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palavras-chave 
 

Nanocompósitos, fibras de celulose, partículas de carbonato de cálcio, 
polietileno 
 

resumo 
 
 

Nanocompósitos de celulose/CaCO3 foram preparados através da reacção 
controlada em meio alcalino entre cloreto de cálcio e carbonato de dimetilo na 
presença de fibras de celulose. O efeito de vários parâmetros reaccionais 
(tempo e temperatura de reacção, quantidade de fibra, e conteúdo de grupos 
carboxilo na celulose) nas características dos nanocompósitos foi avaliado por 
ICP-AES, IR, XRD, SEM, TGA, ToF-SIMS e XPS. Os resultados indicam que 
as condições de hidrólise influenciam a quantidade e morfologia das partículas 
de CaCO3 depositadas na surperfície das fibras de celulose: (i) a quantidade e 
o tamanho das partículas de CaCO3 depositadas nas fibras de celulose 
aumentam com o tempo de reacção; (ii) reacções realizadas a 25ºC originam 
nanopartículas esféricas de CaCO3, enquanto que a 70ºC originam micro-
agregados de Ca(OH)2; (iii) suspensões de fibra de baixa consistência 
favorecem a formação de partículas esféricas; (iv) a presença de grupos 
carboxilo na celulose promove o crescimento controlado do CaCO3 à superfície 
das fibras. 
Compósitos de matriz polimérica de polietileno são uma possível aplicação 
para os nanocompósitos de celulose/CaCO3. O uso dos nanocompósitos como 
fase de reforço originou materiais compósitos com maior módulo de 
armazenamento do que o polietileno. Para além disto, o valor do módulo de 
armazenamento dos compósitos de PE reforçados com celulose/CaCO3 é 
superior ao módulo dos compósitos de PE reforçados só com fibras de 
celulose. 
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abstract 
 

Nanocomposite materials of cellulose/CaCO3 were prepared by the controlled 
reaction between calcium chloride and dimethylcarbonate in alkaline medium in 
the presence of cellulosic fibres. The effect of several reaction parameters 
(reaction time, temperature, fibre quantity and extent of cellulose modification) 
on the final characteristics of the nanocomposite materials was investigated by 
ICP-AES, IR, XRD, SEM, TGA, ToF-SIMS and XPS. The results showed that 
the hydrolysis conditions strongly influenced the quantity and morphology of 
CaCO3 particles deposited on the surface of cellulosic fibres: (i) the amount and 
size of CaCO3 deposited on the cellulose fibres increased with increasing 
reaction time; (ii) the reactions performed at 25ºC originated nanosized CaCO3 
particles with spheroid morphology, while at 70ºC micrometric aggregates of 
Ca(OH)2 were obtained; (iii) lower consistencies of the reacting suspensions 
favoured the formation of spheroidal particles; (iv) the presence of carboxyl 
groups at the cellulose surface promoted the selective control growth of CaCO3
on the surface of the fibres. 
Polymer matrix composites of polyethylene were a potential application for the 
nanocomposites of cellulose/CaCO3. The use of the nanocomposites as 
reinforcing phase originated composite materials with higher storage modulus 
than neat PE. Besides, the modulus of PE composites reinforced with 
cellulose/CaCO3 materials was even higher than the corresponding modulus of 
PE composites reinforced with only cellulose fibres. 
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INTRODUCTION 

 
 

 

 

Cellulose is an almost inexhaustible polymeric raw material with outstanding properties [1]. 

This polysaccharide has been for many years an important raw material used in the form of intact 

wood for construction purposes, natural textile fibres (cotton), or paper and board. The use of 

cellulose as a chemical raw material started in the 19th century with the production of the first 

cellulose derivative (cellulose nitrate) and the corresponding technical synthesis of “celluloid”, the 

first thermoplastic polymer [1]. After this, cellulose began to be chemically transformed into a wide 

range of stable derivatives to be used in domestic life and several areas of industry [2]. 

Cellulose and its derivatives are promising raw materials to be applied in the field of 

composites. The growing interest of scientists for composites over the past few decades was 

triggered by the great potential of these materials for high added-value applications [3,4]. The 

stimulus of this interest is related with the enormous versatility of the synthetic processes and the 

almost endless choices of feasible combinations that can be employed to obtain composite 

structures [5]. Cellulose and cellulose derivatives have either been used as matrices or 

reinforcement materials in composites, though the majority of the research done so far dealt with 

cellulosic fibre reinforced polymeric composites [3-6]. Cellulose has been used in 

organic/inorganic composites in combination, for instance, with silica [7,8], titanium dioxide [9], 

gold [10], and kaolin particles [11], among others. The most widespread example of a man-made 

composite material is paper which is formed by cellulose fibres and mineral additive particles like 

CaCO3, kaolin and TiO2. Bearing this in mind, several authors [8-12] have reported that cellulosic 

fibres can be efficient hydrophilic substrates in the nucleation and growth of inorganic particles in 

aqueous medium, allowing the production of cellulose-based micro- and nanocomposites with great 

potential applications. 

Calcium carbonate is one of the most abundant biominerals formed by living organisms 

(corals, pearls, mollusc shells, egg shells and the exoskeleton of arthropods). At an industrial level, 

besides its application in papermaking, CaCO3 has been mainly used as a filler in composite 
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materials such as in plastics or as a pigment in paints and in paper coating dispersions. Therefore 

the ability to manufacture CaCO3 with specific morphology, structure, and particle size might have 

important consequences for future developments in these industries [13].  

The information regarding composite materials of calcium carbonate and cellulose is very 

scarce since only few studies dealt with cellulose/CaCO3 composites [14,15,16]. The aim of this 

work has been the investigation of the synthesis of cellulose/CaCO3 nanocomposites, their 

characterization and the assessment of their impact on the preparation of new polyethylene-

cellulose/CaCO3 composites. The preparation of cellulose/CaCO3 nanocomposites involved the in 

situ synthesis of particles of CaCO3 in the presence of cellulosic fibres. It has been reported that the 

carboxyl groups in cellulose pulp fibres are the main retention sites of several wet-end additives in 

pulp suspensions [17]. Besides, Dousi and co-workers [18] reported that carboxylated polymers 

stabilize the formation of calcite polymorphs. Thus we have undertaken a study using two distinct 

cellulosic substrates: hardwood bleached kraft pulp and carboxymethylated fibres.  

Cellulose/CaCO3 nanocomposite materials might be considered as potential reinforcing fillers 

in polymer matrix composites. Hitherto, practically no information is available on composites of 

thermoplastics like PE with cellulose/calcium carbonate materials. 

This thesis is divided into four parts. In the first part it is presented a bibliographic review of 

the fundamental aspects of cellulose, calcium carbonate and composite materials. The second part 

describes the most relevant experimental methods used in this work. The third part presents the 

results and their discussion. Finally, the fourth part presents the major conclusions obtained in this 

research, as well as some lines to future work. 
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PART I – BIBLIOGRAPHIC REVIEW 

 
 

 

 

1 CELLULOSE 
 

 

Cellulose, the most abundant natural polymer on earth, is the main component of plant tissues 

and is known to be present in bacterial, fungal, algal species and even in animals [19]. This organic 

material has become a raw material of great economical importance since it is obtained from 

renewable resources and has specific properties such as non-toxicity, safe disposability after use, 

and good mechanical properties [2]. 

 

 

 

1.1   Cellulose Fibre Structure  
 

Cellulose presents the most unique and simple structure in the field of polysaccharides. Its 

structure influences the course of chemical reactions and is responsible for the macroscopic 

properties of the polymer [2]. In order to describe and understand the structure of cellulose it is 

essential to distinguish three structural levels [2,20]: 

(i) molecular level: chemical composition, steric conformation, molecular mass, presence of 

functional groups, intra- and intermolecular interactions; 

(ii) supermolecular level: aggregation of chain molecules to elementary crystals and fibrils, 

degree of order; 

(iii) morphological level: spatial position of the fibrillar aggregations in the fibres, existence of 

distinct cell wall layers, presence of voids or interfibrillar interstices. 
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1.1.1 Molecular Structure 
 

Cellulose is a linear homopolymer composed of D-anhydroglucopyranose units linked together 

by β-(1→4)-glycosidic bonds. The repeating unit in cellulose consists in two consecutive 

anhydroglucose units, known as cellobiose unit, and every glucose unit is hence turned around the 

C(1)-C(4) axis by 180o with respect to its neighbours, giving to cellulose a 2-fold screw axis [1,20, 

21]. The basic molecular structure of cellulose is illustrated in Figure 1. The pyranose rings are in 

the 4C1-chair conformation (lowest energy conformation), with the –CH2OH and –OH groups, as 

well as the glycosidic bonds, in an equatorial position [22]. Each D-glucopyranose unit possesses 

free hydroxyl groups at C-2, C-3 and C-6 positions. The hydroxyl groups at both ends of the 

cellulose chain show different properties: the C-1 end has reducing properties, while the glucose 

end group with a free C-4 hydroxyl group is a non-reducing one [2]. 

The chain length of cellulose, i.e. the number of repeating anhydroglucose units (degree of 

polymerization, DP) differs widely depending on the origin and treatment of the raw material. For 

example, cellulose chains have a DP of about 10000 glucopyranose units in wood cellulose and 

15000 in native cotton cellulose [21], while the DP of wood pulp fibres is in the range of 600-1500 

[23]. 
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Figure 1: Cellulose molecular structure [2]. 

 

 

The molecular structure of cellulose is responsible for its characteristic properties: 

hydrophilicity, chirality, degradability, and broad chemical modifying capacity due to the high 

donor reactivity of the OH groups [1]. The three hydroxyl groups in each glucose unit of the 

cellulose molecule are able to undergo chemical reactions as well as to interact with other hydroxyl 

groups forming strong hydrogen bonds. In the solid state, cellulose molecules aggregate by means 

of intramolecular hydrogen bonds (OH-groups of adjacent glucose units in the same cellulose 

molecule link together) and intermolecular hydrogen bonds (OH-groups of adjacent cellulose 
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molecules link giving rise to supramolecular structures) [2,20]. The intramolecular hydrogen bonds 

(Figure 2) are formed between the hydroxyl groups on C(3) of one glucose unit and the pyranose 

ring oxygen O(5’) of the neighboring glucose unit; and between the hydroxyl groups on the carbon 

atoms C(2) and C(6) [2,20]. The intermolecular hydrogen bonds (Figure 2) – predominant factor 

responsible for the interchain cohesion – are formed between the hydroxyls on the carbon atoms 

C(6) and C(3’) [2,20]. 

 

 
Figure 2: Most probable hydrogen bond patterns of cellulose I (002 plane) [20]. 

 

 

 

1.1.2 Supermolecular Structure 

 

The supermolecular structure of cellulose is responsible for many of the cellulose chemical and 

physical properties. Various organization models of fibre structure have been proposed but, so far, 

the Fringe-Fibrillar model is the one that comes rather close to reality [2].  

According to several authors, the basic element of the supermolecular structure of cellulose 

fibres is the so-called elementary crystallites [20], as illustrated in Figure 3. Strings of elementary 

crystallites are thus aggregated together in the form of elementary fibrils. Furthermore, bundles of 

elementary fribrils form microfibrils, in which highly ordered (crystalline) regions alternate with 
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less ordered (amorphous) regions – Figure 4. Microfibrils in turn build up into macrofibrils and 

these into cellulose fibres. 

 

Figure 3: Microscopic structure of cellulose (Adapted from [20,23]). 

 

 

 

 

 
Figure 4: Cellulose elementary fibril morphology [24]. 
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The elementary fibril is formed by the association of many cellulose molecules which are 

linked together in repeating lengths along their chains. Hence, in the crystalline state cellulose may 

be considered to be formed by identical repetition units, each one is termed as the unit cell (Figure 

5). The unit cell of native cellulose or cellulose I is monoclinic, with dimensions of 0.835 nm for 

the a-axis, 1.03 nm for the b-axis, 0.79 nm for the c-axis and 84º for the β-angle [2]. The 

orientation of the cellulose molecules in the unit cell is still an issue under discussion. However, the 

Meyer and Misch model (Figure 5) proposes an anti-parallel orientation of the cellulose molecules 

in the unit cell, meaning that they are in a reverse position with respect to one another [20]. 

 

 
Figure 5: Unit cell of cellulose I according to the Meyer-Misch model [2]. 

 

 

 

Apart from the thermodynamically less stable cellulose I or native cellulose, this natural 

polymer can adopt other crystal structures which vary in unit cell dimensions and, probably, in 

chain polarity [1,2]. The polymorphism of cellulose crystal structure has been well documented in 

literature [2,19,20,22,25]. Hitherto, six polymorphs of cellulose are known (I, II, IIII, IIIII, IVI and 

IVII) [22] and can be interconverted (Figure 6): 

(i) native cellulose or cellulose I: there are two crystalline forms of cellulose I, designated as 

cellulose Iα and cellulose Iβ and the crystalline component of cellulose I corresponds to a 

mixture of these two forms; 

(ii) cellulose II: may be obtained from cellulose I by either regeneration (solubilisation of 

native cellulose in a solvent followed by reprecipitation by dilution in water) or 

mercerization (swelling of cellulose fibres in a concentrated aqueous alkali solution after 

removing the swelling agent); 
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(iii) cellulose III: celluloses IIII and IIIII are formed from celluloses I and II, respectively, 

through treatment with liquid ammonia, and subsequent evaporation of ammonia; 

(iv) cellulose IV: polymorphs IVI and IVII are prepared by heating celluloses IIII and IIIII 

respectively [19,22,25]. 

 

Cellulose I Cellulose II

Cellulose IIII Cellulose IIIII

Cellulose IVI Cellulose IVII

Regeneration
Mercerization

Heat Heat

NH3(l)
- NH3(g)

NH3(l)
- NH3(g)

 
 

Figure 6: Polymorphic interconversion of cellulose [19,22]. 

 

 

 

The polymorphs of cellulose present different x-ray diffraction patterns as illustrated in Figure 

7. Thus, the identification of the polymorphic form of cellulose is quite simple. 

 

 
2θ 

 
Figure 7: Typical X-ray diffraction patterns of amorphous cellulose, and celluloses I, II, III, and IV 

[26]. 
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1.1.3 Fibre Cell Wall Structure 
 

Cellulose is the vital component of all plant-fibres since it forms the skeleton of their cell walls. 

The morphology of the cellulose fibres is based on a hierarchy of fibrillar entities organized in 

layers differing in fibrillar texture [2]. The cell wall ultrastructure consists of four main layers: the 

middle lamella (ML), the primary wall (P), the secondary wall (S) and the warty layer (W), as 

illustrated in Figure 8. All these layers differ from each other in terms of structure and chemical 

composition. 

The middle lamella (ML) with 0.2-1.0 μm of thickness is responsible for bounding the cells 

together and consists, in the mature state, mainly of lignin [20,21]. The outer layer of the cell – the 

primary wall (P) – with 0.1-0.2 μm of thickness is composed by cellulose, hemicelluloses, pectin, 

and protein and is entirely embedded in lignin [21]. The next inner cell wall layer is the secondary 

wall (S) that is formed by cellulose fibrils between which lignin and hemicelluloses are located 

[21]. Three distinct layers of the S wall can be recognized: S1 is the outer layer with 0.1-0.2 μm 

thick; S2 with 2-10 μm of thickness forms the main body of the fibre; and S3 is the inner layer with 

0.1 μm thick [23]. Finally, the warty layer (W) located in the inner surface of the cell wall is a thin 

amorphous membrane with a still unidentified composition [21]. 

 

 

 
Figure 8: Diagram of cell wall organization [27]. 
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1.2   Cellulose Modification 
 

Cellulose exhibits a number of properties that make it a rather ideal fibrous polymer [2]. The 

most relevant properties are its hydrophilicity, biodegradability, broad chemical modifying 

capacity, and its formation of versatile semicrystalline fibre morphologies [1,2]. However, 

cellulosic fibres also display some limitations as a result of their polar and hydrophilic character. 

The chemistry of cellulose is mainly the chemistry of the hydroxyl groups. The three reactive 

hydroxyl groups at the C-2, C-3, and C-6 atoms are, in general, accessible to the typical 

conversions of primary and secondary alcoholic OH groups [31]. The hydroxyl groups located in 

the crystalline regions with close packing and strong interchain bonding can be completely 

inaccessible under specific reaction conditions, while those in amorphous regions are highly 

accessible and react readily [21]. 

Cellulose is a fibrous substance insoluble in water and conventional organic solvents, but 

swellable in several polar protic and aprotic liquids [2]. This situation is an outcome of the 

crystalline nature of cellulose [28]. Both swelling and chemical modification are good tools to 

destroy the ordered structure of cellulose, i.e. to improve the accessibility of the molecules. 

Nevertheless, chemical modification provides a dominant route towards the production of 

innovative cellulose polymers with specific properties and their utilization in a wide range of 

applications. Cellulose derivatives constitute a very important part of the world market for 

polymers. Hitherto, there’s a wide variety of routes for cellulose functionalization, as emphasized 

by the numerous reviews on the topic [29,30,31,32]. The functionalization of cellulose can either 

be done by homogeneous (dissolved cellulose) or heterogeneous reactions (cellulose in the solid or 

more or less swollen state), and both affect the supramolecular and morphological structure of 

cellulose [2]. Currently, most commercially available cellulose products are produced by 

heterogeneous reactions [1,2]. Additionally, the wide variety of cellulose derivatives are mainly 

produced by complete or partial esterification or etherification of the hydroxyl groups [2]. In both 

esterification and etherification reactions it is necessary a preswelling of the cellulose fibres in 

order to improve the accessibility of the hydroxyl groups for the later reaction. Two types of 

swelling of cellulose can be distinguished: intercrystalline, where the swelling agent penetrates 

only in the amorphous segments of cellulose, and intracrystalline, where the swelling agent 

penetrates the amorphous and affects the crystalline segments of cellulose [2,20]. Both swelling 

types result in the rupture of intermolecular bonds between the cellulose chains but, because of the 

limited solvation of the interaction compound formed, the intermolecular cohesion between 

cellulose chains are still preserved [2]. 
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In this work, the use one of the most important cellulose ether – carboxymethylcellulose 

(CMC) – is of particular interest since it is known that carboxylated polymers stabilize the 

formation of calcite polymorphs, as reported by Dousi and co-workers [18]. Moreover, Isogai et al. 

[17] also showed that carboxyl groups in cellulose pulp fibres are the main retention sites of several 

wet-end additives in pulp suspensions. 

The industrial production of carboxymethylcellulose involves a heterogeneous slurry of 

cellulose in a solvent that swells but does not dissolve neither the initial polymer nor the CMC 

obtained [33]. In general, this chemical modification occurs in two steps: the activation of cellulose 

by the aqueous sodium hydroxide solution, followed by the cellulose conversion to 

carboxymethylcellulose with monochloroacetic acid (MCAA) [34], as shown in Figure 9. The 

substitution of cellulose’s hydroxyl groups with carboxymethyl groups results in significant 

improvement of accessibility; even water solubility is achieved when the degree of substitution 

(0≤DS≤3) is higher than 0.4, giving high viscosity in dilute solutions [34]. 

 

O
O

OH

HO

OH

O
O

OCH2COONa

RO

OR

NaOH

Isopropanol/H2O
+

ClCH2COONa

R= H or CH2COONa
according to DS  

Figure 9: Reaction scheme of the carboxymethylation of cellulose in heterogeneous medium [34]. 
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2 CALCIUM CARBONATE 
 

 

Calcium carbonate is one of the most abundant minerals and has received much attention as a 

result of its industrial importance, diversity as a biomineral, and crystalline complexity. This 

mineral is a significant building material of natural hard tissues such as bones and teeth, and is 

extensively used as a filler in paints, plastics, rubber and paper. 

 

 

2.1   Polymorphism and structural aspects 
 

Calcium carbonate has three anhydrous crystalline polymorphic forms stable at ambient 

conditions: calcite, aragonite and vaterite. In addition to these crystalline forms, amorphous 

calcium carbonate (ACC) is also known. These polymorphs can adopt a variety of morphologies 

and have distinct solubility in water. The polymorphs of CaCO3 are widespread minerals 

throughout nature, being vital inorganic components in the tissues and skeletons of many 

organisms, and a main constituent of sedimentary rocks. 

Calcite (Figure 10) is the most thermodynamically stable polymorph of CaCO3 at room 

temperature under normal atmospheric conditions and thus it is the most abundant form of calcium 

carbonate on earth surface. Natural calcite is relatively pure, being magnesium, ferrous and 

manganese ions common impurities. Besides, calcite has a rhombohedral crystal structure (Figure 

10) with a space group R3c and a = b = 4.990 Å, c =17.061 Å, α =β = 90o, and γ = 120o [35]. 

Aragonite (Figure 10) is a metastable phase of calcium carbonate that is effortlessly 

transformed into calcite by variations in environmental conditions. This polymorph of CaCO3 has 

an orthorhombic crystal structure (Figure 10) with a space group Pmcn and a = 4.9598 Å, b = 

7.9641 Å, c =5.7379 Å, and α =β = γ = 90o [36]. Aragonite is an interesting reinforcement material 

in composites due to its strength and needle-like morphology [37]. Besides, it is a vital biomaterial 

since it is hydrothermally transformed into biocompatible hydroxyapatite [38]. 

Vaterite (Figure 10) is the thermodynamically less stable crystalline form of calcium carbonate 

and is a scarce mineral in nature. The particles of this polymorph do not present well-defined 

morphologies, and frequently aggregate into spheroidal particles [39]. Vaterite has a hexagonal 

crystal structure (Figure 10) with a space group P63 and a = b = 4.13 Å, c = 8.48 Å, α =β = 90o, 

and γ = 120o [35].  
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Finally, amorphous calcium carbonate (ACC) is a thermodynamically unstable form of CaCO3. 

It is widely used by biological organisms as a temporary storage deposit for calcium and carbonate 

[40], but it is easily dissolved in water and with time transforms into a crystalline form. 

 

Calcite mineral crystals [41] Calcite crystal structure [42] 

  
 

Aragonite mineral crystals [43] 
 

Aragonite crystal structure [42] 

 
 

 
Vaterite mineral crystals [44] 

 
Vaterite crystal structure [45] 

 
Figure 10: The biomineral crystals and crystal structure of calcium carbonate polymorphs. 

 



PART I – BIBLIOGRAPHIC REVIEW 
 
 

14 

2.2   Chemical routes to produce calcium carbonate 
 

The use of calcium carbonate in numerous industrial applications is determined by the average 

particle size, the particle size distribution, the morphology, the specific surface area, the type of 

polymorph or the chemical purity [46]. Therefore, the ability to manufacture CaCO3 with strictly 

defined characteristics is of enormous importance to industrial applications. 

The knowledge of the key-controlling factors of crystallization (Figure 11) is crucial for the 

selective crystallization of the polymorphs [47]. The crystallization process of each polymorph 

comprises the competitive nucleation and crystal growth of the polymorphs, and the transformation 

from metastable to stable forms [47].  

 

 
Figure 11: Scheme of controlling factors in crystallization of polymorphs [47]. 

 

 

The primary factors that influence the polymorphism of calcium carbonate are the 

concentration of the reactant solutions (supersaturation) [47,48], the reaction temperature [47], the 

stirring rate [49], the mixing rate of the reactant solutions [47], and the addition of polymorph seed 

crystals [50]. In turn, the secondary factors that influence the polymorphism of calcium carbonate 

are operational parameters such as solvents [51], additives [52,53,54], interfaces [55] and pH [49]. 

The solubility of each polymorph is also a factor that influences the crystallization process of 

CaCO3 since it affects the supersaturation degree and allows the prediction of the relative 

thermodynamic stability and the direction of the transformation between the polymorphs [47]. 

The main routes to produce powders of CaCO3 are shown in Figure 12. In industry, calcium 

carbonate is generally produced by bubbling carbon dioxide through an aqueous calcium hydroxide 

slurry – carbonation route [46,56]. However, most of the research has been done using the direct 

precipitation method with solutions of calcium and carbonate ions [47,57]. 
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Established Synthetic Methods

DIRECT PRECIPITATION

CaCl2 + Na2CO3 ↔ CaCO3 + 2NaCl

CARBONATION ROUTE

Ca(OH)2 + CO2 ↔ CaCO3 + H2O

Continuous: liquid-liquid Batch: liquid-solid

Spheroidal vaterite (favoured at low temperature 
and low pH), needle-like aragonite (favoured at 

high temperature and high pH) and 
scalenohedral/rombohedral calcite Scalenohedral calcite favoured

Rombohedral calcite favoured

Low [Ca(OH)2]: liquid-gas 
system Ca(OH)2 obtained by 

mixing CaCl2 and NaOH.
Technical studies for industrial 

process

High [Ca(OH)2]: solid-liquid-gas 
system Ca(OH)2 obtained by 

hydrating CaO.
Industrial process

 
Figure 12: Most common established synthetic procedures for the controlled precipitation of CaCO3 

powders (Adapted from [46]). 
 

 

 

2.2.1 Direct Precipitation 

 

The direct precipitation is mainly used in laboratory due to its simplicity of operation and easy 

control of the experimental parameters. In this process, aqueous solutions containing calcium and 

carbonate ions are mixed, in alkaline medium, to form a calcium carbonate precipitate and ionic 

soluble species, as depicted by the following reaction: 

 

2NaCl  CaCO  CONa  CaCl 3322 +→+       (Reaction 1) 
 

The preparation of CaCO3 using this method has been extensively reported. For example, 

Söhnel and Mullin [58] studied the precipitation process of CaCO3 by mixing equimolar solutions 

of Na2CO3 and CaCl2 at different concentrations in aqueous solution. They estimated the growth 

rate of calcium carbonate crystals by a desupersaturation method and discussed the effects of ionic 

impurities on the final crystal morphology. Morales et al. [59] investigated the precipitation of 

CaCO3 at various [Ca2+]/[CO3
2-] ratios by mixing Ca2+ and CO3

2- solutions at 25oC. In another 

study, Morales and co-workers [60] explored the effect of solution pH on the CaCO3 precipitation. 

Kawano et al. [48] investigated the formation process of calcium carbonate from highly 

supersaturated aqueous solutions of CaCl2 and Na2CO3 at 20oC. Kitamura [47] discussed the effect 

of the supersaturation, the mixing rate of the reactant solutions and temperature, on the morphology 

and the crystallization of CaCO3 polymorphs, between calcium chloride and sodium carbonate 

aqueous solutions. 
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The direct precipitation method of calcium carbonate is also used at an industrial level. An 

example is the CaCO3 produced in the kraft pulp industry (Figure 13) as a by-product in the 

causticizing process used to manufacture sodium hydroxide.  

 

 
Figure 13: Causticizing process as a part of the pulp mill chemical recovery circuit [61]. 

 

 

 

The production of CaCO3 in the chemical recovery process of sodium hydroxide in the kraft 

pulping process [49] is a special case of direct precipitation method in which calcium hydroxide 

reacts with sodium carbonate to produce a sodium hydroxide solution from which the calcium 

carbonate is precipitated: 

 

( ) 2NaOH  CaCO  CONa  OHCa 3322 +↔+      (Reaction 2) 
 

 

The available information regarding the crystallization of calcium carbonate in the causticizing 

process is scarce although there is a patent [62] on the process. One of the few reports on the 

crystallization of CaCO3 in the causticizing reaction was done by Kitamura and co-workers [49], in 

which they investigated the controlling factor and the mechanism of the crystallization of calcium 

carbonate polymorphs by adding the Na2CO3 solution to the Ca(OH)2 suspension. Konno and co-

workers studied the mechanism for the crystallization process of aragonite [63]. These authors 

discussed the effect of NaOH on the aragonite precipitation in a batch and the continuous 

crystallization in the causticizing process in the paper industry [64]. 
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2.2.2 Carbonation Route 
 

The most interesting method in the industry to precipitate calcium carbonate is to bubble 

carbon dioxide gas through a slurry of calcium hydroxide. The formation of CaCO3 from Ca(OH)2 

is usually represented by the following overall reaction: 

 

( ) OH  CaCO  CO  OHCa 2322 +↔+       (Reaction 3) 
 

 

An important example of the carbonation route comes from the paper industry, where calcium 

carbonate (the so-called precipitated calcium carbonate (PCC)) is commonly used as filler in paper 

together with other additives to improve optical and physical properties. 

The carbonation route is a useful industrial method in terms of environment preservation and 

effective use of mineral resources. Nevertheless, the control of the crystal shape and crystalline 

phase of CaCO3 particles is particularly difficult [65]. 

The majority of the researches done using the carbonation method are technical studies related 

with the industrial process. For instance, Wang et al. [65] synthesized hydrophobic CaCO3 

nanoparticles by a carbonating route via an organic substrate inducing process (mixture of Ca(OH)2 

and C18H37OPO3H2 with CO2/N2 gas mixture). Xiang et al. [54] studied a modified carbonation 

process for the synthesis of super-fine CaCO3 particles from a Ca(OH)2 slurry, at room 

temperature, using a CO2-air gas mixture. These researchers investigated the effect of the gas 

sparger and chemical additives on the particle size and morphology in the carbonation process. Gu 

et al. [66] reported a novel method to obtain calcium carbonate particles by direct contact of 

Ca(OH)2 powders with supercritical CO2. They converted dry Ca(OH)2 powder to CaCO3, with 

yields superior than 98%, due to the supercritical CO2 containing water that passes over the dry 

Ca(OH)2 powder. The investigation of Karagiozov and Momchilova [67] originated nano-sized 

particles of calcium carbonate by a chemical reaction in a microemulsion of water in oil. These 

researchers suggested that the CO2 gas initiated a chemical reaction when inside the microemulsion 

droplet containing Ca(OH)2, thus originating a slightly soluble product (CaCO3). 

Generally, CaCO3 powders synthesized by the carbonation route are a mixture of various 

crystalline polymorphs with extremely agglomerated particles and anisotropic distribution of sizes. 

In order to overcome these drawbacks, new methods based on the generation of carbon dioxide 

from organic precursors have been developed. An example is the synthesis process of amorphous 

calcium carbonate (ACC) via hydrolysis of alkyl carbonates such as dimethyl carbonate (DMC). 

This organic precursor is a green reagent with low toxicity and high biodegradability, which is 
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easily transformed into methanol and carbon dioxide by base- or acid-catalyzed hydrolysis [68]. 

One of the few studies on the CO2-prodution by base-catalyzed hydrolysis of dimethyl- and 

diethyl-carbonate was done by Faatz and co-workers [69,70]. These researchers obtained spherical 

particles of ACC with monodispersed distribution of diameters under quiescent conditions. 

Besides, they observed that the by-products of the decomposition of these dialkyl-carbonates 

(methanol or ethanol) do not interfere with nucleation and growth of calcium carbonate, at least 

within the concentration range in which they appear. In another study, Faatz et al. [71] evaluated 

the physical properties of amorphous CaCO3 colloidal spheres of monomodal size distribution. 

Guillemet and co-workers [72] used the slow release of CO2 by alkaline hydrolysis of DMC in 

water to prepare particles of ACC from CaCl2. These ACC particles were stabilized against 

coalescence in the presence of very small amounts of double hydrophilic block copolymers 

composed of poly(ethylene oxide) and poly(acrylic acid) blocks. More recently, Gorna et al. [73] 

investigated the precipitation of ACC from strong alkaline solution of CaCl2 at room temperature 

using the hydrolysis of dimethyl carbonate as the internal source of CO2. These researchers 

optimized the DMC method in order to obtain multigram amounts of calcium carbonate per batch. 
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3 COMPOSITE MATERIALS 
 

 

In general, composites are composed of two or more constituent materials with considerably 

different chemical or physical properties [74]. Composites are materials with inhomogeneities on 

length scales larger than the atomic scale but are essentially homogeneous at macroscopic length 

scales or at least at some intermediate length scales [75]. 

Composite materials exist in both Nature and among engineered materials [75]. As far as man-

made materials are concerned, the use of composite materials started since ages. According to the 

biblical Book of Exodus, Moses’s mother used a kind of fibre-reinforced composite made from 

rushes, pitch and slime to build the ark [76]. Another example comes from the opium war (more 

than 1000 years ago) where the Chinese people used a kind of mineral particle-reinforced 

composite made from gluten rice, sugar, calcium carbonate and sand to build castles to defend 

themselves against invaders [76]. 

 

 

 

3.1    Overview 
 

Composites comprise a very broad and important class of engineering materials with a world 

annual production of over 10 million tonnes [77]. These materials have attracted the interest of a 

number of researchers since they offer unpaired mechanical, optical, electrical and thermal 

properties which allow them to be applied in several areas such as mechanics, optics, electronics, 

ionics, energy, environment, biology and medicine [74,77]. Numerous composite materials with 

great potential for high added-value applications have been developed over the past few decades. 

The paramount reason of this development is the enormous versatility of the synthetic processes 

and the almost endless choices of feasible combinations that can be employed to obtain composite 

structures, as emphasized by the numerous reviews on the topic [3-6,76,78-80]. For example, 

Mohanty, Misra and Hinrichsen [4] published an interesting review article on the current 

development of biocomposites with a broad outline of discussion on structural parts of some 

important biofibres (jute, ramie, kenaf, etc) and the current development of different biodegradable 

polymers (cellulose acetate, poly(lactic acid), starch, etc). An interesting review article on recent 

advances in nanocomposites research was published by Thostenson, Li and Chou [78]. These 

researchers emphasized the knowledge in processing, characterization, and analysis/modelling of 
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nanocomposites as well as promising techniques for processing precursors for macroscopic 

nanocomposites. In another review article, Tjong [79] provided a comprehensive review on the 

effects of nanoclays, nanoceramic particles and carbon nanotubes on the structure and mechanical 

properties of semicrystalline and glassy thermoplastics, elastomers and epoxy resins. An interesting 

report on polymer blends and composites from renewable resources have been presented by Yu, 

Dean and Li [76]. Recently, Ray and Easteal [80] provided a brief overview on the advances in 

polymer-clay nanocomposites (PCN) with focus on nanocomposite structures, synthesis, properties, 

applications, and future markets. 

 

 

 

3.2    Cellulose-based Composites 
 

Cellulose and its derivatives are promising raw materials for the synthesis of composites, 

namely because of their environmentally friendly nature. Therefore, the study of these composite 

materials became an expanding field of investigation, as highlighted by the significant amount of 

research articles on the topic [3-12]. Researchers have developed composites in which cellulose 

and cellulose derivatives were used either as filler [3-6] or matrix [7-12].  

An important review article concerning natural (cotton, jute, sisal, etc) and man-made (rayon) 

cellulose fibre reinforced plastics has been presented by Bledzki and Gassan [5]. In another paper, 

Eichhorn and co-workers [6] summarized a number of international research projects being 

undertaken to further understand the mechanical properties of natural cellulose fibres and 

composite materials. Recently, a review article about biofibres and biocomposites has been 

published by John and Thomas [3]. These researchers reviewed several aspects of cellulosic fibres 

and biocomposites, new developments dealing with cellulose based nanocomposites, as well as 

some examples of the applications of cellulosic fibre reinforced polymeric composites. 

Barata et al. [12] studied the growth of BiVO4 particles in cellulosic fibres by in situ reaction. 

According to their research the BiVO4 particles grow from nucleation sites located in cell wall 

structure and inside the lumen of fibres. Marques and co-workers [9] prepared TiO2/cellulose 

nanocomposites through the titanyl sulphate hydrolysis in acidic medium in the presence of 

cellulose fibres. They reported that cellulose fibres promote the nucleation and growth of TiO2 

particles. In another study, Pinto and co-workers [8] reported novel SiO2/cellulose nanocomposites 

obtained by in situ synthesis and via polyelectrolytes assembly. The former method yielded 

homogeneously coated SiO2/cellulose nanocomposites, while the latter method originated 

nanocomposites containing discrete and morphological well-defined SiO2 nanoparticles at the 
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cellulosic fibres surfaces. Besides wood cellulose fibres, bacterial cellulose (BC) hydro-gel has also 

been used as matrix. For instance, Maeda et al. [81] developed BC/silica composites by the sol-gel 

method. The BC hydro-gel was immersed in an aqueous solution of silanol derived from 

tetraethoxysilane, which is converted to silica in situ in the BC hydro-gel matrix. These researchers 

found that deposited silica between BC micro-fibrils reinforced the composites. In an interesting 

research Pinto et al. [10] investigated two synthetic routes for nanocomposites containing gold 

nanoparticles attached onto wood or bacterial cellulosic fibres. Their research showed that wood or 

bacterial cellulose fibres are both good templates for nucleation and growth of inorganic particles 

of gold. Besides, the good optical features of these Au/cellulosic fibres nanocomposites make them 

suitable for security paper applications. 

Additionally to the use of cellulose either as matrix or filler in composite materials, both filler 

and matrix can be made of cellulose or its derivatives [82-85]. For instance, Matsumura and 

Glasser [82,83] prepared a cellulosic composite by hot compaction in which the thermoplastic 

cellulose hexanoate phase formed a matrix reinforced with the core cellulose I. Nishino, Matsuda 

and Hirao [84] were the first to report the development of an all-cellulose composite in which the 

incorporated fibres and the matrix were both made from cellulose. Their composite was prepared 

by impregnating a cellulose solution into uniaxially aligned cellulose fibres. Despite the excellent 

mechanical and thermal properties of this all-cellulose composite, it was difficult to impregnate the 

cellulose solution into fibres. In a later study, Nishino and Arimoto [85] prepared all-cellulose 

composite from conventional filter paper by converting a selective dissolved fibre surface into a 

matrix. The tensile strength of these composites was comparable or even higher than those of 

conventional glass-fibre-mat-reinforced composites. 

 

 

 

3.3    Cellulose/CaCO3 Composites 
 

Recently, several authors [8-12] have reported that cellulosic fibres can be efficient hydrophilic 

substrates in the nucleation and growth of inorganic particles in aqueous medium. Bearing this in 

mind together with the fact that paper can be considered to be a composite obtained by blending 

cellulose fibres, mineral additive particles (CaCO3, kaolin and TiO2) and other organic additives, 

cellulose/calcium carbonate composites can be regarded as potentially interesting materials with 

attractive properties. However, the information concerning composite materials obtained by the 

chemical or physico-chemical assembly of cellulose and calcium carbonate is very limited. One of 

the first studies dealing with cellulose/CaCO3 composites was carried out by Fimbel and Siffert 
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[14] in which they investigated the interaction of calcite with cellulose fibres in aqueous medium. 

These researchers observed that the surface charge of cellulose is the key parameter of adsorption, 

and that CaCO3 particles are efficiently adsorbed. Besides, cellulose surface is saturated at 

concentrations of 3 g of CaCO3 per 100 cm3 of suspension, and the quantity of CaCO3 retained by 

the fibres is 1.4 g/g of dry cellulose. In another interesting investigation, Dalas et al. [15] showed 

that the use of cellulose powder as a substrate favours the overgrowth of calcite crystals from stable 

supersaturated solutions at pH 8.50 and at 25oC. In addition, the selective deposition of calcite on 

cellulose is probably done by the formation of active sites at ionisable functional groups (-OH). 

Another example is the research work done by Subramanian and co-workers [16] that produced 

composites of PCC (precipitated calcium carbonate) and pulp by co-precipitating PCC in pulp 

suspension. The main conclusion of their study is that the co-precipitation technique increases the 

internal bond strength of fine paper, when compared to the conventional blending of cellulose 

fibres and CaCO3 particles. 

The knowledge that carboxyl groups in cellulose pulp fibres are the main retention sites of 

several wet-end additives in pulp suspensions [17] together with the fact that carboxylated 

polymers stabilize the formation of calcite polymorphs [18], led us also to the investigation of 

carboxymethylcellulose/CaCO3 composites. So far, the available information on the topic of 

CMC/CaCO3 composites is very scarce. As an example, Backfolk et al. [86] investigated the 

aspects on the interaction between sodium carboxymethylcellulose (NaCMC) and CaCO3 and the 

relationship to specific site adsorption. According to this study, the mechanisms of interaction of 

NaCMC in CaCO3 suspensions are mainly an association between NaCMC and Lewis acid sites on 

the CaCO3 surface and the formation of NaCMC-Ca2+ complexes in the bulk solution. Furthermore, 

the adsorption of NaCMC onto CaCO3 is essentially entropy-driven by an endothermic reaction. 

Theoretically, every innovative material needs at least one potential application to be 

considered a meaningful material. Thus, cellulose/CaCO3 nanocomposites might be considered a 

potential reinforcing element in polymer matrix composites. Composite materials with polymeric 

matrices have attracted attention in recent years due to their interesting properties. Therefore, much 

work has focused on developing composites using various polymers like, for instance, polyethylene 

(PE) [87-101]. 

Polyethylene (PE) is a linear non-biodegradable thermoplastic polymer that exhibits good 

chemical stability, biocompatibility, and wear resistance. It is extensively used in prosthesis 

components for hip and knee total joint replacement. It is a well known material because it is one 

of the most widely used plastic for bottles and containers due to its low cost, high water barrier and 

ease of processing.  
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The low-cost versatility of polyethylene makes it an extensively used polymer. Therefore, a 

large production of waste PE materials are being produced which, in turn, are causing serious 

environmental problems since PE takes a long time to decompose. In order to reduce this problem 

and also the production costs, polyethylene is often filled with a variety of materials that make it 

suitable for various applications. For instance, starch [87,88], wood-fibre [89,90], graphite [91], 

PVdF-HFP (poly(vinylidene fluoride hexafluopropylene)) [92], sawdust [93], silicate [94], and 

hydroxyapatite [95] have been used to produce PE-based composites. In addition, calcium 

carbonate [73,96,97] and cellulose [98-100] are also common fillers for PE-based composites. To 

our knowledge practically no information is available on composite materials of polyethylene 

reinforced with cellulose/CaCO3 nanocomposites. 

One of the main concerns of blending nonpolar polymers, like PE, with polar materials, such as 

natural fibres, is the formation of aggregates during processing which originates weak fibre/matrix 

interactions. In order to improve interfacial adhesion, compatibilizers have frequently been used. 

Polyethylene-graft-maleic anhydride (Figure 14), PE-g-MA, is a very important compatibilizing 

agent in the enhancement of compatibility between nonpolar PE and polar materials.  

 

O
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Figure 14: Polyethylene-graft-maleic anhydride. 
 

 

 

Several studies have been done aiming to evaluate the compatibilizing effect of PE-g-MA on 

cellulose [99,100] and CaCO3 [101]. Palaniyandi and Simonsen [99] investigated the physico-

mechanical properties of cellulose-filled HDPE (high density polyethylene) in the presence of 

compatibilizers, PE-g-MA and AKD/PMDI (alkyl ketene dimmer/polymethylene diphenyl 

diisocyanate). They observed that the presence of both compatibilizers facilitated PE crystallization 

resulting in an increase in the matrix crystallinity. Fendler and co-workers [100] have discussed the 

interrelation between composition, morphology, thermal history, mechanical and barrier properties 

to oxygen and limonene of composites of HDPE/PE-g-MA/cellulose fibres of significant interest 

in, among others, food packaging applications. Wang and co-workers [101] reported that PE-g-MA 
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shows good compatibilizing effects on the high density PE and calcium carbonate system 

(HDPE/CaCO3) which improved the mechanical properties of the composite materials. 
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1 REAGENTS AND GENERAL PROCEDURES 
 

 

1.1  Reagents 
 

Acetic acid glacial (CH3COOH) was purchased from Panreac (Product No.131008). 

Acetone (CH3COCH3) pro analysis was supplied by Fisher Scientific (Product No. A/0600/17). 

Calcium chloride anhydrous (CaCl2, 93%) was acquired from Sigma (Product No. C-1016). 

Dimethylcarbonate [(CH3O)2CO, 99%] was purchased from Aldrich (Product No. D15,292-7). 

Ethanol Absolute (C2H6O) was supplied by Riedel-de Häen (Product No. 32221). 

Isopropanol (C3H8O, ≥ 99%) was acquired from Fluka (Product No.59310). 

Low density polyethylene, LDPE, [H(CH2CH2)nH ] in the form of pellets with a melting index 

of 25 g/10 min (190ºC/2.16 kg), a melting point of 116ºC and a density of 0.925 g/mL at 25ºC was 

purchased from Aldrich (Product No. 428043). 

Monochloroacetic acid (C2H3ClO2, ≥ 99%) was supplied by Fluka (Product No.24510). 

Polyethylene-graft-maleic anhydride (PE-g-MA) in the powder form with ~3wt.% maleic 

anhydride and 1700-4500 cP (140ºC)(lit.) of viscosity was purchased from Aldrich (Product No. 

456632). 

Sodium hydroxide (NaOH, 97%) in the form of pellets was acquired from Acros Organics 

(Product No.424335000). 
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1.2  Cellulose Fibres 
 

The wood cellulose fibres used in this study were Eucalyptus globulus ECF bleached kraft pulp 

supplied by a Portuguese pulp mill. All the fibres were disintegrated and washed with distilled 

water before use. 

 

 

 

1.3  Carboxymethylcellulose Fibres 
 

Carboxymethylcellulose (CMC) fibres were prepared by the etherification reaction of cellulose 

with monochloroacetic acid. Air-dried cellulose fibres (3g) were suspended in isopropanol (80 ml) 

and then a sodium hydroxide aqueous solution (8 ml, 30% w/w) was added dropwise during 30 

minute at room temperature. The mixture was then stirred during 1 hour. After this, 

monochloroacetic acid (4g or 1g) was added in small portions during 30 minutes. The mixture was 

placed on a water bath at 25º or 45ºC for 10 min or at 55ºC for 3 hours with constant stirring. Then 

it was filtered, suspended in ethanol (200 ml, 80% v/v) and neutralized with acetic acid (ca. 30 ml). 

The final product was washed three times with ethanol (500 ml, 80% v/v), twice with absolute 

ethanol, and dried at room temperature. 

The carboxymethylcelulose samples are listed in Table 1. 

 

Table 1: Experimental plan describing CMC samples 
Sample Description 
CMC I 3g cellulose / 1g MCAA / 10 min at 25ºC 
CMC II 3g cellulose / 1g MCAA / 10 min at 45ºC 
CMC III 3g cellulose / 4g MCAA / 3 hours at 55ºC 
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2 SYNTHESIS OF CELLULOSE/CaCO3 NANOCOMPOSITES 
 

 

The synthesis of CaCO3 particles was performed based on the method reported by Faatz et al. 

[69], in which the precipitation of CaCO3 takes place as a result of the release of carbon dioxide by 

the hydrolysis of dimethylcarbonate. In this work this synthesis was adapted to the formation of 

CaCO3 in the presence of cellulosic fibres. 

The preparation of the unmodified and modified cellulose/CaCO3 nanocomposites started with 

the addition of 80 mg of cellulose fibres to a solution of 80 ml of distilled water, 111 mg of calcium 

chloride and 420 μl of dimethylcarbonate. This mixture was vigorously stirred during 12 hours at 

room temperature. The precipitation started after adding 20 ml of sodium hydroxide solution (0.5 

M) to the reaction medium. A few minutes later the nanocomposite was removed from the reaction 

mixture by filtration, washed with acetone and dried at 40°C. 

The effect of several reaction parameters on the characteristics of the nanocomposites was 

investigated. These parameters include reaction time (2.5, 3.5, 5.0 and 7.5 min) and temperature 

(25 and 70°C), fibre quantity (0.1 and 1%), and extent of cellulose modification. The experimental 

conditions used to prepare the nanocomposites are listed in Table 2. In order to produce enough 

nanocomposite for the preparation of PE-based composites and for further characterization, the 

synthesis process was scaled-up to 10g of cellulose (nanocomposites N and O).  

 

Table 2: Experimental conditions used for the preparation of cellulose/CaCO3 nanocomposites 
Nano- 

Composite Substrate Time  
(min) 

Temperature  
(oC) 

Consistency 
(%)a 

Carboxyl Content  
(mmol/g) 

A Cellulose 2.5 25 0.1 0.10 
B Cellulose 3.5 25 0.1 0.10 
C Cellulose 5.0 25 0.1 0.10 
D Cellulose 7.5 25 0.1 0.10 
E Cellulose 3.5 70 0.1 0.10 
F Cellulose 3.5 25 1.0 0.10 
G Cellulose 5.0 25 1.0 0.10 
H CMC I 3.5 25 0.1 0.49 
I CMC I 5.0 25 0.1 0.49 
J CMC II 2.5 25 0.1 0.83 
K CMC II 3.5 25 0.1 0.83 
L CMC II 5.0 25 0.1 0.83 
M CMC II 7.5 25 0.1 0.83 
Nb Cellulose 3.5 25 1.0 0.10 
Ob CMC I 3.5 25 1.0 0.49 

a The consistency of the reacting suspension is the ratio between the mass of fibres and the mass of 
suspension; b Nanocomposites prepared under scale-up conditions. 
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3 PREPARATION OF POLYETHYLENE-CELLULOSE/CaCO3 

COMPOSITES 
 

 

Polyethylene-cellulose/CaCO3 composites were made by melt-blending, using a mixer 

Brabender W30 EHT – Plastograph EC (Figure 15) at 170ºC with a screw speed of 100 rpm during 

10 min. Different mixtures with a filler content of 15 and 30%, and a compatibilizer content of 0 

and 2% were prepared (Table 5). 

Test specimens were prepared on Haake MiniJet II Injector – Thermo Scientific (Figure 16) 

with cylinder and mould temperatures of 170 and 90°C, respectively. The injection pressure was 

400 bar applied during 10 seconds and the post-pressure was 200 bar applied during 4 seconds. 

 

  
Figure 15: Mixer Brabender W30 EHT – 

Plastograph EC. 
Figure 16: Haake MiniJet II Injector – Thermo 

Scientific. 
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4 CHARACTERIZATION METHODS 
 

 

The cellulose and carboxymethylcellulose fibres were analysed for carboxyl content and 

characterized by infrared spectroscopy (IR), x-ray diffraction (XRD), thermogravimetry (TGA) and 

scanning electron microscopy (SEM). In turn, the nanocomposites of cellulosic fibres and calcium 

carbonate were characterized by inductively coupled plasma-atomic emission spectrometry (ICP-

AES), infrared spectroscopy (IR), x-ray diffraction (XRD), scanning electron microscopy (SEM), 

thermogravimetry (TGA), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray 

photoelectron spectroscopy (XPS). Finally, the characterization of PE-based composites was 

performed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and 

dynamic mechanical analysis (DMA). 

 

 

 

4.1    Carboxyl Content 
 

The content of carboxyl groups of the unmodified and modified celluloses were determined by 

the TAPPI Test Method T 237 om-93 [102]. The fibres were extracted with a dilute solution of 

hydrochloric acid (0.1M), washed with distilled water, reacted with sodium bicarbonate-sodium 

chloride solution (0.01M NaHCO3 and 0.1M NaCl), and filtered. The filtrate was then titrated with 

a dilute solution of hydrochloric acid (0.01M) to methyl red end point. 

 

 

 

4.2    Infrared Spectroscopy 
 

The FTIR-ATR spectra were taken with a Brucker IFS 55 FTIR Spectrometer equipped with a 

single horizontal Golden Gate ATR cell. Their resolution was 8cm-1 after 128 scans. 
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4.3    Inductively Coupled Plasma-Atomic Emission Spectrometry 
 

The concentration of calcium in the nanocomposites was analyzed by Inductively Coupled 

Plasma-Atomic Emission Spectrometry (ICP-AES) on a Jobin Yvon, JY 70 plus. 

 

 

 

4.4    X-Ray Diffraction 
 

The X-Ray diffraction (XRD) measurements were performed on a Philips X’Pert MPD 

diffractometer using Cu Kα radiation. All samples were gently pressed into pellets using a 

laboratory press in order to be analyzed. 

 

 

 

4.5    Scanning Electron Microscopy 
 

Scanning Electron Microscopy (SEM) micrographs were obtained using a low voltage 

microscope (HITACHI SU-70) operated at 2.0 and 4.0 kV, or using a high voltage microscope 

(HITACHI S4100) operated at 25.0 kV. Samples were previously coated with carbon using an 

EMITECH K950 coating system. 

 

 

 

4.6    Thermogravimetric Analysis 
 

Thermal decomposition temperatures were determined by thermogravimetric analyses (TGA) 

on a Shimadzu TGA-50 analyser equipped with a platinum cell. The thermograms were run under 

nitrogen atmosphere at constant heating rate of 10°C/min from the temperature of 20-800°C. 
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4.7    Differential Scanning Calorimetry 
 

The differential scanning calorimetry (DSC) analysis was carried out on a Shimadzu DSC-50. 

Samples of 5-6 mg were heated from 25ºC to 200°C at 10°C/min in aluminium DSC capsules. The 

enthalpy of melting (related with the weight of PE in the sample) was used to determine sample 

crystallinity using the following relation: 

 

100
0

×
Δ
Δ

=
H
HX m

C          (Equation 1) 

 

where Xc is the crystalline fraction, ΔHm is the enthalpy of melting measured by DSC and ΔH0 is 

the enthalpy of melting for 100% crystalline polyethylene (taken as ΔH0 = 293 J/g [103,104]). 

 

 

 

4.8    Dynamic Mechanical Analysis 
 

Dynamic mechanical analysis (DMA) experiments were carried out in a Tritec 2000 Dynamic 

Mechanical Analyzer – Triton Technology, at a constant frequency of 1 Hz from -70°C to 120°C at 

a heating rate of 4°C/min. The test specimens were prepared on Thermo Haake MiniJet II and cut 

into rectangles of 2 mm length, 4 mm width and 1 thickness, so that they could be analysed.  

 

 

 

4.9    Time-of-Flight Secondary Ion Mass Spectrometry 
 

Secondary ion spectra and images were recorded using a Physical Electronics ToF-SIMS 

TRIFT II spectrometer (Laboratory of Fibre and Cellulose Technology, Åbo Akademi University, 

Turku, Finland) using a primary ion beam of 69Ga+ liquid metal ion source (LIMS) with 15kV 

applied voltage, 600 pA aperture current and a bunched pulsed width of 20 ns was used in positive 

mode. A raster size of 200 μm x 200 μm and at least three different spots were analyzed on each 

sample. Surface distribution of calcium ions was obtained with the best spatial resolution using the 

ion gun operating at 25 kV, 600 pA of aperture current and an unbunched pulse width of 20 ns. 

Spectra and images were acquired for 8 minutes with a fluency of ~1012 ions/cm2, ensuring static 
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conditions. Charge compensation was performed using an electron flood gun pulsed out of phase 

with the ion gun. 

 

 

 

4.10 X-Ray Photoelectron Spectroscopy 
 

X-Ray photoelectron spectra were obtained with a Physical Electronics PHI Quantum 2000 

ESCA instrument (Laboratory of Fibre and Cellulose Technology, Åbo Akademi University, 

Turku, Finland) equipped with a monochromatic AlK α X-ray source and operated at 25 W, with a 

combination of electron flood gun and ion bombarding for charge compensation. The photoelectron 

collection was at 45º in relation to the sample surface and the spot size was 500 μm × 400 μm. At 

least three different spots were analyzed on each sample. The pass energy was 187.85 and 23.50 eV 

for low and high resolution, respectively. Curve fitting of C1s peak was performed using a Shirley 

background and the following binding energies, relative to C1 position (C – C, C – H), were 

employed for the respective groups: 1.7 ± 0.2 eV for C2 (C – O), 3.1 ± 0.3 eV for C3 (O – C – O or 

C = O), 4.6 ± 0.3 eV for C4 (O = C – O), 5.6 ± 0.3 eV for C5 (CO3
2-), 8.6 ± 0.3 eV for C6 and 10.6 

± 0.3 eV for C7. 
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1 CHARACTERIZATION OF THE CELLULOSIC SUBSTRATES 
 

 

The cellulose substrates used in this study were mainly of two kinds: hardwood bleached kraft 

pulp and carboxymethylated fibres. They were analysed for carboxyl content and characterized by 

IR, XRD, TGA and SEM. 

 

 

1.1  Carboxyl Content 
 

Generally, the cellulosic fibres have quite low carboxyl groups (introduced mainly during 

cellulose processing, namely bleaching processing) which mean that they have low chelating 

capability. In order to overcome this drawback, cellulose fibres are usually submitted to chemical 

modification. The functionalization of cellulose by introducing carboxyl groups is very important 

since they are potential nucleation centres that increase cellulose accessibility and surface 

reactivity. The carboxymethylation of cellulose in heterogeneous medium is an effective way to 

introduce carboxyl groups on the surface of cellulose fibres. 

Figure 17 shows the carboxyl contents of cellulose and the different CMC fibres prepared. The 

obtained carboxyl content for cellulose (0.10 mmol/g) is in the typical range for bleached kraft pulp 

[105,106], while the carboxyl content of the three CMC samples reached a maximum value of 1.83 

mmol/g when 4g of MCAA was used and the reaction was performed at 55ºC for 3 hours. Any 

other reaction conditions (Table 1) gave products of lower carboxyl contents. It is worth to mention 

that higher contents of carboxyl groups originated CMC fibres with higher affinity towards water. 
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Figure 17: Carboxyl content of cellulose and carboxymethylcellulose fibres (See Table 1 for CMC 

identification). 
 

 

 

1.2  Infrared spectroscopy 
 

Infrared spectroscopy has been used for a long time as a tool to characterize cellulose. A 

typical example of IR spectrum of cellulose with the main absorption bands of this natural polymer 

is illustrated in Figure 18. The most important absorption bands occur at 3200 –3400 cm-1 (OH 

stretching), 2900 cm-1 (CH stretching), 1426– 1430 cm-1 (CH2 bending), 1350– 1355 cm-1 (CH 

bending), 1310 cm-1 (OH bending), 1025 cm-1 (CO stretching) and 900–910 cm-1 (CH bending) [2]. 
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Figure 18: FTIR-ATR spectrum of cellulose. 



PART III – RESULTS AND DISCUSSION 
 
 

35 

The IR spectra of the CMC samples showed the typical absorption bands of the cellulose 

backbone, as well as the characteristic absorption bands of carboxyl groups [2]: anti-symmetrical 

vibration of ionized carboxyl groups, νas(COO-) at 1590–1640 cm-1 and vibration of carboxyl 

groups, ν(COOH) at 1705–1735 cm-1. The emergence of these bands provided an unambiguous 

evidence of the occurrence of the carboxymethylation of cellulose. The infrared spectra of CMC I, 

CMC II and CMC III are shown in Figure 19 .  
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Figure 19: FTIR-ATR spectra of cellulose fibres before and after carboxymethylation (See Table 1 for 

CMC identification). 
 

 

 

The comparison of these FTIR-ATR spectra allowed to confirm that in the case of CMC I and 

CMC II only a limited fraction of the total hydroxyl groups had reacted, because no substantial 
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changes in the intensity of the –OH stretching absorption band (3200 –3400 cm-1) were observed. 

In the case of CMC III, the lower intensity of –OH stretching absorption band together with higher 

intensity of the characteristic absorption bands of carboxyl groups showed that the amount of 

carboxyl groups introduced in the fibres and the fraction of the total hydroxyl groups that react 

were very high. These results were in agreement with the carboxyl content determined by the back 

titration method (Figure 17) where CMC III had the highest carboxyl content and CMC I the lowest 

one. 

 

 

1.3  X-Ray Diffraction 
 

X-Ray diffraction is a powerful tool extensively used for the investigation of the cristallinity of 

cellulose fibres and their derivatives. The cellulose fibres of Eucalyptus globulus ECF bleached 

kraft pulp showed the typical XRD pattern of cellulose I [26]. The main diffraction peaks occur at 

around 2θ = 14.9º, 16.3º, 22.5º and 34.6º which are usually assigned to the diffraction planes 101, 

101, 002, and 040, respectively [26]. The diffractograms of CMC fibres correspond essentially to 

the XRD pattern of amorphous cellulose [26]. This means that the carboxymethylation reaction 

occurred on both amorphous and crystalline regions of the cellulose chains leading to the partial 

destruction of the crystalline supramolecular structure of cellulose. As an example, Figure 20 

illustrates the X-ray diffractograms of cellulose and CMC I. 
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Figure 20: X-ray diffractograms of cellulose and CMC I fibres (See Table 1 for CMC identification). 
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1.4  Thermal degradation 
 

The thermal decomposition behaviour of a sample can be investigated by thermal analysis 

techniques like thermogravimetry analysis (TGA). This technique is extensively employed to 

measure weight or mass changes as a function of temperature. 

Typical TGA curves for cellulose fibres as well as carboxymethylcellulose fibres are presented 

in Figure 21. The thermal degradation profile of cellulose fibres followed a single-step reaction 

with a maximum decomposition temperature around 376oC. In general, carboxymethylated 

cellulose fibres present a lower thermal stability than the initial fibres since they start to decompose 

at temperatures considerably lower. This behaviour is related with the decrease in crystallinity 

associated with the destruction of the supramolecular structure of cellulose by the 

carboxymethylation reaction. 
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Figure 21: Thermograms of unmodified and modified cellulose fibres (See Table 1 for CMC 
identification). 
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The thermal decomposition temperatures of modified fibres ranged from 317oC for CMC III 

(carboxyl content of 1.83 mmol/g) to 325oC for CMC I (carboxyl content of 0.49 mmol/g). This 

means that the thermal stability of carboxymethylcellulose decreased with the increasing carboxyl 

content (Figure 21). The thermograms also showed that CMC III had a high inorganic residue 

(~27%) which was a consequence of the higher content of sodium on carboxylate groups, as shown 

in the IR spectra of CMC III (Figure 19). 

 

 

 

1.5  Scanning Electron Microscopy 
 

The morphology of the unmodified and modified cellulose fibres was evaluated by scanning 

electron microscopy (SEM). According to the micrographs, considerable changes in the fibrous 

morphology were observed before and after carboxymethylation. Figure 22 shows typical SEM 

micrographs of cellulose (carboxyl content: 0.10 mmol/g), and CMC II (carboxyl content: 0.83 

mmol/g) fibres. The surface roughness of the CMC fibres is also different when compared to the 

pristine cellulose fibres. A plausible explanation for this phenomenon might be related with the 

formation of a gel-like material during the modification reaction due to the affinity of carboxyl 

groups toward water molecules. At the end of the carboxymethylation the gel-like material is 

washed with ethanol and the fibres regain their fibrous shape although with some dissimilarities. 

 

  
Cellulose CMC II 

Figure 22: SEM micrographs of pristine cellulose fibres and carboxymethylated cellulose fibres  
(See Table 1 for CMC II identification). 
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1.6  Concluding Remarks 
 

Hardwood bleached kraft pulp and carboxymethylated fibres were the two type of cellulose 

substrates used in this study. They were analysed for carboxyl content and characterized by IR, 

XRD, TGA and SEM. 

The main features of cellulose fibres of hardwood bleached kraft pulp are their carboxyl 

content of 0.10 mmol/g and, as expected, the XRD pattern of cellulose I. In turn, the main 

characteristics of carboxymethylated fibres are a carboxyl content between 0.49-1.83 mmol/g, the 

XRD pattern of amorphous cellulose, different surface roughness and a thermal stability lower than 

that of cellulose. 
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2 SYNTHESIS AND CHARACTERIZATION OF CELLULOSE/ 

CaCO3 NANOCOMPOSITES 
 

 

The deposition of calcium carbonate on the surface of the cellulose fibres was done using an 

environmentally friendly route based on the CaCl2 – H2O – (CH3O)2CO system. After the addition 

of calcium chloride and dimethylcarbonate to an aqueous suspension of fibres, NaOH was added to 

the reacting suspension and the precipitation of CaCO3 took place as a result of the release of 

carbon dioxide by the base-catalyzed hydrolysis of DMC: 

 

( ) (aq)
-2

3(l)3(aq)
-

(l) 23 CO  OH2CH 2OH  COOCH +⎯→⎯+     (Reaction 4) 

  (s) 3(aq)
-2

3 (aq)
2 CaCO  COCa ⎯→⎯++       (Reaction 5) 

 

 

In order to optimize the experimental conditions of the precipitation reaction of calcium 

carbonate at the surface of the fibres, a series of cellulose/CaCO3 nanocomposites were prepared 

under distinct experimental conditions as summarized in Table 2. The effect of several reaction 

parameters, such as reaction time, temperature, fibre quantity, and the extent of the cellulose 

modification, on the final characteristics of the nanocomposites was investigated by ICP-AES, IR, 

XRD, SEM and TGA. It is worth mentioning that the influence of the cellulose modification on the 

deposition of CaCO3 on the surface of the fibres could not be evaluated for CMC III (carboxyl 

content: 1.83 mmol/g). In fact, it was not possible to remove the nanocomposite from the reaction 

mixture by filtration. This occurrence might be due to the affinity of carboxyl groups toward water 

molecules which led to the formation of a gel-like material. The high viscosity of 

carboxymethylcellulose (CMC III) due to a high quantity of carboxyl groups did not allowed the 

filtration since it blocked the pores of all kind of filter paper grade. 

Subsequent to the optimization of the experimental conditions, a large scale production of 

nanocomposite was carried out in order to prepare larger amounts of cellulose/CaCO3 

nanocomposites for the preparation of PE-cellulose/CaCO3 composites. The nanocomposites 

prepared under scale-up conditions (nanocomposite N and O, Table 2) were used for ToF-SIMS 

and XPS studies. 
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2.1  Effect of reaction conditions 
 

 

2.1.1 Inductively Coupled Plasma-Atomic Emission Spectrometry 

 

The weight percentages of calcium deposited on the cellulose fibres were determined by 

inductively coupled plasma-atomic emission spectrometry (ICP-AES) and are shown in Figure 23. 

The ICP results gave a first glance over the effect of the studied reaction parameters on the final 

characteristics of the nanocomposites.  
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Figure 23: Effect of some reaction parameters on the percentage of calcium deposited on the fibres 

(See Table 2 for nanocomposite identification). 
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According to the results presented in Figure 23 the quantity of Ca2+ present in the cellulose 

fibres increased with increasing reaction times (Figure 23i, comparison between nanocomposites 

A, B, C and D). Besides, higher temperatures originated higher percentages of CaCO3 (Figure 23ii, 

comparison between nanocomposites B and E). Additionally, higher consistencies of the reacting 

suspensions resulted as expected in much lower percentages of deposited calcium carbonate 

(Figure 23iii, comparison between nanocomposites B and F). Finally, against our expectations, the 

amount of CaCO3 particles precipitated on the presence of cellulose is higher than on the presence 

of carboxymethylcellulose (Figure 23iv, comparison between B, H and K). As later will be shown 

by the subsequent analysis, this situation can be explained by the fact that CMC fibres promote the 

control growth of CaCO3 particles and avoid their precipitation on the bulk of the solution. 

Ultimately, the percentage of Ca is higher for CMC II (carboxyl content = 0.83 mmol/g) than for 

CMC I (carboxyl content = 0.49 mmol/g). This indicates that higher carboxyl contents promote the 

precipitation of calcium carbonate particles, as already reported by other researchers [18]. 

 

 

 

2.1.2 Infrared Spectroscopy 

 

The study of the IR spectra of the unmodified and modified cellulose/CaCO3 nanocomposites 

showed that all the nanocomposites preserved the typical absorption bands of the cellulose 

backbone (Figure 18). Moreover, the IR spectra provided confirmation of the precipitation of 

calcium carbonate in the presence of cellulose fibres. This is evident by the presence of the 

absorption bands of CaCO3: strong intensity band at 1420 cm-1 and medium intensity band at 876 

cm-1, which are characteristic of calcite the most stable polymorph of CaCO3 [107]. As an example, 

Figure 24 presents the IR spectra of composites B, D, E, F, H and K. 

The IR results were all in agreement with the ICP-AES results, except in the case of 

nanocomposite E. As shown in Figure 24, the IR results for nanocomposite E ruled out the 

presence of calcium carbonate since there was no absorption bands assigned to this inorganic 

compound. Nevertheless, the high percentage of calcium ions present in nanocomposite E (Figure 

23) is attributable to calcium hydroxide, as will be shown by the XRD data (Part III, Section 2.1.3). 
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Figure 24: FTIR-ATR spectra of nanocomposites B, D, E, F, H and K (See Table 2 for nanocomposites 

identification). 
 

 

 

2.1.3 X-Ray Diffraction 

 

The nanocomposites of cellulose/CaCO3 were characterized by XRD to evaluate the effect of 

the type and quantity of reinforcement on the cristallinity of cellulose fibres and polymorphism of 

calcium carbonate. The characteristic peaks of CaCO3 polymorphs are evident at: 

(i) calcite: 2θ = 23.2º, 29.5º, 36.0º, 39.3º, 43.0º, 48.4º [46,66]; 

(ii) aragonite: 2θ = 26.5º, 45.9º, 50.1º [46,108]; 

(iii) vaterite: 2θ = 21.0º, 25.0º, 27.0º, 32.7º [109]. 
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All the nanocomposites preserved the XRD pattern of the corresponding substrate, suggesting 

that the deposition of CaCO3 did not affect the structure of the cellulose or CMC fibres. As an 

example, Figure 25 shows the XRD patterns of nanocomposites B, D, E, F, H and K (See Table 2 

for nanocomposite identification). As it may be seen from the diffractograms, the nanocomposites 

produced at a reaction time of 3.5 min (nanocomposite B) are formed by a mixture of two 

polymorphic phases of calcium carbonate: calcite and vaterite. The nanocomposites produced at a 

reaction time of 7.5 min (nanocomposite D) contain mainly calcite and some traces of vaterite in 

the cellulosic matrix. This clearly points to the transformation of the unstable vaterite into the most 

thermodynamically stable calcite with time. Some works have shown that the crystallization of 

CaCO3 polymorphs is a rather complicated process, composed of the competitive nucleation and 

crystal growth of the polymorphs, and the phase transformation from metastable to stable forms 

[47,49,107].  

The nanocomposites obtained at 70oC (nanocomposite E) exhibited several characteristic 

diffraction peaks of calcium hydroxide at 2θ = 18.0o, 28.7o and 34.1o [66]. The presence of 

Ca(OH)2 also explains the FTIR spectra (Figure 24) of this sample, where the CaCO3 characteristic 

bands were not observed. The non-occurrence of the precipitation of calcium carbonate at 70oC 

might be related with the evaporation of dimethylcarbonate, whose boiling point range is 86-89oC, 

and subsequent no release of CO2 by the base-catalysed hydrolysis of dimethylcarbonate. As a 

result, Ca(OH)2 precipitated by the reaction of calcium chloride with sodium hydroxide: 

 

( ) 2NaCl  OHCa  2NaOH  CaCl 22 +→+       (Reaction 6) 
 

 

The XRD pattern of nanocomposite F shows no distinguished diffraction peaks which might 

mean that the quantity of calcium carbonate deposited onto the substrate was at a level below the 

detection limit of this technique. Nevertheless, this small quantity of CaCO3 is in agreement with 

the ICP-AES and IR data.  

When the carboxyl content of the substrate is raised up to 0.49 mmol/g (nanocomposite H) 

there is also no diffraction peaks characteristic of the polymorphic phases of CaCO3. So, the 

amount of CaCO3 must be below the detection limit of the XRD technique. However, a superior 

carboxyl content (0.83 mmol/g – nanocomposite K) originated a single diffraction peak 

characteristic of calcite 2θ = 29.5o [66]. This indicates that higher contents of carboxyl groups 

promote the precipitation of calcite. 
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Figure 25: X-ray diffractogram of nanocomposites B, D, E, F, H and K (See Table 2 for 

nanocomposites identification). 
 

 

 

In order to draw a conclusion regarding the effect of the in situ synthesis of CaCO3 particles in 

the presence of cellulose fibres, a sample of CaCO3 particles were precipitated by the DMC method 

at 25ºC for 3.5 minutes in the absence of the fibres. The powder XRD diffractogram of the 

inorganic particles is shown in Figure 31. All the diffraction peaks were assigned to calcite, the 

most stable polymorph of calcium carbonate. This suggests that the presence of cellulosic fibres 

during the precipitation of calcium carbonate influenced its polymorphic form, as may be seen by 

comparing the diffractograms of CaCO3 (Figure 26) and nanocomposites B and F (Figure 25). 
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Figure 26: X-ray diffractogram of calcium carbonate. 

 

 

 

2.1.4 Scanning Electron Microscopy 

 

The calcium carbonate deposition into cellulose fibres was monitored by SEM. The 

morphological development of the CaCO3 particles was followed at different reaction times and 

temperatures, consistencies of the reacting suspensions and carboxyl contents of the substrates. All 

the previous parameters influenced the CaCO3 particle size and morphology. The CaCO3 particle 

size ranged between 200 and 700 nm, while the morphologies were spherical for almost every 

nanocomposite. 

As an example, Figure 27 shows SEM micrographs of nanocomposites B, D, E, F, H and K. 

The comparison between nanocomposites B and D showed that increasing the reaction time from 

3.5 to 7.5 minutes substantially increased the amount and size of CaCO3 deposited on the cellulose 

fibres. In addition, the SEM micrograph of nanocomposite B shows that at 25oC, nanosized (ca. 

400 nm) calcium carbonate particles with spheroidal morphology were produced. However, 

temperature obviously influenced the chemical composition of the inorganic particles since at 70oC 

(nanocomposite E), micrometric aggregates of a calcium compound (Ca(OH)2) were obtained. 

When the consistency of the reacting suspensions was increased from 0.1% (nanocomposite B) to 

1.0% (nanocomposite F) the amount and size of CaCO3 deposited on the fibres diminished, 

although the morphology of the particles remained spherical. The chemical modification of the 

cellulosic substrate from cellulose (nanocomposite B) to carboxymethylcellulose (nanocomposites 
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H and K) originated smaller CaCO3 particles (ca. 200 nm). The presence of carboxyl groups at the 

cellulose surface seemed to promote the control growth of CaCO3 on the surface of cellulose fibres.  

 

 
Nanocomposite B 

 
Nanocomposite D 

 
Nanocomposite E 

 
Nanocomposite F 

 
Nanocomposite H 

 
Nanocomposite K 

 
Figure 27: SEM micrographs of nanocomposites B, D, E, F, H and K (See Table 2 for nanocomposites 

identification). 
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It is noteworthy that when the substrate is unmodified cellulose fibres with 0.1% of consistency 

of the reacting suspension, there is a considerable amount of CaCO3 particles that did not adhered 

to the surface of the fibres. That is to say that a higher quantity of CaCO3 in the nanocomposites 

doesn’t mean that the inorganic particles were all attached into the surface of cellulose fibres. This 

is completely evident in the case of nanocomposite D (Figure 27). However, when higher 

consistencies of the reacting suspension (1.0%) were used (nanocomposite F) the precipitation of 

CaCO3 on the bulk of the solution was reduced. Additionally, the use of carboxymethylated 

cellulose fibres as the substrate also avoids the precipitation of calcium carbonate on the bulk of the 

solution since it improves the selectivity of precipitation on fibres. 

Ultimately, it is important to refer that the presence of fibres during the precipitation of calcium 

carbonate particles influenced their morphology and aggregation degree. Figure 28 clearly indicates 

that CaCO3 particles precipitated by the DMC method at 25ºC for 3.5 minutes in the absence of 

cellulosic fibres exhibit irregular nano-sized (200-500 nm) aggregate particles. 

 

  
Figure 28: SEM micrographs of calcium carbonate particles at different magnifications. 

 

 

 

2.1.5 Thermal degradation 

 

Thermal gravimetric analysis was used to check the thermal behaviour of the nanocomposites 

of cellulosic fibres and calcium carbonate. It is important to bear in mind that the thermal 

degradation profile of cellulose fibres followed a single-step reaction with a maximum 

decomposition temperature around 376oC, while CMC fibres presented a lower thermal stability 

than the initial fibres with lower decomposition temperatures. Additionally, the thermal 

degradation profile of calcium carbonate can be roughly divided into three mass loss steps. The 

first two steps in the range of 20-180ºC and with a total mass loss of about 10% might be attributed 
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to the evaporation of the physically and chemically adsorbed water. The third step (600-765ºC), 

where the largest mass loss was observed (33%), could be assigned to the thermal decomposition of 

CaCO3 to calcium oxide and carbon dioxide (CaCO3 (s) → CaO (s) + CO2 (g)). The thermal behaviour 

of this CaCO3 sample prepared at 25ºC for 3.5 minutes in the absence of cellulosic fibres (Figure 

29 and Figure 30) is in good agreement with literature [110,111]. 

On the whole, the deposition of calcium carbonate into the surface of the fibres originated less 

stable materials since they started to decompose at temperatures considerably lower than the 

original fibres. This suggests that the incorporation of inorganic particles into the surface of the 

fibres did not improve the thermal stability of the ensuing materials, at least within the 

experimental conditions in which we worked. A possible explanation for this phenomenon may be 

the fact that the fibres suffered a minor degradation during the in situ deposition of CaCO3 on the 

substrates due to swelling in water. 

As an example, the TGA curves of CaCO3, nanocomposites B, D, E, F and cellulose are shown 

in Figure 29, while the TGA curves of CMC I, CaCO3 and nanocomposites H and K are illustrated 

in Figure 30. It is worth mentioning that when carboxymethylcellulose is used as the substrate the 

thermal behaviour of the corresponding nanocomposites was quite similar to the modified fibres, 

while in the case of cellulose the difference between the thermal decomposition temperature of the 

fibres and the resultant nanocomposites was significant, as may be seen in Figure 29 and Figure 30. 

For instance, the maximum decomposition temperature was around 376ºC for cellulose, 332ºC for 

nanocomposite B and 328ºC for nanocomposite F whereas the maximum decomposition 

temperature was 325ºC for CMC I and 327ºC for nanocomposite H. 
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Figure 29: Thermograms of CaCO3, cellulose and nanocomposites B, D, E and F (See Table 2 for 

nanocomposites identification). 
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Figure 30: Thermograms of CaCO3, CMC I and nanocomposites H and K (See Table 1 and Table 2 for 

CMC and nanocomposites identification, respectively). 
 

 

 

2.1.6 Time-of-flight Secondary Ion Mass Spectrometry 

 

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is an analytical technique used to 

study the detailed surface chemical composition. The ToF-SIMS spectra of the kraft pulp and 

carboxymethylated fibres are shown in Figure 31, while Figure 32 shows the ToF-SIMS spectra of 

nanocomposites N and O (see Table 2 for nanocomposite identification). 

The Eucalyptus globulus ECF bleached kraft pulp fibres (cellulose) and the carboxymethylated 

fibres (CMC I) showed characteristic fragments assigned to cellulose (127 and 145 Da) and 

hemicelluloses, e.g. xylans, (115 and 133 Da) [112]. The absence of the typical peaks of hardwood 

lignin (137, 151, 167, 181 Da) [112,113] pointed out that the pulping and bleaching processes were 

efficient in the removal and/or chemical degradation of lignin. Secondary ion peaks attributable to 

Na, Al and Ca (23, 27 and 40 Da, respectively) were also observed at low mass regions. Moreover, 

in the higher mass regions, several peaks normally assigned to wood extractives (free fatty acid, 

fatty acid salts and sterols) [114] were also identified. 

The ToF-SIMS surface characterization of the nanocomposites N and O clearly confirmed the 

success of the deposition of calcium carbonate on the fibres surface, since the intensity of the Ca 

peak visibly increases (Figure 32). This intensity was higher for nanocomposite O than for 

nanocomposite N which corroborates the ICP-AES and IR data. Obviously the secondary ions 

attributed to cellulose, xylans, other metal ions and extractives were also detected in the ToF-SIMS 

spectra of nanocomposites N and O. 
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Cellulose 

 
 

CMC I 

 
Figure 31: ToF-SIMS spectra (positive mode) of cellulose and CMC I (See Table 1 for CMC 

identification). 
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Nanocomposite N 

 
 

Nanocomposite O 

 
Figure 32: ToF-SIMS spectra (positive mode) of nanocomposites N and O (See Table 2 for 

nanocomposites identification). 
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Additionally, ToF-SIMS imaging was employed to assess the distribution of calcium carbonate 

attached onto the fibres’ surface by monitoring the calcium ions. The images in positive mode of 

total and Ca ion of nanocomposites N (cellulose/CaCO3) and O (CMC I/CaCO3) are shown in 

Figure 33. It was observed that the distribution of calcium carbonate onto the fibres surface is quite 

heterogeneous, particularly for the unmodified fibres where some agglomeration spots can be 

observed. These results also indicate that the presence of carboxyl moieties play an important role 

on the CaCO3 precipitation. 

 

Total Ions Ca2+ 

 
 

 

  
Figure 33: ToF-SIMS imaging of nanocomposites N and O showing the distribution of calcium ions 

attached onto the fibres’ surface (See Table 2 for nanocomposites identification). 
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2.1.7 X-Ray Photoelectron Spectroscopy  

 

X-Ray photoelectron spectroscopy (XPS) can be used as a direct probe of the surface 

composition profile. This surface characterization technique analyses the photoelectrons emitted 

from the core levels in atoms [115]. The chemical composition of cellulose, 

carboxymethylcellulose, and nanocomposites N and O was analysed using low- and high-resolution 

XPS.  

The low-resolution XPS spectra are displayed on Figure 34 and Figure 35 and the elements (C, 

O, Ca) compositions are summarized in Table 3. At low-resolution C1s (~285eV) and O1s 

(~533eV) [116] were dominant elements detected in all samples. The presence of CaCO3 in the 

nanocomposites was evidenced by the emergence of a peak (Ca2p) at a binding energy of around 

350 eV which is characteristic of calcium [117]. Finally, the detection of small amounts of other 

elements like Na and Cl on the surface of nanocomposites was related with their ineffective 

washing during the synthesis procedure. 

 

  

Figure 34: Low resolution XPS spectra of cellulose and CMC I (See Table 1 for CMC identification). 

 

 

 

It is noteworthy that the percentage of calcium present at the surface of nanocomposite N 

(cellulose/CaCO3) is lower than at the surface of nanocomposite O (CMC/CaCO3) – Table 3. This 

corroborates the SEM observations which indicate that carboxymethylated fibres enhance the 

selectivity of precipitation on the surface of the fibre, avoiding the precipitation on the bulk of the 

Cellulose CMC I 
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solution. However, the percentages of calcium obtained by ICP are lower when compared to the 

values obtained by low-resolution XPS. These differences arise from the fact that ICP determines 

the percentage of calcium in the entire sample while XPS determines the percentage of calcium 

only at the surface of the sample. 

 

  
Figure 35: Low resolution XPS spectra of nanocomposites N and O (See Table 2 for nanocomposites 

identification). 
 

 

 

Table 3: Low-resolution XPS results of cellulose, CMC I, and nanocomposites N and O 
Sample* O (%) C (%) O/C Ca (%) Na (%) Cl (%) 
Cellulose 42.9 57.1 0.75 – – – 

Nanocomposite N 42.5 55.1 0.77 2.3 – 0.1 
CMC I 35.2 64.2 0.55 – 0.7 – 

Nanocomposite O 37.9 51.2 0.74 5.1 5.6 0.2 
* See Table 1 and Table 2 to identify the samples. 

 

 

 

Depending on the local environment, atoms of the same element emit electrons from the same 

core level with different binding energies [115]. This feature referred to as chemical shifts might 

result from differences in: molecular environment, oxidation states, location in a crystal lattice, etc 

[115]. Figure 36 and Figure 37 shows the high-resolution XPS survey spectra of the substrates and 

nanocomposites, where it is possible to see the peak deconvolutions of the C1s signals. The peak 

areas are compiled in Table 4. 

Nanocomposite N Nanocomposite O 
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The high-resolution deconvolution of the C1s peak of cellulose resulted in four distinct peaks, 

as shown in Figure 36. These four deconvoluted peaks correspond to the four chemical 

environments of carbon: C1 (C–C, C–H), C2 (C–O), C3 (O–C–O or C=O), and C4 (O=C–O) [115]. 

The C1 peak has a binding energy of 285.0 eV and is used as the reference of binding energy. So, 

the binding energies, relative to C1 position, for the other three chemical environments of carbon 

are: 1.5 eV for C2, 3.0 eV for C3 and 4.0-5.0 eV for C4 [115,116]. 

High-resolution deconvolution of the C1s peak of CMC I (Figure 36) revealed that the 

carboxymethylation reaction (–CH2COOH) of cellulose really occurred since the peak areas of the 

carbons in a hydrocarbon environment (C1) and in a carboxyl moiety (C4) increased, as displayed 

in Table 4. 

 

  
Figure 36: XPS high-resolution spectra of cellulose and CMC I (See Table 1 for CMC identification). 

 

 

 

The presence of CaCO3 in the nanocomposites was confirmed in the high-resolution XPS 

(Figure 37 and Table 4) by the emergence of a peak at around 290 eV due to the carbonate carbon 

atom (CO3
2-) [118,119]. The curve fitting of C1s of nanocomposite N identified C1, C2, C3, C4, 

and three carbon environments with the binding energies of 5.6 ± 0.3 eV for C5, 8.6 ± 0.3 eV for 

C6 and 10.6 ± 0.3 eV for C7 relative to the C1 position. The C5 position was assigned to CO3
2- 

while the C6 and C7 positions might be shake-up or plasmon structures rather than emission lines 

of photoelectron [115,116,120]. The high-resolution deconvolution of nanocomposite O revealed 

C1, C2, C3, C4, and the carbon environment (C5) at around 290 eV assigned to carbonate. 

According to the data in Figure 37 and Table 4, the CaCO3 content was higher in nanocomposite O 

Cellulose CMC I 
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than in nanocomposite N. These results were in agreement with the ICP-AES, IR and ToF-SIMS 

data. 

 

C2
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C7 C6
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Figure 37: XPS high-resolution spectra of nanocomposites N and O (See Table 2 for nanocomposites 
identification). 

 

 

 

Table 4: High-resolution XPS results of cellulose, CMC I, and nanocomposites N and O 
Peak area (%) 

Sample* C1 
(C–C; C–H) 

C2 
(C–O) 

C3 
(O–C–O; C=O) 

C4 
(O–C=O) 

C5 
(CO3

2-) C6 C7 

Cellulose 22.0 61.7 13.0 3.3 – – – 
Nanocomposite N 15.2 39.3 24.5 9.1 1.9 5.9 4.2 

CMC I 28.4 40.9 19.0 11.7 – – – 
Nanocomposite O 15.5 35.1 24.8 13.3 11.4 – – 

* See Table 1and Table 2 to identify the samples. 
 

 

 

Nanocomposite O Nanocomposite N 
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2.2  Concluding Remarks 
 

The hydrolysis of dimethylcarbonate in alkaline medium is an effective, reproducible and a 

straightforward chemical route to precipitate and grow CaCO3 particles at the surface of cellulosic 

substrates. In addition, the quantity and morphology of CaCO3 particles deposited at the surface of 

the cellulose fibres were strongly dependent on the hydrolysis conditions: 

(i) the amount and size of CaCO3 deposited on the cellulose fibres increased with increasing 

reaction time; 

(ii) the reactions performed at room temperature originated nanosized CaCO3 particles with 

spheroid morphology, while at 70oC micrometric aggregates of Ca(OH)2 were obtained; 

(iii) lower consistencies of the reacting suspensions favoured the formation of spheroid particles; 

(iv) the presence of carboxyl groups at the cellulose surface promoted the selective control growth 

of CaCO3 on the surface of the fibres. 

The results provided by the combined use of ToF-SIMS and XPS confirmed the presence of 

calcium carbonate particles at the surface of the cellulosic fibres and corroborated all the results of 

the other analysis. 

The precise mechanism by which CaCO3 is retained in the cellulosic fibres remains an issue 

that should be further investigated in a near future. 
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3 POLYETHYLENE-CELLULOSE/CaCO3 COMPOSITES 
 

 

In this chapter the preparation of polyethylene (PE) based composites with cellulose/CaCO3 

nanocomposites as the reinforcing phase is described in detail. The PE-based composites were 

prepared by mixing the polymer with different fillers (cellulose and nanocomposite N, Figure 38) 

and different filler contents (0, 15 and 30%), as summarized in Table 5. The properties of the PE-

based composites were assessed by SEM, DSC and DMA. 

 

 
Cellulose 

 

 
Nanocomposite N 

 
Figure 38: SEM micrographs of cellulose and nanocomposite N (See Table 2 for nanocomposite 

identification). 
 

 

 

Table 5: Compositions of the PE-based composites 
Matrix (wt.%) Compatibilizer (wt.%) Filler (wt.%) Sample 

identification PE PE-g-MA Cellulose Cellulose/CaCO3 
(Nanocomposite N) 

PE 100 0 0 0 
PE-1 85 0 15 0 
PE-2 70 0 30 0 
PE-3 85 0 0 15 
PE-4 70 0 0 30 
PE-5 83 2 15 0 
PE-6 68 2 30 0 
PE-7 83 2 0 15 
PE-8 68 2 0 30 
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A relevant observation regarding these materials is that the colour of the different composites 

slightly changed from white to dark yellow with the incorporation of different reinforcements, as 

may be seen in Figure 39. The darker colours indicate thermal degradation probably as a result of 

the compounding temperature of the composites (170ºC), and the in situ deposition of CaCO3 on 

the substrate (Part III, section 2.1.5), which originated lesser thermal stable materials. 

 

 
PE 

 
PE-1 

 
PE-3 
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PE-7 

  
Figure 39: Photographs of PE and its composites (See Table 5 for PE composites identification). 

 

 

 

3.1  Scanning Electron Microscopy 
 

Scanning electron micrographs of the fracture surfaces of the different polyethylene based 

composites were performed to observe the morphology and the filler/matrix interactions. In a 

general overview, the fractured surface of PE-based composites shows that the dispersion of the 
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reinforcements (cellulose and nanocomposite N) in the matrix is rather heterogeneous. 

Nevertheless, the fibres appeared to remain undamaged suggesting that the applied mechanical 

shear in the blender did not result in fibre fracture. 

As an example, Figure 40 illustrates the microstructures of fractured surfaces of PE-1, PE-3, 

PE-6 and PE-8 and is possible to see that the majority of the reinforcements (cellulose and 

nanocomposite N) are exposed and dispersed unevenly. Not even the use of a compatibilizing 

agent, which had been reported to improve the interfacial adhesion with the matrix [100], reduced 

the exposure and increased the dispersion of the reinforcing nanocomposite. 

 

  
PE-1 PE-3 

  
PE-6 PE-8 

Figure 40: SEM micrographs of the fracture surface of PE-based composites (See Table 5 for PE 
composites identification). 

 

 

 

3.2  Differential Scanning Calorimetry 
 

The melting behaviour of polyethylene and derived composites was analysed by differential 

scanning calorimetry (DSC). Nine samples (PE, PE-1, PE-2, PE-3, PE-4, PE-5, PE-6, PE-7, PE-8) 
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were tested to evaluate how the addition of different contents of cellulose fibres and nanocomposite 

N (cellulose/CaCO3) with and without a compatibilizer would affect the thermal behaviour of 

polyethylene. Figure 41 shows the DSC curves of polyethylene (PE) and composites PE-1, PE-2, 

PE-3 and PE-4, while Figure 42 displays the DSC curves of polyethylene (PE), compatibilizing 

agent (polyethylene-graft-maleic anhydride (PE-g-MA)) and composites PE-5, PE-6, PE-7 and PE-

8. The melting characteristics and the degree of crystallinity of PE and its composites are 

summarized in Table 6. 

The DSC data shows that the melting temperature (Tm) of polyethylene (113ºC) is comparable 

to the one given by the manufacturer (116ºC, Part II, Section 1.1) and is in the typical melting 

range for low-density polyethylene (LDPE) [121]. Besides, the crystallinity degree of PE, 

determined by DSC as 33% (Table 6), is also in conformity with literature [101,104]. 

The incorporation of cellulose fibres and nanocomposite N into PE had no significant effect on 

the melting behaviour of this polymer, as can be seen in the melting curves of PE-1, PE-2, PE-3 

and PE-4 composites. The little fluctuation of Tm observed is within the typical experimental 

accuracy for this kind of measurements [122].  
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Figure 41: Melting behaviour of PE, PE-1, PE-2, PE-3 and PE-4 as determined by DSC (See Table 5 

for PE composites identification). 
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On the other hand, the incorporation of cellulose and nanocomposite N into PE together with a 

compatibilizing agent (PE-g-MA) slightly influenced the melting temperature of this thermoplastic. 

According to Figure 42 and Table 6, the Tm of polyethylene slightly decreased with the use of a 

compatibilizer, except in the case of composite PE-8 where Tm suffered a small increase from 113 

to 114ºC. Still, the fluctuations in the melting temperature were so small that we might consider 

that the melting behaviour of PE wasn’t affected by the use of 2% of a compatibilizing agent 

together with the reinforcing phase. 
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Figure 42: Melting behaviour of PE, PE-g-MA, PE-5, PE-6, PE-7 and PE-8 as determined by DSC (See 

Table 5 for PE composites identification). 
 

 

 

Finally, the crystallinity of PE was not considerably affected by the use of cellulose and 

cellulose/CaCO3 as reinforcing element (Table 6). 
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Table 6: Melting characteristics and degree of crystallinity of PE and its composites assessed by DSC 
Samples* Tm (oC) ΔHm (J/g) a Xc (%) a 

PE 113 98 33 
PE-1 113 94 32 
PE-2 113 102 35 
PE-3 113 95 33 
PE-4 112 100 34 
PE-5 111 95 32 
PE-6 112 101 34 
PE-7 112 96 33 
PE-8 114 100 34 

* See Table 5 for PE composites identification; a For 100% polymer (PE). 

 

 

 

3.3  Dynamic Mechanical Analysis 
 

Dynamic mechanical analysis (DMA) provides information about the mechanical and 

viscoelastic properties as a function of temperature through the application of an oscillating force. 

The DMA of the PE based composites was performed to investigate if the addition of different 

fillers (cellulose and composite N) would influence the mechanical behaviour of PE.  

Representative curves of the storage modulus (E’) of PE and its composites are shown in 

Figure 43 and Figure 44. As can be seen, the storage modulus (Figure 43) of PE and PE-based 

composites decreased monotonically with the increase in temperature. The incorporation of 

cellulose or cellulose/CaCO3 as filler in the polyethylene matrix has significant effect on the 

storage modulus (elastic properties). According to Figure 43, the E’ increased with increasing 

amount of filler and, for a given percentage of filler, the use of cellulose/CaCO3 instead of cellulose 

originated higher values of storage modulus. At room temperature, for example, the modulus of the 

composites increased from 150 MPa for neat PE up to 255 MPa for PE-1 (15 wt.% cellulose), 289 

MPa for PE-3 (15 wt.% cellulose/CaCO3), 531 MPa for PE-2 (30 wt.% cellulose) and 380 MPa for 

PE-4 (30 wt.% cellulose/CaCO3). The discrepancy in the value of E’ of PE-2 might be related with 

the presence of agglomerates of fibres in the composite. 
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Figure 43: The dynamic storage modulus curves of PE, PE-1, PE-2, PE-3 and PE-4 (See Table 5 for PE 

composites identification). 
 

 

 

In the compatibilized PE composites (Figure 44), the behaviour is similar to that mentioned for 

the uncompatibilized composites (Figure 43). For instance, at room temperature the modulus of the 

composites increased from 150 MPa for neat PE up to 264 MPa for PE-5 (15 wt.% cellulose), 271 

MPa for PE-7 (15 wt.% cellulose/CaCO3), 395 MPa for PE-6 (30 wt.% cellulose) and 408 MPa for 

PE-8 (30 wt.% cellulose/CaCO3). The comparison between composites with and without 

compatibilizer shows that the effect of PE-g-MA was not significant in the improvement of the 

fibre/PE interactions, at least for the weight percentage that was used. These results were in 

agreement with the DSC analysis. 
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Figure 44: The dynamic storage modulus curves of PE, PE-5, PE-6, PE-7 and PE-8 (See Table 5 for PE 

composites identification). 
 

 

 

3.4  Concluding Remarks 
 

Polymer matrix composites of polyethylene were one of the potential applications for 

cellulose/CaCO3 materials. The incorporation of cellulose/CaCO3 nanocomposites into low density 

polyethylene did not influenced the melting behaviour neither the crystallinity degree of PE. In 

turn, it demonstrated reinforcement effects that contributed to the increase of the storage modulus 

of the material.  

As a result of the tendency of cellulose fibres to form aggregates with non polar polymers 

during processing, the use of a compatibilizing agent was necessary to improve fibre/matrix 

interactions. However, the PE-g-MA did not show any compatibilizing effect on PE-

cellulose/CaCO3 composites. It is possible that the amount of PE-g-MA added was not enough to 

show its compatibilizing effect. 
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PART IV – CONCLUSIONS AND FUTURE WORK 

 
 

 

 

The main goal of this study was to produce cellulose/CaCO3 nanocomposites by a simple and 

environmentally friendly route, and to investigate potential applications. 

The nanocomposites were synthesized by a method based on the generation of carbon dioxide 

from an organic precursor (DMC). The effect of several reaction parameters (reaction time and 

temperature, fibre quantity and extent of cellulose modification) on characteristics of the ensuing 

materials was evaluated by different techniques. The first conclusion to be drawn was that the 

hydrolysis conditions strongly influenced the quantity and morphology of CaCO3 particles 

deposited at the surface of cellulose fibres. Moreover: 

(i) higher reaction time means higher quantity and size of CaCO3 particles; 

(ii) reactions carried out at room temperature originated nanosized CaCO3 particles 

(calcite/vaterite) with spheroid morphology, while at 70oC micrometric aggregates of 

Ca(OH)2 were obtained; 

(iii) lower consistencies of the reacting suspensions favoured the formation of spheroid 

particles of CaCO3; 

(iv) the presence of carboxyl groups at the substrate surface increases the selectivity of 

precipitation of calcite on the surface of the fibre. 

The mechanism by which CaCO3 particles are retained at the surface of cellulosic fibres is not 

understood at this stage, thus it remains an issue that should be further investigated. 

PE-based composites were one of the possible applications for cellulose/CaCO3 

nanocomposites. Despite the poor dispersion of the filler (cellulose/CaCO3 nanocomposites) in the 

polyethylene matrix, the DMA results were encouraging. This analysis showed that the use of 

cellulose/CaCO3 nanocomposites as reinforcing agent originated PE composites with higher 

storage modulus than the corresponding PE composites with cellulose as reinforcement. This 

indicates that the presence of CaCO3 particles improved the stiffness of PE-based composites. 
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FUTURE WORK 

 

In a near future, other issues concerning potential applications of cellulose fibre/CaCO3 

nanocomposites should be carried on. One of the most promising applications for the prepared 

nanocomposites might be polymer matrix composites, albeit the difficulty to achieve well dispersed 

reinforcements in the polymer matrix. Nevertheless, the performance of the composites might be 

improved by adding compatibilizers to enhance the interaction between the matrix and 

reinforcements, functionalizing the reinforcement or adding nano-sized reinforcements [76]. 

Polyethylene based composites have already been studied here as a potential application for 

cellulose/CaCO3 nanocomposites. Although the results were positive, the performance of the PE-

based composites should be improved by finding a suitable medium to separate the cellulose fibres 

together with the use of a feeding medium which do not cause degradation of the fibres or the 

polymer in high processing temperatures. Moreover, the effect of the addition of compatibilizers to 

enhance the interaction between the matrix (PE) and reinforcements should be further evaluated. 

Besides PE, other polymers like poly(lactic acid) (PLA) can also be used as matrix. This 

polyester of lactic acid (HOCH3CHCOOH), mainly obtained from renewable agricultural raw 

materials which are fermented to lactic acid [123], is one of the most promising biodegradable 

polymers. The main features of this versatile polymer are its good stiffness and strength, and its 

low toughness and thermal stability. PLA-based composites have been studied by several 

researchers with the aim of producing products were biodegradability is wanted [73,124]. To our 

knowledge practically no information is available on polymer based composite materials of PLA 

and cellulosic fibres/calcium carbonate. 
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