and demand matrix
in (3.5). The numbers close to the links are the demands routed through the links.

χ1



















l1 → 1 0 0 1 1 0 0
l2 → 0 0 0 0 0 1 0
l3 → 0 0 0 0 0 0 1
l4 → 0 1 0 1 1 0 0
l5 → 0 0 1 0 0 0 0

χ2



















l1 → 1 0 0 0 0 0 0
l2 → 0 0 0 1 1 1 0
l3 → 0 0 0 1 1 0 1
l4 → 0 1 0 0 0 0 0
l5 → 0 0 1 0 0 0 0

χ3



















l1 → 1 0 0 1 0 0 0
l2 → 0 0 0 0 1 1 0
l3 → 0 0 0 0 1 0 1
l4 → 0 1 0 1 0 0 0
l5 → 0 0 1 0 0 0 0

χ4



















l1 → 1 0 0 0 1 0 0
l2 → 0 0 0 1 0 1 0
l3 → 0 0 0 1 0 0 1
l4 → 0 1 0 0 1 0 0
l5 → 0 0 1 0 0 0 1

1

3

2

4

link 1

link 3

link 5

lin
k
 4

lin
k
 2

Figure 3.5: Labels of links in the network.
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In order to obtain the number of channels in a link l, at a specific routing r, wr,l, we

may add the elements χr,l,d = 1 for the given l and r, this may be represented as

wr,l =
D
∑

d=1

χr,l,d. (3.86)

From that, the average number of channels in a link (e.g. link 1) is obtained by the

summation over wr,l divided by the number of different routing solutions, R. This can

be written as

〈wl〉 =
1

R

R
∑

r=1

D
∑

d=1

χr,l,d =
1

R

R
∑

r=1

wl,r. (3.87)

Considering the link 1 (l1) of our example network and the four possible routings we

obtain w1,1 = 3, w1,2 = 1, w1,3 = 2 and w1,4 = 2. Then, using (3.87) we obtain 〈w1〉 = 2.

In order to calculate the number of channels in a network, we do not need to

consider each different routing possibility. To show this, we note that the number of

channels on a link looking only the first routing is

wl =
D
∑

d=1

χ1,l,d. (3.88)

Summing (3.88) over all links we obtain the total number of channels in the network,

which can be written as

W =
L
∑

l=1

wl, (3.89)

Similarly we can use wi,j instead of wl to specify the end-points of the link l. Dividing

the result from (3.89) by the number of links, L, we obtain the average number of

channels per link, which can be written as [1]

〈w〉 = 1

L

L
∑

l=1

wl =
1

L

N−1
∑

i=1

N
∑

j=i+1

1× hi,j =
1

L

D

D

N−1
∑

i=1

N
∑

j=i+1

hi,j =
D〈h〉
L

. (3.90)

Considering the expressions (3.11) (for the number of demands) and (3.4) (for the

nodal degree) we can rewrite the expression (3.90) as

〈w〉 = N〈d〉〈h〉
2L

=
〈d〉〈h〉
〈δ〉 . (3.91)
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For the network in Figure 3.1, and the demand matrix (3.5), we obtain 〈d〉 = 3.5,

〈h〉 = 1.29 and 〈δ〉 = 2.5, so it is estimated to have 〈w〉 = 1.8 channels per link.

3.7 Number of Hops per Demand

As we observed in the previous section, the calculation of the average number of

channels per link requires the average number of hops per demand. Thus, in this section

we show how to obtain this variable.

In order to interconnect a node pair, it is required a route through the network that

traverses one or more links. The set of links to that interconnect a node pair is also

called a path and each traversed link represents a hop.

From the network topology we can obtain the hops matrix [h], being each element

(hi,j) the path length (in number of hops) from the node i to the node j. Considering the

shortest path, in number of hops, the hops matrix for the example network presented

in Figure 3.1 is:

[h] =













0 1 1 1

1 0 2 1

1 2 0 1

1 1 1 0













(3.92)

This hops matrix can be obtained from the Dijkstra’s shortest path algorithm [8].

Notice that in this case the traffic load is not considered. From the h and d matrices we

can obtain the average number of hops for a given traffic load with

〈h〉 = 1

D

N−1
∑

i=1

N
∑

j=i+1

hi,jdi,j. (3.93)

If the network topology and traffic demand are known, then we can calculate the

exact value of 〈h〉. However, in the case of uncertainties about the traffic we may

consider approximations. This issue is discussed in Chapter 5. For our sample network

presented in Figure 3.1, and considering the hops matrix in (3.92) and the traffic

demand presented in (3.5), the average number of hops per demand is 〈h〉 = 1.29.
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3.7.1 Number of Hops for Backup Paths

Depending on survivability scheme, the number of hops for backup may be required.

Usually a backup path is a failure-disjoint path between itself and the working path.

We might define the backup path as the second shortest path between a given pair of

nodes, being the first shortest path the working path. This can be achieved by using

an algorithm that finds the shortest cycle between the source and destination nodes,

such as the Suurballe algorithm [9]. Considering the four-node network presented in

Figure 3.1, the hops matrix for backup paths [h′] is given by

[h′] =













0 2 2 2

2 0 2 2

2 2 0 2

2 2 2 0













. (3.94)

From the matrices [h′] and [d] we can obtain the average number of hops for the

backup paths with,

〈h′〉 = 1

D

N−1
∑

i=1

N
∑

j=i+1

h′i,jdi,j. (3.95)

As in 〈h〉, 〈h′〉 may be calculated exactly or approximated in the case of uncertainties.

For our sample network presented in Figure 3.1, and considering the hops matrix

in (3.94) and the traffic demand presented in (3.5), the average number of hops that

each single connection request has to perform in its backup path is 〈h′〉 = 2.

3.7.2 Number of Hops in Ring Topologies

Ring and mesh-based topologies have different characteristics in terms of the

number of paths between the end-nodes. Rings have only two possible paths between

the source and destination nodes (i.e., one path following the clockwise direction and

another following the counter-clockwise). On the other hand, mesh-based topologies

may have several paths between each node pair. In this section we present a

mathematical derivation of the number of hops in ring network topologies.

We assume bidirectional rings with nodes labeled {1, . . . , N} in a clockwise

direction. Node i, which is 1<i<N , is connected to nodes i− 1 and i+ 1, node N

is connected to node N − 1 and node 1. Node 1 is connected to the node i+ 1 and
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node N . Figure 3.6 shows a general example of two cases in a ring topology.

1

N/2 +1

N

1

N/2

2

1

N/2N/2

(a)

1

N/2+2

N

1

N/2+1

N/2

2

N/2-1

N/2

1

(b)

Figure 3.6: General ring topology with: (a) odd number of nodes and (b) even number of nodes.
A demand is routed in a clockwise direction if the distance to the destination node is smaller
than or equal to ⌊N/2⌋, otherwise the demand is routed counter-clockwise.

Considering Figure 3.6a, which is a ring with an odd number of nodes, a demand

between nodes i and j is routed clockwise if j − i ≤ ⌊N/2⌋, otherwise the demand

is routed counter-clockwise. For the case of rings with even number of nodes, as in

Figure 3.6b, the demand goes in a clockwise direction if j − i ≤ N/2, otherwise the

demand goes counter-clockwise. Then, the elements of the hops matrix for rings (hri,j)

with N nodes can be written as,

hri,j =



















j − i, for j − i ≤
⌊

N
2

⌋

(i+N)− j, for j − i >
⌊

N
2

⌋

. (3.96)

For example, the hops matrix for the ring with N = 5, as in Figure 3.6a, is given by

[h5] =



















0 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

1 2 2 1 0



















, (3.97)
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and the hops matrix for a ring with N = 6, as in Figure 3.6b, is given by

[h6] =

























0 1 2 3 2 1

1 0 1 2 3 2

2 1 0 1 2 3

3 2 1 0 1 2

2 3 2 1 0 1

1 2 3 2 1 0

























. (3.98)

The upper triangular (or lower) of the hops matrix has N − 1 diagonals that can

be divided into two sets. Starting from the main diagonal, the first ⌊N/2⌋ diagonals

correspond to the demands routed in a clockwise direction, and the other ⌈N/2⌉ − 1

diagonals to the demands routed in a counter-clockwise direction. The expression for

the number of paths with a certain number of hops is different for ring with odd and

even number of nodes. Thus, each case was investigated separately.

Rings with odd number of nodes have (N − x) paths with x number of hops in

each diagonal, for x = 1, . . . , ⌊N/2⌋. This corresponds to demands that are routed in

a clockwise direction. Thus, we can calculate the total number of hops performed by

demands routed in a clockwise direction for rings, hrc, using

hrc =

⌊N/2⌋
∑

x=1

x(N − x). (3.99)

Considering the hops matrix in (3.97) we can find four paths with one hop in the

first diagonal and then three paths with two hops in the second diagonal, therefore

hrc = 10. For the demands going in a counter-clockwise direction there are (⌊N/2⌋ − x)

paths with length (⌊N/2⌋ − x), for x = 0, . . . , ⌊N/2⌋ − 1. The total number of hops for

demands routed in a counter-clockwise direction for ring topologies, hrcc, is given by,

hrcc =

⌊N/2⌋−1
∑

x=0

(⌊

N

2

⌋

− x

)2

. (3.100)

Looking at the two last diagonals of the matrix in (3.97), we observe two paths with

two hops in the first diagonal of the second set and one path with one hop in the last

diagonal, therefore hrcc = 5.
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The total number of hops in ring topologies, hr, with odd number of nodes is equal

to the sum of (3.99) with (3.100),

hr =

⌊N/2⌋
∑

x=1

x(N − x) +

⌊N/2⌋−1
∑

x=0

(⌊

N

2

⌋

− x

)2

. (3.101)

For rings with even number of nodes there are (N − x) paths with length x

for x = 1, . . . , N/2, corresponding to demands routed in a clockwise direction. In

a counter-clockwise direction there are (N/2− x) paths with (N/2− x) hops, for

x = 1, . . . , N/2− 1. Therefore, we can calculate the total number of hops by,

hr =

N/2
∑

x=1

x(N − x) +

N/2−1
∑

x=1

(

N

2
− x

)2

. (3.102)

For instance, considering the matrix in (3.98) and observing the diagonals, we can find

five paths with one hop, four paths with two hops and three paths with three hops.

Besides this, there are also two paths with two hops and one path with one hop.

Adding all the path lengths, i.e., solving expressions (3.101) and (3.102) we found

that the total number of hops in a ring topology with N nodes is given by,

hr =























































(

⌊

N
2

⌋

)3

−
(

⌊

N
2

⌋

)2

+
⌊

N
2

⌋

N

+

(

⌊

N
2

⌋

)2

−

(

⌊

N
2

⌋

)

2
, for N odd

(

N
2

)3

, for N even

. (3.103)

The average number of hops for ring topologies, considering the traffic load may be

calculated with the expression (3.93).

3.7.3 Number of Hops of Backup Paths in Ring Topologies

In a ring topology with dedicated protection, the backup path traverses the ring in

the opposite direction to the working path. Then, we can obtain the number of hops of
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the backup path between i and j with,

h′ri,j = N − hri,j , (3.104)

that is the number of nodes minus the number of hops for the working path. From

(3.104) we can find the matrix [h′] for the five-node ring,

[h′5] =



















0 4 3 3 4

4 0 4 3 3

3 4 0 4 3

3 3 4 0 4

4 3 3 4 0



















, (3.105)

and for the six-node ring,

[h′6] =

























0 5 4 3 4 5

5 0 5 4 3 4

4 5 0 5 4 3

3 4 5 0 5 4

4 3 4 5 0 5

5 4 3 4 5 0

























. (3.106)

Using (3.101), (3.102) and (3.104) the total number of backup hops can be

obtained. In rings with odd number of nodes there are (N − x) backup paths with

(N − x) number of hops, for x = 1, . . . , ⌊ N/2 ⌋, in the counter-clockwise direction

and (⌊N/2⌋ − x) paths with N − (⌊N/2⌋ − x) hops, for x = 0, . . . , ⌊N/2⌋ − 1 in the

clockwise direction. Therefore, we can write

h′r =

⌊N/2⌋
∑

x=1

(N − x)2 +

⌊N/2⌋−1
∑

x=0

(

⌊

N

2

⌋

− x

)(

N −
(⌊

N

2

⌋

− x

)

)

. (3.107)

In the same way, the total number of backup paths for rings with even number of nodes

can be obtained by

h′r =

N/2
∑

x=1

(N − x)2 +

N/2−1
∑

x=1

(

N

2
− x

)2

. (3.108)
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Considering the matrix in (3.106) we have five paths with five hops, four paths with

four hops and three paths with three hops. Besides that there are two paths with four

hops and one path with five hops.

Solving (3.107) and (3.108) results in the exact value of the total backup hops in

ring topologies, h′r,

h′r =















































(⌊

N
2

⌋

− 1
) (

N2 +
⌈

N
2

⌉ ⌊

N
2

⌋)

+
⌈

N
2

⌉

N +
(⌊N

2 ⌋)3−(⌊N
2 ⌋)2

2

−
⌈

N
2

⌉

(

(⌊N
2 ⌋−1)⌊N

2 ⌋
2

)

−N
((⌊

N
2

⌋

− 1
) ⌊

N
2

⌋)

, for N odd

3N3−4N2

8
, for N even

. (3.109)

From (3.103) and (3.109), we obtain for the five-node ring a total of 15 hops in

working paths and 35 hops in backup paths. The ring with six nodes has 27 hops in

working paths and 63 hops in backup paths.

3.8 Survivability Coefficients

Transport networks have to be tolerant to failures to allow high availability of

connections. In order for a network being able to recover from a failure, operators

employ a fraction of spare capacity over the working capacity. However, employing too

much spare capacity will represent a waste of resources and money while employing

less than the required spare capacity may represent loss of revenues (e.g. due to

violations of service level agreements). In this section we discuss how to calculate

the spare capacity necessary for a network to survive against a single link failure,

considering dedicated path protection and shared path restoration.
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3.8.1 Protection Capacity Coefficient

In dedicated path protection a dedicated disjoint backup path is pre-established to

protect each working path. In order to differentiate the number of hops for working

paths from the ones required for the backup paths, we consider two matrices, [h] and

[h′], for the working and backup number of hops, respectively. The average number of

hops for backup paths, 〈h′〉, can be obtained using the expression (3.93), but replacing

hi,j by h′i,j, which is the number of hops for the second shortest path between the

nodes i and j. Similarly, the average number of backup channels per link, 〈w′〉, can

be obtained using the expression (3.91), but replacing 〈h〉 by 〈h′〉. From 〈w〉 and 〈w′〉,
we can calculate the fractional amount of additional capacity required to implement

path dedicated protection against single link failures [1, 10], which we call protection

coefficient,

〈kp〉 =
〈w′〉
〈w〉 =

〈d〉〈h′〉
〈δ〉

〈d〉〈h〉
〈δ〉

=
〈h′〉
〈h〉 . (3.110)

Expression (3.110) is valid for any traffic model considering dedicated path

protection. Nevertheless, the values of 〈h〉 and 〈h′〉 are dependent on the traffic model.

When 〈h′〉 is the average value for the second shortest path, 〈h′〉 is traditionally equal

or higher than 〈h〉. Furthermore, 〈kp〉 is always greater or equal to one.

Considering the four-node and five-link example network presented in Figure 3.1

and the traffic demand presented in (3.5) we obtain 〈kp〉 = 2/1.29 = 1.55, which means

that the network needs 155% of extra capacity to guarantee survivability against

single link failures. The value of 〈kp〉 can be calculated exactly when the demand

matrix [d] and the network topology is given. However, in the lack of information,

approximations can be obtained. Notice that the approximation for 〈kp〉 is dependent

on the approximation of 〈h′〉 and 〈h〉.

3.8.2 Restoration Capacity Coefficient

A network with N nodes and L links may be arranged in many different topologies.

Each topology may have a different average number of hops, 〈h〉, variance of nodal
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degree, σ2(δ), and resource sharing. All those parameters affect the required needed

spare capacity in order to guarantee survivability. In this thesis we consider the spare

capacity of a link, ψl, as the ensemble of channels available to restore services. The

summation of ψl over all links yields the spare capacity of the network, Ψ (in number

of channels). The survivability coefficient of a link, kl, is the fractional increase above

the average number of channels on links, 〈w〉, (which is also known as the working

capacity) and it is defined as

kl =
ψl

〈w〉 . (3.111)

The survivability coefficient for a network is defined as a mean over the number of links

〈k〉 = 1

L

L
∑

l=1

kl. (3.112)

Using (3.111) in (3.112) we obtain

〈k〉 = 1

L

L
∑

l=1

ψl

〈w〉 =
1

L〈w〉

L
∑

l=1

ψl =
Ψ

W
. (3.113)

The average number of channels on links, 〈w〉, and needed spare capacity for

restoration, Ψmin, can be exactly calculated (for a given routing and restoration

scheme) when the network topology and traffic is known. Adding W and Ψmin we

obtain the overall capacity of the network in order to achieve survivability,

W kr
min =W +Ψmin. (3.114)

The restoration coefficient of a network, 〈kr〉, is defined as

〈kr〉 =
Ψmin

W
. (3.115)

Both W and Ψmin depend on the network topology and the traffic demand model,

however we have analyzed networks with uniform and random traffic models and

found that there is not a significant difference in terms of restoration coefficient [11].
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Notice that W also depends on the routing scheme while Ψmin also depends on the

restoration scheme. The value of 〈kr〉 depends on the network topology.

In the following we present the steps necessary to obtain the 〈kr〉 from a given

topology and traffic demand.

yes

no

Start Read a topology
Route a demand

matrix,    

Calculate working

capacity,  

Cut link

Reroute affected 

demands

Obtain network

link state

Reestablish link   

and routing to 

previous state

Calculate total

capacity,        

Calculate minimum

spare capacity,      

Calculate 

restoration

coefficient,      
End

(l = l + 1)

[d] W

(l = 1)

l

l ≤ L?

l

W kΨmin〈kr〉

Figure 3.7: From a network topology and after routing the traffic, the working capacity is
calculated. Next in order to calculate the spare capacity, a failure is generated in each link.
In order to recover from the failure, the affected traffic must be rerouted, which adds and tears
down capacity in some other links. After performing this procedure for all the links, the total
capacity, the needed spare capacity and the restoration coefficient are calculated.

As shown on the flowchart in Figure 3.7, given a survivable network topology

with no link capacity constraints, the demands in a matrix [d] are routed through the

network. After routing all demands each link holds the number of optical channels

necessary to support the traffic, without considering survivability (i.e., the working

capacity for the links).
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The total number of optical channels in the network is given by

W =

N−1
∑

i=1

N
∑

j=i+1

wi,j. (3.116)

in which wi,j is the number of channels in the link that connects the nodes i and j. The

elements wi,j are members of an optical channels matrix [o].

To calculate the capacity for the network recover from single link failures, links are

removed from the topology (simulation of a fiber cut), one-by-one with replacement,

see Figure 3.8b to 3.8g. For each link cut, a new [of ] matrix is generated, which

stores the number of channels on every link after a single link failure. Each [of ] matrix

represents the link state after recovering from a failure on link f , which imposes either

extra or tear down capacity in some links. After all possible link cut are simulated, an

optical channels matrix that considers survivability, [okr ], is generated from

wkr
i,j = maxf{wkr,f

i,j } , i, j = {1, ..., N} , f = {1, ..., L}. (3.117)

The summation of the wkr
i,j elements (with i < j) yields the total capacity required,

considering survivability, which can be expressed as

W kr =
N−1
∑

i=1

N
∑

j=i+1

wkr
i,j. (3.118)

Subtracting from (3.118) the working capacity, (3.116), we obtain an amount of

extra capacity enough to guarantee restoration. Some optimization can be made

on the computation of the [ok] matrix, which leads eventually to a smaller W kr .

However, based on extensive simulations we observed that its effect on the accuracy

of the prediction for the restoration coefficient is negligible. Thus we assume that

from (3.116) and (3.118) we obtain

Ψmin =W kr −W. (3.119)
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Thereafter the 〈kr〉 value is calculated from (3.115).

3.8.2.1 Illustrative Example

Let’s assume a network with five nodes, N = 5, and six links, L = 6, and a

uniform and unitary demand matrix to illustrate the procedure described in Figure 3.7.

Figure 3.8a shows a survivable topology with the traffic matrix routed through it. The

numbers close to the links are the bidirectional demands that cross the links. After the
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Figure 3.8: Over a survivable mesh network topology, traffic is routed following the shortest
path scheme, (a). In order to calculate the spare capacity required to recover from any single
link failure, from (b) to (g), the affected demands are released from the network and rerouted
again. Finally, the maximum number of channels on each link is calculated, see (h), i.e., the
working capacity plus the needed spare capacity.

first routing procedure, the number of optical channels on links can be represented as

a symmetrical matrix, [o], which for our example holds the following values,

[o] =























0 4 0 2 2

4 0 2 0 0

0 2 0 2 0

2 0 2 0 2

2 0 0 2 0























. (3.120)
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This matrix is used to calculate the total number of channels without survivability,

W , which is the capacity required to transport the demands. Thus, using (3.116) we

obtain W = 14. Afterwards, it is simulated a failure on link1 which connects the nodes

(1, 2), see Figure 3.8b. The affected demands are {1-2, 1-3, 2-4, 2-5}, and they should

be released from all the links where they are assigned, i.e., from the links between the

nodes (2, 3), (1, 4) and (1, 5). Table 3.1 shows the restoration result in case of a link

cut between the nodes (1, 2). In the third column, the added demands for each link are

shown. The fourth column shows the released demands for each link. Finally, the last

column holds the required spare capacity on each link in the event of a failure, which

is the subtraction between the number of added and released demands.

Table 3.1: Added/Released demands and the required spare capacity for each link in the event
of a failure on link (1, 2).

Link No Nodes Added Demands Released Added-Released

1 (1, 2) x x x
2 (1, 4) 1-2, 1-3 2-4 1
3 (1, 5) 2-5 -1
4 (2, 3) 1-2, 2-4, 2-5 1-3 2
5 (3, 4) 1-2, 1-3, 2-4, 2-5 4
6 (4, 5) 2-5 1

The negative number, -1, on link (1, 5) means that an affected demand was released,

{2-5}, but no one was rerouted through that link. After the affected demands are

rerouted through the restoration path, the [o1] matrix holds the following values,

[o1] =























0 x 0 3 1

x 0 4 0 0

0 4 0 6 0

3 0 6 0 3

1 0 0 3 0























, (3.121)

which is a copy of the [o] matrix with its elements updated with the values presented in

the fifth column of the Table 3.1. The symbol “x” on the o11,2 element indicates that the
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link (1, 2) is down. After performing the link cut for all the links, we can use (3.117) to

obtain the [okr ] matrix. For our example, the [okr ] matrix holds the following values,

[okr ] =























0 6 0 4 4

6 0 4 0 0

0 4 0 6 0

4 0 6 0 4

4 0 0 4 0























. (3.122)

From [okr ] and using (3.118), we obtain W kr = 28, see Figure 3.8h, and using

(3.119) we obtain Ψmin = 14. Finally we can obtain the fractional increase for

survivability with (3.115), which for our example is 〈kr〉 = 1. This concludes the

illustration of the use of flowchart presented in Figure 3.7. In the following paragraphs

we illustrate the calculation of the resource sharing for the same five-node network

scenario.

In case of restoration the spare capacity of a network may be shared by a number of

demands, and its use depends on the place where a failure occurs and on the restoration

scheme. As we assume the shortest path restoration scheme [12] with stub release [13],

in case of a link failure, all the channels of the affected demands should be released

from their original paths and rerouted. These released channels may be reused, in the

restoration process, to improve the resource utilization.

We define link sharing, denoting by φl, as the ratio between the number of distinct

demands that could cross a link l, w∗
l (considering single link failures), and the capacity

(in terms of number of channels) of the link l, considering restoration, wkr
l . Therefore,

the φl can be written as

φl =
w∗

l

wkr
l

, (3.123)

We can obtain w∗
l with

w∗
l =

L
∑

f=1,f 6=l

w∗
lf , (3.124)

where w∗
lf denotes the number of distinct demands that could cross the link l in the
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event of failure on link f . As we can notice from (3.123), link sharing equal to one

means that there is no sharing at all, because each available capacity is used by only

one demand. On the other hand, if link sharing is equal or greater than two, it means

that each unit of capacity available can be used by two or more demands (one at a

time, of course).

Considering the mean value of φl over all links, we obtain the network resource

sharing, 〈φ〉, which can be written as

〈φ〉 = 1

L

L
∑

l=1

φl. (3.125)

In order to calculate the resource sharing, 〈φ〉, we need first to calculate the link

sharing, φl, for all the links. In the first row of Table 3.2 we can see the demands that

use link 1, which connects the nodes 1− 2, in a failure free scenario, see Figure 3.8a.

Table 3.2: Demands that could cross the link 1.

Cut in link No nodes Demands crossing the link 1

none none 1-2, 1-3, 2-4, 2-5
1 (1, 2)
2 (1, 4) 1-2, 1-3, 2-5
3 (1, 5) 1-2, 1-3, 2-4, 2-5
4 (2, 3) 1-2, 2-3, 2-4, 2-5
5 (3, 4) 1-2, 1-3, 2-4, 2-5, 3-4, 3-5
6 (4, 5) 1-2, 1-3, 2-4, 2-5, 3-5

Total 7 distinct demands (as underlined text)

If a link cut occurs in link 1 all these demands have to be rerouted using other links,

this situation is presented in the second row of Table 3.2. In third row is considered

a cut in link 2. After restoration we can see that link 1 is only used by the following

demands: {1− 2}, {1− 3} and {2− 5}. In the other rows of the table are presented the

results obtained when a cut occurs in any other link. The distinct demands on link 1

are shown as underlined text. The summation of the distinct demands yields w∗
1 = 7.

Figure 3.8h shows that the link (1, 2) has capacity to support six optical channels,

wkr
1 = 6. Therefore, using (3.123), we have φ1 = 1.17. Calculating φl for all the links
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and using (3.125) we obtain the network resource sharing, 〈φ〉. Table 3.3 shows both

the link and the resource sharing for our five-node example network.

Table 3.3: Link and resource sharing.

Link No Nodes w∗
l wkr

l φl

1 (1, 2) 7 6 1.17
2 (1, 4) 9 4 2.25
3 (1, 5) 5 4 1.25
4 (2, 3) 7 4 1.75
5 (3, 4) 7 6 1.17
6 (4, 5) 5 4 1.25

Resource sharing, 〈φ〉 1.47

3.9 Cost of Links with Survivability

In case of a link failure, the affected demands have to be rerouted through

alternative paths. This means that the network has to be dimensioned to support the

working channels and a number of additional channels (also called backup channels).

We can obtain the number of channels on a link, considering survivability, with

wk
l = wl + ψl. (3.126)

Using the averages we can write

〈wk〉 = 〈w〉+ 〈w〉 1
L

L
∑

l=1

kl = 〈w〉+ 〈w〉〈k〉 = 〈w〉(1 + 〈k〉). (3.127)

Notice that 〈k〉 represents a general case for survivability, we must use 〈kp〉 if dedicated

protection survivability is chosen, or 〈kr〉 for shared path restoration. Therefore, to

consider survivability in the model, we have to add the protection or restoration

capacity, using the protection coefficient, 〈kp〉, or restoration coefficient, 〈kr〉, and the

average number of channels per link, 〈w〉, which will result in 〈wkp〉 and 〈wkr〉. As a

consequence, the calculation of the number of network components will consider the
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number of working and backup channels.

A key expression for survivability in links is the one that calculates the number of

transmission systems. Therefore, from (3.23) we have

nS,k
l =

⌈

wk
l

S

⌉

. (3.128)

Dividing (3.128) by the number of links we obtain the average number of transmission

systems per link,

〈nS,k〉 = 1

L

L
∑

l=1

nS,k
l . (3.129)

From (3.129) we can calculate the average number of OLTs per link, considering

survivability as

〈nOLT,k〉 = 2〈nS,k〉. (3.130)

Using (3.130) we can calculate the average cost of OLTs per link, considering

survivability, as

〈cOLT,k〉 = 〈nOLT,k〉γOLT . (3.131)

From (3.30) and (3.128) we can calculate the total number of optical amplifiers, in

the network, considering survivability with

NA,k =
L
∑

l=1

nA,k
l , (3.132)

where nA,k
l is the number of optical amplifiers in a link l, considering survivability,

which can be obtained using (3.128) in (3.29), which is:

nA,k
l =

(

⌈νl
∂

⌉

− 1

)

nS,k
l . (3.133)

Dividing (3.132) by the number of links we obtain the average number of optical

amplifiers per link considering survivability, which can be written as

〈nA,k〉 = NA,k

L
, (3.134)
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and the cost of OAs considering survivability is

〈cA,k〉 = 〈nA,k〉γA. (3.135)

Similarly, we can calculate the number of optical fibers considering survivability. From

(3.34) and (3.128) we can obtain the total quantity of optical fibers in the network as

NF,k =
L
∑

l=1

2νln
S,k
l , (3.136)

and considering the averages we have

〈nF,k〉 = NF,k

L
. (3.137)

Therefore, the cost with optical fibers considering survivability is

〈cF,k〉 = 〈nF,k〉γF . (3.138)

Using (3.131), (3.135) and (3.138) we can obtain the total cost of links with

Ck
L = L

(

〈cOLT,k〉+ 〈cA,k〉+ 〈cF,k〉
)

, (3.139)

and the average cost per link with

〈ckl 〉 = 〈cOLT,k〉+ 〈cA,k〉+ 〈cF,k〉. (3.140)

Notice that we can use 〈ckpl 〉 and 〈ckrl 〉 to indicate that the survivability is based on

dedicated path protection or shared path restoration, respectively.

81



Chapter 3. Network Cost Model

3.10 Cost of Nodes with Survivability

Since we consider survivability at optical layer, EXCs are not affected by survivability

schemes. The OXCs, however, have to be equipped with larger switching capability.

The number of channels that an OXC has to deal with increases when survivability is

required. Moreover, it depends on the traffic, survivability scheme and transport mode.

Regarding the transponders, only long-reach transponders are affected in opaque

transport mode. Regenerators are affected in translucent transport mode. Therefore,

the average cost of nodes, considering survivability can be written as

〈ckn〉 = 〈cEXC〉+ 〈cOXC
tm 〉+ 〈cTSP,k

tm 〉+ 〈cREG,k
tm 〉, (3.141)

where “tm” indicates the transport mode. Multiplying (3.141) by the number of nodes

we obtain the total cost of nodes considering survivability,

Ck
N = N〈ckn〉. (3.142)

In this section we show how to obtain the cost of nodes considering dedicated

path protection and shared path restoration schemes, for opaque, transparent and

translucent networks.

3.10.1 Cost of OXCs with Dedicated Path Protection in Opaque and

Transparent Networks

The calculation of the costs of OXCs for opaque and transparent networks does

not differ. We assume dedicated path protection using single-ended switching, which

protection transponders are used to perform the switching. A protection transponder

splits the input signal into a working and protection path, and these paths feed two

tributary OXC ports [14]. The OXC switches the working and protection signals to

the appropriated trunk ports. At the receiver end, the better signal is selected and

forwarded to EXC. This mechanism is called single-ended switching because one
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switching action is sufficient to recover the affected signal [13]. Thus, it is required

two OXC tributary ports for each add/drop channel. The cost of an OXC, considering

survivability is:

cOXC,kp
op,n = γOXC + nCH,kp

op,n γSW , (3.143)

where n
CH,kp
op,n is the number of bidirectional channels, including protection capacity,

that are processed in the opaque node n, which can be obtained with

nCH,kp
op,n =

1

2

(

2nD
n +

N
∑

j=1

w
kp
n,j

)

, (3.144)

where wkp
n,j is the number of channels connecting nodes n, j, including protection.

In order to illustrate the calculation of (3.144), let’s consider our example network,

in Figure 3.1, and three bidirectional demands with dedicated path protection:

one demand interconnecting nodes 1-2, one interconnecting nodes 1-3, and one

interconnecting nodes 2-3. Figure 3.9 illustrates the routing of that demands.

1 2

3 4

Figure 3.9: The example network in opaque mode, with three demands and dedicated
protection. Routing is performed through the shortest path for working and through the second
shortest path for protection.

The blue line represents the demand {1-2}, the green line the demand {1-3} and

the red line the demand {2-3}. The shortest path between the end nodes is the working
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path and the second shortest path the backup path. For instance, the demand {1-2} is

routed through nodes 1-2 for working and through nodes 1-4-2 for backup. Now let’s

calculate the number of channels processed in node 1, with (3.144). We have nD
1 = 2

and wkp
1,1 = 0, wkp

1,2 = 2, wkp
1,3 = 2, and wkp

1,4 = 2. Thus, can write

n
CH,kp
op,1 =

1

2

(

2× 2 +
(

0 + 2 + 2 + 2
)

)

= 5.

This result can also be obtained by counting the number of channels (colored lines)

directly in the node 1 of Figure 3.9. Considering all nodes we obtain

NCH,kp
op =

N
∑

n=1

nCH,kp
op,n =

1

2

N
∑

n=1

(

2nD
n +

N
∑

j=1

w
kp
n,j

)

=
1

2

(

N
∑

n=1

2nD
n +

N
∑

n=1

N
∑

j=1

w
kp
n,j

)

= D1 +W kp,

(3.145)

where W kp is the total number of channels on links, including protection capacity.

Dividing (3.145) by the number of nodes we obtain the average number of channels

processed per OXC, including protection capacity, which can be written as

〈nCH,kp
op 〉 = N

CH,kp
op

N
=

2D1 + 2W kp

2N

=
2D1

2N
+
L

L

2W kp

2N

= 〈d〉+ 〈δ〉W
kp

2L
,

(3.146)

where W kp/L is the average number of channels per link including protection capacity,

〈wkp〉. Therefore, we can rewrite (3.146) as

〈nCH,kp
op 〉 = 〈d〉+ 〈δ〉〈wkp〉

2
. (3.147)

From (3.143) and (3.147) we obtain the average cost per opaque OXC, including
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protection capacity with

〈cOXC,kp
op 〉 = γOXC + 〈nCH,kp

op 〉γSW . (3.148)

In order to consider transparent mode we can just replace the index “op” by “tr”.

3.10.2 Cost of OXCs with Shared Path Restoration in Opaque and

Transparent Networks

The calculation of the cost of OXCs in opaque and transparent networks with shared

path restoration does not differ. We assume shared path restoration using dual-ended

switching, which is done by the OXCs. In this case a switching protocol is needed to

coordinate the switching action at both ends. This mechanism is called dual-ended

because the switching has to be done at both the sending and receiving end [13]. The

OXC needs only one tributary port for each add/drop channel. This is the difference

from dedicated path protection in terms of tributary ports. Furthermore, one OXC trunk

port is used for the working channel and another is used for restoration, which may be

shared with a number of demands.

The cost of an opaque OXC, considering shared path restoration is, therefore:

cOXC,kr
op,n = γOXC + nCH,kr

op,n γSW , (3.149)

where nCH,kr
op,n is the number of bidirectional channels, including restoration capacity,

that are processed in the opaque node n, which can be obtained with

nCH,kr
op,n =

1

2

(

nD
n +

N
∑

j=1

wkr
n,j

)

, (3.150)

where wkr
n,j is the number of channels connecting node n to node j, including restoration

capacity.

In order to illustrate the calculation of (3.150), let’s consider our example

network, in Figure 3.1, and three bidirectional demands with shared path restoration:
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one demand interconnecting nodes 1-2, one interconnecting nodes 1-3, and one

interconnecting nodes 2-3. Figure 3.10 illustrates the routing of the three demands.

The blue line represents the demand {1-2}, the green line the demand {1-3} and the

red line the demand {2-3}. The shortest path between the source and destination nodes

is the working path (represented as a solid line) and the second shortest path the

backup path (represented as a dashed line). For instance, the demand {1-2} is routed

through nodes 1-2 for working and through nodes 1-4-2 for backup. The working path

of demand {1-3} uses the nodes 1-3 and its backup path uses the nodes 1-4-3. The

demands {1-2} and {1-3} are failure-disjoint, i.e., a link failure that affects the demand

{1-2} does not affect the demand {1-3} and vice-versa), so they can share the capacity

for survivability in the link between the nodes 1-4 (represented as a gray dashed line).

Shared

channel

1 2

3 4

Figure 3.10: The example network in opaque mode, with three demands and shared path
restoration. Dashed lines represent the backup paths.

Now let’s calculate the number of channels in node 1, with (3.150). We have nD
1 = 2

and wkr
1,1 = 0, wkr

1,2 = 2, wkr
1,3 = 2, and wkr

1,4 = 1. Thus, can write

nCH,kr
op,1 =

1

2

(

2 +
(

0 + 2 + 2 + 1
)

)

= 3.5.

Notice that the result is not an integer because some trunk ports may be shared with a

number of demands. Since a channel requires two ports to traverse an OXC we can also
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count the number of ports in the node 1 of Figure 3.10, and divide it by two to obtain

the number of channels in the OXC.

Considering all nodes we obtain

NCH,kr
op =

N
∑

n=1

nCH,kr
op,n =

1

2

N
∑

n=1

(

nD
n +

N
∑

j=1

wkr
n,j

)

=
1

2

(

N
∑

n=1

nD
n +

N
∑

n=1

N
∑

j=1

wkr
n,j

)

=
D1 + 2W kr

2
,

(3.151)

where W kr is the total number of channels on links, including restoration capacity.

Dividing (3.151) by the number of nodes we obtain the average number of channels

per opaque OXC, including restoration capacity, which can be written as

〈nCH,kr
op 〉 =

NCH,kr
op

N
=
D1 + 2W kr

2N

=
D1

2N
+
L

L

2W kr

2N

=
〈d〉
2

+ 〈δ〉W
kr

2L
,

(3.152)

where W kr/L is the average number of channels per link including restoration capacity,

〈wkr〉. Therefore, from (3.152) we obtain

〈nCH,kr
op 〉 = 〈d〉+ 〈δ〉〈wkr〉

2
. (3.153)

From (3.149) and (3.153) we obtain the average cost per OXC, including restoration

capacity with

〈cOXC,kr
op 〉 = γOXC + 〈nCH,kr

op 〉γSW . (3.154)

In order to consider transparent mode we can just replace the index “op” by “tr”.
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3.10.3 Cost of OXCs with Dedicated Path Protection in Translucent

Networks

When calculating the cost of OXCs in translucent networks we have to consider

regeneration. We have seen how to obtain the number of regenerators per demand,

without considering survivability, in (3.58). However, in dedicated path protection

we have also to calculate the number of regenerators required per backup demand.

Therefore, from (3.58) and denoting l′d as the length of a backup demand, we can

obtain the number of regenerators per backup demand with

nr′

d =

⌈

l′d
Λ

⌉

− 1, (3.155)

As regeneration is performed in-node (see Figure 3.11), we have nDR′

n regenerators per

node. Considering all backup demands we obtain the number of regenerators in the

network, for backup demands, with

N r′ =

D
∑

d=1

nr′

d =

N
∑

n=1

nDR′

n , (3.156)

where nDR′

n is the number of backup demands that need regeneration at node n.

Dividing (3.156) by the number of nodes we obtain the average number of regenerators

per node for backup demands, which can be written as

〈nr′〉 = N r′

N
. (3.157)

The number of regenerators per node, considering dedicated protection can be

obtained with

nr,kp
n = nDR

n + nDR′

n . (3.158)

Considering all nodes we obtain the total number of regenerators in a network, which

can be written as

N r,kp =
D
∑

d=1

nR
d +

D
∑

d=1

nr′

d =
N
∑

n=1

nr,kp
n . (3.159)
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Dividing (3.159) by the number of nodes we obtain the average number of regenerators

per OXC, considering dedicated path protection, which is:

〈nr,kp〉 = N r,kp

N
= 〈nR〉+ 〈nr′〉. (3.160)

The cost of a translucent OXC, considering dedicated path protection is obtained

with

c
OXC,kp
tl,n = γOXC + n

CH,kp
tl,n γSW , (3.161)

where n
CH,kp
tl,n is the number of bidirectional channels, including protection capacity,

that are processed in the translucent OXC n, which can be obtained with

n
CH,kp
tl,n =

1

2

(

2nD
n + 2nr,kp

n +

N
∑

j=1

w
kp
n,j

)

. (3.162)

In order to illustrate the calculation of (3.162), let’s consider our example network,

in Figure 3.1, and three bidirectional demands with dedicated path protection:

one demand interconnecting nodes 1-2, one interconnecting nodes 1-3, and one

interconnecting nodes 2-3. Figure 3.11 illustrates the routing of the three demands.

The blue line represents the demand {1-2}, the green line the demand {1-3} and the

red line the demand {2-3}. The shortest path between the source and destination nodes

is the working path and the second shortest path the backup path. For instance, the

demand {1-2} is routed through nodes 1-2 for working and through nodes 1-4-2 for

backup. Notice that the length of backup path for the demand {1-2} is longer than

the Maximum Transparency Length so it needs to be regenerated at node 4. The same

occurs for the demand {1-3}.
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1 2

3 4

300 km

424 km

300 km

3
0

0
 k

m

3
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0
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m

R R

Figure 3.11: The example network in translucent transport mode, with three demands and
dedicated path protection.

Now let’s calculate the number of channels in node 1, with (3.162). We have nD
1 = 2,

nr,kp = 0 and wkp
1,1 = 0, wkp

1,2 = 2, wkp
1,3 = 2, and wkp

1,4 = 2. Thus, we can write

n
CH,kp
tl,1 =

1

2

(

2× 2 + 2× 0 +
(

0 + 2 + 2 + 2
)

)

= 5.

Now let’s consider the number of channels in node 4, with (3.162). Then we have

nD
4 = 0, nr,kp = 2 and wkp

4,1 = 2, wkp
4,2 = 2, wkp

4,3 = 2, and wkp
4,4 = 0. Thus, we can write

n
CH,kp
tl,4 =

1

2

(

2× 0 + 2× 2 +
(

2 + 2 + 2 + 0
)

)

= 5.

Considering all nodes we obtain

N
CH,kp
tl =

N
∑

n=1

n
CH,kp
tl,n =

1

2

N
∑

n=1

(

2nD
n + 2nr,kp

n +
N
∑

j=1

w
kp
n,j

)

=
1

2

(

N
∑

n=1

2nD
n +

N
∑

n=1

2nr,kp
n +

N
∑

n=1

N
∑

j=1

w
kp
n,j

)

= D1 +N r,kp +W kp,

(3.163)

Dividing (3.163) by the number of nodes we obtain the average number of channels
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per OXC, including dedicated protection with

〈nCH,kp
tl 〉 = N

CH,kp
tl

N
=

2D1 + 2N r,kp + 2W kp

2N

=
2D1

2N
+

2N r,kp

2N
+
L

L

2W kp

2N

= 〈d〉+ 〈nr,kp〉+ 〈δ〉W
kp

2L
,

(3.164)

where W kp/L is the average number of channels per link including dedicated

protection, 〈wkp〉. Therefore, we can rewrite (3.164) as

〈nCH,kp
tl 〉 = 〈d〉+ 〈nr,kp〉+ 〈δ〉〈wkp〉

2
. (3.165)

Considering our example network, Figure 3.1, with the demand matrix (3.5), we

obtain 〈nCH,kp
tl 〉 = 10.25. From (3.161) and (3.165) we obtain the average cost per OXC,

including dedicated protection with

〈cOXC,kp
tl 〉 = γOXC + 〈nCH,kp

tl 〉γSW . (3.166)

3.10.4 Cost of OXCs with Shared Path Restoration in Translucent

Networks

The cost of a translucent OXC, considering shared path restoration is given by

cOXC,kr
tl,n = γOXC + nCH,kr

tl,n γSW . (3.167)

where nCH,kr
tl,n is the number of channels, including restoration capacity, that are

processed in the node n, which can be obtained with

nCH,kr
tl,n =

1

2

(

nD
n + 2nr,kr

n +
N
∑

j=1

wkr
n,j

)

, (3.168)
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where nr,kr
n is the number of demands that need regeneration in the node n, considering

restoration. The value of nr,kr
n can be obtained with

nr,kr
n = maxf{nr,kr,f

n } , n = {1, ..., N} , f = {1, ..., L}, (3.169)

where nr,kr ,f
n is the number of demands that need regeneration at node n, in the case

of a failure in the link f . Considering all nodes we have

N r,kr =

N
∑

n=1

nr,kr
n , (3.170)

and dividing (3.170) by the number of nodes we obtain the average number of

regeneration per translucent OXC, considering restoration, which can be written as

〈nr,kr〉 = N r,kr

N
. (3.171)

In order to illustrate the calculation of (3.168), let’s consider our example network,

in Figure 3.1, and three bidirectional demands: one demand interconnecting nodes 1-2,

one interconnecting nodes 1-3, and one interconnecting nodes 2-3. Figure 3.12

illustrates the routing of the three demands.

The blue line represents the demand {1-2}, the green line the demand {1-3} and

the red line the demand {2-3}. The shortest path between the source and destination

nodes is the working path (represented as a solid line) and the second shortest path the

backup path (represented as a dashed line). For instance, the demand {1-2} is routed

through nodes 1-2 for working and through nodes 1-4-2 for backup. The working

path of demand {1-3} uses the nodes 1-3 and its backup path uses the nodes 1-4-

3. Considering Λ = 600 the backup demand {1-2} has to suffer one regeneration at

node 4, since its length is 724 km. Moreover, the backup demand {1-3} also has to

suffer one regeneration at node 4. The demands {1-2} and {1-3} are failure-disjoint,

so they can share the capacity for survivability in the link between the nodes 1-4

(represented as a gray dashed line) and also the regenerator at node 4.
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Figure 3.12: The example network in translucent mode, with three demands and considering
shared path restoration.

Now let’s calculate the number of channels in node 1, with (3.169). We have nD
1 = 2,

nr,kr
1 = 0 and wkr

1,1 = 0, wkr
1,2 = 2, wkr

1,3 = 2, and wkr
1,4 = 1. Thus, can write

nCH,kr
tl,1 =

1

2

(

2 + 2× 0 +
(

0 + 2 + 2 + 1
)

)

= 3.5.

Considering node 4, we have nD
4 = 0, nr,kr

4 = 1 and wkr
4,1 = 1, wkr

4,2 = 2, wkr
4,3 = 2, and

wkr
4,4 = 0. Thus, can write

nCH,kr
tl,4 =

1

2

(

0 + 2× 1 +
(

1 + 2 + 2 + 0
)

)

= 3.5.

Considering all nodes we obtain the total number of channels in a translucent OXCs,

considering restoration, which can be written as

NCH,kr
tl =

N
∑

n=1

nCH,kr
tl,n =

1

2

N
∑

n=1

(

nD
n + 2nr,kr

n +
N
∑

j=1

wkr
n,j

)

=
1

2

(

N
∑

n=1

nD
n +

N
∑

n=1

2nr,kr
n +

N
∑

n=1

N
∑

j=1

wkr
n,j

)

=
D1 + 2N r,kr + 2W kr

2
,

(3.172)
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Dividing (3.172) by N we obtain the average number of channels per translucent OXC,

considering restoration, which is

〈nCH,kr
tl 〉 = NCH,kr

tl

N
=
D1 + 2N r,kr + 2W

2N

=
D1

2N
+

2N r,kr

2N
+
L

L

2W kr

2N

=
〈d〉+ 2〈nr,kr〉

2
+ 〈δ〉W

kr

2L

=
〈d〉+ 2〈nr,kr〉+ 〈δ〉〈wkr〉

2
.

(3.173)

From (3.167) and (3.173) we obtain the average cost of a translucent OXC with

〈cOXC,kr
tl 〉 = γOXC + 〈nCH,kr

tl 〉γSW . (3.174)

3.10.5 Cost of Transponders considering Survivability

In opaque networks, the number of short-reach transponders are not affected by the

survivability schemes considered in this thesis. The number of long-reach transponders,

considering survivability, can be calculated by including the survivability coefficient.

Therefore, from (3.72) we have

〈nLR,k
op 〉 = 〈δ〉〈wo〉(1 + 〈k〉) = 〈δ〉〈wk〉, (3.175)

where k has to be kp or kr according to the survivability scheme. From (3.175) we can

obtain the cost of long-reach transponders, considering survivability with

〈cTSP,k
op 〉 = 〈nSR〉γSR + 〈nLR,k

op 〉γLR. (3.176)

Since in transparent and translucent networks the long-reach transponders are

installed between EXCs and OXCs, transponders are not affected by the survivability

schemes considered in this thesis.
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3.10.6 Cost of Regenerators considering Survivability

In translucent networks with dedicated path protection, the cost of regenerators is

given by

cREG,kp
n = nr,kp

n γREG, (3.177)

and considering the averages we obtain

〈cREG,kp〉 = 〈nr,kp〉γREG. (3.178)

In order to consider translucent networks with shared path restoration, we can use

(3.177) and (3.178), replacing the index “kp” by “kr”.

3.11 A Case Study

In this section we present the costs related to the nodes and links of an optical

transport network. Let’s consider the network topology presented in Figure 3.1,

implemented as a SONET/SDH-over-WDM multilayer network. Each EXC basic node

provides 16 bidirectional slots of 40 Gbps. The slots may be equipped with a variety

of tributary and trunk port cards differing in granularity and interface technology.

Nonetheless, here we consider only the cost of trunk ports. Each trunk port (also

known as EXC trunk interface) is assumed to be a gray interface STS-192/STM-

64 (10 Gbps). Each OXC provides a number of fiber ports (degrees), and each degree

has capacity to support a transmission system with 40 channels (e.g., an OXC with

degree four, δn = 4, supports four bidirectional transmission systems of 40 channels

each. Therefore the switching matrix should have at least 4× 40 = 160 bidirectional

ports (usually represented in “number of ingress ports” x “number of egress ports”

like 160 x 160) [15]. Figure 3.13a shows an example of an OXC with four degrees, in

which each degree is connected to a transmission system that supports one bidirectional

channel. Notice that all channels from the trunk sides may be dropped on the tributary

side. The node has eight input ports and eight output ports. Therefore, it requires a

8 x 8 switching matrix. Figure 3.13b shows the dimension of the required matrix.
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In fact, the cost of an OXC basic includes a fixed cost and a cost that scales with

the nodal degree, which is γOXC = 8.33× δn + 2.5 [16]. In this thesis we calculate the

cost of each OXC using the average nodal degree, which for our example network is

〈δ〉 = 2.5. Each link comprises one transmission system with capacity to deal with forty

WDM channels, (S = 40), at bit rate of 10 Gbps each, and is equipped with an OA

every 100 km (∂ = 100 km). The traffic to be considered is the one presented in the

matrix (3.5), the page 44. Each demand represents an STS-192/STM-64.
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Figure 3.13: Schematic representation of a non-blocking OXC: (a) the OXC input and output
ports. (b) the dimension of its switching matrix.

The cost model still depends on a set of variables that represent the monetary cost

of each network component. We are going to use the normalized cost values shown in

Table 3.4, which is based on the work presented in [17].

Table 3.4: Cost of network components.

Component Variable Cost Relation

EXC basic (640 Gbps - 16 slots) γEXC 13.33 node
OXC basic (40 channel system)∗ γOXC 23.32 node

Switching per channel γSW 0.67 node
EXC trunk port γTP

exc 0.67 node

Short-reach transponder γSR 0.67 node
Long-reach transponder γLR 1.00 node

Regenerator γREG 2.00 node
Optical Line Terminal γOLT 4.17 link

Optical Amplifier (100 km span) γOA 1.92 link

Optical Fiber (1 km) γF 0.80 link
∗ - Obtained from γOXC = 8.33× 〈δ〉+ 2.5, with 〈δ〉 = 2.5.
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In Table 3.5 shows the values of the variables presented throughout this Chapter,

for opaque, translucent and transparent transport modes. Moreover, the values are

calculated in three ways: 1) considering a network without survivability, 2) with

dedicated path protection and 3) with shared path restoration. Notice that, since a

transmission system has sufficient capacity to support the optical channels crossing

the link, even considering survivability, the number of optical line terminals, optical

amplifiers and fiber does not increase with survivability.

In Table 3.6 we present the CAPEX for the network with opaque transport mode and

dedicated path protection. The second column shows the average cost of components,

separated by costs of links and nodes. For instance, the average cost of OLTs per link

is 〈cOLT,kp〉 = 8.34 monetary units (see the first line and second column in Table 3.6).

Multiplying that value by the number of links we obtain the total cost with OLTs in

the network. The third column shows the average number of components (per link

or node) and the fourth column the total number of components in the network. For

instance, we can see that it is needed an average of 2.4 optical amplifiers per link,

which results in 12 for the network (see the second line in Table 3.6). Notice that

in lines of the cost of EXCs and OXCs the number of components is related to EXC

trunk ports and channels processed in OXC, respectively. Moreover, in the number of

transponders we sum the short- and long-reach transponders (see the ninth line, third

column), i.e., 3.5 + 11.5 = 15, the values for this addition were taken from Table 3.5.

The last row shows the total CAPEX for the network. All quantities shown on the second

to the last column of Table 3.6 were also obtained by counting the components directly

on Figure 3.15. This validates our calculation procedure. Notice that the network is

configured as single-ended switching, so each short-reach transponder duplicates the

traffic and feed it two tributary ports of the OXC.

Similarly we present a table and a figure to show CAPEX of every transport modes

and survivability schemes studied in this thesis. Table 3.7 shows CAPEX for our

example network, considering opaque transport mode and shared path restoration.

The quantities shown on the table were confirmed by counting directly on Figure 3.16.

Notice that the network is configured as dual-ended switching, so each short-reach
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transponder feeds only one tributary port of the OXC, and the OXCs at both ends of the

affected optical channel performs the switching from the working path to the backup

path, in case of a link failure. Since this method saves OXC tributary ports and switching

capacity, the cost of OXCs is lower than the previous configuration. Moreover, since

each long-reach transponders is shared among a number optical channels we need

less transponders. Therefore, this configuration tends to be more cost-efficient than the

previous one.

Table 3.8 shows CAPEX for our example network, considering translucent transport

mode with dedicated path protection. The quantities were confirmed by counting

directly on Figure 3.17. Notice that this configuration has single-ended switching,

but here we use long-reach transponders to feed the signal to two tributary ports

of the OXCs, and transponders are not used between the OXC and the transmission

system. Additionally, in this transport mode regenerators were taken into account.

Considering Λ = 600, four backup demands {1-2, 1-3, 2-4, 3-4} need one regeneration

each, therefore we obtain 〈nr′〉 = 1. Table 3.9 shows results for translucent transport

mode with shared path restoration, and Figure 3.18 shows the network configuration

for component number checking. Although this configuration has the additional cost

of regenerators, the number of transponders is greatly reduced when compared with

opaque configurations. Therefore, the cost of nodes tends to be lower.

Table 3.10 shows the results for transparent transport mode with dedicated path

protection. The quantities of components were confirmed by counting directly on

Figure 3.19. Notice that in this case the network does not make use of short-reach

transponders. Therefore, the cost and number of transponders is related to long-reach

transponders. Table 3.11 shows the results for transparent transport mode with shared

path restoration, and Figure 3.20 shows the network configuration for component

number checking. Since this configuration does not use regenerator, short-reach

transponders, and long-reach transponders between OXCs and transmission systems,

it tends to be the most cost-efficient. Figure 3.14 shows a comparative chart of the

CAPEX for all analyzed transport modes and survivability strategies.
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Figure 3.14: Comparative of CAPEX for the four-node network under different transport mode
and survivability strategy. DPP stands for dedicated path protection, and SPR for shared path
restoration.

According to our model, the cost of links is the same for all transport modes and

survivability strategies. The cost of nodes tends to decrease as we configure the network

with opaque to translucent to transparent. However, the survivability strategy may

change this tendency. For instance, for the network considered in Figure 3.14, the

configuration with translucent transport mode and shared path restoration is more

cost-effective than the configuration with transparent transport mode and dedicated

path protection.
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Table 3.5: Quantities of network components.

Without Survivability With Protection With Restoration
Variable Value Variable Value Variable Value

Number of Nodes N 4 N 4 N 4

Number of Links L 5 L 5 L 5

Number of bidirectional demands D 7 D 7 D 7

Average number of demands 〈d〉 3.5 〈d〉 3.5 〈d〉 3.5

Average nodal degree 〈δ〉 2.5 〈δ〉 2.5 〈δ〉 2.5

Average number of hops 〈h〉 1.3 〈h〉 1.3 〈h〉 1.3

Average number of hops for backup 〈h′〉 2.0 〈h′〉 2.0 〈h′〉 2.0

Average number of channels on links 〈w〉 1.8 〈w〉 1.8 〈w〉 1.8

Survivability coefficients 〈kp〉 1.6 〈kr〉 1.0

Average number of channels on links, with survivability 〈wkp〉 4.6 〈wkr 〉 3.6

Capacity of transmission system 〈S〉 40 〈S〉 40 〈S〉 40

Average number of transmission system 〈nS〉 1.0 〈nS,kp〉 1.0 〈nS,kr〉 1.0

Average number of OLTs 〈nOLT 〉 2.0 〈nOLT,kp〉 2.0 〈nOLT,kr 〉 2.0

Average number of optical amplifiers 〈nA〉 2.4 〈nA,kp〉 2.4 〈nA,kr 〉 2.4

Average quantity of fiber 〈nF 〉 649.6 〈nF,kp〉 649.6 〈nF,kp〉 649.6

Average number of EXC trunk ports 〈nTP
exc〉 3.5 〈nTP

exc〉 3.5 〈nTP
exc〉 3.5

Average number of channels on OXC for opaque networks 〈nCH
op 〉 4.0 〈nCH,kp

op 〉 9.3 〈nCH,kr
op 〉 6.3

Average number of channels on OXC for transparent networks 〈nCH
tr 〉 4.0 〈nCH,kp

tr 〉 9.3 〈nCH,kr

tr 〉 6.3

Average number of regenerators per OXC 〈nR〉 0.0

Average number of regenerators per OXC, for backup 〈nr′〉 1.0

Average number of regenerators per OXC, considering survivability 〈nr,kp〉 1.0 〈nr,kr 〉 0.5

Average number of channels on OXC for translucent networks 〈nCH
tl 〉 4.0 〈nCH,kp

tl 〉 10.3 〈nCH,kr

tl 〉 6.8

Average number of short-reach transponders 〈nSR〉 3.5 〈nSR〉 3.5 〈nSR〉 3.5

Average number of long-reach transponders in opaque networks 〈nLR
op 〉 4.5 〈nLR,kp

op 〉 11.5 〈nLR,kr
op 〉 9.0

Average number of long-reach transponders in transparent networks 〈nLR
tr 〉 3.5 〈nLR

tr 〉 3.5 〈nLR
tr 〉 3.5

Average number of long-reach transponders in translucent networks 〈nLR
tl 〉 3.5 〈nLR

tl 〉 3.5 〈nLR
tl 〉 3.5
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Table 3.6: CAPEX for the opaque network with dedicated path protection.

Variable Cost Avg. # components # total Equation
C

os
t

of
lin

ks 〈cOLT,kp〉 8.34 2.00 10 (3.131)
〈cA,kp〉 4.61 2.40 12 (3.135)
〈cF,kp〉 0.00 649.60 3248 (3.138)
〈ckpl 〉 12.95 (3.140)
C

kp
L 64.74 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 15.68 3.50 14 (3.46)
〈cOXC,kp

op 〉 29.52 9.25 37 (3.148)
〈cTSP,kp

op 〉 13.84 15.00 60 (3.176)
〈ckpn 〉 59.03 (3.141)
C

kp
N 295.17 (3.142)

CT = 359.91 (3.12)
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Figure 3.15: Opaque network with dedicated path protection.
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Table 3.7: CAPEX for the opaque network with shared path restoration.

Variable Cost Avg. # components # total Equation

C
os

t
of

lin
ks 〈cOLT,kr〉 8.34 2.00 10 (3.131)

〈cA,kr〉 4.61 2.40 12 (3.135)
〈cF,kr〉 0.00 649.60 3248 (3.138)
〈ckrl 〉 12.95 (3.140)
Ckr

L 64.74 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 15.68 3.50 14 (3.46)
〈cOXC,kr

op 〉 27.51 6.25 25 (3.154)
〈cTSP,kr

op 〉 11.34 12.50 50 (3.176)
〈ckrn 〉 54.52 (3.141)
Ckr

N 272.60 (3.142)

CT = 337.34 (3.12)
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Figure 3.16: Opaque network with shared path restoration.
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Table 3.8: CAPEX for the translucent network with dedicated path protection.

Variable Cost Avg. # components # total Equation
C

os
t

of
lin

ks 〈cOLT,kp〉 8.34 2.00 10 (3.131)
〈cA,kp〉 4.61 2.40 12 (3.135)
〈cF,kp〉 0.00 649.60 3248 (3.138)
〈ckpl 〉 12.95 (3.140)
C

kp
L 64.74 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 15.68 3.50 14 (3.46)
〈cOXC,kp

tl 〉 30.19 10.25 41 (3.166)
〈cTSP

tl 〉 3.50 3.50 14 (3.81)
〈cREG,kp〉 2.00 1.00 4 (3.178)
〈ckpn 〉 51.36 (3.141)
C

kp
N 205.45 (3.142)

CT = 270.19 (3.12)
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Figure 3.17: Translucent network with dedicated path protection.
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Table 3.9: CAPEX for the translucent network with shared path restoration.

Variable Cost Avg. # components # total Equation

C
os

t
of

lin
ks 〈cOLT,kr〉 8.34 2.00 10 (3.131)

〈cA,kr〉 4.61 2.40 12 (3.135)
〈cF,kr〉 0.00 649.60 3248 (3.138)
〈ckrl 〉 12.95 (3.140)
Ckr

L 64.74 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 15.68 3.50 14 (3.46)
〈cOXC,kr

tl 〉 27.84 6.75 27 (3.174)
〈cTSP

tl 〉 3.50 3.50 14 (3.81)
〈cREG,kr〉 1.00 0.5 2 (3.178)
〈ckrn 〉 48.02 (3.141)
Ckr

N 192.06 (3.142)

CT = 256.80 (3.12)
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Figure 3.18: Translucent network with shared path restoration.
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Table 3.10: CAPEX for the transparent network with dedicated path protection.

Variable Cost Avg. # components # total Equation
C

os
t

of
lin

ks 〈cOLT,kp〉 8.34 2.00 10 (3.131)
〈cA,kp〉 4.61 2.40 12 (3.135)
〈cF,kp〉 0.00 649.60 3248 (3.138)
〈ckpl 〉 12.95 (3.140)
C

kp
L 64.74 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 15.68 3.50 14 (3.46)
〈cOXC,kp

tr 〉 29.52 9.25 37 (3.148)
〈cTSP

tr 〉 3.50 3.50 14 (3.77)
〈ckpn 〉 48.69 (3.141)
C

kp
N 194.77 (3.142)

CT = 259.51 (3.12)
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Figure 3.19: Transparent network with dedicated path protection.
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Table 3.11: CAPEX for the transparent network with shared path restoration.

Variable Cost Avg. # components # total Equation

C
os

t
of

lin
ks 〈cOLT,kr〉 8.34 2.00 10 (3.131)

〈cA,kr〉 4.61 2.40 12 (3.135)
〈cF,kr〉 0.00 649.60 3248 (3.138)
〈ckrl 〉 12.95 (3.140)
Ckr

L 64.74 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 15.68 3.50 14 (3.46)
〈cOXC,kr

tr 〉 27.51 6.25 25 (3.154)
〈cTSP

tr 〉 3.50 3.50 14 (3.77)
〈ckrn 〉 46.68 (3.141)
Ckr

N 186.72 (3.142)

CT = 251.46 (3.12)
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Figure 3.20: Transparent network with shared path restoration.

106



Claunir Pavan 3.12. Chapter Summary

3.12 Chapter Summary

In this Chapter, the network cost model for networks operating in opaque,

transparent and translucent transport mode was introduced. The model can be used

to calculate the quantities and costs of the main components into a network.

However, notice that some information may be computational intensive to obtain,

such as the average number of hops and survivability coefficients, specially for larger

networks. In order to obtain the exact values for those variables we have to route the

traffic demand, and compute backup paths for the demands affected in case of failures.

Furthermore, it is assumed that all information about the network is available. In

order to overcome the absence of some information about the network, we can use

statistics to estimate that information. We noticed that in order to estimate the CAPEX

of a network with a given number of nodes and links, but without the knowledge on

the network topology and traffic matrix, we need to estimate just five parameters: the

total traffic, the average number of hops for working and backup paths, survivability

coefficient and average link length. The specific case of translucent networks with

shared path restoration also requires an estimation for the sharing of regenerators.

The estimation of the required parameters will be studied in Chapter 5.
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Chapter 4

Generation of Transport Network Topologies

4.1 Introduction

Computer generated network topologies are often employed to perform simulations

and analysis of algorithms in telecommunications networks. The reason for using

computer generated (CG) topologies is due to the lack of available real-world networks

in a large number for extensive studies [1]. Usually, completely random topologies do

not have the required characteristics [2]. Therefore, their use can lead to incorrect

decision making, such as underestimation of the impact of failures in a network. Thus,

it is crucial to have a method to generate network topologies that resemble real-world

transport networks.

Network topology generators [3–11] are extensively available in the literature.

In [3], the author presents a model for generating random graphs in which the nodes

are distributed over a plane, and links are added to the graph using a probability

function based on the Euclidean distance between the nodes. In [4] and [5], the

multi-level hierarchy found in the Internet is used to generate Internet-like topologies.

In [6], the authors extract the autonomous system and router level topologies from the

Internet and from that realistic core, topologies are generated. In [7], the authors show

that the nodal degree distribution of the autonomous system level topologies follow

a power-law. From that, several topology generators have been built based on power

laws [8–11]. However, previous efforts have been focused on topologies resembling the

Internet, which is a scale-free network [12]. Scale-free networks contain a few nodes

with a very high number of links, while most nodes have just a few links. The nodal
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degree distribution tends to follow a power law [12].

In this thesis, we are concerned with optical transport networks with survivable

topologies. The characteristics of this kind of networks differs from scale-free networks.

For instance, it is extremely rare to find nodes that have significantly more or fewer

links than the average. Thus, topologies that resemble the Internet or topologies based

on power laws are not suitable for optical transport network analysis. The starting

point of our work is an extensive analysis of real-world transport networks to identify

their relevant characteristics, presented in section 4.2. Next, in section 4.3 a model

to generate topologies that resemble optical transport networks is proposed, and in

section 4.4 we validate the model. In section 4.5 we study how to obtain a survivable

physical topology that satisfies the traffic requirements and minimizes CAPEX, using a

genetic algorithm.

4.2 Transport Network Topology Characteristics

In order to identify and study the key variables of real transport networks, we

have collected a set of twenty nine topologies of real survivable transport networks

(all that we have found). The number of nodes ranges from nine to one hundred, see

Table 4.1. Next we analyze the characteristics of these network topologies, with the

aim of identifying the relevant variables for the adequate characterization of transport

networks.

In general, a real-world transport network topology can be seen as a graph over

a two-dimensional plane. The nodes are distributed according to the expected traffic

demand in each geographic area. Thereby, we can often identify regions with more

nodes than the others. Here a region stands for a number of cities or countries

(it depends on the geographic area). Figure 4.1 shows a possible set of regions on

the European Optical Network topology. Although regions without any or very few

nodes are pretty likely to be found, we can frequently find a set of nodes that form a

closed cycle when the region hosts a set of at least three nodes. Closed cycles of nodes

allow for the survivability because each pair of nodes has two disjoint interconnecting
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Table 4.1: Real-world reference networks.

Number Network [13] N L 〈δ〉
1 VIA NETWORK 9 12 2.67
2 BREN 10 11 2.20
3 RNP 10 12 2.40
4 vBNS 12 17 2.83
5 CESNET 12 19 3.17
6 NSFNET 14 21 3.00
7 ITALY 14 29 4.14
8 AUSTRIA 15 22 2.93
9 MZIMA 15 19 2.53
10 ARNES 17 20 2.35
11 GERMANY 17 26 3.06
12 SPAIN 17 28 3.29
13 LAMBDARAIL 19 23 2.42
14 MEMOREX 19 24 2.53
15 CANARIE 19 26 2.74
16 EON 19 37 3.89
17 ARPANET 20 32 3.20
18 PIONIER 21 25 2.38
19 COX 24 40 3.33
20 SANET 25 28 2.24
21 NEWNET 26 31 2.38
22 PORTUGAL 26 36 2.77
23 RENATER 27 35 2.59
24 GEANT2 32 52 3.25
25 LONI 33 37 2.24
26 METRONA 33 41 2.48
27 OMNICOM 38 54 2.84
28 INTERNET 2 56 61 2.18
29 USA 100 100 171 3.42

paths. When a node is unique within a region the survivability tends to be provided by

connecting the node to at least two nodes in neighbor regions; in the case of regions

with two nodes, the nodes tend to be directly connected and each one tends to be

directly connected to at least a single node in a neighbor region. This way a transport

network can also be seen as a set of smaller networks (one for each region).

Besides this holistic view, we were able to identify a few variables that characterize

transport network topologies. The most relevant are the nodal degree, δ; the number
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Figure 4.1: Physical topology of the European Optical Network (EON). The nodes, numbered
from 1 through 19, are interconnected with optical cables and distributed across a geographic
area. Some regions are more densely populated with nodes and links than others. Regions with
a cluster of nodes often present cycles (see the stronger links).

of hops, h; link-disjoint pairwise connectivity, ω; node-disjoint pairwise connectivity, θ;

and clustering coefficient, c. In the following we define and present each variable in

more detail, and relate them to the real-world transport networks shown in Table 4.1.

In order to determine the distribution of δ, h, ω, θ and c, we performed a

variety of goodness-of-fit statistical tests. A goodness-of-fit test is a special kind of

hypothesis test, which is used to verify how well a model describe the data. Moreover,

it lies on parametric or nonparametric statistic test [14]. Parametric statistical tests

require that a sample analyzed is taken from a population that meets the normality

assumption. On the other hand, non-parametric tests are used when assumptions

about the population distribution are not made or are questionable [15]. Thus,

because we did not know the distribution that describe our data in advance, we

conducted non-parametric statistics (also called distribution-free statistics). There exist

a number of non-parametric tests, including Wilcoxon, Mann-Whitney, Kruskal-Wallis

and Kolmogorov-Smirnov tests. Kolmogorov-Smirnov test tends to be more powerful

when the sample size is smal [14], therefore, this test was chosen for our analysis

since our data set comes from 29 networks. The Kolmogorov-Smirnov goodness-of-
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fit test for one sample is used to compare the observed frequencies of the values of

a variable against a given theoretical distribution. Then it determines the statistical

significance of the largest difference between them. We have tested our data against

normal, uniform, Poisson and exponential distributions, using a software for statistical

analysis called SPSS [16].

Using the one-sample Kolmogorov-Smirnov test, we verified that the nodal degrees

of 21 networks out from 29 from Table 4.1 follow a Poisson distribution at 0.05

significance level, and the remaining 4 networks (18, 21, 23, 27) follow a Poisson

distribution at 0.01 significance level. In Figure 4.2, it is presented the nodal degree

relative frequency distribution for the USA100 network and the Poisson probability

function, with mean 〈δ〉 = 3.42. We have noticed that the networks failing the test at
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Figure 4.2: Nodal degree relative frequency and the Poisson probability function, with mean
〈δ〉 = 3.42, for the USA100 network. We verified that real transport networks tend to follow a
Poisson distribution for the nodal degree.

both significance levels (networks 17, 25, 26, 28), are quasi-regular, i.e., the nodal

degree is almost the same for all nodes and the variance is small. The above results

confirm the results obtained in [12] and [17]. According to [17], the nodal degree of

optical transport networks tends to follow a Poisson distribution. These networks are
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also called exponential networks because the probability that a node is connected to k

other nodes tends to decrease exponentially for larger k.

In survivable topologies, the minimum nodal degree is required to be two,

i.e., δmin ≥ 2. Note that this condition is necessary but not sufficient for survivability

purposes. The nodal degree in our reference networks ranges from 2 to 10, and the

average nodal degree ranges from 〈δ〉 = 2.18 to 〈δ〉 = 4.14, as shown in Figure 4.3.

Considering all networks we have obtained 〈δ〉∗ = 2.8. We use the asterisk index to

indicate that the value of the parameter is obtained from the set of networks rather

than a particular one. The standard deviation for nodal degree ranges from 0.4 to 2.

Figure 4.3: The minimum, average and maximum values of nodal degree for the twenty nine
real-world network topologies of Table 4.1.

In Chapter 3 we have defined the average number of hops, expression (3.93),

depending on the demands matrix. In this Chapter we intend to obtain the number

of hops between a node pair, and the number of demands between them are not

considered. Thus, we may consider a uniform demands matrix, i.e., a matrix where
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all di,j elements are 1. This allow to rewrite the expression (3.93) as

〈h〉 = 2

N(N − 1)

N−1
∑

i=1

N
∑

j=i+1

hi,j. (4.1)

In Figure 4.4 we can see that the number of hops vary between 1 and 21. Regarding the

average number of hops, 〈h〉, the values range from 2 to 8.5 and the standard deviation

is in the range of 0.7 to 4.6. Considering all networks we have 〈h〉∗ = 3.4. We observed

that larger networks are sparser, which tends to lead to higher average number of hops.
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Figure 4.4: The minimum, average and maximum values of number of hops for twenty nine
real-world network topologies.

Since a failure may affect various shared resources, the connectivity must be

sufficient to allow recovery techniques to be employed. Recovery techniques usually

rely on node and/or link-disjoint paths to ensure that both the working and backup

paths will not be affected by the same single failure [18]. Connectivity is a measure

that depends on the number of disjoint paths. Link-disjoint pairwise connectivity, ωi,j,

is the number of link-disjoint paths between the node pair i, j. That is, between the

nodes i and j there are ωi,j paths in which the intermediary links are not shared. The

value of ωi,j also indicates the allowed number of link failures. For instance, a network
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with ωi,j = 2 for all pairs of nodes tolerates single link failures [4, 19]. For ωi,j = 3

at most two link failures are tolerated and so forth. Adding the link-disjoint pairwise

connectivity of all node pairs and dividing by the number of possible bidirectional node

pairs we obtain the average link-disjoint pairwise connectivity, 〈ω〉, for a network,

〈ω〉 = 2

N(N − 1)

N−1
∑

i=1

N
∑

j=i+1

ωi,j. (4.2)

Referring to Figure 4.5 we can see that survivable networks have at least two link-

disjoint paths between each pair of nodes, ωi,j ≥ 2. Furthermore, this value goes up to

7 in our sample, ωi,j ≤ 7. The standard deviation obtained is in the range of 0 to 0.9.

The average link-disjoint pairwise connectivity, 〈ω〉, increases with 〈δ〉. Considering all

networks we have 〈ω〉∗ = 2.25.
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Figure 4.5: The minimum, average and maximum values of link connectivity for twenty nine
real-world network topologies.

Two paths are node-disjoint if they have no nodes in common other than the source

and destination. Node-disjoint pairwise connectivity, θi,j , is the number of node-disjoint

paths between the node pair i, j. The value of θi,j also indicates the tolerance to node

failures. Since a node-disjoint path also implies link-disjoint path, a network with
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θi,j ≥ 2 for all node pairs allows survivability against both node and link failures [20].

We can obtain the average node-disjoint pairwise connectivity, 〈θ〉, for a network with,

〈θ〉 = 2

N(N − 1)

N−1
∑

i=1

N
∑

j=i+1

θi,j . (4.3)

Node-disjoint pairwise connectivity, 〈θ〉, tends to increase with 〈δ〉. As can be seen in

Figure 4.6, some of our real-world reference topologies do not tolerate node failures,

see the networks in which the minimum node-disjoint pairwise connectivity is 1.

For our reference networks, the values of node-disjoint pairwise connectivity satisfies

1 ≤ θi,j ≤ 7, with standard deviation in the range of 0 to 1. The average node-disjoint

pairwise connectivity, 〈θ〉, for survivable topologies against single node failures ranges

between 2 and 3. Considering all networks we have 〈θ〉∗ = 2.21.
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Figure 4.6: The minimum, average and maximum values of node connectivity for twenty nine
real-world network topologies.

The clustering coefficient of a node, ci, quantifies how close its neighbors are to

being a full mesh. The neighborhood of a node, ni, is the set of nodes which are directly

connected to the node i. The value of ci vary from 0 to 1, being 1 if the neighborhood

forms a full mesh and 0 if none of the neighbors are directly connected [21]. For
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undirected and connected graphs, the clustering coefficient of a node is defined as

ci =
2ti

δi(δi − 1)
, (4.4)

where ti is the number of existing triangles involving the node i and its ni neighbors,

and δi is the nodal degree of the node i. The clustering coefficient of the network, 〈c〉,
is the average clustering coefficient of all nodes in the network,

〈c〉 = 1

N

N
∑

i=1

ci. (4.5)

The clustering coefficient of the network ranges from 0 to 0.69, with standard deviation

in the range of 0 and 0.4. Considering all networks we have obtained 〈c〉∗ = 0.19.

4.3 Generating Realistic Transport Network Topologies

The proposed method is based on the Waxman model [3]. This choice was made

because topologies generated with the Waxman model tend to follow a Poisson

distribution for the nodal degree [22, 23] (the same trend of real-world transport

networks). However, in order to more accurately satisfy the characteristics of survivable

networks, our method differs from the Waxman model in the following: a) the plane is

divided into regions; b) nodes placement and connectivity obey certain constraints.

In the Waxman approach the probability of a node pair to be directly connected is

Pi,j = β exp
−ιi,j
ζα , (4.6)

where ιi,j is the Euclidean distance between the nodes i and j, ζ is the maximum

distance between any two nodes and α and β are parameters in the range of (0, 1].

Increasing the value of α leads to a larger ratio of long links to short links, whereas

the probability of links between any pair of nodes increases with β. Figure 4.7 shows

a network topology generated with the Waxman model. As can be seen in Figure 4.7,

the Waxman model produces topologies with nodes of degree one. Also, it does not
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Figure 4.7: A network generated by the Waxman model, with α = 0.4 and β = 0.4.

guarantee a connected topology [4,5]. Moreover, as the Waxman model distributes the

nodes randomly over the whole plane, links crossing the whole plane tend to appear.

Therefore, the networks generated do not have the connectivity characteristics of real-

world survivable transport networks.

Our proposed method models a survivable transport network according to our

observations on real networks, which is a set of interconnected smaller sub-networks,

and introduces constraints to guarantee the characteristics showed in the previous

section. As presented in Table 4.2, our method requires a set of nine inputs. The number

of nodes, N . Minimum and maximum mean nodal degrees, 〈δ〉min and 〈δ〉max, used to

specify the minimum and maximum number of links. The area of the plane, A. The

plane is assumed to be a square with side X =
√
A. The number of regions, R̊, used as

part of the strategy to resemble the connectivity of transport networks. The minimum

distance between the nodes, d, which restricts the distance between the nodes. The α

and β are parameters of the embedded Waxman link probability [3]. The number of

simulations is specified by ϕ.

The method consists of the following five major steps:

• divide the plane into R̊ regions;

• assign and place the N nodes into the regions;
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• interconnect the nodes inside each region;

• interconnect nodes between different regions;

• add links to satisfy the mean nodal degree criterion.

Table 4.2: Input variables for the proposed method.

Variable Description

N number of nodes
〈δ〉min minimum average nodal degree
〈δ〉max maximum average nodal degree

A area of the plane in arbitrary units
R̊ number of regions
ι minimum distance between two nodes
α Waxman link probability parameter
β Waxman link probability parameter
ϕ number of simulations

The plane is partitioned into R̊ equal area regions. Each region has an area of

Ar = ∆Xx
r∆X

y
r , (4.7)

where ∆Xx
r and ∆Xy

r are the dimensions of the region r. The number of horizontal and

vertical divisions on the plane depends on the given R̊, which is firstly decomposed into

two numbers (p1, p2). The p1 is the largest prime number such that R̊ is divisible by p1.

The number p2 is the ratio between R̊ and p1. Then ∆Xx
r = X/p2 and ∆Xy

r = X/p1.

Thus, the plane is divided into p1 rows and p2 columns, as illustrated in Figure 4.8,

where R̊ = 6. In case of R̊ being a prime number, one is added to R̊ to allow this plane

division strategy. The extra region remains without nodes.

Given the area of a region, Ar, and the minimum distance between two nodes, ι,

the maximum number of nodes that can be placed into a region is roughly

nmax =
Ar

ι2
. (4.8)

In order to distribute the nodes the regions are chosen at random and the nodes are

assigned to them, obeying the limit nmax. Thereafter, the nodes are randomly placed
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(a) (b)

(c) (d)

Figure 4.8: (a) The plane and regions. (b) Node placing, connection and blocked areas.
(c) Region interconnection. (d) A possible network topology over a six-region plane.

over the respective regions, obeying the given minimum distance between the nodes, ι

(which represents a blocked area around the nodes). In Figure 4.8b, the placed nodes

are shown as black squares whereas the light blue squares represent the blocked area.

After the above procedure, we may have regions without nodes, with one, two or

more than two nodes. If a region has two or more nodes an additional procedure is

required, that is, if there are two nodes they are directly connected; if there are more

than two nodes they are connected as a cycle. For regions with more than three nodes,

the way the nodes are directly connected follows the Waxman link probability [3]. See

a scenario for this phase in Figure 4.8b.
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Once the nodes inside each region are interconnected, new links should be added

to interconnect the regions. This process also follows the Waxman link probability,

however, each node of the selected pair belongs to different regions. In order to

guarantee that the generated topology will be survivable, some precautions should be

taken into account: if a region has only one node, this node must be connected to at

least two nodes of neighbor regions; if the region has only two nodes, each one must be

connected to a node in neighbor regions; if a region has more than two nodes, at least

two nodes must be connected to nodes of neighbor regions. Two nodes of a region can

be connected to the same destination node in a neighbor region only if node-disjoint

paths are not required.

At this phase we have a connected and survivable network topology (at least against

single link failures). However, new links should be added until the given minimum

mean nodal degree, 〈δ〉min, is reached. This procedure is done following the Waxman

link probability. Afterwards, a new topology is stored for each new link between 〈δ〉min

and 〈δ〉max. This procedure will generate several network topologies with the same node

distribution, but with different average nodal degrees, 〈δ〉. If the number of simulations,

ϕ, is more than one, the nodes and links should be cleared from the plane and all

procedures from the node distribution are done again with the same inputs.

The number of topologies that are generated during the algorithm run, T , depends

on 〈δ〉min, 〈δ〉max, ϕ and N , and it is given by

T = ϕ

⌊

(〈δ〉maxN − 〈δ〉minN

2

)

+ 1

⌋

. (4.9)

Given the minimum average nodal degree, 〈δ〉min, maximum average nodal degree,

〈δ〉max, and total number of nodes, N , we achieve the number of different topologies

that are generated during the algorithm run. The expression (〈δ〉maxN − 〈δ〉minN) /2

gives the number of bidirectional links that remains to be included in an initial topology

in order to go from 〈δ〉 = 〈δ〉min until 〈δ〉 = 〈δ〉max. The ϕ is the number of algorithm

runs. The floor function is applied because it is not always possible to obtain topologies

with the given 〈δ〉min and 〈δ〉max, with N nodes. Figure 4.8d shows an example of a
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network topology, and Figure 4.9 shows the flowchart of the algorithm.
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Figure 4.9: Flowchart of the generation algorithm. A plane is divided into R̊ regions, and a
number of nodes is assigned and placed to each region. After the nodes are interconnected,
new links are added while the mean nodal degree is between 〈δ〉min and 〈δ〉max.

4.4 Experiments and Results

In order to validate the method, we implemented a program following the flowchart

in Figure 4.9. Before starting the topology generation we have to calibrate the

generator, which means to find out adequate values for the input parameters.

For transport network topologies, the number of nodes N varies from 10 to 100

nodes. The mean nodal degree is 2 ≤ 〈δ〉 ≤ 4 as can be seen in Figure 4.3. The area

of the plane, A, must be large enough to accommodate N nodes. Using the number

of nodes, N , and the minimum distance between the nodes, ι, the value of A must be

larger than Nι2. The number of regions, R̊, depends on the size of the plane and the

number of nodes. A plan with more regions leads to more cycles and higher 〈h〉. We

performed several simulations varying the value of R̊ from 1 to 40 using the number
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of nodes of our reference networks, and noticed that for transport networks with a

number of nodes under a hundred, a suitable range of values is between 4 ≤ R̊ ≤ 20.

For larger networks, a higher R̊ may be used.

For the experiments conducted in this work we have assumed the same N and 〈δ〉 of

the real-world reference networks. The plane was assumed to be A = 1002. The plane

was partitioned into twelve regions, R̊ = 12, and the minimum distance between the

nodes was considered to be two, ι = 2. In [3], the author used α = 0.4 and β = 0.4.

In order to verify whether these values are appropriate for our method, we used the

one-sample Kolmogorov-Smirnov test to obtain the best-fit curve to the link length

distribution over all real-world topologies.

Figure 4.10 shows that the curve fits well with the same values originally used

by Waxman in [3], with mean error less than 2%. Therefore we use α = 0.4 and

β = 0.4. The minimum, average and maximum values for the nodal degree, δ,

number of hops, h, link-disjoint pairwise connectivity, ω, and node-disjoint pairwise

connectivity, θ, for the generated networks have been calculated and are graphically

represented in Figures 4.11, 4.13, 4.14 and 4.15.

In order to identify whether the variables of computer generated topologies follow

the same distribution of the real-world ones, we have conducted the two-independent-

sample Kolmogorov-Smirnov test [15]. We take one sample of computer generated

networks and a sample of real-world networks, with the same number of nodes and

links. Then we test the hypothesis that they follow the same distribution. Regarding

nodal degree, the tests have revealed that all computer generated topologies follow the

same distribution of the respective real-world topologies at 0.05 significance level.

Referring Figure 4.11, we can see that the network topologies have δmin ≥ 2 and

δmax ≤ 8 and 〈δ〉 ranges from 2 to 4 with standard deviation in range of 0.6 to 2.6.

Considering all networks we have 〈δ〉∗ = 2.8. Figure 4.12 shows the nodal degree

relative frequency and the Poisson probability function, with mean 〈δ〉 = 3.42, for a

computer generated topology with N = 100, L = 171 (these values correspond to the

ones of the network presented in Figure 4.2). As we can see, the degree distribution of

the computer generated network tends to follow a Poisson probability function.
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Figure 4.10: Waxman link probability (expression 4.6) with α=0.4 and β=0.4 over a link length
distribution. We have considered 950 links of networks presented in Table 4.1.

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

6

8

10

12

N
o
d
al

 d
eg

re
e

Artificial reference networks

 Minimum
 Average
 Maximum

Figure 4.11: The minimum, average and maximum values of nodal degree for twenty nine
computer generated network topologies.

Figure 4.13 shows that the number of hops range from 1 to 20. The average number

of hops, 〈h〉, ranges from 2 to 8.3 with a standard deviation in range of 0.7 to 4.3.
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Figure 4.12: Nodal degree relative frequency and the Poisson probability function, with mean
〈δ〉 = 3.42, for a computer generated topology with N = 100, L = 171 (these values are
identical to the USA100 topology, see Figure 4.2).
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Figure 4.13: The minimum, average and maximum values of number of hops for twenty nine
computer generated network topologies.
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Considering all networks we have 〈h〉∗ = 3.2. These results closely agree with the

observations obtained from real-networks.

Figure 4.14 shows that all computer generated network topologies have at least two

link-disjoint paths between each pair of nodes, ωi,j ≥ 2, and at most six, ωi,j ≤ 6. The

average link-disjoint pairwise connectivity, 〈ω〉, ranges from 2 to 3 independently of

the network size and present a standard deviation in range of 0.1 to 1. Considering all

networks we have 〈ω〉∗ = 2.3.
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Figure 4.14: The minimum, average and maximum values of link-disjoint pairwise connectivity
for twenty nine computer generated network topologies.

The node-disjoint pairwise connectivity satisfies 1 ≤ θi,j ≤ 6, see Figure 4.15. The

average node-disjoint pairwise connectivity, 〈θ〉, for survivable topologies against

single node failures ranges between 2 and 3 with a standard deviation in range of

0 to 1.1. Considering all networks we have 〈θ〉∗ = 2.26. In terms of both link and node-

disjoint pairwise connectivity, all the computer generated topologies follow the same

distribution of the respective real-world topologies at 0.05 significance level.

In terms of clustering coefficient of the network, all the computer generated

topologies follow the same distribution of the respective real-world topologies at 0.05

significance level. The clustering coefficient of the networks ranges from 0 to 0.65 with
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Figure 4.15: The minimum, average and maximum values of node-disjoint pairwise connectivity
for twenty nine computer generated network topologies.

standard deviation in the range of 0 to 0.4. Considering all networks we have obtained

〈c〉∗ = 0.16. Figure 4.16 shows a comparison between the clustering coefficient of real

and computer generated networks. The average deviation is 0.07.

Table 4.3: Summary of the values of key variables.

Var
Minimum Average∗ Maximum Std.Deviation
Real CG Real CG Real CG Real CG

δ 2 2 2.80 2.80 10 8 0.4-2.0 0.6-2.6
h 1 1 3.40 3.20 21 20 0.7-4.6 0.7-4.3
ω 2 2 2.25 2.30 7 6 0.0-0.9 0.1-1.0
θ 1 1 2.21 2.26 7 6 0.0-1.0 0.0-1.1
c 0 0 0.19 0.16 1 1 0.0-0.4 0.0-0.4

In Table 4.3 we summarize the values of key variables obtained from both real

and computer generated (CG) network topologies. We can see that, although a given

number of nodes and links may produce a huge number of topologies, the computer

generated topologies effectively shows statistics similar to the real-world optical

transport networks. Table 4.4 shows a comparison between a real-world transport

network and a computer generated one.
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Figure 4.16: Comparison between the clustering coefficient of real and computer generated
networks. The minimum and maximum deviation between each pair of networks (real and
computer generated) is 0 and 0.23, respectively. The average deviation is 0.07.

Table 4.4: Comparative between a real and a computer generated topology. The topologies has
the same number of nodes and links as the EON topology.

Var
Real EON Topology CG EON topology
Range Average Range Average

δ 1-7 3.89 1-6 3.89
h 1-5 2.30 1-5 2.40
ω 2-7 2.90 2-6 3.00
θ 2-6 2.6 2-6 2.8

Therefore, the statistics are similar to the ones presented in the EON network.

Similar results were obtained with more than fifty thousand computer generated

network topologies, when compared with the real-world network statistics. Figure 4.17

shows an example of a computer generated network.

4.5 Topological Design using a Genetic Algorithm

In this section we study how to obtain a survivable physical topology that satisfies

the traffic requirements and minimizes CAPEX, i.e., the most cost efficient network
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Figure 4.17: Example of a computer generated network topology for N =19, L=37, A=100,
R̊=12, ι=2, ζ=71, α=0.4, β=0.4. Possible cycles inside regions are shown as stronger links.

topology. In practice, several traffic scenarios are defined and evaluated, then the

lowest cost network which will remain feasible for the majority of the scenarios is

implemented [24]. However, this method is time consuming so it is crucial to design

physical topologies, ensuring the routing of the required traffic and guaranteeing the

network survivability at minimum cost.

In this section we consider networks with opaque transport mode and dedicated

path protection. For ease of modeling, the cost of long-reach transponders is calculated

as part of the links cost. Moreover, we consider that the network should be survivable

against any single link failure. Thus, the underlying topology is a 2-connected graph.

The topological design of minimum cost 2-connected graphs, not allowing the use of

parallel edges, is strongly NP-hard [25], thus Integer Linear Programming (ILP) models

only lead to optimal solutions, within reasonable time and computational effort, for

small size networks. Consequently, heuristics are commonly used to search near optimal

solutions. Here we address the problem of design the physical topology, ensuring

survivability and minimizing the network CAPEX in optical transport networks. In order

to deal with this problem we propose a genetic algorithm [26].

As the convergence of the genetic algorithm depends on the used genetic operators,
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we analyze their impact on the quality of the obtained solutions. We also compare the

performance of different generators of initial population, selection methods, crossover

operators and population sizes. The performance of the proposed heuristic is evaluated

using an ILP model. We use a simplified cost model to calculate the CAPEX of an

optical network to obtain exact results that can be compared with the heuristic

solutions. The computational results are obtained using the node location of nine real

telecommunications networks.

4.5.1 Simplified Model

Let’s represent a transport network as a weighted graph, G(V,E), in which

the set of vertices, V = {1, . . . , N}, correspond to the nodes and the set of edges,

E = {(i, j) : i, j ∈ V, i < j}, represents all possible bidirectional links. The weight of

an edge (link) (i, j) is assumed to be proportional to its length and is denoted by νi,j.

The demand between the origin node, a, and destination node, b, is denoted by

{a, b} and the set of all demands by D = {{a, b} : a, b ∈ V }. The number of optical

channels needed in each link to support the demands from a to b is denoted by Ba,b.

We denote the total cost of a link by ci,j, which can be calculated with

ci,j =
(

cOLT
i,j + cAi,j + cFi,j

)

. (4.10)

Notice that expression (4.10) is the same presented in (3.21). Here we just replace the

index “l′′ by “i, j′′ to indicate the nodes connected to the link.

We can calculate the cost of long-reach transponders with

cTSP
i,j = 2γTSPw

kp
i,j, (4.11)

where wkp
i,j is calculated using

w
kp
i,j =

∑

(a,b)∈D

Ba,bZ
a,b
i,j , (4.12)
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where Za,b
i,j is a binary variable that indicates whether the demand {a, b} is routed

through the link (i, j) or not. Using (4.10) and (4.11) the total cost of links is given

by

CL =
∑

{i,j}∈E

(ci,j + cTSP
i,j ). (4.13)

We assume that the node location and the traffic are inputs of the model. We are

also assuming that the EXC and the OXC switching matrices are able to process all

the required traffic, so the cost of nodes is fixed. Now the main goal is to find the

physical topology that minimizes CL. Since addressing topological design problems

via ILP models is prohibitive for larger networks, we propose a genetic algorithm to

minimize the expression (4.13). In order to evaluate the performance of our proposed

genetic algorithm, in terms of accuracy, time consumption and memory requirements,

we compare its results with an ILP model and a set of realistic transport networks.

4.5.2 Genetic Algorithm

A genetic algorithm is a heuristic based on the theory of natural evolution and has

the following steps: generation of an initial population, encoding, evaluation, selection,

crossover, mutation and decoding [26, 27]. After generating a set of initial feasible

solutions of the problem (also called individuals), the genetic algorithm modifies that

population repeatedly. A pair of individuals is chosen under selection rules and is

combined under crossover rules. This gives rise to another pair of individuals (also

called offsprings). To increase the population diversity, mutations can be also applied.

For our proposed genetic algorithm, a feasible solution is a network topology

with at least two link-disjoint paths between any pair of nodes. We consider two

topology generators to create the initial population set. One generates completely

random topologies and is based on the work presented in [28]. The other is our

generator presented in Chapter 4. The random topology generator starts by designing

a ring topology connecting all nodes of the network, thus, guaranteeing that all initial

solutions are feasible (they have at least link-disjoint paths between any pair of nodes).
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Afterwards, links are added to the ring topology to connect pairs of nodes randomly

selected. The number of additional links is randomly generated and ranges from 0 to

(N2 − 3N)/2, i.e., from a ring to a full mesh network.

The encoding corresponds to the creation of a genetic code which uniquely

represent a solution. To encode the solutions we used the concatenation of the rows of

the upper triangular of the adjacency matrix, [g]. As the network links are bidirectional

the adjacency matrix is symmetric. Given the genetic code of the solutions, the decoding

performs the inverse operation. As an example, considering the adjacency matrix

presented in (3.1) (see page 42), which represents our example network presented

in Figure 3.1, the respective genetic code is

1 1 1 | 0 1 | 1.

The evaluation consists of determining the Capital Expenditures of each individual,

i.e., the CAPEX of each feasible topology. In the selection phase, pairs of individuals

are chosen for crossover. Usually, individuals are selected based on their fitness, i.e.,

the CAPEX of the respective solution, emphasizing the fitter individuals and expecting

that their offsprings will have higher fitness. However, a rigid selection may reduce

the diversity of the population leading to suboptimal solutions; contrariwise a flexible

selection may result in slow evolution. We have implemented two different selection

methods, that differ in the selection rigidness. The methods are the roulette wheel and

the tournament method [29].

In the roulette wheel method, after all solutions are evaluated, the total cost of

the generation is determined by adding the cost of all solutions. The next step is the

calculation of the fitness of each solution. The fitness of each solution is the difference

between the total cost of the generation and the cost of the solution. Thus, the solutions

with lower cost will have higher fitness than the solutions with higher cost. Finally, the

selection probability is calculated making the ratio between the fitness of each solution

and the sum of the fitness of all individuals. In this way solutions with lower cost have

greater probability of being selected for crossover.
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In the tournament method, four individuals are randomly selected from the

population and then they are grouped into sets of two. Afterwards, two random

numbers, r1 and r2, ranging between 0 and 1 are generated. If r1 < 0.75, the solution

with the lowest cost (highest fit) in the first set is selected for crossover. Otherwise,

the less fit solution is selected. The same process occurs in the second set, allowing the

selection of the lowest cost solution from one set and the highest from the other.

In the crossover operation pairs of individuals, previously selected, are combined

giving rise to another pair of new individuals. Two crossover operators are

implemented, the single point crossover and the uniform crossover [29].

In the single point crossover, a border between two elements of the genetic code

is randomly selected. Then, the left side code part of Progenitor 1 and Progenitor 2 is

copied to the Offspring 1 and Offspring 2, respectively. The right side code parts are

exchanged, i.e., the right side code part of the Progenitor 1 is copied to the Offspring 2

and the right side code part of the Progenitor 2 to the Offspring 1. Table 4.5 shows an

example of single point crossover. Using the border between the fourth and the fifth

element of the genetic code for both progenitors we obtain the two offsprings.

Table 4.5: Example of the single point crossover.

Individual Genetic Code

Progenitor 1 1 1 1 1 0 1
Progenitor 2 1 0 1 1 1 1

Offspring 1 1 1 1 1 1 1
Offspring 2 1 0 1 1 0 1

In the uniform crossover, a binary mask is randomly generated. If the crossover mask

bit i is 1, the Offspring 1 receives the bit i from the Progenitor 1 and the Offspring 2 the

bit i from the Progenitor 2. If the mask bit i is 0, the Offspring 1 inherit the bit i from

the Progenitor 2 and the Offspring 2 from the Progenitor 1. The example in Table 4.6

illustrates the process.

The mutation operation consists in a simple exchange of 0’s to 1’s, or vice versa,

at random locations of the genetic code, for a random number of selected individuals.

The goal of this operation is to increase the diversity of the population.
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Table 4.6: Example of the uniform crossover.

Individual Genetic Code

Progenitor 1 1 1 1 1 0 1
Progenitor 2 1 0 1 1 1 1

Mask 0 1 1 0 0 1

Offspring 1 1 1 1 1 1 1
Offspring 2 1 0 1 1 0 1

After the individuals are evaluated, selected and reproduced, the next generation

is created. The selection of the individuals to form the next generation is made from

the current generation and the generated Offsprings. In this work we consider that

a maximum of 20% of individuals are selected from the current generation, and the

remaining 80% are generated Offsprings.

4.5.3 Integer Linear Programming Model

In this section, we present an ILP model to minimize the transmission cost a

survivable optical transport network. In order to formulate the flow conservation

constraints the binary variable Za,b
i,j is divided into two variables Y a,b

i,j and Y a,b
j,i , where

the former indicates that the demand {a, b} is routed through the link (i, j) and flows

from node i to j. The latter indicates that the demand flows is in the opposite direction.

The ILP model is the following [30],

minimize CL =
∑

{i,j}∈E

(ci,j + cTSP
i,j )

subject to

∑

j∈V \{a}

Y a,b
i,j −

∑

j∈V \{b}

Y a,b
j,i =























2, i = a

0, i 6= a, b

−2, i = b

∀(a, b) ∈ D, ∀i ∈ V (4.14)

∑

(a,b)∈D

Ba,b(Y
a,b
i,j + Y a,b

j,i ) ≤ Si,jn
S
i,j ∀{i, j} ∈ E (4.15)

nS
i,j ∈ N0 ∀{i, j} ∈ E (4.16)

Y a,b
i,j ∈ {0, 1} ∀(a, b) ∈ D (4.17)

∀{i, j}, {j, i} ∈ E
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Constraints set (4.14) are the usual flow conservation constraints and ensure that,

for each {a, b} pair, we route two units of flow from node a to node b, i.e., one flow as

the working path and one as the backup. Constraints set (4.15) connects the variables

nS
i,j and Y a,b

i,j , guaranteeing that the total number of optical channels crossing the link

(i, j), in both directions, does not exceeds the maximum capacity, Si,j , of the number

of transmission systems, nS
i,j . Constraints set (4.16) define the variables nS

i,j as natural

numbers (zero is also included), allowing the installation of more than one pair of

transmission systems in each connection. The disjointness of the two flows, to ensure

survivability, is enforced by constraints (4.17). As the variables Y a,b
i,j are binary, the two

flows cannot traverse the same edges.

4.5.4 Computational Experiments

In the following the computational results obtained using the genetic algorithm and

the ILP model are presented. The genetic algorithm is implemented in C++. Using the

genetic algorithm feasible solutions, corresponding to upper bounds for the optimal

value, are obtained. The ILP model is used to obtain lower bounds and is solved using

the branch and bound method from the commercial optimization software Xpress IVE

1.18. The results are obtained using a PC Intel Core 2 at 1.83 GHz and 1 GB RAM.

The halting criteria used for the ILP model is the obtention of the optimal solution or

10 hours of processing time. In the genetic algorithm we performed 100 iterations,

which required less than four minutes for the largest network. We observed marginal

improvements in the solutions obtained when increasing this number of iterations.

To evaluate the quality of the obtained solutions the gap between the upper, bu, and

the lower, bl, bound is calculated as follows

gap =
100(bu − bl)

bu
, (4.18)

where bu is obtained using the genetic algorithm and bl using the ILP model.

The computational results are obtained for the node location of nine real transport

networks. We assume that all links can be implemented. The maximum number of
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optical channels supported by each transmission system is 40, i.e., Si,j = S = 40, and

the interval between OAs is 100 km, i.e., ∂ = 100. The cost of the equipments is shown

in Table 3.4. To assess the impact of the initial population, selection method, crossover

operator and number of individuals in the population, we perform five runs for each

combination:

• 100 individuals, roulette wheel selection, single point crossover;

• 100 individuals, tournament selection, single point crossover;

• 100 individuals, roulette wheel selection, uniform crossover;

• 100 individuals, tournament selection, uniform crossover;

• 500 individuals, roulette wheel selection, single point crossover;

• 500 individuals, tournament selection, single point crossover;

• 500 individuals, roulette wheel selection, uniform crossover;

• 500 individuals, tournament selection, uniform crossover.

4.5.4.1 The Impact of the Initial Population

We start by assessing and comparing the quality of the obtained solutions when

using different initial population generators. The presented results are obtained using

a uniform demand matrix. The initial populations are randomly generated as described

in [28] and following our proposed generator presented in Chapter 4. The number

of nodes, regions, and nodes placed in each region are presented in Table 4.7, for all

considered networks. Notice that the regions and nodes per region are features of our

topology generator only.
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Table 4.7: Real-world reference networks.

Network Nodes Regions Nodes per Region

VIA 9 2 5 - 4
RNP 10 4 0 - 8 - 1 - 1
vBNS 12 3 3 - 4 - 5
CESNET 12 3 4 - 7 - 1
ITALY 14 2 12 - 2
NFSNET 14 2 7 - 7
AUSTRIA 15 3 3 - 4 - 8
GERMANY 17 4 8 - 2 - 5 - 2
SPAIN 17 4 8 - 2 - 7 - 0

Figure 4.18 shows the evolution of the gap for the best solution obtained, among all

combinations, for initial populations generated using the random topology generator

(Figure 4.18a) and using our topology generator (Figure 4.18b). As we can see in

Figure 4.18a, for initial populations generated using the random topology generator,

the optimal solution is obtained for VIA, RNP and vBNS networks. With the increase in

the number of nodes the gap also increases reaching almost 15%.
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Figure 4.18: Evolution of the gap for nine reference networks. Each shape mark represents the
best solution of each iteration. Initial populations are generated with: (a) random topology
generator and (b) our proposed topology generator.

For initial populations generated using our topology generator, see Figure 4.18b, the

genetic algorithm also obtains the optimal solution for VIA, RNP and vBNS networks.
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Increasing the number of nodes the gap also increases. However, the solutions obtained

within 100 iterations have gaps always smaller than 10%.

Considering our results, only for the networks in which the optimal solution is

obtained, an initial population randomly generated obtains a solution as good as the

one obtained using our proposed topology generator. In all the other networks the

solutions obtained using our topology generator have smaller cost. The improvements

range between 1% and 10%. One reason for this is that in the random topology

generator all the links have the same probability to be chosen. Contrariwise, in our

topology generator longer links have smaller probability than shorter ones.

4.5.4.2 The Impact of the Combinations

In this section, the eight combinations are compared and analyzed. The results are

obtained using an initial population generated using our topology generator and a

uniform demand model. Figure 4.19 shows the best solutions obtained in each iteration

by the genetic algorithm, for each combination. Results for the vBNS network are

presented in Figure 4.19a and for SPAIN network in Figure Figure 4.19b. The lower

bound was obtained using the ILP model and is presented as a solid line.
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Figure 4.19: Evolution of the best solution obtained in each iteration using our topology
generator for the eight combinations. The lower bound was obtained with the ILP model (solid
black line). Experiments were performed with (a) vBNS and (b) SPAIN networks.

Figure 4.19a shows that, for the 12-node network, the convergence to a solution is
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fast for all combinations. As the number of nodes increases, the convergence is slower.

Figure 4.19b shows that the convergence to a solution is only visible after the 60th

iteration. The difference between the quality of the solutions increases as well.

To compare the eight combinations the gap of the best solution obtained for each

method, among the five runs, is presented in Table 4.8. The best solution obtained is

marked as bold. The genetic algorithm with a population of 500 individuals, roulette

wheel selection and uniform crossover obtains the best solution for eight networks.

Moreover, a population of 500 individuals, tournament selection and uniform crossover

equals the best solution in six networks. The second best solution is also always

obtained by another combination. The difference between the solutions tends to

increase with increasing of the number of nodes.

Table 4.8: Gap of the best solution with eight combinations for initial populations.

100 individuals 500 individuals

Single Point Uniform Single Point Uniform

Network R. Wheel Tourn. R. Wheel Tourn. R. Wheel Tourn. R. Wheel Tourn.

VIA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RNP 2.6 7.9 3.5 2.7 1.9 1.9 0.0 0.0
vBNS 1.9 2.5 0.0 2.7 2.1 2.7 0.0 0.0
CESNET 6.0 8.9 4.1 6.0 7.0 7.3 4.8 4.1
ITALY 15.6 16.3 8.5 10.1 21.1 10.4 6.0 6.0
NFSNET 13.2 22.2 9.7 11.3 10.5 13.1 8.2 8.7
AUSTRIA 17.6 14.8 9.8 11.3 13.9 13.7 7.8 8.4
GERMANY 19.6 22.4 13.9 13.9 16.8 14.9 9.5 9.5
SPAIN 18.8 22.7 12.8 17.8 14.9 18.4 8.8 9.7

Making a comparison among the combinations, the uniform crossover obtains better

solutions than the single point crossover, independently of the number of individuals

and selection method, see Table 4.8. In the uniform crossover, offsprings do not

preserve large blocks of genetic code from their progenitors, therefore it increases

the population diversity and allows the genetic algorithm to obtain better solutions.

On the other hand, with the crossover operator fixed, the solutions obtained using

the roulette wheel method for selection are quite similar to the ones obtained using

the tournament method. Comparing the results obtained with the different sizes of

population, with the selection method and crossover operator fixed, large populations
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(e.g., 500 individuals) result better solutions than smaller ones (e.g., 100 individuals).

However, runs were also done with populations of 1000 individuals and only residual

improvements were obtained, when compared to solutions with 500 individuals. In

spite of the individuals generation and the crossover operators being random, the

difference between the solutions obtained by each run is not significant. Moreover,

as the size of the network increases such difference decreases.

4.5.4.3 The Impact of the Traffic Model

In the following, we analyze the best results obtained using the genetic algorithm

and the results obtained using the ILP model, for uniform and non-uniform demand

matrices. The non-uniform demand matrices are randomly generated with 0 ≤ Ba,b ≤ 5.

The gap and the processing time for the solutions obtained using the ILP model and

the genetic algorithm are presented in Table 4.9.

Table 4.9: Computational results using the ILP model and the Genetic Algorithm for uniform
and non-uniform demand matrices.

Uniform Demand Model Non-uniform Demand Model

ILP GA ILP GA

Network Nodes Time gap Time gap Time gap Time gap

VIA 9 1 s 0.0 8 s 0.0 4 s 0.0 8 s 0.0
RNP 10 42 s 0.0 27 s 0.0 24 m 0.0 27 s 3.2
vBNS 12 2 m 0.0 32 s 0.0 10 h 1.8 32 s 4.6
CESNET 12 7 h 0.0 01 m 4.1 10 h 0.3 01 m 5.7
ITALY 14 10 h 4.4 02 m 6.0 10 h 3.2 02 m 9.3
NFSNET 14 10 h 3.0 02 m 8.2 10 h 5.7 02 m 9.6
AUSTRIA 15 10 h 4.4 02 m 7.7 10 h 8.0 02 m 10.8
GERMANY 17 10 h 6.7 04 m 9.5 8 h∗ 8.6 04 m 12.2
SPAIN 17 10 h 8.3 04 m 8.8 10 h 8.4 04 m 13.0

∗ Overloaded memory

Considering uniform demand matrices, the ILP model obtained the optimal solution

for networks with less than 12 nodes. Considering the vBNS and CESNET networks,

note that in spite of having the same number of nodes the processing time required

using the ILP model to achieve the optimum solution is substantially different, see
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Table 4.9. A reason for this may be found in the difference of the geographical area

where the networks are implemented. The vBNS network, with 12 nodes, is in the USA

and the CESNET network, also with 12 nodes, is in the Czech Republic. Due to the

large area that the USA network has to cover, the majority of its links are fixed since

the beginning due to the distance. For networks with more than 12 nodes the ILP model

obtains a solution with a gap smaller than 8.3% within 10 hours.

The genetic algorithm is much faster than the ILP model and obtains near optimal

solutions. For networks with less than 12 nodes the genetic algorithm obtains either

the optimal solution or a solution with a gap of 4% within 1 minute. For networks

with more than 12 nodes the genetic algorithm obtains solutions with gaps smaller

than 10% within 4 minutes. A solution was obtained in approximately 45 minutes for

a network with 100 nodes. In this case, the gap was not calculated as this problem

cannot be addressed using the ILP model within a reasonable time and computational

effort.

The results obtained using the ILP model and the genetic algorithm for GERMANY

network and a uniform demand matrix is shown in Figure 4.20a. Dashed links are

the ones that differ in both solutions. Black dashed lines represent the links obtained

using the genetic algorithm, and red dashed lines the links using the ILP model. The

black solid lines represent the common links to both solutions. None of the topologies

is optimal, see Table 4.9. However, the majority of the optimal links are already present

in both solutions.

Considering non-uniform demand matrices, the complexity increases. In this case

the ILP model obtained the optimal solution, within the time limit, only for network

VIA and RNP. However, solutions with a gap smaller than 8.6% can still be obtained in

10 hours. We noticed that the ILP model obtains solutions with gaps smaller than 10%

within 3 hours of processing time. With GERMANY network, the computer runs out of

memory before the given time limit.

The genetic algorithm maintains the processing time, although the results obtained

show an increased gap. We observed that such increase is due to the routing algorithm.

The optimal routing is not always the shortest path, sometimes longer routes can
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(a) GERMANY (b) RNP

Figure 4.20: Topologies obtained using the ILP model and the genetic algorithm for the node
location of (a) GERMANY network with uniform demand matrix and (b) RNP network with
non-uniform demand matrix. The dashed links differ in both solutions and the solid links are
common.

optimize the network available resources. For instance, when a transmission system

along the shortest path of a channel does not have available capacity, it may be

preferable to route that channel through a longer path to avoid the installation of

an additional transmission system. Figure 4.20b depicts the best result obtained with

the node location of the RNP network, using the ILP model and the genetic algorithm

with a non-uniform demand matrix. As we can see in Table 4.9, the genetic algorithm

obtained a solution with a gap of 3.2%. Nevertheless, the physical topology obtained is

optimal, see Figure 4.20b. The gap is only due to suboptimal routing.

4.5.4.4 Discussion

The ratio between the gap (of the order of 10%) and the processing time obtained,

using the genetic algorithm, encourage the use of this kind of heuristic within the

survivable optical network design problem. We shown that providing initial populations

generated using a method that preserves the main characteristics of real optical

networks improves the quality of the obtained solutions. Moreover, crossover operators

that do not preserve large blocks of the genetic code increase the diversity of the

population and the probability of finding better solutions.
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4.6 Chapter Summary

This Chapter described the work that we developed in order to generate transport

network topologies, that resemble the characteristics of real-transport networks. The

Chapter starts by analyzing relevant characteristics, that were obtained from a set

of twenty nine real-world reference networks. After analyzing available methods

for generating network topologies, we proposed a new one including decisions and

constraints to guarantee that the observed characteristics are present when network

topologies are generated. In order to validate the proposed method, we generated a

set of network topologies with the same size (number of nodes and links) of real-

world networks, and over this set we performed the same analysis of the relevant

characteristics, which was also compared with the real-world topologies characteristics.

Experiments have shown that our proposed model produces network topologies that

resemble the characteristics of the transport networks. Thereafter we presented a study

about the topological design using a genetic algorithm. We have shown that it is

possible to obtain accurate results in less processing time, when compared with ILP

based approaches.
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Chapter 5

Modeling Survivability in Optical Networks

5.1 Introduction

As detailed in Chapter 3, the exact CAPEX of an optical transport network can

be obtained when the values of all key variables are available. Network operators,

however, do not always have all information about the network and, in such a

situation, the unknown values should be estimated. Two important estimations are for

protection coefficient and restoration coefficient. Both estimations are required even in

the absence of information such as network topology and traffic demand. To estimate

protection coefficient it is necessary to estimate the average number of hops for working

and backup paths, which besides being useful to calculate the spare capacity for

protection, it is also useful to calculate other variables including the average number

of demands per link.

For estimations purposes, we need a collection of networks to perform numerical

processing using search and routing algorithms and generate a meaningful data set.

To generate the appropriate set of networks we use the topology generator presented

in the previous Chapter. In section 5.2 we present a study on estimating the average

number of hops for working and protection paths. In section 5.3 we present a similar

study for the restoration coefficient. We also compare the performance of our proposed

protection and restoration coefficients with previous work. In section 5.4 we study the

impact of the traffic model on the coefficients, and in section 5.5 we calculate the

CAPEX of a network, using the approximations, and considering different survivability

schemes and transport modes.
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5.2 Estimation of Protection Coefficient

The dimensioning of an optical network involves the determination of a fractional

amount of extra capacity to allow recovery from failures. The extra capacity is usually

calculated over the capacity needed to transport a given traffic in a failure-free scenario.

As we have discussed in Chapter 3 the protection coefficient, 〈kp〉, is obtained from the

average number of hops in the working paths, 〈h〉, and the average number of hops

in the backup paths, 〈h′〉, see equation (3.110). Therefore, in order to estimate the

protection coefficient we need approximations for 〈h〉 and 〈h′〉.

5.2.1 Previous Work

In [1], Labourdette et al. present expressions to calculate protection coefficient in

mesh networks, without requiring complete knowledge about the network topology.

The approximation for the average number of hops in working paths, 〈h〉, was derived

from the Moore bound [2, 3]. The Moore bound is an upper limit on the number of

nodes of a regular graph of a given degree and diameter, N〈δ〉,H . Trivially, if average

nodal degree is 〈δ〉 = 1 then diameter is H = 1 and N〈δ〉,H = 2. For survivable networks

the interest falls on 〈δ〉 ≥ 2, and the Moore bound for 〈δ〉 ≥ 2 is given by

N〈δ〉,H =











1 + 〈δ〉 (〈δ〉−1)H−1
〈δ〉−2

if 〈δ〉 > 2

2H + 1 if 〈δ〉 = 2

. (5.1)

The obtained result was

〈h〉 ≈
ln
[

(N − 1) 〈δ〉−2
〈δ〉

+ 1
]

ln(〈δ〉 − 1)
. (5.2)

To calculate the average number of hops for the backup paths, 〈h′〉, the following
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expression was proposed,

〈h′〉 ≈
ln
[

(N − 2) 〈δ
′〉−2

〈δ〉−1
+ 1
]

ln(〈δ′〉 − 1)
+ 1, (5.3)

in which 〈δ′〉 is the average nodal degree obtained from a graph transformation,

〈δ′〉 = 2(L− (〈δ〉+ 〈h〉) + 1)

N − 1
. (5.4)

Using (3.110), (5.2) and (5.3) the 〈kp〉 can be obtained with

〈kp〉 ≈
ln

[

(N−2)
〈δ′〉−2

〈δ〉−1
+1

]

ln(〈δ′〉−1)
+ 1

ln [(N−1) 〈δ〉−2

〈δ〉
+1]

ln(〈δ〉−1)

. (5.5)

The experiments performed by the authors demonstrated, however, that expression

(5.5) is only valid for networks with average nodal degree equal to or larger than three.

For smaller averages the expressions become inaccurate. This occurs because as the

average nodal degree converges to two, the average path length converges to a linear

function of the number of nodes, instead of following the logarithmic form of their

model. The degree constraint of expression (5.5) is limitative for transport networks

since the average nodal degree in these networks sits around 〈δ〉 = 3. Therefore, as

presented in the next subsection, we decided to study how to obtain an expression that

is also suitable for networks with nodal degree in the range of 〈δ〉 = 2 and 〈δ〉 = 3.

In [4], it is presented an approximation for the average number of hops in working

paths,

〈h〉 =











0.66− 0.011N + 1.23+0.31N−0.002N2

〈δ〉
, if N< 60

0.31− 0.006N + −9.67+5.37ln(N)
〈δ〉

, if N ≥ 60
. (5.6)

The expression was obtained from statistical methods. However, the network topologies

used in that study were randomly generated, which may not preserve the characteristics

of real transport networks.
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5.2.2 Our Proposed Approach

In this section we present a statistical approach to develop an analytical expression

for the average number of hops. In order to obtain a meaningful data set of average

number of hops from realistic survivable transport network topologies, we used our

proposed topology generator presented in Chapter 4. First of all we generated a data

set with about fifty thousands realistic survivable networks. In fact, we performed

twenty runs with the topology generator for each N , ranging from N = 15 to N = 100,

with increments of five. Furthermore, we define the minimum average nodal degree as

〈δ〉min = 2.1 and maximum as 〈δ〉max = 5. Notice that, because the number of possible

topologies for each N with a given nodal degree interval is different, the data set is

composed of a different number of networks for each N . For instance, in our data set

there exist about 3700 networks with N = 50 and about 25000 with N = 100.

For each example network we stored N,L, 〈δ〉, 〈h〉 and 〈h′〉. In order to obtain 〈h〉
and 〈h′〉 we calculate the shortest cycle between each pair of nodes. Then, the first

shortest path is accounted to 〈h〉 and the second shortest path is accounted to 〈h′〉.
Next, to obtain one single expression that depends on the number of nodes N and

average nodal degree 〈δ〉, two kinds of regressions were performed. Firstly, we grouped

the overall 〈h〉 and 〈h′〉 data set based on N , obtaining one subset for each of the

eighteen N considered (from 15 to 100).

Afterwards, in each subset we performed linear, polynomial, logarithmic, inverse,

power, S-curve and exponential regressions where 〈δ〉 was the independent variable

and 〈h〉 or 〈h′〉 the dependent. In principle the use of L as independent variable brings

similar results. Nevertheless, as L is incorporated in 〈δ〉 we decided to use the latter as

independent variable. Regressions were performed by using a software called SPSS [5].

The criterion to assess the accuracy of regressions was the coefficient of determination,

R2 [6]. This methodology leads to eighteen expressions of the same type, dependent

on 〈δ〉, to estimate 〈h〉 and further eighteen expressions to estimate 〈h′〉.

The type of expression with the highest R2 for the most of subsets was the S-curve

function, exp{b0 + (b1/〈δ〉)}, for both 〈h〉 and 〈h′〉, in which b0 and b1 are constants
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depending on N . Table 5.1 shows the values of constants b0 and b1 for 〈h〉 and

〈h′〉. In order to achieve one single expression we then considered the two sets of

Table 5.1: Values of constants b0 and b1 for 〈h〉 and 〈h′〉.

〈h〉 〈h′〉
# of Nodes b0 b1 b0 b1

15 0.14 2.19 0.15 3.61
20 0.20 2.39 0.14 4.07
25 0.24 2.58 0.15 4.33
30 0.24 2.84 0.15 4.59
35 0.34 2.65 0.34 4.02
40 0.36 2.75 0.30 4.32
45 0.34 2.97 0.27 4.60
50 0.37 3.02 0.30 4.60
55 0.29 3.35 0.19 5.03
60 0.30 3.44 0.19 5.10
65 0.42 3.09 0.32 4.71
70 0.34 3.44 0.24 5.08
75 0.38 3.38 0.27 5.00
80 0.37 3.48 0.26 5.10
85 0.38 3.50 0.26 5.16
90 0.32 3.72 0.20 5.34
95 0.37 3.63 0.26 5.24

100 0.62 3.27 0.55 4.72

eighteen values of constants b0 and b1 and, using the same methodology, we performed

regressions over the two sets using N as independent variable. For 〈h〉, we obtained

b0 = 0.14 ln(N)− 0.22 and b1 = 0.75 ln(N) + 0.2 as expressions with the highest R2.

Figure 5.1 illustrates the fit of the function to b0 (Figure 5.1a) and b1 (Figure 5.1b).

Thus, we achieve one single expression that depends on N and 〈δ〉. For the average

number of hops in the working paths we obtained,

〈h〉 ≈ exp

{

0.14 ln(N)− 0.22 +
0.75 ln(N) + 0.2

〈δ〉

}

= exp

{

−0.22 +
0.2

〈δ〉

}

N0.14+ 0.75
〈δ〉 .

(5.7)
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Figure 5.1: Curve fitting considering 〈h〉: (a) for constants b0 with R2 = 0.60 and (b) for
constants b1 with R2 = 0.89, and considering 〈h′〉: (c) for constants b0 with R2 = 0.30 and (d)
for constants b1 with R2 = 0.78.

The same methodology was used to obtain the constants for the mean

number of hops for backup paths. We have obtained b0 = 0.09 ln(N)− 0.12 and

b1 = 0.76 ln(N) + 1.72. Figure 5.1 illustrates the fit of the function to b0 (Figure 5.1c)

and b1 (Figure 5.1d), thus we have

〈h′〉 ≈ exp

{

0.09 ln(N)− 0.12 +
0.76 ln(N) + 1.72

〈δ〉

}

= exp

{

−0.12 +
1.72

〈δ〉

}

N0.09+ 0.76
〈δ〉 .

(5.8)

The equations for the average number of hops in the working paths, (5.7),

and average number of hops in the backup paths, (5.8), show that the mean
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number of hops increases as f1(〈δ〉)Nf2(〈δ〉) and f3(〈δ〉)Nf4(〈δ〉), respectively, where

f1(〈δ〉), f2(〈δ〉), f3(〈δ〉), f4(〈δ〉) < 1, since in our case 〈δ〉 is always larger than 2. The

growth with Nv, with v positive and smaller than one, for 〈h〉 and 〈h′〉, can be explained

by the fact that for a given 〈δ〉 the addition of extra nodes in large networks has a small

impact on the network structure. The opposite is expected in smaller networks, where

the impact will be larger. With 〈δ〉 fixed the derivative of 〈h〉 with respect to N is

d〈h〉
dN

= f1(c)f2(c)N
f2(c)−1 (5.9)

where c is a constant value. Similarly, the derivative of 〈h′〉 with respect to N is

d〈h′〉
dN

= f3(c)f4(c)N
f4(c)−1 (5.10)

With N constant, equations (5.7) and (5.8) also show that the mean number of hops

decreases with 〈δ〉. This behavior is also expectable, since as more links are added into

the network it becomes more connected and the paths become shorter. Therefore, the

impact of adding new nodes is higher for networks with lower 〈δ〉.

In [7], it is shown that for certain families of random graphs the average distance

between the nodes satisfies ln(N)/ ln(〈δ〉) with probability almost one. This expression

is asymptotically exact for random graphs. However, in our investigations, we observed

that for optical transport networks 〈h〉 does not decreases as 1/ ln(〈δ〉). This apparent

contradiction, can be explained by the fact that real optical transport networks are far

from being random graphs and the number of nodes and links tend to be quite small.

We observed that a decrease as 1/ ln(〈δ〉) overestimates the average number of hops.

Using (5.7) and (5.8) we can obtain the protection coefficient with

〈kp〉 ≈ exp

{

−0.05 ln(N) + 0.1 +
0.01 ln(N) + 1.52

〈δ〉

}

= exp

{

0.1〈δ〉+ 1.52

〈δ〉

}

N
−0.05〈δ〉+0.01

〈δ〉 .

(5.11)

Figure 5.2 shows the performance of our proposed expressions and Labourdette’s
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expressions for 〈h〉 and 〈h′〉 as function of 〈δ〉 for networks with N = 30 and N = 80.

The expression for 〈h〉 proposed by Correia in [4] is plotted as well. The exact values

of 〈h〉 and 〈h′〉 were obtained from numerical simulation. The square shape marks

represent the exact 〈h〉 in Figures 5.2a and 5.2c, and the exact 〈h′〉 in Figures 5.2b and

5.2d. Solid lines refers to our proposed expressions, short-dashed lines to Labourdette’s

and long-dashed lines to Correia’s expressions.
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Figure 5.2: Comparative of approximations (5.2), (5.6) and (5.7) for 〈h〉 and approximations
(5.3) and (5.8) for 〈h′〉 over topologies with N = 30 and N = 80.

In order to validate the accuracy of expressions, the relative error percentage

between both approximations and exact values was calculated. For each generated
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topology t with N nodes, the relative error percentage was calculated using

ǫt,N =

∣

∣

∣

∣

Vt,N − VN
Vt,N

∣

∣

∣

∣

× 100, (5.12)

in which Vt,N is the exact value for a topology t with N nodes and VN is the estimation

obtained using the analytical expressions. The relative error percentage was calculated

for the three parameters, 〈h〉, 〈h′〉 and 〈kp〉.

As we can see in Figures 5.2a and 5.2c, Labourdette’s expression to estimate 〈h〉
becomes inaccurate for degree smaller than 2.5. We can also see that the proposed

expression agrees well with the numerical results for 〈δ〉 ranging from 2.1 to 5.0. The

Correia’s expression presents similar results in smaller networks. However, it becomes

inaccurate for larger networks. The reason for this behavior is because the topologies

used to obtain that expression allow links with length equal to the network diameter,

which results in a lower average number of hops. Calculating the average global error,

i.e., the average of relative error percentage, equation (5.12), considering the whole

data set, we obtained 7.1% for the expression (5.2), 6.4% for the expression (5.6),

and 3.2% for the proposed expression (5.7). Our proposed approach for 〈h′〉 has

good accuracy in the range 2 < 〈δ〉 ≤ 5, see Figures 5.2b and 5.2d. We obtained an

average global error of 9.7% for Labourdette’s expression (5.3) and 4.7% for proposed

expression (5.8).

In order to analyze the error of expressions to estimate 〈kp〉, expressions (5.5) and

(5.11), as function of N , we calculated the average of relative error percentage for each

N considered,

〈ǫ〉N =
1

TN

TN
∑

t=1

ǫt,N (5.13)

where TN is the total number of generated topologies with N nodes. The average error

for 〈kp〉 as function of N is presented in Figure 5.3. Our proposed expression (5.11)

scales well with the increase of N . The estimation of 〈kp〉 using our expression results

an 〈ǫ〉N of less than 3% for networks with N ranging between 15 and 100. Moreover,

we can observe that the average error for the proposed expression (5.11) is almost
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constant with N . This is a good improvement compared with Labourdette’s expression

(5.5) where the average error can be as high as 17% for smaller networks and is never

lower than 7% for larger networks.
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Figure 5.3: Average of relative error percentage for the protection coefficient, 〈kp〉, considering
fifty thousands computer generated topologies.

5.3 Estimation of Restoration Coefficient

In this section we first present a previous work to approximate the restoration

coefficient. Next we propose an approximation to the restoration coefficient, which

is useful to estimate the spare capacity required to a mesh network recover from

any single link failure. The expression is based on statistical methods and does not

requires knowledge of the network topology. We also provide experimental results

evaluating the performance of the proposed approximation against the presented

previous published and a network design tool.
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5.3.1 Previous Work

In [8], the author presents an approximation for restoration coefficient, 〈kr〉. He

considered the results for the spare capacity for path-disjoint shared mesh restoration

using a heuristic favoring a small differential path length between working and backup

paths for eight mesh networks, i.e., quasi-regular networks, and also imposed the

condition that 〈kr〉 = 1 for 〈δ〉 = 2. i.e., ring topologies requires 100% of spare capacity

to tolerate single link failures.

The mesh networks that the author used had a number of nodes in the range

of 4 ≤ N ≤ 100, average nodal degree in the range of 2.5 ≤ 〈δ〉 ≤ 4.5 and required a

restoration coefficient in the range of 0.4 ≤ 〈kr〉 ≤ 0.9. Based on this data he proposed

the expression

〈kr〉 ∼=
2

〈δ〉 , (5.14)

to estimate the restoration coefficient.

In [4], it is also presented an expression to estimate the restoration coefficient. The

expression was obtained from statistical methods, using network topologies randomly

generated,

〈kr〉 =











0.35− 0.016N + 0.0001N2 + 1.85+0.024N−0.0002N2

〈δ〉
, if N< 60

6− 2.4〈δ〉+ 0.28〈δ〉2 − e−1.7+ 4

〈δ〉 , if N ≥ 60
. (5.15)

5.3.2 Our Proposed Approach

To address the problem mentioned above, we needed a meaningful data set of

restoration coefficients. For this purpose we first used the same approach that we

used for the protection coefficient. That is, using our network topology generator

presented in Chapter 4 we generated a set of fifty thousands realistic survivable

network topologies. The number of nodes is in the range of 15 ≤ N ≤ 100, the average

nodal degree is in the range of 2 < 〈δ〉 ≤ 5. In this way, we guarantee that survivability

against any single link failure is possible as long as enough additional capacity is

available. Thereafter, for each network topology, we routed a uniform demand matrix
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and the minimum amount of spare capacity required for survivability was found and the

restoration coefficient, 〈kr〉, was estimated as described in the flowchart presented in

Figure 3.7 of Chapter 3. After obtaining these data, we analyzed the relation between

the key variables of the network and the restoration coefficient. From this analysis

we developed a new model to estimate the 〈kr〉 without knowledge of the network

topology.

From the analyzed data set we noticed that networks with the same number of

nodes N and average nodal degree 〈δ〉 may have a different restoration coefficient.

As an example, Table 5.2 shows this behavior in more detail, for the three networks

presented in Figure 5.4. The networks in Figure 5.4 have the same N , L and hence the

same 〈δ〉. However, each network has a different 〈kr〉.

Table 5.2: Key variables for the networks presented in Figure 5.4.

Network N L 〈δ〉 W ψmin 〈kr〉 〈h〉 〈φ〉 σ2(δ)

(a) 15 25 3.33 231 172 0.74 2.2 1.67 1.29
(b) 15 25 3.33 250 218 0.87 2.4 1.49 1.29
(c) 15 25 3.33 244 219 0.90 2.3 1.57 0.89

(a) (b) (c)

Figure 5.4: Three fifteen-node networks with 〈δ〉 = 3.33 (N=15, L=25). Distinct topologies
yield different values for key variables such as that presented in the Table 5.2.

In Figure 5.5a, we present the most probable 〈kr〉 for each N for 〈δ〉 ≈ 2.5, 〈δ〉 ≈ 3.5

and 〈δ〉 ≈ 4.5. The most probable is value obtained from a histogram, where the more

frequent value was chosen. We can see that for networks with 〈δ〉 = 2.5, the restoration

coefficient is almost independent on the number of nodes. Networks with higher 〈δ〉, on

the other hand, show lower values for the restoration coefficient as the number of nodes

increase. This behavior clearly indicates a dependence on N . Furthermore, the higher
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the mean nodal degree, 〈δ〉, the lower the restoration coefficient, 〈kr〉. For instance, the

restoration coefficient for a network with N = 50 and 〈δ〉 ≈ 3.5 is about 0.6 while for

a network with N = 50 and 〈δ〉 ≈ 4.5 is about 0.5. This behavior is due to the resource

sharing, 〈φ〉, which tends to grow with the number of links and nodes. In Figure 5.5b

we can see the trend of both the resource sharing and restoration coefficient as the N

grows, for 〈δ〉≈3.5.
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Figure 5.5: (a) Restoration coefficient vs. number of nodes and mean nodal degree. Shape marks
represent the simulated restoration coefficient for three values of 〈δ〉. (b) Resource sharing and
restoration coefficient requirements as function of the number of nodes. The networks have
〈δ〉 ≈ 3.5.

Our results show that N can have a significant impact on 〈kr〉. These results are

in agreement with the results obtained in [4], however this dependence was not

considered in [8]. Networks with low 〈h〉 tend to have shorter path lengths, in terms of

number of hops between any pair of nodes, hence these networks need less channels

to support a given working capacity and tend to need less spare capacity to restore

services in case of failures. An example of this behavior is also shown in Table 5.2. We

can see that the network (a) has the smallest 〈h〉, and also the smallest W and ψmin.

Notice also that, as the 〈kr〉 is a fraction of W , the network with the lowest 〈kr〉
does not represent necessarily the more cost-efficient solution. For instance, although

the network (b) in Table 5.2 has a smaller 〈kr〉 than network (c), it has a greater

value for W . The most cost-efficient network is the one with the smallest W k
min

(W k
min =W + ψmin). Considering the networks in Table 5.2, the most cost-efficient
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solution is the network (a) with W k
min = 403, followed by networks (c) and (b), with

W k
min = 463 and W k

min = 468, respectively. The influence of the variance of the nodal

degree, σ2(δ), was also evaluated and we concluded that it does not have a significant

impact on 〈kr〉.

In order to obtain a new model for the restoration coefficient we used a least-square

method to perform linear and non-linear regressions from the results obtained for all

considered networks, i.e., fifty thousand networks. First of all the analyzed networks

were split by number of nodes and regressions were done for each set (networks

with 15, 20, . . ., 100 nodes). At this phase 〈kr〉 and 〈δ〉 were used as dependent

and independent variables, respectively. In this way we obtained one expression for

each N , which were the ones with the better coefficient of determination, R2. The

expressions with better R2 follow an inverse function, 〈kr〉 = b0 + b1/〈δ〉, where b0 and

b1 are constants that have a different value for each N . Table 5.3 shows the obtained

values for b0 and b1.

In order to include the dependency on the number of nodes, N , in our expression

we performed regressions over all b0 and b1, consideringN as the independent variable.

We have found that the constant b0 vary with N following a logarithm function,

1.01− 0.21ln(N), while the variable b1 follows a power function, 0.45N0.32. Figure 5.6

shows the fit of these functions to the sets of b0 and b1 obtained above.
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Figure 5.6: Curve fitting (a) for constants b0 with R2 = 0.69 and (b) for constants b1 with
R2 = 0.83.
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Table 5.3: Values of constants b0 and b1 for 〈kr〉.

# of Nodes b0 b1

15 0.52 0.88
20 0.48 0.98
25 0.35 1.40
30 0.32 1.45
35 0.22 1.67
40 0.69 2.11
45 0.14 1.82
50 0.07 1.99
55 0.06 2.04
60 -0.05 2.33
65 -0.01 2.13
70 -0.09 2.26
75 -0.02 2.11
80 -0.12 2.40
85 -0.15 2.45
90 0.07 1.85
95 -0.42 3.22

100 0.07 1.91

Then we have obtained the expression

〈kr〉 ≈ 1.01− 0.21ln(N) +
0.45N0.32

〈δ〉 (5.16)

to estimate the restoration coefficient in mesh-based networks.

We calculate the average of relative error percentage with the expression (5.13),

for the Korotky’s, the Correia’s, and the proposed expressions for 〈kr〉, using fifty

thousands computer generated networks. Figure 5.7 shows the average of relative error

percentage as a function of the number of nodes. Each diamond shape mark is the

mean relative error percentage, obtained from Korotky’s expression (5.14); triangle

shape marks are for the Correia’s expression (5.15), and circle shape marks are the

errors obtained from our proposed expression (5.16), for a given N . As we can see,

the average error of our proposed expression is less than 15% with N ranging from 15

and 100. Korotky’s expression shows slightly better results in networks with N ranging
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from 60 to 90. However, for networks with less than 40 nodes the error can be great.

Correia’s expression shows higher error in all considered networks.
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Figure 5.7: Average of relative error percentage for the restoration coefficient, 〈kr〉, considering
fifty thousands computer generated topologies.

5.4 Impact of Traffic Model on Survivability Coefficients

Traffic demand in optical transport networks exhibit a non-uniform statistical

behavior [9]. In the dimensioning task, the expected traffic is usually taken into

account in order to determine the working and spare capacities needed to transport

such traffic and guarantee some level of survivability [10]. Typically the designers

forecast the traffic volume considering parameters such as historical data or user

population [11, 12]. The quantification of resources is often calculated by using

software tools. However, the time required to obtain results increase with the network

size and complexity. Indeed, the time required to calculate the spare capacity is often

larger than for calculating the working capacity and eventually becomes prohibitive.

Moreover, the computational time to calculate the working, protection and

restoration capacity may be quite different. It depends on the traffic matrix and the

network size. Figure 5.8 shows the time consumed for calculating that variables for
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the OMNICOM network. As we can see, for a low traffic load the time for calculating

working, protection and restoration capacities do not differs so much. However, as the

number of demands increase, the differences are clearly observed.
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Figure 5.8: Run time for calculating the working, protection and restoration capacity for the
OMNICOM network (N=38 and L=54), with different traffic loads. Simulations were run on
the OPNET design tool [13], in a Pentium 4 2.8 GHz PC, with 1 GB of RAM.

It is clear that the amount of required resources for each demand is proportional

to the hops count between the source and destination nodes. However, what happens

with protection and restoration coefficient as the traffic changes? In this section we

investigate how the protection and restoration coefficients vary, in optical transport

networks, as a function of the traffic randomness. Analysis over real-world transport

network topologies and a variety of traffic demand matrices are made for this purpose.

5.4.1 Experiments and Results

In order to assess the impact of traffic randomness in both protection and restoration

coefficients, 〈kp〉 and 〈kr〉, we have considered the following real-world network

topologies: RNP (N=10, L=12), EON (N=19, L=37), OMNICOM (N=38, L=54) and

USA100 (N=100, L=171).

The topologies were set up on OPNET SP Guru Transport Planner software [13] and

traffic matrices with different variances were routed through them. For each network
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we have generated uniform and totally random matrices, as follow:

• Five uniform matrices, each with values 1, 5, 10, 20, or 50;

• Five random matrices with values between 0 and 5;

• Five random matrices with values between 0 and 10;

• Five random matrices with values between 0 and 20;

• Five random matrices with values between 0 and 50.

The variance of random demand matrices range from 0 to 270. The matrices were

routed considering the shortest path, by hops count, path dedicated protection and

shared path restoration. The resultant survivability coefficients of the four networks

are plotted in Figure 5.9.

As we can see from Figure 5.9a, both protection and restoration coefficients differ

significantly with random traffic in small networks. For instance, for the network under

simulation (RNP), the protection and restoration coefficients vary up to 22% and 15%,

respectively. As the network grows in size, the difference between the minimum and

maximum survivability coefficients decrease. For instance, the difference between the

minimum and maximum 〈kp〉 and 〈kr〉 for the EON network is 6% and 9% respectively,

see Figure 5.9b. For the OMNICOM network the variation in 〈kp〉 and 〈kr〉 is smaller

(just 5%), see Figure 5.9c. The last network, USA100, presents the lowest sensibility

to traffic randomness, see Figure 5.9d, which the variations in 〈kp〉 and 〈kr〉 has a

maximum value of about 2%. The reason for this decrease is because the length of

backup paths tends to be smaller in larger mesh-based networks. We observed that

for networks with more than twenty nodes, the traffic randomness does not impact

significantly on 〈kp〉 and 〈kr〉. This indicates that approximations to spare capacity can

be obtained without considering applicable traffic model, at least when all nodes are

considered as central offices.
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Figure 5.9: Protection and restoration coefficients of real-world topologies, under different
traffic loads. Simulations with (a) RNP, (b) EON, (c) OMNICOM and (d) USA100 networks.
We performed a simulation for each of five matrices considered, as indicated in the x-axis.

5.5 Estimating CAPEX in Optical Networks

In this section we study the impact of approximations in the model for calculating

CAPEX in optical networks. We firstly calculate CAPEX for the EON topology, using the

software OPNET SP Guru Transport Planner [13]. The EON network has 19 nodes

(N=19) and 37 links (L=37). The results from OPNET are in agreement with the

model presented in Chapter 3. Next, using the same network, we also consider that the

topological information and traffic matrix are not available, and calculate CAPEX using

approximations. Then, the results obtained from both methodologies were compared

in order to evaluate the performance of the model using approximations.
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In the absence of topological and traffic matrix information, we have to estimate

the following variables:

1. average link length, 〈ν〉;
2. average number of hops for working paths, 〈h〉;
3. average number of hops for backup paths, 〈h′〉;
4. protection coefficient, 〈kp〉;
5. restoration coefficient, 〈kr〉;
6. average number of transmission systems, 〈nS〉;
7. average number of optical amplifiers, 〈nA〉;
8. average quantity of fiber, 〈nF 〉;
9. average number of regenerators, 〈nR〉.

However, with estimations for the items 1, 2, 3, and 5 we can approximate the

remaining items. This is presented from now on.

The average link length, 〈ν〉, can be approximated by using the geographic area, A,

where the network is supposed to be built on [8]. It can be written as

〈ν〉 ≈
√
A√

N − 1
. (5.17)

Approximations for items 2, 3, 4, and 5 were discussed in sections 5.2 and

5.3. Regarding the average number of transmission systems, since we do not have

information of the amount of channels in each specific link, we can estimate its value

by using the average number of channels per link, 〈w〉. Thus, we can write

〈nS〉 ≈
⌈〈w〉
S

⌉

. (5.18)

Similarly, considering survivability we can write

〈nS,k〉 ≈
⌈〈wk〉

S

⌉

. (5.19)

Notice that the index “k” should be replaced by “kp” or “kr” according to the

survivability strategy used in the network. Additionally, since the average number of
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channels on links depends on the average number of hops, see equation (3.91) on

page 63, we have to consider the approximation for the average number of hops,

expression (5.7).

The number of optical amplifiers depends on the estimation for the number of

transmission systems and the link length. Therefore, using the expressions (5.17) and

(5.18) we can estimate the average number of OAs per link with

〈nA〉 ≈
(

⌈〈ν〉
∂

⌉

− 1

)

⌈〈w〉
S

⌉

. (5.20)

Similarly, and considering survivability we can writte

〈nA,k〉 ≈
(

⌈〈ν〉
∂

⌉

− 1

)

⌈〈wk〉
S

⌉

. (5.21)

The quantity of optical fiber depends on estimations of link length and number of

transmission systems. Therefore, it can be approximated by using the approximations

(5.17) and (5.18), which can be written as

〈nF 〉 ≈ 2

√
A√

N − 1

⌈〈w〉
S

⌉

. (5.22)

Similarly, considering survivability we have

〈nF,k〉 ≈ 2

√
A√

N − 1

⌈〈wk〉
S

⌉

. (5.23)

The average number of regenerators per OXC depends on estimations for the

average number of hops and link length. Using the total number of bidirectional
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demands, D (see expression (3.11) on page 45), we can write

〈nR〉 ≈ Dϑ
1

N

〈h〉〈ν〉
Λ

≈ N〈d〉
2

ϑ
1

N

〈h〉〈ν〉
Λ

≈ 〈d〉〈h〉〈ν〉ϑ
2Λ

.

(5.24)

where 〈h〉 is obtained from expression (5.7) and 〈ν〉 from expression (5.17). The

variable ϑ is the overall percentage of working channels that need regeneration.

Replacing 〈h〉 by 〈h′〉 we can estimate the average number of regenerators per OXC,

for backup paths. Then we have

〈nR′〉 ≈ 〈d〉〈h′〉〈ν〉ϑ′
2Λ

, (5.25)

where ϑ′ is the overall percentage of backup channels that need regeneration. In this

thesis we do not address the problem of estimating ϑ and ϑ′, so we assume ϑ = ϑ′ = 1.

And adding expressions (5.24) and (5.25) we can estimate the average number of

regenerators per OXC, considering protection. Thus, we can write

〈nR,kp〉 ≈
(〈d〉〈h〉〈ν〉ϑ

2Λ

)

+

(〈d〉〈h′〉〈ν〉ϑ′
2Λ

)

, (5.26)

In order to estimate the average number of regenerators per OXC, considering

restoration, we can use the expression (5.26) and write

〈nR,kr〉 ≈ 1

〈φR〉

(

(〈d〉〈h〉〈ν〉ϑ
2Λ

)

+

(〈d〉〈h′〉〈ν〉ϑ′
2Λ

)

)

. (5.27)

where 〈φR〉 is the sharing of regenerators in the network. Sharing of regenerators occurs

when 〈φR〉 > 1. For instance, 〈φR〉 = 2 means that each regenerator is shared by two

channels. The problem of estimating the value of 〈φR〉 is not considered in this thesis.

Therefore, we have used the 〈nR,kr〉 obtained from OPNET in our model.
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The remaining variables of the model can be used as they are, but just using the

approximations when topological and traffic matrix information is not available.

5.5.1 Experiments and Results

In this section we evaluate the performance of the approximations for calculating

CAPEX in optical networks. We conducted experiments using the model presented in

Chapter 3 and using the OPNET software tool for numerical processing. The EON

topology was set up over a plane of area A = 11, 180, 000 km2. The network was

loaded with a demand matrix in which each source-destination node pair requires a

demand of 10 Gpbs, corresponding to D = 171. The routing of demands was performed

based on the shortest path strategy, calculated in number of hops. We assume that

each transport system supports 40 channels, S = 40. Optical amplifiers were placed

along the transmission systems every 100 km, ∂ = 100 km. The maximum transparency

length is assumed to be 3000 km, Λ = 3000. Moreover, the dimensioning was performed

considering opaque, translucent and transparent transport modes, and protection and

restoration survivability strategies.

Table 5.4 shows the quantities obtained from the OPNET, for each variable. Rows in

white background color show variables that are given (or obtained from the topology

and traffic matrix). Rows in lighter gray background color shows the variables that

can be calculated deterministically, and rows in darker gray background color are the

ones that depends on numerical processing and, in the lack of information about the

topology and traffic matrix, have to be estimated.

Similarly, Table 5.5 shows the quantities obtained from the model, but considering

that the topology and traffic matrix are not available, i.e., using the estimations

presented in this Chapter. In order to evaluate the performance of the approximated

model, let’s consider three scenarios with the EON topology.

1. Opaque network with dedicated path protection;

2. Transparent network with shared path restoration;

3. Translucent network with dedicated path protection.
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Table 5.4: Quantities of components for the EON network.

Without Survivability With Protection With Restoration
Variable Value Variable Value Variable Value

Number of Nodes N 19 N 19 N 19

Number of Links L 37 L 37 L 37

Number of bidirectional demands D 171 D 171 D 171

Capacity of transmission system S 40 S 40 S 40

Distance between optical amplifiers ∂ 100 ∂ 100 ∂ 100

Maximum transparency length Λ 3000 Λ 3000 Λ 3000

Area (km2) A 4850000 A 4850000 A 4850000

Average number of demands 〈d〉 18.00 〈d〉 18.00 〈d〉 18.00

Average nodal degree 〈δ〉 3.89 〈δ〉 3.89 〈δ〉 3.89

Average number of hops 〈h〉 2.33 〈h〉 2.33 〈h〉 2.33

Average number of hops for backup 0.00 〈h′〉 3.23 〈h′〉 3.23

Average number of channels on links 〈w〉 10.76 〈wkp 〉 25.68 〈wkr 〉 19.54

Survivability coefficients 〈kp〉 1.39 〈kr〉 0.82

Average number of transmission system 〈nS〉 1.00 〈nS,kp〉 1.03 〈nS,kr 〉 1.00

Average number of OLTs 〈nOLT 〉 2.00 〈nOLT,kp〉 2.05 〈nOLT,kr 〉 2.00

Average number of optical amplifiers 〈nA〉 7.00 〈nA,kp〉 7.08 〈nA,kr 〉 7.00

Average quantity of fiber (km) 〈nF 〉 753.76 〈nF,kp〉 763.89 〈nF,kr 〉 753.76

Average number of EXC trunk ports 〈nTP
exc〉 18.00 〈nTP

exc〉 18.00 〈nTP
exc〉 18.00

Average number of channels on OXC for opaque networks 〈nCH
op 〉 29.95 〈nCH,kp

op 〉 68.00 〈nCH,kr
op 〉 47.05

Average number of channels on OXC for transparent networks 〈nCH
tr 〉 29.95 〈nCH,kp

tr 〉 68.00 〈nCH,kr

tr 〉 47.05

Average number of regenerators per OXC 〈nR〉 1.21 〈nR,kp〉 4.11 〈nR,kr 〉 2.42

Average number of regenerators per OXC, for backup paths 〈nR′〉 2.89 〈nR′ 〉 2.89

Average number of channels on OXC for translucent networks 〈nCH
tl 〉 31.16 〈nCH,kp

tl 〉 72.11 〈nCH,kr

tl 〉 49.47

Average number of short-reach transponders 〈nSR〉 18.00 〈nSR〉 18.00 〈nSR〉 18.00

Average number of long-reach transponders in opaque networks 〈nLR
op 〉 41.89 〈nLR,kp

op 〉 100.00 〈nLR,kr
op 〉 76.11

Average number of long-reach transponders in transparent networks 〈nLR
tr 〉 18.00 〈nLR

tr 〉 18.00 〈nLR
tr 〉 18.00

Average number of long-reach transponders in translucent networks 〈nLR
tl 〉 18.00 〈nLR

tl 〉 18.00 〈nLR
tl 〉 18.00
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Table 5.5: Approximated quantities of components for the EON network.

Without Survivability With Protection With Restoration

Variable Value Variable Value Variable Value

Number of Nodes N 19 N 19 N 19

Number of Links L 37 L 37 L 37

Number of bidirectional demands D 171 D 171 D 171

Capacity of transmission system S 40 S 40 S 40

Distance between optical amplifiers ∂ 100 ∂ 100 ∂ 100

Maximum transparency length Λ 3000 Λ 3000 Λ 3000

Area (km2) A 4850000 A 4850000 A 4850000

Average number of demands 〈d〉 18.00 〈d〉 18.00 〈d〉 18.00

Average nodal degree 〈δ〉 3.89 〈δ〉 3.89 〈δ〉 3.89

Average number of hops 〈h〉 2.25 〈h〉 2.25 〈h〉 2.25

Average number of hops for backup 〈h′〉 3.1 〈h′〉 3.19

Average number of channels on links 〈w〉 10.39 〈wkp〉 25.16 〈wkr 〉 17.55

Survivability coefficients 〈kp〉 1.42 〈kr〉 0.69

Average length of links 〈ν〉 942.50 〈ν〉 942.50 〈ν〉 942.50

Average number of transmission systems 〈nS〉 1.00 〈nS,kp〉 1.00 〈nS,kr〉 1.00

Average number of OLTs 〈nOLT 〉 2.00 〈nOLT,kp〉 2.00 〈nOLT,kr 〉 2.00

Average number of optical amplifiers 〈nA〉 9.00 〈nA,kp〉 9.00 〈nA,kr〉 9.00

Average quantity of fiber (km) 〈nF 〉 942.50 〈nF,kp〉 942.50 〈nF,kr〉 942.50

Average number of EXC trunk ports 〈nTP
exc〉 18.00 〈nTP

exc〉 18.00 〈nTP
exc〉 18.00

Average number of channels on OXC for opaque networks 〈nCH
op 〉 29.24 〈nCH,kp

op 〉 66.99 〈nCH,kr
op 〉 43.17

Average number of channels on OXC for transparent networks 〈nCH
tr 〉 29.24 〈nCH,kp

tr 〉 66.99 〈nCH,kr

tr 〉 43.17

Average number of regenerators per OXC 〈nR〉 4.42 〈nR,kp〉 10.71 〈nR,kr 〉 2.42

Average number of regenerators per OXC, for backup paths 〈nR′〉 6.28 〈nR′〉 6.28

Average number of channels on OXC for translucent networks 〈nCH
tl 〉 33.67 〈nCH,kp

tl 〉 77.69 〈nCH,kr

tl 〉 45.59

Average number of short-reach transponders 〈nSR〉 18.00 〈nSR〉 18.00 〈nSR〉 18.00

Average number of long-reach transponders in opaque networks 〈nLR
op 〉 40.49 〈nLR,kp

op 〉 97.97 〈nLR,kr
op 〉 68.34

Average number of long-reach transponders in transparent networks 〈nLR
tr 〉 18.00 〈nLR

tr 〉 18.00 〈nLR
tr 〉 18.00

Average number of long-reach transponders in translucent networks 〈nLR
tl 〉 18.00 〈nLR

tl 〉 18.00 〈nLR
tl 〉 18.00
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5.5.1.1 Opaque network with dedicated path protection scenario

Table 5.6 shows CAPEX, obtained from the OPNET, for the EON network configured

in opaque transport mode and dedicated path protection. Table 5.7 presents the CAPEX

obtained from the approximated model.

Table 5.6: CAPEX for EON in opaque mode and dedicated path protection.

Variable Cost Avg. # components # total Equation

C
os

t
of

lin
ks 〈cOLT,kp〉 8.57 2.05 76 (3.131)

〈cA,kp〉 13.60 7.08 262 (3.135)
〈cF,kp〉 0.00 763.89 28264 (3.138)
〈ckpl 〉 22.16 (3.140)
C

kp
L 819.96 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 25.39 18.00 342 (3.46)
〈cOXC,kp

op 〉 81.14 68.00 1292 (3.148)
〈cTSP,kp

op 〉 112.06 118.00 2242 (3.176)
〈ckpn 〉 218.59 (3.141)
C

kp
N 4153.21 (3.142)

CT = 4973.17 (3.12)

Table 5.7: Approximated CAPEX for EON in opaque mode and dedicated path protection.

Variable Cost Avg. # components # total Equation

C
os

t
of

lin
ks 〈cOLT,kp〉 8.34 2.00 74 (3.131)

〈cA,kp〉 11.52 6.00 222 (3.135)
〈cF,kp〉 0.00 655.65 24259 (3.138)
〈ckpl 〉 19.86 (3.140)
C

kp
L 734.82 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 25.39 18.00 342 (3.46)
〈cOXC,kp

op 〉 80.45 67.00 1273 (3.148)
〈cTSP,kp

op 〉 110.03 115.97 2203 (3.176)
〈ckpn 〉 215.87 (3.141)
C

kp
N 4101.59 (3.142)

CT = 4836.41 (3.12)

The cost of OLTs from the exact model refers to 76 OLTs in the network,

corresponding to 38 transmission systems, and 2.05 OLTs per link. Notice that in this
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case one link has to be equipped with two transmission systems. In the approximated

model the cost of OLTs refers to 74 OLTs in the network. The difference is because we

estimated 37 transmission systems when the exact number was 38.

In terms of optical amplifiers, the cost from the exact model refers to 262 OAs,

corresponding to an average of 7.08 per link. In the approximated model the cost refers

to 222 OAs, corresponding to an average of 6 per link. The main reason for this result

is because the link length was underestimated. Using the exact model we obtain an

average of 763.89 km of fiber-pair per link and using the approximated model we

obtain an average of 655.65 km. Considering the costs of links, we obtained a relative

error percentage of about ǫ = 10%.

Regarding the cost of nodes, the cost of EXC is the same in both models, as expected,

since there are no approximations involved. The cost of OXCs from the exact model

includes the cost of processing 1292 channels, corresponding to an average of 68

channels per node. The approximated model includes 1273 channels, corresponding

to an average of 67 per node. The difference comes from the approximations for the

average number of hops, and protection coefficient.

Concerning the cost of transponders, the cost from exact model refers to a total of

2242 transponders, being 342 short- and 1900 long-reach transponders, corresponding

to an average of 118 per node. In this case, the number of short-reach transponders

is the same in the approximated model, since no approximation is involved. From the

approximated model we obtain 1861 long-reach transponders. This difference comes

from the approximations for the average number of hops, and protection coefficient.

Considering the costs of nodes, we obtained a relative error percentage of about

ǫ = 1.24%, and considering the total cost of the network we obtained ǫ = 2.75%.

Figure 5.10a shows a graphical comparative between the cost of components

obtained from the exact and approximated models. From this figure we can see that

the cost of transponders is dominant in this network configuration. Figure 5.10b shows

a comparative between the number of components between exact and approximated

models. Notice that in the latter we plotted the average number of EXC trunk ports,

〈nTP
exc〉, and the average number of channels processed on OXCs, 〈nCH,kp〉, instead of the
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number of EXCs and OXCs, which is obviously equal to the number of nodes.
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Figure 5.10: Comparative between exact and approximated models for the EON network with
opaque mode and protection. (a) cost of components, and (b) number of components.

5.5.1.2 Translucent network with dedicated path protection scenario

Table 5.8 shows CAPEX for the EON network configured in translucent transport

mode and dedicated path protection. Similarly to the previous scenario, the results

were obtained using the OPNET software tool. Table 5.9 presents the CAPEX obtained

from the approximated model.

Table 5.8: CAPEX for EON in translucent mode and dedicated path protection.

Variable Cost Avg. # components # total Equation

C
os

t
of

lin
ks 〈cOLT,kp〉 8.57 2.05 76 (3.131)

〈cA,kp〉 13.60 7.08 262 (3.135)
〈cF,kp〉 0.00 763.89 28264 (3.138)
〈ckpl 〉 22.16 (3.140)
C

kp
L 819.96 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 25.39 18.00 342 (3.46)
〈cOXC,kp

tl 〉 83.93 72.11 1370 (3.166)
〈cTSP

tl 〉 18.00 18.00 342 (3.81)
〈cREG,kp〉 8.21 4.11 78 (3.178)
〈ckpn 〉 135.53 (3.141)
C

kp
N 2575.11 (3.142)

CT = 3395.07 (3.12)
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Table 5.9: Approximated CAPEX for EON in translucent mode and dedicated path protection.

Variable Cost Avg. # components # total Equation
C

os
t

of
lin

ks 〈cOLT,kp〉 8.34 2.00 74 (3.131)
〈cA,kp〉 11.52 6.00 222 (3.135)
〈cF,kp〉 0.00 655.65 24259 (3.138)
〈ckpl 〉 19.86 (3.140)
C

kp
L 734.82 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 25.39 18.00 342 (3.46)
〈cOXC,kp

tl 〉 87.73 77.69 1476 (3.166)
〈cTSP

tl 〉 18.00 18.00 342 (3.81)
〈cREG,kp〉 21.41 10.71 203.41 (3.178)
〈ckpn 〉 152.53 (3.141)
C

kp
N 2898.12 (3.142)

CT = 3632.94 (3.12)

In this scenario, the cost of OLTs, OAs, and hence the cost of links, for both the exact

and approximated models is the same as for the previous scenario.

Regarding the cost of nodes, the cost of EXC is also the same in both models,

as expected, since there are no approximations involved. The cost of OXCs from

the exact model includes the cost of processing 1370 channels, corresponding to

an average of 72.11 channels per OXC. The approximated model includes 1476

channels, corresponding to an average of 77.69 per OXC. The difference comes from

the approximations for the average number of hops, average number of regenerators

per OXC and protection coefficient.

Since transponders are installed only at the ends of each demand, in translucent

networks, there are no approximations involved. Therefore the result is the same for

both exact and approximated models. The cost of transponders in this network refers

to a total of 342 long-reach transponders, corresponding to an average of 18 per node.

The cost of regenerators in the exact model refers to 78 regenerators, corresponding

to an average of 4.11 per node. In the approximated model the cost refers to 204

regenerators, corresponding to an average of 10.71 per node. Besides the expression

for estimating the number of regenerators being an approximation, the difference also
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comes from approximations for the average number of hops for working and backup

paths, link length, and the percentage of demands that need regeneration.

Considering the costs of nodes, we obtained a relative error percentage of about

ǫ = 12.5%, and considering the total cost of the network we obtained ǫ = 7%.

Figure 5.11a shows a graphical comparative between the cost of components

obtained from the exact and approximated models. Figure 5.11b shows a comparative

between the number of components between exact and approximated models.
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Figure 5.11: Comparative between exact and approximated models for the EON network with
translucent mode and protection. (a) cost of components, and (b) number of components.

The relative error percentage of the nodes may be reduced if we could estimate the

percentage of channels that need regenerators, ϑ and ϑ′. In order to verify the impact

of these variables, we obtained their exact values from the OPNET. The values are

ϑ = 0.135 and ϑ′ = 0.315. Using these values in the expression (5.26) the relative error

percentage of nodes decreases from 12.5 to 3.5. Although the difference is large, the

relative error percentage for the CAPEX of the network decreases from 7 to 5.2.

5.5.1.3 Transparent network with shared path restoration scenario

Table 5.10 shows CAPEX for the EON network configured in transparent transport

mode and shared path restoration. Similarly to the previous scenario, the results were

obtained using the OPNET software tool. Table 5.11 presents the CAPEX obtained from

the approximated model.
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Table 5.10: CAPEX for EON in transparent mode with shared path restoration.

Variable Cost Avg. # components # total Equation
C

os
t

of
lin

ks 〈cOLT,kr〉 8.34 2.00 74 (3.131)
〈cA,kr〉 13.44 7.00 259 (3.135)
〈cF,kr〉 0.00 753.76 27889 (3.138)
〈ckrl 〉 21.78 (3.140)
Ckr

L 805.86 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 25.39 18.00 342 (3.46)
〈cOXC,kr

tr 〉 66.90 47.05 894 (3.154)
〈cTSP

tr 〉 18.00 18.00 342 (3.77)
〈ckrn 〉 110.29 (3.141)
Ckr

N 2095.43 (3.142)

CT = 2901.29 (3.12)

Table 5.11: Approximated CAPEX for EON in transparent mode with shared path restoration.

Variable Cost Avg. # components # total Equation

C
os

t
of

lin
ks 〈cOLT,kr〉 8.34 2.00 74 (3.131)

〈cA,kr〉 11.52 6.00 222 (3.135)
〈cF,kr〉 0.00 655.65 24259 (3.138)
〈ckrl 〉 19.86 (3.140)
Ckr

L 734.82 (3.139)

C
os

t
of

no
de

s 〈cEXC〉 25.39 18.00 342 (3.46)
〈cOXC,kr

tr 〉 64.26 43.17 820 (3.154)
〈cTSP

tr 〉 18.00 18.00 342 (3.77)
〈ckrn 〉 107.65 (3.141)
Ckr

N 2045.29 (3.142)

CT = 2780.11 (3.12)

In this scenario, the cost of OLTs from both the exact and approximated model refers

to 74 OLTs in the network, corresponding to 37 transmission systems, and 2 OLTs per

link. In terms of optical amplifiers, the cost from the exact model refers to 259 OAs,

corresponding to an average of 7 per link. In the approximated model the cost refers to

222 OAs, corresponding to an average of 6 per link. Considering the costs of links, we

obtained a relative error percentage of about ǫ = 8.8%.

Regarding the cost of nodes, the cost of EXC is the same in both models, as expected,

181



Chapter 5. Modeling Survivability in Optical Networks

since there are no approximations involved. The cost of OXCs from the exact model

includes the cost of processing 894 channels, corresponding to an average of 47.05

channels per OXC. Notice that the number of channels is expected to be smaller than

the previous scenario, since network resources are shared in restoration survivability

strategy. The approximated model includes 820 channels, corresponding to an average

of 43.17 per OXC. The difference comes from the approximations for the average

number of hops, and restoration coefficient.

Since transponders are installed only at the ends of each demand, in transparent

network, there are no approximations involved. Therefore the result is the same. The

cost of transponders in this network refers to a total of 342 long-reach transponders,

corresponding to an average of 18 per node.

Considering the costs of nodes, we obtained a relative error percentage of about

ǫ = 2.40%, and considering the total cost of the network we obtained ǫ = 4.18%.

Figure 5.12a shows a graphical comparative between the cost of components

obtained from the exact and approximated models. Figure 5.12b shows a comparative

between the number of components between exact and approximated models.
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Figure 5.12: Comparative between exact and approximated models for the EON network
with transparent transport mode and restoration. (a) cost of components, and (b) number of
components.
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5.6 Chapter Summary

In this Chapter we presented expressions required to estimate the survivability

coefficients, in the case of absence of topological and traffic matrix information. We

proceeded with the evaluation of the impact of traffic randomness on those survivability

coefficients, concluding that random traffic does not produce a significant impact,

mainly in larger networks. Next we presented the estimation of CAPEX in optical

transport networks, and analyzed its performance considering networks with different

transport modes and survivability strategies. We have noticed, from extensive analysis

with a variety of network topologies and sizes, that the approximated model usually

estimates the cost of the networks with less than 10% of error.
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[3] M. Miller and J. Širáň, “Moore graphs and beyond: A survey of the degree/diameter
problem,” Electronic Journal of Combinatorics, Dynamic survey, vol. 14, pp. 1–61,
December 2005.

[4] A. R. Correia, “Planeamento e dimensionamento de redes ópticas com encaminhamento
ao nível da camada óptica,” Master thesis, Universidade de Aveiro, Aveiro, Portugal, 2008.

[5] SPSS Inc., “SPSS for Windows, Rel. 14.0.1.” Chicago, USA, 2008.

[6] R. A. Berk, Statistical Learning from a Regression Perspective, ser. Springer Series in
Statistics. Springer New York, 2008.

[7] F. Chung and L. Lu, “The average distances in random graphs with given expected
degrees,” Internet Mathematics, vol. 1, pp. 15 879–15 882, 2002.

[8] S. K. Korotky, “Network global expectation model: A statistical formalism for quickly
quantifying network needs and costs,” IEEE Journal of Lightwave Technology, vol. 22, no. 3,
pp. 703–722, Mar. 2004.

[9] H. Hassan, J. Garcia, and C. Bockstal, “Modeling internet traffic: Performance limits,” in
International Conference on Internet Surveillance and Protection, 2006, (ICISP’06), August
2006, pp. 7–13.

[10] C. Pavan, R. Morais, A. Correia, and A. Pinto, “Dimensioning of optical networks with
incomplete information,” in Proceedings of the 6th Advanced International Conference on

Telecommunications, AICT’08. Athens, Greece: IEEE, June 2008, pp. 261–264.

[11] W. Ben-Ameur and H. Kerivin, “Routing of uncertain traffic demands,” Optimization and

Engineering, vol. 6, no. 3, pp. 283–313, 2005.

[12] N. Benameur and J. W. Roberts, “Traffic matrix inference in ip networks,” Networks and

Spatial Economics, vol. 4, no. 1, pp. 103–114, 2004.

[13] Opnet Technologies Inc., “OPNET SP Guru Transport Planner,” 2009.

184



Chapter 6

Conclusions and Future Directions

This Chapter summarizes the main conclusions of this work, along with suggestions

for future directions.

6.1 Conclusions

We investigated the problem of dimensioning optical transport networks without

complete information. The motivation for the work arises from the need to calculate

the CAPEX of a network, without requiring extensive numerical processing and even

without complete information. This is useful for a preliminary evaluation of the

feasibility of a network.

In Chapter 3 we developed expressions to calculate network quantities and costs

of optical transport networks. The set of expressions was divided according to the

costs related to the links and nodes. Furthermore, we considered opaque, translucent

and transparent transport modes. Survivability was considered being implemented as

dedicated path protection or shared path restoration at the optical layer. Experiments

showed that the results obtained from the developed models are in agreement with

results obtained from a commercial numerical simulation tool, for all transport modes

and survivability schemes studied in this thesis.

We also presented a case study of a network implemented as a SONET/SDH-

over-WDM network. Considering that the cost of components is independent of the

transport mode, and assuming the same survivability strategy, the total CAPEX of the

network tends to decrease as we configure the network with an opaque, translucent or
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transparent mode, respectively. The main reason for this result is the decreasing number

of required transponders as the network becomes more transparent. On the other hand,

comparing implementations with different survivability strategies, and the same traffic

load, we observed that in some cases the CAPEX of a translucent network with shared

path restoration may be more cost-effective than a transparent network with dedicated

path protection. This occurs due to the higher number of network elements that are

required by dedicated protection.

The models presented in Chapter 3 produce exact results, which depend on detailed

information about the network and traffic demand. However, some information may be

computational intensive to obtain, such as the average number of hops and survivability

coefficients. Nonetheless, we found that, in order to estimate the CAPEX of a network

with a given number of nodes and links, but without the knowledge on the network

topology and traffic matrix, we need to estimate just a few parameters: the total traffic,

the average number of hops for working and backup paths, survivability coefficient

and average link length. The specific case of translucent networks with shared path

restoration also requires the estimation for the sharing of regenerators.

In order to treat the non-deterministic variables and following a statistical approach,

we had to obtain a meaningful number of network topologies. Then in Chapter 4

we presented a rigorous analysis of the main characteristics of real-world optical

transport networks. We identified that the nodal degree, number of hops, link-disjoint

pairwise connectivity, node-disjoint pairwise connectivity, and clustering coefficient are

key variables of transport networks. The average value of nodal degree, in real-world

networks, is around three, being two the minimum value for survivable networks. In

terms of the number of hops, we observed that the average and maximum values tend

to increase with the number of nodes of the network. This behavior is expected since

larger networks tend to be sparser. Regarding the link-disjoint-pairwise connectivity, we

observed that transport networks have a small number of link-disjoint paths between

each pair of nodes, usually two or three. In terms of node-disjoint-pairwise connectivity,

we observed that not all networks are tolerant to node failures. Some real-world

transport networks do not have two node-disjoint paths between every pair of nodes.
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Considering the clustering coefficient we observed that the transport networks are

far from being full mesh networks. In fact we noticed that, in average, only about

twenty percent of nodes forms a full mesh with their neighbor nodes. This result is in

agreement with the average nodal degree, which is smaller than its possible maximum.

From that analysis, we proposed and implemented a network topology generator.

The topology generator ensures that the generated networks are survivable against

single link failures, since each pair of nodes has at least two-disjoint paths connecting

them. In fact, comparing networks generated from our topology generator and real-

world ones, using non-parametric statistical tests, we observed that all key variables

present the same behavior, with similar values.

We also developed a genetic algorithm for finding the least-cost network topology

for a given traffic. We found that the genetic algorithm produces better solutions when

the initial population is generated using our topology generator, compared with a

random topology generator. Moreover, it is possible to obtain accurate results in less

processing time, when compared with ILP based approaches.

In Chapter 5 we studied the non-deterministic variables, which we addressed

through statistical methods. The main contributions of this Chapter are the proposed

expressions to estimate the average number of hops for working and backup paths,

protection coefficient and restoration coefficient. These variables were obtained from

statistical methods over a meaningful data set of realistic network topologies, generated

by the generator presented in Chapter 4. For validation purpose, we compared the

results obtained from the proposed expressions and results obtained from a commercial

numerical tool. We found that our expressions usually have better performance than

previous works. Using these expression in the approximated model, we have noticed,

from extensive analysis with a variety of network topologies of different sizes, that the

approximated model usually estimates the total CAPEX of the networks with less than

10% of relative error percentage.

We also presented a study about the impact of the demand model on survivability

coefficients, i.e., the protection and restoration coefficients, considering that all nodes

are central offices. We found that the traffic randomness does not influence significantly
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the value of the survivability coefficients, specially for larger networks. This indicates

that approximations for spare capacity can be obtained without considering applicable

traffic model.

The proposed model can be used to assist network planners in assessing the impact

of a variety of variables on CAPEX. We consider that it is possible to use the model

to carry out “what-if” design and obtain fast results. Therefore, it may be seen as a

decision-support tool in the network dimensioning. Moreover, as the model is quite

generic, it may therefore be applied to a wide variety of scenarios.

6.2 Future Directions

We conclude this thesis with some suggestions for future works:

• Our model concerns with CAPEX. However, a network planning that optimizes

CAPEX may penalize the OPEX, and vice versa. We propose to develop models

to calculate OPEX and then performing the network planning for minimize both

CAPEX and OPEX jointly.

• Currently, attention is being devoted towards energy consumption in information

and communications technologies. Therefore, the model could also consider

opportunities to minimize the energy consumption.

• A distinctive characteristic of optical networks is the presence of physical-layer

impairments. This problem affects routing, which have to be done “intelligently”

to avoid degradation of the optical signal. Moreover, as we move towards all-

optical networks, this problem affects the signal quality with the increase of

bit-rates and signal propagation distances. A future work could also develop an

impairment-aware model, for routing.

• Another proposal is to extend the model to other types of networks, such as metro

and access networks.
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