Ilda Carla Mendes Inácio Rodrigues

Hipermapas Bicontactuais

Bicontactual Hypermaps

Ilda Carla Mendes Inácio Rodrigues

Hipermapas Bicontactuais

Bicontactual Hypermaps

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Matemática. Trabalho realizado sob a orientação científica do Doutor António João de Castilho Breda d'Azevedo, Professor Associado do Departamento de Matemática da Universidade de Aveiro.

Thesis presented to the University of Aveiro in partial fulfillment of the requirements for the degree Doctor in Philosophy in Mathematics. Scientific supervision by Professor António João de Castilho Breda d'Azevedo. Full Professor at the Department of Mathematics of the University of Aveiro.

Aos meus queridos filhos / To my dear kids,

Bernardo e Daniel

o júri

presidente
vogais

Doutor Carlos Fernandes da Silva
Professor Catedrático da Universidade de Aveiro

Doutor Josef Sirán
Full Professor, Faculty of Civil Engineering of the Slovak University of Technology in Bratislava, Slovak Republic

Doutor Mohammad Rostami
Professor Associado da Universidade da Beira Interior
Doutor António João de Castilho Breda d'Azevedo
Professor Associado da Universidade de Aveiro (Orientador)
Doutor Domenico Antonino Catalano
Professor Auxiliar da Universidade de Aveiro

Agradecimentos / acknowledgements

Em primeiro lugar ao meu orientador, Professor Doutor António João Breda d'Azevedo, pela intuição que motivou o nosso trabalho, pela ajuda, pelos ensinamentos, pelas sugestões sábias, pela oportunidade que me concedeu, pelo tempo a mim dedicado na realização desta tese e pela compreensão.

À Professora Doutora Ana Maria Reis d'Azevedo Breda, pela sua contínua colaboração.

Ao Professor Doutor Mohammad Rostami, pela ajuda prestada no início deste trabalho.

À Universidade da Beira Interior e ao seu Departamento de Matemática, pelas condições criadas e apoio financeiro prestado que tornaram possível a concretização deste trabalho.

Aos meus amigos da Universidade da Beira Interior, pelo seu apoio, incentivo e disponibilidade.

Á Universidade de Aveiro, em particular ao seu Departamento de Matemática, pelas condições criadas que tornaram possível a concretização deste trabalho.

À unidade de investigação Matemática e Aplicações, Grupo de Álgebra e Geometria (GAG) da Universidade de Aveiro, e à Fundação para a Ciência e Tecnologia (FCT), pelo apoio financeiro concedido.

Aos meus colegas do Grupo de Álgebra e Geometria, do Departamento de Matemática da Universidade de Aveiro.

À minha família e ao meu marido, pelo apoio. E, em especial, aos meus filhos pelo seu amor incondicional.
palavras-chave

resumo

Hipermapa, mapa, bicontactual, orientável, não-orientável, orientado, regular, quiral, reflexivo.

Esta tese dedica-se ao estudo de hipermapas regulares bicontactuais, hipermapas com a propriedade que cada hiperface contacta só com outras duas hiperfaces. Nos anos 70, S. Wilson classificou os mapas bicontactuais e, em 2003, Wilson e Breda d'Azevedo classificaram os hipermapas bicontactuais no caso não-orientável. Quando esta propriedade é transferida para hipermapas origina três tipos de bicontactualidade, atendendo ao modo como as duas hiperfaces aparecem à volta de uma hiperface fixa: edge-twin, vertextwin and alternate (dois deles são o dual um do outro).

Um hipermapa topológico é um mergulho celular de um grafo conexo trivalente numa superfície compacta e conexa tal que as células são 3-coloridas. Ou de maneira mais simples, um hipermapa pode ser visto como um mapa bipartido. Um hipermapa orientado regular é um triplo ordenado consistindo num conjunto finito e dois geradores, que são permutações (involuções) do conjunto tal que o grupo gerado por eles, chamado o grupo de monodromia, actua regularmente no conjunto.

Nesta tese, damos uma classificação de todos os hipermapas orientados regulares bicontactuais e, para completar, reclassificamos, usando o nosso método algébrico, os hipermapas não-orientáveis bicontactuais.

keywords

abstract

Hypermap, map, bicontactual, orientable, non-orientable, oriented, regular, chiral, reflexible.

This thesis is devoted to the study of bicontactual regular hypermaps, hypermaps with the property that each hyperface meets only two others. In the seventies, S. Wilson classified the bicontactual maps and, in 2003, Wilson and Breda d'Azevedo classified the bicontactual non-orientable hypermaps. When this property is transferred for hypermaps it gives rise to three types of bicontactuality, according as the two hyperfaces appear around a fixed hyperface: edge-twin, vertex-twin and alternate (two of which are dual of each other).

A topological hypermap is a cellular embedding of a connected trivalent graph into a compact and connected surface such that the cells are 3-colored. Or simply, a hypermap can be seen as a bipartite map.
A regular oriented-hypermap is an ordered triple, consisting of a finite set and two generators, which are permutations of the set, such that the group generate by them, called monodromy group, acts regularly on the set.

In this thesis, we give a classification of all bicontactual regular orientedhypermaps and, for completion, we reclassify, using our algebraic method, the bicontactual non-orientable hypermaps.

Contents

Notation iii
Introduction 1
1 Background 5
1.1 Hypermaps 5
1.2 Oriented-hypermaps 12
1.3 Presentations of groups 14
1.3.1 Free presentations of groups 14
1.3.2 Presentations of group extensions 15
1.4 Chirality 16
1.5 Metacyclic groups 19
1.6 Bicontactuality 19
2 Regular bicontactual hypermaps 21
2.1 Regular bicontactual maps 21
2.2 Bicontactual hypermaps - generalisation 26
2.2.1 General properties of edge-twin bicontactual hypermaps 28
2.2.2 General properties of alternate bicontactual hypermaps 33
3 Alternate bicontactual oriented-hypermaps 39
3.1 Some general properties 39
3.2 Classification 40
3.3 Chirality 45
4 Edge-twin bicontactual oriented-hypermaps 47
4.1 Some general properties 47
4.2 The classification 48
4.2.1 The fundamental case 50
4.2.2 The general case 58
4.2.3 The Wilson's classification of bicontactual oriented maps 65
4.3 Chirality 65
5 Non-orientable bicontactual regular hypermaps 67
Final considerations 77
6.1 Bicontactual hypermaps with boundary 77
6.2 Future work 79
Bibliography 85
Index 89

Notation

v_{ν}	valency of the hypervertices
$\mathrm{v}_{\mathcal{E}}$	valency of the hyperedges
$\mathrm{v}_{\mathcal{F}}$	valency of the hyperfaces
n v	number of hypervertices
$\mathrm{n}_{\mathcal{E}}$	number of hyperedges
$\mathrm{n}_{\mathcal{F}}$	number of hyperfaces
$\langle X\rangle$	subgroup generate by X
$<$	subgroup of
\triangleleft	normal subgroup of
\bar{R}	normal closure of R
$\langle X\rangle^{G}$	normal closure of X in G
F / N	factor group
$\mathfrak{R}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$	set of word relations, in function of $a_{1}, a_{2}, \ldots, a_{m}$
$G=\langle X \mid \mathcal{R}\rangle$	group presentation of the group G
$\operatorname{Mon}(\mathcal{H})$	monodromy group of the hypermap \mathcal{H}
$\mathcal{X}(\mathcal{H}), \mathcal{X}$	Euler characteristic of the hypermap \mathcal{H}
$\mathbb{X}_{\mathcal{H}}$	chirality group of a hypermap \mathcal{H}

$\kappa=\kappa(\mathcal{H})$	chirality index of a hypermap \mathcal{H}
C_{n}	cyclic group
D_{n}	dihedral group
S_{n}	symmetric group
1	empty word (identity element of the group)
x^{y}	conjugate of x by $y\left(y^{-1} x y\right)$
\widehat{k}	representative element of the equivalence class
($k,{ }_{\text {c }}$)	greatest common divisor between k and c
$d \mid x$	d divides x or x is multiple of d
$a \equiv b(\bmod c)$	c divides $a-b$
\leftrightharpoons	commutes
AltB	family of alternate bicontactual regular oriented-hypermaps
FETB	family of fundamental edge-twin bicontactual regular oriented-hypermaps
ETB	family of edge-twin bicontactual regular oriented-hypermaps

Introduction

The theory of hypermaps, a subject of Combinatorial and Topological Geometry, is closely related to the classical theory of maps on surfaces. A map is a cellular embedding of a connected graph in a compact and connected surface (with or without boundary). It is often viewed as a cellular division of a surface into simply-connected open regions by arcs, called the edges of the map; the regions are called the faces of the map and the endpoints of each edge are the vertices of the map. In this definition, if we replace "graph" by "hypergraph" we have a hypermap. By [25] a hypergraph is seen as a generalisation of a graph and, from this point of view, a hypermap is a generalisation of a map, by allowing edges to connect more than two vertices. The orientability of a hypermap is determinated by the orientability of the underlying surface. An oriented-hypermap is obtained by fixing an orientation in the underlaying surface. A bicontactual map had the property that each face meets exactly two others.

Bicontactual maps were introduced and classified in the seventies by Wilson in his PhD thesis for maps [26]. Later in [30] Wilson and Breda d'Azevedo showed that bicontactual nonorientable regular hypermaps are "essentialy" bicontactual maps with only one exception: $D_{02}\left(G W_{k}\right)$ (adopting their notation). This is the Walsh of a bicontactual reflexible map, and it turns out to be the only "pure" bicontactual non-orientable hypermap. In this thesis we complete the classification of the bicontactual hypermaps started in [30].

In spite of the resemblance, the notion of bicontactuality when transferred to hypermaps gives rise to three types of bicontactuality (two of which are dual of each other): the edge-twin, the vertex-twin and the alternate bicontactuality. In a hypermap that each face meets only two others, if we fix a hyperface, for example F, the two hyperfaces around it, labelled A and B, appear in the pattern $A A B B A A B B A A \ldots$, with repetitions occurring at the hyperedges (edge-twin), or in the same pattern but the repetitions occurring at the
hypervertices (vertex-twin), or in the pattern $A B A B A B A B A \ldots$ (alternate). It is easy to see that bicontactual maps are included in the edge-twin bicontactual hypermaps.

Classifying maps/hypermaps subject to specific conditions, has been one a favorite topic since as early in the $20^{t h}$ century with Brahana proposing an approach to the classification of regular maps on a given surface. For example,

- Classification by genera: non-orientable regular maps and hypermaps with size a power of 2 is presented in [30]; in [13], the classification of all regular maps on non-orientable surfaces with a negative odd prime Euler characteristic; classification of regular maps with Euler characteristic $-p^{2}$ is presented in [17]; by [13, 14, 18] we have a classification of all regular maps of Euler characteristic $-p$ and $-2 p$ with p a prime;
- Classification by number of hyperfaces: the classifications of the non-orientable regular maps and hypermaps with $1,2,3,5$ hyperfaces and of the non-orientable regular maps with a prime number of faces are presented in [30]; regular oriented-hypermaps with a prime number of hyperface in [6];
- Classification by embedding graphs: the paper [22] classifies the regular imbeddings of the complete graphs K_{n} in orientable surfaces;
- Classification by group: the classification of some particular hypermaps is described in [1]; in [17], the regular maps with almost Sylow-cyclic automorphism groups;
- Classification by properties: Wilson, in [26], classified the bicontactual maps; chiral maps in the orientable case in [18];
just to name but a few. It is in the last topic that my thesis is included. Looking at the list of 14647 pure (or proper) hypermaps given by Conder [15], we found 776 edge-twin biconctactual, 519 vertex-twin bicontactual and 753 alternate bicontactual. In conclusion, only 14 percent of pure hypermaps up to genus 101 are bicontactual.

Although at this stage we avoid details, we would like to note that hypermaps can be described either in a topological or algebraic way. Most of the existing literature considers hypermaps as algebraic objects. Our algebraic classification of regular bicontactual hypermaps
consists in classifying (up to an isomorphism and duality) the edge-twin oriented-hypermaps and the alternate oriented-hypermaps.

For a deeper study on hypermaps we recommend reading $[3,8,9,12,19,25]$, where the theory of hypermaps is well-developed and thoroughly explained.

We conclude the introduction with a brief outline of the chapters in this thesis.
The first two chapters overview the main relevant results on hypermaps, bicontactual maps and bicontactual hypermaps. Besides presenting well-known material in this area and explaining some of the necessary theoretical background, we introduce new concepts and new results that are relevant for our purposes. For this we establish adequate notation.

In Chapters 3 and 4 we start by developing properties of bicontactual oriented-hypermaps and then we study their classification. The chirality group as well as the respective chirality index of hypermaps have already been investigated in [7, 10, 12]. After the classification, we are particularly interested in identifying the chiral bicontactual hypermaps.

Chapter 5 is devoted to the non-orientable bicontactual hypermaps classification, done by Wilson and Breda d'Azevedo. Here, we rewrite the proof of the classification using our algebraic approach.

The software, for computational discrete algebra, GAP, [21], was used in this work to help us to get confidence on the number of word relations and on the amount of conditions to be imposed to the hypermaps and also to explore the existing data-bases.

This thesis does not include the proofs of non-original results, apart from chapter 5 . All the other results and their proofs are original, though some of them being inspired by Wilson's results.

We finish this thesis with some general considerations, such as the classification of the bicontactual hypermaps with boundary and future work. In fact, we have already started studies in the direction of a classification of the bicontactual hypermaps in the pseudoorientable case.

Chapter 1

Background

In this chapter, some basic definitions and some elementary concepts concerning hypermaps, oriented-hypermaps, presentations of groups, chirality, metacyclic groups and bicontactuality are presented.

In the first two sections an introduction to the theory of hypermaps is given. Section 2 deals with oriented-hypermaps.

In section 4, we introduce the chirality notion for regular oriented-hypermaps while the algebraic definition of bicontactuality comes in the last section.

The contents of this chapter have been adapted from various sources including [?, 8,11 , $12,23,25,28,29,31]$.

1.1 Hypermaps

Hypermaps can be defined either in a topological or algebraic way. We will present a topological definition as well as an algebraic one.

From a topological point of view, a hypermap \mathcal{H} (without boundary) is a cellular embedding of a connected trivalent graph \mathcal{G} into a compact and connected surface such that the cells are 3-colored (say by black, grey and white colours) with adjacent cells having different colours. The flags are the vertices of \mathcal{G}, while the faces labeled 0 (dark grey), 1 (grey) and 2 (white), are called, respectively, the hypervertices, the hyperedges and the hyperfaces of \mathcal{H}. Labeling the edges of \mathcal{G} with the missing adjacent cell number, the hypergraph formed in this way induces three permutations r_{0}, r_{1} and r_{2} on the set of flags Ω; each r_{i} switches the
pairs of vertices connected by i-edges (edges labeled i).

Example 1 Figure 1.1, [9, pg 52], shows a hypermap on the double torus with 12 flags, 1 hypervertex, 1 hyperedge and 2 hyperfaces and where ω is an arbitrary flag of the hypermap:

Figure 1.1: A topological hypermap on the torus

These permutations r_{i} are involutions and the group G generated by r_{0}, r_{1} and r_{2} will be called the monodromy group, $\operatorname{Mon}(\mathcal{H})$, of the hypermap \mathcal{H}.

Since the graph \mathcal{G} is connected, the monodromy group acts transitively ${ }^{1}$ on Ω. This implies $|\Omega| \leq|\operatorname{Mon}(\mathcal{H})|$. If the monodromy group $\operatorname{Mon}(\mathcal{H})$ acts semi-regularly ${ }^{2}$ on Ω, the monodromy group $\operatorname{Mon}(\mathcal{H})$ acts regularly on Ω. In this case the hypermap is called regular, and we have $|\operatorname{Mon}(\mathcal{H})|=|\Omega|$.

The orbits of $\left\langle r_{1}, r_{2}\right\rangle,\left\langle r_{0}, r_{2}\right\rangle$ and $\left\langle r_{0}, r_{1}\right\rangle$ on Ω determine the hypervertices, the hyperedges and the hyperfaces, respectively. If all $\left\langle r_{i}, r_{j}\right\rangle$ orbits on Ω have the same cardinality (for each $i, j \in\{0,1,2\}$ with $i<j)$, then the hypermap \mathcal{H} is uniform. For an uniform hypermap, the length $\mathrm{v}_{\mathcal{V}}, \mathrm{v}_{\mathcal{E}}, \mathrm{v}_{\mathcal{F}}$ of the cycles $r_{1} r_{2}, r_{2} r_{0}$ and $r_{1} r_{0}$, respectively, are called the valency of the hypervertices, the valency of the hyperedges and the valency of the hyperfaces, respectively, and they determine the type $\left(\mathrm{v}_{\mathcal{V}}, \mathrm{v}_{\mathcal{E}}, \mathrm{v}_{\mathcal{F}}\right)$ of the hypermap. Let us denote by $\mathrm{n}_{\mathcal{V}}$ the size of $\left\langle r_{1}, r_{2}\right\rangle$, by $\mathrm{n}_{\mathcal{E}}$ the size of $\left\langle r_{0}, r_{2}\right\rangle$ and by $\mathrm{n}_{\mathcal{F}}$ the size of $\left\langle r_{0}, r_{1}\right\rangle$.

From a hypermap \mathcal{H} we can produce six hypermaps on the same surface by permuting the three colours $0,1,2$ of their cells. Each permutation $\sigma \in S_{3}$ determines a new hypermap with

[^0]the same underlying trivalent graph \mathcal{G} and whose hypervertices, hyperedges and hyperfaces are the cells colored $0 \sigma, 1 \sigma, 2 \sigma$, respectively. We call it the σ-dual of \mathcal{H} and will denote by $D_{\sigma}(\mathcal{H})$. For example, D_{01} is the hypermap that results from switching labels 0 and 1 in the coloured graph of \mathcal{H}; the classic dual, usually denoted by D, corresponds to D_{02}.

The orientability, the Euler characteristic and the genus of a hypermap \mathcal{H} are the orientability, the Euler characteristic and the genus of the respective underlying surface. The Euler characteristic is given by the formula

$$
\mathcal{X}(\mathcal{H})=\mathrm{n}_{\mathcal{V}}+\mathrm{n}_{\mathcal{E}}+\mathrm{n}_{\mathcal{F}}-\frac{|\Omega|}{2}
$$

or equivalently,

$$
\mathcal{X}(\mathcal{H})=\frac{|\Omega|}{2}\left(\frac{1}{\mathrm{v}_{\mathcal{V}}}+\frac{1}{\mathrm{v}_{\mathcal{E}}}+\frac{1}{\mathrm{v}_{\mathcal{F}}}-1\right) .
$$

From an algebraic point of view, a hypermap \mathcal{H} is a 4 -tuple $\mathcal{H}=\left(\Omega ; r_{0}, r_{1}, r_{2}\right)$, where Ω is a non-empty finite set and r_{0}, r_{1} and r_{2} are three permutations of Ω satisfying $r_{0}^{2}=r_{1}^{2}=$ $r_{2}^{2}=1$, such that the permutation group generated by r_{0}, r_{1} and r_{2} acts transitively on Ω (where 1 is the identity in G).If $\left(r_{0} r_{2}\right)^{2}=1$ then \mathcal{H} is a map. Here, the hypervertices are also the orbits of $\left\langle r_{1}, r_{2}\right\rangle$, as well as the hyperedges are the orbits of $\left\langle r_{0}, r_{2}\right\rangle$ and the hyperfaces are the orbits of $\left\langle r_{0}, r_{1}\right\rangle$.

There is a one-to-one correspondence (see [25]) between hypermaps and bipartite ${ }^{3}$ maps. The faces of the bipartite map represent the hyperfaces of \mathcal{H} and the two bipartition of vertices (nodes) of the bipartite map (colored white and black) represent the hyperedges (the white nodes) and hypervertices (the black nodes) of the hypermap. The elements of Ω are called flags and are described in the following geometric construction: For each face in the bipartite $\operatorname{map} \mathcal{M}$, choose a point in its interior (let us call it the face-center). We obtain a subdivision of the bipartite map by joining each face-center to each white node and to each black node. Figure 1.2 illustrates the subdivision and shows the neighborhood of one flag ω.

[^1]

Figure 1.2: Geometric notion of a flag

A flag in a hypermap is a mutual incidence of a hypervertex, a hyperedge and a hyperface (for example, in Figure 1.3 the flag $\omega \in \Omega$ corresponds to the triple ($\left.v, e, F_{1}\right)$). From [8], the hypermap \mathcal{H} is orientable if and only if its flags can be 2 -coloured with each $r_{i}(i=0,1,2)$ transposing the colours. Thus, the flags can be represented by white and black triangles in alternating way. Figure 1.3 also shows our geometric convention for a flag, instead of the previous triangular subregion.

Figure 1.3: Algebraic hypermap

Interchanging the roles of white and black nodes we have the duality D_{01} of hypermaps, that we will refer in the chapter 4.

It may happen that the subgroup of $\operatorname{Mon}(\mathcal{H})$ generated by $r_{1} r_{2}$ and $r_{2} r_{0}$ may act on Ω with one or two orbits. When it acts with two orbits, \mathcal{H} is orientable. An oriented-hypermap is a hypermap with a fixed orientation of the underlying surface. Oriented-hypermaps are described by triples $(D ; R, L)$ where D is a non-empty finite set, which elements are called darts, and two permutations R and L of D such that the group $\langle R, L\rangle$ acts transitively
on D. If \mathcal{H} is orientable then the set Ω is the union of the two disjoint sets Ω^{+}and Ω^{-} (corresponding the set Ω^{+}to the black flags and the set Ω^{-}to the white flags). In this case, we can derive two associated oriented-hypermaps:

$$
\mathcal{H}^{+}=\left(\Omega^{+} ; r_{1} r_{\left.2\right|_{\Omega^{+}}}, r_{2} r_{0_{\left.\right|_{\Omega^{+}}}}\right) \quad ; \quad \mathcal{H}^{-}=\left(\Omega^{-} ; r_{1} r_{\left.\right|_{\Omega_{\Omega^{-}}}}, r_{2} r_{0_{\Omega_{\Omega^{-}}}}\right)
$$

The hypermaps that satisfy $\left(r_{0} r_{2}\right)^{2}=1$ are called maps. Otherwise, the hypermaps are called pure hypermaps.

A covering from $\mathcal{H}_{1}=\left(\Omega_{1} ; r_{0}, r_{1}, r_{2}\right)$ to $\mathcal{H}_{2}=\left(\Omega_{2} ; s_{0}, s_{1}, s_{2}\right)$ is a function $\phi: \Omega_{1} \rightarrow \Omega_{2}$ such that

$$
\forall \omega \in \Omega_{1}, \forall i \in\{0,1,2\},\left(\omega r_{i}\right) \phi=\omega \phi s_{i}
$$

Note that a covering is necessary surjective, because of the transitivity of the actions. If there is a covering, we say that \mathcal{H}_{1} covers \mathcal{H}_{2} and we denote this by $\mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$. When \mathcal{H}_{1} covers \mathcal{H}_{2}, it follows that the assignment $r_{i} \mapsto s_{i}$, for $i=0,1,2$, extends to a canonical epimorphism between the monodromy groups.

An injective covering is an isomorphism. We denote an isomorphism between \mathcal{H}_{1} and \mathcal{H}_{2} by $\mathcal{H}_{1} \cong \mathcal{H}_{2}$ and we say that \mathcal{H}_{1} is isomorphic to \mathcal{H}_{2}. The hypermaps \mathcal{H}^{+}and \mathcal{H}^{-}associated with a given orientable hypermap \mathcal{H} may or may not be isomorphic.

An automorphism of $\mathcal{H}=\left(\Omega ; r_{0}, r_{1}, r_{2}\right)$ is an isomorphism from \mathcal{H} to \mathcal{H}, that is, a permutation of Ω commuting with r_{0}, r_{1} and r_{2} (consequently, commuting with all elements of $\operatorname{Mon}(\mathcal{H}))$. The group of all automorphisms of \mathcal{H}, denoted by $\operatorname{Aut}(\mathcal{H})$, acts semi-regularly on Ω. So $|\operatorname{Aut}(\mathcal{H})| \leq|\Omega|$, and hence we have

$$
\begin{equation*}
|A u t(\mathcal{H})| \leq|\Omega| \leq|\operatorname{Mon}(\mathcal{H})| \tag{1.1}
\end{equation*}
$$

If $\operatorname{Aut}(\mathcal{H})$ acts transitively on Ω, that is, if the action of $\operatorname{Aut}(\mathcal{H})$ on Ω is regular, then we said that \mathcal{H} is regular and we have $|\operatorname{Aut}(\mathcal{H})|=|\Omega|$. In equation (1.1), an equality on one side implies an equality on the other side.

In an orientable hypermap \mathcal{H}, an automorphism $\phi \in \operatorname{Aut}(\mathcal{H})$ preserves the orientation if

$$
\forall \omega \in \Omega^{\epsilon} \text {, where } \epsilon \in\{+,-\}, \omega \phi \in \Omega^{\epsilon} .
$$

Otherwise, ϕ reverses the orientation and it is called a mirror symmetry, or reflection, or inversion. If the hypermap has a mirror symmetry then it is called mirror symmetric, else \mathcal{H} is mirror asymmetric.

The hypermap \mathcal{H} is said to be orientably-regular, or rotary, if the subgroup $A u t^{+}(\mathcal{H})$ of the automorphisms preserving orientation acts transitively on Ω^{+}. In this case, $|\operatorname{Mon}(\mathcal{H})|=\frac{|\Omega|}{2}$. An orientably-regular hypermap is reflexible if and only if it has an automorphism that reverses the orientation. A chiral hypermap is an orientably-regular hypermap which is not reflexible. The number of flags of a reflexible hypermap must be even.

The \mathcal{H}-sequence of a hypermap \mathcal{H} is the sequence

$$
\left[\mathrm{N} ; \mathrm{v}_{\mathcal{V}}, \mathrm{v}_{\mathcal{E}}, \mathrm{v}_{\mathcal{F}} ; \mathrm{n}_{\mathcal{V}}, \mathrm{n}_{\mathcal{E}}, \mathrm{n}_{\mathcal{F}} ;|\operatorname{Mon}(\mathcal{H})|\right]
$$

where N is the negative of the Euler characteristic of the hypermap, which is constant for all hypermaps in a fixed surface S.

Each hypermap \mathcal{H} determines a transitive permutation representation $\pi: \Delta \rightarrow \operatorname{Mon}(\mathcal{H})$ of the triangular group $\Delta:=\left\langle R_{0}, R_{1}, R_{2} \mid R_{0}^{2}=R_{1}^{2}=R_{2}^{2}=1\right\rangle \cong C_{2} * C_{2} * C_{2}$ (a free product of three cyclic groups of order 2), given by $R_{i} \mapsto r_{i}$. We call to the stabiliser H in Δ of a flag ω, that is $H=\Delta_{\omega}=\{g \in \operatorname{Mon}(\mathcal{H}) \mid \omega g=\omega\}$, hypermap subgroup of the hypermap \mathcal{H}.

Let \mathcal{H}_{1} and \mathcal{H}_{2} be two hypermaps with hypermap subgroups H_{1} and H_{2}, respectively. Then \mathcal{H}_{1} covers \mathcal{H}_{2} if and only if $\exists d \in \Delta$ such that $H_{1}^{d}<H_{2}$. The covering is given by

$$
\Delta / H_{1} \rightarrow \Delta / H_{2}, H_{1} d \mapsto H_{2} d
$$

It is important, for our work, to refer three of the seven epimorphisms $\Delta \rightarrow C_{2}$, which have kernels $\Delta^{0}=\left\langle R_{0}, R_{1} R_{2}\right\rangle^{\Delta}$, $\Delta^{\hat{0}}=\left\langle R_{1}, R_{2}\right\rangle^{\Delta}$ and $\Delta^{+}=\left\langle R_{1} R_{2}, R_{2} R_{0}\right\rangle^{\Delta}$, where $\langle\ldots\rangle^{\Delta}$ denote the normal closure in Δ. The last subgroup Δ^{+}is the even subgroup of Δ, which is generated by a pair of free generators $R_{1} R_{2}$ and $R_{2} R_{0}$. These generators projects to the rotations R and L around hypervertices and hyperedges, the generators of the monodromy group of oriented-hypermaps (see the following section). The inclusions between the preceding subgroups of Δ are those shown below:

Being $H<\Delta$ the hypermap subgroup of \mathcal{H}, the hypermap \mathcal{H} is

1. regular or Δ-regular if $H \triangleleft \Delta$;
2. oriented if $H<\Delta^{+}$;
3. regular oriented or Δ^{+}-regular if $H \triangleleft \Delta^{+}$;
4. chiral if $H \triangleleft \Delta^{+}$and $H \nrightarrow \Delta$;
5. pseudo-oriented if $H<\Delta^{0}$;
6. regular pseudo-oriented or Δ^{0}-regular if $H \triangleleft \Delta^{0}$;
7. bipartite if $H<\Delta^{\hat{0}}$.

Walsh showed in [25] that there is a bijection between hypermaps and bipartite maps on the same surface. As a hypermap can be regarded as a bipartite map, a bipartite map can also be regarded as a hypermap (see an example in figure below).

Figure 1.4: Bipartite map

Figure 1.5: Hypermap

The edges of the bipartite map are the arcs of the hypermap. So, the notions of edge in maps and arc in hypermaps are similar, as is illustrate in the following figure:

Figure 1.6: (map)

Figure 1.7: (hypermap)

The Walsh map of a hypermap $\mathcal{H}, W(\mathcal{H})$, is a bipartite map, the set of vertices corresponding to the hypervertices and hyperedges of \mathcal{H}, while the faces and edges of $W(\mathcal{H})$ correspond to the hyperfaces and arcs of \mathcal{H}, respectively. Conversely, any bipartite map \mathcal{M}, with two monochrome sets of vertices (usually coloured black and white), corresponds to a hypermap
$W^{-1}(\mathcal{M})$ where one of two monochromatic sets of vertices represents the hypervertices and the other the hyperedges of the hypermap, the faces and edges of \mathcal{M} correspond to the hyperfaces and arcs of $W^{-1}(\mathcal{M})$, respectively.

Figure 1.8: Cube \mathcal{C}

Figure 1.9: $W^{-1}(\mathcal{C})$

Remark 1 If a bipartite uniform map \mathcal{M} has type $\left(\mathrm{v}_{\mathcal{V}}, 2, \mathrm{v}_{\mathcal{F}}\right)$, then the hypermap $W^{-1}(\mathcal{M})$ has type ($\left.\mathrm{v}_{\mathcal{V}}, \mathrm{v}_{\mathcal{V}}, \frac{\mathrm{v}_{\mathcal{F}}}{2}\right)$.

1.2 Oriented-hypermaps

As we said before, an oriented-hypermap is a triple $\mathcal{Q}=(D ; R, L)$ consisting of a nonempty finite set D, which elements are called darts, and two permutations R and L of D such that the group $\langle R, L\rangle$ acts transitively on D. This group will be called the monodromy group of the hypermap \mathcal{Q}, denoted by $\operatorname{Mon}(\mathcal{Q})$ or G. We will assume that the set D corresponds to the set Ω^{+}.

The orbits of R, L and $R L$ on D will be called the hypervertices, hyperedges and hyperfaces, respectively. The least common multiples $\mathrm{v}_{\mathcal{V}}, \mathrm{v}_{\mathcal{E}}, \mathrm{v}_{\mathcal{F}}$ of the length of the cycles R, L and $R L$ on D, respectively, determine the type $\left(\mathrm{v}_{\mathcal{V}}, \mathrm{v}_{\mathcal{E}}, \mathrm{v}_{\mathcal{F}}\right)$ of the oriented-hypermap \mathcal{Q}.

Since an oriented-hypermap is an orientable hypermap with a fixed orientation, we choose, for instance, the counter-clockwise orientation ${ }^{4}$. We will consider R the one step counterclockwise rotation of the darts around hypervertices $\left(R=r_{1} r_{2}\right)$ and L the one step counterclockwise rotation of the darts around hyperedges $\left(L=r_{2} r_{0}\right)$. In this thesis we will work only with oriented-hypermaps which are regular, thus each dart corresponds to an element of $\operatorname{Mon}(\mathcal{Q})$. So, we will use G instead of D.

[^2]

Figure 1.10: Regular Oriented-hypermap

If L is an involution, then \mathcal{Q} is an oriented map.

Given two oriented hypermaps $\mathcal{Q}_{1}=\left(D_{1} ; R_{1}, L_{1}\right)$ and $\mathcal{Q}_{2}=\left(D_{2} ; R_{2}, L_{2}\right)$, a covering $\mathcal{Q}_{1} \rightarrow$ \mathcal{Q}_{2} is a function $\phi: D_{1} \rightarrow D_{2}$ such that $R_{1} \phi=\phi R_{2}$ and $L_{1} \phi=\phi L_{2}$. By the connectivity of \mathcal{G} any covering is necessarily onto. If ϕ is injective the covering is an isomorphism of hypermaps.

An automorphism (or symmetry) of a hypermap $\mathcal{Q}=(D ; R, L)$ is an isomorphism of \mathcal{Q} into itself; in other words, a permutation of D that commutes with R and L. The automorphism group of \mathcal{Q} acts semi-regularly on D while the monodromy group acts transitively. Hence

$$
|A u t(\mathcal{Q})| \leq|D| \leq|\operatorname{Mon}(\mathcal{Q})|
$$

and if one of the equalities holds then the other equality holds as well, and \mathcal{Q} is said regular. If, in addition, \mathcal{Q} has an orientation inverting automorphism (also called mirror symmetry), that is, a permutation ψ of D such that $R \psi=\psi R^{-1}$ and $L \psi=\psi L^{-1}$, then \mathcal{Q} is said reflexible. If \mathcal{Q} is regular but not reflexible then \mathcal{Q} is chiral.

The Euler characteristic of a regular oriented-hypermap \mathcal{Q} is given by the formula

$$
\mathcal{X}(\mathcal{Q})=\mathrm{n}_{\mathcal{V}}+\mathrm{n}_{\mathcal{E}}+\mathrm{n}_{\mathcal{F}}-|G|=|G|\left(\frac{1}{\mathrm{v}_{\mathcal{V}}}+\frac{1}{\mathrm{v}_{\mathcal{E}}}+\frac{1}{\mathrm{v}_{\mathcal{F}}}-1\right)
$$

and the genus of \mathcal{Q} is

$$
g(\mathcal{Q})=\frac{2-\mathcal{X}(\mathcal{Q})}{2}
$$

1.3 Presentations of groups

All the contents of this section were extracted from the Johnson's book [23], though we had established, sometimes, our own notation.

1.3.1 Free presentations of groups

In the theory of group presentations, the notion of free group is fundamental. A group F is called free if it has a subset S with the property that every element of F can be written uniquely is a product of elements of S and their inverses.

Definition 1 Let X be a set, $F=F(X)$ a free group on X, \mathcal{R} a subset of $F, N=\overline{\mathcal{R}}$ the normal closure of \mathcal{R} in F, and G the factor group F / N.

We write $G=\left\langle X \mid \mathcal{R}\left(x_{1}, \ldots, x_{m}\right)\right\rangle$, or just $G=\langle X \mid \mathcal{R}\rangle$, and call this a free presentation, or simply a presentation of G. The elements of X are called generators and the elements of \mathcal{R} are called word relations.

From now, we will assume the notation presents in the preceding definition and each element of \mathcal{R} is denoted by $\omega_{X}=\omega_{x_{1}, \ldots, x_{n}}$, a word in X (or simply, ω).

A group G is called finitely presented if it has a presentation with both X and \mathcal{R} finite sets.

Remark 2 Let ω_{1} and ω_{2} be word relations. A word relation of the form $\omega_{1}=\omega_{2}$ corresponds to the defining relator $\omega_{1} \omega_{2}^{-1}$.

Proposition 1 Every group has a presentation, and every finite group is finitely presented. [23, pg 42]

Proposition 2 (von Dyck) If $G=\langle X \mid \mathcal{R}\rangle$ and $H=\langle X \mid \mathcal{S}\rangle$, where $\mathcal{R} \subseteq \mathcal{S} \subseteq F(X)$, then there is an epimorphism $\phi: G \rightarrow H$ fixing every $x \in X$ and such that

$$
\operatorname{Ker}(\phi)=\overline{S \backslash R}
$$

Conversely, every factor group of $G=\langle X \mid \mathcal{R}\rangle$ has a presentation $\langle X \mid \mathcal{S}\rangle$ with $\mathcal{S} \supseteq \mathcal{R}$. [23, pg 43]

We shall be concerned with the problem of constructing presentations of groups, specifically monodromy groups of bicontactual hypermaps. The presentation of a group give rises to the problem of deducing properties of this group.

For the problem of finding a presentation P for a group G, we need

1. to determine a set of generators for G, X;
2. to write, in terms of X, the word relations of \mathcal{R} that are valid in G and that are enough to define G;
3. letting $P=\langle X \mid \mathcal{R}\rangle$, the last step is to find $|P|$. If $|P|=|G|$ then the procedure stops, otherwise we will go back to step 2 .

In [23], chapter 5, there are several examples which illustrate the various techniques involved.

Given two presentations P_{1} and P_{2} we write $P_{1} \sim P_{2}$ if they are presentations of the same group.

1.3.2 Presentations of group extensions

We start with two basic definitions that we need in course of this work.

Definition 2 Let S be subgroup of a group G. The cosets of S are a partition of G and, by choosing one element from each, we obtain a transversal for S in G.

Definition 3 Let U be a transversal for a subgroup of a free group $F\left(t_{1}, t_{2}, \ldots, t_{k}\right)$. It is a Schreier transversal if U has the Schreier property, that is, for all $t_{i} \in\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ if $t_{1} t_{2} \cdots t_{n} \in U$ then $t_{1} t_{2} \cdots t_{n-1} \in U$.

Consequently, any Schreier transversal contains the empty word 1.

Definition $4 A n$ extension of a group G by a group A is a group \widetilde{G} having a normal subgroup N such that

$$
\begin{equation*}
A \cong N, \widetilde{G} / N \cong G \tag{1.2}
\end{equation*}
$$

Let \widetilde{G} be an extension of G by $K=\operatorname{Ker}(v)$

$$
1 \rightarrow K \xrightarrow{\iota} \widetilde{G} \xrightarrow{v} G \rightarrow 1
$$

with presentations $G=\langle X \mid \mathcal{R}\rangle$ and $K=\langle Y \mid \mathcal{S}\rangle$. If we have a transversal T for K in \widetilde{G}, we can set up a presentation for \widetilde{G}. This is done in the following proposition.

Proposition 3 [23, pg 139] Let $\widetilde{Y}=\{\widetilde{y}=y \iota \mid y \in Y\}$ and let $\widetilde{S}=\{\widetilde{s} \mid s \in S\}$ be the set of words in \widetilde{Y} obtained from S by replacing each y by \widetilde{y} wherever it appears. For each element $x \in X$ we choose $\widetilde{x} \in T$ such that $\tilde{x} v=x$. In this way, we obtain the generators $\widetilde{X}=\{\widetilde{x} \mid x \in X\}$. For each $r \in R$, let \tilde{r} be the word in \widetilde{X} obtained from r by replacing each x by \tilde{x}. Also each $r \in R$ represents the identity of the group G, then $\tilde{r} \in \operatorname{Ker}(v)=\operatorname{Im} \iota$. So each \tilde{r} can be written as a word in the \tilde{y} and them create the set \widetilde{R}. Since $K \triangleleft G$, the conjugates $\tilde{y}^{\tilde{x}} \in K$, with $\tilde{x} \in \widetilde{X}$ and $\tilde{y} \in \widetilde{Y}$, and so are words in the \tilde{y}. They form the set \widetilde{T}. Then group \widetilde{G} has a presentation

$$
\begin{equation*}
\langle\widetilde{X}, \widetilde{Y} \mid \widetilde{R}, \widetilde{S}, \widetilde{T}\rangle \tag{1.3}
\end{equation*}
$$

Corollary 1 Let \widetilde{G} be an extension of G by A. If G and A are finitely presented, then so is \widetilde{G}. [23, pg 140]

Corollary 2 Let H be a subgroup of finite index in a group G. If H is finitely presented, then so is G. [23, pg 141]

1.4 Chirality

Chirality can be seen as a property of a geometrical figure which occurs when its "image in a mirror, ideally realized, cannot be brought into coincidence with itself", [10].

Chirality of hypermaps can be studied qualitatively by the chirality group and quantitatively by the chirality index (being this the size of the chirality group).

In this section, $\mathcal{Q}=(G ; R, L)$ denotes a regular oriented-hypermap with hypermap subgroup Q and $\langle R, L \mid \mathfrak{R}(R, L)\rangle$ be a presentation of $G, G \cong \Delta^{+} / Q$.

Automorphisms of regular oriented-hypermaps give rise to orientation-preserving selfhomeomorphisms of the underlying surface. There are however external symmetries (the mirror symmetries) that comes from orientation-reversing self-homeomorphisms of the surface. Recall that a regular oriented-hypermap is chiral if it admits no mirror symmetry.

Considering $\Delta^{+}=\langle\rho, \lambda\rangle$ with $\rho=R_{1} R_{2}$ and $\lambda=R_{2} R_{0}$ (see section 1.1), each regular oriented-hypermap \mathcal{Q} corresponds to a transitive permutation representation

$$
\mu: \Delta^{+} \rightarrow \operatorname{Mon}(\mathcal{Q})
$$

given by $\rho \mapsto R, \lambda \mapsto L$. Observe that the conjugation by R_{2} induces an automorphism of Δ^{+}inverting ρ and λ. Since $Q \triangleleft \Delta^{+}$, its conjugates in Δ are Q and $Q^{R_{0}}=Q^{R_{1}}=Q^{R_{2}}$. We will denote by Q^{r} the common conjugate $Q^{R_{i}}$.

Definition 5 The mirror image of \mathcal{Q} is $Q^{r}=\left(G ; R^{-1}, L^{-1}\right)$.
If $\mathcal{Q} \cong Q^{r}$ (that is, if the assignment $R \rightarrow R^{-1}$ and $L \rightarrow L^{-1}$ extends to a group automorphism of G) then \mathcal{Q} is reflexible, otherwise \mathcal{Q} is chiral.

The largest normal subgroup of Δ contained in Q is the group $Q_{\Delta}=Q \cap Q^{r}$, and the smallest normal subgroup of Δ containing Q is the group $Q^{\Delta}=Q Q^{r}$.

From [10] and by the third isomorphism theorem, we have
Proposition 4 The four groups $Q^{\Delta} / Q, Q / Q_{\Delta}, Q^{\Delta} / Q^{r}$ and Q^{r} / Q_{Δ} are all isomorphic to each other.

Definition 6 The chirality group of \mathcal{Q} is the factor group Q / Q_{Δ} and its order is the chirality index.

We will denote ${ }^{5}$ by $\mathbb{X}_{\mathcal{H}}$ and by $\kappa=\kappa(\mathcal{H})$ the chirality group and the chirality index, respectively, of a hypermap \mathcal{H}. From Proposition 4,

$$
\mathbb{X}_{\mathcal{H}} \cong Q^{\Delta} / Q<\Delta^{+} / Q
$$

that is, the chirality group $\mathbb{X}_{\mathcal{H}}$ is a subgroup of the monodromy group of \mathcal{H}. As a consequence, the chirality index divides the number of darts.

[^3]The most extreme type of chirality arises when the chirality group coincides with the monodromy group. Such hypermaps are called totally chiral.

We can obtain the chirality group of a hypermap from the presentation of the respective monodromy group, as follows:

Proposition 5 [5] From the presentation of \mathcal{Q}, the chirality group $\mathbb{X}_{\mathcal{Q}}$ is the normal closure of $\left\langle\mathfrak{R}\left(R^{-1}, L^{-1}\right)\right\rangle$ in G.

As a summarise we have

Lemma 1 A regular oriented-hypermap \mathcal{Q} is

1. chiral if and only if $\kappa(\mathcal{Q})>1$;
2. reflexible if and only if $\kappa(\mathcal{Q})=1$.

Regularity and chirality are duality invariants:

Proposition 6 [12] Let \mathcal{Q} be a hypermap and σ be any permutation of the symmetric group S_{3}. Then

1. \mathcal{Q} is regular if and only if $D_{\sigma}(\mathcal{Q})$ is regular;
2. \mathcal{Q} is chiral if and only if $D_{\sigma}(\mathcal{Q})$ is chiral.
where

$$
\begin{array}{rlrl}
\mathcal{Q} & =(G ; R, L) \\
\sigma=(1,2), & D_{\sigma}(\mathcal{Q}) & =\left(G ; R^{-1}, R L\right) \\
\sigma=(0,1), & D_{\sigma}(\mathcal{Q}) & =\left(G ; R^{-1}, L^{-1}\right) \\
\sigma=(0,1,2), & D_{\sigma}(\mathcal{Q}) & =\left(G ;(R L)^{-1}, L\right) \\
\sigma=(0,2), & D_{\sigma}(\mathcal{Q}) & =\left(G ; R L, L^{-1}\right) \\
\sigma=(0,2,1), & D_{\sigma}(\mathcal{Q}) & =\left(G ; R,(R L)^{-1}\right)
\end{array}
$$

1.5 Metacyclic groups

A group G is a metacyclic group if it has a normal subgroup H such that both H and G / H are cyclic.

Proposition 7 Consider the group $G=\left\langle x, y \mid x^{m}=1, x^{y}=x^{r}, y^{n}=x^{s}\right\rangle$, where m, n, r, s are positive integers such that $r, s \leq m$ satisfying the conditions $r^{n} \equiv 1(\bmod m)$ and $r s \equiv s(\bmod m)$. Then $N=\langle x\rangle$ is a normal subgroup of G such that $N \cong \mathbb{Z}_{m}$ and $G / N \cong \mathbb{Z}_{n}$. Thus, G is a finite metacyclic group.

Conversely, if G is a finite metacyclic group, then G has a presentation of the form

$$
\begin{equation*}
\left\langle x, y \mid x^{m}=1, x^{y}=x^{r}, y^{n}=x^{s}\right\rangle \tag{1.4}
\end{equation*}
$$

where m, n, r, s are integers such that $r, s \leq m$ and satisfying the conditions $r^{n} \equiv 1(\bmod m)$ and $r s \equiv s(\bmod m)$. [23, pg 60]

Consequently, $|G|=|G: N||N|=n m$.

We will denote the group with presentation (1.4) by $M(m, n, s, r)$.

1.6 Bicontactuality

Two arbitrary hyperfaces, for instance F_{1} and F_{2}, of a hypermap are arc-adjacent, or F_{1} meets F_{2}, if they have in common an arc. We denote by $F_{1} F_{2}$-arc all the arcs where F_{1} and F_{2} are arc-adjacent. For example, the figure

Figure 1.11: Hypermaps \mathcal{H}_{1} and \mathcal{H}_{2}, respectively
shows that in the hypermap \mathcal{H}_{1} (left) the hyperfaces F_{1} and F_{i} (with $2 \leq i \leq 5$) are arcadjacent, but the hyperfaces F_{1} and F_{j} (with $\left.6 \leq j \leq 7\right)$ are not arc-adjacent. In the hypermap \mathcal{H}_{2} (right), the hyperface F_{1} meets the hyperface F_{2}, or F_{3}, along two arcs.

Definition 7 Let \mathcal{H} be a hypermap. The hypermap \mathcal{H} is called bicontactual if each hyperface is arc-adjacent to just 2 hyperfaces. So around a fixed hyperface there are just two different hyperfaces of \mathcal{H}.

In the figure 1.11, the hypermap \mathcal{H}_{2} is bicontactual.
As a consequence of what we have just said, the proof of the following lemma is straightforward.

Lemma 2 In a bicontactual regular or orientably-regular (or regular pseudo-oriented) hypermap the number of hyperfaces is at least three.

Proof :
In a bicontactual hypermap we must have at least 2 distinct hyperfaces about any given hyperface F; if F is adjacent to itself then, by regularity, the hypermap would have only one hyperface.

Consequently,

1. in a bicontactual regular oriented-hypermap the number of darts is ≥ 6;
2. in a bicontactual regular hypermap the least number of flags is 6 , if it has boundary, and 12 otherwise.

Chapter 2

Regular bicontactual hypermaps

This chapter aims at laying the foundations of the theory of bicontactual hypermaps, specially in the second section.

Firstly, we sum up Wilson's thesis [26] and the results in [27], in order to present his classification of rotary bicontactual maps, in the cases orientable and non-orientable, which are all reflexible.

Then, in section 2, we extend some those results, definitions and lemmas necessary for the notion of bicontactuality in regular hypermaps, several properties for bicontactual hypermaps are presented and new results are formulated.

2.1 Regular bicontactual maps

In this section we will elaborate a summary of the results established by Wilson [26, 27] for bicontactual maps. Recalling map and Wilson's notation, $\{p, q\}$ means the family of orientably-regular (or rotary) maps of type $(q, 2, p)$ while $\{p, q\}_{r}$ means the family of maps in $\{p, q\}$ with petrie-length r.

Let us start with the obvious bicontactual maps (keeping Wilson's notation):
$\mathbf{D} \epsilon_{\mathbf{n}}$ - This is also known as the dipole \mathcal{D}_{n}, a regular and reflexible orientable bicontactual map on the sphere.

Figure 2.1: ε_{n} (left) and $D_{\varepsilon_{n}}$ (right); only $D_{\varepsilon_{n}}$ is bicontactual
$\mathbf{D} \delta_{\mathbf{n}}$ - This is the projective version of the dipole, a regular and reflexible bicontactual map on the projective plane.

Figure 2.2: δ_{n} (left) and $D_{\delta_{n}}$ (right); only $D_{\delta_{n}}$ is bicontactual
$\mathbf{M}_{\mathbf{k}, \mathbf{i}}^{\prime}$ - This 2-face bicontactual map is the dual of M_{k}, the one-face map obtained from a regular $2 k$-gon with its edges crossly identified ([27, pg 439]).

To follow the spirit of Wilson' classification [27] we start to describe the overlapping families of non-obvious bicontactual maps in the same order as they appear in [27]. We must say that, in the paper, Wilson describes bicontactual maps with overlapping families, forgetting to prune them in order to get non-overlapping families. Such prune can however be found, though not so easily, in his Thesis [26].

1. $\mathbf{B}(\mathbf{n}, \mathbf{2 c})$. This family, together with the next family $B^{*}(n, 2 c)$, of regular bicontactual maps was first described by means of a quite complicated schema (or diagram). The
maps $B(n, 2 c)$ have even number of faces n. Each member of this family is orientable, regular and reflexible, has \mathcal{H}-sequence

$$
\left[n c-(2 c, n)-n ; \frac{2 n c}{(2 c, n)}, 2,2 c ;(2 c, n), n c, n ; 2 n c\right]
$$

and its monodromy group has presentation

$$
\left\langle R, L \mid L^{2}=(R L)^{2 c}=1,(L R)^{2}=(R L)^{2},\left(L R L^{-1} R^{-1}\right)^{\frac{n}{2}}=1\right\rangle .
$$

2. $\mathbf{B}^{*}(\mathbf{n}, \mathbf{2 c})$. This family divides into two subclasses, when n and c are both even, and when n and c are both odd. It has \mathcal{H}-sequence

$$
\left[n c-(2 c, n+c)-n ; \frac{2 n c}{(2 c, n+c)}, 2,2 c ;(2 c, n+c), n c, n ; 2 n c\right]
$$

(a) n, c both even. Each bicontactual map in this family is orientable, regular and reflexible. The monodromy group has presentation

$$
\left\langle R, L \mid L^{2}=(R L)^{2 c}=1,(L R)^{2}=(R L)^{2},\left(L R L^{-1} R^{-1}\right)^{\frac{n}{2}}=(R L)^{c}\right\rangle .
$$

(b) n, c both odd. Each bicontactual map in this family is orientable, regular and reflexible. The monodromy group has presentation

$$
\left\langle R, L \mid L^{2}=(R L)^{2 c}=1,(L R)^{2}=(R L)^{2}, R^{n}=(R L)^{n-c}\right\rangle .
$$

3. $\operatorname{Opp}(\mathbf{B}(\mathbf{n}, \mathbf{2 c}))$. Briefly, the operator $O p p$ applied to a map \mathcal{M} corresponds to the permutation given by $r_{2} \mapsto r_{2} r_{0}$ in the word relations which define \mathcal{M} (for more information, read $[28,26])$.

In this family, where n is even, each member is orientable, regular and reflexible, has \mathcal{H}-sequence

$$
[(c-1)(n-1)-1 ; n, 2,2 c ; 2 c, n c, n ; 2 n c]
$$

and its monodromy group has presentation

$$
\left\langle R, L \mid L^{2}=(R L)^{2 c}=1,(R L R)^{2}=1, R^{n}=1\right\rangle
$$

4. $\operatorname{Opp}\left(\mathbf{B}^{*}(\mathbf{n}, \mathbf{2 c})\right)$. This family divides into two subclasses, when n and c are both even, and when n and c are both odd.
(a) \mathbf{n}, \mathbf{c} both even. Each bicontactual map in this family is orientable, regular and reflexible, has \mathcal{H}-sequence

$$
[(c-1)(n-1)-1 ; 2 n, 2,2 c ; c, n c, n ; 2 n c]
$$

and its monodromy group has presentation

$$
\left\langle R, L \mid L^{2}=(R L)^{2 c}=1,(R L R)^{2}=1, R^{n}=(R L)^{c}\right\rangle .
$$

(b) \mathbf{n}, \mathbf{c} both odd. Each bicontactual map in this family is non-orientable, regular and reflexible, has \mathcal{H}-sequence

$$
[(c-1)(n-1)-1 ; 2 n, 2,2 c ; c, n c, n ; 4 n c]
$$

and its monodromy group has presentation

$$
\left\langle r_{0}, r_{1}, r_{2} \mid r_{i}^{2}=L^{2}=(R L)^{2 c}=1,(R L R)^{2}=1,\left(r_{2} r_{0} r_{1}\right)^{n}=(R L)^{-n+c}\right\rangle .
$$

5. $\Gamma_{\frac{n}{3}}$. This family of (rotary and reflexible) bicontactual maps are described as follows:

Figure 2.3: Some faces of $\Gamma_{\frac{n}{3}}$

The map $\Gamma_{\frac{n}{3}}$ constructed in this way has 4 vertices of valency n, where n is the number of faces and it is a multiple of 3 . For example, the following figure shows the map Γ_{2}.

Figure 2.4: $\operatorname{Map} \Gamma_{2}$
Γ_{1} is the hemi-cube, a map on the projective plane derived from the cube by identifying antipodal points.

Each member of this family is non-orientable and it is a fundamental bicontactual map ${ }^{1}$. The \mathcal{H}-sequence of each bicontactual map is

$$
[n-4 ; n, 2,4 ; 4,2 n, n ; 8 n]
$$

and its monodromy group has presentation

$$
\left\langle r_{0}, r_{1}, r_{2} \mid r_{i}^{2}=L^{2}=(R L)^{4}=1, R^{n}=1,(R L)^{2}=r_{0}^{R}\right\rangle
$$

6. $\mathbf{B}(\mathbf{n}, \mathbf{2 c}, \rho, \sigma)$. Each member of this family has n (even) faces and it is orientable. Moreover, as shown by Wilson, each bicontactual map $B(n, 2 c, \rho, \sigma)$ is rotary and reflexible if the parameters satisfy

$$
\rho^{2} \equiv 1(\bmod c), 2 \sigma \equiv \frac{n}{2}(\rho+1)(\bmod c) \text { and } \rho \sigma \equiv \sigma(\bmod c)
$$

Each element of the family has the \mathcal{H}-sequence ${ }^{2}$

$$
\left[n(c-1)-2(c, \sigma) ; n|\sigma|_{c}, 2,2 c ; 2(c, \sigma), n c, n ; 2 n c\right]
$$

and its monodromy group has presentation

$$
\left\langle R, L \mid L^{2}=(R L)^{2 c}=1,(L R)^{2}=(R L)^{2 \rho}, R^{n}=(R L)^{2 \sigma}\right\rangle .
$$

The families described above are not distinct, in fact when n is even $B(n, 2 c), B^{*}(n, 2 c)$, $D_{\varepsilon_{n}}, O p p(B(n, 2 c))$ and $O p p\left(B^{*}(n, 2 c)\right)$ derive from $B(n, 2 c, \rho, \sigma)$. That is, these families overlap as follows:

- $B(n, 2 c)=B\left(n, 2 c, 1, \frac{n}{2}\right)$.
- $B^{*}(n, 2 c)=B\left(n, 2 c, 1, \frac{n+c}{2}\right)$.
- $D \epsilon_{n}= \begin{cases}B(n, 2), & \text { if } \mathrm{n} \text { is even; } \\ B^{*}(n, 2), & \text { if } \mathrm{n} \text { is odd. }\end{cases}$
- $O p p B(n, 2 c, \rho, \sigma)=B\left(n, 2 c,-\rho, \frac{n}{2}-\sigma\right)$.

[^4]
The classification

Now Wilson's classification of bicontactual maps prune to the following non-overlapping families:

A Two families of orientable bicontactual rotary maps (all reflexible):

1. $B(n, 2 c, \rho, \sigma)$,
with $n \equiv 0(\bmod 2), \rho^{2} \equiv 1(\bmod c), 2 \sigma \equiv \frac{n}{2}(\rho+1)(\bmod c)$ and $\rho \sigma \equiv \sigma(\bmod c)$;
2. $B^{*}(n, 2 c)$, with $n \equiv 1(\bmod 2)$ and $c \equiv 1(\bmod 2)$.

B Three families of non-orientable bicontactual regular maps:

1. opp $B^{*}(n, 2 c)$, with $n \equiv 1(\bmod 2)$ and $c \equiv 1(\bmod 2)$,
2. $\Gamma_{\frac{n}{3}}, \quad$ with $n \equiv 0(\bmod 3)$,
3. $D_{\delta_{n}}$.

2.2 Bicontactual hypermaps - generalisation

All hypermaps considered here are regular. Now we can ask the following: How many ways can we place two hyperfaces around a hyperface F such that they are arc-adjacent to F ?

Figure 2.5: How can we distribute hyperfaces around F?

In a bicontactual hypermap there should be just two different hyperfaces around any hyperface F. There are 3 ways we can place 2 hyperfaces around F, giving rise to three types of bicontactuality: the edge-twin bicontactual when F_{1}, F_{2} appear around F with pattern $F_{1}, F_{1}, F_{2}, F_{2}, F_{1}, F_{1}, F_{2}, F_{2}, \ldots$, in circular order being the repetitions happening at hyperedges (Fig 2.6); the vertex-twin bicontactual when $D_{01}(\mathcal{Q})$ is edge-twin bicontactual (Fig 2.7); and the alternate bicontactual when F_{1}, F_{2} appear around F with alternate pattern $F_{1}, F_{2}, F_{1}, F_{2}, \ldots(\operatorname{Fig} 2.8)$.

Figure 2.6: Edge-twin

Figure 2.7: Vertex-twin

Figure 2.8: Alternate

In short, a regular bicontactual hypermap can be edge-twin, vertex-twin or alternate bicontactual. The first two cases, which correspond to dual cases, $r_{0} \leftrightarrow r_{1}$, form the twin bicontactual hypermaps.

In the particular case of maps, there exists only one type of bicontactuality: the edge-twin bicontactual, termed 'bicontactual' by Wilson in [26]:

Figure 2.9: Bicontactual Map

The algebraic traduction of the previous definitions is given by the following lemma, without proof:

Lemma 3 Let \mathcal{H} be a regular hypermap. Then \mathcal{H} is

1. edge-twin bicontactual iff

$$
r_{0}^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle, r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle \text { and } r_{0}^{r_{1} r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle ;
$$

2. alternate bicontactual iff

$$
\left(r_{1} r_{0}\right)^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle \text { and } r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle .
$$

Recall that in any map the word relation $\left(r_{2} r_{0}\right)^{2}=1$ holds and that every bicontactual regular map is an edge-twin bicontactual hypermap. So bicontactuality in a regular map is algebraically characterized by

$$
r_{0}^{r_{1} r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle \text { and } r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle
$$

The condition $r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle$ can be omitted if the number of hyperfaces is big enough. The proof of the following lemma is straightforward and so omitted.

Lemma 4 Let \mathcal{H} be a regular hypermap. Then:

1. \mathcal{H} has one face if and only if $r_{2} \in\left\langle r_{0}, r_{1}\right\rangle$.
2. \mathcal{H} has two faces if and only if $r_{2} \notin\left\langle r_{0}, r_{1}\right\rangle$ and $r_{0}^{r_{2}}, r_{1}^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle$.
3. \mathcal{H} has more than two faces if and only if $r_{0}^{r_{2}}, r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle$.

Lemma 5 Let \mathcal{H} be a regular hypermap with three or more hyperfaces. Then

$$
r_{0}^{r_{2}}, r_{0}^{r_{1} r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle \Rightarrow r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle .
$$

Remark 3 By Lemma 2 and from the previous Lemma 5, we don't need to refer to the condition $r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle$ to characterise algebraically any regular bicontactual hypermap.

2.2.1 General properties of edge-twin bicontactual hypermaps

In this section $\mathcal{H}_{E T}$ stands for a regular edge-twin bicontactual hypermap with n hyperfaces (without boundary), where $n \geq 3$. Recall that we are assuming that $\mathcal{H}_{E T}$ is orientable.

We will study the basic properties of $\mathcal{H}_{E T}$ which will be important to find the word relations that algebraically define $\mathcal{H}_{E T}$. Most of these properties are just extensions of the Wilson's properties for bicontactual maps (note that bicontactual maps are edge-twin bicontactual hypermaps).

An important term used here is neighborhood of a hypervertex, or hyperedge or hyperface.
Definition 8 The face-neighborhood of a hypervertex (or hyperedge or hyperface) is the set of the hyperfaces that are incident to that hypervertex (or hyperedge or hyperface).

Let F be an arbitrary hyperface of the hypermap $\mathcal{H}_{E T}$. Around F , there are the hyperfaces $F_{1}, F_{1}, F_{2}, F_{2}, F_{1}, F_{1}$, etc in circular order. So, the proof of the following lemma is obvious.

Lemma 6 In a regular edge-twin bicontactual hypermap, the valency of hyperfaces must be even.

Let us analyse the neighborhood of a hyperedge of the hypermap $\mathcal{H}_{E T}$.
Lemma 7 The neighborhood of an arbitrary hyperedge e contains only two incident hyperfaces, as shown below.

Figure 2.10: neighborhood of a hyperedge

Proof:
By the first sentence of the lemma 3, the condition $r_{0}^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle$ holds in $\mathcal{H}_{E T}$.

We can say, from figure 2.10, that the face-neighborhood of the hyperedge e is the set $\left\{F, F_{1}\right\}$. Consequently, the next result is straightforward.

Lemma 8 In the hypermap $\mathcal{H}_{E T}$, the valency of hyperedges is even.
Definition 9 Let e be an arbitrary hyperedge of $\mathcal{H}_{E T}$. We define the edge-repetition degree as being the integer number r_{e} such that the sequence F, F_{1} occurs r_{e} times around e.

The following proposition proves the existence of repetitions of the hyperedges incidents to each hyperface of a pure hypermap $\mathcal{H}_{E T}$. If $\mathcal{H}_{E T}$ is a regular map then the size of $\operatorname{Mon}\left(\mathcal{H}_{E T}\right)$ is determinated by the number of edges. More precisely,

$$
\left|\operatorname{Mon}\left(\mathcal{H}_{E T}\right)\right|=2|\mathcal{E}| .
$$

Proposition 8 If about a hyperface the incident hyperedges do not repeat themselves then $\mathcal{H}_{E T}$ is a map.

Proof :
Let $\mathcal{H}_{E T}$ be a regular edge-twin bicontactual hypermap, and let F_{1} an arbitrary hyperface of $\mathcal{H}_{E T}$.

Let us suppose that about the hyperface F_{1} the incident hyperedges do not repeat.
Let e be an hyperedge incident to F_{1} and let v_{1}, v_{2} be its neighborhood hypervertices in F_{1}. Let ω be a flag in F_{1} incident to both v_{1} and e. Since e does not repeat in F_{1}, at F_{1} it is incident only to v_{1} and v_{2}.

The flag $\alpha=\omega L^{2}$ is incident to both F_{1} and e, therefore, it must be incident to v_{1} or v_{2}. If α is incident to v_{1} then $\mathcal{H}_{E T}$ must be a map (since we must have $\alpha=\omega$). Suppose that α is incident to v_{2}; then $v=v_{1}$ and we have two consecutive repeating hypervertices. By regularity $\mathcal{H}_{E T}$ has only one hypervertex and consequently the group generated by R and L is cyclic. By observing the figure above we must have $\alpha=\omega r_{0}$, but this implies that \mathcal{Q} is non-orientable, which is against our supposition.

Let us examine the neighborhood of a hypervertex of $\mathcal{H}_{E T}$.

Proposition 9 The neighborhood of an arbitrary hypervertex v of $\mathcal{H}_{E T}$ contains all the hyperfaces of the hypermap.

Figure 2.11: neighborhood of a hypervertex

Proof:
Let $\mathcal{H}_{E T}$ be a regular edge-twin bicontactual hypermap, and let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ be the set of the hyperfaces of $\mathcal{H}_{E T}$. Let v be a hypervertex incident to F_{1}, and e a hyperedge incident to both v and F_{1}.

Let m be the number of hyperfaces incident to v. Without loss of generality, assume that $F_{1}, F_{2}, \ldots, F_{m}$ are the hyperfaces incident to v, in the clockwise way (see figure):

Since the hypermap is bicontactual, F_{1} is adjacet to only F_{2} and F_{m}. By edge-twin bicontactuality, the hyperedge e is only incident to two hyperfaces (in this case, hyperfaces F_{1} and F_{2}). Any other hypervertex $v^{\prime} \neq v$ incident to e is also incident to F_{1} and F_{2}. Let us see the hyperfaces that lie around v^{\prime} in clockwise order. Let F^{\prime} be the first after F_{1}.

We have $F^{\prime}=F_{m}$, because F_{1} has only two adjacent hyperfaces. Similarly, F_{m} has also only two adjacent hyperfaces and they must be F_{1} and F_{m-1}, therefore the next hyperface incident to v^{\prime} is F_{m-1}. By repeating this argument, we conclude that $F_{1}, F_{m}, \ldots, F_{2}$ are the hyperfaces incident to v^{\prime} (in this order).

Thus two consecutive hypervertices has the same set of incident hyperfaces. By regularity, the set $\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ will consists of all the hyperfaces of $\mathcal{H}_{E T}$. Hence $m=n$.

Remark 4 We saw that the face-neighborhood of any hypervertex v is all the set \mathcal{F} of the hyperfaces of $\mathcal{H}_{E T}$. From this moment on we may assume, without loss of generality, we are able to number the hyperfaces $1,2, \ldots, n$, so that the hyperface F_{i} meets the hyperfaces F_{i-1} and $F_{i+1}(\bmod n)$ only.

Since all the hyperfaces are incident to any given hypervertex v, all the hypervertices of $\mathcal{H}_{E T}$ will lie around each hyperface of $\mathcal{H}_{E T}$. This proves the following

Corollary 3 All the hypervertices of an edge-twin bicontactual hypermap are incident to any given hyperface.

Consequently, the next result is straightforward.

Lemma 9 In the hypermap $\mathcal{H}_{E T}$, the valency of hypervertices is a multiple of n.

From the previous proposition, we can conclude that if around a hypervertex v of $\mathcal{H}_{E T}$ the hyperfaces of the hypermap appear in order CW then in any hypervertex adjacent to v the hyperfaces appear in order CCW and conversely.

Definition 10 Let v be an arbitrary hypervertex of a regular edge-twin bicontactual hypermap $\mathcal{H}_{E T}$. We define vertex-repetition degree as being the integer number r_{v} such that the sequence $F_{1}, F_{2}, \ldots, F_{n}$ occurs r_{v} times around v.

We know, from Proposition 9, that all the hyperfaces of a regular edge-twin bicontactual hypermap must lie around any given hypervertex. However this can be achieved with repetitions. So, we need to introduce the notion of fundamental in regular edge-twin bicontactual hypermaps.

Definition 11 If $\mathcal{H}_{E T}$ is a regular edge-twin bicontactual hypermap with n hyperfaces such that $v_{\nu}=n$, then $\mathcal{H}_{E T}$ is called fundamental.

Therefore, in a regular fundamental edge-twin bicontactual hypermap with n hyperfaces, the vertex-repetition degree of an arbitrary hypervertex is equal to 1 (that is, $r_{v}=1$). Moreover,

Lemma 10 In a regular fundamental edge-twin bicontactual hypermap with n hyperfaces of valency $2 c$, the number of hypervertices is $2 c$.

Proof:
By the corollary 3 and with $r_{v}=1$, we obtain $\mathrm{n}_{\mathcal{V}}=\mathrm{v}_{\mathcal{F}}$.

2.2.2 General properties of alternate bicontactual hypermaps

In this section $\mathcal{H}_{\text {Alt }}$ stands for a regular alternate bicontactual orientable hypermap with n hyperfaces (without boundary), where $n \geq 3$.

We will study the basic properties of the hypermap $\mathcal{H}_{A l t}$ which will be important to find the word relations that define it algebraically.

Lemma 11 If \mathcal{H} is a regular alternate bicontactual hypermap then the dual $D_{01}(\mathcal{H})$ of \mathcal{H} interchanging hypervertices by hyperedges is also a regular alternate bicontactual hypermap.

Proof:
The algebraic description $\left(r_{1} r_{0}\right)^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle$ and $r_{1}^{r_{2}} \notin\left\langle r_{0}, r_{1}\right\rangle$ (Lemma 3) is invariant if we swap r_{0} with r_{1}.

Let F be an arbitrary hyperface of the hypermap $\mathcal{H}_{\text {Alt }}$. Around F, there are the hyperfaces $F_{1}, F_{2}, F_{1}, F_{2}, F_{1}, F_{2}$, etc in circular order. So, the proof of the following lemma is obvious.

Lemma 12 In a regular alternate bicontactual hypermap, the valency of hyperfaces can be any positive integer greater or equal to 2.

In a regular edge-twin bicontactual hypermap, only the neighborhood of a hypervertex has all the hyperfaces of the hypermap incident. Next proposition and corollary show that in an alternate bicontactual hypermap, both the neighborhoods of a hypervertex and of a hyperedge have all the hyperfaces of the hypermap incident.

Proposition 10 The neighborhood of an arbitrary hypervertex v of the hypermap $\mathcal{H}_{\text {Alt }}$ contains all the hyperfaces of the hypermap.

Figure 2.12: neighborhood of a hypervertex

Proof:
Let $\mathcal{H}_{\text {Alt }}$ be a regular alternate bicontactual hypermap, and let $\mathcal{F}=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{n}\right\}$ be the set of the hyperfaces of $\mathcal{H}_{\text {Alt }}$. Let v be a hypervertex incident to F_{1}, and e an incident hyperedge to both v and F_{1}.

Let m be the number of hyperfaces incident to v. Without losing generality, we assume that $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{m}$ are the hyperfaces incident to v, in the clockwise way (see figure):

By bicontactuality, F_{1} is adjacent to only F_{2} and F_{m}. Then, as $\mathcal{H}_{A l t}$ is alternate, the hyperedge e is incident, at least, to the hyperfaces F_{2} and F_{m}. Take another hypervertex $v^{\prime} \neq v$ incident to e and F_{1}. Let us analyse the hyperfaces that lie around v^{\prime} in clockwise order. Let F^{\prime} be the first after F_{1} :

Since F_{1} has only two adjacent hyperfaces, $\mathrm{F}^{\prime}=\mathrm{F}_{2}$. Similarly, F_{2} has only two adjacent hyperfaces and they must be F_{1} and F_{3}, therefore the next hyperface incident to v^{\prime} is F_{3}. By repeating this argument, we conclude that $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{m}$ are the hyperfaces incident to v^{\prime} (in this order).

So we have two consecutive hypervertices having the same set $\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{m}\right\}$ of incident hyperfaces then, by regularity, the set $\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{m}\right\}$ contains all the hyperfaces of $\mathcal{H}_{\text {Alt }}$. Hence $m=n$.

Also for this class of hypermaps, we will assume that the hyperface F_{i} meets the hyperfaces F_{i-1} and $\mathrm{F}_{i+1}(\bmod n)$ only.

By duality (Lemma 11), the preceding proposition is also valid for hyperedges, as follows Corollary 4 In a regular alternate bicontactual hypermap, all the hyperfaces are incident to any given hyperedge.

Summing up, the set \mathcal{F} of the hyperfaces of \mathcal{H} is both the face-neighborhood of any hyperedge as well as the face-neighborhood of any hypervertex. Consequently, all the hypervertices and all the hyperedges of $\mathcal{H}_{A l t}$ will lie around each hyperface of $\mathcal{H}_{A l t}$. This proves,

Corollary 5 All the hypervertices and, also all the hyperedges, of hypermap $\mathcal{H}_{\text {Alt }}$ actually are incident to any given hyperface.

Consequently, the next result is straightforward.

Lemma 13 In the hypermap $\mathcal{H}_{\text {Alt }}$, the valency of the hypervertices, as well as the valency of the hyperedges, is a multiple of n.

In conclusion, from proposition 4 and from of the proof of the proposition 10, we obtain (see figure below):

- around two consecutive hypervertices (or hyperedges) the hyperfaces appear in the same order;
- the hyperfaces around a hypervertex (or hyperedge) appear in inverse order to the order in which they appear around incident hyperedges (or hypervertices).

Figure 2.13: orientations in hypervertices and hyperedges of $\mathcal{H}_{\text {Alt }}$

Definition 12 Let v be an arbitrary hypervertex of a regular alternate bicontactual hypermap $\mathcal{H}_{\text {Alt }}$ and let e be an arbitrary hyperedge of $\mathcal{H}_{\text {Alt }}$. We define:

- vertex repetition-degree as being the integer r_{v}^{\prime} such that the sequence $F_{1}, F_{2}, \ldots, F_{n}$ occur r_{v}^{\prime} times around v;
- edge repetition-degree as being the integer r_{e}^{\prime} such that the sequence $F_{1}, F_{2}, \ldots, F_{n}$ occur r_{e}^{\prime} times around e.

We know, from Proposition 10 and from Proposition 4, that all the hyperfaces of a regular alternate hypermap must lie around any given hypervertex and around any given hyperedge. However this can be achieved with repetitions. Although we will introduce the notion of fundamental regular alternate hypermaps, this notion, here, will not have a role as important as it will have for twin bicontactual hypermaps.

Definition 13 The hypermap $\mathcal{H}_{\text {Alt }}$ is called fundamental if the hyperfaces do not repeat neither around hypervertices nor around hyperedges (that is, $r_{e}^{\prime}=1$ and $r_{v}^{\prime}=1$).

Moreover,

Lemma 14 In a regular fundamental alternate bicontactual hypermap with n hyperfaces of valency c, the number of hypervertices, and also de number of hyperedges, is c.

Proof:
By the corollary 5 and with $r_{v}^{\prime}=1=r_{e}^{\prime}$, we conclude that $\mathrm{n}_{\mathcal{V}}=\mathrm{v}_{\mathcal{F}}=\mathrm{n}_{\mathcal{E}}$.

We will see later that any regular alternate bicontactual oriented-hypermap will cover a fundamental one (Theorem 2).

Chapter 3

Alternate bicontactual

oriented-hypermaps

In this chapter we present the classification of the regular alternate bicontactual orientedhypermaps.

In the following section, we rewrite some properties, obtained in the section 2.2.2, for alternate bicontactual hypermaps (in function of the generators R and L).

Section 3.2 presents the classification of alternate bicontactual oriented-hypermaps, concluding that the monodromy group of an alternate bicontactual oriented-hypermap is a metacyclic group.

In the last section of this chapter, we will show that some alternate bicontactual orientedhypermaps are chiral while others are not. Using the results obtained by Breda and R. Nedela in [12] for metacyclic groups, we establish the conditions for an alternate bicontactual oriented-hypermap to be chiral.

In what follows, let $\mathcal{Q}_{\text {Alt }}=(G ; R, L)$ be a regular alternate bicontactual orientedhypermap with n hyperfaces of valency c.

3.1 Some general properties

The algebraic definition of regular alternate bicontactual hypermaps, without boundary, was presented in lemma 3. We consider alternate bicontactual regular oriented-hypermaps. Towards that, we start by rewriting the properties of section 2.2 in terms of R and L.

Lemma 15 Let $\mathcal{H}=(G ; R, L)$ be a regular oriented-hypermap. Then \mathcal{H} is alternate bicontactual if and only if

$$
\begin{equation*}
L R \in\langle R L\rangle \tag{3.1}
\end{equation*}
$$

Proposition 11 The neighborhood of an arbitrary hyperedge of the hypermap $\mathcal{Q}_{\text {Alt }}$ contains all the hyperfaces of the hypermap. Therefore, $L^{n} \in\langle R L\rangle$ and $L^{n r_{e}^{\prime}}=1$.

Proposition 12 The neighborhood of an arbitrary hypervertex of the hypermap $\mathcal{Q}_{\text {Alt }}$ contains all the hyperfaces of the hypermap. Therefore, $R^{n} \in\langle R L\rangle$ and $R^{n r_{v}^{\prime}}=1$.

Remark 5 If $\mathcal{Q}_{\text {Alt }}$ is a fundamental hypermap, then $L^{n}=1$ and $R^{n}=1$.

3.2 Classification

The objective of this section is the classification of the family of the regular alternate bicontactual oriented-hypermaps.

The following word relations, for the hypermap $\mathcal{Q}_{\text {Alt }}$, are easily obtained from the basic properties of section 3.1.

- $(R L)^{c}=1$, for some positive integer c

By Lemma 15 and the following propositions, we have

- $L R=(R L)^{d}$, for some integer $d \in\{0, \cdots, c-1\}$
- $R^{n}=(R L)^{t_{v}}$, for some $t_{v} \in\{0, \cdots, c-1\}$
- $L^{n}=(R L)^{t_{e}}$, for some $t_{e} \in\{0, \cdots, c-1\}$

Lemma 16 Assume the first two relations. Then

$$
R^{n}=(R L)^{t_{v}} \Rightarrow L^{n}=(R L)^{t_{e}}, \text { for some } t_{e} .
$$

Conversely,

$$
L^{n}=(R L)^{t_{e}} \Rightarrow R^{n}=(R L)^{t_{v}}, \text { for some } t_{v} .
$$

Proof:
To see this it is necessary to prove first, by induction, that

$$
\begin{equation*}
L^{i} R^{i}=(R L)^{d^{i}+d^{i-1}+\ldots+d^{2}+d} \tag{3.2}
\end{equation*}
$$

for all integer i. Since we have $L R=(R L)^{d}$, for some integer $d \in\{0, \cdots, c-1\}$, the equation (3.2) holds for $i=1$. We assume that, for all j in $\{1, \ldots, i\}$, the equation $L^{j} R^{j}=$ $(R L)^{d^{j}+d^{j-1}+\ldots+d^{2}+d}$ holds. For $i+1$ we obtain

$$
\begin{aligned}
L^{i+1} R^{i+1} & =L L^{i} R^{i} R \\
& =L(R L)^{d^{i}+d^{i-1}+\ldots+d^{2}+d} R \\
& =(L R)^{d^{i}+d^{i-1}+\ldots+d^{2}+d+1} \\
& =\left((R L)^{d}\right)^{d^{i}+d^{i-1}+\ldots+d^{2}+d+1} \\
& =(R L)^{d\left(d^{i}+d^{i-1}+\ldots+d^{2}+d+1\right)} \\
& =(R L)^{d^{i+1}+d^{i}+\ldots+d^{2}+d}
\end{aligned}
$$

So, we conclude that for $i+1$ the equation (3.2) is valid. Putting $i=n$ in the equation (3.2), on the one hand, we get

$$
\begin{equation*}
L^{n}=(R L)^{d^{n}+d^{n-1}+\ldots+d^{2}+d-t_{v}} . \tag{3.3}
\end{equation*}
$$

Then, we can assume $t_{e}=d^{n}+d^{n-1}+\ldots+d^{2}+d-t_{v}$.
On the other hand, we get

$$
\begin{equation*}
R^{n}=(R L)^{d^{n}+d^{n-1}+\ldots+d^{2}+d-t_{e}} . \tag{3.4}
\end{equation*}
$$

Then, we can assume $t_{v}=d^{n}+d^{n-1}+\ldots+d^{2}+d-t_{e}$.

From now on, we assume $(R L)^{c}=1, L R=(R L)^{d}$, and $R^{n}=(R L)^{t_{v}}$, where c is a positive integer and d, t_{v} integers in $\{0, \cdots, c-1\}$.

As we shall see later, the four parameters involved in preceding word relations are sufficient to classify all the regular alternate bicontactual oriented-hypermaps.

Being n the smallest positive integer such that $R^{n} \in\langle R L\rangle$ by Lemma 16, n is also the smallest positive integer such that $L^{n} \in\langle R L\rangle$. Then the parameters r_{e}^{\prime} and r_{v}^{\prime} are determinated as follows:

$$
\begin{aligned}
& L^{n}=(R L)^{t_{e}} \Rightarrow\left|L^{n}\right|=\left|(R L)^{t_{e}}\right| \Leftrightarrow r_{e}^{\prime}=\frac{c}{\left(c, t_{e}\right)} \\
& R^{n}=(R L)^{t_{v}} \Rightarrow\left|R^{n}\right|=\left|(R L)^{t_{v}}\right| \Leftrightarrow r_{v}^{\prime}=\frac{c}{\left(c, t_{v}\right)}
\end{aligned}
$$

Theorem 1 If $\mathcal{Q}_{\text {Alt }}$ is an alternate bicontactual oriented-hypermap with n hyperfaces, then

$$
\operatorname{Mon}\left(\mathcal{Q}_{A l t}\right)=\left\langle R, L \mid(R L)^{c}=1, L R=(R L)^{d}, R^{n}=(R L)^{t_{v}}\right\rangle
$$

for some integer $c \geq 2$ and integers $d, t_{v} \in\{0, \ldots, c-1\}$ such that
(i) $\quad d t_{v} \equiv t_{v}(\bmod c)$;
(ii) $d^{n} \equiv 1(\bmod c)$.

Reciprocally, any hypermap $\mathcal{Q}=(G ; R, L)$ defined above is an alternate bicontactual orientedhypermap with n hyperfaces.

Proof:
Let $\mathcal{Q}_{\text {Alt }}=(G ; R, L)$ be an alternate bicontactual oriented-hypermap with n hyperfaces. By lemma $15, G$ is a factor group of

$$
\begin{equation*}
\left\langle R, L \mid(R L)^{c} \underset{(1)}{=} 1, L R \underset{(2)}{=}(R L)^{d}, R^{n} \underset{(3)}{=}(R L)^{t_{v}}\right\rangle \tag{3.5}
\end{equation*}
$$

for some integers $c \geq 1$ and $d, t_{v} \in\{0, \cdots, c-1\}$. Without lost of generality we assume that c is the order of $R L$.

Let us show that the conditions (i) and $(i i)$ hold. From $3^{r d}$ relation, we have $R^{n}=(L R)^{t_{v}}$. Hence, $(R L)^{t_{v}}=(L R)^{t_{v}}$. Conjugating the $2^{\text {nd }}$ relation by L we obtain $R L=L^{-1}(R L)^{d} L$. Thus, we have $(R L)^{t_{v}}=L^{-1}(R L)^{d t_{v}} L$. Conjugating by L^{-1} we get $(L R)^{t_{v}}=(R L)^{d t_{v}}$. So $(R L)^{t_{v}}=(R L)^{d t_{v}}$. That is, $d t_{v} \equiv t_{v}(\bmod c)$. For convenience, let us change generators to $R=R$ and $S=R L$. The new generators R and S of G satisfy the new word relations:

$$
\begin{equation*}
\left\langle R, S \mid S^{c} \underset{(1)}{=} 1, S^{R} \underset{(2)}{=} S^{d}, R^{n} \underset{(3)}{=} S^{t_{v}}\right\rangle \tag{3.6}
\end{equation*}
$$

To prove condition (ii), we first show, by induction, that

$$
\begin{equation*}
S^{d^{i}}=S^{R^{i}} \tag{3.7}
\end{equation*}
$$

for all integer i. The equation (3.7) holds for $i=1$ by the $2^{\text {nd }}$ relation.

Assuming that the equation $S^{d^{j}}=S^{R^{j}}$ holds, for all j in $\{1, \ldots, i\}$, then

$$
\begin{aligned}
S^{d^{i+1}} & =\left(S^{d^{i}}\right)^{d} \\
& =\left(R^{-i} S R^{i}\right)^{d} \\
& =R^{-i} S^{d} R^{i} \\
& =R^{-i} S^{R} R^{i} \\
& =R^{-i-1} S R^{i+1}
\end{aligned}
$$

So we conclude that for $i+1$ the equation (3.7) is valid. Thus, putting $i=n$ in the equation (3.7) we get by the $3^{r d}$ relation

$$
S^{d^{n}}=R^{-n} S R^{n}=S^{-t_{v}} S S^{t_{v}} \Leftrightarrow S^{d^{n}-1}=1
$$

That is, $d^{n} \equiv 1(\bmod c)$.
It remains to show that the group with presentation (3.5) satisfying the conditions (i) and $(i i)$, has size $n c$. In fact, since $d t_{v} \equiv t_{v}(\bmod c)$ and $d^{n} \equiv 1(\bmod c)$, the presentation (3.6) is of a metacyclic group $M\left(c, n, t_{v}, d\right)$ of order $n c$ (see Proposition 7).

The converse statement is obvious.

Theorem 1 determines a family of (regular) bicontactual oriented-hypermaps with n hyperfaces which are alternate. Such family will be denote by $\operatorname{Alt} B\left(n, c, d, t_{v}\right)$.

The H-sequence associated to this family is

$$
\left[n c-\left(c, t_{e}\right)-\left(c, t_{v}\right)-n ; \frac{n c}{\left(c, t_{v}\right)}, \frac{n c}{\left(c, t_{e}\right)}, c ;\left(c, t_{v}\right),\left(c, t_{e}\right), n ; n c\right]
$$

where $t_{e}=d^{n}+d^{n-1}+\ldots+d^{2}+d-t_{v}$.

Next result makes reference to fundamental alternate oriented-hypermaps.

Theorem 2 If $\mathcal{Q}_{\text {Alt }}$ is an alternate bicontactual oriented-hypermap with n hyperfaces, then $\mathcal{Q}_{\text {Alt }}$ covers a fundamental alternate bicontactual hypermap with n hyperfaces.

Proof :
Let $\mathcal{Q}_{\text {Alt }}=(D ; R, L)$ be an alternate bicontactual oriented-hypermap with n hyperfaces.
Since $\mathcal{Q}_{\text {Alt }}$ is a alternate bicontactual hypermap with n hyperfaces, $L R=(R L)^{d}$ and $R^{n}=(R L)^{t_{v}}$ for some d, t_{v} in $\{0, \ldots, c-1\}$. Consequently, we have $L^{n}=(R L)^{t_{e}}$ with $t_{e}=d^{n}+d^{n-1}+\ldots+d^{2}+d-t_{v}$.

Let $N_{v}=\left\langle R^{n}\right\rangle$ be a subgroup of G. We have

$$
\left(R^{n}\right)^{L^{-1}}=\left((R L)^{t_{v}}\right)^{L^{-1}}=(L R)^{t_{v}}=\left(R^{-1} R L R\right)^{t_{v}}=\left((R L)^{t_{v}}\right)^{R}=\left(R^{n}\right)^{R}=R^{n}
$$

and, consequently, $N_{v} \triangleleft G$. Let $N_{e}=\left\langle L^{n}\right\rangle$ be a subgroup of G. Also we have

$$
\left(L^{n}\right)^{R}=\left((R L)^{t_{e}}\right)^{R}=(L R)^{t_{e}}=\left(L R L L^{-1}\right)^{t_{e}}=\left((R L)^{t_{e}}\right)^{L^{-1}}=\left(L^{n}\right)^{L^{-1}}=L^{n}
$$

and, consequently, $N_{e} \triangleleft G$.
Therefore, the subgroup $N=\left\langle R^{n}, L^{n}\right\rangle$ is normal in G. So $\mathcal{Q}_{A l t} / N$ is fundamental and

$$
\mathcal{Q}_{\text {Alt }} \longrightarrow \mathcal{Q}_{A l t} / N
$$

Remark 6 From the previous proof and knowing that c is the valency of the hyperfaces in $\mathcal{Q}_{\text {Alt }}$, we have that $1=R^{n}=(R L)^{t_{v}}$ and $1=L^{n}=(R L)^{t_{e}}$ hold in the hypermap $\mathcal{Q}_{\text {Alt }} / N$. Therefore, $(R L)^{c}=1=(R L)^{t_{v}}=(R L)^{t_{e}}$. Consequently, we obtain

$$
(R L)^{\mu}=1
$$

in the fundamental hypermap $\mathcal{Q}_{E T} / N$, where $\mu=\left(c, t_{v}, t_{e}\right)$.

The next result gives another covering between alternate bicontactual oriented-hypermaps.

Theorem 3 Any fundamental alternate bicontactual oriented-hypermap with n hyperfaces covers the fundamental alternate bicontactual oriented-hypermap $W^{-1} D \varepsilon_{n}$ with the same number of hyperfaces.

Proof:
Let $\mathcal{P}_{\text {Alt }}=(D ; R, L)$ be a fundamental alternate bicontactual oriented-hypermap.
Let N be the subgroup generated by $R L$ of order c. By relation $L R \in\langle R L\rangle$, in Lemma 15, the subgroup $N=\langle R L\rangle$ of D is normal. So, we obtain a projection

$$
\mathcal{P}_{\text {Alt }} \longrightarrow \mathcal{P}_{\text {Alt }} / N=(D / N, x, y)
$$

where $x=R N$ and $y=L N$.

In the hypermap $\mathcal{P}_{\text {Alt }}$ we have $L R=(R L)^{d}$, for some $d \in\{0, \ldots, c-1\}$. Then we get $y x=L R N \in\langle R L\rangle N$. So, $y x \in\langle x y\rangle$.

Consequently, $\mathcal{M}=\mathcal{P}_{\text {Alt }} / N$ is alternate bicontactual.
But $x y=1$, by $R L \in N$, therefore $x=y$. So, $\mathcal{P}_{A l t} / N=W^{-1}\left(D \varepsilon_{n}\right)$.

Figure 3.1: Hypermap $W^{-1}\left(D \varepsilon_{n}\right)$

3.3 Chirality

The presentation (3.5), of the monodromy group of an alternate bicontactual orientedhypermap, coincide with the presentation (3.6) of a metacyclic group.

The chiral hypermaps with metacyclic monodromy groups were identified by Breda d'Azevedo and Nedela in [12]. They give the necessary and sufficient conditions for a regular oriented-hypermap, with metacyclic monodromy group, to be chiral (see section 1.4). Based on this, the following theorem computes the chirality group and the chirality index of an alternate bicontactual regular oriented-hypermap.

Theorem 4 Let \mathcal{H} be a hypermap of the family $\operatorname{AltB}\left(n, c, d, t_{v}\right)$.

1. \mathcal{H} is chiral if and only if $d^{2} \neq 1(\bmod c)$;
2. If $d^{2} \neq 1(\bmod c)$ then \mathcal{H} is chiral with chirality group $\mathbb{X}_{\mathcal{H}}=\left\langle S^{d^{2}-1}\right\rangle$ and chirality index $\kappa=\frac{c}{\left(c, d^{2}-1\right)}$.

Chapter 4

Edge-twin bicontactual oriented-hypermaps

In this chapter we present the classification of the regular edge-twin bicontactual orientedhypermaps.

In the first section, we rewrite some properties, obtained in the section 2.2.1, for regular edge-twin bicontactual hypermaps (in function of the generators R and L).

Section 4.2 presents the classification of fundamental edge-twin bicontactual orientedhypermaps first (subsection 4.2.1) and with this we classify later (subsection 4.2.2) the family of the edge-twin bicontactual oriented-hypermaps.

In the last section of this chapter, we study the chirality of the edge-twin bicontactual oriented-hypermaps. We will show that all them are, in fact, reflexible.

In what follows, let $\mathcal{Q}_{E T}=(G ; R, L)$ be a regular edge-twin bicontactual orientedhypermap with n hyperfaces of valency $2 z$.

4.1 Some general properties

The algebraic definition of regular edge-twin bicontactual hypermaps, without boundary, was presented in Lemma 3. We consider edge-twin bicontactual regular oriented-hypermaps. Towards that, we start by rewriting the properties of section 2.2 in terms of R and L. These result in the following Lemma and Propositions.

Lemma 17 Let $\mathcal{H}=(G ; R, L)$ be a regular oriented-hypermap. Then \mathcal{H} is edge-twin bicontactual if and only if

$$
\begin{equation*}
L^{2} \in\langle R L\rangle \text { and } R^{L} R \in\langle R L\rangle \tag{4.1}
\end{equation*}
$$

Note that the bicontactuality in maps is algebraically characterized only by

$$
R^{L} R \in\langle R L\rangle
$$

Lemma 18 The neighborhood of an arbitrary hyperedge of $\mathcal{Q}_{E T}$ contains only two incident hyperfaces. Consequently, $L^{2 r_{e}}=1$, where r_{e} is the edge repetition-degree.

Proposition 13 The neighborhood of an arbitrary hypervertex of the hypermap $\mathcal{Q}_{E T}$ contains all the hyperfaces of the hypermap. Therefore, $R^{n} \in\langle R L\rangle$ and $R^{n r_{v}}=1$, where r_{v} is the vertex repetition-degree.

Remark 7 If $\mathcal{Q}_{E T}$ is a fundamental hypermap, then $R^{n}=1$.

4.2 The classification

The family of the regular fundamental edge-twin bicontactual oriented-hypermaps is essential in our approach since any regular edge-twin bicontactual oriented-hypermap will cover a fundamental one (Theorem 7). The objective of this section is the classification of the above-mentioned family. The classification actually include, by (0,1)-duality, the classification of the regular vertex-twin bicontactual oriented-hypermaps.

Based on what we have previously dealt with, as far as basic properties are concerned, we easily obtain the following word relations for the hypermap $\mathcal{Q}_{E T}$:

- $(R L)^{2 z}=1$ for, some integer z

By Lemma 17 and analysing the respective figures we have

- $L^{2}=(R L)^{u}$, for some even integer u in $\{0, \cdots, 2 z-1\}$

Figure 4.1: ωL^{2} belongs to an $F_{1} F_{2}$-arc

- $R^{L} R=(R L)^{s}$, for some even integer s in $\{0, \cdots, 2 z-1\}$

Figure 4.2: $\omega R^{L} R$ belongs to an $F_{1} F_{2}$-arc

- $R^{n}=(R L)^{t}$, for some even integer t in $\{0, \cdots, 2 z-1\}$

Figure 4.3: ωR^{n} belongs to an $F_{1} F_{2}$-arc

Remark 8 When $u=0$ or $z=1$, the hypermap $\mathcal{Q}_{E T}$ is a map.

For any edge-twin bicontactual oriented-hypermap, we assume

$$
(R L)^{2 z}=1, L^{2}=(R L)^{2 a}, R^{L} R=(R L)^{2 b} \text { and } R^{n}=(R L)^{2 q},
$$

where z is a positive integer and a, b, q are integers in $\{0, \cdots, z-1\}$.

As we shall see later, the five parameters n, z, a, b, q involved in preceding word relations are sufficient to classify all the regular edge-twin bicontactual oriented-hypermaps. The edge and vertex repetition-degree parameters r_{e} and r_{v} are determinate by the previous five parameters as follows:

$$
\begin{aligned}
& L^{2}=(R L)^{2 a} \Rightarrow\left|L^{2}\right|=\left|(R L)^{2 a}\right| \Leftrightarrow r_{e}=\frac{2 z}{(2 z, 2 a)}=\frac{z}{(z, a)} \\
& R^{n}=(R L)^{2 q} \Rightarrow\left|R^{n}\right|=\left|(R L)^{2 q}\right| \Leftrightarrow r_{v}=\frac{2 z}{(2 z, 2 q)}=\frac{z}{(z, q)}
\end{aligned}
$$

from which we obtain the type $\left(\frac{n z}{(z, q)}, \frac{2 z}{(z, a)}, 2 z\right)$ of an edge-twin bicontactual oriented-hypermap.

4.2.1 The fundamental case

From now on let us assume that the hypermap $\mathcal{Q}_{E T}$ is fundamental with n hyperfaces of valency $2 c$. So,

$$
(R L)^{2 c}=1, L^{2}=(R L)^{2 a}, R^{L} R=(R L)^{2 b} \text { and } R^{n}=1,
$$

where c is a positive integer and a, b are integers in $\{0, \cdots, c-1\}$.

Before we calculate the necessary and sufficient conditions for the parameters n, c, a, b that give rise to a fundamental oriented-hypermap with n hyperfaces (Theorem 5), we will need to establish some preliminary results.

Lemma 19 Let g and h be two arbitrary elements of the group Mon $\left(\mathcal{Q}_{E T}\right)$. If they satisfy the equations $h g h=g^{2 b+1}$ and $h g^{2}=g^{2 k} h$ (for some positive integer k), then the equation

$$
\begin{equation*}
h^{i} g h^{i}=g^{2 b\left(k^{i-1}+k^{i-2}+\cdots+k^{2}+k+1\right)+1} \tag{4.2}
\end{equation*}
$$

holds for all $i \in \mathbb{N}$.

Proof:
We will prove the claimed equation by induction.
It holds for $i=1$, because we have the relation $h g h=g^{2 b+1}$.
Assume that for all $j \in\{1, \ldots, i\}$ the equation $h^{j} g h^{j}=g^{2 b\left(k^{j-1}+k^{j-2}+\cdots+k^{2}+k+1\right)+1}$ holds.

For $i+1$ we obtain

$$
\begin{aligned}
h^{i+1} g h^{i+1} & =h\left(h^{i} g h^{i}\right) h \\
& =h g^{2 b\left(k^{i-1}+k^{i-2}+\cdots+k^{2}+k+1\right)+1} h \\
& =h g^{2 b\left(k^{i-1}+k^{i-2}+\cdots+k^{2}+k+1\right)} g h \\
& =h \underbrace{g^{2} g^{2} \ldots \ldots \ldots \ldots \ldots g^{2}}_{b\left(k^{i-1}+k^{i-2}+\cdots+k^{2}+k+1\right) \text { times }} g h \\
& =g^{(2 k) b\left(k^{i-1}+k^{i-2}+\cdots+k^{2}+k+1\right)} h g h \\
& =g^{2 b\left(k^{i}+k^{i-1}+\cdots+k^{2}+k\right)} h g h \\
& =g^{2 b\left(k^{i}+k^{i-1}+\cdots+k^{2}+k\right)} g^{2 b+1} \\
& =g^{2 b\left(k^{i}+k^{i-1}+\cdots+k^{2}+k+1\right)+1}
\end{aligned}
$$

So, we can conclude that for $i+1$ the equation (4.2) is valid.

Lemma 20 Let g and h be two arbitrary elements of the group $\operatorname{Mon}\left(\mathcal{Q}_{E T}\right)$. If g^{2} and h^{2} commute then

$$
h^{i} g^{t} h^{-i}= \begin{cases}g^{t}, & i \text { even } \tag{4.3}\\ h g^{t} h^{-1}, & i \text { odd }\end{cases}
$$

holds for all $i \in \mathbb{N}$ and for any even integer t.
Proof:
Let t an even integer and let i an arbitrary integer.
By the condition $g^{2} \leftrightharpoons h^{2}$, we get $h^{i} g^{t} h^{-i}=h^{i} h^{-i} g^{t}=g^{t}$, for i even.
When i is odd, we have $h^{i} g^{t} h^{-i}=h h^{i-1} g^{t} h^{-i+1} h^{-1}$. Since $i-1$ is even, then from the equation 4.3 (even power), we get $h^{i} g^{t} h^{-i}=h g^{t} h^{-1}$.

Theorem 5 If $\mathcal{Q}_{E T}$ is a fundamental edge-twin bicontactual oriented-hypermap with n hyperfaces of valency $2 c$, then

$$
\operatorname{Mon}\left(\mathcal{Q}_{E T}\right)=\left\langle R, L \mid(R L)^{2 c}=R^{n}=1, L^{2}=(R L)^{2 a}, R^{L} R=(R L)^{2 b}\right\rangle
$$

for some integers $c \geq 1$ and $a, b \in\{0, \cdots, c-1\}$ such that $k=a+b$ satisfies
(i) $k^{2} \equiv 1(\bmod c)$;
(ii) $a k \equiv a(\bmod c)$;
(iii) $\quad b\left(k^{n-1}+\cdots+k+1\right) \equiv 0(\bmod c)$.

Conversely, any hypermap $\mathcal{H}=(G ; R, L)$ defined above is a fundamental edge-twin bicontactual oriented-hypermap with n hyperfaces.

Proof:
Let $\mathcal{Q}_{E T}=(G ; R, L)$ be a fundamental edge-twin bicontactual oriented-hypermap with n hyperfaces. By lemma 17 and by remark $7, G$ is a factor group of

$$
\begin{equation*}
\left\langle R, L \mid(R L)^{2 c} \underset{(1)}{=} 1, R^{n} \underset{(2)}{=} 1, L^{2} \underset{(3)}{=}(R L)^{2 a}, R^{L} R \underset{\text { (4) }}{=}(R L)^{2 b}\right\rangle \tag{4.4}
\end{equation*}
$$

for some integers $c \geq 1$ and $a, b \in\{0, \cdots, c-1\}$. Without lost of generality we assume that $2 c$ is the order of $R L$ and n is the order of R.

Let us show that the conditions $(i),(i i)$ and (iii) hold. Conjugating the $3^{\text {rd }}$ relation by L^{-1} we obtain $L^{2}=(L R)^{2 a}$. Since we have $L^{2} R=(R L)^{2 a} R$, then the relation $L^{2} R=R L^{2}$ holds. That is, L^{2} belongs to the centre of G. From the $4^{\text {th }}$ relation we get $(L R)^{2}=L^{2}(R L)^{2 b}$ and, by the $3^{r d}$ relation, $(L R)^{2}=(R L)^{2 k}$ with $k=a+b$. Thus, we have $(L R)^{2 a}=(R L)^{2 k a} \Leftrightarrow$ $(R L)^{2 a(k-1)}=1$. That is, $a k \equiv a(\bmod c) . \quad$ For convenience, let us change generators R, L to $X=R L$ and $Y=R^{L}$. Thus, the new generators X and Y of G satisfy the new word relation:

$$
\begin{equation*}
\left\langle X, Y \mid X^{2 c} \underset{(1)}{=} 1, Y^{n} \underset{(2)}{=} 1, Y^{-1} X Y^{-1} \underset{(3)}{=} X^{2 a-1}, Y X Y \underset{(4)}{=} X^{2 b+1}\right\rangle \tag{4.5}
\end{equation*}
$$

Now, from $3^{\text {rd }}$ and $4^{\text {th }}$ relations, we obtain $Y X^{2} Y^{-1}=X^{2 k}$ and $Y^{-1} X^{2} Y=X^{2 k}$. Then $X^{2} \rightleftharpoons Y^{2}$ and also we have $Y X^{2} Y^{-1}=X^{2 k} \Leftrightarrow X^{2}=\left(Y^{-1} X^{2} Y\right)^{k}=\left(X^{2 k}\right)^{k} \Leftrightarrow X^{2 k^{2}-2}=1$. So, $k^{2} \equiv 1(\bmod c)$.

Putting $i=n$ in equation (4.2) for the elements X and Y, and having in account the $2^{\text {nd }}$ relation, we get the following outcome: $X^{2 b\left(k^{n-1}+k^{n-2}+\cdots+k^{2}+k+1\right)}=1$. Consequently,

$$
\begin{equation*}
b\left(k^{n-1}+\cdots+k+1\right) \equiv 0(\bmod c) . \tag{4.6}
\end{equation*}
$$

As result of $k^{2} \equiv 1(\bmod c)$, we have $k^{i}+k^{i-1}+\cdots+k+1 \equiv \frac{i}{2} k+\frac{i+2}{2}(\bmod c)$ or $\frac{i+1}{2}+k \frac{i+1}{2}(\bmod c)$ according i is even or odd, respectively. So, the congruence (4.6) is equivalent to the congruences

$$
\begin{cases}\frac{n}{2} b(k+1) \equiv 0(\bmod c), & n \text { even } ; \tag{4.7}\\ b\left(\frac{n-1}{2}(k+1)+1\right) \equiv 0(\bmod c), & n \text { odd }\end{cases}
$$

We will show that, when n is odd, combining the congruence $a k \equiv a(\bmod c)$ with the second of (4.7) we conclude

$$
\begin{equation*}
k \equiv 1(\bmod c) \tag{4.8}
\end{equation*}
$$

In fact, (4.7) implies that $b(k-1)\left(\frac{n-1}{2}(k+1)+1\right)$ is also congruent to 0 module c. But

$$
b(k-1)\left(\frac{n-1}{2}(k+1)+1\right)=b \frac{n-1}{2}\left(k^{2}-1\right)+b(k-1) .
$$

By $k^{2} \equiv 1(\bmod c)$, we obtain that $b k \equiv b(\bmod c)$. This congruence and the congruence $a k \equiv a(\bmod c)$ give rise to the congruence $k^{2} \equiv k(\bmod c)$. By transitivity, we conclude (4.8).

It remains to show that the group with presentation (4.4) satisfying the conditions (i), (ii) and (iii) has size 2nc. This is done by next lemma.

Lemma 21 The relations $X^{2 c}=Y^{n}=1, Y^{-1} X Y^{-1}=X^{2 a-1}$ and $Y X Y=X^{2 b+1}$, where $a, b \in\{0, \cdots, c-1\}$ satisfy the conditions $a k \equiv a(\bmod c), k^{2} \equiv 1(\bmod c)$, and $b\left(k^{n-1}+\right.$ $\cdots+k+1) \equiv 0(\bmod c)$, with $k=a+b$, determine a group of order $2 n c$.

Proof:
Let K be the group with presentation

$$
\left\langle X, Y \mid X^{2 c}=Y^{n}=1, Y^{-1} X Y^{-1}=X^{2 a-1}, Y X Y=X^{2 b+1}\right\rangle
$$

where $a, b \in\{0, \cdots, c-1\}$.
Let N be the subgroup generated by X; its order divides $2 c$. One can see that N divides K into (no more than) n cosets $N, N Y, N Y^{2}, \cdots, N Y^{n-2}$ and $N Y^{n-1}$. Let i be in \mathbb{N} and t an even integer. Since $X^{2} \leftrightharpoons Y^{2}$, equation (4.3) holds. Using $Y X^{2} Y^{-1}=X^{2 k}$, the equation (4.3) can be rewriten as

$$
Y^{i} X^{t} Y^{-i}= \begin{cases}X^{t}, & i \text { even } \\ X^{k t}, & i \text { odd }\end{cases}
$$

So

$$
\begin{equation*}
N Y^{i} X^{t}=N Y^{i} \tag{4.9}
\end{equation*}
$$

Now, let t be an odd integer. Then we have

$$
Y^{i} X^{t-1} Y^{-i}= \begin{cases}X^{t-1}, & i \text { even } \\ X^{k(t-1)}, & i \text { odd }\end{cases}
$$

As $Y^{i} X^{t} Y^{i}=Y^{i} X^{t-1} Y^{-i} Y^{i} X Y^{i}$, equation (4.2) gives

$$
Y^{i} X^{t} Y^{i}= \begin{cases}X^{t-1} X^{2 b\left(k^{i-1}+k^{i-2}+\cdots+k^{2}+k+1\right)+1}, & i \text { even } \\ X^{k(t-1)} X^{2 b\left(k^{i-1}+k^{i-2}+\cdots+k^{2}+k+1\right)+1}, & i \text { odd }\end{cases}
$$

Therefore

$$
\begin{equation*}
N Y^{i} X^{t}=N Y^{n-i} \tag{4.10}
\end{equation*}
$$

The relations (4.9) and (4.10) are enough to reduce any word $N \omega$, where ω is a word in X and Y, to one of the cosets $N, N Y, N Y^{2}, \ldots, N Y^{n-2}$ and $N Y^{n-1}$. The hyperfaces of $\mathcal{Q}_{E T}$ are described by the cosets $N, N Y, N Y^{2}, \ldots, N Y^{n-2}$ and $N Y^{n-1}$ (as the figure shows).

So $|K|=n|N| \leq 2 n c$. That is, the size of K is finite.
The normal subgroup $H=\left\langle X^{2}, Y\right\rangle$ factors K into a cyclic group $C_{2}=\left\langle Y \mid Y^{2}=1\right\rangle$. Thus $|K: H|=2$. We are going to use the Reidemeister-Schreier's Rewriting Process to obtain a presentation for the group H. Consulting [23], the method involves four steps. For the first step, we need a Schreier transversal T for H in K. As the quotient group K / H is equal to $\{k H \mid k \in K\}=\{X H, H\}$ we have $T=\{1, X\}$. The next step is to find the generators for H. This is done in terms of the Schreier transversal T of H, the free generators X and Y of K, and the function $K \rightarrow C_{2}=K / H$ such that $k \mapsto \widehat{k}$ defined by $k H \cap T=\{\widehat{k}\}$. The elements of the set

$$
B^{*}=\left\{t u \widehat{t u}^{-1} \mid t \in T, u \in\{X, Y\}\right\}
$$

generate a free group. Here, through the properties

$$
\widehat{h}=1, \forall h \in H \text { and } \widehat{t}=t \Leftrightarrow t \in T,
$$

we have

$t \backslash u$	X	Y
1	$\widehat{1 X}=\widehat{X}=X$	$\widehat{1 Y}=\widehat{Y}=1$
X	$\widehat{X X}=\widehat{X^{2}}=1$	$\widehat{X Y}=X$

So $B^{*}=\left\{X^{2}, Y, X Y X^{-1}\right\}$. But, for our convenience, we replace $X Y X^{-1}$ by $X^{-1} Y X=$ $\left(X Y X^{-1}\right)^{X^{2}}$. Let $A=X^{2}, B=Y$ and $C=X^{-1} Y X$.

For the $3^{r d}$ step we conjugate the relators of K by T :

$$
\begin{aligned}
\check{R}= & \left\{r^{t} \mid t \in T, r \in\left\{X^{2 c}, Y^{n}, Y^{-1} X Y^{-1} X^{-(2 a-1)}, Y X Y X^{-(2 b+1)}\right\}\right\} \\
= & \left\{X^{2 c}, Y^{n},\left(Y^{-1} X\right)^{2} X^{-2 a},(Y X)^{2} X^{-2 b-2}, X^{-1} Y^{n} X\right. \\
& \left.X^{-1} Y^{-1} X Y^{-1} X^{2-2 a}, X^{-1} Y X Y X^{-2 b}\right\}
\end{aligned}
$$

The last step consists in rewriting each element of \check{R} in terms of A, B and C. The rewritten words will be the relators for a presentation of H. This will be done by inspection, as follows:

$$
\begin{aligned}
X^{2 c} & =A^{c} \\
Y^{n} & =B^{n} \\
Y^{-1} X Y^{-1} X^{1-2 a} & =Y^{-1} X^{2} X^{-1} Y^{-1} X X^{-2 a}=B^{-1} A C^{-1} A^{-a} \\
Y X Y X^{-2 b-1} & =Y X^{2} X^{-1} Y X X^{-2 b-2}=B A C A^{-(b+1)} \\
X^{-1} Y^{n} X & =\left(X^{-1} Y X\right)^{n}=C^{n} \\
X^{-1} Y^{-1} X Y^{-1} X^{2-2 a} & =C^{-1} B^{-1} A^{1-a} \\
X^{-1} Y X Y X^{-2 b} & =C B A^{-b}
\end{aligned}
$$

Putting together B^{*} and the rewritten \check{R} we get a presentation for H :

$$
\left\langle A, B, C \mid A^{c}=1, B^{n}=1, B^{-1} A C^{-1}=A^{a}, B A C=A^{b+1}, C^{n}=1, C^{-1} B^{-1}=A^{a-1}, C B=A^{b}\right\rangle .
$$

This presentation can be improved. Having in account the last relation we can ignore the generator C, we have $C=A^{b} B^{-1}$. Thus,

$$
\left\langle A, B \mid A^{c} \underset{(1)}{=} 1, B^{n} \underset{(2)}{=} 1, B^{-1} A B \underset{(3)}{=} A^{k}, B A^{b+1} \underset{(4)}{=} A^{b+1} B,\left(A^{b} B^{-1}\right)^{n} \underset{(5)}{=} 1, B A^{b} B^{-1} \underset{(6)}{=} A^{1-a}\right\rangle,
$$

where $k=a+b$.
The $4^{\text {th }}$ relation shows that $A^{b+1} \leftrightharpoons B$.
From $a k \equiv a(\bmod c)$ we obtain

$$
k(b+1)-(b+1)=a b+b^{2}+(\underbrace{a+b}_{k}) a-1=k^{2}-1 .
$$

Then $k(b+1) \equiv(b+1)(\bmod c)$ because we have $k^{2} \equiv 1(\bmod c)$. The $3^{r d}$ relation gives rise to $B^{-1} A^{b+1} B=A^{k(b+1)}$, which implies that $B^{-1} A^{b+1} B=A^{b+1}$ (that is, the $4^{t h}$ relation). So, this relation is redundant.

We have $B^{-1} A^{a} B=\left(B^{-1} A B\right)^{a}$ and, by the $3^{r d}$ relation, we get $B^{-1} A^{a} B=\left(A^{k}\right)^{a}$. From $a k \equiv a(\bmod c)$ we obtain $B^{-1} A^{a} B=A^{a}$. So, A^{a} and B commute.

From the $6^{\text {th }}$ relation, we obtain that $A^{b} B^{-1}=B^{-1} A^{1-a}$. Replacing in the $5^{\text {th }}$ relation, we conclude, by $A^{a} \leftrightharpoons B$, that

$$
\left(B^{-1} A^{1-a}\right)^{n}=1 \Leftrightarrow\left(B^{-1} A\right)^{n}=A^{n a} .
$$

The $3^{r d}$ relation can be rewrite as $A=B A^{a} A^{b} B^{-1}$. Knowing that $A^{a} \leftrightharpoons B$, we conclude that $A^{1-a}=B A^{b} B^{-1}$. Therefore, we can eliminate the $6^{\text {th }}$ relation.

From relation $A^{1-a}=B A^{b} B^{-1}$, we have

$$
A^{1-a}=B A^{b+1} A^{-1} B^{-1} \Leftrightarrow A^{1-a-b-1}=B A^{-1} B^{-1} \Leftrightarrow A^{-k}=B A^{-1} B^{-1} .
$$

Let us show that the relation $B^{n}=1$ is redundant. To do that we need to prove, by induction, that

$$
\begin{equation*}
B^{i}\left(A^{b} B^{-1}\right)^{i}=A^{-k^{i}} A^{b\left(k^{i-1}+\cdots+k+1\right)+1} \tag{4.11}
\end{equation*}
$$

for any positive integer i. We start showing that it holds when $i=1$:

$$
B\left(A^{b} B^{-1}\right)=B A^{-1} A^{b+1} B^{-1}=B A^{-1} B^{-1} A^{b+1}=A^{-k} A^{b+1} .
$$

Assume that for all $j \in\{1, \ldots, i\}$ the equation $B^{j}\left(A^{b} B^{-1}\right)^{j}=A^{-k^{j}} A^{b\left(k^{j-1}+\cdots+k+1\right)+1}$ holds. For $i+1$ we obtain

$$
\begin{aligned}
B^{i+1}\left(A^{b} B^{-1}\right)^{i+1} & =B B^{i}\left(A^{b} B^{-1}\right)^{i} A^{b} B^{-1} \\
& =B A^{-k^{i}} A^{b\left(k^{i-1}+\cdots+k+1\right)+1} A^{b} B^{-1} \\
& =B A^{-k^{i}} A^{b\left(k^{i-1}+\cdots+k+1\right)} B^{-1} A^{b+1} \\
& =\left(B A B^{-1}\right)^{-k^{i}+b\left(k^{i-1}+\cdots+k+1\right)} A^{b+1} \\
& =A^{k\left(-k^{i}+b\left(k^{i-1}+\cdots+k+1\right)\right)} A^{b+1} \\
& =A^{-k^{i+1}+b\left(k^{i}+\cdots+k^{2}+k\right)} A^{b+1}
\end{aligned}
$$

So for $i+1$ the equation (4.11) is valid and, consequently, (4.11) is valid. Now $B^{n}=1$ is redundant. In fact,

$$
B^{n}=B^{n} 1=B^{n}\left(A^{b} B^{-1}\right)^{n}=A^{-k^{n}} A^{b\left(k^{n-1}+\cdots+k+1\right)} A .
$$

We have $k^{2} \equiv 1(\bmod c)$ and if n is odd, $k \equiv 1(\bmod c)^{1}$, so in both cases $k^{n} \equiv 1(\bmod c)$. Hence, by congruence (4.6),

$$
B^{n}=A^{-1} A^{0} A=1
$$

[^5]Finally, the presentation of H is as follows

$$
H=\left\langle A, B \mid A^{c}=1, A^{B}=A^{k},\left(B^{-1} A\right)^{n}=A^{n a}\right\rangle
$$

where A and B corresponds to X^{2} and Y in K.
Changing the generators $\{A, B\}$ for the generators $\left\{x=A^{-1}, y=A^{-1} B\right\}$, we get

$$
H=\left\langle x, y \mid x^{c}=1, x^{y}=x^{k}, y^{n}=x^{n a}\right\rangle
$$

As $k(n a)=n(a k) \equiv n a(\bmod c)$ then H is a metacyclic group $M(c, n, n a, k)$ and hence $|H|=n c$. So

$$
|K|=|K: H||H|=2 n c .
$$

Theorem 5 determines a family of (regular) bicontactual oriented-hypermaps with n hyperfaces which are fundamental edge-twin.

Let P_{1} be the presentation in equation (4.4) and P_{2} be the presentation in equation (4.5). For such family, we have $P_{1} \sim P_{2}$. We will denote by $\operatorname{FETB}(n, c, a, b)$ the group presented by either presentations.

From Lemma 18 and by the value of the edge repetition-degree r_{e}, we obtain $\mathrm{v}_{\mathcal{E}}=\frac{2 c}{(c, a)}$. The H-sequence associated to this family is

$$
\left[2 n c-n(c, a)-2 c-n ; n, \frac{2 c}{(c, a)}, 2 c ; 2 c, n(c, a), n ; 2 n c\right] .
$$

Next result together with Theorem 7 says that any edge-twin bicontactual regular orientedhypermap covers a bicontactual regular oriented map. This result, that was one of ours first, had led us to endure a classification of edge-twin bicontactual hypermaps by lifting Wilson's classification. It may still be possible to achieve that this way, however we found this approach too hard to keep pursuing.

Theorem 6 Any fundamental edge-twin bicontactual oriented-hypermap covers a bicontactual oriented map \mathcal{M}.

Proof:
Consider a hypermap $\mathcal{Q}_{E T}=\operatorname{FETB}(n, c, a, b)=(G ; R, L)$.
We have $L^{2} \in\langle R L\rangle$. As $\mathcal{Q}_{E T}$ is oriented then $L^{2}=(R L)^{u}$ for some even integer u.
Let $N=\left\langle L^{2}\right\rangle=C_{b}$, which is normal in G. So, we have a projection

$$
\mathcal{Q}_{E T} \longrightarrow \mathcal{Q}_{E T} / N=(G / N, x, y)
$$

where $x=R N, y=L N$. Clearly that $\mathcal{M}=\mathcal{Q}_{E T} / N$ is a map since $y^{2}=1$.
From the relation $R^{L} R=(R L)^{2 b}$, we get $x^{y} x=R^{L} R N \in\langle R L\rangle N$. So, $x^{y} x \in\langle x y\rangle$.
Consequently, $\mathcal{M}=\mathcal{Q}_{E T} / N$ is bicontactual.

4.2.2 The general case

In this subsection the notation $\mathcal{Q}_{E T}$ stands now for an edge-twin bicontactual regular oriented-hypermap with n hyperfaces of valency $2 z$. The vertex repetition-degree r_{v} is no longer necessarily 1.

From Proposition 13 and by Figure 4.3 the relation

$$
\begin{equation*}
R^{n}=(R L)^{2 q} \tag{4.12}
\end{equation*}
$$

for some integer $q \in\{0, \cdots, c-1\}$, holds in the hypermap $\mathcal{Q}_{E T}$.
Lemma 22 The generators R and L of the group $\operatorname{Mon}\left(\mathcal{Q}_{E T}\right)$ satisfy the relation

$$
\begin{equation*}
(R L)^{2 q}=(L R)^{2 q} \tag{4.13}
\end{equation*}
$$

Proof:
Already we have seen that the relation $R^{n}=(R L)^{2 q}$, for some integer $q \in\{0, \cdots, c-1\}$, is valid in the hypermap $\mathcal{Q}_{E T}$. Then we get $R^{n}=R^{-1}(R L)^{2 q} R=(L R)^{2 q}$ conjugating by R. So $(R L)^{2 q}=(L R)^{2 q}$.

The next result will allow us to classify the edge-twin bicontactual oriented-hypermaps from fundamental edge-twin oriented-hypermaps.

Theorem 7 If $\mathcal{Q}_{E T}$ is an edge-twin bicontactual oriented hypermap with n hyperfaces of valency $2 z$, then $\mathcal{Q}_{E T}$ covers a fundamental edge-twin bicontactual hypermap with the same n hyperfaces.

Proof:
Let G be the monodromy group of $\mathcal{Q}_{E T}$.
By Lemma 22, the subgroup $N=\left\langle R^{n}\right\rangle$ is normal in G.
Thus, the hypermap $\mathcal{Q}_{E T} / N=(G / N ; N R, N L)$ is a fundamental edge-twin bicontactual oriented-hypermap, also with n hyperfaces, and

$$
\mathcal{Q}_{E T} \longrightarrow \mathcal{Q}_{E T} / N .
$$

Equation (4.12) with $R^{n}=1$, in the hypermap $\mathcal{Q}_{E T} / N$, says that $(R L)^{2 c}=1$, where $c=$ (z, q), holds in $\mathcal{Q}_{E T} / N$. Consequently, $\mathrm{v}_{\mathcal{F}}=2 c$ in the fundamental edge-twin bicontactual oriented-hypermap $\mathcal{Q}_{E T} / N$.

The presentation of the group $\operatorname{Mon}\left(\mathcal{Q}_{E T}\right)$ will follow from the known presentation of the monodromy group of the fundamental hypermap $\mathcal{Q}_{E T} / N$ (Theorem 5). For this we need to know some results of the extension group theory, described in the first chapter, section 3.

Proposition 14 The monodromy group of a regular edge-twin bicontactual oriented-hypermap is an extension of the monodromy group of a regular fundamental edge-twin bicontactual oriented-hypermap.

Proof:
Having in account the epimorphism present in the proof of Theorem 7 and using the definition 4 , the proof is straightforward.

Theorem 8 If $\mathcal{Q}_{E T}$ is an edge-twin bicontactual oriented-hypermap with n hyperfaces of valency $2 z$, then

$$
\operatorname{Mon}\left(\mathcal{Q}_{E T}\right)=\left\langle R, L \mid(R L)^{2 z}=1, L^{2}=(R L)^{2 a}, R^{L} R=(R L)^{2 b}, R^{n}=(R L)^{2 q}\right\rangle
$$

for some integers $z \geq 1$ and $a, b, q \in\{0, \cdots, z-1\}$ such that $k=a+b$ satisfies
(i) $k^{2} \equiv 1(\bmod z)$;
(ii) $a k \equiv a(\bmod z)$;
(iii) $q k \equiv q(\bmod z)$;
(iv) $2 q-b\left(k^{n-1}+\cdots+k+1\right) \equiv 0(\bmod z)$.

Conversely, any hypermap $\mathcal{H}=(G ; R, L)$ defined above is an edge-twin bicontactual orientedhypermap with n hyperfaces.

Proof:
Let $\mathcal{Q}_{E T}=(G ; R, L)$ be an edge-twin bicontactual oriented-hypermap with n hyperfaces of valency $2 z$. We will denote by $\mathcal{P}=(P ; r, l)$ the fundamental edge-twin bicontactual oriented-hypermap covered by $\mathcal{Q}_{E T}$ (such hypermap exists by Theorem 7).

Recall that $N=\left\langle R^{n}\right\rangle \triangleleft G$. By equation (4.12), we can assume that $R^{n}=(R L)^{2 q}$, where $q \in\{0, \cdots, z-1\}$.

From the cover $v: \mathcal{Q}_{E T} \longrightarrow \mathcal{Q}_{E T} / N$, we know that $G / N \cong P$. The epimorphism v is such that $R \mapsto r$ and $L \mapsto l$.

Our aim it to get a presentation of G from presentations of P and N. We can write $P=F E T B(n, c, a, b)$, that is,

$$
P=\left\langle r, l \mid(r l)^{2 c}=1, l^{2}=(r l)^{2 a}, r^{l} r=(r l)^{2 b}, r^{n}=1\right\rangle,
$$

for some integers $c \geq 1$ and $a, b \in\{0, \cdots, c-1\}$ such that the parameters satisfying the following conditions

$$
\begin{array}{ll}
(I) & k^{2} \equiv 1(\bmod c) \\
(I I) & a k \equiv a(\bmod c) \\
(I I I) & b\left(k^{n-1}+\cdots+k+1\right) \equiv 0(\bmod c) .
\end{array}
$$

with $k=a+b$ and $c=(z, q)$.
The presentation of N is

$$
N=\left\langle y=(R L)^{2 q} \left\lvert\, y^{\frac{z}{c}}=1\right.\right\rangle .
$$

Let X and Y be set of generators of P and N, respectively, and let \mathcal{R} and \mathcal{S} be set of defining relators of P and N, respectively.

Following the notation described in the section 1.3.2 (Proposition 1.3.3) we have $\widetilde{Y} \equiv Y$ and, consequently, $\widetilde{S} \equiv S$. The elements R and L, being transversal elements and generating G, form the set \widetilde{X}.

Writing each element of \mathcal{R} in terms of \widetilde{X} and then as a word in \widetilde{Y}, we get

$$
\widetilde{R}=\left\{(R L)^{2 c}=y, L^{2}(R L)^{-2 a}=1, R^{L} R(R L)^{-2 b}=1, R^{n}=y\right\}
$$

Conjugating y by the elements of \widetilde{X}, we obtain

$$
\widetilde{T}=\left\{y^{R}=y, y^{L}=y\right\}
$$

By equation (1.3), the group G has a presentation given by generators $R, L, y=(R L)^{2 q}$ and word relations

$$
y^{\frac{z}{c}}=1,(R L)^{2 c}=y, L^{2}(R L)^{-2 a}=1, R^{L} R(R L)^{-2 b}=1, R^{n}=y, y^{R}=y \text { and } y^{L}=y .
$$

This is equivalent to a presentation with generators R, L and word relations

$$
\begin{aligned}
& \left((R L)^{2 c}\right)^{\frac{z}{c}}=1, L^{2}=(R L)^{2 a}, R^{L} R=(R L)^{2 b}, R^{n}=(R L)^{2 q} \\
& \left((R L)^{2 q}\right)^{R}=(R L)^{2 q},\left((R L)^{2 q}\right)^{L}=(R L)^{2 q}
\end{aligned}
$$

which have the final form, given by

$$
\begin{equation*}
G=\left\langle R, L \mid(R L)^{2 z} \underset{(1)}{=} 1, L^{2} \underset{(2)}{=}(R L)^{2 a}, R^{L} R \underset{(3)}{=}(R L)^{2 b}, R^{n} \underset{(4)}{=}(R L)^{2 q}\right\rangle \tag{4.14}
\end{equation*}
$$

The size of G is

$$
|G|=|P||N|=2 n c \frac{z}{c}=2 n z .
$$

Recovering some relations and results from the proof of Theorem 5, we obtain the conditions $(i),(i i),(i i i)$ and (iv). The first two are straightforward. The last two need a little extra work. We had the relation $(L R)^{2}=(R L)^{2 k}$, obtained from the similar conditions (2) and (3). Thus $2 a k$ is congruent to $2 a$ and $2 q k$ is congruent to $2 q$, both module the valency of the hyperfaces, $2 z$.

In the same manner, we also change the generators to X and Y (recall that, $X=R L$ and $Y=R^{L}$). The presentation of G becomes this way

$$
\begin{equation*}
\left\langle X, Y \mid X^{2 z} \underset{(1)}{=} 1, Y^{-1} X Y_{-1}^{-1}=X^{2 a-1}, Y X Y \underset{(3)}{=} X^{2 b+1}, Y^{n} \underset{(4)}{=} X^{2 q}\right\rangle \tag{4.15}
\end{equation*}
$$

For $i=n$ in equation (4.2), outcome the following equation jointly with the relation (4):

$$
X^{4 q-2 b\left(k^{n-1}+k^{n-2}+\cdots+k^{2}+k+1\right)}=1 .
$$

Consequently, $2 q-b\left(k^{n-1}+\cdots+k+1\right) \equiv 0(\bmod z)$.

Conversely, suppose we have an oriented-hypermap \mathcal{H} with n hyperfaces of valency $2 z$ such that the monodromy group has the following presentation

$$
\operatorname{Mon}(\mathcal{H})=\left\langle R, L \mid(R L)^{2 z}=1, L^{2}=(R L)^{2 a}, R^{L} R=(R L)^{2 b}, R^{n}=(R L)^{2 q}\right\rangle
$$

for some integers $z \geq 1$ and $a, b, q \in\{0, \cdots, z-1\}$, which parameters satisfy

$$
\begin{array}{ll}
(i) & k^{2} \equiv 1(\bmod z) \\
(i i) & a k \equiv a(\bmod z) \\
\text { (iii) } & q k \equiv q(\bmod z) \\
\text { (iv) } & 2 q-b\left(k^{n-1}+\cdots+k+1\right) \equiv 0(\bmod z) .
\end{array}
$$

where $k=a+b$.
By Lemma 17, the oriented-hypermap \mathcal{H} defined above is edge-twin bicontactual. We only need to show that the group has size $2 n z$.

For convenience, let us change generators R, L to $X=R L$ and $Y=R^{L}$. Thus, in function of the new generators X and Y, the presentation of $\operatorname{Mon}(\mathcal{H})$ takes the form (4.15).

The subgroup $H=\left\langle X^{2}, Y\right\rangle$ of $\operatorname{Mon}(\mathcal{H})$ is normal and it factors $\operatorname{Mon}(\mathcal{H})$ into a cyclic group $C_{2}=\left\langle Y \mid Y^{2}=1\right\rangle$. Thus $|\operatorname{Mon}(\mathcal{H}): H|=2$.

We are going to use the Reidemeister-Schreier's Rewriting Process, in the same way to what we made previously, to obtain a presentation for the group H. It is necessary a Schreier transversal T for H in $\operatorname{Mon}(\mathcal{H})$. As the quotient group $\operatorname{Mon}(\mathcal{H}) / H$ is equal to $\{m H \mid m \in \operatorname{Mon}(\mathcal{H})\}=\{X H, H\}$ we have $T=\{1, X\}$. Next, we will find the free generators that will define, as a quotient, H. This is done in terms of the Schreier transversal T of H, the free generators X and Y and the function $\operatorname{Mon}(\mathcal{H}) \rightarrow C_{2}=\operatorname{Mon}(\mathcal{H}) / H$ such that $m \mapsto \widehat{m}$ defined by $m H \cap T=\{\widehat{m}\}$. The elements of the set

$$
B^{*}=\left\{t u \widehat{t u}^{-1} \mid t \in T, u \in\{X, Y\}\right\}
$$

generate a free group. Here, through the properties

$$
\widehat{h}=1, \forall h \in H \text { and } \widehat{t}=t \Leftrightarrow t \in T,
$$

we have

$t \backslash u$	X	Y
1	$\widehat{1 X}=\widehat{X}=X$	$\widehat{1 Y}=\widehat{Y}=1$
X	$\widehat{X X}=\widehat{X^{2}}=1$	$\widehat{X Y}=X$

So $B^{*}=\left\{X^{2}, Y, X Y X^{-1}\right\}$. But, for our convenience, we replace $X Y X^{-1}$ by $X^{-1} Y X=$ $\left(X Y X^{-1}\right)^{X^{2}}$. Let $A=X^{2}, B=Y$ and $C=X^{-1} Y X$.

Conjugating the relators of $\operatorname{Mon}(\mathcal{H})$ by T, we obtain

$$
\begin{aligned}
\check{R}= & \left\{r^{t} \mid t \in T, r \in\left\{X^{2 z}, Y^{-1} X Y^{-1} X^{-(2 a-1)}, Y X Y X^{-(2 b+1)}, Y^{n} X^{-2 q}\right\}\right\} \\
= & \left\{X^{2 z},\left(Y^{-1} X\right)^{2} X^{-2 a},(Y X)^{2} X^{-2 b-2}, Y^{n} X^{-2 q}, X^{-1} Y^{n} X^{-2 q} X,\right. \\
& \left.X^{-1} Y^{-1} X Y^{-1} X^{2-2 a}, X^{-1} Y X Y X^{-2 b}\right\}
\end{aligned}
$$

Finally, we will rewrite each element of \check{R} in terms of A, B and C, where rewritten words will be the relators for a presentation of H. This will be done by inspection, as follows:

$$
\begin{aligned}
X^{2 z} & =A^{z} \\
Y^{n} X^{-2 q} & =B^{n} A^{-q} \\
\left(Y^{-1} X\right)^{2} X^{-2 a} & =B^{-1} A C^{-1} A^{-a} \\
(Y X)^{2} X^{-2 b-2} & =B A C A^{-(b+1)} \\
X^{-1} Y^{n} X^{-2 q} X & =\left(X^{-1} Y X\right)^{n} X^{-2 q}=C^{n} A^{-q} \\
X^{-1} Y^{-1} X Y^{-1} X^{2-2 a} & =C^{-1} B^{-1} A^{1-a} \\
X^{-1} Y X Y X^{-2 b} & =C B A^{-b}
\end{aligned}
$$

Putting together B^{*} and the rewritten \check{R} we get a presentation for H :

$$
\left\langle A, B, C \mid A^{z}=1, B^{n}=A^{q}, B^{-1} A C^{-1}=A^{a}, B A C=A^{b+1}, C^{n}=A^{q}, C^{-1} B^{-1}=A^{a-1}, C B=A^{b}\right\rangle .
$$

This presentation can be improved. Having in account the last relation we can ignore the generator C, we have $C=A^{b} B^{-1}$. Thus,

$$
\left\langle A, B \mid A^{z} \underset{(1)}{=} 1, B^{n} \underset{(2)}{=} A^{q}, B^{-1} A B \underset{(3)}{=} A^{k}, B A^{b+1} \underset{(4)}{=} A^{b+1} B,\left(A^{b} B^{-1}\right)^{n} \underset{(5)}{=} A^{q}, B A^{b} B^{-1} \underset{(6)}{=} A^{1-a}\right\rangle,
$$

where $k=a+b$.
The $4^{\text {th }}$ relation shows that A^{b+1} and B commute.
From congruence (ii) we obtain

$$
k(b+1)-(b+1)=(\underbrace{a+b}_{k}) b+(\underbrace{a+b}_{k}) a-1=k^{2}-1 .
$$

Then, by congruence (i), we have $k(b+1) \equiv(b+1)(\bmod c)$. The $3^{r d}$ relation gives rise to $B^{-1} A^{b+1} B=A^{k(b+1)}$, which implies that $B^{-1} A^{b+1} B=A^{b+1}$. So, we get the $4^{\text {th }}$ relation and we conclude that this relation is redundant.

By the $3^{\text {rd }}$ relation, we also obtain $B^{-1} A^{a} B=\left(B^{-1} A B\right)^{a}=\left(A^{k}\right)^{a}$. Consequently, with congruence (ii), we have $B^{-1} A^{a} B=A^{a} \Leftrightarrow A^{a} B=B A^{a}$. That is, $A^{a} \leftrightharpoons B$.

From the $6^{\text {th }}$ relation, we obtain that $A^{b} B^{-1}=B^{-1} A^{1-a}$. Replacing in the $5^{\text {th }}$ relation we obtain

$$
\left(B^{-1} A^{1-a}\right)^{n}=A^{q} \Leftrightarrow\left(B^{-1} A\right)^{n}=A^{q+n a}
$$

because A^{-a} commutes with $B^{-1} A$.
By the $3^{r d}$ relation we have $A=B A^{a} A^{b} B^{-1}$ from which we get $A^{1-a}=B A^{b} B^{-1}$. Together with $A^{a} \leftrightharpoons B$ we can eliminate the $6^{\text {th }}$ relation. Since $A^{1-a}=B A^{b} B^{-1}$, we have

$$
A^{1-a}=B A^{b+1} A^{-1} B^{-1} \Leftrightarrow A^{1-a-b-1}=B A^{-1} B^{-1} \Leftrightarrow A^{-k}=B A^{-1} B^{-1}
$$

To show that the $2^{\text {nd }}$ relation is redundant, we need to recall equation (4.11) which holds for all positive integer i. In fact,

$$
B^{n}=B^{n} 1=B^{n}\left(A^{b} B^{-1}\right)^{n} A^{-q}=A^{-k^{n}} A^{2 q} A A^{-q} .
$$

We have $k^{2} \equiv 1(\bmod c)$ and if n is odd, $k \equiv 1(\bmod c)$, so in both cases $k^{n} \equiv 1(\bmod c)$. Hence, by congruence (4.6),

$$
B^{n}=A^{-1} A^{q+1}=A^{q} .
$$

Finally, the presentation of H is as follows

$$
H=\left\langle A, B \mid A^{z}=1, A^{B}=A^{k},\left(B^{-1} A\right)^{n}=A^{q+n a}\right\rangle
$$

where A and B corresponds to X^{2} and Y in K.
Changing the generators $\{A, B\}$ for the generators $\left\{x=A^{-1}, y=A^{-1} B\right\}$, we get

$$
H=\left\langle x, y \mid x^{z}=1, x^{y}=x^{k}, y^{n}=x^{q+n a}\right\rangle
$$

As $k(n a)=n(a k) \equiv n a(\bmod c)$ then H is a metacyclic group $M(z, n, q+n a, k)$ and hence $|H|=n z$. So

$$
|K|=|K: H||H|=2 n z
$$

Theorem 8 determines a family of (regular) bicontactual oriented-hypermaps with n hyperfaces which are edge-twin.

Let Q_{1} be the presentation in equation (4.14) and Q_{2} be the presentation in equation (4.15). For such family, we have $Q_{1} \sim Q_{2}$. We will denote by $\operatorname{ETB}(n, z, a, b, q)$ the group presented either by Q_{1} or Q_{2}.

From Lemma 18, Proposition 13 and by the values of the vertex and edge repetitiondegrees r_{v} and r_{e}, we obtain the H-sequence associated to this family. It is

$$
\left[2 n z-n(z, a)-2(z, q)-n ; \frac{n z}{(z, q)}, \frac{2 z}{(z, a)}, 2 z ; 2(z, q), n(z, a), n ; 2 n z\right]
$$

4.2.3 The Wilson's classification of bicontactual oriented maps

In this short subsection we want to show that our classification generalises Wilson's one. For the only two families of bicontactual oriented maps $B(n, 2 c, \rho, \sigma)$ and $B^{*}(n, 2 c)$ it is not difficult to verify that they are related to our ETB hypermaps in the following way:

1. $B(n, 2 z, \rho, \sigma)=\operatorname{ETB}(n, 2 z, 0, \rho, \sigma)$, where n is even and
2. $B^{*}(n, 2 z)=\operatorname{ETB}\left(n, 2 z, 0,1, \frac{n-z}{2}(\bmod z)\right)$, where n and z are odd

4.3 Chirality

In this section we show that there are no chiral edge-twin bicontactual oriented-hypermaps.

Theorem 9 All regular edge-twin bicontactual oriented-hypermap $\mathcal{Q}_{E T}$ are reflexible.
Proof:
Consider the relations that the generators of $\operatorname{Mon}\left(\mathcal{Q}_{E T}\right)$ satisfy (see Theorem 8). The chirality group $\mathbb{X}\left(\mathcal{Q}_{E T}\right)$ is the subgroup of $\operatorname{Mon}\left(\mathcal{Q}_{E T}\right)$ given by the normal closure of

$$
\left\langle\left(R^{-1} L^{-1}\right)^{2 z},\left(L^{-1}\right)^{-2}\left(R^{-1} L^{-1}\right)^{2 a},\left(R^{-1}\right)^{L^{-1}} R^{-1}\left(R^{-1} L^{-1}\right)^{-2 b},\left(R^{-1}\right)^{-n}\left(R^{-1} L^{-1}\right)^{2 q}\right\rangle
$$

in $\operatorname{Mon}(\mathcal{Q})$. Simplifying, we get

$$
\mathbb{X}_{\mathcal{Q}}=\left\langle(L R)^{-2 z}, L^{2}(L R)^{-2 a}, L R^{-1} L^{-1} R^{-1}(L R)^{2 b}, R^{n}(L R)^{-2 q}\right\rangle^{M o n(\mathcal{Q})}
$$

Conjugating the relation $(R L)^{2 z}=1$ by L^{-1} we have $(R L)^{2 z}=(L R)^{2 z}$. In proof of theorem 5, we obtained $L^{2}=(L R)^{2 a}$, that is, $(R L)^{2 a}=(L R)^{2 a}$. Conjugating the relation $R^{L} R=(R L)^{2 b}$ by L^{-1} we conclude that $(L R)^{2 b}=R L R L^{-1}$. From Lemma 22, we have $(R L)^{2 q}=(L R)^{2 q}$. This shows that $\mathbb{X}_{\mathcal{Q}_{E T}}=\langle 1\rangle^{M o n\left(\mathcal{Q}_{E T}\right)}$. Hence, $\mathbb{X}_{\mathcal{Q}_{E T}}=1$. So, by Lema 1 , we conclude that $\mathcal{Q}_{E T}$ is reflexible.

Chapter 5

Non-orientable bicontactual regular
 hypermaps

This chapter presents the classification of non-orientable bicontactual regular hypermaps. The main result in this Chapter (Theorem 10 actually) was obtained by Wilson and Breda d'Azevedo in [30] but for completeness we will do it again and give another proof. It will be rewritten from the word relations defining the monodromy group of an edge-twin bicontactual regular non-orientable hypermap.

For this subject, we recommend reading [31].
Up to a $(0,1)$-duality, there are two types of bicontactuality: edge-twin and alternate. The following Lemma shows that, in the non-orientable case, only edge-twin take place.

Lemma 23 Any alternate bicontactual regular hypermap is orientable.
Proof:
Let \mathcal{H} be a regular alternate bicontactual hypermap with n hyperfaces $(n \geq 3)$. The H-sequence associated to \mathcal{H} is

$$
\left[\frac{|\operatorname{Mon}(\mathcal{H})|}{2}-\mathrm{n}_{\mathcal{\varepsilon}}-\mathrm{n}_{\mathcal{V}}-n ; n, n, c ; \mathrm{n}_{\mathcal{V}}, \mathrm{n}_{\mathcal{E}}, n ;|\operatorname{Mon}(\mathcal{H})|\right]
$$

Recalling that, an alternate bicontactual hypermap must satisfy the conditions

$$
\begin{equation*}
\left(r_{1} r_{0}\right)^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle \text { and }\left(r_{1} r_{2}\right)^{n} \in\left\langle r_{0}, r_{1}\right\rangle . \tag{5.1}
\end{equation*}
$$

Figures says that the preceding word relations do not have odd length.

Figure 5.1: The relator of the word relation $\left(r_{1} r_{0}\right)^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle$ has even length

Figure 5.2: The relator of the word relation $\left(r_{1} r_{2}\right)^{n} \in\left\langle r_{0}, r_{1}\right\rangle$ has even length

Then, by the conditions in (5.1), we get $\left(r_{1} r_{0}\right)^{r_{2}}=\left(r_{1} r_{0}\right)^{d}$ and $\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}$ for some integers d and v. So the monodromy group G of \mathcal{H} is generate by r_{0}, r_{1}, r_{2} with word relations

$$
r_{0}^{2}=1, r_{1}^{2}=1, r_{2}^{2}=1,\left(r_{1} r_{0}\right)^{c}=1,\left(r_{1} r_{0}\right)^{r_{2}}=\left(r_{0} r_{1}\right)^{d},\left(r_{1} r_{2}\right)^{n}=\left(r_{0} r_{1}\right)^{t}, \mathcal{R}\left(r_{0}, r_{1}, r_{2}\right),
$$

being $\mathcal{R}\left(r_{0}, r_{1}, r_{2}\right)$ some more word relations, eventually containing odd length words (if \mathcal{H} is non-orientable).

Is obvious that $N=\left\langle r_{1} r_{0}\right\rangle$ is a normal subgroup of G. Factorizing G by N we obtain

$$
\begin{aligned}
G / N & =\left\langle r_{0}, r_{1}, r_{2} \mid r_{0}^{2}=1, r_{1}^{2}=1, r_{2}^{2}=1, r_{1} r_{0}=1,\left(r_{1} r_{2}\right)^{n}=1, \mathcal{R}^{\prime}\left(r_{0}, r_{1}, r_{2}\right)\right\rangle \\
& =\left\langle r_{0}, r_{2} \mid r_{0}^{2}=1, r_{2}^{2}=1,\left(r_{0} r_{2}\right)^{n}=1, \mathcal{R}^{\prime}\left(r_{0}, r_{1}, r_{2}\right)\right\rangle
\end{aligned}
$$

being $\mathcal{R}^{\prime}\left(r_{0}, r_{1}, r_{2}\right)$ the word relations $\mathcal{R}\left(r_{0}, r_{1}, r_{2}\right)$ taking in account that $r_{1} r_{0}=1$. This factorization give us a hypermap with the same number of hyperfaces and each hyperface with valency 1 , that is, the H-sequence associated to \mathcal{H} / N has the form

$$
[? ; ?, ?, 1 ; ?, ?, n ;|G / N|]
$$

So the hypermap \mathcal{H} / N is a factorization of $W^{-1}\left(D \varepsilon_{n}\right)$. But $W^{-1}\left(D \varepsilon_{n}\right)$ does not admit non-orientable factorizations since it has only one hypervertex, and one hyperedge, being the hyperedge the antipodal point of the hypervertex. Moreover, since the factorization keeps the number of hyperfaces, we must have $\mathcal{H} / N=W^{-1}\left(D \varepsilon_{n}\right)$. Hence it comes that the surface is orientable.

Let \mathcal{H} be a non-orientable regular edge-twin bicontactual hypermap with n hyperfaces. We know by Lemma 6 that each hyperface has even valency $2 c$. From Lemma 3, the edgetwin bicontactual hypermaps are algebraically characterised by:

$$
\begin{equation*}
\left(r_{1} r_{0}\right)^{2 c}=1, r_{0}^{r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle, r_{0}^{r_{1} r_{2}} \in\left\langle r_{0}, r_{1}\right\rangle \text { and }\left(r_{1} r_{2}\right)^{n} \in\left\langle r_{0}, r_{1}\right\rangle \tag{5.2}
\end{equation*}
$$

So $r_{0}^{r_{2}}=\left(r_{1} r_{0}\right)^{d}$ or $r_{0}^{r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{d}$ for some integer $d, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u}$ or $r_{0}^{r_{1} r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{u}$ for some integer u, and $\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}$ or $\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}$ for some integer v. All the parameters d, u, v are even. This can be seen by looking at the arc-adjacent of a flag. Applying $r_{0}^{r_{2}}$ to some flag ω we get a flag $\omega^{\prime}=\omega r_{0}^{r_{2}}$. Since ω belongs to an $F_{1} F_{2}$-arc so does the flag ω^{\prime}. This implies that (see Figure 5.3) d must be even. For $r_{0}^{r_{1} r_{2}}$ and $\left(r_{1} r_{2}\right)^{n}$ the procedure is similar, the arc-adjacent in Figures 5.4 and 5.5 show that u and v must be even, respectively.

Figure 5.3: The parameter d is even

Figure 5.4: The parameter u is even

Figure 5.5: The parameter v is even

The main theorem of this chapter states as follows (see [30]).
Theorem 10 If \mathcal{H} is a non-orientable regular bicontactual hypermap, then \mathcal{H} or $D_{01}(\mathcal{H})$ must be

1. the hypermap $D_{02}\left(G W_{k}\right)$,
2. the $\operatorname{map} \Gamma_{k}$,
3. the map opp $B^{*}(n, 2 c)$ for some odd integers n and c, or
4. $D \delta_{k}$ for some k.

Proof:
Let $\mathcal{H}=\left(G ; r_{0}, r_{1}, r_{2}\right)$ be a non-orientable edge-twin bicontactual regular hypermap with n hyperfaces of valency $2 c$.

Up to a (0,1) -duality the algebraic characterization (5.2), gives rise to 8 possibilities listed below:

Case	word relations in G
I	$r_{2} r_{0} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}$
II	$r_{2} r_{0} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}$
III	$r_{2} r_{0} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}$
IV	$r_{2} r_{0} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}$
\mathbf{V}	$r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}$
VI	$r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, \quad r_{0}^{r_{1} r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}$
VII	$r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u}, \quad\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}$
VIII	$r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u}, \quad\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}$

for some positive even integers d, u, v between 0 and $2 c$. The first case can be discared since it determines orientable regular hypermaps, and they were classified in chapter 4.

Now, we are going to study each of the other cases separately.

Case II: Supposing that \mathcal{H} satisfies the conditions

$$
r_{2} r_{0} r_{2} \underset{(1)}{=} r_{0}\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}} \underset{(2)}{=} r_{0}\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n} \underset{(3)}{=} r_{0}\left(r_{1} r_{0}\right)^{v}
$$

with $d, u, v \in\{0,2, \cdots, 2 c-2\}$.
Since $r_{0}\left(r_{1} r_{0}\right)^{v}$ is an involution, we get $\left(r_{1} r_{2}\right)^{2 n}=1$ and we conclude that the valency of the hypervertices is $2 n$. That is, each hypervertex occurs twice in each hyperface. So there are c hypervertices in \mathcal{H}.

From the $3^{r d}$ condition, we get $\left(r_{1} r_{2}\right)^{n} r_{1}=\left(r_{0} r_{1}\right)^{v+1}$. Because the first member is an involution then

$$
\begin{equation*}
\left(r_{0} r_{1}\right)^{2(v+1)}=1 \tag{5.3}
\end{equation*}
$$

So c divides $v+1$. As $v+1 \in\{1,3, \cdots, 2 c-1\}$, we must have $v+1=c$. We conclude that c is odd. The $3^{r d}$ condition can then be written in the following way:

$$
\begin{equation*}
\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{c-1} \tag{5.4}
\end{equation*}
$$

For convenience, let X and Y be $r_{1} r_{0}$ and $\left(r_{2} r_{1}\right)^{r_{0}}$ respectively. Rewriting the word relations, we have:

$$
Y^{-1} X Y^{-1} \stackrel{(1)}{=} X^{-d-1}, Y X Y \stackrel{(2)}{=} X^{u+1}, Y^{n} \stackrel{(3)}{=} r_{1} X^{2-c} .
$$

From the first two word relations, we obtain $Y X^{2}=X^{u-d} Y$. So, by Lemma 19, the equation (4.2) is valid here. That is,

$$
\begin{equation*}
Y^{i} X Y^{i}=X^{u\left(k^{i-1}+k^{i-2}+\ldots+k+1\right)+1} \tag{5.5}
\end{equation*}
$$

holds for all integer i, where $2 k=u-d$ (since $u-d$ is even).
Having in account the $3^{r d}$ relation and putting $i=n$ in the previous equation, we get $X^{-2}=X^{u\left(k^{n-1}+k^{n-2}+\cdots+k+1\right)}$. So, c divides $\frac{u}{2}\left(k^{n-1}+k^{n-2}+\cdots+k+1\right)+1$.

We already know that $\left(r_{2} r_{1}\right)^{2 n}=1$. Thus we have $Y^{2 n}=1$. Putting $i=2 n$ in the equation (5.5) it results the relation $X^{u\left(k^{2 n-1}+k^{2 n-2}+\cdots+k+1\right)}=1$. So c also divides $\frac{u}{2}\left(k^{2 n-1}+\right.$ $\left.k^{2 n-2}+\ldots+k+1\right)$. Note that

$$
\begin{aligned}
k^{2 n-1}+k^{2 n-2}+\ldots+k+1 & =k^{2 n-1}+\ldots+k^{n}+k^{n-1}+\ldots+k+1 \\
& =k^{n}\left(k^{n-1}+\ldots+k+1\right)+k^{n-1}+\ldots+k+1 \\
& =k^{n} \frac{k^{n}-1}{k-1}+\frac{k^{n}-1}{k-1} \\
& =\frac{k^{n}-1}{k-1}\left(k^{n}+1\right)
\end{aligned}
$$

Consequently, assuming $t=\frac{u}{2}\left(k^{n-1}+k^{n-2}+\cdots+k+1\right)$, we have $c \mid t+1$ and $c \mid t\left(k^{n}+1\right)$. Then $c \mid t+1$ implies that $c \mid(t+1) k^{n}$. By the properties of divisibility, we get $c \mid t-k^{n}$. From the first two word relations, we obtain $Y X^{2} Y^{-1}=X^{u-d}$ but also $Y^{-1} X^{2} Y=X^{u-d}$. We have $Y X^{2} Y=\left(Y X^{2} Y^{-1}\right) Y^{2}=X^{u-d} Y^{2}$ and equivalently $X^{2}=Y^{-1} X^{2 k} Y=\left(Y^{-1} X^{2} Y\right)^{k}$. From $Y^{-1} X^{2} Y=X^{2 k}$, we get $X^{2}=X^{2 k^{2}}$. So, $k^{2} \equiv 1(\bmod c)$. For n even, the relation $k^{n} \equiv 1(\bmod c)$ holds and so $c \mid t-1$. Then, again by the properties of the divisibility, it results that c divides 2. As c is odd, the value of c must be 1. At this moment, the hypermap \mathcal{H} satisfies

$$
\left(r_{1} r_{0}\right)^{2}=1, r_{2} r_{0} r_{2}=r_{0}, r_{0}^{r_{1} r_{2}}=r_{0},\left(r_{1} r_{2}\right)^{n}=r_{0}
$$

We see that \mathcal{H} is a map. Easily we write the H -sequence of the hypermap \mathcal{H} for an even number of hyperfaces n :

$$
[-1 ; 2 n, 2,2 ; 1, n, n ; 4 n]
$$

In conclusion, \mathcal{H} is the map $D \delta_{n}$ for n even.

To finish the proof of Case I, it is necessary to study the case when the number of hyperfaces is odd. Here, the congruence $k^{2} \equiv 1(\bmod c)$ also is valid. Then $k^{n} \equiv k(\bmod c)$ and we obtain $c \mid t-k$. As we know that $c \mid t+1$, we get $c \mid k+1$.

Note that $2 k \in\{-2 c+2,-2 c+4, \ldots, 0,2, \cdots, 2 c-4,2 c-2\}$. Thus we only can have $2 k+2=2 c$, that is, $u=2 c-2+d$. Having in account the values of u and d, the parameter d must be 0 and the parameter u must be $2 c-2$. So \mathcal{H} is a map. Among all the possibilities, \mathcal{H} must be $\operatorname{opp} B^{*}(n, 2 c)$ with n and c odd.

Case III: Supposing that \mathcal{H} satisfies the conditions

$$
r_{2} r_{0} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}
$$

with $d, u, v \in\{0,2, \cdots, 2 c-2\}$.
Similarity to the preceding case, the valency of the hypervertices is $2 n$.
Since $r_{0}^{r_{1} r_{2}}$ is a involution, we have

$$
\begin{equation*}
\left(r_{1} r_{0}\right)^{2 u}=1 \tag{5.6}
\end{equation*}
$$

Then $2 c$ divides $2 u$, that is, $u=c$ with c even. Here the equation (5.4) holds. So

$$
r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{c}=r_{1} r_{0}\left(r_{1} r_{0}\right)^{c-1}=r_{1}\left(r_{1} r_{2}\right)^{n} .
$$

Conjugating the previous relation by $r_{2} r_{1}$, we obtain $r_{1} r_{0}=\left(r_{1} r_{2}\right)^{n-2}$. Replacing $\left(r_{1} r_{2}\right)^{n}=$ $\left(r_{1} r_{2}\right)^{2} r_{1} r_{0}$ in equation (5.4) it results $\left(r_{1} r_{2}\right)^{2}=r_{0}\left(r_{1} r_{0}\right)^{c-2}$. By this involution, we get $\left(r_{1} r_{2}\right)^{4}=1$. Thus, we must have $n=2$. But 2 hyperfaces implies non-bicontactual, a contradiction. So, \mathcal{H} does not exist in the conditions of case III.

Case IV: Supposing that \mathcal{H} satisfies the conditions

$$
r_{2} r_{0} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}
$$

with $d, u, v \in\{0,2, \cdots, 2 c-2\}$.
Here the equation (5.6) holds. Then we get $u=c$ and we know that c is even.
By the two first conditions, we obtain $r_{2}\left(r_{0} r_{1}\right)^{2} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d+u}$ and, consequently, $\left(r_{0} r_{1}\right)^{4}=1$. So $2 c$ divides 4. Since c is even, we must have $c=2$. At this moment, we have $c=2=u$ and $d, v \in\{0,2\}$.

If $v=2$, then $\left(r_{1} r_{2}\right)^{n}=r_{0}^{r_{1} r_{2}}$ by conditions 2 and 3 . Multiplying on the left by r_{1} and after that conjugating by $r_{1} r_{2}$, we get the word relation $r_{2}\left(r_{1} r_{2}\right)^{n-1}=r_{1} r_{0}$. Since $r_{2}\left(r_{1} r_{2}\right)^{n-1}$
is an involution, we have $\left(r_{1} r_{0}\right)^{2}=1$. So $c=1$. But this is a contradiction with the fact that c is even.

Now, for $v=0$, we will analyse two possibilities when $d=2$ and when $d=0$. Suppose that we have $v=0$ and $d=2$. From the previous relation $r_{2}\left(r_{0} r_{1}\right)^{2} r_{2}=r_{0}\left(r_{1} r_{0}\right)^{d+u}$, we can write $r_{2}\left(r_{0} r_{1}\right)^{2} r_{2}=r_{0}$ or, equivalently, $r_{0} r_{2}\left(r_{0} r_{1}\right)^{2} r_{2}=1=\left(r_{1} r_{2}\right)^{n}$. Therefore, we obtain $r_{0} r_{2}\left(r_{0} r_{1}\right)^{2}=\left(r_{1} r_{2}\right)^{n-1} r_{1}$. Since $\left(r_{1} r_{2}\right)^{n-1} r_{1}$ is an involution and $\left(r_{0} r_{1}\right)^{2}=\left(r_{1} r_{0}\right)^{2}$, we get $r_{0}\left(r_{1} r_{0}\right)^{2}\left(r_{0} r_{1}\right)^{2}=1$ by the $2^{\text {nd }}$ condition. Thus $r_{0}=1$. This implies that the hypermap \mathcal{H} is dihedral. So \mathcal{H} is orientable, which is impossible.

The last possibility is $v=0$ and $d=0$. Immediately we see that $\left(r_{0} r_{2}\right)^{2}=1$. So \mathcal{H} is a map. Since $v=0$, we know that the hypervertices have valency n. Checking all the possibilities, \mathcal{H} must be $\Gamma_{\frac{n}{3}}$ with n a multiple of 3 .

Case V: Supposing that \mathcal{H} satisfies the conditions

$$
r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}
$$

with $d, u, v \in\{0,2, \cdots, 2 c-2\}$.
From the $1^{\text {st }}$ condition, we get

$$
\begin{equation*}
\left(r_{1} r_{2}\right)^{2 d}=1 \tag{5.7}
\end{equation*}
$$

because $r_{2} r_{0} r_{2}$ is an involution. Then $2 c$ divides $2 d$, that is, $d=c$ and we know that c is even. By the two first conditions, $r_{2}\left(r_{0} r_{1}\right)^{2} r_{2}=\left(r_{1} r_{0}\right)^{d-u} r_{0}$ and, consequently, $\left(r_{0} r_{1}\right)^{4}=1$. So $2 c$ divides 4, that is, $c=1$ or $c=2$. Since c is even, we must have $c=2$. As the equation (5.4) holds, the value of v is 1 , which is an absurd. We conclude that \mathcal{H} does not exist in the case V .

Case VI: Supposing that \mathcal{H} satisfies the conditions

$$
r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=r_{0}\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}
$$

with $d, u, v \in\{0,2, \cdots, 2 c-2\}$.
Here the equation (5.7) holds and, observing the previous case, we have $d=c=2$. Multiplying on the left the word relation $r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}$ by r_{0}, we obtain that the valency of the hyperedges divides 4 because $r_{0}\left(r_{1} r_{0}\right)^{d}$ is an involution. Thus \mathcal{H} must be a map or a pure hypermap.

At this moment, we have $c=d=2$ and $u, v \in\{0,2\}$.

If $u=0$, then the $2^{\text {nd }}$ condition stays $r_{0}^{r_{1} r_{2}}=r_{0}$. Conjuganting by r_{2} and using the $1^{\text {st }}$ condition we get $r_{1} r_{0} r_{1}=\left(r_{1} r_{0}\right)^{2}$. Therefore, $r_{0}=1$. So the hypermap \mathcal{H} is dihedral (that is, orientable), which is impossible.

Now, for $u=2$ suppose that $v=2$. By the relations $\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{2}$ and $\left(r_{1} r_{0}\right)^{4}=1$, we deduce that the valency of the hypervertices is equal to $2 n$. Consequently, there are c hypervertices in \mathcal{H} (because each hypervertex occurs twice in each hyperface). From the $2^{n d}$ condition we have $\left(r_{1} r_{0}\right)^{2}=r_{0} r_{0}^{r_{1} r_{2}}$. Replace in the $3^{r d}$ condition we obtain $\left(r_{1} r_{2}\right)^{n-1}=$ $\left(r_{2} r_{1}\right)^{r_{0}}$, that is,

$$
\left(r_{1} r_{2}\right)^{-1}\left(r_{1} r_{0}\right)^{2}=r_{0} r_{2} r_{1} r_{0} \Leftrightarrow r_{2} r_{0}=r_{0} r_{2} .
$$

So we conclude that \mathcal{H} is a map. But, searching among all the possibilities, with c even, we find no such map.

We still have one possibility left to analyse $u=2$ and $v=0.3^{\text {rd }}$ condition becomes $\left(r_{1} r_{2}\right)^{n}=1$. Hence, the valency of the hypervertices is n and the number of hypervertices is equal to the valency of the hyperfaces. From the $1^{\text {st }}$ condition, we get $\left(r_{2} r_{0}\right)^{2}=r_{1} r_{0} r_{1}$. Then the valency of the hyperedges is 4 because $r_{1} r_{0} r_{1}$ is an involution. So we conclude that \mathcal{H} is a pure hypermap. We can rewrite de word relation

$$
r_{2} r_{0} r_{2}=r_{1} r_{0} r_{1} r_{0} \text { as } r_{2} r_{0} r_{2} r_{0} r_{1} r_{0} r_{1}=1
$$

and this word relation shows that \mathcal{H} is the hypermap $D\left(G W_{\frac{n}{3}}\right)$, with n a multiple of 3 .

Case VII: Supposing that \mathcal{H} satisfies the conditions

$$
r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=r_{0}\left(r_{1} r_{0}\right)^{v}
$$

with $d, u, v \in\{0,2, \cdots, 2 c-2\}$.
Here the equations (5.7) and (5.3) hold. Then, from them, we get $d=c$ and $v=c+1$. So, on the one hand, c must be even, but on the other hand c must be odd. It is a contradiction and thus we conclude that \mathcal{H} does not exist in the case VII.

Case VIII: Supposing that \mathcal{H} satisfies the conditions

$$
r_{2} r_{0} r_{2}=\left(r_{1} r_{0}\right)^{d}, r_{0}^{r_{1} r_{2}}=\left(r_{1} r_{0}\right)^{u},\left(r_{1} r_{2}\right)^{n}=\left(r_{1} r_{0}\right)^{v}
$$

with $d, u, v \in\{0,2, \cdots, 2 c-2\}$.

Here the equations (5.7) and (5.6) hold. Then we have $d=c=u$. Using this fact and with the two first conditions, we obtain $\left(r_{0} r_{1}\right)^{2}=1$. So $c=1$, which is impossible, because c must be even.

Final considerations

6.1 Bicontactual hypermaps with boundary

The definition of hypermap with boundary follows from section 1.1 with the underlying surface S now having boundary and with the restriction that the boundary does not meet the vertices of the underlying 3 -valent graph \mathcal{G}. The cells (connected components of $S \backslash \mathcal{G}$) are now homeomorphic to either an open disc (interior of faces) or an half-disc (=intersection of an open disc with the closed upper half-plane $\{(x, y) \mid y \geq 0\})$.

The permutation $r_{i}(i=0,1,2)$ switches the two flags incident with each i-edge not meeting the boundary and fixes the unique flag incident with each i-edge meeting the boundary (see figure below).

Figure 6.6: Action of r_{i} 's in a hypermap with boundary

This means that \mathcal{H} has boundary if and only if, at least, one of r_{i} has fixed points. For regular hypermaps we have

Definition 14 Let $\mathcal{H}=\left(G ; r_{0}, r_{1}, r_{2}\right)$ be a regular hypermap. Then \mathcal{H} has boundary if and only if, at least, one of r_{i} is the identity.

Let $\mathcal{H}_{b}=\left(G ; r_{0}, r_{1}, r_{2}\right)$ be a regular hypermap with boundary. From [3] we know that G is cyclic $C_{2}, V_{4}=D_{2}$ or D_{n} for some $n \geq 3$. If $|G| \leq 4$ then \mathcal{H}_{b} has at most 2 hyperfaces
and therefore cannot be bicontactual. Hence \mathcal{H}_{b} to be bicontactual, G must be a dihedral group D_{n} for some $n \geq 3$. We cannot have $r_{2}=1$ since $\mathcal{H}_{b}=\left(D_{n} ; r_{0}, r_{1}, 1\right)$ has only one hyperface.

Figure 6.7:

The only possibilities are $r_{1}=1$ or $r_{0}=1$.

Theorem 11 The bicontactual regular hypermaps with boundary are

1. $\mathcal{H}_{b}=\left(D_{n} ; r_{0}, 1, r_{2}\right)$ with $n \geq 3$,

Figure 6.8:
2. $\mathcal{H}_{b}=\left(D_{n} ; 1, r_{1}, r_{2}\right)$, a dual D_{01} of the above, with $n \geq 3$,

Figure 6.9:

6.2 Future work

A pseudo-oriented map is a map with the property that it is possible to assign an orientation around vertices such that adjacent vertices have opposite orientations, [29].

Figure 6.10: A orientation in pseudo-oriented maps

For future work we are interested in the classification of the pseudo-oriented hypermaps. This definition extends to hypermaps in the obvious way (see Figure 6.11).

Figure 6.11: A orientation in pseudo-oriented hypermaps

Algebraically, a hypermap \mathcal{H} is pseudo-oriented if and only if its hypermap subgroup H is a subgroup of $\Delta^{0}\left(\right.$ see section 1.1), where $\Delta:=\left\langle R_{0}, R_{1}, R_{2} \mid R_{0}^{2}=R_{1}^{2}=R_{2}^{2}=1\right\rangle \cong C_{2} * C_{2} * C_{2}$.

Figure 6.12: Action of each R_{i} in Δ
If $H \triangleleft \Delta^{0}=\left\langle R_{0}, R_{1} R_{2}\right\rangle^{\Delta}$, then we said that \mathcal{H} is a regular pseudo-oriented hypermap.

From [2], any pseudo-oriented hypermap can be described as a 4 -tuple $\mathcal{P}=(\Lambda ; a, b, z)$, where Λ is the set of " Δ^{0}-slices" and a, b and z are permutations of Λ satisfying $a^{2}=b^{2}=1$ such that the group P generated by a, b and z, the monodromy group of \mathcal{P}, acts transitively on Λ. If the action of $\operatorname{Mon}(\mathcal{P})$ is regular then \mathcal{P} is a regular pseudo-oriented hypermap. In general we have $|G| \geq|\Lambda|$, but when $|G|=|\Lambda|$ the pseudo-oriented hypermap \mathcal{P} is regular.

The orbits of $z, a b^{z}$ and $a b$ on Λ are the hypervertices, hyperedges and hyperfaces, respectively, while the positive integers $\mathrm{v}_{\mathcal{V}}=|\langle z\rangle|, \mathrm{v}_{\mathcal{E}}=2\left|\left\langle a b^{z}\right\rangle\right|, \mathrm{v}_{\mathcal{F}}=2|\langle a b\rangle|$ determine the type $\left(\mathrm{v}_{\mathcal{V}}, \mathrm{v}_{\mathcal{E}}, \mathrm{v}_{\mathcal{F}}\right)$ of a regular pseudo-oriented hypermap \mathcal{P}. Note that a regular pseudo-oriented hypermap is necessarily uniform.

The Δ^{0}-slices can be seen as the grey flags obtained by acting $a=r_{0}, b=r_{0}^{r_{1}}$ and $z=r_{1} r_{2}$ on a fixed flag ω (Figure 6.13).

Figure 6.13: Regular pseudo-oriented hypermap

Bicontactual regular pseudo-oriented hypermaps is defined similarly.

Figure 6.14 shows the bicontactual pseudo-oriented hypermap on the torus $(2,4,4)_{M}$, where $M=\left(\begin{array}{cc}4 & -1 \\ 4 & 1\end{array}\right)$. This is the dual D_{01} of a member of the family of toroidal regular pseudo-oriented hypermaps $(4,2,4)_{M}, M=\left(\begin{array}{cc}k & -m \\ k & m\end{array}\right)$, ([24]), where the notation follows that given in [20, pg 48].

Figure 6.14: The hypermap $(2,4,4)_{M}$

How can 2 hyperfaces be placed around a given hyperface F in a regular pseudo-oriented hypermap?

Figure 6.15: How can we distribute hyperfaces around F?

There are 5 ways to do that, namely,

1. "Alternate": where the hyperfaces distribute around F are in alternate way.

Figure 6.16: Alternate bicontactual

Algebraically, we have

$$
z a z \in\langle a, b\rangle, z b z \in\langle a, b\rangle \text { and } z^{2} \notin\langle a, b\rangle .
$$

Example : The bicontactual regular pseudo-oriented hypermap

$$
(G ; a, b, z)=\left(D_{6} ; x, x, y\right) .
$$

2. "Edge-Twin": where the hyperfaces distribute around F appear with pattern $F_{1}, F_{1}, F_{2}, F_{2}$, $F_{1}, F_{1}, F_{2}, F_{2}, \ldots$, in circular order being the repetitions happening at hyperedges.

Figure 6.17: Edge-Twin bicontactual

Algebraically, we have

$$
a^{z} \in\langle a, b\rangle, a^{z^{-1}} \in\langle a, b\rangle, b^{z} \in\langle a, b\rangle \text { and } z^{2} \notin\langle a, b\rangle .
$$

Example : In [2], the bicontactual regular pseudo-oriented hypermap $(\mathcal{X}=-2)$ of type $(8,2,4)$ with the extra relation $z^{4} a b=1$.
3. "Vertex-Twin": where the hyperfaces distribute around F appear with pattern $F_{1}, F_{1}, F_{2}, F_{2}$, $F_{1}, F_{1}, F_{2}, F_{2}, \ldots$, in circular order being the repetitions happening at hypervertices.

Figure 6.18: Vertex-Twin bicontactual

Algebraically, we have

$$
(a b)^{z} \in\langle a, b\rangle, z^{2} \in\langle a, b\rangle \text { and } a^{z} \notin\langle a, b\rangle .
$$

Example : The bicontactual regular pseudo-oriented hypermap on the torus introduced in Figure 6.14.
4. "Quadruplet of type \mathbf{I} ": where the hyperfaces distribute around F appear with pattern $F_{1}, F_{1}, F_{1}, F_{1}, F_{2}, F_{2}, F_{2}, F_{2}, F_{1}, F_{1}, F_{1}, F_{1}, \ldots$, in circular order, as in the following figure.

Figure 6.19: Quadruplet of type I bicontactual

Algebraically, we have

$$
b^{z} \in\langle a, b\rangle, z^{2} \in\langle a, b\rangle,(a b a)^{z^{-1}} \in\langle a, b\rangle \text { and } a^{z} \notin\langle a, b\rangle .
$$

Example : The bicontactual regular pseudo-oriented hypermap

$$
(G ; a, b, z)=\left(S_{4} ;(1,2),(1,3)(2,4),(1,2,3,4)\right) .
$$

5. "Quadruplet of type II" : where the hyperfaces distribute around F appear with pattern $F_{1}, F_{1}, F_{1}, F_{1}, F_{2}, F_{2}, F_{2}, F_{2}, F_{1}, F_{1}, F_{1}, F_{1}, \ldots$, in circular order, as in the following figure.

Figure 6.20: Quadruplet of type II bicontactual

Algebraically, we have

$$
a^{z} \in\langle a, b\rangle, z^{2} \in\langle a, b\rangle,(b a b)^{z} \in\langle a, b\rangle \text { and } b^{z} \notin\langle a, b\rangle .
$$

Example : The bicontactual regular pseudo-oriented hypermap

$$
(G ; a, b, z)=\left(S_{4} ;(1,3)(2,4),(3,4),(1,2,3,4)\right)
$$

As a future work we intend to classify these bicontactual regular pseudo-oriented hypermaps.

Bibliography

[1] A. Breda d'Azevedo, Hypermaps and symmetry, PhD Thesis, University of Southampton, (1991).
[2] __ Pseudo-orientably regular maps and hypermaps, Talk in Bled'07, 6 th Slovenian International Conference on Graph Theory (MAPS), June 24 - 30 (2007)
[3] _, The Reflexible hypermaps of characteristic -2, Math. Slovaca, 47, (1997) No. 2, 131-153.
[4] __ A Theory of restricted regularity of hypermaps, J. Korean Math. Soc. 43 (2006), No. 5, 991-1018.
[5] A. Breda d'Azevedo, Ana Breda, R. Nedela, Chirality group and chirality index of Coxeter chiral maps.
[6] A. Breda d'Azevedo and E. Fernandes, Regular oriented hypermaps with a prime number of hyperfaces, in preparation.
[7] A. Breda d'Azevedo, E. Fernandes, I. Rodrigues, Chirality group of the toroidal chiral hypermaps $(3,3,3)_{b, c}$, submitted.
[8] A. Breda d'Azevedo and Gareth Jones, Double coverings and reflexible abelian hypermaps, Beiträge zur Algebra und Geometrie, Vol 41 (2000), No. 2, 371-389.
[9] _, Rotary hypermaps of genus 2, Beiträge zur Algebra und Geometrie, Contribuitions to algebra and Geometry 42 (2001), No. 1, 1-37.
[10] A. Breda d'Azevedo, Gareth Jones, R. Nedela, M. \breve{S} koviera, Chirality groups of maps and hypermaps, Journal of Algebraic Combinatorics, Vol 29 (2009), No. 3, 337-355
[11] A. Breda d'Azevedo and R. Nedela, Join and Intersection of hypermaps, Acta Univ. M. Belii Math. No. 2 (2001), 13-28.
[12] , Chirality hypermaps with few faces, Math. Slovaca 53 (2003), No. 2, 107-128.
[13] A. Breda d'Azevedo, R. Nedela, Josef \breve{S} irán̆, Classification of regular maps of negative euler characteristic, Transactions of the American Mathematical Society, Vol. 357, No. 10 (2004), 4175-4190.
[14] M. Conder, Regular maps and hypermaps of Euler characteristic -1 to -200, Source Journal of Combinatorial Theory Series B archive, Vol. 99 , Issue 2 (March 2009), 455-459.
[15] _ Lists of rotary and regular maps and hypermaps of small genus, (2006) http://www.math.auckland.ac.nz/ conder
[16] M. Conder and P. Dobcsányi, Determination of all regular maps of small genus, Journal of Combinatorial Theory Series B 81 (2001), 224-242.
[17] M. Conder, P. Potoc̆nik, Josef \breve{S} irán̆, Regular maps with almost Sylow-cyclic automorphism groups and classification of regular maps with Euler characteristic $-p^{2}$, Preprint (2007), submitted for publication
http://www.math.auckland.ac.nz/ conder/preprints/regularmaps-asc.pdf
[18] M. Conder, Josef \breve{S} irán̆, T. W. Tucker, The genera, reflexibility and simplicity of regular maps, Preprint (2007), submitted for publication
www.math.auckland.ac.nz/ conder/preprints/RegularMapsGenera.ps
[19] D. Corn and D. Singerman, Regular hypermaps, Europ. J. Comb., 9 (1988), 337-351.
[20] Rui Duarte, 2-restrictedly-regular hypermaps of small genus, PhD Thesis, University of Aveiro, (2007).
[21] The GAP Group, GAP - Groups, Algorithms, and Programming - a System for Computational Discrete Algebra; the currently released version of GAP is 4.4.12 of December 2008 available in http://www.gap-system.org/
[22] Lynne D. James and Gareth Jones, Regular orientable imbeddings of complete graphs, Journal of Combinatorial Theory Series B 39, No. 3 (Dec, 1985), 353-367
[23] D. L. Johnson, Presentations of Groups, LondonMathematical Society, Student Text 15, second edition, London 1997.
[24] Josef \breve{S} irán̆, Thomas W. Tucker and Mark E. Watkins, Realizing finite edge-transitive orientable maps, J. Graph Theory 37 (2001), no. 1, 1-34.
[25] T. R. S. Walsh, Hypermaps versus bipartite maps, Journal of Combinatorial Theory Series B 18 (1975), 155-163.
[26] S. Wilson, New techniques for the construction of regular maps, PhD Thesis, University of Washington, (1976).
[27] , Bicontactual regular maps, Pacific Journal of Mathematics, Vol 120 (1985), No 2, 437-451.
[28] _ Operators over regular maps, Pacific Journal of Mathematics, Vol 81 (1979), No 2, 559-568.
[29] , Riemann Surfaces over regular maps, Can. J. Math., Vol XXX (1978), 763782.
[30] S. Wilson and A. Breda d'Azevedo, Non-orientable maps and hypermaps with few faces, Journal for Geometry and Graphics, Vol 7 (2003), No. 2, 173-189.
[31] _ Surfaces with no regular hypermaps, Discrete Math. 277 (2004) 241-274.

Index

\mathcal{H}-sequence, 10
arc, 11
adjacent, 19
automorphism, 9
bicontactuality, 1, 20
bipartite, 7
boundary, 77
chiral, 10, 17
chirality group, 17
chirality index, 17
coset, 15
covering, 9
darts, 8, 12
defining relator, 14
degree, 29
dual, 7

Euler characteristic, 7, 13
face neighborhood, 29
flag, 5, 7
free group, 14
generators, 14
genus, 7, 13
hyperedges, 6, 7
hyperfaces, 6,7
hypermap, 1, 5, 7
algebraic, 7
bicontactual, 1, 20
alternate, 2, 26
edge-twin, 2,26
fundamental alternate, 36
fundamental edge-twin, 33
vertex-twin, 2,26
bipartite, 11
chiral, 11, 13
mirror asymmetric, 10
mirror symmetric, 10
non-orientable, 1
orientable, 1, 8
oriented, 1, 8, 11, 12
regular, 11
type of the, 12
pseudo-oriented, 11, 79
regular, 11, 79
type of the, 80
reflexible, 10, 13
regular, 6, 11, 13
subgroup, 10
topological, 5
type of the, 6
uniform, 6
hypervertices, 6, 7
isomorphism, 9
map, 1, 7, 13
bipartite, 7
pseudo-oriented, 79
Walsh, 11
metacyclic group, 19
mirror symmetry, 10, 13
monodromy group, 6
presentation of a group, 14
reflection, 10

Schreier transversal, 15
stabiliser, 10
transversal, 15
word relation, 14

[^0]: ${ }^{1}$ that is, $\forall \omega_{1}, \omega_{2} \in \Omega \exists g \in \operatorname{Mon}(\mathcal{H})$ such that $\omega_{2}=\omega_{1} g$
 ${ }^{2}$ that is, $\forall g \in \operatorname{Mon}(\mathcal{H}),(\exists \omega \in \Omega$ such that $\omega=\omega g) \Rightarrow g=1$

[^1]: ${ }^{3}$ In a bipartite map its vertices can be colored with two colors, so that no two vertices joined by an edge have the same color.

[^2]: ${ }^{4}$ We will abreviate clockwise and counterclockwise by $C W$ and $C C W$, respectively.

[^3]: ${ }^{5}$ Notation adopted in [7].

[^4]: ${ }^{1}$ That is, the valency of the vertices is n.
 ${ }^{2}|\sigma|_{c}=\frac{c}{(c, \sigma)}$

[^5]: ${ }^{1}$ congruence (4.8)

