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resumo

operador de Wiener-Hopf, operador de Hankel, operador de Toeplitz,
propriedade de Fredholm, invertibilidade, indice de Fredholm, factorizacéo,
funcdo quase periddica, funcao semi-quase periddica, funcdo quase periddica
por trocos, funcdo sectorial, discontinuidade quase periddica, célculo
simbdlico.

Na presente tese consideramos combinacdes algébricas de operadores de
Wiener-Hopf e de Hankel com diferentes classes de simbolos de Fourier.
Nomeadamente, foram considerados simbolos matriciais na classe de
elementos quase periddicos, semi-quase periddicos, quase periédicos por
trocos e certas fungbes matriciais sectoriais. Adicionalmente, foi dedicada
atencao também aos operadores de Toeplitz mais Hankel com simbolos quase
periédicos por trocos e com simbolos escalares possuindo n pontos de
discontinuidades quase peridédicas usuais.

Em toda a tese, um objectivo principal teve a ver com a obtencdo de
descricdes para propriedades de Fredholm para estas classes de operadores.
De forma a deduzir a invertibilidade lateral ou bi-lateral para operadores de
Wiener-Hopf mais Hankel com simbolos matriciais AP foi introduzida a nogao
de factorizagdo assimétrica AP. Neste ambito, foram dadas condi¢des
suficientes para a invertibilidade lateral e bi-lateral de operadores de Wiener-
Hopf mais Hankel com simbolos matriciais AP. Para tais operadores, foram
ainda exibidos inversos generalizados para todos os casos possiveis.

Para os operadores de Wiener-Hopf-Hankel com simbolos matriciais SAP e
PAP foi deduzida a propriedade de Fredholm e uma férmula para a soma dos
indices de Fredholm destes operadores de Wiener-Hopf mais Hankel e
operadores de Wiener-Hopf menos Hankel. Uma versdo mais forte destes
resultados foi obtida usando a factorizacdo generalizada AP a direita.

Foram analisados os operadores de Wiener-Hopf-Hankel com simbolos que
apresentam determinadas propriedades pares e também com simbolos de
Fourier que contém matrizes sectoriais. Em adicdo, para operadores de
Wiener-Hopf-Hankel, foi obtido um resultado correspondente ao teorema
classico de Douglas e Sarason conhecido para operadores de Toeplitz com
simbolos sectoriais e unitarios.

Condigbes necessarias e suficientes foram também deduzidas para que os

operadores de Wiener-Hopf mais Hankel com simbolos L* sejam de Fredholm
(ou invertiveis). Para se obter tal resultado, trabalhou-se com certas
factorizacdes impares dos simbolos de Fourier.

Os operadores de Toeplitz mais Hankel gerados por simbolos que possuem n
pontos de discontinuidades quase periddicas wusuais foram também
considerados. Foram obtidas condicfes sob as quais estes operadores sao
invertiveis a direita e com dimenséo de ndcleo infinita, invertiveis a esquerda e
com dimens&o de co-nucleo infinita ou ndo normalmente soltveis.

A nossa atencao foi também colocada em operadores de Toeplitz mais Hankel
com simbolos matriciais continuos por trogos. Para tais operadores, condices
necessarias e suficientes foram obtidas para se ter a propriedade de Fredholm.
Tal foi realizado usando a abordagem do calculo simbdlico, determinados
operadores auxiliares emparelhados com simbolos semi-quase periédicos e
varias relagdes de equivaléncia apds extensao entre operadores.
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invertibility, Fredholm index, factorization, almost periodic function, semi-almost
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periodic discontinuity, symbol calculus.

In this thesis we considered algebraic combinations of Wiener-Hopf and Hankel
operators with different classes of Fourier symbols. Namely, matrix symbols
from the almost periodic, semi-almost periodic, piecewise almost periodic and
certain sectorial matrix functions were considered. In addition, attention was
also paid to Toeplitz plus Hankel operators with piecewise almost periodic
symbols and with scalar symbols having n points of standard almost periodic
discontinuities.

In the entire thesis a main goal is to obtain Fredholm properties description of
those classes of operators.

To deduce the lateral or both sided invertibility theory for Wiener-Hopf plus
Hankel operators with AP matrix symbols was introduced the notion of an AP
asymmetric factorization. In this framework were given sufficient conditions for
the lateral and both sided invertibility of the Wiener-Hopf plus Hankel operators
with matrix AP symbols. For such kind of operators were also exhibited
generalized inverses for all the possible cases.

For the Wiener-Hopf-Hankel operators with matrix SAP and PAP symbols the
Fredholm property and a formula for the sum of the Fredholm indices of these
Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators were
derived. A stronger version of these results was obtained by using the
generalized right AP factorization.

It was analyzed the Wiener-Hopf-Hankel operators with symbols presenting
some even properties, and also with Fourier symbols which contain sectorial
matrices. In addition, for Wiener-Hopf-Hankel operators, it was obtained a
corresponding result to the classical theorem by Douglas and Sarason known
for Toeplitz operators with sectorial and unitary valued symbols.

Necessary and sufficient condition for the Wiener-Hopf plus Hankel operators

with L symbols to be Fredholm (or invertible) were also derived. To obtain
such a result we dealt with certain odd asymmetric factorization of the Fourier
symbols.

The Toeplitz plus Hankel operators generated by symbols which have n points
of standard almost periodic discontinuities were also considered. Conditions
were obtained under which these operators are right-invertible and with infinite
kernel dimension, left-invertible and with infinite cokernel dimension or simply
not normally solvable.

We also focused our attention to Toeplitz plus Hankel operators with piecewise
almost periodic matrix symbols. For such operators necessary and sufficient
conditions were obtained to have the Fredholm property. This was done using
a symbol calculus approach, certain auxiliary paired operators with semi-almost
periodic symbols, and several equivalence after extension operator relations.
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Introduction

This thesis, belonging to the area of Operator Theory and Functional Analysis, deals
with special kinds of singular integral and convolution type operators, which are consti-
tuted by Wiener-Hopf, Hankel, and Toeplitz operators, and certain algebraic combinations
of them. The aim of the thesis is to present some recent results in view of a Fredholm
theory of Wiener-Hopf-Hankel and Toeplitz-Hankel operators. We start by describing
shortly the historical foundations of the operators under consideration.

The PhD thesis of Hankel [44] initiated the study of Hankel operators. In his thesis
Hankel considered finite matrices with entries depending only on the sum of the coordi-
nates. More precisely, Hankel studied determinants of finite complex matrices with entries
defined by c¢jr = cj4i (J,k > 0), where {c;};>0 is a sequence of complex numbers. Such

type of matrices are called Hankel matrices and therefore have the form

Cyp C1 Co
C1 Cg (3
Co C3 (4

This was the starting point for the theory of Hankel operators. The study of Wiener-Hopf
operators started after the joint work of Wiener and Hopf [73]. In this paper they intro-
duced a new method of solving Riemann-Hilbert problems, based on the decomposition
of the Fourier transform of the convolution kernel. This method of decomposition was
afterwards named as “Wiener-Hopf factorization” in honor to the authors of that paper.

The Toeplitz operators are also known as the discrete analogues of the Wiener-Hopf
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operators. These operators were first considered by Toeplitz [72]. As in the case of Hankel
operators, also in here they have a very interesting description, in terms of the matrices
which are generating them. In fact, in certain frameworks, Toeplitz operators are exactly
those which can be given by infinite matrices with constant entries on the main diagonals,

i.e., matrices of the form:
Ch C_1 C_9
C1 Co C_1

Ca Co

The theory of Wiener-Hopf and Toeplitz operators was developed in a parallel way, until
the works by Rosenblum [67] and Devinatz [30] where they discovered that these two type
of operators were unitarily equivalent.

After these brief historical notes we would like to mention that algebraic combina-
tions of Wiener-Hopf and Hankel operators play an important role in various branches of
mathematics, such as Analysis, Mathematical Physics, Probability Theory, Control The-
ory, etc. Therefore, to obtain eventual descriptions of Fredholm properties of classes of
operators generated by Wiener-Hopf and Hankel operators is an important goal in present
investigations. In this way, we would like to point out that for some particular classes
of Fourier symbols the Fredholm theory of Wiener-Hopf plus Hankel operators is already
well developed. As an example, we can refer to the class of such operators with continuous
Fourier symbols or —in a more general setting— to the corresponding class with piecewise
continuous Fourier symbols.

Firstly, let us mention that the Fredholm theory for scalar Wiener-Hopf-Hankel oper-
ators with almost periodic, semi-almost periodic and with piecewise almost periodic func-
tions is well documented in the PhD thesis of Nolasco [58]. On the other hand, the Fred-
holm theory of matrix Wiener-Hopf-Hankel operators with almost periodic, semi-almost
periodic or with piecewise almost periodic functions was not yet completely described and
developed. Therefore, in this thesis we focus our attention to the Wiener-Hopf-Hankel

operators with the just mentioned symbols and moreover with symbols associated in a
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certain way with unitary and sectorial matrix functions. Furthermore, we treat Toeplitz
plus Hankel operators with piecewise almost periodic matrix functions, and also Toeplitz
plus Hankel operators with symbols having n points of standard almost periodic discon-
tinuities (SAPD). We will study these operators in the framework of L? Lebesgue and
H? Hardy spaces.

This thesis is organized as follows. In the first chapter we give the basic notation and
definitions of the main objects under study: Wiener-Hopf, Hankel and Toeplitz operators.
The main (here used) concepts from Operator Theory (such as kernel and cokernel, Fred-
holm index, adjoint operator etc.) are also stated in the first chapter. Moreover, certain
equivalence relations between bounded linear operators are defined and some key relations
between Wiener-Hopf-Hankel and Toeplitz-Hankel operators are exhibited. The main op-
erator relations which we will use throughout this thesis will be the so-called A-relation
after extension (introduced by Castro and Speck [20]) and the equivalence relation after
extension. Furthermore, in the end of the first chapter we give a necessary condition for
Wiener-Hopf (Toeplitz) plus/minus Hankel operators with essentially bounded symbols

to be a Fredholm operator.

Chapter 2 concerns the Fourier symbols of the operators under study. This chapter
has an introductory nature and starts with the consideration of the algebra of Bohr almost
periodic functions (AP). Next, some basic properties and the main characteristics of such
functions are given. Then, we will pass to the algebras of semi-almost periodic functions
(SAP) and piecewise almost periodic functions (PAP). We will present a formula (Sara-
son [68]) which allows us to decompose in a more convenient way the functions from the
algebra SAP or PAP. Further, unitary and sectorial symbols will be defined and also
the classical results involving such functions will be stated. Moreover, the notion of stan-
dard almost periodic discontinuity will be given for functions defined on the unit circle
of the complex plane. Associated with such type of functions we provide descriptions of
the so-called model function, of the class ¢ and a certain real functional oy, [37] will be
presented as well. At the end of this chapter we define the Besicovitch space, and present

the basic properties of this space.

xiil



In Chapter 3 we study Wiener-Hopf plus Hankel operators with symbols from the
algebra of matrix almost periodic functions. To deduce one-sided or two-sided invertibil-
ity theory for Wiener-Hopf plus Hankel operators with AP matrix symbols we start by
considering the Wiener subclass APW of AP. For matrices in APW we introduce the
notion of APW asymmetric factorization by following the known scalar case for AP func-
tions (cf. [59] and [60]). Depending on that factorization we give sufficient conditions for
one-sided and two-sided invertibility of the Wiener-Hopf plus Hankel operators with ma-
trix APW symbols. Moreover, for such kind of operators we will exhibit the generalized
inverses for all the possible cases. The case of Wiener-Hopf plus Hankel operators with
matrix symbols in the AP class can be treated in an analogous way as the case of the
APW class. The difference occurs only in the uniqueness of the asymmetric factorizations
with AP functions. The corresponding theorem for the uniqueness of the AP asymmetric
factorization is given at the end of Chapter 3. We point out that the theory of asymmet-
ric factorization in the Banach algebras with factorization property in connection with
Toeplitz-Hankel operators was considered in a detailed way in the Habilitation thesis of

Ehrhardt [38].

In Chapter 4 we treat the Wiener-Hopf-Hankel operators with matrix SAP symbols.
Conditions for the Fredholm property of such kind of operators are developed. Under
such conditions, a formula for the sum of the Fredholm indices of the Wiener-Hopf plus
Hankel and Wiener-Hopf minus Hankel operators is derived. To achieve such results we
will need the right AP factorization of matrix functions and the A-relation after extension.
In fact, here the A-relation after extension is a key tool to obtain the above mentioned
results. To achieve a stronger version of the Fredholm property we will make use of the
generalized right AP factorization. Obviously, the stronger version of the index formula
will be given upon assuming the corresponding Fredholm property. In this situation we
follow a standard strategy. Namely, in a first instance we give only an index formula for
Wiener-Hopf plus/minus Hankel operators with SAPW symbols. Then, employing an
argument based on the passage to the limit and using the fact that SAPW is dense in
SAP, we reach to the final goal of the chapter.

Xiv



Historical notes will be in order. The Toeplitz operators with symbols from the alge-
bra generated by continuous and almost periodic functions (later named as semi-almost
periodic functions class) were firstly considered by Sarason [68] (following a suggestion
by Gohberg). Sarason worked out the corresponding Fredholm theory for scalar Toeplitz
operators acting between L? Lebesgue spaces with semi-almost periodic symbols. Later
on, for L” Lebesgue spaces these results were generalized by Duduchava and Saginashvili
[35] for scalar Wiener-Hopf operators. The theory of matrix Toeplitz operators with SAP
symbols required completely different technics and methods apart to the scalar case and
this theory was mostly developed by three authors: Bottcher, Karlovich and Spitkovsky
[16]. Scalar Wiener-Hopf plus Hankel operators with SAP symbols were first consid-
ered by Nolasco and Castro [61], and in this thesis we give the results for the matrix

Wiener-Hopf-Hankel operators with SAP symbols [9].

In Chapter 5 it is discussed the Wiener-Hopf-Hankel operators with matrix PAP
symbols. Thus, this chapter generalizes the results obtained in Chapter 4. To reach to
the Fredholm property for Wiener-Hopf-Hankel operators with matrix PAP symbols we
will need to recall some results [14] and also to generalize for the matrix case the results
which were only known for the scalar case. After all this being at our disposal, we will be
able to obtain conditions for the Fredholm property and an index formula for Wiener-Hopf
plus Hankel and Wiener-Hopf minus Hankel operators. Here, as in Chapter 4, the key
ingredient is the A-relation after extension. At the final part of this chapter we derive
the stronger results, and this will be done by using the same arguments as in Chapter 4.
Namely, relying on the generalized right AP factorization and the argument of passage

to the limits.

In Chapter 6 we consider the class of Wiener-Hopf-Hankel operators with symbols
presenting some even properties (which in particular include unitary matrix functions),
and also with Fourier symbols which contain sectorial matrices. This chapter generalizes
the classical result known as Douglas-Sarason Theorem [32]| for Toeplitz operators with
sectorial and unitary symbols. The main result will be obtained by using this classical

theorem together with the A-relation after extension.
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In Chapter 7 we study scalar Wiener-Hopf plus Hankel operators with symbols from
the L*>° functions class. This is motivated by the results obtained by Basor and Ehrhardt
[3] for the Toeplitz plus Hankel operators with L symbols. The main results of this chap-
ter concern necessary and sufficient conditions for the Wiener-Hopf plus Hankel operators
with L* symbols to be Fredholm, or invertible. For the Toeplitz plus Hankel operators
Basor and Ehrhardt proposed an even asymmetric factorization with certain weights, but
apart of it, when considering Toeplitz minus Hankel operators, we need to deal with an odd
asymmetric factorization. Then using the equivalence between the Toeplitz minus Hankel
operators and the Wiener-Hopf plus Hankel operators, we will pass from the unit circle
to the real line and deduce the main results. It is worth to note that here we encounter

“unusual” weights in the form of a so-called weak odd asymmetric factorization.

In Chapter 8 we will consider scalar Toeplitz plus Hankel operators generated by
symbols which have n points of standard almost periodic discontinuities, and acting be-
tween L? Lebesgue spaces. Conditions are obtained under which these operators are
right-invertible and with infinite dimensional kernel, left-invertible and with infinite di-
mensional cokernel or simply not normally solvable. This will be done by employing a
certain real functional and looking to the resulting signs on the points of the standard
almost periodic discontinuities. First of all, we deduce those results for symbols having
three points of standard almost periodic discontinuities and then we will be able to gener-
alize the results for functions having n points of standard almost periodic discontinuities.
To obtain that conditions we will need to recall the notion of generalized factorization
with infinite index, introduced by Dybin and Grudsky [37]. To prove some parts of the
main results we will relay on the A-relation after extension, but the other parts of the
theorems also require different reasonings. Therefore, we will employ an even asymmetric
factorization and certain arguments from Complex Analysis to reach the final goal of this

chapter.

In Chapter 9 we consider Toeplitz plus Hankel operators with piecewise almost pe-
riodic matrix symbols. For such operators, a Fredholm criterion is presented. This is

obtained by using a symbol calculus approach (|4], [15]), certain auxiliary paired opera-

XV1



tors with semi-almost periodic symbols, and several equivalence after extension operator
relations. The importance of this theoretical result relays on the fact that we are able
to derive necessary and sufficient conditions for the Toeplitz plus Hankel operators with
piecewise almost periodic symbols to be Fredholm operators. Moreover, it can also be
considered as an enhancement of the results obtained in Chapter 5. At the end of this
chapter we obtain a Fredholm index formula for the matrix Toeplitz plus Hankel opera-
tors with piecewise almost periodic functions (obviously under the assumption that the
operators are Fredholm). This will be done by means of approximation, which in our case
means that in a first step we will deal with symbols from PAPW, giving the corresponding
known index formula for the operators with such type of symbols. After this, employing
certain stability properties and passing to the limit, we are able to obtain a Fredholm
index formula for matrix Toeplitz plus Hankel operators with PAP symbols.

The new results presented in this thesis are mainly based on the author’s published
or accepted for publication papers [9], [10], [11], [12], [13], and also on the submitted for
publication papers [6], [7] and [8].
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Chapter 1

Notation and introductory results

In this chapter we follow several goals. We give the basic notation, introduce the
main objects of the study, Wiener-Hopf-Hankel operators, and also the operators closely
related to them, Toeplitz-Hankel operators. The connection between the Wiener-Hopf-
Hankel operators and the Toeplitz-Hankel operators will be also given. The basic formulas
from the theory of Wiener-Hopf-Hankel (Toeplitz-Hankel) operators will be recorded, and
in the end of this chapter we state the necessary condition for the semi-Fredholm property
of such operators.

Due to the introductory nature of the present chapter, and consequent presentation
of known results, we choose only to present proofs of those results which are directly
connected with the operators under study and give an insight view of such operators. All
the other results are cited or are so general that can be found in any general book on

Functional Analysis and Operator Theory.

1.1 Lebesgue and Hardy spaces

For p =1, and p = 2, LP(R) will denote the Banach space of all Lebesgue measurable

complex-valued functions on R, for which

11l = ( / If(t)lpdt)p .

1



2 1. Notation and introductory results

By L*(R) will be denoted the Banach space of all essentially bounded and Lebesgue

measurable complex-valued functions on the real line, equipped with the norm

1|l zoe @) = esssupf{|f ()] : ¢ € R},

where esssup stands for the essential supremum.

Let I" be a closed rectifiable Jordan curve in the complex plane C. The interior of this
curve will be denoted by Dj, and the exterior by Dy . Further, 'y will stand for the unit
circle in the complex plane and in this case we will simply write D* in the place of Dljfo.

The Lebesgue spaces LP(I'y) (p = 1,2,00) and also LP(X) (X being an open subset
of R, T'y, or being an arbitrary rectifiable Jordan curve on the complex plane) are defined
analogously to the spaces LP(R). Further L% (R) will denote the subspace of L(R) formed
by all the functions supported in the closure of Ry := (0,400) and R_ := (—00,0),
respectively.

Let us now introduce the spaces which were first studied by Hardy. He considered
the spaces of functions which are analytic and bounded inside the closed unit disk of the
complex plain. However our approach will be different that of Hardy.

Let C_.:=={2€ C:Qmz <0} and C; := {z € C: Smz > 0}. As usual, let us
denote by H*(C..) the set of all bounded and analytic functions in C.. Fatou’s Theorem
ensures that functions in H*°(C.) have non-tangential limits on R almost everywhere.
Thus, let H(R) be the set of all functions in L>°(R) that are non-tangential limits of
elements in H*°(C.). Moreover, it is well-known that H*(R) are closed subalgebras of
L>®(R).

Let p =1 or p = 2. The set of all functions f which are analytic in C. and satisfy

sup / |f(z +iy)|Pder < 0o
R

+y>0

is denoted by H?(C.). Employing again a theorem by Fatou we can ensure that functions
in H?(C4) have non-tangential limits almost everywhere on R. For the set of corresponding

boundary functions we use the notation HY (R).
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The formulas obtained by Paley and Wiener tells us that the spaces H2 (R) and L3 (R)

are isometrically isomorphic. Indeed:
H2(R)=FL2(R), H:(R)=FL>(R), (1.1.1)

where F stands for the Fourier transform (see the definition below), and hence we have
the desired isometrical identification.

We also need the analogues of the above introduced spaces for the unit circle. Let us
denote by H*>(ID*) the space of all bounded and analytic functions in D*. In case p = 1
or p =2 we let H?(D") denote the set of all functions ¢ which are analytic in Dt and
satisfy

2m
sup / |p(re™)|Pd < oo ,
0

re(0,1)

and HP(D~) will stand for the functions ¢(z) (2 € D™) for which ¢(27') is a function
in H?(DT). Again by a theorem of Fatou, functions in H?(D¥) (p = 1,2, 00) have non-
tangential limits almost everywhere on I'g. We set HE (I'y) for the functions which can be
represented as non-tangential limits of functions from HP(D*).

Consider a function f given on the unit circle: f : 'y — C. By the notation fwe
mean the following new function: f(t) := f(¢t™!), t € [y. As usual, on the unit circle T,
we say that a function f is even if ]?: f and f is said to be an odd function if f: —f.

For a Banach algebra B, BY will stand for the vectors with N components, and
BNxM

will be the matrices with N rows and M columns. Moreover in our notation GB

will stand for the group of all invertible elements from the Banach algebra B.

1.2 Fredholm, semi-Fredholm and compact operators

Let X and Y be Banach spaces. By £(X,Y’) we denote the Banach space of all linear
bounded operators acting from X into Y. In the case X =Y we simply write £(X).
In this thesis we are using the name of reqularity properties of a linear operator acting

between the Banach spaces for those properties which arise from a direct influence of the
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kernel and the image of those operators. In more detail, let T € £(X,Y), where X and

Y are the Banach spaces, and consider the following set:
KerT':'={r € X : Tx =0} .

We will refer to it as a kernel of the operator T. The following set is called the image

(range) of the operator T" and it is defined as follows:
ImT :={Tx:z€ X} .

In case that ImT is closed we call operator T' to be normally solvable. Let us observe that
KerT and ImT are linear subspaces of X, and that KerT is always closed.

Assume that Im T is closed (i.e. T is normally solvable), and let us consider the
cokernel of T to be defined by the quotient CokerT := Y/Im7T. We will recall the
numbers, referred as the defect numbers (infinite case is not excluded) of the operator,

which are defined by the following formulas:
n(T) := dim KerT,
and
d(T) := dim CokerT" .

A normally solvable operator T is called Fredholm if both n(T") and d(T") are finite. In
this case the Fredholm index of the operator 7T is defined to be the finite number:

Ind7T := n(T) — d(T) .

A normally solvable operator T' is said to be (properly) n-normal if n(T) < oo (and
d(T) = o0) and (properly) d-normal if d(T') < oo (and n(7T) = oo). The operators which
belong to the set of operators which are Fredholm, n- or d-normal we will call them semi-
Fredholm operators, and the operators which belong to the set of operators which are
properly n- or d-normal we call them properly semi-Fredholm operators.

Additionally, we say that T"is left-invertible or right-invertible if there exist 7,” : ¥ —
X orT” :Y — X such that T,T = Ix or TT” = Iy, respectively. As usual, in the
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case when both 7, and 7, exist the operator T is said to be two-sided invertible (or
invertible). Alternatively, it can be shown that T is left-invertible if and only if T is
injective and normally solvable. In the same way, T is right-invertible if and only if T is

normally solvable and surjective.

DEFINITION 1.2.1. Let X and Y be Hilbert spaces and let T € L(X,Y). Then T is

said to be a finite rank operator if the range of T (i.e., ImT ) has a finite dimension.

It is known (cf., e.g., [31]) that the set of all finite rank operators acting on a Hilbert
space X, which we will denote by LF(X), is a minimal two-sided ideal of the space L£(X).

DEFINITION 1.2.2. Let X and Y be Hilbert spaces and let T € L(X,Y). Then T is
said to be a compact operator if the image of any bounded subset of X is relatively compact

mY.

The set of all compact operators acting between Hilbert spaces X and Y will be de-
noted by K(X,Y). It is also a known fact that the norm closure of all finite rank operators
acting between the Hilbert spaces coincide with the class of all compact operators (cf.,
e.g., [31]). Let us observe that K(X) is a closed two-sided ideal of £(X), where IC(X)
stands for the compact operators acting between the Hilbert space X (c.f., e.g., [31]).

The next proposition allows us to give a definition of an adjoint operator.

PROPOSITION 1.2.3. (cf., e.g., [31]) Let T € L(X), where X is a Hilbert space.
Then there exist a unique operator S € L(X), such that

(Tf,9)=(f,S9),

where f and g belong to X, and (-,-) denotes the inner product in X.

DEFINITION 1.2.4. Let T € L(X), where X is a Hilbert space. The adjoint operator
of T, denoted T*, is the unique operator on X satisfying (T'f,qg) = (f,T*g) for all f and

g in X.
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THEOREM 1.2.5. (¢f., e.g., [1}]) Let T* be the adjoint operator of T € L(X), where
X is a Hilbert space. Then, T is normally solvable if and only if T* is normally solvable.
Moreover, T is a Fredholm operator if and only if T* is a Fredholm operator. If T 1is
n-normal, then T* is d-normal, and if T is d-normal, then T™ is n-normal. Furthermore,

the following equalities hold:
n(T*) =d(T), d(T*)=n(T), IndT*=-IndT.

THEOREM 1.2.6. (cf., e.g., [14]) Let T € L(X), where X is a Banach space. If T is a
Fredholm (resp. m-normal, d-normal) operator and K is a compact operator, then T + K

is Fredholm (resp. m-normal, d-normal) operator and Ind(T + K) = IndT.

THEOREM 1.2.7. (Atkinson) If T and S are Fredholm or n-normal (resp. d-normal)
operators acting between the Banach spaces, then T'S is Fredholm or n-normal (resp.

d-normal) operator and IndT'S = IndT" + IndS.

We would like to give the notion of the spectrum and the essential spectrum of the

operators, and to describe some elementary properties of them.

DEFINITION 1.2.8. Let B be a Banach algebra with identity I and f € B. We define
spectrum of f with respect to B to be the set

spplf] = {A€C: f— A ¢GBY,
and the resolvent set of f to be the set
pB(f) = C\spp[f] .
The spectral radius is the following real number
rp(f) = sup{[Al : A € spp[f]} -

In some cases we will use the brief notation sp[f] instead of spg[f]. In the same way we
will simplify the notation for the spectral radius and for the resolvent set. The fact that for

a given Banach algebra B (over the complex field) the set sp[f], with f € B, is nonempty
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and compact is well-known (cf., e.g., [31]). Moreover we have that rg(f) < ||f||5. In case
B = L*(R) the spectrum of f € L>(R) is called the essential range of f and is denoted
by R(f). Hence, by the definition we have:

R(f) = spremlfl ={A € C: f = AZGLT([R)} .

Consider T' € L(X), where X is a Banach space. The spectrum of a bounded linear

operator 1" is defined analogously as above:
splT]:={ e C:T—-ANx &GL(X)}.

In addition, the essential spectrum of a linear and bounded operator T is defined in the

following way:
spegs| 1] := {X € C: T — A x is not a Fredholm operator} .

It is readily seen that spess[T] C sp[T].

1.3 Relations between operators

To study certain linear bounded operators, very frequently we need to transfer prop-
erties from one operator to another somehow equivalent operator. We will recall several
kinds of notions of operator equivalence. Let T" € £(X;,Y;) and S € L(X5,Y3) where X 5
and Y o are Banach spaces. We say that 7" and .S are equivalent operators if there exist
invertible operators E € L(Y3,Y]) and F € L(X;, X3), such that the following equality
holds:

T =FESF .

In addition, if we have an equality 7 = ESE~! we say that 7" and S are unitarily
equivalent operators. It is clear that if 7" and S are equivalent operators, then they enjoy
the same regularity properties. More precisely, if one of these operators is two-sided
invertible, one-sided invertible, Fredholm, (properly) n-normal, (properly) d-normal or

normally solvable, then the other one also has exactly the same property.
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Another kind of the equivalence relation between linear bounded operators is the
notion of equivalence after extension. We say that T" and S are equivalent operators after
extension, if there exist Banach spaces Z; and Zs, such that T'@® Iz, and S @ Iz, are
equivalent operators. Here @ denotes the direct sum and Iz and Iz, are the identity
operators on Z; and Z, spaces, respectively. In this case we also have that 7" and S enjoy
the same regularity properties.

Further, we will use the notion of A-relation after extension introduced by Castro
and Speck in [20] for bounded linear operators acting between Banach spaces, e.g. T :
Xy — Xoand S : Y] — Y,. We say that T is A-related after extension to S (and use
the abbreviation 7' ﬁ S) if there is an auxiliary bounded linear operator acting between

Banach spaces Th : Xia — Xaa, and bounded invertible operators £ and F' such that

T 0 S 0
=F F, (1.3.1)
0 Ta 0 Iz
where Z is an additional Banach space and [ represents the identity operator in Z. In
the particular case where Th = Ix, : Xia — Xoa = Xja is the identity operator, we
arrive at the above introduced notion of equivalent after extension operators.

The A-relation after extension allows us to transfer regularity properties between the
bounded linear operators 7" and S only in one direction, namely from the operator S to
the operator T. This means that if 7" is A-related after extension with S, then T" belongs
to the same regularity class as S does, but not in the other direction from the operator
T to the operator S. The reason for this is based on the operator Th appearing in the
equality (1.3.1). There are many counterexamples, which show that e.g. it is possible that
T is an invertible operator, but T}z is not normally solvable, and in this case we have that
S is not a normally solvable operator. Hence we have that 7" is an invertible and S is not
a normally solvable operator, thus 7" and S do not enjoy the same regularity properties.

We would like to observe that A-relations after extension are transitive [20, Example
1.6]:

Ty AS

: VAT, .
S AT,
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This property is important due to the reason that the equivalence after extension is a
particular case of the A-relation after extension. This means that if we have T} A S and
S is equivalent after extension with 75, then Tj 3 T5. We will use these facts to obtain
important equivalence relations between the Wiener-Hopf-Hankel and pure Wiener-Hopf

operators (cf. subsequent sections).

1.4 Wiener-Hopf-Hankel operators

In this section we introduce the main objects of our study: Wiener-Hopf-Hankel oper-
ators. These operators naturally arise in a variety of Mathematical Physics applications,
in Probability Theory, Control Theory, etc. The Hankel operators were first studied in
the middle of the 19th century, and the Wiener-Hopf operators came out in the 30s of
20th century. After that, enormous effort was made to describe the regularity properties
of such type of operators cf., e.g., the works [3], [14], [16], [18], [20], [22], [26], [27], [30],
[32], [34], [35], [37], [38], [40], [41], [42], [47], [54], [56], |64], [66] and the references therein.
Therefore, much is known about these kind of operators, and even more remains to be
known.

The Fourier transformation F, acting between the Lebesgue spaces L%(R), is given

in the next formula:
(FH@) = —= [ fedt, R
T) = —— e , T ,
21 Jr
and for the inverse we have:
(F7'H(t) = L / f(x)e ™ dz, teR.
V21 Jr

In a formal way the convolution operator W (which we will consider in the case when it

is acting between L?*(R) Hilbert spaces) is given by the following formula:

(W2 f)(x) = /Rk(m —)f(t)dt, zrER.

The function k is called the convolution kernel of the operator 1W).
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Using the Fourier transformation the convolution operator can be formally given by

the next formula:
WP = F'kF,

where k denotes the Fourier transform of the convolution kernel k.

A relevant class of convolution type operators (both from the theoretical and applied
points of views) is constituted by the Wiener-Hopf-Hankel operators. Under the term
Wiener-Hopf-Hankel we mean both Wiener-Hopf plus Hankel and Wiener-Hopf minus
Hankel operators.

The Wiener-Hopf operators received their name due to the pioneering work of Wiener

and Hopf [73] about the study of integral equations of the form

eo(x) + / " k@ - y)ely)dy = f(z), @ €R.,

for an unknown ¢ from L*(R,) where f € L*(R,) is arbitrarily given, and ¢ € C and
k € L'(R) are fixed and known. Indeed, from these Wiener-Hopf equations arise the

(classical) Wiener-Hopf operators defined by

Wofe)=cf@) + [ ko —)f)dy . aeRe, (1.4.1)

where ¢ belongs to the Wiener algebra W := {¢ : ¢ = ¢+ Fk,c € C, k € L'(R)}
(which is a Banach algebra when endowed with the norm |c + Fk|w = |c| + ||k|l . )
and the usual multiplication operation). Having in mind the convolution operation, the
definition of W in (1.4.1) gives rise to an understanding of the Wiener-Hopf operators as

convolution type operators. Therefore, they can also be represented as
Wy=r,.F'¢-F : L2(R) — L*(R,), (1.4.2)

where 7 is the restriction operator from L?(R) into L?*(R, ). Here ¢ is a so-called Fourier
symbol of the Wiener-Hopf operator (and from now on we will be briefly refereing to it
as a symbol).

Looking now to the structure of the operators in (1.4.2), we recognize that the map

W W — L(LL(R), L (Ry)), ¢ — W,
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can be extended from W by continuity to larger algebras, and namely to L>(R).
Within the context of (1.4.1), the Hankel integral operators H have the form

i) - [ e+ fidy , TeR, (1.4.3)

(for some k € L'(R)). It is well-known that H, as an operator defined between L?(R)
spaces, is a compact operator. However, exactly for the same reasons as above, it is also
possible to provide a rigorous meaning to the expression (1.4.3) when the kernel k is a
temperate distribution whose Fourier transform belongs to L>*(R). Now we can rewrite

the Hankel operator in another way using the convolution:
Hy=r F'¢-FJ : LL(R) — L*(R;), (1.4.4)

where J is a so-called reflection operator acting by the rule

(Jf)(@) = f(x) = f(-=x), zeR.

Again we will refer to ¢ as the symbol of the Hankel operator.

Although during a long period of time the operators of type (1.4.1) and type (1.4.3)
were studied separately, in the last years integral equations governed by algebraic sums of
Wiener-Hopf and Hankel operators have been receiving increasing attention (cf. [11], [13],
[22], [24], [29], [39], [45], [49], [50], [54], [60], [61], [62], [71]). A great part of the interest
is directly originated by concrete mathematical-physics applications where Wiener-Hopf
plus Hankel operators appear. This is the case of problems in wave diffraction phenomena
which are modeled by boundary-transmission value problems that can be equivalently
translated into systems of integral equations characterized by such kind of operators
(see, e.g., [23], [25], [26]). Moreover, crack problems considered in the book [34] lead
to equations with fixed singularities on finite intervals, which give rise to finite interval
Hankel operators.

Considering now @ to be a matrix function in the formulas (1.4.2) and (1.4.4), we will
have that the Wiener-Hopf plus Hankel operator with symbol ® € [L*°(R)]™*" is given

by the formula

We + Hp =1 F 10 ]:(I[Li(R)]N +J) [Li(R)]N — [L2(R)IY .
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To denote the Wiener-Hopf plus Hankel operators with (matrix) symbol ® we will use
the notation W Hg.

As for the Wiener-Hopf minus Hankel operators we have the formula:
Wo — Ho = F 10 - F(Ijpz gy — J) = [LAR)Y — [L2(R)Y .

Let us observe that [j;2 gy~ + J Is an even extension operator acting from [L2(R )Y
into [L?(R)]" and g2 myyy — J is an odd extension operator acting between the just
mentioned spaces. We denote these operators by ¢¢ and ¢°, respectively. So, we can
rewrite the Wiener-Hopf plus/minus Hankel operators with symbol ® in the following

form:
WHe =7, F '@ Ft : [L*(R)]N — [LA(R)]Y, (1.4.5)
and
We — Ho =1 F 10 - Ft° o [LA(R)]Y — [LAR)Y, (1.4.6)

respectively. From the formulas (1.4.5) and (1.4.6) we find out that the Wiener-Hopf-
Hankel operators are nothing but convolution type operators with symmetry (cf., e.g.,
[24], [55]).

We will need the formula (1.4.5) in an equivalent form, and it is given by

WHy =7, F ' - Fter, : [LZR)Y — [LX(R))V . (1.4.7)

1.5 Toeplitz-Hankel operators

Toeplitz operators may be viewed as operators acting between [H2 (I'g)]" spaces, and
which are closely related to the theory of Wiener-Hopf operators acting between Lebesgue
spaces on the real line. We start by presenting some additional definitions which will be
used to present the Toeplitz operators in a formal way.

Consider Cauchy singular integral operator Sg acting between [L?(R)]" spaces by the

formula:

1
i MdT, tG]R,
T Jp T —1

(SRf)(t) =
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where the integral is understood in the principal value sense. It is well-known that S2 =

T2y~ , and therefore it induces two complementary (Riesz) projections, namely:

_I—i—SR I — 5

P . =
R 9 ) Q]R 9

The Cauchy singular integral operator and the Riesz projections are defined in a
similar way for the unit circle, and we will denote them by Sr,, Pr, and Qr,, respectively.

Consider the following image spaces: Pr,([L*(To)]") =: [L%(T)]" and Qr, ([L*(To)]Y)
=: [L?(T)]". The Hardy spaces [H3(To)]" can be isometrically identified with the above
introduced spaces [L% (I')]"¥. In fact, the “plus” spaces coincide and for the “minus” spaces
we have an equality: [H2(Tg)]Y = [L%(To)]Y @& CV. Here @ stands for the direct sum of
the spaces.

Let ® € [L>=(T)]"*N. The Toeplitz operator acting between [L2 (T)]"¥ spaces is

given by
Te := Pr,®I : [L2 (T)]Y — [L2(To)]Y , (1.5.1)

where ® is called the symbol of the operator and I stands for the identity operator.

Let us also give the discrete analogue of the Toeplitz operators. Let ® € [L>°(T)]¥*¥.

For the Fourier coefficients of ®, we will denote them by ®;, € CV*V we have the formula:
1 [2

b = —
k27ro

d(eMye ™Mdt, keZ.

The discrete Toeplitz operators are acting between the spaces ¢*(Z,C"), where this
space is the CN-valued £? space over Z, := {0,1,2,...}. We would like to recall that the
(* space over Z, is a space of all infinite sequences {z;}72, such that Y p  |z/* < oo.

The operator induced by the matrix

Dy D, D,
b, By P,
D, B

(1.5.2)
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and acting between (?(Z, , C") spaces is called the discrete Toeplitz operator with symbol
. If we look more carefully to the matrix (1.5.2) we see that the entries in the main
diagonal and parallel to it are constant. Therefore we have a one-to-one correspondence
between the discrete Toeplitz operators and matrices given by the formula (1.5.2). The
origins of such a matrices goes back to the early work of Toeplitz [72] where he investigated
finite matrices which are constant on diagonals and the relation of such kind of matrices
with the corresponding one- and two-sided infinite limit matrices.

The studies of Toeplitz operators and Wiener-Hopf operators had parallel develop-
ments until Rosenblum [67]| using certain polynomials proved that those operators are
equivalent. A little bit later Devinatz [30] showed that the canonical conformal mapping
of the unit disk onto the upper half-plane gives the equivalence between Toeplitz operators
and the Fourier transform of Wiener-Hopf operators.

The analogue of the Hankel operator for the unit circle is defined by
He = PFOCI)JFO : [Li(ro)]N - [Li(ro)]N )
where Jp, is a Carleman shift operator which acts by the rule:
1 1
(Jrof)(t) = ;f 7] tE Lo.

As above we give the discrete analogue of the Hankel operators acting between ¢*(Z,, CY)
spaces. Let ® € [L>®(T)]V*N and &, € CV*¥ be the Fourier coefficients of ®. Then the

operator induced by the matrix

(1.5.3)

is called the discrete Hankel operator with symbol ®. Contrary to the Toeplitz matrix
here we have that the entries parallel to minor diagonal are constant and that the matrix
(1.5.3) is an upside-down Toeplitz matrix. The finite Hankel matrix first appeared in the
PhD thesis of Hankel [44].
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The Toeplitz plus Hankel operator with symbol ® will be denoted by T'Hg, and has

the form
THe = Pry®(1 + Jr,) : [L3(To)]Y — [L2(To)]" .

In an analogous way is defined the Toeplitz plus Hankel operator with symbol ® &
[L>°(R)]V*Y acting between the Hardy spaces [H2 (R)]V (cf., e.g., [14] or [18]). Le.,

THy = Pr®(I +J) : [HX(R)]Y — [HZ(R)V . (1.5.4)

1.6 Basic formulas

In this section we give the basic formulas for the Wiener-Hopf-Hankel operators in

view of the factorization theory of such an operators. Let ¢y denote the zero extension

operator from the space [L*(R)]™ onto the space [L2 (R)]" :

bo: [LRY]Y — [LLR)Y

The canonical projection P, acting from the space [L*(R)]" onto the space [L3 (R)]" and
also the complementary projection of it P_ acting from [L*(R)]" onto [L2 (R)}" will be

useful to obtain certain results. It is clear that the following equality holds:
Py = lory : [PR)Y — [L2(R)] .

The next proposition gives two basic formulas from the theory of Wiener-Hopf-Hankel

operators.

PROPOSITION 1.6.1. (cf., e.q., [14]) Let ®, ¥ € [L>°(R)]N*N. Then

Wq;q/ == chgow\p + Hq:.goH@ 5 (161)
Hq>\1; = W@éoH\I} —|— H¢€0W@ .

Proof. Observe that

[[LQ(R)]N - PJF + P, .
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Moreover, by definition J? = I and P37 = P.. Hence we have:
lipeyyy =Py +P-JJP_ .
Taking into account that
P_J=JPy, JP_=P.J,
we have that
ey =Py + JPyPLJ =Py +JPJ.
Now the direct computation provides that

Woy = rF H(OV) - F=r,F '® FF'U.F
= 1 FO - F(PL+ JPL)F U F
= 1 FOFPLF N F 4, F O FIPLJF - F
= 1 F Flor FYU - F 40, FO - Fllgr, F~'0 - FJ

— W@éoW\p + H@EQH@ 5
and also

Hoy = ryF Q) -FJ=r,F '@ - FF 'V -FJ
= 1, F'O-F(PL+JPLJ)F U -FJ
= 1 Flo - FPF N FI 4 FO - FIPLJF N F
= W FO - Flor  F Y- FJ+r, F 0 FJlogr F U - F

= WaloHy + HoloWe ,

Adding the equalities (1.6.2) and (1.6.3) one obtains:

W Hoy = WaloW Hy + HoloW Hg .

(1.6.2)

(1.6.3)

(1.6.4)
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From the last formula it directly follows the following equality:
WHey = WHeloWHy + HolgWHg_, . (1.6.5)
Indeed from (1.6.4) we have that

WHey = WelgWHy + HeloW Hy + HQKOWHQ — HelgW Hy
= WHal(WHy + H@g()WH@i\P .

We will now deduce two formulas which will be useful for our future goals.
PROPOSITION 1.6.2. (cf., e.g., [14])

1. If® e [HX(R)V*N then Hy =0

2. If ® € [HX(R)|M*N, then Hg = 0

Proof. We will prove only the first part of the proposition, since the second part goes
analogously to the first part. Let us recall that Hy = r  F '@ - FJ : [LA(R)]Y —
[L2(Ry)]N. So, assume that @ € [H®(R)]™*¥, and take a function f € [L2(R)]".
Then Jf € [L?(R)]Y and using the Paley-Wiener formula (cf. (1.1.1)) we conclude
that FJf € [H*(R)]". The multiplication by [H*°(R)]"*¥ functions leaves the space
[H%(R)]" invariant, and we get that ®FJf € [H2(R)]". Acting with the inverse of the
Fourier transformation and using once again the Paley-Wiener formula one obtains that
FroFJf € [L2(R)]N. We are left to observe that the restriction operator gives now the

zero function on the space [L?(R,)]". Hence Hy = 0. O

The last proposition gives hint how to construct a factorization of matrix functions

which allows to factorize corresponding Wiener-Hopf operators.

THEOREM 1.6.3. (cf, e.g., [14]) Let ®; € [HX(R)N*N and ¥ € [L®(R)]V*N. We

have the following factorization

W<I>,\II<I>+ = VV<I>,é()VV\IIEOVVQMr .
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Proof. Follows directly from formula (1.6.2) and the previous proposition. O]

The importance of the last theorem is that the Wiener-Hopf operator with symbol
® = & VP, where d. € G[HP(R)|V*N is equivalent with the Wiener-Hopf opera-
tor with symbol W, due to the reason that Wg, are invertible operators, inverse being
loWy-1ly, since £y : [L2(R1)]Y — [LE(R)]" is also an invertible operator with inverse
being r; : [LA(R)]Y — [L*(R4)]". Our aim is to obtain a similar factorization for-
mula for the Wiener-Hopf-Hankel operators. Looking to the formula (1.6.5) we under-
stand that we will have the above mentioned factorization if we have ® = ®_®., where
d_ € [H*R)V*N and ®, € [L®(R)]VV is an even function, i.e., ®, = ®,. Consequently,
if € [H®(R)]V*N or &, € [L®(R)]V*N and &, = ®, we have a formula:

WHy_ o, = WHg_lgW Hg, .

THEOREM 1.6.4. (cf., e.g., [59]) Let ®,¥,0 € [L>®(R)|V*N. If & € [H*(R)|V*N and

O = (:3, then we have the factorization:
W Hage = WaloW HylyW He . (1.6.6)
Proof. Using formula (1.6.5) and recalling that He = 0 if ® € [H>(R)]™*" we will have
WHeye = WHalgW Hye = WelgW Hyg .

Now relaying on the fact that © is an even function and once again using the formula

(1.6.5) we will have that
WHye = WHgl\WHg .
Combining the last two equalities gives us the assertion:
W Hege = WeloW HylgW Hg .
O

Altogether we are ready to totally describe the Wiener-Hopf plus Hankel operators

with even symbols.
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THEOREM 1.6.5. (cf., e.g., [38]) Let ®. € G[L>®(R)|*N and ®. is even. Then W Hg,

1s invertible with inverse being the following operator:
(W Hyaly : (LR )] — [L2(R)]
Proof. Clearly we have that
WHg g-1lo = WHiy, lo =1Ly = Ijp2 myv -
Using the fact that inverse of even function is itself even, we obtain from (1.6.5) that
WHg g1 =WHg (oWHg-1 .
Multiplying both sides of the last equality by the invertible operator ¢, one obtains:
WHg, g-1lo = WHe loW Hy -1l = I 12 myv -
Similarly we will have that
bW Hg-1lgW Ho, = Ijp2 gy~ -

Hence we have explicitly shown that W Hg, is invertible and the inverse is given by the

formula:
(W Hya o [L2(RL))Y — (L2 ()]
O]

Let us emphasize that similar (invertibility) results hold for Wiener-Hopf minus Han-
kel operators, and also for Toeplitz plus/minus Hankel operators. In the formulas for
Toeplitz-Hankel operators (on the unit circle) the function fmust be understood as the

function f(¢7!). For example, the analogue of the formula (1.6.5) will have a form:
THey =THeTHy + HeTHg_ ,

where W(t) = W(¢t1).
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1.7 Relation between convolution type operators

In this section we are going to deduce some equivalence relations between Wiener-
Hopf-Hankel and pure Wiener-Hopf operators using the A-relation after extension, re-
called in Section 1.3. Let us start with the Gohberg-Krupnik-Litvinchuk identity, which

has the form:

11 1 T+SJ 0 I J T S
207 —J 0 T-8J I —J JSJ JTJ

where T, S € L(L*(R)).
Employing the above identity and the methods presented in the paper [20] we can
state that the following equality holds:

W Hy 0 Wee 1 0
(Dg =) —F F, (1.7.1)
0 We — He 0 ][LQ(R+)]NXN

where @ € G[L®(R)]M*N and F and F are certain linear bounded invertible operators,

which can be computed explicitly (cf., e.g., [20], [58]).

We list the most important consequences of the last identity:

(i) If Wyg_1 is two-sided invertible, one-sided invertible, Fredholm, (properly) n-normal,
(properly) d-normal or normally solvable, then the same happens with W Hg and

We — Ho.
(ii) dimKerWyg_, = dim KerWW Hg + dim Ker(We — Hsg).
(iii) dim CokerWgg_, = dim CokerW Hg + dim Coker(Ws — Hg).
(iv) IndWyg_, = IndW Hy + Ind(We — Hy).

For the Toeplitz-Hankel operators (on the unit circle) a similar identity as (1.7.1) takes
place (with ®(¢) = ®(¢7)) and therefore the propositions (i)—(iv) are still in force for
these operators.

We stress that it is possible that W Hg (T'Hg) enjoys some regularity property, but

Wee-1 (Tpe-1) does not have the same property. This happens because of the influence
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of W — He (T — Hg) operator. It is a known fact (cf. [38]) that Wiener-Hopf (Toeplitz)
plus Hankel and Wiener-Hopf (Toeplitz) minus Hankel operators with the same symbol
may have very different properties.

We would like also to emphasize that from the formula (1.7.1) it directly follows that
Do and Wye 1 are equivalent after extension operators.

The next proposition reveals an equivalence between Toeplitz plus Hankel operators

and certain singular integral operators (cf., e.g., [1| or [38, Theorem 3.2|).

PROPOSITION 1.7.1. Let ® € [L*>°(Ty)|V*N. The following operators are equivalent

after extension:
(i) THe acting between [H2 (To)]",
(i) ®(I + Jr,)Pr, + Qr, acting between [L*(To)]N.

Proof. Recalling the definition of THg we recognize that THg acting between [H2 (I'g)]™

spaces is equivalent after extension with Pr,®(I+ Jr,)Pr, + Qr, acting between [L?(T)]Y
spaces. Directly we have that
PFOCD(I + JFO)PFO + QFO = <(I)(] + JFO)PFO + QF()) <I - QFO(I)PFO - QFoq)JFObe)'
(1.7.2)

We are left to observe that I — Qpr,®FPr, — Qr,PJr,r, is an invertible operator with
inverse being I 4+ Qr,®Pr, + Qr,PJr, Pr,. [

REMARK 1.7.2. From the proof presented in the previous proposition it is clear that if
we consider T Hg acting between the spaces [H2 (R)]"Y, then this operator will be equivalent

after extension with ®(I + J)Pg + Qg acting between [L?(R)]" spaces.

COROLLARY 1.7.3. THg acting between [H2(Lo)|N (resp. [HZ(R)]™) spaces and
O(I + Jr,)Pr, + Qr, (resp. ®(I + J)Pr + Qr) acting between [L*(To)|™ (resp. [L*(R)]V)

spaces have the same reqularity properties.

Proof. Immediately follows from the previous proposition and the remark cited after this.

]
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1.8 Certain equivalence relations

In this section we describe the equivalence relation between Wiener-Hopf-Hankel and
Toeplitz-Hankel operators. It turns out that Wiener-Hopf plus Hankel operators are
equivalent with Toeplitz minus Hankel operators, and Wiener-Hopf minus Hankel opera-
tors are equivalent with Toeplitz plus Hankel operators. We will give full proofs of these
facts.

First of all we will describe the auxiliary operators which will be needed to obtain
that equivalences. Denote by L(®) the multiplication operator by ®. Hence we can write

Toeplitz and Hankel operators acting between [H? (T'g)]"¥ spaces in the following way:

Te = PryL(®)Pr, : [H2(To)]N — [HZ(To)]V,

Hy = PryL(®)Jr Pr, : [H(To)]Y — [H(To)]™
and for the Toeplitz plus/minus Hankel operators we have the following:
Ty + He = Pry L(®)(I + Jr,) Pr, : [H3(To)]Y — [H(To)]™ .

Let us consider the useful operator By given by

(Bo®)(t) = @ (zi +i) Ctery. (1.8.1)

Obviously By : [L®(R)|N*N — [L>®(Ty)]V*V is an isometrical isomorphism, the inverse

of which is given by the following formula:

(By'0)(z) = ¥ (x_z) , z€R.

r+1

In addition, the operator B given by

(B®)(z) = ﬂ@(x_i) , z€R,

Cr+d \z+i

is an isometrical isomorphism of [L*(I)]V*" onto [L*(R)]"*N, of [H2(To)]"*" onto

[H2(R)]V*N and of t~![H2 ()] onto [H2(R)]V*V. For the inverse of B we have:

(B~10)(t) = iﬂ\p('Ht) , teTly.

= 1
1-—1t 1—1t
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By using the “convolution” with B operators it is obtained the formula:
BL(®)B™' = (By'®)I . (1.8.2)
A straightforward computation shows that
Sg = BSy,B™', Px=BP,B™', Qr=BQr,B". (1.8.3)
The following formula is also of interest:
F'PRF =lory = Py : L*(R) — L3 (R) . (1.8.4)
THEOREM 1.8.1. Let ® € [L°(R)]V*N. Then
Wa £ Hy : [L2 ()Y — [L2(RL))
18 equivalent to
Timow) F Hipyay : [HZ (Do) — [HE (To)]™ .
Proof. Indeed, consider the operator
F'BlT(y0) F Hpow)|B~'F : [LZ(R)]N — [LA(R)]Y .
then a straightforward computation leads to

F'BlTipyey F Hpos)|B 'F =F 'B[PryL(Bo®)(I F Jr,)Pry]B~'F
= F'BP B 'FF 'BL(By®)B'FF'B(I¥FJ,)B'F

Lo LE:D) 47
F'BPyB'F
&;;— .
= loryF'O - F(I £ J)bory : [L2A(R)]Y — [L2(R)]Y . (1.8.5)

We notice that in the last identities the formulas (1.8.2), (1.8.3) and (1.8.4) were used.
In addition, it is clear that we can drop the last {yr, operator in (1.8.5) since this is just

the identity operator in [L% (R)]"Y. So ,we have that
F ' BT(pya) F Hipow))B~'F = lo[We + Ha] ,

thus we can conclude that We = Hg is equivalent with T(p,e) F H(Bys)- O
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From the proof given above it is now clear why the Wiener-Hopf plus Hankel operators
are equivalent with the Toeplitz minus Hankel operators and the Wiener-Hopf minus
Hankel operators with the Toeplitz plus Hankel operators: the main reason is that in the

present situation the operator J is equivalent with —.Jp,.

COROLLARY 1.8.2. Let ® € [L°(R)|V*N. Then Wg + Hg and Tp,e F Hp,o have the

same reqularity properties.

Proof. The proof is a direct consequence of the last theorem. O

1.9 Necessary conditions for the semi-Fredholm prop-

erty

In this section we show that if the Wiener-Hopf plus Hankel operator is semi-Fredholm
then its symbol necessarily needs to be invertible. Although the proof of this result
appears in several sources (cf., e.g., [38, Proposition 2.6], [58, Theorem 1.4.1|) for the

readers convenience we will reproduce here the full proof.

REMARK 1.9.1. In the proof of the next theorem we will make use of the following
known fact about n-normal operators (cf., e.g., [52, Lemma 2.1] or [57, Lemma 2.1]): If
(for a Banach space X) T' € £(X) is an n-normal operator, then there exists a compact
operator K € K(X) (which can be chosen as a projection onto the space KerT') and a

number § > 0 such that
[ Tx|| + || Kz[| = é||z|], =€ X.

THEOREM 1.9.2. Let ® € [L®(R)|V*N. If WHg is semi-Fredholm operator, then
® € G[L°(R)|V*N,

Proof. Assume that W Hg is an n-normal operator. From the equivalence relation (cf.

Section 1.8) we obtain that Tp,¢ — Hp,e is also an n-normal operator. From the previous
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remark we know that there exist a compact operator K which is a projection onto the

Ker(Tp,e — Hp,o) and a positive number § > 0 such that

(Toe — Hpoo) fllim2 royy + [ f lim2 oy = 11 iz ooy

for all f € [H%(Ty)|". Making the substitution of P, f instead of f allows us to obtain

the following inequality:
Ol flliza@ony = ollUiz2@oyy = Pro) fllizzwory - < (o0 — Hpga) fll 2oy
K Pro f|liz2 oy~
for all f € [L*(To)]". Let us now introduce the isometries
U™ [L2(To)]™ — [LX(To)]Y, U™ f(t) =t"f(t)
where n € Z. Replacing f by U™ f in the last inequality one obtains:
(Tsoe — Hpoo)U" flli2woyy + [ PrU™ fliz2 oy~
+ Ol[(Lizzwoyy — Pro)U" fllirzwony = 01U flliz2 oy
for all f € [L*(Ty)]". Having in mind that U*" are isometries, it follows that
U™ (Tgye — Hpoa)U" flliz2 oy + 1K ProU" flliz20oy v
U L i2oyy — Pro) U fllizzwoyy = 0l f |l iz2roy~ (1.9.1)
for all f € [L?(T'y)]". Since U™ — 0 weakly when n — oo on [L?(I'y)]" and using the fact
that K is a compact operator, we have

K Pr,U™ — 0 strongly on [L*(T'y)]", when n — oo . (1.9.2)

Let us consider the dense subset P of L?*(T) of all trigonometric polynomials

ifktk teTl,.

k=—n

Due to the reason that Pp, acts on P in the following way:

Pry: > [t =) fith
5=0

k=—n
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we obtain that U " Pp,U" f converges in L?(Ty) to f, for all f € P. Thus by the continuity

we can guaranty that
U™"Pp,U" = Ijpa(rgy~ strongly on [L*(T')]™, when n — oo . (1.9.3)
In a similar way we will have that
U™"Pp,U™" — 0 strongly on [L*(I'g)]", when n — oo . (1.9.4)

Recalling the identities U"U™" = 2y~ and Jp,U" = U™"Jp, provides us to the

equalities:

U™"Tg,aU" = (U " Pr,U")(By®)(U " Pr,U™) |
U™ Hp,oU" = (U Pr,U")(By®)Jp, (U™ Pr,U™) .

From (1.9.3) and (1.9.4), it follows that

U "TpoU" — (Bo®)Ijp2(ryy~ strongly on [L*(T')]", when n — oo,

U "Hp,oU" — 0strongly on [L*(Ty)]", when n — oo.
Hence
U " (Tyo — Hpyo)U™ — (Bo®)I[p2(roy~ strongly on L*(I'g), when n — co. (1.9.5)
Taking the limit in (1.9.1) when n — oo and using (1.9.2), (1.9.3) and (1.9.5), we obtain:

1(Bo®) flliz2 oy~ = Ol L2y

for every f € [L?(T'g)]". Thus By® € G[L>®(I'y)]V*¥ which means that ® € G[L>°(R)]V*V.

The d-normal case follows from the n-normal case by passage to adjoint operators. ]

Analogous results hold true for Wg — Hg operators:
THEOREM 1.9.3. Let ® € [L®(R)|MN. If Wy — Hg : [L%r(R)]N — [LAR)N is a
semi-Fredholm operator then ® € G[L>(R)]N*V.

REMARK 1.9.4. From the previous two theorems it immediately follows that if ® &
G[L>(R)|N*N then Wg + Hg : [L2(R)]Y — [L*(R;)]Y are not semi-Fredholm operators.



Chapter 2

The Fourier symbols and the

Besicovitch space

In this chapter we give the definitions of certain classes of Fourier symbols of the
Wiener-Hopf-Hankel and Toeplitz-Hankel operators, for which we develop the Fredholm
theory in the subsequent chapters. We start with complex-valued functions defined on the
real line, which is the C*-algebra of almost periodic functions (AP). Then we introduce
semi-almost periodic functions (SAP), and moreover piecewise almost periodic functions
(PAP) will be also discussed.

Further, the notion of unitary and sectorial symbols on the real line will be given.
After this we turn to the unit circle and give the definition and the important properties
of the functions having n points of standard almost periodic discontinuities.

In the end of this chapter we consider the Besicovitch space, which plays an important
role in the development of the Fredholm theory for the Wiener-Hopf-Hankel operators with
SAP and PAP Fourier symbols.

2.1 Almost periodic functions

The algebra of almost periodic functions was created by Harald Bohr (brother of the

famous physician Niels Bohr) in the 1920s. His interest was initially in finite Dirichlet

27
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series. He was considering the following elements:

noe(log n)it '

Taking a finite sum of such terms avoids difficulties of analytic continuation to the region
o < 1. Further, Mathematical Analysis was applied to discuss the closure of this set of
basic functions, in various norms. Bohr himself defined the uniformly almost periodic
functions as the closure with respect to the supremum norm in L*°(R). He proved that
this definition was equivalent to the existence of € almost periods, for all € > 0, which

means that there are translations T'(¢) = T of the variable ¢ such that
[f(E+T) = f(T)] <e.

The theory was developed using other norms by Besicovitch (to be defined as the Besi-
covitch space), Stepanov, Weyl, von Neumann, Turing, Bochner and others in the 1920s
and 1930s.

Let us also cite the definition by Bochner (1926): A function f is almost periodic if
every sequence { f(t,+T)} of translations of f has a subsequence that converges uniformly
to f for T in (—o0, +00).

Now, for our purposes we will define the class AP of almost periodic functions in the

way that was given by Bohr. A function « of the form

n

a(z) = ch exp(i);x), reR,

j=1
where \; € R and ¢; € C, is called an almost periodic polynomial. If we construct the
closure of the set of all almost periodic polynomials by using the supremum norm, we will

then obtain the AP class of almost periodic functions.

THEOREM 2.1.1. (Bohr) Suppose that p € AP and
;2£\¢(x)| >0. (2.1.1)
Then the function arg p(z) can be defined so that

arg p(z) = Ao+ () |
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where A € R and ¢ € AP.

DEFINITION 2.1.2. (Bohr mean motion) Let ¢ € AP and let the condition (2.1.1)
be satisfied. The Bohr mean motion of the function ¢ is defined to be the following real

number
1 ¢
k(p) = lim =5 arg ()|, -
The following subclasses of AP are also of interest:
APy = algpepy{en: A >0}, AP :=algiogfer: A < 0F,

where ey := €. In fact, one of the reasons why the last two algebras are very useful is
due to the fact that AP. = AP N H°(R) (cf. |14, Corollary 7.7]). The almost periodic
functions have a great amount of important and well-known properties. Among them, for

our purposes the following ones are the most relevant.

PROPOSITION 2.1.3. (¢f., e.g., [14]) Let A C (0,00) be an unbounded set and let

{Ia}aca = {(Ta;, Ya) baca

be a family of intervals I, C R such that |I,| = yo — o — 00 as @ — oo. If ¢ € AP, then
the limat

exists, is finite, and is independent of the particular choice of the family {I1,}.

DEFINITION 2.1.4. Let ¢ € AP. The number M(yp) given by Proposition 2.1.3 is

called the Bohr mean value or simply the mean value of .

In the matrix case the mean value is defined entry-wise.
We define the Wiener subalgebra of almost periodic functions in the following way:

the elements of APW are those from AP which allow a representation by an absolutely
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convergent series. In fact, APW is precisely the (proper) subclass of all functions p € AP

which can be written in an absolutely convergent series of the form:

SOZZ%‘GAja )‘jeRv Z|90j|<oo'
J J

Let Q(¢) := {A € R: M(¢e_,) # 0} be the Bohr-Fourier spectrum of 1. Consider
APW_ (APW,) to be the set of all functions ¢» € APW such that Q(v) C (—o0,0]
(2(¢)) C [0, 4+00), respectively). It is therefore clear that APW_ C AP_, and APW, C
AP,.

2.2 Semi-almost periodic and piecewise almost periodic
functions

Let C(R) (with R := R U {co}) represent the (bounded and) continuous functions ¢

on the real line for which the two limits

p(—o0) := lim @(z), @(+00):= lim ¢(z)

z——00 z—-+oo
exist and coincide. The common value of these two limits will be denoted by ¢(o0).
Furthermore, Co(R) will stand for the functions ¢ € C(R) for which ¢(c0) = 0.

We denote by PC = PC(R) the C*-algebra of all bounded piecewise continuous
functions on R, and we also put C(R) := C(R) N PC, where C(R) denote the usual
set of continuous functions on the real line. Use will be also made of the C*-algebra
PCy :={p € PC: p(£oo) = 0}.

The C*-algebra of semi-almost periodic elements is defined as follows.

DEFINITION 2.2.1. The C*-algebra SAP of all semi-almost periodic functions on R
is the smallest closed subalgebra of L=(R) that contains AP and C(R) :

In [68] Sarason proved the following theorem which reveals in a different way the

structure of the SAP algebra.
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THEOREM 2.2.2. Letu € C(R) be any function for which u(—oo) = 0 and u(+o00) = 1.
If ¢ € SAP, then there exist @4, pr € AP and ¢y € Co(R) such that

o= (1—u)pe+ up, + ¢o .

The functions @4, @, are uniquely determined by ¢, and independent of the particular

choice of u. The maps

= Yo, P O
are C*-algebra homomorphisms of SAP onto AP.
REMARK 2.2.3. The last theorem is also valid in the matrix case.

REMARK 2.2.4. We would like to emphasize that SAPY*¥ is an inverse closed subal-
gebra of [L®(R)|V*N (ie., if ® € SAPY*N is invertible in [L>(R)]Y*¥ then the inverse
®~! belongs to SAPN*N).

We set SAPW for all the functions from SAP, for which both the right and the left
almost periodic representatives are the functions from the Wiener algebra APW.

Let us consider the closed subalgebra of L>(R) formed by almost periodic and piece-
wise continuous functions. We will denote it by PAP := alg g {AP, PC}. It is readily
seen that SAP C PAP. In the scalar case it was proved that PAP = SAP + PCy. The
same situations is also valid in the matrix case considering the decomposition entrywise.
In addition, the next proposition is the matrix version of a known corresponding result for

the representation of PAP elements in the scalar case (cf., e.g., [14, Proposition 3.15]).

PROPOSITION 2.2.5. (i) If ® € PAPN*N then there are uniquely determined

matriz-valued functions Oy, 0, € APN*N and &, € PC'(])VXN such that
O =(1—u)O;+ub, + Pg,

where u € C(R), 0 <u <1, u(—00) =0 and u(4+00) = 1.
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(ii) If ® € GPAPN*N | then there exist matriz-valued functions © € GSAPN*N and
= € GPCN*N sych that Z(—o00) = Z(+0) = Inxn,

=0

(1]

Y

(111) In addition, the ©, and ©, elements used in (i) coincide with the local representatives
of © € GSAPN*N wsed in (i), and their unique existence is ensured by Theorem

2.2.2 and Remark 2.2.5.

Proof. The proof of the part (i) can be given as the proof of the scalar case (cf. [14,
Proposition 3.15]) upon reasoning entrywise, and therefore it is omitted in here.

The proof of part (i7) can also be done in a similar way to the scalar case but contains
some additional small differences. Therefore, it will be performed here for the reader
convenience. Suppose ® € GPAPY*N and put T := (1 —u)O; +u0O,. Then ® = T + ®,.
There is an M € (0, 00) such that | det Y(z)| is bounded away from zero for |z| > M, and
therefore we can find an element Ty € [Co(R)]V*N such that © := T + Ty € GSAPN*N,

This allows us to look to ® in the form
(I):@+¢)0—TO = @[[+®_1(®0—T0)] = @E,
(: [I + ((I)Q — To)@_l]@ = E@) 5

being clear that = = ©7'® € GPCYV*N and Z(—o0) = Z(4+00) = Inxn-.

The part (7i7) follows immediately from the construction made for (7). O

REMARK 2.2.6. Due to the item (éi7) of Proposition 2.2.5, we also call ©, and ©, the

local representatives of & at —oo and +oo, respectively.

The class PAPW is defined analogously as the class SAPW.

2.3 Unitary and sectorial functions

In this section we are interested in matrix unitary and sectorial functions. We start

with the following definition.
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DEFINITION 2.3.1. A matriz function ® € [L>®(R)|V*Y is called unitary if ®d* =

O*P = Iy, where @ stands for the conjugate transpose of P.

In other words matrix unitary functions are those whose inverse coincide with its
Hermitian transpose matrix.

The sectorial matrix functions are defined as follows.

DEFINITION 2.3.2. A matriz function S € [L°°(R)|N*N is said to be sectorial if there

exist a real number € > 0 and two (constant) matrices B,C € GCN*N such that
Re(BS(2)Cz, 2) > el 2|2
for almost all x € R and all z € CV.

We will denote by SN¥* the set of all sectorial matrix functions (in [L>®(R)]V*V).
In the scalar case, the sectorial functions are exactly those which have an essential range
contained in some open half-plane whose boundary passes through the origin (cf., e.g.,
[14, Section 6.4] or [17, Section 1.7]).

The following result was obtained independently by Pousson and Rabindranathan,
and it shows how can we decompose an invertible essentially bounded matrix function
through the unitary matrix functions and functions which are invertible in the “plus”

Hardy space.

THEOREM 2.3.3 (Pousson [63] and Rabindranathan [65]). If a € G[L>®°(R)]N*N | then
there exist an unitary matriz function u and h € GIH®(R)|M*N such that a = uh, almost

everywhere on R.

The next lemma gives a hint how to prove results for Wiener-Hopf operators with

sectorial symbols, when the results with unitary symbols are already at our disposal.

LEMMA 2.3.4. [18, Lemma 2.21] If E is a subset of [L>®(R)|N*N with the property that
cg € E whenever c € C\ {0} and g € E, ¢ € [L>®°(R)|"*N is unitary, and dist(p, E) < 1,

then there exist a function f € E and a sectorial function s € G[L®(R)]*N such that

p=-sf.
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2.4 Functions with n points of standard almost periodic
discontinuities

In the present section we will follow some definitions and results which can be found
in [37].

Let us transfer to the unit circle I'y the class of almost periodic functions (introduced
in Section 2.1 for the real line R), by means of the following operator By (cf. (1.8.1)):

<Bof><t>=f('1”) |

l
1—t¢

To denote the almost periodic functions class in the unit circle, we will use the notation
APr,. Furthermore, almost periodic polynomials on the circle are of the form:
n
t+1
a(t) := ciexp | Aj—— ], A; € R.
(t) ]Zl j 6XP < i 1) J

Next, the standard almost periodic discontinuities will be defined for the unit circle.

DEFINITION 2.4.1. A function ¢ € L>(I'y) has a standard almost periodic discontinu-
ity (SAPD) in the point ty € Iy if there exists a function py € APr, and a diffeomorphism
T := wy(t) of the unit circle Ty onto itself, such that wy preserves the orientation of T,

wo(to) = 1, the function wy has a second derivative at to, and

t—to

In such a situation we will say that ¢ has a standard almost periodic discontinuity in the

point to with characteristics (po,wo).

REMARK 2.4.2. Assume that ¢ € L>(T'y) has a standard almost periodic discontinuity
in the point ¢, and let a diffeomorphism wy satisfy the conditions in the definition of a
standard almost periodic discontinuity. Then, by means of a simple change of variable,

the equality (2.4.1) can be rewritten in the following way:

lim[¢(wy " (7)) = po(T)] =0, 7 €Ty

T—>1
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2.4.1 Model functions

An invertible function h with properties h € L¥(I'g) and A~ € L*°(T) is called
a model function on the curve I'y. The operator Tj,-1, acting in Li(FO), and its kernel
KerT}-1 will be referred to as the model operator and the model subspace in the space
L3 (T'y) generated by the function h, respectively. We say that the model function on the
curve ['y belongs to the class U if A=t € L>(T).

The just described notion of a model function, model operator and model space, can
be generalized to the real line, and furthermore for any rectifiable Jordan curve. As an
example, take exp(iAz), with A > 0, and we will obtain a model function for the real line
R.

In the space L?(Ty) let us also consider the pair of complementary projections:
Py := hQr,h I, Qp = hPr,h ',
and the subspace
M(h) = Py(L%(To)).

PROPOSITION 2.4.3. Leth; €U, 3 =1,2,...,n. Then h := H;L:1 hj €U and

.MM%;MMQ@MAM@Ha“@&imMﬂmy

j=1
Let ap € C, k = 1,2,3,4, and assume that ajas — asaz # 0. Consider the following

two fractional linear transformations, which are inverses of one another:

QT — A9

ast + ay’ a, — asx

u(t) = (2.4.2)

If we apply a fractional linear transformation of the form (2.4.2) to the model function

exp(idz), with A > 0, we arrive at the function

ho(t) = exp(eo(t — to) "), o € C\ {0}, (2.4.3)

which will be considered on the unit circle I'y (and tg € T'y).
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PROPOSITION 2.4.4. The function hy given by (2.4.3) is a model function on Tq if
and only if arg ¢pg = argty.

The previous proposition is just a particularization of a corresponding result in [37,
Proposition 4.2] when passing from the case of simple closed smooth contours to our I'y

case.

PROPOSITION 2.4.5. Suppose that a diffeomorphism T = wo(t) of the unit circle Ty
onto itself satisfies the conditions in the definition of a standard almost periodic disconti-

nuity at the point ty € I'y. Then the following representation holds on Ty :
WQ(t) +1

t) = A——

ot6) = exp (A0

where ¢g € GC(Ty), ho € L>®(Ty) is given by (2.4.3) with ¢g = 2\ /w((to), and C(Ty) is a

) = ho(t)co(t), AER, (2.4.4)

usual set of continuous functions on I'y.

REMARK 2.4.6. Proposition 2.4.4 ensures that whenever on Iy there exists a function
¢ that has a standard almost periodic discontinuity in the point ¢y, one of the functions
ho given by (2.4.3) or hy' is a model function on I'y. Since here the mapping 7 = wy(t)
preserves the orientation of Ty, arg ¢y = argty when A > 0 (cf. (2.4.4)) and arg¢y =

argto — m when A < 0.

2.4.2 Functional oy,

Let ty € I'g and let the function ¢ € GL*>(I'y) be continuous in a neighborhood of ¢,
except, possibly, in the point ¢, itself. Let us recall the real functional used by Dybin and
Grudsky in [37]:

) / )
(@) 1= lim  [arg 6(2)] |- = lim § (arg 6 (#) — axg & (¢)) (2.4.5)

where /1" € g, t/ < to < ", |t/ — to| = [t — to| = 0.

The notation t' < tg < t”, used above, means that when we are tracing the curve in
the positive direction we will meet the point ¢’ first, then the point ¢y, and then the point
t”. The next proposition establishes a connection between the functional oy,(¢) and the

standard almost periodic discontinuities on I'y.



2.5 The Besicovitch space 37

PROPOSITION 2.4.7. Suppose that the diffeomorphism T = wy(t) of the unit circle Ty
onto itself satisfies the conditions in the definition of a standard almost periodic disconti-
nuity in the point ty € T'y and that p € GAPr,. Then ¢(t) = p(wo(t)) € GL>®(Ty), o4,(9)

exists, and

010(9) = k(p)/lwo(to)] -

2.5 The Besicovitch space

In this section we introduce notations and results about the Besicovitch space. For the
corresponding proofs, the reader should consult [14, Chapter 7] and the references therein
(cf., e.g., [14, page 130]). Denote by AP the set of all almost periodic polynomials. The

Besicovitch space B2 is defined as the completion of AP° with respect to the norm

1
2
lellp2 == (ZWAP) ;
A

where p = >, paen € AP°. Let Rp denote the Bohr compactification of R and du the
normalized Haar measure on Rp (see, e.g., [14, Chapter 7]). It is known that AP may
be identified with C(Rp) and that one can identify B? with L?(Rp,du). Thus, B? is a
(nonseparable) Hilbert space, and the inner product in B? = L?(Rp, du) is given by

(f.9) = : f(€)g(&)dp(€) (2.5.1)

For f,g € AP we also have the following equality
T

Since p(Rp) = 1 is finite, AP is contained in B?. Moreover, AP is a dense subset of B2

The Cauchy—Schwarz inequality shows that the mean value

M(f) = ; F(&)dp(€)

exists and is finite for every f € B?. For f € B?, the set

Q(f) ={NeR: M(fe_\) #0}
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is called the Bohr—Fourier spectrum of f and can be shown to be at most countable.

Taking into account (2.5.1), one can prove that for every f € B?,

Il = ) [M(feon).

A€Q(f)

Let /2(R) denote the collection of all functions f : R — C for which the set {\ € R :
f(A\) # 0} is at most countable and

||f||§2(R) = Z |f(/\)|2 < 0.

Further, />°(R) is defined as the set of all functions f : R — C such that

| f]ese®y :=sup | f(N)] < oo .
AeR

Note that £2(R) is a (nonseparable) Hilbert space with pointwise operations and the inner

product
(fr9) =) F(Ng(N)
AER
and that (*(R) is a C*-algebra with pointwise operations and the norm || - ||g ().

The map Fp : (*(R) — B? which sends a function f € ¢*(R) with a finite support to

the function

(Fuf)() = 3 FNe™, zeR

AER

can be extended by continuity to all of /2(R). It is referred to as the Bohr-Fourier trans-
form. The operator Fg is an isometric isomorphism. The inverse Bohr-Fourier transform

acts by the rule
Fz': B> = (R), (F5'f)(\) = M(fe_y), NER.

If a € £>°(R), then the operator ¥(a) : B> — B? defined by ¥(a) := FgaFg" is bounded.



Chapter 3

Matrix Wiener-Hopf plus Hankel

operators with AP Fourier symbols

In this chapter we study matrix Wiener-Hopf plus Hankel operators with AP Fourier
symbols. A characterization of the invertibility of such type of matrix operators is obtained
based on a factorization of the Fourier symbols, which belong to the class of almost

periodic matrix functions.

Therefore, the main aim of the present chapter is to provide an invertibility criterion
for the matrix Wiener-Hopf plus Hankel operators with AP Fourier symbols. Thus, we

generalize to the matrix case some of the scalar results obtained in [59] and [60].

Note that within this context the representation of the (generalized/one-sided/two-
sided) inverses of WHg based on some factorization of the Fourier symbol ® is an impor-
tant goal, and will be obtained in Section 3.3. In this way, the main contributions of this

chapter are described in Theorem 3.1.3, Theorem 3.2.1, and Theorem 3.3.1.

In addition, we would like to refer here that in the present chapter we will work with
APW and AP symbols in view of exhibiting the details in these classes. Anyway, all the
results are obtained in the same manner for AP and APW cases except the result about
uniqueness of corresponding factorizations which due to this reason we choose to present

both versions for the full understanding of those differences.

39
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3.1 Matrix APW asymmetric factorization

Let us start by recalling the definition of a matrix APW asymmetric factorization.

DEFINITION 3.1.1. We will say that a matriz function ® € GAPWN*N admits an

APW asymmetric factorization if it can be represented in the form
¢ = &_diaglen,, ..., exy | Pe (3.1.1)
where \y € R, ey, (z) = e 2 € R, &_ € GAPWMN &, € GIL®(R)]V*N and o, = o..

REMARK 3.1.2. We would like to remark that an APW asymmetric factorization, if it
exists, is not unique. Anyway, the partial indices of two APW asymmetric factorizations
of the same matrix function are unique up to a change in their order (cf. Theorem 3.1.3
below). Consequently the A\, partial indices can be rearranged in any desired way. Namely,
if (3.1.1) is an APW asymmetric factorization of ® and II is a permutation constant
matrix, then by considering [T~ !diagey, , ..., ex, ]IT =: (ﬁ;g[eh, oy n] s o = ®_II, and

H
®, :=II-1®,, we obtain a second asymmetric APW factorization of ® given by

_ - «—

b = q)_diag[ekl, ey 6)\N](I)e .

Besides this last fact, we have the following general result about the uniqueness of

these factorizations.

THEOREM 3.1.3. Let ® € GAPWNXN " Suppose that
o =o' pHoM

with DY = diagley, , ..., exy] and Ay > --- > Ay, is an APW asymmetric factorization of

® and assume additionally that

o= o pAo®



3.1 Matrix APW asymmetric factorization 41

with D?) = diagle,,, ..., euy] and py > -+ - > uy, represents any other APW asymmetric
factorization of ®. Then

where W(x) = (Yj(x)) Y —, s a matriz function with nonzero and constant determinant,

having entries which are entire functions, and

0, if Aj> Mg,
bik(z) = , (3.1.2)
cjr =const 0, of \j=Ag.

Proof. If ® admits the above mentioned two APW asymmetric factorizations, then we

can write

3 =oWpWp = @ D@ (3.1.3)

e Y

which leads to

((bg))—lq)g)D(l) = DP@ (M)~ (3.1.4)

e

We now define ¢_ := (@@)71@9) and ¢, := @gz)((bél))*l. Thus, we have ®_ €
GAPWNN &, e GIL®(R)]¥*N and &, = ®,. From (3.1.4), we obtain the following
identity for each (7, k) element of that matrix:

(@) ji(2)e™® = (P ) ji () ;
whence

() ji(w) = (D) ju(w)e’Cemr™
and recall that ®. is an even function. Thus

(@ )yel)e NI = (@) ()l (3.15)
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and finally we infer from (3.1.5) that

—_~—

(D)) = W7 (B0) (a). (3.L.6)

If f1; > Mg, then the element in the left-hand side of (3.1.6) is in the class APW_, and the
function in the right-hand side belongs to APW, , which implies that there exist constants
c;r such that

—_~—

(P )jp(x) = ejp = (D) () =M,

Therefore, ¢ = cjpe® =0 Thus, if u; > A\, we obtain c;; = 0, and in the case where

(j = A\, we conclude that cj, are nonzero constants. Altogether, we have

0, if Wi > /\k;
(@-)ju(x) = Y (3.1.7)
cj, = const # 0, if p; = M.

Let us now assume that p; < A;. By the hypothesis, we know that (®_);, € APW_

and so (®_);; can be represented in the following form:
(@ )n(x) = Z(am)jk el mhine (3.1.8)
with " |(am)x| < oo for all j,k =1, N . From (3.1.8) we directly have
Z ) i € OmIRT (3.1.9)
Combining (3.1.6), (3.1.8) and (3.1.9) we obtain

Z(am)jk pivm)jne _ p2i(pg =)z Z(am)jk o ivm)jie 7

m m

or equivalently

D (am)ju € =Y (ay,) BTNl

m m

and this leads us to the following identity

(Vm)jx = 2(p5 — M) — (Vi) ji -
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In conclusion, we have in the present case

(Vm)jkzﬂj_)\k <0.

So, for any couple (7, k), we will obtain only one real number (v,,);;, which is precisely
the difference p; — A, and this means that in the representation of (®_);x (cf. (3.1.8)) we
need to have (®_);.(7) = cjxe™)i*® with some constant c;;, = const, for all j, k=1, N .
Thus, we arrive at the conclusion that (®_);, are entire functions when p; < Ay.

We will now prove that D = D® e, p; = A; for all j. Let us first assume
that pu; > A;, for some j. Then gy > X, for I < j < k and from (3.1.7) we infer
that (®_)y = 0 for [ < j < k. This and the Laplace Ezpansion Theorem show that
det®_(z) = 0 for all z € R, which is impossible simply because ®_ is invertible. If
for some j we would assume p; < Aj, we can repeat the above reasoning starting from
(3.1.3) with DWM (@)1 = (&")16® D@ instead of (3.1.4) and obtain once again
a contradiction. Thus, p; = A; for all j.

Letting ¥ := ®_ we immediately have that ¥ is an entire function. Additionally,
by virtue of the equality D) = D® =: D and (3.1.7), ¥ satisfies (3.1.2). The block-
triangular structure of ¥ implies that det ¥ is a constant, and since ¥ = (<I>(_2))_1<I>(_1)
this constant cannot be zero. Finally, identity (3.1.4) gives that ®, = D '¥D, and
therefore ®% = D-1W DOV This together with the identity ®? = ey concludes
the proof. n

3.2 Invertibility characterization

For further purposes let us recall that two linear operators T" and S are said to be

equivalent operators if there exist two bounded invertible operators £ and F' such that

T = ESF (recall Chapter 1).

THEOREM 3.2.1. Let ® have an APW asymmetric factorization, with partial indices
Ay AN

(a) If there exist positive and negative partial indices, then WHe is not semi-Fredholm.
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(b) If \i <0, i =1,N, and if for at least one index i we have \; < 0, then WHg is

properly d-normal and right-invertible.

(¢) If \i >0, 1 = 1,N, and if for at least one index i we have \; > 0, then WHg is

properly n-normal and left-invertible.
(d) If \;y =0,i=1,N, then WHg is two-sided invertible.
Proof. Since by hypothesis ® admits an APW asymmetric factorization, we have

®=d_Do, (3.2.1)

where ®_ € GAPW N ' D = diag[ey,, ...,exy], and @, is an invertible even element.
Without lost of generality (cf. Remark 3.1.2), we will assume that A\; > ... > A\y. As pre-

viously observed, from (3.2.1) we therefore obtain the operator factorization (cf. (1.6.6))
WHe = Wo ((WHp ((WH, . (3.2.2)

We know that We_ is invertible because ®_ € GAPWY*Y (and its inverse is given by
loWg-14p). Additionally, WHg, is also invertible because ®. is an even element (cf. The-
orem 1.6.5). Thus, (3.2.2) shows us an operator equivalence relation between WHg and
WHp (recall that £y : [L*(R4)]Y — [L2 (R)]" is invertible by r; : [L2 (R)]Y — [L*(R4)]Y).
We will therefore analyze the regularity properties of WHp.

Suppose that at least some of the partial indices are greater than zero, some of them
may be equal to zero, and that some of them are less than zero; for instance, Ay, ..., A\; > 0,

Aig1 = ... = A;j =0, and Ajqq, ..., Axy < 0. This means that

GWHp = diaglloWH,, ..., ((WH,, , (W, (3.2.3)

e>‘i+1’ ceey

(WH,  (gWHe, ooy GWH,, ]

ex.
>‘J

= diag[toWH,

exy

A lWHey T Tl Wey s W,

e,\N] 9

because WH., =W, for k = j +1, N, due to the condition A;1; < 0,..., Ay < 0 and

exy?

due to the structure of the Hankel operators (and also because foWHeAk =1, k=i+1,)
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due to the condition \;y; = ... = A; = 0). The nonzero scalar operators in the diag-

onal matrix operator (3.2.3) are such that: WH,, ,...,WH,, are properly n-normal

and left-invertible (cf. Theorem 6 in [59]); W., ,...,W,, are d-normal and right-
41 N

invertible (cf. the Gohberg—Feldman—Coburn—Douglas Theorem [14, Theorem 2.28|, 28],
[40]). Therefore, WHp cannot be semi-Fredholm, hence WHg cannot be semi-Fredholm.
This proves part (a) of the theorem.

Suppose now that \; < 0, s = 1, N. This implies that D € APY*¥. Since APY*N =
APNXN ' [H(R)]M*V it holds that D € [H*(R)]"*¥ and hence WHp = Wp. So, in
this case, WHg is equivalent to Wp. If we employ again the Gohberg—Feldman—Coburn—
Douglas Theorem to the each one of the operators in the main diagonal of the operator
Wp, it follows the assertion (b) of the theorem.

Part (c) can be deduced from the assertion (b) by passing to adjoints.

If all partial indices are zero, we have that ¢{oWHp, is just the identity operator. This,
together with the operator equivalence relation (3.2.2) presented in the first part of the

proof, leads us to the last assertion (d). O

3.3 Representation of the inverses

We now reach the main goal of this chapter: the representation of generalized/one-
sided/two-sided inverses of WHg based on a factorization of the Fourier symbol. This
result extends the scalar version obtained in [59, Theorem 7.

Let us first recall that a bounded linear operator S~ : Y — X (acting between Banach
spaces) is called a reflexive generalized inverse of a bounded linear operator S : X — Y
if: (i) S~ is a generalized inverse (or an inner pseudoinverse) of S, i.e., SS™S = S; (ii)

S~ is an outer pseudoinverse of S, i.e., STSST =5".
THEOREM 3.3.1. Suppose ® admits an APW asymmetric factorization and

T = lor  F 1o, . Feer, Fldiagle_y,,...,e_ny) - Flor F 1o~ Fi

(PR — [LER)Y,
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where 71 and ®~' are the inverses of the corresponding factors of an APW asymmetric
factorization of ®, ® = ®_D®,., and the operator { : [L*(R.)|N — [LA(R)]N denotes
an arbitrary extension operator (i.e., T is independent of the particular choice of the
extension ). Then the operator T is a reflexive generalized inverse of WHg and, in the

following special cases, we additionally have that T is:
(a) the right-inverse of WHg, if \; <0 for alli =1, N,
(b) the left-inverse of WHag, if \; >0 for alli =1, N,
(c) the (two-sided) inverse of WHg, if \; =0 for all i =1, N.

In the case when there exist partial indices with different signs, the operator WHg is not

Fredholm but T is still a (reflexive) generalized inverse of WHe.

Proof. We start with the cases (a), (b) and (c). Since ® admits an APW asymmetric

factorization, we can write
O = d_diagley,, ..., €y De
(with the corresponding factor properties). Consequently, from (1.4.7), it follows that
WHe =r A_EALT, |
where A_ = F~'®_ . F, FE = F ldiagley,,....,eny] - F and A, = F 1@, - F.
(a) If \; <0 for all i = 1, N, consider

WH(}T == r+A_EAe£€r+€0r+Ae_1£er+E_léer+A:1£
A EAL AT B e AT (3.3.1)

where the term fyr, was omitted due to the fact that r fory = 7. Since AJ!
preserves the even property of its symbol, we may also drop the first £°r, term in

(3.3.1), and obtain

WHsT = r, A_Eter . B~ 0°r, A7 . (3.3.2)
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Additionally, due to the definition of F and E~! in the present case (\; < 0 for
all i = 1, N), we have lyr, E¢¢r  E~1(¢r, = {yr,; also because A_ is a minus type

factor it follows r; A_ = r  A_lory. Therefore, from (3.3.2), we have

WHoT =1 A lory AN =10 = Ijpag v - (3.3.3)

(b) If A; >0 for all : = 1, N, we will now analyze the composition
T WH(I) = €0T+Ae_1567“_,_E_lfeT+A:1€T+A_EAe£€T+ . (334)

In the present case, due to the definition of E~1, it follows ¢¢r, E=*¢r = (°r E~'.
The same reasoning applies to the minus type factor A~', and therefore the equality

(3.3.4) takes the form
T WH@ = €0T+A;1€€T+Ae€er+ = €0T+€8T+ = 607’4,_ = [[Li(R)]N s (335)
where we have used the fact that (°r A0, = Al

(c) From the last two cases (a) and (b), it directly follows that in the case of A\; = 0
for all i« = 1, N, the operator T is the two-sided inverse of WHg (cf. (3.3.3) and
(3.3.5)).

Let us now turn to the more general case: assume now that there exist partial indices
with different signs.

In this case, we recall that the assertion about the non-Fredholm property was already
provided in Theorem 3.2.1, assertion (a).

As about the generalized inverse, we will start by rewriting the operator F in the

following new form:
E = diag[F ey, - F,...,F len, - Fl diag[F len,, - F, .., F len,y - Fl
= El E2 y
where

A i A <0 A i A >0
0 if A >0 0 if A\;<0
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for j =1, N.
We will then directly compute WHg T' WHg, in the following way:
WHe T WHe = (riA_EiEsAlory) (Cory A7 Cr By BT er AT
(T+A_E1E2Ae€e7”+)

= 1 A B ByAlr AT r By P BT r AT AL (3.3.6)
E EyAlry

= 1y A_E\Eylr By ET e By Ey Ao, (3.3.7)

= r A B EyAler, (3.3.8)

= WHe

where in (3.3.7) we omitted the first term ¢°r, of (3.3.6) due to the factor (invariance)
property of AZ! that yields A.¢ér, AZ'¢°r, = (°r,. Similarly we dropped the term
lro in er . A”'r A_ due to a factor property of A~'. Analogous arguments apply
to the factors F;' and E,'. In a more detailed way: (i) if one of the factors £ or
E, equals I, then it is clear that Ey(¢er Ey ' (°r )Ey = Ey(ter Ey')Ey = Eylér, or
lory Byter E7Yer By = lyr, B holds, respectively; (i) in the general diagonal matrix
case, the situation is identical just because in each place of the main diagonal we have
the last situation. This justifies the simplification made in obtaining (3.3.8) from (3.3.7).
As about the composition T WHg T, it follows:

TWHe T = (lori A7 Cr By E7 r  AZH) (ry ALE By Aclery)
(Cory A er By B er AT
= lor AN By VBT L AT L AE By Al AT (3.3.9)
Ey'E7Mer AT
= lor A Y By R AT (3.3.10)
=T
where the third ¢¢r, is unnecessary in (3.3.9) due to the factor (invariance) property of

A, that yields Alér, AZWer, = (°r,, and we also can omit the term ¢r, in (3.3.9) since
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A~ is minus type. Additionally, a similar reasoning as above was also used for obtaining
equality (3.3.10) since due to the definitions of £y and FEy it holds ¢r, Ey(¢r, = (°r, F,
and (er By 'er Exler, Byt = (er Byt m

3.4 Matrix AP asymmetric factorization

We would like now to cite the last paragraph of the paper [10]: “We end up by
mentioning that almost all the above methods also work — without crucial changes — in the
case of matriz Wiener-Hopf plus Hankel operators with almost periodic Fourier symbols.
However, a corresponding version of Theorem 3.1.3 for invertible APN*N elements is an
open problem. This has to do with the difficulties in substituting the arguments in the part
of the proof of Theorem 3.1.3 where some representations of APW elements are used”.

We have already closed this open problem and the corresponding theorem will be

given below after giving the appropriate definition of the AP asymmetric factorization.

DEFINITION 3.4.1. We will say a matriz function ® € GAPN*N admits an AP

asymmetric factorization if it can be represented in the form
¢ = &_diagley,, ..., exy | Pe
where N\, € R, ey, (z) = e z € R, &_ € GAPYN &, € GIL®R)|V*N and o, = O,

The property that we can rearrange the partial indices of such type of factorizations
in any desired way is obviously valid in this case too (cf. Remark 3.1.2).
We are ready to give the following general result about the uniqueness of these kind

of factorizations.

THEOREM 3.4.2. Let ® € GAPN*N | Suppose that

o =0 pWph

with DY = diagley,, ..., exy] and A > -+ > Ay, is an AP asymmetric factorization of ®

and assume additionally that

¢ =0 pPop®

e )
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with D® = diagle,,, ..., euy] and gy > -+ - > pn, represents any other AP asymmetric

factorization of ®. Then

o = oWyt
DY =p® = p,

d? = DU DY |

where W(x) = (Y(x)) Y=, s a matriz function with nonzero and constant determinant,
having entries which are almost periodic functions, such that the Bohr-Fourier spectrum

of Qj) is contained in [2(p; — Ai), 0] (%) C [2(pj — Ax), 0], where p; < \g), and

0, if e < A,
bik(z) = | ’ (3.4.1)
cjr =const Z0, if Ap=2A;.

Proof. Up to equality (3.1.7) the proof of this theorem runs in an analogous way as the
proof of Theorem 3.1.3 (with obvious changes in the corresponding necessary different

places). Now assume that p; < Ap. We will rewrite equality (3.1.6) in the following way:

(D) k()X 1) = (&), (x) . (3.4.2)
In (3.4.2) the right-hand side belongs to AP, class and in the left-hand side we have a
product of AP_ and AP, functions. Thus to have the equality we must guaranty that
the left-hand side is also belongs to AP, and therefore (®_);; must have Bohr-Fourier
spectrum contained in [2(p; — M), 0]. From (3.4.2) we have that

(B_),p € 2 ATAP NAP. = {p € AP : Q(p) C [2(1; — M), 0]} .

To deduce the last formula one needs to note that the multiplication of an almost periodic
function by an e, element shift the Bohr-Fourier spectra of the first function by the
value of A. Additionally, from (3.4.2) it is readily seen that the almost periodic functions
which satisfy that equality have Bohr-Fourier spectrum distributed symmetrically with
respect to a “central” point p; — Ar. More precisely we have that if zy € [2(u; — A\g), 0],
1 — A — x0 € Q(p), and if ¢ satisfies the equality (3.4.2), then necessarily we have that
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also p; — A\ + 0 € Q(p). As a remark, in this case, for APW functions we have that the
Bohr-Fourier spectrum of that functions contain only the “central” p; — A, point.

The proof of the last part of this theorem also runs in a similar way as the proof of
Theorem 3.1.3, and therefore is omitted in here (cf. the last two paragraphs in the proof

of Theorem 3.1.3). O
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Chapter 4

Matrix Wiener-Hopif-Hankel operators
with SAP Fourier symbols

In this chapter conditions for the Fredholm property of Wiener-Hopf plus/minus
Hankel operators with matrix semi-almost periodic Fourier symbols are exhibited. Under
such conditions, a formula for the sum of the Fredholm indices of these Wiener-Hopf
plus Hankel and Wiener-Hopf minus Hankel operators is derived. Concrete examples are
worked out in view of the computation of the Fredholm indices. Within this context, the
main goal of this chapter is to present a formula for the Fredholm index of the matrix

operator which has the following diagonal form

Ws + Hy 0
Dy = (LR s (LR, (4.0.1)
0 W — Ho
in the case where the entries of the matrix ® are semi-almost periodic functions (and

under certain conditions in which we will obtain a Fredholm property characterization of

D).

4.1 Matrix AP factorization

Since our results will be obtained through certain factorizations of the involved ma-

trix functions, we will therefore recall the definitions of the so-called right and left AP

23
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factorization.
DEFINITION 4.1.1. A matriz function ® € GAPY*N s said to admit a right AP
factorization if it can be represented in the form

O(x) = ¢_(x) D(x) D4 (2) (4.1.1)
for all z € R, with

d_ € GAPYVN &, € GAPYN
and D is a diagonal matrixz of the form
D(z) = diag(e™®, ..., e?¥) N, €R.

The numbers \; are called the right AP indices of the factorization. A right AP factor-
ization with D = Iy 18 referred to be a canonical right AP factorization.
In another way, it is said that a matriz function ® € GAPN*N admits a left AP

factorization if instead of (4.1.1) we have
¥(z) = . (2) D(x) &_(x)
for all x € R, and ®4 and D having the same properties as above.

REMARK 4.1.2. It is readily seen from the above definition that if an invertible almost
periodic matrix function ® admits a right AP factorization, then ® admits a left AP

factorization, and also ®~' admits a left AP factorization.

The vector containing the right AP indices will be denoted by k(®), i.e., in the
above case k(®) := (A1,...,An). If we consider the case with equal right AP indices
(k(®) = (A, A1,...,A1)), then the matrix

d(®) := M(®_)M(D,)

is independent of the particular choice of the right AP factorization (cf., e.g., [14, Propo-
sition 8.4]). In this case the matrix d(®) is called the geometric mean of ®.

In order to relate operators and to transfer certain operator properties between the
related operators, we will also need the known notion of equivalence after extension for

bounded linear operators (recall Chapter 1).
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4.2 The Fredholm property

We start by recalling a known Fredholm characterization for Wiener-Hopf operators
with S AP matrix Fourier symbols having lateral almost periodic representatives admitting

right AP factorizations.

THEOREM 4.2.1. (¢f. [14, Theorem 10.11] and [46]) Let ® € SAPN*N and assume
that the almost periodic representatives ®, and ®, admit a right AP factorization. Then

the Wiener-Hopf operator Wg is Fredholm if and only if:

(i) ® € GSAPNN .

(ii) The almost periodic representatives ®, and ®, admit canonical right AP factoriza-

tions (therefore with k(®,) = k(®,) = (0,...,0));

(iii) sp[d=H(®,)d(®,)] N (—o0,0] = O, where sp[d~(D,)d(P,)] stands for the set of the

eigenvalues of the matrix
d~1(®,)d(®,) = [d(®,)] (D)) .

The matrix version of Sarason’s Theorem (cf. Theorem 2.2.2) says that if ¢ €

GSAPNXN then this matrix admits the following representation
B = (1 u)d + ud, + B , (4.2.1)

where &, € GAPNN 4 € C(R), u(—00) = 0, u(+00) = 1, &y € Co(R). From (4.2.1) it
follows that

—_—

d1=[(1—a@)d, + ad, + o] !,

and

DD = [(1 — u)®y + ud, + Do[(1 — @)Dy + 4D, + o]~ . (4.2.2)
Using the basic properties of the almost periodic functions (cf., e.g., in Section 2.1 the

Bochner definition), from (4.2.2) we obtain that

—

(O@D1), = Db, (BB 1), = BB, . (4.2.3)
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These representations, and the equivalence after extension relation described in Section 1.7

between the operator D4 and the pure Wiener-Hopf operator, lead to the following char-

acterization in the case when ®,®, 1 admits a right AP factorization.

THEOREM 4.2.2. Let ® € SAPY*N  and assume that ®,®;' admits a right AP
factorization. In this case, the operator D¢ is Fredholm if and only if the following three

conditions are satisfied:
(j) ® € GSAPN*N
(ij) @gé;:l admits a canonical right AP factorization;
() spld(@@ )] M iR =0
(where, as before, ®, and ®, are the local representatives at Foo of @, cf. (4.2.1)).

Proof. 1If D¢ is a Fredholm operator, then by Theorems 1.9.2 and 1.9.3 it follows that
® € G[L>°(R)|M*V | and therefore condition (j) arises (cf. Remark 2.2.4).

Moreover, the Fredholm property of g also implies that the operator W, o is
Fredholm (due to the equivalence after extension relation, cf. (1.7.1)). Employing now
Theorem 4.2.1 we will obtain that ®®~1 € GSAPN*N, ((D(/};/l)g and (<I>¢/>\:1)T admit a

canonical right AP factorizations and
spld ™! (1), )d((@D1),)] N (—00,0] =0 . (4.2.4)

By virtue of (4.2.3) we conclude that (IDg(I/)::l admits a canonical right AP factorization.

Once again, due to (4.2.3), from (4.2.4) we derive that
spld ™ (@,9; 1)d(®@,1)] N (—00,0] = @ . (4.2.5)

In addition, a canonical right AP factorization of <I>gCIf>;:1 can be normalized into

b = U_AD, (4.2.6)
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where W, have the same factorization properties as the original lateral factors of the

—

canonical factorization but with M(W¥,) = I, and where A := d(®,P,!). Thus, (4.2.6)

allows

—_—

— 1 — —
0,0, = (cbgqu) s

which in particular shows that
d(®,®,') = A"
Thus, (4.2.5) turns out to be equivalent to
sp[A?] N (—o0,0] =0
which directly from the eigenvalue definition leads to
sp[A] N iR =10.

Therefore the proposition (jjj) is satisfied, and the proof of the “only if” part is completed.

Now we will be concerned with the “if” part. From the hypothesis that ® € GSAPN*N
we can consider @@, and therefore this is also invertible in SAPV*N. The left and right
representatives of ®®-1 are given by the formula (4.2.3). Since CIMIT; = ((IDCIT—Jl)g admits

a canonical right AP factorization, then

—_——

(PD1), = B, P; !

admits a canonical left AP factorization and

——~—

(2271)] ™! = 2,2,

admits a canonical right AP factorization. Moreover, using the same reasoning as in the
“only if” part, these last two canonical right AP factorizations and condition (jjj) imply

that

—_—

spld (@D 1),)d((@®1),)] N (~00,0] = spld ™~ (@,D;")d(@,D, )] N (o0, 0] = 0.

All these facts together with Theorem 4.2.1 give us that W, o is a Fredholm operator.
Using now the equivalence after extension relation presented in (1.7.1), we obtain that

D¢ is a Fredholm operator. O]
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REMARK 4.2.3. In the last Theorem 4.2.2: (i) if the symbol ® belongs to the Wiener
subalgebra of SAPY*N ie. SAPWN*N (recall Chapter 2), then we can drop the initial
assumption which states that (bg(i); admits a right AP factorization (since this holds
always in such a case); (ii) if the lateral representatives of ® are N x N constant matri-
ces (having therefore an even more particular situation than in (i)), then the symbol ®
belongs to [C(R)]¥*¥, and the theorem provides an alternative Fredholm property char-

acterization of such operators to the already known characterizations for this particular

case (and which were obtained by different methods; cf., e.g., [39] and [54]).

4.3 Index formula for the sum of Wiener-Hopf plus/mi-

nus Hankel operators

In the present section we will be concentrated in obtaining a Fredholm index formula
for D4, i.e., for the sum of Wiener-Hopf plus/minus Hankel operators Wy + Hg with
Fourier symbols ® € GSAPN*Y such that q)g(I/)::l admits a right AP factorization. Due
to this purpose, let us assume from now on that We + He and We — He are Fredholm
operators.

Let GSAP, o denotes the set of all functions ¢ € GSAP for which k(p,) = k(¢,) = 0.
To define the Cauchy index of ¢ € GSAPF,( we need the next lemma.

LEMMA 4.3.1. [14, Lemma 3.12] Let A C (0,00) be an unbounded set and let

{]Oé}aeA = {(mom ya)}aeA

be a family of intervals such that xo, > 0 and |I,| = Yo — o — 00, as a — o00. If

v € GSAPFyy and arg ¢ is any continuous argument of p, then the limit

1 1

%Jiiﬂom Ia((arg p)(z) — (arg ) (—z))dx (4.3.1)

exists, is finite, and is independent of the particular choices of {(Za,Ya)} aca and argp.
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The limit (4.3.1) is denoted by ind ¢ and is usually called the Cauchy index of .
Moreover, following [58, section 4.3] we can generalize the notion of Cauchy index for
SAP functions with k(¢y) + k(¢,) = 0 in the way which was introduced in Lemma 4.3.1,

ie.,

1

indg = o Tim ), (o)) = ) (=) (4.3.2)

where ¢ € {¢ € SAP : k(¢e) + k(¢,) = 0}.
The following theorem is well-known, and provides a formula for the Fredholm index

of matrix Wiener-Hopf operators with SAP Fourier symbols.

THEOREM 4.3.2. [14, Theorem 10.12] Let ® € SAPN*N_ If the almost periodic rep-
resentatives ®,, P, admit right AP factorizations, and if We is a Fredholm operator,

then

N
1 1 1
IndWg = —ind det & — g (— - {— - — arg{k}) , (4.3.3)
— 2 2 27

where &1,...,&n € C\ (—00,0] are the eigenvalues of the matriz d~*(®,)d(®,) and {-}
stands for the fractional part of a real number. Additionally, when choosing arg &y in

(—m, ), we have

N
i 1
IndWg = —ind det  — 7 Z arg &, .

k=1
We will now be concentrated on an index formula for D¢ (i.e., on a formula for the

sum of the Fredholm indices of Wg + He and We — Hg). In fact, it directly follows from
the definition of the operator D¢ (cf. formula (4.0.1)) that

Ind@cp = Ind[Wq;. + H.:p] + Ind[Wq> — Hq>] .

Now, employing the above equivalence after extension relation (cf. (1.7.1)), we deduce

that

IndDg = IndW, o -
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Consequently, we have:
Ind[ch —|— Hq)] + Ind[Wq;. — Hq)] = IIlqu)(gl .

Using (4.3.3) for W o (which is a Fredholm operator because of the assumption made

in the beginning of the present section), we obtain that
— /1 11
IndW, o = —ind[det(®P1)] — ; <§ - {5 ~ 5 argnk}> : (4.3.4)
where 7, € C\ (—00,0] are the eigenvalues of the matrix d_l((CI)CI;—Vl)T)d(@(/I;—Jl)Z) =
d*1(®r<§)d(¢gq:}i), cf. (4.2.3). However, as pointed out in the proof of Theorem 4.2.2,
d_l(ér%/l)d(@gé\;l) = [d(@gi/);/l)r, and therefore (4.3.4) can be rewritten as

IndW, g5, = —ind[det (1] - i (% _ {% _ %arg gk}) (4.3.5)

k=1
where (, € C\ iR are the eigenvalues of the matrix d(@g(i)}/l).
In addition, in the case when arg(y are chosen in (—m/2,7/2), formula (4.3.5) is

reduced to

IndW_ o = —ind[det( (IJCIJ - = Z arg Cy, .

Let us now simplify the form of ind[det(CI)(/};Jl)]. Recalling that the matrix <I>4<IT;J1 has
a canonical right AP factorization (due to the assumption made in the beginning of the
present section), it holds k(@g&)}/l) = (0,...,0). From here we obtain that k(det(@i)\;/l)) =
0. Consequently, this yields:

k((det @),) + k((det @),) = k

det(®,P1)) (4.3.6)
=0, (4.3.7)
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because for any f € GAP we have k(f) = k( f 1). Additionally, we have used here the
fact that [det ®], = det &, (which follows from a direct computation). A similar argument

also applies to &D\jl, since from (4.3.6)—(4.3.7) we have:

B((det 1)) + k((det @1),) = k(det(271)) + k(det(®, 1))
= k‘(det(fbg) )+ k:(det(cb )
= k(det(®y)) + k(det(cb 1)
= k(det(@ﬂJ )
= 0. (4.3.8)
Therefore, due to (4.3.7), (4.3.8) and (4.3.2), we can perform the following computa-
tions:
ind[det(@qf;—/l)] = ind[det ® det @f)\:l]
= inddet ® + ind det -1
— inddet ® + ind[det D]
= inddet ® — ind[det ]
= inddet ® — ind[det ®]*
= inddet ® + ind det ®

= 2inddet® .

Consequently, we have just deduced the following result.

COROLLARY 4.3.3. Let ® € GSAPN*N and assume that O,P- -1 admits a right AP
factorization. If We £ Hg are Fredholm operators, then

N
1 1 1
Ind[Ws + He| + Ind[Wg — Hgp| = —2 ind det & — E (5 — {5 — —arg Ck}) , (4.3.9)
T
k=1

where (i, € C\ iR are the eigenvalues of the matriz d(@g&);jl). Moreover, when choosing

arg (. in (—m/2,7/2), the formula (4.3.9) simplifies to the following one:

N
1

Ind[Wg + He| + Ind[We — Hgp| = —2 ind det & — — E arg (. .
T
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4.4 Generalized AP factorization

In order to obtain stronger versions of the above derived results we need to present
the notion of generalized AP factorization. This will be done in the present section.

Let B2 denote the Hilbert spaces consisting of the functions in B? with the Bohr-
Fourier spectra in Ry = {z € R : £z > 0} (recall Chapter 2).

DEFINITION 4.4.1. A generalized right AP factorization of a matriz function ® €

GAPN*N s q representation
o=9 D, ,
where D = diag(ey,,...,exy) With A1,..., Ay € R and
o egBANVN &, egBAVYN & PO e L(BY).

Here P is the projection P = Fpx+Fg' € L(B%) (with x4 being the characteristic
function of R, ).

The left generalized AP factorization is defined correspondingly (with obvious changes).
If we have that ® admits a right generalized AP factorization, then ® admits a left gen-
eralized AP factorization and also ®~! admits a left generalized AP factorization.

The definition of the geometric mean value is literally the same as in Section 4.1.

4.5 The Fredholm property for matrix SAP symbols

In this section we give a stronger version of the Theorem 4.2.2. To this end we need

the stronger version of the Theorem 4.2.1, which is now stated.

THEOREM 4.5.1. [14, Theorem 18.18] Let ® € SAPN*N. The operator Wy is Fred-

holm if and only if the following three conditions are satisfied:
(i) ® € GSAPN*N,

(i1) We, and Wg, are invertible operators,
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(iii) sp[d~1(®,)d(P,)] N (—00,0] # O, where sp[d~(®,)d(P,)] stands for the set of the

eigenvalues of the matrix

d™(®,)d(®,) = [d(®,)]"d(®y)

Equipped with the last theorem we are ready to give a stronger version of Theorem 4.2.2.
Since this is obtained by using the same techniques which were exhibited in the proof of

Theorem 4.2.2, the proof of the next theorem will be omitted in here.

THEOREM 4.5.2. Let ® € SAPN*N. Then D4 is Fredholm if and only if the following

three conditions are satisfied:

(j) B € GSAPNXN,
(77) (Dﬁ/):—/l admits a canonical generalized right AP factorization,
(i) spld(@e2: )] N iR =0,

(where, as before, ®, and ®, are the local representatives at Foo of ®, cf. (4.2.1)).

4.6 Index formula for the operator ®g

In this section our aim is to obtain a Fredholm index formula for the operator D¢
with ® € SAPNXN_ Therefore, let us start with a result which is a particular case of

Corollary 4.3.3 (considering the Wiener subclass of SAPY*N).

COROLLARY 4.6.1. If Wg &+ Hg are Fredholm operators for some ® € GSAPWN*N,
then

N
1 1 1
Ind[Wg + He| + Ind[We — Hg| = —2 ind det & — E (5 — {5 — —arg §k}) , (4.6.1)
T
k=1

where ¢ € C\ iR are the eigenvalues of the matriz d((I)ﬁ/)::l). Moreover, when choosing

arg (. in (—mw/2,m/2), the formula (4.6.1) simplifies to the following one:

N
1
Ind[We + He| + Ind[Wy — Hp) = —2 ind det & — — E arg Cy . (4.6.2)
T
k=1
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The main result of this section will be now reached by removing the Wiener subclass

from the last corollary.

THEOREM 4.6.2. If D4 is a Fredholm operator for some ® € GSAPN*N  then

N
1 (1 1
IndDe = —2 inddet & — > <§ - {5 — —aig gk}) : (4.6.3)
k=1

where (, € C\ iR are the eigenvalues of the matriz d(CDZCI/);:l). Moreover, when choosing

arg (y, in (—mw/2,m/2), the formula (4.6.3) simplifies to the following one:

N

1
[nd® :—2'ddt®——g .
nd®g ind de - arg Cj,

k=1

Proof. Choose functions ®,, € GSAPWN*N such that
lim sup |, —®|=0.

This is always possible because SAPW is a dense subalgebra of SAP. Stability of the
Fredholm property under small perturbations implies that ®g, are Fredholm operators
for sufficiently large n. From here it follows that the index formula for g, is given by

(4.6.1) (the case of the formula (4.6.2) is treated analogously). Hence we can write:

. Y111
IndDg, = —2 inddet &, — » (5 - {5 — = arg(Ck)n}> . (4.6.4)

™
k=1

As far as we have the uniform convergence of ®,, to ® and the stability property for the
Fredholm index we can pass to the limit in the equality (4.6.4) to deduce the desired
formula (4.6.3). O

4.7 Examples

In the present section we provide two concrete examples for the above theory.
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-20 0 20

Figure 4.1: The graph of det ®.

4.7.1 Example 1

Let us assume that

e—z’(l—i-a)a: 0
O(z) = (I—-ufx)| o
e~lax 1 4 el ez(l—i—a)cc
ei(l-i-oz)ac 0

+u(z) | o
elot ] 4 emi e—z(l—i-a)x

where a = (/5 — 1)/2, and u is the following real-valued function

u(z) = % + % arctan(x) . (4.7.1)

Being clear that ® € SAP?*?, we will start with showing that ® € GSAP?*2. To this end

we need first of all to compute the determinant of & :

(1 —u(z))e F)T 4 gy(g)eHo)

det &(z) = det 4 ' ' '
(1 —u(x))(e™™ — 1+ ) + u(x)(e"*™ — 1+ ™)

0
(1 _ u(x»ei(l-}-a)x + u(x)e—i(l-i-a)x

= 1—2u(x)(1 —u(z))(l —cos(2(1 + a)x)).
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Recalling that u is a real-valued function given by (4.7.1), we have that

2u(z)(1 — u(x)) € {o, %] |

and where the maximum value 1/2 is obtained only at the point z = 0, in view of

2u(z)(1 —u(z)) = % - % arctan®(z) .

Due to the reason that 1 — cos(2(1 + «)z) € [0,2] but (1 — cos(2(1 + oz)x))|z:0 =0, we
have 2u(x)(1 — u(x))(1 — cos(2(1 + a)x)) € [0,1). Therefore det ® € (0, 1], and thus ® is
invertible.
In this case, although the invertibility of ®, the Wiener-Hopf operator with symbol
® is not a Fredholm operator. This happens because the matrix function
e—ill+a)z

c gAP2><2

e—iar _ 1 4 iz gi(l+a)e
does not have a right AP factorization (cf. [47, pages 284-285] for all the details about
this matrix function). However, the Wiener-Hopf plus/minus Hankel operators with the
same symbol ® will have the Fredholm property. Indeed, besides having ® € GSAP?*2,
let us observe that:
0
01

- IQ><2 .

Consequently, ®,®! obviously admits a canonical right AP factorization and

d((I)g(I)T_1> = IQXQ .

Thus the eigenvalues of this matrix are equal to 1 ¢ ¢R. This allows us to conclude that the
operator D is a Fredholm operator (cf. Theorem 4.2.2). This means that the operators
We + Hg have the Fredholm property. Let us now calculate the sum of their Fredholm
indices. From the above form of det ®, we have already concluded that det® € (0,1].
Thus, we have that det ® is a real-valued positive function, and so its argument is zero

(the graph of det ® is given in the Figure 4.1). Altogether we have:

Ind[Wo + He] + Ind[We — Hg] =0,
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since the eigenvalues of d(CDﬂ/);jl) are also real (recall that they are equal to 1), and

therefore their arguments are also zero.

4.7.2 Example 2

Figure 4.2: The oriented curve representing the range of det W.

Let us now take the following matrix-valued function:

er 0 e 0 0 -1
U(z) = (1—u(x)) + u(x) + , (4.7.2)

0 e 0 e® i1 0

where u is the same as in the previous example. A direct computation provides that W is

invertible. In fact,

det U(z) = (1 — u(2))? + u2(x) + 2u(z)(1 — u(z)) cos(2z) — <i ; j - 1>2 . (4.7.3)
and hence
det U(z) = f(z) +ig(x),
where

4(z* - 1)

f() =1=2u(z)(1 —u(@))(1 - cos(2z)) + @i
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and
8z
90 =~ e
From these formulas it follows that f and g do not vanish simultaneously, and consequently
det ¥(x) # Oforallz € R. Hence ¥ € GSAP?*2. Although having this necessary condition
for the Fredholm property of the Wiener-Hopf operator with the symbol ¥, it is easily
seen that Wy is not Fredholm. The reason for this is based on the fact that although the

matrix-valued functions

e
Wy(r) =
0 ef’L"E
and
e~ 0
U, (z) = .
0 e~

have obvious right AP factorizations (with the identity matrix in the role of the lateral

minus and plus factors; cf. (4.1.1)) they do not have a canonical right AP factorization

(since k(¥,) = (1,—1) and k(¥,) = (—1,1)).

Figure 4.3: The oscillation at infinity of det .
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Despite this situation, the Wiener-Hopf plus/minus Hankel operators with the same
symbol ¥ are Fredholm. Indeed, first of all note that we have already deduced that W is

invertible in SAP?*2. Moreover,

\I]g\Ifr_l = IQ><2 (474)

and therefore ‘1/4\/1;;_—/1 has the trivial canonical right AP factorization. From (4.7.4) we

also obtain that

spld (T, T )] = {1} NiR =0
These are sufficient conditions for these Wiener-Hopf plus/minus Hankel operators to
have the Fredholm property (cf. Theorem 4.2.2).

To calculate the sum of the Fredholm indices of these Wiener-Hopf plus Hankel and
Wiener-Hopf minus Hankel operators we need once again to use the above computed
determinant of W. From (4.7.3) it follows that inddet ¥ = 1 (the range of the det W is
given in the Figure 4.2, and it is a closed curve; note also that lim, 4. det U(z) = 1,
and in the Figure 4.3 is shown the oscillation of the function det ¥ at infinity). Therefore,

from formula (4.6.2), we obtain that

for U in (4.7.2).
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Chapter 5

Matrix Wiener-Hopf-Hankel operators
with PAP Fourier symbols

In this chapter it is obtained a Fredholm property characterization for matrix Wiener-
Hopf plus/minus Hankel operators with piecewise almost periodic Fourier symbols. The
conditions that ensure the Fredholm property are mainly based on factorizations of certain
almost periodic matrix functions, and spectral properties of some others. In addition,
Fredholm index formulas are also obtained based on an extension of the Cauchy index
notion which is therefore applied to some new functions derived from the symbols of the
operators.

In more detail, the main result in the present chapter (Theorem 5.4.1) provides a
Fredholm characterization and an index formula for the following diagonal matrix opera-

tor:

We + H. 0
=] = (LR - [2ROPY (5.0.1)
0 We — Ho
where ® belongs to the piecewise almost periodic function class (recall Chapter 2). There-
fore, the present chapter extends the results of Chapter 4 (cf. also [13]) where the Fredholm

property and index of the operator D¢ were described but only for Fourier symbols in

the subclass of semi-almost periodic matrix functions. In addition, it complements some

71
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other recent results like the ones of [61].

In the next sections we will prepare the necessary material for the main theorem which
will only appear in the Section 5.4. In this sense, in the previous sections to the Section 5.4,
we will present some known results and generalize some others to a corresponding matrix
version. Moreover, using the generalized AP factorization in Section 5.5 we will be able
to give the stronger results, and we will end this chapter with examples illustrating the

developed theory.

5.1 Preliminary notation and results

We recall here some of the essential facts from the theory of Wiener-Hopf and Hankel

operators. The following equality is well-known (recall (1.6.1)):
Weow = WelgWy + Hq;goH@ , (5.1.1)

for ®, ¥ € [L®°(R)]V*N. The next proposition is the matrix version of the classical scalar
case, which is obviously also valid for the matrix case (one can derive the matrix case

result by using the scalar one entrywise).

PROPOSITION 5.1.1. If © € [C(R)|N*N, then the Hankel operators Ho and He are

compact.

We can equivalently rewrite (5.1.1) as Woy — WoloWy = HolgHg, and therefore

Proposition 5.1.1 directly yields the following known result.

THEOREM 5.1.2. If®, U € [L=(R)]"*N and at least one of the functions ®, ¥ belongs
to [C(R)N*N, then Wy — WeloWy is compact.

Now, employing a continuous partition of the identity, one can sharpen Theorem 5.1.2

as follows.

THEOREM 5.1.3. If &, % € PCN*N qnd if at each point o € R at least one of the

functions ® and ¥ 1s continuous, then Weg — WelogWy 1s compact.
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Proof. The result can be proved by following the same arguments as in the scalar case [52,
Lemma 16.2|, with corresponding changes for matrices in the places of functions. Namely,
let x1,...,xpand xp 1, ..., z, denote all the points of discontinuity of the matrix functions
® and VW, respectively. Then, let © and = be continuous matrix functions on R with the
following properties: ©(zx) = Onxn, k= 1,..., 0, Z(zx) = Onxn, E=LC+1,...,7, and
© + = = Inxn. This construction of © and = turn clear that ®© and ZV¥ are continuous

on R. From Theorem 5.1.2 and © + = = Iny N, we have
Wov = Waerzyw = Waew + Wazw = WaeloWy + K1 + WeloWzy + Ko
= WaeloWy + WaloWzy + K3
= (WoloeWe + Ki)loWy + Waly(WWy + Ks) + K
= WalsWelsWy + K¢ + WelgWzlgWy + K7 + K3
= Wely(We + Wz)loWy + Ky
= WeloWy + Ky,

where K; are compact operators (i = 1,...,8). From here we derive that Wey — WelyWy

is compact. ]

5.2 Wiener-Hopf operators with PC matrix symbols
For ® € PCN*¥ it is well-known the importance for the following auxiliary extension
of ®:
Dol 1) i= (1 — ) — 0) + pd(x +0), (w,0) €R % [0,1],

where ®(z £ 0) denotes the one-sided limits at the point z. This obviously yields det ®y

to have the form
det ®y(z, ) = det[(1 — p)®(z — 0) + p®(z 4+ 0)], (2,p) € R x [0,1],

and maps R x [0,1] into C. One of the peculiarities of det @, is that it allows the consid-

eration of

C = {det(IDQ(a:,u)E(C:a:ER, we 0,1},
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as a closed continuous curve formed by the union of the curve generated by the image of
det ® and the curve that joins det ®5(x —0) to det ®5(x+0) through a line segment, at the
discontinuity points of det ®. In the case of 0 ¢ C, it is therefore possible to consider the
winding number of C, with respect to the origin, as the number of the counter-clockwise
circuits around the origin performed by the image of det 5. In such a case, this winding
number will be denoted by wind[det ®s)].

The next theorem is now considered a classical (Duduchava) result in the Fredholm

theory of Wiener-Hopf operators, and there the winding number plays a fundamental role.
THEOREM 5.2.1. /34, Theorem 4.2] Let ® € PCN*N,
(a) If det ®o(x, po) = O for some (o, o) € R x [0,1], then Wy is not semi-Fredholm.

(b) If det ®y(z, 1) # 0 for all (z, 1) € R x [0,1], then Wy is Fredholm and its Fredholm

index is given by

IndWg = —wind[det 5] .

Suppose det ®y(x, 1) # 0 for all (z, 1) € R x [0,1]. Then ®(z — 0) and ®(x + 0) are
invertible for all 2 € R. Assume in addition that the set Ag := {z € R : &(z — 0) #
®(x + 0)} is finite. For a connected component £ of R\ Ag, it is denoted by ind,[det @]
the increment of any continuous argument of det ® on ¢, times 1 over 27. Taking into
account the possible jump at infinity, the winding number introduced above can be given
in the following way (cf., e.g., [14, page 100]):

, , Y111
wind[det ®5] = ind[det Po] + kz:; <§ - {5 ~ 5 I8 &(oo)}) : (5.2.1)

where
. . Y111
ind[det ®o] = > " indg[det @] + > > (5 — {5 -5 arggk(:c)}) . (5.2.2)
V4 r€Ag k=1

and & (z),...,&v(x) are the eigenvalues of ®~!(z —0)®(z +0) for z € Ag, and where {c}

stands for the fractional part of the number c.
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Thus, the last characterization of the Fredholm property can be reformulated in the

following way.

THEOREM 5.2.2. (¢f., e.g., [14, Theorem 5.10]) Let ® € GPCN*N. For Wg to be a

Fredholm operator it is necessary and sufficient that
sp[@7! (2 — 0)@(x + 0)] N (—00,0] =0,

for all z € R. Here sp[®~'(z — 0)®(z + 0)] stands for the set of eigenvalues of the matriz
O (z — 0)P(x 4 0).
If Wg 1is Fredholm and ® has at most finitely many jumps then

IndWg = —wind[det 5],

where wind[det ®s] is given by (5.2.1)-(5.2.2).

5.3 Wiener-Hopf operators with PAP matrix symbols

The next proposition is the matrix version of a known corresponding result for the

scalar case (cf., e.g., [14, Proposition 3.15]).

PROPOSITION 5.3.1. If ® € GPAPNXN then there exist matriz-valued functions
O € GSAPNN and Z € GPCN*N such that Z(—oc0) = E(+00) = Iyxn,

®=06

[1]

, (5.3.1)
and

We = WelogWz + K1 = W=lyWe + Ko (5.3.2)
with compact operators Kq, Ks.

Proof. The fact that the factorization (5.3.1) is always possible under the conditions of
the present theorem was deduced in the proof of Proposition 2.2.5. Hence let us assume

that @ is factorized and is given by the formula (5.3.1). Since © is continuous on R and
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= is continuous at co, we have that © and = do not have common points of discontinuity.
Now reasoning in a similar way as in the proof of Theorem 5.1.3 (e.g. considering two
continuous matrix functions on R, such that the sum of them is the identity matrix,
and vanishing at the points of discontinuity of © and =) and also taking profit from

Theorem 5.1.2 we deduce that (5.3.2) holds for compact operators K; and Ks. O

The matrix formulation presented in the next proposition is also an adaptation of the

corresponding known scalar case (cf., e.g., [14, Theorem 3.16]).

PROPOSITION 5.3.2. Let ® € PAPY*N . If ® ¢ GPAPN*N | then Wy is not semi-
Fredholm. Assume now that ® € GPAPN*N and ®, and ®, have a right AP factoriza-
tion, then We is Fredholm if and only if

(i) k(@) = K(@,) = (0,...,0)
(ii) sp[d™(®,)d(P¢)] N (—00,0] =0,
(iii) sp[® ' (x — 0)P(x + 0)] N (—o00,0] =0,
forall z e R.
In the last case (under conditions (i)-(iii)), the Fredholm index of Wg is provided by:

IndWe = — > ind[det Z] — ind[det O] — f: G — {% - %arg&(m)})

V4 €A k=1
N
1 1 1
— Z (5 — {5 - %argnk}> : (5.3.3)
k=1
where & (x) are the eigenvalues of the matriz function ®~(x —0)®(x +0), and ny are the

eigenvalues of the matriz d=1(®,)d(P,).

Proof. It ® ¢ GPAPN*N then ® & G[L>®(R)]¥*Y and therefore W is not semi-Fredholm

due to the corresponding Simonenko result [69].
Let us now consider ® € GPAPN*N_ Then we can write (cf. formula (5.3.1)) ® = O=
(with © € GSAPN*N = € GPCN*N and Z(+00) = Iyxn) such that

We = WelogW= + K |, (5.3.4)
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for a compact operator K. From here we infer that W is a Fredholm operator if and only if
We and Wz are also Fredholm operators. In the present context, these last two operators
are Fredholm if and only if the conditions of the theorem are satisfied. More precisely, since
We is a Wiener-Hopf operator with an invertible semi-almost periodic matrix symbol,
and with lateral representatives ©, = ®, and ©, = &, (cf. Proposition 2.2.5) which
admit right AP factorizations, then Wy is Fredholm if and only if (cf. Theorem 4.2.1)
k(©) = k(©,) = (0,...,0), and sp[d~1(0,)d(6,)] N (—o0,0] = 0.

We turn now to the operator Wz=. This operator has an invertible piecewise continuous
matrix symbol. Therefore, applying Theorem 5.2.2, we obtain that Wz is Fredholm if and
only if

sp2 (z - 0)Z(x +0)]N (00,0 =0, z€R.

Now we simply have to observe that =~ (z — 0)Z(z + 0) = &~ !(z — 0)®(z + 0), to reach
the final conclusion (please recall that ¢, is an invertible operator).

To prove the index formula (5.3.3), assume that Wy (with ® € PAPN*N) is a Fred-

holm operator. It is clear that from the equality (5.3.4) we can derive the index formula:
IndWg = IndWg + IndWsz . (5.3.5)

Using formulas (4.3.3), (5.2.1) and (5.2.2), from (5.3.5) it follows that

N
IndWg = — Zindg[det E] — ind[det ©] — Z (% - {% - % arg fk(m)})
k=1

l CCEAq>

26l ame)) R G-}

k=1

where () are the eigenvalues of the matrix function ®~!(z — 0)®(x + 0), 1, are the
eigenvalues of the matrix d='(®,)d(®,). Therefore, (5.3.3) follows from (5.3.6) by just

taking into account that = does not have a jump at infinity. O]
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5.4 Wiener-Hopf-Hankel operators with PAP matrix

symbols

To give the corresponding result as the Proposition 5.3.2 for the operator g (cf.

(5.0.1)) we employ the notion of equivalence after extension relation (recall Chapter 1).

We are now in a position to present the main theorem of the present chapter.

THEOREM 5.4.1. Let ® € GPAPY*Y | and assume that (I)g(/ﬁ:_/l admits a right AP

factorization, then the operator Dg is Fredholm if and only if

(1) (I)g(/};f/l admits a canonical right AP factorization, i.e., k(®,®1) = (0,...,0),
(ii) spld(@@; )] NiR =0,
(iii) sp[®(—z + 0)®~ !z — 0)®(z + 0)P ' (—z — 0)] N (—00,0] =0, z€eR.

In addition, when in the presence of the Fredholm property

mdDs = - ;indg[det =] — ind[det ©] — > i (% - {% - %arg&c(x)})

€Ay k=1
N
1 1 1

where ®®—1 = OF is a corresponding factorization in the sense of (5.3.1) for the invertible
matriz-valued PAP function dD—1 which appears in the formula (1.7.1), & (x) are the
eigenvalues of the matriz function ®(—z +0)®~!(x — 0)®(z + 0)® ' (—x — 0), and 0y, are
the eigenvalues of the matrix d(CDgCI/DZ—/l).

Proof. The proof of the first part of this theorem follows a similar reasoning as in the

proof of Theorem 4.2.2 and Proposition 5.3.2, and therefore it will be omitted in here.

As about the index formula, by using the formula (1.7.1) we obtain that Ind®¢ =
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IndW_ o - Therefore, from (5.3.3), one obtains that

Ind®y = — Y indy[detZ] —ind[det O] — Y Z (— - {— - —argﬁk( )})

VA €Ay k=1

N

- kz:; (% - {% — %argm}) , (5.4.2)
where P01 = OZ is a corresponding factorization in the sense of (5.3.1) for the invertible
PAP function ®®-! which appears in the formula (1.7.1), and which is always possible
due to Proposition 5.3.1, & (x) are the eigenvalues of the matrix function ®(—z+0)® ! (z—
0)®(x + 0)®~!(—z — 0), and 75, are the eigenvalues of the matrix d_l(q)rszl)d(@g@;l).
As we already know that d_l(q)ré?)d(q)ﬂf);) = A?, then the formula (5.4.2) simplifies

to the following one:

IndDg = — Y ind[det Z] — ind[det ©] — ) ° Z (— — {— - —argfk( )})

14 €A k=1
i Lof11
- ——¢———ar
2 2 T g1k )
k=1
where ®d—1 = OZ, & (x) are as above and 7, are the eigenvalues of the matrix A. O

5.5 Generalized factorization and the operator Dy

To obtain stronger versions of the above results we need the following proposition
which can be viewed as a stronger version of Proposition 5.3.2. We would like to emphasize
that in this section we will make use of the generalized right AP factorization, which was

recalled in Chapter 4.

PROPOSITION 5.5.1. Let ® € GPAPN*N | Then Wy is Fredholm if and only if
(i) @, and O, admit a canonical generalized right AP factorization,
(ii) spld=1(®,)d(P,)] N (00,0l =10,

(iii) sp[®~1(z — 0)®(z + 0)] N (—00,0] =0,
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for all z € R.

Proof. The proof runs in an analogous way as the proof of Proposition 5.3.2 (with obvious

changes in the corresponding different places). ]

We are ready to generalize this last theorem for the Wiener-Hopf-Hankel operators

with piecewise almost periodic symbols.

THEOREM 5.5.2. Let ® € GPAPNXN_ Then the operator D¢ is Fredholm if and only
if

(i) CDgé? admits a canonical generalized right AP factorization,

(ii) spld(@,®, )] NiR =0,
(iii) sp[®(—z + 0)® " (z — 0)®(z + 0)P ! (—z — 0)] N (—00,0] =0, =z€eR.

Proof. The proof is the compilation of the techniques examined in Theorem 4.2.2 and

Proposition 5.3.2. O

—_—

The index formula where we “a priori” do not need to require that ®,®! admits a

right AP factorization is now stated.

THEOREM 5.5.3. Let ® € GPAPWYN*N  and assume that D4 is Fredholm operator.
Then

mdDs = —;indg[det =] — ind[det ©] — > i (% - {% - %arg&(@})

€Ay k=1
§ 92 9 T g7k )
k=1

where P~1 = OF is a corresponding factorization in the sense of (5.3.1) for the invertible
matriz-valued PAPW function dD—1 which appears in the formula (1.7.1), &(x) are the
eigenvalues of the matriz function ®(—z +0)®~(z — 0)®(z + 0)® ! (—x — 0), and n, are
the eigenvalues of the matriz d(@gfl/ijl).
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Using this theorem and the fact that PAPW is dense in PAP we can obtain a stronger
result on the index formula for the Wiener-Hopf-Hankel operators with piecewise almost

periodic symbols.

THEOREM 5.5.4. If D4 is a Fredholm operator for some ® € GPAPN*N | then

mdDe = — ;mde[det =] — ind[det O] — > i (% - {% - % arg&(m)})

r€Ag k=1
Z 2 2 0w &k ’
k=1

where P~1 = OF is a corresponding factorization in the sense of (5.3.1) for the invertible
matriz-valued PAP function OO which appears in the formula (1.7.1), &.(x) are the
eigenvalues of the matriz function ®(—z +0)®~(z — 0)®(z + 0)® ' (—x — 0), and n, are
the eigenvalues of the matriz d(q)ﬂ/)\;l).

Proof. The proof runs by analogy to the proof of Theorem 4.6.2. ]

5.6 Examples

We will end this chapter with some examples. We will construct examples which show
that a Wiener-Hopf operator may not be Fredholm although the Wiener-Hopf plus/minus

Hankel operators with the same symbols are Fredholm.

5.6.1 Example 1

Let us consider the following matrix function.

e—i(l+a)z 0 a(z)h(z) 0
o) = (I-uw@)| .
el _ 1 4 el eZ(H"O‘)‘T 0 b(l’)h(x)
pili+a)a 0 [ a()h(z) O
cum | - (x)h(z) |
eloT _ ] 4 i e—Z(H‘O‘)m 0 b(.’L’)h(ﬂ?)
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where o and u are as in Section 4.7, a,b € GC(R) are any real-valued functions which

satisfy the following conditions a(400) = b(£o00) = 1, but for more evidence we are going

to set
1, 1
a(x) = 5(6 22 +1), (5.6.1)
b(x) =1, (5.6.2)
and
1, x| > 1,
h(z) = ¢ @), -1< 2 <0,

(2 —z)e™= ] 0< 2 <1.

d=FG, (5.6.3)

where

e—z’(l—l—a):c 0 ez’(l—l—a)x 0
Flz) = (I-u(@) | o +tu(z) | o

e~lax _ 1 4 el 67,(1+a)a: elar _ 1 4 emi e—z(l—i—a)x
and
a(x)h(z 0
oy | @)
0 b(x)h(x)

Let us observe that @ is invertible, because F' and G are invertible matrix functions, which
directly follows when checking their determinants. We have that Wiener-Hopf operator
with symbol ® is not Fredholm operator because the matrix function

efi(lJra)z 0

A o € GAP
e~lar _ 1 4 el ez(l—l—a);t

does not have a right AP factorization (cf. [47, pages 284-285|). However, if we consider
Wiener-Hopf plus/minus Hankel operator it will be Fredholm. From the equality (5.6.3)

one obtains:

®d~' = FGG'F! | (5.6.4)
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So, from (5.6.4) we have

OOt = Ihyo .

r

Consequently
A(®,D; 1) = Iy .
Whence the eigenvalues are equal to 1 € ¢{R. Now we will calculate
sp[®(—z + 0)® 1z — 0)®(x + 0)d ' (-2 —0)], z€R.

As we already know this expression coincides with (z € R)

sp[G(—z + 0)G Hz — 0)G(z + 0)G~H(—z — 0)] .

Obviously
a Yz)h(x 0
0 b~ (z)h (z)
where
1, lz| > 1,
h_l(l') — e—iw(w-ﬁ-l)’ —1<z< O,
e_;ﬁi_l), 0<xz<l.

Evidently G has only one point of discontinuity 0. Straightforward calculation shows that:

-1 0 . -2 0
G(—2 +0)[y=0 = , Gz = 0)[p=0 = ;
0 - 0 -1
-1 0 ) -2 0
Gz +0)|z=0 = ,and G (=2 — 0)|p=0 =
0 =2 0 -1
Consequently

G(—z+0)G (z — 0)G(z + 0)G (—z — 0) = 2[54s.
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N
N2

Figure 5.1: graph of det ©

From here we have sp[G(—z+0)G™ (z —0)G(z+0)G~(—z —0)] = {2} & (—00,0]. Thus
we reached the last necessary condition for this Wiener-Hopf plus/minus Hankel operator

to be Fredholm:
sp[®(—x +0)@ 1z — 0)®(x + 0)® (—2z — 0)] N (—00,0] =0, z€R.

For an index formula we need first to factorize ®®~! in the appropriate way. Taking into

account that G is a diagonal matrix function we can ensure the following factorization:

PP = FF 'O,
where
o(x) = h(z)h(z) gv 3
0 h(z)h(x)

Now, let us analyze the determinants of F F~1and ©.

det FF~' = det F det F~' = det F(det F)™' = det F(det F)™' =1 .
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Hence, we obtain Ind det F F~1 = 0. Further
L 2| > 1,
det O(z) = h*(z)h(z) =1 (x+2)2eb ) 1 <2 <0,
(x —2)%eb @1 << 1.
The graph of the function det © is given in Figure 5.1 and it surrounds the origin four
times in the positive (counter-clockwise) direction.

Now employing Euler’s formula, one obtains:

etim(@+1) _ cos(dr(z +1)) isin(47r(x +1))
(z +2)? (z +2)? (z +2)?

So, for z € (—1,0) we have:

(z + 2)?sin(4m(x + 1))
(x +2)%cos(4m(z + 1))

Analogously for z € (0,1) we will obtain

arg det ©(z) = arctan ( > = arctan(tan(4m(z 4+ 1))) = 4n(x + 1) .
argdet O(z) =4mw(x — 1) .

Hence, the increment of the continuous argument of det © on (—1,0) is equal to 47 times
1 over 27, so 2, and analogously the increment on (0,1) is equal to 2. Consequently the

first term on the right-hand side of (5.4.1) is equal to 4. Finally, from (5.4.1), we have

Ind[Wq;. + Hq;} + Ind[W(p — H@] =4.

5.6.2 Example 2
Now consider another example. Let
U(z) = [(1 = u(x))P(z) + u(x)®,(2)]H (z)

where u is as above,

efi:c + 1 e~ 1 —e @ —e
ég(fﬂ) - —ix —ix 1 ’ q)r(x) - —ix 1 + —ix ’
(& (& — (& (&
h(z) 0O
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and

1, lz| > 1,

hiz)={ eima+), “1<2z<0,

(x+2)e "D 0<w <1,

Let us start with showing that U is invertible. It is clear that H is invertible. We are left
to show that (1 — u)®, + u®, is invertible. We need to calculate the determinant of this

expression. Direct computation provides that:
det[(1 — u)®; + ud,] = du(l —u)e ™ +2u—1.
Observing that
4 2
du(l—u)=1- — arctan”(x) ,
and

2
2u — 1 = —arctan(z) ,
m

we will obtain:

, 4 2
det[(1 —u)®; +ud,| = (1 - = arctanQ(x)) + —arctan(z) =
7r 7r

4 2 4
cos(z) (1 = arctanQ(x)) + — arctan(z) + isin(x) <ﬁ arctan®(z) — 1) :

From the last equality we have that
det[(1 —u)®y +ud,] =0
if and only if
4 , 2
cos(z) ( 1 — — arctan”(z) | + — arctan(z) =0
i ™

and

sin(x) (% arctan®(z) — 1) =0.
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Now our aim is to show that the last two equalities do not hold simultaneously. Indeed,
we have that sin(z)(Z; arctan?(z) — 1) = 0 if and only if 2 arctan?(z) —1 = 0 or sin(z) =
0. If % arctan®(z) — 1 = 0, then arctan(z) = +%, whence cos(z)(1 — % arctan®(z)) +
2 arctan(z) = £1, and therefore in this case det[(1 — u)®, + u®,] # 0. Consider now the

case when sin(z) = 0. From here we have that x = 7n, where n € Z. So this leads us to

the following criterion, that W is not invertible if the following holds:

4 2
+ (1 - = arctan2(7m)) + —arctan(mn) =0 . (5.6.5)
T T

But we will show that (5.6.5) never holds for any integer number n. We have two quadratic

equations with respect to arctan(mn). Whence we have four solutions, namely:

(1+£+5)m

arctan(mn) = —
and
arctan(mn) = ﬂ :
This lead us to the following equalities:
Wn:%—i—kﬂ', keZ,
or
Wn:ﬂ—i-lm, keZ.

4

Therefore, we get a contradiction because the equality n—k = (+1++/5)/4 is not possible,
due to the fact that (41 4+ /5)/4 is not an integer number. This contradiction proves
that W is invertible.

From the definition of ®, and ®, it is readily seen that they are invertible almost-
periodic “minus” class functions, and so they admit a canonical right AP factorization.

However the Wiener-Hopf operator with symbol ¥ is not Fredholm, because

10
d™(®,)d() = )
0 —1
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Figure 5.2: graph of =

and therefore sp[d=(®,)d(®,)] = {—1,1} N (—o00,0] # 0. Now we will show that the
Wiener-Hopf plus Hankel operator with the same symbol is Fredholm. A straightforward

computation shows that

o afl eix + e—z’m + 1 ei:c + e—i:c
e p—
" ei:c + e—i:c eiz + e—iz -1

This matrix function admits a canonical right AP factorization:

— 1 e—ix + 1 e—ix eia: + 1 ei:r;
cbéq)r =

d(,d, 1) = . (5.6.6)

—_— —

Thus, sp[d(®,P1)] = {—1,1} and therefore sp[d(P,P; )] NiR = (). We are left to check

the condition on the piecewise continuous function H. As far as H has exactly two points of



5.6 Examples 89

discontinuity, namely 0 and 1, we have to calculate H(—z—0)H *(z—0)H (x+0)H ' (—z—

0). Computations show that
H(—x—0)H (2 — 0)H(z + 0)H (=2 — 0)|s—0 = 2/ox2,

and

H(—z—0)H Yz —0)H(z +0)H (—2 — 0)]po1 = éfm.

Therefore sp[H(—x — 0)H Yz — 0)H(z + 0)H (—z — 0)] = {1/3,2} N (—00,0] = 0,
(x € R). Consequently we deduce that Wiener-Hopf plus/minus Hankel operator with
symbol ¥ is Fredholm.

To calculate the sum of Fredholm indices of the operators Wiener-Hopf plus/minus

Hankel with symbol ¥ we have to factorize TU-L Tt s readily seen that
VUt =00 'HH !,

where © = (1 — u)®, + ud,, and recall that H H'isa diagonal function with equal
entries on it. Let us consider the determinants of ©9~! and HH L. Straightforwardly we

see that

2u — 1+ 4u(l —u)e ™

=:=det 0O = T -
¢ 2u — 1+ 4u(l — u)e™

(The graph of = is given in Figure 5.2). It is well-known that

Sm=
= = arct 2.6.7
arg arctan < o ) : ( )

where SmZ stands for imaginary part of the complex quantity =, and ReZ= — for the real

part. Once again a straightforward calculation shows that

SmE 7' —4n?arctan®(x) — 21 cos®(x) + 167 cos?(x) arctan®(z)
Re= sin(2z)(4 arctan?(z) — 72)2
16 arctan?(z) — 32 cos?(z) arctan?(z)

sin(2z)(4 arctan?(z) — w2)?

As we see the numerator of the fraction in (5.6.7) is an even and the denominator is an

odd function, whence the fraction is an odd function. This means that (argZ)(—z) =
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—(arg Z)(x). Employing one of the applications of the formula (4.3.1), one obtains:

~ 1 T 1 T
. -1 . = _ =\(_— = lim — = =
inddet O™ = jlgrolo oT /T((arg =)(z) — (arg 2)(—x))dx jlgrolo /T(arg )(z)dx =0,

because the integral bounds are symmetric and the function under the integration is an
odd one. As we have shown above (cf. (5.6.6)) the eigenvalues of the matrix d(@gdfijl)
are equal to —1 and 1. We need now the determinant of the matrix function H HL.

Calculating the determinant we have

1, 7] > 1,
Y () = det[H(x)H (z)] = B2 (x)h 2(x) = { (v —2)"2, —1<uz<0,
(r+2)? O0<z<l.

Hence we get that Y is a positive real-valued function, whence the argument of it is equal

to zero. Consequently from the formula (5.4.1) we have the following equality:



Chapter 6

Unitary and sectorial symbols

In this chapter we consider matrix Wiener-Hopf-Hankel operators acting between
Lebesgue spaces on the real line with Fourier symbols presenting some even properties
(which in particular include unitary matrix functions), and also with Fourier symbols
which contain sectorial matrices. In both situations, different conditions are found to
ensure the operators two-sided invertibility, one-sided invertibility, Fredholm property,
and the n- and d-normal properties. These new results are assembled in Theorems 6.1.2
and 6.2.2. Although in this chapter we consider the theory for the matrix Wiener-Hopf-

Hankel operators in the end we give examples for both the scalar and the matrix case.

6.1 Matrix Wiener-Hopf-Hankel operators with sym-

metry

Our goal is to obtain characterizations for the regularity properties of (5.0.1), in the
cases where: (i) the Fourier symbol presents some even symmetry when combined with
its conjugate transpose; (ii) the Fourier symbol is a matrix function which allows certain
factorizations depending on sectorial elements. Therefore, we will generalize the results
of [11], and will also consider other classes of Fourier symbols which were not treated in

[11]. We recall that ® € [L>°(R)]¥*V is called unitary if ®®* = &*® = [y, y, where ®*

91
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stands for the conjugate transpose of ®.

In the Wiener-Hopf operators case there is a well-known theorem — due to Douglas
and Sarason — about the regularity properties of this kind of operators and the distances
from the Fourier symbols to certain spaces. More precisely, the theorem may be written

in the following form.
THEOREM 6.1.1 (Douglas and Sarason [32]). If ® € [L=®(R)|N*N is unitary, then:

(a) W is two-sided invertible if and only if dist(®, GIHZ(R)["*N) < 1 if and only if
dist(®, G[H>(R)|V*N) < 1;

(b) We is left-invertible if and only if dist(®, [H*(R)|M*N) < 1;
(V') We is right-invertible if and only if dist(®,[H®(R)]N*N) < 1;

(¢) We is Fredholm if and only if dist((I),Q[C'(]R) + HP(R)VN) < 1 if and only if
dist(®, G[C(R) + H®(R)V*N) < 1;

(d) We is n-normal if and only if dist(®,[C(R) + H(R)MN) < 1;
(d) We is d-normal if and only if dist(®, [C(R) + H®(R)V*N) < 1.

The last theorem served as a motivation for obtaining such kind of result for our
Wiener-Hopf-Hankel operators. However, it is clear that adding Hankel operators to the
above Wiener-Hopf operators will give rise to several changes in the regularity properties of
the resulting operators. In addition, we will work not only with unitary matrix functions
but with the more general class which appears in the general assumption of the next

result.

THEOREM 6.1.2. Let ® € G[L>®(R)|™ and assume that ®*® is an even matriz-

valued function.

(a) Do is two-sided invertible if and only if dist(cbi;/l, GHZ(R)N*N) < 1 if and only
if dist(®d-1, GIH®(R)[VNV) < 1;
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(b) Dg is left-invertible if and only if dist(CI)a—Jl, [H(R)]VN) < 1;

I

(V') Dg is right-invertible if and only if dist(®P-1, [H>®(R)|MN) < 1;

(¢c) Do is Fredholm if and only if dist((IDCI/):/l, GIC(R) + HZ(R)N*N) < 1 if and only if
dist(@D 1, G[C(R) + H=(R)M*N) < 1;

(d) Do is n-normal if and only if dist(@P—1, [C(R) + HZ(R)VN) < 1;
(d) D¢ is d-normal if and only if dist(®d—1, [C(R) + H=(R)¥*N) < 1.

Proof. The proof is based on the notion of equivalence after extension relation (recall

Chapter 1). From (1.7.1) we have that D¢ is equivalent after extension with Wye_,.

Thus, we are now going to analyze the Fourier symbol &®-1.

—_—

Let us observe that for ® € G[L>®(R)]V*¥ the function ®®~! is unitary if and only if

®*® is even. Indeed, suppose that ®*® is even. By the definition we have:
D = D .
From here it directly follows that

P! = (O*) 1P~ . (6.1.1)

To simplify further arguments, let us introduce the new notation: ¥ := ®®~1. To prove

that U is unitary we have to show that
YU = U = [yen -

Performing a direct substitution, we will have that

—_—

TT* = PO-L(P1) D"

Having in mind formula (6.1.1), from the last equality one obtains:

TP = (%) 7H(D) (@) D" = (%) 7H(D) (D) 710" = (%) 1P = Iy -
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Analogously, we have:

T = (071 P PP = (D1) D (") 1B = Ly .
To prove the above stated equivalence we are left to show that if dP1 is an unitary

matrix function, then ®*® is even. If ®P—1 is unitary, then we derive that

OO1(O1) D" = Iy .

Consequently, we have:

—_—

P! = (0°) 71

Hence, ®*¢ = ®*® and we have shown the above announced equivalence.

From the above reasoning we have that P! is unitary. We can now apply Theo-
rem 6.1.1 to the operator Wyge_, and obtain all the above stated conditions in terms of
distances. Now, the result follows if we employ an equivalence after extension relation

between Dg and W1, which allows the transfer of regularity properties from Wyg_. to

Do. ]

REMARK 6.1.3. Note that the global assumption of the last theorem which requires
that ®*® is an even matrix-valued function is more general than assuming ® to be an

unitary matrix function.

6.2 Matrix Wiener-Hopf-Hankel operators with secto-
rial components

In the present section we will work out a different characterization for the regularity
properties of matrix Wiener-Hopf-Hankel operators, and which is now based on the use
of certain sectorial parts of the matrix Fourier symbols of the operators.

We recall that by SV is denoted the set of all sectorial matrix functions (in
[L=(R)]N*N). Once again, for matrix Wiener-Hopf operators with such kind of Fourier

symbols a description of the possible regularity properties is known.
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THEOREM 6.2.1. [27] If® € GIL®(R)]¥*Y, then:

(a) We is two-sided invertible if and only if ® = Sh,S € SN h e GIHZ(R))NV*N 4f
and only if ® = hS, S € SN*N h e G[H>(R)|N*N ;

(b) We is left-invertible if and only if ® = Sh, S € SN h e [HX([R)MN;
(V') Wy is right-invertible if and only if ® = hS, S € SN h € [H>®(R)|V*N;

(¢c) Wy is Fredholm if and only if ® = Sh, S € SN h e G[C(R) + HE(R)PVN 4f
and only if ® = hS, S € SNV h e G[C(R) + H®(R)|V*N

(d) We is n-normal if and only if ® = Sh,S € SNV h e [C(R) + HP(R)VN
(d) We is d-normal if and only if ® = hS,S € SNV h e [C(R) + H®(R)|V*V,

We will now introduce a corresponding theorem for Wiener-Hopf-Hankel operators

(i.e., for the operator D).
THEOREM 6.2.2. Let & € G[L™(R)]N*N.
(a) D is two-sided invertible if and only if
-1 = Sh, S € SVN| b e GIH®(R)]VN
if and only if

dO1 = 1S, S e SVN he GH®R)VN;
(b) Do is left-invertible if and only if
®P—1 = Sh, S € SVN, he [HPR)VN;

(c) Do is right-invertible if and only if

dD1 = hS, S e SVN he [H®R)VN;
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(d) Do is Fredholm if and only if
®b-1 = Sh, S € SNV, h e GIC(R) + HE(R)NN
iof and only if

Sb—1 = hS, 5 € SVN, he GIOR) + H=(R)NN;

(e) Dg is n-normal if and only if

®b~1 = Sh, S € SVN, h e [C(R)+ HX(R)NN;

(f) Do is d-normal if and only if

dO1 = 1S, S € SVN he [CR) + H®(R)VN .
Proof. To prove this result we perform the same reasoning as in the proof of Theorem
6.1.2, and make use of the fact that Dg is equivalent after extension with W, o . This

allows us to transfer the above mentioned regularity properties from the operator W, o

to the operator ®4 by using Theorem 6.2.1 and the indicated operator relation. ]

6.3 Examples

We end with some examples showing the applicability of the last result. Let us

consider the Wiener-Hopf plus Hankel operator
WH,, : I2(R) — L*(R,).
with the particular Fourier symbol
op(z) = (2 +sin(x)) e, z€R,
where o € R is a given parameter. Direct computations show that

o) gy (a) = 3

2iox
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So, if we choose s,(z) = (2 + sin(z))/(2 — sin(z)) and h,(x) = e***, we see that s, € S.
This occurs because 1/3 < s, < 3, and therefore the range of s, is contained in the right
half-plane (which boundary passes through the origin). Moreover, depending whether
a>0ora <0, we have h, € HP(R) or h, € H*(R), respectively. Therefore, applying
Theorem 6.2.2 to

Pp 90; = Sp hp s
we conclude that:

(a) if & =0, then WH,, is two-sided invertible;
(b) if a > 0, then W H,, is left-invertible;

(c) if o <0, then WH,, is right-invertible.

Now we give an example with matrix operators. Let us consider the matrix Wiener-
Hopf plus Hankel operator
WHsy, : [LL(R)]* — [L*(R4))?,
with the particular Fourier symbol
2 +sin(z) 0 e 0

Py(z) = , reR,
cos(z) 1 0 1

where o € R is a given parameter. Direct computations show that

3, (2) (i);—/l(x) _ e?ior () <2 + sin(z))(2 — sin(z))~? 0 s,
0 1 (e?® — 1) cos(x)(2 —sin(x))™' 1
and
By) By — | CTREIE T 0 (A0
(1 —e ) cos(x)(2 —sin(x))~" 1 0 1

So, we have that s, and S, are sectorial matrix functions because the main minors of that
matrices are positive definite and this is a particular case of sectorial matrix functions.
Moreover, depending whether o > 0 or o < 0, we have hy, H, € [H*(R)]**? or hy, H, €

[H>°(R)]**2, respectively. Therefore, applying Theorem 6.2.2, we conclude that:
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(a) if @ =0, then W Hg  is two-sided invertible;
(b) if a > 0, then W Hg, is left-invertible;

(c) if @ <0, then W Hg, is right-invertible.



Chapter 7

Scalar Wiener-Hopf plus Hankel

operators via odd factorizations

In this chapter the invertibility of Wiener-Hopf plus Hankel operators with essentially
bounded Fourier symbols is described via certain factorization properties of the Fourier
symbols. In addition, a Fredholm criterion for these operators is also obtained and the

dimensions of the kernel and cokernel are described.

Once again, let us emphasize that in recent times algebraic combinations of Wiener-
Hopf and Hankel operators have been receiving an increased attention in view of their
invertibility and Fredholm properties. Part of this interest comes from certain applications
where such combinations of operators arise. Recent works within this context can be
found e.g. in [2], [3], [11], [19], [24], [26], [29], [51], [58], [60], [61]. Some of these works are
devoted to certain asymmetric factorizations concepts which are helpful to look for in view
of the invertibility properties of corresponding operators with symmetries. In coherence
to these developments, in the present chapter we propose an odd asymmetric factorization
concept which will be crucial to find out an invertibility and Fredholm characterization

for Wiener-Hopf plus Hankel operators with essentially bounded Fourier symbols.

Thus, the main goal of the present chapter is to obtain invertibility and Fredholm

criteria for Wiener-Hopf plus Hankel operators acting between L? Lebesgue spaces.

99
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7.1 0Odd factorizations on the real line and main invert-
ibility result

We start by introducing a definition that will be later on completed by a corresponding
stronger version which will have a central role in our invertibility and Fredholm criteria
for the Wiener-Hopf plus Hankel operators. Thus, at the end of the present section it will
be already possible to state the main invertibility criterion for WH,, (cf. (1.4.5)).

DEFINITION 7.1.1. A function ¢ € GL®(R) is said to admit a weak odd asymmetric

actorization in L*(R) if it admits a representation
J p

such that » € Z, and

(i) ipe- €HIR),  Lpet' € HX(R),

(z—

(“) 302;4_1900 € Lidd(R) ) r|22|.1 90;1 € L%dd<R) .

Here and in what follows L?,,(X) stands for the class of odd functions from the space

L3(X). The integer » is called the index of a weak odd asymmetric factorization in L*(R).

Let us note that we have the uniqueness (up to a constant) of such type of factoriza-

tions. This last property is given in exact terms in the next theorem.

THEOREM 7.1.2. Assume that ¢ € GL>®(R) admits two weak odd asymmetric factor-

izations in L*(R):

o) =00 (53] o) = o0 (L) ). wer.

T +1 T +1

Then, we necessarily have k1 = Ko, go(,l) = 090(,2) and @, = C’*lcp((f), for some constant

CeC\{0}.

Proof. Let ¢ admit two weak odd asymmetric factorizations:

o) =00 (51) el0) = o) (E1) o), weR (T
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(where go(_l), gp(_z) and gagl), gog) have the corresponding properties of (i) and (ii) in Defini-

tion 7.1.1). From (7.1.1) we immediately have that

D) (5] =), ek (1)

We can assume without lost of generality that x := k1 — Ky < 0, since otherwise we would

consider

PO (1) — A @), cer

instead of (7.1.2) (and from this last identity we are able to take the same conclusion and
therefore proceed with the proof in a similar way).

Let us now consider the following auxiliary function:

vie) = ¢ - oL V(@) (P (2)) " € HL(R) . (7.1.3)
A direct computation yields that
b(z) = — WD) (F @ (z)! ! . 1.
(x) TR (@)(p=" ()" € Hi(R) (7.1.4)

The right-hand side of (7.1.2) is an even function (since it is a product of two odd func-

tions). Hence, from (7.1.2), we immediately obtain that

D) (2] =E N @E )

This identity together with (7.1.3) and (7.1.4), lead to the conclusion that

wla) (25 ) _—y (7.15)

T+
Due to the inclusions in (7.1.3) and (7.1.4), if 2k+4 < 0 then from (7.1.5) we immediately
obtain that i) = 0 is identically zero and hence we would have a contradiction. This means
that it only remains the possibilities of kK = —1 and x = 0. Let us analyze the case where

k = —1. In the present case, (7.1.5) is reduced to the form

(z—i)*(@) = —(z +0)"(2) .
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Hence, using (7.1.3)—(7.1.4), we have a contradiction which shows that x cannot be equal
to —1. Thus, the only possibility which is left for x is to be equal to zero. Therefore, in

such a case, k1 = Ko. In this case we will have that

@) P (@) = V@)@ @)

Consequently, ') (2)(¢® (z))~! = C for a constant C' € C \ {0} (cf., e.g., [24, Theorem
4.2)). Thus ¢ = Cp® and ¢V = 1. O

The following definition may be viewed as a strong version of the previous introduced

weak factorization and will play a crucial role in the main theorem below.

DEFINITION 7.1.3. A function ¢ € GL>®(R) is said to admit an odd asymmetric

factorization in L*(R) if it admits a representation

r—i\”
p(x) = o_(z) < ) 0o(r), TER, (7.1.6)
such that » € Z, and

(i) GEpe- € HX(R),  ohpy € HX(R),

(i) 9o € L2(R),  imes' € L2u(R)
(1i1) the linear operator ./ = WE,I(I — NW,-1 - L*(R) — L2, (R) is bounded.

The integer » is called the index of the odd asymmetric factorization in L*(R). Please,

note that in (iit) the “Wiener-Hopf operator” is acting on the full space L*(R).

We are now in a position to state the main result about the invertibility of our

Wiener-Hopf plus Hankel operators with L symbols.

THEOREM 7.1.4. Let ¢ € GL*(R). The operator WH , is invertible if and only if ¢

admits an odd asymmetric factorization in L*(R) with index 3 = 0.

The proof of this theorem will be given in Section 7.3.
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7.2 0Odd factorizations on the unit circle

In the present section we will introduce some auxiliary notions which will be useful
to work out some conclusions in the unit circle setting. The reader should recall that odd

functions on the unit circle are exactly those which satisfy the condition given on page 3.

DEFINITION 7.2.1. A function ¢ € GL>®(I'g) is said to admit a weak odd asymmetric

factorization in L?(Ty) if it admits a representation
P(t) = - ()t po(t), teTy,
such that k € Z and
(i) A+t o€ H2(To),  (1—t1)e~" € H2(Ly),
(ii) 11 —t|go € L244(To), 11 +t|g, " € L34(To) -
The integer k is called the index of an asymmetric factorization in L*(Ty).

Now we will present a theorem about the uniqueness of a weak odd asymmetric

factorization in L?(Iy).

THEOREM 7.2.2. (an analogue of [3, Proposition 3.1]) Assume that ¢ admits two weak

odd asymmetric factorizations in L*(Ty):
o(t) = o (06l (1) = 0P (016 (1), tEeTy. (7.2.1)
Then ky = ko, ¢ = Co®, i) = C16{? with C € C\ {0}.

Proof. Without lost of generality, we can assume that s := k; — ky < 0. From (7.2.1) we
have that

(62) 1Mt = o (9) . (7.2.2)

Take ¢ := (1 — t‘2)(¢(_2))_1¢(_1). Obviously, we have that ¢ € H'(T). Formula (7.2.2)

leads to

(1=t (0 = o ()05 (2) "
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where the right-hand side is an even function (since it is a product of two odd functions).

Therefore,

(L= 7)) = (1= )Tt

and from here we have:

YO = —p(t7).

If we assume that » < —1 we would obtain that ¢» = 0 (by observing the Fourier

coefficients of 1), which is a contradiction. Hence s = 0. In this case we have that
P(t) = C(1 —t72) with C # 0. From here finally we have: k; = ko, ¢(_1) = C(b(_z), and
o5 = 0 1glY. O

Let R stand for the linear space of all trigonometric polynomials. Suppose that

¢ € GL>®(T'y) admits a weak odd asymmetric factorization in L*(Ty) with index k = 0.
Hence ¢ = ¢_¢,. We will set [3]

Xy o= {0 -t)f(t): feR},
Xy = {(L+t)o (O (1) - f e R f(1) = f(t7)}.

We make the simple observation that X is a dense subset of L*(T).

Consider the following complementary projections:

I+
Py, = TFO : LX(Do) — L*(Lo),  Qu, =1~ Py, -

These projections decompose L*(I'g) into the direct sum: L*(Ty) = ImPy. @& ImQ, .

A natural strong version of the last definition is given next.

DEFINITION 7.2.3. A function ¢ € GL>®(Ty) is said to admit an odd asymmetric

factorization in L*(Ty) if it admits a representation

o(t) = ¢_ ()t po(t),  teTy, (7.2.3)

such that k € Z and
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(i) (1+t o € H2(Ty), (1—tYe~t € H2(Iy) ,
(i) |1 —t|¢o € L244(T0), |1+ tlo, " € L2gq(To)

(iii) the linear operator & := L(¢;Y)(I + Jr,)Pr,L(¢~") acting from X, into X, extends

to a linear bounded operator & acting from L*(Ty) into Im@ ., -

As before, also in here k is called the index of a weak odd asymmetric factorization in

L2(Ty).
An equivalent formulation of the condition (7i7) is evidently the following:
(i77*) the operator & is a bounded operator on L?(Ty).

We observe that Definition 7.2.3 is related with Definition 7.1.3 in the sense that a
function ¢ : Ty — C admits an odd asymmetric factorization in L?(Ty) if and only if the

T—1

x—ﬂ.), r € R, admits an odd asymmetric factorization in L*(R).

function ¢(z) := ¢ (

PROPOSITION 7.2.4. A function ¢ € GL>®(I'y) admits an odd asymmetric factor-
ization in L*(Ty) with index k if and only if ¢ := (By'¢) € GL®(R) admits an odd

asymmetric factorization in L*(R) with index k.

Proof. Let us assume that ¢ admits an odd asymmetric factorization in L?(Ty) with index

k. Hence, we can write (cf. (7.2.3)):

o(t) = d_()thp,(t),  t €Ty, (7.2.4)

with the properties (i)—(iii) on the factors stated in Definition 7.2.3. Performing the Bj*
transformation in both sides of the equality (7.2.4), we obtain:

(By'o)(x) = (By'¢-)()(By ' d) (2)(By ' do) (x) .

where d denotes the function d(t) := t*. Now, if defining

o(z) = (By'e)(x) = ¢ (""") ,

T +1

pola) = (B0 =0 (£51) |

o) = (B30 =0, (21) |



106 7. Scalar Wiener-Hopf plus Hankel operators via odd factorizations

it follows

o) = o (o) (25 i)kmx) .

T+

Le., formula (7.1.6) with s taken to be equal to k. Thus, we are left to show that the
corresponding conditions (z)—(éi7) on the factors used in the factorizations of Definitions
7.2.3 and 7.1.3 are equivalent.

We have that

(1+tHe_ € H*(Ty)

if and only if

T —1

> o_ € H*(R) .

Indeed, let (14+t"1)¢_ € H?(Iy), then [By'(1+t )¢ _|(x) € (x —i)H?(R) (cf., e.g., [14,
page 108 and in particular formula (6.3)]). That means

NI (@) = ﬁ.(w“?)w_(x)em(m,

(x —1i)? 7 T —1 T —1
and therefore we have the equivalence of the first propositions of conditions (7).

To prove the equivalence of the first proposition of (ii)—conditions we need to “com-

pensate” the space with a particular even weight. Letting |1 — t|¢, € L244(To), then
By (|1 —tlgo) € By (L2ga(T0)) - (7.2.5)

Thus, to obtain from the last inclusion a new one where we will be dealing with the space

1

L?,4(R) we just need to use in (7.2.5) the multiplication by the weight function wes]

[y

and therefore reach to

1
vz +1

Consequently, we have:

(Bo (11 = tlgo))(2) € L3ga(R) .

IQ—H%@") € L244(R) .
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Analogous arguments will give corresponding equivalences for the second inclusions of
conditions (¢) and (7).

We will prove now the equivalence of conditions (ii7). As far as the condition (i)
of Definition 7.2.3 can be written in the form of the condition (7ii*) cited after Defin-
ition 7.2.3, we will show that & is a bounded operator if and only if .¥ is a bounded

operator. Consider the following operator:
F'BEB'F. (7.2.6)

This operator is equivalent to & simply because it is obtained from & by multiplying from

the left and from the right by invertible operators. Moreover, from (7.2.6) we have:

F'BEB'F = F'BL(¢;Y)YI + Jr,)Pr,L(¢~")B™'F

_ —1 -1 -1 -1 -1 -1
= F BL(¢, >B_f],f_3,<f +Jr0>3_f1,f_B,Pro
-1 -1 —1\ p-1
B fl]—" BL(¢p_"\B~'F
= F o 'F(I — Nlor Flo ' F

= Woi(I =))W, =5,

where we employed formulas (1.8.2), (1.8.3) and (1.8.4). Finally this means that & and
. are unitarily equivalent operators.

From the above reasoning it is clear that we can proceed in a ‘reverse” direction, i.e.,
starting from a factorization for the function ¢ and obtain a corresponding factorization

to the function ¢, which completes the proof. m

7.3 Proof of the main invertibility result

To prove the main invertibility result of the present chapter (i.e., Theorem 7.1.4) we
need to prepare several auxiliary material, which in some cases —at a first look— may seem
similar to some of the results of [3|, but actually the present ones incorporate significant

differences.
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7.3.1 Auxiliary notions, operators, and results

We will relate Toeplitz minus Hankel operators with the following operators:

(I)¢ = PFOL((Zﬁ)QJFO . Il’IlQJFO — Hi(ro), (731)
\Ifw = QJFOL(w)PFO . Hi(f‘o) — ImQJFO s

where ¢(t) = ¢~ (—t7). It is readily seen that 20y = (Ty — Hy)|1y, -
Lo
The following well-known lemma is of interest and will be needed to prove Proposi-

tion 7.3.3.

LEMMA 7.3.1. Let X1 and X5 be linear spaces, A : X1 — X5 be a linear and invertible
operator, P, : X1 — Xy and P, : X9 — Xy be linear projections, and Q1 = [ — P, and
Qs =1— P,. Then P,AP; : ImP, — ImP; is invertible if and only if Q1 A™1Qs : ImQy —

Im@Q), s invertible.

The proof of Lemma 7.3.1 can be found e.g. in [70].

The next two propositions are essentially taken from [3].

PROPOSITION 7.3.2. Let ¢ € GL®(Iy). The operator ®, € L(ImQ s, , H3(Ty)) (de-
fined in (7.3.1)) is equivalent to the Toeplitz minus Hankel operator Ty—Hy € L(H?(Ty)).

Proof. Let us consider the operators

Ry = (I —Jr,)Pr,: HY(Ty) = ImQyy,
1
RQ = 5 F()(I - JFO) : ImQJFo - H_%_(F()) ’

These operators are inverses to one another and a direct computation yields that
(I)¢R1 - T¢ - H¢
which shows explicitly the equivalence relation between the operators ®, and Ty, — Hy. [

PROPOSITION 7.3.3. Let ¢ € GL>®(Ty) and ¥(t) = ¢~ (=t 1), t € Ty. The operator
Wy, 2 H (Do) — ImQy, s invertible if and only if Ty — Hy = HI(To) — HI(Ty) is

mvertible.
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Proof. We will make use of Lemma 7.3.1 by choosing P, = QJFO, Py = P, Q1 = Py,
and Q)2 = Qr,. Thus, from Lemma 7.3.1 we derive that &, is invertible if and only if
P JF0L<¢_1)QFO is invertible. Multiplying from the left and the right in this last operator

by Jr,, we obtain
Jro iy L(6™)QryJrg = Prpy Jrg L(¢™ 1) Jry Pr, - (7.3.2)

Now, to reach the operator W,, we will consider the operator Vi, : L*(Tg) — L*(Ty),
(Voo f)(t) = f(—t), and use it in (7.3.2) in the way that:

VFOPJFOJFOL(¢_1)JFOPFOVFO = QJFO YFOJFOL(¢_1)JF0VFgPF0 =Wy,
L(¥)

where ¢(t) = ¢~ (—t71). O
We assemble in the next corollary a direct consequence of the last two propositions.

COROLLARY 7.3.4. (an analogue of |3, Proposition 2.4]) Let ¢ € GL>®(I'y). Then the

following assertions are equivalent:
(i) Ty — Hy is invertible in L(HZ (Ty)),
(ii) g is invertible in L(ImQ s, , HF(T)),
(iii) W is invertible in L(HZ(To), ImQ . ), where ¢(t) = ¢~ ().

LEMMA 7.3.5. (an analogue of [3, Lemma 4.1]) Assume that ¢ € GL>®(I'y) admits
a weak odd asymmetric factorization in L*(Ty) with index k = 0. Then the following

assertions hold:

(i) the operator & = L(¢;4)(I + Jry) PryL(¢Z") is a well-defined linear operator acting
from X1 into X5 |

(ii) ®3& = Pryix, »

(111) Ker®, = {0}.
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Proof. (i) Let f € X; and ¢ = ¢_¢, (with ¢_ and ¢, under the conditions of Definition

(i)

7.2.1). We will compute &f. First, we write f(t) = (1 —t71)f1(t) with f; € R.
Multiplying both sides of the last equality by ¢~', we have:

- (O f(t) = (1=t (1) Au(t) -

Hence, we can decompose ¢_' f in an unique way:

oM () f(t) = ur(t) + pu(t) (7.3.3)

where u; € t7*H?(T'g) and p; is a polynomial. From the last equality and from
the assumption that f € X it also follows that f has the following form: f(t) =
¢ (t)(u1(t) + pi(t)). Later on we will use this fact. Now, applying the Riesz projec-
tion to (7.3.3), we will have Pr,(¢-"f)(t) = pi(t). Hence (£f)(t) = ¢; ' (t)(p1(t) +
t~py(t71)). Since py(t) + ¢ p;(¢t7!) vanishes at t = —1, this expression is (1 +¢71)
times a trigonometrical polynomial f, such that fo(t) = fo(t7'). Now it is clear

that & f belongs to the space Xs.

Let us take again f € X; and assume the existence of a weak odd asymmetric
factorization of ¢ = ¢_¢, in L*(T'y) (with index k& = 0). From the part (i) of the

proof we know that

f@#) = (t)(ui(t) +pi(t)) ,

where u; and p; are as in the formula (7.3.3). Our aim is to compute ®,& f. We
have already calculated (&f)(t) = ¢, (t)(p1(t) + t 'p1(t7!)). From here we have
that

(BoEF)0) = (PrL(6 ) L(0)

Pry(o-(p1 +t71p0))(t) -

¢y (o1 +t7p1))(t)

In addition, we need to prove that ®4& = Pr|x,. To this end, we need to show that
the following inclusion holds true: ¢_(p; +t 'p1) — f € t 1 H (Ty). We are left to
note that the last inclusion was already deduced (even in a more general setting) in

[3, Lemma 4.1]. This proves the part (ii) of the lemma.
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(ili) Let f € Ker®,. This means that f € Im@Q, and

Pry(6f) =0. (7.3.4)

Define f_ := ¢f. From the definition of Pr, and (7.3.4) it follows that f_ €
t=*H?(Ty). Consequently, we have

O - =¢of ,

and therefore

H(1 =t D)o (1)f-(8) = (t = 1)eo(t)f(t) =t (1) . (7.3.5)

Additionally, we have that (1 — ¢t 1)¢=' € H?(I'g) and tf- € H?(Iy). Then it
follows from (7.3.5) that ¢ € H! (Ty). Moreover, from the last identity in (7.3.5) we
have zZ = —1). In particular, this implies that ©» = 0 and consequently f = 0.

[

LEMMA 7.3.6. (an analogue version of [3, Lemma 5.1] to the present case) Suppose
that ® is invertible. Then there exists functions f_ # 0 and f, such that

f-(t) = o(t) fo(t) ,
and
(14+tYf € HA(Ty), 11 +tf, € L2,y(T) .

Proof. If @, is invertible, then Im®, = H?2 (I'y). Let us consider h, € ImQ Jr, Such that
®4h, = 1. In addition, take h_(t) := ¢(t)h,(t). From here we have that h_ € H?(T) and
h_ # 0. If defining

for= @+t (1),
then f_ satisfies the required conditions and

f-(t) = L+t d(t)ho(t) -
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Now, construct f,(t) := (1 +t~1)"1h,(¢). It is readily seen that |1 + t|f, € L*(T'y) and f,

is an odd function. Indeed,

fo(t_1> = (1 + t>_1ho(t_1> = _(1 + t)_ltho(t> = _(1 + t_l)_lho(t)
= _fo(t) :

Consequently, we have the desired “factorization”
f - = ¢f o -
]

LEMMA 7.3.7. (an analogue of [3, Lemma 5.2]) If Uy, is an invertible operator, then
there exists functions g_ # 0 and g, such that

g-(t) = go(t)p ™" (t) ,
and
(1—t"g- € H2(To),  [1—tlg, € L34y(To) -

Proof. If Uy, is invertible, then its adjoint operator (V¥,)* = @ is also invertible. It

follows from the previous lemma that there exist elements f_ # 0 and f, such that
1+t Yfo e H (L),  |1+t|fo € L2q(To),
and
f-(t) = o710 fo(t)-

Let us now pass to the complex conjugate and make the substitution ¢ — —¢t~!. Choosing

g_(t) = f_(=t71) and g,(t) = fo(—t71), it follows that
(L—t"")g- € H:(Ty), [1—tlgo € Loaa(To) ,

and g_(t) = ¢~ (t)(?). O
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REMARK 7.3.8. The results stated in Lemma 7.3.6 and Lemma 7.3.7 still hold true if
we substitute the assumption about the two-sided invertibility of ®, and W¥,, by only the

right and left invertibility of these operators, respectively.

THEOREM 7.3.9. (an analogue of [3, Theorem 5.3]) Let ¢ € GL*>®(I'y). The operator
Ty — Hy is invertible if and only if ¢ admits an odd asymmetric factorization in L*(Ty)

with index k = 0.

Proof. If T;— Hy is invertible, then by Corollary 7.3.4 it follows that the operators ®4 and
VU, are also invertible. Applying Lemma 7.3.6 and Lemma 7.3.7 we will obtain that f_ =
of, and g_ = g, ! for f_, g_, f, and g, enjoying the appropriate properties described in
that lemmas. Multiplying the corresponding elements in the last two identities, we obtain
g—f— = gofo. Moreover, it follows that g_f_ = g,f, =: C is a nonzero constant (this can
be proved in a similar way as in the proof of the uniqueness of weak odd asymmetric
factorizations in L*(Ty)).

Now we put ¢_ = f_ = Cg-" and ¢, = f; ' = g,C~'. Hence

¢: ¢f¢o>

and we have shown that ¢ admits a weak odd asymmetric factorization in L?*(Ty) (with
index k = 0). Now we have to prove that & can be extended to a linear bounded operator
which acts on L?*(Ty). From Lemma 7.3.5 we have that & is well-defined. Assertion (i)

of the same lemma gives the following:
g g (I)¢_51PFO|X1

(recall that @, is invertible due to the hypothesis on T, — Hy). Obviously, this right-hand
side can be extended by continuity to a linear bounded operator acting from L?*(T) into
Im@ ., (since that is a restriction of such an operator to the space X;), and hence also
& can be extended as well. Thus the “only if” part is proved.

Let us now assume that ¢ admits an odd asymmetric factorization in L*(Ty) with

index k = 0 (and so the conditions (i)—(iii) of the Definition 7.2.3 are satisfied). By & we
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will denote the continuous extension of the operator &. As far as X is dense in L?*(Ty)

we have that
®,& = Pr, .

for operators defined in L?(T'y). In particular, this shows that <§| H2 (1) I8 the right inverse

of ®,. Moreover, from the above identity we obtain
Pyéirz (ry) Py = Py

and from here we have

Recalling now that the kernel of ®, is trivial (cf. Lemma 7.3.5 (i77)), it follows from
(7.3.6) that é"v‘ 12 ()P = 1. Consequently, @, is invertible and its inverse is just % H2 (Ty)-
In such a case, finally observe that from Corollary 7.3.4 we conclude that T, — H, is also

an invertible operator. O

7.3.2 Proof of Theorem 7.1.4

Finally, after all the previous auxiliary material, we are ready to give the proof of
Theorem 7.1.4.
First of all recall that (cf. Chapter 1)

WH, : I2(R) — L*(R,)
is equivalent to
T(Boy) = H(Boy) H—%(FO) - HJZF(FO)-

Therefore, WH , is invertible if and only if T(g,,) — H (g, is invertible, and the last men-
tioned property of Tp,,) — H(B,y) happens if and only if By admits an odd asymmetric
factorization in L?(T'y) with index k = 0 (cf. Theorem 7.3.9). In addition, due to Proposi-

tion 7.2.4, we have that Byy admits an odd asymmetric factorization in L?*(Ty) with index
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k = 0 if and only if By '(Byy) = ¢ admits an odd asymmetric factorization in L?(R) with
index k = 0. Finally, putting altogether, we have that WH,, is invertible if and only if ¢

admits an odd asymmetric factorization in L?(R) with index k = 0.

7.4 Fredholm property

In the present section it will be obtained a Fredholm criterion for WH,. Besides this,

other particular results will follow as direct consequences of this Fredholm criterion.

THEOREM 7.4.1. Let ¢ € GL™(R). The operator WH, : LZ(R) — L*(R}) is a
Fredholm operator if and only if ¢ admits an odd asymmetric factorization in L*(R).

Moreover, if WH , is a Fredholm operator, then it holds
dim KerWH , = max{0, =k}, dimKerWH = max{0, k} , (7.4.1)
where k is the index of an odd asymmetric factorization of ¢ in L*(R).

Proof. Assume that WH, is a Fredholm operator with index —k. We will start by using
the classical Wiener-Hopf technique to built a corresponding auxiliary invertible operator.
For this purpose, let us consider the auxiliary function ¥ (x) := (i—;;)fk o(z). It is well-
known that an Hankel operator with a continuous symbol is compact. Therefore (since
for k € Z the element, (* with ((x) := (%) is continuous in the compactified real line),
by employing formula (1.6.5), it follows that

WH, = WH - lgWH , + K , (7.4.2)

where K is a compact operator. In addition, let us also observe that WH —» = Wi« + K3
(where K3 is a compact operator). Thus, from the Fredholm theory of Wiener-Hopf op-
erators we conclude that WH -« is a Fredholm operator with Fredholm index k. Conse-
quently, from identity (7.4.2) we conclude that WH, is a Fredholm operator with index
Zero.

Let us now consider the Lebesgue measure zero set

Vy :={z e R:¢(x) =¢(—z) =0}
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(note that 1) € GL*(R)), and the corresponding characteristic function

1, x € Vy;
XV¢($) =
O, T ¢V,¢,

Arguing in a similar way as in the Toeplitz plus Hankel case (see [3]), it follows that
KerWH,, = ImWH,,, = or KerWH;, = {0}, (7.4.3)

where = denotes the existence of an isomorphically isomorphism between the related
sets. Since Vy, has the Lebesgue measure zero, and hence xy, = 0 for almost all z € R,
it follows that ImWH,, = {0}. This combined with (7.4.3) it leads to KerWH,, = {0}
or KertWH;, = {0}. Thus KertWH,, = {0} or KerWH, = {0}. This means that WH is
invertible (since we have already previously concluded that WH,, is a Fredholm operator
with index zero).

Now, employing Theorem 7.1.4 we deduce that 1) admits an odd asymmetric factor-
ization in L?(R) with index zero. Hence ¢ admits an odd asymmetric factorization in
L*(R) with index k.

Now we will proceed with the reverse implication. Assume that ¢ admits an odd
asymmetric factorization in L?(R) with index k. Consequently, we have a corresponding

operator decomposition:
WH, =W, (WH loWH ,, + K,

where K is a compact operator. Thus, WH, is a Fredholm operator if and only if
W, _loWH :l¢yWH, is a Fredholm operator. However, the latter operator is equiva-
lent to WH ¢, because £y, W,,_ and WH,, are invertible operators. Therefore, as above,
we simply have to notice that WH -+ = W + Her is a Fredholm operator with index —k.

Let us now turn to formulas (7.4.1). Under the Fredholm property we already know
that WH,, has a Fredholm index equal to —k. Thus, combining this fact with (7.4.3) it

directly follows the presented formulas for the defect numbers. ]

As a direct consequence of the last result we collect the following interesting conclu-

sions.
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COROLLARY 7.4.2. If WH,, is a Fredholm operator, then WH, has a trivial kernel

or a trivial cokernel.

COROLLARY 7.4.3. The Wiener-Hopf plus Hankel operator WH , is invertible if and
only if WH , is Fredholm with index zero.

In addition, it is also clear that Theorem 7.4.1 implies Theorem 7.1.4 but we would

like to emphasize that to prove Theorem 7.4.1 we needed to use Theorem 7.1.4.
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Chapter 8

Scalar Toeplitz plus Hankel operators

with infinite index

Discontinuities of almost periodic type appeared for the first time in the work of
Gohberg and Feld'man [40], [41], [42] when studying Wiener-Hopf equations. The paper
by Coburn and Douglas [28] is also an important mark for the beginning of the study of
integral operators with symbols which present such kind of discontinuities. Since then,
the consideration of Toeplitz and singular integral operators with symbols and coefficients
with discontinuities of almost periodic type were considered by a big number of authors
(cf., e.g., [5], [35], [36], [43], [48], [53]). The book of Dybin and Grudsky [37| provides a
comprehensive description of the known results for Toeplitz operators with infinite index

originated by symbols with almost periodic discontinuities.

The present chapter is devoted to the study of Toeplitz plus Hankel operators (cf. [3],
[61]) with a finite number of standard almost periodic discontinuities in their symbols.
The operators are acting between L? spaces on the unit circle. The results (cf. Section 8.2)
provide conditions under which the Toeplitz plus Hankel operators are right-invertible but
with infinite dimensional kernel or left-invertible but with infinite dimensional cokernel

or simply not normally solvable.

This chapter is organized as follows. In Section 8.1 (which is divided into two subsec-

119
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tions) we present the auxiliary notions and some known results for Toeplitz and Toeplitz
plus Hankel operators. In Section 8.2, new results for Toeplitz plus Hankel operators are
proposed which lead to their one-sided invertibility although within the case of infinite
index. In Section 8.3 we provide two concrete examples of Toeplitz plus Hankel operators

which are characterized by the use of the results in Section 8.2.

8.1 Auxiliary notions and known results

8.1.1 Factorization and Fredholm theory

We start by recalling several types of factorizations.

DEFINITION 8.1.1. /37, Section 2.4] A function ¢ € GL>®(T'y) admits a generalized

factorization with respect to L*(Ty), if it can be represented in the form

o(t) = d_(t)t" g, (t), teTy,

where k is an integer, called the index of the factorization, and the functions ¢+ satisfy

the following conditions:
(1) (¢-)*' € L2(To) & C, (¢4)*! € L1(I) ,
(2) the operator ¢ ' Sr,¢_'I is bounded in L?(Ty).
The class of functions admitting a generalized factorization will be denoted by F.

DEFINITION 8.1.2. /3, Section 3] A function ¢ € GL>®(I'y) is said to admit a weak

even asymmetric factorization in L*(Ty) if it admits a representation
o(t) = - (t)t"pe(t) , tETy,
such that k € Z and
(i) L+t € H2(Lo), (1—t"")o=" € H2(Iy),

(ZZ) |1 - t‘(be € L?ﬁven(r())? |1 + tl(be_l € Liven(l—b)?
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where L2, (To) stands for the class of even functions from the space L*(Ty). The integer

k is called the index of the weak even asymmetric factorization.

DEFINITION 8.1.3. /3, Section 3] A function ¢ € GL®(Iy) is said to admit a weak

antisymmetric factorization in L*(Ty) if it admits a representation
olt) = o (07 (1), tET,,
such that k € Z and
(L+t)o- € H2(To), (1L—t7")¢=" € H2(Ty).
Also in here the integer k is called the index of a weak antisymmetric factorization.

The next proposition relates weak even asymmetric factorizations with weak anti-

symmetric factorizations.
PROPOSITION 8.1.4. /3, Proposition 3.2] Let ¢ € GL*(T'y) and consider ® := b L.

(i) If ¢ admits a weak even asymmetric factorization, ¢ = ¢_t*¢., then the function ®
admits a weak antisymmetric factorization with the same factor ¢_ and the same

ndex k;

(ii) If ® admits a weak antisymmetric factorization, ® = ¢_t*¢=" then ¢ admits a
weak even asymmetric factorization with the same factor ¢_, the same index k and

the factor ¢ =t Fd-1o.

DEFINITION 8.1.5. /3, Section 5] A function ¢ € GL®(Iy) is said to admit an even

asymmetric factorization in L*(Ty) if it admits a representation
o(t) = o-(1)t"¢.(t) , teTly,
such that k € Z and
(i) A+t 1o € H2(To), (1—t"1)o=" € H2(Ty),

(7’7’) |1 - t’(be € Lgven<ro)7 |1 + t’qbe_l € Liven<ro)7
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(iii) the linear operator L(¢-Y)(I + Jr,)Pr,L(¢~") is bounded on X,

where Xy is as in Section 7.2. The integer k is called the index of an even asymmetric

factorization.

The next theorem is a classical result which deals with the Fredholm property for the

Toeplitz operators.

THEOREM 8.1.6. Let ¢ € L>(I'y). The operator Ty given by (1.5.1) is Fredholm in
the space L2 () if and only if ¢ € F.

The next two theorems were obtained by Basor and Ehrhardt (cf. [3]), and give an
useful invertibility and Fredholm characterization for Toeplitz plus Hankel operators with

essentially bounded symbols.

THEOREM 8.1.7. [3, Theorem 5.3] Let ¢ € GL>(I'y). The operator T'H, is invertible

if and only if ¢ admits an even asymmetric factorization in L*(Ty) with index k = 0.

THEOREM 8.1.8. [3, Theorem 6.4] Let ¢ € GL>®(T'y). The operator TH is a Fredholm
operator if and only if ¢ admits an even asymmetric factorization in L*(Ty). In this case,

it holds
dim KerT'Hy = max{0, —k}, dim CokerT'H, = max{0,k} ,
where k is the index of the even asymmetric factorization.

We will now turn to the generalized factorizations with infinite index.

DEFINITION 8.1.9. /37, Section 2.7] A function ¢ € GL®(Ty) admits a generalized

factorization with infinite index in the space L*(Ty) if it admits a representation

¢ =@h or ¢=ph! (8.1.1)
where

(1) p€F,
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(2) h e L2(To) N GL>(Ty) .

The class of functions admitting a generalized factorization with infinite index in
L*(Ty) will be denoted by F,. We list here some known important properties of the class

Fo (cf. [37, Chapter 2]):

1. F C Fw. Therefore (from this inclusion and Theorem 8.1.6), it follows that the class
F., contains symbols of Fredholm Toeplitz operators. However, in another way, the
following condition excludes elements which generate Fredholm operators from this

class: for any polynomial u with complex coefficients,
u/h & LT(Ty). (8.1.2)

More precisely, if condition (8.1.2) is not satisfied, then for a given h and all p € F

the operators Ty, and T,,,-1 are Fredholm.

2. A generalized factorization with infinite index does not enjoy the uniqueness prop-

erty.

3. Let ¢ € F, and let condition (8.1.2) be satisfied. Then the function A in (8.1.1)

can be chosen so that indp = 0.

4. Let ¢ € Fy. Then for the function h in (8.1.1) one can choose an inner function u
(i.e., a function u from the Hardy space H°(I'g) and such that |u(t)| = 1 almost

everywhere on I'y).
The proof of these facts can be found for example in [37, Section 2.7].

THEOREM 8.1.10. [37, Theorem 2.6] Assume that ¢ € Fo,, condition (8.1.2) is satis-
fied, and indy = 0.

1. If ¢ = ph™!, then the operator Ty is right-invertible in the space L2 (L), and
dim Ker7}, = oo.

2. If ¢ = @h, then the operator Ty is left-invertible in the space L2 (I), and
dim CokerT}, = oo.
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8.1.2 One-sided invertibility of Toeplitz operators

A factorization theorem which is crucial for the theory of Toeplitz operators is now

stated.

THEOREM 8.1.11. /37, Theorem 4.12] Let the function ¢ € GL>®(I'g) be continuous
on the set I'o \ {t;}}_, and have standard almost periodic discontinuities in the points t;.

Then

o(t) = <ﬁ exp(A;(t — tj)_1)> e(t),
j=1
with ¢ € F and
Aj =01, (9) L
where the functional oy, (¢) is defined by the formula (2.4.5) at the point t;.

Let us always write the factorization of a function ¢ in the way of the non-decreasing
order of the values of 0y,(¢). Le., we will always assume that o, (¢) < 04,(¢) < ... <
o1, (¢). This is always possible because we can always re-enumerate the points ¢; to achieve
the desired non-decreasing sequence.

The next result characterizes the situation of Toeplitz operators with a symbol hav-
ing a finite number of standard almost periodic discontinuities, and it was our starting
point motivation in view to obtain a corresponding description to Toeplitz plus Hankel

operators.

THEOREM 8.1.12. /87, Theorem 4.13] Suppose that ¢ € GL®(I'y) is continuous on

the set T'o \ {t;}}_;, has standard almost periodic discontinuities in the points t;, and

o,(¢) #0, 1 <j<n.

1. If o (¢) < 0,1 < j < n, then the operator Ty is right-invertible in L% (I'g) and

dim KerT}, = oo,

2. If oy,(¢) > 0, 1 < j < n, then the operator Ty is left-invertible in L7 (Ty) and

dim CokerT}, = oo,
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3. Ifo,(¢) < 0,1 <5 <m, and o, (¢) > 0, m+1 < j < n, then the operator Ty is

not normally solvable in L% (Ty) and dim KerT, = dim CokerT,, = 0.

8.2 Toeplitz plus Hankel operators with SAPD in their

symbols

To achieve the Toeplitz plus Hankel version of Theorem 8.1.12, we will combine several
techniques. We will make use of operator matrix identities (cf. [20], [21], [45]), and in
particular of A-relation after extension (cf. Chapter 1).

For starting, we will consider functions defined on the I'j which have three standard
almost periodic discontinuities, namely in the points ¢1,%, and t3, and such that t;' =
to. As we shall see, this is the most representative case, and the general case can be
treated in the same manner as this one. Assume therefore that ¢ has standard almost
periodic discontinuities in the points ¢1, ¢, t3, with characteristics (p1,w1), (p2, ws), (p3,ws).
Considering &5, it is clear that (E has standard almost periodic discontinuities in the points
t7 (= ty),t5 (= t1) and t3* (cf. Remark 2.4.2). Moreover, it is useful to observe that o1

will have standard almost periodic discontinuities in the points t1, s and tgl.

Set ® := ¢¢~ 1. From formula (2.4.5) we will have:

t/
t=t"

0, (@) = (667 =l ) [ara(o()671 (1)

tl
t=t"

_ 0 Y im0 [are o1
— 1l § farg (8] [ +lim 7 [arg 71 (0]

= 0,(6) i { [ (0]

t/
t=t"

' 5 1my—1
= o)+ i o]

= 0,(6) +01(0) (8.2.1)

where t; € Tg and 6y = |(#") 7' — ;' = (/) =t [ = [¢" — 5] = |t' —t;] = 4.
On the other hand, it is also clear that ¢,-1(®) = 0y,(¢) + 0,-1(¢). Thus, the points

of symmetric standard almost periodic discontinuities (with respect to the xz’s axis on
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the complex plane) fulfill formula (8.2.1). This is the main reason why we do not need to
treat more than three points of the standard almost periodic discontinuities in order to
understand the qualitative result for Toeplitz plus Hankel operators with a finite number
of standard almost periodic discontinuities in their symbols.

We are now in a position to present the Toeplitz plus Hankel version of Theorem

8.1.12 for three points of discontinuity:.

THEOREM 8.2.1. Suppose that the function ¢ € GL>®(I'y) is continuous on the set
Lo\{t;}3_,, has standard almost periodic discontinuities in the points t;, such thatt;" = t,,

and let oy, (¢) #0,1 < j < 3.

(1) If o1, (¢) + 01, (¢) < 0 and ov,(¢) < 0, then the operator T Hy is right-invertible in
L% (Ty) and dimKerTHy = oo,

(it) If o, () + o1,(¢) > 0 and o1,(¢) > 0, then the operator THy is left-invertible in
L3 (Ty) and dim CokerT H, = oo,

(111) If (o4, (@) + 04, (¢))oe,(¢) < 0, then the operator THy is not normally solvable in
L% (Ty) and dim KerT H, = dim CokerTHy = 0.

Proof. Let us work with ¢ := ¢<7Fl. It is clear that ® can be considered (due to the
invertibility of ¢), and also that ® is invertible in L>°(T'y). As far as ¢ has three points
of almost periodic discontinuities (namely ¢;,t; and t3), then ® will have four points of
almost periodic discontinuities (due to the reason that ;' = t,). The discontinuity points

of ® are the following ones: t;, ts, t3 and t;'. From formula (8.2.1), we will have that

01 (D) = 01,(9) + 0, 1(8) = 01, (9) + 01, (6) (8.2.2)
00(®) = 01,(9) + 0, 1(8) = 01,(0) + 1 (6) (8.2.3)
0u(®) = 04(0) +0,1(6) = 0, (6) (8.2.4)

01 (D) = 0,1(6) + 0 (@) = 01, (@) (8.2.5)

In the above formulas, it was used the fact that ¢ is a continuous function in the

point ¢;'. Now, employing Theorem 8.1.11, we can ensure a factorization of the function
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® in the form:
¢@%=01wm&@—%)5>wﬂa (8.2.6)

where ¢ € F.

Let us denote
4
h(t) = [ Jexp(t —1;)") - (8.2.7)
j=1

We will now deduce propositions (i)—(iii) in the following three points 1-3, respec-
tively:
1. If the conditions in part (i) are satisfied, then we will have that o, (®) <0, j =1,4

(cf. formulas (8.2.2)—(8.2.5)). Hence, the function h given by (8.2.7) belongs to
L>(Ty). Moreover, relaying on Proposition 2.4.3 and Remark 2.4.6, we have that
h=' € U. Using the first part of Theorem 8.1.12, we can conclude that Ty is right-
invertible. Then, the A-relation after extension allows us to state that T'H, is

right-invertible.
We are left to deduce that dim Ker T'H, = oc.

Suppose that dim KerT'Hy = k < oo. We will show that in the present situation this
is not possible. In the case at hand we would have a Fredholm Toeplitz plus Hankel
operator with symbol ¢. Thus, by Theorem 8.1.8, ¢ admits an even asymmetric

factorization:

¢ =¢_t'o.,

with corresponding properties for ¢_ and ¢.. Employing now Proposition 8.1.4 we

will have that ® admits a weak antisymmetric factorization:

O = ¢ 1%L (8.2.8)

On the other hand (cf. (8.2.6)) we have that

¢ =p_t"pih,
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where ¢ have the properties as stated in Definition 8.1.1 and m is integer. From

the last two equalities we derive:

¢ t*Fo = o t"p h .

From here one obtains:

—_—

Gt =t"" o _pih.

In the last equality performing the change of variable ¢t — t=1, we get that

¢_¢:1 — t2k—m§5:§5:;ﬁ .

Now, taking the inverse of both sides of the last formula, one obtains:

¢_¢:1 — tm_Qk(p:le_rlh_l .

From the formulas (8.2.9) and (8.2.10) we have:

pel

9k -2k —1
" =t"" oL

p_p+h

This leads us to the following equality:

P hh = ot

(8.2.9)

(8.2.10)

(8.2.11)

To our reasoning, the most important term in the last equality is now hh. Therefore,

let us understand better the structure of hh.

Firstly, let us assume that hh # const. Rewriting formula (8.2.7) we will have:

h(t) = ex al ex A ex As ex at
SO\ ) P o ) TP =y ) P t—tzt)

From here, we also have the following identity:

~ — A\t —A\gt? —\st2 —M\gt3?
h(t) =c e e e e
() = crexp (t-—tg B 2 Rl WS I il s
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Figure 8.1: The unit circle ['y intersected with a Jordan curve 7.

where ¢; is a certain nonzero constant which can be calculated explicitly (in fact,
c1 = exp (—)\1t2 — Aoty — )\3t3_1 — )\4753)). Performing the multiplication of the last

two formulas, one obtains:

_ . o
B()h(t) = 1 exp (ﬂ) exp (M)

t—t t—t,
%p,&—A@f exp Ay — Ast?
t—t3 t—ty' )7

Hence, we have that

where

_ 2 _ 2
hl (t) = C1 €XD ()\1 )\Qtl) ) hQ(t) = €exp (Ag A1t2> ;

t—1 t— 1y
A3 — \gt5 2 Ay — Ast?
hg(t) = exp (ﬁ) ) h4(t) = eXp <ﬁ> :
3

If hy € L®(Iy), then hy € L°(Iy) (because hy = czﬁl, where ¢, is a certain nonzero
constant). Of course, the same holds true for hg and hy. At this point, we arrive
at the fact that two of the four functions h;, 1 < i < 4, are from the minus class

and two of them are from the plus class. Therefore, without lost of generality we
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can assume that h; and hg belong to L>(I'g), and hy and hy belong to L3°(I').

Consequently, we have a decomposition:
hh=h_h,
where h_ := hihs and h, := hohy. From (8.2.11) we will have:
PP h_hy = T g7t (8.2.12)
Let us introduce the notation:
VU, :=¢,p_hy, H_ :=h_,and V_:= gojlg;:_:l. (8.2.13)
The identity (8.2.12) can be therefore presented in the following way:
HU, =V_. (8.2.14)

We will use now the same reasoning as in the proof of |37, Theorem 4.13, part
(3)]. First of all let us observe that U, € L1 (I'y) and W_ € L!(T). We claim
that the functions Wy are analytic in the points of the curve I'y, except for the set
My = {t1,t3}. Let us take any point ¢ty € I'g \ My and surround it by a smooth
contour <, such that D_;F N My = 0 and such that the unit circle I'y divides the
domain Dj into two simply connected domains bounded by closed curves v, and

v with DY C D™ and DI C D~ (cf. Figure 8.1).
Let us make use of the function

H_(2)¥,(z), if ze D",
U_(z), if zeD™,

U(z) =

which is defined on C \ I'g and has interior and exterior non-tangential limit values

almost everywhere on I'y, which coincide due to equality (8.2.14).

We will now evaluate the integral

/v\lf(z)dz:/Wq;(z)dw/W ¥ (2)dz .
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Since ¥, € L% (Tp), one can verify that W, € L% (y4) (by using the definition of the
Smirnov space cf., e.g., [37, Section 2.3|). Therefore, ¥ € L% (v4) (H- is analytic in
a neighborhood of the point ;) and the integral along v, is equal to zero (cf. |37,
Proposition 1.1] for the I'y case). Arguing in a similar way, one can also reach to

the conclusion that the corresponding integral along ~_ is equal to zero. Thus,

/\If(z)dz -

and the contour v can be replaced by any closed rectifiable curve contained in Dj :
By Morera’s theorem, W is analytic in D7 Let us consider a neighborhood O(t;) of

any of the points t; = t, or t; = tgl. Due to the identity

90-1—9/5: = h—T-l\I]-‘r >

where ¢,p_ € L! (), we see that h;'¥, € L%(I'y). However, ¥, is analytic
in O(t;), and the function hi'(z) grows exponentially when z approaches ¢; non-
tangentially, z € D*. Since the function (¢ — ;)" exp(—X;(t — t;)~!) does not belong
to L% (I'y) for any choice of positive integer n, we conclude that ¥, = 0, identically.
This means that ¥_ = 0, identically. From (8.2.13) we infer that ¢, or ¢_ must
vanish on a set with positive Lebesgue measure, which gives that ® is not invertible.
Therefore, in this case we obtain a contradiction (due to the reason that ® was taken
to be invertible from the beginning).

1, —1

Let us now assume that hh = ¢} = const # 0. From (8.2.11) we get that ¢_ = /¢ .
Hence, ® = ¢/p_t™p~'h. Combining this with (8.2.8), it yields

p_t*o~t = o _t"p"'h .
Rearranging the last equality, one obtains:

o ¢~ Hm g = o157 (8.2.15)

We have that (1—t"1)¢=! € H2(Ty) and (1 —t)E € H2(Ty) (cf. Definition 8.1.2).
If we use the multiplication by (1 — ¢)(1 — ¢~!) in both sides of formula (8.2.15),
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then we will obtain:
(1= )1 =t ¢~ 2h = (1 — )1 — t )~ G- . (8.2.16)

Let us denote ©_ := (1 — ¢t"1)¢~". It is clear that ©_ € H2(T,), and that O_ €
H2(Ty). Rewriting formula (8.2.16) and having in mind the introduced notation, we

get:
O_p t" Ry =0 g | (8.2.17)

where ¢y := —c]. Set N :=m —2k+ 1. If N <0, then we have a trivial situation.
Therefore, let us assume that N > 0. In this case, we will rewrite the formula

(8.2.17) in the following way:

From the last equality we have that the right-hand side belongs to L% (I'g). There-
fore, the left-hand side must also belong to L% (T'). This means that tV must “dom-

inate” the term ©_¢_, which in its turn implies that:
O_p_=by+bat™ - byt byt 0Ky <N

(by observing the Fourier coefficients). In particular, this shows that we will not have
terms with less exponent than —N. In addition, the last equality directly implies

that

O o =byg+b gt+ - Fb y byt

From the last three equalities we obtain that:

P bo+ b1t + -+ b_npt” + - byt
P bt b Nt b N T e bt

We are left to observe that h € L>(I'). Due to its special form (cf. (8.2.7)), h
cannot be represented as a fraction of two polynomial functions (since h is not a

rational function). Hence, once again, we arrive at a contradiction.
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Altogether, we reached to the conclusion that the dimension of the kernel of the
Toeplitz plus Hankel operator with symbol ¢ cannot be equal to a finite number
k. Therefore, in the present case, the Toeplitz plus Hankel operator has an infinite

dimensional kernel.

2. Let the conditions of proposition (ii) be satisfied. Then, oy, (®) > 0 for j = 1,4.
Now, by using the argument of passage to the adjoint operator in the last case 1., we
can conclude that in the present position 7'Hy is left-invertible and dim Coker TH,, =

Q.

3. If the conditions of proposition (iii) are satisfied, then o, (®) will have different
signs (cf. formulas (8.2.2)(8.2.5)). Therefore, by the A-relation after extension
and Theorem 8.1.12, we will obtain that dim KerT'H, + dim Ker(7, — H,;) = 0, and
that dim CokerT'H, + dim Coker (T, — Hy) = 0. As far as the dimensions cannot be
negative, we will have that both defect numbers of the operator T'H, must vanish;

hence, dim KerT'H, = dim CokerT'Hy = 0.
We are left to prove that T'H, is not normally solvable.

Let us assume the contrary, i.e. let T'H, be normally solvable. Then we immediately
conclude that T'H, is invertible, due to the triviality of the defect numbers. Hence

(by Theorem 8.1.7) ¢ admits an even asymmetric factorization with index zero:

¢ =¢-0c, (8.2.18)

where ¢_ and ¢, have the appropriate properties (as stated in the Definition 8.1.2).
From (8.2.18), we obtain that:

b 1= ¢t (8.2.19)
As far as ® admits a factorization (cf. (8.2.6)), we have:
b = hlhg(,D,gDthm s (8220)

where h; and h, are exponential type functions such that hy € L>®(Ty) (hy' € U),
ho € L2(To) (he €U), 9= € L2(Ty) ® C, ¢7' € L2(Ty), and m is an integer (the
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reader should note that these h; and hy functions are independent from those used
in the first part of the present proof). Combining (8.2.19) and (8.2.20), we obtain
that

66~ = hhop_ oy t™ . (8.2.21)
From the last equality it also follows that
hihop_pt™ = Eggﬁtm :
From here, rearranging the terms of the last equality, one obtains:

PP hilhahy = o7 0T" (8.2.22)

As it was shown in the proof of proposition (i), we can factorize the functions hihy

and hgﬁ; in the following way (in case that h1h~1h2f72 # const):
hihy = hihi,
hohy = hyhi .
These equalities allow us to factorize hliihgf?g in the convenient way:
hihahohy = h-hy

where h_ := hihy; € L®(Ty) (h=' € U) and h,. = hihi € LY (Ty) (hy € U) are
the exponential type functions. Recalling formula (8.2.22) within this notation, we

have:

PP _hyho =Tt

Let us also introduce the notation: ¥, := ¢, p_h, € LL(Iy), H- := h_ and

U= ot € LY (Ty). We will therefore have:
HVY, =V_.

Now we are in a very similar situation as in the proof of proposition (i) of the present

theorem. Arguing in a very similar way as in the proof of part 1., we can obtain that
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VU, = V_ = 0, identically. This leads to the conclusion that ® is not invertible —
which is a contradiction. Consequently, in this case T'H, is not a normally solvable

operator.
Let us now consider the case when hlfihgf?g = const # 0.

Similarly as in the proof of the part 1., we have that ¢, = cop', where ¢, is a

nonzero constant. From the equality (8.2.21), we have that:
(bfﬂs:l = h1h202§07g0:1tm .
In a very similar manner as in the part 1., we derive the equality:

CQ@,@,tm+lh1h2 = é,gb\:

(with ©_ := (1 —t 1)¢"), and may rewriting it in the form:

O Gn = O .

Assume that m > —1. Then, by denoting ¥, := h{'O_@_ € Li(Ty), _ =
0_p_ € L' (Ty) and H_ :=t"""'hy' € L>=(Ty), we obtain:

HU,=U_.

This is enough to reach to a contradiction (by arguing in the same way as above).

Let us now assume that m < —1. For this case, we will use the notation: ¥, :=
= hlO g7 € LL(Ty), U := 0 _¢_ € L' (Ty), and H_ := hy' € L=(Ty).
Then, also in this case we will obtain a corresponding equality with the appropriate

structure
HVY, =v_

which also leads us to a contradiction.

Therefore, we conclude that T'H, is not normally solvable under the conditions of

proposition (iii). O
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We will present in the next theorem the general case of a symbol ¢ with n € N points

of standard almost periodic discontinuities.

THEOREM 8.2.2. Suppose that the function ¢ € GL>®(I'y) is continuous in the set
Lo\ {t;}7_1, and has standard almost periodic discontinuities at the points t;, 1 < j <n.

In addition, assume that o;,(¢) # 0 for all j = 1,n.
(i) If 01,(¢) + 0,-1(¢) = 0 for all j = 1,n, then the operator THy is Fredholm.

(ii) If oy,(¢) + Ut;1(¢) < 0 for all j = 1,n, and there is at least one index j for
which oy, (¢) + 0,-1(¢) # 0, then the operator THy is right-invertible in L3 (o)
and dim KerT'H, = o00.

(i) If 0¢,(¢) + o-1(¢) = 0 for all j = 1,n, and there is at least one index j for
which oy, (¢) + Ut;1(¢) # 0, then the operator TH, is left-invertible in L2 (T') and
dim CokerT' H, = o0.

(iv) If (04,(¢) + 0,-1(9))(0r,(9) + Jt;1(q§)) < 0 for at least two different indices j and
J
[, then dim KerT'H; = dim CokerT'Hy = 0 and the operator T'Hy is not normally

solvable.

Since the proof of this theorem goes along the same methods as in the proof of
Theorem 8.2.1, we will not present here the corresponding fully detailed proof but just
the following sketch of proof.

Proof Sketch. For ¢ € GL>(I'y), continuous in I'g \ {t;}7_;, and with standard almost
periodic discontinuities at the points ¢;, 1 < j < n, such that o,,(¢) # 0 forall 1 < j <n,
we will work with & := ¢ZF1 (as in the previous case of Theorem 8.2.1). In general, this ®

will have 2n points of standard almost periodic discontinuities. In addition, the formula
01, (®) = 01,(¢) + 0,-1(9)

allows us to employ the A-relation after extension and to deduce the above stated right

and left invertibility properties of T'Hy, as well as the triviality of the kernel and the
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cokernel of T'Hy, and the Fredholm property of T'H, (under the corresponding different
assumptions).

The propositions which deal with the dimensions of the kernel and the cokernel under
the assumptions in (ii) and (iii), and also the issues about the normal solvability of T'H,
are proved in the same manner as in the proof of three discontinuity points case. In fact,
e.g., to prove the formula for the dimension of the kernel in case (ii), the method used in
the proof of the part (i) of Theorem 8.2.1 also works here for the situation of n points
of standard almost periodic discontinuities. In this situation, instead of the factorization

(8.2.6), we will have

Thus, up to the equality (8.2.11), the reasoning will be the same. Analogously as in the
proof of part (i) of Theorem 8.2.1, we would be able to decompose hh in the following

convenient form (in the case of hh # const):
hh = h_h, |

with h_ € L>®(I'g), and hy € L3°(I'g). Moreover, h_ and h, have disjoint points of
standard almost periodic discontinuities.

Let M,;_ stand for the points of standard almost periodic discontinuities of the func-
tion h_. Continuing with the same reasoning as in the proof of part (i) of Theorem 8.2.1,
we will arrive at an analogous equality as (8.2.14) where the corresponding H_ has now
2n points of standard almost periodic discontinuities. In this case, we consider a point
to such that ty € T’y \ M;_, and reach into a contradiction in the same manner as in the
proof of Theorem 8.2.1. The case of hh = const, runs also by using the same arguments

as above.
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Finally, note that the assumption in propositions (i) and (iii) which requires that

there is at least one index j for which oy,(¢) + 0,-1(¢) # 0 was automatically fulfilled in
J

Theorem 8.2.1, and is added in here only for the matter of excluding these cases to fall

in the situation of present proposition (i). ]

REMARK 8.2.3. Note that in the first case of the last theorem we will have that the
Toeplitz operator Te (with symbol = ¢ZF1) has an nvertible continuous symbol, and

hence it is a Fredholm operator.

As a direct conclusion from the last theorem, if we consider only one point with

standard almost periodic discontinuity, we have the following result.

COROLLARY 8.2.4. Let the function ¢ € GL*(I'y) be continuous on the set I'y \ {to}

and have a standard almost periodic discontinuity at the point to with oy, (¢p) # 0.

(i) If o4,(¢) <0, then the operator T Hy is right-invertible in L% (I'y) and dim KerT' Hy =

Q.

(ii) If oy, (¢) > 0, then the operator T Hy is left-invertible in L3 (T') and dim CokerT Hy, =

Q.

8.3 Examples

In this last section of this chapter we would like to present two simple examples for
illustrating some of the above presented theory.

As for the first example, let us consider the Toeplitz operator T, : L% (I'g) — L3 (T),

pi(t) =e i ! e L tel
X exX X .

From the definition of p; it is clear that it is an invertible element. It is also clear that

where

p1 has three points of standard almost periodic discontinuities (namely, the points i, —i

and 1). A direct computation allows the conclusion that

oi(p) =1,  olp)=-1,  olp)=1.
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Hence, T}, is not normally solvable and dim Ker 7T, = dim Coker7),, = 0 (cf. Theorem
8.1.12, part 3).

Let us analyze the corresponding Toeplitz plus Hankel operator T'H),, : Li(FO) —
L2 (Ty), with symbol p;. Direct computations lead us to the following equalities and

inequality:

oi(pr) + oi-1(p1) = oi(p) +o-i(pm) = 0,
o-i(p1) +op-1(p1) = o-i(p1) +oilp) = 0,
o1(p1) +oy-1(p) = 201(p1) =2 > 0.

Applying proposition (iii) of Theorem 8.2.2, we conclude that T'H,, is a left-invertible
operator with infinite dimensional cokernel.

As a second example, we will consider an adaptation of the first example in which a
Toeplitz operator with a particular symbol will be not normally solvable but the Toeplitz
plus Hankel operator with the same symbol will be two-sided invertible.

Let us work with the Toeplitz operator T, : L3 (I'g) — L2 (I'y), where

i i
t) = — — tel,.
pa(t) = exp (t—z’) eXP(t+Z.> : 0

The symbol py is invertible, and has standard almost periodic discontinuities only at the

points ¢ and —¢. In particular, we have

gi(p2) =1, o_i(p2) =—1. (8.3.1)

Hence, T, is not normally solvable (cf. Theorem 8.1.12, part 3).

Let us now look for corresponding properties of the Toeplitz plus Hankel operator
TH,, : L% (T'y) — L% (I), with symbol p,. It turns out that by using (8.3.1) and proposi-
tion (i) of Theorem 8.2.2 we conclude that T'H,, is a Fredholm operator. Moreover, in this
particular case, we can even reach into the stronger conclusion that TH,, is a two-sided

invertible operator. Indeed, pop,* = 1 and therefore Tp o is two-sided invertible (since
2P3

it is the identity operator on L2 (I'g)). Thus, the A-relation after extension ensures in

this case that TH,, is also a two-sided invertible operator on L2 (Ty).
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Chapter 9

Matrix Toeplitz plus Hankel operators
with PAP symbols

The main goal of the present chapter is to present a Fredholm criterion for matrix
Toeplitz plus Hankel operators T'Hg, where ® is a N x N matrix function with entries in

the class of piecewise almost periodic functions.

The class of operators T He has an important role in the mathematical description
of various applications. This is the case due to the combination of Toeplitz and Hankel
operators which appear in the structure of operators T'Hg. Several results are presently
known for Fredholm characteristics of these operators when with symbols from smaller
classes — like the piecewise continuous or the almost periodic matrix functions. Here we
provide a Fredholm characterization of THge when the matrix Fourier symbol & is in
the piecewise almost periodic class, and therefore allowing the two previously mentioned

classes at the same time (cf. Theorem 9.3.1).

To reach this goal, in Section 9.1 we start by presenting some structures and results
of significant importance in the so-called symbol calculus. Firstly, this is done within the
framework of piecewise continuous elements (Subsection 9.1.1), and secondly for semi-
almost periodic Fourier symbols (Subsection 9.1.2). In Section 9.2 we prepare the main

result to be obtained in Section 9.3, by describing the conditions which ensure the Fred-
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holm property of some auxiliary paired operators. As a natural result to be achieved
after the Fredholm characterization of Section 9.3, in the last section a formula for the
Fredholm index of T'Hg is derived based on some approximating procedures which are
applied to elements in the so-called Wiener subalgebra of piecewise almost periodic matrix

functions.

9.1 Auxiliary results on symbol calculus

In the present section we will present a set of important results which will have
direct consequences in our final result of the present chapter. In all them the so-called
Allan-Douglas local principle plays a fundamental role, and so we will recall it now.

Let GG be a Banach algebra with identity. A subalgebra Z of GG is said to be a central

subalgebra if zg = gz for all z € Z and all g € G.

THEOREM 9.1.1. /18, Theorem 1.35(a)] Let G be a Banach algebra with unit e and let
Z be a closed central subalgebra of G containing e. Let M(Z) be the mazximal ideal space
of Z, and for w € M(Z), let J,, refer to the smallest closed two-sided ideal of G containing
the ideal w. Then, an element g is invertible in G if and only if g+ J,, is invertible in the

quotient algebra g/J,, for all w € M(Z).

9.1.1 Symbol calculus for piecewise continuous symbols

The next two results are due to Duduchava (cf. [33], [34]).

LEMMA 9.1.2. (a) If a,b € PC and a(+o00) = b(+o0) = 0, then the operators aW}

and Wial are compact.

(b) Ifa € C(R), be PC orifac PC,be C(R), then the commutator aW — W0al is

compact.

¢) If a,b € C(R), then the commutator aW? — Wlal is compact.
b b
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Let us consider the C*-algebra
2 = alg(C(R), W°(PC))
(generated by the operators aW with a € C(R) and b € PC), and also
D := alg(PC,W°(PQC)).

It is clear that both 2 and ® contain the C*-subalgebra Z := alg(C/(R), W°(C(R))). Let
in addition K := K(L?(R)) be the set of all compact operators on L?(R). One can show
that K C Z. Denote A™ :=A/IC, ™ :=D /K, Z™ := Z/K, and abbreviate the coset A+
to A™.

Lemma 9.1.2 implies that Z™ is a central C*-algebra of ®7. The maximal ideal space

of Z™ can be identified with

M:=(RxR)\ (R xR)=(Rx {oo})U({oo} x R) U{(c0,00)} .
We also consider the set

M = (R x {oo} x [0, 1]) U ({oo} x R x [0, 1]) U ((00, 00) x {0,1}) .

We equip M with the Gelfand topology and M with the discrete topology. For
A=aWy (a,b € PC) and (t,z,u) € M, a matrix A is defined by

A(t,x,,u) =
a(t+0)(b(x +0)u+blx —0)(1 —pu)) a(t+0)(b(x +0) — bz — 0))\/ (1 — p)

alt = 0)(b(a +0) = b(x — )AL =) alt — 0)(b(x — 0)u + bla + 0)(1 — )
(9.1.1)

where by convention, a(oco £ 0) = a(Foo), b(oo £ 0) = b(Foo), and v(u) = /(1 — p)
denotes any function v : [0,1] — R such that v?(u) = u(1 — ) for all € [0,1], and ad-
ditionally v(1/2) = —1/2. Let BC'(M,C?*?) stand for the bounded continuous functions
of M into C?*2.
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THEOREM 9.1.3. The map
Sym : {A =aW :a,b € PC} — BC(M,C*>*?)

(associating the matriz function in (9.1.1) with the operator A) extends (in a unique way)

to a C*-algebra homomorphism
Sym : ® — BC(M,C**?) |
whose kernel is K.

In what follows we simply write A instead of SymA. We denote by a;; the (ij)-entry
of A. Since

a(—o00)b(£o0) = lim ay;(00,x,0), a(400)b(Foo) = liril age (00, z,0),

r—300

Theorem 9.1.3 remains valid with M replaced by its subset

M = (R x {oo} x [0,1]) U ({oo} x R x [0,1]) .

Furthermore, when considering the C*-subalgebra 2 := alg(C(R), W°(PC)) of D,
the form of the symbol A(¢,x, 1) can be simplified at the points ¢ € R for the generating
operators A = aW} (a € C(R),b € PC). Namely, we can put

Aty 00, 1) = a(t)b(~eo) ! , e 0,1].
0 a(t)b(+o0)

9.1.2 Symbol calculus for SAP
Let
& := alg(Sk, [C(R)]™™M)

be the C*-algebra generated by the singular integral operators al + bSg with coefficients
a,b € [C(R)M*N. We denote by H,, the closed two-sided ideal of & that is generated by
all the commutators uSg — Sgul with u € C(R), and Hy is the closed two-sided ideal of



9.1 Auxiliary results on symbol calculus 145

the algebra G which is generated by the commutators ¢Sg — Sgcl, where ¢ € PC' and
with ¢(400) = ¢(—00).

The following algebras are also of interest:

¢ := alg(Sg, APYN), B := alg(Sg, SAPY*N)

Let us first start with the C*-algebra 2 := alg(C(R), W°(PC)) generated by the
operators aW?(b) with a € C(R) and b € PC. It is readily seen that

B = alg(A, ug) ,

where ug : R — L(L?*(R)) is the unitary representation of the discrete group R given by
ug : A — exI (cf. [15]).
Note that due to

exal = aey, e,\Wf = Wl?,\BAI

(where by(z) = b(z + \)) the algebra B is the L(L*(R)) closure of the set B° of all

operators of the form

B = Z A)\GAI
A

where Ay € 2 and \ ranges over arbitrary finite subsets of R. Note however that for ey
we continue with the previous (usual) notation of ey(z) = ¢**, z € R.

Let /?(R,C?) denote the collection of all functions f : R — C? for which the set
{AeR: f(\) # 0} is at most countable and

1122y = Y IFIIP < o0,
A

where ||f(\)|| denotes the usual norm in C?) i.e., if we have f = (f1, f2), then ||f|] =

(A2 + 122
Let R be the set resulting from R by blowing up the point oo to the segment 0,1] :

R:=RU ({oo} x [0,1]) .



146 9. Matrix Toeplitz plus Hankel operators with PAP symbols

We associate with each point of R a representation of B. For ¢t € R, let II; be the
representation (cf. [15])

I, : B — £(C%, 1 (Z AAeg) = A\(t,00,1)eN T,
A A

and for p € [0, 1], we define I, p as the representation

Hoo,u (Z A}ﬁ)j) f] (IE) = ZA)\<OO>$’ M)f(x + )‘) )

' (9.1.2)

Moo, 10 B — L(FA(R,C?)),

where z € R and f € (*(R,C?). Also, for B € B we consider the operator-valued function

B given on R by

B(t) =1I(B) fort e R, B(oo, ) =y ,(B) for p e [0,1].

The set B is a C*-algebra with pointwise operations and the norm

1B]) = max{stgﬂgunt(mn, sup ||HW,M<B>||} .

1efo,1]

THEOREM 9.1.4. [15, Theorem 5.3] The map ® defined by
P :.B" — %, B™— B
is a well-defined C*-algebra isomorphism, where B := B /K.

The next theorem is a key result for studying the Fredholm property for the operators
from the algebra ‘B.

THEOREM 9.1.5. [15, Theorem 5.4] An operator B € B = alg(Sg, SAP) is Fredholm
in L*(R) if and only if

(a) the diagonal 2 x 2 matrices I;(B) are invertible for allt € R,
(b) the operators l, ,(B) are invertible in (*(R,C?) for all p € [0,1].

REMARK 9.1.6. This theorem is also valid for the matrix case.
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9.2 Auxiliary operators

Let us now consider the following auxiliary operator which will be fundamental for

our purposes
A= aPa+bQz + cH, + H_dI : [[2R)]N — [LX(R)]" (9.2.1)

where a,b,c,d € SAPN*N Qg =1 — Pr, and Hy € Hoo.
By Sarason’s result (cf. Theorem 2.2.2) we can decompose SAPN*Y matrix functions

in the following way:
a=ay(l—u)+au+ag,
where

L r L r NxN
ap = E asey, a, = g avey (ay,ay € CT*Y)
} A

are the almost periodic representatives of a at —oo and +oo (and the series are to be
understood in a formal sense or as converging in the Besicovitch space (recall Chapter 2)),

ag € [Co(R)N*N u e C(R), u(—o0) = 0, u(+00) = 1. Analogously, for b, ¢ and d we have

b="0/(1—u)+bu+by,
c=c(l—u)+cu+c,

d=d(1—u)+du+dy,

where by, co, dy € [C’O(R)]N *N and the almost periodic representatives of b, ¢, d at —oo and

~+o00 are given by

be = ) ben br=) bhey (b5 b5 €CVN),
A A

o = Zcie)\, ¢ = Zcﬁ\@\ (c§, c5 € CV¥Ny
A A

dp = Y dier, do=Y diey (d,dyeCVN).
A A

It is known that

Pp=Fx+F ' L*(R) = HY(R), and Qr =Fx-F ':L*R)— H:(R),
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where y 1 are the characteristic functions of Ry. Using standard arguments, we will rewrite
these operators in a more convenient form for our purposes. Due to the formula (9.1.1)
we will deduce the last two operators to the convolution form:

P = F,F'=FIx JF'=F1\.F,

Qe = FXFl'=FIx JF'=F '\ F.

where we are using the facts that ! = FJ = JF and Jx+J = x=.

Having in mind the last two formulas, the operator A can be represented in the form
A=aF ' F+bF 'y F+cH, +H_ dI
with Hy € H,. In addition, let us consider the following operator:
B=>Y Al (9.2.2)
A
where
Ao = (a5(1 —u) + afu + ao) F'x_F + (bo(1 — u) + byu + bo) F ' x+ F
+(ch(1 —u) + chu + co)Hy + H_(d(1 — w) + djyu + do)T
Ay = (aS(1 —u)+ aiu)exF Ix_Fe_y + (b5(1 —u) + biu)exF Iy Fe_y
+(c5(1 = u) + cu)exHype_y + H_(d5(1 — u) + diu)T .
The operator B in (9.2.2) is understood as a uniform limit of operators By (cf. [15]) of
the same form but with A running through finite subsets of R.

Using now (9.1.2) and (9.1.1), a family of operators Il ,(B) (with p € [0, 1]) will be
defined (cf. [15]) by:

(Meon(B))(@) = Y An(co,z, 1) f(z +A), z€R, fe[PRCHN,  (9.23)

with
at 0 by 0
Ap(o0,7,1) = 00 P(o0,x, 1) + (;) , Q(o0,x, 1)
ap 0
s 0 d§ 0
+ H(co,z, ) + H_(00,x, 1) (9.2.4)

0 0 d
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and for A # 0, we have

ai 0 vy 0
A)\(OO,I',/L) = P(OO,.T—F)\,/L)—F Q(OO,Z'—i—)\,/L)
0 da 0 by
& 0 & 0
4 Hy(oo,x+ A )+ H_(co,z+ A p) [
0 0 dj

(9.2.5)

Here P(oco,x, ) and Q(oco,x, 1) stand for the symbols of the operators P and Qg, re-

spectively. A direct computation provides that P(oco, z, i) is equal to

P(OO>$’:U) =
(X—(z+0)p+x-(x = 0)(1 = p))Inun  (X=(2 +0) = x—(z = 0))v(p)Inxn
(X-(x+0) = x-(z = 0)v(p) vy (X-(z = 0)p+ x—(x+0)(1 — p)) Inxn
(9.2.6)

and Q (oo, x, 1) is given by

In O
0 Iy

The following theorem follows immediately from Theorem 9.1.5 and Remark 9.1.6.

THEOREM 9.2.1. [15] If a,b,c,d € SAPN*N | then the operator A defined in (9.2.1)
is Fredholm on [L*(R)]N if and only if:

(a) a,b € GSAPN*N .

(b) for every p € [0, 1] the operators A,, := Il ,(A) given by (9.2.3)-(9.2.7) are invert-
ible in [(*(R, C?)]V.

Using this theorem and considering the operators A*A and AA*, one obtains the

following result.

THEOREM 9.2.2. [15] Let a,b,c,d € SAPN*N_ The operator (9.2.1) is n-normal (resp.
d-normal) on [L*(R)|N if and only if a,b € GSAPN*N and for every u € [0,1] the
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operators A, = Il ,(A) given by (9.2.3)-(9.2.7) are left-invertible (resp. right-invertible)
in [(?(R, C?)]N.

We will now consider a second auxiliary operator with the form:
B :=aPg +bQg + Hg + cHy, : [L*(R)]Y — [L*(R)]Y (9.2.8)

where a,b,c are N x N matrix functions in PAP, Hr € Hr and H,, € H.. In what
follows, we will be able to transfer some properties of operator B defined in (9.2.8) to the

operator
B =3P + bQg + ¢Hu : [L2(R)]Y — [L2(R))V (9.2.9)

where the N x N matrix functions @, 3,5 belong to SAP, and have the same AP repre-

sentatives a4, by, cy at oo as the matrix functions a, b, c € PAP, respectively.

We will need to use the continuous arc a”, which is obtained from deta by filling
in with line segments the eventual gaps generated by discontinuity jumps of deta. In
the same way, we will need b#. If the origin does not belong to a* and b*, then we can
construct @ and b to be invertible at every point z € R. Furthermore, we will have that if
the operator (9.2.8) is Fredholm on the space [L?(R)]", then by the Allan-Douglas local
principle, the operator B in (9.2.9) is also Fredholm on [L3(R)]™. More precisely, if B is a
Fredholm operator on [L2(R)]Y, then it is locally Fredholm at oo, and consequently B is
also locally Fredholm at co (because in this case Hg has no contribution in the Fredholm
property for the operator E) Moreover, B is locally compact at every point x € R
simultaneously with the invertible operator a(z)Pg +g(x)QR having nonzero constant

coefficients.

Note that the operator B obviously belongs to the algebra 9, and therefore is under
the conditions of Theorem 9.1.5.
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9.3 Fredholm property of Toeplitz plus Hankel opera-

tors

Let us now turn to the main object of the present chapter, and consider the Toeplitz
plus Hankel operator THg (defined in (1.5.4)) with symbol @ in the class of piecewise
almost periodic matrix functions (PAPY*Y). The main goal of the present chapter is

achieved in the next theorem where we will be using the operator

L[,

(Nf)w) = | Z5dr, zeR

THEOREM 9.3.1. Let ® € PAPY*N  and consider T = aPp + bQgr + ¢V, where

a,b,c € PAP?M*2N qre given by

x+® X+ — @)

X+q) + X— 0 ) ] X+q) . 1
X+ @ I 0 X+®+x- 2 X+(@=1)  —x.®

(9.3.1)
and V = x  Nx+Il + x_Nyx_1I.

The operator THg is Fredholm on [H2(R)]Y if and only if:
(a) ® € GPAPN*N;

(b) det T (t,z,pu) # 0, for (t,z,pu) € R x R x [0,1], where T (t,x,pn) is given by the
formula (9.1.1);

(c) for every p € [0,1] the operators T, calculated from (9.2.8)-(9.2.7) for the operator
T are invertible in [(*(R,C?)*V.

Proof. We start by noticing that the operator T'Hg acting on [H? (R)]" is equivalent after

extension [1] (recall also Remark 1.7.2) with

O+ J)Pp + Qg : [LA(R)]N — [LAR)]Y .
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Let now U : [L2(R)|Y — [L*(R,)]*" be the isomorphism defined by

wnw=| ') ser
f(a)

The inverse of ¥ is provided by the formula:

fl(t), if t >0,

(Tf)() =
fg(—t), ift < 0,
t
where f(t) = ) € [L*(R,)]?N
f(t)
From the previous equivalence after extension relation, and from the computation
. ® 0 I o
VO + J)Pe + Qe]¥™ = | _ Pr, + _ | Qx,
o I 0 &
1
+s ) R - (2R,

where

PR+ = (I+SR+>/2> QR+:[_PR+7
(S2,®)(x) = 314 ) 4

™ +7'—513'

o(7)

+7’—|—x

dr, and vz € R, |

1
(Ve ®)w) = - [
R
we derive that T'Hg is equivalent after extension with

0 I 9 1 L
Pr, + _ | Qr, + 5|~ | Mg, . (9.3.2)
d I 0 @ -7 -9
Now, using the technique of extension by identity in the framework of paired operators

(cf., e.g., [70]), together with the corresponding direct sum decomposition [L*(R)]?Y =
X+ [LA(R)*Y @ x_[L*(R)]?Y, it follows that the operator 7y in (9.3.2) is equivalent after
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extension with

X+® X+ — @)
X+(‘5 —1I) —X+<T>

Therefore, putting altogether and using the transitivity property of equivalence af-
ter extension relation, we have reached to the conclusion that T'Hg is equivalent after

extension with
T =aPr + bQr + cV.

In addition, it is known that V' can be decomposed in V' = Hy+ H,,, where Hy € Hy
and Hy € Hoo. In a more detailed way (cf. [4, Lemma 3.3|), the operator V' belongs to
the ideal Hg + Hoo. Therefore, we have the possibility to rewrite the operator 7 in the

form
T =aPr +bQr + cHy+ cHy, (9.3.3)

with Hy € Ho and H,, € Ho, and where a, b, c € PAP?M*2N are given in (9.3.1).

In particular, the just presented operator relations imply that T'Hg is a Fredholm
operator if and only if 7 (in (9.3.3)) is a Fredholm operator.

Employing the method of [4, page 45] (in view of using here the Allan-Douglas local

principle), we can associate with 7" the new operator
T = 0P + Qg + ¢Ho

with coefficients @, E,/E € SAP?N*2N gych that @, E,/E have the same local representatives
at £00 as a,b, ¢ € PAP?M*2V and additionally @ and b are chosen to be invertible, in a

way that

T=AT + K , (9.3.4)
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where A € ® is locally equivalent to Ioywon at 0o, and K is a compact operator. We are
now in a position to take profit of the fact that T belongs to B and A € © and prove the
desired equivalence.

If THs is a Fredholm operator, then 7 is also a Fredholm operator. Moreover, we
have that ® € GPAPN*Y (cf. Theorem 1.9.2 or [38, Proposition 2.6]). From the fact
that 7 is a Fredholm operator it follows from (9.3.4) that A and 7T are also Fredholm
operators. This implies that ’ZA; are invertible operators, and from the equality ’j\; =17,
we therefore derive that 7, are invertible operators. Once again, relaying on the fact that
T and A are Fredholm operators, we obtain that det YA‘(t, z, 1) # 0 and det A # 0, for
(t,z, ;1) € R x R x [0,1]. This can be done using the localization technique (cf. [4, page
46]). Hence det 7 (t,z, pu) # 0. This gives the necessary part of the statement.

Let us now prove that the conditions (a)—(c) are sufficient for the Fredholm property

of THg. From formula (9.3.4), it follows that
det 7 (t,z, u) = det A(t, x, u) det ’j\'(t, xz,u), (tx,pu) e M.

Since by the condition (b) we have that det 7 (¢, z, ) # 0 we will have that det A(t, z, u) #
0. This and the fact that A(oo, x, u) = Ioyxan allows us to conclude that A is a Fredholm
operator. Employing once again the equality (9.3.4), we obtain that 7, = ’]AL since A is
locally equivalent with Ioy«on at oo. In addition, from conditions (a) and (c¢) and from
Theorem 9.2.1, it follows that 7T is a Fredholm operator. Altogether, we have that under
the conditions (a)—(c) both operators 7 and A are Fredholm. This means that 7 is a

Fredholm operator, and hence T'Hg is a Fredholm operator. O

9.4 Index formula

In this section we give an index formula for the operator THg with ® € PAPN*N
under the assumption that T'Hg is a Fredholm operator. Our reasoning relays on a
certain approximating strategy. Namely, we will first give an index formula for T'Hg with

® ¢ PAPWN*N and then use the fact that PAPW is dense in PAP and also certain
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stability properties (which occur under small perturbations). It should be mentioned that
the index formula for THg with ® € PAPWYN*Y follows easily from the results obtained
in [4].

As far as in this section our goal is to obtain a Fredholm index formula for Toeplitz plus
Hankel operators with piecewise almost periodic functions, we will proceed by simplifying
some symbols of the operators. Namely, here we will not need the symbol calculus for
the operators with three variables and it is sufficient to consider the symbol calculus with

CN><N

two variables. For instance, for a function f € P , and the Cauchy singular integral

operator Sg, the symbols are given by the formulas (cf., e.g., [4]):

T e R 9.41)
0 -0

and

Salw ) = | BT 2 (9.4.2)
2v(p) (1 —2p)
where (z,11) € R x [0,1] and v(u) is as in Section 9.1.

For starting let us analyze the singular integral operators with the form (9.3.3), but
having coefficients from the Wiener subalgebra of PAPN*N. Now we will reproduce the
constructions developed in [4, pages 47-48|. To this end let us denote by the 7 (x, 1) the
symbol of the operator 7 governed by the formulas (9.4.1) and (9.4.2). The necessary
and sufficient conditions for the operator 7 to be Fredholm are given in [4, Theorem 5.2].
Furthermore from the same theorem [4, Theorem 5.2 (ii)—(iii)| we infer that for any fixed
p € [0,1] the function 7 (-, u) € GPAPWY*N and its almost periodic representatives
det(b;'as) at oo admit canonical right APW factorizations. Further details on such

kind of factorizations and related topics can be found e.g. in [14].

Consequently the function

Yula) = arg Tz, )

belongs to PAPW for every fixed p € [0, 1], and hence the value

Indg 77 := zi lim /O t(wu(x)—wu(—x))dx (9.4.3)

T t—+oo ¢
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exists, is finite and does not depend on the choice of 1 € [0, 1]. The fundamental properties
of the quantity Indg7# given by the formula (9.4.3) are stated in [4, Lemma 5.3|.

Let the operator THg with symbol ® € PAPWY*YN be Fredholm operator. Then
the operator 7 defined in Theorem 9.3.1 is also Fredholm and reasoning in a similar way
as in [4, page 55| we can give another meaning to the quantity Indg7 #. More precisely

in this situation we have (cf. [4, formula (6.2)])

IndR’T#— — lim / Yu(z (9.4.4)

27 t—+oo ¢

where ¢, () = arg 7 (z, 1) and for < 0, ¢, (z) = 1.

THEOREM 9.4.1. (equivalent to [4, Theorem 6.4]) If the operator T Hg with symbol
® € PAPWYN*N s Fredholm, then its index is given by the formula

1 ~
Ind7 = —Indp 7% — 2—{arg det T (00, ) }pcpo] »
T
with Indg T# provided by (9.4.4) and

- 0 —,d," 1— ), (), L,  —iv(p),
Floo.p) = d bry (1—n) L A W |
o (), (1= pl, —iv(w) L, ply

(9.4.5)

where ®, and ®, are the local representatives of the matriz function ® (cf. Proposi-

tion 2.2.5). Here T is as in Theorem 9.3.1.
REMARK 9.4.2. The proof of the next theorem reveals the structure of f'(oo,,u).

The main result of this section is now stated.

THEOREM 9.4.3. If THg is a Fredholm operator with symbol ® € PAPN*N_ then its

Fredholm indez is given by the formula:
1 ~
IndTHy = —IndpT# — 2—{arg det T (00, 1) }cpo,1 5 (9.4.6)
™

where IndgT# is given by (9.4.4) and %(oo,u) have the form of (9.4.5) for a T as in
Theorem 9.5.1.
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Proof. Let us take ®,, € PAPWN*Y such that lim,, .., ||®, — ®|| = 0. Here and in what
follows we are considering the supremum norms. Let us consider functions a,,b,, ¢, €

PAPW?2ZNX2N guch that
lim ||a, —a|| =0, lim ||b, —b|| =0, lim ||¢, —¢|| =0,

by taking into consideration ®,, in the corresponding place of ® in Theorem 9.3.1; cf. (9.3.1).

This allow us to consider the operator
,];-L = ClnPR + anR + CnV .

If THg with symbol ® € PAPN*YN is Fredholm, then the operator 7 defined in Theo-
rem 9.3.1 is also Fredholm and their Fredholm indices coincide. Employing the fact that
small perturbations preserve the Fredholm property and the Fredholm index, we conclude
that the operators THg and 7,, are Fredholm only simultaneously and their Fredholm in-
dices coincide for sufficiently large values of n. Additionally, the Fredholm index for 7, is

given by the next formula (cf. [4, Theorem 6.4])
1 ~
Ind7, = —IndR’Z;L# — Q—{arg det 7;,(00, 1) } uejo,1] »
T
where Indg 7,7 is given by formula (9.4.4) and

~ . (L=, iv(pl, ply —iv(p)ly,
T, (00, 1) = d((bn); " (an)r) | o
w(p)ly (1= p)ly (), ply
Here (a,), and (b,), stand for the local representatives at +oo of the matrix functions
a, and b,. Having now in mind the stability of the geometrical mean value, we get the

formula (9.4.6), since a direct computation provides that

Using here the passage to the limit when n — o0, it turns clear the structure of T (00, 1)
and the desired Fredholm index formula (9.4.6). Note that in general the limiting matrix
belongs to the Besicovitch space (cf., e.g., [14] or [15]), but employing the known result
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about the stability of the geometrical mean value (see e.g., [14, Corollary 21.8], [15,
Corollary 2.8]|, [46, Corollary 8]) we can here ensure that

lim d((bn>r_l(an)r) =d
n— o0 I q)e—l



Conclusion

The study of Wiener-Hopf-Hankel operators is important not only by pure theoret-
ical reasons but also due to its appearance in various types of applications. This last
interest comes e.g. from the Mathematical Physics, Statistics, Control Theory and many
other areas of Mathematics. In this thesis we considered Wiener-Hopf-Hankel operators
with symbols from the almost periodic, semi-almost periodic, piecewise almost periodic
function classes and moreover with symbols associated in a certain way with unitary and
sectorial matrix functions. The attention was paid also to Toeplitz plus Hankel operators
with matrix piecewise almost periodic symbols and the Toeplitz plus Hankel operators
with scalar symbols having n points of standard almost periodic discontinuities.

Chapters 1 and 2 were only of introductory nature and there were given very shortly
the necessary background information for the development of the next chapters.

In Chapter 3 we considered the Wiener-Hopf plus Hankel operators with symbols from
the algebra of matrix almost periodic functions. To deduce the one-sided or two-sided
invertibility theory for Wiener-Hopf plus Hankel operators with AP matrix symbols we
introduced the notion of an AP asymmetric factorization. In this framework were given
sufficient conditions for the one-sided or two-sided invertibility of the Wiener-Hopf plus
Hankel operators with matrix AP symbols. For such kind of operators were also exhibited
generalized inverses for all the possible cases.

In Chapters 4 and 5 we obtained new results concerned a Fredholm property and
a formula for the sum of the Fredholm indices of Wiener-Hopf plus Hankel and Wiener-
Hopf minus Hankel operators with matrix SAP and PAP symbols, respectively. Anyway,

the problem to obtain necessary and sufficient conditions for the Fredholm property of

159
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Wiener-Hopf plus Hankel operators with SAP or PAP matrix symbols remains open.

In Chapter 6 we gave a corresponding version of the classical theorem by Douglas
and Sarason for Toeplitz operators with sectorial and unitary symbols. Also in here the
necessary and sufficient conditions for the Wiener-Hopf plus Hankel operators with the
just mentioned symbols to be Fredholm operator remains open.

The main result of Chapter 7 was a necessary and sufficient condition for the Wiener-
Hopf plus Hankel operators with L> symbols to be Fredholm, or invertible. To obtain
such a result we dealt with an odd asymmetric factorization with not “usual” weights.
The corresponding theory with an even asymmetric factorization and the theory for the
matrix case are open.

In Chapter 8 we found conditions under which Toeplitz plus Hankel operators gen-
erated by symbols which have n points of standard almost periodic discontinuities are
right-invertible and with infinite dimensional kernel, left-invertible and with infinite di-
mensional cokernel or simply not normally solvable. In this direction there are an huge
amount of open problems. E.g., the corresponding theory for matrix operators, the Fred-
holm index formula, and the consideration of other kinds of points of discontinuity (such
as discontinuities of whirl points of power type) is still open.

In Chapter 9 were provided necessary and sufficient conditions for matrix Toeplitz plus
Hankel operators with piecewise almost periodic symbols to have the Fredholm property.
It is worth to mention that this result is highly theoretical, and the necessary and sufficient
conditions for Toeplitz plus Hankel operators with matrix PAP symbols, which would be

easily and effectively verifiable in practical problems remains open.
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