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palavras -chave  
 

Hipermapa, restritamente-regular, 2-restritamente-regular, orientavelmente-
regular, pseudo-orientavelmente-regular, bipartido-regular, grupo de 
quiralidade, índice de quiralidade. 
 

resumo  
 
 

Nesta tese consideramos hipermapas com grande número de automorfismos 
em superfícies de baixo género, nomeadamente a esfera, o plano projectivo, o 
toro e o duplo toro. 
 
É conhecido o facto de que o número de automorfismos ou simetrias de um 
hipermapa H é limitado pelo seu número de flags, que, genericamente falando, 
são triplos vértice-aresta-face mutualmente incidentes. De facto, o número de 
automorfismos de H divide o número de flags de H. Hipermapas para os quais 
este limite é atingido são chamados regulares e estão classificados nas 
superfícies orientáveis até género 101 e em superfícies não-orientáveis até 
genero 202, usando computadores. 
 
Neste trabalho classificamos os hipermapas 2-restritamente-regulares na 
esfera, no plano projectivo, no toro e no duplo toro, isto é, hipermapas cujo 
número de automorfismos é igual a metade do número de flags, e calculamos 
os seus grupos quiralidade e índices de quiralidade, que podem ser vistos 
como medidas algébricas e numéricas de quanto H se distancia de ser regular. 
Estes hipermapas são uma generalização dos hipermapas quirais. 
 
Também introduzimos alguns métodos para construir hipermapas bipartidos. 
Duas destas construções têm um papel muito importante no nosso trabalho. 
 

 



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords  
 

Hypermap, restrictedly-regular, 2-restrictedly-regular, orientably-regular, 
pseudo-orientably-regular, bipartite-regular, chirality group, chirality index. 
 

abstract  
 

This thesis deals with hypermaps having large automorphism group on 
surfaces of small genus, namely the sphere, the projective plane, the torus and 
the double torus. 
 
It is well-known that the number of automorphisms or symmetries of a 
hypermap H is bounded by its number of flags, which are, roughly speaking, 
incident triples vertex-edge-face. In fact, the number of automorphisms of H 
divides the number of flags of H. Hypermaps for which this upper bound is 
attained are called regular and have been classified on orientable surfaces up 
to genus 101 and on non-orientable surfaces up to genus 202, using 
computers. 
 
In this work we classify the 2-restrictedly-regular hypermaps on the sphere, the 
projective plane, the torus and the double torus, that is, hypermaps whose 
number of automorphism is equal to half the number of flags and compute their 
chirality groups and chirality indices, which may be regarded as algebraic and 
numerical measures of how far H deviates from being regular. These 
hypermaps are a generalization of chiral hypermaps. 
 
We also introduce some methods for constructing bipartite hypermaps. Two of 
those constructions will play an important role in our work. 
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IntrodutionThis thesis deals with hypermaps having large automorphism group on surfaes of small genus,namely the sphere, the projetive plane, the torus and the double torus.Topologially, a hypermap H is a ellular imbedding of a onneted hypergraph G into aompat surfae S. When G is a graph, we say that H is a map. The Euler harateristi andthe genus of H are the Euler harateristi and the genus of S. Roughly speaking, the �agsof H are its inident triples vertex-edge-fae, and a symmetry or an automorphism of H is apermutation of the set ΩH of �ags of H preserving inidene. The set of all automorphismsof a hypermap H forms a permutation group, Aut(H), ating on the set of �ags of H. It hasbeen shown [24℄ that every �nite group is the group of automorphisms of a map (and heneof a hypermap). The number of automorphisms of a hypermap H is bounded by the numberof �ags of H, sine every automorphism is uniquely determined by its e�et on a �ag. Inaddition, the number of automorphisms of H divides the number of �ags of H. Hypermapsfor whih this upper bound is attained are alled regular. Regular hypermaps may be thoughtof as a generalization of the Platoni solids. When S is orientable, H is said orientable andthe number of automorphisms of H whih indue orientation-preserving automorphisms of Sis at most half the number of �ags of H. When the equality holds, the hypermap H is saidorientably-regular. If H is orientably-regular but not regular, then H is hiral.Algebraially, a hypermap H is ompletely determined by a hypermap subgroup H, whihis a subgroup of the free produt ∆ = C2 ∗ C2 ∗ C2. The number of �ags of H is equal tothe index of H in ∆, and its automorphism group is isomorphi to N∆(H)/H, where N∆(H)denotes the normalizer in ∆ of H. The hypermap H is regular if H is normal in ∆, and isorientably-regular if H is normal in ∆+, one of the seven normal subgroups of ∆ of index 2.Following [8℄, we say that a hypermap is 2-restritedly-regular if the normalizer N∆(H) in ∆of a hypermap subgroup H is one of those seven subgroups of ∆. In other words, a hypermapis 2-restritedly-regular if and only if its group of automorphisms ats on the set of �ags with2 orbits. These hypermaps an be view as a generalization of hiral or irre�exible hypermaps.For further reading on maps and hypermaps see [49, 45, 33, 28, 41, 46, 48, 13, 65℄, see also[23, 25, 26, 27℄ for the orientable ase, and [16, 39℄ for maps and hypermaps with boundary.The lassi�ation of all maps or hypermaps whih satisfy a ertain ondition is a ommonproblem in map and hypermap theory. Regular, orientably-regular and hiral maps and hyper-maps have been lassi�ed aording to genus or Euler harateristi [11, 12℄, number of edgesor faes [70, 7, 10, 77, 54, 69, 40℄, or automorphism group [14℄. Edge-transitive maps, that is,maps whose automorphism group ats transitively on the set of edges have been lassi�ed onthe sphere (Grünbaum and Shephard [37℄) and on the torus (�irá¬, Tuker and Watkins [66℄).Another problem is the determination of all g for whih there is a map or hypermap of genus
g with a ertain property [21, 78℄. 1



2 IntrodutionThroughout the last entury, many authors (Brahana [3℄, Threlfall [62℄, Sherk [55℄, Coxeterand Moser [33℄, Garbe [35℄, Bergau and Garbe [2℄) worked on the lassi�ation of regularand orientably-regular maps without the help of omputers. They all ontributed to thelassi�ation of regular maps on orientable surfaes up to genus 7 and on non-orientablesurfaes up to genus 8. The generalization to hypermaps was done by Corn and Singerman[28℄, Breda and Jones [15℄ and Breda [7℄ on orientable surfaes up to genus 2 and on non-orientable surfaes up to genus 4. It is well-known that the lassi�ation of regular mapsand hypermaps on a non-orientable surfae of genus g an be derived from the lassi�ationof regular maps and hypermaps on the orientable surfae of genus g − 1. Chiral maps werestudied by Sherk [56℄, Garbe [35℄ and Wilson [75℄. Breda and Nedela [11℄ lassi�ed all hiralhypermaps on surfaes up to genus 4. An almost omplete lassi�ation of regular and hiralmaps up to 100 edges an be found in [70, 69℄. In [19℄, Conder and Dobsányi give ompletelists of all regular and hiral maps on orientable surfaes of genus 2 to 15, and all regular mapson non-orientable surfaes of genus 4 to 30 (that is, all regular and hiral maps on surfaeswith Euler harateristi between -28 and -2). More reently, Conder [17℄ obtained lists ofregular and hiral maps and hypermaps on orientable surfaes of genus 2 to 101 and regularmaps and hypermaps on non-orientable surfaes of genus 2 to 202, up to isomorphism andduality, with the help of the new �LowIndexNormalSubgroups� routine in MAGMA [1℄.In this thesis we determine, up to duality, all (isomorphism lasses of) 2-restritedly-regularhypermaps on the sphere, the projetive plane, the torus and the double torus, and omputetheir hirality groups and hirality indies (see [6℄).In Chapter 1 we introdue the basi notation used throughout the text. We presentmethods for onstrution bipartite maps. Two of these onstrutions, Walsh and Pin, willplay an important role in our thesis. The �rst is indued by Walsh's orrespondene [67℄between hypermaps and bipartite maps on the same surfae. We also study the properties ofthe orientable double over of a non-orientable hypermap H, whih is the smallest orientablehypermap overing H (see [13℄).Chapter 2 deals with 2-restritedly-regular hypermaps on the sphere. Using the Eulerformula, we see that there is an in�nite number of possibilities for the valenies of the verties,edges and faes of a regular or 2-restritedly-regular hypermap on the sphere. In eah ase,there is exatly one regular or 2-restritedly-regular hypermap with those valenies. We showthat all 2-restritedly-regular hypermaps on the sphere are obtained from regular hypermapson the sphere using the Walsh or Pin onstrutions. Most of the ontent of this hapter ispublished in [9℄.Chapter 3 deals with hypermaps on the projetive plane. We determine the 2-restritedly-regular hypermaps on the projetive plane by inspeting the regular and 2-restritedly-regularhypermaps on the sphere. As on the sphere, all 2-restritedly-regular hypermaps on theprojetive plane are obtained from regular hypermaps on the projetive plane using the Walshor Pin onstrutions. There is an in�nite number of possibilities for the valenies of theverties, edges and faes of a regular or 2-restritedly-regular hypermap on the projetiveplane. In eah ase, there is at most one regular or 2-restritedly-regular hypermap with thosevalenies.Hypermaps on the torus are studied in Chapter 4. Our main referenes are the work ofSingerman and Syddall [57, 58℄ on uniform maps, and the work of Coxeter and Moser [33℄ onorientably-regular maps. On the torus, the Euler formula gives a �nite number of possibilitiesfor the valenies of the verties, edges and faes of a regular or 2-restritedly-regular hypermap,



Introdution 3and in eah ase there is an in�nite number of non-isomorphi regular and 2-restritedly-regularhypermaps with those valenies. It is shown that the 2-restritedly-regular hypermaps on thetorus are either uniform or obtained from regular hypermaps on the torus using the Walshand Pin onstrutions. We also introdue a notation for the uniform hypermaps on the torus.Finally, in Chapter 5, we lassify all 2-restritedly-regular hypermaps on the double torus.Our work in this Chapter was in�uened by [15℄.At the end, we provide a subjet index.



4 Introdution



Chapter 1HypermapsIn this hapter we introdue basi terminology from the theory of hypermaps and at the sametime establish our notation.1.1 De�nitions and notationsA hypermap is a four-tuple H = (ΩH, h0, h1, h2) where h0, h1, h2 are permutations of a non-empty set ΩH suh that h0
2 = h1

2 = h2
2 = 1 and 〈h0, h1, h2〉 is transitive on ΩH. Theelements of ΩH are alled �ags of H, the permutations h0, h1 and h2 are alled anonialgenerators of H and the group Mon(H) = 〈h0, h1, h2〉 is the monodromy group of H. Onesays that H is a map if (h0h2)

2 = 1. A hypermap is said �nite if its set of �ags is �nite. Ifthe permutations h0, h1 and h2 are �xed-point free, we say that H has no boundary or that
H is a hypermap without boundary . Heneforth, all hypermaps are to be �nite and withoutboundary unless otherwise spei�ed.The hyperverties or 0-faes of H orrespond to 〈h1, h2〉-orbits on ΩH. Likewise, thehyperedges or 1-faes and hyperfaes or 2-faes orrespond to 〈h0, h2〉- and 〈h0, h1〉-orbits on
ΩH, respetively. If a �ag ω belongs to the orbit determining a k-fae f we say that ω belongsto f , or that f ontains ω. We use the terms verties, edges and faes instead of hyperverties,hyperedges and hyperfaes, for short. We denote the numbers of verties, edges and faes of
H by V (H), E(H) and F (H). When just one hypermap, say H, is under disussion, we omitthe letter H from hypermap-theoreti symbols and write, for instane Ω, V , E and F insteadof ΩH, V (H), E(H) and F (H).Let {i, j, k} = {0, 1, 2}. We say that the k-fae f = ω〈Ri, Rj〉 and the j-fae e = σ〈Ri, Rk〉are inident if f ∩ e 6= ∅. In other words, inidene is given by non-empty intersetion. Two
k-faes f and f ′ are adjaent if both are inident to a j-fae g. The valeny of a k-fae
f = w〈hi, hj〉 (of a �nite hypermap without boundary), where ω ∈ ΩH, is the least positiveinteger n suh that (hihj)

n ∈ Stab(w). Sine hi2 = hj
2 = 1 and hi and hj are �xed-pointfree, f has 2n elements, so the valeny of a k-fae is equal to half of its ardinality. If, foreah hoie of indies i, j ∈ {0, 1, 2}, all 〈hi, hj〉-orbits on ΩH have the same ardinality, wesay that H is uniform. When all verties, edges and faes of H have valeny greater than one,we an think of a �ag as an inident vertex-edge-fae triple (v, e, f). A hypermap H has type

(l,m, n) if l, m and n are the least ommon multiples of the valenies of the verties, edgesand faes, respetively. In other words, the type of a hypermap H is (l0, l1, l2) if li, lj and lkare the orders of hjhk, hkhi and hihj . When H is uniform, H has type (l,m, n) if and only if5



6 Chapter 1. Hypermaps
l, m and n are the valenies of the verties, edges and faes of H, respetively.Topologially, maps and hypermaps an be represented by ellular imbeddings of onnetedgraphs and hypergraphs into ompat surfaes. A map M an be represented by a ellularimbedding of a onneted graph G into a ompat surfae S, where the verties, edges andfaes of the imbedding orrespond to the verties, edges and faes of M. Using the well-known orrespondene of Walsh between hypermaps and bipartite maps desribed in [67℄, wean represent a hypermap by a ellular imbedding of a bipartite graph (that is, a hypergraph)
G into a ompat surfae S, where the verties of G orrespond to the verties and edges of
H and two verties of G are onneted by an edge if and only if they form an inident pairvertex-edge of H.Alternatively, a hypermap H an be represented by a ellular imbedding of a onnetedtrivalent graph G into a ompat surfae S, together with a labelling of the faes with labels0, 1 and 2 so that eah edge of G is inident with two faes arrying di�erent labels. In otherwords, H an be represented by the Shreier (right) oset graph (see �3.7 of [33℄, �7. of [64℄ or�4-3. of [68℄) for the stabilizer of a �ag ω ∈ ΩH in the monodromy group of H, Mon(H), withrespet to the generators h0, h1 and h2, with free edges replaing loops. The verties of thegraph G orrespond to the �ags of H and the faes labelled with k orrespond to the k-faesof H.When H is represented by a ellular imbedding of a onneted hypergraph G on a surfae
S, we say that G is the underlying hypergraph of H and that S is the underlying surfae of
H. A hypermap H has no boundary when its underlying surfae S has no boundary. TheEuler harateristi and the genus of a hypermap H are the Euler harateristi and thegenus of its underlying surfae S, respetively. We speak of harateristi of H, meaning theEuler harateristi of H, for short. Hypermaps imbedded on the sphere are alled spherial ;hypermaps imbedded on the torus are alled toroidal .A overing from a hypermap H = (ΩH, h0, h1, h2) to another hypermap G = (ΩG , g0, g1, g2)is a funtion ψ : ΩH → ΩG that ommutes aording to the following diagram:

ΩH
hi

//

ψ
��

ΩH

ψ
��

ΩG
gi

// ΩG

,

that is, suh that hiψ = ψgi for all i ∈ {0, 1, 2}. Sine Mon(G) ats transitively on ΩG , ψ issurjetive. Beause Mon(H) ats transitively on ΩH, the overing ψ is ompletely determinedby the image of a �ag of H. By von Dyk's theorem ([42℄, p. 28) the assignment hi 7→ giextends to a group epimorphism Ψ : Mon(H) → Mon(G) alled the anonial epimorphism.The overing ψ is an isomorphism if it is injetive. If there is a overing ψ from H to G, we saythat H overs G or that G is overed by H, and write H → G; if ψ is an isomorphism we saythat H is isomorphi to G, or that H and G are isomorphi, and write H ∼= G. When ψ is aovering from H to G and |ΩH| = 2|ΩG | we say that ψ is a double overing . An automorphismor a symmetry of H is an isomorphism ψ : ΩH → ΩH from H to itself, that is, a funtion
ψ that ommutes with the anonial generators. Naturally, the set of all automorphisms (orsymmetries) of H forms a group under omposition, alled the automorphism group of H anddenoted by Aut(H). Sine for all ω ∈ Ω, (ω〈hi, hj〉)ψ = ωψ〈gi, gj〉, a overing ψ : ΩH → ΩGindues a surjetive mapping between the set of k-faes of H and the set of k-faes of G; anisomorphism indues a bijetive orrespondene between the set of k-faes of H and the set of



1.2 The triangle group 7
k-faes of G. An automorphism ψ is alled a re�etion if there is a �ag ω ∈ Ω and k ∈ {0, 1, 2}suh that ωψ = ωrk.Using the Eulidean Division Algorithm, one an easily show the following result.Lemma 1.1.1. Let ψ : ΩH → ΩG be a overing from H to G and ω ∈ ΩH. Then the valenyof the k-fae of G ontaining ωψ divides the valeny of the k-fae of H ontaining ω.1.2 The triangle groupThe free produt

∆ = C2 ∗ C2 ∗ C2 = 〈R0, R1, R2 | R0
2 = R1

2 = R2
2 = 1〉is alled the triangle group. By the torsion theorem for free produts (Theorem 1.6 in �IV.1of [51℄), the onjugates of R0, R1 and R2 are the only non-identity elements of �nite order in

∆. More generally, for eah triple (l,m, n) ∈ (N ∪ {∞})3, the extended triangle group is thegroup
∆(l,m, n) = 〈R0, R1, R2 | R0

2 = R1
2 = R2

2 = (R1R2)
l = (R2R0)

m = (R0R1)
n = 1〉where we regard equations of the form (RiRj)

∞ = 1 as being vauous.For positive integers l,m, n, the extended triangle group ∆(l,m, n) is the group generatedby re�etions in the sides of a triangle with angles π/l, π/m and π/n. This triangle will lie onthe sphere, the Eulidean plane or the hyperboli plane depending on whether 1/l+1/m+1/nis greater than, equal to or less than 1, respetively. It is well-known that:
• ∆(1,m, n) = ∆(1, k, k) ∼= Dk, where k = gcd(m,n);
• ∆(2, 2, n) ∼= Dn × C2;
• ∆(2, 3, 3) ∼= S4;
• ∆(2, 3, 4) ∼= S4 × C2;
• ∆(2, 3, 5) ∼= A5 × C2.If N is a normal subgroup of ∆ of index 2, then ∆/N , having order 2, is isomorphi to C2.Consequently, the group ∆ has 7 subgroups of index 2 (see [13℄), the kernels of the 23 − 1 = 7group epimorphisms ϕ : ∆ → C2:

∆+ = 〈R1R2, R2R0〉∆ = 〈R1R2, R2R0, R0R1〉,

∆k̂ = 〈Ri, Rj〉∆ = 〈Ri, Rj , RiRk , Rj
Rk〉,

∆k = 〈Rk, RiRj〉∆ = 〈Rk, RiRj , RjRkRi〉,where {i, j, k} = {0, 1, 2}. The subgroup ∆+ is often alled the even subgroup of ∆.If N is normal subgroup of ∆ of index 4, then ∆/N , being a group of order 4 generatedby re�etions, is V4
∼= C2 × C2. By taking ϕ : ∆ → C2 × C2 a group epimorphism suh that

N = kerϕ, and π1 and π2 the projetions C2 × C2 → C2, one an see that N1 = kerϕπ1 and
N2 = kerϕπ2 are normal subgroups of ∆ of index 2 and N = N1 ∩ N2. Consequently, the



8 Chapter 1. Hypermapsnormal subgroups of ∆ of index 4 are intersetions of normal subgroups of ∆ of index 2. Byinspetion we an see that ∆ has 7 normal subgroups of index 4 (see [13℄):
∆012 = 〈RiRjRk〉∆ = 〈RiRjRk, RjRkRi, RkRiRj〉

= ∆i ∩ ∆j = ∆0 ∩ ∆1 ∩ ∆2,

∆+kk̂ = 〈RiRj , (RjRk)2〉∆ = 〈RiRj , (RiRj)Rk , (RjRk)
2, (RkRi)

2〉
= ∆+ ∩ ∆k = ∆k ∩ ∆k̂ = ∆k̂ ∩ ∆+ = ∆+ ∩ ∆k ∩ ∆k̂,

∆îĵk = 〈Rk, (RiRj)2〉∆ = 〈Rk, RkRi , Rk
Rj , Rk

RiRj , (RiRj)
2〉

= ∆î ∩ ∆ĵ = ∆ĵ ∩ ∆k = ∆k ∩ ∆î = ∆î ∩ ∆ĵ ∩ ∆kwhere {i, j, k} = {0, 1, 2}. We write ∆0̂12̂ and ∆01̂2̂ instead of ∆0̂2̂1 and ∆1̂2̂0, for simpliity.Let ∆′ be the derived group (that is, the ommutator subgroup) of ∆. For all i, j ∈ {0, 1, 2},
(RiRj)

2 = [Ri, Rj ] ∈ ∆′, so the �rst homology group of ∆ is ∆/∆′ ∼= C2 × C2 × C2 and
∆′ = 〈(R1R2)

2, (R2R0)
2, (R0R1)

2〉∆ = ∆0̂ ∩ ∆1̂ ∩ ∆2̂ is a normal subgroup of ∆ of index 8.1.3 Hypermap subgroupsGiven a group G, we denote by Z(G) the enter of G. If H is a subgroup of G, then wedenote by NG(H), HG and HG, the normalizer, the normal losure and the ore of H in G,respetively.Eah hypermap H gives rise to a transitive permutation representation ρH : ∆ → Mon(H),
Ri 7→ hi of the free produt ∆ = C2 ∗C2 ∗C2. The group ∆ ats naturally and transitively on
ΩH via ρH. The stabilizer H = Stab∆(ω) of a �ag ω ∈ ΩH under the ation of ∆ is alled thehypermap subgroup or fundamental group of H. Sine ∆ ats transitively on ΩH, hypermapsubgroups are unique up to onjugation in ∆. The valeny of a k-fae ontaining ω is the leastpositive integer n suh that (RiRj)

n ∈ Stab∆(ω) = H; more generally, the valeny of a k-faeontaining the �ag σ = ω · g = ω(g)ρH ∈ ΩH, where g ∈ ∆, is the least positive integer n suhthat (RiRj)
n ∈ Stab∆(σ) = Stab∆(ω · g) = Stab∆(ω)g = Hg. We remark that a hypermapof type (l,m, n) an be regarded as a transitive permutation representation of the extendedtriangle group ∆(l,m, n) (see [13℄).Lemma 1.3.1. Let H and G be hypermaps with hypermap subgroups H and G respetively.Then H → G if and only if H ⊆ Gg for some g ∈ ∆.Proof. Let ω ∈ ΩH and σ ∈ ΩG suh that H = Stab∆(ω) and G = Stab∆(σ).

(⇒) Let ϕ : ΩH → ΩG be a overing and g ∈ ∆ suh that ωψ = σg. Then, for all h ∈ ∆,
h ∈ H ⇔ ωh = ω ⇒ σgh = ωψh = ωhψ = ωψ = σg ⇔ h ∈ Stab∆(σg) = Stab∆(σ)g = Gg,that is, H ⊆ Gg.

(⇐) If H ⊆ Gg, then ϕ : ΩH → ΩG , ωhϕ = σgh is well de�ned and is a overing H → G.Corollary 1.3.2. Let H and G be hypermaps with hypermap subgroups H and G respetively.Then H ∼= G if and only if H = Gg for some g ∈ ∆. In other words, H and G are isomorphiif and only if there is an inner automorphism θ of ∆ suh that Hθ = G.



1.3 Hypermap subgroups 9This last result shows that there is a natural orrespondene between the isomorphismlasses of hypermaps and the onjugation lasses of subgroups of ∆.Let H be a hypermap subgroup ofH. Denote by Alg(H) = (∆/rH, ·H∆R0, ·H∆R1, ·H∆R2)where ·H∆Ri : ∆/rH → ∆/rH, Hg 7→ HgH∆Ri = HgRi. We say that Alg(H) is an algebraipresentation of H.Lemma 1.3.3. Let Alg(H) be as above. Then H is isomorphi to Alg(H). Furthermore, thegroups Mon(H) and ∆/H∆ are isomorphi.This Lemma shows that, up to isomorphism, every hypermap H is ompletely determinedby a hypermap subgroup H. For simpliity, we do not di�erentiate H from its algebraipresentations, and so we see, for instane, ΩH as ∆/rH and Mon(H) as ∆/H∆, for somehypermap subgroup H of H.Lemma 1.3.4. Let H be a hypermap, ω ∈ ΩH and H = Stab∆(ω) a hypermap subgroup of H.Then Aut(H) ∼= N∆(H)/H. Moreover, h ∈ N∆(H) if and only if for every �ag Hg ∈ ∆/rHthere is an automorphism of H whih maps Hg to Hhg.Note that an automorphism ψ is a re�etion if and only if there is g ∈ ∆ and k ∈ {0, 1, 2}suh that Rk ∈ Hg.Of the two groups Mon(H) and Aut(H), the �rst ats transitively on Ω (by de�nition) andthe seond, due to the ommutativity of the automorphisms with the anonial generators,ats semi-regularly on ΩH. These two ations give rise to the following inequalities:
|Mon(H)| ≥ |ΩH| ≥ |Aut(H)|. (1.1)Indeed, if H is a hypermap subgroup of H, then |Mon(H)| = [∆ : H∆], |ΩH| = [∆ : H] and

|Aut(H)| = [N∆(H) : H].Lemma 1.3.5. The following statements are equivalent:1. |Mon(H)| = |ΩH|, that is, Mon(H) ats regularly on ΩH;2. |ΩH| = |Aut(H)|, that is, Aut(H) ats regularly on ΩH;3. H has a hypermap subgroup whih is normal in ∆.If Mon(H) or Aut(H) at regularly on ΩH, or equivalently, if H has a hypermap subgroupwhih is normal in ∆, then H is said regular . It is well-known that every regular hypermap isuniform but the onverse is not true. In Chapter 4 we an �nd uniform hypermaps whih arenot regular.Let H be a hypermap subgroup of a hypermap H. Following [8℄, if H ≤ Θ for some Θ⊳∆,we say that H is Θ-onservative. We say that H is
• orientable if H is ∆+-onservative,
• bipartite if H is ∆0̂-onservative,
• pseudo-orientable if H is ∆0-onservative1.1This extends Wilson's de�nition of pseudo-orientability [71℄ from maps to hypermaps.



10 Chapter 1. HypermapsMoreover, given k ∈ {0, 1, 2}, we say that H is k-bipartite if H is ∆k̂-onservative, and k-pseudo-orientable if H is ∆k-onservative. In addition, a k-bipartite hypermap is also alledvertex-bipartite if k = 0, edge-bipartite if k = 1, and fae-bipartite if k = 2.A hypermap H is orientable if and only if its underlying surfae is orientable. Sine
∆+∩∆î = ∆+∩∆i = ∆î∩∆î (see Setion 1.2), an orientable hypermap H is ∆k̂-onservativeif and only if H is ∆k-onservative; a non-orientable hypermap annot be simultaneously ∆k̂-onservative and ∆k-onservative. A hypermap H is bipartite if and only if we an divideits set of verties into two parts so that onseutive verties around an edge or a fae are inalternate parts, that is, if for all ω ∈ ΩH, the verties ontaining ω and ωh0 are in di�erentparts. A hypermap H is pseudo-orientable if we an give orientations to the verties so thatonseutive verties around an edge or a fae have di�erent orientations, that is, if for all
ω ∈ ΩH, the verties ontaining ω and ωh0 have di�erent orientations.Lemma 1.3.6. If H is bipartite or pseudo-orientable, then all edges and all faes have evenvalenies.Proof. Let Θ be ∆0̂ or ∆0, H a Θ-onservative hypermap, ω ∈ ΩH, and H = Stab∆(ω). If mand n are the valenies of the edge and the fae ontaining the �ag ωg, then (R2R0)

m, (R0R1)
n ∈

Stab∆(ωg) = Hg ⊆ Θg = Θ. In both ases m and n must be even.Let Θ be a normal subgroup of ∆ and H a Θ-onservative hypermap. An automorphism
ϕ ∈ Aut(H) is said Θ-onservative if it preserves the Θ-orbits on ΩH = ∆/rH, that is, if forall Hg ∈ ∆/rH, Hg and (Hg)ϕ are in the same Θ-orbit. Sine Θ is a normal subgroup of ∆ontaining H, Θ ontains H∆ and so Θ/H∆ is a normal subgroup of ∆/H∆ = Mon(H). Sineevery overing is determined by the image of a �ag, we get the following result.Lemma 1.3.7. Let Θ be a normal subgroup of ∆ and H a Θ-onservative hypermap withhypermap subgroup H. An automorphism ϕ of H is Θ-onservative if and only if Hϕ ∈
H · Θ/H∆.Proof. Only the neessary ondition needs to be proved. Let Hϕ = Ht, with t ∈ Θ. Then,for all g ∈ ∆, tg ∈ Θg = Θ and (Hg)ϕ = Hϕg = Htg = Hgtg ∈ Hg · Θ/H∆.The set of all Θ-onservative automorphisms of a Θ-onservative hypermap H forms agroup under omposition denoted by AutΘ(H). The groups of ∆+- and ∆+00̂-onservativeautomorphisms of H are also denoted by Aut+(H) and Aut+00̂(H), respetively.Now let Θ be a normal subgroup of ∆ of index 2. Then every Θ-onservative hypermap
H has exatly two Θ-orbits. An automorphism ϕ of H is alled Θ-preserving if ϕ stabilizesthe two orbits, and is alled Θ-reversing if ϕ interhanges the two orbits. We also say that anautomorphism ϕ of an orientable hypermap is orientation-preserving if ϕ is ∆+-reversing, andorientation-reversing if ϕ is ∆+-reversing. The group of orientation-preserving automorphismsof an orientable hypermap H, Aut+(H), is often alled the rotation group of H.When H⊳Θ, H is alled Θ-regular . If H is Θ-regular but not regular, H is alled Θ-hiral .We say that H is orientably-regular if H is ∆+-regular, orientably-hiral if H is ∆+-hiral,bipartite-regular if H is ∆0̂-regular, bipartite-hiral if H is ∆0̂-hiral, pseudo-orientably-regularif H is ∆0-regular and pseudo-orientably-hiral if H is ∆0-hiral.More generally, given k ∈ {0, 1, 2}, we say that H is k-bipartite-regular if H is ∆k̂-regular,
k-bipartite-hiral if H is ∆k̂-hiral, k-pseudo-orientably-regular if H is ∆k-regular, and k-pseudo-orientably-hiral if H is ∆k-hiral. A k-bipartite-regular (resp. k-bipartite-hiral)



1.3 Hypermap subgroups 11hypermap is also alled vertex-bipartite-regular (resp. vertex-bipartite-hiral) if k = 0, edge-bipartite-regular (resp. edge-bipartite-hiral) if k = 1, and fae-bipartite-regular (resp. fae-bipartite-hiral) if k = 2.The group of Θ-onservative automorphisms of a Θ-onservative hypermap H, AutΘ(H),is isomorphi to NΘ(H)/H. When H is Θ-regular, NΘ(H) = Θ and so AutΘ(H) is isomorphito Θ/H. The hypermap H is Θ-regular if and only if its Θ-onservative automorphism group
AutΘ(H) ats transitively on eah Θ-orbit in ΩH.A hypermap H is rotary (see [72℄ for maps) if there is ω ∈ ΩH and υ, ϕ ∈ Aut(H) with theproperty that υ and ϕ ylially permute the onseutive edges inident to the vertex v andthe fae f ontaining ω, respetively. In other words, a hypermap is rotary if the normalizerin ∆ of a hypermap subgroup ontains ∆+. An orientable hypermap H is rotary if and onlyif H is orientably-regular; a non-orientable hypermap H is rotary if and only if H is regular(see [33, 72℄ for maps). A hypermap H is said re�exible if its automorphism group has anorientation-reversing automorphism and hiral or irre�exible otherwise ([33, 49℄). Orientably-regular maps and hypermaps have often been alled �regular� [3, 33, 28, 25, 26, 27℄, whileregular maps and hypermaps have been alled �re�exible� [33℄.Following [8℄, a hypermap H is alled restritedly-regular if H is Θ-regular for some normalsubgroup Θ with �nite index in ∆. If H ⊳ Θ and Θ ⊳ ∆, then

H ⊆ Θ ⊆ (N∆(H))∆ ⊆ N∆(H),that is, when H is restritedly-regular, the subgroup (N∆(H))∆, alled regularity-subgroup of
H, is the largest normal subgroup of ∆ in whih H is normal.More generally, we say that H is k-restritedly-regular if k is the index of the regularity-subgroup of H in ∆, that is, if k = [∆ : (N∆(H))∆]. The index k is alled the restrited rankof H. Sine

|ΩH| = [∆ : H] = [∆ : (N∆(H))∆] · [(N∆(H))∆ : H]

= k · [(N∆(H))∆ : H]

≤ k · [N∆(H) : (N∆(H))∆] · [(N∆(H))∆ : H]

= k · [N∆(H) : H]

= k · |Aut(H)|,when H is k-restritedly-regular, |ΩH|/|Aut(H)| ≤ k and k | |ΩH|. The restrited rank ofa hypermap H an be regarded as a numerial measure of how far H deviates from beingregular.A 1-restritedly-regular hypermap is a regular hypermap; a 2-restritedly-regular hyper-map is a Θ-hiral hypermap, where Θ is 1 of the 7 normal subgroups of ∆ of index 2.Lemma 1.3.8. A hypermap is 2-restritedly-regular if and only if the number of automor-phisms of H is equal to half the number of �ags.In [47℄, Jones alled a map M just-edge-transitive if M is 4-restritedly-regular and itsregularity subgroup is ∆0̂12̂. The lassi�ation of ∆012-regular hypermaps of small genus, aswell as their hirality groups and hirality indies an be found in [5℄.The types automorphism groups of edge-transitive maps, whih inlude all 2-restritedly-regular maps exept the ∆1̂-hiral, were lassi�ed by Wilson in [76℄ and Graver and Watkins



12 Chapter 1. Hypermapsan edge-transitive map with an edge-transitive map with regularity-automorphism group of type . . . automorphism group of type . . . -subgroups(Wilson) (Graver & Watkins)I 1 ∆IIa 2P
ex ∆+IIb 2ex ∆2

2∗ex ∆0II 2 ∆0̂

2∗ ∆2̂IId 2P ∆1IIIa 3 ∆0̂12̂IIId 5 ∆+00̂

5∗ ∆+22̂IIIe 5P ∆012Table 1.1: Correspondene between edge-transitive maps and restritedly-regular maps.in [36℄. In Table 1.1 we give the orrespondene between types of edge-transitive maps ofWilson and of Graver and Watkins, and their regularity-subgroups.Let Θ be a normal subgroup of ∆. The hypermap with hypermap subgroup Θ is alledthe trivial Θ-hypermap and denoted by TΘ. It is a regular hypermap with [∆ : Θ] �agswhih may have boundary. In �5 of [13℄, Breda and Jones lassify the 16 trivial Θ-hypermapswith abelian automorphism group. Their hypermap subgroups are the 16 normal subgroupsof ∆ ontaining ∆′ (see Setion 1.2). By Lemma 1.3.1, a hypermap H is Θ-onservative ifand only if H overs TΘ. Let H be a Θ-onservative hypermap, ϕ a overing from H to TΘand {v1, . . . , vp}, {e1, . . . , eq}, {f1, . . . fr} the sets of verties, edges, faes of TΘ, respetively.We reall that ϕ maps k-faes of H to k-faes of TΘ. We say that H is Θ-uniform if for all
k ∈ {0, 1, 2}, all k-faes ofHmapped to a k-fae of TΘ have the same valeny. To put it anotherway, a Θ-onservative hypermap H is Θ-uniform if for all k ∈ {0, 1, 2}, k-faes ontaining �agsin the same Θ-orbit have the same valeny. When H is a Θ-uniform hypermap suh that allverties of H mapped to the vertex vi of TΘ have valeny li, all edges of H mapped to theedge ej of TΘ have valeny mj and all faes of H mapped to the fae fk of TΘ have valeny
nk, we say that H has Θ-type (l1, . . . , lp;m1, . . .mq;n1, . . . nr). We may assume, without lossof generality, that l1 ≤ · · · ≤ lp, m1 ≤ · · · ≤ mq and n1 ≤ · · · ≤ nr. A hypermap is alledbipartite-uniform if it is ∆0̂-uniform. The bipartite-type of a bipartite-uniform hypermap Bis its ∆0̂-type (l1, l2;m;n), where l1 and l2 are the valenies (not neessarily distint) of theverties of B, and m and n are the valenies of the edges and the faes of B. Sine B isbipartite-uniform, B is bipartite and, by Lemma 1.3.6, m and n are even. Moreover, a ∆k̂-uniform hypermap is alled k-bipartite-uniform; we also use the terms vertex-bipartite-uniform,edge-bipartite-uniform and fae-bipartite-uniform instead of 0-bipartite-uniform, 1-bipartite-uniform and 2-bipartite-uniform, respetively.Lemma 1.3.9. Let Θ be a normal subgroup of ∆ and H a Θ-onservative hypermap.1. If H is Θ-regular, then H is Θ-uniform.



1.4 The Euler formula and the Hurwitz bound 132. If Θ is ∆+, ∆0, ∆1, ∆2 or ∆012, then H is Θ-uniform if and only if H is uniform.3. If Θ is ∆+00̂, then H is ∆+00̂-uniform if and only if H is bipartite-uniform.Proof. 1. Let k ∈ {0, 1, 2}, ω ∈ ΩH, H = Stab∆(ω) and g ∈ Θ. If H is Θ-regular, then H ⊳ Θand hene Hg = H. In partiular, the k-faes ontaining ω and ωg have the same valeny.2. and 3. One an easily see that the hypermaps TΘ, where Θ is ∆+, ∆0, ∆1 or ∆2, have 1vertex, 1 edge and 1 fae; the hypermaps T∆0̂ and T∆+00̂ have 2 verties, 1 edge and 1 fae.A uniform hypermap is k-bipartite-uniform if and only if it is k-bipartite. Examples of
Θ-uniform hypermaps that are not Θ-regular an be found in Chapter 4.1.4 The Euler formula and the Hurwitz boundA theorem of Hurwitz [38℄ (f. [27, 18, 61℄) states that an upper bound for the number ofonformal automorphisms of a ompat Riemann surfae with genus g greater than one (thatis, homeomorphisms of the surfae onto itself preserving the loal struture) is 84(g − 1).It has been proved by Jones and Singerman [49℄ that the group of orientation-preservingautomorphisms of a map M on an orientable surfae of genus g is isomorphi to a groupof onformal automorphisms of a ompat Riemann surfae with the same genus, and henebounded by 84(g − 1). Moreover, the number of automorphism of a map M is bounded by
168(g − 1), if M is orientable, and by 84(g − 2), otherwise (see, for instane, Theorem 4.2.2of [61℄).Our aim in this setion is to present methods for �nding all possible types (resp. bipartite-types) of uniform (resp. bipartite-uniform) hypermaps on a given surfae. We give a relationbetween the Euler harateristi, number of �ags and type (resp. bipartite-type) of a uniform(resp. bipartite-uniform) hypermap, and then we use it to �nd bounds for the numbers of �agsof uniform (resp. bipartite-uniform) hypermaps with a given negative Euler harateristi.Using the well-known Euler (polyhedral) formula one an easily get the following result.Lemma 1.4.1 (Euler formula for hypermaps). Let H be a hypermap with V verties, E edges,
F faes and Euler harateristi χ. Then

χ = V + E + F − |ΩH|
2

. (1.2)When H is uniform of type (l,m, n), V = |ΩH|/2l, E = |ΩH|/2m and F = |ΩH|/2n.Replaing the values of V , E and F in formula (1.2), we get:Corollary 1.4.2 (Euler formula for uniform hypermaps). Let H be a uniform hypermap oftype (l,m, n) with Euler harateristi χ. Then
χ =

|ΩH|
2

(
1

l
+

1

m
+

1

n
− 1

)
. (1.3)When H is bipartite-uniform of bipartite-type (l1, l2;m;n), eah ∆0̂-orbit has |ΩH|/2 �ags,and so the numbers of verties in the ∆0̂-orbits are |ΩH|/4l1 and |ΩH|/4l2. Then H has

V = |ΩH|/4l1 + |ΩH|/4l2 verties, E = |ΩH|/2m edges and F = |ΩH|/2n faes. Replaing thevalues of V , E and F in formula (1.2), we get:



14 Chapter 1. HypermapsCorollary 1.4.3 (Euler formula for bipartite-uniform hypermaps). Let H be a bipartite-uniform hypermap of bipartite-type (l1, l2;m;n) with Euler harateristi χ. Then
χ =

|ΩH|
2

(
1

2l1
+

1

2l2
+

1

m
+

1

n
− 1

)
. (1.4)Lemma 1.4.4. If H is a hypermap suh that all verties have valeny 1, then H is a uniformhypermap on the sphere of type (1, k, k), where k is the number of verties. Furthermore, His regular.Proof. If all verties have valeny 1, then R1R2 ∈ Hg, for all g ∈ ∆, so R1R2 ∈ H∆. Conse-quently, H∆R1 = H∆R2 and

Mon(H) = ∆/H∆ = 〈H∆R0, H∆R1, H∆R2〉 = 〈H∆R2, H∆R0〉 = 〈H∆R0, H∆R1〉. (1.5)Sine Mon(H) ats transitively on ΩH, H has exatly one 〈H∆R2, H∆R0〉-orbit and one
〈H∆R0, H∆R1〉-orbit, that is, 1 edge and 1 fae, both with valenies k := |ΩH|/2. Obvi-ously, H is uniform of type (1, k, k) and has k verties, 1 edge and 1 fae. Finally, usingthe Euler formula for hypermaps (Lemma 1.4.1), we see that χH = V + E + F − |ΩH|/2 =
|ΩH|/2 + 1 + 1 − |ΩH|/2 = 2.Now assume that H is a uniform hypermap of type (l,m, n). By Corollary 1.4.2, His imbedded on a surfae with Euler harateristi greater than, equal to, or smaller than 0depending on whether 1/l+1/m+1/n is greater than, equal to, or smaller than 1, respetively.Lemma 1.4.5. Let l, m, n be positive integers suh that l ≤ m ≤ n, and S = 1

l + 1
m + 1

n .Then1. S > 1 if and only if (l,m, n) is (1, j, k), (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5), j, k ∈ N;2. S = 1 if and only if (l,m, n) is (2, 3, 6), (2, 4, 4) or (3, 3, 3);3. S < 1 if and only if S ≤ 1
2 + 1

3 + 1
7 = 41

42 .Proof. 1. When S > 1, 3/l ≥ S > 1, and so l < 3. If l = 1, then S > 1; else, if l = 2, then
2/m ≥ 1/m+ 1/n > 1/2 and hene m < 4. Then m = 2, or m = 3 and n < 6.2. When S = 1, 3/l ≥ S = 1 > 1/l, and so 1 < l ≤ 3. If l = 2, then 2/m ≥ 1/m + 1/n =
1/2 > 1/m, so 2 < m ≤ 4 and n = 2m/(m − 2). Then m = 3 and n = 6, or m = n = 4. If
l = 3, then 1 = 3/l ≥ S = 1 implies that l = m = n = 3.3. Assume that l,m, n are positive integers suh that l ≤ m ≤ n and S < 1. Then:(a) if l = 2, m = 3 and n > 6, then S ≤ 1

2 + 1
3 + 1

7 = 41
42 ;(b) if l = 2, m = 4 and n > 4, then S ≤ 1

2 + 1
4 + 1

5 = 19
20 ;() if l = 2 and m > 4, then S ≤ 1

2 + 1
5 + 1

5 = 9
10 ;(d) if l = 3 and n > 3, then S ≤ 1

3 + 1
3 + 1

4 = 11
12 ;(e) if l > 3, then S ≤ 1

4 + 1
4 + 1

4 = 3
4 .Using Corollary 1.4.2 together with Lemma 1.4.5, we get the following well-known result.Theorem 1.4.6 (Hurwitz bound for uniform hypermaps with negative Euler harateristi).If H is a uniform hypermap with negative Euler harateristi χ, then |ΩH| ≤ −84χ.



1.5 Duality 15Now we determine bounds for the number of �ags of a bipartite-uniform hypermap withgiven negative Euler harateristi.Let B be a bipartite-uniform hypermap of type (l1, l2;m;n). Aording to Lemma 1.3.6,
m and n are even. Let (a, b, c, d) = (l1, l2,m/2, n/2). By Corollary 1.4.3, H is imbedded on asurfae with Euler harateristi > 0, = 0 or < 0 depending on whether 1/a+1/b+1/c+1/dis greater than, equal to, or smaller than 2, respetively.Lemma 1.4.7. Let a, b, c and d be positive integers suh that a ≤ b ≤ c ≤ d, and T =
1
a + 1

b + 1
c + 1

d . Then:1. T > 2 if and only if (a, b, c, d) is (1, 1, j, k), (1, 2, 2, k), (1, 2, 3, 3), (1, 2, 3, 4) or (1, 2, 3, 5),where j, k ∈ N;2. T = 2 if and only if (a, b, c, d) is (1, 2, 3, 6), (1, 2, 4, 4), (1, 3, 3, 3) or (2, 2, 2, 2);3. T < 2 if and only if T ≤ 1
1 + 1

2 + 1
3 + 1

7 = 83
42 .Proof. Let S = 1

b + 1
c + 1

d . Then:(a) if a = 1, then T > 2, = 2 or < 2 if and only if S > 1, = 1 or < 1, respetively;(b) if a = b = c = d = 2, then T = 2;() if a = 2 and d > 2, then T ≤ 1
2 + 1

2 + 1
2 + 1

3 = 11
6 ;(d) if a > 2, then T ≤ 1

3 + 1
3 + 1

3 + 1
3 = 4

3 .Now the result follows from Lemma 1.4.5.Finally, using Corollary 1.4.3 together with Lemma 1.4.7, we get:Theorem 1.4.8 (Hurwitz bound for bipartite-uniform hypermaps with negative Euler har-ateristi). If H is a bipartite-uniform hypermap with negative Euler harateristi χ, then
|ΩH| ≤ −168χ.1.5 DualityEvery automorphism θ of ∆ gives rise to an operation on hypermaps by transforming a hyper-map H with hypermap subgroup H, to its operation-dual , Dθ(H), with hypermap subgroup
Hθ (see [41, 43, 44℄ for more details), that is, if H = (∆/rH,H∆R0, H∆R1, H∆R2), then

Dθ(H) = (∆/rHθ, (Hθ)∆R0, (Hθ)∆R1, (Hθ)∆R2)
= (∆/rHθ,H∆θR0, H∆θR1, H∆θR2).When θ is an inner automorphism, H and Hθ are onjugate in ∆ and, by Corollary 1.3.2, Hand Dθ(H) are isomorphi. Eah permutation σ ∈ S{0,1,2} indues an outer automorphism(that is, a non-inner automorphism) σ : ∆ → ∆ suh that Riσ = Riσ, for all i = 0, 1, 2. Byabuse of language, we speak of Dσ, meaning the operator Dσ. These operations, presentedby Mahì in [52℄, transform one hypermap H to another by renaming its verties, edges andfaes. To be more preise, the k-fae of H ontaining the �ag Hg orresponds to the kσ-faeof Dσ(H) ontaining Hσgσ. In partiular, they have the same valeny. James [41℄ showedthat the operations on hypermaps form an in�nite group, Out(∆), isomorphi to PGL2(Z)ontaining Mahì's operations.



16 Chapter 1. HypermapsLemma 1.5.1. Let σ ∈ S{0,1,2} and σ : ∆ → ∆ de�ned as above. Then ∆+σ = ∆+,
∆k̂σ = ∆

kσ and ∆kσ = ∆kσ, for all k ∈ {0, 1, 2}.Proposition 1.5.2 (Properties of Dσ). Let H, G be hypermaps and σ, τ ∈ S{0,1,2}. Then:1. D1(H) = H; Dτ (Dσ(H)) = Dστ (H);2. H → G if and only if Dσ(H) → Dσ(G); H ∼= G if and only if Dσ(H) ∼= Dσ(G);3. H is Θ-onservative if and only if Dσ(H) is Θσ-onservative;4. H is Θ-uniform if and only if Dσ(H) is Θσ-uniform;5. H is Θ-regular if and only if Dσ(H) is Θσ-regular;6. H and Dσ(H) have the same underlying surfae;7. Aut(H) ∼= Aut(Dσ(H)) and Mon(H) ∼= Mon(Dσ(H)).As an immediate orollary to Proposition 1.5.2 we getCorollary 1.5.3. 1. H is uniform (resp. k-bipartite-uniform) if and only if Dσ(H) isuniform (resp. kσ-bipartite-uniform);2. H is regular (resp. orientably-regular, k-pseudo-orientably-regular, k-bipartite-regular)if and only if Dσ(H) is regular (resp. orientably-regular, kσ-pseudo-orientably-regular,
kσ-bipartite-regular);3. Every k-pseudo-orientably-regular hypermap is uniform.This result shows that, up to duality, a 2-restritedly-regular hypermap is orientably-hiral, pseudo-orientably-hiral or bipartite-hiral. Consequently, the lassi�ation of all 2-restritedly-regular hypermaps on a surfae S an be derived from the lassi�ation of these3 types of hypermaps on S.The 2-skeleton of a onvex polyhedron in R

3 an be viewed as a map on the sphere. Inpartiular, the Platoni solids give rise to 5 regular maps on the sphere. For simpliity, wewill not di�erentiate these maps from the orresponding Platoni solids. We denote by T , C,
O, D and I the tetrahedron, the ube (or hexahedron), the otahedron, the dodeahedronand the iosahedron. These maps have type (3, 2, 3), (3, 2, 4), (4, 2, 3), (3, 2, 5) and (5, 2, 3),respetively. It is well-known that if H is one of these hypermaps and (l,m, n) is the typeof H, then H has hypermap subgroup 〈(R1R2)

l, (R2R0)
m, (R0R1)

n〉∆, automorphism group
Aut(H) ∼= ∆(l,m, n), and that T ∼= D(02)(T ), O ∼= D(02)(C) and I ∼= D(02)(D). For moreinformation on these hypermaps, see Setion 2.1.Given k ∈ N, the dihedral hypermap of order k, Dk, and the polygon of order k, Pk, are theregular hypermaps on the sphere of type (k, k, 1) and (2, 2, k), and with hypermap subgroup
〈(R1R2)

k, (R2R0)
k, R0R1〉∆ and 〈(R1R2)

2, (R2R0)
2, (R0R1)

k〉∆, respetively. In Figure 1.1we display D8 and P4. The star hypermap of order k is the hypermap Sk = D(02)(Dk). Thedihedral hypermap of order k has 2k �ags, 1 vertex, 1 edge and k faes; the polygon of order
k has 4k �ags, k verties, k edges and 2 faes. Using Corollary 1.4.2 we an see that both Dkand Pk are on the sphere. In [15℄, Breda and Jones denoted the hypermaps Pk (with k odd)and D(01)(Dk) by D⊖

k and D∗
k, respetively; Wilson [73℄ denoted the hypermap Pk by εk. As



1.6 Construting bipartite hypermaps 17remarked in [13℄, S1
∼= D1, S2, P1

∼= D2 and P2 are hypermaps on the sphere with hypermapsubgroups ∆+, ∆+00̂, ∆+22̂ and ∆′, respetively. In other words, those hypermaps are thehypermaps T∆+ , T∆+00̂ , T∆+22̂ and T∆′ .Coxeter and Moser [33℄ denoted the regular hypermaps T , C, O, D, I, P2k and D(02)(P2k)by {3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}, {2k, 2} and {2, 2k}, respetively.
D

8
P4Figure 1.1: The dihedral hypermap D8 and the polygon P4.A Petrie polygon of a hypermap H is a 〈R0R1R2〉-orbit on ΩH. The length of a Petriepolygon is its ardinality. Naturally, if H is regular, all Petrie polygons of H have the samelength. When M is a map suh that all verties of M have valeny greater than 2, a Petriepolygon of M is just a `zig-zag' yle of edges in whih every two onseutive edges belong to afae but no three onseutive edges belong to the same fae. Owing to this, the automorphismgroup of a regular map M is a transitive permutation representation of the abstrat group

Gp,q,r = 〈a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)2 = (abc)r = 1〉de�ned by Coxeter in [29℄. It is well-known that G3,3,4 ∼= S4, G3,4,6 ∼= S4 × C2, G3,5,5 ∼= A5,
G3,5,10 ∼= A5 × C2 and G2,k,2k ∼= Dk × C2 (see Table 1 of [30℄, for instane). When k is even,
G2,k,k ∼= G2,k,2k ∼= Dk × C2.1.6 Construting bipartite hypermapsBy the Reidemeister-Shreier rewriting proess [42℄ it an be shown that

∆0̂ ∼= C2 ∗ C2 ∗ C2 ∗ C2 = 〈R1〉 ∗ 〈R2〉 ∗ 〈R1
R0〉 ∗ 〈R2

R0〉.As a onsequene we have several epimorphisms from ∆0̂ to ∆.Let ϕ : ∆0̂ → ∆ be an epimorphism. Then, if H is a subgroup of ∆ and g ∈ ∆, then
Hϕ−1 and Hgϕ−1 are onjugate subgroups of ∆0̂ and hene onjugate subgroups of ∆. Afterall, if g = dϕ, then Hgϕ−1 = Hdϕϕ−1 = (Hϕ−1)d. In other words, given an epimorphism
ϕ : ∆0̂ → ∆ and a hypermap H with hypermap subgroup H we an onstrut anotherhypermap Hϕ−1 with hypermap subgroup Hϕ−1.

Hϕ−1






∆
2

∆0̂
ϕ

// ∆

Hϕ−1 // H






H



18 Chapter 1. HypermapsLemma 1.6.1. Let ϕ : ∆0̂ → ∆ be an epimorphism and H and G hypermaps. Then:1. Hϕ−1 is bipartite hypermap with twie the number of �ags of H.2. Hϕ−1 is bipartite-regular if and only if H is regular.3. If H overs G, then Hϕ−1 overs Gϕ−1.4. If H is isomorphi to G, then Hϕ−1 is isomorphi to Gϕ−1.Proof. Let H and G be hypermap subgroups of H and G.1. Clearly, Hϕ−1 ≤ ∆ϕ−1 = ∆0̂ and hene Hϕ−1 is ∆0̂-onservative, that is, bipartite. ByProposition A.1.1, [∆0̂ : Hϕ−1] = [∆ : H] and hene
|Ω

Hϕ−1 | = [∆ : Hϕ−1] = [∆ : ∆0̂][∆0̂ : Hϕ−1] = 2[∆ : H] = 2|ΩH|.2. When ϕ is onto, Hϕ−1 is bipartite-regular ⇔ Hϕ−1
⊳ ∆0̂ ⇔ H ⊳ ∆ ⇔ H is regular.3. If H ⊆ Gg and g = dϕ, for some d ∈ ∆0̂, then Hϕ−1 ⊆ Ggϕ−1 = Gdϕϕ−1 = (Gϕ−1)d.4. Follows from 3.Among many possible anonial epimorphisms ϕ : ∆0̂ → ∆, there are two, ϕ

W
and ϕ

P
,de�ned by

R1ϕW
= R1, R2ϕW

= R2, R1
R0ϕ

W
= R0, R2

R0ϕ
W

= R2, (1.6)
R1ϕP

= R1, R2ϕP
= R2, R1

R0ϕ
P

= R0, R2
R0ϕ

P
= R0, (1.7)that indue very interesting onstrutions. The �rst onstrution gives rise to the orre-spondene between hypermaps and biparte maps desribed by Walsh in [67℄. We denote by

Walsh(H) the hypermap Hϕ
W

−1 and by Pin(H) the hypermap Hϕ
P

−1 . In Figure 1.2 weillustrate these 2 onstrutions.Lemma 1.6.2. kerϕ
W

= 〈R2R2
R0〉∆0̂

= 〈R2R2
R0〉∆ and kerϕ

P
= 〈R1

R0R2
R0〉∆0̂.Let ψ : ∆ → ∆0̂ be the group homomorphism de�ned by

R1ψ = R1, R2ψ = R2, R0ψ = R1
R0 . (1.8)Sine RiψϕW

= Ri = RiψϕP
, for every i ∈ {0, 1, 2}, ψϕ

W
= 1∆ = ψϕ

P
and ψ is injetive.Proposition 1.6.3. Let ϕ be ϕ

W
or ϕ

P
. Then ∆+ϕ−1 = ∆+ ∩ ∆0̂.Proof. We use indution on ∆0̂ = 〈R1, R2, R1

R0 , R2
R0〉 to prove that for all g ∈ ∆0̂, g ∈

∆+ϕ−1 if and only if g ∈ ∆+.Let S = {g ∈ ∆0̂ | g ∈ ∆+ϕ−1 ⇔ g ∈ ∆+}. Then:(a) R1, R2, R1
R0 , R2

R0 ∈ S, beause R1, R2, R1
R0 , R2

R0 , R1ϕ,R2ϕ, (R1
R0)ϕ, (R2

R0)ϕ /∈ ∆+.(b) For all g1, g2 ∈ S,
g1g2 ∈ ∆+ϕ−1 ⇔ (g1g2)ϕ = g1ϕg2ϕ ∈ ∆+

⇔ g1ϕ, g2ϕ ∈ ∆+ or g1ϕ, g2ϕ /∈ ∆+

⇔ g1, g2 ∈ ∆+ϕ−1 or g1, g2 /∈ ∆+ϕ−1

⇔ g1, g2 ∈ ∆+ or g1, g2 /∈ ∆+

⇔ g1g2 ∈ ∆+,
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Pin(H)

H

v e

v e

v e

Walsh(H)

Figure 1.2: Topologial onstrution of Walsh(H) and Pin(H).that is, g1g2 ∈ S.() For all g ∈ S, g−1 ∈ ∆+ϕ−1 ⇔ g ∈ ∆+ϕ−1 ⇔ g ∈ ∆+ ⇔ g−1 ∈ ∆+, that is g−1 ∈ S.By indution on ∆0̂, we have S = ∆0̂. Thus ∆+ϕ−1 = ∆+ϕ−1 ∩ ∆0̂ = ∆+ ∩ ∆0̂.1.6.1 The Walsh onstrutionLet W := Hϕ
W

−1 be a hypermap subgroup of W := Walsh(H). By Lemma 1.6.1, W is abipartite hypermap with twie the number of �ags of H whih is bipartite-regular if and onlyif H is regular. In addition, the Walsh onstrution has the following properties.Theorem 1.6.4 (Properties of Walsh). Let H be a hypermap and W := Walsh(H). Then:1. W is a map;2. W is orientable if and only if H is orientable;3. V (W) = V (H) + E(H), E(W) = |ΩH|/2, F (W) = F (H);4. W has the same underlying surfae as H;5. H is uniform of type (l,m, n) if and only if W is bipartite-uniform of bipartite-type
(l,m; 2; 2n).Proof. 1. We laim that (R2R0)

2 ∈W g, for all g ∈ ∆. Indeed, if g ∈ ∆0̂, then
[(R2R0)

2]g
−1
ϕ

W
= [(R2R0)

2ϕ
W

]g
−1ϕ

W = 1 ∈ H,so (R2R0)
2 ∈W g. Else, if g /∈ ∆0̂, then gR0 ∈ ∆0̂ and
[(R2R0)

2]g
−1
ϕ

W
= [(R0R2)

2]R0g−1
ϕ

W
= [(R0R2)

2ϕ
W

](gR0)−1ϕ
W = 1 ∈ H,that is, (R2R0)

2 ∈ W g. To put it another way, all edges have, at most, valeny 2. On theother hand, sine W ⊆ ∆0̂, W is bipartite so, by Lemma 1.3.6, all edges have even valenies.Consequently, all edges of W have valeny 2 and W is a map.2. Follows from Proposition 1.6.3.3. The mapping
{Wg | g ∈ ∆0̂} −→ ∆/rH

Wg 7−→ H(gϕ
W

)



20 Chapter 1. Hypermapsis a bijetion between the ∆0̂-orbit of ΩW ontaining W and ΩH. Sine R1ϕW
= R1 and

R2ϕW
= R2, the �ags Wg and Wg′ are in the same vertex of W if and only if H(gϕ

W
)and H(g′ϕ

W
) are in the same vertex of H. Consequently, there is a bijetive orrespondenebetween the set of verties of W in the ∆0̂-orbit ontaining the �ag W and the set of vertiesof H. Similarly, sine R1

R0ϕ
W

= R0 and R2
R0ϕ

W
= R2 the mapping

{Wg | g ∈ ∆0̂} −→ ∆/rH
Wg 7−→ H(gϕ

W
)indues a bijetive orrespondene between the set of verties of W in the ∆0̂-orbit ontainingthe �ag WR0 and the set of edges of H. Owing to this, the number of verties of W, V (W),is equal to the sum of the number of the verties of H, V (H), with the number of edges of H,

E(H).We already know that W is a map, so every edge has valeny 2 and the number of edgesof W, E(W), is |ΩW |/4 = |ΩH|/2 (see Lemma 1.6.1).Beause R1
R0ϕ

W
= R0 and R1ϕW

= R1, the fae of W ontaining the �ag Wg alsoontains WgR0 and has twie the ardinality of the �ag of H ontaining H(gϕ), if g ∈ ∆0̂, or
H(gϕ), otherwise. Thus, W and H have the same number of faes.4. Using Lemma 1.2,

χ
W

= V (W) + E(W) + F (W) − |ΩW |
2

= (V (H) + E(H)) +
|ΩH|

2
+ F (H) − |ΩH|

= V (H) + E(H) + F (H) − |ΩH|
2

= χ
H
.5. Follows from the proof of 3.Theorem 1.6.5. The hypermap H is a bipartite map if and only if H ∼= Walsh(G), for somehypermap G. Moreover, H is bipartite-uniform of type (l,m; 2; 2n) if and only if G is uniformof type (l,m, n); H is bipartite-regular of type (l,m; 2; 2n) if and only if G is regular of type

(l,m, n).Proof. Only the neessary ondition needs to be proved. If H is bipartite, then H ⊆ ∆0̂.Sine H is a map, ((R2R0)
2)g ∈ H for all g ∈ ∆, so kerϕ

W
= 〈(R2R0)

2〉∆ ⊆ H. Beause ofthis, Hϕ
W
ϕ

W

−1 = H kerϕ
W

= H and hene H ∼= Walsh(G) where G is the hypermap withhypermap subgroup G = Hϕ
W
.Theorem 1.6.6. 1. Walsh(D(01)(H)) ∼= Walsh(H).2. If Walsh(H) ∼= Walsh(G), then H ∼= G or H ∼= D(01)(G).Proof. If H is a hypermap subgroup of H, then Hϕ

W

−1 and H(01)ϕ
W

−1 are hypermap sub-groups of Walsh(H) and Walsh(D(01)(H)), respetively. Sine
R1ϕW

(01) = R0 = R1
R0ϕ

W
, R1

R0ϕ
W

(01) = R1 = R1ϕW
,

R2ϕW
(01) = R2 = R2

R0ϕ
W
, R2

R0ϕ
W

(01) = R2 = R2ϕW
,



1.6 Construting bipartite hypermaps 21we have that gϕ
W

(01) = gR0ϕ
W
, for all g ∈ ∆0̂.1. Sine

g ∈ H(01)ϕ
W

−1 ⇔ gϕ
W

(01) ∈ H ⇔ gR0ϕ
W

∈ H ⇔ g ∈ (Hϕ
W

−1)R0 ,

H(01)ϕ
W

−1 = (Hϕ
W

−1)R0 . Hene, Walsh(D(01)(H)) and Walsh(H) are isomorphi.2. Let H and G be hypermap subgroups of H and G. Assume that Walsh(H) ∼= Walsh(G).Then Hϕ
W

−1 = (Gϕ
W

−1)g, for some g ∈ ∆. If g ∈ ∆0̂, then
H = Hϕ

W

−1ϕ
W

= (Gϕ
W

−1)gϕ
W

= (Gϕ
W

−1ϕ
W

)gϕW = GgϕWand H ∼= G; else if g /∈ ∆0̂, then R0g ∈ ∆0̂,
H = Hϕ

W

−1ϕ
W

= (Gϕ
W

−1)gϕ
W

= (Gϕ
W

−1)R0R0gϕ
W

= [(Gϕ
W

−1)R0ϕ
W

]R0gϕW = (G(01)ϕ
W

−1ϕ
W

)R0gϕW = (G(01))R0gϕW ,and H ∼= D(01)(G).Remark 1.6.7. Walsh(Dk) ∼= D(02)(Pk) and Walsh(Pk) ∼= P2k, for all k ∈ N.Given a hypermap H, we an onstrut a map M, alled the medial map of H, in thefollowing way. The set of verties of M is the set of edges of H, and two verties of M areonneted by an edge if and only if the orresponding edges ofH are both inident to a ommonvertex v of H and a ommon fae f of H. The set of faes of M orresponds in a natural wayto the union of the sets of verties and faes of H. This onstrution is an extension of thewell-known medial map of a map. We denote the medial map of H by Med(H). One an easilysee that Med(H) is a fae-bipartite hypermap suh that Med(H) = D(02)(Walsh(D(12)(H))).1.6.2 The Pin onstrutionLet P := Hϕ
P

−1 be a hypermap subgroup of P := Pin(H). Like in the previous onstrution,Lemma 1.6.1 ensures that P is a bipartite hypermap with twie the number of �ags of H andthat P is bipartite-regular if and only if H is regular. In addition, the Pin onstrution hasthe following properties.Theorem 1.6.8 (Properties of Pin). Let H be a hypermap and P := Pin(H). Then:1. All verties in one ∆0̂-orbit of P have valeny 1;2. P is orientable if and only if H is orientable,3. V (P) = V (H) + |ΩH|/2, E(P) = E(H), F (P) = F (H);4. P has the same underlying surfae as H,5. H is uniform of type (l,m, n) if and only if P is bipartite-uniform of bipartite-type
(1, l; 2m; 2n).



22 Chapter 1. HypermapsProof. 1. We laim that all verties in the same ∆0̂-orbit of the vertex ontaining the �ag
PR0 have valeny 1. To prove this, we only need to show that R1R2 ∈ PR0g, for all g ∈ ∆0̂.Given g ∈ ∆0̂, gR0 also belongs to ∆0̂ and

(R1R2)
g−1R0ϕ

P
= ((R1R2)

R0)(g
R0 )−1

ϕ
P

= ((R1R2)
R0ϕ

P
)(g

R0 )−1ϕ
P = 1 ∈ H,and hene R1R2 ∈ (Hϕ

P

−1)R0g = PR0g, for all g ∈ ∆0̂.2. Follows from Proposition 1.6.3.3. Similar to the proof of 3 of 1.6.4.4. Using Lemma 1.2,
χP = V (P) + E(P) + F (P) − |ΩP |

2

=

(
V (H) +

|ΩH|
2

)
+ E(H) + F (H) − |ΩH|

= V (H) + E(H) + F (H) − |ΩH|
2

= χH.5. Similar to the proof of 5 of 1.6.4.Theorem 1.6.9. The hypermap H is a bipartite hypermap suh that all verties in one ∆0̂-orbit have valeny 1 if and only if H ∼= Pin(G), for some hypermap G. Moreover, H is bipartite-uniform of type (1, l; 2m; 2n) if and only if G is uniform of type (l,m, n); H is bipartite-regularof type (1, l; 2m; 2n) if and only if G is regular of type (l,m, n).Proof. As in Theorem 1.6.5, only the neessary ondition needs to be proved. Let H bea hypermap subgroup of H. By taking HR0 instead of H if neessary, we may assume,without loss of generality, that all verties in the ∆0̂-orbit of the vertex that ontains the�ag HR0 have valeny 1, i.e, HR0gR1R2 = HR0g for all g ∈ ∆0̂. Then kerϕ
P

⊆ H, so
Hϕ

P
ϕ

P

−1 = H kerϕ
P

= H and H is isomorphi to Pin(G), where G is the hypermap withhypermap subgroup G = Hϕ
P
.Theorem 1.6.10. 1. Pin(D(12)(H)) ∼= D(12)(Pin(H)).2. If Pin(H) ∼= Pin(G), then H ∼= G.Proof. Let H be a hypermap subgroup of H. Then H(12)ϕ

P

−1 and Hϕ
P

−1(12) are hypermapsubgroups of Pin(D(12)(H)) and D(12)(Pin(H)), respetively. Sine
(R1(12))ϕ

P
= R2 = R1ϕP

(12), (R1
R0(12))ϕ

P
= R0 = R1

R0ϕ
P
(12),

(R2(12))ϕ
P

= R1 = R2ϕP
(12), (R2

R0(12))ϕ
P

= R0 = R2
R0ϕ

P
(12),we have g(12)ϕ

P
= gϕ

P
(12), for all g ∈ ∆0̂.1. Sine

g ∈ Hϕ
P

−1(12) ⇔ g(12)ϕ
P
∈ H ⇔ gϕ

P
(12) ∈ H ⇔ g ∈ H(12)ϕ

P

−1,

Hϕ
P

−1(12) = H(12)ϕ
P

−1 and hene Pin(D(12)(H)) and D(12)(Pin(H)) are isomorphi.2. Let H and G be hypermap subgroups of H and G. Assume that Pin(H) ∼= Pin(G). Then
Hϕ

P

−1 = (Gϕ
P

−1)g for some g ∈ ∆. If g ∈ ∆0̂, then
H = Hϕ

P

−1ϕ
P

= (Gϕ
P

−1)gϕ
P

= (Gϕ
P

−1ϕ
P
)gϕP = GgϕP



1.7 The operator Orient 23and H ∼= G.Now assume that g /∈ ∆0̂. We laim that all verties of H have valeny 1. Given d ∈ ∆,let a ∈ ∆0̂ suh that d = aϕ. Then R0(ga)
−1 ∈ ∆0̂ and

(R1R2)
(ga)−1

ϕ = (R1R2)
R0R0(ga)−1

ϕ = (R1R2)
R0ϕR0(ga)−1ϕ = 1 ∈ G,that is, R1R2 ∈ (Gϕ−1)ga = (Hϕ−1)a = Haϕϕ−1 = Hdϕ−1. In addition, R1R2 = (R1R2)ϕ ∈

Hdϕ−1ϕ = Hd. Thus, the vertex ofH ontaining Hd has valeny 1. By Lemma 1.4.4, H ∼= Sk.Similarly, one an see that G ∼= Sk ∼= H.Remark 1.6.11. Pin(Sk) ∼= S2k, for all k ∈ N.1.7 The operator OrientIn this setion we see how to obtain non-orientable hypermaps from orientable hypermapshaving an involutory orientation-reversing automorphism whih is not a re�etion.Given a hypermap H with hypermap subgroup H, let Orient(H) be the hypermap withhypermap subgroup H ∩ ∆+. Then Orient(H) is the smallest orientable hypermap overing
H. When H is orientable, Orient(H) is isomorphi to H. Otherwise, Orient(H) is the disjointprodut H × D1 of Breda and Jones [13℄, an extension to hypermaps of Wilson's parallelprodut of maps [74℄. Following [15℄, we also denote Orient(H) by H+ and H ∩ ∆+ by H+.Theorem 1.7.1 (Properties of Orient). Let H be a non-orientable hypermap with hypermapsubgroup H, H+ = Orient(H), H+ = H ∩ ∆+ and Θ ⊳ ∆.1. [H : H+] = 2, so H = H+ ∪ H+g, for some g ∈ H; sine our hypermaps have noboundary, g annot be a onjugate of R0, R1 or R2.2. |ΩH+ | = 2|ΩH|;3. the k-fae of H ontaining Ha and the k-faes of H+ ontaining H+a and H+ga havethe same valeny, for all a ∈ ∆, and for all k ∈ {0, 1, 2}.4. V (H+) = 2V (H), E(H+) = 2E(H), F (H+) = 2F (H);5. χ

H+ = 2χ
H
, g

H+ = g
H
− 1;6. the overing π : ∆/rH

+ → ∆/rH, H+a 7→ Ha, the automorphism of H+, ϕ : ∆/rH
+ →

∆/rH
+, H+a 7→ H+ga, and the identity automorphism of H, 1, omute aording to thefollowing diagram:

∆/rH
+

π

��

ϕ
// ∆/rH

+

π

��

∆/rH
1

// ∆/rHthat is, there is an involutory orientation-reversing automorphism ϕ of H+ whih is nota re�etion suh that ϕ ◦ π = π.7. If H is Θ-onservative, then H+ is also Θ-onservative;



24 Chapter 1. Hypermaps8. If H is Θ-uniform, then H+ is also Θ-uniform;9. If H is Θ-regular, then H+ is also Θ-regular;10. For all σ ∈ S{0,1,2}, Dσ(H+) ∼= (Dσ(H))+.Proof. 1. Follows from Corollary A.1.2.2. By 1, |ΩH+ | = [∆ : H+] = [∆ : H] · [H : H+] = 2[∆ : H] = 2|ΩH|.3. If d ∈ ∆+, then d ∈ H+ ⇔ d ∈ H = Hg ⇔ d ∈ H+. More generally, if d ∈ ∆+, then
d ∈ (H+)a = (Ha)+ ⇔ d ∈ Ha = Hga ⇔ d ∈ (H+)a = (Ha)+. The result follows by taking das (R1R2)

p, (R2R0)
q and (R0R1)

r.4. Follows from 2 and 3.5. Follows from 4. Using Lemma 1.4.1,
χ

H+ = V (H+) + E(H+) + F (H+) − |ΩH+ |
2

= 2V (H) + 2E(H) + 2F (H) − |ΩH|
= 2χ

H
.Sine H+ is orientable but H is not, χ
H+ = 2 − 2g

H+ and χ
H

= 2 − g
H
, so

g
H+ =

2 − χ
H+

2
=

2 − 2χ
H

2
= 1 − χ

H
= g

H
− 1.6. For every a ∈ ∆, (H+a)ϕπ = (H+ga)π = Hga = Ha = (H+a)π, beause g ∈ H.7. Beause H+ ⊆ H.8. Follows from 7 and 3.9. By 7 and beause

N∆(H+) = N∆(H ∩ ∆+) ⊇ N∆(H) ∩ N∆(∆+) = N∆(H) ∩ ∆ = N∆(H).10. By Lemma 1.5.1, ∆+σ = ∆+. Sine σ is bijetive,
H+σ = (H ∩ ∆+)σ = Hσ ∩ ∆+σ = Hσ ∩ ∆+ = (Hσ)+,and hene Dσ(H+) and (Dσ(H))+ are isomorphi.When H is non-orientable, Orient(H) is alled the orientable double over of H. A hy-permap K is alled antipodal (see [53, 22℄ for maps) if K is the orientable double over of anon-orientable hypermap H.Corollary 1.7.2. If H is a Θ-regular hypermap on a non-orientable surfae of genus g

H
, then

H+ = Orient(H) is a Θ-regular hypermap on an orientable surfae of genus g
H+ = g

H
− 1,with twie the numbers of �ags, verties, edges and faes of H, and having an involutory

Θ-onservative orientation-reversing automorphism ϕ whih is not a re�etion.In partiular all Θ-regular hypermaps on the projetive plane and on the Klein bottle areobtained from Θ-regular hypermaps on the sphere and on the torus, respetively. In Chapter3 we an �nd examples showing that, in general, the onverses of 7, 8 and 9 of Theorem 1.7.1are not true.



1.8 The losure over and the overing ore 25Corollary 1.7.3. If H is regular, then H+ = Orient(H) is also regular and the enter of
Aut(H+) is non-trivial, that is |Z(Aut(H+))| ≥ 2.Proof. When H is regular, H+ is also regular, Aut(H) ∼= ∆/H and Aut(H+) ∼= ∆/H+. Sine
H+ ⊆ H, the mapping ϕ : ∆/H+ → ∆/H, H+g 7→ Hg is an epimorphism, and kerϕ, beinga normal subgroup of ∆/H+ with 2 elements, is ontained in Z(∆/H+).Now we show that Orient ommutes with Walsh and Pin.Proposition 1.7.4. Let ϕ : ∆0̂ → ∆ be an epimorphism suh that ∆+ϕ−1 = ∆+ ∩∆0̂. Then
(H+)ϕ

−1 is isomorphi to (Hϕ−1
)+.Proof. By Proposition 1.6.3, (H+)ϕ−1 and (Hϕ−1)+ are hypermap subgroups of (H+)ϕ

−1 and
(Hϕ−1

)+, respetively. Sine
(H+)ϕ−1 = (H ∩ ∆+)ϕ−1 = Hϕ−1 ∩ ∆+ϕ−1 = Hϕ−1 ∩ (∆+ ∩ ∆0̂)

= (Hϕ−1 ∩ ∆0̂) ∩ ∆+ = Hϕ−1 ∩ ∆+ = (Hϕ−1)+,

(H+)ϕ
−1 and (Hϕ−1

)+ have the same hypermap subgroup, and hene are isomorphi.As a by-produt of Propositions 1.7.4 and 1.6.3, we get:Corollary 1.7.5. For every hypermap H, Walsh(H+) ∼= Walsh(H)+ and Pin(H+) ∼= Pin(H)+.1.8 The losure over and the overing oreGiven a hypermap subgroup H of a hypermap H, the ore of H in ∆, H∆, is the largestnormal subgroup of ∆ ontained in H, and the losure of H in ∆, H∆, is the smallest normalsubgroup of ∆ ontaining H. When H has �nite index in ∆, H∆ and H∆ also have �nite indexin ∆, by Remark A.1.4, respetively. These 2 normal subgroups of ∆ give rise to 2 regularhypermaps, the overing ore of H, H∆, with hypermap subgroup H∆, and the losure overof H, H∆, with hypermap subgroup H∆. The overing ore of H, H∆, is the smallest regularhypermap overing H, and the losure over of H, H∆, is the largest regular hypermap overedby H. When H is regular, H∆ = H = H∆ and H∆ = H = H∆.The next result is straightforward.Lemma 1.8.1. Let Θ be a normal subgroup of ∆ and H a hypermap. Then:1. H is Θ-onservative if and only if H∆ is Θ-onservative;2. if H is Θ-onservative, then H∆ is Θ-onservative;3. H is Θ-regular if and only if H∆ is Θ-regular;4. if H is Θ-regular, then H∆ is Θ-regular.The onverses of 2. and 4. may not be true (see Chapter 3 for ounter-examples).Remark 1.8.2. If H = (ΩH, h0, h1, h2) and G = (ΩG , g0, g1, g2) are hypermaps suh that Hovers G and G has no boundary, then H has no boundary either. Indeed, if ψ : H → G isa overing and gi is �xed-point free, then hi is also �xed-point free. When H is orientable,
H and H∆ over T∆+ = D1 and hene H and H∆ have no boundary. However, when H isnon-orientable and without boundary, H∆ may have boundary. See Setion 3.3 for examples.



26 Chapter 1. HypermapsWhen H is an orientable hypermap, H∆ and H∆ are also orientable. IfH is non-orientable,then H∆ is also non-orientable, however H∆ may be orientable. In what follows we determineonditions for seeing if the overing ore of a non-orientable hypermap is orientable or not.Lemma 1.8.3. Let H be a hypermap. Then (H+)∆ ∼= (H∆)+ and (H+)∆ ∼= (H∆)+.Theorem 1.8.4. Let H be a non-orientable hypermap. Then |ΩH∆
| ≤ |Ω(H+)∆ | and H∆ isorientable if and only if |ΩH∆

| = |Ω(H+)∆ |.Proof. Sine H+ → H, (H+)∆ → H∆ and so |ΩH∆
| ≤ |Ω(H+)∆ |. Then |ΩH∆

| = |Ω(H+)∆ | ifand only if H∆
∼= (H+)∆ ∼= (H∆)+, that is, if and only if H∆ is orientable.The next result relates the bipartite-type of a bipartite-uniform hypermap with the typeof its losure over and the type of its overing ore.Proposition 1.8.5. Let B be a bipartite-uniform hypermap of type (l1, l2;m;n).1. If B∆ has no boundary, and has type (p, q, r), then p | gcd(l1, l2), q | m and r | n.2. B∆ has type (lcm(l1, l2),m, n).Proof. 1. Follows immediately from Lemma 1.1.1.2. Sine B is bipartite-uniform and Mon(B) = ∆/B∆ = Mon(B∆), B∆R1R2 an be writtenas a produt of disjoint yles of length l1 and l2, and hene B∆R1R2 has order lcm(l1, l2).Obviously, B∆R2R0 and B∆R0R1 have orders m and n, respetively. Therefore B∆ has type

(lcm(l1, l2),m, n).1.9 Chirality groups and hirality indiesThe de�nition of the hirality group and hirality index of an orientably-regular hypermapand it basi properties are due to Breda, Jones, Nedela and �koviera [6℄. The hirality groupand the hirality index of a hypermap H an be regarded as algebrai and numerial measuresof how far H deviates from being regular. However, in this thesis we use these onepts in amore general sense.Let H be the hypermap subgroup of a hypermap H. Beause H∆ is always a normalsubgroup of H, we have a group
Υ∆(H) = H/H∆ (1.9)alled upper hirality group of H. Aording to Lemma A.1.3, Υ∆(H) is �nite if [∆ : H] is�nite. The size of Υ∆(H), whih an be omputed dividing the number of �ags of H∆ by thenumber of �ags of H, is alled the upper hirality index and is denoted by ι∆(H). Sine thenumber of �ags of H∆ is equal to the size of Mon(H), ι∆(H) = |Mon(H)|/|ΩH|. However, Hmay not be normal in H∆. Aording to Lemma A.1.5, H is normal in H∆ if and only if His restritedly-regular. The lower hirality index , denoted by ι∆(H), is the index [H∆ : H],whih is �nite whenever [∆ : H] is �nite. We an ompute ι∆(H) dividing the number of �agsof H by the number of �ags of H∆. When H is a normal subgroup of H∆, we have anothergroup, alled the lower hirality group
Υ∆(H) = H∆/H. (1.10)



1.9 Chirality groups and hirality indies 27Naturally, eah of these groups is trivial if and only if H is regular.If H is Θ-regular for some Θ ⊳2 ∆, and g ∈ ∆ \ Θ, then H∆ = HHg, H∆ = H ∩Hg (seeLemma A.1.7), H is a normal subgroup of H∆, and
Υ∆(H) = H∆/H = HHg/H ∼= Hg/(H ∩Hg) ∼= H/H∆ = Υ∆(H). (1.11)In this ase, and whenever the upper and lower hirality groups are isomorphi we denote by

Υ(H) the ommon group Υ∆(H) ∼= Υ∆(H), alled the hirality group of H, and by ι(H) theommon value ι∆(H) = ι∆(H), alled the hirality index of H.If it is lear from the ontext, we write Υ and ι instead of Υ(H) and ι(H), for short.Remark 1.9.1. When H is a Θ-regular hypermap, H∆
⊳ Θ and hene Υ∆(H) = H∆/H is anormal subgroup of Θ/H ∼= AutΘ(H), the group of Θ-onservative automorphisms of H.It follows from Corollary A.1.9 that (H∆)σ = (Hσ)∆ and (H∆)σ = (Hσ)∆, for all

σ ∈ S{0,1,2}. Consequently, the groups Υ∆(Dσ(H)) and Υ∆(H) are isomorphi, as well asthe groups Υ∆(Dσ(H)) and Υ∆(H), when H is restritedly-regular. In other words, dualhypermaps have the same upper and lower hirality groups.The following result will be very useful to ompute the hirality groups of the 2-restritedly-regular hypermaps.Lemma 1.9.2. If Θ is a normal subgroup of ∆ of index 2, H is a Θ-regular hypermap withhypermap subgroup H = 〈T 〉Θ, and g ∈ {R0, R1, R2} \ Θ, then1. H∆ = 〈T ∪ T g〉Θ;2. Υ∆(H) = 〈Htg | t ∈ T 〉Θ/H .Proof. 1. Clearly, H∆
⊳ Θ. Sine T ∪ T g ⊆ H∆

⊳ Θ, 〈T ∪ T g〉Θ ⊆ H∆. On the otherhand, 〈T ∪ T g〉g = 〈T g ∪ T g
2〉 = 〈T ∪ T g〉, so g ∈ N∆(〈T ∪ T g〉) ⊆ N∆(〈T ∪ T g〉Θ) (seeProposition A.1.6). Thus ∆ = 〈g,Θ〉 ⊆ N∆(〈T ∪ T g〉Θ), that is, 〈T ∪ T g〉Θ ⊳ ∆. Sine

H = 〈T 〉Θ ⊆ 〈T ∪ T g〉Θ ⊳ ∆, H∆ ⊆ 〈T ∪ T g〉Θ.2. Let π : Θ → Θ/H be the projetion. Sine
H∆π = 〈T ∪ T g〉Θπ

= (〈T ∪ T g〉π)Θ/H

= (H〈T ∪ T g〉/H)Θ/H

= 〈Hs | s ∈ T ∪ T g〉Θ/H
= 〈Htg | t ∈ T 〉Θ/H ,we get Υ∆(H) = H∆/H = H∆π = 〈Htg | t ∈ T 〉Θ/H .Computing the hirality group of Walsh(R) and Pin(R)In what follows we assume that ϕ is ϕ
W

or ϕ
P
, and that e is e

W
= R2R2

R0 or e
P

= R1
R0R2

R0 ,respetively. Then kerϕ = 〈e〉∆0̂ (Lemma 1.6.2) and ψ ◦ ϕ = 1∆. We also assume that R is aregular hypermap with hypermap subgroup R, and T is a subset of ∆ suh that R = 〈T 〉∆.



28 Chapter 1. HypermapsRemark 1.9.3. Beause Rϕ−1 ⊆ ∆0̂, (Rϕ−1)∆ ⊳ ∆0̂ and
Υ(Rϕ−1

) = (Rϕ−1)∆/Rϕ−1
⊳ ∆0̂/Rϕ−1 ∼= ∆/R = Aut(R), (1.12)that is, the hirality group of Rϕ−1 is isomorphi to a normal subgroup of the automorphismgroup of H. When R is orientable, R is orientably-regular and Rϕ−1 is a normal subgroup of

∆+ϕ−1 = ∆+ ∩ ∆0̂ = ∆+00̂. It follows that the normal losure of Rϕ−1, (Rϕ−1)∆, is also anormal subgroup of ∆+00̂ and
Υ(Rϕ−1

) = (Rϕ−1)∆/Rϕ−1
⊳ ∆+00̂/Rϕ−1 ∼= ∆+/R = Aut+(R), (1.13)that is, the hirality group of Rϕ−1 is isomorphi to a normal subgroup of the rotation groupof R.Sine ϕ is onto, by Proposition A.1.8, 〈e, Tψ〉∆0̂

ϕ = 〈e, Tψ〉ϕ∆ = 〈eϕ, Tψϕ〉∆ = 〈T 〉∆.Thus, Rϕ−1 , has hypermap subgroup Rϕ−1 = 〈e, Tψ〉∆0̂
ϕϕ−1 = 〈e, Tψ〉∆0̂

kerϕ = 〈e, Tψ〉∆0̂ ,beause kerϕ = 〈e〉∆0̂ ⊆ 〈e, Tψ〉∆0̂ . This proves the following result.Theorem 1.9.4 (Hypermap subgroups of Walsh(R) and Pin(R)). Let R be a regular hyper-map with hypermap subgroup R = 〈T 〉∆, for some subset T of ∆. Then W := 〈R2R2
R0 , Tψ〉∆0̂and P := 〈R1

R0R2
R0 , Tψ〉∆0̂ are hypermap subgroups of W := Walsh(R) and P := Pin(R),respetively.As one an easily see, for eah normal subgroup R of ∆ we have a group isomorphism

ϕ : ∆0̂/Rϕ−1 → ∆/R, (Rϕ−1g) 7→ R(gϕ). Indeed, ϕ is an homomorphism beause ϕ is anhomomorphism, ϕ is onto beause ϕ is onto, and ϕ is one-to-one beause for all g ∈ ∆0̂,
(Rϕ−1)g ∈ kerϕ ⇔ R(gϕ) = R ⇔ gϕ ∈ R ⇔ g ∈ Rϕ−1 ⇔ (Rϕ−1)g = Rϕ−1, that is,
kerϕ = {Rϕ−1}. Then

Υ(Rϕ−1
) ∼= (Υ(Rϕ−1

))ϕ

= ((Rϕ−1)∆/Rϕ−1)ϕ

= (〈Rϕ−1tR0 | t ∈ {e} ∪ Tψ〉∆0̂/Rϕ−1
)ϕ

= (〈Rϕ−1tR0 | t ∈ {e} ∪ Tψ〉)ϕ∆/R

= 〈(Rϕ−1tR0)ϕ | t ∈ {e} ∪ Tψ〉∆/R
= 〈R(tR0ϕ) | t ∈ {e} ∪ Tψ〉∆/R.Let αW , αP : ∆0̂ → ∆ de�ned by gαW = gψR0ϕW and gαP = gψR0ϕP . Then

R0αW
= R1, R1αW

= R0, R2αW
= R2, (1.14)and

R0αP
= R1, R1αP

= R0, R2αP
= R0. (1.15)Lemma 1.9.5. If R is a regular hypermap with hypermap subgroup R = 〈T 〉∆, then

Υ(Walsh(R)) ∼= 〈Rs | s ∈ Tα
W
〉∆/Rand

Υ(Pin(R)) ∼= 〈Rs | s ∈ {R1R2} ∪ TαP
〉∆/R.



1.10 Bipartite-regular hypermaps 29Proposition 1.9.6. Let R be a regular hypermap of type (l,m, n) with hypermap subgroup R,
X = {(R1R2)

l, (R2R0)
m, (R0R1)

n}, T a subset of ∆ ontaining X and suh that R = 〈T 〉∆,
S = T \X, d1 := gcd(l,m) and d2 := gcd(m,n). Then

Υ(Walsh(R)) ∼= 〈R(R1R2)
d1 , R(R2R0)

d1 , {Rsα
W

| s ∈ S}〉∆/Rand
Υ(Pin(R)) ∼= 〈RR1R2, R(R0R1)

d2 , {Rsα
P
| s ∈ S}〉∆/R,Proof. We have

(R1R2)
lα

W
= [(R2R0)

l]−1, (R2R0)
mα

W
= [(R1R2)

m]−1, (R0R1)
nα

W
= [(R0R1)

n]−1and
(R1R2)

lα
P

= 1, (R2R0)
mα

P
= (R0R1)

m, (R0R1)
nα

P
= [(R0R1)

n]−1.To �nish the proof, just note that if Rg ∈ ∆/R has order k, then 〈Rgp〉 = 〈Rggcd(k,p)〉.Using Proposition 1.9.6 together with Remark 1.9.3 we get:Corollary 1.9.7. Let R be a regular hypermap of type (l,m, n), W = Walsh(R), P = Pin(R),
d1 := gcd(l,m) and d2 := gcd(m,n).1. (a) If d1 = 1 and R is orientable, then Υ(W) ∼= R∆+/R = ∆+/R ∼= Aut+(R) and

W∆, having hypermap subgroup ∆+ϕ
W

−1 = ∆+00̂ is Walsh(S1) ∼= S2;(b) If d1 = 1 and R is non-orientable, then Υ(W) ∼= R∆+/R = ∆/R ∼= Aut(R), and
W∆, having hypermap subgroup ∆ϕ

W

−1 = ∆0̂, is T∆0̂, a hypermap with boundary.2. (a) If d2 = 1 and R is orientable, then Υ(P) ∼= R∆+/R = ∆+/R ∼= Aut+(R) and P∆,having hypermap subgroup ∆+ϕ
P

−1 = ∆+00̂, is Pin(S1) ∼= S2;(b) If d2 = 1 and R is non-orientable, then Υ(P) ∼= R∆+/R = ∆/R ∼= Aut(R) and
P∆, having hypermap subgroup ∆ϕ

P

−1 = ∆0̂, is T∆0̂, a hypermap with boundary;() If d2 = 2 and R is orientable and bipartite, then Υ(P) = R∆+00̂/R = ∆+00̂/R and
P∆, having hypermap subgroup ∆+00̂ϕ

P

−1, is Pin(S2) ∼= S4;(d) If d2 = 2 and R is orientable but not bipartite, then Υ(P) = R∆+00̂/R = ∆+/R ∼=
Aut+(R) and P∆, having hypermap subgroup ∆+ϕ

P

−1 = ∆+00̂, is Pin(S1) ∼= S2.1.10 Bipartite-regular hypermapsFor eah k ∈ N, let Mk be the regular map with hypermap subgroup
Mk := 〈(R1R2)

2k, (R2R0)
2, (R0R1)

2k, (R2R0)(R0R1)
−k〉∆.The map Mk, denoted by {2k, 2k}1,0 in [33℄, is an orientable regular map with 1 fae and

4k �ags formed from a single 2k-gon by identifying opposite edges orientably. The auto-morphism group of Mk is the dihedral group D2k. Sine MkR1R2 = MkR1R0(R0R1)
−k =

Mk(R0R1)
−(k+1), MkR1R2 has order 2k/ gcd(2k, k + 1) = 2k/ gcd(2, k + 1), whih is k if kis odd, and 2k if k is even. For this reason, the map Mk has type (k, 2, 2k), if k is odd, or
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(2k, 2, 2k) if k is even. In other words, M2k+1 and M2k have type (2k + 1, 2, 4k + 2) and
(4k, 2, 4k), respetively. In addition, M2k+1 has 2 verties, 2k+ 1 edges, 1 fae, euler hara-teristi χ = 2 + (2k + 1) + 1 − 2(2k + 1) = 2 − 2k (see Lemma 1.4.1) and genus g = k; M2khas 1 verties, 2k edges, 1 fae, euler harateristi χ = 1 + 2k+ 1− 4k = 2− 2k (see Lemma1.4.1) and genus g = k. Hene, on eah orientable surfae of genus g there are, at least, tworegular maps: M2g and M2g+1.The bipartite-regular hypermaps Pin(M2k+1), Pin(M2k), Walsh(M2k+1) and Walsh(M2k)have bipartite-types (1, 2k + 1; 4; 8k + 4), (1, 4k; 4; 8k), (2, 2k + 1; 2; 8k + 4) and (2, 4k; 2; 8k),respetively. The hypermap Pin(M1) ∼= S4 is regular; all others, being non-uniform, arebipartite-hiral. Beause of this, on eah orientable surfae we an �nd bipartite-hiral andhene bipartite-regular hypermaps. Using Proposition 1.9.6, one an see that

Υ(Walsh(Mk)) ∼= Aut(Mk) ∼= C2k,

Υ(Pin(M2k)) ∼= Aut+(M2k) ∼= C4kand
Υ(Pin(M2k+1)) ∼= Aut+00̂(M2k) ∼= C2k+1.We annot ensure the existene of bipartite-regular hypermaps on eah non-orientablesurfae using the Walsh and Pin onstrutions beause Walsh(H), Pin(H) andH have the sameunderlying surfae and beause there are non-orientable surfaes with no regular hypermaps(see [78℄). For instane, there are no regular hypermaps on the non-orientable surfaes withnegative harateristi 0, 1, 16, 22, 25, 37, and 46. However, the epimorphism ϕ

E
: ∆0̂ → ∆de�ned by R1ϕE

= R1, R2ϕE
= R2, R1

R0ϕ
E

= R0 and R2
R0ϕ

E
= R1 gives rise to aonstrution of bipartite hypermaps with the following properties:

• Hϕ
E

−1 is orientable if and only if H is orientable;
• V (Hϕ

E
−1

) = V (H) + F (H),
E(Hϕ

E
−1

) = V (H),
F (Hϕ

E
−1

) = F (H);
• χ(Hϕ

E
−1

) = 2(χ(H) − E(H)). Indeed
χ(Hϕ

E
−1

) = V (Hϕ
E

−1
) + E(Hϕ

E
−1

) + F (Hϕ
E

−1
) − |Ω

Hϕ
E

−1 |/2
= 2(V (H) + F (H)) − 2|ΩH|/2
= 2(χ(H) − E(H)).

• H is uniform of type (l,m, n) if and only if Hϕ
E

−1 is bipartite-uniform of bipartite-type
(l, n; l; 2n).The non-orientable regular hypermap Nk (denoted by PP2k in Chapter 3) with hypermapsubgroup Nk := 〈(R1R2)

2, (R2R0)
2, (R0R1)

2k, (R0R1)
kR2〉∆ is a hypermap on the projetiveplane of type (2, 2, 2k) with 4k �ags, k verties, k edges and 1 fae. The automorphism groupof Nk is the dihedral group D2k. Then, the hypermap Nk

ϕ
E

−1 is a non-orientable hypermapon a surfae with Euler harateristi χ(Nk
ϕ

E
−1

) = 2(χ(Nk)−E(Nk)) = 2(1−k). This showsthat we an �nd a bipartite-hiral hypermap on eah non-orientable surfae with even Eulerharateristi.The existene of bipartite-regular hypermaps on every non-orientable surfae with oddEuler harateristi remains an open problem.



Chapter 2Hypermaps on the sphereIn this hapter we lassify the 2-restritedly-regular hypermaps on the sphere using the resultsobtained in Chapter 1. It is well-known that all uniform hypermaps on the sphere are regularand hene all 2-restritedly-regular hypermaps on the sphere are bipartite-hiral.The next setion is inluded here for ompleteness.2.1 Uniform hypermaps on the sphereLet U be a uniform hypermap on the sphere of type (l,m, n). Using the Euler formula foruniform hypermaps (Corollary 1.4.2) together with Lemma 1.4.5 and Lemma 1.4.4, one ansee that the type (l,m, n) of a uniform hypermap U on the sphere is, up to duality, (1, k, k),
(2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5).The following result is well-known.Theorem 2.1.1 (Hypermap subgroups of the uniform hypermaps on the sphere). If U is auniform hypermap on the sphere of type (l,m, n), then U has hypermap subgroup N(l,m, n) =
〈(R1R2)

l, (R2R0)
m, (R0R1)

n〉∆.Proof. Let U be a hypermap subgroup of U and N := 〈(R1R2)
l, (R2R0)

m, (R0R1)
n〉∆. Then

N ⊆ U . By inspetion one an see that [∆ : N ] = [∆ : U ] and hene N = U .Corollary 2.1.2. Uniform hypermaps on the sphere of the same type are isomorphi.Thus, up to duality, the unique uniform hypermaps on the sphere are the 2 in�nite families
Dk and Pk, the tetrahedron T , the ube (or hexahedron) C and the dodeahedron D.Corollary 2.1.3 (Conservativeness of uniform hypermaps on the sphere). Let Θ⊳2 ∆. Then:1. (a) D2k−1 is Θ-onservative if and only if Θ = ∆+;(b) D2k is Θ-onservative if and only if Θ ∈ {∆+,∆2,∆2̂};2. (a) P2k−1 is Θ-onservative if and only if Θ ∈ {∆+,∆2,∆2̂};(b) P2k is Θ-onservative;3. T is Θ-onservative if and only if Θ = ∆+;4. C is Θ-onservative if and only if Θ ∈ {∆+,∆0,∆0̂};31



32 Chapter 2. Hypermaps on the sphere5. D is Θ-onservative if and only if Θ = ∆+.Proof. Given Θ ⊳ ∆, 〈(R1R2)
l, (R2R0)

m, (R0R1)
n〉∆ is a subset of Θ if and only if (R1R2)

l,
(R2R0)

m and (R0R1)
n belong to Θ.The following well-known result is also an immediate orollary of Theorem 2.1.1.Theorem 2.1.4. All uniform hypermaps on the sphere are regular.Corollary 2.1.5. If U is a uniform hypermap on the sphere, then U is Θ-regular if and onlyif U is Θ-onservative.Corollary 2.1.6. There are no 2-restritedly-regular uniform hypermaps on the sphere. Inpartiular, there are no orientably-hiral or pseudo-orientably-hiral hypermaps on the sphere.Table 2.1 lists, up to duality, all possible values (l,m, n) for the type of a uniform hypermap

U on the sphere. It also displays the numbers V of verties, E of edges, F of faes and |ΩU |of �ags of U , as well as its symmetry and rotation groups. Finally, in the last olumn, we givethe unique uniform hypermap on the sphere of type (l,m, n).
# l m n V E F |ΩU | Aut(U) Aut+(U) U
1 1 k k k 1 1 2k Dk Ck Sk
2 2 2 k k k 2 4k Dk × C2 Dk Pk
3 3 2 3 4 6 4 24 S4 A4 T
4 3 2 4 8 12 6 48 S4 × C2 S4 C
5 3 2 5 20 30 12 120 A5 × C2 A5 DTable 2.1: The uniform hypermaps on the sphere, up to duality.Beause the sphere is an orientable surfae, every hypermap on the sphere is orientable,that is, ∆+-onservative. Having in mind that ∆+kk̂ = ∆+ ∩ ∆k = ∆+ ∩ ∆k̂, Corollary 2.1.5implies that a uniform hypermap U on the sphere is ∆k-regular if and only if U is ∆k̂-regular.In Table 2.2, we display, up to duality, the Θ-regularity of the uniform hypermaps on thesphere, for eah Θ ⊳2 ∆.

# U ∆+-regular? ∆0-,∆0̂-regular? ∆1-,∆1̂-regular? ∆2-,∆2̂-regular?
1 Sk yes yes i� 2 | k no no
2 Pk yes yes i� 2 | k yes i� 2 | k yes
3 T yes no no no
4 C yes yes no no
5 D yes no no noTable 2.2: Θ-regularity of the uniform hypermaps on the sphere2.2 Bipartite-uniform hypermaps on the sphereLet B be a bipartite-uniform hypermap on the sphere of bipartite-type (l1, l2;m;n). We mayassume, without loss of generality, that l1 ≤ l2 and m ≤ n. Then, by Lemma 1.3.6, m and
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n are even. Replaing χB = 2 > 0 in the Euler formula for bipartite-uniform hypermaps(Corollary 1.4.3), one has that (a, b, c, d) = (l1, l2,m/2, n/2) is a solution of the inequation
1/a + 1/b + 1/c + 1/d > 2. Aording to Lemma 1.4.7, l1 = 1 or m/2 = 1. Using Theorems1.6.5 and 1.6.9, we get the following result.Theorem 2.2.1. If B is a bipartite-uniform hypermap on the sphere, then B ∼= Walsh(U)or B ∼= Pin(U) for some uniform hypermap U on the sphere, unique up to isomorphism.Moreover, as B is bipartite-regular if and only if U is regular, and on the sphere all uniformhypermaps are regular, then all bipartite-uniform hypermaps on the sphere are bipartite-regular.The solution (a, b, c, d) = (1, 1, j, k) of 1/a+1/b+1/c+1/d > 2 gives rise to the bipartite-types (1, 1; 2j; 2k), (1, j; 2; 2k) and (j, k; 2; 2). By Theorems 1.6.4 and 1.6.8, a bipartite-uniformhypermap B with one of these bipartite-types is isomorphi to Walsh(U) or Pin(U), where Uis a uniform hypermap on the sphere of type, up to duality, (1, j, k). By Lemma 1.4.4, j = k.Using Theorems 1.6.5 and 1.6.9 together with Corollary 2.1.2 and Lemma 1.6.1, we get:Corollary 2.2.2. Bipartite-uniform hypermaps on the sphere of the same bipartite-type areisomorphi.Table 2.3 lists, up to duality, all possible values (l1, l2;m;n) for the bipartite-type of abipartite-uniform hypermap B on the sphere, whih are given by Lemma 1.4.7. We also displaythe numbers V1 and V2 of verties in eah ∆0̂-orbit, E of edges, F of faes and |ΩB| of �ags.In the last olumn of Table 2.3, we give the unique bipartite-uniform hypermap with suhbipartite-type. We remark that the bipartite-uniform map of bipartite-type (1, n; 2; 2n) anbe obtained from D(12)(Dn) either via a Walsh onstrution or via a Pin onstrution. Indeed
Walsh(D(12)(Dn)) ∼= Pin(D(12)(Dn)). Notie that the hypermaps on lines 20, 21 and 22 are the2-skeletons of the ube, the rhombi triaontahedron and the rhombi dodeahedron. Theselast two are Catalan solids or Arhimedean duals (see �2.7 of [31℄); their dual polyhedrons arethe iosidodeahedron and the ubotahedron, respetively.As a by-produt of Theorems 2.1.4 and 2.2.1 we have:Theorem 2.2.3. For every Θ ⊳ ∆ with [∆ : Θ] ≤ 2, Θ-uniformity on the sphere implies
Θ-regularity.The existene of a normal subgroup Θ of ∆ for whih Θ-uniformity on the sphere does notimply Θ-regularity remains an open problem.2.3 Chirality groups and hirality indies of the 2-restritedly-regular hypermaps on the sphereAs we have mentioned before, every orientably-regular or pseudo-orientably-regular hypermapon the sphere is regular, so their hirality groups are trivial and their hirality indies are 1.In addition, all 2-restritedly-regular hypermaps on the sphere are bipartite-hiral.In this setion we ompute the hirality groups and the hirality indies of the bipartite-regular hypermaps on the sphere using the notations of Proposition 1.9.6.
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# l1 l2 m n V1 V2 E F |ΩB| B
1 1 1 2k 2k k k 1 1 4k Pin(D(02)(Dk))

2 1 2 4 2k 2k k k 2 8k Pin(Pk)
3 1 2 6 6 12 6 4 4 48 Pin(D(01)(T ))

4 1 2 6 8 24 12 8 6 96 Pin(D(01)(C))

5 1 2 6 10 60 30 20 12 240 Pin(D(01)(D))

6 1 3 4 6 12 4 6 4 48 Pin(T )

7 1 3 4 8 24 8 12 6 96 Pin(C)

8 1 3 4 10 60 20 30 12 240 Pin(D)

9 1 4 4 6 24 6 12 8 96 Pin(D(02)(C))

10 1 5 4 6 60 12 30 20 240 Pin(D(02)(D))

11 1 k 2 2k k 1 k 1 4k Pin(D(12)(Dk)) ∼=
∼= Walsh(D(12)(Dk))

12 1 k 4 4 2k 2 k k 8k Pin(D(02)(Pk))
13 2 2 2 2k k k 2k 2 8k Walsh(Pk)
14 2 3 2 6 6 4 12 4 48 Walsh(T )

15 2 3 2 8 12 8 24 6 96 Walsh(C)

16 2 3 2 10 30 20 60 12 240 Walsh(D)

17 2 4 2 6 12 6 24 8 96 Walsh(D(02)(C))

18 2 5 2 6 30 12 60 20 240 Walsh(D(02)(D))

19 2 k 2 4 k 2 2k k 8k Walsh(D(02)(Pk))
20 3 3 2 4 4 4 12 6 48 Walsh(D(12)(T ))

21 3 4 2 4 8 6 24 12 96 Walsh(D(12)(C))

22 3 5 2 4 20 12 60 30 240 Walsh(D(12)(D))

23 k k 2 2 1 1 k k 4k Walsh(Dk)Table 2.3: The bipartite-regular hypermaps on the sphere.Chirality groups and hirality indies of B = Walsh(R)In what follows we assume that R is a regular hypermap on the sphere of type (l,m, n)and B = Walsh(R). Aording to Proposition 1.9.6, T = {(R1R2)
l, (R2R0)

m, (R0R1)
n} and

S = ∅.Aording to Table 2.3, up to duality, there are 12 types of bipartite-regular hypermapson the sphere obtained from regular hypermaps using the Walsh onstrution.When l = m, B is uniform and hene regular. After all, if l = m, then d1 = l = m, and
Υ(B) ∼= 〈R(R1R2)

d1 , R(R2R0)
d1〉∆/R = 1∆/R = 1. In addition, B∆ = B.If d1 = 1, then, aording to Corollary 1.9.7, Υ(B) = ∆+/R ∼= Aut+(R) and B∆ is S2.Table 2.4 lists the 12 types of bipartite-regular hypermaps on the sphere obtained fromregular hypermaps using the Walsh onstrution. Of those ases, only 2 are non-uniform with

d1 6= 1: ases 17 and 19 (k even). The hirality groups of these hypermaps are omputedbelow. The last two olumns of Table 2.4 display the hirality groups and hirality indies.
• Case 17: B = Walsh(R), R = D(02)(C) has type (4, 2, 3) and d1 = 2. Then

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2〉∆/R = 〈R(R1R2)
2, R((R1R2)

2)R0〉 ∼= V4 and ι = 4;
B∆ is P6: R → P3, B → Walsh(P3) ∼= P6, P6 is regular and |ΩB| = 96 = ι|ΩP6 |.
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• Case 19: B = Walsh(R), R = D(02)(P2k) has type (2k, 2, 2) and d1 = 2. Then

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2〉∆/R = 〈R(R1R2)
2〉 ∼= Ck and ι = k;

B∆ is P4: R → P2, B → Walsh(P2) ∼= P4, P4 is regular and |ΩB| = 16k = ι|ΩP4 |.
# B = Walsh(R) type of R Aut(R) Aut+(R) d1 Υ ι

11 Walsh(D(12)(Dk)) (k, 1, k) Dk Ck 1 Ck k

13 Walsh(Pk) (2, 2, 2k) Dk × C2 Dk 2 1 1

14 Walsh(T ) (3, 2, 3) S4 A4 1 A4 12

15 Walsh(C) (3, 2, 4) S4 × C2 S4 1 S4 24

16 Walsh(D) (3, 2, 5) A5 × C2 A5 1 A5 60

17 Walsh(D(02)(C)) (4, 2, 3) S4 × C2 S4 2 V4 4

18 Walsh(D(02)(D)) (5, 2, 3) A5 × C2 A5 1 A5 60

19 Walsh(D(02)(P2k)) (2k, 2, 2) D2k × C2 D2k 2 Ck k

Walsh(D(02)(P2k−1)) (2k − 1, 2, 2) D2k−1 × C2 D2k−1 1 D2k−1 4k − 2

20 Walsh(D(12)(T )) (3, 3, 2) S4 A4 3 1 1

21 Walsh(D(12)(C)) (3, 4, 2) S4 × C2 S4 1 S4 24

22 Walsh(D(12)(D)) (3, 5, 2) A5 × C2 A5 1 A5 60

23 Walsh(Dk) (k, k, 1) Dk Ck k Ck kTable 2.4: The bipartite-regular hypermaps obtained by the Walsh onstrution.Chirality groups and hirality indies of B = Pin(R)Now we assume that R is a regular hypermap on the sphere of type (l,m, n) and B = Pin(R).As before, T = {(R1R2)
l, (R2R0)

m, (R0R1)
n} and S = ∅.Aording to Table 2.3, up to duality, there are 12 types of bipartite-regular hypermapson the sphere obtained from regular hypermaps using the Pin onstrution.In the �rst ase, B is uniform and hene regular. In addition, B∆ = B.If d2 = 1, then, aording to Corollary 1.9.7, Υ(Pin(R)) = ∆+/R ∼= Aut+(R) and B∆ is

S2. Table 2.5 lists the 12 types of bipartite-regular hypermaps on the sphere obtained fromregular hypermaps using the Pin onstrution. Of those ases, only 4 are non-uniform with
d2 6= 1: ases 2 (k even), 3, 7 and 12. The hirality groups of these hypermaps are omputedbelow. The last two olumns of Table 2.5 display the hirality groups and hirality indies.

• Case 2: B = Pin(R), R = P2k has type (2, 2, 2k) and d2 = 2. Then
Υ(B) ∼= 〈RR1R2, R(R0R1)

2〉∆/R(= R∆+00̂/R = ∆+00̂/R) ∼= Dk and ι = 2k; B∆ is S4.
• Case 3: B = Pin(R), R = D(01)(T ) has type (2, 3, 3) and d2 = 3. Then

Υ(B) ∼= 〈RR1R2, R(R0R1)
3〉∆/R = 〈RR1R2, R(R1R2)

R0〉 ∼= V4 and ι = 4;
B∆ is S6: R → S3, B → Pin(S3) ∼= S6, S6 is regular and |ΩB| = 48 = ι|ΩS6 |.

• Case 7: B = Pin(R), R = C has type (3, 2, 4) and d2 = 2. Then
Υ(B) ∼= 〈RR1R2, R(R0R1)

2〉∆/R(= ∆+00̂/R) ∼= A4 and ι = 12; B∆ is S4.
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• Case 12: B = Pin(R), R = D(02)(Pk) has type (k, 2, 2) and d2 = 2. Then

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R(= ∆+00̂/R) = 〈RR1R2〉 ∼= Ck and ι = k; B∆ is S4.

# B = Pin(R) type of R Aut(R) Aut+(R) d2 Υ ι

1 Pin(D(02)(Dk)) (1, k, k) Dk Ck k 1 1

2 Pin(P2k) (2, 2, 2k) D2k × C2 D2k 2 Dk 2k
Pin(P2k−1) (2, 2, 2k − 1) D2k−1 × C2 D2k−1 1 D2k−1 4k − 2

3 Pin(D(01)(T )) (2, 3, 3) S4 A4 3 V4 4

4 Pin(D(01)(C)) (2, 3, 4) S4 × C2 S4 1 S4 12

5 Pin(D(01)(D)) (2, 3, 5) A5 × C2 A5 1 A5 60

6 Pin(T ) (3, 2, 3) S4 A4 1 A4 12

7 Pin(C) (3, 2, 4) S4 × C2 S4 2 A4 12

8 Pin(D) (3, 2, 5) A5 × C2 A5 1 A5 60

9 Pin(D(02)(C)) (4, 2, 3) S4 × C2 S4 1 S4 24

10 Pin(D(02)(D)) (5, 2, 3) A5 × C2 A5 1 A5 60

11 Pin(D(12)(Dk)) (k, 1, k) Dk Ck 1 Ck k

12 Pin(D(02)(Pk)) (k, 2, 2) Dk × C2 Dk 2 Ck kTable 2.5: The bipartite-regular hypermaps obtained by the Pin onstrution.The losure overs and the overing oresTable 2.6 lists the hirality groups and hirality indies of all bipartite-regular hypermaps onthe sphere, as well as their losure overs. In Table 2.7 we display the type, number of �agsand genus of the overing ores.Note that if B is one of the bipartite-regular hypermaps listed in lines 1, 13, 20 and 23 ofTable 2.3 (or Table 2.7), then B is regular and B = B∆ = B∆.Looking at Table 2.7, one an see that there are two overing ores (not in the families)that are duals of maps with less than 100 edges. After all, if B is a map, B has less than 100edges if and only if |ΩB| < 400. The maps are D(01)((Pin(D(01)(T )))∆) with 48 edges andPetrie path of length 4, and (Walsh(D(02)(C)))∆ with 96 edges and Petrie path of length 6.In [70℄ we an �nd a list of all non-trivial regular with no more than 100 edges (the list isomplete exept perhaps at maps with 84 edges), these maps are P (70) and DP (190), pages144 and 181 respetively. These an also be onsulted in Wilson's Census of orientably-regularmaps [69℄.Note that the hirality index of a bipartite-regular hypermap an be any positive integernumber. Moreover, yli groups and dihedral groups are hirality groups of bipartite-regularhypermaps.
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# B |ΩB| B∆ type of B∆ |ΩB∆ | Υ ι

1 Pin(D(02)(Dk)) 4k S2k (1, 2k, 2k) 4k 1 1

2 Pin(P2k) 16k S4 (1, 4, 4) 8 Dk 2k
Pin(P2k−1) 16k − 8 S2 (1, 2, 2) 4 D2k−1 4k − 2

3 Pin(D(01)(T )) 48 S6 (1, 6, 6) 12 V4 4

4 Pin(D(01)(C)) 96 S2 (1, 2, 2) 4 S4 24

5 Pin(D(01)(D)) 240 S2 (1, 2, 2) 4 A5 60

6 Pin(T ) 48 S2 (1, 2, 2) 4 A4 12

7 Pin(C) 96 S4 (1, 4, 4) 8 A4 12

8 Pin(D) 240 S2 (1, 2, 2) 4 A5 60

9 Pin(D(02)(C)) 96 S2 (1, 2, 2) 4 S4 24

10 Pin(D(02)(D)) 240 S2 (1, 2, 2) 4 A5 60

11 Pin(D(12)(Dk)) 4k S2 (1, 2, 2) 4 Ck k

12 Pin(D(02)(Pk)) 8k S4 (1, 4, 4) 8 Ck k

13 Walsh(Pk) 8k P2k (2, 2, 2k) 8k 1 1

14 Walsh(T ) 48 S2 (1, 2, 2) 4 A4 12

15 Walsh(C) 96 S2 (1, 2, 2) 4 S4 24

16 Walsh(D) 240 S2 (1, 2, 2) 4 A5 60

17 Walsh(D(02)(C)) 96 P6 (2, 2, 6) 24 V4 4

18 Walsh(D(02)(D)) 240 S2 (1, 2, 2) 4 A5 60

19 Walsh(D(02)(P2k)) 16k P4 (2, 2, 4) 16 Ck k

Walsh(D(02)(P2k−1)) 16k − 8 S2 (1, 2, 2) 4 D2k−1 4k − 2

20 Walsh(D(12)(T )) 48 C (3, 2, 4) 48 1 1

21 Walsh(D(12)(C)) 96 S2 (1, 2, 2) 4 S4 24

22 Walsh(D(12)(D)) 240 S2 (1, 2, 2) 4 A5 60

23 Walsh(Dk) 4k D(02)(Pk) (k, 2, 2) 4k 1 1Table 2.6: B and B∆
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# B type of B∆ |ΩB∆
| genus Υ ι

1 Pin(D(02)(Dk)) (1, 2k, 2k) 4k 0 1 1

2 Pin(P2k) (2, 4, 4k) 32k2 2k2 − 2k + 1 Dk 2k
Pin(P2k−1) (2, 4, 4k − 2) 16(2k − 1)2 4(k − 1)2 D2k−1 4k − 2

3 Pin(D(01)(T )) (2, 6, 6) 192 9 V4 4

4 Pin(D(01)(C)) (2, 6, 8) 2304 121 S4 24

5 Pin(D(01)(D)) (2, 6, 10) 14400 841 A5 60

6 Pin(T ) (3, 4, 6) 576 37 A4 12

7 Pin(C) (3, 4, 8) 1152 85 A4 12

8 Pin(D) (3, 4, 10) 14400 1141 A5 60

9 Pin(D(02)(C)) (4, 4, 6) 2304 193 S4 24

10 Pin(D(02)(D)) (5, 4, 6) 14400 1381 A5 60

11 Pin(D(12)(Dk)) (k, 2, 2k) 4k2 (k−1)(k−2)
2 Ck k

12 Pin(D(02)(Pk)) (k, 4, 4) 8k2 (k − 1)2 Ck k

13 Walsh(Pk) (2, 2, 2k) 8k 0 1 1

14 Walsh(T ) (6, 2, 6) 576 25 A4 12

15 Walsh(C) (6, 2, 8) 2304 121 S4 24

16 Walsh(D) (6, 2, 10) 14400 841 A5 60

17 Walsh(D(02)(C)) (4, 2, 6) 384 9 V4 4

18 Walsh(D(02)(D)) (10, 2, 6) 14400 841 A5 60

19 Walsh(D(02)(P2k)) (2k, 2, 4) 16k2 (k − 1)2 Ck k

Walsh(D(02)(P2k−1)) (4k − 2, 2, 4) 16(2k − 1)2 4(k − 1)2 D2k−1 4k − 2

20 Walsh(D(12)(T )) (3, 2, 4) 48 0 1 1

21 Walsh(D(12)(C)) (12, 2, 4) 2304 97 S4 24

22 Walsh(D(12)(D)) (15, 2, 4) 14400 661 A5 60

23 Walsh(Dk) (k, 2, 2) 4k 0 1 1Table 2.7: B and B∆.



Chapter 3Hypermaps on the projetive planeIn this hapter we lassify the 2-restritedly-regular hypermaps on the projetive plane. Ason the sphere, we determine all uniform and bipartite-uniform hypermaps on the projetiveplane. First we derive the lassi�ation of the uniform hypermaps on the projetive planefrom the lassi�ation of uniform hypermaps on the sphere. All uniform hypermaps on theprojetive plane are regular maps and an be found in �8.6 of [33℄. Next we see that, as on thesphere, all bipartite-uniform hypermaps on the projetive plane are obtained from uniformhypermaps using a Walsh or a Pin onstrution, and hene are bipartite-regular.The next setion is inluded here for ompleteness.3.1 Uniform hypermaps on the projetive planeLet U be a uniform hypermap on the projetive plane. Then, by Theorem 1.7.1, the orientabledouble over of U , U+ = Orient(U) is a uniform map on the sphere with the same type of
U and with even numbers of verties, edges and faes. Beause of this, U+ annot be Dk(ase 1 of Table 2.1) or P2k−1 (ase 2 of Table 2.1). Thus, if U is a uniform hypermap on theprojetive plane, then, up to duality, U+ is P2k, T , C or D. Furthermore, Aut(U+) has aninvolutory orientation-reversing automorphism whih is not a re�etion.Points on the sphere opposing along a diameter are alled antipodal points or antipodes.If P and Q are antipodes, we also say that Q is the antipode of P and vie versa. Themapping Φap that maps eah point of the sphere to its antipode is an involutory orientation-reversing automorphism of the sphere. It is well-known that when U is P2k, C or D, Φapindues an involutory orientation-reversing automorphism ϕap

U of U whih is not a re�etion.If U is a hypermap subgroup of U , then ϕap
U maps eah �ag Ug, with g ∈ ∆, to UAUg,where AP2k

:= (R0R1)
kR2, for k ∈ N, AC := (R0R1R2)

3 and AD := (R0R1R2)
5. Theseautomorphisms give rise to the following uniform hypermaps on the projetive plane formedby identifying antipodal points of the sphere: the projetive polygon of order k, PP2k, oftype (2, 2, 2k), the projetive ube, also known as the Purse of Fortunatus (f. �21.34 of [32℄)or hemi-ube, PC, of type (3, 2, 4), and the projetive dodeahedron, PD, of type (3, 2, 5).Table 3.1 gives some information about these hypermaps, namely their numbers of verties,edges, faes and �ags, and their symmetry groups. We reall that by Proposition 1.7.1,the numbers of �ags, verties, edges and faes of U are half the numbers of �ags, verties,edges and faes of U+. The hypermaps PO = D(02)(PC) and PI = D(02)(PD) are alledprojetive otahedron and projetive iosahedron, respetively. Using the properties of Orient,39



40 Chapter 3. Hypermaps on the projetive planeit follows that PO+ = D(02)(PC)+ = D(02)(PC+) = D(02)(C) = O and PI+ = D(02)(PD)+ =
D(02)(PD+) = D(02)(D) = I. By inspetion, one an see that P2k, C and D have no otherinvolutory orientation-reversing automorphism whih is not a re�etion besides ϕap

P2k
, ϕap

Cand ϕap
D , respetively, and that all involutory orientation-reversing automorphisms of T arere�etions. Therefore, up to duality, the unique uniform hypermaps on the projetive arethe in�nite family PP2k, PC and PD. In [33℄, Coxeter and Moser denoted the uniformhypermaps PC, PO, PD, PI, PP2k and D(02)(PP2k) by {4, 3}/2 = {4, 3}3, {3, 4}/2 = {3, 4}3,

{5, 3}/2 = {5, 3}5, {3, 5}/2 = {3, 5}5, {2k, 2}/2 and {2, 2k}/2, respetively. The hypermap
PP2k, of type (2, 2, 2k), was denoted by D⋄

k in [15℄, and by δk in [73℄. As remarked in [13℄, PP2is a hypermap on the projetive plane with hypermap subgroup ∆012 and with automorphismgroup Aut(PP2) is isomorphi to V4.Now let U be PP2k, PC or PD, and let (l,m, n) be the type of U . Furthermore, let
S = {(R1R2)

l, (R2R0)
m, (R0R1)

n, AU+} and S+ = S ∩ ∆+ = {(R1R2)
l, (R2R0)

m, (R0R1)
n}.By Theorems 1.7.1 and 2.1.1, U has hypermap subgroup U = 〈S+〉∆{1, AU+}, beause 〈S+〉∆is a hypermap subgroup of U+. Sine 〈S〉 ⊆ U ⊆ 〈S〉∆, U = 〈S〉∆ if and only if U ⊳ ∆,or equivalently, if and only if U/U+

⊳ ∆/U+, beause the projetion π : ∆ → ∆/U+ is anepimorphism and Uπ = U/U+. In all ases U+AU+ ⇌ U+R0, U
+R1, U

+R2, so U/U+ =
〈U+AU+〉 ⊆ Z(Aut(U+)). In addition, sine Aut(U+) is D2k × C2, S4 × C2 or A5 × C2,
Z(Aut(U+)) ∼= C2 and hene U/U+ = Z(Aut(U+)) ⊳ Aut(U+) = ∆/U+.For simpliity, we extend the de�nition of AU in the following way. If σ ∈ {0, 1, 2} and
U is C or D, then ADσ(U) := AUσ. When U = PP2k, AD(01)(P2k) = AP2k

= (R0R1)
kR2,

AD(012)(P2k) = AD(02)(P2k) = (R1R2)
kR0, AD(021)(P2k) = AD(12)(P2k) = (R2R0)

kR1.Theorem 3.1.1 (Hypermap subgroups of the uniform hypermaps on the projetive plane).If U is a uniform hypermap on the projetive plane of type (l,m, n), then U has hypermapsubgroup U = 〈(R1R2)
l, (R2R0)

m, (R0R1)
n, AU+〉∆.Corollary 3.1.2. Uniform hypermaps on the projetive plane of the same type are isomorphi.Corollary 3.1.3 (Conservativeness of the uniform hypermaps on the projetive plane). Let

Θ ⊳2 ∆. Then:1. (a) PP4k−2 is Θ-onservative if and only if Θ is ∆0, ∆1 or ∆2;(b) PP4k is Θ-onservative if and only if Θ is ∆0̂, ∆1̂ or ∆2;2. PC is Θ-onservative if and only if Θ = ∆0;3. PD is not Θ-onservative.Proof. Similar to the proof of Corollary 2.1.3. Given Θ⊳∆, 〈(R1R2)
l, (R2R0)

m, (R0R1)
n, AU 〉∆is a subset of Θ if and only if (R1R2)

l, (R2R0)
m, (R0R1)

n and AU belong to Θ.As a by-produt of Theorem 3.1.1 we get following result:Theorem 3.1.4. All uniform hypermaps on the projetive plane are regular.Corollary 3.1.5. If U is a uniform hypermap on the projetive plane, then U is Θ-regular ifand only if U is Θ-onservative.Corollary 3.1.6. There are no 2-restritedly-regular uniform hypermaps on the projetiveplane. In partiular, there are no pseudo-orientably-hiral hypermaps on the projetive plane.



3.2 Bipartite-uniform hypermaps on the projetive plane 41As on the sphere, all 2-restritedly-regular hypermaps on the projetive plane are bipartite-hiral.Table 3.1 lists, up to duality, all values (l,m, n) for the type of a uniform hypermap U onthe projetive plane. It also displays the numbers V of verties, E of edges, F of faes and
|ΩU | of �ags of U , as well as its automorphism group. In the last olumn, we give the uniqueuniform hypermap on the sphere of suh type. Notie that the automorphism groups of PCand PD are just Coxeter groups G3,3,4 ∼= S4 and G3,5,5 ∼= A5 (see [33℄).

# l m n V E F |ΩU | Aut(U) U
2 2 2 2k k k 1 4k D2k PP2k

4 3 2 4 4 6 3 24 S4 PC
5 3 2 5 10 15 6 60 A5 PDTable 3.1: The uniform hypermaps on the projetive plane, up to duality.Beause the projetive plane is a non-orientable surfae, no hypermap on the projetiveplane is orientable and hene orientably-regular. In addition, sine ∆k ∩ ∆k̂ ⊆ ∆+, a hyper-map on the projetive plane annot be simultaneously ∆k-onservative and ∆k̂-onservative.In Table 3.2, we display, up to duality, the Θ-regularity of the uniform hypermaps on theprojetive plane, for eah Θ⊳2 ∆. Note that the projetive dodeahedron is not Θ-regular forany Θ ⊳2 ∆.

# U ∆0̂-regular? ∆1̂-regular? ∆2̂-regular? ∆0-regular? ∆1-regular? ∆2-regular?
1 P2k yes i� 2 | k yes i� 2 | k no yes i� 2 ∤ k yes i� 2 ∤ k yes
2 PC no no no yes no no
3 PD no no no no no noTable 3.2: Θ-regularity of the uniform hypermaps on the projetive3.2 Bipartite-uniform hypermaps on the projetive planeLet B be a bipartite-uniform hypermap on the projetive plane of bipartite-type (l1, l2;m;n).We may assume, without loss of generality, that l1 ≤ l2 and m ≤ n. Then, by Lemma 1.3.6, mand n are even. Sine the orientable double over of B, B+ = Orient(B), is a bipartite-uniformon the sphere with the same bipartite-type of B, l1 = 1 or m/2 = 1 (see Setion 2.2). UsingTheorems 1.6.5 and 1.6.9, we get the following result.Theorem 3.2.1. If B is a bipartite-uniform hypermap on the projetive plane, then B ∼=

Walsh(U) or B ∼= Pin(U) for some uniform hypermap U on the projetive plane, unique upto isomorphism. Moreover, as B is bipartite-regular if and only if U is regular, and on theprojetive plane all uniform hypermaps are regular, then all bipartite-uniform hypermaps onthe projetive plane are bipartite-regular.Using Theorem 3.2.1 and Corollary 3.1.2 together with Theorems 1.6.6 and 1.6.10, we get:Using Theorems 1.6.5 and 1.6.9 together with Corollary 3.1.2 and Lemma 1.6.1, we get:



42 Chapter 3. Hypermaps on the projetive planeCorollary 3.2.2. Bipartite-uniform hypermaps on the projetive plane of the same bipartite-type are isomorphi.Table 3.3 lists, up to duality, all possible values (l1, l2;m;n) for the bipartite-type of abipartite-uniform hypermap B on the projetive plane. We also display the numbers V1 and
V2 of verties in eah ∆0̂-orbit, E of edges, F of faes and |ΩB| of �ags. In the last olumn ofTable 3.3, we give the unique bipartite-uniform hypermap with suh bipartite-type.

# l1 l2 m n V1 V2 E F |ΩB| B
1 1 2 4 4k 2k k k 1 8k Pin(PP2k)

2 1 2 6 8 12 6 4 3 48 Pin(D(01)(PC))

3 1 2 6 10 30 15 10 6 120 Pin(D(01)(PD))

4 1 3 4 8 12 4 6 3 48 Pin(PC)

5 1 3 4 10 30 10 15 6 120 Pin(PD)

6 1 4 4 6 12 3 6 4 48 Pin(D(02)(PC))

7 1 5 4 6 30 6 15 10 120 Pin(D(02)(PD))

8 1 2k 4 4 2k 1 k k 8k Pin(D(02)(PP2k))

9 2 2 2 4k k k 2k 1 8k Walsh(PP2k)

10 2 3 2 8 6 4 12 3 48 Walsh(PC)

11 2 3 2 10 15 10 30 6 120 Walsh(PD)

12 2 4 2 6 6 3 12 4 48 Walsh(D(02)(PC))

13 2 5 2 6 15 6 30 10 120 Walsh(D(02)(PD))

14 2 2k 2 4 k 1 2k k 8k Walsh(D(02)(PP2k))

15 3 4 2 4 4 3 12 6 48 Walsh(D(12)(PC))

16 3 5 2 4 10 6 30 15 120 Walsh(D(12)(PD))Table 3.3: The bipartite-regular hypermaps on the projetive plane.Beause Walsh(H+) ∼= Walsh(H)+ and Pin(H+) ∼= Pin(H)+, if B is a bipartite-uniformhypermap on the projetive plane obtained from the uniform hypermap U via the Walsh or
Pin onstrution, then the orientable double over of B, B+, is obtained from the orientabledouble over of U , U+, via the same onstrution.As a by-produt of Theorems 3.1.4 and 3.2.1 we have:Theorem 3.2.3. For every Θ ⊳ ∆ with [∆ : Θ] ≤ 2, Θ-uniformity on the projetive planeimplies Θ-regularity.The existene of a normal subgroup Θ of ∆ for whih Θ-uniformity on the projetive planedoes not imply Θ-regularity remains an open problem.3.3 Chirality groups and hirality indies of the 2-restritedly-regular hypermaps on the projetive planeWe have seen that on the projetive plane there are no orientably-regular hypermaps, and thatall pseudo-orientably-regular hypermaps on the projetive plane are regular, so their hiralitygroups are trivial and their hirality indies are 1. Beause of this, every 2-restritedly-regularhypermap on the projetive plane is bipartite-hiral.



3.3 Chirality groups and hirality indies... 43In this setion we ompute the hirality groups and the hirality indies of the bipartite-regular hypermaps on the projetive plane using the notations of Proposition 1.9.6.Chirality groups and hirality indies of B = Walsh(R)In what follows we assume thatR is a regular hypermap on the projetive plane of type (l,m, n)and B = Walsh(R). Aording to Proposition 1.9.6, T = {(R1R2)
l, (R2R0)

m, (R0R1)
n, AR+}and S = {AR+}.Aording to Table 3.3, up to duality, there are 8 types of bipartite-regular hypermaps onthe projetive plane obtained from regular hypermaps using the Walsh onstrution.When l = m, B is uniform and hene regular. In addition, B∆ = B.If d1 = 1, then, by Corollary 1.9.7, Υ(B) = ∆/R ∼= Aut(R) and B∆ is T∆0̂ .Table 3.4 lists the 8 types of bipartite-regular hypermaps on the projetive plane obtainedfrom regular hypermaps using the Walsh onstrution. Of those ases, only 2 are non-uniformwith d1 6= 1: ases 12 and 14. The hirality groups of these hypermaps are omputed below.In the last two olumns of Table 3.4 we display the hirality groups and hirality indies.

• Case 12: B = Walsh(R), R = D(02)(PC)) has type (4, 2, 3) and d1 = 2. Then
AR+ = AD(02)(C) = AC(02) = (R2R1R0)

3, (AR+)αW = (R2R0R1)
3,

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2, R(R2R0R1)
3〉∆/R = 〈R(R1R2)

2, R((R1R2)
2)R0〉 ∼= V4and ι = 4; B∆ is PP6: R → PP3, B → Walsh(PP3) ∼= PP6, PP6 is regular and

|ΩB| = 48 = ι|ΩPP6 |.
• Case 14: B = Walsh(R), R = D(02)(PP2k) has type (2k, 2, 2) and d1 = 2. Then
AR+ = AD(02)(P2k) = AP2k

(02) = (R2R1)
kR0, (AR+)αW = (R2R0)

kR1 and
Υ(B) ∼= 〈R(R1R2)

2, R(R2R0)
2, R(R2R0)

kR1〉∆/R = 〈R(R1R2)
2, R(R2R0)

kR1〉∆/R.If 2 | k, then Υ(B) ∼= 〈R(R1R2)
2, RR1〉∆/R = 〈R(R1R2)

2, RR1〉 ∼= Dk and ι = 2k. Infat Υ(B) ∼= 〈R(R1R2)
2, RR1〉 = ∆2̂/R, sine R = R(R2R1)

k = RR0 = RR0
R2 ; B∆ is

T∆0̂12̂ . Else, if 2 ∤ k, then Υ(B) ∼= 〈R(R1R2)
2, RR2R0R1〉∆/R = 〈RR2R0R1〉 ∼= Ck and

ι = k. In fat Υ(B) ∼= 〈RR2R0R1〉∆/R = R∆012/R = ∆012/R; B∆ is PP4: R → PP2,
B → Walsh(PP2) ∼= PP4, PP4 is regular and |ΩB| = 8k = ι|ΩPP4 |.

# B = Walsh(U) type of U Aut(U) d1 Υ ι

9 Walsh(PP2k) (2, 2, 2k) D2k 2 1 1

10 Walsh(PC) (3, 2, 4) S4 1 S4 24

11 Walsh(PD) (3, 2, 5) A5 1 A5 60

12 Walsh(D(02)(PC)) (4, 2, 3) S4 2 V4 4

13 Walsh(D(02)(PD)) (5, 2, 3) A5 1 A5 60

14 Walsh(D(02)(PP4k)) (4k, 2, 2) D4k 2 D2k 4k

Walsh(D(02)(PP4k−2)) (4k − 2, 2, 2) D4k−2 2 C2k−1 2k − 1

15 Walsh(D(12)(PC)) (3, 4, 2) S4 1 S4 24

16 Walsh(D(12)(PD)) (3, 5, 2) A5 1 A5 60Table 3.4: The bipartite-regular hypermaps obtained by the Walsh onstrution.



44 Chapter 3. Hypermaps on the projetive planeChirality groups and hirality indies of B = Pin(R)Now we assume that R is a regular hypermap on the projetive plane of type (l,m, n) and
B = Pin(R). As before, T = {(R1R2)

l, (R2R0)
m, (R0R1)

n, AR+} and S = {AR+}.Aording to Table 3.3, up to duality, there are 8 types of bipartite-regular hypermaps onthe projetive plane obtained from regular hypermaps using the Pin onstrution.If d2 = 1, then, by Corollary 1.9.7, Υ(B) = ∆/R ∼= Aut(R) and B∆ is T∆0̂ .Table 3.5 lists the 8 types of bipartite-regular hypermaps on the projetive plane obtainedfrom regular hypermaps using the Pin onstrution. Of those ases, only 3 are non-uniformwith d2 6= 1: ases 1, 4 and 8. The hirality groups of these hypermaps are omputed below.The last two olumns of Table 3.5 display the hirality groups and hirality indies.
• Case 1: B = Pin(R), R = PP2k has type (2, 2, 2k) and d2 = 2. Then
AR+ = AP2k

= (R0R1)
kR2, AR+αP = (R1R0)

kR0,
Υ(B) ∼= 〈RR1R2, R(R0R1)

2, R(R1R0)
kR0 = RR2R0〉∆/R = R∆+/R = ∆/R ∼= D2kand ι = 4k; B∆ is T∆0̂ .

• Case 4: B = Pin(R), R = PC has type (3, 2, 4) and d2 = 2. Then
AR+ = AC = (R0R1R2)

3, AR+αP = (R1R0R0)
3 = R1,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2, RR1〉∆/R = 〈RR1, RR2, RR0〉∆/R = ∆/R ∼= S4sine RR0 = RR1R2R1

R0R2
R0R1R2, and ι = 24; B∆ is T∆0̂ .

• Case 8: B = Pin(R), R = PC has type (2k, 2, 2) and d2 = 2. Then
AR+ = (R2R1)

kR0 (see Case 12), AR+αP = (R0R0)
kR1 = R1,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2, RR1〉∆/R = 〈RR1, RR2, RR0〉∆/R = ∆/R ∼= D2ksine RR0 = R(R2R1)

k, and ι = 4k; B∆ is T∆0̂ .
# B = Pin(U) type of U Aut(U) d2 Υ ι

1 Pin(PP2k) (2, 2, 2k) D2k 2 D2k 4k

2 Pin(D(01)(PC)) (2, 3, 4) S4 1 S4 24

3 Pin(D(01)(PD)) (2, 3, 5) A5 1 A5 60

4 Pin(PC) (3, 2, 4) S4 2 S4 24

5 Pin(PD) (3, 2, 5) A5 1 A5 60

6 Pin(D(02)(PC)) (4, 2, 3) S4 1 S4 24

7 Pin(D(02)(PD)) (5, 2, 3) A5 1 A5 60

8 Pin(D(02)(PP2k)) (2k, 2, 2) D2k 2 D2k 4kTable 3.5: The bipartite-regular hypermaps obtained by the Pin onstrution.The losure overs and the overing oresTable 3.6 lists the hirality groups and hirality indies of all the bipartite-regular hypermapson the on the sphere, as well as their losure overs. Table 3.7 displays the type, number of�ags and genus of the overing ores.In ase 9 of Table 3.3, B = Walsh(PP2k) is uniform and hene regular, so B = B∆ = B∆.



3.3 Chirality groups and hirality indies... 45Aording to Tables 3.4 and 3.5, in 13 out of the 16 ases, Υ(B) = ∆0̂/B ∼= ∆/R and B∆is T∆0̂ . If B is Walsh(D(02)(PC)), Walsh(D(02)(PP4k−2)) or Walsh(D(02)(PP4k)), then B∆ is
PP6, PP4 or T∆0̂12̂ , respetively.Aording to Theorem 1.8.4, in ases 1, 4, 8 and 14 (with k even) of Table 3.7, B∆ isorientable beause |ΩB∆

| = |Ω(B+)∆ |, and in the remaining ases B∆ is non-orientable sine
|ΩB∆

| < 2|ΩB∆
| = |Ω(B+)∆ |.The overing ore of the map Walsh(D(02)(PC)) is a non-orientable regular map of type

(4, 2, 6), with 192 �ags, 48 edges and Petrie path of length 6. In [70, 69℄, Wilson denotesthis map by D(70). We remark that its orientable double over is the hypermap denoted by
DP (190) in [70, 69℄, the losure over of Walsh(D(02)(C)) (ase 17 of Table 2.7).

# B |ΩB| B∆ type of B∆ |ΩB∆ | Υ ι

1 Pin(PP2k) 8k T∆0̂ − 2 D2k 4k

2 Pin(D(01)(PC)) 48 T∆0̂ − 2 S4 24

3 Pin(D(01)(PD)) 120 T∆0̂ − 2 A5 60

4 Pin(PC) 48 T∆0̂ − 2 S4 24

5 Pin(PD) 120 T∆0̂ − 2 A5 60

6 Pin(D(02)(PC)) 48 T∆0̂ − 2 S4 24

7 Pin(D(02)(PD)) 120 T∆0̂ − 2 A5 60

8 Pin(D(02)(PP2k)) 8k T∆0̂ − 2 D2k 4k

9 Walsh(PP2k) 8k PP4k (2, 2, 4k) 8k 1 1

10 Walsh(PC) 48 T∆0̂ − 2 S4 24

11 Walsh(PD) 120 T∆0̂ − 2 A5 60

12 Walsh(D(02)(PC)) 48 PP6 (2, 2, 6) 12 V4 4

13 Walsh(D(02)(PD)) 120 T∆0̂ − 2 A5 60

14 Walsh(D(02)(PP4k)) 16k T∆0̂12̂ − 4 D2k 4k

Walsh(D(02)(PP4k−2)) 16k − 8 PP4 (2, 2, 4) 8 C2k−1 2k − 1

15 Walsh(D(12)(PC)) 48 T∆0̂ − 2 S4 24

16 Walsh(D(12)(PD)) 120 T∆0̂ − 2 A5 60Table 3.6: B and B∆



46 Chapter 3. Hypermaps on the projetive plane

# B type of B∆ |ΩB∆
| or.? genus Υ ι

1 Pin(PP2k) (2, 4, 4k) 32k2 yes 2k2 − 2k + 1 D2k 4k

2 Pin(D(01)(PC)) (2, 6, 8) 1152 no 122 S4 24

3 Pin(D(01)(PD)) (2, 6, 10) 7200 no 842 A5 60

4 Pin(PC) (3, 4, 8) 1152 yes 85 S4 24

5 Pin(PD) (3, 4, 10) 7200 no 1142 A5 60

6 Pin(D(02)(PC)) (4, 4, 6) 1152 no 194 S4 24

7 Pin(D(02)(PD)) (5, 4, 6) 7200 no 1382 A5 60

8 Pin(D(02)(PP2k)) (2k, 4, 4) 32k2 yes (2k − 1)2 D2k 4k

9 Walsh(PP2k) (2, 2, 4k) 8k no 1 1 1

10 Walsh(PC) (6, 2, 8) 1152 no 122 S4 24

11 Walsh(PD) (6, 2, 10) 7200 no 842 A5 60

12 Walsh(D(02)(PC)) (4, 2, 6) 192 no 10 V4 4

13 Walsh(D(02)(PD)) (10, 2, 6) 7200 no 842 A5 60

14 Walsh(D(02)(PP4k)) (4k, 2, 4) 64k2 yes (2k − 1)2 D2k 4k

Walsh(D(02)(PP4k−2)) (4k − 2, 2, 4) 8(2k − 1)2 no 2(k − 1)2 + 1 C2k−1 2k − 1

15 Walsh(D(12)(PC)) (12, 2, 4) 1152 no 98 S4 24

16 Walsh(D(12)(PD)) (15, 2, 4) 7200 no 662 A5 60Table 3.7: B and B∆.



Chapter 4Hypermaps on the torusUp to duality, there are 3 possibilities for the type of a uniform hypermap on the torus:
(4, 2, 4), (6, 2, 3) and (3, 3, 3). In [33℄, Coxeter and Moser lassify the orientably-regular mapson the torus: orientably-regular hypermaps of type (4, 2, 4) an be represented by identifyingopposite edges of a square with verties in the lattie Z[i] and orientably-regular hypermaps oftype (6, 2, 3) an be represented by identifying opposite edges of a lozenge whose angles are π/3and 2π/3 (that is, a lozenge that an be divided in 2 equilateral triangles) with verties in thelattie Z[ρ], where ρ = (1 +

√
3i)/2. They also gave onditions for an orientably-regular mapto be regular. Corn and Singerman [28℄ proved that a uniform hypermap U of type (3, 3, 3)is orientably-regular if and only if Walsh(U) is orientably-regular. More reently, Breda andNedela [10℄ have shown that U is orientably-hiral if and only if Walsh(U) is orientably-hiral.Consequently, U is regular if and only if Walsh(U) is regular. In [57℄ and [58℄, Singerman andSyddall lassify the uniform maps on the torus.�irá¬, Tuker and Watkins [66℄ studied the edge-transitive maps on the torus, whih in-lude, up to duality, all 2-restritedly-regular hypermaps on the torus exept the ∆1̂-hiral.The orrespondene between the types of edge-transitive maps of Graver and Watkins [36℄used by �irá¬, Tuker and Watkins [66℄ and restritedly-regular maps is given in Table 1.1.As mentioned in Chapter 1, ∆0̂12̂-hiral maps were alled just-edge-transitive maps byJones [47℄ and edge-transitive maps of type 3 by Graver and Watkins [36℄. Their automorphismgroup ats transitively on edges but neither on verties nor faes.In this Chapter we introdue a notation for uniform hypermaps on the torus whih weuse in the lassi�ation of the regular and the 2-restritedly-regular hypermaps on the torus.This notation is based in the work of Singerman and Syddall (see [57℄ and [58℄) on uniformmaps on the torus and extends the notation of Coxeter and Moser [33℄ for orientably-regularhypermaps.The results in this Chapter were obtained before knowing the work of �irá¬, Tuker andWatkins on edge-transitive maps on the torus [66℄.4.1 Uniform hypermaps on the torusLet U be a uniform hypermap on the torus of type (l,m, n). Using the Euler formula foruniform hypermaps (Corollary 1.4.2) together with Lemma 1.4.5, one an see that, up toduality, (l,m, n) is (2, 4, 4), (2, 3, 6) or (3, 3, 3).47



48 Chapter 4. Hypermaps on the torusThe uniform maps on the torus of types (4, 2, 4) and (6, 2, 3) were lassi�ed by Singermanand Syddall in [57, 58℄. These maps are obtained by identifying the opposite edges of aEulidean parallelogram in the omplex plane with verties in the latties Z[i] or Z[ρ], where
ρ = (1 +

√
3i)/2 = eiπ/3.Let a, b, c, d ∈ Z, M =

(
a c
b d

) and α ∈ {i, ρ}. The omplexes 0, a + bα and c + dα arein the same straight line if and only if det(M) = ad − bc = 0. Thus, 0, a + bα, c + dα and
(a+ bα) + (c+ dα) are the verties of a Eulidean parallelogram in the omplex plane if andonly if det(M) = ad− bc 6= 0.Instead of the notation used by Singerman and Syddall in [58℄, we adopt a notation whihis a natural extension of the notation of Coxeter and Moser [33℄ for orientably-regular mapson the torus. Given M =

(
a c
b d

) suh that det(M) = ad − bc 6= 0, we denote by (4, 2, 4)Mand (6, 2, 3)M the uniform maps on the torus of types (4, 2, 4) and (6, 2, 3) represented bythe Eulidean parallelograms with opposite edges identi�ed and verties 0, a + bα, c + dα,
(a + c) + (b + d)α ∈ Z[α], where α = i in the �rst ase, and α = ρ in the seond ase. Inpartiular, the maps denoted by {4, 4}p,q and {3, 6}p,q in the notation of Coxeter and Moserare denoted by (4, 2, 4)� p

q
-q
p

� and (6, 2, 3)� p
q
-p-q

p

�, respetively. Figure 4.1 displays (4, 2, 4)Mand (6, 2, 3)M , for M =
(

1 −3
2 2

).
Figure 4.1: The hypermaps (4, 2, 4)M and (6, 2, 3)M for M =

(
1
2
−3
2

).Let U = (4, 2, 4)(a
b

c
d), a+bi = (p+qi)(r+si) and c+di = (p+qi)(t+ui), where r+si and

t+ ui are oprime Gaussian integers. In the notation of Singerman and Syddall U is denotedby { t+uir+si

}

p+qi
or { r+sit+ui

}

p+qi
, depending on whether t+ui

r+si has positive or negative imaginarypart, or equivalently, depending on whether ad − bc is positive or negative. Conversely, if Uis denoted by { t+uir+si

}

p+qi
in the notation of Singerman and Syddall, then U is (4, 2, 4)(a

b
c
d)
,where a+bi = (p+qi)(r+si) and c+di = (p+qi)(t+ui). Similarly, there is a orrespondenebetween our notation and the notation of Singerman and Syddall for uniform maps on thetorus of type (6, 2, 3).The hypermaps (4, 2, 4)� 2

1
-1
2

�, (6, 2, 3)� 2
1
-1
3

� and D(02)

(
(6, 2, 3)� 1

1
-1
2

�) (denoted by {i}2+i,
{ρ}2+ρ and D(02)({ρ}1+ρ) in the notation Singerman and Syddall) are uniform imbeddings ofthe non-planar graphs K5, K7 and K3,3 (see �8.3 and �8.4 of [33℄ and �5 of [58℄). Using theEuler formula, one an see that there is no uniform imbedding ofK6 on the torus, that is, thereis no uniform map on the torus whose underlying graph is K6. For otherwise, suh imbeddingwould have 6 verties, 15 edges and f = e− v = 9 faes and 60 �ags but 18 = 2f ∤ 60.



4.1 Uniform hypermaps on the torus 49Throughout this hapter we assume that M =
(
a c
b d

)
,M ′ =

(
a′ c′

b′ d′

)
∈ M(2,Z), with

det(M) 6= 0 6= det(M ′).4.1.1 Uniform maps on the torus of types (4, 2, 4) and (6, 2, 3).Let N4 := N(4, 2, 4) and N6 := N(6, 2, 3), where, as before, N(l,m, n) is the normal losureof the subgroup generated by (R1R2)
l, (R2R0)

m and (R0R1)
n in ∆.Lemma 4.1.1. 1. The hypermap U = (4, 2, 4)M has F = |det(M)| faes, E = 2|det(M)|edges, V = |det(M)| verties and |ΩU | = 8|det(M)| �ags;2. The hypermap U = (6, 2, 3)M has F = 2|det(M)| faes, E = 3|det(M)| edges, V =

|det(M)| verties and |ΩU | = 12|det(M)| �ags.Proof. Let α ∈ {i, ρ}. In both ases all faes of U are represented by ongruent polygons. Thus,the area of the Eulidean parallelogram with verties 0, a+ bα, c+ dα and (a+ c) + (b+ d)α,is equal to the number of faes F times the area of one fae. On the other hand, the area ofthe Eulidean parallelogram is |det(C ·M)| = |det(C)| · |det(M)|, where C =
(

1 Re(α)
0 Im(α)

) isthe matrix of hange of basis from (1, α) to (1, i). When α = i, the faes are represented bysquares with area 1 and det(C) = 1, so |det(M)| = F × 1 = F . When α = ρ, the faes arerepresented by equilateral triangles with area √
3/4 and det(C) =

√
3/2, so F = 2|det(M)|.The other values are given by the formula |ΩU | = 2lV = 2mE = 2nF .Let X4 = R0R1R2R1, Y4 = X4

R1 = R1R0R1R2, X6 = R0R1R2R1R2R1 and Y6 = X6
R1 =

R1R0R1R2R1R2. We shall omit the index l in Nl, Xl and Yl if it is lear from the ontext.Lemma 4.1.2 (Properties of N , X and Y ).1. If N = N4, X = X4 and Y = Y4, then:(a) NX ⇌ NY ;(b) NXR0 = NX−1, NXR1 = NY , NXR2 = NX,
NY R0 = NY , NY R1 = NX, NY R2 = NY −1.2. If N = N6, X = X6 and Y = Y6, then:(a) NX ⇌ NY ;(b) NXR0 = NX−1, NXR1 = NY , NXR2 = NX,
NY R0 = NX−1Y , NY R1 = NX, NY R2 = NXY −1.Proof. 1.(a) NXNYNX−1NY −1 = NXYX−1Y −1

= N
[
(R0R1)

4
(
(R2R0)

−2
)R1 (R1R2)

4(R2R0)
2
](R0R1)2

= N .(b) NXR0 = NR1R2R1R0 = NX−1,
NXR1 = NY ,
NXR2 = N(R0R1R2R1)

R2 = N
[
(R2R0)

2(R1R2)
4
]R2R0 X = NX

NY R0 = N(R1R0R1R2)
R0 = N

[
(R0R1)

4(R2R0)
2
](R0R1)2

Y = NY
NY R1 = N(XR1)R1 = NX,
NY R2 = NR2R1R0R1 = NY −1.



50 Chapter 4. Hypermaps on the torus2.(a) NXNYNX−1NY −1 = NXYX−1Y −1

= N

[
(R1R0)

3(R0R2)
2
[
(R0R1)

3
(
(R0R2)

2
)R1 (R1R2)

6(R2R0)
2
]R0R1R2

]R1R0R1

= N .(b) NXR0 = NR1R2R1R2R1R0 = NX−1,
NXR1 = NY ,
NXR2 = N(R0R1R2R1R2R1)

R2 = N(R2R0)
2
[
(R1R2)

6
]R1R0 X = NX,

NY R0 = N(R1R0R1R2R1R2)
R0 = N(R0R1)

3
[
(R1R2)

−6
]R0R1 Y X−1 = NX−1Y ,

NY R1 = N(XR1)R1 = NX,
NY R2 = NR2R1R0R1R2R1 = N

[
(R2R0)

2(R0R1)
3
]R2R0R2 Y −1X = NXY −1.Remark 4.1.3. NXR2R0 = NX−1 and NY R2R0 = NY −1.Beause N is a normal subgroup of ∆ ontained in U , N is ontained in U∆, and hene:Corollary 4.1.4. Let U be a uniform map on the torus and U a hypermap subgroup of U .1. If U is of type (4, 2, 4), X = X4 and Y = Y4, then:(a) U∆X ⇌ U∆Y ;(b) U∆X

R0 = U∆X
−1, U∆X

R1 = U∆Y , U∆X
R2 = U∆X,

U∆Y
R0 = U∆Y , U∆Y

R1 = U∆X, U∆Y
R2 = U∆Y

−1.2. If U is of type (6, 2, 3), X = X6 and Y = Y6, then:(a) U∆X ⇌ U∆Y ;(b) U∆X
R0 = U∆X

−1, U∆X
R1 = U∆Y , U∆X

R2 = U∆X,
U∆Y

R0 = U∆X
−1Y , U∆Y

R1 = U∆X, U∆Y
R2 = U∆XY

−1.Remark 4.1.5. U∆X
R2R0 = U∆X

−1 and U∆Y
R2R0 = U∆Y

−1.Now we use the previous results to obtain hypermaps subgroups for the uniform maps onthe torus.Theorem 4.1.6 (Hypermap subgroups of (4, 2, 4)M and (6, 2, 3)M ).1. U = N〈XaY b, XcY d〉 = 〈(R1R2)
4, (R2R0)

2, (R0, R1)
4〉∆〈XaY b, XcY d〉 is a hypermapsubgroup of U = (4, 2, 4)M ;2. U = N〈XaY b, XcY d〉 = 〈(R1R2)

6, (R2R0)
2, (R0, R1)

3〉∆〈XaY b, XcY d〉 is a hypermapsubgroup of U = (6, 2, 3)M .Proof. By the de�nition of U , N ⊆ U and XaY b, XcY d ∈ U . Let V := N〈XaY b, XcY d〉.Sine N ⊳ ∆, V is a subgroup of ∆ suh that N ⊆ V ⊆ U . Furthermore V/N is a subgroupof ∆/N . By Lemma 4.1.2, for all p, q ∈ Z, NXpY q = (NX)p(NX)q, so V/N ∼= 〈(a, b), (c, d)〉.Therefore V/N has index 2l|ad− bc| = 2l|det(M)| = |ΩU | = [∆ : U ] in ∆/N . It follows that
[∆ : U ] = [∆/N : V/N ] = [∆ : V ] = [∆ : U ][U : V ], so [U : V ] = 1, that is, U = V .Using Theorem 4.1.6 together with Remark 4.1.5, we get:



4.1 Uniform hypermaps on the torus 51Corollary 4.1.7.1. U/N = 〈NXaY b, NXcY d〉 ∼= 〈NXaY b〉 × 〈NXcY d〉 ∼= Z×Z;2. UR2R0 = U , or equivalently, UR0 = UR2.Proposition 4.1.8 (Conservativeness of (4, 2, 4)M and (6, 2, 3)M ). Let M =
(
a c
b d

) with
det(M) 6= 0. Then:1. (a) (4, 2, 4)M is ∆+-, ∆1̂-, ∆1-onservative;(b) (4, 2, 4)M is ∆0̂-, ∆2̂-, ∆0-, ∆2-onservative if and only if a− b and c−d are even.2. (a) (6, 2, 3)M is ∆+-, ∆2̂-, ∆2-onservative;(b) (6, 2, 3)M is not ∆0̂-, ∆1̂-, ∆0-, ∆1-onservative.Proof. 1. Clearly, (R1R2)

4, (R2R0)
2 and (R0R1)

4 are in every normal subgroup of index 2of ∆. Thus N ⊆ Θ, for all Θ ⊳2 ∆. Owing to this, U ⊆ Θ if and only if XaY b, XcY d ∈ Θ.Beause X,Y ∈ ∆+,∆1̂,∆1 but X,Y /∈ ∆0̂,∆2̂,∆0,∆2, it follows that XpY q ∈ ∆+,∆1̂,∆1for every p, q ∈ Z, and XpY q ∈ ∆0̂,∆2̂,∆0,∆2 if and only if p and q are both even or bothodd, or equivalently, if p− q is even.2. (R1R2)
6 and (R2R0)

2 are in every subgroup of index 2 of ∆, but (R0R1)
3 is only in ∆+,

∆2̂ and ∆2. Beause of this, U an never be ∆0̂-, ∆1̂-, ∆0-, ∆1-onservative. Sine X and Yare in ∆+, ∆2̂ and ∆2, U is always ∆+-, ∆2̂-, ∆2-onservative.Lemma 4.1.9. ∆/U∆ = 〈U∆R1, U∆R2〉〈U∆X,U∆Y 〉. In addition, 〈U∆R1, U∆R2〉 ∼= Dl and
〈U∆X,U∆Y 〉 is abelian.Proof. Let S = 〈U∆R1, U∆R2〉 = U∆〈R1, R2〉/U∆ and T = 〈U∆X,U∆Y 〉 = U∆〈X,Y 〉/U∆.Using Corollary 4.1.4, we have that (U∆Ri)T = T (U∆Ri), for i ∈ {1, 2}, so ST = TS. Itfollows that ST is a subgroup of ∆/U∆ ontaining U∆R0 = U∆R1R2R1X

−1, U∆R1 and U∆R2,so ∆/U∆ = 〈U∆R0, U∆R1, U∆R2〉 ⊆ ST ⊆ ∆/U∆, that is, ∆/U∆ = ST .In [57, 58℄ Singerman and Syddall determined onditions for seeing if two given uniformmaps on the torus of the same type are isomorphi or not. However they did not see whenone overs the other. Our next result �lls this gap.Theorem 4.1.10.1. (a) (4, 2, 4)M → (4, 2, 4)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 0
0 -1)〉 ∼= D4 and

Q ∈M(2,Z) suh that det(Q) 6= 0 and M = PM ′Q;(b) (4, 2, 4)M ∼= (4, 2, 4)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 0
0 -1)〉 ∼= D4 and

Q ∈ GL(2,Z) suh that M = PM ′Q.2. (a) (6, 2, 3)M → (6, 2, 3)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and

Q ∈M(2,Z) suh that det(Q) 6= 0 and M = PM ′Q.(b) (6, 2, 3)M ∼= (6, 2, 3)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and

Q ∈ GL(2,Z) suh that M = PM ′Q.



52 Chapter 4. Hypermaps on the torusProof. Let U = (l,m, n)M , U ′ = (l,m, n)M ′ , U = N〈XaY b, XcY d〉 and U ′ = N〈Xa′Y b′ , Xc′Y d′〉.Furthermore, let A4 = A6 =
(

0 1
1 0

), B4 =
(

1 0
0 -1) and B6 =

(
1 1
0 -1). Equivalently,

Al =
(

0 1
1 0

) and Bl =
(

1 (l-4)/2
0 -1 ).Proof of 1(a) and 2(a):

(⇒) Suppose that U overs U ′. Then, aording to Lemma 1.3.1, there is g ∈ ∆ suh that
U ⊆ (U ′)g. By Lemma 4.1.9, U ′

∆g = (U ′
∆s)(U

′
∆t), for some U ′

∆s ∈ S = 〈U ′
∆R1, U

′
∆R2〉 and

U ′
∆t ∈ T = 〈U ′

∆X,U
′
∆Y 〉. Sine U ′

∆t ∈ T = 〈U ′
∆X,U

′
∆Y 〉 and T is abelian (see Lemma 4.1.9),

U ′
∆t ⇌ U ′

∆X,U
′
∆Y . If XuY v ∈ U ⊆ (U ′)g, then:

U ′ = U ′gXuY vg−1 = U ′U ′
∆gU

′
∆(XuY v)U ′

∆g
−1

= U ′U ′
∆sU

′
∆tU

′
∆(XuY v)U ′

∆t
−1U ′

∆s
−1 = U ′U ′

∆sU
′
∆(XuY v)U ′

∆s
−1

= U ′(U ′
∆X

uY v)U
′
∆s

−1Beause XaY b, XcY d ∈ U ⊆ (U ′)g, U ′(U ′
∆X

aY b)U
′
∆s

−1
= U ′ = U ′(U ′

∆X
cY d)U

′
∆s

−1 .Clearly, (U ′
∆R1)

2 = (U ′
∆R2)

2 = (U ′
∆(R1R2))

l = U ′
∆. Let λl : S = 〈U ′

∆R1, U
′
∆R2〉 →

〈Al, Bl〉 ∼= Dl be the group isomorphism de�ned by U ′
∆R1λl = Al

−1 and U ′
∆R2λl = Bl

−1.Then (U ′
∆X

uY v)U
′
∆R1 = U ′

∆X
u1Y v1 and (U ′

∆X
uY v)U

′
∆R2 = U ′

∆X
u2Y v2 , where u1, v1, u2, v2are given by

(
u1

v1

)
= Al

(
u
v

)
= (U ′

∆R1λl)
−1

(
u
v

)
,

(
u2

v2

)
= Bl

(
u
v

)
= (U ′

∆R2λl)
−1

(
u
v

)
.We remark that Dl ats on Z×Z by right multipliation.Thus, for all u, v ∈ Z, and for all U ′

∆r ∈ 〈U ′
∆X,U

′
∆Y 〉, (U ′

∆X
uY v)U

′
∆r = U ′

∆X
u∗Y v∗ , where

u∗ and v∗ are given by (u∗
v∗

)
= (U ′

∆rλl)
−1

(
u
v

).Let P = U ′
∆s

−1λl, and let a∗, b∗, c∗, d∗ ∈ Z suh that U∆X
a∗Y b∗ = (U∆X

aY b)U∆s
−1 and

U∆X
c∗Y d∗ = (U∆X

cY d)U∆s
−1 . Then:
(
a∗ c∗

b∗ d∗

)
= P−1

(
a c
b d

)
= P−1M.Sine Xa∗Y b∗ , Xc∗Y d∗ ∈ U ′ and U ′/N ∼= 〈NXa′Y b′〉 × 〈NXc′Y d′〉 ∼= Z×Z (Corollary 4.1.7),there are r, s, t, u ∈ Z suh thatNXa∗Y b∗ = N(Xa′Y b′)rN(Xc′Y d′)s = NXa′r+c′sY b′r+d′s and

NXc∗Y d∗ = N(Xa′Y b′)tN(Xc′Y d′)u = NXa′t+c′uY b′t+d′u. Making Q =
(
r t
s u

), it followsthat (
a∗ c∗

b∗ d∗

)
=

(
a′ c′

b′ d′

)(
r t
s u

)
= M ′Q.Hene P−1M = M ′Q and M = PP−1M = PM ′Q.

(⇐) Reiproally, by hoosing r ∈ 〈R1, R2〉 suh that U ′
∆rλl = P−1, U ⊆ (U ′)r and ψ :

∆/rU → ∆/rU
′, Ug 7→ U ′rg is a overing U → U ′.Proof of 1(b) and 2(b):

(⇒) If U ∼= U ′, then U → U ′ and U ′ → U . By (a), there are P1, P2 ∈ 〈Al, Bl〉 ∼= Dl and
Q1, Q2 ∈ M(2,Z) suh that det(Q1),det(Q2) 6= 0, M = P1M

′Q1 and M ′ = P2MQ2. Owingto this M = P1P2MQ2Q1 and det(M) = det(P1) · det(P2) · det(M) · det(Q2) · det(Q1). Sine
det(M) 6= 0, det(P1),det(P2),det(Q1),det(Q2) ∈ {±1}, so Q1 and Q2 are invertible.
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(⇐) Conversely, if there are P ∈ 〈Al, Bl〉 ∼= Dl and Q ∈ M(2,Z) suh that det(Q) 6= 0 and
M = PM ′Q, then, by (a), U → U ′. Sine P and Q are invertible, M ′ = P−1MQ−1 and, by(a), U ′ → U .Given l ∈ {4, 6}, let ∼l be the binary relation de�ned on the set {M ∈M(2,Z) | det(M) 6=
0} by M ∼l M

′ if and only if there are P ∈ 〈Al, Bl〉 ∼= Dl and Q ∈ GL(2,Z) suh that
M = PM ′Q. Then ∼4 and ∼6 are equivalene relations suh that

M ∼4 M
′ if and only if (4, 2, 4)M ∼= (4, 2, 4)M ′and

M ∼6 M
′ if and only if (6, 2, 3)M ∼= (6, 2, 3)M ′ .In other words, Theorem 4.1.10 establishes a bijetive orrespondene between the equivalenelasses of∼4 and∼6, and the isomorphism lasses of uniform maps on the torus of types (4, 2, 4)and (6, 2, 3), respetively.Corollary 4.1.11. D(02)((4, 2, 4)M ) ∼= (4, 2, 4)M .Proof. Let M =

(
a c
b d

). Then (4, 2, 4)M has hypermap subgroup N〈XaY b, XcY d〉. Beause
X(02) = Y −1 and Y (02) = X−1, (N〈XaY b, XcY d〉)(02) = N〈X−bY −a, X−dY −c〉 is a hy-permap subgroup of D(02)((4, 2, 4)M ). Sine (-b -d-a -c) =

(
0 -1-1 0

)(
a c
b d

), the hypermaps areisomorphi by Theorem 4.1.10.Now we give some examples of restritedly-regular uniform maps on the torus:Proposition 4.1.12. Let k, l,m ∈ Z.1. (a) (4, 2, 4)( l
0

0
m) and (4, 2, 4)� l

m
-l
m

� are ∆1̂-regular;(b) (�irá¬, Tuker and Watkins [66℄)
(4, 2, 4)� l

l
-m
m

� and (4, 2, 4)( l
m

m
l ) are ∆1-regular;() (Coxeter and Moser [33℄)

(4, 2, 4)� l
m
-m

l

� is ∆+-regular (that is, orientably-regular);(d) (Coxeter and Moser [33℄)
(4, 2, 4)( k

0
0
k ) and (4, 2, 4)� k

k
-k
k

� are ∆-regular (that is, regular).2. (a) (Coxeter and Moser [33℄)
(6, 2, 3)� l

m
-l-m

l

� is ∆+-regular (that is, orientably-regular);(b) (Coxeter and Moser [33℄)
(6, 2, 3)( k

0
0
k ) and (6, 2, 3)� k

k
-2k
k

� are ∆-regular (that is, regular).Proof. If U = N〈XaY b, XcY d〉 is a hypermap subgroup of a uniform map U on the torus, then
U is Θ-regular if and only if U/N ⊳Θ/N , that is, if and only if N(XaY b)g, N(XcY d)g ∈ U/Nfor every g ∈ S, where S is a set of generators of Θ. This an be easily arried out by usingLemma 4.1.2 and by hoosing S as {R1R2, R2R0}, {R0, R2, R0

R1 , R2
R1}, {R1, R2R0, R0R1R2}and {R0, R1, R2}, aording to Θ = ∆+, ∆1̂, ∆1 and ∆, respetively.



54 Chapter 4. Hypermaps on the torusLemma 4.1.13. Let M =
(
a c
b d

) suh that det(M) 6= 0, (l,m, n) be (4, 2, 4) or (6, 2, 3),
U = (l,m, n)M and U = 〈(R1R2)

l, (R2R0)
m, (R0, R1)

n〉∆〈XaY b, XcY d〉 a hypermap subgroupof U . Then the following statements are equivalent:1. XiY j ∈ U ;2. there are x, y ∈ Z suh that (
i
j

)
=

(
a c
b d

)(
x
y

) (4.1)3. det(M) = ad− bc | di− cj, aj − bi.In addition, if XiY j ∈ U , then gcd(a, c) | i, gcd(b, d) | j, gcd(a + b, c + d) | i + j and
gcd(a− b, c− d) | i− j.Proof. Sine N ⊆ U ,

XiY j ∈ U ⇔ NXiY j ∈ U/N = 〈NXaY b, NXcY d〉 ∼= Z×Z

⇔ there are x, y ∈ Z suh that (i, j) = x(a, b) + y(c, d), or equivalently,(
i
j

)
=

(
a c
b d

)(
x
y

)

⇔ ad− bc | (ad− bc)x = di− cj, (ad− bc)y = aj − bi.Naturally, gcd(a, c) | ax+cy = i, gcd(b, d) | bx+dy = j, gcd(a+b, c+d) | (a+b)x+(c+d)y =
i+ j and gcd(a− b, c− d) | (a− b)x+ (c− d)j = i− j.Proposition 4.1.14. Let M =

(
a c
b d

) suh that det(M) 6= 0, d1 = gcd(a, c), d2 = gcd(b, d),
d+ = gcd(a+ b, c+ d) and d− = gcd(a− b, c− d).1. Let U = (4, 2, 4)M , U = N〈XaY b, XcY d〉 a hypermap subgroup of U . Then:(a) R0 ∈ N∆(U) if and only if R2 ∈ N∆(U);(b) if R0, R1 ∈ N∆(U), or R2, R1 ∈ N∆(U), then N∆(U) = ∆;() if R0 ∈ N∆(U), or equivalently, if R2 ∈ N∆(U), then |det(M)| is d1d2, or |det(M)|is 2d1d2 and a

d1
− b

d2
, cd1 − d

d2
are even;(d) if R1 is in N∆(U), then a−b and c−d are even and |det(M)| is d+d−

2 , or |det(M)|is d+d− and a−b
d−

− a+b
d+

and c−d
d−

− c+d
d+

are even;(e) if R2R1 ∈ N∆(U), then |det(M)| is a2 + b2, c2 + d2, (a − b)2 + (c − d)2 or (a +
b)2 + (c+ d)2, and det(M) divides a2 + b2, c2 + d2 and ac+ bd;(f) N∆(U) = ∆ if and only if d1 = d2 and |det(M)| is d1

2, or |det(M)| is 2d1
2 and

2d1 divides d−.2. Let U = (6, 2, 3)M and U = N〈XaY b, XcY d〉 a hypermap subgroup of U . Then:(a) R0 ∈ N∆(U) if and only if R2 ∈ N∆(U);(b) if R0, R1 ∈ N∆(U) or R2, R1 ∈ N∆(U), then N∆(U) = ∆;



4.1 Uniform hypermaps on the torus 55() if R2R1 ∈ N∆(U), then |det(M)| is a2 + ab + b2, c2 + cd + d2, (a − b)2 + (a −
b)(c − d) + (c − d)2 or (a + b)2 + (a + b)(c + d) + (c + d)2 and det(M) divides
a2 +ab+ b2, c2 + cd+d2, ac+ad+ bd (and ac+ bc+ bd = (ac+ad+ bd)− (ad− bc));(d) U ⊳ ∆ if and only if d1 = d2 and |det(M)| is d1

2 or |det(M)| is 3d1
2 and 3d1divides d−.Proof. 1. (a) By Corollary 4.1.7 R2R0 ∈ N∆(U).(b) By (a), R0 ∈ N∆(U) if and only if R2 ∈ N∆(U), so N∆(U) is a subgroup of ∆ontaining R0, R1, R2 and hene N∆(U) = ∆.() By Corollary 4.1.4, U∆(XaY b)p(XcY d)q = U∆X

ap+cqY bp+dq. Beause XaY b and
XcY d are U , Xap+cqY bp+dq is also in U . Replaing (p, q) by (d,−b) and by (−c, a),we get Xad−bc, Y ad−bc ∈ U , showing that |det(M)| = |ad− bc| belongs to the sets
L := {n ∈ N | Xn ∈ U} and M := {n ∈ N | Y n ∈ U}. Hene, the sets L and
M are non-empty. Beause N is a well-ordered set, L and M have minimums.Let l := minL and m := minM . From the de�nition of l and m, it followsthat if XpY q ∈ U , then l | p if and only if m | q. Indeed, if XpY q ∈ U , then
l | p⇔ Xp ∈ U ⇔ Y q ∈ U ⇔ m | q.Case 1: For all p, q ∈ Z suh that 0 < p < l, 0 < q < m, UXpY q 6= U , thatis, XpY q /∈ U . In this ase U an be represented by the Eulidean parallelogramwith opposite sides identi�ed and verties 0, l, mi, l+mi. Hene F = |det(M)| =
lm. Sine X l, Y m ∈ U , by Lemma 4.1.13, d1 | l, d2 | m and lm = |ad − bc| |
dl,−bl,−cm, am. It follows that l | d1 and m | d2, and beause l,m, d1, d2 arenon-negative integers, l = d1 and m = d2. In addition there are r, s, t, u ∈ Z suhthat ru− st = ±1 and

(
d1 0
0 d2

)
=

(
a c
b d

)(
r t
s u

)
. (4.2)Case 2: There are 0 < p < l and 0 < q < m suh that UXpY q = U , thatis, XpY q ∈ U . By Corollary 4.1.4, U∆(XpY q)R0 = U∆X

−pY q, U∆(XpY q)R2 =
U∆X

pY −q, U∆X
2p = U∆X

pY q ·U∆(XpY q)R2 and U∆Y
2q = U∆X

pY q ·U∆X
−pY q.Beause R0, R2 ∈ N∆(U) and XpY q ∈ U , X−pY q and XpY −q are in U , as well as

X2p and Y 2q. By the de�nition of l and m (and the Eulidean division algorithm),
l | 2p and m | 2q. Furthermore, sine l,m, p, q are non-negative integers suhthat 0 < 2p < 2l and 0 < 2q < 2m, l = 2p and m = 2q. In this ase Uan be represented by the Eulidean parallelogram with opposite sides identi�edand verties 0, p + qi,−p + qi, 2qi or 0, p + qi, p − qi, 2p (see Figure 4.2). Hene
|det(M)| = F = lm/2 = 2pq. Sine XpY q, X−pY q ∈ U , by Lemma 4.1.13, d1 | p,
d2 | q and 2pq = |ad − bc| | dp − cq, dp + cq, bp − aq, bp + aq. Consequently
2pq | 2aq, 2bp, 2cq, 2dp, so p | d1 and q | d2. Beause p, q, d1, d2 are non-negativeintegers, p = d1 and q = d2. From 2pq | bp−aq, dp−cq, it follows that a

d1
− b
d2
, cd1−

d
d2are even. In addition there are r, s, t, u ∈ Z suh that suh that ru− st = ±1 and

(
d1 −d1

d2 d2

)
=

(
a c
b d

)(
r t
s u

)
. (4.3)
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(-p,q)

x

y

(l,0)

(0,m)

(p,q)

(0,0)Figure 4.2: R0, R2 ∈ N∆(U)(d) By Corollary 4.1.4, U∆X
qY p = U∆(XpY q)R1 , U∆X

p+qY p+q = U∆X
pY q·U∆(XpY q)R1and U∆X

−(p−q)Y p−q = U∆(XpY q)−1 · U∆(XpY q)R1 . If R1 ∈ N∆(U) and XpY q ∈
U , then XqY p, Xp+qY p+q, X−(p−q)Y p−q ∈ U . Replaing (p, q) by (a, b) and by
(c, d), we get Xa+bY a+b, Xc+dY c+d, X−(a−b)Y a−b, X−(c−d)Y c−d ∈ U .Beause (a+b)d−b(c+d) = (a−b)d−b(c−d) = ad−bc 6= 0, a+b and c+d annotbe simultaneously 0, as well as a−b and c−d. Consequently, |a+b| or |c+d| are in
L := {n ∈ N | XnY n ∈ U} and |a−b| or |c−d| are inM := {n ∈ N | X−nY n ∈ U}.Hene, the sets L and M are non-empty. Beause N is a well-ordered set, L and
M have minimums. Let l := minL and m := minM . From the de�nition of l and
m, it follows that if XpY q ∈ U , then 2l | p+ q if and only if 2m | −p+ q. Indeed, if
XpY q ∈ U , then 2l | p+q ⇔ X

p+q

2 Y
p+q

2 ∈ U ⇔ X−−p+q

2 Y
−p+q

2 ∈ U ⇔ 2m | −p+q.Case 1: For all p and q suh that 0 < p+q < 2l, 0 < −p+q < 2m, UXpY q 6= U , thatis, XpY q /∈ U . In this ase U an be represented by the Eulidean parallelogramwith opposite sides identi�ed and verties 0, l+li,−m+mi, (l−m)+(l+m)i. Hene
F = |det(M)| = 2lm. Sine X lY l, X−mY m ∈ U , by Lemma 4.1.13, d+ | l+ l = 2l,
d− | −m−m = −2m and 2lm = |ad− bc| | −l(c− d), l(a− b),−m(c+ d),m(a+ b).Thus 2l | d+ and 2m | d−. Beause l,m, d+, d− are non-negative integers, 2l = d+and 2m = d− Naturally, d− = 2m and d+ = 2l are even and |det(M)| = |ad−bc| =

2lm = d+d−

2 . In addition there are r, s, t, u ∈ Z suh that suh that ru − st = ±1and (
d+

2 −d−

2
d+

2
d−

2

)
=

(
a c
b d

)(
r t
s u

)
. (4.4)Case 2: There are p, q ∈ Z suh that 0 < p + q < 2l, 0 < −p + q < 2m and

UXpY q = U , that is, XpY q ∈ U . Sine Xp+qY p+q, X−(p−q)Y p−q ∈ U , by de�nitionof l and m (and the Eulidean division algorithm), l | p + q and m | −(p − q).Consequently l = p + q and m = −(p − q). In this ase U an be represented bythe Eulidean parallelogram with opposite sides identi�ed and verties 0, p+qi, q+
pi, (p + q) + (p + q)i (see Figure 4.3). Hene |det(M)| = F = 2lm/2 = lm =
(p+ q)(−p+ q). By Lemma 4.1.13, XpY q ∈ U implies d+ | p+ q, d− | −p+ q, and
(p+q)(−p+q) = |ad−bc| | dp−cq, aq−bp, dq−cp, ap−bq. So lm = (p+q)(−p+q) |
−(−p + q)(c + d) = −m(c + d), (p + q)(c − d) = l(c − d),−(−p + q)(a + b) =
−m(a+ b), (p+ q)(a− b) = l(a− b). Thus l | d+ and m | d−. Beause l,m, d+, d−are non-negative integers, l = d+ and m = d−. From lm | ap − bq,−cq + dp weget 2lm | 2(ap − bq) = (a − b)l − (a + b)m, 2(−cq + dp) = −(c − d)l − (c + d)m,
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m − a+b

l and c−d
m − c+d

l must be even. In addition there are r, s, t, u ∈ Z suhthat suh that ru− st = ±1 and
(
d+−d−

2
d++d−

2
d++d−

2
d+−d−

2

)
=

(
a c
b d

)(
r t
s u

)
. (4.5)

(q,p)

x

y

(p,q)

(-m,m)

(l,l)

(0,0)Figure 4.3: R1 ∈ N∆(U)(e) Let K := {p2 +q2 | p, q ∈ Z & (p, q) 6= (0, 0) & XpY q ∈ U}. Sine a2 +b2, c2 +d2 ∈
K, K is non-empty. Beause N is a well-ordered set, K has a minimum. Let
k := minK. Let l,m ∈ Z suh that l2 + m2 = k. By de�nition, l2 + m2 = k ≤
min{a2+b2, c2+d2}. Corollary 4.1.4 implies that U∆(XpY q)R2R1 = U∆X

−qY p and
U∆X

p−qY p+q = U∆X
pY q · U∆(XpY q)R2R1 . Sine R2R1 ∈ N∆(U), if XpY q ∈ U ,then X−qY p, (XpY q)R2R1 ∈ U . Replaing (p, q) by (d,−b) and by (−c, a), it followsthat X−bY a, X−dY c ∈ U . By Lemma 4.1.13, ad− bc | a2 + b2, c2 + d2, ac+ bd.We note that X0Y 0, X lY m, X−mY l, X l−mY l+m ∈ U . We now show that U an berepresented by the Eulidean parallelogram with opposite sides identi�ed and withverties 0, l+mi,−m+ li, (l−m) + (l+m)i by proving that there are no p, q ∈ Zsuh that XpY q ∈ U and (p, q) is inside of the square with verties (0, 0), (l,m),

(−m, l) and (l −m, l +m). Let p, q ∈ Z suh that and P := (p, q) is inside of thesquare with verties A := (0, 0), B := (l,m), C := (−m, l) and D := (l−m, l+m),that is, suh that 0 < −mp + lq, lp + mq < l2 + m2 = k, and let r, s, t, u be thedistanes of P to A,B,C,D, respetively. Observe that P must lie in at least oneof the irles with enter in A, B, C, D, and radius √
k, so the distane of P toeah of the 4 verties of the square annot be simultaneously greater or equal than√

k =
√
l2 +m2, whih is the length of the side of the square (see Figure 4.4). Thisimplies that XpY q /∈ U beause otherwise there would be Q ∈ {A,B,C,D} and

u, v ∈ Z suh that (u, v) = P − Q, XuY v ∈ U and 0 < u2 + v2 < l2 + m2 = k,ontraditing the minimality of k.Hene |ad − bc| = |det(M)| = F = k = l2 + m2. Sine X lY m, X−mY l ∈ U , byLemma 4.1.13, l2 +m2 = |ad−bc| divides al+bm, bl−am, cl+dm and dl−cm. Bythe de�nition of l and m, (l,m) must be inside of the parallelogram with verties
α(a, b) + β(c, d), where α, β ∈ {±1} (see �gure 4.5); else there would be a lattie-preserving translation τ of the plane suh that (0, 0) is loser to (l,m)τ than to
(l,m)). Therefore −(ad− bc) ≤ −bl + am, dl − cm ≤ ad− bc. Owing to this, and
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x

y

A

P

u
t

s
B

C
D

r
s

t
u

Figure 4.4: r, s, t, u annot be all greater than √
k =

√
l2 +m2.beause |ad−bc| | −bl+am, dl−cm, it follows that (ld−mc,−lb+ma) = (ku, kv),with u, v ∈ {−1, 0, 1}.

y

x

(c,d)

(a,b)

(a+c,b+d)

(l,m)(-a+c,-b+d)

(a-c,b-d)

(-a-c,-b-d)Figure 4.5: (l,m) is inside the parallelogram.Then: (
d −c
−b a

)(
l
m

)
=

(
k 0
0 k

)(
u
v

)
.Multiplying both members of this equation by (a c

b d

), we get
(
k 0
0 k

)(
l
m

)
=

(
k 0
0 k

)(
a c
b d

)(
u
v

)sine (k 0
0 k

) omutes with (a c
b d

). Hene
(
l
m

)
=

(
a c
b d

)(
u
v

)
= u

(
a
b

)
+ v

(
c
d

)
.



4.1 Uniform hypermaps on the torus 59This gives the 9 possible values for (l,m), namely u(a, b) + v(c, d), with u, v ∈
{−1, 0, 1}. Sine |det(M)| > 0, |det(M)| = k = l2 + m2 is a2 + b2, c2 + d2 or
(a− c)2 + (b− d)2, (a+ c)2 + (b+ d)2. In addition, there are r, s, t, u ∈ Z suh thatsuh that ru− st = ±1 and

(
l −m
m l

)
=

(
a c
b d

)(
r t
s u

)
. (4.6)(f) Looking bak at the proof of (), ifR1 ∈ N∆(U), thenXm = (Y R1)m = (Y m)R1 , Y l =

(XR1)l = (X l)R1 ∈ UR1 = U , so m ∈ A and l ∈ B. Hene l = minA ≤ m and
m = minB ≤ l. Consequently d1 = l = m = d2. In addition, taking d := d1 = d2,there are r, s, t, u ∈ Z suh that suh that ru− st = ±1 and

(
d 0
0 d

)
=

(
a c
b d

)(
r t
s u

)
, (4.7)or (

d −d
d d

)
=

(
a c
b d

)(
r t
s u

)
. (4.8)The proofs of 2. are similar to those presented in 1.We reall that if g ∈ N∆(U), then Ug ∈ N∆(U)/U ∼= Aut(U) orresponds to the automor-phism of U that maps a �ag Ud, with d ∈ ∆, to Ugd. In partiular, if U is a uniform map onthe torus of type (4, 2, 4), then R1 ∈ N∆(U) if and only if Aut(U) inludes re�etions on thediagonals; R0, R2 ∈ N∆(U) if and only if Aut(U) inludes re�etions on vertial or horizontallines.Theorem 4.1.15 (Θ-regularity of (4, 2, 4)M and (6, 2, 3)M ). Let M =

(
a c
b d

) with det(M) 6=
0, d1 = gcd(a, c), d2 = gcd(b, d), d+ = gcd(a+ b, c+ d) and d− = gcd(a− b, c− d).1. Let U = (4, 2, 4)M . Then:(a) U is ∆0̂-, ∆2̂-, ∆0-, ∆2-regular if and only if a − b and c − d are even and U isregular;(b) U is ∆1̂-regular if and only if |det(M)| is d1d2, or |det(M)| is 2d1d2 and a

d1
−

b
d2
, cd1 − d

d2
are even;() U is ∆1-regular if and only if a − b and c − d are even and |det(M)| is d+d−

2 , or
|det(M)| is d+d− and a−b

d−
− a+b

d+
and c−d

d−
− c+d

d+
are even;(d) U is ∆+-regular if and only if |det(M)| is a2 + b2, c2 + d2, (a − b)2 + (c − d)2 or

(a+ b)2 + (c+ d)2 and det(M) divides a2 + b2, c2 + d2 and ac+ bd;(e) U is regular if and only if d1 = d2 and |det(M)| is d1
2, or |det(M)| is 2d1

2 and
2d1 divides d−.2. Let U = (6, 2, 3)M . Then:(a) U is ∆2̂-, ∆2-regular if and only if U is regular;(b) U is not ∆0̂-, ∆1̂-, ∆0-, ∆1-regular;



60 Chapter 4. Hypermaps on the torus() U is ∆+-regular if and only if |det(M)| is a2 + ab + b2, c2 + cd + d2, (a − b)2 +
(a− b)(c− d) + (c− d)2 or (a+ b)2 + (a+ b)(c+ d) + (c+ d)2 and det(M) divides
a2 +ab+b2, c2 +cd+d2, ac+ad+bd (and ac+bc+bd = (ac+ad+bd)−(ad−bc));(d) U is regular if and only if d1 = d2 and |det(M)| is d1

2 or |det(M)| is 3d1
2 and

3d1 divides d−.Proof. 1. (a) Let Θ ∈ {∆0̂,∆2̂,∆0,∆2}. By Proposition 4.1.14, if Θ ⊆ N∆(U), then
N∆(U) = ∆. Hene U is Θ-regular if and only if U is Θ-onservative, that is, if a − band c− d are even (Proposition 4.1.8).(b), (), (d), (e) Let Θ ∈ {∆1̂,∆1,∆+,∆}. By Proposition 4.1.8 every uniform map onthe torus of type (4, 2, 4) is Θ-onservative.
(⇒)'s are onsequenes of 1.(), 1.(d), 1.(e), 1.(f) of Proposition 4.1.14, respetively;
(⇐)'s Using (4.2), (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8), together with Theorem 4.1.10,we an see that U is isomorphi to one of the hypermaps listed in 1. of Proposition 4.1.12;by this result U is ∆1̂-, ∆1-, ∆+-, or ∆-regular, respetively.2. (a) Let Θ ∈ {∆2̂,∆2}. Every uniform map on the torus of type (6, 2, 3) is Θ-onservativeby Proposition 4.1.8. By 2.(b) of Proposition 4.1.14, U is Θ-regular if and only if U isregular.(b) If Θ ∈ {∆0̂,∆1̂,∆0,∆1}, then U is not Θ-onservative (Proposition 4.1.8), hene Uis not Θ-regular.(), (d) Let Θ ∈ {∆+,∆}. As in 1.(d), 1. (f), U is always Θ-onservative.
(⇒)'s are onsequenes of 2.(), 2.(d) of Proposition 4.1.14;
(⇐)'s follow from 2. of Lemma 4.1.13.Corollary 4.1.16. Let M =

(
a c
b d

) suh that det(M) 6= 0.1. (a) (4, 2, 4)M is ∆1̂-regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is ( l 0
0 m

) or
(
l −l
m m

), for some l,m ∈ N;(b) (�irá¬, Tuker and Watkins [66℄)
(4, 2, 4)M is ∆1-regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is (l −m

l m

)or ( l m
m l

), for some l,m ∈ N;() (Coxeter and Moser [33℄)
(4, 2, 4)M is ∆+-regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is ( l −m

m l

),for some l,m ∈ N;(d) (Coxeter and Moser [33℄)
(4, 2, 4)M is regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is (k 0

0 k

) or
(
k −k
k k

), for some k ∈ N.2. (a) (Coxeter and Moser [33℄)
(6, 2, 3)M is ∆+-regular if and only if (6, 2, 3)M ∼= (6, 2, 3)N , where N is ( l −l−m

m l

),for some l,m ∈ N;



4.1 Uniform hypermaps on the torus 61(b) (Coxeter and Moser [33℄)
(6, 2, 3)M is regular if and only if (6, 2, 3)M ∼= (6, 2, 3)N , where N is (k 0

0 k

) or
(
k −2k
k k

), for some k ∈ N.Note that the orientably-regular hypermaps (4, 2, 4)� l
m
-m
l

� and (6, 2, 3)� l
m
-l-m

l

� ({4, 4}l,mand {3, 6}l,m in the notation of Coxeter and Moser [33℄) are regular if and only if l = 0 or
m = 0 or l = m.Remark 4.1.17. In [66℄, �irá¬, Tuker and Watkins proved that a uniform map U of type
(4, 2, 4) is ∆1-regular if and only if U ∼= (4, 2, 4)� r1

r2

-s
s

�, where s | r1 − r2. If (r1 − r2)/s is even,say r1 − r2 = 2ks, then
(
r1 −s
r2 s

)
=

(
r2 + 2ks −s

r2 s

)
=

(
r2 + ks −s
r2 + ks s

)(
1 0
−k 1

)and (4, 2, 4)� r1
r2

-s
s

� ∼= (4, 2, 4)� r2+ks

r2+ks

-s
s

� sine det
(

1 0
−k 1

)
= 1; else if (r1 − r2)/s is odd, say

r1 − r2 = (2k + 1)s, then
(
r1 −s
r2 s

)
=

(
r2 + s+ 2ks −s

r2 s

)
=

(
r2 + s+ ks −s
r2 + ks s

)(
1 0
−k 1

)

=

(
r2 + s+ ks r2 + ks
r2 + ks r2 + s+ ks

)(
1 −1
0 1

)(
1 0
−k 1

)

=

(
r2 + s+ ks r2 + ks
r2 + ks r2 + s+ ks

)(
1 + k −1
−k 1

)and (4, 2, 4)� r1
r2

-s
s

� ∼= (4, 2, 4)� r2+s+ks

r2+ks

r2+ks

r2+s+ks

� sine det
(

1 + k −1
−k 1

)
= 1.It is also shown that a uniform map U of type (6, 2, 3) is orientably-regular if and only if

U ∼= (6, 2, 3)� r
s
-s

r+s

�. However, sine
(
r −s
s r + s

)
=

(
r −r − s
s r

)(
1 1
0 1

)and det
(

1 1
0 1

)
= 1, (6, 2, 3)� r

s
-s

r+s

� ∼= (6, 2, 3)� r
s
-r-s

r

�.Remark 4.1.18. One an easily see that
(

2k k
0 k

)
=

(
k −k
k k

)(
1 1
−1 0

)
,

(
3k k
0 k

)
=

(
k −2k
k k

)(
1 1
−1 0

) and det

(
1 1
−1 0

)
= 1.Let R = (l,m, n)M , where (l,m, n) is (4, 2, 4) or (6, 2, 3) and M is (k 0

0 k

) or (kl/2 k
0 k

),for some k ∈ N. Then R is a regular map and the automorphism group, Aut(R), andthe rotation group, Aut+(R), of R are isomorphi to ∆/R and ∆+/R, respetively. Sine
∆/R = 〈RX,RY,RR1, RR2〉, ∆+/R = 〈RX,RY,RR1R2〉, 〈RX,RY 〉 is a normal subgroup of
∆/R (see Corollary 4.1.4) and 〈RX,RY 〉 ∩ 〈RR1, RR2〉 = {1}, we have

Aut(R) ∼= (Ck × Ck) ⋊Dl and Aut+(R) ∼= (Ck × Ck) ⋊ Cl, if M is (k 0
0 k

)
, (4.9)



62 Chapter 4. Hypermaps on the torusand
Aut(R) ∼= (Ckl/2 × Ck) ⋊Dl and Aut+(R) ∼= (Ckl/2 × Ck) ⋊ Cl, if M is (kl/2 k

0 k

). (4.10)As remarked by Coxeter and Moser (see Table 7 of [33℄), the automorphism groups of
(4, 2, 4)� k

k
-k
k

� and (6, 2, 3)( k
0

0
k ) are the groups G4,4,2k and G3,6,2k, with orders 16k2 and 12k2respetively.4.1.2 Uniform hypermaps on the torus of type (3, 3, 3)The uniform hypermaps on the torus of type (3, 3, 3) an be obtained from the uniform mapson the torus of type (6, 2, 3) in the following way. If U is a uniform hypermap on the torus oftype (3, 3, 3), then Walsh(U) is a bipartite-uniform hypermap on the torus of bipartite-type

(3, 3; 2; 6). Owing to this, Walsh(U) and M := D(02)(Walsh(U)) are uniform maps on thetorus of types (3, 2, 6) and (6, 2, 3). Reiproally, if M is a uniform map on the torus of type
(6, 2, 3), then, by Proposition 4.1.8, M is ∆2̂-onservative and D(02)(M) is ∆0̂-onservative,that is, bipartite. Now, D(02)(M), being bipartite and uniform, is bipartite-uniform and itsbipartite-type is (3, 3; 2; 6). Then, by Theorem 1.6.5, D(02)(M) ∼= Walsh(U), for some uniformhypermap U on the torus of type (3, 3, 3). Furthermore, if V is another hypermap suh that
Walsh(V) ∼= D(02)(M) ∼= Walsh(U), then, by Theorem 1.6.6, V ∼= U or V ∼= D(01)(U). If Uand M are hypermap subgroups of U and M, then M = Uϕ

W

−1(02), Uϕ
W

−1 = M(02) and
U = Uϕ

W

−1ϕ
W

= M(02)ϕ
W
.Let X3 := X6(02)ϕ

W
= R2R1R0R1 = Y4

−1, Y3 := Y6(02)ϕ
W

= R1R2R1R0 = X4
−1 and

N3 := N6(02)ϕ
W

= 〈(R1R2)
6, (R2R0)

2, (R0R1)
3〉∆(02)ϕ

W

= 〈(R1R2)
3, (R2R0)

2, (R0R1)
6〉∆ϕ

W

= 〈(R1R2)
3, [(R1R2)

3]R0 , (R2R0)
2, (R0R1)

6〉∆0̂
ϕ

W

= 〈(R1R2)
3, (R1

R0R2
R0)3, R2R2

R0 , (R1
R0R1)

3〉∆0̂
ϕ

W

= 〈(R1R2)
3, (R2R0)

3, (R0R1)
3〉∆.Clearly, Y3 = X4

−1 = (Y4
−1)R1 = X3

R1 . Let ϕ∗
W

: ∆2̂ → ∆, g 7→ g(02)ϕ
W
. Sine N6ϕ

∗
W

= N3,
ϕ∗

W
indues an epimorphism Φ∗

W
: ∆2̂/N6 → ∆/N3, suh that (N6g)Φ

∗
W

= N3(gϕ
∗
W

). By abuseof language, we speak of ϕ∗
W
, meaning Φ∗

W
.Lemma 4.1.19 (Properties of N3, X3 and Y3).1. N3X3 ⇌ N3Y3;2. N3X3

R0 = N3X3Y3
−1, N3X3

R1 = N3Y3, N3X3
R2 = N3X3

−1,
N3Y3

R0 = N3Y3
−1, N3Y3

R1 = N3X3, N3Y3
R2 = N3X3

−1Y3.Proof. This Lemma follows from the de�nitions of N3, X3 and Y3, the fat that ϕ∗
W

is a groupepimorphism and 2. of Lemma 4.1.2.1. N3X3N3Y3 = N3X3Y3 = (N6X6Y6)ϕ
∗
W

= (N6Y6X6)ϕ
∗
W

= N3Y3X3 = N3Y3N3X3.2. Sine R0 = R1
R2ϕ∗

W
, R1 = R1ϕ

∗
W

and R2 = R0ϕ
∗
W
, we have:
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N3X3

R0 = (N6X6
R2R1R2)ϕ∗

W
= (N6X6Y6

−1)ϕ∗
W

= N3X3Y3
−1,

N3X3
R1 = (N6X6

R1)ϕ∗
W

= (N6Y6)ϕ
∗
W

= N3Y3,
N3X3

R2 = (N6X6
R0)ϕ∗

W
= (N6X6

−1)ϕ∗
W

= N3X3
−1,

N3Y3
R0 = (N6Y6

R2R1R2)ϕ∗
W

= (N6Y6
−1)ϕ∗

W
= N3Y3

−1,
N3Y3

R1 = (N6Y6
R1)ϕ∗

W
= (N6X6)ϕ

∗
W

= N3X3,
N3Y3

R2 = (N6Y6
R0)ϕ∗

W
= (N6X6

−1Y6)ϕ
∗
W

= N3X3
−1Y3.We shall omit the index 3 in N3, X3 and Y3 if it is lear from the ontext.Beause N is a normal subgroup of ∆ ontained in U , N ⊆ U∆ and hene:Corollary 4.1.20. Let U be a uniform hypermap on the torus of type (3, 3, 3) and U a hyper-map subgroup of U . Then:1. U∆X ⇌ U∆Y ;2. U∆X

R0 = U∆XY
−1, U∆X

R1 = U∆Y , U∆X
R2 = U∆X

−1,
U∆Y

R0 = U∆Y
−1, U∆Y

R1 = U∆X, U∆Y
R2 = U∆X

−1Y .Remark 4.1.21. 1. N3(01) = N3;Therefore, (01) indues an isomorphism ∆/N3 → ∆/N3, N3g 7→ N3g(01), whih, byabuse of language, we also denote by (01);2. N3X3(01) = N3R2R0R1R0 = N3X3(R1R0)
3 = N3X3 = (N3X3

R2)−1;3. N3Y3(01) = (N3X3
R1)(01) = (N3X3(01))

R1(01)
= N3X3

R0 = N3X3Y3
−1 = (N3Y3

R2)−1;Lemma 4.1.22. If U is a uniform hypermap on the torus of type (3, 3, 3), then U ∼= D(01)(U).Proof. Let V = D(01)(U) and M =
(
a c
b d

) suh that (6, 2, 3)M ∼= D(02)(Walsh(U)). Then U =

(N6〈X6
aY6

b, X6
cY6

d〉)ϕ∗
W

= N3〈X3
aY3

b, X3
cY3

d〉 and V = U(01) are hypermap subgroups of
U and V. By Remark 4.1.21 N3X3(01) = (N3X3

R2)−1 and N3Y3(01) = (N3Y3
R2)−1, so

V/N3 = U(01)/N3

= (N3〈X3
aY3

b, X3
cY3

d〉)(01)/N3

= (〈N3[(X3
aY3

b)(01)], N3[(X3
cY3

d)(01)]〉)
= 〈[N3(X3

aY3
b)R2 ]−1, [N3(X3

cY3
d)R2 ]−1〉

= 〈N3(X3
aY3

b)R2 , N3(X3
cY3

d)R2)〉
= 〈N3X3

aY3
b, N3X3

cY3
d〉R2

= UR2/N3.Thus V = U(01) = UR2 . Having onjugate hypermap subgroups, U and V are isomorphi.We denote by (3, 3, 3)M the uniform hypermap on the torus of type (3, 3, 3) (unique up toisomorphism) suh that Walsh((3, 3, 3)M ) ∼= D(02)((6, 2, 3)M ).Lemma 4.1.23. The hypermap U = (3, 3, 3)M has |ΩU | = 6|det(M)| �ags, V = |det(M)|verties, E = |det(M)| edges and F = |det(M)| faes.



64 Chapter 4. Hypermaps on the torusProof. The number of �ags of (3, 3, 3)M is half the number of �ags of D(02)((6, 2, 3)M ), whihis 12|det(M)|. The numbers of verties, edges and faes of U are given by the formula
|ΩU | = 2lV = 2mE = 2nF .Theorem 4.1.24 (Hypermap subgroup of (3, 3, 3)M ). The hypermap U = (3, 3, 3)M hashypermap subgroup U = N〈XaY b, XcY d〉 = 〈(R1R2)

6, (R2R0)
2, (R0, R1)

3〉∆〈XaY b, XcY d〉.Proposition 4.1.25 (Θ-onservativeness of (3, 3, 3)M ). The uniform hypermap (3, 3, 3)M is
∆+-onservative but is not Θ-onservative for any other Θ ⊳2 ∆.Proof. Sine (R1R2)

3, (R2R0)
3, (R0R1)

3, X3 = R2R1R0R1, Y3 = R1R2R1R0 ∈ ∆+, U ⊆ ∆+.However, (RiRj)
3 /∈ ∆k̂,∆k for every k ∈ {0, 1, 2}, so U * Θ, for Θ ⊳2 ∆, Θ 6= ∆+.Lemma 4.1.26. (3, 3, 3)M → (3, 3, 3)M ′ if and only if (6, 2, 3)M → (6, 2, 3)M ′.Proof. Let U and U ′ be hypermap subgroups of (3, 3, 3)M and (3, 3, 3)M ′ . Then V := Uϕ∗

W

−1and V ′ := U ′ϕ∗
W

−1 are hypermap subgroups of (6, 2, 3)M (6, 2, 3)M ′ . If (3, 3, 3)M → (3, 3, 3)M ′ ,then U ⊆ (U ′)y, for some y ∈ ∆. Sine ϕ∗
W

is an epimorphism, there is x ∈ ∆2̂ suh that
xϕ∗

W
= y. Hene V = Uϕ∗

W

−1 ⊆ (U ′)yϕ∗
W

−1 = (U ′)xϕ
∗

W ϕ∗
W

−1 = (U ′ϕ∗
W

−1)x = (V ′)x, that is,
(6, 2, 3)M → (6, 2, 3)M ′ .Reiproally, if (6, 2, 3)M → (6, 2, 3)M ′ , then there is g ∈ ∆ suh that Uϕ∗

W

−1 ⊆ (U ′ϕ∗
W

−1)g.If g ∈ ∆2̂, then U = V ϕ∗
W

⊆ (V ′)gϕ∗
W

= (V ′ϕ∗
W

)gϕ
∗

W = (U ′)gϕ
∗

W ; else, if g /∈ ∆2̂, then
R2R0g ∈ ∆2̂ and, by Lemma 4.1.7, (V ′(02))R2R0 = V ′(02), or equivalently, (V ′)R0R2 = V ′,so U = V ϕ∗

W
⊆ (V ′)gϕ∗

W
= [(V ′)R0R2 ]R2R0gϕ∗

W
= (V ′)R2R0gϕ∗

W
= (V ′ϕ∗

W
)R2R0gϕ∗

W =

(U ′)R0R2gϕ∗

W .Using the previous Lemma together with Theorem 4.1.10 we get:Theorem 4.1.27.1. U → U ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and Q ∈M(2,Z) suh that

det(Q) 6= 0 and M = PM ′Q.2. U ∼= U ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and Q ∈ GL(2,Z) suhthat M = PM ′Q.Now we give examples of restritedly-regular uniform hypermaps on the torus of type

(3, 3, 3). The proof is similar to the proof of Proposition 4.1.12.Proposition 4.1.28. Let k, l,m ∈ Z.1. (Corn and Singerman [28℄)
(3, 3, 3)� l

m
-l-m

l

� is ∆+-regular, that is, orientably-regular;2. (Corn and Singerman [28℄ together with Breda and Nedela [10℄1)
(3, 3, 3)( k

0
0
k ) and (3, 3, 3)� k

k
-2k
k

� are ∆-regular, that is, regular.1Theorem 11 of [28℄ states that a uniform hypermap H on the torus of type (3, 3, 3) is orientably-regular ifand only if Walsh(H) is orientably-regular. By Theorem 1 of [10℄, H is orientably-hiral if and only if Walsh(H)is orientably-hiral, and hene H is regular if and only if Walsh(H) is regular.



4.1 Uniform hypermaps on the torus 65Finally we have:Theorem 4.1.29 (Θ-regularity of (3, 3, 3)M ). Let M =
(
a c
b d

) suh that det(M) 6= 0.1. (3, 3, 3)M is ∆+-regular if and only if (6, 2, 3)M is ∆+-regular, that is, if and only if
|det(M)| is a2 + ab+ b2, c2 + cd+ d2, (a− b)2 + (a− b)(c− d) + (c− d)2 or (a+ b)2 +
(a+ b)(c+ d) + (c+ d)2, and det(M) divide a2 + ab+ b2, c2 + cd+ d2, ac+ ad+ bd (and
ac+ bc+ bd = (ac+ ad+ bd) − (ad− bc));2. (3, 3, 3)M is not ∆0̂-, ∆1̂-, ∆2̂-, ∆0-, ∆1-, ∆2-regular;3. (3, 3, 3)M is regular if and only if (6, 2, 3)M is regular, that is, if and only if d1 = d2 and
|det(M)| = d1

2 or |det(M)| = 3d1
2 and 3d1 | gcd(a− b, c−d), where d1 = gcd(a, c) and

d2 = gcd(b, d).Proof. If Θ ⊳2 ∆, Θ 6= ∆+, then (3, 3, 3)M is not Θ-regular, beause (3, 3, 3)M is not Θ-onservative (Proposition 4.1.25).Now let U and V be hypermap subgroups of U := (3, 3, 3)M and V := (6, 2, 3)M . Then
V = Uϕ

W

−1(02) and U ⊳ ∆ ⇔ Uϕ
W

−1
⊳ ∆ϕ

W

−1 = ∆0̂ ⇔ V ⊳ ∆2̂ ⇔ V ⊳ ∆ (see Theorem4.1.15). Similarly U ⊳ ∆+ ⇔ Uϕ
W

−1
⊳ ∆+ϕ

W

−1 = ∆+ ∩ ∆0̂ ⇔ V ⊳ ∆+ ∩ ∆2̂. Owing tothis, and beause V R2R0 = V (see Corollary 4.1.7), ∆+ = 〈∆+ ∩∆2̂, R2R0〉 ⊆ N∆(V ), that is
V ⊳ ∆.Using this Theorem, together withCorollary 4.1.30. Let M =

(
a c
b d

) suh that det(M) 6= 0.1. (Corn and Singerman [28℄)
(3, 3, 3)M is ∆+-regular if and only if (3, 3, 3)M ∼= (3, 3, 3)� l

m
-l-m

l

� for some l,m ∈ N;2. (Corn and Singerman [28℄)
(3, 3, 3)M is regular if and only if (3, 3, 3)M ∼= (3, 3, 3)( k

0
0
k ) or (3, 3, 3)M ∼= (3, 3, 3)� k

k
-2k
k

�,for some k ∈ N.Remark 4.1.31. Let R = (3, 3, 3)M , where M is (k 0
0 k

) or (k −2k
k k

), for some k ∈ N.As in Remark 4.1.18, R is a regular map and the automorphism group, Aut(R), and therotation group, Aut+(R), of R are isomorphi to ∆/R and ∆+/R, respetively. Sine ∆/R =
〈RX,RY,RR1, RR2〉, ∆+/R = 〈RX,RY,RR1R2〉, 〈RX,RY 〉 is a normal subgroup of ∆/R(see Corollary 4.1.20) and 〈RX,RY 〉 ∩ 〈RR1, RR2〉 = {1}, we have

Aut(R) ∼= (Ck × Ck) ⋊D3 and Aut+(R) ∼= (Ck × Ck) ⋊ C3, if M is (k 0
0 k

)
, (4.11)and

Aut(R) ∼= (C3k × Ck) ⋊D3 and Aut+(R) ∼= (C3k × Ck) ⋊ C3, if M is (k −2k
k k

). (4.12)



66 Chapter 4. Hypermaps on the torus4.2 Bipartite-uniform hypermaps on the torusLet B is a bipartite-uniform hypermap on the torus of bipartite-type (l1, l2;m;n). As before, wemay assume, without loss of generality, that l1 ≤ l2 and m ≤ n. Then, by Lemma 1.3.6, m and
n are even. Replaing χB = 0 in the Euler formula for bipartite-uniform hypermaps (Corollary1.4.3), it follows from Lemma 1.4.7 that l1 = 1 or m/2 = 1 or l1 = l2 = m/2 = n/2 = 2. When
l1 = 1 orm/2 = 1, Theorems 1.6.5 and 1.6.9 imply that B ∼= Pin(U) or B ∼= Walsh(U), for someuniform hypermap U on the torus; in addition, B is bipartite-regular if and only if U is regular.When l1 = l2 = m/2 = n/2 = 2, B is uniform of type (2, 4, 4) and so B ∼= D(01)((4, 2, 4)M ),for some M ∈M(2,Z) suh that det(M) 6= 0. Obviously, B is bipartite-regular if and only if
D(01)(B) ∼= (4, 2, 4)M is ∆1̂-regular.Theorem 4.2.1. If B is a bipartite-uniform hypermap on the torus, then B ∼= Walsh(U) or
B ∼= Pin(U), for some uniform hypermap U on the torus, or D(01)(B) is a uniform map onthe torus of type (4, 2, 4). Furthermore, B is bipartite regular if and only if B ∼= Walsh(R) or
B ∼= Pin(R) for some regular hypermap R on the torus, or if D(01)(B) ∼= (4, 2, 4)M , where Mis ( l 0

0 m

) or ( l −l
m m

), for some l,m ∈ N.
# l1 l2 m n V1 V2 E F |Ω| B
1 1 2 6 12 6k 3k 2k k 24k Pin(D(021)((6, 2, 3)M ))

2 1 2 8 8 4k 2k k k 16k Pin(D(01)((4, 2, 4)M ))

3 1 3 4 12 6k 2k 3k k 24k Pin(D(02)((6, 2, 3)M ))

4 1 3 6 6 3k k k k 12k Pin((3, 3, 3)M )

5 1 4 4 8 4k k 2k k 16k Pin((4, 2, 4)M )

6 1 6 4 6 6k k 3k 2k 24k Pin((6, 2, 3)M )

7 2 2 4 4 k k k k 8k D(01)((4, 2, 4)M )

8 2 3 2 12 3k 2k 6k k 24k Walsh(D(02)((6, 2, 3)M ))

9 2 4 2 8 2k k 4k k 16k Walsh((4, 2, 4)M )

10 2 6 2 6 3k k 6k 2k 24k Walsh((6, 2, 3)M )

11 3 3 2 6 k k 3k k 12k Walsh((3, 3, 3)M )

12 3 6 2 4 2k k 6k 3k 24k Walsh(D(12)((6, 2, 3)M ))

13 4 4 2 4 k k 4k 2k 16k Walsh(D(12)((4, 2, 4)M ))Table 4.1: The bipartite-uniform hypermaps on the torus (up to duality). (k = det(M).)Table 4.1 lists all possible values for the bipartite-type of a bipartite-uniform hypermapon the torus, up to duality. The hypermaps listed in lines 1-6 and 8-13 are obtained fromuniform hypermaps by the Pin and Walsh onstrutions, and the hypermap in line 7 is dualof a uniform map of type (4, 2, 4).4.3 Chirality groups and hirality indies of the 2-restritedly-regular hypermaps on the torusIn this Setion we ompute the hirality groups and the hirality indies of the 2-restritedly-regular hypermaps on the torus. In Table 4.2 we display the hirality groups, hirality indies



4.3 Chirality groups and hirality indies... 67and losure overs of the restritedly-regular hypermaps listed in Proposition 4.1.12. Table 4.3lists the hirality groups, hirality indies and losure overs of the bipartite-regular hypermapson the torus obtained by the Walsh and Pin onstrutions.The following Lemma will be very useful in this setion.Lemma 4.3.1. Let M :=
(
a c
b d

).1. (a) If M is ( l 0
0 m

) or ( l −l
m m

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, [(R2R0)

2]R1 , (R0R1)
4, XaY b, XcY d〉∆1̂;(b) If M is (l −m

l m

) or ( l m
m l

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, (R0R1)

4, XaY b, XcY d〉∆1;() If M is ( l −m
m l

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, (R0R1)

4, X lY m, X−mY l〉∆+;(d) If M is (k 0
0 k

) or (k −k
k k

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, (R0R1)

4, XaY b, XcY d〉∆.2. (a) If M is ( l −l −m
m l

), then (6, 2, 3)M has hypermap subgroup
〈(R1R2)

6, (R2R0)
2, (R0R1)

3, X lY m, X−l−mY l〉∆+;(b) If M is (k 0
0 k

) or (k −2k
k k

), then (6, 2, 3)M has hypermap subgroup
〈(R1R2)

6, (R2R0)
2, (R0R1)

3, XaY b, XcY d〉∆.3. (a) If M is ( l −l −m
m l

), then (3, 3, 3)M has hypermap subgroup
〈(R1R2)

3, (R2R0)
3, (R0R1)

3, X lY m, X−l−mY l〉∆+;(b) If M is (a c
b d

) is (k 0
0 k

) or (kk −2k
k

), then (3, 3, 3)M has hypermap subgroup
〈(R1R2)

3, (R2R0)
3, (R0R1)

3, XaY b, XcY d〉∆.Proof. 1. Let Θ be ∆1, ∆0̂ or ∆+, and H = (4, 2, 4)M a Θ-regular hypermap with hypermapsubgroup H := 〈S〉∆〈XaY b, XcY d〉, where S := {(R1R2)
4, (R2R0)

2, (R0R1)
4}.Sine R1 /∈ ∆1̂, by 1. of Lemma 1.9.2,

〈S〉∆ = 〈S, SR1〉∆1̂
= 〈S, [(R1R2)

4]−1, [(R2R0)
2]R1 , [(R0R1)

4]−1〉∆1̂
= 〈S, [(R2R0)

2]R1〉∆1̂
.When Θ is ∆+ or ∆1, R0 /∈ Θ, but R2R0 ∈ Θ, so

〈S〉∆ = 〈S, SR0〉Θ = 〈S, ([(R1R2)
4]−1)R2R0 , [(R2R0)

2]−1, [(R0R1)
4]−1〉Θ = 〈S〉Θ.Let P = S ∪ {XaY b, XcY d} and Q = P ∪ {[(R1R2)

4]−1, [(R2R0)
2]R1}. If Θ is ∆, ∆+ or ∆1,and H is Θ-regular, then H ⊆ 〈P 〉Θ. On the other hand, sine H is a normal subgroup of Θontaining P , H also ontains 〈P 〉Θ. Similarly, if H is ∆0̂-regular, then H = 〈Q〉∆0̂ .2. and 3. are similar to 1.Having in mind that NiXi ⇌ NiYi and



68 Chapter 4. Hypermaps on the torus1. (a) N4Y4 = N4X4
R1 and N4X4 = N4(R0R1R2R1),(b) N4X4

−1Y4 = N4(X4Y4)
R0 and N4X4Y4 = N4(R0R1R2)

2,2. (a) N6Y6 = N6X6
R1 and N6Y6 = N6R0R1R0R2R1R2 = N6(R0R1R2)

2,(b) N6X6
−2Y6 = N6(X6Y6)

R0 and N6X6Y6 = N6(R0R1R2R1R2)
2,3. (a) N3Y3 = N3X3

R1 and N3X3 = N3(R2R1R0R1),(b) N3X3
−2Y3 = N3(X3Y3)

R2 and N3X3Y3 = N3(R2R1R0)
2,we an �nd more onvenient presentations for the hypermap subgroups of the regular hyper-maps on the torus.Corollary 4.3.2.1. (a) (4, 2, 4)( k

0
0
k ) has hypermap subgroup 〈(R1R2)

4, (R2R0)
2, (R0R1)

4, (R0R1R2R1)
k〉∆;(b) (4, 2, 4)� k

k
-k
k

� has hypermap subgroup 〈(R1R2)
4, (R2R0)

2, (R0R1)
4, (R0R1R2)

2k〉∆.2. (a) (6, 2, 3)( k
0

0
k ) has hypermap subgroup 〈(R1R2)

6, (R2R0)
2, (R0R1)

3, (R0R1R2)
2k〉∆;(b) (6, 2, 3)� k

k
-2k
k

� has hypermap subgroup 〈(R1R2)
6, (R2R0)

2, (R0R1)
3, (R0R1R2R1R2)

2k〉∆.3. (a) (3, 3, 3)( k
0

0
k ) has hypermap subgroup 〈(R1R2)

3, (R2R0)
3, (R0R1)

3, (R2R1R0R1)
k〉∆;(b) (3, 3, 3)� k

k
-2k
k

� has hypermap subgroup 〈(R1R2)
3, (R2R0)

3, (R0R1)
3, (R2R1R0)

2k〉∆.4.3.1 Chirality groups and hirality indies of the orientably-regular hy-permaps on the torusUp to duality, there are 3 families of orientably-regular hypermaps on the torus:
(4, 2, 4)( l

m
−m

l ), (6, 2, 3)( l
m

−l−m
l ), (3, 3, 3)( l

m
−l−m

l ), with l,m ∈ N. The hirality groups andhirality indies of the �rst two families (that is, the families of maps) have been omputed in[4℄.
• Q = (4, 2, 4)( l

m
−m

l ) has hypermap subgroup
Q = 〈(R1R2)

4, (R2R0)
2, (R0R1)

4, X lY m, X−mY l〉∆+ .Let k := gcd(l,m). Then
Υ = Q∆/Q = QQR1/Q = 〈Q(X lY m)R1 , Q(X−mY l)R1〉∆+/Q

= 〈QXmY l, QX lY −m〉∆+/Q

= 〈QXmY l, QX lY −m〉
= 〈QX2m, QX2l〉
= 〈QX2k〉.Beause QX has order (l2 +m2)/k in ∆+/Q, QX2k has order (l2+m2)/k

gcd(2k,(l2+m2)/k)
.



4.3 Chirality groups and hirality indies... 69If l/k and m/k are both odd, that is, if 2k | l − m, then gcd(2k, (l2 + m2)/k) = 2k,
Υ ∼= C(l2+m2)/2k2 and ι = (l2 +m2)/2k2. In addition

(
l −m
m l

)
=

(
k −k
k k

)(
l+m
2k

l−m
2k

−l+m
2k

l+m
2k

) and Q∆ = (4, 2, 4)� k
k
-k
k

�.If l/k and m/k are not both odd, that is, if 2k ∤ l −m, then gcd(2k, (l2 +m2)/k) = k,
Υ ∼= C(l2+m2)/k2 and ι = (l2 +m2)/k2. In addition

(
l −m
m l

)
=

(
k 0
0 k

)(
l/k −m/k
m/k l/k

) and Q∆ = (4, 2, 4)( k
0

0
k ).

• Q = (6, 2, 3)( l
m

−l−m
l ) has hypermap subgroup

Q = 〈(R1R2)
6, (R2R0)

2, (R0R1)
3, X lY m, X−l−mY l〉∆+ .Let k := gcd(l,m). Then

Υ = Q∆/Q = QQR1/Q = 〈Q(X lY m)R1 , Q(X−l−mY l)R1〉∆+/Q

= 〈QXmY l, QX lY −l−m〉∆+/Q

= 〈QXmY l, QX lY −l−m〉
= 〈QX l+2m, QX l−m〉
= 〈QX3l, QX l−m〉
= 〈QXgcd(3l,l−m)〉.We note that QX has order (l2 + lm+m2)/k in ∆+/Q.If 3k | l−m, then gcd(3l, l−m) = 3k, 3k2 | l2 + lm+m2 = (l−m)(l+ 2m) + 3m2 and

QX3k has order
(l2 + lm+m2)/k

gcd(3k, (l2 + lm+m2)/k)
=

(l2 + lm+m2)/k

3k
= (l2 + lm+m2)/3k2.Furthermore Υ = 〈QX3k〉 ∼= C(l2+lm+m2)/3k2 , ι = (l2 + lm+m2)/3k2,

(
l −l −m
m l

)
=

(
k −2k
k k

)(
l+2m

3k
l−m
3k

−l+m
3k

2l+m
3k

) and Q∆ = (6, 2, 3)� k
k
-2k
k

�.If 3k ∤ l −m, then gcd(3l, l −m) = k and QXk has order
(l2 + lm+m2)/k

gcd(k, (l2 + lm+m2)/k)
=

(l2 + lm+m2)/k

k
= (l2 + lm+m2)/k2.Furthermore Υ = 〈QXk〉 ∼= C(l2+lm+m2)/k2 , ι = (l2 + lm+m2)/k2,

(
l −l −m
m l

)
=

(
k 0
0 k

)(
l/k −(l +m)/k
m/k l/k

) and Q∆ = (6, 2, 3)( k
0

0
k ).
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• Q = (3, 3, 3)� l

m
-l-m

l

� has hypermap subgroup
Q = 〈(R1R2)

3, (R2R0)
3, (R0R1)

3, X lY m, X−l−mY l〉∆+ .Let M =
(
l −l−m
m l

), H = (6, 2, 3)M and ϕ∗
W

:= (02)|∆2̂ ◦ ϕ
W

: ∆2̂ → ∆. Then
D(02)(H) ∼= Walsh(Q) and H = Qϕ∗

W

−1. We laim that H∆2̂
= H∆ and Υ(Q) ∼= Υ(H).By Corollary 4.1.7, R2R0 ∈ N∆(H). Aording to 4. of Proposition A.1.6, R2R0 ∈

N∆(H∆2̂
), so ∆ = 〈∆2̂, R2R0〉 ⊆ N∆(H∆2̂

), that is, N∆(H∆2̂
) = ∆, or equivalently,

N∆(H∆2̂
) ⊳ ∆. Finally, using 2. of Proposition A.1.6, we have H∆2̂

= (H∆2̂
)∆ = H∆.Sine ϕ∗

W
is an epimorphism, H∆2̂

= Q∆ϕ∗
W

−1 (by Corollary A.1.9) and
Υ(H) = H∆/H = H∆2̂

/H = Q∆ϕ∗
W

−1/Qϕ∗
W

−1 ∼= Q∆/Q = Υ(Q).Let k := gcd(l,m). Like in the previous ase Υ = 〈QXgcd(3l,l−m)〉.If 3k | l−m, then Υ ∼= C(l2+lm+m2)/3k2 , ι = (l2+lm+m2)/3k2 and Q∆ = (3, 3, 3)� k
k
-2k
k

�.If 3k ∤ l −m, then Υ ∼= C(l2+lm+m2)/k2 , ι = (l2 + lm+m2)/k2 and Q∆ = (3, 3, 3)( k
0

0
k ).4.3.2 Chirality groups and hirality indies of the pseudo-orientably-regularhypermaps on the torusThere are 2 families of pseudo-orientably-regular hypermaps on the torus:the duals of (4, 2, 4)( l

l
−m
m ) and (4, 2, 4)( l

m
m
l ), with l,m ∈ N.

• P = (4, 2, 4)( l
l
−m
m ) has hypermap subgroup

P = 〈(R1R2)
4, (R2R0)

2, (R0R1)
4, X lY l, X−mY m〉∆1 .Let k := gcd(l,m). Then

Υ = P∆/P = PPR0/P = 〈P (X lY l)R0 , P (X−mY m)R0〉∆1/P

= 〈PX−lY l, PXmY m〉∆1/P

= 〈P (X−1Y )l, P (XY )m〉∆1/P

= 〈P (X−1Y )k, P (XY )k〉∆1/P

= 〈PX−kY k, PXkY k〉∆1/P

= 〈PX−kY k, PXkY k〉
∼= Cl/k × Cm/k.Sine gcd(l/k,m/k) is 1, Υ ∼= Cl/k × Cm/k ∼= Clm/k2 and ι = lm/k2. In addition

(
l −m
l m

)
=

(
k −k
k k

)(
l/k 0
0 m/k

) and P∆ = (4, 2, 4)� k
k
-k
k

�.
• P = (4, 2, 4)( l

m
m
l ) has hypermap subgroup

P = 〈(R1R2)
4, (R2R0)

2, (R0R1)
4, X lY m, XmY l〉∆1 .



4.3 Chirality groups and hirality indies... 71Let k := gcd(l,m). Then
Υ = P∆/P = PPR0/P = 〈P (X lY m)R0 , P (XmY l)R0〉∆1/P

= 〈PX−lY m, PX−mY l〉∆1/P

= 〈PX−lY m, PX−mY l〉
= 〈PX−2l, PX−2m〉
= 〈PX2k〉.Beause PX has order |l2 −m2|/k in ∆1/P , PX2k has order

|l2 −m2|/k
gcd(2k, |l2 −m2|/k) =

|l2 −m2|/k
k gcd(2, |l2 −m2|/k2)

=
|l2 −m2|/k2

gcd(2, |l2 −m2|/k2)
.If l/k and m/k are both odd, then Υ = C|l2−m2|/2k2 , ι = |l2 −m2|/2k2,

(
l m
m l

)
=

(
k −k
k k

)(
l+m
2k

l−m
2k

−l+m
2k

l+m
2k

) and P∆ = (4, 2, 4)� k
k
-k
k

�;else if l/k and m/k are not simultaneously odd, then Υ = C|l2−m2|/k2 , ι = |l2 −m2|/k2,
(
l m
m l

)
=

(
k 0
0 k

)(
l/k m/k
m/k l/k

) and P∆ = (4, 2, 4)( k
0

0
k ).4.3.3 Chirality groups and hirality indies of the bipartite-regular hyper-maps on the torusWe have seen in Setion 4.2 that there are 3 kinds of bipartite-regular hypermaps on the torus:the duals of ∆1̂-regular maps of type (4, 2, 4), and the hypermaps obtained from regular mapsby the Walsh and Pin onstrutions.We reall that (4, 2, 4)M and D(01)((4, 2, 4)M ) have the same hirality group.

• B = (4, 2, 4)( l
0

0
m) has hypermap subgroup

〈(R1R2)
4, (R2R0)

2, [(R2R0)
2]R1 , (R0R1)

4, X l, Y m〉∆1̂ .Let k := gcd(l,m). Then
Υ = B∆/B = BBR1/B = 〈B(X l)R1 , B(Y m)R1〉∆1̂/B

= 〈BY l, BXm〉∆1̂/B

= 〈BY k, BXk〉∆1̂/B

= 〈BY k, BXk〉
∼= Cl/k × Cm/k.Sine gcd(l/k,m/k) is 1, Υ ∼= Cl/k × Cm/k ∼= Clm/k2 and ι = lm/k2. In addition

(
l 0
0 m

)
=

(
k 0
0 k

)(
l/k 0
0 m/k

) and B∆ = (4, 2, 4)( k
0

0
k ).
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• B = (4, 2, 4)� l

m
-l
m

� has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, [(R2R0)

2]R1 , (R0R1)
4, X lY m, X−lY m〉∆1̂ .Let k := gcd(l,m). Then

Υ = B∆/B = BBR1/B = 〈B(X lY m)R1 , B(X−lY m)R1〉∆1̂/B

= 〈BXmY l, BXmY −l〉∆1̂/B

= 〈BXmY l, BXmY −l〉
= 〈BX l+mY l+m, BX−l+mY −l+m〉
= 〈B(XY )l+m, B(XY )−l+m〉
= 〈B(XY )gcd(l+m,−l+m)〉.If l/k and m/k are both odd, then gcd(l + m,−l + m) = gcd(l + m, 2m) = 2k, BXYhas order lm/k in ∆1̂/B, BX2kY 2k = B(XY )2k has order

lm/k

gcd(2k, lm/k)
=
lm/k

k
= lm/k2,

Υ = 〈BXkY k〉 = Clm/k2 and ι = lm/k2. In addition
(
l −l
m m

)
=

(
k −k
k k

)(
l+m
2k

l+m
2k

−l+m
2k

−l+m
2k

) and B∆ = (4, 2, 4)� k
k
-k
k

�.If l/k and m/k are not both odd, then gcd(l+m,−l+m) = gcd(l+m, 2m) = k, BXYhas order 2lm/k in ∆1̂/B, BXkY k = B(XY )k has order
2lm/k

gcd(k, 2lm/k)
=

2lm/k

k
= 2lm/k2,

Υ = 〈BX2kY 2k〉 = C2lm/k2 and ι = 2lm/k2. In addition
(
l −l
m m

)
=

(
k −k
k k

)(
l/k m/k
−l/k m/k

) and B∆ = (4, 2, 4)( k
0

0
k ).As a by-produt of these alulations, we get the following result:Theorem 4.3.3. The hirality groups of 2-restritedly-regular uniform hypermaps on the torusare yli groups.Finally, we ompute the hirality groups and hirality indies of the bipartite-regular hy-permaps on the torus obtained via the Walsh and Pin onstrutions.Reall that the hypermap subgroup R of a regular hypermap R on the torus of type

(l,m, n) is the normal losure in ∆ of a set with 4 elements ontaining (R1R2)
l, (R2R0)

m and
(R0R1)

n. Indeed, R = 〈T 〉∆, where T = {(R1R2)
l, (R2R0)

m, (R0R1)
n, w}, and w is, up toduality, (R0R1R2R1)

k, (R0R1R2)
2k or (R0R1R2R1R2)

2k.



4.3 Chirality groups and hirality indies... 73Chirality groups and hirality indies of B = Walsh(R)The bipartite-regular hypermaps on the torus obtained by the Walsh onstrution are listed,up to duality, in ases 8-13 of Table 4.1. We use the notations of Proposition 1.9.6.Remark 4.3.4. Let B = Walsh(R) and ι the hirality index of B. If K is a hypermap overedby H suh that Walsh(K) is regular and has |ΩB|/ι �ags, then B∆ = Walsh(K).Note that if {i, j, k} = {0, 1, 2} and R is a normal subgroup of ∆ ontaining (RiRjRk)
2,then R also ontains (RiRjRk)

2αW : if j = 2, then (RiRjRk)
2αW = (RkRjRi)

2 = [(RiRjRk)
2]−1,else, if j 6= 2, then (RiRjRk)

2αW = [(RkRjRi)
2]R2 = ([(RiRjRk)

2]−1)R2 .
• Case 8: B = Walsh(D(02)((6, 2, 3)M )), d1 = 1.Corollary 1.9.7 implies that Υ(B) ∼= ∆+/R ∼= Aut+(R).If M =

(
k 0
0 k

), then ι = |ΩR|/2 = 12k2/2 = 6k2.If M =
(
k −2k
k k

), then ι = |ΩR|/2 = 36k2/2 = 18k2.In both ases B∆ is S2.
• Case 9: B = Walsh((4, 2, 4)M ), d1 = 2.If M =

(
k 0
0 k

), then S = {(R0R1R2R1)
k},

R(R0R1R2R1)
kαW = R(R1R0R2R0)

k = R(R1R2)
k and

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2, R(R1R2)
k〉∆/R = 〈R(R1R2)

gcd(2,k)〉∆/R.Note that RX2 = R[(R1R2)
2]R0(R1R2)

−2 andRY 2 = R(X2)R1 = R[(R1R2)
2]R0R1(R1R2)

2are in 〈R(R1R2)
gcd(2,k)〉∆/R.When 2 ∤ k,

Υ(B) ∼= 〈RR1R2〉∆/R = 〈RR1R2, R(R1R2)
R0 , R(R1R2)

R0R1〉.Then 〈RR1R2〉∆/R ontains RX = (RX2)
k+1
2 and RR0R1 = RXR1R2. Therefore

Υ(B) ∼= ∆+/R ∼= Aut+(R), ι = |ΩR|/2 = 8k2/2 = 4k2 and B∆ is S2.When 2 | k,
Υ(B) ∼= 〈R(R1R2)

2〉∆/R
= 〈R(R1R2)

2, R[(R1R2)
2]R0 , R[(R1R2)

2]R0R1〉
= 〈R(R1R2)

2, RX2, RY 2〉
∼= (Ck/2 × Ck/2) ⋊ C2,

ι = k2/2 and B∆ is P8 = Walsh(P4).If M =
(
k −k
k k

), then S = {(R0R1R2)
2k}, R(R0R1R2)

2kαW = R and
Υ(B) ∼= 〈R(R1R2)

2, R(R2R0)
2〉∆/R

= 〈R(R1R2)
2〉∆/R

= 〈R(R1R2)
2, R[(R1R2)

2]R0 , R[(R1R2)
2]R0R1〉

= 〈R(R1R2)
2, RX2, RY 2〉

= 〈R(R1R2)
2, RX2, RX2Y 2〉.



74 Chapter 4. Hypermaps on the torusWhen 2 ∤ k, RXY = (RX2Y 2)
k+1
2 , so

Υ(B) ∼= 〈R(R1R2)
2, RX2, RX2Y 2〉

= 〈R(R1R2)
2, RX2, RXY 〉

∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is P4 = Walsh(P2).When 2 | k,
Υ(B) ∼= 〈R(R1R2)

2, RX2, RX2Y 2〉
∼= (Ck × Ck/2) ⋊ C2,

ι = k2 and B∆ is P8 = Walsh(P4).
• Case 10: B = Walsh((6, 2, 3)M ), d1 = gcd(l,m) = 2.If M =

(
k 0
0 k

), then S = {(R0R1R2)
2k}, R(R0R1R2)

2kαW = R, and
Υ(B) ∼= 〈R(R1R2)

2, R(R2R0)
2〉∆/R

= 〈R(R1R2)
2〉∆/R

= 〈R(R1R2)
2, R[(R1R2)

2]R0〉.Sine RXY = R[(R1R2)
2]R0(R1R2)

2 and RX−2Y = R(R1R2)
2[(R1R2)

2]R0 , RX3 and
RY 3 are in 〈R(R1R2)

2〉∆/R, and Υ(B) ∼= 〈R(R1R2)
2, RXY,RX−2Y 〉.When 3 ∤ k, RX and RY are in 〈R(R1R2)

2〉∆/R, as well as RR0R1 = RX[(R1R2)
2]−1.Then

Υ(B) ∼= 〈R(R1R2)
2, RXY,RX−2Y 〉

= 〈R(R1R2)
2, RX3, RXY 〉

= 〈R(R1R2)
2, RX,RXY 〉

= 〈R(R1R2)
2, RX,RY 〉

∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is P2 = Walsh(P1).When 3 | k,
Υ(B) ∼= 〈R(R1R2)

2, RXY,RX−2Y 〉
= 〈R(R1R2)

2, RXY,RX3〉
∼= (Ck × Ck/3) ⋊ C3,

ι = k2 and B∆ is P6 = Walsh(P3).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k},

R(R0R1R2R1R2)
2kαW = R(R1R0R2R0R2)

2k = RR1
2k = R,

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2〉∆/R = 〈R(R1R2)
2〉∆/R

= 〈R(R1R2)
2, R[(R1R2)

2]R0〉
= 〈R(R1R2)

2, RXY,RX−2Y 〉
∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is P6 = Walsh(P3).
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• Case 11: B = Walsh((3, 3, 3)M ) = D(02)((6, 2, 3)M ), Υ(B) ∼= 1 and ι = 1. Then B isregular and B∆ = B.
• Case 12: B = Walsh(D(12)((6, 2, 3)M )), d1 = gcd(l,m) = 3.Let X = X(12) = R0R2R1R2R1R2 and Y = Y (12) = R2R0R2R1R2R1. Beause
R(12)X ⇌ R(12)Y , RX ⇌ RY .If M =

(
k 0
0 k

), then S = {(R0R1R2)
2k(12)} = {(R0R2R1)

2k}, R(R0R2R1)
2kαW = R.Beause RX2

= R[(R1R2)
3]R0(R1R2)

3, RY 2
= R[(R1R2)

3]R0R2(R1R2)
3,

Υ(B) ∼= 〈R(R1R2)
3, R(R2R0)

3〉∆/R
= 〈R(R1R2)

3〉∆/R
= 〈R(R1R2)

3, R[(R1R2)
3]R0 , R[(R1R2)

3]R0R2〉
= 〈R(R1R2)

3, RX
2
, RY

2〉.When 2 ∤ k, RX = (RX
2
)

k+1
2 and RY = (RY

2
)

k+1
2 are in 〈R(R1R2)

3〉∆/R,
Υ(B) ∼= 〈R(R1R2)

3, RX,RY 〉 ∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is D(02)(P3) = Walsh(D3).When 2 | k,
Υ(B) ∼= 〈R(R1R2)

3, RX
2
, RY

2〉 ∼= (Ck/2 × Ck/2) ⋊ C2,

ι = k2/2 and B∆ is C = Walsh(D(12)(T )).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k(12)} = {(R0R2R1R2R1)

2k} and
R(R0R2R1R2R1)

2kαW = R(R1R2R0R2R0)
2k = R(R1R0R2)

2k = R(R0R1R2)
2k = R(X Y

−1
)k.Sine RX = R(X Y

−1
)R1R2 and RY = R(X Y

−1
)R1 ,

Υ(B) ∼= 〈R(R1R2)
3, R(R2R0)

3, R(X Y
−1

)k〉∆/R

= 〈R(R1R2)
3, R(X Y

−1
)k〉∆/R

= 〈R(R1R2)
3, RX

k
, RY

k〉∆/R
= 〈R(R1R2)

3, R[(R1R2)
3]R0 , R[(R1R2)

3]R0R2 , RX,RY 〉∆/R

= 〈R(R1R2)
3, RX

2
, RY

2
, RX

k
, RY

k〉∆/R

= 〈R(R1R2)
3, RX

gcd(2,k)
, RY

gcd(2,k)〉∆/R

= 〈R(R1R2)
3, RX

gcd(2,k)
, RY

gcd(2,k)〉.When 2 ∤ k,
Υ(B) ∼= 〈R(R1R2)

3, RX,RY 〉
= 〈R(R1R2)

3, RX,RX Y 〉
∼= (C3k × Ck) ⋊ C2,

ι = 6k2 and B∆ is D(02)(P3) = Walsh(D3).When 2 | k,
Υ(B) ∼= 〈R(R1R2)

3, RX
2
, RY

2〉
= 〈R(R1R2)

3, RX
2
, RX

2
Y

2
= R(X Y )2〉

∼= (C3k/2 × Ck/2) ⋊ C2,
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ι = 3k2/2 and B∆ is C = Walsh(D(12)(T )).

• Case 13: B = Walsh(D(12)((4, 2, 4)M )), d1 = gcd(l,m) = 4.If M =
(
k 0
0 k

), then S = {(R0R1R2R1)
k(12)} = {(R0R2R1R2)

k},
R(R0R2R1R2)

kαW = R(R1R2R0R2)
k = R[(R0R2R1R2)

k]R2R1 = R,
Υ(B) ∼= 〈R(R1R2)

4, R(R2R0)
4〉∆/R = 1 and ι = 1.If M =

(
k −k
k k

), then S = {(R0R1R2)
2k(12)} = {(R0R2R1)

2k},
R(R0R2R1)

2kαW = R,
Υ(B) ∼= 〈R(R1R2)

4, R(R2R0)
4〉∆/R = 1 and ι = 1.Either way, B is regular and B∆ = B.Chirality groups and hirality indies of B = Pin(R)The bipartite-regular hypermaps on the torus obtained by the Pin onstrution are listed, upto duality, in ases 1-6 of Table 4.1. We use the notations of Proposition 1.9.6.Remark 4.3.5. Let B = Pin(R) and ι the hirality index of B. If K is a hypermap overedby H suh that Pin(K) is regular and has |ΩB|/ι �ags, then B∆ = Pin(K).Note also that when B = Pin(R), B∆ is a regular hypermap suh that all verties havevaleny 1 and hene, by Lemma 1.4.4, is on the sphere.In order to failitate our work we note that if {i, j, k} = {0, 1, 2}, then (RiRjRk)

2αP = 1:if j = 0, then (RiRjRk)
2αP = (R1

R0)2 = 1, else, if j 6= 0, then (RiRjRk)
2αP = (R1)

2 = 1.
• Case 1: B = Pin(D(021)((6, 2, 3)M )), d2 = gcd(m,n) = 3.If M =

(
k 0
0 k

), then S = {(R0R1R2)
2k(021)} = {(R2R0R1)

2k}, R(R2R0R1)
2kαP = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
3〉∆/R = 〈RR1R2, R(R1R2)

R0 , R(R0R1)
3〉

= 〈RR1R2, R(R1R2)
R0R1R2, R(R1R2)

R0(R0R1)
3〉

∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is S6 = Pin(S3).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k(021) = (R2R0R1R0R1)

2k},
R(R2R0R1R0R1)

2kαP = R(R0R1R0R1R0)
2k = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
3〉∆/R = 〈RR1R2, R(R1R2)

R0 , R(R0R1)
3〉

= 〈RR1R2, R(R1R2)
R0R1R2, R(R1R2)

R0(R0R1)
3〉

∼= (C3k × Ck) ⋊ C2,

ι = 6k2 and B∆ is S6 = Pin(S3).
• Case 2: B = Pin(D(01)((4, 2, 4)M )), d2 = gcd(m,n) = 4.Let X = X(01) and Y = Y (01). We have RX = RR1R0R2R0 = R(R1R2)(R2R0)

2,
RY = RR0R1R0R2 = R(R0R1)

2(R1R2), RX Y = R(R0R1)
2(R2R0)

2 = RR(R1R2)
R0R1(R1R2)and RX−1

Y = R(R1R2)
R0(R1R2).
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(
k 0
0 k

), then S = {(R0R1R2R1)
k(01)} = {(R1R0R2R0)

k},
R(R1R0R2R0)

kαP = R(R0R1R0R1)
k = R(R0R1)

2k and
Υ(B) ∼= 〈RR1R2, R(R0R1)

4, R(R0R1)
2k〉∆/R = 〈RR1R2, R(R0R1)

gcd(4,2k)〉∆/R.When 2 ∤ k, R(R2R0)
2 = R(R1R2)

R0(R0R1)
2(R1R2), so

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R = 〈RR1R2, R(R0R1)

2〉∆/R
= 〈RR1R2, R(R1R2)

R0 , R(R0R1)
2〉

= 〈RR1R2, R(R0R1)
2, R(R2R0)

2〉
= 〈RR1R2, RX,RY 〉
∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is S4 = Pin(S2).When 2 | k,
Υ(B) ∼= 〈RR1R2, R(R0R1)

4〉∆/R = 〈RR1R2〉∆/R
= 〈RR1R2, R(R1R2)

R0 , R(R1R2)
R0R1〉

= 〈RR1R2, RX Y ,RX
−1
Y 〉

= 〈RR1R2, RX
2
, RX Y 〉

∼= (Ck × Ck/2) ⋊ C2,

ι = k2 and B∆ is S8 = Pin(S4).If M =
(
k −k
k k

), then S = {(R2R1R0)
2k(01)} = {(R2R0R1)

2k}, R(R2R0R1)
2kαP = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
4〉∆/R = 〈RR1R2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R1R2)

R0R1〉
= 〈RR1R2, RX Y ,RX

−1
Y 〉

∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is S8 = Pin(S4).
• Case 3: B = Pin(D(02)((6, 2, 3)M )), d2 = gcd(m,n) = 2.LetX = X(02) and Y = Y (02). We haveRX = RR2R1R0R1R0R1 = R(R1R2)

−1(R0R1)
2,

RY = RR1R2R1R0R1R0 = R(R1R2)
2[(R1R2)

R0 ]−1.If M =
(
k 0
0 k

), then S = {(R0R1R2)
2k(02)} = {(R2R1R0)

2k}, R(R2R1R0)
2kαP = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R0R1)

2〉
= 〈RR1R2, RX,RY 〉
∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is S4 = Pin(S2).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k(02)} = {(R2R1R0R1R0)

2k},
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R(R2R1R0R1R0)

2kαP = R(R0R1R0R1R0)
2k = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R0R1)

2〉
= 〈RR1R2, RX,RY 〉
= 〈RR1R2, RX,RX Y 〉
∼= (C3k × Ck) ⋊ C3,

ι = 9k2 and B∆ is S4 = Pin(S2).
• Case 4: B = Pin((3, 3, 3)M ), d2 = gcd(m,n) = 3.If M =

(
k 0
0 k

), then S = {(R2R1R0R1)
k},

R(R2R1R0R1)
kαP = R(R0R0R1R0)

k = R(R0R1)
k and

Υ(B) ∼= 〈RR1R2, R(R0R1)
3, R(R0R1)

k〉∆/R = 〈RR1R2, R(R0R1)
gcd(3,k)〉∆/R.We have RXY = R[(R1R2)

R0(R1R2)]
−1 and RX−2Y = R(R1R2)[(R1R2)

R0 ]−1(R1R2).When 3 ∤ k, Υ(B) ∼= 〈RR1R2, RR0R1〉∆/R = ∆+/R ∼= Aut+(R), ι = |ΩR|/2 = 6k2/2 =
3k2 and B∆ is S2 = Pin(S1).When 3 | k,

Υ(B) ∼= 〈RR1R2〉∆/R
= 〈RR1R2, R(R1R2)

R0〉
= 〈RR1R2, RXY,RX

−2Y 〉
= 〈RR1R2, RXY,RX

3〉
∼= (Ck × Ck/3) ⋊ C3,

ι = k2 and B∆ is S6 = Pin(S3).If M =
(
k −2k
k k

), then S = {(R2R1R0)
2k}, R(R2R1R0)

2kαP = R,
Υ(B) ∼= 〈RR1R2, R(R0R1)

3〉∆/R
= 〈RR1R2〉∆/R
= 〈RR1R2, R(R1R2)

R0〉
= 〈RR1R2, RXY,RX

−2Y 〉
∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is S6 = Pin(S3).
• Case 5: B = Pin((4, 2, 4)M ), d2 = gcd(m,n) = 2.If M =

(
k 0
0 k

), then S = {(R0R1R2R1)
k},

R(R0R1R2R1)
kαP = R(R1R0R0R0)

k = R(R1R0)
k and

Υ(B) ∼= 〈RR1R2, R(R0R1)
2, R(R1R0)

k〉∆/R = 〈RR1R2, R(R0R1)
gcd(2,k)〉∆/R.



4.4 Chirality groups and hirality indies... 79When 2 ∤ k, Υ(B) ∼= 〈RR1R2, RR0R1〉∆/R = ∆+/R ∼= Aut+(R), ι = |ΩR|/2 = 8k2/2 =
4k2 and B∆ is S2 = Pin(S1).When 2 | k, RXY = R(R1R2)

R0(R1R2), RX−1Y = R(R1R2)(R0R1)
−2(R1R2),

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R0R1)

2〉
= 〈RR1R2, RXY,RX

−1Y 〉
= 〈RR1R2, RXY,RX

2〉
= (Ck × Ck/2) × C4,

ι = 2k2 and B∆ is S4 = Pin(S2).If M =
(
k −k
k k

), then S = {(R0R1R2)
2k}, R(R0R1R2)

2kαP = R,
Υ(B) ∼= 〈RR1R2, R(R0R1)

2〉∆/R
= 〈RR1R2, R(R1R2)

R0 , R(R0R1)
2〉

= 〈RR1R2, RXY,RX
−1Y 〉

= (Ck × Ck) × C4,

ι = 4k2 and B∆ is S4 = Pin(S2).
• Case 6: B = Pin((6, 2, 3)M ), d2 = gcd(m,n) = 1. From Corollary 1.9.7, we see that

Υ(B) ∼= ∆+/R ∼= Aut+(R).If M =
(
k 0
0 k

), then ι = |ΩR|/2 = 12k2/2 = 6k2.If M =
(
k −2k
k k

), then ι = |ΩR|/2 = 36k2/2 = 18k2.In both ases B∆ is S2 = Pin(S1).4.4 A note on restritedly-regular hypermaps on the Klein bot-tleIn [33℄, Coxeter and Moser show that there are no regular maps on the Klein bottle, and in [15℄,Breda and Jones extend this result to hypermaps. However, the Klein bottle has Θ-regularhypermaps for every Θ ⊳2 ∆, Θ 6= ∆+. The hypermap B with hypermap subgroup B =
〈(R1R2)

4, (R2R0)
2, (R0R1)

4〉∆〈X4
2, Y4, X4Y4R2〉 is a ∆1̂-regular hypermap on the Klein bottlewith 8 �ags, 1 vertex, 2 edges and 1 fae. It is obtained from its orientable double overing

B+ = (4, 2, 4)( 2
0

0
1)

and the involutory ∆1̂-onservative orientation-reversing automorphism of
B+ whih maps B+ to B+X4Y4R2. Similarly, the hypermap P with hypermap subgroup
P = 〈(R1R2)

4, (R2R0)
2, (R0R1)

4〉∆〈X4
2Y4

2, X4
−1Y4, X4Y4R1〉 is a ∆1-regular hypermap onthe Klein bottle with 16 �ags, 2 verties, 4 edges and 2 faes. It is obtained from its orientabledouble overing P+ = (4, 2, 4)� 2

2
-1
1

� and the involutory ∆1-onservative orientation-reversingautomorphism of P+ whih maps P+ to P+X4Y4R1. Other 2-restritedly-regular hypermapson the Klein bottle an be obtained by duality.We intend to lassify the 2-restritedly-regular hypermaps on the Klein bottle in a futurework.
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# U Note U∆ Υ ι

1 (4, 2, 4)( l
m

-m
l ) 2k | l −m (4, 2, 4)( k

k
-k
k ) C(l2+m2)/2k2

l2+m2

2k2

2k ∤ l −m (4, 2, 4)( k
0

0
k ) C(l2+m2)/k2

l2+m2

k2

2 (6, 2, 3)( l
m

-l-m
l ) 3k | l −m (6, 2, 3)( k

k
-2k
k ) C(l2+lm+m2)/3k2

l2+lm+m2

3k2

3k ∤ l −m (6, 2, 3)( k
0

0
k ) C(l2+lm+m2)/k2

l2+lm+m2

k2

3 (3, 3, 3)( l
m

-l-m
l ) 3k | l −m (3, 3, 3)( k

k
-2k
k ) C(l2+lm+m2)/3k2

l2+lm+m2

3k2

3k ∤ l −m (3, 3, 3)( k
0

0
k ) C(l2+lm+m2)/k2

l2+lm+m2

k2

4 (4, 2, 4)( l
l
-m
m ) (4, 2, 4)( k

k
-k
k ) Clm/k2

lm
k2

5 (4, 2, 4)( l
m

m
l ) 2k | l −m (4, 2, 4)( k

k
-k
k ) C|l2−m2|/2k2

|l2−m2|
2k2

2k ∤ l −m (4, 2, 4)( k
0

0
k ) C|l2−m2|/k2

|l2−m2|
k2

6 (4, 2, 4)( l
0

0
m) (4, 2, 4)( k

0
0
k ) Clm/k2

lm
k2

7 (4, 2, 4)( l
m

-l
m) 2k | l −m (4, 2, 4)( k

k
-k
k ) Clm/k2

lm
k2

2k ∤ l −m (4, 2, 4)( k
0

0
k ) C2lm/k2

2lm
k2Table 4.2: Chirality groups, hirality indies and losure overs of the 2-restritedly-regularuniform hypermaps on the torus. (k = gcd(l,m))
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# B Note B∆

Υ ι

1 Pin(D(021)((6, 2, 3)M )) M =
(

k
0

0
k

)
S6 (Ck × Ck) ⋊ C2 2k2

M =
(

k
k
-2k
k

)
S6 (C3k × Ck) ⋊ C2 6k2

2 Pin(D(01)((4, 2, 4)M )) M =
(

k
0

0
k

)
, 2 ∤ k S4 (Ck × Ck) ⋊ C2 2k2

M =
(

k
0

0
k

)
, 2 | k S8 (Ck × Ck/2) ⋊ C2 k2

M =
(

k
k
-k
k

)
S8 (Ck × Ck) ⋊ C2 2k2

3 Pin(D(02)((6, 2, 3)M )) M =
(

k
0

0
k

)
S4 (Ck × Ck) ⋊ C3 3k2

M =
(

k
k
-2k
k

)
S4 (C3k × Ck) ⋊ C3 9k2

4 Pin((3, 3, 3)M ) M =
(

k
0

0
k

)
, 3 ∤ k S2 (Ck × Ck) ⋊ C3 3k2

M =
(

k
0

0
k

)
, 3 | k S6 (Ck × Ck/3) ⋊ C3 k2

M =
(

k
k
-2k
k

)
S6 (Ck × Ck) ⋊ C3 3k2

5 Pin((4, 2, 4)M ) M =
(

k
0

0
k

)
, 2 ∤ k S2 (Ck × Ck) ⋊ C4 4k2

M =
(

k
0

0
k

)
, 2 | k S4 (Ck × Ck/2) × C4 2k2

M =
(

k
k
-k
k

)
S4 (Ck × Ck) × C4 4k2

6 Pin((6, 2, 3)M ) M =
(

k
0

0
k

)
S2 (Ck × Ck) ⋊ C6 6k2

M =
(

k
k
-2k
k

)
S2 (C3k × Ck) ⋊ C6 18k2

7 Walsh(D(02)((6, 2, 3)M )) M =
(

k
0

0
k

)
S2 (Ck × Ck) ⋊ C6 6k2

M =
(

k
k
-2k
k

)
S2 (C3k × Ck) ⋊ C6 18k2

8 Walsh((4, 2, 4)M ) M =
(

k
0

0
k

)
, 2 ∤ k S2 (Ck × Ck) ⋊ C4 4k2

M =
(

k
0

0
k

)
, 2 | k P8 (Ck/2 × Ck/2) ⋊ C2 k2/2

M =
(

k
k
-k
k

)
, 2 ∤ k P4 (Ck × Ck) ⋊ C2 2k2

M =
(

k
k
-k
k

)
, 2 | k P8 (Ck × Ck/2) ⋊ C2 k2

9 Walsh((6, 2, 3)M ) M =
(

k
0

0
k

)
, 3 ∤ k P2 (Ck × Ck) ⋊ C3 3k2

M =
(

k
0

0
k

)
, 3 | k P6 (Ck × Ck/3) ⋊ C3 k2

M =
(

k
k
-2k
k

)
P6 (Ck × Ck) ⋊ C3 3k2

10 Walsh((3, 3, 3)M ) B 1 1

11 Walsh(D(12)((6, 2, 3)M )) M =
(

k
0

0
k

)
, 2 ∤ k D(02)(P3) (Ck × Ck) ⋊ C2 2k2

M =
(

k
0

0
k

)
, 2 | k C (Ck/2 × Ck/2) ⋊ C2 k2/2

M =
(

k
k
-2k
k

)
, 2 ∤ k D(02)(D3) (C3k × Ck) ⋊ C2 6k2

M =
(

k
k
-2k
k

)
, 2 | k C (C3k/2 × Ck/2) ⋊ C2 3k2/2

12 Walsh(D(12)((4, 2, 4)M )) M =
(

k
0

0
k

)
B 1 1Table 4.3: Chirality groups, hirality indies and losure overs of the bipartite-regular hyper-maps on the torus obtained via the Walsh and Pin onstrutions.
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Chapter 5Hypermaps on the double torusIn this hapter we deal with the 2-restritedly-regular hypermaps on the double torus.The lassi�ation of the orientably-regular maps on the double torus was made by Threlfall[62℄ in 1932, ompleting earlier work of Brahana [3℄ (see Table 9 of [33℄). In 1988, Corn andSingerman [28℄ determined all possible types for the remaining orientably-regular hypermapson the double torus (those of type (l,m, n) with l,m, n ≥ 3), as well as their rotation groups(see Table 2 of [28℄). Breda and Jones [15℄ lassi�ed the orientably-regular hypermaps on thedouble torus and omputed their rotation and automorphism groups. More reently, Singer-man and Syddall [59℄ determined the number of isomorphism lasses of uniform hypermapson the double torus using using Conder's small index subgroup programme [20℄.5.1 Regular and orientably-regular hypermaps on the doubletorusBeause the double torus is an orientable surfae, the regular hypermaps on the double torusare among the orientably-regular.In this setion we assume that H is an orientably-regular hypermap on the double torusof type (l,m, n). Sine H is uniform and has harateristi −2, using the Euler formula foruniform hypermaps (Corollary 1.4.2), we get
|ΩH|

2
=

2

1 − (1/l + 1/m+ 1/n)
. (5.1)Naturally, l,m, n divide |ΩH|/2 beause V = |ΩH|/2l, E = |ΩH|/2m and F = |ΩH|/2n arethe numbers of verties, edges and faes of H, respetively. In addition, Theorem 1.4.6 statesthat |ΩH| ≤ −84χ = 168, or equivalently, |ΩH|/2 ≤ 84.Table 5.1 lists all 22 possibilities for the number |Ω| of �ags and type (l,m, n) of a uniformhypermap on the double torus, with l ≤ m ≤ n as well as its numbers of verties, edges andfaes. These values were obtained using GAP [34℄. In the last olumn we display the numberof orientably-regular hypermaps on the double torus of type (l,m, n) (determined by Bredaand Jones in [15℄). The numbers of non-isomorphi uniform hypermaps on the double torusof type (l,m, n), with l ≤ m ≤ n, an be found in [59℄.In what follows we give a brief desription of how to �nd all orientably-regular hypermapson the double torus. 83



84 Chapter 5. Hypermaps on the double torus
# |Ω| l m n V E F orient.-reg.
1 10 5 5 5 1 1 1 3

2 12 3 6 6 2 1 1 1

3 16 2 8 8 4 1 1 1

4 16 4 4 4 2 2 2 1

5 18 3 3 9 3 3 1 0

6 20 2 5 10 5 2 1 1

7 24 2 4 12 6 3 1 0

8 24 2 6 6 6 2 2 1

9 24 3 3 6 4 4 2 0

10 24 3 4 4 4 3 3 1

11 30 3 3 5 5 5 3 0

12 32 2 4 8 8 4 2 1

13 36 2 3 18 9 6 1 0

14 40 2 5 5 10 4 4 0

15 48 2 3 12 12 8 2 0

16 48 2 4 6 12 6 4 1

17 48 3 3 4 8 8 6 1

18 60 2 3 10 15 10 3 0

19 72 2 3 9 18 12 4 0

20 80 2 4 5 20 10 8 0

21 96 2 3 8 24 16 6 1

22 168 2 3 7 42 28 12 0Table 5.1: All possible values for the number of �ags and type of an orientably-regular hyper-map on the double torusLet H be a hypermap subgroup of H, G+ := ∆+/H, x := HR1R2, y := HR2R0 and
z := HR0R1. Then G+ = 〈x, y, z〉 and xyz = 1.Using the Sylow theorems it is easy to show that there are no orientably-regular hypermapsorresponding to ases 11, 14, 20 and 22. In ases 20 and 22, n is prime and 〈z〉 is the unique
n-Sylow-subgroup. Hene 〈z〉 ⊳ G+. Sine xy = z−1 ∈ 〈z〉, 〈z〉x = 〈z〉y−1. It follows that
〈z〉 = 〈z〉x2 = 〈z〉y−2 and y−2 ∈ 〈z〉. On the other hand, Lagrange's theorem ensures that
y−2 /∈ 〈z〉 beause in both ases the order of y−2 does not divide the order of z. In ases 11and 14, m is prime and 〈y〉 is the unique m-Sylow-subgroup. In ase 11, x has order m, so
x ∈ 〈y〉 but z = (xy)−1 /∈ 〈y〉 beause n ∤ m. Similarly, in ase 14, z has order m, so z ∈ 〈y〉but x = (yz)−1 /∈ 〈y〉 beause l ∤ m.A brief onsideration shows that there are no orientably-regular hypermaps orrespondingto ases 9 and 15. First of all, we remark that if a fae is adjaent to itself, then it is unique.Indeed, if Hg and HgR2 are �ags on the same fae f , then HgR2R0 = Hgx is also in f . Itfollows that x ∈ 〈z〉, so 〈z〉 = 〈x, z〉 = G+. Seond, y (resp. x) indues a permutation of thefaes inident at an edge (resp. a vertex) suh that all its disjoint yles have the same length.Clearly, this length divides the valeny m (resp. l) of all edges (resp. verties). Similarly, zindues a permutation of the faes adjaent to a fae suh that all its disjoint yles have thesame length d. This length d is divides n and must be smaller than n. Finally, we note that



5.1 Regular and orientably-regular hypermaps on the double torus 85a hypermap orresponding to ases 9 or 15 has 2 faes, and its edges have valeny 3.In ases 1, 2, 3, 5, 6, 7 and 13, F = 1, so |G+| = |〈z〉|, that is G+ = 〈z〉 ∼= Cn. It followsthat there is 0 ≤ k < n suh that x = zk and y = x−1z−1 = z−k−1. Beause x and y haveorders l and m, gcd(n, k) = n/l and gcd(n, k + 1) = n/m.In ases 4, 8 and 12 (as well as in ases 9 and 15), F = 2, so |G+| = 2|〈z〉| and hene
〈z〉⊳2G

+. Sine x2, y2 ∈ 〈z〉⊳2G
+, there are 0 ≤ j, k < n suh that x2 = zj and y2 = zk. Inaddition l/ gcd(l, 2) = n/ gcd(n, j) and m/ gcd(m, 2) = n/ gcd(n, j). Alternatively, note that

zx, zy ∈ 〈z〉 beause 〈z〉 ⊳2 G
+, so there are 0 ≤ p, q < n suh that zx = zp, zy = zq and

gcd(n, p) = 1 = gcd(n, q).In ase 10, the number of faes inident at eah edge must be 2, so y2 ∈ 〈z〉. Beause yand z have order 4, y2 = z2.In ases 18 and 19, the number d of faes adjaent to a fae is 2 and 3, respetively. Then
(zd)x ∈ 〈z〉, that is, (zd)x = zk for some 0 ≤ k < n.In ase 21, the number d of faes adjaent to a fae is 2 or 4. Either way (z4)x ∈ 〈z〉.Beause z has order 8, z4 and (z4)x have order 2, so (z4)x = z4, that is, (z4x)2 = 1.In ase 16, the number d of faes adjaent to a fae is 2 or 3. Beause eah fae is adjaentto the same number of faes, d annot be 3. Then d = 2 and (y2)x ∈ 〈y〉. Having in mindthat y has order 4 and x has order 2, (y2)x = y2 = y−2, that is, (y2x)2 = 1.In ase 17, z indues 2 permutations of the faes adjaent to a fae suh that their orderdivides 4. The disjoint yles of these 2 permutations must have the same length, so theyhave order 1 or 2. Either way (z2)x ∈ 〈z〉 and, beause z has order 4, (z2)x = z2.With the help of GAP [34℄, this last proedure allows us to �nd hypermap subgroupsfor the orientably-regular hypermaps on the double torus. In eah ase we an determine a�nite set T , ontained in H and ontaining S = {(R1R2)

l, (R2R0)
m, (R0R1)

n}, suh that
[∆+ : 〈T 〉∆+

] = |ΩH|/2. Clearly, H is regular if and only if H = 〈T 〉∆, or equivalently, if andonly if [∆ : 〈T 〉∆] = 2[∆+ : 〈T 〉∆] = 2[∆+ : H]. By inspetion, or using GAP [34℄ again, weget:Theorem 5.1.1 (Breda and Jones [15℄). All orientably-regular hypermaps on the double torusare regular.In other words, there are no orientably-hiral hypermaps on the double torus.Table 5.2 lists, up to duality, all regular hypermaps on the double torus. For eah regularhypermap R on the double torus of type (l,m, n) with l ≤ m ≤ n we give a list X of additionalrelations suh that the normal losure in ∆ of T := S∪X is a hypermap subgroup ofR. Finally,in the last two olumns we give the rotation group, Aut+(R) and the automorphism group,
Aut(R), whih an be found in [15℄. In the semi-diret produt C3 ⋊ C4, the generator of C4ats on C3 by inverting its elements. This group is denoted by 〈2, 3, 3〉 in [33℄ and by D̂3 in [15℄.Notie that the hypermaps in lines 1, 2 and 3 are not isomorphi. However, H2

∼= D(12)(H1),
H3

∼= D(01)(H1) and H1
∼= D(02)(H1). The automorphism group of the hypermap H13 isthe group of genus two [63℄, the unique group for whih the minimum genus over all surfaesontaining an imbedded Cayley graph for the group is two.Lemma 5.1.2 (Conservativeness of the regular hypermaps on the double torus). Let Θ ⊳2 ∆and let Hj be the regular hypermap listed in line j of Table 5.2. Then:1. H1, H2, H3 and H12 are Θ-onservative if and only if Θ = ∆+;2. H4, H5 and H9 are Θ-onservative if and only if Θ ∈ {∆+,∆0,∆0̂};
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# R |Ω| l m n Additional relations Aut+(R) Aut(R) Θ-ons.
1 H1 10 5 5 5 (R1R2)(R0R1)

−1 C5 D5 ∆+

2 H2 10 5 5 5 (R1R2)(R0R1)
−2 C5 D5 ∆+

3 H3 10 5 5 5 (R1R2)(R0R1)
−3 C5 D5 ∆+

4 H4 12 3 6 6 (R1R2)(R0R1)
−4 C6 D6 ∆+,∆0,∆0̂

5 H5 16 2 8 8 (R1R2)(R0R1)
−4 C8 D8 ∆+,∆0,∆0̂

6 H6 16 4 4 4
(R1R2)

2(R0R1)
−2,

(R2R0)
2(R0R1)

−2 Q8 Q8 · C4 all
7 H7 20 2 5 10 (R1R2)(R0R1)

−5 C10 D10 ∆+,∆1,∆1̂

8 H8 24 2 6 6 (R2R0)
2(R0R1)

−4 C6 × C2 D6 × C2 all
9 H9 24 3 4 4 (R2R0)

2(R0R1)
−2 C3 ⋊ C4 (4, 6 | 2, 2) ∆+,∆0,∆0̂

10 H10 32 2 4 8 (R2R0)
2(R0R1)

−4 〈−2, 4 | 2〉 Hol(C8) all
11 H11 48 2 4 6 ((R2R0)

2(R1R2))
2 (4, 6 | 2, 2) D3 ×D4 all

12 H12 48 3 3 4 [(R0R1)
2, (R1R2)] SL2(3) GL2(3) ∆+

13 H13 96 2 3 8 ((R0R1)
4(R1R2))

2 GL2(3) GL2(3) ⋊ C2 ∆+,∆1,∆1̂Table 5.2: The orientably-regular hypermaps on the double torus `up to duality'3. H7 and H13 are Θ-onservative if and only if Θ ∈ {∆+,∆1,∆1̂};4. H6, H8, H10 and H11 are Θ-onservative for all Θ ⊳2 ∆.5.2 Pseudo-orientably-regular and bipartite-regular hypermapson the double torusSine ∆+00̂ = ∆+ ∩ ∆0 = ∆+ ∩ ∆0̂, every pseudo-orientably-regular hypermap P on anorientable surfae S is ∆+00̂-regular, as well as every bipartite-regular hypermap B on S. Forthis reason, we an derive the lassi�ations of pseudo-orientably-regular and bipartite-regularhypermaps on S from the lassi�ation of ∆+00̂-regular hypermaps on S.In this setion we determine all ∆+00̂-regular hypermaps on the double torus in order tolassify all pseudo-orientably-regular and bipartite-regular hypermaps on the double torus.Now we assume that H is a ∆+00̂-regular hypermap and H is a hypermap subgroup of H.Aording to Lemma 1.3.9, H is bipartite-uniform. Let (l1, l2;m;n) be the bipartite-type of
H. Sine H ⊳ ∆+00̂ and |ΩH| = [∆ : H] = [∆ : ∆+00̂] · [∆+00̂ : H] = 4[∆+00̂ : H], ∆+00̂/H isa group with order |ΩH|/4. By the Euler formula for bipartite-uniform hypermaps (Corollary1.4.3), (a, b, c, d) = (l1, l2,m/2, n/2) is a solution of

|ΩH|
4

=
2

2 − (1/a+ 1/b+ 1/c+ 1/d)
, (5.2)suh that a, b, c, d | |ΩH|/4. Theorem 1.4.8 states that |ΩH| ≤ −168χ = 336, or equivalently,

|ΩH|/4 ≤ 84.Using GAP [34℄, one an easily determine all values for |ΩH|/4 and (a, b, c, d) suh that
a ≤ b ≤ c ≤ d, |Ω|/4 is a multiple of a, b, c, d and equation (5.2) holds. These values are listedin Table 5.3 and give rise a total of 119 distint values for the bipartite-type (l1, l2;m;n) of abipartite-uniform hypermap on the double torus, with l1 ≤ l2 and m ≤ n.
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# |Ω| a b c d

1 12 3 3 3 3

2 16 2 2 4 4

3 20 1 5 5 5

4 24 1 3 6 6

5 24 2 2 2 6

6 24 2 2 3 3

7 32 1 2 8 8

8 32 1 4 4 4

9 32 2 2 2 4

10 36 1 3 3 9

11 40 1 2 5 10

12 48 1 2 4 12

13 48 1 2 6 6

14 48 1 3 3 6

# |Ω| a b c d

15 48 1 3 4 4

16 48 2 2 2 3

17 60 1 3 3 5

18 64 1 2 4 8

19 72 1 2 3 18

20 80 1 2 5 5

21 96 1 2 3 12

22 96 1 2 4 6

23 96 1 3 3 4

24 120 1 2 3 10

25 144 1 2 3 9

26 160 1 2 4 5

27 192 1 2 3 8

28 336 1 2 3 7Table 5.3: Solutions of (5.2) with a ≤ b ≤ c ≤ dIf l1 = 1 (53 ases) or m/2 = 1 (another 53 ases), then H ∼= Pin(K) or H ∼= Walsh(K)for some hypermap K on the double torus. Sine ∆+00̂ = ∆+ ∩ ∆0̂ = ∆+ϕ
P

−1 = ∆+ϕ
W

−1and H is ∆+00̂-regular, K is ∆+-regular, that is, orientably-regular. By Theorem 5.1.1, K isregular and hene H is bipartite-regular. This shows the following result.Lemma 5.2.1. If H is a ∆+00̂-regular hypermap on the double torus obtained by the Pin or
Walsh onstrution, then H is bipartite-regular. Thus, H is ∆0-regular if and only if H isregular.The bipartite-regular hypermaps on the double torus obtained by the Pin and Walshonstrutions are displayed in Tables 5.5 and 5.4, respetively. Beause H3

∼= D(01)(H1),
Walsh(H3) ∼= Walsh(D(01)(H1)) ∼= Walsh(H1) (by Theorem 1.6.6). Sine H2

∼= D(12)(H1),
Pin(H2) ∼= Pin(D(12)(H1)) ∼= D(12)(Pin(H1)) (by Theorem 1.6.10); however Pin(H2) is notisomorphi to Pin(H1).Remark 5.2.2. The bipartite-regular hypermaps on the double torus obtained by the Pinonstrution are non-uniform and hene bipartite-hiral.The Walsh onstrution gives rise to 17 non-uniform bipartite-regular hypermaps on thedouble torus. One easily heks that

• Walsh(H2) = D(01)(H7),
• Walsh(D(02)(H4)) = D(01)(H8),
• Walsh(D(02)(H5)) = D(012)(H10),
• Walsh(H6) = D(01)(H10),
• Walsh(D(02)(H8)) = D(012)(H11),
• Walsh(D(02)(H9)) = H11,
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# |Ω| l1 l2 m/2 n/2 Walsh(·)
1 20 5 5 1 5 H2

2 20 5 5 1 5 H1 or H3

3 24 3 6 1 6 H4

4 24 6 6 1 3 D(02)(H4)

5 32 2 8 1 8 H5

6 32 8 8 1 2 D(02)(H5)

7 32 4 4 1 4 H6

8 40 2 5 1 10 H7

9 40 2 10 1 5 D(12)(H7)

10 40 5 10 1 2 D(021)(H7)

11 48 2 6 1 6 H8

12 48 6 6 1 2 D(02)(H8)

# |Ω| l1 l2 m/2 n/2 Walsh(·)
13 48 3 4 1 4 H9

14 48 4 4 1 3 D(02)(H9)

15 64 2 4 1 8 H10

16 64 2 8 1 4 D(12)(H10)

17 64 4 8 1 2 D(021)(H10)

18 96 2 4 1 6 H11

19 96 2 6 1 4 D(12)(H11)

20 96 4 6 1 2 D(021)(H11)

21 96 3 3 1 4 H12

22 96 3 4 1 3 D(12)(H12)

23 192 2 3 1 8 H13

24 192 2 8 1 3 D(12)(H13)

25 192 3 8 1 2 D(021)(H13)Table 5.4: Bipartite-regular hypermaps on the double torus obtained by the Walsh onstru-tion.
• Walsh(H12) = H13,
• Walsh(H1) ∼= Walsh(H3) is bipartite-regular and uniform but it is not regular.In other words, the hypermaps listed in lines 1, 4, 6, 7, 12, 14 and 21 of Table 5.4 are regular,so their hirality groups are trivial and their hirality indies are 1; the other 18 hypermapsare bipartite-hiral.It remains to analyze the ∆+00̂-regular hypermaps whih are not obtained via the Walshand Pin onstrutions. The list of all possible values for the bipartite-type (l1, l2;m;n) of a

∆+00̂-regular hypermap on the double torus whih is not onstruted by the Walsh or Pinonstrutions (that is, suh that l1, l2,m/2, n/2 ≥ 2) is given in Table 5.6.Let H be one of these ∆+00̂-regular hypermaps, H a hypermap subgroup of H and
G∗ = ∆+00̂/H. Let r = HR1R2, s = H(R1R2)

R0 , t = H(R2R0)
2 = HR2R2

R0 and
u = H(R0R1)

2 = HR1
R0R1. Sine ∆+00̂ = 〈R1R2, (R1R2)

R0 , (R2R0)
2, (R0R1)

2〉 (see Se-tion 1.2), G∗/H = 〈r, s, t, u〉 and s = urt. In addition:
• rR1 = rR2 = r−1, rR0 = s = urt;
• tR2 = tR0 = t−1, tR1 = (t−1)r

−1 ;
• uR0 = uR1 = u−1, uR2 = (u−1)r;
• sR0 = r, sR1 = (urt)R1 = u−1r−1(t−1)r

−1
= u−1t−1r−1, sR2 = (sR1)r = r−1u−1t−1.In ase 1, G∗ = 〈u〉 ∼= C3. Beause s has order 3, u, r, t annot be all equal. So u =

r−1 = t = s or u = r = t−1 = s or u−1 = r = t = s. The relations u = r = t−1 = s or
u−1 = r = t = s give rise to hypermaps subgroups whih are onjugate under R0. For thisreason there are 2 non-isomorphi ∆+00̂-regular hypermaps of type (3, 3; 6; 6).



5.2 Pseudo-orientably-regular and bipartite-regular hypermaps on the double torus 89
# |Ω| l1 l2 m/2 n/2 Pin(·)
1 20 1 5 5 5 H1

2 20 1 5 5 5 H2

3 20 1 5 5 5 H3

4 24 1 3 6 6 H4

5 24 1 6 3 6 D(01)(H4)

6 32 1 2 8 8 H5

7 32 1 8 2 8 D(01)(H5)

8 32 1 4 4 4 H6

9 40 1 2 5 10 H7

10 40 1 5 2 10 D(01)(H7)

11 40 1 10 2 5 D(012)(H7)

12 48 1 2 6 6 H8

13 48 1 6 2 6 D(01)(H8)

# |Ω| l1 l2 m/2 n/2 Pin(·)
14 48 1 3 4 4 H9

15 48 1 4 3 4 D(01)(H9)

16 64 1 2 4 8 H10

17 64 1 4 2 8 D(01)(H10)

18 64 1 8 2 4 D(012)(H10)

19 96 1 2 4 6 H11

20 96 1 4 2 6 D(01)(H11)

21 96 1 6 2 4 D(012)(H11)

22 96 1 3 3 4 H12

23 96 1 4 3 3 D(02)(H12)

24 192 1 2 3 8 H13

25 192 1 3 2 8 D(01)(H13)

26 192 1 8 2 3 D(012)(H13)Table 5.5: Bipartite-regular hypermaps on the double torus obtained by the Pin onstrution.
# |Ω| l1 l2 m/2 n/2

1 12 3 3 3 3

2 16 2 2 4 4

3 16 2 4 2 4

4 16 4 4 2 2

5 24 2 2 2 6

6 24 2 6 2 2

7 24 2 2 3 3

8 24 2 3 2 3

9 24 3 3 2 2

10 32 2 2 2 4

11 32 2 4 2 2

12 48 2 2 2 3

13 48 2 3 2 2Table 5.6: Possible values for the bipartite-type (l1, l2;m;n) of a ∆+00̂-regular hypermap onthe double torus whih is not obtained from regular hypermaps by the Walsh or the Pinonstrutions.



90 Chapter 5. Hypermaps on the double torusIn ase 2, G∗ = 〈u〉 ∼= C4. This group only has 1 element of order 2, so r = s = u2.In addition, sine G∗ is abelian, s = urt implies that t = u−1. In ase 3, G∗ = 〈u〉 ∼= C4,
r = t = u2 and s = u. In ase 4, G∗ = 〈r〉 ∼= C4, t = u = r2 and s = r. For eah bipartite-type
(2, 2; 8; 8), (2, 4; 4; 8) and (4, 4; 4; 4) there is only one ∆+00̂-regular hypermap with suh type.In ases 5 and 6, G∗ has elements of order 6, so G∗ ∼= C6 is abelian. However, s2 6= u2r2t2beause exatly one of these elements does not have order 2. Consequently there is no ∆+00̂hypermap orresponding to these ases.In ases 7, 8 and 9, G∗ is C6 or D3

∼= S3 and G∗ has exatly one 3-Sylow-subgroup. Inase 7, if G∗ = C6, then u ⇌ r and s = r, beause G∗ is abelian and has only 1 element oforder 2; else, if G∗ ∼= D3, then u 6= ur = u−1, so t = u and r = s, or t = u−1 and s = ru.These last relations give rise to hypermaps subgroups whih are onjugate under R1. In ase8, if G∗ = C6, then u ⇌ r and t = r; else, if G∗ ∼= D3, then u 6= ur = u−1, so s = uand r = t, or s = u−1 and t = ru. In ase 9, if G∗ = C6, then u ⇌ r and t = u; else, if
G∗ ∼= D3, then r 6= ru = r−1, so s = r and u = tr, or s = r−1 and t = u. These last relationsgive rise to hypermaps subgroups whih are onjugate under R1. Beause of this, there are 2non-isomorphi ∆+00̂-regular hypermaps of bipartite-type (2, 2; 6; 6), 3 non-isomorphi ∆+00̂-regular hypermaps of bipartite-type (2, 3; 4; 6) and 2 non-isomorphi ∆+00̂-regular hypermapsof bipartite-type (3, 3; 4; 4).In ases 10 and 11, G∗ is not abelian beause s2 6= u2r2t2. In addition G∗ 6= Q8, forotherwise the unique element of Q8 that has order 2 is in the enter of Q8, so s = urt implies
r = s = t = u. Hene G∗ = D4. In ase 10, r, s, t annot be all in 〈u〉 ⊳2 G

∗. On theother hand s = urt implies that at the number of elements of {r, s, t} outside 〈u〉 is even.If r, s /∈ 〈u〉, then ur = u−1, t = u2 and s = ru; if r, t /∈ 〈u〉, then ur = u−1, s = u2 and
t = ru; if s, t /∈ 〈u〉, then ut = u−1, r = u2 and s = tu. These last 2 sets of relationsgive rise to hypermaps subgroups whih are onjugate under R0. In ase 11, 〈s〉 ⊳2 G

∗; if
r, t /∈ 〈s〉, then u = s2 and t = sr; if r, u /∈ 〈s〉, then t = s2 and u = rs; if t, u /∈ 〈s〉, then
r = s2 and u = ts. These �rst 2 sets of relations give rise to hypermaps subgroups, H and
H(12), of non-isomorphi dual hypermaps. Beause of this, there are 2 non-isomorphi ∆+00̂-regular hypermaps of bipartite-type (2, 2; 4; 8) and 3 non-isomorphi ∆+00̂-regular hypermapsof bipartite-type (2, 4; 4; 4).Finally, in ases 12 and 13, sine s2 6= u2r2t2, G∗ is not abelian. There are 3 non-abeliangroups of order 12: D6

∼= D3 × C2, A4 and C3 ⋊ C4. The number of 3-Sylow-subgroups ofa group with 12 elements is 1 ou 4; if the number of 3-Sylow-subgroups if 4, then there are8 elements of order 3 and the remaining 4 elements form the only 2-Sylow-subgroup of G∗.However, beause every involution is in a 2-Sylow-subgroup and s = urt, or u−1 = rts−1,both groups annot have just 1 2-Sylow-subgroup. Hene G∗ 6= A4. In addition, G∗ annotbe C3 ⋊ C4 = 〈R,S | S3 = T 2 = (ST )2〉 beause this group has exatly 1 element of order2 whih generates the enter of the group, so if 3 elements of {r, s, t, u} have order 2, then
s = urt implies that all have order 2 and r = s = t = u. Indeed C3 ⋊ C4 has 1 element oforder 1, 1 of order 2, 2 of order 3, 6 of order 4 and 2 of order 6. Reasoning by elimination weget G∗ ∼= D6. Let N ∼= C6 ⊳G∗. In ase 12, u ∈ N ⊳2 G

∗. Beause s = urt, the set {r, s, t}has 1 element inside and 2 outside G∗. If r, s /∈ N , then t, u ∈ N and t ⇌ u; if s, t /∈ N ,then r, u ∈ N and r ⇌ u; if r, t /∈ N , then s, u ∈ N and s ⇌ u. These last 2 sets of relationsgive rise to hypermaps subgroups whih are onjugate under R0. In ase 13, s ∈ N ⊳2 G
∗. If

r, t /∈ N , then u, s ∈ N and u ⇌ s; if r, u /∈ N , then t, s ∈ N and t ⇌ s; if t, u /∈ N , then
r, s ∈ N and r ⇌ s. These �rst 2 sets of relations give rise to hypermaps subgroups, H and



5.2 Pseudo-orientably-regular and bipartite-regular hypermaps on the double torus 91
# |Ω| a, b, c, d Additional relations N∆(H) ι G∗

1 12 3, 3, 3, 3 (R0R1)
2[(R2R0)

2]−1, (R0R1)
2(R1R2) ∆ 1 C3

2 12 3, 3, 3, 3 (R0R1)
2(R2R0)

2, (R0R1)
2(R1R2)

−1 ∆0̂ 3 C3

3 16 2, 2, 4, 4 (R0R1)
2(R2R0)

2, [(R0R1)
2]2(R1R2)

−1 ∆ 1 C4

4 16 2, 4, 2, 4 [(R0R1)
2]2(R1R2)

−1, [(R0R1)
2]2[(R2R0)

2]−1 ∆0̂ 4 C4

5 16 4, 4, 2, 2 (R1R2)
2[(R2R0)

2]−1, (R1R2)
2[(R0R1)

2]−1 ∆ 1 C4

6 24 2, 2, 3, 3 [(R0R1)
2]R1R2 [(R0R1)

2]−1, (R1
R0R2

R0)(R1R2)
−1 ∆ 1 C6

7 24 2, 2, 3, 3 [(R1R2)(R0R1)
2]2, (R2R0)

2[(R0R1)
2]−1 ∆0 3 D3

8 24 2, 3, 2, 3 [(R0R1)
2]R1R2 [(R0R1)

2]−1, (R2R0)
2(R1R2)

−1 ∆0̂ 6 C6

9 24 2, 3, 2, 3 [(R1R2)(R0R1)
2]2, (R1

R0R2
R0)[(R0R1)

2]−1 ∆0̂ 6 D3

10 24 2, 3, 2, 3 [(R1R2)(R0R1)
2]2, (R1

R0R2
R0)[(R0R1)

2] ∆0̂ 6 D3

11 24 3, 3, 2, 2 [(R0R1)
2]R1R2 [(R0R1)

2]−1, (R2R0)
2[(R0R1)

2]−1 ∆ 1 C6

12 24 3, 3, 2, 2 [(R0R1)
2(R1R2)]

2, (R1
R0R2

R0)(R1R2)
−1 ∆0 3 D3

13 32 2, 2, 2, 4 [(R0R1)
2]2[(R2R0)

2]−1, (R1R2)(R0R1)
2(R1

R0R2
R0)−1 ∆ 1 D4

14 32 2, 2, 2, 4 [(R0R1)
2]2(R1

R0R2
R0)−1, (R1R2)(R0R1)

2[(R2R0)
2]−1 ∆0̂ 4 D4

15 32 2, 4, 2, 2 (R1
R0R2

R0)2[(R0R1)
2]−1, (R1

R0R2
R0)(R1R2)(R2R0)

2 ∆0̂ 2 D4

16 32 2, 4, 2, 2 (R1
R0R2

R0)2[(R2R0)
2]−1, (R1

R0R2
R0)(R0R1)

2(R1R2) ∆0̂ 2 D4

17 32 2, 4, 2, 2 (R1
R0R2

R0)2(R1R2)
−1, (R1

R0R2
R0)(R0R1)

2(R2R0)
2 ∆0̂ 4 D4

18 48 2, 2, 2, 3 (R2R0)
2(R0R1)

2(R2R0)
2[(R0R1)

2]−1 ∆ 1 D6

19 48 2, 2, 2, 3 (R1R2)(R0R1)
2(R1R2)[(R0R1)

2]−1 ∆0̂ 3 D6

20 48 2, 3, 2, 2 (R0R1)
2(R1

R0R2
R0)(R0R1)

2(R1
R0R2

R0)−1 ∆0̂ 6 D6

21 48 2, 3, 2, 2 (R2R0)
2(R1

R0R2
R0)(R2R0)

2(R1
R0R2

R0)−1 ∆0̂ 6 D6

22 48 2, 3, 2, 2 (R1R2)(R1
R0R2

R0)(R1R2)(R1
R0R2

R0)−1 ∆0̂ 6 D6Table 5.7: ∆+00̂-regular hypermaps on the double torus whih are not obtained by the Pin or
Walsh onstrutions
H(12), of non-isomorphi dual hypermaps. Beause of this, there are 2 non-isomorphi ∆+00̂-regular hypermaps of bipartite-type (2, 2; 4; 6) and 3 non-isomorphi ∆+00̂-regular hypermapsof bipartite-type (2, 3; 4; 4).Table 5.7 lists all ∆+00̂-regular hypermaps H on the double torus whih are not obtainedby the Walsh or Pin onstrutions. It also displays a list X of additional relations suhthat the normal losure in ∆+00̂ of T := X ∪ {(R1R2)

a, [(R1R2)
R0 ]b, (R2R0)

2c, (R0R1)
2d} is ahypermap subgroup H of H.Using GAP [34℄, one an determine if H is regular or 2-restritedly-regular in the followingway. The normalizer N in ∆ of H, ontaining ∆+00̂, is ∆+00̂, ∆+, ∆0, ∆0̂ or ∆. Theorem 5.1.1states that every orientably-regular hypermap on the double torus is regular, so N annot be

∆+. Let Θ ∈ {∆0,∆0̂}. Now N = N∆(H) ontains Θ if and only if HΘ = H, or equivalently,if and only if
[Θ : TΘ] = [Θ : HΘ] = [Θ : ∆+00̂] · [∆+00̂ : HΘ] = 2 · [∆+00̂ : H] = 2[∆+00̂ : T∆+00̂

]. (5.3)Furthermore, if H = TΘ is not normal in Λ, where {Θ,Λ} = {∆0,∆0̂}, then H∆ = HΛ and
|ΩH| = [∆ : H] = [∆ : Λ] · [Λ : H∆] · [H∆ : H] = 2 · [Λ : HΛ] · [H∆ : H], (5.4)



92 Chapter 5. Hypermaps on the double torusso the hirality index of H is equal to |ΩH|/(2[Λ : HΛ]). Obviously, when H is not uniform,we just need to hek if H is bipartite-regular or not, sine H annot be ∆0-regular or regular.In the last olumns of Table 5.7 we display the normalizer in ∆ of H, the hirality index ι of
H and the group G∗ = ∆+00̂/H.Remark 5.2.3. The hypermaps listed in lines 1, 3, 5, 6, 11, 13 and 18 of Table 5.7 are theregular hypermaps H4, H5, H6, H8, H9, H10 and H11 of Table 5.2.5.3 Chirality groups and hirality indies of the 2-restritedly-regular hypermaps on the double torusIn this setion we ompute the hirality groups and hirality indies of the 2-restritedly-regular hypermaps on the torus.Aording to Theorem 5.1.1, there are no orientably-hiral hypermaps on the double torus.Looking at Tables 5.5, 5.4 and 5.7 and Remarks 5.2.2 and 5.2.3, we an see that, up to duality,there are 4 pseudo-orientably-hiral and 60 bipartite-hiral hypermaps on the double torus.5.3.1 Chirality groups and hirality indies of the bipartite-regular hyper-maps on the double torus obtained by the Walsh or Pin onstrutionsChirality groups and hirality indies of B = Walsh(R)Let Wj = Walsh(Oj) be the bipartite-regular hypermap on the double torus listed in line j ofTable 5.4. Sine Wj is ∆+00̂-regular, Wj overs S2. Let Oj be a hypermap subgroup of Oj ,
x := OjR1R2, y := OjR2R0 and z := OjR0R1. Then ∆+/Oj = 〈x, y, z〉 and xyz = 1.

• If j is 1, 4, 6, 7, 12, 14 or 21, then Wj is regular, so Υ(Wj) = 1 and Wj
∆ = Wj .

• If j is 8, 13, 22, 23 or 25, then, by Corollary 1.9.7, Υ(Wj) ∼= Aut+(Oj) and Wj
∆ = S2.

• If j is 9, 11, 15, 16, 17, 18 or 19, Υ(Wj) ∼= 〈y2〉 ∼= Cm/2 and ι = m/2. Let p = |Ω|/4m.In all 7 ases Oj → Pp, so Wj = Walsh(Oj) → Walsh(Pp) ∼= P2p and Wj
∆ = P2p.

• If j is 2 or 5, Υ(Wj) ∼= 〈z〉 ∼= Cn and Wj
∆ = S2.

• If j is 3 or 10, then Υ(Wj) ∼= 〈yl〉 ∼= Cm/l and Wj
∆ ∼= D(02)(Pl). In both ases Oj → Dl,so Wj = Walsh(Oj) → Walsh(Dl) ∼= D(02)(Pl) and Wj

∆ = D(02)(Pl).
• Υ(W20) ∼= 〈y2, x2〉 ∼= C3 × C2

∼= C6 beause x2 ∈ Z(∆+/O20). Sine O20 → P2,
W20 = Walsh(O20) → Walsh(P2) ∼= P4 and W20

∆ = P4.
• Υ(W24) ∼= 〈y2, (y2)z〉 ∼= Q8, sine y4 ∈ Z(∆+/O24), [(y2)z]2 = (y4)z = y4 = (y2)2 and

(y2(y2)z)2 = (y2x)4 = [(yxy)4]y
−1

= [(xyx)−4]y
−1

= [xy−4x]y
−1

= (y4)xy
−1

= y4. Sine
O24 → P3, W24 = Walsh(O24) → Walsh(P3) ∼= P6 and W24

∆ = P6.Table 5.8 lists the hirality groups, hirality indies and losure overs of the bipartite-regular hypermaps on the double torus obtained by the Walsh onstrution.
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# B = Walsh(·) Υ ι B∆

1 Walsh(H2) 1 1 D(01)(H7)

2 Walsh(H1) ∼= Walsh(H3) C5 5 S2

3 Walsh(H4) C2 2 D(02)(P3)

4 Walsh(D(02)(H4)) 1 1 D(01)(H8)

5 Walsh(H5) C8 8 S2

6 Walsh(D(02)(H5)) 1 1 D(012)(H10)

7 Walsh(H6) 1 1 D(01)(H10)

8 Walsh(H7) C10 10 S2

9 Walsh(D(12)(H7)) C5 5 P2

10 Walsh(D(021)(H7)) C2 2 D(02)(P5)

11 Walsh(H8) C3 3 P4

12 Walsh(D(02)(H8)) 1 1 D(012)(H11)

13 Walsh(H9) C3 ⋊ C4 12 S2

14 Walsh(D(02)(H9)) 1 1 H11

15 Walsh(H10) C2 2 P8

16 Walsh(D(12)(H10)) C4 4 P4

17 Walsh(D(021)(H10)) C4 4 P4

18 Walsh(H11) C2 2 P12

19 Walsh(D(12)(H11)) C3 3 P8

20 Walsh(D(021)(H11)) C6 6 P4

21 Walsh(H12) 1 1 H13

22 Walsh(D(12)(H12)) SL2(3) 24 S2

23 Walsh(H13) GL2(3) 48 S2

24 Walsh(D(12)(H13)) Q8 8 P6

25 Walsh(D(021)(H13)) GL2(3) 48 S2Table 5.8: Chirality groups, hirality indies and losure overs of the bipartite-regular hyper-maps on the double torus obtained by the Walsh onstrution.



94 Chapter 5. Hypermaps on the double torusChirality groups and hirality indies of B = Pin(R)Let Pj = Pin(Oj) be the bipartite-regular hypermap on the double torus listed in line jof Table 5.5. Sine Pj is ∆+00̂-regular, Pj overs S2. By Proposition 1.8.5, Pj∆ has type
(1, 2k, 2k) and hene Pj∆ = S2k, for some k ∈ N. Let Oj be a hypermap subgroup of Oj ,
x := OjR1R2, y := OjR2R0 and z := OjR0R1. Then ∆+/Oj = 〈x, y, z〉 and xyz = 1.

• If j is 11, 15, 22, 24 or 26, then, by Corollary 1.9.7, Υ(Pj) ∼= Aut+(Oj) and Pj∆ = S2.
• By Corollary 1.9.7, Υ(P7) ∼= Aut+(D(01)(H5)) ∼= Aut+(H5) and P7

∆ = S2, beause
d2 = 2 but O7 = D(01)(H5) is not bipartite (see Lemma 5.1.2).

• If j is 10, 13, 17, 18, 19, 20, 21 or 25, then by Corollary 1.9.7, Υ(Pj) ∼= Aut+00̂(Oj) and
Pj∆ = S4, beause d2 = 2 and Oj is bipartite (see Lemma 5.1.2).Sine Aut+00̂(Oj) is a subgroup of index 2 in Aut+(Oj), and C10 and GL2(3) just haveone subgroup of index 2, Υ(P10) ∼= C5 and Υ(P25) ∼= SL2(3).In ase 13, Υ(P13) ∼= C6 beause all 3 subgroups of C6 × C2

∼= V4 × C3 of index 2 areisomorphi to C6.In ase 17, x2 = z4 = (z2)2 and zx = x2xzx = z3(zx)2 = z3y−2 = z3; therefore
(xz2)2 = x2x−1z2xz2 = x2z6z2 = x2 and Υ(P17) ∼= 〈x, z2〉 ∼= Q8.In ase 18, Υ(P18) ∼= 〈x〉 ∼= C8 beause x has order 8.In ase 19, (y2x)2 = 1 implies that (z2)x = z−2 and that x ⇌ y2. Sine y ⇌ y2,
y2 ∈ Z(∆+/O19) and Υ ∼= 〈x, y2, z2〉 ∼= 〈x, z2〉 × 〈y2〉 ∼= D3 × C2

∼= D6.In ase 20, (x2y)2 = 1 implies that (z2)x = z−2, so Υ(P19) ∼= 〈x, z2〉 ∼= C3 ⋊ C4.In ase 21, (z2y)2 = 1 implies that z2
⇌ y. Sine z2

⇌ z, z2 ∈ Z(∆+/O21) and
Υ(P21) ∼= 〈x, z2〉 ∼= C6 × C2.

• If j is 1, 2, 3, 4, 5, 6, 8, 9, 12, 13 or 14, Υ(Pj) ∼= 〈x〉 ∼= Cl and Pj∆ ∼= Sp, where
p = |Ω|/2l.

• Υ(P16) ∼= 〈x, z2〉 ∼= D4 beause y2 = z4 implies that zx = z−5 and (z2)x = z−10 = z−2.Sine O16 = H10 → S4, P16 = Pin(O16) → Pin(S4) ∼= S8 and P16
∆ = S8.

• Υ(P23) ∼= 〈x, xz〉 ∼= Q8 sine z ⇌ x2, (xz)3 = 1 = (zx)3, (xz)2 = (x2)z = x2 and
(xxz)2 = xz(zx)3x−1zxz = xzx−1zxz = xzxx2zxz = x2(xz)3 = x2. Sine O23 → S3,
P23 = Pin(O23) → Pin(S3) ∼= S6 and P23

∆ = S6.Table 5.9 lists the hirality groups, hirality indies and losure overs of the bipartite-regular hypermaps on the double torus obtained by the Pin onstrution.5.3.2 Chirality groups and hirality indies of the ∆+00̂-regular hypermapson the double torus whih are not obtained by the Walsh or Pin on-strutionsLet Bj be the ∆+00̂-regular hypermap listed in line j of Table 5.7 and Bj a hypermap subgroupof Bj . Then Bj overs S2 and Υ(Bj) = Bj
∆/Bj ⊳ ∆+00̂/Bj . As before, let r = BjR1R2,

s = Bj(R1R2)
R0 , t = Bj(R2R0)

2 and u = Bj(R0R1)
2.

• If j is 1, 3, 5, 6, 11, 13 or 18, then Bj is regular (see Remark 5.2.3), so Υ(Bj) = 1 and
Bj∆ = Bj .
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# B = Pin(·) Υ ι B∆

1 Pin(H1) C5 5 S2

2 Pin(H2) C5 5 S2

3 Pin(H3) C5 5 S2

4 Pin(H4) C3 3 S4

5 Pin(D(01)(H4)) C6 6 S2

6 Pin(H5) C2 2 S8

7 Pin(D(01)(H5)) C8 8 S2

8 Pin(H6) C4 4 S4

9 Pin(H7) C2 2 S10

10 Pin(D(01)(H7)) C5 5 S4

11 Pin(D(012)(H7)) C10 10 S2

12 Pin(H8) C2 2 S12

13 Pin(D(01)(H8)) C6 6 S4

14 Pin(H9) C3 3 S8

15 Pin(D(01)(H9)) C3 ⋊ C4 12 S2

16 Pin(H10) D4 8 S4

17 Pin(D(01)(H10)) Q8 8 S4

18 Pin(D(012)(H10)) C8 8 S4

19 Pin(H11) D6 12 S4

20 Pin(D(01)(H11)) C3 ⋊ C4 12 S4

21 Pin(D(012)(H11)) C6 × C2 12 S4

22 Pin(H12) SL2(3) 24 S2

23 Pin(D(02)(H12)) Q8 8 S6

24 Pin(H13) GL2(3) 48 S2

25 Pin(D(01)(H13)) SL2(3) 24 S4

26 Pin(D(012)(H13)) GL2(3) 48 S2Table 5.9: Bipartite-regular hypermaps on the double torus obtained by the Pin onstrution.
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# |Ω| H bip.-type ι Υ H∆

1 12 B1 (3, 3; 6, 6) 1 1 H4

2 12 B2 (3, 3; 6; 6) 3 C3 S2

3 16 B3 (2, 2; 8; 8) 1 1 H5

4 16 B4 (2, 4; 4; 8) 4 C4 S2

5 16 B5 (4, 4; 4; 4) 1 1 H6

6 24 B6 (2, 2; 6; 6) 1 1 H8

7 24 B7 (2, 2; 6; 6) 3 C3 P2

8 24 B8 (2, 3; 4; 6) 6 C6 S2

9 24 B9 (2, 3; 4; 6) 6 D3 S2

10 24 B10 (2, 3; 4; 6) 6 D3 S2

11 24 B11 (3, 3; 4; 4) 1 1 H9

12 24 B12 (3, 3; 4; 4) 3 C3 S4

13 32 B13 (2, 2; 4; 8) 1 1 H10

14 32 B14 (2, 2; 4; 8) 4 V4 S4

15 32 B15 (2, 4; 4; 4) 2 C2 D(12)(P4)

16 32 B16 (2, 4; 4; 4) 2 C2 P4

17 32 B17 (2, 4; 4; 4) 4 C4 S4

18 48 B18 (2, 2; 4; 6) 1 1 H11

19 48 B19 (2, 2; 4; 6) 3 C3 D(12)(P4)

20 48 B20 (2, 3; 4; 4) 6 D3 S4

21 48 B21 (2, 3; 4; 4) 6 D3 S4

22 48 B22 (2, 3; 4; 4) 6 C6 S4Table 5.10: ∆+00̂-regular hypermaps on the double torus whih are not obtained by the Pinor the Walsh onstrutions
• If j is 2, 4, 8, 9 or 10, Υ(Bj) = ∆+00̂/Bj , beause Υ(Bj) and ∆+00̂/Bj have the sameorder. In addition, Bj∆ = S2.
• If j is 7, 12, 15, 16 or 19, Υ(Bj) has prime order and hene is yli. An easy alulationreveals that B7 overs P2, B12 overs S4, and B15 and B19 over D(12)(P2). Owingto this, B7

∆ = P2, B12
∆ = S4 and B15

∆ = B19
∆ = D(12)(P4). The losure over of

B16
∼= D(12)(B15) is B16

∆ ∼= D(12)(B15)
∆ ∼= D(12)(B15

∆) ∼= D(12)(D(12)(P4)) ∼= P4.
• Υ(B14) = 〈r, u2〉 ∼= V4 and B14

∆ = P2 beause B14
∆ has 8 �ags and overs P2.

• Υ(B17) = 〈s〉 ∼= C4 and B17
∆ = S4 beause B17

∆ has 8 �ags and overs S4.
• If j is 20, 21 or 22, Υ(Bj) = 〈r, s〉 and Bj∆ = S4. When j is 22, r ⇌ s and so

Υ(B22) ∼= C2 × C3
∼= C6. When j is 20 or 21, rs 6= sr and hene Υ(Bj) ∼= D3.Table 5.10 displays the hirality groups, hirality indies and losure overs of the 2-restritedly-regular hypermaps on the double torus whih are not obtained by the Walsh or

Pin onstrutions.



Appendix ANormal losures, ores andhomomorphismsWe list here some results about group theory used in the thesis.In what follows we assume that G and G′ are groups. As mentioned before, the normalizerof H in G is be denoted by NG(H) and the enter of G is denoted by Z(G). The kernel of agroup homomorphism ϕ : G→ G′ is denoted by kerϕ.Proposition A.1.1. Let ϕ : G → G′ be a group homomorphism and H ′ a subgroup of G′.Then:1. [G : H ′ϕ−1] ≤ [G′ : H ′].2. If ϕ is onto, then [G : H ′ϕ−1] = [G′ : H ′].3. If ϕ is onto and H ′
⊳G′, G/H ′ϕ−1 is isomorphi to G′/H ′.Applying Proposition A.1.1 to the inlusion ι : H → G and to the projetion π : G→ G/N ,we get the following result.Corollary A.1.2. Let H and N be subgroups of G. Then:1. [H : H ∩N ] ≤ [G : N ].2. If N is normal in G, then [H : H ∩N ] = [G : N ] if and only if G = HN .3. If N is normal in G and N ⊆ H, then [G : H] = [G/N : H/N ].4. If [G : N ] = 2 and H * N , then [H : H ∩N ] = 2.The following result omes as Exerise 9 in page 75 of [50℄ and as Exerise 1.1.2 in page 3of [60℄.Lemma A.1.3. 1. Let H be a subgroup of G of �nite index. Then there is a normalsubgroup N of G ontained in H and also of �nite index.2. Let H and H ′ be subgroups of G of �nite index. Then H ∩H ′ also has �nite index.As a by-produt of the proof of Lemma A.1.3, we get:97



98 Chapter A. Normal losures, ores and homomorphismsRemark A.1.4. If H is a subgroup of G of �nite index, then HG has �nite index, beause
[G : HG] ≤ [G : HG] · [HG : H] = [G : H], and HG has �nite index by the previous lemma.It is easy to see that HG is a normal subgroup of H and that H is a normal subgroup of
NG(H). However H may not be normal in HG. The following result gives us a neessary andsu�ient ondition for a subgroup H to be normal in its losure over HG.Lemma A.1.5. Let H be a subgroup of G. Then H is normal in HG if and only if there isa normal subgroup N of G suh that H is normal in N .Proposition A.1.6. Let G be a group, N a normal subgroup of G and H a subgroup of Gsuh that H ⊆ N .1. HN ⊆ HG and HN ⊇ HG.2. (HN

)G
= HG and (HN )G = HG.3. For all g ∈ G, (Hg)N =

(
HN

)g.4. NG(H) ⊆ NG(HN ).Lemma A.1.7. Let N be a normal subgroup of G of index 2, k ∈ G \ N and H a normalsubgroup of N . Then HG = H ∩Hk and HG = HHk.Proposition A.1.8. Let ϕ : G→ G′ be a group homomorphism, H ≤ G and H ′ ≤ G′. Then:1. (H ′ϕ−1
)G ⊆

(
H ′G

′
)
ϕ−1 and (H ′ϕ−1

)
G
⊇ (H ′

G′)ϕ−1.2. If ϕ is an epimorphism, then (H ′ϕ−1
)G ⊇

(
H ′G

′
)
ϕ−1 and (H ′ϕ−1

)
G
⊆ (H ′

G′)ϕ−1.3. (Hϕ)G
′ ⊇

(
HG
)
ϕ; if H ⊇ kerϕ, then (Hϕ)G′ ⊆ (HG)ϕ.4. If ϕ is an epimorphism, then (Hϕ)G

′ ⊆
(
HG
)
ϕ and (Hϕ)G′ ⊇ (HG)ϕ.Corollary A.1.9. Let ϕ : G→ G′ be an epimorphism, H ≤ G and H ′ ≤ G′. Then:1. (H ′ϕ−1)G = (H ′G

′

)ϕ−1 and (H ′ϕ−1)G = (H ′
G′)ϕ−1.2. (Hϕ)G

′

= (HG)ϕ; if ϕ is an isomorphism, then (Hϕ)G′ = (HG)ϕ.When ϕ is an inner automorphism of G we get:Corollary A.1.10. For all g ∈ G, HG = (Hg)G and HG = (Hg)G.
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