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resumo 
 
 

Esta tese estuda transformadas contínuas de onduleta na superfície esférica
 a partir do seu grupo conforme, o grupo próprio de Lorentz Spin1−nS +(1,n). As 

transformações envolvidas são rotações do subgrupo Spin(n) e 
transformações de Möbius da forma , com  um ponto na

bola unitária . A nossa abordagem é desenvolvida a partir da teoria de 
representações de grupos, de quadrado integrável, em espaços homogéneos.
O espaço homogéneo subjacente às transformadas contínuas de onduleta
esféricas resulta de uma extensão adequada do espaço homogéneo obtido 
pela factorização do girogrupo da bola unitária  por um dos seus giro-
subgrupos. As transformadas contínuas de onduleta são definidas à custa da 
escolha de secções globais no espaço homogéneo. O caso isotrópico
(introduzido por Antoine e Vandergheynst) corresponde às dilatações puras na
superfície esférica, enquanto que o caso anisotrópico corresponde às
dilatações conformes gerais. O comportamento local dessas dilatações é
estudado em detalhe, dando origem à noção de anisotropia local. No final
mostramos como construir frames para a superfície esférica  e 
apresentamos um algoritmo para a reconstrução de sinais esféricos. 
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This thesis studies continuous wavelet transforms on the unit sphere Sn-1 based 
on its conformal group, the Lorentz group Spin

abstract 
+(1,n). The transformations 

involved are rotations of the subgroup Spin(n) and Möbius transformations of 
the form , where a  is a point of the open unit ball . Ou

 
nB1)1)(()( −+−= axaxxaϕ r 

approach is based on the group-theoretical background of square integrable 
group representations over homogeneous spaces. For the spherical continuous
wavelet transforms (SCWT) the underlying homogeneous space results from
an appropriate extension of the homogeneous space obtained from the 
factorization of the gyrogroup of the unit ball by one of its gyro-subgroups.  The 
SCWT arise from the choice of global sections on the homogeneous space.
The isotropic case (introduced by Antoine and Vandergheynst) corresponds to
pure dilations on the unit sphere while the anisotropic case corresponds to
general conformal dilations. The local behaviour of these dilations is
investigated in detail giving rise to the notion of local anisotropy. In the end we
show how to construct frames on the unit sphere  and we present a 
numerical algorithm for the reconstruction of spherical signals. 
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Introduction

“The real voyage of discovery consists not in seeking

new landscapes, but in having new eyes.”

Marcel Proust

Over the last few decades the field of signal processing has weathered a revolution.

Techniques that previously dominated the field such as Fourier transforms now have to

compete with many other integral transforms and in particular with wavelet transforms.

Wavelet analysis is a particular time or space scale representation of signals which has

found a wide range of applications in signal processing, physics and applied mathematics.

The concept of wavelets can be viewed as a synthesis of ideas which originated during

the last forty years in engineering (subband coding), physics (coherent states), and pure

mathematics (study of Calderón-Zygmund operators).

In one of the papers initiating the study of the continuous wavelet transform on the

real line Grossman, Morlet and Paul [43] considered systems (ψ(a,b))(a,b)∈R+×R arising from

a single function ψ ∈ L2(R) via ψ(a,b) = |a|−1/2ψ
(

x−b
a

)
. They showed that every function

ψ ∈ L2(R) fulfilling the admissibility condition

Cψ =
∫

R+

|ψ̂(ξ)|2
|ξ| dξ < ∞,

gives rise to an inversion formula

f = C−1
ψ

∫

R

∫

R+

〈f, ψ(a,b)〉ψ(a,b)
da

a2
db

to be read in the weak sense. An equivalent formulation of this fact is that the wavelet trans-

form f 7→ Vψf, Vψf(a, b) = 〈f, ψ(a,b)〉 is an isometry between L2(R) and L2(R+ ×R, da
a2 db).

The admissibility condition as well as the choice of the measure used in the reconstruction

appear to be somewhat obscure until one reads it in group-theoretic terms. The relation

iii



iv Introduction

to the theory of square integrable group representations was pointed in [43]. Square inte-

grable representations of locally compact groups have important applications in many fields

of physics (generalized coherent states, quantization, quantum measurement theory, signal

analysis, etc. - see the review paper [3], the book [2] and the rich bibliography therein)

and mathematics (the theory of Plancherel measure for locally compact groups [30], wavelet

analysis [27] and its generalizations, the theory of localization operators [78], etc.).

The fundamental properties of these representations have been studied originally by

Godement, in the case of unimodular groups [40], [41], and by Duflo and Moore [30], Gross-

mann et al. [43], in the general case.

The wavelet transform is seen to be a special instance of the following construction:

Given a strongly continuous, unitary representation π of a locally compact group G on the

Hilbert space H and a vector ψ ∈ H, we define the coefficient operator

Vψ : H 3 f 7→ Vψf ∈ Cb(G), Vψf(x) = 〈f, π(x)ψ〉.

Here Cb(G) denotes the space of bounded continuous functions on G. Since we are interested

in inversion formulae we consider Vψ as an operator H → L2(G), with the obvious domain

dom(Vψ) = {f ∈ H : Vψf ∈ L2(G)}. The vector ψ ∈ H is admissible whenever Vψ : H →
L2(G) is an isometric embedding and in this case Vψ is called (generalized) wavelet transform.

While the definition itself is rather simpler, the problem of identifying admissible vectors is

highly nontrivial, and the question whether these vectors exist for a given representation

does not have a simple general answer.

The construction principle for wavelet transforms had also been studied in mathematical

physics, where admissible vectors ψ are called fiducial vectors, systems of the type {π(x)ψ :

x ∈ G} coherent state systems, and the corresponding inversion formulae, resolutions of the

identity, see [2] for more details and references.

The earliest and most prominent examples were the original coherent states obtained by

time-frequency shifts of the Gaussian, which were studied in quantum optics. Perelomov

[60] discussed the existence of resolutions of the identity in more generality, restricting at-

tention to irreducible representations of unimodular groups. In this setting discrete series

representations, i.e., irreducible subrepresentations of the regular representation λG of G,

turned out to be the right choice. Here, every nonzero vector is admissible up to normal-

ization. Moreover, Perelomov devised a construction which gives rise to resolutions of the

identity for a large class of irreducible representations which were not in the discrete series.

The idea behind this construction was to replace the group as integration domain by a well

chosen quotient, i.e., to construct isometries H ↪→ L2(G/H) for a suitable closed subgroup
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H. In all these constructions, irreducibility was essential: only the well-definedness and a

suitable intertwining property needed to be proved, and Schur’s Lemma would provide for

the isometry property.

Nevertheless, this is not yet sufficient since many groups of physical relevance, like the

Euclidean, Galilei, or Poincaré relativity groups, have no square integrable representations

and the standard Gilmore-Perelomov approach cannot be applied. Fortunately, the whole

formalism may be extended to the case in which the relevant representation is only square

integrable over a homogeneous manifold of the group, i.e., the quotient of the group by some

closed subgroup. This will be described in Chapter 1. In this generalization the result,

including the coherent states, will depend on the choice of a section in the corresponding

fiber bundle. In addition, the familiar resolution of the identity, which is present for any

square integrable representation, is now replaced by the resolution of a more complicated

operator. In this way, we can construct coherent states for a whole new class of groups,

including the relativity groups, and we also obtain a continuous generalization of the notion

of frame, familiar in signal processing. Further information and references to the original

papers may be found in the review paper [3] and in the book [2].

Wavelets are a powerful signal analysis tool due to the spatial and scale localization

encoded in the analysis. The usefulness of such analysis has previously been demonstrated

on a large range of physical applications. However, many of these applications are restricted

to Euclidean space Rn, where the dimension of the space is often one or two. Nevertheless,

data are often defined on other manifolds, such as the 2-sphere. For example, applications

where data are defined on the sphere are found in astrophysics (e.g. [45]), geophysics (e.g.

[23]), computer vision (e.g. [46]) and quantum chemistry (e.g. [51]).

Fourier analysis on S2 is standard, but cumbersome, since it amounts to work with ex-

pansions in spherical harmonics [57]. While these constitute an orthonormal basis of L2(S2),

they are not localized at all on the sphere. Actually, there are some specific combinations of

spherical harmonics which are well localized, the so-called spherical harmonic kernels ([37],

[62]), but then one loses the simplicity of an orthonormal basis.

Alternative solutions have been proposed by several authors. We may refer, for instance,

Gabor analysis on the tangent bundle [68]; frequential wavelets based on spherical harmonics

[37]; or diffusion methods with a heat equation [14]. Discrete wavelets on the sphere have

also been designed, using a multiresolution analysis on S2. For instance, Haar wavelets on

a triangulation of S2 and refined with the lifting scheme [66]; C1 wavelets constructed by a

factorization of the refinement matrices [76]; or wavelets obtained by radial projection from



vi Introduction

a polyhedron inscribed in the sphere (typically locally supported spline wavelets on spherical

triangulations) [63], [64]. References to the (vast) literature on discrete spherical wavelets

may be found in [63], [76] for earlier work and in [55] for recent work.

However, these constructions have some problems, such as an inadequate notion of dila-

tion, the lack of wavelet localization, the excessive rigidity of the wavelets obtained, the lack

of directionality, etc.. In this respect, the Continuous Wavelet Transform (CWT) has many

advantages: locality is controlled by dilation, the wavelets are easily transported around

the sphere by rotations from SO(3) and efficient algorithms are available. Holschneider was

the first to build a genuine spherical continuous wavelet transform (SCWT) [49], but his

construction involves several assumptions and lacks a geometrical feeling. In particular, it

contains a parameter that plays the role of dilations but has to fulfill a number of assump-

tions and is, therefore, difficult to compute. But it is possible to introduce local dilations in

a quite natural way on the sphere if one uses its conformal group, the proper Lorentz group

SO0(1, 3). A successful solution was obtained by Antoine and Vandergheynst [7], [8]. In [7],

the authors use the Iwasawa decomposition of SO0(1, 3) (or KAN−decomposition, where

K is the maximal compact subgroup, A = SO(1, 1) ∼= R ∼= R+∗ is the subgroup of Lorentz

boosts in the z−direction and N ∼= C is a two dimensional abelian subgroup) to construct

the parameter space X = SO0(1, 3)/N ∼= SO(3) ·R+∗ , i.e. the product of SO(3) for motions

and R+∗ for dilations on S2. A generalization of this approach for the (n − 1)−sphere is

presented in [8]. One of the most important results is the correspondence principle between

spherical and Euclidean wavelets in the sense that the inverse stereographic projection of a

wavelet on the plane gives rise to a wavelet on the sphere [77]. Recently, in [48], Hobson et

al. extend the case of isotropic dilations on the 2-sphere to the case of anisotropic dilations

defined in two orthogonal directions.

One of the limitations of the SCWT of Antoine and Vandergheynst is that it does not take

into account relativistic movements on the sphere. But in many applications such movements

are required, e.g. an observer which moves at relativistically velocity with respect to the

Earth would see the appearance of the night sky (as modeled by points on the celestial

sphere) transformed by means of a Möbius transformation. With the present approach we

are able to connect the geometry of conformal transformations on the sphere with wavelet

theory, incorporating arbitrary relativistic boosts. Another motivation for this work comes

from the case of the plane, where a wide variety of wavelets, such as ridglets, curvelets or

shearlets, exists (see e.g. [15], [29], [56]). For future consideration of such transformations

on the sphere, it seems to be necessary to incorporate general conformal transformations
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first. From the physical point of view, we will obtain relativistic coherent states which will

be called spherical conformlets.

This dissertation is organized in five chapters. In Chapter 1 we consider some theoretical

aspects about locally compact groups, we present the basic harmonic analysis of square

integrable group representations and we give two examples: time-frequency analysis based

on the Heisenberg group and the continuous wavelet transform on R and Rn based on the

affine linear and similitude groups, respectively. In the end, we present the whole formalism

of square integrable representations over a homogeneous manifold of the group, which we

will apply in our construction.

In Chapter 2 we study the algebraic structure of the proper Lorentz group Spin+(1, n)

in the context of Clifford algebras. The main results of this chapter are the decomposition

of Spin+(1, n) into the gyrosemidirect product of the group Spin(n) and the gyrogroup of

the unit ball (Bn,⊕), the factorizations of (Bn,⊕) together with the theorem on duality

relations between orbits and sections, the relation between (B3,⊕) and SL(2,C), and the

relation between (Bn,⊕) and SL(2, Γ(n) ∪ {0}), where Γ(n) is the Clifford group in Rn.

We know from Physics [38] that the set of all relativistically admissible velocities in the

theory of the special relativity of Einstein is a ball in R3 with radius c, the speed of light. It is

a homogeneous ball and a bounded symmetric domain with respect to the group of projective

transformations. Relativistic dynamics is described by elements of the Lie algebra of this

group. In our case, the unit ball (Bn,⊕) corresponds to the normalization of the relativistic

ball and it encodes all the necessary information for the definition of dilations on the unit

sphere. We will see that the group Spin+(1, n), together with its Cartan decomposition,

constitutes a very rich and powerful tool for the description of (isotropic and anisotropic)

spherical continuous wavelet transforms with a nice geometric description.

In Chapter 3 we construct spherical continuous wavelet transforms arising from sections of

the Lorentz group Spin+(1, n), generalizing the approach due to Antoine and Vandergheynst

([7], [8]). The results are obtained first for the unit sphere S2 and later generalized to

the (n − 1)−sphere Sn−1 using Clifford algebra tools. The generalized SCWT incorporate

arbitrary relativistic boosts. To measure the deviation of an arbitrary global left section with

respect to the fundamental section on the unit ball, we introduce the concept of p−deviation
of a section, using the generating function of the respective section. Finally, the covariance

properties of our transforms are investigated.

In Chapter 4 we investigate the properties of spherical caps under the action of the Möbius

transformation ϕa. This provides us with an understanding of the role of the parameter
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a ∈ Bn in the subsequent dilation. This study is of foremost importance for the local control

of the SCWT. Our investigations lead us to the development of new concepts, like the concept

of local dilation around the North Pole, zonal surfaces, admissible global and local sections

and local anisotropy of a left (global or local) section.

Finally, in Chapter 5 we construct spherical frames for the unit sphere S2 by discretization

of the SCWT. First, we devote our attention to half-continuous spherical frames and we

generalize Proposition 17 of [11]. Then, using the results obtained in Chapter 4 and by a

convenient discretization of the dilation and rotation parameters we propose an algorithm

for the reconstruction of spherical signals. Academic numerical examples are given, based

on the spherical Mexican wavelet. We finish this chapter showing the sparsity of the Gramm

matrix and some of its properties.



Chapter 1

Harmonic analysis on locally compact

groups

In this chapter we discuss the preliminaries that are necessary for the good understanding

of our work. We discuss the existence of left and right Haar measures on locally compact

groups and the existence of quasi-invariant measures on homogeneous spaces obtained from

the factorization of a group by a subgroup. In Section 1.2 we present some basic facts about

the theory of square integrable group representations and its connection with the theory of

coherent states in Physics is shown in Section 1.4. Two examples are explored in Section 1.3,

namely, the short time Fourier transform, that is on the basis of time-frequency analysis,

and the continuous wavelet transforms on R and Rn, n ≥ 2.

1.1 Locally compact groups

While we can define many types of integral transforms, it turns out that many useful ones

arise as a result of actions of locally compact groups.

Definition 1.1.1 A topological group G is a group that is also a topological space such that

the multiplication (g1, g2) 7→ g1g2 and the inversion g 7→ g−1 in G are continuous functions.

Definition 1.1.2 A locally compact group G is a topological group such that the underlying

topology is Hausdorff and locally compact.

A topological space is locally compact if every point in the space has a compact neigh-

borhood. There are topological groups that are not Hausdorff.

1



2 CHAPTER 1. HARMONIC ANALYSIS ON LOCALLY COMPACT GROUPS

Let us define the left and right translation operators for functions on G, by

Lg1f(g2) := f(g−1
1 g2) and Rg1f(g2) := f(g2g1).

A Borel measure µ on G is a non-negative countably additive function defined on the

σ−algebra of Borel sets on G taking finite values on compact subsets, and it is called regular

if for any ε > 0 and any Borel subset A, there exist an open subset U and a closed subset

F such that F ⊂ A ⊂ U and µ(U − F ) < ε. We will assume from now on that all Borel

measures are meant to be regular.

Definition 1.1.3 A Borel measure µ is called left (right) invariant if µ(gA) = µ(A) (µ(Ag) =

µ(A)) for any Borel subset A of G and for any g ∈ G.

By the Riesz representation Theorem [65], which gives a bijection between the set of all

regular Borel measures over G, M(G), and the set of positive linear functionals on Cc(G),

it follows that µ is left invariant if and only if for any f ∈ Cc(G) and for any h ∈ G
∫

f(hg)dµ(g) =
∫

f(g)dµ(g).

Theorem 1.1.4 ([53]) There exists a left (resp. right) invariant non-zero Borel measure on

G, which is unique up to a multiplicative constant.

These invariant measures are also called left and right Haar measures. If a right Haar

measure on G is also left invariant, then G is called unimodular. In general, a right Haar

measure is not left invariant. To measure the deviation, we define the modular function.

Definition 1.1.5 Let µ be a left Haar measure on G. For each g ∈ G, let µg be the measure

defined by µg(A) := µ(Ag). The modular function ∆G is defined by the relation µg(A) =

∆G(g−1)µ(A) for all Borel subset A.

The definition of ∆G is independent of µ and ∆G ≡ 1 if and only if G is unimodular.

Proposition 1.1.6 ([53]) The modular function ∆ has the following properties:

(a) ∆G : G → R+ is a continuous group homomorphism;

(b) ∆G(g) = 1 for g in any compact subgroup of G;

(c) µl(g−1) and ∆G(g)µl(g) are right Haar measures and are equal;

(d) µr(g−1) and ∆G(g)−1µr(g) are left Haar measures and are equal;
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(e) µr(gA) = ∆G(g)µr(A) for any right Haar measure on G and all Borel subset A.

Let H be a subgroup of G and X = H\G. We can ask when does there exists a natural

measure class on the homogeneous space X.

Definition 1.1.7 Let µ be a Borel measure on X. For all Borel subsets A and all g ∈ G

(i) µ is called invariant if µ(Ag) = µ(A);

(ii) µ is called semi-invariant (with a character χ : G → R+) if µ(Ag) = χ(g)µ(A);

(iii) µ is called quasi-invariant if µ(Ag) = 0 ⇔ µ(A) = 0.

In general, H\G does not admit a semi-invariant measure. The condition can be refor-

mulated considering the modular function.

Theorem 1.1.8 (i) There exists a semi-invariant measure on H\G with character χ if and

only if χ is an extension of ∆G∆−1
H : H → R+. Hence there exists a semi-invariant

measure H\G if and only if ∆G∆−1
H : H → R+ can be extended to G → R+.

(ii) H\G has an invariant measure (i.e. a semi-invariant measure with trivial character) if

and only if ∆G|H = ∆H .

Corollary 1.1.9 ([53]) Let G and H be both unimodular. Let dµ(g) and dµ(h) be Haar

measures on G and H respectively. Then there exists a unique invariant measure µ on H\G
such that ∫

G
f(g)dµ(g) =

∫

H\G

∫

H
f(hg)dµ(h) dµ([g]).

Quasi-invariant measures always exist on X. In fact, there exists a unique, up to equiva-

lence, quasi-invariant measure on X. Let µ be a quasi-invariant measure on X and µg(A) =

µ(gA), with A a Borel set on X. The Radon-Nikodym derivative of µg with respect to µ,

λ(g, x) = dµg(x)
dµ(x) , is then a cocycle, i.e. λ : G×X → R+, with the properties

{
λ(g1g2, x) = λ(g1, x)λ(g2, g

−1
1 x),

λ(e, x) = 1,
(1.1)

where the above relations hold for almost all g1, g2 ∈ G, and almost all x ∈ X. We note that

all the measures µg, g ∈ G, belong to the same measure class, i.e., they all have the same

measure-zero sets.
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Convolution of functions on a locally compact group is a well-defined operation that

shares many properties with its well-known Euclidean counterpart. On the real line, convo-

lution is an operation that quantifies the amount of overlap generated when a function f(x)

is shifted over another function g(x). The convolution of these two functions is denoted by

f ∗ g and given by the following integral

(f ∗ g)(y) =
∫ +∞

−∞
f(y)g(x− y)dx.

Convolution has a large number of applications in signal processing including the important

Convolution Theorem. Another use of Convolution Theorem is to apply a filter to any image

defined on the plane. Similar applications arise on other domains such as the sphere and the

definition of convolution can be extended to such domains in a number of ways.

We will present the general definition of a convolution over some locally compact group

G equipped with a left Haar measure µ.

Definition 1.1.10 (Group convolution) Let G be a locally compact group with left Haar

measure dµ, normalized to 1, and let f, h : G → C be two measurable functions such that

f, h ∈ L2(G, dµ). The convolution product of f and h is defined a.e. by the integral

(f ∗ h)(g1) =
∫

G
f(g1g2)h(g−1

2 )dµ(g2) =
∫

G
f(g2)h(g−1

2 g1)dµ(g2). (1.2)

One of the most important properties of the convolution integral is the regularizing effect

on Lp elements.

For f, g ∈ L1
loc(G) the convolution is given by

(f ∗ h)(g1) =
∫

G
f(g2)h(g−1

2 g1)dµ(g2) =
∫

G
f(g2)Lg2h(g1)dµ(g2) (1.3)

whenever this integral is well-defined for almost all g1 ∈ G. It may also be expressed by (see

[36], p. 51)

(f ∗ h)(g1) =
∫

G
h(g2)f(g1g

−1
2 )∆(g−1

2 )dµ(g2) =
∫

G
h(g2)Rg−1

2
f(g1)∆(g−1

2 )dµ(g2). (1.4)

The convolution is commutative if and only if the group G is commutative. Young’s Theorem

[36] states that

||f ∗ h||Lp(G) ≤ ||f ||L1(G)||h||Lp(G) for all f ∈ L1(G), h ∈ Lp(G), 1 ≤ p ≤ ∞.
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1.2 Square integrable group representations

Let us recall some basic facts from the theory of group representations. A unitary represen-

tation π of G is a strongly continuous homomorphism of G into the group U(H) of unitary

operators on a Hilbert space H. This means that π satisfies

π(g1g2) = π(g1)π(g2), π(e) = Id,

and the mapping g 7→ π(g)f from G into H is continuous for all f ∈ H. We remark that

strong continuity is already implied by the less restrictive condition of weak continuity, i.e.

for all f, h ∈ H the mapping g 7→ 〈f, π(g)h〉H is continuous (see [36]).

A closed subspace W of H is called invariant if π(g)W ⊂ W for all g ∈ G and π is called

irreducible if the only trivial invariant subspaces are {0} and H.

Definition 1.2.1 A representation π is called square integrable if π is irreducible and if

there exists a non-zero vector ψ ∈ H such that
∫

G
| 〈ψ, π(g)ψ〉H |2dµ(g) < ∞.

Such a vector ψ is called admissible.

We associate to π the voice transform or wavelet transform defined by

Vψf(g) := 〈f, π(g)ψ〉H , f, ψ ∈ H, g ∈ G. (1.5)

The inner products on the right hand side of (1.5) are also called matrix coefficients of π.

From (1.5) we can derive the covariance property of the wavelet transform

Vψ(π(g1)f)(g2) = 〈π(g1)f, π(g2)ψ〉H =
〈
f, π(g−1

1 g2)ψ
〉
H = Lg1Vψf(g2). (1.6)

This means that the wavelet transform intertwines the representation π and the left regular

representation Lg.

The theorem due to Duflo and Moore [31] about square integrable group representations

is very important for the theory of wavelets. This result was rediscovered by Grossmann,

Morlet and Paul [43].

Theorem 1.2.2 Let π be a square integrable representation of a locally compact group G on

the Hilbert space H. Then there exists an unique self-adjoint, positive and dense operator K

on H that satisfies the following properties:
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(a) D(K) = {ψ ∈ H, ψ is admissible }, where D(K) denotes the domain of K;

(b) If ψ is admissible then Vψf ∈ L2(G) for all f ∈ H;

(c) For ψ1, ψ2 admissibles and f1, f2 ∈ H we have the orthogonality relation
∫

G
Vψ1f1(g)Vψ2f2(g) dµ(g) = 〈f1, f2〉H 〈Kψ2,Kψ1〉H ; (1.7)

(d) It holds K = S−1/2 for some self-adjoint, positive, densely defined operator S that

satisfies π(g)Sπ(g)−1 = ∆(g)−1S.

Furthermore, if G is unimodular then K = cId for some constant c > 0 and, hence, any

non-zero vector in H is admissible.

The proof of Theorem 1.2.2 relies on the following extension of Schur’s Lemma (see

Theorem 1, [31]).

Lemma 1.2.3 Let π be an irreducible representation of G and assume that χ is a character

of G, i.e. χ ∈ C(G) with χ(g1g2) = χ(g1)χ(g2). Let T be a densely defined closed operator

in H that satisfies

π(g)Tπ(g)−1 = χ(g)T, for all g ∈ G. (1.8)

If T ′ is another operator satisfying (1.8) then T ′ = cT for some constant c > 0.

As an immediate consequence of Theorem 1.2.2 we obtain an inversion formula and

reproducing formula for the wavelet transform, see also [43].

Corollary 1.2.4 Let π be a square-integrable representation of G in H.

(a) (Inversion formula) Let ψ, h ∈ D(K) with 〈Kψ,Kh〉H = 1. Then it holds

f =
∫

G
Vψf(g) π(g)h dµ(g) for all f ∈ H, (1.9)

to be read in a weak sense.

(b) For ψ1, ψ2 ∈ D(K), f1, f2 ∈ H, it holds

Vψ1f1 ∗ Vψ2f2 = 〈Kψ1,Kf2〉H Vψ2f1. (1.10)

(c) (Reproducing formula) Let ψ ∈ D(K) with ||Kψ|| = 1. Then it holds

Vψf = Vψf ∗ Vψψ for all f ∈ H.
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(d) Suppose ψ ∈ D(K) with ||Kψ|| = 1. Then the mapping P : L2(G) → L2(G),

F 7→ F ∗ Vψψ is an orthogonal projection from L2(G) onto the image of Vψ.

Proof: (a) Let f, h1 ∈ H. By the orthogonality relation (Theorem 1.2.2 (c)) it holds

∫

G
Vψf(g) 〈π(g)h, h1〉H dµ(g) =

∫

G
Vψf(g)Vhh1(g)dµ(g)

= 〈f, h1〉H 〈Kh, Kψ〉H
= 〈f, h1〉H .

Since h1 ∈ H was arbitrary this equation is exactly the weak definition of (1.9).

For (b), again by Theorem 1.2.2 (c) and (1.6) we have

Vψ1f1 ∗ Vψ2f2(g1) =
∫

G
Vψ1f1(g2)Vψ2f2(g−1

2 g1)dµ(g2)

=
∫

G
Vψ1f1(g2)Vf2(π(g1)ψ2)(g2)dµ(g2)

= 〈Kψ1,Kf2〉H 〈f1, π(g1)ψ2〉H
= 〈Kψ1,Kf2〉H Vψ2f1(g1).

The assertion in (c) follows as an immediate consequence.

(d) Let F ∈ L2(G). Define f =
∫
G F (g)π(g)ψ dµ(g) ∈ H to be understood in a weak sense.

We obtain

Vψf(g1) =
∫

G
F (g2) 〈π(g2)ψ, π(g1)ψ〉H dµ(g2) = F ∗ Vψψ(g1).

Together with (a) we conclude that P is surjective onto the image of H under Vψ. Further,

if F = Vψf for some f ∈ H then by (c) it holds F = F ∗ Vψf and thus P is a projection.

Finally, if F1, F2 ∈ L2(G) then it follows from Vψψ(g−1) = Vψψ(g) that

〈F1 ∗ Vψψ,F2〉L2(G) =
∫

G

∫

G
F1(g2)Vψψ(g−1

2 g1)dµ(g2)F2(g1)dµ(g1)

=
∫

G
F1(g2)

∫

G
Vψψ(g−1

1 g2)F2(g1)dµ(g1)dµ(g2)

= 〈F1, F2 ∗ Vψψ〉L2(G) .

Hence, P is orthogonal.
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1.3 Time-frequency and wavelet analysis

The basic object in time-frequency analysis is the Fourier transform. For f ∈ L1(Rn) it is

defined by

F(f)(ξ) := f̂(ξ) :=
∫

Rn

f(x)e−2πi〈x,ξ〉dx, ξ ∈ Rn.

The Plancherel Theorem states that F extends to a unitary transform on L2(Rn) and
〈
f̂ , ĝ

〉
L2(Rn)

= 〈f, g〉L2(Rn) , for all f, g ∈ L2(Rn). (1.11)

In particular we obtain Parseval’s relation:

||f̂ ||L2(Rn) = ||f ||L2(Rn)

and the inversion of the Fourier transform by its adjoint. We have F−1 = F∗ with

F−1f̂(x) = f(x) =
∫

Rn

f̂(ξ)e2πi〈x,ξ〉dξ. (1.12)

Now we will consider examples that illustrate how the short time Fourier transform

(sometimes also called windowed Fourier transform or Gabor transform) and the continuous

wavelet transform fit into the setting of square-integrable group representations.

The (reduced) Heisenberg group is topologically the set Hn = Rn × Rn × T where T =

{z ∈ C : |z| = 1} denotes the torus. The group law on Hn is given by

(b, w, τ)(b′, w′, τ ′) = (b + b′, w + w′, ττ ′eπi(〈b′,w〉−〈b,w′〉)).

The Heisenberg group is unimodular and has Haar measure
∫

Hn

f(g)dµ(g) =
∫

Rn

∫

Rn

∫ 1

0
f(b, w, e2πit) dt dw db.

The Schrödinger representation ρ is an unitary representation of the Heisenberg group acting

on L2(Rn) by

ρ(b, w, τ)f(x) = τeπi〈b,w〉TbMwf(x) = τe−πi〈b,w〉MwTbf(x),

where Tb and Mw are the translation and modulation operators defined by

Tbf(x) := f(x− b) and Mwf(x) := e2πi〈x,w〉f(x), b, ω ∈ Rn.

To check that this is in fact a representation we use the commutation relation

TbMω = e−2πi〈b,w〉MωTb.
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Theorem 1.3.1 ([42], p.182) The Schrödinger representation is a square-integrable repre-

sentation of the Heisenberg group.

The corresponding voice transform is

Vψf(b, w, τ) = 〈f, ρ(b, ω, τ)ψ〉L2(Rn) = τ

∫

Rn

f(x)e−πi〈b,w〉MwTbψ(x)dx

= τeπi〈b,w〉
∫

Rn

f(x)ψ(x− b)e−2πi〈x,w〉dx

︸ ︷︷ ︸
(I)

. (1.13)

where the integral (I) is the short time Fourier transform (STFTψf(b, w)). Thinking of ψ as

a window function localized at b = 0 we may interpret STFTψf(b, w) as cutting out the parts

of f around b by multiplying with the translated window Tbψ followed by an application of the

Fourier transform. Thus, one may think of STFTψf(b, w) as the amplitude of the frequency

w at space position b. However, several uncertainty principles state that this interpretation

does not hold in a pointwise sense, see e.g. Chapter 3.3 in [42]. Usually one choose windows

ψ that have good localization properties in both space and Fourier domain. Since Gaussians

are the minimizing functions of Heisenberg’s uncertainty principle, they are often suggested

as window functions.

The STFT satisfies the orthogonality relation
∫

Rn

∫

Rn

STFTψ1f1(b, w)STFTψ2f2(b, w) db dw = 〈f1, f2〉 〈ψ2, ψ1〉 .

As a consequence of the orthogonality relation we may invert the STFT as follows. Suppose

that ψ, h are non-zero functions of L2(Rn) with 〈ψ, h〉 6= 0. Then

f =
1

〈ψ, h〉
∫

Rn

∫

Rn

STFTψf(b, w)MwTbh db dw

for all f ∈ L2(Rn) in a weak sense. For more details about the short time Fourier transform

see [42].

The next example involves the full affine linear group Gaff used in the construction of

wavelets on the real line. It consists of elements of the form Gaff = {(a, b)|b ∈ R, a 6= 0}
with the group law (a, b)(a′, b′) = (aa′, b + ab′).

This group is non-unimodular, the left Haar measure is dµl = a−2da db and the right

Haar measure is dµr = a−1da db.

An unitary representation U acting in L2(R), consisting of translations and dilations, is

given by

U(a, b)f(x) =
1√
|a|f

(
x− b

a

)
, a 6= 0, b ∈ R (1.14)
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or, in the Fourier domain,

̂(U(a, b)f)(ξ) =
√
|a|e−iξbf̂(aξ).

Theorem 1.3.2 The representation U is square-integrable and a function ψ ∈ L2(R, dx) is

said to be admissible (called a wavelet) if and only if it satisfies the admissibility condition

Cψ = 2π

∫ +∞

−∞

|ψ̂(ξ)|2
|ξ| dξ < +∞. (1.15)

If ψ is regular enough the admissibility condition (1.15) is equivalent to a zero mean condition:
∫

R
ψ(x)dx = 0.

In most of the cases we choose only positive dilations. Therefore we restrict to the

connected subgroup of Gaff , called G+ or the “ax + b” group:

G+ = {(a, b) : a > 0, b ∈ R}.

The representation U restricted to G+ splits into the direct sum of two unitary inequivalent,

square integrable representations, U±, acting in the two Hardy spaces H2
+(R) and H2−(R)

defined by

H2
±(R) = {f ∈ L2(R)|f̂(ξ) = 0, ξ ≷ 0}.

With these restrictions, the admissibility condition (1.15) becomes

C+
ψ = 2π

∫ +∞

0

|ψ̂(ξ)|2
ξ

dξ

over H2
+(R) (and similarly over H2−(R)). The wavelet analysis on L2(R, dx) is possible if it

is imposed either a strict equality of wavelet contributions of H2
+ and H2− (see [27]):

0 < C+
ψ = C−

ψ < +∞.

Given a signal f ∈ L2(R), and a wavelet ψ ∈ L2(R) the corresponding continuous wavelet

transform is defined by

(Wψf)(a, b) =
1√
Cψ

〈f, U(a, b)ψ〉L2(R)

=
1√
Cψ

|a|−1/2

∫

R
f(x)ψ

(
x− b

a

)
dx.

=
1√
Cψ

|a|−1/2

∫

R
f̂(ξ)ψ̂(aξ)e−2πibξdξ.
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Wψ : L2(R, dx) → L2(R2, a−2da db) is an isometry between L2(R, dx) and a closed subspace

of L2(R2, a−2da db).

A function f ∈ L2(R, dx) can be recovered from its wavelet transform via the resolution

of the identity as follows.

Proposition 1.3.3 For all f, h ∈ L2(R), it follows
∫ +∞

−∞

∫ +∞

−∞
(Wψf)(a, b)(Wψh)(a, b) db

da

a2
= 〈f, h〉 . (1.16)

For the sake of completeness we give a proof of this result.

Proof: It holds

̂(U(a, b)ψ)(ξ) = M−bDa−1ψ̂(ξ) = e−2πibξ|a|1/2ψ̂(aξ).

Using Plancherel’s Theorem (1.11) we obtain

Wψf(a, b) =
1√
Cψ

〈f, U(a, b)ψ〉 =
1√
Cψ

〈
f̂ , M−bDa−1ψ̂

〉

=
1√
Cψ

F−1(f̂ Da−1ψ̂)(b).

Applying Plancherel’s Theorem once more together with Fubini’s Theorem we realize that
∫ +∞

−∞

∫ +∞

−∞
(Wψf)(a, b)(Wψh)(a, b) db

da

a2

=
1

Cψ

∫ +∞

−∞

∫

R
f̂(ξ) ĥ(ξ)Da−1ψ̂(ξ) Da−1ψ̂(ξ) dξ

da

a2

=
1

Cψ

∫

R
f̂(ξ)ĥ(ξ)dξ

∫ +∞

−∞
|ψ̂(aξ)|2 da

|a|

=
1

Cψ

∫

R
f(x)h(x)dx

∫ +∞

−∞

|ψ̂(ζ)|2
|ζ| dζ

= 〈f, h〉 ,

where we made the change of variables ζ = aξ.

It is now clear why we have to impose the admissibility condition (1.15). If Cψ were

infinity, then the resolution of the identity (1.16) would not hold. Formula (1.16) can be

read as

f = C−1
ψ

∫ +∞

−∞

∫ +∞

−∞
(Wψf)(a, b)U(a, b)ψ db

da

a2
, (1.17)
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with the convergence of the integral considered in the weak sense.

The reconstruction formula (1.17) yields a decomposition of the signal f into a linear

superposition of the wavelets U(a, b)ψ with coefficients (Wψf)(a, b). It follows that Wψ acts

as a local filter, both in position and in scale: it selects the part of the signal that is

concentrated around the position b and at scale a. This implies that its efficiency increases

with frequency since the CWT is a singularity detector (or a mathematical microscope).

The generalization of the wavelet transform to the multi-dimensional case (n ≥ 2) is

done using the similitude group of Rn, SIM(n) = Rn o (R+∗ × SO(n)), consisting of the

semidirect product o of translations with dilations and rotations. Here, R+∗ = (0,∞) denotes

the multiplicative group of positive real numbers.

The similitude group has left Haar measure
∫

G
f(g) dµ(g) =

∫

SO(n)

∫

Rn

∫

R+∗
f(b, a, R)

da

an+1
db dR

and modular function ∆(b, a, R) = a−n.

We define the following unitary operators acting on L2(Rn) by

Tbf(x) = f(x− b), b ∈ Rn

Daf(x) = a−n/2f(a−1x), a ∈ R+
∗

URf(x) = f(R−1x), R ∈ SO(n)

and we associate a unitary representation of SIM(n) on L2(Rn) given by

π(b, a,R)f(x) = a−n/2f(R−1a−1(x− b)) = TbDaURf(x). (1.18)

Theorem 1.3.4 (Theorem 14.2.1 in [2]) The representation π of the similitude group SIM(n)

defined in (1.18) is square integrable. A function ψ ∈ L2(Rn, dx) is admissible if and only it

satisfies the condition

Cψ =
∫

Rn

|ψ̂(ξ)|2
|ξ|n dξ < ∞.

For an admissible function ψ ∈ L2(Rn), the CWT of f ∈ L2(Rn) is defined by

(Wψf)(b, a, R) = 〈f, TbDaURψ〉

= a−n/2

∫

Rn

f(x)ψ
(

R−1

(
x− b

a

))
dx,
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for b ∈ Rn, a ∈ (0,∞), R ∈ SO(n). The CWT analyzes a given function at different positions

in space, various scales and in different orientations. When the wavelet ψ is axially symmet-

ric, i.e. SO(n−1) invariant, we can replace everywhere SO(n) by SO(n)/SO(n−1) ' Sn−1,

the unit sphere in Rn. This simplifies the parameter space of the CWT. Clearly, if ψ is a

radial function then the CWT does not depend on R ∈ SO(n) and we obtain the fully

isotropic case. Sometimes the terminology isotropic wavelet transform is used for this case.

Other properties of the CWT on the multi-dimensional case can be seen e.g. in Chapter 14

of [2].

We conclude this section by giving one example of a multi-dimensional wavelet, the

Mexican hat or Marr wavelet. It is a real, rotation invariant wavelet, given by the Laplacian

of a Gaussian:

ψ(x) = −∆exp(−1
2
|x|2), ∆ = ∂2

x1
+ ∂2

x2
+ . . . + ∂2

xn

= (n− |x|2) exp(−1
2
|x|2).

1.4 Coherent states

Coherent states were invented by Schrödinger in 1926, in the context of the quantum har-

monic oscillator. They were reinvented in 1960 in the context of quantum optics and since

there various generalizations of the concept of coherent states were proposed. The key to the

generalization of the notion of a coherent state was the observation, by Perelomov [61], that

the construction of canonical coherent states could be reformulated as a problem in group

representation theory, associated to the Weyl-Heisenberg group. In particular, most of the

interesting properties of those canonical coherent states derive from the square integrability

of that representation. This fact them immediately leads to the definition of coherent states

associated with any square integrable group representation. For a good overview of the sub-

ject we refer to the textbooks of Perelomov [60], and Ali, Antoine and Gazeau [2], which also

contain a large number of references.

As we saw in the previous section, an interesting example of such coherent states is given

by the theory of wavelets. Nevertheless, the theory of square integrable representations is

not sufficient, since many groups of physical relevance have no square integrable represen-

tations. However, the whole formalism may be extended to the case in which the relevant

representation is only square integrable over a homogeneous manifold of the group, i.e. the

quotient of the group by some closed subgroup.
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We will describe this general formalism that is on the basis of the construction of spherical

wavelets associated to the proper Lorentz group Spin+(1, n).

Let G be a locally compact group and π a strongly continuous, irreducible, unitary

representation of G on a Hilbert space H. We consider the homogeneous space X = G/H,

where H is a closed subgroup of G. Because π is not directly defined on X, it is necessary

to embed X in G. This is realized by using the canonical fiber bundle structure of G with

projection Π : G → X. Let σ : X → G be a Borel section of this fiber bundle, i.e. Π◦σ(x) = x,

for all x ∈ X. In general the section cannot be chosen to be continuous but it is always

possible to choose it measurable or even continuous on some dense open subset of X. The

action of an element g ∈ G on σ(x) for x ∈ X can be written as gσ(x) = σ(gx)h(g, x) for

some element h(g, x) ∈ H.

Let a quasi-invariant measure µ on X and a section σ be given. It is possible to construct

another quasi-invariant measure µσ, which in a sense is the standard quasi-invariant measure

for the chosen section. It is defined using a strict cocycle by

dµσ(x) = λ(σ(x), x)dµ(x).

This is the measure used in the general definition of coherent states (see [2] or [4]).

We will denote by 〈·, ·〉X the L2−inner product on X defined by

〈F1, F2〉X =
∫

X
F1(x)F2(x) dµσ(x)

whenever the integral is defined.

A unitary representation π of G is called square-integrable modulo (H, σ) if there exists

a function ψ ∈ H such that the self-adjoint operator Aσ : H → H (dependent on σ and ψ)

weakly defined by

Aσf :=
∫

X
〈f, π(σ(x))ψ〉H π(σ(x))ψ dµσ(x), (1.19)

i.e.

〈Aσf, g〉H =
∫

X
〈f, π(σ(x))ψ〉H 〈π(σ(x))ψ, g〉H dµσ(x) for all f ∈ H (1.20)

is bounded and has a bounded inverse A−1
σ . Then we have that

〈Aσf, f〉H =
∫

X
| 〈f, π(σ(x))ψ〉H |2dµσ(x) < ∞ for all f ∈ H. (1.21)

The function ψ is called therefore admissible for (π, σ) and the section σ is admissible for

(π, ψ). If Aσ is a multiple of the identity then ψ is called strictly admissible.

We define a set of coherent states based on X, Sσ := {π(σ(x))ψ : x ∈ X}. However, to
obtain genuine coherent states in a covariant way we have to define the family of vectors
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Sσ = {ψσ(x) =
√

λ(σ(x), x) π(σ(x))ψ, x ∈ X}. Thus, these new states are obtained by

transporting a fixed vector ψ over X under the action of G, in a covariant way.

A wavelet, or voice transform, is defined by

Vψf(x) := 〈f, π(σ(x))ψ〉H , x ∈ X. (1.22)

The set Sσ is total in H and Vψ ∈ L2(X) by (1.21). If π is strictly square integrable mod

(H,σ) for ψ ∈ H, then it is well known that Vψ is an isometry from H onto the reproducing

kernel Hilbert space

M2 = {F ∈ L2(X) : 〈F, R(x, ·)〉 = F (x)},

with Hermitian reproducing kernel

R(x, y) = Rψ,σ(x, y) := Vψ(π(σ(x))ψ)(y)

= 〈π(σ(x))ψ, π(σ(y))ψ〉H
=

〈
ψ, π(σ(x)−1σ(y))ψ

〉
H .

By the Schwarz’s inequality ess sup
x,y∈X

|R(x, y)| ≤ ||ψ||2H. Thus, Vψ can be inverted on its

range M2 by its adjoint V ∗
ψ given by

V ∗
ψ F (s) :=

∫

X
F (x)π(σ(x))ψ(s) dµσ(x)

This gives us a reconstruction formula for f ∈ H given by

f = V ∗
ψ Vψf =

∫

X
〈f, π(σ(x))ψ〉H π(σ(x))ψ dµσ(x)

to be read in a weak-sense.

In the general case, when Aσ 6= λ I we define a second transform

Wψf(x) := Vψ(A−1
σ f)(x) =

〈
A−1

σ f, π(σ(x))ψ
〉
H =

〈
f, A−1

σ π(σ(x))ψ
〉
H , x ∈ X.

On the one hand substituting f by A−1
σ f in (1.20) we obtain that

〈f, g〉H = 〈Wψf, Vψg〉X f, g ∈ H. (1.23)

On the other hand substituting g by A−1
σ g in (1.20) we obtain that

〈f, g〉H = 〈Vψf, Wψg〉X , f, g ∈ H. (1.24)

Combining (1.23) and (1.24) we obtain that

〈f, g〉H = 〈Wψf, Vψg〉X = 〈Vψf, Wψg〉X , f, g ∈ H, (1.25)
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By (1.25), we see that

Vψf(x) = 〈f, π(σ(x))ψ〉H = 〈Vψf,Wψ(π(σ(x))ψ)〉X = 〈Vψf,R(x, ·)〉X
Wψf(x) =

〈
f,A−1

σ π(σ(x))ψ
〉
H = 〈Wψf,Wψ(π(σ(x))ψ)〉X = 〈Wψf,R(x, ·)〉X ,

where

R(x, y) = Rψ(x, y) := Wψ(π(σ(x))ψ)(y) =
〈
A−1

σ π(σ(x))ψ, π(σ(y))ψ
〉
H . (1.26)

Clearly, R(y, x) = R(x, y) for all x, y ∈ X. Moreover, we have for all x, y ∈ X that

|R(x, y)| ≤ ||A−1
σ || ||ψ||2H.

The following facts about square-integrable representations π modulo (H, σ) and admis-

sible functions are well-known (see [2], Theorem 7.3.1).

• The set Sσ is total in H, i.e. S⊥σ = {0}. Since Aσ is continuously invertible, we see

that also the set A−1
σ (Sσ) = {A−1

σ π(σ(x))ψ : x ∈ X} is total in H.

• The mappings Vψ and Wψ are bijective mappings of H onto the reproducing kernel

Hilbert space

M2 := {F ∈ L2(X) : 〈F,R(x, ·)〉X = F (x) a.e.},

• The mappings Ṽψ : L2(X) → H and W̃ψ : L2(X) → H, weakly defined by

ṼψF :=
∫

X
F (x)A−1

σ π(σ(x))ψ dµσ(x),

W̃ψF :=
∫

X
F (x)π(σ(x))ψ dµσ(x),

i.e. 〈
ṼψF, g

〉
H

= 〈F,Wψg〉X ,
〈
W̃ψF , g

〉
H

= 〈F, Vψg〉X .

satisfy, by (1.25) the following relations

VψṼψF (x) = 〈F,R(x, ·)〉X , WψW̃ψF (x) = 〈F, R(x, ·)〉X , for all F ∈M2.

Moreover, as the adjoint mappings of Ṽψ and W̃ψ are Wψ and Vψ, respectively, i.e.

Ṽ ∗
ψ = Wψ and W̃ ∗

ψ = Vψ we obtain the reconstruction formulas

f = ṼψVψf, f = W̃ψWψf, for all f ∈ H,

to be read in a weak sense.
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Remark 1.4.1 It may also happen that the integral (1.21) with the translated measure

dµσ(x) = λ(σ(x), x)dµ(x) actually diverges, but that the corresponding one with another

quasi-invariant measure ν, equivalent to µσ, converges. In that case, one may still define

a useful family of vectors, called quasi-coherent states, as {ψ̃σ(x), x ∈ X}, which enjoy all

the nice properties of the coherent states (overcompleteness, resolution of a positive operator

Aσ, reproducing kernel), but not covariance. In this case, there are no “true” coherent states

associated with the section σ and the given representation π.

All this formalism can be used for the construction of wavelets on some manifolds and

the reproduction formulae obtained are on the basis of the theory of coorbit spaces (see [25],

[26], [24]).





Chapter 2

The Lorentz group Spin+(1, n)

In physics, the Lorentz group is the classical setting for all (nongravitational) physical phe-

nomena. The mathematical form of the kinematical laws of special relativity, Maxwell’s field

equations in the theory of electromagnetics and Dirac’s equation in the theory of the electron

are each invariant under Lorentz transformations. Therefore, the Lorentz group can be said

to express a fundamental symmetry of many of the known fundamental laws of nature.

The Lorentz group is a subgroup of the Poincaré group, the group of all isometries of

the Minkowski spacetime. The Lorentz transformations are precisely the isometries which

leave the origin fixed. Thus, the Lorentz group is an isotropy subgroup of the isometry

group of Minkowski spacetime. For this reason, the Lorentz group is sometimes called the

homogeneous Lorentz group while the Poincaré group is called the inhomogeneous Lorentz

group.

This chapter is devoted to the study of the proper Lorentz group Spin+(1, n), which is

the symmetry group of conformal geometry on the unit sphere. First, we will introduce

the subject of Clifford Algebras. Of special importance are the Clifford group Γ(p, q), the

Pin(p, q) and Spin(p, q) groups. In Section 2.2 we will describe Möbius transformations in

Rp,q through 2× 2 Clifford valued matrices. This is the starting point for the derivation of

the conformal group of the unit ball in Rn. We will study some decompositions of the group

Spin+(1, n), namely its decomposition in terms of rotations of the form Rs(x) := sxs, s ∈
Spin(n) and of Möbius transformations of the form ϕa(x) := (x − a)(1 + ax)−1, a ∈ Bn,

together with its Cartan decomposition. The introduction of the structure of gyrogroup

in Section 2.6 allow us to understand the algebraic structure behind this decomposition.

From the definition of the gyro-subgroups (Dn−1
ω ,⊕) and (Lω,⊕) we factorize the gyrogroup

(Bn,⊕) and we define global and local sections for the unit ball. These sections are then

19
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extended to the proper Lorentz group. In Section 2.11 we compare the algebraic structure

of Spin+(1, n) with the algebraic structure of the group of automorphisms of the unit disc

in C. In Section 2.12 we will consider the particular case of n = 3 and we establish the

relationship between (B3,⊕) and SL(2,C), which is then generalized (in a non-trivial way)

in Section 2.13. Finally, we will end this chapter with some integration’s formulae regarding

the Lorentz group Spin+(1, n).

2.1 Real Clifford algebras

2.1.1 Definitions and basic properties

Let Rp,q be the real n−dimensional space, where n = p+q, endowed with the nondegenerate

bilinear symmetric form B(·, ·) of signature (p, q). We assume that an orthonormal basis

e1, . . . , en is given, such that

B(ei, ei) = −1, i = 1, . . . , p

B(ei, ei) = 1, i = p + 1, . . . , n

B(ei, ej) = 0, i 6= j.

We noticed that with this notation the Euclidean space with standard inner product is

written as R0,n (which sometimes will be abbreviated to Rn).

The real Clifford algebra over Rp,q will be denoted by Rp,q. It is the free algebra generated

by the scalar identity 1 and the ei’s modulo the relations

eiej + ejei = −2B(ei, ej), (2.1)

which means that we have as multiplication rules

e2
i = +1, i = 1, . . . , p

e2
i = −1, i = p + 1, . . . , n

eiej = −ejei, i 6= j.

The last relation shows the noncommutative character of this algebra. Elements of Rp,q

are called Clifford numbers. Take now a product of basic vectors ei1 . . . eis . As ei and ej

anticommute if i 6= j it is possible to rearrange the factors in this product to obtain a

product of the form ±ej1 , . . . ejs where j1 ≤ . . . ≤ js. On the other hand e2
i = ±1, and so

the product can be reduced (possibly up to the sign) to et1 . . . etk , where t1 < . . . < tk.

The set of all eA = et1 . . . etk , where A = {t1, . . . , tk} ⊂ N = {1, . . . , n} for 1 ≤ t1 <

. . . < tk ≤ n and e∅ = 1 forms a basis for the real Clifford algebra Rp,q. The algebra is

universal if its dimension over R is equal to 2n.
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If A has k elements, then eA is called a k−vector. Any linear combination of k−vectors
is called a k−vector, and the vector space of k−vectors is written as Rk

p,q. Then Rp,q =
⊕

k≤nRk
p,q and the projection of a Clifford number a on Rk

p,q will be denoted by [a]k. Instead

of 1−vectors the term vectors is used. Also the term bivectors is used for 2−vectors. The

n−vector e1 . . . en is called the pseudoscalar.

The product of two vectors is sometimes called the geometric product and it is decom-

posed in symmetric and antisymmetric parts, accordingly to

xy =
1
2
(xy + yx) +

1
2
(xy − yx). (2.2)

Thus, we define a inner product (〈·, ·〉) and a wedge product (∧) by

〈x, y〉 =
1
2
(xy + yx) = −B(x, y) =

p∑

i=1

xiyi −
p+q∑

i=p+1

xiyi

and

x ∧ y =
1
2
(xy − yx) =

∑

i<j

(xiyj − xjyi)eiej .

The inner and wedge products can be extended to the whole algebra Rp,q. For our

purpose we only need these definitions since all the arguments are vector valued.

If 〈x, y〉 = 0 (resp. x∧ y = 0) then we say that the vector x is orthogonal (resp. parallel)

to the vector y. Therefore, if the vector x is orthogonal to the vector y then xy = −yx, while

if the vector x is parallel to the vector y then xy = yx. By (2.2), x2 = 〈x, x〉 is real for any
vector x and the vector x, as an element of the Clifford algebra, is then invertible if and only

if x2 6= 0. In this case x−1 = −x
|x|2 , while if x2 = 0 then either x is zero or it is a zero divisor

and hence not invertible.

There are two linear anti-automorphisms (reversion and conjugation) and a linear auto-

morphism (main involution) defined on the Clifford algebra Rp,q :

- the main involution is defined by

e′i = −ei, 1′ = 1, (i = 1, . . . , n), (ab)′ = a′b′, ∀ a, b ∈ Rp,q;

- the reversion is defined by

e∗i = ei, 1∗ = 1, (i = 1, . . . , n), (ab)∗ = b∗a∗, ∀ a, b ∈ Rp,q;

- the conjugation is defined by

ei = −ei, 1 = 1, (i = 1, . . . , n), ab = b a, ∀ a, b ∈ Rp,q.
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We remark that x = (x′)∗ = (x∗)′, ∀x ∈ Rp,q. From the definition we can derive the action

on the basis elements eA = et1 . . . etk , 1 ≤ t1 < . . . < tk ≤ n by the rule:

(eA)′ = (−1)keA, (eA)∗ = (−1)
k(k−1)

2 eA, eA = (−1)
k(k+1)

2 eA.

In particular, for a vector x we have x = x′ = −x and x∗ = x.

2.1.2 Some groups in Clifford algebra

The set of linear mappings T : Rp,q → Rp,q preserving the bilinear form B, i.e. for which

B(Tx, Ty) = B(x, y), for all x, y ∈ Rp,q, forms a group under the operation of composition,

called the pseudo-orthogonal group of Rp,q and denoted by O(p, q). Alternatively, O(p, q)

may be considered as the set of those invertible n × n matrices Q satisfying QT AQ = A,

where A = (ai,j) is the matrix of B relative to the standard orthonormal basis of Rp,q.

The subgroup of O(p, q) consisting of those Q having determinant 1 is called the group

of special orthogonal transformations or rotations of Rp,q and is denoted by SO(p, q). The

elements O(p, q)\SO(p, q) are called antirotations. For any p, q, the groups O(p, q) and

O(q, p) are isomorphic, as are the groups SO(p, q) and SO(q, p).

Clifford algebras allow us to construct two-fold covering groups for the orthogonal groups

and for the rotation groups in particular.

The even subalgebra R+
p,q is the set of all Clifford numbers a such that a = a′. Alterna-

tively, it can be defined as the subalgebra generated by all finite products of even number of

vectors. In Clifford algebra the following groups are of special interest:

- The Clifford group Γ(p, q), sometimes called the Lipschitz group. It is generated, as a

multiplicative group, by all finite products of invertible vectors:

Γ(p, q) =

{
k∏

i=1

si : si ∈ Rp,q, s2
i 6= 0, i = 1, . . . , k, k ∈ N

}
. (2.3)

The even Clifford group Γ+(p, q) arises as a subgroup of Γ(p, q)

Γ+(p, q) = Γ(p, q) ∩ R+
p,q.

- The Pin group Pin(p, q) is the group generated by all finite products of unit vectors,

i.e. vectors x such that x2 = ±1 :

Pin(p, q) = {s ∈ Γ(p, q) : ss = ±1}.
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We define the Pin plus group Pin+(p, q) as a subgroup of Pin(p, q) :

Pin+(p, q) = {s ∈ Γ(p, q) : ss = +1}.

For p = 0, Pin+(0, n) = Pin(0, n).

- The Spin group Spin(p, q) is the subgroup arising from the intersection of Pin(p, q)

with R+
p,q. Hence, it consists on all finite products of an even numbers of invertible unit

vectors:

Spin(p, q) = {s ∈ Γ+(p, q) : ss = ±1} = Pin(p, q) ∩ R+
p,q.

Analogously we define the group Spin+(p, q) as a subgroup of Spin(p, q) :

Spin+(p, q) = {s ∈ Γ+(p, q) : ss = +1} = Pin+(p, q) ∩ R+
p,q.

Spin+(p, q) is a two fold covering group of SO+(p, q) (also denoted by SO0(p, q)), which

in its turn is the identity component of SO(p, q), called the proper Lorentz group of Rp,q. It

is related with the preservation of the orientation of the time axes.

For example, in the space-time R1,3 the orthogonal group O(1, 3) is called the Lorentz

group, its elements being called Lorentz transformations. The proper Lorentz group SO+(1, 3)

is also called the Lorentz rotation group.

If p = 0 we often use the notations Γ(n), etc. instead of Γ(0, n), etc., in analogy with

the short notation Rn for R0,n. In Rn, any non-zero vector is invertible and hence the groups

Γ(n), Pin(n) and Spin(n) have a simple description. For example

Pin(n) =

{
k∏

i=1

wi : wi ∈ Sn−1, k ∈ N
}

and

Spin(n) =

{
2k∏

i=1

wi : wi ∈ Sn−1, k ∈ N
}

,

where Sn−1 denotes the (n− 1)−sphere embedded in Rn. It should be noticed that for any

element of the Clifford group we have the relations

a′ = a and a = a∗ if a ∈ R+
p,q,

and

a′ = −a and a = −a∗ otherwise.

To see that Pin(p, q) gives a double covering group of O(p, q) we define for every element

s of the Pin group a transformation of Rp,q into Rp,q by χ(s)x = sxs′−1. This defines a group
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homomorphism satisfying χ(s1)χ(s2) = χ(s1s2). Hence we restrict ourselves to the action

χ(s), where s ∈ Rp,q ∩ Γ(p, q). A vector x can be split into a part λs parallel to the vector

s (λ real), and a part x⊥ orthogonal to s and hence anticommunting with s. Since s′ = −s

we obtain

χ(s)x = sxs′−1 = −s(λs + x⊥)s−1

= −λs(ss−1) + x⊥(ss−1)

= −λs + x⊥.

Thus, χ(s)x describes the orthogonal reflection of x with respect to the hyperplane

orthogonal to s, and therefore, for any s ∈ Pin(p, q), χ(s) is an orthogonal transformation.

As the kernel of this homomorphism is {−1, +1}, Pin(p, q) gives a double covering of the

orthogonal group O(p, q), while Spin(p, q) gives a double covering of the special orthogonal

group SO(p, q).

Lemma 2.1.1 If a or b belongs to Γ(p, q) then ab∗ and a∗b are simultaneously in Rp,q.

Proof: For every s ∈ Γ(p, q) the mapping χ(s)x = sxs′−1, x ∈ Rp,q is an orthogonal

transformation. Hence, sxs∗ and sxs ∈ Rp,q.

We suppose that a ∈ Γ(p, q) and b 6= 0. If ab∗ ∈ Rp,q then a∗(ab∗)a ∈ Rp,q. As a∗a =

±|a|2 6= 0 then b∗a ∈ Rp,q and thus, a∗b = (b∗a)∗ ∈ Rp,q.

If a∗b ∈ Rp,q then a(a∗b)a∗ = (aa∗)(ba∗) ∈ Rp,q, hence ba∗ ∈ Rp,q and ab∗ = (ba∗)∗ ∈ Rp,q.

Analogous reasoning is valid if b ∈ Γ(p, q) and a 6= 0.

For more details about Clifford Algebras we refer e.g. to [28] and [22].

2.2 Möbius transformations in Rp,q

Möbius transformations on a space Rp,q, p + q ≥ 3, are the only conformal mappings of Rp,q

which map spheres onto spheres.

The equation of a sphere s in Rp,q with center m and radius τ (where τ2 is real, but not

necessarily positive) can be written as B(y −m, y −m) = τ2 or

−y2 − 2B(y, m) + (−m2 − τ2) = 0.

We call s a positive or negative sphere according to whether τ2 is positive or negative.

If τ2 = 0 we have a zero sphere.
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The group of Möbius transformations in Rp,q will be denoted by M(p, q), while the

group of sense preserving Möbius transformations is denoted by M+(p, q). It is well known

that the orthogonal group O(p + 1, q + 1) gives a double covering of M(p, q). In Clifford

algebra the use of 2 × 2 Clifford valued matrices to describe Möbius transformations was

proposed by Vahlen in 1902, [74]. Ahlfors rediscovered these matrices in 1986 and made an

important study from the point of view of differential geometry [1]. A complete geometrical

relation between M(p, q) and Pin(p + 1, q + 1) was given by Fillmore and Springer with

a characterization of matrices in the Pin(p + 1, q + 1) group [35]. The nice feature of this

approach is that the projective space over Rp+1,q+1 is identified with the set of spheres of

Rp,q.

The construction is based on an algebra isomorphism between the Clifford algebraRp+1,q+1

and the algebra (Rp,q)2×2 of 2 × 2 matrices with entries in Rp,q (see [22] for the details of

the construction).

Each sphere s in Rp,q with center m and radius τ is associated with a ray of matrices by

the mapping

T : {y | B(y −m, y −m) = τ2} 7→ λ

(
m −m2 − r2

1 −m

)
.

A point x ∈ Rn is associated with a zero radius sphere with center x and thus it is

represented by the matrix

(
x −x2

1 x

)
.

The following theorems characterize the groups Γ(1, n + 1) and Γ(p + 1, q + 1) (see [21]):

Theorem 2.2.1 (Vahlen) A matrix A =

(
a b

c d

)
represents a Möbius transformation in

Rn if and only if

1. a, b, c, d ∈ Γ(n) ∪ {0};

2. ab∗, cd∗, c∗a, d∗b ∈ Rn;

3. the pseudodeterminant of A, λ = ad∗ − bc∗, is real and non zero.

Theorem 2.2.2 The Clifford group Γ(p + 1, q + 1) coincides with the set of matrices

A =

(
a b

c d

)
satisfying

(i) a, b, c, d ∈ T (p, q), where T (p, q) is the set of all products of vectors in Rp,q;

(ii) bd∗, ac∗, a∗b, c∗d ∈ Rp,q;
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(iii) the pseudodeterminant of A, λ = ad∗ − bc∗ is real and non-zero.

Then Möbius transformations in Rp,q corresponds to the orthogonal rotations in the

projective space PRp+1,q+1 by the mapping

g : s 7→ AsA
′−1, (2.4)

(
m −m2 − r2

1 −m

)
7→

(
a b

c d

)(
m −m2 − r2

1 −m

)(
d b

c a

)
.

We can write a Möbius transformation as a fractional linear transformation:

ϕ(x) =
ax + b

cx + d
:= (ax + b)(cx + d)−1.

Remark 2.2.3 In a non-commutative algebra setting the ambiguous notation a
b always means

ab−1. Consequently ac
bc = a

b but ca
cb 6= a

b in general.

2.3 Conformal group of the unit ball

Theorem 2.3.1 The groupM(Bn) of all conformal mappings of the unit ball Bn onto itself

admits the matricial representation
(

u v′

v u′

)
, u, v ∈ Γ(n) ∪ {0}, uv∗ ∈ Rn, |u|2 − |v|2 = 1. (2.5)

Its inverse is

(
u v′

v u′

)−1

=

(
u −v

−v∗ u∗

)
.

Proof: As the unit sphere Sn−1 corresponds to the matrix s =

(
0 −1

1 0

)
we have to

verify that matrices (2.5) preserve s by the action described in (2.4). Indeed,
(

u v′

v u′

) (
0 −1

1 0

)(
u∗ v∗

v u

)
=

(
v′ −u

u′ −v

)(
u∗ v∗

v u

)
=

(
0 −1

1 0

)
,

and thus the corresponding Möbius transformations preserve the unit sphere. Finally, to see

that they preserve the unit ball we observe that we can associate to the matrix (2.5) the

transformation φ(x) = (ux + v′)(vx + u′)−1 and therefore, it satisfies |ϕ(0)| = | v′u′ | = |v|
|u| < 1

by the constraint |u|2 − |v|2 = 1.
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We remark that M(Bn) can be identified with the group Pin+(1, n) via the matrix

representation (2.5)(see [22]). The constraint |u|2−|v|2 = 1 makes the representation (2.5) of

M(Bn) somewhat difficult to use. However, we can identify the unit ball with the right coset

Pin(n)\M(Bn) and therefore,M(Bn) ∼ Pin(n)×Bn. We have the following decomposition:

(
u v′

v u′

)
= |u|




u
|u| 0

0 u′
|u|





 1 u

|u|2 v′

u∗
|u|2 v 1




= 1√
1−|a|2

(
w 0

0 w′

)(
1 a′

a 1

)
,

(2.6)

where

w =
u

|u| , a =
u∗

|u|2 v,
√

1− |a|2 = |u|−1. (2.7)

As uv∗ ∈ Rn we conclude that u∗v ∈ Rn by Lemma 2.1.1 and therefore a ∈ Rn. Moreover,

|a|2 = |v|2
|u|2 < 1, since |u|2 > |v|2.

For a ∈ Bn and w ∈ Pin(n), we shall denote by ϕ(a,ω)(x) the transformations associated

with the matrix representation

1√
1− |a|2

(
w 0

0 w′

)(
1 a′

a 1

)
=

1√
1− |a|2

(
w wa′

w′a w′

)
. (2.8)

These transformations constitute the group M(Bn).

Lemma 2.3.2 The following commutation relation holds
(

w 0

0 w′

)(
1 a′

a 1

)
=

(
1 wa′w∗

w′aw 1

)(
w 0

0 w′

)
.

Moreover, w′aw = waw∗, for all a ∈ Bn and w ∈ Pin(n).

Proof: As w ∈ Pin(n) then ww = 1, and w∗w′ = (ww)′ = 1. Hence,
(

1 wa′w∗

w′aw 1

)(
w 0

0 w′

)
=

(
w wa′w∗w′

w′aww w′

)
=

(
w 0

0 w′

)(
1 a′

a 1

)
.

If w ∈ Spin(n) = Pin(n) ∩ R+
0,n, where R+

0,n denotes the even subalgebra of R0,n, then

w′ = w and hence w∗ = w′ = w. If w ∈ Pin(n)\Spin(n) then w′ = −w and hence w∗ = w′ =

−w. In both cases the relation w′aw = waw∗ holds.
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Theorem 2.3.3 The product of two elements of Pin+(1, n) yields again an element of

Pin+(1, n) :

1√
1− |a|2

1√
1− |b|2

(
w1 0

0 w′1

) (
1 a′

a 1

)(
w2 0

0 w′2

)(
1 b′

b 1

)

=
1√

1− |y|2

(
w1w2z 0

0 (w1w2z)′

)(
1 y′

y 1

)
,

where y = (1− w∗2aw2b)−1(w∗2aw2 + b) and z = 1−w∗2aw2b
|1−w∗2aw2b| .

Proof: By Lemma 2.3.2 we have
(

w1 0

0 w′1

)(
1 a′

a 1

)(
w2 0

0 w′2

)(
1 b′

b 1

)
=

=

(
w1 0

0 w′1

)(
1 a′

a 1

)(
1 w2b

′w∗2
w′2bw2 1

)(
1 b′

b 1

)

=

(
w1 0

0 w′1

)
t

(
1 t−1(w2b

′w∗2 + a′)

t−1(a + w′2bw2) t−1(aw2b
′w∗2 + 1)

)(
w2 0

0 w′2

)
,

where t = 1 + a′w′2bw2.

As a and b are vectors, a′ = a = −a∗ = −a and b′ = b = −b∗ = −b. Using also the

relation w′2bw2 = w2bw
∗
2, we can make the following simplifications

(1 + a′w′2bw2)−1(aw2b
′w∗2 + 1) = (1− aw2bw

∗
2)
−1(−aw2bw

∗
2 + 1) = 1,

(1 + a′w′2bw2)−1(w2b
′w∗2 + a′) = w2(w2 − aw′2b)

−1(−w2b− aw′2)w
∗
2

= w2(1− w2aw′2b)
−1w−1

2 w2(−b− w2aw′2)w
∗
2

= w2xw∗2,

(1 + a′w′2bw2)−1(a + w′2bw2) = (1− aw2bw
∗
2)
−1(a + w′2bw2)

= w′2(w
′
2 − aw2b)−1(aw2 + w′2b)w2

= w′2(1− w∗2aw2b)−1w′−1
2 w′2(w

∗
2aw2 + b)w2

= w2yw∗2,

with x = (1 − w2aw′2b)
−1(−b − w2aw′2) and y = (1 − w∗2aw2b)−1(w∗2aw2 + b). It is easy to

see that x = y′.
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Therefore, the product of the four initial matrices is equal to
(

w1 0

0 w′1

)
(1 + a′w′2bw2)

(
1 w2y

′w∗2
w2yw∗2 1

)(
w2 0

0 w′2

)

=

(
w1 0

0 w′1

)
(1 + a′w′2bw2)

(
w2 0

0 w′2

)(
1 y′

y 1

)

=

(
w1(1 + a′w′2bw2)w2 0

0 w′1(1 + a′w′2bw2)w′2

)(
1 y′

y 1

)

=

(
w1w2(1− w∗2aw2b) 0

0 w′1w
′
2(1− w2aw′2b)

)(
1 y′

y 1

)
.

We note that w′2 = εw2, where ε = +1 if w2 ∈ Spin(n) and ε = −1 if w2 ∈ Pin(n)\Spin(n).

Hence, w′1(1 + a′w′2bw2)w′2 = w′1w2(1 + w2a
′w′2b)ε = w′1w

′
2(1− w2aw′2b).

To finish the proof we need to calculate the product of the factors (1 − |a|2)−1/2 and

(1− |b|2)−1/2 in terms of the variable y. We remark that y = (1−w∗2aw2b)−1(w∗2aw2 + b) =

ϕ−b(w∗2aw2) (see Lemma 2.5.3). By the relation

1− |ϕa(x)|2
1− |x|2 =

1− |a|2
|1 + ax|2

we obtain

1− |y|2 = 1− |ϕ−b(w∗2aw2)|2 =
(1− |w∗2aw2|2)(1− |b|2)

|1− bw∗2aw2|2
or

(1− |a|2)−1/2(1− |b|2)−1/2 = (1− |y|2)−1/2|1− bw∗2aw2|−1.

Combining all the results yields

1√
1− |a|2

1√
1− |b|2

(
w1 0

0 w′1

) (
1 a′

a 1

)(
w2 0

0 w′2

)(
1 b′

b 1

)
=

=
1√

1− |y|2

(
w1w2z 0

0 (w1w2z)′

)(
1 y′

y 1

)
,

where y = (1− w∗2aw2b)−1(w∗2aw2 + b) and z = 1−w∗2aw2b
|1−w∗2aw2b| .
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Corollary 2.3.4 The following relations hold:

1. ϕ(w1,0)ϕ(w2,0) = ϕ(w1w2,0);

2. ϕ(1,a)ϕ(1,b) = ϕ(w,c), where w = 1−ab
|1−ab| and c = (1− ab−1)(a + b);

3. ϕ(1,a)ϕ(1,−a) = I, thus ϕ−1
(1,a) = ϕ(1,−a);

4. ϕ−1
(1,a)(0) = a and ϕ−1

(1,a)(−a) = 0.

Definition 2.3.5 For w1, w2 ∈ Pin(n) and a, b ∈ Bn we define the product

(w1, a)(w2, b) = (w1w2
1− w∗2aw2b

|1− w∗2aw2b| , (1− w∗2aw2b)−1(w∗2aw2 + b)). (2.9)

Remark 2.3.6 Similarly, if we consider M(Bn) ∼ Bn × Pin(n), i.e. we identify the open

unit ball Bn with the left cosets M(Bn)/Pin(n), this product can be written as

(a,w1)(b, w2) = ((w1bw
∗
1 + a)(1− aw1bw

∗
1)
−1,

1− aw1bw
∗
1

|1− aw1bw∗1|
w1w2). (2.10)

As we can see, the unit ball Bn is a homogeneous space. In Section 2.6 we will see that

it has also an algebraic structure.

2.4 Cartan or KAK decomposition

The decomposition (2.6) is the polar decomposition of a unimodular matrix onto the product

of its Hermitian and orthogonal parts. It is a special case of the global Cartan decomposition

of a Lie group associated with a Riemannian symmetric space of noncompact type (see

[47]). From now on we will restrict ourselves to conformal mappings which are space and

time preserving, i.e. proper orthochronous Lorentz transformations. This means that we

will restrict to the subgroup Spin+(1, n), which is a double covering group of the proper

orthochronous Lorentz group SO+(1, n). We will derive the KAK decomposition for the

proper Lorentz group Spin+(1, n), where K is the maximal compact subgroup Spin(n), and

A = Spin(1, 1), which is a double covering of SO(1, 1).

Lemma 2.4.1 Each a ∈ Bn can be described as

a = srens (2.11)

where r ∈ [0, 1[ and s = s1 . . . sn−1 ∈ Spin(n), with

si = cos
θi

2
+ ei+1ei sin

θi

2
, i = 1, . . . , n− 1,

where 0 ≤ θ1 < 2π 0 ≤ θi < π, i = 2, . . . , n− 1, and θn−1 := φ,
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This follows from the description of a ∈ Bn in spherical coordinates

a :





a1 = r sin θ1 sin θ2 · · · sin θn−2 sinφ

a2 = r cos θ1 sin θ2 · · · sin θn−2 sinφ

a3 = r cos θ2 sin θ3 · · · sin θn−2 sinφ
...

an−1 = r cos θn−2 sinφ

an = r cosφ

(2.12)

using the rotors eei+1ei
θi
2 = cos

(
θi
2

)
+ ei+1ei sin

(
θi
2

)
, i = 1, . . . , n − 1. For s = cos

(
θ
2

)
+

eiej sin
(

θ
2

)
, i 6= j we have

sxs = (cos θ xi − sin θ xj)ei + (cos θ xj + sin θ xi)ej +
n∑

k = 1
k 6= i, j

xkek,

which represents a rotation of angle θ in the ei+1ei−plane. In general we have sisj 6= sjsi,

i 6= j. The order of the rotors is important since different choices leads to different systems

of coordinates. Due to the relevance of the rotor sn−1 we shall denote θn−1 := φ.

Remark 2.4.2 From now on we will denote by s∗ the product s1 · · · sn−2. It is an element of

Spin(n− 1) and it leaves the xn−axis invariant. This is due to the decomposition Spin(n)/

Spin(n− 1) ∼= Sn−1, where Spin(n− 1) is the stabilizer of the vector en = (0, . . . , 0, 1). The

symbol "s" usually will denote an element of Spin(n).

Since a ∈ Bn, a′ = a = −a. By Lemma 2.4.1 we have the following decomposition
(

1 −a

a 1

)
=

(
1 −srens

srens 1

)
=

(
s 0

0 s

)(
1 −ren

ren 1

)(
s 0

0 s

)
(2.13)

and hence, the global Cartan decomposition or KAK decomposition for an arbitrary element

of Spin+(1, n) is
(

u v′

v u′

)
=

1√
1− r2

(
ws 0

0 w′s

)(
1 −ren

ren 1

)(
s 0

0 s

)
. (2.14)

It remains to show that the second matrix on the left hand side of (2.14) corresponds to

the subgroup Spin(1, 1) of hyperbolic rotations. For that purpose we will use the hyperbolic

model of space-time in Clifford Analysis (see [20], [22]).

We consider the Minkowski space R1,n and its associated Clifford algebra R1,n, together

with the special identification ε := en+1, the vector that spans the time axis.
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A pure boost in the direction ω ∈ Sn−1 (or hyperbolic rotation) is viewed as a transfor-

mation B(ω) which belongs to the Lie algebra generated by the bivectors of the form εω. It

has the general form

sω = cosh
α

2
+ εω sinh

α

2
, α ∈ R, ω ∈ Sn−1 (2.15)

and it acts on space-time vectors X = x + tε, with x ∈ Rn, t ∈ R, according to the

transformations rules X 7→ Y = sωXsω, and on functions via the (Spin-invariant) L or

H−representations

F (X) 7→ L(sω)F (X) = sωF (sωXsω)

F (X) 7→ H(sω)F (X) = sωF (sωXsω)sω.

Proposition 2.4.3 Let x =
∑n

i=1 xiei ∈ Sn−1. The boost sωxsω yields the point ζ ∈ Sn−1 :

ζ =
x + ((coshα− 1) 〈ω, x〉 − sinhα)ω

coshα− sinhα 〈x, ω〉 . (2.16)

Proof: We extend the point x to the Minkowski space R1,n by considering the point

X = x + ε in the intersection of the Null Cone with the hyperplane T = 1. Since εω = −εω,

εx = −xε and ε2 = +1, we obtain

sωXsω =
(
cosh

α

2
+ εω sinh

α

2

)
(x + ε)

(
cosh

α

2
− εω sinh

α

2

)

= cosh2
(α

2

)
x + cosh

(α

2

)
sinh

(α

2

)
(xω + ωx)ε +

(
cosh2 α

2
+ sinh2 α

2

)
ε

−2 sinh
(α

2

)
cosh

(α

2

)
ω − sinh2

(α

2

)
ωxω.

As

ωxω = (−〈ω, x〉+
1
2
(ωx− xω))ω = −〈ω, x〉ω +

1
2
ωxω +

1
2
|w|2x

we conclude that ωxω = −2 〈ω, x〉ω + x. Moreover, xω + ωx = −2 〈ω, x〉 . Therefore,

Y = sωXsω = x +
(
2 sinh2

(α

2

)
〈ω, x〉 − sinhα

)
ω + (cosh α− sinhα 〈ω, x〉)ε

= x + ((coshα− 1) 〈ω, x〉 − sinhα)ω + (cosh α− sinhα 〈ω, x〉)ε.

By homogeneity, i.e. by restricting this point to the hyperplane T = 1 we obtain the desired

result:

ξ =
x + ((coshα− 1) 〈ω, x〉 − sinhα)ω

coshα− sinhα 〈ω, x〉 .

By some algebraic manipulations we can easily prove that ξ ∈ Sn−1.
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Corollary 2.4.4 The fixed points of the transformation (2.16) are ω and −ω.

Remark 2.4.5 A pure boost B(ω) can always be described as the composition R(en, ω) ◦
B(en)◦R(ω, en), where R(ω, x) stands for the rotation which maps ω ∈ Sn−1 into x ∈ Sn−1.

Indeed, by Lemma 2.4.1 we can write ω = sens. Since εs = sε then we have sω = ssens (here

sen is the boost in the en−direction). Hence sωXsω = ssensXssen s. This is the equivalent

description of the KAK decomposition of the group SO0(1, n) by matrices, presented in [67],

considering α ∈ R+.

We will consider the subgroup Spin(1, 1) as the subgroup of Lorentz boosts in the

en−direction. In this case Formula (2.16) takes a simpler expression:

senxsen =
n−1∑

i=1

xi

coshα− sinhα xn
ei +

coshα xn − sinhα

coshα− sinhα xn
en. (2.17)

Instead of working with matrices of the form (2.6) we will consider the transformations:

- Rs(x) := sxs, s ∈ Spin(n) denotes a rotation in Rn;

- ϕa(x) := (x− a)(1 + ax)−1, a ∈ Bn is a Möbius transformation.

As an immediate consequence of the KAK decomposition of Spin+(1, n) we obtain the

polar decomposition of ϕa.

Lemma 2.4.6 For a = srens, (c.f. Lemma 2.4.1) we have

ϕa(x) = ϕsrens(x) = sϕren(sxs)s. (2.18)

Thus, a Möbius transformation ϕa can be described by a Möbius transformation ϕren ,

where ren is a point belonging to the intersection of the unit ball with the positive xn−axis
and a convenient rotation induced by s.

This decomposition is not unique (and, therefore, neither it is the Cartan decomposition).

The centralizer C of A = Spin(1, 1) in K = Spin(n), i.e.

C = {s ∈ Spin(n) : sϕren(x)s = ϕren(sxs)},

corresponds to the subgroup Spin(n − 1) of rotations around the xn−axis. Thus, if s1 ∈ C

and a = srens then

ss1ϕren(ss1xss1)ss1 = ϕss1rens1 s(x) = ϕsrens(x) = ϕa(x)

which shows that

ϕa(x) = sϕren(sxs)s = ss1ϕren(s1 sxss1)s1 s.
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Therefore, only the rotation sn−1 = cos φ
2 + enen−1 sin φ

2 affects the operator ϕren . This

is very important for the study of a local dilation on the unit sphere Sn−1. In Chapter 4

we study how the parameters r and φ do influence local dilations around the North Pole of

Sn−1.

Now we show that there is an isomorphism between the subgroup of Lorentz boosts in a

fixed direction ω ∈ Sn−1 and the subgroup of Möbius transformations ϕa, for a = tω, with

t ∈]− 1, 1[.

For the following we need to know the component functions of ϕa.

Proposition 2.4.7 If x ∈ Bn then

ϕa(x) =
(1− |a|2)x− (1 + |x|2 − 2 〈a, x〉)a

1− 2 〈a, x〉+ |a|2|x|2 . (2.19)

Moreover, if x ∈ Sn−1 we obtain

ϕa(x) =
(1− |a|2)x− 2(1− 〈a, x〉)a

1− 2 〈a, x〉+ |a|2 . (2.20)

Proof: Consider x ∈ Bn. Then

ϕa(x) = (x− a)(1 + ax)−1 =
(x− a)(1 + xa)

|1 + ax|2 =
x− |x|2a− a− axa

1− 2 〈a, x〉+ |a|2|x|2

As

axa = (−〈a, x〉+
1
2
(ax− xa))a = −〈a, x〉 a +

1
2
axa +

1
2
|a|2x

we conclude that axa = −2 〈a, x〉 a + |a|2x. Thus, we obtain

ϕa(x) =
(1− |a|2)x− (1 + |x|2 − 2 〈a, x〉)a

1− 2 〈a, x〉+ |a|2|x|2 .

If x ∈ Sn−1, then |x|2 = 1 and we obtain the expression (2.20).

Now we can relate transformations (2.16) and (2.20).

Proposition 2.4.8 ([22]) We assume, in (2.20), a = tω, with −1 < t < 1 and ω ∈ Sn−1.

Then transformations (2.16) and (2.20) are related by

coshα =
1 + t2

1− t2
and sinhα =

2t

1− t2
(2.21)

α = ln
(

1 + t

1− t

)
and t =

eα − 1
eα + 1

= tanh
(α

2

)
. (2.22)
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Proof: If x ∈ Sn−1 and a = tω then

ϕtω(x) =
(1− t2)x− 2(1− t 〈ω, x〉)tω

1− 2t 〈ω, x〉+ t2
=

x +
(

2t2

1−t2
〈ω, x〉 − 2t

1−t2

)
ω

1+t2

1−t2
− 2t

1−t2
〈ω, x〉 .

The result follows by comparing this expression with (2.16).

By this isomorphism it is easy to see that ϕten , with t ∈] − 1, 1[ corresponds to the

Spin(1, 1) group of hyperbolic rotations in the en−direction.
It is interesting to see the action of Spin(1, 1) on the tangent plane of Sn−1, at the North

Pole en = (0, . . . , 0, 1).

Lemma 2.4.9 In spherical coordinates the action of an element of Spin(1, 1) in the form

(2.15) (ω = en) on a given point x = x(θ1, . . . , θn−2, φ) ∈ Sn−1 is fully determined by

x 7→ xα = {(θj)α, φα}n−2
j=1 ,

where

(θj)α = θj , j = 1 . . . , n− 2, and tan
φα

2
= eα tan

φ

2
. (2.23)

Proof: If we consider x = (x1, . . . , xn) ∈ Sn−1 written in spherical coordinates as in

(2.12) then the relation between spherical and cartesian coordinates is given by

cos θk =
xk+1

rk+1
, sin θk =

rk

rk+1
, r2

k = x2
1 + . . . + x2

k, k = 1, . . . , n− 1,

with the identification θn−1 := φ. By (2.17) we obtain

(θj)α = θj , j = 1, . . . , n− 2, and

tan
φα

2
=

√
1− cosφα

1 + cosφα
=

√√√√1− cosh α xn−sinh α
cosh α−sinh α xn

1 + cosh α xn−sinh α
cosh α−sinh α xn

=

√
coshα + sinhα

coshα− sinhα

√
1− xn

1 + xn
.

Using the identities coshα = eα+e−α

2 and sinhα = eα−e−α

2 it follows that

tan
φα

2
= eα tan

φ

2
.
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Sometimes it is useful to consider the stereographic projection of Sn−1 onto its tangent

plane.

Definition 2.4.10 The stereographic projection of Sn−1 onto its tangent plane at the point

en = (0, . . . , 0, 1) is given by the mapping

Φ1 : Sn−1\{−en} → Rn−1

(x1, . . . , xn) 7→
(

2x1

1 + xn
, . . . ,

2xn−1

1 + xn

)
. (2.24)

The inverse mappig is given by

Φ−1
1 : Rn−1 → Sn−1\{−en}

(y1, . . . , yn−1) 7→
(

4y1

4 + r2
, . . . ,

4yn−1

4 + r2
,
4− r2

4 + r2

)
, (2.25)

with r2 = y2
1 + . . . + y2

n−1.

Remark 2.4.11 We will consider the stereographic projection mapping (2.24) since it is

commonly used in the literature about this subject (see [7] and [8]) and it gives a nice de-

scription between spherical wavelet theory and Euclidean wavelet theory. Considering differ-

ent projection mappings will alter some of the algebraic details and formulae but not change

the gist of the reasoning. In this thesis we will sometimes use the stereographic projection

mapping from the North Pole en to the hyperplane at the origin, given by

Φ2 : Sn−1\{en} → Rn−1

(x1, . . . , xn) 7→
(

x1

1− xn
, . . . ,

xn−1

1− xn

)
. (2.26)

Proposition 2.4.12 We have the intertwining relation

Φ1(ϕten(x)) =
1 + t

1− t
Φ1(x), (2.27)

with t ∈]− 1, 1[ and x ∈ Sn−1.

Proof: By (2.24) we have

r =

√
4(x2

1 + . . . + x2
n−1)

(1 + xn)2
= 2

√
1− xn

1 + xn
= 2 tan

φ

2
,

where r = ||Φ1(x)||. Thus, by (2.23) it follows rα = eαr. Finally by the isomorphism (2.22)

we have the following expansion factor rt = 1+t
1−tr.
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2.5 Properties of the automorphisms of the unit ball

In the previous section we considered the following transformations:

Rs(x) := sxs, s ∈ Spin(n) and ϕa(x) := (x− a)(1 + ax)−1, a ∈ Bn.

We will proceed by deducing the main properties of Möbius transformations ϕa and its

relations with rotations.

Proposition 2.5.1 The composition of two Möbius transformations of type ϕa is again a

Möbius transformation of the same type, up to a rotation:

(ϕa ◦ ϕb)(x) = q ϕc(x) q, with c = (1− ab)−1(a + b) and q =
1− ab

|1− ab| . (2.28)

Proof: If a = 0 then ϕa = Id. Hence, we assume a, b 6= 0. Then

(ϕa ◦ ϕb)(x) = ((x− b)(1 + bx)−1 − a)(1 + a(x− b)(1 + bx)−1)−1

= (x− b− a(1 + bx))(1 + bx)−1(1 + bx)(1 + bx + a(x− b))−1

= ((1− ab)x− (a + b))(1− ab + (a + b)x)−1

= (1− ab)(x− (1− ab)−1(a + b))(1 + (1− ab)−1(a + b)x)−1(1− ab)−1

=
1− ab

|a− b| (x− (1− ab)−1(a + b))(1 + (1− ab)−1(a + b)x)−1 1− ab

|1− ab|
Thus,

(ϕa ◦ ϕb)(x) = q ϕ(1−ab)−1(a+b)(x) q , with q =
1− ab

|1− ab| . (2.29)

As q = 1−ab
|1−ab| = a

|a|
(a−1−b)
|a−1−b| , if |a| 6= 0, then q is a product of two unit vectors, and

therefore, it is an element of Spin(n).

Definition 2.5.2 We denote by b ⊕ a := (1 − ab)−1(a + b) the symbol of the new Möbius

transformation and by gyr[a, b]c := 1−ab
|1−ab|c

1−ab
|1−ab| the action of the rotation induced by q.

We choose the notation b⊕ a because first we apply ϕb and only then we apply ϕa. We

will see on Section 2.6 that this structure will give rise to a left gyrogroup. The composition

of Möbius transformations is non commutative in general, hence b ⊕ a 6= a ⊕ b in general.

However, there are special cases in which the operation is commutative as we will see later.

Lemma 2.5.3 The symbol can be expressed as a Möbius transformation:

b⊕ a = (1− ab)−1(a + b) = (a + b)(1− ba)−1 = ϕ−b(a). (2.30)
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Proof: By simple calculations we have that

b⊕ a = (1− ab)−1(a + b) =
(1− ab)(a + b)
|1− ab|2 =

(1− ba)(a + b)
|1− ab|2 =

a + b− baa− bab

|1− ab|2 =

=
a + b− aab− bab

|1− ab|2 =
(a + b)(1− ab)
|1− ab|2 =

(a + b)(1− ba)
|1− ba|2 = (a + b)(1− ba)−1 = ϕ−b(a).

For every a, b ∈ Bn we have the following relation:

1− |b⊕ a|2 = 1− |ϕ−b(a)|2 =
(1− |a|2)(1− |b|2)

|1− ba|2 . (2.31)

Now we establish some properties involving Möbius transformations and rotations.

Lemma 2.5.4 For s ∈ Spin(n) and a ∈ Bn we have:

(i) ϕa(sxs) = sϕsas(x)s ; (2.32)

(ii) ϕa(x) = sϕsas(sxs)s ; (2.33)

(iii) sϕa(x)s = ϕsas(sxs) . (2.34)

Proof: By direct calculations we have

ϕa(sxs) = (sxs− a)(1− asxs)−1 = s(x− sas)ss(1− sasx)−1s = sϕsas(x)s,

which proves (i). By the change of variables y = sxs in (i) we obtain (ii). The equality (iii)

is easily deduced from (ii).

Corollary 2.5.5 For s ∈ Spin(n) and a, b ∈ Bn the following equalities hold:

(i) (sas)⊕ b = s(a⊕ (sbs)s ; (2.35)

(ii) a⊕ b = s((sas)⊕ sbs)s ; (2.36)

(iii) (sas)⊕ (sbs) = s(a⊕ b)s . (2.37)

The proof follows from (2.30) and Lemma 2.5.4.

The relation (2.37) defines a homomorphism of Spin(n) onto the groupoid (Bn,⊕). Each

ϕa can be naturally identified with a point a ∈ Bn and the composition of two Möbius

transformations ϕa ◦ ϕb can be identified with the operation b⊕ a.
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2.5.1 Non-commutativity of a⊕ b on Bn

Without loss of generality, we assume a, b ∈ Bn such that a, b 6= 0. If we switch the roles of

a and b in b ⊕ a = (a + b)(1 − ba)−1, the first term will remain the same, but the second

factor will transform to its conjugate and hence will not be the same unless ba is real. But

ba is real if and only if a and b are parallel. In that case ba = −〈b, a〉 . Thus b ⊕ a is equal

to a⊕ b if and only if the vectors a and b are parallel. In general we have

b⊕ a = (a + b)(1− ba)−1 = (b + a)(1− ab)−1(1− ab)(1− ba)−1 = (a⊕ b) R, (2.38)

where R = (1− ab)(1− ba)−1 is an element of Spin(n). To see this we note that

R =
(1− ab)(1− ab)

|1− ab|2 =
a

|a|
a−1 − b

|a−1 − b|
a

|a|
a−1 − b

|a−1 − b| , (2.39)

with a−1 = a/|a|2 = −a/|a|2. Thus R is an even product of unit vectors which proves that

it is an element of Spin(n). If a = t1ω and b = t2ω for some t1, t2 ∈] − 1, 1[ and ω ∈ Sn−1,

then R = 1.

We know that b ⊕ a and a ⊕ b are again points on Bn and |b ⊕ a| = |a ⊕ b|. Thus, the
multiplication of a⊕b by the Clifford number R defines a rotation of the vector a⊕b. Indeed,

the element q = 1−ab
|1−ab| ∈ Spin(n) is such that

b⊕ a = q (a⊕ b) q. (2.40)

In the case n = 3 we can easily characterize such rotation. The non-commutativity of

b⊕ a is given by an operator of rotation around the axis through the origin in the direction

b×a, by an angle β in the plane generated by b and a. Here b×a denotes the standard cross

product between the vectors a and b and the angle β is defined by tan(β/2) = − |b||a| sin θ
1+|b||a| cos θ ,

where θ is the angle between the vectors a and b. For details see [38].

For higher dimensions this rotation can also be characterized using the language of Clif-

ford algebras by a plane and an angle of rotation (see [73]).

2.5.2 Non-associativity of a⊕ b on Bn

We want to study the associative law for the operation ⊕ on Bn.

Proposition 2.5.6 The operation ⊕ satisfies the following relation

a⊕ (b⊕ c) = (a⊕ b)⊕ (qcq), with q =
1− ab

|1− ab| , (2.41)

for all a, b, c ∈ Bn.
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Proof: By the associativity of the composition of Möbius transformations we have on

the one hand

((ϕc ◦ ϕb) ◦ ϕa)(x) = ((q1ϕb⊕cq1) ◦ ϕa)(x)

= q1ϕb⊕c(ϕa(x))q1

= q1q2ϕa⊕(b⊕c)(x)q2 q1

= q1q2ϕa⊕(b⊕c)(x)q2 q1,

with q1 = 1−cb
|1−cb| and q2 = 1−(b⊕c)a

|1−(b⊕c)a| .

On the other hand we have

(ϕc ◦ (ϕb ◦ ϕa))(x) = (ϕc ◦ (q3ϕa⊕bq3))(x)

= ϕc(q3ϕa⊕b(x)q3)

= q3ϕq3cq3(ϕa⊕b(x))q3

= q3q4ϕ(a⊕b)⊕(q3cq3)(x)q4 q3,

with q3 = 1−ba
|1−ba| and q4 = 1−(q3cq3)(a⊕b)

|1−(q3cq3)(a⊕b)| .

Thus,

q1q2 = q3q4 and a⊕ (b⊕ c) = (a⊕ b)⊕ (qcq), with q =
1− ab

|1− ab| . (2.42)

Indeed, by direct calculations we have that

q1q2 =
1− cb− ca− ba

|1− cb− ca− ba| = q3q4

a⊕ (b⊕ c) = (1− (b⊕ c)a)−1(b⊕ c + a)

= (1− (1− cb)−1(c + b)a)−1((1− cb)−1(c + b) + a)

= (1− cb− (c + b)a)−1(1− cb)(1− cb)−1(c + b + (1− cb)a)

= (1− cb− ca− ba)−1(c + b + a− cba);

(a⊕ b)⊕ (q3cq3) = (1− q3cq3(a⊕ b))−1(q3cq3 + a⊕ b)

= (1− (1− ba)−1c(1− ba)(1− ba)−1(b + a))−1

((1− ba)−1c(1− ba) + (1− ba)−1(b + a))

= (1− ba− c(b + a))−1(1− ba)(1− ba)−1(c(1− ba) + b + a)

= (1− ba− cb− ca)−1(c− cba + b + a).
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Corollary 2.5.7 For all a, b, c ∈ Bn the operation ⊕ satisfies

(a⊕ b)⊕ c = a⊕ (b⊕ qcq), (2.43)

a⊕ (b⊕ c) = q((b⊕ a)⊕ c)q, (2.44)

with q = 1−ab
|1−ab| .

Proof: By (2.41) we obtain the property (2.43)

a⊕ (b⊕ qcq) = (a⊕ b)⊕ (qqcqq) = (a⊕ b)⊕ c.

By (2.41), (2.35), and (2.40) we have

a⊕ (b⊕ c) = (a⊕ b)⊕ (qcq) = q((q(a⊕ b)q)⊕ c)q = q((b⊕ a)⊕ c)q,

which proves (2.44).

Nevertheless, the associativity happens in some special situations.

Lemma 2.5.8 If a, b, c ∈ Bn such that a//b or (a ⊥ c and b ⊥ c) then the operation ⊕ is

associative, i.e.

a⊕ (b⊕ c) = (a⊕ b)⊕ c.

Proof: We have to calculate qcq (c.f. (2.41)):

qcq =
1− ab

|1− ab|c
1− ab

|1− ba| =
c− abc− cba + abcba

1 + 2 〈a, b〉+ |a|2|b|2 . (2.45)

As

abc = −2 〈a, b〉 c− bac

= −2 〈a, b〉 c− (−2 〈a, c〉 b− bca)

= −2 〈a, b〉 c− (−2 〈a, c〉 b− (−2 〈b, c〉 a− cba))

= −2 〈a, b〉 c + 2 〈a, c〉 b− 2 〈b, c〉 a− cba

and

abcba = a(−2 〈b, c〉 b + |b|2c)a
= −2 〈b, c〉 (−2 〈a, b〉 a + |a|2b) + |b|2(−2 〈a, c〉 a + |a|2c)
= 4 〈a, b〉 〈b, c〉 a− 2 〈b, c〉 |a|2b− 2 〈a, c〉 |b|2a + |a|2|b|2c
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we will eventually find that

qcq =
(1 + 2 〈a, b〉+ |a|2|b|2)c− 2(〈a, c〉+ 〈b, c〉 |a|2)b

1 + 2 〈a, b〉+ |a|2|b|2 +

2(〈b, c〉 (1 + 2 〈a, b〉)− 〈a, c〉 |b|2)a
1 + 2 〈a, b〉+ |a|2|b|2 . (2.46)

Thus qcq = c if and only if

(〈a, c〉+ 〈b, c〉 |a|2)b = (〈b, c〉 (1 + 2 〈a, b〉)− 〈a, c〉 |b|2)a .

The last equality can only be satisfied when a//b, i.e. a = t1ω and b = t2ω for some

−1 < t1, t2 < 1 and ω ∈ Sn−1 or when c ⊥ b and c ⊥ a. In the first case we will obtain the

identity (t1t2 + t21t
2
2) 〈c, ω〉ω = (t1t2 + t21t

2
2) 〈c, ω〉ω and in the second case we immediately

obtain 0 = 0.

2.6 Gyrogroups

Gyrogroups are grouplike structures which first arose in the study of Einstein’s velocity

addition in the theory of special relativity.

Gyrogroups are special loops which share remarkable analogies with groups. They have

been studied intensively by Abraham Ungar ([69], [70], [71], [72]). The first known gyrogroup

is the relativistic gyrogroup (B3,⊕), that appeared in 1988 [71], consisting of the unit ball

B3 = {x ∈ R3 : ||x|| < 1} of the Euclidean 3−space, endowed with Einstein’s velocity

addition. Einstein’s addition ⊕ of relativistically admissible velocities is a binary operation

in the unit ball B3, where the vacuum speed of light is normalized to c = 1. Counterintuitive,

the Einstein velocity addition ⊕ is neither commutative nor associative. The group structure

that has been lost in the transition from the group (R3, +) to the groupoid (B3,⊕) is

replaced by a loop structure using a peculiar rotation called the Thomas precession. This

measures the deviation of the addition of relativistically admissible velocities from being

associative. The notion of gyrogroup appears by the extension of the Einstein relativistic

groupoid (B3,⊕) with its Thomas precession by abstraction, where the abstract Thomas

precession is called the Thomas gyration. In order to elaborate a precise language for dealing

with analytic hyperbolic geometry Ungar has adopted the term "gyro" since 1991. The

resulting gyrolanguage rests on the unification of Euclidean and hyperbolic geometry in

terms of analogies they share (see [69]).
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Definition 2.6.1 ([69]) A groupoid (G,⊕) is a gyrogroup if its binary operation satisfies the

following axioms:

(G1) In G there is at least one element 0, called a left identity satisfying 0⊕ a = a, for all

a ∈ G;

(G2) For each a ∈ G there is an element ªa ∈ G, called a left inverse of a, satisfying

(ªa)⊕ a = 0;

(G3) For any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that the binary

operation obeys the left gyroassociative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c;

(G4) The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c, is an automorphism of (G,⊕);

(G5) The gyroautomorphism gyr[a, b] possesses the left loop property

gyr[a, b] = gyr[a⊕ b, b].

Gyrogroups are classified into gyrocommutative and non-gyrocommutative gyrogroups.

Definition 2.6.2 ([69]) A gyrogroup (G,⊕) is gyrocommutative if its binary operation sat-

isfies the gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a), for all a, b ∈ G.

In order to capture useful analogies between gyrogroups and groups and uncovers duality

symmetries Ungar defined a second binary operation, called the gyrogroup cooperation.

Definition 2.6.3 ([69]) Let (G,⊕) be a gyrogroup. The gyrogroup cooperation (or coaddi-

tion) is a second binary operation ¢, in G, given by

a ¢ b = a⊕ gyr[a,ªb]b, for all a, b,∈ G.

and the cosubtraction is defined as a ¯ b = aª gyr[a, b]b.

We will list some of the main identities in gyrogroups (G,⊕) that need not be gyrocom-

mutative [69].
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List of identities in gyrogroups (G,⊕)

1) a⊕ (ªa⊕ b) = b (Left cancellation law)

2) (bª a) ¢ a = b (Right cancellation law)

3) (b ¯ a)⊕ a = b (Right cancellation law)

4) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (Left gyroassociative law)

5) (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c) (Right gyroassociative law)

6) (a ¢ b)⊕ c = a⊕ gyr[a,ªb](b⊕ c)

7) gyr[a, b]c = ª(a⊕ b)⊕ [a⊕ (b⊕ c)]

8) gyr[ªa,ªb] = gyr[a, b] (Even simmetry)

9) gyr−1[a, b] = gyr[b, a] (Inversive simmetry)

10) gyr[a, b⊕ a] = gyr[a, b] (Right loop property)

11) gyr[a ¯ b, b] = gyr[a, b] (Left coloop property)

12) gyr[a, b ¯ a] = gyr[a, b] (Right coloop property)

13) ª(a⊕ b) = gyr[a, b](ªbª a)

14) (a⊕ gyr[a, b]c) ¯ (b⊕ c) = a ¯ b

15) (ªa⊕ b)⊕ gyr[ªa, b](ªb⊕ c) = ªa⊕ c

16) (a ¯ b)⊕ (b ¯ c) = aª gyr[a, b]gyr[b, c]c

17) gyr[b,ªgyr[b, a]a] = gyr[a, b]

18) gyr[ªgyr[a, b]b, a] = gyr[a, b].

This list shows that gyrogroups have new and interesting relations. Some of these proper-

ties had been already deduced in our case without knowledge of this more abstract formalism,

recently developed. In our case the left and right cancelation laws are very important for

our work.

Lemma 2.6.4 For all a, b ∈ Bn it holds

(−b)⊕ (b⊕ a) = a (2.47)

(a⊕ b)⊕ (q(−b)q) = a, (2.48)

with q = 1−ab
|1−ab| .

A gyrogroup is a special case of a loop. Loops are a important subcategory of the category

of groupoids.

Definition 2.6.5 A loop is a groupoid (S, ·) with an identity element in which each of the

two equations a · x = b and y · a = b possesses a unique solution for the unknowns x and y.
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The solution of these basic equations in the theory of gyrogroups is given in the following

theorem.

Theorem 2.6.6 ([69]) Let (G,⊕) be a gyrogroup, and let a, b ∈ G. The unique solution of

the equation a ⊕ x = b in G, for the unknown x, is given by x = ªa ⊕ b, while the unique

solution of the equation y⊕a = b in G, for the unknown y, is given by y = b¯a = bªgyr[b, a]a.

Definition 2.6.7 ([69]) Let (G,⊕) be a gyrogroup, and let Aut(G) be the automorphism

group of G. A gyroautomorphism group Aut0(G) is any subgroup of Aut(G) containing all

the gyroautomorphisms gyr[a, b] of G, with a, b ∈ G.

One of the most important results in this theory is the proof of the fact that the gyro-

semidirect product of a gyrogroup (G,⊕) with a gyroautomorphism group H ⊂ Aut(G,⊕)

is a group.

Theorem 2.6.8 ([69]) Let (G,⊕) be a gyrogroup, and let Aut0(G,⊕) be a gyroautomorphism

group of G. Then the gyrosemidirect product G × Aut0(G) is a group, with group operation

given by the gyrosemidirect product

(x, X)(y, Y ) = (x + Xy, gyr[x,Xy]XY ). (2.49)

As we saw in Section 2.3 we can define two different group operations depending if we

work with left or right cosets. To distinguish both gyrosemidirect products we will use the

symbols ×l and ×r in agreement with the left or right cosets. Thus, (Spin(n) × Bn,×r) is

a group with the right gyrosemidirect product given by

(s1, a)×r (s2, b) = (s1s2q1, b⊕ (s2as2)) (2.50)

while (Bn × Spin(n),×l) is a group with the left gyrosemidirect product given by

(a, s1)×l (b, s2) = (a⊕ (s1bs1), q2s1s2), (2.51)

with q1 = 1−s2as2b
|1−s2as2b| and q2 = 1−as1bs1

|1−as1bs1| .

We will prove this result only for the group operation (2.50), being the proof similar for

the group operation (2.51).

Proposition 2.6.9 (Spin(n)×Bn,×r) is a group with operation given by the gyrosemidirect

product

(s1, a)×r (s2, b) = (s1s2q, b⊕ (s2as2)) (2.52)

with s1, s2 ∈ Spin(n), a, b ∈ Bn, and q = 1−s2as2b
|1−s2as2b| .
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Proof: We will prove the group axioms by order:

(i) The operation×r is well defined since the result (s1, a)×r(s2, b) is an element of Spin(n)×
Bn.

(ii) Existence of a left identity: the element (1, 0), where 0 is the identity element of (Bn,⊕)

and 1 is the identity of Spin(n), satisfies

(1, 0)×r (s1, a) = (1s11, a⊕ (s10s1)) = (s1, a⊕ 0) = (s1, a),

for all (s1, a) ∈ Spin(n)×Bn.

(iii) Existence of a left inverse: for all (s1, a) ∈ Spin(n)×Bn it exists an element (s1,−s1as1) ∈
Spin(n)×Bn such that

(s1,−s1as1)×r (s1, a) =
(
|s1|2 1 + s1s1as1s1a

|1 + s1s1as1s1a| , a⊕ (−s1s1as1s1)
)

= (1, a⊕ (−a))

= (1, 0).

(iv) Associative law: for arbitrary (s1, a), (s2, b), (s3, c) ∈ Spin(n)×Bn we have on the one
hand,

(s1, a)×r ((s2, b)×r (s3, c)) = (s1, a)×r

(
s2s3

1− s3bs3c

|1− s3bs3c| , c⊕ (s3bs3)
)

=
(

s1s2s3
1− s3bs3c

|1− s3bs3c|
1− dad(c⊕ (s3bs3))
|1− dad(c⊕ (s3bs3))|

, (c⊕ s3bs3)⊕ (dad)
)

,

with d := s2s3
1−s3bs3c
|1−s3bs3c| ,

while, on the other hand,

((s1, a)×r (s2, b))×r (s3, c) =
(

s1s2
1− s2as2b

|1− s2as2b| , b⊕ (s2as2)
)
×r (s3, c)

=
(

s1s2
1− s2as2b

|1− s2as2b|s3
1− s3(b⊕ (s2as2))s3c

|1− s3(b⊕ (s2as2))s3c| , c⊕ (s3(b⊕ (s2as2))s3

)

=
(

s1s2s3
1− s3 s2as2s3s3bs3

|1− s3 s2as2s3s3bs3|
1− (s3bs3)⊕ (s3 s2as2s3))c
|1− (s3bs3)⊕ (s3 s2as2s3))c| , c⊕ (s3(b⊕ (s2as2))s3)

)
,

where we have employed the relation (2.37) in the last equality. Using the following notation:

s3bs3 := u and s3 s2as2s3 := v

we have to establish the following identity
(

s1s2s3q
1− qvq(c⊕ u)
|1− qvq(c⊕ u)| , (c⊕ u)⊕ (qvq)

)
=

(
s1s2s3

1− vu

|1− vu|
1− (u⊕ v)c
|1− (u⊕ v)c| , c⊕ (u⊕ v)

)
,
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with q = 1−uc
|1−uc| .

The identities

(c⊕ u)⊕ (qvq) = c⊕ (u⊕ v)

and
1− uc

|1− uc|
1− qvq(c⊕ u)
1− qvq(c⊕ u)

=
1− vu

|1− vu|
1− (u⊕ v)c
|1− (u⊕ v)c|

are true by (2.42).

Up to the rotation induced by q, the formula (2.52) resembles the definition of a semidirect

product. However we remark that it is impossible to build a semidirect product since SO(n)

has no outer automorphisms. Simple calculations shows that Spin(n) is not normal on

Spin+(1, n). The conjugation of an element s ∈ Spin(n) by a ∈ Bn is not in general an

element of Spin(n) :

(ϕa ◦Rs ◦ ϕ−a)(x) = ϕa(sϕ−a(x)s) = sϕsas(ϕ−a(x))s = sq ϕ(sas)⊕(−a)(x) q s

with q = 1+sasa
|1+sasa| . When s is a rotation that leaves invariant a ∈ Bn we obtain (ϕa ◦ Rs ◦

ϕ−a)(x) = sxs.

On the other hand, the conjugation of an element of Bn by an element of Spin(n) gives

again an element of Bn

(Rs ◦ ϕa ◦Rs)(x) = sϕa(sxs)s = ssϕsas(x)ss = ϕsas(x).

The multiplication defined in (2.52) is a generalization of the familiar semidirect product

of groups (c.f. [52]). We recall that if G is a group with subgroups K and H, where K is

normal, G = KH, and K ∩ H = {1}, then G is said to be an internal semidirect product

of K and H. On the other hand, if K and H are groups and σ : H → Aut(K), h 7→ σh is a

homomorphism, then the external semidirect product of K and H given by σ, denoted by

K oσ H, is the set K ×H with the multiplication

(k1, h1)(k2, h2) = (k1 · σh1(k2), h1h2), k1, k2 ∈ K, h1, h2 ∈ H. (2.53)
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2.7 Gyro-subgroups

Definition 2.7.1 Let H be a non-empty subset of (G,⊕). A gyro-subgroup H of (G,⊕) is

a gyrogroup with operation induced from (G,⊕) and gyr[a, b] ∈ Aut(H) for all a, b ∈ H.

Some gyro-subgroups of (Bn,⊕) arise in a nice geometrical way. The gyro-subgroups

Dn−1
ω and Lω that will be defined below are of great importance in this thesis.

2.7.1 Gyro-subgroups (Dn−1
ω ,⊕)

Let ω ∈ Sn−1. We consider the hyperplane Hω = {x ∈ Rn : 〈ω, x〉 = 0}. Hence, Dn−1
ω =

Hω ∩Bn denotes a hyperdisc of dimension n− 1.

Proposition 2.7.2 For each ω ∈ Sn−1, (Dn−1
ω ,⊕) is a gyro-subgroup of (Bn,⊕).

Proof: Consider a and b two arbitrary points of Dn−1
ω . Then

〈a, ω〉 = 0 and 〈b, ω〉 = 0. (2.54)

As

b⊕ a = ϕ−b(a) = (a + b)(1− ba)−1 =
(1− |b|2)a + (1 + |a|2 + 2 〈a, b〉)b

1 + 2 〈a, b〉+ |a|2|b|2
we can easily see, by (2.54), that 〈b⊕ a, ω〉 = 0. In an analogous way,

a⊕ b = ϕ−a(b) = (a + b)(1− ab)−1 =
(1− |a|2)b + (1 + |b|2 + 2 〈a, b〉)a

1 + 2 〈a, b〉+ |a|2|b|2

and therefore 〈a⊕ b, ω〉 = 0.

Thus, a⊕ b ∈ Dn−1
ω and b⊕ a ∈ Dn−1

ω .

Finally, it is easy to see that −a ∈ Dn−1
ω for each a ∈ Dn−1

ω and by (2.46) it follows that

gyr[a, b]c ∈ Dn−1
ω , for all a, b, c ∈ Dn−1

ω .

These gyro-subgroups are not abelian. In fact, a ⊕ b = b ⊕ a if and only if ab = ba, i.e.

a ∧ b = 0, which means that a and b must be parallel vectors.

2.7.2 Gyro-subgroups (Lω,⊕)

Consider again ω ∈ Sn−1. Let Lω be the segment resulting from the intersection of the unit

ball with the straight line passing through the origin and spanned by ω.

Proposition 2.7.3 For each ω ∈ Sn−1, (Lω,⊕) is an abelian subgroup of (Bn,⊕).
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Proof: Consider a and b two arbitrary points of Lω. Then a = t1ω and b = t2ω, with

−1 < t1, t2 < 1. As

b⊕ a = (a + b)(1− ba)−1 =
t1 + t2
1 + t1t2

ω = a⊕ b

and −1 < t1+t2
1+t1t2

< 1, we obtain that a⊕ b ∈ Lω.

Finally −a ∈ Lω for each a ∈ Lω and gyr[a, b]c = c, for all a, b, c ∈ Lω.

2.8 Factorizations of the gyrogoup of the unit ball

2.8.1 Factorizations of type I

The factorization of the gyrogroup (Bn,⊕) by a given gyro-subgroup (Dn−1
ω ,⊕) will be called

factorization of type I. We will see that the equivalence relation used in the factorization

of a group by a given subgroup cannot be applied for the factorization of a gyrogroup by a

gyro-subgroup.

The following theorem is the basis of our construction. It gives us an unique decompo-

sition for each point c ∈ Bn with respect to the operation ⊕.

Theorem 2.8.1 For each c ∈ Bn there exist unique a ∈ Dn−1
en

and b ∈ Len such that

c = b⊕ a.

Proof: Let c = (c1, . . . , cn) ∈ Bn be an arbitrary point. By Lemma 2.4.1 we can

write c = s∗c∗s∗, where s∗ = s1 . . . sn−2 ∈ Spin(n − 1), and c∗ = (0, . . . , 0, c∗n−1, cn), with

c∗n−1 = r sinφ and cn = r cosφ, r = |c| ∈ [0, 1[ and φ = arccos(cn) ∈ [0, π]. If c∗n−1 = 0, then

we take a = 0 and b = c∗; otherwise, we consider a = λen−1 and b = ten where

λ =
|c∗|2 − 1 +

√
((cn + 1)2 + (c∗n−1)2)((cn − 1)2 + (c∗n−1)2)

2c∗n−1

and t =
cn

c∗n−1λ + 1
. (2.55)

We can see that −1 < λ, t < 1. Thus, a ∈ Dn−1
en

and b ∈ Len . Taking into account that

a ⊥ b, that is 〈a, b〉 = 0, we obtain

b⊕ a =
(

0, . . . , 0,
λ(1− t2)
1 + λ2t2

,
t(1 + λ2)
1 + λ2t2

)
. (2.56)

Substituting λ and t in the coordinates of (2.56) we obtain by straightforward computa-

tions that b⊕ a = c∗.
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Consider now a∗ = s∗as∗. Obviously, a∗ ∈ Dn−1
en

because the rotation induced by s∗
leaves the xn−axis invariant. Then by (2.35) we have

b⊕ (s∗as∗) = s∗(s∗bs∗ ⊕ a)s∗ = s∗(b⊕ a)s∗ = s∗c∗s∗ = c,

which shows that c = b⊕ a∗. Hence the existence of the decomposition is proved.

To prove the uniqueness we suppose that there exist a, d ∈ Dn−1
en

and b, f ∈ Len such

that c = b ⊕ a = f ⊕ d. Then a = (−b) ⊕ (f ⊕ d), by (2.47). As b ⊥ d and f ⊥ d we have

a = ((−b) ⊕ f) ⊕ d, by Lemma 2.5.8. Since by hypothesis a, d ∈ Dn−1
en

then (−b) ⊕ f must

be an element of Dn−1
en

. This is true if and only if (−b) ⊕ f = 0. This implies b = f and

a = d⊕ 0 = d, as we wish to prove.

Let us consider the gyro-subgroup Dn−1
en

and the relation R defined by

∀ c, d ∈ Bn, cR d ⇔ ∃ a ∈ Dn−1
en

: c = d⊕ a.

It is a reflexive relation but it is not symmetric nor transitive because the operation ⊕ is not

commutative nor associative. Therefore R is not an equivalence relation.

However, an equivalence relation on Bn can be built if we construct a partition of Bn.

Proposition 2.8.2 The family {Sl
b : b ∈ Len}, where Sl

b = {b⊕ a : a ∈ Dn−1
en

}, is a disjoint

partition of Bn.

Proof: We first prove that this family is indeed disjoint. Let b = t1en and c = t2en with

t1 6= t2, and assume that Sl
b ∩ Sl

c 6= ∅. Then there exists f ∈ Bn such that f = b ⊕ a and

f = c⊕ d for some a, d ∈ Dn−1
en

. By (2.47) and (2.41) we have

a = (−b)⊕ (c⊕ d) = ((−b)⊕ c)⊕ (qdq), with q =
1 + bc

|1 + bc| .

As q = 1+bc
|1+bc| = 1−t1t2

|1−t1t2| = 1, then a = ((−b)⊕c)⊕d. Since a, d ∈ Dn−1
en

then (−b)⊕c ∈ Dn−1
en

.

Therefore, (−b)⊕ c = 0, i.e. b = c. But this contradicts our assumption. Thus, Sl
b ∩ Sl

c = ∅,
for b 6= c.

Finally, by Theorem 2.8.1 we have that ∪b∈Len
Sl

b = Bn.

This partition induces an equivalence relation on Bn. Two points c, d ∈ Bn are said to

be in relation if and only if there exists b ∈ Len and a, f ∈ Dn−1
en

such that c, d ∈ Sb, i.e.

∀ c, d ∈ Bn, c ∼l d ⇔ ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

: c = b⊕ a and d = b⊕ f. (2.57)
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We will use the symbol ∼l to denote the left action, i.e. we are considering left coset spaces.

This relation is equivalent to

∀ c, d ∈ Bn, c ∼l d ⇔ ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

: c⊕ (q1(−a)q1) = d⊕ (q2(−f)q2),

with q1 = 1−ab
|1−ab| and q2 = 1−fb

|1−fb| .

Thus, we have proved the following isomorphism:

Bn/(Dn−1
en

,∼l) ∼= Len .

We wish to give a characterization of the surfaces Sl
b, b ∈ Len .

Proposition 2.8.3 For each b = ten ∈ Len the surface Sl
b is a surface of revolution in turn

of the xn−axis, obtained by the intersection of Bn with the sphere orthogonal to Sn−1, with

center in the point C = (0, . . . , 0, 1+t2

2t ) and radius τ = 1−t2

2|t| .

Proof: Let b = ten ∈ Len , c = λen−1 ∈ Dn−1
en

and

Pλ := b⊕ c =
(

0, . . . , 0,
λ(1− t2)
1 + λ2t2

,
t(1 + λ2)
1 + λ2t2

)
.

Let Cb = {b ⊕ c : c = λen−1, 0 ≤ λ < 1} denote the arc inside the unit ball in the

xn−1xn−plane. We consider now s∗ = s1 . . . sn−2 ∈ Spin(n − 1) (c.f. Remark 2.4.2). Obvi-

ously each a ∈ Dn−1
en

can be described as a = s∗cs∗. Then, by (2.35)

b⊕ (s∗cs∗) = s∗((s∗bs∗)⊕ c)s∗ = s∗(b⊕ c)s∗.

Thus, Sl
b is a surface of revolution obtained by the revolution in turn of the xn−axis of the

arc Cb. The last coordinate of the surface Sl
b is t(1+λ2)

1+λ2t2
and it gives us information about the

orientation of its concavity.

For all λ ∈ [0, 1[, we have that ||Pλ − C||2 = τ2, with C = (0, . . . , 0, 1+t2

2t ) and τ = 1−t2

2|t| ,

there is, the arc Cb lies on the sphere centered at C and radius τ. Moreover, as t tends to

zero the radius of the sphere tends to infinity thus proving that the surface Sl
0 coincides with

the hyperdisc Dn−1
en

.

Each Sl
b is orthogonal to Sn−1 because ||C||2 = 1+τ2. We recall that two spheres, S1 and

S2, with centers m1 and m2 and radii τ1 and τ2, respectively, intersect orthogonally if and

only if 〈m1 − y,m2 − y〉 = 0, for all y1 ∈ S1 ∩ S2, or equivalently, if ||m1 −m2||2 = τ2
1 + τ2

2 .
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We can perform their projection into the xn−1xn−plane for an easy visualization.

Figure 2.1: Cut of the surfaces Sl
b in the xn−1xn−plane.

We now generalize the Proposition 2.8.1 to arbitrary gyro-subgroups (Dn−1
ω ,⊕) and

(Lω,⊕).

Theorem 2.8.4 For each d ∈ Bn, there exists unique u ∈ Dn−1
ω and v ∈ Lω such that

d = v ⊕ u.

Proof: By Lemma 2.4.1 there exists s = s1 . . . sn−1 ∈ Spin(n) such that ω = sens.

For each d ∈ Bn we take c ∈ Bn such that d = scs. By Theorem 2.8.1, there exist unique

a ∈ Dn−1
en

and b ∈ Len such that c = b⊕ a. Then,

d = scs = s(b⊕ a)s = (sbs)⊕ (sas)

by the relation (2.37). As ω = sens, we have that u = sas ∈ Dn−1
ω and v = sbs ∈ Lω.

The family {sSl
bs : b ∈ Len} is obviously a partition of Bn and it induces the following

equivalence relation:

∀ c, d ∈ Bn, c ∼l d ⇔ ∃ v ∈ Lω, ∃ u,w ∈ Dn−1
ω : c = v ⊕ u and d = v ⊕ w. (2.58)

Corollary 2.8.5 We have the isomorphism Bn/(Dn−1
ω ,∼l) ∼= Lω.

Since (Bn,⊕) is a non gyrocommutative gyrogroup we can consider right coset spaces

arising from the decomposition of Bn by the gyro-subgroups Dn−1
ω . We will proceed in an

analogous way as for the left action. First we obtain an analogue version of Theorem 2.8.1.

Theorem 2.8.6 For each c ∈ Bn there exist unique a ∈ Dn−1
en

and b ∈ Len such that

c = a⊕ b.
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The proof is analogous to the proof of Theorem 2.8.1. For c∗ = (0, . . . , 0, c∗n−1, cn), as

in the proof of Theorem 2.8.1, we have again two cases: if cn = 0 then we take b = 0 and

a = c∗, otherwise we consider a = λen−1 and b = ten such that

t =
|c∗|2 − 1 +

√
((c∗n−1 + 1)2 + c2

n)((c∗n−1 − 1)2 + c2
n)

2cn
and λ =

c∗n−1

cnt + 1
.

Proposition 2.8.7 The family {Sr
b : b ∈ Len}, where Sr

b = {a⊕ b : a ∈ Dn−1
en

}, is a disjoint

partition of Bn.

Proof: Let b = t1en and c = t2en with t1 6= t2, and assume that Sr
b ∩Sr

c 6= ∅. Then there

exist d ∈ Bn such that d = a⊕ b and d = f ⊕ c for some a, f ∈ Dn−1
en

. By (2.41) and (2.47)

we have

b = (−a)⊕ (f ⊕ c) = ((−a)⊕ f)⊕ (qcq), with q =
1 + af

|1 + af | .

As a ⊥ c and f ⊥ c it follows by Lemma 2.5.8 that b = ((−a)⊕ f)⊕ c. As b, c ∈ Len we

must have (−a)⊕f ∈ Len . But this happens if and only if (−a)⊕f = 0. Thus, b = 0⊕c = c,

which contradicts our assumption. Thus, Sr
b ∩ Sr

c = ∅, for b 6= c.

By Theorem 2.8.6 it follows that ∪b∈Len
Sr

b = Bn.

Thus, the family {Sr
b : b ∈ Len} is a disjoint partition of Bn.

Corollary 2.8.8 The following isomorphism hold

Bn/(Dn−1
en

,∼r) ∼= Len .

Proposition 2.8.9 For each b = ten ∈ Len the surface Sr
b is a surface of revolution in turn

of the xn−axis obtained by the intersection of Bn with the sphere with center in the point

Cr = (0, . . . , 0, t2−1
2t ) and radius τ = 1+t2

2|t| .

Proof: Let b = ten ∈ Len and c = λen−1 ∈ Dn−1
en

and

Qλ := c⊕ b =
(

0, . . . , 0,
λ(1 + t2)
1 + λ2t2

,
t(1− λ2)
1 + λ2t2

)

Let Cr
b = {c ⊕ b : c = λen−1, 0 ≤ λ < 1} denotes the arc inside the unit ball in the

xn−1xn−plane. We consider now s∗ = s1 . . . sn−2 ∈ Spin(n − 1) (c.f. Remark 2.4.2). Obvi-

ously each a ∈ Dn−1
en

can be described as a = s∗cs∗. Then, by (2.36)

(s∗cs∗)⊕ b = s∗(c⊕ (s∗bs∗))s∗ = s∗(c⊕ b)s∗.



54 CHAPTER 2. THE LORENTZ GROUP SPIN+(1, N)

Thus Sr
b is a surface of revolution obtained by revolution in turn of the xn−axis of the

arc Cr
b . The last coordinate of the surface Sr

b is t(1−λ2)
1+λ2t2

and it encloses information about its

orientation.

For all λ ∈ [0, 1[, we have that ||Qλ−Cr||2 = τ2, with Cr = (0, . . . , 0, t2−1
2t ) and τ = 1+t2

2|t| ,

there is, the arc Cr
b lies on the sphere centered at Cr and radius τ. Moreover, as t tends to

zero the radius of the sphere tends to infinity thus proving that the surface Sr
0 coincides with

the hyperdisc Dn−1
en

.

We remark that these spheres are not orthogonal to Sn−1 because they do not satisfy

the relation ||Cr||2 = 1 + τ2.

We can observe the cut of the surfaces Sr
b in the xn−1xn−plane.

Figure 2.2: Cut of the surfaces Sr
b , in the xn−1xn−plane.

Finally we have the following results for an arbitrary ω ∈ Sn−1 .

Proposition 2.8.10 For each d ∈ Bn, there exists unique u ∈ Dn−1
ω and v ∈ Lω such that

d = u⊕ v.

The proof is analogous to the proof of Theorem 2.8.4 and is based on the decomposition

obtained in Theorem 2.8.6.

The family {sSr
b s : b ∈ Len} with s =∈ Spin(n) such that ω = sens is obviously a

partition of Bn and it induces the following equivalence relation:

∀ c, d ∈ Bn, c ∼r d ⇔ ∃ v ∈ Lω, ∃ u,w ∈ Dn−1
ω : c = u⊕ v and d = w ⊕ v. (2.59)

Corollary 2.8.11 The following isomorphism hold

Bn/(Dn−1
ω ,∼r) ∼= Lω.
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2.8.2 Factorizations of type II

Factorizations of type II correspond to factorizations of (Bn,⊕) by subgroups (Lω,⊕), ω ∈
Sn−1. Due to the duality role between Lω and Dn−1

ω , the results will be analogous to the

ones in the Dn−1
ω case. Therefore, some proofs will be omitted. We begin by considering the

left coset space Bn/(Len ,∼l).

Proposition 2.8.12 The family T l = {T l
a : a ∈ Dn−1

en
}, with T l

a = {a ⊕ b : b ∈ Len} is a

disjoint partition of Bn.

This partition induces the following equivalence relation on Bn :

∀ c, d ∈ Bn, c ∼l d ⇔ ∃ a ∈ Dn−1
en

, ∃ b, f ∈ Len : c = a⊕ b and d = a⊕ f. (2.60)

Corollary 2.8.13 We have the isomorphism Bn/(Len ,∼l) ∼= Dn−1
en

.

Proposition 2.8.14 For an arbitrary a ∈ Dn−1
en

, T l
a is the intersection of Bn with the

circumference of radius τ = 1−|a|2
2|a| and center in the point s∗Cr

0s∗, in the plane s∗Hs∗, where

s∗ = s1 . . . sn−2 is such that s∗as∗ = λen−1, λ ∈]− 1, 1[, Cr
0 = (0, . . . , 0, 1+λ2

2λ , 0), and s∗Hs∗
is the rotation around the xn−axis of the xn−1xn−plane or H−plane. Moreover, we have

that each T l
a is orthogonal to Sn−1.

Proof: Let c = λen−1 ∈ Dn−1
en

, b = ten ∈ Len , with −1 < λ, t < 1, and

Pt := c⊕ b =
(

0, . . . , 0,
λ(1 + t2)
1 + λ2t2

,
t(1− λ2)
1 + λ2t2

)
.

Let T l
c = {c ⊕ b : b ∈ Len} be the curve inside the unit ball in the xn−1xn−plane or

H−plane. For all t ∈] − 1, 1[, we have ||Pt − C l
0||2 = τ2, with C l

0 = (0, . . . , 0, 1+λ2

2λ , 0) and

τ = 1−λ2

2|λ| = 1−|c|2
2|c| . Thus, the curve T l

c lies on the circumference with center in C l
0 and radius

τ in the H−plane. When λ tends to zero, the radius of this circumference tends to infinity,

thus proving that the curve T l
0 coincides with the segment Len .

For an arbitrary a ∈ Dn−1
en

we have a = s∗cs∗ (c.f. Remark 2.4.2). By (2.35) we get

a⊕ b = (s∗cs∗)⊕ b = s∗(c⊕ (s∗bs∗))s∗ = s∗(c⊕ b)s∗,

that is, T l
a is the rotation under s∗ of the curve T l

c . Therefore T l
a is obtained from the in-

tersection between Bn and the circumference with center in the point s∗C l
0s∗ and radius

τ = 1+|a|2
2|a| , in the plane s∗Hs∗. To see that each curve T l

a is orthogonal to Sn−1 it suffices

to verify that ||s∗Cr
0s∗||2 = 1 + τ2.
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We can observe the cut of such arcs in the xn−1xn−plane in Fig. 2.3.

Figure 2.3: Cut of the partition T l in the xn−1xn−plane.

Now we will consider the right coset space Bn/(Len ,∼r).

The family T r = {T r
a : a ∈ Dn−1

en
}, where T r

a = {b⊕ a : b ∈ Len}, is again a partition of

Bn and it induces the following equivalence relation on Bn :

∀c, d ∈ Bn, c ∼r d ⇔ ∃ a ∈ Dn−1
en

, ∃ b, f ∈ Len : c = b⊕ a and d = f ⊕ a. (2.61)

Proposition 2.8.15 For an arbitrary a ∈ Dn−1
en

, the curve T r
a is obtained from the in-

tersection between Bn and the circumference of radius τ = 1+|a|2
2|a| and center in the point

s∗Cr
0s∗, in the plane s∗Hs∗, where s∗ = s1 . . . sn−2 is such that s∗as∗ = λen−1, λ ∈] − 1, 1[,

C l
0 = (0, . . . , 0, λ2−1

2λ , 0), and s∗Hs∗ denotes the rotation of the xn−1xn−plane (or H−plane).

The proof is analogous to the proof of Proposition 2.8.14. We can observe a projection

of such curves in Fig. 2.4.

Figure 2.4: Cut of the partition T r in the xn−1xn−plane.

Thus, we have the isomorphism Bn/(Len ,∼l) ∼= Dn−1
en

and more generally the isomor-

phisms Bn/(Lω,∼l) ∼= Dn−1
ω and Bn/(Lω,∼r) ∼= Dn−1

ω hold.
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2.9 Sections on the unit ball

Let G be a group, H a closed subgroup of G (not necessarily normal) and X = G/H.

We consider π : G → X, π(g) = gH, the canonical surjection (or projection map). In

the language of fiber bundles, if G is a Lie group and H is a closed subgroup then G is a

principal H−bundle over the (left) coset space G/H, with projection map π. The fibers, i.e.

the pre-images π−1(x), x ∈ X, are the left cosets of G/H. A (global) section on X is a map

σ : X → G such that π(σ(x)) = x, for all x ∈ X. In general, bundles may not have globally

defined sections and, therefore, we may only define local sections. In our case, we can define

both type of sections.

To be concise in our exposition we will present the definition of a fiber bundle.

Definition 2.9.1 A fiber bundle is a 4-tuple (E, B, π, F ), where E,B, and F are topological

spaces and π : E → B is a continuous surjection such that, for any x ∈ B, there is an open

neighborhood U of x such that π−1(U) is homeomorphic to the product space U ×F, in such

a way that π carries over to the projection onto the first factor. Thus, the following diagram

should commute, where proj1 : U×F → U is the natural projection and ϕ : π−1(U) → U×F

is a homeomorphism.

Figure 2.5: Fiber bundle diagram.

The space E is called the total space, B is called the base space and F is called the fiber space.

For any x ∈ B the pre-image π−1(x) is homeomorphic to F and it is called the fiber over

x. Although we are dealing with gyrogroups and gyro-subgroups we can still define sections

since we have a fiber bundle structure. Thus, the concepts defined above for groups can be

extended to gyrogroups.
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2.9.1 Global sections

For each factorization obtained previously we can define a fiber bundle structure and global

sections. We will begin by considering factorizations of type I. Let X1 = Bn/(Dn−1
en

,∼l).

We define the projection map π : Bn → X1 such that π(c) = [c], where [c] is the equivalence

class of c ∈ Bn on X1. By Proposition 2.8.2 we know that the equivalence class [c] coincides

with one of the surfaces Sl
b, b ∈ Len (see also Theorem 2.8.1). Thus, by the isomorphism

Bn/(Dn−1
en

,∼l) ∼= Len , we can define a second projection π̃ : Bn → Len such that π̃(c) = b.

The fibers generated by π and π̃ are the same. The action of the gyrogroup (Bn,⊕) on X1

is given by the mapping

h : Bn ×X1 → X1, h(c, [a]) = [c⊕ a]. (2.62)

The 4−tuple (Bn, X1, π, Sl
b) is a fiber bundle whose fibers are the surfaces Sl

b. Given a

neighborhood of b ∈ Len , Uε = {x ∈ Len : |x−b| < ε}, with ε < 1−|b|, the following diagram

commutes

Figure 2.6: Fiber bundle (Bn, X1, π, Sl
b).

We will consider Len as the fundamental section σl
0. From Proposition 2.8.3, an entire

family of sections σl : Bn/(Dn−1
en

,∼l) → Bn can be obtained from Len considering

σl(ten) = ten ⊕ f(t)en−1 =
(

0, . . . , 0,
f(t)(1− t2)
1 + (tf(t))2

,
t(1 + f(t)2)
1 + (tf(t))2

)
, (2.63)

where f :]−1, 1[→]−1, 1[. The function f will be called the generating function of the section

σl. Depending on the properties of the function f, we can have sections that are Borel maps

and also smooth sections.

The first simple example is given by the generating function f(t) = λ, for all t ∈]− 1, 1[,

with λ ∈]− 1, 1[. Then we obtain the family of sections

σl
λ(ten) =

(
0, . . . , 0,

λ(1− t2)
1 + (tλ)2

,
t(1 + λ2)
1 + (tλ)2

)
.

These sections belong to the set of orbits arising in the decomposition

Bn/(Len ,∼r).
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Another family of sections is σl
c = (0, . . . , 0, c sinφ,− cosφ), with φ ∈]0, π[ for each c ∈

]− 1, 1[ fixed. For c ∈]− 1, 1[\{0} the generating function is given by

f(t) =





√
t2−1+

√
(1−t2)2+4c4t2

2t2c2
, t ∈]− 1, 1[\{0}

c, t = 0
.

Thus, we obtain

cosφ =




− t(1+f(t)2)

1+(tf(t))2
= − t2(2c2+1)−1+

√
(1−t2)2+4c4t2

t(2c2+t2−1+
√

(1−t2)2+4c4t2 )
, t ∈]− 1, 1[\{0}

0, t = 0
.

In the next chapters we will make clear the importance of these and other sections in the

definition of spherical continuous wavelet transforms on the unit sphere.

For the right coset space X2 = Bn/(Dn−1
en

,∼r), we have that Len is again the fundamental

section. From Proposition 2.8.9 an entire class of sections can be obtained by considering

σr(ten) = g(t)en−1 ⊕ ten =
(

0, . . . , 0,
g(t)(1 + t2)
1 + (tg(t))2

,
t(1− g(t)2)
1 + (tg(t))2

)
,

with g :] − 1, 1[→] − 1, 1[. Choosing the generating function g(t) = λ, with λ ∈] − 1, 1[ we

obtain the family of sections

σr
λ(ten) =

(
0, . . . , 0,

λ(1 + t2)
1 + (tλ)2

,
t(1− λ2)
1 + (tλ)2

)
,

These sections belong to the set of orbits obtained in the decomposition Bn/(Len ,∼l). Again

we can consider the family of sections σr
c = (0, . . . , 0, c sinφ,− cosφ), φ ∈ [0, π[, for each

c ∈]− 1, 1[ fixed. The generating function is now given by

g(t) =





√
t4+2t2(1−2c2)+1−(1+t2)

√
t4+2t2(2c4−4c2+1)+1

2t2c2(t2−1)
, t ∈]− 1, 1[\{0}

c, t = 0
.

Thus, we obtain

cosφ =




− t(1−g(t)2)

1+(tg(t))2
= − t2(2c2−1)−1+

√
t4+2t2(2c4−4c2+1)+1

t(t2−2c2+1−
√

t4+2t2(2c4−4c2+1)+1)
, t ∈]− 1, 1[\{0}

0, t = 0
.

We emphasize that there are many other sections that we could obtain. However, we will

not describe there here.
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The construction of sections for the homogeneous spaces

Bn/(Dn−1
ω ,∼l) and Bn/(Dn−1

ω ,∼r) can be made considering a convenient rotation of the

sections described above.

For our work we only need to consider factorizations of type I as we will see on the next

chapter.

With respect to factorizations of type II we can also construct sections for the respective

homogeneous spaces. For instance, let us consider the space X3 = Bn/(Len ,∼l). Given a

function h : Dn−1
en

→] − 1, 1[, we define σ : X3 → Bn by σ([a]) = a ⊕ h(a)en, for each

a ∈ Dn−1
en

. Thus, σ is a global section for the homogeneous space Bn/(Len ,∼l). For example,

for each λ ∈] − 1, 1[, if h(a) = λ for all a ∈ Dn−1
en

, then the family of sections obtained

coincides with the set of orbits obtained in the decomposition Bn/(Dn−1
en

,∼r). For λ = 0,

we obtain the section Dn−1
en

, which can be considered the fundamental section in this case.

Analogously, we can construct sections for the spaces Bn/(Len ,∼r), Bn/(Lω,∼r), and

Bn/(Lω,∼l).

There is a duality relation between factorizations of type I and factorizations of type II

that we will describe in the next theorem.

Theorem 2.9.2 The following duality relations hold:

1. The orbits of the decomposition Bn/(Len ,∼r) are global sections for the homogeneous

spaces Bn/(Dn−1
en

,∼l) and Bn/(Dn−1
en

,∼r), and vice versa.

2. The orbits of the decomposition Bn/(Len ,∼l) are global sections for the homogeneous

space Bn/(Dn−1
en

,∼r) and vice versa.

3. The orbits of Bn/(Len ,∼l) are local sections for the space Bn/(Dn−1
en

,∼l) and vice

versa.

The relation between the orbits of Bn/(Len ,∼l) and Bn/(Dn−1
en

,∼l) leads to the concept

of local sections.

2.9.2 Local sections

A local section of a fiber bundle (E, B, π, F ) is a continuous map σ : U → E, where U is an

open set in B and π(σ(x)) = x for all x ∈ U.

In our case we can also construct local sections. We will give some examples. For each

φ ∈]0, π/2[∪]π/2, π[ the family of sections σl = (0, . . . , 0, r sinφ, r cosφ), with r ∈]−1, 1[, is a
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family of local sections for the homogeneous space X1 = Bn/(Dn−1
en

,∼l). For each φ ∈]0, π/2[

the generating function is given by

f1 : V1 =
]
− cosφ

1 + sinφ
,

cosφ

1 + sinφ

[
→]− 1, 1[,

f1(t) =





(1−t2) cos φ−
√

(1+t2)2 cos2 φ−4t2

2t sin φ , t ∈ V1\{0}
0, t = 0

. (2.64)

The parameter r is related with the generating function f1 by

r =
f1(t)

t cosφf1(t) + sinφ
=





(t2−1) cos φ−
√

(1+t2)2 cos2 φ−4t2

t
(
(1+t2) cos2 φ−2−cos φ

√
(1+t2)2 cos2 φ−4t2

) , t ∈ V1\{0}

0, t = 0
.

For each φ ∈]π/2, π[ the generating function is given by

f2 : V2 =
]

cosφ

1 + sinφ
,− cosφ

1 + sinφ

[
→]− 1, 1[,

f2(t) =





(1−t2) cos φ+
√

(1+t2)2 cos2 φ−4t2

2t sin φ , t ∈ V2\{0}
0, t = 0

.

Therefore, the parameter r is related with the generating function by

r =
f2(t)

t cosφf2(t) + sinφ
=





(t2−1) cos φ+
√

(1+t2)2 cos2 φ−4t2

t
(
(1+t2) cos2 φ−2+cos φ

√
(1+t2)2 cos2 φ−4t2

) , t ∈ V2\{0}

0, t = 0
.

More generally, given ω ∈ Sn−1\{±en} such that < ω, en >6= 0, the family of sections

σl = rω, with r ∈]− 1, 1[ is a family of local sections for the homogeneous space X1.

For the homogeneous space X2 = Bn/(Dn−1
en

,∼r) it is also possible to construct local

sections. We will construct a simple example. For each k ∈] − 1, 0[∪]0, 1[ we consider the

family of local sections σr = (0, . . . , 0, p, k), with p ∈ [0,
√

1− k2[.

For k ∈]0, 1[ the generating function is given by

g1 :]k, 1[→]− 1, 1[; t 7→ g1(t) =

√
t− k

t(1 + kt)

and for k ∈]− 1, 0[ the generating function is given by

g2 :]− 1, k[→]− 1, 1[, t 7→ g2(t) =

√
t− k

t(1 + kt)
.
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The parameter r is related with the generating functions by

p = gi(t)(1 + kt) =

√
(t− k)(1 + kt)

t
, i = 1, 2.

For the homogeneous spaces obtained from factorizations of type II it is also possible to

construct examples of local sections. For instance, for k ∈] − 1, 1[, the family of hyperdiscs

Dk = {a ∈ Bn : an = k} is a family of local sections for the homogeneous space X3 =

Bn/(Len ,∼l).

We remark that the construction of families of local sections is a quite arbitrary procedure

and we have not exhausted all examples.

2.10 Factorizations of the proper Lorentz group

Until now we only have considered factorizations of the gyrogroup of the unit ball. In order

to incorporate rotations in our scheme we have to extend the equivalence relations obtained

in both factorizations of the unit ball to the whole of the group Spin+(1, n), according to

the group operations (2.50) or (2.51). Is is possible to use either the left or right gyrosemidi-

rect products to make this extension. However, due to the structure of the gyrosemidirect

product, the extension becomes different for right and left cosets. We only deal with factor-

izations of type I, since the extension of the equivalence relations obtained in factorizations

of type II is analogous.

Let 1 denote the identity rotation. It is easy to see that the direct products {1} ×Dn−1
en

and Dn−1
en

× {1} are gyrogroups. Our goal is to define an equivalence relation ∼∗,1l on

Spin(n) × Bn, which is an extension of the equivalence relation ∼l on Bn, such that the

resulting homogeneous space X̃1 = (Spin(n)×Bn)/({1}×Dn−1
en

,∼∗,1l ) is isomorphic as a set

to Spin(n)× Len . For (s1, c), (s2, d) ∈ Spin(n)×Bn we define

(s1, c) ∼∗,1l (s2, d) ⇔ ∃ s3 ∈ Spin(n), ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

:

(s1, c) =

(
s3

1− [(−a)⊕ (b⊕ a)]a
|1− [(−a)⊕ (b⊕ a)]a| , (−a)⊕ (b⊕ a)

)
×r (e, a)

and

(s2, d) =

(
s3

1− [(−f)⊕ (b⊕ f)]f
|1− [(−f)⊕ (b⊕ f)]f | , (−f)⊕ (b⊕ f)

)
×r (e, f). (2.65)

The equivalence relation (2.65) reduces to

(s1, c) ∼∗,1l (s2, d) ⇔ ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

: s1 = s2 ∧ (c = b⊕ a ∧ d = b⊕ f).
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Thus, it is easy to see that the equivalence class associated to (s1, c) is equal to {s1} × [c],

with [c] = Sl
b ∈ Bn/(Dn−1

en
,∼l). Moreover, the quotient space is X̃1 = {{s} × Sl

b : s ∈
Spin(n), b ∈ Len} ∼= Spin(n)× Len .

The group Spin+(1, n) acts on X̃1 according to (2.50) by the mapping

g : Spin+(1, n)× X̃1 → X̃1

((s1, a), (s2, [c])) 7→
(

s1s2
1− s2as2c

|1− s2as2c| , [c⊕ (s2as2)]
)

.

The equivalence relation ∼∗,1l , associated to the group operation (2.50), appears here as

the natural extension of the relation ∼l of the factorization Bn/(Dn−1
en

,∼l).

It is also possible to use the group operation (2.51) to obtain a similar isomorphism.

But, in this case, the extension of ∼l is now a right equivalence relation. For (c, s1), (d, s2) ∈
Bn × Spin(n) it is defined by

(c, s1) ∼∗,1r (d, s2) ⇔ ∃ s3 ∈ Spin(n), ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

:

(c, s1) = (a, e)×l

(
(−a)⊕ (b⊕ a),

1− a[(−a)⊕ (b⊕ a)]
|1− a[(−a)⊕ (b⊕ a)]|s3

)

and

(d, s2) = (f, e)×l

(
(−f)⊕ (b⊕ f),

1− f [(−f)⊕ (b⊕ f)]
|1− f [(−f)⊕ (b⊕ f)]|s3

)
,

that is

(c, s1) ∼∗,2r (d, s2) ⇔ ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

: s1 = s2 ∧ (c = a⊕ b ∧ d = f ⊕ b),

Therefore, we obtain the homogeneous space (Bn × Spin(n))/(Dn−1
en

× {1},∼∗,1r ) ∼= Len ×
Spin(n).

We can construct global and local sections for X̃1 using the knowledge obtained in sub-

Sections 2.9.1 and 2.9.2. In fact, if σ : Bn/(Dn−1
en

,∼l) → Bn is a section for Bn/(Dn−1
en

,∼l)

then, σ∗ : X̃1 → Spin(n)×Bn, defined as σ∗({s} × Sl
b) = (s, σ(Sl

b)) is a section for X̃1.

For the natural extension of the right equivalence relation ∼r of Bn/(Dn−1
en

,∼r) we will

use the operation (2.50). For (c, s1), (d, s2) ∈ Bn × Spin(n) we define

(c, s1) ∼∗,2r (d, s2) ⇔ ∃ s3 ∈ Spin(n), ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

:

(c, s1) = (a, e)×l

(
b,

1− ab

|1− ab|s3

)
and (d, s2) = (f, e)×l

(
b,

1− fb

|1− fb|s3

)
. (2.66)
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Hence, the equivalence relation (2.66) reduces to

(c, s1) ∼∗,1r (d, s2) ⇔ ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

: s1 = s2 ∧ (c = b⊕ a ∧ d = b⊕ f).

and we obtain the homogeneous space X̃2 = (Bn × Spin(n))/(Dn−1
en

× {1},∼∗,2r ) = {Sr
b ×

{s}, b ∈ Len , s ∈ Spin(n)} ∼= Len × Spin(n).

Using the operation (2.50) it is possible to define the following left equivalence relation:

(s1, c) ∼∗,2l (s2, d) ⇔ ∃ s3 ∈ Spin(n), ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

:

(s1, c) =
(

s3
1− ba

|1− ba| , b
)
×r (e, a) and (s2, d) =

(
s3

1− bf

|1− bf | , b
)
×r (e, f),

that is

(s1, c) ∼∗,2l (s2, d) ⇔ ∃ b ∈ Len , ∃ a, f ∈ Dn−1
en

: s1 = s2 ∧ (c = a⊕ b ∧ d = f ⊕ b).

Thus, we obtain the homogeneous space (Spin(n)×Bn)/({1}×Dn−1
en

,∼∗,2l ) ∼= Spin(n)×Len .

For the factorizations of type II we can proceed in a similar way and extend the equiv-

alence relations obtained in 2.8.2 to the whole of the group Spin+(1, n) using the group

operations (2.50) or (2.51).

The spaces X̃1 and X̃2 can be used for the construction of spherical continuous wavelet

transforms as we will see on the next chapter.

2.11 Connections with the group of automorphisms of the unit

disc in C

Since the algebraic structure of the Clifford algebra R0,n is a generalization of the algebraic

structure of the complex plane there should exist a relationship between the Lorentz group

Spin+(1, n) and the group of conformal automorphisms of the unit disc D in C. The main

difference is that the set of complex numbers is a field with a commutative multiplication

whereas in higher dimensions we have only an algebra with a non-commutative multipli-

cation. Nevertheless, we will show that there are strong analogies namely the gyrogroup

structure is already presented in the group of the automorphisms of the unit disc.

The group of automorphisms of the unit disc is the set {eiθϕ̃a(z), θ ∈ [0, 2π[, a ∈ D},
i.e. it consists of rotations given by eiθ(θ ∈ [0, 2π[) and Möbius transformations of the form

ϕ̃a(z) = z−a
1−az . We will show that the set of Möbius transformations ϕ̃a(z) in C share the

same properties of ϕa(x) in Rn.
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With respect to the composition of two Möbius transformations we have

(ϕ̃a ◦ ϕ̃b)(z) =
1 + ab

1 + ab
ϕ̃b⊕a(z), ∀ a, b ∈ D, ∀z ∈ D,

with b⊕a = a+b
1+ba

= ϕ̃−b(a). Clearly the element λ = 1+ab
1+ab defines a rotation since |λ| = 1. It

is easy to see that (D,⊕) is a gyrocommutative gyrogroup with the left gyroassociative law

given by a⊕ (b⊕ c) = (a⊕ b)⊕ (λc), and the gyrocommutative law given by a⊕ b = λ(b⊕a).

For all a, b, z ∈ D and θ ∈ [0, 2π[ the following properties hold:

1) ϕ̃a(eiθ)(z) = eiθϕ̃e−iθa(z); 2) eiθϕ̃a(z) = ϕ̃eiθa(eiθz);

3) (eiθa)⊕ b = eiθ(a⊕ (e−iθb)); 4) eiθ(a⊕ b) = (eiθa)⊕ (eiθb).

The main difference between (D,⊕) and (Bn,⊕), n ≥ 3, consists in the existence of

subgroups and gyro-subgroups. In the case of (D,⊕) there are only subgroups of the type

(Lω,⊕), with Lω = {tω, t ∈]− 1, 1[}, for each ω ∈ S1.

The Unique Decomposition Theorems (2.8.1 and 2.8.6) are valid in this case, but now

the decomposition is done in terms of the subgroups Li and L1. In higher dimensions the

subgroup Li is replaced by the subgroup Len and the subgroup L1 is replaced by the gyro-

subgroup Dn−1
en

.

Theorem 2.11.1 For each c ∈ D there exist unique a, d ∈ Li and b, f ∈ L1 such that

c = a⊕ b and c = f ⊕ d.

This theorem allow us to construct partitions of D and homogeneous spaces for D as

we made in Section 2.8. The orbits obtained have the same structure because they express

essentially the hyperbolic geometry, independent of the dimension. Therefore, the theorem

about duality relations holds also in C and the theory of sections on homogeneous spaces

can also be developed. As we can see, there exists a strong analogy between the algebraic

structure of the Lorentz group Spin+(1, n) in R0,n, n ≥ 3, and the algebraic structure of the

group of conformal automorphisms of the unit disc D in C.
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2.12 Relation between (B3,⊕) and SL(2,C)

In this section we restrict ourselves to the case n = 3 and we establish a relation between a

Möbius transformation ϕa acting on the unit sphere S2 and an element of the group SL(2,C).

The relationship between SL(2,C) and SO0(1, 3) is well known. The group SL(2,C) is

isomorphic to the group Spin(1, 3), which is a (simply connected) double-cover of SO0(1, 3)

(see [13]). Thus, there exists the isomorphism

SL(2,C)/{I,−I} ∼= SO0(1, 3).

In order to construct such isomorphism, we consider the approach presented in [39]. To

each hermitian matrix of second order

X =

(
x0 − x3 −x1 − ix2

−x1 + ix2 x0 + x3

)
(2.67)

we associate a vector x = (x0, x1, x2, x3) ∈ R4, where x0 is the component in the time

axis. This correspondence is one-one and linear. Therefore, any linear transformation in the

space of the matrices X may be considered as a linear transformation in R4. Any matrix

A ∈ SL(2,C) specifies an unique linear transformation X 7→ Y = AXA∗ (∗ denotes the

conjugate transpose), which in turn, induces a proper Lorentz transformation in R4.

It is also known that SL(2,C) = PSL(2,C) ∼= Möb+, where PSL(2,C) denotes the

group of projective transformations of the complex projective space CP1, and Möb+ is the

group of Möbius transformations

z 7→ az + b

cz + d
, z ∈ C (2.68)

where a, b, c, d ∈ C and ad − bc = 1. They act on the Riemann sphere S2 ∼= C ∪ {∞}. The
compactified complex plane is usually denoted by C, i.e. C = C∪{∞}. It is easy to see that

Möb+ ∼= SL(2,C)/{I,−I} and, therefore, Möb+ ∼= SO0(1, 3).

We have already defined the stereographic projection map on (2.24). In the 2-dimensional

case the stereographic projection map Φ1 : S2 → C ∪ {∞} is a bijection given by

Φ1(x1, x2, x3) =
2x1 + 2x2i

1 + x3
, for (x1, x2, x3) ∈ S2\{(0, 0,−1)},

and Φ1(0, 0,−1) = ∞.

Definition 2.12.1 The cross ratio of four complex numbers z0, z1, z2 and z3 is defined as

(z0, z1, z2, z3) =
z0 − z2

z0 − z3

z1 − z3

z1 − z2
. (2.69)
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Here we make the conventions that

a±∞
b±∞ = 1, (a, b ∈ C),

a

0
= ∞, (a 6= 0),

a

∞ = 0, (a 6= ∞),

so for example (z, 1, 0,∞) = z.

When z1, z2, and z3 are distinct, and z0 is replaced by a variable z, this cross ratio can

be used to define a Möbius transformation

T (z) = (z, z1, z2, z3) =
z − z2

z − z3

z1 − z3

z1 − z2

mapping T (z1) = 1, T (z2) = 0, and T (z3) = ∞. The following theorem is sometimes called

Fundamental Theorem of Möbius Geometry.

Theorem 2.12.2 If z1, z2, and z3 are three distinct complex numbers, and w1, w2 w3 are

also three distinct complex numbers then there is a unique Möbius transformation that maps

each zi to wi.

One of the implications of this theorem says that the Möbius transformation is solely

determined by three complex numbers z1, z2 and z3 sent to 1, 0, and ∞, respectively.

Theorem 2.12.3 The cross ratio is invariant under Möbius geometry, i.e.

(z0, z1, z2, z3) = (T (z0), T (z1), T (z2), T (z3)).

Applying this theorem we deduce the following result.

Theorem 2.12.4 For each a = (a1, a2, a3) ∈ B3, the Möbius transformation ϕa acting on

S2 can be described as an element of the group SL(2,C) by the matrix

1√
1− |a|2




1 + a3 −2(a1 + a2i)

−a1+a2i
2 1− a3


 . (2.70)

Proof: We know that Möbius transformations map circumferences into circumferences.

As the stereographic projection preserves circumferences, the Möbius transformation ϕa

on the unit sphere S2 can be identified with a Möbius transformation on the compactified

complex plane C, i.e. an element of SL(2,C). To perform such identification it is only needed

to know the image of three points on C and then to solve a cross ratio relation.

For the computations we need to divide the proof in two cases:

Case 1 - a1 6= 0 and a2 6= 0 :
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We consider the points (1, 0, 0), (0, 0,−1) and (0, 0, 1) on S2 that corresponds respectively

to the points 2, 0 and ∞ on C, via the stereographic projection map Φ1.

Let T denotes the Möbius transformation on C that corresponds to ϕa on S2. Then

T (2) = Φ1(ϕa(1, 0, 0)), T (0) = Φ1(ϕa(0, 0,−1)) and T (∞) = Φ1(ϕa(0, 0, 1)). Now, as T is

invariant under the cross ratio, we must have

(T (z), T (∞), T (2), T (0)) = (z,∞, 2, 0).

The left hand-side is equal to (z − 2)/z. Solving this cross ratio we obtain, by straight-

forward computations,

T (z) =
(2 + 2a3)z − 4a1 − 4a2i

(−a1 + a2i)z + 2− 2a3
.

After normalization we obtain the matrix (2.70).

Case 2 - a1 = 0 and a2 = 0 :

For this case we consider T (2) = Φ1(ϕa(1, 0, 0)), T (0) = Φ1(ϕa(0, 0,−1)) and T (−2) =

Φ1(ϕa(−1, 0, 0)). The following equality holds

(T (z), T (−2), T (2), T (0)) = (z,−2, 2, 0).

The right hand-side is equal to (z − 2)/(2z). Again, solving this cross ratio we get

T (z) =
(1 + a3)z
1− a3

.

After normalization we obtain the following matrix of SL(2,C)



√
1+a3
1−a3 0

0
√

1−a3
1+a3


 ,

which is a particular case of (2.70).

Remark 2.12.5 Considering the stereographic projection mapping (2.26) for n = 3 we ob-

tain the matrix

1√
1− |a|2




1− a3 −(a1 + a2i)

−a1 + a2i 1 + a3


 . (2.71)
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2.13 Stereographic projection in Rn of ϕa(x)

In this section we will generalize the relation between (B3,⊕) and SL(2,C) previously ob-

tained to higher dimensions, i.e. we will find the Möbius transformations ϕ̃1 and ϕ̃2 on Rn−1

such that Φ1(ϕa(x)) = ϕ̃1(Φ1(x)) and Φ2(ϕa(x)) = ϕ̃2(Φ2(x)), respectively.

For that purpose we will use the Cayley transformation, which maps the unit ball Bn

into the upper half space H+
n = {x ∈ Rn : xn > 0}.

Definition 2.13.1 The Cayley transformation in Rn is defined by

y = (x + en)(1 + enx)−1. (2.72)

First we observe that the stereographic projection is the limit case of the Cayley trans-

formation, i.e., if we consider Sn−1 = ∂Bn then it is mapped by the Cayley transformation

to Rn−1 = ∂H+
n .

Proposition 2.13.2 The stereographic projection mapping Φ2 : Sn−1 → Rn−1 can be defined

via the Cayley transformation

Φ2(x) = (x + en)(1 + enx)−1 =
x− xnen

1− xn
=

(
x1

1− xn
, . . . ,

xn−1

1− xn

)
. (2.73)

Proof: By some computations we find that

(x + en)(1 + enx)−1 =
(x + en)(1 + enx)

|1 + enx|2 =
2x + (1− |x|2 − 2xn)en

1− 2xn + |x|2 .

Thus, considering x ∈ Sn−1, i.e. |x|2 = 1, we obtain the stereographic projection mapping

(2.73) (projection from the North Pole en = (0, . . . , 0, 1) to the plane Rn−1 at the origin).

To find the Möbius transformation that intertwines with the stereographic projection

we only have to work with the respective Vahlen matrices (at the level of the symbols -

projective geometry).

Theorem 2.13.3 We have the following intertwining relation Φ2(ϕa(x)) = ϕ̃2(Φ2(x)), where

ϕ̃2(x) is the Möbius transformation in Rn−1 defined by the Vahlen matrix

1√
1− |a|2

(
1− an −a + anen

a− anen 1 + an

)
. (2.74)
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Proof: Solving the system of equations in order to u, v, w, z ∈ Γ(n) we obtain:

(
1 en

en 1

)(
1 −a

a 1

)
=

(
u v

w z

)(
1 en

en 1

)

⇔





u + ven = 1 + ena

uen + v = −a + en

w + zen = en + a

wen + z = 1− ena

⇔





u = 1 + ena− ven

v = −a−enaen
2

w = en + a− zen

z = 2−ena−aen
2

⇔





u = 1− an

v = −a + anen

w = a− anen

z = 1 + an

.

In this resolution we used the identities enaen = −2anen + a and ena + aen = −2an.

After normalization we obtain the matrix (2.74), which is in the Clifford group Γ(1, n+1),

by Theorem 2.2.1, and thus, it represents a Möbius transformation in Rn−1.

Remark 2.13.4 It is also possible to rewrite the stereographic projection map (2.24) by

means of the Cayley transformation. The inverse Cayley transformation maps the upper half

space H+
n onto the unit ball Bn. However, as a mapping from Bn to Rn, it maps Sn−1 to

Rn−1 and coincides with the stereographic projection Φ1 (up to a factor). Indeed, considering

the inverse of the Cayley transformation multiplied by the factor 2 we obtain

Φ1(x) = 2(x− en)(1− enx)−1 =
(

2x1

1 + xn
, . . . ,

2xn−1

1 + xn

)
, x ∈ Sn−1.

In this case we obtain the intertwining relation Φ1(ϕa(x)) = ϕ̃1(Φ1(x)), where ϕ̃1(x) is the

Möbius transformation in Rn−1 defined by the Vahlen matrix

1√
1− |a|2

(
1 + an 2(−a + anen)
a−anen

2 1− an

)
. (2.75)

Finally, we want to remark that the intertwining relations obtained are also valid as

intertwining relations between the unit ball and the upper half space (by means of the Cayley

transformation).
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2.14 Integration formulae

We denote by G the group Spin+(1, n). For the polar decomposition of G (see (2.6)) we have

the following integration formula:

Lemma 2.14.1 The invariant measure on Spin+(1, n) is given by
∫

G
f(g)dg =

∫

Spin(n)

∫

Bn

f(s, a)
dBa

(1− |a|2)n
dµ(s), (2.76)

where dµ(s) is the Haar measure on the compact group Spin(n) and dBa is the normalized

Lebesgue measure of Bn.

Proof: Since the group SO0(1, n) is unimodular, also its double covering group Spin+(1, n)

is unimodular. Hence, it is sufficient to prove the right invariance. By (2.52), we have

(s1, a)×r (s2, b) =
(

s1s2
1− s2as2b

|1− s2as2b| , b⊕ (s2as2)
)

= (s3, c).

Thus,

s1 = s3
1− bs2as2

|1− bs2as2|s2 and a = s2((−b)⊕ c)s2 = s2ϕb(c)s2.

As dµ(s) is the Haar measure on Spin(n) we obtain dµ(s1) = dµ(s3). For the change of

variable a = s2ϕb(c)s2 we obtain the invariant relation

dBa

(1− |a|2)n
=

1
(1− |ϕb(c)|2)n

(
1− |b|2
|1 + bc|2

)n

dBc =
dBc

(1− |c|2)n
.

Thus, we derive the desired right invariance
∫

Spin(n)

∫

Bn

f((s1, a)×r (s2, b))
dBa

(1− |a|2)n
dµ(s1) =

∫

Spin(n)

∫

Bn

f(s3, c)
dBc

(1− |c|2)n
dµ(s3)

=
∫

Spin(n)

∫

Bn

f(s1, a)
dBa

(1− |a|2)n
dµ(s1).

Corollary 2.14.2 For the KAK decomposition of Spin+(1, n) it is valid the integration

formula:
∫

G
f(g)dg =

2πn/2

Γ(n/2)

∫

Spin(n)

∫

Sn−1

∫ 1

0
f(s1renξ)

rn−1

(1− r2)n
drdξdµ(s1). (2.77)

The proof follows from considering, in the previous lemma polar coordinates.

Now we establish the link between this integration formula and the integration formula

presented in [67].
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Corollary 2.14.3 Using the KAK decomposition g = s1sen(α)s2, where s1, s2 ∈ Spin(n)

and sen(α) = cosh α
2 + εen sinh α

2 , α ∈ R+, we have the following integration formula:

∫

G
f(g)dg =

2πn/2

Γ(n/2)

∫

Spin(n)

∫

Spin(n)

∫ ∞

0
f(s1sen(α)s2) sinhn−1 α dα dµ(s2) dµ(s1). (2.78)

Proof: There is an isomorphism between the groups (Len ,⊕) and (R+,×) given by

r =
u− 1
u + 1

, with u ≥ 1.

Making this change of variables we obtain

dBa

(1− |a|2)n
=

rn−1

(1− r2)n
dr dξ =

(
(u + 1)2

4u

)n (
u− 1
u + 1

)n−1 2
(u + 1)2

du dξ

=
(

u2 − 1
2u

)n−1 1
u

du dξ =
(

eα − e−α

2

)n−1

dt dξ = sinhn−1 α dα dξ,

where u = eα, with α ≥ 0. This proves the assertion.

Finally, we observe that left invariant measures on homogeneous spaces turn out to be

compatible with the left gyro-structure (see [50]). Thus, dµ(a) = dBa
(1−|a|2)n is the left invari-

ant measure on (Bn,⊕). However, nothing is known about the existence of right invariant

measures and, in general, it is not possible to find a right invariant measure due to the

structure of right gyro-translations. Therefore, we cannot expect to extend the concept of

modular function for gyrogroups.



Chapter 3

Spherical continuous wavelet

transforms

In this chapter we will construct various spherical continuous wavelet transforms (SCWT)

arising from sections of the proper Lorentz group, generalizing the approach due to Antoine

and Vandergheynst ([7, 8]). For the construction of a transform that is to be used for

analyzing a signal locally we are faced with an important decision about what properties we

want our transform to have. We need to clarify which transformations we are interested in

using to analyze signals on the sphere. Furthermore, since we would like to develop a wavelet-

like transform, we would need to describe three transformations which are traditionally used

in wavelet analysis: translations, rotations and dilations. Translations are easy to identify,

since they correspond to rotations of the homogeneous space SO(n)/SO(n − 1). Rotations

can be realized as rotations around a certain axis on the n−sphere. Thus, both translations

and rotations can be associated with the action of SO(n) on Sn−1.

Dilation, or scaling, is more difficult to define because of the spherical structure of Sn−1.

An idea proposed in [7], for the case of the sphere S2, is to dilate functions on the tangent

plane of the sphere at the North Pole by means of stereographic projection. To dilate a

function around some point ω ∈ S2 three steps are needed. First, ω is rotated to the North

Pole by a rotation R. Next, the function is stereographically projected into the tangent plane

and, there dilated, in the same way that dilations are performed for the regular 2D CWT.

Finally, the result is lifted back to the sphere using the inverse stereographic projection and

the inverse rotation R−1.

It is possible to introduce local dilations in a quite natural way on the sphere if we

use the conformal group, that is, the proper Lorentz group SO0(1, n). In [7], the authors

73
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used the Iwasawa decomposition of SO0(1, 3) (or KAN−decomposition, where K is the

maximal compact subgroup, A = SO(1, 1) ∼= R ∼= R+∗ is the subgroup of Lorentz boosts

in the z−direction and N ∼= C is a two dimensional abelian subgroup) to construct the

parameter space X = SO0(1, 3)/N ∼= SO(3) · R+∗ , the product of SO(3) (for motions) by

R+∗ (for dilations). A generalization of this approach for the (n − 1)−sphere is presented

in [8]. There is a correspondence principle between spherical and Euclidean wavelets in the

sense that the inverse stereographic projection of a wavelet on the plane gives a wavelet on

the sphere (see [77]). Recently, in [48], the authors extend the case of isotropic dilations on

the 2-sphere to the case of anisotropic dilations defined on the 2-sphere in two orthogonal

directions.

One of the limitations of the SCWT of Antoine and Vandergheynst is that it does not

take into account relativistic movements on the sphere. But, in many applications such

movements are required, e.g. an observer which moves at relativistically velocity with respect

to the Earth would see the appearance of the night sky (as modeled by points on the celestial

sphere) transformed by means of a Möbius transformation. With the present approach we

are able to connect the geometry of conformal transformations on the sphere with wavelet

theory, while incorporating general relativistic boosts. Another motivation for this work

comes from the case of the plane where a wide variety of wavelets, such as ridglets, curvelets

or shearlets, exists (see e.g. [15], [29], [56]). For future consideration of such transformations

on the sphere, it seems to be necessary to incorporate general conformal transformations

first. From the physical point of view, we will obtain relativistic coherent states which we

will call spherical conformlets.

The group Spin+(1, n), together with its Cartan decomposition, constitutes a very rich

and powerful model for the description of the spherical continuous wavelet transform with a

nice geometric description.

Having described the transformations needed to the construction of our transforms, we

will apply the group-theoretical framework presented in Chapter 1, by finding a unitary

representation of the group that will give rise to the desired transforms. First, we make

an equivalence between our model and the work of Antoine and Vandergheynst for the

isotropic case. Then we consider the anisotropic case and we extend the theory to general

global sections of our homogeneous space. The invertibility of our transforms is also shown.

Finally, we discuss the covariance and anisotropy properties of the generalized SCWT.
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3.1 Fourier analysis on the unit sphere

We will consider the space L2(Sn−1, dS) where dS is the surface element on the sphere

given by dS = sinn−2 φ sinn−3 θn−2 . . . sin θ2 dφ dθn−2 . . . dθ1, using the spherical coordi-

nates (2.12). In the case of n = 3, the surface element reduces to dS = sin φdφ dθ. For

simplicity, we will write only L2(Sn−1) instead of L2(Sn−1, dS).

Fourier analysis on the unit sphere Sn−1 is connected with representation theory of the

compact group SO(n) (see [75]). A natural unitary representation of SO(n) is the quasi-

regular representation

(Uqr(γ)f)(ω) = f(γ−1ω), γ ∈ SO(n), f ∈ L2(Sn−1).

Uqr is infinite dimensional and decomposes into the direct sum of all irreducible unitary

representations Ul, l = 0, 1, 2, . . . , which are of finite dimension dl. An orthonormal basis

in the dl−dimensional representation space of Ul is that of hyperspherical harmonics Y M
l ,

where M = (m1,m2, . . . , mn−2) runs over the set In
l of all integers mj such that l ≥ mn−2 ≥

. . . ≥ m2 ≥ |m1| ≥ 0. The dimension of Ul is

dl =
(2l + n− 2)(l + n− 3)!

(n− 2)! l!

which equals 2l + 1 for n = 3. For n = 3, Y M
l (ω) reduces to the usual spherical harmonic

Y m1
l (θ2, θ1), while for n ≥ 4, Y M

l (θ1, . . . , θn−1) is the product of Y m1
m2

(θ2, θ1) and (n − 3)

factors (sin θj)n−jC
pj
qj (cos θj), for j = 3, . . . , n−1, where Cp

q denotes a Greenbrier polynomial

(see [75]). The expansion of an arbitrary function of L2(Sn−1) in this hyperspherical basis

is given by

f(ω) =
∞∑

l=0

∑

M∈In
l

f̂(l,M)Y M
l (ω).

Parseval’s theorem asserts that

||f ||2 =
∞∑

l=0

∑

M∈IM
l

|f̂(l, M)|2,

where f̂(l, M) = 〈Y M
l , f〉 denotes the Fourier coefficient of f. The Wigner D−functions

Dl
MM ′ appear by the transformation formula for spherical harmonics:

[Uqr(γ)Y M
l ](ω) = Y M

l (γ−1ω) =
∑

M ′∈In
l

Dl
MM ′(γ)Y M ′

l (ω), γ ∈ SO(n).

Moreover, the Wigner functions satisfy the following orthogonality relations
∫

SO(n)
Dl

MQ(γ)Dl′
M ′Q′(γ)dµ(γ) =

1
dl

δll′δMM ′δQQ′ . (3.1)



76 CHAPTER 3. SPHERICAL CONTINUOUS WAVELET TRANSFORMS

In the case of n = 3, Fourier analysis on the sphere S2 is based on the spherical harmonics

Y m
l (ω), with l ∈ N, m ∈ Z, and |m| ≤ l. These spherical harmonics provide an orthonormal

basis on L2(S2). In coordinates (θ, φ) ∈ [0, 2π] × [0, π[, the spherical harmonic Y m
l has the

factorization

Y m
l (θ, φ) = kl,mPm

l (cosφ)eimφ, (3.2)

where Pm
l is the associated Legendre function of degree l and order m, and kl,m =

[
2l+1
4π

(l−m)!
(l+m)!

]2

is a normalization constant. The orthonormality and completeness relations are respectively,

∫ 2π

0

∫ π

0
Y m

l (θ, φ)Y m′
l′ (θ, φ) sinφdφdθ = δll′δmm′ ,

and ∑

l∈N

∑

|m|≤l

Y m
l (θ′, φ′)Y m

l (θ, φ) = δ(cosφ′ − cosφ)δ(θ′ − θ).

The Wigner D−functions Dl
mn(γ), [12], with l ∈ N, m, n ∈ Z, and |m|, |n| ≤ l, are the matrix

elements of the irreducible unitary representations of weight l of the rotation group in the

space of square-integrable functions L2(SO(3), dµ) on SO(3), and they satisfy the relation

[R(γ)Y m
l ](ω) = Y m

l (γ−1ω) =
∑

|n|≤l

Dl
mn(γ)Y n

l (ω), γ ∈ SO(3)

and the following orthogonality relation

∫

SO(3)
Dl

mn(γ)Dl′
m′n′(γ)dµ(γ) =

8π2

2l + 1
δll′δmm′δnn′ , (3.3)

by the Peter-Weyl Theorem on compact groups.

Remark 3.1.1 Wigner D−functions are defined on the group SO(n). However, since the

group Spin(n) is a double covering group of SO(n) they can be extended to the group Spin(n).

Thus, we will use Dl
mn(s), s ∈ Spin(n) by the identification with Dl

mn(γ), γ ∈ SO(n), via the

homomorphism between SO(n) and Spin(n).

3.2 Representations of the Lorentz group

The representations of the Lorentz group are studied in detail in the mathematical literature

(see, e.g. [67], [75]). Among these are the so-called class I representations, for which there

exists a vector in the carrier Hilbert space which is invariant under the maximal compact
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subgroup SO(n). Class I representations are induced by unitary irreducible representations

of the minimal parabolic subgroup. They are given by the operators

[Uρ(g)f ](ω) = λ(g, ω)ρ/2χ(a)f(g−1ω), g ∈ SO0(1, n), ρ ∈ C, f ∈ L2(Sn−1),

where g = γan is the Iwasawa decomposition of the element g, χ is a character of A =

SO(1, 1), and λ(g, ω) is a multiplier that satisfies the cocycle property

λ(g1g2, ω) = λ(g1, ω)λ(g2, g
−1
1 ω).

We will choose the trivial character χ(a) ≡ 1. The main properties of these representations

are studied in [67], [75] and summarized in the following theorem.

Theorem 3.2.1 The representation

[Uρ(g)f ](ω) = λ(g, ω)ρ/2f(g−1ω),

is a strongly continuous representation of SO0(1, n) in L2(Sn−1). It is reducible if ρ =

0,−1,−2, . . . and cyclic otherwise. It is unitary and irreducible if and only if ρ = (n −
1)/2 + iτ, τ ∈ R.

We are interested in the action of dilations and motions on Sn−1. We will consider the

following unitary operators on L2(Sn−1) :

- the Spin rotation operator

Rsf(x) = f(sxs), s ∈ Spin(n), (3.4)

- the dilation operator

Dcf(x) =
(

1− |c|2
|1− cx|2

)n−1
2

f(ϕ−c(x)), c ∈ Bn. (3.5)

Since the Jacobian of the Möbius transformation ϕ−c(x) acting on Sn−1 is the Radon-

Nikodym derivative with respect to the rotational invariant Lebesgue measure on Sn−1, i.e.

dµ(ϕ−c(x)) = λ(c, x)dµ(x), with λ(c, x) =
(

1−|c|2
|1−cx|2

)n−1
, it satisfies the 1-cocycle property

(see [2], p. 49):

λ(a⊕ b, x) = λ(a, x)λ(b, ϕ−a(x)), ∀a, b ∈ Bn, ∀x ∈ Sn−1

that is,
(

1− |a⊕ b|2
|1− (a⊕ b)x|2

)n−1

=
(

1− |a|2
|1− ax|2

)n−1 (
1− |b|2

|1− bϕ−a(x)|2
)n−1

, ∀a, b ∈ Bn, ∀x ∈ Sn−1. (3.6)
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Indeed, by simple computations we have
(

1− |a⊕ b|2
|1− (a⊕ b)x|

)n−1

=
(

1− |ϕ−a(b)|2
|1− ϕ−a(b)x|2

)n−1

, by (2.30)

=
(

(1− |a|2)(1− |b|2)|1− ab|−2

|1− (1− ba)−1(a + b)x|
)n−1

, by (2.31) and (2.30)

=
(

(1− |a|2)(1− |b|2)
|1− ba− (a + b)x|2

)n−1

and
(

1− |a|2
|1− ax|2

)n−1 (
1− |b|2

|1− bϕ−a(x)|2
)n−1

=
(

1− |a|2
|1− ax|2

1− |b|2
|1− b(x + a)(1− ax)−1|2

)n−1

=
(

(1− |a|2)(1− |b|2)
|1− ba− (a + b)x|2

)n−1

. (3.7)

Combining the result (3.6) and the Unique Decomposition Theorem (Theorem 2.8.1) we

can factorize the action induced by the dilation operator Dc.

Proposition 3.2.2 Let c ∈ Bn such that c = b⊕ a with a ∈ Dn−1
en

and b ∈ Len . Then

Dcf(x) = DbDaRqf(x), with q =
1− ab

|1− ab| . (3.8)

Proof: On the one hand we have,

Dcf(x) = Db⊕af(x) =
(

1− |b⊕ a|2
|1− (b⊕ a)x|2

)n−1
2

f(ϕ−b⊕a(x))

=
(

(1− |a|2)(1− |b|2)
|1− ab− (a + b)x|2

)n−1
2

f(ϕ−b⊕a(x)).

As −ϕa(x) = ϕ−a(−x) then −b⊕ a = −ϕ−b(a) = ϕb(−a) = (−b)⊕ (−a).

Moreover, by (2.28) we have that ϕ−a ◦ ϕ−b(x) = qϕ(−b)⊕(−a)(x)q, with q = 1−ab
|1−ab| , and

thus

ϕ−b⊕a(x) = q(ϕ−a(ϕ−b(x)))q. (3.9)

Therefore, we have

DbDaRqf(x) =
(

1− |b|2
|1− bx|2

1− |a|2
|1− aϕ−b(x)|2

)n−1
2

f(qϕ−a(ϕ−b(x))q)

=
(

(1− |a|2)(1− |b|2)
|1− ab− (a + b)x|2

)n−1
2

f(ϕ−b⊕a(x)), by (3.9) and (3.7).
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Definition 3.2.3 The operator DaRq (a ∈ Dn−1
en

, q = 1−ab
|1−ab| , b ∈ Len), is called the anisotropy

operator.

If a = 0, i.e. if we consider the restriction to the Spin(1, 1) group then the anisotropy

operator reduces to the identity operator.

Analogously, by the Unique Decomposition Theorem (Theorem 2.8.6) we can factorize

the action induced by the dilation operator Dc, through the right orbits.

Proposition 3.2.4 Let c ∈ Bn such that c = a⊕ b with a ∈ Dn−1
en

and b ∈ Len . Then

Dcf(x) = DaDbRqf(x), with q =
1− ab

|1− ab| . (3.10)

Proposition 3.2.5 The following relations hold:

DaRs = RsDsas (3.11)

DbDa = RqDaDb (3.12)

for all s ∈ Spin(n), and a, b ∈ Bn, with q = 1−ab
|1−ab| .

Proof: We prove first the relation (3.11). On the one hand we have

DaRsf(x) =
(

1− |a|2
|1− ax|2

)n−1
2

f(sϕ−a(x)s).

On the other hand we have

RsDsasf(x) =
(

1− |a|2
|1− sassxs|2

)n−1
2

f(ϕ−sas(sxs))

=
(

1− |a|2
|1− ax|2

)n−1
2

f(sϕ−a(x)s), by (2.32).

Now we prove relation (3.12). On the one hand,

DbDaf(x) =
(

(1− |a|2)(1− |b|2)
|1− ab− (a + b)x|2

)n−1
2

f(ϕ−a(ϕ−b(x)))

=
(

(1− |a|2)(1− |b|2)
|1− ab− (a + b)x|2

)n−1
2

f(qϕ−(b⊕a)(x)q), by (3.9).
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On the other hand,

RqDaDbf(x) =
(

(1− |a|2)(1− |b|2)
|1− ba− (a + b)qxq|2

)n−1
2

f(ϕ−b(ϕ−a(qxq)))

=
(

(1− |a|2)(1− |b|2)
|1− ba|2|1− (a + b)(1− ba)−1x|2

)n−1
2

f(ϕ−(a⊕b)(qxq)), by (3.9)

=
(

(1− |a|2)(1− |b|2)
|1− ba|2|1− (1− ab)−1(a + b)x|2

)n−1
2

f(qϕ−q(a⊕b)q(x)), by (2.5.3), (2.32)

=
(

(1− |a|2)(1− |b|2)
|1− ab− (a + b)x|2

)n−1
2

f(qϕ−(b⊕a)(x)q), by (2.40).

Using the operators (3.4) and (3.5) we define the representation

π1(s, a)ψ(x) := RsDaψ(x) =
(

1− |a|2
|1− asxs|2

)n−1
2

ψ(ϕ−a(sxs)). (3.13)

Proposition 3.2.6 π1 is a unitary representation of the group Spin+(1, n) in L2(Sn−1).

Proof: We are going to prove that π1 is a homomorphism of the group Spin+(1, n) onto

the space of linear maps from the Hilbert space L2(Sn−1) onto itself, with respect to the

group operation (2.50).
On the one hand we have

π1(s1, a)(π1(s2, b)ψ(x)) =

(
1− |a|2

|1− as1xs1|2
1− |b|2

|1− bs2ϕ−a(s1xs1)s2|2
) n−1

2

ψ(ϕ−b(s2ϕ−a(s1xs1)s2))

=

(
(1− |a|2)(1− |b|2)

|1− s2bs2a− (a + s2bs2)s1xs1|2
) n−1

2

ψ(ϕ−(b⊕(s2as2))(s3xs3)),

with s3 = s1s2
1−s2as2b
|1−s2as2b| .

We observe that

|1− bs2ϕ−a(s1xs1)s2|2 = |1− s2bs2(s1xs1 + a)(1− as1xs1)
−1|2

= |1− as1xs1|−2|1− as1xs1 − s2bs2(s1xs1 + a)|2

= |1− as1xs1|−2|1− s2bs2a− (a + s2bs2)s1xs1|2.

By (2.34), (2.28) and (2.40) it follows

ϕ−b(s2ϕ−a(s1xs1))s2) = ϕ−b(ϕ−s2as2)(s2 s1xs1s2)

= q1ϕ−(b+s2as2)(1−s2as2b)−1(s1s2xs1s2)q1

= ϕ−q1((s2as2)⊕b)q1(q1s1s2xs1s2q1)

= ϕ−(b⊕(s2as2))(s3xs3),
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where q1 = 1−bs2as2
|1−bs2as2| .

On the other hand we have

π1(s3, b⊕ (s2as2))f(x) =

(
1− |b⊕ (s2as2)|2

|1− (b⊕ (s2as2))s3xs3|2
) n−1

2

ψ(ϕ−(b⊕(s2as2))(s3xs3))

=

(
(1− |a|2)(1− |b|2)

|1− s2bs2a− (a + s2bs2)s1xs1|2
) n−1

2

ψ(ϕ−(b⊕(s2as2))(s3xs3)).

We note that

1− |b⊕ (s2as2)|2 = 1− |ϕ−b(s2as2)|2 =
(1− |a|2)(1− |b|2)
|1− bs2as2|2

and (by (2.40))

|1− (b⊕ (s2as2))s3xs3|2 = |1− q2(b⊕ (s2as2))q2 s2 s1xs1s2|2

= |1− (s2as2 ⊕ b) s2 s1xs1s2|2

= |1− bs2as2|−2|1− bs2as2 − (s2as2 + b)s2 s1xs1s2|2

= |1− bs2as2|−2|s2(1− s2bs2a)− s2(a + s2bs2) s1xs1|2|s2|2

= |1− bs2as2|−2|1− s2bs2a− (a + s2bs2) s1xs1|2,

with q2 = 1−s2as2b
|1−s2as2b| .

Thus, π1(s1, a)(π1(s2, b)ψ(x)) = π1(s3, b ⊕ (s2as2))ψ(x), i.e. π1 is a representation of

Spin+(1, n) on L2(Sn−1).

Simple changes of variables show that π1 is unitary, i.e. ||π1(s, a)ψ||L2(Sn−1) = ||ψ||L2(Sn−1).

Remark 3.2.7 It is also possible to define the representation

π2(a, s)ψ(x) = DaRsψ(x) =
(

1− |a|2
|1− ax|2

)n−1
2

ψ(sϕ−a(x)s). (3.14)

associated with the group operation (2.51) on M(Bn), which arises from the decomposition

M(Bn) ∼ Bn × Spin(n).

We cannot commute, in general, rotations with dilations, therefore, the representations

π1 and π2 are different. However, both are related in the following way:

π1(s, a)ψ(x) = RsDaψ(x) = DsasRsψ(x) = π2(sas, s)ψ(x). (3.15)

Moreover, if the rotation s leaves invariant a, then rotations will commute with dilations

and both representations are equal.
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We remark that the representation π1 can be also obtained by the method of induced

representations of Mackey (see [2] - section 4.2).

Since there exists a convolution on the unit sphere we will construct our spherical wavelet

theory based on the representation π1, in order to interpret the spherical wavelet transform

as a spherical convolution.

As an immediate consequence of the KAK−decomposition (2.14) of the group Spin+(1, n)

we can decompose the representation π1 using relation (2.18), with a = s1rens1, s1 ∈
Spin(n)/Spin(n− 1) ∼= Sn−1 as described in Lemma 2.4.1:

π1(s, a)ψ(x) = π1(s2, r, s1)ψ(x) =
(

1− r2

|1− rens2xs2|2
)n−1

2

ψ(s1ϕ−ren(s2xs2)s1),

where s2 = ss1 ∈ Spin(n).

Thus, we can study the representations associated to the subgroups K = Spin(n) and

A = Spin(1, 1) separately, namely, the representations:

Tsψ(x) = ψ(sxs), s ∈ Spin(n)

and

Trψ(x) =
(

1− r2

|1− renx|2
)n−1

2

ψ(ϕ−ren(x)).

By the change of variables r = tanh(−α/2), with α ∈ R (c.f. Proposition 2.4.8 and Formula

(2.17)) we obtain the following representation

Tαψ(x1, . . . , xn) = (coshα− sinhα xn)−
n−1

2

ψ

(
x1

coshα− xn sinhα
, . . . ,

xn−1

coshα− xn sinhα
,
xn coshα− sinhα

coshα− xn sinhα

)
.

We are dealing here with one specific representation of the Lorentz group realized on

the Hilbert space L2(Sn−1). We can extend the representation π1 to the null cone Cn
+ by

considering the space Bnρ of smooth functions on Cn
+ and homogeneous of degree ρ ∈ C,

i.e, f(λξ) = λρf(ξ), λ > 0, ξ ∈ Cn
+. This is the approach made in [75] for the study of

representations of the proper Lorentz group SO0(1, n). The complete classification of these

representations (principal, complementary and discrete series) is done in [67] and [75].

The representation π1 belongs to the principal series and it is irreducible on the space

L2(Sn−1). Unfortunately it is not square integrable because the matrix elements tnρ
KM (g) =〈

Tnρ(g)Y K
l , Y M

l

〉
L2(Sn−1)

, with K = (k1, k2, . . . , kn−2) ∈ Zn−2, l ≥ kn−2 ≥ . . . ≥ k2 ≥
|k1| ≥ 0, M = (m1,m2, . . . , mn−2) ∈ Zn−2, l ≥ mn−2 ≥ . . . ≥ m2 ≥ |m1| ≥ 0, and

g ∈ SO0(1, n), associated to the orthonormal basis of hyperspherical harmonics Y M
l are not
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square integrable with respect to the Haar measure of the group. A detailed discussion of

this problem is given in [67] and [75].

In order to continue with our construction we need now a suitable homogeneous space of

the group Spin+(1, n).

3.3 Spherical continuous wavelet transforms

Our model offers many possibilities for the construction of spherical continuous wavelet

transforms. Since there exists already a spherical continuous wavelet transform (SCWT)

defined by Antoine and Vandergheynst (see [7] and [8]), we will make first the equivalence

between our model and its SCWT.

The SCWT defined in [7] and [8] is based on the section σI = (γ, u), with γ ∈ SO(n) and

u ∈ R+, in the principal fiber bundle defined by the Iwasawa decomposition σ : X =

KAN/N → KAN. This section corresponds to the fundamental section σ∗ = (s, Len)

of the homogeneous spaces X̃1 = (Spin(n) × Bn)/({1} × Dn−1
en

,∼∗,1l ) and X̃2 = (Bn ×
Spin(n))/(Dn−1

en
× {1},∼∗,2r ). Due to the structure of the orbits we will develop our wavelet

theory based on the space X̃1, since this homogeneous space allow us to distinguish global

and local sections in a clear way.

The equivalence of both models is based on the equivalence of both dilation operators.

The dilation operator defined in [8] is

Duψ(ω) = λ1/2(u, φ)ψ(ω1/u),

with λ(u, φ) =
(

4u2

[(u2−1) cos φ+(u2+1)]2

)n−1
2 and ω1/u = ((θ1)u, . . . , (θn−2)u, φu), with (θj)u =

θj , j = 1 . . . , n−2, and tan φu

2 = u tan φ
2 . We have changed the notation of [8], using u ∈ R+

and φ ∈ [0, π[.

Proposition 3.3.1 The dilation operators Du and Dten are equivalent.

Proof: By Lemma 2.4.9, we know that the Möbius transformation ϕten corresponds

to the Spin(1, 1) action, which is the usual Euclidean dilation lifted on Sn−1 by inverse

stereographic projection. It remains to show that the weights are equal. In fact, by the

bijection between ]− 1, 1[ and ]0,∞[ given by t = u−1
u+1 , t ∈]− 1, 1[, u > 0 we have

(
1− t2

|1− tenx|2
)n−1

2

=
(

1− t2

1 + 2 〈ten, x〉+ t2

)n−1
2

=




1−
(

u−1
u+1

)2

1 + 2u−1
u+1xn +

(
u−1
u+1

)2




n−1
2

=
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=
(

4u

2(u2 + 1) + 2(u2 − 1)xn

)n−1
2

=
(

4u2

[(u2 − 1) cosφ + (u2 + 1)]2

)n−1
4

.

Thus, the restriction of the representation π1 to the section σ∗ = (s, Len)

π(σ∗)ψ(x) := π1(s, b)ψ(x) = RsDbψ(x) =
(

1− |b|2
|1− bsxs|2

)n−1
2

ψ(ϕ−b(sxs)), b ∈ Len (3.16)

is equivalent to the representation used in [7] and [8]. Therefore, we will translate the results

already obtained to the case of our fundamental section, namely the square-integrability of

the fundamental section, the admissibility condition and the inversion formula of the SCWT.

The theory of square-integrable representations modulo a subgroup presented in Section

1.4 depends only on the factorization of the group, the choice of a section and a quasi-

invariant measure on the respective homogeneous space, and on the representation of the

group. Thus, the general approach also works in our case since we can obtain these terms.

We will still use the term square-integrability modulo (H, σ), where H denotes only a gyro-

subgroup because the homogeneous space X̃1 results from the factorization of a group by

a gyro-subgroup. It remains to discuss the problem of the quasi-invariant measure for our

homogeneous space and for our sections.

For the fundamental section Len we consider the measure dµ(b) = 2(1−t)n−2

(1+t)n dt, b = ten.

For all a ∈ Bn and b ∈ Len such that a = s∗a∗s∗ we have that −a⊕ b = (s∗(−a∗)s∗)⊕ b =

s∗(−a∗ ⊕ (s∗bs∗))s∗ = s∗(−a∗ ⊕ b)s∗. Thus, the equivalence classes [−a ⊕ b] and [−a∗ ⊕ b]

are equal. This means that we only need to consider the action of a = (0, . . . , 0, an−1, an) on

b = ten ∈ Len . Let d = −a⊕ b = ϕa(b) =
(
0, . . . , 0, −(1+t2−2ant)an−1

1−2ant+|a|2t2
, (1−|a|2)t−(1+t2−2ant)an

1−2ant+|a|2t2

)
.

Applying the projection formulas (2.55) we obtain the new equivalence class, given by

dn = ga(t) =
−2an(1 + t2) + 2(1− a2

n−1 + a2
n)t√

C1(t)C2(t) + (1 + |a|2)(1 + t2)− 4tan

,

with

C1(t) := (1− t)2a2
n−1 + (1 + t)2(1− an)2, C2(t) := (1 + t)2a2

n−1 + (1− t)2(1 + an)2.

Differentiating with respect to t we obtain

g′a(t) =
2(1− t2)(1 + a2

n−1 − a2
n)(1− |a|2)

C1(t)C2(t) + ((1 + |a|2)(1 + t2)− 4ant)
√

C1(t)C2(t)
.

Therefore, the Radon-Nikodym derivative of dµ([−a⊕ b]) with respect to dµ(b) is given by:

χ(a, b) =
dµ([−a⊕ b])

dµ(b)
=

(1− ga(t))n−2(1 + t)n

(1 + ga(t))n(1− t)n−2
g′a(t).
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Since for each a, g′a(t) > 0, for all t ∈] − 1, 1[, we conclude that χ(a, b) ∈ R+, for all

a ∈ Bn and b ∈ Len , thus proving that the measure dµ(b) is quasi-invariant. Moreover this

measure is equivalent to the measure dµ(u) = du
un , by means of the bijection given by t = u−1

u+1

(u ∈ R+ and t ∈]− 1, 1[ ). For f ∈ L1(Len) we have
∫

Len

f([a⊕ b])dµ(b) =
∫

Len

f(b)dµ([−a⊕ b]) =
∫

Len

f(b)χ(a, b)dµ(b).

For the special case of a = (0, . . . , 0, an) ∈ Len we obtain χ(a, b) =
(

1+an
1−an

)n−1
. The

behavior of χ(a, b) depends on the dimension. For n = 3 the function χ(a, b) is bounded in

the variable b, i.e. for each a ∈ Bn there exists a constant M(a) =
(1−|a|2)(1+a2

n−1−a2
n)

(1−an)4
∈ R+

such that χ(a, b) ≤ M(a), for all b ∈ Len , since χ(a, b) is an increasing function in the

variable b, for each a 6= 0. Thus, dµ([−a⊕ b]) ≤ M(a) dµ(b). For n > 3 this estimate is not

valid since the function χ(a, b) is not bounded in the variable b.

3.3.1 The case of the sphere S2

We will restrict now to the case of the sphere S2. The following theorems about the square-

integrability of the fundamental section, the admissibility condition and the inversion formula

of the SCWT can be found in [7] and [5] (up to a change of variables).

Theorem 3.3.2 ([7]) For s ∈ Spin(3) and b ∈ Le3 the representation

π1(s, b)ψ(x) := RsDbψ(x) =
1− |b|2

|1− bsxs|2 ψ(ϕ−b(sxs)) (3.17)

is square-integrable modulo the gyro-subgroup {1} × D2
e3

and the section (s, Le3) that is,

the representation space L2(S2) contains a nonzero vector ψ admissible modulo ({1} ×
D2

e3
, (s, Le3)). Thus, there exists a constant C > 0, independent of l, such that

Cψ(l) =
8π2

2l + 1

∑

|n|≤l

∫ 1

−1
|ψ̂t(l, n)|2dµ(te3) < C, (3.18)

where ψ̂(l, n) = 〈Y n
l , ψ〉 stands for the Fourier coefficient of ψ, ψt(x) = Dte3ψ(x) and

dµ(te3) = 2(1−t)
(1+t)3

dt.

The proof consists in an explicit calculation, using the properties of the Fourier analysis

on the sphere (see [7]).

From Theorem 3.3.2 we have
∫ 1

−1

∫

Spin(3)
| 〈π1(s, b)ψ, f〉 |2 = 〈f,Af〉 < ∞, (3.19)
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where Aψ is called the resolution operator (or frame operator). The operator Aψ is diagonal

in Fourier space (i.e. it is a Fourier multiplier)

Âψh(l, m) = Cψ(l)ĥ(l,m), ∀h ∈ L2(S2),

or equivalently,

Aψh(ω) =
∑

l∈N

∑

|m|≤l

Cψ(l)ĥ(l, m)Y m
l (ω), ∀h ∈ L2(S2).

Any admissible function ψ generates a continuous family {ψ(s,b) := RsDbψ(x), s ∈
Spin(3), b ∈ Le3} of spherical wavelets. It is also a continuous frame, which can be seen

in the following proposition.

Proposition 3.3.3 ([7]) For any admissible vector ψ such that
∫ 2π
0 ψ(θ, φ)dθ 6= 0, the fam-

ily {ψ(s,b), s ∈ Spin(3), b ∈ Le3} is a continuous frame, that is, there exist constants A > 0
and B < ∞ such that

A||f ||2 ≤
∫

Spin(3)

∫ 1

−1

| 〈f, RsDte3ψ〉 |2dµ(te3) dµ(s) ≤ B||f ||2, ∀f ∈ L2(S2). (3.20)

Thus, for any admissible function ψ, we get a continuous frame, but not necessarily a

tight one, i.e. A 6= B in general. The condition (3.18) is necessary and sufficient for the

admissibility of ψ, but it is somewhat complicated to use in practice, since it requires the

evaluation of nontrivial Fourier coefficients. Instead, there is a simpler condition, although

only a necessary condition.

Proposition 3.3.4 ([7]) A function ψ ∈ L2(S2) is admissible only if it satisfies the condi-

tion ∫ 2π

0

∫ π

0

ψ(θ, φ)
1 + cos φ

sinφdφ dθ = 0. (3.21)

This condition is only necessary in general, but it becomes sufficient under mild regularity

conditions on ψ. This is the equivalent of the usual necessary condition for wavelets in the

Euclidean plane,
∫
R2 ψ(x)d2x = 0. It is a zero mean condition, as in the flat case. Thus, it

ensures that the CWT on S2 act as a local filter, in the sense that it selects the components

of a signal that are similar to ψ, which is assumed to be well localized.

Theorem 3.3.2 yields the basic ingredient for writing the CWT on S2. Given an admissible

wavelet ψ ∈ L2(S2), the wavelets on the sphere are the functions ψ(s,b) = RsDbψ, and the

SCWT is defined by

Wψ[f ](s, b) =
〈
ψ(s,b), f

〉
=

∫

S2

RsDbψ(x)f(x)dSx. (3.22)
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This last expression can be written as a spherical correlation (see [5]). Moreover, the

following reconstruction formula can be derived.

Proposition 3.3.5 ([77]) Let f ∈ L2(S2). If ψ is an admissible wavelet such that∫ 2π
0 ψ(θ, φ)dθ 6= 0, then

f(ω) =
∫ 1

−1

∫

Spin(3)
Wψ[f ](s, t)[RsA

−1
ψ Dte3ψ](ω) dµ(s) dµ(te3). (3.23)

Proof: Let ψte3 := Dte3ψ. Then we have

[RsA
−1
ψ ψte3 ](ω) =

∑

l∈N

∑

|m|≤l

∑

|n|≤l

1
Cψ(l)

Dl
mn(s)ψ̂te3(l,m)Y n

l (ω). (3.24)

The wavelet coefficients Wf (s, b) defined in (3.22) may be written as

Wψ[f ](s, b) =
∑

l∈N

∑

|m|≤l

∑

|n|≤l

Dl
mn(s)ψ̂te3(l, m)f̂(l, n). (3.25)

Inserting the expressions (3.24) and (3.25) in (3.23) and using the orthogonality relation for

Wigner D−functions, we obtain
∫ 1

−1

∫

Spin(3)
Wψ[f ](s, t)[RsA

−1
ψ Dte3ψ](ω) dµ(s) dµ(te3) =

=
∫ 1

−1

∫

Spin(3)

∑

l∈N

∑

|m|≤l

∑

|n|≤l

Dl
m,n(s)ψ̂te3(l, m)f̂(l, n)

∑

l′∈N

∑

|m′|≤l′

∑

|n′|≤l′

1
Cψ(l′)

Dl′
m′n′(s)ψ̂te3(l

′,m′)Y n′
l′ (ω)dµ(s)dµ(te3)

=
∑

l,l′

∑

m,m′

∑

n,n′

∫ 1

−1
ψ̂te3(l, m)ψ̂te3(l

′,m′)dµ(te3) f̂(l, n)Y n′
l (ω)

1
Cψ(l′)

∫

Spin(3)
Dl

mn(s)Dl′
m′n′(s)dµ(s)

=
∑

l∈N

1
Cψ(l)


 8π2

2l + 1

∑

|m|≤l

∫ 1

−1
|ψ̂te3(l, m)|2dµ(te3)


 ∑

|n|≤l

f̂(l, n)Y n
l (ω) (by (3.3))

=
∑

l∈N

∑

|n|≤l

f̂(l, n)Y n
l (ω)

= f(ω).

Thus, we conclude that the reconstruction formula (3.23) holds if and only if the coeffi-

cients Cψ(l) defined in (3.18) are finite and non-zero for any l ∈ N.
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Corollary 3.3.6 ([7]) Under the conditions of Proposition 3.3.5, the following Plancherel

relation is satisfied

||f ||2 =
∫ 1

−1

∫

Spin(3)
W̃ψ[f ](s, t)Wψ[f ](s, t) dµ(s) dµ(te3) (3.26)

with

W̃ψ[f ](s, t) =
〈
ψ̃(s,t), f

〉
= 〈RsAψψte3 , f〉 . (3.27)

One of the most interesting results concerning the SCWT is the correspondence princi-

ple between Euclidean and spherical wavelets, which states that the inverse stereographic

projection of a wavelet on the plane leads to the definition of a wavelet on the sphere (see

[77]).

These results hold for the fundamental section σ∗ = (s, Le3) and they can be generalized

to higher dimensions. Now, we consider general global sections σl(te3) = te3 ⊕ f(t)e2 on

the space X1 = B3/(D2
e2

,∼l). Then the pair σ∗ = (s, σl) with s ∈ Spin(3) corresponds to

a section on X̃1. We will study now when these sections give rise to spherical continuous

wavelet transforms.

Definition 3.3.7 If f ∈ Ck(] − 1, 1[) then the left global section σl(te3) = te3 ⊕ f(t)e2 is

called a section of class Ck or Ck-section. It is called a smooth section if f ∈ C∞(]− 1, 1[).

We will develop our generalized spherical continuous wavelet transforms for global left

C0-sections. For an arbitrary global left C0-section σl(te3) = te3 ⊕ f(t)e3 the measure

dµ(σl(te3)) = χ(σl(te3), t)dµ(te3) is the standard quasi-invariant measure for the section σl

(see [2]).

We know from Chapter 1 that if µ1 and µ2 are quasi-invariant measures on X then there

exists a Borel function f : X → R+, f(x) > 0, for all x ∈ X, such that dµ1(x) = f(x)dµ2(x),

for all x ∈ X, which means that the quasi-invariant measure on a section is unique (up to

equivalence). Thus, we will use the measure dµ(te3) for an arbitrary global left C0-section.

In Section 2.12 we establish a relationship between (B3,⊕) and SL(2,C) by the Theorem

2.12.4, which corresponds to the stereographic projection of the action of ϕa(x) onto its

tangent plane. Now we consider the respective unitary operators and we try to construct an

intertwining relation for the unitary stereographic projection.

From now on we will use f ∈ L2(S2) and F ∈ L2(R2) to distinguish functions from

different spaces. We will use the variables y ∈ R2 and z ∈ C and the identification of R2

with the complex plane C.
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Lemma 3.3.8 The map Θ : L2(S2, dS) → L2(R2, rdr dθ) defined by

f(θ, φ) 7→ F (θ, r) =
4

4 + r2
f(θ, 2 arctan(r/2)) (3.28)

is a unitary map. In cartesian coordinates the map Θ reads as

f(x) 7→ F (y) =
4

4 + |y|2 f(Φ−1
1 (y)). (3.29)

Proof: We have

||Θf ||2L2(R2) =
∫ 2π

0

∫ ∞

0

∣∣∣∣
4

4 + r2
f(θ, 2 arctan(r/2))

∣∣∣∣
2

rdr dθ. (3.30)

Let us consider the change of variables φ = 2 arctan(r/2), which means that r = 2 tan(φ/2) =

2
√

1−cos φ
1+cos φ . Then cosφ = 4−r2

4+r2 and sinφ = 4r
4+r2 . Thus, the integral (3.30) becomes

||Θf ||2L2(R2) =
∫ 2π

0

∫ π

0
|f(θ, φ)|2 sinφdφ dθ = ||f ||2L2(S2).

The following theorem is a consequence of Theorem 2.12.4.

Theorem 3.3.9 Let z = z1 + z2i ∈ C, and ϕ̃(z) := c1z+c2
c3z+c4

be the Möbius transforma-

tion obtained from the matrix (2.70), with c1 = 1+a3√
1−|a|2 , c2 = −2(a1+a2i)√

1−|a|2 , c3 = −a1+a2i

2
√

1−|a|2 ,

c4 = 1−a3√
1−|a|2 . Then we have the intertwining relation

ΘDaψ = MΘψ, (3.31)

where MF (z) = 4(1−|a|2)
|(a1−a2i)z+2(1+a3)|2 F (ϕ̃−1(z)) is the unitary operator associated with

ϕ̃−1(z) = c4z−c2
−c3z+c1

.

Proof: By the definition of our operators we have

ΘDaψ(z) =
4

4 + |z|2
1− |a|2

|1− aΦ−1(z)|2 ψ
(
ϕ−a(Φ−1

1 (z))
)

(3.32)

and

MΘψ(z) =
4(1− |a|2)

|(a1 − a2i)z + 2(1 + a3)|2
4

4 + |ϕ̃−1(z)|2 ψ
(
Φ−1

1 (ϕ̃−1(z))
)
. (3.33)

First we observe that

ϕ−a(Φ−1
1 (z)) = Φ−1

1 (ϕ̃−1(z)), ∀z ∈ C. (3.34)

If ϕ−a(Φ−1
1 (z)) = x ∈ S2 then z = Φ1(ϕa(x)). Moreover, if Φ−1

1 (ϕ̃−1(z)) = x, then z =

ϕ̃(Φ1(x)). Since the relation Φ1(ϕa(x)) = ϕ̃(Φ1(x)) holds by Theorem 2.12.4 we conclude
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that the relation (3.34) is true. It remains to prove that the weights in (3.32) and (3.33) are

equal. On the one hand,

4
4 + |z|2

1− |a|2
|1− aΦ−1

1 (z)|2 =
4(1− |a|2)

(1 + |a|2)(4 + |z|2) + 2a3(4− |z|2) + 8(a1z1 + a2z2)
.

On the other hand, since

|ϕ̃−1(z)|2 =
|c4z − c2|2
| − c3z + c1|2 = 4

(1− a3)2|z|2 + 4(1− a3)(a1z1 + a2z2) + 4(a2
1 + a2

2)
(a2

1 + a2
2)|z|2 + 4(1 + a3)(a1z1 + a2z2) + 4(1 + a3)2

and

|(a1 − a2i)z + 2(1 + a3)|2 = (a2
1 + a2

2)|z|2 + 4(1 + a3)(a1z1 + a2z2) + 4(1 + a3)2

we obtain, after some computations
4(1− |a|2)

|(a1 − a2i)z + 2(1 + a3)|2
4

4 + |ϕ̃−1(z)|2 =
4(1− |a|2)

(1 + |a|2)(4 + |z|2) + 2a3(4− |z|2) + 8(a1z1 + a2z2)
.

Thus,
4

4 + |z|2
1− |a|2

|1− aΦ−1
1 (z)|2 =

4(1− |a|2)
|(a1 − a2i)z + 2(1 + a3)|2

4
4 + |ϕ̃−1(z)|2 .

The Iwasawa decomposition of the group SL(2,C) yields the decomposition SL(2,C) =

KAN, where K = SU(2) is the maximal compact subgroup, A is abelian and N is nilpotent.

The Iwasawa decomposition of a generic element of SL(2,C) reads
(

u v

w z

)
=

(
α β

−β α

)(
δ−1/2 0

0 δ1/2

)(
1 ξ

0 1

)
(3.35)

where α, β, ξ ∈ C and δ ∈ R+, uz − vw = 1 and

δ = (|u|2 + |w|2)−1, α = uδ1/2, β = −wδ1/2,

ξ = u−1(v + wδ), if u 6= 0 or ξ = w−1(z − uδ), if w 6= 0.

The Iwasawa decomposition of the matrix (2.70)

1√
1− |a|2




1 + a3 −2(a1 + a2i)

−a1+a2i
2 1− a3


 (3.36)

yields the parameters

α = 2(1+a3)√
4(1+a3)2+a2

1+a2
2

, β = a1+a2i√
4(1+a3)2+a2

1+a2
2

, δ = 4(1−|a|2)
4(1+a3)2+a2

1+a2
2
, ξ = −2(a1+a2i)(5+3a3)

4(1+a3)2+a2
1+a2

2
.

(3.37)
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Remark 3.3.10 The Iwasawa decomposition of the matrix (2.71) yields simpler parameters

α =
1− a3√

1 + |a|2 − 2a3

, β =
a1 + a2i√

1 + |a|2 − 2a3

, δ =
1− |a|2

1 + |a|2 − 2a3
, ξ =

−2(a1 + a2i)
1 + |a|2 − 2a3

,

however, the gist of the reasoning is not changed and it is equivalent to work with the

stereographic projection mappings Φ1 or Φ2.

From the decomposition (3.35) and the parameters (3.37) we can define the following

unitary operators on L2(C) (Rα,β−complex rotation operator, Dδ−dilation operator and

T ξ−translation operator):

Rα,βF (z) =
1

| − βz + α|2 F

(
αz + β

−βz + α

)
; DδF (z) =

1
δ
F

(z

δ

)
; T ξF (z) = F (z + ξ).

As these mappings are isometries whose ranges include the whole space L2(C) the adjoint

operators and inverses are identical.

Lemma 3.3.11 The adjoint operators to Rα,β, Dδ and T ξ are

(Rα,β)∗ = Rα,−β, (Dδ)∗ = D
1
δ and (T ξ)∗ = T−ξ. (3.38)

Proposition 3.3.12 The operator M admits the following factorization

MF = Rα,−βD
1
δ T−ξF. (3.39)

Proof: By definition we have

MF (z) =
4(1− |a|2)

|(a1 − a2i)z + 2(1 + a3)|2 F (ϕ̃−1(z))

and

Rα,−βD
1
δ T−ξ F (z) = δ

1
|βz + α|2 F

(
δ

αz − β

βz + α
− ξ

)
.

First we prove that ϕ̃−1(z) = δ αz−β

βz+α
− ξ. On the one hand,

ϕ̃−1(z) =
c4z − c2

−c3z + c1
=

2(1− a3)z + 4(a1 + a2i)
(a1 − a2i)z + 2(1 + a3)

.

On the other hand,

δ
αz − β

βz + α
− ξ =

(δα− βξ)z − (δβ + αξ)
βz + α

=
2(1− a3)z + 4(a1 + a2i)
(a1 − a2i)z + 2(1 + a3)

.

Finally, it is easy to see that δ 1
|βz+α|2 = 4(1−|a|2)

|(a1−a2i)z+2(1+a3)|2 .
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Corollary 3.3.13 The intertwining relation (3.31) can be written as

ΘDaψ = Rα,−βD
1
δ T−ξΘψ. (3.40)

This intertwining relation generalizes Lemma 3.5 presented in [7], as we can easily see in

the next corollary.

Corollary 3.3.14 For a = te3 ∈ Le3 we obtain the intertwining relation

ΘDte3ψ = D
1+t
1−t Θψ. (3.41)

For an arbitrary global left section

σl(te3) = te3 ⊕ f(t)e2 =
(

0,
f(t)(1− t2)
1 + (tf(t))2

,
t(1 + f(t)2)
1 + (tf(t))2

)

the parameters (3.37) become

αt =
2(1 + tf(t)2)√

(1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4)
,

βt =
(1− t)f(t)√

(1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4)
i,

δt =
4(1− t)(1− f(t)2)(1 + t2f(t)2)

(t + 1)((1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4))
,

ξt =
2(t− 1)f(t)((5t2 + 3t)f(t)2 + 3t + 5)

(t + 1)((1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4))
i . (3.42)

When f(t) ≡ 0, (restriction to the fundamental section - Spin(1, 1) case) we obtain α = 1,

β = 0, ξ = 0 and δ = 1−t
1+t , which reflects again the fact that we obtain a pure dilation.

Lemma 3.3.15 The parameter δt can be written as δt = 1−t
1+tδ

∗
t , with δ∗t =

4(1−f(t)2)(1+t2f(t)2)
(1+t2+6t)f(t)2+4(1+t2f(t)4)

, and δ∗t satisfies the estimate

0 < δ∗t <
2(3− 2

√
3)

3(−2 +
√

3)
, ∀t ∈]− 1, 1[.

Proof: As f(t) ∈]−1, 1[, for every t ∈]−1, 1[, the study of the behavior of the parameter

δ∗t is equivalent to the study of the behavior of the function of two variables g(t, λ) =
4(1−λ2)(1+t2λ2)

(1+t2+6t)λ2+4(1+t2λ4)
, with t, λ ∈]− 1, 1[. Since for each λ ∈]− 1, 1[

1− λ2

1 + λ2
< g(t, λ) <

1− λ4

1 + λ4 − λ2
, ∀ t ∈]− 1, 1[
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we conclude that

0 < g(t, λ) <
2(3− 2

√
3)

3(−2 +
√

3)
, ∀ t, λ ∈]− 1, 1[.

Therefore,

0 < δ∗t <
2(3− 2

√
3)

3(−2 +
√

3)
, ∀ t ∈]− 1, 1[.

Now, we will prove the main theorem of this thesis concerning the square-integrability

of the representation π1 over the sections σ∗ = (s, σl).

Theorem 3.3.16 Let ψ ∈ L2(S2) such that the family {ψ(s,b), s ∈ Spin(3), b ∈ Le3} is a

continuous frame, that is, there exist constants A > 0 and B < ∞ such that

A||g||2 ≤
∫

Spin(3)

∫ 1

−1
| 〈g, RsDte3ψ〉 |2dµ(te3) dµ(s) ≤ B||g||2, ∀g ∈ L2(S2). (3.43)

Then ψ is an admissible function for any global left C0-section σl(te3) and the system

{ψ(s,σl(te3)), s ∈ Spin(3), t ∈]− 1, 1[ } forms a continuous frame, i.e.

A||g||2 ≤
∫

Spin(3)

∫ 1

−1
|
〈
g,RsDσl(te3)ψ

〉
|2dµ(te3) dµ(s) ≤ B||g||2, ∀g ∈ L2(S2). (3.44)

Proof: For every a ∈ B3 and g ∈ L2(S2) arbitrary we have
∫

Spin(3)

∫ 1

−1

∣∣∣〈g, RsDaψ〉L2(S2)

∣∣∣
2
dµ(te3)dµ(s)

=
∫

Spin(3)

∫ 1

−1

∣∣∣〈Rs g,Daψ〉L2(S2)

∣∣∣
2
dµ(te3)dµ(s)

=
∫

Spin(3)

∫ 1

−1

∣∣∣〈ΘRs g,ΘDaψ〉L2(R2)

∣∣∣
2
dµ(te3)dµ(s) (by Lemma 3.3.8)

=
∫

Spin(3)

∫ 1

−1

∣∣∣∣
〈
ΘRs g, Rα,−βD

1
δ T−ξΘψ

〉
L2(R2)

∣∣∣∣
2

dµ(te3)dµ(s) (by (3.40))

=
∫

Spin(3)

∫ 1

−1

∣∣∣∣
〈
ΘRs g,Rα,−βT−

ξ
δ D

1
δ Θψ

〉
L2(R2)

∣∣∣∣
2

dµ(te3)dµ(s)

=
∫

Spin(3)

∫ 1

−1

∣∣∣∣
〈
T

ξ
δ Rα,βΘRs g, D

1
δ Θψ

〉
L2(R2)

∣∣∣∣
2

dµ(te3)dµ(s) (by (3.38)). (3.45)

Now we consider an arbitrary global left C0-section σl(te3) and the parameters (3.42). By

Lemma 3.3.15 the parameter δt can be factorized as δt = 1−t
1+tδ

∗
t , with δ∗t = 4(1−f(t)2)(1+t2f(t)2)

(1+t2+6t)f(t)2+4(1+t2f(t)4)
,
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Therefore, the integral (3.45) becomes

∫

Spin(3)

∫ 1

−1

∣∣∣∣∣
〈

Dδ∗t T
ξt
δt Rαt,βtΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣
2

dµ(te3)dµ(s). (3.46)

For each s ∈ Spin(3) and t ∈]− 1, 1[ we have
∣∣∣∣∣
〈

Dδ∗t T
ξt
δt Rαt,βtΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣

2

≤ sup
t′∈]−1,1[

∣∣∣∣∣
〈

Dδ∗
t′T

ξ
t′

δ
t′ Rαt′ ,βt′ΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣

2

︸ ︷︷ ︸
I

and

inf
t′∈]−1,1[

∣∣∣∣∣
〈

Dδ∗
t′T

ξ
t′

δ
t′ Rαt′ ,βt′ΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣

2

︸ ︷︷ ︸
II

≤
∣∣∣∣∣
〈

Dδ∗t T
ξt
δt Rαt,βtΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣

2

.

Let t1, t2 ∈ [−1, 1] such that

I :=

∣∣∣∣∣∣

〈
Dδ∗t2 T

ξt2
δt2 Rαt2 ,βt2 ΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣∣

2

and

II :=

∣∣∣∣∣∣

〈
Dδ∗t1 T

ξt1
δt1 Rαt1 ,βt1 ΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣∣

2

.

Thus, we obtain

∫

Spin(3)

∫ 1

−1

∣∣∣∣∣∣

〈
Dδ∗t1T

ξt1
δt1 Rαt1 ,βt1ΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣∣

2

dµ(te3)dµ(s) ≤

∫

Spin(3)

∫ 1

−1

∣∣∣∣∣
〈

Dδ∗t T
ξt
δt Rαt,βtΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣
2

dµ(te3)dµ(s) ≤

∫

Spin(3)

∫ 1

−1

∣∣∣∣∣∣

〈
Dδ∗t2T

ξt1
δt1 Rαt1 ,βt1ΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣∣

2

dµ(te3)dµ(s).

Since for t ∈ [−1 + ε, 1 − ε], ε > 0, the operators Dδ∗t , T
ξt
δt and Rαt,βt are unitary and

bijective mappings we only need to study the case of t → ±1. In this case, the parame-

ter ξt

δt
associated to the operator T

ξt
δt can become infinity. But, it is easy to see that the

composition of the operators Dδ∗t and T
ξt
δt is well behaved. Thus, for each g ∈ L2(S2)

we can find g1 ∈ L2(S2) and g2 ∈ L2(S2) such that Dδ∗t1T

ξt1
δt1 Rαt1 ,βt1ΘRs g = ΘRs g1 and

Dδ∗t2T

ξt2
δt2 Rαt2 ,βt2ΘRs g = ΘRs g2 with ||g1|| = ||g2|| = ||g||.
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Therefore, we have

∫

Spin(3)

∫ 1

−1

∣∣∣∣
〈
ΘRs g1, D

1+t
1−t Θψ

〉
L2(R2)

∣∣∣∣
2

dµ(te3)dµ(s) ≤
∫

Spin(3)

∫ 1

−1

∣∣∣∣∣
〈

Dδ∗t T
ξt
δt Rαt,βtΘRs g, D

1+t
1−t Θψ

〉

L2(R2)

∣∣∣∣∣
2

dµ(te3)dµ(s) ≤
∫

Spin(3)

∫ 1

−1

∣∣∣∣
〈
ΘRs g2, D

1+t
1−t Θψ

〉
L2(R2)

∣∣∣∣
2

dµ(te3)dµ(s). (3.47)

By (3.41), (3.45) and Lemma 3.3.8 condition (3.47) becomes

∫

Spin(3)

∫ 1

−1

∣∣∣〈g1, RsDte3ψ〉L2(S2)

∣∣∣
2
dµ(te3)dµ(s) ≤

∫

Spin(3)

∫ 1

−1

∣∣∣∣
〈
g, RsDσl(te3)ψ

〉
L2(S2)

∣∣∣∣
2

dµ(te3)dµ(s) ≤
∫

Spin(3)

∫ 1

−1

∣∣∣〈g2, Dte3Θψ〉L2(S2)

∣∣∣
2
dµ(te3)dµ(s). (3.48)

As by hypothesis ψ satisfies condition (3.43) there exist constants 0 < A ≤ B < ∞ such

that

A||g1||2 ≤
∫

Spin(3)

∫ 1

−1
|
〈
g, RsDσl(te3)ψ

〉
|2dµ(te3)dµ(s) ≤ B||g2||2, ∀g ∈ L2(S2),

which means that

A||g||2 ≤
∫

Spin(3)

∫ 1

−1
|
〈
g, RsDσl(te3)ψ

〉
|2dµ(te3)dµ(s) ≤ B||g||2, ∀g ∈ L2(S2).

As a consequence of this theorem, every admissible function for the fundamental section

(s, te3) is also an admissible function for any global left C0-section (s, σl(te3)). Since the

wavelets obtained arise from the action of the conformal group we propose the following

definition.

Definition 3.3.17 For a given global left C0-section σl(te3) and ψ ∈ L2(S2) admissible the

wavelets (or system of coherent states) obtained

ψ(s,σl(te3))(x) = π1(s, σl(te3))ψ(x)

are called spherical conformlets.
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For an arbitrary section (s, σl(te3)) and an admissible function ψ ∈ L2(S2) we define the

wavelet transform

Wψ[f ](s, σl(te3)) =
〈
ψ(s,σl(te3)), f

〉
=

∫

S2

RsDσl(te3)ψ(x)f(x)dSx. (3.49)

By Theorem 3.3.16 the generalized wavelet transform (3.49) is a mapping from L2(S2, dS)

to L2(Spin(3)× σl(te3), dµ(s)dµ(te3)), from which the following reconstruction formula can

be derived.

Proposition 3.3.18 Let f ∈ L2(S2). If ψ is an admissible wavelet such that
∫ 2π
0 ψ(θ, φ)dθ 6=

0, then

f(x) =
∫ 1

−1

∫

Spin(3)
Wψ[f ](s, σl(te3))[Rs(Aψ

σ )−1Dσl(te3)ψ](x) dµ(s) dµ(t), (3.50)

where

Âψ
σh(l,m) = Cψ

σ (l)ĥ(l, m), ∀h ∈ L2(S2),

with

Cψ
σ (l) :=

8π2

2l + 1

∑

|n|≤l

∫ 1

−1
|ψ̂σl(te3)(l, n)|2dµ(te3).

As we can see most of the properties obtained for the fundamental section (s, te3) can

be generalized for an arbitrary global left C0-section (s, σl(te3)).

3.3.2 Generalization to the (n− 1)−sphere Sn−1

In this section we want to generalize propositions and theorems of the previous section in

order to construct generalized spherical continuous wavelets transforms for the unit sphere

Sn−1. Using Clifford algebraic techniques the results are easily extended to higher dimensions.

Some proofs will be omitted since they are analogous to the proofs of the previous section.

Let us remark that the surface element dS can be written as dS = sinn−2 φdφ dSn−2,

where dSn−2 is the surface element of the unit sphere Sn−2.

Lemma 3.3.19 The map Θ : L2(Sn−1, dS) → L2(Rn−1, rn−2dr dSn−2) defined by

f(θ1, . . . , θn−2, φ) 7→ F (θ1, . . . , θn−2, r) =
(

4
4 + r2

)n−1
2

f(θ1, . . . , θn−2, 2 arctan(r/2))

is a unitary map. In cartesian coordinates the map Θ reads as

f(x) 7→ F (y) =
(

4
4 + |y|2

)n−1
2

f(Φ−1
1 (y)). (3.51)
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Proof: We have

||Θf ||2L2(Rn−1) =
∫

Sn−2

∫ ∞

0

∣∣∣∣∣
(

4
4 + r2

)n−1
2

f(θ1, . . . , θn−2, 2 arctan(r/2))

∣∣∣∣∣

2

rn−2dr dSn−2. (3.52)

Let us consider the change of variables φ = 2 arctan(r/2), which means that r = 2 tan(φ/2) =

2
√

1−cos φ
1+cos φ . Then cosφ = 4−r2

4+r2 and sinφ = 4r
4+r2 . Thus, the integral (3.52) becomes

||Θf ||2L2(Rn−1) =
∫

Sn−2

∫ π

0
|f(θ1, . . . , θn−2, φ)|2 sinn−2 φdφ dSn−2 = ||f ||2L2(Sn−1).

Theorem 3.3.20 Let y ∈ Rn−1, and ϕ̃(y) := c1y+c2
c3y+c4

be the Möbius transformation obtained

from the matrix (2.75), with c1 = 1+an√
1−|a|2 , c2 = 2(−a+anen)√

1−|a|2 , c3 = a−anen

2
√

1−|a|2 , c4 = 1−an√
1−|a|2 .

Then we have the intertwining relation

ΘDaψ = MΘψ, (3.53)

where MF (y) =
(

4(1−|a|2)
|−(a−anen)y+2(1+an)|2

)n−1
2

F (ϕ̃−1(y)) is the unitary operator associated

with ϕ̃−1(y) = c4y−c2
−c3y+c1

.

The group SL(2, Γ(n) ∪ {0}), with entries in the Clifford group Γ(n) (see (2.3)) or zero,

admits an Iwasawa decomposition similar to the decomposition of the group SL(2,C). The

Iwasawa decomposition of a generic element of SL(2,Γ(n) ∪ {0}) is
(

u v

w z

)
=

(
α β

−β α

)(
δ−1/2 0

0 δ1/2

)(
1 ξ

0 1

)
(3.54)

where α, β, ξ ∈ Γ(n) ∪ {0} and δ ∈ R+, uz∗ − vw∗ = 1 and

δ = (|u|2 + |w|2)−1, α = uδ1/2, β = −wδ1/2,

ξ = u−1(v + wδ), if u 6= 0 or ξ = w−1(z − uδ), if w 6= 0.

The Iwasawa decomposition of the matrix (2.75)

1√
1− |a|2

(
1 + an 2(−a + anen)
a−anen

2 1− an

)
. (3.55)

yields the parameters

α =
2(1 + an)√

4(1 + an)2 + |a|2 − a2
n

, β =
a− anen√

4(1 + an)2 + |a|2 − a2
n

,
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δ =
4(1− |a|2)

4(1 + an)2 + |a|2 − a2
n

, ξ =
2(−a + anen)(5 + 3an)
4(1 + an)2 + |a|2 − a2

n

. (3.56)

From the decomposition (3.54) and the parameters (3.56) we can define the following

unitary operators on L2(Rn−1) :

Rα,βF (y) =
(

1
| − βy + α|2

)n−1
2

F

(
αy + β

−βy + α

)
;

DδF (y) = δ−
n−1

2 F
(y

δ

)
; T ξF (y) = F (y + ξ).

Lemma 3.3.21 The adjoint operators to Rα,β, Dδ and T ξ are

(Rα,β)∗ = Rα,−β, (Dδ)∗ = D
1
δ and (T ξ)∗ = T−ξ. (3.57)

Proposition 3.3.22 For F ∈ L2(Rn−1) and ψ ∈ L2(Sn−1) we have

MF = Rα,−βD
1
δ T−ξF, (3.58)

ΘDaψ = Rα,−βD
1
δ T−ξΘψ. (3.59)

Corollary 3.3.23 For a = ten ∈ Len we obtain the intertwining relation

ΘDtenψ = D
1+t
1−t Θψ. (3.60)

For an arbitrary global left section

σl(ten) = ten ⊕ f(t)en−1 =
(

0, . . . , 0,
f(t)(1− t2)
1 + (tf(t))2

,
t(1 + f(t)2)
1 + (tf(t))2

)

the parameters (3.56) become

αt =
2(1 + tf(t)2)√

(1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4)
,

βt =
(1− t)f(t)√

(1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4)
en−1,

δt =
4(1− t)(1− f(t)2)(1 + t2f(t)2)

(t + 1)((1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4))
,

ξt =
2(t− 1)f(t)((5t2 + 3t)f(t)2 + 3t + 5)

(t + 1)((1 + t2 + 6t)f(t)2 + 4(1 + t2f(t)4))
en−1 . (3.61)
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Theorem 3.3.24 Let ψ ∈ L2(Sn−1) such that the family {ψ(s,b), s ∈ Spin(n), b ∈ Len} is a

continuous frame, that is, there exist constants A > 0 and B < ∞ such that

A||g||2 ≤
∫

Spin(n)

∫ 1

−1
| 〈g, RsDtenψ〉 |2dµ(ten) dµ(s) ≤ B||g||2, ∀g ∈ L2(Sn−1).

Then ψ is an admissible function for any global left C0-section σl(ten) and the system

{ψ(s,σl(ten)), s ∈ Spin(n), t ∈]− 1, 1[ } forms a continuous frame, i.e.

A||g||2 ≤
∫

Spin(n)

∫ 1

−1
|
〈
g, RsDσl(ten)ψ

〉
|2dµ(ten) dµ(s) ≤ B||g||2, ∀g ∈ L2(Sn−1).

As a consequence of this theorem we conclude the result about the admissibility condition

(c.f. [8]).

Theorem 3.3.25 The representation π1 given in (3.13) is square integrable modulo ({1} ×
Dn−1

en
,∼∗,1l ) and the global left C0-section (s, σl(ten)), that is, there exists a nonzero admis-

sible vector ψ ∈ L2(Sn−1) satisfying

1
dl

∑

M∈In
l

∫ 1

−1
|ψ̂σl(ten)(l,M)|2 dµ(ten) < ∞, (3.62)

uniformly in l.

For an arbitrary section (s, σl(ten)) and an admissible function ψ ∈ L2(Sn−1) we define

the wavelet transform

Wψ[f ](s, σl(ten)) =
〈
ψ(s,σl(ten)), f

〉
=

∫

Sn−1

RsDσl(ten)ψ(x)f(x)dS. (3.63)

The wavelet transform (3.63) is a mapping from L2(Sn−1, dS) into

L2(Spin(n) × σl(ten), dµ(s)dµ(ten)), from which there is a reconstruction formula and also

a Plancherel Theorem.

3.4 Anisotropy and covariance of the generalized SCWT

Having defined a SCWT, depending on the chosen section, it naturally arises the question

of its classification according to its properties. One essential question is to understand what

kind of dilations are obtained when the Möbius transformation ϕa(x) over the fundamental

section Len is replaced by a Möbius transformation over an arbitrary global left C0-section
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σl(ten). This study will be made in the next chapter and we will see that we obtain anisotropic

conformal dilations, which in a sense reflects the Möbius deformation of the fundamental

section, since σl(ten) = ten ⊕ f(t)en−1. Another important question is the characterization

of the anisotropy of a given section. By Definition 3.2.3 the operator Df(t)en−1
Rq(t), with

q(t) = 1−tf(t)en−1en

|1−tf(t)en−1en| , gives the anisotropy character of an arbitrary global left section. Thus,

we propose the following concept of anisotropy.

Definition 3.4.1 The anisotropy of the section σl(ten) = ten ⊕ f(t)en−1 is defined by

εf :=
∫ 1

−1
||Df(t)en−1

Rq(t) − I||dt. (3.64)

Since the operators Df(t) and Rq(t) are unitary we have that 0 ≤ εf ≤ 4. Thus, the

concept of anisotropy is a concept with an important meaning. However, it is very difficult

to compute the quantity εf . Therefore, we will propose an alternative definition using only

the generating function of the section σl(ten), which can easily computed for every Borel

section.

Definition 3.4.2 For 1 ≤ p < ∞ the p−deviation of the global left C0-section σl(ten) is

given by

ε∗f,p :=
∫ 1

−1
||σl(ten)− ten||pdt

and for p = ∞ we define the infinity deviation by ε∗f,∞ := sup
t∈]−1,1[

||σl(ten)− ten||.

By simple computations we derive the following result:

Proposition 3.4.3 For 1 ≤ p < ∞ the p−deviation of the global left C0-section σl(ten) is

given by

ε∗f,p :=
∫ 1

−1

(
|f(t)|(1− t2)√

1 + t2f(t)2

)p

dt

and the infinity deviation is given by ε∗f,∞ := sup
t∈]−1,1[

|f(t)|(1− t2)√
1 + t2f(t)2

.

For the sections σl
λ(ten) we obtain ε∗λ,p := |λ|p

∫ 1

−1

(
1− t2√
1 + t2λ2

)p

dt, (e.g.,

ε∗λ,1 = |λ|(2λ2 ln(λ+
√

1+λ2)−λ
√

1+λ2+ln(λ+
√

1+λ2)
λ3 ) and ε∗λ,∞ = |λ|. For the sections σl

c(ten) we

obtain ε∗c,p := |c|p
∫ π

0
sinp φdφ (e.g., ε∗c,1 = 2|c|) and ε∗c,∞ = |c|.



3.4. ANISOTROPY AND COVARIANCE OF THE GENERALIZED SCWT 101

The question of covariance of the SCWT (3.63) under rotations on Sn−1 and dilations

is very important. In the flat case, the usual CWT in Rn is fully covariant with respect

to translations, rotations, and dilations, and this property is essential for applications, in

particular the covariance under translations. In fact, covariance is a general feature of all

coherent state systems directly derived from a square integrable group representation [2].

However, when the representation is only square integrable over a quotient of the group then

no general theorem is available. In the case of the sphere the results are the following:

• The SCWT (3.63) is covariant under rotations on Sn−1 : for any s1 ∈ Spin(n), the

transform of the rotated signal f(s1xs1) is the function Wψ[f ](s1s, σ
l(ten)).

• The SCWT (3.63) is not covariant under dilations. The wavelet transform of the

dilated signal Dσl(t1en)f(x), is of the form Wψ[f ](s, (sσl(t1en)s) ⊕ (−σl(ten))) as we

can see by direct calculations.

Considering the change of variables ϕ−b(x) = y ⇔ x = ϕb(y), from which dSx =(
1−|b|2
|1+by|2

)n−1
dSy we obtain

Wψ[Dbf ](s, a) =
∫

Sn−1

(
1− |a|2

|1− asxs|2
)n−1

2

ψ(ϕ−a(sxs))
(

1− |b|2
|1− bx|2

)n−1
2

f(ϕ−b(x))dSx

=
∫

Sn−1

(
(1− |a|2)(1− |b|2)3

|1− sasϕb(y)|2|1− bϕb(y)|2|1 + by|4
)n−1

2

ψ(ϕ−a(sϕb(y)s))f(y)dSy

=
∫

Sn−1

(
(1− |a|2)(1− |b|2)
|1 + by − sas(y − b)|2

)n−1
2

ψ(ϕ(sbs)⊕(−a)(sys))f(y)dSy

= Wψ[f ](s, (sbs)⊕ (−a)), ∀s ∈ Spin(n), ∀a, b ∈ Bn.

The SCWT is not covariant under dilations since the parameter space of the SCWT is

not a group. This is a general feature of coherent systems based on homogeneous spaces.

For applications, of course, it is the covariance under rotations that is essential.





Chapter 4

Local analysis on the unit sphere

Having constructed several spherical continuous wavelet transforms through sections of the

proper Lorentz group we now need to understand the role of dilations obtained from the

Möbius transformation ϕσl(ten)(x). The easiest way of doing this is by studying the action

of ϕa(x) on a given spherical cap. Since Möbius transformations map spheres on spheres,

a spherical cap will be mapped onto another spherical cap, which is an expansion or a

contraction of the initial cap. Following the spirit of the Erlangen program of F. Klein,

namely the study of the invariants of a given geometry, we will make a detailed study of

the properties of spherical caps under the action of a Möbius transformation ϕa(x). As

a consequence we arrive at the concept of local dilation around the North Pole and the

separation of the unit ball Bn in two regions: the dilation and contraction regions. The

construction of the zonal surfaces associated to a given spherical cap allow us to better fully

understand the influence of the parameter a ∈ Bn on each spherical cap.

Since the unit sphere is a compact manifold it is preferable to use localized wavelets in

time and frequency than to use spherical harmonics which are global functions. Thus, by

defining wavelets with compact support on spherical caps we can perform local analysis on

the sphere. The main disadvantage is that there are no good coverings on the unit sphere

since there is no equidistribution of points on the unit sphere. Numerical questions and

applications will be discussed in Chapter 5.

Another objective of this chapter is to compare every section with the fundamental section

and to relate the existence of an attractor point inside the cap with the respective anisotropy

of the section. Thus, we arrive at the concept of local anisotropy of a given section.

103
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4.1 Influence of the parameter a ∈ Bn on spherical caps

For h ∈] − 1, 1[ fixed, let Uh = {x ∈ Sn−1 : xn ≥ h} be the spherical cap centered at the

North Pole, with support in the hyperplane xn = h.

The (n− 2)−dimensional sphere S in the hyperplane of equation xn = h, defined by

S :

{
x2

1 + x2
2 + ... + x2

n−1 = 1− h2

xn = h

is said to be the support of Uh. As Möbius transformations map spheres into spheres, it is

enough to study the behavior of S under the action of ϕa, with a ∈ Bn. Let S∗ denotes the

images’s support of the new spherical cap, i.e. S∗ = ϕa(S). The sphere S∗ has center in the

point

P =




2a1(an−h)((1+|a|2)h−2an)
k
...

2an−1(an−h)((1+|a|2)h−2an)
k

(1−|a|2+2an(an−h))((1+|a|2)h−2an)
k




T

, (4.1)

with k := 4(an−h)2(|a|2−a2
n)+ (1−|a|2 +2an(an−h))2, lies in the hyperplane of equation

2a1(an − h)x1 + 2a2(an − h)x2 + · · ·+ 2an−1(an − h)xn−1 +

(1− |a|2 + 2an(an − h))xn = (1 + |a|2)h− 2an (4.2)

and its radius is given by

τh(a) =
(1− h2)1/2(1− |a|2)

k1/2
. (4.3)

For a = s∗a∗s∗ = s∗(sn−1rensn−1)s∗, with s∗ ∈ Spin(n − 1) and sn−1 = eenen−1
φ
2 the

rotor in the enen−1−plane (c.f. Lemma 2.4.1 and Remark 2.4.2), we have that

ϕa(Uh) = s∗ϕsn−1rensn−1(s∗Uhs∗)s∗ = s∗ϕsn−1rensn−1(Uh)s∗. (4.4)

As a consequence, the rotation induced by s∗ ∈ Spin(n − 1) on a∗ = sn−1rensn−1 acts

only as a rotation of the cap ϕa∗(Uh). Moreover, only the parameters r and φ are intervening

in the local dilation of the original cap Uh. Therefore, to prove (4.1) we restrict ourselves to

a∗ = (0, . . . , 0, an−1, an). By taking two antipodes points on S (in the en−1en−plane), say
P1 = (0, . . . , 0,

√
1− h2, h) and P2 = (0, . . . , 0,−√1− h2, h), then these points are mapped

under ϕa∗ to the following points on S∗ = ϕa∗(S) :
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P̃1 =

(
0, . . . , 0,

(1− |a|2)
√

1− h2 + 2(
√

1− h2an−1 + han − 1)an−1

1 + |a|2 − 2(
√

1− h2an−1 + han)
,
(1− |a|2)h + 2(

√
1− h2an−1 + han − 1)an

1 + |a|2 − 2(
√

1− h2an−1 + han)

)

and

P̃2 =

(
0, . . . , 0,

(|a|2 − 1)
√

1− h2 + 2(−√1− h2an−1 + han − 1)an−1

1 + |a|2 − 2(−√1− h2an−1 + han)
,
(1− |a|2)h + 2(−√1− h2an−1 + han − 1)an

1 + |a|2 − 2(−√1− h2an−1 + han)

)
.

These points are antipodal in S∗ since 〈
−−→
P̃ P̃1,

−−−→
P̃ , P̃2〉 = 0, for every P̃ = ϕa∗(P ), with

P = (0, . . . , 0,
√

1− h2 sin θ,
√

1− h2 cos θ, h), with θ ∈ [0, 2π] and therefore, 〈
−−→
P̃ P̃1,

−−−→
P̃ , P̃2〉 =

0, for every P̃ ∈ S∗. Thus, the center of S∗ is the point

P3 =
P̃1 + P̃2

2
=

(
0, . . . , 0,

2an−1(an − h)((1 + |a|2)h− 2an)

k
,
(1− |a|2 + 2an(an − h))((1 + |a|2)h− 2an)

k

)
.

Hence, for an arbitrary point a ∈ Bn, the center of the sphere S∗ is obtained from P3 by

means of the s∗−rotation, thus giving (4.1).

Analyzing expression (4.1) it is easy to see that k > 0. Indeed, if an − h = 0, then

k = (1− |a|2)2 > 0 since |a| < 1, while if |a|2 − a2
n = 0, then k = (a2

n − 2anh + 1)2 > 0, due

to |a| < 1.

Let Uh,a = ϕa(Uh). The center (on the unit sphere) of the cap Uh,a is the point

Q =
(

2a1(an − h)
k1/2

, . . . ,
2an−1(an − h)

k1/2
,
1− |a|2 + 2an(an − h)

k1/2

)
. (4.5)

This point is obtained by projecting (4.1) onto the unit sphere and taking into account

that Möbius transformations are orientation preserving transformations. We can easily see

that the point Q belongs to Sn−1, by the definition of k. The distance dh(a) between points

P and Q is given by

dh(a) = 1 +
2an − h(1 + |a|2)√

k
. (4.6)

First we observe that we can rewrite k as k = 4(an − h)(an − h|a|2) + (1 − |a|2)2. A

simple calculation shows that

dh(a)2 =

n−1∑
i=1

(
2ai(an − h)(h(1 + |a|2)− 2an)

k
− 2ai(an − h)

k1/2

)2

+

+

(
(2an − h(1 + |a|2))(|a|2 − 1− 2an(an − h))

k
− 1− |a|2 + 2an(an − h)

k1/2

)2

=
(
4(an − h)2(|a|2 − a2

n) + (1− |a|2 + 2an(an − h))2
) ((2an − h(1 + |a|2))

√
k + k)2

k3

=
((2an − h(1 + |a|2))

√
k + k)2

k2
, by definition of k

=

(
2an − h(1 + |a|2)√

k
+ 1

)2

.
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For each h ∈ ] − 1, 1[ we have that −1 ≤ 2an−h(1+|a|2)√
k

≤ 1, for all a ∈ Bn. Therefore,

dh(a) = 1 + 2an−h(1+|a|2)√
k

and, hence, 0 ≤ dh(a) ≤ 2 for all a ∈ Bn and all h ∈]− 1, 1[.

We consider now the point a ∈ Bn described in spherical coordinates a = a(r, θ1, . . . , θn−1, φ)

(see (2.12)). Thus, expressions (4.3) and (4.6) become

τh(r, φ) =
(1− h2)1/2(1− r2)√

k1
and dh(r, φ) = 1 +

2r cosφ− h(1 + r2)√
k1

, (4.7)

with k1 = 4r2(r cosφ− h)2 sin2 φ + (1− r2 + 2r cosφ(r cosφ− h))2.

Definition 4.1.1 The image of the North Pole under the action of ϕa will be called the

attractor point and it will be denoted by A. It is given by

A =
(

2a1(an − 1)
1 + |a|2 − 2an

, · · · ,
2an−1(an − 1)
1 + |a|2 − 2an

,
1− |a|2 + 2an(an − 1)

1 + |a|2 − 2an

)
. (4.8)

Given a spherical cap Uh, the new spherical cap Uh,a is an expansion or a contraction of

Uh. The cap Uh,a is not centered at the North Pole if a ∈ Bn\Len or if an 6= h. Applying a

convenient rotation to the cap Uh,a we can center it at a given arbitrary point of the sphere. In

this way we obtain a family of caps {Uθ1,··· , θn−2

h,r,φ : r ∈ [0, 1[, θ1 ∈ [0, 2π[, θ2 . . . θn−2, φ ∈ [0, π[ }
that will generate our local analysis on a given point of the sphere. For instance, in the case

of the sphere S2, if we consider sh,a = cosβ/2 + ω sinβ/2 ∈ Spin(3) with





ω =
[
− a2√

a2
1+a2

2

, a1√
a2
1+a2

2

, 0
]
and cosβ = 1−|a|2+2a3(a3−h)

k1/2 , if a ∈ B3\Le3

ω = e3 and β = 0, if a ∈ Le3

, (4.9)

where ω is the axis of the rotation and β is the angle of the rotation, then the set {sh,aUh,ash,a :

a ∈ Bn} stands for a family of caps centered at the North Pole. We remark that, since the

point a belongs to the x3−axis, the North Pole is a fixed point and the cap Uh,a remains

centered at the North Pole. Also, if a3 = h the cap Uh,a remains centered at the North Pole,

since in this case Q = en.

These caps will provide the basis for our local analysis on the sphere. A dilation around

an arbitrary point ω ∈ Sn−1 can be obtained by combining the above described dilation

around the North Pole with an appropriate rotation.

We illustrate these facts with some concrete examples in R3.
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1 2 3

Figure 4.1: Dilation/contraction of a given cap: 1 - original cap U√3/2 , 2 -

U√3/2,(1/8,−√3/8,
√

3/4), 3 - U√3/2,(1/4,1/8,−1/4).

The second cap is a dilation of U√3/2, whereas the third cap is a contraction of U√3/2.

For each h ∈] − 1, 1[ it is possible to split the unit ball into two disjoint regions that will

be called dilation and contraction regions. These regions are separated by a revolution

surface Sh obtained by rotation around the xn−axis of the arc defined by

−→γ (r) = (0, . . . , 0, r
√

1− (hr)2, r2 h), r ∈ [0, 1[. (4.10)

To see that −→γ (r) describes the surface Sh we substitute cosφ = hr and sinφ =
√

1− (hr)2)

in (4.7). We obtain:

dh(r, φ) = 1 +
2r cosφ− h(1 + r2)√

4r2(r cosφ− h)2 sin2 φ + (1− r2 + 2r cosφ(r cosφ− h))2

= 1 +
h(r2 − 1)

1− r2

= 1− h, ∀r ∈ [0, 1[,

which shows that the distance is constant and equal to the distance of the North Pole to the

hyperplane which contains the support of the cap Uh.

The surface Sh can be parameterized by:

Sh :





s1 = r cos θ′1 cos θ′2 · · · cos θ′n−2(1− (hr)2)1/2

s2 = r sin θ′1 cos θ′2 · · · cos θn−2(1− (hr)2)1/2

s3 = r sin θ′2 cos θ′3 · · · cos θ′n−2(1− (hr)2)1/2

...

sn−1 = r sin θ′n−2(1− (hr)2)1/2

sn = r2 h

(4.11)

with r ∈ [0, 1[, θ′1 ∈ [0, 2π[, θ′2, . . . , θ
′
n−2 ∈ [0, π[.
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Figure 4.2: Projection of Sh in the xn−1xn−plane: S1/2 (left) and S−1/2 (right).

For example, in Figure 4.2 we can observe a projection of Sh in the xn−1xn−plane, for
h = 1/2 and h = −1/2.

The dilation (resp. contraction) region is the region in the unit ball above (resp. below)

the surface Sh. All the spherical caps obtained from ϕa, a ∈ Sh, have the same area. However,

they differ in the localization of the attractor point as the next proposition states.

Proposition 4.1.2 Consider a ∈ Sh, where h ∈] − 1, 1[ is fixed. For each r ∈ [0, 1[, the

corresponding attractor point A lies in the intersection of the sphere of equation A2
1 +A2

2 +

. . . +A2
n−1 = 4r2 (1−(hr)2)(r2h−1)2

(1+r2−2r2h)2
with the hyperplane An = 1−r2+2r2h(r2h−1)

1+r2−2r2h
.

This gives us the advantage of being able to choose a preferable contraction inside the

cap by a convenient choice of the position of the attractor point. An important information

is the arc-length between the attractor point A and the center Q of the cap Uh,a. In cartesian

coordinates, it is given by

d = arccos
(

1 + |a|4 + 2(2h− 1)|a|2 − 2an(1 + |a|2)(1 + h) + 4a2
n

k(1 + |a|2 − 2an)

)
. (4.12)

Moreover, distance d provides information on the geometry of the caps (compact support

of our future wavelets) under the action of a Möbius transformation and, in particular, of

the dilation/contraction effects inside that same cap.

We are interested in the study of the distance (4.7) as a function of these parameters,

and this independent of the dimension considered (see Figure 4.3).
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Figure 4.3: Variation of the distance (4.7) for h = 1/2.

Since this distance is fundamental for the definition of dilations on the unit sphere we will

present on Table 4.1 a detailed study of some of its properties. We will consider its variation

for each fixed h and φ. Thus, we will denote dh(r, φ) by d(r) for simplicity. Moreover, we

denote φlim := arccosh.

h ∈ ]0, 1[ h = 0 h ∈ ]− 1, 0[

φ ∈ [0, φlim] φ ∈ [0, π/2[ φ ∈ [0, π/2]

d(r) is strictly increasing d(r) is strictly increasing d(r) is strictly increasing

φ ∈ ]φlim, π/2[ φ = π/2 φ ∈ ]π/2, φlim[

d(r) has a maximum at d(r) = 1, ∀r ∈ [0, 1[ d(r) has a minimum at

r = h−
√

h2−cos2φ

cos φ r = h+
√

h2−cos2φ

cos φ

φ ∈ [π/2, π] φ ∈ ]π/2, π] φ ∈ [φlim, π]

d(r) is strictly decreasing d(r) is strictly decreasing d(r) is strictly decreasing

Table 4.1: Radial behavior of the distance (4.7).

The angle φlim is related with the separation between the dilation and contraction regions

near the boundary of the unit ball (see Fig. 4.2). As we approach the boundary of the unit

ball the function dh(r, φ) has a discontinuous jump near φlim since

lim
r→1

dh,φ(r) =





2, if φ < arccosh

1, if φ = arccosh

0, if φ > arccosh

.

It is easy to see that maxima and minima presented in Table 4.1 belong to Sh.

Definition 4.1.3 For fixed h ∈]−1, 1[ and ρ ∈]0, 2[ the surface Sh,ρ = {a ∈ Bn : dh(a) = ρ}
will be called a zonal surface.

Solving the equation dh(r, φ) = ρ in order to φ, for fixed h ∈] − 1, 1[ and ρ ∈]0, 2[ we
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obtain a solution φ = φ(r) given by

φ = arccos

(
(1− ρ)(1− r2)

√
ρ(2− ρ)(1− h2) + hρ(ρ− 2)(1 + r2)

2rρ(ρ− 2)

)
, (4.13)

where the variation of the parameter r is given in Table 4.2.

h ∈ ]− 1, 0[ h = 0 h ∈ ]0, 1[

0 < ρ ≤ 1− h 0 < ρ < 1 0 < ρ ≤ 1− h ∧ ρ 6= 1 + h

r ∈ [R0, 1[ r ∈ [R0, 1[ r ∈ [R0, 1[

1− h < ρ < 2 ∧ ρ 6= 1 + h 1 < ρ < 2 1− h < ρ < 2

r ∈ [−R0, 1[ r ∈ [−R0, 1[ r ∈ [−R0, 1[

ρ = 1 + h ρ = 1 ρ = 1 + h

r ∈ [h, 1[ r ∈ [0, 1[ r ∈ [−h, 1[

Table 4.2: Variation of the parameter r for the solution (4.13).

The constant R0 is given by

R0 =
ρ(2− ρ)−

√
ρ(2− ρ)(1− h2)

(ρ− 1)
√

ρ(2− ρ)(1− h2) + hρ(ρ− 2)
.

Considering the solution (4.13) we define the arc Ch,ρ(r) = {(0, . . . , 0, r sinφ(r), r cosφ(r)),

r ∈ B}, where B is one of the sets in Table 4.2, the zonal surface Sh,ρ is generated by Ch,ρ(r)

since Sh,ρ = s∗Ch,ρ(r)s∗, for all s∗ ∈ Spin(n− 1).

Figure 4.4: Zonal surfaces - cut in the xn−1xn−plane: S1/2,ρ(at left); S0,ρ(center); S−1/2,ρ(at

right), with ρ = i/10, i = 1, . . . , 19. The surfaces Sh,1−h, Sh,1 and Sh,1+h are represented by

the blue, green and red lines, respectively.

The parametrization of the surfaces Sh,ρ can be also obtained by solving the equation

dh(r, φ) = ρ in order to r, for fixed h ∈] − 1, 1[ and ρ ∈]0, 2[. In this case, the solutions are

real roots of a quartic equation.
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Proposition 4.1.4 For fixed h ∈] − 1, 1[ and ρ ∈]0, 2[, a ≡ a(r, θ1, . . . , θn−2, φ) ∈ Sh,ρ if

and only if r = r(φ) is a real root of the fourth degree polynomial

p(r) := αr4 + βr3 + γr2 + βr + α, (4.14)

with α = h2−(ρ−1)2, β = 4hρ(ρ−2) cos(φ), γ = 4ρ(2−ρ) cos2(φ)+2(ρ(ρ−2)(1−2h2)+1−h2).

Now we will study the behavior of the orbits constructed in Chapter 2 with respect to

the distance (4.6). This study allow us to obtain some special zonal surfaces and to better

understand the behavior of the Möbius parameter on the dilation and contraction regions.

We will begin by considering the orbits constructed in Proposition 2.8.3 by means of the

factorization Bn/(Dn−1
en

,∼l). Since the distance (4.6) only depends on the parameters r and

φ we restrict our study to the xn−1xn−plane.
For each t ∈] − 1, 1[ we consider the orbit Ol

t = {Pt,λ, λ ∈] − 1, 1[ }, with Pt,λ =(
0, . . . , 0, λ(1−t2)

1+λ2t2
, t(1+λ2)

1+λ2t2

)
. Substituting a given point Pt,λ of Ol

t in (4.6) we obtain

dh,t(λ) = 1 +
(1 + λ2)(−ht2 + 2t− h)

qh,t(λ)1/2
, (4.15)

with qh,t(λ) = (t2 − 2ht + 1)2(1 + λ4) + 2((2h2 − 1)t4 − 4ht3 + 6t2 − 4ht + 2h2 − 1)λ2.

Differentiating (4.15) with respect to λ we obtain

d′h,t(λ) =
4λ(1− h2)(1− λ2)(t2 − 1)2(−ht2 + 2t− h)

qh,t(λ)3/2
.

For h ∈]− 1, 1[ fixed, Table 4.3 shows the behavior of distance (4.15) for each h, t ∈]− 1, 1[.

h ∈ ]− 1, 1[\{0} h = 0

t < 1−√1−h2

h t < 0

dh,t(λ) has a maximum at λ = 0 d0,t(λ) has a maximum at λ = 0

0 < dh,t(λ) ≤ dh,t(0), ∀λ ∈]− 1, 1[ 0 < d0,t(λ) ≤ d0,t(0), ∀λ ∈]− 1, 1[

t = 1−√1−h2

h t = 0

dh,t(λ) = 1, ∀λ ∈]− 1, 1[ d0,0(λ) = 1, ∀λ ∈]− 1, 1[

t > 1−√1−h2

h t > 0

dh,t(λ) has a minimum at λ = 0 d0,t(λ) has a minimum at λ = 0

dh,t(0) ≤ dh,t(λ) < 2, ∀λ ∈]− 1, 1[ d0,t(0) ≤ d0,t(λ) < 2, ∀λ ∈]− 1, 1[

Table 4.3: Behavior of distance (4.15)
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We illustrate this behavior in Figure 4.5 for h = 1/2. The orbit O
1−
√

1−h2

h

= O2−√3 is

represented there by the black curve. The brown curve represents the separation between

dilation and contraction regions. It is readily seen that these two curves touch each other at

the critical angle φlim = arccos(h), on the boundary of the unit ball.

Figure 4.5: At left: Separation of the curves Ol
t for h = 1/2 (projection in the yz−plane).

At right: Variation of the distance (4.6) through the orbits Ol
t.

Now we consider the orbits constructed in Proposition 2.8.9 associated to the factorization

Bn/(Dn−1
en

,∼r).

For each t ∈] − 1, 1[ we consider the curve Or
t = {Qt,λ, λ ∈] − 1, 1[ }, with Qt,λ =(

0, . . . , 0, λ(1+t2)
1+λ2t2

, t(1−λ2)
1+λ2t2

)
. Substituting a given point of Or

t in (4.6) we obtain

dh,t(λ) = 1 +
2t(1− λ2)− (1 + λ2)(1 + t2)h

nh,t(λ)1/2
, (4.16)

with nh,t(λ) = (t2+2ht+1)2λ4+2((2h2−1)t4−2t2−1+2h2)λ2+(t2−2ht+1)2. Differentiating

(4.16) with respect to λ we obtain

d′h,t(λ) =
−4(1 + t2)(t2 − 1)2(1− λ2)(1− h2)hλ

nh,t(λ)3/2
.

Hence, for h ∈] − 1, 0[, dh,t has a maximum at λ = 0 and 0 < dh,t(λ) ≤ dh,t(0), for

all λ ∈] − 1, 1[; for h ∈]0, 1[, dh,t has a minimum at λ = 0 and dh,t(0) ≤ dh,t(λ) < 2,

for all λ ∈] − 1, 1[. The most interesting case is h = 0. In this particular case we obtain

d0,t(λ) = (1+t)2

1+t2
. Thus, d0,t(λ) is constant for each orbit Or

t and we have the following

proposition:

Proposition 4.1.5 The zonal surfaces S0,ρ coincide with the equivalence classes of the de-

composition Bn/(Dn−1
en

,∼r).

We finalize our study with the dual case of the orbits arising from the factorization of

the unit ball by the gyro-subgroup Len . For the decomposition Bn/(Len ,∼l) we look for the
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orbits constructed in Proposition 2.8.14. For each λ ∈] − 1, 1[ let Ol
λ = {Pλ,t, t ∈] − 1, 1[ },

with Pλ,t =
(
0, . . . , 0, λ(1+t2)

1+λ2t2
, t(1−λ2)

1+λ2t2

)
. Substituting a given point Pλ,t of Ol

λ in (4.6) we

obtain

dh,λ(t) = 1 +
2t(1− λ2)− (1 + λ2)(1 + t2)h

nh,λ(t)1/2
, (4.17)

with nh,λ(t) = nh,t(λ). Differentiating (4.17) in order to t we obtain

d′h,λ(t) =
−2(λ2 − 1)2(1− h2)(1− t2)((λ2 − 1)t2 + 2(1 + λ2)ht + λ2 − 1)

nh,λ(t)3/2
.

The behavior of the distance (4.18) is summarized in the following table.

h ∈ ]− 1, 0[ h = 0 h ∈ ]0, 1[

λ ∈]− 1,

√
1−h2

−1+h
[ d0,λ(t) = (1+t)2

1+t2
λ ∈]− 1,−

√
1−h2

1+h
[

dh,λ(t) has a minimum at t = t1 dh,λ(t) has a maximum at t = t2

λ ∈ [−
√

1−h2

1−h
,

√
1−h2

1−h
] d′0,λ(t) = 2(1−t2)

(1+t2)2
> 0, λ ∈ [−

√
1−h2

1+h
,

√
1−h2

1+h
]

dh,λ(t) is strictly increasing dh,λ(t) is strictly increasing

λ ∈]

√
1−h2

1−h
, 1[ d0,λ is strictly increasing λ ∈]

√
1−h2

1+h
, 1[

dh,λ(t) has a minimum at t = t1 dh,λ(t) has a maximum at t = t2

Table 4.4: Behavior of distance (4.18) according to the parameter h.

The values t1 and t2 are respectively

t1 :=
−2h(1 + λ2)− 2

√
((h + 1)λ2 + h− 1)((h− 1)λ2 + h + 1)

2(λ2 − 1)
;

t2 :=
−2h(1 + λ2) + 2

√
((h + 1)λ2 + h− 1)((h− 1)λ2 + h + 1)

2(λ2 − 1)
.

For the decomposition Bn/(Len ,∼r) we look into the orbits constructed in Proposition

2.8.15. For each λ ∈]−1, 1[, let Or
λ = {Qλ,t, t ∈]−1, 1[ }, with Qλ,t =

(
0, . . . , 0, λ(1−t2)

1+λ2t2
, t(1+λ2)

1+λ2t2

)
.

Substituting a given point of Or
λ in (4.6) we obtain

dh,λ(t) = 1 +
(1 + λ2)(−ht2 + 2t− h)

qh,λ(t)1/2
, (4.18)

with qh,λ(t) = qh,t(λ). Differentiating (4.18) in order to t we obtain

d′h,λ(t) =
2(1 + λ2)(1− λ2)2(1− h2)(1− t2)(t2 − 2ht + 1)

qh,λ(t)3/2
.

Therefore, it is easy to conclude that d′h,λ(t) > 0, for all h ∈]− 1, 1[ and all λ ∈]− 1, 1[ and,

therefore, dh,λ(t) is a strictly increasing function of t.
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4.2 Conformal group of the hemisphere

Let n ≥ 3. We consider Sn−1
+ = {x ∈ Sn−1 : xn > 0} as the upper hemisphere embedded in

Rn. With the construction made in Section 4.1 we are able to derive the conformal group of

Sn−1
+ . It will consist of Möbius transformations according to Liouville’s Theorem (see [9]):

Theorem 4.2.1 Let U,V be open connected subsets of Rn = Rn ∪ {∞}, n ≥ 3, and let

f : U 7→ V be a conformal map. Then f is a restriction of a Möbius transformation which

is uniquely determined by f .

The group Spin(n−1) of rotations leaving the xn−axis invariant belong to the conformal

group of the hemisphere. With respect to Möbius transformations ϕa, we need to chose those

that leave invariant Sn−1
+ .

Lemma 4.2.2 For a ∈ Dn−1
en

the transformations ϕa leave invariant Sn−1
+ .

Proof: For U0 = Sn−1
+ ∪ {x ∈ Sn−1 : xn = 0} we have that

d0(r, φ) = 1 +
2r cosφ√

(1− r2)2 + (2r cosφ)2
.

Thus, d0(r, φ) = 1 if and only if a ∈ Dn−1
en

. As for a ∈ Dn−1
en

the center of the cap ϕa(U0)

coincides with the North Pole, the result follows.

Proposition 4.2.3 The conformal group of the hemisphere Sn−1
+ is (Spin(n−1)×Dn−1

en
,×r),

where ×r is the gyrosemidirect product

(s1, a)×r (s2, b) = (s1s2q, b⊕ (s2as2)),

with s1, s2 ∈ Spin(n− 1), a, b ∈ Dn−1
en

, and q = 1−s2as2b
|1−s2as2b| .

Proof: We have only to show that the operation ×r is well defined. The remaining

group axioms are proved in the same way as in Proposition 2.6.9.

Let c be a point on the xn−axis. As b⊥c and a⊥c then bc = −cb and ac = −ac. Moreover,

scs = c for s ∈ Spin(n− 1). Therefore, qcq = cqq = c, which shows that q is again a rotation

of Spin(n− 1). Finally, it is easy to see that b⊕ (s2as2) ∈ Dn−1
en

, for every a, b ∈ Dn−1
en

and

s2 ∈ Spin(n− 1). Thus, the operation ×r is well defined.
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The importance of this result is that the hemisphere, as a manifold, has its own conformal

group and, then, it is possible to develop a wavelet theory on it. It is well know that the upper

hemisphere (as well as the lower hemisphere) is a model for the n−dimensional hyperbolic

space or Lobachevskii space (see [9]). The upper hemisphere is related with the unit ball,

another model for the n−dimensional hyperbolic space, through the Klein model for the unit

ball. Thus, a wavelet theory for the unit ball is deeply related to a wavelet theory for the

upper (or lower) hemisphere. We will not make this approach since we are mainly interested

on the unit sphere Sn−1.

More generally, the following result holds.

Proposition 4.2.4 For every fixed ω ∈ Sn−1, let Spinω(n − 1) be the group of rotations

leaving the ω-axis invariant and Dn−1
ω = {a ∈ Bn :< a, ω >= 0}. Then (Spinω(n − 1) ×

Dn−1
ω ,×r) is a group for the right gyrosemidirect product

(s1, a)×r (s2, b) = (s1s2q, b⊕ (s2as2)),

with s1, s2 ∈ Spinω(n− 1), a, b ∈ Dn−1
ω , and q = 1−s2as2b

|1−s2as2b| .

4.3 Admissible sections

In Chapter 3 we considered global left C0-sections for constructing generalized spherical

continuous wavelet transforms and we proved that we can construct many systems of wavelets

based on the conformal group of the sphere.

In the case of wavelets defined on spherical caps there is a class of sections with the

interesting property of intersecting only one time each zonal surface, and thus, establishing

a bijection between the domain of the generating function and the interval of scales ]0, 2[,

measured by the distance function (4.6). These sections allow us to define local conformal

dilation operators.

We will consider the homogeneous spaces Bn/(Dn−1
en

,∼l) and Bn/(Dn−1
en

,∼r) and we will

discuss the existence of global and local admissible sections.

Definition 4.3.1 Let V =]t1, t2[ such that −1 ≤ t1 < t2 ≤ 1. A (global or local) section σ,

with generating function f : V →]− 1, 1[, is said to be admissible if the function f is of class

C1(V ) and dh(σ) : V →]0, 2[, t 7→ dh(σ(ten)) is bijective.
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4.3.1 Admissible global sections

We saw in Section 2.9 that we can construct an entire class of global sections σl : X1 =

Bn/(Dn−1
en

,∼l) → Bn by considering

σl(ten) = ten ⊕ f(t)en−1 =
(

0, . . . , 0,
f(t)(1− t2)
1 + (tf(t))2

,
t(1 + f(t)2)
1 + (tf(t))2

)
, (4.19)

where f :]− 1, 1[→]− 1, 1[.

In the next proposition we will characterize the admissible global sections defined by

(4.19).

Proposition 4.3.2 Let h ∈] − 1, 1[ be fixed. If f :] − 1, 1[→] − 1, 1[ is a function of class

C1(]−1, 1[) and the function ph(t) = 2(t2−1)(ht2−2t+h)f(t)f ′(t)+(2ht−t2−1)(f(t)4−1)

is strictly positive for all t ∈]− 1, 1[, then the section σl(ten) is admissible for h.

Proof: We suppose that f is a function of class C1(]− 1, 1[). Replacing a by σl(ten) in

(4.6) we obtain

dh(σl(ten)) = 1 +
(1 + f(t)2)(−ht2 + 2t− h)

qh(t)1/2
, (4.20)

with qh(t) = (t2 − 2ht + 1)2(1 + f(t)4) + 2((2h2 − 1)t4 − 4ht3 + 6t2 − 4ht + 2h2 − 1)f(t)2.

Differentiating (4.20) with respect to t we get

d′h(σl(ten)) =
2(1− h2)(1− t2)(1− f(t)2)ph(t)

qh(t)3/2
,

with ph(t) = 2(t2−1)(ht2−2t+h)f(t)f ′(t)+(2ht− t2−1)(f(t)4−1). Thus, d′h(σl(ten)) > 0

if and only if ph(t) > 0 for all t ∈] − 1, 1[. Moreover, due to lim
t→−1+

dh(σl(ten)) = 0 and

lim
t→1−

dh(σl(ten)) = 2, we conclude that dh(σl(ten)) is a bijection between ]− 1, 1[ and ]0, 2[.

Since an admissible section generates a curve inside the unit ball we will frequently use

the term section when referring to its curve. For the space X1 we will consider curves

described from the South Pole (−en) to the North Pole (+en). In this way, any section will

cross first the contraction region, and only then, the dilation one.

Examples 4.3.3 1. The function f(t) = λ, with λ ∈]−1, 1[, induces the sections σl
λ(ten) =(

0, . . . , 0, λ(1−t2)
1+λ2t2

, t(1+λ2)
1+λ2t2

)
. These sections are admissible for all h, λ ∈] − 1, 1[ since

ph,λ(t) = (t2 + 1− 2ht)(1−λ4) is strictly positive for all h, t, λ ∈]− 1, 1[. For λ = 0 we

obtain the fundamental section σl
0(ten).
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2. For fixed c ∈]− 1, 1[ fixed we consider the sections σl
c = (0, . . . , 0, c sinφ,− cosφ), with

φ ∈]0, π[. For c ∈]−1, 1[\{0}, the generating function is given by f(t) =

√
t2−1+

√
(1−t2)2+4c4t2

2t2c2
.

By straightforward computations we get

ph,c(t) =
(1− t2)(−1 + (1− 2c4)t4 + 2h(2c4 − c2 − 1)t3 + 2c2(2− c2)t2 + 2h(1− c2)t

2c4t4
+

(1− t2)(t6 + 2h(c2(2c4 − 1)− 1)t5 + (4c2(−2c4 + c2 + 1)− 1)t4 +

+4h(c4(c2 − 2) + 1)t3 +

(4c2(c2 − 1)− 1)t2 + 2h(c2 − 1)t + 1) / (2c4t4
√

t4 + 2(2c4 − 1)t2 + 1).

It is not easy to see that ph,c(t) > 0 for all h, t ∈]−1, 1[ and for all c ∈]−1, 1[\{0}. For
this we will use the definition of the section. Substituting σl

c in (4.6) and differentiating
it with respect to φ, we obtain

d′h,c(φ) = 2(1− h2)(c2 − 1)2(2− sin2 φ + 2h cos φ) sin3 φ / [(c4 − 2c2 + 1) cos4 φ +

4h(c2 − 1) cos3 φ + 2(c2(2− 2h2 − c2) + 2h2 + 1) cos2 φ− 4h(1 + c2) cos φ

+c4 + 2c2(2h2 − 1) + 1]3/2.

Hence, it is now easy to see that d′h,c(φ) > 0 for all φ ∈]0, π[, h ∈] − 1, 1[, and

c ∈]−1, 1[\{0} and, therefore, also ph,c(t) > 0, for all h, t ∈]−1, 1[ and c ∈]−1, 1[\{0}.
For c = 0, the generating function is given by f(t) = 0, and we obtain again the

fundamental section σl
0(ten) = Len , with t = − cosφ.

3. Another class of admissible sections can be constructed by considering f(t) = |t|n, n ∈
N\{1}. Then, we obtain the sections σl

n(ten) =
(
0, . . . , 0, |t|

n(1−t2)
1+|t|2nt2

, t(1+|t|2n)
1+|t|2nt2

)
for which

ph,n(t) = 2n|t|2n−1(t2 − 1)(t2h− 2t + h) + (2ht− t2 − 1)(|t|4n − 1) > 0.

These sections satisfy lim
n→+∞σl

n(ten) = σl
0(ten) = Len . Moreover, they can be extended

to an arbitrary parameter α ∈ R+ by putting f(t) = |t|α. However, it is easy to see that

the point t = 0 becomes then a singularity for α ∈]0, 1].

4. Let Pn(t) = 1
2nn!

dn

dtn (t2−1)n be a Legendre polynomial of degree n and fn(t) = (Pn(t)+

1)/2. Polynomials of degree 1 to 4 give rise to admissible sections for all h ∈] − 1, 1[.

Polynomials of degree 5, 6 and 7 give rise to admissible sections only for a subset of

] − 1, 1[ of values of h. For degree higher or equal to 8 the respective sections are

non-admissible for all h ∈]− 1, 1[ because these polynomials are highly oscillating.

Remark 4.3.4 If σl is an admissible section and a ∈ Bn then σl(ten)⊕a is not an admissible

section in general. The same is true for a⊕ σl(ten).
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Now we characterize admissible global sections for X2 = Bn/(Dn−1
en

,∼r). We saw in

Section 2.9 that we can construct an entire class of global sections σr : X2 → Bn by

considering

σr(ten) = g(t)en−1 ⊕ ten =
(

0, . . . , 0,
g(t)(1 + t2)
1 + (tg(t))2

,
t(1− g(t)2)
1 + (tg(t))2

)
, (4.21)

with g :]− 1, 1[→]− 1, 1[. Now, we will characterize the admissible right global sections.

Proposition 4.3.5 Let h ∈] − 1, 1[ be fixed. If g :] − 1, 1[→] − 1, 1[ is a function of class

C1(]− 1, 1[), the function q(t) := 2h(t4 − 1)g(t)g′(t) + (t2 + 2ht + 1)g(t)4 − 2(t2 + 1)g(t)2 +

t2 − 2ht + 1 is strictly positive for all t ∈]− 1, 1[ and




lim
t→−1+

g(t) ∈
]
−
√

1− h2

1− h
,

√
1− h2

1− h

[
, if h ∈]− 1, 0]

lim
t→1−

g(t) ∈
]
−
√

1− h2

1 + h
,

√
1− h2

1 + h

[
, if h ∈ [0, 1[

(4.22)

then the section σr(ten) is admissible for h.

Proof: We suppose that g is a function of class C1(]− 1, 1[). Replacing a by σr(ten) in

(4.6) we obtain

dh(σr(ten)) = 1− (ht2 + 2t + h)g(t)2 + ht2 − 2t + h

qh,g(t)1/2
, (4.23)

with qh,g(t) = (t2 + 2ht + 1)2g(t)4 + 2((2h2 − 1)t4 − 2t2 − 1 + 2h2)g(t)2 + (t2 − 2ht + 1)2.

Differentiating (4.23) with respect to t we will eventually find

d′h(σr(ten)) =
2(1− h2)(1− t2)(1− g(t)2)ph,g(t)

qh,g(t)3/2
,

with ph,g(t) = 2h(t4 − 1)g(t)g′(t) + (t2 + 2ht + 1)g(t)4 − 2(t2 + 1)g(t)2 + t2 − 2ht + 1. Thus,

d′h,g(σ
r(ten)) > 0 if and only if ph,g(t) > 0 for all t ∈] − 1, 1[. To see that dh,g is a bijective

function we study the following two limits

lim
t→−1+

dh,g(t) = 1 +
(1− h)g+(−1)2 − (h + 1)
|(1− h)g+(−1)2 − (h + 1)|

and

lim
t→1−

dh,g(t) = 1− (1 + h)g−(1)2 + h− 1
|(1 + h)g−(1)2 + h− 1| ,

where g(−1+) = lim
t→−1+

g(t) and g(1−) = lim
t→1−

g(t). Since we want to have lim
t→−1+

dh,g(t) = 0

and lim
t→1−

dh,g(t) = 2 we must impose conditions (4.22).
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Corollary 4.3.6 If h = 0 then every function g ∈] − 1, 1[→] − 1, 1[ of class C1(] − 1, 1[)

generates an admissible global right section σr.

Proof: For h = 0, the function q(t) of Proposition 4.3.5 reduces to q(t) = (t2+1)(g(t)2−
1)2 which is then strictly positive for all t ∈] − 1, 1[ and for all functions g ∈ C1(] − 1, 1[).

Moreover, conditions (4.22) are trivially satisfied in this case.

This is easy to understand since the zonal surfaces S0,ρ coincide with the equivalence

classes of the decomposition Bn/(Dn−1
en

,∼r) (see Proposition 4.1.5) and, therefore, for h = 0

each point σr(ten) belongs to a different zonal surface S0,ρ. Thus, we obtain the desired

bijection necessary for obtaining an admissible section.

Examples 4.3.7 1. Let h ∈] − 1, 1[ be fixed and g(t) = λ, with λ ∈] − 1, 1[. Then we

obtain the sections σr
λ(ten) =

(
0, . . . , 0, λ(1+t2)

1+λ2t2
, t(1−λ2)

1+λ2t2

)
. These sections are admissible

if 



λ ∈
]
−√1−h2

1+h ,
√

1−h2

1+h

[
, if h ∈ [0, 1[

λ ∈
]
−√1−h2

1−h ,
√

1−h2

1−h

[
, if h ∈]− 1, 0[

. (4.24)

We remark the analogy of the condition (4.24) with the conclusions obtained in the Table

4.4. If we first fix λ then the section σr
λ is admissible only for h ∈

]
−1−λ2

1+λ2 , 1−λ2

1+λ2

[
.

2. For every c ∈] − 1, 1[ the global sections σr
c = (0, . . . , 0, c sinφ,− cosφ), with φ ∈]0, π[

are admissible.

3. For each p ∈]−1, 1[ we define the sections σr
p = (0, . . . , 0, p, r), with r ∈]−

√
1− p2,

√
1− p2[.

The generating function is given by

g(t) =





1+t2−
√

(1+t2)2−4p2t2

2pt2
, t ∈]− 1, 1[\{0}

p, t = 0
.

The parameter r is related with the generating function by means of

r =
p− g(t)

tg(t)
=





t2(2p2−1)−1+
√

(1+t2)2−4p2t2

t(1+t2−
√

(1+t2)2−4p2t2)
, t ∈]− 1, 1[\{0}

0, t = 0
.
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It is difficult to verify the conditions of Proposition 4.3.5 in this case. Again, we use

the definition of the section. Substituting σr
p in (4.6) and differentiating it with respect

to the parameter r, we obtain

d′h,p(r) =
2(1− h2)(r2 + p2 − 1)(p2 − 1 + 2hr − r2)

(4(r − h)2p2 + (1− p2 − r2 + 2r(r − h))2)3/2
.

Since r2+p2 < 1 then d′h,p(r) > 0 for all r ∈]−
√

1− p2,
√

1− p2[ if and only if p2−1+

2hr−r2 < 0, for all r ∈]−
√

1− p2,
√

1− p2[. This is true if p ∈]−√1− h2,
√

1− h2[.

Moreover, as lim
r→−

√
1−p2

dh,p(r) = 0 and lim
r→
√

1−p2

dh,p(r) = 2, we conclude that the

sections σr
p are admissible for p ∈]−√1− h2,

√
1− h2[.

As we have seen, a global section is not always admissible. The same holds for local

sections.

4.3.2 Admissible local sections

When we consider a local section it may happen that it doesn’t give rise to a dilation operator

on the sphere with complete scale. We will begin by giving a characterization of admissible

local left sections.

Proposition 4.3.8 Let h ∈] − 1, 1[ be fixed and −1 < t1 < 1−√1−h2

h < t2 < 1. If f :

]t1, t2[→] − 1, 1[ is a function of class C1(]t1, t2[), the function p(t) := 2(t2 − 1)(ht2 − 2t +

h)f(t)f ′(t)+(2ht− t2−1)(f(t)4−1) is strictly positive for all t ∈]t1, t2[ and lim
t→t+1

f(t) = ±1,

lim
t→t−2

f(t) = ±1 then σl(ten) is an admissible local left section.

Proof: Replacing a by σl(ten) in (4.6) we obtain

dh(σl(ten)) = 1 +
(1 + f(t)2)(−ht2 + 2t− h)

qh(t)1/2
, (4.25)

with qh(t) = (t2 − 2ht + 1)2(1 + f(t)4) + 2((2h2 − 1)t4 − 4ht3 + 6t2 − 4ht + 2h2 − 1)f(t)2.

Differentiating (4.25) with respect to t we will obtain

d′h(σl(ten)) =
2(1− h2)(1− t2)(1− f(t)2)ph(t)

qh(t)3/2
,

with ph(t) = 2(t2−1)(ht2−2t+h)f(t)f ′(t)+(2ht− t2−1)(f(t)4−1). Thus, d′h(σl(ten)) > 0

if and only if ph(t) > 0 for all t ∈]t1, t2[. It remains to prove that lim
t→t+1

dh(σl(ten)) = 0 and
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lim
t→t−2

dh(σl(ten)) = 2. Since −1 < t1 < 1−√1−h2

h < t2 < 1, lim
t→t+1

f(t) = ±1 and lim
t→t−2

f(t) = ±1

we have that

lim
t→t+1

dh(σl(ten)) = 1 +
2(−ht21 + 2t1 − h)√
4((1 + t21)h− 2t1)2

= 1 +
2(−ht21 + 2t1 − h)
2((1 + t21)h− 2t1)

= 0.

and

lim
t→t−2

dh(σl(ten)) = 1 +
2(−ht22 + 2t2 − h)√
4((1 + t22)h− 2t2)2

= 1 +
2(−ht22 + 2t2 − h)
−2((1 + t22)h− 2t2)

= 2.

Examples 4.3.9 1. The sections constructed in Example 4.3.7 are local sections for

Bn/(Dn−1
en

,∼l) except for the case p = 0 where we have a global section (the fun-

damental section). They are local admissible only for p ∈]−√1− h2, 0[∪]0,
√

1− h2[.

2. For each φ ∈]0, π/2[ let us consider the local sections σl = (0, . . . , 0, r sinφ, r cosφ), with

r ∈]−1, 1[. These local sections are admissible only for φ ∈]0, arccos(h)[ if h ∈ [0, 1[ and

for φ ∈]0, arccos(−h)[ if h ∈]−1, 0[. Indeed, substituting σl in (4.6) and differentiating

it with respect to r we will find

d′h,φ(r) =
2(1− r2)(1− h2)((1 + r2) cosφ− 2hr)

(4r(r(cos2 φ + h2)− h(1 + r2) cos φ) + (r2 − 1)2)3/2
.

Thus, d′h,φ(r) > 0 if and only if (1+r2) cos φ−2hr > 0. Therefore, the statement holds.

For the case of X2 = Bn/(Dn−1
en

,∼r) there are no admissible local right sections due to

structure of the orbits of X2. As we want that the function dh(σr(ten)) is a bijection between

]t1, t2[ and ]0, 2[, the section σr(ten) must approach the boundary of the unit ball, but in that

case the section will intersect all orbits of X2 and, therefore, we can only have admissible

global sections.

Remark 4.3.10 1. The global or local character of an admissible section only depends

on the homogeneous space considered. Once a given section is admissible for the left

case it is also admissible for the right case, but may have a different character. For

example, for h = 0 there are admissible global right sections that are only admissible

local left sections.
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4.4 Local anisotropy vs attractor point

For a given left section σl(ten) on the unit ball (global or local) we want to caracterize its

anisotropy by measuring how much sections deviate from the fundamental section Len , the

section associated with pure dilations on the unit sphere.

Although the parameters α, β, δ, ξ arising from the Iwasawa decomposition (see Chapter

3) are adequate for the study of the global behavior of the generalized SCWT, they are not

good when we want to perform a local analysis of signals on the sphere. An isolated analysis

of the parameter δ could lead to wrong interpretations. For instance, there is a difference

between the families of sections σl
λ and σl

c : geometrically these sections generate similar

curves inside the unit ball, but they have a different behavior near the South Pole. In fact,

for σl
λ(t) =

(
0, . . . , 0, λ(1−t2)

1+t2λ2 , t(1+λ2)
1+t2λ2

)
we obtain δλ(t) = 4(1−t)(1−λ2)(1+t2λ2)

(t+1)((1+t2+6t)λ2+4(1+t2λ4))
, and for

each λ ∈ [0, 1[ it holds 0 < δl
λ(t) < ∞, with lim

t→1
δl
λ(t) = 0 and lim

t→−1
δl
λ(t) = ∞, while for

σl
c(φ) = (0, . . . , 0, c sinφ,− cosφ) we obtain δl

c(φ) = 4(1−c2) sin2 φ

4(1−cos φ)2+c2 sin2 φ
, and for each c ∈]0, 1[

it holds 0 < δl
c(φ) < 4(1−c2)

c2
, with lim

φ→π
δl
c(φ) = 0 and lim

φ→0
δl
c(φ) =

4(1− c2)
c2

. Thus, δλ(t) and

δc(φ) are dilation parameters on the tangent plane with different behavior at the infinity.

Hence, these parameters are not good for an effective comparison between sections.

In Section 4.1 we observed that if Uh is a spherical cap centered at the North Pole then

the cap Uh,a is not centered at the North Pole if a ∈ Bn\Len or an 6= h. In order to obtain

a dilation operator on the tangent plane we have to move the tangent plane to the center of

the cap Uh,a and then to perform the stereographic projection. This is equivalent to rotate

all caps to the North Pole and then to perform the stereographic projection. This is exactly

our local dilation around the North Pole given in Section 4.1.

Let Ũh,a be the spherical cap Uh,a rotated to the North Pole, i.e. Ũh,a = sh,aUh,ash,a, for

some rotation sh,a ∈ Spin(n) (c.f. (4.9) for the case n = 3). We want to give a description of

the geometry of the ball Φ1(Ũh,a) on the tangent plane. Since we are dealing with conformal

mappings it is enough to study the mapping of the boundary and the mapping of the attractor

point to get the mapping property of any point in the ball Φ1(Ũh,a). We remember that a

Möbius transformation on an arbitrary ball Br(0) (centered at the origin and radius r) is

given by rϕ̃ρ(y/r), y ∈ Br(0), where ϕ̃ρ(y) is a Möbius transformation on the unit ball

defined by ϕ̃ρ(y) = (y − ρ)(1 + ρy)−1, with ρ ∈ B1(0). For the sake of simplicity of the

notation, the ball centered at the origin and of radius r will be denoted by Br(0). It will be

clear from the context the dimension of the ball.
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Lemma 4.4.1 Let a = (0, . . . , 0, an−1, an) ∈ Bn and −1 < h < 1. The stereographic projec-

tion of the action sh,a ϕa(Uh)sh,a onto the tangent plane of Sn−1 is given by

Φ1(sh,a ϕa(x) sh,a) = ϕ̃ρh(a)(δh(a)Φ1(x)), x ∈ Uh, (4.26)

where δh(a) = (1−|a|2)(1+h)

(1+|a|2)h−2an+
√

kh(a)
, with kh(a) := 4(an−h)2a2

n−1 +(1−|a|2 +2an(an−h))2.

Moreover, ϕ̃ρh(a)(y) = r2(y−ρh(a)r2)(r2 +ρh(a)y)−1, is a Möbius transformation on Br2(0),

with r2 = 2δh(a)
√

1−h2

1+h and ρh(a) = −2(1−h)an−1((1+|a|2)h−2an+
√

kh(a))√
1−h2(

√
kh(a)(1+|a|2−2an)+Ch(a))

en−1, with Ch(a) :=

kh(a)− 2(1− h)((1 + |a|2 − 2han)an − 2ha2
n−1).

Proof: Let P1 = (0, . . . , 0,
√

1− h2, h) and P2 = (0, . . . , 0,
√

1− h2
2, h2), with h2 = 1 −

dh(a) = −2an+(1+|a|2)h√
kh(a)

, be two points on the spherical support of the caps Uh and Ũh,a, respec-

tively. Then Φ1(P1) =
(
0, . . . , 0, 2

√
1−h2

1+h

)
and Φ1(P2) =

(
0, . . . , 0, 2(1−|a|2)

√
1−h2

(1+|a|2)h−2an+
√

kh(a)

)
.

Thus, the radius of the balls Φ1(Uh) and Φ1(Ũh,a) are given by r1 = 2
√

1−h2

1+h and r2 =
2(1−|a|2)

√
1−h2

(1+|a|2)h−2an+
√

kh(a)
, respectively. The ratio between these radius gives the parameter δh(a),

i.e. δh(a) = r2
r1

= (1−|a|2)(1+h)

(1+|a|2)h−2an+
√

kh(a)
.

Let d be the spherical distance between the center of the cap Uh,a and its attractor point

A = ϕa(en) =
(
0, . . . , 0, 2an−1(an−1)

1+|a|2−2an
, 1−|a|2+2an(an−1)

1+|a|2−2an

)
, which is given by

cos(d) =
(

1 + |a|4 + 2(2h− 1)|a|2 − 2an(1 + |a|2)(1 + h) + 4a2
n

kh(a)(1 + |a|2 − 2an)

)
.

Since this distance is invariant under rotations we can easily obtain the coordinates of the

attractor point Ã on the cap Ũh,a, which are given by Ã = (0, . . . , 0,

ε
√

1− cos2(d), cos(d)) with ε = −1 if an−1 > 0 or ε = +1 if an−1 ≤ 0. Note that if

an−1 > 0 then the last but one component of A is negative, otherwise it is non-negative.

The stereographic projection of Ã yields the point Φ1(Ã) =
(

0, . . . , 0, ε
2
√

1−cos2(d)

1+cos(d)

)
. Thus,

we obtain the parameter ρh(a) = ε
2
√

1−cos2(d)

r2(1+cos(d)) en−1, after rescaling Φ1(Ã) by the radius r2.

By straightforward computations we obtain

ρh(a) = −2(1− h)an−1((1 + |a|2)h− 2an +
√

kh(a))√
1− h2((1 + |a|2 − 2an)

√
kh(a) + Ch(a))

en−1,

with Ch(a) := kh(a)− 2(1− h)((1 + |a|2 − 2han)an − 2ha2
n−1).
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Figure 3 provides an example of Lemma 4.4.1 in R3, in order to show the pointwisely

intertwining relation (4.26).

Figure 4.6: R.h.s.: Φ1(sh,a ϕa(Uh)sh,a), L.h.s.: ϕ̃ρh(a)(δh(a)Φ1(Uh)), for h =
√

3/2 and

a = (0, 1/2 sin(3π/4), cos(3π/4)).

We can easily generalize relation (4.26) for an arbitrary point a ∈ Bn since only the

position of the attractor point ρh(a) is affected by a rotation. Indeed, considering a = s∗a∗s∗,

with a∗ = (0, . . . , 0, an−1, an) and s∗ ∈ Spin(n− 1) we obtain the relation

Φ1(sh,a ϕa(Uh) sh,a) = ϕ̃s∗ρh(a∗)s∗(δh(a∗)Φ1(Uh)).

If a = ten ∈ Len the parameter δh(a) is independent of h since δ(ten) = 1+t
1−t and

ρh(ten) = 0. This shows that the anisotropic effect disappears whenever we consider the

fundamental section.

The study of the parameters δh(a) and ρh(a) is therefore, very important for our work.

Figure 4.7 shows the behavior of |ρh(r, φ)| for h = 0, r ∈ [0, 1[ and φ ∈ [0, π].

Figure 4.7: Behavior of the parameter |ρh(r, φ)| for h = 0.
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For an arbitrary (global or local) left section we obtain the parameters

δh(σl(ten)) =
(1 + h)(1− t2)(1− f(t)2)

(1 + f(t)2)(ht2 − 2t + h) +
√

Kh(t)
, (4.27)

and

ρh(σl(ten)) =
2(1− h)(1 + t)|f(t)|(

√
Kh(t) + (1 + f(t)2)((1 + t2)h− 2t))√

1− h2(1− t)((1 + f(t)2)
√

Kh(t) + Ch(t))
en−1, (4.28)

with

Kh(t) = (t2 − 2ht + 1)2(1 + f(t)4) + 2((2h2 − 1)t4 − 4ht(1 + t2) + 6t2 − 1 + 2h2)f(t)2;

Ch(t) = (t2 − 2ht + 1)(1 + f(t)4) + 2((2h− 1)(1 + t2) + 2(h− 2)t)f(t)2.

For an admissible global section σl we have lim
t→−1+

δh(σl(ten)) = 0, lim
t→−1+

ρh(σl(ten)) = 0,

lim
t→1−

δh(σl(ten)) = ∞, and lim
t→1−

ρh(σl(ten)) = 0.

For an admissible local section of domain V =]t1, t2[⊂ Len we have lim
t→t+1

δh(σl(ten)) = 0

and lim
t→t−2

δh(σl(ten)) = ∞, since the section crosses first the contraction region. Regarding

the behavior of the parameter ρh(σl(ten)) we only know that such limits exist and belong to

the interval ]− 1, 1[.

We would like to measure the local anisotropy effect of the cap Uh,a directly on the

sphere. The absolute value of the parameter ρh(a) gives us information about the local

anisotropy of a given section on the tangent plane. By the Unique Decomposition Theorem

(Theorem 2.8.1) the subgroup Len and the gyro-subgroup Dn−1
en

plays an important role as

it was observed in Proposition 3.2.2. On the one hand, the subgroup Len is associated with

pure dilations around the North Pole. On the other hand, by Lemma 4.2.2 we know that

Möbius transformations ϕa, with a ∈ Dn−1
en

, belong to the conformal group of the hemisphere

and thus, they will produce the desired anisotropic effects. As any spherical cap Uh can be

mapped onto the hemisphere by an action of the Spin(1, 1) group, then any spherical cap

Ũh,a can be described by Möbius transformations over Len and Dn−1
en

. The knowledge of the

distance function (4.6) and the position of the attractor point A are therefore, essential in

this description.
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Proposition 4.4.2 Let a = (0, . . . , 0, an−1, an) ∈ Bn, −1 < h < 1,

b̃n =

{
1−√1−h2

h , h 6= 0

0, h = 0
and d̃n =





1−
√

dh(a)(2−dh(a))

dh(a)−1 , dh(a) 6= 1

0, dh(a) = 1
.

Thus, the following relation holds

Ũh,a = sh,a ϕa(Uh) sh,a = ϕ
d̃nen

(ϕ−ρh(a)(ϕb̃nen
(Uh))). (4.29)

Proof: The proof will be made in three steps.

First step: transformation of the cap Uh onto the hemisphere U0.

From the study of the distance function (4.6) through the orbits of Bn/(Dn−1
en

,∼l) it is

easy to conclude that U0 = ϕ
b̃nen

(Uh).

Second step: transformation of the cap U0 onto the anisotropic cap Ũ0 by the action of

an element of Dn−1
en

.

We need to consider the stereographic projection mapping of Sn−1 from the South Pole
to the hyperplane at the origin which is given by

Φ3 : Sn−1\{en} → Rn−1 and Φ−1
3 : Rn−1 → Sn−1\{en}

(x1, . . . , xn) 7→
(

x1

1 + xn
, . . . ,

xn−1

1 + xn

)
(y1, . . . , yn−1) 7→

(
2y1

1 + r2
, . . . ,

2yn−1

1 + r2
,
1− r2

1 + r2

)
.

The mapping Φ3 establishes a bijection between the unit ball B1(0) and the hemisphere

Sn−1
+ . On the one hand, for a = an−1en−1 we obtain the attractor pointA =

(
0, . . . , 0, −2an−1

1+a2
n−1

,

1−a2
n−1

1+a2
n−1

)
. On the other hand, Φ−1

3 (ρh(a)en−1) =
(
0, . . . , 0, 2ρh(a)

1+ρh(a)2
, 1−ρh(a)2

1+ρh(a)2

)
. Therefore, we

conclude that Ũ0 = ϕ−ρh(a)en−1
(U0).

Third step: transformation of the cap Ũ0 onto the anisotropic cap Ũh,a by an element of

Spin(1, 1).

For a = dnen and h = 0 the distance function (4.6) becomes d0(dnen) = (1+dn)2

1+d2
n

. Thus,

for a = (0, . . . , 0, an−1, an), solving the equation dh(a) = (1+dn)2

1+d2
n

in order to dn we obtain

dn = 1−
√

dh(a)(2−dh(a))

dh(a)−1 . Therefore, we conclude that Ũh,a = ϕ
d̃nen

(Ũ0) and the proof is

finished.

Our final conclusion is that the absolute value of the parameter ρh(a) obtained on the

tangent plane can also be used to measure the anisotropy of a given section on the unit

sphere. Thus, we can define our concept of local anisotropy of an admissible section acting

on a spherical cap Uh.
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Definition 4.4.3 For 1 ≤ p < ∞ the local p−anisotropy of a left smooth section (global or

local) σl(ten) = ten ⊕ f(t)en−1, on a spherical cap Uh is defined by

εp
f,h := ||ρh(σl(ten))||Lp([t1,t2]),

and for p = ∞ we define the local infinity anisotropy by ε∞f,h := sup
t∈]t1,t2[

|ρh(σl(ten))|.

We remark that the concept of local anisotropy is not directly related with the definition

of global anisotropy given in Chapter 3.

The results obtained in this chapter will help us significantly in the practical applications

and implementations of the SCWT.





Chapter 5

Frames on the unit sphere S2

As in the Euclidean case, the proposed wavelet transform has two aspects: the continuous

one and the discrete one. In Chapter 3, we have obtained a reconstruction formula for the

generalized SCWT but it did envolve inverting the operator Aψ and so a simple discretization

of (3.50) is not suitable.

Various alternative constructions of discrete spherical wavelets have been proposed. For

example, spherical wavelets based on the lifting scheme were introduced by Schröder and

Sweldens in [66]. They yield a multiresolution analysis based on a particular parametrization

of the sphere. Also, in [37], W. Freeden defines a transformation on S2 using a special dilation

operator defined in the Fourier domain. Polynomial spherical frames have been introduced

in [59], where the order of the polynomials plays the role of dilation.

The drawbacks of these methods are that they focus on the frequential aspects of the

transformations. In consequence, the spatial localization of these wavelets is either not

guaranteed or not precisely controlled.

In [14], T. Büllow did succeed in getting good localization properties by using the evolu-

tion of a spherical Gaussian governed by the heat equation on S2. The set of wavelet filters

is obtained by differentiation of the spherical Gaussian. However, this approach is restricted

to the Gaussian function and thus it is not as general as the one based on a stereographic

dilation applied to an arbitrary admissible wavelet on S2.

Finally, in [11], I. Bogdanova constructed half-continuous, controlled frames and discrete

spherical frames for the SCWT developed in [7].

In this chapter we aim to construct frames for the generalized SCWT and we propose

an algorithm for the reconstruction of spherical signals on S2 based on overlapping domain

decomposition of S2.

129
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5.1 Frames

Let H be a separable Hilbert space with scalar product 〈·, ·〉 and the associated norm ||f || =√
〈f, f〉, f ∈ H.

Definition 5.1.1 Let I be an index set. A family {ψi}i∈I is a frame for H if there exist

constants 0 < A ≤ B < ∞ such that for all f ∈ H

A||f ||2 ≤
∑

i∈I
| 〈ψi, f〉 |2 ≤ B||f ||2, ∀f ∈ H. (5.1)

The constants A and B are called the lower and upper bounds for the frame, respectively.

Those sequences which satisfy only the upper inequality in (5.1) are called Bessel sequences.

A frame is tight if A = B and it is called a Parseval frame if A = B = 1. Moreover, if a

Parseval frame satisfies ||ψi|| = 1, ∀i ∈ I, then it is an orthonormal basis. A frame is exact

if it ceases to be a frame whenever any single element is deleted from the sequence {ψi}i∈I .

Given a frame {ψi}i∈I , we define the synthesis operator Tψ : l2(I) → H by

Tψ(c) =
∑

i∈I
ciψi, ∀ {ci}i∈I ∈ l2(I).

The adjoint operator T ∗ψ(f) : H → l2(I), also called analysis operator, is given by T ∗ψ(f) =

{〈ψi, f〉}i∈I . The frame operator Sψ : H → H, defined by

Sψ(f) = TψT ∗ψ(f) =
∑

i∈I

〈ψi, f〉ψi

is a bounded, invertible, and positive operator [27]. This provides us with the reconstruction

formula

f = S−1
ψ Sψ(f) =

∑

i∈I
〈f, ψi〉 ψ̃i =

∑

i∈I

〈
f, ψ̃i

〉
ψi, (5.2)

where ψ̃i = S−1
ψ ψi. The family {ψ̃i}i∈I is also a frame for H, called the canonical dual

frame of {ψi}i∈I . Thus, it is possible to reconstruct a function f from its frame coefficients

〈f, ψi〉 and to write f as a superposition of the ψi. Since the ψi are typically not linearly

independent, there exist many different superpositions of the ψi, all adding up to f. This

reflects the redundancy of a frame.

Given a frame {ψi}i∈I , the one thing we need to do, in order to apply (5.2), is to compute

ψ̃i = S−1
ψ ψi, i ∈ I From [27] we know that the frame operator satisfies A Id ≤ Sψ ≤ B Id. If

A and B are close to each other then we have the approximate reconstruction formula [27]

f ≈ 2
A + B

∑

i∈I
〈f, ψi〉ψi. (5.3)

If the frame is tight, i.e. A = B, then the reconstruction formula (5.3) is exact.
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5.2 Half-continuous frames

In this first discretization we discretize the parameter scale of the generalized SCWT and

we let the rotation parameter vary continuously. We choose the half-continuous grid Γ =

{(s, σl(tj)) : j ∈ Z, tj > tj+1, s ∈ Spin(3)}.
In order to get a reconstruction of every function f ∈ L2(S2), a first approach is to

impose

A||f ||2 ≤
∑

j∈Z
νj

∫

Spin(3)
|Wψ[f ](s, σl(tje3))|2dµ(s) ≤ B||f ||2,

with 0 < A ≤ B < ∞ independent of f, and weights νj > 0, arising from the chosen

quadrature formula. Thus, the family

Ψ = {ψ(s,σl(tje3)) = RsDσl(te3)ψ : s ∈ Spin(3), j ∈ Z}
constitutes a half-continuous frame for L2(S2). A condition in terms of spherical harmonics

is given in the following proposition.

Proposition 5.2.1 Let ψ be an admissible wavelet for the generalized SCWT. If there are

two constants A, B ∈ R+ such that

A ≤
∑

j∈Z

8π2

2k + 1
νj

∑

|m|≤k

|ψ̂σl(tje3)(k, m)|2 ≤ B, for all k ∈ N, (5.4)

then

A||f ||2 ≤
∑

j∈Z
νj

∫

Spin(3)
|Wψ[f ](s, σl(tje3))|2dµ(s) ≤ B||f ||2. (5.5)

Proof: The SCWT of a function f ∈ L2(S2) in the Fourier domain is given by

Wψ[f ](s, σl(tje3)) =
∑

k∈N

∑

|m|≤l

∑

|n|≤l

Dl
mn(s)ψ̂σl(tje3)(l,m)f̂(l, n) (5.6)

Inserting (5.6) in (5.5) we obtain
∑

j∈Z
νj

∫

Spin(3)
|Wψ[f ](s, σl(tje3))|dµ(s) =

=
∑

j∈Z
νj

∑

k∈N

∑

|m|≤k

∑

|n|≤k

ψ̂σl(tje3)(k,m)f̂(k, n)
∑

k′∈N

∑

|m′|≤k′

∑

|n′|≤k′
ψ̂σl(tje3)(k′,m′)f̂(k′, n′)

∫

Spin(3)
Dk

mn(s)Dk′
m′n′(s)dµ(s)

=
∑

j∈Z
νj

∑

k∈N

∑

|m|≤k

∑

|n|≤k

|ψ̂σl(tje3)(k,m)|2|f̂(k, n)|2 8π2

2k + 1
, by (3.3)

=
∑

k∈Z

∑

|n|≤k

|f̂(k, n)|2
∑

j∈N

8π2

2k + 1
νj

∑

|m|≤k

|ψ̂σl(tje3)(k, m)|2
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Due to (5.4), condition (5.5) is satisfied.

Remark 5.2.2 Under the restriction to the fundamental section and if ψ is an axisymmetric

(or zonal) wavelet (see [11]) then condition (5.4) simplifies to

A ≤ 4π

2k + 1

∑

j∈Z
νj |ψ̂j(k, 0)|2 ≤ B, for all k ∈ N,

The investigations in [11] have disclosed that the frame obtained is not a tight frame in

general. However, using the notion of controlled frames, the frame sequence can converge to

a tight frame.

5.3 Discrete spherical frames

The construction of tight frames is in general a hard task and, therefore, another strategy

must be found. We want to discretize completely the SCWT using our results from Chapter

4 and Daubechies’s ideas in [27]. We will treat only the case of the SCWT based on the

fundamental section.

Since we need to use rotations in R3, we will devote some attention to the use of quater-

nions to perform rotations.

5.3.1 Spherical geometry of rotations

In this section we will provide the basic properties of quaternions together with a description

of the set of unit quaternions isomorphic to the group Spin(3).

It is well-known that a rotation g mapping the unit vector x ∈ S2 onto the unit vector

y ∈ S2 according to gx = y may be represented by its corresponding (3 × 3) orthogonal

matrix M(g) or by its corresponding real quaternion q(g). The quaternionic representation

has some clear advantages which have been discussed by many authors (see e.g. [54]). In

our case it will lead us to an elegant description of the discretization of rotations for the

spherical wavelet transform in S2.

The algebra of real quaternions H is the 4-tuple of R4 endowed with the operation of

quaternion multiplication. The basis elements of H are 1, i, j, k, with 1 the unit element and

i, j, k the imaginary units. The multiplication rules for the imaginary units are

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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For q = q0 + q1i + q2j + q3k, qi ∈ R, i = 1 . . . 4, the conjugate element q is given by

q = q0 − q1i − q2j − q3k and qq = qq = q2
0 + q2

1 + q2
2 + q2

3 := |q|2, where |q|2 denotes the

Euclidean norm of q regarded as an element of the vector space R4. Each non-zero quaternion

has a inverse given by q−1 := q
|q|2 .

Let Sc (q) := q0 be the scalar part and q := q1i + q2j + q3k := ~(q) be the vector part of

the quaternion q. Given two quaternions p, q ∈ H, their product according to the algebraic

rules of multiplication is

pq = p0q0 −
〈
p, q

〉
+ p0q + q0p + p× q,

where 〈p, q〉 and p × q represent the standard inner and cross products in R3. If Sc (q) = 0

then q is called a pure quaternion. In this way, R3 can be embedded in H. A quaternion q

such that |q|2 = 1 is called a unit quaternion. It is well-known that Spin(3) ' S3.

Definition 5.3.1 Two quaternions p, q ∈ H are said to be orthogonal if pq is a pure quater-

nion.

A unit quaternion admits the representation q = cos α
2 + ω sin α

2 , where ω ∈ S2 and

α ∈ [0, 2π[.

Any active rotation g ∈ SO(3) mapping the unit vector x ∈ S2 onto the unit vector y ∈ S2

according to gx = y can be written in terms of its quaternion representation q = q(g) ∈ H as

qxq−1 = y. For q = cos α
2 + ω sin α

2 , where ω denotes the axis of rotation and α corresponds

to the angle of rotation in turn of ω, the rotation y = qxq−1 becomes

y = x cosα + (ω × x) sin α + (1− cosα) 〈ω, x〉ω.

Definition 5.3.2 Let q1 and q2 be two orthonormal quaternions. The set of quaternions

q(t) = q1 cos t + q2 sin t, t ∈ [0, 2π[ (5.7)

is called a circle in H and is denoted by C(q1, q2).

The next proposition characterizes the set of unit quaternions mapping a unit vector

onto another one.

Proposition 5.3.3 ([58]) Given a pair of unit vectors (x, y) ∈ S2 × S2 with x× y 6= 0, the

set of all rotations gx = y may be represented as a circle C(q1, q2) of unit quaternions such

that qxq = y, for all q ∈ C(q1, q2), with

q1 :=
1− yx

||1− yx|| = cos
θ

2
+

x× y

||x× y|| sin
θ

2
, q2 :=

x + y

||x + y|| (5.8)
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where θ denotes the angle between x and y, and

||1− yx|| =
√

2(1 + cos θ) = 2 cos
θ

2
, ||x + y|| = 2 cos

θ

2
.

The case y = −x must be considered separately. All rotations q with qxq = −x are

provided by rotations with their axes in the orthogonal complement h⊥ ∩ S2 of x, which

again represents a circle, and their angles are constantly equal to π. The inverse assertion to

Proposition 5.3.3 is also true (see [58]).

Hence, the circle C(q1, q2) consists of all quaternions q(t), t ∈ [0, 2π[, with q(t)xq(t) = y

for all t ∈ [0, 2π[, and it is uniquely characterized by the pair (x, y) ∈ S2 × S2.

For any other z ∈ S2 with 〈x, z〉 = cos ρ the vector q(t)zq(t) =: r(t) ∈ S2 is not a

constant unit vector, but it encloses the same angle ρ with y

〈y, r(t)〉 =
〈
q(t)xq(t), q(t)zq(t)

〉
= 〈x, z〉 = cos ρ, ∀t ∈ [0, 2π[.

Let C(y, ρ) ⊂ S2 denotes the circle with center y and angle ρ given by C(y, ρ) = {r ∈ S2 :

〈y, r〉 = cos ρ}.

Proposition 5.3.4 ([58]) The circle C(q1, q2) represents rotations mapping the small circle

C(x, ρ) onto the small circle C(y, ρ), i.e., for every s(u) ∈ C(x, ρ) and q(t) ∈ C(q1, q2) it

holds

q(t)s(u)q(t) = r(u + 2t), t, u ∈ [0, 2π[. (5.9)

These results are analogous to the split of g ∈ SO(3) into g = (χ, [w′]), with χ ∈ SO(2)

and w′ ∈ S2, which is formally done through a projection g 7→ w′(g) in the fiber bundle

S2 ' SO(3)/SO(2), followed by an arbitrary choice of section w′ 7→ [w′] ∈ SO(3).

5.3.2 Discretization of the SCWT

As stated before, we consider only the discretization of the SCWT arising from the funda-

mental section. For the sake of simplicity and without loss of generality we consider our

mother wavelet ψ defined on the hemisphere U0. For the discretization of the dilation pa-

rameter we will consider the sequence tn = 3−an
0

1+an
0
, n ∈ N, with a0 > 1 fixed (usually a0 = 2).

It is a strictly decreasing sequence on the interval ] − 1, 1[ and converges to t = −1. The

discretization of the rotation parameter s ∈ Spin(3) is obtained in such a way that, for each

t, the caps siU0,te3si, i ∈ I cover the whole sphere in a suitable way. This discretization

is analogous to the discretization of the parameters of the CWT on the real line where we

choose a = am
0 ,m ∈ Z for the discretization of the dilation parameter and we choose b0 > 0
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such that ψ(x − nb0) cover the whole real line [27]. However, on the real line we obtain

a periodic discretization of the translation parameter, while on the sphere it is impossible

to obtain an uniform covering with spherical caps due to the geometry of the sphere. We

now explain our choice for the construction of a covering of the sphere S2 with an arbitrary

spherical cap Ucos φ, (φ is the "spherical radius" of the cap Ucos φ). We begin by fixing the

cap Ucos φ centered at the North Pole. Then we add a first level of caps such that there is an

overlapping between neighboring caps at least of spherical size φ′ = Cφ, controlled by the

constant 0 < C < 2 (see Figure 5.2). Our aiming is to make this overlapping almost uniform,

by adjusting the caps on each horizontal plane. In order to avoid the existence of gaps we

begin the third level fixing the first cap on the intersection of two caps of the previous level

(see figure 5.1). We proceed in this way until we obtain a quasi-uniform covering of the

sphere S2 (see Figure 5.3).

Taking this into account, we discretize first the coordinate φ, thus obtaining the number

of levels for the covering of the whole sphere. For each level we discretize the coordinate θ

obtaining, in such a way, a quasi uniform covering of the sphere S2 by means of spherical

caps.
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Figure 5.1: Discretization of rotations (with the cap U cos(π/6)).

Figure 5.2: Overlapping of two caps U cos φ
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Figure 5.3: Covering of the sphere S2 with the cap U cos(π/10).

5.4 Numerical examples

We now construct a numerical algorithm for performing spherical reconstruction of signals

based on the following procedure.

Given a frame {ψte3,s, te3 ∈ I1, s ∈ I2} we will calculate the coefficients
〈
f, ψ̃t1e3,s1

〉

such that

〈f, ψt2e3,s2〉 =
∑

t1∈I1

∑

s1∈I2

〈
f, ψ̃t1e3,s1

〉
〈ψt1e3,s1 , ψt2e3,s2〉 , ∀t2 ∈ I1, ∀s2 ∈ I2. (5.10)

In matrix form we have to solve the linear system AX = b, where A = (〈ψt1e3,s1 , ψt2e3,s2〉),
X =

〈
f, ψ̃t1e3,s1

〉
and b = 〈f, ψt2e3,s2〉 . The inner products 〈ψt1e3,s1 , ψt2e3,s2〉 can be easily

computed using the covariance of the SCWT under rotations and an appropriate quadrature

rule (e.g. Gauss quadrature). If the Gramm matrix A is sparse and has good properties then

the resolution of the system (5.10) can be easily solved by the conjugated gradient method

for sparse matrices.

By the results of Subsection 5.3.1 we know how to factorize rotations and how to com-

pletely discretize the group Spin(3). If the wavelet ψ is axisymmetric then the discretiza-

tion of Spin(3) is simpler since it only requires to consider pure quaternions of the form

q = ω ∈ S2. In this case, the discretization of S2 is just given by the quasi-uniform covering

of S2. Our numerical algorithm was constructed for axisymmetric wavelets although it can

be adapted to non-axisymmetric wavelets. It can be summarized as follows.

1. Choice of the levels (discretization of the dilation parameter);

2. For each dilation level, covering of the unit sphere with the respective spherical cap

(discretization of the rotation parameter);

3. Determination of the Gramm matrix A = (〈ψt1e3,s1 , ψt2e3,s2〉);
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4. Determination of the coefficients b = 〈f, ψt2e3,s2〉 ;

5. Computation of the dual coefficients X =
〈
f, ψ̃t1e3,s1

〉
by solving the linear system

AX = b;

6. Application of the reconstruction formula

f =
∑

t1∈I1

∑

s1∈I2

〈
f, ψ̃t1e3,s1

〉
ψt1e3,s1 .

We now present numerical examples based on the spherical Mexican wavelet on the

hemisphere which was obtained from the two dimensional Mexican wavelet ψ(~x) = −2(−1+

8|~x|2) exp(−8|~x|2), ~x ∈ R2 (restricted to the unit disc) by inverse stereographic projection,

i.e., ψ(x, y, z) = Θ−1ψ(~x) = − 4
1+z (−1 + 81−z

1+z ) exp(−81−z
1+z ), z ≥ 0. Our signals are defined

analytically, and they include a spherical triangle (signal 1), a circle inscribed in a spherical

band (signal 2), a C∞ function with compact support (signal 3), and a C∞ global signal

defined by f(x, y, z) = exp(x)z3 + 10xy2 (signal 4).

In our approximation we used 24 levels in the discretization of the dilation parameter

and the overlapping constant C = 17/10.

Figure 5.4: Spherical Mexican Hat on the hemisphere
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Figure 5.5: Signal 1

Figure 5.6: Signal 2
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Figure 5.7: Signal 3

Figure 5.8: Signal 4

The numerical examples show that the proposed algorithm yields in fact the reconstruc-

tion of signals on the unit sphere. As a result of the proposed covering of S2, the concen-

tration of the frame elements near the Poles is different from the other points on the sphere.

This yield a bad approximation near the Poles as we can see in our numerical examples.

Being the sphere an homogeneous space all points must be equivalent. This suggests that

the construction of other coverings of the unit sphere can yield better reconstruction. The

overlapping constant depends on the choice of the mother wavelet and it influences also the

reconstruction. Figure 5.9 illustrates the sparsity of the Gramm matrix A and Table 5.1

analyzes some of its properties.
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Figure 5.9: Gramm matrix
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levels ansatz λmax λmin condition number % non-zeros

1 42 2.5911 1.2062 × 10−1 2.9599 × 101 56.80
2 86 4.8426 1.9443 × 10−2 4.3508 × 102 54.16
3 160 6.3861 6.9223 × 10−4 2.5378 × 104 46.33
4 238 8.0075 1.1343 × 10−5 1.7880 × 106 43.36
5 319 9.2766 3.0747 × 10−6 1.7247 × 107 40.87
6 402 10.5890 1.2607 × 10−6 4.3155 × 107 38.96
7 489 11.8957 1.2883 × 10−6 5.3389 × 107 36.79
8 617 12.6680 5.9112 × 10−7 1.2917 × 108 33.49
9 749 13.8208 5.5416 × 10−7 1.6902 × 108 31.06
10 887 14.9796 1.9118 × 10−8 4.0688 × 109 28.96
11 1029 16.0416 5.7312 × 10−7 1.6839 × 108 27.24
12 1224 17.0978 4.8172 × 10−7 2.1537 × 108 24.97
13 1426 18.0343 4.3317 × 10−7 2.6876 × 108 23.15
14 1644 18.8452 1.5468 × 10−7 9.7697 × 108 21.43
15 1934 19.4115 8.9701 × 10−8 1.4761 × 109 19.38
16 2336 19.9414 4.9531 × 10−8 2.7267 × 109 16.84
17 2763 20.2160 1.2353 × 10−8 1.0602 × 1010 14.86
18 3293 20.8766 4.1274 × 10−8 3.8142 × 109 13.05
19 3943 21.2636 1.4457 × 10−8 1.0618 × 1010 11.34
20 4647 21.5843 3.1488 × 10−8 4.3199 × 109 9.94
21 5613 21.8381 — — 8.52
22 6785 22.0304 — — 7.28
23 8229 22.1681 — — 6.15
24 10300 22.1730 — — 5.02

Table 5.1: Study of the Gramm matrix: λmax−maximum eigenvalue, λmin−minimum eigen-

value.
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In Table 5.1 we can see estimates for the upper and lower eigenvalues as well as for the

condition numbers of our resulting matrices. Besides an initial grow we can observe that

the upper and lower eigenvalue stabilizes around 22 and 10−8, respectively. It shows clearly

that we will not get a tight frame. Because of the resulting high condition number we use a

preconditioned conjugated gradient (PCG) method for sparse matrices to solve the system.

As expected, the sparsity of the matrix decreases with the number of levels.



Conclusion and Outlook

This dissertation connects wavelet analysis on the sphere with Clifford algebra theory. The

results obtained allow us to conclude that Clifford algebraic techniques are a powerful tool

in the study of this topic. This can be seen in Chapter 2 on the description of the conformal

group of the unit sphere, the proper Lorentz group Spin+(1, n). The algebraic structure of

the unit ball leads us to a gyrogroup, which is a generalization of the notion of group. The

representation theory for gyrogroups seems to be an open field to be explored which could

give new insights for the continuous wavelet transform on some Euclidean manifolds, like

the unit ball or the hemisphere (both having a conformal group).

The connection between gyrogroups and the SCWT is established in this thesis. The

factorization of the gyrogroup of the unit ball by its gyro-subgroups allowed us to construct

the appropriate homogeneous space for the development of the generalized SCWT, which

depends on the choice of the section. Thus, we obtained anisotropic coherent states called

spherical conformlets. In the anisotropic case we have a notion of directionality on the unit

sphere, produced directly by the action of the group, since the spherical dilation operator

Dσl(ten) is not restricted to pure dilations. Analogous constructions can be made on the

plane since the conformal groups of the sphere and the plane are connected by the stereo-

graphic projection mapping. The properties of these states should be investigated in more

detail. For example, the coorbit space theory developed by Feichtinger and Gröchenig, and

recently generalized to quotient spaces need to be investigated in the case of the sphere. The

coorbit spaces are defined as the collection of all functions for which the wavelet transform

is contained in some weighted Lp−space. A judicious discretization of the representation

produces the desired frames for the coorbit spaces. This approach works fine on the whole

Euclidean plane and covers, e.g., the classical wavelet and Weil-Heisenberg frames. The

generalization of the coorbit theory to homogeneous spaces were developed in a series of

papers ([25], [26], [24]). In [25, 26], the authors constructed Gabor frames and modulation

spaces on the sphere. The generalized SCWT allow us to obtain new smoothness spaces as
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it was done in [24]. By varying the specific Borel sections we can obtain some kind of mixed

spaces. For example, the family of sections σl
λ or σl

c can generate a family of smoothness

spaces analogous to the α−modulation spaces developed in [24].

In Chapter 3 we have studied only left global smooth sections and we showed that they

can give rise to SCWT. However, our model has the additional advantage that we can also

study SCWT arising from local admissible sections. The introduced concept of anisotropy

associated to a section characterizes it geometrically but further applications should be

studied, like evolution and non-linear diffusion equations. The combination of sections with

different characteristics can generate dictionaries of frames with interesting properties, which

are suitable for practical applications of signal detection and spherical reconstruction. This

shows the advantage of working with the whole of the conformal group of the sphere.

In Chapter 4 we studied the anisotropic conformal dilations obtained from the Möbius

transformation ϕa. This study is very important for numerical applications but also from

the theoretical point of view of hyperbolic geometry on the unit sphere.

In Chapter 5 we constructed an algorithm for reconstruction of spherical signals based on

our group theoretical approach and we showed its practical feasibility with some academic

examples. As we can see from the numerical examples presented, in general, we will not

get a tight frame although it remains to be investigated if a different choice of our adaptive

parameters or a different covering of the sphere S2 can significantly lower the condition

number of the Gramm matrix. We also would like to make a similar study for the stiffness

matrix with applications to partial differential equations on the sphere in mind.
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