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resumo 
 
 

Tal como o título indica, esta tese estuda problemas de cobertura com alcance 
limitado. Dado um conjunto de antenas (ou qualquer outro dispositivo sem fios 
capaz de receber ou transmitir sinais), o objectivo deste trabalho é calcular o 
alcance mínimo das antenas de modo a que estas cubram completamente um 
caminho entre dois pontos numa região. Um caminho que apresente estas 
características é um itinerário seguro. A definição de cobertura é variável e 
depende da aplicação a que se destina. No caso de situações críticas como o 
controlo de fogos ou cenários militares, a definição de cobertura recorre à 
utilização de mais do que uma antena para aumentar a eficácia deste tipo de 
vigilância. No entanto, o alcance das antenas deverá ser minimizado de modo 
a manter a vigilância activa o maior tempo possível. Consequentemente, esta 
tese está centrada na resolução deste problema de optimização e na obtenção 
de uma solução particular para cada caso. 
 
Embora este problema de optimização tenha sido investigado como um 
problema de cobertura, é possível estabelecer um paralelismo entre problemas 
de cobertura e problemas de iluminação e vigilância, que são habitualmente 
designados como problemas da Galeria de Arte. Para converter um problema 
de cobertura num de iluminação basta considerar um conjunto de luzes em vez 
de um conjunto de antenas e submetê-lo a restrições idênticas. O principal 
tema do conjunto de problemas da Galeria de Arte abordado nesta tese é a    
1-boa iluminação. Diz-se que um objecto está 1-bem iluminado por um 
conjunto de luzes se o invólucro convexo destas contém o objecto, tornando 
assim este conceito num tipo de iluminação de qualidade. O objectivo desta 
parte do trabalho é então minimizar o alcance das luzes de modo a manter 
uma iluminação de qualidade. São também apresentadas duas variantes da   
1-boa iluminação: a iluminação ortogonal e a boa !-iluminação. Esta última tem 
aplicações em problemas de profundidade e visualização de dados, temas que 
são frequentemente abordados em estatística. A resolução destes problemas 
usando o diagrama de Voronoi Envolvente (uma variante do diagrama de 
Voronoi adaptada a problemas de boa iluminação) é também proposta nesta 
tese. 
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abstract 
 

As the title implies, this thesis studies limited range coverage problems. Given 
a set of antennas (or any wireless device able to send or receive some sort of 
signal), the objective of the discussion that follows is to calculate the antennas’ 
minimum range so that a path between two points within a region is covered by 
the antennas, a path known as a safe route. The definition of coverage is 
variable and depends on the applications. In some instances, for example, 
when monitoring is critical as in the case of fires or military, the definition of 
coverage necessarily involves the use of multiple antennas to increase the 
effectiveness of monitoring. However, it is also desirable to extend a network’s 
lifespan, normally achieved by minimising the antennas’ range. Therefore the 
focus of this thesis will be the resolution of this dual problem and an affective 
solution is offered for each case. 
 
Although this question has been researched as an issue of coverage, it is also 
possible to establish a relation between coverage and illumination and visibility, 
known as Art Gallery problems. To conceptualise coverage problems as Art 
Gallery problems, all that is needed is to consider a set of lights instead of a set 
of antennas, which are subject to a similar set of restrictions. The main focus of 
the Art Gallery problems addressed in this thesis is 1-good illumination. An 
object is 1-well illuminated if it is fully contained by the convex hull of a set of 
lights, making this a type of quality illumination. The objective of the discussion 
that follows is therefore to minimise the lights’ range whilst maintaining a quality 
illumination. Moreover, two variants of 1-good illumination are also presented: 
orthogonal good illumination and good ! -illumination. The latter being related 
to data depth problems and data visualisation that are frequently used in 
statistics. The resolution of these problems using the Embracing Voronoi 
diagram (a variant of Voronoi diagrams adapted to good illumination) is also 
discussed in this thesis. 
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Chapter 1

Introduction

1.1 Coverage and Art Gallery Problems

On the 1st of June 2009, Air France flight 447 was lost in the Atlantic Ocean en route to Paris
(France) from Rio de Janeiro (Brazil). The alarm was raised when the plane left Brazilian-
monitored airspace but failed to enter Senegalese-controlled airspace (see Figure 1.1).

?

Figure 1.1: The blue marker showing the point where the plane left Brazilian-controlled
airspace and the red where the plane should have entered Senegalese-controlled airspace. The
monitored area is shown in light green.

The disappearance of the plane in an unmonitored zone, so called shadow areas, meant

1



2 Introduction

that there was no way to know exactly where it fell, resulting in a potential search area that
was clearly immense. Although in reality Brazilian radars are run by the military and their
precise location is not easy to ascertain, for clarity in this example, the radars are assumed
to be located at the airport in Rio de Janeiro and at the international airport in Dakar.
The airspace controlled by both countries is shown in light green and the plane was to fly
approximately 40 minutes in uncontrolled airspace between both markers. In a straight line,
the blue and red markers are approximately 675km apart. Had the plane been monitored at
the time, it would have been easier to locate its debris and concentrate the search for survivors
in a particular area. This event makes it apparent that coverage has important applications.
The problems presented in this thesis therefore aim to provide an effective coverage of a region
or a path to be tracked, for instance, a flight route.

Although the previous example involves radars, this type of monitoring does not have to
be necessarily performed by these devices. Coverage also includes sensors, antennas, routers
and basically any device that is able to send or receive some sort of signal. Most of the
applications in this field are associated with sensor networks (refer to Ning Xu [81] for a survey
on the subject), resulting in an area of research that is under constant development as new
technologies emerge. Apart from flight monitoring, coverage is used to solve a great diversity of
problems; each presenting specific challenges that have to be addressed. Some applications do
not need positioning information, that is, all that is needed to know is if someone or something
has entered the network service area, for example, anti-burglary systems. The exact location of
where a burglar entered a house is not necessarily important, what is crucial is the fact that the
house has been invaded in order to take the appropriate measures. Similarly, weather forecast
and habitat monitoring are other examples where positioning information is not needed. This
type of coverage requires a network that monitors a region so that each point on such region
is monitored at least by one device, also known as simple coverage. In relation to simple
coverage, Abellanas et al. [18] and Mehta et al. [65] study routes on the plane that are always
close to (or always far from) a given set of devices to achieve safe routes. These routes can be
used in patient transport where the best route should never be too far from a medical centre.
Also associated with simple coverage, Agnetis et al. [19] studied the monitoring of a river to
avoid it being used by unauthorised boats, detect dangerous floating objects, etc.

Clearly the main coverage issue is centred around critical conditions that require reliable
monitoring and immediate intervention like fires, disasters or leaking of toxic liquids/waste.
The better the monitoring, the easier the location of the hazardous area and the rescuers’ work.
In such cases key questions are: how guaranteed is the detection of a critical event within a
short-time interval? What is the extent of the region that is not monitored? Like the search
for survivors in an emergency situation, these instances also require the tracking of people or
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objects within a fully monitored area. These applications carry stronger coverage needs where
failures cannot occur. What follows is therefore a discussion of multiple sensor coverage. If
an area is monitored by multiple sensors, then it is secured that there are no shadow/breach
areas even when a sensor fails. This is also the case for military surveillance, specifically,
the ability to detect any intruder anywhere in the protected area (enemy tracking). In the
case of flight monitoring, being covered by at least one radar is usually sufficient because the
pilot is reporting the plane’s exact position from time to time to the ground-based controllers.
However, in the U.S. system, the airspace is often controlled by multiple radar systems since
coverage may be inconsistent at lower altitudes due to high terrain or distance from radar
facilities. A centre may require numerous radar systems to cover the airspace assigned to
them, and may also rely on pilot position reports from aircrafts flying below the floor of radar
coverage. The determination of an exact location is therefore a common issue.

The best known utility to solve this problem is the popular GPS (Global Positioning
System), which was the first widely accessible positioning system to offer precise location data
for any point on the planet. GPS gives the correct location of an object if it can be seen by
at least three satellites. However, given that satellites operate using atomic clocks but that
all commonly used terrestrial receivers do not, this strategy results in several issues including
exact time measurement and the consequential need for error correction. For example, if the
timing between emitter and receiver is out just by a thousandth of a second this translates
into a ground distance error of almost 320km. There are a number of ways in which these
errors can be corrected, for example, using an additional satellite (four satellites total) or, more
commonly, using a variant of the original GPS known as the differential GPS that involves
further input from two additional receivers. GPS has applications in agriculture, mass transit,
urban deliveries, public safety, vessel and vehicle tracking, not to mention navigation and
mapping. To summarise, it is clear that multiple coverage is used widely in our society
but also raises a number of questions: what is the optimal number of devices that allow an
accurate target detection? How accurate is this localisation in relation to the chosen number
of devices? Further, an additional complication is that heterogeneous devices are needed for
supervision and control applications each with distinct characteristics like processing power
and communication properties. All these are challenging problems for any multiple network
to cope with.

Each sensor can be placed almost anywhere within a specific region, depending on the
region’s topology, so coverage is really the discipline that measures the quality of the chosen
device scheme. That is, coverage measures the quality of the solution obtained according to
the characteristics of the application. The work by Meguerdichian et al. [64] is considered
the breakthrough study that combined sensor networks and geometric tools. Several others,
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including Boukerche et al. [26], Li et al. [57] and Mehta et al. [65], built on their ideas either
by studying different versions of the coverage problem or by improving and proving previous
results. Recently, Zhang et al. [82] focused on the decision problem and developed two localised
algorithms to identify whether a sensor is on the boundary of the monitored area. Zhou et
al. [85] addressed the problem of finding a minimum energy-cost coverage, where each sensor
can vary its sensing and transmission radius. Das et al. [35] studied efficient location of base
stations to cover a convex region when the base stations are inside the region. Although these
studies are based on simple sensor coverage, there are also a few studies on multiple sensor
coverage. For example, Efrat et al. [38] minimised the number of sensors in order to have each
point “well covered”. Good coverage means that each point is seen by three sensors that form
a triangle containing the point or that each point is seen by two sensors that are separated
by an angle of at least α. Furthermore, Zhou et al. [84] computed a small subset of sensors
so that each point in the sensor network is at least covered by k sensors. To conclude, it can
be seen that an effective solution found for a particular application is not necessarily good for
another and previous research demonstrates that solutions that can cope with multiple issues
are not easy to attain. The approach chosen in this thesis is known as best-case coverage. It
is characterised as an attempt to locate the areas that are within reach of as many devices
as possible. That is, to identify the “best” monitored areas of a given region or path whilst
optimising the lifespan of the network by reducing the devices’ sensing and transmission range
as much as optimum [43, 57]. This optimisation problem will be further discussed in Chapters
4 and 5.

Even if Art Gallery problems seem very different from coverage problems, they are in
fact intrinsically related. The connection dates back to 1973 when Victor Klee proposed the
problem of calculating the minimum number of guards that are sufficient to cover the interior
of an art gallery room with n walls. He posed this question after Vasek Chvátal asked him
for an interesting geometric problem. Two years later, it was the same Chvátal who solved
the problem in what has become known as the Chvátal’s Art Gallery Theorem: (n

3 ) guards
are always sufficient and occasionally necessary to cover a simple polygon with n vertices [33].
However, the most popular proof of this theorem, mostly due to its simplicity, was proposed
by Fisk [39] in 1978. This problem and its respective solution launched a whole new field of
computational geometry: the Art Gallery problems. Interest in this area grew exponentially
in the years that followed and this new branch of geometry became so popular that the first
survey on the subject was written by J. O’Rourke in 1987 [69], less than ten years later. This
keynote text was later complemented by Shermer [73], Asano et al. [20] and Urrutia [77] among
others. To date, this area is still booming and it would appear that new variants continue to
arise as technology advances.
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As the concept of having an object monitored by a given sensor network is easily under-
stood, the same happens with illumination or visibility. If a sensor is replaced by a light or
a guard, that object is said to be illuminated or seen by such guard if it is within its range.
Therefore, studies published under Art Gallery problems can be easily translated to coverage
problems. For example, the main subject of Chapter 2 is 1-good illumination (also designated
by !-guarding [74] and well-covering [38]). A point q on the plane is said to be 1-well illu-
minated if it is within reach of at least three lights whose triangle contains q. If satellites are
used instead of lights, it is easy to see that this concept is associated with multiple coverage
and, particularly, to GPS applications. 1-good illumination has been generalised to t-good
illumination [13, 14, 28] that can also be adapted to multiple coverage. The following works
are just a few more examples of the relation between multiple coverage and Art Gallery prob-
lems. For Kauc̆ic̆ and Žalikm [51], k-guarding a surface patch is having it guarded by at least
k guards. They proposed three heuristics (one of which is original) to find a minimum set of
vertex guards that k-guard the whole terrain. On the other hand, Belleville et al. [23] consider
that k-guarding a polygon P means that it is possible to find a set of guards on the edges of
P (at most one guard per edge) such that every point on P is visible to at least k guards. To
conclude and as in previous examples, the problems addressed in Chapter 2 are written as Art
Gallery problems but can be easily converted to coverage as outlined above.

Most of the solutions found by the authors previously mentioned, either to solve coverage
or Art Gallery problems, make use of Voronoi diagrams. As O’Rourke states [70]: “in a sense,
the Voronoi diagram is a structure that records all the needed information on proximity to a
set of points or other objects”. Voronoi diagrams were considered as early as 1644 by René
Descartes, but they were first formally introduced by Dirichlet [36] and Voronoi [78, 79] in the
beginning of the XX century. Consequently, it has been called Dirichlet tessellation but the
designation that prevails is Voronoi diagram. Although it is not by any means a new concept,
it keeps inspiring researchers to this day. Not only there are conferences and symposiums based
solely on Voronoi diagrams but even art exhibitions. An exhaustive and unified exposition of
the mathematical and algorithmic properties of Voronoi diagrams can be found on a survey
by Aurenhammer and Klein [21]. A typical example of a problem that is solved using Voronoi
diagrams is facility location. Supposing a new shop is about to open in a place where there are
other similar shops, the best place to locate this new shop is the point that is as far as possible
to the other shops. In Voronoi terms, this would be expressed as the new shop being located
where the distance to the closest of the existent shops is as large as possible. The resulting
location being the centre of the largest empty circle (empty of other shops) that is a point
on the Voronoi diagram. This structure will be used throughout this thesis and is shown to
inspire three original variations: the Embracing Voronoi diagram, the Orthogonal E-Voronoi
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diagram and the Coverage Voronoi diagram. The first two are introduced in Chapter 3 and
the third in Chapter 5.

1.2 Summary of Published Work

The results obtained and presented in this thesis are divided into four chapters. Chapter 2
studies good illumination problems, in particular, the 1-good illumination concept. An object
x is 1-well illuminated by a set of lights if, and only if, there is at least one light illuminating
x in every open half-plane with x on its border. In this way, the larger the number of lights in
every open half-plane with point q on its border, the better the illumination of the points on the
plane that surround q. Consequently, this subject falls into the category of quality illumination.
As previously mentioned, 1-good illumination can also be found under the designations of !-
guarding [74] and well-covering [38]. Chapter 2 presents a set of optimisation problems whose
objective is to minimise the lights’ range in order to maintain a given object 1-well illuminated.
The results involving points and line segments were published in [1, 2, 7]. This chapter also
presents two generalisations of this type of good illumination: the orthogonal good illumination
and the good α-illumination. As before, these variants aim to optimise the lights’ range to
orthogonally well illuminate or well α-illuminate a given point. A new structure associated
with good α-illumination called the α-embracing contour is also introduced in Chapter 2 and
is associated with data visualisation. Results on both variants are also discussed in several
publications [5, 6, 7, 8, 16, 17].

Chapter 3 is devoted to a new variant of Voronoi diagrams named the Embracing Voronoi
diagram. This diagram arose from the concept of 1-good illumination and merges the notions
of proximity and convex dependency. If a point q on the plane moves continuously or quickly
changes from one location to another, there is the need to recompute the lights’ minimum
range in order to keep q 1-well illuminated. The Embracing Voronoi diagram is the structure
that results from preprocessing the location of a set of lights in order to achieve a quicker
solution. That is, a geometric structure that provides a basis to efficiently recalculate the
lights’ minimum range to keep any moving points 1-well illuminated. There are two papers on
this subject, one was published in [3] and the other one in [4]. In this last paper there are also
some results on the closest embracing number, that is, the number of lights needed to 1-well
illuminate a given object, also associated with data depth problems.

As previously mentioned, results on 1-good illumination cannot be dissociated from cover-
age problems. Therefore, the final two chapters of this thesis, Chapters 4 and 5, study coverage
problems and in particular multiple sensor coverage. Chapter 4 is devoted to coverage using
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at least two devices (sensors, antennas, etc.) whereas Chapter 5 does not have any restriction
on the number of devices. The geometric optimisation problem solved in Chapter 4 aims to
minimise the power transmission range of the devices so that a path on a region or indeed the
whole region, is within range of at least two devices. Different versions of this problem are
obtained for different types of regions, for example, a line segment, a polygonal region or even
the whole plane. The results on the variant of this problem that uses a planar graph (or street
graph) were published in [12], whereas the results involving a path between two points on the
plane were published in [9]. This type of coverage applied to a polygonal region was published
in [11].

Chapter 5 is divided into two parts. The objective of the first part is to decide which is
the maximum coverage of a path within a polygonal region. This problem is solved for four
distinct regions: a line segment, a planar graph, a polygonal region and the whole plane. The
solutions proposed for the four types of regions were published in [10]. The second part of this
chapter is based on a more restrictive definition of coverage: a point q on the plane is said
to be π

2 -covered by two devices if the angle between q and those devices is at least π
2 . This

restriction ensures that the devices surround their service area uniformly. It is shown how to
optimise the device’s range to π

2 -cover a point and how to construct the π
2 -covered region and

its contour. Moreover, the Coverage Voronoi diagram is also introduced in this second part
as an important geometric tool to solve this type of optimisation problems. This structure is
associated with Embracing Voronoi diagrams.

All the problems and solutions presented in this thesis use the Euclidean distance and it
is assumed that any set of points on the plane is in general position, except where otherwise
stated. The following chapters are intended to be self-contained, although the inter-relatedness
of some of the subjects addressed in this thesis rendered it impossible to avoid cross-references
altogether. The necessary notation and problem formulation are introduced in each chapter
where they are required, and consequently there is no general introductory section filled with
notations and previous results. Nevertheless, it is assumed that the reader is acquainted with
the basic concepts of Computational Geometry. A list of the notations introduced in this
thesis can be consulted in page 155.



Chapter 2

Good Illumination

This chapter focuses on good illumination problems. An object x is 1-well illuminated by
a set of lights if, and only if, there is at least one light illuminating x in every open half-
plane with x on its border. In this way, the larger the number of lights in every open half-
plane with x on its border, the better the illumination of the surroundings of x. This chapter
presents a set of optimisation algorithms whose objective is to minimise the lights’ range in
order to maintain a given object (point, line segment or polygonal line) 1-well illuminated.
There follows two variations of 1-good illumination: the orthogonal good illumination and the
good α-illumination. The algorithms involving these variants aim to optimise the lights’ range
to orthogonally well illuminate or well α-illuminate a given object. A new data visualisation
tool called the α-embracing contour is also introduced in this chapter and is associated with
good α-illumination. Finally, some of these algorithms were implemented in Java and those
implementations are shown in dedicated sections.

2.1 Introduction

Since Art Gallery problems have been a very popular branch of Computational Geometry,
new variants are constantly arising. As a result, some surveys on the subject (O’Rourke [69],
Shermer [73], Urrutia [77], etc.) have become keynotes texts in Computational Geometry.
This chapter is focused on illumination and visibility problems, which play a major role in
Art Gallery problems [20]. According to Ghosh [41], a point p on the plane is said to be
illuminated by a light s if the line segment connecting both, sp, does not cross any obstacle
(see Figure 2.1(a)). This concept has been adapted to different variants of illumination, for
example, Urrutia [77] studied floodlights, which are lights that illuminate within a given angle

9
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and can rotate around their apices. The following discussion considers another illumination
concept whose definition is aimed at quality illumination: the good illumination, which is
defined below.

Definition 2.1 ([28]) Let S be a set of lights on the plane. A point q on the plane is t-well
illuminated by S if and only if there are at least t lights of S illuminating q in every open
half-plane with q on its border.

This definition has been studied for t = 1, t = 2 and t = 3 by Canales et al. [13, 14,
28]. The motivation behind t-good illumination is the fact that, in some applications, it is
not sufficient to have just a given object illuminated. It is also necessary that some of its
neighbourhood is illuminated as well [38]. In this way, the larger the number of lights in
every open half-plane with point q on its border, the better the illumination of the points that
surround q (see Figure 2.1(b)). Consequently, this subject falls into the category of quality
illumination. This chapter is based on 1-good illumination, which can also be found under the
designations of !-guarding [74] or good coverage [38].







 

  











 











Figure 2.1: (a) Point p is illuminated by light s with illumination range r but q is not as the
orange box casts a shadow on q. (b) Point q is 1-well illuminated since there is always a light
in every open half-plane with q on its border. (c) Point q is inside CH(S) (shown in purple)
and MER(q) = d(s3, q) = r.

Given a set S of n lights, let CH(S) denote the convex hull of S, int(CH(S)) the interior
of CH(S) and d(q, si) the Euclidean distance between point q and light si ∈ S. The following
designations were introduced by Chiu and Molchanov [32]. Given a set S′ ⊆ S, if point q is
inside CH(S′) then S′ is an embracing set for q. According to Definition 2.1, it is not difficult
to see that if q ∈ int(CH(S)), then q is 1-well illuminated and vice versa (see Figures 2.1(b) and
2.1(c)). Suppose that the minimum range of S that 1-well illuminates q is given by d(sc, q),
then sc is the closest light to q such that q is inside CH(S′), S′ = {si ∈ S : d(si, q) ≤ d(sc, q)}.
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Such light is called a closest embracing site for q. Any embracing set S′ for q formed by sc

and other lights of S that are closer to q than sc is a closest embracing set for q; and a closest
embracing set formed by three lights defines a closest embracing triangle that is denoted by
CET(q). In Figure 2.1(c), light s3 is a closest embracing site for q and set {s1, s2, s3, s4, s5} is
an embracing set for that point. The minimum illumination range needed to 1-well illuminate
q is called the minimum embracing range and is calculated as the distance between q and its
closest embracing site. Given an object x, the minimum embracing range of S that 1-well
illuminates x is denoted by MERS(x) or MER(x) if S is clear from the context.

Although Definition 2.1 adopts the classical notion of visibility that allows unlimited
visibility along an unobstructed line of sight, this chapter is based on a more realistic and
restrictive definition introduced by Ntafos [68]. Assuming there are no obstacles on the plane,
two points p and q on the plane are r-visible to each other if the straight line distance between
p and q is shorter than r. It does not seem necessary to consider a limited field of view since
conventional rotating cameras can easily sweep the whole 360◦ field of view. However, video
cameras and robot vision systems have severe visibility range restrictions. Such restrictions
are largely a result of the low resolution images most panoramic cameras obtain, which in
turn are a product of the method used to store each of the video’s frames [52]. Therefore,
adopting a restricted notion of visibility is a realistic and reasonable approach to this problem.
Let D(si, r) be the disc of radius r centred at light si ∈ S. If there are no obstacles on the
plane, the r-visible area for si is precisely D(si, r). In other words, only the points on the
plane enclosed by D(si, r) are illuminated by si. Given a set S′ ⊆ S, the region on the plane
that is illuminated by every light of S′ with range r is given by Ar(S′) =

⋂

si∈S′

D(si, r).

Definition 2.2 Let S be a set of lights with range r ∈ R+, then a point q on the plane is
1-well r-illuminated by S if there is a ternary set S′ ⊆ S such that q ∈ {Ar(S′)∩ int(CH(S′))}.

Definition 2.2 is a combination of 1-good illumination and limited illumination range
(see Figure 2.2). Since this is the only definition studied in the following sections, 1-good
r-illumination will be simply designated as 1-good illumination. Given a set S of n lights on
the plane, the objective of this chapter is to calculate the minimum illumination range needed
to 1-well illuminate a given object. Chan et al. [29] showed how to construct the Nearest
Neighbour Embracing Graph [32] in optimal time. In order to do that, they had to find a
closest embracing site for each of a set of points. Since the construction of the whole graph
takes Θ(n2) time, the embracing range for a single point on the plane can be calculated in O(n)

time. This graph has interesting properties and it is even associated with coverage problems
as demonstrated by Zhang et al. [82], though this will be further discussed in Chapter 4. The
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work by Smith and Evans [74] was already referred as they presented an alternative designation
to 1-good illumination. Given two simple polygons P and Q, and assuming Q is contained in
P , the authors proposed a polynomial time algorithm to find a minimum set of vertex guards
on P that 1-well illuminates Q. To this end, Q is assumed to have a transparent boundary,
otherwise the problem becomes NP-hard (meaning there is an NP-complete problem that can
be reduced to this problem in polynomial time). The following study is another example of
the fact that 1-good illumination can be translated to coverage. Efrat et al. [38] minimised
the number of sensors in order to have given region well covered. Good coverage means that
each point is seen by three sensors that form a triangle containing the point or that each
point is seen by two sensors that are separated by an angle of at least α. Translating back to
illumination problems and using only their first definition, the authors showed how to minimise
the number of lights to 1-well illuminate a given region.



 




















Figure 2.2: (a) Dark blue region is 1-well illuminated by lights s1, s2 and s3 with range r.
(b) Point q is 1-well illuminated by S with minimum embracing range r = d(s3, q).

Some of the algorithms introduced in this chapter were implemented in Java using the
platform Netbeans 4.0 IDE (integrated development environment) developed by Sun Microsys-
tems. The applications that resulted from these implementations are illustrated in Sections
2.2.2 and 2.5.2 that follow the respective algorithms. However, the images presented in those
sections show a more recent version since the applications are currently running in version 6.5.
There will not be a detailed analysis of any of the implementations since these are not relevant
to the objectives of this thesis. All the algorithms were implemented mainly for visualisation
purposes and debugging. The structure of this chapter is introduced below.

Throughout this chapter it is assumed that there are no obstacles on the plane and that
every light has the same illumination range. Given a set of n lights, two algorithms to calculate
the minimum embracing range to 1-well illuminate a point q are presented in Section 2.2. The
first runs in O(n log n) time and although this is not optimal, it automatically finds a closest
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embracing triangle for q. Not aware of the work by Chan et al. [29], we developed a linear
algorithm in the same year to calculate MER(q) [7]. Such algorithm is presented in Section
2.2.1 and it is interesting in its own right. In Section 2.3, the objective is to calculate the
minimum embracing range to 1-well illuminate line segment pq that connects points p and q.
The first approach computes MER(pq) in O(n3) time and it can be generalised to polygonal
lines. The second algorithm, introduced in Section 2.3.2, makes use of the Parametric Search
[61, 62] and runs in O(n2) time. Orthogonal good illumination is briefly introduced in Section
2.4 and good α-illumination is presented in Section 2.5. A linear algorithm is proposed to cal-
culate the minimum embracing range to well α-illuminate a point and find a closest embracing
set for it. Good α-illumination and 1-good illumination are related and this is demonstrated
by a proposition in Section 2.5. Section 2.5.3 introduces the α-embracing contour, which is a
data visualisation tool. Contours have applications in quality illumination, and in particular,
they can be applied to good α-illumination.

2.2 Minimum Embracing Range to 1-Well Illuminate a Point

Let S be a set of n points on the plane that represent the location of n lights. This section
has two main goals. The first is to calculate the minimum embracing range of S to 1-well
illuminate a point q, MER(q). The second goal is to find a closest embracing triangle for q

(see Figure 2.3(a)). As previously mentioned, Chan et al. accomplished the first goal in O(n)

time [29]. However, we were not aware of their work while our research was being carried
out. Therefore, this section is solely devoted to the algorithms we developed to achieve both
goals, since we believe them to be interesting in their own right. The first calculates MER(q)

and a CET(q) in O(n log n) time. This complexity is not optimal, but it is worth a detailed
description considering its geometrical approach based on a property of closest embracing
triangles. The second algorithm runs in linear time and is discussed in Section 2.2.3.

2.2.1 An O(n log n) Algorithm

The following algorithm calculates MER(q) as a result of its search for a closest embracing
triangle for q, which is its main goal. Therefore its strategy is directed at finding ternary
embracing sets for q, instead of working with all lights simultaneously. Nevertheless, this
approach is hampered by the fact that usually there is more than one closest embracing
triangle per point. This is simplified by the following proposition that states that the closest
light to q is always a vertex of at least one closest embracing triangle for q.
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Proposition 2.1 Let S be a set of n lights and q a point on the plane. If sn is the closest
light of S to q, then sn is a vertex of at least one closest embracing triangle for q.

Proof : Let !(si, sj , sk) be a closest embracing triangle for q formed by lights si, sj and sk of
S. Assume that sn ∈ S\{si, sj , sk} is the closest light of S to q. This proof is split into two
cases:

(a) If sn ∈ !(si, sj , sk), then triangulate!(si, sj , sk) using sn as a vertex (see Figure 2.3(b)).
As a result, q must lie on one of the following: !(si, sj , sn), !(si, sk, sn) or !(sj , sk, sn).
Without loss of generality, suppose q ∈ !(sj , sk, sn). This assumption implies that light
si cannot be the closest embracing site for q, and so it is either light sj or light sk.
Therefore, !(sj , sk, sn) is a CET(q).

(b) If sn /∈ !(si, sj , sk), then without loss of generality suppose that snsj intersects the
edge sisk of !(si, sj , sk) (see Figure 2.3(c)). Consequently, q either lies on !(si, sj , sn)

or !(sk, sj , sn). Since sn is closer to q than any other light of S and !(si, sj , sk) is a
CET(q), if q is inside !(si, sj , sn) then this triangle also is a CET(q). For the same
reasons, if q is inside !(sk, sj , sn), then !(sk, sj , sn) is a CET(q).

In conclusion, sn is a vertex of at least one closest embracing triangle for q. "



  





























Figure 2.3: The minimum embracing range for point q is given by r. (a) Set {s1, s3, s5} is a
closest embracing triangle for q. (b) Point q is inside !(si, sj , sk) and !(sn, sj , sk). (c) Light
sn is not inside !(si, sj , sk) but q ∈ int(!(sn, sj , sk)).

This proposition is the basis for the following algorithm. Taking advantage of the fact that
the closest light to q is a vertex of at least one closest embracing triangle for q, the algorithm
only has to search the other two vertices of such triangle. In order to be 1-well illuminated,
point q has to be inside the triangle, therefore each missing vertex is found on one side of the
line that connects q to its closest light. Assuming that CCW order means anticlockwise, the
following pseudo-code outlines this algorithm.
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Algorithm Minimum Embracing Range I

Input: Set S of n lights, point q

Output: CET(q) and MER(q)

1. If q /∈ int(CH(S)) then q cannot be 1-well illuminated by S;

2. Find sn ∈ S, the closest light of S to q;

3. L = {si ∈ S : si is on the left of −→snq}, R = S\L;

4. Sort the lights in sets L and R in CCW order around q;

5. For i = 0 to |L|− 1 do

flag(li) ← {lj : lj is the closest light of {l0, . . . , li} to q}

6. Rotate snq centred at q until si ∈ S is found

If si ∈ L then lb ← flag(si)

Otherwise d ← max{d(si, q), d(lb, q)} and if d < MER(q)

Then MER(q) ← d, CET(q) ← {sn, lb, si}

Repeat until the last light of R is found.

There is an example of the previous algorithm in Figure 2.4. Assume that sn ∈ S is the
closest light to q. As line snq rotates, the algorithm evaluates every triangle that has a vertex
at sn and contains q. The lights on the left of −→snq are flagged in the beginning of the algorithm
to indicate the closest light of L to q found so far (see Figure 2.4(a)). The lights on the right
of −→snq are tested as the line rotates and each new triangle only replaces the previous best if the
range to 1-well illuminate q using the current triangle is shorter. For example, in Figure 2.4(c)
triangle !(l0, sn, r1) does not replace !(l0, sn, r0) because d(r0, q) < d(r1, q). On the contrary,
in Figure 2.4(d) triangle !(l0, sn, r0) is replaced by !(l0, sn, r2) since d(r0, q) > d(r2, q). The
algorithm halts when the last light of R is found and then it outputs a closest embracing
triangle for q and MER(q). The following theorem states the temporal complexity of this
algorithm.

Theorem 2.1 Given a set S of n lights and point q on the plane, the “Minimum Embracing
Range I” algorithm calculates the minimum embracing range of q and a closest embracing
triangle for q in O(n log n) time and O(n) space.

Proof : Although there are faster algorithms to decide if q is inside CH(S), this can be
verified in O(n log n) time by constructing CH(S) since it does not worsen the algorithm’s
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final complexity. Finding the closest light of S to q, sn, and dividing all the lights in two
sets takes linear time. Sorting the lights of each set in anticlockwise order takes O(n log n)

time. Rotating the line snq around q and updating the current triangle (if necessary) requires
linear time since the lights are already sorted. Therefore, a CET(q) and MER(q) are found
in O(n log n) time once the algorithm halts. Regarding space complexity, there is the need to
store n lights and their order around q, which takes O(n) space. "

 












 

 






 










 










 










 






















 



Figure 2.4: (a) Line snq divides the lights in sets L = {l0, l1, l2} (whose lights are flagged) and
R = {r0, r1, r2}. (b) Light r0 is reached and !(l0, sn, r0) is a candidate to be a CET(q). (c)
Light r1 is reached but !(l0, sn, r1) is not better than !(l0, sn, r0). (d) The last light of R is
reached, and so CET(q) = !(l0, sn, r2) and MER(q) = d.

2.2.2 Implementation

The previous algorithm was implemented in Java and the resulting application was named
“MER and CET”. It starts with a white panel where the user can click to add lights (see
Figure 2.5). Each light is represented by a blue dot and Place point is the only active
button. After pressing that button, the next click on the panel will show a red dot that is the
location of the query point (see Figure 2.6). Button Divide is enabled after the query point
has been placed. Lights can be added at any time before button Divide is pressed.

When the user is satisfied with the location of both the lights and query point, button
Divide should be pressed to start the algorithm. This button initiates a method that divides
the lights on the left and right of the line that connects the query point to its closest light.
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Figure 2.5: Aspect of the application once it is started.

Figure 2.6: The blue dots are lights and the red dot is the query point.

Moreover, it also sorts the lights in anticlockwise order. Afterwards, button Flag becomes
enabled (see Figure 2.7). Once button Flag is pressed, each light on one side of the line is
assigned to the closest light on that side to the query point (see Figure 2.8). After this task is
completed, the last button becomes enabled.
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Figure 2.7: All the lights are sorted in anticlockwise order but the application only shows the
ordering of the ones on the left of the line that connects the query point to its closest light.

Figure 2.8: The lights on the right side are labelled in red to indicate the closest light on that
side to the query point.

After button MER is pressed, the method to rotate the line centred at the query point is
activated. Once the rotation is finished, the minimum embracing range is shown on the output
window (see Figure 2.9) and a closest embracing triangle for the query point is represented in
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a solid yellow line on the main panel (see Figure 2.10). A closest embracing site for the query
point is labelled “fml”.

Figure 2.9: The minimum embracing range to 1-well illuminate the red dot is 69.

Figure 2.10: A closest embracing triangle for the red dot is represented in a solid yellow line.
The light labelled “fml” is the closest embracing site for the red dot.

If the query point is not inside the convex hull of the lights, then the application outputs
the message “The point is not inside CH(S)”. Button Clean clears the white panel and restarts
the algorithm. Since all the implement methods are pretty straightforward, the only one which
is worth a remark is the method “Left”. This method decides if a light is on the left of the line
connecting the query point to its closest light and it was implemented using the coordinates
of three points: the light to be tested, the query point and its closest light. These tree points
form a triangle. Using the determinant that calculates double the area of such a triangle, the
location of the light can be determined depending on whether the determinant is positive or
negative [70]. If the triangle’s vertices are read in anticlockwise order, then that determinant
is positive. This method can also be used to detect if two line segments intersect each other
or if they are collinear.
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2.2.3 A Linear Algorithm

As previously explained, the closest embracing site for a point q can be obtained in linear
time using the algorithm introduced by Chan et al. [29]. The following algorithm is similar to
theirs and has the same temporal complexity, but it also has the advantage of finding a closest
embracing triangle for q.

Algorithm Minimum Embracing Range II

Input: Set S of n lights, point q

Output: MER(q)

1. R ← {d(si, q) : si ∈ S};

2. Perform a binary search on R = {r0, . . . , rn−1}:

For the median distance ri ∈ R do

S′ ← {si ∈ S : d(si, q) ≤ ri}

If q ∈ int(CH(S′))

Then proceed the search on R ← {rj ∈ R : rj ≤ ri}

Otherwise proceed the search on R ← {rj ∈ R : rj > ri}

3. The final distance is MER(q);

4. Find a CET(q) using the light that determines MER(q).

Given a set S′ ⊆ S, the main difficulty to carry out this algorithm is to decide whether
point q is in interior of CH(S′) in linear time. There are several ways to do this, and obviously
none of them constructs the convex hull. One solution explores the representation of the
convex hull as an intersection of several half-planes. Sacristán [71] proved in her thesis that
deciding if a point belongs to a convex hull defined by an intersection of half-planes takes Θ(n)

time. The linear time solution chosen by Chan et al. [29] uses of a projection of the lights
on a unit disc and then measures the angle of the wedge containing such projections. Our
solution is close to the one suggested by Megiddo [63] and also employs angles. Suppose the
lights of S′ are divided through four quadrants with origin at point q. This decision problem
can be split into four cases: there is a light on every quadrant, there are precisely two empty
adjacent quadrants, there is only one empty quadrant or there are exactly two non-adjacent
empty quadrants. The first and second cases are straightforward, q is inside CH(S′) in the
first case and outside in the second (see Figures 2.11(a) and 2.11(b)). In the other two, both
situations can occur.
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Figure 2.11: (a) Point q is inside the purple convex hull. (b) Point q is not inside the purple
convex hull. (c) Point q is inside the purple convex hull since β < π.

If there is only one empty quadrant then there is the need to compute the outermost lights
of set S′. Let sl and sr be the leftmost and rightmost lights of S′, respectively. If the empty
angle !(sl, q, sr) ≥ π then q is not inside CH(S′), otherwise S′ is an embracing set for q (see
Figures 2.11(c) and 2.12(a)). In the last case, there are precisely two empty quadrants that
are opposite to each other (see Figures 2.12(b) and 2.12(c)). Therefore, two pairs of outermost
lights have to be found on each empty quadrant. If both empty angles are smaller than π,
then q is in the interior of CH(S′). Otherwise q is outside CH(S′). In any other situation, q is
not inside CH(S′).

 

 







 






















Figure 2.12: (a) Point q is not inside the purple convex hull because β ≥ π. (b) Point q is
inside the purple convex hull since β1 < π and β2 < π. (c) Point q is not inside the purple
convex hull because β2 ≥ π, though β1 < π.

Once the algorithm is over, MER(q) and a closest embracing site for q, sc ∈ S, are found.
According to the algorithm’s pseudo-code, a closest embracing triangle for q can be found
using light sc. Such method is described in the following. Consider the disc centred at q of
radius MER(q) = d(sc, q) and the line segment connecting q to sc. Observe that such disc has
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a semicircle that only contains light sc (see the first image in Figure 2.13). This is due to the
fact that sc is a closest embracing site for q. Line qsc divides the lights inside the disc in two
sets and any pair of lights, defined by one light from each set, together with sc form a closest
embracing triangle for q. Two examples of a closest embracing triangle for q constructed using
this method can be seen in Figure 2.13.













Figure 2.13: Disc D(q, d(sc, q)) is shown in purple and MER(q) = d(sc, q). Any pair of lights,
defined by one light on each side of qsc, together with sc form a CET(q) (shown in blue).

The complexity of the algorithm proposed above is stated in the following result.

Theorem 2.2 Given a set S of n lights and point q on the plane, the minimum embracing
range of q and a closest embracing triangle for q can be found in O(n) time and space.

Proof : Given a set S of n lights and a point q on the plane, set R = {d(si, q) : si ∈ S} can
be calculated in linear time, as well as its median [25]. In each step of the binary search there
is the need to verify if a given set S′ ⊆ S is an embracing set for q. While the search is being
carried out on the lowest half of R, every light of S′ is processed. However, once there is the
need to search the highest half, the lights on the lowest will not be studied again since the
outermost lights of the previously failed verification are saved to the next step. Therefore, the

binary search runs in O



n +
log2(n)∑

i=1

n

2i



 = O(n) time, which means MER(q) is calculated in

linear time. A closest embracing triangle for q can also be found in linear time once the closest
embracing site for q is known, as previously explained. Set S is the only data that needs to
be stored, consequently this algorithm takes O(n) space. "

In the worst case, the algorithm introduced above has to analyse every light of S to
calculate MER(q). Consequently, Ω(n) is a lower bound for the algorithm which, in addition
to Theorem 2.2, implies that this algorithm’s running time is optimal. To conclude, note that
deciding if a given point is 1-well illuminated by a set of lights with range r is trivial after its
minimum embracing range has been found. Such point is 1-well illuminated if r ≥ MER(q).
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2.3 Minimum Embracing Range to 1-Well Illuminate a Line

Segment

Given two points p and q on the plane, let pq be the line segment connecting both. This section
proposes two algorithms to calculate the minimum embracing range to 1-well illuminate pq.
Such range is denoted by MER(pq). The first algorithm calculates MER(pq) in O(n3) time
using a basic approach to the solution. The second algorithm takes advantage of a more
efficient technique called the Parametric Search [61, 62], which is applied to a parallelised
decision algorithm. In this way, the algorithm is quicker and achieves a solution in quadratic
time, dropping the extra n factor from the previous temporal complexity. The applicability of
the Parametric Search to this problem and both algorithms will be analysed in detail in the
discussion that follows.

2.3.1 A Plain Algorithm

The definition of 1-good illumination has to be slightly altered in order to achieve a correct
solution using the algorithm proposed below. Instead of requiring that a point is inside a
convex hull of lights, it suffices to consider that the point is 1-well illuminated if it is on such
convex hull. In this way, a point on the boundary of a convex hull of lights is also 1-well
illuminated. Without loss of generality, assume that pq is a horizontal line segment and that
p is its leftmost point whilst q is the rightmost. Assume also that the initial set S of lights
1-well illuminates pq. This can be easily decided in O(n) time since it suffices that points p

and q are on CH(S).

If the problem were to find a set of three lights that 1-well illuminate pq, then the solution
would be quite simple to achieve. All the ternary sets of lights would be tested to find the
ones that contain pq, which would take O(n3) time. Then the perpendicular bisectors between
the lights of each of these sets should be intersected with pq, which would generate at most
three intersections (see Figure 2.14(a)). These intersections together with p and q would then
be analysed to finally calculate MER(pq).

In contrast to the problem discussed in the last paragraph, the main problem in this
section allows that pq is 1-well illuminated by a group of different sets of lights, as long as the
line segment is fully 1-well illuminated. To calculate MER(pq), the algorithm starts by dividing
pq into several pieces in a way that each piece is 1-well illuminated by the same set of lights.
This partition is the plain part of the algorithm since it is not efficient, every point where the
closest embracing set might change is analysed and most of the times this process is fruitless.
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Figure 2.14: (a) Dark blue region is 1-well illuminated with range MER(pq) = r. (b) Line
segment pq is broken into thirteen segments. Dotted lines represent the line segments of T

and the dashed the perpendicular bisectors of B.

The points where a closest embracing set or closest embracing site might change are found
using sets T and B as described in the following. First, divide the lights in sets St and Sb, the
first is the set of lights above pq and the second the set of lights below pq. Second, calculate
the intersection points between pq and T = {sisj : si ∈ St, sj ∈ Sb}. Set T simulates the edges
of the convex hulls of possible closest embracing sets. Points where the closest embracing
site may change are the intersection points between pq and B = {PB(si, sj) : si $= sj ∈ S}.
Finally, there is also the need to analyse the outer points of pq, p and q. Let I be the union of
all these intersection points sorted from left to right, that is, according to their x-coordinate
(see Figure 2.14(b)). Point p can be seen as the first point of set I, i0, and q as the last, im.
Each segment between two consecutive points of I, ik−1ik ⊆ pq, k = 1, . . . ,m, will be studied
one at a time.

As soon as the previous tasks are finished, the next step of the algorithm is to analyse
i0i1, which is the first segment of pq, and calculate r0 = MER(i0) and a CET(i0). This can
be achieved by applying the “Minimum Embracing Range II” algorithm (described in Section
2.2.3) observing a slight modification: straight angles are allowed. It is not difficult to see that
MER(pq) ≥ MER(i0). Once point i0 is 1-well illuminated and a closest embracing set for it
has been found, the algorithm proceeds to the next point of I, which is i1. Such point can
result from the intersection between pq and T or pq and B. As the first case, suppose i1 ∈ T

and that it is a point on the boundary of CET(i0). Therefore, point i1 is not 1-well illuminated
by CET(i0), but before computing CET(i1) there is the need to secure that segment i0i1 is
1-well illuminated by CET(i0). For example, in Figure 2.15(a) the lights’ range r0 only 1-well
illuminates i0. Therefore, r0 has to be updated to d(si, i1). The opposite situation is illustrated
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Figure 2.15: (a) Yellow segment i0i1 is not 1-well illuminated with r0 = d(si, i0), but it is if
r0 = d(si, i1). (b) Yellow segment i0i1 is 1-well illuminated with minimum range r0 = d(sk, i0).

in Figure 2.15(b), where range r0 = d(sk, i0) is enough to 1-well illuminate segment i0i1. To
conclude this case, and assuming that si is the farthest vertex of CET(i0) to i1, update the
current range to r0 = max{r0, d(si, i1)}. Afterwards, a CET(i1) and the minimum embracing
range r1 = MER(i1) are calculated using the “Minimum Embracing Range II” algorithm.
As the second case, suppose i1 ∈ T but it is not a point on the boundary of CET(i0), as
illustrated in Figure 2.16(a). If CET(i0) is a closest embracing triangle for i1, then such point
is 1-well illuminated if the range r0 is enough to reach it (meaning that r0 needs to be revised).
Otherwise, i1 is not 1-well illuminated and there is the need to calculate another triangle and
update the range just like it was done in the previous case (see Figure 2.16(b)).





 





















Figure 2.16: (a) Point i4 is inside CET(i0) but CET(i0) $= CET(i4). Range r0 is updated to
r0 = d(si, i4). (b) Triangle !(sk, sl, sm) is a closest embracing triangle for i4 and MER(i4) =

d(sk, i4) = r1.

As the last case, let i1 be the intersection point between pq and PB(si, sj). Although
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i1 ∈ CET(i0), it is possible that this is not a closest embracing triangle for the next segment
on pq, i1i2, if si or sj is the closest embracing site for i1 (see Figure 2.17). Without loss of
generality, suppose si is the closest embracing site for i1 and compute a CET(i1) using the
lights of S\{si}. If the new triangle 1-well illuminates i1 with the same range as r0 then
CET(i1) prevails over CET(i0) since si no longer is the closest embracing site for segment
i1i2. However, before swapping the triangles, r0 needs to be revised. Afterwards, range r1 is
initiated with same value of r0 since i1 is a point on PB(si, sj).

 







 


 












 









Figure 2.17: Line l is the PB(s4, s5). (a) Segment i2i3 is 1-well illuminated by!(s2, s3, s4) with
range r2 = d(s4, i3). (b) Even though i3 ∈ !(s2, s3, s4), !(s1, s2, s5) is the closest embracing
triangle for i3 and MER(i3) = r3.

The algorithm repeats this procedure for every intersection point of I until point im = q

is reached. When that happens, the algorithm outputs MER(pq), which is the minimum
embracing range that 1-well illuminates every segment of pq and consequently pq. In addition,
it is also known which is the minimum embracing range and closest embracing set that 1-
well illuminates each segment. Therefore, it is possible to 1-well illuminate some segments
of pq instead of the whole line segment. For example, when an artist is walking on stage, it
is reasonable to only turn on the floodlights that 1-well illuminate the path that person is
walking. Moreover, it is also possible to minimise the lights’ range for that path while keeping
it 1-well illuminated.

Theorem 2.3 Given a set S of n lights and two points p and q on the plane, MER(pq)

and a set of closest embracing triangles that 1-well illuminate different segments of pq can be
computed in O(n3) time.

Proof : Deciding if pq is on CH(S) can be done in O(n) time since it suffices to verify if p

and q are on CH(S). Dividing the lights of S in sets St and Sb, St of the lights above pq and
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Sb of the lights below, takes linear time too. Sorting the intersection points according to their
x-coordinate takes O(n2 log n) time since sets T and B are defined for every pair of lights
(T = {sisj : si ∈ St, sj ∈ Sb} and B = {PB(si, sj) : si $= sj ∈ S}). Therefore, intersecting
T and B with pq results in a quadratic number of intersection points. For each intersection
point, updating the range can be done in constant time but if the algorithm “Minimum Em-
bracing Range II” (introduced in Section 2.2.3) is run, then the temporal complexity increases
to O(n) according to Theorem 2.2. Therefore, in the worst case each segment defined by
two consecutive intersection points is 1-well illuminated in linear time. Overall, the method
described above computes the minimum embracing range and a closest embracing triangle for
each segment of pq in O(n3) time. The minimum embracing range to 1-well illuminate pq is
the minimum range needed to 1-well illuminate every segment of pq. In conclusion, if every
segment of pq is 1-well illuminated in O(n3) time, then pq also is 1-well illuminated in the
same amount of time. "

The result below is a direct consequence of this theorem.

Corollary 2.1 Given a set S of n lights and a polygonal line l with m segments, MER(l)

and a set of closest embracing triangles that 1-well illuminate each line segment of l can be
computed in O(mn3) time.

2.3.2 A Parallel Algorithm

Similarly to the previous section, assume that pq is a horizontal line segment connecting points
p and q, where p is the leftmost endpoint and q the rightmost. The algorithm presented in
this section calculates MER(pq) using the Parametric Search, which is a technique introduced
by Megiddo [61, 62]. The main principle underpinning this technique is to calculate a value
λ∗, which optimises a function g, by making use of an efficient algorithm to solve the decision
problem. The search is particularly effective if g is a monotonic function (g(x) ≥ g(y) if
x > y) and λ∗ the largest root of g. If the decision algorithm runs in A(n) time for an
input of size n, then the parametric search finds λ∗ in O(A(n)2) time. Moreover, if the
decision algorithm can be parallelised to run in T (n) time using P (n) processors, λ∗ is found
in O(A(n)T (n) log P (n)+T (n)P (n)) time. Therefore, it is best to develop a decision algorithm
that can be parallelised in order to apply this technique as efficiently as possible.

Regarding the main subject of this section, the decision problem can be stated as: does
a given set S of n lights with range r ∈ R+ 1-well illuminate pq? An algorithm to solve this
decision problem is proposed below. This algorithm will be later combined with the Parametric
Search to solve the main optimisation problem. Further detail on the parallelisation of the
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decision algorithm in order to improve the effectiveness of the main algorithm is also given in
the following discussion.

Decision Algorithm

The algorithm introduced below decides whether a set S of lights with a given range r ∈
R+ 1-well illuminates pq. The first step of the algorithm is to divide pq into several open
segments, each of which will be analysed separately to decide if it is 1-well illuminated by S.
In the following, it is shown that if two consecutive open segments are 1-well illuminated, then
the point in between them, that is, the point that connects them also is 1-well illuminated.
Therefore, if all segments and points in between are 1-well illuminated, so is pq. The disc
of radius r centred at si ∈ S, D(si, r), bounds the points on the plane that are illuminated
by si. Each of these discs intersects pq at most twice. Since S is formed by n lights, there
are also n discs on the plane. This implies that the number of intersection points between
such discs and pq is at most 2n. Let I = {i0, . . . , im} be the set of these intersection points
sorted according to their x-coordinate (that is, from left to right). Assume that p = i0 and
q = im. Let f : I .→ S be a function that associates an intersection point ik ∈ I to a light
si ∈ S, f(ik) = si, if ik is the intersection point between pq and disc D(si, r). If point ik is
on the left (right) of the disc’s centre si, then ik is called the leftmost (rightmost) intersection
point between pq and D(si, r). Let lk denote the open segment with endpoints ik−1 and ik,
lk = (ik−1, ik), for k = 1, . . . ,m. Note that every point on lk is illuminated by the same set of
lights, which is consequential to the method used to divide pq. Let F(lk) be a function that
returns the set of lights that illuminates segment lk with range r. Assuming F(l1) = F(i0),
this function is defined recursively for k = 1, . . . ,m− 1:

F(lk+1) =

{
F(lk) ∪ {f(ik)}, if ik is a leftmost intersection
F(lk) \ {f(ik)}, if ik is a rightmost intersection

The relation between F and the notions of leftmost and rightmost intersection points are
illustrated in Figure 2.18.

Lemma 2.1 If two consecutive open segments lk = (ik−1, ik) and lk+1 = (ik, ik+1) of pq are
1-well illuminated by S, then point ik ∈ I also is 1-well illuminated by S.

Proof : Suppose point ik ∈ I is not 1-well illuminated, that is, ik /∈ int(CH(F(lk)) ∪
CH(F(lk+1))). Since both open segments are 1-well illuminated, ik must lie on the boundary
of both convex hulls. However, according to the definition of function F , one of the convex
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hulls is contained in the other and both segments are inside the largest because they are 1-well
illuminated. Therefore, ik must be inside of one of the convex hulls, which means it is 1-well
illuminated as well. "





 









  












Figure 2.18: Blue regions are 1-well illuminated with range r. (a) Point i1 ∈ I is the leftmost
intersection point between pq and D(s3, r). Segment l1 = (p, i1) is 1-well illuminated by
F(l1) = {s1, s2, s4}. (b) Point i2 ∈ I is the rightmost intersection point between pq and
D(s1, r), F(l2) = F(l1) ∪ {s3}.

Lemma 2.2 If intersection points ik−1 and ik are both inside CH(F(lk)), then the open seg-
ment lk is 1-well illuminated.

Proof : Attending to the definition of function F , segment lk is 1-well illuminated if it is
inside the convex hull of F(lk). This is indeed the case as ik and ik−1 are inside CH(F(lk))

by hypothesis, which implies that the segment connecting both points also is. "

The following theorem is a direct consequence of the two previous lemmas.

Theorem 2.4 Given two points p and q on the plane and pq partitioned in segments using
the method described above, if p, q and all segments lk ⊆ pq are 1-well illuminated, then pq

also is 1-well illuminated.

What follows is therefore an efficient algorithm to solve this decision problem. First,
decide if p and q are 1-well illuminated using the “Minimum Embracing Range II” algorithm
(introduced in Section 2.2.3). Second, for each segment lk construct CH(F(lk)), k = 1, . . . ,m,
by simply inserting or removing one light of CH(F(lk−1)). Then decide whether lk is 1-well
illuminated by F(lk). Third, if all these segments are 1-well illuminated, then pq is 1-well
illuminated too. Otherwise, the lights’ range is not sufficient to fully 1-well illuminate the
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line segment. In Figure 2.19 there is a detailed example of this algorithm, pq is not 1-well
illuminated since l7 /∈ int(CH(F(l7))). The theorem below states the temporal complexity of
this decision algorithm.









 



























































































Figure 2.19: Blue regions are 1-well illuminated with range r. (a) There are six intersection
points between pq and the discs of radius r centred at the lights. (b) Point i1 is the leftmost
intersection point between pq and D(s6, r). Segment l1 = (p, i1) is 1-well illuminated by
F(l1) = {s1, s2, s4}. (c) Segment l2 = (i1, i2) is 1-well illuminated by F(l2) = {s1, s2, s4, s6}.
(d) Segment l6 = (i5, i6) is 1-well illuminated by F(l6) = {s3, s4, s5, s6}. (e) Segment l7 =

(i6, q) is not 1-well illuminated since l7 $∈ int(CH(F(l7))).

Theorem 2.5 Given a set S of n lights with range r ∈ R+ and two points p and q on the
plane, deciding if pq is 1-well illuminated by S takes O(n log n) time.

Proof : According to Theorem 2.2, deciding if p and q are 1-well illuminated using the “Min-
imum Embracing Range II” algorithm takes linear time. Let I be the set of the intersection
points between pq and the discs of radius r centred at the lights of S. Since the cardinality of
I is at most 2n, these points can be sorted in O(n log n) time. The convex hull of the lights
that 1-well illuminate p is also constructed in O(n log n) time. Since the convex hull can be
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dynamically updated, each light can be inserted or removed from the structure in O(log n)

amortised time [27]. Similarly, deciding if points ik−1 and ik of I are inside CH(F(lk)) takes
O(log n) time. To conclude, and since each point of I is analysed in O(log n) time, deciding if
pq is 1-well illuminated by S takes O(n log n) time. "

Observe that this algorithm also works when each light has a different illumination range.
In this case, the discs centred at the lights have different radii. After computing the intersection
points between the discs and pq, the remaining procedure is exactly the same.

Final Algorithm

The algorithm above is an efficient decision algorithm that will be now combined with the
Parametric Search [61, 62]. This combination results in an optimisation algorithm that cal-
culates the minimum illumination range to 1-well illuminate pq. However, in order to apply
the Parametric Search technique, first there is the need to convert the decision algorithm in a
monotonic root-finding problem. Let function g be defined as:

g(λ) =

{
0, pq is 1-well illuminated by S with range r = 1

λ

1, pq is not 1-well illuminated by S with range r = 1
λ

As previously explained, the objective of the Parametric Search is to find the largest root
λ∗ of function g, λ∗ = max{λ ∈ R+ : g(λ) = 0}. Once such root is found, MER(pq) = 1

λ∗ .
According to Theorem 2.5, the decision algorithm runs in O(n log n) time so λ∗ can be found in
O(n2 log2 n) time. A small improvement on the performance of this algorithm can be attained
if the decision algorithm is parallelised. To this end, the lights have to be lexicographic sorted
using O(n) processors, which takes O(log n) time. If each light is allocated to a different
processor, then all the intersection points between the discs and pq can be found in constant
time. As a result, each processor has to analyse at most two intersection points to decide
if they are inside the convex hull of the lights illuminating them, that is, to decide if the
intersection points are 1-well illuminated. Since the lights are lexicographic sorted, the convex
hull is constructed in O(log n) time if helped by O( n

log n) additional processors. Therefore,
performing these decisions takes O(log n) time. Finally, the parallelised decision algorithm
runs in O(log n) time if aided by O( n2

log n) processors.

Theorem 2.6 Given a set S of n lights and two points p and q on the plane, the Parametric
Search calculates the minimum embracing range to 1-well illuminate pq in O(n2) time.

Proof : The sequential decision algorithm takes A(n) ∈ O(n log n) time while the parallel one
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requires T (n) ∈ O(log n) time when using P (n) ∈ O( n2

log n) processors. So the total time to
evaluate function g(λ) and calculate its largest root, as well as MER(pq), using the Parametric
Search is O(A(n)T (n) log P (n) + T (n)P (n)) ∈ O(n log n× log n× log( n2

log n) + log n× n2

log n) =

O(n2) time. "

Corollary 2.2 Given a set S of n lights and a polygonal line l with m segments, the minimum
embracing range to 1-well illuminate l can be calculated in O(mn2) time.

2.4 Orthogonal Good Illumination

This section and the one that follows are dedicated to two variants of 1-good illumination.
The variant introduced below is called the orthogonal good illumination.

Definition 2.3 A point q on the plane is orthogonally well illuminated by a set S of lights if
there is at least one light of S illuminating q on each quadrant with origin at q.

This section’s objective is to calculate the minimum illumination range of S to orthogo-
nally well illuminate a point q on the plane. The key structure in this type of illumination is
the orthogonal convex hull. The usual convex hull of a set of points is widely recognised and can
be defined as the smallest convex region that contains such set. In the case of the orthogonal
convex hull, the orthogonal prefix means that the convexity is defined by axis-parallel point
connections. Consequently, two points can only be connected through vertical and horizontal
line segments. If two points are inside the orthogonal convex hull of S, then the polygonal line
connecting them also lies on the orthogonal convex hull of S (see Figure 2.20(a)). Karlsson
and Overmars [50] constructed this structure in O(n log n) time. The basic idea is to divide
the lights into four quadrants and then sort them on each quadrant from left to right or top to
bottom. The orthogonal convex hull is a useful geometric tool that will be further discussed
in the following chapter.

In this variation of good illumination, the orthogonal convex hull plays the role of the
usual convex hull in 1-good illumination. As previously mentioned, a point is 1-well illuminated
by S if it is inside the convex hull of S. In comparison, a point inside the orthogonal convex
hull of S is orthogonally well illuminated (see Figure 2.20(b)). It is not difficult to decide if a
point q is orthogonally well illuminated by S. First, divide the lights of S into four quadrants
with origin at q. Second, if any quadrant is empty then q is not orthogonally well illuminated
by S. Assuming this is not the case, then there must be at least one light on each quadrant.
Therefore, a closest embracing set for q is formed by the closest light to q on each quadrant.
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The minimum illumination range to orthogonally well illuminate q is given by the largest
distance between q and these four lights (see Figures 2.20(b) and 2.20(c)).

 














Figure 2.20: (a) Every polygonal line connecting points p and q using only vertical and hor-
izontal line segments is contained in the orthogonal convex hull. (b) Point q is orthogonally
well illuminated with minimum illumination range r. (c) Blue region is orthogonally well
illuminated with range r.

Theorem 2.7 Given a set S of n lights and a point q on the plane, a closest embracing set
for q and the minimum illumination range of S that orthogonally well illuminates q can be
calculated in O(n) time and space.

Proof : Dividing the lights through four quadrants with origin at point q takes linear time
since S is formed by n lights. Deciding if any of these quadrants is empty is easily verified at
the same time that the closest light to q is being searched on each quadrant. This search is
linear on the number of lights. The set of the four closest lights to q, one on each quadrant,
forms a closest embracing set for q. The largest of the distances between q and the lights of
this embracing set is the minimum illumination range of S to orthogonally well illuminate q.
This range can be calculated in constant time. Therefore, finding a closest embracing set for
q and the minimum illumination range of S that orthogonally well illuminates q takes O(n)

time. Regarding space complexity, there is the need to store n lights and their placement on
the quadrants, which takes O(n) space. "

2.5 Good α-Illumination

This section introduces another variation of 1-good illumination: the good α-illumination. The
variable α ≤ π represents an angle and is a given fixed parameter. This variant is particularly
compelling since it can be seen as a generalisation of 1-good illumination.
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Definition 2.4 Let S be a set of lights on the plane. A point q is well α-illuminated by S if
there is at least one light illuminating q inside every wedge of angle α ≤ π with apex at q.

This concept is illustrated in Figures 2.21(a) and 2.21(b). Well α-illuminated points
are associated with dominance and maximal points as explained in the following. Given two
points p and q on the plane, point p = (px, py) dominates q = (qx, qy) if px > qx and py > qy.
Therefore, a point is said to be maximal (or a maximum) if it is not dominated, that is,
if the northeast quadrant with origin at p is empty (see Figure 2.21(c)). Avis et al. [22]
extended this definition: a point p on the plane is said to be an unoriented α-maximum if
there is an empty wedge of angle of at least α with apex at p. This definition is convenient
for data visualisation, in particular, for boundary descriptions. The problem of finding all the
maximal points of a set S is known as the maxima problem [54] and the problem of finding
all the unoriented α-maximal points is known as the unoriented α-maxima problem [22]. The
following proposition is a direct consequence of the definitions of good α-illumination and
unoriented α-maxima.

 








Figure 2.21: (a) Point q is not well π
2 -illuminated because the purple wedge of angle π

2 with
apex at q is empty. (b) Point q is π

2 -illuminated, as well as the whole blue region. (c) Point p

is maximal.

Proposition 2.2 Let S be a set of lights and q a point on the plane. Point q is well α-illuminated
by S if and only if q is not an unoriented α-maximum of the set S ∪ {q}.

Section 2.5.1 proposes an algorithm to calculate the minimum embracing range to α-il-
luminate a point on the plane and find a closest embracing set for that point. The imple-
mentation of such algorithm is illustrated in Section 2.5.2. Furthermore, it is shown how
good α-illumination is intrinsically related to 1-good illumination. Section 2.5.3 introduces a
data visualisation tool called the α-embracing contour. Contours have applications in quality
illumination, and in particular, they can be applied to good α-illumination.
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2.5.1 Minimum Embracing Range to Well α-Illuminate a Point

The algorithm that follows not only decides if a point q is well α-illuminated as it also calculates
the minimum embracing range that makes it possible and a closest embracing set for q. Using a
similar approach to the one used by the algorithm presented in Section 2.2.3, this optimisation
algorithm performs a binary search on the distances between q and the lights. In each step
of the search it decides whether q is well α-illuminated. This decision is the most important
step of the algorithm and it is further discussed after the following pseudo-code. Let MERα(q)

denote the minimum embracing range to well α-illuminate point q.

Algorithm Minimum Embracing Range III

Input: Set S of n lights, angle α ≤ π, point q

Output: MERα(q)

1. Divide the lights of S into consecutive wedges of angle α/2 with
origin at q;

2. R ← {d(si, q) : si ∈ S};

3. Perform a binary search on R = {r0, . . . , rn−1}:

For the median range ri ∈ R do

S′ ← {si ∈ S : d(si, q) ≤ ri}

If q is well α-illuminated by S′

Then proceed the search on R ← {rj ∈ R : rj ≤ ri}

Otherwise proceed the search on R ← {rj ∈ R : rj > ri}

4. The final range is MERα(q).

Two steps of this algorithm are worth further discussion. The first is the division of lights
into consecutive wedges of angle α

2 with origin at q (see Figure 2.22(a)). Let w be the total
number of such wedges. If 2π is divisible by α then w = 4π

α , otherwise w = 04π
α 1 since the last

wedge has an angle smaller than α
2 (see Figure 2.22(b)). As the angle α is fixed, the number

of wedges is constant. Let i be an integer index of arithmetic mod w. For i = 0, . . . , w, each
ray i is defined by the set {q + (cos( iα

2 ), sin( iα
2 ))λ : λ > 0}, whilst each wedge is defined by q

and two consecutive rays.

The second step worth of a detailed explanation, which was already mentioned, is the
decision step on the binary search. If there are two adjacent empty wedges of angle α

2 , then
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Figure 2.22: (a) To decide if q is well π
2 -illuminated, the lights are divided into eight wedges

of angle π
4 . (b) If α = 7

9π, then the lights are divided into five wedges of angle 7
18π and one of

π
18 . (c) Point q is not well π

2 -illuminated because the purple wedge of angle π
2 is empty.

q is not well α-illuminated (see Figure 2.22(c)). On the other hand, if there is at least one
light on every wedge of angle α

2 then q is well α-illuminated (see Figure 2.23(a)). As last case,
suppose there is at least one empty wedge of angle α

2 but no two adjacent empty ones (see
Figure 2.23(b)). In this situation, there is the need to compute the outermost lights of each
empty wedge. Let sl be the outermost light found on the left of the wedge and sl the one
found on the right (see Figure 2.23(c)). If there is at least one empty angle !(sl, q, sr) ≥ α,
then q is not well α-illuminated by S. Otherwise, if every empty angle is less than α then q is
well α-illuminated by S. In any other case, q is not well α-illuminated by S.

 

 











Figure 2.23: (a) Point q is well π
2 -illuminated since there is a light on every wedge of angle π

4 .
(b) There are two non-adjacent empty wedges of angle π

2 . (c) Point q is not well π
2 -illuminated

since !(sl, q, sr) ≥ π
2 .

Once the algorithm is finished, it outputs MERα(q) and a closest embracing site for q.
A closest embracing set for q is formed by all the lights that are closer to q than its closest
embracing site and the closest embracing site itself. Observe that this set only exists if S well
α-illuminates q. The time and space complexities of the algorithm proposed above is stated
in the theorem that follows.



Good Illumination 37

Theorem 2.8 Given a set S of n lights, a point q on the plane and an angle α ≤ π, deciding
if q is well α-illuminated, calculating MERα(q) and finding a closest embracing set for q takes
O(n) time and space.

Proof : Given a set S of n lights, dividing them into consecutive wedges of angle α
2 with origin

at point q takes O(n) time. Set R = {d(si, q) : si ∈ S} can be found in linear time, as also its
median [25]. In each step of the binary search there is the need to decide if a given set S′ ⊆ S is
an embracing set for q. While the binary search is performed on the lowest half of R, every light
of S′ is studied. However, once the search switches to the highest half, the lights on the lowest
will not be studied again since the outermost lights of the previously failed verification are

saved to the next step. Therefore, the binary search is performed in O



n +
log2(n)∑

i=1

n

2i



 = O(n)

time. Consequently, MERα(q) is calculated in O(n) time. A closest embracing set for q can
also be found in linear time once MERα(q) is known, as previously explained. Regarding the
space complexity, the lights of S and set R need the largest storage and they both take O(n)

space. "

In the previous algorithm, every light of S is a candidate to be a closest embracing site
for point q. In the worst case, the closest embracing site for q is the furthest light of S to q

and every light has to be processed. Therefore, the lower bound for this algorithm is Ω(n)

time, which combined with Theorem 2.8 makes the linear complexity of this algorithm optimal.
Furthermore, this algorithm not only finds a closest embracing set for q and MERα(q), as it also
computes them for a t-well illuminated point (see Definition 2.1). The following proposition
establishes a connection between t-good illumination and good α-illumination.

Proposition 2.3 Let S be a set of lights, q a point on the plane and α ≤ π a fixed angle. If
point q is well α-illuminated by S, then q is t-well illuminated by S for t = (π

α).

Proof : If q is well α-illuminated by S, then according to its definition there is at least one
light on every wedge of angle α with origin at q. On the other hand, according to Definition
2.1, q is t-well illuminated if there are at least t lights of S illuminating q in every open half-
plane with q on its border. Such a half-plane can be seen as a wedge of angle π with origin
at q. Therefore, if there is at least one light on every wedge of angle α, then there are at
least (π

α) lights in every half-plane. Consequently, q is (π
α)-well illuminated and the minimum

embracing range to well α-illuminate q also (π
α)-well illuminates q. "

Corollary 2.3 Let q be a well α-illuminated point on the plane and α ≤ π a fixed angle. A
closest embracing set for q also t-well illuminates q for t = (π

α).
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Proof : Assume that t = (π
α). According Proposition 2.3, the minimum embracing range to

well α-illuminate q also t-well illuminates it. Therefore, a closest embracing site for a well
α-illuminated point is at the same distance or farther than a closest embracing site for a t-well
illuminated point. Consequently, a closest embracing set for q also t-well illuminates q. "

To conclude, note that the previous proposition is necessary but not sufficient. If point q is
t-well illuminated then it is not necessarily true that q is well α-illuminated for α = (π

t ). There
is a counterexample in Figure 2.24: point q is 2-well illuminated but not well π

2 -illuminated.



 



Figure 2.24: (a) Point q is 2-well illuminated. (b) Point q is not well π
2 -illuminated.

2.5.2 Implementation

Figure 2.25: Aspect of the application once it is started.
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The previous algorithm was implemented in Java and the resulting application was named
“Good Alpha-Illumination”. It starts with a white panel where the user can click to add lights
(see Figure 2.25). Each light is represented by a yellow dot and button Place Point only is
enabled after three lights have been placed. After pressing that button, the next click on the
panel will show a red dot that represents the location of the query point (see Figure 2.26).

Figure 2.26: The yellow dots are lights and the red dot is the query point.

When the user is satisfied with the placement of the lights and query point, he can choose
the angle α in degrees using the slider. For example, in Figure 2.27 there are wedges of angle
π
8 because the angle chosen was π

4 = 45◦. Note that every wedge has the same angle. On the
other hand, in Figure 2.28 there is an example where not all wedges have the same angle. The
angle chosen was 3

4π = 135◦ and therefore, five wedges have angle 3
8π but the last wedge in

anticlockwise order has an angle smaller than 3
8π.

After the angle has been selected, button Compute CES initiates the main algorithm and
the binary search begins. The median of the distances between the query point and the lights
is calculated and the decision algorithm is applied to the half of the lights that are closer to
the query point (see Figure 2.29). The green circle bounds the lights on the lowest half. In
that same picture there are two blue lights, which means they were verified to decide if the
angle they define with the query point is equal to or larger than α. If the query point is well
α-illuminated, then the algorithm proceeds analysing the lowest half of the previous set of
lights. Button Next should be pressed in order to run the algorithm step by step.
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Figure 2.27: The plane is divided into wedges of angle 22, 5◦.

Figure 2.28: The plane is divided into five wedges of angle 67, 5◦ and one of 22, 5◦.

For a certain subset of lights, the query point no longer is well α-illuminated (see Figure
2.30) and so the algorithm draws the empty wedge of angle α where the verification failed.
Afterwards, it proceeds searching the other half of the lights once button Next is pressed. As
before, each pair of lights turns blue if they were verified to measure the empty angle they
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define with the query point.

Figure 2.29: The green circle bounds the half of the closest lights to the red point.

Figure 2.30: The red point is not well 3
4π-illuminated by the lights inside the green circle since

there is an empty wedge of angle 3
4π.

If the query point is well α-illuminated, then the algorithm highlights its closest em-
bracing site. Such light is shown in blue and labelled “ces” (see Figure 2.31). The algorithm
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Figure 2.31: The red point is well 3
4π-illuminated by the lights on the green circle. The closest

embracing site is shown in blue and labelled “ces”.

Figure 2.32: The red point is not well π
2 -illuminated by the lights. The red wedge of angle π

2

is empty.

outputs the message “It’s well α-illuminated” on the bottom of the panel, and the value of
the minimum embracing range to well α-illuminate the query point on the output window.



Good Illumination 43

Otherwise, the algorithm outputs the message “It’s not well α-illuminated”. As in previously
failed verifications, it shows the final empty wedge of angle α in red (see Figure 2.32).

2.5.3 The α-Embracing Contour

The subject introduced in this section involves good illumination problems, as well as data
visualisation and depth problems. Although they appear to be distinct subjects, it is inter-
esting how they are more connected than it seems at first sight. What follows is therefore a
short introductory summary on data depth problems. Afterwards, the relation between good
α-illumination and data depth becomes apparent.

Data depth has been considered as a measure to evaluate how deep or central a given
point is with respect to a multivariate distribution. The notion of depth induces a stratification
of the plane into regions of points that share the same depth with respect to a given set of
points. The boundaries of these regions are called depth-contours and are used as tools for data
visualisation since they provide a quick and informative overview of the shape and properties
of the point set. Several different notions of depth have been studied, for example, the location
depth (also known by half-space depth or Tukey depth [76]) and Delaunay depth [44]. The
Tukey depth measures the minimum number of points of a given set that can be separated
from a point q by means of a half-plane. One can consider other ways to separate a point
by choosing the best to fit a certain application. The depth used in this section is called the
α-depth and is defined below.

Definition 2.5 Let S be a set of points on the plane. A point q has α-depth k with respect to
S if every open wedge of angle α with apex at q contains at least k points of S and there is, at
least, one such wedge containing exactly k points.

If the points on the border of the wedge were to be considered, then the α-depth would be
a generalisation of the Tukey depth. If it were the case, the wedge would replace the half-plane
and be seen as a way to separate q. For example, considering closed α-wedges for α = π, the
α-depth corresponds to the Tukey depth. This subject has been recently addressed by Miller
et al. [66]. A main concern in current theoretical research on data depth is the construction of
depth contours. Tukey depth contours have been studied and constructed by several authors
[34, 59, 67], as well as Delaunay depth contours [15]. Contours also have applications in
quality illumination, and in particular, they can be applied to good illumination. According
to Definition 2.5, points well α-illuminated have α-depth greater than or equal to 1.
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In 1-good illumination, the convex hull bounds the points on the plane that are 1-well
illuminated. The boundary of the convex hull is therefore a contour that separates 1-well
illuminated points from the rest. A similar structure exists for good α-illumination and is
called the α-embracing contour or the first α-depth contour.

Definition 2.6 Let S be a set of points on the plane and α ≤ π a given angle. The α-embracing
contour of S is the boundary of the region that encloses the points on the plane that are well
α-illuminated.

In Figure 2.33 there is an example of the π
2 -embracing contour represented by a solid pink

line. Only the points on the purple area are well π
2 -illuminated. The fact that this embracing

contour is not connected proves the following property.

Figure 2.33: The π
2 -embracing contour of the set S is not connected.

Proposition 2.4 The α-embracing contour of a set S is not necessarily connected.

The α-embracing contour was thought to have linear size for 0 < α < π [16, 17]. However,
this is not true as Matijevic and Osbild [58] proved. The contour has indeed linear size if
π
2 ≤ α < π but for a constant δ > 0, if δ < α < π

2 then its complexity is O(n1+ε) for any
ε > 0. They also showed where our construction failed for smaller angles. Furthermore, they
give upper bounds in the case that α is larger than π. This case is simpler to solve and
the contour has complexity O(|CH(S)|). They also proposed an algorithm to compute the
α-embracing contour (which they call Θ-region) that runs in O(n

3
2+ξ

α + µ log n) time, for any
ξ > 0 and where µ denotes the complexity of the arrangement of arcs. Depth-contours will be
further discussed in Section 5.2.3 in Chapter 5.
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2.6 Closing Remarks and Future Research

The good illumination problems presented in this chapter cover three different types of qual-
ity illumination: 1-good illumination, orthogonal good illumination and good α-illumination.
They all consider limited illumination range and therefore, the main objective in each section
was to calculate the minimum embracing range to well illuminate a given object and find a
closest embracing set for it. The final complexities of the algorithms proposed for each variant
are shown in Table 2.1. In that table it is considered that S is a set of n lights, a polygonal
line is formed by m line segments and the angle α ≤ π is fixed. Moreover, minimum embracing
range is denoted by M.E.R. and closest embracing set by C.E.S.

Problem Algorithm’s Complexity
M.E.R. for a point O(n) time and space

1-Good
C.E.S. for a point O(n) time and space

Illumination
M.E.R. for a line segment O(n2) time
C.E.S. for a line segment O(n3) time

M.E.R. for a polygonal line O(mn2) time

Orthogonal Good M.E.R. for a point O(n) time and space
Illumination C.E.S. for a point O(n) time and space

Good
M.E.R. for a point O(n) time and space

α-Illumination
C.E.S. for a point O(n) time and space

α-Embracing Contour O(n
3
2+ξ

α + µ log n) time [58]

Table 2.1: Complexities of the algorithms proposed for each type of good illumination.

Section 2.2 had two main goals: calculate the minimum embracing range of S to 1-well
illuminate a point q and find a closest embracing triangle for q. Although our algorithms
do not improve the previous known bound [29], they have the advantage of finding a closest
embracing triangle for q. Every problem presented in this chapter optimises the lights’ range
by calculating the minimum distance between an object and its closest embracing site. How-
ever, there are other possible optimisations, for example, minimising the sum of the distances
between an object and the lights of a closest embracing set for it. In the case the object is a
point q, a solution is attained if an algorithm identical to the one presented in Section 2.2.1 is
applied. Therefore, minimising the sum of the distances between q and the lights of a closest
embracing set for q takes O(n log n) time, according to Theorem 2.1. For future research, this
variant can be extended to other objects as line segments, polygons, etc. Other possible opti-
misation variants are: minimising the difference of the distances from an object to the farthest
and closest light of a closest embracing triangle for such object, minimising the total area of a
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closest embracing triangle, maximising the smallest angle of the closest embracing triangle or
balancing the distance between an object and the three lights of its closest embracing triangle.
The latter could be tackled using approximate methods and heuristics. All these variants pose
interesting questions and each presents a new set of problems.

Given two points p and q on the plane, the problem of calculating the minimum embracing
range to 1-well illuminate line segment pq was solved in Section 2.3. Two algorithms were
introduced to this end. Although the first algorithm had a basic approach that worsens its
time complexity, it has the advantage of dividing pq into several segments and outputting
information on how to 1-well illuminate each segment. The method used to divide the line
segment is actually the weakest point of the algorithm and it needs to be optimised. The second
algorithm takes advantage of an efficient technique called the Parametric Search [61, 62], which
makes it quicker than the first one. These optimisation problems were only studied for a point,
a line segment and a polygonal line, so there is a large range of objects awaiting to be studied.
If the object is a polygon, then this problem is semi-solved since the polygon’s boundary
can be seen as a closed polygonal line. Calculating the minimum embracing range to 1-well
illuminate a whole polygon is harder to solve, though it is known that the minimum embracing
range to 1-well illuminate a polygon’s boundary is not sufficient to 1-well illuminate the whole
polygon (see Figure 2.34). How to 1-well illuminate a polygon or a particular class of polygons
remains an unresolved problem. Nevertheless, this is an important issue in situations like
prison’s security, where it is not sufficient to have just the prison’s boundary guarded, but the
prisoners inside need to be guarded as well.



 







Figure 2.34: (a) Lights s1, s2 and s3 with range r 1-well illuminate the yellow section of the
polygon’s boundary. (b) Dark blue region is 1-well illuminated and so the polygon’s boundary
is totally 1-well illuminated, although its interior is not.

This chapter concludes by introducing two variations of 1-good illumination. Orthogonal
good illumination is briefly introduced in Section 2.4 and will be discussed again in Chapter
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3. Good α-illumination is presented in Section 2.5 and is particularly compelling since it can
be seen as a generalisation of 1-good illumination. Actually, good α-illumination and 1-good
illumination are intrinsically related as Proposition 2.3 stated. Section 2.5.3 introduced the
α-embracing contour, which is a data visualisation tool. This contour is associated with data
depth problems but also with good α-illumination since it separates the points on the plane
that are well α-illuminated from the rest. Contours will be mentioned again in Section 5.2.3
in Chapter 5.

In conclusion, this chapter presented three variations of good illumination, as well as
several optimisation algorithms involving each variant. Two of these were implemented and
the resulting applications were shown in Sections 2.2.2 and 2.5.2. There remain, however, a
number of interesting questions associated with this topic and involving all three variants: how
can every closest embracing set for any object be efficiently computed since it is known that it
is not unique? Is there a direct relation between the number of closest embracing sets and the
number of lights? How to use routes instead of fixed points to well illuminate a given object,
for example, finding a route on a polygon to well illuminate it? All these questions remain
unresolved and present compelling challenges for future research regarding good illumination.



Chapter 3

Embracing Voronoi Diagrams

The Embracing Voronoi diagram is a variation of the Voronoi diagram that arose from the
concept of 1-good illumination and merges the notions of proximity and convex dependency. It
is a geometric structure that provides a basis to efficiently recalculate the lights’ minimum range
to keep any moving points 1-well illuminated. The Orthogonal E-Voronoi diagram is introduced
for the same purpose, but is associated with orthogonal good illumination instead of 1-good
illumination. This chapter also introduces the closest embracing number as an appropriate
tool to merge convex dependency and data depth problems. The closest embracing number
of a point is the number of elements in a closest embracing set for such point. Strictly for
visualisation purposes, three brute-force approaches were implemented involving these concepts,
each of which is illustrated in a dedicated section.

3.1 Introduction

The Voronoi diagram is certainly a favourite among researchers of Art Gallery problems. In
fact, roughly one in sixteen papers in Computational Geometry involves Voronoi Diagrams
[21]. This structure has been applied to a surprisingly wide range of problems; there are
conferences and symposiums devoted solely to Voronoi diagrams and even art exhibitions on
the theme. For example, Kaplan [48] highlighted some particularities of the Voronoi diagrams
that make them useful artistic tools. In 2005, the “First International Exhibition of Voronoi
Art” took place in Korea, as part of the “2nd International Symposium of Voronoi Diagrams
in Science and Engineering”. This event and several others paved the way for the so called
Voronoi Art. Although the Voronoi diagram is not by any means a new concept (dates back
to the XVII century), it keeps inspiring researchers to this day. Quoting O’Rourke [70]: “in a

49
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sense, the Voronoi diagram is a structure that records all the needed information on proximity
to a set of points or other objects”. Given a set S of lights, the Voronoi diagram divides the
plane into regions so that there is a light per region and the points on each region are closer to
that light than to any other. An exhaustive and unified exposition of the mathematical and
algorithmic properties of Voronoi diagrams can be found on a survey by Aurenhammer and
Klein [21].

According to Definition 2.2 in Chapter 2, a point q on the plane is 1-well illuminated by
a set S of lights if, and only if, there is at least one light of S illuminating q in every open
half-plane with q on its border. Recall that the closest embracing site for q is the closest
light sc ∈ S to q such that q is inside CH(S′), S′ = {si ∈ S : d(si, q) ≤ d(sc, q)}. And
that the distance between q and its closest embracing site is called the minimum embracing
range for q. If q moves continuously or quickly changes from one location to another, there
is the need to recompute its minimum embracing range in order to keep the point 1-well
illuminated. The Embracing Voronoi diagram or E-Voronoi diagram is the structure that
results from preprocessing the location of the lights of S in order to achieve a quicker solution
to this problem. That is, a geometric structure that provides a basis to efficiently recalculate
the lights’ minimum range to keep any moving points 1-well illuminated. A formal definition
of this structure is given below.

Definition 3.1 Let S be a set of lights on the plane. For every light si ∈ S, the Embracing
Voronoi region of si with respect to S is defined as the following set

E-VR(si, S) = {x ∈ R2 : si is a closest embracing site for x}.

Region E-VR(si, S) is also denoted by E-VR(si) if set S is clear from the context. The
Embracing Voronoi diagram of S (or E-VD(S) for short) is then built up on the union of these
regions, that is, E-VD(S) =

⋃

si∈S

E-VR(si). While the Voronoi diagram of a set of lights divides

the plane into regions associating each point on the plane with its closest light, the E-Voronoi
diagram associates each point on the plane with its closest embracing site. Therefore, if
q ∈ E-VR(si), si ∈ S, then the minimum embracing range for q is given by the distance
between si and q. In Figure 3.1 there is an example of the E-Voronoi diagram of a set of four
lights. Each light has a different colour associated and its E-Voronoi region is represented in
that colour. In this example, the region that these four lights 1-well illuminate is a quadrangle
enclosed by their convex hull. Note that the E-Voronoi regions are not necessarily convex
or connected as illustrated by E-VR(s1) and E-VR(s2), which are represented in yellow and
purple, respectively. It should also be noted that the edges of these regions are line segments.
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Figure 3.1: The E-Voronoi diagram of S = {s1, s2, s3, s4}.

Also mentioned in the previous chapter, given a point q and its closest embracing site
sc ∈ S, set S′ = {si ∈ S : d(si, q) ≤ d(sc, q)} is a closest embracing set for q. The number
of elements in this particular set is called the closest embracing number of q. This chapter
introduces the closest embracing number as an appropriate tool to merge convex dependency
and data depth problems. This tool helps to visualise the distribution of the elements of S on
the plane, for example, to decide whether the elements are clustered or scattered. Furthermore,
the closest embracing number can be seen as notion of depth. If each point on the plane has
as depth value its closest embracing number, then the plane can be divided into embracing
layers and/or embracing levels, which help to evaluate how deep or central a given point is
with respect to set S.

As in last the last chapter, but strictly for visualisation purposes, three brute-force ap-
proaches were implemented involving the concepts introduced in this chapter. Each imple-
mentation is further discussed and illustrated in its own section. The structure of this chapter
is described below.

Even though not much is known about Embracing Voronoi Diagrams, some of its prop-
erties are presented in Section 3.2. These properties are particularly helpful to visualise this
structure. Section 3.4 proposes two different strategies to construct the E-Voronoi diagram.
Despite having the same running time, the algorithms take different approaches to the solu-
tion. The Orthogonal E-Voronoi diagram, which is a variation of the E-Voronoi diagram based
on orthogonal good illumination is introduced in Section 3.5. An algorithm to construct such
structure is also proposed in the same section. Finally, Section 3.6 introduces the closest em-
bracing number and some of its properties. This concept can be seen as a depth notion, which
divides the plane into embracing layers and embracing levels. Closing remarks and a brief
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summary of the algorithms and concepts introduced in this chapter are discussed in Section
3.7.

3.2 Properties of the Embracing Voronoi Diagram

As previously mentioned, while the Voronoi diagram of a set of lights divides the plane into
regions associating each point on the plane with its closest light, the E-Voronoi diagram
associates each point on the plane with its closest embracing site. This section discusses the
known properties of the Embracing Voronoi diagram. In the following, let set S be a set of n

lights on the plane.

Lemma 3.1 Given a set S of lights, let light sc be a closest embracing site for si ∈ S. If si is
inside the convex hull of S, then si is a reflex vertex of E-VR(sc, S).

Proof : Let si and sc be two lights of S and assume that si ∈ E-VR(sc, S), that is, sc is a
closest embracing site for si. Given the disc D(si, r) of radius r = MER(si) = d(si, sc) centred
at si, suppose that S′ is the subset of the lights of S\{si} that are inside D(si, r) (see Figure
3.2(a)). Since sc is the closest embracing site for si, si /∈ CH(S′). Let sl and sr of S be the
support lights of si regarding CH(S′). Suppose that s∗i ∈ S is the closest light of S to si

outside D(si, r). Given a point x ∈ D(si, ε), for ε < 1
2(d(si, s∗i )− d(si, sc)), if x is located on

the convex sector determined by the lights sl, si and sr then x does not belong to E-VR(sc, S)

because set {si, sl, sr} is an embracing set for x. However, a point y ∈ D(si, ε) on the reflex
sector determined by the same lights belongs to E-VR(sc, S) since set {sc, sl, sr} is a closest
embracing set for y. Therefore, light si is a reflex vertex of E-VR(sc, S). "


















 



Figure 3.2: (a) CH(S′) is shown in blue and r = d(si, sc). Light si inside CH(S) is a reflex
vertex of E-VR(sc, S). (b) Light s3 is a reflex vertex of E-VR(s2), which is shown in purple.

In Figure 3.2(b) there is an example of the previous lemma. The image shows the
E-Voronoi diagram of a set of four lights and, as before, each light and its respective E-Voronoi
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region are represented by the same colour. Light s2 (shown in purple) is the closest embracing
site for light s3 (shown in blue), which together with the fact that s3 is inside CH(S) implies
that s3 is a reflex vertex of E-VR(s2). The following proposition is a consequence of this
lemma.

Proposition 3.1 The lights of S are vertices of the E-Voronoi diagram of S.

Proof : The lights of S on the boundary of CH(S) are naturally vertices of the E-Voronoi
diagram since such set bounds the diagram. According to Lemma 3.1, the lights of S inside
CH(S) are reflex vertices of the diagram. Consequently, all the lights of S are vertices of the
E-Voronoi diagram of S. "

Note that a light si ∈ S never is a vertex of its own E-Voronoi region. If so, then si would
be its own closest embracing site. This is impossible since at least two other lights must be
part of a closest embracing set for si and they are farther from si than si itself.





 










Figure 3.3: (a) Disc D(q, d(sc, q)) has a semicircle empty of lights and there is at least one
light on each side of qsc. (b) Set {si, sj , sk} is a closest embracing set for every point on xy.

Proposition 3.2 The E-Voronoi region of a light si ∈ S is radially monotone (i.e. the inter-
section between E-VR(si, S) and any ray from si is a line segment or an empty set).

Proof : Let sc be a closest embracing site for a point q on the plane, that is, the light whose
E-Voronoi region contains q. Disc D(q, MER(q)) has an empty semicircle that separates sc from
the lights that are in the interior of the disc (see Figure 3.3(a)). Observe that there must be at
least one light on each side of the line qsc inside the disc. Let x and y be two different points
on a ray from si such that d(si, x) < d(si, y) and assume that x and y are points of E-VR(si),
that is, si is their closest embracing site. Consequently, D(x,MER(x)) ⊆ D(y, MER(y)) and
both discs are tangent to si (see Figure 3.3(b)). As previously explained, two lights sj and sk
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must exist inside D(x,MER(x)) such that {si, sj , sk} is a closest embracing set for x. Lights
sj and sk cannot be on the empty semicircle of D(y, MER(y)), otherwise si would not be a
closest embracing site for y. This implies that set {si, sj , sk} also is a closest embracing set
for y and for any point on xy. "

Let S = {s1, . . . , sn} be a set of n lights where each light si ∈ S has coordinates
(cos( π

2i−1 ), sin( π
2i−1 )). It is not hard to verify that the lights of S are placed on the cir-

cumference of radius 1 centred at the origin (see Figure 3.4).














Figure 3.4: A set of triangle fans, each has a light of S as central vertex.

The following lemmas are a direct consequence of the configuration of this set S.

Lemma 3.2 Using the configuration of set S described above, lights s1, s2, . . . , sk−1 are not
necessary to construct the E-Voronoi diagram of S restricted to triangle !(sk, sk+1, sn), for
all k = 2, . . . , n− 2.

Let PB(sisj) denote the perpendicular bisector between lights sj and sk. For each triangle
!(sk, sk+1, sn), consider the set of triangles Tkj , j = k+1, . . . , n, defined by the line segments
sksj , sksj+1 and PB(sksj+1). The triangles of Tkj form a triangle fan whose central vertex is
sk (see Figure 3.4).

Lemma 3.3 Using the configuration of set S described above, the following properties are
satisfied:

(a) Tkj ⊆ E-VR(sj+1, S), for all k = 1, . . . , n− 3 and for all j = k + 1, . . . , n− 1;
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(b) The points of !(sk, sk+1, sn) that are not on the triangle fan Tkm centred at sk belong
to E-VR(sk, S):

!(sk, sk+1, sn)\
n⋃

m=k+1

Tkm ⊆ E-VR(sk, S).

Finally, the following proposition is built on the previous lemmas, which in turn are based
on the particular configuration of set S described above.

Proposition 3.3 Given a set S of n lights, the E-Voronoi diagram of S has complexity Ω(n2).

Proof : Using the configuration of set S described above, the E-Voronoi diagram of S has a
linear number of regions of size O(n) and a linear number of regions with a linear number of
connected components. "

According to the results presented in Section 2.2.3 in the last chapter, if there are n lights
on the plane, then the best algorithm to calculate the minimum embracing range of a point
q runs in Θ(n) time. This means that whenever q moves to another location on the plane,
its minimum embracing range has to be recalculated in linear time so that q remains 1-well
illuminated. The E-Voronoi diagram simplifies this task by calculating MER(q) in sublinear
time, as stated in the following proposition.

Proposition 3.4 Given a set S of n lights, a closest embracing site for any point on the plane
with respect to S can be found on the E-Voronoi diagram of S in O(log n) time.

Proof : It suffices to locate the point on the E-Voronoi diagram of S, which can be done in
O(log m) time, where m is the size of the planar partition. Since the E-Voronoi diagram has
polynomial size with respect to the number of lights of S, O(log m) = O(log n). "

3.3 Implementation

This section illustrates an application that constructs the E-Voronoi diagram of a set of lights,
which is based on a brute-force approach. Since the E-Voronoi diagram is difficult to visualise
once there is a large number of lights, the following application was strictly implemented for
visualisation purposes. The algorithm simply computes the closest embracing site for every
pixel on the application’s main panel, as long as such pixel is inside the convex hull of the
lights. The application is called “E-Voronoi” and it starts with a white panel (see Figure 3.5).
Before clicking on the white panel to add lights, there is the possibility of drawing a grid that
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helps to place the lights for particular configurations. Such grid is drawn by pressing button
Grid (see Figure 3.6).

Figure 3.5: Aspect of the application once it is started.

Figure 3.6: Aspect of the application with a grid.

Each light is placed where the user clicks and is represented by a red dot (see Figure
3.7). Button E-VD becomes enabled after the user has placed three lights and if pressed, the
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Figure 3.7: The red dots represent a set of lights.

Figure 3.8: The E-Voronoi diagram of the chosen set of lights. Each pixel that is not a light
has the colour of its closest embracing site.

algorithm sweeps the panel from left to right. During that sweep, the algorithm allocates a
different colour to each light. Therefore, each pixel within the panel is represented in the
colour of its closest embracing site (see Figure 3.8). If there is any problem with the colours,
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for example, two colours too close to be differentiated, they can be changed using the Change

Colours button (see Figure 3.9). Lights can be added at any time but in order for the diagram
to be updated, a new sweep has to be carried out by pressing the button E-VD as before. The
colours of the lights are preserved in each sweep.

Figure 3.9: The E-Voronoi diagram of the chosen set of lights with different colours.

Figure 3.10: The E-Voronoi diagram of a set of lights placed in a circular position.
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As in previous applications, button Clean restarts the algorithm and clears the panel
(including the grid if there is one). There follow two more examples of the E-Voronoi diagram
using this application. In Figure 3.10 the lights are placed in a degenerated circular position.
In Figure 3.11 a central light shown in yellow was added to the previous set of lights. The
E-Voronoi region of such light has a hole. In fact, each E-Voronoi region can only have one
hole due to its radial monotonicity, which was stated in Proposition 3.2.

Figure 3.11: The E-Voronoi region of the yellow light has a hole.

3.4 Two Algorithms to Construct the E-Voronoi Diagram

This section proposes two distinct algorithms to construct the Embracing Voronoi diagram of
a set S of lights. Despite having the same running time, each algorithm is based on a different
strategy. The first algorithm takes a simpler approach: first it splits the interior of CH(S)
into several regions so that all points on the same region have the same closest embracing
site. Second, the algorithm computes the closest embracing site for the points on each of
the previous regions. This strategy will be further discussed in Section 3.6, but with another
purpose. The second algorithm constructs the E-Voronoi diagram by taking advantage of its
similarities with higher order Voronoi diagrams.
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3.4.1 First Construction of the E-Voronoi Diagram

The algorithm proposed in this section constructs the E-Voronoi diagram of S based on a
similar strategy to the one presented in Section 2.3.1 in Chapter 2. First the algorithm divides
the interior of CH(S) into several regions where all the points in the same region have the
same closest embracing site. Second, the algorithm finds the closest embracing site for the
points on each region. The following pseudo-code applies the “Minimum Embracing Range II”
algorithm, which was presented in Section 2.2.3 in the last chapter.

Algorithm First construction of the E-Voronoi diagram

Input: Set S of n lights
Output: E-Voronoi diagram of S

1. T ← {sisj : si $= sj ∈ S}, B ← {PB(si, sj) : si $= sj ∈ S};

2. Compute arrangement A ← {int(CH(S)) ∩ {B ∪ T}};

3. For each face a of A do

(a) Select a random point q in a

(b) Compute the closest embracing site sc ∈ S for q using the
“Minimum Embracing Range II” algorithm

(c) Assign every point on a to sc

4. Sweep arrangement A and merge neighbouring faces that have the
same closest embracing site; the final arrangement is the E-Voronoi
diagram of S.

The previous algorithm is illustrated in Figure 3.12. The example shows three steps of
the algorithm while it constructs the E-Voronoi diagram of a set S of four lights. First, the
algorithm computes sets T = {sisj : si $= sj ∈ S} and B = {PB(si, sj) : si $= sj ∈ S}. The
resulting arrangement of lines can be seen in Figure 3.12(a). Consequent to the method used
to compute the arrangement of lines, all the points on each of the resulting regions have the
same closest embracing site. Second, the algorithm randomly chooses a point on each of these
regions and computes its closest embracing site. Then all the other points on the same region
are associated with that light (see Figure 3.12(b)). The resulting diagram is almost complete,
but some regions need to be merged in order to fully construct the E-Voronoi diagram of S (see
Figure 3.12(c)). To conclude, the plane is swept and neighbouring regions that have the same
closest embracing site are merged. The following proposition states that the final structure
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Figure 3.12: (a) Arrangement of lines formed by sets T = {sisj : si $= sj ∈ S} and B =

{PB(si, sj) : si $= sj ∈ S}. (b) The closest embracing site for point q is light s3, MER(q) = r,
and so every point on that region is associated with s3. (c) Diagram before its refinement.

achieved by this algorithm is indeed the E-Voronoi diagram of S. The algorithm’s temporal
complexity is analysed below in Theorem 3.1.

Proposition 3.5 Given a set S of lights, the previous algorithm constructs the E-Voronoi
diagram of S.

Proof : Assume that the lights of set S have been processed to form arrangement A by
following the steps described above. Now suppose that all points on face a ∈ A are associated
with light sc ∈ S and there is a point q on such face whose closest embracing site is light sq $= sc.
Since a is assigned to light sc, there must be a point on face a whose closest embracing site is
sc. Let p be such a point. Since p and q have different closest embracing sites, they are either
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on opposite sides of PB(sqsc) or 1-well illuminated by different closest embracing sets. But
any of these would imply that p and q were on different faces of A. Therefore, every point
on a face of arrangement A has the same closest embracing site. After the final sweep that
merges neighbouring faces that have the same closest embracing site, each face of the final
arrangement is an E-Voronoi region and A is the E-Voronoi diagram of S. "

Theorem 3.1 Given a set S of n lights on the plane, the E-Voronoi diagram of S can be
constructed in O(n5) time.

Proof : Given a set S of n lights, computing sets T and B takes O(n2) time since they are
defined for every pair of lights (T = {sisj : si $= sj ∈ S} and B = {PB(si, sj) : si $= sj ∈ S}).
These lines generate up to O(n4) intersection points, which means that arrangement A can
be computed using a plane sweep that takes O(n4 log n2) time. Applying the “Minimum
Embracing Range II” algorithm to every face of A requires O(n5) time, according to Theorem
2.2. To conclude and as stated in the previous proposition, arrangement A is the E-Voronoi
diagram of S and so it can be constructed in O(n5) time. "

3.4.2 Second Construction of the E-Voronoi Diagram

The following algorithm was developed when the only method known to calculate the minimum
embracing range of a point was the method proposed in Section 2.2.1, which runs in O(n log n)

time. This implied that the running time of the previous algorithm was O(n5 log n). To
improve this result, a second algorithm was developed with the clear intention of reducing
the log n factor from the previous complexity. Such goal was achieved with the algorithm
described below, but that slight improvement ceased to exist once it was proven that the
minimum embracing range of a point could be calculated in linear time [29]. Notwithstanding
these facts, the algorithm presented in this section is interesting in its own right since it takes
full advantage of common ground between higher order Voronoi diagrams and the E-Voronoi
diagram. As previously mentioned, the Voronoi diagram of S [21] divides the plane into regions
such that there is one light per region and two points on the same region have the same closest
light. This concept can be generalised for higher orders, for example, the third order Voronoi
diagram divides the plane into regions so that all the points on the same region have the same
three closest lights. Let VDk(S) denote the kth order Voronoi diagram of S for k = 2, . . . , n−1.
Note that VDn−1(S) is also designated by Farthest Voronoi diagram.

The idea underpinning the following algorithm is to make the most of higher order Voronoi
diagrams and use their information on proximity, that is, search for the points on the plane
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that are 1-well illuminated by their k closest lights, k = 3, . . . , n − 1. The algorithm starts
by constructing VD3(S) since three lights form the smallest convex hull possible: a triangle.
Points on VD3(S) that lie inside the convex hull formed by their three closest lights clearly
are 1-well illuminated. Therefore, these sets of points are saved to the next iteration, but
before moving forward, each of these points has to be associated with its closest embracing
site. To this end, each group of points that have the same closest embracing set is overlaid with
the Farthest Voronoi diagram of their three closest lights. The resulting regions are pieces of
the final E-Voronoi diagram of S. The iteration that follows constructs VD4(S) and employs
this diagram to find the points that are 1-well illuminated by their four closest lights. This
procedure is repeated as many times as necessary, each for a diagram of higher order, until
every point inside CH(S) is associated with its closest embracing site.

Algorithm Second construction of the E-Voronoi diagram

Input: Set S of n lights
Output: E-Voronoi diagram of S

1. Compute all the kth order Voronoi diagrams for k = 3, . . . , n− 1;

2. For k = 3 to n− 1 and while A $= int(CH(S)) do

Ak ← {VDk(S) ∩ int(CH(S))};

For each face aj ∈ Ak do

(a) Let Sj ⊆ S be the set of the k closest lights to aj

(b) aj ← {aj ∩ int(CH(Sj))}

(c) Intersect aj with the Farthest Voronoi diagram of Sj

(d) A′ ← A′ ∪ {aj}

A ← A ∪ {A′\A};

If k = n− 1

Then for each face ai of A not assigned to a light do

Assign points of ai to their farthest light of S

3. Sweep arrangement A and merge neighbouring faces that have the
same closest embracing site; the final arrangement is the E-Voronoi
diagram of S.

Figure 3.13 illustrates the algorithm above constructing the E-Voronoi diagram of the
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same set of four lights used in the example in Figure 3.12. It is not hard to see that the final
arrangement constructed by this algorithm is the E-Voronoi diagram of a set S of lights. Each
face a of the arrangement A is bounded by the convex hull of the closest embracing set for the
points on a. Then, each point q on a is associated with the farthest light to it of its closest
embracing set, which is its closest embracing site. Consequently, this algorithm constructs the
E-Voronoi diagram of S.









 





 





 



Figure 3.13: (a) Arrangemente A3 has two faces since VD3(S) restricted to the interior of
CH(S) is line segment PB(s1s2). (b) Diagram E-VD(S) restricted to the pieces of the faces of
A3 that are inside the convex hull of their three closest lights. (c) Arrangement A before its
refinement.

Theorem 3.2 Given a set S of n lights on the plane, the E-Voronoi diagram of S can be
constructed in O(n5) time.

Proof : Given a set S of n lights, all the higher order Voronoi diagrams can be constructed in
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O(n3) time [37]. Even though the original Voronoi diagram has linear size [21], a higher order
Voronoi may have up to O(n2) regions. And although A is initially formed only by convex re-
gions, as the algorithm proceeds clipping regions of the Voronoi diagrams, the resulting regions
may have holes. Therefore, the arrangement A constructed from the clipping of arrangement
A′ requires O(n2) time to be constructed. In turn, the Farthest Voronoi diagram of a set of
lights can be constructed in O(n log n) time. Consequently, computing the arrangement A

takes O(n4) time for each order k, which means the final arrangement is constructed in O(n5)

time. To conclude, sweeping the final arrangement A to obtain the E-Voronoi diagram of S

takes O(n2 log n) time. "

3.5 Orthogonal E-Voronoi Diagram

The orthogonal good illumination was introduced in Chapter 2. According to Definition 2.3,
a point q on the plane is said to be orthogonally well illuminated if there is at least one light
illuminating q on each quadrant with origin at q. As stated in Theorem 2.7, the minimum
illumination range of a set S of lights that orthogonally well illuminates q can be calculated in
linear time and space with respect to the number of lights of S. Following the previous line of
reasoning, the Orthogonal E-Voronoi diagram, denoted by OE-VD(S), is a structure that helps
to efficiently recalculate the lights’ minimum range to keep any moving points orthogonally
well illuminated. This section proposes an algorithm to construct such diagram.

 

Figure 3.14: (a) The orthogonal convex hull of S is formed by four monotone chains. (b) The
orthogonal convex hull of S is divided by axis-parallel lines through each light.

Let S be a set of n lights, the points on the plane that are orthogonally well illuminated
by S are bounded by the orthogonal convex hull of S. As previously explained in Section 2.4,
the prefix orthogonal means that the convexity is defined by axis-parallel point connections.
Karlsson and Overmars [50] constructed this structure in O(n log n) time by uniting at most
four monotone chains (see Figure 3.14(a)). In this way, the first step of the algorithm to
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construct the Orthogonal E-Voronoi diagram of S is to build the orthogonal convex hull of
S. This polygon is then divided into rectangles by drawing two lines through each light, one
vertical and another horizontal (see Figure 3.14(b)). This procedure generates a grid that can
be scanned using the sweeping technique. Since the resulting arrangement has a linear number
of lines, the grid is formed by a quadratic number of rectangles. The following steps of the
algorithm are based on the proposition below.

Proposition 3.6 Let S be a set of lights and consider the division of the orthogonal convex
hull of S into rectangles as described above. If p and q are two points on a rectangle of such
division, then the distribution of lights on the quadrants with origin at p is the same as on
quadrants with origin at q.

Proof : Considering the division of the orthogonal convex hull of S into rectangles as described
above, let q be a point inside such a rectangle. Suppose that light si ∈ S is on the northeast
quadrant with origin at q (see Figure 3.15(a)). Without loss of generality, assume that a point
p on the same rectangle has light si on the northwest quadrant with origin at p. Since the
orthogonal convex hull of S is divided by vertical and horizontal lines, the vertical line through
si must separate p and q. That is, p and q do not exist on the same rectangle of the division.
Since this reasoning can be generalised to any quadrant or pair of points on any rectangle, any
two points on the same rectangle have the same distribution of lights on the quadrants with
origin at them. "

















 



 

Figure 3.15: (a) The distribution of lights through quadrants with origin at q. (b) The Voronoi
diagram of the lights on each quadrant is represented by a dotted line. All points inside the
purple rectangle have the same closest embracing set: {s1, s2, s3, s4}. (c) The Farthest Voronoi
diagram of {s1, s2, s3, s4} is represented in a dotted line. The Orthogonal E-Voronoi diagram
of S restricted to the rectangle has two regions, one associated with s1 and the other with s3.

In the following, assume that the points on the boundary of the rectangles have the
same distribution of lights on quadrants as the interior points. This is true for every point
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on the boundary of the rectangles that is not simultaneously a point on the boundary of
the orthogonal convex hull. The approach taken by the algorithm below to construct the
Orthogonal E-Voronoi diagram of S is similar to the one used by the algorithm described in
Section 3.4.1. Therefore, the Orthogonal E-Voronoi diagram is first constructed as the union
of several smaller diagrams restricted to the rectangles in which the orthogonal convex hull is
divided. Afterwards, the plane is swept and the regions that belong to the same E-Voronoi
region are merged. The pseudo-code that follows outlines this algorithm.

Algorithm Construction of the Orthogonal E-Voronoi diagram

Input: Set S of n lights
Output: Orthogonal E-Voronoi diagram of S

1. Compute the orthogonal convex hull of S;

2. For each light si ∈ S draw a horizontal and vertical line through si;

3. For each rectangle of the division do

(a) Select a random point q inside the rectangle

(b) Divide the lights of S through the quadrants with origin at q

(c) For the set of lights S′ ⊆ S on each quadrant compute the
Voronoi diagram of S′

(d) For each resulting region, compute the Farthest Voronoi dia-
gram of the lights of the closest embracing set for the points
on that region

4. Sweep the rectangles and merge the neighbouring regions that have
the same closest embracing site; the final arrangement is the Or-
thogonal E-Voronoi diagram of S.

Let P be a rectangle of the division of the orthogonal convex hull (see Figure 3.15(a)).
Not all the points on P have the same closest embracing set. Therefore, there is the need to
compute the set of points on P that share such a set. This is done by intersecting P with four
Voronoi diagrams, one per quadrant (see Figure 3.15(b)). Afterwards, the Farthest Voronoi
diagram of the lights of the closest embracing set for each region creates a subdivision where all
points have the same closest embracing site (see Figure 3.15(c)). The Orthogonal E-Voronoi
diagram of S is constructed by repeating this procedure for all the rectangles of the division.
To conclude, the plane is swept and the neighbouring subdivisions of the rectangles that have
the same closest embracing site are merged.
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In Figure 3.16 there is an example of the Orthogonal E-Voronoi diagram of six lights,
each light that has a region on the diagram is shown in a different colour. As it is clear from
the image, only four of these lights have an associated region on the diagram. Similarly to
the E-Voronoi diagram, the regions of the Orthogonal E-Voronoi diagram are not necessarily
connected or convex, as illustrated by the blue and yellow regions, respectively. Once the
Orthogonal E-Voronoi diagram is constructed, the minimum embracing range to orthogonally
well illuminate a point is given by the location of such point on the diagram.

 

Figure 3.16: (a) A set of six lights and its orthogonal convex hull divided into rectangles.
(b) The Orthogonal E-Voronoi diagram of six lights.

It is quite straightforward to see that the previous algorithm constructs the Orthogonal
E-Voronoi diagram of S since the rectangles are divided into regions of points that have the
same closest embracing set. Afterwards, the Farthest Voronoi diagram subdivides each of these
regions by associating each point with its closest embracing site, that is, with the farthest light
of its closest embracing set. The temporal complexity of this algorithm is given in the following
theorem.

Theorem 3.3 Given a set S of n lights, the algorithm described above constructs the Orthog-
onal E-Voronoi diagram of S in O(n4) time.

Proof : Given a set S of n lights, the orthogonal convex hull of S can be computed in O(n log n)

time [50] as the union of four monotone chains. This convex hull can be divided into rectangles
using two plane sweeps (one vertical and another horizontal) in O(n log n) time. Since there
are a linear number of lines, the arrangement has a quadratic number of rectangles. Each
of these rectangles can be analysed in O(n2) time as it is explained in the following. Each
rectangle is intersected with four Voronoi diagrams, which is a relatively simple process given
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the convexity of both structures. As a result, all the points on the same division of the rectangle
have the same closest embracing set. Afterwards, the Farthest Voronoi diagram subdivides
each of these regions by associating each point with its closest embracing site. Therefore, a first
version of the Orthogonal E-Voronoi diagram of S can be computed in O(n4) time for every
rectangle. A final plane sweep that merges neighbouring regions associated with the same
closest embracing site takes O(n2 log n) time and finalises the construction of the Orthogonal
E-Voronoi diagram of S. "

3.5.1 Implementation

The application implemented to visualise the Orthogonal E-Voronoi diagram is similar to
the application presented previously to visualise the E-Voronoi diagram and it also takes on a
brute-force approach. The application is called “Orthogonal E-Voronoi” and starts with a white
panel where the user can click to choose the placement of the lights, which are represented
by red dots (see Figure 3.17). Button E-Voronoi becomes enabled after four lights have been
placed. Once that button is pressed, the algorithm constructs the diagram by sweeping the
panel from left to right (see Figure 3.18).

Figure 3.17: Lights are represented by red dots.

As in the previous application, the colours of the lights can be changed using the Change

Colours button, but note that the colours are preserved in each sweep. Lights can be added
at any time but in order for the diagram to be updated, a new sweep has to be carried out by
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pressing the button E-VD. Also as before, the Clean button restarts the application and clears
the main panel.

Figure 3.18: The Orthogonal Embracing Voronoi diagram of the set of red dots.

3.6 Closest Embracing Number

This section is not directly associated with quality illumination, unlike the previous sections
in this chapter. Therefore, let S be a set of n sites on the plane instead of being a set of lights.
The concept introduced in the following involves data visualisation and depth problems. This
subject was previously addressed in Chapter 2. Tools associated with this discipline provide
a quick and informative overview of the shape and properties of any point set. Given a
point q and its closest embracing site sc ∈ S, set S′ = {si ∈ S : d(si, q) ≤ d(sc, q)} is a
closest embracing set for q. The number of elements in this particular set is called the closest
embracing number of q. This section introduces the closest embracing number as a visualisation
tool that merges convex dependency and data depth problems. This tool helps to visualise the
distribution of the elements of S on the plane, for example, to decide whether the elements
are clustered or scattered. Furthermore, the closest embracing number can be seen as notion
of depth. If each point on the plane has as depth value its closest embracing number, then the
plane can be divided into embracing layers and/or embracing levels, which help to evaluate
how deep or central a given point is with respect to set S. The closest embracing number is
formally introduced below.
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Definition 3.2 Given a S of n sites on the plane, a point q has closest embracing number k

if q is inside the convex hull of its k closest sites but not inside the convex hull of its k − 1

closest sites.

There is an example of this definition in Figure 3.19(a). In that image, point q also
is inside CH({s1, s2, s3, s5}) but {s1, s2, s3, s5} is not a closest embracing set for that point,
whereas set {s1, s3, s5} is. Therefore, the closest embracing number of q is |{s1, s3, s5}| = 3.
The following property of the closest embracing number is a consequence of its definition.

 


















Figure 3.19: (a) Set {s1, s3, s5} is a closest embracing set for q and so its closest embracing
number is 3. (b) There are only two embracing layers that are not empty: L3(S) and L4(S).

Lemma 3.4 Let S be a set of n > 3 sites on the plane. If site si ∈ S is inside CH(S) then
its closest embracing number ki is larger than 2 and smaller than n, that is, 3 ≤ ki ≤ n− 1.

The closest embracing number of a point q is the number of sites of S whose distance to
q is shorter than or equal to the distance between q and its closest embracing site. Therefore,
the algorithms proposed in Chapter 2 to find the closest embracing site for a point can be
used in this section to calculate the closest embracing number of such point. This observation
is formally stated in following proposition.

Proposition 3.7 Let S be a set of n > 3 sites on the plane. The closest embracing number
of a point q with respect to S can be calculated in O(n) time and space.

Proof : Given a set S of n sites on the plane, the “Minimum Embracing Range II” algorithm,
which was presented in Section 2.2.3, finds a closest embracing site sc ∈ S for a given point
q on the plane. In turn, the closest embracing number of q is given by the number of sites of
S whose distance to q is shorter than or equal to the distance between q and sc. That is, the
closest embracing number of q is given by k = |{si ∈ S : d(si, q) ≤ d(sc, q)}|. According to
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Theorem 2.2, the closest embracing site for q, and consequently the closest embracing number
of q, can be calculated in O(n) time and space. "

The points of set S can be divided in disjoint subsets in a way that points of the same
set have the same closest embracing number. These sets are used as depth tools to evaluate
how deep or central a given point is with respect to set S.

Definition 3.3 Let S be a set of sites on the plane. The set Sk ⊆ S of sites whose closest
embracing number is k is called the embracing layer k of S and is denoted by Lk(S).

Embracing layers classify the sites that are inside CH(S) in several disjoint subsets. For
example, in Figure 3.19(b) each point inside CH(S) has its closest embracing number associ-
ated. In that image, only two embracing layers are not empty: L3(S) and L4(S).

Theorem 3.4 Given a set S of n sites on the plane, the embracing layers of S can be computed
in O(n2) time and O(n) space.

Proof : The embracing layers of S are sets of sites that are inside CH(S) and share the same
closest embracing number. According to Proposition 3.7, the closest embracing number of
each site with respect to S can be calculated in O(n) time and space. Since set S has at most
n − 3 sites inside its convex hull, the embracing layers of S can be computed in O(n2) time
and O(n) space. "

If site si ∈ S has a large closest embracing number, then the closer sites to si do not
surround it. In an ideal situation, most sites would have closest embracing number 3 since
that would mean that the sites of S were uniformly distributed on the plane. Since embracing
layers classify sites, embracing levels group points on the plane that have the same closest
embracing number, as long as they are inside CH(S).

Definition 3.4 Let S be a set of n sites on the plane. If a point q inside CH(S) has closest
embracing number k, then q is a point on the embracing level k.

As previously discussed for sites, if a point q has a small closest embracing number then
the closest sites to q surround it. Embracing levels are harder to construct since they are regions
on the plane and it is not possible to calculate the closest embracing number of every point
on such regions. Therefore, the following theorem presents a strategy to construct embracing
levels. This approach is similar to the one used by the first algorithm proposed to construct
the E-Voronoi diagram (Section 3.4.1).
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Figure 3.20: (a) The arrangement of lines T and B restricted to CH(S). (b) Yellow regions
have closest embracing number 3 and blue have closest embracing number 4. (c) There are
only two embracing levels of S.

Theorem 3.5 Given a set S of n sites on the plane, the embracing levels of S can be con-
structed in O(n5) time.

Proof : Consider the line segments of sets T = {sisj : si $= sj ∈ S} and B = {PB(si, sj) :

si $= sj ∈ S} restricted to CH(S) (see Figure 3.20(a)). These lines generate up to O(n4)

intersection points, which means that this arrangement of lines can be computed using a plane
sweep that takes O(n4 log n2) time. The points on each face of such arrangement have the same
closest embracing site and set, and so the same closest embracing number (see Figure 3.20(b)).
According to Proposition 3.7, the closest embracing number of a point can be calculated in
O(n) time. Therefore, the closest embracing number can be calculated in linear time for a
random point on each face of the arrangement. Then all the other points on the same face are
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given that number. This procedure calculates the closest embracing number of every face of
the arrangement in O(n5) time. Merging the neighbouring faces of the arrangement that are
on the same embracing level takes O(n4 log n2) time (see Figure 3.20(c)). In conclusion, the
embracing levels of S can be constructed in O(n5) time. "

3.6.1 Implementation

The application shown in Section 3.3 was extended to also include embracing layers and levels.
The renewed application opens in two windows, the main one is titled “Closest Embracing
Number” and the other one “Labels”. This implementation takes once again a brute-force
approach. In the case of embracing levels, the algorithm calculates the closest embracing
number for every pixel on the main panel. As the user clicks on the white panel to add sites
(shown as red dots), the window “Labels” outputs all the possible depth levels (see Figure
3.21). Depth levels start at 3 and each level has a different colour allocated.

Figure 3.21: Sites are represented by red dots.

When pressed, button E-Layers runs the method to calculate the embracing layers of the
set of sites. Each site inside the convex hull of sites is assigned its closest embracing number
(see Figure 3.22). The “X” that appears on the “Labels” window marks which depth levels exist
for that set of sites. The sentence “Used = ...” appears on the bottom of the main window
and counts how many different depth levels exist for that set.
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Figure 3.22: There are three non-empty embracing layers: L3(S), L4(S) and L5(S).

Figure 3.23: There are eight different embracing levels.

If pressed, button E-Levels constructs the embracing levels of the set of sites (see Figure
3.23). Note that window “Labels” changes because the points on the plane have a larger diver-
sity of depth levels than sites. As in the application for the E-Voronoi diagram, it is possible
to change the colours using the button Change Colours. Since it is the same application, but-
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ton E-VD still constructs the E-Voronoi diagram of the set of sites (see Figure 3.24). Finally,
button Clean restarts the application and clears both windows.

Figure 3.24: The Embracing Voronoi diagram of the red dots.

3.7 Closing Remarks and Future Research

The Embracing Voronoi diagram merges two different geometric concepts: convex dependency
and proximity. Although it was first introduced in association with 1-good illumination of min-
imum range, it was then adapted to orthogonal good illumination. The Embracing Voronoi
diagram of a set S of lights was developed by the necessity of a basis to efficiently recalculate
the lights’ minimum range to keep any moving points 1-well illuminated. This structure is a
result of preprocessing the lights of S in order to find a closest embracing site for any point
inside CH(S) in sublinear time. Several properties of the E-Voronoi diagram were presented
throughout the chapter, as well as two algorithms to construct such structure. Despite having
the same running time, the algorithms present rather different strategies to solve the problem.
A variant of the E-Voronoi diagram associated with orthogonal good illumination was intro-
duced in Section 3.5, as well as an algorithm to construct it. The final complexities of the
algorithms associated with Embracing Voronoi diagrams that were proposed in this chapter
are shown in Table 3.1. In that table it is considered that S is formed by n lights and C.E.S.
denotes closest embracing site.
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Problem Complexity
Size of E-VD(S) Ω(n2)

Construct E-VD(S) O(n5) time
C.E.S. for a point on E-VD(S) O(log n) time

Construct OE-VD(S) O(n4) time

Table 3.1: Size and final complexities of the algorithms associated with E-Voronoi diagrams.

Knowing that the closest embracing site for a point can be computed in linear time (ac-
cording to Theorem 2.2 in Chapter 2), if the movement of q is made discrete using m fixed
locations, then this problem is solved in O(mn) time. If the E-Voronoi diagram of S is con-
structed in a prior step, q can be located in O(log n) time for each new position. Consequently,
this problem is solved in O(m log n) time. This complexity can be constant (except for the
first step) if point q moves continuously following a previously known route. Even though
calculating the minimum embracing range of a point was the only case studied, the diagram
can also be used to compute such range for other objects like line segments, polygons, sets
of points, etc. It has become apparent that this diagram can be an important tool regarding
this type of problems, although much remains unknown. For example, is the diagram’s size
really quadratic? How to compute the diagram restricted to a line segment or even a polygon?
Is this easier than constructing the whole diagram? Furthermore, the algorithms proposed
to construct the diagram can probably be improved and their temporal complexity lowered.
Further research is needed to solve these problems more effectively. Regarding the Orthogonal
E-Voronoi diagram, even its real size is unknown. It is clear that most concepts that were in-
troduced in this section have not been fully studied yet and that most approaches to them are
unresolved problems and compelling future research. Therefore, there is still a lot to research
regarding Embracing Voronoi diagrams.

The closest embracing number was introduced in Section 3.6 and is not directly associated
with quality illumination. In fact, the closest embracing number involves data visualisation
and depth problems, since it is a visualisation tool that provides a quick and informative
overview of the shape and properties of any point set. Nevertheless, it is associated with convex
dependency as a point on the plane has closest embracing number k if there are k elements
on a closest embracing set for that point. Therefore, if a point q has a large closest embracing
number, then the sites that are closer to q do not surround it. Embracing layers and levels were
introduced as visualisation tools to classify elements of S and points on the plane, respectively.
Although embracing layers are pretty straightforward to construct, embracing levels rise some
interesting issues. For example, how to lower the algorithm’s temporal complexity to construct
them? How to efficiently use the information these structures provide to guarantee a well
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illuminated route using lower embracing levels? The following table summarises the results of
this particular section; closest embracing number is denoted by C.E.N.

Problem Algorithm’s Complexity
C.E.N. of a point O(n) time and space

Construct the embracing layers of S O(n2) time and O(n) space
Construct the embracing levels of S O(n5) time

Table 3.2: Complexities of the algorithms associated with the closest embracing number.

To conclude, most of the problems associated with Embracing Voronoi Diagrams remain
unresolved, even though these visually appealing structures are particularly compelling to
research. The notions that define 1-good illumination - convexity and proximity - can be
used in visualisation and depth tools such as the closest embracing number and its related
structures. However, efficiently constructing embracing levels remains a challenge as complex
as finding a lower complexity algorithm to construct Embracing Voronoi Diagrams. Thus each
of these concepts merits a deeper analysis in future research, since it is clear that such studies
will give rise to new and interesting results.



Chapter 4

Minimum 2-Coverage

Given a set of antennas, the geometric optimisation problem solved in this chapter is aimed
at minimising the antennas’ transmission range so that a path on a region and/or the whole
region is within range of at least two antennas. If a region is fully covered by multiple antennas,
then it is ensured that there are no shadow/breach areas even when an antenna fails. Different
versions of this problem arise for different types of regions, such as a line segment, a planar
graph, a polygonal region, a set of points and the whole plane.

4.1 Introduction

Problems involving wireless ad-hoc networks (or just sensor networks) have emerged in the
last few years as a result of the fast development of the related technology, resulting in an
area of research that is under constant development. These networks have great long-term
economic potential and pose many new system-building challenges [64]. Sensor networks can
be used to solve a great diversity of problems that range from enemy tracking to habitat
monitoring, environment observation and forecast systems (systems that model and forecast
physical processes, such as environmental pollution) and even health applications [81]. The
problems solved in this chapter are associated with coverage. Although most of the applications
in this field involve sensor networks, this type of monitoring does not have to be necessarily
performed by sensors. Coverage also includes radars, antennas, routers and basically any
device that is able to send or receive some sort of wireless signal. Each of these devices can
be placed almost anywhere within a specific region, so coverage is really the discipline that
measures the quality of the chosen device scheme. In other words, coverage measures the
quality of the solution obtained, having in mind the specific challenges that characterise each

79
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application. Let R be a region on the plane that is monitored by a given sensor network. Each
solution found to cover R has to deal with several key questions, such as: how guaranteed is
the detection of a critical event within a short-time interval? What is the extent of the region
that is not monitored?

Coverage can be seen from two opposite perspectives. In the worst-case coverage there is
an attempt to locate the regions of R that are hidden from the sensors. These areas are known
as shadow/breach regions and determine the extent of the region that is not secured. On the
other hand, the best-case coverage is characterised as an attempt to locate the areas that are
within reach of as many sensors as possible, thus identifying the “best” monitored regions of
R. The following optimisation problems aim to tune a sensor network so that a given region
is within range of at least two sensors or to ensure the existence of a path on such region that
stays as close to two sensors as possible. In other words, a best-coverage path. Let S be a
set of n points on the plane that represent the location of n devices, which are able to send
or receive some sort of signal, like antennas or sensors. The devices of S are homogeneous in
the sense that they all have the same power transmission range r ∈ R+. Let R be a polygonal
region that models a street network (see Figure 4.1, the background image was taken from
Google Maps). People and vehicles can move within R to reach specific locations there.

Figure 4.1: The blue polygonal region models a street network.

In the following images, the set S of antennas is located at the buildings’ tops and not
on the streets, so no antennas are found on R. Nevertheless, the algorithms proposed in this
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chapter work for both cases. Regions within reach of at least two antennas are considered to
be well covered. In Figures 4.2 and 4.3, there are two examples of a polygonal region, each
with a set of homogeneous antennas (represented by black dots) whose coverage area is shown
in white. The antennas’ range in Figure 4.2 is shorter than in Figure 4.3. The best covered
regions, that is, regions that are within reach of at least two antennas are shown in dark blue.
In such areas, any traffic would get a signal transmitted from at least two antennas. If a region
is fully covered by multiple antennas, then it is ensured that there are no shadow/breach areas
even when an antenna fails.

Figure 4.2: Regions within reach of at least two antennas are shown in dark blue.

Clearly the main coverage issue is centred around critical conditions that require reliable
monitoring and immediate intervention like fires, disasters or leaking of toxic liquids/waste.
Like the search for survivors in an emergency situation or enemy tracking, this type of instances
carries stronger coverage needs where failures cannot occur. As illustrated in Figures 4.2 and
4.3, it can be seen that larger transmission ranges provide better coverage. However, as larger
ranges also result in higher costs, it is appropriate to balance one against the other. Moreover,
the lifespan of the network is extended by reducing the devices’ sensing and transmission range
as much as optimum, thus enhancing the overall user experience [43, 57, 85]. Consequently,
the main problem in this chapter is to minimise the antennas’ range in order to provide a good
coverage of region R and/or to ensure the existence of a well covered path within R. What
follows is therefore a formal definition of the problem. The distance between a point q on
the plane and a set S of points is defined as the minimum distance between q and any one
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Figure 4.3: Regions covered by at least two antennas are shown in dark blue.

point of S. Point q is said to be covered by a set S of antennas with power transmission
range r if the distance between q and S is less than or equal to r. Therefore, the antennas’
minimum transmission range that covers q is the distance between q and S (see Figure 4.4(a)).
A point covered by two or more antennas of S is said to be 2-covered by S (see Figure 4.4(a)).
This definition aims towards reliable coverage, as previously explained. The minimum power
transmission range of S that 2-covers an object x is denoted by MRS(x). For example, if the
object is a point q, MRS(q) is the minimum power transmission range of S that 2-covers q.

Let D = {D(si, r) : si ∈ S} be the set of discs of radius r each centred at an antenna of S.
Each non-empty intersection between two discs of D is called a lens (see Figure 4.4(b)). The
union of these lenses encloses all the points on the plane that are 2-covered by S, thus defining
2-covered regions (see Figure 4.4(c)). Every point within such regions clearly is 2-covered.
Note that the minimum range of the antennas that covers a point can be easily calculated in
O(n) time since such range is given by the distance between the point and its closest antenna.
However, the Voronoi diagram of S [21] is a useful geometric structure that answers each query
in O(log n) time. This diagram can be constructed in O(n log n) time, so its construction is
only justified when the number of queries regarding S is larger than log n. The two closest
antennas to a given point can be found using the second order Voronoi diagram of S, denoted
by VD2(S). The second order Voronoi diagram of S divides the plane into several regions
by grouping points that share the same two closest antennas [21] and has the same temporal
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Figure 4.4: Set S is represented by dots. (a) Point q1 is covered by antenna s2 with minimum
range r1 = d(s2, q1). Point q2 is 2-covered by S with minimum range r2 = d(s3, q2). (b) The
lens formed by D(s1, r) and D(s2, r) is shown in dark purple. (c) Regions 2-covered by S with
range r are shown in dark purple. Point q1 is 2-covered by S, whilst q2 is not.

complexity as the ordinary Voronoi diagram [55]. This diagram is naturally associated with
the optimisation problems studied in the present chapter since a point is 2-covered if it is
within range of its two closest antennas. Combining Voronoi diagrams and coverage problems
is not a novel approach and several other authors as Zhang et al. [82] or Das et al. [35] have
made use of this geometric structure before.

Following the previous terminology, there are several works associated with geometric
optimisation using 1-coverage. For example, Abellanas et al. [18] and Mehta et al. [65] study
routes on the plane that are always close to (or always far from) a given set of antennas.
Agnetis et al. [19] studied a problem known as the disc covering problem on a line. They
provided an exact solution and a heuristic to compute a subset of a given set of discs in order
to keep a given line segment covered at minimum cost. They studied discs with variable
radii with two different approaches: first the costs of the discs depended on their radii and
second, the costs of the discs were fixed. Meguerdichian et al. [64] were the first to combine
ad-hoc sensor networks and computational geometry. Several others, including Boukerche et
al. [26], Li et al. [57] and Mehta et al. [65], built on their ideas either by studying different
versions of the coverage problem or by improving and proving previous results. Recently,
Zhang et al. [82] focused on the decision problem and developed two localised algorithms
to identify whether a sensor is on the boundary of the monitored area. To this end, they
based their algorithms on two novel geometric tools: localised Voronoi diagram and neighbour
embracing polygons. Using variable radii sensors, Zhou et al. [85] proposed several centralised
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and distributed algorithms to compute a minimum energy-cost coverage, where each sensor
can vary its sensing and transmission radius. Das et al. [35] studied efficient location of
base stations to cover a convex region when the base stations are inside the region. Making
use of Voronoi diagrams, they developed a fast iterative algorithm to solve this problem.
Consult their paper for additional bibliography on the coverage of a square or an equilateral
triangle. Also employing Voronoi diagrams, Stoyan and Patsuk [75] considered the problem
of covering a compact polygonal set using identical discs of minimum radius. Boukerche et al.
[26] addressed sensor networks by studying how well a large wireless sensor network can be
monitored or tracked while keeping a long lifetime. Their solution outperformed previously
known techniques. Bezdek and Kuperberg [24] researched an intermediate problem between 1-
coverage and 2-coverage. They studied a minimal coverage of the plane using discs of the same
radius so that the region remains covered even when the radius of one of the discs decreases.
This concept provides a continuous transition from 1-coverage to 2-coverage.

The various optimisation problems studied in this chapter aim to minimise the power
transmission range of a set S of antennas to 2-cover a given region R and/or to ensure the
existence of a 2-covered path on that region. Distinct versions of this problem arise for different
types of regions, so each of the following sections studies the relevant version of the problem
for a particular region. In Section 4.2 it is shown how to calculate the minimum range of S

such that the line segment connecting points p and q on the plane is 2-covered. Such algorithm
will then be used in Section 4.3 to calculate the antennas’ minimum range in order to obtain
a 2-covered path between two nodes of a graph. In the process, it is also explained how to
minimise the antennas’ range to 2-cover the whole graph. Assuming R is the whole plane, the
minimum range that allows a 2-covered path between two points on the plane is calculated in
Section 4.4. Furthermore, it is also shown how to compute the shortest 2-covered path between
those points. The minimum transmission range of S to 2-cover a polygonal region R (with
or without holes) is calculated in Section 4.5. Section 4.6 calculates the antennas’ minimum
range so that a 2-covered path exists within a polygonal region R. Although comparable, this
problem is more complex than the one presented in Section 4.4. Section 4.7 addresses the
minimisation of the antennas’ range to ensure the existence of a 2-covered path connecting a
set of points. Section 4.8 deals with a similar problem: minimise the range of S to allow a
2-covered path connecting two line segments. Finally, this chapter concludes with a discussion
of the results and future research in Section 4.9.
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4.2 Minimum Transmission Range to 2-Cover a Line Segment

Given a set S of n antennas and two points p and q on the plane, the following algorithm
calculates the minimum power transmission range of S so that the line segment connecting
both points, pq, is 2-covered. Such range is denoted by MRS(pq) and is calculated as being
the largest distance between a point of pq and its second closest antenna. To find this point,
assume that the antennas’ range is sufficiently large to fully 2-cover pq. Now suppose that
this range is slowly reduced until there is one point i on pq that is no longer 2-covered. As
a result, pq is not 2-covered until point i is, which means that the antennas’ minimum range
to 2-cover i is precisely the minimum range to fully 2-cover pq. This point i can be either an
interior point of pq (see Figure 4.5(a)) or an outer point (see Figure 4.5(b)). Given the point’s
definition, it becomes apparent that if i is not p or q then it has to be an intersection point
between pq and the second order Voronoi diagram of S, VD2(S). The following pseudo-code
calculates the minimum power transmission range of S to 2-cover pq.

Figure 4.5: Line segment pq is 2-covered by S with minimum range r, VD2(S) is represented
by a dashed line. (a) MRS(pq) = d(i, s3) = d(i, s4) = r. (b) MRS(pq) = d(q, s3) = r.

Algorithm Minimum 2-Coverage of a Line Segment

Input: Set S of antennas, points p and q on the plane
Output: MRS(pq)

1. Compute VD2(S), the second order Voronoi diagram of S;

2. I ← ({pq} ∩VD2(S)) ∪ {p, q};

3. MRS(pq) ← max{MRS(i) : i ∈ I}.
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The following theorem states the complexity of the algorithm proposed above.

Theorem 4.1 Given a set S of n antennas and two points p and q on the plane, MRS(pq)

can be calculated in O(n log n) time and O(n) space.

Proof : Computing VD2(S) takes O(n log n) time since S is a set of n antennas on the plane
[55]. The cardinality of the set I = {pq} ∩ VD2(S) is at most n since VD2(S) has a linear
number of regions. Inserting points p and q to set I can be done in constant time. For each
intersection point i ∈ I, MRS(i) is calculated in constant time using VD2(S) since it is the
distance between i and its second closest antenna (recall that i had been previously located in
VD2(S)). The largest of these distances is MRS(pq). Consequently, the temporal complexity
of this procedure is O(n log n). Regarding the space complexity, VD2(S) is the largest data
structure of this algorithm and it can be stored in O(n) space [55]. "

4.3 Minimum 2-Covered Path on a Planar Graph

Figure 4.6: The set of antennas is represented by dots and the nodes of G by squares. The
2-covered edges of G are shown in a solid line. The yellow path from n5 to n7 is a 2-covered
path on G.

Let G = (N, E) be a connected geometric planar graph whose nodes represent locations
and its edges model roads or streets that connect such locations. As before, let S be a set of
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n antennas on the plane and assume that |E| > log n, without loss of generality. A path on G

connecting two nodes using only the edges of G that are 2-covered by S is called a 2-covered
path or a 2-path (see Figure 4.6). Given two nodes ni and nj of G, let P (ni, nj) denote a path
between those nodes. The minimum range of S that ensures the existence of a 2-path between
ni and nj on G is denoted by MRS,G(P (ni, nj)). To simplify this notation, such range can also
be denoted by MRS(P (ni, nj)) if G is clear from the context. The following sections propose
an algorithm to calculate MRS(P (ni, nj)) and a 2-covered path on G between nodes ni and
nj . Said algorithm is divided into two phases: preprocess and solution.

4.3.1 First Phase: Preprocess

The procedure explained in this first part acts as a preprocess that transforms graph G into
edge-weighted graph Gw. To make this transformation, each edge e of G is assigned the weight
MRS(e), which is calculated using the algorithm described in Section 4.2. For example, in
Figure 4.7(a) the weight of the edge n1n7 is given by the distance d(s8, n1) = d(s10, n1) = 38,
and consequently MRS(n1n7) = 38. In the same example, the graph is transformed into an
edge-weighted graph in Figure 4.7(b).

Figure 4.7: (a) VD2(S) is shown in a dashed line. The weight of edge n1n7 is given by
d(s8, n1) = 38. (b) Edge-weighted graph Gw.

Note that the minimum range of S to fully 2-cover graph G is given by the largest weight
of the graph’s edges, that is, MRS(G) = max{MRS(e) : e ∈ G}. These weights can be easily
calculated using the following proposition, which is a consequence of Theorem 4.1.

Proposition 4.1 Let S be a set of n antennas and G = (N, E) a connected geometric planar
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graph with m edges. The weight of every edge of G and MRS(G) can be calculated in O(mn)

time, m > log n.

Proof : Computing VD2(S) takes O(n log n) time since S is a set of n antennas on the plane
[55]. Set Ie = {e}∩VD2(S) united with the endpoints of e is found in O(n) time for each edge
e ∈ E. Calculating MRS(e) = max{MRS(i), i ∈ Ie} is linear on n for each edge e. Therefore,
finding MRS(e) for every edge e ∈ G takes O(mn) time since G has m edges. Finally, as it
was assumed that m > log n, MRS(e) for every edge of G and consequently MRS(G) can be
calculated in O(mn) time. "

4.3.2 Second Phase: Solution

Similarly to above, let ni and nj be two nodes of Gw. It is apparent that the minimum power
transmission range that ensures the existence of P (ni, nj) is given by the weight of its heaviest
edge. The following proposition shows that it is only necessary to consider the edges of a
minimum spanning tree (MST) of Gw to find a 2-path between two nodes of Gw.

Proposition 4.2 Let Gw be an edge-weighted connected graph. For each path on Gw, assume
the path’s weight is given by the weight of its heaviest edge. Then the path on an MST of Gw

connecting any pair of nodes of Gw is a minimum weight path between such pair.

Proof : Let Gw be an edge-weighted connected graph, ni and nj two of its nodes and Tw

an MST of Gw. Suppose that P (ni, nj) is the only path on Tw connecting nodes ni and nj

and e is its heaviest edge. Consequently, P (ni, nj) has weight w(e). Now suppose that path
P ∗(ni, nj) on Gw is a minimum weight path connecting ni and nj . Its weight is given by e∗,
its heaviest edge, and so w(e∗) < w(e). Since P (ni, nj) is heavier than P ∗(ni, nj), the edge e

is not an edge of P ∗(ni, nj). If the two paths are united, then a cycle is created. Such cycle
contains e, which clearly is its heaviest edge. But this contradicts the hypothesis, since the
heaviest edge of a cycle in Gw cannot be an edge of an MST of Gw. Therefore, a minimum
weight path between two nodes of Gw is the path on Tw connecting those nodes. "

Since Gw is a planar graph, there is an algorithm by Matsui [60] that finds an MST of Gw

in time proportional to the number of edges of Gw. According to the proposition above, a 2-
path between two nodes on a graph with minimum power transmission range can be computed
using an MST of such graph (see Figure 4.8(a)). As a result, it is easier to work with an MST
because paths between any two nodes of such tree are unique. What follows is therefore the
core of the algorithm to find a 2-path connecting two nodes of Gw with minimum transmission
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range, taking advantage of an MST of Gw and of the Depth-First Search (DFS) algorithm
[42].

Algorithm Minimum 2-Covered Path

Input: Graph Gw, nodes ni and nj

Output: Path P (ni, nj) and MRS,Gw(P (ni, nj))

1. Find Tw, an MST of Gw;

2. Compute P (ni, nj) on Tw using the DFS algorithm [42];

3. MRS,Gw(P (ni, nj)) ← max{w(e) : e ∈ P (ni, nj)}.

Figure 4.8: (a) An MST of the edge-weighted graph is shown in a dark line. (b) The pink
path connecting n1 to n2 on the tree only exists if the antennas’ transmission range is at least
max{33, 32, 28, 38} = 38.

In Figure 4.8(b) there is an example of a path on an MST connecting nodes n1 and
n2, P (n1, n2). Note that this path also traverses nodes n10, n6 and n7. If the antennas’
transmission range is larger than 38 = max{33, 32, 28, 38}, then P (n1, n2) is a 2-covered path.
If this range is exactly 38 then P (n1, n2) is 2-covered with minimum transmission range,
that is, a 2-path between n1 and n2 exists and the antennas’ range is minimised. Therefore,
MRS(P (n1, n2)) = 38. The following result states the temporal complexity of the previous
algorithm.

Theorem 4.2 Let S be a set of n antennas, Gw an edge-weighted planar graph with m edges
and Tw an MST of Gw. Given two nodes ni and nj of Gw, P (ni, nj) and MRS,Gw(P (ni, nj))

can be found on Tw in O(m) time.
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Proof : As previously mentioned, the algorithm by Matsui [60] can be used to find an MST of
Gw, Tw = (N, B), in O(m) time since Gw is a planar graph. Given two nodes ni and nj of Tw,
path P (ni, nj) on Tw can be found using the Depth-First Search algorithm [42], which runs
in O(|B|) time. According to Proposition 4.2, P (ni, nj) is a minimum weight path between
ni and nj on Gw. Furthermore, it is also a 2-covered path connecting nodes ni and nj . Since
MRS,Gw(P (ni, nj)) is the weight of P (ni, nj), it can be calculated in time proportional to the
number of edges of P (ni, nj). Overall, this procedure takes O(m) time. "

4.4 Minimum 2-Covered Path on the Plane

In the previous sections, region R was seen as a line segment or a connected graph. In this
section, R is considered to be the whole plane, that is, R = R2. Given a set S of n antennas
and two points p and q on the plane, the objective of the following discussion is to calculate
the minimum range of the antennas such that there is a 2-covered path connecting p and q.
In the example in Figure 4.9(a), the black path connecting p and q is not a 2-path since some
of its points are only covered by one antenna. On the other hand, the yellow path represents
a 2-covered path between p and q.







 


 







 





Figure 4.9: A set of five antennas with range r. (a) The yellow path is a 2-path connecting p

to q, whilst the black is not. (b) One connected component of the union of lenses is shown in
red and the other in green. It is not possible to find a 2-covered path between p and q.

The following subsection proposes a solution to the following decision problem: given a
set S of n antennas with power transmission range r ∈ R+ and two points p and q on the
plane, decide if there is a 2-covered path connecting p to q. The solution to this problem is the
basis of the algorithm presented in Section 4.4.2, which solves the main problem. In the latter,
it is also explained how to obtain a 2-covered polygonal path between p and q employing the
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method previously used to find the antennas’ minimum range. The shortest 2-covered path
between two points on the plane is computed in the Section 4.4.3.

4.4.1 Decision Problem: Is r large enough?

In the following, it is shown how to decide if a path between two points p and q on the plane,
P (p, q), is 2-covered by S. Note that a 2-path from p to q exists if and only if p and q lie
in the same connected component of the union of lenses (see Figure 4.9(b)). Therefore, the
overlapping of lenses is the key to find a 2-path between p and q. Consider the intersection
graph of the set of lenses, that is, the graph where each node represents a lens and two nodes
are connected if the respective lenses intersect each other. This graph has O(n4) edges and
this upper bound is tight because, if r is large enough, every pair of overlapping discs of radius
r centred at the antennas defines a lens and so the intersection graph is a complete graph.
Regarding this graph, assign point p to node np that corresponds to the lens containing p.
In a similar way, assign point q to node nq. Then the existence of a path between p and q

depends on whether np and nq lie in the same connected component of this graph.















 








Figure 4.10: Set S is represented by dots, graph G by a solid line and VD2(S) by a dashed
line. The yellow edges of G form a path between p and q.

However, given the high complexity of the intersection graph described above, the sub-
graph G = (N, E) will be used instead. Graph G plays the same role as the intersection graph,
but has linear size and can be constructed in O(n log n) time by means of the second order
Voronoi diagram of S. Let VR2(si, sj) denote the second order Voronoi region of the antennas
si and sj . For each second order Voronoi region VR2(si, sj), such that the discs of radius r

centred at si and sj define a lens, add a node to graph G (see Figure 4.10). Two nodes of
G are connected by an edge if they correspond to two Voronoi regions that are neighbours
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in VD2(S) and the corresponding lenses have a non-empty intersection. Let lr(si, sj) denote
the lens resulting from the intersection of discs D(si, r) and D(sj , r). The general strategy to
solve the previously described decision problem is presented in the following pseudo-code.

Algorithm Power Transmission Range Test (TRT)

Input: Set S of antennas with transmission range r, points p and q

Output: YES or NO

1. If p and q are not within the lenses defined by their two closest
antennas then return NO;

2. Compute VD2(S), the second order Voronoi diagram of S;

3. Construct graph G:

For each VR2(si, sj) do

(a) If lr(si, sj) $= ∅ then add node nij to G

(b) For each VR2(sl, sk) neighbour of VR2(si, sj) do

If lr(si, sj) ∩ lr(sl, sk) $= ∅ then add edge nijnlk to G

4. Find nodes np and nq of G that correspond to the lenses containing
p and q, respectively;

5. Traverse G starting at np using the DFS algorithm [42];

6. If node nq is found then return YES, otherwise return NO.

In Figure 4.10 there is an example of graph G and a path between p and q. For that set
of antennas with transmission range r, a 2-covered path connecting p to q exists since both
points lie in the same connected component of the union of lenses. The following result proves
the temporal and space complexities of this decision algorithm.

Theorem 4.3 Let S be a set of n antennas with power transmission range r ∈ R+ and p

and q two points on the plane. Deciding if there is a 2-covered path between p and q takes
O(n log n) time and O(n) space.

Proof : Computing VD2(S) takes O(n log n) time since S is formed by n antennas on the
plane [55]. Graph G is a subgraph of the dual graph of VD2(S) and therefore has linear
size [21]. The construction of G takes O(n) time because the algorithm performs a constant
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number of operations per edge of the second order Voronoi diagram. In the worst case, the
Depth-First Search (DFS) algorithm has to visit every node of G twice, and so its complexity
depends on the number of edges and nodes of G. Since G has linear size, the DFS algorithm
runs in linear time as well [42]. Consequently, the decision algorithm runs in O(n log n) time.
Regarding the space complexity, G has a linear size and VD2(S) can be stored in O(n) space
[55], which means the algorithm takes O(n) space. "

This decision algorithm is a key method to solve several problems associated with 2-cov-
erage. As a result, it will be often applied throughout this chapter.

4.4.2 Minimum 2-Covered Path on the Plane

The following algorithm calculates the minimum power transmission range of S that ensures
the existence of a 2-path between points p and q on the plane. Such range is denoted by
MRS(P (p, q)). Note that for |S| ≥ 2, this problem always has a solution because, if the range
r is large enough, then all discs of radius r centred at the antennas contain points p and q.
In this case, the line segment connecting p to q is a 2-covered path. Both points have to
be 2-covered in order for a 2-path to exist between them. Consequently, if sp is the second
closest antenna of S to p and sq the second closest antenna of S to q, then MRS(P (p, q)) ≥
max{d(sp, p), d(sq, q)}. Observe that if p or q is an antenna of S, then it is considered that
they cover themselves. Furthermore, if a 2-path exists between p and q when the antennas’
range is r = max{d(p, sp), d(q, sq)}, then MRS(P (p, q)) = r.


 



Figure 4.11: The antennas’ range is r = MRS(P (p, q)). The connected component of lenses
containing p meets the component containing q at point b. Two possible 2-paths connecting p

to q are represented by a solid yellow line.

Consider the case MRS(P (p, q)) > max{d(sp, p), d(sq, q)}. If the power transmission
range of S is r = max{d(sp, p), d(sq, q)}, then p and q lie in different connected components
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of the union of lenses. As the range r increases, the discs of radius r centred at the antennas
grow larger. Eventually, the range reaches the value of MRS(P (p, q)) and the components
that contain p and q unite (see Figure 4.11). The intersection points between the components
of lenses at this specific range are called bottleneck-points for 2-paths between p and q. Note
that in degenerated cases there might be more than one bottleneck-point for 2-paths between
p and q. For example, four collinear antennas placed at the same distance generate up to two
bottleneck-points (see Figure 4.12). This subject will be further discussed in this section. For
now, and without loss of generality, degenerate input data is not considered. Let bS(p, q) denote
the bottleneck-point for 2-paths between p and q. If the antennas’ range is MRS(P (p, q)) then
every 2-path connecting p and q crosses bS(p, q). This holds for this range because bS(p, q)

is the only point connecting the component of lenses that contains p to the one containing q.
Therefore, every 2-path connecting these points has to cross both components and therefore,
cross bS(p, q). Bottleneck-points may be classified in two categories according to the following
definition.

 






Figure 4.12: A 2-path connecting p to q is represented by a solid yellow line. Points b1 and b2

are two bottleneck-points for 2-covered paths between p and q.

Definition 4.1 Let p and q be two points on the plane and S a set of antennas with range
r = MRS(P (p, q)).

(a) A point b = bS(p, q) is a type I bottleneck-point if there is only one antenna si ∈ S

such that b ∈ int(D(si, r)) and there are two other antennas sj , sk ∈ S such that
D(sj , r) ∩D(sk, r) = {b}.

(b) A point b = bS(p, q) is a type II bottleneck-point if there are exactly three antennas
si, sj , sk ∈ S such that D(si, r) ∩ D(sj , r) ∩ D(sk, r) = {b} and there is no antenna
sl ∈ S such that b ∈ int(D(sl, r)).

An example of both types of bottleneck-points can be seen in Figure 4.13. According to
Definition 4.1, it becomes apparent that a type I bottleneck-point for 2-paths between p and
q is the midpoint of the segment sjsk (see Figure 4.13(a)).
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Figure 4.13: The antennas’ range is r = MRS(P (p, q)) and a 2-path connecting p to q is
represented by a solid yellow line. (a) Point b = bS(p, q) is a type I bottleneck-point. (b) Point
b = bS(p, q) is a type II bottleneck-point.

Proposition 4.3 Let p and q be two points on the plane and S a set of antennas with range
r = MRS(P (p, q)). Point bS(p, q) is either type I or II.

Proof : As the antennas’ range increases, the two connected components of the union of lenses
(one containing p and the other containing q) eventually unite at a bottleneck-point. If this
union is made through the intersection of only two lenses, then the intersection point is a type
I bottleneck-point. Otherwise, the union is made through the intersection of three lenses at a
time and that intersection point is a type II bottleneck-point. Recall that no degenerate cases
are considered. "

Let !(si, sj , sk) be the triangle formed by the antennas si, sj and sk. The following
proposition establishes a connection between bottleneck-points and the second order Voronoi
diagram of S.

Proposition 4.4 Let p and q be two points on the plane and S a set of antennas with range
r = MRS(P (p, q)).

(a) If b = bS(p, q) is a type I bottleneck-point covered by si, sj , sk ∈ S and such that
b ∈ int(D(si, r)), then b is the intersection point between sjsk and the second order
Voronoi edge that separates VR2(si, sj) from VR2(si, sk);

(b) If b = bS(p, q) is a type II bottleneck-point covered by si, sj , sk ∈ S, then b is a vertex of
VD2(S) and b ∈ int(!(si, sj , sk)).



96 Minimum 2-Coverage

Proof :

(a) According to the definition of type I bottleneck-points, b is a point on PB(sjsk), the
perpendicular bisector between sj and sk (see Figure 4.14). Moreover, b is the inter-
section point between PB(sjsk) and sjsk since the midpoint of sjsk is b. As b is a
bottleneck-point and d(b, si) < r, PB(sjsk) separates VR2(si, sj) from VR2(si, sk). If
there were other antennas interfering with these two second order Voronoi regions, then
b $= bS(p, q) because it would be 2-covered with a range smaller than r. Consequently b

is the intersection point between sjsk and the second order Voronoi edge that separates
VR2(si, sj) from VR2(si, sk).







 




Figure 4.14: The antennas’ range is r = MRS(P (p, q)) and VD2(S) is shown in a dashed line.
Point b = bS(p, q) is a type I bottleneck-point and a point of VD2(S): {b} = PB(sjsk)∩{sjsk}.












Figure 4.15: The antennas’ range is r = MRS(P (p, q)) and VD2(S) is represented by a dashed
line. Point b = bS(p, q) is a type II bottleneck-point and a vertex of VD2(S): {b} = PB(sisj)∩
PB(sjsk) ∩ PB(sksi). Moreover, b ∈ int(!(si, sj , sk)).

(b) According to the definition of type II bottleneck-points, b is equally distant from si, sj

and sk (see Figure 4.15). This means that point b is the intersection point between the
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perpendicular bisectors PB(sisj), PB(sisk) and PB(sjsk). Moreover, these perpendicu-
lar bisectors contain edges of VD2(S) since there are no other antennas of S interfering
with the surroundings of b (otherwise b $= bS(p, q)). Perpendicular bisector PB(sisj)

separates VR2(si, sk) from VR2(sj , sk), PB(sisk) separates VR2(si, sj) from VR2(sj , sk)

and PB(sjsk) separates VR2(si, sj) from VR2(si, sk). Thus, b is a vertex of VD2(S).
Furthermore, since the discs D(si, r), D(sj , r) and D(sk, r) intersect only once (precisely
at b), b is in the interior of !(si, sj , sk). "

Given the direct relation between the second order Voronoi diagram and bottleneck-
points, a type I bottleneck-point is also referred to as edge bottleneck-point and a type II
bottleneck-point as vertex bottleneck-point. As previously mentioned, a point x in VR2(si, sj)

is 2-covered by S with range r if and only if x ∈ lr(si, sj). With this in mind, as well as
Proposition 4.4, the search for bottleneck-points must be focused on edges and vertices of
VD2(S). For that purpose, first search for edges intersected by the line segment joining the
two antennas defining such edge. The resulting intersection point is a candidate for edge
bottleneck-point (see Figure 4.14). Second, search every vertex of VD2(S) that is inside the
triangle of the antennas responsible for it since it is a candidate for vertex bottleneck-point
(see Figure 4.15). For every such candidate calculate the minimum range needed to 2-cover
it. Then sort these ranges into a list. Third, determine sp and sq, the second closest antenna
of S to p and q respectively, to calculate r0 = max{d(sp, p), d(sq, q)}. Range r0 is the starting
point for the list of ranges. All ranges below r0 cannot be MRS(P (p, q)). Note that if r0 is
the largest element of said list then MRS(P (p, q)) = r0. Otherwise perform a binary search
on the list of ranges to calculate MRS(P (p, q)). In every step of the binary search, decide if
the corresponding range is large enough to allow a 2-covered path connecting p to q. To this
end, use the TRT decision algorithm described in Section 4.4.1.





 








Figure 4.16: The antennas’ range is r = MRS(P (p, q)) and VD2(S) is represented by a dashed
line. (a) Path between nodes p and q on graph G. (b) A 2-path between points p and q.
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Once the binary search is over, the final range is MRS(P (p, q)). Consider graph G con-
structed by the TRT algorithm for the range MRS(P (p, q)) (see Figure 4.16(a)). A polygonal
2-path between p and q can be computed using a path on graph G that connects nodes p and
q. For every edge of the path from node p to q on G compute a point on its dual Voronoi
edge such that it lies in the intersection of the two lenses associated with this edge. As lenses
are convex sets, the straight line segment connecting two consecutive such points is entirely
contained in one lens. If needed, this path hast to be completed by adding the line segments
that connect p to the first node and q to the last node of the 2-path. This ensures that these
line segments form a 2-covered path from p to q (see Figure 4.16(b)).

Algorithm Minimum 2-Covered Path on the Plane

Input: Set S of antennas, points p and q

Output: MRS(P (p, q)), P (p, q)

1. Compute VD2(S), the second order Voronoi diagram of S;

2. E ← {i : sisj ∩ PB(si, sj) = {i},∀si, sj ∈ S};

3. V ← {i : PB(si, sj) ∩ PB(si, sk) ∩ PB(sj , sk) = {i}

and i ∈ !(si, sj , sk),∀si, sj , sk ∈ S};

4. I ′ ← {MRS(i) : ∀i ∈ {E ∪ V }};

5. Calculate r0 = max{MRS(p),MRS(q)};

6. Perform a binary search on I ′ = {ri ∈ I ′ : ri ≥ r0} ∪{ r0}:

For the median range ri ∈ I ′ do

If TRT(S, ri, p, q) = YES

Then proceed the search on I ′ ← {rj ∈ I ′ : rj ≤ ri}

Otherwise proceed the search on I ′ ← {rj ∈ I ′ : rj > ri}

7. The final range is MRS(P (p, q)), compute P (p, q) using the graph
constructed by the algorithm TRT.

The description of this optimisation algorithm concludes with the following theorem.

Theorem 4.4 Let S be a set of n antennas and p and q two points on the plane. Calculating
MRS(P (p, q)) and a 2-covered path between p and q can be determined in Θ(n log n) time.

Proof : Computing VD2(S) takes O(n log n) time since S is a set of n antennas on the plane
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[55]. Since VD2(S) has a linear number of vertices and edges [21], searching for possible
bottleneck-points is also linear. Locating p and q in VD2(S) can be done in O(log n) time.
According to Theorem 4.3, and having constructed VD2(S), constructing graph G and finding
a 2-path (if it exists) takes linear time. Since each step of the binary search is performed in
linear time (the median of the list of ranges can be found in linear time regarding the number of
ranges [25]), the overall time complexity to calculate MRS(P (p, q)) and find a 2-path between
p and q is O(log n)×O(n) = O(n log n).

The lower bound is achieved by a reduction to the Max-Gap problem: given a set of
real numbers regarded as points on the x-axis, find the maximum distance (gap) between
any two consecutive points once sorted. Lee and Wu [56] proved that the lower bound for
this problem is Ω(n log n) time. The lower bound for calculating MRS(P (p, q)) is the same
since this problem can reduced to the Max-Gap. Let S be a set of n real numbers for the
Max-Gap problem. For each number si, consider the point (si, 0) on the x-axis. Duplicate
every point in order to have 2n points on the x-axis. Consider p = (min{s0, . . . , sn−1}, 0) and
q = (max{s0, . . . , sn−1}, 0), that is, p is the leftmost point on the x-axis and q is the rightmost.
If r = MRS(P (p, q)), then the maximum gap for S is 2r. As a result, the previous algorithm
solves the Max-Gap problem, which results in both sharing the same lower bound: Ω(n log n)

time. "












Figure 4.17: There are three bottleneck-points for 2-covered paths between p and q: b1, b2 and
b3. Two 2-covered paths connecting p to q are shown in yellow.

Degenerate cases were already briefly mentioned. The antennas’ distribution might result
in degenerate cases, which means that there can be more than one bottleneck-point for 2-paths
between two points. Notwithstanding the fact that bottleneck-points are not unique, they can
still be found using the previously described technique and they remain classified into two
categories. The major difference is that, in the case of degenerate input data, 2-covered paths
between two points do not have to cross every single bottleneck-point, although they must
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cross at least one of them (see Figure 4.17). Observe that even though the classification of
bottleneck-points does not change in the presence of degenerate cases, vertex bottleneck-points
can correspond to Voronoi vertices with degree higher than three (in cases where more than
three lenses meet at once).

4.4.3 Shortest 2-Covered Path with Minimum Transmission Range

Given a set S of n antennas and two points p and q on the plane, the previous algorithm
calculates MRS(P (p, q)) and finds a 2-path on the plane between p and q in Θ(n log n) time.
However, that 2-path may not be optimal and, in that case, it can be shortened. What follows
is therefore a method to find the shortest geometric 2-path between two points on the plane,
once the minimum power transmission range that makes its existence possible is known. Such
range clearly is independent of the chosen path, so MRS(P (p, q)) is assumed to be a known
parameter and the antennas’ range r is also assumed to be at least MRS(P (p, q)). The path
to be computed can only traverse 2-covered regions in order to be a 2-path. In other words,
such path has to exist within the union of lenses. Knowing how to find the shortest path
between two points on a polygon [49], the natural approach is to convert the union of lenses
into a polygon (with or without holes). In this way, the shortest 2-path between p and q can
be easily computed within that polygon. To this end, the following algorithm transforms the
union of lenses into a polygon (with or without holes).

Algorithm Converting Lenses into a Polygon

Input: Set S of n antennas with range r, VD2(S), points p and q

Output: Polygon P

1. For each VR2(si, sj) do

(a) Compute I ← lr(si, sj) ∩VR2(si, sj)

(b) If an apex of lr(si, sj) is inside VR2(si, sj) then add it to I

(c) For every pair vi, vj ∈ I do

If vi, vj lie on the same arc of lr(si, sj) and vivj ∈ int(VR2(si, sj))

Then connect vi and vj

2. Construct P using the chain(s) of line segments;

3. If p (or q) is not in P , find the closest edge vivj ∈ P to p (or q) and
replace vivj with vip and pvj (or viq and qvj).
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Figure 4.18: Set of antennas with range r = MRS(P (p, q)), VD2(S) is represented by a dashed
line. (a) There are four intersection points between lr(si, sj) and VR2(si, sj). The yellow line
segments connect intersection points that lie on the same arc of lr(si, sj). (b) The union of
lenses is converted into the blue polygon.

In Figure 4.18(a) there is an example of a second order Voronoi region defined by the
antennas si and sj . Lens lr(si, sj) and VR2(si, sj) intersect in four points (represented by
squares). Every pair of points lying on the same arc of lr(si, sj) are connected through a line
segment. Figure 4.18(b) shows an early stage of the algorithm. All the intersection points
between the second order Voronoi regions and respective lenses are computed, as well as the
line segments connecting pairs of intersection points that lie on the same arc of a lens. In the
case the antennas’ transmission range is MRS(P (p, q)), there is the need to be particularly
cautious when connecting the bottleneck-point to the rest of the intersection points. If it is not
correctly connected, then the resulting polygon will not be simple. This situation is further
discussed below.











Figure 4.19: The union of lenses is converted into a blue polygon that contains both p and q.

In Figure 4.18(b), point q is not inside the polygon but this situation is corrected by
replacing the closest edge of the polygon to q, vivj , with edges viq and qvj (see Figure 4.19).
This correction, if needed, is the last step of the algorithm. Finally, the union of lenses is
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converted into a polygon (with holes in the case the arrangement of lenses has them as well).

Theorem 4.5 Let S be a set of n antennas with range r ≥ MRS(P (p, q)). Given two points p

and q on the plane and having constructed VD2(S), the union of lenses can be converted into
a polygon containing p and q in O(n) time.

Proof : For each VR2(si, sj), computing the set I = lr(si, sj)∩VR2(si, sj) takes constant time
since there are at most four intersection points between a second order Voronoi region and its
corresponding lens (the Voronoi diagram has amortised linear complexity [21]). Consequently,
set I is formed by at most n intersection points. Constructing a polygon P using the line seg-
ments connecting these intersection points takes linear time. Once P is constructed, locating
p and q regarding P can be done in linear time since the polygon has a linear number of edges.
In the case that p or q is outside P , the polygon can be rearranged to contain both points in
O(n) time. "

It is now left to prove that the shortest 2-covered path between points p and q is contained
in the polygon constructed by the previous algorithm.

Proposition 4.5 Let S be a set of antennas with range r ≥ MRS(P (p, q)). Given two points
p and q on the plane, the shortest 2-covered path between p and q exists within the polygon
constructed by the algorithm above.

Proof : Since an optimal path can only be formed by optimal subpaths, a shortest 2-covered
path between p and q is necessarily polygonal since it has to be formed by a sequence of shortest
paths between each two consecutive vertices. And it is not difficult to see that the shortest
path between two consecutive vertices is the line segment connecting them. Furthermore, this
polygonal path has to lie within the union of lenses in order to be 2-covered by S. Let P be
the polygon constructed from the union of lenses. There are only a few regions of this union
that do not belong to P . Such regions are isolated 2-covered regions and are effectively “dead-
ends". As a consequence, any path entering these regions is forced to return to P creating a
much longer than necessary path. Therefore, a shortest 2-path between p and q exists within
in P . "

If the antennas’ transmission range is larger than MRS(P (p, q)), then a shortest path
between p and q within polygon P can be found applying an algorithm by Kapoor et al.
[49]. Otherwise, if the antennas’ transmission range is precisely MRS(P (p, q)), then P has an
unusual shape since four edges meet at a single vertex b = bS(p, q). In this case, in order to
apply the algorithm by Kapoor et al. [49], P has to be split into two polygons, P1 and P2,
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at vertex b (see Figure 4.20). In this case, and without loss of generality, suppose p ∈ P1 and
q ∈ P2. A shortest path between p and q on P is found as the union of two shortest paths: a
shortest path from p to b within P1 and another one from b to q within P2. Recall that every
path between p and q has to cross b for this particular range.







Figure 4.20: Set of antennas with range r = MRS(P (p, q)) and b = bS(p, q). Polygon P1 is
shown in pink and P2 in blue. The shortest 2-path between p and q is represented by a solid
yellow line.

In conclusion, given a set S of n antennas with range r ≥ MRS(P (p, q)), a shortest
2-covered path between points p and q can be found in O((n + h2) log n) time [49], where h is
the number of holes of polygon P .

4.5 Minimum Transmission Range to 2-Cover a Polygonal Re-

gion

Let R be a polygonal region (with or without holes) and S a set of n antennas with the same
power transmission range. In the following, the boundary of R, denoted by B(R), is considered
to be part of R. A region is said to be 2-covered by S if every point on such region is 2-covered.
The algorithm introduced in this section calculates the minimum power transmission range
of S to 2-cover R, which is denoted by MRS(R). Such range is the largest distance between
a particular point on R and its second closest antenna. To find this point, assume that the
antennas’ range is sufficiently large to fully 2-cover R. Now suppose that this range is slowly
reduced until there is one point q on R that no longer is 2-covered. As a result, R is not
2-covered until point q is, which means that the antennas’ minimum range to 2-cover q is
precisely the minimum range to fully 2-cover R, that is, MRS(R) = MRS(q). The following
proposition characterises the location of such point in relation to the polygonal region.

Proposition 4.6 Let R be a polygonal region, q a point on R and S a set of antennas. If



104 Minimum 2-Coverage

MRS(R) = d(q, si), for some antenna si ∈ S, then q can only be one of the following:

(a) A vertex of R;

(b) An intersection point between B(R) and VD2(S);

(c) A vertex of VD2(S) inside R.

Proof : Let q ∈ R be such that MRS(R) = d(q, si) for some antenna si ∈ S. Given an
edge e of R, it was seen in Section 4.2 that MRS(e) is calculated using the intersection points
between e and VD2(S) plus the endpoints of e (see Figure 4.21(a)). Consequently, if q ∈ B(R)

then q must be a vertex of R or an intersection point between B(R) and VD2(S). If q is
inside R then the situation gets trickier since it does not depend on the shape of R but on the
way lenses interact with each other. As the antennas’ range increases, the lenses grow larger
and fill the interior of R. The last interior point to be 2-covered must be a point lying in
the last “hole” (meaning a region of R not yet 2-covered). These holes are filled when three
lenses intersect at a time, since not only the intersection point has to be 2-covered but also
its whole neighbourhood (see Figure 4.21(b)). According to Proposition 4.4, q is a type II
bottleneck-point and therefore it has to be a vertex of VD2(S). "















 

















Figure 4.21: Region R is shown in light blue and VD2(S) is represented by a dashed line.
(a) The yellow edge e of R is 2-covered with minimum range r = MRS(e). (b) Point q is the
vertex of VD2(S) defined by s2, s4 and s6, MRS(R) = MRS(q).

According to this proposition, there are several candidates on R to be the point defining
MRS(R). Since every point on R has to be 2-covered, MRS(R) can be calculated as the
minimum range to 2-cover every such candidate. Therefore, there is the need to analyse every
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vertex of R, intersection points between B(R) and VD2(S) and vertices of VD2(S) inside R

(see Figure 4.22(a)). In Figure 4.22(b) there is an example of a 2-covered polygonal region R

with minimum power transmission range. Point q ∈ B(R) defines MRS(R) and consequently
R is 2-covered if the antennas’ transmission range is at least MRS(q) = d(q, s4) = d(q, s9).









































Figure 4.22: (a) The candidates are represented by squares: vertices of R, vertices of VD2(S)

inside R and points of {B(R) ∩VD2(S)}. (b) MRS(R) is given by MRS(q) = r.

Given a polygonal region R, the following algorithm calculates MRS(R).

Algorithm Minimum Range to 2-Cover a Region

Input: Set S of n antennas, polygonal region R

Output: MRS(R)

1. Compute VD2(S), the second order Voronoi diagram of S;

2. Compute the intersection set I ← B(R) ∩VD2(S);

3. Add the vertices of VD2(S) that are inside R to set I;

4. Add the vertices of R to set I;

5. MRS(R) ← max{MRS(q) : q ∈ I}.

The following theorem is a direct consequence of the method employed to calculate the
antennas’ minimum range to 2-cover a polygonal region.

Theorem 4.6 Given a set S of n antennas and a polygonal region R with m vertices, MRS(R)

can be calculated in O(mn + n log n) time and O(mn) space.
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Proof : Computing VD2(S) takes O(n log n) time since S is formed by n antennas on the
plane [55]. The cardinality of set I = B(R)∩VD2(S) is at most mn since VD2(S) has n faces
and R has m edges. Adding all the vertices of VD2(S) that are inside R to set I takes O(mn)

time. The region’s vertices can be added to I in O(m) time. For each intersection point
q ∈ I, MRS(q) is calculated in constant time using VD2(S) since it is given by the distance
between q and its second closest antenna. The largest of these distances is MRS(R). Overall,
the time complexity of this procedure is O(mn). Regarding the space complexity, there is the
need to store at most mn intersection points while VD2(S) can be stored in O(n) space [55].
Consequently, this algorithm runs in O(mn + n log n) time and O(mn) space. "

Corollary 4.1 Given a set S of n antennas and a convex polygonal region R with m vertices,
MRS(R) can be calculated in O(m + n log n) time and O(m + n) space.

Observe that if VD2(S) is previously constructed, MRS(R) can be calculated in O(m+n)

time and space for a convex polygonal region R.

4.6 Minimum Transmission Range to 2-Cover a Path on a Polyg-

onal Region

Given two points p and q on a polygonal region R, the objective of this section is to calculate
the minimum transmission range of the antennas such that there is a 2-covered path within
R connecting p to q. This problem is more restrictive than the previous ones since the space
where this path lies is enclosed by R. In Figure 4.23(a), the black path connecting p and q

is not a 2-path since some of its points are only covered by one antenna. On the other hand,
the yellow path in the same figure is a 2-path between p and q. Not only it is 2-covered by
S as it exists within R, which makes it the interesting type of 2-path for this section. In the
following, whenever 2-path is mentioned, it is understood as a 2-path within R. Similarly
to what happened in Section 4.4, the solution to this problem is achieved by employing the
associated decision problem, which is presented below.

4.6.1 Decision Problem: Is r large enough?

The present subsection proposes an algorithm to solve the following problem: given a set S of
n antennas with power transmission range r ∈ R+ and two points p and q on R, decide if there
is a 2-path connecting p and q. This decision algorithm will then be used to solve the main
problem in Section 4.6.2. As previously mentioned, a 2-path from p to q exists if and only if
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Figure 4.23: Region R is shown in blue. (a) The yellow path is a 2-path within R connecting
p to q, whilst the black is not. (b) It is not possible to find a 2-path within R between p and
q because they lie in different connected components of the union of lenses.

p and q lie in the same connected component of the union of lenses (see Figure 4.23(b)). If it
exists, such 2-path only crosses the regions of R that are 2-covered. With this in mind, let A

be the arrangement of the union of lenses confined to region R and intersected by VD2(S) (see
Figure 4.24). If there is a 2-path between p and q on R, then it exists within A. If R is not
convex, then there can be more than one face of A per Voronoi region. For example, there are
two non-connected faces of A defined by the spikes of R on the lower leftmost Voronoi region
in Figure 4.24.

Figure 4.24: Polygonal region R is shown in blue, VD2(S) is represented by a dashed line and
the arrangement of the union of lenses confined to R and intersected by VD2(S) is shown in
dark blue.
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According to Corollary 4.1, it is easier to work with convex regions since the number of
intersection points decreases sharply. Moreover, there is only one face of A per Voronoi region.
Consequently, the first step to solve this problem is to divide R into convex pieces (see Figure
4.25(a)). This is easily obtained using Steiner points: for each reflex vertex vr ∈ R extend a
ray from vr, which bisects the internal angle of R at vr, until it reaches B(R) or a previous ray.
It can be shown that if R has k reflex vertices, then this set of rays divides R into k+1 convex
pieces. There are some studies on the optimisation of the final number of convex pieces, either
using Steiner points [30] or diagonals [53]. Notwithstanding these results and since it does not
worsen the final complexity, the partition technique chosen in the following does not optimise
the resulting number of convex pieces.









Figure 4.25: (a) Polygonal region divided into three convex pieces: R1, R2 and R3. (b) The
arrangements A1, A2 and A3 are shown in pink, blue and green, respectively.

Th following algorithm constructs an intersection graph Gi of the arrangement Ai, which
is in fact the arrangement A restricted to convex piece Ri ⊆ R (see Figure 4.25(b)). This
algorithm will then be applied to every convex piece of R in order to construct the intersection
graph of the whole arrangement A. Recall that VR2(si, sj) is the second order Voronoi region
of antennas si and sj and lr(si, sj) is the lens resulting from the intersection of discs D(si, r)

and D(sj , r).
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Algorithm Preprocess (PRE)

Input: Set S of n antennas, range r, VD2(S), convex piece Ri

Output: Arrangement Ai, graph Gi

1. Compute arrangement Ai:

For each VR2(si, sj) do

(a) Compute lr(si, sj)

(b) The region resulting from the non-empty intersection between
VR2(si, sj), lr(si, sj) and Ri is a face of the arrangement Ai

2. Construct graph Gi:

For each face ak ∈ Ai do

(a) Add node nk to Gi

(b) For each neighbouring face aj ∈ Ai of ak do

If ak ∩ aj $= ∅ then add edge nknj to Gi

The temporal complexity to construct the restricted arrangement and corresponding in-
tersection graph is given in the following result.

Theorem 4.7 Let S be a set of n antennas with transmission range r and Ri a convex region
with mi vertices. If VD2(S) is preprocessed, then both arrangement Ai and graph Gi can be
constructed in O(nmi) time.

Proof : Each lens lr(si, sj) is intersected at most four times by VR2(si, sj) and the resulting
region is convex. Consequently, the intersection between that convex region and Ri also is
convex and can be found in O(mi + ni) time, ni being the complexity of VR2(si, sj). As the
Voronoi diagram has amortised linear complexity [21], the arrangement Ai can be found in
O(n + nmi) = O(nmi) time. Graph Gi, the intersection graph of Ai, has at most n nodes
since it may have one node per Voronoi region that intersects Ri (see Figure 4.26(a)). Two
nodes of Gi are connected if their corresponding faces of Ai intersect. The vertices of each
face of Ai can be used to check if it intersects other faces of Ai. It suffices that each vertex
is identified as an apex of a lens, a point on B(R) or a point on a Voronoi edge. The latter
is the important type of vertex for this procedure. Suppose face ak ∈ Ai has a vertex v that
is a point on a Voronoi edge that separates VR2(sk, sl) from VR2(sl, sj). Then v belongs to
lenses lr(sk, sl) and lr(sl, sj), which means faces ak and aj intersect each other. Therefore,
to construct Gi it suffices to connect the nodes corresponding to the faces of Ai that share
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at least one vertex on the same Voronoi edge. Overall, this arrangement and corresponding
intersection graph can be constructed in O(nmi) time. "

 





Figure 4.26: (a) Each subgraph corresponds to a coloured convex piece. The subgraph on the
green region is disconnected. (b) There is not a 2-path between p and q because they lie in
different connected components of the graph.

Note that Gi has as many edges as the Voronoi diagram and that it may not be connected
(see the subgraph on the green region in Figure 4.26(a)). The strategy to decide if there is a
2-path between p and q is based on the construction of an intersection graph G of the whole
arrangement A, which is in fact the union of the subgraphs constructed for each convex piece
of R. It is not hard to see that a node of Gi is merged with another node of Gj if the faces
of A they correspond to intersect each other (see Figures 4.26(a) and 4.26(b)). The general
strategy to solve the decision problem proposed in this section is presented in the following
pseudo-code, which applies the preprocess algorithm described above.

Algorithm Power Transmission Range Test 2 (TRT2)

Input: Set S of antennas, range r, VD2(S), region R, points p and q

Output: YES or NO

1. Divide R in convex pieces by adding a set L of rays;

2. For each convex piece Ri ⊆ R do

{Ai, Gi}← PRE(S, r,VD2(S), Ri)

G ← G ∪Gi

A ← A ∪Ai

. . .
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Algorithm Power Transmission Range Test 2 (TRT2) (cont.)

3. For every ray li ∈ L do

Fi ← {a ∈ A : an edge of face a is on li}

Merge the nodes of G whose corresponding faces of Fi lie on the
same lens

4. Assign p to node np and q to node nq;

5. Traverse G starting at p using the DFS algorithm [42];

6. If node q is found then return YES, otherwise return NO.

Point p is assigned to node np since np is assumed to be the node of G whose corresponding
face of A contains p. In a similar way, point q is assigned to node nq. Consequently, the
existence of a 2-path connecting p to q depends on np and nq being within the same connected
component of G (see Figure 4.26(b)). The method chosen to traverse G is the Depth-First
Search since its complexity is linear on the number of edges of the graph [42].

Theorem 4.8 Let S be a set of n antennas with transmission range r and R a polygonal
region divided into convex pieces by adding k rays. Let M be the largest complexity of the
convex pieces. If VD2(S) is preprocessed, then deciding if a 2-covered path between points p

and q exists takes O(knM) time.

Proof : Dividing region R with m vertices into convex pieces by adding a set L of k rays takes
O(m+k2 log(m

k )) time [30]. Consequently, R is divided into k+1 convex pieces. Supposing each
convex piece Ri has mi vertices, assume M = max{m1, . . . ,mk+1}. According to Theorem 4.7,
constructing Gi for each convex piece takes O(nmi) time, so constructing a first version of G

takes O(knM) time. For the same reason, A is also constructed in O(knM) time. Analysing
the vertices of every face of A on a convex piece takes O(nM) time. Consequently, finding the
sets of faces that have an edge on the same ray of L takes O(knM) time. Finding the lens
that contains a face of A can be done in constant time. Every ray of L can intersect n Voronoi
regions and consequently n faces of A. Therefore, each set of faces Fi has cardinality at most
n. The vertices of the rays of L can have degree 3 at most [30], so the number of nodes of G

to be merged at a time is at most 3, which can be done in constant time. Consequently, the
construction of G is concluded in O(kn) time. Locating p and q on A can be done in O(nM)

time. In the worst case, the Depth-First Search algorithm has to visit every node of G twice
[42]. Therefore, traversing G to decide if there is a 2-path between points p and q takes O(kn)

time. Overall, this decision problem can be solved in O(knM) time. "



112 Minimum 2-Coverage

4.6.2 Minimum Transmission Range to 2-Cover a Path on a Polygonal Re-
gion

The optimisation algorithm presented in this section calculates the minimum power transmis-
sion range of S that ensures the existence of a 2-path on R between p and q. Such range
is denoted by MRS,R(P (p, q)). Observe that for n ≥ 2, this problem always has a solution
because, if the range r is large enough, all discs of radius r centred at points of S contain
R. In this case, any path connecting p to q on R is a 2-path. Following the idea presented
in Section 4.5, there is the need to locate point b that is the first intersection between the
connected component of lenses containing p and the one containing q. As before, this point
can either be on B(R) or inside R. The first case was discussed in Proposition 4.6 and so b can
be a vertex of R or an intersection point between VD2(S) and B(R). The second case is more
complicated since now there is no need to completely cover R, in fact, all that is needed is
that p and q lie in the same connected component of lenses. Therefore, b is a bottleneck-point
for 2-paths between p and q, bS(p, q). Without loss of generality, degenerate input data is
not considered, so for all purposes, bottleneck-points are regarded as unique for every pair of
points. According to Proposition 4.4, candidates to bottleneck-points are found on the edges
of VD2(S) that are intersected by the line segment joining the two antennas defining such
edge and vertices of VD2(S) that are inside the triangle of the corresponding antennas. To
conclude, MRS,R(P (p, q)) is calculated using a binary search on a list of ranges. Each range of
the list is the minimum transmission range needed to 2-cover a candidate and each candidate
is either p, q, a vertex of R, a point of {B(R) ∩VD2(S)} or a bottleneck-point. In every step
of the binary search, the corresponding range is evaluated to decide if it is large enough to
allow a 2-path between p and q. The algorithm Power Transmission Range Test 2 (TRT2)
introduced in Section 4.6.1 will be used to this end. If the range is indeed large enough then
the search proceeds on the lowest half of the ranges. Otherwise, the search continues on the
highest half of the ranges. This method is summarised in the following pseudo-code, note that
it is assumed that p and q are points inside R.

Algorithm Minimum Range that allows a 2-Path on R

Input: Set S of n antennas, region R, points p and q

Output: MRS,R(P (p, q))

1. Compute VD2(S), the second order Voronoi diagram of S; . . .
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Algorithm Minimum Range that allows a 2-Path on R (cont.)

3. Compute set I ← {p, q} ∪{ B(R) ∩VD2(S)};

Add the vertices of R to set I

4. Find set B of candidates for bottleneck-points using Proposition 4.4;

5. I ′ ← {MRS(x) : x ∈ {I ∪B}};

6. Calculate r0 = max{MRS(p),MRS(q)};

7. Perform a binary search on I ′ = {ri ∈ I ′ : ri ≥ r0} ∪{ r0}:

For the median range ri ∈ I ′ do

If TRT2(S, VD2(S), ri, R, p, q) = YES

Then proceed the search on I ′ ← {rj ∈ I ′ : rj ≤ ri}

Otherwise proceed the search on I ′ ← {rj ∈ I ′ : rj > ri}

8. The final range is MRS,R(P (p, q)).

In Figure 4.27 there is an example of a 2-path between p and q within a polygonal region.
Any 2-path between these points only exists if the antennas’ transmission range is at least
MRS,R(P (p, q)). This range is calculated as the minimum range to 2-cover point b = bS(p, q),
which is given by d(s2, b) = d(s4, b). The following theorem concludes this subject.























Figure 4.27: The yellow 2-path between p and q on R only exists if the antennas’ transmission
range is at least MRS,R(P (p, q)) = MRS(b) = r. The 2-covered regions of R are shown in light
blue.
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Theorem 4.9 Let S be a set of n antennas and R a polygonal region with m vertices divided
into convex pieces by adding k rays. Let M be the largest complexity of the convex pieces.
Given two points p and q on R, MRS,R(P (p, q)) can be calculated in O(knM log mn) time.

Proof : Computing VD2(S) takes O(n log n) time since S is a set of n antennas on the plane
[55]. Set I = {p, q}∪ {B(R)∩VD2(S)} has cardinality mn since VD2(S) is linear on n and R

has m vertices. Adding m vertices to I plus the n candidates to bottleneck-points for 2-paths
between p and q takes O(m+n) time. Therefore, set I can be found in O(mn) total time. This
is also the temporal complexity of calculating MRS(x) for every x ∈ I. Supposing each convex
piece has mi vertices, assume that M = max{m1, . . . ,mk+1}. Then according to Theorem 4.8,
each step of the binary search runs in O(knM) time. Consequently, the binary search runs in
O(knM log mn) time, which is the overall complexity to calculate MRS,R(P (p, q)). "

4.7 Minimum Transmission Range to 2-Cover a Path between

any Two Points of a Set of Points

Let S be a set of n antennas and Q a set of m points on the plane (see Figure 4.28). The goal
of this section is not to calculate the minimum range of S that 2-covers every point of Q, but
to find the minimum range that ensures that all points of Q are within the same connected
component of the union of lenses. In other words, the minimum range that allows the existence
of a 2-path connecting any pair of points of Q. Such range, denoted by MRS(Q), allows a user
to move within Q using 2-paths exclusively. The following algorithm proposes a solution to
this problem.












 



Figure 4.28: Set Q is represented by seven squares and set S by nine dots with range
r = MRS(b). Point b is a type II bottleneck-point and VD2(S) is shown in a dashed line.
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Algorithm Minimum 2-Coverage of a Path between a Set of Points

Input: Set S of antennas, set Q of points
Output: MRS(Q)

1. Compute VD2(S), the second order Voronoi diagram of S;

2. Find set B of candidates for bottleneck-points using Proposition 4.4;

3. I ← {MRS(b) : b ∈ B}, r0 ← max{MRS(q) : q ∈ Q};

4. Perform a binary search on I = {ri ∈ I : ri ≥ r0} ∪{ r0}:

For the median range ri ∈ I do

(a) Construct graph G as explained in step 3 of the algorithm TRT
in Section 4.4.1

(b) Associate each point q ∈ Q with the node of G representing the
lens defined by the two closest antennas to q

(c) Traverse G starting at a node associated with a point of Q

(d) If every point of Q is found

Then proceed the search on I ← {rj ∈ I : rj ≤ ri}

Otherwise proceed the search on I ← {rj ∈ I : rj > ri}

5. The final range is MRS(Q).







 





Figure 4.29: Each point of Q is assigned to its respective node of G (shown in blue). All points
are in the same connected component of G.

Figures 4.28 and 4.29 illustrate this algorithm. In Figure 4.28, the antennas’ range is
given by MRS(b) and b is a type II bottleneck-point since it is a vertex of VD2(S) inside the
triangle formed by the antennas that cover b. Graph G constructed for the range MRS(b) is
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represented by a solid blue line in Figure 4.29. Each point q ∈ Q is assigned to the node of G

that represents the lens defined by the two closest antennas to q. For this range, every point of
Q is in the same connected component of the union of lenses and so the binary search proceeds
on the lowest half of the remaining ranges. Once the binary search is over, the final range is
MRS(Q). In the example in Figures 4.28 and 4.29, MRS(Q) is given precisely by MRS(b).

Theorem 4.10 Let S be a set of n antennas and Q a set of m points on the plane. The
minimum power transmission range of S that ensures the existence of a 2-path connecting any
pair of points of Q can be calculated in O((n + m) log n) time.

Proof : Computing VD2(S) takes O(n log n) time since S is a set of n antennas on the plane
[55]. Calculating MRS(q) for each q ∈ Q takes O(log n) time since that is the temporal
complexity of locating q on VD2(S). Therefore, computing these ranges takes O(m log n)

time and range r0 = max{MRS(q) : q ∈ Q} is calculated in O(m) time. Since VD2(S)

has n vertices and edges [21], searching for possible bottleneck-points takes O(n) time. The
median of the list of ranges can be found in linear time regarding the number of ranges [25].
The intersection graph G of the set of lenses is constructed for each range of the binary
search. Having constructed VD2(S), this graph can be constructed in O(n) time since it is a
subgraph of the dual graph of VD2(S) and therefore has linear size [21]. The points of Q were
already located in VD2(S), so associating each with the corresponding node of G takes O(m)

time. Graph G is traversed in O(n) time using the DFS algorithm [42]. Consequently, the
binary search is performed in max{O(n),O(m)} time for each range. In conclusion, the final
temporal complexity to calculate the minimum power transmission range of S that ensures
the existence of a 2-path connecting any pair of points of Q is max{O(n log n),O(m log n)},
that is, O((n + m) log n). "

4.8 Minimum 2-Covered Path between two Line Segments

Let e1 and e2 be two line segments on the plane. Continuing the discussion of the last section,
the objective of the present section is to calculate the minimum transmission range of S so
that a 2-covered path between e1 and e2 exists. This implies that at least two points of both
line segments have to be within the same connected component of the union of lenses. Let
MRS(P (e1, e2)) denote the minimum range that ensures the existence of a 2-path between e1

and e2. In the following, it is shown how to calculate MRS(P (e1, e2)) and find a 2-path between
the two line segments. The following pseudo-code applies the algorithm TRT (described in
Section 4.4.1) to decide if there is a path 2-covered by S with range r between points p and q.
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Algorithm Minimum 2-Covered Path between two Segments

Input: Set S of n antennas, line segments e1 and e2

Output: MRS(P (e1, e2))

1. Compute VD2(S), the second order Voronoi diagram of S;

2. I ← {{e1} ∩VD2(S)} ∪ {{e2} ∩VD2(S)};

3. Add the endpoints of e1 and e2 to set I;

4. Find set B of candidates for bottleneck-points using Proposition 4.4;

5. I ′ ← {MRS(q) : q ∈ I ∪B};

6. Perform a binary search on I ′:

For the median range ri ∈ I ′ do

(a) Compute set P1 ⊆ e1 of midpoints of pieces of e1 that are
2-covered by S with range ri, similarly, compute set P2 ⊆ e2

(b) For every pair (pi, qi), pi ∈ P1 and qi ∈ P2, do

If TRT(S, ri, pi, qi) = YES

Then continue the search on I ′ ← {rj ∈ I ′ : rj ≤ ri}

Otherwise continue the search on I ′ ← {rj ∈ I ′ : rj > ri}

7. The final range is MRS(P (e1, e2)).

The algorithm TRT presented in Section 4.4.1 constructs a subgraph of the intersection
graph of the union of lenses for each range ri and it can be used to compute a 2-path from
e1 to e2. Once the binary search is finished, the pair of points (pi, qi), pi ∈ e1 and qi ∈ e2,
which is in the same connected component of the union of lenses for the range MRS(P (e1, e2))

is known (see Figure 4.30(a)). Therefore, a polygonal 2-path between pi and qi can be found
applying the method introduced in Section 4.4.2 to the same end. For every edge of the path
from vertex pi to qi on the graph, compute a point on its dual Voronoi edge such that it
lies in the intersection of the two lenses associated with this edge. The straight line segment
connecting two consecutive such points is entirely contained in one lens. If needed, this path
is completed by adding the line segments that connect pi to the first node and qi to the last
node of the 2-path. This ensures that these line segments form a 2-covered path from pi to qi

(see Figure 4.30(b)).

Theorem 4.11 Let S be a set of n antennas and e1 and e2 two line segments on the plane,
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Figure 4.30: Set of six antennas with range r = MRS(b). (a) The 2-covered pieces of e1 and e2

are shown in blue. (b) The yellow path is a 2-path between e1 and e2 with r = MRS(P (e1, e2)).

MRS(P (e1, e2)) and a 2-path between e1 and e2 can both be found in O(n3 log n) time.

Proof : Computing VD2(S) takes O(n log n) time since S is formed by n antennas on the plane
[55]. Set I = {{e1}∩VD2(S)}∪ {{e2}∩VD2(S)} is formed by a linear number of intersection
points since VD2(S) has a linear number of regions [21]. Given the diagram’s linear complexity,
searching for possible bottleneck-points takes O(n) time. The median of the list of minimum
ranges to 2-cover each candidate can be also found in linear time regarding the number of
ranges [25]. Since the intersection points between each line segment and VD2(S) are already
computed, finding which pieces of e1 and e2 are 2-covered by S takes linear time. Finding sets
P1 and P2 takes the same amount of time because there are at most n midpoints. However,
this generates up to n2 pairs of midpoints (pi, qi), pi ∈ P1 and qi ∈ P2. Since the algorithm
TRT is linear for each pair of points (according to Theorem 4.3 and having VD2(S) already
constructed), MRS(P (e1, e2)) and a 2-path between e1 and e2 can be found in O(n3 log n)

time. "

4.9 Closing Remarks and Future Research

This chapter was dedicated to the following optimisation geometric problem: minimise the
power transmission range of a set S of antennas to 2-cover a given region R or to ensure the
existence of a path on that region. The final complexities of the algorithms proposed to solve
this problem, regarding different types of regions, are shown in Table 4.1. In that table it is
considered that S is a set of n antennas, R a polygonal region with m vertices and M the
largest complexity of the convex pieces in which R is divided by adding k segments.

Analysing all the complexities of the algorithms proposed in this chapter, only one is
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Minimum 2-Coverage of Algorithm’s Complexity
Line segment O(n log n) time and O(n) space

Planar graph with m edges O(mn) time, m > log n

Path on a planar edge-weighted graph with m edges O(m) time, m > log n

Path on the plane (decision) O(n log n) time and O(n) space
Path on the plane Θ(n log n) time

Polygonal region with m vertices
O(mn + n log n) time

and O(mn) space

Convex polygonal region with m vertices
O(m + n log n) time
and O(m + n) space

Path on a polygonal region R (decision) O(knM) time
Path on a polygonal region R O(knM log mn) time

Path between any two points of a set of m points O((m + n) log n) time
Path between two line segments O(n3 log n) time

Other Problems Algorithm’s Complexity
Converting the union of lenses into a polygon P O(n log n) time

Constructing the shortest 2-path on P O((n + h2) log n) time [49]

Table 4.1: Complexities of the algorithms proposed in this chapter.

proven to be optimal (Theorem 4.4 in Section 4.4.2). The key question to reduce the remaining
complexities is whether there is another way to directly compute the point of the region or
path that needs the largest transmission range in order to be 2-covered. Such question is this
chapter’s main unresolved problem.

Given two points p and q on the plane, the algorithm introduced in Section 4.2 minimises
the antennas’ range to 2-cover a line segment connecting p to q. Since there is only a linear
number of intersection points to be studied, it is natural that this complexity can be lowered.
Nevertheless, that implies that the second order Voronoi diagram of S cannot be used in the
solution. There follows another problem where region R is still degenerated: R is a planar
graph G with m edges in Section 4.3. The most interesting aspect in this problem is the
computation of a minimum 2-covered path between two nodes of G. Since G can be regarded
as a model of a street network, a path on that graph may be seen as journey from one location
to another, where the user is always within reach of two antennas. As a result, any user
on that path is eligible to receive the service provided by the antennas, even if one of them
fails. This type of path and the minimum range of S that allows its existence can be found
in O(m) time (after a preprocess that runs in O(mn) time, assuming m > log n). In Section
4.4, the minimum transmission range to ensure the existence of a path on the plane is solved
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using a decision algorithm. Such algorithm (presented in Section 4.4.1) revealed to be quite
a breakthrough not only to solve the main problem in this section but also to solve other
problems in this chapter. Optimising the antennas’ range such that there is a 2-path between
two points on the plane can be solved in Θ(n log n) time. The lower bound of this complexity
is achieved by reducing the original problem to the Max-Gap problem [56]. Moreover, in that
section it is also shown how to compute the shortest 2-covered path between two points on
the plane using a polygon enclosed by the union of lenses.

Some other problems associated with this subject remain for future research. Consider
a complete edge-weighted graph whose nodes are points of S. The weight of each edge of
such graph is given by the Euclidean distance between the nodes it connects. The Euclidean
Minimum Spanning Tree, EMST, is a minimum spanning tree for this graph such that the
total length of its edges is minimised. For future research, how should p and q be chosen
in Section 4.4.2 to compute the largest edge of an EMST? It is known that an EMST of S

can be computed in O(n log n) time [72] and its largest edge can be found in linear time.
Moreover, the same question can be asked of the Gabriel graph [40]. Two points p and q

are connected through an edge of the Gabriel graph if the disc of diameter pq is empty (this
graph is a subgraph of the Delaunay triangulation). Can the problem solved in Section 4.4.2
compute the largest edge of the Gabriel graph as well? This graph has the Euclidean Minimum
Spanning Tree and the Nearest Neighbour Graph as subgraphs.

Finally in Section 4.5, R is regarded as a polygonal region with m vertices. It is shown
how to minimise the range of S to 2-cover the whole region in O(mn + n log n) time. This
upper bound is probably tight because there is the need to study mn intersection points.
However, this complexity is lowered to O(m + n log n) time if R is convex. With this in mind,
the minimisation of the antennas’ range to ensure the existence of a 2-path between two points
on R was solved using a division of R into convex pieces. Although the antennas’ range is
optimised to ensure the existence of a 2-path on R, it is never shown how to construct such a
path. Future research obviously passes through explaining how to construct a 2-path within
R and even how to construct the shortest 2-path. Currently, it is not clear how to do this
efficiently because the union of lenses restricted to R has an uncommon shape, some edges are
arcs while others are line segments.

The algorithms presented in Sections 4.7 and 4.8 solve a problem directed at optimising
the range of S to ensure the existence of a path between any pair of points of a set of points and
the existence of a path between two line segments, respectively. Future research associated with
the first problem passes through generalising points to other geometric objects, for example,
simple polygons. The algorithm that solves the second problem has the most challenging
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temporal complexity of all the algorithms proposed in this chapter: O(n3 log n). The reason
behind this is the fact that each step of the binary search takes O(n3) time. Decreasing this
complexity remains for future research.

To summarise the future research involving the problems discussed in this chapter, the
following studies are naturally associated with expanding these ideas and optimisation algo-
rithms to k-coverage, k > 2. As the signal decays with the distance from the antennas, it is
reasonable to consider that the energy needed by each antenna is an increasing function of a
power of the transmission range. Therefore, further research on minimising the energy spent
by a given network should take this model into account. Moreover, the antennas’ transmission
range may also be variable while time is passing by or even not fixed for all the antennas
(this subject has already been addressed for 1-coverage [57, 85]). Since the main reason to
study 2-coverage is associated with the assumption that devices fail, a future approach could
also take this into account using fallibility probability. Each device is assigned a probability
of failing and the 2-covered path should be found on the areas where the probability of both
devices failing is lower.



Chapter 5

Other Problems Involving Coverage

Given a set S of antennas with a given transmission range r ∈ R+, the objective of the first
part of this chapter is to decide which is the maximum coverage of a path within a polygonal
region R. Similarly to the previous chapter, distinct versions of this problem arise for different
types of regions: a line segment, a planar graph, a polygonal region and, to conclude, the whole
plane. The second part of this chapter introduces a more restrictive definition of coverage.
Given a point q on the plane, q is said to be π

2 -covered by antennas si and sj of S if the
angle !(si, q, sj) ≥ π

2 . This restriction ensures that the antennas surround their service area
uniformly. It is shown how to minimise the transmission range of S to π

2 -cover a point and how
to construct the π

2 -covered region and its contour. The Coverage Voronoi diagram, which is
associated with Embracing Voronoi diagrams, is also introduced in this chapter as an important
geometric tool to solve the latter problem.

5.1 Maximum Coverage of a Path within a Region

5.1.1 Introduction

This chapter is divided into two parts and the first part extends last chapter’s discussion:
coverage problems. Therefore, the bibliography regarding coverage presented in Chapter 4 is
still an important background for this section. For instance, the applications presented before
for sensor networks, such as habitat monitoring or weather forecast [81], remain pertinent; this
is also true for studies that optimise the coverage of the service area provided by a particular
sensor network [26, 57, 64, 65]. However, the most important related work is by Huang and
Tseng [46]. They proposed an algorithm to decide if every point on a polygonal region or

123
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in the service area of the sensor network is monitored by at least k sensors. Following their
approach to coverage, the objective of the next group of problems is to decide whether there is
a covered path within a polygonal region. And if so, calculate the maximum coverage of such
path. As the previous chapter, the type of coverage studied in the following discussion falls
into the category of best-case coverage, that is, it is intended to identify the “best” monitored
zones of a particular region.

Let S be a set of n points on the plane that represent the location of n devices that are
able to send or receive some sort of wireless signal, like antennas. Also assume that the devices
of S are homogeneous, that is, they all have the same power transmission range r ∈ R+, which
is fixed. An object is said to be k-covered by S if every point of such object is within range of
at least k antennas of S. It is apparent that this definition is a generalisation of the concept
of 2-coverage introduced in Chapter 4. Let MCS(x) denote the maximum coverage that S

provides to an object x. If D is the set of discs of radius r each centred at an antenna of S,
D = {D(si, r) : si ∈ S}, then MCS(x) = |{D(si, r) : x ∈ D(si, r), si ∈ S}|. This definition
is illustrated in Figure 5.1. In that example, point q1 is 3-covered since it is within reach
of antennas s1, s2 and s5, and consequently MCS(q1) = 3. A path between two points is
called a k-covered path or a k-path if every point of such path is k-covered by S. Since the
antennas’ transmission range is a given parameter, the algorithms proposed in the following
aim to calculate the maximum k ∈ N so that a k-path between two points on a polygonal
region R exists. This goal can be restated in another way: calculate the maximum number of
discs of D so that every point of a path within R is covered by the same number of discs.

















Figure 5.1: Set S with range r is represented by dots. Point q1 has MCS(q1) = 3 since it
is a point on D(s1, r) ∩D(s2, r) ∩D(s5, r). Point q2 is 1-covered by S since it is only inside
D(s2, r) and MCS(q3) = 4 since q3 is a point on the intersection of four discs.

There are several works involving this subject. For Kauc̆ic̆ and Žalikm [51], k-guarding a
surface patch is having it guarded by at least k guards. They proposed three heuristics (one
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of which is original) to find a minimum set of vertex guards that k-guard a given terrain. On
the other hand, Belleville et al. [23] consider that k-guarding a polygon P means that it is
possible to find a set of guards on the edges of P (at most one guard per edge) such that
every point on P is visible to at least k guards. They proved that such set exists to 1-guard
every polygon with holes and 2-guard every polygon with just one hole. Furthermore, they
also proved that not every polygon with holes is 2-guardable. Although already mentioned in
Chapter 2, the work by Efrat et al. [38] was mainly written under the topic of k-coverage.
They solve two distinct problems: where to locate a base station in order to optimise a given
network’s lifespan and how to minimise the number of sensors required to have every point
in a particular area “well covered”. The second problem is associated with multiple coverage
because of their definition of “good coverage”: a point on the plane is well covered if it is seen
by three sensors that form a triangle containing the point or if it is seen by two sensors that
are separated by an angle of at least α. The first definition is a variant of 3-coverage that
was already addressed in Chapter 2, whilst the second will be further discussed in the second
part of this chapter (Section 5.2). To conclude, Zhou et al. [84] proposed a centralised greedy
algorithm to compute a minimum energy-cost k-coverage (this algorithm extended an earlier
study by Wang et al. [80]).

As previously stated, Huang and Tseng [46] studied a similar problem to the one presented
in this section. They proposed an algorithm to decide if every point on a polygonal region
R or in the service area of the antennas is k-covered. The solution they found is based on
the boundary of the area covered by each antenna, that is, on the boundary of D(si, r) for
si ∈ S. They define si as k-perimeter-covered if every point on the boundary of D(si, r) is
k-covered by S\{si}. According to that definition, they calculate the pieces of the boundary
of D(si, r) that are within reach of other antennas. For each antenna that captures the signal
of si, they compute the starting and ending angle of the arc of D(si, r) that is within reach
of that particular antenna. Afterwards, they sort all these intervals into a list ranging from
0 to 2π. Finally, every element on said list is studied to determine the perimeter-coverage of
si. Assuming d is the number of antennas that are within reach of si, the perimeter-coverage
of si can be calculated in O(d log d) time. Overall, the perimeter-coverage of every antenna
is found in O(nd log d) time, which may add up to O(n2 log n) time if there are n antennas
and most of them are within range of the others. In the example in Figure 5.2, region R is
1-covered by S. Huang and Tseng also extended their decision problem to three dimensions
and solved it in O(nd2 log d) time [47]. In this situation, the region covered by each antenna
is modelled by a ball. This algorithm also handles the case where each antenna has a different
transmission range, that is, each ball has a different radius. To conclude, perimeter-coverage
can be improved if a crossing-coverage approach is used instead [45, 83].
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Figure 5.2: The regions of the polygon are coloured according to their coverage: colourless
faces are 1-covered, blue are 2-covered, purple are 3-covered, pink are 4-covered and the yellow
face is 5-covered.

The structure of the first part of this chapter is introduced in the following. Given a set
S of antennas with transmission range r ∈ R+, Section 5.1.2 decides which is the maximum
k ∈ N such that the line segment connecting points p and q on the plane is k-covered by
S. This algorithm will then be used in Section 5.1.3 to calculate the maximum coverage of
a path between two nodes of a geometric planar graph. It is also shown how to find such a
path. In turn, the idea introduced in Section 5.1.3 contributes to the resolution of the problems
presented in Sections 5.1.4 and 5.1.5. The problem of deciding which is the maximum coverage
of a path between two points within a polygonal region is analysed in Section 5.1.4 and the
case where the path exists on the plane is discussed in Section 5.1.5. Section 5.3 presents a
summary of the algorithms proposed in this chapter, as well as a discussion of the results along
with future research on the topic.

5.1.2 Maximum Coverage of a Line Segment

Given two points p and q on the plane, the following algorithm decides which is the maximum
k ∈ N so that the line segment connecting both points, pq, is k-covered. Its strategy is similar
to the one presented in Section 4.2 in the last chapter. Line segment pq is first divided into
several pieces and then each piece is analysed separately. Let I be the sorted set of the
intersection points between pq and D = {D(si, r) : si ∈ S}. Each pair of consecutive points of
I defines a piece of pq (see Figure 5.3). Consequent to the method used to find I, each of these
pieces is covered by the same antennas. In other words, the number of discs covering each
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piece of pq is constant. Therefore, the maximum coverage of pq can be calculated using only
the points of the line segment that are also points of I. Moreover, the maximum coverage of
i ∈ I can be calculated from the previous intersection point since the number of discs covering
two adjacent pieces of pq only differs by 1. As a result, it suffices to calculate the maximum
coverage of the first point of I, the rest follows either by adding or subtracting 1.


















     

Figure 5.3: Set S = {s1, . . . , s6} with range r is represented by dots. Yellow line segment pq

is divided into seven pieces and above each piece there is the number of discs that cover it;
MCS(pq) = min{3, 4, 3, 2, 3, 2, 3} = 2.

The following pseudo-code outlines the algorithm to calculate the maximum coverage of
pq, which is denoted by MCS(pq).

Algorithm Maximum Coverage of a Line Segment

Input: Set S of antennas with range r, points p and q

Output: MCS(pq)

1. I ← {{pq} ∩{ D(si, r) : si ∈ S}} ∪ {p, q};

2. Sort I = {i0, . . . , im} along pq;

3. MCS(i0) ← |{D(si, r) : i0 ∈ D(si, r), si ∈ S}|;

4. From j = 1 to m do

If a new disc covers ij ∈ I

Then MCS(ij) ← MCS(ij−1) + 1

Otherwise MCS(ij) ← MCS(ij−1)− 1

5. MCS(pq) ← min{MCS(i0), . . . ,MCS(im)}.
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The temporal complexity of the algorithm above is stated in the following result.

Theorem 5.1 Given a set S of n antennas with transmission range r ∈ R+ and two points p

and q on the plane, MCS(pq) can be calculated in O(n log n) time and O(n) space.

Proof : Since set S is formed by n antennas on the plane, set D also has n discs. There is a
linear number of intersection points between the arrangement of discs and pq since each disc
can only intersect pq twice. Let I be that set of intersection points plus p and q. Consequently,
sorting I takes O(n log n) time. While being computed, each intersection point ij ∈ I is flagged
to indicate if a new disc is covering the next piece of pq or not. The maximum coverage of
i0 ∈ I, the first point of I, is calculated in linear time. In turn, the maximum coverage
of each of the remaining intersection points can be easily calculated in constant time by
adding 1 to or subtracting 1 from the maximum coverage of the previous point. Therefore,
MCS(pq) = min{MCS(i0), . . . ,MCS(im)} can be calculated in linear time. In conclusion, the
temporal complexity for this procedure is O(n log n). Regarding space complexity, there is a
linear number of antennas and therefore a linear number of intersection points between the
discs of D and the line segment. Therefore, the algorithm takes O(n) space. "

Note that if there are many queries regarding the same set of antennas, there is another
solution that is more efficient. In this case, it is convenient to preprocess the arrangement of
discs D, which can be done in O(n2) time [31] if all discs have the same radius. That way,
each line segment connecting two points can only cross a linear number of discs (at most, it
crosses the same disc twice). The number of discs that cover each intersection point is given
by the faces of the arrangement. Consequently, the number of discs covering every piece of
the line segment is controllable in O(n) time. Finally, the minimum number of discs covering
every piece of the line segment is the maximum coverage of such line segment.

5.1.3 Maximum Covered Path on a Planar Graph

Let G = (N, E) be a connected geometric planar graph. The algorithm proposed in this
section calculates the maximum coverage of a path between two nodes of G. The maximum
coverage of the whole graph is not difficult to calculate as the following proposition shows.
Observe that this result is a generalisation of Theorem 5.1.

Proposition 5.1 Let S be a set of n antennas with transmission range r ∈ R+ and G a
connected geometric planar graph with m edges. The maximum coverage of G can be calculated
in O(mn log n) time and O(mn) space.
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Let ni and nj be two nodes of G, then a path connecting these nodes using only the
edges of G that are k-covered by S is a k-path (see Figure 5.4(a)). The following algorithm
calculates the maximum k ∈ N such that a k-path between nodes ni and nj , P (ni, nj), exists
on G. Such k is denoted by MCS,G(P (ni, nj)) or MCS(P (ni, nj)) if graph G is clear from the
context.







 























 





























 

Figure 5.4: Nodes of graph G are represented by squares. (a) The yellow path connecting n5

to n6 is a 3-covered path on G. (b) Each edge e of Gw has weight MCS(e).

In the following there is a description of the algorithm to calculate MCS(P (ni, nj)), as
well as to find a maximum covered path between ni and nj . First graph G = (N, E) is
transformed into edge-weighted graph Gw by assigning the weight w(e) = MCS(e) to each
edge e of the graph (see Figure 5.4(b)). Calculating the weights of the edges of E has the
same time complexity as calculating the maximum coverage of G. Therefore, and according to
Proposition 5.1, such procedure takes O(|E| × n log n) time and O(|E| × n) space. A k-path
on Gw between two nodes of N can only traverse edges whose weight is greater than or equal
to k. Consequently, a k-path between ni and nj that maximises the value of k is a path whose
lightest edge has the maximum weight possible. If the problem was the opposite, that is, find
a k-path connecting two nodes of Gw that minimises the weight of its heaviest edge, then it
could be solved by computing a minimum-weight spanning tree (MST). In contrast, for the
original problem there is the need to compute a maximum-weight spanning tree (MaxST).
There is a well known algorithm to find such tree: invert the weights of the original graph and
compute an MST of this new graph, which is in fact a MaxST of the original one. A MaxST
of the weighted graph shown in Figure 5.4(b) is represented in Figure 5.5.
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Figure 5.5: A maximum-weight spanning tree of Gw is represented by a solid yellow line.

If Tw is a MaxST of Gw, then it is known that a path on Tw between two of its nodes
is unique. Let the weight of a path on Gw be determined by the weight of its lightest edge.
The following proposition shows that the weight of a path on a MaxST of Gw is larger than
or equal to the weight of any path on Gw that connects the same nodes.

Proposition 5.2 Let Gw be an edge-weighted connected graph. For each path on Gw, assume
the path’s weight is given by the weight of its lightest edge. Then the path on a MaxST of Gw

connecting any pair of nodes of Gw is a maximum weight path between such pair.

Proof : Let Gw be an edge-weighted connected graph, ni and nj two of its nodes and Tw a
maximum-weight spanning tree (MaxST) of Gw. Assume that P (ni, nj) is the only path on
Tw connecting nodes ni to nj and e is its lightest edge. Consequently, P (ni, nj) has weight
w(e). Now suppose that path P ∗(ni, nj) on Gw is a maximum weight path between ni and
nj . Its weight is given by e∗, its lightest edge, and so w(e∗) > w(e). Since P (ni, nj) is lighter
than P ∗(ni, nj), the edge e is not an edge of P ∗(ni, nj). If paths P (ni, nj) and P ∗(ni, nj) are
united, then a cycle is created. Such cycle contains e, which clearly is its lightest edge. But
this contradicts the hypothesis, since the lightest edge of a cycle in Gw cannot be an edge of
a MaxST of Gw. Therefore, a maximum weight path between two nodes of Gw is the path on
Tw connecting those nodes. "

A MaxST of Gw found by the algorithm described above can now be used to solve the
original problem. The maximum k ∈ N such that there is a k-path between two nodes of Gw

can be calculated as the weight of the only path that exists on a MaxST of Gw between those



Other Problems Involving Coverage 131

nodes. What follows is therefore the core of the algorithm to calculate MCS,Gw(P (ni, nj)) and
P (ni, nj), taking advantage of a MaxST of Gw and of the Depth-First Search (DFS) algorithm
[42].

Algorithm Maximum Covered Path on a Graph

Input: Graph Gw, nodes ni and nj

Output: P (ni, nj), MCS,Gw(P (ni, nj))

1. Find Tw, a MaxST of Gw;

2. Compute P (ni, nj) on Tw using the DFS algorithm [42];

3. MCS,Gw(P (ni, nj)) ← min{w(e) : e ∈ P (ni, nj)}.

The following result states the temporal complexity of the previous algorithm.

Theorem 5.2 Let S be a set of n antennas, Gw an edge-weighted planar graph with m edges
and Tw a MaxST of Gw. Given two nodes ni and nj of Gw, P (ni, nj) and MCS,Gw(P (ni, nj))

can be found on Tw in O(m) time and space.

Proof : Constructing a MaxST of Gw by computing an MST of the same graph with inverted
weights takes O(m) time using an algorithm by Matsui [60] since Gw is a planar graph. Ac-
cording to Proposition 5.2, the path connecting ni and nj on a MaxST of Gw, Tw = (N, B), is
a maximum-weight path connecting those nodes on Gw. Such path can be found by travers-
ing Tw using the Depth-First Search technique [42], which takes O(|B|) time. Therefore, the
weight of the path just computed on Tw between ni and nj is MCS,Gw(P (ni, nj)). Regarding
the space complexity, graph Gw can be stored using O(m) space since it is a planar graph
with m edges. The MaxST of Gw is a subgraph of Gw, so it can be stored in the same amount
of space, as well as the maximum weight path found on such tree. "

5.1.4 Maximum Coverage of a Path on a Polygonal Region

As previously mentioned, the maximum coverage of a polygonal region was previously solved
by Huang and Tseng [46]. A related but different problem is solved in the following: given a
set S of antennas with transmission range r ∈ R+, a polygonal region R and two points p and
q on R, calculate the maximum integer k such that a k-path connecting p and q exists within
R. This problem can be solved using a similar idea to the one presented in the last section.
To this end, there is the need to construct an edge-weighted graph. The arrangement of discs
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of D divides the plane into regions of points that are covered by the same discs. Let DR be
the arrangement of discs confined to R, since that is the relevant part of the arrangement to
this problem (see Figure 5.6).





Figure 5.6: The arrangement DR is defined by the discs enclosed by R and is shown in blue.

For each face of DR, calculate its weight that is determined by the number of discs
covering such face. Next construct the dual graph of DR, denoted by D′

R, whose nodes are
the faces of DR and there is an edge between two of these nodes if the corresponding primal
faces share an edge. Points p and q act as nodes of D′

R by representing the faces of DR that
contain them. Since each face of DR is weighted, the dual nodes of D′

R are also weighted.
Consequently, graph D′

R can be transformed into an edge-weighted graph by assigning each
edge the minimum weight of the nodes it connects (see Figure 5.7). As a result, it is now
possible to compute a MaxST of D′

R. Such tree helps to compute the maximum coverage of a
path between p and q within R, which is denoted by MCS,R(P (p, q)).





Figure 5.7: The nodes of the dual graph D′
R are represented by squares. Black edges weight

1, blue weight 2, orange weight 3 and white weight 4.



Other Problems Involving Coverage 133

In the example in Figure 5.7, the maximum coverage of P (p, q) is 2, therefore a k-path
between p and q within R for k > 2 does not exist. Although the algorithm below does not
compute a maximum covered path between p and q, it outputs a sequence of faces of DR that
can be traversed in order to construct such a path. In the following, assume that i and j are
faces of DR and i′ and j′ are the respective dual nodes of D′

R. Assume also that the weight
of face i is represented by w(i) and w(i′j′) denotes the weight of the edge connecting the dual
nodes i′ and j′.

Algorithm Maximum Coverage of a Path on a Region

Input: Set S with range r, region R, points p and q

Output: MCS,R(P (p, q))

1. Construct DR, the arrangement of D restricted to R;

2. For each face i of DR do

w(i) ← |{D(si, r) : i ∈ D(si, r), si ∈ S}|

3. Construct the graph D′
R, dual of DR;

4. For every dual edge i′j′ ∈ D′
R do

w(i′j′) ← min{w(i), w(j)}

5. Compute T , a MaxST of D′
R and find P (p, q) on T ;

6. MCS,R(P (p, q)) ← min{w(e) : e ∈ P (p, q)}.

Theorem 5.3 Let S be a set of n antennas with transmission range r ∈ R+. Given two points
p and q on a polygonal region R with m edges, the maximum coverage of a path between p and
q within R can be calculated in O(n(n + m) log(n + m)) time.

Proof : Each disc of D may intersect all the other discs of the same set, so the number
of intersection points between them is O(n2). Further, observe that each edge of R can only
intersect each disc twice, so at most it intersects n discs. Therefore, R intersects D at most nm

times. Consequently, the total number of intersection points of the arrangements involving D

and R is O(n2+nm). Arrangement DR can be found by sweeping the plane, as long as the discs
are segmented in a way that each piece is monotone. Such sweep takes O(n(n+m) log(n+m))

time and it can be used to calculate the weight of each face of DR. Since DR has O(n(n+m))

faces and its dual graph is planar, the edge-weighted dual graph D′
R can be constructed in

O(n(n+m)) time, which is its number of edges. For the same reason and according to Theorem
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5.2, calculating MCS,R(P (p, q)) using a MaxST of D′
R takes O(n(n+m)) time. In conclusion,

MCS,R(P (p, q)) can be calculated in O(n(n + m) log(n + m)) time. "

5.1.5 Maximum Coverage of a Path on the Plane

Let p and q be two points on the plane, the following algorithm is the last of this part of the
chapter and it is proposed to calculate the maximum k ∈ N so that there is a k-path on the
plane between p and q. Such value is denoted by MCS(P (p, q)). Since a path between p and q

is not restricted to a graph or a polygonal region, this problem can be seen as a generalisation
of the problems presented in Sections 5.1.3 and 5.1.4. The following strategy is very similar to
the one discussed above and so a pseudo-code of the algorithm is omitted. First consider the
arrangement of discs of D, where the weight of each face of the arrangement is determined by
the number of discs that cover such face. Second, construct the dual D′ of D: each face of D

becomes a node of D′ and there is an edge between two of these nodes if the corresponding
primal faces share an edge. Consequently, every dual node has a weight associated. Graph
D′ is then transformed into an edge-weighted graph by assigning each edge the weight given
by the minimum weight of the nodes it connects. In Figure 5.8 there is an example of an
arrangement of discs of D and its dual graph D′. Third, find a maximum-weight spanning
tree (MaxST) of D′ and compute a path between p and q on that tree. Finally, assuming the
weight of the path just computed is the weight of its lightest edge, MCS(P (p, q)) is precisely
the weight of such path.

 

Figure 5.8: Arrangement of discs of D and its dual graph D′. The green edges of D′ weight
1, the orange weight 2 and the yellow weight 3.

In the example in Figure 5.8, the weight of the maximum weight path between p and
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q on the dual graph is 3, and so MCS(P (p, q)) = 3. The edges of D′ supporting such path
are represented by a solid yellow line in Figure 5.9. Neither the algorithm introduced in the
previous subsection nor this one actually compute a maximum covered path between p and q.
Notwithstanding this flaw, they both output a sequence of faces of the arrangement of discs
that can be traversed in order to construct a maximum covered path between p and q. This
subject is further discussed in Section 5.3.

 

Figure 5.9: A 3-path between p and q is represented by a solid yellow line. The edges of D′

that weight 3 but are not part of the path are represented by a dotted line.

The temporal complexity of the algorithm previously described is stated in the following
result.

Theorem 5.4 Let S be a set of n antennas with transmission range r ∈ R+ and p and q two
points on the plane. The maximum k ∈ N so that a k-covered path between p and q exists can
be calculated in O(n2) time.

Proof : Since set S is formed by n antennas with transmission range r ∈ R+, set D also has
n discs. As a result, the arrangement of discs can be computed in O(n2) time [31] because
all discs have the same radius r. The weight of each face of the arrangement of discs can be
calculated while the arrangement is being constructed. Therefore, the weights of the edges of
D′ are directly calculated as the minimum weight of their endpoints. Since the arrangement
of discs may have a quadratic number of faces, the number of edges of D′ may also add
up to O(n2) as they are both planar graphs. Consequently, computing a MaxST of D′ and
calculating MCS(P (p, q)) takes O(n2) time, as stated by Theorem 5.2. In conclusion, the
maximum k ∈ N so that a k-covered path between p and q exists can be calculated in O(n2)
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time. "

5.2 Coverage Restricted to an Angle

5.2.1 Introduction

The second part of this chapter is devoted to a variation of 2-coverage. As previously discussed,
a point q is 2-covered by a set S of n antennas if q is within range of at least two antennas. The
concept introduced in the following is more restrictive than 2-coverage. A point q is said to be
α-covered if for two antennas of S, si and sj , the angle !(si, q, sj) ≥ α. In other words, point q

is α-covered if it sees sisj with an angle of at least α. This definition ensures that the antennas
surround their service area uniformly, instead of favouring a particular side. Furthermore, this
definition can also be used to localise an object within a terrain, where two sensors are needed
to determine the object’s position. Observe that the object and the two sensors should not
be nearly collinear as this translates into positioning errors. In the discussion that follows,
quality parameter α is assumed to be constant and equal to π

2 (see Figure 5.10(a)). Therefore,
π
2 -coverage will be referred to simply as coverage throughout this section.

 

















Figure 5.10: (a) Point q is π
2 -covered because !(s1, q, s2) ≥ π

2 . (b) Blue wedge passing through
s1 and s2 whose apex is located at the boundary of Dd(s1, s2) has a right angle.

Given two antennas si and sj , let Dd(si, sj) denote the disc of diameter sisj . It is known
that any wedge passing through si and sj whose apex is located at the boundary of Dd(si, sj)

has a right angle (see Figure 5.10(b)). Furthermore, any wedge passing through si and sj

whose apex is inside Dd(si, sj) has an angle greater than π
2 . As a result, the area covered by

two antennas si and sj is bounded by Dd(si, sj). A set of antennas that covers q is called a
coverage set for q. Using the same notation that was introduced in Chapter 4, let MRS(q)

denote the minimum power transmission range of S that covers point q. Assume that the
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antennas of S = {s1, . . . , sn} are sorted in ascending order of their distance to q; that is, s1

is the closest antenna to q, s2 is the second closest antenna to q and so on. Now suppose
{s1, . . . , si} is a coverage set for q whilst {s1, . . . , si−1} is not. This supposition implies that
si is the closest antenna to q that together with the other antennas of S that are closer to q

than si form a coverage set for q. Consequently, MRS(q) = d(si, q).

Efrat et al. [38] studied how to minimise the number of sensors required to have every
point on a given region R covered by two sensors at angle α. That is, each point on R is
separated from the sensors with an angle within the range [α,π − α]. They assume that the
set of sensors exists within a simple polygon P , which in turn contains region R, and find a
small subset of sensors on P that α-covers R. Contrary to their work, the problems presented
in this section do not aim to minimise the number of sensors but to minimise the devices’
range while keeping a given object π

2 -covered.

The problems presented in the following are devoted to π
2 -coverage. Section 5.2.2 shows

how to minimise the antennas’ range so that a given point on the plane is covered. The
locus of all points covered by S and its boundary are constructed in Section 5.2.3. Some
properties of both structures are also established in that section. The variation of Embracing
Voronoi diagrams associated with this type of coverage, which is called the Coverage Voronoi
diagram, is introduced in Section 5.2.4 where an algorithm to construct it is also proposed.
This subject is concluded in Section 5.3 with a brief summary of the presented algorithms and
future research.

5.2.2 Minimum Transmission Range to Cover a Point

Let S be a set of n antennas and q a point on the plane. To calculate MRS(q), there is
the need to locate the closest antenna sc ∈ S to q that together with some other antenna
sj , such that d(sj , q) < d(sc, q), form a coverage set for q. The first reasonable idea to find
such an antenna is to search the smallest diametral disc containing q and verify if sc defines
its diameter. Unfortunately, this is not true. As Figure 5.11(a) illustrates, the smallest disc
containing q is Dd(s1, s3) (shown in blue) but MRS(q) is given by the distance between q and
s2. Moreover, it is not even true that the closest antenna to q is part of a coverage set for q (see
antenna s1 in Figure 5.11(b)). Therefore, the straightforward usefulness of the closest antenna
to q or of the smallest diametral disc containing q is not clear when it comes to calculate
MRS(q). However, applying a similar strategy to the one used in the “Minimum Embracing
Range III” algorithm (presented in Section 2.5.1 in Chapter 2) solves this problem, as it is
shown in the following pseudo-code.
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Figure 5.11: (a) The smallest disc containing q is Dd(s1, s3) (shown in blue) and MRS(q) =

d(s2, q) = r. (b) The closest antenna to q is s1, which is not part of any coverage set for q,
MRS(q) = d(s3, q) = r.

Algorithm Minimum Coverage of a Point

Input: Set S of n antennas, point q

Output: MRS(q)

1. Divide the lights of S into four quadrants with origin at q;

2. R ← {d(si, q) : si ∈ S};

3. Perform a binary search on R = {r1, . . . , rn}:

For the median range ri ∈ R do

S′ ← {si ∈ S : d(si, q) ≤ ri}

If q is covered by S′

Then proceed the search on R ← {rj ∈ R : rj ≤ ri}

Otherwise proceed the search on R ← {rj ∈ R : rj > ri}

4. The final range is MRS(q).

To decide if point q is covered by a set of antennas S′ there is the need to study how the
antennas are distributed through the quadrants. If there is an antenna on every quadrant,
then q is clearly covered by S′. If there are precisely two empty quadrants which are opposite
to each other, then q is covered by S′ because a diametral disc defined by an antenna on each
quadrant contains q (see Figure 5.12(a)). On the other hand, if the two empty quadrants are
adjacent, then there is the need to calculate the angle β between q and the outermost antennas
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the non-empty quadrants. If β ≥ π
2 then q is covered by S′, otherwise q is not covered. The

first case is illustrated in Figure 5.12(b) and the second in Figure 5.12(c).















 

















Figure 5.12: (a) Point q is covered and MRS(q) = d(s1, q) = r. (b) Point q is covered since
β ≥ π

2 , and therefore q ∈ Dd(s1, s3). (c) Point q is not covered since β < π
2 .

The following theorem states the complexity of the algorithm proposed above.

Theorem 5.5 Let S be a set of n antennas and q a point on the plane. The minimum
transmission range of S that covers q can be calculated in O(n) time and space.

Proof : Since S is formed by n antennas, dividing the antennas into quadrants and find set
R = {d(si, q) : si ∈ S} can be done in linear time. Calculating the median of the distances of
R also takes linear time [25]. In each step of the binary search there is the need to decide
if a given set S′ ⊆ S is a coverage set for q. While the binary search is being performed on
the lowest half of R, every antenna of S′ is studied. However, once the search switches to the
highest half, the antennas on the lowest will not be studied again since the outermost antennas
of the previously failed verification are saved to the next step. Therefore, the binary search

is performed in O



n +
log2(n)∑

i=1

n

2i



 = O(n) time. Consequently, the minimum transmission

range of S that covers q can be calculated in linear time. Regarding space complexity, the list
R of distances needs O(n) space to be stored, as well as set S. "

Observe that all distances on list R are candidates to be the minimum transmission range
of S that covers q. In the worst case, the “Minimum Coverage of a Point” algorithm has to
analyse every antenna of S. Therefore, a lower bound for this algorithm is Ω(n) time, which
combined with the previous theorem makes the linear complexity of this algorithm optimal.
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5.2.3 Covered Region and its Contour

As previously mentioned, given two antennas si and sj of S, the diametral disc Dd(si, sj)

bounds the points on the plane that are covered by both antennas. Therefore, it is not hard to
realise that the region on the plane that is covered by S is enclosed by the union of diametral
discs defined by each pair of antennas of S. This observation leads to the following result.

Proposition 5.3 Given a set S of n antennas, the region on the plane that is covered by S

can be found in O(n3 log n) time.

Proof : As set S is formed by n antennas, there are O(n2) pairs of antennas each defining a
distinct diametral disc. Since each of these discs can intersect all the others, there are up to
O(n3) intersection points in this arrangement. Consequently, sweeping the plane to compute
the arrangement of diametral discs takes O(n3 log n) time. As previously mentioned, this
arrangement of discs encloses the region on the plane that is covered by S. "

In Figure 5.13(a) there is an example of a region covered by six antennas. Such region is
shown in blue and the diametral discs defined by each pair of antennas are represented by a
dotted line. Also clear from that image is the fact that the region covered by S contains the
convex hull of S, which is represented by a solid green line. This is not a coincidence as the
following lemma shows.

Lemma 5.1 Given a set S of antennas, the region on the plane covered by S, defined by the
union of all the diametral discs between every pair of antennas, contains the convex hull of S.

Proof : Points on the boundary of CH(S) are clearly contained in the diametral discs formed
by the antennas that define such edges. Let q be point inside CH(S) and assume that the
convex hull is triangulated (see Figure 5.13(b)). Suppose q is a point on triangle !(si, sj , sk).
If !(si, sj , sk) is an obtuse triangle, meaning it has an angle larger than π

2 , then q is inside the
diametral disc formed by the antennas located at the acute vertices. This is straightforward
to see since the obtuse angle is also inside such diametral disc (otherwise the angle would be
smaller than π

2 ). If !(si, sj , sk) is an acute or right triangle, then q is inside the diametral disc
formed by the antennas that define the closer edge of the triangle to q. Let such antennas be
si and sk (see Figure 5.13(b)), then this holds because !(si, q, sk) > π

2 . Since point q is always
inside some diametral disc defined by two antennas of S and can be any point on CH(S),
CH(S) is contained in the union of these diametral discs. In other words, CH(S) is contained
in the region covered by S and this is precisely the assertion of the lemma. "
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Figure 5.13: Set S is represented by dots. (a) The region covered by S is shown in blue, the
diametral discs in a dotted line and the convex hull of S in a solid green line. (b) Point q

belongs to !(si, sj , sk) that is part of the triangulation of CH(S), !(sk, q, si) > π
2 .

Note that the boundary of the union of the diametral discs defined by every pair of
antennas of S encloses the points on the plane that are covered by S. As previously mentioned
in Section 2.5.3 in Chapter 2, the boundary of this type of regions, so called depth contours,
is an appropriate tool for data visualisation. What follows is therefore a method to construct
the contour of the region covered by S, which is denoted by C(S). It is straightforward to see
that the diametral discs formed by antennas that are also vertices of CH(S) are part of this
contour (see Figure 5.13(a)). In fact, these antennas are the key to construct C(S) as stated
in the following theorem.

Lemma 5.2 Only the antennas of S that are vertices of CH(S) are relevant to construct the
contour of the region covered by S.

Proof : Let si be an antenna of S inside CH(S) and !(sj , sk, sl) a triangle formed by three
other antennas such that si is inside !(sj , sk, sl) and sj , sk and sl are vertices of CH(S).
Given the set D& = {Dd(sj , sk), Dd(sj , sl), Dd(sk, sl)}, in the following it is proven that any
diametral disc defined by si and some other antenna of S is contained in D&. Consider the
lines tangent to Dd(si, sj) at sj and Dd(si, sl) at sl (see Figure 5.14(a)). Disc Dd(si, sj) only is
part of the contour of the region covered by S if the tangent line at sj is not inside Dd(sj , sk)

or Dd(sj , sl) in some neighbourhood of sj . On the same basis, Dd(si, sl) only is part of C(S)
if the tangent line at sl is not inside Dd(sl, sk) or Dd(sl, sj) in some neighbourhood of sl.
However, this only happens if si is outside !(sj , sk, sl) (see Figure 5.14(b)). The tangent line
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at sj is perpendicular to the edge sjsl if si is a point on that edge. If si is outside !(sj , sk, sl),
then the tangent line at sj is not inside Dd(sj , sk) or Dd(sj , sl) in some neighbourhood of sj ,
meaning that Dd(si, sj) and Dd(si, sl) are part of the contour. However, this is impossible
since si is assumed to be inside CH(S). Therefore, the antennas inside CH(S) are not relevant
to construct the contour of the region covered by S. "



 











 

Figure 5.14: (a) None of the diametral discs defined by si appear on the pink contour. (b) Discs
Dd(si, sj) and Dd(si, sl) are part of the pink contour since si /∈ !(sj , sk, sl).

The following lemma paves the way to start the construction of C(S) by proving that a
piece of the diametral disc defined by the leftmost and topmost vertices of CH(S) is an arc of
C(S).

Lemma 5.3 Let si and sj of S be the leftmost and topmost vertices of CH(S), respectively.
A piece of Dd(si, sj) is an arc of the contour of the region covered by S.

Proof : Suppose Dd(si, sj) is not part of C(S), that is, every point on Dd(si, sj) is contained
in other diametral discs defined by antennas of S. Consider the vertical line li that passes
through si and the horizontal line lj that passes through sj . Let q be the intersection point
between li and lj . Point q is on Dd(si, sj) because !(si, q, sj) is a right angle. If q was inside
another diametral disc, for example, Dd(sk, sl) then !(sk, q, sl) > π

2 . But that is impossible
since it implies that either sl is on the left of li or sk is above lj . Therefore, q is a point of
C(S), as well as some of its neighbouring points on Dd(si, sj). "

What follows is therefore an algorithm to construct C(S), starting with the diametral
disc defined by the leftmost and topmost vertices of CH(S). The algorithm works with two
pointers, p and q, that always point at vertices of CH(S). Since computing CH(S) induces a
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convex ordering of the antennas of S, function pn ← next(p) points pn at the next vertex of
CH(S) in that same order. A ray from si to infinity passing through sj is denoted by −−→sisj and
the boundary of a diametral semicircle defined by si and sj is denoted by SC(si, sj). Let Q be
a queue that only stores two points and top(Q) and bottom(Q) the functions that retrieve the
element at the top of Q and bottom of Q, respectively. Function insert(i, Q) inserts point i

at the top of Q and remove(bottom(Q)) removes bottom(Q) from Q.

Algorithm Covered Region Contour

Input: Set S of antennas
Output: C(S), the contour of the region covered by S

1. Compute CH(S), the convex hull of S;

2. Let p and q point at the leftmost and topmost vertices of CH(S),
respectively;

3. Initialise pn ← next(p), qn ← next(q), C(S) ← ∅ and Q ← ∅;

4. While an arc on SC(p, q) ! C(S) do

(a) Ip ← SC(p, q) ∩ −→ppn, Iq ← SC(p, q) ∩ −→qnq

(b) If Ip = Iq = {i} then

insert(i, Q)

p ← pn, pn ← next(p), q ← qn, qn ← next(q)

Else choose the first intersection i ∈ {Ip ∪ Iq} from p to q

If i ∈ Ip then

insert(i, Q), p ← pn, pn ← next(p)

Else

insert(i, Q), q ← qn, qn ← next(q)

(c) If |Q| > 1 then

C(S) ← C(S)∪{arc on SC(p, q) from bottom(Q) to top(Q)}

remove(bottom(Q))

In Figures 5.15 and 5.16 there is a step by step example of the previous algorithm con-
structing the contour of a region covered by six antennas. Pointers p and q are initialised
by pointing at the leftmost and topmost vertices of CH(S), respectively (see Figure 5.15(a)).
The algorithm starts at these particular points since, according to Lemma 5.3, a piece of the
diametral disc defined by p and q is part of C(S). There are two intersection points between
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SC(p, q) and rays −→ppn and −→qnq. Since the first intersection (point A) is found on ray −→qnq,
pointer q (followed by qn) moves to the next vertex of CH(S). Figures 5.15(b) and 5.15(c)
show the construction of the first piece of C(S). In Figure 5.15(d) there is an example of what
happens when both rays have the same intersection point. In that case, the four pointers
move to the next vertex of CH(S). The rest of the algorithm’s steps until C(S) is completely
constructed are shown in Figure 5.16.

Figure 5.15: (a) Point A is the first intersection point between the rays and SC(p, q). (b) The
arc on SC(p, q) from A to B belongs to C(S). (c) The arc on SC(p, q) from B to C belongs to
C(S). (d) Both rays have the same intersection point, which is a vertex of C(S). Then each
pointer moves to the next vertex.

The following proposition states that the union of arcs constructed by the algorithm
described above is indeed the contour of the region covered by S.

Proposition 5.4 Given a set S of antennas on the plane, the union of arcs constructed by
the previous algorithm is the contour of the region covered by S.
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Figure 5.16: The antennas of S are represented by dots and C(S) by a solid pink line. Last
steps to construct the contour of the region covered by S, which is complete in the last image.

Proof : A point i on the boundary of a semicircle defined by antennas sj and sk, SC(sj , sk),
is a point of C(S) if !(sj , i, sk) is a right angle. Moreover, all the other antennas of S have
to be inside the wedge formed by the angle !(sj , i, sk). This is a necessary condition since it
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ensures that i is not inside any other diametral disc formed by the rest of the antennas (see
Figure 5.17(a)). Therefore, the neighbouring points of i outside SC(sj , sk) are not covered by
S, contrary to what happens to the ones that are inside such semicircle. Consequently, i is a
point of C(S).

 







Figure 5.17: (a) Point i is a point of C(S) since all the antennas of S\{sj , sk} are inside the
purple wedge defined by the right angle !(sj , i, sk). (b) The pink contour of the region covered
by six antennas arranged to form an hexagon is the union of twelve arcs.

According to Lemma 5.3, the first semicircle considered, SC(p, q), has an arc that is part
of C(S). That arc ends at the first intersection point i between SC(p, q) and −→ppn or −→qnq. If
point i is found on −→qnq, that means the angles !(p, i, q) and !(p, i, qn) are both right angles
(see Figure 5.16(d)). Therefore, the vertex pointed by qn is on the wedge formed by the angle
!(p, i, q). Consequently, the points on SC(p, q) after i no longer belong to C(S) because the
angles between each of these points and pointers p and qn are larger than π

2 . The algorithm
handles this situation by moving pointers q and qn to the following vertices of CH(S) (see
Figure 5.16(e)). As a result, SC(p, q) is updated and the points along this new arc are part of
C(S) from i to the next intersection with −→ppn or −→qnq. If the intersection i is an intersection point
between SC(p, q) and −→ppn, then !(p, i, q) and !(pn, i, q) are both right angles. Exactly like
the previous situation, these pointers are actualised so that SC(p, q) is updated to SC(pn, q).
A piece of the latter is then the new arc of C(S). In the case the intersection point i occurs
between SC(p, q) and both rays (see Figures 5.15(d) and 5.16(c)), then i is a vertex of C(S).
The wedge formed by the right angle !(p, i, q) contains all the antennas of S and so it is a
point of C(S). Since there are no more points to follow on that semicircle, each pointer has
to move to the next vertex of CH(S). The new arc starts on vertex i and is part of C(S) until
the next intersection with −→ppn or −→qnq is found.
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The algorithm halts when the current semicircle has been previously analysed, that is, a
piece of such semicircle is already part of C(S). In conclusion, the union of arcs constructed
by the previous algorithm is the contour of the region covered by S. "

The following proposition determines the complexity of C(S).

Proposition 5.5 Given a set S of n antennas on the plane, assume that CH(S) has m ≤ n

vertices. The contour of the region covered by S consists of 2m arcs at most.

Proof : Let CH(S) be the convex hull of S formed by m ≤ n vertices. Pointers p and q start
pointing at SC(p, q) but the first arc that is really part of C(S) is the one considered by the
algorithm in the second iteration. Besides the endpoints of these two arcs, the pointers never
stop twice at the same vertices of CH(S) because the algorithm halts when an arc that is
already part of C(S) is found. Once the algorithm is finished, every vertex of CH(S) has been
analysed. Since the pointers cannot move backwards and q is always ahead of p, each pointer
stops at most m times before reaching the first arc of the contour. In conclusion, both pointers
stop at most 2m times, which means that C(S) consists of 2m arcs at most. "

This proposition proves that C(S) has linear complexity. Note that C(S) is only formed
by a number of arcs that is twice the number of vertices of CH(S) if the pointers on the
algorithm never move simultaneously. For example, this situation occurs when the antennas
of S are in convex position since all of them contribute to C(S). Figure 5.17(b) illustrates this
with six antennas arranged to form an hexagon. Therefore, the contour of the region covered
by them is the union of twelve arcs. The complexity of the algorithm that constructs this
contour is analysed in the following.

Theorem 5.6 Given a set S of n antennas on the plane, the contour of the region covered by
S can be constructed in O(n log n) time and O(n) space.

Proof : Constructing the convex hull of S, CH(S), takes O(n log n) time and induces a convex
ordering of the antennas of S that are simultaneously vertices of CH(S). Therefore, each
pointer moves to the next vertex of CH(S) in constant time. The intersection points between
the current semicircle SC(p, q) and rays −→ppn and −→qnq are also computed in constant time since
each ray only intersects SC(p, q) once. According to Proposition 5.5, C(S) is the union of a
linear number of arcs. Since each arc of the contour can be found in constant time, the whole
contour can be constructed in O(n) time. Regarding space complexity, there is the need to
store the antennas of S, the ordering of the antennas that form the convex hull and the arcs
of C(S), which can all be done using O(n) space. "
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Corollary 5.1 Let S′ be the subset of the antennas of S that are also vertices of CH(S). Then
for every antenna si ∈ S′ there is a piece of SC(si, sj), for some antenna sj ∈ S′, that is part
of C(S).

Proof : Whenever pointers p and q stop, a piece of SC(p, q) is used to construct C(S). Ac-
cording to the algorithm’s construction of C(S), pointers p and q stop at every antenna of S′.
Therefore, for every si ∈ S′ there is a piece of SC(si, sj), for some antenna sj ∈ S′, that is
part of C(S). "

5.2.4 The Coverage Voronoi Diagram

Figure 5.18: Coverage Voronoi diagram of four antennas (blue, purple, yellow and pink). Some
of the perpendicular bisectors between the antennas are represented by a dashed line.

The last subject discussed in this section merges coverage and Embracing Voronoi di-
agrams, which were discussed in Chapter 3. Such structure is called the Coverage Voronoi
diagram and is introduced below. Following the line of reasoning of Chapter 3, the Coverage
Voronoi diagram is a structure that helps to efficiently recalculate the antennas’ minimum
range to keep any moving points covered. As before, let S be a set of n antennas on the
plane. The minimum transmission range to cover a point q, MRS(q), is given by the distance
between an antenna sc ∈ S and q. Therefore, such antenna sc is the closest antenna to q so
that q is inside Dd(sc, sj) for some antenna sj ∈ S that is closer to q than sc. Now consider
the partition of the plane into sets of points that share their closest antenna according to
the previous conditions. The resulting diagram can be seen in Figure 5.18. The Coverage
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Voronoi diagram can be constructed using the following algorithm, which takes advantage of
the Minimum Coverage of a Point algorithm presented in Section 5.2.2.

Algorithm Coverage Voronoi diagram

Input: Set S of n antennas
Output: The Coverage Voronoi diagram of S

1. Compute all the perpendicular bisectors between the antennas;

2. Dd ← {Dd(si, sj) : si $= sj ∈ S};

3. For each face f of arrangement of discs Dd do

(a) Intersect f with the perpendicular bisectors between the an-
tennas whose diametral discs cover f

(b) For each new subdivision of f do

i. Select an interior random point q

ii. Find the antenna sc ∈ S defining MRS(q) using the
Minimum Coverage of a Point algorithm

iii. Assign all the other points on the subdivision to sc

Figure 5.18 illustrates a Coverage Voronoi diagram of a set of four antennas. Each antenna
has a different colour associated and its Coverage Voronoi region is represented by that colour.
The temporal complexity of the previous algorithm is stated in the following theorem.

Theorem 5.7 Given a set S of n antennas, the Coverage Voronoi diagram of S can be con-
structed in O(n5) time.

Proof : Since set S is formed by n antennas, there are up to O(n2) diametral discs and
perpendicular bisectors between the antennas. The arrangement of diametral discs can be
found using a plane sweep that takes O(n3 log n) time. Each face f of the arrangement
is divided into O(n2) regions when intersected with the perpendicular bisectors previously
computed. For each of these regions, select a random point there and find the antenna defining
its minimum transmission range using the algorithm Minimum Coverage of a Point (proposed
in Section 5.2.2). Every point on this region is then assigned to the antenna outputted by the
algorithm. According to Theorem 5.5, such antenna can be found in O(n) time. Consequently,
constructing the Coverage Voronoi diagram restricted to a face of the arrangement of discs
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takes O(n3) time. Since there are O(n2) faces, the whole diagram can be constructed in O(n5)

time. "

The Coverage Voronoi diagram helps to calculate the minimum transmission range needed
to cover several objects and not only points. For example, a given line segment e can be overlaid
on the diagram and divided into several pieces. The minimum transmission range that covers
each piece can be easily calculated using the diagram and the minimum transmission range
that covers all these pieces is the minimum transmission range that covers e. This method can
also be applied to any type of polygons. However, not much is known about this diagram and
further research is needed to better understand this structure. This will be further discussed
in the following section.

5.3 Closing Remarks and Future Research

Given a set S of n antennas with transmission range r ∈ R+, the problems presented in the first
part of this chapter aimed to calculate the maximum k ∈ N so that a k-covered path between
two points on a given region R exists. The final complexities of the algorithms proposed to
solve this problem regarding different types of regions are shown in Table 5.1. Two of the
following results are by Huang and Tseng [46, 47] but can also be consulted in the table below
since they are relevant to this subject.

Maximum Coverage of Algorithm’s Complexity
Line segment O(n log n) time and O(n) space

Planar graph with m edges O(mn log n) time and O(mn) space
Path on an edge-weighted graph with m edges O(m) time and space

Polygonal region R O(n2 log n) time [46]
Cuboidal region R O(n3 log n) time [47]

Path on polygonal region R with m edges O(n(n + m) log(n + m)) time
Path on the plane O(n2) time

Table 5.1: Complexities of the algorithms proposed to maximise the coverage of a path within
a region.

The first two sections studied the problem where the region is degenerated into a line
segment and a planar graph. In the case of the planar graph G with m edges, the maximum
covered path between two arbitrary nodes of G can be found in O(m) time after a preprocess
that runs in O(mn log n) time. Although the last two algorithms finish with a sequence of
regions over which a maximum covered path can be found, it is not known how to find such
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path. It is clear that the path found on a MaxST of the dual graph cannot be used because
its edges may cross undesirable regions. The fact that the regions of the arrangement of discs
are not convex does not help either. It is not clear what points of those regions should be
selected in order to form a path. Future research involving this topic is naturally associated
with expanding these ideas to other types of regions. Moreover, since these problems are based
in real-life situations, it is reasonable to consider the generalisation of these results to higher
dimensions. For example, when using three dimensions all the results can be directly applied
to positioning problems.

The second part of this chapter, which starts in Section 5.2, introduced the α-coverage
that is a concept associated with 2-coverage but more restrictive. Quality parameter α was
considered to be fixed and equal to π

2 for all problems involving this subject. Given a set S of
n antennas, Table 5.2 summarises the results associated with π

2 -coverage that were achieved
in this chapter. In that table, “M.T.R." means minimum transmission range.

Problem Algorithm’s Complexity
M.T.R. to π

2 -cover a point O(n) time and space
Compute region π

2 -covered by S O(n3 log n) time
Size of the contour of the region π

2 -covered by S O(n)

Construct the contour of the region π
2 -covered by S O(n log n) time and O(n) space

Construct the Coverage Voronoi diagram of S O(n5) time

Table 5.2: Complexities of the algorithms proposed to solve problems involving π
2 -coverage.

In Section 5.2.3 it was shown how to construct the region π
2 -covered by S. The contour

of this region, C(S), was also introduced in this section as well as an algorithm to construct
it. Some properties of these structures were analysed, as is the case of the linearity of the
contour. This is an important property since it highlights the future possibility of achieving
a linear time algorithm to construct C(S). The Coverage Voronoi diagram was introduced
and constructed in Section 5.2.4. This diagram helps to calculate the minimum transmission
range needed to π

2 -cover several geometrical objects, for example, line segments or polygons.
It is also a basis to efficiently recalculate the antennas’ minimum range to keep any moving
points π

2 -covered. However, not much is known about this diagram and further research is
needed to better understand this structure. For example, it is lacking a zone theorem: how
many regions of the diagram are crossed by a line? According to the algorithm proposed
to construct the Coverage Voronoi diagram, a line crosses O(n4) regions since each face of
the arrangement of diametral discs is divided into O(n2) smaller pieces. Nevertheless, this
is probably excessive and it seems reasonable to assume that a line crosses fewer regions of
the diagram. Such a theorem would probably help to significantly improve the complexity
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of this type of optimisation problems. Moreover, the study of the diagram’s properties poses
an interesting challenge and opens way to improve the temporal complexity of the current
algorithm as well.

Using a similar approach to the one presented in the beginning of this chapter, future re-
search can address π

2 -coverage with limited transmission range. In this variation, each antenna
has limited transmission range r ∈ R+. Consequently, the region π

2 -covered by antennas si

and sj of S no longer is defined as the diametral disc Dd(si, sj). Instead, this region is given
by D(si, r)∩D(sj , r)∩Dd(si, sj). Therefore, as the example in Figure 5.19(a) illustrates, the
region π

2 -covered by S with range r is given by

⋃

si,sj∈S

(D(si, r) ∩D(sj , r) ∩Dd(si, sj)).

There are O(n2) diametral discs, and the lens between the discs centred at the antennas of
radius r can be computed in constant time. Since each lens intersects at most four times the
diametral disc that contains it, the region π

2 -covered by each pair of antennas with range r

can be found in constant time. If every disc is divided in monotone pieces, such arrangement
can be found in O(n3 log n) time using a plane sweep. Several problems identical to the ones
presented in Sections 5.1.2, 5.1.4 and 5.1.5 can be addressed using this variant.

 






























Figure 5.19: (a) Blue region is π
2 -covered by S with range r. (b) Purple region is α-covered

for α = 2
3π. (c) Distance r2 is the minimum embracing range to 1-well illuminate q and it is

larger than r1, which is the minimum transmission range to α-cover q, for π
2 ≤ α ≤ 2

3π.

Future research concerning this definition of coverage also includes the study of cases
where the angle α is different from π

2 (see Figure 5.19(b)). For obtuse angles, the region α-
covered by S may not be connected and the probable existence of holes will surely rise the
complexity of the α-covered region. Note that if the angle α is large enough, the arcs become
the line segments that connect the antennas. This subject also involves 1-good illumination
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(introduced in Chapter 2): if π
2 ≤ α ≤ 2

3π, then the minimum transmission range to α-cover
a point is less than or equal to the minimum embracing range to 1-well illuminate that point
(see Figure 5.19(c)). For this interval, every closest embracing triangle is contained in the
α-covered region and as some points on the plane are α-covered but not 1-well illuminated,
the α-coverage is less restrictive than 1-good illumination.

To conclude, the algorithms presented to calculate the maximum k ∈ N so that a k-covered
path between two points on a given region exists were studied for four different types of regions.
Future research is aimed at studying this problem applied to other types of regions, as well as
computing the k-covered path within every type of region. Moreover, translating the previous
results to higher dimensions is also an interesting challenge given its practical applications.
Although the second part of this chapter presented compelling problems, most of them remain
unresolved. This is particularly evident in the case of the Coverage Voronoi diagram. Each of
these concepts merits a deeper analysis in future research, since it is clear that such studies
will give rise to new and interesting results.



List of Notations

The following list details the notations introduced in this thesis in order of appearance.

Notation Description

CH(S) Convex hull of set S

int(x) Interior of object x

d(p, q) Euclidean distance between points p and q

CET(q) Closest embracing triangle for point q

MERS(x) Minimum Embracing Range of S that 1-well illuminates x

D(si, r) Disk of radius r centred at si

Ar(S) Region illuminated by all lights of set S with range r

!(si, sj , sk) Triangle formed by si, sj and sk

MERS(pq) Minimum Embracing Range of S that 1-well illuminates pq

PB(sisj) Perpendicular bisector between sj and sk

MERα(q) Minimum embracing range that well α-illuminates q

E-VR(si, S) Embracing Voronoi region of si with respect to S
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Notation Description

E-VD(S) Embracing Voronoi diagram of set S

VDk(S) kth order Voronoi diagram of S

Lk(S) Set of sites of S whose closest embracing number is equal to k

OE-VD(S) Orthogonal Embracing Voronoi diagram of S

MRS(x) Minimum Power Transmission Range of S

that 2-covers an object x

VD2(S) Second Order Voronoi Diagram of S

P (p, q) Path between p and q

MRS,G(P (p, q)) Minimum Power Transmission Range of S that assures the
existence of a 2-covered path between nodes p and q on graph G

VR2(si, sj) Second Order Voronoi Region of the antennas si and sj

lr(si, sj) Lens resulting from the intersection
of discs D(si, r) and D(sj , r)

MRS(P (p, q)) Minimum Power Transmission Range of S that assures
the existence of a 2-covered path between p and q

bS(p, q) Bottleneck-point for 2-covered paths between p and q

SP(p, q) A shortest 2-path between p and q

B(R) Boundary of region R

MCs(x) Maximum Coverage of object x by S
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Notation Description

MCS,G(P (p, q)) Maximum Coverage of a path between p and q on G

MCS(P (p, q)) Maximum Coverage of a path between p and q

Dd(si, sj) Disk of diameter sisj

C(S) Contour of the region covered by S

SC(si, sj) Boundary of the semicircle of diameter sisj
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