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palavras-chave Espaço de Besov, suavidade generalizada, interpolação com parâmetro

função, decomposição em "wavelets", base de Schauder incondicional, es-

paço de Lebesgue, integrabilidade variável, espaço de Sobolev, expoente var-

iável, potencial de Riesz, potencial de Bessel, integral hipersingular, função

maximal, derivada fraccionária, imersão de Sobolev, espaço de Hölder, ordem

variável.

resumo Suavidade generalizada e integrabilidade variável são dois importantes tópi-

cos de investigação na teoria de espaços de funções. Neste trabalho consid-

eramos tanto espaços de Besov com suavidade generalizada como espaços

de Lebesgue (e de Sobolev correspondentes) com parâmetro de integração

variável. São estudadas no caso geral propriedades de interpolação com

parâmetro função de espaços de Besov generalizados, as quais estendem re-

sultados já conhecidos formulados no caso Banach. Além disso, obtemos

decomposições em "wavelets" para estes espaços através do uso de técnicas

de interpolação apropriadas, que por sua vez são usadas para obter novos

resultados de interpolação.
Potenciais de Riesz e de Bessel são tratados no âmbito dos espaços de

Lebesgue com expoente variável. Em particular, estudamos a inversão do

operador potencial de Riesz e apresentamos uma caracterização, tanto para

os espaços de potenciais de Riesz como para os espaços de potenciais de

Bessel, em termos de convergência de integrais hipersingulares.
Também lidamos com desigualdades pontuais no quadro dos espaços de

Sobolev com parâmetro de integração variável. Tais desigualdades são us-

adas para generalizar imersões de Sobolev clássicas ao contexto de expoentes

variáveis, no caso em que, para além de condições naturais de regularidade,

o expoente toma valores superiores à dimensão do espaço euclidiano. Por

outro lado, são dados resultados acerca da limitação de operadores hipersin-

gulares definidos em espaços de Sobolev variáveis em domínios limitados.





keywords Besov space, generalized smoothness, interpolation with function parameter,

wavelet decomposition, unconditional Schauder basis, Lebesgue space, vari-

able integrability, Sobolev space, variable exponent, Riesz potential, Bessel

potential, hypersingular integral, maximal function, fractional derivative,

Sobolev embedding, Hölder space, variable order.

abstract Generalized smoothness and variable integrability are two important research

topics in the theory of function spaces. In this work, we consider both

Besov spaces with generalized smoothness and Lebesgue (and correspond-

ing Sobolev) spaces with variable exponent. Interpolation properties with

function parameter of generalized Besov spaces are studied in the general

case, which extends already known results stated for the Banach case. More-

over, we obtain wavelet decompositions for these spaces by using suitable

interpolation techniques, which in turn are used to get new interpolation

results.
Riesz and Bessel potentials are considered within the framework of the vari-

able exponent Lebesgue spaces. In particular, we study the inversion of the

Riesz potential operator and give a characterization both for the Riesz po-

tential spaces and for the Bessel potential spaces, in terms of convergence

of hypersingular integrals.
We also deal with pointwise inequalities in the context of the variable Sobolev

spaces. Such inequalities are used to extend some classical Sobolev embed-

dings to the variable exponent setting, in the case when, besides natural

assumptions, the exponent takes values greater than the dimension of the

Euclidean space. Furthermore, boundedness results for hypersingular integral

operators on variable Sobolev spaces over bounded domains are given.
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Symbols

Basic notation:

∅ empty set;
· takes the place of the variable with respect to which the function is evaluated,

the (quasi-)norm is calculated, etc;
:= equality, by definition;
∼ equivalence (according to Section 1.1);
f ∗ g convolution product;
f∗ decreasing rearrangement of f ;
N, N0 set of natural numbers, N ∪ {0};
R set of real numbers;
C set of complex numbers;
# cardinal of a countable set;
[a] entire part of a ∈ R;
Rn n-dimensional Euclidean space;
Zn lattice of points in Rn with integer components;
β! β1! · · ·βn! for β = (β1, . . . , βn) ∈ Nn

0 ;
| · | the Euclidean norm of an element of Rn or the length of a multi-index or

the Lebesgue measure of a set of Rn;
diam diameter of a set in Rn;
x · y scalar product in Rn;
B(x, r) open ball centered at x ∈ Rn and of radius r > 0;
B(x, r) corresponding closed ball;
χE characteristic function of the set E;
supp support of a function (or distribution);
Ω, ∂Ω, Ω domain in Rn (i.e., a non-empty open subset of Rn), boundary of Ω,

closure of Ω;
Jν Bessel function of the first kind, ν > 0;
Γ Gamma function;(
a
k

)
binomial coefficient, given by Γ(a+1)

k! Γ(a+1−k) with a ∈ R, k ∈ N;
Dβ classic or weak partial derivative of order β ∈ Nn

0 ;
∆, ∇ Laplacian, gradient;
∆`

y finite difference, with ` ∈ N, y ∈ Rn;
↪→ continuous embedding (between function spaces);
¤ end of proof.
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Introduction

This dissertation is divided into two parts corresponding to the study of two important

features in the theory of function spaces: generalized smoothness and variable integrability.

Function spaces with generalized smoothness have been considered by many authors from

different points of view1. Important contributions were made by the former Soviet school,

where approaches based on approximation by entire functions (Kalyabin and Lizorkin [75]) and

modulus of continuity (Gold’man [59]) were developed. As far as applications are concerned,

spaces of generalized smoothness have been successfully used in the resolution of some problems

coming from stochastic processes and probability theory (see [52] for further details).

Part I deals with Besov spaces Bφ
pq(Rn), where φ is a certain function representing a

generalization of the usual smoothness parameter s. These spaces arise naturally as the

interpolation result obtained by real interpolation with function parameter between Bessel

potential spaces. This and other interpolation properties were investigated in the Banach

case (p, q ≥ 1) by Merucci [94] and afterwards by Cobos and Fernandez [23], following the

Fourier-analytical approach (see Definition 2.1.2). Although the extension to the full range

0 < p, q ≤ ∞ has been announced in [23] as a forthcoming goal, the fact is that it has never

been published (and does not even exist as a draft, to the best of our knowledge). This

question is the starting point of the first part of our thesis.

In Part II we consider Lebesgue spaces with variable exponent, Lp(·)(Ω), and the corre-

sponding Sobolev spaces, where now the exponent p = p(x) is a (measurable) function defined

on Ω (this is why we write p(·) instead of p). Riesz and Bessel potentials, hypersingular

integrals and pointwise inequalities are studied within the framework of these spaces.

The theory of variable exponent spaces have attracted many researchers during the last

1Function spaces of variable smoothness have also been studied by some authors. For instance, we mention

the contributions by Besov [11, 10, 12] and by Leopold [86, 87].
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years. The interest to these spaces comes not only from theoretical curiosity but also from

their relevance in some applications. They appear in the modelling of some problems of

fluid dynamics, elasticity theory and differential equations with the so-called non-standard

growth conditions. We refer to [34], [111] and [1] as examples illustrating these applications.

Recently, it was realized that variable exponent spaces are also very suitable to deal with

problems related to image restoration (see [89]).

The spaces Lp(·)(Ω) do not share all the properties of their classical analogues Lp(Ω) with

constant exponent p. For instance, Lp(·)(Rn) is not translation invariant, which brings some

problems related to the convolution on these spaces. Nevertheless, after the boundedness

of the Hardy-Littlewood maximal function has been proved by Diening [30], there was an

evident progress in the development of operator theory on the variable exponent setting.

Convolution, potential and singular type operators are examples of classic operators which

have been intensively studied during the recent years (see Chapter 4 for more details). The

work in the second part of our dissertation continues this line of investigation.

We now give a brief description of the topics treated in each chapter. Chapter 1 provides

the necessary preliminaries concerning the basic notation used throughout the text. For future

reference we also give a short review on classical function spaces.

The Chapters 2 and 3 form Part I. Chapter 2 is devoted to the study of interpolation

properties of spaces Bφ
pq(Rn) in the case when p is fixed. Corresponding statements given in

[23] for p, q ≥ 1 are extended to the quasi-Banach case. We follow the same general principle,

that is, we make use of the so-called retraction and co-retraction method to reduce the initial

interpolation problem to the interpolation of appropriate sequence spaces. However, some

changes have to be made in the general situation, since the retraction and the co-retraction

constructed in [23] ((2.10 and (2.11), respectively), based on the Fourier transform acting in

Lp(Rn), are meaningless when 0 < p < 1. Such as remarked in [131] (Theorem 2.2.10), we show

that it is possible to replace the space Lp(Rn) by the local Hardy space hp(Rn), 0 < p < ∞,

in the definition of the Besov spaces (see equivalence (2.12)). In this way we overcome the

difficulties with the Fourier transform. On the other hand, one proves that Bφ
pq(Rn) is a retract

of the sequence space `φ
q (hp(Rn)). We then get the desired interpolation formulas (see (2.26)

and (2.27) below) from the corresponding ones obtained first for the spaces `φ
q (hp(Rn)).

The aim of Chapter 3 is twofold. The first is to obtain wavelet decompositions for spaces
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Bφ
pq(Rn), extending a recent result of Triebel [137] on wavelet bases in classical Besov spaces

Bs
pq(Rn). The proof of the main statement (Theorem 3.1.7) is based on suitable interpolation

techniques by making use of interpolation results studied in Chapter 2. In this way we avoid

the usage of several tools (such as local means and maximal functions) as in [137]. The second

objective of this chapter is to give further interpolation statements for spaces Bφ
pq(Rn) but now

in the case when p is changed. Theorem 3.2.6 provides a possible alternative to the approach

followed in [23], with the advantage of being valid in the quasi-Banach case. For its proof

we base ourselves on wavelet representations obtained in Theorem 3.1.7 to construct a new

retraction and a co-retraction. In general, our work in Chapter 3 emphasizes an interesting

role played between interpolation properties and wavelet expansions.

Chapter 4 is an introduction to Part II. It provides both specific notation and important

statements on variable exponent spaces which will be often used in the following chapters.

This chapter gives also a brief overview on the present theory of these spaces.

In Chapter 5 we study mapping properties of the Riesz potential operator Iα acting in

Lebesgue spaces with variable exponent. The main statement (Theorem 5.3.5) shows that

the Riesz fractional derivative Dα provides the (left) inverse to the Riesz potential operator,

under the assumption on the boundedness of the maximal operator on Lp(·). This generalizes

previous results known for classic Lebesgue spaces (see [121]) to the variable exponent setting.

The study of the Riesz potential operator is continued in Chapter 6. A description of

the Riesz potential spaces Iα[Lp(·)] in terms of convergence of hypersingular integrals is given

when ess sup
x∈Rn

p(x) < n
α (see Theorem 6.1.4). Hence, we partially extend the known results

for constant p (see [121]). We give also a characterization of the range Bα[Lp(·)], where Bα is

the Bessel potential operator. This statement is based on the previous description of Iα[Lp(·)]

and on the study of two important convolution kernels defined by their Fourier transforms,

which requires substantial efforts. Chapter 6 ends with a comparison of the Riesz and Bessel

potential spaces with the variable Sobolev spaces Wm
p(·)(R

n). In particular, we extend the

well-known identity Bm[Lp] = Wm
p (Rn) due to Calderón [19] to the variable exponent setting.

Finally, in Chapter 7 we study some pointwise inequalities within the context of the variable

exponent Sobolev spaces. After recovering the known fact that the oscillation of Sobolev

functions may be estimated by the fractional maximal operator of their gradient, we obtain

Sobolev embeddings into Hölder spaces with variable order (see Theorem 7.3.7) and give
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boundedness results for hypersingular operators on spaces Wm
p(·)(Ω) over bounded domains.

As far as possible, we have tried to give precise bibliographic references about the state-

ments already known or the places where they can be found. Nevertheless, this is not an

easy task due to the large number of people working on these topics. The numbers between

braces in the list of references mean the pages where each paper or book is referred in this

dissertation.

In order to facilitate the reading, all the notation and symbols used throughout the text

are listed in an appropriate table. Moreover, we also provide a subject index in the end.

Almost all the results obtained in this thesis have been published in scientific journals.

With exception of Section 3.2, the main statements in Chapters 2 and 3 are published in the

papers

• A. Almeida, Wavelet bases in generalized Besov spaces, J. Math. Anal. Appl.
304, No. 1 (2005), 198-211;

• A. Almeida, Wavelet representation in Besov spaces of generalized smoothness,
In “Function spaces, differential operators and nonlinear analysis”. Proceedings of
the conference FSDONA-04 dedicated to the 70th birthday of Prof. Alois Kufner,
Milovy, Czech Republic, May 28 - June 2, 2004, P. Drábek and J. Rákosník (ed.).
Prague: Math. Institute Acad. Sci. Czech Republic, pp. 7-18, 2005.

The content of Chapter 5 is published in the paper

• A. Almeida, Inversion of the Riesz potential operator on Lebesgue spaces with
variable exponent, Fract. Calc. Appl. Anal. 6, No. 3 (2003), 311-327.

The results in Chapters 6 and 7 are based on joint work with Stefan Samko and they can be

found, respectively, in the papers

• A. Almeida and S. Samko, Characterization of Riesz and Bessel potentials on
variable Lebesgue spaces, J. Funct. Spaces Appl. (to appear);

• A. Almeida and S. Samko, Pointwise inequalities in variable Sobolev spaces
and applications, Z. Anal. Anwend. (to appear).



Chapter 1

Preliminaries

1.1 Basic notation

As usually, the set of natural numbers is denoted by N and N0 = N ∪ {0}. We write Z,

R and C for the set of integer, real and complex numbers, respectively. By Rn we denote the

n-dimensional real Euclidean space with n ∈ N. A point x ∈ Rn is denoted by x = (x1, . . . , xn)

and its Euclidean norm by |x|. Zn stands for the usual lattice consisting of all points in Rn

with integer components, and Nn
0 denotes the set of all multi-indices β = (β1, . . . , βn), each

component belonging to N0. For β ∈ Nn
0 and x ∈ Rn, we write |β| = β1 + · · · + βn (without

risk of confusion), β! = β1! · · ·βn! and xβ = xβ1
1 · · ·xβn

n .

Any reference with respect to measurability or to integrability should be always understood

in the Lebesgue sense. If E ⊂ Rn is a measurable set, then |E| stands for its measure. The

characteristic function over E is denoted by χE . We write B(x, r) for the open ball centered

at x ∈ Rn and radius r > 0, and B(x, r) for the corresponding closed ball.

In general, we are interested in function spaces of (measurable) complex-valued functions

defined on Rn. However, in Part II we shall deal with function spaces defined over other

domains. Partial derivative operators are denoted by ∂
∂xj

, j = 1, . . . , n, while higher order

derivatives are given by Dβ = ∂|β|

∂x
β1
1 ···∂xβn

n

with β ∈ Nn
0 . The gradient of a function (with

enough regularity) f on Rn is the vector ∇f :=
(

∂f
∂x1

, . . . , ∂f
∂xn

)
and the Laplacian is ∆f :=

∂2f
∂x2

1
+ · · ·+ ∂2f

∂x2
n
.

By C∞(Rn) we denote the class of all infinitely differentiable functions on Rn, and by

C∞
0 (Rn) the class consisting of those functions in C∞(Rn) with compact support. We write
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S(Rn) for the Schwartz space of all rapidly decreasing functions in C∞(Rn), and S ′(Rn) for

its topological dual, that is, the space of all tempered distributions on Rn. If ϕ ∈ S(Rn) then

Fϕ (or ϕ̂) stands for the Fourier transform of ϕ,

(Fϕ)(ξ) =
∫

Rn

eix·ξ ϕ(x) dx, ξ ∈ Rn (1.1)

(x · ξ meaning scalar product), whereas F−1ϕ (or ϕ∨) denotes its related inverse Fourier

transform. Both the Fourier transform and its inverse are extended to S ′(Rn) in the usual

way. The class of Fourier transforms of integrable functions will be denoted by W0(Rn).

Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural

embedding of X into Y is continuous. Furthermore, writing the equivalence “∼” in

ak ∼ bk or ϕ(x) ∼ ψ(x)

means that there are two positive constants c1 and c2 such that

c1 ak ≤ bk ≤ c2 ak or c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x, where {ak},
{bk} are non-negative sequences and ϕ, ψ are non-negative functions. We will also use the

same symbol “∼” to mean equivalence of quasi-norms.

All unimportant positive constants are denoted by C (or c) which may be different even

in a single chain of inequalities. Sometimes, for convenience, we use additional subscripts

(c1, c2, ...) and we emphasize the dependence of the constants on certain parameters. For

instance, when we write “c(n)” it means that the constant c depends on n and that other

possible dependences are irrelevant in the context. In what follows “log” is always taken with

respect to base 2.

Further notation will be properly introduced whenever needed.

1.2 Classical function spaces

We will deal with different generalizations of function spaces. By convention, in their

notation we shall write the smoothness index as superscript, while the integrability index is

written as subscript.
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For 0 < p ≤ ∞, Lp(Rn) denotes the well-known Lebesgue space, quasi-normed by

‖f |Lp(Rn)‖ :=
(∫

Rn

|f(x)|p dx

)1/p

, (1.2)

with the usual modification to ess sup
x∈Rn

|f(x)| if p = ∞. We shall also use the notation ‖ · ‖p

to denote the quasi-norm (1.2), mainly in the case of variable exponents p (writing ‖ · ‖p(·) in

that case; see Part II).

As usual, Lpq(Rn), 0 < p, q ≤ ∞, denotes the classical Lorentz space, consisting of all

(equivalence classes of) Lebesgue measurable functions f on Rn such that ‖f |Lpq(Rn)‖ is

finite, with

‖f |Lpq(Rn)‖ :=
(∫ ∞

0

[
t

1
p f∗(t)

]q dt

t

)1/q

if 0 < q < ∞,

‖f |Lpq(Rn)‖ := sup
t>0

[
t

1
p f∗(t)

]
if q = ∞,

where f∗ denotes the decreasing rearrangement of f , given by

f∗(t) = inf {δ ≥ 0 : |{x ∈ Rn : |f(x)| > δ}| ≤ t} , t > 0.

C(Rn) stands for the space of all uniformly continuous bounded functions in Rn and, for

r ∈ N,
Cr(Rn) =

{
f ∈ C(Rn) : Dβf ∈ C(Rn), |β| ≤ r

}
, (1.3)

normed by

‖f |Cr(Rn)‖ :=
∑

|β|≤r

‖Dβf |L∞(Rn)‖.

Let {ϕj}j∈N0 ⊂ S(Rn) be a system with the following properties:

supp ϕ0 ⊂ {ξ ∈ Rn : |ξ| ≤ 2} ; (1.4)

supp ϕj ⊂
{
ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1

}
, j ∈ N; (1.5)

sup
ξ∈Rn

|Dβϕj(ξ)| ≤ c(β) 2−j|β|, j ∈ N0, β ∈ Nn
0 ; (1.6)

∞∑

j=0

ϕj(ξ) = 1, ξ ∈ Rn. (1.7)

In other words, {ϕj}j∈N0 forms a dyadic smooth partition of unity in Rn. Examples of such

systems can be constructed as follows: given ϕ0 ∈ S(Rn) such that

supp ϕ0 ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and ϕ0(ξ) = 1 if |ξ| ≤ 1,
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one defines, for each j ∈ N,

ϕj(ξ) = ϕ0(2−jξ)− ϕ0(2−j+1ξ), ξ ∈ Rn. (1.8)

If f ∈ S ′(Rn) then (ϕj f̂)∨, j ∈ N0, makes sense pointwise since it is an analytic function

on Rn by the Paley-Wiener-Schwartz theorem (cf. [132], p. 13). Moreover,

f =
∞∑

j=0

(ϕj f̂)∨ (1.9)

with convergence in S ′(Rn).

For s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, the usual Besov and Triebel-Lizorkin spaces are

defined as the collection of all f ∈ S ′(Rn) such that

‖f |Bs
pq(Rn)‖ :=




∞∑

j=0

2jsq ‖(ϕj f̂)∨ |Lp(Rn)‖q




1/q

(1.10)

and

‖f |F s
pq(Rn)‖ :=

∥∥∥∥∥∥∥




∞∑

j=0

2jsq |(ϕj f̂)∨(·)|q



1/q

|Lp(Rn)

∥∥∥∥∥∥∥
, (1.11)

(with the usual modification if q = ∞, and assuming p < ∞ in the F -case) are finite, respec-

tively. Together with the expressions (1.10), (1.11), they form quasi-Banach spaces (Banach

spaces if p ≥ 1, q ≥ 1) and they are independent of the system {ϕj}j∈N0 chosen according to

(1.4)–(1.7), up to the equivalence of quasi-norms. We refer to [132] for a systematic theory on

these spaces. Sometimes we add a comma to the notation (for example, instead of Bs
12(Rn)

we would write Bs
1,2(Rn)) to clarify the values that the parameters p and q are taking.

These scales contain some classical spaces as special cases. For instance,

F s
p,2(Rn) = Hs

p(Rn), s ∈ R, 1 < p < ∞,

are the fractional Sobolev spaces (also called Bessel potential spaces1 or Liouville spaces). In

particular, when s ∈ N then F s
p,2(Rn) = W s

p (Rn) are the classical Sobolev spaces, equivalently

normed by

‖f |W s
p (Rn)‖ :=

∑

|β|≤s

‖Dβf |Lp(Rn)‖, f ∈ W s
p (Rn),

1Later, in Chapter 6, we will denote the Bessel potential spaces in a different way. Our preference by

another notation there intends to emphasize that these spaces are the range of the Bessel operator (acting in

Lebesgue spaces with variable exponent p).
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and F 0
p,2(Rn) = Lp(Rn) are the Lebesgue spaces. Moreover,

F 0
p,2(Rn) = hp(Rn), 0 < p < ∞, (1.12)

are the local Hardy spaces introduced by Goldberg [58] and

Bs
∞∞(Rn) = Cs(Rn), s > 0, (1.13)

are the Hölder-Zygmund spaces (see [132], Section 2.2.2, for precise definitions). Notice that

all these identities should be interpreted in the sense of equivalence of quasi-norms.

We shall make use of general weighted sequence spaces as follows. If {Xi}i∈I is a countable

family of quasi-Banach spaces, ω ≡ {ωi}i∈I is a non-negative “sequence” and 0 < q ≤ ∞, then

we will denote by `q(I, Xi, ωi) the “weighted sequence space” of all the families a ≡ {ai}i∈I ,

with ai ∈ Xi, i ∈ I, such that ‖a | `q(I,Xi, ωi)‖ is finite, where

‖a | `q(I,Xi, ωi)‖ :=

(∑

i∈I

(ωi ‖ai |Xi‖)q

)1/q

, 0 < q < ∞, (1.14)

and

‖a | `∞(I, Xi, ωi)‖ := sup
i∈I

ωi ‖ai |Xi‖ (1.15)

define quasi-norms. The right-hand side in (1.14) expresses the q-summability2 of the non-

negative family {ωi ‖ai |Xi‖}i∈I in R.

We shall omit the index set I if it is clear from the context. When Xi = X for every i ∈ I

then we shall write `(I,X, ω), where ω ≡ {ωi}i∈I . Moreover, in the particular case X = C we

will also omit the “X” in the notation and we write only `q(I) if ωi = 1 for all i ∈ I.

2The expression “summable family” is used in the case when the set of indices is not ordered, at least a

priori. Sometimes the summability is referred as the (uncondicional) convergence of the corresponding series

(see Chapter 3 for further details).
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Part I

Real Interpolation of Generalized

Besov Spaces and Applications
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Chapter 2

Real Interpolation of Besov Spaces

with Generalized Smoothness

In this chapter we deal with Besov spaces with generalized smoothness, which will be

denoted by Bφ
pq(Rn). These spaces are defined as in (1.10) with φ(2j) instead of 2js, where φ

is some “admissible” function.

Real interpolation with function parameter of spaces Bφ
pq(Rn) was first studied by Merucci

in [94]. The investigation in [94] was then followed up by Cobos and Fernandez [23] leading

to the extension of several classical results to spaces Bφ
pq(Rn).

The statements both in [94] and in [23] were only formulated in the Banach case p, q ≥ 1.

Some of them can be extended to the quasi-Banach case although the same techniques are no

longer available when 0 < p < 1. This fact was observed in [23] (see Remark 5.4) based on a

earlier remark from [131], Theorem 2.2.10. Since we did not find further information on this

subject in the literature, we decided to give a detailed description how this question in the

general case may be dealt with.

We start Section 2.1 with some historical remarks concerning Besov spaces. Then we in-

troduce the generalized Besov spaces we are interested in and compare them to other known

function spaces. In Section 2.2 we provide a review of basic tools on real interpolation with

function parameter. Section 2.3 is devoted to the discussion of interpolation properties of

Bφ
pq(Rn) spaces in the general context mentioned above. The main statements provide inter-

polation formulas between these spaces in the case when the parameter p is not changed.
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2.1 Besov spaces of generalized smoothness

2.1.1 A short note on Besov spaces

In a sense, Besov spaces Bs
pq appeared to fill the gaps between the Hölder-Zygmund spaces

and the Sobolev spaces. Nikol’skii was the first who introduced the spaces Bs
p,∞. Afterwards

they were generalized to the case where q is different from ∞ by Besov [9] (with s > 0,

1 < p < ∞, 1 ≤ q < ∞) at the end of the fifties of the last century, by means of the modulus

of continuity. The Fourier-analytical characterization of these spaces was provided by Peetre

in the sixties, based on the principle that every tempered distribution can be decomposed

into a sum of entire analytic functions (see (1.9)). The same author extended the definition

to the whole range s ∈ R, 0 < p, q ≤ ∞ in the earlier seventies (see [103]). We refer to the

monographs [104], [132] and [133] for further historical remarks on this subject.

Besov spaces are very useful from the applications point of view. They arise often in

problems of signal processing and image compression. An important task is to get information

on Besov functions from the study of the distribution of the associated wavelet coefficients. We

mention the paper [73] as an example where such problems are treated. The case 0 < p < 1

seems to be particularly useful to check the quality of the approximation of solutions of

certain boundary value problems, obtained from numerical algorithms (see, for instance, [26]

for further details).

Besov spaces (and other function spaces) with generalized smoothness have been considered

by several authors from different approaches. They started to be studied in the 1970’s mainly

by the Russian school. For instance, we refer to [59] for an approach in terms of modulus of

continuity and to [75] for a study based on approximation by entire functions of exponential

type. Generalized Besov spaces were also studied from the interpolation point of view by

Merucci [94] as the interpolation spaces obtained by real interpolation with function parameter

between Bessel potential spaces. Further historical remarks and references can be found in

[52].

We notice that function spaces of generalized smoothness have interesting applications to

other fields. For example, they were recently used in some investigations in probability theory

and stochastic processes (see [52]).



2.1 Besov spaces of generalized smoothness 15

2.1.2 Definition and basic properties

Roughly speaking we obtain Besov spaces of generalized smoothness by replacing the

usual regularity index s in (1.10) by a certain function fulfilling certain properties. The

generalization we are interested in is based on the class B defined as follows.

Definition 2.1.1. We say that a function φ : (0,∞) → (0,∞) belongs to the class B if it is

continuous, φ(1) = 1, and

φ(t) := sup
u>0

φ(tu)
φ(u)

< ∞

for every t > 0.

We refer to [94] for details concerning this class. A basic example of a function belonging

to B is φ(t) = φs,0(t) = ts, s ∈ R. Other examples will be given later. As we will see in the

sequel, the class B is sufficiently wide in the sense that it allow us to cover the most common

cases appearing in the literature.

We will follow the Fourier-analytic approach as in (1.10) to introduce the spaces we are

interested in. First we need some auxiliary sequence spaces.

If E is a quasi-normed space, 0 < q ≤ ∞ and φ ∈ B, we may consider the sequence spaces

`φ
q (E) := `q(N0, E, φ(2j)) equipped with the quasi-norms ‖ · | `q(N0, E, φ(2j))‖, according to

(1.14) and (1.15) (with I = N0). When φ(t) = ts, s ∈ R, we simply write `s
q(E) instead of

`φ
q (E) for short.

Definition 2.1.2. Let {ϕj}j∈N0 be a dyadic partition of unity with the properties (1.4)–(1.7)

above. For φ ∈ B, 0 < p ≤ ∞ and 0 < q ≤ ∞, we define Bφ
pq(Rn) as the class of all

f ∈ S ′(Rn) such that {(ϕj f̂)∨}j∈N0 ∈ `φ
q (Lp(Rn)) with the quasi-norm

‖f |Bφ
pq(Rn)‖ :=

∥∥∥{(ϕj f̂)∨}j∈N0 | `φ
q (Lp(Rn))

∥∥∥ .

These spaces were studied by Merucci [94] as the result of real interpolation with function

parameter between Sobolev spaces and afterwards by Cobos and Fernandez in [23]. Like in

the classical case (according to (1.10)), they are quasi-Banach spaces and are independent

of the system {ϕj}j∈N0 chosen, up to the equivalence of quasi-norms. We point out that the

spaces Bs
pq(Rn) can be obtained as a particular case of the spaces Bφ

pq(Rn) by taking φ(t) = ts,

s ∈ R. For convenience we shall refer to the spaces Bs
pq(Rn) as classical Besov spaces.
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As mentioned above, Besov spaces with generalized smoothness have been considered and

studied by many authors in different contexts. The paper [52] gives detailed information about

literature concerning this subject. In [52] we can also find a general and unified approach for

these spaces, as well as the counterpart for the Triebel-Lizorkin scale. As far as Besov spaces

are concerned, it is possible to define generalized spaces Bσ
pq(Rn) by replacing φ(2j) by σj ,

j ∈ N0, in Definition 2.1.2, where σ is a certain admissible sequence of positive real numbers

(in the sense of [52]):

Bσ
pq(Rn) =

{
f ∈ S ′(Rn) : ‖f |Bσ

pq(Rn)‖ := ‖{σj (ϕj f̂)∨}j∈N0 | `q(Lp(Rn))‖ < ∞
}

, (2.1)

where σ ≡ {σj}j∈N0 satisfies the condition

d0 σj ≤ σj+1 ≤ d1 σj , ∀j ∈ N0, (2.2)

for some d0, d1 > 0. The definition given in [52] is even more general: it is introduced a fourth

parameter N ≡ {Nj}j∈N0 related to generalized decompositions of unity, namely allowing

different sizes for the support of the functions ϕj . We restrict ourselves here to the standard

decomposition, that is, to the case N ≡ {2j}j∈N0 .

Some “other” generalized spaces of Besov type were introduced by Edmunds and Triebel

[39], [40]. Those spaces, usually denoted by B
(s,Ψ)
pq (Rn), are defined as in (1.10) with 2jsq Ψ(2−j)q

in place of 2jsq. The parameter Ψ here represents a perturbation on the smoothness index s

and it satisfies certain conditions. We refer to [96] for a systematic study on spaces B
(s,Ψ)
pq (Rn).

In the particular case Ψ(t) = (1 + | log t|)b, t ∈ (0, 1], b ∈ R, one obtains the spaces Bs,b
pq (Rn)

considered by Leopold [88].

The spaces B
(s,Ψ)
pq (Rn) are covered by the general formulation (2.1). In fact, as remarked

in [52], the sequence {σj}j∈N0 given by σj = 2js Ψ(2−j), j ∈ N0, is admissible. Since

φ(1/2)−1 φ(2j) ≤ φ(2j+1) ≤ φ(2)φ(2j), j ∈ N0 (see (2.9) below), the spaces Bφ
pq(Rn), φ ∈ B,

are also a particular case of the spaces defined in (2.1). Nevertheless, we would like to stress

that it suffices to consider the spaces Bφ
pq(Rn). This fact may be justified by the following

result, which was suggested to us by Caetano.

Proposition 2.1.3. Let σ be an admissible sequence in the sense of (2.2) and 0 < p, q ≤ ∞.

Then there exists a function φσ ∈ B such that

Bφσ
pq (Rn) = Bσ

pq(Rn).
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Proof. Let σ be admissible. First, we remark that one can always assume σ0 = 1 without loss

of generality. In fact, the sequence σ′ defined as σ′0 = 1 and σ′j = σj , j ∈ N, is equivalent to
σ, so that Bσ

pq(Rn) = Bσ′
pq(Rn).

We can construct a function φσ ∈ B as follows:

φσ(t) =





σj+1−σj

2j (t− 2j) + σj , t ∈ [2j , 2j+1), j ∈ N0,

σ0 , t ∈ (0, 1)

(cf. [18], Section 2.2). Hence, φσ(2j) = σj for all j ∈ N0 and we get the result.

According to this proposition we will only consider generalized Besov spaces from Definition

2.1.2 in what follows.

We summarize now some basic embedding results which will be used later.

Proposition 2.1.4. (i) Let φ ∈ B, 0 < p ≤ ∞, 0 < q ≤ ∞. Then

S(Rn) ↪→ Bφ
pq(Rn) ↪→ S ′(Rn).

(ii) Let φ ∈ B, 0 < p ≤ ∞, 0 < q0 ≤ q1 ≤ ∞. Then

Bφ
pq0

(Rn) ↪→ Bφ
pq1

(Rn).

(iii) Let φ, ψ ∈ B, 0 < p ≤ ∞, 0 < q0, q1 ≤ ∞. If
{

φ(2j)
ψ(2j)

}
j∈N0

∈ `min{q1, 1} then

Bψ
pq0

(Rn) ↪→ Bφ
pq1

(Rn).

We do not give the proofs here since they are similar to the classical case treated in [132],

p. 47-48. Embeddings (ii) and (iii) generalize properties (2) and (4) contained in Theorem

4.1 in [23].

2.2 On real interpolation with function parameter

By an interpolation quasi-normed couple {A0, A1} we mean a couple of quasi-normed spaces

A0 and A1 which are both continuously embedded in some Hausdorff topological vector space.

In this case, the expressions

‖a |A0 ∩A1‖ := max (‖a |A0‖, ‖a |A1‖) , a ∈ A0 ∩A1,
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and

‖a |A0 + A1‖ := inf
a=a0+a1

a0∈A0, a1∈A1

(‖a0 |A0‖+ ‖a1 |A1‖) , a ∈ A0 + A1

(where the infimum is taken over all possible decompositions of a as the sum of elements in

A0 and A1), define quasi-norms in A0 ∩A1 and A0 + A1, respectively.

Roughly speaking, the interpolation property may be described as follows. Given a second

interpolation quasi-normed couple {B0, B1}, we say that the spaces A and B (A0∩A1 ↪→ A ↪→
A0 +A1 and B0∩B1 ↪→ B ↪→ B0 +B1) are interpolation spaces (with respect to {A0, A1} and
{B0, B1}) if for every linear operator T : A0 +A1 → B0 +B1 whose restrictions to Ai, i = 0, 1,

are bounded linear operators from Ai into Bi, then its restriction to A is also a bounded linear

operator from A into B. In the particular case when A0 = B0 and A1 = B1, then we shall say

that A is an interpolation space (with respect to {A0, A1}).
There are several ways to construct interpolation spaces. We refer to the monographs [8]

and [134] for a detailed presentation and references on interpolation theory.

We shall make use of the real method of interpolation based on the K-functional introduced

by Peetre (this is why it is sometimes referred as the K-method). This functional is defined

by

K(t, a) = K(t, a; A0, A1) = inf
a=a0+a1

a0∈A0, a1∈A1

(‖a0 |A0‖+ t ‖a1 |A1‖) , t > 0, a ∈ A0+A1. (2.3)

For each t ∈ (0,∞), K(t, ·;A0, A1) gives an equivalent quasi-norm in the linear sum A0 + A1.

K(·, a) is an increasing function for each a ∈ A0 + A1. Furthermore, it admits the following

estimate, which can be checked directly:

K(t, a; A0, A1) ≤ c Kq(t, a; A0, A1), (2.4)

where c > 0 is independent of t > 0 and a ∈ A0 + A1, and

Kq(t, a) = Kq(t, a; A0, A1) := inf
a=a0+a1

a0∈A0, a1∈A1

(‖a0 |A0‖q + tq ‖a1 |A1‖q)1/q , 0 < q < ∞. (2.5)

We are interested in general interpolation spaces where the function parameter is taken

from the class B (recall Definition 2.1.1). Nevertheless, the usual statements of interpolation

theory require additional hypothesis on the function parameter. These assumptions are usually

expressed in terms of the Boyd indices. For a function φ ∈ B, the Boyd upper and lower indices
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αφ and βφ are given by

αφ = lim
t→∞

log φ(t)
log t

and βφ = lim
t→0

log φ(t)
log t

,

respectively. They are real numbers, βφ ≤ αφ and they satisfy the properties (see [14]):

βφ > 0 if and only if
∫ 1

0

φ(t)
t

dt < ∞ (2.6)

and

αφ < 0 if and only if
∫ ∞

1

φ(t)
t

dt < ∞. (2.7)

Example 2.2.1. ([94]) The functions φa,b given by

φa,b(t) = ta (1 + | log t|)b, a, b ∈ R, (2.8)

belong to the class B. Moreover,

φa,b(t) = ta (1 + | log t|)|b| and αφa,b
= βφa,b

= a.

Other examples can be found in [91, 92].

The following proposition summarizes several useful properties of class B.

Proposition 2.2.2. ([94])

(i) If φ, φ0, φ1 ∈ B and δ > 0, then also φδ, 1
φ , φ0 φ1,

φ0

φ1
∈ B with

φδ(t) = φ
δ(t), 1/φ(t) = φ(1/t), φ0φ1(t) ≤ φ0(t)φ1(t), φ0/φ1(t) ≤ φ0(t) φ1(1/t),

and α
φδ = δ αφ , αφ0φ1

= αφ0
+ αφ1

, being the same formulas valid for the lower index.

Moreover, the connection between φ and φ is made by

φ(u)
φ(1/t)

≤ φ(u t) ≤ φ(u) φ(t), u, t ∈ (0,∞). (2.9)

(ii) For every ψ ∈ B such that βψ > 0 (resp. αψ < 0) there exists an increasing (resp.

decreasing) function ψ0 ∈ B equivalent to ψ, that is, ψ0(t) ∼ ψ(t).

Definition 2.2.3. Let {A0, A1} be an interpolation couple of quasi-normed spaces. Let also

γ ∈ B and 0 < q ≤ ∞. The space (A0, A1)γ,q consist of all a ∈ A0 + A1 for which ‖a‖γ,q is

finite, where

‖a‖γ,q :=
(∫ ∞

0

[
γ(t)−1 K(t, a)

]q dt

t

)1/q

if 0 < q < ∞,

‖a‖γ,q := sup
t>0

[
γ(t)−1 K(t, a)

]
if q = ∞,

are quasi-norms.
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If 0 < βγ ≤ αγ < 1 then (A0, A1)γ,q is an interpolation quasi-normed space (with respect

to {A0, A1}). Moreover, if A0 and A1 are quasi-Banach spaces then (A0, A1)γ,q is also a

quasi-Banach space.

Example 2.2.4. In the particular case γ(t) = φθ,0(t) = tθ, 0 < θ < 1, then (A0, A1)γ,q =

(A0, A1)θ,q is the usual interpolation space, quasi-normed by ‖ · ‖γ,q = ‖ · ‖θ,q (cf. [8], [134]).

An interesting way to describe interpolation spaces is by the so-called method of retraction

and co-retraction. This method gives us the possibility to obtain unknown interpolation

spaces from known ones with the aid of retractions and co-retractions. We shall make use of

this procedure to obtain interpolation results for Besov spaces from interpolation formulas of

suitable sequence spaces.

Let us give precise definitions (see [8], [134]).

Definition 2.2.5. Let A and B be quasi-normed spaces. B is a retract of A if there are

bounded linear operators R : A → B (retraction) and J : B → A (co-retraction), such that

the composition RJ is the identity on B.

The method of retraction and co-retraction is provided by the following theorem, whose

proof may be derived from the basic properties of interpolation theory.

Theorem 2.2.6. Let {A0, A1} and {B0, B1} be two interpolation couples of quasi-normed

spaces. Let also γ ∈ B, with 0 < βγ ≤ αγ < 1, and 0 < q ≤ ∞. If Bi is a retract of

Ai, i = 0, 1, with mappings R and J as in Definition 2.2.5, then (B0, B1)γ,q is a retract of

(A0, A1)γ,q with “the same mappings” R and J .

Proof. The hypothesis guarantees the existence of bounded linear operators R : Ai → Bi and

J : Bi → Ai such that RJ = IBi (where IBi denotes the identity on Bi), i = 0, 1. Both “R”

and “J ” can be defined on the linear sums A0 + A1 and B0 + B1, resp., in the usual way.

For instance, one defines Ra := Ra0 + Ra1, where a = a0 + a1 is a decomposition of a as

the sum of elements a0 ∈ A0 and a1 ∈ A1 (note that this definition does not depend on the

representation a = a0 + a1 taken). Moreover, simple calculations show that RJ = IB0+B1 .

Now we conclude that (B0, B1)γ,q is a retract of (A0, A1)γ,q by using the interpolation

property described above.
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Remark 2.2.7. In a concrete case we may describe the unknown space (B0, B1)γ,q from the

knowledge of the already known space (A0, A1)γ,q by using the equivalence

‖f | (B0, B1)γ,q‖ ∼ ‖J f | (A0, A1)γ,q‖,

which is a consequence of Theorem 2.2.6.

2.3 Interpolation of spaces Bφ
pq(Rn) with p fixed

This section concerns the discussion of interpolation properties for spaces Bφ
pq(Rn) in the

case when p is fixed. The results given below, being valid in the quasi-Banach case, extend

previous statements obtained by Cobos and Fernandez in the Banach case p, q ≥ 1 (see

Theorems 5.1 and 5.3 (1) of [23]).

The approach followed in [23] was based on interpolation properties of sequence spaces.

Those properties were then transferred to the generalized Besov spaces by means of retractions

and co-retractions as described in Section 2.2. The key point is that Bφ
pq(Rn) is a retract of

the sequence space `φ
q (Lp(Rn)) when p ≥ 1. Indeed, it is possible to show that, for any system

{ϕj}j∈N0 ⊂ S(Rn) with the properties (1.4)–(1.7), the mapping

R{fj}j∈N0 :=
∞∑

j=0

F−1(ϕ̃j Ffj), with ϕ̃j =
1∑

r=−1

ϕj+r, (2.10)

(convergence in S ′(Rn)) is a retraction from `φ
q (Lp(Rn)) into Bφ

pq(Rn) and

J f := {F−1(ϕj Ff)}j∈N0 (2.11)

is the corresponding co-retraction (see [8], Theorem 6.4.3, and [134], Section 2.3.2, for a

discussion of the classical case φ(t) = ts). In (2.10) we assume that ϕ−1 ≡ 0.

The mappings in (2.10) and (2.11), based on the Fourier transform acting in Lp(Rn), are

meaningless if 0 < p < 1. Nevertheless, some interpolation statements obtained in [23] for the

spaces Bφ
pq(Rn) remain valid in the quasi-Banach case as well, if we replace Lp(Rn) by the

local Hardy space hp(Rn) in the definition of the Besov spaces (see Remark 5.4 in [23]).

In the sequel we describe the main steps of the general procedure. Inspired by the proof

of Theorem 2.2.10 in [131], we state the following result.
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Proposition 2.3.1. Let f ∈ S ′(Rn), 0 < p < ∞ and {ϕj}j∈N0 satisfy the conditions (1.4)–

(1.7). Then F−1(ϕjFf) ∈ Lp(Rn) if, and only if, F−1(ϕjFf) ∈ hp(Rn), j ∈ N0. Moreover,

there exist constants c1, c2 > 0 independent of f and j such that

c1 ‖F−1(ϕjFf) |Lp(Rn)‖ ≤ ‖F−1(ϕjFf) |hp(Rn)‖ ≤ c2 ‖F−1(ϕjFf) |Lp(Rn)‖. (2.12)

Proof. Only the case 0 < p ≤ 1 is of interest since hp(Rn) = Lp(Rn) when 1 < p < ∞. Let

{ψj}j∈N0 be a dyadic smooth partition of unity satisfying conditions corresponding to (1.4)–

(1.7). If we assume ψ−1 ≡ 0 then we have ϕj = ϕj

1∑
r=−1

ψj+r, for every j ∈ N0.

Hence, for fixed f ∈ S ′(Rn) and j ∈ N0, we get

∥∥F−1(ϕjFf) |Lp(Rn)
∥∥ ≤

∥∥∥∥∥
1∑

r=−1

∣∣F−1(ψj+r ϕjFf)
∣∣ |Lp(Rn)

∥∥∥∥∥

≤
√

3

∥∥∥∥∥∥

(
1∑

r=−1

∣∣F−1(ψj+r ϕjFf)
∣∣2

)1/2

|Lp(Rn)

∥∥∥∥∥∥

=
√

3

∥∥∥∥∥∥∥




j+1∑

k=j−1

∣∣F−1(ψk ϕjFf)
∣∣2




1/2

|Lp(Rn)

∥∥∥∥∥∥∥

=
√

3

∥∥∥∥∥∥

( ∞∑

k=0

∣∣F−1[ψk F (F−1(ϕjFf))]
∣∣2

)1/2

|Lp(Rn)

∥∥∥∥∥∥
=

√
3

∥∥F−1(ϕjFf) |F 0
p,2(Rn)

∥∥ ,

which proves the left-hand side of (2.12) taking into account (1.12).

Conversely,

∥∥F−1(ϕjFf) |hp(Rn)
∥∥ ≤ c

∥∥∥∥∥∥

( ∞∑

k=0

∣∣F−1(ψk ϕjFf)
∣∣2

)1/2

|Lp(Rn)

∥∥∥∥∥∥

≤ c1

1∑

r=−1

∥∥F−1[ψj+r F (F−1(ϕjFf))] |Lp(Rn)
∥∥

≤ c2

1∑

r=−1

∥∥ψj+r(2j+1·) |Wm
2 (Rn)

∥∥ ∥∥F−1(ϕjFf) |Lp(Rn)
∥∥

where the last inequality follows from estimate (13) in [132], p. 28, with m ∈ N such that

m > n
(

1
p − 1

2

)
. We observe that suppψj+r(2j+1·) ⊂ B(0, 2). Moreover, property (1.6) yields

∣∣∣Dβ(ψj+r(2j+1x))
∣∣∣ ≤ c(β) 2|β|(1−r), |x| ≤ 2.
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Hence
∥∥ψj+r(2j+1·) |Wm

2 (Rn)
∥∥ ≤ c3

∑

|β|≤m

∥∥∥Dβ(ψj+r(2j+1·)) |L2(Rn)
∥∥∥ ≤ C

for some C > 0 not depending on j and f . This completes the proof.

The replacement of Lp(Rn) by hp(Rn) (0 < p < ∞) in Definition 2.1.2 is now clear from

inequality (2.12). The situation p = ∞ does not bring any problem since, in that case, it is

not necessary to replace L∞(Rn) for our purposes.

Lemma 2.3.2. Let φ ∈ B, 0 < p < ∞ and 0 < q ≤ ∞. Assume that {gj}j∈N0 ⊂ S ′(Rn)

fulfills the conditions

supp Fg0 ⊂ {x : |x| ≤ 2} and supp Fgj ⊂ {x : 2j−1 ≤ |x| ≤ 2j+1}, j ∈ N.

If
∥∥∥
{
φ(2j) gj

}
j
| `q(hp(Rn))

∥∥∥ < ∞ then
∞∑

j=0
gj converges in S ′(Rn).

Proof. Some arguments used below are similar to those used in [140], where convergence

problems were discussed in the case φ(t) = ts.

Let us consider

ψ(t) := φ(t) t−δ, t > 0 (with δ > 0). (2.13)

Then ψ ∈ B and
{

ψ(2k)
φ(2k)

}
k∈N0

∈ `1. Moreover, for appropriate values of δ, we also have
{
ψ(2k)

}
k∈N0

∈ `1. Indeed, if αψ = αφ − δ < 0 then, by Proposition 2.2.2, there exists a

decreasing function ψ0 ∈ B with ψ0(t) ∼ ψ(t). Since ψ0(2k) ≤ ψ0(2k) and ψ0 is decreasing, it

suffices to show that
∫∞
1 ψ0(2t) dt < ∞. But

∫ ∞

1
ψ0(2

t) dt ≤ c

∫ ∞

2

ψ(u)
u

du < ∞

according to (2.7). Hence, we shall choose δ > max
(
0, αφ

)
. For such a choice and the

corresponding function ψ from (2.13), we have

gj ∈ hp(Rn) = F 0
p,2(Rn) ↪→ B0

p∞(Rn) ↪→ Bψ
p∞(Rn)

in view of Proposition 2.1.4, (iii).

We prove the convergence of the series above in S ′(Rn) by showing that
{
g[N ]

}
N∈N0

, with

g[N ] given by
N∑

j=0
gj , is a Cauchy sequence in Bψ

p∞(Rn).

For N > M one gets
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∥∥∥g[N ] − g[M ] |Bψ
p∞(Rn)

∥∥∥ =

∥∥∥∥∥∥



F−1ϕkF




N∑

j=M+1

gj








k

| `ψ
∞(hp(Rn))

∥∥∥∥∥∥

≤
∞∑

k=0

ψ(2k)

∥∥∥∥∥∥

N∑

j=M+1

F−1(ϕk Fgj) |hp(Rn)

∥∥∥∥∥∥

≤
N+2∑

k=M−1

ψ(2k)

∥∥∥∥∥∥

2∑

j=−2

F−1(ϕk Fgk+j) |hp(Rn)

∥∥∥∥∥∥

≤ c(p)
2∑

j=−2

N+2∑

k=M−1

∥∥∥ψ(2k) F−1(ϕk Fgk+j) |hp(Rn)
∥∥∥

−→ 0 as N,M →∞, (2.14)

where the first inequality follows from the embedding `1 ↪→ `∞ and the second is obtained

from the relation suppϕk∩ suppFgj = ∅ for |k− j| > 2 (under the assumption ϕk = gj ≡ 0 if

k, j < 0). The convergence in (2.14) follows from the convergence of the series on k for fixed

j:
∞∑

k=0

∥∥∥ψ(2k) F−1[ϕk Fgk+j ] |hp(Rn)
∥∥∥ ≤

∥∥∥∥
{

ψ(2k)
φ(2k)

}

k

| `1

∥∥∥∥ sup
k∈N0

∥∥∥φ(2k)F−1[ϕkFgk+j ] |hp(Rn)
∥∥∥

≤ c
∥∥∥
{

φ(2k)
∥∥F−1[ϕk Fgk+j ] |hp(Rn)

∥∥
}

k
| `q

∥∥∥
≤ c1

∥∥∥
{

φ(2k) ‖gk+j |hp(Rn)‖
}

k
| `q

∥∥∥ (2.15)

≤ c1 φ(2−j)
∥∥∥
{

φ(2k+j) ‖gk+j |hp(Rn)‖
}

k
| `q

∥∥∥
≤ c2 φ(2−j)

∥∥∥
{

φ(2k) gk

}
k
| `q(hp(Rn))

∥∥∥ < ∞.

The second inequality is easily justified by the embedding `q ↪→ `∞, while in the fourth one we

took into account the property (2.9). In (2.15) we have applied a Fourier multiplier theorem

for hp(Rn) = F 0
p,2(Rn), namely Theorem 2.3.7 in [132], as follows:

∥∥F−1[ϕk Fgk+j ] |hp(Rn)
∥∥ ≤ c |||ϕk|||N ‖gk+j |hp(Rn)‖ , (2.16)

with c > 0 not depending on k nor f , and

|||ϕk|||N := sup
|β|≤N

sup
x∈Rn

(
1 + |x|2)

|β|
2

∣∣∣Dβϕk(x)
∣∣∣ , (2.17)

where N is a large natural number (N > 3n
min(p,2) +n+2). It remains to show that the quantity

(2.17) may be estimated by an absolute constant with respect to k. For convenience, we may
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assume that {ϕk}k∈N0 is the particular system given by (1.8), so that ϕk = ϕ1(2−k+1·), k ∈ N.
For |β| ≤ N , x ∈ Rn and k ≥ 1,

(
1 + |x|2)

|β|
2

∣∣∣Dβϕk(x)
∣∣∣ =

(
1 + |x|2)

|β|
2 2(−k+1)|β|

∣∣∣(Dβϕ1)(2−k+1x)
∣∣∣

=
(
2−2(k−1) + |2−k+1x|2

) |β|
2

∣∣∣(Dβϕ1)(2−k+1x)
∣∣∣ .

Since ϕ1 ∈ S(Rn) we easily obtain

|||ϕk|||N ≤ sup
|β|≤N

sup
y∈Rn

(
1 + |y|2)

N
2

∣∣∣Dβϕ1(y)
∣∣∣ ≤ c(N,ϕ1).

This completes the proof.

The interpolation statement given in [23], Theorem 5.3 (1), can be extended to the quasi-

Banach case in view of the theorem below.

Theorem 2.3.3. Let φ ∈ B, 0 < p < ∞ and 0 < q ≤ ∞. Then Bφ
pq(Rn) is a retract of

`φ
q (hp(Rn)).

Proof. We are to show that the mappings defined in (2.10) and (2.11) are, respectively, a

retraction and a co-retraction acting on the corresponding spaces, now with hp(Rn) in place

of Lp(Rn).

First we prove that the series involved in the definition of R (see (2.10)) converges in

S ′(Rn), namely the series
∞∑

j=0
F−1[ϕ̃j Ffj ], with ϕ̃j = ϕj−1 +ϕj +ϕj+1, where now {fj}j∈N0 ∈

`φ
q (hp(Rn)). According to Lemma 2.3.2, we have to show that

∥∥∥
{
φ(2j) F−1[ϕm Ffj ]

}
j
| `q(hp(Rn))

∥∥∥ < ∞, for m = j − 1, j, j + 1 (2.18)

(under the assumption ϕk ≡ 0 when k < 0). Let us take, for instance, m = j. An application

of the Fourier multiplier theorem for hp(Rn) as above (see (2.16)) yields
∥∥∥
{
φ(2j) F−1[ϕj Ffj ]

}
j
| `q(hp(Rn))

∥∥∥ ≤ c
∥∥∥
{
φ(2j) fj

}
j
| `q(hp(Rn))

∥∥∥ < ∞.

The statement (2.18) corresponding to the cases m = j ∓ 1 can be shown by using similar

arguments.

As regards the mapping properties of R and J , only the boundedness of R requires long

justifications, because the boundedness of J is clear from (2.12) and

RJ f =
∞∑

j=0

F−1[ϕ̃j ϕj Ff ] = f
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by (1.9) (note also that ϕ̃j ≡ 1 over supp ϕj). The continuity of the Fourier transform on

S ′(Rn) together with the properties of the system {ϕj}j∈N0 yield (with ϕl = Ffl ≡ 0 if l < 0)

∥∥∥R{fj}j |Bφ
pq(Rn)

∥∥∥ =

∥∥∥∥∥∥

∞∑

j=0

F−1[ϕ̃j Ffj ] |Bφ
pq(Rn)

∥∥∥∥∥∥

=

∥∥∥∥∥∥



F−1




k+2∑

j=k−2

ϕk ϕ̃j Ffj








k

| `φ
q (hp(Rn))

∥∥∥∥∥∥

≤ c

∥∥∥∥∥∥





k+2∑

j=k−2

φ(2k)
∥∥F−1[ϕk ϕ̃j Ffj ] |hp(Rn)

∥∥




k

| `q

∥∥∥∥∥∥

≤ c1

2∑

j=−2

1∑

m=−1

∥∥∥
{

φ(2k)
∥∥F−1[ϕk ϕk+j+m Ffk+j ] |hp(Rn)

∥∥
}

k
| `q

∥∥∥ .

As before, we may apply the Fourier multiplier theorem for hp(Rn), leading to the quantity

|||ϕk ϕk+j+m|||N (with N large). This quantity can be estimated (by a constant independent of

k), just by proceeding as above, with the aid of the Leibniz rule on the differentiation of the

product. Hence, we obtain

∥∥∥R{fj}j |Bφ
pq(Rn)

∥∥∥ ≤ c2

2∑

j=−2

∥∥∥
{

φ(2k) ‖fk+j |hp(Rn)‖
}

k
| `q

∥∥∥

≤ c2

2∑

j=−2

φ(2−j)
∥∥∥
{

φ(2k+j) ‖fk+j |hp(Rn)‖
}

k
| `q

∥∥∥

≤ c3

∥∥∥{fk}k | `φ
q (hp(Rn))

∥∥∥ ,

where c3 > 0 does not depend on {fk}k∈N0 .

Remark 2.3.4. When p = ∞ then Bφ
pq(Rn) is a retract of `φ

q (Lp(Rn)) (see Theorem 2.5 in

[23]).

By Theorem 2.3.3 the interpolation problem of Besov spaces is now reduced to the study

of interpolation properties of sequence spaces. Having in mind future applications, we give

the proofs in a more general context. Hence, until the end of this chapter E will denote a

quasi-normed space.

The general ideas below are inspired by the study of the classical case, which may be found

in [8], mainly Section 5.6. Let us start with a somewhat technical result.
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Lemma 2.3.5. Let s0, s1 ∈ R and 0 < q < ∞. Then

Kq(t, ξ; `s0
q (E), `s1

q (E)) ∼



∞∑

j=0

[
min(2js0 , 2js1t) ‖ξj |E‖

]q




1/q

(2.19)

where ξ = {ξj}j∈N0 ∈ `s0
q (E) + `s1

q (E), t > 0 and Kq is the functional defined in (2.5).

Proof.

Kq(t, ξ; `s0
q (E), `s1

q (E)) = inf
ξ=ξ0+ξ1

ξi∈`
si
q (E)




∞∑

j=0

[
(2js0 ‖ξ0

j |E‖)q + (2js1t ‖ξ1
j |E‖)q

]



1/q

=




∞∑

j=0

inf
ξ0
j
+ξ1

j
=ξj

ξi
j
∈E

[
(2js0 ‖ξ0

j |E‖)q + (2js1t ‖ξ1
j |E‖)q

]



1/q

=



∞∑

j=0

2js0q ‖ξj |E‖q inf
η0
j
+η1

j
=

ξj
‖ξj |E‖

ηj∈E, ξj 6=0E

[
‖η0

j |E‖q +
(

2js1t

2js0

)q

‖η1
j |E‖q

]



1/q

=




∞∑

j=0

2js0q ‖ξj |E‖q Fj

((
2js1t

2js0

)q)


1/q

,

where

Fj(u) := inf
a0+a1=

ξj
‖ξj |E‖

ai∈E

(‖a0 |E‖q + u ‖a1 |E‖q) , u > 0.

The result follows now from the equivalence Fj(u) ∼ min(1, u) (with constants not depending

on j and u). Indeed, simple calculations yield

Fj(u) ≤ min(1, u) ≤ Cq
E max(1, 2q−1) Fj(u), u > 0, j ∈ N0,

where CE ≥ 1 is the constant coming from the quasi-triangular inequality of E.

Theorem 2.3.6. Let φ ∈ B, 0 < q0, q1, q ≤ ∞. Let also s0, s1 be real numbers such that

s1 < βφ ≤ αφ < s0. Then

(`s0
q0

(E), `s1
q1

(E))γ,q = `φ
q (E), (2.20)

where

γ(t) =
t

s0
s0−s1

φ
(
t

1
s0−s1

) , t ∈ (0,∞). (2.21)
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Proof. Step 1. First we prove the embedding

(`s0∞(E), `s1∞(E))γ,q ↪→ `φ
q (E). (2.22)

We start by observing that γ ∈ B, with the Boyd indices given by

0 <
s0 − αφ

s0 − s1
= βγ ≤ αγ =

s0 − βφ

s0 − s1
< 1,

which can be shown by simple calculations.

Let ξ ∈ (`s0∞(E), `s1∞(E))γ,q and 0 < q < ∞. A suitable change of variables yields

‖ξ‖q
γ,q = (s0 − s1)

∫ ∞

0
K(us0−s1 , ξ)q

(
φ(u)
us0

)q du

u
.

Denoting φ0(u) = u−s0 , u > 0, then we have φφ0 ∈ B. Moreover, since αφφ0
= αφ − s0 < 0,

there exists a decreasing function ψ ∈ B such that ψ ∼ φφ0 (see Proposition 2.2.2).

We also observe that if ξ0 + ξ1 = ξ, ξi ∈ `si∞, i = 0, 1, is any decomposition of ξ, then

‖ξ0 | `s0∞(E)‖+ t ‖ξ1 | `s1∞(E)‖ ≥ c sup
j∈N0

min(2js0 , 2js1t) ‖ξj |E‖ (2.23)

with c > 0 independent of t and ξ. Hence

‖ξ‖q
γ,q ≥ c

∞∑

k=−∞

∫ 2k+1

2k

K(us0−s1 , ξ)q ψ(u)q du

u

≥ c
∞∑

k=−∞

∫ 2k+1

2k

[
sup
j∈N0

min(2js0 , 2k(s0−s1) 2js1) ‖ξj |E‖
]q

ψ(u)q du

u

≥ c

∞∑

k=0

∫ 2k+1

2k

[
min(2ks0 , 2k(s0−s1) 2ks1) ‖ξk |E‖

]q
ψ(u)q du

u

≥ c
∞∑

k=0

∫ 2k+1

2k

2ks0q ‖ξk |E‖q ψ(2k+1)q 2−(k+1) du

≥ c
∞∑

k=0

‖ξk |E‖q φ(2k)q,

where we have made use of property (2.9) in last inequality. The case q = ∞ can be proved

in a similar way, just by replacing the “sum” and the “integral” above by the corresponding

“sup”.

Step 2. Let us show now that

`φ
q (E) ↪→ (`s0

r (E), `s1
r (E))γ,q for all 0 < r < q. (2.24)
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Since βγ > 0, Proposition 2.2.2 guarantees the existence of an increasing function η ∈ B

equivalent to γ. We prove (2.24) in the case 0 < q < ∞.

‖ξ‖q
γ,q ≤ c

∞∑

k=−∞

∫ 2k(s0−s1)

2(k−1)(s0−s1)
K(t, ξ)q η(t)−q dt

t

≤ c
∞∑

k=−∞

∫ 2k(s0−s1)

2(k−1)(s0−s1)
K(2k(s0−s1), ξ)q 2−(k−1)(s0−s1)

η(2(k−1)(s0−s1))q
dt

≤ c
∞∑

k=−∞
Kr(2k(s0−s1), ξ)q γ(2(k−1)(s0−s1))−q (see (2.4))

≤ c
∞∑

k=−∞




∞∑

j=0

[
min(2js0 , 2k(s0−s1)2js1) ‖ξj |E‖

]r




q/r

γ(2(k−1)(s0−s1))−q (see (2.19))

= c
∞∑

k=−∞




∞∑
j=−∞
k+j≥0

[
2(k+j)s0 min(1, 2−j(s0−s1)) ‖ξk+j |E‖

]r




q/r

γ(2(k−1)(s0−s1))−q

= c
∞∑

k=−∞




∞∑
j=−∞
k+j≥0

[
min(1, 2−j(s0−s1)) φ(2k+j) ‖ξk+j |E‖ 2(k+j)s0

φ(2k+j) γ(2(k−1)(s0−s1))

]r



q/r

≤ c
∞∑

k=−∞




∞∑
j=−∞
k+j≥0

[
min(1, 2−j(s0−s1)) 2js0 φ(2−j)φ(2k+j) ‖ξk+j |E‖

]r




q/r

where the last inequality follows from Proposition 2.2.2, property (2.9). From Minkowski

inequality, we also obtain

‖ξ‖γ,q ≤ c




∞∑

j=−∞




∞∑
k=−∞
k+j≥0

[
min(1, 2−j(s0−s1)) 2js0 φ(2−j) φ(2k+j) ‖ξk+j |E‖

]q




r/q



1/r

= c (Ar(γ))1/r ‖ξ | `φ
q (E)‖,

where

Ar(γ) :=
∞∑

j=−∞

[
min(1, 2−j(s0−s1)) γ(2j(s0−s1))

]r
.

It remains to show that the quantity Ar(γ) is finite. Since βγr = r βγ > 0 and α
( γ

t
)r =

r (αγ − 1) < 0, then

∫ ∞

0

(
γ(t)

max(1, t)

)r dt

t
=

∫ 1

0
γ(t)r dt

t
+

∫ ∞

1

(
γ(t)

t

)r dt

t
< ∞, (2.25)



30 Chapter 2. Real Interpolation of Besov Spaces with Generalized Smoothness

according to statements (2.6) and (2.7). On the other hand, for every σ > 0, we derive

∫ ∞

0

[
min(1, t−1) γ(t)

]r dt

t
=

∞∑

j=−∞

∫ 2(j+1)σ

2jσ

[
min(1, t−1) γ(t)

]r dt

t

≥ c
∞∑

j=−∞
(2(j+1)σ − 2jσ)

[
min(1, 2−(j+1)σ) η(2jσ)

]r
2−(j+1)σ

≥ c
∞∑

j=−∞

[
min(1, 2−jσ) γ(2jσ)

]r

where η is an increasing function in B equivalent to γ as above. Thus, the finiteness of Ar(φ)

is an immediate consequence of (2.25) together with the last estimate (with σ = s0 − s1).

The case q = ∞ can be proved analogously with the necessary modifications.

Step 3. The proof of the theorem can now be completed from a combination of (2.22) and

(2.24), by choosing 0 < r < min(q0, q1, q) in the latter:

`φ
q (E) ↪→ (`s0

r (E), `s1
r (E))γ,q ↪→ (`s0

q0
(E), `s1

q1(E))γ,q ↪→ (`s0∞(E), `s1∞(E))γ,q ↪→ `φ
q (E).

Following the discussion from Theorem 2.3.3 we are now able to formulate general inter-

polation results for generalized Besov spaces.

Theorem 2.3.7. Let φ ∈ B, 0 < p ≤ ∞ and 0 < q0, q1, q ≤ ∞. Suppose that s0, s1 ∈ R
satisfy s1 < βφ ≤ αφ < s0 and γ is given by (2.21). Then

(
Bs0

pq0
(Rn), Bs1

pq1
(Rn)

)
γ,q

= Bφ
pq(Rn) (2.26)

Proof. Formula (2.26) follows from a combination of Theorems 2.3.3 (and Remark 2.3.4), 2.3.6

(with E = hp(Rn) if 0 < p < ∞ and E = Lp(Rn) if p = ∞) and Remark 2.2.7. Recall that

the retraction and the corresponding co-retraction involved are given by (2.10) and (2.11),

respectively.

Theorem 2.3.7 will play a crucial role in the next chapter. It shows that generalized Besov

spaces may be obtained by real interpolation of classical Besov spaces with a suitable function

parameter. This fact was already observed in [16] for the spaces B
(s,Ψ)
pq (Rn) mentioned in

Subsection 2.1.2.
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Theorem 2.3.8. Let φ0, φ1, γ ∈ B, 0 < p ≤ ∞ and 0 < q0, q1, q ≤ ∞. If 0 < βγ ≤ αγ < 1

and β
(

φ0
φ1

)
> 0 (or α

(
φ0
φ1

)
< 0) then

(
Bφ0

pq0
(Rn), Bφ1

pq1
(Rn)

)
γ,q

= Bφ
pq(Rn), (2.27)

where φ ∈ B is given by

φ(t) :=
φ0(t)

γ
(

φ0(t)
φ1(t)

) . (2.28)

Proof. The proof of the statement φ ∈ B may be found in [22], Theorem 5.3.

We choose s0, s1 ∈ R such that

s1 < min(βφ0
, βφ1

, βφ) ≤ max(αφ0
, αφ1

, αφ) < s0.

By Theorem 2.3.7 we have Bφi
pqi(Rn) = (Bs0

p,1(Rn), Bs1
p,1(Rn))γi,qi , i = 0, 1, with γi ∈ B defined

by (2.21) with φi in place of φ. Now the reiteration theorem (see [94], Theorem 2) yields

(Bφ0
pq0

(Rn), Bφ1
pq1

(Rn))γ,q = (Bs0
p,1(R

n), Bs1
p,1(R

n))ρ,q,

where

ρ(t) = γ0(t) γ

(
γ1(t)
γ0(t)

)
.

Direct calculations show that ρ may be expressed in terms of the function φ given by (2.28),

namely ρ(t) = φ
(
t

1
s0−s1

)
. Applying Theorem 2.3.7 once again we get

(Bs0
p,1(R

n), Bs1
p,1(R

n))ρ,q = Bφ
pq(Rn),

which completes the proof.

Remark 2.3.9. We did not go into details when mentioning the use of the reiteration argu-

ment in the proof above. However, it is not hard to check that all the assumptions required

in Theorem 2 in [94] are satisfied.

Example 2.3.10. Let s0, s1 ∈ R. If φ0(t) = ts0 , φ1(t) = ts1 and γ(t) = tθ (0 < θ < 1), then

the formula corresponding to (2.27) is

(Bs0
pq0

(Rn), Bs1
pq1

(Rn))γ,q = Bs
pq(Rn),

s := (1− θ)s0 + θ s1, s0 6= s1, which is the statement (i) given in Theorem 2.4.2 in [132]. In

fact, we have φ(t) = ts0

tθ(s0−s1) = t(1−θ)s0+θ s1 = ts, where the restriction s0 6= s1 comes from

the assumption on the Boyd indices of φ0

φ1
.
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Further notes

Real interpolation with function parameter was developed by Peetre in [102] in the sixties

of the last century. This theory has been also studied by other authors such as Gustavsson [61],

Kalugina [74], Merucci [93, 94], and Persson [105, 106]. We dealt with function parameters

belonging to the class B, which was very suitable according to our purposes. However, in a

general theory, there are other possibilities for classes where the interpolation parameter may

be taken from (see the references above).

Theorem 2.3.8 extends Theorem 5.3 (1) of Cobos and Fernandez [23] to the quasi-Banach

case. As we have mentioned before, this was not a mere generalization of the earlier result.

This fact was stressed by Cobos and Fernandez when they announced a new paper dealing

with the case 0 < p, q ≤ ∞ (see the introduction in [23]). As far as we know, no paper has

appeared in that direction.

In this chapter we described interpolation properties of spaces Bφ
pq(Rn) for p fixed. Inter-

polation spaces with change of p will be investigated later in Section 3.2.



Chapter 3

Wavelet Bases in Generalized Besov

Spaces and Applications

Wavelet decompositions have applications to non-linear approximation and to numerical

resolution of some partial differential equations. In general, the consideration of wavelets in

numerical problems has the advantage of providing fast and efficient algorithms. Nevertheless,

our interest here in wavelets comes from their relevance in the theory of function spaces.

Wavelet bases give us the possibility of describing the elements of a function space in terms of

basic and simple “building blocks”. In general, an important point is that we can characterize

the original (quasi-)norm by means of certain sums involving the wavelet coefficients. On

the other hand, wavelet bases can be quite useful to study some intrinsic questions related

to functions spaces. Recently, for example, they were successfully used to estimate entropy

numbers of compact embeddings between weighted spaces (see [69] for details).

We refer to the monographs [28], [95], [139] and to the references therein for a detailed

discussion on wavelets. We also mention the paper [56], where wavelet decompositions of

anisotropic Besov spaces were provided in a multiresolution analysis framework.

Motivated by a recent work of Triebel [137] on wavelet bases in function spaces, we deal

with wavelet representations in Besov spaces with generalized smoothness. In [137] it was

proved, in particular, that compactly supported wavelets of Daubechies type form an uncon-

ditional Schauder basis in the classical Besov spaces Bs
pq(Rn). Our main aim in this chapter is

to extend this statement to the spaces Bφ
pq(Rn) studied in Chapter 2, showing that the same

wavelet system also provides an unconditional Schauder basis in these spaces.
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We realize that it is possible to get the result without repeating the approach suggested in

[137]. Hence, instead of making use of all those powerful tools (atomic decompositions, local

means, maximal functions, duality theory), we try mainly to take advantage of the “classical

case” by means of suitable interpolation techniques. We would like to remark that interpolation

tools were recently used by Caetano [17] in order to get subatomic representations of Bessel

potential spaces modelled on Lorentz spaces from the corresponding ones for the usual spaces

Hs
p(Rn).

The content of this chapter is basically divided into two sections. In the first section we

study the wavelet representation of Besov spaces. For completeness, we will contextualize the

problem recalling what is already done in the “classical case”, and then we formulate our main

result as well as some of their consequences. In Section 3.2 we obtain new interpolation results

for generalized Besov spaces from an appropriate usage of wavelet representations.

3.1 Wavelet representation for Besov spaces

The aim of this section is to obtain wavelet representations for the generalized Besov spaces

under consideration. We will make use of the system considered in [137] and follow the same

notation.

Let Lj = L = 2n − 1 if j ∈ N and L0 = 1. It is known that, for any r ∈ N, there are real

compactly supported functions1

ψ0 ∈ Cr(Rn), ψl ∈ Cr(Rn), l = 1, . . . , L, (3.1)

with ∫

Rn

xβ ψl(x) dx = 0, β ∈ Nn
0 , |β| ≤ r, (3.2)

such that {
2jn/2ψl

jm : j ∈ N0, 1 ≤ l ≤ Lj , m ∈ Zn
}

(3.3)

with

ψl
jm(·) =





ψ0(· −m) , j = 0, m ∈ Zn, l = 1,

ψl(2j−1 · −m) , j ∈ N, m ∈ Zn, 1 ≤ l ≤ L,
(3.4)

1The function ψ0 in (3.1) is often referred in the literature as scaling function or father wavelet, while

functions ψl, with l = 1, . . . , L, are called (mother) wavelets.
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is an orthonormal basis in L2(Rn).

The existence of such a system was proved by Daubechies [27, 28] in the one-dimensional

case. We refer to [95], Theorem 3, p. 96, or to [139], Theorem 4.7, for precise formulations and

further details. The extension to the n-dimensional case follows by the standard procedure by

means of tensor products.

Nowadays the systems {ψl
jm} described above are known as Daubechies wavelet bases.

Their properties are sufficiently good to provide unconditional bases in many classical function

spaces.

Before passing to the discussion of concrete examples we briefly review important basis

notation. Recall that a family {xλ}λ∈Λ in a quasi-Banach space X (with Λ countable) is

summable, with sum x ∈ X, if for every ε > 0 there exists a finite subset J0 ⊂ Λ such that∥∥∥∥x− ∑
λ∈J

xλ

∥∥∥∥ < ε, whenever J is a finite subset of Λ satisfying J ⊃ J0. The summability of

the family {xλ}λ∈Λ (with sum x) expresses the convergence of the series
∞∑

j=1
xσ(j) (to x) for

every one-to-one and onto map σ : N → Λ. This means that we may take any order for the

summation without changing the sum.

Definition 3.1.1. A sequence {bj}∞j=1 in a (complex) quasi-Banach X is called a Schauder

basis if every x ∈ X admits a unique representation as

x =
∞∑

j=1

µj bj , µj ∈ C (3.5)

(with convergence in X). If, in addition, {bσ(j)}∞j=1 is again a Schauder basis for any re-

arrangement σ of N (i.e., σ is an one-to-one map of N onto itself), and

x =
∞∑

j=1

µσ(j) bσ(j), (3.6)

then {bj}∞j=1 is called an unconditional Schauder basis.

A detailed discussion on unconditional bases within the framework of the Lebesgue spaces

may be found in [139].

In the sequel Ψr, r ∈ N, will stand for a Daubechies wavelet system {ψl
jm}(l,j,m)∈I with

the properties (3.1)–(3.4) above, where I = {(l, j, m) : j ∈ N0, 1 ≤ l ≤ Lj , m ∈ Zn}. We

also consider below I ′ = {(l, j) : j ∈ N0, 1 ≤ l ≤ Lj}.
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It is known that Ψr provides an unconditional Schauder basis in the Bessel potential spaces

Hs
p(Rn) if 1 < p < ∞, r > |s|,

in particular in Lp(Rn) if 1 < p < ∞ and r ∈ N, and in the Besov spaces

Bs
pq(Rn) if 1 ≤ p, q < ∞, r > |s|

(for details see [95], Chapter 6).

These examples show that the smoothness required on the wavelets in (3.1) should be

large enough, depending on the regularity of the functions that we pretend to represent. This

dependence will be also underlined in next subsections.

3.1.1 The classical case

The main aim in [137] was to extend the assertions above on unconditional bases in Sobolev

spaces and some Besov spaces to the entire scales Bs
pq(Rn) and F s

pq(Rn). For convenience, we

recall here the main statement related to Besov spaces.

Theorem 3.1.2. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and

r(s, p) := max
(

s,
2n

p
+

n

2
− s

)
. (3.7)

(i) Assume r ∈ N with r > r(s, p) and let f ∈ S ′(Rn). Then f ∈ Bs
pq(Rn) if, and only if, it

can be represented as

f =
∑

(l,j,m)∈I

µl
jm ψl

jm where µ = {µl
jm}(l,j,m)∈I ∈ bs

pq, (3.8)

with summability in S ′(Rn) and in any space Bt
pu(Rn) if t < s. Moreover, the representation

(3.8) is unique:

µ = µ(f) with µl
jm(f) := 2jn〈f, ψl

jm〉. (3.9)

Furthermore, f 7→
{

2jn〈f, ψl
jm〉

}
(l,j,m)∈I

defines an isomorphic map of Bs
pq(Rn) onto bs

pq and

∥∥f |Bs
pq(Rn)

∥∥ ∼ ∥∥µ(f) | bs
pq

∥∥ (3.10)

(equivalent quasi-norms).

(ii) In addition, if max(p, q) < ∞, then (3.8) with (3.9) is summable in Bs
pq(Rn) and

{ψl
jm}(l,j,m)∈I provides an unconditional Schauder basis in Bs

pq(Rn).
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Here bs
pq is the space of all complex-valued “sequences” µ ≡ {µl

jm}(l,j,m)∈I such that

‖µ | bs
pq‖ :=


 ∑

(l,j)∈I′
2j(s−n/p)q

( ∑

m∈Zn

|µl
jm|p

)q/p



1/q

< ∞, (3.11)

with standard modifications if p = ∞ and/or q = ∞.

The “weight” 2j(s−n/p)q expresses some adaptation of the spaces bpq from [135], (13.13), to

the set of indices I. In this way, the normalization problem is shifted to the structure of the

sequence spaces. Note that the atomic decomposition theorem is an important tool for the

proof of Theorem 3.1.2.

Remark 3.1.3. The symbol 〈f, ψl
jm〉 in (3.9), with f ∈ Bs

pq(Rn) and ψl
jm ∈ Cr(Rn), should

be properly interpreted since the functions ψl
jm are not in S(Rn) in general. As remarked

in [137], it makes sense if r > −s + σp (with σp := max(n/p − n, 0)), which is covered by

condition r > r(s, p). In fact, in that case, the function f may be interpreted as an element

of the dual of a space to which ψl
jm belongs to. We take the opportunity to show how this

can be derived.

The case 1 < p < ∞ (σp = 0): Since ψl
jm has compact support then ψl

jm ∈ W r
p′(R

n) =

F r
p′,2(R

n), where p′ denotes the usual conjugate exponent. Now we can show that f ∈
F r

p′,2(R
n)′ using embedding arguments (and noting that s > −r):

Bs
pq(Rn) ↪→ B−r

p,min(p,2)(R
n) ↪→ F−r

p,2 (Rn) = F r
p′,2(R

n)′.

The case p = ∞ (σp = 0): Taking into account the embedding Bs∞q(Rn) ↪→ Bs∞∞(Rn), the

duality 〈f, ψl
jm〉 makes sense if ψl

jm ∈ B−s
1,1(Rn). But ψl

jm ∈ W r
1 (Rn) ↪→ Br

1,∞(Rn), which

follows from the fact that the quantity
∑
|β|≤r

‖Dβf |B0
1,∞(Rn)‖ provides an equivalent norm in

Br
1,∞(Rn), together with the embedding L1(Rn) ↪→ B0

1,∞(Rn) (cf. [132], p. 89). It remains to

observe that Br
1,∞(Rn) ↪→ B−s

1,1(Rn) when r > −s.

The case 0 < p ≤ 1: The smoothness of ψl
jm and the compactness of its support allow us to

conclude that ψl
jm ∈

◦
Cr(Rn), where

◦
Cr(Rn) denotes the completion of S(Rn) in Cr(Rn). We

also have
◦
Cr(Rn)′ = B−r

1,1(R
n)

(cf. [137]). Hence it remains to observe that

Bs
pq(Rn) ↪→ B

s−σp

1,q (Rn) ↪→ B−r
1,1(R

n)
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when r > −s + σp (see also [132], Theorem 2.7.1).

The statements in Theorem 3.1.2 have been recently extended to weighted versions of B−
and F -spaces (see [69]).

3.1.2 The general case

The proof of Theorem 3.1.2 was based on atomic decompositions, characterizations by

local means and duality theory (we refer to [135] and [136] for details on these properties).

An important point there was that the Daubechies wavelets were simultaneously atoms and

kernels of those local means. In [137] there was also commented the possibility of getting a

similar result in the context of other scales of function spaces. To do that, it would be enough

to have the same tools available. However, as we mentioned before, we will not follow this

approach. Instead, we will consider a scheme based on interpolation techniques in order to

take advantage of the already known wavelet expansions for the classical context.

Let us introduce some generalized sequence spaces according to our purposes.

Definition 3.1.4. Let φ ∈ B, 0 < p ≤ ∞, 0 < q ≤ ∞. The space bφ
pq consists of all

complex-valued sequences µ ≡ {µl
jm}(l,j,m)∈I such that

‖µ | bφ
pq‖ :=


 ∑

(l,j)∈I′

(
φ(2j) 2−jn/p

)q
( ∑

m∈Zn

|µl
jm|p

)q/p



1/q

(3.12)

(with the usual modifications if p = ∞ and/or q = ∞) is finite.

It is not hard to see that bφ
pq is a linear space quasi-normed by (3.12). When φ(t) = ts,

s ∈ R, then bφ
pq coincides with the space bs

pq from (3.11). We would like to remark that sequence

spaces with this structure were introduced by Frazier and Jawerth [54], [55] in connection with

atomic decompositions of (classical) Besov and Triebel-Lizorkin spaces and they have been

used afterwards by many authors.

The interpolation property below will be very useful for proving our main result.

Proposition 3.1.5. Let φ ∈ B and 0 < p, q, q0, q1 ≤ ∞. If s0, s1 are real numbers fulfilling

s1 < βφ ≤ αφ < s0, then we have

(bs0
pq0

, bs1
pq1

)γ,q = bφ
pq , (3.13)

where γ is defined as in (2.21).
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Proof. First of all we note that the spaces bs0
pq0

and bs1
pq1

form an interpolation couple since they

are continuously embedded in bs1
p∞. We can interpret bφ

pq as the sequence space `φ1
q (`p(Zn))

with φ1(t) := φ(t) t−n/p, t ∈ (0,∞), since the main role in the first sum in (3.12) is played by

j. Simple modifications show that formula (2.20) (with E = `p(Zn)) remains valid for these

spaces. On the other hand, the lower and upper Boyd indices of φ1 are given by

βφ1
= βφ −

n

p
and αφ1

= αφ −
n

p
.

Taking σi = si − n
p , i = 0, 1, then we get σ1 < βφ1

≤ αφ1
< σ0 and

γ1(t) :=
t

σ0
σ0−σ1

φ1

(
t

1
σ0−σ1

) = γ(t), t ∈ (0,∞),

is the function given by (2.21). By formula (2.20) we obtain

(
`σ0
q0

(`p(Zn)), `σ1
q1

(`p(Zn))
)
γ,q

= `φ1
q (`p(Zn))

which allows to arrive at (3.13).

We would like to emphasize that the summability in (3.8) is not an additional assumption,

but a consequence of µ ∈ bs
pq.

Lemma 3.1.6. Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. If {µl
jm}(l,j,m)∈I ∈ bs

pq and r is a

natural number such that r > max(s, σp−s), then {µl
jm ψl

jm}(l,j,m)∈I is summable in Bs
pq(Rn)

if q < ∞ and in any Bt
pq(Rn), with t < s, if q = ∞.

Proof. First we assume that q < ∞. Properties (3.1), (3.2) and (3.4) of the system Ψr show

that, for each l, j, m, the functions 2−j(s−n/p) ψl
jm are normalized 1r–atoms (j = 0) or (s, p)r,r–

atoms (j ∈ N) according to [135], Definition 13.3, ignoring constants which are independent

of `, j and m.

Let K be an arbitrary finite subset of I. For each l, the function fl :=
∑
j

∑
m

µl
jm ψl

jm (with

the sums running over all indices j and m such that (l, j, m) ∈ K) belongs to Bs
pq(Rn). In

fact, we may write

fl =
∞∑

j=0

∑

m∈Zn

µ̃l
jm ψl

jm where µ̃l
jm =





µl
jm , if (l, j, m) ∈ K

0 , otherwise.
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On the other hand, 2−j(s−n/p) µ̃l
jm ∈ bpq (see (13.13) in [135]). So the “Atomic Decomposition

Theorem” (cf. [135], p. 75-76) yields

∥∥fl |Bs
pq(Rn)

∥∥q ≤ c

∞∑

j=0

2j(s−n/p)q

( ∑

m∈Zn

|µ̃l
jm|p

)q/p

< ∞

with c > 0 not depending on l. Taking now the sum over l, we get the estimate
∥∥∥∥∥∥

∑

(l,j,m)∈K

µl
jm ψl

jm |Bs
pq(Rn)

∥∥∥∥∥∥

q

≤ C
∑

l,j

2j(s−n/p)q

(∑
m

|µl
jm|p

)q/p

(3.14)

(the sums on the right-hand side run over all indices (l, j) and m such that (l, j, m) ∈ K),

where C > 0 is independent of K. From this estimate and from the summability of the two

families of positive real numbers involved in (3.12), we conclude that the partial sums on

the left-hand side of (3.14) constitute a generalized Cauchy sequence in the complete space

Bs
pq(Rn), so that it converges in this space.

The summability in Bt
p∞(Rn) for t < s can be deduced from the previous case. Indeed,

one makes use of the atomic decomposition result as before (with t in place of s) and observe

that bs
p∞ ↪→ bt

pu if 0 < u ≤ ∞.

We are now prepared to give a wavelet decomposition statement for spaces Bφ
pq(Rn) and

discuss some of their consequences.

Theorem 3.1.7. Let φ ∈ B, 0 < p < ∞ and 0 < q ≤ ∞. Consider the system {ψl
jm}(l,j,m)∈I

as before. Then there exists r(φ, p) such that, for any r ∈ N with r > r(φ, p), the following

holds:

Given f ∈ S ′(Rn), then f ∈ Bφ
pq(Rn) if, and only if, it can be represented as

f =
∑

(l,j,m)∈I

µl
jm ψl

jm with µ = {µl
jm}(l,j,m)∈I ∈ bφ

pq (3.15)

(summability in S ′(Rn)). Moreover, the wavelet coefficients µl
jm are uniquely determined by

µl
jm = µl

jm(f) := 2jn〈f, ψl
jm〉, (l, j, m) ∈ I. (3.16)

Further, ∥∥∥f |Bφ
pq(Rn)

∥∥∥ ∼
∥∥∥µ(f) | bφ

pq

∥∥∥ (3.17)

(equivalent quasi-norms), where µ(f) ≡ {µl
jm(f)}(l,j,m)∈I .
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Proof. Step 1. Assume that f ∈ S ′(Rn) can be represented as

f =
∑

(l,j,m)∈I

µl
jm ψl

jm (summability in S ′(Rn))

for some µ ∈ bφ
pq. Let s0, s1 ∈ R. According to Lemma 3.1.6 above we conclude that the

operator

T : bs0
p,1 + bs1

p,1 −→ Bs0
p,1(R

n) + Bs1
p,1(R

n),

given by

T λ =
∑

(l,j,m)∈I

λl
jm ψl

jm (summability in S ′(Rn)),

is well-defined and linear if, for example, r > max(r(s0, p), r(s1, p)), where r(si, p), i = 0, 1, is

given by (3.7). Moreover, by Theorem 3.1.2 one concludes that the restriction of T to each bsi
p,1

is a bounded linear operator into Bsi
p,1(Rn). Choosing s0, s1 above such that s1 < βφ ≤ αφ < s0

and by the interpolation property, Theorem 2.3.7 and Proposition 3.1.5, we arrive at the

conclusion that the restriction of T to bφ
pq is also a bounded linear operator into Bφ

pq(Rn).

Thus, f ∈ Bφ
pq(Rn) and

‖f |Bφ
pq(Rn)‖ = ‖T µ |Bφ

pq(Rn)‖ ≤ c ‖µ | bφ
pq‖

for some c > 0 independent of µ and f .

Step 2. Now let f ∈ Bφ
pq. Assume that s0, s1 and r fulfill the same conditions as in Step 1.

Consider the operator

S : Bs0
p,1(R

n) + Bs1
p,1(R

n) −→ bs0
p,1 + bs1

p,1

defined by

S g = µ(g) :=
{

2jn
(
〈g0, ψl

jm〉+ 〈g1, ψl
jm〉

)}
(l,j,m)∈I

, (3.18)

where g = g0 + g1 with gi ∈ Bsi
p,1(Rn), i = 0, 1. Theorem 3.1.2 (and Remark 3.1.3) shows that

S is well-defined, it is linear and its restriction to each Bsi
p,1(Rn) is a bounded linear operator

into bsi
p 1. Taking into account the interpolation property as before, one concludes that the

restriction of S to Bφ
pq(Rn) is a bounded linear operator into bφ

pq as well. Therefore,

‖S f | bφ
pq‖ = ‖µ(f) | bφ

pq‖ ≤ c ‖f |Bφ
pq(Rn)‖, (3.19)

where c > 0 does not depend on f . So, µ(f) ∈ bφ
pq and hence

g :=
∑

(l,j,m)∈I

µl
jm(f) ψl

jm (summability in S ′(Rn)) (3.20)
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belongs to the space Bφ
pq(Rn) by Step 1. But Theorem 3.1.2 once again allows us to conclude

that TS is the identity operator, so g = f . But we have (by Step 1),

‖f |Bφ
pq(Rn)‖ ≤ c ‖µ(f) | bφ

pq‖, (3.21)

c > 0 independent of f . Therefore, equivalence (3.17) follows from estimates (3.19) and (3.21).

It remains to show that representation (3.15) is unique. We do this next.

Suppose that f ∈ Bφ
pq(Rn) admits the representation

f =
∑

(l,j,m)∈I

µl
jm ψl

jm with µ ∈ bφ
pq (summability in S ′(Rn)).

Since Bφ
pq ↪→ Bs0

p,1(Rn)+Bs1
p,1(Rn) ↪→ Bs1

p,1(Rn) and bφ
pq ↪→ bs0

p,1+bs1
p,1 ↪→ bs1

p,1 (note that s0 > s1),

then f ∈ Bs1
p 1(Rn) has the representation

f =
∑

(l,j,m)∈I

µl
jm ψl

jm with µ ∈ bs1
pq (summability in S ′(Rn)).

which is unique by Theorem 3.1.2. The proof of the theorem is completed.

Remark 3.1.8. We can choose s0 and s1 close enough to αφ and βφ, respectively, and take

r(φ, p) := max
(

αφ ,
2n

p
+

n

2
− βφ

)
(3.22)

in Theorem 3.1.7. In fact, in that case, it is possible to choose ε > 0 such that r is greater

than βφ,
2n
p + n

2 − βφ + ε, αφ + ε and 2n
p + n

2 − αφ. On the other hand, one can take s0 and

s1 such that

βφ − ε < s1 < βφ ≤ αφ < s0 < αφ + ε.

In this way we have r > max (r(s0, p), r(s1, p)) as required in the proof above. In the par-

ticular case φ(t) = ts one has αφ = βφ = s, so that the quantity (3.22) coincides with the

corresponding one obtained by Triebel [137].

Remark 3.1.9. We would like to remark also that we did not make a direct use of duality

results about the spaces Bφ
pq(Rn). According to (3.18), we have defined the symbol 〈f, ψl

jm〉
in (3.16) as the sum of two quantities interpreted as in Remark 3.1.3. Of course, taking into

account the choice of s0 and s1 made above (which implies Bφ
pq(Rn) ↪→ Bs1

p,1(Rn)), one can

take f0 = 0 and f1 = f , so 〈f, ψl
jm〉 can be evaluated as described in that remark.
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Corollary 3.1.10. Let φ, p and q be as in Theorem 3.1.7. If r ∈ N is large enough and

q < ∞, then {ψl
jm}(l,j,m)∈I provides an unconditional Schauder basis in Bφ

pq(Rn).

Proof. According to Theorem 3.1.7, all we need to do is to check that the family involved in

(3.15) is summable in Bφ
pq(Rn) (if p, q < ∞). We proceed as in the first part of the proof of

Lemma 3.1.6: observe that φ(2j)−12jn/p ψl
jm are 1r–N–atoms (l = 1, j = 0) or (σ, p)r,r–N–

atoms (j ∈ N) according to Definition 4.4.1 in [52], with σ = {φ(2j)}j∈N0 and N = {2j}j∈N0 .

Hence, it is possible to use the “Atomic Decomposition Theorem” from [52], Subsection 4.4.2,

in order to get the counterpart of estimate (3.14), that is,
∥∥∥∥∥∥

∑

(l,j,m)∈K

µl
jm ψl

jm |Bφ
pq(Rn)

∥∥∥∥∥∥

q

≤ c
∑

l,j

(
φ(2j) 2−jn/p

)q
(∑

m

|µl
jm|p

)q/p

with c > 0 independent of K (K being an arbitrary finite subset of I). We also have to assume

that r > r(φ, p) satisfies the conditions mentioned in that theorem restricted to our particular

case. We conclude now as in Lemma 3.1.6.

The wavelet expansion obtained in Theorem 3.1.7 gives the following information about

the structure of the spaces Bφ
pq(Rn).

Corollary 3.1.11. Let φ, p, q and r be as in Theorem 3.1.7. Then

I : f 7−→
{

2jn〈f, ψl
jm〉

}
(l,j,m)∈I

establishes a topological isomorphism from Bφ
pq(Rn) onto bφ

pq (with 〈f, ψl
jm〉 interpreted as in

Remark 3.1.9 above).

Proof. This result follows at once from the properties of the operators T and S studied in the

proof of Theorem 3.1.7.

3.2 Interpolation properties of spaces Bφ
pq(Rn) with change of p

This section may be viewed as a continuation of Section 2.3, where we have discussed

interpolation formulas for the spaces Bφ
pq(Rn) with p fixed. Contrarily to that case, the

change of p leads to different interpolation spaces, which are not included in the scale given by

Definition 2.1.2. This is not a surprise if we have in mind the classical situation corresponding
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to the smoothness φ(t) = ts and to the interpolation function parameter γ(t) = tθ. Indeed,

Theorem 2.4.1 in [134] shows that

(Bs
p0q(Rn), Bs

p1q(Rn))θ,q = Bs
pq(q)(R

n), (3.23)

1
p = 1−θ

p0
+ θ

p1
(with s ∈ R, 1 < p0 6= p1 < ∞, 1 ≤ q < ∞ and 0 < θ < 1), where Bs

pq(q)(R
n) is

the space obtained from (1.10) replacing Lp(Rn) by the Lorentz space Lpq(Rn).

The counterpart of (3.23) for the generalized spaces Bφ
pq(Rn) was obtained in [23], lead-

ing to the introduction of more general spaces, defined as in Definition 2.1.2 but with some

generalized Lorentz space in place of Lp(Rn).

Only the Banach case was considered in [23] (see Theorem 5.8) and no reference was made

concerning the general situation. We realize that the method of retraction and co-retraction

described in Section 2.2 will help to deal with the quasi-Banach case. However, the approach

followed in Section 2.3 has to be changed, since the replacement of Lp(Rn) by the local Hardy

space hp(Rn) would require the knowledge of interpolation results with function parameter

for spaces hp(Rn) (compare with (3.34) below), which are not available.

Following a suggestion of Caetano, we propose a new approach based on wavelet decom-

positions given by Theorem 3.1.7. The key point will be the usage of those representations

for functions in Bφ
pq(Rn) to construct a new retraction (and the corresponding co-retraction).

First we need to introduce some auxiliary spaces. Following [22], [94], we consider Lorentz

sequence spaces over Zn as follows.

Definition 3.2.1. Let ϕ ∈ B and 0 < q ≤ ∞. The Lorentz space λq(ϕ,Zn) consists of all

bounded complex-valued sequences a ≡ {am}m∈Zn having a finite quasi-norm

‖a |λq(ϕ,Zn)‖ :=

( ∞∑

k=1

[
ϕ(k) a∗k−1

]q
k−1

)1/q

if 0 < q < ∞,

‖a |λq(ϕ,Zn)‖ := sup
k∈N

[
ϕ(k) a∗k−1

]
if q = ∞,

where {a∗k}k∈N0 is the non-increasing rearrangement of {am}m∈Zn, given by

a∗k = inf{δ ≥ 0 : #{m ∈ Zn : |am| > δ} ≤ k}, k ∈ N0.

If ϕ(t) = t1/p with 0 < p ≤ ∞, then λq(ϕ,Zn) is the Lorentz sequence space `pq(Zn),

which in turn is the classical space `q(Zn) of q-summable sequences when p = q.
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Remark 3.2.2. The normalizing condition ϕ(1) = 1 for functions ϕ belonging to B plays only

a technical role. There is no problem to consider spaces of the type λq(η,Zn) with functions

η : (0,∞) → (0,∞) for which η(1)−1η ∈ B. In fact, they coincide with λq(η(1)−1η,Zn), up

to equivalence of quasi-norms.

We also need to introduce a more general version of spaces bφ
pq from Definition 3.1.4.

Definition 3.2.3. Let φ ∈ B and 0 < p, q, ν ≤ ∞. Let also Υ ≡ {ρj}j∈N0 ⊂ B. We define

b
φ,(ν)
Υ,p,q as the class of all complex-valued “sequences” µ = {µl

jm}(l,j,m)∈I such that

∥∥∥µ | bφ,(ν)
Υ,p,q

∥∥∥ :=


 ∑

(l,j)∈I′

[
φ(2j) 2−j n

ν

∥∥∥{µl
jm}m∈Zn |λp(ρj ,Zn)

∥∥∥
]q




1/q

(3.24)

(with the usual modifications if q = ∞) is finite.

Notice that (3.24) defines a quasi-norm in b
φ,(ν)
Υ,p,q.

Example 3.2.4. If ρj(t) = t1/p for every j ∈ N0 and ν = p, then b
φ,(ν)
Υ,p,q = bφ

pq is the sequence

space given by (3.12).

When p = q we shall write only b
φ,(ν)
Υ,q instead of b

φ,(ν)
Υ,q,q for short. This sequence space

together with the Daubechies wavelet systems considered in the beginning of Section 3.1 allow

us to introduce a generalized space of Besov type as follows.

Let Ψr ≡ {ψl
jm}(l,j,m)∈I be a wavelet system with the properties (3.1)–(3.4) (in particular,

each wavelet is a real function in Cr(Rn)). If f ∈ Bφ
p0q(Rn) + Bφ

p1q(Rn) (with φ ∈ B, 0 <

p0, p1, q ≤ ∞), and f = f0 + f1, fi ∈ Bφ
piq(Rn), i = 0, 1 is any decomposition of f , then the

quantities 〈f, ψl
jm〉, given by

〈f, ψl
jm〉 := 〈f0, ψ

l
jm〉+ 〈f1, ψ

l
jm〉, (l, j,m) ∈ I, (3.25)

with 〈fi, ψ
l
jm〉 interpreted as in Remark 3.1.9, are well-defined if we take r ∈ N large enough,

e.g.

r > max (r(φ, p0), r(φ, p1)) , (3.26)

where r(φ, pi) is defined by (3.22).

Note that the quantity 〈f, ψl
jm〉 does not depend on the decomposition of f taken as the

sum f = f0 + f1, with fi ∈ Bφ
piq(Rn), i = 0, 1.
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Definition 3.2.5. Let φ ∈ B, 0 < p0, p1, q, ν ≤ ∞ and Υp0,p1 ≡ {ρj}j∈N0 be a family

of functions in B depending on p0, p1. Let also Ψr ≡ {ψl
jm}(l,j,m)∈I be a Daubechies wavelet

system with the natural number r fixed according to (3.26). We define the space B
φ,(ν),[Ψr]
Υp0,p1 ,q (Rn)

as

B
φ,(ν),[Ψr]
Υp0,p1 ,q (Rn) =

{
f ∈ Bφ

p0q(Rn) + Bφ
p1q(Rn) : Ψr〈f〉 ∈ b

φ,(ν)
Υp0,p1 ,q

}

where in Ψr〈f〉 = {2jn 〈f, ψl
jm〉}(l,j,m)∈I , 〈f, ψl

jm〉 is given by (3.25).

The space B
φ,(ν),[Ψr]
Υp0,p1 ,q (Rn) is naturally quasi-normed by

∥∥∥f |Bφ,(ν),[Ψr]
Υp0,p1 ,q (Rn)

∥∥∥ :=
∥∥∥Ψr〈f〉 | bφ,(ν)

Υp0,p1 ,q

∥∥∥ . (3.27)

Now we are able to present the main statement of this section.

Theorem 3.2.6. Let φ ∈ B, 0 < p0 6= p1 ≤ ∞, 0 < q < ∞. Let also γ ∈ B with

0 < βγ ≤ αγ < 1. Then

B
φ,(p0),[Ψr]
Υp0,p1 ,q (Rn) ↪→ (Bφ

p0q(Rn), Bφ
p1q(Rn))γ,q ↪→ B

φ,(p0),[Ψr]
Γp0,p1 ,q (Rn), (3.28)

where Υp0,p1 ≡ {Aγ,p0,p1(j) ρj}j∈N0
, Γp0,p1 ≡

{
Aγ,p0,p1(j)

−1 ρj

}
j∈N0

, with

ρj(t) =
t

1
p0

γ
(
2−jn( 1

p0
− 1

p1
)
t

1
p0
− 1

p1

) , j ∈ N0, (3.29)

and

Aγ,p0,p1(j) := γ
(
2−jn( 1

p0
− 1

p1
)
)

γ
(
2jn( 1

p0
− 1

p1
)
)

, j ∈ N0. (3.30)

Proof. Step 1. By Theorem 3.1.7 we may construct a retraction R from bφ
piq into Bφ

piq(Rn),

i = 0, 1, defined by

R{µl
jm} =

∑

(l,j,m)∈I

µl
jm ψl

jm (summability in S ′(Rn)) (3.31)

and a corresponding co-retraction J from Bφ
piq(Rn) into bφ

piq, given by

J f = {µl
jm(f)} with µl

jm(f) = 2jn 〈f, ψl
jm〉, (3.32)

where the duality in (3.32) is interpreted as described above. Taking into account Theorem

2.2.6 (and Remark 2.2.7) we get
∥∥∥f | (Bφ

p0q(Rn), Bφ
p1q(Rn))γ,q

∥∥∥ ∼
∥∥∥J f | (bφ

p0q, b
φ
p1q)γ,q

∥∥∥ . (3.33)
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Step 2. Let us study the sequence interpolation space in the right-hand side of (3.33). We

observe that {bφ
p0q, b

φ
p1q} forms an interpolation couple since both spaces are continuously

embedded in `∞
(
`∞(Zn), 2−j n

min(p0,p1) φ(2j)
)
. Each space bφ

piq, i = 0, 1, may be interpreted as

a suitable weighted sequence space, namely `q

(
`pi(Zn), ωi

)
, where ωi = {φ(2j) 2−j n

pi }(l,j)∈I′

(cf. the notation from Chapter 1). By Proposition 3.2 (and Section 5) in [106] we obtain

(
`q

(
`p0(Zn), ω0

)
, `q

(
`p1(Zn), ω1

))
γ,q

= `q

(
(`p0(Zn), `p1(Zn))γj ,q, ω0

j

)
, (3.34)

where

γj(t) = γ
(
2−jn( 1

p0
− 1

p1
)
t
)

, j ∈ N0.

If we put γ̃j = γj

γj(1) then γ̃j ∈ B for every j ∈ N0. Furthermore,

(`p0(Zn), `p1(Zn))γj ,q =
1

γj(1)
(`p0(Zn), `p1(Zn))eγj ,q

where 1
γj(1) (`p0(Zn), `p1(Zn))eγj ,q denotes the space (`p0(Zn), `p1(Zn))eγj ,q equipped with the

quasi-norm 1
γj(1) ‖ · ‖eγj ,q. Now Theorem 3 in [94] yields

(`p0(Zn), `p1(Zn))eγj ,q = λq(ρ̃j ,Zn), (3.35)

where λq(ρ̃j ,Zn), j ∈ N0, are Lorentz sequence spaces (see Definition 3.2.1) and ρ̃j = γj(1) ρj ,

with ρj given by

ρj(t) =
t

1
p0

γj

(
t

1
p0
− 1

p1

) , j ∈ N0. (3.36)

Notice that (3.35) may be written in the “non-normalized form” as

(`p0(Zn), `p1(Zn))γj ,q = λq(ρj ,Zn), j ∈ N0 (3.37)

(recall also Remark 3.2.2).

Taking into account formula (3.34), we also need to known how the equivalence constants

from (3.37) depend on j. By Proposition 2.2.2, the following statement holds:

γ
(
2jn( 1

p0
− 1

p1
)
)−1

γ(t) ≤ γ
(
2−jn( 1

p0
− 1

p1
)
t
)
≤ γ

(
2−jn( 1

p0
− 1

p1
)
)

γ(t), t > 0, j ∈ N0.

These inequalities together with (3.37) (in the case j = 0) give

1
c

γ
(
2−jn( 1

p0
− 1

p1
)
)−1

‖ · |λq(ρ0,Zn)‖ ≤ ‖ · ‖γj ,q ≤ c γ
(
2jn( 1

p0
− 1

p1
)
)
‖ · |λq(ρ0,Zn)‖,
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with c ≥ 1 not depending on j. From these estimates we arrive at

1
c

(Aγ,p0,p1(j))
−1 ‖ · |λq(ρj ,Zn)‖ ≤ ‖ · ‖γj ,q ≤ c Aγ,p0,p1(j) ‖ · |λq(ρj ,Zn)‖, j ∈ N0,

where Aγ,p0,p1(j) is given by (3.30). Thus

λq(Aγ,p0,p1(j) ρj ,Zn) ↪→ (`p0(Zn), `p1(Zn))γj ,q ↪→ λq(Aγ,p0,p1(j)
−1 ρj ,Zn),

where now the “embedding constants” are independent of j, which leads to

b
φ,(p0)
Υp0,p1 ,q ↪→ (bφ

p0q, b
φ
p1q)γ,q ↪→ b

φ,(p0)
Γp0,p1 ,q, (3.38)

with Υp0,p1 = {Aγ,p0,p1(j) ρj}j∈N0
and Γp0,p1 =

{
Aγ,p0,p1(j)

−1 ρj

}
j∈N0

.

Step 3. Finally, let us derive the interpolation statement (3.28).

The inclusion (Bφ
p0q(Rn), Bφ

p1q(Rn))γ,q ⊂ B
φ,(p0),[Ψr]
Γp0,p1 ,q (Rn) follows immediately from (3.38).

The remaining inclusion in (3.28) may be shown in the following way. If f ∈ B
φ,(p0),[Ψr]
Υp0,p1 ,q (Rn),

then we have f = f0 + f1 for some fi ∈ Bφ
piq(Rn), i = 0, 1, and J f ∈ b

φ,(p0)
Υp0,p1 ,q ⊂ (bφ

p0q, b
φ
p1q)γ,q.

Hence, we also have RJ f ∈ (Bφ
p0q(Rn), Bφ

p1q(Rn))γ,q. But

RJ f = RJ f0 +RJ f1 = f0 + f1 = f,

so that f ∈ (Bφ
p0q(Rn), Bφ

p1q(Rn))γ,q.

As regards the equivalence of the quasi-norms, it follows from (3.33) combined with defi-

nition (3.27).

Remark 3.2.7. The restriction p0 6= p1 arises when we apply Theorem 3 from [94], while the

restriction q < ∞ comes from Proposition 3.2 in [106].

Remark 3.2.8. The quantities Aγ,p0,p1(j) above cannot be uniformly estimated with respect

to j in general (consider, for instance, the functions γ = φa,b from Example 2.2.1, with

a ∈ (0, 1) and b 6= 0). All we can say is that Aγ,p0,p1(j) ∈ [1,∞), j ∈ N0, which follows from

the properties of the class B.

In the classical case γ(t) = tθ (0 < θ < 1), we have Aγ,p0,p1(j) ≡ 1, so that, in this case,

Theorem 3.2.6 gives us an exact interpolation formula, that is, the corresponding endpoint

spaces in (3.28) coincide (up to equivalence of quasi-norms).
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Further notes

We have extended the wavelet representation from [137] to the Besov spaces Bφ
pq(Rn) by

real interpolation with function parameter. In this way we avoided the usage of local means and

maximal functions (according to [135], Section 2.4.6 and p. 109, formula (55), respectively).

The statements in Theorem 3.1.2 were recently generalized to anisotropic spaces in ([138]) by

using an anisotropic version of the arguments from [137].

Section 3.2 presents a new possible way to obtain interpolation results based on the con-

struction of retractions from wavelet expansions. In a sense, this is an inverse approach to

that one followed in Section 3.1.

Theorem 3.2.6 provides information about the interpolation spaces between spaces Bφ
pq(Rn)

in the case when p is changed. Since the sequence {Aγ,p0,p1(j)}j∈N0 , defined by (3.30), is not

bounded in general, we can only “estimate” the space (Bφ
p0q(Rn), Bφ

p1q(Rn))γ,q from below and

from above. In this sense, our result does not provide a direct generalization of Theorem

5.8 in [23]. Nevertheless, the statement (3.28) will become an exact interpolation formula if

we find constants, playing the role of Aγ,p0,p1(j), which could be absolutely estimated (with

respect to j). In that case, the corresponding result would give an alternative description of

the interpolation space when the range of parameters coincides with the corresponding range

in Theorem 5.8 in [23].

In this chapter we discussed interpolation properties and wavelet decompositions for gen-

eralized Besov spaces. An interesting question would be to obtain corresponding statements

for the generalized Triebel-Lizorkin spaces.
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Chapter 4

Lebesgue Spaces with Variable

Exponent

4.1 A brief historical outline

In this section we give a brief description of the historical background for the variable

exponent Lebesgue spaces. We make no attempt at completeness, so that we do not go into

many details in general. Further information may be found in the surveys [33], [80] and [122].

Probably, Lebesgue spaces with variable exponent appeared in the literature already in

1931 in an implicit way. In a paper by Orlicz [101], some convergence problem seemed to

have been discussed in connection with the Hölder inequality. These spaces appeared later in

a book by Nakano [98] as an example illustrating the theory of the so-called modular spaces.

We refer to [71], [72] and [97] for a detailed presentation on general modular spaces and further

references.

Apparently, Lebesgue spaces of variable exponent (on the real line) were first studied as

a special object by Sharapudinov [124]. In this paper, notable efforts to understand these

spaces were made, starting with their topological structure and allowing general measurable

exponent functions. Sharapudinov studied some other properties of these spaces, such as the

existence of unconditional bases ([125]) and the boundedness of convolution operators ([126]).

A remarkable progress in variable exponent spaces was made in the beginning of the 1990’s

with the paper by Kováčik and Rákosník [85], where several basic properties were established.

It should be noted, however, that the basic theory of these spaces has been independently
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developed by other authors. In this line, we also refer to the papers [42], [44], [51] and [120].

Roughly speaking, Lebesgue spaces with variable exponent are obtained from the classical

Lp spaces by allowing the exponent p to vary from point to point. This simple procedure gives

rise to some undesired effects. For instance, these “new” spaces, sometimes called generalized

or variable Lebesgue spaces, are no longer translation invariant. At the first glance, the failure

of essential properties restricted strongly the techniques available and often used in the context

of the classical spaces. Nevertheless, the discovery of the appropriate smooth condition (the

log-Hölder continuity) for managing varying exponents led to the beginning of a new stage.

The boundedness of the maximal operator, proved for the first time by Diening [30], was an

important breakthrough as far as operator theory is concerned. From this point, a multitude

of results were derived, mainly concerned to the behavior of classical operators coming from

harmonic analysis.

The increase of interest to variable Lebesgue and to the corresponding Sobolev spaces may

be confirmed by the many papers published during the last years. Among them, we refer to

[44], [112], where the denseness of smooth functions was considered, to [31], [34, 35, 36], [43],

[41], [81, 83, 84], [118, 119], and to the recent preprints [20], [24], where various results on

maximal, potential and singular operators in variable Lebesgue spaces were obtained. We also

mention the papers [45], [46], [47], [65], [108] on Sobolev type embeddings, and [38], [53], [66],

[67], [68], [78], [113, 114], as well as the recent preprint [32], for further results on the variable

exponent framework.

The interest in these spaces is justified not only by theoretical reasons but also by their

importance in some applications. Variable exponent spaces arise naturally in modelling prob-

lems of fluid dynamics, elasticity theory ([111]) and image restoration ([89]). Moreover, some

mathematical models coming from these applications are related to the so-called variational

integrals and differential equations with non-standard growth conditions. Nowadays there are

many papers showing a strong connection between variable exponent spaces and variational

problems of such a type. For instance, we refer to the papers [1, 2, 4], [15], [21], [48], [49], [50],

[142], and to the former paper by Zhikov [141], where these problems started to be studied

related to the so-called Lavrentiev phenomenon.
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4.2 Definition and basic properties

Everywhere below Ω is assumed to be a domain in Rn.

Let p : Ω → [1,∞) be a measurable bounded function, called a variable exponent on Ω,

and denote

pΩ := ess sup
x∈Ω

p(x) and p
Ω

:= ess inf
x∈Ω

p(x).

Definition 4.2.1. The Lebesgue space with variable exponent Lp(·)(Ω) is defined as the space

of all measurable functions f on Ω for which the modular

Ip(·),Ω(f) :=
∫

Ω
|f(x)|p(x)dx

is finite.

This is a Banach space endowed with the norm

‖f‖p(·),Ω := inf
{

λ > 0 : Ip(·),Ω

(
f

λ

)
≤ 1

}
, f ∈ Lp(·)(Ω). (4.1)

When p is constant then Lp(·)(Ω) coincides with the standard Lebesgue space Lp(Ω) (ac-

cording to (1.2) with Ω in place of Rn) and the norms in both spaces are equal. A detailed

discussion on the properties of these spaces may be found in the papers [44], [51], [85], [119],

[120] and [124]. We also refer to the papers [38] and [99], where discrete analogues of spaces

Lp(·)(Ω) were studied.

In order to emphasize that we are dealing with variable exponents, we shall write p(·)
instead of p to denote an exponent function. In what follows, the omission of the Ω from

the notation means that we are working with Ω = Rn. For example, we will then only write

‖ · ‖p(·) instead of ‖ · ‖p(·),Rn to refer to the norm (4.1). We consider this assumption for short,

and we will make use of it throughout the text with other notations.

The spaces Lp(·)(Ω) inherit some properties from their classical analogues. In fact, under

the additional assumption p
Ω

> 1, they are uniformly convex, reflexive and its dual space is

(isomorphic to) Lp′(·)(Ω), where p′(·) is the natural conjugate exponent given by

1
p(x)

+
1

p′(x)
≡ 1, x ∈ Ω. (4.2)

Nevertheless, there are some basic properties of the classical Lebesgue spaces which are

not transferred to the variable exponent case. For instance, the space Lp(·)(Rn) is no longer
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translation invariant. As a consequence, Young’s theorem and the so called mean continuity

property fail in general (see [85], [53], [119] for details).

We notice that the assumption p
Ω

> 1 is quite natural when one deals with the conjugate

space of Lp(·)(Ω). It often proves to be necessary within the framework of operator theory in

these spaces, starting with the boundedness of the maximal operator (see Section 4.3 below).

Hence, in what follows, we always consider exponents p(·) such that

1 < p
Ω
≤ p(x) ≤ pΩ < ∞, x ∈ Ω. (4.3)

We will often assume the uniform logarithmic assumption

|p(x)− p(y)| ≤ A0

ln 1
|x−y|

, x, y ∈ Ω, |x− y| ≤ 1/2, (4.4)

on the exponent (A0 > 0 not depending on x). This local condition, usually called log-

Hölder continuity or Dini-Lipschitz continuity, arises naturally when one deals with variable

exponents, both as integrability index (see, for instance, [3], [107]) and as variable order of

the Hölder condition (cf. [76, 77], [110]).

This assumption allows to prove a multitude of results in variable exponent spaces. Note

that (4.4) implies

|p(x)− p(y)| ≤ 2NA0

ln 2N
|x−y|

, x, y ∈ Ω, |x− y| ≤ N, (4.5)

where N ∈ N.
In general, when we deal with unbounded domains, the exponent p(·) is also supposed to

have a logarithmic decay at infinity, namely

|p(x)− p∞| ≤ A∞
ln(e + |x|) , x ∈ Ω, (4.6)

where p∞ ≥ 1 and A∞ > 0 are constants independent of x. This assumption was considered

in [119] and it is equivalent to the uniform condition

|p(x)− p(y)| ≤ C

ln(e + |x|) , x, y ∈ Ω, |y| ≥ |x|. (4.7)

Conditions (4.4) and (4.7) are optimal to get various results on operator theory in the

context of the spaces Lp(·)(Ω).
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The Sobolev space Wm
p(·)(Ω), m ∈ N0, is introduced as the space of all measurable functions

f on Ω whose (weak) derivatives Dβf up to order m are in Lp(·)(Ω). The norm

‖f‖m,p(·),Ω :=
∑

|β|≤m

‖Dβf‖p(·),Ω, f ∈ Wm
p(·)(Ω), (4.8)

makes Wm
p(·)(Ω) a Banach space.

For completeness, we briefly state some essential properties of variable Lebesgue and

Sobolev spaces. Their proofs can be found in the papers mentioned above.

Lemma 4.2.2. (Hölder inequality) There exists c = c(p) > 0 such that
∫

Ω
|f(x)g(x)| dx ≤ c ‖f‖p(·),Ω ‖g‖p′(·),Ω,

for all f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω), with p′(·) given by (4.2).

A central property of these spaces is that the convergence in norm is equivalent to the

modular convergence.

Lemma 4.2.3. Let f ∈ Lp(·)(Ω). Then ‖f‖p(·),Ω ≤ c1 if and only if Ip(·),Ω(f) ≤ c2. Given

{fk}k∈N0 ⊂ Lp(·)(Ω), then ‖fk‖p(·),Ω → 0 if and only if Ip(·),Ω(fk) → 0, as k →∞.

As in the classical case with constant exponents the following embedding holds.

Lemma 4.2.4. Let p(·) and q(·) be exponent functions such that p(x) ≤ q(x) almost every-

where in Ω. If Ω is bounded then Lq(·)(Ω) ↪→ Lp(·)(Ω) with

‖f‖p(·),Ω ≤ (1 + |Ω|) ‖f‖q(·),Ω.

Another important tool is the denseness of smooth functions in variable exponent spaces.

The class C∞
0 (Ω) consisting of all infinitely differentiable functions with compact support in

Ω is dense in Lp(·)(Ω). This was shown in [85], Theorem 2.11, together with the first basic

properties of these spaces. However, the denseness of this class in the Sobolev spaces Wm
p(·)(Ω)

proved to be a more difficult problem and the solution required additional assumptions on the

exponent. The following statement was proved by Samko [112], Theorem 3.

Theorem 4.2.5. The class C∞
0 (Rn) is dense in Wm

p(·)(R
n) under the assumption (4.4) on the

exponent p(·).

The proof of this theorem was based on the uniform boundedness of dilation convolution

operators. Other denseness results on general domains can be found in [30], [44], [51] and [70].
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4.3 The Hardy-Littlewood maximal function in Lp(·) spaces

The maximal function, MΩ, of a locally integrable function f is defined by

MΩf(x) = sup
r>0

1
|B(x, r)|

∫

B(x,r)∩Ω
|f(y)| dy, x ∈ Ω.

This is an important tool in the study of classical operators from harmonic analysis such

as potential type operators and singular integral operators. While the behavior of MΩ on

standard Lebesgue spaces Lp(Ω) is well-known, its boundedness on variable exponent spaces

Lp(·)(Ω) remained an open problem for a long time. It was first proved by Diening [30] over

bounded domains, under the assumption that p(·) is log-Hölder continuous. He later extended
the result to the case Ω = Rn by supposing, in addition, that the exponent p(·) is constant

outside some large fixed ball; see [31].

Diening’s result was independently improved by Nekvinda [100] and Cruz-Uribe, Fiorenza

and Neugebauer [25] by obtaining the boundedness of MΩ over general unbounded domains

Ω, for exponents not necessarily constant at infinity. In the former, some integral condition

was imposed, while in the second it was assumed that the exponent has a certain logarithmic

decay at infinity. The statement in [25] runs as follows.

Theorem 4.3.1. If the exponent p(·) satisfies the conditions (4.3), (4.4) and (4.6), then the

maximal operator MΩ is bounded in Lp(·)(Ω).

The logarithmic Hölder continuity assumptions on the exponent are sufficient to derive

several results based on the boundedness of the Hardy-Littlewood maximal operator. Fur-

thermore, they are close to necessary. This is why conditions (4.4) and (4.6) are widely used

in the theory of Lp(·)(Ω) spaces nowadays. We mention the papers [25] and [107] for concrete

counter-examples in R1.

We notice that weighted boundedness results for the maximal operator were studied in

[84].

For simplicity, we shall denote by P(Ω) the class of all exponents p(·), 1 < p
Ω
≤ pΩ < ∞,

such that MΩ is bounded in Lp(·)(Ω). Recently, Diening [29] has given a necessary and

sufficient condition for the exponent p(·) to be in P(Rn) (see [29], Theorem 8.1).
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4.4 Convolution operators in variable Lebesgue spaces

Since Lp(·)(Rn) is not invariant with respect to translations, we should expect some prob-

lems related to convolutions. In general, the convolution operator does not behave well on

these spaces, contrarily to what happens on Lebesgue spaces Lp(Rn) with constant exponent.

Therefore, Young inequality does not hold for variable exponents if we take an arbitrary inte-

grable kernel (see [118, 119] for details). In spite of the failure of this basic property, in [112]

it was shown that it is possible to use the mollifier technique within the framework of variable

Lebesgue spaces, if one assumes that the exponent satisfies the uniform logarithmic condition

(4.4).

The approximation problem via mollifiers is closely related to the boundedness of the

maximal operator (cf. [129], Section III.2.2). Diening [30] observed that the Stein theorem on

convolutions with radial integrable dominants remains valid for the variable exponent setting.

The statement in [30], Corollary 3.6, runs as follows.

Theorem 4.4.1. Let ϕ ∈ L1(Rn) and define ϕε(·) = ε−nϕ(·/ε), ε > 0. Suppose that the least

decreasing radial majorant of ϕ is integrable, that is, A :=
∫
Rn sup

|y|≥|x|
|ϕ(y)| dx < ∞. Then

(i) sup
ε>0

|(f ∗ ϕε)(x)| ≤ 2A (Mf)(x), f ∈ Lp(·)(Rn), x ∈ Rn.

If p(·) ∈ P(Rn), then also

(ii) ‖f ∗ ϕε‖p(·) ≤ c ‖f‖p(·)

(with c independent of ε and f) and, if in addition
∫
Rn ϕ(x) dx = 1, then

(iii) f ∗ ϕε → f as ε → 0 in Lp(·)(Rn) and almost everywhere.

Theorem 4.4.1 is an important tool which allows us to obtain boundedness of various

concrete convolution operators, even in the case when they are defined by the Fourier transform

of their kernel. Later we shall discuss some examples.

Having in mind further goals, we would like to remind the Riesz transforms given by

Rj f(x) = lim
ε→0

cn

∫

|y|>ε

yj

|y|n+1
f(x− y) dy, j = 1, 2, . . . , n, (4.9)

which are convolution type operators defined in the principal value sense. It is already known

that Rj are bounded operators in Lp(·)(Rn) as long as p(·) ∈ P(Rn). This follows from more

general statements given in [24] and [34] on the boundedness of singular integral operators in

variable Lebesgue spaces.
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Singular operators on spaces Lp(·) have been studied also in other papers. We refer to [82],

[83], where weighted boundedness results were obtained and to [35], where Calderón-Zygmung

singular operators were considered related to the half-space.

4.5 Fractional integrals and fractional maximal operators

The study of fractional integral operators on variable Lebesgue spaces is an important

topic in our thesis. We recall here their definition.

Definition 4.5.1. Let 0 < α < n and f ∈ Lloc
1 (Ω). The fractional integral of order α, Iα

Ω,

also known as the Riesz potential, is defined by

Iα
Ωf(x) :=

∫

Ω

f(y)
|x− y|n−α

dy.

The function f is sometimes called the density of the potential Iα
Ωf , being this designation

inspired by physical backgrounds.

Remark 4.5.2. It is also possible to consider Riesz potentials of variable order α = α(x), x ∈
Ω (see [118], for instance). In that case, we shall write Iα(·)

Ω instead of Iα
Ω. We will make use

of these “variable potentials” later, in Chapter 7.

The classical Sobolev theorem on fractional integrals says that Iα
Ω is a bounded operator

from Lp(Ω) into Lq(Ω), where q is the Sobolev exponent given by 1
q = 1

p − α
n , with 1 < p < n

α

(see, for example, [129], Section V.1.2). The boundedness of Iα
Ω on Lebesgue spaces with

variable exponent was firstly considered by Samko [118], where a conditional result for bounded

domains was proved. After Diening has proved the boundedness of the maximal operator, the

conditional Sobolev theorem in [118] became an unconditional statement. For further goals,

we recall here the statement in [118], which was stated for general potentials of variable order.

Theorem 4.5.3. Let Ω be a bounded domain. Suppose that p(·) satisfies (4.4) and α = α(x)

satisfies the conditions

ess inf
x∈Ω

α(x) > 0, ess sup
x∈Ω

α(x)p(x) < n, (4.10)

and let 1
q(x) = 1

p(x) −
α(x)

n , x ∈ Ω. Then there exists c > 0 such that
∥∥∥Iα(·)

Ω f
∥∥∥

q(·)
≤ c ‖f‖p(·), f ∈ Lp(·)(Ω). (4.11)
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Diening [31] proved the Sobolev theorem on Rn for p(·) satisfying the local logarithmic

condition (4.4) and being constant at infinity. Some weighted version of the Sobolev theorem

on Rn was obtained by Kokilashvili and Samko [81]. Weighted estimates were also given in

[84] for potential type operators of variable order, associated with weighted estimates for the

maximal operator. More recently, Capone, Cruz-Uribe and Fiorenza [20] proved the Sobolev

theorem on arbitrary domains for exponents p(·) not necessarily constant at infinity. Their

statement for the case of the whole space Rn runs as follows.

Theorem 4.5.4. Let 0 < α < n and let 1 < p ≤ p < n
α . Assume also that p(·) satisfies the

log-Hölder conditions (4.4) and (4.6). Then there exists c > 0 such that

‖Iαf‖q(·) ≤ c ‖f‖p(·), f ∈ Lp(·)(Rn), (4.12)

where q(·) is the Sobolev exponent given by

1
q(x)

=
1

p(x)
− α

n
, x ∈ Rn. (4.13)

Remark 4.5.5. Theorem 4.5.4 is sometimes referred to in the literature as the “Hardy-

Littlewood-Sobolev theorem”, since its corresponding version for constant exponents was first

proved by Hardy and Littlewood in R1 and then extended to the multidimensional case by

Sobolev.

Closely related to the Riesz potential operator is the fractional maximal function defined

by

Mλ
Ωf(x) = sup

r>0

1

|B(x, r)|1−λ
n

∫

B(x,r)∩Ω
|f(y)| dy, 0 < λ < n, (4.14)

where f is a locally integrable function. This is a classical tool in harmonic analysis, being

also used to study the behavior of Sobolev functions.

Although the Hardy-Littlewood maximal operator may be regarded as a limiting case of

Mλ
Ω (by taking λ = 0), their mapping properties on the Lebesgue spaces are quite different.

It is known that the behavior of the fractional maximal operator is similar to the behavior

of the Riesz potential operator of the same order, in terms of norm inequalities. For classical

results on this subject see the monographs [5], [37] and [129].

In Chapter 7 we will use generalized versions of maximal functions by allowing variable

orders as well. For future use, we state here a boundedness statement obtained in [81].
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Theorem 4.5.6. Let Ω be a bounded domain. Let p(·) satisfy (4.4) and λ(x) satisfy the

conditions

ess inf
x∈Ω

λ(x) > 0, ess sup
x∈Ω

λ(x)p(x) < n, (4.15)

and let 1
q(x) = 1

p(x) −
λ(x)

n . Then

∥∥∥Mλ(·)
Ω f

∥∥∥
q(·),Ω

≤ c ‖f‖p(·),Ω, f ∈ Lp(·)(Ω). (4.16)

Observe that (4.16) follows from the well-known pointwise estimate

Mλ(·)
Ω f(x) ≤ c Iλ(·)

Ω (|f |)(x), x ∈ Ω,

(see [5], p. 72) and from the Sobolev type Theorem 4.5.3.

The boundedness of the fractional maximal operator on general domains Ω was obtained in

[20], Theorem 1.6, under the same assumptions on the exponents p(·) and q(·) as in Theorem

4.5.4, but now over Ω. As a consequence, the classical Sobolev embedding into Lebesgue

spaces was extended to the variable exponent setting in the case Ω = Rn (see [20], Theorem

1.7). We state it here for completeness.

Theorem 4.5.7. Suppose that the exponent p(·) satisfies the uniform conditions (4.4) and

(4.6). If 1 < p ≤ p < n
m , then

Wm
p(·)(R

n) ↪→ Lq(·)(Rn),

where 1
q(x) = 1

p(x) − m
n , x ∈ Rn.

This may be proved as in the classical case (see [143], Remark 2.8.6) by making use of the

denseness argument given in Theorem 4.2.5 above.

Remark 4.5.8. The first version of the Sobolev embedding theorem on Rn was obtained

by Diening [31] under a stronger condition on p(·) at infinity, namely he assumed that the

exponent was constant outside some large ball. In the same paper, he also obtained corre-

sponding embeddings for bounded domains Ω with Lipschitz boundary, assuming only that

p(·) is locally log-Hölder continuous. Diening’s results generalized earlier statements given in

[45], [47] and [85].
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Inversion of the Riesz Potential

Operator on Variable Lebesgue Spaces

The behavior of the Riesz potential operator Iα have been studied by many authors within

the framework of the Lesbesgue spaces with variable exponent. Starting with earlier results

from [118], several statements were given leading to the generalization of the Sobolev theorem

(cf. Theorem 4.5.4). In general, the content of this chapter may be seen as a continuation of

the study of the mapping properties of Iα on Lp(·) spaces.

Our main aim is to show that hypersingular integrals provide an inverse operator to the

Riesz potential operator acting in Lp(·)(Rn). This is a known fact when we deal with densities

from the classical Lebesgue spaces Lp(Rn); see [121] for details and references.

In Section 5.1 we prove the denseness of the Lizorkin space in the variable Lebesgue

spaces. We notice that the Lizorkin space is the appropriate class to deal with the Riesz

potential operator, since it is invariant with respect to this operator. Section 5.2 is devoted

to the consideration of hypersingular integrals of functions in Lp(·)(Rn). We shall formulate

the inversion statement in Section 5.3. Finally, we pay some attention to the hypersingular

integral operator acting in Lp(·)(Rn) concerning its independence on the order of the finite

differences used in its construction.
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5.1 Denseness of the Lizorkin class in variable Lebesgue spaces

None of the classes C∞
0 (Rn) and S(Rn) is invariant with respect to Riesz potential operator,

since, roughly speaking, the Riesz potential of a nonnegative C∞
0 (Rn)-function, not equal to

zero identically, slowly vanishes at infinity. This is a known fact and the details can be found

in [123], p. 493.

The appropriate class with the required property is the so-called Lizorkin space.

Definition 5.1.1. One defines the Lizorkin space Φ(Rn) via Fourier transform as

Φ(Rn) = {ϕ ∈ S(Rn) : (Dβϕ̂)(0) = 0, β ∈ Nn
0}

where Dβ stands for the usual derivative.

The proof of the following statement may be found in [121], p. 46.

Proposition 5.1.2. The Lizorkin space Φ(Rn) is invariant with respect to the Riesz potential

operator Iα. Moreover,

Iα [Φ(Rn)] = Φ(Rn), 0 < α < n.

Now we shall prove that Φ(Rn) is dense in Lp(·)(Rn) following ideas from [121], Chapter

2. Let us start with some convolution results.

For k ∈ S(Rn) and f ∈ Lp(·)(Rn) we put kN (x) := N−n k(x/N), N ∈ N, x ∈ Rn. The

convolution kN ∗ f is then given by

kN ∗ f(x) =
∫

Rn

k(y) f(x−Ny) dy, x ∈ Rn, N ∈ N.

In a certain sense, the lemma below can be regarded as an alternative to the Young

inequality.

Lemma 5.1.3. Let k ∈ S(Rn) and f ∈ Lp(·)(Rn). If p(·) ∈ P(Rn), then

‖kN ∗ f‖p(·) ≤ c ‖f‖p(·)

with c > 0 not depending on N and f .

Proof. Having in mind results from Theorem 4.4.1, we observe that the least decreasing radial

majorant of k is integrable. In fact, since k ∈ S(Rn), we have
∫

Rn

sup
|y|≥|x|

|k(y)| dx =
∫

Rn

sup
|y|≥|x|

(
1 + |y|2)n |k(y)|

(1 + |y|2)n dx

≤
∫

Rn

[
sup
y∈Rn

(
1 + |y|2)n |k(y)|

]
1

(1 + |x|2)n dx < ∞.
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Hence, the statement (ii) of 4.4.1 allow us to arrive at the uniform estimate

‖kN ∗ f‖p(·) ≤ c ‖f‖p(·),

with respect to N (and f as well).

Lemma 5.1.4. Let k, f and p(·) be as in Lemma 5.1.3. Then

‖kN ∗ f‖p(·) −→ 0 as N →∞.

Proof. Since C∞
0 (Rn) is dense in Lp(·)(Rn), it is sufficient to check the convergence for ele-

ments in this class. In fact, taking δ > 0 arbitrary, there exists ϕδ ∈ C∞
0 (Rn), such that

‖f − ϕδ‖p(·) < δ. Thus, by Lemma 5.1.3, we have

‖kN ∗ f‖p(·) = ‖kN ∗ (f − ϕδ + ϕδ)‖p(·)

≤ ‖kN ∗ (f − ϕδ)‖p(·) + ‖kN ∗ ϕδ‖p(·)

≤ C ‖f − ϕδ‖p(·) + ‖kN ∗ ϕδ‖p(·)

< C δ + ‖kN ∗ ϕδ‖p(·)

for all N ∈ N. Hence, if the statement of the lemma is valid for elements of C∞
0 (Rn), we get

lim
N→∞

‖kN ∗ f‖p(·) ≤ C δ,

and obtain the desired result in view of the arbitrariness of δ and the independence of the

constant C on N .

It remains to justify the passage to the limit for f ∈ C∞
0 (Rn). In this case one has

kN ∗ f ∈ S(Rn) for all N , which implies kN ∗ f ∈ Lp(Rn) ∩ Lp(Rn). Moreover,

Lp(Rn) ∩ Lp(Rn) ↪→ Lp(·)(Rn)

with

‖kN ∗ f‖p(·) ≤ max
(
‖kN ∗ f‖p , ‖kN ∗ f‖p

)

≤ ‖kN ∗ f‖p + ‖kN ∗ f‖p .

At this stage, we may proceed like in [121], p. 42, where the case of constant exponents

p(x) ≡ p was treated.
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Let q ∈ {
p, p

}
. If q = 2 then

‖kN ∗ f‖2
2 =

∫

Rn

|F (kN )(y) Ff(y)|2 dy → 0 as N →∞, (5.1)

which follows from the Parseval identity and from the Lebesgue dominated convergence the-

orem. The case q 6= 2 may be reduced to the previous case as follows. Let r > 1 be a number

such that q is located between 2 and r. Since f ∈ S(Rn), then we may apply the Hölder

inequality and get

‖kN ∗ f‖q ≤ ‖kN ∗ f‖1−λ
r ‖kN ∗ f‖λ

2 ,

with λ ∈ (0, 1) given by λ = 2
q

q−r
2−r . Now we derive the convergence ‖kN ∗ f‖q → 0 (as N →∞)

in view of the uniform estimate ‖kN ∗ f‖r ≤ ‖k‖1 ‖f‖r combined with (5.1).

We are able now to formulate the main statement of this section.

Theorem 5.1.5. If p(·) ∈ P(Rn), then the Lizorkin class Φ(Rn) is dense in the variable

Lebesgue space Lp(·)(Rn).

Proof. Since S(Rn) is dense in Lp(·)(Rn) (see [85]), it is sufficient to approximate each element

in S(Rn) by elements in Φ(Rn), in the norm of Lp(·)(Rn).

Let f ∈ S(Rn). Consider µ ∈ C∞([0,∞)), such that µ(r) ≡ 1 for r ≥ 2, µ(r) ≡ 0 for

0 ≤ r ≤ 1 and 0 ≤ µ(r) ≤ 1. We put

ψN (x) := µ(N |x|)(F−1f)(x), x ∈ Rn, N ∈ N.

Then we have ψN ∈ S(Rn) with ψN (x) ≡ 0 when |x| ≤ 1/N . If we define fN := FψN then

fN ∈ Φ(Rn). Moreover, considering the notations v(·) := µ(| · |) and vN (·) := v(N ·), and
making use of the properties of the Fourier transform on S(Rn), we successively have

f(x)− (2π)−n

∫

Rn

F [1− v](y)f(x−Ny) dy = f(x)− (2π)−n

∫

Rn

N−nF [1− v](z/N)f(x− z) dz

= f(x)− (2π)−n

∫

Rn

F [1− vN ](z)f(x− z) dz

= f(x)− (2π)−nF
(
(2π)n[1− vN ] · F−1f

)
(x)

= f(x)− F F−1f(x) + F
(
vN · F−1f

)
(x)

= fN (x).

Taking the kernel k(y) = (2π)−nF [1− v](y) in Lemma 5.1.4, one obtains

lim
N→∞

‖f − fN‖p(·) = lim
N→∞

‖kN ∗ f‖p(·) = 0,
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which completes the proof.

5.2 Hypersingular integrals on Lp(·) spaces

An important fact concerning hypersingular integrals is their application to the inversion

of potential-type operators. There are many papers on this subject, but we only refer to the

monographs [121] and [123], where several references and historical remarks may be found.

A typical hypersingular integral has the form

1
dn,`(α)

∫

Rn

(
∆`

yf
)
(x)

|y|n+α
dy, α > 0, (5.2)

where ∆`
yf denotes the non-centered finite difference of order ` ∈ N of the function f ,

(∆`
yf)(x) :=

∑̀

k=0

(−1)k

(
`

k

)
f(x− ky), y ∈ Rn, ` ∈ N, (5.3)

and dn,`(α) is a certain normalizing constant, which is chosen so that the construction in (5.2)

does not depend on `. The precise value of dn,`(α) is not important for our purposes. We

refer to [121], Chapter 3, for full details concerning the normalizing constants.

It is known that the integral (5.2) exists (for each x ∈ Rn), for instance, for functions

f ∈ S(Rn) with ` > α. In fact, in that case, from the Taylor’s formula with the remainder in

the integral form (see Lemmma 3.7 in [121]), we derive |(∆`
yf)(x)| ≤ C(`, f) |y|`. Hence,

∫

Rn

∣∣(∆`
yf

)
(x)

∣∣
|y|n+α

dy =
∫

|y|≤1

∣∣(∆`
yf

)
(x)

∣∣
|y|n+α

dy +
∫

|y|>1

∣∣(∆`
yf

)
(x)

∣∣
|y|n+α

dy

≤ C(`, f)
∫

|y|≤1

dy

|y|n+α−`
+ C(`) ‖f‖∞

∫

|y|>1

dy

|y|n+α

< ∞.

Remark 5.2.1. For simplicity, in this chapter we consider only non-centered finite differences

in the construction of the hypersingular integral. Nevertheless, centered differences are also

admitted if we introduce necessary modifications. The important fact here is that the order

` should be chosen according to the following rule (as stated in [121], p. 65), which will be

always assumed from now on:

1) in the case of a non-centered difference we take ` > 2
[

α
2

]
with the obligatory choice ` = α

for α odd;
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2) in the case of a centered difference we take ` even and ` > α > 0.

We remind that the centered differences are defined as in (5.3), but with x − ky replaced by

x +
(

`
2 − k

)
y in the right-hand side. In Chapter 6 we shall make use of centered differences

in an explicit way.

In general, the integral in (5.2) may be divergent, and hence it needs to be properly

interpreted. Let us start with the following definition.

Definition 5.2.2. Let f ∈ Lloc
1 (Rn) and α > 0. The truncated hypersingular integral operator

of order α is given by

Dα
`,εf(x) =

1
dn,`(α)

∫

|y|>ε

(
∆`

yf
)
(x)

|y|n+α
dy , ε > 0. (5.4)

The operators Dα
`,ε behave on Lp(·)(Rn) as follows.

Proposition 5.2.3. If p(·) ∈ P(Rn), then the truncated hypersingular integral operator Dα
`,ε

is bounded in Lp(·)(Rn), for every ε > 0.

Proof. We have

∣∣Dα
`,εf(x)

∣∣ ≤ 1
dn,`(α)

∫

|y|>ε

∣∣(∆`
yf

)
(x)

∣∣
|y|n+α

dy

≤ C(α, `)

(∫

|y|>ε

|f(x)|
|y|n+α

dy +
∑̀

k=1

(
`

k

)∫

|y|>ε

|f(x− ky)|
|y|n+α

dy

)

= C(α, `)

(
C(ε) |f(x)|+

∑̀

k=1

(
`

k

)
Qkf(x)

)

where the convolutions

Qkf(x) :=
∫

|y|>ε

|f(x− ky)|
|y|n+α

dy = kα

∫

|z|>kε

|f(x− z)|
|z|n+α

dz

generate bounded operators in the space Lp(·)(Rn) by Theorem 4.4.1 (they are convolution

operators with radial decreasing integrable kernels).

To estimate ‖Dα
`,εf‖p(·), it suffices to evaluate Ip(·)(Dα

`,εf) assuming that ‖f‖p(·) ≤ 1. Taking
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estimate (i) of Theorem 4.4.1 into account, we obtain

Ip(·)
(
Dα

`,εf
) ≤ C(α, `)

∫

Rn

(
C(ε)|f(x)|+

∑̀

k=1

(
`

k

)
C(ε, α) Mf(x)

)p(x)

dx

≤ C(ε, α, `)
∫

Rn

(
|f(x)|p(x) + (Mf(x))p(x)

)
dx

= C(ε, α, `)
(
Ip(·)(f) + Ip(·)(Mf)

)

≤ C(ε, α, `),

where the value of C(ε, α, `) may change in the chain. Recall that Mf ∈ Lp(·)(Rn) because

we assume p(·) ∈ P(Rn).

Now, since ‖f‖p(·) ≤ 1 implies Ip(·)(f) ≤ 1, then Ip(·)(Mf) ≤ C for some constant C > 1.

Therefore Ip(·)
( Dα

`,εf

C(ε,α,`)

)
≤ 1, which allows us to arrive at the inequality

∥∥Dα
`,εf

∥∥
p(·) ≤ C(ε, α, `) (see (4.1)).

Remark 5.2.4. When p(x) ≡ p is constant, the proof is easier. In fact, in that case, it suffices

to apply Minkowski inequality and then to make use of the property
∥∥∆`

yf
∥∥

p
≤ c ‖f‖p, where

c > 0 does not depend on y.

Remark 5.2.5. From Proposition 5.2.3 and Theorem 4.4.1 one concludes that the composi-

tions Dα
`,εIα are well defined on the space Lp(·)(Rn) when p < n

α .

The hypersingular operators we are interested in are operators defined by a suitable limiting

process. More precisely, we intend to deal with operators of the form

Dα
` f := lim

ε→0
Dα

`,εf, α > 0. (5.5)

According to our purposes, the limit in (5.5) will be taken in the norm of Lp(·)(Rn). This

makes sense in view of the Proposition 5.2.3 above.

We recall that the order ` of the finite differences is chosen taking into account the rule

from Remark 5.2.1, so that “many” possibilities are allowed. However, it is possible to ensure

the independence of the hypersingular integral on `. We will return to this question in Section

5.4.

Sometimes Dα
` is also called the Riesz fractional derivative since it can be interpreted as a

certain positive fractional power of the Laplacian operator (see Section 5.3 below).
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5.3 The inversion theorem

The Riesz potential operator Iα may be seen as a negative fractional power of the Lapla-

cian, namely

Iαf = (−∆)−
α
2 f, 0 < α < n, (5.6)

which can be shown for sufficiently smooth functions f from basic manipulations with Fourier

transforms (cf. [129], p. 117). On the other hand, the Riesz derivative Dα
` realizes the positive

fractional powers of the same differential operator,

Dα
` f = (−∆)

α
2 f, α > 0, (5.7)

as is shown in [121], p. 57, for functions f ∈ Φ(Rn). Identities (5.6) and (5.7) suggest that

the hypersingular operator generates an inverse operator to the Riesz potential operator Iα,

being it clear over the Lizorkin class Φ(Rn). However, this statement holds also on the whole

domain of Iα within the framework of the standard spaces Lp(Rn) (see [121] for details).

Our aim here is to extend the inversion results from [121] to the Lebesgue spaces of variable

exponent.

Before dealing with the inversion problem we need to introduce some basic notation.

Definition 5.3.1. We define the Riesz kernel of order α, 0 < α < n, as

kα(x) :=
1

γn(α)
|x|α−n,

where γn(α) = 2απn/2Γ(α/2)
Γ((n−α)/2) is the well-known normalizing constant.

We make use of the kernels k`,α and K`,α as in [121], Section 3.2:

k`,α(x) :=
(
∆`

e1
kα

)
(x) =

1
γn(α)

∑̀

r=0

(−1)r

(
`

r

)
|x− r e1|α−n,

where e1 = (1, 0, . . . , 0), and

K`,α(x) :=
1

dn,`(α)|x|n
∫

|y|<|x|
k`,α(y) dy. (5.8)

The kernel (5.8) has the following property:

Lemma 5.3.2. Let 0 < α < n. Then there exists C > 0, such that

|K`,α(x)| ≤ C





|x|α−n , |x| ≤ 1

|x|α−n−`∗ , |x| > 1

where `∗ = ` + 1 if ` is odd and `∗ = ` otherwise.
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The proof is essentially technic and it may be found in [121], p. 68.

A key step in the inversion of the operator Iα on classic spaces Lp(Rn) is the following

representation formula for potentials:

Dα
`,εf(x) = Kε

`,α ∗ ϕ(x), x ∈ Rn, ε > 0, (5.9)

where Kε
`,α(x) = 1

εn K`,α

(
x
ε

)
and f = Iαϕ, with ϕ ∈ Lp(Rn), 1 ≤ p < n/α and 0 < α < n.

First of all, we intend to obtain this kind of representation but now in the context of the

spaces of variable integrability. We cannot extend this identity to the spaces Lp(·)(Rn) directly,

but its validity on Lp(·)(Rn) may be obtained by considering the linear sum Lp(Rn) + Lp(Rn)

as follows.

Theorem 5.3.3. Let 0 < α < n and 1 < p ≤ p < n
α . Then for any ϕ ∈ Lp(Rn) + Lp(Rn),

and consequently for any ϕ ∈ Lp(·)(Rn), the following representation formula holds:

Dα
`,εIαϕ(x) = Kε

`,αϕ(x), x ∈ Rn, ε > 0, (5.10)

where Kε
`,αϕ := Kε

`,α ∗ ϕ.

Proof. Let ϕ ∈ Lp(·)(Rn) and ε > 0 be fixed. Recall that

Dα
`,εIαϕ(x) =

1
dn,`(α)

∫

|y|>ε

1
|y|n+α

(
4`

y (Iαϕ)
)

(x) dy

and

Kε
`,αϕ(x) =

∫

Rn

ϕ(x− y)Kε
`,α(y) dy. (5.11)

From (5.9) we have Dα
ε Iα : Lp(Rn) −→ Lp(Rn) and Dα

ε Iα : Lp(Rn) −→ Lp(Rn). Hence, we

can define Dα
ε Iα on Lp(Rn) + Lp(Rn) in the natural way. On the other hand,

Lp(·)(Rn) ⊂ Lp(Rn) + Lp(Rn),

since we can split ϕ into ϕ = ϕ0 + ϕ1, with ϕ0 ∈ Lp(Rn) and ϕ1 ∈ Lp(Rn), where

ϕ0(x) =





ϕ(x) , |ϕ(x)| > 1

0 , otherwise.

Making use of representation (5.9) for each term, we get

Dα
`,εIαϕ = Dα

`,εIαϕ0 + Dα
`,εIαϕ1 = Kε

`,αϕ0 +Kε
`,αϕ1 = Kε

`,αϕ.
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Corollary 5.3.4. Let 0 < α < n and p(·) ∈ P(Rn) with p < n
α . Then the compositions Dα

`,εIα

are uniformly bounded in Lp(·)(Rn) with respect to ε, that is,

∥∥Dα
`,εIαϕ

∥∥
p(·) ≤ c ‖ϕ‖p(·) , ∀ϕ ∈ Lp(·)(Rn),

where c > 0 does not depend on ε > 0.

Proof. The proof follows from (5.10) and from the uniform estimate given in statement (ii)

of Theorem 4.4.1. Note that the kernel K`,α has an integrable decreasing radial majorant in

view of the bounds given in Lemma 5.3.2.

The inversion result below is basically a consequence of the arguments discussed above.

Theorem 5.3.5. (Inversion theorem) Let p(·) ∈ P(Rn) and p < n
α . Then

Dα
` Iαϕ = ϕ, ϕ ∈ Lp(·)(Rn),

where the hypersingular operator Dα
` is taken in the sense of convergence in Lp(·)(Rn).

Proof. Since the least decreasing radial majorant of K`,α is integrable (cf. Lemma 5.3.2) and

K`,α has the averaging property
∫
Rn K`,α(x) dx = 1 (which is a consequence of the choice of

the normalizing constant), then we can pass to the limit in (5.10) in the norm ‖ · ‖p(·) (see

(iii) of Theorem 4.4.1), and write

lim
ε→0

Dα
`,εIαϕ = lim

ε→0
Kε

`,α ∗ ϕ = ϕ.

Remark 5.3.6. From Theorem 4.4.1, we may conclude that the convergence holds almost

everywhere as well, under the same conditions:

lim
ε→0

Dα
`,εIαϕ(x) = ϕ(x),

for almost all x ∈ Rn.

5.4 On the independence of the hypersingular integral on the

order of finite differences

Let us return to the independence problem introduced at the end of Section 5.2. As

discussed there, any order of finite difference is admissible in the sense of the rule stated in
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Remark 5.2.1. We intend to prove the independence of Dα
` f with respect to ` within the

framework of the variable exponent Lebesgue spaces.

Let us start with the following identity, which is the analogue of Lemma 3.26 in [121].

Lemma 5.4.1. Let ε > 0, 0 < α < n and p(·) ∈ P(Rn). Then for any f ∈ Lp(·)(Rn),

Kε
`0,αDα

`1,εf = Kε
`1,αDα

`0,εf, (5.12)

where Kε
`j ,α is the convolution operator (5.11), j = 0, 1.

Proof. The proof is basically the same as in [121], Lemma 3.26. For completeness, we briefly

point out the main steps.

First, one obtains (5.12) for f in the Lizorkin space Φ(Rn). For this, we note that we may

write f = Iαϕ for some ϕ ∈ Φ(Rn) (see Proposition 5.1.2), then apply equality (5.10) and

use properties of the Fourier transform on convolutions. After that we extend the equality

to the whole space Lp(·)(Rn) by continuity. Note that Φ(Rn) is dense in Lp(·)(Rn) because

p(·) ∈ P(Rn), by Theorem 5.1.5. Moreover, the operators involved in (5.12) are bounded:

boundedness of Kε
`j ,α follows from statement (ii) of Theorem 4.4.1, while the boundedness of

Dα
`j ,ε was proved in Proposition 5.2.3.

We are able to deal with the independence problem as follows.

Theorem 5.4.2. Let f ∈ Lp(·)(Rn) and 0 < α < n. Assume also that p(·) ∈ P(Rn). Suppose

that the hypersingular integral

Dα
`0f = lim

ε→0
Dα

`0,εf

exists for some `0 (in the sense of convergence in the Lp(·) norm). Then for any other ` for

which the derivative Dα
` f exists (in the same sense), we have

Dα
` f = Dα

`0f.

Proof. Let f ∈ Lp(·)(Rn) and ε > 0. All we need to do is to justify the passage to the limit in

the equality

Kε
`0,αDα

`,εf = Kε
`,αDα

`0,εf (5.13)

given in Lemma 5.4.1.
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Assume that Dα
`0,εf converges to Dα

`0
f in Lp(·)(Rn). Then

∥∥Kε
`,αDα

`0,εf − Dα
`0f

∥∥
p(·) =

∥∥Kε
`,α

(
Dα

`0,εf − Dα
`0f

)
+Kε

`,αDα
`0f − Dα

`0f
∥∥

p(·)

≤ ∥∥Kε
`,α

(
Dα

`0,εf − Dα
`0f

)∥∥
p(·) +

∥∥Kε
`,αDα

`0f − Dα
`0f

∥∥
p(·)

≤ C
∥∥Dα

`0,εf − Dα
`0f

∥∥
p(·) +

∥∥Kε
`,αDα

`0f − Dα
`0f

∥∥
p(·)

where the constant C is independent of ε, because the operators Kε
`,α are uniformly bounded in

Lp(·)(Rn) with respect to ε. But the kernel 1
εnK`,α

( ·
ε

)
constitutes an identity approximation,

so that we can pass to the limit as ε → 0 in last inequality (see statement (iii) of Theorem

4.4.1). So, we arrive at the conclusion that the right-hand side of (5.13) converges to Dα
`0

f in

Lp(·)(Rn). On the other hand, taking into account that Dα
`,εf converges to Dα

` f , we conclude

also, using similar arguments, that the left-hand side converges to Dα
` f in Lp(·)(Rn). Hence

the limits on both sides are equal, that is, Dα
` f = Dα

`0
f .

This shows that the order of finite differences that we choose is irrelevant to the value of

the Riesz derivative. As a consequence, we can omit the parameter ` in Dα
` f and simply write

Dαf for functions f belonging to variable Lebesgue spaces, with 0 < α < n.

Remark 5.4.3. As mentioned before, the independence of the hypersingular integral on the

order of finite differences is a consequence of the choice of the normalizing constants. In

the case of functions in the Lizorkin class, the independence was already clear, according to

identity (5.7). Note also that we could extract similar information for functions of potential

type from the inversion Theorem 5.3.5.

Further notes

In general, we dealt with non-centered differences in this chapter. However, centered

differences could be also considered as long as necessary technical modifications were made

(we refer to [121] where full details are given).

The inversion of the Riesz potential operator was first investigated by Samko [115, 117] in

the context of the classical Lebesgue spaces. Theorem 5.3.5 above may be seen as one more

step in the knowledge of the mapping properties of the operator Iα within the framework of

the Lebesgue spaces with variable exponent.
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The Lizorkin class Φ(Rn) was intensively investigated by Lizorkin in connection with

function spaces of fractional smoothness (see [90], for instance). Its invariance with respect

to the Riesz potential operator is particulary important to deal with Riesz potentials in the

distributional sense (cf. [121]).

The denseness of Φ(Rn) in the classical Lebesgue spaces Lp(Rn) was originally proved

by Lizorkin. An alternative proof of the same result was given by Samko in 1976 (see [121],

Theorem 2.7, for details). Our denseness statement given in Theorem 5.1.5 above was based on

Samko’s approach, under the assumption that the maximal operator is bounded in Lp(·)(Rn).

An interesting problem would be to obtain the same result under weaker conditions on the

exponent.

Riesz fractional differentiation Dα was introduced by Stein [128] in the case 0 < α < 2 to

describe the space of Bessel potentials (see Chapter 6 below). The generalization to the case

of arbitrary α > 0 is due to Lizorkin [90]. We refer to [121] and [123] where a systematic and

comprehensive approach to hypersingular integrals and their applications may be found.
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Chapter 6

Characterization of Riesz and Bessel

Potentials on Lp(·) Spaces

The generalization of the classical Sobolev theorem (see Theorem 4.5.4) to the variable

exponent setting was an important step in the operator theory on variable Lebesgue spaces. An

obvious consequence is that the range of the Riesz potential operator Iα, acting on Lp(·) spaces,

is contained into the corresponding Lebesgue space Lq(·) whose exponent q(·) is determined

by (4.13). As in the classical case it is possible to obtain further information, giving an

exact description of the Riesz potentials of densities in Lp(·)(Rn) in terms of convergence of

hypersingular integrals. Such a characterization will be provided in Section 6.1, which partially

extends the known results from [121] for constant exponents p(x) ≡ p.

In Section 6.2 we deal with function spaces of fractional smoothness defined in terms of

hypersingular integrals, and analyze its connection with the Riesz potential spaces.

Section 6.3 is devoted to the consideration of Bessel potentials on spaces Lp(·)(Rn). Map-

ping properties of the Bessel potential operator acting in these spaces and a description of the

range of this operator in terms of Riesz fractional derivatives are provided. A special attention

will be paid to the study of the properties of two convolution kernels, which allow us to derive

important results and connections.

Section 6.4 contains a comparison of the spaces of Riesz and Bessel potentials on Lp(·)(Rn)

with the Sobolev spaces Wm
p(·)(R

n) of variable exponent.

The last section may be seen as a short note where an alternative proof of the Sobolev

embedding theorem on Rn is discussed.
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In this chapter, we shall consider both non-centered finite differences and centered ones

in the construction of the hypersingular integrals. However, when we write ∆`
y without any

specification we mean a non-centered difference (as we did in Chapter 5). We point out that

we still assume the rule stated in Remark 5.2.1.

6.1 Description of the Riesz potential spaces

When p < n
α then the Riesz potentials of densities in Lp(·)(Rn) are defined pointwise. Let

us introduce the following definition.

Definition 6.1.1. The space of Riesz potentials on Lp(·)(Rn) is defined in a natural way as

Iα[Lp(·)] =
{

f ∈ Lloc
1 (Rn) : f = Iαϕ, ϕ ∈ Lp(·)(Rn)

}
, p <

n

α
.

Following approaches in [121], we will show below that the space Iα[Lp(·)] can be described

in terms of convergence of hypersingular integrals. First we give two auxiliary statements.

Let

Ba,b,c(x) :=
∫

Rn

dy

|y|a(1 + |y|)b|x− y|c .

The following statement is contained in Lemma 1.38 in [121].

Lemma 6.1.2. Let a < n, b ≥ 0, c < n and a + b + c > n. Then

Ba,b,c(x) ≤ C
(
1 + |x|−max(a+c−n,0)

)
as |x| → 0,

if a + c 6= n, and

Ba,b,c(x) ≤ C

(1 + |x|)min(a+b+c−n,c)
as |x| → ∞,

if a + b 6= n.

Lemma 6.1.3. Let 1 < p ≤ p(x) ≤ p < n
α , x ∈ Rn, with 0 < α < n. Let p′(·) be the usual

conjugate exponent and q(·) be the Sobolev limiting exponent given by 1
q(·) = 1

p(·) − α
n . If p(·)

satisfies the logarithmic conditions (4.4) and (4.6), then so do p′(·) and q(·).

Proof. The proof follows at once from the inequalities

|p′(x)− p′(y)| ≤ 1
(p− 1)

|p(x)− p(y)|, x, y ∈ Rn,
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and

|q(x)− q(y)| ≤ n2

(n− αp)2
|p(x)− p(y)|, x, y ∈ Rn.

Theorem 6.1.4. Let 0 < α < n, 1 < p ≤ p < n
α ,

1
q(·) = 1

p(·) − α
n and let f be a locally

integrable function. Assume also that p(·) satisfies the log-Hölder continuity conditions (4.4)

and (4.6). Then f ∈ Iα[Lp(·)] if and only if f ∈ Lq(·)(Rn) and there exists the Riesz derivative

Dαf (in the sense of convergence in Lp(·)(Rn)).

Proof. First, assume that f ∈ Iα[Lp(·)]. The fact that f ∈ Lq(·)(Rn) follows from Theorem

4.5.4. On the other hand, as f = Iαϕ for some ϕ ∈ Lp(·)(Rn), then we have

Dαf = lim
ε→0

Dα
ε Iαϕ = ϕ (6.1)

according to Theorem 5.3.5, with the convergence taken in Lp(·)(Rn).

Conversely, let f ∈ Lq(·)(Rn) and suppose that its Riesz derivative Dαf exists. Our aim is

to prove that f = IαDαf and hence that f ∈ Iα[Lp(·)].

Both f and IαDαf can be regarded as elements of Φ′(Rn), the dual space of the Lizorkin

class Φ(Rn). Let us show that they coincide in this sense.

For all φ ∈ Φ(Rn),
∫

Rn

IαDαf(x) φ(x) dx =
∫

Rn

Dαf(y)
(∫

Rn

φ(x)
|x− y|n−α

dx

)
dy

= lim
ε→0

∫

Rn

(∫

|z|>ε

(∆`
zf)(y)

dn,`(α) |z|n+α
dz

)
Iαφ(y) dy

= lim
ε→0

∫

|z|>ε




∫

Rn

∑̀
k=0

(−1)k
(

`
k

)
f(u) Iαφ(u + kz)

dn,`(α) |z|n+α
du


 dz

= lim
ε→0

∫

Rn

f(u)

(∫

|z|>ε

(∆`−zIαφ)(u)
dn,`(α) |z|n+α

dz

)
du

= lim
ε→0

∫

Rn

f(u) Dα
ε Iαφ(u) du

=
∫

Rn

f(u) φ(u) du.

We give some justifications about the arguments used in the chain above. The first equal-

ity follows from the Fubini theorem since the double integral converges absolutely. In fact,
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since |φ(y)| ≤ c
(1+|y|)N with an arbitrary large N , then by Lemma 6.1.2, the Riesz potential

Iα(|φ|)(x) is bounded and Iα(|φ|)(x) ≤ c
(1+|x|)n−α as |x| → ∞. Thus

Ip′(·)(Iα(|φ|)) =
∫

Rn

[Iα(|φ|)(x)]p
′(x)dx ≤ c1 + c2

∫

|x|>1

dx

(1 + |x|)(n−α)p′(x)
< ∞,

because inf
x∈Rn

(n− α)p′(x) > n. Hence, using Hölder inequality we arrive at

∫

Rn

|Dαf(y)| Iα(|φ|)(y) dy ≤ c ‖Dαf‖p(·) ‖Iα(|φ|)‖p′(·) < ∞.

In the second equality, we notice that the convergence with respect to the Lp(·)(Rn) norm

implies weak convergence in Φ′(Rn) (note that Iαφ ∈ Φ(Rn) since this class is invariant with

respect to Iα).

The third equality follows from similar arguments to those used in the first one, and then

by the change of variables y → u+kz, with fixed z. We only observe now that Dα
ε f ∈ Lq(·)(Rn)

(cf. Proposition 5.2.3 and Lemma 7.8).

Finally, the last passage is obtained by making use of the Lebesgue theorem. Indeed, since

φ ∈ Lq′(·)(Rn), then Dα
ε Iαφ ∈ Lq′(·)(Rn) (cf. Proposition 5.2.3 and Lemma 7.8 again), so

that f(·) (Dα
ε Iαφ)(·) ∈ L1(Rn). Then the result follows from the inversion theorem (Theorem

5.3.5).

To finish the proof, we observe that since both f and IαDαf are tempered distributions,

then IαDαf = f + P , where P is a polynomial (see Proposition 2.5 in [121]). Therefore

f + P ∈ Lq(·)(Rn), which implies P ∈ Lq(·)(Rn). Thus we should have P ≡ 0, which means

IαDαf(x) = f(x) for almost all x ∈ Rn.

We generalize another characterization which is contained in Theorem 7.11 in [121].

Theorem 6.1.5. In Theorem 6.1.4 above one can replace the assertion on the existence of

the Riesz derivative of f by the following uniform boundedness condition: there exists C > 0

such that

‖Dα
ε f‖p(·) ≤ C (6.2)

for all ε > 0.

Proof. If f = Iαϕ for some ϕ ∈ Lp(·)(Rn), then (6.2) is immediate by Corollary 5.3.4.

Conversely, if sup
ε>0

‖Dα
ε f‖p(·) < ∞ then there exists a subsequence of {Dα

ε f}ε>0, say

{Dα
εk

f}
k∈N, which converges weakly in Lp(·)(Rn) (note that Lp(·)(Rn) is a reflexive Banach
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space under conditions 1 < p ≤ p < ∞). Let us denote its limit by g ∈ Lp(·)(Rn), and let

φ ∈ Φ(Rn). As in the proof of Theorem 6.1.4, we get
∫

Rn

Iαg(x) φ(x) dx =
∫

Rn

g(y) Iαφ(y) dy

= lim
k→+∞

∫

Rn

Dα
εk

f(y) Iαφ(y) dy

= lim
k→+∞

∫

Rn

f(z) (Dα
εk
Iαφ)(z) dz

=
∫

Rn

f(z) φ(z) dz

The second equality follows directly from the weak convergence in Lp(·)(Rn) by noticing

that Iαφ ∈ Lp′(·)(Rn), while the last one is justified by the convergence of Dα
εk
Iαφ to φ in

Lq′(·)(Rn) (taking into account the inversion theorem and the Lemma 7.8 once again) and

from the fact that f ∈ (Lq′(·)(Rn))′ = Lq(·)(Rn). Hence, as previously, one gets f = Iαg, so

that f ∈ Iα[Lp(·)].

6.2 Function spaces defined by fractional derivatives

Hypersingular integrals can also be used to construct function spaces of fractional smooth-

ness. Similarly to the classical case let us consider the space

Lα
p(·)(R

n) =
{
f ∈ Lp(·)(Rn) : Dαf ∈ Lp(·)(Rn)

}
, α > 0,

where the fractional derivative Dα is treated in the usual way as convergent in the Lp(·)(Rn)

norm. We remark that this space does not depend on the order of the finite differences (chosen

according to the rule from Remark 5.2.1), at least when 0 < α < n (see Section 5.4), which is

the case we are interested in. Lα
p(·)(R

n) is a Banach space with respect to the norm

‖f |Lα
p(·)(R

n)‖ := ‖f‖p(·) + ‖Dαf‖p(·).

These spaces will be shown to be the same as the spaces of Bessel potentials. They are

connected with the spaces of Riesz potentials in the following way.

Theorem 6.2.1. Assume that the exponent p(·) satisfies the usual logarithmic conditions (4.4)

and (4.6). Let also 0 < α < n and 1 < p ≤ p < n
α . Then

Lα
p(·)(R

n) = Lp(·)(Rn) ∩ Iα[Lp(·)].
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Proof. By Theorem 6.1.4 we only need to prove the embedding Lα
p(·)(R

n) ⊂ Lp(·)(Rn) ∩
Iα[Lp(·)]. So, let f ∈ Lα

p(·)(R
n). As in the proof of Theorem 6.1.4 (but here under the

assumption that f ∈ Lp(·)(Rn) instead of f ∈ Lq(·)(Rn) as there), we have f(x) = IαDαf(x)

almost everywhere, so that f ∈ Iα[Lp(·)].

Remark 6.2.2. Theorem 6.2.1 also holds if one takes centered differences (everything in the

proof of Theorem 6.1.4 works in a similar way). Hence, from this theorem we conclude that

the space Lα
p(·)(R

n) does not depend on the type of finite differences used to construct the

fractional derivative Dα, at least when p < n
α , with 0 < α < n.

For further goals, we will show that functions from Lα
p(·)(R

n) can be approximated by

C∞
0 (Rn) functions. We start with a preliminary denseness result as follows. By W∞

p(·)(R
n) we

denote the Sobolev space of all functions of Lp(·)(Rn) for which all their (weak) derivatives

are also in Lp(·)(Rn).

Proposition 6.2.3. The set C∞(Rn) ∩W∞
p(·)(R

n) is dense in Lα
p(·)(R

n) for all p(·) ∈ P(Rn).

Proof. For simplicity, we split the proof into two parts.

Step 1: Let us show that C∞(Rn) ∩W∞
p(·)(R

n) ⊂ Lα
p(·)(R

n), which is not clear at first glance

in the case of variable exponents. If f ∈ C∞(Rn) ∩W∞
p(·)(R

n) then we already know that

∫

|y|>ε

(∆`
yf)(x)
|y|n+α

dy ∈ Lp(·)(Rn) (6.3)

for any ε > 0 (see Proposition 5.2.3). On the other hand, we have
∥∥∥∥∥∥∥

∫

|y|≤δ

(∆`
yf)(x)
|y|n+α

dy

∥∥∥∥∥∥∥
p(·)

−→ 0 as δ → 0. (6.4)

To prove (6.4), we use the representation

(∆`
yf)(x) = r

∑

|j|=r

∑̀

k=1

yj

j!
(−1)r−kkr

(
`

k

) ∫ 1

0
(1− t)r−1(Djf)(x− kty) dt, (6.5)

(see [121], formula (3.31)) with the choice ` ≥ r > α. Hence

∫

|y|≤δ

(∆`
yf)(x)
|y|n+α

dy =
∑

|j|=r

∑̀

k=1

cr,j,k

∫ 1

0
(1− t)r−1




∫

|y|≤δ

yj

|y|n+α
(Djf)(x− kty) dy


 dt.
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The change of variables y → δz yields

∫

|y|≤δ

(∆`
yf)(x)
|y|n+α

dy = δr−α
∑

|j|=r

∑̀

k=1

cr,j,k

∫ 1

0
(1− t)r−1

(
1

δk(t)n
Kj

( ·
δk(t)

)
∗Djf

)
(x) dt (6.6)

where Kj are given by

Kj(z) =
zj

|z|n+α
when |z| ≤ 1 and Kj(z) = 0 otherwise,

and δk(t) = kδt. Since |j| = r > α, the kernel Kj has a decreasing radial integrable dominant,

so that Theorem 4.4.1 is applicable and we have
∣∣∣∣∣∣∣

∫

|y|≤δ

(∆`
yf)(x)
|y|n+α

dy

∣∣∣∣∣∣∣
≤ δr−α

∑

|j|=r

∑̀

k=1

|cr,j,k|
∫ 1

0
(1− t)r−1 c M(Djf)(x) dt, (6.7)

where c > 0 is independent of δk(t). Hence,

Ip(·)




∫

|y|≤δ

(∆`
yf)(x)
|y|n+α

dy


 ≤ c δ(r−α)p

∑

|j|=r

Ip(·)(M(Djf)) −→ 0 as δ → 0. (6.8)

We remind that the convergence in norm is equivalent to the modular convergence (see

Lemma 4.2.3). Further, under the present assumptions on p(·), the maximal operatorM maps

Lp(·)(Rn) into itself.

From (6.3) and (6.7) we see that the integral
∫
Rn

(∆`
yf)(x)

|y|n+α dy converges absolutely for all x

and defines a function belonging to Lp(·)(Rn). Moreover, by (6.8), it coincides with the Riesz

derivative:
∥∥∥∥∥∥∥

∫

Rn

(∆`
yf)(x)
|y|n+α

dy −
∫

|y|>ε

(∆`
yf)(x)
|y|n+α

dy

∥∥∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥∥

∫

|y|≤ε

(∆`
yf)(x)
|y|n+α

dy

∥∥∥∥∥∥∥
p(·)

−→ 0 as ε → 0,

so that Dαf ∈ Lp(·)(Rn).

We would like to remark that some modification is needed if α is odd. Indeed, in that

case, we should choose ` = α so that we cannot proceed from (6.5) above (recall the rule from

Remark 5.2.1). Nevertheless, if we consider centered differences then ` > α already, and we

can proceed in a similar way.

Step 2: We use the standard approximation by using mollifiers (as in [121], Lemma 7.14). Let

ϕ ∈ C∞
0 (Rn) such that ϕ ≥ 0 and

∫
Rn ϕ(x) dx = 1 with supp ϕ ⊂ B(0, 1). Put ϕm(x) :=
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mn ϕ(mx), m ∈ N. Then ϕm ∈ C∞
0 (Rn) and supp ϕm ⊂ B(0, 1/m). Given f ∈ Lα

p(·)(R
n) let

us define

fm(x) := ϕm ∗ f(x) =
∫

Rn

ϕ(y) f
(
x− y

m

)
dy.

Hence fm ∈ C∞(Rn). Moreover, we also have fm ∈ Lp(·)(Rn) by Theorem 4.4.1 and Djfm =

Dj(ϕm) ∗ f ∈ Lp(·)(Rn). In the case of fractional derivatives we have, for each ε > 0 and

m ∈ N,
Dα

ε fm = (Dα
ε f)m,

that is,

Dα
ε (ϕm ∗ f) = ϕm ∗ Dα

ε f,

which can be proved by Fubini theorem. Hence

Dαfm = lim
ε→0

(ϕm ∗ Dα
ε f) = ϕm ∗ Dαf = (Dαf)m,

where the second equality follows from the continuity of the convolution operator. In partic-

ular, one concludes that Dαfm ∈ Lp(·)(Rn).

It remains to show that the functions fm approximate the function f in the Lα
p(·)(R

n)

norm. Of course, ‖f − fm‖p(·) → 0 as m → ∞ by Theorem 4.4.1 once again. On the other

hand, using similar arguments, we have

‖Dα(f − fm)‖p(·) = ‖Dαf − Dαfm‖p(·) = ‖Dαf − (Dαf)m‖p(·) −→ 0

as m →∞, since Dαf ∈ Lp(·)(Rn).

Theorem 6.2.4. If p(·) is as in Proposition 6.2.3 with p < n
α , then the class C∞

0 (Rn) is dense

in Lα
p(·)(R

n).

Proof. By Proposition 6.2.3, it is sufficient to show that every function f ∈ C∞(Rn)∩W∞
p(·)(R

n)

can be approximated by functions in C∞
0 (Rn) in the norm ‖ · |Lα

p(·)(R
n)‖. As in the case of

constant p, we will use the “smooth truncation” of functions.

Let µ ∈ C∞
0 (Rn) with µ(x) = 1 if |x| ≤ 1, suppµ ⊂ B(0, 2) and 0 ≤ µ(x) ≤ 1 for every

x. Define µm(x) := µ
(

x
m

)
, x ∈ Rn, m ∈ N. We are to show that the sequence of truncations

{µmf}m∈N converges to f in Lα
p(·)(R

n).

The passage to the limit lim
m→∞ ‖f − µmf‖p(·) = 0 ⇐⇒ lim

m→∞ Ip(·)(f − µmf) = 0 is directly

checked by means of the Lebesgue dominated convergence theorem. It remains to show that

Ip(·)(Dα(f − µmf)) also tends to zero as m →∞.
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Taking Remark 6.2.2 into account, we may consider centered differences in the fractional

derivative (under the choice ` > α with ` even). For brevity we denote νm = 1 − µm. As

centered differences can be written in terms of non-centered ones, we have

Dα(νmf)(x) =
1

dn,`(α)

∑̀

k=0

(
`

k

) ∫

Rn

(∆k
yνm)(x + `

2y) (∆`−k
y f)(x + ( `

2 − k)y)
|y|n+α

dy

=:
1

dn,`(α)

∑̀

k=0

(
`

k

)
Am,kf(x).

So we need to show that Ip(·)(Am,kf) → 0 as m →∞, for k = 0, 1, . . . , `. We separately treat

the cases k = 0, k = ` and 1 ≤ k ≤ `− 1.

The case k = 0: we have

Am,0f(x) = dn,`(α) νm(x)Dαf(x) + Bmf(x) (6.9)

where

Bmf(x) =
∫

Rn

[νm(x + `
2y)− νm(x)](∆`

yf)(x + `
2y)

|y|n+α
dy

=
∫

Rn

[µm(x)− µm(x + `
2y)](∆`

yf)(x + `
2y)

|y|n+α
dy

The convergence of the first term in (6.9) is clear, so that it remains to prove that Ip(·)(Bmf) →
0 as m →∞. Put

Bmf(x) =
∫

|y|≤1
(· · · ) dy +

∫

|y|>1
(· · · ) dy := B0

mf(x) + B1
mf(x).

To estimate the term B0
mf , we make use of the Taylor formula (of order 1) with the remainder

in the integral form and obtain

µm

(
x +

`

2
y

)
− µm(x) =

`

2m

n∑

j=1

yj

∫ 1

0

∂µ

∂xj

(
x + `t

2 y

m

)
dt.

Hence ∣∣∣∣µm

(
x +

`

2
y

)
− µm(x)

∣∣∣∣ ≤
c

m
|y|, (6.10)

where c > 0 does not depend on x, y and m.

As in the proof of Proposition 6.2.3, we can estimate B0
mf in terms of the convolution of

the derivatives of f with a “good kernel” in the sense of Theorem 4.4.1. In fact, taking (6.10)
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and (3.31) in [121] into account, we get

|B0
mf(x)| ≤ c

m

∑

|j|=r

∑̀

ν= `
2

[∫ `
2ν

0
(1− t)r−1

(
1

(−θν(t))n
K

( ·
−θν(t)

)
∗ |Djf |

)
(x) dt

+
∫ 1

`
2ν

(1− t)r−1

(
1

θν(t)n
K

( ·
θν(t)

)
∗ |Djf |

)
(x) dt

]

+
c

m

∑

|j|=r

`
2
−1∑

ν=1

∫ 1

0
(1− t)r−1

(
1

(−θν(t))n
K

( ·
−θν(t)

)
∗ |Djf |

)
(x) dt (6.11)

where K is given by

K(z) = |z|r+1−n−α if |z| < 1 and K(z) = 0 otherwise,

with θν(t) = νt− `
2 and under the choice r > α− 1. So

Ip(·)(B0
mf) ≤ c

m

∑

|j|=r

Ip(·)
[M(|Djf |)] −→ 0 as m →∞.

For the term B1
mf we may proceed as follows. Since µ is infinitely differentiable and

compactly supported, then it satisfies the Hölder continuity condition of any order. Hence,

for an arbitrary ε ∈ (0, 1], there exists c = c(ε) > 0 not depending on x and y, such that
∣∣∣∣µm

(
x +

`

2
y

)
− µm(x)

∣∣∣∣ ≤
c

mε
|y|ε.

When α > 1, we may proceed as previously by considering r < α < `. Putting all these

things together, one estimates B1
mf(x) as in (6.11) with the corresponding kernel K given by

K(y) =
|y|r

|y|n+α−ε
when |y| > 1 and K(y) = 0 otherwise.

Under the choice 0 < ε < min(1, α−r), the kernel K above has an integrable radial decreasing

dominant, so that we can apply Stein’s theorem once more and arrive at the conclusion that

Ip(·)(B1
mf) ≤ c

mε

∑

|j|=r

Ip(·)(|Djf |) −→ 0 as m →∞.

The case 0 < α ≤ 1 can be treated without passing to the derivatives of f . In fact, in this

case, we may take ` = 2, and hence

|B1
mf(x)| ≤ c

mε

(∫

|y|>1

|f(x + y)|
|y|n+α−ε

dy +
∫

|y|>1

|f(x)|
|y|n+α−ε

dy +
∫

|y|>1

|f(x− y)|
|y|n+α−ε

dy

)
.
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Each term can be managed by using similar arguments as above but now with the choice

0 < ε < α.

The case k = `: let

Am,`f(x) =
∫

Rn

(∆`
yνm)(x + `

2y) f(x− `
2y)

|y|n+α
dy

=
∫

|y|≤1
(· · · ) dy +

∫

|y|>1
(· · · ) dy

=: B0
m,`f(x) + B1

m,`f(x).

Notice that (∆`
yνm)(z) = − (

∆`
yµm

)
(z) = −

(
∆`

y
m

µ
) (

z
m

)
. So, according to (6.5), one gets

the estimate
∣∣∣∣(∆`

yνm)
(

x +
`

2
y

)∣∣∣∣ =

∣∣∣∣∣(∆
`
y
m

µ)

(
x + `

2y

m

)∣∣∣∣∣ ≤ c

( |y|
m

)r ∑

|j|=r

‖Djµ‖∞ ≤ c

mr
|y|r

(with ` ≥ r > α). Hence,

|B0
m,`f(x)| ≤ c

mr
(K ∗ |f |)(x)

where K is now given by

K(y) =
1

|y|n+α−r
if |y| ≤ `

2
and K(y) = 0 otherwise.

Since r > α, the kernel K is under the assumptions of Theorem 4.4.1. As before, we get

‖B0
m,`f‖p(·) → 0 as m →∞.

As far as the term B1
m,`f is concerned, when α > 1 we may choose ` > α > r and proceed

in a similar way as in the case k = 0 above. When 0 < α ≤ 1 we may take ` = 2 and get

|B1
m,`f(x)| ≤

∫

|y|>1

∣∣∣
(
∆2

y
m

µ
) (x+y

m

)∣∣∣ |f(x− y)|
|y|n+α

dy

=
∫

|y|>1

∣∣µ (x+y
m

)− 2µ
(

x
m

)
+ µ

(x−y
m

)∣∣ |f(x− y)|
|y|n+α

dy

≤
∫

|y|>1

∣∣µ (x+y
m

)− µ
(

x
m

)∣∣ |f(x− y)|
|y|n+α

dy +
∫

|y|>1

∣∣µ (x−y
m

)− µ
(

x
m

)∣∣ |f(x− y)|
|y|n+α

dy

≤ c

mε

∫

|y|>1

|y|ε |f(x− y)|
|y|n+α

dy

for any ε ∈ (0, 1] (with c > 0 independent of m). Thus we arrive at the desired conclusion by

taking ε < α.
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The case k ∈ {1, 2, . . . , `− 1}: as in the previous case, we have

Am,kf(x) =
∫

Rn

(∆k
yνm)(x + `

2y) (∆`−k
y f)(x + ( `

2 − k)y)
|y|n+α

dy

=
∫

|y|≤1
(· · · ) dy +

∫

|y|>1
(· · · ) dy

=: B0
m,kf(x) + B1

m,kf(x).

We may estimate the term B0
m,kf by noticing that

∣∣∣∣(∆k
yνm)(x +

`

2
y)

∣∣∣∣ ≤ c

( |y|
m

)k

and then by proceeding as above with an appropriate choice of r.

For the term B1
m,k we first consider the case α > 1. Since

(
k
l

)
=

(
k

k−l

)
, for l = 0, 1, . . . , k,

we may write

(∆k
y
m

µ)

(
x + `

2y

m

)
=

k−1
2∑

l=0

(
k

l

)[
µ

(
x + `

2y

m
− l

y

m

)
− µ

(
x + `

2y

m
− (k − l)

y

m

)]

if k is odd. When k is even, we can also represent our finite difference as the sum of the

first order differences of two appropriate terms since
k∑

l=0

(−1)l
(
k
l

)
= 0. In both situations

we may again make use of the Hölder continuity (of order ε) of the function µ. Finally, we

shall arrive at the desired estimate by using arguments as above, but under the assumption

0 < ε < min(1, α− 1). The case 0 < α ≤ 1 can be easily solved by taking ` = 2. In that way,

we have k = `− k = 1 and hence

|B1
m,kf(x)| ≤

∫

|y|>1

∣∣∣(∆1
y
m

µ)
(x+y

m

)∣∣∣ |(∆1
yf)(x)|

|y|n+α
dy

≤
∫

|y|>1

( |y|
m

)ε
|f(x)|

|y|n+α
dy +

∫

|y|>1

( |y|
m

)ε
|f(x− y)|

|y|n+α
dy,

so that we can proceed as in the previous cases.

6.3 Bessel potentials on variable Lebesgue spaces

The main aim of this section is to describe the range of the Bessel potential operator

on Lp(·)(Rn) in terms of convergence of hypersingular integrals. This is known in the case

of constant p, see [121], Section 7.2, or [123], Section 27.3, and references therein. Here we

consider only the case p < n
α with 0 < α < n.
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6.3.1 The Bessel potential operator: basic properties

The Bessel kernel Gα can be introduced in terms of Fourier transform by

Ĝα(x) = (1 + |x|2)−α/2, x ∈ Rn, α > 0.

It is known that Gα admits the integral representation

Gα(x) = c(α)
∫ ∞

0
e−

π|x|2
t
− t

4π t
α−n

2
dt

t
, x ∈ Rn,

where c(α) is a certain constant (see, for example, [129], Section V.3.1), so that Gα is a non-

negative, radially decreasing function. Moreover, Gα is integrable with ‖Gα‖1 = Ĝα(0) = 1.

The Bessel kernel behaves at the origin and at infinity as follows ([123], Lemma 27.1):

Gα(x) ∼





c(α, n) |x|α−n , if 0 < α < n

c(n) ln
(

1
|x|

)
, if α = n

c(α, n) , if α > n.

(6.12)

as |x| → 0, and

Gα(x) ∼ c(α, n) |x|α−n−1
2 e−|x| (6.13)

as |x| → ∞.

This shows that Gα is similar to the Riesz kernel at the origin and it has an exponential

decay at infinity.

We recall also the estimate

0 ≤ Gα(x) ≤ c kα(x) (6.14)

for 0 < α < n, where kα is the Riesz kernel from Definition 5.3.1.

Definition 6.3.1. The Bessel potential of order α > 0 of the density ϕ is defined by

Bαϕ(x) =
∫

Rn

Gα(x− y) ϕ(y) dy. (6.15)

For convenience, we also denote B0ϕ = ϕ.

Theorem 6.3.2. If p(·) ∈ P(Rn) then the Bessel potential operator Bα is bounded in Lp(·)(Rn).

Proof. The boundedness of the operator Bα follows from the properties of the kernel Gα

described above. Taking into account Theorem 4.4.1, there exists a constant c > 0 such that

‖Bαϕ‖p(·) = ‖Gα ∗ ϕ‖p(·) ≤ c ‖ϕ‖p(·),

for all ϕ ∈ Lp(·)(Rn).
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We are interested in Bessel potentials with densities in Lp(·)(Rn).

Definition 6.3.3. One defines the space of Bessel potentials1 as the range of the Bessel

potential operator,

Bα[Lp(·)] =
{

f ∈ Lloc
1 (Rn) : f = Bαϕ, ϕ ∈ Lp(·)(Rn)

}
, α ≥ 0.

According to Theorem 6.3.2, the space Bα[Lp(·)], also called sometimes Liouville space of

fractional smoothness, is well defined, being a subspace of Lp(·)(Rn) if the maximal operator is

bounded in Lp(·)(Rn), in particular, if the exponent p(·) is log-Hölder continuous both locally

and at infinity.

Bα[Lp(·)] is a Banach space endowed with the norm

‖f | Bα[Lp(·)]‖ := ‖ϕ‖p(·), (6.16)

where ϕ is the density from (6.15). Note that (6.16) provides a consistent definition, since

Bαϕ = Bαψ implies ϕ = ψ. This can be shown as for the classical case (see [129], p. 135).

Proposition 6.3.4. If p(·) ∈ P(Rn) and α > γ ≥ 0, then Bα[Lp(·)] ↪→ Bγ [Lp(·)].

Proof. The proof follows immediately from the properties of the Bessel kernel and from the

boundedness of the Bessel potential operator. Indeed, if f = Bαϕ for some ϕ ∈ Lp(·)(Rn) then

one can write f = Bγ(Bα−γϕ). Thus f ∈ Bγ [Lp(·)] by Theorem 6.3.2. Furthermore,

‖f | Bγ [Lp(·)]‖ := ‖Bα−γϕ‖p(·) ≤ c ‖ϕ‖p(·) =: c ‖f | Bα[Lp(·)]‖.

6.3.2 On two important convolution kernels

The comparison of the ranges of the Bessel and Riesz potential operators is naturally made

via the convolution type operator whose symbol is the ratio of the Fourier transforms of the

Riesz and Bessel kernels. This operator is the sum of the identity operator and the convolution

operator with a radial integrable kernel. Keeping in mind the application of Theorem 4.4.1,

we have to show more, namely that this kernel has an integrable decreasing dominant.
1As observed in Chapter 1, we adopt here a different notation for the Bessel potential spaces just to

emphasize that they are the range of the Bessel potential operator acting in Lp(·)(Rn).
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We have to show the existence of integrable decreasing dominants for two important kernels

gα and hα defined by (6.17) and (6.18), respectively.

Let gα and hα be the functions defined via the following Fourier transforms

|x|α
(1 + |x|2)α

2

= 1 + ĝα(x), α > 0, x ∈ Rn, (6.17)

(1 + |x|2)α
2

1 + |x|α = 1 + ĥα(x), α > 0, x ∈ Rn. (6.18)

Observe that
1 + |x|α

(1 + |x|2)α
2

= Ĝα(x) + ĝα(x) + 1. (6.19)

It is known that gα and hα are integrable (see, for example, Lemma 1.25 in [121]).

The following two lemmas are crucial for our further goals.

Lemma 6.3.5. The function gα defined in (6.17) has an integrable and radially decreasing

dominant.

Proof. If we denote ρ = (1 + |x|2)1/2, then we have

|x|α
(1 + |x|2)α

2

− 1 = (1− ρ−2)α/2 − 1.

Taking the expansion into the binomial series we get

(1− ρ−2)
α
2 − 1 =

∞∑

k=0

(
α/2
k

)(−ρ−2
)k − 1 =

∞∑

k=1

(−1)k

(
α/2
k

)
ρ−2k, ρ > 1.

Hence, for each x 6= 0,

|x|α
(1 + |x|2)α

2

− 1 =
∞∑

k=1

(−1)k

(
α/2
k

)
Ĝ2k(x) :=

∞∑

k=1

c(α, k) Ĝ2k(x),

where G2k is the Bessel kernel of order 2k. Therefore

gα(x) =
∞∑

k=1

c(α, k) G2k(x), x ∈ Rn. (6.20)

Now, we stress that

mα(x) :=
∞∑

k=1

|c(α, k)|G2k(x)

defines a radial decreasing dominant of gα, which is integrable,

‖mα‖1 ≤
∞∑

k=1

∣∣∣∣
(

α/2
k

)∣∣∣∣ < ∞,

since
∣∣∣
(α/2

k

)∣∣∣ ≤ c
k1+α/2 as k →∞ (cf. [123], p. 14).
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Lemma 6.3.6. The kernel hα given by (6.18) admits the bounds

|hα(x)| ≤ c

|x|n−a
as |x| < 1, a = min{1, α} (6.21)

and

|hα(x)| ≤ c

|x|n+α
as |x| ≥ 1. (6.22)

where c > 0 is a constant not depending on x.

Proof. We split the proof into two different parts.

Step 1 (proof of (6.21)): Let us start by representing the function ĥα as a finite sum of Fourier

transforms of Bessel kernels plus an integrable function. To this end, we denote t = 1
1+|x|2 .

Then ĥα(x) = 1
tβ+(1−t)β − 1, with β = α

2 . But

1
tβ + (1− t)β

− 1 =
1

(1− t)β
· 1

1 +
(

t
1−t

)β
− 1 =

1
(1− t)β

∞∑

k=0

(−1)k

(
t

1− t

)kβ

− 1

where the series converges if t
1−t < 1, that is, if t < 1

2 or |x| > 1. Since 1
1−t = 1+|x|2

|x|2 and
t

1−t = 1
|x|2 , we get

ĥα(x) =
(1 + |x|2)α

2

|x|α
∞∑

k=0

(−1)k

|x|αk
− 1, |x| > 1.

For each natural number N , we can write

ĥα(x) =
(
1 + |x|2)

α
2

N∑

k=0

(−1)k

|x|α(k+1)
− 1 + AN (x), |x| > 1, (6.23)

where |AN (x)| ≤ c
|x|αN . Indeed, since 1

|x|αk → 0 as k → +∞ (recall that |x| > 1), we have

|AN (x)| =
∣∣∣∣∣
(1 + |x|2)α

2

|x|α
∞∑

k=N+1

(−1)k

|x|αk

∣∣∣∣∣ ≤
(1 + |x|2)α

2

|x|2α

1
|x|αN

≤ 2α

|x|αN
. (6.24)

Now it remains to represent the powers 1
|x|α(k+1) in terms of the powers 1√

1+|x|2 . We observe

that for any γ > 0, taking ρ =
√

1 + |x|2, we have

1
|x|γ = ρ−γ

(
1− 1

ρ2

)−γ/2

= ρ−γ




M∑

j=0

(−1)j

(−γ/2
j

)
ρ−2j + φM (ρ)


 , (6.25)

where M ∈ N and

φM (ρ) =
∞∑

j=M+1

(−1)j

(−γ/2
j

)
ρ−2j
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converges absolutely for ρ > 1, that is, for x 6= 0. But
∣∣∣∣
φM (ρ)

ργ

∣∣∣∣ ≤ c
∞∑

j=M+1

1

j1− γ
2

1
ρ2j+γ

≤ c

ρM+1

∞∑

j=M+1

1

j1− γ
2

1

2
j+γ
2

(6.26)

where we took into account that |x| > 1, that is, ρ ≥ √
2. Hence

∣∣∣∣
φM (ρ)

ργ

∣∣∣∣ ≤
c1

ρM+1
≤ c2

ρM
. (6.27)

Then from (6.25) and (6.27) we get

1
|x|γ =

M∑

j=0

(−1)j
(−γ/2

j

)

(1 + |x|2)j+γ/2
+ Bγ

M (x), (6.28)

where

|Bγ
M (x)| ≤ C

|x|2M
as |x| > 1. (6.29)

Substituting (6.28) into (6.23) (with γ = α(k + 1)), and taking M = N , we arrive at

ĥα(x) =
N∑

k,j=0
k+j 6=0

(−1)k+j
(−α(k+1)/2

j

)

(1 + |x|2)j+αk
+ rN (x), (6.30)

where the function

rN (x) = AN (x) +
(
1 + |x|2)

α
2

N∑

k=0

B
α(k+1)
N (x) (6.31)

satisfies the estimate

|rN (x)| ≤ c

|x|µ , µ = N min(2, α),

for all |x| > 1 according to (6.24) and (6.29). Hence, we only have to choose N > n
min(2,α) in

order to get the integrability of rN at infinity.

The estimate at infinity was given for |x| > 1, but the equality (6.30) itself may be written

for all x ∈ Rn, just by defining rN as

rN (x) := ĥα(x)−
N∑

k,j=0
k+j 6=0

c(k, j) Ĝ2j+αk(x), x ∈ Rn, N >
n

min(2, α)
,

where G2j+αk are Bessel kernels and c(k, j) := (−1)k+j
(−α(k+1)/2

j

)
.

So, we have rN ∈ W0(Rn). In particular, rN is a bounded continuous function. Also, rN

is integrable at infinity in view of the estimate above and hence rN ∈ W0(Rn) ∩ L1(Rn). On
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the other hand, we have also F−1rN ∈ W0(Rn) ∩ L1(Rn), since rN is radial. Thus, F−1rN is

a bounded continuous function too. So, there exists C > 0 such that

|hα(x)| ≤
N∑

k,j=0
k+j 6=0

|c(k, j)| |G2j+αk(x)|+ |F−1rN (x)| ≤
N∑

k,j=0
k+j 6=0

|c(k, j)| |G2j+αk(x)|+ C, x ∈ Rn.

Attending to the behavior of the Bessel kernel given in (6.12), we derive

G2j+αk(x) ∼ 1
|x|n−2j−αk

(x) ≤ c

|x|n−min(1,α)
as |x| < 1,

when 2j + αk < n. Thus, we arrive at (6.21) with a = min(1, α). In the case 2j + αk > n we

arrive at the same estimate since

G2j+αk(x) ∼ C(2j + αk), |x| < 1.

For the case 2j + αk = n we have the following logarithmic behavior:

G2j+αk(x) ∼ ln
(

1
|x|

)
, |x| < 1.

But ln
(

1
|x|

)
≤ 1

|x|n−a for any a ∈ (0, n). The proof of (6.21) is completed.

Step 2 (proof of (6.22)): To obtain (6.22), we transform the Bochner formula for the Fourier

transform of radial functions via integration by parts and arrive at the formula

F−1ĥα(x) =
c

|x|n2 +m−1

∫ ∞

0
ψ(m)

α (t) t
n
2 Jn

2
+m−1(t|x|) dt, x 6= 0, (6.32)

where ψα(t) = (1+t2)
α
2

1+tα , t > 0, and m is an arbitrary integer such that m > 1 + n
2 .

To justify formula (6.32), we make use of the standard regularization of the integral (cf.

[130]):

F−1ĥα(x) = (2π)−n lim
ε→0

∫

Rn

e−ε|y| e−ix·y ĥα(|y|) dy

= (2π)−n lim
ε→0

(2π)n/2

|x|n/2−1

∫ ∞

0
e−εt ĥα(t) tn/2 Jn/2−1(t|x|) dt

=
(2π)−ν

|x|ν−1
lim
ε→0

∫ ∞

0
fε(t) tν Jν−1(t|x|) dt

=
(2π)−ν

|x|ν−1
lim
ε→0

(−1)m

|x|m
∫ ∞

0
f (m)

ε (t) tν Jν+m−1(t|x|) dt (6.33)

where Jν−1(t) denotes the Bessel function of the first kind , ν = n
2 , m ∈ N and

fε(t) := e−εt ĥα(t), t > 0, ε > 0.
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The second equality above follows from the Bochner formula for Fourier transforms of

radial functions, while the last is obtained via integration by parts and the relation

d

du
[uν Jν(u)] = uν Jν−1(u)

(see (8.133) in [121]). Here we assumed that some quantities vanish, namely

f (k)
ε (t) tν Jν+k(t|x|)

∣∣∣
∞

0
= 0, k = 0, 1, . . . , m− 1. (6.34)

To check this for ψα(t) = ϕα(t) · φα(t) with ϕα(t) = (1 + t2)
α
2 and φα(t) = 1

1+tα , we observe

that

ϕ(k)
α (t) = ϕα(t)

[k/2]∑

j=0

cj(α)
tk−2j

(1 + t2)k−j
, k = 0, 1, . . .

and

φ(k)
α (t) = φα(t) t−k

k∑

j=1

dj(α)
tjα

(1 + tα)j
, k = 1, 2, . . .

where the constants cj(α) and dj(α) may vanish (but not all simultaneously), which may be

proved by direct calculations. For k ≥ 1, we have

ψ(k)
α (t) =

k∑

r=0

(
k

r

)
ϕ(r)

α (t) φ(k−r)
α (t)

= ψα(t)
k−1∑

r=0

(
k

r

)


[r/2]∑

j=0

cj(α) tr−2j

(1 + t2)r−j





t−(k−r)

k−r∑

j=1

dj(α) tjα

(1 + tα)j




+ ψα(t)




[k/2]∑

j=0

cj(α) tk−2j

(1 + t2)k−j


 .

Since fε(t) = e−εt (ψα(t)− 1), then

f (k)
ε (t) =

k∑

j=0

(
k

j

)
(−ε)k−j e−εt ψ(j)

α (t)− (−ε)k e−εt. (6.35)

Let k ∈ {0, 1, 2, . . . ,m− 1}. Taking into account that Jν+k(u) behaves like uν+k for small

values of u, we obtain

f (k)
ε (t) tν Jν+k(t|x|) −→ 0 as t → 0.

On the other hand, Jν+k(u) behaves like 1√
u
for large values of u. Since e−εt tν−1/2 goes

to zero as t →∞ and
∣∣∣ψ(j)

α (t)
∣∣∣ behaves like a constant (0 or 1, if j > 0 or j = 0, respectively)

when t →∞, then

f (k)
ε (t) tν Jν+k(t|x|) −→ 0 as t →∞,
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which completes the verification of (6.34).

To derive (6.32) from (6.33), we notice that the functions f
(m)
ε (t) tν Jν+m−1(t|x|), ε > 0,

are integrable in (0,∞). In fact, the integrability at the origin follows from the asymptotic

behavior of the Bessel function, while its integrability at infinity follows from the definition of

the Gamma function.

We notice now that f
(m)
ε (t) −→ ψ

(m)
α (t) as ε → 0, by (6.35), and that the passage to the

limit in (6.33) is possible if one assumes m > 1 + n
2 , which yields (6.32).

To obtain (6.22) from (6.32), we observe that the following estimates hold:

∣∣∣ψ(m)
α (t)

∣∣∣ ≤ c

tm
as t ≥ 1 (6.36)

and ∣∣∣ψ(m)
α (t)

∣∣∣ ≤ c
(
tα−m + tm−2[m

2 ]
)

as t < 1. (6.37)

So, we have

1
|x|ν+m−1

∫ 1

0
|ψ(m)

α (t)| tν |Jν+m−1(t|x|)| dt ≤ c

|x|ν+m−1

∫ 1

0
tα−m+ν |Jν+m−1(t|x|)| dt

≤ c

|x|n+α

∫ |x|

0
tα−m+ν |Jν+m−1(t)| dt

≤ c

|x|n+α

∫ ∞

0
tα−m+ν |Jν+m−1(t)| dt

=
c1

|x|n+α

if m > 1 + ν + α, which guarantees the convergence of the last integral at infinity. On the

other hand,

1
|x|ν+m−1

∫ ∞

1
|ψ(m)

α (t)| tν |Jν+m−1(t|x|)| dt ≤ c

|x|ν+m−1

∫ ∞

1
tν−m dt ≤ c1

|x|n+α

under the same assumption on m. The proof is completed.

6.3.3 Characterization of the Bessel potentials in terms of hypersingular

integrals

Lemmas 6.3.5 and 6.3.6 allow us to describe the range of the Bessel potential operator

through the Riesz fractional derivatives. Before to formulate the main result of this section,

we prove the following two statements.
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Proposition 6.3.7. Let 0 < α < n and p(·) ∈ P(Rn) with 1 < p ≤ p < n
α . Then every

ϕ ∈ Lα
p(·)(R

n) can be represented as

ϕ = Bα(I + Uα)(ϕ + Dαϕ), (6.38)

where I denotes the identity operator and Uα is the convolution operator with the kernel hα.

Proof. Identity (6.38) holds for functions ϕ ∈ C∞
0 (Rn). This follows immediately from equality

(6.18) above through basic operations with Fourier transforms (see (7.39) in [121]). The

denseness of C∞
0 (Rn) in Lα

p(·)(R
n) (stated in Theorem 6.2.4) allows us to write (6.38) for all

functions in Lα
p(·)(R

n). To this end, we observe that both operators Bα and Uα are continuous

in Lp(·)(Rn). In fact, the boundedness of Bα was proved in Theorem 6.3.2. On the other

hand, the convolution operator Uα is bounded since its kernel has a radially decreasing and

integrable dominant by Lemma 6.3.6.

Proposition 6.3.8. Let 0 < α < n and let 1 < p ≤ p < n
α . Then

Bαψ = Iα(I + Kα) ψ, (6.39)

for all ψ ∈ Lp(Rn) + Lp(Rn), where I is the identity operator and Kα is the convolution

operator with the kernel gα.

Proof. Representation (6.39) holds for densities belonging to classical Lebesgue spaces (see,

for instance, (7.38) in [121]), where the kernel of Kα is precisely the function gα from (6.17).

By the Sobolev theorem one concludes that either B or Iα(I + Kα) are linear operators from

Lp(Rn) into Lq(p)(Rn), with 1
q(p) = 1

p − α
n , and from Lp(Rn) into Lq(p)(Rn), with 1

q(p) = 1
p − α

n .

So, we can define these operators on the linear sum Lp(Rn)+Lp(Rn) in the usual way. Hence,

if ψ = ψ0 + ψ1, with ψ0 ∈ Lp(Rn) and ψ1 ∈ Lp(Rn), then we may make use of the already

known representation for each term and then arrive at equality (6.39).

Now we are able to give the main statement. The following theorem in the case of constant

exponents p(x) ≡ p, 1 < p < ∞, is due to Stein [128] when 0 < α < 1 and to Lizorkin [90] in

the general case 0 < α < ∞ (see also the proof for constant p in [121], p. 186).

Theorem 6.3.9. Let 0 < α < n. If 1 < p ≤ p < n
α and p(·) satisfies the log-Hölder

continuity conditions (4.4) and (4.6), then Bα[Lp(·)] = Lα
p(·)(R

n) with equivalent norms: there
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are constants c1, c2 > 0 such that

c1 ‖f |Lα
p(·)(R

n)‖ ≤ ‖f | Bα[Lp(·)]‖ ≤ c2 ‖f |Lα
p(·)(R

n)‖, ∀f ∈ Bα[Lp(·)].

Proof. Assume first that f ∈ Bα[Lp(·)]. Then f ∈ Lp(·)(Rn) by Theorem 6.3.2. It remains to

show that its Riesz derivative also belongs to Lp(·)(Rn). Since f = Bαϕ for some ϕ ∈ Lp(·)(Rn)

and Lp(·)(Rn) ⊂ Lp(Rn) + Lp(Rn), then by Proposition 6.3.8 one gets the representation

Bαϕ = Iα(I + Kα) ϕ.

Lemma 6.3.5 combined with Theorem 4.4.1, allow us to conclude that Kα is bounded in

Lp(·)(Rn), and hence f ∈ Iα[Lp(·)]. So, according to the characterization given in Theorem

6.1.4, the Riesz derivative Dαf exists in the sense of convergence in Lp(·)(Rn). Therefore,

f ∈ Lα
p(·)(R

n). Moreover,

‖f |Lα
p(·)(R

n)‖ = ‖Bαϕ‖p(·) + ‖DαBαϕ‖p(·)

= ‖Bαϕ‖p(·) + ‖DαIα(I + Kα) ϕ‖p(·)

= ‖Bαϕ‖p(·) + ‖(I + Kα) ϕ‖p(·)

≤ c ‖ϕ‖p(·) = c ‖f | Bα[Lα
p(·)]‖.

The third equality follows from the inversion Theorem 5.3.5, while the inequality is ob-

tained from Theorem 6.3.2 and from the boundedness of Kα.

Conversely, suppose that f ∈ Lα
p(·)(R

n). Proposition 6.3.7 yields the representation

f = Bα(I + Uα)(f + Dαf).

Taking into account Lemma 6.3.6 and Theorem 4.4.1, we arrive at the conclusion that f ∈
Bα[Lp(·)] and

‖f | Bα[Lp(·)]‖ = ‖(I + Uα)(f + Dαf)‖p(·) ≤ c (‖f‖p(·) + ‖Dαf‖p(·)) = c ‖f |Lα
p(·)(R

n)‖.

Corollary 6.3.10. If the exponent p(·) is under the conditions of Theorem 6.3.9, then C∞
0 (Rn)

is dense in the Bessel potential space Bα[Lp(·)].
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6.4 Comparison of the Riesz and Bessel potential spaces with

the variable Sobolev spaces

The identification of the spaces of Bessel potentials of integer smoothness with Sobolev

spaces is a well-known result within the framework of the classical Lebesgue spaces. The

result is due to Calderón [19] and states that Bm[Lp] = Wm
p (Rn), if m ∈ N0 and 1 < p < ∞,

with equivalent norms. We extend this to the variable exponent setting. The proof will follow

mainly the case of constant p, which can be found, for instance, in [129], Sections V.3.3-4. In

particular, we will make use of the Riesz transforms Rj , j = 1, . . . , n, defined in (4.9).

The key point is the following characterization.

Theorem 6.4.1. Let p(·) ∈ P(Rn) and let α ≥ 1. Then f ∈ Bα[Lp(·)], if and only if

f ∈ Bα−1[Lp(·)] and
∂f
∂xj

∈ Bα−1[Lp(·)] for every j = 1, . . . , n. Furthermore, there exist positive

constants c1 and c2 such that

c1 ‖f | Bα[Lp(·)]‖ ≤ ‖f | Bα−1[Lp(·)]‖+
n∑

j=1

∥∥∥∥
∂f

∂xj
| Bα−1[Lp(·)]

∥∥∥∥ ≤ c2 ‖f | Bα[Lp(·)]‖. (6.40)

Proof. Suppose first that f = Bαϕ for some ϕ ∈ Lp(·)(Rn). Then for each j = 1, 2, . . . , n, we

have
∂f

∂xj
= Bα−1[−Rj(I + K1)ϕ], (6.41)

where I is the identity operator and K1 is the convolution operator whose kernel is g1, given

by (6.17) with α = 1. This identity may be seen as a refinement of that in [129], p. 136, and

it is known to be valid for ϕ ∈ Lp(Rn) when p is constant. Thus, it is also valid for variable

p(·), since Lp(·)(Rn) ⊂ Lp(Rn) + Lp(Rn).

The right-hand side inequality in (6.40) follows from (6.41) and from the mapping prop-

erties of the Bessel potential operator on spaces Lp(·)(Rn).

The proof of the left-hand side inequality follows the known scheme for constant exponents.

However, we need to refine the connection with the Riesz transforms and the derivatives,

in order to overcome the difficulties associated to the convolution operators in the variable

exponent setting. We write here the main steps of the proof for the completeness of the

presentation.

Assume that both f and ∂f
∂xj

belong to Bα−1[Lp(·)]. If f = Bα−1ϕ with ϕ ∈ Lp(·)(Rn), then

the first order derivatives of ϕ exist in the weak sense and belong to Lp(·)(Rn) (see [129], p.
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137, for details). Moreover, ∂f
∂xj

= Bα−1
(

∂ϕ
∂xj

)
. Since ϕ ∈ W 1

p(·)(R
n) there exists a sequence

of infinitely differentiable and compactly supported functions {ϕk}k∈N such that lim
k→∞

ϕk = ϕ

and lim
k→∞

∂ϕk
∂xj

= ∂ϕ
∂xj

in Lp(·)(Rn), j = 1, 2, . . . , n. This follows from the denseness of C∞
0 (Rn)

in the Sobolev space W 1
p(·)(R

n) (see Theorem 4.2.5), which holds under the assumptions on

the exponent.

Since B1 maps S(Rn) onto itself, then, for each k, there exists ψk ∈ S(Rn) such that

ϕk = B1ψk. Now, from the fact

1 = (1 + |x|2)−1/2(1 + ĥ1(x))(1 + |x|), x ∈ Rn,

given by (6.18) (with α = 1), one arrives at the identity

ψk = (I + U1)


ϕk +

n∑

j=1

Rj

(
∂ϕk

∂xj

)
 ,

where U1 is the convolution operator as in Proposition 6.3.7. Now we make use of the bound-

edness of the involved operators and arrive at the left-hand side inequality in (6.40). This

completes the proof.

Corollary 6.4.2. Let p(·) be as in Theorem 6.4.1 and let m ∈ N0. Then

Bm[Lp(·)] = Wm
p(·)(R

n),

up to the equivalence of the norms.

Proof. The identity above is obvious when m = 0. It can be extended to the case m ≥ 1 from

Theorem 6.4.1.

The theorem below provides a connection of the spaces of Riesz potentials with the Sobolev

spaces. It partially extends the facts known for constant exponents p (see, for instance, [121],

p. 181) to the variable exponent setting.

Theorem 6.4.3. Let p(·) be log-Hölder continuous both locally and at infinity, and suppose

that 1 < p ≤ p < n
α . Then we have

Wm
p(·)(R

n) ⊂ Lp(·)(Rn) ∩ Iα[Lp(·)] (6.42)

if 0 < α < min(m,n), m ∈ N, and

Wm
p(·)(R

n) = Lp(·)(Rn) ∩ Im[Lp(·)] (6.43)
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when 0 < m < n.

Proof. Let us prove (6.43) first. Let f ∈ Wm
p(·)(R

n). From Corollary 6.4.2, Proposition 6.3.4

and Theorem 6.3.9, we derive that not only f ∈ Lp(·)(Rn), but also that Dmf ∈ Lp(·)(Rn). On

the other hand, the Sobolev theorem states that f ∈ Lq(·)(Rn), where q(·) is the usual Sobolev
exponent. Then by Theorem 6.1.4 one concludes that f is a Riesz potential.

Reciprocally, if f ∈ Im[Lp(·)] then the application of Theorem 6.1.4 shows that Dmf exists

in Lp(·)(Rn), which implies f ∈ Lm
p(·)(R

n). As previously, one gets f ∈ Wm
p(·)(R

n).

The embedding (6.42) can be proved following similar arguments observing in addition

that Bm[Lp(·)] ↪→ Bα[Lp(·)] when m > α.

6.5 A note on the Sobolev embedding theorem

The identity between the Sobolev spaces and the Bessel potential spaces given in Corollary

6.4.2 allows to derive a different proof for the embedding

Wm
p(·)(R

n) ↪→ Lq(·)(Rn) (6.44)

with 1 < p ≤ p < n
m and 1

q(x) = 1
p(x) − m

n , x ∈ Rn (see Theorem 4.5.7).

This can be done by noticing that the Bessel potential can be estimated in terms of the

Riesz potential.

Let us assume that f ∈ Wm
p(·)(R

n) with ‖f‖m,p(·) ≤ 1. We need to show that ‖f‖q(·) ≤ C,

which is equivalent to prove that Iq(·)(f) ≤ C since q(·) is bounded in view of the assumption

mp < n.

Since Wm
p(·)(R

n) = Bm[Lp(·)] (with equivalent norms), then f = Gm ∗ ϕ for some function

ϕ ∈ Lp(·)(Rn). But

|f(x)| = |Gm ∗ ϕ(x)| ≤ c Im(|ϕ|)(x),

with c > 0 independent of x, which follows from (6.14).

Now we have Iq(·)(Im(|ϕ|)) ≤ C since

‖Im(|ϕ|)‖q(·) ≤ c ‖ϕ‖p(·) = c ‖f | Bm[Lp(·)] ≤ C ‖f‖m,p(·) ≤ C.

Therefore ∫

Rn

|f(x)|q(x)dx ≤ c1

∫

Rn

[Im(|ϕ|)(x)]q(x) dx ≤ C,
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with C > 0 not depending on ϕ and f .

This provides another proof for (6.44). Note that we have assumed that the exponent

satisfies the logarithmic assumptions (4.4) and (4.6), since we have used the Sobolev theorem.

Further notes

The characterization of function spaces of fractional smoothness realizes another applica-

tion of the hypersingular integrals (recall that they have been used in the inversion of the

Riesz potential operator).

In general, the statements presented in this chapter extend classical results on the descrip-

tion of the Riesz and Bessel potentials on spaces Lp(Rn). We restricted ourselves to the case

where the Riesz potentials from Iα[Lp(·)] are defined pointwise (that is, when p < n
α). The

characterization of Iα[Lp(·)] in the case p ≥ n
α , and consequently the extension of Theorem

6.3.9 to this case remains an open question. As in the classical framework, it should require a

different approach since the Riesz potentials need to be considered in the distributional sense

over the Lizorkin space Φ(Rn), being it possible in view of the invariance of Φ(Rn) with re-

spect to Iα (see [121] for further details). We also note that the restrictions on the smoothness

parameters α and m in Theorem 6.4.3 are due to the initial assumption p < n
α .

This is the first time that Bessel potentials are considered in the context of the Lebesgue

spaces with variable exponent. After our results have been obtained, this subject was studied

in the paper [60]. However, only the coincidence of the Bessel potential spaces with the Sobolev

spaces was given, without any characterization and comparison with the Riesz potentials.

Historically, the Bessel potentials were introduced by Aronszajn and Smith [7], and Calderón

[19]. Concerning Riesz potentials, they were first considered by Riesz [109], but their classi-

cal Lp inequalities are due to Hardy and Littlewood [64] in the one-dimensional case, and to

Sobolev [127] in the general case.

We notice that the characterization of the space of Riesz potentials in terms of Riesz

derivatives was investigated by Samko [116], [117] within the framework of the usual Lebesgue

spaces. As remarked in the end of Chapter 5, the description of the Bessel potentials on these

spaces is due to Stein [128] and Lizorkin [90].



Chapter 7

Pointwise Inequalities on Variable

Sobolev Spaces and Applications

In this chapter we deal with pointwise type inequalities in Sobolev spaces with variable

exponent. We recover the known statement that the oscillation of Sobolev functions may be

estimated in terms of the fractional maximal function of its gradient (see, for instance, [13],

[62], [63], [79]), and use it to study the pointwise behavior of functions in variable exponent

Sobolev spaces. More precisely, we study Sobolev embeddings into Hölder spaces with variable

order and consider hypersingular integrals of variable Sobolev functions. Our statements are

based on pointwise estimates discussed in Section 7.2.

Sobolev embeddings on variable exponent Sobolev spaces have been studied by many

authors, mainly in the case when the exponent is less than the dimension (see [31], [45],

[46], [47], [108], where Sobolev-type theorems were discussed). The case when the exponent

is greater than n was less studied. It was firstly treated in [45], where embeddings into

Hölder spaces with variable order have been obtained (see Theorems 5.4 and 5.5 in [45]).

More recently, this case was considered in [65] where the capacity approach was used to

get embeddings either into the space of continuous functions or into the space of bounded

functions.

In Section 7.3, we prove slightly different embeddings into Hölder spaces with variable

exponent from those obtained in [45], providing other proofs. We base ourselves on estimation

of the oscillation of Sobolev functions f by fractional maximal functions of ∇f . We show, in

particular, that Sobolev functions coincide almost everywhere with Hölder continuous func-
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tions of variable order, this statement being valid on bounded domains whose boundary is

locally the graph of a Lipschitz continuous function (see Theorem 7.3.7 below).

We also consider hypersingular integrals of variable Sobolev functions defined over bounded

domains. In Section 7.4, we will derive boundedness and pointwise results for the hypersingular

operator of variable order α = α(x) acting in W 1,p(·)(Ω) into an appropriate variable Lebesgue

space, in the case when Ω is bounded with Lipschitz boundary. The results obtained here are

new, even in the particular case when the exponents are constant.

7.1 On Hölder spaces of variable order

Hölder spaces may been seen as a refinement of the spaces of continuous functions. They

are usually denoted by C0,α(Ω), α ∈ (0, 1], and their elements f are characterized by the

Hölder condition of order α, that is, there exists c > 0 such that

|f(x)− f(y)| ≤ c |x− y|α, x, y ∈ Ω.

These spaces have an important role in the study of regularity properties in the frame-

work of variational calculus and partial differential equations. We will consider an interesting

generalization by allowing the order α vary from point to point.

We recall that C(Ω) stands for the space of all bounded uniformly continuous functions

on Ω equipped with the “sup” norm (according to the notation from Chapter 1).

Definition 7.1.1. Let α : Ω → (0, 1] be a measurable function. By C0,α(·)(Ω) we denote the

space of all functions f in C(Ω) for which there exists c > 0 such that

|f(x + h)− f(x)| ≤ c |h|α(x), x, x + h ∈ Ω.

This is a natural generalization of the standard Hölder spaces C0,α(Ω) with constant α.

C0,α(·)(Ω) is a Banach space with respect to the norm

‖f |C0,α(·)(Ω)‖ = ‖f‖∞,Ω + [f ]α(·),Ω, (7.1)

where

[f ]α(·),Ω := sup
x,x+h∈Ω
0<|h|≤1

|f(x + h)− f(x)|
|h|α(x)

.
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As for variable exponent Lebesgue spaces, we shall write α(·) instead of α to emphasize that

we are dealing with a variable order of regularity. We observe that for 0 < α(x) ≤ λ(x) ≤ 1,

x ∈ Ω, one gets

C0,λ(·)(Ω) ↪→ C0,α(·)(Ω) ↪→ C(Ω).

We stress that Hölder spaces with variable order were already considered in the papers

[77] and [110], related to mapping properties of fractional integration operators. As we will

see below (Section 7.3) they prove to be the natural target spaces when we deal with certain

Sobolev embeddings of variable exponent.

7.2 Pointwise inequalities

The oscillation of Sobolev functions can be controlled by the fractional maximal function

of its gradient. We refer to [13], [62], [63], [79], where this argument was used to derive

important properties of functions in Sobolev spaces within the classical setting. This will be

extended to the case of variable exponents (see Proposition 7.2.3 below).

The proof of the following inequality may be found in [57], p. 162.

Lemma 7.2.1. Let B be a ball in Rn. If g ∈ W 1
1 (B), then

|g(x)− gB| ≤ c(n)
∫

B

|∇g(z)|
|x− z|n−1

dz

almost everywhere in B, where gB := 1
|B|

∫
B g(z) dz denotes the average of g over B.

Now we recall a classical statement due to Hedberg (see [5]) on the estimation of Riesz

potentials through the maximal function. We also give its proof for completeness of the

presentation.

Lemma 7.2.2. Let D ⊂ Rn be an open bounded set, 0 < α < n and 0 ≤ λ < α. Then there

exists c > 0, not depending on f , x and λ, such that

∫

D

|f(z)| dz

|x− z|n−α
≤ c

α− λ
(diam(D))α−λ Mλ

Df(x), (7.2)

for almost all x ∈ D, and for every f ∈ L1(D), where it is admitted that λ may depend on x.
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Proof. Let d = diam(D). We have

∫

D

|f(z)| dz

|x− z|n−α
=

∞∑

k=0

∫

D∩
�
B(x, d

2k )\B(x, d

2k+1 )
�

|f(z)|
|x− z|n−α

dz

≤
∞∑

k=0

(
2k+1

d

)n−α ∫

D∩B(x, d

2k )
|f(z)| dz

= 2n−α
∞∑

k=0

(
2k

d

)λ−α (
d

2k

)λ−n ∫

D∩B(x, d

2k )
|f(z)| dz

≤ c(n)
∞∑

k=0

(
2k

d

)λ−α

Mλ
Df(x),

from which (7.2) follows, since 1
2α−λ−1

≤ c
α−λ for some c > 0 independent of α and λ.

Proposition 7.2.3. Let Ω be a bounded domain with Lipschitz boundary or let Ω = Rn. Then

for every f ∈ W 1
1,loc(Ω) and almost all x, y ∈ Ω there holds

|f(x)− f(y)| ≤ c

[ |x− y|1−λ

1− λ
Mλ

Ω(|∇f |)(x) +
|x− y|1−µ

1− µ
Mµ

Ω(|∇f |)(y)
]

(7.3)

where λ, µ ∈ [0, 1) and the constant c > 0 does not depend on f, x, y, λ and µ and Ω, and it is

admitted that λ and µ may depend on x and y.

Proof. For bounded domains estimate (7.3) can be proved as in [63], Lemma 4. For the case

Ω = Rn the arguments are similar: we observe that for all x, y ∈ Rn, x 6= y, there exists a

ball Bx,y containing these points such that diam(Bx,y) ≤ 2 |x− y|. Then we write

|f(x)− f(y)| ≤ |f(x)− fBx,y |+ |f(y)− fBx,y |

and it remains to make use of Lemma 7.2.1 and afterwards Lemma 7.2.2 with α = 1.

Recall that a domain Ω has Lipschitz boundary if, roughly speaking, its boundary is locally

the graph of a Lipschitz continuous function (see, for example, [6] for precise definitions).

Estimate (7.3) slightly differs from the usual formulation, since it allows different orders

for the maximal functions on the right-hand side as well as the dependence of those orders

on the variables. We shall see below that the consideration of maximal functions of variable

order is very useful to deal with embeddings of Sobolev spaces of variable exponent.
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7.3 Sobolev embeddings with variable exponent

The main aim of this section is to show that functions from W 1
p(·)(Ω) are Hölder continuous

everywhere where p(x) > n.

First we need some auxiliary statements.

Lemma 7.3.1. ([31]) Let p : Rn → [1,∞) be a continuous exponent. Then p(·) satisfies the

log-Hölder condition (4.4) if and only if there exists a constant C > 0 such that

|B|
inf

z∈B

1
p(z)

−sup
z∈B

1
p(z) ≤ C, (7.4)

for all open ball B in Rn.

For simplicity, given a ball B in Rn and a bounded exponent p : Rn → [1,∞), we will

denote by 1
pB

the average of the function 1
p over B, that is,

1
pB

:=
1
|B|

∫

B

dz

p(z)
.

Lemma 7.3.2. ([31]) Let p(·) ∈ P(Rn). Then for every ball B there holds

‖χB‖p(·) ≤ c(p) |B|
1

pB . (7.5)

We will also make use of the following statement, in which

Πp,Ω := {x ∈ Ω : p(x) > n}. (7.6)

Lemma 7.3.3. Let Ω be a bounded domain and let f ∈ Lp(·)(Ω), where p(·) satisfies condition
(4.4). Assume also that the set Πp,Ω is non-empty. Then

M
n

p(x)

Ω f(x) ≤ c ‖f‖p(·),Ω, x ∈ Πp,Ω, (7.7)

with c > 0 not depending on x nor f .

Proof. First we observe that the exponent p(·) may be extended to the whole space Rn with

the preservation of its continuity modulus. In fact, since p(·) is uniformly continuous (and

bounded) on Ω then it extends to a continuous function on Ω. By a known extension result

described in [129], Chapter 6, Section 2, there exists an extension p̃ : Rn → [1,∞) satisfying a

corresponding condition to (4.4) on Rn (possibly with a different constant). From p̃(·) we may

construct another extension ˜̃p(·) : Rn → [1,∞), also preserving the continuity modulus, in
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such a way that ˜̃p(·) is constant outside some large ball (see [31], Theorem 4.2 and Corollary

4.3, for details). In particular, we have ˜̃p(·) ∈ P(Rn).

Let B = B(x, r) be any ball centered at x ∈ Πp,Ω. By the Hölder inequality we obtain

1

|B|1− 1
p(x)

∫

B∩Ω
|f(z)| dz ≤ c(p)

|B|1− 1
p(x)

‖f‖ẽp(·) ‖χB‖ẽp′(·),

where ˜̃p′(·) is the usual conjugate exponent, 1
ẽp(·) + 1

ẽp′(·) = 1, and it is assumed that f is

continued as zero beyond Ω.

Since ˜̃p(·) ∈ P(Rn), then the maximal operator is also bounded in L
ẽp′(·)(Rn) (see [29],

Lemma 8.1). Therefore, Lemma 7.3.2 is applicable which yields ‖χB‖ẽp′(·) ≤ c1(p) |B|
1
ẽp′B .

Hence,
1

|B|1− 1
p(x)

∫

B∩Ω
|f(z)| dz ≤ c ‖f‖p(·),Ω |B|

1
p(x)

− 1
ẽpB . (7.8)

If |B| ≤ 1 then Lemma 7.3.1 provides the estimate |B|
1

p(x)
− 1
ẽpB ≤ C, for some C > 0

independent of B. Suppose now that |B| > 1. Notice that if r > diam(Ω) then |B| > |Ω|, so
that

1

|B|1− 1
p(x)

∫

B∩Ω
|f(z)| dz ≤ 1

|Ω|1− 1
p(x)

∫

Ω
|f(z)| dz ≤ c(Ω) ‖f‖p(·),Ω.

Hence, only the case r ≤ diam(Ω) is of interest according to our purposes. In that case, the

right-hand side in (7.8) may be estimated as follows:

|B|
1

p(x)
− 1
ẽpB ≤ |B|1−

1

ẽp ≤ C diam(Ω)n.

This completes the proof of (7.7).

Now we are able to give an important pointwise inequality.

Theorem 7.3.4. Let Ω be a bounded domain with Lipschitz boundary and suppose that p(·)
satisfies the local logarithmic condition (4.4) and has a non-empty set Πp,Ω. If f ∈ W 1

p(·)(Ω),

then

|f(x)− f(y)| ≤ C(x, y) ‖|∇f |‖p(·),Ω |x− y|1− n
min[p(x),p(y)] (7.9)

for all x, y ∈ Πp,Ω such that |x− y| ≤ 1, where

C(x, y) =
c

min[p(x), p(y)]− n

with c > 0 not depending on f, x and y.
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Proof. After modifying f on a set of zero measure, we make use of (7.3) with λ = n
p(x) ∈ (0, 1)

and µ = n
p(y) ∈ (0, 1) and get

|f(x)− f(y)| ≤ c |x− y|1− n
min[p(x),p(y)]

min[p(x)− n, p(y)− n]

[
M

n
p(x)

Ω (|∇f |)(x) +M
n

p(y)

Ω (|∇f |)(y)
]

(7.10)

for all x, y ∈ Πp,Ω. Hence, (7.9) immediately follows from (7.7).

Remark 7.3.5. Let D be a subset in Πp,Ω. Under the assumption inf
x∈D

p(x) > n, one may

take a constant in (7.9) not depending on x, y when x and y run the set D. In particular, if

p
Ω

> n, estimate (7.9) is valid for the whole Ω with an absolute constant.

Corollary 7.3.6. Let Ω be a bounded domain with Lipschitz boundary and let p(·) be under

the assumptions of Theorem 7.3.4. If f ∈ W 1
p(·)(Ω), then estimate (7.9) may be written in the

form

|f(x)− f(x + h)| ≤ c

min[p(x), p(x + h)]− n
‖|∇f |‖p(·),Ω |h|1−

n
p(x) , (7.11)

where x, x + h ∈ Πp,Ω and |h| ≤ 1, with c > 0 not depending on x, h, and f .

Proof. It suffices to observe that for x and y belonging to a bounded set we have

|x− y| n
p(x) ∼ |x− y| n

p(y) (7.12)

thanks to the log-condition for p(·). Indeed, inequality (7.12) is equivalent to

1
C
≤ |x− y| 1

p(x)
− 1

p(y) ≤ C, (7.13)

with C > 1 not depending on x and y. But (7.13) means that
∣∣∣∣

1
p(x)

− 1
p(y)

∣∣∣∣ ln
1

|x− y| ≤ C1, C1 = ln C,

if 0 < |x− y| ≤ 1, or
∣∣∣∣

1
p(x)

− 1
p(y)

∣∣∣∣ ln |x− y| ≤ C1, C1 = ln C,

in the case 1 < |x−y| ≤ diam(Ω). It remains to observe that these inequalities are immediately

verified, since p(·) satisfies (4.4):
∣∣∣∣

1
p(x)

− 1
p(y)

∣∣∣∣ ≤ |p(x)− p(y)| ≤ 2 diam(Ω)A0

ln 2 diam(Ω)
|x−y|

.
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Theorem 7.3.4 suggests that functions in W 1
p(·)(Ω) admit a Hölder continuous representative

of variable order.

Theorem 7.3.7. Let Ω be a bounded domain and suppose that p(·) satisfies the logarithmic

condition (4.4). If inf
x∈Ω

p(x) > n, then the estimate

|f(x)| ≤ C

[
‖f‖p(·),Ω

[dist(x, ∂Ω)]
n

p(x)

+ ‖|∇f |‖p(·),Ω

]
(7.14)

is valid, with C > 0 independent of x ∈ Ω and f ∈ W 1
p(·)(Ω).

If, in addition, Ω has Lipschitzian boundary, then we have

W 1
p(·)(Ω) ↪→ C

0,1− n
p(·) (Ω). (7.15)

Proof. Fix x ∈ Ω and let Bx be a ball containing x. According to Lemma 7.2.1, estimate (7.2)

with α = 1 and λ = n
p(x) , and inequality (7.7), for f ∈ W 1

p(·)(Ω) we have

|f(x)− fBx | ≤ c diam(Bx)1−
n

p(x) M
n

p(x)

Ω (|∇f |)(x) ≤ c diam(Bx)1−
n

p(x) ‖|∇f |‖p(·),Ω, (7.16)

where it is assumed that the radius r of the ball Bx is sufficiently small, say r = 1
2 dist(x, ∂Ω).

For fBx we may proceed as in the proof of Lemma 7.3.3. Hence, the Hölder inequality combined

with (7.5) yield the estimate

|fBx | ≤ c(p) |Bx|−
1

pBx ‖f‖p(·),Ω.

Since |Bx|−
1

pBx ≤ c |Bx|−
1

p(x) , we also have

|fBx | ≤ c(p) |Bx|−
1

p(x) ‖f‖p(·),Ω. (7.17)

Thus, having in mind the value of r above, we arrive at (7.14) from (7.16) and (7.17).

If Ω has Lipschitz boundary, then we may derive the embedding

W 1
p(·)(Ω) ↪→ L∞(Ω). (7.18)

In fact, in that case, it is known (see [31]) that there exists a bounded linear extension operator

E : W 1
p(·)(Ω) → W 1

ẽp(·)(R
n)

such that Ef |Ω = f almost everywhere, where ˜̃p(·) is the extension of p(·) used in the proof

of Lemma 7.3.3. Similarly to (7.16), there holds

|f(x)− (Ef)Bx | ≤ c diam(Bx)1−
n

p(x) ‖|∇f |‖p(·),Ω,
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where now we suppose that the ball Bx is arbitrary (containing x). Moreover, we have

|(Ef)Bx | ≤ c |Bx|
− 1
ẽpBx ‖Ef‖ẽp(·) ≤ c1 |Bx|

− 1
ẽpBx ‖f‖p(·),Ω.

Taking a ball such that |Bx| = 1, we get

|f(x)| ≤ |f(x)− fBx |+ |fBx | ≤ C(p) ‖f‖1,p(·),Ω,

which implies (7.18). The embedding (7.15) follows then from (7.11) and (7.18).

In the particular case when the exponent is constant, p(x) ≡ p > n, we recover the classic

Sobolev embedding into the standard Hölder spaces.

7.4 Hypersingular operators on W 1
p(·)(Ω)

In this section, we consider hypersingular integral operators of variable order α = α(x),

0 < α(x) < 1, x ∈ Ω, given by

Dα(·)f(x) =
∫

Ω

f(x)− f(y)
|x− y|n+α(x)

dy, x ∈ Ω, (7.19)

(see also (5.2). We recall that detailed information about hypersingular integrals of functions

defined in Rn can be found in [121].

Theorem 7.4.1. Let 0 < α0 ≤ α(x) ≤ α1 < 1 and let Ω be a bounded domain with Lipschitz

boundary. Assume also that p(·) satisfies (4.4) and

ess sup
x∈Ω

p(x)[1− α(x)] < n. (7.20)

Then the operator Dα(·) is bounded from W 1
p(·)(Ω) into Lq(·)(Ω) for any exponent q(·) such that

1 < q
Ω
≤ qΩ < ∞ and

ess sup
x∈Ω

[
1

p(x)
− 1

q(x)
+

α(x)
n

]
<

1
n

, (7.21)

the latter being equivalent to

1
q(x)

=
1

p(x)
− λ(x)

n
, where ess sup

x∈Ω
[λ(x) + α(x)] < 1. (7.22)

Proof. We may assume that q(x) ≥ p(x) since the domain is bounded and one has the imbed-

ding ‖f‖q(·) ≤ c‖f‖q∗(·) where q∗(x) = max{q(x), p(x)}.



112 Chapter 7. Pointwise Inequalities on Variable Sobolev Spaces and Applications

By Proposition 7.2.3, we have

∣∣∣Dα(·)f(x)
∣∣∣ ≤

∫

Ω

|f(x)− f(y)|
|x− y|n+α(x)

dy

≤ c

1− λ(x)

∫

Ω

Mλ(·)
Ω (|∇f |)(x) +Mλ(·)

Ω (|∇f |)(y)
|x− y|n+α(x)+λ(x)−1

dy

for almost all x ∈ Ω, with c > 0 not depending on x and f , where λ(x) may be an arbitrary

function such that 0 ≤ λ(x) < 1.

Put β(x) = 1 − α(x) − λ(x). Then 0 < β(x) < 1 under the choice λ(x) < 1 − α(x). We

choose λ(x) so that

λ(x) ≥ 0 and ess sup
x∈Ω

[λ(x) + α(x)] < 1, (7.23)

which is possible, since ess sup
x∈Ω

α(x) ≤ α1 < 1. Then

ess inf
x∈Ω

β(x) > 0. (7.24)

We have

∣∣∣Dα(·)f(x)
∣∣∣ ≤ c

∫

Ω

Mλ(·)
Ω (|∇f |)(x)
|x− y|n−β(x)

dy + c

∫

Ω

Mλ(·)
Ω (|∇f |)(y)
|x− y|n−β(x)

dy

≤ c |Ω|β(x)
n Mλ(·)

Ω (|∇f |)(x) + c Iβ(·)
Ω

[
Mλ(·)

Ω (|∇f |)
]
(x), (7.25)

where Iβ(·)
Ω denotes the variable Riesz potential as before. Since this inequality holds pointwise

(almost everywhere), we may take the Lebesgue norms in both sides and write

∥∥∥Dα(·)f
∥∥∥

q(·),Ω
≤ c

∥∥∥Mλ(·)
Ω (|∇f |)

∥∥∥
q(·),Ω

+ c
∥∥∥Iβ(·)

Ω

[
Mλ(·)

Ω (|∇f |)
]∥∥∥

q(·),Ω
. (7.26)

By condition (7.24) and the boundedness of the domain Ω, the operator Iβ(·)
Ω is bounded

in the space Lq(·)(Ω) so that

∥∥∥Dα(·)f
∥∥∥

q(·),Ω
≤ c

∥∥∥Mλ(·)
Ω (|∇f |)

∥∥∥
q(·),Ω

. (7.27)

By Theorem 4.5.6 we then have

∥∥∥Dα(·)f
∥∥∥

q(·),Ω
≤ c ‖|∇f |‖p(·),Ω ≤ c ‖f‖1,p(·),Ω,

1
q(x)

=
1

p(x)
− λ(x)

n
,

that theorem being applicable since

ess sup
x∈Ω

λ(x)p(x) < ess sup
x∈Ω

[1− α(x)]p(x) < n,
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according to (7.23) and (7.20).

Thus the boundedness of Dα(·) from W 1
p(·)(Ω) into Lq(·)(Ω) has been proved for exponents

q(·) of the form (7.22). It remains to show the equivalence of (7.22) to (7.21).

Condition (7.21) is easily obtained from (7.22). Conversely, condition (7.21) implies the

existence of δ ∈ (
0, 1

n

)
such that

1
p(x)

− 1
q(x)

+
α(x)

n
≤ 1

n
− δ (7.28)

for almost all x ∈ Ω. Let us define

λ(x) := n

[
1

p(x)
− 1

q(x)

]
, x ∈ Ω.

Then according to (7.28) we obtain

λ(x) + α(x) = n

[
1

p(x)
− 1

q(x)
+

α(x)
n

]
≤ n

(
1
n
− δ

)
= 1− nδ

almost everywhere. Therefore, one gets

ess sup
x∈Ω

[λ(x) + α(x)] < 1.

Remark 7.4.2. In (7.25) we made use of the estimation of Riesz potentials of constant

densities. Let us note that this can be easily obtained as follows:
∫

Ω

dy

|x− y|n−β(x)
≤

∫

|x−y|≤diam(Ω)

dy

|x− y|n−β(x)
=

c(n)
β(x)

[diam(Ω)]β(x),

which allows to arrive at (7.25) taking into account assumption (7.24).

For constant exponents the following holds.

Corollary 7.4.3. Let α and Ω be as in Theorem 7.4.1 and suppose that 1 < p < n
1−α . Then

there exists c > 0 such that

‖Dαf‖q,Ω ≤ c ‖f‖1,p,Ω, f ∈ W 1
p (Ω),

for any exponent q fulfilling

p ≤ q <
np

n− (1− α)p
. (7.29)
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Theorem 7.3.4 (and Corollary 7.3.6) allows us to make some conclusions about the point-

wise convergence of the hypersingular integral. More precisely, the following statement may

be derived.

Proposition 7.4.4. Let Ω be a bounded domain with Lipschitz boundary. Under the assump-

tion (4.4) on p(·), the hypersingular integral Dα(·), with 0 < α0 ≤ α(x) < 1, x ∈ Ω, of

functions in W 1
p(·)(Ω) converges at all those points x ∈ Ω for which p(x)(1− α(x)) > n.

Proof. The pointwise convergence of the hypersingular integral is an immediate consequence

of (7.9). We only observe that the assumption p(x)(1−α(x)) > n implies ess inf
x∈Ω

p(x) > n.

Further notes

There are many papers in the literature dealing with Sobolev embeddings starting from

the original work due to Sobolev [127]. Our results contribute to the development of this topic

within the framework of the variable exponent spaces. We recall that the case studied was

already considered in [45]. However, we followed a different approach based on generalized

maximal functions of variable order. Also, we dealt explicitly with variable Hölder spaces.

The statements above on boundedness and pointwise convergence of hypersingular integrals

are new even in the case when the exponents p(·) and α(·) are constant. They were obtained

under the usual log-condition on the integrability exponent. We stress, however, that no

special assumption was required to the regularity exponent α(·).
We worked over smooth domains having Lipschitz boundary. An interesting question

would be to check the possibility to derive similar results over more general domains.
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