
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2010

Eurico Farinha
Pedrosa

Ambiente de simulação para agentes em
futebol robótico

Simulated environment for robotic soccer
agents

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2010

Eurico Farinha
Pedrosa

Ambiente de simulação para agentes em
futebol robótico

Simulated environment for robotic soccer
agents

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação cient́ıfica de Prof.
Doutor Artur Pereira e Prof. Doutor Nuno Lau, professores auxiliares do
Departamento de Electrónica, Telecomunicações e Informática da Universi-
dade de Aveiro

o júri / the jury

presidente Doutora Maria Beatriz Alves de Sousa Santos
professora associada com agregação da Universidade de Aveiro

vogais Doutor Paulo José Cerqueira Gomes da Costa
professor auxiliar da Universidade do Porto

Doutor Artur José Carneiro Pereira
professor auxiliar da Universidade de Aveiro

Doutor José Nuno Panelas Nunes Lau
professor auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

Quero começar por agradecer aos meu pais, Luisa e Fernando, pelo
sempre presente apoio que me deram ao longo destes anos e que não
será esquecido. Agradeço também à minha madrinha Otilia pelo seu
apoio e pela chávena de café que está sempre à minha espera.

Aos professores Nuno Lau e Artur Pereira agradeço pela orientação que
me deram e pelas sempre interessantes discussões que se levantaram
durante o desenvolvimento desta dissertação. Agradeço a todos os
elementos da CAMBADA pela paciência que eu os interrompia com as
minhas dúvidas.

Por fim agradeço a todos os meus amigos por tão bons momentos
passados. . .

palavras-chave Simulação, Robótica, RoboCup, Sistemas multi-agente, Modelação

Resumo O teste de algoritmos na área da robótica pode ser uma tarefa dif́ıcil, espe-

cialmente se o teste envolver múltipos robots. Neste contexto o uso de um

simulador torna-se uma ferramenta importante no teste de algoritmos pois

permite ultrapassar algumas limitações e oferece várias vantagens.

CAMBADA é a equipa de futebol robótico da liga de tamanho médio da Uni-

versidade de Aveiro, Portugal. A equipa está familiarizada com as limitações

do uso de robots reais para o teste de algoritmos. Devido a isso o simulador

criado pela equipa Brainstormers Tribots foi adaptado para prover um am-

biente de simulação ao software CAMBADA e estava em uso aquando do

ińıcio desta dissertação. O simulador oferecia pouca flexibilidade na mod-

elação dos robots que resultava em comportamentos imprecisos, oferecia

também reduzida interacção com a simulação.

O objectivo desta dissertação é criar um ambiente de simulação para agentes

em futebol robótico com a intenção de melhorar o ambiente de simulação da

equipa CAMBADA. O simulador deve ser capaz de simular dinâmica de ob-

jectos a três dimensões, sensores e actuadores ao mesmo tempo que oferece

visualização do mundo e a possibilidade de interagir com a simulação.

Da pesquisa realizada sobre simuladores robóticos o simulador Gazebo re-

speitava os nossos requisitos e foi escolhido para código base do nosso simu-

lador. Para criar um ambiente simulado adequado à equipa CAMBADA al-

guns componentes do Gazebo foram alterados e novos sensores e actuadores

virtuais foram desenvolvidos. Vários componentes do software CAMBADA

tiveram que sofrer alterações de modo a suportar um ambiente simulado. O

robot virtual foi modelado de modo a assemelhar-se com o robot real com

o objectivo de obter comportamentos mais precisos.

O simulador desenvolvido substituiu a solução anteriormente criada pela

equipa CAMBADA e foi usado nos testes de preparação para a participação

da equipa no RoboCup 2010 em Singapura onde deu o seu contributo na

obtenção do terceiro lugar

keywords Simulation, Robotics, RoboCup, Multi-agent systems, Modeling

Abstract In the field of robotics, testing algorithms with the real robots can be a

difficult task, specially if the test involves more than one robot. In this

context a simulator is an important tool for testing algorithms because it

helps overcome some limitation and offers several advantages.

CAMBADA is the RoboCup MSL soccer team of the University of Aveiro,

Portugal. The team is familiar with the limitations of using the real robots

for testing algorithms. Therefore, a simulator created by the Brainstormers

Tribots team was adapted to provide a simulated environment for their

software and was used for testing at the time of the beginning of this thesis.

The simulator offered low flexibility on the modeling of the robots from

which resulted inaccurate behaviors, it also offered reduced interaction with

the simulation.

The purpose of this thesis is to create a simulation environment for robotic

soccer agents with the intention of improving the simulated environment for

the CAMBADA team. The simulation must provide three-dimensional dy-

namics of objects, be capable of simulating sensors and actuators, allow the

visualization of the simulation and provide interaction with the simulation.

From the conducted survey about robotic simulators, the simulator Gazebo

complied with our requirements and was chosen to provide the code base

for our simulator. To create an adequate simulation environment for the

CAMBADA team some components of Gazebo were modified and new sen-

sors and actuator were developed. Several components of the CAMBADA

software had to be modified to support the simulated environment. The vir-

tual robot was modeled to resemble the real robot to provide more accurate

behaviors.

The developed simulator substituted the previous solution created by

CAMBADA team and was used in the preparation tests for the partici-

pation in the RoboCup 2010 in Singapore where it contributed to obtain of

the third-place.

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Requirements . 2

1.3.1 Software requirements . 2
1.3.2 Operational requirements . 3

1.4 Thesis outline . 3

2 Robotic Simulation 5
2.1 Introduction . 5
2.2 Physics engine . 6

2.2.1 Short introduction . 6
2.2.2 Rigid bodies . 6
2.2.3 Joints . 7
2.2.4 Collision handling . 8

2.3 Brainstormers Tribots . 8
2.3.1 Software overview . 8
2.3.2 World representation . 9
2.3.3 Simulation environment overview 9
2.3.4 Visualization and interaction . 10
2.3.5 CAMBADA simulator . 10

2.4 RoboCup Simulator Dev . 11
2.4.1 Software overview . 11
2.4.2 World representation . 12
2.4.3 Simulation environment overview 12
2.4.4 Visualization and interaction . 13

2.5 SimSrv - A RoboCup F2000 Simulator . 14

i

2.5.1 Software overview . 14
2.5.2 World Representation . 15
2.5.3 Simulation environment overview 16
2.5.4 Visualization and interaction . 17

2.6 WebotsTM . 18
2.6.1 Software overview . 18
2.6.2 World representation . 18
2.6.3 Simulation environment overview 19
2.6.4 Visualization and interaction . 19

2.7 Gazebo . 19
2.7.1 Software overview . 20
2.7.2 World representation . 22
2.7.3 Simulation environment overview 23
2.7.4 Visualization and interaction . 23

2.8 SimSpark . 24
2.8.1 Software overview . 24
2.8.2 World representation . 26
2.8.3 Simulation environment overview 26
2.8.4 Visualization and Interaction . 27

2.9 SimTwo . 28
2.9.1 Software overview . 28
2.9.2 World representation . 29
2.9.3 Simulation environment overview 30
2.9.4 Visualization and interaction . 30

2.10 Other robotic simulators . 30
2.11 Comparison between robotic simulators . 32
2.12 Summary . 32

3 CAMBADA 35
3.1 RoboCup . 35

3.1.1 Middle Size League (MSL) . 37
3.2 General Architecture . 37
3.3 CAMBADA Hardware . 39

3.3.1 Physical shape . 40
3.3.2 Holonomic Motion . 40
3.3.3 Odometry . 41
3.3.4 Electronic compass . 41
3.3.5 Barrier . 41
3.3.6 Grabber . 41
3.3.7 Kicker . 42
3.3.8 Vision system . 43

3.4 CAMBADA Software . 43
3.4.1 Real-Time Data Base (RTDB) . 43

ii

3.4.2 Process Manager layer (PMan) . 44
3.4.3 Sensorial interpretation, intelligence and coordination 44
3.4.4 Vision . 44
3.4.5 Low-level communication handler 45
3.4.6 Wireless communication . 45
3.4.7 Monitor . 45
3.4.8 CambadaConfig . 46
3.4.9 Base-station . 46

3.5 Summary . 46

4 CAMBADA Simulator 47
4.1 Introduction . 47
4.2 Simulation environment overview . 47
4.3 Necessary changes to non-simulated components 49

4.3.1 The RTDB problem and solution 50
4.3.2 The PMan problem and solution 50

4.4 Models . 52
4.4.1 The field model . 52
4.4.2 The ball model . 52
4.4.3 The goal model . 53
4.4.4 The robot model . 54
4.4.5 The obstacle model . 55

4.5 Sensors . 55
4.5.1 Omnidirectional Vision . 56
4.5.2 Compass . 61
4.5.3 Barrier . 61

4.6 Controllers . 62
4.6.1 Holonomic motion . 62
4.6.2 Grabber . 64
4.6.3 Kicker . 65
4.6.4 Wireless communications . 67

4.7 Visualization and interaction . 68
4.7.1 GUI . 68
4.7.2 Rendering engine . 70

4.8 Summary . 70

5 Results and Troubleshooting 71
5.1 Ball motion . 71
5.2 Sensors and controllers . 72

5.2.1 Omnidirectional vision . 72
5.2.2 Holonomic motion . 75
5.2.3 Grabber . 76
5.2.4 Barrier . 76

iii

5.2.5 Kicker system . 77
5.2.6 Compass . 78

5.3 Execution times . 78
5.4 Visualization and interaction . 80
5.5 Summary . 81

6 Conclusion and future work 83
6.1 Conclusions . 83
6.2 Future work . 84

Bibliography 87

iv

List of Figures

2.1 ODE rigid body illustration. 7

2.2 Three different constraints types. 7

2.3 Brainstormers Tribots simulator workflow at every cycle. 9

2.4 Brainstormers Tribots simulation rendering and interaction window. 10

2.5 CAMBADA simulator workflow at every cycle. 11

2.6 RoboCup Simulator Dev simulator workflow at every cycle 12

2.7 RoboCup Simulation Dev rendering and interaction window. 13

2.8 Overview of the server architecture. 14

2.9 Overview of the client architecture. 15

2.10 SimSrv scenario and robot designer. 16

2.11 SimSrv Graphical User Interface . 17

2.12 Webots Integrated Development Environment. 19

2.13 General structure of Gazebo components. 20

2.14 Overview of the Gazebo workflow. 21

2.15 Model rendering in Gazebo. 22

2.16 Gazebo’s visualization window. 23

2.17 Overall architecture of SimSpark. 24

2.18 SimSpark simulation loop. 25

2.19 SimSpark monitor. 27

2.20 SimTwo built-in script editor and sheets Graphical User Interface (GUI). . 28

2.21 SimTwo chart generation. 29

2.22 SimTwo built-in scene editor. 30

2.23 SimTwo rendering window. 31

2.24 SimTwo configuration window. 32

3.1 A Middle Size League field with official markings. 37

3.2 The biomorphic architecture of the CAMBADA agents. 38

3.3 Layered software architecture of CAMBADA players. 38

3.4 CAMBADA’s physical structure divided in layers. 39

3.5 Hardware architecture with functional mapping. 40

3.6 Holonomic motion system. 41

3.7 The kicker system. 42

v

4.1 Simulated components of the layered software architecture. 48
4.2 Sequence diagram of PMan usage. 51
4.3 The ball model in a perspective view. 53
4.4 The goal model in a perspective view. 53
4.5 The robot model assembling. 54
4.6 The robot model in a perspective view. 55
4.7 The obstacle model. 55
4.8 Simulated omnidirectional vision workflow. 57
4.9 Detection of occlusion area with a top view. 58
4.10 Ball detection above ground - Projection. 60
4.11 Under Control Area defined by the barrier sensor. 62
4.12 Constraints of the holonomic motion system. 63
4.13 Type of kicks created by the kicking device. 65
4.14 Reference coordinate system and cannon location. 66
4.15 The four views of the rendered world. 69
4.16 Example of drag-and-drop interaction with the simulation. 70

5.1 Damping effect on the ball rolling. 71
5.2 Damping effect on the ball when its thrown into the air. 72
5.3 Bounciness of the ball model. 73
5.4 White points influence in self-localization. 73
5.5 Example of a white points capture. 74
5.6 Obstacles detection with occlusion. 75
5.7 Example of ball detection. 76
5.8 Holonomic motion comparison (position). 77
5.9 Holonomic motion comparison (orientation). 78
5.10 Holonomic motion comparison (odometry). 79
5.11 Effect of the grabber on the ball. 79
5.12 Execution time of the heaviest simulation scenario. 80
5.13 Virutal omnidirectional vision execution time in the worst-case scenario. . 81

vi

List of Tables

2.1 Comparison between robotic simulators. 33

3.1 Communication requirements of the lower-level control layer 45

vii

viii

Chapter 1

Introduction

1.1 Motivation

The software of a robotic agent has in its blocks a large variety of algorithms, each one
with a specific goal. While developing these algorithms, testing is a mandatory task so
that its results can be observed, analyzed and discussed. The ideal approach for testing
is to use the real robot, but this approach can sometimes be problematic, specially if
more than one robot is needed. Using real robots for testing is not without constraints.
Sometimes there may not be enough robots available (either by technical issues or by
monetary issues), they can be damaged, the physical space required for testing is bigger
than the available, the programmer can be physically distant from the robots, etc. In this
context, using a simulated environment makes perfect sense as it allows to overcome these
imposed constraints.

By using a simulated environment the real robots are no longer necessary and, as result,
several advantages arise [1]:

• Less expensive than the real robots;

• No damage is made to the real robots while testing (they are not used);

• Save the robots batteries;

• Less testing time;

• Easy testing of new algorithms;

• Easy development and testing of new models of robots;

• Different components can be easily added or removed for testing (even the non-
existing ones);

• Several levels of abstraction can be studied;

• More detailed information can be extracted from the environment;

1

• Facilitates study of multi-agent coordination methods;

• Control over the simulation time.

Even though a simulated environment gives good advantages for development, it does
not always offer a satisfactory transfer to reality [2]. Therefore, efforts are needed to create
more accurate simulated models and trustworthy behaviors.

1.2 Objectives

The aim of this thesis is to tackle the problem of using real robots in the development
and testing of algorithms. The main goal is to create or find a suitable virtual environment
for the CAMBADA team to aid development. The specific goals of this thesis include:

• Study the existing solutions for robotic simulation;

• Develop or adapt a robotic simulator;

• Model all entities that have a role in the game (e.g. goals, ball, robots);

• Develop the virtual version of the robot sensors and controllers (e.g. vision, kicker);

• Develop an intuitive interaction with the simulator.

1.3 Requirements

In order to have a more accurate simulation model and reliable behaviors the pro-
posed simulated environment must comply with a set of requirements. They falls in two
categories, software requirements and operational requirements.

1.3.1 Software requirements

Rigid Bodies Dynamics
The simulation must be able to detect collisions of rigid bodies, apply joint constraints
(e.g. wheel joints) and follow the laws of classic physics.

Multiple Entities
An entity can be a lot of things, a goal, a robot or even only a simple geometry. The
simulator must be flexible enough to allow multiple instances of multiple entities.

Sensors/Controllers
There must be the notion of sensor and controller with more than one level of ab-
straction (e.g. noise, delay). The virtual sensor must be able to obtain data from the
simulated environment while the virtual controllers should be able to interact with

2

virtual sensors, joints or entities in the simulated world. The virtual sensors and
controllers can be attached to a physical entity (e.g. robot body) or, to an empty
entity creating the concept of them being “on the air”.

Flexible models
By using a configuration file (e.g. xml), the simulator must be able to allow the
building of complex models by smaller components like geometries, sensors and con-
trollers.

1.3.2 Operational requirements

Open Source
In the spirit of sharing knowledge an Open Source simulator is a welcome requirement.
Also, developing a robot simulator from scratch may not be feasible, therefore, an
Open Source solution has the advantage of offering a product free of charge and
supported by a community of users and developers.

Unix
The CAMBADA software is developed to work on a unix system namely Ubuntu 1,
therefore the simulator must also run in the same system.

Visualization and interaction
The simulator should provide a graphical visualization of the simulated world and
allow interaction with it, but this should not be a requirement for the simulation to
run. The visualization should be able to run on systems with low graphic capabilities.

CAMBADA agent integration
The virtual sensors and controllers of the simulator to be developed must work in-
trinsically with the CAMBADA’s robotic agent. Therefore the agent should not be
aware in which environment it is operating while maintaining the original software
architecture and workflow. Also, it is desirable to have all agents running in the same
computer.

1.4 Thesis outline

This thesis is organized in five more chapters.
Chapter 2 gives an introduction about robotic simulation and presents a survey of

several robotic simulators. In the end, a brief comparison between the described robotic
simulators is presented.

Chapter 3 introduces the CAMBADA team and the RoboCup project. Afterwards, the
general architecture of the CAMBADA robots is presented followed by the CAMBADA
hardware and software.

1http://www.ubuntu.com

3

http://www.ubuntu.com

Chapter 4 describes the development of the simulation environment for the CAMBADA
team. It starts with the understanding of the simulation environment, presents the mod-
eling of physical entities within the simulated environment, discusses the created virtual
sensors and controllers, and finishes with the visualization and interaction provided by the
developed simulator.

Chapter 5 presents the results obtained by the developed simulation environment. It
focuses in the motion of ball, the developed virtual sensors and controllers, and in the
execution times of the simulation.

Finally, chapter 6 discusses the obtain results and presents suggestion for future work.

4

Chapter 2

Robotic Simulation

2.1 Introduction

A robotic simulator is a tool that provides a quicker and/or simpler way for testing
out ideas, theories and software with robots without depending physically on the actual
machine, thus saving time and money. A simulation can be used for testing new ideas
without having to spend time and money building the robot to do it. The task of testing
algorithms for robots may be difficult to accomplish. Turn on the robot, program it, place
it in position to start, let it run and record what happened. Given the results this processes
is repeated a few times while tweaking the algorithms. Each run may take some time to
complete, not to mention the recharging of batteries and the failure of hardware. With a
simulator, test algorithms can be accomplished without the time overhead of dealing with
the real robot. In addition, while designing a robot we can test different configurations
and determine which one provides better performance to our robot without having to build
and test a new robot for each configuration [3].

A robotic simulator is a software capable of modeling robots and its environment. The
robotic simulation has a virtual version of one or more robots and it is capable of emulating
the behavior of the real robots in their working environment. The visualization component
of a robotic simulator has the purpose of visually demonstrating the simulation and can
provide direct interaction with the simulation state. There are several robotic simulators
available and the differences between them are the features they provide, such as robot
prototyping, physics engine, three-dimensional rendering, scripting, etc. The simulators
can target a specific type of simulation environment or, be completely generic allowing the
user to create their own simulation environment.

This thesis focuses on creating a simulation environment for robotic soccer agents in
the context of a RoboCup MSL team. Therefore we conducted a survey of some of the
existing robotic simulators so we could find the adequate tool for our purposes. Our
points of analysis were the structure and capabilities of the software, how the simulated
world is represented (i.e. how it is modeled), the simulation environment, the visualization
component and the interaction with the simulation. We also described the physics engine

5

used by most of the robotic simulators covered by the survey.
The described robotic simulators that follow were chosen by their application on the

RoboCup domain or due to their high visibility in the robotic simulation world.

2.2 Physics engine

A common trait between robotic simulators is the use of a physics engine to provide
real-time realistic dynamics. They can provide rigid and soft body dynamics (with collision
detection), and fluid dynamics. There are several engines available, such PhysX1, Havok2,
Newton Game Dynamics3, Bullet4, Open Dynamics Engine (ODE), etc. The physics engine
ODE is commonly used by robotic simulators. Therefore, in this section, we will present
some of the engine characteristics. The description is based on the ODE manual [4].

2.2.1 Short introduction

Open Dynamics Engine is a free, high quality library for simulating articulated rigid-
bodies. An articulated structure is created when rigid bodies of various shapes are con-
nected with joint of various types. Some of the key feature of ODE are:

• Rigid bodies with arbitrary mass distribution.

• Joint types: ball-and-socket, hinge, slider (prismatic), hinge-2, fixed, angular motor,
linear motor, universal.

• Collision primitives: sphere, box, cylinder, capsule, plane, ray, and triangular mesh,
convex.

• Collision spaces: Quad tree, hash space, and simple.

• Contact and friction model.

• Has a native C interface (even though ODE is mostly written in C++).

2.2.2 Rigid bodies

A rigid body (Figure 2.1) has several properties that changes during the simulation,
such as: the position vector (x, y, z) of the body’s reference point, which correspond to the
body’s center of mass; the linear velocity of the point of reference; the orientation of the
body represented by quaternions; the angular velocity of the body. Other properties are

1http://developer.nvidia.com/object/physx.html
2http://www.havok.com/
3http://newtondynamics.com
4http://bulletphysics.org

6

http://developer.nvidia.com/object/physx.html
http://www.havok.com/
http://newtondynamics.com
http://bulletphysics.org

constant, including the mass of the body, the position of the center of mass with respect
to the point of reference, and the inertia matrix.

A shape of a body is not a dynamical property. It is only collision detection that cares
about the shape of the body. ODE provides a wide variety of geometry classes, including
sphere, box, cylinder, plane, ray, convex, etc.

Figure 2.1: ODE rigid body illustration.

2.2.3 Joints

In ODE, much like in real life, joints are used to connect two object. They enforce a
relationship between two bodies so they can only have certain positions and orientations
to each other. This relationship is called a constraint. The Figure 2.2 shows three different
constraints. The first is a ball-and-socket joint that constraints the “ball of one body to
be in the same location as the socket of another body”. The second is a hinge joint and
constraints the two parts of the hinge to be in the same location and lineup along the hinge
axis. The third is a slider joint that constraints the “piston” and the “socket” to lineup
while constraining both bodies to maintain the same orientation.

Figure 2.2: Three different constraints types, from [4].

When two bodies are connected by joint, those bodies are required to have certain
positions and orientations relative to each other. However, sometime the bodies can be in
positions and orientations that violates the constraint. This can happen if the user sets
the position and/or orientation of a body and does not set properly the position and/or
orientation of the other body, or the accumulation of error during the simulation can drift
the bodies from their required positions.

7

To reduce joint error, at each simulation step each joint applies a special force to
bring the bodies to the correct alignment. This force is controlled by the error reduction
parameter (ERP), which has value between 0 and 1 that specifies what portion of the joint
error will be fixed at the next simulation step.

Constraints are typically “hard”, i.e. constraints represent conditions that are never
violated. Although, in practice constraints can be violated by unintentional introduction of
errors by the system, but the ERP can be used to correct these errors. Not all constraints
have to be “hard”, some “soft” constraints are designed to be violated. Tipicaly, the
contact joint acts like a metal that prevents objects from penetrating upon collision. A
soft constraint can be used to simulate softer materials, thereby allowing some penetration
of the two objects when they are forced together. The distinction between hard and soft
constraints are control by two parameter, the ERP, already introduced, and the constraint
force mixing (CFM). ERP and CFM can be independently set in many joints.

2.2.4 Collision handling

Before each simulation step, the collision detection function is called by the user to
determine what is touching what. These functions returns a list of contact points that
specifies a position in space, a surface normal vector, and penetration depth. A special
contact joint is created for each contact point. The contact joint receives extra information
about the contact, such as friction, how bouncy or soft it is, etc. Then, the simulation
step takes place, afterward all contact joints are removed from the system. A complete
description of the physics parameters can be found in [4].

2.3 Brainstormers Tribots

Brainstormers Tribots [5] are a RoboCup MSL soccer team founded in 2002. In 2005
after the German Open5 they released a source code package with software used by their
team. The package contained a robotic simulator developed specifically for their MSL
robots.

2.3.1 Software overview

The simulator is developed in the C++ programming language for the Linux operating
system. For physics it uses the library ODE [6] that simulates articulated Rigid Body
Dinamics. The software has an initiation stage and then goes into a sequential cycle with
fixed time delay at the end, its workflow is depicted in Figure 2.3.

5http://www.robocup-german-open.de

8

http://www.robocup-german-open.de

start Handle user
commands

Enforce game
rules

Handle joystick
input

Apply drag to
ball and robots

Apply
commands from
the robot agents

Receive
commands from

robot agents

Step Physics

Render world
Send world

information to
robot agents

end

Figure 2.3: Brainstormers Tribots simulator workflow at every cycle.

2.3.2 World representation

The simulator created by the Brainstormers Tribots team is a RoboCup MSL centric
simulator, meaning it was developed specifically for the MSL soccer game scenario. It
models a field, two goals, a ball and several robots. Each one of which modeled with a
physical body and respective shapes, handled by the ODE library for Rigid Bodies Dy-
namics simulation. All mentioned models are hardcoded into the source code.

One characteristic of the models is that they are very simple, especially the robot model
– its a box without wheels. The game field is a plane, representing the whole ground, with
its game area limited by a set of line segments. A goal is built by boxes positioned to
recreate the posts, the crossbar and the net. Finally, the ball is a sphere. The models can
seen in Figure 2.4.

2.3.3 Simulation environment overview

The simulation environment is populated by the players of a MSL soccer game. The
game field and the goals are static but the robots are controlled by robotic agents. Rules of
the game are checked and forceed at each cycle. Goals, throw-in’s and corner are enforced
by repositioning the game ball to the appropriate location without changing the play mode.

Playing in a environment ruled by the laws of physics, the motion of the robots is the
result of forces directly applied to the robot body (a box). The force values are determined
by the motion commands sent by the robotic agent. There is also a kick, which is modeled
by a velocity applied to the ball whenever a kick command is received either by the robotic
agent or by the user input.

The communication with the robotic agents is made through UDP sockets. Each time
communications are issued the simulator checks for incoming commands and saves them
in the respective robot state structure, then it sends the state values of each robot to
the respective robotic agent. The sent robot state values, such as position, velocity and
orientation are gathered from the simulated physics world.

9

2.3.4 Visualization and interaction

Figure 2.4: Brainstormers Tribots simulation rendering and interaction window.

For visualization purposes is uses the library drawstuff, part of the ODE package, that
is capable of rendering a simple virtual 3D world (Figure 2.4). The simulator renders a
representation of its world at each cycle, it draws the field, the goal and the robots models.
What is rendered for the models is the 3D representation of their bodies geometric shapes.
The field has no geometry because it is modeled as a plane, nevertheless it is rendered as
a big quadrangle with a texture of a grass field.

Besides the common interaction with the rendering view, the simulator also provides
interaction with the simulation state. It is possible to control the virtual ball and virtual
robots with the keyboard or with a joystick, record the world state and/or save it to a file,
and recall the world state from a file.

2.3.5 CAMBADA simulator

CAMBADA6 are RoboCup MSL soccer team of the University of Aveiro, Portugal.
Before the beginning of this survey the CAMBADA team used a modified version of the
simulator made available by the Brainstormers Tribots team (Section 2.3). The simulator
was adapted to create a simulated environment for the CAMBADA software. The result is
a software with the same characteristics of the Brainstormers Tribots simulator but with
different requirements, shown in Figure 2.5.

6http://www.ieeta.pt/atri/cambada/

10

http://www.ieeta.pt/atri/cambada/

start

Handle user
commands

Enforce game
rules

Handle joystick
input

Apply drag
forces to ball

Apply steer
commands

Simulate grabber
and kicker

Apply drag
forcesSave state

Step Physics

end

Detect ball

Send sensors
data to RTDBAwake agents

Render World
Read actuators
commands from

RTDB

for all robots

for all robots

Replicate
RTDB shared

region
Detect white

points

Figure 2.5: CAMBADA simulator workflow at every cycle.

Also, the simulator in the initiation stage loads the field dimensions from the CAM-
BADA configuration file, initiates the Process Manager that manages the agent processes,
and also initiates the RTDB for all agents.

2.4 RoboCup Simulator Dev

The RoboCup Simulator Dev is a RoboCup MSL simulator developed and released as
open source by the Hibikino-Musashi Team [7].

2.4.1 Software overview

The simulator is developed in C++ for the Microsoft R© Windows R© platform. It has a
three-dimensional rigid bodies dynamics simulation provided by the library ODE [6]. For
rendering purposes it uses the library drawstuff that is part of ODE. The simulator has
a single thread of execution divided in three stages: initiation, then simulation loop and
finaly cleanup.

The initiation stage has to load the simulation configuration file, load the user input
devices, configure visualization engine and finaly build the physics world.

The simulation loop (Figure 2.6), like the name implies, is where the simulation takes
place until the user quits and is handled by the library drawstuff. The simulation loop tries
to synchronize its simulation with the realtime time by adapting the physics time step to
the rendering frame rate.

The cleanup stage safely releases the resources allocated for the simulation.
Despite of being a robotic simulator it does not provide any form of communication

with external robotic agents, but it has a cooperative decision and behavior module that
can control the robots. The module gathers sensorial data from all its team mates to

11

start

Handle user
commands Step Physics Handle user

input

Robot decisions
and behavior

control

Enemy decisions
and behavior

control
Update render

viewpoint

Render world end

Figure 2.6: RoboCup Simulator Dev simulator workflow at every cycle

determine its decisions and respective behaviors.

2.4.2 World representation

Being a RoboCup MSL simulator it models a field, goals, a ball and robots. All entities
in the world are modeled with a physical body and respective shapes, handled by the ODE
library. The models are defined directly in the source code but it has the ability to create
several instance of the same model (e.g. robot). The number of robots present in the
simulation is defined in the configuration file. The game field is a plane, representing the
whole ground, with a texture of a soccer grass field and delimited by boxes around the
game area. The goal is built by boxes positioned to recreate the posts, the crossbar and
the net. Finally, the ball is a simple sphere. Because the simulator was developed to serve
the Hibikino-Musashi Team requirements the robot models resembles their real robot in
terms of shape and motion (holonomic motion). It has its complete chassis and also the
holonomic motion setup. The wheels of the robot are modeled as cylinders and connect to
the robot chassis by hinge joints. The physics parameters for geometry contact, such as
friction and slip, are hardcoded.

2.4.3 Simulation environment overview

The simulation environment is populated by the players of a MSL soccer game. There
are two teams, one is the team controlled by the user and the other is the opponent team.
The opponent team is controlled by a cooperative decision and behavior module trying to
win the game. The team controlled by the user is actually also controlled by the cooperative

12

decision and behavior module except one robot that can be controlled by the user.
In terms of motion, the holonomic motion behavior is achieved by applying the kine-

matic model to the robot. The desired linear and angular velocities of the robot frame
is translated to the angular velocities of the wheels and applied to the hinge joints. The
desired behavior is achieved by fine tuning of the physics parameter for surface contact.

2.4.4 Visualization and interaction

For visualization purposes is uses the library drawstuff, part of the ODE package, that
is capable of rendering a simple virtual 3D world (Figure 2.7) . The simulator renders a
representation of its world at each cycle, it draws the field, the goal and the robots models.
What is rendered for the models is the 3D representation of their bodies geometric shapes.
It also renders text for information purpose, such as when the simulation is pause or when
a team scores.

Figure 2.7: RoboCup Simulation Dev rendering and interaction window.

Beside the common interaction with the rendering view, the simulator also provides
interaction with the simulation state. It it possible to control a robot with the keyboard,
joystick or Wii7 controller. It is possible to reset the simulation, it brings all robots and
ball to their initial state.

7http://pt.wii.com/

13

http://pt.wii.com/

2.5 SimSrv - A RoboCup F2000 Simulator

The SimSrv [8] is a simulator for the RoboCup MSL, a joint open source project by the
universities of Freiburg [9] and Stuttgart [10] that presents a flexible simulation platform
instead of a rather specialized for a certain robot architecture and software.

2.5.1 Software overview

The simulator is developed in C++ and based on server/client concept with plugin
architecture to provide maximum modularity. The server, at its core, is a 2D physics sim-
ulation where the world state is uninterruptedly updated within discrete time intervals δt.
At time t the following world state for time t+ δt is calculated taking into account the ob-
ject velocities and changes to internal state. The physics simulation is basically influenced
by the the robot objects existing in the simulation (Figure 2.8). The implementation of
the physics simulation is based on the book “Dynamics” [11].

Robot

Sensor
container

Motion
Plugin

Plugin Factory

Rob
CFG

Sim
CFG

M
es

sa
ge

 B
oa

rd

Physics Simulation

World State

GUI

Referee
control

Player Plugins
control

sensor
data

control

sensor data

connect
control

sensor data TC
P/

IP

Figure 2.8: Overview of the server architecture, adapted from [8].

Robots can be controlled by clients connected to the Message Board via TCP/IP socket
or by a player plugin created in the GUI. Using TCP/IP socket provides the advantage
that a client can be developed in any kind of programming language as long they follow
the protocol. For simplicity, the protocol is based on ASCII strings that start with a
command keyword followed by a list of parameters. Alongside the commands that controls
a robot, the protocol also defines commands to control the simulation (e.g. reset the
simulation). Due to the generic plugin architecture there is no formal definition for the
exchange of sensor data, the plugin itself is responsible to pack and unpack the data.
Because the server and client usually run on a different machine the protocol has a time
synchronization mechanism.

14

User Control Program

Sensor Data
container

Plugin Factory

CFG

C
om

m

GUI

control

sensor
data

connect
control

sensor data TC
P/

IP

Parameters

R
ea

l R
ob

ot
 IF

Figure 2.9: Overview of the client architecture, adapted from [8]. Dashed components are
optional.

The SimSrv also provides a client architecture, depicted in Figure 2.9. The client is
built up by a module that handles communication with the server (Comm), a module for
parsing the robot configuration file Parameters and a sensor container that holds the sensor
plugins created by the plugin factory. The robot’s configuration file holds information
about the sensors and maximum velocity parameters. When connecting with the server
the configuration file is transmitted to the server and used there to generate an equivalent
robot object. The sensor plugins created on the client are equal to the ones created on the
server but with reduced capability of producing sensor data.

2.5.2 World Representation

The world of the SimSrv is flat, i.e. the world has a 2D representation and is ruled by
a 2D physics engine. Although if offers a limited support for the third dimension when
required (e.g. three-dimensional sensor information). From the simulation configuration
file, the environment is defined by geometric primitives such as rectangles, ellipses and
triangles allowing to build almost any 2D scenario. Because the SimSrv is a simulator for
the RoboCup MSL it provides representations of the game field and ball, both configurable
in the simulation configuration file.

Each robot has a motion plugin and sensor container. The motion plugin allows the
simulation of the robot dynamics. The sensor container has the various simulated sensors.
The body of the robot is defined by the same geometric primitives that builds up the
environment, allowing the simulation to provide rigid body collisions. Manipulators are
variable parts of the robot geometry, they can have several states were each of which
represents a different geometric configuration. Also, manipulators can have a parameter
that represents their ability to accelerate the ball. The single configuration of a robot is

15

defined by a file.
To help the creation of new scenarios and robots the SimSrv package provides a What

You See Is What You Get designer, shown in Figure 2.10.

Figure 2.10: SimSrv scenario and robot designer.

2.5.3 Simulation environment overview

The defined environment is populated by robots, each of which controlled by a client
(e.g robotic agent) or by a player plugin. There is a referee entity intended to enforce the
rules of a MSL soccer game, although it only keeps the score updated, resets the game when
someone scores and brings the ball into the game if it crosses the game field boundary.

The motion plugin within the robot offers different kinematic models, such as differen-
tial drive or holonomic motion (three wheels only). The client can control the robot by
sending motion commands to the motion plugin, to address the different types the standard
commands setRotationalVelocity and setTranslationalVelocity are sent,
but for more complex models a n-dimensional vector can be used. A motion model may
need to send its internal state back to the client, for that the default odometry sensor of
the server is invoked making the data available on both sides.

The sensors data is only sent to the client when requested. The data is packed by the
sensor plugin and then sent to the client, there the corresponding sensor plugin unpacks
the data. The simulator offers sensors plugins for odometry, camera for ionic data of ball,
goal and corner posts (considering a maximum view distance), ionic omnivision camera,
laser range finder, ultrasonic and camera image by 3D scene reconstruction.

16

The player plugin is an interesting concept. Instead of having a full fledge robotic agent
controlling the robot to execute a simple behavior (i.e. opponent goalkeeper) we can have
a plugin doing just that but without the overhead of a remote client. It can communicate
with other player plugins for cooperative behaviors and it can also manipulate the world
state to overcome some limitations created by the virtual sensors.

2.5.4 Visualization and interaction

The SimSrv has a GUI built in Qt8 (Figure 2.11) that serves two purposes, display
the simulation environment and interact with the simulation. The GUI draws the two-
dimensional environment of the simulation from a top view, also it can show information
about the world state (e.g. robot) and Message Board messages.

The GUI can influence the simulation by directly manipulating the state of the object
present in the simulation, such as positioning the the ball and manipulate its velocity using
the mouse or controlling a robot with the keyboard. In realtime it can add new player
plugins to the simulation. It can also manipulate the simulation indirectly by controlling
the referee module. Finally, the simulation time rate can also be controlled by the GUI.

Figure 2.11: SimSrv Graphical User Interface, from [12]

8http://qt.nokia.com/

17

http://qt.nokia.com/

2.6 WebotsTM

WebotsTM [13] is a commercial software for mobile robotic prototyping simulation and
transfer to real robots. Created by Cyberbotics Ltd.9 WebotsTM is intended for researchers
and teachers in the area of mobile robots.

2.6.1 Software overview

WebotsTM can provide modeling for any mobile robot, such as wheeled, legged and
even flying robots. It runs on Windows, Linux and Mac OS X. It includes a library of
sensors that the user can include in the model and fine tune individually (e.g. noise,
range). Sensors such as distance sensor, range finders, light sensor, touch sensor, global
positioning sensor and positions sensors for servos are a few examples of available sensors
in the library. A library of actuator also exist, for example servos, LEDs and grippers are
available.

Complex environment can be created with the use hardware accelerated OpenGL tech-
nologies including fog, texture mapping, shading, etc. Three-dimensional models can be
imported through the VRML97 [14] standard. The robots and the environment are defined
by a world file.

The use of virtual time by the simulation system allows simulations to run much faster
that it would on the real robot. The simulation physics relies on ODE to perform accurate
simulation whenever is needed. Each component of a robot is bound to an object for
physics collision and has associated parameters that influence the physics behavior (e.g
friction coefficients, bounciness).

Programming the robots can be done in C, C++ and Java, or from third party software
through TCP/IP. WebotsTM has built-in editor with syntax highlight and auto-completion
for Webots Application Programming Interface (API). The source code can be compiled
and executed in the simulation. In fact, WebotsTM provides a full fledge development
environment [15], shown in Figure 2.12.

2.6.2 World representation

A world in WebotsTM is represented as a scene tree that describes the environment, the
robots and its graphical representation. The scene tree is structured like VRML97 [14] file.
The tree is composed by nodes, a node can be a field containing values (numerical value,
text strings) or other nodes. A user can create or modify a world by editing the scene
tree using the Scene Tree window (Figure 2.12). While editing the scene tree, its changes
immediately affect the simulation as can be seen in the 3D window (Figure 2.12). Also the
3D window can be used to directly manipulate the location and rotation of a node. For
more information on how to model a world in WebotsTM please refer to [16] .

9http://www.cyberbotics.com

18

http://www.cyberbotics.com

Figure 2.12: Webots Integrated Development Environment.

2.6.3 Simulation environment overview

The flexibility of WebotsTM allows the creation of any kind of simulation environment.
The user can create the simulation environment that suits his needs. One example is Rat’s
life10, a competition to promote research and stimulate further interest in bio-inspired
robotics control. WebotsTM simulates the simulation environment where two rat robots
compete each other for survival in a maze-like environment.

2.6.4 Visualization and interaction

A simulated world in WebotsTM is rendered onto the 3D window (Figure 2.12). By itself
the 3D window allows the manipulation of the location and rotation of simulation objects.
Through the API is possible to extend the interaction with the simulation provided by the
3D window. The console windows (Figure 2.12) can be used with the API to ask for user
input and give feedback to the user.

2.7 Gazebo

Gazebo [17, 18] is an open source multi-robot simulator for outdoor environment and
is part of the Player Project [19, 20, 21] a de facto standard in the open source robotics

10http://www.ratslife.org/

19

http://www.ratslife.org/

community [22]. It its capable of generating realistic sensor feedback and reasonable inter-
actions between objects.

2.7.1 Software overview

The simulator is developed in the C++ programming language for the Linux operat-
ing system. Gazebo’s architecture was designed to provide easy creation of new robots,
actuators, sensor and arbitrary objects. The result is a simple API for the addition of
these models and necessary interfaces for interaction with clients. Underneath the API
resides the third-party libraries thad handle both the physics simulation and visualization.
The third-party libraries interface with Gazebo through an abstraction layer that prevents
models from becoming dependent on specific libraries that may change in the future. This
architecture is depicted in Figure 2.13.

World

ModelControllerClient

SensorBodyJoint

Hinge Slider Camera LaserBox Plane
...

D
at

a

Commands

Open Dynamics Engine FLTK / OGRE

Gazebo

Data/Cmds

Shared
Memory

Controller Client
Data/Cmds

Shared
Memory

C
om

m
an

ds

Figure 2.13: General structure of Gazebo components, adapted from [17].

The World is the set of all models and environmental factors such as gravity and
lightning. Each model has at least one body and any number of joints and sensors. A
model or sensor can have many actuators (i.e. controllers), each of which has an interface
to send data or receive commands, e.g. control joints or transmit the image data of a
camera. The client can send commands and receive data through the interface provided
by the actuator. The interface is implemented with memory mapped files that create a
shared memory region and is compatible with Player [20] clients.

The physics engine in Gazebo is supported by the Open Dynamics Engine (ODE) [6].
It includes several features such as collision detection, joints, mass, several geometries and

20

triangle meshes. By using the abstraction layer between Gazebo and ODE normal and
abstract objects can be easily created such as laser rays and ground planes.

The visualization engine has two components a GUI and rendering component. The
GUI is provided by Fast light Toolkit (FLTK) [23] a cross-platfom C++ GUI toolkit. For
rendering the World gazebo uses Object-Oriented Graphics Rendering Engine (OGRE)
[24] a scene-oriented, flexible 3D engine written in C++.

Physics Loop

Main Loop

start Load
visualization

Load World
configuration

Initiate
visualization

Init World

Update WorldStep physics

Handle simulation
interface requests

Synchronize
time

Verify simulation
time out

Control update
frequencyUpdate GUIUpdate render

cameras

Process models to
load into simulation Update graphics

User Quit

end

Figure 2.14: Overview of the Gazebo workflow.

An overview of the simulator workflow is shown on Figure 2.14. When the simulator
starts it begins by loading the GUI and the rendering engine (i.e. OGRE) and then initiates
them, that is, creates them and shows them to the user. The user can opt for loading the
rendering without the GUI but the inverse is not possible, also the visualization can be
disabled because it is not required for the simulation to run. Afterwards, from the same
configuration file, it loads the simulation World that defines the models and configures the
physics engine and then initiates them.

The main loop and the physics loop run concurrently. The physics loop is responsible
for updating the world state and the physics simulation. The time synchronization provides
control over the simulation time, it can be realtime or faster/slower than realtime. The
user may define a simulation time terminus, therefore to oblige with the request the physics
loop will issue a user quit signal after timeout simulation seconds, a timeout equal to zero
(the default value) means no timeout. The main loop, at each cycle, is responsible for
updating the visualization and triggering the loading of new models into the simulation
during runtime. The frequency at which the cycle updates is hardcoded and controlled
within the cycle.

21

2.7.2 World representation

In Gazebo the World is a set of models defined in an Extensible Markup Language
(XML) file. A model is any object with a persistent physical representation. This allows
the build of anything from simple geometries to complex robots. Models have at least one
rigid body, zero or more joints and many sensors and controllers.

Bodies are the building blocks of a model. The arrangement of geometric shapes chosen
from boxes, cylinders, planes, spheres, rays, maps, height-maps and triangle meshes models
the physical representation the bodies. Each geometry has several physical attributes such
as mass, friction, bounce factor and rendering properties such as color, texture, mesh, etc.
On a collision, because both geometries carries the parameters that define how a collision
is handle, the simulator will chose the lowest values to be used in the collision contacts
(Section 2.2.4). By associating a mesh to a body we can define a skin that will be rendered
to represent the body instead of the geometries, an example is shown in Figure 2.15.

(a) Models rendered with a skin (b) Models rendered without a skin

Figure 2.15: Model rendering in Gazebo, from [18].

Joints are the glue that connect bodies together to create kinetic model and dynamic
relationships. Several joint types are available such as hinge joints that provide rotation
along one or two axis, ball and socket joints, etc. Joints can also act as motors, the friction
between a connected object and other causes motion.

Sensors are abstract devices without physical representation but become tangible when
incorporated in a model. This allows the reuse of the same sensor in multiple models.
Gazebo has several sensors implementations including a mono camera, stereo camera, con-
tact sensor, inertial measurement unit sensor, infra-red sensor and ray sensor.

Actuators provide the mechanism by which a client can access and control a model. An
actuator can access several components of a model, e.g. joints and sensor, and recreate a
certain device. For example, an actuator can embody a robotic arm by controlling several
joints with the appropriate constraints and kinematic model. Gazebo includes actuators
(i.e controllers) such as bumper, differential steering, holonomic motion, gripper, etc.

22

2.7.3 Simulation environment overview

The flexible models of Gazebo allows the creation of any kind of simulation environment.
The user can create the simulation environment that suits his needs. It can be an outdoor
environment with a rough terrain for a search and rescue robot or a simulation environment
for the robots of the RoboCup MSL.

All models are bound to the physics engine that simulates the three-dimensional dy-
namics of objects. During the simulation the models can be controlled by clients that
connect to the interfaces provided by them. The sensors and actuators have update cycles
with a frequency defined by the user. The sensors generates data by querying the world
state.

2.7.4 Visualization and interaction

As mentioned, the visualization of Gazebo has two components, the GUI and the ren-
dering engine (Figure 2.16). Both components work together to provide the user a visual-
ization of the simulation, at the same time, they show the information of the selected model
in the rendering widget and the status of the simulation. From the GUI it is possible to
stop and resume the simulation and modify the state parameters value of the the selected
model.

Figure 2.16: Gazebo’s visualization window, from [25].

23

The simulator provide several interfaces for clients to access and control the simulation.
The interfaces have the same technical implementation of the models interfaces. The user
can access and modify the simulation and models state, including starting and resuming
the simulation, repositioning models, getting models three-dimension pose, etc.

2.8 SimSpark

SimSpark [26] is a multi-robot simulator based on Spark [27] a generic physical multi-
agents simulator. It is used as the official RoboCup 3D simulation server [28].

2.8.1 Software overview

The SimSpark simulator is developed in the C++ programming language with imple-
mentations for Windows, Linux and Mac OS X operating systems. It is built around three
main components, they are the physics engine, the object and memory management system
(Zeitgeist), and the simulation engine. The overall architecture is shown in Figure 2.17.

Physics
Engine

Object / Memory
Management

Simulation
Engine

ODE Zeitgeist

Internal
Agent

interface

UDP/TCP
Agent

interface
main loop

single-threaded

multi-threaded

Agent
#3

Agent
#1

Agent
#2

Agent
#4

control flow data flow

Figure 2.17: Overall architecture of SimSpark. Control flow and data flow between the
main components of the simulator, adapted from [27]. The graphics component is not
shown because it is an optional part of the system.

The current implementation of the physics engine uses the Open Dynamics Engine
(ODE) for dynamics simulation. It provides rigid body simulations, collision detection
and joints for articulated body structures. To maintain the object-oriented design of the
simulator the ODE functionalities are encapsulated in classes.

Zeitgeist is an application framework for handling data objects and functional parts of a
system in an uniform way. Its implementation is based on two concepts. The first concept
follows a variant of the reflective factory pattern [29] where a factory instantiates object
at runtime while storing information about the factory itself in the object. This can be
used to determine the class name and supported interfaces of a recently created objected.

24

This is the support for the scripting language of the simulator. Currently Ruby11 is the
only supported scripting language. The second concept is the organization of the factories
objects and created objects in a virtual file system. By providing a path expression services
and objects can be easily located at runtime. The object factories are located in well-defined
locations which allows the instantiation of object of unknown classes at compile time, e.g
through the scripting language interface. This allow the addition of new sensors, actuators
and other things to the simulator in the form of plugins. More information about the
Zeitgeist framework can be found in [27].

:SimulationServer :SimControlNode :Sense

StartCycle()

SnseAgent()

ActAgent()

TimedWait()

PrePhysicsUpdate()

PhysicsUpdate()

PostPhysicsUpdate()

EndCycle()

Step

Run Loop

(a) Single-threaded loop.

:SimulationServer :SimControlNode:Sense

Run Loop
PrePhysicsUpdate()

synchronism

PhysicsUpdate() StartCycle()

SenseCycle()

ActAgent()

EndCyle()

synchronism

PostPhysicsUpdate()

(b) Multi-threaded loop.

Figure 2.18: SimSpark simulation loop, from [28].

The simulation engine handles timing, event management and communications with
external entities. It was designed to allow a customization of the runloop with replaceable
components. There were two built-in runloops: a simple loop that would execute actions
sent by the agents as soon they arrived, and a more complex one using SPADES [30],
designed to support distributed simulations. The SPADES runloop turned out to be too
complex to allow the system to mature enough to be use in competition. The simple loop
was too indeterministic for accurate control and suffered large time variations based on
the load of the server. Therefore, a new runloop mode was implemented with a control
loop that runs at 50 Hz, the rendering at 25 Hz, and different delays for different sensors
and actuators. Furthermore, a single-threaded mode and multi-threaded mode of the run-
loop was implemented (Figure 2.18). In the multi-threaded mode the physical simulation

11http://www.ruby-lang.org

25

http://www.ruby-lang.org

stepping and the agent communications processing for the next simulation cycle run in
parallel. The game or application logic of the simulation can be implemented as plugins
triggered by certain event types to which they can chose to respond.

Agents and external monitors for visualization can connect to the simulator via TCP
and UDP connections, although only TCP is used at the moment. There is also an interface
for a trainer application that has special permissions to move objects in the simulation,
set game states, etc. This is useful for debugging and machine learning applications.

2.8.2 World representation

In SimSpark, besides the internal C++ interface, the World can be defined by using
the Ruby interface or by a scene description language called RubySceneGraph (RSG). The
language is based on S-Expressions [31] and its hierarchical parenthesis structure is mapped
into an object hierarchy of the scene tree. The Ruby interface and RSG descriptions can
be used together to construct scenes procedurally and descriptively at the same time. For
a detailed specification, please refer to [27].

Entities in a scene graph are represented with a node containing the reference coordinate
and orientation of the entity. An entity has different properties like physics or geometries,
and are called aspects and are represented as nodes in the scene graph. Physics aspects
constitute physical properties of a body, mass and mass distribution. Geometry aspects
constitute the colliders that implement the shape of objects to handle collisions with other
objects. Further aspects describes how a node have to be rendered on screen. It is possible
to load triangle meshes to provide a more detailed visualization of a node.

Joints, represented by special nodes, can be used to constrain the relative movement
of two connected bodies along one or more axis. Also, joints acting as motors can be
used to enforce movement. The connected bodies form an articulated structure that can
be used to simulate wheeled or legged robots. A joint can be created and stored in the
scene graph, several joint types are available including hinge joint, two-hinge joint, ball
and socket joints, slider joint and universal joint.

An external agent is represented inside the simulator with an agent proxy. It collects
sensor data and executes actions on behalf of a connected remote agent. An agent aspect
identifies a subtree of the scene as an agent. The physical and geometry aspects are no
different from other objects in the simulation. An agent can have perceptors and effectors,
represented by nodes in the scene graph. The perceptors provide the sensors data to the
agent associated with the representation of the agent in the simulator, and the effectors
can be used by the agent to act in its environment.

2.8.3 Simulation environment overview

The flexibility of the SimSpark architecture allows the creation of any kind of simulation
environment. One example is the the humanoid soccer simulator with the Aldebaran Nao
robot [32] model. The simulator, called rcssserver3D, is based on SimSpark and creates
the adequate simulation environment for humanoid soccer. It creates a game field, a ball,

26

the goals, defines the Nao robot model and has a plugin that automatically enforces the
game rules. Each time an external agent connects to the simulator a new Nao robot model
is added to the simulation that serves as representation of the agent that just connected.

2.8.4 Visualization and Interaction

SimSpark has a 3D visualization application, called monitor responsible for rendering
the simulation scene (Figure 2.19). The monitor can be internal or external. The internal
monitor is part of the SimSpark server while the external monitor is a separated application.
The external monitor connects to a running SimSpark server or replays a simulation from
a log file. The data stream sent from server or in the log file has a format called Monitor
Format [33], a language used to described the simulation state. The binding of an action,
executed by the monitor, to a key or mouse event can be customized in the configuration
files. Besides the common manipulation of the rendering point-of-view, the monitor can
send commands to the simulator that affects the state of the simulation objects.

Additional interaction with the simulation is achieved with Ruby interface that allows
the creation of plugins with access to the simulation objects.

Figure 2.19: SimSpark monitor.

27

2.9 SimTwo

SimTwo [34] is a realistic simulation system for implementing several types robots,
including wheeled, legged and flying robots.

2.9.1 Software overview

The SimTwo simulator is a free to use application for the Windows platform. It has a
three-dimensional rigid body dynamics provided by the library ODE. The realistic dynam-
ics is achieved by decomposing the robot in a system of rigid bodies and electrical motors.
For visualization purposes it uses GLScene12 to draw the three-dimensional environment.
The robots can be controlled remotely with a communications mechanism via UDP or
serial port.

The simulator also offers an interface to control the robots within the simulation, using
RemObject Pascal Script 13 it provides a scripting system that can be used to access and
control several aspects of the simulated robots, such as position, motors state, etc. The
scripting system includes a spreadsheet like mechanism that allows the user to raise events,
set input parameters and print outputted data from the script application. To assist the
development of control scripts, SimTwo has a built-in script editor with more editing
capabilities than a regular editor. The built-in script editor and the sheets GUI are shown
in Figure 2.20

Figure 2.20: SimTwo built-in script editor and sheets GUI.

To help debugging a simulation run, the simulator can generate in real-time a graph
chart with the internal state values of the many components of a robot, shown in Fig-

12http://glscene.sourceforge.net
13http://www.remobjects.com/ps.aspx

28

http://glscene.sourceforge.net
http://www.remobjects.com/ps.aspx

ure 2.21. The user can chose to plot only the states that he or she is interested in analyzing.
The data used to generate the graph chart can be dumped into a log file.

Figure 2.21: SimTwo chart generation.

2.9.2 World representation

The simulation world, called scene, is defined by a XML file loaded when the simulation
is launched. In the XML file, robots, obstacle, objects and tracks can be defined. The scene
files can be created and modified in a built-in scene editor, shown in Figure 2.22

The robot is built by a series of elements that will define its structure and dynamic.
The physical structure of the robot takes the form of geometric solids used for dynamics
and collision detection, such as spheres, cylinders and cuboids. Articulated components
are created by defining joints that create constraints between two geometric solids. A joint
can be controlled by a motor component that represent a motor, a gear box and low-level
PID controller. Sensors can also be attached to the robot. To give more complex shapes
to the robot, a set of plates can be define to create a shell for the robot. Also, a shell
helps overcome one limitation of ODE, which is the lack of support for collisions between
cylinders. A set of wheels can can also be added to the robot, each of which has a motor,
a controller, an encoder and a cylinder that can represent a omnidirectional wheel or not.

Obstacles and objects are represented by geometric solids. The difference between an
obstacle and an object is that the first is static and the second is free to move in the
environment.

Tracks can be used to draw markers in the floor, e.g a racing track. Several draw
primitive are available, including lines, arcs and polygons.

29

Figure 2.22: SimTwo built-in scene editor.

2.9.3 Simulation environment overview

The flexibility of SimTwo definition allows the creation of different robotic simulation
environments. The SimTwo simulator package includes several examples of simulation
environments, such as autonomous driving and humanoid simulation.

All geometric solids are bound to the physics engine that simulates the three dimen-
sional dynamics of objects. The control model is made in two levels. In the first level,
the control of the motors is made internally by the simulator at every 10ms. At a lower
frequency (usually 40ms), more complex controllers are implemented by calling a function
found in a script, or by exchanging UDP packets.

2.9.4 Visualization and interaction

The simulation environment in SimTwo is rendered onto the 3D windows (Figure 2.23).
From the 3D window the user can manipulate the rendering point-of-view and the location
of objects (e.g robots, ball). Furthermore, a configuration window provides additional
control over the simulation and allows run-time configuration of the graphics engine, physics
engine and serial port communication.

From the control pane (Figure 2.24a), the user can freeze the simulation, change the
robots location and edit joints waypoints. From the graphics pane, the user can configure
the level of detail of the rendered scene, and control the camera position and orientation.

2.10 Other robotic simulators

Many robotics simulators are available and can be used to developed a simulated en-
vironment for a robotic soccer agent. However, because it is not viable to describe all

30

Figure 2.23: SimTwo rendering window.

existing simulator, in this section we will briefly describe other robotics simulators that
complies with the selection criteria defined in Section 2.1:

SimRobot is a multi-platform robotic simulator which is able to simulate arbitrary user-
defined robots in three-dimensional space [35]. It includes a physical model supported
by the Open Dynamics Engine (ODE), a graphics engine, a GUI, sensors and actu-
ators. The specification of the robots and the environment, called scene, is modeled
via an external XML file loaded at runtime. SimRobot has been used to simulate
the robots and the environment of the Sony Four-legged League and SPC league.

Microsoft Robotics Developer Studio (MRDS)14 is a Windows-based environment
for academic, hobbyist and commercial developers to easily create robotics applica-
tions across a variety of hardware. Based on Concurrency and Coordination Runtime,
a library to manage asynchronous parallel tasks, it provides a visual programming
tool for creating robot applications, web-based interfaces, 3D simulations and a set
of sensors and actuators.

ÜberSim is a vision-centric robot simulator [36] used in the RoboCup domain. The sim-
ulator core was writen in C++ fo the Windows platform. It includes a realistic robot
dynamics and simulation accuracy supported by the Open Dynamics Engine (ODE),
a graphics engine, sensors and actuators. It maintains the traditional client/server
paradigm where communication is made thought TCP sockets. It provides flexible
and extensible robot specification. Vision synthesis is handled by the combination of
OpenGL and Open Scene Graph (OSG)15 library.

15http://www.openscenegraph.org

31

http://www.openscenegraph.org

(a) Control pane (b) Graphics pane

Figure 2.24: SimTwo configuration window.

2.11 Comparison between robotic simulators

The aforementioned robotic simulators are different but with common features. Having
their features compared gives us a quick reference of their capabilities and help us chose the
best tools for the job in hands. In the context of this thesis we defined a set of requirements
(Section 1.3.1 and 1.3.2) for our robotic simulator. Therefore, it is only appropriated to
use these requirements as our frame of reference for comparison. Although, we excluded
the CAMBADA agent integration requirement because it is foreseeable that only a robotic
simulator created or adapted for the CAMBADA team will comply with this requirement.
The comparison is presented in Table 2.1.

2.12 Summary

After reading this chapter, the reader should understand the purpose of a robotic sim-
ulation and its application on the RoboCup domain. Different robotic simulators solutions
were presented and some of their characteristics described. In the end we presented a
comparison table between the described robotic simulators.

32

Rigid Body
Dynamics

Multiple
entities

Sensors /
Controllers

Flexible
models

Licence Operating system Visualization and
Interaction

Brainstormers
Tribots

Robocup
Simulator Dev

SimSrv

Webots

Gazebo

SimSpark

CAMBADA
simulator

SimRobot

MRDS

Ubersim

SimTwo

Yes (3D) Yes but
limited

No No (hardcoded) Open Source UNIX-like Yes

Yes (3D) Yes but
limited

No No (hardcoded) Open Source Windows Yes

Yes (2D) Yes Yes Yes Open Source UNIX-like Yes

Yes (3D) Yes Yes Yes (VRML) Commercial Win/Linux/Mac Yes

Yes (3D) Yes Yes Yes (XML) Open Source Unix-like Yes

Yes (3D) Yes Yes Yes (RSG/Ruby) Open Source Win/Linux/Mac Yes

Yes (3D) Yes but
limited

No No (hardcoded) Open Source UNIX-like Yes

Yes (3D) Yes Yes Yes (XML) Open Source Win/Linux/Mac Yes

Yes (3D) Yes Yes Yes Freeware Windows Yes

Yes (3D) Yes Yes Yes (XML) Closed Source Windows Yes

Yes (3D) Yes Yes Yes (XML) Freeware Windows Yes

Table 2.1: Comparison between robotic simulators.

33

34

Chapter 3

CAMBADA

The Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture
(CAMBADA) [37] is the RoboCup MSL soccer team of the University of Aveiro, Portugal.
This project started officially in October 2003. The team is composed by six robots and
the first version was completed in 2004 and since then there has been a steady evolution
in their structure to face new challenges and higher goals. This chapter gives an overview
of the RoboCup competition, giving a special attention to the MSL, and describes the
current stage of the CAMBADA robots.

3.1 RoboCup

RoboCup [38] is an international project created to promote research and education in
the field of Artificial Inteligence (AI), robotics and related areas. Soccer was chosen as a
real world challenge where a wide range of technologies can be integrated and examined.
The long term goal is to, circa 2050, develop a fully autonomous humanoid team capable
of playing and wining against the human world championship soccer. To fulfill this goal
RoboCup is divided in various competitions which are divided in leagues:

RoboCup Junior
“This is a project focused on education and it is designed to introduce robotics to
young students still in primary and secondary school, as well undergraduates who do
not have the resources to get involved in the senior leagues” [39]. This competition
has three leagues:

• Soccer

• Dance

• Rescue

RoboCup Rescue
“Search and rescue of victims in a disaster scenario is a very important social issue

35

which involves a very large number of heterogeneous agents in the hostile environ-
ment. The purpose of this project is to promote research and development in this
significant domain” [40]. This project has two leagues concurrently proceeding:

• Robot League

• Simulation League

– Agent Competition

– Infrastructure Competition

– Virtual Robot Competition

RoboCup Soccer
“The soccer games are important opportunities for researcher to test their work and
exchange technical information. It also serves a good opportunity to educate and
entertain the public”. This competition is divided into the following leagues:

• Humanoid League

– Kid Size

– Teen Size

– Adult Size

• Middle Size League

• Simulation Leagues

– 2D Simulation

– 3D Simulation

– 3D Development

• Mixed Reality

• Small Size League

• Standard Platform League

RoboCup @Home
“This competition aims to develop service and assistive technology for future personal
domestic applications” [41].

Although soccer is the main application domain, each competition has its own singu-
larity that enables researches to address different problems in different areas of robotics
such as multi-agents system coordination, autonomous agents, real-time reasoning, strat-
egy coordination, reactive behavior, real-time sensor fusion, machine learning, computer
vision, motor control and intelligent robot control.

36

3.1.1 Middle Size League (MSL)

CAMBADA robots were design to compete in RoboCup’s MSL. In this league each
team can play with up to 5 robots with maximum dimension of 50cm×50cm×80cm and a
maximum weight of 40Kg to play in a field of 12m× 18m depicted in Figure 3.1 according
to robot-adapted official FIFA rules. The robots must have their sensors on-board and
be able to operate fully autonomously. To have cooperative behaviors, robots are allowed
to communicate with team-mates and the coach through wireless connection. The coach
must be an autonomous entity, usually an external computer, without sensors and with
the capability of deciding accordingly the informations provided by its team-mates. The
referee is the only human decider which enforces the game rules. The robots plays in an
environment well defined by colors, such as green for field, white for line and mainly black
for robots. Since 2010 edition, the ball is no longer of orange color, it can be a generic
FIFA approved ball.

Figure 3.1: A Middle Size League field with official markings.

3.2 General Architecture

The general architecture of the CAMBADA robots is described in [42, 43] Basically, the
CAMBADA robots follow a biomorphic (Figure 3.2) paradigm centered on a processing
unit (i.e. the brain) responsible for the high-level coordination layer. The processing
unit handles communication with other robots and also has the vision, a high bandwidth
sensor, directly connected to it. The sensing information of low bandwidth and actuating
commands to control the robot are sent and received respectively by means of a low-level
sensing/actuating system.

The coordination layer works around the RTDB, it contains the local state of the robot
as well a remote copy of a subset of the other robots states [42]. The process that handles

37

External Communication
(IEEE 802.11b)

Main Processor
(the brain) Cameras

Distributed sensing/actuating
system

Coordination layer

Low-level control layer

Figure 3.2: The biomorphic architecture of the CAMBADA agents, adapted from [42].

communications updates the remote information of the other robots via an IEEE 802.11b
wireless link. Then, at each instance, another set of process uses the RTDB to define a
specific robot behavior generating commands that are sent to the low-level control layer
through a gateway (Figure 3.3).

Vision

Wireless
Comunication

RTDB

Low-level
communication

handler

Pr
oc

es
s

M
an

ag
er

Motion

System
Monitor

Odometry

Kick

Sensorial
interpretation
Intelligence

and
Coordination

Compass

Low-level control layer

Coordination layer

Figure 3.3: Layered software architecture of CAMBADA players, adapted from [37].

38

3.3 CAMBADA Hardware

The physical structure of the robot is built on a modular approach [44] with three
main layers [45]. The top layer holds the vision system of the robot and also an electronic
compass, shown in Figure 3.4. The middle layer is the placeholder for the processing unit,
currently a 12” laptop. The vision software along with all high level and decision software
executes in the laptop where the sensors data is collected and the commands provided to
the actuators are computed. Finally, the lowest layer is composed by the robot motion
system and the kicking device. Middle and lower layers are shown in Figure 3.4.

(a) The vision system (b) The electronic compass

(c) The processing
unit

(d) The motion system and the kicking
device

Figure 3.4: CAMBADA’s physical structure divided in layers. Top layer composed by 3.4a
and 3.4b. Middle layer composed by 3.4c. Lower layer composed by 3.4d.

The low level sensing/actuating system control (Figure 3.5), or the robot nervous sys-
tem, is a network of micro-controllers placed beneath the middle layer. Controller Area
Network (CAN), a real-time fieldbus typical of distributed systems, was chosen for net-

39

working and it uses the FTT-CAN protocol to comply with real-time constraints [46]. Due
to the highly distributed nature of the sensing and actuating system, each node in the
network controls a different function of the robot [43].

S
M

Gateway
node

S
M

Motor1
node

S
M

Motor2
node

S
M

Motor3
node

S
M

Odometry
node

S
M

Kicker
node

S
M

Compass
node

CAN BUS

(SM = SystemMonitoring function)

Enc1 M1 Enc2 M2 Enc3 M3 Bat. Kicker Ball Sens. Compass

Motion function
Odometry
function Kick function Compass function

Figure 3.5: Hardware architecture with functional mapping, adapted from [37].

The low level sensing/actuating system executes five main functions, namely Motion,
Odometry, Kicker, Compass and System Monitor. The first provides holonomic motion
using three DC motors each with a swedish wheel. The Odometry function reads the
encoders of the three motors and calculates the robot displacement, afterwards it transmits
the information to the coordination layer. The Kick function controls the kicking system
and the ball handler system. The Compass function transmits the electronic compass to
the coordination layer. Finally, the System Monitor function monitors the robot batteries
as well the state of the low-level nodes.

3.3.1 Physical shape

Because the CAMBADA robots compete in the RoboCup MSL, they must not exceed
the dimension defined by the rules (see 3.1.1). The shape of the robot is intrinsic to its
layers. The top layer has a conical look with a base of 24cm of radius and 56, 5cm of height.
The middle layer and the bottom layer build up together a cylindrical shape with 25cm
radius and 14, 5cm height with a cut out section to grab the ball, it is also responsible for
most of the robot’s weight. In a very loose point of view, the physical shape of the robot
is a cylinder with a cone on top.

3.3.2 Holonomic Motion

At the bottom of the lower layer three swedish wheels are disposed in a equilateral
triangle configuration. This makes all wheels have the same distance to the robot center
and have a 120 degrees difference from each other. Assuming that the front of the robot is
along the YY axis, the first wheel is positioned at 30 degrees from the XX axis, consequently
the second is at 150 degrees and the last at 270 degrees (or -90 degrees). Each wheel is

40

assembled at the shaft of a 24V/150W Maxon motor. The described configuration provides
the robot an omnidirectional motion [47]. The Holonomic Motion system is shown in
Figure 3.6.

The desired speed for each motor is sent from the coordination layer and applied by
the Motion function at the low level sensing/actuating system.

(a) Disposition of the motion system (b) Detailed view of an omni-wheel

Figure 3.6: Holonomic motion system.

3.3.3 Odometry

The odometry resides in the Odometry function at the low level sensing/actuating sys-
tem. It reads the encoders of the three motors and tries to estimate the robot displacement,
the information is then sent to the coordination layer.

3.3.4 Electronic compass

The electronic compass is used to obtain the orientation of the robot. It reads the earth
magnetic north which is sent to the coordination layer.

3.3.5 Barrier

The barrier is a sensor with the purpose of signaling when the ball is under control by
the robot. This sensor is integrated in the kicker system.

3.3.6 Grabber

The grabber is a simple modeling motor with a wheel design to bring and maintain the
ball under control by the robot. When the ball is not under control, which is signaled by

41

the barrier, the wheel is set to spin to bring the ball under control when in range. When
the ball is under control the wheel is set to stop. Having the ball under control, then lose
the ball and immediately activate the grabber to bring it back again under control an so
on, is what we call of maintaining the ball under control. The order to put the wheel
spinning is sent by coordination layer and applied by the Kick function. This actuator is
integrates in the kicker system.

3.3.7 Kicker

The kicker is an electromagnetic kicking device which allows direct and lob kicking.
The granular control of the device’s power results in a controllable initial velocity for when
the ball is kicked. To avoid kicking the air, the kicker only kicks when the ball is under
control which is signaled by the barrier. The power applied to the kicking device is sent
by the coordination layer and applied by the Kick function. This actuator plus the barrier
and the grabber are the kicker system as a whole, shown in Figure 3.7.

(a) The kicker

(b) The barrier sensor

(c) The grabber

Figure 3.7: The kicker system.

42

3.3.8 Vision system

The catadioptric view of the omnidirectional vision system is obtain by a regular video
camera pointed to a hyperbolic mirror. The video camera is a Point Grey camera with
4mm lens attached to the main processor unit, i.e. the laptop, through a firewire interface.

The frontal view is obtain by a regular camera positioned on the robot with the focal axis
of the camera parallel to the ground. The frontal video camera is a Point Grey Chameleon
camera attached to the main processor unit, i.e. the laptop, through a USB interface,
although compatible with the firewire access and manipulation interface. Currently, only
the goalkeeper robot has a frontal camera installed.

3.4 CAMBADA Software

Much like the CAMBADA hardware, the software also has a distributed nature (Fig-
ure 3.3). The CAMBADA software was – and still is – developed for the GNU/Linux
platform, namely Ubuntu, and is deployed at the processing unit, i.e. the laptop also
known as the brain. Some of the CAMBADA software resides in the coordination layer
and is also referred to as high-level software or the coordination layer itself.

The high-level software is the result of a set of processes running concurrently inter-
connected by shared resources. The shared resources are managed by a software library
called RTDB, already mentioned above as the foundation of the coordination layer. The
processes synchronization is supported by a library specifically developed for the task,
PMan. It supports real-time constraints and precedences among others processes. The
constituent processes of the high-level software are “Sensorial interpretation, intelligence
and coordination”, “Vision”, “Low-level communication handler” and “Wireless commu-
nication”. There is also software that does not make part of the coordination layer but
is complementary, including the “‘Monitor”, the “CambadaConfig” tool and the “Base-
station”.

3.4.1 Real-Time Data Base (RTDB)

The RTDB provides cooperative sensing by means of a blackboard [48], a database
where each agent publishes its internal information that maybe accessed by others. The
implementation relies on a distributed shared memory model and the broadcasting of the
local state data, which allows to tackle the problem of fast degradation of data coherence
and undesirable delays caused by the typical server-client model [42].

Each database node has two regions, a local and a shared. The local region contains the
internal state of the robot, which is used to transmit data between processes. The shared
region contains the relevant state of itself and of the other team-mates, the data is broad-
casted periodically to the other team members, and consequently updated periodically, to
guaranty the coherence (i.e. temporal validity) of the information.

43

3.4.2 Process Manager layer (PMan)

The CAMBADA software runs on a General Purpose Operating System (GPOS) which
lacks some features required by the real-time nature of some applications. The PMan [49]
is a user-space library developed to extend the native services already provided by the
underlining GPOS, i.e. Linux Kernel1 in this case. The library provide automatic process
triggering, run-time adaptive Quality of Service (QoS), precedence and phase constraints
between related processes.

The PMan operation relies on a table known as process record that contains relevant
information for each managed process. The record contains information about the process
identification, temporal properties (e.g. period, phase), precedence constraints, QoS man-
agement and process status. The time management relies on a periodic tick controlled by
the user, usually generated by a timer or a external event. The process records are saved
on table located in a shared memory region which access is controlled by semaphores, both
Inter-process communication (System V IPC) techniques.

3.4.3 Sensorial interpretation, intelligence and coordination

This software component is divided in two applications, the “CAMBADA agent” and
the “CAMBADA coach”.

The agent is where sensor-fusion happens and decisions are made. There is the notion of
a world and its state (e.g. distance to the ball, robot location), this is achieved by a function
called Integration which uses sensor-fusion algorithms to gather the noisy information from
the sensors and team mates to update the world state. The high-level function of decision
and coordination, based on roles and behaviors [50], operates dependent on the world state.
The end result is the generation of commands to be sent to low-level control layer.

The coach is the gateway between the agents and human interference. For example,
when in competition, the human referee decisions are sent to the coach RTDB and then
replicated to the agents.

3.4.4 Vision

Omnidirectional vision

The task of the omnidirectional vision process is to extract information from every
frame and relay it to the CAMBADA agent. The vision gathers information about possible
ball positions, white lines points and obstacles points both obtained by radial sensors
through color and contrast analysis [51]. The information data is then put on the RTDB
and afterwards the agent is awaken so that it can processed all the relayed information.
Currently, approximately thirty frames are processed per second. Also, it is responsible
for initiating PMan.

1http://www.kernel.org

44

http://www.kernel.org

Frontal vision

The task of the frontal vision process is to detect the balls above ground. For frontal
vision tries to gather information about possible ball positions in the air. To reduce the
workload the bottom half of the captured frame is discarded. The information data is then
put on the RTDB.

The frontal vision is still on an early stage of development, therefore its information is
not used for sensor-fusion.

3.4.5 Low-level communication handler

This process is the gateway between the coordination layer and the low-level control
layer. Information data from the low-level control layer is read by the handler from the
CAN and then put in the RTDB. The same process takes place when information data
is to be sent to the low-level control layer, but in reverse order, read from the RTDB and
then put in the CAN. The communications requirement are shown in Table 3.1.

ID Source Target Type T (ms) Short description
M1 Pic base Motor[1:3] Periodic 30 Aggregate motor set points
M2 Pic base Laptop Sporadic 1000 Battery status

M3.1-M3.3 Motor[1:3] Pic odom Periodic 10 Wheel encoder value
M4.1-M4.2 Pic odom Laptop Periodic 50 Robot position (pos + rot)
M5.1-M5.2 Laptop Pic odom Sporadic 500 Set/reset robot position
M6.1-M6.2 Laptop Pic base Periodic 30 Movement vector (rot + vel)

M7 Laptop Pic base Sporadic 1000 Kicker actuation

Table 3.1: Communication requirements of the lower-level control layer, adapted from [42]

3.4.6 Wireless communication

This process is responsible for broadcasting and updating the shared region of the
RTDB. The information is sent through wireless with a period of 100ms, to provide a
better QoS it uses an adaptive Time Division Multiple Access (TDMA) protocol [52, 53].

3.4.7 Monitor

This process is a watchdog for the high-level processes. Periodically, it checks the
running state of the high-level processes, and in case of abnormal termination they are
relaunched.

45

3.4.8 CambadaConfig

This is an application tool designed to help modify the configuration files used by the
high-level software. With it, it is possible to create new formations and simulated them
within the tool, set and define new strategies, define the game field dimensions, etc.

3.4.9 Base-station

This application is capable of monitoring and controlling the internal state of the
CAMBADA robots. During competition the base-station is responsible to provide au-
tomatic processing of the soccer game referring events.

3.5 Summary

At the end of this chapter, one should be familiar with the CAMBADA robots structure
and architecture, and the RoboCup project in which the CAMBADA team participates,
namely the RoboCup MSL. The different hardware components were presented, including
the actuators and sensors. Also, the software architecture and its different components
were discussed.

46

Chapter 4

CAMBADA Simulator

4.1 Introduction

At the beginning of this thesis a survey of existing Robotic Simulators was conducted
and presented in Chapter 2. The purpose of the survey was to help us to find a suitable
candidate for our requirements or, if there was none, have a general idea of how to create
a robotic simulator. Develop a robotic simulator from scratch is a complex and long term
project, therefore we looked into the survey and picked one simulator to become our code
base.

From the Table 2.1 we can perceive two suitable candidates, SimSpark and Gazebo.
SimSpark is known for its use in the RoboCup 3D Soccer Simulation league [26]. Gazebo
was also found to be a good choice for the RoboCup MSL [54]. In the end we opted for
Gazebo because SimSpark was lacking on viable documentation and the modeling language
(RSG) looked harder to understand when compared with Gabzebo’s modeling language
(XML).

4.2 Simulation environment overview

The CAMBADA team plays in a well defined environment, a MSL field with two goals,
a ball and the robots. When transposing to a simulated environment we should start by
identifying what is going to be simulated. We started by assuming that any entity with a
physical attribute should be simulated. The goals, the ball and the field are all actors in
the environment with only physical attributes, the same is not true with the robots, they
have components with physical attributes, which we call hardware, and others that only
exist as software which may or may not be simulated. In our case we followed the simple
premise, all software components that interacts with a hardware component needs to be
simulated. The result is the simulation environment depicted in Figure 4.1.

Game environment
Here is where the “Rigid Bodies Dynamics” takes place. The field, goals, ball and robot

47

Vision

Wireless
Comunication

RTDB

Low-level
communication

handler

Pr
oc

es
s

M
an

ag
er

Motion

System
Monitor

Odometry

Kick

Sensorial
interpretation
Intelligence

and
Coordination

Compass

Vision

Wireless
Comunication

RTDB

Low-level
communication

handler

Pr
oc

es
s

M
an

ag
er

Motion

System
Monitor

Odometry

Kick

Sensorial
interpretation
Intelligence

and
Coordination

Compass

Game Environment
Simulated

components
Simulated
components

...

Figure 4.1: Simulated components of the layered software architecture.

bodies are modeled to mimic their real physical attributes such as shape, mass, bounciness
and friction.

Sensorial interpretation - Intelligence and Coordination
This a very high level component where the world is interpreted and decisions are made,

i.e. the brain of the CAMBADA player. This component is what we may call of “testing
subject”.

RTDB
In the real robot this component serves as middleware for data exchange between

components and also between robots. Being a middleware it makes no difference if it
is used by real components of by simulated components. From Figure 4.1 we came to
conclusion that more than one instance of this component is required for the simulation,
which was a problem because multiple instances in the same computer were not supported.

Process Manager
This component fulfills some of the real-time requirements of the CAMBADA software.

Much like the RTDB, more than one instance in the same computer of this component was
required for the simulation, but such capability was not available.

Vision
The vision gets information from the environment, therefore the information capture

48

by its virtual counterpart is also virtual. The way it extracts the information from the
environment should not matter, but it has to be consistent with the information extracted
by the real vision.

Low-level communication handler
In the simulated environment there is no communication with real hardware so this

component is not necessary in the simulation, but, low-level components still exist. These
low-level components need to receive and send information to the components in the higher-
level, knowing this, we can assume that in the simulated environment each low-level com-
ponents is simulated and it has its own Low-level communication handler.

Wireless Communication
The goal of this component is to send the shared information in the RTDB to the other

robots and receive the shared information of the other robots and put it in the RTDB.
Because it runs on a simulated environment the replication of the shared region of the
RTDBs does not have to go through a wireless medium before reaching its destiny, we
can put it directly in the RTDB of the robots, unfortunately the RTDB did not provide a
method to do this.

Motion, Kick, Odometry, System Monitor
These are all low-level components that interact with hardware. In the simulator they

are the logic behind the virtual sensors and virtual controllers.

4.3 Necessary changes to non-simulated components

In the previous section (Section 4.2) we gave an overview of the simulated environment
and came to conclusion that some of the components that are not simulated required
multiple instance in the same computer to allow the simulation to run, namely RTDB
(Section 3.4.1) and PMan (Section 3.4.2). Both components rely heavily on System V IPC
techniques and were developed with the assumption that they would always be unique, that
is, only one instance would exist. The System V IPC techniques in question are shared
memory and semaphores, and each type of resource has an unique identification, usually
referred to as key, through the operating system, consequently a different key means distinct
shared memory or semaphore resources. The System V IPC resources used by the RTDB
and the PMan were created with a pre-defined key. Because the CAMBADA software is
replicated to all robots they all used the same key when creating and accessing the System
V IPC resources in question, which guaranteed the uniqueness of the components because
they were not running in the same computer.

From the Figure 4.1 both RTDB and PMan had an instance for each robot that was
being simulated. In the simulation environment these multiple instance ran in the same
computer. After the first instance was created the subsequently creations would result in

49

an attach to the already existing instance instead of a new instance. The result was the
same instance for all component of the virtual robots.

The challenge was to introduce changes to the RTDB and PMan source code with the
minimum impact possible to the components that interact with them, meaning, regardless
of the environment in which they run, real or simulated, it should not change the way
they are used by the existing components. Although, both components apparently have
the same symptoms for not supporting multiple instances the solution is not replicated in
both due to different requirements presented by the simulation.

4.3.1 The RTDB problem and solution

The RTDB was already modified to support the simulation environment created by the
existing solution, prior the beginning of this thesis. A function was created to initialize
the RTDB instances for all agents, and another to free the RTDB instances for all agents.
By calling this functions in the simulated environment, the simulated components that use
the RTDB interface do not have to worry about creating and freeing the RTDB resources.

To support multiple RTDB instances in the same computer we have to guarantee that
the shared memory key for each RTDB instance is different, which was not the case. The
solution was to extract the agent identification from the environment variable AGENT and
add it to the pre-defined key. However, in the simulated environment the environment vari-
able AGENT would always be the same at each call, therefore for the simulated environment
a set of new functions were created that accept the agent identification as parameter. To
maintain the interface for the existing components, we replaced the existing functions with
wrappers that extract the environment variable AGENT and then call the corresponding
new function.

When creating a RTDB instance its context is saved in the caller process memory in
the form of global variables, which hold the references to the RTDB instance resources. By
creating more than one instance in the same process (i.e. the simulator) the context of the
previous RTDB instance would be overwritten. To overcome this problem we transformed
the global variables into arrays that hold the different RTDB instances contexts. A context
is indexed by the agent identification from which the component belonged to.

4.3.2 The PMan problem and solution

As initial remarks, a PMan instance is usually referred to as PMan master or master
for short and each master can be identified by the number of the environment variable
AGENT.

The existing simulation solution, prior the beginning of this thesis, worked without
any modification to the PMan and apparently without any problem. While developing
the proposed simulator we noticed that all agents were misbehaving, they would start
processing at the same time even though only one of them was signaled. We found out
that the problem resided in the PMan because there was only one PMan master and every
time event generated would be propagated to all agents. The problem of PMan was the

50

System V IPC resources, already described. Therefore, to support multiple masters in
the simulated environment we had to change the keys that identified the System V IPC
resources for each master.

A master is created or attached to by calling the function PMAN init(), some of the
arguments passed on to the function is the keys to the System V IPC resources. Theses
keys could be changed by the caller, but as already mentioned, introducing changes to
other components should be avoided. Although, in the simulated environment a master
is created and used by a simulated component that is allowed to change the System V
IPC resources keys. The proposed solution is a mixture of multiple masters awareness and
function masquerade.

PMan Agent

PMan_init(keys)

alterKeys(env(AGENT))

PMan_init2(altKeys)

PMan_epilog()

virtual component

alterKeys(ID)

PMan_init2(altKeys)

return

return

PMan_tick() signal

PMan_epilog()return

return

pman_save_ids(ID)

pman_swith_ids(ID)

(a) PMan usage on the simulated environment

PMan Agent

PMan_init(keys)

alterKeys(env(AGENT))

PMan_init2(altKeys)

PMan_epilog()

Omni Vision

return

return

PMan_tick()
signal

PMan_epilog()
return

return

PMan_init(keys) alterKeys(env(AGENT))

PMan_init2(altKeys)

(b) PMan usage on the real environment

Figure 4.2: Sequence diagram of PMan usage.

For the existing components (e.g. agent) we created a new PMAN init() function
which will add to the pre-defined keys two times the number found in the environment vari-
able AGENT, after that it will call the former PMAN init(), now called PMAN init2(),
with the same arguments with the exception of the altered keys. For the simulated compo-
nents calling the new PMAN init() is not viable because the environment variable AGENT
would be the same in every call. Although, an identification number with an operational
meaning equal to the environment variable AGENT is supplied to the simulated component,
therefore, before calling PMAN init2(), the key alteration can be made by the simulated
component. The proposed changes provides an interface for multiple masters in a simu-
lated environment without affecting the workflow for the existing components, shown in
Figure 4.2.

Each time a master was created, its context was saved in the caller process memory
in the form of global variables which hold the reference to the System V IPC resources

51

of the master. In the real environment this was not problematic, but, when more than a
master was created in the same process (i.e simulator), the previously saved context was
overwritten by the context of the newly created master. A simple method to keep the
context of a master, when a new one was created, was to save it prior the creation of a new
one. Furthermore, the context variables that were used to access the necessary resources
to operate, had to be changed accordingly the master in use. This was accomplished by
creating a Look-Up-Table (LUT) for each context and use the master identification as key
for the LUT. The result was a set of new functions only necessary when running in the
simulated environment, namely pman save ids(master) after creating a new master,
and pman switch id(master) before using a specific master.

4.4 Models

Models are physical entities within the simulated environment. The physical aspects
of a model contain attributes such as position, orientation, density, joints, etc. A model is
build by one or more bodies, each of which is built by one or more geometries or sensors.
Controllers can simulate physical devices and can be attached to the model itself or to a
sensor.

The physical entities present in our simulated environment are the field, the goals, the
ball and the robots. All entities, except the robots, have a very well defined shape and
physical behavior without any kind of sensor or controller. The robot model is a little bit
more complex, aside from the complex physical structure is has several virtual sensors and
virtual controllers that had to be developed from scratch.

4.4.1 The field model

The game field is basically the ground where the ball bounces and rolls and the robot
wheels move. We can consider the field markings as just being visual aids and therefore
not relevant for field modeling. The field is modeled as being a plane with equation
a ∗ x+ b ∗ y + c ∗ z = d where (a, b, c), the plane’s normal vector, is (0, 0, 1) and d = 0.

Considering how the simulator handles the physics parameters of a collision (Sec-
tion 2.7.2), the physics parameters of the field plane shape are set to high values to allow
the other models to define how the collision with the field is handled. The plane is assume
to always be a static part of the environment.

4.4.2 The ball model

The ball model is simply a sphere with the same radius and mass as the official FIFA
game ball, shown in Figure 4.3. Even though we are simulating rigid body dynamics it is
possible to define bounciness parameters to the sphere geometry that will mimic the real
behavior of when it collides with other bodies. The bounciness of the ball is defined by the
parameters bounce and bouncevel. The former is a restitution parameter (0..1), 0 means a

52

Figure 4.3: The ball model in a perspective view.

surface that does not bounce, and 1 is maximum bounciness. The latter is the minimum
income velocity necessary for bounce, any velocity below results in a bounce parameter
equal to 0.

To have a bounce behavior similar to the real ball we, adjusted the bounce and bouncevel
parameters by observing how long the ball took to stop bouncing and how many times
it bounced when dropped vertically from one meter height. Afterwards, we repeated the
experiment in the simulator tweaking bounce and bouncevel until we got a similar behavior.

4.4.3 The goal model

The goal forms a space over which the ball has to be sent in order to score and for
the much frequent ball on the post or crossbar. The goal is modeled with the dimensions
defined in the RoboCup MSL rules. Basically a goal is four rectangular cuboids displaced
like the ones shown in Figure 4.4. A goal is also a static part of the environment.

Figure 4.4: The goal model in a perspective view.

53

4.4.4 The robot model

The robot model is the most complex one. As already mentioned, we have to model
the robot physical shape and also its sensors and actuators (i.e. controllers). Here we
will only discuss the modeling of the robot physical shape, the virtual sensors and virtual
controllers will be discussed ahead with more detail.

From Section 3.3.1 we perceive that the physical shape of the robot can be modeled
to resemble a cylinder and a cone on top. To simplify we discarded the top conic shape,
which represent the vision set up, and also all physical components with movable part, i.e.
kicker and grabber. To recreate a cylinder with the cut out section that keeps the ball
under control we created an outer case composed by small rectangular cuboids displaced
along the robot perimeter except at the front of the robot. Inside the case we placed a
cylinder with a smaller radius but with the same height. This latter cylinder will simulate
most of robot weight and will stop the ball from entering too much inside the case.

The holonomic motion of the robot also has to be modeled, meaning, the virtual robot
should move by the means of three swedish wheels with the same disposition of the real
robot (Section 3.3.2). The holonomic motion system is modeled by three spheres connected
to the robot’s chassis by hinge joints acting is if they where the motors. The joints will
keep the wheels and the chassis together and will also be used to apply angular velocity
to the wheels. Modeling a swedish wheel with a sphere is a viable option because it is
assumed that the contact between the wheel and the ground is reduced to a single point
on the plane [47].

(a) Stage 1 - The wheels (b) Stage 2 - The inner cylin-
der

(c) Stage 3 - The outer case

Figure 4.5: The robot model assembling.

In summary, the robot model is assembled by three parts: the wheels, the inner cylinder
and the outer case, shown in Figure 4.5. The Figure 4.6 gives a perspective view of the
robot model.

Applying the right angular velocities to the joints did not sufficed to emulate the holo-
nomic motion of the robot. We also had to set the Coulomb friction coefficient and the
force-dependent-slip coefficient (FDS), both physics parameter to handle collisions. The

54

friction coefficient define the friction between the wheel geometry and the field geometry
in the perpendicular direction of the wheels rotation axis. The FDS coefficient define how
much the wheel geometry will slip along the parallel direction of the wheels axis.

To adjust these parameter we looked into the source code of a more experimented
simulator, namely RoboCup Simulator Dev (Section 2.4). RoboCup Simulator Dev also
used ODE for its dynamics simulation, and the physics parameters that help emulate the
holomic motion of the robot can be transposed to our simulation.

Figure 4.6: The robot model in a perspective view.

4.4.5 The obstacle model

The obstacle model is a simplified version of the robot model. It does not have the
wheels, the inner cylinder is wider and the outer case is closed (Figure 4.7). In practice,
the obstacle model can be used to represent an adversary.

Figure 4.7: The obstacle model.

4.5 Sensors

A virtual sensor does not have a physical representation but it creates and returns
information from the simulated-world. A virtual sensor is a C++ class instantiated by the

55

“SensorFactory”, and has to be attached to a body. Every virtual sensor has an update
rate that defines how periodically the sensor will update its information data.

For the proposed simulation environment we developed a virtual omnidirectional vision,
a virtual compass and a virtual barrier. A virtual frontal vision was not developed because
its data is yet to be use by the Sensorial interpretation, intelligence and coordination
component.

4.5.1 Omnidirectional Vision

We already know what information the vision gathers (Section 3.4.4), now, we have to
transpose it to a simulated environment. To the agent the origin and how the vision data is
obtained does not matter, the RTDB makes it transparent, therefore the simulated vision
does not have to extract the information from the environment the same way as the real
vision. As long as the type of data and operational workflow (e.g. awake the agent, delay)
are kept the agent will consume the data without caring about its provenance. Although
we should try to mimic the process of data acquisition as much as possible.

Due to the nature of a simulated environment, every entity in the simulation (e.g. the
ball model) is always accessible and detectable, which is not true in the real world. Some-
times the ball can fall behind other robots and become undetectable, the same can happen
to the white lines used for self-localization. To increase the accuracy of the simulation we
have to simulate this phenomenon which we call occlusion.

The simulated vision workflow, depicted in Figure 4.8, will be discussed in the sections
that follow. As remark, Detect white points, Detect ball and Detect obstacles operations
are depicted as being running in parallel, which is not accurate. They run sequentially,
but because they are independent from each other the order in which they run does not
matter, therefore they are depicted as being parallel.

Fill obstacle list

The structured environment of the RoboCupMSL enforces the color black as a robot,
or in a more abstract sense, an obstacle. The vision sensor queries all models in the World
and the ones with black color are added to its internal list of obstacles. This list is filled
only once because we make the assumption that once the simulation starts objects are not
added or removed dynamically.

Initiate Process Manager

The vision process has the responsibility of initiating PMan, thus to keep the original
operational workflow the simulated vision has to do the same.

Detect Occlusions

To simulate occlusion in the 3D environment of the simulator, we start by projecting
the world to a top view, similar to the reverse-mapping into distance map [55] used by the

56

start

Fill Obstacle List

Initiate Process
Manager

end

(a) Workflow upon cre-
ation

start

Detect Occlusions

Detect Obstacles

end

Detect BallDetect White Points

Update RTDB

Awake Agent

(b) Workflow at every cycle

Figure 4.8: Simulated omnidirectional vision workflow.

real vision. From this view we can construct what we call occlusion area. The top view
is easily understood as the XOY plane.

Because we are simulating a SVP vision the obstacle creates an occlusion area that
is limited by two lines, each one tangent to one side of the obstacle and starting at the
obstacle position. To simplify the process we made the assumption that the obstacle is
a cylinder with the same height as the robot that hold the vision, although we made no
assumption about its radius, therefore we get the radius from its Axis-Aligned Bounding
Box (AABB). The assumption is viable because the obstacles most likely are robots from
our team or the opposing team and also because assuming the obstacle is a cylinder we
can easily calculate the tangents with Thales’ Theorem [56].

From the top view, depicted in Figure 4.9, we can obtain the tangents with Thales’
Theorem. By constructing a circle centered at M through V and O, the point T is the
intersection of this circle with the given circle of the obstacle, because that is the point on
the circle of the obstacle that completes a right triangle V OT . It is easy to perceive that
the occlusion area can be limited by an area between the angles made by T and T ′ with
the robot and starts beyond the obstacle. The resulting occlusion area, by it self, is enough
for points at ground level but not otherwise. As already stated, we made the assumption
that the obstacles are of cylindrical shape and have the same height as the robot holding
the vision, because of this, in our vision set up we can assume that every occlusion area
extends to the horizon making the occlusion area extracted from the top view enough for
all dimensions.

This method is applied to every obstacle in the list (Section 4.5.1) and the resulting

57

Occlusion
AreaM

T

T'

V O

T, T' - Tangent points
M - Midpoint between robot and
obstacle
V - Vision point
O - Obstacle center point

Figure 4.9: Detection of occlusion area with a top view.

occlusion areas saved to be queried later.

Detect Obstacles

The simulated vision searches for obstacles points with an algorithm similar to the one
implemented in the vision[51]. It uses radial sensors to search for obstacles but instead
of looking for the transitions between pixels [57] it will cast rays to intersect with the
obstacles. Just like in the detection of occlusions the world is projected to a top view. The
Algorithm 1 shows the pseudo code of obstacle point detection.

At the beginning the step angle is fixed to 1.5 degrees which results in 240 radial sensors.
The main cycle will end at α ≥ π because the line that are used to intersect with the
obstacles circle are of infinite length and due to inverse symmetry at the origin it will cover
intersections for π < α ≤ 0 and −π ≤ α < 0. The function radiusFromAABB will evaluate
the obstacle AABB to find the biggest distance between the maximum and minimum
components, the resulting distance can be seen as the diameter of the obstacle. The line
will act as a radial sensor and the circle as an obstacle in the intersectAnGetClosestPoint
function. Because in line intersection with circle there can be two points, only the closer
to the origin is return. To have a more accurate simulation, the obtained points are check
against all occlusion areas to see if they are visible, if they are they are kept.

Ball detection

What is inserted in the RTDB by the real omnidirectional vision is the distance between
the robot and the lowest point of the detected ball and has a limit of how far it can detect
a ball, so we should try to do the same.

The trivial case in when the ball is on the floor. In this case the information extracted
from the environment is the distance between the robot and the ball. When the ball is
above ground we try to mimic the effect introduce by the hyperbolic catadioptric vision
system of the ball appearing to be further then it really is. To simplify the process, when
the ball is above ground, we project its position onto the ground, shown in Figure 4.10.

58

Algorithm 1 Obstacle detection with line intersection

α←, θ ← 2π
240
, blackpoints← empty0

while α < π do
line← y = sinα

cosα
x

points← empty
for all obstacles do
radius← radiusFromAABB(obstacle)
(a, b)← relativePosition(obstacle)
circle← (x− a)2 + (y − b)2 = radius2

point← intersectAnGetClosestPoint(line, circle)
points← add point

end for
for all points do

if point not in occlusionArea then
blackpoints← add point

end if
end for
α← α + θ

end while
return blackpoints

From the projection we get:

tanα =
h

d
∧ tanα′ =

h− h′

d′
∧ α = α′

=⇒ h

d
=
h− h′

d′
⇐⇒ d =

hd′

h− h′
(4.1)

From Equation 4.1 we get the distance d between the robot and the projected ball,
which will eventually be the detected distance to the ball. This method can also be used
in the trivial case where h′ = 0 =⇒ d = d′, thus covering the detection for both cases.

For the vision to successful detect a ball, first it must not be beyond the vision see
limit and then not be in an occlusion area. In the first case the inequality h′ < −hd′

s
+ h,

where s is the maximum see distance, tell us if the ball is detectable and for the latter we
have to check if the real position of the ball is not on a occlusion area, previously detected
in Section 4.5.1. The ball is considered to be a particle and not a blob, therefore partial
occlusion of the ball is not implemented.

White points detection

From the RoboCup MSL rules the lines that delimit the game field areas are white
and these are used by the robots for self-localization purpose. Much like for object points

59

h

h'

h - Vision distance from the ground
h' - Ball distance from the ground
d - Distance between robot and
projected ball
d' - Distance between robot and ball

α' Projected ball

d

d'

α

Figure 4.10: Ball detection above ground - Projection.

detection (Section 4.5.1), the vision makes use of radial sensors. Once again there is no
actual image to look for transitions between pixels, thus another method has to be used. If
we represent the field as a conjunction of line segments we can easily use line intersections
to obtain virtual white points. Again the world is projected to a top view.

The number of white points that will be extracted from the environment is not known
but there is a ceiling for how many points the vision will transmit. If we took the traditional
way of going through all the sensor in a consecutive order, then the points number ceiling
will be rapidly attained and will result in areas left out for white point detection. To
attenuate this effect we go through the sensors in multiple passages. At each passage only
a subset of the radial sensors are used. Each subset only contains radial sensors separated
apart by a number os sensors equal to the number os passages. The Algorithm 2 shows
the pseudo code for white point detection.

The function fieldIntersect will use the given line for intersection against all the line
segments that delimits the field areas and returns the intersection points. Each received
points is checked for occlusion and discarded if true.

Update RTDB, Awake Agent

The vision and the agent work synchronously where the vision precedes the agent in
execution. When the vision reached the end of its processing cycle it signals the agent
that new data is ready to be processed. In loose terms the agent awakes, grabs the vision
data from the RTDB, executes its cycle and then goes to sleep to be awaken again by the
vision. This is a very important step in the vision workflow because without awaking the
agent the system would stall.

60

Algorithm 2 White line detection with line intersection

θ ← π
sensors

, whitepoints← empty
for pass = 0 to radialPassages do
α← θ ∗ pass
while α < (π − θ

2
) do

line← y = sinα
cosα

x
points← fieldIntersect(line)
for all points do

if point not in occlusionArea then
whitepoints← add point

Ensure: totalOfWhitePoints ≤ maxWhitePoint
end if

end for
α← α + θ ∗ radialPassages

end while
end for
whitepoints← convertToRelativePosition(whitepoints)
return whitepoints

4.5.2 Compass

The purpose of this sensor is very simple, give the yaw angle of the robot frame. Because
we are on a simulator this kind of information is easily obtain by querying the robot body
about its rotational state. The compass is a low level component, thus its data is handle
by the Low-level communication handler component, but in the simulator we can ignore
this middleware and put the data directly in the RTDB.

4.5.3 Barrier

The barrier sensor serves as a signaling flag to when the ball is under control. The
cut out section of the robot body is where the ball is kept under control. The real barrier
sensor is implemented with an infrared circuit strategically installed at the bottom of
the lower layer. When the circuit is interrupted it means that the ball is on the control
handling area. It is possible to do this kind of sensors in the simulator but we took a
more analytic approach. Being on a simulated environment the sensor can know the exact
distance between the ball and the robot and taking the form of the robot into account it can
accurately pinpoint when the ball is under control. The control area can be delimited by
polar coordinates relative to the robot frame, where α is the maximum absolute polar angle
and d the maximum radial coordinate. For the ball to be on the control are its distance d′

to the robot and the angle θ it makes with it, must conform with |θ| ≤ α∧d′ ≤ d. Another
condition is that the ball must must be on the ground or slightly above. The example in
Figure 4.11 shows a control area delimited by d, with the same length as the robot radius,

61

and α. In the example the ball is slightly on the control area which is enough to assume
the ball is under control. The parameter d was calculated by measuring the distance from
the center of the robot to end tip of the grabber wheel (Figure 3.7c).

YY

XX

θ

α α

Under Control
Area

d'

d

Figure 4.11: Under Control Area defined by the barrier sensor.

4.6 Controllers

A virtual controller is meant to control joints and simulate non existing physical struc-
tures (e.g. the kicker system). A virtual controller is a C++ class instantiated by the
“ControllerFactory”, and can be parentless or be attached to a sensor. Every virtual
controller has an update rate that defines how periodically the controller will actuate.

For the proposed simulation environment we developed a holonomic motion system, a
grabber, a kicker system and a wireless communication module.

4.6.1 Holonomic motion

The virtual holonomic motion controller works intrinsically with the joints of the holo-
nomic motion system modeled in Section 4.4.4. As mentioned, the joint is the virtual
counterpart of the motor, therefore, angular velocity is applied to the joint and, due to the
constraints created by the joint, the body of the wheel connected to that joint will also

62

rotate. Inverse kinematics is used to translate the desired velocities to apply at the robot
frame into the wheels angular velocitiy and can be deduced from the constraints of the
holonomic motion setup [47] [58], shown in Figure 4.12.

F0

F1

F2

V

w

b

YY

XX

• n ≡ Wheel number

• r ≡ Wheel radius

• Fn ≡ Unit direction vector

• V ≡ Linear velocity of the body
frame

• w ≡ Angular velocity

• b ≡ Wheel baseline

• r ≡ Wheel radius

F0 = [−1

2
,

√
3

2
] F1 = [−1

2
,−
√

3

2
] F2 = [1, 0]

Figure 4.12: Constraints of the holonomic motion system.

The velocity direction is constrained by each wheel. At each wheel n, the velocity Pn
depends on V and w, and is the sum of the body frame linear velocity V and the angular
velocity w:

Pn = V + (b · w) ∗ Fn
And Pn · Fn is equal to the wheel n velocity vn, therefore:

vn = V · Fn + b ∗ w

Now, we can calculate the angular velocity wn for each wheel n:

wn =
vn
r

=
V · Fn + b ∗ w

r

w0 =
(
−Vx

2
+
√

3Vy

2
+ b ∗ w

)
/r

w1 =
(
−Vx

2
−
√

3Vy

2
+ b ∗ w

)
/r

w2 = (Vx + b ∗ w) /r

(4.2)

63

The coordination layer generates the desired linear velocity Vx, Vy and angular velocity
w to be applied to the robot frame and puts it in the RTDB, and, before it is sent to
the Motion function at the low-level control, the Low-level communication handler (Sec-
tion 3.4.5) translates the desired linear and angular velocity of the robot frame to the
wheels setpoints. The mentioned “translation‘” is handled by a Holonomic Motion [59]
module. Because this is a virtual controller the Low-level communication handler is within
itself, therefore the very same Holonomic Motion module is used in the this controller to
translate the ”orders from above”.

The Holonomic Motion module accepts as input parameters the velocities Vx, Vy and
rotation Va, and return the three wheels setpoints. The wheels setpoints were obtained
by multiplying the calculated wn with the wheel setpoint factor. Therefore, to apply the
correct angular velocities to the wheels joints we had to multiply the wheels setpoints with
the inverse wheel setpoint factor.

The data generation of the odometry (Section 3.3.3) is implemented in this controller.
Knowing that the outputted data is the displacement of the robot frame and its rotation,
the displacement Ox, Oy and rotation Oa can be calculated with an Euler integration:

Ox = Ox + (cosOavx− sinOavy)∆t Oy = Oy + (sinOavx + cosOavy)∆t Oa = Oa + va∆t

The variable ∆t is the amount of time in which the robot frame had the velocities vx, vy
and ω. Although we received the desired vx, vy and va from the coordination layer, they
may be changed by the Holonomic Motion module that applies saturation and acceleration
filters to vx, vy and va. Fortunately the altered vx, vy and va are saved in the Holonomic
Motion module, therefore we can use them in the calculation of Ox, Oy and Oa.

4.6.2 Grabber

For the grabber (Section 3.3.6) we did not create a virtual counterpart with a physical
attribute. The grabber has several moving parts and could be difficult to model, therefore
we decided to create a virtual grabber using only the logic behind it. The goal of the
grabber is simple, keep or bring the ball under control, for that the ball is rotated towards
the cut out section in the front part of the robot. The grabber is controlled by a power
value which translates in how much spin the grabber’s wheels has. When the ball is on the
control area, which is signal by the barrier sensor, the wheel of the grabber is disabled by
the coordination level, i.e. power is set to zero.

This virtual controller has a method of operation similar to the virtual barrier sensor
(Section 4.5.3) to know when the ball is in the range of its influence. To compensate the
non existence of the grabber’s wheel the virtual controller, when the ball is range, applies
a force vector at the ball towards the center of the robot. This force we call it ”attraction
force”, as it will attract the ball to the control area.

64

4.6.3 Kicker

The kicker (Section 3.3.7) can perform two types of kicks, direct and lob kick (Fig-
ure 4.13). As mentioned, the granular control of the device power results in a controllable
initial velocity to when the ball is kicked. What differentiates the direct kick from the lob
kick is the angle at which the ball is hit. On a direct kick the ball is hit at an approximate
angle of 0 degrees and is expected to travel in parallel with the ground on a straight line.
A lob kick, like the name implies, throws the ball in a high arc which is achieved by hitting
the the ball at an approximate angle of 45 degrees. At a lower level, the kicker is controlled
by a power value, which is an eight bit number sent by the coordination layer. The kick
type is differentiated by the most significant bit of the power value, 0 means lob kick (high
kick) and 1 direct kick (low kick). The power value is capped to 50. This controller follows
the same method of operation of the kicker here described.

(a) Direct kick (b) Lob kick

Figure 4.13: Type of kicks created by the kicking device.

High kick

It is easy to perceive that once the ball leaves the ground it becomes a projectile drawing
the path of a projectile. The motion of a projectile in a three dimensional environment
is something that our Rigid Body Dynamics can and will simulate, it is just a matter of
applying the right velocity to the virtual ball. To find the velocity vector to be applied at
the virtual ball we looked for a system with a similar behavior, a cannon and its cannonball
[60].

The first step is to specify the coordinate system and the cannon location, for that we
use a right-handed coordinate system. The butt end of the cannon shaft is located at the
origin and its tip is calculated with the cannon length, the ”tilt” angle and ”swivel” angle.
The cannon length L is cannon’s shaft length and it can be an arbitrary value greater than
zero, the swivel angle δ is the away rotation of the cannon from from the vertical plane
and the tilt angle θ is the upward rotation from the horizontal plane (Figure 4.14). The
tip of the cannon is calculated as follow:

tipx = L cos θ cos δ tipy = L cos θ sin δ tipz = L sin θ

65

YY

ZZ

XX

cannon tip

tilt angle

swivel angle

Figure 4.14: Reference coordinate system and cannon location.

The next step is to find the normalize direction vector:

dc =

tipx

L
tipy

L
tipz

L

The final step is to find the initial velocity of the projectile. In the coordination layer

the lob kick is resolved in term of range and then converted to a power value, which is what
this controller reads. Instead of reconverting the power value to a range it is converted to
an initial velocity vi, which is more useful for the projectile modeling. The conversion is
the product of the normalized power value with the maximum initial velocity imposed by
the virtual kicker:

vi = vm
p

pm
(4.3)

The power value p is capped to pm. The maximum initial velocity vm should be somewhat
approximate to the real initial maximum velocity. From the real kicking device we can
measure its maximum range rm and also its tilt angle θ. From the projectile trajectory
equations and ignoring drag, the maximum velocity vm can be obtain from rm and θ:

rm =
v2
m sin 2θ

g
=⇒ vm =

√
rmg

sin 2θ
(4.4)

66

The velocity v to applied to the projectile is obtain by multiplying dc with vi:

v =

cos θ cos δ

√
rmg

sin 2θi

p
pm

cos θ sin δ
√

rmg
sin 2θi

p
pm

sin θ
√

rmg
sin 2θi

p
pm

 (4.5)

The end result is a vector v that depends on the θ, δ, p and rm. The values of θ and rm are
static they are provided when the controller is initiated and kept through the simulation.
The others variable values are dynamic, δ is the orientation of the robot front and p is the
power value excluding the kick type selection bit.

The value of θ was calculated by analyzing the video of a robot kicking the ball with a
high-kick. The value of rm was obtained by kicking the ball with a high-kick at maximum
power, and measuring the distance between the point of origin of the ball and the location
were the ball touch the ground for the first time.

Low kick

The difference from the high kick is the angle at which the ball is hit, which is zero
degrees because the ball is kicked parallel to the ground. Also, we can assume that the
maximum velocity vm that the kicker system applies in the low kick to the ball model is
the same in Equation 4.4, and the power conversion vi is equal to Equation 4.3. Therefore,
the velocity vector to be applied to the ball model can be calculated by multiplying the
direction vector unit with vm and vi:

v =

 cos δ

sin δ

0

 vmvi
The end result is a vector v that depends on θ which is the virtual robot orientation, and
vm that is calculated when the controller is initiated.

4.6.4 Wireless communications

The wireless communication process (Section 3.4.6) transmits its data through a wire-
less medium which does not exist in the simulated environment. To simulate the replication
of the shared region of all robots RTDB, we created a virtual controller that has read and
write access to all robots shared region of the RTDB, therefore instead of sending the
data through a medium it is inserted in the RTDB. This controller does not need to
be associated to a virtual robot because it already does the replication for all RTDB in-
stances. Therefore, the controller enforces its attachment to an empty model (i.e without
any physical representation) and prevents unnecessary multiple instances by allowing only

67

one instantiation. This controller also initiates an RTDB instance for each agent, and also
terminates all RTDB instances when the simulations ends.

4.7 Visualization and interaction

As mentioned in Section 2.7.1, the visualization engine of Gazebo has a GUI and a
three-dimensional rendering engine. The GUI provides interaction with the simulation
while the rendering engine draws the simulated environment. The used rendering engine,
OGRE, allow the development of high-end application utilizing hardware-accelerated 3D
graphics. The problem with OGRE was that it required hardware capable of support-
ing high-graphics, which did not complied with the low-graphics capability requirement.
Therefore, we made the decision to remove OGRE and the GUI, from the code base, and
create a new visualization engine with a simpler rendering engine and GUI.

4.7.1 GUI

The GUI was developed using Qt41 libraries. It serves as a placeholder for the rendering
engine widget and handles mouse and keyboard events.

The GUI offers interaction with the rendering point-of-view and also interaction with
the simulation. For the rendering point-of-view, the GUI offers four pre-defined views:

Top view present an orthogonal view of the game field from a point above the center of
the field (Figure 4.15a);

Ball view shows a top view while tracking the virtual ball (Figure 4.15b);

Free view allows the user to manipulate the rendering point-of-view with the mouse (Fig-
ure 4.15c);

FRB view is a “first robot view” that renders the world from a robot point-of-view
(Figure 4.15d). This view is experimental, therefore yet limited to a specific robot.

With the GUI it is possible to save and restore the state of each model present in the
simulation at any given time. A model state is represented by its pose in space, linear
velocity, linear acceleration, angular velocity and angular acceleration. The world state
resides in the process memory, and when it is saved, it will overwrite the previous saved
state. Also, the virtual ball position can be controlled by the keyboard.

When the Top view is active the GUI offers another interaction with the simulation.
Within the rendering widget it is possible to change the location and orientation of any
non static model in the simulation by just dragging-and-dropping the selected model (Fig-
ure 4.16). The drag-and-drop interaction has three steps, selection, dragging and dropping.
To select a model the user clicks on the view with his mouse, the click coordinates in the

1http://qt.nokia.com/

68

http://qt.nokia.com/

(a) Top view (b) Ball view

(c) Free view (d) FRV view

Figure 4.15: The four views of the rendered world.

rendering widget are translated to world coordinates, afterwards the world is queried for
a model in that world coordinates. If a model exists in that coordinates then it is selected
and the drag and drop activated. The dragging of a selected model can calculate its new
location or orientation depending if it was selected with the left button (location) or with
the right button (orientation). For visual aid, while dragging, a line is drawn from the
selected point to the current point of the mouse pointer and new values are printed in the
left top corner. On drop, the location or orientation of the model is changed. The new
location is obtained by translating the drop position to world coordinates. The new ori-
entation is the polar angular of the resulting pole from the select point to the drop point.
Any change to the simulation happens in real time, meaning, it will affect immediately
the simulation without the need to stop and restart the simulation. However, selecting the
ball model with the right button is a special case (Figure 4.16c). Instead of calculating
a new orientation and applying the change to the simulation, it calculates a new velocity
and saves the current state of the ball model with the calculated velocity, therefore the
new velocity only takes place when the world state is restored. The new velocity is the

69

resulting vector from the select point to the drop point.

(a) Model position (b) Model orientation (c) Ball velocity

Figure 4.16: Example of drag-and-drop interaction with the simulation.

4.7.2 Rendering engine

The rendering engine borrows its rendering primitives from the library “drawstuff” that
is included with ODE. Due to the simplicity of the rendering engine, it will only render the
geometries that build up the bodies of the defined models in the simulation, i.e only physics
geometries are rendered (e.g spheres, boxes, cylinders). The end result was a lightweight
rendering engine capable of performing in computers with low-graphics capabilities, which
complies with our operational requirements.

4.8 Summary

In this chapter we present the developed simulation environment for a robotic soccer
agent as well the integration of the CAMBADA software into the new simulation envi-
ronment. We gave a more detailed description of the physics and visualization engine of
the developed simulator. We discussed the insights of our simulation environment and the
existing components of the CAMBADA software. Furthermore, we discussed the modeling
of the robots and their environment, and the development of the controllers and sensors
virtual counterparts. Finally, we presented the simulator GUI, that holds the rendering
widget and provides interaction with the simulation, and the rendering engine that draws
the world.

70

Chapter 5

Results and Troubleshooting

5.1 Ball motion

The ball model has two characteristics that we should consider: the rolling friction, and
how much it will bounce upon collision. The first should be considered by acknowledging
that ODE does not model rolling friction, which results in the ball rolling off into infinity.
Applying damping to the moving ball will prevent this behavior After the ODE stepper
function, linear and angular velocities are tested against the corresponding threshold. If
they are above they are multiplied by (1− dc). The damping coefficient dc can be tweaked
to slow down the ball at a desired rate. A high damping coefficient can make the ball stop
rolling at a higher rate, but it will affect the expected motion of the ball when it becomes
a projectile.

The damping effect on the ball rolling along the Y Y axis is depicted in Figure 5.1. It
shows that the damping coefficient affects the ball linear velocity. The lower the damping
coefficient, the lower the slowdown rate of the ball.

-1

0

1

2

3

4

5

10 11 12 13 14 15 16 17
Simulation Time (s)

YY coordinate (m)
Linear velocity (m/s)

(a) With damping coefficient equal to 0.01.

-1

0

1

2

3

4

5

6

7

10 11 12 13 14 15 16 17 18
Simulation Time (s)

YY coordinate (m)
Linear velocity (m/s)

(b) With damping coefficient equal to 0.005.

Figure 5.1: Damping effect on the ball rolling.

71

The damping effect on the ball when it is thrown into the air along the Y Y axis is
depicted in figure Figure 5.2. It shows that decreasing the damping coefficient results in
a larger distance traveled in a similar time span before the ball bounces for the first time.
It also results in an increase of the number of times the ball bounces, and a larger time
span before the ball stops moving. The reached height by the ball appears to be similar,
meaning, the damping coefficient affects the distance traveled by a projectile but not the
“flight” time. By consequence the bounce of the ball is also affected by the damping
coefficient.

0

1

2

3

4

5

6

7

8

9

8 9 10 11 12 13
Simulation Time (s)

YY coordinate (m)
ZZ coordinate (m)

Linear velocity (m/s)

(a) With damping coefficient equal to 0.01.

-1

0

1

2

3

4

5

6

7

8

9

10

4 6 8 10 12 14
Simulation Time (s)

YY coordinate (m)
ZZ coordinate (m)

Linear velocity (m/s)

(b) With damping coefficient equal to 0.005.

Figure 5.2: Damping effect on the ball when its thrown into the air.

The bounce that results from the virtual ball hitting the game field is important because
it is taken into account when the agent issues a high kick. From the method presented
in Section 4.4.2 we extracted the values that help characterize the bounciness of the ball.
From the repeatedly carried experiment, the real ball would stop after six bounces in 2.81
seconds (mean). After empirically adjusting the bounciness parameters we obtained a
similar bounce effect in the simulator. The virtual ball was dropped at one meter high and
bounced six times before it came to rest after approximately 2.87 seconds (Figure 5.3).

5.2 Sensors and controllers

5.2.1 Omnidirectional vision

The information generated by the virtual omnidirectional vision has direct effect on
the agent self-localization due to white points detection, and on the agent decisions due to
obstacles detection and ball detection.

72

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

(m
)

Simulation Time (s)

ZZ coordinate

Figure 5.3: Bounciness of the ball model. Dropped vertically at one meter high, bounces
six times and then stops.

White points

The virtual white points detection algorithm defaults to thirty radial sensors with three
passes and it is affected by the occlusion areas created by obstacles. The results of the
white points detection algorithm can be analyzed by comparing the absolute position of the
robot in the simulation and the position determined by the self-localization of the agent.

The influence of the white points in self-localization is depicted in Figure 5.4. Self-
localization can be achieved with just thirty radial sensors. However, raising the number
of radial sensors increases the self-localization precision. The presence of obstacles can
diminish the number of white points and has as consequence a less precise self-localization.

1

1.5

2

2.5

3

3.5

4

4.5

5

-1.5 -1 -0.5 0 0.5 1 1.5

Y
Y

co
or

di
na

te
(m

)

XX coordinate (m)

Absolute position
Self-localization

(a) With 30 radial sensors

1

1.5

2

2.5

3

3.5

4

4.5

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Y
Y

co
or

di
na

te
(m

)

XX coordinate (m)

Absolute position
Self-localization

(b) With 60 radial sensor

Figure 5.4: White points influence in self-localization.

Using only radial sensors can result in missing white points, an example is shown in

73

Figure 5.5, where radial sensor tangential with the central circle fail to detect white points.
This can be solved by using circular sensors.

Figure 5.5: Example of a white points capture with missing white points due to using only
radial sensors.

Obstacles detection

The existence of obstacles can influence the agent decisions, therefore an accurate object
detection is a valuable asset specially if we are testing decision and coordination algorithms.
The detection of obstacles is shown in Figure 5.6. The information generated by the virtual
obstacles detection algorithm proved to be reliable for obstacles detection.

The virtual obstacle detection algorithm does not differentiate a robot model (Sec-
tion 4.4.4) from an obstacle model (Section 4.4.5), they are both treated as an obstacle.

Ball detection

An example of ball detection is shown in Figure 5.7. It shows how a small variation
of the ball altitude influences the detected position of the ball. When the ball is on the
ground its detection is stable and reliable. Also, the ball is occluded when it falls behind
an obstacle. Partial occlusion of the ball is not implemented, but due to the high dynamic
position of the ball this aspect is not relevant for ball detection.

74

Figure 5.6: Obstacles detection with occlusion. All obstacles are relative to the “origin”
robot. An obstacle is undetectable if it falls back behind another obstacle.

5.2.2 Holonomic motion

The CAMBADA team does not have the necessary resources to obtain the ground truth
position of a robot, therefore to compare the holonomic motion of the real robot with the
holonomic motion of the virtual robot we compared self-localization of the real robot
against the absolute position and rotation of the virtual robot. To obtain the comparison
data, we devised a controlled scenario that could be used in the real environment and in
the simulated environment. We defined a four waypoints tour traversed by the robot while
looking to a fixed point.

Using the simulator we were able to emulate the holonomic motion, shown in Figure 5.8.
The holonomic motion in the simulation environment appears to slide in some turning
points. Furthermore, the position over time of the virtual robot appears to be slower.
Both effects can be cause by the underlining physics parameters.

The rotation of the virtual robot, depending on the situation, appears to suffer from
sudden variations (Figure 5.9). Once again, the cause can be the underlining physics
parameters.

The odometry of the virtual robot apparently is more accurate than the real robot
odometry (Figure 5.10). The virtual robot does not have wheel encoders, and the velocity
and rotation of the virtual robot frame is used to calculate the virtual robot odometry.

75

0

1

2

3

4

5

0 1 2 3 4 5

(m
)

Simulation time (s)

Detected ball distance
Ball altitude

Detection threshold

Figure 5.7: Example of ball detection. The ball projection on the ground is at a fixed
distance from the robot of 2 meters. The detection threshold represent the highest altitude
at which the ball is detected with a maximum see distance of 5 meters (Section 4.5.1).

Therefore, any external interference to the robot displacement and rotation can increase
the error more than in the real robot.

ODE presented us with a problem while trying to recreate the holonomic motion in
the simulation environment. After applying the correct angular velocity to the wheels, the
virtual robot would only attain roughly half the linear velocity expected – angular velocity
was not affected. The reason why this happens is still unknown to us. The solution to this
problem was to double Vx and Vy at Equation 4.2 in the Holonomic Motion module.

5.2.3 Grabber

The effect of the virtual grabber is shown in Figure 5.11. When the ball in range of the
grabber, the applied force decreases the ball distance in a higher rate. Just like with the
real grabber, the movement of the robot can result in “losing” of the ball by the grabber.

5.2.4 Barrier

The method used to know when the ball is in range is the same as the one used in the
grabber. Therefore, the results obtained by the barrier are equal to to the grabber up into
the in range detection.

The in range flag generated by the virtual barrier can influence the agent behavior.
Setting the distance parameter with the wrong value can result in a misbehavior by the

76

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Y
Y

w
or

ld
co

or
di

na
te

(m
)

Simulation Time (s)

Real robot (predicted) position
Virtual robot position

(a) Position

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 5 10 15 20 25 30 35 40

(m
)

Time (m)

XX
virtual XX

YY
virtual YY

(b) Position over time

Figure 5.8: Holonomic motion comparison (position). Four waypoints tour while looking
to the adversary goal.

agent. If the distance is shorter than width of the inner cylinder of the robot model, the
agent will never receive the information that the ball is actually is under control. As result,
the agent will continuously try to bring the ball under control and will not advance to the
next behavior state. If the distance is too long, the agent will assume that the is under
control even though the ball is still distant. As result, the agent will be continuously losing
the ball. However, up to a certain distance, the behavior of the robot combined with the
grabber compensates the virtual barrier misinformation and ensures that the ball is under
control.

5.2.5 Kicker system

The two kick types were successfully reproduced in the simulation environment by
applying a velocity given by the Equation 4.2. In fact, the data captured for the effect of
the damping coefficient was reproduced by applying a high kick to the virtual ball with
the virtual kicker system.

High kick

The maximum range rm from which result the maximum initial velocity vm applied to
the virtual ball (Section 4.6.3) does not take into account the damping that the virtual ball
suffers at each simulation step (Section 5.1). As consequence, in the high kick, applying
vm to the virtual ball will result in a shorter maximum range in the simulation. To obtain
the desired rm in the simulation, we incremented the rm used by the virtual kicker system
until we got the expected maximum range in the simulation.

77

-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

0 5 10 15 20 25 30 35 40

O
ri

en
ta

ti
on

(d
eg

re
es

)

Time (m)

Real robot (predicted) orientation
Virtual robot orientation

(a) Looking to the adversary goal

-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

0 5 10 15 20 25 30

O
ri

en
ta

ti
on

(d
eg

re
es

)

Time (m)

Real robot (predicted) orientation
Virtual robot orientation

(b) Looking to the ball standing in the middle
of the four way points

Figure 5.9: Holonomic motion comparison (orientation). Four waypoints tour.

Low kick

The low kick is also affected by the damping applied to the ball, but we can made the
assumption that the new obtained vm will also work for the low kick. However the low
kick had an unexpected problem. The low kick is essentially used to perform a pass, either
for ball reposition or in-game pass. In the ball reposition the passes are usually performed
with low power, i.e. low initial velocity. As result the ball was not kicked fast enough to
overcome the grabber attraction force, therefore the ball would return to the under control
area. To overcome this problem we doubled the maximum velocity vm for the low kick.

5.2.6 Compass

The information provided by the electronic compass is used to disambiguate which
half of the field is which. That is done by assuming the adversary goal is at zero degrees
relative to the robot which is achieved by adding the real orientation of the adversary goal
to the magnetic north obtain by the electronic compass. The offset added to the electronic
compass information is saved in the CAMBADA configuration file.

In the simulation environment the adversary goal is always at zero degrees. To avoid
changing the configuration file to adjust the north offset for the simulation, the north offset
is subtracted from the virtual compass orientation value.

5.3 Execution times

In this section we will discuss the overall execution time and analyze the components
with relevant execution time. The reference values used in this section were obtained in a

78

-2

-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3

Y
Y

w
or

ld
co

or
di

na
te

(m
)

Simulation Time (s)

Real robot odometry
Virtual robot odometry

(a) Position odometry

-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

0 5 10 15 20 25 30 35 40

O
ri

en
ta

ti
on

(d
eg

re
es

)

Time (m)

Real robot odometry
Virtual robot odometry

(b) Orientation odometry

Figure 5.10: Holonomic motion comparison (odometry). Four waypoints tour looking to
the adversary goal.

0

0.2

0.4

0.6

0.8

1

24 24.5 25 25.5 26

(m
)

Simulation time (s)

Distance to ball
Ball angle with robot

In range flag

Figure 5.11: Effect of the grabber on the ball. The ball is “grabbed” and then kicked.

computer running Ubuntu 9.10 with an Intel Core 2 Duo @ 2.4 GHz and 2 GB 667 MHz
SDRAM.

The world update execution time includes the bodies, geometries, controllers, sensors
and physics update time. The physics step time is set to a particular value which the
simulator will try to synchronize with real time after the world is updated. If the world
update execution time is lower than the physics step time, the simulator will “sleep” for
the remaining time. If the world update execution time is higher than the physics step
time it does not cause any harm to the simulation but it will not run in real-time.

Aspects that can influence the world update execution time are the number of robots
and obstacles present in the simulation, and the configuration values of the simulated
sensors and controllers. We can assume that the heaviest computational simulation envi-
ronment has five virtual robot and five obstacles, the world update execution time for this

79

scenario is shown in Figure 5.12. The sudden increase of execution time at the beginning of
the simulation is due to the physics execution time. For some reason, the physics execution
time increases almost five milliseconds during a short period of time that only happens at
the beginning of the simulation, therefore it will not be used as reference for the highest
execution time.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

R
ea

lt
im

e
(m

s)

Simulation Time (s)

World update time

(a) World update execution time

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

0 5 10 15 20 25 30

R
ea

lt
im

e
(m

s)

Simulation Time (s)

Models (including controllers) update time
Sensors update time
Physics update time

Vision update time of one robot

(b) World update execution time by compo-
nent

Figure 5.12: Execution time of the heaviest simulation scenario, with physics time step of
ten milliseconds.

The execution times obtained in the the worst-case scenario show us that the simulation
is not capable of running in real-time at all update cycles. However, it does not cause harm
to the simulation because it runs in discrete time.

The component that contributes with most of the execution time is the virtual om-
nidirectional vision. By analyzing the virtual omnidirectional vision execution time by
operation (Figure 5.13), we found out that the obstacle detection algorithm was the sole
cause for the overall high execution time in the worst case scenario. Only one virtual vision
takes almost 3.5 millisecond to perform obstacles detections, considering that we have five
virtual robots running at the same time it takes approximately 17.5 millisecond just to de-
tect obstacles. The probable cause is the algorithm used to detect obstacles (Algorithm 1),
optimizing this algorithm can result in better execution times.

5.4 Visualization and interaction

From the four pre-defined views offered by the GUI, the Top view is the most useful.
Its drag-and-drop interaction with the simulation non static models provides the user a
familiar form of direct manipulation. However, when the rendering widget becomes too
small it becomes harder to select a model, particularly the ball model which is smaller than
the robot and object models. This could be resolved either by defining a minimum size or
allow the user to zoom-in and zoom-out.

80

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

R
ea

lt
im

e
(m

s)

Simulation Time (s)

Occlusion detection
White points detection

Obstacles detection
Ball detection

Figure 5.13: Virtual omnidirectional vision execution time in the worst-case scenario, with
physics time step of ten milliseconds.

Besides the usual five virtual robots present in the simulation, the user can define the
existence of obstacles models in the simulation environment in the configuration file of the
simulator. Then, the obstacles can be dragged to a particular position for a specific test.
By using obstacles models instead of robots models to represent an obstacle/adversary
we relieved the simulator from additional workload. In addition with the capability of
saving and restoring the world state the user can define a particular scenario that can be
continuously repeated.

The saving and restoring world state feature is very limited. The world state is saved
in memory and holds only one world state at a time. This forces the user to recreate the
test scenario every time he starts the simulator and every time he wants to test a different
scenario in the same simulation session. This could be resolved by adding the capability
of loading and saving test scenarios from files.

When the simulation is running with the five agents at the same time, the GUI appears
to sometime be unresponsive or somewhat slow, and the frame rate of the rendering engine
also appears to decrease. This can be caused by the agents processes that are running on
a higher and preemptive priority.

5.5 Summary

In this chapter we discussed the results obtained by the proposed simulation envi-
ronment (Chapter 4). We presented the effect of damping in the ball model and how it
influences the bouncing and motion of the ball model. We discussed the precision and ac-
curacy of the virtual omnidirectional vision. We were able to present a working holonomic
motion for the robot model, but without forgetting its problems and differences from the
holonomic motion of the real robot. The remaining virtual sensors and controllers were
also discussed. We also tried to understand how long a simulation cycle took to execute

81

and why. We found out that it is not always possible the run the simulation in real-
time. By analyzing the execution time by operation we were able to pinpoint the cause of
high execution time, the obstacle detection algorithm. Finally, we discussed the developed
visualization and interaction.

82

Chapter 6

Conclusion and future work

6.1 Conclusions

The main objective of this thesis was to create a suitable simulation environment for
CAMBADA team. We started by studying the existing solutions for robotic simulation
which have application on the RoboCup domain or have an strong presence in the robotic
simulation world. This study helped us understand what a robotic simulation can offer,
and how different, but with similar objectives, the robotic simulators are. In the end, using
the requirements of the proposed simulation environment as reference frame, we compared
the studied robotic simulators. Having the robotic simulators compared with each other,
helped us chose one to be our code base for our robotic simulation. We chose Gazebo.

The CAMBADA robot has a wide variety of components. To be able to create a suitable
simulation environment for the CAMBADA team we had to analyze all of the components
and decide which one had to be simulated. Some of the non simulated components had
to be modified in order to support a simulation environment, namely the RTDB and the
PMan. The modifications were made with relative ease and with minimum impact to
others components, meaning, the components that used the RTDB and/or the PMan did
not had to be modified, or had to be modified but with small changes. The agent was the
component which we were more careful to not introduce modifications, and we succeeded.

Modeling the physical entities within the simulation environment is an important task.
How an entitie is modeled affect the simulation results. Besides the robot model, the
physical shape of the game field, the ball and the goal were easy to model. The physical
structure of the robot is more complex. We had to consider the holonomic motion system
and the chassis of the robot with the cut out section to handle the ball. For simplicity, we
did not model the top physical structure of the robot. Also, we had to developed virtual
sensor and virtual controllers for the robot model. From the robot model we created
another model, an obstacle model that can used as a simplified version of an opponent
robot, i.e. without holonomic motion system, sensors and controllers).

Modeling the physics attributes of a model proved not to be a trivial matter. The ball
model, is a simple model with only a sphere, however we had to considered the damping

83

effect on the ball model that prevented it from rolling off into infinity. By applying damp-
ing to the ball model its motion is affected with relation to the damping coefficient. The
damping effect on the ball model motion affects the assumptions we made while modeling
the kicker system. Therefore, we had to adjust the kicker system parameters to accommo-
date the damping effect. The physics attributes also have heavy influence in the emulation
of the holonomic motion. It took sometime until we were able to obtain an holonomic
motion. However, it still needs more modeling efforts.

The developed sensors provide the agent with good sensorial information. With it
the agent can successfully intercept the ball, avoid obstacles and pinpoint its position
in the game field. The virtual omnidirectional vision is the Achille knee of the overall
execution time, more specifically the object detection algorithm. This algorithm is very
time consuming for “just” nine obstacles, and is the sole cause for non real-time simulation.
It is a priority to fix this algorithm to improve overall execution time.

The developed controllers, even with some problem, were able to model physical struc-
tures without really having them. The exception is the virtual holonomic motion controller
that has its physical shape modeled. The virtual robot is able to move, grab the ball and
kick the ball. When performing a low kick the virtual grabber would try to bring the ball
back under control, as result the ball would be kicked with a lower velocity. The solution of
doubling the velocity when performing the low kick was made by simple observation which
may be wrong. A solution to this problem could be modeling the physical structure of the
grabber, then when a kick is performed the grabber arm would go up a little allowing the
ball to leave without affecting its velocity.

The visualization and interaction component of the simulator, although not necessary
for the simulation to run, is a key component. It allows the user to have a visual feedback
of the changes he made to his cooperation and decisions algorithms. Furthermore, the
interaction with the simulation provides the user a simple manipulation of the virtual
robots and virtual ball.

In conclusion, the developed simulation environment proved to be an useful asset for
the CAMBADA team. As a testing platform, the developed simulator provided several
advantages to the CAMBADA team, such as save batteries power (important in competi-
tion), free the programmer from calibrations overhead, off-site programming, detect error
in controlled environments, etc. At the RoboCup 2010 in Singapore, the high level software
developers of the CAMBADA team, developed overnight a new ball reposition algorithm
using the developed simulator away from the real robots. The motion of the virtual robot
is not the same as the real robot, but that is not the most important, the most impor-
tant aspect of the developed simulator is its aiding in testing and developing decisions and
cooperation algorithms.

6.2 Future work

At the beginning of this thesis we stated that “Efforts are needed to create more accurate
simulated models and trustworthy behaviors”. Following this philosophy we should try, in

84

the future, to evolve our models for more trustworthy behaviors.
Currently none of the sensor nor controllers simulates delays, for example, in the

CAMBADA robot there is a delay between the time of perception and the time of ac-
tuation, which cannot be simulated by the developed simulator. All developed sensors are
not capable of introducing noise to the gathered information, which does not allow testing
in uncontrolled environments. Therefore, delays and noise should be considered in future
versions of the simulator.

The model of the robot should evolve in future. Modeling the physical structure of the
grabber may not be an easy task, but it can improved the kicking of the ball without having
to resort to workarounds. In addition, the physical structure of the kicker system could
also be modeled, completing the physical structure of the lower layer of the robot. We
should also try to improve the holonomic motion, currently the the virtual robot appears
to be slower than the real robot.

Fixing the virtual omnidirectional vision execution time should be a priority, namely the
object detection algorithm. This would allow the simulation to run in real-time even in the
worst-case scenario. With better execution we could try to create a simulation environment
with two teams in the same computer, allowing in game tests. An interesting scenario
would be having agents running in different computers, i.e. a distributed simulation. This
rises several concerns, such as time synchronization, collisions synchronization, coherent
sensorial data, and delays, but it would reduce the computational effort.

Improving the interaction with the simulation is also required. The current feature of
saving and restoring the world state is very limited. Allowing the user to create different
simulation scenarios, save them to a file and load them back when needed increases the
productivity of the simulator. Presenting more information about the world state to the
user can help debugging and analyze a test. Also, we should conduct an usability ques-
tionary which can given us a better understanding of what is good and wrong with the
developed GUI.

Finally, creating a viewer that can replay a simulation can be useful for further analysis.
This implies the creation of a language or protocol that describes the the simulation state
as well the models present in the simulation. Additionally, it could lead to the creation of
views that can connect to the simulation via networking.

85

86

Bibliography

[1] Hugo Rafael de Brito Picado. Development of behaviors for a simulated humanoid
robot. Master’s thesis, University of Aveiro, 2008.

[2] H.H. Lund and O. Miglino. From simulated to real robots. In Proceedings of IEEE In-
ternational Conference on Evolutionary Computation, pages 362 –365, Nagoya, Japan,
May 1996.

[3] Programming - Robot Simulation. http://www.societyofrobots.com, last visited
November 2010.

[4] Open Dynamics Engine (ODE) Community. Open Dynamics Engine (ODE) Commu-
nity Wiki. http://opende.sourceforge.net/wiki/index.php/Main_Page, last
visited November 2010.

[5] R. Hafner, S. Lange, M. Lauer, and M. Riedmiller. Brainstormers Tribots team de-
scription. In CD procedings of Robocup Symposium, 2006.

[6] R. Smith. Open dynamics engine. http://opende.sourceforge.net/, last visited
November 2010.

[7] A.A.F. Nassiraei, Y. Kitazumi, S. Ishida, H. Toriyama, H. Ono, K. Takenaka, N. Shin-
puku, M. Takaki, Y. Fukunaga, K. Yamada, et al. Hibikino-Musashi Team Description
Paper.

[8] Alexander Kleiner and Thorsten Buchheim. A plugin-based architecture for simulation
in the f2000 league. In RoboCup 2003: Robot Soccer World Cup VII, volume 3020
of Lecture Notes in Computer Science, pages 434–445. Springer Berlin / Heidelberg,
2004.

[9] T. Weigel, J.S. Gutmann, M. Dietl, A. Kleiner, and B. Nebel. CS Freiburg: Coordinat-
ing robots for successful soccer playing. Robotics and Automation, IEEE Transactions
on, 18(5):685–699, 2002.

[10] R. Lafrenz, M. Becht, T. Buchheim, P. Burger, G. Hetzel, G. Kindermann, M. Schanz,
M. Schulé, and P. Levi. Cops-team description. In RoboCup 2001: Robot Soccer World
Cup V, pages 23–61. Springer Berlin / Heidelberg, 2002.

87

http://www.societyofrobots.com
http://opende.sourceforge.net/wiki/index.php/Main_Page
http://opende.sourceforge.net/

[11] E. C. Pestel and W. T. Thomson. Dynamics. McGraw-Hill, New York, 1968.

[12] Simsrv, a robocup f2000 simulator. http://kaspar.informatik.uni-freiburg.
de/˜simsrv/, last visited November 2010.

[13] O. Michel. Cyberbotics Ltd. WebotsTM: Professional mobile robot simulation. Inter-
national Journal of Advanced Robotic Systems, 1(1):39–42, 2004.

[14] R. Carey and G. Bell. The annotated VRML97 reference manual, 1997.

[15] Webots-User Guide. http://www.cyberbotics.com, October 2010.

[16] Webots Reference Manual. http://www.cyberbotics.com, October 2010.

[17] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, volume 3, pages 2149–2154. IEEE, 2004.

[18] Gazebo, a 3D multiple robot simulator with dynamics. http://playerstage.

sourceforge.net/index.php?src=gazebo, Last access November 2010.

[19] T.H.J. Collett, B.A. MacDonald, and B.P. Gerkey. Player 2.0: Toward a practical
robot programming framework. In Proceedings of the Australasian Conference on
Robotics and Automation (ACRA 2005). Citeseer, 2005.

[20] B.P. Gerkey, R.T. Vaughan, K. Støy, A. Howard, G.S. Sukhatme, and M.J. Mataric.
Most valuable player: A robot device server for distributed control. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), volume 12261231.
Citeseer, 2001.

[21] B. Gerkey, R.T. Vaughan, and A. Howard. The player/stage project: Tools for multi-
robot and distributed sensor systems. In Proceedings of the 11th international confer-
ence on advanced robotics, pages 317–323. Citeseer, 2003.

[22] R.T. Vaughan, B.P. Gerkey, and A. Howard. On device abstractions for portable,
reusable robot code. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceed-
ings. 2003 IEEE/RSJ International Conference on, volume 3, pages 2421 – 2427
vol.3. IEEE, 2004.

[23] B. Spitzak et al. The fast light toolkit (fltk). FTLK: Fast light toolkit. Available:
http://www.fltk.org., Last access November 2010.

[24] S. Streeting et al. Object-Oriented Graphics Rendering Engine (OGRE). http:

//www.ogre3d.org, Last access November 2010.

[25] Vijay Kumar. MAST simulation environment. http://alliance.seas.upenn.

edu/˜kumar/wiki/index.php?n=Main.MASTSimulation, Last access November
2010.

88

http://kaspar.informatik.uni-freiburg.de/~simsrv/
http://kaspar.informatik.uni-freiburg.de/~simsrv/
http://www.cyberbotics.com
http://www.cyberbotics.com
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://www.fltk.org
http://www.ogre3d.org
http://www.ogre3d.org
http://alliance.seas.upenn.edu/~kumar/wiki/index.php?n=Main.MASTSimulation
http://alliance.seas.upenn.edu/~kumar/wiki/index.php?n=Main.MASTSimulation

[26] J. Boedecker and M. Asada. SimSpark–Concepts and Application in the RoboCup
3D Soccer Simulation League.

[27] O. Obst and M. Rollmann. Spark–A Generic Simulator for Physical Multi-agent
Simulations. In Multiagent System Technologies, pages 153–159. Springer Berlin /
Heidelberg, 2004.

[28] J. Boedecker, K. Dorer, M. Rollmann, Y. Xu, F. Xue, M. Buchta, and H. Vatankhah.
SimSpark User’s Manual, 2010.

[29] C. Hargrove. Reflective factory. GameDev.net – all your game developing needs
http://www.gamedev.net/reference/articles/article1415.asp, Last access
November 2010.

[30] P. Riley. SPADES: a system for parallel-agent, discrete-event simulation. AI Magazine,
24(2):41, 2003.

[31] R. Rivest. S-expressions (draft-rivest-sexp-00. txt). Network Working Group, available
at http://theory.lcs.mit.edu/rivest/sexp.txt, pages 1–11, 1997.

[32] A. Robotics. Aldebaran robotics webpage. http://www.aldebaran-robotics.com,
Last access November 2010.

[33] C. Bustamante. Simspark monitor protocol. http://jeap-res.ams.eng.osaka-u.
ac.jp/˜joschka/simspark/monitorprotocol.pdf, Last access December 2010.

[34] P. Costa. Simtwo webpage. http://paginas.fe.up.pt/˜paco/wiki/index.php?
n=Main.SimTwo, Last access November 2010.

[35] T. Laue, K. Spiess, and T. Röfer. SimRobot–A General Physical Robot Simulator and
Its Application in RoboCup. In RoboCup 2005: Robot Soccer World Cup IX, pages
173–183. Springer Berlin / Heidelberg, 2006.

[36] Jared Go and Browning, B. and Veloso, M. Accurate and flexible simulation for
dynamic, vision-centric robots. In Autonomous Agents and Multiagent Systems, 2004.
AAMAS 2004. Proceedings of the Third International Joint Conference on, pages
1388–1389. IEEE, 2005.

[37] A. J. R. Neves, J. L. Azevedo, M. B. Cunha, N. Lau, A. Pereira, G. Corrente, F. Santos,
D. Martins, N. Figueiredo, J. Silva, J. Cunha, B. Ribeiro, R. Sequeira, L. Almeida,
L. S. Lopes, J. M. Rodrigues, and A. J. Pinho. Cambada’2010: Team description
paper. University of Aveiro, Tech. Rep, RoboCup 2010.

[38] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
Robocup: The robot world cup initiative. In AGENTS ’97: Proceedings of the first
international conference on Autonomous agents, pages 340–347, New York, NY, USA,
1997. ACM.

89

http://www.gamedev.net/reference/articles/article1415.asp
http://theory.lcs.mit.edu/rivest/sexp.txt
http://www.aldebaran-robotics.com
http://jeap-res.ams.eng.osaka-u.ac.jp/~joschka/simspark/monitorprotocol.pdf
http://jeap-res.ams.eng.osaka-u.ac.jp/~joschka/simspark/monitorprotocol.pdf
http://paginas.fe.up.pt/~paco/wiki/index.php?n=Main.SimTwo
http://paginas.fe.up.pt/~paco/wiki/index.php?n=Main.SimTwo

[39] H. Lund and L. Pagliarini. Robot soccer with LEGO mindstorms. In RoboCup-98:
Robot Soccer World Cup II, pages 141–151. Springer Berlin / Heidelberg, 1999.

[40] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and S. Shi-
mada. Robocup rescue: Search and rescue in large-scale disasters as a domain for
autonomous agents research. In Systems, Man, and Cybernetics, 1999. IEEE SMC’99
Conference Proceedings. 1999 IEEE International Conference on, volume 6, pages
739–743. IEEE, 2002.

[41] T. van der Zant and T. Wisspeintner. Robocup x: A proposal for a new league
where robocup goes real world. In RoboCup 2005: Robot Soccer World Cup IX, pages
166–172. Springer Berlin / Heidelberg, 2006.

[42] L. Almeida, F. Santos, T. Facchinetti, P. Pedreiras, V. Silva, and L.S. Lopes. Coor-
dinating distributed autonomous agents with a real-time database: The CAMBADA
project. In Computer and Information Sciences - ISCIS 2004, Lecture Notes in Com-
puter Science, pages 876–886. Springer Berlin / Heidelberg, 2004.

[43] V. Silva, R. Marau, L. Almeida, J. Ferreira, M. Calha, P. Pedreiras, and J. Fonseca.
Implementing a distributed sensing and actuation system: The CAMBADA robots
case study. In Emerging Technologies and Factory Automation, 2005. ETFA 2005.
10th IEEE Conference on, volume 2, pages 8 pp. –788, Catania, 2005. IEEE.

[44] J.L. Azevedo, B. Cunha, and L. Almeida. Hierarchical distributed architectures for
autonomous mobile robots: a case study. In Proc. ETFA2007-12th IEEE Conference
on Emerging Technologies and Factory Automation, pages 973–980, Patras, Greece,
2007.

[45] L. Almeida, J. L. Azevedo, P. Bartolomeu, E. Brito, M. B. Cunha, J.P. Figueiredo,
P. Fonseca, C. Lima, R. Marau, N. Lau, P. Pedreiras, A. Pereira, A. Pinho, F. Santos,
L. Seabra Lopes, and J. Vieira. Cambada’2004: Team description paper. University
of Aveiro, Tech. Rep, 2004.

[46] L. Almeida, P. Pedreiras, and J.A.G. Fonseca. The FTT-CAN protocol: Why and
how. Industrial Electronics, IEEE Transactions on, 49(6):1189–1201, 2002.

[47] G. Campion, G. Bastin, and B. Dandrea-Novel. Structural properties and classification
of kinematic and dynamic models of wheeled mobile robots. Robotics and Automation,
IEEE Transactions on, 12(1):47–62, 1996.

[48] L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy. The Hearsay-II speech-
understanding system: Integrating knowledge to resolve uncertainty. ACM Comput.
Surv., 12(2):213–253, 1980.

[49] P. Pedreiras and L. Almeida. Task management for soft real-time applications based on
general purpose operating systems. In Robotic Soccer, pages 598–607. I-Tech Education
and Publishing, 2007.

90

[50] P. Stone and M. Veloso. Task decomposition and dynamic role assignment for realtime
strategic teamwork. In Intelligent Agents V. Agent Theories, Architectures, and Lan-
guages: 5th International Workshop, ATAL’98, Paris, France, July 1998. Proceedings,
pages 629–630. Springer, 2000.

[51] A.J.R. Neves, D.A. Martins, and A.J. Pinho. A hybrid vision system for soccer robots
using radial search lines. In Proc. of the 8th Conference on Autonomous Robot Systems
and Competitions, Portuguese Robotics Open-ROBOTICA, pages 51–55, 2008.

[52] F. Santos, L. Almeida, P. Pedreiras, L.S. Lopes, and T. Facchinetti. An Adaptive
TDMA Protocol for Soft Real-Time Wireless Communication Among Mobile Com-
puting Agents. In Proceedings of the Workshop on Architectures for Cooperative Em-
bedded Real-Time Systems (satellite of RTSS 2004), volume 2004, pages 5–8. Citeseer,
2004.

[53] F. Santos, L. Almeida, and L.S. Lopes. Self-configuration of an Adaptive TDMA
wireless communication protocol for teams of mobile robots. In Emerging Technologies
and Factory Automation, 2008. ETFA 2008. IEEE International Conference on, pages
1197–1204. IEEE, 2008.

[54] D. Beck, A. Ferrein, and G. Lakemeyer. A simulation environment for middle-size
robots with multi-level abstraction. In RoboCup 2007: Robot Soccer World Cup XI,
pages 136–147. Springer Berlin / Heidelberg, 2008.

[55] B. Cunha, J. Azevedo, N. Lau, and L. Almeida. Obtaining the inverse distance map
from a non-svp hyperbolic catadioptric robotic vision system. In RoboCup 2007: Robot
Soccer World Cup XI, pages 417–424. Springer Berlin / Heidelberg, 2008.

[56] T. Friedrich. Elementary geometry. Amer Mathematical Society, 2008.

[57] A.J.R. Neves, G.A. Corrente, and A.J. Pinho. An omnidirectional vision system for
soccer robots. In Proceedings of the aritficial intelligence 13th Portuguese conference
on Progress in artificial intelligence, pages 499–507. Springer-Verlag, 2007.

[58] P.P.R. Kit. Carnegie Mellon University, The Robotics Institute. http://www.cs.

cmu.edu/˜pprk/, Last access November 2010.

[59] J. Cunha, N. Lau, J. Rodrigues, B. Cunha, and J. Azevedo. Predictive Control for
Behavior Generation of Omni-directional Robots. In Progress in Artificial Intelligence,
pages 275–286. Springer Berlin / Heidelberg, 2009.

[60] Tom Nally. Projectile motion in 3d space. The Liberty Basic Newsletter - Issue 130,
March 2005.

91

http://www.cs.cmu.edu/~pprk/
http://www.cs.cmu.edu/~pprk/

92

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Requirements
	Software requirements
	Operational requirements

	Thesis outline

	Robotic Simulation
	Introduction
	Physics engine
	Short introduction
	Rigid bodies
	Joints
	Collision handling

	Brainstormers Tribots
	Software overview
	World representation
	Simulation environment overview
	Visualization and interaction
	CAMBADA simulator

	RoboCup Simulator Dev
	Software overview
	World representation
	Simulation environment overview
	Visualization and interaction

	SimSrv - A RoboCup F2000 Simulator
	Software overview
	World Representation
	Simulation environment overview
	Visualization and interaction

	Webots™
	Software overview
	World representation
	Simulation environment overview
	Visualization and interaction

	Gazebo
	Software overview
	World representation
	Simulation environment overview
	Visualization and interaction

	SimSpark
	Software overview
	World representation
	Simulation environment overview
	Visualization and Interaction

	SimTwo
	Software overview
	World representation
	Simulation environment overview
	Visualization and interaction

	Other robotic simulators
	Comparison between robotic simulators
	Summary

	CAMBADA
	RoboCup
	Middle Size League (MSL)

	General Architecture
	CAMBADA Hardware
	Physical shape
	Holonomic Motion
	Odometry
	Electronic compass
	Barrier
	Grabber
	Kicker
	Vision system

	CAMBADA Software
	Real-Time Data Base (RTDB)
	Process Manager layer (PMan)
	Sensorial interpretation, intelligence and coordination
	Vision
	Low-level communication handler
	Wireless communication
	Monitor
	CambadaConfig
	Base-station

	Summary

	CAMBADA Simulator
	Introduction
	Simulation environment overview
	Necessary changes to non-simulated components
	The RTDB problem and solution
	The PMan problem and solution

	Models
	The field model
	The ball model
	The goal model
	The robot model
	The obstacle model

	Sensors
	Omnidirectional Vision
	Compass
	Barrier

	Controllers
	Holonomic motion
	Grabber
	Kicker
	Wireless communications

	Visualization and interaction
	GUI
	Rendering engine

	Summary

	Results and Troubleshooting
	Ball motion
	Sensors and controllers
	Omnidirectional vision
	Holonomic motion
	Grabber
	Barrier
	Kicker system
	Compass

	Execution times
	Visualization and interaction
	Summary

	Conclusion and future work
	Conclusions
	Future work

	Bibliography

