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palavras -chave

resumo

Hipermapa, restritamente-regular, 2-restritamente-regular, orientavelmente-
regular, pseudo-orientavelmente-regular, bipartido-regular, grupo de
quiralidade, indice de quiralidade.

Nesta tese consideramos hipermapas com grande nimero de automorfismos
em superficies de baixo género, nomeadamente a esfera, o plano projectivo, o
toro e o duplo toro.

E conhecido o facto de que o nimero de automorfismos ou simetrias de um
hipermapa H é limitado pelo seu nimero de flags, que, genericamente falando,
sdo triplos vértice-aresta-face mutualmente incidentes. De facto, o nimero de
automorfismos de H divide o nimero de flags de H. Hipermapas para os quais
este limite é atingido sdo chamados regulares e estdo classificados nas
superficies orientaveis até género 101 e em superficies ndo-orientaveis até
genero 202, usando computadores.

Neste trabalho classificamos os hipermapas 2-restritamente-regulares na
esfera, no plano projectivo, no toro e no duplo toro, isto &, hipermapas cujo
namero de automorfismos é igual a metade do nimero de flags, e calculamos
0s seus grupos quiralidade e indices de quiralidade, que podem ser vistos
como medidas algébricas e numéricas de quanto H se distancia de ser regular.
Estes hipermapas sdo uma generaliza¢do dos hipermapas quirais.

Também introduzimos alguns métodos para construir hipermapas bipartidos.
Duas destas construc@es tém um papel muito importante no nosso trabalho.



keywords

abstract

Hypermap, restrictedly-regular, 2-restrictedly-regular, orientably-regular,
pseudo-orientably-regular, bipartite-regular, chirality group, chirality index.

This thesis deals with hypermaps having large automorphism group on
surfaces of small genus, namely the sphere, the projective plane, the torus and
the double torus.

It is well-known that the number of automorphisms or symmetries of a
hypermap H is bounded by its number of flags, which are, roughly speaking,
incident triples vertex-edge-face. In fact, the number of automorphisms of H
divides the number of flags of H. Hypermaps for which this upper bound is
attained are called regular and have been classified on orientable surfaces up
to genus 101 and on non-orientable surfaces up to genus 202, using
computers.

In this work we classify the 2-restrictedly-regular hypermaps on the sphere, the
projective plane, the torus and the double torus, that is, hypermaps whose
number of automorphism is equal to half the number of flags and compute their
chirality groups and chirality indices, which may be regarded as algebraic and
numerical measures of how far H deviates from being regular. These
hypermaps are a generalization of chiral hypermaps.

We also introduce some methods for constructing bipartite hypermaps. Two of
those constructions will play an important role in our work.
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Introduction

This thesis deals with hypermaps having large automorphism group on surfaces of small genus,
namely the sphere, the projective plane, the torus and the double torus.

Topologically, a hypermap H is a cellular imbedding of a connected hypergraph G into a
compact surface S. When G is a graph, we say that H is a map. The Euler characteristic and
the genus of H are the Euler characteristic and the genus of §. Roughly speaking, the flags
of H are its incident triples vertex-edge-face, and a symmetry or an automorphism of H is a
permutation of the set 2y of flags of H preserving incidence. The set of all automorphisms
of a hypermap H forms a permutation group, Aut(H), acting on the set of flags of H. It has
been shown [24] that every finite group is the group of automorphisms of a map (and hence
of a hypermap). The number of automorphisms of a hypermap H is bounded by the number
of flags of H, since every automorphism is uniquely determined by its effect on a flag. In
addition, the number of automorphisms of H divides the number of flags of H. Hypermaps
for which this upper bound is attained are called regular. Regular hypermaps may be thought
of as a generalization of the Platonic solids. When S is orientable, H is said orientable and
the number of automorphisms of H which induce orientation-preserving automorphisms of S
is at most half the number of flags of H. When the equality holds, the hypermap H is said
orientably-regular. If H is orientably-regular but not regular, then H is chiral.

Algebraically, a hypermap H is completely determined by a hypermap subgroup H, which
is a subgroup of the free product A = Cy % Cy % C5. The number of flags of H is equal to
the index of H in A, and its automorphism group is isomorphic to Na(H)/H, where Na(H)
denotes the normalizer in A of H. The hypermap H is regular if H is normal in A, and is
orientably-regular if H is normal in A", one of the seven normal subgroups of A of index 2.
Following [8], we say that a hypermap is 2-restrictedly-regular if the normalizer Na(H) in A
of a hypermap subgroup H is one of those seven subgroups of A. In other words, a hypermap
is 2-restrictedly-regular if and only if its group of automorphisms acts on the set of flags with
2 orbits. These hypermaps can be view as a generalization of chiral or irreflexible hypermaps.
For further reading on maps and hypermaps see [49, 45, 33, 28, 41, 46, 48, 13, 65], see also
[23, 25, 26, 27| for the orientable case, and [16, 39| for maps and hypermaps with boundary.

The classification of all maps or hypermaps which satisfy a certain condition is a common
problem in map and hypermap theory. Regular, orientably-regular and chiral maps and hyper-
maps have been classified according to genus or Euler characteristic |11, 12|, number of edges
or faces 70, 7, 10, 77, 54, 69, 40], or automorphism group [14]. Edge-transitive maps, that is,
maps whose automorphism group acts transitively on the set of edges have been classified on
the sphere (Griinbaum and Shephard [37]) and on the torus (Sirai, Tucker and Watkins [66]).
Another problem is the determination of all g for which there is a map or hypermap of genus
g with a certain property [21, 78|.
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Throughout the last century, many authors (Brahana [3|, Threlfall [62], Sherk [55], Coxeter
and Moser [33], Garbe [35]|, Bergau and Garbe [2]) worked on the classification of regular
and orientably-regular maps without the help of computers. They all contributed to the
classification of regular maps on orientable surfaces up to genus 7 and on non-orientable
surfaces up to genus 8. The generalization to hypermaps was done by Corn and Singerman
[28], Breda and Jones [15] and Breda [7] on orientable surfaces up to genus 2 and on non-
orientable surfaces up to genus 4. It is well-known that the classification of regular maps
and hypermaps on a non-orientable surface of genus g can be derived from the classification
of regular maps and hypermaps on the orientable surface of genus g — 1. Chiral maps were
studied by Sherk [56]|, Garbe [35] and Wilson [75]. Breda and Nedela [11] classified all chiral
hypermaps on surfaces up to genus 4. An almost complete classification of regular and chiral
maps up to 100 edges can be found in [70, 69]. In [19], Conder and Dobcsanyi give complete
lists of all regular and chiral maps on orientable surfaces of genus 2 to 15, and all regular maps
on non-orientable surfaces of genus 4 to 30 (that is, all regular and chiral maps on surfaces
with Euler characteristic between -28 and -2). More recently, Conder [17] obtained lists of
regular and chiral maps and hypermaps on orientable surfaces of genus 2 to 101 and regular
maps and hypermaps on non-orientable surfaces of genus 2 to 202, up to isomorphism and
duality, with the help of the new “LowIndexNormalSubgroups” routine in MAGMA [1].

In this thesis we determine, up to duality, all (isomorphism classes of) 2-restrictedly-regular
hypermaps on the sphere, the projective plane, the torus and the double torus, and compute
their chirality groups and chirality indices (see [6]).

In Chapter 1 we introduce the basic notation used throughout the text. We present
methods for construction bipartite maps. Two of these constructions, Walsh and Pin, will
play an important role in our thesis. The first is induced by Walsh’s correspondence [67]
between hypermaps and bipartite maps on the same surface. We also study the properties of
the orientable double cover of a non-orientable hypermap H, which is the smallest orientable
hypermap covering H (see [13]).

Chapter 2 deals with 2-restrictedly-regular hypermaps on the sphere. Using the Euler
formula, we see that there is an infinite number of possibilities for the valencies of the vertices,
edges and faces of a regular or 2-restrictedly-regular hypermap on the sphere. In each case,
there is exactly one regular or 2-restrictedly-regular hypermap with those valencies. We show
that all 2-restrictedly-regular hypermaps on the sphere are obtained from regular hypermaps
on the sphere using the Walsh or Pin constructions. Most of the content of this chapter is
published in [9].

Chapter 3 deals with hypermaps on the projective plane. We determine the 2-restrictedly-
regular hypermaps on the projective plane by inspecting the regular and 2-restrictedly-regular
hypermaps on the sphere. As on the sphere, all 2-restrictedly-regular hypermaps on the
projective plane are obtained from regular hypermaps on the projective plane using the Walsh
or Pin constructions. There is an infinite number of possibilities for the valencies of the
vertices, edges and faces of a regular or 2-restrictedly-regular hypermap on the projective
plane. In each case, there is at most one regular or 2-restrictedly-regular hypermap with those
valencies.

Hypermaps on the torus are studied in Chapter 4. Our main references are the work of
Singerman and Syddall [57, 58] on uniform maps, and the work of Coxeter and Moser [33] on
orientably-regular maps. On the torus, the Euler formula gives a finite number of possibilities
for the valencies of the vertices, edges and faces of a regular or 2-restrictedly-regular hypermap,
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and in each case there is an infinite number of non-isomorphic regular and 2-restrictedly-regular
hypermaps with those valencies. It is shown that the 2-restrictedly-regular hypermaps on the
torus are either uniform or obtained from regular hypermaps on the torus using the Walsh
and Pin constructions. We also introduce a notation for the uniform hypermaps on the torus.
Finally, in Chapter 5, we classify all 2-restrictedly-regular hypermaps on the double torus.
Our work in this Chapter was influenced by [15].
At the end, we provide a subject index.



Introduction




Chapter 1

Hypermaps

In this chapter we introduce basic terminology from the theory of hypermaps and at the same
time establish our notation.

1.1 Definitions and notations

A hypermap is a four-tuple H = (Q, ho, h1, he) where hg, hy, he are permutations of a non-
empty set Q¢ such that ho? = hi? = hy? = 1 and (hg, hy, ho) is transitive on Q. The
elements of )y are called flags of H, the permutations hg, hy and hg are called canonical
generators of H and the group Mon(H) = (hg, hi1, ha) is the monodromy group of H. One
says that H is a map if (hoh2)? = 1. A hypermap is said finite if its set of flags is finite. If
the permutations hg, h; and ho are fixed-point free, we say that H has no boundary or that
‘H is a hypermap without boundary. Henceforth, all hypermaps are to be finite and without
boundary unless otherwise specified.

The hypervertices or 0-faces of H correspond to (hy, ha)-orbits on €. Likewise, the
hyperedges or 1-faces and hyperfaces or 2-faces correspond to (hg, he)- and (hg, hi)-orbits on
Qq4, respectively. If a flag w belongs to the orbit determining a k-face f we say that w belongs
to f, or that f contains w. We use the terms vertices, edges and faces instead of hypervertices,
hyperedges and hyperfaces, for short. We denote the numbers of vertices, edges and faces of
H by V(H), E(H) and F(H). When just one hypermap, say H, is under discussion, we omit
the letter H from hypermap-theoretic symbols and write, for instance Q, V', E and F' instead
of Qy, V(H), E(H) and F(H).

Let {4, j,k} = {0,1,2}. We say that the k-face f = w(R;, R;) and the j-face e = o(R;, Ry,)
are incident if f Ne # @. In other words, incidence is given by non-empty intersection. Two
k-faces f and f’' are adjacent if both are incident to a j-face g. The wvalency of a k-face
f = w(hs, h;) (of a finite hypermap without boundary), where w € €y, is the least positive
integer n such that (h;h;)"™ € Stab(w). Since hi? = th = 1 and h; and h; are fixed-point
free, f has 2n elements, so the valency of a k-face is equal to half of its cardinality. If, for
each choice of indices i,j € {0,1,2}, all (h;, hj)-orbits on Qy have the same cardinality, we
say that H is uniform. When all vertices, edges and faces of H have valency greater than one,
we can think of a flag as an incident vertex-edge-face triple (v, e, f). A hypermap H has type
(l,m,n) if I, m and n are the least common multiples of the valencies of the vertices, edges
and faces, respectively. In other words, the type of a hypermap H is (lo,1,1l2) if l;, [; and [},
are the orders of hjhy, hih; and h;h;. When H is uniform, H has type (I, m,n) if and only if
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[, m and n are the valencies of the vertices, edges and faces of H, respectively.

Topologically, maps and hypermaps can be represented by cellular imbeddings of connected
graphs and hypergraphs into compact surfaces. A map M can be represented by a cellular
imbedding of a connected graph G into a compact surface S, where the vertices, edges and
faces of the imbedding correspond to the vertices, edges and faces of M. Using the well-
known correspondence of Walsh between hypermaps and bipartite maps described in [67], we
can represent a hypermap by a cellular imbedding of a bipartite graph (that is, a hypergraph)
g into a compact surface S, where the vertices of G correspond to the vertices and edges of
‘H and two vertices of G are connected by an edge if and only if they form an incident pair
vertex-edge of H.

Alternatively, a hypermap H can be represented by a cellular imbedding of a connected
trivalent graph G into a compact surface S, together with a labelling of the faces with labels
0, 1 and 2 so that each edge of G is incident with two faces carrying different labels. In other
words, H can be represented by the Schreier (right) coset graph (see §3.7 of [33], §7. of [64] or
§4-3. of [68]) for the stabilizer of a flag w € 3 in the monodromy group of H, Mon(H), with
respect to the generators hg, hy and hs, with free edges replacing loops. The vertices of the
graph G correspond to the flags of H and the faces labelled with k correspond to the k-faces
of 'H.

When H is represented by a cellular imbedding of a connected hypergraph G on a surface
S, we say that G is the underlying hypergraph of ‘H and that S is the underlying surface of
H. A hypermap H has no boundary when its underlying surface S has no boundary. The
Euler characteristic and the genus of a hypermap H are the Euler characteristic and the
genus of its underlying surface S, respectively. We speak of characteristic of H, meaning the
Euler characteristic of H, for short. Hypermaps imbedded on the sphere are called spherical;
hypermaps imbedded on the torus are called toroidal.

A covering from a hypermap H = (Qy, ho, h1, h2) to another hypermap G = (Qg, go, 91, 92)
is a function ¢ : Q3 — Qg that commutes according to the following diagram:

h.
Oy ——Qy

of

Qg —2~ Qg

that is, such that h;ip = 1g; for all i € {0,1,2}. Since Mon(G) acts transitively on g, 1 is
surjective. Because Mon(H) acts transitively on 23, the covering 1 is completely determined
by the image of a flag of H. By von Dyck’s theorem ([42], p. 28) the assignment h; — ¢;
extends to a group epimorphism ¥ : Mon(H) — Mon(G) called the canonical epimorphism.
The covering v is an isomorphism if it is injective. If there is a covering ¥ from H to G, we say
that H covers G or that G is covered by H, and write H — G; if 1) is an isomorphism we say
that H is isomorphic to G, or that H and G are isomorphic, and write H = G. When 9 is a
covering from H to G and |Qy| = 2|Qg| we say that ¢ is a double covering. An automorphism
or a symmetry of H is an isomorphism v : Qy — Qy from H to itself, that is, a function
¥ that commutes with the canonical generators. Naturally, the set of all automorphisms (or
symmetries) of H forms a group under composition, called the automorphism group of H and
denoted by Aut(H). Since for all w € Q, (w(h;, hj))¥ = wiP(gi, g;), a covering ¥ : Qy — Qg
induces a surjective mapping between the set of k-faces of H and the set of k-faces of G; an
isomorphism induces a bijective correspondence between the set of k-faces of H and the set of
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k-faces of G. An automorphism v is called a reflection if there is a flag w € Q and k € {0, 1,2}
such that wy = wry.
Using the Euclidean Division Algorithm, one can easily show the following result.

Lemma 1.1.1. Let ¢ : Qy — Qg be a covering from H to G and w € Q. Then the valency
of the k-face of G containing wi divides the valency of the k-face of H containing w.

1.2 The triangle group
The free product
A=CyxCyxCy = (Ro, R, R | Ry> = Ri* = Ry> = 1)

is called the triangle group. By the torsion theorem for free products (Theorem 1.6 in §IV.1
of [51]), the conjugates of Ry, R; and Ry are the only non-identity elements of finite order in
A. More generally, for each triple (I,m,n) € (INU {o0})3, the extended triangle group is the

group
A(l,m,n) = (Ro, R, Ra | Ro® = R1? = Ry® = (R1Rs)' = (RoRo)™ = (RoR1)" = 1)

where we regard equations of the form (R;R;)> = 1 as being vacuous.

For positive integers [, m, n, the extended triangle group A(l,m,n) is the group generated
by reflections in the sides of a triangle with angles 7/l, 7/m and =« /n. This triangle will lie on
the sphere, the Euclidean plane or the hyperbolic plane depending on whether 1/I+1/m+1/n
is greater than, equal to or less than 1, respectively. It is well-known that:

o A
o A

(
(
o A
o A

(

o A

If N is a normal subgroup of A of index 2, then A/N, having order 2, is isomorphic to Cs.
Consequently, the group A has 7 subgroups of index 2 (see [13]), the kernels of the 23 —1 =7
group epimorphisms ¢ : A — Cy:

At = (RyRy, RoRo)® = (R Ry, RyRo, RoRy),

A]Ac - <RZ7R]>A - <Ri7Rj7RiRk7Rij>7
AR = (Ry, RiR;)® = (Ry, RiRj, R;Ri.R;),

where {i,j,k} = {0,1,2}. The subgroup AT is often called the even subgroup of A.

If N is normal subgroup of A of index 4, then A/N, being a group of order 4 generated
by reflections, is Vj & Cs x (5. By taking ¢ : A — (5 x (5 a group epimorphism such that
N = ker p, and 71 and 7o the projections Cy x Cy — Cb, one can see that N; = ker pm; and
N = ker g are normal subgroups of A of index 2 and N = N; N Ny. Consequently, the
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normal subgroups of A of index 4 are intersections of normal subgroups of A of index 2. By
inspection we can see that A has 7 normal subgroups of index 4 (see [13]):

= AiﬂAjZAomAlmsz

A+kl§

(RiR;, (RjRy)*)™ = (RiR;, (RiR;)™ , (R; Ry,)*, (RiR;)?)
= ATNAF=AFNAF = AF AT = AT N AR N AF,

AR = (Ry, (RiR;))®)™ = (R, R, R, R (R R;)?)
= A'NAI = ATNAF = AFN AT = A'N AT N AF

where {i7,7,k} = {0,1,2}. We write A2 and A2 instead of A0l and A120, for simplicity.
Let A’ be the derived group (that is, the commutator subgroup) of A. For all4, j € {0,1,2},

(RiR;)? = [Ri,Rj] € A, so the first homology group of A is A/A" = Cy x Cy x Cy and

A" = ((R1R2)?, (RaRy)?, (RoR1)%)> = A0 AT N A2 is a normal subgroup of A of index 8.

1.3 Hypermap subgroups

Given a group G, we denote by Z(G) the center of G. If H is a subgroup of G, then we
denote by Ng(H), HS and Hg, the normalizer, the normal closure and the core of H in G,
respectively.

Each hypermap H gives rise to a transitive permutation representation py : A — Mon(H),
R; — h; of the free product A = Cy % Cs % Cy. The group A acts naturally and transitively on
Qy via py. The stabilizer H = Staba (w) of a flag w € Q3 under the action of A is called the
hypermap subgroup or fundamental group of H. Since A acts transitively on {23y, hypermap
subgroups are unique up to conjugation in A. The valency of a k-face containing w is the least
positive integer n such that (R;R;)" € Staba(w) = H; more generally, the valency of a k-face
containing the flag 0 = w-g = w(g)pn € Oy, where g € A, is the least positive integer n such
that (R;R;)" € Staba(o) = Staba(w - g) = Staba(w)? = H9. We remark that a hypermap
of type (I,m,n) can be regarded as a transitive permutation representation of the extended
triangle group A(l,m,n) (see [13]).

Lemma 1.3.1. Let H and G be hypermaps with hypermap subgroups H and G respectively.
Then H — G if and only if H C G9 for some g € A.

Proof. Let w € Qy and o € g such that H = Staba (w) and G = Staba (o).
(=) Let ¢ : Q3 — Qg be a covering and g € A such that wy) = og. Then, for all h € A,

h e H < wh=w= ogh=wiph =wh) =w)p =0g < h € Staba(cg) = Staba(c)? = G,

that is, H C GY.
(<) If HC GY, then ¢ : Qy — Qg, whe = ogh is well defined and is a covering H — G. [

Corollary 1.3.2. Let H and G be hypermaps with hypermap subgroups H and G respectively.
Then H = G if and only if H = GY for some g € A. In other words, H and G are isomorphic
if and only if there is an inner automorphism 0 of A such that HO = G.
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This last result shows that there is a natural correspondence between the isomorphism
classes of hypermaps and the conjugation classes of subgroups of A.

Let H be a hypermap subgroup of H. Denote by Alg(H) = (A/H,-HaRo,-HAR1,-HAR>)
where -HAR; : AJH — A/H, Hg— HgHAR; = HgR;. We say that Alg(H) is an algebraic
presentation of H.

Lemma 1.3.3. Let Alg(H) be as above. Then H is isomorphic to Alg(H). Furthermore, the
groups Mon(H) and A/HA are isomorphic.

This Lemma shows that, up to isomorphism, every hypermap H is completely determined
by a hypermap subgroup H. For simplicity, we do not differentiate H from its algebraic
presentations, and so we see, for instance, Qy as A/H and Mon(H) as A/Ha, for some
hypermap subgroup H of H.

Lemma 1.3.4. Let H be a hypermap, w € Qy and H = Staba (w) a hypermap subgroup of H.
Then Aut(H) = Na(H)/H. Moreover, h € Na(H) if and only if for every flag Hg € A H
there is an automorphism of H which maps Hg to Hhg.

Note that an automorphism 9 is a reflection if and only if there is g € A and k € {0, 1,2}
such that R, € HY.

Of the two groups Mon(H) and Aut(H), the first acts transitively on € (by definition) and
the second, due to the commutativity of the automorphisms with the canonical generators,
acts semi-regularly on 29y. These two actions give rise to the following inequalities:

[ Mon(H)| > Q] > | Aut(H)]. (L1)

Indeed, if H is a hypermap subgroup of H, then |Mon(H)| = [A : Hal, Q%] = [A : H] and
| Aut(H)| = [Na(H) : H].

Lemma 1.3.5. The following statements are equivalent:
1. |[Mon(H)| = ||, that is, Mon(H) acts reqularly on Qqy;
2. |Qy| = |Aut(H)|, that is, Aut(H) acts regqularly on Qu;
3. H has a hypermap subgroup which is normal in A.

If Mon(H) or Aut(H) act regularly on gy, or equivalently, if H has a hypermap subgroup
which is normal in A, then H is said regular. It is well-known that every regular hypermap is
uniform but the converse is not true. In Chapter 4 we can find uniform hypermaps which are
not regular.

Let H be a hypermap subgroup of a hypermap H. Following [8], if H < © for some © <A,
we say that H is ©O-conservative. We say that H is

e orientable if H is AT-conservative,
o bipartite if H is AG—Conservative,

o pseudo-orientable if H is A%-conservative'.

'This extends Wilson’s definition of pseudo-orientability [71] from maps to hypermaps.
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Moreover, given k € {0,1,2}, we say that M is k-bipartite if H is AF-conservative, and k-
pseudo-orientable if H is A¥-conservative. In addition, a k-bipartite hypermap is also called
vertez-bipartite if k = 0, edge-bipartite if k =1, and face-bipartite if k = 2.

A hypermap H is orientable if and only if its underlying surface is orientable. Since
ATNA" = ATNAT = A'NA? (see Section 1.2), an orientable hypermap H is A*-conservative
if and only if H is A¥-conservative; a non-orientable hypermap cannot be simultaneously A*-
conservative and AF-conservative. A hypermap H is bipartite if and only if we can divide
its set of vertices into two parts so that consecutive vertices around an edge or a face are in
alternate parts, that is, if for all w € Qyy, the vertices containing w and whg are in different
parts. A hypermap H is pseudo-orientable if we can give orientations to the vertices so that
consecutive vertices around an edge or a face have different orientations, that is, if for all
w € Qyy, the vertices containing w and whg have different orientations.

Lemma 1.3.6. If H is bipartite or pseudo-orientable, then all edges and all faces have even
valencies.

Proof. Let © be AY or A°, H a ©-conservative hypermap, w € Q3 and H = Staba (w). If m
and n are the valencies of the edge and the face containing the flag wg, then (RaR)™, (RoR1)™ €
Staba(wg) = H9 C ©9 = O. In both cases m and n must be even. O

Let © be a normal subgroup of A and H a O-conservative hypermap. An automorphism
¢ € Aut(H) is said ©-conservative if it preserves the ©-orbits on Qyy = A/ H, that is, if for
all Hg € A/H, Hg and (Hg)yp are in the same ©-orbit. Since © is a normal subgroup of A
containing H, © contains Ha and so ©/Ha is a normal subgroup of A/Ha = Mon(H). Since
every covering is determined by the image of a flag, we get the following result.

Lemma 1.3.7. Let © be a normal subgroup of A and H a ©O-conservative hypermap with
hypermap subgroup H. An automorphism ¢ of H is ©-conservative if and only if Hp €
H-©/Ha.

Proof. Only the necessary condition needs to be proved. Let Hp = Ht, with t € ©. Then,
forallge A, t9 € ©9 =0O and (Hg)p = Hpg = Htg = Hgty € Hg-©/HA. O

The set of all ©-conservative automorphisms of a ©-conservative hypermap H forms a
group under composition denoted by Aut®(H). The groups of A*- and A+%_conservative
automorphisms of H are also denoted by Aut™(H) and Aut™(H), respectively.

Now let ® be a normal subgroup of A of index 2. Then every ©-conservative hypermap
‘H has exactly two ©-orbits. An automorphism ¢ of H is called ©-preserving if ¢ stabilizes
the two orbits, and is called ©-reversing if ¢ interchanges the two orbits. We also say that an
automorphism ¢ of an orientable hypermap is orientation-preserving if ¢ is A*-reversing, and
orientation-reversing if ¢ is A*-reversing. The group of orientation-preserving automorphisms
of an orientable hypermap H, Aut™ (H), is often called the rotation group of H.

When H <10, H is called ©-regular. If H is ©-regular but not regular, H is called ©-chiral.
We say that H is orientably-reqular if H is AT-regular, orientably-chiral if H is AT-chiral,
bipartite-reqular if H is AC-regular, bipartite-chiral if H is A°-chiral, pseudo-orientably-regular
if H is A%regular and pseudo-orientably-chiral if H is A%-chiral. A

More generally, given k € {0,1,2}, we say that H is k-bipartite-reqular if H is AF-regular,
k-bipartite-chiral if H is AF-chiral, k-pseudo-orientably-reqular if H is AF-regular, and k-
pseudo-orientably-chiral if H is AF-chiral. A k-bipartite-regular (resp. k-bipartite-chiral)
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hypermap is also called vertez-bipartite-reqular (resp. wvertez-bipartite-chiral) if k = 0, edge-
bipartite-reqular (resp. edge-bipartite-chiral) if k = 1, and face-bipartite-reqular (resp. face-
bipartite-chiral) if k = 2.

The group of ©-conservative automorphisms of a ©-conservative hypermap H, Autg('H),
is isomorphic to Ng(H)/H. When H is ©-regular, Ng(H) = © and so Aut®(H) is isomorphic
to ©/H. The hypermap H is ©-regular if and only if its ©-conservative automorphism group
Aut®(H) acts transitively on each ©-orbit in Q.

A hypermap H is rotary (see [72] for maps) if there is w € Qy and v, ¢ € Aut(H) with the
property that v and ¢ cyclically permute the consecutive edges incident to the vertex v and
the face f containing w, respectively. In other words, a hypermap is rotary if the normalizer
in A of a hypermap subgroup contains A*. An orientable hypermap H is rotary if and only
if H is orientably-regular; a non-orientable hypermap H is rotary if and only if H is regular
(see [33, 72| for maps). A hypermap H is said reflexible if its automorphism group has an
orientation-reversing automorphism and chiral or irreflexible otherwise ([33, 49]). Orientably-
regular maps and hypermaps have often been called “regular” [3, 33, 28, 25, 26, 27|, while
regular maps and hypermaps have been called “reflexible” [33].

Following [8], a hypermap H is called restrictedly-reqular if H is ©-regular for some normal
subgroup © with finite index in A. If H <© and © < A, then

HCOC (Na(H))a € Na(H),

that is, when H is restrictedly-regular, the subgroup (Na(H))a, called regularity-subgroup of
‘H, is the largest normal subgroup of A in which H is normal.

More generally, we say that H is k-restrictedly-regular if k is the index of the regularity-
subgroup of H in A, that is, if k = [A : (Na(H))a]. The index k is called the restricted rank
of H. Since

Qu| =[A:H] = [A:(Na(H))a] [(Na(H))a : H]
= k-[(Na(H))a : H]
< k-[Na(H): (Na(H))a]-[(Na(H))a : H]
= k-[Na(H): H]
= k-|Aut(H)],

when H is k-restrictedly-regular, [Qy|/| Aut(H)| < k and k | |Qy]|. The restricted rank of
a hypermap H can be regarded as a numerical measure of how far H deviates from being
regular.

A 1-restrictedly-regular hypermap is a regular hypermap; a 2-restrictedly-regular hyper-
map is a ©-chiral hypermap, where © is 1 of the 7 normal subgroups of A of index 2.

Lemma 1.3.8. A hypermap is 2-restrictedly-reqular if and only if the number of automor-
phisms of H is equal to half the number of flags.

In [47], Jones called a map M just-edge-transitive if M is 4-restrictedly-regular and its
regularity subgroup is A2 The classification of A2 regular hypermaps of small genus, as
well as their chirality groups and chirality indices can be found in [5].

The types automorphism groups of edge-transitive maps, which include all 2-restrictedly-
regular maps except the Al-chiral, were classified by Wilson in [76] and Graver and Watkins



12 Chapter 1. Hypermaps

an edge-transitive map with an edge-transitive map with regularity-
automorphism group of type ... | automorphism group of type ... | -subgroups
(Wilson) (Graver & Watkins)
I 1 A
Ila 2Pex AT
ITh 2ex A?
2*ex AV
Ilc 2 AY
2* A?
11d 2P Al
I1la 3 AY12
ITId 5 A+00
5 A+22
Ille 57 AY2

Table 1.1: Correspondence between edge-transitive maps and restrictedly-regular maps.

in [36]. In Table 1.1 we give the correspondence between types of edge-transitive maps of
Wilson and of Graver and Watkins, and their regularity-subgroups.

Let ©® be a normal subgroup of A. The hypermap with hypermap subgroup © is called
the trivial ©-hypermap and denoted by Zg. It is a regular hypermap with [A : ©] flags
which may have boundary. In §5 of [13], Breda and Jones classify the 16 trivial ©-hypermaps
with abelian automorphism group. Their hypermap subgroups are the 16 normal subgroups
of A containing A’ (see Section 1.2). By Lemma 1.3.1, a hypermap H is ©-conservative if
and only if H covers 7g. Let H be a ©-conservative hypermap, ¢ a covering from H to 7o
and {vi,...,vp}, {e1,..., e}, {f1,... fr} the sets of vertices, edges, faces of Tg, respectively.
We recall that ¢ maps k-faces of H to k-faces of 7g. We say that H is O-uniform if for all
k € {0,1,2}, all k-faces of H mapped to a k-face of 7g have the same valency. To put it another
way, a ©-conservative hypermap H is ©-uniform if for all k € {0, 1,2}, k-faces containing flags
in the same ©-orbit have the same valency. When H is a ©-uniform hypermap such that all
vertices of H mapped to the vertex v; of 7o have valency [;, all edges of H mapped to the
edge e; of Tg have valency m; and all faces of H mapped to the face fj of 7o have valency
ng, we say that H has O-type (li,...,lp;m1,...mg;n1,...n,). We may assume, without loss
of generality, that iy < --- <1,, m; <--- <mgand n; <--- < n,. A hypermap is called
bipartite-uniform if it is A% uniform. The bipartite-type of a bipartite-uniform hypermap B
is its AY%type (I1,l2;m;n), where I3 and [y are the valencies (not necessarily distinct) of the
vertices of B, and m and n are the valencies of the edges and the faces of B. Since B is
bipartite-uniform, B is bipartite and, by Lemma 1.3.6, m and n are even. Moreover, a Ak-
uniform hypermap is called k-bipartite-uniform; we also use the terms vertez-bipartite-uniform,
edge-bipartite-uniform and face-bipartite-uniform instead of O-bipartite-uniform, 1-bipartite-
uniform and 2-bipartite-uniform, respectively.

Lemma 1.3.9. Let © be a normal subgroup of A and H a ©-conservative hypermap.

1. If H is O-regqular, then H is ©-uniform.
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2. If © is AT, A, Al A? or A2, then H is ©-uniform if and only if H is uniform.
3. If © is A+OG, then H is A+06—un7jf0rm if and only if H s bipartite-uniform.

Proof. 1. Let k € {0,1,2}, w € Qy, H = Staba(w) and g € ©. If H is O-regular, then H <160
and hence HY = H. In particular, the k-faces containing w and wg have the same valency.

2. and 3. One can easily see that the hypermaps Tg, where © is A*, A% Al or A% have 1
vertex, 1 edge and 1 face; the hypermaps 7,5 and 7, 15 have 2 vertices, 1 edge and 1 face. [

A uniform hypermap is k-bipartite-uniform if and only if it is k-bipartite. Examples of
O-uniform hypermaps that are not ©-regular can be found in Chapter 4.

1.4 The Euler formula and the Hurwitz bound

A theorem of Hurwitz [38] (cf. [27, 18, 61]) states that an upper bound for the number of
conformal automorphisms of a compact Riemann surface with genus g greater than one (that
is, homeomorphisms of the surface onto itself preserving the local structure) is 84(g — 1).
It has been proved by Jones and Singerman [49] that the group of orientation-preserving
automorphisms of a map M on an orientable surface of genus ¢ is isomorphic to a group
of conformal automorphisms of a compact Riemann surface with the same genus, and hence
bounded by 84(g — 1). Moreover, the number of automorphism of a map M is bounded by
168(g — 1), if M is orientable, and by 84(g — 2), otherwise (see, for instance, Theorem 4.2.2
of [61]).

Our aim in this section is to present methods for finding all possible types (resp. bipartite-
types) of uniform (resp. bipartite-uniform) hypermaps on a given surface. We give a relation
between the Euler characteristic, number of flags and type (resp. bipartite-type) of a uniform
(resp. bipartite-uniform) hypermap, and then we use it to find bounds for the numbers of flags
of uniform (resp. bipartite-uniform) hypermaps with a given negative Euler characteristic.

Using the well-known Euler (polyhedral) formula one can easily get the following result.

Lemma 1.4.1 (Euler formula for hypermaps). Let H be a hypermap with V vertices, E edges,
F faces and Euler characteristic x. Then

Q
X:V+E+F—’2”’. (1.2)
When H is uniform of type (I,m,n), V. = |Qy|/2l, E = |Qy|/2m and F = |Qy]|/2n.
Replacing the values of V', F and F in formula (1.2), we get:

Corollary 1.4.2 (Euler formula for uniform hypermaps). Let H be a uniform hypermap of
type (I,m,n) with Euler characteristic x. Then

Q 1 1 1
:’;‘<l+m+n—1>. (1.3)

When H is bipartite-uniform of bipartite-type (I1,l2; m;n), each A% orbit has || /2 flags,
and so the numbers of vertices in the AOorbits are |Q|/4l; and |Q|/4l. Then M has
V = |Qn /4l + Q| /4o vertices, E = |Qy|/2m edges and F' = |Qy|/2n faces. Replacing the
values of V', E and F in formula (1.2), we get:
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Corollary 1.4.3 (Euler formula for bipartite-uniform hypermaps). Let H be a bipartite-
uniform hypermap of bipartite-type (11, lo; m;n) with Euler characteristic x. Then

Qx| (1 1 1 1
_ oy 7_1 14
2 20 * 219 o m * (14)

Lemma 1.4.4. If H is a hypermap such that all vertices have valency 1, then H is a uniform
hypermap on the sphere of type (1,k, k), where k is the number of vertices. Furthermore, H
18 reqular.

Proof. If all vertices have valency 1, then R1Re € HY, for all g € A, so R{ Rz € Ha. Conse-
quently, HAR1 = Ha Ro and

Mon(H) = A/Ha = (HARy, HAR1, HAR2) = (HARo, HARy) = (HARy, HAR7). (1.5)

Since Mon(H) acts transitively on Qz, H has exactly one (HaRg, HARp)-orbit and one
(HARo, HA Ry )-orbit, that is, 1 edge and 1 face, both with valencies k := [Qy|/2. Obvi-
ously, H is uniform of type (1,k,k) and has k vertices, 1 edge and 1 face. Finally, using
the Euler formula for hypermaps (Lemma 1.4.1), we see that x,y =V + E+ F — |Qy|/2 =
|Qu)/2+14+1—|Qx|/2=2. O

Now assume that H is a uniform hypermap of type (I,m,n). By Corollary 1.4.2, H
is imbedded on a surface with Euler characteristic greater than, equal to, or smaller than 0
depending on whether 1/l4+1/m+1/n is greater than, equal to, or smaller than 1, respectively.

Lemma 1.4.5. Let I, m, n be positive integers such that | < m < n, and S = %+ % + %
Then

1' S > 1 7’.f and only /[l.f (l7m7 n) 7,8 (17j7 k)? (2727k;)7 (27 37 3)’ (27 37 4) or (2’ 37 5)7 -]7k e ]N;
2. S =1if and only if (I,m,n) is (2,3,6), (2,4,4) or (3,3,3);
3. S<lifandonlyif S<i+1l4+1l=14

Proof. 1. When S > 1,3/l > S >1,andsol < 3. If [ =1, then S > 1; else, if [ = 2, then
2/m>1/m+1/n > 1/2 and hence m < 4. Then m =2, or m = 3 and n < 6.

2. When §=1,3/l>S=1>1/l,andso 1 <1 <3. Ifl =2, then 2/m > 1/m+1/n =
1/2>1/m,s02<m <4and n=2m/(m—2). Then m =3 and n=6,or m =n =4. If
[l =3, then 1 =3/ >S5 =1 1implies that [ =m =n = 3.

3. Assume that [, m,n are positive integers such that [ <m < n and S < 1. Then:

(a)if I=2,m=3and n>6, then S < —i—%—i—? g,

(b) if I =2, m—4andn>4then5’< 5 + +5—5‘8;

(c)if l=2and m >4, then S < 3 +1 —i—}) E

(d)1fl—3andn>3then5< + 3 +}1—%,

(e) if >3, then S < 1+ 1 +4:3 O

Using Corollary 1.4.2 together with Lemma 1.4.5, we get the following well-known result.

Theorem 1.4.6 (Hurwitz bound for uniform hypermaps with negative Euler characteristic).
If H is a uniform hypermap with negative Euler characteristic x, then || < —84x.
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Now we determine bounds for the number of flags of a bipartite-uniform hypermap with
given negative Euler characteristic.

Let B be a bipartite-uniform hypermap of type (l1,l2;m;n). According to Lemma 1.3.6,
m and n are even. Let (a,b,c,d) = (I1,l2,m/2,n/2). By Corollary 1.4.3, H is imbedded on a
surface with Euler characteristic > 0, = 0 or < 0 depending on whether 1/a+1/b+1/c+1/d
is greater than, equal to, or smaller than 2, respectively.

Lemma 1.4.7. Let a, b, ¢ and d be positive integers such that a < b < c < d, and T =
1,1, 1,1 .
E+E+E+E‘ Then:
1. T > 2 if and only if (a,b,c,d) is (1,1,7,k), (1,2,2,k), (1,2,3,3), (1,2,3,4) or (1,2,3,5),
where j, k € IN;
2. T =2 if and only if (a,b,c,d) is (1,2,3,6), (1,2,4,4), (1,3,3,3) or (2,2,2,2);
3. T<2ifandonlyifTS%—i—%—!—%—i—%:%.

Proof. LetS:%—i—%—}—é. Then:
(a) if a =1, then T > 2, =2 or < 2if and only if S > 1, =1 or < 1, respectively;
(byifa=b=c=d =2, then T = 2;

(c)ifa=2andd>2,then T <143 +1+1=214,
(d)ifa>2,thenT§%+%+%+%:

[y

Finally, using Corollary 1.4.3 together with Lemma 1.4.7, we get:

Theorem 1.4.8 (Hurwitz bound for bipartite-uniform hypermaps with negative Euler char-
acteristic). If H is a bipartite-uniform hypermap with negative Euler characteristic x, then
Q| < —168x.

1.5 Duality

Every automorphism 6 of A gives rise to an operation on hypermaps by transforming a hyper-
map H with hypermap subgroup H, to its operation-dual, Dg(H), with hypermap subgroup
HO (see [41, 43, 44] for more details), that is, if H = (A/H, HARy, HAR1, HAR2), then

Do(H) = (A/HO,(HO)ARy, (HO)ARy, (HO)AR2)
— (A/H6, HaORo, HAOR,, HAOR:).

When 6 is an inner automorphism, H and Hf are conjugate in A and, by Corollary 1.3.2, H
and Dg(H) are isomorphic. Each permutation o € S{o,1,2) induces an outer automorphism
(that is, a non-inner automorphism) @ : A — A such that R;0 = R;,, for all : = 0,1,2. By
abuse of language, we speak of D,, meaning the operator Dz. These operations, presented
by Machi in [52], transform one hypermap H to another by renaming its vertices, edges and
faces. To be more precise, the k-face of H containing the flag Hg corresponds to the ko-face
of Dy(H) containing Hogo. In particular, they have the same valency. James [41]| showed
that the operations on hypermaps form an infinite group, Out(A), isomorphic to PG Ly(Z)
containing Machi’s operations.
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Lemma 1.5.1. Let 0 € Spo12) and @ : A — A defined as above. Then ATa = AY,
ARG = AR and AFG = Ak for all k € {0,1,2}.

Proposition 1.5.2 (Properties of D,). Let H, G be hypermaps and o, 7 € Sto,1,2y- Then:
1. Di(H) =H; D;(Ds(H)) = Dor(H);
. H — G if and only if Dy(H) — Dy(G); H = G if and only if Dy(H) = Dy (G);

. 'H 1is O-conservative if and only if Dy(H) is Oc-conservative;

2
3
4. H is ©-uniform if and only if D,(H) is Oc-uniform;
5. H is O-regular if and only if D,(H) is Ooc-regular;

6

. H and Dy(H) have the same underlying surface;
7. Aut(H) = Aut(D,(H)) and Mon(H) = Mon(D,(H)).
As an immediate corollary to Proposition 1.5.2 we get

Corollary 1.5.3. 1. 'H is uniform (resp. k-bipartite-uniform) if and only if Dy(H) is
uniform (resp. ko-bipartite-uniform);

2. H is regqular (resp. orientably-regular, k-pseudo-orientably-regular, k-bipartite-reqular)
if and only if Dy (H) is reqular (resp. orientably-regqular, ko-pseudo-orientably-reqular,
ko-bipartite-reqular);

3. Buvery k-pseudo-orientably-reqular hypermap is uniform.

This result shows that, up to duality, a 2-restrictedly-regular hypermap is orientably-
chiral, pseudo-orientably-chiral or bipartite-chiral. Consequently, the classification of all 2-
restrictedly-regular hypermaps on a surface S can be derived from the classification of these
3 types of hypermaps on S.

The 2-skeleton of a convex polyhedron in R? can be viewed as a map on the sphere. In
particular, the Platonic solids give rise to 5 regular maps on the sphere. For simplicity, we
will not differentiate these maps from the corresponding Platonic solids. We denote by 7, C,
O. D and Z the tetrahedron, the cube (or hexahedron), the octahedron, the dodecahedron
and the icosahedron. These maps have type (3,2,3), (3,2,4), (4,2,3), (3,2,5) and (5,2, 3),
respectively. It is well-known that if H is one of these hypermaps and (I,m,n) is the type
of H, then H has hypermap subgroup ((R;R»)!, (RaRo)™, (RoR1)™)?, automorphism group
Aut(H) = A(l,m,n), and that T = Dg)(7), O = D(g2)(C) and T = D gy)(D). For more
information on these hypermaps, see Section 2.1.

Given k € IN, the dihedral hypermap of order k, Dy, and the polygon of order k, Py, are the
regular hypermaps on the sphere of type (k, k,1) and (2,2, k), and with hypermap subgroup
((R1R2)*, (RaRo)*, RyR1)® and ((RyR2)?, (R2R0)?, (RoR1)*)2, respectively. In Figure 1.1
we display Dg and Py. The star hypermap of order k is the hypermap S = D g2)(Dy). The
dihedral hypermap of order k has 2k flags, 1 vertex, 1 edge and k faces; the polygon of order
k has 4k flags, k vertices, k edges and 2 faces. Using Corollary 1.4.2 we can see that both Dy,
and Py, are on the sphere. In [15], Breda and Jones denoted the hypermaps Py, (with k& odd)
and Dg1)(Dx) by Dke and Dy, respectively; Wilson [73] denoted the hypermap Py by ex. As
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remarked in [13], S; = Dy, Sa, P1 = Dy and Ps are hypermaps on the sphere with hypermap
subgroups AT, A*OO, A+22 and A/, respectively. In other words, those hypermaps are the
hypermaps Ta+, 7x 00, o422 and Tar.

Coxeter and Moser [33] denoted the regular hypermaps 7, C, O, D, T, Poy and D gg)(Pax)
by {3,3}, {4, 3}, {3,4}, {5,3}, {3,5}, {2k,2} and {2, 2k}, respectively.

- O -e

&

Figure 1.1: The dihedral hypermap Dg and the polygon Pjy.

A Petrie polygon of a hypermap H is a (RoRjR2)-orbit on Q. The length of a Petrie
polygon is its cardinality. Naturally, if H is regular, all Petrie polygons of H have the same
length. When M is a map such that all vertices of M have valency greater than 2, a Petrie
polygon of M is just a ‘zig-zag’ cycle of edges in which every two consecutive edges belong to a
face but no three consecutive edges belong to the same face. Owing to this, the automorphism
group of a regular map M is a transitive permutation representation of the abstract group

defined by Coxeter in [29]. It is well-known that G334 = §, G346 = §, x Cy, G355 = Ay,
G3510 = Ag x Cy and G2F2F = Dy, x Cy (see Table 1 of [30], for instance). When k is even,
G2,k,k o~ GZkak >~ Dk X 02-

1.6 Constructing bipartite hypermaps

By the Reidemeister-Schreier rewriting process [42] it can be shown that
AO = CQ * 02 * 02 *x 02 = <R1> * <R2> * <R1R0> * <R2R0>.

As a consequence we have several epimorphisms from A0 to A.

Let ¢ : AY — A be an epimorphism. Then, if H is a subgroup of A and g € A, then
He~ ! and H9p™! are conjugate subgroups of AY and hence conjugate subgroups of A. After
all, if g = dyp, then H9¢™! = H¥%p~! = (Hp~ 19 In other words, given an epimorphism
Y A" A and a hypermap H with hypermap subgroup H we can construct another

hypermap HP™' with hypermap subgroup Ho ™!,

A
12
AO — A
HP
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Lemma 1.6.1. Let ¢ : A® — A be an epimorphism and H and G hypermaps. Then:
1. H? ™ s bipartite hypermap with twice the number of flags of H.
2. H? ' s bipartite-regular if and only if H is reqular.
3. If H covers G, then HY™ covers Qw_l.
4. If H is isomorphic to G, then H?™ is isomorphic to G

Proof. Let H and G be hypermap subgroups of H and G.
1. Clearly, Hpo™! < 4@’1 = A0 and hence H¥ ' is AY-conservative, that is, bipartite. By
Proposition A.1.1, [A?: Hp=1] = [A : H] and hence

Q01| = [A:Ho | =[A: AY[AY: Hp™'] = 2[A: H] = 2|Q4.

2. When ¢ is onto, HP s bipartite-regular < Ho '« Ao HaAs His regular.
3. If HC GY9 and g = dp, for some d € A, then Hp™! C GIp~! = G¥%p~! = (Gp™1)%
4. Follows from 3. O

Among many possible canonical epimorphisms ¢ : A0 A, there are two, ¢, and ¢,
defined by
Rigy =Ri, Rop,, =Ry, Ri™p, =Ry, Ry, =Ry, (1.6)

Rip, = Ri, Rap,=Rs, Ri"™p, =Ry, R'™¢, =Ry, (1.7)
that induce very interesting constructions. The first construction gives rise to the corre-
spondence between hypermaps and biparte maps described by Walsh in [67]. We denote by

Walsh(H) the hypermap Hew ' and by Pin(H) the hypermap Her . In Figure 1.2 we
illustrate these 2 constructions.

Lemma 1.6.2. kerp,, = (RgRgRO)AG = <R2R2RO>A and ker p, = <R1R0R2RO>AO.
Let ¥ : A — A0 be the group homomorphism defined by
Rit) = Ry, Rot) = Ry, Royp = R0, (1.8)
Since Ry, = R; = Ripp,,, for every i € {0,1,2}, Yo, = 1a = 1y, and ¥ is injective.
Proposition 1.6.3. Let ¢ be p,, or p,. Then Ato~t = A+tN AO.

Proof. We use induction on A0 = (R1, Ro, R1T0, RyT0) to prove that for all g € AO, g €
AT~ if and only if g € AT,

Let S={g€A’|ge Aty & gc AT}. Then:
(a) Ry, Ry, RiT0, Ry® € S, because Ry, Ro, R, Ryf0. Ry, Row, (R0, (RyT10)p ¢ AT
(b) For all g1,92 € S,

(9192)¢ = g1pgap € AT

919, 920 € AT or g1p, gap & AT
91,92 € AT or g1, ga ¢ AT
91,92 € AT or g1,90 ¢ AT

G192 € AT,

9192 € ATt

te T
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Walsh(H) >—©<
H v e
Pin(H)

Figure 1.2: Topological construction of Walsh(H) and Pin(H).

that is, g1g2 € S.
(c)Forallge S, g ' cAtplegec Aty leoge At s g e AT thatisg~ ' € S.
By induction on A?, we have S = A°. Thus AT~ ! = AT 1NA? = AT N AL, O

1.6.1 The Walsh construction

Let W := Hep,, ! be a hypermap subgroup of W := Walsh(H). By Lemma 1.6.1, W is a
bipartite hypermap with twice the number of flags of H which is bipartite-regular if and only
if H is regular. In addition, the Walsh construction has the following properties.

Theorem 1.6.4 (Properties of Walsh). Let H be a hypermap and W := Walsh(H). Then:
1. W is a map;
2. W is orientable if and only if H is orientable;
3. VOWV)=V(H)+ E(H), EOWV) = |Qx|/2, F(W) = F(H);
4. W has the same underlying surface as 'H;

5. H is uniform of type (I,m,n) if and only if W is bipartite-uniform of bipartite-type
(1,m;2;2n).

Proof. 1. We claim that (RoRg)? € W9, for all g € A. Tndeed, if g € A0, then
[(RaRo)?9 ¢y, = [(RaRo)%py, ]9 #w = 1€ H,
so (RaRo)% € W9. Else, if g ¢ A0, then gRy € A and
[(R2R0)™) "oy, = [(RoR2)?1™9 " o, = [(RoRa)%p,, |90 "ow =1 € H,

that is, (RoRp)? € W9. To put it another way, all edges have, at most, valency 2. On the
other hand, since W C AO, W is bipartite so, by Lemma 1.3.6, all edges have even valencies.
Consequently, all edges of W have valency 2 and W is a map.
2. Follows from Proposition 1.6.3.
3. The mapping A
{(Wglge A’y — A/H
Wy —  H(gpy)
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is a bijection between the A% orbit of Qyy containing W and 3. Since Rip,, = R; and
Rop,, = Ra, the flags Wg and W' are in the same vertex of W if and only if H(gy,,)
and H(g'p,, ) are in the same vertex of H. Consequently, there is a bijective correspondence
between the set of vertices of W in the Al-orbit containing the flag W and the set of vertices
of H. Similarly, since RlRoch = Ry and RQROQOW = Ry the mapping

{Wg]gGAG} — A/H
Wy — H(gpy)

induces a bijective correspondence between the set of vertices of W in the A% orbit containing
the flag W Ry and the set of edges of H. Owing to this, the number of vertices of W, V (W),
is equal to the sum of the number of the vertices of H, V(H), with the number of edges of H,
E(H).

We already know that W is a map, so every edge has valency 2 and the number of edges
of W, EOW), is |Qw|/4 = |Q%]|/2 (see Lemma 1.6.1).

Because RlRogow = Ry and Ry1p,, = Ri, the face of W containing the flag Wg also
contains WgRy and has twice the cardinality of the flag of H containing H (g), if g € AG, or
H(gy), otherwise. Thus, W and ‘H have the same number of faces.

4. Using Lemma 1.2,

Q
X = VOV +BOV) + FOw) - 2
_ ||
= (V(H) + BOO) + =28+ P() — 9]
Q
= V(H)+ E(H)+ F(H) — ‘27{’
5. Follows from the proof of 3. O

Theorem 1.6.5. The hypermap H is a bipartite map if and only if H = Walsh(G), for some
hypermap G. Moreover, H is bipartite-uniform of type (I,m;2;2n) if and only if G is uniform
of type (I, m,n); H is bipartite-reqular of type (I,m;2;2n) if and only if G is reqular of type
(l,m,n).

Proof. Only the necessary condition needs to be proved. If H is bipartite, then H C A
Since H is a map, ((R2Ro)?)9 € H for all g € A, so kerp,, = ((R2R)*)® C H. Because of
this, Hp,, ¢, + = Hkery,, = H and hence H = Walsh(G) where G is the hypermap with
hypermap subgroup G = Hyp,, . OJ

Theorem 1.6.6. 1. Walsh(Dg)(H)) = Walsh(H).
2. If Walsh(H) = Walsh(G), then H = G or H = D) (G).

Proof. If H is a hypermap subgroup of H, then Hep,, ~* and H(01)yp,, ! are hypermap sub-
groups of Walsh(?) and Walsh(D ) (7)), respectively. Since
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we have that gy, (01) = gfog,,, for all g € Ny
1. Since

ge HOL)p,, ' & gp, (01) € H & g™y, € He ge (Hp, )™,

H(01)p,, ' = (Hep,, ~1)%. Hence, Walsh(Dq1)(H)) and Walsh(H) are isomorphic.
2. Let H and G be hypermap subgroups of H and G. Assume that Walsh(H) = Walsh(G).
Then Hep,, ~! = (Gy,, ~1)9, for some g € A. If g € A, then

H=Hep, "o, = (Gp, oy = (Gp, o, )09 = G%¥w
and H = G; else if g ¢ A0, then Ryg € AL,

H = Ho, Yo, = (Go, e, = (Gp,, 1)fofay

= [(Geoy D0, 109w = (G(01)py, Ly, ) 09w = (G(01))F09%w
and ‘H = D g1)(9) 0

Remark 1.6.7. Walsh(Dy) = D g)(Px) and Walsh(Py,) = Py, for all k € IN.

Given a hypermap H, we can construct a map M, called the medial map of H, in the
following way. The set of vertices of M is the set of edges of H, and two vertices of M are
connected by an edge if and only if the corresponding edges of H are both incident to a common
vertex v of H and a common face f of H. The set of faces of M corresponds in a natural way
to the union of the sets of vertices and faces of H. This construction is an extension of the
well-known medial map of a map. We denote the medial map of H by Med(H). One can easily
see that Med(H) is a face-bipartite hypermap such that Med(H) = D gg)(Walsh(D(;9)(H))).

1.6.2 The Pin construction
Let P:= Hp, ! be a hypermap subgroup of P := Pin(H). Like in the previous construction,
Lemma 1.6.1 ensures that P is a bipartite hypermap with twice the number of flags of H and
that P is bipartite-regular if and only if H is regular. In addition, the Pin construction has
the following properties.
Theorem 1.6.8 (Properties of Pin). Let H be a hypermap and P := Pin(H). Then:

1. All vertices in one AY-orbit of P have valency 1;

2. P is orientable if and only if H is orientable,

3. V(P) =V(H) + [Q]/2, E(P) = E(H), F(P) = F(H);

4. P has the same underlying surface as H,

5. H is uniform of type (I,m,n) if and only if P is bipartite-uniform of bipartite-type
(1,1;2m;2n).
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Proof. 1. We claim that all vertices in the same A% orbit of the vertex containing the flag
PRy have valency 1. To prove this, we only need to show that Ry Ry € PFog_for all g € AD.
Given g € A%, gf also belongs to A” and

(RiRy)? Mo, = ((R1Ry)"0)9™) o = ((RiRy) R0, )™ ' — 1 € H,

and hence R1 Ry € (Hp,  1)fo9 = PFog_for all g € A
2. Follows from Proposition 1.6.3.

3. Similar to the proof of 3 of 1.6.4.

4. Using Lemma 1.2,

Q
xp = V(P)+E(P)+ F(P)~
Q
= (V(H) + |2H|> + E(H)+ F(H) — |Q%]
_ ||
= V(H)+E(H)+ F(H) — -
= XH-
5. Similar to the proof of 5 of 1.6.4. O

Theorem 1.6.9. The hypermap H is a bipartite hypermap such that all vertices in one A0
orbit have valency 1 if and only if H = Pin(G), for some hypermap G. Moreover, H is bipartite-
uniform of type (1,1;2m;2n) if and only if G is uniform of type (I,m,n); H is bipartite-reqular
of type (1,1;2m;2n) if and only if G is reqular of type (I, m,n).

Proof. As in Theorem 1.6.5, only the necessary condition needs to be proved. Let H be
a hypermap subgroup of H. By taking H instead of H if necessary, we may assume,
without loss of generality, that all vertices in the A%-orbit of the vertex that contains the
flag HRy have valency 1, i.e, HRygR1 Ry = HRyg for all g € A°. Then kerp, C H, so
Hp,p, ' = Hkerp, = H and H is isomorphic to Pin(G), where G is the hypermap with
hypermap subgroup G = Hy,,. O

Theorem 1.6.10. 1. PIH(D(lg) (H)) = D(lg)(Pln(H))
2. If Pin(H) = Pin(G), then H = G.

Proof. Let H be a hypermap subgroup of H. Then H(12)¢, ! and Hep, ~!(12) are hypermap
subgroups of Pin(Dy9)(H)) and D19 (Pin(H)), respectively. Since

(12))90P =Ry = RNDP(12)7 (RlRO@)(PP =Ry = RlRO(pP(l )7

(11
(RQE)QOP =R = RQ@P@? (R2R°@)¢p =Ry = RZROQOP(l )’

we have ¢g(12)p, = g¢,(12), for all g € A,

1. Since

g€ Hp, '(12) & g(12)¢, € H < gp,(12) c H & g€ H(12)p, !,

He, '(12) = H(12)¢, " and hence Pin(D19)(H)) and D(;5)(Pin(H)) are isomorphic.
2. Let H and G be hypermap subgroups of H and G. Assume that Pin(H) = Pin(G). Then
Hp, ' = (Gp,71)9 for some g € A. If g € AY, then

H=Heo, o, = (G, ), = (Gop lp,)%r = G9r
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and H=G.
Now assume that g ¢ A% We claim that all vertices of H have valency 1. Given d € A,
let a € AY such that d = ap. Then Ry(ga)~! € AY and

(Rle)(ga)flso — (R1R2)R0Ro(ga)’l¢ — (RlR2)Ro¢Ro(ga)*lw =1€eG,

that is, R1Ry € (Gyp™1)9% = (Hp™1)® = H*¥p~! = H%~!. Tn addition, R1Ry = (R1Ry)p €
Hep 'y = H? Thus, the vertex of H containing Hd has valency 1. By Lemma 1.4.4, H = S},.
Similarly, one can see that G = S = H. O

Remark 1.6.11. Pin(Si) = Sy, for all & € IN.

1.7 The operator Orient

In this section we see how to obtain non-orientable hypermaps from orientable hypermaps
having an involutory orientation-reversing automorphism which is not a reflection.

Given a hypermap H with hypermap subgroup H, let Orient(H) be the hypermap with
hypermap subgroup H N A*. Then Orient(H) is the smallest orientable hypermap covering
‘H. When H is orientable, Orient(7) is isomorphic to H. Otherwise, Orient(H) is the disjoint
product H x D; of Breda and Jones [13], an extension to hypermaps of Wilson’s parallel
product of maps [74]. Following [15], we also denote Orient(H) by H* and H N A* by H*.

Theorem 1.7.1 (Properties of Orient). Let H be a non-orientable hypermap with hypermap
subgroup H, H™ = Orient(H), H" = HN AT and © < A.

1.[H: H" =2, s0 H= H"UH"g, for some g € H; since our hypermaps have no
boundary, g cannot be a conjugate of Ry, R1 or Rs.

2. |Qr| = 2|Q|;

3. the k-face of H containing Ha and the k-faces of H* containing H a and H'ga have
the same valency, for all a € A, and for all k € {0,1,2}.

4. V(HT) =2V(H), E(H') =2E(H), F(H") = 2F(H);

5. XH"" = QXH; 'g?-l"" = gH - 1;.

6. the covering m: AJHT — A/H, H"a — Ha, the automorphism of H, ¢ : AJH" —
AJH*Y, H a — H%ga, and the identity automorphism of H, 1, comute according to the
following diagram:

AJHY 2> AJHT
nl iﬂ

AJH—LsA/H

that is, there is an involutory orientation-reversing automorphism ¢ of H™ which is not
a reflection such that pomw = .

7. If H is ©-conservative, then H™ is also ©-conservative;
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8. If H is ©-uniform, then H* is also ©-uniform;
9. If H is ©-regular, then H™ is also O-reqular;
10. For all o € 5{07172}, DU(H+) = (DU(H))+

Proof. 1. Follows from Corollary A.1.2.
2. By 1, |Qu+|=[A:H]=[A:H|-[H: H"] =2[A: H| = 2|Qy].
3. Ifdec AT, thend € H" & dc H = HY & d € H". More generally, if d € AT, then
de (HN)*=(H")"&de H*=H% < de (H")* = (H*)™". The result follows by taking d
as (R1R2)P, (ReRp)? and (RoRy)".

4. Follows from 2 and 3.
5. Follows from 4. Using Lemma 1.4.1,

Q
X, = V(H+)+E(H+)+F(H+)—| ;‘*'

= 2V(H)+2E(H)+2F(H) — ||
= 2X,-

Since HT is orientable but H is not, X+ =2— 29, and x;, =2—g,,, s0

:2_X”H+ :2_2XH:1_

gH+ 2 2 XH:.gH_l'

6. For every a € A, (H"a)om = (Htga)m = Hga = Ha = (H"a)w, because g € H.
7. Because HT C H.

8. Follows from 7 and 3.

9. By 7 and because

NA(H') = Na(HNAT) DNA(H)NNA(AT) =NA(H)NA =Na(H).
10. By Lemma 1.5.1, Ata = A™. Since 7 is bijective,
H'e=(HNA")g=HenNA'e = HenNA'T = (Ho)",
and hence D, (H") and (D,(H))" are isomorphic. O

When H is non-orientable, Orient(H) is called the orientable double cover of H. A hy-
permap K is called antipodal (see |53, 22| for maps) if K is the orientable double cover of a
non-orientable hypermap H.

Corollary 1.7.2. If H is a ©-regular hypermap on a non-orientable surface of genus g,,, then
H* = Orient(H) is a O-reqular hypermap on an orientable surface of genus Gy = Gy — 1
with twice the numbers of flags, vertices, edges and faces of H, and having an involutory
O-conservative orientation-reversing automorphism @ which is not a reflection.

7

In particular all @-regular hypermaps on the projective plane and on the Klein bottle are
obtained from ©-regular hypermaps on the sphere and on the torus, respectively. In Chapter
3 we can find examples showing that, in general, the converses of 7, 8 and 9 of Theorem 1.7.1
are not true.
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Corollary 1.7.3. If H is regular, then H* = Orient(H) is also regular and the center of
Aut(H™) is non-trivial, that is | Z(Aut(H™))| > 2.

Proof. When H is regular, H* is also regular, Aut(H) = A/H and Aut(H™) 2 A/H™*. Since
H* C H, the mapping ¢ : A/HT — A/H, H" g — Hg is an epimorphism, and ker ¢, being
a normal subgroup of A/H™ with 2 elements, is contained in Z(A/H™T). O

Now we show that Orient commutes with Walsh and Pin.

Proposition 1.7.4. Let ¢ : A" — A be an epimorphism such that ATo~! = A* AL, Then
(7‘(‘*‘)9"_1 is 1somorphic to (H‘P_l)“‘.
Proof. By Proposition 1.6.3, (H)¢ ™! and (Hp )T are hypermap subgroups of (H+)#¢ " and
(H#™ )T, respectively. Since
(HYe™ ! = (HNAYe '=He 'nAte = Hp ' n(ATNnAD)
(He 'nAYNAT =Hp 'NnAT = (Hp 1),

(H*)? " and (K¢ ')* have the same hypermap subgroup, and hence are isomorphic. O

As a by-product of Propositions 1.7.4 and 1.6.3, we get:
Corollary 1.7.5. For every hypermap H, Walsh(H ™) = Walsh(H)" and Pin(H*) = Pin(H)™".

1.8 The closure cover and the covering core

Given a hypermap subgroup H of a hypermap H, the core of H in A, Ha, is the largest
normal subgroup of A contained in H, and the closure of H in A, H®, is the smallest normal
subgroup of A containing H. When H has finite index in A, Ha and H* also have finite index
in A, by Remark A.1.4, respectively. These 2 normal subgroups of A give rise to 2 regular
hypermaps, the covering core of H, Ha, with hypermap subgroup Ha, and the closure cover
of H, H®, with hypermap subgroup H®. The covering core of H, Ha, is the smallest regular
hypermap covering H, and the closure cover of H, H%, is the largest regular hypermap covered
by H. When H is regular, Hx = H = H® and Ha = H = H”.
The next result is straightforward.

Lemma 1.8.1. Let © be a normal subgroup of A and H a hypermap. Then:
1. 'H is ©-conservative if and only if H® is ©-conservative;
2. if H is ©-conservative, then Ha is ©-conservative;
3. H is ©-reqular if and only if H® is O-reqular;
4. if H is O-reqular, then Ha is ©-reqular.
The converses of 2. and 4. may not be true (see Chapter 3 for counter-examples).

Remark 1.8.2. If H = (Qy, ho, h1, he) and G = (Qg, go, 91, 92) are hypermaps such that H
covers G and G has no boundary, then H has no boundary either. Indeed, if ¢ : H — G is
a covering and g; is fixed-point free, then h; is also fixed-point free. When H is orientable,
H and H? cover Ta+ = D; and hence H and H* have no boundary. However, when H is
non-orientable and without boundary, H® may have boundary. See Section 3.3 for examples.
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When H is an orientable hypermap, H® and Ha are also orientable. If { is non-orientable,
then H% is also non-orientable, however Ha may be orientable. ITn what follows we determine
conditions for seeing if the covering core of a non-orientable hypermap is orientable or not.

Lemma 1.8.3. Let H be a hypermap. Then (HT)a = (Ha)t and (HT)? =2 (HA)*.

Theorem 1.8.4. Let H be a non-orientable hypermap. Then Q| < [Qpey,| and Ha is
orientable if and only if |Qps| = Q)4 |-

Proof. Since Ht — H, (HT)a — Ha and 50 [Qp, | < [Qpgt),]- Then [Qp| = (g, | if
and only if Ha = (HT)a = (Ha)™, that is, if and only if Ha is orientable. O

The next result relates the bipartite-type of a bipartite-uniform hypermap with the type
of its closure cover and the type of its covering core.

Proposition 1.8.5. Let B be a bipartite-uniform hypermap of type (l1,l2;m;n).
1. If B® has no boundary, and has type (p,q,r), then p | ged(l,12), ¢ | m and r | n.
2. Ba has type (lem(ly,l2), m,n).

Proof. 1. Follows immediately from Lemma 1.1.1.

2. Since B is bipartite-uniform and Mon(B) = A/Ba = Mon(Ba), BaR1R2 can be written
as a product of disjoint cycles of length [; and Iy, and hence BaRjRs has order lem(lq,l2).
Obviously, Ba RoRg and Ba RgR1 have orders m and n, respectively. Therefore Ba has type
(lem(lq,l2), m,n). O

1.9 Chirality groups and chirality indices

The definition of the chirality group and chirality index of an orientably-regular hypermap
and it basic properties are due to Breda, Jones, Nedela and Skoviera [6]. The chirality group
and the chirality index of a hypermap H can be regarded as algebraic and numerical measures
of how far H deviates from being regular. However, in this thesis we use these concepts in a
more general sense.

Let H be the hypermap subgroup of a hypermap H. Because Ha is always a normal
subgroup of H, we have a group

TaA(H) =H/Ha (1.9)

called upper chirality group of H. According to Lemma A.1.3, TaA(H) is finite if [A : H] is
finite. The size of Y a(H), which can be computed dividing the number of flags of Ha by the
number of flags of H, is called the upper chirality indez and is denoted by ta(H). Since the
number of flags of Ha is equal to the size of Mon(H), ta(H) = | Mon(H)|/|2|. However, H
may not be normal in H2. According to Lemma A.1.5, H is normal in H? if and only if H
is restrictedly-regular. The lower chirality index, denoted by LA(H), is the index [HA : HY,
which is finite whenever [A : H] is finite. We can compute (2 (H) dividing the number of flags
of H by the number of flags of H®. When H is a normal subgroup of H?, we have another
group, called the lower chirality group

T2(H) = HA/H. (1.10)
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Naturally, each of these groups is trivial if and only if H is regular.
If H is ©-regular for some © <ls A, and g € A\ ©, then H® = HHY, Hx = H N HY (see
Lemma A.1.7), H is a normal subgroup of H*, and

TA(H)=H”/H =HHYI/H =~ HY/(HNHY) =~ H/Hx = TaA(H). (1.11)

In this case, and whenever the upper and lower chirality groups are isomorphic we denote by
Y(H) the common group Y2 (H) = YTa(H), called the chirality group of H, and by «(H) the
common value t®(H) = ta(H), called the chirality index of H.

If it is clear from the context, we write T and ¢ instead of T(H) and ¢(H), for short.

Remark 1.9.1. When H is a ©-regular hypermap, H> < © and hence T2(H) = H>/H is a
normal subgroup of ©/H = Aut®(H), the group of ©-conservative automorphisms of H.

It follows from Corollary A.1.9 that (Ha)d = (H7)a and (H®)7 = (Ha)?, for all
o € Spo,1,23- Consequently, the groups Ta(D,(H)) and Ta(H) are isomorphic, as well as
the groups Y2(D,(H)) and Y2(H), when H is restrictedly-regular. In other words, dual
hypermaps have the same upper and lower chirality groups.

The following result will be very useful to compute the chirality groups of the 2-restrictedly-
regular hypermaps.

Lemma 1.9.2. If © is a normal subgroup of A of index 2, H is a O-reqular hypermap with
hypermap subgroup H = (T)®, and g € {Ry, Ry, Ra} \ ©, then

1. HA = (T UT9)®;
2. TA(H) = (Ht9 |t € T)®/H

Proof. 1. Clearly, H» < ©. Since TUTYI C H» <O, (TUT9® C H* On the other
hand, (T UT9)Y = (T9UT9") = (TUTY), so g € NA((TUT9)) C N ((TUT9>®) (see
Proposition A.1.6). Thus A = (g,0) C NaA((T U T9)®), that is, (T UT9)® < A. Since
H=(T)® C(TUT9® <A, H* C(TUTI)®.

2. Let m: © — O/H be the projection. Since

HAr = (TuT®x
(T uT?)m)oH

= (H(TUTY)/H)®"
(Hs|seTuT9)®/H
(

Ht9 |t e T)®/H,

we get TA('H):HA/H:HAWZ<Ht9|t€T>®/H_ -

Computing the chirality group of Walsh(R) and Pin(R)

In what follows we assume that ¢ is ¢, or ¢, and that eis e, = RyRy™0 or ep = Ry fo Ry,

respectively. Then ker ¢ = (e)2” (Lemma 1.6.2) and ¢ o ¢ = 1x. We also assume that R is a
regular hypermap with hypermap subgroup R, and T is a subset of A such that R = (T)A.
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Remark 1.9.3. Because Ry~ C A0, (Rp™h)2 « A0 and
TR ) = (R D2 /Ry ' < A"/Rp™' 2 A/R = Aut(R), (1.12)

that is, the chirality group of Re ™ is isomorphic to a normal subgroup of the automorphism
group of H. When R is orientable, R is orientably-regular and Ry~ is a normal subgroup of
Atp=t = At N AY = AT Tt follows that the normal closure of Rp~!, (Rp~1)2, is also a

i

normal subgroup of A+ and
TR ) = (Re )2 /R < AT /Ry = AT /R = Autt(R), (1.13)

that is, the chirality group of R is isomorphic to a normal subgroup of the rotation group

of R.

Since ¢ is onto, by Proposition A.1.8, (e,T@Z;)Aﬁcp = (e, TY)p™ = <qg0,T@Z)g0>A = (T}AA.
Thus, R“fl, has hypermap subgroup Rp~! = <e,T¢>Aogotp’1 = (e, T¢>AO ker p = (e,Tq[))AO,
because ker o = (e)2” C (e, T1)A". This proves the following result.

Theorem 1.9.4 (Hypermap subgroups of Walsh(R) and Pin(R)). Let R be a regular hyper-
map with hypermap subgroup R = (T)2, for some subset T of A. Then W := <R2R2R0,T¢>AO
and P := (R ™ Ry Ty)A" are hypermap subgroups of W := Walsh(R) and P := Pin(R),

respectively.

As one can easily see, for each normal subgroup R of A we have a group isomorphism
?: ARt — A/R, (Rp~'g) — R(gyp). Indeed, % is an homomorphism because ¢ is an
homomorphism, @ is onto because ¢ is onto, and @ is one-to-one because for all g € AO,
(RpNg € kerp & R(gp) = R gp € R< g € Rp! & (Rpl)g = Ry, that is,
kerp = {Rp~'}. Then

1

T(R? )

12

T(R? )7

)2 /Re
R~ 'tR | t € {e} UTH)A /R )p
Rt |t € {e} UTY))p™/ "
Ro~'tRo)p | t € {e} uTy)>/ R
R(tfog) | t € {e} UTH)A/E,

=y

o~ o~~~ o~ —

Let aw,ap : A0 5 A defined by gow = gy and gap = gipfopp. Then
R[)OZW = Rlv RlO[W = RO; R2aW = R2’ (114)

and

Roa, = R, Ria, =Ry, Roa, = Ry. (1.15)
Lemma 1.9.5. If R is a regular hypermap with hypermap subgroup R = (T)?, then
T(Walsh(R)) = (Rs | s € Ta,, )2/

and

T(Pin(R)) = (Rs | s € {R1 Ry} UTa, )2/ E.
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Proposition 1.9.6. Let R be a regular hypermap of type (I, m,n) with hypermap subgroup R,
X = {(R1R)!, (RoRy)™, (RoR1)"}, T a subset of A containing X and such that R = (T)?,
S=T\X, dy :=gecd(l,m) and dy := gcd(m,n). Then

T(Walsh(R)) 2 (R(R1Ry)™, R(RyRo)™, { Rsav,, | s € S})A/E

and
Y(Pin(R)) & (RR1 Ry, R(RoR1)®, {Rsa,, | s € S}/ R,

Proof. We have
(RiRs) ey, = [(R2Ro)'|™",  (RaRo)™a,, = [(RiR2)"™]™", (RoR1)"y, = [(RoR1)"|™
and
(RiRe)'a, =1, (R2Ro)"a, = (RoR1)™, (RoR1)"a, = [(RoR1)"|"".
To finish the proof, just note that if Rg € A/R has order k, then (RgP) = (Rg8°d(k:p)). Ol
Using Proposition 1.9.6 together with Remark 1.9.3 we get:

Corollary 1.9.7. Let R be a regular hypermap of type (I,m,n), W = Walsh(R), P = Pin(R),
dy :=ged(l,m) and dg := ged(m, n).
1. (a) If di = 1 and R is orientable, then T(W) = RAT/R = AT/R = Aut™(R) and
WA having hypermap subgroup ATp, b= AT0 js Walsh(S;) & Ss;
(b) If di =1 and R is non-orientable, then Y(W) = RAT/R = A/R = Aut(R), and
WA, having hypermap subgroup Ap, 1 =A0 s Tpo, a hypermap with boundary.
2. (a) Ifdy =1 and R is orientable, then Y(P) %ARA'*'/R = AY/R = Aut™(R) and P2,
having hypermap subgroup Atp,~t = AT00 s Pin(Sy) = Sy;
(b) If do =1 and R is non-orientable, then Y (P) = RAT/R = A/R = Aut(R) and
P2, having hypermap subgroup Ap, 1 =A0 s Tpo, a hypermap with boundary;
(c) If dy = 2 and R is orientable and bipartite, then Y(P) = RAT/R = A+90/R and
P2, having hypermap subgroup AT, =1 s Pin(Sy) = Sy;
(d) If do =2 and R is orientable but not bipartite, then Y(P) = RA+OO/R =AT/R=
Aut™(R) and P2, having hypermap subgroup AT, 1 = A0 s Pin(S;) = Ss.

1.10 Bipartite-regular hypermaps
For each k € IN, let M}, be the regular map with hypermap subgroup
My = ((R1R2)™, (R2Ro)?, (RoR1)™, (RoRo) (RoR1) ™),

The map My, denoted by {2k, 2k}, in [33], is an orientable regular map with 1 face and
4k flags formed from a single 2k-gon by identifying opposite edges orientably. The auto-
morphism group of Mj, is the dihedral group Dog. Since MiRiRy = MRiRo(RoRy)™" =
My (RoRy)~"+1) | MRy Ry has order 2k/ gcd(2k, k 4+ 1) = 2k/ ged(2, k + 1), which is k if k
is odd, and 2k if k is even. For this reason, the map My has type (k,2,2k), if k is odd, or
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(2k,2,2k) if k is even. In other words, Mok1 and Moy have type (2k + 1,2,4k + 2) and
(4k,2,4k), respectively. In addition, Moy, has 2 vertices, 2k + 1 edges, 1 face, euler charac-
teristic x =2+ (2k+ 1) + 1 —2(2k + 1) = 2 — 2k (see Lemma 1.4.1) and genus g = k; Moy,
has 1 vertices, 2k edges, 1 face, euler characteristic y = 142k + 1 — 4k = 2 — 2k (see Lemma
1.4.1) and genus g = k. Hence, on each orientable surface of genus g there are, at least, two
regular maps: Mgy, and Moy 1.

The bipartite-regular hypermaps Pin(Mag1), Pin(May), Walsh(May11) and Walsh(May)
have bipartite-types (1,2k + 1;4; 8k + 4), (1,4k;4;8k), (2,2k 4+ 1;2;8k + 4) and (2, 4k; 2; 8k),
respectively. The hypermap Pin(M;) = S, is regular; all others, being non-uniform, are
bipartite-chiral. Because of this, on each orientable surface we can find bipartite-chiral and
hence bipartite-regular hypermaps. Using Proposition 1.9.6, one can see that

T(Walsh(./\/lk)) = Aut(./\/lk> = Oy,
T(Pin(Maz)) = Aut™ (M) = Cyp

and
Y (Pin(Magy1)) =2 Aut(Moy) & Copr.

We cannot ensure the existence of bipartite-regular hypermaps on each non-orientable
surface using the Walsh and Pin constructions because Walsh(H), Pin(H) and H have the same
underlying surface and because there are non-orientable surfaces with no regular hypermaps
(see [78]). For instance, there are no regular hypermaps on the non-orientable surfaces with
negative characteristic 0, 1, 16, 22, 25, 37, and 46. However, the epimorphism ¢, : A0 A
defined by Rip, = Ri, Rap, = Ro, RlRogoE = Ry and RgRong = R; gives rise to a
construction of bipartite hypermaps with the following properties:

e H¥5 ' is orientable if and only if 7 is orientable;

o V(H: ') = V(H) + F(H),
E(H%s ") = V(H),
F(H?e ") = F(H);

o x\(H?e ) =2(x(H) — E(H)). Indeed

1

X(HEET) = V(HPe )+ B(HPe ) + F(HPe ) = [Q, ., 1]/2
= 2V (H) + F(H)) — 2102
= 2(x(H) - B(H)).
e H is uniform of type (I,m,n) if and only if HPE s bipartite-uniform of bipartite-type
(I,n;1;2n).

The non-orientable regular hypermap N} (denoted by PPy in Chapter 3) with hypermap
subgroup Ny := ((R1R2)?, (R2Ro)?, (RoR1)?*, (RoR1)*R2)® is a hypermap on the projective
plane of type (2,2, 2k) with 4k flags, k vertices, k edges and 1 face. The automorphism group
of N}, is the dihedral group Day. Then, the hypermap N¥= " is a non-orientable hypermap
on a surface with Euler characteristic x(Np22 ) = 2(x(Ni) — E(N%)) = 2(1—k). This shows
that we can find a bipartite-chiral hypermap on each non-orientable surface with even Euler
characteristic.

The existence of bipartite-regular hypermaps on every non-orientable surface with odd
Euler characteristic remains an open problem.
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Hypermaps on the sphere

In this chapter we classify the 2-restrictedly-regular hypermaps on the sphere using the results
obtained in Chapter 1. It is well-known that all uniform hypermaps on the sphere are regular
and hence all 2-restrictedly-regular hypermaps on the sphere are bipartite-chiral.

The next section is included here for completeness.

2.1 Uniform hypermaps on the sphere

Let U be a uniform hypermap on the sphere of type (I,m,n). Using the Euler formula for
uniform hypermaps (Corollary 1.4.2) together with Lemma 1.4.5 and Lemma 1.4.4, one can
see that the type (I,m,n) of a uniform hypermap U on the sphere is, up to duality, (1, k, k),
(2,2, k). (2,3,3), (2,3,4) or (2,3,5).

The following result is well-known.

Theorem 2.1.1 (Hypermap subgroups of the uniform hypermaps on the sphere). If U is a
uniform hypermap on the sphere of type (I,m,n), then U has hypermap subgroup N(l,m,n) =
(R1R2)', (RyRo)™, (RoRa)")™.

Proof. Let U be a hypermap subgroup of 4 and N := ((RyRs)!, (RaRo)™, (RoR1)™)?. Then
N C U. By inspection one can see that [A: N| = [A: U] and hence N =U. O

Corollary 2.1.2. Uniform hypermaps on the sphere of the same type are isomorphic.

Thus, up to duality, the unique uniform hypermaps on the sphere are the 2 infinite families
Dy and Py, the tetrahedron 7, the cube (or hexahedron) C and the dodecahedron D.

Corollary 2.1.3 (Conservativeness of uniform hypermaps on the sphere). Let © <o A. Then:
1. (a) Dop_1 is O-conservative if and only if © = A™;
(b) Doy, is O-conservative if and only if © € {AT, A% Aé};

2. (a) Pap_1 is O-conservative if and only if © € {AT, A2, AQ};

(b) Pay is O-conservative;
3. T is ©-conservative if and only if © = A™T;

4. C is ©-conservative if and only if © € {AT, AO,AO};

31
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5. D is O-conservative if and only if © = AT,

Proof. Given © < A, <(R1R2)l, (RaRp)™, (RoRl)n>A is a subset of © if and only if (RlRQ)l,
(R2Ro)™ and (RoR1)™ belong to ©. O

The following well-known result is also an immediate corollary of Theorem 2.1.1.
Theorem 2.1.4. All uniform hypermaps on the sphere are reqular.

Corollary 2.1.5. IfU is a uniform hypermap on the sphere, then U is O-reqular if and only
if U is O-conservative.

Corollary 2.1.6. There are no 2-restrictedly-reqular uniform hypermaps on the sphere. In
particular, there are no orientably-chiral or pseudo-orientably-chiral hypermaps on the sphere.

Table 2.1 lists, up to duality, all possible values (I, m, n) for the type of a uniform hypermap
U on the sphere. It also displays the numbers V' of vertices, F of edges, F' of faces and ||
of flags of U, as well as its symmetry and rotation groups. Finally, in the last column, we give
the unique uniform hypermap on the sphere of type (I, m,n).

(#]1 m n|V E F[[Q[Aut@) [Aut™ W)U |
1|11 £ k] E 1 1 2k | Dy, Ch Sk
212 2 k| k k 2| 4k|DyxCs| Dy P
3|3 2 3| 4 6 4 24 1 Sy Ay T
4|3 2 4 8 12 6 48 S4 X CQ 84 C
513 2 5120 30 12| 120 | A5 x Csy | A5 D

Table 2.1: The uniform hypermaps on the sphere, up to duality.

Because the sphere is an orientable surface, every hypermap on the sphere is orientable,
that is, A*-conservative. Having in mind that ATRE — A+ A AF = AT A’%, Corollary 2.1.5
implies that a uniform hypermap U on the sphere is AF-regular if and only if ¢/ is AF-regular.
In Table 2.2, we display, up to duality, the O-regularity of the uniform hypermaps on the
sphere, for each © <15 A.

’ # ‘ u ‘ AT-regular? | A% A% regular? ‘ A= Al-regular? ‘ A% A?-regular?

1Sk yes ves iff 2 | k no no
2| Py yes yesiff 2 | k yes iff 2| k yes
3|7 yes no no no
4|C yes yes no no
5| D yes no no no

Table 2.2: O-regularity of the uniform hypermaps on the sphere

2.2 Bipartite-uniform hypermaps on the sphere

Let B be a bipartite-uniform hypermap on the sphere of bipartite-type (l1,l2; m;n). We may
assume, without loss of generality, that [y < ls and m < n. Then, by Lemma 1.3.6, m and
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n are even. Replacing xyp = 2 > 0 in the Euler formula for bipartite-uniform hypermaps
(Corollary 1.4.3), one has that (a,b,c,d) = (l1,l2,m/2,n/2) is a solution of the inequation
1/a+1/b+1/c+1/d > 2. According to Lemma 1.4.7, [; = 1 or m/2 = 1. Using Theorems
1.6.5 and 1.6.9, we get the following result.

Theorem 2.2.1. If B is a bipartite-uniform hypermap on the sphere, then B = Walsh(U)
or B = Pin(U) for some uniform hypermap U on the sphere, unique up to isomorphism.
Moreover, as B is bipartite-reqular if and only if U is reqular, and on the sphere all uniform
hypermaps are reqular, then all bipartite-uniform hypermaps on the sphere are bipartite-reqular.

The solution (a,b,¢,d) = (1,1,4,k) of 1/a+1/b+1/c+1/d > 2 gives rise to the bipartite-
types (1,1;27;2k), (1, 7;2; 2k) and (j, k; 2;2). By Theorems 1.6.4 and 1.6.8, a bipartite-uniform
hypermap B with one of these bipartite-types is isomorphic to Walsh(i/) or Pin(i), where U
is a uniform hypermap on the sphere of type, up to duality, (1,7, k). By Lemma 1.4.4, j = k.

Using Theorems 1.6.5 and 1.6.9 together with Corollary 2.1.2 and Lemma 1.6.1, we get:

Corollary 2.2.2. Bipartite-uniform hypermaps on the sphere of the same bipartite-type are
isomorphic.

Table 2.3 lists, up to duality, all possible values (I1,ls;m;n) for the bipartite-type of a
bipartite-uniform hypermap B on the sphere, which are given by Lemma 1.4.7. We also display
the numbers V; and Va of vertices in each AY%orbit, E of edges, I of faces and |Qp| of flags.
In the last column of Table 2.3, we give the unique bipartite-uniform hypermap with such
bipartite-type. We remark that the bipartite-uniform map of bipartite-type (1,7n;2;2n) can
be obtained from D9y (D) either via a Walsh construction or via a Pin construction. Indeed
Walsh(D(19)(Dy)) = Pin(D(19)(Dy)). Notice that the hypermaps on lines 20, 21 and 22 are the
2-skeletons of the cube, the rhombic triacontahedron and the rhombic dodecahedron. These
last two are Catalan solids or Archimedean duals (see §2.7 of [31]); their dual polyhedrons are
the icosidodecahedron and the cuboctahedron, respectively.

As a by-product of Theorems 2.1.4 and 2.2.1 we have:

Theorem 2.2.3. For every © < A with [A : O] < 2, ©-uniformity on the sphere implies
O-regularity.

The existence of a normal subgroup © of A for which ©@-uniformity on the sphere does not
imply ©-regularity remains an open problem.

2.3 Chirality groups and chirality indices of the 2-restrictedly-
regular hypermaps on the sphere

As we have mentioned before, every orientably-regular or pseudo-orientably-regular hypermap
on the sphere is regular, so their chirality groups are trivial and their chirality indices are 1.
In addition, all 2-restrictedly-regular hypermaps on the sphere are bipartite-chiral.

In this section we compute the chirality groups and the chirality indices of the bipartite-
regular hypermaps on the sphere using the notations of Proposition 1.9.6.
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| #|lb b m n[Vi Va E F||Q]|B |
1)1 1 2% 2k| & k 1 1] 4k Pin(Don(Dp)
211 2 4 262k k Kk 2| 8k|Pm(P)

31 2 6 6[12 6 4 4| 48| Pin(Dyy(7))
41 2 6 8|24 12 8 6| 96| Pin(Dyy(C))
51 2 6 10|60 30 20 12| 240 | Pin(D(oy)(D))
6|1 3 4 6|12 4 6 4| 48|pPm(7)

71 3 4 8|24 8 12 6 96 | Pin(C)

8 1 3 4 10160 20 30 12| 240 | Pin(D)

91 4 4 6|24 6 12 8| 96| Pin(Dyy(C)
10/ 1 5 4 660 12 30 20| 240 Pin(D((D))
1 k 2 2| k 1 k 1| 4k|Pin(Dgy(Dy) =

= Walsh(D (15)(Dk))

12| 1 k 4 4| 2k 2 k k 8k Pin(D(og)(Pk))
132 2 2 2k| k k 2k 2| 8k| Walsh(Py)
142 3 2 6| 6 4 12 4| 48| Walsh(7)
152 3 2 8|12 8 24 6| 96| Walsh(C)

16| 2 3 2 1030 20 60 12| 240 | Walsh(D)
17/2 4 2 6|12 6 24 8| 96| Walsh(D(y(C))
182 5 2 6]30 12 60 20| 240 | Walsh(D(p) (D))
19]2 k 2 4| k 2 2k k| 8k| Walsh(Dy(Ps)
203 3 2 4| 4 4 12 6| 48| Walsh(D(15)(7))
213 4 2 4| 8 6 24 12| 96| Walsh(D(;(C))
22(3 5 2 4|20 12 60 30| 240 | Walsh(D(1) (D))
23k k 2 2| 1 1 Kk k| 4k| Walsh(Dy)

Table 2.3: The bipartite-regular hypermaps on the sphere.

Chirality groups and chirality indices of B = Walsh(R)

In what follows we assume that R is a regular hypermap on the sphere of type (I,m,n)
and B = Walsh(R). According to Proposition 1.9.6, T' = {(R1R)', (RaRo)™, (RoR1)"} and
S=0a.

According to Table 2.3, up to duality, there are 12 types of bipartite-regular hypermaps
on the sphere obtained from regular hypermaps using the Walsh construction.

When [ = m, B is uniform and hence regular. After all, if [ = m, then dy = [ = m, and
T(B) = (R(R1Ry)™, R(RyRo)™)A/F = 14/R = 1, In addition, B® = B.

If dy = 1, then, according to Corollary 1.9.7, T(B) = AT/R = Aut™(R) and B2 is Ss.

Table 2.4 lists the 12 types of bipartite-regular hypermaps on the sphere obtained from
regular hypermaps using the Walsh construction. Of those cases, only 2 are non-uniform with
dy # 1: cases 17 and 19 (k even). The chirality groups of these hypermaps are computed
below. The last two columns of Table 2.4 display the chirality groups and chirality indices.

e Case 17: B = Walsh(R), R = D(gy)(C) has type (4,2,3) and d; = 2. Then

T(B) = <R(R1R2)2,R(R2RO)2>A/R = <R(R1R2)2,R((R1R2)2)RO> ~V,and ¢t = 4:
B2 is Ps: R — P3, B — Walsh(P3) = Pg, Pg is regular and |Q5| = 96 = ¢|Qp,|.
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e Case 19: B = Walsh(R), R = D(g2)(Pax) has type (2k,2,2) and d; = 2. Then

T (B)

= (R(R1R2)?, R(RyRo)?) 2/ =
B is Py: R — Pa, B — Walsh(Py)

(R(R1Rp)?) =
= Py, Py is regular and |Qg| = 16k = ¢|Qp,|.

Cy and 1t = k;

| # | B=Walsh(R) | typeof R [Aut(R) [Awt™(R) [di |7 L]
13 | Walsh(Py) (2,2,2k) | Dy x Cy Dy, 21 1
14 | Walsh(7) (3,2,3) | Sy Ay 1] A, 12
15 Walsh(C) (3, 2, 4) 54 X 02 54 1 S4 24
16 Walsh(D) (3, 2, 5) A5 X 02 A5 1 A5 60
17 Walsh(D(OQ) (C)) (4, 2, 3) 54 X CQ S4 2 ‘/21 4
18 Walsh(D(OQ) (D)) (5, 2, 3) A5 X 02 A5 1 A5 60
19 Walsh(D(OQ) (Pak)) (2k,2,2) Doy x C Doy 2| Cy k

Walsh(D(OQ) (PQk—l)) (2]{5 — 1, 2, 2) D2k;—1 X CQ D2k;—1 1 DQk:—l 4k — 2
20 Walsh(D(12) (T)) (3, 3, 2) S4 A4 311 1
21 Walsh(D(12) (C)) (3, 4, 2) 54 X CQ S4 1 S4 24
22 Walsh(D(lg) (D)) (3, 5, 2) A5 X 02 A5 1 A5 60
23 Walsh(Dk) (k, k, 1) Dk Ck k Ck k

Table 2.4: The bipartite-regular hypermaps obtained by the Walsh construction.

Chirality groups and chirality indices of B = Pin(R)

Now we assume that R is a regular hypermap on the sphere of type (I,m,n) and B = Pin(R).
As before, T = {(R1 R2)", (R2Ro)™, (RyR1)"} and S = @.

According to Table 2.3, up to duality, there are 12 types of bipartite-regular hypermaps
on the sphere obtained from regular hypermaps using the Pin construction.

In the first case, B is uniform and hence regular. In addition, B~ = B.

If do = 1, then, according to Corollary 1.9.7, T(Pin(R)) = A+/R >~ Aut™(R) and B2 is
So.

Table 2.5 lists the 12 types of bipartite-regular hypermaps on the sphere obtained from
regular hypermaps using the Pin construction. Of those cases, only 4 are non-uniform with
do # 1: cases 2 (k even), 3, 7 and 12. The chirality groups of these hypermaps are computed
below. The last two columns of Table 2.5 display the chirality groups and chirality indices.

e Case 2: B =Pin(R), R = Py has type (2,2,2k) and d» = 2. Then
YT(B) = (RRy Ry, R(RyR1)?)A/R(= RATO/R = AT00/R) > D) and ¢ = 2k; BA is Sy

e Case 3: B=Pin(R), R = D(01)(7) has type (2,3,3) and dz = 3. Then
Y(B) = (RRy Ry, R(RoRy) WR (RR1 Ry, R(R1Rp)f) = V) and 1 = 4;
B2 is Sg: R — S3, B — Pin(S3) = Sg, Sg is regular and |Qp| = 48 = ¢|Qs,|.

e Case 7: B=Pin(R), R =C has type (3,2,4) and dy = 2. Then

T(B) = (RRy Ry, R(RyR1)?)A/B(= AT /R) = Ay and = 12; B2 is S,
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e Case 12: B =Pin(R), R = D(g2)(P) has type (k,2,2) and dz = 2. Then
Y(B) = (RR1Rs, R(RoR1)?)2/ (= AT /R) = (RR1Rs) = Cj, and 1 = k;: B2 is S;.

| #[B=Pin(R) | typeof R [Auwt(R) [Auwt*(R)|do[T | L]
1[Pin(Dy(Dy) | (Lkk) | Dy Ch k1 1
2 PIH(PQk) (2, 2, 2k) ng X CQ D2k 2 Dk 2k

Pln(ng 1) (2, 2, 2k — 1) DQk—l X Cg DQk_]_ 1 D2k—1 4k — 2

3 PID(D(Ol)( )) (2, 3, 3) 54 A4 3 ‘/21 4
4 Pln(D(Ol) (C)) (2, 3, 4) 54 X CQ 54 1 S4 12
5 PID(D ( )) (2, 3, 5) A5 X CQ A5 1 A5 60
6 PIH(T) (3, 2, 3) S4 A4 1 A4 12
7 PIH(C) (3, 2, 4) S4 X CQ S4 2 A4 12
8 PIH(D) (3, 2, 5) A5 X CQ A5 1 A5 60
9 Pln( )(C)) (4,2,3) Sy x Cy Sy 1185y 24
10 PIH(D(OQ) (D)) (5, 2, 3) A5 X CQ A5 1 A5 60
11 PID(D(12) (Dk>) (]{, 1, k) Dk Ck 1 Ck k
12 PID(D(OQ) (Pr)) (k,2,2) Dy x Cy Dy, 2| Cy k

Table 2.5: The bipartite-regular hypermaps obtained by the Pin construction.

The closure covers and the covering cores

Table 2.6 lists the chirality groups and chirality indices of all bipartite-regular hypermaps on
the sphere, as well as their closure covers. In Table 2.7 we display the type, number of flags
and genus of the covering cores.

Note that if B is one of the bipartite-regular hypermaps listed in lines 1, 13, 20 and 23 of
Table 2.3 (or Table 2.7), then B is regular and B = B2 = Ba.

Looking at Table 2.7, one can see that there are two covering cores (not in the families)
that are duals of maps with less than 100 edges. After all, if B is a map, B has less than 100
edges if and only if |25 < 400. The maps are D) ((Pin(D1)(7)))a) with 48 edges and
Petrie path of length 4, and (Walsh(D(2)(C)))a with 96 edges and Petrie path of length 6.
In [70] we can find a list of all non-trivial regular with no more than 100 edges (the list is
complete except perhaps at maps with 84 edges), these maps are P(70) and DP(190), pages
144 and 181 respectively. These can also be consulted in Wilson’s Census of orientably-regular
maps [69].

Note that the chirality index of a bipartite-regular hypermap can be any positive integer
number. Moreover, cyclic groups and dihedral groups are chirality groups of bipartite-regular
hypermaps.
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| #|B Q| | B2 type of B2 [Qpal | T \ L]
1 Pin(D(OQ)(Dk)) 4k Sgk (1,2k,2k> 4k | 1 1
2 | Pin(Pay) 16k | Sy (1,4,4) 8| Dy, 2k

Pin(Pyr_1) 16k — 8 | Sy (1,2,2) 4| Dop_y | 4k —2
3 | Pin(D(o)(7)) 48 | Ss (1,6,6) 12V, 4
4 Pin(D(Ol)(C)) 96 82 (1,2,2) 4 54 24
5 PIH(D(Ol)(D)) 240 SQ (1,2,2) 4 A5 60
6 | Pin(7) 41818, (1,2,2) 4] Ay 12
7 | Pin(C) 96 | S4 (1,4,4) 8| Ay 12
8 | Pin(D) 240 | S, (1,2,2) 4] As 60
9 Pln(D(Og)(C» 96 SQ (1,2,2) 4 S4 24
10 PIH(D(OQ)(D)) 240 82 (1,2,2) 4 A5 60
11 | Pin(D(19)(Dy)) ik [ S, (1,2,2) 1] Cy 3
12 | Pin(D g2 (Py)) 8k | Sy (1,4,4) 8| Cx k
13 | Walsh(Py) 8k | Pox (2,2, 2k) 8k | 1 1
14 | Walsh(7) 188, (1,2,2) 4] Ay 12
15 | Walsh(C) 96 | Sy (1,2,2) 4158, 24
16 | Walsh(D) 240 | S, (1,2,2) 4] A; 60
17 | Walsh(D 49)(C)) 96 | Ps (2,2,6) 24 [V, 4
18 | Walsh(D(gy) (D)) 240 | S, (1,2,2) 4] A; 60
19 Walsh(D(Og)(P%)) 16k | Py (2,2,4) 16 | Cy, k

Walsh(D(Og)(ng,l)) 16k 8 82 (1,2,2) 4 ng,1 4k — 2
20 | Walsh(D 15)(7)) 8¢ (3,2,4) 4811 1
21 | Walsh(D(19)(C)) 96 | Sy (1,2,2) 415, 24
22 Walsh(D(lg)(D)) 240 SQ (1,2,2) 4 A5 60
23 Walsh( 4k D(Oz)(Pk) (k},2,2) 4k | 1 1

Table 2.6: B and B~
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’ #\B ‘ type of Ba |95, | genus‘T ‘ L‘
1 PIH(D(OQ)(Dk)) (1,2k,2k) 4k 01 1
2 | Pin(Pyy) (2,4, 4k) 32k* 2k? —2k+ 1| Dy 2k

Pin(Pa_1) (2,4,4k —2) 16(2k — 1)? 4(k —1)? | Doj_1 | 4k — 2
3 | Pin(D(o1y(7)) (2,6,6) 192 9| Vs 4
4 | Pin(D(oy)(C)) (2,6,8) 2304 121 [ Sy 24
5 | Pin(Do1)(D)) (2,6,10) 14400 841 | As 60
6 | Pin(7) (3,4,6) 576 37| Ay 12
7 | Pin(C) (3,4,8) 1152 85| Ay 12
8 | Pin(D) (3,4,10) 14400 1141 | A5 60
9 | Pin(Dp2)(C)) (4,4,6) 2304 193 | Sy 24
10 | Pin(D(gy)(D)) (5,4,6) 14400 1381 | A 60
11 | Pin(D(1)(Dy)) (k,2,2k) 4 RS T o k
12 | Pin(Dg2)(Px)) (k,4,4) 8k? (k—1)?| Cy
13 | Walsh(P;) (2,2,2k) 8k 01 1
14 | Walsh(7T) (6,2,6) 576 25 | Ay 12
15 | Walsh(C) (6,2,8) 2304 121 | Sy 24
16 | Walsh(D) (6,2,10) 14400 841 | As 60
17 | Walsh(D p2)(C)) (4,2,6) 384 9| V4 4
18 | Walsh(D g2 (D)) (10,2, 6) 14400 841 | As 60
19 | Walsh(D g2)(Pax)) (2k,2,4) 16k> (k—1)2|Cy k

Walsh(D ) (Pak—1)) | (4k —2,2,4) 16(2k — 1) 4(k —1)% | Dop_y | 4k — 2
20 | Walsh(D12)(7)) (3,2,4) 48 01 1
21 | Walsh(D(15)(C)) (12,2,4) 2304 97 | Sy 24
22 | Walsh(D(y5)(D)) (15,2,4) 14400 661 | As 60
23 | Walsh(Dy,) (k,2,2) 4k 01 1

Table 2.7: B and Ba.



Chapter 3

Hypermaps on the projective plane

In this chapter we classify the 2-restrictedly-regular hypermaps on the projective plane. As
on the sphere, we determine all uniform and bipartite-uniform hypermaps on the projective
plane. First we derive the classification of the uniform hypermaps on the projective plane
from the classification of uniform hypermaps on the sphere. All uniform hypermaps on the
projective plane are regular maps and can be found in §8.6 of [33]. Next we see that, as on the
sphere, all bipartite-uniform hypermaps on the projective plane are obtained from uniform
hypermaps using a Walsh or a Pin construction, and hence are bipartite-regular.
The next section is included here for completeness.

3.1 Uniform hypermaps on the projective plane

Let U be a uniform hypermap on the projective plane. Then, by Theorem 1.7.1, the orientable
double cover of U, UT = Orient(U) is a uniform map on the sphere with the same type of
U and with even numbers of vertices, edges and faces. Because of this, /T cannot be Dy
(case 1 of Table 2.1) or Paor_1 (case 2 of Table 2.1). Thus, if ¢/ is a uniform hypermap on the
projective plane, then, up to duality, UT is Pag, 7, C or D. Furthermore, Aut(U™) has an
involutory orientation-reversing automorphism which is not a reflection.

Points on the sphere opposing along a diameter are called antipodal points or antipodes.
If P and @ are antipodes, we also say that @ is the antipode of P and vice versa. The
mapping ®?P that maps each point of the sphere to its antipode is an involutory orientation-
reversing automorphism of the sphere. It is well-known that when U is Poy, C or D, ®?P
induces an involutory orientation-reversing automorphism @Zp of U which is not a reflection.
If U is a hypermap subgroup of U, then goZp maps each flag Ug, with ¢ € A, to UAyyg,
where Apgk = (RoRl)kRg, for k S IN, Ac = (R0R1R2)3 and AD = (R0R1R2)5. These
automorphisms give rise to the following uniform hypermaps on the projective plane formed
by identifying antipodal points of the sphere: the projective polygon of order k, PPy, of
type (2,2,2k), the projective cube, also known as the Purse of Fortunatus (cf. §21.34 of [32])
or hemi-cube, PC, of type (3,2,4), and the projective dodecahedron, PD, of type (3,2,5).
Table 3.1 gives some information about these hypermaps, namely their numbers of vertices,
edges, faces and flags, and their symmetry groups. We recall that by Proposition 1.7.1,
the numbers of flags, vertices, edges and faces of U are half the numbers of flags, vertices,
edges and faces of U*. The hypermaps PO = D9 (PC) and PZ = D(g2)(PD) are called
projective octahedron and projective icosahedron, respectively. Using the properties of Orient,

39
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it follows that 'P(I)+ = D(02) (’PC’)Jr = D(02) (PC+) = D(Qg) (C) = O and PZ+ = D(02) (PD)+ =
D(02)(PD") = D(g2)(D) = Z. By inspection, one can see that Py, C and D have no other
involutory orientation-reversing automorphism which is not a reflection besides gog;k, gogp
and goag , respectively, and that all involutory orientation-reversing automorphisms of 7 are
reflections. Therefore, up to duality, the unique uniform hypermaps on the projective are
the infinite family PPsi, PC and PD. In [33]|, Coxeter and Moser denoted the uniform
hypermaps PC, PO, PD, PZ, PPy, and D g2)(PPax) by {4,3}/2 = {4,3}3, {3,4}/2 = {3,4}3,
{5,3}/2 = {5,3}5, {3,5}/2 = {3,5}5, {2k,2}/2 and {2,2k} /2, respectively. The hypermap
PPay, of type (2,2,2k), was denoted by Dy in [15], and by dj, in [73]. As remarked in [13], PP
is a hypermap on the projective plane with hypermap subgroup A2 and with automorphism
group Aut(PP2) is isomorphic to Vj.

Now let U be PPoi, PC or PD, and let (I,m,n) be the type of U. Furthermore, let
S = {(R1R2)!, (RoRo)™, (RoR1)", Ay+ } and ST = SN AT = {(R1Ry)!, (RaRy)™, (RoR1)"}.
By Theorems 1.7.1 and 2.1.1, I has hypermap subgroup U = (S+)2{1, A;+}, because (S+)2
is a hypermap subgroup of U*. Since (S) C U C (S)®, U = (S)? if and only if U < A,
or equivalently, if and only if U/U" < A/U™, because the projection 7 : A — A/UT is an
epimorphism and Ur = U/U*. In all cases UTAy+ = UTRg,U"R1,U Ry, so U/UT =
(Ut Ay+) C Z(Aut(UT)). In addition, since Aut(UT) is Doy x Ca, Sy x Cy or Az x Co,
Z(Aut(UT)) =2 Cy and hence U/UT = Z(Aut(UT)) < Aut(Ut) = A/UT.

For simplicity, we extend the definition of Ay in the following way. If o € {0,1,2} and
U is C or D, then ADG(Z/{) = Ayo. When U = PPy, AD(Ol)(PQk) = Ap% = (RORl)kRQ,

AD(012)(7921€) - AD(oz)(sz) = (R1R2)kRO’ AD(021)(7’21«) - AD(lz)(sz) = (RQRO)le'

Theorem 3.1.1 (Hypermap subgroups of the uniform hypermaps on the projective plane).
If U is a uniform hypermap on the projective plane of type (I,m,n), then U has hypermap
subgroup U = ((R1R)', (RaRo)™, (RoR1)", Ay+ )2

Corollary 3.1.2. Uniform hypermaps on the projective plane of the same type are isomorphic.

Corollary 3.1.3 (Conservativeness of the uniform hypermaps on the projective plane). Let

© <9 A. Then:
1. (a) PPuy_o is O-conservative if and only if © is A°, Al or AZ;
(b) PPy is ©-conservative if and only if © is AO, Al or AZ;
2. PC is O-conservative if and only if © = AY;
3. PD is not O-conservative.

Proof. Similar to the proof of Corollary 2.1.3. Given ©<IA, ((RyR2)!, (RaRo)™, (RoR1)", Ay)™
is a subset of © if and only if (R1Rz)!, (R2Ro)™, (RoR1)"™ and Ay belong to ©. O

As a by-product of Theorem 3.1.1 we get following result:
Theorem 3.1.4. All uniform hypermaps on the projective plane are reqular.

Corollary 3.1.5. IfU is a uniform hypermap on the projective plane, then U is ©-regular if
and only if U is ©-conservative.

Corollary 3.1.6. There are no 2-restrictedly-reqular uniform hypermaps on the projective
plane. In particular, there are no pseudo-orientably-chiral hypermaps on the projective plane.
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As on the sphere, all 2-restrictedly-regular hypermaps on the projective plane are bipartite-
chiral.

Table 3.1 lists, up to duality, all values (I, m,n) for the type of a uniform hypermap U on
the projective plane. It also displays the numbers V' of vertices, E of edges, F' of faces and
|| of flags of U, as well as its automorphism group. In the last column, we give the unique
uniform hypermap on the sphere of such type. Notice that the automorphism groups of PC
and PD are just Coxeter groups G334 =2 Sy and G355 = A5 (see [33]).

(#[1 m n|V E F||Q][Aut@)|U |
212 2 2| k k 1 4k | Doy PPy
43 2 4[4 6 3] 245, PC
5(3 2 5[10 15 6] 60]4s PD

Table 3.1: The uniform hypermaps on the projective plane, up to duality.

Because the projective plane is a non-orientable surface, no hypermap on the projective
plane is orientable and hence orientably-regular. In addition, since AF 0 A¥ c AT, a hyper-
map on the projective plane cannot be simultaneously A*-conservative and A¥-conservative.
In Table 3.2, we display, up to duality, the ©-regularity of the uniform hypermaps on the
projective plane, for each © < A. Note that the projective dodecahedron is not ©-regular for
any © < A.

’ # ‘ U ‘ A%-regular? ‘ Al-regular? ‘ A?-regular? ‘ A-regular? ‘ Al-regular? ‘ AZ-regular?
1| Py | yesift 2|k | yesiff 2|k no vesiff 24k | yesiff 24k yes
2| PC no no no yes no no
3| PD no no no no no no

Table 3.2: O-regularity of the uniform hypermaps on the projective

3.2 Bipartite-uniform hypermaps on the projective plane

Let B be a bipartite-uniform hypermap on the projective plane of bipartite-type (I1,l2; m;n).
We may assume, without loss of generality, that {; <y and m < n. Then, by Lemma 1.3.6, m
and n are even. Since the orientable double cover of B, BT = Orient(B), is a bipartite-uniform
on the sphere with the same bipartite-type of B, 13 = 1 or m/2 = 1 (see Section 2.2). Using
Theorems 1.6.5 and 1.6.9, we get the following result.

Theorem 3.2.1. If B is a bipartite-uniform hypermap on the projective plane, then B =
Walsh(U) or B = Pin(U) for some uniform hypermap U on the projective plane, unique up
to isomorphism. Moreover, as B is bipartite-regular if and only if U is regular, and on the
projective plane all uniform hypermaps are reqular, then all bipartite-uniform hypermaps on
the projective plane are bipartite-regular.

Using Theorem 3.2.1 and Corollary 3.1.2 together with Theorems 1.6.6 and 1.6.10, we get:
Using Theorems 1.6.5 and 1.6.9 together with Corollary 3.1.2 and Lemma 1.6.1, we get:
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Corollary 3.2.2. Bipartite-uniform hypermaps on the projective plane of the same bipartite-
type are isomorphic.

Table 3.3 lists, up to duality, all possible values (I1,l;m;n) for the bipartite-type of a
bipartite-uniform hypermap B on the projective plane. We also display the numbers V; and
Va of vertices in each A-orbit, E of edges, F of faces and || of flags. In the last column of
Table 3.3, we give the unique bipartite-uniform hypermap with such bipartite-type.

’#‘ll lzm n\Vl VQ E FHQBHB ‘
111 2 4 4k|2k k Kk 1 8k | Pin(PPay)
2|1 2 6 8[12 6 4 3| 48[Pin(D)(PC))
3/1 2 6 10[30 15 10 6] 120 Pin(D((PD))
411 3 4 8|12 4 6 3| 48|Pin(PC
51 3 4 10|30 10 15 6] 120 | Pin(PD)
6/1 4 4 6[12 3 6 4| 48]Pin(Dy(PC))
71 5 4 6|30 6 15 10| 120 Pin(D(og)(P’D))
8|1 2k 4 4|2k 1 k k| 8k|Pin(Dyy(PPu))
912 2 2 4k| k k 2k 1 8k | Walsh(PPay)
102 3 2 8| 6 4 12 3| 48| Walsh(PC)
112 3 2 10|15 10 30 6 120 | Walsh(PD)
1212 4 2 6| 6 3 12 4 48 Walsh(D(og)(PC))
13/2 5 2 6|15 6 30 10| 120 Walsh(D(Og)(PD))
142 2k 2 4| k 1 2k k| 8k| Walsh(D(g)(PPuy))
15/3 4 2 4, 4 3 12 6 48 Walsh(D(lg)(PC))
16 3 5 2 4110 6 30 15| 120 Walsh(D(lz)(PD))

Table 3.3: The bipartite-regular hypermaps on the projective plane.

Because Walsh(H ™) = Walsh(H)" and Pin(H") = Pin(H)™, if B is a bipartite-uniform
hypermap on the projective plane obtained from the uniform hypermap U via the Walsh or
Pin construction, then the orientable double cover of B, BT, is obtained from the orientable
double cover of U, U™, via the same construction.

As a by-product of Theorems 3.1.4 and 3.2.1 we have:

Theorem 3.2.3. For every © < A with [A : ©] < 2, O-uniformity on the projective plane
implies O-reqularity.

The existence of a normal subgroup © of A for which ©-uniformity on the projective plane
does not imply ©-regularity remains an open problem.

3.3 Chirality groups and chirality indices of the 2-restrictedly-
regular hypermaps on the projective plane

We have seen that on the projective plane there are no orientably-regular hypermaps, and that
all pseudo-orientably-regular hypermaps on the projective plane are regular, so their chirality
groups are trivial and their chirality indices are 1. Because of this, every 2-restrictedly-regular
hypermap on the projective plane is bipartite-chiral.
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In this section we compute the chirality groups and the chirality indices of the bipartite-
regular hypermaps on the projective plane using the notations of Proposition 1.9.6.

Chirality groups and chirality indices of B = Walsh(R)

In what follows we assume that R is a regular hypermap on the projective plane of type (I, m,n)
and B = Walsh(R). According to Proposition 1.9.6, T = {(R1R2)!, (R2Ro)™, (RoR1)", A+ }
and S = {Agr+}.

According to Table 3.3, up to duality, there are 8 types of bipartite-regular hypermaps on
the projective plane obtained from regular hypermaps using the Walsh construction.

When | = m, B is uniform and hence regular. In addition, B = B.

If dy = 1, then, by Corollary 1.9.7, T(B) = A/R = Aut(R) and B> is T,.

Table 3.4 lists the 8 types of bipartite-regular hypermaps on the projective plane obtained
from regular hypermaps using the Walsh construction. Of those cases, only 2 are non-uniform
with di # 1: cases 12 and 14. The chirality groups of these hypermaps are computed below.
In the last two columns of Table 3.4 we display the chirality groups and chirality indices.

e Case 12: B = Walsh(R), R = D(g)(PC)) has type (4,2,3) and di = 2. Then
AR+ = AD(OQ)(C) = Ac(OQ) = (R2R1R0)3, (AR+)04W = (R2R0R1)3,
Y(B) = (R(R1R2)?, R(R2Ry)?, R(RyRoR1)®)*/F = (R(R1R2)?, R((R1Ry)?)F0o) =V,
and + = 4; B2 is PPs: R — PP3, B — Walsh(PP3) = PPs, PPs is regular and
25| = 48 = 1|Qppy|.

e Case 14: B = Walsh(R), R = D(gp)(PPa) has type (2k,2,2) and dy = 2. Then
AR* = AD(OQ)(PQk) = AP%(OQ) = (RQRl)kRQ, (ARJr)OéW = (RQRO)le and
Y(B) & (R(R1R2)?, R(R2Ro)?, R(RaRo)F Ry)A/ R = (R(R1R»)?, R(RyRo)* Ry )2/ .
If 2 ’ k‘, then T(B) = <R(R1R2)2,RR1>A/R = <R(R1R2)2,RR1> = Dk and ¢+ = 2k. In
fact T(B) = (R(RyR»)%, RR,) = A%/R, since R = R(RyR1)* = RRy = RRy®2; B is
TA()Q. Else, if 2 )[ k‘, then T(B) = <R(R1R2)2,RR2R0R1>A/R = <RR2ROR1> = Ck and
v = k. In fact T(B) = (RRyRoR1)*/F = RAY2/R = AV2/R: B2 is PPy: R — PPy,
B — Walsh(PPy) = PPy, PPy is regular and |Qp| = 8k = 1|Qpp,|.

| # | B= Walsh(i) | typeofd [Awt()[di [ Y \ L]

9 Walsh(PPQk) (2,2,2]€) ng 211 1
10 | Walsh(PC) (3,2,4) | S, 1], 24
11 | Walsh(PD) (3,2,5) As 1] As 60
12 | Walsh(D gy, (PC)) (4,2,3) |5, 2V, 4
13 | Walsh(D g (PD)) (5,2,3) | As 1] 4, 60
14 WalSh(D(OQ)(PP4k)) (4k,2,2) D4k‘ 2 ng 4k
Walsh(D(OQ) (P,P4k72)) (4k — 2, 2, 2) D4k,2 2 CQk,l 2k — 1

15 | Walsh(D(j2)(PC)) (3,4,2) | S, 19, 24
16 Walsh(D(u)(PD)) (3,5,2) A5 1 A5 60

Table 3.4: The bipartite-regular hypermaps obtained by the Walsh construction.
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Chirality groups and chirality indices of B = Pin(R)

Now we assume that R is a regular hypermap on the projective plane of type (I, m,n) and
B = PIH(R) As before, T = {(Rle)l, (RzRo)m, (R(]Rl)n, A'R*} and § = {AR+}

According to Table 3.3, up to duality, there are 8 types of bipartite-regular hypermaps on
the projective plane obtained from regular hypermaps using the Pin construction.

If dy = 1, then, by Corollary 1.9.7, T(B) = A/R = Aut(R) and B> is T,.

Table 3.5 lists the 8 types of bipartite-regular hypermaps on the projective plane obtained
from regular hypermaps using the Pin construction. Of those cases, only 3 are non-uniform
with do # 1: cases 1, 4 and 8. The chirality groups of these hypermaps are computed below.
The last two columns of Table 3.5 display the chirality groups and chirality indices.

e Case 1: B=Pin(R), R = PPy has type (2,2,2k) and dy = 2. Then
A’R+ = Ap% = (RORl)kRQ, AR+OéP = (RlRo)kRo,
Y(B) = (RR1Rs, R(RoR1)?, R(R1Ry)*Ry = RRyRy)>/"" = RAT/R = A/R = Dy,
and ¢ = 4k; B2 is Tpo-

e Case 4: B=Pin(R), R = PC has type (3,2,4) and dy = 2. Then
A+ = Ac = (RoR1Ry)?, Ag+ap = (R1RoRy)® = Ry,
Y(B) = (RRyRs, R(RoR1)?, RR)*/F = (RR,, RRy, RRo)*/% = AJR = S,
since RRy = RR1RyR1"™ Ry™ R\ Ry, and 1« = 24; B~ is T

e Case 8 B =Pin(R), R = PC has type (2k,2,2) and dy = 2. Then
Ap+ = (RoR1)F Ry (see Case 12), Ag+ap = (RoRo)*R1 = Ry,
Y(B) = (RR1R2, R(RoR1)?, RR)*/F = (RRy, RRy, RRy)*»/ % = A/R = Dy,
since RRy = R(RoR1)F, and « = 4k; B2 is Tpo-

| # | B=Pin(l) | type of U | Aut() [da [T | ¢]
1] Pin(PPoy) (2,2,2k) | Doy 2| Doy | 4k
2 PIH(D(Ol)(PC)) (2,3,4) S4 1 54 24
3 | Pin(Doy(PD)) | (2,3,5) | 45 1|45 |60
4 | Pin(PC) (3,2,4) | S4 2185y |24
5 | Pin(PD) (3,2,5) | 4; 1|45 |60
6 Pin(D(Og)(PC)) (4,2,3) | Sy 11]8, 24
7 [ Pin(Dioe)(PD)) | (5,2,3) | 4y 1| A; |60
8 | Pin(Dos) (PPay)) | (2k,2,2) | Da 5| Doy | 4K

Table 3.5: The bipartite-regular hypermaps obtained by the Pin construction.

The closure covers and the covering cores

Table 3.6 lists the chirality groups and chirality indices of all the bipartite-regular hypermaps
on the on the sphere, as well as their closure covers. Table 3.7 displays the type, number of
flags and genus of the covering cores.

In case 9 of Table 3.3, B = Walsh(PPsy) is uniform and hence regular, so B = BA = Ba.
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According to Tables 3.4 and 3.5, in 13 out of the 16 cases, T(B) = AO/B ~ A/R and B~
is Tpo. If B is Walsh(D(gg)(PC)), Walsh(D g2)(PPar—2)) or Walsh(D(g)(PPay)), then B is
PPs, PPy or T a1z, respectively.

According to Theorem 1.8.4, in cases 1, 4, 8 and 14 (with k even) of Table 3.7, Ba is
orientable because |Qp,| = [Q3+),], and in the remaining cases Ba is non-orientable since
Qs < 2095 | = (250, |

The covering core of the map Walsh(Dgg)(PC)) is a non-orientable regular map of type
(4,2,6), with 192 flags, 48 edges and Petrie path of length 6. In |70, 69], Wilson denotes
this map by D(70). We remark that its orientable double cover is the hypermap denoted by
DP(190) in [70, 69], the closure cover of Walsh(Dg2)(C)) (case 17 of Table 2.7).

| #|B Q|| BA  typeof B> [Qpal | T \ L]
1 Pin(PPQk) 8k TAO — 2 | Doy 4k
2 Pin(D(Ol)('PC)) 48 | Tro - 2198, 24
3 Pm(D(Ol)(PD)) 120 TAO - 2 A5 60
4 PIH(PC 48 TAO - 2 54 24
5 | Pin(PD) 120 | T, - 2| A5 60
6 Pln(D(Oz)('PC» 48 TAG - 2 S4 24
7 | Pin(D(go) (PD)) 120 | T, - 2 [ 45 60
8 Pin(D(OQ)(PPQk)) 8k TAG — 2 | Doy, 4k
9 | Walsh(PPq) 8k | PPy (2,2,4k) 8k |1 1
10 Walsh(PC) 48 TAG - 2 S4 24
11 | Walsh(PD) 120 | T, - 2 [ A5 60
12 | Walsh(D g2 (PC)) 48 | PPs  (2,2,6) 12V, 4
13 | Walsh(D ) (PD)) 120 | Ty, - 2| A; 60
14 | Walsh(D o) (PPur)) 16k | Too15 - 4| Doy, 4k
Walsh(D(og) (,P/P4k72>) 16k — 8 7)7)4 (2, 2, 4) 8 Cgk,1 2k —1

15 | Walsh(D 1) (PC)) 48| Ty - 2[5, 24
16 Walsh(D(lz)(PD)) 120 TAG - 2 A5 60

Table 3.6: B and B~
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’ #\B \ type of Ba |Qp,| or.? genus‘T L‘
1 | Pin(PPay) (2,4, 4k) 32k% yes 2k%®—2k+1| Dy 4k

2 | Pin(D(oy(PC)) (2,6,8) 1152 no 122 | Sy 24

3 | Pin(D(o1)(PD)) (2,6,10) 7200 no 842 | As 60

4 | Pin(PC) (3,4,8) 1152 yes 85 | Sy 24

5 | Pin(PD) (3,4,10) 7200 no 1142 | Aj 60

6 | Pin(Do2)(PC)) (4,4,6) 1152 no 194 | Sy 24

7 | Pin(D(g)(PD)) (5,4,6) 7200 no 1382 | As 60

8 | Pin(D gy (PPar)) (2k,4,4) 32k%  yes (2k — 1)% | Dy, 4k

9 | Walsh(PPay) (2,2,4k) 8k no 1)1 1

10 | Walsh(PC) (6,2,8) 1152 no 122 | Sy 24
11 | Walsh(PD) (6,2,10) 7200 no 842 | As 60
12 | Walsh(D g2 (PC)) (4,2,6) 192 no 10|V, 4
13 | Walsh(Do2)(PD)) (10,2, 6) 7200 no 842 | As 60
14 | Walsh(Dg2)(PPax)) (4k,2,4) 64k> yes (2k — 1)% | Doy, 4k
Walsh(D(OQ)( Pip_2)) | (4k —2,2,4) 802k —1)2 no 2(k—1)2+1|Co_q |2k—1

15 | Walsh(D(12)(PC) (12,2,4) 1152 no 98 | Sy 24
16 Walsh(D(u)(PD)) (15,2,4) 7200 no 662 | As 60

Table 3.7: B and Ba.




Chapter 4

Hypermaps on the torus

Up to duality, there are 3 possibilities for the type of a uniform hypermap on the torus:
(4,2,4), (6,2,3) and (3,3,3). In [33], Coxeter and Moser classify the orientably-regular maps
on the torus: orientably-regular hypermaps of type (4,2,4) can be represented by identifying
opposite edges of a square with vertices in the lattice Z[i] and orientably-regular hypermaps of
type (6,2, 3) can be represented by identifying opposite edges of a lozenge whose angles are /3
and 27/3 (that is, a lozenge that can be divided in 2 equilateral triangles) with vertices in the
lattice Z[p], where p = (1 ++/3i)/2. They also gave conditions for an orientably-regular map
to be regular. Corn and Singerman [28] proved that a uniform hypermap U of type (3,3, 3)
is orientably-regular if and only if Walsh(&/) is orientably-regular. More recently, Breda and
Nedela [10] have shown that U/ is orientably-chiral if and only if Walsh({/) is orientably-chiral.
Consequently, U is regular if and only if Walsh(l{) is regular. In [57] and [58], Singerman and
Syddall classify the uniform maps on the torus.

Siran, Tucker and Watkins [66] studied the edge-transitive maps on the torus, which in-
clude, up to duality, all 2-restrictedly-regular hypermaps on the torus except the Al_chiral.
The correspondence between the types of edge-transitive maps of Graver and Watkins [36]
used by Sirai, Tucker and Watkins [66] and restrictedly-regular maps is given in Table 1.1.

As mentioned in Chapter 1, A2 chiral maps were called just-edge-transitive maps by
Jones |47] and edge-transitive maps of type 3 by Graver and Watkins [36]. Their automorphism
group acts transitively on edges but neither on vertices nor faces.

In this Chapter we introduce a notation for uniform hypermaps on the torus which we
use in the classification of the regular and the 2-restrictedly-regular hypermaps on the torus.
This notation is based in the work of Singerman and Syddall (see [57] and [58]) on uniform
maps on the torus and extends the notation of Coxeter and Moser [33] for orientably-regular
hypermaps.

The results in this Chapter were obtained before knowing the work of Siran, Tucker and
Watkins on edge-transitive maps on the torus [66].

4.1 Uniform hypermaps on the torus

Let U be a uniform hypermap on the torus of type (I,m,n). Using the Euler formula for
uniform hypermaps (Corollary 1.4.2) together with Lemma 1.4.5, one can see that, up to
duality, (I, m,n) is (2,4,4), (2,3,6) or (3,3,3).

47



48 Chapter 4. Hypermaps on the torus

The uniform maps on the torus of types (4,2,4) and (6, 2, 3) were classified by Singerman
and Syddall in [57, 58]. These maps are obtained by identifying the opposite edges of a
Euclidean parallelogram in the complex plane with vertices in the lattices Z[i] or Z[p], where
p=(14++/3i)/2 = e™/3.

Let a,b,c,d € Z, M = <Z ;) and a € {i,p}. The complexes 0, a + ba and ¢ + da are

in the same straight line if and only if det(M) = ad — be = 0. Thus, 0, a + ba, ¢+ da and
(@ + bar) + (¢ + da) are the vertices of a Euclidean parallelogram in the complex plane if and
only if det(M) = ad — be # 0.

Instead of the notation used by Singerman and Syddall in [58], we adopt a notation which
is a natural extension of the notation of Coxeter and Moser [33] for orientably-regular maps

on the torus. Given M = (‘Z (ci) such that det(M) = ad — be # 0, we denote by (4,2,4)
and (6,2,3)y the uniform maps on the torus of types (4,2,4) and (6,2,3) represented by
the Euclidean parallelograms with opposite edges identified and vertices 0, a + ba, ¢ + da,
(a+c)+ (b+ d)a € Z[a], where o = 7 in the first case, and o = p in the second case. In
particular, the maps denoted by {4,4},  and {3,6},  in the notation of Coxeter and Moser
are denoted by (4,2,4)( ) and (6,2,3)( q), respectively. Figure 4.1 displays (4,2,4)

-3
2

p-q
q P

p~pT
q9 P

and (6,2,3) s, for M = (;

AN
\VAYAVAVAVAY,
A\NVAVAY AV

Figure 4.1: The hypermaps (4,2,4)y and (6,2,3)y for M = (é ;3)

Let U = (4,2,4)(a L a+bi = (p+qi)(r+si) and c+di = (p+qi)(t +ui), where r+si and
bd
t + ui are coprime Gaussian integers. In the notation of Singerman and Syddall ¢/ is denoted

t+us r45% : t+us iy : : :
by {r+si }pﬂﬂ or {Hui }p+qi, depending on whether =55 has positive or negative imaginary

part, or equivalently, depending on whether ad — bc is positive or negative. Conversely, if U

t+ui
r+st

is denoted by { in the notation of Singerman and Syddall, then U is (4,2,4)(a <)
bd

p+qi
where a+bi = (p+qi)(r+si) and c+di = (p+qi)(t+ui). Similarly, there is a correspondence

between our notation and the notation of Singerman and Syddall for uniform maps on the
torus of type (6,2,3).
The hypermaps (4, 2, 4)(2 _1), (6,2, 3)(2 _1) and D qg) <(6, 2, 3)(l _1)> (denoted by {i},,
12

12 13

{pr}tay, and Dg2)({p};,) in the notation Singerman and Syddall) are uniform imbeddings of
the non-planar graphs K, K7 and K33 (see §8.3 and §8.4 of [33] and §5 of [58]). Using the
Euler formula, one can see that there is no uniform imbedding of Kg on the torus, that is, there
is no uniform map on the torus whose underlying graph is Kg. For otherwise, such imbedding
would have 6 vertices, 15 edges and f = e — v =9 faces and 60 flags but 18 = 2f 1 60.
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Throughout this chapter we assume that M = (Z 2) M = (Z,l ;ﬁ) € M(2,7), with
det(M) # 0 # det(M').

4.1.1 Uniform maps on the torus of types (4,2,4) and (6,2, 3).

Let Ny := N(4,2,4) and Ng := N(6,2,3), where, as before, N(I,m,n) is the normal closure
of the subgroup generated by (R1Rz)!, (R2Ro)™ and (RoR;)"™ in A.
Lemma 4.1.1. 1. The hypermap U = (4,2,4)pr has F = |det(M)| faces, E = 2| det(M)|
edges, V- = | det(M)| vertices and || = 8| det(M)| flags;
2. The hypermap U = (6,2,3)pr has F = 2| det(M)| faces, E = 3|det(M)| edges, V =
| det(M)| vertices and |Qqy| = 12| det(M)| flags.
Proof. Let a € {i, p}. In both cases all faces of U are represented by congruent polygons. Thus,

the area of the Euclidean parallelogram with vertices 0, a + ba, ¢+ da and (a+¢) + (b+ d)a,
is equal to the number of faces F' times the area of one face. On the other hand, the area of

the Euclidean parallelogram is |det(C' - M)| = | det(C)| - | det(M)|, where C' = (é iﬁgzg) is
the matrix of change of basis from (1,a) to (1,7). When « = i, the faces are represented by
squares with area 1 and det(C) = 1, so |det(M)| = F' x 1 = F. When a = p, the faces are

represented by equilateral triangles with area v/3/4 and det(C) = v/3/2, so F = 2| det(M)].
The other values are given by the formula Q| = 21V = 2mFE = 2nF. O

Let X4 = RoR1RoR1, Y4 = X4 = RiRyR1R2, X6 = RoyR1RoR1RoR; and Yy = X't =
Ri1RyR1RoR1 Ry. We shall omit the index [ in N;, X; and Y if it is clear from the context.

Lemma 4.1.2 (Properties of N, X and Y).
1. IFN=Ny, X =X, and Y =Yy, then:

(a) NX = NY;
(b)) NXFo = NX-1 NXFB = NY, NXF = NX,
NYFo = NY, NYFf1 = NX, NYf = Ny 1.
2. If N =Ng, X = Xg and Y =Y, then:

(a) NX = NY;
(b)) NXBo = NX~1 NXFt = NY,K NXF2 = NX,
NYFBo = NX~ly, NY® = NX, NYf: = NXY 1

Proof. 1.(a) NXNYNXINY!=NXYX-ly-!
(RoR1)?
=N [(R0R1)4 ((RzRO)_Q)Rl (R1R2)4(R2R0)2}

(b) NXBo = NRIRyR1Ry = NX 1,
NXF = NY,
NXF2 = N(RyRyRyRy)P2 = N [(RyRo)(R1Ry)4] ™™ X = NX
2
NY R0 = N(RyRoRy Ry)Ro = N [(RoRy)*(RoRo)?] ™)y = Ny
NYH = N( xRl = NX,
NYF2 = NRyR{RyR, = NY L.
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2.(a) NXNYNXINY-!=NXYXly-!

= N |(R1Ro)*(RoRy)? {(RoRl)?’ ((RoR2)%)™ (R Ra)S (R Ry)?

RoR1 R R1RoRy
} —N.

(b) NXFo = NRiRoR1RoR1Ry = NXfl,
NXf = NY,
NXP?2 — N(RyRiRyRiRyR1)R2 = N(RaRo)? [(R1 R2)S] ™™ X = NX,
NYPBo — N(RyRoRy RyRy Ry)™ = N(RoRy)® [(R1Ro) ] ™™y X1 = NX 1Y,
NYF = N(xXF)f = NX,
NY®2 = NRyR RyR RyRy = N [(RaRo)?(RoRy)?] ™™™ y-1x — NXY L

Remark 4.1.3. NXF0 = NX~1 and NY F2lo = Ny —1,
Because N is a normal subgroup of A contained in U, N is contained in Ua, and hence:
Corollary 4.1.4. Let U be a uniform map on the torus and U a hypermap subgroup of U.
1. IfU is of type (4,2,4), X = X4 and Y =Yy, then:

(a) UAX = UAY,'
(b)) UnXEo = UrX1, UnXB = UAY, Un X2 = UpX,
UAYEo = UAY, U\Yr = UpaX, UpYF2 = U Y L.
2. IfU is of type (6,2,3), X = X¢ and Y =Y, then:

(a) UrX = UAY;
(b)) UnXB0o = UrX"1, UnXB = UAY, Un X2 = UpX,
UaYTo = UaX7Y, UnYT = UpX, UY®2 = UpXY L.
Remark 4.1.5. Up X2l = A X1 and UpYF2lo = UYL,

Now we use the previous results to obtain hypermaps subgroups for the uniform maps on
the torus.

Theorem 4.1.6 (Hypermap subgroups of (4,2,4)ys and (6,2,3)r).

1. U = N(XV? XYY = ((R1Ry)*, (R2Ry)?, (Ro, R1)H)A(X2Y?, XYY) is a hypermap
subgroup of U = (4,2,4)p;

2. U = N(XV® XYY = (R1R2)%, (R2R0)?, (Ro, R1)®)2(XY?, X°YY) is a hypermap
subgroup of U = (6,2,3) .

Proof. By the definition of &, N C U and X°Y?, XY € U. Let V := N(X%Y? XcY%).
Since N < A, V is a subgroup of A such that N C V C U. Furthermore V/N is a subgroup
of A/N. By Lemma 4.1.2, for all p,q € Z, NXPY? = (NX)P(NX)?, so V/N = ((a,b), (c,d)).
Therefore V/N has index 2l|ad — be| = 21| det(M)| = || = [A : U] in A/N. It follows that
[A:U]=[A/N:V/N|=[A:V]=[A:UJ[U:V],s0 [U:V]=1, thatis, U = V. Ol

Using Theorem 4.1.6 together with Remark 4.1.5, we get:
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Corollary 4.1.7.
1. U/N = (NXY? NX¢Yd) = (NXY?) x (NXYH 27 x 7,
2. UR2Bo = U, or equivalently, UT0 = UT2,

Proposition 4.1.8 (Conservativeness of (4,2,4)y and (6,2,3)r). Let M = (Z 2) with
det(M) # 0. Then:

1. (a) (4,2,4)p is AT-, Al Al conservative;

(b) (4,2,4)p is A0 A2 , AV~ A%_conservative if and only if a —b and ¢ —d are even.
2. (a) (6,2,3)nr is AT, AQ—, AZ-conservative;

(b) (6,2,3)n is not AO—, Ai—, A% Al-conservative.

Proof. 1. Clearly, (R1R2)*, (R2Rp)? and (RoR1)* are in every normal subgroup of index 2
of A. Thus N C O, for all © <ia A. Owing to this, U C © if and only if Xyt xeyd ¢ ©.
Because X,Y € AT AL Al but X,V ¢ A A2 A , A2 it follows that XPY? € A+ Al Al
for every p,q € Z, and Xqu € AO AZ AV, A2 1f and only if p and ¢ are both even or both
odd or equivalently, if p — ¢ is even.

(Rle) and (ReRo)? are in every subgroup of index 2 of A, but (RoR1)? is only in AT,
A and A2. Because of this, U can never be A0 Ai—, A% Al-conservative. Since X and Y
are in A+, A2 and A2, If is always AT, A2 A2 conservative. O

Lemma 4.1.9. A/Up = (UaR1,UAR2)(UpX,UAY). In addition, (UnR1,UaR2) = D; and
(UaX,UAY) is abelian.

Proof. Let S = (UaR1,UaRs) = Ua(R1, Ro)/Ua and T = (UaX,UaY) = Ua(X,Y)/Ua.
Using Corollary 4.1.4, we have that (UaR;)T = T(UaR;), for i € {1,2}, so ST =T5S. It
follows that ST is a subgroup of A/Ua containing Ua Ry = UARiRyR1 X', UAR; and UaRs,
so A/Ua = (UaRy,UaR1,UpR2) C ST C A/Up, that is, A/Up = ST. ]

In [57, 58] Singerman and Syddall determined conditions for seeing if two given uniform
maps on the torus of the same type are isomorphic or not. However they did not see when
one covers the other. Our next result fills this gap.

Theorem 4.1.10.

1. (a) (4,2,4)p — (4,2,4)pp if and only if there are P €
Q € M(2,7Z) such that det(Q) # 0 and M = PM'Q;
(b) (4,2,4)p = (4,2,4) 5 if and only if there are P €

Q € GL(2,7Z) such that M = PM'Q.

= Dy and

= Dy and

Q € M(2,Z) such that det(Q) # 0 and M = PM'Q

(b) (6,2,3)ar = (6,2,3)pr if and only if there are P €
Q € GL(2,7Z) such that M = PM'Q.

= Dg and

)
)
) = Dy and
)

2. (a) (6,2,3)p — (6,2,3) 5 if and only if there are P € <
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Proof. LetU = (I, m,n)pr, U = (I, m,n)pp, U = N(XYV?, XY and U = N(XVYY XY,

1

Furthermore, let Ay = Ag = <[1) 0), By = ((1) 2) and Bg = (é 11) Equivalently,

A= ((1) [1)) and B) = (é (l'fll)/Q).
Proof of 1(a) and 2(a):

(=) Suppose that U covers U’'. Then, according to Lemma 1.3.1, there is g € A such that
U C (U")9. By Lemma 4.1.9, Urg = (UAs)(UAt), for some Uhs € S = (UNR1,UAR2) and
UAt € T = (UNX,UAY). Since Unt € T = (UAX,UAY) and T is abelian (see Lemma 4.1.9)
Ut = UAX,UAY. Tf X“Y? € U C (U')9, then:

U = UgX"Y'g ' = UUAgUA(X"Y")Uhg™"
= U'UhsUAtUA(X"YV)UAt 'UAs ™ = U'UAsUA(X"Y")UAs ™!
= U'(UAX“Y")Vas™

Because X9Y?, XY € U C (U9, U'(UAXY?)Vas™ — ' = U/ (UAX Y 4)Vas™",

Clearly, (UAR1)? = (UAR2)? = (UA(RiR2))! = UA. Let N\ : S = (UAR;,UARy) —
(A}, B)) = Dy be the group isomorphism defined by UAR1 N, = A; 7! and UARyN = B L.
Then (UAX“YV)UARL — UAX"YY and (UAX"Y?)VAR2 — UAXUYY2 where ui,v1, uz, va
are given by

() = () =emmn (). () =1 (2) = s (1)

We remark that D; acts on Z x Z by right multiplication.
Thus, for all u,v € Z, and for all UAr € (UAX,UAY), (UAX"Y?)UA" = UAX"Y"", where

u* and v* are given by <Z’*> - (U/AT’)\z)_l (5)

Let P = UAs~')\;, and let a*,b*,c¢*,d* € Z such that Usn XYY = (UaX°Y?)Vas™" and
UraXEY? = (UaXY4)Uss™" Then:

a* ¢\ 1 fa c\ 1
(o o)=r (5 o) -

Since X*' YY" XYY ¢ U’ and U'/N = (NXYYY) x (NXYY) = Z x Z (Corollary 4.1.7),
there are r, 5, t,u € Z such that NX*'Y?" = N(X¢YY )" N(X¢y?)s = NX¢r+csytrtd's ynq
NXC*Yd* _ N(Xalel)tN(XC/Yd/)u — NXa’t+C’UYb’t+d’U_ Making Q — (2 z)’ it follows

that .
a* c'\ [d ¢ rot\
(o &) =(5 @) (o) =rre

Hence P~'M = M'Q and M = PP~'M = PM'Q.

(«=) Reciprocally, by choosing r € (Ry, Ry) such that UAr)\, = P, U C (U')" and 9 :
AU — AU, Ug— U'rg is a covering U — U’".

Proof of 1(b) and 2(b):

(=) U =2U, then U — U" and U — U. By (a), there are P, P» € (A;, B;) = D; and
Q1,Q- € M(Q, Z) such that det(Ql),det(Qg) #£0, M = PlM/Ql and M’ = P,M@Qy. Owing
to this M = P1P2MQ2Q1 and det(M) = det(Pl) . det(PQ) . det(M) . det(Qg) . det(Ql). Since
det(M) # 0, det(Pr), det(Pe), det(Q1), det(Q2) € {£1}, so Q1 and Q)2 are invertible.
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(<) Conversely, if there are P € (4;,B;) = D; and QQ € M(2,Z) such that det(Q) # 0 and
M = PM'Q, then, by (a), U — U'. Since P and @Q are invertible, M’ = P~'MQ~! and, by
(a), U —U. O

Givenl € {4,6}, let ~; be the binary relation defined on the set {M € M (2,7Z) | det(M) #
0} by M ~; M’ if and only if there are P € (A;, B;) = D; and Q € GL(2,Z) such that
M = PM'Q. Then ~4 and ~g are equivalence relations such that

M ~y M'if and only if (4,2,4)n = (4,2,4) 0
and
M ~g M’ if and only if (6,2,3) = (6,2,3) s

In other words, Theorem 4.1.10 establishes a bijective correspondence between the equivalence
classes of ~4 and ~g, and the isomorphism classes of uniform maps on the torus of types (4,2, 4)
and (6,2, 3), respectively.

Corollary 4.1.11. D(02)<(4,2,4>M) = (4,2,4)M

Proof. Tet M = (Z 2) Then (4,2,4); has hypermap subgroup N(X?Y? X¢Y?). Because
X(02) = Y™l and Y(02) = X1, (N(XY? XV9))(02) = N(XPY % X9y ~¢) is a hy-
permap subgroup of D(oz)((4,2,4)M)- Since (:Z :‘Ci) = (01 g) (Z’ 2), the hypermaps are

isomorphic by Theorem 4.1.10.

Now we give some examples of restrictedly-regular uniform maps on the torus:
Proposition 4.1.12. Let k,I,m € Z.
1. (a) (4,2,4)(z o) and (4,2,4)(l _l) are Ai—regular;
0

m m

Sirai, Tucker and Watkins [66])
4,2 )( _m) and (4 ,2,4)( my are A -regular;

1 m m 1

(c) Xeter and Moser [33])

(
(
(C
(4, )( _m> is A" -reqular (that is, orientably-reqular);
(
(4,

m 1l

(d) Coxeter and Moser [33])
A koy and (4,2,4) 1 -\ are A-reqular (that is, regular).
(0 k) (k k )
2. (a) (Coxeter and Moser [33])
6,2,3)(l -l-m) is AT -regular (that is, orientably-reqular);

m 1

(
(
(b) (Coxeter and Moser [33])
(6,2 3)(k 0) and (6,2,3)(k _Qk) are A-regular (that is, regqular).
k k

Proof. fU = N(X*Y? X°Y?) is a hypermap subgroup of a uniform map 2/ on the torus, then
U is O-regular if and only if U/N <©/N, that is, if and only if N(X?Y?)9 N(X°¢Y9)9 ¢ U/N
for every g € S, where S is a set of generators of ©. This can be easily carried out by using
Lemma 4.1.2 and by choosing S as {R1 Rz, RoRo}, { Ro, Ra, Ro™, Ry™Y}, {Ry, RyRo, RoR1 Ry}
and {Ro, Ry, Ra}, according to © = AT, Al Al and A, respectively. O
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Lemma 4.1.13. Let M = <Z 2) such that det(M) # 0, (I,m,n) be (4,2,4) or (6,2,3),

U= (I,m,n)y and U = ((R1R2)", (R2Ro)™, (Ro, R1)™> (XY, XY a hypermap subgroup
of U. Then the following statements are equivalent:

1. X'YI e U;
2. there are x,y € Z such that

()=6 %) C) )
3. det(M) = ad — bc | di — cj,aj — bi.

In addition, if X'Y7 € U, then ged(a,c) | i, ged(b,d) | j, ged(a + b,c+d) | i + 5 and
ged(a —b,e—d) |i—j.

Proof. Since N C U,

XY'eU & NXWY/ eU/N=(NXY' NXYH2ZxZ
< there are x,y € Z such that (i,j) = z(a,b) + y(c, d), or equivalently,

1\ _[a c\ (=
i) \b d)\y
& ad—be| (ad — be)x = di — cj, (ad — be)y = aj — bi.

Naturally, ged(a, ¢) | az+cy =i, ged(b,d) | bx+dy = j, ged(a+b,c+d) | (a+b)x+ (c+d)y =
i+ 7 and ged(a —b,c—d) | (a—b)x+ (c—d)j =i—j. O

Proposition 4.1.14. Let M = (Z 2) such that det(M) # 0, d; = ged(a, ¢), da = ged(b, d),
dT =ged(a+b,c+d) and d~ = ged(a — b,c — d).
1. LetU = (4,2,4)p, U = N(XY? XY a hypermap subgroup of U. Then:
(a) Ro € NA(U) if and only if Ry € Na(U);

(b) if Ro, R € NA(U), or Ry, Ry € Na(U), then Na(U) = A;
(¢) if Ry € NA(U), or equivalently, if Ry € NA(U), then | det(M)| is didz, or | det(M))]

. a b d .
18 2d1do and o~ & d — 4, are even;

(d) if Ry is in NA(U), then a—b and c—d are even and |det(M)] is d+2d_, or | det(M)]

is dTd~ and ‘Z—ib - ‘&—*b and c(;—,d - Cd%d are even;

(e) if RoRy € Na(U), then |det(M)| is a® + b%, ¢ +d?, (a — b)? + (¢ — d)? or (a +
b)2 + (c+d)?, and det(M) divides a® + b?, ¢? + d? and ac + bd;

(f) Na(U) = A if and only if di = do and |det(M)| is di?, or |det(M)| is 2d,? and
2dy divides d~ .

2. LetU = (6,2,3)y and U = N(X*Y" XYY a hypermap subgroup of U. Then:

(a) Ro € NA(U) if and only if Ry € Na(U);
() if Ro, Ry € NA(U) or Ra, Ry € Na(U), then Na(U) = A;
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(c) if RaRy € NA(U), then |det(M)| is a* + ab + b, ¢® + cd + d?, (a — b)* + (a —

b)(c —d) + (c — d)? or (a +b)%? + (a + b)(c+ d) + (c + d)? and det(M) divides
a’?+ab+b?, % +cd+d?, ac+ad+bd (and ac+bc+bd = (ac+ad+bd) — (ad —bc) );

(d) U < A if and only if di = dy and |det(M)| is di? or |det(M)| is 3di? and 3dy

Proof.
(b)

(c)

divides d~.
1. (a) By Corollary 4.1.7 RaRy € Na(U).

By (a), Ry € Na(U) if and only if Ry € NaA(U), so Na(U) is a subgroup of A
containing Ry, R, Ry and hence Na(U) = A.

By Corollary 4.1.4, UA(XY?)P(XY 41 = Up XPTeaytP+dd Because XY and
Xy are U, X®+eay®r+dd i5 also in U. Replacing (p, ¢) by (d, —b) and by (—c, a),
we get Xad—be yad=be ¢ [J showing that |det(M)| = |ad — bc| belongs to the sets
L:={neN|X"eU}and M :={n € IN| Y™ € U}. Hence, the sets L and
M are non-empty. Because IN is a well-ordered set, L and M have minimums.
Let [ := minL and m := minM. From the definition of [ and m, it follows
that if XPY? € U, then [ | p if and only if m | ¢. Indeed, if XPY? € U, then
llpeXPcUseYieU<m|q.

Case 1: For all p,g € Z such that 0 < p <[, 0 < ¢ < m, UXPY? £ U, that
is, XPY? ¢ U. In this case U can be represented by the Euclidean parallelogram
with opposite sides identified and vertices 0, [, mi, | + mi. Hence F = |det(M)| =
Im. Since X', Y™ € U, by Lemma 4.1.13, dy | I, dy | m and Im = |ad — bc| |
dl,—bl,—cm,am. It follows that [ | dy and m | d2, and because [, m,dy,dy are
non-negative integers, I = d; and m = do. In addition there are r,s,t,u € Z such

that ru — st = £1 and
di 0\ [(a c r t
(5 a)=C o) 42

Case 2: There are 0 < p < [ and 0 < ¢ < m such that UXPY? = U, that
is, XPY? € U. By Corollary 4.1.4, Uxr(XPY9)F0 = UrX7PY?, Up(XPY9)E2 =
UaXPY =9, UnX? = UrXPY9-UA(XPY D)2 and UpY?? = UprXPY - Up X PYY.
Because Ry, R2 € NA(U) and XPY? € U, X PY? and XPY 9 are in U, as well as
X2 and Y24, By the definition of [ and m (and the Euclidean division algorithm),
[ | 2p and m | 2q. Furthermore, since [, m,p,q are non-negative integers such
that 0 < 2p < 2l and 0 < 2¢ < 2m, | = 2p and m = 2q. In this case U
can be represented by the Euclidean parallelogram with opposite sides identified
and vertices 0,p + qi, —p + qi,2qi or 0,p + qi,p — qi,2p (see Figure 4.2). Hence
|det(M)| = F =1lm/2 = 2pq. Since XPY1, X PY9 € U, by Lemma 4.1.13, d; | p,
dy | ¢ and 2pq = |ad — be| | dp — cq,dp + cq,bp — aq,bp + aq. Consequently
2pq | 2aq, 2bp,2cq,2dp, so p | di and ¢ | da. Because p,q,d;,dy are non-negative

a b ¢ d

integers, p = dy and ¢ = dy. From 2pq | bp—aq, dp—cq, it follows that P TR P B et

are even. In addition there are r, s,t,u € Z such that such that ru — st = +1 and

(-G oty -
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(0,m)

(-p,q) (p,9)

©0) O

Figure 4.2: Ry, R2 € Na(U)

(d) By Corollary 4.1.4, UnX7Y? = Up(XPY )Rt Upy XPTIYPTE = Up XPY 1UA(XPY )R

and Up X ~(P=0YP=0 = U5 (XPY )L . Up(XPY )1 If Ry € NA(U) and XPY9 €
U, then X9YP Xptayrte X—-(—a)yr—a ¢ [J. Replacing (p,q) by (a,b) and by
(C, d), we get Xaeryaer,Xc+dyc+d7Xf(a7b)Yafb’ X —(c=d)yc—d cU.

Because (a+b)d—b(c+d) = (a—b)d—b(c—d) = ad—bc # 0, a+b and c¢+d cannot
be simultaneously 0, as well as a —b and ¢ —d. Consequently, |a+b| or |c+d| are in
L:={nelN|X"Y"eU}and |a—b|or|c—d|arein M :={neIN| X "Y" e U}.
Hence, the sets L and M are non-empty. Because IN is a well-ordered set, L and
M have minimums. Let [ := min L and m := min M. From the definition of [ and
m, it follows that if XPY? € U, then 2l | p+ ¢ if and only if 2m | —p+ q. Indeed, if
XPY9 €U, then2l |ptqe X2V cUe X5V 5" U« 2m| —p+q.
Case 1: For all p and g such that 0 < p+q < 21,0 < —p+q < 2m, UXPY? # U, that
is, XPY? ¢ U. In this case U can be represented by the Euclidean parallelogram
with opposite sides identified and vertices 0, [+1i, —m+mi, (I—m)+ (I+m)i. Hence
F = |det(M)| = 2lm. Since X'Y!, X~™Y™ ¢ U, by Lemma 4.1.13, d* | [ +1 = 2,
d” | —m—m = —2m and 2lm = |ad — be| | —=l(c—d),l(a—b),—m(c+d),m(a+D).
Thus 21 | d* and 2m | d~. Because [, m,d",d~ are non-negative integers, 21 = d*
and 2m = d~ Naturally, d~ = 2m and d* = 2l are even and | det(M)| = |ad —bc| =
2lm = ﬁ%. In addition there are r,s,t,u € Z such that such that ru — st = +1

and - .
5 =5 a c\ (r t

(dj d;) N <b d> (3 u) (44)
Case 2: There are p,q € Z such that 0 < p+¢q < 2[, 0 < —p + q < 2m and
UXPY? = U, that is, XPY? € U. Since XPHay?+a, X—(—0yP—a ¢ U by definition
of | and m (and the Euclidean division algorithm), { | p + ¢ and m | —(p — q).
Consequently [ = p + ¢ and m = —(p — ¢q). In this case U can be represented by
the Euclidean parallelogram with opposite sides identified and vertices 0, p+ qi, g+
pi, (p + q) + (p + q)i (see Figure 4.3). Hence |det(M)| = F = 2lm/2 = lm =
(p+q)(—p+q). By Lemma 4.1.13, X?Y? € U implies d* | p+q, d” | —p+ ¢, and
(p+q)(—=p+q) = |lad—bc| | dp—cq, aq—"bp,dq—cp,ap—bq. Solm = (p+q)(—p-+q) |
—(=p+q@(c+d) = —mlc+d),(p+q)ic—d) =llc—d),—(-p+qg)a+b) =
—m(a+0b),(p+q)(a—0) =1(a—"0). Thus [ |d" and m | d~. Because I,m,d",d~
are non-negative integers, | = d* and m = d~. From Im | ap — bq, —cq + dp we
get 2lm | 2(ap — bq) = (a — b)l — (a + b)m,2(—cq + dp) = —(¢ — d)l — (¢ + d)m,
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SO a?_b — aT‘H’ and C;L—d — # must be even. In addition there are r, s,t,u € Z such

that such that ru — st = +1 and

+ g + g
dr—d” 2d dt+4d” ;d _[(a ¢ r t (45)
dt+d-  dt—d- b d s ul” :
2 2

S

(-m,m)

a0 (p.9)
(0,0) x

»
>

Figure 4.3: Ry € NA(U)

(e) Let K :={p*+¢* | p,q € Z & (p,q) # (0,0) & XPY9 € U}. Since a®? +b?, 2 +d? €
K, K is non-empty. Because IN is a well-ordered set, K has a minimum. Let
k := min K. Let [,m € Z such that (> + m? = k. By definition, 12 + m? = k <
min{a?+4b?, > +d?}. Corollary 4.1.4 implies that Ua (XPY ?)F2Fr — A X~9YP and
UpXP=9Y Pt = UAXPY9 - Up(XPY ) P28 Since RyRy € NA(U), if XPYY € U,
then X—9Y? (XPY )2l ¢ 7. Replacing (p, q) by (d, —b) and by (—c, a), it follows
that X~°Y*, X9V € U. By Lemma 4.1.13, ad — bc | a® + b%,¢? + d?, ac + bd.
We note that X0Y9 Xlym X—my!l Xi=myl+m c 7. We now show that U can be
represented by the Euclidean parallelogram with opposite sides identified and with
vertices 0,1+ mi, —m + i, (I —m) + (I + m)i by proving that there are no p,q € Z
such that XPY? € U and (p, q) is inside of the square with vertices (0,0), (I, m),
(=m,l) and (I —m,l 4+ m). Let p,q € Z such that and P := (p, q) is inside of the
square with vertices A := (0,0), B := (I,m), C := (—=m,l) and D := (I —m,l+m),
that is, such that 0 < —mp + lg,lp + mq < 1> + m? = k, and let r,s,t,u be the
distances of P to A, B,C, D, respectively. Observe that P must lie in at least one
of the circles with center in A, B, C, D, and radius vk, so the distance of P to
each of the 4 vertices of the square cannot be simultaneously greater or equal than
Vk = V12 + m2, which is the length of the side of the square (see Figure 4.4). This
implies that XPY? ¢ U because otherwise there would be @ € {4, B,C, D} and
u,v € Z such that (u,v) = P —Q, X"Y* € U and 0 < v?2 +v%2 < > + m? =k,
contradicting the minimality of k.

Hence |ad — be| = |det(M)| = F = k = 1> + m? Since X'Y™ X"™Y! € U, by
Lemma 4.1.13, I24+m? = |ad — be| divides al +bm, bl —am, cl+dm and dl —cm. By
the definition of [ and m, (I, m) must be inside of the parallelogram with vertices
ala,b) + B(c,d), where o, f € {£1} (see figure 4.5); else there would be a lattice-
preserving translation 7 of the plane such that (0,0) is closer to (I,m)7 than to
(I,m)). Therefore —(ad — bc) < —bl 4+ am,dl — cm < ad — be. Owing to this, and
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Figure 4.4: 7, s,t,u cannot be all greater than vk = v/12 + m?2.

because |ad —be| | —=bl + am, dl — em, it follows that (Id —me, —lb+ma) = (ku, kv),
with u,v € {—1,0,1}.

(ate,b+d)
(c,d)

(-(Z+C,-b+d) (l,m) ( b)
a,

\/

(a-c,b-d)

(-a-c,-b-d)

Figure 4.5: (I,m) is inside the parallelogram.

(5 )= 6 D 6)

Multiplying both members of this equation by (Z d), we get

O )6 =6 265 0)

since (k 0) comutes with (Z 2) Hence

0000

Then:
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This gives the 9 possible values for (I,m), namely u(a,b) + v(c,d), with u,v €
{~1,0,1}. Since |det(M)| > 0, |det(M)| = k = 12 + m? is a® + b%, ¢ + d? or
(a—c)?+(b—d)?, (a+c)?+ (b+d)% In addition, there are r,s,t,u € Z such that
such that ru — st = £1 and

I —m a c\ (r t
b T)=G D) o
(f) Looking back at the proof of (c), if R; € NA(U), then X™ = (YF)m = (ym)R1 yl =
(XE) = (XHEr ¢ UFT = U, som € Aand | € B. Hence | = min A < m and

m =min B < [. Consequently dy =1 =m = do. In addition, taking d := d; = da,
there are r, s,t,u € Z such that such that ru — st = £1 and

(o a)=( o) () n
(@ )-G oy 19

The proofs of 2. are similar to those presented in 1. O

We recall that if g € Na(U), then Ug € NA(U)/U = Aut(U) corresponds to the automor-
phism of U/ that maps a flag Ud, with d € A, to Ugd. In particular, if I/ is a uniform map on
the torus of type (4,2,4), then R; € Na(U) if and only if Aut(H/) includes reflections on the
diagonals; Ry, Ra € Na(U) if and only if Aut(H) includes reflections on vertical or horizontal
lines.

d
0, d; = ged(a, ¢), dy = ged(b,d), dt = ged(a+b,c+d) and d~ = ged(a — b, c — d).

Theorem 4.1.15 (©-regularity of (4,2,4)y and (6,2,3)as). Let M = (Z C) with det(M) #

1. LetU = (4,2,4)pr. Then:

(a) U is AG—, AQ—, A% A?_reqular if and only if a — b and ¢ — d are even and U is
reqular;

(b) U is Al-reqular if and only if |det(M)]| is dida, or |det(M)| is 2d1dy and g- —

b ¢ d .
oL~ 4, are even;

(c) U is Al-regular if and only if a — b and ¢ — d are even and |det(M)| is d+2d_ , or
|det(M)| is dtd~ and ‘Z—ib = ‘fi—tb and CJ—ﬂ — Cd%l are even;

(d) U is AT -regular if and only if | det(M)| is a® + b2, ¢+ d?, (a — b)? + (c — d)? or
(a+0b)?+ (c+d)? and det(M) divides a® + b?, 2 + d? and ac + bd;

(e) U is reqular if and only if dy = dy and |det(M)| is di?, or |det(M)| is 2d;> and
2dy divides d—.

2. LetU = (6,2,3)ps. Then:

(a) U is AQ—, A2-reqular if and only if U is reqular;
(b) U is not A0 AL AO Al pegular;
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(c) U is AT -regular if and only if |det(M)| is a® + ab + b2, ¢ + cd + d?, (a — b)? +
(@—b)(c—d)+ (c—d)? or (a+b)%2+ (a+b)(c+d)+ (c+d)? and det(M) divides
a’?+ab+v?, 2 +cd+d?, ac+ad+bd (and ac+bc+bd = (ac+ad+bd) — (ad—bc) );

(d) U is regular if and only if di = dy and |det(M)| is di? or | det(M)| is 3d;* and
3dy divides d~.

Proof. 1. (a) Let © € {AO,AQ,AO,AQ}. By Proposition 4.1.14, if ® C Na(U), then
NA(U) = A. Hence U is O-regular if and only if U is ©-conservative, that is, if a — b
and ¢ — d are even (Proposition 4.1.8).
(b), (c), (d), (e) Let ©® € {Ai,AI,AJF,A}. By Proposition 4.1.8 every uniform map on
the torus of type (4,2,4) is ©-conservative.
(=)’s are consequences of 1.(c), 1.(d), 1.(e), 1.(f) of Proposition 4.1.14, respectively;
(«<)’s Using (4.2), (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8), together with Theorem 4.1.10,
we can see that I is isomorphic to one of the hypermaps listed in 1. of Proposition 4.1.12;
by this result ¢/ is A=, Al-, AT- or A-regular, respectively.

2. (a) Let © € {AQ, A?}. Every uniform map on the torus of type (6,2, 3) is ©-conservative
by Proposition 4.1.8. By 2.(b) of Proposition 4.1.14, U is ©-regular if and only if U is
regular.

(b) If © € {AO,Ai,AO,Al}, then U is not ©-conservative (Proposition 4.1.8), hence U
is not O-regular.

(c), (d) Let ©® € {AT,A}. Asin 1.(d), 1. (f), U is always O-conservative.
(=)’s are consequences of 2.(c), 2.(d) of Proposition 4.1.14;
(«<)’s follow from 2. of Lemma 4.1.13.

Corollary 4.1.16. Let M = ((Z ;) such that det(M) # 0.

1. (a) (4,2,4)p 1s Al regular if and only if (4,2,4)p = (4,2,4) N, where N is (é 0) or
<Tln ) for some [,m € IN;

(b) (Siran, Tucker and Watkins [66])

(S
(4,2,4) 0 is Al-regular if and only if (4,2,4)y = (4,2,4)y, where N is G _TZL)
or (l l), for some I,m € IN;

m

(c) (Coxeter and Moser [33])
. . . ~ . I —m
(4,2,4) s is AT -reqular if and only if (4,2,4)p = (4,2,4)n, where N is (m 1 ),
for some [,m € IN;
(d) (Coxeter and Moser [33])

(4,2,4)pr is regular if and only if (4,2,4)n = (4,2,4)N, where N s (’S 2) or
(: ) for some k € IN.

2. (a) (Coxeter and Moser [33])

(
. ~ . I —l—m
(6,2,3) s is AT -regular if and only if (6,2,3)y = (6,2,3)n, where N is (m ; ),

for some [,m € IN;
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(b) (Coxeter and Moser [33])
6,2,3)m is reqular if and only if (6,2,3)y = (6,2,3)n, where N is ko0Y o
( » Sy ) g J Yl » Sy ) Sy ’ 0 k

(: fk), for some k € IN.

m 1

Note that the orientably-regular hypermaps (4,2,4)/, _m) and (6, 2,3)(l _l_m) ({4,4},,,
mo 1 ’
and {3,6},,, in the notation of Coxeter and Moser [33]) are regular if and only if [ = 0 or
m=0orl=m

Remark 4.1.17. In [66], sir?’m, Tucker and Watkins proved that a uniform map U of type
(4,2,4) is Al-regular if and only if U = (4, 2,4)(T1 _5), where s | 11 —ro. If (r1 —rg)/s is even,

Ty S

say r1 — ro = 2ks, then

1 —s\ _ (roe+2ks —s\ (ro+ks —s 1 0
ry s ) r9 s ) \ro+ks s —k 1
and (4,2,4)(T1 _S) = (4,2,4)(T2+ks_5) since det (jk (1)) = 1; else if (r1 — r9)/s is odd, say

ro+ks s

r2+s+2k3 —s\ _(ro+s+ks —s 1 0
s ) ro + ks s —k 1
r2+5+k5 ro + ks 1 -1 1 0

ro + ks ro+s+ks)\0 1 -k 1
<r2+s+k‘s ro + ks ><1+k —1)

—k 1

Ty S

r1 —r2 = (2k + 1)s, then

ro + ks ro 4+ s+ ks

~ 1+k -1
and (4,2,4)(T1 —s) = (47274)(r2+i-£ks rathe ) since det ( A ) =1.
7‘2 S 7'2 S 7'2 S S

It is also shown that a uniform map U of type (6,2, 3) is orientably-regular if and only if
U= (6,2,3)(r s ) However, since

s r+s
r —s _(r —r—s 1 1
s r+s) \s r 0 1

and det (g }) =1 (6:23)(, -y = (6:2.3)(; -

s r+s s T

Remark 4.1.18. One can easily see that

2k k\ (kK -k 1 1 3k k\ _(k -2k 11anddet11—1

0 k) \k k)\-10)"\0 k) \k &k -1 0 -1 0/
Let R = (I,m,n)y, where (I,m,n) is (4,2,4) or (6,2,3) and M is (lg 2) or (klo/2 Z),
for some k € IN. Then R is a regular map and the automorphism group, Aut(R), and
the rotation group, Aut™(R), of R are isomorphic to A/R and AT/R, respectively. Since

A/R = (RX,RY,RR;, RRy), AT /R = (RX,RY, RR1Ry), (RX, RY) is a normal subgroup of
A/R (see Corollary 4.1.4) and (RX, RY) N (RRy, RR2) = {1}, we have

Aut(R) = (Ck X Ck) x D; and Aut+(7€) = (Ck X Ck) x Cy, if M is (la: 2), (4.9)
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and

Aut(R) = (Chja % Cy) x Dy and Autt(R) 2 (Chyp x Cy) x Gy, if M is (“0/2 Z) (4.10)

As remarked by Coxeter and Moser (see Table 7 of [33]), the automorphism groups of
(4,2,4)(k_k) and (6, 2,3)(k 0y are the groups G¥*2* and G352% with orders 16k% and 12k
k k 0k

respectively.

4.1.2 Uniform hypermaps on the torus of type (3,3,3)

The uniform hypermaps on the torus of type (3,3,3) can be obtained from the uniform maps
on the torus of type (6,2, 3) in the following way. If ¢/ is a uniform hypermap on the torus of
type (3,3,3), then Walsh({) is a bipartite-uniform hypermap on the torus of bipartite-type
(3,3;2;6). Owing to this, Walsh(U/) and M := D(gg)(Walsh(/)) are uniform maps on the
torus of types (3,2,6) and (6,2,3). Reciprocally, if M is a uniform map on the torus of type
(6,2,3), then, by Proposition 4.1.8, M is A2 conservative and D(g2)(M) is A0 conservative,
that is, bipartite. Now, D gg) (M), being bipartite and uniform, is bipartite-uniform and its
bipartite-type is (3, 3;2;6). Then, by Theorem 1.6.5, D(g2)(M) = Walsh(U/), for some uniform
hypermap U on the torus of type (3,3,3). Furthermore, if V is another hypermap such that
Walsh(V) 2 D gg)(M) = Walsh(if), then, by Theorem 1.6.6, V = U or V = Doy(U). If U
and M are hypermap subgroups of i and M, then M = UgoWﬂ@, Up, = M@ and
U= USDW_IQDW = M(OQ)SOW
Let X3 := X5(02)p,, = RoR1RoR1 = L Y3 := Y5(02)p,, = RiReR1 Ry = X4~ ! and

N3 = Ng(02)py,

(R1R2)5, (R2Ro)?, (RoR1)*)2(02) 0y,
(R1R2)?, (RaRo)?, (RoR1)%)% 0y,
(R1R2)*, [(RiR2)?)™0, (RaRo)?, (RoR1)%)™ o,
(Ri Ra)?, (Ry™ Ry™)3, Ry Rp™o, (R0 Ry g,
(RiRs)%, (RaRo)?, (RoR1)*)™

o~ o~ o~~~

Clearly, Y3 = Xy ~! = (Y, 1) = X3™. Let ¢ A? = A, g g(02)p,,. Since Noy?, = N,
¢* induces an epimorphism ®% : A?/Ng — A/N3, such that (Ngg)®* = N3(ge? ). By abuse
of language, we speak of ¢}, , meaning @7 .
Lemma 4.1.19 (Properties of N3, X3 and Y3).

1. N3 X3 = NgY},,‘

2. N3X3'™ = N3X3Y3™!, N3 X3 = N3Vs, N3 X3/ = N3 X5,
N3Y3fo = N3yt N3V = N3 X5, N3Vsf2 = Ny X5 1ys.

Proof. This Lemma follows from the definitions of N3, X3 and Y3, the fact that o], is a group
epimorphism and 2. of Lemma 4.1.2.

L. N3X3N3Y3 = N3X3Y3 = (N X6Ys)p}, = (N6Y6X6)w), = N3Y3X3 = N3Y3N3.X5.

2. Since Ry = R1R2gow, Ry = Riyp;, and Ry = Ropy,, we have:
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N3 X5 Ro _ (N6X6R2R1R2) (N6X6Y'6 ) —_ N3X3Y'3—1

N3 X3t = (N6X6R1)g0W (N6Y6)<pw = N3Y3,

N3 X3 = (NeX')p? = (NgXe~ )SDW = N3X3~!

Mn%—wwmm&> = (NeYs ™)y, = Ns¥3™!,

N3Ysft = (NgYs™ )t (N6X6>cpw = N3X3,

N3Y3' = (N6Y6R0)gow (N6 Xo ™" Yo)p?, = N3 X3~ 'Y, 0

We shall omit the index 3 in N3, X3 and Yj if it is clear from the context.
Because N is a normal subgroup of A contained in U, N C Ua and hence:

Corollary 4.1.20. Let U be a uniform hypermap on the torus of type (3,3,3) and U a hyper-
map subgroup of U. Then:

1. UpnX = UAY;

2. UnXTo = UAXY ™1, UnXTt = UAY, UaXT2 = Upa X1,
UaYB0o = U YL, UAYP = UpX, UpY 2 = UpX 1Y

Remark 4.1.21. 1. N3(01) = Ng;
Therefore, (01) induces an isomorphism ism A/N3 — A/N3, N3g N3g(01), which, by
abuse of language, we also denote by (01);

2. N3X;(01) = NyRyRoRy Ry = Ny X3(RiRo)* = Ny X = (N3 X3™) 1,

Ry (01)

3. N3Y3(01) = (N3X371)(01) = (N3X3(01)) = N3 X300 = N3 X3V371 = (N3 ¥3f2) !

Lemma 4.1.22. IfU is a uniform hypermap on the torus of type (3,3,3), then U = D 1) (U).

Proof. Let V = D(g)(U) and M = <Z g) such that (6,2,3)y = D(g2)(Walsh(U)). Then U =
(N6<X6“Y}3b,XGCY6d>)g0*W = N3(X3%Y3%, X3¢Y3?%) and V = U(01) are hypermap subgroups of
U and V. By Remark 4.1.21 N3X3(01) = (N3X37)~! and N3Y3(01) = (N3Y372)~1, so

V/N3 = U(01)/N3
(N3(X5"Y3", X3°Y37))(01) /N3
((N3[(X5°Y3")(01)], N3[(X3°Y37) (01)]))
= ([Ns(X3"Ys")2] 7" [N (X5Y3%) )7
(N3(X5°Y3") "2, N3(X5°v5%)f2))

(

Thus V = U(01) = U2, Having conjugate hypermap subgroups, & and V are isomorphic. [

We denote by (3, 3,3)s the uniform hypermap on the torus of type (3,3,3) (unique up to
isomorphism) such that Walsh((3,3,3)a) = D g2)((6,2,3)n)-

Lemma 4.1.23. The hypermap U = (3,3,3)p has || = 6| det(M)]| flags, V = |det(M)]
vertices, E = |det(M)| edges and F = | det(M)| faces.
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Proof. The number of flags of (3,3, 3)s is half the number of flags of D(g2)((6,2,3)a), which
is 12]det(M)]. The numbers of vertices, edges and faces of U are given by the formula
Q| =21V =2mE = 2nF. O

Theorem 4.1.24 (Hypermap subgroup of (3,3,3)a). The hypermap U = (3,3,3)pn has
hyp@rmap subgroup U= N<XaYb7XCYd> = <(R1R2)67 (R2R0)27 (R()a R1)3>A<Xayb7XCYd>‘

Proposition 4.1.25 (©-conservativeness of (3,3,3)r7). The uniform hypermap (3,3,3)rr is
AT -conservative but is not ©-conservative for any other © <15 A.

Proof. Since (R1R2)3, (RoRo)3, (RoR1)%, X3 = RyR1RoR1,Ys = RiRyRiRy € AT, U C A™.

However, (R;R;)% ¢ A* AF for every k € {0,1,2},50 U € O, for © <a A, © # AT, O
Lemma 4.1.26. (3,3,3)ar — (3,3,3)ar if and only if (6,2,3)1 — (6,2,3)ar.

Proof. Let U and U’ be hypermap subgroups of (3,3,3)y and (3,3,3)5. Then V := Ugo*w_1
and V' := U’cp*W_1 are hypermap subgroups of (6,2,3)s (6,2,3)n. If (3,3,3)p — (3,3,3) a7,
then U C (U')Y, for some y € A. Since ¢¥ is an epimorphism, there is x € A? such that
zp¥ =y. Hence V = Ugo’v‘vf1 - (U’)ygo’v‘vf1 = (U’)w‘*/Vgo’v‘V*l = (U’gozvfl)x = (V")*, that is,
(67 2> 3)M - (67 27 3)M’

R,ecipercally, if (6,2,3)p — (6,2, 3)n, then there is g € A such that Ucp"';vfl - (U’g{)’&fl)g.
If g € A then U = Vol C (Ve = (Vig: )9%w = (U)%w; else, if g ¢ A®, then
RyRgg € A? and, by Lemma 4.1.7, (V'(02))72R0 = V/(02), or equivalently, (V/)foftz = v/,
so U = Vi, C (V))9gy, = [(V)felepfafoage  — (v)Refogge - — (V7pr )fefioae —
(U/)RORQQSD;V _ ]

Using the previous Lemma together with Theorem 4.1.10 we get:
Theorem 4.1.27.

1. U — U if and only if there are P € <<(1) 1) , (1 11>> > D¢ and Q € M(2,7) such that
det(Q) # 0 and M = PM'Q.

2. U = U" if and only if there are P € <<(1] é) , <é 11)> > Dg and Q € GL(2,7Z) such
that M = PM'Q.

Now we give examples of restrictedly-regular uniform hypermaps on the torus of type
(3,3,3). The proof is similar to the proof of Proposition 4.1.12.

Proposition 4.1.28. Let k,l,m € Z.

1. (Corn and Singerman [28])
(3,3,3)(l —l—m) is AT -regular, that is, orientably-reqular;
m 1
2. (Corn and Singerman [28] together with Breda and Nedela [10]')
(3,3,3>(k 0) and (3,3,3)(k _Qk) are A-reqular, that is, reqular.
0k

k k

!Theorem 11 of [28] states that a uniform hypermap H on the torus of type (3,3, 3) is orientably-regular if
and only if Walsh(H) is orientably-regular. By Theorem 1 of [10], H is orientably-chiral if and only if Walsh(H)
is orientably-chiral, and hence H is regular if and only if Walsh(H) is regular.



4.1 Uniform hypermaps on the torus 65

Finally we have:
Theorem 4.1.29 (O-regularity of (3,3,3)as). Let M = (Z 2) such that det(M) # 0.

1. (3,3,3) s is AT -reqular if and only if (6,2,3)ar is AT -regqular, that is, if and only if
|det(M)| is a? + ab+ b, ¢ +cd + d?, (a — b)? + (a — b)(c — d) + (¢ — d)? or (a + b)* +
(a+b)(c+d)+ (c+d)?, and det(M) divide a® + ab+b?, ¢® + cd+ d?, ac+ad+ bd (and
ac+ be+bd = (ac+ ad + bd) — (ad — be) );

2. (3,3,3)n is not AO—, Ai—, AQ—, A% AL A2-regular;

3. (3,3,3)nr is reqular if and only if (6,2,3)ns is reqular, that is, if and only if di = do and
| det(M)| = di? or | det(M)| = 3d1? and 3d; | gcd(a—b, c—d), where dy = ged(a, c) and
dy = ged(b, d).

Proof. If © <a A, © # AT, then (3,3,3)) is not ©-regular, because (3,3,3)ys is not ©-
conservative (Proposition 4.1.25).

Now let U and V' be hypermap subgroups of U := (3,3,3)y and V := (6,2,3)y,. Then
V=Up, 1(02) and U< A & Up,, ' <Ap, ' = ANevanlevan (see Theorem
4.1.15). Similarly U < AT & Ugp,, ' < Atp, L = At N A0 & V 9 A+ N A2 Owing to
this, and because VE2R0 = V' (see Corollary 4.1.7), At = (AT N A2, RyRy) C Na(V), that is
V aA. O

Using this Theorem, together with

Corollary 4.1.30. Let M = (Z 2) such that det(M) # 0.

1. (Corn and Singerman [28])
(3,3,3)ar is At -reqular if and only if (3,3,3)y = (3,3, 3)( . _l_m) for some I,m € IN;

m 1

2. (Corn and Singerman [28])
(3,3,3) s 1s regular if and only if (3,3,3)n = (3,3, 3)(k 0y or (3,3,3)m = (3,3, 3)(k _Qk) ,
0k

k k
for some k € IN.

Remark 4.1.31. Let R = (3,3,3)5, where M is <Ig 2) or <Z _lfk>, for some k € IN.

As in Remark 4.1.18, R is a regular map and the automorphism group, Aut(R), and the
rotation group, Aut*(R), of R are isomorphic to A/R and At /R, respectively. Since A/R =
(RX,RY,RR1,RRy), AT/R = (RX,RY, RR1R3), (RX, RY) is a normal subgroup of A/R

(see Corollary 4.1.20) and (RX, RY) N (RR1, RRy) = {1}, we have
Aut(R) & (Cp x Ci) x D3 and Autt(R) 2 (C), x Cy) x Cs, if M is (’g g), (4.11)

and

Aut(R) 2 (Csp, x Cp) x Dy and Aut™(R) 2 (Cyp, x Cp) x Oy, if M is (‘; *,f’“). (4.12)
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4.2 Bipartite-uniform hypermaps on the torus

Let B is a bipartite-uniform hypermap on the torus of bipartite-type (I, l2; m;n). Asbefore, we
may assume, without loss of generality, that [; < Iy and m < n. Then, by Lemma 1.3.6, m and
n are even. Replacing xg = 0 in the Euler formula for bipartite-uniform hypermaps (Corollary
1.4.3), it follows from Lemma 1.4.7 that [y = lorm/2=1orl; =ls =m/2 =n/2 = 2. When
l1 =1orm/2 =1, Theorems 1.6.5 and 1.6.9 imply that B = Pin(i) or B = Walsh (i), for some
uniform hypermap U on the torus; in addition, B is bipartite-regular if and only if i/ is regular.
When Iy = Iy = m/2 = n/2 = 2, B is uniform of type (2,4,4) and so B = Do1)((4,2,4)m),
for some M € M (2,7) such that det(M) # 0. Obviously, B is bipartite-regular if and only if
Do1)(B) = (4,2,4)p is Al regular.

Theorem 4.2.1. If B is a bipartite-uniform hypermap on the torus, then B = Walsh(U) or
B = Pin(U), for some uniform hypermap U on the torus, or D(g)(B) is a uniform map on
the torus of type (4,2,4). Furthermore, B is bipartite reqular if and only if B = Walsh(R) or
B = Pin(R) for some regular hypermap R on the torus, or if D(g1)(B) = (4,2,4)n, where M

18 (l 0) or<l _l>,f0rsomel,m€]N.

0 m m m

(# L b m n|Vi Vo E F[|Q B \
1 1 2 6 12[6k 3k 2k k [24k Pin(Dg2)((6,2,3)m))
2 1 2 8 8 [4k 2k k Kk [16k Pin(D()((4,2,4)n))
3 1 3 4 12|6k 2k 3k k |24k Pin(D(y)((6,2,3)m))
4 1 3 6 6 |3k k k Kk [12k Pin((3,3,3)m)

5 1 4 4 8 [4k k 2k k |16k Pin((4,2,4))

6 1 6 4 6 |6k k 3k 2k|24k Pin((6,2,3))

7 2 2 4 4|k k k k|8 Dn((4,2,4)n)

8 2 3 2 123k 2k 6k k |24k Walsh(Dgy((6,2,3)n))
9 2 4 2 8 [2k k 4k k |16k Walsh((4,2,4)n)

10 2 6 2 6 |3k k 6k 2k|24k Walsh((6,2,3)y)

11 3 3 2 6 |k k 3k k |12k Walsh((3,3,3)um)

12 3 6 2 4 [2k k 6k 3k|24k Walsh(D(12)((6,2,3)n))
13 4 4 2 4 [k k 4k 2k |16k Walsh(D(19)((4,2,4)n))

Table 4.1: The bipartite-uniform hypermaps on the torus (up to duality). (k = det(M).)

Table 4.1 lists all possible values for the bipartite-type of a bipartite-uniform hypermap
on the torus, up to duality. The hypermaps listed in lines 1-6 and 8-13 are obtained from
uniform hypermaps by the Pin and Walsh constructions, and the hypermap in line 7 is dual
of a uniform map of type (4,2,4).

4.3 Chirality groups and chirality indices of the 2-restrictedly-

regular hypermaps on the torus

In this Section we compute the chirality groups and the chirality indices of the 2-restrictedly-
regular hypermaps on the torus. In Table 4.2 we display the chirality groups, chirality indices
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and closure covers of the restrictedly-regular hypermaps listed in Proposition 4.1.12. Table 4.3
lists the chirality groups, chirality indices and closure covers of the bipartite-regular hypermaps
on the torus obtained by the Walsh and Pin constructions.

The following Lemma will be very useful in this section.

Lemma 4.3.1. Let M = (Z 2)

(RiRs)", (RaRo)?, [(RaRo))™, (RoR)*, XoV?, XY ) A
(b) If M s <§ :;n> or (nll T), then (4,2,4)rr has hypermap subgroup
(RiR2)", (RaRo)?, (RoR1)*, XYP, XY )2,
(c) If M is (7&1 7lm), then (4,2,4)p has hypermap subgroup
((R1R2)*, (RaRo)?, (RoRy)*, X'y™, X~y hyA"
. k 0 kK -k
(d) If M 1is <0 k) or (k & ), then (4,2,4)p has hypermap subgroup
((R1R2)*, (R2Ro)?, (RoRy)*, XY, Xy d)A

1. (a) If M is (é T?L) or (l :nl>, then (4,2,4)y has hypermap subgroup

l—lm

2. (a) If M is (,,
<<R1R2>6,<R2Ro> (RoRy)3, Xlym, X —l-mylyat,

(b) If M s ( ) ( _2k>, then (6,2,3)p has hypermap subgroup
((R1R2)®, (RoRo)?%, (RoR1)%, X2Y?, Xy d)a

, then (6,2,3)r has hypermap subgroup

N

3. (a) IfMis (!

((R1Ry)3, (RoRo)3, (RoRy )3, X1y'm X —l-myl)At.

(b) If M is (a ) ( ) or (Z—gk)’ then (3,3,3)a has hypermap subgroup
((R1R2)?, (R2Ry)%, (RoRy)?, X2Y?, Xy d)A

N

_ll_m), then (3,3,3)ar has hypermap subgroup

Proof. 1. Let © be Al, A0 or AT, and H = (4,2,4)p a ©-regular hypermap with hypermap
subgroup H := <§’>A<X“Yb,XCYd>, where S := {(R1R2)*, (R2Ro)?, (RoR1)*}.
Since Ry ¢ A!, by 1. of Lemma 1.9.2,
()2 = (8, 572 = (8, [(Ru )], [(RaRo)I™ [(RoR) T2 = (8, [(RaRo)) ™)~
When O is AT or Al Ry ¢ ©, but RyRy € O, so
(8)2 = (8,870)9 = (S, ([(R1Rp)"] )™, [(RaRo)*) ", [(RoR1)"] ) = (5)°.

Let P =SU{X%? XV} and Q = P U {[(R1R2)*] 71, [(R2R0)?|1}. If © is A, AT or A,
and H is ©-regular, then H C (P)®. On the other hand, since H is a normal subgroup of ©

containing P, H also contains (P)®. Similarly, if H is Al-regular, then H = (Q)A°.
2. and 3. are similar to 1. O

Having in mind that N;X; = N;Y; and
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1. (a) NgYy= Ny X4 and NyXy = Ny(RoR1 RoRy),
(b) Ny X4 1Yy = Ny(X4Yy) o and NyX, Yy = Ny(RoR1Rs)?,

2. (a) NgYs = NgX¢™ and NgYs = NgRoR1RoRoR1 Ry = Ng(RoR1R»)?,
(b) NgXe 2Ys = Ng(XYs)T0 and NgXeYs = Ng(RoR1RoR1 R2)?,

3. (a) N3Yz = N3X3% and N3X3 = N3(R2R1RoR1),
(b) N3X372Y3 = N3(X3Y3)"2 and N3X3Y3 = N3(RoR1 Ry)?,

we can find more convenient presentations for the hypermap subgroups of the regular hyper-
maps on the torus.

Corollary 4.3.2.
1. (a) (4,2, 4)(15 0) has hypermap subgroup ((R1R2)*, (RaRo)?, (R0R1)4, (RgRleRl)k)A;

(b) (4,2,4)(k _k) has hypermap subgroup ((RyRo)*, (RyRo)?, (RoR1)4, (R0R1R2)2k>A.

k k

2. (a) (672,3)(5 0) has hypermap subgroup ((Ry1R2)%, (RaRo)?, (RoR1)?, (RoR1R2)* )%,
(b) (6,2, 3)(z _ik) has hypermap subgroup ((R1R2)%, (RaRo)?, (RoRy)3, (R0R1R2R1R2)2k>A.

3. (a) (3,3,3) 0y has hypermap subgroup ((R1R2)?, (RaRo)3, (RoR1)3, (RaR1 Ry Ry)*)2;
(o)

k

(b) (3,3, 3)(,C _Qk) has hypermap subgroup ((RiR2)>, (RaRo)?, (RoR1)?, (R2R1R0)2k>A.

k k

4.3.1 Chirality groups and chirality indices of the orientably-regular hy-
permaps on the torus

Up to duality, there are 3 families of orientably-regular hypermaps on the torus:
(4,2,4)(z -my; (6,2,3)(1 oy, (3,3,3)(1 oy with {,m € IN. The chirality groups and
l l

m m

m l
chirality indices of the first two families (that is, the families of maps) have been computed in

[4].

o Q= (4, 2,4)( Loy has hypermap subgroup

m 1
Q = ((R1R2)*, (RoRo)?, (RoRy)*, X'y, X~y h)A™,
Let k := ged(l,m). Then

T=Q%Q=QQ"/Q =

Because QX has order (12 +m?)/k in AT/Q, QX?* has order %.
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If [/k and m/k are both odd, that is, if 2k | [ — m, then ged(2k, (12 + m?)/k) = 2k,
T = C2qm2) ok and ¢ = (12 + m?)/2k2. In addition

I —m kE —k Lm lg;gb) A
= - ) and Q2 = (4,2,4) /5 -1\ -
sz> (kk><ﬁﬁ”h ! 4290

If I/k and m/k are not both odd, that is, if 2k { I — m, then ged(2k, (I + m?)/k) = k,
T = Cuoqmz) iz and ¢ = (12 + m?)/k?. In addition

(0= 0) G ) ma @ =20y,

Q=(6,2 3)(1 —tm) has hypermap subgroup
l
Q = ((R1Ry)®, (RaRo)?, (Ro Ry )3, X'y, X —I=myh)a™

Let k := ged(l,m). Then

QXY™ Q(x Tyt AT/9
QX™Y!, QXlylmmAat/e
QXY Qxly—t-m)
QXH_Qm,QXl m)

QXSI Xl m>

T=0Q%/Q=00"/Q =

{
{
{
{
{
{

We note that QX has order (12 +Im +m?)/k in AT/Q.

If 3k | I — m, then ged(31,1 — m) = 3k, 3k* | 1 + Im +m? = (I —m)(l + 2m) + 3m? and
QX3 has order

(I +Im +m?)/k P+ Im+m?)/k

_ = (2 +1 %) /3k?.
ged(3k, (12 4+ lm 4+ m?2) /k) 3k (- lm4m7)/

Furthermore T = (QX?3F) = Clizpim4m?) /32 L = (12 +Im + m?)/3k2,

I —l—m Eo—2k\ /2 lom
— 3k 3k A
(m z> (k k)(%WQ%Qa“Q = (6:23) (-

If 3k ¥ — m, then ged(3l,1 —m) = k and QX has order

P+im+m?)/k (P +im+m?)/k
ged(k, (12 +Im +m?2)/k) k

= (I> +Ilm +m?) /K>

Furthermore T = (QX*) = Czimsm?) k2, b = (2 +Im +m?)/k?,

(7= ) () w0t -
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e Q=33 3)(1 lm) has hypermap subgroup
1

Q = ((R1R2)*, (RoRo)®, (RoR1)?, X'Y™, X —lmmy )™

Let M = (; ‘l,‘m), H = (6,2,3)y and %, = (02)|2 0 ¢y : A2 — A. Then
D(p2)(H) = Walsh(Q) and H = Q(p*w_l. We claim that HA” = HA and T(Q) = YT(H).
By Corollary 4.1.7, RoRy € Na(H). According to 4. of Proposition A.1.6, RoRy €
Na(H2®), s0 A = (A%, RyRy) © Na(H2?), that is, Na(HA") = A, or equivalently,
N (HAQ) < A. Finally, using 2. of Proposition A.1.6, we have Y = (HA2) = HA.

Since ¢}, is an epimorphism, HY = QAgo’;V_ (by Corollary A.1.9) and
T(H) = HA/H = HY [H = Q0,7 /Qyl, ™' 2 Q*/Q = 1(Q).

Let k := ged(l,m). Like in the previous case T = (QX&dBLi=m)),
If 3k | 1—m, then T = Clp2 2y /2. ¢ = (12 +Im+m?)/3k? and Q* = (3,3, 3)( o
k

IkaJ(l—m thenT C(l2+lm+m2)/k2 L—(l2+lm+m )/k2 and QA (3 3 3)( )

4.3.2 Chirality groups and chirality indices of the pseudo-orientably-regular
hypermaps on the torus

There are 2 families of pseudo-orientably-regular hypermaps on the torus:
the duals of (4,2 4)( -my and (4,2,4)(1 mys with [,m € IN.
m m 1l

o P=(4,2, 4)(z -y has hypermap subgroup
I m
= ((R1R2)*, (ReRy)?, (RoR1)*, XY, X —mym)A!

Let k := ged(l,m). Then
P(X Yl)Rg P(Xfmym)R0>A1/P
PX lyl mem>A1/P

(X)L P(XY)mATP
P(X'Y)k, P(XY)H)A/P
px—Fkyk PXkyk>A1/P
PX kY pxFyk)
Cl/k X Cm/k

= PA/P=PPR/p =

{
{
(P
{
{
{

12

Since ged(l/k,m/k) is 1, T = Cy . X Cpy s = Cppy g2 and ¢ = Im /K. In addition

()-8 ) mranay

o P = (4,2 4)( tmy has hypermap subgroup
m 1l
4

= ((R1R2)*, (RyRo)?, (RoRy ), Xy™, Xmyl)A!
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Let k := ged(l,m). Then

=P2/P=pPP%/P =

I
/\/\/}%/\/\
be
)
3\-
)
>
3
<

Because PX has order |12 —m?|/k in A'/P, PX? has order

2—m?/k |2 —m?|/k 12 — m2| k2

ged(2k, |12 —m?|/k) — kged(2, 12 —m?|/k?) — ged(2, 12 —m?|/k?)’

If [/k and m/k are both odd, then T = Cyj2_p.2| /982, ¢ = 12 — m?|/2k2,

I m ko—k\ [ Bm lg,;ﬂ) A
- B d P2 = (4,2,4) /1 en;
(m z> (k k)(l;,;m Lo | 20 429 )

else if [/k and m/k are not simultaneously odd, then T = Cjj2_2| /32, ¢ = 12 —m?|/k?,

(o 1) = (6 ) G T) P = a2y

4.3.3 Chirality groups and chirality indices of the bipartite-regular hyper-
maps on the torus

We have seen in Section 4.2 that there are 3 kinds of bipartite-regular hypermaps on the torus:
the duals of Al-regular maps of type (4,2,4), and the hypermaps obtained from regular maps
by the Walsh and Pin constructions.

We recall that (4,2,4)y and Dg1)((4,2,4)) have the same chirality group.

o B=(4,2, 4)(1 0) has hypermap subgroup
0m R
(RiR2)", (RaRo)?, [(RaRo)2™, (RoR1)*, X!, YA
Let k := ged(l,m). Then

YT=B2/B=BBM/B = (B(X\)R, B(ym)Ri)Al/B
BY BXm)Al/B

BY BXk>A1/B

BY*, BxF)

= Cyp X Oy

{
{
{
{

Since ged(l/k,m/k) is 1, T 2= Cyp X Cpyjp = Clpy g2 and ¢ = Im/k?. In addition

(é i)-(ﬁ 2) (l{f m0/k> and B% = (4,2,4) 1 0).
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o B=(4,2, 4)( . _l) has hypermap subgroup

((R1R2)*, (R2Ro)?, [(RaRo)HF1, (Ro Ry, XY™, X71Ym>Ai
Let k := ged(l,m). Then

B(X Ym)Rl B(X—lym)R1>Ai/B
BX™Y!, Bxmy 1yAl/B

T=B*/B=BB%M/B =

(
(
(
—_ <BXl+myl+m BX —Hmy— l+m>
<B(Xy)l+m B(XY) l+m>
<B(Xy)gcd(l+m —l+m)>

If [/k and m/k are both odd, then ged(l +m,—l +m) = ged(l + m,2m) = 2k, BXY
has order Im/k in Al/B, BX?*Y?F = B(XY)?! has order

Im/k lm/k
ged(2k,Im/k)  k

Im/k?,
T = (BX*Y") = Cjy, 42 and ¢« = Im/k?. In addition

- kE —k Hm l;,y) A
= d B 4,2.4
<m m) (k k><—l;,;m =tim ) and B2 =(42,4) o0y,

If I/k and m/k are not both odd, then ged(l +m, —l+m) = ged(l +m,2m) = k, BXY
has order 2lm/k in A'/B, BX*Y* = B(XY)* has order

2lm/k 2lm/k:

32,
ged(k,2lm/k) — k im/

T = (BX?kY?k) = Copyi2 and ¢ = 2im/k?. In addition

(o )= () (e ) a8 = a2y,

As a by-product of these calculations, we get the following result:

Theorem 4.3.3. The chirality groups of 2-restrictedly-reqular uniform hypermaps on the torus
are cyclic groups.

Finally, we compute the chirality groups and chirality indices of the bipartite-regular hy-
permaps on the torus obtained via the Walsh and Pin constructions.

Recall that the hypermap subgroup R of a regular hypermap R on the torus of type
(I, m,n) is the normal closure in A of a set with 4 elements containing (RyRs)!, (R2Ro)™ and
(RoR1)"™. Indeed, R = (T)”, where T = {(R1R2)", (RaRo)™, (RoR1)",w}, and w is, up to
duality, (RORlRQRl)k, (RoRlRQ)Qk or (R0R1R2R1R2)2k.
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Chirality groups and chirality indices of B = Walsh(R)

The bipartite-regular hypermaps on the torus obtained by the Walsh construction are listed,
up to duality, in cases 8-13 of Table 4.1. We use the notations of Proposition 1.9.6.

Remark 4.3.4. Let B = Walsh(R) and ¢ the chirality index of B. If K is a hypermap covered

by H such that Walsh(K) is regular and has |Qg|/: flags, then B

= Walsh(K).

Note that if {i,j,k} = {0,1,2} and R is a normal subgroup of A containing (R;R;Rj)?,

then R also contains (R; R; R )?aw: if j = 2, then (R;R; R )?aw = (RpR;R;)*

else, if j # 2, then (R;R;Ry)?aw = [(RLR;R;)?|% = ([(RiR;Ry)?| ).

e Case 8: B = Walsh(Dg2)((6,2,3)n)), d1 = 1.
Corollary 1.9.7 implies that T(B) 2 AT/R = Aut™(R).
If M = (’g 2), then ¢ = |Qg|/2 = 12k2/2 = 6k2.

If M = (Z ‘,j’“), then ¢ = |Qg|/2 = 36k2/2 = 18k2.

In both cases B2 is Ss.

o Case 9: B = Walsh((4,2,4

M)) dl =2

If M = (lg 2), then S = {(RoR1R2R1)*},
R(RoRiRyRy)Faw = R(R1RoR2Ro)" = R(Ry Ry)* and

T(B) = (R(RiR3)% R(RyRo)?, R(RiRy)F)A 1 =

= [(RiR;Ry)*| ™

<R(R1R2)ng(2’k)>A/R.

Il

Note that RX? = R[(R1R2)%]"0(R1Ry)~? and RY? = R(X?)®1 = R[(R1R»)?|f0f1 (R Ry)?
are in (R(R;Ry)&cd(2k)\A/R

When 21 k,

T(B) = (RR1Rs)*/" = (RRy Ry, R(R1R2)™, R(Ry Ry)Tof).

Then (RR;R)*/F contains RX = (RXQ)% and RRyR; =

T(B) = AT/R= Aut™(R), 1 = |Qr|/2 = 8k?/2 = 4k? and B> is Ss.

When 2 | k,
Y(B)

I

I

(R(R1Rp)*) 2/

(R(R\Ry)?, R[(R1R2)?)™, R[(Ry Ry)?| o)
(R(R1Ry)?, RX?, RY?)

(Chy2 X Cyp2) @ O,

v =k?/2 and B2 is Py = Walsh(P4).
IEM = (Z ’k’“), then S = {(RoR1R2)**}, R(RoR1R2)**aw = R and

T(B)

o~

R(RyRo)*) "

R(R1R2)",
2>A/R

(R( )?
(R(R1R2)
<R(RlR2)27R[(Rle) ], R[(R1Ry)*)10")
(R(R1R)?, RX?, RY?)

(R(R1R2)* RX? RX?Y?).

RX R Rs.

Therefore



74

Chapter 4. Hypermaps on the torus

k41

When 21k, RXY = (RX?Y?)2 | s0
T(B) <R(R1R2)2, RX? RX?Y?)
= (R(RiR;)* RX? RXY)
(Ck X Ck) X CQ,

1

1

¢ = 2k* and B2 is Py = Walsh(Py).

When 2 | k,
T(B) (R(R1R)?, RX?, RX?Y?)

(Ck X Ck/Q) x Ca,

12

1

¢ = k? and B2 is Py = Walsh(P;).

Case 10: B = Walsh((6,2,3)), di = ged(l,m) = 2.
It M = (’g 2), then S = {(RoR1R2)?*}, R(RoR1Rs)*aw = R, and

T(B) = (R(RiR:)% R(RaRy)*)*"
= (R(RiRy)*)>/"

(R(R1Ry)?, R[(Ry Ry)*]"™).
Since RXY = R[(Rle) 2R (R1Ry)? and RX2Y = R(R1R2)*[(R1R2)*f°, RX? and
RY?® are in (R(R1R2)?)*/E, and T(B) = (R(R1R2)?, RXY, RX %Y.
When 3 1k, RX and RY are in (R(R1R»)?)?/%, as well as RRoR; = RX[(R1R2)%!
Then

:U

1

12

)

T (B) (R1R2)?, RXY,RX?Y)
R1Ry)?, RX3 RXY)

)

( )
R(RiRs)*, RX,RXY)

( )

)

)

R(R1Ry)?,RX,RY)
Ck X Ck X 03,

N~~~

I

v = 3k% and B2 is Py = Walsh(P;).
When 3 | k,

Y(B) = (R(RiRy)’,RXY,RXY)
(R(R1R2)*, RXY, RX?)
(Ci x Cyy3) % Cs,

l12

v = k? and B is Ps = Walsh(Ps).
_ [k 2k 2k
If M = (k ) then S = {(RoR; RoRy R2)?*},
R(ROR1R2R1R2) aw = R(R1RoRyRoRy)* = RR?* = R,
T(B) (R(R1R2)*, R(RyRo)*) ™ = (R(R1 Rp)*) /R
(R(R1Ry)?, R[(Ry Ry)*™)
= (R(RiR)*, RXY,RX%Y)
= (Ck X Ck) X Cg,
¢ = 3k% and B2 is Pg = Walsh(P3).
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e Case 11: B = Walsh((3,3,3)x) = Dp2)((6,2,3)a), T(B) = 1 and ¢ = 1. Then B is
regular and B = B.

e Case 12: B = Walsh(D(19)((6,2,3)n)), d1 = ged(l,m) = 3.

Let X = X( (12) = RoRaR1RoR1 Ry and Y = Y(12) = RyRoRsRi1R2R;. Because
R(12)X = R(12)Y, RX = RY.
If M = (0 ) then S = {(RoR1R2)**(12)} = {(RoRaR1)?*}, R(RoRoR1)* any = R.
Because RX = R[(R1R2)?]0(R1Ry)?, RY” = R[(R1R2)3|%0%2 (R  Ry)3,
T(B) = (R(RiRy)”,
R1R2)3>A/R
)

l\')

k+1

When 24k, RX = (RX")"3" and RY = (R?Z)% are in (R(RyRy)3)A/E,
Y(B) = (R(R1R2)*, RX, RY) = (Cj x Cy,) x Ca,

v = 2k? and B is D(g9)(P3) = Walsh(Ds).
When 2 | k,

Y(B) = (R(RiR2)?, RX ", RY") 2 (Cyjy X Ci/z) % Ca,
v =k%/2 and B2 is C = Walsh(D(12)(7)).
If M = (k ‘2’“) then S = {(RoR1RoR1 Ry)*(12)} = {(RoRyR1R2R1)?*} and
R(R0R2R1R2R1)2kaw R(RiRyRoRyRy)* = R(RlRoRQ)% R(RoR\Ry)* = RXY "~
Since RX = R(XY )EiF2 and RY = R(XY ),

T(B) =

1

)E.

) RXY ™ ')lya/R
R(R\R»)3, RX", RY")A/R
)3,R[(R1R2) Jfo, R[(R1R2)3]ROR2,RY, RY)A/E
¥, RX,RY ", RX",RY")A/R
R R1R2)3,RXng2k) Rygcd( ))A/R
Ry Ry)*, RX*M | Ry#et®h)y,
When 21 E,
T(B) = (R(RR:)3 RX,RY)
(R(R1Ry)?, RX,RXY)
> (Csp x Ck) x Cy,
(

v = 6k? and B is D(g9)(P3) = Walsh(Ds).
When 2 | k,

(R(R\Rs)®, RX ", RY")
(R(R1R2)*, RX ", RX' Y = R(XY)?)
(Crj2 x Cy2) x Co,

1(B)

112

12
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v =3k?/2 and B2 is C = Walsh(D12)(7)).

e Case 13: B = Walsh(D(12)((4,2,4)n)), d1 = ged(l,m) = 4.
HMz@iymm&qmwmmm@m:ﬂ%&m&m,
R(RoRoR1 Ro)Fayy = R(RyRaRoRs)* = R[(RoRaRy Ry)*) 2 = R,
T(B) = <R(R1R2)4,R(R2Ro)4>A/R =1and .= 1.

It M= (’Z _kk)’ then S = {(RoR1R2)**(12)} = {(Ro Ry R1)*"},
R(RoRoRy)**aw = R,

T(B) = (R(R1R2)4,R(R2R0)4>A/R =1land:=1.

Either way, B is regular and B® = B.

Chirality groups and chirality indices of B = Pin(R)

The bipartite-regular hypermaps on the torus obtained by the Pin construction are listed, up
to duality, in cases 1-6 of Table 4.1. We use the notations of Proposition 1.9.6.

Remark 4.3.5. Let B = Pin(R) and ¢ the chirality index of B. If K is a hypermap covered
by H such that Pin(K) is regular and has |Qg|/c flags, then B2 = Pin(K).

Note also that when B = Pin(R), B2 is a regular hypermap such that all vertices have
valency 1 and hence, by Lemma 1.4.4, is on the sphere.

In order to facilitate our work we note that if {7, j, k} = {0,1,2}, then (R;R;Ry)?ap = 1:
if 7 =0, then (RiRij)2ap = (R1R0)2 =1, else, if j # 0, then (RiRij)zap = (R1)2 = 1.

e Case 1: B = Pin(D(p21)((6,2,3)n)), d2 = ged(m, n) = 3.
1M = (§ 1), then § = {(Rof Ro)*(021)} = {(RzRoR1)™}, R(RyRoF)*ap = R,
T(B) = (RRiRs, R(RyR1)*)?/% = (RR1Ry, R(R1R)™, R(RyR:1)?)

= (RR1Ry, R(R1R2)™ R Ry, R(R1Ry)™ (RyR1)?)
(Ck X Ck) X 02,

l12

1 = 2k? and B2 is Sg = Pin(S3).
100 = (3 7). then S = {(RoRiRo Ry R2)?(021) = (RpRoRy RoR1)™},
R(RaRoR1RoR1)*ap = R(RoR1RyR1Ro)* = R,

T(B) = (RRiRs, R(RoR1)*)*/" = (RRiRy, R(R1R2)™, R(RyR,)?)

= (RRiRs, R(R1Ry)™R Ry, R(R 1 Ro)™ (RyRy)?)
(Cgk X Ck) X 02,

[12

L = 6k and B2 is Sg = Pin(S3).

e Case 2: B = Pin(D1)((4,2,4)m)), d2 = ged(m,n) = 4.

Let X = X (01) and Y = Y (01). We have RX = RRiRoRoRy = R(RlRQ)(RQRO)Z,
RY = RRoR1RyRy = R(RoR1)*(R1Rs), RXY = R(RoR1)*(RaRy)? = RR(R1R2)ROR1 (R1R2)
and RX 'Y = R(R1R2)" (R Ry).
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It M = (’g 2), then S = {(RoR1RoR1)¥(01)} = {(R1RoR2Ro)*},
R(R1RoRaRo)*ap = R(RoRiRoR1)* = R(RyR1)?* and

T(B) = (RRiRs, R(RoR1)*, R(RyR1)*)*/" = (RR Ry, R(RoRy )81 2RNA/ R
When 2 J( k, R(R2R0)2 = R(Rle)RO (R0R1)2<R1R2), SO

T(B) = (RRiRs, R(RyR1)**/" = (RR1Ry, R(RyR)*)2/
(RR1 Ry, R(R1R2)™ R(RoR1)?)
= (RRiRs, R(RyR1)?, R(RaRy)?)
(
(

RR Ry, RX,RY)
Ck X Ck) bl 02,

[a

L =2k% and B2 is Sy = Pin(Ss).
When 2 | k,

1(B)

12

(RR1 Ry, R(RoR)")2/® = (RR Ry)*/
(RRy Ry, R(RiRy)™e, R<R1R2>R0Rl>

(RRle,RXY RX'Y)
(
(

RR Ry, RX ,RXY)
Cy X Ck/Z) X CQ,

Il

v =k? and B® is Sg = Pin(S,).
_(k -k B I . o
If M = (k & )., then S = {(RaR1Ry)“*(01)} = {(R2RoR1)*"}, R(RaRoR1)*"ap = R,

YT(B) = (RRiRy, R(RoR1)")*" = (RR Ry)*/"
(RR1 Ry, R(RyRy)™, R(Rle)R0R1>

— (RR\R.,RXY,RX 'Y)
(

Ck X Ck) A CQ,

[12

1 = 2k? and B2 is Sg = Pin(Sy).

e Case 3: B = Pin(D(p2)((6,2,3)r)), d2 = ged(m,n) = 2.
Let X = X(02) and Y = Y (02). We have RX = RRyR1RyR1RoR; = R(R1Ry) ' (RoR1)?,
RY = RRyRoR1RoR1 Ry = R(R1Rs)?[(R1Ry)F0] !
It M = (’g 2), then S = {(RoR1R2)?*(02)} = {(R2R1R0)?*}, R(RaR1Ro)*ap = R,

Y(B) = (RRiRy, R(RoR;)%)*/"
(RR1 R, R(RiR2)™, R(RyR:)?)
— (RRy\Rs, RX,RY)
(

Ck X Ck) X Cg,

[12

1 = 3k? and B2 is Sy = Pin(Sy).
It M = (’; ‘,f’“), then S = {(RoR1RoR1 R2)?*(02)} = {(RaR1RoR1 Ro)?*},
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R(RyR1RyR1Ro)*ap = R(RyR1RyR1Ry)?** = R,

T(B) = (RRiRa, R(RoRy)*?/E
(RR1Ry, R(R1Ry)™  R(RoR1)?)
= (RRiRy, RX,RY)
(RR1Ry, RX,RX Y)
(

Csi X Ck) 1 Cs,
L =9k and B2 is Sy = Pin(Sy).

e Case 4: B="Pin((3,3,3)n), d2 = ged(m,n) = 3.
It M = (’g 2), then S = {(RoR1 RoR1 )"},
R(RQRlRORl)kOéP = R(ROROR1R0)k = R(R()Rl)k and

T(B) = (RRiRs, R(RoR1)% R(RyR)")*® = (RR1 Ry, R(RyR, )& IGHF)A/E

We have RXY = R[(Rle)RO (RlRQ)]i and RX %Y = R(R1R2)[(Rle)Ro]*l(RlRﬂ_
When 31k, Y(B) = (RR1 Ry, RRoR)*F = At /R = Aut™(R), 1 = |Qr|/2 = 6k?/2 =
3k? and B2 is Sy = Pin(S)).

When 3 | k,

T(B) = (RRiRy)™"

(RRy Ry, R(RyRy)™)
= (RRiRy, RXY,RX?Y)
(RR1Ry, RXY, RX?)

(

Cr x Cyy3) % Cs,

v = k% and B2 is Sg = Pin(S3).
If M = (’,j *,f’“), then S = {(RaR1Ro)**}, R(RoaR1Ro)*ap = R,

I

T(B) (RR1Ry, R(RoRy)%)2/

(RRyRy)™/

= (RRiRy, R(R Ry)F0)
(RR1Ry, RXY,RX %Y
(

Ck X Ck) X Cg,
¢ = 3k? and B? is Sg = Pin(S3).

e Case 5: B=Pin((4,2,4)n), d2 = ged(m,n) = 2.
It M = (’g 2), then S = {(RoR1RoR1)*},
R(RoR1RyR)Fap = R(RiRyRyRy)* = R(R Ry)* and

T(B) = (RRiRs, R(RoR1)? R(R1Ro)")*'® = (RR1Ry, R(RyR, )& IZHFA/R,
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When 21k, T(B) = (RRy1 Ry, RRoR1)? = At /R = Aut™(R), 1 = |Qr|/2 = 8k%/2 =
4k? and B2 is Sy = Pin(Sy).
When 2 | k, RXY = R(R1R2)0(R1Ry), RX~'Y = R(RyR2)(RoR1) %(R1R>),
T(B) = (RR;Ry, R(RyR;y)*)A/E
(RR1Ry, R(R1Ry)™  R(RoR1)?)
= (RRyRy, RXY,RX'Y)
(
(

RR Ry, RXY, RX?)
Ck X Ck/g) X 04,

1 = 2k? and B2 is Sy = Pin(Sy).
k -k 2k 2k
If M = (k . ) then S = {(RoR1R2)?*}, R(RoR1R2)*ap = R,
T(B) = (RR;Ry, R(RoR;)%)*/E
(RR1Ry, R(R1Ry)™  R(RoR1)?)
(RR1Ry, RXY,RXY)
(Ck X Ck >< C4,

1 = 4k? and B2 is Sy = Pin(Sy).

e Case 6: B = Pin((6,2,3)nr), do = ged(m,n) = 1. From Corollary 1.9.7, we see that
YT(B) = AT/R = Aut™(R).

If M = (0 k) then ¢ = [Qg|/2 = 12k2/2 = 6k2.

If M = (k 2 ) then ¢ = |Qg|/2 = 36k2/2 = 18k2.
In both cases B2 is Sy = Pin(Sy).

4.4 A note on restrictedly-regular hypermaps on the Klein bot-
tle

In [33], Coxeter and Moser show that there are no regular maps on the Klein bottle, and in [15],
Breda and Jones extend this result to hypermaps. However, the Klein bottle has ©-regular
hypermaps for every © <13 A, © # A", The hypermap B with hypermap subgroup B =
((R1R2)*, (R2Ry)?, (RoR1)M A (X42%, Yy, X, Y3 Ry) is a Al-regular hypermap on the Klein bottle
with 8 flags, 1 vertex, 2 edges and 1 face. It is obtained from its orientable double covering
Bt = (4,2 4)(3 0) and the involutory Al_conservative orientation- reversing automorphism of

Bt which maps B" to BT X,Y,;Ry. Similarly, the hypermap P with hypermap subgroup

P = ((R1R2)*, (RaRy)?, (RoR1)))2 (X42Y4?, X4 1Yy, X4Y4Ry) is a Al-regular hypermap on

the Klein bottle with 16 flags, 2 vertices, 4 edges and 2 faces. It is obtained from its orientable

double covering PT = (4,2, 4)(2 1) and the involutory Al-conservative orientation-reversing
21

automorphism of P+ which maps PT to PT XY R;. Other 2-restrictedly-regular hypermaps
on the Klein bottle can be obtained by duality.

We intend to classify the 2-restrictedly-regular hypermaps on the Klein bottle in a future
work.
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(#[U [Note  [u? 1 L
1 (47274)(1,,”) 2k [l —m (4,2,4)(k—k) C(52+m2)/2]€2 12;;;2%
m 1l k k
2kl —m (472,4)(1“)) C(l2+m2)/k2 12-;;;”2
0k
2 Him4m?
2] (6.2:3) 1 my |3k 11=m [ (6.2:3)(s-0) [ Cisomemayms | EH=
3k{l—m (6,2,3)(k2) Clztimm2y iz | EHE
(0]
2 m m2
31(3,3,3)(1-mmy | 3k | T—m | (3,3,3)(r-2ky | Cuzpimm?)/ah2 %
3kil—m (3,3,3)(k0) C'(l2-i—lm—|—’rnQ)/k2 l+l++m
0k
Tm
@2 ¢ &2k |G o
5 (4,2,4)(7“1) 2k |1 —m (4,2,4)(:—:) Cliz_m2| 2k s
2kl —m (4,2,4)(k2) C\p,mz‘/kz |l ;;n|
(0]
)
(4.2.4) ) 2000 | Cmpe )
T2 4) 0y 12k [ T=m | (4,2,4) 5y | Cii 3
2k{l—m (4,274)(“)) Cotmi2 21721
0k

Table 4.2: Chirality groups, chirality indices and closure covers of the 2-restrictedly-regular
uniform hypermaps on the torus. (k = ged(l,m))
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| #|B | Note | B T | ]
1 Pin(D(021)((67273)M)) M = g 2 86 (Ck X Ck) X 02 2k2
M = :ik> Se (C3x x Cg) ¥ Cy 6k>
2 | Pin(Doy((4,2,4)n1)) | M=(£0).24k | S (Cr x Cy) x Oy 2k?
M= (g7).21k |Ss (Ci x Crya) % Co k2
M= (; /f) Ss (Ck x Ck) x Cy 2k?
3 | Pin(D(o2y((6,2,3)n)) | M = ’32) Sy (Cy % Cy) % Cs 3k
M=(pF) s (Corx Ci)n Gy | 02
4 | Pin((3,3,3) ) M= (5%)31k |S, (Cr x Cx) x Cs 3k2
M= ]82 31k | Se (Cr x Cy3) x Cs k2
M= () Se (Ci x Cy) x Cs 3k?
5 | Pin((4,2,4) ) M=(5%).21k |S, (Cr x C) x Cy 4k?
M = ISZ 72|k Sy (Ck;ka/Q)XC4 2k?
M= ’;,f) S (Ci x Cy) x Cy 4k?
6 | Pin((6,2,3) ) M = ’gg) S (Ch, % Cy) % Cg 6k
M = ﬁik) Sa (C3r x Ck) % Cs 18k?
7 | Walsh(Dyo2((6,2,3)0)) | M = gg) S (Cy % Cy) % Co 6k
M= ]Zik) Sa (C3r x Ck) @ Cs 18k>
8 | Walsh((4,2,4) ) M=(5%).21k |S, (Cr x C) x Cy 4k
M=(F%)2k |Ps (Crja % Cryo) X Co | k)2
M= (;7).2tk | Py (Cy x Cg) x Cy 2%k2
M = :715 72|k Ps (Ck:XCk/Q))qCQ k2
9 | Walsh((6,2,3) ) M=(F%)3tk [P (Cr x Cy) x C3 3k?
M= ]32 31k | Ps (Cr x Ciy3) X C3 k?
M = Z?@k> Pe (Ck x Ck) x C3 3k?
10 | Walsh((3,3,3) ) B 1 1
11 | Walsh(D(12)((6,2,3)as)) | M = (52 ).21k | Do2)(P3) | (Ci x Ci) x Cs 2k?
M = gg 72|k C (C’k/ng’k/g)ng k2/2
M= Zik 21k | D(o2)(D3) | (Csx x Cx) @ Co 6k2
M= Z-ik 20k |C (OBk/2 X Ck/z) x Co 3k2/2
12 | Walsh(D(12)((4,2,4)a)) | M = (g g) B 1 ]

Table 4.3: Chirality groups, chirality indices and closure covers of the bipartite-regular hyper-
maps on the torus obtained via the Walsh and Pin constructions.
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Chapter 5

Hypermaps on the double torus

In this chapter we deal with the 2-restrictedly-regular hypermaps on the double torus.

The classification of the orientably-regular maps on the double torus was made by Threlfall
[62] in 1932, completing earlier work of Brahana [3] (see Table 9 of [33]). In 1988, Corn and
Singerman [28| determined all possible types for the remaining orientably-regular hypermaps
on the double torus (those of type (I, m,n) with {,m,n > 3), as well as their rotation groups
(see Table 2 of [28]). Breda and Jones [15] classified the orientably-regular hypermaps on the
double torus and computed their rotation and automorphism groups. More recently, Singer-
man and Syddall [59] determined the number of isomorphism classes of uniform hypermaps
on the double torus using using Conder’s small index subgroup programme [20)].

5.1 Regular and orientably-regular hypermaps on the double
torus

Because the double torus is an orientable surface, the regular hypermaps on the double torus
are among the orientably-regular.

In this section we assume that H is an orientably-regular hypermap on the double torus
of type (I,m,n). Since H is uniform and has characteristic —2, using the Euler formula for
uniform hypermaps (Corollary 1.4.2), we get

Qx| 2
2 1-(1/l+1/m+1/n)

(5.1)

Naturally, [, m,n divide |Qx]|/2 because V = [Qy|/2l, E = |Qy|/2m and F = |Qy|/2n are
the numbers of vertices, edges and faces of H, respectively. In addition, Theorem 1.4.6 states
that |Qy| < —84x = 168, or equivalently, |Qx]|/2 < 84.

Table 5.1 lists all 22 possibilities for the number || of flags and type (I, m, n) of a uniform
hypermap on the double torus, with [ < m < n as well as its numbers of vertices, edges and
faces. These values were obtained using GAP [34]. In the last column we display the number
of orientably-regular hypermaps on the double torus of type (I,m,n) (determined by Breda
and Jones in [15]). The numbers of non-isomorphic uniform hypermaps on the double torus
of type (I, m,n), with [ < m <mn, can be found in [59].

In what follows we give a brief description of how to find all orientably-regular hypermaps
on the double torus.
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’ #‘ |Q|‘ I m n‘ vV E F ‘ orient.-reg.
1| 105 5 5] 1 1 1 3
2|1 12|13 6 6| 2 1 1 1
3] 162 8 8| 4 1 1 1
4| 1614 4 4| 2 2 2 1
5| 1813 3 9| 3 3 1 0
6| 2012 5 10| 5 2 1 1
72412 4 121 6 3 1 0
8| 2412 6 6| 6 2 2 1
9| 24|13 3 6| 4 4 2 0

10| 24|13 4 4| 4 3 3 1
11| 30(3 3 5| 5 5 3 0
12| 32|12 4 8| 8 4 2 1
13| 362 3 18] 9 6 1 0
14| 40|12 5 5|10 4 4 0
15| 4812 3 12|12 8 2 0
16| 48|12 4 6|12 6 4 1
17| 4813 3 8§ 8 6 1
18| 602 3 10|15 10 3 0
19| 72|12 3 9|18 12 4 0
20 802 4 5|20 10 8 0
21 96|12 3 8|24 16 6 1
22116812 3 7|42 28 12 0

Table 5.1: All possible values for the number of flags and type of an orientably-regular hyper-
map on the double torus

Let H be a hypermap subgroup of H, G := AT/H, x :== HR1Ry, y := HRsRy and
z:= HRoR;. Then G = (z,y,2) and zyz = 1.

Using the Sylow theorems it is easy to show that there are no orientably-regular hypermaps
corresponding to cases 11, 14, 20 and 22. In cases 20 and 22, n is prime and (z) is the unique
n-Sylow-subgroup. Hence (z) < G*. Since zy = 271 € (2), (2)x = (2)y~!. It follows that
(z) = (2)a? = (2)y~2 and y~2 € (2). On the other hand, Lagrange’s theorem ensures that
y~2 ¢ (z) because in both cases the order of y~2 does not divide the order of z. In cases 11
and 14, m is prime and (y) is the unique m-Sylow-subgroup. In case 11,  has order m, so
x € (y) but z = (zy)~! ¢ (y) because n { m. Similarly, in case 14, z has order m, so z € (y)
but x = (yz)~! ¢ (y) because [ | m.

A brief consideration shows that there are no orientably-regular hypermaps corresponding
to cases 9 and 15. First of all, we remark that if a face is adjacent to itself, then it is unique.
Indeed, if Hg and HgRs are flags on the same face f, then HgRoRy = Hgx is also in f. It
follows that = € (2), so (z) = (z,2) = G*. Second, y (resp. x) induces a permutation of the
faces incident at an edge (resp. a vertex) such that all its disjoint cycles have the same length.
Clearly, this length divides the valency m (resp. [) of all edges (resp. vertices). Similarly, z
induces a permutation of the faces adjacent to a face such that all its disjoint cycles have the
same length d. This length d is divides n and must be smaller than n. Finally, we note that
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a hypermap corresponding to cases 9 or 15 has 2 faces, and its edges have valency 3.

In cases 1,2, 3,5, 6, 7and 13, F = 1, so |GT| = |{2)], that is GT = (2) = C,,. Tt follows
that there is 0 < k < n such that = zF and y = £7'27! = 27%~1. Because x and y have
orders [ and m, ged(n, k) = n/l and ged(n,k + 1) = n/m.

In cases 4, 8 and 12 (as well as in cases 9 and 15), F' = 2, so |G| = 2|(z)| and hence
(z) <19 GT. Since 22, y% € (2) <1y G, there are 0 < j, k < n such that 22 = 27 and y? = 2*. In
addition I/ ged(l,2) = n/ ged(n, j) and m/ ged(m,2) = n/ged(n,j). Alternatively, note that
2%, 2% € (z) because (z) <3 G, so there are 0 < p,q < n such that 2% = 2P, 2¥ = 27 and
ged(n, p) = 1 = ged(n, q).

In case 10, the number of faces incident at each edge must be 2, so y? € (z). Because y
and z have order 4, y? = 22

In cases 18 and 19, the number d of faces adjacent to a face is 2 and 3, respectively. Then
(z)* € (2), that is, (24)* = 2* for some 0 < k < n.

In case 21, the number d of faces adjacent to a face is 2 or 4. Either way (z4)* € (z).
Because z has order 8, z* and (2%)* have order 2, so (z%)* = 2%, that is, (z%2)? = 1.

In case 16, the number d of faces adjacent to a face is 2 or 3. Because each face is adjacent
to the same number of faces, d cannot be 3. Then d = 2 and (y?)* € (y). Having in mind
that y has order 4 and z has order 2, (y?)* = y? = y~2, that is, (y?z)% = 1.

In case 17, z induces 2 permutations of the faces adjacent to a face such that their order
divides 4. The disjoint cycles of these 2 permutations must have the same length, so they
have order 1 or 2. Either way (22)* € (z) and, because z has order 4, (22)% = 22.

With the help of GAP [34], this last procedure allows us to find hypermap subgroups
for the orientably-regular hypermaps on the double torus. In each case we can determine a
finite set 7', contained in H and containing S = {(RiR2)!, (R2Ro)™, (RoR1)"}, such that
[AT: <T>A+] = |Q]/2. Clearly, H is regular if and only if H = (T)?, or equivalently, if and
only if [A : (T)A] = 2[A* : (T)2] = 2[A* : H]. By inspection, or using GAP [34] again, we
get:

Theorem 5.1.1 (Breda and Jones [15]). All orientably-regular hypermaps on the double torus
are reqular.

In other words, there are no orientably-chiral hypermaps on the double torus.

Table 5.2 lists, up to duality, all regular hypermaps on the double torus. For each regular
hypermap R on the double torus of type (I, m,n) with [ < m < n we give a list X of additional
relations such that the normal closure in A of T' := SUX is a hypermap subgroup of R. Finally,
in the last two columns we give the rotation group, Aut™(R) and the automorphism group,
Aut(R), which can be found in [15]. In the semi-direct product C3 x Cy, the generator of Cy
acts on Cs by inverting its elements. This group is denoted by (2,3, 3) in [33] and by Ds in [15].
Notice that the hypermaps in lines 1, 2 and 3 are not isomorphic. However, Hy = D19 (H1),
Hs = Do1)(H1) and Hi = D(gg)(H1). The automorphism group of the hypermap Hi3 is
the group of genus two [63], the unique group for which the minimum genus over all surfaces
containing an imbedded Cayley graph for the group is two.

Lemma 5.1.2 (Conservativeness of the regular hypermaps on the double torus). Let © <ig A
and let H; be the reqular hypermap listed in line j of Table 5.2. Then:

1. Hi, Ho, H3 and Hia are ©O-conservative if and only if © = A™T;

2. Ha, Hs and Hg are O-conservative if and only if © € {AT A, AO};
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[ #[R [12[1 m n]Additional relations | Aut™(R) [ Aut(R) | ©-cons. |

1[H, | 10]5 5 5] (RiRe)(RoR1) ! Cs Ds AT

2| Hy | 105 5 5| (RiR)(RoRy)™2 Cs Ds At

3|Hs | 105 5 5| (RiRy)(RoRy)™? Cs Ds At

4| H, [ 123 6 6] (RiRy)(RoRy)™* Cs Dy A+, A0 AD

5|Hs | 162 8 8| (RiRo)(RoRy)* Cs Ds A+, A AD

(R1R2)*(RoR1)~ 2,

6 HG 16 | 4 4 4 (R2R0)2(R0R1) Qg Q8-04 all

7/ H: [ 20]2 5 10| (R Ro)(RoR1)~° Cho Dio AT AL Al

8 Hg 24 | 2 6 6 (RQR()) (RoRl) -4 C6><02 DGXCQ all

9 | Hy 24 13 4 4 (RQRO) (R0R1)_2 C3 xCy (4,6‘2,2) A+,AO7AO
10 HIO 3212 4 8 (RQRO) (R0R1)74 <—2,4‘2> HOI(CS) all
11 [ Hyy | 48|12 4 6| ((R2Ro)*(R1R2))? (4,6]2,2) | D3 x Dy all
12 [Hio | 48 (3 3 4| [(RoR1)% (RiR»)] SL,(3) GL.(3) AT
13| Hiz | 962 3 8| ((RoR1)*(RiR»))? GLy(3) | GLa(3) x Cy | AT, AL Al

Table 5.2: The orientably-regular hypermaps on the double torus ‘up to duality’

3. Hr and Hiz are O-conservative if and only if © € {AT, Al Ai};
4. He, Hs, Hio and Hi1 are ©-conservative for all © <1q A.

5.2 Pseudo-orientably-regular and bipartite-regular hypermaps
on the double torus

Since A0 = A+ A0 = AT N A0 every pseudo-orientably-regular hypermap P on an
orientable surface S is AT regular, as well as every bipartite-regular hypermap B on S. For
this reason, we can derive the classifications of pseudo-orientably-regular and bipartite-regular
hypermaps on § from the classification of AT regular hypermaps on S.

In this section we determine all AT%-regular hypermaps on the double torus in order to
classify all pseudo-orientably-regular and bipartite-regular hypermaps on the double torus.

Now we assume that H is a AT%0regular hypermap and H is a hypermap subgroup of H.
According to Lemma 1.3.9, H is bipartite-uniform. Let (I1,l2;m;n) be the bipartite-type of
H. Since H < AT and [Qy| = [A: H] = [A : AT00] . [AT00 . F] = 4[AT00 ;. H] A+00/F is
a group with order |Q|/4. By the Euler formula for bipartite-uniform hypermaps (Corollary
1.4.3), (a,b,c,d) = (I1,12,m/2,n/2) is a solution of

|| 2
4 2—(1/a+1/b+1/c+1/d)’

(5.2)

such that a,b,c,d | |[Qy|/4. Theorem 1.4.8 states that |Qy| < —168x = 336, or equivalently,
|Q|/4 < 84.

Using GAP [34], one can easily determine all values for |Qy]|/4 and (a,b,c,d) such that
a<b<c<d,|Q/4is amultiple of a, b, ¢, d and equation (5.2) holds. These values are listed
in Table 5.3 and give rise a total of 119 distinct values for the bipartite-type (I1,l2;m;n) of a
bipartite-uniform hypermap on the double torus, with 1 <l and m < n.
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’#HQHabc dH#HQHa b ¢ d
11213 3 3 3 15| 48|11 3 4 4
2162 2 4 4 16| 48|12 2 2 3
3/ 201 5 5 5 17| 601 3 3 5
41 24|11 3 6 6 18| 641 2 4 8
512412 2 2 6 19| 7211 2 3 18
6| 24|12 2 3 3 200 801 2 5 5
713211 2 8 8 21| 961 2 3 12
8| 32|1 4 4 4 221 96|11 2 4 6
9|1 322 2 2 4 23| 961 3 3 4

10| 36|1 3 3 9 2411201 2 3 10
11| 40|11 2 5 10 2514411 2 3 9
12| 48|11 2 4 12 261601 2 4 5
13| 48|11 2 6 6 27119211 2 3 8
14| 48|11 3 3 6 2813361 2 3 7

Table 5.3: Solutions of (5.2) with a <b<c¢<d

If Iy =1 (53 cases) or m/2 = 1 (another 53 cases), then H = Pin(K) or H = Walsh(K)
for some hypermap K on the double torus. Since ATV = ATNA? = ATy, 71 = Aty !

and H is A% regular, K is A*-regular, that is, orientably-regular. By Theorem 5.1.1, K is
regular and hence H is bipartite-regular. This shows the following result.

Lemma 5.2.1. If H is a A*OO-regular hypermap on the double torus obtained by the Pin or
Walsh construction, then H is bipartite-reqular. Thus, H is A-reqular if and only if H is
reqular.

The bipartite-regular hypermaps on the double torus obtained by the Pin and Walsh
constructions are displayed in Tables 5.5 and 5.4, respectively. Because H3 = D(01)(H1),
Walsh(H3) = Walsh(Dg1)(H1)) = Walsh(H;) (by Theorem 1.6.6). Since Hz = D19)(H1),
Pin(Hz) = Pin(D(12)(H1)) = D(12)(Pin(H1)) (by Theorem 1.6.10); however Pin(Hz) is not
isomorphic to Pin(H;).

Remark 5.2.2. The bipartite-regular hypermaps on the double torus obtained by the Pin
construction are non-uniform and hence bipartite-chiral.

The Walsh construction gives rise to 17 non-uniform bipartite-regular hypermaps on the
double torus. One easily checks that

o Walsh(Hz2) = D(o1)(H7),

o Walsh(D(gg)(H4)) = D(o1)(Hs).
o Walsh(Dg2)(Hs5)) = Do12)(H1o)
o Walsh(Hg) = D01)(H10),

e Walsh(Dg2)(Hs)) = D(o12)(H11)
o Walsh(Dg2)(Ho)) = Hiu,
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[ #[1Q[h lp m/2 n/2]Walsh(-) | | #] [Q]L ln m/2 n/2 ] Walsh(-) |
1] 205 5 1 5[H 13] 48[ 3 4 1 4 H
20205 5 1 5[ HyorHs 14| 48| 4 4 1 3| D (Hy)
32413 6 1 6|Hy 15] 64| 2 4 1 8| Hio
42416 6 1 3| Do (Ha) 16| 64| 2 8 1 4] Dy (Hio)
50322 8 1 8|Hs 17] 64| 4 8 1 2| Do (Hio)
6] 32]8 8 1 2| Do (Hs) 18| 96| 2 4 1 6|Hn
713204 4 1 4| He 19 962 6 1 4[Dpgy(Hn)
8402 5 1 10| H; 20 9] 4 6 1 2| Do (Hu1)
9402 10 1 5| Dugy(Hr) 21 963 3 1 4| Hpe
10| 40[ 5 10 1 2| Dgon(Hr) | [22] 96]3 4 1 3| Duy(Hi2)
11] 48[ 2 6 1 6|Hs 23192 2 3 1 8|His
12| 48] 6 6 1 2| Do) (Hs) 24192 2 8 1 3| Duy(His)

251192 | 3 8 1 2 D(021)(H13)

Table 5.4: Bipartite-regular hypermaps on the double torus obtained by the Walsh construc-
tion.

® Walsh(ng) = H13,
e Walsh(H;) = Walsh(H3) is bipartite-regular and uniform but it is not regular.

In other words, the hypermaps listed in lines 1, 4, 6, 7, 12, 14 and 21 of Table 5.4 are regular,
so their chirality groups are trivial and their chirality indices are 1; the other 18 hypermaps
are bipartite-chiral.

It remains to analyze the A*Oé—regular hypermaps which are not obtained via the Walsh
and Pin constructions. The list of all possible values for the bipartite-type (l1,l2;m;n) of a
A+00—regular hypermap on the double torus which is not constructed by the Walsh or Pin
constructions (that is, such that l1,la,m/2,n/2 > 2) is given in Table 5.6.

Let 'H be one of these A+06—regular hypermaps, H a hypermap subgroup of H and
G* = ATO/H. Let r = HRRy, s = H(RiRy)™, t = H(RyRy)?> = HRyRyf and
u = H(R0R1)2 = HRlRORl. Since AJrOO = <R1R2, (RlRQ)RO, (RQRO)Q,(ROR1)2> (See Sec-
tion 1.2), G*/H = (r, s, t,u) and s = urt. In addition:

o it = ph2 — 7“*1, rfo = g = urt;

° tRQ _ tRO _ t_l, tRl — (t—l)r*:l.

i

° URO — URl — u—l) uRQ — (u—l)r;

o sfo = sf = (yrt)fir = 14*17"*1(t*1)7"_1 =yl sl = (sF)r = iy T

In case 1, G* = (u) = C3. Because s has order 3, u,r,t cannot be all equal. So u =
rl=t=soru=r=t'!'=soru!=r=1t=s Therelations u = r =t~! = s or
uwl =7 =t =s give rise to hypermaps subgroups which are conjugate under Ry. For this

reason there are 2 non-isomorphic A*%-regular hypermaps of type (3,3;6;6).
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| #1191 l; m/2 n/2]Pin() | L #]19 L la m/2 n/2]Pin() |
11201 5 5 5| Hi 14| 48|11 3 4 4| Ho
212001 5 5 5| Ha 15| 48| 1 4 3 4 D(Ol)(Hg)
31201 5 5 5| Hs 16| 64| 1 2 4 8 | Hio
412411 3 6 6| Ha 17| 64| 1 4 2 8 D(gl)('Hlo)
5(24]1 6 3 6 D(Ol)('H4) 18| 64| 1 8 2 4 D(012)(H10)
6| 32| 1 2 8 8| Hs 19| 96| 1 2 4 6 | Hi1
7132]1 8 2 8 D(Ol)(Hg)) 200 96| 1 4 2 6 D(Ol)(Hll)
81 32|1 4 4 4| Hs 21| 96| 1 6 2 4 D(012)(H11)
9| 40| 1 2 5 10| Hr 221 961 3 3 4| Hiz

10| 401 1 5 2 10 D(Ol)(H7) 23| 96| 1 4 3 3 D(OQ)(le)
11| 40| 1 10 2 5 D(Olg)(H7) 241192 | 1 2 3 8 | Hiz

12| 48] 1 2 6 6 | Hsg 25 (19211 3 2 8 D(gl)(ng)
13 4811 6 2 6 D(Ol)(Hg) 26 (192 1 8 2 3 D(012)(H13)

Table 5.5: Bipartite-regular hypermaps on the double torus obtained by the Pin construction.

11123 3 3 3
2|16 2 2 4 4
3| 162 4 2 4
4| 16| 4 4 2 2
51242 2 2 6
6| 2412 6 2 2
712412 2 3 3
8| 242 3 2 3
912413 3 2 2
10| 32 2 2 2 4
11 32| 2 4 2 2
12| 481 2 2 2 3
13| 4812 3 2 2

Table 5.6: Possible values for the bipartite-type (I1,lz2;m;n) of a A+06—regular hypermap on
the double torus which is not obtained from regular hypermaps by the Walsh or the Pin
constructions.
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In case 2, G* = (u) = Cy. This group only has 1 element of order 2, so r = s =
In addition, since G* is abelian, s = urt implies that t = u~!. In case 3, G* = (u) = Cy,
r=t=u?and s =wu. Incase 4, G* = (r) 2 Cy, t = u = r? and s = r. For each bipartite-type
(2,2;8;8), (2,4;4;8) and (4, 4;4;4) there is only one A*OO—regular hypermap with such type.

In cases 5 and 6, G* has elements of order 6, so G* = Cg is abelian. However, s # u2r2t?
because exactly one of these elements does not have order 2. Consequently there is no A%
hypermap corresponding to these cases.

In cases 7, 8 and 9, G* is Cg or D3 = S3 and G* has exactly one 3-Sylow-subgroup. In
case 7, if G* = (g, then u = r and s = r, because G* is abelian and has only 1 element of
order 2; else, if G* = D3, then u # u" =u~!,sot =wand r = s, or t = v~ and s = ru.
These last relations give rise to hypermaps subgroups which are conjugate under R;. In case
8, if G* = Cg, then u = 7 and t = r; else, if G* = D3, then u # v = ™', s0 s = u
and r =t,or s = u ! and t = ru. In case 9, if G* = (4, then u = r and t = u; else, if
G* = D3, thenr # 1% =771 sos=7rand u=tr, or s =7r"! and t = u. These last relations
give rise to hypermaps subgroups which are conjugate under R;. Because of this, there are 2
non-isomorphic A+00—regular hypermaps of bipartite-type (2,2;6;6), 3 non-isomorphic A+00_
regular hypermaps of bipartite-type (2, 3;4;6) and 2 non-isomorphic A+00_ regular hypermaps
of bipartite-type (3, 3;4;4).

In cases 10 and 11, G* is not abelian because s? # u?r?t?. In addition G* # Qg, for
otherwise the unique element of Qg that has order 2 is in the center of Qg, so s = urt implies
r=s =1t =wu. Hence G* = D4. In case 10, r,s,t cannot be all in (u) <o G*. On the
other hand s = wurt implies that at the number of elements of {r,s,t} outside (u) is even.
If r,s ¢ (u), then u" = ™!, t = u? and s = ru; if r,t ¢ (u), then v" = u=!, s = u? and
t = ru; if s,t ¢ (u), then v’ = ™!, r = u? and s = tu. These last 2 sets of relations
give rise to hypermaps subgroups which are conjugate under Ry. In case 11, (s) <2 G*; if
r,t ¢ (s), then u = s and t = sr; if r,u ¢ (s), then t = 52 and u = rs; if t,u ¢ (s), then
r = 52 and u = ts. These first 2 sets of relations give rise to hypermaps subgroups, H and
H @, of non-isomorphic dual hypermaps. Because of this, there are 2 non-isomorphic A+00-
regular hypermaps of bipartite-type (2, 2;4;8) and 3 non-isomorphic A+00—regular hypermaps
of bipartite-type (2,4;4;4).

Finally, in cases 12 and 13, since s? # u?r?t?, G* is not abelian. There are 3 non-abelian
groups of order 12: Dg = D3 x Cy, A4 and C3 x C4. The number of 3-Sylow-subgroups of
a group with 12 elements is 1 ou 4; if the number of 3-Sylow-subgroups if 4, then there are
8 elements of order 3 and the remaining 4 elements form the only 2-Sylow-subgroup of G*.
However, because every involution is in a 2-Sylow-subgroup and s = wrt, or u~' = rts!,
both groups cannot have just 1 2-Sylow-subgroup. Hence G* # A4. In addition, G* cannot
be O3 x Cy = (R, S | S = T? = (ST)?) because this group has exactly 1 element of order
2 which generates the center of the group, so if 3 elements of {r, s, t,u} have order 2, then
s = urt implies that all have order 2 and r = s =t = u. Indeed C5 x C4 has 1 element of
order 1, 1 of order 2, 2 of order 3, 6 of order 4 and 2 of order 6. Reasoning by elimination we
get G* = Dg. Let N = Cs < G*. In case 12, u € N <z G*. Because s = urt, the set {r,s,t}
has 1 element inside and 2 outside G*. If r;s ¢ N, then t,u € N and t = u; if s,t ¢ N,
then r,u € N and r = u; if r,t ¢ N, then s,u € N and s = u. These last 2 sets of relations
give rise to hypermaps subgroups which are conjugate under Ry. In case 13, s € N <5 G*. If
r,t ¢ N, then u,s € N and v = s; if r,u ¢ N, then t,s € N and t = s; if t,u ¢ N, then
r,s € N and r = s. These first 2 sets of relations give rise to hypermaps subgroups, H and
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| # [ 19] ] a,b,c,d | Additional relations INa(H) [ ]G]
1] 123,3,3,3 (RORl)Q[(R2R0)2]71,(R0R1)2(R1R2) A 1|C5
2| 123,3,3,3 | (RoR1)2(R2Ro)2, (RoR1)?(R1Ry) ™ A0 3| Cs
3| 1612,2,4,4 (R()Rl)z(RzR())2,[(R()Rl)2]2(R1R2)_1 A 1|Cy
4| 16 | 2,4,2,4 [(R()Rl 2]2(R1R2)71,[(RoRl)z}Q[(RQRo)z]il AY 4| Cy
5 16 | 4,4,2,2 (R1R2)2[(R2R0)2]_17(RlRQ)Q[(RORl)Q]_l A 10y
6| 242233 [(R()Rl)z]Rle[(RoRl)Q]il,(RlRORQRO)(RlRQ)il A 1 C6
71 2412,23,3 [(RlRQ)(RoRl)} (RgRo)z[(R0R1)2]_1 A 3| D3
8| 2412,3,2,3 | [(RoR)?) B2 [(RyR1)?] 7!, (ReRo)*(R1Ry) ™1 A° 6| Cs
9| 242,3,2,3| [(RiR2)(RoR1)??, (R RyT™)[(RyRy)?] ! A0 6 | Dy
10 | 242,3,2,3 | [(R1R2)(RoR1)?)?, (R RORQRO)[(R0R1)2] A0 6| Ds
11| 24 3,3,2,2 [(RoRl)Q]RlRQ[(RQ )] (RQR()) [(R0R1)2]71 A 1| Cs
12| 24 |3,3,2,2 [(RoRl)Q(RlRQ)}Z,(RlRORgRO)(Rle) A 3| Ds
13| 32(2,2,2,4 | [(RoR1)?]?[(R2R0)? ! (Rle)(RORl) (RiTOR, )T T A 1| Dy
14 | 322,2,2,4 | [(RoR1)?2(R "™ Ry™) 1 (RyRy)(RoR1)%[(RaRo)% ™" | A° 4| Dy
15| 322,4,2,2 | (R R™)2[(RoR1)?| ™Y, (R RyT)(Ry Ry)(RyRy)? | AY 2| Dy
16 | 32 2,4,2,2 | (R Ry™)2[(RyR0)2) ™, (R Ry™) (Ro Ry )2(R1Ry) | AP 2| Dy
17 | 32 2,4,2,2 | (Ri°Ry™)2(RyRy)~ 7(RlRORgRO)(R0R1)2(R2RO)2 A0 4| Dy
18 | 487 2,2,2,3 | (RaRo)%(RoR1)?(R2Ro)?[(RoR1)?] T A 1| Dg
19 | 48| 2,2,2,3 | (RyRy)(RoR1)*(RiRs)[(RoR1)% ™! A0 3| Ds
20 | 48 (2,3,2,2 | (RoR1)*(R1T RyM)(RyR1)? (R, ™0 Ry o)1 A 6 | Dg
21 | 48 |2,3,2,2 | (RaRo)*(R1™ Ry (RyRy)? (R, 0 Ry o)1 A0 6 | Dg
22 | 48(2,3,2,2 | (R1Ry)(R1™ Ry"0)(Ry Ry)(Ry 0 Ry o)1 A0 6 | Dg

Table 5.7: A+06—regular hypermaps on the double torus which are not obtained by the Pin or
Walsh constructions

H@, of non-isomorphic dual hypermaps. Because of this, there are 2 non-isomorphic A+00_
regular hypermaps of bipartite-type (2,2;4;6) and 3 non-isomorphic A+00
of bipartite-type (2, 3;4;4).

Table 5.7 lists all A+00—reglllar hypermaps H on the double torus which are not obtained
by the Walsh or Pin constructions. It also displays a list X of additional relations such
that the normal closure in AT of T':= X U {(R1 R2)%, [(R1R2)™]’, (RaRy)?¢, (RoR1)%?} is a
hypermap subgroup H of H.

Using GAP [34], one can determine if H is regular or 2-restrictedly-regular in the following
way. The normalizer N in A of H, containing A+OO, is A+OO, AT AD A% or A. Theorem 5.1.1
states that every orientably-regular hypermap on the double torus is regular, so N cannot be
AT, Let © € {A% A%}, Now N = Na(H) contains © if and only if H® = H, or equivalently,
if and only if

-regular hypermaps

[©:T9) =[0: H®) = [0: AT0]. [AT00 . gO] = 2. [AT0 . ] = 2[A*00 . 7AY™] (5.3)
Furthermore, if H = T® is not normal in A, where {©,A} = {A", AO}, then H® = HM and

Qn| =[A:H]=[A:A]-[A: H?] - [H® : H=2-[A: H' - [H* : H], (5.4)
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so the chirality index of H is equal to |Qy/|/(2[A : H]). Obviously, when H is not uniform,
we just need to check if H is bipartite-regular or not, since H cannot be A%regular or regular.
In the last columns of Table 5.7 we display the normalizer in A of H, the chirality index ¢ of
H and the group G* = AT/ H.

Remark 5.2.3. The hypermaps listed in lines 1, 3, 5, 6, 11, 13 and 18 of Table 5.7 are the
regular hypermaps Ha, Hs, He, Hs, Hg, H1o and Hy; of Table 5.2,

5.3 Chirality groups and chirality indices of the 2-restrictedly-
regular hypermaps on the double torus

In this section we compute the chirality groups and chirality indices of the 2-restrictedly-
regular hypermaps on the torus.

According to Theorem 5.1.1, there are no orientably-chiral hypermaps on the double torus.
Looking at Tables 5.5, 5.4 and 5.7 and Remarks 5.2.2 and 5.2.3, we can see that, up to duality,
there are 4 pseudo-orientably-chiral and 60 bipartite-chiral hypermaps on the double torus.

5.3.1 Chirality groups and chirality indices of the bipartite-regular hyper-
maps on the double torus obtained by the Walsh or Pin constructions

Chirality groups and chirality indices of B = Walsh(R)

Let W; = Walsh(O;) be the bipartite-regular hypermap on the double torus listed in line j of

Table 5.4. Since W; is A+00—regular, W; covers Sy. Let O; be a hypermap subgroup of O;,
z:= OjR1 Ry, y := OjRaRy and z := O;RyRy. Then A" /O; = (z,y,2) and zyz = 1.

o If jis 1,4, 6,7, 12, 14 or 21, then W; is regular, so T(W;) = 1 and W;* = W);.
o If jis 8, 13, 22, 23 or 25, then, by Corollary 1.9.7, T(W;) = Aut™(0;) and W;2 = Ss.

o If jis 9, 11,15, 16, 17, 18 or 19, T(W;) = (y?) = Cy, )5 and ¢ = m/2. Let p = |Q]/4m.
In all 7 cases O; — Pp, so W; = Walsh(0;) — Walsh(P,) = Py, and W;2 = Py,

o If jis 2 or 5, Y(W;) = (2) 2 C, and W;2 = Ss.

e If jis 3 or 10, then T(W;) = (y!) = C,,; and WA = D(g2)(P1). In both cases O; — Dy,
so W; = Walsh(O;) — Walsh(D;) 2 D(gg)(P;) and W, = D g2 (P).

o T(Wao) = (32,22) = (O3 x Cy = Cg because 22 € Z(A1/Oq). Since Oy — P,
Wao = Walsh(Og) — Walsh(Py) = Py and Wa™ = Py.

o T(Was) = (v°, (y°)7) = Qs, since y! € Z(AT/On), [(1*))* = (v')* = ' = (v*)* and

W22 = (¥P0)t = [(yey) ] = [(ay2) Y " = [ay 1) = (y)™ ' = y*. Since
Oo4 — P3, Woy = Walsh(Oay) — Walsh(P3) = Ps and Way™ = Pg.

Table 5.8 lists the chirality groups, chirality indices and closure covers of the bipartite-
regular hypermaps on the double torus obtained by the Walsh construction.
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[ # [ B = Walsh() T L B2

1 | Walsh(Hs) 1 1 | Doy (Hr)
2 | Walsh(H;) = Walsh(Hs3) | Cs 5|8
3 | Walsh(H,) Co 2 | D(g2)(Ps)
4 | Walsh(Dg9)(Ha4)) 1 1| D1)(Hs)
5 | Walsh(Hs5) Cs 8 | S2
6 | Walsh(D g2 (Hs)) 1 1 | D(g12)(H10)
7 | Walsh(Hg) 1 1 | D(o1)(H1o0)
8 Walsh(H7) Cho 10 | Sy
9 Walsh(D(lg) (H7)) Cs 5| P

10 | Walsh(D (g91)(H7)) Cy 2 | Do) (Ps)

11 | Walsh(Hs) Cs3 3| Py

12 | Walsh(D g9 (Hs)) 1 1 | D(o12)(H11)

13 | Walsh(Hy) O3 xCy |12 Sy

14 Walsh(D(Og) (Hg)) 1 1 Hll

15 | Walsh(H10) Co 2| Ps

16 Walsh(D(lg) (Hlo)) 04 4 P4

17 WalSh(D(021)(H10)) Cy 4| Py

18 | Walsh(H11) Co 2| P2

19 Walsh(D(12) (H11)) Cs 3| P

20 | Walsh(Dgo1)(H11)) Cs 6 | P4

21 Walsh(’ng) 1 1 HlS

22 | Walsh(D(19)(H12)) SLy(3) |24 82

23 | Walsh(H13) GLo(3) |48 | Sy

24 WalSh(D(lg) (Hi3)) Qs 8 | Ps

25 WalSh(D(021)(H13)) GL2(3) |48 | S

Table 5.8: Chirality groups, chirality indices and closure covers of the bipartite-regular hyper-

maps on the double torus obtained by the Walsh construction.
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Chirality groups and chirality indices of B = Pin(R)

Let P; = Pin(O;) be the bipartite-regular hypermap on the double torus listed in line j
of Table 5.5. Since P; is A*OO—regular, P; covers Sp. By Proposition 1.8.5, PjA has type
(1,2k,2k) and hence PjA = Sy, for some k € IN. Let O; be a hypermap subgroup of O;,
z:= OjR1 Ry, y := OjRyRy and z := O;RoR;. Then A" /O, = (z,y, 2) and zyz = 1.

o If jis 11, 15, 22, 24 or 26, then, by Corollary 1.9.7, Y(P;) = Aut*(0;) and P;* = Ss.

e By Corollary 1.9.7, T(P7) = Aut™ (Do) (Hs)) = Aut™(Hs5) and P;2 = Sy, because
dy = 2 but O7 = D(g1)(H5) is not bipartite (see Lemma 5.1.2).

o If jis 10, 13, 17, 18, 19, 20, 21 or 25, then by Corollary 1.9.7, Y(P;) = Aut™%(0;) and
P;2 = Sy, because dy = 2 and O; is bipartite (see Lemma 5.1.2).
Since Aut™(0;) is a subgroup of index 2 in Aut™(0;), and Cip and G Ls(3) just have
one subgroup of index 2, T(P1g) = C5 and Y (Pas) = SLa(3).
In case 13, Y(P13) = Cg because all 3 subgroups of Cg x Cy = Vy x C5 of index 2 are
isomorphic to Cg.
In case 17, 22 = 2 = (22)? and 2* = 22220 = 23(22)? = 23y~2 = 23; therefore
(222)? = 2207122022 = 222522 = 2% and Y (P17) & (2, 2%) = Qs.
In case 18, T (Pi1g) = (z) = Cy because = has order 8.
In case 19, (y?x)? = 1 implies that (2?)* = 272 and that x = ?. Since y = 32,
y? € Z(A1/O19) and Y =2 (1,92, 22) = (2,2%) x (y?) = D3 x Cy = Dg.
In case 20, (z%y)? = 1 implies that (22)” = 272, s0 Y(P1g) = (z,22) =2 C3 x Oy,
In case 21, (2%y)? = 1 implies that 22 = y. Since 2? = 2z, 22 € Z(A1/Os) and
T(’Pm) = <£L',2’2> = 06 X 02.

e Ifjis1,2 3 4,5 6,8 9,12 13 or 14, T(P;) = (z) = C; and P;> = S, where
p=19Q[/2L.

e Y(Pig) = (x,2%) = Dy because y? = z* implies that 2% = 275 and (2?)* = 270 =2
Since 016 == HlO — 84, P16 = Pin(OlG) — Pin(S4) = Sg and PlﬁA == 58-

o Y(Pa3) = (z,27) = Qg since z = 22, (z2)3 = 1 = (22)?, (2%)? = (2%)* = 22 and
(r27)? = w2(22)32 222 = w2 l2wz = xzaa?zrzr = 2%(22)? = 2% Since Og3 — Ss,
Py3 = Pin(Oy3) — Pin(S3) = S and Pas™ = Sg.

Table 5.9 lists the chirality groups, chirality indices and closure covers of the bipartite-
regular hypermaps on the double torus obtained by the Pin construction.

5.3.2 Chirality groups and chirality indices of the A+Oﬁ—regular hypermaps
on the double torus which are not obtained by the Walsh or Pin con-
structions

Let B; be the A*OO—regular hypermap listed in line j of Table 5.7 and B; a hypermap subgroup
of B;. Then B; covers Sy and Y(B;) = B;~/B; <t At/B;. As before, let r = B;R1Ra,
s = Bj(R1R2)f, t = Bj(RaRy)? and u = B;(RoR1)*%.

e If jis 1,3, 5,6, 11, 13 or 18, then B, is regular (see Remark 5.2.3), so T(B;) = 1 and
B~ = B;.
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Table 5.9: Bipartite-regular hypermaps on the double torus obtained by the Pin construction.
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’ #HQHH ‘bip.—type‘L‘ T"HA ‘
1] 128, [(3,36,6) 1] 1|Hs
2 12 BQ (3,3;6;6) 3 03 52
30 16[Bs |(2,2;88) 1] 1]|Hs;
4| 16 54 (2,4;4;8) 4 04 82
5| 16|85 | (4,4;4;4) 1| 1|Hg
6| 24| Bs |(2,2:6;6) | 1| 1]Hs
71 24| B |(2,2:6:6) | 3| C5| Py
8 24 Bg (2,3;4;6) 6 06 52
9| 24| By |(2,3;4;6) | 6 | D3 | So
10| 24 | Bio | (2,3;4;6) | 6 | D3 | So
11| 24 [ Bi1 | (3,3;4;4) [ 1] 1] Ho
12 24 612 (3,3;4;4) 3 Cg 84
13| 32 (B3| (2,2:4:8) [ 1| 1| Huo
14| 32 [ By | (2,2:4:8) [ 4| Vi | Sy
15 | 32| Bis | (2,4;4;4) | 2| C2 | D(1a)(Py)
16 | 32 | Big | (2,4;4;4) | 2| Cy | Py
17| 32 | Bir | (2,4;4;4) |4 | Cy | Sa
18 [ 48 [ Bis | (2,2;4;6) | 1| 1| Hu
19 | 48 | Byg (2,2;4;6) 3| Cs D(lg)(P4)
20 48 BQO (2,3;4;4) 6 D3 54
21 | 48 | By | (2,3;4;4) | 6| D3 | Sy
22 | 48 | Byy | (2,3:4:4) [ 6| Cs | Sy

Table 5.10: A+00—regular hypermaps on the double torus which are not obtained by the Pin
or the Walsh constructions

o If jis 2, 4,8, 9 or 10, T(B;) = At%/B; because T(B;) and AT%/B; have the same
order. In addition, BjA = &s.

o If jis 7,12, 15, 16 or 19, Y (B;) has prime order and hence is cyclic. An easy calculation
reveals that B; covers Po, Bio covers Sy, and Bis and Big cover D(lz)(Pg). Owing
to this, B2 = P, Bio® = 84 and B2 = Big® = D(lg)(P4). The closure cover of
Bis = D(19)(Bis) is Big® = D(12)(B15)™> = D12 (Bi5™) = D(19)(D(12)(Ps)) = Pa.

o T(Biy) = (r,u?) =V, and B> = Py because Bi4> has 8 flags and covers P;.
o Y(Bi7) = (s) = C4 and BNA = &4 because BnA has 8 flags and covers Sjy.

o If j is 20, 21 or 22, Y(B;) = (r,s) and B;* = S;. When j is 22, 7 = s and so
T(Baz) = Coy x C3 =2 Cg. When j is 20 or 21, rs # sr and hence Y(B;) = Ds.

Table 5.10 displays the chirality groups, chirality indices and closure covers of the 2-
restrictedly-regular hypermaps on the double torus which are not obtained by the Walsh or
Pin constructions.



Appendix A

Normal closures, cores and
homomorphisms

We list here some results about group theory used in the thesis.

In what follows we assume that G and G’ are groups. As mentioned before, the normalizer
of H in G is be denoted by Ng(H) and the center of G is denoted by Z(G). The kernel of a
group homomorphism ¢ : G — G’ is denoted by ker .

Proposition A.1.1. Let ¢ : G — G’ be a group homomorphism and H' a subgroup of G'.
Then:

1. [G:H'e 1 <[G": H.
2. If  is onto, then |G : H' ¢~ '] = [G': H'].
3. If ¢ is onto and H' <G, G/H'p~" is isomorphic to G' /H'.

Applying Proposition A.1.1 to the inclusion ¢ : H — G and to the projection 7 : G — G/N,
we get the following result.

Corollary A.1.2. Let H and N be subgroups of G. Then:
1. [H: HNN] <[G: NJ.
2. If N is normal in G, then [H : HN N] =[G : N] if and only if G = HN.
3. If N is normal in G and N C H, then |G : H) = [G/N : H/N].
4. If[G:N|=2and H¢Z N, then [H: HNN| = 2.

The following result comes as Exercise 9 in page 75 of [50] and as Exercise 1.1.2 in page 3
of [60].

Lemma A.1.3. 1. Let H be a subgroup of G of finite index. Then there is a normal
subgroup N of G contained in H and also of finite indez.

2. Let H and H' be subgroups of G of finite index. Then H N H' also has finite index.

As a by-product of the proof of Lemma A.1.3, we get:

97



98 Chapter A. Normal closures, cores and homomorphisms

Remark A.1.4. If H is a subgroup of G of finite index, then HC has finite index, because
(G : HE <[G:H®]-[HC: H] =[G : H], and Hg has finite index by the previous lemma.

It is easy to see that Hg is a normal subgroup of H and that H is a normal subgroup of
Ng(H). However H may not be normal in HY. The following result gives us a necessary and
sufficient condition for a subgroup H to be normal in its closure cover HC.

Lemma A.1.5. Let H be a subgroup of G. Then H is normal in HE if and only if there is
a normal subgroup N of G such that H is normal in N.

Proposition A.1.6. Let G be a group, N a normal subgroup of G and H a subgroup of G
such that H C N.

1. HN C HC and Hy 2 Hg.

2. (HN)® = HC and (Hy)y = He.
3. For all g € G, (H)N = (HN)’.
4. Ng(H) € Ng(HY).

Lemma A.1.7. Let N be a normal subgroup of G of index 2, k € G\ N and H a normal
subgroup of N. Then Hg = H N H* and H® = HH*.

Proposition A.1.8. Let p : G — G’ be a group homomorphism, H < G and H' < G'. Then:

1 (H/SOA)G c (H’G/) o1 and (HQP*l)G O (H') L.

2. If © is an epimorphism, then (H/cp_l)G B) <H/Gl> o~ and (HQp_l)G C(H'g)p

3. (H(p)G/ D (HG) w; if H D ker, then (Hyp)q C (Hg) .

4. If @ is an epimorphism, then (Hcp)G/ C (HY) ¢ and (Hp)e 2 (He) ¢
Corollary A.1.9. Let ¢ : G — G’ be an epimorphism, H < G and H < G'. Then:

1 (H'e™)C = (H'Y )™ and (H'¢™Y ) = (H'ar )™

2. (Hp) = (H)g; if ¢ is an isomorphism, then (Hp)q = (Hg)e.

When ¢ is an inner automorphism of G we get:

Corollary A.1.10. For all g € G, Hg = (H9)g and H® = (H9)%.
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isomorphic hypermaps, 6
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orientable double covering, 24
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