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resumo 
 
 

Na presente tese consideramos combinações algébricas de operadores de 
Wiener-Hopf e de Hankel com diferentes classes de símbolos de Fourier. 
Nomeadamente, foram considerados símbolos matriciais na classe de 
elementos quase periódicos, semi-quase periódicos, quase periódicos por 
troços e certas funções matriciais sectoriais. Adicionalmente, foi dedicada 
atenção também aos operadores de Toeplitz mais Hankel com símbolos quase 
periódicos por troços e com símbolos escalares possuindo n pontos de 
discontinuidades quase periódicas usuais.  
Em toda a tese, um objectivo principal teve a ver com a obtenção de 
descrições para propriedades de Fredholm para estas classes de operadores.  
De forma a deduzir a invertibilidade lateral ou bi-lateral para operadores de 
Wiener-Hopf mais Hankel com símbolos matriciais AP foi introduzida a noção 
de factorização assimétrica AP. Neste âmbito, foram dadas condições 
suficientes para a invertibilidade lateral e bi-lateral de operadores de Wiener-
Hopf mais Hankel com símbolos matriciais AP. Para tais operadores, foram
ainda exibidos inversos generalizados para todos os casos possíveis.  
Para os operadores de Wiener-Hopf-Hankel com símbolos matriciais SAP e 
PAP foi deduzida a propriedade de Fredholm e uma fórmula para a soma dos 
índices de Fredholm destes operadores de Wiener-Hopf mais Hankel e 
operadores de Wiener-Hopf menos Hankel. Uma versão mais forte destes 
resultados foi obtida usando a factorização generalizada AP à direita.  
Foram analisados os operadores de Wiener-Hopf-Hankel com símbolos que 
apresentam determinadas propriedades pares e também com símbolos de 
Fourier que contêm matrizes sectoriais. Em adição, para operadores de 
Wiener-Hopf-Hankel, foi obtido um resultado correspondente ao teorema 
clássico de Douglas e Sarason conhecido para operadores de Toeplitz com 
símbolos sectoriais e unitários.  
Condições necessárias e suficientes foram também deduzidas para que os 
operadores de Wiener-Hopf mais Hankel com símbolos L∞ sejam de Fredholm 
(ou invertíveis). Para se obter tal resultado, trabalhou-se com certas 
factorizações ímpares dos símbolos de Fourier.  
Os operadores de Toeplitz mais Hankel gerados por símbolos que possuem n 
pontos de discontinuidades quase periódicas usuais foram também 
considerados. Foram obtidas condições sob as quais estes operadores são 
invertíveis à direita e com dimensão de núcleo infinita, invertíveis à esquerda e 
com dimensão de co-núcleo infinita ou não normalmente solúveis.  
A nossa atenção foi também colocada em operadores de Toeplitz mais Hankel 
com símbolos matriciais contínuos por troços. Para tais operadores, condições 
necessárias e suficientes foram obtidas para se ter a propriedade de Fredholm. 
Tal foi realizado usando a abordagem do cálculo simbólico, determinados 
operadores auxiliares emparelhados com símbolos semi-quase periódicos e 
várias relações de equivalência após extensão entre operadores. 
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abstract 
 

In this thesis we considered algebraic combinations of Wiener-Hopf and Hankel 
operators with different classes of Fourier symbols. Namely, matrix symbols
from the almost periodic, semi-almost periodic, piecewise almost periodic and 
certain sectorial matrix functions were considered. In addition, attention was
also paid to Toeplitz plus Hankel operators with piecewise almost periodic 
symbols and with scalar symbols having n points of standard almost periodic 
discontinuities.  
In the entire thesis a main goal is to obtain Fredholm properties description of 
those classes of operators.  
To deduce the lateral or both sided invertibility theory for Wiener-Hopf plus 
Hankel operators with AP matrix symbols was introduced the notion of an AP 
asymmetric factorization. In this framework were given sufficient conditions for 
the lateral and both sided invertibility of the Wiener-Hopf plus Hankel operators 
with matrix AP symbols. For such kind of operators were also exhibited
generalized inverses for all the possible cases.  
For the Wiener-Hopf-Hankel operators with matrix SAP and PAP symbols the 
Fredholm property and a formula for the sum of the Fredholm indices of these
Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators were
derived. A stronger version of these results was obtained by using the
generalized right AP factorization.  
It was analyzed the Wiener-Hopf-Hankel operators with symbols presenting
some even properties, and also with Fourier symbols which contain sectorial 
matrices. In addition, for Wiener-Hopf-Hankel operators, it was obtained a 
corresponding result to the classical theorem by Douglas and Sarason known 
for Toeplitz operators with sectorial and unitary valued symbols.  
Necessary and sufficient condition for the Wiener-Hopf plus Hankel operators 
with L∞ symbols to be Fredholm (or invertible) were also derived. To obtain 
such a result we dealt with certain odd asymmetric factorization of the Fourier 
symbols.  
The Toeplitz plus Hankel operators generated by symbols which have n points 
of standard almost periodic discontinuities were also considered. Conditions
were obtained under which these operators are right-invertible and with infinite 
kernel dimension, left-invertible and with infinite cokernel dimension or simply 
not normally solvable.  
We also focused our attention to Toeplitz plus Hankel operators with piecewise 
almost periodic matrix symbols. For such operators necessary and sufficient 
conditions were obtained to have the Fredholm property. This was done using 
a symbol calculus approach, certain auxiliary paired operators with semi-almost 
periodic symbols, and several equivalence after extension operator relations. 
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Introduction

This thesis, belonging to the area of Operator Theory and Functional Analysis, deals

with special kinds of singular integral and convolution type operators, which are consti-

tuted by Wiener-Hopf, Hankel, and Toeplitz operators, and certain algebraic combinations

of them. The aim of the thesis is to present some recent results in view of a Fredholm

theory of Wiener-Hopf-Hankel and Toeplitz-Hankel operators. We start by describing

shortly the historical foundations of the operators under consideration.

The PhD thesis of Hankel [44] initiated the study of Hankel operators. In his thesis

Hankel considered finite matrices with entries depending only on the sum of the coordi-

nates. More precisely, Hankel studied determinants of finite complex matrices with entries

defined by cjk = cj+k (j, k ≥ 0), where {cj}j≥0 is a sequence of complex numbers. Such

type of matrices are called Hankel matrices and therefore have the form



c0 c1 c2 . . .

c1 c2 c3 . . .

c2 c3 c4 . . .
...

...
... . . .




.

This was the starting point for the theory of Hankel operators. The study of Wiener-Hopf

operators started after the joint work of Wiener and Hopf [73]. In this paper they intro-

duced a new method of solving Riemann-Hilbert problems, based on the decomposition

of the Fourier transform of the convolution kernel. This method of decomposition was

afterwards named as “Wiener-Hopf factorization” in honor to the authors of that paper.

The Toeplitz operators are also known as the discrete analogues of the Wiener-Hopf
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operators. These operators were first considered by Toeplitz [72]. As in the case of Hankel

operators, also in here they have a very interesting description, in terms of the matrices

which are generating them. In fact, in certain frameworks, Toeplitz operators are exactly

those which can be given by infinite matrices with constant entries on the main diagonals,

i.e., matrices of the form:



c0 c−1 c−2 . . .

c1 c0 c−1 . . .

c2 c1 c0 . . .
...

...
... . . .




.

The theory of Wiener-Hopf and Toeplitz operators was developed in a parallel way, until

the works by Rosenblum [67] and Devinatz [30] where they discovered that these two type

of operators were unitarily equivalent.

After these brief historical notes we would like to mention that algebraic combina-

tions of Wiener-Hopf and Hankel operators play an important role in various branches of

mathematics, such as Analysis, Mathematical Physics, Probability Theory, Control The-

ory, etc. Therefore, to obtain eventual descriptions of Fredholm properties of classes of

operators generated by Wiener-Hopf and Hankel operators is an important goal in present

investigations. In this way, we would like to point out that for some particular classes

of Fourier symbols the Fredholm theory of Wiener-Hopf plus Hankel operators is already

well developed. As an example, we can refer to the class of such operators with continuous

Fourier symbols or –in a more general setting– to the corresponding class with piecewise

continuous Fourier symbols.

Firstly, let us mention that the Fredholm theory for scalar Wiener-Hopf-Hankel oper-

ators with almost periodic, semi-almost periodic and with piecewise almost periodic func-

tions is well documented in the PhD thesis of Nolasco [58]. On the other hand, the Fred-

holm theory of matrix Wiener-Hopf-Hankel operators with almost periodic, semi-almost

periodic or with piecewise almost periodic functions was not yet completely described and

developed. Therefore, in this thesis we focus our attention to the Wiener-Hopf-Hankel

operators with the just mentioned symbols and moreover with symbols associated in a
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certain way with unitary and sectorial matrix functions. Furthermore, we treat Toeplitz

plus Hankel operators with piecewise almost periodic matrix functions, and also Toeplitz

plus Hankel operators with symbols having n points of standard almost periodic discon-

tinuities (SAPD). We will study these operators in the framework of L2 Lebesgue and

H2 Hardy spaces.

This thesis is organized as follows. In the first chapter we give the basic notation and

definitions of the main objects under study: Wiener-Hopf, Hankel and Toeplitz operators.

The main (here used) concepts from Operator Theory (such as kernel and cokernel, Fred-

holm index, adjoint operator etc.) are also stated in the first chapter. Moreover, certain

equivalence relations between bounded linear operators are defined and some key relations

between Wiener-Hopf-Hankel and Toeplitz-Hankel operators are exhibited. The main op-

erator relations which we will use throughout this thesis will be the so-called ∆-relation

after extension (introduced by Castro and Speck [20]) and the equivalence relation after

extension. Furthermore, in the end of the first chapter we give a necessary condition for

Wiener-Hopf (Toeplitz) plus/minus Hankel operators with essentially bounded symbols

to be a Fredholm operator.

Chapter 2 concerns the Fourier symbols of the operators under study. This chapter

has an introductory nature and starts with the consideration of the algebra of Bohr almost

periodic functions (AP ). Next, some basic properties and the main characteristics of such

functions are given. Then, we will pass to the algebras of semi-almost periodic functions

(SAP ) and piecewise almost periodic functions (PAP ). We will present a formula (Sara-

son [68]) which allows us to decompose in a more convenient way the functions from the

algebra SAP or PAP . Further, unitary and sectorial symbols will be defined and also

the classical results involving such functions will be stated. Moreover, the notion of stan-

dard almost periodic discontinuity will be given for functions defined on the unit circle

of the complex plane. Associated with such type of functions we provide descriptions of

the so-called model function, of the class U and a certain real functional σt0 [37] will be

presented as well. At the end of this chapter we define the Besicovitch space, and present

the basic properties of this space.
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In Chapter 3 we study Wiener-Hopf plus Hankel operators with symbols from the

algebra of matrix almost periodic functions. To deduce one-sided or two-sided invertibil-

ity theory for Wiener-Hopf plus Hankel operators with AP matrix symbols we start by

considering the Wiener subclass APW of AP. For matrices in APW we introduce the

notion of APW asymmetric factorization by following the known scalar case for AP func-

tions (cf. [59] and [60]). Depending on that factorization we give sufficient conditions for

one-sided and two-sided invertibility of the Wiener-Hopf plus Hankel operators with ma-

trix APW symbols. Moreover, for such kind of operators we will exhibit the generalized

inverses for all the possible cases. The case of Wiener-Hopf plus Hankel operators with

matrix symbols in the AP class can be treated in an analogous way as the case of the

APW class. The difference occurs only in the uniqueness of the asymmetric factorizations

with AP functions. The corresponding theorem for the uniqueness of the AP asymmetric

factorization is given at the end of Chapter 3. We point out that the theory of asymmet-

ric factorization in the Banach algebras with factorization property in connection with

Toeplitz-Hankel operators was considered in a detailed way in the Habilitation thesis of

Ehrhardt [38].

In Chapter 4 we treat the Wiener-Hopf-Hankel operators with matrix SAP symbols.

Conditions for the Fredholm property of such kind of operators are developed. Under

such conditions, a formula for the sum of the Fredholm indices of the Wiener-Hopf plus

Hankel and Wiener-Hopf minus Hankel operators is derived. To achieve such results we

will need the right AP factorization of matrix functions and the ∆-relation after extension.

In fact, here the ∆-relation after extension is a key tool to obtain the above mentioned

results. To achieve a stronger version of the Fredholm property we will make use of the

generalized right AP factorization. Obviously, the stronger version of the index formula

will be given upon assuming the corresponding Fredholm property. In this situation we

follow a standard strategy. Namely, in a first instance we give only an index formula for

Wiener-Hopf plus/minus Hankel operators with SAPW symbols. Then, employing an

argument based on the passage to the limit and using the fact that SAPW is dense in

SAP , we reach to the final goal of the chapter.
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Historical notes will be in order. The Toeplitz operators with symbols from the alge-

bra generated by continuous and almost periodic functions (later named as semi-almost

periodic functions class) were firstly considered by Sarason [68] (following a suggestion

by Gohberg). Sarason worked out the corresponding Fredholm theory for scalar Toeplitz

operators acting between L2 Lebesgue spaces with semi-almost periodic symbols. Later

on, for Lp Lebesgue spaces these results were generalized by Duduchava and Saginashvili

[35] for scalar Wiener-Hopf operators. The theory of matrix Toeplitz operators with SAP

symbols required completely different technics and methods apart to the scalar case and

this theory was mostly developed by three authors: Böttcher, Karlovich and Spitkovsky

[16]. Scalar Wiener-Hopf plus Hankel operators with SAP symbols were first consid-

ered by Nolasco and Castro [61], and in this thesis we give the results for the matrix

Wiener-Hopf-Hankel operators with SAP symbols [9].

In Chapter 5 it is discussed the Wiener-Hopf-Hankel operators with matrix PAP

symbols. Thus, this chapter generalizes the results obtained in Chapter 4. To reach to

the Fredholm property for Wiener-Hopf-Hankel operators with matrix PAP symbols we

will need to recall some results [14] and also to generalize for the matrix case the results

which were only known for the scalar case. After all this being at our disposal, we will be

able to obtain conditions for the Fredholm property and an index formula for Wiener-Hopf

plus Hankel and Wiener-Hopf minus Hankel operators. Here, as in Chapter 4, the key

ingredient is the ∆-relation after extension. At the final part of this chapter we derive

the stronger results, and this will be done by using the same arguments as in Chapter 4.

Namely, relying on the generalized right AP factorization and the argument of passage

to the limits.

In Chapter 6 we consider the class of Wiener-Hopf-Hankel operators with symbols

presenting some even properties (which in particular include unitary matrix functions),

and also with Fourier symbols which contain sectorial matrices. This chapter generalizes

the classical result known as Douglas-Sarason Theorem [32] for Toeplitz operators with

sectorial and unitary symbols. The main result will be obtained by using this classical

theorem together with the ∆-relation after extension.
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In Chapter 7 we study scalar Wiener-Hopf plus Hankel operators with symbols from

the L∞ functions class. This is motivated by the results obtained by Basor and Ehrhardt

[3] for the Toeplitz plus Hankel operators with L∞ symbols. The main results of this chap-

ter concern necessary and sufficient conditions for the Wiener-Hopf plus Hankel operators

with L∞ symbols to be Fredholm, or invertible. For the Toeplitz plus Hankel operators

Basor and Ehrhardt proposed an even asymmetric factorization with certain weights, but

apart of it, when considering Toeplitz minus Hankel operators, we need to deal with an odd

asymmetric factorization. Then using the equivalence between the Toeplitz minus Hankel

operators and the Wiener-Hopf plus Hankel operators, we will pass from the unit circle

to the real line and deduce the main results. It is worth to note that here we encounter

“unusual” weights in the form of a so-called weak odd asymmetric factorization.

In Chapter 8 we will consider scalar Toeplitz plus Hankel operators generated by

symbols which have n points of standard almost periodic discontinuities, and acting be-

tween L2 Lebesgue spaces. Conditions are obtained under which these operators are

right-invertible and with infinite dimensional kernel, left-invertible and with infinite di-

mensional cokernel or simply not normally solvable. This will be done by employing a

certain real functional and looking to the resulting signs on the points of the standard

almost periodic discontinuities. First of all, we deduce those results for symbols having

three points of standard almost periodic discontinuities and then we will be able to gener-

alize the results for functions having n points of standard almost periodic discontinuities.

To obtain that conditions we will need to recall the notion of generalized factorization

with infinite index, introduced by Dybin and Grudsky [37]. To prove some parts of the

main results we will relay on the ∆-relation after extension, but the other parts of the

theorems also require different reasonings. Therefore, we will employ an even asymmetric

factorization and certain arguments from Complex Analysis to reach the final goal of this

chapter.

In Chapter 9 we consider Toeplitz plus Hankel operators with piecewise almost pe-

riodic matrix symbols. For such operators, a Fredholm criterion is presented. This is

obtained by using a symbol calculus approach ([4], [15]), certain auxiliary paired opera-
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tors with semi-almost periodic symbols, and several equivalence after extension operator

relations. The importance of this theoretical result relays on the fact that we are able

to derive necessary and sufficient conditions for the Toeplitz plus Hankel operators with

piecewise almost periodic symbols to be Fredholm operators. Moreover, it can also be

considered as an enhancement of the results obtained in Chapter 5. At the end of this

chapter we obtain a Fredholm index formula for the matrix Toeplitz plus Hankel opera-

tors with piecewise almost periodic functions (obviously under the assumption that the

operators are Fredholm). This will be done by means of approximation, which in our case

means that in a first step we will deal with symbols from PAPW, giving the corresponding

known index formula for the operators with such type of symbols. After this, employing

certain stability properties and passing to the limit, we are able to obtain a Fredholm

index formula for matrix Toeplitz plus Hankel operators with PAP symbols.

The new results presented in this thesis are mainly based on the author’s published

or accepted for publication papers [9], [10], [11], [12], [13], and also on the submitted for

publication papers [6], [7] and [8].
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Chapter 1

Notation and introductory results

In this chapter we follow several goals. We give the basic notation, introduce the

main objects of the study, Wiener-Hopf-Hankel operators, and also the operators closely

related to them, Toeplitz-Hankel operators. The connection between the Wiener-Hopf-

Hankel operators and the Toeplitz-Hankel operators will be also given. The basic formulas

from the theory of Wiener-Hopf-Hankel (Toeplitz-Hankel) operators will be recorded, and

in the end of this chapter we state the necessary condition for the semi-Fredholm property

of such operators.

Due to the introductory nature of the present chapter, and consequent presentation

of known results, we choose only to present proofs of those results which are directly

connected with the operators under study and give an insight view of such operators. All

the other results are cited or are so general that can be found in any general book on

Functional Analysis and Operator Theory.

1.1 Lebesgue and Hardy spaces

For p = 1, and p = 2, Lp(R) will denote the Banach space of all Lebesgue measurable

complex-valued functions on R, for which

||f ||Lp(R) :=

(∫

R
|f(t)|pdt

) 1
p

< ∞ .

1



2 1. Notation and introductory results

By L∞(R) will be denoted the Banach space of all essentially bounded and Lebesgue

measurable complex-valued functions on the real line, equipped with the norm

||f ||L∞(R) := ess sup{|f(t)| : t ∈ R} ,

where ess sup stands for the essential supremum.

Let Γ be a closed rectifiable Jordan curve in the complex plane C. The interior of this

curve will be denoted by D+
Γ , and the exterior by D−

Γ . Further, Γ0 will stand for the unit

circle in the complex plane and in this case we will simply write D± in the place of D±
Γ0

.

The Lebesgue spaces Lp(Γ0) (p = 1, 2,∞) and also Lp(X) (X being an open subset

of R, Γ0, or being an arbitrary rectifiable Jordan curve on the complex plane) are defined

analogously to the spaces Lp(R). Further Lp
±(R) will denote the subspace of Lp(R) formed

by all the functions supported in the closure of R+ := (0, +∞) and R− := (−∞, 0),

respectively.

Let us now introduce the spaces which were first studied by Hardy. He considered

the spaces of functions which are analytic and bounded inside the closed unit disk of the

complex plain. However our approach will be different that of Hardy.

Let C− := {z ∈ C : =mz < 0} and C+ := {z ∈ C : =mz > 0}. As usual, let us

denote by H∞(C±) the set of all bounded and analytic functions in C±. Fatou’s Theorem

ensures that functions in H∞(C±) have non-tangential limits on R almost everywhere.

Thus, let H∞
± (R) be the set of all functions in L∞(R) that are non-tangential limits of

elements in H∞(C±). Moreover, it is well-known that H∞
± (R) are closed subalgebras of

L∞(R).

Let p = 1 or p = 2. The set of all functions f which are analytic in C± and satisfy

sup
±y>0

∫

R
|f(x + iy)|pdx < ∞

is denoted by Hp(C±). Employing again a theorem by Fatou we can ensure that functions

in Hp(C±) have non-tangential limits almost everywhere on R. For the set of corresponding

boundary functions we use the notation Hp
±(R).
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The formulas obtained by Paley and Wiener tells us that the spaces H2
±(R) and L2

±(R)

are isometrically isomorphic. Indeed:

H2
+(R) = FL2

+(R), H2
−(R) = FL2

−(R) , (1.1.1)

where F stands for the Fourier transform (see the definition below), and hence we have

the desired isometrical identification.

We also need the analogues of the above introduced spaces for the unit circle. Let us

denote by H∞(D±) the space of all bounded and analytic functions in D±. In case p = 1

or p = 2 we let Hp(D+) denote the set of all functions φ which are analytic in D+ and

satisfy

sup
r∈(0,1)

∫ 2π

0

|φ(reiθ)|pdθ < ∞ ,

and Hp(D−) will stand for the functions φ(z) (z ∈ D−) for which φ(z−1) is a function

in Hp(D+). Again by a theorem of Fatou, functions in Hp(D±) (p = 1, 2,∞) have non-

tangential limits almost everywhere on Γ0. We set Hp
±(Γ0) for the functions which can be

represented as non-tangential limits of functions from Hp(D±).

Consider a function f given on the unit circle: f : Γ0 → C. By the notation f̃ we

mean the following new function: f̃(t) := f(t−1), t ∈ Γ0. As usual, on the unit circle Γ0,

we say that a function f is even if f̃ = f and f is said to be an odd function if f̃ = −f .

For a Banach algebra B, BN will stand for the vectors with N components, and

BN×M will be the matrices with N rows and M columns. Moreover in our notation GB

will stand for the group of all invertible elements from the Banach algebra B.

1.2 Fredholm, semi-Fredholm and compact operators

Let X and Y be Banach spaces. By L(X, Y ) we denote the Banach space of all linear

bounded operators acting from X into Y. In the case X = Y we simply write L(X).

In this thesis we are using the name of regularity properties of a linear operator acting

between the Banach spaces for those properties which arise from a direct influence of the



4 1. Notation and introductory results

kernel and the image of those operators. In more detail, let T ∈ L(X,Y ), where X and

Y are the Banach spaces, and consider the following set:

KerT := {x ∈ X : Tx = 0} .

We will refer to it as a kernel of the operator T. The following set is called the image

(range) of the operator T and it is defined as follows:

ImT := {Tx : x ∈ X} .

In case that ImT is closed we call operator T to be normally solvable. Let us observe that

KerT and ImT are linear subspaces of X, and that KerT is always closed.

Assume that ImT is closed (i.e. T is normally solvable), and let us consider the

cokernel of T to be defined by the quotient CokerT := Y/ImT . We will recall the

numbers, referred as the defect numbers (infinite case is not excluded) of the operator,

which are defined by the following formulas:

n(T ) := dimKerT ,

and

d(T ) := dimCokerT .

A normally solvable operator T is called Fredholm if both n(T ) and d(T ) are finite. In

this case the Fredholm index of the operator T is defined to be the finite number:

IndT := n(T )− d(T ) .

A normally solvable operator T is said to be (properly) n-normal if n(T ) < ∞ (and

d(T ) = ∞) and (properly) d-normal if d(T ) < ∞ (and n(T ) = ∞). The operators which

belong to the set of operators which are Fredholm, n- or d-normal we will call them semi-

Fredholm operators, and the operators which belong to the set of operators which are

properly n- or d-normal we call them properly semi-Fredholm operators.

Additionally, we say that T is left-invertible or right-invertible if there exist T−
l : Y →

X or T−
r : Y → X such that T−

l T = IX or TT−
r = IY , respectively. As usual, in the



1.2 Fredholm, semi-Fredholm and compact operators 5

case when both T−
l and T−

r exist the operator T is said to be two-sided invertible (or

invertible). Alternatively, it can be shown that T is left-invertible if and only if T is

injective and normally solvable. In the same way, T is right-invertible if and only if T is

normally solvable and surjective.

DEFINITION 1.2.1. Let X and Y be Hilbert spaces and let T ∈ L(X,Y ). Then T is

said to be a finite rank operator if the range of T (i.e., ImT ) has a finite dimension.

It is known (cf., e.g., [31]) that the set of all finite rank operators acting on a Hilbert

space X, which we will denote by LF(X), is a minimal two-sided ideal of the space L(X).

DEFINITION 1.2.2. Let X and Y be Hilbert spaces and let T ∈ L(X,Y ). Then T is

said to be a compact operator if the image of any bounded subset of X is relatively compact

in Y.

The set of all compact operators acting between Hilbert spaces X and Y will be de-

noted by K(X, Y ). It is also a known fact that the norm closure of all finite rank operators

acting between the Hilbert spaces coincide with the class of all compact operators (cf.,

e.g., [31]). Let us observe that K(X) is a closed two-sided ideal of L(X), where K(X)

stands for the compact operators acting between the Hilbert space X (c.f., e.g., [31]).

The next proposition allows us to give a definition of an adjoint operator.

PROPOSITION 1.2.3. (cf., e.g., [31]) Let T ∈ L(X), where X is a Hilbert space.

Then there exist a unique operator S ∈ L(X), such that

(Tf, g) = (f, Sg) ,

where f and g belong to X, and (·, ·) denotes the inner product in X.

DEFINITION 1.2.4. Let T ∈ L(X), where X is a Hilbert space. The adjoint operator

of T, denoted T ∗, is the unique operator on X satisfying (Tf, g) = (f, T ∗g) for all f and

g in X.
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THEOREM 1.2.5. (cf., e.g., [14]) Let T ∗ be the adjoint operator of T ∈ L(X), where

X is a Hilbert space. Then, T is normally solvable if and only if T ∗ is normally solvable.

Moreover, T is a Fredholm operator if and only if T ∗ is a Fredholm operator. If T is

n-normal, then T ∗ is d-normal, and if T is d-normal, then T ∗ is n-normal. Furthermore,

the following equalities hold:

n(T ∗) = d(T ), d(T ∗) = n(T ), IndT ∗ = −IndT .

THEOREM 1.2.6. (cf., e.g., [14]) Let T ∈ L(X), where X is a Banach space. If T is a

Fredholm (resp. n-normal, d-normal) operator and K is a compact operator, then T + K

is Fredholm (resp. n-normal, d-normal) operator and Ind(T + K) = IndT.

THEOREM 1.2.7. (Atkinson) If T and S are Fredholm or n-normal (resp. d-normal)

operators acting between the Banach spaces, then TS is Fredholm or n-normal (resp.

d-normal) operator and IndTS = IndT + IndS.

We would like to give the notion of the spectrum and the essential spectrum of the

operators, and to describe some elementary properties of them.

DEFINITION 1.2.8. Let B be a Banach algebra with identity I and f ∈ B. We define

spectrum of f with respect to B to be the set

spB[f ] := {λ ∈ C : f − λI 6∈ GB} ,

and the resolvent set of f to be the set

ρB(f) := C \ spB[f ] .

The spectral radius is the following real number

rB(f) := sup{|λ| : λ ∈ spB[f ]} .

In some cases we will use the brief notation sp[f ] instead of spB[f ]. In the same way we

will simplify the notation for the spectral radius and for the resolvent set. The fact that for

a given Banach algebra B (over the complex field) the set sp[f ], with f ∈ B, is nonempty
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and compact is well-known (cf., e.g., [31]). Moreover we have that rB(f) ≤ ||f ||B. In case

B = L∞(R) the spectrum of f ∈ L∞(R) is called the essential range of f and is denoted

by R(f). Hence, by the definition we have:

R(f) := spL∞(R)[f ] = {λ ∈ C : f − λ 6∈ GL∞(R)} .

Consider T ∈ L(X), where X is a Banach space. The spectrum of a bounded linear

operator T is defined analogously as above:

sp[T ] := {λ ∈ C : T − λIX 6∈ GL(X)} .

In addition, the essential spectrum of a linear and bounded operator T is defined in the

following way:

spess[T ] := {λ ∈ C : T − λIX is not a Fredholm operator} .

It is readily seen that spess[T ] ⊂ sp[T ].

1.3 Relations between operators

To study certain linear bounded operators, very frequently we need to transfer prop-

erties from one operator to another somehow equivalent operator. We will recall several

kinds of notions of operator equivalence. Let T ∈ L(X1, Y1) and S ∈ L(X2, Y2) where X1,2

and Y1,2 are Banach spaces. We say that T and S are equivalent operators if there exist

invertible operators E ∈ L(Y2, Y1) and F ∈ L(X1, X2), such that the following equality

holds:

T = ESF .

In addition, if we have an equality T = ESE−1 we say that T and S are unitarily

equivalent operators. It is clear that if T and S are equivalent operators, then they enjoy

the same regularity properties. More precisely, if one of these operators is two-sided

invertible, one-sided invertible, Fredholm, (properly) n-normal, (properly) d-normal or

normally solvable, then the other one also has exactly the same property.
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Another kind of the equivalence relation between linear bounded operators is the

notion of equivalence after extension. We say that T and S are equivalent operators after

extension, if there exist Banach spaces Z1 and Z2, such that T ⊕ IZ1 and S ⊕ IZ2 are

equivalent operators. Here ⊕ denotes the direct sum and IZ1 and IZ2 are the identity

operators on Z1 and Z2 spaces, respectively. In this case we also have that T and S enjoy

the same regularity properties.

Further, we will use the notion of ∆-relation after extension introduced by Castro

and Speck in [20] for bounded linear operators acting between Banach spaces, e.g. T :

X1 → X2 and S : Y1 → Y2. We say that T is ∆-related after extension to S (and use

the abbreviation T
∗
∆ S) if there is an auxiliary bounded linear operator acting between

Banach spaces T∆ : X1∆ → X2∆, and bounded invertible operators E and F such that
 T 0

0 T∆


 = E


 S 0

0 IZ


 F , (1.3.1)

where Z is an additional Banach space and IZ represents the identity operator in Z. In

the particular case where T∆ = IX1∆
: X1∆ → X2∆ = X1∆ is the identity operator, we

arrive at the above introduced notion of equivalent after extension operators.

The ∆-relation after extension allows us to transfer regularity properties between the

bounded linear operators T and S only in one direction, namely from the operator S to

the operator T. This means that if T is ∆-related after extension with S, then T belongs

to the same regularity class as S does, but not in the other direction from the operator

T to the operator S. The reason for this is based on the operator T∆ appearing in the

equality (1.3.1). There are many counterexamples, which show that e.g. it is possible that

T is an invertible operator, but T∆ is not normally solvable, and in this case we have that

S is not a normally solvable operator. Hence we have that T is an invertible and S is not

a normally solvable operator, thus T and S do not enjoy the same regularity properties.

We would like to observe that ∆-relations after extension are transitive [20, Example

1.6]:

T1

∗
∆ S

S
∗
∆ T2



 =⇒ T1

∗
∆ T2 .
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This property is important due to the reason that the equivalence after extension is a

particular case of the ∆-relation after extension. This means that if we have T1

∗
∆ S and

S is equivalent after extension with T2, then T1

∗
∆ T2. We will use these facts to obtain

important equivalence relations between the Wiener-Hopf-Hankel and pure Wiener-Hopf

operators (cf. subsequent sections).

1.4 Wiener-Hopf-Hankel operators

In this section we introduce the main objects of our study: Wiener-Hopf-Hankel oper-

ators. These operators naturally arise in a variety of Mathematical Physics applications,

in Probability Theory, Control Theory, etc. The Hankel operators were first studied in

the middle of the 19th century, and the Wiener-Hopf operators came out in the 30s of

20th century. After that, enormous effort was made to describe the regularity properties

of such type of operators cf., e.g., the works [3], [14], [16], [18], [20], [22], [26], [27], [30],

[32], [34], [35], [37], [38], [40], [41], [42], [47], [54], [56], [64], [66] and the references therein.

Therefore, much is known about these kind of operators, and even more remains to be

known.

The Fourier transformation F , acting between the Lebesgue spaces L2(R), is given

in the next formula:

(Ff)(x) =
1√
2π

∫

R
f(t)eitxdt, x ∈ R ,

and for the inverse we have:

(F−1f)(t) =
1√
2π

∫

R
f(x)e−itxdx, t ∈ R .

In a formal way the convolution operator W 0
k (which we will consider in the case when it

is acting between L2(R) Hilbert spaces) is given by the following formula:

(W 0
k f)(x) =

∫

R
k(x− t)f(t)dt, x ∈ R .

The function k is called the convolution kernel of the operator W 0
k .
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Using the Fourier transformation the convolution operator can be formally given by

the next formula:

W 0
k = F−1k̂F ,

where k̂ denotes the Fourier transform of the convolution kernel k.

A relevant class of convolution type operators (both from the theoretical and applied

points of views) is constituted by the Wiener-Hopf-Hankel operators. Under the term

Wiener-Hopf-Hankel we mean both Wiener-Hopf plus Hankel and Wiener-Hopf minus

Hankel operators.

The Wiener-Hopf operators received their name due to the pioneering work of Wiener

and Hopf [73] about the study of integral equations of the form

cϕ(x) +

∫ +∞

0

k(x− y)ϕ(y) dy = f(x) , x ∈ R+ ,

for an unknown ϕ from L2(R+) where f ∈ L2(R+) is arbitrarily given, and c ∈ C and

k ∈ L1(R) are fixed and known. Indeed, from these Wiener-Hopf equations arise the

(classical) Wiener-Hopf operators defined by

Wφf(x) = cf(x) +

∫ +∞

0

k(x− y)f(y)dy , x ∈ R+, (1.4.1)

where φ belongs to the Wiener algebra W := {φ : φ = c + Fk, c ∈ C, k ∈ L1(R)}
(which is a Banach algebra when endowed with the norm ‖c + Fk‖W := |c| + ‖k‖L1(R)

and the usual multiplication operation). Having in mind the convolution operation, the

definition of Wφ in (1.4.1) gives rise to an understanding of the Wiener-Hopf operators as

convolution type operators. Therefore, they can also be represented as

Wφ = r+F−1φ · F : L2
+(R) → L2(R+), (1.4.2)

where r+ is the restriction operator from L2(R) into L2(R+). Here φ is a so-called Fourier

symbol of the Wiener-Hopf operator (and from now on we will be briefly refereing to it

as a symbol).

Looking now to the structure of the operators in (1.4.2), we recognize that the map

W : W→ L(L2
+(R), L2(R+)), φ → Wφ,



1.4 Wiener-Hopf-Hankel operators 11

can be extended from W by continuity to larger algebras, and namely to L∞(R).

Within the context of (1.4.1), the Hankel integral operators H have the form

Hf(x) =

∫ +∞

0

k(x + y)f(y)dy , x ∈ R+ (1.4.3)

(for some k ∈ L1(R)). It is well-known that H, as an operator defined between L2(R)

spaces, is a compact operator. However, exactly for the same reasons as above, it is also

possible to provide a rigorous meaning to the expression (1.4.3) when the kernel k is a

temperate distribution whose Fourier transform belongs to L∞(R). Now we can rewrite

the Hankel operator in another way using the convolution:

Hφ = r+F−1φ · FJ : L2
+(R) → L2(R+), (1.4.4)

where J is a so-called reflection operator acting by the rule

(Jf)(x) = f̃(x) = f(−x), x ∈ R .

Again we will refer to φ as the symbol of the Hankel operator.

Although during a long period of time the operators of type (1.4.1) and type (1.4.3)

were studied separately, in the last years integral equations governed by algebraic sums of

Wiener-Hopf and Hankel operators have been receiving increasing attention (cf. [11], [13],

[22], [24], [29], [39], [45], [49], [50], [54], [60], [61], [62], [71]). A great part of the interest

is directly originated by concrete mathematical-physics applications where Wiener-Hopf

plus Hankel operators appear. This is the case of problems in wave diffraction phenomena

which are modeled by boundary-transmission value problems that can be equivalently

translated into systems of integral equations characterized by such kind of operators

(see, e.g., [23], [25], [26]). Moreover, crack problems considered in the book [34] lead

to equations with fixed singularities on finite intervals, which give rise to finite interval

Hankel operators.

Considering now Φ to be a matrix function in the formulas (1.4.2) and (1.4.4), we will

have that the Wiener-Hopf plus Hankel operator with symbol Φ ∈ [L∞(R)]N×N is given

by the formula

WΦ + HΦ = r+F−1Φ · F(I[L2
+(R)]N + J) : [L2

+(R)]N → [L2(R+)]N .
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To denote the Wiener-Hopf plus Hankel operators with (matrix) symbol Φ we will use

the notation WHΦ.

As for the Wiener-Hopf minus Hankel operators we have the formula:

WΦ −HΦ = r+F−1Φ · F(I[L2
+(R)]N − J) : [L2

+(R)]N → [L2(R+)]N .

Let us observe that I[L2
+(R)]N + J is an even extension operator acting from [L2(R+)]N

into [L2(R)]N and I[L2
+(R)]N − J is an odd extension operator acting between the just

mentioned spaces. We denote these operators by `e and `o, respectively. So, we can

rewrite the Wiener-Hopf plus/minus Hankel operators with symbol Φ in the following

form:

WHΦ = r+F−1Φ · F`e : [L2(R+)]N → [L2(R+)]N , (1.4.5)

and

WΦ −HΦ = r+F−1Φ · F`o : [L2(R+)]N → [L2(R+)]N , (1.4.6)

respectively. From the formulas (1.4.5) and (1.4.6) we find out that the Wiener-Hopf-

Hankel operators are nothing but convolution type operators with symmetry (cf., e.g.,

[24], [55]).

We will need the formula (1.4.5) in an equivalent form, and it is given by

WHΦ = r+F−1Φ · F`er+ : [L2
+(R)]N → [L2(R+)]N . (1.4.7)

1.5 Toeplitz-Hankel operators

Toeplitz operators may be viewed as operators acting between [H2
+(Γ0)]

N spaces, and

which are closely related to the theory of Wiener-Hopf operators acting between Lebesgue

spaces on the real line. We start by presenting some additional definitions which will be

used to present the Toeplitz operators in a formal way.

Consider Cauchy singular integral operator SR acting between [L2(R)]N spaces by the

formula:

(SRf)(t) =
1

πi

∫

R

f(τ)

τ − t
dτ, t ∈ R ,
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where the integral is understood in the principal value sense. It is well-known that S2
R =

I[L2(R)]N , and therefore it induces two complementary (Riesz) projections, namely:

PR :=
I + SR

2
, QR :=

I − SR
2

.

The Cauchy singular integral operator and the Riesz projections are defined in a

similar way for the unit circle, and we will denote them by SΓ0 , PΓ0 and QΓ0 , respectively.

Consider the following image spaces: PΓ0([L
2(Γ0)]

N) =: [L2
+(Γ0)]

N and QΓ0([L
2(Γ0)]

N)

=: [L2
−(Γ0)]

N . The Hardy spaces [H2
±(Γ0)]

N can be isometrically identified with the above

introduced spaces [L2
±(Γ0)]

N . In fact, the “plus” spaces coincide and for the “minus” spaces

we have an equality: [H2
−(Γ0)]

N = [L2
−(Γ0)]

N ⊕ CN . Here ⊕ stands for the direct sum of

the spaces.

Let Φ ∈ [L∞(Γ0)]
N×N . The Toeplitz operator acting between [L2

+(Γ0)]
N spaces is

given by

TΦ := PΓ0ΦI : [L2
+(Γ0)]

N → [L2
+(Γ0)]

N , (1.5.1)

where Φ is called the symbol of the operator and I stands for the identity operator.

Let us also give the discrete analogue of the Toeplitz operators. Let Φ ∈ [L∞(Γ0)]
N×N .

For the Fourier coefficients of Φ, we will denote them by Φk ∈ CN×N , we have the formula:

Φk =
1

2π

∫ 2π

0

Φ(eit)e−iktdt, k ∈ Z .

The discrete Toeplitz operators are acting between the spaces `2(Z+,CN), where this

space is the CN -valued `2 space over Z+ := {0, 1, 2, . . .}. We would like to recall that the

`2 space over Z+ is a space of all infinite sequences {zk}∞k=0 such that
∑∞

k=0 |zk|2 < ∞.

The operator induced by the matrix



Φ0 Φ−1 Φ−2 . . .

Φ1 Φ0 Φ−1 . . .

Φ2 Φ1 Φ0 . . .
...

...
... . . .




(1.5.2)
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and acting between `2(Z+,CN) spaces is called the discrete Toeplitz operator with symbol

Φ. If we look more carefully to the matrix (1.5.2) we see that the entries in the main

diagonal and parallel to it are constant. Therefore we have a one-to-one correspondence

between the discrete Toeplitz operators and matrices given by the formula (1.5.2). The

origins of such a matrices goes back to the early work of Toeplitz [72] where he investigated

finite matrices which are constant on diagonals and the relation of such kind of matrices

with the corresponding one- and two-sided infinite limit matrices.

The studies of Toeplitz operators and Wiener-Hopf operators had parallel develop-

ments until Rosenblum [67] using certain polynomials proved that those operators are

equivalent. A little bit later Devinatz [30] showed that the canonical conformal mapping

of the unit disk onto the upper half-plane gives the equivalence between Toeplitz operators

and the Fourier transform of Wiener-Hopf operators.

The analogue of the Hankel operator for the unit circle is defined by

HΦ = PΓ0ΦJΓ0 : [L2
+(Γ0)]

N → [L2
+(Γ0)]

N ,

where JΓ0 is a Carleman shift operator which acts by the rule:

(JΓ0f)(t) =
1

t
f

(
1

t

)
, t ∈ Γ0.

As above we give the discrete analogue of the Hankel operators acting between `2(Z+,CN)

spaces. Let Φ ∈ [L∞(Γ0)]
N×N and Φk ∈ CN×N be the Fourier coefficients of Φ. Then the

operator induced by the matrix



Φ0 Φ1 Φ2 . . .

Φ1 Φ2 Φ3 . . .

Φ2 Φ3 Φ4 . . .
...

...
... . . .




(1.5.3)

is called the discrete Hankel operator with symbol Φ. Contrary to the Toeplitz matrix

here we have that the entries parallel to minor diagonal are constant and that the matrix

(1.5.3) is an upside-down Toeplitz matrix. The finite Hankel matrix first appeared in the

PhD thesis of Hankel [44].
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The Toeplitz plus Hankel operator with symbol Φ will be denoted by THΦ, and has

the form

THΦ = PΓ0Φ(I + JΓ0) : [L2
+(Γ0)]

N → [L2
+(Γ0)]

N .

In an analogous way is defined the Toeplitz plus Hankel operator with symbol Φ ∈
[L∞(R)]N×N acting between the Hardy spaces [H2

+(R)]N (cf., e.g., [14] or [18]). I.e.,

THΦ = PRΦ(I + J) : [H2
+(R)]N → [H2

+(R)]N . (1.5.4)

1.6 Basic formulas

In this section we give the basic formulas for the Wiener-Hopf-Hankel operators in

view of the factorization theory of such an operators. Let `0 denote the zero extension

operator from the space [L2(R+)]N onto the space [L2
+(R)]N :

`0 : [L2(R+)]N → [L2
+(R)]N .

The canonical projection P+ acting from the space [L2(R)]N onto the space [L2
+(R)]N and

also the complementary projection of it P− acting from [L2(R)]N onto [L2
−(R)]N will be

useful to obtain certain results. It is clear that the following equality holds:

P+ = `0r+ : [L2(R)]N → [L2
+(R)]N .

The next proposition gives two basic formulas from the theory of Wiener-Hopf-Hankel

operators.

PROPOSITION 1.6.1. (cf., e.g., [14]) Let Φ, Ψ ∈ [L∞(R)]N×N . Then

WΦΨ = WΦ`0WΨ + HΦ`0HeΨ , (1.6.1)

HΦΨ = WΦ`0HΨ + HΦ`0WeΨ .

Proof. Observe that

I[L2(R)]N = P+ + P− .
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Moreover, by definition J2 = I and P2
± = P±. Hence we have:

I[L2(R)]N = P+ + P−JJP− .

Taking into account that

P−J = JP+, JP− = P+J ,

we have that

I[L2(R)]N = P+ + JP+P+J = P+ + JP+J .

Now the direct computation provides that

WΦΨ = r+F−1(ΦΨ) · F = r+F−1Φ · FF−1Ψ · F
= r+F−1Φ · F(P+ + JP+J)F−1Ψ · F
= r+F−1Φ · FP+F−1Ψ · F + r+F−1Φ · FJP+JF−1Ψ · F
= r+F−1Φ · F`0r+F−1Ψ · F + r+F−1Φ · FJ`0r+F−1Ψ̃ · FJ

= WΦ`0WΨ + HΦ`0HeΨ , (1.6.2)

and also

HΦΨ = r+F−1(ΦΨ) · FJ = r+F−1Φ · FF−1Ψ · FJ

= r+F−1Φ · F(P+ + JP+J)F−1Ψ · FJ

= r+F−1Φ · FP+F−1Ψ · FJ + r+F−1Φ · FJP+JF−1Ψ · FJ

= r+F−1Φ · F`0r+F−1Ψ · FJ + r+F−1Φ · FJ`0r+F−1Ψ̃ · F
= WΦ`0HΨ + HΦ`0WeΨ , (1.6.3)

Adding the equalities (1.6.2) and (1.6.3) one obtains:

WHΦΨ = WΦ`0WHΨ + HΦ`0WHeΨ . (1.6.4)
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From the last formula it directly follows the following equality:

WHΦΨ = WHΦ`0WHΨ + HΦ`0WHeΨ−Ψ . (1.6.5)

Indeed from (1.6.4) we have that

WHΦΨ = WΦ`0WHΨ + HΦ`0WHΨ + HΦ`0WHeΨ −HΦ`0WHΨ

= WHΦ`0WHΨ + HΦ`0WHeΨ−Ψ .

We will now deduce two formulas which will be useful for our future goals.

PROPOSITION 1.6.2. (cf., e.g., [14])

1. If Φ ∈ [H∞
− (R)]N×N , then HΦ = 0

2. If Φ ∈ [H∞
+ (R)]N×N , then HeΦ = 0

Proof. We will prove only the first part of the proposition, since the second part goes

analogously to the first part. Let us recall that HΦ = r+F−1Φ · FJ : [L2
+(R)]N →

[L2(R+)]N . So, assume that Φ ∈ [H∞
− (R)]N×N , and take a function f ∈ [L2

+(R)]N .

Then Jf ∈ [L2
−(R)]N and using the Paley-Wiener formula (cf. (1.1.1)) we conclude

that FJf ∈ [H2
−(R)]N . The multiplication by [H∞

− (R)]N×N functions leaves the space

[H2
−(R)]N invariant, and we get that ΦFJf ∈ [H2

−(R)]N . Acting with the inverse of the

Fourier transformation and using once again the Paley-Wiener formula one obtains that

F−1ΦFJf ∈ [L2
−(R)]N . We are left to observe that the restriction operator gives now the

zero function on the space [L2(R+)]N . Hence HΦ = 0.

The last proposition gives hint how to construct a factorization of matrix functions

which allows to factorize corresponding Wiener-Hopf operators.

THEOREM 1.6.3. (cf., e.g., [14]) Let Φ± ∈ [H∞
± (R)]N×N and Ψ ∈ [L∞(R)]N×N . We

have the following factorization

WΦ−ΨΦ+ = WΦ−`0WΨ`0WΦ+ .
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Proof. Follows directly from formula (1.6.2) and the previous proposition.

The importance of the last theorem is that the Wiener-Hopf operator with symbol

Φ := Φ−ΨΦ+, where Φ± ∈ G[H∞
± (R)]N×N is equivalent with the Wiener-Hopf opera-

tor with symbol Ψ, due to the reason that WΦ± are invertible operators, inverse being

`0WΦ−1
±

`0, since `0 : [L2(R+)]N → [L2
+(R)]N is also an invertible operator with inverse

being r+ : [L2
+(R)]N → [L2(R+)]N . Our aim is to obtain a similar factorization for-

mula for the Wiener-Hopf-Hankel operators. Looking to the formula (1.6.5) we under-

stand that we will have the above mentioned factorization if we have Φ = Φ−Φe, where

Φ− ∈ [H∞
− (R)]N×N and Φe ∈ [L∞(R)]N×N is an even function, i.e., Φe = Φ̃e. Consequently,

if Φ− ∈ [H∞
− (R)]N×N or Φe ∈ [L∞(R)]N×N and Φe = Φ̃e we have a formula:

WHΦ−Φe = WHΦ−`0WHΦe .

THEOREM 1.6.4. (cf., e.g., [59]) Let Φ, Ψ, Θ ∈ [L∞(R)]N×N . If Φ ∈ [H∞
− (R)]N×N and

Θ = Θ̃, then we have the factorization:

WHΦΨΘ = WΦ`0WHΨ`0WHΘ . (1.6.6)

Proof. Using formula (1.6.5) and recalling that HΦ = 0 if Φ ∈ [H∞
− (R)]N×N we will have

WHΦΨΘ = WHΦ`0WHΨΘ = WΦ`0WHΨΘ .

Now relaying on the fact that Θ is an even function and once again using the formula

(1.6.5) we will have that

WHΨΘ = WHΨ`0WHΘ .

Combining the last two equalities gives us the assertion:

WHΦΨΘ = WΦ`0WHΨ`0WHΘ .

Altogether we are ready to totally describe the Wiener-Hopf plus Hankel operators

with even symbols.
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THEOREM 1.6.5. (cf., e.g., [38]) Let Φe ∈ G[L∞(R)]N×N and Φe is even. Then WHΦe

is invertible with inverse being the following operator:

`0WHΦ−1
e

`0 : [L2(R+)]N → [L2
+(R)]N .

Proof. Clearly we have that

WHΦeΦ
−1
e

`0 = WHIN×N
`0 = r+`0 = I[L2

+(R)]N .

Using the fact that inverse of even function is itself even, we obtain from (1.6.5) that

WHΦeΦ
−1
e

= WHΦe`0WHΦ−1
e

.

Multiplying both sides of the last equality by the invertible operator `0 one obtains:

WHΦeΦ
−1
e

`0 = WHΦe`0WHΦ−1
e

`0 = I[L2
+(R)]N .

Similarly we will have that

`0WHΦ−1
e

`0WHΦe = I[L2
+(R)]N .

Hence we have explicitly shown that WHΦe is invertible and the inverse is given by the

formula:

`0WHΦ−1
e

`0 : [L2(R+)]N → [L2
+(R)]N .

Let us emphasize that similar (invertibility) results hold for Wiener-Hopf minus Han-

kel operators, and also for Toeplitz plus/minus Hankel operators. In the formulas for

Toeplitz-Hankel operators (on the unit circle) the function f̃ must be understood as the

function f(t−1). For example, the analogue of the formula (1.6.5) will have a form:

THΦΨ = THΦTHΨ + HΦTHeΨ−Ψ ,

where Ψ̃(t) = Ψ(t−1).
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1.7 Relation between convolution type operators

In this section we are going to deduce some equivalence relations between Wiener-

Hopf-Hankel and pure Wiener-Hopf operators using the ∆-relation after extension, re-

called in Section 1.3. Let us start with the Gohberg-Krupnik-Litvinchuk identity, which

has the form:

1

2


 I I

J −J





 T + SJ 0

0 T − SJ





 I J

I −J


 =


 T S

JSJ JTJ


 ,

where T, S ∈ L(L2(R)).

Employing the above identity and the methods presented in the paper [20] we can

state that the following equality holds:

(DΦ :=)


 WHΦ 0

0 WΦ −HΦ


 = E


 WΦeΦ−1 0

0 I[L2(R+)]N×N


 F , (1.7.1)

where Φ ∈ G[L∞(R)]N×N and E and F are certain linear bounded invertible operators,

which can be computed explicitly (cf., e.g., [20], [58]).

We list the most important consequences of the last identity:

(i) If WΦeΦ−1 is two-sided invertible, one-sided invertible, Fredholm, (properly) n-normal,

(properly) d-normal or normally solvable, then the same happens with WHΦ and

WΦ −HΦ.

(ii) dimKerWΦeΦ−1 = dimKerWHΦ + dimKer(WΦ −HΦ).

(iii) dimCokerWΦeΦ−1 = dimCokerWHΦ + dimCoker(WΦ −HΦ).

(iv) IndWΦeΦ−1 = IndWHΦ + Ind(WΦ −HΦ).

For the Toeplitz-Hankel operators (on the unit circle) a similar identity as (1.7.1) takes

place (with Φ̃(t) = Φ(t−1)) and therefore the propositions (i)–(iv) are still in force for

these operators.

We stress that it is possible that WHΦ (THΦ) enjoys some regularity property, but

WΦeΦ−1 (TΦeΦ−1) does not have the same property. This happens because of the influence
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of WΦ−HΦ (TΦ−HΦ) operator. It is a known fact (cf. [38]) that Wiener-Hopf (Toeplitz)

plus Hankel and Wiener-Hopf (Toeplitz) minus Hankel operators with the same symbol

may have very different properties.

We would like also to emphasize that from the formula (1.7.1) it directly follows that

DΦ and WΦeΦ−1 are equivalent after extension operators.

The next proposition reveals an equivalence between Toeplitz plus Hankel operators

and certain singular integral operators (cf., e.g., [1] or [38, Theorem 3.2]).

PROPOSITION 1.7.1. Let Φ ∈ [L∞(Γ0)]
N×N . The following operators are equivalent

after extension:

(i) THΦ acting between [H2
+(Γ0)]

N ,

(ii) Φ(I + JΓ0)PΓ0 + QΓ0 acting between [L2(Γ0)]
N .

Proof. Recalling the definition of THΦ we recognize that THΦ acting between [H2
+(Γ0)]

N

spaces is equivalent after extension with PΓ0Φ(I +JΓ0)PΓ0 +QΓ0 acting between [L2(Γ0)]
N

spaces. Directly we have that

PΓ0Φ(I + JΓ0)PΓ0 + QΓ0 =
(
Φ(I + JΓ0)PΓ0 + QΓ0

)(
I −QΓ0ΦPΓ0 −QΓ0ΦJΓ0PΓ0

)
.

(1.7.2)

We are left to observe that I − QΓ0ΦPΓ0 − QΓ0ΦJΓ0PΓ0 is an invertible operator with

inverse being I + QΓ0ΦPΓ0 + QΓ0ΦJΓ0PΓ0 .

REMARK 1.7.2. From the proof presented in the previous proposition it is clear that if

we consider THΦ acting between the spaces [H2
+(R)]N , then this operator will be equivalent

after extension with Φ(I + J)PR + QR acting between [L2(R)]N spaces.

COROLLARY 1.7.3. THΦ acting between [H2
+(Γ0)]

N (resp. [H2
+(R)]N) spaces and

Φ(I + JΓ0)PΓ0 + QΓ0 (resp. Φ(I + J)PR + QR) acting between [L2(Γ0)]
N (resp. [L2(R)]N)

spaces have the same regularity properties.

Proof. Immediately follows from the previous proposition and the remark cited after this.
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1.8 Certain equivalence relations

In this section we describe the equivalence relation between Wiener-Hopf-Hankel and

Toeplitz-Hankel operators. It turns out that Wiener-Hopf plus Hankel operators are

equivalent with Toeplitz minus Hankel operators, and Wiener-Hopf minus Hankel opera-

tors are equivalent with Toeplitz plus Hankel operators. We will give full proofs of these

facts.

First of all we will describe the auxiliary operators which will be needed to obtain

that equivalences. Denote by L(Φ) the multiplication operator by Φ. Hence we can write

Toeplitz and Hankel operators acting between [H2
+(Γ0)]

N spaces in the following way:

TΦ = PΓ0L(Φ)PΓ0 : [H2
+(Γ0)]

N → [H2
+(Γ0)]

N ,

HΦ = PΓ0L(Φ)JΓ0PΓ0 : [H2
+(Γ0)]

N → [H2
+(Γ0)]

N ,

and for the Toeplitz plus/minus Hankel operators we have the following:

TΦ ±HΦ = PΓ0L(Φ)(I ± JΓ0)PΓ0 : [H2
+(Γ0)]

N → [H2
+(Γ0)]

N .

Let us consider the useful operator B0 given by

(B0Φ)(t) = Φ

(
i
1 + t

1− t

)
, t ∈ Γ0 . (1.8.1)

Obviously B0 : [L∞(R)]N×N → [L∞(Γ0)]
N×N is an isometrical isomorphism, the inverse

of which is given by the following formula:

(B−1
0 Ψ)(x) = Ψ

(
x− i

x + i

)
, x ∈ R .

In addition, the operator B given by

(BΦ)(x) =

√
2

x + i
Φ

(
x− i

x + i

)
, x ∈ R ,

is an isometrical isomorphism of [L2(Γ0)]
N×N onto [L2(R)]N×N , of [H2

+(Γ0)]
N×N onto

[H2
+(R)]N×N , and of t−1[H2

−(Γ0)]
N×N onto [H2

−(R)]N×N . For the inverse of B we have:

(B−1Ψ)(t) =
i
√

2

1− t
Ψ

(
i
1 + t

1− t

)
, t ∈ Γ0 .
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By using the “convolution” with B operators it is obtained the formula:

BL(Φ)B−1 = (B−1
0 Φ)I . (1.8.2)

A straightforward computation shows that

SR = BSΓ0B
−1, PR = BPΓ0B

−1, QR = BQΓ0B
−1 . (1.8.3)

The following formula is also of interest:

F−1PRF = `0r+ = P+ : L2(R) → L2
+(R) . (1.8.4)

THEOREM 1.8.1. Let Φ ∈ [L∞(R)]N×N . Then

WΦ ±HΦ : [L2
+(R)]N → [L2(R+)]N

is equivalent to

T(B0Φ) ∓H(B0Φ) : [H2
+(Γ0)]

N → [H2
+(Γ0)]

N .

Proof. Indeed, consider the operator

F−1B[T(B0Φ) ∓H(B0Φ)]B
−1F : [L2

+(R)]N → [L2
+(R)]N .

then a straightforward computation leads to

F−1B[T(B0Φ) ∓ H(B0Φ)]B
−1F = F−1B[PΓ0L(B0Φ)(I ∓ JΓ0)PΓ0 ]B

−1F
= F−1BPΓ0B

−1F︸ ︷︷ ︸
`0r+

F−1 BL(B0Φ)B−1

︸ ︷︷ ︸
L(Φ)

F F−1B(I ∓ JΓ0)B
−1F︸ ︷︷ ︸

I±J

F−1BPΓ0B
−1F︸ ︷︷ ︸

`0r+

= `0r+F−1Φ · F(I ± J)`0r+ : [L2
+(R)]N → [L2

+(R)]N . (1.8.5)

We notice that in the last identities the formulas (1.8.2), (1.8.3) and (1.8.4) were used.

In addition, it is clear that we can drop the last `0r+ operator in (1.8.5) since this is just

the identity operator in [L2
+(R)]N . So ,we have that

F−1B[T(B0Φ) ∓H(B0Φ)]B
−1F = `0[WΦ ±HΦ] ,

thus we can conclude that WΦ ±HΦ is equivalent with T(B0Φ) ∓H(B0Φ).
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From the proof given above it is now clear why the Wiener-Hopf plus Hankel operators

are equivalent with the Toeplitz minus Hankel operators and the Wiener-Hopf minus

Hankel operators with the Toeplitz plus Hankel operators: the main reason is that in the

present situation the operator J is equivalent with −JΓ0 .

COROLLARY 1.8.2. Let Φ ∈ [L∞(R)]N×N . Then WΦ±HΦ and TB0Φ∓HB0Φ have the

same regularity properties.

Proof. The proof is a direct consequence of the last theorem.

1.9 Necessary conditions for the semi-Fredholm prop-

erty

In this section we show that if the Wiener-Hopf plus Hankel operator is semi-Fredholm

then its symbol necessarily needs to be invertible. Although the proof of this result

appears in several sources (cf., e.g., [38, Proposition 2.6], [58, Theorem 1.4.1]) for the

readers convenience we will reproduce here the full proof.

REMARK 1.9.1. In the proof of the next theorem we will make use of the following

known fact about n-normal operators (cf., e.g., [52, Lemma 2.1] or [57, Lemma 2.1]): If

(for a Banach space X) T ∈ L(X) is an n-normal operator, then there exists a compact

operator K ∈ K(X) (which can be chosen as a projection onto the space KerT ) and a

number δ > 0 such that

||Tx||+ ||Kx|| ≥ δ||x||, x ∈ X.

THEOREM 1.9.2. Let Φ ∈ [L∞(R)]N×N . If WHΦ is semi-Fredholm operator, then

Φ ∈ G[L∞(R)]N×N .

Proof. Assume that WHΦ is an n-normal operator. From the equivalence relation (cf.

Section 1.8) we obtain that TB0Φ−HB0Φ is also an n-normal operator. From the previous
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remark we know that there exist a compact operator K which is a projection onto the

Ker(TB0Φ −HB0Φ) and a positive number δ > 0 such that

||(TB0Φ −HB0Φ)f ||[H2
+(Γ0)]N + ||Kf ||[H2

+(Γ0)]N ≥ δ||f ||[H2
+(Γ0)]N

for all f ∈ [H2
+(Γ0)]

N . Making the substitution of PΓ0f instead of f allows us to obtain

the following inequality:

δ||f ||[L2(Γ0)]N − δ||(I[L2(Γ0)]N − PΓ0)f ||[L2(Γ0)]N ≤ ||(TB0Φ −HB0Φ)f ||[L2(Γ0)]N

+||KPΓ0f ||[L2(Γ0)]N

for all f ∈ [L2(Γ0)]
N . Let us now introduce the isometries

Un : [L2(Γ0)]
N → [L2(Γ0)]

N , Unf(t) = tnf(t) ,

where n ∈ Z. Replacing f by Unf in the last inequality one obtains:

||(TB0Φ −HB0Φ)Unf ||[L2(Γ0)]N + ||KPΓ0U
nf ||[L2(Γ0)]N

+ δ||(I[L2(Γ0)]N − PΓ0)U
nf ||[L2(Γ0)]N ≥ δ||Unf ||[L2(Γ0)]N

for all f ∈ [L2(Γ0)]
N . Having in mind that U±n are isometries, it follows that

||U−n(TB0Φ −HB0Φ)Unf ||[L2(Γ0)]N + ||KPΓ0U
nf ||[L2(Γ0)]N

+δ||U−n(I[L2(Γ0)]N − PΓ0)U
nf ||[L2(Γ0)]N ≥ δ||f ||[L2(Γ0)]N (1.9.1)

for all f ∈ [L2(Γ0)]
N . Since Un → 0 weakly when n →∞ on [L2(Γ0)]

N and using the fact

that K is a compact operator, we have

KPΓ0U
n −→ 0 strongly on [L2(Γ0)]

N ,when n →∞ . (1.9.2)

Let us consider the dense subset P of L2(Γ0) of all trigonometric polynomials
n∑

k=−n

fkt
k t ∈ Γ0 .

Due to the reason that PΓ0 acts on P in the following way:

PΓ0 :
n∑

k=−n

fkt
k →

n∑

k=0

fkt
k ,
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we obtain that U−nPΓ0U
nf converges in L2(Γ0) to f, for all f ∈ P . Thus by the continuity

we can guaranty that

U−nPΓ0U
n → I[L2(Γ0)]N strongly on [L2(Γ0)]

N ,when n →∞ . (1.9.3)

In a similar way we will have that

U−nPΓ0U
−n → 0 strongly on [L2(Γ0)]

N ,when n →∞ . (1.9.4)

Recalling the identities UnU−n = I[L2(Γ0)]N and JΓ0U
n = U−nJΓ0 provides us to the

equalities:

U−nTB0ΦUn = (U−nPΓ0U
n)(B0Φ)(U−nPΓ0U

n) ,

U−nHB0ΦUn = (U−nPΓ0U
n)(B0Φ)JΓ0(U

−nPΓ0U
n) .

From (1.9.3) and (1.9.4), it follows that

U−nTB0ΦUn → (B0Φ)I[L2(Γ0)]N strongly on [L2(Γ0)]
N , when n →∞,

U−nHB0ΦUn → 0 strongly on [L2(Γ0)]
N , when n →∞.

Hence

U−n(TB0Φ −HB0Φ)Un → (B0Φ)I[L2(Γ0)]N strongly on L2(Γ0), when n →∞. (1.9.5)

Taking the limit in (1.9.1) when n →∞ and using (1.9.2), (1.9.3) and (1.9.5), we obtain:

||(B0Φ)f ||[L2(Γ0)]N ≥ δ||f ||[L2(Γ0)]N ,

for every f ∈ [L2(Γ0)]
N . Thus B0Φ ∈ G[L∞(Γ0)]

N×N , which means that Φ ∈ G[L∞(R)]N×N .

The d-normal case follows from the n-normal case by passage to adjoint operators.

Analogous results hold true for WΦ −HΦ operators:

THEOREM 1.9.3. Let Φ ∈ [L∞(R)]N×N . If WΦ − HΦ : [L2
+(R)]N → [L2(R+)]N is a

semi-Fredholm operator then Φ ∈ G[L∞(R)]N×N .

REMARK 1.9.4. From the previous two theorems it immediately follows that if Φ 6∈
G[L∞(R)]N×N , then WΦ±HΦ : [L2

+(R)]N → [L2(R+)]N are not semi-Fredholm operators.



Chapter 2

The Fourier symbols and the

Besicovitch space

In this chapter we give the definitions of certain classes of Fourier symbols of the

Wiener-Hopf-Hankel and Toeplitz-Hankel operators, for which we develop the Fredholm

theory in the subsequent chapters. We start with complex-valued functions defined on the

real line, which is the C∗-algebra of almost periodic functions (AP ). Then we introduce

semi-almost periodic functions (SAP ), and moreover piecewise almost periodic functions

(PAP ) will be also discussed.

Further, the notion of unitary and sectorial symbols on the real line will be given.

After this we turn to the unit circle and give the definition and the important properties

of the functions having n points of standard almost periodic discontinuities.

In the end of this chapter we consider the Besicovitch space, which plays an important

role in the development of the Fredholm theory for the Wiener-Hopf-Hankel operators with

SAP and PAP Fourier symbols.

2.1 Almost periodic functions

The algebra of almost periodic functions was created by Harald Bohr (brother of the

famous physician Niels Bohr) in the 1920s. His interest was initially in finite Dirichlet

27
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series. He was considering the following elements:

nσe(log n)it .

Taking a finite sum of such terms avoids difficulties of analytic continuation to the region

σ < 1. Further, Mathematical Analysis was applied to discuss the closure of this set of

basic functions, in various norms. Bohr himself defined the uniformly almost periodic

functions as the closure with respect to the supremum norm in L∞(R). He proved that

this definition was equivalent to the existence of ε almost periods, for all ε > 0, which

means that there are translations T (ε) = T of the variable t such that

|f(t + T )− f(T )| < ε .

The theory was developed using other norms by Besicovitch (to be defined as the Besi-

covitch space), Stepanov, Weyl, von Neumann, Turing, Bochner and others in the 1920s

and 1930s.

Let us also cite the definition by Bochner (1926): A function f is almost periodic if

every sequence {f(tn+T )} of translations of f has a subsequence that converges uniformly

to f for T in (−∞, +∞).

Now, for our purposes we will define the class AP of almost periodic functions in the

way that was given by Bohr. A function α of the form

α(x) :=
n∑

j=1

cj exp(iλjx) , x ∈ R ,

where λj ∈ R and cj ∈ C, is called an almost periodic polynomial. If we construct the

closure of the set of all almost periodic polynomials by using the supremum norm, we will

then obtain the AP class of almost periodic functions.

THEOREM 2.1.1. (Bohr) Suppose that ϕ ∈ AP and

inf
x∈R

|ϕ(x)| > 0 . (2.1.1)

Then the function arg ϕ(x) can be defined so that

arg ϕ(x) = λx + ψ(x) ,
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where λ ∈ R and ψ ∈ AP.

DEFINITION 2.1.2. (Bohr mean motion) Let ϕ ∈ AP and let the condition (2.1.1)

be satisfied. The Bohr mean motion of the function ϕ is defined to be the following real

number

k(ϕ) := lim
`→∞

1

2`
arg ϕ(x)|`−` .

The following subclasses of AP are also of interest:

AP+ := algL∞(R){eλ : λ ≥ 0}, AP− := algL∞(R){eλ : λ ≤ 0} ,

where eλ := eiλx. In fact, one of the reasons why the last two algebras are very useful is

due to the fact that AP± = AP ∩H∞
± (R) (cf. [14, Corollary 7.7]). The almost periodic

functions have a great amount of important and well-known properties. Among them, for

our purposes the following ones are the most relevant.

PROPOSITION 2.1.3. (cf., e.g., [14]) Let A ⊂ (0,∞) be an unbounded set and let

{Iα}α∈A := {(xα, yα)}α∈A

be a family of intervals Iα ⊂ R such that |Iα| = yα−xα →∞ as α →∞. If ϕ ∈ AP, then

the limit

M(ϕ) := lim
α→∞

1

|Iα|
∫

Iα

ϕ(x)dx

exists, is finite, and is independent of the particular choice of the family {Iα}.

DEFINITION 2.1.4. Let ϕ ∈ AP. The number M(ϕ) given by Proposition 2.1.3 is

called the Bohr mean value or simply the mean value of ϕ.

In the matrix case the mean value is defined entry-wise.

We define the Wiener subalgebra of almost periodic functions in the following way:

the elements of APW are those from AP which allow a representation by an absolutely
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convergent series. In fact, APW is precisely the (proper) subclass of all functions ϕ ∈ AP

which can be written in an absolutely convergent series of the form:

ϕ =
∑

j

ϕj eλj
, λj ∈ R ,

∑
j

|ϕj| < ∞ .

Let Ω(ψ) := {λ ∈ R : M(ψe−λ) 6= 0} be the Bohr-Fourier spectrum of ψ. Consider

APW− (APW+) to be the set of all functions ψ ∈ APW such that Ω(ψ) ⊂ (−∞, 0]

(Ω(ψ) ⊂ [0, +∞), respectively). It is therefore clear that APW− ⊂ AP−, and APW+ ⊂
AP+.

2.2 Semi-almost periodic and piecewise almost periodic

functions

Let C(Ṙ) (with Ṙ := R ∪ {∞}) represent the (bounded and) continuous functions ϕ

on the real line for which the two limits

ϕ(−∞) := lim
x→−∞

ϕ(x), ϕ(+∞) := lim
x→+∞

ϕ(x)

exist and coincide. The common value of these two limits will be denoted by ϕ(∞).

Furthermore, C0(Ṙ) will stand for the functions ϕ ∈ C(Ṙ) for which ϕ(∞) = 0.

We denote by PC := PC(Ṙ) the C∗-algebra of all bounded piecewise continuous

functions on Ṙ, and we also put C(R̄) := C(R) ∩ PC, where C(R) denote the usual

set of continuous functions on the real line. Use will be also made of the C∗-algebra

PC0 := {ϕ ∈ PC : ϕ(±∞) = 0}.
The C∗-algebra of semi-almost periodic elements is defined as follows.

DEFINITION 2.2.1. The C∗-algebra SAP of all semi-almost periodic functions on R

is the smallest closed subalgebra of L∞(R) that contains AP and C(R̄) :

SAP := algL∞(R){AP, C(R̄)} .

In [68] Sarason proved the following theorem which reveals in a different way the

structure of the SAP algebra.
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THEOREM 2.2.2. Let u ∈ C(R̄) be any function for which u(−∞) = 0 and u(+∞) = 1.

If ϕ ∈ SAP, then there exist ϕ`, ϕr ∈ AP and ϕ0 ∈ C0(Ṙ) such that

ϕ = (1− u)ϕ` + uϕr + ϕ0 .

The functions ϕ`, ϕr are uniquely determined by ϕ, and independent of the particular

choice of u. The maps

ϕ 7→ ϕ`, ϕ 7→ ϕr

are C∗-algebra homomorphisms of SAP onto AP.

REMARK 2.2.3. The last theorem is also valid in the matrix case.

REMARK 2.2.4. We would like to emphasize that SAPN×N is an inverse closed subal-

gebra of [L∞(R)]N×N (i.e., if Φ ∈ SAPN×N is invertible in [L∞(R)]N×N , then the inverse

Φ−1 belongs to SAPN×N).

We set SAPW for all the functions from SAP, for which both the right and the left

almost periodic representatives are the functions from the Wiener algebra APW.

Let us consider the closed subalgebra of L∞(R) formed by almost periodic and piece-

wise continuous functions. We will denote it by PAP := algL∞(R){AP, PC}. It is readily
seen that SAP ⊂ PAP. In the scalar case it was proved that PAP = SAP + PC0. The

same situations is also valid in the matrix case considering the decomposition entrywise.

In addition, the next proposition is the matrix version of a known corresponding result for

the representation of PAP elements in the scalar case (cf., e.g., [14, Proposition 3.15]).

PROPOSITION 2.2.5. (i) If Φ ∈ PAPN×N , then there are uniquely determined

matrix-valued functions Θ`, Θr ∈ APN×N and Φ0 ∈ PCN×N
0 such that

Φ = (1− u)Θ` + uΘr + Φ0 ,

where u ∈ C(R), 0 ≤ u ≤ 1, u(−∞) = 0 and u(+∞) = 1.
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(ii) If Φ ∈ GPAPN×N , then there exist matrix-valued functions Θ ∈ GSAPN×N and

Ξ ∈ GPCN×N such that Ξ(−∞) = Ξ(+∞) = IN×N ,

Φ = Θ Ξ ,

(iii) In addition, the Θ` and Θr elements used in (i) coincide with the local representatives

of Θ ∈ GSAPN×N used in (ii), and their unique existence is ensured by Theorem

2.2.2 and Remark 2.2.3.

Proof. The proof of the part (i) can be given as the proof of the scalar case (cf. [14,

Proposition 3.15]) upon reasoning entrywise, and therefore it is omitted in here.

The proof of part (ii) can also be done in a similar way to the scalar case but contains

some additional small differences. Therefore, it will be performed here for the reader

convenience. Suppose Φ ∈ GPAPN×N , and put Υ := (1−u)Θ` +uΘr. Then Φ = Υ+Φ0.

There is an M ∈ (0,∞) such that | det Υ(x)| is bounded away from zero for |x| > M, and

therefore we can find an element Υ0 ∈ [C0(Ṙ)]N×N such that Θ := Υ + Υ0 ∈ GSAPN×N .

This allows us to look to Φ in the form

Φ = Θ + Φ0 −Υ0 = Θ[I + Θ−1(Φ0 −Υ0)] =: ΘΞ ,

(= [I + (Φ0 −Υ0)Θ
−1]Θ =: ΞΘ) ,

being clear that Ξ = Θ−1Φ ∈ GPCN×N and Ξ(−∞) = Ξ(+∞) = IN×N .

The part (iii) follows immediately from the construction made for (ii).

REMARK 2.2.6. Due to the item (iii) of Proposition 2.2.5, we also call Θ` and Θr the

local representatives of Φ at −∞ and +∞, respectively.

The class PAPW is defined analogously as the class SAPW.

2.3 Unitary and sectorial functions

In this section we are interested in matrix unitary and sectorial functions. We start

with the following definition.
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DEFINITION 2.3.1. A matrix function Φ ∈ [L∞(R)]N×N is called unitary if ΦΦ∗ =

Φ∗Φ = IN×N , where Φ∗ stands for the conjugate transpose of Φ.

In other words matrix unitary functions are those whose inverse coincide with its

Hermitian transpose matrix.

The sectorial matrix functions are defined as follows.

DEFINITION 2.3.2. A matrix function S ∈ [L∞(R)]N×N is said to be sectorial if there

exist a real number ε > 0 and two (constant) matrices B,C ∈ GCN×N such that

<e(BS(x)Cz, z) ≥ ε||z||2 ,

for almost all x ∈ R and all z ∈ CN .

We will denote by SN×N the set of all sectorial matrix functions (in [L∞(R)]N×N).

In the scalar case, the sectorial functions are exactly those which have an essential range

contained in some open half-plane whose boundary passes through the origin (cf., e.g.,

[14, Section 6.4] or [17, Section 1.7]).

The following result was obtained independently by Pousson and Rabindranathan,

and it shows how can we decompose an invertible essentially bounded matrix function

through the unitary matrix functions and functions which are invertible in the “plus”

Hardy space.

THEOREM 2.3.3 (Pousson [63] and Rabindranathan [65]). If a ∈ G[L∞(R)]N×N , then

there exist an unitary matrix function u and h ∈ G[H∞
+ (R)]N×N such that a = uh, almost

everywhere on R.

The next lemma gives a hint how to prove results for Wiener-Hopf operators with

sectorial symbols, when the results with unitary symbols are already at our disposal.

LEMMA 2.3.4. [18, Lemma 2.21] If E is a subset of [L∞(R)]N×N with the property that

cg ∈ E whenever c ∈ C \ {0} and g ∈ E, ϕ ∈ [L∞(R)]N×N is unitary, and dist(ϕ, E) < 1,

then there exist a function f ∈ E and a sectorial function s ∈ G[L∞(R)]N×N such that

ϕ = sf .
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2.4 Functions with n points of standard almost periodic

discontinuities

In the present section we will follow some definitions and results which can be found

in [37].

Let us transfer to the unit circle Γ0 the class of almost periodic functions (introduced

in Section 2.1 for the real line R), by means of the following operator B0 (cf. (1.8.1)):

(B0f)(t) = f

(
i
1 + t

1− t

)
.

To denote the almost periodic functions class in the unit circle, we will use the notation

APΓ0 . Furthermore, almost periodic polynomials on the circle are of the form:

a(t) :=
n∑

j=1

cj exp

(
λj

t + 1

t− 1

)
, λj ∈ R.

Next, the standard almost periodic discontinuities will be defined for the unit circle.

DEFINITION 2.4.1. A function φ ∈ L∞(Γ0) has a standard almost periodic discontinu-

ity (SAPD) in the point t0 ∈ Γ0 if there exists a function p0 ∈ APΓ0 and a diffeomorphism

τ := ω0(t) of the unit circle Γ0 onto itself, such that ω0 preserves the orientation of Γ0,

ω0(t0) = 1, the function ω0 has a second derivative at t0, and

lim
t→t0

(φ(t)− p0(ω0(t))) = 0 , t ∈ Γ0 . (2.4.1)

In such a situation we will say that φ has a standard almost periodic discontinuity in the

point t0 with characteristics (p0, ω0).

REMARK 2.4.2. Assume that φ ∈ L∞(Γ0) has a standard almost periodic discontinuity

in the point t0 and let a diffeomorphism ω0 satisfy the conditions in the definition of a

standard almost periodic discontinuity. Then, by means of a simple change of variable,

the equality (2.4.1) can be rewritten in the following way:

lim
τ→1

[φ(ω−1
0 (τ))− p0(τ)] = 0, τ ∈ Γ0 .
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2.4.1 Model functions

An invertible function h with properties h ∈ L∞+ (Γ0) and h−1 ∈ L∞(Γ0) is called

a model function on the curve Γ0. The operator Th−1 , acting in L2
+(Γ0), and its kernel

KerTh−1 will be referred to as the model operator and the model subspace in the space

L2
+(Γ0) generated by the function h, respectively. We say that the model function on the

curve Γ0 belongs to the class U if h−1 ∈ L∞− (Γ0).

The just described notion of a model function, model operator and model space, can

be generalized to the real line, and furthermore for any rectifiable Jordan curve. As an

example, take exp(iλx), with λ > 0, and we will obtain a model function for the real line

R.

In the space L2(Γ0) let us also consider the pair of complementary projections:

Ph := hQΓ0h
−1I, Qh := hPΓ0h

−1I ,

and the subspace

M(h) := Ph(L
2
+(Γ0)).

PROPOSITION 2.4.3. Let hj ∈ U , j = 1, 2, ..., n. Then h :=
∏n

j=1 hj ∈ U and

M(h) = M(h1)⊕ h1M(h2)⊕ . . .⊕ (
n−1∏
j=1

hj)M(hn) .

Let ak ∈ C, k = 1, 2, 3, 4, and assume that a1a4 − a2a3 6= 0. Consider the following

two fractional linear transformations, which are inverses of one another:

v(t) =
a1t + a2

a3t + a4

, v−1(x) =
a4x− a2

a1 − a3x
. (2.4.2)

If we apply a fractional linear transformation of the form (2.4.2) to the model function

exp(iλx), with λ > 0, we arrive at the function

h0(t) = exp(φ0(t− t0)
−1), φ0 ∈ C \ {0} , (2.4.3)

which will be considered on the unit circle Γ0 (and t0 ∈ Γ0).
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PROPOSITION 2.4.4. The function h0 given by (2.4.3) is a model function on Γ0 if

and only if arg φ0 = arg t0.

The previous proposition is just a particularization of a corresponding result in [37,

Proposition 4.2] when passing from the case of simple closed smooth contours to our Γ0

case.

PROPOSITION 2.4.5. Suppose that a diffeomorphism τ = ω0(t) of the unit circle Γ0

onto itself satisfies the conditions in the definition of a standard almost periodic disconti-

nuity at the point t0 ∈ Γ0. Then the following representation holds on Γ0 :

φ(t) = exp

(
λ

ω0(t) + 1

ω0(t)− 1

)
= h0(t)c0(t), λ ∈ R , (2.4.4)

where c0 ∈ GC(Γ0), h0 ∈ L∞(Γ0) is given by (2.4.3) with φ0 = 2λ/ω′0(t0), and C(Γ0) is a

usual set of continuous functions on Γ0.

REMARK 2.4.6. Proposition 2.4.4 ensures that whenever on Γ0 there exists a function

φ that has a standard almost periodic discontinuity in the point t0, one of the functions

h0 given by (2.4.3) or h−1
0 is a model function on Γ0. Since here the mapping τ = ω0(t)

preserves the orientation of Γ0, arg φ0 = arg t0 when λ > 0 (cf. (2.4.4)) and arg φ0 =

arg t0 − π when λ < 0.

2.4.2 Functional σt0

Let t0 ∈ Γ0 and let the function φ ∈ GL∞(Γ0) be continuous in a neighborhood of t0,

except, possibly, in the point t0 itself. Let us recall the real functional used by Dybin and

Grudsky in [37]:

σt0(φ) := lim
δ→0

δ

4
[arg φ(t)] |t′t=t′′ = lim

δ→0

δ

4
(arg φ (t′)− arg φ (t′′)) (2.4.5)

where t′, t′′ ∈ Γ0, t′ ≺ t0 ≺ t′′, |t′ − t0| = |t′′ − t0| = δ.

The notation t′ ≺ t0 ≺ t′′, used above, means that when we are tracing the curve in

the positive direction we will meet the point t′ first, then the point t0 and then the point

t′′. The next proposition establishes a connection between the functional σt0(φ) and the

standard almost periodic discontinuities on Γ0.
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PROPOSITION 2.4.7. Suppose that the diffeomorphism τ = ω0(t) of the unit circle Γ0

onto itself satisfies the conditions in the definition of a standard almost periodic disconti-

nuity in the point t0 ∈ Γ0 and that p ∈ GAPΓ0 . Then φ(t) = p(ω0(t)) ∈ GL∞(Γ0), σt0(φ)

exists, and

σt0(φ) = k(p)/|ω′0(t0)| .

2.5 The Besicovitch space

In this section we introduce notations and results about the Besicovitch space. For the

corresponding proofs, the reader should consult [14, Chapter 7] and the references therein

(cf., e.g., [14, page 130]). Denote by AP 0 the set of all almost periodic polynomials. The

Besicovitch space B2 is defined as the completion of AP 0 with respect to the norm

||ϕ||B2 :=

(∑

λ

|ϕλ|2
) 1

2

,

where ϕ =
∑

λ ϕλeλ ∈ AP 0. Let RB denote the Bohr compactification of R and dµ the

normalized Haar measure on RB (see, e.g., [14, Chapter 7]). It is known that AP may

be identified with C(RB) and that one can identify B2 with L2(RB, dµ). Thus, B2 is a

(nonseparable) Hilbert space, and the inner product in B2 = L2(RB, dµ) is given by

(f, g) :=

∫

RB

f(ξ)g(ξ)dµ(ξ) (2.5.1)

For f, g ∈ AP we also have the following equality

(f, g) = lim
T→∞

1

2T

∫ T

−T

f(x)g(x)dx

Since µ(RB) = 1 is finite, AP is contained in B2. Moreover, AP is a dense subset of B2.

The Cauchy–Schwarz inequality shows that the mean value

M(f) :=

∫

RB

f(ξ)dµ(ξ)

exists and is finite for every f ∈ B2. For f ∈ B2, the set

Ω(f) := {λ ∈ R : M(fe−λ) 6= 0}
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is called the Bohr–Fourier spectrum of f and can be shown to be at most countable.

Taking into account (2.5.1), one can prove that for every f ∈ B2,

||f ||2B2 =
∑

λ∈Ω(f)

|M(fe−λ)|2 .

Let `2(R) denote the collection of all functions f : R → C for which the set {λ ∈ R :

f(λ) 6= 0} is at most countable and

||f ||2`2(R) :=
∑

|f(λ)|2 < ∞ .

Further, `∞(R) is defined as the set of all functions f : R→ C such that

||f ||`∞(R) := sup
λ∈R

|f(λ)| < ∞ .

Note that `2(R) is a (nonseparable) Hilbert space with pointwise operations and the inner

product

(f, g) :=
∑

λ∈R
f(λ)g(λ)

and that `∞(R) is a C∗-algebra with pointwise operations and the norm || · ||`∞(R).

The map FB : `2(R) → B2 which sends a function f ∈ `2(R) with a finite support to

the function

(FBf)(x) =
∑

λ∈R
f(λ)eiλx, x ∈ R

can be extended by continuity to all of `2(R). It is referred to as the Bohr-Fourier trans-

form. The operator FB is an isometric isomorphism. The inverse Bohr-Fourier transform

acts by the rule

F−1
B : B2 → `2(R), (F−1

B f)(λ) = M(fe−λ), λ ∈ R .

If a ∈ `∞(R), then the operator ψ(a) : B2 → B2 defined by ψ(a) := FBaF−1
B is bounded.



Chapter 3

Matrix Wiener-Hopf plus Hankel

operators with AP Fourier symbols

In this chapter we study matrix Wiener-Hopf plus Hankel operators with AP Fourier

symbols. A characterization of the invertibility of such type of matrix operators is obtained

based on a factorization of the Fourier symbols, which belong to the class of almost

periodic matrix functions.

Therefore, the main aim of the present chapter is to provide an invertibility criterion

for the matrix Wiener-Hopf plus Hankel operators with AP Fourier symbols. Thus, we

generalize to the matrix case some of the scalar results obtained in [59] and [60].

Note that within this context the representation of the (generalized/one-sided/two-

sided) inverses of WHΦ based on some factorization of the Fourier symbol Φ is an impor-

tant goal, and will be obtained in Section 3.3. In this way, the main contributions of this

chapter are described in Theorem 3.1.3, Theorem 3.2.1, and Theorem 3.3.1.

In addition, we would like to refer here that in the present chapter we will work with

APW and AP symbols in view of exhibiting the details in these classes. Anyway, all the

results are obtained in the same manner for AP and APW cases except the result about

uniqueness of corresponding factorizations which due to this reason we choose to present

both versions for the full understanding of those differences.

39
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3.1 Matrix APW asymmetric factorization

Let us start by recalling the definition of a matrix APW asymmetric factorization.

DEFINITION 3.1.1. We will say that a matrix function Φ ∈ GAPWN×N admits an

APW asymmetric factorization if it can be represented in the form

Φ = Φ−diag[eλ1 , ..., eλN
]Φe , (3.1.1)

where λk ∈ R, eλk
(x) = eiλkx, x ∈ R, Φ− ∈ GAPWN×N

− , Φe ∈ G[L∞(R)]N×N and Φ̃e = Φe.

REMARK 3.1.2. We would like to remark that an APW asymmetric factorization, if it

exists, is not unique. Anyway, the partial indices of two APW asymmetric factorizations

of the same matrix function are unique up to a change in their order (cf. Theorem 3.1.3

below). Consequently the λk partial indices can be rearranged in any desired way. Namely,

if (3.1.1) is an APW asymmetric factorization of Φ and Π is a permutation constant

matrix, then by considering Π−1diag[eλ1 , ..., eλN
]Π =: d̂iag[eλ1 , ..., eλN

] ,
−→
Φ− := Φ−Π, and

←−
Φe := Π−1Φe, we obtain a second asymmetric APW factorization of Φ given by

Φ =
−→
Φ−d̂iag[eλ1 , ..., eλN

]
←−
Φe .

Besides this last fact, we have the following general result about the uniqueness of

these factorizations.

THEOREM 3.1.3. Let Φ ∈ GAPWN×N . Suppose that

Φ = Φ
(1)
− D(1)Φ(1)

e ,

with D(1) = diag[eλ1 , ..., eλN
] and λ1 ≥ · · · ≥ λN , is an APW asymmetric factorization of

Φ and assume additionally that

Φ = Φ
(2)
− D(2)Φ(2)

e ,
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with D(2) = diag[eµ1 , ..., eµN
] and µ1 ≥ · · · ≥ µN , represents any other APW asymmetric

factorization of Φ. Then

Φ
(2)
− = Φ

(1)
− Ψ−1 ,

D(1) = D(2) =: D ,

Φ(2)
e = D−1ΨDΦ(1)

e ,

where Ψ(x) = (ψjk(x))N
j, k=1 is a matrix function with nonzero and constant determinant,

having entries which are entire functions, and

ψjk(z) =





0 , if λj > λk ,

cjk = const 6= 0 , if λj = λk .
(3.1.2)

Proof. If Φ admits the above mentioned two APW asymmetric factorizations, then we

can write

Φ = Φ
(1)
− D(1)Φ(1)

e = Φ
(2)
− D(2)Φ(2)

e , (3.1.3)

which leads to

(Φ
(2)
− )−1Φ

(1)
− D(1) = D(2)Φ(2)

e (Φ(1)
e )−1 . (3.1.4)

We now define Φ− := (Φ
(2)
− )−1Φ

(1)
− and Φe := Φ

(2)
e (Φ

(1)
e )−1. Thus, we have Φ− ∈

GAPWN×N
− , Φe ∈ G[L∞(R)]N×N and Φ̃e = Φe. From (3.1.4), we obtain the following

identity for each (j, k) element of that matrix:

(Φ−)jk(x)eiλkx = eiµjx(Φe)jk(x) ;

whence

(Φe)jk(x) = (Φ−)jk(x)ei(λk−µj)x ,

and recall that Φe is an even function. Thus

(Φ−)jk(x)ei(λk−µj)x = (̃Φ−)jk(x)ei(µj−λk)x , (3.1.5)
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and finally we infer from (3.1.5) that

(Φ−)jk(x) = e2i(µj−λk)x(̃Φ−)jk(x) . (3.1.6)

If µj ≥ λk, then the element in the left-hand side of (3.1.6) is in the class APW−, and the

function in the right-hand side belongs to APW+, which implies that there exist constants

cjk such that

(Φ−)jk(x) = cjk = (̃Φ−)jk(x) e2i(µj−λk)x .

Therefore, cjk = cjke
2i(µj−λk)x. Thus, if µj > λk we obtain cjk = 0, and in the case where

µj = λk we conclude that cjk are nonzero constants. Altogether, we have

(Φ−)jk(x) =





0, if µj > λk,

cjk = const 6= 0, if µj = λk.
(3.1.7)

Let us now assume that µj < λk. By the hypothesis, we know that (Φ−)jk ∈ APW−

and so (Φ−)jk can be represented in the following form:

(Φ−)jk(x) =
∑
m

(am)jk ei(νm)jkx , (3.1.8)

with
∑

m |(am)jk| < ∞ for all j, k = 1, N . From (3.1.8) we directly have

(̃Φ−)jk(x) =
∑
m

(am)jk e−i(νm)jkx . (3.1.9)

Combining (3.1.6), (3.1.8) and (3.1.9) we obtain

∑
m

(am)jk ei(νm)jkx = e2i(µj−λk)x
∑
m

(am)jk e−i(νm)jkx ,

or equivalently

∑
m

(am)jk ei(νm)jkx =
∑
m

(am)jk ei(2(µj−λk)−(νm)jk)x ,

and this leads us to the following identity

(νm)jk = 2(µj − λk)− (νm)jk .
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In conclusion, we have in the present case

(νm)jk = µj − λk < 0 .

So, for any couple (j, k), we will obtain only one real number (νm)jk, which is precisely

the difference µj −λk and this means that in the representation of (Φ−)jk (cf. (3.1.8)) we

need to have (Φ−)jk(x) = cjke
i(νm)jkx, with some constant cjk = const, for all j, k = 1, N .

Thus, we arrive at the conclusion that (Φ−)jk are entire functions when µj < λk.

We will now prove that D(1) = D(2), i.e. µj = λj for all j. Let us first assume

that µj > λj, for some j. Then µl > λk for l ≤ j ≤ k and from (3.1.7) we infer

that (Φ−)lk = 0 for l ≤ j ≤ k. This and the Laplace Expansion Theorem show that

det Φ−(x) = 0 for all x ∈ R, which is impossible simply because Φ− is invertible. If

for some j we would assume µj < λj, we can repeat the above reasoning starting from

(3.1.3) with D(1)Φ
(1)
e (Φ

(2)
e )−1 = (Φ

(1)
− )−1Φ

(2)
− D(2) instead of (3.1.4) and obtain once again

a contradiction. Thus, µj = λj for all j.

Letting Ψ := Φ− we immediately have that Ψ is an entire function. Additionally,

by virtue of the equality D(1) = D(2) =: D and (3.1.7), Ψ satisfies (3.1.2). The block-

triangular structure of Ψ implies that det Ψ is a constant, and since Ψ = (Φ
(2)
− )−1Φ

(1)
−

this constant cannot be zero. Finally, identity (3.1.4) gives that Φe = D−1ΨD, and

therefore Φ
(2)
e = D−1ΨDΦ

(1)
e . This together with the identity Φ

(2)
− = Φ

(1)
− Ψ−1 concludes

the proof.

3.2 Invertibility characterization

For further purposes let us recall that two linear operators T and S are said to be

equivalent operators if there exist two bounded invertible operators E and F such that

T = ESF (recall Chapter 1).

THEOREM 3.2.1. Let Φ have an APW asymmetric factorization, with partial indices

λ1, ..., λN .

(a) If there exist positive and negative partial indices, then WHΦ is not semi-Fredholm.
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(b) If λi ≤ 0, i = 1, N , and if for at least one index i we have λi < 0, then WHΦ is

properly d-normal and right-invertible.

(c) If λi ≥ 0, i = 1, N , and if for at least one index i we have λi > 0, then WHΦ is

properly n-normal and left-invertible.

(d) If λi = 0, i = 1, N , then WHΦ is two-sided invertible.

Proof. Since by hypothesis Φ admits an APW asymmetric factorization, we have

Φ = Φ−DΦe , (3.2.1)

where Φ− ∈ GAPWN×N
− , D = diag[eλ1 , ..., eλN

], and Φe is an invertible even element.

Without lost of generality (cf. Remark 3.1.2), we will assume that λ1 ≥ . . . ≥ λN . As pre-

viously observed, from (3.2.1) we therefore obtain the operator factorization (cf. (1.6.6))

WHΦ = WΦ−`0WHD `0WHΦe . (3.2.2)

We know that WΦ− is invertible because Φ− ∈ GAPWN×N
− (and its inverse is given by

`0WΦ−1
−

`0). Additionally, WHΦe is also invertible because Φe is an even element (cf. The-

orem 1.6.5). Thus, (3.2.2) shows us an operator equivalence relation between WHΦ and

WHD (recall that `0 : [L2(R+)]N → [L2
+(R)]N is invertible by r+ : [L2

+(R)]N → [L2(R+)]N).

We will therefore analyze the regularity properties of WHD.

Suppose that at least some of the partial indices are greater than zero, some of them

may be equal to zero, and that some of them are less than zero; for instance, λ1, ..., λi > 0,

λi+1 = ... = λj = 0, and λj+1, ..., λN < 0. This means that

`0WHD = diag[`0WHeλ1
, ..., `0WHeλi

, `0WHeλi+1
, ..., (3.2.3)

`0WHeλj
, `0WHeλj+1

, ..., `0WHeλN
]

= diag[`0WHeλ1
, ..., `0WHeλi

, I, ..., I, `0Weλj+1
, ..., `0WeλN

] ,

because WHeλk
= Weλk

, for k = j + 1, N , due to the condition λj+1 < 0, ..., λN < 0 and

due to the structure of the Hankel operators (and also because `0WHeλk
= I , k = i + 1, j



3.3 Representation of the inverses 45

due to the condition λi+1 = . . . = λj = 0). The nonzero scalar operators in the diag-

onal matrix operator (3.2.3) are such that: WHeλ1
, . . . , WHeλi

are properly n-normal

and left-invertible (cf. Theorem 6 in [59]); Weλj+1
, . . . , WeλN

are d-normal and right-

invertible (cf. the Gohberg–Feldman–Coburn–Douglas Theorem [14, Theorem 2.28], [28],

[40]). Therefore, WHD cannot be semi-Fredholm, hence WHΦ cannot be semi-Fredholm.

This proves part (a) of the theorem.

Suppose now that λi ≤ 0, i = 1, N . This implies that D ∈ APN×N
− . Since APN×N

− =

APN×N ∩ [H∞
− (R)]N×N , it holds that D ∈ [H∞

− (R)]N×N and hence WHD = WD. So, in

this case, WHΦ is equivalent to WD. If we employ again the Gohberg–Feldman–Coburn–

Douglas Theorem to the each one of the operators in the main diagonal of the operator

WD, it follows the assertion (b) of the theorem.

Part (c) can be deduced from the assertion (b) by passing to adjoints.

If all partial indices are zero, we have that `0WHD is just the identity operator. This,

together with the operator equivalence relation (3.2.2) presented in the first part of the

proof, leads us to the last assertion (d).

3.3 Representation of the inverses

We now reach the main goal of this chapter: the representation of generalized/one-

sided/two-sided inverses of WHΦ based on a factorization of the Fourier symbol. This

result extends the scalar version obtained in [59, Theorem 7].

Let us first recall that a bounded linear operator S− : Y → X (acting between Banach

spaces) is called a reflexive generalized inverse of a bounded linear operator S : X → Y

if: (i) S− is a generalized inverse (or an inner pseudoinverse) of S, i.e., SS−S = S; (ii)

S− is an outer pseudoinverse of S, i.e., S−SS− = S−.

THEOREM 3.3.1. Suppose Φ admits an APW asymmetric factorization and

T := `0r+F−1Φ−1
e · F`er+F−1diag[e−λ1 , ..., e−λN

] · F`er+F−1Φ−1
− · F`

: [L2(R+)]N → [L2
+(R)]N ,
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where Φ−1
e and Φ−1

− are the inverses of the corresponding factors of an APW asymmetric

factorization of Φ, Φ = Φ−DΦe, and the operator ` : [L2(R+)]N → [L2
+(R)]N denotes

an arbitrary extension operator (i.e., T is independent of the particular choice of the

extension `). Then the operator T is a reflexive generalized inverse of WHΦ and, in the

following special cases, we additionally have that T is:

(a) the right-inverse of WHΦ, if λi ≤ 0 for all i = 1, N ,

(b) the left-inverse of WHΦ, if λi ≥ 0 for all i = 1, N ,

(c) the (two-sided) inverse of WHΦ, if λi = 0 for all i = 1, N .

In the case when there exist partial indices with different signs, the operator WHΦ is not

Fredholm but T is still a (reflexive) generalized inverse of WHΦ.

Proof. We start with the cases (a), (b) and (c). Since Φ admits an APW asymmetric

factorization, we can write

Φ = Φ−diag[eλ1 , ..., eλN
]Φe

(with the corresponding factor properties). Consequently, from (1.4.7), it follows that

WHΦ = r+A−EAe`
er+ ,

where A− = F−1Φ− · F , E = F−1diag[eλ1 , ..., eλN
] · F and Ae = F−1Φe · F .

(a) If λi ≤ 0 for all i = 1, N , consider

WHΦT = r+A−EAe`
er+`0r+A−1

e `er+E−1`er+A−1
− `

= r+A−EAe`
er+A−1

e `er+E−1`er+A−1
− ` , (3.3.1)

where the term `0r+ was omitted due to the fact that r+`0r+ = r+. Since A−1
e

preserves the even property of its symbol, we may also drop the first `er+ term in

(3.3.1), and obtain

WHΦT = r+A−E`er+E−1`er+A−1
− ` . (3.3.2)
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Additionally, due to the definition of E and E−1 in the present case (λi ≤ 0 for

all i = 1, N), we have `0r+E`er+E−1`er+ = `0r+; also because A− is a minus type

factor it follows r+A− = r+A−`0r+. Therefore, from (3.3.2), we have

WHΦT = r+A−`0r+A−1
− ` = r+` = I[L2(R+)]N . (3.3.3)

(b) If λi ≥ 0 for all i = 1, N , we will now analyze the composition

T WHΦ = `0r+A−1
e `er+E−1`er+A−1

− `r+A−EAe`
er+ . (3.3.4)

In the present case, due to the definition of E−1, it follows `er+E−1`er+= `er+E−1 .

The same reasoning applies to the minus type factor A−1
− , and therefore the equality

(3.3.4) takes the form

T WHΦ = `0r+A−1
e `er+Ae`

er+ = `0r+`er+ = `0r+ = I[L2
+(R)]N , (3.3.5)

where we have used the fact that `er+Ae`
er+ = Ae`

er+.

(c) From the last two cases (a) and (b), it directly follows that in the case of λi = 0

for all i = 1, N , the operator T is the two-sided inverse of WHΦ (cf. (3.3.3) and

(3.3.5)).

Let us now turn to the more general case: assume now that there exist partial indices

with different signs.

In this case, we recall that the assertion about the non-Fredholm property was already

provided in Theorem 3.2.1, assertion (a).

As about the generalized inverse, we will start by rewriting the operator E in the

following new form:

E = diag[F−1eλ11 · F , . . . ,F−1eλ1N
· F ] diag[F−1eλ21 · F , . . . ,F−1eλ2N

· F ]

=: E1 E2 ,

where

λ1j =





λj if λj ≤ 0

0 if λj ≥ 0
, λ2j =





λj if λj ≥ 0

0 if λj ≤ 0
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for j = 1, N .

We will then directly compute WHΦ T WHΦ, in the following way:

WHΦ T WHΦ = (r+A−E1E2Ae`
er+)

(
`0r+A−1

e `er+E−1
2 E−1

1 `er+A−1
− `

)

(r+A−E1E2Ae`
er+)

= r+A−E1E2Ae`
er+A−1

e `er+E−1
2 E−1

1 `er+A−1
− `r+A− (3.3.6)

E1E2Ae`
er+

= r+A−E1E2`
er+E−1

2 E−1
1 `er+E1E2Ae`

er+ (3.3.7)

= r+A−E1E2Ae`
er+ (3.3.8)

= WHΦ

where in (3.3.7) we omitted the first term `er+ of (3.3.6) due to the factor (invariance)

property of A−1
e that yields Ae`

er+A−1
e `er+ = `er+. Similarly we dropped the term

`r+ in `er+A−1
− `r+A− due to a factor property of A−1

− . Analogous arguments apply

to the factors E−1
1 and E−1

2 . In a more detailed way: (i) if one of the factors E1 or

E2 equals I, then it is clear that E2(`
er+E−1

2 `er+)E2 = E2(`
er+E−1

2 )E2 = E2`
er+ or

`0r+E1`
er+E−1

1 `er+E1 = `0r+E1 holds, respectively; (ii) in the general diagonal matrix

case, the situation is identical just because in each place of the main diagonal we have

the last situation. This justifies the simplification made in obtaining (3.3.8) from (3.3.7).

As about the composition T WHΦ T , it follows:

T WHΦ T =
(
`0r+A−1

e `er+E−1
2 E−1

1 `er+A−1
− `

)
(r+A−E1E2Ae`

er+)

(
`0r+A−1

e `er+E−1
2 E−1

1 `er+A−1
− `

)

= `0r+A−1
e `er+E−1

2 E−1
1 `er+A−1

− `r+A−E1E2Ae`
er+A−1

e `er+ (3.3.9)

E−1
2 E−1

1 `er+A−1
− `

= `0r+A−1
e `er+E−1

2 E−1
1 `er+A−1

− ` (3.3.10)

= T

where the third `er+ is unnecessary in (3.3.9) due to the factor (invariance) property of

Ae that yields Ae`
er+A−1

e `er+ = `er+, and we also can omit the term `r+ in (3.3.9) since
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A−1
− is minus type. Additionally, a similar reasoning as above was also used for obtaining

equality (3.3.10) since due to the definitions of E1 and E2 it holds `er+E1`
er+ = `er+E1,

and `er+E−1
2 `er+E2`

er+E−1
2 = `er+E−1

2 .

3.4 Matrix AP asymmetric factorization

We would like now to cite the last paragraph of the paper [10]: “We end up by

mentioning that almost all the above methods also work – without crucial changes – in the

case of matrix Wiener-Hopf plus Hankel operators with almost periodic Fourier symbols.

However, a corresponding version of Theorem 3.1.3 for invertible APN×N elements is an

open problem. This has to do with the difficulties in substituting the arguments in the part

of the proof of Theorem 3.1.3 where some representations of APW elements are used”.

We have already closed this open problem and the corresponding theorem will be

given below after giving the appropriate definition of the AP asymmetric factorization.

DEFINITION 3.4.1. We will say a matrix function Φ ∈ GAPN×N admits an AP

asymmetric factorization if it can be represented in the form

Φ = Φ−diag[eλ1 , ..., eλN
]Φe ,

where λk ∈ R, eλk
(x) = eiλkx, x ∈ R, Φ− ∈ GAPN×N

− , Φe ∈ G[L∞(R)]N×N and Φ̃e = Φe.

The property that we can rearrange the partial indices of such type of factorizations

in any desired way is obviously valid in this case too (cf. Remark 3.1.2).

We are ready to give the following general result about the uniqueness of these kind

of factorizations.

THEOREM 3.4.2. Let Φ ∈ GAPN×N . Suppose that

Φ = Φ
(1)
− D(1)Φ(1)

e ,

with D(1) = diag[eλ1 , ..., eλN
] and λ1 ≥ · · · ≥ λN , is an AP asymmetric factorization of Φ

and assume additionally that

Φ = Φ
(2)
− D(2)Φ(2)

e ,
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with D(2) = diag[eµ1 , ..., eµN
] and µ1 ≥ · · · ≥ µN , represents any other AP asymmetric

factorization of Φ. Then

Φ
(2)
− = Φ

(1)
− Ψ−1 ,

D(1) = D(2) =: D ,

Φ(2)
e = D−1ΨDΦ(1)

e ,

where Ψ(x) = (ψjk(x))N
j, k=1 is a matrix function with nonzero and constant determinant,

having entries which are almost periodic functions, such that the Bohr-Fourier spectrum

of Ω(ψjk) is contained in [2(µj − λk), 0] (Ω(ψjk) ⊂ [2(µj − λk), 0], where µj < λk), and

ψjk(z) =





0 , if λk < λj ,

cjk = const 6= 0 , if λk = λj .
(3.4.1)

Proof. Up to equality (3.1.7) the proof of this theorem runs in an analogous way as the

proof of Theorem 3.1.3 (with obvious changes in the corresponding necessary different

places). Now assume that µj < λk. We will rewrite equality (3.1.6) in the following way:

(Φ−)jk(x)e2i(λk−µj)x = (̃Φ−)jk(x) . (3.4.2)

In (3.4.2) the right-hand side belongs to AP+ class and in the left-hand side we have a

product of AP− and AP+ functions. Thus to have the equality we must guaranty that

the left-hand side is also belongs to AP+, and therefore (Φ−)jk must have Bohr-Fourier

spectrum contained in [2(µj − λk), 0]. From (3.4.2) we have that

(Φ−)jk ∈ e2i(µj−λk)xAP+ ∩ AP− = {ϕ ∈ AP : Ω(ϕ) ⊂ [2(µj − λk), 0]} .

To deduce the last formula one needs to note that the multiplication of an almost periodic

function by an eλ element shift the Bohr-Fourier spectra of the first function by the

value of λ. Additionally, from (3.4.2) it is readily seen that the almost periodic functions

which satisfy that equality have Bohr-Fourier spectrum distributed symmetrically with

respect to a “central” point µj − λk. More precisely we have that if x0 ∈ [2(µj − λk), 0],

µj − λk − x0 ∈ Ω(ϕ), and if ϕ satisfies the equality (3.4.2), then necessarily we have that
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also µj − λk + x0 ∈ Ω(ϕ). As a remark, in this case, for APW functions we have that the

Bohr-Fourier spectrum of that functions contain only the “central” µj − λk point.

The proof of the last part of this theorem also runs in a similar way as the proof of

Theorem 3.1.3, and therefore is omitted in here (cf. the last two paragraphs in the proof

of Theorem 3.1.3).
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Chapter 4

Matrix Wiener-Hopf-Hankel operators

with SAP Fourier symbols

In this chapter conditions for the Fredholm property of Wiener-Hopf plus/minus

Hankel operators with matrix semi-almost periodic Fourier symbols are exhibited. Under

such conditions, a formula for the sum of the Fredholm indices of these Wiener-Hopf

plus Hankel and Wiener-Hopf minus Hankel operators is derived. Concrete examples are

worked out in view of the computation of the Fredholm indices. Within this context, the

main goal of this chapter is to present a formula for the Fredholm index of the matrix

operator which has the following diagonal form

DΦ =


 WΦ + HΦ 0

0 WΦ −HΦ


 : [L2

+(R)]2N → [L2(R+)]2N (4.0.1)

in the case where the entries of the matrix Φ are semi-almost periodic functions (and

under certain conditions in which we will obtain a Fredholm property characterization of

DΦ).

4.1 Matrix AP factorization

Since our results will be obtained through certain factorizations of the involved ma-

trix functions, we will therefore recall the definitions of the so-called right and left AP

53
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factorization.

DEFINITION 4.1.1. A matrix function Φ ∈ GAPN×N is said to admit a right AP

factorization if it can be represented in the form

Φ(x) = Φ−(x) D(x) Φ+(x) (4.1.1)

for all x ∈ R, with

Φ− ∈ GAPN×N
− , Φ+ ∈ GAPN×N

+ ,

and D is a diagonal matrix of the form

D(x) = diag(eiλ1x, . . . , eiλNx), λj ∈ R .

The numbers λj are called the right AP indices of the factorization. A right AP factor-

ization with D = IN×N is referred to be a canonical right AP factorization.

In another way, it is said that a matrix function Φ ∈ GAPN×N admits a left AP

factorization if instead of (4.1.1) we have

Φ(x) = Φ+(x) D(x) Φ−(x)

for all x ∈ R, and Φ± and D having the same properties as above.

REMARK 4.1.2. It is readily seen from the above definition that if an invertible almost

periodic matrix function Φ admits a right AP factorization, then Φ̃ admits a left AP

factorization, and also Φ−1 admits a left AP factorization.

The vector containing the right AP indices will be denoted by k(Φ), i.e., in the

above case k(Φ) := (λ1, . . . , λN). If we consider the case with equal right AP indices

(k(Φ) = (λ1, λ1, . . . , λ1)), then the matrix

d(Φ) := M(Φ−)M(Φ+)

is independent of the particular choice of the right AP factorization (cf., e.g., [14, Propo-

sition 8.4]). In this case the matrix d(Φ) is called the geometric mean of Φ.

In order to relate operators and to transfer certain operator properties between the

related operators, we will also need the known notion of equivalence after extension for

bounded linear operators (recall Chapter 1).
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4.2 The Fredholm property

We start by recalling a known Fredholm characterization for Wiener-Hopf operators

with SAP matrix Fourier symbols having lateral almost periodic representatives admitting

right AP factorizations.

THEOREM 4.2.1. (cf. [14, Theorem 10.11] and [46]) Let Φ ∈ SAPN×N and assume

that the almost periodic representatives Φ` and Φr admit a right AP factorization. Then

the Wiener-Hopf operator WΦ is Fredholm if and only if:

(i) Φ ∈ GSAPN×N ;

(ii) The almost periodic representatives Φ` and Φr admit canonical right AP factoriza-

tions (therefore with k(Φ`) = k(Φr) = (0, . . . , 0)) ;

(iii) sp[d−1(Φr)d(Φ`)] ∩ (−∞, 0] = ∅ , where sp[d−1(Φr)d(Φ`)] stands for the set of the

eigenvalues of the matrix

d−1(Φr)d(Φ`) := [d(Φr)]
−1d(Φ`) .

The matrix version of Sarason’s Theorem (cf. Theorem 2.2.2) says that if Φ ∈
GSAPN×N then this matrix admits the following representation

Φ = (1− u)Φ` + uΦr + Φ0 , (4.2.1)

where Φ`,r ∈ GAPN×N , u ∈ C(R̄), u(−∞) = 0, u(+∞) = 1, Φ0 ∈ C0(Ṙ). From (4.2.1) it

follows that

Φ̃−1 = [(1− ũ)Φ̃` + ũΦ̃r + Φ̃0]
−1 ,

and

ΦΦ̃−1 = [(1− u)Φ` + uΦr + Φ0][(1− ũ)Φ̃` + ũΦ̃r + Φ̃0]
−1 . (4.2.2)

Using the basic properties of the almost periodic functions (cf., e.g., in Section 2.1 the

Bochner definition), from (4.2.2) we obtain that

(ΦΦ̃−1)` = Φ`Φ̃−1
r , (ΦΦ̃−1)r = ΦrΦ̃

−1
` . (4.2.3)
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These representations, and the equivalence after extension relation described in Section 1.7

between the operator DΦ and the pure Wiener-Hopf operator, lead to the following char-

acterization in the case when Φ`Φ̃−1
r admits a right AP factorization.

THEOREM 4.2.2. Let Φ ∈ SAPN×N , and assume that Φ`Φ̃−1
r admits a right AP

factorization. In this case, the operator DΦ is Fredholm if and only if the following three

conditions are satisfied:

(j) Φ ∈ GSAPN×N ;

(jj) Φ`Φ̃−1
r admits a canonical right AP factorization;

(jjj) sp[d(Φ`Φ̃−1
r )] ∩ iR = ∅

(where, as before, Φ` and Φr are the local representatives at ∓∞ of Φ, cf. (4.2.1)).

Proof. If DΦ is a Fredholm operator, then by Theorems 1.9.2 and 1.9.3 it follows that

Φ ∈ G[L∞(R)]N×N , and therefore condition (j) arises (cf. Remark 2.2.4).

Moreover, the Fredholm property of DΦ also implies that the operator W
ΦgΦ−1 is

Fredholm (due to the equivalence after extension relation, cf. (1.7.1)). Employing now

Theorem 4.2.1 we will obtain that ΦΦ̃−1 ∈ GSAPN×N , (ΦΦ̃−1)` and (ΦΦ̃−1)r admit a

canonical right AP factorizations and

sp[d−1((ΦΦ̃−1)r)d((ΦΦ̃−1)`)] ∩ (−∞, 0] = ∅ . (4.2.4)

By virtue of (4.2.3) we conclude that Φ`Φ̃−1
r admits a canonical right AP factorization.

Once again, due to (4.2.3), from (4.2.4) we derive that

sp[d−1(ΦrΦ̃
−1
` )d(Φ`Φ̃−1

r )] ∩ (−∞, 0] = ∅ . (4.2.5)

In addition, a canonical right AP factorization of Φ`Φ̃−1
r can be normalized into

Φ`Φ̃−1
r = Ψ−ΛΨ+ , (4.2.6)
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where Ψ± have the same factorization properties as the original lateral factors of the

canonical factorization but with M(Ψ±) = I, and where Λ := d(Φ`Φ̃−1
r ). Thus, (4.2.6)

allows

ΦrΦ̃
−1
` =

˜(
Φ`Φ̃−1

r

)−1

= Ψ̃−1
+ Λ−1Ψ̃−1

− ,

which in particular shows that

d(ΦrΦ̃
−1
` ) = Λ−1.

Thus, (4.2.5) turns out to be equivalent to

sp[Λ2] ∩ (−∞, 0] = ∅

which directly from the eigenvalue definition leads to

sp[Λ] ∩ iR = ∅ .

Therefore the proposition (jjj) is satisfied, and the proof of the “only if” part is completed.

Now we will be concerned with the “if” part. From the hypothesis that Φ ∈ GSAPN×N

we can consider ΦΦ̃−1, and therefore this is also invertible in SAPN×N . The left and right

representatives of ΦΦ̃−1 are given by the formula (4.2.3). Since Φ`Φ̃−1
r = (ΦΦ̃−1)` admits

a canonical right AP factorization, then

˜
(ΦΦ̃−1)` = Φ̃`Φ

−1
r

admits a canonical left AP factorization and

[
˜

(ΦΦ̃−1)`]
−1 = ΦrΦ̃

−1
`

admits a canonical right AP factorization. Moreover, using the same reasoning as in the

“only if” part, these last two canonical right AP factorizations and condition (jjj) imply

that

sp[d−1((ΦΦ̃−1)r)d((ΦΦ̃−1)`)] ∩ (−∞, 0] = sp[d−1(ΦrΦ̃
−1
` )d(Φ`Φ̃−1

r )] ∩ (−∞, 0] = ∅.

All these facts together with Theorem 4.2.1 give us that W
ΦgΦ−1 is a Fredholm operator.

Using now the equivalence after extension relation presented in (1.7.1), we obtain that

DΦ is a Fredholm operator.
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REMARK 4.2.3. In the last Theorem 4.2.2: (i) if the symbol Φ belongs to the Wiener

subalgebra of SAPN×N , i.e. SAPWN×N (recall Chapter 2), then we can drop the initial

assumption which states that Φ`Φ̃−1
r admits a right AP factorization (since this holds

always in such a case); (ii) if the lateral representatives of Φ are N ×N constant matri-

ces (having therefore an even more particular situation than in (i)), then the symbol Φ

belongs to [C(R̄)]N×N , and the theorem provides an alternative Fredholm property char-

acterization of such operators to the already known characterizations for this particular

case (and which were obtained by different methods; cf., e.g., [39] and [54]).

4.3 Index formula for the sum of Wiener-Hopf plus/mi-

nus Hankel operators

In the present section we will be concentrated in obtaining a Fredholm index formula

for DΦ, i.e., for the sum of Wiener-Hopf plus/minus Hankel operators WΦ ± HΦ with

Fourier symbols Φ ∈ GSAPN×N such that Φ`Φ̃−1
r admits a right AP factorization. Due

to this purpose, let us assume from now on that WΦ + HΦ and WΦ − HΦ are Fredholm

operators.

Let GSAP0,0 denotes the set of all functions ϕ ∈ GSAP for which k(ϕ`) = k(ϕr) = 0.

To define the Cauchy index of ϕ ∈ GSAP0,0 we need the next lemma.

LEMMA 4.3.1. [14, Lemma 3.12] Let A ⊂ (0,∞) be an unbounded set and let

{Iα}α∈A := {(xα, yα)}α∈A

be a family of intervals such that xα ≥ 0 and |Iα| = yα − xα → ∞, as α → ∞. If

ϕ ∈ GSAP0,0 and arg ϕ is any continuous argument of ϕ, then the limit

1

2π
lim

α→∞
1

|Iα|
∫

Iα

((arg ϕ)(x)− (arg ϕ)(−x))dx (4.3.1)

exists, is finite, and is independent of the particular choices of {(xα, yα)}α∈A and arg ϕ.
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The limit (4.3.1) is denoted by indϕ and is usually called the Cauchy index of ϕ.

Moreover, following [58, section 4.3] we can generalize the notion of Cauchy index for

SAP functions with k(φ`) + k(φr) = 0 in the way which was introduced in Lemma 4.3.1,

i.e.,

indϕ =
1

2π
lim

α→∞
1

|Iα|
∫

Iα

((arg ϕ)(x)− (arg ϕ)(−x))dx , (4.3.2)

where ϕ ∈ {φ ∈ SAP : k(φ`) + k(φr) = 0}.
The following theorem is well-known, and provides a formula for the Fredholm index

of matrix Wiener-Hopf operators with SAP Fourier symbols.

THEOREM 4.3.2. [14, Theorem 10.12] Let Φ ∈ SAPN×N . If the almost periodic rep-

resentatives Φ`, Φr admit right AP factorizations, and if WΦ is a Fredholm operator,

then

IndWΦ = −ind det Φ−
N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk

})
, (4.3.3)

where ξ1, . . . , ξN ∈ C \ (−∞, 0] are the eigenvalues of the matrix d−1(Φr)d(Φ`) and {·}
stands for the fractional part of a real number. Additionally, when choosing arg ξk in

(−π, π), we have

IndWΦ = −ind det Φ− 1

2π

N∑

k=1

arg ξk .

We will now be concentrated on an index formula for DΦ (i.e., on a formula for the

sum of the Fredholm indices of WΦ + HΦ and WΦ −HΦ). In fact, it directly follows from

the definition of the operator DΦ (cf. formula (4.0.1)) that

IndDΦ = Ind[WΦ + HΦ] + Ind[WΦ −HΦ] .

Now, employing the above equivalence after extension relation (cf. (1.7.1)), we deduce

that

IndDΦ = IndW
ΦgΦ−1 .
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Consequently, we have:

Ind[WΦ + HΦ] + Ind[WΦ −HΦ] = IndW
ΦgΦ−1 .

Using (4.3.3) for W
ΦgΦ−1 (which is a Fredholm operator because of the assumption made

in the beginning of the present section), we obtain that

IndW
ΦgΦ−1 = −ind[det(ΦΦ̃−1)]−

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ηk

})
, (4.3.4)

where ηk ∈ C \ (−∞, 0] are the eigenvalues of the matrix d−1((ΦΦ̃−1)r)d((ΦΦ̃−1)`) =

d−1(ΦrΦ̃
−1
` )d(Φ`Φ̃−1

r ), cf. (4.2.3). However, as pointed out in the proof of Theorem 4.2.2,

d−1(ΦrΦ̃
−1
` )d(Φ`Φ̃−1

r ) =
[
d(Φ`Φ̃−1

r )
]2

, and therefore (4.3.4) can be rewritten as

IndW
ΦgΦ−1 = −ind[det(ΦΦ̃−1)]−

N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ζk

})
(4.3.5)

where ζk ∈ C \ iR are the eigenvalues of the matrix d(Φ`Φ̃−1
r ).

In addition, in the case when arg ζk are chosen in (−π/2, π/2), formula (4.3.5) is

reduced to

IndW
ΦgΦ−1 = −ind[det(ΦΦ̃−1)]− 1

π

N∑

k=1

arg ζk .

Let us now simplify the form of ind[det(ΦΦ̃−1)]. Recalling that the matrix Φ`Φ̃−1
r has

a canonical right AP factorization (due to the assumption made in the beginning of the

present section), it holds k(Φ`Φ̃−1
r ) = (0, . . . , 0). From here we obtain that k(det(Φ`Φ̃−1

r )) =

0. Consequently, this yields:

k((det Φ)`) + k((det Φ)r) = k(det(Φ`)) + k(det(Φr))

= k(det(Φ`)) + k(d̃et(Φr)
−1

)

= k(det(Φ`)) + k(det(Φ̃−1
r ))

= k(det(Φ`) det(Φ̃−1
r ))

= k(det(Φ`Φ̃−1
r )) (4.3.6)

= 0 , (4.3.7)
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because for any f ∈ GAP we have k(f) = k(f̃−1). Additionally, we have used here the

fact that [det Φ]` = det Φ` (which follows from a direct computation). A similar argument

also applies to Φ̃−1, since from (4.3.6)–(4.3.7) we have:

k((det Φ̃−1)`) + k((det Φ̃−1)r) = k(det(Φ̃−1
` )) + k(det(Φ̃−1

r ))

= k(d̃et(Φ`)
−1

) + k(det(Φ̃−1
r ))

= k(det(Φ`)) + k(det(Φ̃−1
r ))

= k(det(Φ`Φ̃−1
r ))

= 0 . (4.3.8)

Therefore, due to (4.3.7), (4.3.8) and (4.3.2), we can perform the following computa-

tions:

ind[det(ΦΦ̃−1)] = ind[det Φ det Φ̃−1]

= ind det Φ + ind det Φ̃−1

= ind det Φ + ind ˜[det Φ−1]

= ind det Φ− ind[det Φ−1]

= ind det Φ− ind[det Φ]−1

= ind det Φ + ind det Φ

= 2 ind det Φ .

Consequently, we have just deduced the following result.

COROLLARY 4.3.3. Let Φ ∈ GSAPN×N and assume that Φ`Φ̃−1
r admits a right AP

factorization. If WΦ ±HΦ are Fredholm operators, then

Ind[WΦ + HΦ] + Ind[WΦ −HΦ] = −2 ind det Φ−
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ζk

})
, (4.3.9)

where ζk ∈ C \ iR are the eigenvalues of the matrix d(Φ`Φ̃−1
r ). Moreover, when choosing

arg ζk in (−π/2, π/2), the formula (4.3.9) simplifies to the following one:

Ind[WΦ + HΦ] + Ind[WΦ −HΦ] = −2 ind det Φ− 1

π

N∑

k=1

arg ζk .
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4.4 Generalized AP factorization

In order to obtain stronger versions of the above derived results we need to present

the notion of generalized AP factorization. This will be done in the present section.

Let B2
± denote the Hilbert spaces consisting of the functions in B2 with the Bohr-

Fourier spectra in R± = {x ∈ R : ±x ≥ 0} (recall Chapter 2).

DEFINITION 4.4.1. A generalized right AP factorization of a matrix function Φ ∈
GAPN×N is a representation

Φ = Φ−DΦ+ ,

where D = diag(eλ1 , . . . , eλN
) with λ1, . . . , λN ∈ R and

Φ− ∈ G[B2
−]N×N , Φ+ ∈ G[B2

+]N×N , Φ−P̃Φ−1
− I ∈ L(B2

N) .

Here P̃ is the projection P̃ := FBχ+F−1
B ∈ L(B2

N) (with χ+ being the characteristic

function of R+).

The left generalized AP factorization is defined correspondingly (with obvious changes).

If we have that Φ admits a right generalized AP factorization, then Φ̃ admits a left gen-

eralized AP factorization and also Φ−1 admits a left generalized AP factorization.

The definition of the geometric mean value is literally the same as in Section 4.1.

4.5 The Fredholm property for matrix SAP symbols

In this section we give a stronger version of the Theorem 4.2.2. To this end we need

the stronger version of the Theorem 4.2.1, which is now stated.

THEOREM 4.5.1. [14, Theorem 18.18] Let Φ ∈ SAPN×N . The operator WΦ is Fred-

holm if and only if the following three conditions are satisfied:

(i) Φ ∈ GSAPN×N ,

(ii) WΦ`
and WΦr are invertible operators,
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(iii) sp[d−1(Φr)d(Φ`)] ∩ (−∞, 0] 6= ∅, where sp[d−1(Φr)d(Φ`)] stands for the set of the

eigenvalues of the matrix

d−1(Φr)d(Φ`) := [d(Φr)]
−1d(Φ`) .

Equipped with the last theorem we are ready to give a stronger version of Theorem 4.2.2.

Since this is obtained by using the same techniques which were exhibited in the proof of

Theorem 4.2.2, the proof of the next theorem will be omitted in here.

THEOREM 4.5.2. Let Φ ∈ SAPN×N . Then DΦ is Fredholm if and only if the following

three conditions are satisfied:

(j) Φ ∈ GSAPN×N ,

(jj) Φ`Φ̃−1
r admits a canonical generalized right AP factorization,

(jjj) sp[d(Φ`Φ̃−1
r )] ∩ iR = ∅,

(where, as before, Φ` and Φr are the local representatives at ∓∞ of Φ, cf. (4.2.1)).

4.6 Index formula for the operator DΦ

In this section our aim is to obtain a Fredholm index formula for the operator DΦ

with Φ ∈ SAPN×N . Therefore, let us start with a result which is a particular case of

Corollary 4.3.3 (considering the Wiener subclass of SAPN×N).

COROLLARY 4.6.1. If WΦ±HΦ are Fredholm operators for some Φ ∈ GSAPWN×N ,

then

Ind[WΦ + HΦ] + Ind[WΦ −HΦ] = −2 ind det Φ−
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ζk

})
, (4.6.1)

where ζk ∈ C \ iR are the eigenvalues of the matrix d(Φ`Φ̃−1
r ). Moreover, when choosing

arg ζk in (−π/2, π/2), the formula (4.6.1) simplifies to the following one:

Ind[WΦ + HΦ] + Ind[WΦ −HΦ] = −2 ind det Φ− 1

π

N∑

k=1

arg ζk . (4.6.2)
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The main result of this section will be now reached by removing the Wiener subclass

from the last corollary.

THEOREM 4.6.2. If DΦ is a Fredholm operator for some Φ ∈ GSAPN×N , then

IndDΦ = −2 ind det Φ−
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ζk

})
, (4.6.3)

where ζk ∈ C \ iR are the eigenvalues of the matrix d(Φ`Φ̃−1
r ). Moreover, when choosing

arg ζk in (−π/2, π/2), the formula (4.6.3) simplifies to the following one:

IndDΦ = −2 ind det Φ− 1

π

N∑

k=1

arg ζk .

Proof. Choose functions Φn ∈ GSAPWN×N , such that

lim
n→∞

sup |Φn − Φ| = 0 .

This is always possible because SAPW is a dense subalgebra of SAP. Stability of the

Fredholm property under small perturbations implies that DΦn are Fredholm operators

for sufficiently large n. From here it follows that the index formula for DΦn is given by

(4.6.1) (the case of the formula (4.6.2) is treated analogously). Hence we can write:

IndDΦn = −2 ind det Φn −
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg(ζk)n

})
. (4.6.4)

As far as we have the uniform convergence of Φn to Φ and the stability property for the

Fredholm index we can pass to the limit in the equality (4.6.4) to deduce the desired

formula (4.6.3).

4.7 Examples

In the present section we provide two concrete examples for the above theory.
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Figure 4.1: The graph of det Φ.

4.7.1 Example 1

Let us assume that

Φ(x) = (1− u(x))


 e−i(1+α)x 0

e−iαx − 1 + eix ei(1+α)x




+u(x)


 ei(1+α)x 0

eiαx − 1 + e−ix e−i(1+α)x


 ,

where α = (
√

5− 1)/2, and u is the following real-valued function

u(x) =
1

2
+

1

π
arctan(x) . (4.7.1)

Being clear that Φ ∈ SAP 2×2, we will start with showing that Φ ∈ GSAP 2×2. To this end

we need first of all to compute the determinant of Φ :

det Φ(x) = det


 (1− u(x))e−i(1+α)x + u(x)ei(1+α)x

(1− u(x))(e−iαx − 1 + eix) + u(x)(eiαx − 1 + e−ix)

0

(1− u(x))ei(1+α)x + u(x)e−i(1+α)x




= 1− 2u(x)(1− u(x))(1− cos(2(1 + α)x)) .
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Recalling that u is a real-valued function given by (4.7.1), we have that

2u(x)(1− u(x)) ∈
[
0,

1

2

]
,

and where the maximum value 1/2 is obtained only at the point x = 0, in view of

2u(x)(1− u(x)) =
1

2
− 2

π2
arctan2(x) .

Due to the reason that 1 − cos(2(1 + α)x) ∈ [0, 2] but (1 − cos(2(1 + α)x))
∣∣
x=0

= 0, we

have 2u(x)(1− u(x))(1− cos(2(1 + α)x)) ∈ [0, 1). Therefore det Φ ∈ (0, 1] , and thus Φ is

invertible.

In this case, although the invertibility of Φ, the Wiener-Hopf operator with symbol

Φ is not a Fredholm operator. This happens because the matrix function

 e−i(1+α)x 0

e−iαx − 1 + eix ei(1+α)x


 ∈ GAP 2×2

does not have a right AP factorization (cf. [47, pages 284-285] for all the details about

this matrix function). However, the Wiener-Hopf plus/minus Hankel operators with the

same symbol Φ will have the Fredholm property. Indeed, besides having Φ ∈ GSAP 2×2,

let us observe that:

Φ`Φ̃−1
r =


 1 0

0 1


 = I2×2 .

Consequently, Φ`Φ̃−1
r obviously admits a canonical right AP factorization and

d(Φ`Φ̃−1
r ) = I2×2 .

Thus the eigenvalues of this matrix are equal to 1 6∈ iR. This allows us to conclude that the

operator DΦ is a Fredholm operator (cf. Theorem 4.2.2). This means that the operators

WΦ ± HΦ have the Fredholm property. Let us now calculate the sum of their Fredholm

indices. From the above form of det Φ, we have already concluded that det Φ ∈ (0, 1] .

Thus, we have that det Φ is a real-valued positive function, and so its argument is zero

(the graph of det Φ is given in the Figure 4.1). Altogether we have:

Ind[WΦ + HΦ] + Ind[WΦ −HΦ] = 0 ,
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since the eigenvalues of d(Φ`Φ̃−1
r ) are also real (recall that they are equal to 1), and

therefore their arguments are also zero.

4.7.2 Example 2

1

0

0

1

−1

−3

−2

−2

2

−1

@@I

@@R

Figure 4.2: The oriented curve representing the range of det Ψ.

Let us now take the following matrix-valued function:

Ψ(x) = (1− u(x))


 eix 0

0 e−ix


 + u(x)


 e−ix 0

0 eix


 +


 0 x−i

x+i
− 1

x−i
x+i

− 1 0


 , (4.7.2)

where u is the same as in the previous example. A direct computation provides that Ψ is

invertible. In fact,

det Ψ(x) = (1− u(x))2 + u2(x) + 2u(x)(1− u(x)) cos(2x)−
(

x− i

x + i
− 1

)2

, (4.7.3)

and hence

det Ψ(x) = f(x) + ig(x) ,

where

f(x) = 1− 2u(x)(1− u(x))(1− cos(2x)) +
4(x2 − 1)

(x2 + 1)2
,
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and

g(x) = − 8x

(x2 + 1)2
.

From these formulas it follows that f and g do not vanish simultaneously, and consequently

det Ψ(x) 6= 0 for all x ∈ Ṙ. Hence Ψ ∈ GSAP 2×2. Although having this necessary condition

for the Fredholm property of the Wiener-Hopf operator with the symbol Ψ, it is easily

seen that WΨ is not Fredholm. The reason for this is based on the fact that although the

matrix-valued functions

Ψ`(x) =


 eix 0

0 e−ix




and

Ψr(x) =


 e−ix 0

0 eix




have obvious right AP factorizations (with the identity matrix in the role of the lateral

minus and plus factors; cf. (4.1.1)) they do not have a canonical right AP factorization

(since k(Ψ`) = (1,−1) and k(Ψr) = (−1, 1)).

0.992

−4

1.0

8

0

0.996

4

0.994

−8

10
−6

0.998

Figure 4.3: The oscillation at infinity of det Ψ.
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Despite this situation, the Wiener-Hopf plus/minus Hankel operators with the same

symbol Ψ are Fredholm. Indeed, first of all note that we have already deduced that Ψ is

invertible in SAP 2×2. Moreover,

Ψ`Ψ̃−1
r = I2×2 (4.7.4)

and therefore Ψ`Ψ̃−1
r has the trivial canonical right AP factorization. From (4.7.4) we

also obtain that

sp[d(Ψ`Ψ̃−1
r )] = {1} ∩ iR = ∅ .

These are sufficient conditions for these Wiener-Hopf plus/minus Hankel operators to

have the Fredholm property (cf. Theorem 4.2.2).

To calculate the sum of the Fredholm indices of these Wiener-Hopf plus Hankel and

Wiener-Hopf minus Hankel operators we need once again to use the above computed

determinant of Ψ. From (4.7.3) it follows that ind det Ψ = 1 (the range of the det Ψ is

given in the Figure 4.2, and it is a closed curve; note also that limx→±∞ det Ψ(x) = 1,

and in the Figure 4.3 is shown the oscillation of the function det Ψ at infinity). Therefore,

from formula (4.6.2), we obtain that

Ind[WΨ + HΨ] + Ind[WΨ −HΨ] = −2

for Ψ in (4.7.2).
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Chapter 5

Matrix Wiener-Hopf-Hankel operators

with PAP Fourier symbols

In this chapter it is obtained a Fredholm property characterization for matrix Wiener-

Hopf plus/minus Hankel operators with piecewise almost periodic Fourier symbols. The

conditions that ensure the Fredholm property are mainly based on factorizations of certain

almost periodic matrix functions, and spectral properties of some others. In addition,

Fredholm index formulas are also obtained based on an extension of the Cauchy index

notion which is therefore applied to some new functions derived from the symbols of the

operators.

In more detail, the main result in the present chapter (Theorem 5.4.1) provides a

Fredholm characterization and an index formula for the following diagonal matrix opera-

tor:

DΦ =


 WΦ + HΦ 0

0 WΦ −HΦ


 : [L2

+(R)]2N → [L2(R+)]2N , (5.0.1)

where Φ belongs to the piecewise almost periodic function class (recall Chapter 2). There-

fore, the present chapter extends the results of Chapter 4 (cf. also [13]) where the Fredholm

property and index of the operator DΦ were described but only for Fourier symbols in

the subclass of semi-almost periodic matrix functions. In addition, it complements some

71
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other recent results like the ones of [61].

In the next sections we will prepare the necessary material for the main theorem which

will only appear in the Section 5.4. In this sense, in the previous sections to the Section 5.4,

we will present some known results and generalize some others to a corresponding matrix

version. Moreover, using the generalized AP factorization in Section 5.5 we will be able

to give the stronger results, and we will end this chapter with examples illustrating the

developed theory.

5.1 Preliminary notation and results

We recall here some of the essential facts from the theory of Wiener-Hopf and Hankel

operators. The following equality is well-known (recall (1.6.1)):

WΦΨ = WΦ`0WΨ + HΦ`0HeΨ , (5.1.1)

for Φ, Ψ ∈ [L∞(R)]N×N . The next proposition is the matrix version of the classical scalar

case, which is obviously also valid for the matrix case (one can derive the matrix case

result by using the scalar one entrywise).

PROPOSITION 5.1.1. If Θ ∈ [C(Ṙ)]N×N , then the Hankel operators HΘ and HeΘ are

compact.

We can equivalently rewrite (5.1.1) as WΦΨ − WΦ`0WΨ = HΦ`0HeΨ, and therefore

Proposition 5.1.1 directly yields the following known result.

THEOREM 5.1.2. If Φ, Ψ ∈ [L∞(R)]N×N and at least one of the functions Φ, Ψ belongs

to [C(Ṙ)]N×N , then WΦΨ −WΦ`0WΨ is compact.

Now, employing a continuous partition of the identity, one can sharpen Theorem 5.1.2

as follows.

THEOREM 5.1.3. If Φ, Ψ ∈ PCN×N and if at each point x0 ∈ Ṙ at least one of the

functions Φ and Ψ is continuous, then WΦΨ −WΦ`0WΨ is compact.
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Proof. The result can be proved by following the same arguments as in the scalar case [52,

Lemma 16.2], with corresponding changes for matrices in the places of functions. Namely,

let x1, . . . , x` and x`+1, . . . , xr denote all the points of discontinuity of the matrix functions

Φ and Ψ, respectively. Then, let Θ and Ξ be continuous matrix functions on Ṙ with the

following properties: Θ(xk) = 0N×N , k = 1, . . . , `, Ξ(xk) = 0N×N , k = ` + 1, . . . , r, and

Θ + Ξ ≡ IN×N . This construction of Θ and Ξ turn clear that ΦΘ and ΞΨ are continuous

on Ṙ. From Theorem 5.1.2 and Θ + Ξ = IN×N , we have

WΦΨ = WΦ(Θ+Ξ)Ψ = WΦΘΨ + WΦΞΨ = WΦΘ`0WΨ + K1 + WΦ`0WΞΨ + K2

= WΦΘ`0WΨ + WΦ`0WΞΨ + K3

= (WΦ`0WΘ + K4)`0WΨ + WΦ`0(WΞWΨ + K5) + K3

= WΦ`0WΘ`0WΨ + K6 + WΦ`0WΞ`0WΨ + K7 + K3

= WΦ`0(WΘ + WΞ)`0WΨ + K8

= WΦ`0WΨ + K8 ,

where Ki are compact operators (i = 1, . . . , 8). From here we derive that WΦΨ−WΦ`0WΨ

is compact.

5.2 Wiener-Hopf operators with PC matrix symbols

For Φ ∈ PCN×N , it is well-known the importance for the following auxiliary extension

of Φ:

Φ2(x, µ) := (1− µ)Φ(x− 0) + µΦ(x + 0), (x, µ) ∈ Ṙ× [0, 1] ,

where Φ(x ± 0) denotes the one-sided limits at the point x. This obviously yields det Φ2

to have the form

det Φ2(x, µ) = det[(1− µ)Φ(x− 0) + µΦ(x + 0)], (x, µ) ∈ Ṙ× [0, 1] ,

and maps Ṙ× [0, 1] into C. One of the peculiarities of det Φ2 is that it allows the consid-

eration of

C := {det Φ2(x, µ) ∈ C : x ∈ Ṙ , µ ∈ [0, 1]} ,
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as a closed continuous curve formed by the union of the curve generated by the image of

det Φ and the curve that joins det Φ2(x−0) to det Φ2(x+0) through a line segment, at the

discontinuity points of det Φ. In the case of 0 /∈ C, it is therefore possible to consider the

winding number of C, with respect to the origin, as the number of the counter-clockwise

circuits around the origin performed by the image of det Φ2. In such a case, this winding

number will be denoted by wind[det Φ2].

The next theorem is now considered a classical (Duduchava) result in the Fredholm

theory of Wiener-Hopf operators, and there the winding number plays a fundamental role.

THEOREM 5.2.1. [34, Theorem 4.2] Let Φ ∈ PCN×N .

(a) If det Φ2(x0, µ0) = 0 for some (x0, µ0) ∈ Ṙ× [0, 1], then WΦ is not semi-Fredholm.

(b) If det Φ2(x, µ) 6= 0 for all (x, µ) ∈ Ṙ× [0, 1], then WΦ is Fredholm and its Fredholm

index is given by

IndWΦ = −wind[det Φ2] .

Suppose det Φ2(x, µ) 6= 0 for all (x, µ) ∈ Ṙ × [0, 1]. Then Φ(x − 0) and Φ(x + 0) are

invertible for all x ∈ Ṙ. Assume in addition that the set ∆Φ := {x ∈ Ṙ : Φ(x − 0) 6=
Φ(x + 0)} is finite. For a connected component ` of Ṙ \∆Φ, it is denoted by ind`[det Φ]

the increment of any continuous argument of det Φ on `, times 1 over 2π. Taking into

account the possible jump at infinity, the winding number introduced above can be given

in the following way (cf., e.g., [14, page 100]):

wind[det Φ2] = ind[det Φ2] +
N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(∞)

})
, (5.2.1)

where

ind[det Φ2] =
∑

`

ind`[det Φ] +
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})
, (5.2.2)

and ξ1(x), . . . , ξN(x) are the eigenvalues of Φ−1(x− 0)Φ(x+0) for x ∈ ∆Φ, and where {c}
stands for the fractional part of the number c.
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Thus, the last characterization of the Fredholm property can be reformulated in the

following way.

THEOREM 5.2.2. (cf., e.g., [14, Theorem 5.10]) Let Φ ∈ GPCN×N . For WΦ to be a

Fredholm operator it is necessary and sufficient that

sp[Φ−1(x− 0)Φ(x + 0)] ∩ (−∞, 0] = ∅ ,

for all x ∈ Ṙ. Here sp[Φ−1(x− 0)Φ(x + 0)] stands for the set of eigenvalues of the matrix

Φ−1(x− 0)Φ(x + 0).

If WΦ is Fredholm and Φ has at most finitely many jumps then

IndWΦ = −wind[det Φ2] ,

where wind[det Φ2] is given by (5.2.1)–(5.2.2).

5.3 Wiener-Hopf operators with PAP matrix symbols

The next proposition is the matrix version of a known corresponding result for the

scalar case (cf., e.g., [14, Proposition 3.15]).

PROPOSITION 5.3.1. If Φ ∈ GPAPN×N , then there exist matrix-valued functions

Θ ∈ GSAPN×N and Ξ ∈ GPCN×N such that Ξ(−∞) = Ξ(+∞) = IN×N ,

Φ = Θ Ξ , (5.3.1)

and

WΦ = WΘ`0WΞ + K1 = WΞ`0WΘ + K2 (5.3.2)

with compact operators K1, K2.

Proof. The fact that the factorization (5.3.1) is always possible under the conditions of

the present theorem was deduced in the proof of Proposition 2.2.5. Hence let us assume

that Φ is factorized and is given by the formula (5.3.1). Since Θ is continuous on R and
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Ξ is continuous at∞, we have that Θ and Ξ do not have common points of discontinuity.

Now reasoning in a similar way as in the proof of Theorem 5.1.3 (e.g. considering two

continuous matrix functions on Ṙ, such that the sum of them is the identity matrix,

and vanishing at the points of discontinuity of Θ and Ξ) and also taking profit from

Theorem 5.1.2 we deduce that (5.3.2) holds for compact operators K1 and K2.

The matrix formulation presented in the next proposition is also an adaptation of the

corresponding known scalar case (cf., e.g., [14, Theorem 3.16]).

PROPOSITION 5.3.2. Let Φ ∈ PAPN×N . If Φ 6∈ GPAPN×N , then WΦ is not semi-

Fredholm. Assume now that Φ ∈ GPAPN×N , and Φ` and Φr have a right AP factoriza-

tion, then WΦ is Fredholm if and only if

(i) k(Φ`) = k(Φr) = (0, . . . , 0) ,

(ii) sp[d−1(Φr)d(Φ`)] ∩ (−∞, 0] = ∅ ,

(iii) sp[Φ−1(x− 0)Φ(x + 0)] ∩ (−∞, 0] = ∅ ,

for all x ∈ R.
In the last case (under conditions (i)–(iii)), the Fredholm index of WΦ is provided by:

IndWΦ = −
∑

`

ind`[det Ξ]− ind[det Θ]−
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ηk

})
, (5.3.3)

where ξk(x) are the eigenvalues of the matrix function Φ−1(x− 0)Φ(x+0), and ηk are the

eigenvalues of the matrix d−1(Φr)d(Φ`).

Proof. If Φ 6∈ GPAPN×N , then Φ 6∈ G[L∞(R)]N×N and therefore WΦ is not semi-Fredholm

due to the corresponding Simonenko result [69].

Let us now consider Φ ∈ GPAPN×N . Then we can write (cf. formula (5.3.1)) Φ = ΘΞ

(with Θ ∈ GSAPN×N , Ξ ∈ GPCN×N and Ξ(±∞) = IN×N) such that

WΦ = WΘ`0WΞ + K , (5.3.4)
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for a compact operator K. From here we infer that WΦ is a Fredholm operator if and only if

WΘ and WΞ are also Fredholm operators. In the present context, these last two operators

are Fredholm if and only if the conditions of the theorem are satisfied. More precisely, since

WΘ is a Wiener-Hopf operator with an invertible semi-almost periodic matrix symbol,

and with lateral representatives Θ` = Φ` and Θr = Φr (cf. Proposition 2.2.5) which

admit right AP factorizations, then WΘ is Fredholm if and only if (cf. Theorem 4.2.1)

k(Θ`) = k(Θr) = (0, . . . , 0), and sp[d−1(Θr)d(Θ`)] ∩ (−∞, 0] = ∅.
We turn now to the operator WΞ. This operator has an invertible piecewise continuous

matrix symbol. Therefore, applying Theorem 5.2.2, we obtain that WΞ is Fredholm if and

only if

sp[Ξ−1(x− 0)Ξ(x + 0)] ∩ (−∞, 0] = ∅, x ∈ R .

Now we simply have to observe that Ξ−1(x− 0)Ξ(x + 0) = Φ−1(x− 0)Φ(x + 0), to reach

the final conclusion (please recall that `0 is an invertible operator).

To prove the index formula (5.3.3), assume that WΦ (with Φ ∈ PAPN×N) is a Fred-

holm operator. It is clear that from the equality (5.3.4) we can derive the index formula:

IndWΦ = IndWΘ + IndWΞ . (5.3.5)

Using formulas (4.3.3), (5.2.1) and (5.2.2), from (5.3.5) it follows that

IndWΦ = −
∑

`

ind`[det Ξ]− ind[det Θ]−
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(∞)

})
−

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ηk

})
,

(5.3.6)

where ξk(x) are the eigenvalues of the matrix function Φ−1(x − 0)Φ(x + 0), ηk are the

eigenvalues of the matrix d−1(Φr)d(Φ`). Therefore, (5.3.3) follows from (5.3.6) by just

taking into account that Ξ does not have a jump at infinity.
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5.4 Wiener-Hopf-Hankel operators with PAP matrix

symbols

To give the corresponding result as the Proposition 5.3.2 for the operator DΦ (cf.

(5.0.1)) we employ the notion of equivalence after extension relation (recall Chapter 1).

We are now in a position to present the main theorem of the present chapter.

THEOREM 5.4.1. Let Φ ∈ GPAPN×N , and assume that Φ`Φ̃−1
r admits a right AP

factorization, then the operator DΦ is Fredholm if and only if

(i) Φ`Φ̃−1
r admits a canonical right AP factorization, i.e., k(Φ`Φ̃−1

r ) = (0, . . . , 0) ,

(ii) sp[d(Φ`Φ̃−1
r )] ∩ iR = ∅ ,

(iii) sp[Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0)] ∩ (−∞, 0] = ∅ , x ∈ R.

In addition, when in the presence of the Fredholm property

IndDΦ = −
∑

`

ind`[det Ξ]− ind[det Θ]−
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ηk

})
, (5.4.1)

where ΦΦ̃−1 = ΘΞ is a corresponding factorization in the sense of (5.3.1) for the invertible

matrix-valued PAP function ΦΦ̃−1 which appears in the formula (1.7.1), ξk(x) are the

eigenvalues of the matrix function Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0), and ηk are

the eigenvalues of the matrix d(Φ`Φ̃−1
r ).

Proof. The proof of the first part of this theorem follows a similar reasoning as in the

proof of Theorem 4.2.2 and Proposition 5.3.2, and therefore it will be omitted in here.

As about the index formula, by using the formula (1.7.1) we obtain that IndDΦ =
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IndW
ΦgΦ−1 . Therefore, from (5.3.3), one obtains that

IndDΦ = −
∑

`

ind`[det Ξ]− ind[det Θ]−
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg τk

})
, (5.4.2)

where ΦΦ̃−1 = ΘΞ is a corresponding factorization in the sense of (5.3.1) for the invertible

PAP function ΦΦ̃−1 which appears in the formula (1.7.1), and which is always possible

due to Proposition 5.3.1, ξk(x) are the eigenvalues of the matrix function Φ(−x+0)Φ−1(x−
0)Φ(x + 0)Φ−1(−x − 0), and τk are the eigenvalues of the matrix d−1(ΦrΦ̃

−1
` )d(Φ`Φ̃−1

r ).

As we already know that d−1(ΦrΦ̃
−1
` )d(Φ`Φ̃−1

r ) = Λ2, then the formula (5.4.2) simplifies

to the following one:

IndDΦ = −
∑

`

ind`[det Ξ]− ind[det Θ]−
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ηk

})
,

where ΦΦ̃−1 = ΘΞ, ξk(x) are as above and ηk are the eigenvalues of the matrix Λ.

5.5 Generalized factorization and the operator DΦ

To obtain stronger versions of the above results we need the following proposition

which can be viewed as a stronger version of Proposition 5.3.2. We would like to emphasize

that in this section we will make use of the generalized right AP factorization, which was

recalled in Chapter 4.

PROPOSITION 5.5.1. Let Φ ∈ GPAPN×N . Then WΦ is Fredholm if and only if

(i) Φ` and Φr admit a canonical generalized right AP factorization,

(ii) sp[d−1(Φr)d(Φ`)] ∩ (−∞, 0] = ∅ ,

(iii) sp[Φ−1(x− 0)Φ(x + 0)] ∩ (−∞, 0] = ∅ ,
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for all x ∈ R.

Proof. The proof runs in an analogous way as the proof of Proposition 5.3.2 (with obvious

changes in the corresponding different places).

We are ready to generalize this last theorem for the Wiener-Hopf-Hankel operators

with piecewise almost periodic symbols.

THEOREM 5.5.2. Let Φ ∈ GPAPN×N . Then the operator DΦ is Fredholm if and only

if

(i) Φ`Φ̃−1
r admits a canonical generalized right AP factorization,

(ii) sp[d(Φ`Φ̃−1
r )] ∩ iR = ∅ ,

(iii) sp[Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0)] ∩ (−∞, 0] = ∅ , x ∈ R.

Proof. The proof is the compilation of the techniques examined in Theorem 4.2.2 and

Proposition 5.3.2.

The index formula where we “a priori” do not need to require that Φ`Φ̃−1
r admits a

right AP factorization is now stated.

THEOREM 5.5.3. Let Φ ∈ GPAPWN×N , and assume that DΦ is Fredholm operator.

Then

IndDΦ = −
∑

`

ind`[det Ξ]− ind[det Θ]−
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ηk

})
,

where ΦΦ̃−1 = ΘΞ is a corresponding factorization in the sense of (5.3.1) for the invertible

matrix-valued PAPW function ΦΦ̃−1 which appears in the formula (1.7.1), ξk(x) are the

eigenvalues of the matrix function Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0), and ηk are

the eigenvalues of the matrix d(Φ`Φ̃−1
r ).
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Using this theorem and the fact that PAPW is dense in PAP we can obtain a stronger

result on the index formula for the Wiener-Hopf-Hankel operators with piecewise almost

periodic symbols.

THEOREM 5.5.4. If DΦ is a Fredholm operator for some Φ ∈ GPAPN×N , then

IndDΦ = −
∑

`

ind`[det Ξ]− ind[det Θ]−
∑

x∈∆Φ

N∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1

2
−

{
1

2
− 1

π
arg ηk

})
,

where ΦΦ̃−1 = ΘΞ is a corresponding factorization in the sense of (5.3.1) for the invertible

matrix-valued PAP function ΦΦ̃−1 which appears in the formula (1.7.1), ξk(x) are the

eigenvalues of the matrix function Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0), and ηk are

the eigenvalues of the matrix d(Φ`Φ̃−1
r ).

Proof. The proof runs by analogy to the proof of Theorem 4.6.2.

5.6 Examples

We will end this chapter with some examples. We will construct examples which show

that a Wiener-Hopf operator may not be Fredholm although the Wiener-Hopf plus/minus

Hankel operators with the same symbols are Fredholm.

5.6.1 Example 1

Let us consider the following matrix function.

Φ(x) = (1− u(x))


 e−i(1+α)x 0

e−iαx − 1 + eix ei(1+α)x





 a(x)h(x) 0

0 b(x)h(x)




+ u(x)


 ei(1+α)x 0

eiαx − 1 + e−ix e−i(1+α)x





 a(x)h(x) 0

0 b(x)h(x)


 ,
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where α and u are as in Section 4.7, a, b ∈ GC(Ṙ) are any real-valued functions which

satisfy the following conditions a(±∞) = b(±∞) = 1, but for more evidence we are going

to set

a(x) =
1

2
(e−

1
x2 + 1) , (5.6.1)

b(x) = 1 , (5.6.2)

and

h(x) =





1, |x| ≥ 1,

eiπ(x+1), -1< x ≤0,
(2− x)eiπ(x−1), 0< x <1.

Obviously Φ admits a factorization.

Φ = FG , (5.6.3)

where

F (x) = (1− u(x))


 e−i(1+α)x 0

e−iαx − 1 + eix ei(1+α)x


 + u(x)


 ei(1+α)x 0

eiαx − 1 + e−ix e−i(1+α)x


 ,

and

G(x) =


 a(x)h(x) 0

0 b(x)h(x)


 .

Let us observe that Φ is invertible, because F and G are invertible matrix functions, which

directly follows when checking their determinants. We have that Wiener-Hopf operator

with symbol Φ is not Fredholm operator because the matrix function

 e−i(1+α)x 0

e−iαx − 1 + eix ei(1+α)x


 ∈ GAP

does not have a right AP factorization (cf. [47, pages 284-285]). However, if we consider

Wiener-Hopf plus/minus Hankel operator it will be Fredholm. From the equality (5.6.3)

one obtains:

ΦΦ̃−1 = FGG̃−1F̃−1 . (5.6.4)



5.6 Examples 83

So, from (5.6.4) we have

Φ`Φ̃−1
r = I2×2 .

Consequently

d(Φ`Φ̃−1
r ) = I2×2 .

Whence the eigenvalues are equal to 1 6∈ iR. Now we will calculate

sp[Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0)], x ∈ R .

As we already know this expression coincides with (x ∈ R)

sp[G(−x + 0)G−1(x− 0)G(x + 0)G−1(−x− 0)] .

Obviously

G−1(x) =


 a−1(x)h−1(x) 0

0 b−1(x)h−1(x)


 ,

where

h−1(x) =





1, |x| ≥ 1,

e−iπ(x+1), −1 < x ≤ 0,
e−iπ(x−1)

2−x
, 0 < x < 1.

Evidently G has only one point of discontinuity 0. Straightforward calculation shows that:

G(−x + 0)|x=0 =


 −1

2
0

0 −1


 , G−1(x− 0)|x=0 =


 −2 0

0 −1


 ,

G(x + 0)|x=0 =


 −1 0

0 −2


 , and G−1(−x− 0)|x=0 =


 −2 0

0 −1


 .

Consequently

G(−x + 0)G−1(x− 0)G(x + 0)G−1(−x− 0) = 2I2×2.
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0

5

−5 5
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0

Figure 5.1: graph of det Θ

From here we have sp[G(−x+0)G−1(x−0)G(x+0)G−1(−x−0)] = {2} 6∈ (−∞, 0] . Thus

we reached the last necessary condition for this Wiener-Hopf plus/minus Hankel operator

to be Fredholm:

sp[Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0)] ∩ (−∞, 0] = ∅ , x ∈ R .

For an index formula we need first to factorize ΦΦ̃−1 in the appropriate way. Taking into

account that G is a diagonal matrix function we can ensure the following factorization:

ΦΦ̃−1 = FF̃−1Θ ,

where

Θ(x) =


 h(x)h̃(x)

−1
0

0 h(x)h̃(x)
−1


 .

Now, let us analyze the determinants of FF̃−1 and Θ.

det FF̃−1 = det F det F̃−1 = det F (det F̃ )−1 = det F (det F )−1 = 1 .
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Hence, we obtain Ind det FF̃−1 = 0. Further

det Θ(x) = h2(x)h̃(x)
−2

=





1, |x| ≥ 1,

(x + 2)−2e4iπ(x+1), −1 < x ≤ 0,

(x− 2)2e4iπ(x−1), 0 < x < 1.

The graph of the function det Θ is given in Figure 5.1 and it surrounds the origin four

times in the positive (counter-clockwise) direction.

Now employing Euler’s formula, one obtains:

e4iπ(x+1)

(x + 2)2
=

cos(4π(x + 1))

(x + 2)2
+ i

sin(4π(x + 1))

(x + 2)2
.

So, for x ∈ (−1, 0) we have:

arg det Θ(x) = arctan

(
(x + 2)2 sin(4π(x + 1))

(x + 2)2 cos(4π(x + 1))

)
= arctan(tan(4π(x + 1))) = 4π(x + 1) .

Analogously for x ∈ (0, 1) we will obtain

arg det Θ(x) = 4π(x− 1) .

Hence, the increment of the continuous argument of det Θ on (−1, 0) is equal to 4π times

1 over 2π, so 2, and analogously the increment on (0, 1) is equal to 2. Consequently the

first term on the right-hand side of (5.4.1) is equal to 4. Finally, from (5.4.1), we have

Ind[WΦ + HΦ] + Ind[WΦ −HΦ] = 4 .

5.6.2 Example 2

Now consider another example. Let

Ψ(x) = [(1− u(x))Φ`(x) + u(x)Φr(x)]H(x)

where u is as above,

Φ`(x) =


 e−ix + 1 e−ix

e−ix e−ix − 1


 , Φr(x) =


 1− e−ix −e−ix

e−ix 1 + e−ix


 ,

H(x) =


 h(x) 0

0 h(x)


 ,
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and

h(x) =





1, |x| ≥ 1,

eiπ(x+1), −1 < x ≤ 0,

(x + 2)e−iπ(x−1), 0 < x < 1.

Let us start with showing that Ψ is invertible. It is clear that H is invertible. We are left

to show that (1− u)Φ` + uΦr is invertible. We need to calculate the determinant of this

expression. Direct computation provides that:

det[(1− u)Φ` + uΦr] = 4u(1− u)e−ix + 2u− 1 .

Observing that

4u(1− u) = 1− 4

π2
arctan2(x) ,

and

2u− 1 =
2

π
arctan(x) ,

we will obtain:

det[(1− u)Φ` + uΦr] = e−ix

(
1− 4

π2
arctan2(x)

)
+

2

π
arctan(x) =

cos(x)

(
1− 4

π2
arctan2(x)

)
+

2

π
arctan(x) + i sin(x)

(
4

π2
arctan2(x)− 1

)
.

From the last equality we have that

det[(1− u)Φ` + uΦr] = 0

if and only if

cos(x)

(
1− 4

π2
arctan2(x)

)
+

2

π
arctan(x) = 0

and

sin(x)

(
4

π2
arctan2(x)− 1

)
= 0 .
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Now our aim is to show that the last two equalities do not hold simultaneously. Indeed,

we have that sin(x)( 4
π2 arctan2(x)− 1) = 0 if and only if 4

π2 arctan2(x)− 1 = 0 or sin(x) =

0. If 4
π2 arctan2(x) − 1 = 0, then arctan(x) = ±π

2
, whence cos(x)(1 − 4

π2 arctan2(x)) +

2
π

arctan(x) = ±1, and therefore in this case det[(1− u)Φ` + uΦr] 6= 0. Consider now the

case when sin(x) = 0. From here we have that x = πn, where n ∈ Z. So this leads us to

the following criterion, that Ψ is not invertible if the following holds:

±
(

1− 4

π2
arctan2(πn)

)
+

2

π
arctan(πn) = 0 . (5.6.5)

But we will show that (5.6.5) never holds for any integer number n. We have two quadratic

equations with respect to arctan(πn). Whence we have four solutions, namely:

arctan(πn) =
(1±√5)π

4
,

and

arctan(πn) =
(−1±√5)π

4
.

This lead us to the following equalities:

πn =
(1±√5)π

4
+ kπ , k ∈ Z ,

or

πn =
(−1±√5)π

4
+ kπ , k ∈ Z .

Therefore, we get a contradiction because the equality n−k = (±1±√5)/4 is not possible,

due to the fact that (±1 ± √5)/4 is not an integer number. This contradiction proves

that Ψ is invertible.

From the definition of Φ` and Φr it is readily seen that they are invertible almost-

periodic “minus” class functions, and so they admit a canonical right AP factorization.

However the Wiener-Hopf operator with symbol Ψ is not Fredholm, because

d−1(Φr)d(Φ`) =


 1 0

0 −1


 ,
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−1 0

0

−2 1

1

Figure 5.2: graph of Ξ

and therefore sp[d−1(Φr)d(Φ`)] = {−1, 1} ∩ (−∞, 0] 6= ∅. Now we will show that the

Wiener-Hopf plus Hankel operator with the same symbol is Fredholm. A straightforward

computation shows that

Φ`Φ̃r

−1
=


 eix + e−ix + 1 eix + e−ix

eix + e−ix eix + e−ix − 1


 .

This matrix function admits a canonical right AP factorization:

Φ`Φ̃r

−1
=


 e−ix + 1 e−ix

e−ix e−ix − 1





 eix + 1 eix

−eix 1− eix


 .

From this factorization we also infer that

d(Φ`Φ̃−1
r ) =


 1 0

0 −1


 . (5.6.6)

Thus, sp[d(Φ`Φ̃−1
r )] = {−1, 1} and therefore sp[d(Φ`Φ̃−1

r )] ∩ iR = ∅. We are left to check

the condition on the piecewise continuous function H. As far as H has exactly two points of
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discontinuity, namely 0 and 1, we have to calculate H(−x−0)H−1(x−0)H(x+0)H−1(−x−
0). Computations show that

H(−x− 0)H−1(x− 0)H(x + 0)H−1(−x− 0)|x=0 = 2I2×2,

and

H(−x− 0)H−1(x− 0)H(x + 0)H−1(−x− 0)|x=1 =
1

3
I2×2.

Therefore sp[H(−x − 0)H−1(x − 0)H(x + 0)H−1(−x − 0)] = {1/3, 2} ∩ (−∞, 0] = ∅,
(x ∈ R). Consequently we deduce that Wiener-Hopf plus/minus Hankel operator with

symbol Ψ is Fredholm.

To calculate the sum of Fredholm indices of the operators Wiener-Hopf plus/minus

Hankel with symbol Ψ we have to factorize ΨΨ̃−1. It is readily seen that

ΨΨ̃−1 = ΘΘ̃−1HH̃−1 ,

where Θ = (1 − u)Φ` + uΦr, and recall that HH̃−1 is a diagonal function with equal

entries on it. Let us consider the determinants of ΘΘ̃−1 and HH̃−1. Straightforwardly we

see that

Ξ := det ΘΘ̃−1 =
2u− 1 + 4u(1− u)e−ix

2ũ− 1 + 4ũ(1− ũ)eix
.

(The graph of Ξ is given in Figure 5.2). It is well-known that

arg Ξ = arctan

(=mΞ

<eΞ

)
, (5.6.7)

where =mΞ stands for imaginary part of the complex quantity Ξ, and <eΞ – for the real

part. Once again a straightforward calculation shows that

=mΞ

<eΞ
=

π4 − 4π2 arctan2(x)− 2π4 cos2(x) + 16π2 cos2(x) arctan2(x)

sin(2x)(4 arctan2(x)− π2)2

+
16 arctan4(x)− 32 cos2(x) arctan4(x)

sin(2x)(4 arctan2(x)− π2)2
.

As we see the numerator of the fraction in (5.6.7) is an even and the denominator is an

odd function, whence the fraction is an odd function. This means that (arg Ξ)(−x) =
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−(arg Ξ)(x). Employing one of the applications of the formula (4.3.1), one obtains:

ind det ΘΘ̃−1 = lim
T→∞

1

2T

∫ T

−T

((arg Ξ)(x)− (arg Ξ)(−x))dx = lim
T→∞

1

T

∫ T

−T

(arg Ξ)(x)dx = 0,

because the integral bounds are symmetric and the function under the integration is an

odd one. As we have shown above (cf. (5.6.6)) the eigenvalues of the matrix d(Φ`Φ̃−1
r )

are equal to −1 and 1. We need now the determinant of the matrix function HH̃−1.

Calculating the determinant we have

Y (x) := det[H(x)H̃−1(x)] = h2(x)h̃−2(x) =





1, |x| ≥ 1,

(x− 2)−2, −1 < x < 0,

(x + 2)2, 0 < x < 1 .

Hence we get that Y is a positive real-valued function, whence the argument of it is equal

to zero. Consequently from the formula (5.4.1) we have the following equality:

Ind[WΨ + HΨ] + Ind[WΨ −HΨ] = 0.



Chapter 6

Unitary and sectorial symbols

In this chapter we consider matrix Wiener-Hopf-Hankel operators acting between

Lebesgue spaces on the real line with Fourier symbols presenting some even properties

(which in particular include unitary matrix functions), and also with Fourier symbols

which contain sectorial matrices. In both situations, different conditions are found to

ensure the operators two-sided invertibility, one-sided invertibility, Fredholm property,

and the n- and d-normal properties. These new results are assembled in Theorems 6.1.2

and 6.2.2. Although in this chapter we consider the theory for the matrix Wiener-Hopf-

Hankel operators in the end we give examples for both the scalar and the matrix case.

6.1 Matrix Wiener-Hopf-Hankel operators with sym-

metry

Our goal is to obtain characterizations for the regularity properties of (5.0.1), in the

cases where: (i) the Fourier symbol presents some even symmetry when combined with

its conjugate transpose; (ii) the Fourier symbol is a matrix function which allows certain

factorizations depending on sectorial elements. Therefore, we will generalize the results

of [11], and will also consider other classes of Fourier symbols which were not treated in

[11]. We recall that Φ ∈ [L∞(R)]N×N is called unitary if ΦΦ∗ = Φ∗Φ = IN×N , where Φ∗
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stands for the conjugate transpose of Φ.

In the Wiener-Hopf operators case there is a well-known theorem – due to Douglas

and Sarason – about the regularity properties of this kind of operators and the distances

from the Fourier symbols to certain spaces. More precisely, the theorem may be written

in the following form.

THEOREM 6.1.1 (Douglas and Sarason [32]). If Φ ∈ [L∞(R)]N×N is unitary, then:

(a) WΦ is two-sided invertible if and only if dist(Φ,G[H∞
+ (R)]N×N) < 1 if and only if

dist(Φ,G[H∞
− (R)]N×N) < 1 ;

(b) WΦ is left-invertible if and only if dist(Φ, [H∞
+ (R)]N×N) < 1 ;

(b′) WΦ is right-invertible if and only if dist(Φ, [H∞
− (R)]N×N) < 1 ;

(c) WΦ is Fredholm if and only if dist(Φ,G[C(Ṙ) + H∞
+ (R)]N×N) < 1 if and only if

dist(Φ,G[C(Ṙ) + H∞
− (R)]N×N) < 1 ;

(d) WΦ is n-normal if and only if dist(Φ, [C(Ṙ) + H∞
+ (R)]N×N) < 1 ;

(d′) WΦ is d-normal if and only if dist(Φ, [C(Ṙ) + H∞
− (R)]N×N) < 1.

The last theorem served as a motivation for obtaining such kind of result for our

Wiener-Hopf-Hankel operators. However, it is clear that adding Hankel operators to the

above Wiener-Hopf operators will give rise to several changes in the regularity properties of

the resulting operators. In addition, we will work not only with unitary matrix functions

but with the more general class which appears in the general assumption of the next

result.

THEOREM 6.1.2. Let Φ ∈ G[L∞(R)]N×N and assume that Φ∗Φ is an even matrix-

valued function.

(a) DΦ is two-sided invertible if and only if dist(ΦΦ̃−1,G[H∞
+ (R)]N×N) < 1 if and only

if dist(ΦΦ̃−1,G[H∞
− (R)]N×N) < 1 ;
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(b) DΦ is left-invertible if and only if dist(ΦΦ̃−1, [H∞
+ (R)]N×N) < 1 ;

(b′) DΦ is right-invertible if and only if dist(ΦΦ̃−1, [H∞
− (R)]N×N) < 1 ;

(c) DΦ is Fredholm if and only if dist(ΦΦ̃−1,G[C(Ṙ) + H∞
+ (R)]N×N) < 1 if and only if

dist(ΦΦ̃−1,G[C(Ṙ) + H∞
− (R)]N×N) < 1 ;

(d) DΦ is n-normal if and only if dist(ΦΦ̃−1, [C(Ṙ) + H∞
+ (R)]N×N) < 1 ;

(d′) DΦ is d-normal if and only if dist(ΦΦ̃−1, [C(Ṙ) + H∞
− (R)]N×N) < 1 .

Proof. The proof is based on the notion of equivalence after extension relation (recall

Chapter 1). From (1.7.1) we have that DΦ is equivalent after extension with WΦeΦ−1 .

Thus, we are now going to analyze the Fourier symbol ΦΦ̃−1.

Let us observe that for Φ ∈ G[L∞(R)]N×N the function ΦΦ̃−1 is unitary if and only if

Φ∗Φ is even. Indeed, suppose that Φ∗Φ is even. By the definition we have:

Φ∗Φ = Φ̃∗Φ̃ .

From here it directly follows that

ΦΦ̃−1 = (Φ∗)−1Φ̃∗ . (6.1.1)

To simplify further arguments, let us introduce the new notation: Ψ := ΦΦ̃−1. To prove

that Ψ is unitary we have to show that

ΨΨ∗ = Ψ∗Ψ = IN×N .

Performing a direct substitution, we will have that

ΨΨ∗ = ΦΦ̃−1(Φ̃−1)∗Φ∗

Having in mind formula (6.1.1), from the last equality one obtains:

ΨΨ∗ = (Φ∗)−1(Φ̃∗)(Φ̃−1)∗Φ∗ = (Φ∗)−1(Φ̃∗)(Φ̃∗)−1Φ∗ = (Φ∗)−1Φ∗ = IN×N .
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Analogously, we have:

Ψ∗Ψ = (Φ̃−1)∗Φ∗ΦΦ̃−1 = (Φ̃−1)∗Φ∗(Φ∗)−1Φ̃∗ = IN×N .

To prove the above stated equivalence we are left to show that if ΦΦ̃−1 is an unitary

matrix function, then Φ∗Φ is even. If ΦΦ̃−1 is unitary, then we derive that

ΦΦ̃−1(Φ̃−1)∗Φ∗ = IN×N .

Consequently, we have:

ΦΦ̃−1 = (Φ∗)−1Φ̃∗ .

Hence, Φ∗Φ = Φ̃∗Φ̃ and we have shown the above announced equivalence.

From the above reasoning we have that ΦΦ̃−1 is unitary. We can now apply Theo-

rem 6.1.1 to the operator WΦeΦ−1 and obtain all the above stated conditions in terms of

distances. Now, the result follows if we employ an equivalence after extension relation

between DΦ and WΦeΦ−1 , which allows the transfer of regularity properties from WΦeΦ−1 to

DΦ.

REMARK 6.1.3. Note that the global assumption of the last theorem which requires

that Φ∗Φ is an even matrix-valued function is more general than assuming Φ to be an

unitary matrix function.

6.2 Matrix Wiener-Hopf-Hankel operators with secto-

rial components

In the present section we will work out a different characterization for the regularity

properties of matrix Wiener-Hopf-Hankel operators, and which is now based on the use

of certain sectorial parts of the matrix Fourier symbols of the operators.

We recall that by SN×N is denoted the set of all sectorial matrix functions (in

[L∞(R)]N×N). Once again, for matrix Wiener-Hopf operators with such kind of Fourier

symbols a description of the possible regularity properties is known.
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THEOREM 6.2.1. [27] If Φ ∈ G[L∞(R)]N×N , then:

(a) WΦ is two-sided invertible if and only if Φ = Sh, S ∈ SN×N , h ∈ G[H∞
+ (R)]N×N if

and only if Φ = hS, S ∈ SN×N , h ∈ G[H∞
− (R)]N×N ;

(b) WΦ is left-invertible if and only if Φ = Sh, S ∈ SN×N , h ∈ [H∞
+ (R)]N×N ;

(b′) WΦ is right-invertible if and only if Φ = hS, S ∈ SN×N , h ∈ [H∞
− (R)]N×N ;

(c) WΦ is Fredholm if and only if Φ = Sh, S ∈ SN×N , h ∈ G[C(Ṙ) + H∞
+ (R)]N×N if

and only if Φ = hS, S ∈ SN×N , h ∈ G[C(Ṙ) + H∞
− (R)]N×N ;

(d) WΦ is n-normal if and only if Φ = Sh, S ∈ SN×N , h ∈ [C(Ṙ) + H∞
+ (R)]N×N ;

(d′) WΦ is d-normal if and only if Φ = hS, S ∈ SN×N , h ∈ [C(Ṙ) + H∞
− (R)]N×N .

We will now introduce a corresponding theorem for Wiener-Hopf-Hankel operators

(i.e., for the operator DΦ).

THEOREM 6.2.2. Let Φ ∈ G[L∞(R)]N×N .

(a) DΦ is two-sided invertible if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ G[H∞
+ (R)]N×N

if and only if

ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ G[H∞
− (R)]N×N ;

(b) DΦ is left-invertible if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ [H∞
+ (R)]N×N ;

(c) DΦ is right-invertible if and only if

ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ [H∞
− (R)]N×N ;
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(d) DΦ is Fredholm if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ G[C(Ṙ) + H∞
+ (R)]N×N

if and only if

ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ G[C(Ṙ) + H∞
− (R)]N×N ;

(e) DΦ is n-normal if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ [C(Ṙ) + H∞
+ (R)]N×N ;

(f) DΦ is d-normal if and only if

ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ [C(Ṙ) + H∞
− (R)]N×N .

Proof. To prove this result we perform the same reasoning as in the proof of Theorem

6.1.2, and make use of the fact that DΦ is equivalent after extension with W
ΦgΦ−1 . This

allows us to transfer the above mentioned regularity properties from the operator W
ΦgΦ−1

to the operator DΦ by using Theorem 6.2.1 and the indicated operator relation.

6.3 Examples

We end with some examples showing the applicability of the last result. Let us

consider the Wiener-Hopf plus Hankel operator

WHϕp : L2
+(R) → L2(R+) ,

with the particular Fourier symbol

ϕp(x) = (2 + sin(x)) eiαx , x ∈ R ,

where α ∈ R is a given parameter. Direct computations show that

ϕp(x) ϕ̃−1
p (x) =

2 + sin(x)

2− sin(x)
e2iαx .
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So, if we choose sp(x) = (2 + sin(x))/(2− sin(x)) and hp(x) = e2iαx, we see that sp ∈ S.
This occurs because 1/3 ≤ sp ≤ 3, and therefore the range of sp is contained in the right

half-plane (which boundary passes through the origin). Moreover, depending whether

α ≥ 0 or α ≤ 0, we have hp ∈ H∞
+ (R) or hp ∈ H∞

− (R), respectively. Therefore, applying

Theorem 6.2.2 to

ϕp ϕ̃−1
p = sp hp ,

we conclude that:

(a) if α = 0, then WHϕp is two-sided invertible;

(b) if α > 0, then WHϕp is left-invertible;

(c) if α < 0, then WHϕp is right-invertible.

Now we give an example with matrix operators. Let us consider the matrix Wiener-

Hopf plus Hankel operator

WHΦp : [L2
+(R)]2 → [L2(R+)]2 ,

with the particular Fourier symbol

Φp(x) =


 2 + sin(x) 0

cos(x) 1





 eiαx 0

0 1


 , x ∈ R ,

where α ∈ R is a given parameter. Direct computations show that

Φp(x) Φ̃−1
p (x) =


 e2iαx 0

0 1





 (2 + sin(x))(2− sin(x))−1 0

(e2iαx − 1) cos(x)(2− sin(x))−1 1


 =: hpSp ,

and

Φp(x) Φ̃−1
p (x) =


 (2 + sin(x))(2− sin(x))−1 0

(1− e−2iαx) cos(x)(2− sin(x))−1 1





 e2iαx 0

0 1


 =: spHp .

So, we have that sp and Sp are sectorial matrix functions because the main minors of that

matrices are positive definite and this is a particular case of sectorial matrix functions.

Moreover, depending whether α ≥ 0 or α ≤ 0, we have hp, Hp ∈ [H∞
+ (R)]2×2 or hp, Hp ∈

[H∞
− (R)]2×2, respectively. Therefore, applying Theorem 6.2.2, we conclude that:
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(a) if α = 0, then WHΦp is two-sided invertible;

(b) if α > 0, then WHΦp is left-invertible;

(c) if α < 0, then WHΦp is right-invertible.



Chapter 7

Scalar Wiener-Hopf plus Hankel

operators via odd factorizations

In this chapter the invertibility of Wiener-Hopf plus Hankel operators with essentially

bounded Fourier symbols is described via certain factorization properties of the Fourier

symbols. In addition, a Fredholm criterion for these operators is also obtained and the

dimensions of the kernel and cokernel are described.

Once again, let us emphasize that in recent times algebraic combinations of Wiener-

Hopf and Hankel operators have been receiving an increased attention in view of their

invertibility and Fredholm properties. Part of this interest comes from certain applications

where such combinations of operators arise. Recent works within this context can be

found e.g. in [2], [3], [11], [19], [24], [26], [29], [51], [58], [60], [61]. Some of these works are

devoted to certain asymmetric factorizations concepts which are helpful to look for in view

of the invertibility properties of corresponding operators with symmetries. In coherence

to these developments, in the present chapter we propose an odd asymmetric factorization

concept which will be crucial to find out an invertibility and Fredholm characterization

for Wiener-Hopf plus Hankel operators with essentially bounded Fourier symbols.

Thus, the main goal of the present chapter is to obtain invertibility and Fredholm

criteria for Wiener-Hopf plus Hankel operators acting between L2 Lebesgue spaces.
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7.1 Odd factorizations on the real line and main invert-

ibility result

We start by introducing a definition that will be later on completed by a corresponding

stronger version which will have a central role in our invertibility and Fredholm criteria

for the Wiener-Hopf plus Hankel operators. Thus, at the end of the present section it will

be already possible to state the main invertibility criterion for WHϕ (cf. (1.4.5)).

DEFINITION 7.1.1. A function ϕ ∈ GL∞(R) is said to admit a weak odd asymmetric

factorization in L2(R) if it admits a representation

ϕ(x) = ϕ−(x)

(
x− i

x + i

)κ
ϕo(x) , x ∈ R ,

such that κ ∈ Z, and

(i) x
(x−i)2

ϕ− ∈ H2
−(R) , 1

(x−i)2
ϕ−1
− ∈ H2

−(R) ,

(ii) 1
x2+1

ϕo ∈ L2
odd(R) , |x|

x2+1
ϕ−1

o ∈ L2
odd(R) .

Here and in what follows L2
odd(X) stands for the class of odd functions from the space

L2(X). The integer κ is called the index of a weak odd asymmetric factorization in L2(R).

Let us note that we have the uniqueness (up to a constant) of such type of factoriza-

tions. This last property is given in exact terms in the next theorem.

THEOREM 7.1.2. Assume that ϕ ∈ GL∞(R) admits two weak odd asymmetric factor-

izations in L2(R):

ϕ(x) = ϕ
(1)
− (x)

(
x− i

x + i

)κ1

ϕ(1)
o (x) = ϕ

(2)
− (x)

(
x− i

x + i

)κ2

ϕ(2)
o (x), x ∈ R .

Then, we necessarily have κ1 = κ2, ϕ
(1)
− = Cϕ

(2)
− and ϕo = C−1ϕ

(2)
o , for some constant

C ∈ C \ {0}.

Proof. Let ϕ admit two weak odd asymmetric factorizations:

ϕ(x) = ϕ
(1)
− (x)

(
x− i

x + i

)κ1

ϕ(1)
o (x) = ϕ

(2)
− (x)

(
x− i

x + i

)κ2

ϕ(2)
o (x) , x ∈ R (7.1.1)
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(where ϕ
(1)
− , ϕ

(2)
− and ϕ

(1)
o , ϕ

(2)
o have the corresponding properties of (i) and (ii) in Defini-

tion 7.1.1). From (7.1.1) we immediately have that

ϕ
(1)
− (x)(ϕ

(2)
− (x))−1

(
x− i

x + i

)κ1−κ2

= ϕ(2)
o (x)(ϕ(1)

o (x))−1 , x ∈ R. (7.1.2)

We can assume without lost of generality that κ := κ1−κ2 ≤ 0, since otherwise we would

consider

ϕ
(2)
− (x)(ϕ

(1)
− (x))−1

(
x− i

x + i

)κ2−κ1

= ϕ(1)
o (x)(ϕ(2)

o (x))−1 , x ∈ R

instead of (7.1.2) (and from this last identity we are able to take the same conclusion and

therefore proceed with the proof in a similar way).

Let us now consider the following auxiliary function:

ψ(x) :=
x

(x− i)4 ϕ
(1)
− (x)(ϕ

(2)
− (x))−1 ∈ H1

−(R) . (7.1.3)

A direct computation yields that

ψ̃(x) :=
−x

(x + i)4 ϕ̃−
(1)(x)(ϕ̃−

(2)(x))−1 ∈ H1
+(R) . (7.1.4)

The right-hand side of (7.1.2) is an even function (since it is a product of two odd func-

tions). Hence, from (7.1.2), we immediately obtain that

ϕ
(1)
− (x)(ϕ

(2)
− (x))−1

(
x− i

x + i

)2κ

= ϕ̃−
(1)(x)(ϕ̃−

(2)(x))−1 .

This identity together with (7.1.3) and (7.1.4), lead to the conclusion that

ψ(x)

(
x− i

x + i

)2κ+4

= −ψ̃(x) . (7.1.5)

Due to the inclusions in (7.1.3) and (7.1.4), if 2κ+4 ≤ 0 then from (7.1.5) we immediately

obtain that ψ = 0 is identically zero and hence we would have a contradiction. This means

that it only remains the possibilities of κ = −1 and κ = 0. Let us analyze the case where

κ = −1. In the present case, (7.1.5) is reduced to the form

(x− i)2ψ(x) = −(x + i)2ψ̃(x) .



102 7. Scalar Wiener-Hopf plus Hankel operators via odd factorizations

Hence, using (7.1.3)–(7.1.4), we have a contradiction which shows that κ cannot be equal

to −1. Thus, the only possibility which is left for κ is to be equal to zero. Therefore, in

such a case, κ1 = κ2. In this case we will have that

ϕ
(1)
− (x)(ϕ

(2)
− (x))−1 = ϕ̃−

(1)(x)(ϕ̃−
(2)(x))−1 .

Consequently, ϕ
(1)
− (x)(ϕ

(2)
− (x))−1 = C for a constant C ∈ C \ {0} (cf., e.g., [24, Theorem

4.2]). Thus ϕ
(1)
− = Cϕ

(2)
− and ϕ

(1)
o = C−1ϕ

(2)
o .

The following definition may be viewed as a strong version of the previous introduced

weak factorization and will play a crucial role in the main theorem below.

DEFINITION 7.1.3. A function ϕ ∈ GL∞(R) is said to admit an odd asymmetric

factorization in L2(R) if it admits a representation

ϕ(x) = ϕ−(x)

(
x− i

x + i

)κ
ϕo(x) , x ∈ R , (7.1.6)

such that κ ∈ Z, and

(i) x
(x−i)2

ϕ− ∈ H2
−(R) , 1

(x−i)2
ϕ−1
− ∈ H2

−(R) ,

(ii) 1
(x2+1)

ϕo ∈ L2
odd(R) , |x|

(x2+1)
ϕ−1

o ∈ L2
odd(R) ,

(iii) the linear operator S := W 0
ϕ−1

o
(I − J)`0Wϕ−1

−
: L2(R) → L2

even(R) is bounded.

The integer κ is called the index of the odd asymmetric factorization in L2(R). Please,

note that in (iii) the “Wiener-Hopf operator” is acting on the full space L2(R).

We are now in a position to state the main result about the invertibility of our

Wiener-Hopf plus Hankel operators with L∞ symbols.

THEOREM 7.1.4. Let ϕ ∈ GL∞(R). The operator WHϕ is invertible if and only if ϕ

admits an odd asymmetric factorization in L2(R) with index κ = 0.

The proof of this theorem will be given in Section 7.3.
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7.2 Odd factorizations on the unit circle

In the present section we will introduce some auxiliary notions which will be useful

to work out some conclusions in the unit circle setting. The reader should recall that odd

functions on the unit circle are exactly those which satisfy the condition given on page 3.

DEFINITION 7.2.1. A function φ ∈ GL∞(Γ0) is said to admit a weak odd asymmetric

factorization in L2(Γ0) if it admits a representation

φ(t) = φ−(t)tkφo(t) , t ∈ Γ0 ,

such that k ∈ Z and

(i) (1 + t−1)φ− ∈ H2
−(Γ0) , (1− t−1)φ−1

− ∈ H2
−(Γ0) ,

(ii) |1− t|φo ∈ L2
odd(Γ0) , |1 + t|φ−1

o ∈ L2
odd(Γ0) .

The integer k is called the index of an asymmetric factorization in L2(Γ0).

Now we will present a theorem about the uniqueness of a weak odd asymmetric

factorization in L2(Γ0).

THEOREM 7.2.2. (an analogue of [3, Proposition 3.1]) Assume that φ admits two weak

odd asymmetric factorizations in L2(Γ0):

φ(t) = φ
(1)
− (t)tk1φ(1)

o (t) = φ
(2)
− (t)tk2φ(2)

o (t), t ∈ Γ0 . (7.2.1)

Then k1 = k2, φ
(1)
− = Cφ

(2)
− , φ

(1)
o = C−1φ

(2)
o with C ∈ C \ {0}.

Proof. Without lost of generality, we can assume that κ := k1 − k2 ≤ 0. From (7.2.1) we

have that

(φ
(2)
− )−1φ

(1)
− tκ = φ(2)

o (φ(1)
o )−1. (7.2.2)

Take ψ := (1 − t−2)(φ
(2)
− )−1φ

(1)
− . Obviously, we have that ψ ∈ H1

−(Γ0). Formula (7.2.2)

leads to

(1− t−2)−1ψ(t)tκ = φ(2)
o (t)(φ(1)

o (t))−1 ,
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where the right-hand side is an even function (since it is a product of two odd functions).

Therefore,

(1− t−2)−1ψ(t)tκ = (1− t2)−1ψ(t−1)t−κ ,

and from here we have:

ψ(t)t2κ+2 = −ψ(t−1).

If we assume that κ ≤ −1 we would obtain that ψ = 0 (by observing the Fourier

coefficients of ψ), which is a contradiction. Hence κ = 0. In this case we have that

ψ(t) = C(1 − t−2) with C 6= 0. From here finally we have: k1 = k2, φ
(1)
− = Cφ

(2)
− , and

φ
(1)
o = C−1φ

(2)
o .

Let R stand for the linear space of all trigonometric polynomials. Suppose that

φ ∈ GL∞(Γ0) admits a weak odd asymmetric factorization in L2(Γ0) with index k = 0.

Hence φ = φ−φo. We will set [3]

X1 := {(1− t−1)f(t) : f ∈ R} ,

X2 := {(1 + t−1)φ−1
o (t)f(t) : f ∈ R, f(t) = f(t−1)} .

We make the simple observation that X1 is a dense subset of L2(Γ0).

Consider the following complementary projections:

PJΓ0
:=

I + JΓ0

2
: L2(Γ0) → L2(Γ0), QJΓ0

:= I − PJΓ0
.

These projections decompose L2(Γ0) into the direct sum: L2(Γ0) = ImPJΓ0
⊕ ImQJΓ0

.

A natural strong version of the last definition is given next.

DEFINITION 7.2.3. A function φ ∈ GL∞(Γ0) is said to admit an odd asymmetric

factorization in L2(Γ0) if it admits a representation

φ(t) = φ−(t)tkφo(t), t ∈ Γ0, (7.2.3)

such that k ∈ Z and
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(i) (1 + t−1)φ− ∈ H2
−(Γ0), (1− t−1)φ−1

− ∈ H2
−(Γ0) ,

(ii) |1− t|φo ∈ L2
odd(Γ0), |1 + t|φ−1

o ∈ L2
odd(Γ0) ,

(iii) the linear operator E := L(φ−1
o )(I + JΓ0)PΓ0L(φ−1

− ) acting from X1 into X2 extends

to a linear bounded operator Ẽ acting from L2(Γ0) into ImQJΓ0
.

As before, also in here k is called the index of a weak odd asymmetric factorization in

L2(Γ0).

An equivalent formulation of the condition (iii) is evidently the following:

(iii∗) the operator E is a bounded operator on L2(Γ0).

We observe that Definition 7.2.3 is related with Definition 7.1.3 in the sense that a

function φ : Γ0 → C admits an odd asymmetric factorization in L2(Γ0) if and only if the

function ϕ(x) := φ
(

x−i
x+i

)
, x ∈ R, admits an odd asymmetric factorization in L2(R).

PROPOSITION 7.2.4. A function φ ∈ GL∞(Γ0) admits an odd asymmetric factor-

ization in L2(Γ0) with index k if and only if ϕ := (B−1
0 φ) ∈ GL∞(R) admits an odd

asymmetric factorization in L2(R) with index k.

Proof. Let us assume that φ admits an odd asymmetric factorization in L2(Γ0) with index

k. Hence, we can write (cf. (7.2.3)):

φ(t) = φ−(t)tkφo(t), t ∈ Γ0, (7.2.4)

with the properties (i)–(iii) on the factors stated in Definition 7.2.3. Performing the B−1
0

transformation in both sides of the equality (7.2.4), we obtain:

(B−1
0 φ)(x) = (B−1

0 φ−)(x)(B−1
0 d)(x)(B−1

0 φo)(x) ,

where d denotes the function d(t) := tk. Now, if defining

ϕ(x) := (B−1
0 φ)(x) = φ

(
x− i

x + i

)
,

ϕ−(x) := (B−1
0 φ−)(x) = φ−

(
x− i

x + i

)
,

ϕo(x) := (B−1
0 φo)(x) = φo

(
x− i

x + i

)
,
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it follows

ϕ(x) = ϕ−(x)

(
x− i

x + i

)k

ϕo(x) .

I.e., formula (7.1.6) with κ taken to be equal to k. Thus, we are left to show that the

corresponding conditions (i)–(iii) on the factors used in the factorizations of Definitions

7.2.3 and 7.1.3 are equivalent.

We have that

(1 + t−1)φ− ∈ H2
−(Γ0)

if and only if
√

2

x− i

(
1 +

x + i

x− i

)
ϕ− ∈ H2

−(R) .

Indeed, let (1 + t−1)φ− ∈ H2
−(Γ0), then [B−1

0 (1 + t−1)φ−](x) ∈ (x− i)H2
−(R) (cf., e.g., [14,

page 108 and in particular formula (6.3)]). That means

2
√

2
x

(x− i)2
ϕ−(x) =

√
2

x− i

(
1 +

x + i

x− i

)
ϕ−(x) ∈ H2

−(R) ,

and therefore we have the equivalence of the first propositions of conditions (i).

To prove the equivalence of the first proposition of (ii)–conditions we need to “com-

pensate” the space with a particular even weight. Letting |1− t|φo ∈ L2
odd(Γ0), then

B−1
0 (|1− t|φo) ∈ B−1

0 (L2
odd(Γ0)) . (7.2.5)

Thus, to obtain from the last inclusion a new one where we will be dealing with the space

L2
odd(R) we just need to use in (7.2.5) the multiplication by the weight function 1√

x2+1

and therefore reach to

1√
x2 + 1

(B−1
0 (|1− t|φo))(x) ∈ L2

odd(R) .

Consequently, we have:

2

x2 + 1
ϕo(x) ∈ L2

odd(R) .
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Analogous arguments will give corresponding equivalences for the second inclusions of

conditions (i) and (ii).

We will prove now the equivalence of conditions (iii). As far as the condition (iii)

of Definition 7.2.3 can be written in the form of the condition (iii∗) cited after Defin-

ition 7.2.3, we will show that E is a bounded operator if and only if S is a bounded

operator. Consider the following operator:

F−1BE B−1F . (7.2.6)

This operator is equivalent to E simply because it is obtained from E by multiplying from

the left and from the right by invertible operators. Moreover, from (7.2.6) we have:

F−1BE B−1F = F−1BL(φ−1
o )(I + JΓ0)PΓ0L(φ−1

− )B−1F
= F−1BL(φ−1

o ) B−1FF−1B︸ ︷︷ ︸
I

(I + JΓ0) B−1FF−1B︸ ︷︷ ︸
I

PΓ0

B−1FF−1B︸ ︷︷ ︸
I

L(φ−1
− )B−1F

= F−1ϕ−1
o F(I − J)`0r+F−1ϕ−1

− F
= W 0

ϕ−1
o

(I − J)`0Wϕ−1
−

= S ,

where we employed formulas (1.8.2), (1.8.3) and (1.8.4). Finally this means that E and

S are unitarily equivalent operators.

From the above reasoning it is clear that we can proceed in a “reverse” direction, i.e.,

starting from a factorization for the function ϕ and obtain a corresponding factorization

to the function φ, which completes the proof.

7.3 Proof of the main invertibility result

To prove the main invertibility result of the present chapter (i.e., Theorem 7.1.4) we

need to prepare several auxiliary material, which in some cases –at a first look– may seem

similar to some of the results of [3], but actually the present ones incorporate significant

differences.
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7.3.1 Auxiliary notions, operators, and results

We will relate Toeplitz minus Hankel operators with the following operators:

Φφ := PΓ0L(φ)QJΓ0
: ImQJΓ0

→ H2
+(Γ0), (7.3.1)

Ψψ := QJΓ0
L(ψ)PΓ0 : H2

+(Γ0) → ImQJΓ0
,

where ψ(t) = φ−1(−t−1). It is readily seen that 2Φφ = (Tφ −Hφ)|ImQJΓ0

.

The following well-known lemma is of interest and will be needed to prove Proposi-

tion 7.3.3.

LEMMA 7.3.1. Let X1 and X2 be linear spaces, A : X1 → X2 be a linear and invertible

operator, P1 : X1 → X1 and P2 : X2 → X2 be linear projections, and Q1 = I − P1 and

Q2 = I − P2. Then P2AP1 : ImP1 → ImP2 is invertible if and only if Q1A
−1Q2 : ImQ2 →

ImQ1 is invertible.

The proof of Lemma 7.3.1 can be found e.g. in [70].

The next two propositions are essentially taken from [3].

PROPOSITION 7.3.2. Let φ ∈ GL∞(Γ0). The operator Φφ ∈ L(ImQJΓ0
, H2

+(Γ0)) (de-

fined in (7.3.1)) is equivalent to the Toeplitz minus Hankel operator Tφ−Hφ ∈ L(H2
+(Γ0)).

Proof. Let us consider the operators

R1 := (I − JΓ0)PΓ0 : H2
+(Γ0) → ImQJΓ0

R2 :=
1

2
PΓ0(I − JΓ0) : ImQJΓ0

→ H2
+(Γ0) .

These operators are inverses to one another and a direct computation yields that

ΦφR1 = Tφ −Hφ

which shows explicitly the equivalence relation between the operators Φφ and Tφ−Hφ.

PROPOSITION 7.3.3. Let φ ∈ GL∞(Γ0) and ψ(t) = φ−1(−t−1), t ∈ Γ0. The operator

Ψψ : H2
+(Γ0) → ImQJΓ0

is invertible if and only if Tφ − Hφ : H2
+(Γ0) → H2

+(Γ0) is

invertible.
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Proof. We will make use of Lemma 7.3.1 by choosing P1 = QJΓ0
, P2 = PΓ0 , Q1 = PJΓ0

and Q2 = QΓ0 . Thus, from Lemma 7.3.1 we derive that Φφ is invertible if and only if

PJΓ0
L(φ−1)QΓ0 is invertible. Multiplying from the left and the right in this last operator

by JΓ0 , we obtain

JΓ0PJΓ0
L(φ−1)QΓ0JΓ0 = PJΓ0

JΓ0L(φ−1)JΓ0PΓ0 . (7.3.2)

Now, to reach the operator Ψψ, we will consider the operator VΓ0 : L2(Γ0) → L2(Γ0),

(VΓ0f)(t) = f(−t), and use it in (7.3.2) in the way that:

VΓ0PJΓ0
JΓ0L(φ−1)JΓ0PΓ0VΓ0 = QJΓ0

VΓ0JΓ0L(φ−1)JΓ0VΓ0︸ ︷︷ ︸
L(ψ)

PΓ0 = Ψψ ,

where ψ(t) = φ−1(−t−1).

We assemble in the next corollary a direct consequence of the last two propositions.

COROLLARY 7.3.4. (an analogue of [3, Proposition 2.4]) Let φ ∈ GL∞(Γ0). Then the

following assertions are equivalent:

(i) Tφ −Hφ is invertible in L(H2
+(Γ0)),

(ii) Φφ is invertible in L(ImQJΓ0
, H2

+(Γ0)),

(iii) Ψψ is invertible in L(H2
+(Γ0), ImQJΓ0

), where ψ(t) = φ−1(−t−1).

LEMMA 7.3.5. (an analogue of [3, Lemma 4.1]) Assume that φ ∈ GL∞(Γ0) admits

a weak odd asymmetric factorization in L2(Γ0) with index k = 0. Then the following

assertions hold:

(i) the operator E = L(φ−1
o )(I + JΓ0)PΓ0L(φ−1

− ) is a well-defined linear operator acting

from X1 into X2 ,

(ii) ΦφE = PΓ0|X1 ,

(iii) KerΦφ = {0}.
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Proof. (i) Let f ∈ X1 and φ = φ−φo (with φ− and φo under the conditions of Definition

7.2.1). We will compute E f. First, we write f(t) = (1 − t−1)f1(t) with f1 ∈ R.

Multiplying both sides of the last equality by φ−1
− , we have:

φ−1
− (t)f(t) = (1− t−1)φ−1

− (t)f1(t) .

Hence, we can decompose φ−1
− f in an unique way:

φ−1
− (t)f(t) = u1(t) + p1(t) , (7.3.3)

where u1 ∈ t−1H2
−(Γ0) and p1 is a polynomial. From the last equality and from

the assumption that f ∈ X1 it also follows that f has the following form: f(t) =

φ−(t)(u1(t) + p1(t)). Later on we will use this fact. Now, applying the Riesz projec-

tion to (7.3.3), we will have PΓ0(φ
−1
− f)(t) = p1(t). Hence (E f)(t) = φ−1

o (t)(p1(t) +

t−1p1(t
−1)). Since p1(t) + t−1p1(t

−1) vanishes at t = −1, this expression is (1 + t−1)

times a trigonometrical polynomial f2, such that f2(t) = f2(t
−1). Now it is clear

that E f belongs to the space X2.

(ii) Let us take again f ∈ X1 and assume the existence of a weak odd asymmetric

factorization of φ = φ−φo in L2(Γ0) (with index k = 0). From the part (i) of the

proof we know that

f(t) = φ−(t)(u1(t) + p1(t)) ,

where u1 and p1 are as in the formula (7.3.3). Our aim is to compute ΦφE f. We

have already calculated (E f)(t) = φ−1
o (t)(p1(t) + t−1p1(t

−1)). From here we have

that

(ΦφE f)(t) = (PΓ0L(φ−)L(φo)
I − JΓ0

2
φ−1

o (p1 + t−1p̃1))(t)

= PΓ0(φ−(p1 + t−1p̃1))(t) .

In addition, we need to prove that ΦφE = PΓ0|X1 . To this end, we need to show that

the following inclusion holds true: φ−(p1 + t−1p̃1) − f ∈ t−1H1
−(Γ0). We are left to

note that the last inclusion was already deduced (even in a more general setting) in

[3, Lemma 4.1]. This proves the part (ii) of the lemma.
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(iii) Let f ∈ KerΦφ. This means that f ∈ ImQJΓ0
and

PΓ0(φf) = 0 . (7.3.4)

Define f− := φf. From the definition of PΓ0 and (7.3.4) it follows that f− ∈
t−1H2

−(Γ0). Consequently, we have

φ−1
− f− = φof ,

and therefore

t(1− t−1)φ−1
− (t)f−(t) = (t− 1)φo(t)f(t) =: ψ(t) . (7.3.5)

Additionally, we have that (1 − t−1)φ−1
− ∈ H2

−(Γ0) and tf− ∈ H2
−(Γ0). Then it

follows from (7.3.5) that ψ ∈ H1
−(Γ0). Moreover, from the last identity in (7.3.5) we

have ψ̃ = −ψ. In particular, this implies that ψ = 0 and consequently f = 0.

LEMMA 7.3.6. (an analogue version of [3, Lemma 5.1] to the present case) Suppose

that Φφ is invertible. Then there exists functions f− 6= 0 and fo such that

f−(t) = φ(t)fo(t) ,

and

(1 + t−1)f− ∈ H2
−(Γ0), |1 + t|fo ∈ L2

odd(Γ0) .

Proof. If Φφ is invertible, then ImΦφ = H2
+(Γ0). Let us consider ho ∈ ImQJΓ0

such that

Φφho = 1. In addition, take h−(t) := φ(t)ho(t). From here we have that h− ∈ H2
−(Γ0) and

h− 6= 0. If defining

f− := (1 + t−1)−1h−(t) ,

then f− satisfies the required conditions and

f−(t) = (1 + t−1)−1φ(t)ho(t) .
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Now, construct fo(t) := (1 + t−1)−1ho(t). It is readily seen that |1 + t|fo ∈ L2(Γ0) and fo

is an odd function. Indeed,

fo(t
−1) = (1 + t)−1ho(t

−1) = −(1 + t)−1tho(t) = −(1 + t−1)−1ho(t)

= −fo(t) .

Consequently, we have the desired “factorization”

f− = φfo .

LEMMA 7.3.7. (an analogue of [3, Lemma 5.2]) If Ψψ is an invertible operator, then

there exists functions g− 6= 0 and go such that

g−(t) = go(t)φ
−1(t) ,

and

(1− t−1)g− ∈ H2
−(Γ0), |1− t|go ∈ L2

odd(Γ0) .

Proof. If Ψψ is invertible, then its adjoint operator (Ψψ)∗ = Φψ is also invertible. It

follows from the previous lemma that there exist elements f− 6= 0 and fo such that

(1 + t−1)f− ∈ H2
−(Γ0) , |1 + t|fo ∈ L2

odd(Γ0) ,

and

f−(t) = φ−1(−t−1)fo(t).

Let us now pass to the complex conjugate and make the substitution t 7→ −t−1. Choosing

g−(t) = f−(−t−1) and go(t) = fo(−t−1), it follows that

(1− t−1)g− ∈ H2
−(Γ0), |1− t|go ∈ L2

odd(Γ0) ,

and g−(t) = φ−1(t)go(t).
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REMARK 7.3.8. The results stated in Lemma 7.3.6 and Lemma 7.3.7 still hold true if

we substitute the assumption about the two-sided invertibility of Φφ and Ψψ by only the

right and left invertibility of these operators, respectively.

THEOREM 7.3.9. (an analogue of [3, Theorem 5.3]) Let φ ∈ GL∞(Γ0). The operator

Tφ − Hφ is invertible if and only if φ admits an odd asymmetric factorization in L2(Γ0)

with index k = 0.

Proof. If Tφ−Hφ is invertible, then by Corollary 7.3.4 it follows that the operators Φφ and

Ψψ are also invertible. Applying Lemma 7.3.6 and Lemma 7.3.7 we will obtain that f− =

φfo and g− = goφ
−1 for f−, g−, fo and go enjoying the appropriate properties described in

that lemmas. Multiplying the corresponding elements in the last two identities, we obtain

g−f− = gofo. Moreover, it follows that g−f− = gofo =: C is a nonzero constant (this can

be proved in a similar way as in the proof of the uniqueness of weak odd asymmetric

factorizations in L2(Γ0)).

Now we put φ− = f− = Cg−1
− and φo = f−1

o = goC
−1. Hence

φ = φ−φo ,

and we have shown that φ admits a weak odd asymmetric factorization in L2(Γ0) (with

index k = 0). Now we have to prove that E can be extended to a linear bounded operator

which acts on L2(Γ0). From Lemma 7.3.5 we have that E is well-defined. Assertion (ii)

of the same lemma gives the following:

E = Φ−1
φ PΓ0|X1

(recall that Φφ is invertible due to the hypothesis on Tφ−Hφ). Obviously, this right-hand

side can be extended by continuity to a linear bounded operator acting from L2(Γ0) into

ImQJΓ0
(since that is a restriction of such an operator to the space X1), and hence also

E can be extended as well. Thus the “only if” part is proved.

Let us now assume that φ admits an odd asymmetric factorization in L2(Γ0) with

index k = 0 (and so the conditions (i)–(iii) of the Definition 7.2.3 are satisfied). By Ẽ we
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will denote the continuous extension of the operator E . As far as X1 is dense in L2(Γ0)

we have that

ΦφẼ = PΓ0 .

for operators defined in L2(Γ0). In particular, this shows that Ẽ|H2
+(Γ0) is the right inverse

of Φφ. Moreover, from the above identity we obtain

ΦφẼ|H2
+(Γ0)Φφ = Φφ ,

and from here we have

Φφ(Ẽ|H2
+(Γ0)Φφ − I) = 0 . (7.3.6)

Recalling now that the kernel of Φφ is trivial (cf. Lemma 7.3.5 (iii)), it follows from

(7.3.6) that Ẽ|H2
+(Γ0)Φφ = I. Consequently, Φφ is invertible and its inverse is just Ẽ|H2

+(Γ0).

In such a case, finally observe that from Corollary 7.3.4 we conclude that Tφ −Hφ is also

an invertible operator.

7.3.2 Proof of Theorem 7.1.4

Finally, after all the previous auxiliary material, we are ready to give the proof of

Theorem 7.1.4.

First of all recall that (cf. Chapter 1)

WHϕ : L2
+(R) → L2(R+)

is equivalent to

T(B0ϕ) −H(B0ϕ) : H2
+(Γ0) → H2

+(Γ0).

Therefore, WHϕ is invertible if and only if T(B0ϕ)−H(B0ϕ) is invertible, and the last men-

tioned property of T(B0ϕ) −H(B0ϕ) happens if and only if B0ϕ admits an odd asymmetric

factorization in L2(Γ0) with index k = 0 (cf. Theorem 7.3.9). In addition, due to Proposi-

tion 7.2.4, we have that B0ϕ admits an odd asymmetric factorization in L2(Γ0) with index
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k = 0 if and only if B−1
0 (B0ϕ) = ϕ admits an odd asymmetric factorization in L2(R) with

index k = 0. Finally, putting altogether, we have that WHϕ is invertible if and only if ϕ

admits an odd asymmetric factorization in L2(R) with index k = 0.

7.4 Fredholm property

In the present section it will be obtained a Fredholm criterion for WHϕ. Besides this,

other particular results will follow as direct consequences of this Fredholm criterion.

THEOREM 7.4.1. Let ϕ ∈ GL∞(R). The operator WHϕ : L2
+(R) → L2(R+) is a

Fredholm operator if and only if ϕ admits an odd asymmetric factorization in L2(R).

Moreover, if WHϕ is a Fredholm operator, then it holds

dimKerWHϕ = max{0,−k}, dimKerWH∗
ϕ = max{0, k} , (7.4.1)

where k is the index of an odd asymmetric factorization of ϕ in L2(R).

Proof. Assume that WHϕ is a Fredholm operator with index −k. We will start by using

the classical Wiener-Hopf technique to built a corresponding auxiliary invertible operator.

For this purpose, let us consider the auxiliary function ψ(x) :=
(

x−i
x+i

)−k
ϕ(x). It is well-

known that an Hankel operator with a continuous symbol is compact. Therefore (since

for k ∈ Z the element ζ−k with ζ(x) :=
(

x−i
x+i

)
is continuous in the compactified real line),

by employing formula (1.6.5), it follows that

WHψ = WHζ−k`0WHϕ + K1 , (7.4.2)

where K1 is a compact operator. In addition, let us also observe that WHζ−k = Wζ−k +K2

(where K2 is a compact operator). Thus, from the Fredholm theory of Wiener-Hopf op-

erators we conclude that WHζ−k is a Fredholm operator with Fredholm index k. Conse-

quently, from identity (7.4.2) we conclude that WHψ is a Fredholm operator with index

zero.

Let us now consider the Lebesgue measure zero set

Vψ := {x ∈ R : ψ(x) = ψ(−x) = 0}
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(note that ψ ∈ GL∞(R)), and the corresponding characteristic function

χVψ
(x) =





1, x ∈ Vψ;

0, x 6∈ Vψ.

Arguing in a similar way as in the Toeplitz plus Hankel case (see [3]), it follows that

KerWHψ
∼= ImWHχVψ

or KerWH∗
ψ = {0}, (7.4.3)

where ∼= denotes the existence of an isomorphically isomorphism between the related

sets. Since Vψ has the Lebesgue measure zero, and hence χVψ
= 0 for almost all x ∈ R,

it follows that ImWHχVϕ
= {0}. This combined with (7.4.3) it leads to KerWHψ

∼= {0}
or KerWH∗

ψ = {0}. Thus KerWHψ = {0} or KerWH∗
ψ = {0}. This means that WHψ is

invertible (since we have already previously concluded that WHψ is a Fredholm operator

with index zero).

Now, employing Theorem 7.1.4 we deduce that ψ admits an odd asymmetric factor-

ization in L2(R) with index zero. Hence ϕ admits an odd asymmetric factorization in

L2(R) with index k.

Now we will proceed with the reverse implication. Assume that ϕ admits an odd

asymmetric factorization in L2(R) with index k. Consequently, we have a corresponding

operator decomposition:

WHϕ = Wϕ−`0WHζk`0WHϕo + K ,

where K is a compact operator. Thus, WHϕ is a Fredholm operator if and only if

Wϕ−`0WHζk`0WHϕo is a Fredholm operator. However, the latter operator is equiva-

lent to WHζk , because `0, Wϕ− and WHϕo are invertible operators. Therefore, as above,

we simply have to notice that WHζk = Wζk + Hζk is a Fredholm operator with index −k.

Let us now turn to formulas (7.4.1). Under the Fredholm property we already know

that WHϕ has a Fredholm index equal to −k. Thus, combining this fact with (7.4.3) it

directly follows the presented formulas for the defect numbers.

As a direct consequence of the last result we collect the following interesting conclu-

sions.
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COROLLARY 7.4.2. If WHϕ is a Fredholm operator, then WHϕ has a trivial kernel

or a trivial cokernel.

COROLLARY 7.4.3. The Wiener-Hopf plus Hankel operator WHϕ is invertible if and

only if WHϕ is Fredholm with index zero.

In addition, it is also clear that Theorem 7.4.1 implies Theorem 7.1.4 but we would

like to emphasize that to prove Theorem 7.4.1 we needed to use Theorem 7.1.4.
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Chapter 8

Scalar Toeplitz plus Hankel operators

with infinite index

Discontinuities of almost periodic type appeared for the first time in the work of

Gohberg and Feld’man [40], [41], [42] when studying Wiener-Hopf equations. The paper

by Coburn and Douglas [28] is also an important mark for the beginning of the study of

integral operators with symbols which present such kind of discontinuities. Since then,

the consideration of Toeplitz and singular integral operators with symbols and coefficients

with discontinuities of almost periodic type were considered by a big number of authors

(cf., e.g., [5], [35], [36], [43], [48], [53]). The book of Dybin and Grudsky [37] provides a

comprehensive description of the known results for Toeplitz operators with infinite index

originated by symbols with almost periodic discontinuities.

The present chapter is devoted to the study of Toeplitz plus Hankel operators (cf. [3],

[61]) with a finite number of standard almost periodic discontinuities in their symbols.

The operators are acting between L2 spaces on the unit circle. The results (cf. Section 8.2)

provide conditions under which the Toeplitz plus Hankel operators are right-invertible but

with infinite dimensional kernel or left-invertible but with infinite dimensional cokernel

or simply not normally solvable.

This chapter is organized as follows. In Section 8.1 (which is divided into two subsec-

119
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tions) we present the auxiliary notions and some known results for Toeplitz and Toeplitz

plus Hankel operators. In Section 8.2, new results for Toeplitz plus Hankel operators are

proposed which lead to their one-sided invertibility although within the case of infinite

index. In Section 8.3 we provide two concrete examples of Toeplitz plus Hankel operators

which are characterized by the use of the results in Section 8.2.

8.1 Auxiliary notions and known results

8.1.1 Factorization and Fredholm theory

We start by recalling several types of factorizations.

DEFINITION 8.1.1. [37, Section 2.4] A function φ ∈ GL∞(Γ0) admits a generalized

factorization with respect to L2(Γ0), if it can be represented in the form

φ(t) = φ−(t)tkφ+(t), t ∈ Γ0,

where k is an integer, called the index of the factorization, and the functions φ± satisfy

the following conditions:

(1) (φ−)±1 ∈ L2
−(Γ0)⊕ C, (φ+)±1 ∈ L2

+(Γ0) ,

(2) the operator φ−1
+ SΓ0φ

−1
− I is bounded in L2(Γ0).

The class of functions admitting a generalized factorization will be denoted by F.

DEFINITION 8.1.2. [3, Section 3] A function φ ∈ GL∞(Γ0) is said to admit a weak

even asymmetric factorization in L2(Γ0) if it admits a representation

φ(t) = φ−(t)tkφe(t) , t ∈ Γ0 ,

such that k ∈ Z and

(i) (1 + t−1)φ− ∈ H2
−(Γ0), (1− t−1)φ−1

− ∈ H2
−(Γ0),

(ii) |1− t|φe ∈ L2
even(Γ0), |1 + t|φ−1

e ∈ L2
even(Γ0),
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where L2
even(Γ0) stands for the class of even functions from the space L2(Γ0). The integer

k is called the index of the weak even asymmetric factorization.

DEFINITION 8.1.3. [3, Section 3] A function φ ∈ GL∞(Γ0) is said to admit a weak

antisymmetric factorization in L2(Γ0) if it admits a representation

φ(t) = φ−(t)t2kφ̃−1
− (t) , t ∈ Γ0 ,

such that k ∈ Z and

(1 + t−1)φ− ∈ H2
−(Γ0), (1− t−1)φ−1

− ∈ H2
−(Γ0).

Also in here the integer k is called the index of a weak antisymmetric factorization.

The next proposition relates weak even asymmetric factorizations with weak anti-

symmetric factorizations.

PROPOSITION 8.1.4. [3, Proposition 3.2] Let φ ∈ GL∞(Γ0) and consider Φ := φφ̃−1.

(i) If φ admits a weak even asymmetric factorization, φ = φ−tkφe, then the function Φ

admits a weak antisymmetric factorization with the same factor φ− and the same

index k;

(ii) If Φ admits a weak antisymmetric factorization, Φ = φ−t2kφ̃−1
− , then φ admits a

weak even asymmetric factorization with the same factor φ−, the same index k and

the factor φe := t−kφ−1
− φ.

DEFINITION 8.1.5. [3, Section 5] A function φ ∈ GL∞(Γ0) is said to admit an even

asymmetric factorization in L2(Γ0) if it admits a representation

φ(t) = φ−(t)tkφe(t) , t ∈ Γ0 ,

such that k ∈ Z and

(i) (1 + t−1)φ− ∈ H2
−(Γ0), (1− t−1)φ−1

− ∈ H2
−(Γ0),

(ii) |1− t|φe ∈ L2
even(Γ0), |1 + t|φ−1

e ∈ L2
even(Γ0),
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(iii) the linear operator L(φ−1
e )(I + JΓ0)PΓ0L(φ−1

− ) is bounded on X1,

where X1 is as in Section 7.2. The integer k is called the index of an even asymmetric

factorization.

The next theorem is a classical result which deals with the Fredholm property for the

Toeplitz operators.

THEOREM 8.1.6. Let φ ∈ L∞(Γ0). The operator Tφ given by (1.5.1) is Fredholm in

the space L2
+(Γ0) if and only if φ ∈ F.

The next two theorems were obtained by Basor and Ehrhardt (cf. [3]), and give an

useful invertibility and Fredholm characterization for Toeplitz plus Hankel operators with

essentially bounded symbols.

THEOREM 8.1.7. [3, Theorem 5.3] Let φ ∈ GL∞(Γ0). The operator THφ is invertible

if and only if φ admits an even asymmetric factorization in L2(Γ0) with index k = 0.

THEOREM 8.1.8. [3, Theorem 6.4] Let φ ∈ GL∞(Γ0). The operator THφ is a Fredholm

operator if and only if φ admits an even asymmetric factorization in L2(Γ0). In this case,

it holds

dimKerTHφ = max{0,−k}, dimCokerTHφ = max{0, k} ,

where k is the index of the even asymmetric factorization.

We will now turn to the generalized factorizations with infinite index.

DEFINITION 8.1.9. [37, Section 2.7] A function φ ∈ GL∞(Γ0) admits a generalized

factorization with infinite index in the space L2(Γ0) if it admits a representation

φ = ϕh or φ = ϕh−1 (8.1.1)

where

(1) ϕ ∈ F ,
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(2) h ∈ L∞+ (Γ0) ∩ GL∞(Γ0) .

The class of functions admitting a generalized factorization with infinite index in

L2(Γ0) will be denoted by F∞. We list here some known important properties of the class

F∞ (cf. [37, Chapter 2]):

1. F ⊂ F∞. Therefore (from this inclusion and Theorem 8.1.6), it follows that the class

F∞ contains symbols of Fredholm Toeplitz operators. However, in another way, the

following condition excludes elements which generate Fredholm operators from this

class: for any polynomial u with complex coefficients,

u/h 6∈ L∞+ (Γ0). (8.1.2)

More precisely, if condition (8.1.2) is not satisfied, then for a given h and all ϕ ∈ F
the operators Tϕh and Tϕh−1 are Fredholm.

2. A generalized factorization with infinite index does not enjoy the uniqueness prop-

erty.

3. Let φ ∈ F∞ and let condition (8.1.2) be satisfied. Then the function h in (8.1.1)

can be chosen so that indϕ = 0.

4. Let φ ∈ F∞. Then for the function h in (8.1.1) one can choose an inner function u

(i.e., a function u from the Hardy space H∞
+ (Γ0) and such that |u(t)| = 1 almost

everywhere on Γ0).

The proof of these facts can be found for example in [37, Section 2.7].

THEOREM 8.1.10. [37, Theorem 2.6] Assume that φ ∈ F∞, condition (8.1.2) is satis-

fied, and indϕ = 0.

1. If φ = ϕh−1, then the operator Tφ is right-invertible in the space L2
+(Γ0), and

dimKerTφ = ∞.

2. If φ = ϕh, then the operator Tφ is left-invertible in the space L2
+(Γ0), and

dimCokerTφ = ∞.
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8.1.2 One-sided invertibility of Toeplitz operators

A factorization theorem which is crucial for the theory of Toeplitz operators is now

stated.

THEOREM 8.1.11. [37, Theorem 4.12] Let the function φ ∈ GL∞(Γ0) be continuous

on the set Γ0 \ {tj}n
j=1 and have standard almost periodic discontinuities in the points tj.

Then

φ(t) =

(
n∏

j=1

exp(λj(t− tj)
−1)

)
ϕ(t) ,

with ϕ ∈ F and

λj = σtj(φ) tj

where the functional σtj(φ) is defined by the formula (2.4.5) at the point tj.

Let us always write the factorization of a function φ in the way of the non-decreasing

order of the values of σtj(φ). I.e., we will always assume that σt1(φ) ≤ σt2(φ) ≤ . . . ≤
σtn(φ). This is always possible because we can always re-enumerate the points tj to achieve

the desired non-decreasing sequence.

The next result characterizes the situation of Toeplitz operators with a symbol hav-

ing a finite number of standard almost periodic discontinuities, and it was our starting

point motivation in view to obtain a corresponding description to Toeplitz plus Hankel

operators.

THEOREM 8.1.12. [37, Theorem 4.13] Suppose that φ ∈ GL∞(Γ0) is continuous on

the set Γ0 \ {tj}n
j=1, has standard almost periodic discontinuities in the points tj, and

σtj(φ) 6= 0, 1 ≤ j ≤ n.

1. If σtj(φ) < 0, 1 ≤ j ≤ n, then the operator Tφ is right-invertible in L2
+(Γ0) and

dimKerTφ = ∞,

2. If σtj(φ) > 0, 1 ≤ j ≤ n, then the operator Tφ is left-invertible in L2
+(Γ0) and

dimCokerTφ = ∞,
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3. If σtj(φ) < 0, 1 ≤ j ≤ m, and σtj(φ) > 0, m + 1 ≤ j ≤ n, then the operator Tφ is

not normally solvable in L2
+(Γ0) and dimKerTφ = dimCokerTφ = 0.

8.2 Toeplitz plus Hankel operators with SAPD in their

symbols

To achieve the Toeplitz plus Hankel version of Theorem 8.1.12, we will combine several

techniques. We will make use of operator matrix identities (cf. [20], [21], [45]), and in

particular of ∆-relation after extension (cf. Chapter 1).

For starting, we will consider functions defined on the Γ0 which have three standard

almost periodic discontinuities, namely in the points t1, t2 and t3, and such that t−1
1 =

t2. As we shall see, this is the most representative case, and the general case can be

treated in the same manner as this one. Assume therefore that φ has standard almost

periodic discontinuities in the points t1, t2, t3, with characteristics (p1, ω1), (p2, ω2), (p3, ω3).

Considering φ̃, it is clear that φ̃ has standard almost periodic discontinuities in the points

t−1
1 (= t2), t

−1
2 (= t1) and t−1

3 (cf. Remark 2.4.2). Moreover, it is useful to observe that φ̃−1

will have standard almost periodic discontinuities in the points t1, t2 and t−1
3 .

Set Φ := φφ̃−1. From formula (2.4.5) we will have:

σtj(Φ) = σtj(φφ̃−1) = lim
δ→0

δ

4

[
arg(φ(t)φ̃−1(t))

] ∣∣∣t′t=t′′

= lim
δ→0

δ

4
[arg φ(t)] |t′t=t′′ + lim

δ→0

δ

4

[
arg φ̃−1(t)

] ∣∣∣t′t=t′′

= σtj(φ)− lim
δ→0

δ

4

[
arg φ̃(t)

] ∣∣∣t′t=t′′

= σtj(φ) + lim
δ1→0

δ1

4
[arg φ(t)] |(t′′)−1

t=(t′)−1

= σtj(φ) + σt−1
j

(φ) , (8.2.1)

where tj ∈ Γ0 and δ1 = |(t′′)−1 − t−1
j | = |(t′)−1 − t−1

j | = |t′′ − tj| = |t′ − tj| = δ.

On the other hand, it is also clear that σt−1
j

(Φ) = σtj(φ) + σt−1
j

(φ). Thus, the points

of symmetric standard almost periodic discontinuities (with respect to the xx’s axis on
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the complex plane) fulfill formula (8.2.1). This is the main reason why we do not need to

treat more than three points of the standard almost periodic discontinuities in order to

understand the qualitative result for Toeplitz plus Hankel operators with a finite number

of standard almost periodic discontinuities in their symbols.

We are now in a position to present the Toeplitz plus Hankel version of Theorem

8.1.12 for three points of discontinuity.

THEOREM 8.2.1. Suppose that the function φ ∈ GL∞(Γ0) is continuous on the set

Γ0\{tj}3
j=1, has standard almost periodic discontinuities in the points tj, such that t−1

1 = t2,

and let σtj(φ) 6= 0, 1 ≤ j ≤ 3.

(i) If σt1(φ) + σt2(φ) ≤ 0 and σt3(φ) < 0, then the operator THφ is right-invertible in

L2
+(Γ0) and dimKerTHφ = ∞,

(ii) If σt1(φ) + σt2(φ) ≥ 0 and σt3(φ) > 0, then the operator THφ is left-invertible in

L2
+(Γ0) and dimCokerTHφ = ∞,

(iii) If (σt1(φ) + σt2(φ))σt3(φ) < 0, then the operator THφ is not normally solvable in

L2
+(Γ0) and dimKerTHφ = dimCokerTHφ = 0.

Proof. Let us work with Φ := φφ̃−1. It is clear that Φ can be considered (due to the

invertibility of φ), and also that Φ is invertible in L∞(Γ0). As far as φ has three points

of almost periodic discontinuities (namely t1, t2 and t3), then Φ will have four points of

almost periodic discontinuities (due to the reason that t−1
1 = t2). The discontinuity points

of Φ are the following ones: t1, t2, t3 and t−1
3 . From formula (8.2.1), we will have that

σt1(Φ) = σt1(φ) + σt−1
1

(φ) = σt1(φ) + σt2(φ) , (8.2.2)

σt2(Φ) = σt2(φ) + σt−1
2

(φ) = σt2(φ) + σt1(φ) , (8.2.3)

σt3(Φ) = σt3(φ) + σt−1
3

(φ) = σt3(φ) , (8.2.4)

σt−1
3

(Φ) = σt−1
3

(φ) + σt3(φ) = σt3(φ) . (8.2.5)

In the above formulas, it was used the fact that φ is a continuous function in the

point t−1
3 . Now, employing Theorem 8.1.11, we can ensure a factorization of the function
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Φ in the form:

Φ(t) =

(
4∏

j=1

exp(λj(t− tj)
−1)

)
ϕ(t) , (8.2.6)

where ϕ ∈ F.
Let us denote

h(t) =
4∏

j=1

exp(λj(t− tj)
−1) . (8.2.7)

We will now deduce propositions (i)–(iii) in the following three points 1–3, respec-

tively:

1. If the conditions in part (i) are satisfied, then we will have that σtj(Φ) ≤ 0, j = 1, 4

(cf. formulas (8.2.2)–(8.2.5)). Hence, the function h given by (8.2.7) belongs to

L∞− (Γ0). Moreover, relaying on Proposition 2.4.3 and Remark 2.4.6, we have that

h−1 ∈ U . Using the first part of Theorem 8.1.12, we can conclude that TΦ is right-

invertible. Then, the ∆-relation after extension allows us to state that THφ is

right-invertible.

We are left to deduce that dimKerTHφ = ∞.

Suppose that dimKerTHφ = k < ∞. We will show that in the present situation this

is not possible. In the case at hand we would have a Fredholm Toeplitz plus Hankel

operator with symbol φ. Thus, by Theorem 8.1.8, φ admits an even asymmetric

factorization:

φ = φ−tkφe ,

with corresponding properties for φ− and φe. Employing now Proposition 8.1.4 we

will have that Φ admits a weak antisymmetric factorization:

Φ = φ−t2kφ̃−1
− . (8.2.8)

On the other hand (cf. (8.2.6)) we have that

Φ = ϕ−tmϕ+h ,



128 8. Scalar Toeplitz plus Hankel operators with infinite index

where ϕ± have the properties as stated in Definition 8.1.1 and m is integer. From

the last two equalities we derive:

φ−t2kφ̃−1
− = ϕ−tmϕ+h .

From here one obtains:

φ−φ̃−1
− = tm−2kϕ−ϕ+h . (8.2.9)

In the last equality performing the change of variable t → t−1, we get that

φ̃−φ−1
− = t2k−mϕ̃−ϕ̃+h̃ .

Now, taking the inverse of both sides of the last formula, one obtains:

φ−φ̃−1
− = tm−2kϕ̃−1

− ϕ̃−1
+ h̃−1 . (8.2.10)

From the formulas (8.2.9) and (8.2.10) we have:

tm−2kϕ−ϕ+h = tm−2kϕ̃−1
− ϕ̃−1

+ h̃−1 .

This leads us to the following equality:

ϕ+ϕ̃−hh̃ = ϕ−1
− ϕ̃−1

+ . (8.2.11)

To our reasoning, the most important term in the last equality is now hh̃. Therefore,

let us understand better the structure of hh̃.

Firstly, let us assume that hh̃ 6= const. Rewriting formula (8.2.7) we will have:

h(t) = exp

(
λ1

t− t1

)
exp

(
λ2

t− t2

)
exp

(
λ3

t− t3

)
exp

(
λ4

t− t−1
3

)
.

From here, we also have the following identity:

h̃(t) = c1 exp

(−λ1t
2
2

t− t2

)
exp

(−λ2t
2
1

t− t1

)
exp

( −λ3t
2
3

t− t−1
3

)
exp

(−λ4t
−2
3

t− t3

)
,
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Figure 8.1: The unit circle Γ0 intersected with a Jordan curve γ.

where c1 is a certain nonzero constant which can be calculated explicitly (in fact,

c1 = exp
(−λ1t2 − λ2t1 − λ3t

−1
3 − λ4t3

)
). Performing the multiplication of the last

two formulas, one obtains:

h(t)h̃(t) = c1 exp

(
λ1 − λ2t

2
1

t− t1

)
exp

(
λ2 − λ1t

2
2

t− t2

)

exp

(
λ3 − λ4t

−2
3

t− t3

)
exp

(
λ4 − λ3t

2
3

t− t−1
3

)
.

Hence, we have that

h(t)h̃(t) = h1(t)h2(t)h3(t)h4(t) ,

where

h1(t) = c1 exp

(
λ1 − λ2t

2
1

t− t1

)
, h2(t) = exp

(
λ2 − λ1t

2
2

t− t2

)
,

h3(t) = exp

(
λ3 − λ4t

−2
3

t− t3

)
, h4(t) = exp

(
λ4 − λ3t

2
3

t− t−1
3

)
.

If h1 ∈ L∞− (Γ0), then h2 ∈ L∞+ (Γ0) (because h2 = c2h̃1, where c2 is a certain nonzero

constant). Of course, the same holds true for h3 and h4. At this point, we arrive

at the fact that two of the four functions hi, 1 ≤ i ≤ 4, are from the minus class

and two of them are from the plus class. Therefore, without lost of generality we
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can assume that h1 and h3 belong to L∞− (Γ0), and h2 and h4 belong to L∞+ (Γ0).

Consequently, we have a decomposition:

hh̃ = h−h+ ,

where h− := h1h3 and h+ := h2h4. From (8.2.11) we will have:

ϕ+ϕ̃−h−h+ = ϕ−1
− ϕ̃−1

+ . (8.2.12)

Let us introduce the notation:

Ψ+ := ϕ+ϕ̃−h+, H− := h−, and Ψ− := ϕ−1
− ϕ̃−1

+ . (8.2.13)

The identity (8.2.12) can be therefore presented in the following way:

H−Ψ+ = Ψ− . (8.2.14)

We will use now the same reasoning as in the proof of [37, Theorem 4.13, part

(3)]. First of all let us observe that Ψ+ ∈ L1
+(Γ0) and Ψ− ∈ L1

−(Γ0). We claim

that the functions Ψ± are analytic in the points of the curve Γ0, except for the set

M0 := {t1, t3}. Let us take any point t0 ∈ Γ0 \ M0 and surround it by a smooth

contour γ, such that D+
γ ∩ M0 = ∅ and such that the unit circle Γ0 divides the

domain D+
γ into two simply connected domains bounded by closed curves γ+ and

γ− with D+
γ+
⊂ D+ and D+

γ− ⊂ D− (cf. Figure 8.1).

Let us make use of the function

Ψ(z) =





H−(z)Ψ+(z), if z ∈ D+ ,

Ψ−(z), if z ∈ D− ,

which is defined on C \ Γ0 and has interior and exterior non-tangential limit values

almost everywhere on Γ0, which coincide due to equality (8.2.14).

We will now evaluate the integral
∫

γ

Ψ(z)dz =

∫

γ+

Ψ(z)dz +

∫

γ−
Ψ(z)dz .
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Since Ψ+ ∈ L1
+(Γ0), one can verify that Ψ+ ∈ L1

+(γ+) (by using the definition of the

Smirnov space cf., e.g., [37, Section 2.3]). Therefore, Ψ ∈ L1
+(γ+) (H− is analytic in

a neighborhood of the point t0) and the integral along γ+ is equal to zero (cf. [37,

Proposition 1.1] for the Γ0 case). Arguing in a similar way, one can also reach to

the conclusion that the corresponding integral along γ− is equal to zero. Thus,
∫

γ

Ψ(z)dz = 0 ,

and the contour γ can be replaced by any closed rectifiable curve contained in D+
γ .

By Morera’s theorem, Ψ is analytic in D+
γ . Let us consider a neighborhood O(ti) of

any of the points ti = t2 or ti = t−1
3 . Due to the identity

ϕ+ϕ̃− = h−1
+ Ψ+ ,

where ϕ+ϕ̃− ∈ L1
+(Γ0), we see that h−1

+ Ψ+ ∈ L1
+(Γ0). However, Ψ+ is analytic

in O(ti), and the function h−1
+ (z) grows exponentially when z approaches ti non-

tangentially, z ∈ D+. Since the function (t− ti)
n exp(−λi(t− ti)

−1) does not belong

to L1
+(Γ0) for any choice of positive integer n, we conclude that Ψ+ = 0, identically.

This means that Ψ− = 0, identically. From (8.2.13) we infer that ϕ+ or ϕ− must

vanish on a set with positive Lebesgue measure, which gives that Φ is not invertible.

Therefore, in this case we obtain a contradiction (due to the reason that Φ was taken

to be invertible from the beginning).

Let us now assume that hh̃ = c′1 = const 6= 0. From (8.2.11) we get that ϕ− = c′′1ϕ̃
−1
+ .

Hence, Φ = c′′1ϕ−tmϕ̃−1
− h. Combining this with (8.2.8), it yields

φ−t2kφ̃−1
− = c′′1ϕ−tmϕ̃−1

− h .

Rearranging the last equality, one obtains:

c′′1ϕ−φ−1
− tm−2kh = φ̃−1

− ϕ̃− . (8.2.15)

We have that (1− t−1)φ−1
− ∈ H2

−(Γ0) and (1− t)φ̃−1
− ∈ H2

+(Γ0) (cf. Definition 8.1.2).

If we use the multiplication by (1 − t)(1 − t−1) in both sides of formula (8.2.15),
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then we will obtain:

(1− t)(1− t−1)c′′1ϕ−φ−1
− tm−2kh = (1− t)(1− t−1)φ̃−1

− ϕ̃− . (8.2.16)

Let us denote Θ− := (1 − t−1)φ−1
− . It is clear that Θ− ∈ H2

−(Γ0), and that Θ̃− ∈
H2

+(Γ0). Rewriting formula (8.2.16) and having in mind the introduced notation, we

get:

c2Θ−ϕ−tm−2k+1h = Θ̃−ϕ̃− , (8.2.17)

where c2 := −c′′1. Set N := m − 2k + 1. If N ≤ 0, then we have a trivial situation.

Therefore, let us assume that N > 0. In this case, we will rewrite the formula

(8.2.17) in the following way:

c2Θ−ϕ−tN = Θ̃−ϕ̃−h−1 .

From the last equality we have that the right-hand side belongs to L1
+(Γ0). There-

fore, the left-hand side must also belong to L1
+(Γ0). This means that tN must “dom-

inate” the term Θ−ϕ−, which in its turn implies that:

Θ−ϕ− = b0 + b−1t
−1 + · · ·+ b−N+νt

−ν + · · ·+ b−N t−N , 0 ≤ ν ≤ N

(by observing the Fourier coefficients). In particular, this shows that we will not have

terms with less exponent than −N. In addition, the last equality directly implies

that

Θ̃−ϕ̃− = b0 + b−1t + · · ·+ b−N+νt
ν + · · ·+ b−N tN .

From the last three equalities we obtain that:

h = c−1
2

b0 + b−1t + · · ·+ b−N+νt
ν + · · ·+ b−N tN

b−N + b−N+1t + · · ·+ b−N+νtN−ν + · · ·+ b0tN
.

We are left to observe that h ∈ L∞− (Γ0). Due to its special form (cf. (8.2.7)), h

cannot be represented as a fraction of two polynomial functions (since h is not a

rational function). Hence, once again, we arrive at a contradiction.
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Altogether, we reached to the conclusion that the dimension of the kernel of the

Toeplitz plus Hankel operator with symbol φ cannot be equal to a finite number

k. Therefore, in the present case, the Toeplitz plus Hankel operator has an infinite

dimensional kernel.

2. Let the conditions of proposition (ii) be satisfied. Then, σtj(Φ) ≥ 0 for j = 1, 4.

Now, by using the argument of passage to the adjoint operator in the last case 1., we

can conclude that in the present position THφ is left-invertible and dimCokerTHφ =

∞.

3. If the conditions of proposition (iii) are satisfied, then σtj(Φ) will have different

signs (cf. formulas (8.2.2)–(8.2.5)). Therefore, by the ∆-relation after extension

and Theorem 8.1.12, we will obtain that dimKerTHφ + dimKer(Tφ−Hφ) = 0, and

that dimCokerTHφ + dimCoker(Tφ −Hφ) = 0. As far as the dimensions cannot be

negative, we will have that both defect numbers of the operator THφ must vanish;

hence, dimKerTHφ = dimCokerTHφ = 0.

We are left to prove that THφ is not normally solvable.

Let us assume the contrary, i.e. let THφ be normally solvable. Then we immediately

conclude that THφ is invertible, due to the triviality of the defect numbers. Hence

(by Theorem 8.1.7) φ admits an even asymmetric factorization with index zero:

φ = φ−φe , (8.2.18)

where φ− and φe have the appropriate properties (as stated in the Definition 8.1.2).

From (8.2.18), we obtain that:

φφ̃−1 = φ−φ̃−1
− . (8.2.19)

As far as Φ admits a factorization (cf. (8.2.6)), we have:

Φ = h1h2ϕ−ϕ+tm , (8.2.20)

where h1 and h2 are exponential type functions such that h1 ∈ L∞− (Γ0) (h−1
1 ∈ U),

h2 ∈ L∞+ (Γ0) (h2 ∈ U), ϕ±1
− ∈ L2

−(Γ0)⊕ C, ϕ±1
+ ∈ L2

+(Γ0), and m is an integer (the
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reader should note that these h1 and h2 functions are independent from those used

in the first part of the present proof). Combining (8.2.19) and (8.2.20), we obtain

that

φ−φ̃−1
− = h1h2ϕ−ϕ+tm . (8.2.21)

From the last equality it also follows that

h1h2ϕ−ϕ+tm = h̃−1
1 h̃−1

2 ϕ̃−1
− ϕ̃−1

+ tm .

From here, rearranging the terms of the last equality, one obtains:

ϕ+ϕ̃−h1h̃1h2h̃2 = ϕ̃−1
+ ϕ−1

− . (8.2.22)

As it was shown in the proof of proposition (i), we can factorize the functions h1h̃1

and h2h̃2 in the following way (in case that h1h̃1h2h̃2 6= const):

h1h̃1 = h−1 h+
1 ,

h2h̃2 = h−2 h+
2 .

These equalities allow us to factorize h1h̃1h2h̃2 in the convenient way:

h1h̃1h2h̃2 = h−h+ ,

where h− := h−1 h−2 ∈ L∞− (Γ0) (h−1
− ∈ U) and h+ := h+

1 h+
2 ∈ L∞+ (Γ0) (h+ ∈ U) are

the exponential type functions. Recalling formula (8.2.22) within this notation, we

have:

ϕ+ϕ̃−h+h− = ϕ̃−1
+ ϕ−1

− .

Let us also introduce the notation: Ψ+ := ϕ+ϕ̃−h+ ∈ L1
+(Γ0), H− := h− and

Ψ− := ϕ̃−1
+ ϕ−1

− ∈ L1
−(Γ0). We will therefore have:

H−Ψ+ = Ψ− .

Now we are in a very similar situation as in the proof of proposition (i) of the present

theorem. Arguing in a very similar way as in the proof of part 1., we can obtain that
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Ψ+ = Ψ− = 0, identically. This leads to the conclusion that Φ is not invertible –

which is a contradiction. Consequently, in this case THφ is not a normally solvable

operator.

Let us now consider the case when h1h̃1h2h̃2 = const 6= 0.

Similarly as in the proof of the part 1., we have that ϕ+ = c2ϕ
−1
− , where c2 is a

nonzero constant. From the equality (8.2.21), we have that:

φ−φ̃−1
− = h1h2c2ϕ−ϕ̃−1

− tm .

In a very similar manner as in the part 1., we derive the equality:

c2Θ−ϕ−tm+1h1h2 = Θ̃−ϕ̃−

(with Θ− := (1− t−1)φ−1
− ), and may rewriting it in the form:

t−m−1h−1
1 h−1

2 Θ̃−ϕ̃− = c2Θ−ϕ− .

Assume that m > −1. Then, by denoting Ψ+ := h−1
1 Θ̃−ϕ̃− ∈ L1

+(Γ0), Ψ− :=

c2Θ−ϕ− ∈ L1
−(Γ0) and H− := t−m−1h−1

2 ∈ L∞− (Γ0), we obtain:

H−Ψ+ = Ψ− .

This is enough to reach to a contradiction (by arguing in the same way as above).

Let us now assume that m ≤ −1. For this case, we will use the notation: Ψ+ :=

t−m−1h−1
1 Θ̃−ϕ̃− ∈ L1

+(Γ0), Ψ− := c2Θ−ϕ− ∈ L1
−(Γ0), and H− := h−1

2 ∈ L∞− (Γ0).

Then, also in this case we will obtain a corresponding equality with the appropriate

structure

H−Ψ+ = Ψ−

which also leads us to a contradiction.

Therefore, we conclude that THφ is not normally solvable under the conditions of

proposition (iii).
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We will present in the next theorem the general case of a symbol φ with n ∈ N points

of standard almost periodic discontinuities.

THEOREM 8.2.2. Suppose that the function φ ∈ GL∞(Γ0) is continuous in the set

Γ0 \ {tj}n
j=1, and has standard almost periodic discontinuities at the points tj, 1 ≤ j ≤ n.

In addition, assume that σtj(φ) 6= 0 for all j = 1, n.

(i) If σtj(φ) + σt−1
j

(φ) = 0 for all j = 1, n, then the operator THφ is Fredholm.

(ii) If σtj(φ) + σt−1
j

(φ) ≤ 0 for all j = 1, n, and there is at least one index j for

which σtj(φ) + σt−1
j

(φ) 6= 0, then the operator THφ is right-invertible in L2
+(Γ0)

and dimKerTHφ = ∞.

(iii) If σtj(φ) + σt−1
j

(φ) ≥ 0 for all j = 1, n, and there is at least one index j for

which σtj(φ) + σt−1
j

(φ) 6= 0, then the operator THφ is left-invertible in L2
+(Γ0) and

dimCokerTHφ = ∞.

(iv) If (σtj(φ) + σt−1
j

(φ))(σtl(φ) + σt−1
l

(φ)) < 0 for at least two different indices j and

l, then dimKerTHφ = dimCokerTHφ = 0 and the operator THφ is not normally

solvable.

Since the proof of this theorem goes along the same methods as in the proof of

Theorem 8.2.1, we will not present here the corresponding fully detailed proof but just

the following sketch of proof.

Proof Sketch. For φ ∈ GL∞(Γ0), continuous in Γ0 \ {tj}n
j=1, and with standard almost

periodic discontinuities at the points tj, 1 ≤ j ≤ n, such that σtj(φ) 6= 0 for all 1 ≤ j ≤ n,

we will work with Φ := φφ̃−1 (as in the previous case of Theorem 8.2.1). In general, this Φ

will have 2n points of standard almost periodic discontinuities. In addition, the formula

σtj(Φ) = σtj(φ) + σt−1
j

(φ) ,

allows us to employ the ∆-relation after extension and to deduce the above stated right

and left invertibility properties of THφ, as well as the triviality of the kernel and the
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cokernel of THφ, and the Fredholm property of THφ (under the corresponding different

assumptions).

The propositions which deal with the dimensions of the kernel and the cokernel under

the assumptions in (ii) and (iii), and also the issues about the normal solvability of THφ,

are proved in the same manner as in the proof of three discontinuity points case. In fact,

e.g., to prove the formula for the dimension of the kernel in case (ii), the method used in

the proof of the part (i) of Theorem 8.2.1 also works here for the situation of n points

of standard almost periodic discontinuities. In this situation, instead of the factorization

(8.2.6), we will have

Φ(t) =

(
2n∏

j=1

exp(λj(t− tj)
−1)

)
ϕ(t) ,

and therefore we have to choose now

h(t) =
2n∏

j=1

exp(λj(t− tj)
−1) .

Thus, up to the equality (8.2.11), the reasoning will be the same. Analogously as in the

proof of part (i) of Theorem 8.2.1, we would be able to decompose hh̃ in the following

convenient form (in the case of hh̃ 6= const):

hh̃ = h−h+ ,

with h− ∈ L∞− (Γ0), and h+ ∈ L∞+ (Γ0). Moreover, h− and h+ have disjoint points of

standard almost periodic discontinuities.

Let Mh− stand for the points of standard almost periodic discontinuities of the func-

tion h−. Continuing with the same reasoning as in the proof of part (i) of Theorem 8.2.1,

we will arrive at an analogous equality as (8.2.14) where the corresponding H− has now

2n points of standard almost periodic discontinuities. In this case, we consider a point

t0 such that t0 ∈ Γ0 \Mh− , and reach into a contradiction in the same manner as in the

proof of Theorem 8.2.1. The case of hh̃ = const, runs also by using the same arguments

as above.
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Finally, note that the assumption in propositions (ii) and (iii) which requires that

there is at least one index j for which σtj(φ) + σt−1
j

(φ) 6= 0 was automatically fulfilled in

Theorem 8.2.1, and is added in here only for the matter of excluding these cases to fall

in the situation of present proposition (i).

REMARK 8.2.3. Note that in the first case of the last theorem we will have that the

Toeplitz operator TΦ (with symbol Φ = φφ̃−1) has an invertible continuous symbol, and

hence it is a Fredholm operator.

As a direct conclusion from the last theorem, if we consider only one point with

standard almost periodic discontinuity, we have the following result.

COROLLARY 8.2.4. Let the function φ ∈ GL∞(Γ0) be continuous on the set Γ0 \ {t0}
and have a standard almost periodic discontinuity at the point t0 with σt0(φ) 6= 0.

(i) If σt0(φ) < 0, then the operator THφ is right-invertible in L2
+(Γ0) and dimKerTHφ =

∞.

(ii) If σt0(φ) > 0, then the operator THφ is left-invertible in L2
+(Γ0) and dimCokerTHφ =

∞.

8.3 Examples

In this last section of this chapter we would like to present two simple examples for

illustrating some of the above presented theory.

As for the first example, let us consider the Toeplitz operator Tρ1 : L2
+(Γ0) → L2

+(Γ0),

where

ρ1(t) = exp

(
i

t− i

)
exp

(
i

t + i

)
exp

(
1

t− 1

)
, t ∈ Γ0 .

From the definition of ρ1 it is clear that it is an invertible element. It is also clear that

ρ1 has three points of standard almost periodic discontinuities (namely, the points i, −i

and 1). A direct computation allows the conclusion that

σi(ρ1) = 1 , σ−i(ρ1) = −1 , σ1(ρ1) = 1 .
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Hence, Tρ1 is not normally solvable and dimKerTρ1 = dimCokerTρ1 = 0 (cf. Theorem

8.1.12, part 3).

Let us analyze the corresponding Toeplitz plus Hankel operator THρ1 : L2
+(Γ0) →

L2
+(Γ0), with symbol ρ1. Direct computations lead us to the following equalities and

inequality:

σi(ρ1) + σi−1(ρ1) = σi(ρ1) + σ−i(ρ1) = 0 ,

σ−i(ρ1) + σ(−i)−1(ρ1) = σ−i(ρ1) + σi(ρ1) = 0 ,

σ1(ρ1) + σ(1)−1(ρ1) = 2σ1(ρ1) = 2 > 0 .

Applying proposition (iii) of Theorem 8.2.2, we conclude that THρ1 is a left-invertible

operator with infinite dimensional cokernel.

As a second example, we will consider an adaptation of the first example in which a

Toeplitz operator with a particular symbol will be not normally solvable but the Toeplitz

plus Hankel operator with the same symbol will be two-sided invertible.

Let us work with the Toeplitz operator Tρ2 : L2
+(Γ0) → L2

+(Γ0), where

ρ2(t) = exp

(
i

t− i

)
exp

(
i

t + i

)
, t ∈ Γ0 .

The symbol ρ2 is invertible, and has standard almost periodic discontinuities only at the

points i and −i. In particular, we have

σi(ρ2) = 1 , σ−i(ρ2) = −1 . (8.3.1)

Hence, Tρ2 is not normally solvable (cf. Theorem 8.1.12, part 3).

Let us now look for corresponding properties of the Toeplitz plus Hankel operator

THρ2 : L2
+(Γ0) → L2

+(Γ0), with symbol ρ2. It turns out that by using (8.3.1) and proposi-

tion (i) of Theorem 8.2.2 we conclude that THρ2 is a Fredholm operator. Moreover, in this

particular case, we can even reach into the stronger conclusion that THρ2 is a two-sided

invertible operator. Indeed, ρ2ρ̃
−1
2 = 1 and therefore T

ρ2
g
ρ−1
2

is two-sided invertible (since

it is the identity operator on L2
+(Γ0)). Thus, the ∆-relation after extension ensures in

this case that THρ2 is also a two-sided invertible operator on L2
+(Γ0).
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Chapter 9

Matrix Toeplitz plus Hankel operators

with PAP symbols

The main goal of the present chapter is to present a Fredholm criterion for matrix

Toeplitz plus Hankel operators THΦ, where Φ is a N ×N matrix function with entries in

the class of piecewise almost periodic functions.

The class of operators THΦ has an important role in the mathematical description

of various applications. This is the case due to the combination of Toeplitz and Hankel

operators which appear in the structure of operators THΦ. Several results are presently

known for Fredholm characteristics of these operators when with symbols from smaller

classes – like the piecewise continuous or the almost periodic matrix functions. Here we

provide a Fredholm characterization of THΦ when the matrix Fourier symbol Φ is in

the piecewise almost periodic class, and therefore allowing the two previously mentioned

classes at the same time (cf. Theorem 9.3.1).

To reach this goal, in Section 9.1 we start by presenting some structures and results

of significant importance in the so-called symbol calculus. Firstly, this is done within the

framework of piecewise continuous elements (Subsection 9.1.1), and secondly for semi-

almost periodic Fourier symbols (Subsection 9.1.2). In Section 9.2 we prepare the main

result to be obtained in Section 9.3, by describing the conditions which ensure the Fred-

141
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holm property of some auxiliary paired operators. As a natural result to be achieved

after the Fredholm characterization of Section 9.3, in the last section a formula for the

Fredholm index of THΦ is derived based on some approximating procedures which are

applied to elements in the so-called Wiener subalgebra of piecewise almost periodic matrix

functions.

9.1 Auxiliary results on symbol calculus

In the present section we will present a set of important results which will have

direct consequences in our final result of the present chapter. In all them the so-called

Allan-Douglas local principle plays a fundamental role, and so we will recall it now.

Let G be a Banach algebra with identity. A subalgebra Z of G is said to be a central

subalgebra if zg = gz for all z ∈ Z and all g ∈ G.

THEOREM 9.1.1. [18, Theorem 1.35(a)] Let G be a Banach algebra with unit e and let

Z be a closed central subalgebra of G containing e. Let M(Z) be the maximal ideal space

of Z, and for ω ∈ M(Z), let Jω refer to the smallest closed two-sided ideal of G containing

the ideal ω. Then, an element g is invertible in G if and only if g + Jω is invertible in the

quotient algebra g/Jω for all ω ∈ M(Z).

9.1.1 Symbol calculus for piecewise continuous symbols

The next two results are due to Duduchava (cf. [33], [34]).

LEMMA 9.1.2. (a) If a, b ∈ PC and a(±∞) = b(±∞) = 0, then the operators aW 0
b

and W 0
b aI are compact.

(b) If a ∈ C(Ṙ), b ∈ PC or if a ∈ PC, b ∈ C(Ṙ), then the commutator aW 0
b −W 0

b aI is

compact.

(c) If a, b ∈ C(R̄), then the commutator aW 0
b −W 0

b aI is compact.
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Let us consider the C∗-algebra

A := alg(C(R̄), W 0(PC))

(generated by the operators aW 0
b with a ∈ C(R̄) and b ∈ PC), and also

D := alg(PC, W 0(PC)).

It is clear that both A and D contain the C∗-subalgebra Z := alg(C(Ṙ), W 0(C(Ṙ))). Let

in addition K := K(L2(R)) be the set of all compact operators on L2(R). One can show

that K ⊂ Z. Denote Aπ := A/K, Dπ := D/K, Zπ := Z/K, and abbreviate the coset A+K
to Aπ.

Lemma 9.1.2 implies that Zπ is a central C∗-algebra of Dπ. The maximal ideal space

of Zπ can be identified with

M := (Ṙ× Ṙ) \ (R× R) = (R× {∞}) ∪ ({∞} × R) ∪ {(∞,∞)} .

We also consider the set

M := (R× {∞} × [0, 1]) ∪ ({∞} × R× [0, 1]) ∪ ((∞,∞)× {0, 1}) .

We equip M with the Gelfand topology and M with the discrete topology. For

A = aW 0
b (a, b ∈ PC) and (t, x, µ) ∈M, a matrix A is defined by

A(t, x, µ) =
 a(t + 0)(b(x + 0)µ + b(x− 0)(1− µ)) a(t + 0)(b(x + 0)− b(x− 0))

√
µ(1− µ)

a(t− 0)(b(x + 0)− b(x− 0))
√

µ(1− µ) a(t− 0)(b(x− 0)µ + b(x + 0)(1− µ))




(9.1.1)

where by convention, a(∞± 0) = a(∓∞), b(∞± 0) = b(∓∞), and ν(µ) :=
√

µ(1− µ)

denotes any function ν : [0, 1] → R such that ν2(µ) = µ(1− µ) for all µ ∈ [0, 1], and ad-

ditionally ν(1/2) = −1/2. Let BC(M,C2×2) stand for the bounded continuous functions

of M into C2×2.
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THEOREM 9.1.3. The map

Sym : {A = aW 0
b : a, b ∈ PC} → BC(M,C2×2)

(associating the matrix function in (9.1.1) with the operator A) extends (in a unique way)

to a C∗-algebra homomorphism

Sym : D → BC(M,C2×2) ,

whose kernel is K.

In what follows we simply write A instead of SymA. We denote by aij the (ij)-entry

of A. Since

a(−∞)b(±∞) = lim
x→±∞

a11(∞, x, 0), a(+∞)b(∓∞) = lim
x→±∞

a22(∞, x, 0),

Theorem 9.1.3 remains valid with M replaced by its subset

M0 := (R× {∞} × [0, 1]) ∪ ({∞} × R× [0, 1]) .

Furthermore, when considering the C∗-subalgebra A := alg(C(R̄),W 0(PC)) of D,

the form of the symbol A(t, x, µ) can be simplified at the points t ∈ R for the generating

operators A = aW 0
b (a ∈ C(R̄), b ∈ PC). Namely, we can put

A(t,∞, µ) =


 a(t)b(−∞) 0

0 a(t)b(+∞)


 , µ ∈ [0, 1].

9.1.2 Symbol calculus for SAP

Let

S := alg(SR, [C(R̄)]N×N)

be the C∗-algebra generated by the singular integral operators aI + bSR with coefficients

a, b ∈ [C(R̄)]N×N . We denote by H∞ the closed two-sided ideal of S that is generated by

all the commutators uSR − SRuI with u ∈ C(R̄), and HR is the closed two-sided ideal of
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the algebra S which is generated by the commutators cSR − SRcI, where c ∈ PC and

with c(+∞) = c(−∞).

The following algebras are also of interest:

C := alg(SR, APN×N), B := alg(SR, SAPN×N) .

Let us first start with the C∗-algebra A := alg(C(R̄),W 0(PC)) generated by the

operators aW 0(b) with a ∈ C(R̄) and b ∈ PC. It is readily seen that

B = alg(A, uR) ,

where uR : R → L(L2(R)) is the unitary representation of the discrete group R given by

uR : λ 7→ eλI (cf. [15]).

Note that due to

eλaI = aeλ, eλW
0
b = W 0

bλ
eλI

(where bλ(x) = b(x + λ)) the algebra B is the L(L2(R)) closure of the set B0 of all

operators of the form

B =
∑

λ

AλeλI

where Aλ ∈ A and λ ranges over arbitrary finite subsets of R. Note however that for eλ

we continue with the previous (usual) notation of eλ(x) = eiλx, x ∈ R.

Let `2(R,C2) denote the collection of all functions f : R → C2 for which the set

{λ ∈ R : f(λ) 6= 0} is at most countable and

||f ||2`2(R,C2) :=
∑

λ

||f(λ)||2 < ∞ ,

where ||f(λ)|| denotes the usual norm in C2, i.e., if we have f = (f1, f2), then ||f || =

(|f1|2 + |f2|2) 1
2 .

Let R̃ be the set resulting from Ṙ by blowing up the point ∞ to the segment [0, 1] :

R̃ := R ∪ ({∞} × [0, 1]) .
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We associate with each point of R̃ a representation of B. For t ∈ R, let Πt be the

representation (cf. [15])

Πt : B → L(C2) , Πt

(∑

λ

AλeλI

)
=

∑

λ

Aλ(t,∞, 1)eiλtI,

and for µ ∈ [0, 1], we define Π∞, µ as the representation

Π∞, µ : B → L(`2(R,C2)) ,

[
Π∞,µ

(∑

λ

AλeλI

)
f

]
(x) =

∑

λ

Aλ(∞, x, µ)f(x + λ) ,

(9.1.2)

where x ∈ R and f ∈ `2(R,C2). Also, for B ∈ B we consider the operator-valued function

B̃ given on R̃ by

B̃(t) = Πt(B) for t ∈ R, B̃(∞, µ) = Π∞,µ(B) for µ ∈ [0, 1].

The set B̃ is a C∗-algebra with pointwise operations and the norm

||B̃|| := max

{
sup
t∈R

||Πt(B)||, sup
µ∈[0,1]

||Π∞,µ(B)||
}

.

THEOREM 9.1.4. [15, Theorem 5.3] The map Φ defined by

Φ : Bπ → B̃, Bπ 7→ B̃

is a well-defined C∗-algebra isomorphism, where Bπ := B/K.

The next theorem is a key result for studying the Fredholm property for the operators

from the algebra B.

THEOREM 9.1.5. [15, Theorem 5.4] An operator B ∈ B = alg(SR, SAP ) is Fredholm

in L2(R) if and only if

(a) the diagonal 2× 2 matrices Πt(B) are invertible for all t ∈ R,

(b) the operators Π∞,µ(B) are invertible in `2(R,C2) for all µ ∈ [0, 1].

REMARK 9.1.6. This theorem is also valid for the matrix case.
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9.2 Auxiliary operators

Let us now consider the following auxiliary operator which will be fundamental for

our purposes

A := aPR + bQR + cH+ + H−dI : [L2(R)]N → [L2(R)]N , (9.2.1)

where a, b, c, d ∈ SAPN×N , QR = I − PR, and H± ∈ H∞.

By Sarason’s result (cf. Theorem 2.2.2) we can decompose SAPN×N matrix functions

in the following way:

a = a`(1− u) + aru + a0 ,

where

a` =
∑

λ

a`
λeλ, ar =

∑

λ

ar
λeλ (a`

λ, a
r
λ ∈ CN×N)

are the almost periodic representatives of a at −∞ and +∞ (and the series are to be

understood in a formal sense or as converging in the Besicovitch space (recall Chapter 2)),

a0 ∈ [C0(Ṙ)]N×N , u ∈ C(R̄), u(−∞) = 0, u(+∞) = 1. Analogously, for b, c and d we have

b = b`(1− u) + bru + b0 ,

c = c`(1− u) + cru + c0 ,

d = d`(1− u) + dru + d0 ,

where b0, c0, d0 ∈ [C0(Ṙ)]N×N and the almost periodic representatives of b, c, d at −∞ and

+∞ are given by

b` =
∑

λ

b`
λeλ, br =

∑

λ

br
λeλ (b`

λ, b
r
λ ∈ CN×N) ,

c` =
∑

λ

c`
λeλ, cr =

∑

λ

cr
λeλ (c`

λ, c
r
λ ∈ CN×N) ,

d` =
∑

λ

d`
λeλ, dr =

∑

λ

dr
λeλ (d`

λ, d
r
λ ∈ CN×N) .

It is known that

PR = Fχ+F−1 : L2(R) → H2
+(R), and QR = Fχ−F−1 : L2(R) → H2

−(R) ,
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where χ± are the characteristic functions of R±. Using standard arguments, we will rewrite

these operators in a more convenient form for our purposes. Due to the formula (9.1.1)

we will deduce the last two operators to the convolution form:

PR = Fχ+F−1 = FJχ−JF−1 = F−1χ−F ,

QR = Fχ−F−1 = FJχ+JF−1 = F−1χ+F ,

where we are using the facts that F−1 = FJ = JF and Jχ±J = χ∓.

Having in mind the last two formulas, the operator A can be represented in the form

A = aF−1χ−F + bF−1χ+F + cH+ + H−dI

with H± ∈ H∞. In addition, let us consider the following operator:

B =
∑

λ

AλeλI , (9.2.2)

where

A0 = (a`
0(1− u) + ar

0u + a0)F−1χ−F + (b`
0(1− u) + br

0u + b0)F−1χ+F
+(c`

0(1− u) + cr
0u + c0)H+ + H−(d`

0(1− u) + dr
0u + d0)I ,

Aλ = (a`
λ(1− u) + ar

λu)eλF−1χ−Fe−λ + (b`
λ(1− u) + br

λu)eλF−1χ+Fe−λ

+(c`
λ(1− u) + cr

λu)eλH+e−λ + H−(d`
λ(1− u) + dr

λu)I .

The operator B in (9.2.2) is understood as a uniform limit of operators Bk (cf. [15]) of

the same form but with λ running through finite subsets of R.

Using now (9.1.2) and (9.1.1), a family of operators Π∞,µ(B) (with µ ∈ [0, 1]) will be

defined (cf. [15]) by:

(Π∞,µ(B)f)(x) =
∑

λ

Aλ(∞, x, µ)f(x + λ), x ∈ R, f ∈ [`2(R,C2)]N×N , (9.2.3)

with

A0(∞, x, µ) =


 a`

0 0

0 ar
0


 P (∞, x, µ) +


 b`

0 0

0 br
0


Q(∞, x, µ)

+


 c`

0 0

0 cr
0


 H+(∞, x, µ) + H−(∞, x, µ)


 d`

0 0

0 dr
0


 (9.2.4)
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and for λ 6= 0, we have

Aλ(∞, x, µ) =


 a`

λ 0

0 ar
λ


 P (∞, x + λ, µ) +


 b`

λ 0

0 br
λ


 Q(∞, x + λ, µ)

+


 c`

λ 0

0 cr
λ


 H+(∞, x + λ, µ) + H−(∞, x + λ, µ)


 d`

λ 0

0 dr
λ


 .

(9.2.5)

Here P (∞, x, µ) and Q(∞, x, µ) stand for the symbols of the operators PR and QR, re-

spectively. A direct computation provides that P (∞, x, µ) is equal to

P (∞, x, µ) =
 (χ−(x + 0)µ + χ−(x− 0)(1− µ))IN×N (χ−(x + 0)− χ−(x− 0))ν(µ)IN×N

(χ−(x + 0)− χ−(x− 0))ν(µ)IN×N (χ−(x− 0)µ + χ−(x + 0)(1− µ))IN×N




(9.2.6)

and Q(∞, x, µ) is given by

Q(∞, x, µ) =


 IN 0

0 IN


− P (∞, x, µ) . (9.2.7)

The following theorem follows immediately from Theorem 9.1.5 and Remark 9.1.6.

THEOREM 9.2.1. [15] If a, b, c, d ∈ SAPN×N , then the operator A defined in (9.2.1)

is Fredholm on [L2(R)]N if and only if:

(a) a, b ∈ GSAPN×N ;

(b) for every µ ∈ [0, 1] the operators Aµ := Π∞,µ(A) given by (9.2.3)-(9.2.7) are invert-

ible in [`2(R,C2)]N .

Using this theorem and considering the operators A∗A and AA∗, one obtains the

following result.

THEOREM 9.2.2. [15] Let a, b, c, d ∈ SAPN×N . The operator (9.2.1) is n-normal (resp.

d-normal) on [L2(R)]N if and only if a, b ∈ GSAPN×N and for every µ ∈ [0, 1] the
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operators Aµ = Π∞,µ(A) given by (9.2.3)-(9.2.7) are left-invertible (resp. right-invertible)

in [`2(R,C2)]N .

We will now consider a second auxiliary operator with the form:

B := aPR + bQR + HR + cH∞ : [L2(R)]N → [L2(R)]N (9.2.8)

where a, b, c are N × N matrix functions in PAP, HR ∈ HR and H∞ ∈ H∞. In what

follows, we will be able to transfer some properties of operator B defined in (9.2.8) to the

operator

B̂ := âPR + b̂QR + ĉH∞ : [L2(R)]N → [L2(R)]N , (9.2.9)

where the N × N matrix functions â, b̂, ĉ belong to SAP, and have the same AP repre-

sentatives a±, b±, c± at ±∞ as the matrix functions a, b, c ∈ PAP, respectively.

We will need to use the continuous arc a#, which is obtained from det a by filling

in with line segments the eventual gaps generated by discontinuity jumps of det a. In

the same way, we will need b#. If the origin does not belong to a# and b#, then we can

construct â and b̂ to be invertible at every point x ∈ R. Furthermore, we will have that if

the operator (9.2.8) is Fredholm on the space [L2(R)]N , then by the Allan-Douglas local

principle, the operator B̂ in (9.2.9) is also Fredholm on [L2(R)]N . More precisely, if B is a

Fredholm operator on [L2(R)]N , then it is locally Fredholm at ∞, and consequently B̂ is

also locally Fredholm at ∞ (because in this case HR has no contribution in the Fredholm

property for the operator B̂). Moreover, B̂ is locally compact at every point x ∈ R

simultaneously with the invertible operator â(x)PR + b̂(x)QR having nonzero constant

coefficients.

Note that the operator B̂ obviously belongs to the algebra B, and therefore is under

the conditions of Theorem 9.1.5.
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9.3 Fredholm property of Toeplitz plus Hankel opera-

tors

Let us now turn to the main object of the present chapter, and consider the Toeplitz

plus Hankel operator THΦ (defined in (1.5.4)) with symbol Φ in the class of piecewise

almost periodic matrix functions (PAPN×N). The main goal of the present chapter is

achieved in the next theorem where we will be using the operator

(Nf)(x) =
1

πi

∫

R

f(τ)

τ + x
dτ , x ∈ R.

THEOREM 9.3.1. Let Φ ∈ PAPN×N , and consider T := aPR + bQR + cV, where

a, b, c ∈ PAP 2N×2N are given by

a :=


 χ+Φ + χ− 0

χ+Φ̃ I


 , b :=


 I χ+Φ

0 χ+Φ̃ + χ−


 , c :=

1

2


 χ+Φ χ+(I − Φ)

χ+(Φ̃− I) −χ+Φ̃


 ,

(9.3.1)

and V := χ+Nχ+I + χ−Nχ−I.

The operator THΦ is Fredholm on [H2
+(R)]N if and only if:

(a) Φ ∈ GPAPN×N ;

(b) det T (t, x, µ) 6= 0, for (t, x, µ) ∈ R × Ṙ × [0, 1], where T (t, x, µ) is given by the

formula (9.1.1);

(c) for every µ ∈ [0, 1] the operators Tµ calculated from (9.2.3)–(9.2.7) for the operator

T are invertible in [`2(R,C2)]2N .

Proof. We start by noticing that the operator THΦ acting on [H2
+(R)]N is equivalent after

extension [1] (recall also Remark 1.7.2) with

Φ(I + J)PR + QR : [L2(R)]N → [L2(R)]N .
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Let now Ψ : [L2(R)]N → [L2(R+)]2N be the isomorphism defined by

(Ψf)(x) =


 f(x)

f(−x)


 , x ∈ R+.

The inverse of Ψ is provided by the formula:

(Ψ−1f)(t) =





f1(t), if t > 0,

f2(−t), if t < 0,

where f(t) =


 f1(t)

f2(t)


 ∈ [L2(R+)]2N .

From the previous equivalence after extension relation, and from the computation

Ψ[Φ(I + J)PR + QR]Ψ
−1 =


 Φ 0

Φ̃ I


 PR+ +


 I Φ

0 Φ̃


 QR+

+
1

2


 Φ I − Φ

Φ̃− I −Φ̃


 NR+ : [L2(R+)]2N → [L2(R+)]2N ,

where

PR+ = (I + SR+)/2 , QR+ = I − PR+ ,

(SR+Φ)(x) =
1

πi

∫

R+

Φ(τ)

τ − x
dτ ,

(NR+Φ)(x) =
1

πi

∫

R+

Φ(τ)

τ + x
dτ , and x ∈ R+ ,

we derive that THΦ is equivalent after extension with

T0 :=


 Φ 0

Φ̃ I


 PR+ +


 I Φ

0 Φ̃


 QR+ +

1

2


 Φ I − Φ

Φ̃− I −Φ̃


 NR+ . (9.3.2)

Now, using the technique of extension by identity in the framework of paired operators

(cf., e.g., [70]), together with the corresponding direct sum decomposition [L2(R)]2N =

χ+[L2(R)]2N ⊕ χ−[L2(R)]2N , it follows that the operator T0 in (9.3.2) is equivalent after
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extension with

[χ+


 Φ 0

Φ̃ I


 + χ−I]PR + [χ+


 I Φ

0 Φ̃


 + χ−I]QR

+
1

2


 χ+Φ χ+(I − Φ)

χ+(Φ̃− I) −χ+Φ̃


 V.

Therefore, putting altogether and using the transitivity property of equivalence af-

ter extension relation, we have reached to the conclusion that THΦ is equivalent after

extension with

T = aPR + bQR + cV.

In addition, it is known that V can be decomposed in V = H0 + H∞, where H0 ∈ H0

and H∞ ∈ H∞. In a more detailed way (cf. [4, Lemma 3.3]), the operator V belongs to

the ideal H0 + H∞. Therefore, we have the possibility to rewrite the operator T in the

form

T = aPR + bQR + cH0 + cH∞, (9.3.3)

with H0 ∈ H0 and H∞ ∈ H∞, and where a, b, c ∈ PAP 2N×2N are given in (9.3.1).

In particular, the just presented operator relations imply that THΦ is a Fredholm

operator if and only if T (in (9.3.3)) is a Fredholm operator.

Employing the method of [4, page 45] (in view of using here the Allan-Douglas local

principle), we can associate with T the new operator

T̂ := âPR + b̂QR + ĉH∞

with coefficients â, b̂, ĉ ∈ SAP 2N×2N such that â, b̂, ĉ have the same local representatives

at ±∞ as a, b, c ∈ PAP 2N×2N , and additionally â and b̂ are chosen to be invertible, in a

way that

T = AT̂ + K , (9.3.4)
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where A ∈ D is locally equivalent to I2N×2N at ∞, and K is a compact operator. We are

now in a position to take profit of the fact that T̂ belongs to B and A ∈ D and prove the

desired equivalence.

If THΦ is a Fredholm operator, then T is also a Fredholm operator. Moreover, we

have that Φ ∈ GPAPN×N (cf. Theorem 1.9.2 or [38, Proposition 2.6]). From the fact

that T is a Fredholm operator it follows from (9.3.4) that A and T̂ are also Fredholm

operators. This implies that T̂µ are invertible operators, and from the equality T̂µ = Tµ

we therefore derive that Tµ are invertible operators. Once again, relaying on the fact that

T̂ and A are Fredholm operators, we obtain that det T̂ (t, x, µ) 6= 0 and detA 6= 0, for

(t, x, µ) ∈ R × Ṙ × [0, 1]. This can be done using the localization technique (cf. [4, page

46]). Hence det T (t, x, µ) 6= 0. This gives the necessary part of the statement.

Let us now prove that the conditions (a)–(c) are sufficient for the Fredholm property

of THΦ. From formula (9.3.4), it follows that

det T (t, x, µ) = detA(t, x, µ) det T̂ (t, x, µ), (t, x, µ) ∈M .

Since by the condition (b) we have that det T (t, x, µ) 6= 0 we will have that detA(t, x, µ) 6=
0. This and the fact that A(∞, x, µ) = I2N×2N allows us to conclude that A is a Fredholm

operator. Employing once again the equality (9.3.4), we obtain that Tµ = T̂µ since A is

locally equivalent with I2N×2N at ∞. In addition, from conditions (a) and (c) and from

Theorem 9.2.1, it follows that T̂ is a Fredholm operator. Altogether, we have that under

the conditions (a)–(c) both operators T̂ and A are Fredholm. This means that T is a

Fredholm operator, and hence THΦ is a Fredholm operator.

9.4 Index formula

In this section we give an index formula for the operator THΦ with Φ ∈ PAPN×N

under the assumption that THΦ is a Fredholm operator. Our reasoning relays on a

certain approximating strategy. Namely, we will first give an index formula for THΦ with

Φ ∈ PAPWN×N , and then use the fact that PAPW is dense in PAP and also certain
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stability properties (which occur under small perturbations). It should be mentioned that

the index formula for THΦ with Φ ∈ PAPWN×N follows easily from the results obtained

in [4].

As far as in this section our goal is to obtain a Fredholm index formula for Toeplitz plus

Hankel operators with piecewise almost periodic functions, we will proceed by simplifying

some symbols of the operators. Namely, here we will not need the symbol calculus for

the operators with three variables and it is sufficient to consider the symbol calculus with

two variables. For instance, for a function f ∈ PCN×N , and the Cauchy singular integral

operator SR, the symbols are given by the formulas (cf., e.g., [4]):

(fI)(x, µ) =


 f(x + 0) 0

0 f(x− 0)


 (9.4.1)

and

SR(x, µ) =


 (2µ− 1) 2ν(µ)

2ν(µ) (1− 2µ)


 , (9.4.2)

where (x, µ) ∈ Ṙ× [0, 1] and ν(µ) is as in Section 9.1.

For starting let us analyze the singular integral operators with the form (9.3.3), but

having coefficients from the Wiener subalgebra of PAPN×N . Now we will reproduce the

constructions developed in [4, pages 47-48]. To this end let us denote by the T (x, µ) the

symbol of the operator T governed by the formulas (9.4.1) and (9.4.2). The necessary

and sufficient conditions for the operator T to be Fredholm are given in [4, Theorem 5.2].

Furthermore from the same theorem [4, Theorem 5.2 (ii)–(iii)] we infer that for any fixed

µ ∈ [0, 1] the function T (·, µ) ∈ GPAPWN×N and its almost periodic representatives

det(b−1
± a±) at ±∞ admit canonical right APW factorizations. Further details on such

kind of factorizations and related topics can be found e.g. in [14].

Consequently the function

ψµ(x) := arg T (x, µ)

belongs to PAPW for every fixed µ ∈ [0, 1], and hence the value

IndRT # :=
1

2π
lim

t→+∞
1

t

∫ t

0

(ψµ(x)− ψµ(−x))dx (9.4.3)
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exists, is finite and does not depend on the choice of µ ∈ [0, 1]. The fundamental properties

of the quantity IndRT # given by the formula (9.4.3) are stated in [4, Lemma 5.3].

Let the operator THΦ with symbol Φ ∈ PAPWN×N be Fredholm operator. Then

the operator T defined in Theorem 9.3.1 is also Fredholm and reasoning in a similar way

as in [4, page 55] we can give another meaning to the quantity IndRT #. More precisely

in this situation we have (cf. [4, formula (6.2)])

IndRT # =
1

2π
lim

t→+∞
1

t

∫ t

0

ψµ(x)dx , (9.4.4)

where ψµ(x) = arg T (x, µ) and for x < 0, ψµ(x) = 1.

THEOREM 9.4.1. (equivalent to [4, Theorem 6.4]) If the operator THΦ with symbol

Φ ∈ PAPWN×N is Fredholm, then its index is given by the formula

IndT = −IndRT # − 1

2π
{arg det T̃ (∞, µ)}µ∈[0,1] ,

with IndRT # provided by (9.4.4) and

T̃ (∞, µ) = d





 0 −ΦrΦ̃

−1
`

I Φ̃−1
`








 (1− µ)In iν(µ)In

iν(µ)In (1− µ)In


 +


 µIn −iν(µ)In

−iν(µ)In µIn


 ,

(9.4.5)
where Φr and Φ` are the local representatives of the matrix function Φ (cf. Proposi-

tion 2.2.5). Here T is as in Theorem 9.3.1.

REMARK 9.4.2. The proof of the next theorem reveals the structure of T̃ (∞, µ).

The main result of this section is now stated.

THEOREM 9.4.3. If THΦ is a Fredholm operator with symbol Φ ∈ PAPN×N , then its

Fredholm index is given by the formula:

IndTHΦ = −IndRT # − 1

2π
{arg det T̃ (∞, µ)}µ∈[0,1] , (9.4.6)

where IndRT # is given by (9.4.4) and T̃ (∞, µ) have the form of (9.4.5) for a T as in

Theorem 9.3.1.
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Proof. Let us take Φn ∈ PAPWN×N such that limn→∞ ||Φn − Φ|| = 0. Here and in what

follows we are considering the supremum norms. Let us consider functions an, bn, cn ∈
PAPW 2N×2N such that

lim
n→∞

||an − a|| = 0, lim
n→∞

||bn − b|| = 0, lim
n→∞

||cn − c|| = 0,

by taking into consideration Φn in the corresponding place of Φ in Theorem 9.3.1; cf. (9.3.1).

This allow us to consider the operator

Tn := anPR + bnQR + cnV .

If THΦ with symbol Φ ∈ PAPN×N is Fredholm, then the operator T defined in Theo-

rem 9.3.1 is also Fredholm and their Fredholm indices coincide. Employing the fact that

small perturbations preserve the Fredholm property and the Fredholm index, we conclude

that the operators THΦ and Tn are Fredholm only simultaneously and their Fredholm in-

dices coincide for sufficiently large values of n. Additionally, the Fredholm index for Tn is

given by the next formula (cf. [4, Theorem 6.4])

IndTn = −IndRT #
n − 1

2π
{arg det T̃n(∞, µ)}µ∈[0,1] ,

where IndRT #
n is given by formula (9.4.4) and

T̃n(∞, µ) = d((bn)−1
r (an)r)


 (1− µ)In iν(µ)In

iν(µ)In (1− µ)In


 +


 µIn −iν(µ)In

−iν(µ)In µIn


 .

Here (an)r and (bn)r stand for the local representatives at +∞ of the matrix functions

an and bn. Having now in mind the stability of the geometrical mean value, we get the

formula (9.4.6), since a direct computation provides that

(bn)−1
r (an)r =


 0 −(Φn)r(Φ̃n)−1

`

I (Φ̃n)−1
`


 .

Using here the passage to the limit when n →∞, it turns clear the structure of T̃ (∞, µ)

and the desired Fredholm index formula (9.4.6). Note that in general the limiting matrix

belongs to the Besicovitch space (cf., e.g., [14] or [15]), but employing the known result
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about the stability of the geometrical mean value (see e.g., [14, Corollary 21.8], [15,

Corollary 2.8], [46, Corollary 8]) we can here ensure that

lim
n→∞

d((bn)−1
r (an)r) = d





 0 −ΦrΦ̃

−1
`

I Φ̃−1
`





 .



Conclusion

The study of Wiener-Hopf-Hankel operators is important not only by pure theoret-

ical reasons but also due to its appearance in various types of applications. This last

interest comes e.g. from the Mathematical Physics, Statistics, Control Theory and many

other areas of Mathematics. In this thesis we considered Wiener-Hopf-Hankel operators

with symbols from the almost periodic, semi-almost periodic, piecewise almost periodic

function classes and moreover with symbols associated in a certain way with unitary and

sectorial matrix functions. The attention was paid also to Toeplitz plus Hankel operators

with matrix piecewise almost periodic symbols and the Toeplitz plus Hankel operators

with scalar symbols having n points of standard almost periodic discontinuities.

Chapters 1 and 2 were only of introductory nature and there were given very shortly

the necessary background information for the development of the next chapters.

In Chapter 3 we considered the Wiener-Hopf plus Hankel operators with symbols from

the algebra of matrix almost periodic functions. To deduce the one-sided or two-sided

invertibility theory for Wiener-Hopf plus Hankel operators with AP matrix symbols we

introduced the notion of an AP asymmetric factorization. In this framework were given

sufficient conditions for the one-sided or two-sided invertibility of the Wiener-Hopf plus

Hankel operators with matrix AP symbols. For such kind of operators were also exhibited

generalized inverses for all the possible cases.

In Chapters 4 and 5 we obtained new results concerned a Fredholm property and

a formula for the sum of the Fredholm indices of Wiener-Hopf plus Hankel and Wiener-

Hopf minus Hankel operators with matrix SAP and PAP symbols, respectively. Anyway,

the problem to obtain necessary and sufficient conditions for the Fredholm property of
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Wiener-Hopf plus Hankel operators with SAP or PAP matrix symbols remains open.

In Chapter 6 we gave a corresponding version of the classical theorem by Douglas

and Sarason for Toeplitz operators with sectorial and unitary symbols. Also in here the

necessary and sufficient conditions for the Wiener-Hopf plus Hankel operators with the

just mentioned symbols to be Fredholm operator remains open.

The main result of Chapter 7 was a necessary and sufficient condition for the Wiener-

Hopf plus Hankel operators with L∞ symbols to be Fredholm, or invertible. To obtain

such a result we dealt with an odd asymmetric factorization with not “usual” weights.

The corresponding theory with an even asymmetric factorization and the theory for the

matrix case are open.

In Chapter 8 we found conditions under which Toeplitz plus Hankel operators gen-

erated by symbols which have n points of standard almost periodic discontinuities are

right-invertible and with infinite dimensional kernel, left-invertible and with infinite di-

mensional cokernel or simply not normally solvable. In this direction there are an huge

amount of open problems. E.g., the corresponding theory for matrix operators, the Fred-

holm index formula, and the consideration of other kinds of points of discontinuity (such

as discontinuities of whirl points of power type) is still open.

In Chapter 9 were provided necessary and sufficient conditions for matrix Toeplitz plus

Hankel operators with piecewise almost periodic symbols to have the Fredholm property.

It is worth to mention that this result is highly theoretical, and the necessary and sufficient

conditions for Toeplitz plus Hankel operators with matrix PAP symbols, which would be

easily and effectively verifiable in practical problems remains open.
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