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palavras-chave 

 
Hipermapa, mapa, bicontactual, orientável, não-orientável, orientado, regular, 
quiral, reflexivo. 
 

resumo 
 

 

Esta tese dedica-se ao estudo de hipermapas regulares bicontactuais, 
hipermapas com a propriedade que cada hiperface contacta só com outras 
duas hiperfaces. Nos anos 70, S. Wilson classificou os mapas bicontactuais e, 
em 2003, Wilson e Breda d’Azevedo classificaram os hipermapas bicontactuais
no caso não-orientável. Quando esta propriedade é transferida para 
hipermapas origina três tipos de bicontactualidade, atendendo ao modo como 
as duas hiperfaces aparecem à volta de uma hiperface fixa: edge-twin, vertex-
twin and alternate (dois deles são o dual um do outro). 
 
Um hipermapa topológico é um mergulho celular de um grafo conexo trivalente 
numa superfície compacta e conexa tal que as células são 3-coloridas. Ou de 
maneira mais simples, um hipermapa pode ser visto como um mapa bipartido.  
Um hipermapa orientado regular é um triplo ordenado consistindo num 
conjunto finito e dois geradores, que são permutações (involuções) do conjunto 
tal que o grupo gerado por eles, chamado o grupo de monodromia, actua
regularmente no conjunto. 
 
 
Nesta tese, damos uma classificação de todos os hipermapas orientados 
regulares bicontactuais e, para completar, reclassificamos, usando o nosso 
método algébrico, os hipermapas não-orientáveis bicontactuais. 
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abstract 

 
This thesis is devoted to the study of bicontactual regular hypermaps, 
hypermaps with the property that each hyperface meets only two others. In the 
seventies, S. Wilson classified the bicontactual maps and, in 2003, Wilson and 
Breda d’Azevedo classified the bicontactual non-orientable hypermaps. When 
this property is transferred for hypermaps it gives rise to three types of 
bicontactuality, according as the two hyperfaces appear around a fixed 
hyperface: edge-twin, vertex-twin and alternate (two of which are dual of each 
other).  
 
A topological hypermap is a cellular embedding of a connected trivalent graph 
into a compact and connected surface such that the cells are 3-colored. Or 
simply, a hypermap can be seen as a bipartite map.  
A regular oriented-hypermap is an ordered triple, consisting of a finite set and
two generators, which are permutations of the set, such that the group 
generate by them, called monodromy group, acts regularly on the set. 
 
In this thesis, we give a classification of all bicontactual regular oriented-
hypermaps and, for completion, we reclassify, using our algebraic method, the 
bicontactual non-orientable hypermaps. 
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Notation

v
V

valency of the hypervertices

v
E

valency of the hyperedges

v
F

valency of the hyperfaces

n
V

number of hypervertices

n
E

number of hyperedges

n
F

number of hyperfaces

〈X〉 subgroup generate by X

< subgroup of

� normal subgroup of

R normal closure of R

〈X〉G normal closure of X in G

F/N factor group

R(a1, a2, . . . , am) set of word relations, in function of a1, a2, ..., am

G = 〈X|R〉 group presentation of the group G

Mon(H) monodromy group of the hypermap H

X (H), X Euler characteristic of the hypermap H

XH chirality group of a hypermap H
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κ = κ(H) chirality index of a hypermap H

Cn cyclic group

Dn dihedral group

Sn symmetric group

1 empty word (identity element of the group)

xy conjugate of x by y (y−1xy)

k̂ representative element of the equivalence class

(k, c) greatest common divisor between k and c

d|x d divides x or x is multiple of d

a ≡ b (mod c) c divides a− b

⇌ commutes

AltB family of alternate bicontactual regular oriented-hypermaps

FETB family of fundamental edge-twin bicontactual regular oriented-hypermaps

ETB family of edge-twin bicontactual regular oriented-hypermaps



Introduction

The theory of hypermaps, a subject of Combinatorial and Topological Geometry, is closely

related to the classical theory of maps on surfaces. A map is a cellular embedding of a

connected graph in a compact and connected surface (with or without boundary). It is often

viewed as a cellular division of a surface into simply-connected open regions by arcs, called

the edges of the map; the regions are called the faces of the map and the endpoints of each

edge are the vertices of the map. In this definition, if we replace “graph” by “hypergraph”

we have a hypermap. By [25] a hypergraph is seen as a generalisation of a graph and, from

this point of view, a hypermap is a generalisation of a map, by allowing edges to connect

more than two vertices. The orientability of a hypermap is determinated by the orientability

of the underlying surface. An oriented-hypermap is obtained by fixing an orientation in the

underlaying surface. A bicontactual map had the property that each face meets exactly two

others.

Bicontactual maps were introduced and classified in the seventies by Wilson in his PhD

thesis for maps [26]. Later in [30] Wilson and Breda d’Azevedo showed that bicontactual non-

orientable regular hypermaps are “essentialy” bicontactual maps with only one exception:

D02(GWk) (adopting their notation). This is the Walsh of a bicontactual reflexible map, and

it turns out to be the only “pure” bicontactual non-orientable hypermap. In this thesis we

complete the classification of the bicontactual hypermaps started in [30].

In spite of the resemblance, the notion of bicontactuality when transferred to hyper-

maps gives rise to three types of bicontactuality (two of which are dual of each other): the

edge-twin, the vertex-twin and the alternate bicontactuality. In a hypermap that each face

meets only two others, if we fix a hyperface, for example F , the two hyperfaces around it,

labelled A and B, appear in the pattern AABBAABBAA... , with repetitions occurring

at the hyperedges (edge-twin), or in the same pattern but the repetitions occurring at the
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hypervertices (vertex-twin), or in the pattern ABABABABA... (alternate). It is easy to see

that bicontactual maps are included in the edge-twin bicontactual hypermaps.

Classifying maps/hypermaps subject to specific conditions, has been one a favorite topic

since as early in the 20th century with Brahana proposing an approach to the classification

of regular maps on a given surface. For example,

• Classification by genera: non-orientable regular maps and hypermaps with size a power

of 2 is presented in [30]; in [13], the classification of all regular maps on non-orientable

surfaces with a negative odd prime Euler characteristic; classification of regular maps

with Euler characteristic −p2 is presented in [17]; by [13, 14, 18] we have a classification

of all regular maps of Euler characteristic −p and −2p with p a prime;

• Classification by number of hyperfaces: the classifications of the non-orientable regular

maps and hypermaps with 1, 2, 3, 5 hyperfaces and of the non-orientable regular maps

with a prime number of faces are presented in [30]; regular oriented-hypermaps with a

prime number of hyperface in [6];

• Classification by embedding graphs: the paper [22] classifies the regular imbeddings of

the complete graphs Kn in orientable surfaces;

• Classification by group: the classification of some particular hypermaps is described in

[1]; in [17], the regular maps with almost Sylow-cyclic automorphism groups;

• Classification by properties: Wilson, in [26], classified the bicontactual maps; chiral

maps in the orientable case in [18];

just to name but a few. It is in the last topic that my thesis is included. Looking at the

list of 14647 pure (or proper) hypermaps given by Conder [15], we found 776 edge-twin

biconctactual, 519 vertex-twin bicontactual and 753 alternate bicontactual. In conclusion,

only 14 percent of pure hypermaps up to genus 101 are bicontactual.

Although at this stage we avoid details, we would like to note that hypermaps can be

described either in a topological or algebraic way. Most of the existing literature considers hy-

permaps as algebraic objects. Our algebraic classification of regular bicontactual hypermaps
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consists in classifying (up to an isomorphism and duality) the edge-twin oriented-hypermaps

and the alternate oriented-hypermaps.

For a deeper study on hypermaps we recommend reading [3, 8, 9, 12, 19, 25], where the

theory of hypermaps is well-developed and thoroughly explained.

We conclude the introduction with a brief outline of the chapters in this thesis.

The first two chapters overview the main relevant results on hypermaps, bicontactual

maps and bicontactual hypermaps. Besides presenting well-known material in this area and

explaining some of the necessary theoretical background, we introduce new concepts and

new results that are relevant for our purposes. For this we establish adequate notation.

In Chapters 3 and 4 we start by developing properties of bicontactual oriented-hypermaps

and then we study their classification. The chirality group as well as the respective chirality

index of hypermaps have already been investigated in [7, 10, 12]. After the classification, we

are particularly interested in identifying the chiral bicontactual hypermaps.

Chapter 5 is devoted to the non-orientable bicontactual hypermaps classification, done

by Wilson and Breda d’Azevedo. Here, we rewrite the proof of the classification using our

algebraic approach.

The software, for computational discrete algebra, GAP, [21], was used in this work to

help us to get confidence on the number of word relations and on the amount of conditions

to be imposed to the hypermaps and also to explore the existing data-bases.

This thesis does not include the proofs of non-original results, apart from chapter 5.

All the other results and their proofs are original, though some of them being inspired by

Wilson’s results.

We finish this thesis with some general considerations, such as the classification of the

bicontactual hypermaps with boundary and future work. In fact, we have already started

studies in the direction of a classification of the bicontactual hypermaps in the pseudo-

orientable case.





Chapter 1

Background

In this chapter, some basic definitions and some elementary concepts concerning hyper-

maps, oriented-hypermaps, presentations of groups, chirality, metacyclic groups and bicon-

tactuality are presented.

In the first two sections an introduction to the theory of hypermaps is given. Section 2

deals with oriented-hypermaps.

In section 4, we introduce the chirality notion for regular oriented-hypermaps while the

algebraic definition of bicontactuality comes in the last section.

The contents of this chapter have been adapted from various sources including [?, 8, 11,

12, 23, 25, 28, 29, 31].

1.1 Hypermaps

Hypermaps can be defined either in a topological or algebraic way. We will present a

topological definition as well as an algebraic one.

From a topological point of view, a hypermap H (without boundary) is a cellular embed-

ding of a connected trivalent graph G into a compact and connected surface such that the

cells are 3-colored (say by black, grey and white colours) with adjacent cells having different

colours. The flags are the vertices of G, while the faces labeled 0 (dark grey), 1 (grey) and 2

(white), are called, respectively, the hypervertices, the hyperedges and the hyperfaces of H.

Labeling the edges of G with the missing adjacent cell number, the hypergraph formed in

this way induces three permutations r0, r1 and r2 on the set of flags Ω; each ri switches the
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pairs of vertices connected by i−edges (edges labeled i).

Example 1 Figure 1.1, [9, pg 52], shows a hypermap on the double torus with 12 flags, 1

hypervertex, 1 hyperedge and 2 hyperfaces and where ω is an arbitrary flag of the hypermap:

hypervertices

flags

hyperedges

hyperfaces

www
 wr

0

 wr2

 wr1

a

b

a

b

c

c

d

e f

d

ef

Figure 1.1: A topological hypermap on the torus

These permutations ri are involutions and the group G generated by r0, r1 and r2 will be

called the monodromy group, Mon(H), of the hypermap H.

Since the graph G is connected, the monodromy group acts transitively1 on Ω. This

implies |Ω| ≤ |Mon(H)|. If the monodromy group Mon(H) acts semi-regularly2 on Ω, the

monodromy group Mon(H) acts regularly on Ω. In this case the hypermap is called regular,

and we have |Mon(H)| = |Ω|.

The orbits of 〈r1, r2〉, 〈r0, r2〉 and 〈r0, r1〉 on Ω determine the hypervertices, the hyperedges

and the hyperfaces, respectively. If all 〈ri, rj〉 orbits on Ω have the same cardinality (for each

i, j ∈ {0, 1, 2} with i < j), then the hypermap H is uniform. For an uniform hypermap, the

length v
V
, v

E
, v

F
of the cycles r1r2, r2r0 and r1r0, respectively, are called the valency of the

hypervertices, the valency of the hyperedges and the valency of the hyperfaces, respectively,

and they determine the type (v
V
, v

E
, v

F
) of the hypermap. Let us denote by n

V
the size of

〈r1, r2〉, by n
E

the size of 〈r0, r2〉 and by n
F

the size of 〈r0, r1〉.

From a hypermap H we can produce six hypermaps on the same surface by permuting the

three colours 0, 1, 2 of their cells. Each permutation σ ∈ S3 determines a new hypermap with

1that is, ∀ω1, ω2 ∈ Ω ∃g ∈ Mon(H) such that ω2 = ω1g
2that is, ∀g ∈ Mon(H) , (∃ω ∈ Ω such that ω = ωg) ⇒ g = 1
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the same underlying trivalent graph G and whose hypervertices, hyperedges and hyperfaces

are the cells colored 0σ, 1σ, 2σ, respectively. We call it the σ-dual of H and will denote by

Dσ(H). For example, D01 is the hypermap that results from switching labels 0 and 1 in the

coloured graph of H; the classic dual, usually denoted by D, corresponds to D02.

The orientability, the Euler characteristic and the genus of a hypermap H are the orien-

tability, the Euler characteristic and the genus of the respective underlying surface. The

Euler characteristic is given by the formula

X (H) = n
V

+ n
E

+ n
F
−

|Ω|

2

or equivalently,

X (H) =
|Ω|

2

(
1

v
V

+
1

v
E

+
1

v
F

− 1

)
.

From an algebraic point of view, a hypermap H is a 4−tuple H = (Ω; r0, r1, r2), where

Ω is a non-empty finite set and r0, r1 and r2 are three permutations of Ω satisfying r2
0 = r2

1 =

r2
2 = 1, such that the permutation group generated by r0, r1 and r2 acts transitively on Ω

(where 1 is the identity in G).If (r0r2)
2 = 1 then H is a map. Here, the hypervertices are also

the orbits of 〈r1, r2〉, as well as the hyperedges are the orbits of 〈r0, r2〉 and the hyperfaces

are the orbits of 〈r0, r1〉.

There is a one-to-one correspondence (see [25]) between hypermaps and bipartite3 maps.

The faces of the bipartite map represent the hyperfaces of H and the two bipartition of

vertices (nodes) of the bipartite map (colored white and black) represent the hyperedges (the

white nodes) and hypervertices (the black nodes) of the hypermap. The elements of Ω are

called flags and are described in the following geometric construction: For each face in the

bipartite map M, choose a point in its interior (let us call it the face-center). We obtain a

subdivision of the bipartite map by joining each face-center to each white node and to each

black node. Figure 1.2 illustrates the subdivision and shows the neighborhood of one flag ω.

3In a bipartite map its vertices can be colored with two colors, so that no two vertices joined by an edge

have the same color.
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w

wr1

wr2

wr0

Figure 1.2: Geometric notion of a flag

A flag in a hypermap is a mutual incidence of a hypervertex, a hyperedge and a hyperface

(for example, in Figure 1.3 the flag ω ∈ Ω corresponds to the triple (v, e, F1)). From [8], the

hypermap H is orientable if and only if its flags can be 2−coloured with each ri (i = 0, 1, 2)

transposing the colours. Thus, the flags can be represented by white and black triangles in

alternating way. Figure 1.3 also shows our geometric convention for a flag, instead of the

previous triangular subregion.

hypervertice
hyperedge

v
ew

wr1

wr2

wr0
1
Fhyperface

hyperface F
2

Figure 1.3: Algebraic hypermap

Interchanging the roles of white and black nodes we have the duality D01 of hypermaps,

that we will refer in the chapter 4.

It may happen that the subgroup of Mon(H) generated by r1r2 and r2r0 may act on Ω

with one or two orbits. When it acts with two orbits, H is orientable. An oriented-hypermap

is a hypermap with a fixed orientation of the underlying surface. Oriented-hypermaps are

described by triples (D; R, L) where D is a non-empty finite set, which elements are called

darts, and two permutations R and L of D such that the group 〈R,L〉 acts transitively
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on D. If H is orientable then the set Ω is the union of the two disjoint sets Ω+ and Ω−

(corresponding the set Ω+ to the black flags and the set Ω− to the white flags). In this case,

we can derive two associated oriented-hypermaps:

H+ = (Ω+; r1r2 |
Ω+
, r2r0 |

Ω+
) ; H− = (Ω−; r1r2 |

Ω−
, r2r0 |

Ω−
) .

The hypermaps that satisfy (r0r2)
2 = 1 are called maps. Otherwise, the hypermaps are

called pure hypermaps.

A covering from H1 = (Ω1; r0, r1, r2) to H2 = (Ω2; s0, s1, s2) is a function φ : Ω1 → Ω2

such that

∀ω ∈ Ω1 , ∀i ∈ {0, 1, 2} , (ωri)φ = ωφsi .

Note that a covering is necessary surjective, because of the transitivity of the actions. If

there is a covering, we say that H1 covers H2 and we denote this by H1 → H2. When H1

covers H2, it follows that the assignment ri 7→ si, for i = 0, 1, 2, extends to a canonical

epimorphism between the monodromy groups.

An injective covering is an isomorphism. We denote an isomorphism between H1 and H2

by H1
∼= H2 and we say that H1 is isomorphic to H2. The hypermaps H+ and H− associated

with a given orientable hypermap H may or may not be isomorphic.

An automorphism of H = (Ω; r0, r1, r2) is an isomorphism from H to H, that is, a

permutation of Ω commuting with r0, r1 and r2 (consequently, commuting with all elements

of Mon(H)). The group of all automorphisms of H, denoted by Aut(H), acts semi-regularly

on Ω. So |Aut(H)| ≤ |Ω|, and hence we have

|Aut(H)| ≤ |Ω| ≤ |Mon(H)| . (1.1)

If Aut(H) acts transitively on Ω, that is, if the action of Aut(H) on Ω is regular, then

we said that H is regular and we have |Aut(H)| = |Ω|. In equation (1.1), an equality on one

side implies an equality on the other side.

In an orientable hypermap H, an automorphism φ ∈ Aut(H) preserves the orientation if

∀ω ∈ Ωǫ , where ǫ ∈ {+,−} , ωφ ∈ Ωǫ .
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Otherwise, φ reverses the orientation and it is called a mirror symmetry, or reflection, or

inversion. If the hypermap has a mirror symmetry then it is called mirror symmetric, else

H is mirror asymmetric.

The hypermap H is said to be orientably-regular, or rotary, if the subgroup Aut+(H) of the

automorphisms preserving orientation acts transitively on Ω+. In this case, |Mon(H)| = |Ω|
2

.

An orientably-regular hypermap is reflexible if and only if it has an automorphism that

reverses the orientation. A chiral hypermap is an orientably-regular hypermap which is not

reflexible. The number of flags of a reflexible hypermap must be even.

The H−sequence of a hypermap H is the sequence

[ N ; v
V
, v

E
, v

F
; n

V
, n

E
, n

F
; |Mon(H)| ] ,

where N is the negative of the Euler characteristic of the hypermap, which is constant for

all hypermaps in a fixed surface S.

Each hypermap H determines a transitive permutation representation π : ∆ →Mon(H)

of the triangular group ∆ := 〈R0, R1, R2 |R
2
0 = R2

1 = R2
2 = 1〉 ∼= C2 ∗C2 ∗C2 (a free product

of three cyclic groups of order 2), given by Ri 7→ ri. We call to the stabiliser H in ∆ of a

flag ω, that is H = ∆ω = {g ∈Mon(H) |ωg = ω}, hypermap subgroup of the hypermap H.

Let H1 and H2 be two hypermaps with hypermap subgroups H1 and H2, respectively.

Then H1 covers H2 if and only if ∃d ∈ ∆ such that Hd
1 < H2. The covering is given by

∆�H1 → ∆�H2 , H1d 7→ H2d .

It is important, for our work, to refer three of the seven epimorphisms ∆ → C2, which

have kernels ∆0 = 〈R0, R1R2〉
∆, ∆0̂ = 〈R1, R2〉

∆ and ∆+ = 〈R1R2, R2R0〉
∆, where 〈...〉∆

denote the normal closure in ∆. The last subgroup ∆+ is the even subgroup of ∆, which

is generated by a pair of free generators R1R2 and R2R0. These generators projects to

the rotations R and L around hypervertices and hyperedges, the generators of the mono-

dromy group of oriented-hypermaps (see the following section). The inclusions between the

preceding subgroups of ∆ are those shown below:

∆

}}{{
{{

{{
{{

�� !!
BB

BB
BB

BB

∆+ ∆0 ∆0̂
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Being H < ∆ the hypermap subgroup of H, the hypermap H is

1. regular or ∆-regular if H � ∆;

2. oriented if H < ∆+;

3. regular oriented or ∆+-regular if H � ∆+;

4. chiral if H � ∆+ and H ⋪ ∆;

5. pseudo-oriented if H < ∆0;

6. regular pseudo-oriented or ∆0-regular if H � ∆0;

7. bipartite if H < ∆0̂.

Walsh showed in [25] that there is a bijection between hypermaps and bipartite maps

on the same surface. As a hypermap can be regarded as a bipartite map, a bipartite map

can also be regarded as a hypermap (see an example in figure below).

Figure 1.4: Bipartite map Figure 1.5: Hypermap

The edges of the bipartite map are the arcs of the hypermap. So, the notions of edge in

maps and arc in hypermaps are similar, as is illustrate in the following figure:

edge

Figure 1.6: (map)

arc

Figure 1.7: (hypermap)

The Walsh map of a hypermap H, W (H), is a bipartite map, the set of vertices corresponding

to the hypervertices and hyperedges of H, while the faces and edges of W (H) correspond

to the hyperfaces and arcs of H, respectively. Conversely, any bipartite map M, with two

monochrome sets of vertices (usually coloured black and white), corresponds to a hypermap
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W−1(M) where one of two monochromatic sets of vertices represents the hypervertices and

the other the hyperedges of the hypermap, the faces and edges of M correspond to the

hyperfaces and arcs of W−1(M), respectively.

Figure 1.8: Cube C Figure 1.9: W−1(C)

Remark 1 If a bipartite uniform map M has type (v
V
, 2, v

F
), then the hypermap W−1(M)

has type
(
v

V
, v

V
,

v
F

2

)
.

1.2 Oriented-hypermaps

As we said before, an oriented-hypermap is a triple Q = (D; R, L) consisting of a non-

empty finite set D, which elements are called darts, and two permutations R and L of D such

that the group 〈R,L〉 acts transitively on D. This group will be called the monodromy group

of the hypermap Q, denoted by Mon(Q) or G. We will assume that the set D corresponds

to the set Ω+.

The orbits of R, L and RL on D will be called the hypervertices, hyperedges and hyper-

faces, respectively. The least common multiples v
V
, v

E
, v

F
of the length of the cycles R, L

and RL on D, respectively, determine the type (v
V
, v

E
, v

F
) of the oriented-hypermap Q.

Since an oriented-hypermap is an orientable hypermap with a fixed orientation, we choose,

for instance, the counter-clockwise orientation4. We will consider R the one step counter-

clockwise rotation of the darts around hypervertices (R = r1r2) and L the one step counter-

clockwise rotation of the darts around hyperedges (L = r2r0). In this thesis we will work

only with oriented-hypermaps which are regular, thus each dart corresponds to an element

of Mon(Q). So, we will use G instead of D.

4We will abreviate clockwise and counterclockwise by CW and CCW, respectively.
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dart

hypervertice hyperedge

R

L

RL

v
e

hyperface F
2

1
Fhyperface

Figure 1.10: Regular Oriented-hypermap

If L is an involution, then Q is an oriented map.

Given two oriented hypermaps Q1 = (D1;R1, L1) and Q2 = (D2;R2, L2), a coveringQ1 →

Q2 is a function φ : D1 → D2 such that R1φ = φR2 and L1φ = φL2. By the connectivity

of G any covering is necessarily onto. If φ is injective the covering is an isomorphism of

hypermaps.

An automorphism (or symmetry) of a hypermap Q = (D;R,L) is an isomorphism of Q

into itself; in other words, a permutation of D that commutes with R and L. The automor-

phism group of Q acts semi-regularly on D while the monodromy group acts transitively.

Hence

|Aut(Q)| ≤ |D| ≤ |Mon(Q)|

and if one of the equalities holds then the other equality holds as well, and Q is said regular.

If, in addition, Q has an orientation inverting automorphism (also called mirror symmetry),

that is, a permutation ψ of D such that Rψ = ψR−1 and Lψ = ψL−1, then Q is said

reflexible. If Q is regular but not reflexible then Q is chiral.

The Euler characteristic of a regular oriented-hypermap Q is given by the formula

X (Q) = n
V

+ n
E

+ n
F
− |G| = |G|

(
1

v
V

+
1

v
E

+
1

v
F

− 1

)

and the genus of Q is

g(Q) =
2 −X (Q)

2
.



14 Chapter 1. Background

1.3 Presentations of groups

All the contents of this section were extracted from the Johnson’s book [23], though we

had established, sometimes, our own notation.

1.3.1 Free presentations of groups

In the theory of group presentations, the notion of free group is fundamental. A group F

is called free if it has a subset S with the property that every element of F can be written

uniquely is a product of elements of S and their inverses.

Definition 1 Let X be a set, F = F (X) a free group on X, R a subset of F , N = R the

normal closure of R in F , and G the factor group F/N .

We write G = 〈X|R(x1, . . . , xm)〉, or just G = 〈X|R〉, and call this a free presentation, or

simply a presentation of G. The elements of X are called generators and the elements of R

are called word relations.

From now, we will assume the notation presents in the preceding definition and each

element of R is denoted by ωX = ωx1, ..., xn
, a word in X (or simply, ω).

A group G is called finitely presented if it has a presentation with both X and R finite

sets.

Remark 2 Let ω1 and ω2 be word relations. A word relation of the form ω1 = ω2 corres-

ponds to the defining relator ω1ω
−1
2 .

Proposition 1 Every group has a presentation, and every finite group is finitely presented.

[23, pg 42]

Proposition 2 (von Dyck) If G = 〈X|R〉 and H = 〈X|S〉, where R ⊆ S ⊆ F (X), then

there is an epimorphism φ : G→ H fixing every x ∈ X and such that

Ker(φ) = S \R .

Conversely, every factor group of G = 〈X|R〉 has a presentation 〈X|S〉 with S ⊇ R. [23,

pg 43]
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We shall be concerned with the problem of constructing presentations of groups, specifi-

cally monodromy groups of bicontactual hypermaps. The presentation of a group give rises

to the problem of deducing properties of this group.

For the problem of finding a presentation P for a group G, we need

1. to determine a set of generators for G, X;

2. to write, in terms of X, the word relations of R that are valid in G and that are enough

to define G;

3. letting P = 〈X|R〉, the last step is to find |P |. If |P | = |G| then the procedure stops,

otherwise we will go back to step 2.

In [23], chapter 5, there are several examples which illustrate the various techniques involved.

Given two presentations P1 and P2 we write P1 ∼ P2 if they are presentations of the same

group.

1.3.2 Presentations of group extensions

We start with two basic definitions that we need in course of this work.

Definition 2 Let S be subgroup of a group G. The cosets of S are a partition of G and, by

choosing one element from each, we obtain a transversal for S in G.

Definition 3 Let U be a transversal for a subgroup of a free group F (t1, t2, . . . , tk). It is

a Schreier transversal if U has the Schreier property, that is, for all ti ∈ {t1, t2, . . . , tk} if

t1t2 · · · tn ∈ U then t1t2 · · · tn−1 ∈ U .

Consequently, any Schreier transversal contains the empty word 1.

Definition 4 An extension of a group G by a group A is a group G̃ having a normal subgroup

N such that

A ∼= N , G̃/N ∼= G . (1.2)
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Let G̃ be an extension of G by K = Ker(υ)

1 → K
ι
→ G̃

υ
→ G→ 1

with presentations G = 〈X | R〉 and K = 〈Y | S〉. If we have a transversal T for K in G̃,

we can set up a presentation for G̃. This is done in the following proposition.

Proposition 3 [23, pg 139] Let Ỹ = {ỹ = yι | y ∈ Y } and let S̃ = {s̃ | s ∈ S} be the

set of words in Ỹ obtained from S by replacing each y by ỹ wherever it appears. For each

element x ∈ X we choose x̃ ∈ T such that x̃υ = x. In this way, we obtain the generators

X̃ = {x̃ | x ∈ X}. For each r ∈ R, let r̃ be the word in X̃ obtained from r by replacing each

x by x̃. Also each r ∈ R represents the identity of the group G, then r̃ ∈ Ker(υ) = Im ι.

So each r̃ can be written as a word in the ỹ and them create the set R̃. Since K ⊳ G, the

conjugates ỹx̃ ∈ K, with x̃ ∈ X̃ and ỹ ∈ Ỹ , and so are words in the ỹ. They form the set T̃ .

Then group G̃ has a presentation

〈X̃, Ỹ | R̃, S̃, T̃ 〉 . (1.3)

Corollary 1 Let G̃ be an extension of G by A. If G and A are finitely presented, then so

is G̃. [23, pg 140]

Corollary 2 Let H be a subgroup of finite index in a group G. If H is finitely presented,

then so is G. [23, pg 141]

1.4 Chirality

Chirality can be seen as a property of a geometrical figure which occurs when its “image

in a mirror, ideally realized, cannot be brought into coincidence with itself”, [10].

Chirality of hypermaps can be studied qualitatively by the chirality group and quantita-

tively by the chirality index (being this the size of the chirality group).

In this section, Q = (G;R,L) denotes a regular oriented-hypermap with hypermap sub-

group Q and 〈R,L | R(R,L)〉 be a presentation of G, G ∼= ∆+�Q.
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Automorphisms of regular oriented-hypermaps give rise to orientation-preserving self-

homeomorphisms of the underlying surface. There are however external symmetries (the

mirror symmetries) that comes from orientation-reversing self-homeomorphisms of the sur-

face. Recall that a regular oriented-hypermap is chiral if it admits no mirror symmetry.

Considering ∆+ = 〈ρ, λ〉 with ρ = R1R2 and λ = R2R0 (see section 1.1), each regular

oriented-hypermap Q corresponds to a transitive permutation representation

µ : ∆+ →Mon(Q)

given by ρ 7→ R, λ 7→ L. Observe that the conjugation by R2 induces an automorphism of

∆+ inverting ρ and λ. Since Q� ∆+, its conjugates in ∆ are Q and QR0 = QR1 = QR2 . We

will denote by Qr the common conjugate QRi .

Definition 5 The mirror image of Q is Qr = (G;R−1, L−1).

If Q ∼= Qr (that is, if the assignment R → R−1 and L → L−1 extends to a group

automorphism of G) then Q is reflexible, otherwise Q is chiral.

The largest normal subgroup of ∆ contained in Q is the group Q
∆

= Q ∩ Qr, and the

smallest normal subgroup of ∆ containing Q is the group Q
∆

= QQr.

From [10] and by the third isomorphism theorem, we have

Proposition 4 The four groups Q
∆
�Q, Q�Q

∆
, Q

∆
�Qr and Qr�Q

∆
are all isomorphic

to each other.

Definition 6 The chirality group of Q is the factor group Q�Q
∆

and its order is the chi-

rality index.

We will denote5 by XH and by κ = κ(H) the chirality group and the chirality index,

respectively, of a hypermap H. From Proposition 4,

XH
∼= Q

∆

�Q < ∆+�Q ,

that is, the chirality group XH is a subgroup of the monodromy group of H. As a consequence,

the chirality index divides the number of darts.

5Notation adopted in [7].
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The most extreme type of chirality arises when the chirality group coincides with the

monodromy group. Such hypermaps are called totally chiral.

We can obtain the chirality group of a hypermap from the presentation of the respective

monodromy group, as follows:

Proposition 5 [5] From the presentation of Q, the chirality group XQ is the normal closure

of 〈R(R−1, L−1)〉 in G.

As a summarise we have

Lemma 1 A regular oriented-hypermap Q is

1. chiral if and only if κ(Q) > 1;

2. reflexible if and only if κ(Q) = 1.

Regularity and chirality are duality invariants:

Proposition 6 [12] Let Q be a hypermap and σ be any permutation of the symmetric group

S3. Then

1. Q is regular if and only if Dσ(Q) is regular;

2. Q is chiral if and only if Dσ(Q) is chiral.

where

Q = (G;R,L)

σ = (1, 2) , Dσ(Q) = (G;R−1, RL)

σ = (0, 1) , Dσ(Q) = (G;R−1, L−1)

σ = (0, 1, 2) , Dσ(Q) = (G; (RL)−1, L)

σ = (0, 2) , Dσ(Q) = (G;RL,L−1)

σ = (0, 2, 1) , Dσ(Q) = (G;R, (RL)−1)
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1.5 Metacyclic groups

A group G is a metacyclic group if it has a normal subgroup H such that both H and

G/H are cyclic.

Proposition 7 Consider the group G = 〈x, y | xm = 1, xy = xr, yn = xs〉, where m,n, r, s

are positive integers such that r, s ≤ m satisfying the conditions rn ≡ 1 (mod m) and

rs ≡ s (mod m). Then N = 〈x〉 is a normal subgroup of G such that N ∼= Zm and

G/N ∼= Zn. Thus, G is a finite metacyclic group.

Conversely, if G is a finite metacyclic group, then G has a presentation of the form

〈x, y | xm = 1, xy = xr, yn = xs〉 , (1.4)

where m,n, r, s are integers such that r, s ≤ m and satisfying the conditions rn ≡ 1 (mod m)

and rs ≡ s (mod m). [23, pg 60]

Consequently, |G| = |G : N | |N | = nm.

We will denote the group with presentation (1.4) by M(m,n, s, r).

1.6 Bicontactuality

Two arbitrary hyperfaces, for instance F1 and F2, of a hypermap are arc-adjacent, or F1

meets F2, if they have in common an arc. We denote by F1F2-arc all the arcs where F1 and

F2 are arc-adjacent. For example, the figure

1
F 2F

3F

2F

3F

1
F 2F

3F

4F

5
F

6
F 7

F

Figure 1.11: Hypermaps H1 and H2, respectively

shows that in the hypermap H1 (left) the hyperfaces F1 and Fi (with 2 ≤ i ≤ 5) are arc-

adjacent, but the hyperfaces F1 and Fj (with 6 ≤ j ≤ 7) are not arc-adjacent. In the

hypermap H2 (right), the hyperface F1 meets the hyperface F2, or F3, along two arcs.
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Definition 7 Let H be a hypermap. The hypermap H is called bicontactual if each hyperface

is arc-adjacent to just 2 hyperfaces. So around a fixed hyperface there are just two different

hyperfaces of H.

In the figure 1.11, the hypermap H2 is bicontactual.

As a consequence of what we have just said, the proof of the following lemma is straight-

forward.

Lemma 2 In a bicontactual regular or orientably-regular (or regular pseudo-oriented) hy-

permap the number of hyperfaces is at least three.

Proof :

In a bicontactual hypermap we must have at least 2 distinct hyperfaces about any given

hyperface F ; if F is adjacent to itself then, by regularity, the hypermap would have only one

hyperface. 2

Consequently,

1. in a bicontactual regular oriented-hypermap the number of darts is ≥ 6;

2. in a bicontactual regular hypermap the least number of flags is 6, if it has boundary,

and 12 otherwise.



Chapter 2

Regular bicontactual hypermaps

This chapter aims at laying the foundations of the theory of bicontactual hypermaps,

specially in the second section.

Firstly, we sum up Wilson’s thesis [26] and the results in [27], in order to present his

classification of rotary bicontactual maps, in the cases orientable and non-orientable, which

are all reflexible.

Then, in section 2, we extend some those results, definitions and lemmas necessary for the

notion of bicontactuality in regular hypermaps, several properties for bicontactual hypermaps

are presented and new results are formulated.

2.1 Regular bicontactual maps

In this section we will elaborate a summary of the results established by Wilson [26, 27]

for bicontactual maps. Recalling map and Wilson’s notation, {p, q} means the family of

orientably-regular (or rotary) maps of type (q, 2, p) while {p, q}r means the family of maps

in {p, q} with petrie-length r.

Let us start with the obvious bicontactual maps (keeping Wilson’s notation):

Dǫn - This is also known as the dipole Dn, a regular and reflexible orientable bicontactual

map on the sphere.
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1
F F

2

F
3Fn

Fn-1

1
F

F
2

F
3

Fn
Fn-1

Figure 2.1: εn (left) and Dεn
(right); only Dεn

is bicontactual

Dδn - This is the projective version of the dipole, a regular and reflexible bicontactual map

on the projective plane.

1
e

e
2

e
3

en 1
e

e
2 en

e
3 en-1

1
F F

2
Fn 1

F

en-1

...

Figure 2.2: δn (left) and Dδn
(right); only Dδn

is bicontactual

M′
k,i - This 2-face bicontactual map is the dual of Mk, the one-face map obtained from a

regular 2k-gon with its edges crossly identified ([27, pg 439]).

To follow the spirit of Wilson’ classification [27] we start to describe the overlapping

families of non-obvious bicontactual maps in the same order as they appear in [27]. We

must say that, in the paper, Wilson describes bicontactual maps with overlapping families,

forgetting to prune them in order to get non-overlapping families. Such prune can however

be found, though not so easily, in his Thesis [26].

1. B(n, 2c). This family, together with the next family B∗(n, 2c), of regular bicontactual

maps was first described by means of a quite complicated schema (or diagram). The
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maps B(n, 2c) have even number of faces n. Each member of this family is orientable,

regular and reflexible, has H−sequence

[nc− (2c, n) − n ;
2nc

(2c, n)
, 2, 2c ; (2c, n), nc, n ; 2nc ] ,

and its monodromy group has presentation

〈R,L |L2 = (RL)2c = 1, (LR)2 = (RL)2, (LRL−1R−1)
n
2 = 1〉 .

2. B∗(n, 2c). This family divides into two subclasses, when n and c are both even, and

when n and c are both odd. It has H−sequence

[nc− (2c, n+ c) − n ;
2nc

(2c, n+ c)
, 2, 2c ; (2c, n+ c), nc, n ; 2nc ] ,

(a) n, c both even. Each bicontactual map in this family is orientable, regular and

reflexible. The monodromy group has presentation

〈R,L |L2 = (RL)2c = 1, (LR)2 = (RL)2, (LRL−1R−1)
n
2 = (RL)c〉 .

(b) n, c both odd. Each bicontactual map in this family is orientable, regular and

reflexible. The monodromy group has presentation

〈R,L |L2 = (RL)2c = 1, (LR)2 = (RL)2, Rn = (RL)n−c〉 .

3. Opp (B(n, 2c)). Briefly, the operator Opp applied to a map M corresponds to the

permutation given by r2 7→ r2r0 in the word relations which define M (for more

information, read [28, 26]).

In this family, where n is even, each member is orientable, regular and reflexible, has

H−sequence

[ (c− 1)(n− 1) − 1 ; n, 2, 2c ; 2c, nc, n ; 2nc ] ,

and its monodromy group has presentation

〈R,L |L2 = (RL)2c = 1, (RLR)2 = 1, Rn = 1〉 .

4. Opp (B∗(n, 2c)). This family divides into two subclasses, when n and c are both even,

and when n and c are both odd.
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(a) n, c both even. Each bicontactual map in this family is orientable, regular and

reflexible, has H−sequence

[ (c− 1)(n− 1) − 1 ; 2n, 2, 2c ; c, nc, n ; 2nc ] ,

and its monodromy group has presentation

〈R,L |L2 = (RL)2c = 1, (RLR)2 = 1, Rn = (RL)c〉 .

(b) n, c both odd. Each bicontactual map in this family is non-orientable, regular

and reflexible, has H−sequence

[ (c− 1)(n− 1) − 1 ; 2n, 2, 2c ; c, nc, n ; 4nc ] ,

and its monodromy group has presentation

〈r0, r1, r2 | r
2
i = L2 = (RL)2c = 1, (RLR)2 = 1, (r2r0r1)

n = (RL)−n+c〉 .

5. Γn

3
. This family of (rotary and reflexible) bicontactual maps are described as follows:

1
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Figure 2.3: Some faces of Γn
3

The map Γn
3

constructed in this way has 4 vertices of valency n, where n is the number

of faces and it is a multiple of 3. For example, the following figure shows the map Γ2.

1

2

3

4

5

6

4

10

6

9

8

7

5

12

11

10
12

11

Figure 2.4: Map Γ2
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Γ1 is the hemi-cube, a map on the projective plane derived from the cube by identifying

antipodal points.

Each member of this family is non-orientable and it is a fundamental bicontactual

map1. The H−sequence of each bicontactual map is

[n− 4 ; n, 2, 4 ; 4, 2n, n ; 8n ] ,

and its monodromy group has presentation

〈r0, r1, r2 | r
2
i = L2 = (RL)4 = 1, Rn = 1, (RL)2 = rR

0 〉 .

6. B(n, 2c, ρ, σ). Each member of this family has n (even) faces and it is orientable.

Moreover, as shown by Wilson, each bicontactual map B(n, 2c, ρ, σ) is rotary and

reflexible if the parameters satisfy

ρ2 ≡ 1 (mod c) , 2σ ≡
n

2
(ρ+ 1) (mod c) and ρσ ≡ σ (mod c) .

Each element of the family has the H−sequence2

[n(c− 1) − 2(c, σ) ; n|σ|c, 2, 2c ; 2(c, σ), nc, n ; 2nc ] ,

and its monodromy group has presentation

〈R,L |L2 = (RL)2c = 1, (LR)2 = (RL)2ρ, Rn = (RL)2σ〉 .

The families described above are not distinct, in fact when n is even B(n, 2c), B∗(n, 2c),

Dεn
, Opp (B(n, 2c)) and Opp (B∗(n, 2c)) derive from B(n, 2c, ρ, σ). That is, these families

overlap as follows:

• B(n, 2c) = B(n, 2c, 1, n
2
).

• B∗(n, 2c) = B(n, 2c, 1, n+c
2

).

• Dǫn =





B(n, 2), if n is even;

B∗(n, 2), if n is odd.

• OppB(n, 2c, ρ, σ) = B(n, 2c,−ρ, n
2
− σ).

1That is, the valency of the vertices is n.
2|σ|c = c

(c,σ)
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The classification

Now Wilson’s classification of bicontactual maps prune to the following non-overlapping

families:

A Two families of orientable bicontactual rotary maps (all reflexible):

1. B(n, 2c, ρ, σ) ,

with n ≡ 0 (mod 2), ρ2 ≡ 1 (mod c), 2σ ≡ n
2
(ρ+ 1) (mod c) and ρσ ≡ σ (mod c) ;

2. B∗(n, 2c) , with n ≡ 1 (mod 2) and c ≡ 1 (mod 2).

B Three families of non-orientable bicontactual regular maps:

1. opp B∗(n, 2c) , with n ≡ 1 (mod 2) and c ≡ 1 (mod 2),

2. Γn
3

, with n ≡ 0 (mod 3),

3. Dδn
.

2.2 Bicontactual hypermaps - generalisation

All hypermaps considered here are regular. Now we can ask the following: How many

ways can we place two hyperfaces around a hyperface F such that they are arc-adjacent to

F?

?

F

...... ...............
? ? ?

Figure 2.5: How can we distribute hyperfaces around F?

In a bicontactual hypermap there should be just two different hyperfaces around any

hyperface F . There are 3 ways we can place 2 hyperfaces around F , giving rise to three

types of bicontactuality: the edge-twin bicontactual when F1, F2 appear around F with

pattern F1, F1, F2, F2, F1, F1, F2, F2, . . . , in circular order being the repetitions happening at

hyperedges (Fig 2.6); the vertex-twin bicontactual when D01(Q) is edge-twin bicontactual

(Fig 2.7); and the alternate bicontactual when F1, F2 appear around F with alternate pattern

F1, F2, F1, F2, . . . (Fig 2.8).
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Figure 2.6: Edge-twin
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Figure 2.8: Alternate

In short, a regular bicontactual hypermap can be edge-twin, vertex-twin or alternate

bicontactual. The first two cases, which correspond to dual cases, r0 ↔ r1, form the twin

bicontactual hypermaps.

In the particular case of maps, there exists only one type of bicontactuality: the edge-twin

bicontactual, termed ’bicontactual’ by Wilson in [26]:

1
F

F
2

F
2

F
2

F

1
F

Figure 2.9: Bicontactual Map

The algebraic traduction of the previous definitions is given by the following lemma,

without proof:

Lemma 3 Let H be a regular hypermap. Then H is

1. edge-twin bicontactual iff

rr2
0 ∈ 〈r0, r1〉, r

r2
1 6∈ 〈r0, r1〉 and r

r1r2
0 ∈ 〈r0, r1〉 ;
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2. alternate bicontactual iff

(r1r0)
r2 ∈ 〈r0, r1〉 and r

r2
1 6∈ 〈r0, r1〉 .

Recall that in any map the word relation (r2r0)
2 = 1 holds and that every bicontactual

regular map is an edge-twin bicontactual hypermap. So bicontactuality in a regular map is

algebraically characterized by

rr1r2
0 ∈ 〈r0, r1〉 and r

r2
1 6∈ 〈r0, r1〉 .

The condition rr2
1 6∈ 〈r0, r1〉 can be omitted if the number of hyperfaces is big enough.

The proof of the following lemma is straightforward and so omitted.

Lemma 4 Let H be a regular hypermap. Then:

1. H has one face if and only if r2 ∈ 〈r0, r1〉.

2. H has two faces if and only if r2 6∈ 〈r0, r1〉 and rr2
0 , r

r2
1 ∈ 〈r0, r1〉.

3. H has more than two faces if and only if rr2
0 , r

r2
1 6∈ 〈r0, r1〉.

Lemma 5 Let H be a regular hypermap with three or more hyperfaces. Then

rr2
0 , r

r1r2
0 ∈ 〈r0, r1〉 ⇒ rr2

1 6∈ 〈r0, r1〉 .

Remark 3 By Lemma 2 and from the previous Lemma 5, we don’t need to refer to the

condition rr2
1 6∈ 〈r0, r1〉 to characterise algebraically any regular bicontactual hypermap.

2.2.1 General properties of edge-twin bicontactual hypermaps

In this section HET stands for a regular edge-twin bicontactual hypermap with n hyper-

faces (without boundary), where n ≥ 3. Recall that we are assuming that HET is orientable.

We will study the basic properties of HET which will be important to find the word

relations that algebraically define HET . Most of these properties are just extensions of

the Wilson’s properties for bicontactual maps (note that bicontactual maps are edge-twin

bicontactual hypermaps).



2.2 Bicontactual hypermaps - generalisation 29

An important term used here is neighborhood of a hypervertex, or hyperedge or hyperface.

Definition 8 The face-neighborhood of a hypervertex (or hyperedge or hyperface) is the set

of the hyperfaces that are incident to that hypervertex (or hyperedge or hyperface).

Let F be an arbitrary hyperface of the hypermap HET . Around F, there are the hyperfaces

F1, F1, F2, F2, F1, F1, etc in circular order. So, the proof of the following lemma is obvious.

Lemma 6 In a regular edge-twin bicontactual hypermap, the valency of hyperfaces must be

even.

Let us analyse the neighborhood of a hyperedge of the hypermap HET .

Lemma 7 The neighborhood of an arbitrary hyperedge e contains only two incident hyper-

faces, as shown below.

...

i
F

F
i+1

e

i
F

i
FF

i+1

F
i+1

Figure 2.10: neighborhood of a hyperedge

Proof :

By the first sentence of the lemma 3, the condition rr2
0 ∈ 〈r0, r1〉 holds in HET . 2

We can say, from figure 2.10, that the face-neighborhood of the hyperedge e is the set

{F, F1}. Consequently, the next result is straightforward.

Lemma 8 In the hypermap HET , the valency of hyperedges is even.

Definition 9 Let e be an arbitrary hyperedge of HET . We define the edge-repetition degree

as being the integer number re such that the sequence F, F1 occurs re times around e.

The following proposition proves the existence of repetitions of the hyperedges incidents

to each hyperface of a pure hypermap HET . If HET is a regular map then the size of

Mon(HET ) is determinated by the number of edges. More precisely,

|Mon(HET ) |= 2 | E | .
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Proposition 8 If about a hyperface the incident hyperedges do not repeat themselves then

HET is a map.

Proof :

Let HET be a regular edge-twin bicontactual hypermap, and let F1 an arbitrary hyperface

of HET .

Let us suppose that about the hyperface F1 the incident hyperedges do not repeat.

Let e be an hyperedge incident to F1 and let v1, v2 be its neighborhood hypervertices in

F1. Let ω be a flag in F1 incident to both v1 and e. Since e does not repeat in F1, at F1 it

is incident only to v1 and v2.
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The flag α = ωL2 is incident to both F1 and e, therefore, it must be incident to v1 or v2.

If α is incident to v1 then HET must be a map (since we must have α = ω). Suppose that

α is incident to v2; then v = v1 and we have two consecutive repeating hypervertices. By

regularity HET has only one hypervertex and consequently the group generated by R and L

is cyclic. By observing the figure above we must have α = ωr0, but this implies that Q is

non-orientable, which is against our supposition. 2

Let us examine the neighborhood of a hypervertex of HET .

Proposition 9 The neighborhood of an arbitrary hypervertex v of HET contains all the

hyperfaces of the hypermap.
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Figure 2.11: neighborhood of a hypervertex

Proof :

Let HET be a regular edge-twin bicontactual hypermap, and let F = {F1, F2,··· , Fn} be the

set of the hyperfaces of HET . Let v be a hypervertex incident to F1, and e a hyperedge

incident to both v and F1.

Let m be the number of hyperfaces incident to v. Without loss of generality, assume that

F1, F2, ···, Fm are the hyperfaces incident to v, in the clockwise way (see figure):

...

e

F
12

F
v
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F
m

3
F

2
F

4F ...
F
m

F
1

...

Since the hypermap is bicontactual, F1 is adjacet to only F2 and Fm. By edge-twin

bicontactuality, the hyperedge e is only incident to two hyperfaces (in this case, hyperfaces

F1 and F2). Any other hypervertex v′ 6= v incident to e is also incident to F1 and F2. Let us

see the hyperfaces that lie around v′ in clockwise order. Let F ′ be the first after F1.

...

F
1

e

2
F

v�F�

We have F ′ = Fm, because F1 has only two adjacent hyperfaces. Similarly, Fm has also

only two adjacent hyperfaces and they must be F1 and Fm−1, therefore the next hyperface

incident to v′ is Fm−1. By repeating this argument, we conclude that F1, Fm, ···, F2 are the

hyperfaces incident to v′ (in this order).
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Thus two consecutive hypervertices has the same set of incident hyperfaces. By regularity,

the set {F1, F2,··· , Fm} will consists of all the hyperfaces of HET . Hence m = n.

2

Remark 4 We saw that the face-neighborhood of any hypervertex v is all the set F of the

hyperfaces of HET . From this moment on we may assume, without loss of generality, we

are able to number the hyperfaces 1, 2, . . . , n, so that the hyperface Fi meets the hyperfaces

Fi−1 and Fi+1 (modn) only.

Since all the hyperfaces are incident to any given hypervertex v, all the hypervertices of

HET will lie around each hyperface of HET . This proves the following

Corollary 3 All the hypervertices of an edge-twin bicontactual hypermap are incident to

any given hyperface.

Consequently, the next result is straightforward.

Lemma 9 In the hypermap HET , the valency of hypervertices is a multiple of n.

From the previous proposition, we can conclude that if around a hypervertex v of HET

the hyperfaces of the hypermap appear in order CW then in any hypervertex adjacent to v

the hyperfaces appear in order CCW and conversely.

Definition 10 Let v be an arbitrary hypervertex of a regular edge-twin bicontactual hyper-

map HET . We define vertex-repetition degree as being the integer number rv such that the

sequence F1, F2, ···, Fn occurs rv times around v.
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We know, from Proposition 9, that all the hyperfaces of a regular edge-twin bicontactual

hypermap must lie around any given hypervertex. However this can be achieved with repeti-

tions. So, we need to introduce the notion of fundamental in regular edge-twin bicontactual

hypermaps.

Definition 11 If HET is a regular edge-twin bicontactual hypermap with n hyperfaces such

that v
V

= n, then HET is called fundamental.

Therefore, in a regular fundamental edge-twin bicontactual hypermap with n hyperfaces,

the vertex-repetition degree of an arbitrary hypervertex is equal to 1 (that is, rv = 1).

Moreover,

Lemma 10 In a regular fundamental edge-twin bicontactual hypermap with n hyperfaces of

valency 2c, the number of hypervertices is 2c.

Proof :

By the corollary 3 and with rv = 1, we obtain n
V

= v
F
. 2

2.2.2 General properties of alternate bicontactual hypermaps

In this section HAlt stands for a regular alternate bicontactual orientable hypermap with

n hyperfaces (without boundary), where n ≥ 3.

We will study the basic properties of the hypermap HAlt which will be important to find

the word relations that define it algebraically.

Lemma 11 If H is a regular alternate bicontactual hypermap then the dual D01(H) of H

interchanging hypervertices by hyperedges is also a regular alternate bicontactual hypermap.

Proof :

The algebraic description (r1r0)
r2 ∈ 〈r0, r1〉 and rr2

1 6∈ 〈r0, r1〉 (Lemma 3) is invariant if we

swap r0 with r1. 2

Let F be an arbitrary hyperface of the hypermap HAlt. Around F, there are the hyperfaces

F1, F2, F1, F2, F1, F2, etc in circular order. So, the proof of the following lemma is obvious.
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Lemma 12 In a regular alternate bicontactual hypermap, the valency of hyperfaces can be

any positive integer greater or equal to 2.

In a regular edge-twin bicontactual hypermap, only the neighborhood of a hypervertex

has all the hyperfaces of the hypermap incident. Next proposition and corollary show that

in an alternate bicontactual hypermap, both the neighborhoods of a hypervertex and of a

hyperedge have all the hyperfaces of the hypermap incident.

Proposition 10 The neighborhood of an arbitrary hypervertex v of the hypermap HAlt con-

tains all the hyperfaces of the hypermap.
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Figure 2.12: neighborhood of a hypervertex

Proof :

Let HAlt be a regular alternate bicontactual hypermap, and let F = {F1,F2,... ,Fn} be the

set of the hyperfaces of HAlt. Let v be a hypervertex incident to F1, and e an incident

hyperedge to both v and F1.

Let m be the number of hyperfaces incident to v. Without losing generality, we assume

that F1, F2, . . ., Fm are the hyperfaces incident to v, in the clockwise way (see figure):
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By bicontactuality, F1 is adjacent to only F2 and Fm. Then, as HAlt is alternate, the

hyperedge e is incident, at least, to the hyperfaces F2 and Fm. Take another hypervertex

v′ 6= v incident to e and F1. Let us analyse the hyperfaces that lie around v′ in clockwise

order. Let F ′ be the first after F1:
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Since F1 has only two adjacent hyperfaces, F′ =F2. Similarly, F2 has only two adjacent

hyperfaces and they must be F1 and F3, therefore the next hyperface incident to v′ is F3.

By repeating this argument, we conclude that F1, F2, . . ., Fm are the hyperfaces incident to

v′ (in this order).
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So we have two consecutive hypervertices having the same set {F1,F2,... ,Fm} of incident

hyperfaces then, by regularity, the set {F1,F2, . . . ,Fm} contains all the hyperfaces of HAlt.

Hence m = n.

2

Also for this class of hypermaps, we will assume that the hyperface Fi meets the hyper-

faces Fi−1 and Fi+1 (modn) only.

By duality (Lemma 11), the preceding proposition is also valid for hyperedges, as follows

Corollary 4 In a regular alternate bicontactual hypermap, all the hyperfaces are incident

to any given hyperedge.

Summing up, the set F of the hyperfaces of H is both the face-neighborhood of any

hyperedge as well as the face-neighborhood of any hypervertex. Consequently, all the hy-

pervertices and all the hyperedges of HAlt will lie around each hyperface of HAlt. This

proves,

Corollary 5 All the hypervertices and, also all the hyperedges, of hypermap HAlt actually

are incident to any given hyperface.

Consequently, the next result is straightforward.

Lemma 13 In the hypermap HAlt, the valency of the hypervertices, as well as the valency

of the hyperedges, is a multiple of n.
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In conclusion, from proposition 4 and from of the proof of the proposition 10, we obtain

(see figure below):

• around two consecutive hypervertices (or hyperedges) the hyperfaces appear in the

same order;

• the hyperfaces around a hypervertex (or hyperedge) appear in inverse order to the

order in which they appear around incident hyperedges (or hypervertices).

1
F

F
2

Fn Fn

F
2

F
2

F
3

F
4 ...

Fn-1

Fn-2

F
3

F
3 F

3

F
4

F
4

F
4

......

...

Fn-1

Fn-1Fn-1
Fn-2

Fn-2

Fn-2

ccw cw

ccwcw

Figure 2.13: orientations in hypervertices and hyperedges of HAlt

Definition 12 Let v be an arbitrary hypervertex of a regular alternate bicontactual hypermap

HAlt and let e be an arbitrary hyperedge of HAlt. We define:

• vertex repetition-degree as being the integer r
′

v such that the sequence F1, F2, ···, Fn

occur r
′

v times around v;

• edge repetition-degree as being the integer r
′

e such that the sequence F1, F2, ···, Fn

occur r
′

e times around e.

We know, from Proposition 10 and from Proposition 4, that all the hyperfaces of a regular

alternate hypermap must lie around any given hypervertex and around any given hyperedge.

However this can be achieved with repetitions. Although we will introduce the notion of

fundamental regular alternate hypermaps, this notion, here, will not have a role as important

as it will have for twin bicontactual hypermaps.

Definition 13 The hypermap HAlt is called fundamental if the hyperfaces do not repeat

neither around hypervertices nor around hyperedges (that is, r
′

e = 1 and r
′

v = 1).
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Moreover,

Lemma 14 In a regular fundamental alternate bicontactual hypermap with n hyperfaces of

valency c, the number of hypervertices, and also de number of hyperedges, is c.

Proof :

By the corollary 5 and with r
′

v = 1 = r
′

e, we conclude that n
V

= v
F

= n
E
. 2

We will see later that any regular alternate bicontactual oriented-hypermap will cover a

fundamental one (Theorem 2).





Chapter 3

Alternate bicontactual

oriented-hypermaps

In this chapter we present the classification of the regular alternate bicontactual oriented-

hypermaps.

In the following section, we rewrite some properties, obtained in the section 2.2.2, for

alternate bicontactual hypermaps (in function of the generators R and L).

Section 3.2 presents the classification of alternate bicontactual oriented-hypermaps, con-

cluding that the monodromy group of an alternate bicontactual oriented-hypermap is a

metacyclic group.

In the last section of this chapter, we will show that some alternate bicontactual oriented-

hypermaps are chiral while others are not. Using the results obtained by Breda and R.

Nedela in [12] for metacyclic groups, we establish the conditions for an alternate bicontactual

oriented-hypermap to be chiral.

In what follows, let QAlt = (G;R,L) be a regular alternate bicontactual oriented-

hypermap with n hyperfaces of valency c.

3.1 Some general properties

The algebraic definition of regular alternate bicontactual hypermaps, without boundary,

was presented in lemma 3. We consider alternate bicontactual regular oriented-hypermaps.

Towards that, we start by rewriting the properties of section 2.2 in terms of R and L.
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Lemma 15 Let H = (G;R,L) be a regular oriented-hypermap. Then H is alternate bicon-

tactual if and only if

LR ∈ 〈RL〉 (3.1)

Proposition 11 The neighborhood of an arbitrary hyperedge of the hypermap QAlt contains

all the hyperfaces of the hypermap. Therefore, Ln ∈ 〈RL〉 and Lnr
′
e = 1.

Proposition 12 The neighborhood of an arbitrary hypervertex of the hypermap QAlt con-

tains all the hyperfaces of the hypermap. Therefore, Rn ∈ 〈RL〉 and Rnr
′
v = 1.

Remark 5 If QAlt is a fundamental hypermap, then Ln = 1 and Rn = 1.

3.2 Classification

The objective of this section is the classification of the family of the regular alternate

bicontactual oriented-hypermaps.

The following word relations, for the hypermap QAlt, are easily obtained from the basic

properties of section 3.1.

• (RL)c = 1, for some positive integer c

By Lemma 15 and the following propositions, we have

• LR = (RL)d, for some integer d ∈ {0, · · · , c− 1}

• Rn = (RL)tv , for some tv ∈ {0, · · · , c− 1}

• Ln = (RL)te , for some te ∈ {0, · · · , c− 1}

Lemma 16 Assume the first two relations. Then

Rn = (RL)tv ⇒ Ln = (RL)te , for some te .

Conversely,

Ln = (RL)te ⇒ Rn = (RL)tv , for some tv .
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Proof :

To see this it is necessary to prove first, by induction, that

LiRi = (RL)di+di−1+...+d2+d , (3.2)

for all integer i. Since we have LR = (RL)d, for some integer d ∈ {0, · · · , c − 1}, the

equation (3.2) holds for i = 1. We assume that, for all j in {1, . . . , i}, the equation LjRj =

(RL)dj+dj−1+...+d2+d holds. For i+ 1 we obtain

Li+1Ri+1 = LLiRiR

= L(RL)di+di−1+...+d2+dR

= (LR)di+di−1+...+d2+d+1

= ((RL)d)di+di−1+...+d2+d+1

= (RL)d(di+di−1+...+d2+d+1)

= (RL)di+1+di+...+d2+d

So, we conclude that for i + 1 the equation (3.2) is valid. Putting i = n in the equation

(3.2), on the one hand, we get

Ln = (RL)dn+dn−1+...+d2+d−tv . (3.3)

Then, we can assume te = dn + dn−1 + . . .+ d2 + d− tv.

On the other hand, we get

Rn = (RL)dn+dn−1+...+d2+d−te . (3.4)

Then, we can assume tv = dn + dn−1 + . . .+ d2 + d− te. 2

From now on, we assume (RL)c = 1, LR = (RL)d, andRn = (RL)tv , where c is a

positive integer and d, tv integers in {0, · · · , c− 1}.

As we shall see later, the four parameters involved in preceding word relations are

sufficient to classify all the regular alternate bicontactual oriented-hypermaps.

Being n the smallest positive integer such that Rn ∈ 〈RL〉 by Lemma 16, n is also

the smallest positive integer such that Ln ∈ 〈RL〉. Then the parameters r
′

e and r
′

v are

determinated as follows:
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Ln = (RL)te ⇒ | Ln |=| (RL)te | ⇔ r
′

e = c
(c,te)

Rn = (RL)tv ⇒ | Rn |=| (RL)tv | ⇔ r
′

v = c
(c,tv)

Theorem 1 If QAlt is an alternate bicontactual oriented-hypermap with n hyperfaces, then

Mon(QAlt) = 〈R,L | (RL)c = 1, LR = (RL)d, Rn = (RL)tv〉

for some integer c ≥ 2 and integers d, tv ∈ {0, . . . , c− 1} such that

(i) dtv ≡ tv (mod c) ;

(ii) dn ≡ 1 (mod c) .

Reciprocally, any hypermap Q = (G;R,L) defined above is an alternate bicontactual oriented-

hypermap with n hyperfaces.

Proof :

Let QAlt = (G;R,L) be an alternate bicontactual oriented-hypermap with n hyperfaces.

By lemma 15, G is a factor group of

〈R,L | (RL)c =
(1)

1, LR =
(2)

(RL)d, Rn =
(3)

(RL)tv〉 (3.5)

for some integers c ≥ 1 and d, tv ∈ {0, · · · , c−1}. Without lost of generality we assume that

c is the order of RL.

Let us show that the conditions (i) and (ii) hold. From 3rd relation, we have Rn = (LR)tv .

Hence, (RL)tv = (LR)tv . Conjugating the 2nd relation by L we obtain RL = L−1(RL)dL.

Thus, we have (RL)tv = L−1(RL)dtvL. Conjugating by L−1 we get (LR)tv = (RL)dtv . So

(RL)tv = (RL)dtv . That is, dtv ≡ tv (mod c). For convenience, let us change generators to

R = R and S = RL. The new generators R and S of G satisfy the new word relations:

〈R, S | Sc =
(1)

1, SR =
(2)
Sd, Rn =

(3)
Stv〉 (3.6)

To prove condition (ii), we first show, by induction, that

Sdi

= SRi

, (3.7)

for all integer i. The equation (3.7) holds for i = 1 by the 2nd relation.
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Assuming that the equation Sdj

= SRj

holds, for all j in {1, . . . , i}, then

Sdi+1
= (Sdi

)d

= (R−iSRi)d

= R−iSdRi

= R−iSRRi

= R−i−1SRi+1

So we conclude that for i+1 the equation (3.7) is valid. Thus, putting i = n in the equation

(3.7) we get by the 3rd relation

Sdn

= R−nSRn = S−tvSStv ⇔ Sdn−1 = 1 .

That is, dn ≡ 1 (mod c).

It remains to show that the group with presentation (3.5) satisfying the conditions (i)

and (ii), has size nc. In fact, since dtv ≡ tv (mod c) and dn ≡ 1 (mod c), the presentation

(3.6) is of a metacyclic group M(c, n, tv, d) of order nc (see Proposition 7).

The converse statement is obvious. 2

Theorem 1 determines a family of (regular) bicontactual oriented-hypermaps with n

hyperfaces which are alternate. Such family will be denote by AltB(n, c, d, tv).

The H-sequence associated to this family is

[
nc− (c, te) − (c, tv) − n;

nc

(c, tv)
,

nc

(c, te)
, c; (c, tv), (c, te), n; nc

]
,

where te = dn + dn−1 + . . .+ d2 + d− tv.

Next result makes reference to fundamental alternate oriented-hypermaps.

Theorem 2 If QAlt is an alternate bicontactual oriented-hypermap with n hyperfaces, then

QAlt covers a fundamental alternate bicontactual hypermap with n hyperfaces.

Proof :

Let QAlt = (D;R,L) be an alternate bicontactual oriented-hypermap with n hyperfaces.

Since QAlt is a alternate bicontactual hypermap with n hyperfaces, LR = (RL)d and

Rn = (RL)tv for some d, tv in {0, . . . , c − 1}. Consequently, we have Ln = (RL)te with

te = dn + dn−1 + . . .+ d2 + d− tv.
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Let Nv = 〈Rn〉 be a subgroup of G. We have

(Rn)L−1

= ((RL)tv)L−1

= (LR)tv = (R−1RLR)tv = ((RL)tv)R = (Rn)R = Rn ,

and, consequently, Nv �G. Let Ne = 〈Ln〉 be a subgroup of G. Also we have

(Ln)R = ((RL)te)R = (LR)te = (LRLL−1)te = ((RL)te)L−1

= (Ln)L−1

= Ln ,

and, consequently, Ne �G.

Therefore, the subgroup N = 〈Rn, Ln〉 is normal in G. So QAlt/N is fundamental and

QAlt −→ QAlt/N .

2

Remark 6 From the previous proof and knowing that c is the valency of the hyperfaces in

QAlt, we have that 1 = Rn = (RL)tv and 1 = Ln = (RL)te hold in the hypermap QAlt/N .

Therefore, (RL)c = 1 = (RL)tv = (RL)te . Consequently, we obtain

(RL)µ = 1

in the fundamental hypermap QET/N , where µ = (c, tv, te).

The next result gives another covering between alternate bicontactual oriented-hypermaps.

Theorem 3 Any fundamental alternate bicontactual oriented-hypermap with n hyperfaces

covers the fundamental alternate bicontactual oriented-hypermap W−1Dεn with the same

number of hyperfaces.

Proof :

Let PAlt = (D;R,L) be a fundamental alternate bicontactual oriented-hypermap.

Let N be the subgroup generated by RL of order c. By relation LR ∈ 〈RL〉, in Lemma

15, the subgroup N = 〈RL〉 of D is normal. So, we obtain a projection

PAlt −→ PAlt/N = (D/N, x, y)

where x = RN and y = LN .
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In the hypermap PAlt we have LR = (RL)d, for some d ∈ {0, . . . , c− 1}. Then we

get yx = LRN ∈ 〈RL〉N . So, yx ∈ 〈xy〉.

Consequently, M = PAlt/N is alternate bicontactual.

But xy = 1, by RL ∈ N , therefore x = y. So, PAlt�N = W−1(Dεn) . 2

1
F F

2

F
3Fn

Fn-1

Figure 3.1: Hypermap W−1(Dεn)

3.3 Chirality

The presentation (3.5), of the monodromy group of an alternate bicontactual oriented-

hypermap, coincide with the presentation (3.6) of a metacyclic group.

The chiral hypermaps with metacyclic monodromy groups were identified by Breda

d’Azevedo and Nedela in [12]. They give the necessary and sufficient conditions for a regular

oriented-hypermap, with metacyclic monodromy group, to be chiral (see section 1.4). Based

on this, the following theorem computes the chirality group and the chirality index of an

alternate bicontactual regular oriented-hypermap.

Theorem 4 Let H be a hypermap of the family AltB(n, c, d, tv).

1. H is chiral if and only if d2 6= 1 (mod c) ;

2. If d2 6= 1 (mod c) then H is chiral with chirality group XH = 〈Sd2−1〉 and chirality

index κ = c
(c,d2−1)

.





Chapter 4

Edge-twin bicontactual

oriented-hypermaps

In this chapter we present the classification of the regular edge-twin bicontactual oriented-

hypermaps.

In the first section, we rewrite some properties, obtained in the section 2.2.1, for regular

edge-twin bicontactual hypermaps (in function of the generators R and L).

Section 4.2 presents the classification of fundamental edge-twin bicontactual oriented-

hypermaps first (subsection 4.2.1) and with this we classify later (subsection 4.2.2) the

family of the edge-twin bicontactual oriented-hypermaps.

In the last section of this chapter, we study the chirality of the edge-twin bicontactual

oriented-hypermaps. We will show that all them are, in fact, reflexible.

In what follows, let QET = (G;R,L) be a regular edge-twin bicontactual oriented-

hypermap with n hyperfaces of valency 2z.

4.1 Some general properties

The algebraic definition of regular edge-twin bicontactual hypermaps, without boundary,

was presented in Lemma 3. We consider edge-twin bicontactual regular oriented-hypermaps.

Towards that, we start by rewriting the properties of section 2.2 in terms of R and L. These

result in the following Lemma and Propositions.
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Lemma 17 Let H = (G;R,L) be a regular oriented-hypermap. Then H is edge-twin bicon-

tactual if and only if

L2 ∈ 〈RL〉 and RLR ∈ 〈RL〉 (4.1)

Note that the bicontactuality in maps is algebraically characterized only by

RLR ∈ 〈RL〉 .

Lemma 18 The neighborhood of an arbitrary hyperedge of QET contains only two incident

hyperfaces. Consequently, L2re = 1, where re is the edge repetition-degree.

Proposition 13 The neighborhood of an arbitrary hypervertex of the hypermap QET con-

tains all the hyperfaces of the hypermap. Therefore, Rn ∈ 〈RL〉 and Rnrv = 1, where rv is

the vertex repetition-degree.

Remark 7 If QET is a fundamental hypermap, then Rn = 1.

4.2 The classification

The family of the regular fundamental edge-twin bicontactual oriented-hypermaps is es-

sential in our approach since any regular edge-twin bicontactual oriented-hypermap will

cover a fundamental one (Theorem 7). The objective of this section is the classification of

the above-mentioned family. The classification actually include, by (0,1)-duality, the classi-

fication of the regular vertex-twin bicontactual oriented-hypermaps.

Based on what we have previously dealt with, as far as basic properties are concerned,

we easily obtain the following word relations for the hypermap QET :

• (RL)2z = 1 for, some integer z

By Lemma 17 and analysing the respective figures we have
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• L2 = (RL)u, for some even integer u in {0, · · · , 2z − 1}
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Figure 4.1: ωL2 belongs to an F1F2-arc

• RLR = (RL)s, for some even integer s in {0, · · · , 2z − 1}
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Figure 4.2: ωRLR belongs to an F1F2-arc

• Rn = (RL)t, for some even integer t in {0, · · · , 2z − 1}
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Figure 4.3: ωRn belongs to an F1F2-arc

Remark 8 When u = 0 or z = 1, the hypermap QET is a map.

For any edge-twin bicontactual oriented-hypermap, we assume

(RL)2z = 1, L2 = (RL)2a, RLR = (RL)2b and Rn = (RL)2q ,

where z is a positive integer and a, b, q are integers in {0, · · · , z − 1}.



50 Chapter 4. Edge-twin bicontactual oriented-hypermaps

As we shall see later, the five parameters n, z, a, b, q involved in preceding word relations

are sufficient to classify all the regular edge-twin bicontactual oriented-hypermaps. The

edge and vertex repetition-degree parameters re and rv are determinate by the previous five

parameters as follows:

L2 = (RL)2a ⇒ | L2 |=| (RL)2a | ⇔ re = 2z
(2z,2a)

= z
(z,a)

Rn = (RL)2q ⇒ | Rn |=| (RL)2q | ⇔ rv = 2z
(2z,2q)

= z
(z,q)

from which we obtain the type
(

nz
(z,q)

, 2z
(z,a)

, 2z
)

of an edge-twin bicontactual oriented-hypermap.

4.2.1 The fundamental case

From now on let us assume that the hypermap QET is fundamental with n hyperfaces of

valency 2c. So,

(RL)2c = 1, L2 = (RL)2a, RLR = (RL)2b andRn = 1 ,

where c is a positive integer and a, b are integers in {0, · · · , c− 1}.

Before we calculate the necessary and sufficient conditions for the parameters n, c, a, b

that give rise to a fundamental oriented-hypermap with n hyperfaces (Theorem 5), we will

need to establish some preliminary results.

Lemma 19 Let g and h be two arbitrary elements of the group Mon(QET ). If they satisfy

the equations hgh = g2b+1 and hg2 = g2kh (for some positive integer k), then the equation

highi = g2b(ki−1+ki−2+···+k2+k+1)+1 (4.2)

holds for all i ∈ N.

Proof :

We will prove the claimed equation by induction.

It holds for i = 1, because we have the relation hgh = g2b+1.

Assume that for all j ∈ {1, . . . , i} the equation hjghj = g2b(kj−1+kj−2+···+k2+k+1)+1 holds.



4.2 The classification 51

For i+ 1 we obtain

hi+1ghi+1 = h(highi)h

= hg2b(ki−1+ki−2+···+k2+k+1)+1h

= hg2b(ki−1+ki−2+···+k2+k+1)gh

= h g2g2 . . . . . . . . . . . . . . . g2

︸ ︷︷ ︸
b(ki−1+ki−2+···+k2+k+1) times

gh

= g(2k)b(ki−1+ki−2+···+k2+k+1)hgh

= g2b(ki+ki−1+···+k2+k)hgh

= g2b(ki+ki−1+···+k2+k)g2b+1

= g2b(ki+ki−1+···+k2+k+1)+1

So, we can conclude that for i+ 1 the equation (4.2) is valid. 2

Lemma 20 Let g and h be two arbitrary elements of the group Mon(QET ). If g2 and h2

commute then

higth−i =





gt, i even;

hgth−1, i odd.
(4.3)

holds for all i ∈ N and for any even integer t.

Proof :

Let t an even integer and let i an arbitrary integer.

By the condition g2
⇌ h2, we get higth−i = hih−igt = gt, for i even.

When i is odd, we have higth−i = hhi−1gth−i+1h−1. Since i − 1 is even, then from the

equation 4.3 (even power), we get higth−i = hgth−1. 2

Theorem 5 If QET is a fundamental edge-twin bicontactual oriented-hypermap with n hy-

perfaces of valency 2c, then

Mon(QET ) = 〈R,L | (RL)2c = Rn = 1, L2 = (RL)2a, RLR = (RL)2b〉

for some integers c ≥ 1 and a, b ∈ {0, · · · , c− 1} such that k = a+ b satisfies

(i) k2 ≡ 1 (mod c) ;

(ii) ak ≡ a (mod c) ;

(iii) b(kn−1 + · · · + k + 1) ≡ 0 (mod c) .
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Conversely, any hypermap H = (G;R,L) defined above is a fundamental edge-twin bicon-

tactual oriented-hypermap with n hyperfaces.

Proof :

Let QET = (G;R,L) be a fundamental edge-twin bicontactual oriented-hypermap with

n hyperfaces. By lemma 17 and by remark 7, G is a factor group of

〈R,L | (RL)2c =
(1)

1, Rn =
(2)

1, L2 =
(3)

(RL)2a, RLR =
(4)

(RL)2b〉 (4.4)

for some integers c ≥ 1 and a, b ∈ {0, · · · , c− 1}. Without lost of generality we assume that

2c is the order of RL and n is the order of R.

Let us show that the conditions (i), (ii) and (iii) hold. Conjugating the 3rd relation by

L−1 we obtain L2 = (LR)2a. Since we have L2R = (RL)2aR, then the relation L2R = RL2

holds. That is, L2 belongs to the centre of G. From the 4th relation we get (LR)2 = L2(RL)2b

and, by the 3rd relation, (LR)2 = (RL)2k with k = a+b. Thus, we have (LR)2a = (RL)2ka ⇔

(RL)2a(k−1) = 1. That is, ak ≡ a (mod c). For convenience, let us change generators R,

L to X = RL and Y = RL. Thus, the new generators X and Y of G satisfy the new word

relation:

〈X, Y | X2c =
(1)

1, Y n =
(2)

1, Y −1XY −1 =
(3)
X2a−1, Y XY =

(4)
X2b+1〉 (4.5)

Now, from 3rd and 4th relations, we obtain Y X2Y −1 = X2k and Y −1X2Y = X2k. Then

X2
⇋ Y 2 and also we have Y X2Y −1 = X2k ⇔ X2 = (Y −1X2Y )k = (X2k)k ⇔ X2k2−2 = 1.

So, k2 ≡ 1 (mod c).

Putting i = n in equation (4.2) for the elements X and Y , and having in account the 2nd

relation, we get the following outcome: X2b(kn−1+kn−2+···+k2+k+1) = 1. Consequently,

b(kn−1 + · · ·+ k + 1) ≡ 0 (mod c) . (4.6)

As result of k2 ≡ 1 (mod c), we have ki + ki−1 + · · · + k + 1 ≡ i
2
k + i+2

2
(mod c) or

i+1
2

+ k i+1
2

(mod c) according i is even or odd, respectively. So, the congruence (4.6) is

equivalent to the congruences





n
2
b(k + 1) ≡ 0 (mod c) , n even ;

b
(

n−1
2

(k + 1) + 1
)
≡ 0 (mod c) , n odd .

(4.7)
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We will show that, when n is odd, combining the congruence ak ≡ a (mod c) with the

second of (4.7) we conclude

k ≡ 1 (mod c) . (4.8)

In fact, (4.7) implies that b(k − 1)(n−1
2

(k + 1) + 1) is also congruent to 0 module c. But

b(k − 1)(
n− 1

2
(k + 1) + 1) = b

n− 1

2
(k2 − 1) + b(k − 1) .

By k2 ≡ 1 (mod c), we obtain that bk ≡ b (mod c). This congruence and the congruence

ak ≡ a (mod c) give rise to the congruence k2 ≡ k (mod c). By transitivity, we conclude

(4.8).

It remains to show that the group with presentation (4.4) satisfying the conditions (i),

(ii) and (iii) has size 2nc. This is done by next lemma.

Lemma 21 The relations X2c = Y n = 1, Y −1XY −1 = X2a−1 and Y XY = X2b+1, where

a, b ∈ {0, · · · , c − 1} satisfy the conditions ak ≡ a (mod c), k2 ≡ 1 (mod c), and b(kn−1 +

· · · + k + 1) ≡ 0 (mod c), with k = a+ b, determine a group of order 2nc.

Proof :

Let K be the group with presentation

〈X, Y | X2c = Y n = 1, Y −1XY −1 = X2a−1, Y XY = X2b+1〉

where a, b ∈ {0, · · · , c− 1}.

Let N be the subgroup generated by X; its order divides 2c. One can see that N divides

K into (no more than) n cosets N , NY , NY 2, · · · , NY n−2 and NY n−1. Let i be in N and t

an even integer. Since X2
⇌ Y 2, equation (4.3) holds. Using Y X2Y −1 = X2k, the equation

(4.3) can be rewriten as

Y iX tY −i =





X t, i even;

Xkt, i odd.

So

NY iX t = NY i . (4.9)

Now, let t be an odd integer. Then we have

Y iX t−1Y −i =





X t−1, i even;

Xk(t−1), i odd.
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As Y iX tY i = Y iX t−1Y −iY iXY i, equation (4.2) gives

Y iX tY i =





X t−1X2b(ki−1+ki−2+···+k2+k+1)+1, i even;

Xk(t−1)X2b(ki−1+ki−2+···+k2+k+1)+1, i odd.

Therefore

NY iX t = NY n−i . (4.10)

The relations (4.9) and (4.10) are enough to reduce any word Nω, where ω is a word in

X and Y , to one of the cosets N , NY , NY 2, ···, NY
n−2 and NY n−1. The hyperfaces of QET

are described by the cosets N , NY , NY 2, ···, NY
n−2 and NY n−1 (as the figure shows).
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So |K| = n|N | ≤ 2nc. That is, the size of K is finite.

The normal subgroup H = 〈X2, Y 〉 factors K into a cyclic group C2 = 〈Y | Y 2 = 1〉.

Thus |K : H| = 2. We are going to use the Reidemeister-Schreier’s Rewriting Process to

obtain a presentation for the group H . Consulting [23], the method involves four steps.

For the first step, we need a Schreier transversal T for H in K. As the quotient group

K/H is equal to {kH|k ∈ K} = {XH,H} we have T = {1, X}. The next step is to find

the generators for H . This is done in terms of the Schreier transversal T of H , the free

generators X and Y of K, and the function K → C2 = K/H such that k 7→ k̂ defined by

kH ∩ T = {k̂}. The elements of the set

B∗ = {tut̂u
−1

| t ∈ T, u ∈ {X, Y }}

generate a free group. Here, through the properties

ĥ = 1, ∀h ∈ H and t̂ = t⇔ t ∈ T ,

we have
t�u X Y

1 1̂X = X̂ = X 1̂Y = Ŷ = 1

X X̂X = X̂2 = 1 X̂Y = X
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So B∗ = {X2, Y,XY X−1}. But, for our convenience, we replace XYX−1 by X−1Y X =

(XYX−1)X2
. Let A = X2, B = Y and C = X−1Y X.

For the 3rd step we conjugate the relators of K by T :

Ř = {rt | t ∈ T, r ∈ {X2c, Y n, Y −1XY −1X−(2a−1), Y XY X−(2b+1)}}

= {X2c, Y n, (Y −1X)2X−2a, (Y X)2X−2b−2, X−1Y nX,

X−1Y −1XY −1X2−2a, X−1Y XYX−2b}

The last step consists in rewriting each element of Ř in terms of A, B and C. The

rewritten words will be the relators for a presentation of H . This will be done by inspection,

as follows:

X2c = Ac

Y n = Bn

Y −1XY −1X1−2a = Y −1X2X−1Y −1XX−2a = B−1AC−1A−a

Y XYX−2b−1 = Y X2X−1Y XX−2b−2 = BACA−(b+1)

X−1Y nX = (X−1Y X)n = Cn

X−1Y −1XY −1X2−2a = C−1B−1A1−a

X−1Y XYX−2b = CBA−b

Putting together B∗ and the rewritten Ř we get a presentation for H :

〈A, B, C | Ac = 1, Bn = 1, B−1AC−1 = Aa, BAC = Ab+1, Cn = 1, C−1B−1 = Aa−1, CB = Ab〉 .

This presentation can be improved. Having in account the last relation we can ignore

the generator C, we have C = AbB−1. Thus,

〈A,B | Ac =
(1)

1, Bn =
(2)

1, B−1AB =
(3)

Ak, BAb+1 =
(4)

Ab+1B, (AbB−1)n =
(5)

1, BAbB−1 =
(6)

A1−a〉 ,

where k = a + b.

The 4th relation shows that Ab+1
⇌ B.

From ak ≡ a (mod c) we obtain

k(b+ 1) − (b+ 1) = ab+ b2 + (a+ b︸ ︷︷ ︸
k

)a− 1 = k2 − 1 .

Then k(b+ 1) ≡ (b+ 1) (mod c) because we have k2 ≡ 1 (mod c). The 3rd relation gives rise

to B−1Ab+1B = Ak(b+1), which implies that B−1Ab+1B = Ab+1 (that is, the 4th relation). So,

this relation is redundant.
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We have B−1AaB = (B−1AB)a and, by the 3rd relation, we get B−1AaB = (Ak)a. From

ak ≡ a (mod c) we obtain B−1AaB = Aa. So, Aa and B commute.

From the 6th relation, we obtain that AbB−1 = B−1A1−a. Replacing in the 5th relation,

we conclude, by Aa
⇌ B, that

(B−1A1−a)n = 1 ⇔ (B−1A)n = Ana .

The 3rd relation can be rewrite as A = BAaAbB−1. Knowing that Aa
⇌ B, we conclude

that A1−a = BAbB−1. Therefore, we can eliminate the 6th relation.

From relation A1−a = BAbB−1, we have

A1−a = BAb+1A−1B−1 ⇔ A1−a−b−1 = BA−1B−1 ⇔ A−k = BA−1B−1 .

Let us show that the relation Bn = 1 is redundant. To do that we need to prove, by

induction, that

Bi(AbB−1)i = A−ki

Ab(ki−1+···+k+1)+1 (4.11)

for any positive integer i. We start showing that it holds when i = 1:

B(AbB−1) = BA−1Ab+1B−1 = BA−1B−1Ab+1 = A−kAb+1 .

Assume that for all j ∈ {1, . . . , i} the equation Bj(AbB−1)j = A−kj

Ab(kj−1+···+k+1)+1 holds.

For i+ 1 we obtain

Bi+1(AbB−1)i+1 = BBi(AbB−1)iAbB−1

= BA−ki

Ab(ki−1+···+k+1)+1AbB−1

= BA−ki

Ab(ki−1+···+k+1)B−1Ab+1

= (BAB−1)−ki+b(ki−1+···+k+1)Ab+1

= Ak(−ki+b(ki−1+···+k+1))Ab+1

= A−ki+1+b(ki+···+k2+k)Ab+1

So for i + 1 the equation (4.11) is valid and, consequently, (4.11) is valid. Now Bn = 1 is

redundant. In fact,

Bn = Bn1 = Bn(AbB−1)n = A−kn

Ab(kn−1+···+k+1)A .

We have k2 ≡ 1 (mod c) and if n is odd, k ≡ 1 (mod c)1, so in both cases kn ≡ 1 (mod c).

Hence, by congruence (4.6),
Bn = A−1A0A = 1 .

1congruence (4.8)
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Finally, the presentation of H is as follows

H = 〈A,B | Ac = 1, AB = Ak, (B−1A)n = Ana〉 ,

where A and B corresponds to X2 and Y in K.

Changing the generators {A, B} for the generators {x = A−1, y = A−1B}, we get

H = 〈x, y | xc = 1, xy = xk, yn = xna〉 .

As k(na) = n(ak) ≡ na (mod c) then H is a metacyclic group M(c, n, na, k) and hence

|H| = nc. So

|K| = |K : H||H| = 2nc .

3

2

Theorem 5 determines a family of (regular) bicontactual oriented-hypermaps with n

hyperfaces which are fundamental edge-twin.

Let P1 be the presentation in equation (4.4) and P2 be the presentation in equation (4.5).

For such family, we have P1 ∼ P2. We will denote by FETB(n, c, a, b) the group presented

by either presentations.

From Lemma 18 and by the value of the edge repetition-degree re, we obtain v
E

= 2c
(c,a)

.

The H-sequence associated to this family is

[
2nc− n(c, a) − 2c− n; n,

2c

(c, a)
, 2c; 2c, n(c, a), n; 2nc

]
.

Next result together with Theorem 7 says that any edge-twin bicontactual regular oriented-

hypermap covers a bicontactual regular oriented map. This result, that was one of ours first,

had led us to endure a classification of edge-twin bicontactual hypermaps by lifting Wil-

son’s classification. It may still be possible to achieve that this way, however we found this

approach too hard to keep pursuing.

Theorem 6 Any fundamental edge-twin bicontactual oriented-hypermap covers a bicontac-

tual oriented map M.
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Proof :

Consider a hypermap QET = FETB(n, c, a, b) = (G;R,L).

We have L2 ∈ 〈RL〉. As QET is oriented then L2 = (RL)u for some even integer u.

Let N = 〈L2〉 = Cb, which is normal in G. So, we have a projection

QET −→ QET/N = (G/N, x, y)

where x = RN, y = LN . Clearly that M = QET/N is a map since y2 = 1.

From the relation RLR = (RL)2b, we get xyx = RLRN ∈ 〈RL〉N . So, xyx ∈ 〈xy〉.

Consequently, M = QET/N is bicontactual. 2

4.2.2 The general case

In this subsection the notation QET stands now for an edge-twin bicontactual regular

oriented-hypermap with n hyperfaces of valency 2z. The vertex repetition-degree rv is no

longer necessarily 1.

From Proposition 13 and by Figure 4.3 the relation

Rn = (RL)2q , (4.12)

for some integer q ∈ {0, · · · , c− 1}, holds in the hypermap QET .

Lemma 22 The generators R and L of the group Mon(QET ) satisfy the relation

(RL)2q = (LR)2q . (4.13)

Proof :

Already we have seen that the relation Rn = (RL)2q, for some integer q ∈ {0, · · · , c− 1},

is valid in the hypermap QET . Then we get Rn = R−1(RL)2qR = (LR)2q conjugating by R.

So (RL)2q = (LR)2q. 2

The next result will allow us to classify the edge-twin bicontactual oriented-hypermaps

from fundamental edge-twin oriented-hypermaps.

Theorem 7 If QET is an edge-twin bicontactual oriented hypermap with n hyperfaces of

valency 2z, then QET covers a fundamental edge-twin bicontactual hypermap with the same

n hyperfaces.
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Proof :

Let G be the monodromy group of QET .

By Lemma 22, the subgroup N = 〈Rn〉 is normal in G.

Thus, the hypermap QET/N = (G/N ;NR,NL) is a fundamental edge-twin bicontactual

oriented-hypermap, also with n hyperfaces, and

QET −→ QET/N .

Equation (4.12) with Rn = 1, in the hypermap QET/N , says that (RL)2c = 1, where c =

(z, q), holds in QET/N . Consequently, v
F

= 2c in the fundamental edge-twin bicontactual

oriented-hypermap QET/N . 2

The presentation of the group Mon(QET ) will follow from the known presentation of the

monodromy group of the fundamental hypermap QET/N (Theorem 5). For this we need to

know some results of the extension group theory, described in the first chapter, section 3.

Proposition 14 The monodromy group of a regular edge-twin bicontactual oriented-hypermap

is an extension of the monodromy group of a regular fundamental edge-twin bicontactual

oriented-hypermap.

Proof :

Having in account the epimorphism present in the proof of Theorem 7 and using the

definition 4, the proof is straightforward. 2

Theorem 8 If QET is an edge-twin bicontactual oriented-hypermap with n hyperfaces of

valency 2z, then

Mon(QET ) = 〈R,L | (RL)2z = 1, L2 = (RL)2a, RLR = (RL)2b, Rn = (RL)2q〉

for some integers z ≥ 1 and a, b, q ∈ {0, · · · , z − 1} such that k = a + b satisfies

(i) k2 ≡ 1 (mod z) ;

(ii) ak ≡ a (mod z) ;

(iii) qk ≡ q (mod z) ;

(iv) 2q − b(kn−1 + · · · + k + 1) ≡ 0 (mod z) .
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Conversely, any hypermap H = (G;R,L) defined above is an edge-twin bicontactual oriented-

hypermap with n hyperfaces.

Proof :

Let QET = (G;R,L) be an edge-twin bicontactual oriented-hypermap with n hyperfaces

of valency 2z. We will denote by P = (P ; r, l) the fundamental edge-twin bicontactual

oriented-hypermap covered by QET (such hypermap exists by Theorem 7).

Recall that N = 〈Rn〉 ⊳ G. By equation (4.12), we can assume that Rn = (RL)2q, where

q ∈ {0, · · · , z − 1}.

From the cover υ : QET −→ QET/N , we know that G/N ∼= P . The epimorphism υ is

such that R 7→ r and L 7→ l.

Our aim it to get a presentation of G from presentations of P and N . We can write

P = FETB(n, c, a, b), that is,

P = 〈r, l | (rl)2c = 1, l2 = (rl)2a, rlr = (rl)2b, rn = 1〉 ,

for some integers c ≥ 1 and a, b ∈ {0, · · · , c − 1} such that the parameters satisfying the

following conditions

(I) k2 ≡ 1 (mod c) ;

(II) ak ≡ a (mod c) ;

(III) b(kn−1 + · · ·+ k + 1) ≡ 0 (mod c) .

with k = a + b and c = (z, q).

The presentation of N is

N = 〈y = (RL)2q | y
z
c = 1〉 .

Let X and Y be set of generators of P and N , respectively, and let R and S be set of

defining relators of P and N , respectively.

Following the notation described in the section 1.3.2 (Proposition 1.3.3) we have Ỹ ≡ Y

and, consequently, S̃ ≡ S. The elements R and L, being transversal elements and generating

G, form the set X̃.

Writing each element of R in terms of X̃ and then as a word in Ỹ , we get

R̃ = {(RL)2c = y, L2(RL)−2a = 1, RLR(RL)−2b = 1, Rn = y} .
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Conjugating y by the elements of X̃, we obtain

T̃ = {yR = y, yL = y} .

By equation (1.3), the group G has a presentation given by generators R, L, y = (RL)2q

and word relations

y
z
c = 1, (RL)2c = y, L2(RL)−2a = 1, RLR(RL)−2b = 1, Rn = y, yR = y and yL = y .

This is equivalent to a presentation with generators R, L and word relations

((RL)2c)
z
c = 1, L2 = (RL)2a, RLR = (RL)2b, Rn = (RL)2q,

((RL)2q)
R

= (RL)2q, ((RL)2q)
L

= (RL)2q .

which have the final form, given by

G = 〈R,L | (RL)2z =
(1)

1, L2 =
(2)

(RL)2a, RLR =
(3)

(RL)2b, Rn =
(4)

(RL)2q〉 . (4.14)

The size of G is
|G| = |P ||N | = 2nc

z

c
= 2nz .

Recovering some relations and results from the proof of Theorem 5, we obtain the con-

ditions (i), (ii), (iii) and (iv). The first two are straightforward. The last two need a little

extra work. We had the relation (LR)2 = (RL)2k, obtained from the similar conditions (2)

and (3). Thus 2ak is congruent to 2a and 2qk is congruent to 2q, both module the valency

of the hyperfaces, 2z.

In the same manner, we also change the generators to X and Y (recall that, X = RL

and Y = RL). The presentation of G becomes this way

〈X, Y | X2z =
(1)

1, Y −1XY −1 =
(2)
X2a−1, Y XY =

(3)
X2b+1, Y n =

(4)
X2q〉 . (4.15)

For i = n in equation (4.2), outcome the following equation jointly with the relation (4):

X4q−2b(kn−1+kn−2+···+k2+k+1) = 1 .

Consequently, 2q − b(kn−1 + · · · + k + 1) ≡ 0 (mod z).

Conversely, suppose we have an oriented-hypermap H with n hyperfaces of valency 2z

such that the monodromy group has the following presentation

Mon(H) = 〈R,L | (RL)2z = 1, L2 = (RL)2a, RLR = (RL)2b, Rn = (RL)2q〉
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for some integers z ≥ 1 and a, b, q ∈ {0, · · · , z − 1}, which parameters satisfy

(i) k2 ≡ 1 (mod z) ;

(ii) ak ≡ a (mod z) ;

(iii) qk ≡ q (mod z) ;

(iv) 2q − b(kn−1 + · · · + k + 1) ≡ 0 (mod z) .

where k = a + b.

By Lemma 17, the oriented-hypermap H defined above is edge-twin bicontactual. We

only need to show that the group has size 2nz.

For convenience, let us change generators R, L to X = RL and Y = RL. Thus, in

function of the new generators X and Y , the presentation of Mon(H) takes the form (4.15).

The subgroup H = 〈X2, Y 〉 of Mon(H) is normal and it factors Mon(H) into a cyclic

group C2 = 〈Y | Y 2 = 1〉. Thus |Mon(H) : H| = 2.

We are going to use the Reidemeister-Schreier’s Rewriting Process, in the same way

to what we made previously, to obtain a presentation for the group H . It is necessary

a Schreier transversal T for H in Mon(H). As the quotient group Mon(H)/H is equal to

{mH|m ∈Mon(H)} = {XH,H} we have T = {1, X}. Next, we will find the free generators

that will define, as a quotient, H . This is done in terms of the Schreier transversal T of

H , the free generators X and Y and the function Mon(H) → C2 = Mon(H)/H such that

m 7→ m̂ defined by mH ∩ T = {m̂}. The elements of the set

B∗ = {tut̂u
−1

| t ∈ T, u ∈ {X, Y }}

generate a free group. Here, through the properties

ĥ = 1, ∀h ∈ H and t̂ = t⇔ t ∈ T ,

we have

t�u X Y

1 1̂X = X̂ = X 1̂Y = Ŷ = 1

X X̂X = X̂2 = 1 X̂Y = X

So B∗ = {X2, Y,XY X−1}. But, for our convenience, we replace XYX−1 by X−1Y X =

(XYX−1)X2
. Let A = X2, B = Y and C = X−1Y X.
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Conjugating the relators of Mon(H) by T , we obtain

Ř = {rt | t ∈ T, r ∈ {X2z, Y −1XY −1X−(2a−1), Y XY X−(2b+1), Y nX−2q}}

= {X2z, (Y −1X)2X−2a, (Y X)2X−2b−2, Y nX−2q, X−1Y nX−2qX,

X−1Y −1XY −1X2−2a, X−1Y XYX−2b}

Finally, we will rewrite each element of Ř in terms of A, B and C, where rewritten words

will be the relators for a presentation of H . This will be done by inspection, as follows:

X2z = Az

Y nX−2q = BnA−q

(Y −1X)2X−2a = B−1AC−1A−a

(Y X)2X−2b−2 = BACA−(b+1)

X−1Y nX−2qX = (X−1Y X)nX−2q = CnA−q

X−1Y −1XY −1X2−2a = C−1B−1A1−a

X−1Y XYX−2b = CBA−b

Putting together B∗ and the rewritten Ř we get a presentation for H :

〈A, B, C | Az = 1, Bn = Aq, B−1AC−1 = Aa, BAC = Ab+1, Cn = Aq, C−1B−1 = Aa−1, CB = Ab〉 .

This presentation can be improved. Having in account the last relation we can ignore

the generator C, we have C = AbB−1. Thus,

〈A,B | Az =
(1)

1, Bn =
(2)

Aq, B−1AB =
(3)

Ak, BAb+1 =
(4)

Ab+1B, (AbB−1)n =
(5)

Aq, BAbB−1 =
(6)

A1−a〉 ,

where k = a + b.

The 4th relation shows that Ab+1 and B commute.

From congruence (ii) we obtain

k(b+ 1) − (b+ 1) = (a+ b︸ ︷︷ ︸
k

)b+ (a + b︸ ︷︷ ︸
k

)a− 1 = k2 − 1 .

Then, by congruence (i), we have k(b + 1) ≡ (b + 1) (mod c). The 3rd relation gives rise to

B−1Ab+1B = Ak(b+1), which implies that B−1Ab+1B = Ab+1. So, we get the 4th relation and

we conclude that this relation is redundant.

By the 3rd relation, we also obtain B−1AaB = (B−1AB)a = (Ak)a. Consequently, with

congruence (ii), we have B−1AaB = Aa ⇔ AaB = BAa. That is, Aa
⇌ B.
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From the 6th relation, we obtain that AbB−1 = B−1A1−a. Replacing in the 5th relation

we obtain

(B−1A1−a)n = Aq ⇔ (B−1A)n = Aq+na ,

because A−a commutes with B−1A.

By the 3rd relation we have A = BAaAbB−1 from which we get A1−a = BAbB−1. Together

with Aa
⇌ B we can eliminate the 6th relation. Since A1−a = BAbB−1, we have

A1−a = BAb+1A−1B−1 ⇔ A1−a−b−1 = BA−1B−1 ⇔ A−k = BA−1B−1 .

To show that the 2nd relation is redundant, we need to recall equation (4.11) which holds

for all positive integer i. In fact,

Bn = Bn1 = Bn(AbB−1)nA−q = A−kn

A2qAA−q .

We have k2 ≡ 1 (mod c) and if n is odd, k ≡ 1 (mod c), so in both cases kn ≡ 1 (mod c).

Hence, by congruence (4.6),

Bn = A−1Aq+1 = Aq .

Finally, the presentation of H is as follows

H = 〈A,B | Az = 1, AB = Ak, (B−1A)n = Aq+na〉 ,

where A and B corresponds to X2 and Y in K.

Changing the generators {A, B} for the generators {x = A−1, y = A−1B}, we get

H = 〈x, y | xz = 1, xy = xk, yn = xq+na〉 .

As k(na) = n(ak) ≡ na (mod c) then H is a metacyclic group M(z, n, q + na, k) and hence

|H| = nz. So

|K| = |K : H||H| = 2nz .

2

Theorem 8 determines a family of (regular) bicontactual oriented-hypermaps with n

hyperfaces which are edge-twin.

Let Q1 be the presentation in equation (4.14) and Q2 be the presentation in equation

(4.15). For such family, we have Q1 ∼ Q2. We will denote by ETB(n, z, a, b, q) the group

presented either by Q1 or Q2.
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From Lemma 18, Proposition 13 and by the values of the vertex and edge repetition-

degrees rv and re, we obtain the H-sequence associated to this family. It is
[
2nz − n(z, a) − 2(z, q) − n;

nz

(z, q)
,

2z

(z, a)
, 2z; 2(z, q), n(z, a), n; 2nz

]
.

4.2.3 The Wilson’s classification of bicontactual oriented maps

In this short subsection we want to show that our classification generalises Wilson’s one.

For the only two families of bicontactual oriented maps B(n, 2c, ρ, σ) and B∗(n, 2c) it is not

difficult to verify that they are related to our ETB hypermaps in the following way:

1. B(n, 2z, ρ, σ) = ETB(n, 2z, 0, ρ, σ) , where n is even

and

2. B∗(n, 2z) = ETB(n, 2z, 0, 1, n−z
2

(mod z) ) , where n and z are odd

4.3 Chirality

In this section we show that there are no chiral edge-twin bicontactual oriented-hypermaps.

Theorem 9 All regular edge-twin bicontactual oriented-hypermap QET are reflexible.

Proof :

Consider the relations that the generators of Mon(QET ) satisfy (see Theorem 8). The

chirality group X(QET ) is the subgroup of Mon(QET ) given by the normal closure of

〈(R−1L−1)2z, (L−1)−2(R−1L−1)2a, (R−1)L−1

R−1(R−1L−1)−2b, (R−1)−n(R−1L−1)2q〉

in Mon(Q). Simplifying, we get

XQ = 〈(LR)−2z, L2(LR)−2a, LR−1L−1R−1(LR)2b, Rn(LR)−2q〉Mon(Q) .

Conjugating the relation (RL)2z = 1 by L−1 we have (RL)2z = (LR)2z. In proof of

theorem 5, we obtained L2 = (LR)2a, that is, (RL)2a = (LR)2a. Conjugating the relation

RLR = (RL)2b by L−1 we conclude that (LR)2b = RLRL−1. From Lemma 22, we have

(RL)2q = (LR)2q. This shows that XQET
= 〈1〉Mon(QET ). Hence, XQET

= 1. So, by Lema 1,

we conclude that QET is reflexible. 2





Chapter 5

Non-orientable bicontactual regular

hypermaps

This chapter presents the classification of non-orientable bicontactual regular hypermaps.

The main result in this Chapter (Theorem 10 actually) was obtained by Wilson and Breda

d’Azevedo in [30] but for completeness we will do it again and give another proof. It will be

rewritten from the word relations defining the monodromy group of an edge-twin bicontactual

regular non-orientable hypermap.

For this subject, we recommend reading [31].

Up to a (0, 1)−duality, there are two types of bicontactuality: edge-twin and alternate.

The following Lemma shows that, in the non-orientable case, only edge-twin take place.

Lemma 23 Any alternate bicontactual regular hypermap is orientable.

Proof :

Let H be a regular alternate bicontactual hypermap with n hyperfaces (n ≥ 3). The

H-sequence associated to H is[
|Mon(H)|

2
− n

E
− n

V
− n; n, n, c; n

V
, n

E
, n; |Mon(H)|

]
.

Recalling that, an alternate bicontactual hypermap must satisfy the conditions

(r1r0)
r2 ∈ 〈r0, r1〉 and (r1r2)

n ∈ 〈r0, r1〉 . (5.1)

Figures says that the preceding word relations do not have odd length.
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Figure 5.2: The relator of the word relation (r1r2)
n ∈ 〈r0, r1〉 has even length

Then, by the conditions in (5.1), we get (r1r0)
r2 = (r1r0)

d and (r1r2)
n = (r1r0)

v for some

integers d and v. So the monodromy group G of H is generate by r0, r1, r2 with word

relations

r2
0 = 1, r2

1 = 1, r2
2 = 1, (r1r0)

c = 1, (r1r0)
r2 = (r0r1)

d, (r1r2)
n = (r0r1)

t, R(r0, r1, r2) ,

being R(r0, r1, r2) some more word relations, eventually containing odd length words (if H

is non-orientable).

Is obvious that N = 〈r1r0〉 is a normal subgroup of G. Factorizing G by N we obtain

G/N = 〈r0, r1, r2 | r
2
0 = 1, r2

1 = 1, r2
2 = 1, r1r0 = 1, (r1r2)

n = 1, R′(r0, r1, r2)〉

= 〈r0, r2 | r
2
0 = 1, r2

2 = 1, (r0r2)
n = 1, R′(r0, r1, r2)〉 ,

being R′(r0, r1, r2) the word relations R(r0, r1, r2) taking in account that r1r0 = 1. This

factorization give us a hypermap with the same number of hyperfaces and each hyperface

with valency 1, that is, the H-sequence associated to H/N has the form

[?; ?, ?, 1; ?, ?, n; |G/N |] .
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So the hypermap H/N is a factorization of W−1(Dεn). But W−1(Dεn) does not admit

non-orientable factorizations since it has only one hypervertex, and one hyperedge, being the

hyperedge the antipodal point of the hypervertex. Moreover, since the factorization keeps

the number of hyperfaces, we must have H/N = W−1(Dεn). Hence it comes that the surface

is orientable. 2

Let H be a non-orientable regular edge-twin bicontactual hypermap with n hyperfaces.

We know by Lemma 6 that each hyperface has even valency 2c. From Lemma 3, the edge-

twin bicontactual hypermaps are algebraically characterised by:

(r1r0)
2c = 1 , rr2

0 ∈ 〈r0, r1〉 , rr1r2
0 ∈ 〈r0, r1〉 and (r1r2)

n ∈ 〈r0, r1〉 . (5.2)

So rr2
0 = (r1r0)

d or rr2
0 = r0(r1r0)

d for some integer d, rr1r2
0 = (r1r0)

u or rr1r2
0 = r0(r1r0)

u

for some integer u, and (r1r2)
n = (r1r0)

v or (r1r2)
n = r0(r1r0)

v for some integer v. All

the parameters d, u, v are even. This can be seen by looking at the arc-adjacent of a flag.

Applying rr2
0 to some flag ω we get a flag ω

′
= ωrr2

0 . Since ω belongs to an F1F2-arc so

does the flag ω
′
. This implies that (see Figure 5.3) d must be even. For rr1r2

0 and (r1r2)
n

the procedure is similar, the arc-adjacent in Figures 5.4 and 5.5 show that u and v must be

even, respectively.
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The main theorem of this chapter states as follows (see [30]).

Theorem 10 If H is a non-orientable regular bicontactual hypermap, then H or D01(H)

must be

1. the hypermap D02(GWk),

2. the map Γk,

3. the map oppB∗(n, 2c) for some odd integers n and c, or

4. Dδk for some k.

Proof :

Let H = (G; r0, r1, r2) be a non-orientable edge-twin bicontactual regular hypermap with

n hyperfaces of valency 2c.

Up to a (0, 1)−duality the algebraic characterization (5.2), gives rise to 8 possibilities

listed below:
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Case word relations in G

I r2r0r2 = r0(r1r0)
d , rr1r2

0 = r0(r1r0)
u , (r1r2)

n = (r1r0)
v

II r2r0r2 = r0(r1r0)
d , rr1r2

0 = r0(r1r0)
u , (r1r2)

n = r0(r1r0)
v

III r2r0r2 = r0(r1r0)
d , rr1r2

0 = (r1r0)
u , (r1r2)

n = r0(r1r0)
v

IV r2r0r2 = r0(r1r0)
d , rr1r2

0 = (r1r0)
u , (r1r2)

n = (r1r0)
v

V r2r0r2 = (r1r0)
d , rr1r2

0 = r0(r1r0)
u , (r1r2)

n = r0(r1r0)
v

VI r2r0r2 = (r1r0)
d , rr1r2

0 = r0(r1r0)
u , (r1r2)

n = (r1r0)
v

VII r2r0r2 = (r1r0)
d , rr1r2

0 = (r1r0)
u , (r1r2)

n = r0(r1r0)
v

VIII r2r0r2 = (r1r0)
d , rr1r2

0 = (r1r0)
u , (r1r2)

n = (r1r0)
v

for some positive even integers d, u, v between 0 and 2c. The first case can be discared

since it determines orientable regular hypermaps, and they were classified in chapter 4.

Now, we are going to study each of the other cases separately.

Case II: Supposing that H satisfies the conditions

r2r0r2 =
(1)
r0(r1r0)

d, rr1r2
0 =

(2)
r0(r1r0)

u, (r1r2)
n =

(3)
r0(r1r0)

v

with d, u, v ∈ {0, 2, · · · , 2c− 2}.

Since r0(r1r0)
v is an involution, we get (r1r2)

2n = 1 and we conclude that the valency of

the hypervertices is 2n. That is, each hypervertex occurs twice in each hyperface. So there

are c hypervertices in H.

From the 3rd condition, we get (r1r2)
nr1 = (r0r1)

v+1. Because the first member is an

involution then

(r0r1)
2(v+1) = 1 (5.3)

So c divides v+ 1. As v+ 1 ∈ {1, 3, · · · , 2c− 1}, we must have v+ 1 = c. We conclude that

c is odd. The 3rd condition can then be written in the following way:

(r1r2)
n = r0(r1r0)

c−1 . (5.4)

For convenience, let X and Y be r1r0 and (r2r1)
r0 respectively. Rewriting the word

relations, we have:
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Y −1XY −1 (1)
= X−d−1, Y XY

(2)
= Xu+1, Y n (3)

= r1X
2−c .

From the first two word relations, we obtain Y X2 = Xu−dY . So, by Lemma 19, the

equation (4.2) is valid here. That is,

Y iXY i = Xu(ki−1+ki−2+...+k+1)+1 (5.5)

holds for all integer i, where 2k = u− d (since u− d is even).

Having in account the 3rd relation and putting i = n in the previous equation, we get

X−2 = Xu(kn−1+kn−2+···+k+1). So, c divides u
2
(kn−1 + kn−2 + · · ·+ k + 1) + 1.

We already know that (r2r1)
2n = 1. Thus we have Y 2n = 1. Putting i = 2n in the

equation (5.5) it results the relation Xu(k2n−1+k2n−2+···+k+1) = 1. So c also divides u
2
(k2n−1 +

k2n−2 + . . .+ k + 1). Note that

k2n−1 + k2n−2 + . . .+ k + 1 = k2n−1 + . . .+ kn + kn−1 + . . .+ k + 1

= kn(kn−1 + . . .+ k + 1) + kn−1 + . . .+ k + 1

= kn kn−1
k−1

+ kn−1
k−1

= kn−1
k−1

(kn + 1)

Consequently, assuming t = u
2
(kn−1 + kn−2 + · · · + k + 1), we have c|t + 1 and c|t(kn + 1).

Then c|t+ 1 implies that c|(t+ 1)kn. By the properties of divisibility, we get c|t− kn. From

the first two word relations, we obtain Y X2Y −1 = Xu−d but also Y −1X2Y = Xu−d. We

have Y X2Y = (Y X2Y −1)Y 2 = Xu−dY 2 and equivalently X2 = Y −1X2kY = (Y −1X2Y )k.

From Y −1X2Y = X2k, we get X2 = X2k2
. So, k2 ≡ 1 (mod c). For n even, the relation

kn ≡ 1 (mod c) holds and so c|t − 1. Then, again by the properties of the divisibility, it

results that c divides 2. As c is odd, the value of c must be 1. At this moment, the hypermap

H satisfies

(r1r0)
2 = 1, r2r0r2 = r0, r

r1r2
0 = r0, (r1r2)

n = r0 .

We see that H is a map. Easily we write the H-sequence of the hypermap H for an even

number of hyperfaces n:

[−1; 2n, 2, 2; 1, n, n; 4n] .

In conclusion, H is the map Dδn for n even.
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To finish the proof of Case I, it is necessary to study the case when the number of

hyperfaces is odd. Here, the congruence k2 ≡ 1 (mod c) also is valid. Then kn ≡ k (mod c)

and we obtain c|t− k. As we know that c|t+ 1, we get c|k + 1.

Note that 2k ∈ {−2c+ 2,−2c + 4, . . . , 0, 2, · · · , 2c− 4, 2c− 2}. Thus we only can have

2k+ 2 = 2c, that is, u = 2c− 2 + d. Having in account the values of u and d, the parameter

d must be 0 and the parameter u must be 2c−2. So H is a map. Among all the possibilities,

H must be oppB∗(n, 2c) with n and c odd.

Case III: Supposing that H satisfies the conditions

r2r0r2 = r0(r1r0)
d, rr1r2

0 = (r1r0)
u, (r1r2)

n = r0(r1r0)
v

with d, u, v ∈ {0, 2, · · · , 2c− 2}.

Similarity to the preceding case, the valency of the hypervertices is 2n.

Since rr1r2
0 is a involution, we have

(r1r0)
2u = 1 . (5.6)

Then 2c divides 2u, that is, u = c with c even. Here the equation (5.4) holds. So

rr1r2
0 = (r1r0)

c = r1r0(r1r0)
c−1 = r1(r1r2)

n .

Conjugating the previous relation by r2r1, we obtain r1r0 = (r1r2)
n−2. Replacing (r1r2)

n =

(r1r2)
2r1r0 in equation (5.4) it results (r1r2)

2 = r0(r1r0)
c−2. By this involution, we get

(r1r2)
4 = 1. Thus, we must have n = 2. But 2 hyperfaces implies non-bicontactual, a

contradiction. So, H does not exist in the conditions of case III.

Case IV: Supposing that H satisfies the conditions

r2r0r2 = r0(r1r0)
d, rr1r2

0 = (r1r0)
u, (r1r2)

n = (r1r0)
v

with d, u, v ∈ {0, 2, · · · , 2c− 2}.

Here the equation (5.6) holds. Then we get u = c and we know that c is even.

By the two first conditions, we obtain r2(r0r1)
2r2 = r0(r1r0)

d+u and, consequently,

(r0r1)
4 = 1. So 2c divides 4. Since c is even, we must have c = 2. At this moment,

we have c = 2 = u and d, v ∈ {0, 2}.

If v = 2, then (r1r2)
n = rr1r2

0 by conditions 2 and 3. Multiplying on the left by r1 and

after that conjugating by r1r2, we get the word relation r2(r1r2)
n−1 = r1r0. Since r2(r1r2)

n−1
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is an involution, we have (r1r0)
2 = 1. So c = 1. But this is a contradiction with the fact

that c is even.

Now, for v = 0, we will analyse two possibilities when d = 2 and when d = 0. Suppose

that we have v = 0 and d = 2. From the previous relation r2(r0r1)
2r2 = r0(r1r0)

d+u, we can

write r2(r0r1)
2r2 = r0 or, equivalently, r0r2(r0r1)

2r2 = 1 = (r1r2)
n. Therefore, we obtain

r0r2(r0r1)
2 = (r1r2)

n−1r1. Since (r1r2)
n−1r1 is an involution and (r0r1)

2 = (r1r0)
2, we get

r0(r1r0)
2(r0r1)

2 = 1 by the 2nd condition. Thus r0 = 1. This implies that the hypermap H

is dihedral. So H is orientable, which is impossible.

The last possibility is v = 0 and d = 0. Immediately we see that (r0r2)
2 = 1. So H

is a map. Since v = 0, we know that the hypervertices have valency n. Checking all the

possibilities, H must be Γn
3

with n a multiple of 3.

Case V: Supposing that H satisfies the conditions

r2r0r2 = (r1r0)
d, rr1r2

0 = r0(r1r0)
u, (r1r2)

n = r0(r1r0)
v

with d, u, v ∈ {0, 2, · · · , 2c− 2}.

From the 1st condition, we get

(r1r2)
2d = 1 . (5.7)

because r2r0r2 is an involution. Then 2c divides 2d, that is, d = c and we know that c is

even. By the two first conditions, r2(r0r1)
2r2 = (r1r0)

d−ur0 and, consequently, (r0r1)
4 = 1.

So 2c divides 4, that is, c = 1 or c = 2. Since c is even, we must have c = 2. As the equation

(5.4) holds, the value of v is 1, which is an absurd. We conclude that H does not exist in

the case V.

Case VI: Supposing that H satisfies the conditions

r2r0r2 = (r1r0)
d, rr1r2

0 = r0(r1r0)
u, (r1r2)

n = (r1r0)
v

with d, u, v ∈ {0, 2, · · · , 2c− 2}.

Here the equation (5.7) holds and, observing the previous case, we have d = c = 2.

Multiplying on the left the word relation r2r0r2 = (r1r0)
d by r0, we obtain that the valency

of the hyperedges divides 4 because r0(r1r0)
d is an involution. Thus H must be a map or a

pure hypermap.

At this moment, we have c = d = 2 and u, v ∈ {0, 2}.
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If u = 0, then the 2nd condition stays rr1r2
0 = r0. Conjuganting by r2 and using the 1st

condition we get r1r0r1 = (r1r0)
2. Therefore, r0 = 1. So the hypermap H is dihedral (that

is, orientable), which is impossible.

Now, for u = 2 suppose that v = 2. By the relations (r1r2)
n = (r1r0)

2 and (r1r0)
4 = 1,

we deduce that the valency of the hypervertices is equal to 2n. Consequently, there are c

hypervertices in H (because each hypervertex occurs twice in each hyperface). From the

2nd condition we have (r1r0)
2 = r0r

r1r2
0 . Replace in the 3rd condition we obtain (r1r2)

n−1 =

(r2r1)
r0, that is,

(r1r2)
−1(r1r0)

2 = r0r2r1r0 ⇔ r2r0 = r0r2 .

So we conclude that H is a map. But, searching among all the possibilities, with c even, we

find no such map.

We still have one possibility left to analyse u = 2 and v = 0. 3rd condition becomes

(r1r2)
n = 1. Hence, the valency of the hypervertices is n and the number of hypervertices

is equal to the valency of the hyperfaces. From the 1st condition, we get (r2r0)
2 = r1r0r1.

Then the valency of the hyperedges is 4 because r1r0r1 is an involution. So we conclude that

H is a pure hypermap. We can rewrite de word relation

r2r0r2 = r1r0r1r0 as r2r0r2r0r1r0r1 = 1

and this word relation shows that H is the hypermap D(GWn
3
), with n a multiple of 3.

Case VII: Supposing that H satisfies the conditions

r2r0r2 = (r1r0)
d, rr1r2

0 = (r1r0)
u, (r1r2)

n = r0(r1r0)
v

with d, u, v ∈ {0, 2, · · · , 2c− 2}.

Here the equations (5.7) and (5.3) hold. Then, from them, we get d = c and v = c+1. So,

on the one hand, c must be even, but on the other hand c must be odd. It is a contradiction

and thus we conclude that H does not exist in the case VII.

Case VIII: Supposing that H satisfies the conditions

r2r0r2 = (r1r0)
d, rr1r2

0 = (r1r0)
u, (r1r2)

n = (r1r0)
v

with d, u, v ∈ {0, 2, · · · , 2c− 2}.
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Here the equations (5.7) and (5.6) hold. Then we have d = c = u. Using this fact and

with the two first conditions, we obtain (r0r1)
2 = 1. So c = 1, which is impossible, because

c must be even. 2
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6.1 Bicontactual hypermaps with boundary

The definition of hypermap with boundary follows from section 1.1 with the underlying

surface S now having boundary and with the restriction that the boundary does not meet

the vertices of the underlying 3-valent graph G. The cells (connected components of S \ G)

are now homeomorphic to either an open disc (interior of faces) or an half-disc (=intersection

of an open disc with the closed upper half-plane {(x, y) | y ≥ 0}).

The permutation ri (i = 0, 1, 2) switches the two flags incident with each i−edge not

meeting the boundary and fixes the unique flag incident with each i−edge meeting the

boundary (see figure below).

w  wri
w= wri

i i

∂S

Figure 6.6: Action of ri’s in a hypermap with boundary

This means that H has boundary if and only if, at least, one of ri has fixed points. For

regular hypermaps we have

Definition 14 Let H = (G; r0, r1, r2) be a regular hypermap. Then H has boundary if and

only if, at least, one of ri is the identity.

Let Hb = (G; r0, r1, r2) be a regular hypermap with boundary. From [3] we know that G

is cyclic C2, V4 = D2 or Dn for some n ≥ 3. If |G| ≤ 4 then Hb has at most 2 hyperfaces
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and therefore cannot be bicontactual. Hence Hb to be bicontactual, G must be a dihedral

group Dn for some n ≥ 3. We cannot have r2 = 1 since Hb = (Dn; r0, r1, 1) has only one

hyperface.

Figure 6.7:

The only possibilities are r1 = 1 or r0 = 1.

Theorem 11 The bicontactual regular hypermaps with boundary are

1. Hb = (Dn; r0, 1, r2) with n ≥ 3,

Figure 6.8:

2. Hb = (Dn; 1, r1, r2), a dual D01 of the above, with n ≥ 3,

Figure 6.9:
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6.2 Future work

A pseudo-oriented map is a map with the property that it is possible to assign an orien-

tation around vertices such that adjacent vertices have opposite orientations, [29].

...

...

Figure 6.10: A orientation in pseudo-oriented maps

For future work we are interested in the classification of the pseudo-oriented hypermaps.

This definition extends to hypermaps in the obvious way (see Figure 6.11).

... ...

...

...

Figure 6.11: A orientation in pseudo-oriented hypermaps

Algebraically, a hypermap H is pseudo-oriented if and only if its hypermap subgroup H is

a subgroup of ∆0 (see section 1.1), where ∆ := 〈R0, R1, R2 |R
2
0 = R2

1 = R2
2 = 1〉 ∼= C2∗C2∗C2.

e
1

R1

R2

R0

Figure 6.12: Action of each Ri in ∆

If H � ∆0 = 〈R0, R1R2〉
∆, then we said that H is a regular pseudo-oriented hypermap.

From [2], any pseudo-oriented hypermap can be described as a 4−tuple P = (Λ; a, b, z),

where Λ is the set of “∆0−slices” and a, b and z are permutations of Λ satisfying a2 = b2 = 1

such that the group P generated by a, b and z, the monodromy group of P, acts transitively

on Λ. If the action of Mon(P) is regular then P is a regular pseudo-oriented hypermap. In

general we have |G| ≥ |Λ|, but when |G| = |Λ| the pseudo-oriented hypermap P is regular.
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The orbits of z, abz and ab on Λ are the hypervertices, hyperedges and hyperfaces, respec-

tively, while the positive integers v
V

= |〈z〉|, v
E

= 2|〈abz〉|, v
F

= 2|〈ab〉| determine the type

(v
V
, v

E
, v

F
) of a regular pseudo-oriented hypermap P. Note that a regular pseudo-oriented

hypermap is necessarily uniform.

The ∆0−slices can be seen as the grey flags obtained by acting a = r0, b = rr1
0 and

z = r1r2 on a fixed flag ω (Figure 6.13).

wa1
Fhyperface

hyperface F
2

w

wz

wb

hyperedge e
hypervertice v

Figure 6.13: Regular pseudo-oriented hypermap

Bicontactual regular pseudo-oriented hypermaps is defined similarly.

Figure 6.14 shows the bicontactual pseudo-oriented hypermap on the torus (2, 4, 4)M ,

where M =


 4 −1

4 1


. This is the dual D01 of a member of the family of toroidal regular

pseudo-oriented hypermaps (4, 2, 4)M , M =


 k −m

k m


, ([24]), where the notation follows

that given in [20, pg 48].
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F
1

F
1

2
F

2
F

F
3

F
4

F
4

F
5

F
6

F
6

F
7

F
8

F
8

>

>

>

>

Figure 6.14: The hypermap (2, 4, 4)M

How can 2 hyperfaces be placed around a given hyperface F in a regular pseudo-oriented

hypermap?

?

F

...... ...............
? ? ?

Figure 6.15: How can we distribute hyperfaces around F?

There are 5 ways to do that, namely,

1. “Alternate” : where the hyperfaces distribute around F are in alternate way.

F
2

1
F

F
23

F
.........

F
2

... .........

3
F

3
FF

2 3
F

Figure 6.16: Alternate bicontactual

Algebraically, we have

zaz ∈ 〈a, b〉, zbz ∈ 〈a, b〉 and z2 6∈ 〈a, b〉 .

Example : The bicontactual regular pseudo-oriented hypermap

(G; a, b, z) = (D6; x, x, y) .
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2. “Edge-Twin” : where the hyperfaces distribute around F appear with pattern F1, F1, F2, F2,

F1, F1, F2, F2, . . . , in circular order being the repetitions happening at hyperedges.

F
2

1
F

F
23

F
.........

F
2

... .........

3
F

3
FF

2 3
F

Figure 6.17: Edge-Twin bicontactual

Algebraically, we have

az ∈ 〈a, b〉, az−1

∈ 〈a, b〉, bz ∈ 〈a, b〉 and z2 6∈ 〈a, b〉 .

Example : In [2], the bicontactual regular pseudo-oriented hypermap (X = −2) of type

(8, 2, 4) with the extra relation z4ab = 1.

3. “Vertex-Twin” : where the hyperfaces distribute around F appear with pattern F1, F1, F2, F2,

F1, F1, F2, F2, . . . , in circular order being the repetitions happening at hypervertices.

F
2

1
F

F
23

F
.........

F
2

... .........

3
F

3
F F

23
F

Figure 6.18: Vertex-Twin bicontactual

Algebraically, we have

(ab)z ∈ 〈a, b〉, z2 ∈ 〈a, b〉 and az 6∈ 〈a, b〉 .

Example : The bicontactual regular pseudo-oriented hypermap on the torus introduced

in Figure 6.14.

4. “Quadruplet of type I” : where the hyperfaces distribute around F appear with pat-

tern F1, F1, F1, F1, F2, F2, F2, F2, F1, F1, F1, F1, . . . , in circular order, as in the following

figure.
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Figure 6.19: Quadruplet of type I bicontactual

Algebraically, we have

bz ∈ 〈a, b〉, z2 ∈ 〈a, b〉, (aba)z−1

∈ 〈a, b〉 and az 6∈ 〈a, b〉 .

Example : The bicontactual regular pseudo-oriented hypermap

(G; a, b, z) = (S4; (1, 2), (1, 3)(2, 4), (1, 2, 3, 4)) .

5. “Quadruplet of type II” : where the hyperfaces distribute around F appear with pat-

tern F1, F1, F1, F1, F2, F2, F2, F2, F1, F1, F1, F1, . . . , in circular order, as in the following

figure.
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1
F
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F
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3
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Figure 6.20: Quadruplet of type II bicontactual

Algebraically, we have

az ∈ 〈a, b〉, z2 ∈ 〈a, b〉, (bab)z ∈ 〈a, b〉 and bz 6∈ 〈a, b〉 .

Example : The bicontactual regular pseudo-oriented hypermap

(G; a, b, z) = (S4; (1, 3)(2, 4), (3, 4), (1, 2, 3, 4)) .

As a future work we intend to classify these bicontactual regular pseudo-oriented hyper-

maps.
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