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palavras -chave  
 

Hipermapa, restritamente-regular, 2-restritamente-regular, orientavelmente-
regular, pseudo-orientavelmente-regular, bipartido-regular, grupo de 
quiralidade, índice de quiralidade. 
 

resumo  
 
 

Nesta tese consideramos hipermapas com grande número de automorfismos 
em superfícies de baixo género, nomeadamente a esfera, o plano projectivo, o 
toro e o duplo toro. 
 
É conhecido o facto de que o número de automorfismos ou simetrias de um 
hipermapa H é limitado pelo seu número de flags, que, genericamente falando, 
são triplos vértice-aresta-face mutualmente incidentes. De facto, o número de 
automorfismos de H divide o número de flags de H. Hipermapas para os quais 
este limite é atingido são chamados regulares e estão classificados nas 
superfícies orientáveis até género 101 e em superfícies não-orientáveis até 
genero 202, usando computadores. 
 
Neste trabalho classificamos os hipermapas 2-restritamente-regulares na 
esfera, no plano projectivo, no toro e no duplo toro, isto é, hipermapas cujo 
número de automorfismos é igual a metade do número de flags, e calculamos 
os seus grupos quiralidade e índices de quiralidade, que podem ser vistos 
como medidas algébricas e numéricas de quanto H se distancia de ser regular. 
Estes hipermapas são uma generalização dos hipermapas quirais. 
 
Também introduzimos alguns métodos para construir hipermapas bipartidos. 
Duas destas construções têm um papel muito importante no nosso trabalho. 
 

 



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords  
 

Hypermap, restrictedly-regular, 2-restrictedly-regular, orientably-regular, 
pseudo-orientably-regular, bipartite-regular, chirality group, chirality index. 
 

abstract  
 

This thesis deals with hypermaps having large automorphism group on 
surfaces of small genus, namely the sphere, the projective plane, the torus and 
the double torus. 
 
It is well-known that the number of automorphisms or symmetries of a 
hypermap H is bounded by its number of flags, which are, roughly speaking, 
incident triples vertex-edge-face. In fact, the number of automorphisms of H 
divides the number of flags of H. Hypermaps for which this upper bound is 
attained are called regular and have been classified on orientable surfaces up 
to genus 101 and on non-orientable surfaces up to genus 202, using 
computers. 
 
In this work we classify the 2-restrictedly-regular hypermaps on the sphere, the 
projective plane, the torus and the double torus, that is, hypermaps whose 
number of automorphism is equal to half the number of flags and compute their 
chirality groups and chirality indices, which may be regarded as algebraic and 
numerical measures of how far H deviates from being regular. These 
hypermaps are a generalization of chiral hypermaps. 
 
We also introduce some methods for constructing bipartite hypermaps. Two of 
those constructions will play an important role in our work. 
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Introdu
tionThis thesis deals with hypermaps having large automorphism group on surfa
es of small genus,namely the sphere, the proje
tive plane, the torus and the double torus.Topologi
ally, a hypermap H is a 
ellular imbedding of a 
onne
ted hypergraph G into a
ompa
t surfa
e S. When G is a graph, we say that H is a map. The Euler 
hara
teristi
 andthe genus of H are the Euler 
hara
teristi
 and the genus of S. Roughly speaking, the �agsof H are its in
ident triples vertex-edge-fa
e, and a symmetry or an automorphism of H is apermutation of the set ΩH of �ags of H preserving in
iden
e. The set of all automorphismsof a hypermap H forms a permutation group, Aut(H), a
ting on the set of �ags of H. It hasbeen shown [24℄ that every �nite group is the group of automorphisms of a map (and hen
eof a hypermap). The number of automorphisms of a hypermap H is bounded by the numberof �ags of H, sin
e every automorphism is uniquely determined by its e�e
t on a �ag. Inaddition, the number of automorphisms of H divides the number of �ags of H. Hypermapsfor whi
h this upper bound is attained are 
alled regular. Regular hypermaps may be thoughtof as a generalization of the Platoni
 solids. When S is orientable, H is said orientable andthe number of automorphisms of H whi
h indu
e orientation-preserving automorphisms of Sis at most half the number of �ags of H. When the equality holds, the hypermap H is saidorientably-regular. If H is orientably-regular but not regular, then H is 
hiral.Algebrai
ally, a hypermap H is 
ompletely determined by a hypermap subgroup H, whi
his a subgroup of the free produ
t ∆ = C2 ∗ C2 ∗ C2. The number of �ags of H is equal tothe index of H in ∆, and its automorphism group is isomorphi
 to N∆(H)/H, where N∆(H)denotes the normalizer in ∆ of H. The hypermap H is regular if H is normal in ∆, and isorientably-regular if H is normal in ∆+, one of the seven normal subgroups of ∆ of index 2.Following [8℄, we say that a hypermap is 2-restri
tedly-regular if the normalizer N∆(H) in ∆of a hypermap subgroup H is one of those seven subgroups of ∆. In other words, a hypermapis 2-restri
tedly-regular if and only if its group of automorphisms a
ts on the set of �ags with2 orbits. These hypermaps 
an be view as a generalization of 
hiral or irre�exible hypermaps.For further reading on maps and hypermaps see [49, 45, 33, 28, 41, 46, 48, 13, 65℄, see also[23, 25, 26, 27℄ for the orientable 
ase, and [16, 39℄ for maps and hypermaps with boundary.The 
lassi�
ation of all maps or hypermaps whi
h satisfy a 
ertain 
ondition is a 
ommonproblem in map and hypermap theory. Regular, orientably-regular and 
hiral maps and hyper-maps have been 
lassi�ed a

ording to genus or Euler 
hara
teristi
 [11, 12℄, number of edgesor fa
es [70, 7, 10, 77, 54, 69, 40℄, or automorphism group [14℄. Edge-transitive maps, that is,maps whose automorphism group a
ts transitively on the set of edges have been 
lassi�ed onthe sphere (Grünbaum and Shephard [37℄) and on the torus (�irá¬, Tu
ker and Watkins [66℄).Another problem is the determination of all g for whi
h there is a map or hypermap of genus
g with a 
ertain property [21, 78℄. 1



2 Introdu
tionThroughout the last 
entury, many authors (Brahana [3℄, Threlfall [62℄, Sherk [55℄, Coxeterand Moser [33℄, Garbe [35℄, Bergau and Garbe [2℄) worked on the 
lassi�
ation of regularand orientably-regular maps without the help of 
omputers. They all 
ontributed to the
lassi�
ation of regular maps on orientable surfa
es up to genus 7 and on non-orientablesurfa
es up to genus 8. The generalization to hypermaps was done by Corn and Singerman[28℄, Breda and Jones [15℄ and Breda [7℄ on orientable surfa
es up to genus 2 and on non-orientable surfa
es up to genus 4. It is well-known that the 
lassi�
ation of regular mapsand hypermaps on a non-orientable surfa
e of genus g 
an be derived from the 
lassi�
ationof regular maps and hypermaps on the orientable surfa
e of genus g − 1. Chiral maps werestudied by Sherk [56℄, Garbe [35℄ and Wilson [75℄. Breda and Nedela [11℄ 
lassi�ed all 
hiralhypermaps on surfa
es up to genus 4. An almost 
omplete 
lassi�
ation of regular and 
hiralmaps up to 100 edges 
an be found in [70, 69℄. In [19℄, Conder and Dob
sányi give 
ompletelists of all regular and 
hiral maps on orientable surfa
es of genus 2 to 15, and all regular mapson non-orientable surfa
es of genus 4 to 30 (that is, all regular and 
hiral maps on surfa
eswith Euler 
hara
teristi
 between -28 and -2). More re
ently, Conder [17℄ obtained lists ofregular and 
hiral maps and hypermaps on orientable surfa
es of genus 2 to 101 and regularmaps and hypermaps on non-orientable surfa
es of genus 2 to 202, up to isomorphism andduality, with the help of the new �LowIndexNormalSubgroups� routine in MAGMA [1℄.In this thesis we determine, up to duality, all (isomorphism 
lasses of) 2-restri
tedly-regularhypermaps on the sphere, the proje
tive plane, the torus and the double torus, and 
omputetheir 
hirality groups and 
hirality indi
es (see [6℄).In Chapter 1 we introdu
e the basi
 notation used throughout the text. We presentmethods for 
onstru
tion bipartite maps. Two of these 
onstru
tions, Walsh and Pin, willplay an important role in our thesis. The �rst is indu
ed by Walsh's 
orresponden
e [67℄between hypermaps and bipartite maps on the same surfa
e. We also study the properties ofthe orientable double 
over of a non-orientable hypermap H, whi
h is the smallest orientablehypermap 
overing H (see [13℄).Chapter 2 deals with 2-restri
tedly-regular hypermaps on the sphere. Using the Eulerformula, we see that there is an in�nite number of possibilities for the valen
ies of the verti
es,edges and fa
es of a regular or 2-restri
tedly-regular hypermap on the sphere. In ea
h 
ase,there is exa
tly one regular or 2-restri
tedly-regular hypermap with those valen
ies. We showthat all 2-restri
tedly-regular hypermaps on the sphere are obtained from regular hypermapson the sphere using the Walsh or Pin 
onstru
tions. Most of the 
ontent of this 
hapter ispublished in [9℄.Chapter 3 deals with hypermaps on the proje
tive plane. We determine the 2-restri
tedly-regular hypermaps on the proje
tive plane by inspe
ting the regular and 2-restri
tedly-regularhypermaps on the sphere. As on the sphere, all 2-restri
tedly-regular hypermaps on theproje
tive plane are obtained from regular hypermaps on the proje
tive plane using the Walshor Pin 
onstru
tions. There is an in�nite number of possibilities for the valen
ies of theverti
es, edges and fa
es of a regular or 2-restri
tedly-regular hypermap on the proje
tiveplane. In ea
h 
ase, there is at most one regular or 2-restri
tedly-regular hypermap with thosevalen
ies.Hypermaps on the torus are studied in Chapter 4. Our main referen
es are the work ofSingerman and Syddall [57, 58℄ on uniform maps, and the work of Coxeter and Moser [33℄ onorientably-regular maps. On the torus, the Euler formula gives a �nite number of possibilitiesfor the valen
ies of the verti
es, edges and fa
es of a regular or 2-restri
tedly-regular hypermap,



Introdu
tion 3and in ea
h 
ase there is an in�nite number of non-isomorphi
 regular and 2-restri
tedly-regularhypermaps with those valen
ies. It is shown that the 2-restri
tedly-regular hypermaps on thetorus are either uniform or obtained from regular hypermaps on the torus using the Walshand Pin 
onstru
tions. We also introdu
e a notation for the uniform hypermaps on the torus.Finally, in Chapter 5, we 
lassify all 2-restri
tedly-regular hypermaps on the double torus.Our work in this Chapter was in�uen
ed by [15℄.At the end, we provide a subje
t index.
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tion



Chapter 1HypermapsIn this 
hapter we introdu
e basi
 terminology from the theory of hypermaps and at the sametime establish our notation.1.1 De�nitions and notationsA hypermap is a four-tuple H = (ΩH, h0, h1, h2) where h0, h1, h2 are permutations of a non-empty set ΩH su
h that h0
2 = h1

2 = h2
2 = 1 and 〈h0, h1, h2〉 is transitive on ΩH. Theelements of ΩH are 
alled �ags of H, the permutations h0, h1 and h2 are 
alled 
anoni
algenerators of H and the group Mon(H) = 〈h0, h1, h2〉 is the monodromy group of H. Onesays that H is a map if (h0h2)

2 = 1. A hypermap is said �nite if its set of �ags is �nite. Ifthe permutations h0, h1 and h2 are �xed-point free, we say that H has no boundary or that
H is a hypermap without boundary . Hen
eforth, all hypermaps are to be �nite and withoutboundary unless otherwise spe
i�ed.The hyperverti
es or 0-fa
es of H 
orrespond to 〈h1, h2〉-orbits on ΩH. Likewise, thehyperedges or 1-fa
es and hyperfa
es or 2-fa
es 
orrespond to 〈h0, h2〉- and 〈h0, h1〉-orbits on
ΩH, respe
tively. If a �ag ω belongs to the orbit determining a k-fa
e f we say that ω belongsto f , or that f 
ontains ω. We use the terms verti
es, edges and fa
es instead of hyperverti
es,hyperedges and hyperfa
es, for short. We denote the numbers of verti
es, edges and fa
es of
H by V (H), E(H) and F (H). When just one hypermap, say H, is under dis
ussion, we omitthe letter H from hypermap-theoreti
 symbols and write, for instan
e Ω, V , E and F insteadof ΩH, V (H), E(H) and F (H).Let {i, j, k} = {0, 1, 2}. We say that the k-fa
e f = ω〈Ri, Rj〉 and the j-fa
e e = σ〈Ri, Rk〉are in
ident if f ∩ e 6= ∅. In other words, in
iden
e is given by non-empty interse
tion. Two
k-fa
es f and f ′ are adja
ent if both are in
ident to a j-fa
e g. The valen
y of a k-fa
e
f = w〈hi, hj〉 (of a �nite hypermap without boundary), where ω ∈ ΩH, is the least positiveinteger n su
h that (hihj)

n ∈ Stab(w). Sin
e hi2 = hj
2 = 1 and hi and hj are �xed-pointfree, f has 2n elements, so the valen
y of a k-fa
e is equal to half of its 
ardinality. If, forea
h 
hoi
e of indi
es i, j ∈ {0, 1, 2}, all 〈hi, hj〉-orbits on ΩH have the same 
ardinality, wesay that H is uniform. When all verti
es, edges and fa
es of H have valen
y greater than one,we 
an think of a �ag as an in
ident vertex-edge-fa
e triple (v, e, f). A hypermap H has type

(l,m, n) if l, m and n are the least 
ommon multiples of the valen
ies of the verti
es, edgesand fa
es, respe
tively. In other words, the type of a hypermap H is (l0, l1, l2) if li, lj and lkare the orders of hjhk, hkhi and hihj . When H is uniform, H has type (l,m, n) if and only if5



6 Chapter 1. Hypermaps
l, m and n are the valen
ies of the verti
es, edges and fa
es of H, respe
tively.Topologi
ally, maps and hypermaps 
an be represented by 
ellular imbeddings of 
onne
tedgraphs and hypergraphs into 
ompa
t surfa
es. A map M 
an be represented by a 
ellularimbedding of a 
onne
ted graph G into a 
ompa
t surfa
e S, where the verti
es, edges andfa
es of the imbedding 
orrespond to the verti
es, edges and fa
es of M. Using the well-known 
orresponden
e of Walsh between hypermaps and bipartite maps des
ribed in [67℄, we
an represent a hypermap by a 
ellular imbedding of a bipartite graph (that is, a hypergraph)
G into a 
ompa
t surfa
e S, where the verti
es of G 
orrespond to the verti
es and edges of
H and two verti
es of G are 
onne
ted by an edge if and only if they form an in
ident pairvertex-edge of H.Alternatively, a hypermap H 
an be represented by a 
ellular imbedding of a 
onne
tedtrivalent graph G into a 
ompa
t surfa
e S, together with a labelling of the fa
es with labels0, 1 and 2 so that ea
h edge of G is in
ident with two fa
es 
arrying di�erent labels. In otherwords, H 
an be represented by the S
hreier (right) 
oset graph (see �3.7 of [33℄, �7. of [64℄ or�4-3. of [68℄) for the stabilizer of a �ag ω ∈ ΩH in the monodromy group of H, Mon(H), withrespe
t to the generators h0, h1 and h2, with free edges repla
ing loops. The verti
es of thegraph G 
orrespond to the �ags of H and the fa
es labelled with k 
orrespond to the k-fa
esof H.When H is represented by a 
ellular imbedding of a 
onne
ted hypergraph G on a surfa
e
S, we say that G is the underlying hypergraph of H and that S is the underlying surfa
e of
H. A hypermap H has no boundary when its underlying surfa
e S has no boundary. TheEuler 
hara
teristi
 and the genus of a hypermap H are the Euler 
hara
teristi
 and thegenus of its underlying surfa
e S, respe
tively. We speak of 
hara
teristi
 of H, meaning theEuler 
hara
teristi
 of H, for short. Hypermaps imbedded on the sphere are 
alled spheri
al ;hypermaps imbedded on the torus are 
alled toroidal .A 
overing from a hypermap H = (ΩH, h0, h1, h2) to another hypermap G = (ΩG , g0, g1, g2)is a fun
tion ψ : ΩH → ΩG that 
ommutes a

ording to the following diagram:

ΩH
hi

//

ψ
��

ΩH

ψ
��

ΩG
gi

// ΩG

,

that is, su
h that hiψ = ψgi for all i ∈ {0, 1, 2}. Sin
e Mon(G) a
ts transitively on ΩG , ψ issurje
tive. Be
ause Mon(H) a
ts transitively on ΩH, the 
overing ψ is 
ompletely determinedby the image of a �ag of H. By von Dy
k's theorem ([42℄, p. 28) the assignment hi 7→ giextends to a group epimorphism Ψ : Mon(H) → Mon(G) 
alled the 
anoni
al epimorphism.The 
overing ψ is an isomorphism if it is inje
tive. If there is a 
overing ψ from H to G, we saythat H 
overs G or that G is 
overed by H, and write H → G; if ψ is an isomorphism we saythat H is isomorphi
 to G, or that H and G are isomorphi
, and write H ∼= G. When ψ is a
overing from H to G and |ΩH| = 2|ΩG | we say that ψ is a double 
overing . An automorphismor a symmetry of H is an isomorphism ψ : ΩH → ΩH from H to itself, that is, a fun
tion
ψ that 
ommutes with the 
anoni
al generators. Naturally, the set of all automorphisms (orsymmetries) of H forms a group under 
omposition, 
alled the automorphism group of H anddenoted by Aut(H). Sin
e for all ω ∈ Ω, (ω〈hi, hj〉)ψ = ωψ〈gi, gj〉, a 
overing ψ : ΩH → ΩGindu
es a surje
tive mapping between the set of k-fa
es of H and the set of k-fa
es of G; anisomorphism indu
es a bije
tive 
orresponden
e between the set of k-fa
es of H and the set of



1.2 The triangle group 7
k-fa
es of G. An automorphism ψ is 
alled a re�e
tion if there is a �ag ω ∈ Ω and k ∈ {0, 1, 2}su
h that ωψ = ωrk.Using the Eu
lidean Division Algorithm, one 
an easily show the following result.Lemma 1.1.1. Let ψ : ΩH → ΩG be a 
overing from H to G and ω ∈ ΩH. Then the valen
yof the k-fa
e of G 
ontaining ωψ divides the valen
y of the k-fa
e of H 
ontaining ω.1.2 The triangle groupThe free produ
t

∆ = C2 ∗ C2 ∗ C2 = 〈R0, R1, R2 | R0
2 = R1

2 = R2
2 = 1〉is 
alled the triangle group. By the torsion theorem for free produ
ts (Theorem 1.6 in �IV.1of [51℄), the 
onjugates of R0, R1 and R2 are the only non-identity elements of �nite order in

∆. More generally, for ea
h triple (l,m, n) ∈ (N ∪ {∞})3, the extended triangle group is thegroup
∆(l,m, n) = 〈R0, R1, R2 | R0

2 = R1
2 = R2

2 = (R1R2)
l = (R2R0)

m = (R0R1)
n = 1〉where we regard equations of the form (RiRj)

∞ = 1 as being va
uous.For positive integers l,m, n, the extended triangle group ∆(l,m, n) is the group generatedby re�e
tions in the sides of a triangle with angles π/l, π/m and π/n. This triangle will lie onthe sphere, the Eu
lidean plane or the hyperboli
 plane depending on whether 1/l+1/m+1/nis greater than, equal to or less than 1, respe
tively. It is well-known that:
• ∆(1,m, n) = ∆(1, k, k) ∼= Dk, where k = gcd(m,n);
• ∆(2, 2, n) ∼= Dn × C2;
• ∆(2, 3, 3) ∼= S4;
• ∆(2, 3, 4) ∼= S4 × C2;
• ∆(2, 3, 5) ∼= A5 × C2.If N is a normal subgroup of ∆ of index 2, then ∆/N , having order 2, is isomorphi
 to C2.Consequently, the group ∆ has 7 subgroups of index 2 (see [13℄), the kernels of the 23 − 1 = 7group epimorphisms ϕ : ∆ → C2:

∆+ = 〈R1R2, R2R0〉∆ = 〈R1R2, R2R0, R0R1〉,

∆k̂ = 〈Ri, Rj〉∆ = 〈Ri, Rj , RiRk , Rj
Rk〉,

∆k = 〈Rk, RiRj〉∆ = 〈Rk, RiRj , RjRkRi〉,where {i, j, k} = {0, 1, 2}. The subgroup ∆+ is often 
alled the even subgroup of ∆.If N is normal subgroup of ∆ of index 4, then ∆/N , being a group of order 4 generatedby re�e
tions, is V4
∼= C2 × C2. By taking ϕ : ∆ → C2 × C2 a group epimorphism su
h that

N = kerϕ, and π1 and π2 the proje
tions C2 × C2 → C2, one 
an see that N1 = kerϕπ1 and
N2 = kerϕπ2 are normal subgroups of ∆ of index 2 and N = N1 ∩ N2. Consequently, the



8 Chapter 1. Hypermapsnormal subgroups of ∆ of index 4 are interse
tions of normal subgroups of ∆ of index 2. Byinspe
tion we 
an see that ∆ has 7 normal subgroups of index 4 (see [13℄):
∆012 = 〈RiRjRk〉∆ = 〈RiRjRk, RjRkRi, RkRiRj〉

= ∆i ∩ ∆j = ∆0 ∩ ∆1 ∩ ∆2,

∆+kk̂ = 〈RiRj , (RjRk)2〉∆ = 〈RiRj , (RiRj)Rk , (RjRk)
2, (RkRi)

2〉
= ∆+ ∩ ∆k = ∆k ∩ ∆k̂ = ∆k̂ ∩ ∆+ = ∆+ ∩ ∆k ∩ ∆k̂,

∆îĵk = 〈Rk, (RiRj)2〉∆ = 〈Rk, RkRi , Rk
Rj , Rk

RiRj , (RiRj)
2〉

= ∆î ∩ ∆ĵ = ∆ĵ ∩ ∆k = ∆k ∩ ∆î = ∆î ∩ ∆ĵ ∩ ∆kwhere {i, j, k} = {0, 1, 2}. We write ∆0̂12̂ and ∆01̂2̂ instead of ∆0̂2̂1 and ∆1̂2̂0, for simpli
ity.Let ∆′ be the derived group (that is, the 
ommutator subgroup) of ∆. For all i, j ∈ {0, 1, 2},
(RiRj)

2 = [Ri, Rj ] ∈ ∆′, so the �rst homology group of ∆ is ∆/∆′ ∼= C2 × C2 × C2 and
∆′ = 〈(R1R2)

2, (R2R0)
2, (R0R1)

2〉∆ = ∆0̂ ∩ ∆1̂ ∩ ∆2̂ is a normal subgroup of ∆ of index 8.1.3 Hypermap subgroupsGiven a group G, we denote by Z(G) the 
enter of G. If H is a subgroup of G, then wedenote by NG(H), HG and HG, the normalizer, the normal 
losure and the 
ore of H in G,respe
tively.Ea
h hypermap H gives rise to a transitive permutation representation ρH : ∆ → Mon(H),
Ri 7→ hi of the free produ
t ∆ = C2 ∗C2 ∗C2. The group ∆ a
ts naturally and transitively on
ΩH via ρH. The stabilizer H = Stab∆(ω) of a �ag ω ∈ ΩH under the a
tion of ∆ is 
alled thehypermap subgroup or fundamental group of H. Sin
e ∆ a
ts transitively on ΩH, hypermapsubgroups are unique up to 
onjugation in ∆. The valen
y of a k-fa
e 
ontaining ω is the leastpositive integer n su
h that (RiRj)

n ∈ Stab∆(ω) = H; more generally, the valen
y of a k-fa
e
ontaining the �ag σ = ω · g = ω(g)ρH ∈ ΩH, where g ∈ ∆, is the least positive integer n su
hthat (RiRj)
n ∈ Stab∆(σ) = Stab∆(ω · g) = Stab∆(ω)g = Hg. We remark that a hypermapof type (l,m, n) 
an be regarded as a transitive permutation representation of the extendedtriangle group ∆(l,m, n) (see [13℄).Lemma 1.3.1. Let H and G be hypermaps with hypermap subgroups H and G respe
tively.Then H → G if and only if H ⊆ Gg for some g ∈ ∆.Proof. Let ω ∈ ΩH and σ ∈ ΩG su
h that H = Stab∆(ω) and G = Stab∆(σ).

(⇒) Let ϕ : ΩH → ΩG be a 
overing and g ∈ ∆ su
h that ωψ = σg. Then, for all h ∈ ∆,
h ∈ H ⇔ ωh = ω ⇒ σgh = ωψh = ωhψ = ωψ = σg ⇔ h ∈ Stab∆(σg) = Stab∆(σ)g = Gg,that is, H ⊆ Gg.

(⇐) If H ⊆ Gg, then ϕ : ΩH → ΩG , ωhϕ = σgh is well de�ned and is a 
overing H → G.Corollary 1.3.2. Let H and G be hypermaps with hypermap subgroups H and G respe
tively.Then H ∼= G if and only if H = Gg for some g ∈ ∆. In other words, H and G are isomorphi
if and only if there is an inner automorphism θ of ∆ su
h that Hθ = G.



1.3 Hypermap subgroups 9This last result shows that there is a natural 
orresponden
e between the isomorphism
lasses of hypermaps and the 
onjugation 
lasses of subgroups of ∆.Let H be a hypermap subgroup ofH. Denote by Alg(H) = (∆/rH, ·H∆R0, ·H∆R1, ·H∆R2)where ·H∆Ri : ∆/rH → ∆/rH, Hg 7→ HgH∆Ri = HgRi. We say that Alg(H) is an algebrai
presentation of H.Lemma 1.3.3. Let Alg(H) be as above. Then H is isomorphi
 to Alg(H). Furthermore, thegroups Mon(H) and ∆/H∆ are isomorphi
.This Lemma shows that, up to isomorphism, every hypermap H is 
ompletely determinedby a hypermap subgroup H. For simpli
ity, we do not di�erentiate H from its algebrai
presentations, and so we see, for instan
e, ΩH as ∆/rH and Mon(H) as ∆/H∆, for somehypermap subgroup H of H.Lemma 1.3.4. Let H be a hypermap, ω ∈ ΩH and H = Stab∆(ω) a hypermap subgroup of H.Then Aut(H) ∼= N∆(H)/H. Moreover, h ∈ N∆(H) if and only if for every �ag Hg ∈ ∆/rHthere is an automorphism of H whi
h maps Hg to Hhg.Note that an automorphism ψ is a re�e
tion if and only if there is g ∈ ∆ and k ∈ {0, 1, 2}su
h that Rk ∈ Hg.Of the two groups Mon(H) and Aut(H), the �rst a
ts transitively on Ω (by de�nition) andthe se
ond, due to the 
ommutativity of the automorphisms with the 
anoni
al generators,a
ts semi-regularly on ΩH. These two a
tions give rise to the following inequalities:
|Mon(H)| ≥ |ΩH| ≥ |Aut(H)|. (1.1)Indeed, if H is a hypermap subgroup of H, then |Mon(H)| = [∆ : H∆], |ΩH| = [∆ : H] and

|Aut(H)| = [N∆(H) : H].Lemma 1.3.5. The following statements are equivalent:1. |Mon(H)| = |ΩH|, that is, Mon(H) a
ts regularly on ΩH;2. |ΩH| = |Aut(H)|, that is, Aut(H) a
ts regularly on ΩH;3. H has a hypermap subgroup whi
h is normal in ∆.If Mon(H) or Aut(H) a
t regularly on ΩH, or equivalently, if H has a hypermap subgroupwhi
h is normal in ∆, then H is said regular . It is well-known that every regular hypermap isuniform but the 
onverse is not true. In Chapter 4 we 
an �nd uniform hypermaps whi
h arenot regular.Let H be a hypermap subgroup of a hypermap H. Following [8℄, if H ≤ Θ for some Θ⊳∆,we say that H is Θ-
onservative. We say that H is
• orientable if H is ∆+-
onservative,
• bipartite if H is ∆0̂-
onservative,
• pseudo-orientable if H is ∆0-
onservative1.1This extends Wilson's de�nition of pseudo-orientability [71℄ from maps to hypermaps.



10 Chapter 1. HypermapsMoreover, given k ∈ {0, 1, 2}, we say that H is k-bipartite if H is ∆k̂-
onservative, and k-pseudo-orientable if H is ∆k-
onservative. In addition, a k-bipartite hypermap is also 
alledvertex-bipartite if k = 0, edge-bipartite if k = 1, and fa
e-bipartite if k = 2.A hypermap H is orientable if and only if its underlying surfa
e is orientable. Sin
e
∆+∩∆î = ∆+∩∆i = ∆î∩∆î (see Se
tion 1.2), an orientable hypermap H is ∆k̂-
onservativeif and only if H is ∆k-
onservative; a non-orientable hypermap 
annot be simultaneously ∆k̂-
onservative and ∆k-
onservative. A hypermap H is bipartite if and only if we 
an divideits set of verti
es into two parts so that 
onse
utive verti
es around an edge or a fa
e are inalternate parts, that is, if for all ω ∈ ΩH, the verti
es 
ontaining ω and ωh0 are in di�erentparts. A hypermap H is pseudo-orientable if we 
an give orientations to the verti
es so that
onse
utive verti
es around an edge or a fa
e have di�erent orientations, that is, if for all
ω ∈ ΩH, the verti
es 
ontaining ω and ωh0 have di�erent orientations.Lemma 1.3.6. If H is bipartite or pseudo-orientable, then all edges and all fa
es have evenvalen
ies.Proof. Let Θ be ∆0̂ or ∆0, H a Θ-
onservative hypermap, ω ∈ ΩH, and H = Stab∆(ω). If mand n are the valen
ies of the edge and the fa
e 
ontaining the �ag ωg, then (R2R0)

m, (R0R1)
n ∈

Stab∆(ωg) = Hg ⊆ Θg = Θ. In both 
ases m and n must be even.Let Θ be a normal subgroup of ∆ and H a Θ-
onservative hypermap. An automorphism
ϕ ∈ Aut(H) is said Θ-
onservative if it preserves the Θ-orbits on ΩH = ∆/rH, that is, if forall Hg ∈ ∆/rH, Hg and (Hg)ϕ are in the same Θ-orbit. Sin
e Θ is a normal subgroup of ∆
ontaining H, Θ 
ontains H∆ and so Θ/H∆ is a normal subgroup of ∆/H∆ = Mon(H). Sin
eevery 
overing is determined by the image of a �ag, we get the following result.Lemma 1.3.7. Let Θ be a normal subgroup of ∆ and H a Θ-
onservative hypermap withhypermap subgroup H. An automorphism ϕ of H is Θ-
onservative if and only if Hϕ ∈
H · Θ/H∆.Proof. Only the ne
essary 
ondition needs to be proved. Let Hϕ = Ht, with t ∈ Θ. Then,for all g ∈ ∆, tg ∈ Θg = Θ and (Hg)ϕ = Hϕg = Htg = Hgtg ∈ Hg · Θ/H∆.The set of all Θ-
onservative automorphisms of a Θ-
onservative hypermap H forms agroup under 
omposition denoted by AutΘ(H). The groups of ∆+- and ∆+00̂-
onservativeautomorphisms of H are also denoted by Aut+(H) and Aut+00̂(H), respe
tively.Now let Θ be a normal subgroup of ∆ of index 2. Then every Θ-
onservative hypermap
H has exa
tly two Θ-orbits. An automorphism ϕ of H is 
alled Θ-preserving if ϕ stabilizesthe two orbits, and is 
alled Θ-reversing if ϕ inter
hanges the two orbits. We also say that anautomorphism ϕ of an orientable hypermap is orientation-preserving if ϕ is ∆+-reversing, andorientation-reversing if ϕ is ∆+-reversing. The group of orientation-preserving automorphismsof an orientable hypermap H, Aut+(H), is often 
alled the rotation group of H.When H⊳Θ, H is 
alled Θ-regular . If H is Θ-regular but not regular, H is 
alled Θ-
hiral .We say that H is orientably-regular if H is ∆+-regular, orientably-
hiral if H is ∆+-
hiral,bipartite-regular if H is ∆0̂-regular, bipartite-
hiral if H is ∆0̂-
hiral, pseudo-orientably-regularif H is ∆0-regular and pseudo-orientably-
hiral if H is ∆0-
hiral.More generally, given k ∈ {0, 1, 2}, we say that H is k-bipartite-regular if H is ∆k̂-regular,
k-bipartite-
hiral if H is ∆k̂-
hiral, k-pseudo-orientably-regular if H is ∆k-regular, and k-pseudo-orientably-
hiral if H is ∆k-
hiral. A k-bipartite-regular (resp. k-bipartite-
hiral)



1.3 Hypermap subgroups 11hypermap is also 
alled vertex-bipartite-regular (resp. vertex-bipartite-
hiral) if k = 0, edge-bipartite-regular (resp. edge-bipartite-
hiral) if k = 1, and fa
e-bipartite-regular (resp. fa
e-bipartite-
hiral) if k = 2.The group of Θ-
onservative automorphisms of a Θ-
onservative hypermap H, AutΘ(H),is isomorphi
 to NΘ(H)/H. When H is Θ-regular, NΘ(H) = Θ and so AutΘ(H) is isomorphi
to Θ/H. The hypermap H is Θ-regular if and only if its Θ-
onservative automorphism group
AutΘ(H) a
ts transitively on ea
h Θ-orbit in ΩH.A hypermap H is rotary (see [72℄ for maps) if there is ω ∈ ΩH and υ, ϕ ∈ Aut(H) with theproperty that υ and ϕ 
y
li
ally permute the 
onse
utive edges in
ident to the vertex v andthe fa
e f 
ontaining ω, respe
tively. In other words, a hypermap is rotary if the normalizerin ∆ of a hypermap subgroup 
ontains ∆+. An orientable hypermap H is rotary if and onlyif H is orientably-regular; a non-orientable hypermap H is rotary if and only if H is regular(see [33, 72℄ for maps). A hypermap H is said re�exible if its automorphism group has anorientation-reversing automorphism and 
hiral or irre�exible otherwise ([33, 49℄). Orientably-regular maps and hypermaps have often been 
alled �regular� [3, 33, 28, 25, 26, 27℄, whileregular maps and hypermaps have been 
alled �re�exible� [33℄.Following [8℄, a hypermap H is 
alled restri
tedly-regular if H is Θ-regular for some normalsubgroup Θ with �nite index in ∆. If H ⊳ Θ and Θ ⊳ ∆, then

H ⊆ Θ ⊆ (N∆(H))∆ ⊆ N∆(H),that is, when H is restri
tedly-regular, the subgroup (N∆(H))∆, 
alled regularity-subgroup of
H, is the largest normal subgroup of ∆ in whi
h H is normal.More generally, we say that H is k-restri
tedly-regular if k is the index of the regularity-subgroup of H in ∆, that is, if k = [∆ : (N∆(H))∆]. The index k is 
alled the restri
ted rankof H. Sin
e

|ΩH| = [∆ : H] = [∆ : (N∆(H))∆] · [(N∆(H))∆ : H]

= k · [(N∆(H))∆ : H]

≤ k · [N∆(H) : (N∆(H))∆] · [(N∆(H))∆ : H]

= k · [N∆(H) : H]

= k · |Aut(H)|,when H is k-restri
tedly-regular, |ΩH|/|Aut(H)| ≤ k and k | |ΩH|. The restri
ted rank ofa hypermap H 
an be regarded as a numeri
al measure of how far H deviates from beingregular.A 1-restri
tedly-regular hypermap is a regular hypermap; a 2-restri
tedly-regular hyper-map is a Θ-
hiral hypermap, where Θ is 1 of the 7 normal subgroups of ∆ of index 2.Lemma 1.3.8. A hypermap is 2-restri
tedly-regular if and only if the number of automor-phisms of H is equal to half the number of �ags.In [47℄, Jones 
alled a map M just-edge-transitive if M is 4-restri
tedly-regular and itsregularity subgroup is ∆0̂12̂. The 
lassi�
ation of ∆012-regular hypermaps of small genus, aswell as their 
hirality groups and 
hirality indi
es 
an be found in [5℄.The types automorphism groups of edge-transitive maps, whi
h in
lude all 2-restri
tedly-regular maps ex
ept the ∆1̂-
hiral, were 
lassi�ed by Wilson in [76℄ and Graver and Watkins



12 Chapter 1. Hypermapsan edge-transitive map with an edge-transitive map with regularity-automorphism group of type . . . automorphism group of type . . . -subgroups(Wilson) (Graver & Watkins)I 1 ∆IIa 2P
ex ∆+IIb 2ex ∆2

2∗ex ∆0II
 2 ∆0̂

2∗ ∆2̂IId 2P ∆1IIIa 3 ∆0̂12̂IIId 5 ∆+00̂

5∗ ∆+22̂IIIe 5P ∆012Table 1.1: Corresponden
e between edge-transitive maps and restri
tedly-regular maps.in [36℄. In Table 1.1 we give the 
orresponden
e between types of edge-transitive maps ofWilson and of Graver and Watkins, and their regularity-subgroups.Let Θ be a normal subgroup of ∆. The hypermap with hypermap subgroup Θ is 
alledthe trivial Θ-hypermap and denoted by TΘ. It is a regular hypermap with [∆ : Θ] �agswhi
h may have boundary. In �5 of [13℄, Breda and Jones 
lassify the 16 trivial Θ-hypermapswith abelian automorphism group. Their hypermap subgroups are the 16 normal subgroupsof ∆ 
ontaining ∆′ (see Se
tion 1.2). By Lemma 1.3.1, a hypermap H is Θ-
onservative ifand only if H 
overs TΘ. Let H be a Θ-
onservative hypermap, ϕ a 
overing from H to TΘand {v1, . . . , vp}, {e1, . . . , eq}, {f1, . . . fr} the sets of verti
es, edges, fa
es of TΘ, respe
tively.We re
all that ϕ maps k-fa
es of H to k-fa
es of TΘ. We say that H is Θ-uniform if for all
k ∈ {0, 1, 2}, all k-fa
es ofHmapped to a k-fa
e of TΘ have the same valen
y. To put it anotherway, a Θ-
onservative hypermap H is Θ-uniform if for all k ∈ {0, 1, 2}, k-fa
es 
ontaining �agsin the same Θ-orbit have the same valen
y. When H is a Θ-uniform hypermap su
h that allverti
es of H mapped to the vertex vi of TΘ have valen
y li, all edges of H mapped to theedge ej of TΘ have valen
y mj and all fa
es of H mapped to the fa
e fk of TΘ have valen
y
nk, we say that H has Θ-type (l1, . . . , lp;m1, . . .mq;n1, . . . nr). We may assume, without lossof generality, that l1 ≤ · · · ≤ lp, m1 ≤ · · · ≤ mq and n1 ≤ · · · ≤ nr. A hypermap is 
alledbipartite-uniform if it is ∆0̂-uniform. The bipartite-type of a bipartite-uniform hypermap Bis its ∆0̂-type (l1, l2;m;n), where l1 and l2 are the valen
ies (not ne
essarily distin
t) of theverti
es of B, and m and n are the valen
ies of the edges and the fa
es of B. Sin
e B isbipartite-uniform, B is bipartite and, by Lemma 1.3.6, m and n are even. Moreover, a ∆k̂-uniform hypermap is 
alled k-bipartite-uniform; we also use the terms vertex-bipartite-uniform,edge-bipartite-uniform and fa
e-bipartite-uniform instead of 0-bipartite-uniform, 1-bipartite-uniform and 2-bipartite-uniform, respe
tively.Lemma 1.3.9. Let Θ be a normal subgroup of ∆ and H a Θ-
onservative hypermap.1. If H is Θ-regular, then H is Θ-uniform.



1.4 The Euler formula and the Hurwitz bound 132. If Θ is ∆+, ∆0, ∆1, ∆2 or ∆012, then H is Θ-uniform if and only if H is uniform.3. If Θ is ∆+00̂, then H is ∆+00̂-uniform if and only if H is bipartite-uniform.Proof. 1. Let k ∈ {0, 1, 2}, ω ∈ ΩH, H = Stab∆(ω) and g ∈ Θ. If H is Θ-regular, then H ⊳ Θand hen
e Hg = H. In parti
ular, the k-fa
es 
ontaining ω and ωg have the same valen
y.2. and 3. One 
an easily see that the hypermaps TΘ, where Θ is ∆+, ∆0, ∆1 or ∆2, have 1vertex, 1 edge and 1 fa
e; the hypermaps T∆0̂ and T∆+00̂ have 2 verti
es, 1 edge and 1 fa
e.A uniform hypermap is k-bipartite-uniform if and only if it is k-bipartite. Examples of
Θ-uniform hypermaps that are not Θ-regular 
an be found in Chapter 4.1.4 The Euler formula and the Hurwitz boundA theorem of Hurwitz [38℄ (
f. [27, 18, 61℄) states that an upper bound for the number of
onformal automorphisms of a 
ompa
t Riemann surfa
e with genus g greater than one (thatis, homeomorphisms of the surfa
e onto itself preserving the lo
al stru
ture) is 84(g − 1).It has been proved by Jones and Singerman [49℄ that the group of orientation-preservingautomorphisms of a map M on an orientable surfa
e of genus g is isomorphi
 to a groupof 
onformal automorphisms of a 
ompa
t Riemann surfa
e with the same genus, and hen
ebounded by 84(g − 1). Moreover, the number of automorphism of a map M is bounded by
168(g − 1), if M is orientable, and by 84(g − 2), otherwise (see, for instan
e, Theorem 4.2.2of [61℄).Our aim in this se
tion is to present methods for �nding all possible types (resp. bipartite-types) of uniform (resp. bipartite-uniform) hypermaps on a given surfa
e. We give a relationbetween the Euler 
hara
teristi
, number of �ags and type (resp. bipartite-type) of a uniform(resp. bipartite-uniform) hypermap, and then we use it to �nd bounds for the numbers of �agsof uniform (resp. bipartite-uniform) hypermaps with a given negative Euler 
hara
teristi
.Using the well-known Euler (polyhedral) formula one 
an easily get the following result.Lemma 1.4.1 (Euler formula for hypermaps). Let H be a hypermap with V verti
es, E edges,
F fa
es and Euler 
hara
teristi
 χ. Then

χ = V + E + F − |ΩH|
2

. (1.2)When H is uniform of type (l,m, n), V = |ΩH|/2l, E = |ΩH|/2m and F = |ΩH|/2n.Repla
ing the values of V , E and F in formula (1.2), we get:Corollary 1.4.2 (Euler formula for uniform hypermaps). Let H be a uniform hypermap oftype (l,m, n) with Euler 
hara
teristi
 χ. Then
χ =

|ΩH|
2

(
1

l
+

1

m
+

1

n
− 1

)
. (1.3)When H is bipartite-uniform of bipartite-type (l1, l2;m;n), ea
h ∆0̂-orbit has |ΩH|/2 �ags,and so the numbers of verti
es in the ∆0̂-orbits are |ΩH|/4l1 and |ΩH|/4l2. Then H has

V = |ΩH|/4l1 + |ΩH|/4l2 verti
es, E = |ΩH|/2m edges and F = |ΩH|/2n fa
es. Repla
ing thevalues of V , E and F in formula (1.2), we get:



14 Chapter 1. HypermapsCorollary 1.4.3 (Euler formula for bipartite-uniform hypermaps). Let H be a bipartite-uniform hypermap of bipartite-type (l1, l2;m;n) with Euler 
hara
teristi
 χ. Then
χ =

|ΩH|
2

(
1

2l1
+

1

2l2
+

1

m
+

1

n
− 1

)
. (1.4)Lemma 1.4.4. If H is a hypermap su
h that all verti
es have valen
y 1, then H is a uniformhypermap on the sphere of type (1, k, k), where k is the number of verti
es. Furthermore, His regular.Proof. If all verti
es have valen
y 1, then R1R2 ∈ Hg, for all g ∈ ∆, so R1R2 ∈ H∆. Conse-quently, H∆R1 = H∆R2 and

Mon(H) = ∆/H∆ = 〈H∆R0, H∆R1, H∆R2〉 = 〈H∆R2, H∆R0〉 = 〈H∆R0, H∆R1〉. (1.5)Sin
e Mon(H) a
ts transitively on ΩH, H has exa
tly one 〈H∆R2, H∆R0〉-orbit and one
〈H∆R0, H∆R1〉-orbit, that is, 1 edge and 1 fa
e, both with valen
ies k := |ΩH|/2. Obvi-ously, H is uniform of type (1, k, k) and has k verti
es, 1 edge and 1 fa
e. Finally, usingthe Euler formula for hypermaps (Lemma 1.4.1), we see that χH = V + E + F − |ΩH|/2 =
|ΩH|/2 + 1 + 1 − |ΩH|/2 = 2.Now assume that H is a uniform hypermap of type (l,m, n). By Corollary 1.4.2, His imbedded on a surfa
e with Euler 
hara
teristi
 greater than, equal to, or smaller than 0depending on whether 1/l+1/m+1/n is greater than, equal to, or smaller than 1, respe
tively.Lemma 1.4.5. Let l, m, n be positive integers su
h that l ≤ m ≤ n, and S = 1

l + 1
m + 1

n .Then1. S > 1 if and only if (l,m, n) is (1, j, k), (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5), j, k ∈ N;2. S = 1 if and only if (l,m, n) is (2, 3, 6), (2, 4, 4) or (3, 3, 3);3. S < 1 if and only if S ≤ 1
2 + 1

3 + 1
7 = 41

42 .Proof. 1. When S > 1, 3/l ≥ S > 1, and so l < 3. If l = 1, then S > 1; else, if l = 2, then
2/m ≥ 1/m+ 1/n > 1/2 and hen
e m < 4. Then m = 2, or m = 3 and n < 6.2. When S = 1, 3/l ≥ S = 1 > 1/l, and so 1 < l ≤ 3. If l = 2, then 2/m ≥ 1/m + 1/n =
1/2 > 1/m, so 2 < m ≤ 4 and n = 2m/(m − 2). Then m = 3 and n = 6, or m = n = 4. If
l = 3, then 1 = 3/l ≥ S = 1 implies that l = m = n = 3.3. Assume that l,m, n are positive integers su
h that l ≤ m ≤ n and S < 1. Then:(a) if l = 2, m = 3 and n > 6, then S ≤ 1

2 + 1
3 + 1

7 = 41
42 ;(b) if l = 2, m = 4 and n > 4, then S ≤ 1

2 + 1
4 + 1

5 = 19
20 ;(
) if l = 2 and m > 4, then S ≤ 1

2 + 1
5 + 1

5 = 9
10 ;(d) if l = 3 and n > 3, then S ≤ 1

3 + 1
3 + 1

4 = 11
12 ;(e) if l > 3, then S ≤ 1

4 + 1
4 + 1

4 = 3
4 .Using Corollary 1.4.2 together with Lemma 1.4.5, we get the following well-known result.Theorem 1.4.6 (Hurwitz bound for uniform hypermaps with negative Euler 
hara
teristi
).If H is a uniform hypermap with negative Euler 
hara
teristi
 χ, then |ΩH| ≤ −84χ.



1.5 Duality 15Now we determine bounds for the number of �ags of a bipartite-uniform hypermap withgiven negative Euler 
hara
teristi
.Let B be a bipartite-uniform hypermap of type (l1, l2;m;n). A

ording to Lemma 1.3.6,
m and n are even. Let (a, b, c, d) = (l1, l2,m/2, n/2). By Corollary 1.4.3, H is imbedded on asurfa
e with Euler 
hara
teristi
 > 0, = 0 or < 0 depending on whether 1/a+1/b+1/c+1/dis greater than, equal to, or smaller than 2, respe
tively.Lemma 1.4.7. Let a, b, c and d be positive integers su
h that a ≤ b ≤ c ≤ d, and T =
1
a + 1

b + 1
c + 1

d . Then:1. T > 2 if and only if (a, b, c, d) is (1, 1, j, k), (1, 2, 2, k), (1, 2, 3, 3), (1, 2, 3, 4) or (1, 2, 3, 5),where j, k ∈ N;2. T = 2 if and only if (a, b, c, d) is (1, 2, 3, 6), (1, 2, 4, 4), (1, 3, 3, 3) or (2, 2, 2, 2);3. T < 2 if and only if T ≤ 1
1 + 1

2 + 1
3 + 1

7 = 83
42 .Proof. Let S = 1

b + 1
c + 1

d . Then:(a) if a = 1, then T > 2, = 2 or < 2 if and only if S > 1, = 1 or < 1, respe
tively;(b) if a = b = c = d = 2, then T = 2;(
) if a = 2 and d > 2, then T ≤ 1
2 + 1

2 + 1
2 + 1

3 = 11
6 ;(d) if a > 2, then T ≤ 1

3 + 1
3 + 1

3 + 1
3 = 4

3 .Now the result follows from Lemma 1.4.5.Finally, using Corollary 1.4.3 together with Lemma 1.4.7, we get:Theorem 1.4.8 (Hurwitz bound for bipartite-uniform hypermaps with negative Euler 
har-a
teristi
). If H is a bipartite-uniform hypermap with negative Euler 
hara
teristi
 χ, then
|ΩH| ≤ −168χ.1.5 DualityEvery automorphism θ of ∆ gives rise to an operation on hypermaps by transforming a hyper-map H with hypermap subgroup H, to its operation-dual , Dθ(H), with hypermap subgroup
Hθ (see [41, 43, 44℄ for more details), that is, if H = (∆/rH,H∆R0, H∆R1, H∆R2), then

Dθ(H) = (∆/rHθ, (Hθ)∆R0, (Hθ)∆R1, (Hθ)∆R2)
= (∆/rHθ,H∆θR0, H∆θR1, H∆θR2).When θ is an inner automorphism, H and Hθ are 
onjugate in ∆ and, by Corollary 1.3.2, Hand Dθ(H) are isomorphi
. Ea
h permutation σ ∈ S{0,1,2} indu
es an outer automorphism(that is, a non-inner automorphism) σ : ∆ → ∆ su
h that Riσ = Riσ, for all i = 0, 1, 2. Byabuse of language, we speak of Dσ, meaning the operator Dσ. These operations, presentedby Ma
hì in [52℄, transform one hypermap H to another by renaming its verti
es, edges andfa
es. To be more pre
ise, the k-fa
e of H 
ontaining the �ag Hg 
orresponds to the kσ-fa
eof Dσ(H) 
ontaining Hσgσ. In parti
ular, they have the same valen
y. James [41℄ showedthat the operations on hypermaps form an in�nite group, Out(∆), isomorphi
 to PGL2(Z)
ontaining Ma
hì's operations.



16 Chapter 1. HypermapsLemma 1.5.1. Let σ ∈ S{0,1,2} and σ : ∆ → ∆ de�ned as above. Then ∆+σ = ∆+,
∆k̂σ = ∆


kσ and ∆kσ = ∆kσ, for all k ∈ {0, 1, 2}.Proposition 1.5.2 (Properties of Dσ). Let H, G be hypermaps and σ, τ ∈ S{0,1,2}. Then:1. D1(H) = H; Dτ (Dσ(H)) = Dστ (H);2. H → G if and only if Dσ(H) → Dσ(G); H ∼= G if and only if Dσ(H) ∼= Dσ(G);3. H is Θ-
onservative if and only if Dσ(H) is Θσ-
onservative;4. H is Θ-uniform if and only if Dσ(H) is Θσ-uniform;5. H is Θ-regular if and only if Dσ(H) is Θσ-regular;6. H and Dσ(H) have the same underlying surfa
e;7. Aut(H) ∼= Aut(Dσ(H)) and Mon(H) ∼= Mon(Dσ(H)).As an immediate 
orollary to Proposition 1.5.2 we getCorollary 1.5.3. 1. H is uniform (resp. k-bipartite-uniform) if and only if Dσ(H) isuniform (resp. kσ-bipartite-uniform);2. H is regular (resp. orientably-regular, k-pseudo-orientably-regular, k-bipartite-regular)if and only if Dσ(H) is regular (resp. orientably-regular, kσ-pseudo-orientably-regular,
kσ-bipartite-regular);3. Every k-pseudo-orientably-regular hypermap is uniform.This result shows that, up to duality, a 2-restri
tedly-regular hypermap is orientably-
hiral, pseudo-orientably-
hiral or bipartite-
hiral. Consequently, the 
lassi�
ation of all 2-restri
tedly-regular hypermaps on a surfa
e S 
an be derived from the 
lassi�
ation of these3 types of hypermaps on S.The 2-skeleton of a 
onvex polyhedron in R

3 
an be viewed as a map on the sphere. Inparti
ular, the Platoni
 solids give rise to 5 regular maps on the sphere. For simpli
ity, wewill not di�erentiate these maps from the 
orresponding Platoni
 solids. We denote by T , C,
O, D and I the tetrahedron, the 
ube (or hexahedron), the o
tahedron, the dode
ahedronand the i
osahedron. These maps have type (3, 2, 3), (3, 2, 4), (4, 2, 3), (3, 2, 5) and (5, 2, 3),respe
tively. It is well-known that if H is one of these hypermaps and (l,m, n) is the typeof H, then H has hypermap subgroup 〈(R1R2)

l, (R2R0)
m, (R0R1)

n〉∆, automorphism group
Aut(H) ∼= ∆(l,m, n), and that T ∼= D(02)(T ), O ∼= D(02)(C) and I ∼= D(02)(D). For moreinformation on these hypermaps, see Se
tion 2.1.Given k ∈ N, the dihedral hypermap of order k, Dk, and the polygon of order k, Pk, are theregular hypermaps on the sphere of type (k, k, 1) and (2, 2, k), and with hypermap subgroup
〈(R1R2)

k, (R2R0)
k, R0R1〉∆ and 〈(R1R2)

2, (R2R0)
2, (R0R1)

k〉∆, respe
tively. In Figure 1.1we display D8 and P4. The star hypermap of order k is the hypermap Sk = D(02)(Dk). Thedihedral hypermap of order k has 2k �ags, 1 vertex, 1 edge and k fa
es; the polygon of order
k has 4k �ags, k verti
es, k edges and 2 fa
es. Using Corollary 1.4.2 we 
an see that both Dkand Pk are on the sphere. In [15℄, Breda and Jones denoted the hypermaps Pk (with k odd)and D(01)(Dk) by D⊖

k and D∗
k, respe
tively; Wilson [73℄ denoted the hypermap Pk by εk. As



1.6 Constru
ting bipartite hypermaps 17remarked in [13℄, S1
∼= D1, S2, P1

∼= D2 and P2 are hypermaps on the sphere with hypermapsubgroups ∆+, ∆+00̂, ∆+22̂ and ∆′, respe
tively. In other words, those hypermaps are thehypermaps T∆+ , T∆+00̂ , T∆+22̂ and T∆′ .Coxeter and Moser [33℄ denoted the regular hypermaps T , C, O, D, I, P2k and D(02)(P2k)by {3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}, {2k, 2} and {2, 2k}, respe
tively.
D

8
P4Figure 1.1: The dihedral hypermap D8 and the polygon P4.A Petrie polygon of a hypermap H is a 〈R0R1R2〉-orbit on ΩH. The length of a Petriepolygon is its 
ardinality. Naturally, if H is regular, all Petrie polygons of H have the samelength. When M is a map su
h that all verti
es of M have valen
y greater than 2, a Petriepolygon of M is just a `zig-zag' 
y
le of edges in whi
h every two 
onse
utive edges belong to afa
e but no three 
onse
utive edges belong to the same fa
e. Owing to this, the automorphismgroup of a regular map M is a transitive permutation representation of the abstra
t group

Gp,q,r = 〈a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)2 = (abc)r = 1〉de�ned by Coxeter in [29℄. It is well-known that G3,3,4 ∼= S4, G3,4,6 ∼= S4 × C2, G3,5,5 ∼= A5,
G3,5,10 ∼= A5 × C2 and G2,k,2k ∼= Dk × C2 (see Table 1 of [30℄, for instan
e). When k is even,
G2,k,k ∼= G2,k,2k ∼= Dk × C2.1.6 Constru
ting bipartite hypermapsBy the Reidemeister-S
hreier rewriting pro
ess [42℄ it 
an be shown that

∆0̂ ∼= C2 ∗ C2 ∗ C2 ∗ C2 = 〈R1〉 ∗ 〈R2〉 ∗ 〈R1
R0〉 ∗ 〈R2

R0〉.As a 
onsequen
e we have several epimorphisms from ∆0̂ to ∆.Let ϕ : ∆0̂ → ∆ be an epimorphism. Then, if H is a subgroup of ∆ and g ∈ ∆, then
Hϕ−1 and Hgϕ−1 are 
onjugate subgroups of ∆0̂ and hen
e 
onjugate subgroups of ∆. Afterall, if g = dϕ, then Hgϕ−1 = Hdϕϕ−1 = (Hϕ−1)d. In other words, given an epimorphism
ϕ : ∆0̂ → ∆ and a hypermap H with hypermap subgroup H we 
an 
onstru
t anotherhypermap Hϕ−1 with hypermap subgroup Hϕ−1.

Hϕ−1






∆
2

∆0̂
ϕ

// ∆

Hϕ−1 // H






H



18 Chapter 1. HypermapsLemma 1.6.1. Let ϕ : ∆0̂ → ∆ be an epimorphism and H and G hypermaps. Then:1. Hϕ−1 is bipartite hypermap with twi
e the number of �ags of H.2. Hϕ−1 is bipartite-regular if and only if H is regular.3. If H 
overs G, then Hϕ−1 
overs Gϕ−1.4. If H is isomorphi
 to G, then Hϕ−1 is isomorphi
 to Gϕ−1.Proof. Let H and G be hypermap subgroups of H and G.1. Clearly, Hϕ−1 ≤ ∆ϕ−1 = ∆0̂ and hen
e Hϕ−1 is ∆0̂-
onservative, that is, bipartite. ByProposition A.1.1, [∆0̂ : Hϕ−1] = [∆ : H] and hen
e
|Ω

Hϕ−1 | = [∆ : Hϕ−1] = [∆ : ∆0̂][∆0̂ : Hϕ−1] = 2[∆ : H] = 2|ΩH|.2. When ϕ is onto, Hϕ−1 is bipartite-regular ⇔ Hϕ−1
⊳ ∆0̂ ⇔ H ⊳ ∆ ⇔ H is regular.3. If H ⊆ Gg and g = dϕ, for some d ∈ ∆0̂, then Hϕ−1 ⊆ Ggϕ−1 = Gdϕϕ−1 = (Gϕ−1)d.4. Follows from 3.Among many possible 
anoni
al epimorphisms ϕ : ∆0̂ → ∆, there are two, ϕ

W
and ϕ

P
,de�ned by

R1ϕW
= R1, R2ϕW

= R2, R1
R0ϕ

W
= R0, R2

R0ϕ
W

= R2, (1.6)
R1ϕP

= R1, R2ϕP
= R2, R1

R0ϕ
P

= R0, R2
R0ϕ

P
= R0, (1.7)that indu
e very interesting 
onstru
tions. The �rst 
onstru
tion gives rise to the 
orre-sponden
e between hypermaps and biparte maps des
ribed by Walsh in [67℄. We denote by

Walsh(H) the hypermap Hϕ
W

−1 and by Pin(H) the hypermap Hϕ
P

−1 . In Figure 1.2 weillustrate these 2 
onstru
tions.Lemma 1.6.2. kerϕ
W

= 〈R2R2
R0〉∆0̂

= 〈R2R2
R0〉∆ and kerϕ

P
= 〈R1

R0R2
R0〉∆0̂.Let ψ : ∆ → ∆0̂ be the group homomorphism de�ned by

R1ψ = R1, R2ψ = R2, R0ψ = R1
R0 . (1.8)Sin
e RiψϕW

= Ri = RiψϕP
, for every i ∈ {0, 1, 2}, ψϕ

W
= 1∆ = ψϕ

P
and ψ is inje
tive.Proposition 1.6.3. Let ϕ be ϕ

W
or ϕ

P
. Then ∆+ϕ−1 = ∆+ ∩ ∆0̂.Proof. We use indu
tion on ∆0̂ = 〈R1, R2, R1

R0 , R2
R0〉 to prove that for all g ∈ ∆0̂, g ∈

∆+ϕ−1 if and only if g ∈ ∆+.Let S = {g ∈ ∆0̂ | g ∈ ∆+ϕ−1 ⇔ g ∈ ∆+}. Then:(a) R1, R2, R1
R0 , R2

R0 ∈ S, be
ause R1, R2, R1
R0 , R2

R0 , R1ϕ,R2ϕ, (R1
R0)ϕ, (R2

R0)ϕ /∈ ∆+.(b) For all g1, g2 ∈ S,
g1g2 ∈ ∆+ϕ−1 ⇔ (g1g2)ϕ = g1ϕg2ϕ ∈ ∆+

⇔ g1ϕ, g2ϕ ∈ ∆+ or g1ϕ, g2ϕ /∈ ∆+

⇔ g1, g2 ∈ ∆+ϕ−1 or g1, g2 /∈ ∆+ϕ−1

⇔ g1, g2 ∈ ∆+ or g1, g2 /∈ ∆+

⇔ g1g2 ∈ ∆+,
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Pin(H)

H

v e

v e

v e

Walsh(H)

Figure 1.2: Topologi
al 
onstru
tion of Walsh(H) and Pin(H).that is, g1g2 ∈ S.(
) For all g ∈ S, g−1 ∈ ∆+ϕ−1 ⇔ g ∈ ∆+ϕ−1 ⇔ g ∈ ∆+ ⇔ g−1 ∈ ∆+, that is g−1 ∈ S.By indu
tion on ∆0̂, we have S = ∆0̂. Thus ∆+ϕ−1 = ∆+ϕ−1 ∩ ∆0̂ = ∆+ ∩ ∆0̂.1.6.1 The Walsh 
onstru
tionLet W := Hϕ
W

−1 be a hypermap subgroup of W := Walsh(H). By Lemma 1.6.1, W is abipartite hypermap with twi
e the number of �ags of H whi
h is bipartite-regular if and onlyif H is regular. In addition, the Walsh 
onstru
tion has the following properties.Theorem 1.6.4 (Properties of Walsh). Let H be a hypermap and W := Walsh(H). Then:1. W is a map;2. W is orientable if and only if H is orientable;3. V (W) = V (H) + E(H), E(W) = |ΩH|/2, F (W) = F (H);4. W has the same underlying surfa
e as H;5. H is uniform of type (l,m, n) if and only if W is bipartite-uniform of bipartite-type
(l,m; 2; 2n).Proof. 1. We 
laim that (R2R0)

2 ∈W g, for all g ∈ ∆. Indeed, if g ∈ ∆0̂, then
[(R2R0)

2]g
−1
ϕ

W
= [(R2R0)

2ϕ
W

]g
−1ϕ

W = 1 ∈ H,so (R2R0)
2 ∈W g. Else, if g /∈ ∆0̂, then gR0 ∈ ∆0̂ and
[(R2R0)

2]g
−1
ϕ

W
= [(R0R2)

2]R0g−1
ϕ

W
= [(R0R2)

2ϕ
W

](gR0)−1ϕ
W = 1 ∈ H,that is, (R2R0)

2 ∈ W g. To put it another way, all edges have, at most, valen
y 2. On theother hand, sin
e W ⊆ ∆0̂, W is bipartite so, by Lemma 1.3.6, all edges have even valen
ies.Consequently, all edges of W have valen
y 2 and W is a map.2. Follows from Proposition 1.6.3.3. The mapping
{Wg | g ∈ ∆0̂} −→ ∆/rH

Wg 7−→ H(gϕ
W

)



20 Chapter 1. Hypermapsis a bije
tion between the ∆0̂-orbit of ΩW 
ontaining W and ΩH. Sin
e R1ϕW
= R1 and

R2ϕW
= R2, the �ags Wg and Wg′ are in the same vertex of W if and only if H(gϕ

W
)and H(g′ϕ

W
) are in the same vertex of H. Consequently, there is a bije
tive 
orresponden
ebetween the set of verti
es of W in the ∆0̂-orbit 
ontaining the �ag W and the set of verti
esof H. Similarly, sin
e R1

R0ϕ
W

= R0 and R2
R0ϕ

W
= R2 the mapping

{Wg | g ∈ ∆0̂} −→ ∆/rH
Wg 7−→ H(gϕ

W
)indu
es a bije
tive 
orresponden
e between the set of verti
es of W in the ∆0̂-orbit 
ontainingthe �ag WR0 and the set of edges of H. Owing to this, the number of verti
es of W, V (W),is equal to the sum of the number of the verti
es of H, V (H), with the number of edges of H,

E(H).We already know that W is a map, so every edge has valen
y 2 and the number of edgesof W, E(W), is |ΩW |/4 = |ΩH|/2 (see Lemma 1.6.1).Be
ause R1
R0ϕ

W
= R0 and R1ϕW

= R1, the fa
e of W 
ontaining the �ag Wg also
ontains WgR0 and has twi
e the 
ardinality of the �ag of H 
ontaining H(gϕ), if g ∈ ∆0̂, or
H(gϕ), otherwise. Thus, W and H have the same number of fa
es.4. Using Lemma 1.2,

χ
W

= V (W) + E(W) + F (W) − |ΩW |
2

= (V (H) + E(H)) +
|ΩH|

2
+ F (H) − |ΩH|

= V (H) + E(H) + F (H) − |ΩH|
2

= χ
H
.5. Follows from the proof of 3.Theorem 1.6.5. The hypermap H is a bipartite map if and only if H ∼= Walsh(G), for somehypermap G. Moreover, H is bipartite-uniform of type (l,m; 2; 2n) if and only if G is uniformof type (l,m, n); H is bipartite-regular of type (l,m; 2; 2n) if and only if G is regular of type

(l,m, n).Proof. Only the ne
essary 
ondition needs to be proved. If H is bipartite, then H ⊆ ∆0̂.Sin
e H is a map, ((R2R0)
2)g ∈ H for all g ∈ ∆, so kerϕ

W
= 〈(R2R0)

2〉∆ ⊆ H. Be
ause ofthis, Hϕ
W
ϕ

W

−1 = H kerϕ
W

= H and hen
e H ∼= Walsh(G) where G is the hypermap withhypermap subgroup G = Hϕ
W
.Theorem 1.6.6. 1. Walsh(D(01)(H)) ∼= Walsh(H).2. If Walsh(H) ∼= Walsh(G), then H ∼= G or H ∼= D(01)(G).Proof. If H is a hypermap subgroup of H, then Hϕ

W

−1 and H(01)ϕ
W

−1 are hypermap sub-groups of Walsh(H) and Walsh(D(01)(H)), respe
tively. Sin
e
R1ϕW

(01) = R0 = R1
R0ϕ

W
, R1

R0ϕ
W

(01) = R1 = R1ϕW
,

R2ϕW
(01) = R2 = R2

R0ϕ
W
, R2

R0ϕ
W

(01) = R2 = R2ϕW
,



1.6 Constru
ting bipartite hypermaps 21we have that gϕ
W

(01) = gR0ϕ
W
, for all g ∈ ∆0̂.1. Sin
e

g ∈ H(01)ϕ
W

−1 ⇔ gϕ
W

(01) ∈ H ⇔ gR0ϕ
W

∈ H ⇔ g ∈ (Hϕ
W

−1)R0 ,

H(01)ϕ
W

−1 = (Hϕ
W

−1)R0 . Hen
e, Walsh(D(01)(H)) and Walsh(H) are isomorphi
.2. Let H and G be hypermap subgroups of H and G. Assume that Walsh(H) ∼= Walsh(G).Then Hϕ
W

−1 = (Gϕ
W

−1)g, for some g ∈ ∆. If g ∈ ∆0̂, then
H = Hϕ

W

−1ϕ
W

= (Gϕ
W

−1)gϕ
W

= (Gϕ
W

−1ϕ
W

)gϕW = GgϕWand H ∼= G; else if g /∈ ∆0̂, then R0g ∈ ∆0̂,
H = Hϕ

W

−1ϕ
W

= (Gϕ
W

−1)gϕ
W

= (Gϕ
W

−1)R0R0gϕ
W

= [(Gϕ
W

−1)R0ϕ
W

]R0gϕW = (G(01)ϕ
W

−1ϕ
W

)R0gϕW = (G(01))R0gϕW ,and H ∼= D(01)(G).Remark 1.6.7. Walsh(Dk) ∼= D(02)(Pk) and Walsh(Pk) ∼= P2k, for all k ∈ N.Given a hypermap H, we 
an 
onstru
t a map M, 
alled the medial map of H, in thefollowing way. The set of verti
es of M is the set of edges of H, and two verti
es of M are
onne
ted by an edge if and only if the 
orresponding edges ofH are both in
ident to a 
ommonvertex v of H and a 
ommon fa
e f of H. The set of fa
es of M 
orresponds in a natural wayto the union of the sets of verti
es and fa
es of H. This 
onstru
tion is an extension of thewell-known medial map of a map. We denote the medial map of H by Med(H). One 
an easilysee that Med(H) is a fa
e-bipartite hypermap su
h that Med(H) = D(02)(Walsh(D(12)(H))).1.6.2 The Pin 
onstru
tionLet P := Hϕ
P

−1 be a hypermap subgroup of P := Pin(H). Like in the previous 
onstru
tion,Lemma 1.6.1 ensures that P is a bipartite hypermap with twi
e the number of �ags of H andthat P is bipartite-regular if and only if H is regular. In addition, the Pin 
onstru
tion hasthe following properties.Theorem 1.6.8 (Properties of Pin). Let H be a hypermap and P := Pin(H). Then:1. All verti
es in one ∆0̂-orbit of P have valen
y 1;2. P is orientable if and only if H is orientable,3. V (P) = V (H) + |ΩH|/2, E(P) = E(H), F (P) = F (H);4. P has the same underlying surfa
e as H,5. H is uniform of type (l,m, n) if and only if P is bipartite-uniform of bipartite-type
(1, l; 2m; 2n).



22 Chapter 1. HypermapsProof. 1. We 
laim that all verti
es in the same ∆0̂-orbit of the vertex 
ontaining the �ag
PR0 have valen
y 1. To prove this, we only need to show that R1R2 ∈ PR0g, for all g ∈ ∆0̂.Given g ∈ ∆0̂, gR0 also belongs to ∆0̂ and

(R1R2)
g−1R0ϕ

P
= ((R1R2)

R0)(g
R0 )−1

ϕ
P

= ((R1R2)
R0ϕ

P
)(g

R0 )−1ϕ
P = 1 ∈ H,and hen
e R1R2 ∈ (Hϕ

P

−1)R0g = PR0g, for all g ∈ ∆0̂.2. Follows from Proposition 1.6.3.3. Similar to the proof of 3 of 1.6.4.4. Using Lemma 1.2,
χP = V (P) + E(P) + F (P) − |ΩP |

2

=

(
V (H) +

|ΩH|
2

)
+ E(H) + F (H) − |ΩH|

= V (H) + E(H) + F (H) − |ΩH|
2

= χH.5. Similar to the proof of 5 of 1.6.4.Theorem 1.6.9. The hypermap H is a bipartite hypermap su
h that all verti
es in one ∆0̂-orbit have valen
y 1 if and only if H ∼= Pin(G), for some hypermap G. Moreover, H is bipartite-uniform of type (1, l; 2m; 2n) if and only if G is uniform of type (l,m, n); H is bipartite-regularof type (1, l; 2m; 2n) if and only if G is regular of type (l,m, n).Proof. As in Theorem 1.6.5, only the ne
essary 
ondition needs to be proved. Let H bea hypermap subgroup of H. By taking HR0 instead of H if ne
essary, we may assume,without loss of generality, that all verti
es in the ∆0̂-orbit of the vertex that 
ontains the�ag HR0 have valen
y 1, i.e, HR0gR1R2 = HR0g for all g ∈ ∆0̂. Then kerϕ
P

⊆ H, so
Hϕ

P
ϕ

P

−1 = H kerϕ
P

= H and H is isomorphi
 to Pin(G), where G is the hypermap withhypermap subgroup G = Hϕ
P
.Theorem 1.6.10. 1. Pin(D(12)(H)) ∼= D(12)(Pin(H)).2. If Pin(H) ∼= Pin(G), then H ∼= G.Proof. Let H be a hypermap subgroup of H. Then H(12)ϕ

P

−1 and Hϕ
P

−1(12) are hypermapsubgroups of Pin(D(12)(H)) and D(12)(Pin(H)), respe
tively. Sin
e
(R1(12))ϕ

P
= R2 = R1ϕP

(12), (R1
R0(12))ϕ

P
= R0 = R1

R0ϕ
P
(12),

(R2(12))ϕ
P

= R1 = R2ϕP
(12), (R2

R0(12))ϕ
P

= R0 = R2
R0ϕ

P
(12),we have g(12)ϕ

P
= gϕ

P
(12), for all g ∈ ∆0̂.1. Sin
e

g ∈ Hϕ
P

−1(12) ⇔ g(12)ϕ
P
∈ H ⇔ gϕ

P
(12) ∈ H ⇔ g ∈ H(12)ϕ

P

−1,

Hϕ
P

−1(12) = H(12)ϕ
P

−1 and hen
e Pin(D(12)(H)) and D(12)(Pin(H)) are isomorphi
.2. Let H and G be hypermap subgroups of H and G. Assume that Pin(H) ∼= Pin(G). Then
Hϕ

P

−1 = (Gϕ
P

−1)g for some g ∈ ∆. If g ∈ ∆0̂, then
H = Hϕ

P

−1ϕ
P

= (Gϕ
P

−1)gϕ
P

= (Gϕ
P

−1ϕ
P
)gϕP = GgϕP



1.7 The operator Orient 23and H ∼= G.Now assume that g /∈ ∆0̂. We 
laim that all verti
es of H have valen
y 1. Given d ∈ ∆,let a ∈ ∆0̂ su
h that d = aϕ. Then R0(ga)
−1 ∈ ∆0̂ and

(R1R2)
(ga)−1

ϕ = (R1R2)
R0R0(ga)−1

ϕ = (R1R2)
R0ϕR0(ga)−1ϕ = 1 ∈ G,that is, R1R2 ∈ (Gϕ−1)ga = (Hϕ−1)a = Haϕϕ−1 = Hdϕ−1. In addition, R1R2 = (R1R2)ϕ ∈

Hdϕ−1ϕ = Hd. Thus, the vertex ofH 
ontaining Hd has valen
y 1. By Lemma 1.4.4, H ∼= Sk.Similarly, one 
an see that G ∼= Sk ∼= H.Remark 1.6.11. Pin(Sk) ∼= S2k, for all k ∈ N.1.7 The operator OrientIn this se
tion we see how to obtain non-orientable hypermaps from orientable hypermapshaving an involutory orientation-reversing automorphism whi
h is not a re�e
tion.Given a hypermap H with hypermap subgroup H, let Orient(H) be the hypermap withhypermap subgroup H ∩ ∆+. Then Orient(H) is the smallest orientable hypermap 
overing
H. When H is orientable, Orient(H) is isomorphi
 to H. Otherwise, Orient(H) is the disjointprodu
t H × D1 of Breda and Jones [13℄, an extension to hypermaps of Wilson's parallelprodu
t of maps [74℄. Following [15℄, we also denote Orient(H) by H+ and H ∩ ∆+ by H+.Theorem 1.7.1 (Properties of Orient). Let H be a non-orientable hypermap with hypermapsubgroup H, H+ = Orient(H), H+ = H ∩ ∆+ and Θ ⊳ ∆.1. [H : H+] = 2, so H = H+ ∪ H+g, for some g ∈ H; sin
e our hypermaps have noboundary, g 
annot be a 
onjugate of R0, R1 or R2.2. |ΩH+ | = 2|ΩH|;3. the k-fa
e of H 
ontaining Ha and the k-fa
es of H+ 
ontaining H+a and H+ga havethe same valen
y, for all a ∈ ∆, and for all k ∈ {0, 1, 2}.4. V (H+) = 2V (H), E(H+) = 2E(H), F (H+) = 2F (H);5. χ

H+ = 2χ
H
, g

H+ = g
H
− 1;6. the 
overing π : ∆/rH

+ → ∆/rH, H+a 7→ Ha, the automorphism of H+, ϕ : ∆/rH
+ →

∆/rH
+, H+a 7→ H+ga, and the identity automorphism of H, 1, 
omute a

ording to thefollowing diagram:

∆/rH
+

π

��

ϕ
// ∆/rH

+

π

��

∆/rH
1

// ∆/rHthat is, there is an involutory orientation-reversing automorphism ϕ of H+ whi
h is nota re�e
tion su
h that ϕ ◦ π = π.7. If H is Θ-
onservative, then H+ is also Θ-
onservative;



24 Chapter 1. Hypermaps8. If H is Θ-uniform, then H+ is also Θ-uniform;9. If H is Θ-regular, then H+ is also Θ-regular;10. For all σ ∈ S{0,1,2}, Dσ(H+) ∼= (Dσ(H))+.Proof. 1. Follows from Corollary A.1.2.2. By 1, |ΩH+ | = [∆ : H+] = [∆ : H] · [H : H+] = 2[∆ : H] = 2|ΩH|.3. If d ∈ ∆+, then d ∈ H+ ⇔ d ∈ H = Hg ⇔ d ∈ H+. More generally, if d ∈ ∆+, then
d ∈ (H+)a = (Ha)+ ⇔ d ∈ Ha = Hga ⇔ d ∈ (H+)a = (Ha)+. The result follows by taking das (R1R2)

p, (R2R0)
q and (R0R1)

r.4. Follows from 2 and 3.5. Follows from 4. Using Lemma 1.4.1,
χ

H+ = V (H+) + E(H+) + F (H+) − |ΩH+ |
2

= 2V (H) + 2E(H) + 2F (H) − |ΩH|
= 2χ

H
.Sin
e H+ is orientable but H is not, χ
H+ = 2 − 2g

H+ and χ
H

= 2 − g
H
, so

g
H+ =

2 − χ
H+

2
=

2 − 2χ
H

2
= 1 − χ

H
= g

H
− 1.6. For every a ∈ ∆, (H+a)ϕπ = (H+ga)π = Hga = Ha = (H+a)π, be
ause g ∈ H.7. Be
ause H+ ⊆ H.8. Follows from 7 and 3.9. By 7 and be
ause

N∆(H+) = N∆(H ∩ ∆+) ⊇ N∆(H) ∩ N∆(∆+) = N∆(H) ∩ ∆ = N∆(H).10. By Lemma 1.5.1, ∆+σ = ∆+. Sin
e σ is bije
tive,
H+σ = (H ∩ ∆+)σ = Hσ ∩ ∆+σ = Hσ ∩ ∆+ = (Hσ)+,and hen
e Dσ(H+) and (Dσ(H))+ are isomorphi
.When H is non-orientable, Orient(H) is 
alled the orientable double 
over of H. A hy-permap K is 
alled antipodal (see [53, 22℄ for maps) if K is the orientable double 
over of anon-orientable hypermap H.Corollary 1.7.2. If H is a Θ-regular hypermap on a non-orientable surfa
e of genus g

H
, then

H+ = Orient(H) is a Θ-regular hypermap on an orientable surfa
e of genus g
H+ = g

H
− 1,with twi
e the numbers of �ags, verti
es, edges and fa
es of H, and having an involutory

Θ-
onservative orientation-reversing automorphism ϕ whi
h is not a re�e
tion.In parti
ular all Θ-regular hypermaps on the proje
tive plane and on the Klein bottle areobtained from Θ-regular hypermaps on the sphere and on the torus, respe
tively. In Chapter3 we 
an �nd examples showing that, in general, the 
onverses of 7, 8 and 9 of Theorem 1.7.1are not true.



1.8 The 
losure 
over and the 
overing 
ore 25Corollary 1.7.3. If H is regular, then H+ = Orient(H) is also regular and the 
enter of
Aut(H+) is non-trivial, that is |Z(Aut(H+))| ≥ 2.Proof. When H is regular, H+ is also regular, Aut(H) ∼= ∆/H and Aut(H+) ∼= ∆/H+. Sin
e
H+ ⊆ H, the mapping ϕ : ∆/H+ → ∆/H, H+g 7→ Hg is an epimorphism, and kerϕ, beinga normal subgroup of ∆/H+ with 2 elements, is 
ontained in Z(∆/H+).Now we show that Orient 
ommutes with Walsh and Pin.Proposition 1.7.4. Let ϕ : ∆0̂ → ∆ be an epimorphism su
h that ∆+ϕ−1 = ∆+ ∩∆0̂. Then
(H+)ϕ

−1 is isomorphi
 to (Hϕ−1
)+.Proof. By Proposition 1.6.3, (H+)ϕ−1 and (Hϕ−1)+ are hypermap subgroups of (H+)ϕ

−1 and
(Hϕ−1

)+, respe
tively. Sin
e
(H+)ϕ−1 = (H ∩ ∆+)ϕ−1 = Hϕ−1 ∩ ∆+ϕ−1 = Hϕ−1 ∩ (∆+ ∩ ∆0̂)

= (Hϕ−1 ∩ ∆0̂) ∩ ∆+ = Hϕ−1 ∩ ∆+ = (Hϕ−1)+,

(H+)ϕ
−1 and (Hϕ−1

)+ have the same hypermap subgroup, and hen
e are isomorphi
.As a by-produ
t of Propositions 1.7.4 and 1.6.3, we get:Corollary 1.7.5. For every hypermap H, Walsh(H+) ∼= Walsh(H)+ and Pin(H+) ∼= Pin(H)+.1.8 The 
losure 
over and the 
overing 
oreGiven a hypermap subgroup H of a hypermap H, the 
ore of H in ∆, H∆, is the largestnormal subgroup of ∆ 
ontained in H, and the 
losure of H in ∆, H∆, is the smallest normalsubgroup of ∆ 
ontaining H. When H has �nite index in ∆, H∆ and H∆ also have �nite indexin ∆, by Remark A.1.4, respe
tively. These 2 normal subgroups of ∆ give rise to 2 regularhypermaps, the 
overing 
ore of H, H∆, with hypermap subgroup H∆, and the 
losure 
overof H, H∆, with hypermap subgroup H∆. The 
overing 
ore of H, H∆, is the smallest regularhypermap 
overing H, and the 
losure 
over of H, H∆, is the largest regular hypermap 
overedby H. When H is regular, H∆ = H = H∆ and H∆ = H = H∆.The next result is straightforward.Lemma 1.8.1. Let Θ be a normal subgroup of ∆ and H a hypermap. Then:1. H is Θ-
onservative if and only if H∆ is Θ-
onservative;2. if H is Θ-
onservative, then H∆ is Θ-
onservative;3. H is Θ-regular if and only if H∆ is Θ-regular;4. if H is Θ-regular, then H∆ is Θ-regular.The 
onverses of 2. and 4. may not be true (see Chapter 3 for 
ounter-examples).Remark 1.8.2. If H = (ΩH, h0, h1, h2) and G = (ΩG , g0, g1, g2) are hypermaps su
h that H
overs G and G has no boundary, then H has no boundary either. Indeed, if ψ : H → G isa 
overing and gi is �xed-point free, then hi is also �xed-point free. When H is orientable,
H and H∆ 
over T∆+ = D1 and hen
e H and H∆ have no boundary. However, when H isnon-orientable and without boundary, H∆ may have boundary. See Se
tion 3.3 for examples.



26 Chapter 1. HypermapsWhen H is an orientable hypermap, H∆ and H∆ are also orientable. IfH is non-orientable,then H∆ is also non-orientable, however H∆ may be orientable. In what follows we determine
onditions for seeing if the 
overing 
ore of a non-orientable hypermap is orientable or not.Lemma 1.8.3. Let H be a hypermap. Then (H+)∆ ∼= (H∆)+ and (H+)∆ ∼= (H∆)+.Theorem 1.8.4. Let H be a non-orientable hypermap. Then |ΩH∆
| ≤ |Ω(H+)∆ | and H∆ isorientable if and only if |ΩH∆

| = |Ω(H+)∆ |.Proof. Sin
e H+ → H, (H+)∆ → H∆ and so |ΩH∆
| ≤ |Ω(H+)∆ |. Then |ΩH∆

| = |Ω(H+)∆ | ifand only if H∆
∼= (H+)∆ ∼= (H∆)+, that is, if and only if H∆ is orientable.The next result relates the bipartite-type of a bipartite-uniform hypermap with the typeof its 
losure 
over and the type of its 
overing 
ore.Proposition 1.8.5. Let B be a bipartite-uniform hypermap of type (l1, l2;m;n).1. If B∆ has no boundary, and has type (p, q, r), then p | gcd(l1, l2), q | m and r | n.2. B∆ has type (lcm(l1, l2),m, n).Proof. 1. Follows immediately from Lemma 1.1.1.2. Sin
e B is bipartite-uniform and Mon(B) = ∆/B∆ = Mon(B∆), B∆R1R2 
an be writtenas a produ
t of disjoint 
y
les of length l1 and l2, and hen
e B∆R1R2 has order lcm(l1, l2).Obviously, B∆R2R0 and B∆R0R1 have orders m and n, respe
tively. Therefore B∆ has type

(lcm(l1, l2),m, n).1.9 Chirality groups and 
hirality indi
esThe de�nition of the 
hirality group and 
hirality index of an orientably-regular hypermapand it basi
 properties are due to Breda, Jones, Nedela and �koviera [6℄. The 
hirality groupand the 
hirality index of a hypermap H 
an be regarded as algebrai
 and numeri
al measuresof how far H deviates from being regular. However, in this thesis we use these 
on
epts in amore general sense.Let H be the hypermap subgroup of a hypermap H. Be
ause H∆ is always a normalsubgroup of H, we have a group
Υ∆(H) = H/H∆ (1.9)
alled upper 
hirality group of H. A

ording to Lemma A.1.3, Υ∆(H) is �nite if [∆ : H] is�nite. The size of Υ∆(H), whi
h 
an be 
omputed dividing the number of �ags of H∆ by thenumber of �ags of H, is 
alled the upper 
hirality index and is denoted by ι∆(H). Sin
e thenumber of �ags of H∆ is equal to the size of Mon(H), ι∆(H) = |Mon(H)|/|ΩH|. However, Hmay not be normal in H∆. A

ording to Lemma A.1.5, H is normal in H∆ if and only if His restri
tedly-regular. The lower 
hirality index , denoted by ι∆(H), is the index [H∆ : H],whi
h is �nite whenever [∆ : H] is �nite. We 
an 
ompute ι∆(H) dividing the number of �agsof H by the number of �ags of H∆. When H is a normal subgroup of H∆, we have anothergroup, 
alled the lower 
hirality group
Υ∆(H) = H∆/H. (1.10)



1.9 Chirality groups and 
hirality indi
es 27Naturally, ea
h of these groups is trivial if and only if H is regular.If H is Θ-regular for some Θ ⊳2 ∆, and g ∈ ∆ \ Θ, then H∆ = HHg, H∆ = H ∩Hg (seeLemma A.1.7), H is a normal subgroup of H∆, and
Υ∆(H) = H∆/H = HHg/H ∼= Hg/(H ∩Hg) ∼= H/H∆ = Υ∆(H). (1.11)In this 
ase, and whenever the upper and lower 
hirality groups are isomorphi
 we denote by

Υ(H) the 
ommon group Υ∆(H) ∼= Υ∆(H), 
alled the 
hirality group of H, and by ι(H) the
ommon value ι∆(H) = ι∆(H), 
alled the 
hirality index of H.If it is 
lear from the 
ontext, we write Υ and ι instead of Υ(H) and ι(H), for short.Remark 1.9.1. When H is a Θ-regular hypermap, H∆
⊳ Θ and hen
e Υ∆(H) = H∆/H is anormal subgroup of Θ/H ∼= AutΘ(H), the group of Θ-
onservative automorphisms of H.It follows from Corollary A.1.9 that (H∆)σ = (Hσ)∆ and (H∆)σ = (Hσ)∆, for all

σ ∈ S{0,1,2}. Consequently, the groups Υ∆(Dσ(H)) and Υ∆(H) are isomorphi
, as well asthe groups Υ∆(Dσ(H)) and Υ∆(H), when H is restri
tedly-regular. In other words, dualhypermaps have the same upper and lower 
hirality groups.The following result will be very useful to 
ompute the 
hirality groups of the 2-restri
tedly-regular hypermaps.Lemma 1.9.2. If Θ is a normal subgroup of ∆ of index 2, H is a Θ-regular hypermap withhypermap subgroup H = 〈T 〉Θ, and g ∈ {R0, R1, R2} \ Θ, then1. H∆ = 〈T ∪ T g〉Θ;2. Υ∆(H) = 〈Htg | t ∈ T 〉Θ/H .Proof. 1. Clearly, H∆
⊳ Θ. Sin
e T ∪ T g ⊆ H∆

⊳ Θ, 〈T ∪ T g〉Θ ⊆ H∆. On the otherhand, 〈T ∪ T g〉g = 〈T g ∪ T g
2〉 = 〈T ∪ T g〉, so g ∈ N∆(〈T ∪ T g〉) ⊆ N∆(〈T ∪ T g〉Θ) (seeProposition A.1.6). Thus ∆ = 〈g,Θ〉 ⊆ N∆(〈T ∪ T g〉Θ), that is, 〈T ∪ T g〉Θ ⊳ ∆. Sin
e

H = 〈T 〉Θ ⊆ 〈T ∪ T g〉Θ ⊳ ∆, H∆ ⊆ 〈T ∪ T g〉Θ.2. Let π : Θ → Θ/H be the proje
tion. Sin
e
H∆π = 〈T ∪ T g〉Θπ

= (〈T ∪ T g〉π)Θ/H

= (H〈T ∪ T g〉/H)Θ/H

= 〈Hs | s ∈ T ∪ T g〉Θ/H
= 〈Htg | t ∈ T 〉Θ/H ,we get Υ∆(H) = H∆/H = H∆π = 〈Htg | t ∈ T 〉Θ/H .Computing the 
hirality group of Walsh(R) and Pin(R)In what follows we assume that ϕ is ϕ
W

or ϕ
P
, and that e is e

W
= R2R2

R0 or e
P

= R1
R0R2

R0 ,respe
tively. Then kerϕ = 〈e〉∆0̂ (Lemma 1.6.2) and ψ ◦ ϕ = 1∆. We also assume that R is aregular hypermap with hypermap subgroup R, and T is a subset of ∆ su
h that R = 〈T 〉∆.



28 Chapter 1. HypermapsRemark 1.9.3. Be
ause Rϕ−1 ⊆ ∆0̂, (Rϕ−1)∆ ⊳ ∆0̂ and
Υ(Rϕ−1

) = (Rϕ−1)∆/Rϕ−1
⊳ ∆0̂/Rϕ−1 ∼= ∆/R = Aut(R), (1.12)that is, the 
hirality group of Rϕ−1 is isomorphi
 to a normal subgroup of the automorphismgroup of H. When R is orientable, R is orientably-regular and Rϕ−1 is a normal subgroup of

∆+ϕ−1 = ∆+ ∩ ∆0̂ = ∆+00̂. It follows that the normal 
losure of Rϕ−1, (Rϕ−1)∆, is also anormal subgroup of ∆+00̂ and
Υ(Rϕ−1

) = (Rϕ−1)∆/Rϕ−1
⊳ ∆+00̂/Rϕ−1 ∼= ∆+/R = Aut+(R), (1.13)that is, the 
hirality group of Rϕ−1 is isomorphi
 to a normal subgroup of the rotation groupof R.Sin
e ϕ is onto, by Proposition A.1.8, 〈e, Tψ〉∆0̂

ϕ = 〈e, Tψ〉ϕ∆ = 〈eϕ, Tψϕ〉∆ = 〈T 〉∆.Thus, Rϕ−1 , has hypermap subgroup Rϕ−1 = 〈e, Tψ〉∆0̂
ϕϕ−1 = 〈e, Tψ〉∆0̂

kerϕ = 〈e, Tψ〉∆0̂ ,be
ause kerϕ = 〈e〉∆0̂ ⊆ 〈e, Tψ〉∆0̂ . This proves the following result.Theorem 1.9.4 (Hypermap subgroups of Walsh(R) and Pin(R)). Let R be a regular hyper-map with hypermap subgroup R = 〈T 〉∆, for some subset T of ∆. Then W := 〈R2R2
R0 , Tψ〉∆0̂and P := 〈R1

R0R2
R0 , Tψ〉∆0̂ are hypermap subgroups of W := Walsh(R) and P := Pin(R),respe
tively.As one 
an easily see, for ea
h normal subgroup R of ∆ we have a group isomorphism

ϕ : ∆0̂/Rϕ−1 → ∆/R, (Rϕ−1g) 7→ R(gϕ). Indeed, ϕ is an homomorphism be
ause ϕ is anhomomorphism, ϕ is onto be
ause ϕ is onto, and ϕ is one-to-one be
ause for all g ∈ ∆0̂,
(Rϕ−1)g ∈ kerϕ ⇔ R(gϕ) = R ⇔ gϕ ∈ R ⇔ g ∈ Rϕ−1 ⇔ (Rϕ−1)g = Rϕ−1, that is,
kerϕ = {Rϕ−1}. Then

Υ(Rϕ−1
) ∼= (Υ(Rϕ−1

))ϕ

= ((Rϕ−1)∆/Rϕ−1)ϕ

= (〈Rϕ−1tR0 | t ∈ {e} ∪ Tψ〉∆0̂/Rϕ−1
)ϕ

= (〈Rϕ−1tR0 | t ∈ {e} ∪ Tψ〉)ϕ∆/R

= 〈(Rϕ−1tR0)ϕ | t ∈ {e} ∪ Tψ〉∆/R
= 〈R(tR0ϕ) | t ∈ {e} ∪ Tψ〉∆/R.Let αW , αP : ∆0̂ → ∆ de�ned by gαW = gψR0ϕW and gαP = gψR0ϕP . Then

R0αW
= R1, R1αW

= R0, R2αW
= R2, (1.14)and

R0αP
= R1, R1αP

= R0, R2αP
= R0. (1.15)Lemma 1.9.5. If R is a regular hypermap with hypermap subgroup R = 〈T 〉∆, then

Υ(Walsh(R)) ∼= 〈Rs | s ∈ Tα
W
〉∆/Rand

Υ(Pin(R)) ∼= 〈Rs | s ∈ {R1R2} ∪ TαP
〉∆/R.



1.10 Bipartite-regular hypermaps 29Proposition 1.9.6. Let R be a regular hypermap of type (l,m, n) with hypermap subgroup R,
X = {(R1R2)

l, (R2R0)
m, (R0R1)

n}, T a subset of ∆ 
ontaining X and su
h that R = 〈T 〉∆,
S = T \X, d1 := gcd(l,m) and d2 := gcd(m,n). Then

Υ(Walsh(R)) ∼= 〈R(R1R2)
d1 , R(R2R0)

d1 , {Rsα
W

| s ∈ S}〉∆/Rand
Υ(Pin(R)) ∼= 〈RR1R2, R(R0R1)

d2 , {Rsα
P
| s ∈ S}〉∆/R,Proof. We have

(R1R2)
lα

W
= [(R2R0)

l]−1, (R2R0)
mα

W
= [(R1R2)

m]−1, (R0R1)
nα

W
= [(R0R1)

n]−1and
(R1R2)

lα
P

= 1, (R2R0)
mα

P
= (R0R1)

m, (R0R1)
nα

P
= [(R0R1)

n]−1.To �nish the proof, just note that if Rg ∈ ∆/R has order k, then 〈Rgp〉 = 〈Rggcd(k,p)〉.Using Proposition 1.9.6 together with Remark 1.9.3 we get:Corollary 1.9.7. Let R be a regular hypermap of type (l,m, n), W = Walsh(R), P = Pin(R),
d1 := gcd(l,m) and d2 := gcd(m,n).1. (a) If d1 = 1 and R is orientable, then Υ(W) ∼= R∆+/R = ∆+/R ∼= Aut+(R) and

W∆, having hypermap subgroup ∆+ϕ
W

−1 = ∆+00̂ is Walsh(S1) ∼= S2;(b) If d1 = 1 and R is non-orientable, then Υ(W) ∼= R∆+/R = ∆/R ∼= Aut(R), and
W∆, having hypermap subgroup ∆ϕ

W

−1 = ∆0̂, is T∆0̂, a hypermap with boundary.2. (a) If d2 = 1 and R is orientable, then Υ(P) ∼= R∆+/R = ∆+/R ∼= Aut+(R) and P∆,having hypermap subgroup ∆+ϕ
P

−1 = ∆+00̂, is Pin(S1) ∼= S2;(b) If d2 = 1 and R is non-orientable, then Υ(P) ∼= R∆+/R = ∆/R ∼= Aut(R) and
P∆, having hypermap subgroup ∆ϕ

P

−1 = ∆0̂, is T∆0̂, a hypermap with boundary;(
) If d2 = 2 and R is orientable and bipartite, then Υ(P) = R∆+00̂/R = ∆+00̂/R and
P∆, having hypermap subgroup ∆+00̂ϕ

P

−1, is Pin(S2) ∼= S4;(d) If d2 = 2 and R is orientable but not bipartite, then Υ(P) = R∆+00̂/R = ∆+/R ∼=
Aut+(R) and P∆, having hypermap subgroup ∆+ϕ

P

−1 = ∆+00̂, is Pin(S1) ∼= S2.1.10 Bipartite-regular hypermapsFor ea
h k ∈ N, let Mk be the regular map with hypermap subgroup
Mk := 〈(R1R2)

2k, (R2R0)
2, (R0R1)

2k, (R2R0)(R0R1)
−k〉∆.The map Mk, denoted by {2k, 2k}1,0 in [33℄, is an orientable regular map with 1 fa
e and

4k �ags formed from a single 2k-gon by identifying opposite edges orientably. The auto-morphism group of Mk is the dihedral group D2k. Sin
e MkR1R2 = MkR1R0(R0R1)
−k =

Mk(R0R1)
−(k+1), MkR1R2 has order 2k/ gcd(2k, k + 1) = 2k/ gcd(2, k + 1), whi
h is k if kis odd, and 2k if k is even. For this reason, the map Mk has type (k, 2, 2k), if k is odd, or
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(2k, 2, 2k) if k is even. In other words, M2k+1 and M2k have type (2k + 1, 2, 4k + 2) and
(4k, 2, 4k), respe
tively. In addition, M2k+1 has 2 verti
es, 2k+ 1 edges, 1 fa
e, euler 
hara
-teristi
 χ = 2 + (2k + 1) + 1 − 2(2k + 1) = 2 − 2k (see Lemma 1.4.1) and genus g = k; M2khas 1 verti
es, 2k edges, 1 fa
e, euler 
hara
teristi
 χ = 1 + 2k+ 1− 4k = 2− 2k (see Lemma1.4.1) and genus g = k. Hen
e, on ea
h orientable surfa
e of genus g there are, at least, tworegular maps: M2g and M2g+1.The bipartite-regular hypermaps Pin(M2k+1), Pin(M2k), Walsh(M2k+1) and Walsh(M2k)have bipartite-types (1, 2k + 1; 4; 8k + 4), (1, 4k; 4; 8k), (2, 2k + 1; 2; 8k + 4) and (2, 4k; 2; 8k),respe
tively. The hypermap Pin(M1) ∼= S4 is regular; all others, being non-uniform, arebipartite-
hiral. Be
ause of this, on ea
h orientable surfa
e we 
an �nd bipartite-
hiral andhen
e bipartite-regular hypermaps. Using Proposition 1.9.6, one 
an see that

Υ(Walsh(Mk)) ∼= Aut(Mk) ∼= C2k,

Υ(Pin(M2k)) ∼= Aut+(M2k) ∼= C4kand
Υ(Pin(M2k+1)) ∼= Aut+00̂(M2k) ∼= C2k+1.We 
annot ensure the existen
e of bipartite-regular hypermaps on ea
h non-orientablesurfa
e using the Walsh and Pin 
onstru
tions be
ause Walsh(H), Pin(H) andH have the sameunderlying surfa
e and be
ause there are non-orientable surfa
es with no regular hypermaps(see [78℄). For instan
e, there are no regular hypermaps on the non-orientable surfa
es withnegative 
hara
teristi
 0, 1, 16, 22, 25, 37, and 46. However, the epimorphism ϕ

E
: ∆0̂ → ∆de�ned by R1ϕE

= R1, R2ϕE
= R2, R1

R0ϕ
E

= R0 and R2
R0ϕ

E
= R1 gives rise to a
onstru
tion of bipartite hypermaps with the following properties:

• Hϕ
E

−1 is orientable if and only if H is orientable;
• V (Hϕ

E
−1

) = V (H) + F (H),
E(Hϕ

E
−1

) = V (H),
F (Hϕ

E
−1

) = F (H);
• χ(Hϕ

E
−1

) = 2(χ(H) − E(H)). Indeed
χ(Hϕ

E
−1

) = V (Hϕ
E

−1
) + E(Hϕ

E
−1

) + F (Hϕ
E

−1
) − |Ω

Hϕ
E

−1 |/2
= 2(V (H) + F (H)) − 2|ΩH|/2
= 2(χ(H) − E(H)).

• H is uniform of type (l,m, n) if and only if Hϕ
E

−1 is bipartite-uniform of bipartite-type
(l, n; l; 2n).The non-orientable regular hypermap Nk (denoted by PP2k in Chapter 3) with hypermapsubgroup Nk := 〈(R1R2)

2, (R2R0)
2, (R0R1)

2k, (R0R1)
kR2〉∆ is a hypermap on the proje
tiveplane of type (2, 2, 2k) with 4k �ags, k verti
es, k edges and 1 fa
e. The automorphism groupof Nk is the dihedral group D2k. Then, the hypermap Nk

ϕ
E

−1 is a non-orientable hypermapon a surfa
e with Euler 
hara
teristi
 χ(Nk
ϕ

E
−1

) = 2(χ(Nk)−E(Nk)) = 2(1−k). This showsthat we 
an �nd a bipartite-
hiral hypermap on ea
h non-orientable surfa
e with even Euler
hara
teristi
.The existen
e of bipartite-regular hypermaps on every non-orientable surfa
e with oddEuler 
hara
teristi
 remains an open problem.



Chapter 2Hypermaps on the sphereIn this 
hapter we 
lassify the 2-restri
tedly-regular hypermaps on the sphere using the resultsobtained in Chapter 1. It is well-known that all uniform hypermaps on the sphere are regularand hen
e all 2-restri
tedly-regular hypermaps on the sphere are bipartite-
hiral.The next se
tion is in
luded here for 
ompleteness.2.1 Uniform hypermaps on the sphereLet U be a uniform hypermap on the sphere of type (l,m, n). Using the Euler formula foruniform hypermaps (Corollary 1.4.2) together with Lemma 1.4.5 and Lemma 1.4.4, one 
ansee that the type (l,m, n) of a uniform hypermap U on the sphere is, up to duality, (1, k, k),
(2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5).The following result is well-known.Theorem 2.1.1 (Hypermap subgroups of the uniform hypermaps on the sphere). If U is auniform hypermap on the sphere of type (l,m, n), then U has hypermap subgroup N(l,m, n) =
〈(R1R2)

l, (R2R0)
m, (R0R1)

n〉∆.Proof. Let U be a hypermap subgroup of U and N := 〈(R1R2)
l, (R2R0)

m, (R0R1)
n〉∆. Then

N ⊆ U . By inspe
tion one 
an see that [∆ : N ] = [∆ : U ] and hen
e N = U .Corollary 2.1.2. Uniform hypermaps on the sphere of the same type are isomorphi
.Thus, up to duality, the unique uniform hypermaps on the sphere are the 2 in�nite families
Dk and Pk, the tetrahedron T , the 
ube (or hexahedron) C and the dode
ahedron D.Corollary 2.1.3 (Conservativeness of uniform hypermaps on the sphere). Let Θ⊳2 ∆. Then:1. (a) D2k−1 is Θ-
onservative if and only if Θ = ∆+;(b) D2k is Θ-
onservative if and only if Θ ∈ {∆+,∆2,∆2̂};2. (a) P2k−1 is Θ-
onservative if and only if Θ ∈ {∆+,∆2,∆2̂};(b) P2k is Θ-
onservative;3. T is Θ-
onservative if and only if Θ = ∆+;4. C is Θ-
onservative if and only if Θ ∈ {∆+,∆0,∆0̂};31



32 Chapter 2. Hypermaps on the sphere5. D is Θ-
onservative if and only if Θ = ∆+.Proof. Given Θ ⊳ ∆, 〈(R1R2)
l, (R2R0)

m, (R0R1)
n〉∆ is a subset of Θ if and only if (R1R2)

l,
(R2R0)

m and (R0R1)
n belong to Θ.The following well-known result is also an immediate 
orollary of Theorem 2.1.1.Theorem 2.1.4. All uniform hypermaps on the sphere are regular.Corollary 2.1.5. If U is a uniform hypermap on the sphere, then U is Θ-regular if and onlyif U is Θ-
onservative.Corollary 2.1.6. There are no 2-restri
tedly-regular uniform hypermaps on the sphere. Inparti
ular, there are no orientably-
hiral or pseudo-orientably-
hiral hypermaps on the sphere.Table 2.1 lists, up to duality, all possible values (l,m, n) for the type of a uniform hypermap

U on the sphere. It also displays the numbers V of verti
es, E of edges, F of fa
es and |ΩU |of �ags of U , as well as its symmetry and rotation groups. Finally, in the last 
olumn, we givethe unique uniform hypermap on the sphere of type (l,m, n).
# l m n V E F |ΩU | Aut(U) Aut+(U) U
1 1 k k k 1 1 2k Dk Ck Sk
2 2 2 k k k 2 4k Dk × C2 Dk Pk
3 3 2 3 4 6 4 24 S4 A4 T
4 3 2 4 8 12 6 48 S4 × C2 S4 C
5 3 2 5 20 30 12 120 A5 × C2 A5 DTable 2.1: The uniform hypermaps on the sphere, up to duality.Be
ause the sphere is an orientable surfa
e, every hypermap on the sphere is orientable,that is, ∆+-
onservative. Having in mind that ∆+kk̂ = ∆+ ∩ ∆k = ∆+ ∩ ∆k̂, Corollary 2.1.5implies that a uniform hypermap U on the sphere is ∆k-regular if and only if U is ∆k̂-regular.In Table 2.2, we display, up to duality, the Θ-regularity of the uniform hypermaps on thesphere, for ea
h Θ ⊳2 ∆.

# U ∆+-regular? ∆0-,∆0̂-regular? ∆1-,∆1̂-regular? ∆2-,∆2̂-regular?
1 Sk yes yes i� 2 | k no no
2 Pk yes yes i� 2 | k yes i� 2 | k yes
3 T yes no no no
4 C yes yes no no
5 D yes no no noTable 2.2: Θ-regularity of the uniform hypermaps on the sphere2.2 Bipartite-uniform hypermaps on the sphereLet B be a bipartite-uniform hypermap on the sphere of bipartite-type (l1, l2;m;n). We mayassume, without loss of generality, that l1 ≤ l2 and m ≤ n. Then, by Lemma 1.3.6, m and
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n are even. Repla
ing χB = 2 > 0 in the Euler formula for bipartite-uniform hypermaps(Corollary 1.4.3), one has that (a, b, c, d) = (l1, l2,m/2, n/2) is a solution of the inequation
1/a + 1/b + 1/c + 1/d > 2. A

ording to Lemma 1.4.7, l1 = 1 or m/2 = 1. Using Theorems1.6.5 and 1.6.9, we get the following result.Theorem 2.2.1. If B is a bipartite-uniform hypermap on the sphere, then B ∼= Walsh(U)or B ∼= Pin(U) for some uniform hypermap U on the sphere, unique up to isomorphism.Moreover, as B is bipartite-regular if and only if U is regular, and on the sphere all uniformhypermaps are regular, then all bipartite-uniform hypermaps on the sphere are bipartite-regular.The solution (a, b, c, d) = (1, 1, j, k) of 1/a+1/b+1/c+1/d > 2 gives rise to the bipartite-types (1, 1; 2j; 2k), (1, j; 2; 2k) and (j, k; 2; 2). By Theorems 1.6.4 and 1.6.8, a bipartite-uniformhypermap B with one of these bipartite-types is isomorphi
 to Walsh(U) or Pin(U), where Uis a uniform hypermap on the sphere of type, up to duality, (1, j, k). By Lemma 1.4.4, j = k.Using Theorems 1.6.5 and 1.6.9 together with Corollary 2.1.2 and Lemma 1.6.1, we get:Corollary 2.2.2. Bipartite-uniform hypermaps on the sphere of the same bipartite-type areisomorphi
.Table 2.3 lists, up to duality, all possible values (l1, l2;m;n) for the bipartite-type of abipartite-uniform hypermap B on the sphere, whi
h are given by Lemma 1.4.7. We also displaythe numbers V1 and V2 of verti
es in ea
h ∆0̂-orbit, E of edges, F of fa
es and |ΩB| of �ags.In the last 
olumn of Table 2.3, we give the unique bipartite-uniform hypermap with su
hbipartite-type. We remark that the bipartite-uniform map of bipartite-type (1, n; 2; 2n) 
anbe obtained from D(12)(Dn) either via a Walsh 
onstru
tion or via a Pin 
onstru
tion. Indeed
Walsh(D(12)(Dn)) ∼= Pin(D(12)(Dn)). Noti
e that the hypermaps on lines 20, 21 and 22 are the2-skeletons of the 
ube, the rhombi
 tria
ontahedron and the rhombi
 dode
ahedron. Theselast two are Catalan solids or Ar
himedean duals (see �2.7 of [31℄); their dual polyhedrons arethe i
osidode
ahedron and the 
ubo
tahedron, respe
tively.As a by-produ
t of Theorems 2.1.4 and 2.2.1 we have:Theorem 2.2.3. For every Θ ⊳ ∆ with [∆ : Θ] ≤ 2, Θ-uniformity on the sphere implies
Θ-regularity.The existen
e of a normal subgroup Θ of ∆ for whi
h Θ-uniformity on the sphere does notimply Θ-regularity remains an open problem.2.3 Chirality groups and 
hirality indi
es of the 2-restri
tedly-regular hypermaps on the sphereAs we have mentioned before, every orientably-regular or pseudo-orientably-regular hypermapon the sphere is regular, so their 
hirality groups are trivial and their 
hirality indi
es are 1.In addition, all 2-restri
tedly-regular hypermaps on the sphere are bipartite-
hiral.In this se
tion we 
ompute the 
hirality groups and the 
hirality indi
es of the bipartite-regular hypermaps on the sphere using the notations of Proposition 1.9.6.
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# l1 l2 m n V1 V2 E F |ΩB| B
1 1 1 2k 2k k k 1 1 4k Pin(D(02)(Dk))

2 1 2 4 2k 2k k k 2 8k Pin(Pk)
3 1 2 6 6 12 6 4 4 48 Pin(D(01)(T ))

4 1 2 6 8 24 12 8 6 96 Pin(D(01)(C))

5 1 2 6 10 60 30 20 12 240 Pin(D(01)(D))

6 1 3 4 6 12 4 6 4 48 Pin(T )

7 1 3 4 8 24 8 12 6 96 Pin(C)

8 1 3 4 10 60 20 30 12 240 Pin(D)

9 1 4 4 6 24 6 12 8 96 Pin(D(02)(C))

10 1 5 4 6 60 12 30 20 240 Pin(D(02)(D))

11 1 k 2 2k k 1 k 1 4k Pin(D(12)(Dk)) ∼=
∼= Walsh(D(12)(Dk))

12 1 k 4 4 2k 2 k k 8k Pin(D(02)(Pk))
13 2 2 2 2k k k 2k 2 8k Walsh(Pk)
14 2 3 2 6 6 4 12 4 48 Walsh(T )

15 2 3 2 8 12 8 24 6 96 Walsh(C)

16 2 3 2 10 30 20 60 12 240 Walsh(D)

17 2 4 2 6 12 6 24 8 96 Walsh(D(02)(C))

18 2 5 2 6 30 12 60 20 240 Walsh(D(02)(D))

19 2 k 2 4 k 2 2k k 8k Walsh(D(02)(Pk))
20 3 3 2 4 4 4 12 6 48 Walsh(D(12)(T ))

21 3 4 2 4 8 6 24 12 96 Walsh(D(12)(C))

22 3 5 2 4 20 12 60 30 240 Walsh(D(12)(D))

23 k k 2 2 1 1 k k 4k Walsh(Dk)Table 2.3: The bipartite-regular hypermaps on the sphere.Chirality groups and 
hirality indi
es of B = Walsh(R)In what follows we assume that R is a regular hypermap on the sphere of type (l,m, n)and B = Walsh(R). A

ording to Proposition 1.9.6, T = {(R1R2)
l, (R2R0)

m, (R0R1)
n} and

S = ∅.A

ording to Table 2.3, up to duality, there are 12 types of bipartite-regular hypermapson the sphere obtained from regular hypermaps using the Walsh 
onstru
tion.When l = m, B is uniform and hen
e regular. After all, if l = m, then d1 = l = m, and
Υ(B) ∼= 〈R(R1R2)

d1 , R(R2R0)
d1〉∆/R = 1∆/R = 1. In addition, B∆ = B.If d1 = 1, then, a

ording to Corollary 1.9.7, Υ(B) = ∆+/R ∼= Aut+(R) and B∆ is S2.Table 2.4 lists the 12 types of bipartite-regular hypermaps on the sphere obtained fromregular hypermaps using the Walsh 
onstru
tion. Of those 
ases, only 2 are non-uniform with

d1 6= 1: 
ases 17 and 19 (k even). The 
hirality groups of these hypermaps are 
omputedbelow. The last two 
olumns of Table 2.4 display the 
hirality groups and 
hirality indi
es.
• Case 17: B = Walsh(R), R = D(02)(C) has type (4, 2, 3) and d1 = 2. Then

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2〉∆/R = 〈R(R1R2)
2, R((R1R2)

2)R0〉 ∼= V4 and ι = 4;
B∆ is P6: R → P3, B → Walsh(P3) ∼= P6, P6 is regular and |ΩB| = 96 = ι|ΩP6 |.
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• Case 19: B = Walsh(R), R = D(02)(P2k) has type (2k, 2, 2) and d1 = 2. Then

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2〉∆/R = 〈R(R1R2)
2〉 ∼= Ck and ι = k;

B∆ is P4: R → P2, B → Walsh(P2) ∼= P4, P4 is regular and |ΩB| = 16k = ι|ΩP4 |.
# B = Walsh(R) type of R Aut(R) Aut+(R) d1 Υ ι

11 Walsh(D(12)(Dk)) (k, 1, k) Dk Ck 1 Ck k

13 Walsh(Pk) (2, 2, 2k) Dk × C2 Dk 2 1 1

14 Walsh(T ) (3, 2, 3) S4 A4 1 A4 12

15 Walsh(C) (3, 2, 4) S4 × C2 S4 1 S4 24

16 Walsh(D) (3, 2, 5) A5 × C2 A5 1 A5 60

17 Walsh(D(02)(C)) (4, 2, 3) S4 × C2 S4 2 V4 4

18 Walsh(D(02)(D)) (5, 2, 3) A5 × C2 A5 1 A5 60

19 Walsh(D(02)(P2k)) (2k, 2, 2) D2k × C2 D2k 2 Ck k

Walsh(D(02)(P2k−1)) (2k − 1, 2, 2) D2k−1 × C2 D2k−1 1 D2k−1 4k − 2

20 Walsh(D(12)(T )) (3, 3, 2) S4 A4 3 1 1

21 Walsh(D(12)(C)) (3, 4, 2) S4 × C2 S4 1 S4 24

22 Walsh(D(12)(D)) (3, 5, 2) A5 × C2 A5 1 A5 60

23 Walsh(Dk) (k, k, 1) Dk Ck k Ck kTable 2.4: The bipartite-regular hypermaps obtained by the Walsh 
onstru
tion.Chirality groups and 
hirality indi
es of B = Pin(R)Now we assume that R is a regular hypermap on the sphere of type (l,m, n) and B = Pin(R).As before, T = {(R1R2)
l, (R2R0)

m, (R0R1)
n} and S = ∅.A

ording to Table 2.3, up to duality, there are 12 types of bipartite-regular hypermapson the sphere obtained from regular hypermaps using the Pin 
onstru
tion.In the �rst 
ase, B is uniform and hen
e regular. In addition, B∆ = B.If d2 = 1, then, a

ording to Corollary 1.9.7, Υ(Pin(R)) = ∆+/R ∼= Aut+(R) and B∆ is

S2. Table 2.5 lists the 12 types of bipartite-regular hypermaps on the sphere obtained fromregular hypermaps using the Pin 
onstru
tion. Of those 
ases, only 4 are non-uniform with
d2 6= 1: 
ases 2 (k even), 3, 7 and 12. The 
hirality groups of these hypermaps are 
omputedbelow. The last two 
olumns of Table 2.5 display the 
hirality groups and 
hirality indi
es.

• Case 2: B = Pin(R), R = P2k has type (2, 2, 2k) and d2 = 2. Then
Υ(B) ∼= 〈RR1R2, R(R0R1)

2〉∆/R(= R∆+00̂/R = ∆+00̂/R) ∼= Dk and ι = 2k; B∆ is S4.
• Case 3: B = Pin(R), R = D(01)(T ) has type (2, 3, 3) and d2 = 3. Then

Υ(B) ∼= 〈RR1R2, R(R0R1)
3〉∆/R = 〈RR1R2, R(R1R2)

R0〉 ∼= V4 and ι = 4;
B∆ is S6: R → S3, B → Pin(S3) ∼= S6, S6 is regular and |ΩB| = 48 = ι|ΩS6 |.

• Case 7: B = Pin(R), R = C has type (3, 2, 4) and d2 = 2. Then
Υ(B) ∼= 〈RR1R2, R(R0R1)

2〉∆/R(= ∆+00̂/R) ∼= A4 and ι = 12; B∆ is S4.
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• Case 12: B = Pin(R), R = D(02)(Pk) has type (k, 2, 2) and d2 = 2. Then

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R(= ∆+00̂/R) = 〈RR1R2〉 ∼= Ck and ι = k; B∆ is S4.

# B = Pin(R) type of R Aut(R) Aut+(R) d2 Υ ι

1 Pin(D(02)(Dk)) (1, k, k) Dk Ck k 1 1

2 Pin(P2k) (2, 2, 2k) D2k × C2 D2k 2 Dk 2k
Pin(P2k−1) (2, 2, 2k − 1) D2k−1 × C2 D2k−1 1 D2k−1 4k − 2

3 Pin(D(01)(T )) (2, 3, 3) S4 A4 3 V4 4

4 Pin(D(01)(C)) (2, 3, 4) S4 × C2 S4 1 S4 12

5 Pin(D(01)(D)) (2, 3, 5) A5 × C2 A5 1 A5 60

6 Pin(T ) (3, 2, 3) S4 A4 1 A4 12

7 Pin(C) (3, 2, 4) S4 × C2 S4 2 A4 12

8 Pin(D) (3, 2, 5) A5 × C2 A5 1 A5 60

9 Pin(D(02)(C)) (4, 2, 3) S4 × C2 S4 1 S4 24

10 Pin(D(02)(D)) (5, 2, 3) A5 × C2 A5 1 A5 60

11 Pin(D(12)(Dk)) (k, 1, k) Dk Ck 1 Ck k

12 Pin(D(02)(Pk)) (k, 2, 2) Dk × C2 Dk 2 Ck kTable 2.5: The bipartite-regular hypermaps obtained by the Pin 
onstru
tion.The 
losure 
overs and the 
overing 
oresTable 2.6 lists the 
hirality groups and 
hirality indi
es of all bipartite-regular hypermaps onthe sphere, as well as their 
losure 
overs. In Table 2.7 we display the type, number of �agsand genus of the 
overing 
ores.Note that if B is one of the bipartite-regular hypermaps listed in lines 1, 13, 20 and 23 ofTable 2.3 (or Table 2.7), then B is regular and B = B∆ = B∆.Looking at Table 2.7, one 
an see that there are two 
overing 
ores (not in the families)that are duals of maps with less than 100 edges. After all, if B is a map, B has less than 100edges if and only if |ΩB| < 400. The maps are D(01)((Pin(D(01)(T )))∆) with 48 edges andPetrie path of length 4, and (Walsh(D(02)(C)))∆ with 96 edges and Petrie path of length 6.In [70℄ we 
an �nd a list of all non-trivial regular with no more than 100 edges (the list is
omplete ex
ept perhaps at maps with 84 edges), these maps are P (70) and DP (190), pages144 and 181 respe
tively. These 
an also be 
onsulted in Wilson's Census of orientably-regularmaps [69℄.Note that the 
hirality index of a bipartite-regular hypermap 
an be any positive integernumber. Moreover, 
y
li
 groups and dihedral groups are 
hirality groups of bipartite-regularhypermaps.
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# B |ΩB| B∆ type of B∆ |ΩB∆ | Υ ι

1 Pin(D(02)(Dk)) 4k S2k (1, 2k, 2k) 4k 1 1

2 Pin(P2k) 16k S4 (1, 4, 4) 8 Dk 2k
Pin(P2k−1) 16k − 8 S2 (1, 2, 2) 4 D2k−1 4k − 2

3 Pin(D(01)(T )) 48 S6 (1, 6, 6) 12 V4 4

4 Pin(D(01)(C)) 96 S2 (1, 2, 2) 4 S4 24

5 Pin(D(01)(D)) 240 S2 (1, 2, 2) 4 A5 60

6 Pin(T ) 48 S2 (1, 2, 2) 4 A4 12

7 Pin(C) 96 S4 (1, 4, 4) 8 A4 12

8 Pin(D) 240 S2 (1, 2, 2) 4 A5 60

9 Pin(D(02)(C)) 96 S2 (1, 2, 2) 4 S4 24

10 Pin(D(02)(D)) 240 S2 (1, 2, 2) 4 A5 60

11 Pin(D(12)(Dk)) 4k S2 (1, 2, 2) 4 Ck k

12 Pin(D(02)(Pk)) 8k S4 (1, 4, 4) 8 Ck k

13 Walsh(Pk) 8k P2k (2, 2, 2k) 8k 1 1

14 Walsh(T ) 48 S2 (1, 2, 2) 4 A4 12

15 Walsh(C) 96 S2 (1, 2, 2) 4 S4 24

16 Walsh(D) 240 S2 (1, 2, 2) 4 A5 60

17 Walsh(D(02)(C)) 96 P6 (2, 2, 6) 24 V4 4

18 Walsh(D(02)(D)) 240 S2 (1, 2, 2) 4 A5 60

19 Walsh(D(02)(P2k)) 16k P4 (2, 2, 4) 16 Ck k

Walsh(D(02)(P2k−1)) 16k − 8 S2 (1, 2, 2) 4 D2k−1 4k − 2

20 Walsh(D(12)(T )) 48 C (3, 2, 4) 48 1 1

21 Walsh(D(12)(C)) 96 S2 (1, 2, 2) 4 S4 24

22 Walsh(D(12)(D)) 240 S2 (1, 2, 2) 4 A5 60

23 Walsh(Dk) 4k D(02)(Pk) (k, 2, 2) 4k 1 1Table 2.6: B and B∆
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# B type of B∆ |ΩB∆
| genus Υ ι

1 Pin(D(02)(Dk)) (1, 2k, 2k) 4k 0 1 1

2 Pin(P2k) (2, 4, 4k) 32k2 2k2 − 2k + 1 Dk 2k
Pin(P2k−1) (2, 4, 4k − 2) 16(2k − 1)2 4(k − 1)2 D2k−1 4k − 2

3 Pin(D(01)(T )) (2, 6, 6) 192 9 V4 4

4 Pin(D(01)(C)) (2, 6, 8) 2304 121 S4 24

5 Pin(D(01)(D)) (2, 6, 10) 14400 841 A5 60

6 Pin(T ) (3, 4, 6) 576 37 A4 12

7 Pin(C) (3, 4, 8) 1152 85 A4 12

8 Pin(D) (3, 4, 10) 14400 1141 A5 60

9 Pin(D(02)(C)) (4, 4, 6) 2304 193 S4 24

10 Pin(D(02)(D)) (5, 4, 6) 14400 1381 A5 60

11 Pin(D(12)(Dk)) (k, 2, 2k) 4k2 (k−1)(k−2)
2 Ck k

12 Pin(D(02)(Pk)) (k, 4, 4) 8k2 (k − 1)2 Ck k

13 Walsh(Pk) (2, 2, 2k) 8k 0 1 1

14 Walsh(T ) (6, 2, 6) 576 25 A4 12

15 Walsh(C) (6, 2, 8) 2304 121 S4 24

16 Walsh(D) (6, 2, 10) 14400 841 A5 60

17 Walsh(D(02)(C)) (4, 2, 6) 384 9 V4 4

18 Walsh(D(02)(D)) (10, 2, 6) 14400 841 A5 60

19 Walsh(D(02)(P2k)) (2k, 2, 4) 16k2 (k − 1)2 Ck k

Walsh(D(02)(P2k−1)) (4k − 2, 2, 4) 16(2k − 1)2 4(k − 1)2 D2k−1 4k − 2

20 Walsh(D(12)(T )) (3, 2, 4) 48 0 1 1

21 Walsh(D(12)(C)) (12, 2, 4) 2304 97 S4 24

22 Walsh(D(12)(D)) (15, 2, 4) 14400 661 A5 60

23 Walsh(Dk) (k, 2, 2) 4k 0 1 1Table 2.7: B and B∆.



Chapter 3Hypermaps on the proje
tive planeIn this 
hapter we 
lassify the 2-restri
tedly-regular hypermaps on the proje
tive plane. Ason the sphere, we determine all uniform and bipartite-uniform hypermaps on the proje
tiveplane. First we derive the 
lassi�
ation of the uniform hypermaps on the proje
tive planefrom the 
lassi�
ation of uniform hypermaps on the sphere. All uniform hypermaps on theproje
tive plane are regular maps and 
an be found in �8.6 of [33℄. Next we see that, as on thesphere, all bipartite-uniform hypermaps on the proje
tive plane are obtained from uniformhypermaps using a Walsh or a Pin 
onstru
tion, and hen
e are bipartite-regular.The next se
tion is in
luded here for 
ompleteness.3.1 Uniform hypermaps on the proje
tive planeLet U be a uniform hypermap on the proje
tive plane. Then, by Theorem 1.7.1, the orientabledouble 
over of U , U+ = Orient(U) is a uniform map on the sphere with the same type of
U and with even numbers of verti
es, edges and fa
es. Be
ause of this, U+ 
annot be Dk(
ase 1 of Table 2.1) or P2k−1 (
ase 2 of Table 2.1). Thus, if U is a uniform hypermap on theproje
tive plane, then, up to duality, U+ is P2k, T , C or D. Furthermore, Aut(U+) has aninvolutory orientation-reversing automorphism whi
h is not a re�e
tion.Points on the sphere opposing along a diameter are 
alled antipodal points or antipodes.If P and Q are antipodes, we also say that Q is the antipode of P and vi
e versa. Themapping Φap that maps ea
h point of the sphere to its antipode is an involutory orientation-reversing automorphism of the sphere. It is well-known that when U is P2k, C or D, Φapindu
es an involutory orientation-reversing automorphism ϕap

U of U whi
h is not a re�e
tion.If U is a hypermap subgroup of U , then ϕap
U maps ea
h �ag Ug, with g ∈ ∆, to UAUg,where AP2k

:= (R0R1)
kR2, for k ∈ N, AC := (R0R1R2)

3 and AD := (R0R1R2)
5. Theseautomorphisms give rise to the following uniform hypermaps on the proje
tive plane formedby identifying antipodal points of the sphere: the proje
tive polygon of order k, PP2k, oftype (2, 2, 2k), the proje
tive 
ube, also known as the Purse of Fortunatus (
f. �21.34 of [32℄)or hemi-
ube, PC, of type (3, 2, 4), and the proje
tive dode
ahedron, PD, of type (3, 2, 5).Table 3.1 gives some information about these hypermaps, namely their numbers of verti
es,edges, fa
es and �ags, and their symmetry groups. We re
all that by Proposition 1.7.1,the numbers of �ags, verti
es, edges and fa
es of U are half the numbers of �ags, verti
es,edges and fa
es of U+. The hypermaps PO = D(02)(PC) and PI = D(02)(PD) are 
alledproje
tive o
tahedron and proje
tive i
osahedron, respe
tively. Using the properties of Orient,39



40 Chapter 3. Hypermaps on the proje
tive planeit follows that PO+ = D(02)(PC)+ = D(02)(PC+) = D(02)(C) = O and PI+ = D(02)(PD)+ =
D(02)(PD+) = D(02)(D) = I. By inspe
tion, one 
an see that P2k, C and D have no otherinvolutory orientation-reversing automorphism whi
h is not a re�e
tion besides ϕap

P2k
, ϕap

Cand ϕap
D , respe
tively, and that all involutory orientation-reversing automorphisms of T arere�e
tions. Therefore, up to duality, the unique uniform hypermaps on the proje
tive arethe in�nite family PP2k, PC and PD. In [33℄, Coxeter and Moser denoted the uniformhypermaps PC, PO, PD, PI, PP2k and D(02)(PP2k) by {4, 3}/2 = {4, 3}3, {3, 4}/2 = {3, 4}3,

{5, 3}/2 = {5, 3}5, {3, 5}/2 = {3, 5}5, {2k, 2}/2 and {2, 2k}/2, respe
tively. The hypermap
PP2k, of type (2, 2, 2k), was denoted by D⋄

k in [15℄, and by δk in [73℄. As remarked in [13℄, PP2is a hypermap on the proje
tive plane with hypermap subgroup ∆012 and with automorphismgroup Aut(PP2) is isomorphi
 to V4.Now let U be PP2k, PC or PD, and let (l,m, n) be the type of U . Furthermore, let
S = {(R1R2)

l, (R2R0)
m, (R0R1)

n, AU+} and S+ = S ∩ ∆+ = {(R1R2)
l, (R2R0)

m, (R0R1)
n}.By Theorems 1.7.1 and 2.1.1, U has hypermap subgroup U = 〈S+〉∆{1, AU+}, be
ause 〈S+〉∆is a hypermap subgroup of U+. Sin
e 〈S〉 ⊆ U ⊆ 〈S〉∆, U = 〈S〉∆ if and only if U ⊳ ∆,or equivalently, if and only if U/U+

⊳ ∆/U+, be
ause the proje
tion π : ∆ → ∆/U+ is anepimorphism and Uπ = U/U+. In all 
ases U+AU+ ⇌ U+R0, U
+R1, U

+R2, so U/U+ =
〈U+AU+〉 ⊆ Z(Aut(U+)). In addition, sin
e Aut(U+) is D2k × C2, S4 × C2 or A5 × C2,
Z(Aut(U+)) ∼= C2 and hen
e U/U+ = Z(Aut(U+)) ⊳ Aut(U+) = ∆/U+.For simpli
ity, we extend the de�nition of AU in the following way. If σ ∈ {0, 1, 2} and
U is C or D, then ADσ(U) := AUσ. When U = PP2k, AD(01)(P2k) = AP2k

= (R0R1)
kR2,

AD(012)(P2k) = AD(02)(P2k) = (R1R2)
kR0, AD(021)(P2k) = AD(12)(P2k) = (R2R0)

kR1.Theorem 3.1.1 (Hypermap subgroups of the uniform hypermaps on the proje
tive plane).If U is a uniform hypermap on the proje
tive plane of type (l,m, n), then U has hypermapsubgroup U = 〈(R1R2)
l, (R2R0)

m, (R0R1)
n, AU+〉∆.Corollary 3.1.2. Uniform hypermaps on the proje
tive plane of the same type are isomorphi
.Corollary 3.1.3 (Conservativeness of the uniform hypermaps on the proje
tive plane). Let

Θ ⊳2 ∆. Then:1. (a) PP4k−2 is Θ-
onservative if and only if Θ is ∆0, ∆1 or ∆2;(b) PP4k is Θ-
onservative if and only if Θ is ∆0̂, ∆1̂ or ∆2;2. PC is Θ-
onservative if and only if Θ = ∆0;3. PD is not Θ-
onservative.Proof. Similar to the proof of Corollary 2.1.3. Given Θ⊳∆, 〈(R1R2)
l, (R2R0)

m, (R0R1)
n, AU 〉∆is a subset of Θ if and only if (R1R2)

l, (R2R0)
m, (R0R1)

n and AU belong to Θ.As a by-produ
t of Theorem 3.1.1 we get following result:Theorem 3.1.4. All uniform hypermaps on the proje
tive plane are regular.Corollary 3.1.5. If U is a uniform hypermap on the proje
tive plane, then U is Θ-regular ifand only if U is Θ-
onservative.Corollary 3.1.6. There are no 2-restri
tedly-regular uniform hypermaps on the proje
tiveplane. In parti
ular, there are no pseudo-orientably-
hiral hypermaps on the proje
tive plane.



3.2 Bipartite-uniform hypermaps on the proje
tive plane 41As on the sphere, all 2-restri
tedly-regular hypermaps on the proje
tive plane are bipartite-
hiral.Table 3.1 lists, up to duality, all values (l,m, n) for the type of a uniform hypermap U onthe proje
tive plane. It also displays the numbers V of verti
es, E of edges, F of fa
es and
|ΩU | of �ags of U , as well as its automorphism group. In the last 
olumn, we give the uniqueuniform hypermap on the sphere of su
h type. Noti
e that the automorphism groups of PCand PD are just Coxeter groups G3,3,4 ∼= S4 and G3,5,5 ∼= A5 (see [33℄).

# l m n V E F |ΩU | Aut(U) U
2 2 2 2k k k 1 4k D2k PP2k

4 3 2 4 4 6 3 24 S4 PC
5 3 2 5 10 15 6 60 A5 PDTable 3.1: The uniform hypermaps on the proje
tive plane, up to duality.Be
ause the proje
tive plane is a non-orientable surfa
e, no hypermap on the proje
tiveplane is orientable and hen
e orientably-regular. In addition, sin
e ∆k ∩ ∆k̂ ⊆ ∆+, a hyper-map on the proje
tive plane 
annot be simultaneously ∆k-
onservative and ∆k̂-
onservative.In Table 3.2, we display, up to duality, the Θ-regularity of the uniform hypermaps on theproje
tive plane, for ea
h Θ⊳2 ∆. Note that the proje
tive dode
ahedron is not Θ-regular forany Θ ⊳2 ∆.

# U ∆0̂-regular? ∆1̂-regular? ∆2̂-regular? ∆0-regular? ∆1-regular? ∆2-regular?
1 P2k yes i� 2 | k yes i� 2 | k no yes i� 2 ∤ k yes i� 2 ∤ k yes
2 PC no no no yes no no
3 PD no no no no no noTable 3.2: Θ-regularity of the uniform hypermaps on the proje
tive3.2 Bipartite-uniform hypermaps on the proje
tive planeLet B be a bipartite-uniform hypermap on the proje
tive plane of bipartite-type (l1, l2;m;n).We may assume, without loss of generality, that l1 ≤ l2 and m ≤ n. Then, by Lemma 1.3.6, mand n are even. Sin
e the orientable double 
over of B, B+ = Orient(B), is a bipartite-uniformon the sphere with the same bipartite-type of B, l1 = 1 or m/2 = 1 (see Se
tion 2.2). UsingTheorems 1.6.5 and 1.6.9, we get the following result.Theorem 3.2.1. If B is a bipartite-uniform hypermap on the proje
tive plane, then B ∼=

Walsh(U) or B ∼= Pin(U) for some uniform hypermap U on the proje
tive plane, unique upto isomorphism. Moreover, as B is bipartite-regular if and only if U is regular, and on theproje
tive plane all uniform hypermaps are regular, then all bipartite-uniform hypermaps onthe proje
tive plane are bipartite-regular.Using Theorem 3.2.1 and Corollary 3.1.2 together with Theorems 1.6.6 and 1.6.10, we get:Using Theorems 1.6.5 and 1.6.9 together with Corollary 3.1.2 and Lemma 1.6.1, we get:
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tive planeCorollary 3.2.2. Bipartite-uniform hypermaps on the proje
tive plane of the same bipartite-type are isomorphi
.Table 3.3 lists, up to duality, all possible values (l1, l2;m;n) for the bipartite-type of abipartite-uniform hypermap B on the proje
tive plane. We also display the numbers V1 and
V2 of verti
es in ea
h ∆0̂-orbit, E of edges, F of fa
es and |ΩB| of �ags. In the last 
olumn ofTable 3.3, we give the unique bipartite-uniform hypermap with su
h bipartite-type.

# l1 l2 m n V1 V2 E F |ΩB| B
1 1 2 4 4k 2k k k 1 8k Pin(PP2k)

2 1 2 6 8 12 6 4 3 48 Pin(D(01)(PC))

3 1 2 6 10 30 15 10 6 120 Pin(D(01)(PD))

4 1 3 4 8 12 4 6 3 48 Pin(PC)

5 1 3 4 10 30 10 15 6 120 Pin(PD)

6 1 4 4 6 12 3 6 4 48 Pin(D(02)(PC))

7 1 5 4 6 30 6 15 10 120 Pin(D(02)(PD))

8 1 2k 4 4 2k 1 k k 8k Pin(D(02)(PP2k))

9 2 2 2 4k k k 2k 1 8k Walsh(PP2k)

10 2 3 2 8 6 4 12 3 48 Walsh(PC)

11 2 3 2 10 15 10 30 6 120 Walsh(PD)

12 2 4 2 6 6 3 12 4 48 Walsh(D(02)(PC))

13 2 5 2 6 15 6 30 10 120 Walsh(D(02)(PD))

14 2 2k 2 4 k 1 2k k 8k Walsh(D(02)(PP2k))

15 3 4 2 4 4 3 12 6 48 Walsh(D(12)(PC))

16 3 5 2 4 10 6 30 15 120 Walsh(D(12)(PD))Table 3.3: The bipartite-regular hypermaps on the proje
tive plane.Be
ause Walsh(H+) ∼= Walsh(H)+ and Pin(H+) ∼= Pin(H)+, if B is a bipartite-uniformhypermap on the proje
tive plane obtained from the uniform hypermap U via the Walsh or
Pin 
onstru
tion, then the orientable double 
over of B, B+, is obtained from the orientabledouble 
over of U , U+, via the same 
onstru
tion.As a by-produ
t of Theorems 3.1.4 and 3.2.1 we have:Theorem 3.2.3. For every Θ ⊳ ∆ with [∆ : Θ] ≤ 2, Θ-uniformity on the proje
tive planeimplies Θ-regularity.The existen
e of a normal subgroup Θ of ∆ for whi
h Θ-uniformity on the proje
tive planedoes not imply Θ-regularity remains an open problem.3.3 Chirality groups and 
hirality indi
es of the 2-restri
tedly-regular hypermaps on the proje
tive planeWe have seen that on the proje
tive plane there are no orientably-regular hypermaps, and thatall pseudo-orientably-regular hypermaps on the proje
tive plane are regular, so their 
hiralitygroups are trivial and their 
hirality indi
es are 1. Be
ause of this, every 2-restri
tedly-regularhypermap on the proje
tive plane is bipartite-
hiral.



3.3 Chirality groups and 
hirality indi
es... 43In this se
tion we 
ompute the 
hirality groups and the 
hirality indi
es of the bipartite-regular hypermaps on the proje
tive plane using the notations of Proposition 1.9.6.Chirality groups and 
hirality indi
es of B = Walsh(R)In what follows we assume thatR is a regular hypermap on the proje
tive plane of type (l,m, n)and B = Walsh(R). A

ording to Proposition 1.9.6, T = {(R1R2)
l, (R2R0)

m, (R0R1)
n, AR+}and S = {AR+}.A

ording to Table 3.3, up to duality, there are 8 types of bipartite-regular hypermaps onthe proje
tive plane obtained from regular hypermaps using the Walsh 
onstru
tion.When l = m, B is uniform and hen
e regular. In addition, B∆ = B.If d1 = 1, then, by Corollary 1.9.7, Υ(B) = ∆/R ∼= Aut(R) and B∆ is T∆0̂ .Table 3.4 lists the 8 types of bipartite-regular hypermaps on the proje
tive plane obtainedfrom regular hypermaps using the Walsh 
onstru
tion. Of those 
ases, only 2 are non-uniformwith d1 6= 1: 
ases 12 and 14. The 
hirality groups of these hypermaps are 
omputed below.In the last two 
olumns of Table 3.4 we display the 
hirality groups and 
hirality indi
es.

• Case 12: B = Walsh(R), R = D(02)(PC)) has type (4, 2, 3) and d1 = 2. Then
AR+ = AD(02)(C) = AC(02) = (R2R1R0)

3, (AR+)αW = (R2R0R1)
3,

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2, R(R2R0R1)
3〉∆/R = 〈R(R1R2)

2, R((R1R2)
2)R0〉 ∼= V4and ι = 4; B∆ is PP6: R → PP3, B → Walsh(PP3) ∼= PP6, PP6 is regular and

|ΩB| = 48 = ι|ΩPP6 |.
• Case 14: B = Walsh(R), R = D(02)(PP2k) has type (2k, 2, 2) and d1 = 2. Then
AR+ = AD(02)(P2k) = AP2k

(02) = (R2R1)
kR0, (AR+)αW = (R2R0)

kR1 and
Υ(B) ∼= 〈R(R1R2)

2, R(R2R0)
2, R(R2R0)

kR1〉∆/R = 〈R(R1R2)
2, R(R2R0)

kR1〉∆/R.If 2 | k, then Υ(B) ∼= 〈R(R1R2)
2, RR1〉∆/R = 〈R(R1R2)

2, RR1〉 ∼= Dk and ι = 2k. Infa
t Υ(B) ∼= 〈R(R1R2)
2, RR1〉 = ∆2̂/R, sin
e R = R(R2R1)

k = RR0 = RR0
R2 ; B∆ is

T∆0̂12̂ . Else, if 2 ∤ k, then Υ(B) ∼= 〈R(R1R2)
2, RR2R0R1〉∆/R = 〈RR2R0R1〉 ∼= Ck and

ι = k. In fa
t Υ(B) ∼= 〈RR2R0R1〉∆/R = R∆012/R = ∆012/R; B∆ is PP4: R → PP2,
B → Walsh(PP2) ∼= PP4, PP4 is regular and |ΩB| = 8k = ι|ΩPP4 |.

# B = Walsh(U) type of U Aut(U) d1 Υ ι

9 Walsh(PP2k) (2, 2, 2k) D2k 2 1 1

10 Walsh(PC) (3, 2, 4) S4 1 S4 24

11 Walsh(PD) (3, 2, 5) A5 1 A5 60

12 Walsh(D(02)(PC)) (4, 2, 3) S4 2 V4 4

13 Walsh(D(02)(PD)) (5, 2, 3) A5 1 A5 60

14 Walsh(D(02)(PP4k)) (4k, 2, 2) D4k 2 D2k 4k

Walsh(D(02)(PP4k−2)) (4k − 2, 2, 2) D4k−2 2 C2k−1 2k − 1

15 Walsh(D(12)(PC)) (3, 4, 2) S4 1 S4 24

16 Walsh(D(12)(PD)) (3, 5, 2) A5 1 A5 60Table 3.4: The bipartite-regular hypermaps obtained by the Walsh 
onstru
tion.



44 Chapter 3. Hypermaps on the proje
tive planeChirality groups and 
hirality indi
es of B = Pin(R)Now we assume that R is a regular hypermap on the proje
tive plane of type (l,m, n) and
B = Pin(R). As before, T = {(R1R2)

l, (R2R0)
m, (R0R1)

n, AR+} and S = {AR+}.A

ording to Table 3.3, up to duality, there are 8 types of bipartite-regular hypermaps onthe proje
tive plane obtained from regular hypermaps using the Pin 
onstru
tion.If d2 = 1, then, by Corollary 1.9.7, Υ(B) = ∆/R ∼= Aut(R) and B∆ is T∆0̂ .Table 3.5 lists the 8 types of bipartite-regular hypermaps on the proje
tive plane obtainedfrom regular hypermaps using the Pin 
onstru
tion. Of those 
ases, only 3 are non-uniformwith d2 6= 1: 
ases 1, 4 and 8. The 
hirality groups of these hypermaps are 
omputed below.The last two 
olumns of Table 3.5 display the 
hirality groups and 
hirality indi
es.
• Case 1: B = Pin(R), R = PP2k has type (2, 2, 2k) and d2 = 2. Then
AR+ = AP2k

= (R0R1)
kR2, AR+αP = (R1R0)

kR0,
Υ(B) ∼= 〈RR1R2, R(R0R1)

2, R(R1R0)
kR0 = RR2R0〉∆/R = R∆+/R = ∆/R ∼= D2kand ι = 4k; B∆ is T∆0̂ .

• Case 4: B = Pin(R), R = PC has type (3, 2, 4) and d2 = 2. Then
AR+ = AC = (R0R1R2)

3, AR+αP = (R1R0R0)
3 = R1,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2, RR1〉∆/R = 〈RR1, RR2, RR0〉∆/R = ∆/R ∼= S4sin
e RR0 = RR1R2R1

R0R2
R0R1R2, and ι = 24; B∆ is T∆0̂ .

• Case 8: B = Pin(R), R = PC has type (2k, 2, 2) and d2 = 2. Then
AR+ = (R2R1)

kR0 (see Case 12), AR+αP = (R0R0)
kR1 = R1,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2, RR1〉∆/R = 〈RR1, RR2, RR0〉∆/R = ∆/R ∼= D2ksin
e RR0 = R(R2R1)

k, and ι = 4k; B∆ is T∆0̂ .
# B = Pin(U) type of U Aut(U) d2 Υ ι

1 Pin(PP2k) (2, 2, 2k) D2k 2 D2k 4k

2 Pin(D(01)(PC)) (2, 3, 4) S4 1 S4 24

3 Pin(D(01)(PD)) (2, 3, 5) A5 1 A5 60

4 Pin(PC) (3, 2, 4) S4 2 S4 24

5 Pin(PD) (3, 2, 5) A5 1 A5 60

6 Pin(D(02)(PC)) (4, 2, 3) S4 1 S4 24

7 Pin(D(02)(PD)) (5, 2, 3) A5 1 A5 60

8 Pin(D(02)(PP2k)) (2k, 2, 2) D2k 2 D2k 4kTable 3.5: The bipartite-regular hypermaps obtained by the Pin 
onstru
tion.The 
losure 
overs and the 
overing 
oresTable 3.6 lists the 
hirality groups and 
hirality indi
es of all the bipartite-regular hypermapson the on the sphere, as well as their 
losure 
overs. Table 3.7 displays the type, number of�ags and genus of the 
overing 
ores.In 
ase 9 of Table 3.3, B = Walsh(PP2k) is uniform and hen
e regular, so B = B∆ = B∆.



3.3 Chirality groups and 
hirality indi
es... 45A

ording to Tables 3.4 and 3.5, in 13 out of the 16 
ases, Υ(B) = ∆0̂/B ∼= ∆/R and B∆is T∆0̂ . If B is Walsh(D(02)(PC)), Walsh(D(02)(PP4k−2)) or Walsh(D(02)(PP4k)), then B∆ is
PP6, PP4 or T∆0̂12̂ , respe
tively.A

ording to Theorem 1.8.4, in 
ases 1, 4, 8 and 14 (with k even) of Table 3.7, B∆ isorientable be
ause |ΩB∆

| = |Ω(B+)∆ |, and in the remaining 
ases B∆ is non-orientable sin
e
|ΩB∆

| < 2|ΩB∆
| = |Ω(B+)∆ |.The 
overing 
ore of the map Walsh(D(02)(PC)) is a non-orientable regular map of type

(4, 2, 6), with 192 �ags, 48 edges and Petrie path of length 6. In [70, 69℄, Wilson denotesthis map by D(70). We remark that its orientable double 
over is the hypermap denoted by
DP (190) in [70, 69℄, the 
losure 
over of Walsh(D(02)(C)) (
ase 17 of Table 2.7).

# B |ΩB| B∆ type of B∆ |ΩB∆ | Υ ι

1 Pin(PP2k) 8k T∆0̂ − 2 D2k 4k

2 Pin(D(01)(PC)) 48 T∆0̂ − 2 S4 24

3 Pin(D(01)(PD)) 120 T∆0̂ − 2 A5 60

4 Pin(PC) 48 T∆0̂ − 2 S4 24

5 Pin(PD) 120 T∆0̂ − 2 A5 60

6 Pin(D(02)(PC)) 48 T∆0̂ − 2 S4 24

7 Pin(D(02)(PD)) 120 T∆0̂ − 2 A5 60

8 Pin(D(02)(PP2k)) 8k T∆0̂ − 2 D2k 4k

9 Walsh(PP2k) 8k PP4k (2, 2, 4k) 8k 1 1

10 Walsh(PC) 48 T∆0̂ − 2 S4 24

11 Walsh(PD) 120 T∆0̂ − 2 A5 60

12 Walsh(D(02)(PC)) 48 PP6 (2, 2, 6) 12 V4 4

13 Walsh(D(02)(PD)) 120 T∆0̂ − 2 A5 60

14 Walsh(D(02)(PP4k)) 16k T∆0̂12̂ − 4 D2k 4k

Walsh(D(02)(PP4k−2)) 16k − 8 PP4 (2, 2, 4) 8 C2k−1 2k − 1

15 Walsh(D(12)(PC)) 48 T∆0̂ − 2 S4 24

16 Walsh(D(12)(PD)) 120 T∆0̂ − 2 A5 60Table 3.6: B and B∆
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tive plane

# B type of B∆ |ΩB∆
| or.? genus Υ ι

1 Pin(PP2k) (2, 4, 4k) 32k2 yes 2k2 − 2k + 1 D2k 4k

2 Pin(D(01)(PC)) (2, 6, 8) 1152 no 122 S4 24

3 Pin(D(01)(PD)) (2, 6, 10) 7200 no 842 A5 60

4 Pin(PC) (3, 4, 8) 1152 yes 85 S4 24

5 Pin(PD) (3, 4, 10) 7200 no 1142 A5 60

6 Pin(D(02)(PC)) (4, 4, 6) 1152 no 194 S4 24

7 Pin(D(02)(PD)) (5, 4, 6) 7200 no 1382 A5 60

8 Pin(D(02)(PP2k)) (2k, 4, 4) 32k2 yes (2k − 1)2 D2k 4k

9 Walsh(PP2k) (2, 2, 4k) 8k no 1 1 1

10 Walsh(PC) (6, 2, 8) 1152 no 122 S4 24

11 Walsh(PD) (6, 2, 10) 7200 no 842 A5 60

12 Walsh(D(02)(PC)) (4, 2, 6) 192 no 10 V4 4

13 Walsh(D(02)(PD)) (10, 2, 6) 7200 no 842 A5 60

14 Walsh(D(02)(PP4k)) (4k, 2, 4) 64k2 yes (2k − 1)2 D2k 4k

Walsh(D(02)(PP4k−2)) (4k − 2, 2, 4) 8(2k − 1)2 no 2(k − 1)2 + 1 C2k−1 2k − 1

15 Walsh(D(12)(PC)) (12, 2, 4) 1152 no 98 S4 24

16 Walsh(D(12)(PD)) (15, 2, 4) 7200 no 662 A5 60Table 3.7: B and B∆.



Chapter 4Hypermaps on the torusUp to duality, there are 3 possibilities for the type of a uniform hypermap on the torus:
(4, 2, 4), (6, 2, 3) and (3, 3, 3). In [33℄, Coxeter and Moser 
lassify the orientably-regular mapson the torus: orientably-regular hypermaps of type (4, 2, 4) 
an be represented by identifyingopposite edges of a square with verti
es in the latti
e Z[i] and orientably-regular hypermaps oftype (6, 2, 3) 
an be represented by identifying opposite edges of a lozenge whose angles are π/3and 2π/3 (that is, a lozenge that 
an be divided in 2 equilateral triangles) with verti
es in thelatti
e Z[ρ], where ρ = (1 +

√
3i)/2. They also gave 
onditions for an orientably-regular mapto be regular. Corn and Singerman [28℄ proved that a uniform hypermap U of type (3, 3, 3)is orientably-regular if and only if Walsh(U) is orientably-regular. More re
ently, Breda andNedela [10℄ have shown that U is orientably-
hiral if and only if Walsh(U) is orientably-
hiral.Consequently, U is regular if and only if Walsh(U) is regular. In [57℄ and [58℄, Singerman andSyddall 
lassify the uniform maps on the torus.�irá¬, Tu
ker and Watkins [66℄ studied the edge-transitive maps on the torus, whi
h in-
lude, up to duality, all 2-restri
tedly-regular hypermaps on the torus ex
ept the ∆1̂-
hiral.The 
orresponden
e between the types of edge-transitive maps of Graver and Watkins [36℄used by �irá¬, Tu
ker and Watkins [66℄ and restri
tedly-regular maps is given in Table 1.1.As mentioned in Chapter 1, ∆0̂12̂-
hiral maps were 
alled just-edge-transitive maps byJones [47℄ and edge-transitive maps of type 3 by Graver and Watkins [36℄. Their automorphismgroup a
ts transitively on edges but neither on verti
es nor fa
es.In this Chapter we introdu
e a notation for uniform hypermaps on the torus whi
h weuse in the 
lassi�
ation of the regular and the 2-restri
tedly-regular hypermaps on the torus.This notation is based in the work of Singerman and Syddall (see [57℄ and [58℄) on uniformmaps on the torus and extends the notation of Coxeter and Moser [33℄ for orientably-regularhypermaps.The results in this Chapter were obtained before knowing the work of �irá¬, Tu
ker andWatkins on edge-transitive maps on the torus [66℄.4.1 Uniform hypermaps on the torusLet U be a uniform hypermap on the torus of type (l,m, n). Using the Euler formula foruniform hypermaps (Corollary 1.4.2) together with Lemma 1.4.5, one 
an see that, up toduality, (l,m, n) is (2, 4, 4), (2, 3, 6) or (3, 3, 3).47



48 Chapter 4. Hypermaps on the torusThe uniform maps on the torus of types (4, 2, 4) and (6, 2, 3) were 
lassi�ed by Singermanand Syddall in [57, 58℄. These maps are obtained by identifying the opposite edges of aEu
lidean parallelogram in the 
omplex plane with verti
es in the latti
es Z[i] or Z[ρ], where
ρ = (1 +

√
3i)/2 = eiπ/3.Let a, b, c, d ∈ Z, M =

(
a c
b d

) and α ∈ {i, ρ}. The 
omplexes 0, a + bα and c + dα arein the same straight line if and only if det(M) = ad − bc = 0. Thus, 0, a + bα, c + dα and
(a+ bα) + (c+ dα) are the verti
es of a Eu
lidean parallelogram in the 
omplex plane if andonly if det(M) = ad− bc 6= 0.Instead of the notation used by Singerman and Syddall in [58℄, we adopt a notation whi
his a natural extension of the notation of Coxeter and Moser [33℄ for orientably-regular mapson the torus. Given M =

(
a c
b d

) su
h that det(M) = ad − bc 6= 0, we denote by (4, 2, 4)Mand (6, 2, 3)M the uniform maps on the torus of types (4, 2, 4) and (6, 2, 3) represented bythe Eu
lidean parallelograms with opposite edges identi�ed and verti
es 0, a + bα, c + dα,
(a + c) + (b + d)α ∈ Z[α], where α = i in the �rst 
ase, and α = ρ in the se
ond 
ase. Inparti
ular, the maps denoted by {4, 4}p,q and {3, 6}p,q in the notation of Coxeter and Moserare denoted by (4, 2, 4)� p

q
-q
p

� and (6, 2, 3)� p
q
-p-q

p

�, respe
tively. Figure 4.1 displays (4, 2, 4)Mand (6, 2, 3)M , for M =
(

1 −3
2 2

).
Figure 4.1: The hypermaps (4, 2, 4)M and (6, 2, 3)M for M =

(
1
2
−3
2

).Let U = (4, 2, 4)(a
b

c
d), a+bi = (p+qi)(r+si) and c+di = (p+qi)(t+ui), where r+si and

t+ ui are 
oprime Gaussian integers. In the notation of Singerman and Syddall U is denotedby { t+uir+si

}

p+qi
or { r+sit+ui

}

p+qi
, depending on whether t+ui

r+si has positive or negative imaginarypart, or equivalently, depending on whether ad − bc is positive or negative. Conversely, if Uis denoted by { t+uir+si

}

p+qi
in the notation of Singerman and Syddall, then U is (4, 2, 4)(a

b
c
d)
,where a+bi = (p+qi)(r+si) and c+di = (p+qi)(t+ui). Similarly, there is a 
orresponden
ebetween our notation and the notation of Singerman and Syddall for uniform maps on thetorus of type (6, 2, 3).The hypermaps (4, 2, 4)� 2

1
-1
2

�, (6, 2, 3)� 2
1
-1
3

� and D(02)

(
(6, 2, 3)� 1

1
-1
2

�) (denoted by {i}2+i,
{ρ}2+ρ and D(02)({ρ}1+ρ) in the notation Singerman and Syddall) are uniform imbeddings ofthe non-planar graphs K5, K7 and K3,3 (see �8.3 and �8.4 of [33℄ and �5 of [58℄). Using theEuler formula, one 
an see that there is no uniform imbedding ofK6 on the torus, that is, thereis no uniform map on the torus whose underlying graph is K6. For otherwise, su
h imbeddingwould have 6 verti
es, 15 edges and f = e− v = 9 fa
es and 60 �ags but 18 = 2f ∤ 60.



4.1 Uniform hypermaps on the torus 49Throughout this 
hapter we assume that M =
(
a c
b d

)
,M ′ =

(
a′ c′

b′ d′

)
∈ M(2,Z), with

det(M) 6= 0 6= det(M ′).4.1.1 Uniform maps on the torus of types (4, 2, 4) and (6, 2, 3).Let N4 := N(4, 2, 4) and N6 := N(6, 2, 3), where, as before, N(l,m, n) is the normal 
losureof the subgroup generated by (R1R2)
l, (R2R0)

m and (R0R1)
n in ∆.Lemma 4.1.1. 1. The hypermap U = (4, 2, 4)M has F = |det(M)| fa
es, E = 2|det(M)|edges, V = |det(M)| verti
es and |ΩU | = 8|det(M)| �ags;2. The hypermap U = (6, 2, 3)M has F = 2|det(M)| fa
es, E = 3|det(M)| edges, V =

|det(M)| verti
es and |ΩU | = 12|det(M)| �ags.Proof. Let α ∈ {i, ρ}. In both 
ases all fa
es of U are represented by 
ongruent polygons. Thus,the area of the Eu
lidean parallelogram with verti
es 0, a+ bα, c+ dα and (a+ c) + (b+ d)α,is equal to the number of fa
es F times the area of one fa
e. On the other hand, the area ofthe Eu
lidean parallelogram is |det(C ·M)| = |det(C)| · |det(M)|, where C =
(

1 Re(α)
0 Im(α)

) isthe matrix of 
hange of basis from (1, α) to (1, i). When α = i, the fa
es are represented bysquares with area 1 and det(C) = 1, so |det(M)| = F × 1 = F . When α = ρ, the fa
es arerepresented by equilateral triangles with area √
3/4 and det(C) =

√
3/2, so F = 2|det(M)|.The other values are given by the formula |ΩU | = 2lV = 2mE = 2nF .Let X4 = R0R1R2R1, Y4 = X4

R1 = R1R0R1R2, X6 = R0R1R2R1R2R1 and Y6 = X6
R1 =

R1R0R1R2R1R2. We shall omit the index l in Nl, Xl and Yl if it is 
lear from the 
ontext.Lemma 4.1.2 (Properties of N , X and Y ).1. If N = N4, X = X4 and Y = Y4, then:(a) NX ⇌ NY ;(b) NXR0 = NX−1, NXR1 = NY , NXR2 = NX,
NY R0 = NY , NY R1 = NX, NY R2 = NY −1.2. If N = N6, X = X6 and Y = Y6, then:(a) NX ⇌ NY ;(b) NXR0 = NX−1, NXR1 = NY , NXR2 = NX,
NY R0 = NX−1Y , NY R1 = NX, NY R2 = NXY −1.Proof. 1.(a) NXNYNX−1NY −1 = NXYX−1Y −1

= N
[
(R0R1)

4
(
(R2R0)

−2
)R1 (R1R2)

4(R2R0)
2
](R0R1)2

= N .(b) NXR0 = NR1R2R1R0 = NX−1,
NXR1 = NY ,
NXR2 = N(R0R1R2R1)

R2 = N
[
(R2R0)

2(R1R2)
4
]R2R0 X = NX

NY R0 = N(R1R0R1R2)
R0 = N

[
(R0R1)

4(R2R0)
2
](R0R1)2

Y = NY
NY R1 = N(XR1)R1 = NX,
NY R2 = NR2R1R0R1 = NY −1.



50 Chapter 4. Hypermaps on the torus2.(a) NXNYNX−1NY −1 = NXYX−1Y −1

= N

[
(R1R0)

3(R0R2)
2
[
(R0R1)

3
(
(R0R2)

2
)R1 (R1R2)

6(R2R0)
2
]R0R1R2

]R1R0R1

= N .(b) NXR0 = NR1R2R1R2R1R0 = NX−1,
NXR1 = NY ,
NXR2 = N(R0R1R2R1R2R1)

R2 = N(R2R0)
2
[
(R1R2)

6
]R1R0 X = NX,

NY R0 = N(R1R0R1R2R1R2)
R0 = N(R0R1)

3
[
(R1R2)

−6
]R0R1 Y X−1 = NX−1Y ,

NY R1 = N(XR1)R1 = NX,
NY R2 = NR2R1R0R1R2R1 = N

[
(R2R0)

2(R0R1)
3
]R2R0R2 Y −1X = NXY −1.Remark 4.1.3. NXR2R0 = NX−1 and NY R2R0 = NY −1.Be
ause N is a normal subgroup of ∆ 
ontained in U , N is 
ontained in U∆, and hen
e:Corollary 4.1.4. Let U be a uniform map on the torus and U a hypermap subgroup of U .1. If U is of type (4, 2, 4), X = X4 and Y = Y4, then:(a) U∆X ⇌ U∆Y ;(b) U∆X

R0 = U∆X
−1, U∆X

R1 = U∆Y , U∆X
R2 = U∆X,

U∆Y
R0 = U∆Y , U∆Y

R1 = U∆X, U∆Y
R2 = U∆Y

−1.2. If U is of type (6, 2, 3), X = X6 and Y = Y6, then:(a) U∆X ⇌ U∆Y ;(b) U∆X
R0 = U∆X

−1, U∆X
R1 = U∆Y , U∆X

R2 = U∆X,
U∆Y

R0 = U∆X
−1Y , U∆Y

R1 = U∆X, U∆Y
R2 = U∆XY

−1.Remark 4.1.5. U∆X
R2R0 = U∆X

−1 and U∆Y
R2R0 = U∆Y

−1.Now we use the previous results to obtain hypermaps subgroups for the uniform maps onthe torus.Theorem 4.1.6 (Hypermap subgroups of (4, 2, 4)M and (6, 2, 3)M ).1. U = N〈XaY b, XcY d〉 = 〈(R1R2)
4, (R2R0)

2, (R0, R1)
4〉∆〈XaY b, XcY d〉 is a hypermapsubgroup of U = (4, 2, 4)M ;2. U = N〈XaY b, XcY d〉 = 〈(R1R2)

6, (R2R0)
2, (R0, R1)

3〉∆〈XaY b, XcY d〉 is a hypermapsubgroup of U = (6, 2, 3)M .Proof. By the de�nition of U , N ⊆ U and XaY b, XcY d ∈ U . Let V := N〈XaY b, XcY d〉.Sin
e N ⊳ ∆, V is a subgroup of ∆ su
h that N ⊆ V ⊆ U . Furthermore V/N is a subgroupof ∆/N . By Lemma 4.1.2, for all p, q ∈ Z, NXpY q = (NX)p(NX)q, so V/N ∼= 〈(a, b), (c, d)〉.Therefore V/N has index 2l|ad− bc| = 2l|det(M)| = |ΩU | = [∆ : U ] in ∆/N . It follows that
[∆ : U ] = [∆/N : V/N ] = [∆ : V ] = [∆ : U ][U : V ], so [U : V ] = 1, that is, U = V .Using Theorem 4.1.6 together with Remark 4.1.5, we get:



4.1 Uniform hypermaps on the torus 51Corollary 4.1.7.1. U/N = 〈NXaY b, NXcY d〉 ∼= 〈NXaY b〉 × 〈NXcY d〉 ∼= Z×Z;2. UR2R0 = U , or equivalently, UR0 = UR2.Proposition 4.1.8 (Conservativeness of (4, 2, 4)M and (6, 2, 3)M ). Let M =
(
a c
b d

) with
det(M) 6= 0. Then:1. (a) (4, 2, 4)M is ∆+-, ∆1̂-, ∆1-
onservative;(b) (4, 2, 4)M is ∆0̂-, ∆2̂-, ∆0-, ∆2-
onservative if and only if a− b and c−d are even.2. (a) (6, 2, 3)M is ∆+-, ∆2̂-, ∆2-
onservative;(b) (6, 2, 3)M is not ∆0̂-, ∆1̂-, ∆0-, ∆1-
onservative.Proof. 1. Clearly, (R1R2)

4, (R2R0)
2 and (R0R1)

4 are in every normal subgroup of index 2of ∆. Thus N ⊆ Θ, for all Θ ⊳2 ∆. Owing to this, U ⊆ Θ if and only if XaY b, XcY d ∈ Θ.Be
ause X,Y ∈ ∆+,∆1̂,∆1 but X,Y /∈ ∆0̂,∆2̂,∆0,∆2, it follows that XpY q ∈ ∆+,∆1̂,∆1for every p, q ∈ Z, and XpY q ∈ ∆0̂,∆2̂,∆0,∆2 if and only if p and q are both even or bothodd, or equivalently, if p− q is even.2. (R1R2)
6 and (R2R0)

2 are in every subgroup of index 2 of ∆, but (R0R1)
3 is only in ∆+,

∆2̂ and ∆2. Be
ause of this, U 
an never be ∆0̂-, ∆1̂-, ∆0-, ∆1-
onservative. Sin
e X and Yare in ∆+, ∆2̂ and ∆2, U is always ∆+-, ∆2̂-, ∆2-
onservative.Lemma 4.1.9. ∆/U∆ = 〈U∆R1, U∆R2〉〈U∆X,U∆Y 〉. In addition, 〈U∆R1, U∆R2〉 ∼= Dl and
〈U∆X,U∆Y 〉 is abelian.Proof. Let S = 〈U∆R1, U∆R2〉 = U∆〈R1, R2〉/U∆ and T = 〈U∆X,U∆Y 〉 = U∆〈X,Y 〉/U∆.Using Corollary 4.1.4, we have that (U∆Ri)T = T (U∆Ri), for i ∈ {1, 2}, so ST = TS. Itfollows that ST is a subgroup of ∆/U∆ 
ontaining U∆R0 = U∆R1R2R1X

−1, U∆R1 and U∆R2,so ∆/U∆ = 〈U∆R0, U∆R1, U∆R2〉 ⊆ ST ⊆ ∆/U∆, that is, ∆/U∆ = ST .In [57, 58℄ Singerman and Syddall determined 
onditions for seeing if two given uniformmaps on the torus of the same type are isomorphi
 or not. However they did not see whenone 
overs the other. Our next result �lls this gap.Theorem 4.1.10.1. (a) (4, 2, 4)M → (4, 2, 4)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 0
0 -1)〉 ∼= D4 and

Q ∈M(2,Z) su
h that det(Q) 6= 0 and M = PM ′Q;(b) (4, 2, 4)M ∼= (4, 2, 4)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 0
0 -1)〉 ∼= D4 and

Q ∈ GL(2,Z) su
h that M = PM ′Q.2. (a) (6, 2, 3)M → (6, 2, 3)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and

Q ∈M(2,Z) su
h that det(Q) 6= 0 and M = PM ′Q.(b) (6, 2, 3)M ∼= (6, 2, 3)M ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and

Q ∈ GL(2,Z) su
h that M = PM ′Q.



52 Chapter 4. Hypermaps on the torusProof. Let U = (l,m, n)M , U ′ = (l,m, n)M ′ , U = N〈XaY b, XcY d〉 and U ′ = N〈Xa′Y b′ , Xc′Y d′〉.Furthermore, let A4 = A6 =
(

0 1
1 0

), B4 =
(

1 0
0 -1) and B6 =

(
1 1
0 -1). Equivalently,

Al =
(

0 1
1 0

) and Bl =
(

1 (l-4)/2
0 -1 ).Proof of 1(a) and 2(a):

(⇒) Suppose that U 
overs U ′. Then, a

ording to Lemma 1.3.1, there is g ∈ ∆ su
h that
U ⊆ (U ′)g. By Lemma 4.1.9, U ′

∆g = (U ′
∆s)(U

′
∆t), for some U ′

∆s ∈ S = 〈U ′
∆R1, U

′
∆R2〉 and

U ′
∆t ∈ T = 〈U ′

∆X,U
′
∆Y 〉. Sin
e U ′

∆t ∈ T = 〈U ′
∆X,U

′
∆Y 〉 and T is abelian (see Lemma 4.1.9),

U ′
∆t ⇌ U ′

∆X,U
′
∆Y . If XuY v ∈ U ⊆ (U ′)g, then:

U ′ = U ′gXuY vg−1 = U ′U ′
∆gU

′
∆(XuY v)U ′

∆g
−1

= U ′U ′
∆sU

′
∆tU

′
∆(XuY v)U ′

∆t
−1U ′

∆s
−1 = U ′U ′

∆sU
′
∆(XuY v)U ′

∆s
−1

= U ′(U ′
∆X

uY v)U
′
∆s

−1Be
ause XaY b, XcY d ∈ U ⊆ (U ′)g, U ′(U ′
∆X

aY b)U
′
∆s

−1
= U ′ = U ′(U ′

∆X
cY d)U

′
∆s

−1 .Clearly, (U ′
∆R1)

2 = (U ′
∆R2)

2 = (U ′
∆(R1R2))

l = U ′
∆. Let λl : S = 〈U ′

∆R1, U
′
∆R2〉 →

〈Al, Bl〉 ∼= Dl be the group isomorphism de�ned by U ′
∆R1λl = Al

−1 and U ′
∆R2λl = Bl

−1.Then (U ′
∆X

uY v)U
′
∆R1 = U ′

∆X
u1Y v1 and (U ′

∆X
uY v)U

′
∆R2 = U ′

∆X
u2Y v2 , where u1, v1, u2, v2are given by

(
u1

v1

)
= Al

(
u
v

)
= (U ′

∆R1λl)
−1

(
u
v

)
,

(
u2

v2

)
= Bl

(
u
v

)
= (U ′

∆R2λl)
−1

(
u
v

)
.We remark that Dl a
ts on Z×Z by right multipli
ation.Thus, for all u, v ∈ Z, and for all U ′

∆r ∈ 〈U ′
∆X,U

′
∆Y 〉, (U ′

∆X
uY v)U

′
∆r = U ′

∆X
u∗Y v∗ , where

u∗ and v∗ are given by (u∗
v∗

)
= (U ′

∆rλl)
−1

(
u
v

).Let P = U ′
∆s

−1λl, and let a∗, b∗, c∗, d∗ ∈ Z su
h that U∆X
a∗Y b∗ = (U∆X

aY b)U∆s
−1 and

U∆X
c∗Y d∗ = (U∆X

cY d)U∆s
−1 . Then:
(
a∗ c∗

b∗ d∗

)
= P−1

(
a c
b d

)
= P−1M.Sin
e Xa∗Y b∗ , Xc∗Y d∗ ∈ U ′ and U ′/N ∼= 〈NXa′Y b′〉 × 〈NXc′Y d′〉 ∼= Z×Z (Corollary 4.1.7),there are r, s, t, u ∈ Z su
h thatNXa∗Y b∗ = N(Xa′Y b′)rN(Xc′Y d′)s = NXa′r+c′sY b′r+d′s and

NXc∗Y d∗ = N(Xa′Y b′)tN(Xc′Y d′)u = NXa′t+c′uY b′t+d′u. Making Q =
(
r t
s u

), it followsthat (
a∗ c∗

b∗ d∗

)
=

(
a′ c′

b′ d′

)(
r t
s u

)
= M ′Q.Hen
e P−1M = M ′Q and M = PP−1M = PM ′Q.

(⇐) Re
ipro
ally, by 
hoosing r ∈ 〈R1, R2〉 su
h that U ′
∆rλl = P−1, U ⊆ (U ′)r and ψ :

∆/rU → ∆/rU
′, Ug 7→ U ′rg is a 
overing U → U ′.Proof of 1(b) and 2(b):

(⇒) If U ∼= U ′, then U → U ′ and U ′ → U . By (a), there are P1, P2 ∈ 〈Al, Bl〉 ∼= Dl and
Q1, Q2 ∈ M(2,Z) su
h that det(Q1),det(Q2) 6= 0, M = P1M

′Q1 and M ′ = P2MQ2. Owingto this M = P1P2MQ2Q1 and det(M) = det(P1) · det(P2) · det(M) · det(Q2) · det(Q1). Sin
e
det(M) 6= 0, det(P1),det(P2),det(Q1),det(Q2) ∈ {±1}, so Q1 and Q2 are invertible.
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(⇐) Conversely, if there are P ∈ 〈Al, Bl〉 ∼= Dl and Q ∈ M(2,Z) su
h that det(Q) 6= 0 and
M = PM ′Q, then, by (a), U → U ′. Sin
e P and Q are invertible, M ′ = P−1MQ−1 and, by(a), U ′ → U .Given l ∈ {4, 6}, let ∼l be the binary relation de�ned on the set {M ∈M(2,Z) | det(M) 6=
0} by M ∼l M

′ if and only if there are P ∈ 〈Al, Bl〉 ∼= Dl and Q ∈ GL(2,Z) su
h that
M = PM ′Q. Then ∼4 and ∼6 are equivalen
e relations su
h that

M ∼4 M
′ if and only if (4, 2, 4)M ∼= (4, 2, 4)M ′and

M ∼6 M
′ if and only if (6, 2, 3)M ∼= (6, 2, 3)M ′ .In other words, Theorem 4.1.10 establishes a bije
tive 
orresponden
e between the equivalen
e
lasses of∼4 and∼6, and the isomorphism 
lasses of uniform maps on the torus of types (4, 2, 4)and (6, 2, 3), respe
tively.Corollary 4.1.11. D(02)((4, 2, 4)M ) ∼= (4, 2, 4)M .Proof. Let M =

(
a c
b d

). Then (4, 2, 4)M has hypermap subgroup N〈XaY b, XcY d〉. Be
ause
X(02) = Y −1 and Y (02) = X−1, (N〈XaY b, XcY d〉)(02) = N〈X−bY −a, X−dY −c〉 is a hy-permap subgroup of D(02)((4, 2, 4)M ). Sin
e (-b -d-a -c) =

(
0 -1-1 0

)(
a c
b d

), the hypermaps areisomorphi
 by Theorem 4.1.10.Now we give some examples of restri
tedly-regular uniform maps on the torus:Proposition 4.1.12. Let k, l,m ∈ Z.1. (a) (4, 2, 4)( l
0

0
m) and (4, 2, 4)� l

m
-l
m

� are ∆1̂-regular;(b) (�irá¬, Tu
ker and Watkins [66℄)
(4, 2, 4)� l

l
-m
m

� and (4, 2, 4)( l
m

m
l ) are ∆1-regular;(
) (Coxeter and Moser [33℄)

(4, 2, 4)� l
m
-m

l

� is ∆+-regular (that is, orientably-regular);(d) (Coxeter and Moser [33℄)
(4, 2, 4)( k

0
0
k ) and (4, 2, 4)� k

k
-k
k

� are ∆-regular (that is, regular).2. (a) (Coxeter and Moser [33℄)
(6, 2, 3)� l

m
-l-m

l

� is ∆+-regular (that is, orientably-regular);(b) (Coxeter and Moser [33℄)
(6, 2, 3)( k

0
0
k ) and (6, 2, 3)� k

k
-2k
k

� are ∆-regular (that is, regular).Proof. If U = N〈XaY b, XcY d〉 is a hypermap subgroup of a uniform map U on the torus, then
U is Θ-regular if and only if U/N ⊳Θ/N , that is, if and only if N(XaY b)g, N(XcY d)g ∈ U/Nfor every g ∈ S, where S is a set of generators of Θ. This 
an be easily 
arried out by usingLemma 4.1.2 and by 
hoosing S as {R1R2, R2R0}, {R0, R2, R0

R1 , R2
R1}, {R1, R2R0, R0R1R2}and {R0, R1, R2}, a

ording to Θ = ∆+, ∆1̂, ∆1 and ∆, respe
tively.



54 Chapter 4. Hypermaps on the torusLemma 4.1.13. Let M =
(
a c
b d

) su
h that det(M) 6= 0, (l,m, n) be (4, 2, 4) or (6, 2, 3),
U = (l,m, n)M and U = 〈(R1R2)

l, (R2R0)
m, (R0, R1)

n〉∆〈XaY b, XcY d〉 a hypermap subgroupof U . Then the following statements are equivalent:1. XiY j ∈ U ;2. there are x, y ∈ Z su
h that (
i
j

)
=

(
a c
b d

)(
x
y

) (4.1)3. det(M) = ad− bc | di− cj, aj − bi.In addition, if XiY j ∈ U , then gcd(a, c) | i, gcd(b, d) | j, gcd(a + b, c + d) | i + j and
gcd(a− b, c− d) | i− j.Proof. Sin
e N ⊆ U ,

XiY j ∈ U ⇔ NXiY j ∈ U/N = 〈NXaY b, NXcY d〉 ∼= Z×Z

⇔ there are x, y ∈ Z su
h that (i, j) = x(a, b) + y(c, d), or equivalently,(
i
j

)
=

(
a c
b d

)(
x
y

)

⇔ ad− bc | (ad− bc)x = di− cj, (ad− bc)y = aj − bi.Naturally, gcd(a, c) | ax+cy = i, gcd(b, d) | bx+dy = j, gcd(a+b, c+d) | (a+b)x+(c+d)y =
i+ j and gcd(a− b, c− d) | (a− b)x+ (c− d)j = i− j.Proposition 4.1.14. Let M =

(
a c
b d

) su
h that det(M) 6= 0, d1 = gcd(a, c), d2 = gcd(b, d),
d+ = gcd(a+ b, c+ d) and d− = gcd(a− b, c− d).1. Let U = (4, 2, 4)M , U = N〈XaY b, XcY d〉 a hypermap subgroup of U . Then:(a) R0 ∈ N∆(U) if and only if R2 ∈ N∆(U);(b) if R0, R1 ∈ N∆(U), or R2, R1 ∈ N∆(U), then N∆(U) = ∆;(
) if R0 ∈ N∆(U), or equivalently, if R2 ∈ N∆(U), then |det(M)| is d1d2, or |det(M)|is 2d1d2 and a

d1
− b

d2
, cd1 − d

d2
are even;(d) if R1 is in N∆(U), then a−b and c−d are even and |det(M)| is d+d−

2 , or |det(M)|is d+d− and a−b
d−

− a+b
d+

and c−d
d−

− c+d
d+

are even;(e) if R2R1 ∈ N∆(U), then |det(M)| is a2 + b2, c2 + d2, (a − b)2 + (c − d)2 or (a +
b)2 + (c+ d)2, and det(M) divides a2 + b2, c2 + d2 and ac+ bd;(f) N∆(U) = ∆ if and only if d1 = d2 and |det(M)| is d1

2, or |det(M)| is 2d1
2 and

2d1 divides d−.2. Let U = (6, 2, 3)M and U = N〈XaY b, XcY d〉 a hypermap subgroup of U . Then:(a) R0 ∈ N∆(U) if and only if R2 ∈ N∆(U);(b) if R0, R1 ∈ N∆(U) or R2, R1 ∈ N∆(U), then N∆(U) = ∆;



4.1 Uniform hypermaps on the torus 55(
) if R2R1 ∈ N∆(U), then |det(M)| is a2 + ab + b2, c2 + cd + d2, (a − b)2 + (a −
b)(c − d) + (c − d)2 or (a + b)2 + (a + b)(c + d) + (c + d)2 and det(M) divides
a2 +ab+ b2, c2 + cd+d2, ac+ad+ bd (and ac+ bc+ bd = (ac+ad+ bd)− (ad− bc));(d) U ⊳ ∆ if and only if d1 = d2 and |det(M)| is d1

2 or |det(M)| is 3d1
2 and 3d1divides d−.Proof. 1. (a) By Corollary 4.1.7 R2R0 ∈ N∆(U).(b) By (a), R0 ∈ N∆(U) if and only if R2 ∈ N∆(U), so N∆(U) is a subgroup of ∆
ontaining R0, R1, R2 and hen
e N∆(U) = ∆.(
) By Corollary 4.1.4, U∆(XaY b)p(XcY d)q = U∆X

ap+cqY bp+dq. Be
ause XaY b and
XcY d are U , Xap+cqY bp+dq is also in U . Repla
ing (p, q) by (d,−b) and by (−c, a),we get Xad−bc, Y ad−bc ∈ U , showing that |det(M)| = |ad− bc| belongs to the sets
L := {n ∈ N | Xn ∈ U} and M := {n ∈ N | Y n ∈ U}. Hen
e, the sets L and
M are non-empty. Be
ause N is a well-ordered set, L and M have minimums.Let l := minL and m := minM . From the de�nition of l and m, it followsthat if XpY q ∈ U , then l | p if and only if m | q. Indeed, if XpY q ∈ U , then
l | p⇔ Xp ∈ U ⇔ Y q ∈ U ⇔ m | q.Case 1: For all p, q ∈ Z su
h that 0 < p < l, 0 < q < m, UXpY q 6= U , thatis, XpY q /∈ U . In this 
ase U 
an be represented by the Eu
lidean parallelogramwith opposite sides identi�ed and verti
es 0, l, mi, l+mi. Hen
e F = |det(M)| =
lm. Sin
e X l, Y m ∈ U , by Lemma 4.1.13, d1 | l, d2 | m and lm = |ad − bc| |
dl,−bl,−cm, am. It follows that l | d1 and m | d2, and be
ause l,m, d1, d2 arenon-negative integers, l = d1 and m = d2. In addition there are r, s, t, u ∈ Z su
hthat ru− st = ±1 and

(
d1 0
0 d2

)
=

(
a c
b d

)(
r t
s u

)
. (4.2)Case 2: There are 0 < p < l and 0 < q < m su
h that UXpY q = U , thatis, XpY q ∈ U . By Corollary 4.1.4, U∆(XpY q)R0 = U∆X

−pY q, U∆(XpY q)R2 =
U∆X

pY −q, U∆X
2p = U∆X

pY q ·U∆(XpY q)R2 and U∆Y
2q = U∆X

pY q ·U∆X
−pY q.Be
ause R0, R2 ∈ N∆(U) and XpY q ∈ U , X−pY q and XpY −q are in U , as well as

X2p and Y 2q. By the de�nition of l and m (and the Eu
lidean division algorithm),
l | 2p and m | 2q. Furthermore, sin
e l,m, p, q are non-negative integers su
hthat 0 < 2p < 2l and 0 < 2q < 2m, l = 2p and m = 2q. In this 
ase U
an be represented by the Eu
lidean parallelogram with opposite sides identi�edand verti
es 0, p + qi,−p + qi, 2qi or 0, p + qi, p − qi, 2p (see Figure 4.2). Hen
e
|det(M)| = F = lm/2 = 2pq. Sin
e XpY q, X−pY q ∈ U , by Lemma 4.1.13, d1 | p,
d2 | q and 2pq = |ad − bc| | dp − cq, dp + cq, bp − aq, bp + aq. Consequently
2pq | 2aq, 2bp, 2cq, 2dp, so p | d1 and q | d2. Be
ause p, q, d1, d2 are non-negativeintegers, p = d1 and q = d2. From 2pq | bp−aq, dp−cq, it follows that a

d1
− b
d2
, cd1−

d
d2are even. In addition there are r, s, t, u ∈ Z su
h that su
h that ru− st = ±1 and

(
d1 −d1

d2 d2

)
=

(
a c
b d

)(
r t
s u

)
. (4.3)
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(-p,q)

x

y

(l,0)

(0,m)

(p,q)

(0,0)Figure 4.2: R0, R2 ∈ N∆(U)(d) By Corollary 4.1.4, U∆X
qY p = U∆(XpY q)R1 , U∆X

p+qY p+q = U∆X
pY q·U∆(XpY q)R1and U∆X

−(p−q)Y p−q = U∆(XpY q)−1 · U∆(XpY q)R1 . If R1 ∈ N∆(U) and XpY q ∈
U , then XqY p, Xp+qY p+q, X−(p−q)Y p−q ∈ U . Repla
ing (p, q) by (a, b) and by
(c, d), we get Xa+bY a+b, Xc+dY c+d, X−(a−b)Y a−b, X−(c−d)Y c−d ∈ U .Be
ause (a+b)d−b(c+d) = (a−b)d−b(c−d) = ad−bc 6= 0, a+b and c+d 
annotbe simultaneously 0, as well as a−b and c−d. Consequently, |a+b| or |c+d| are in
L := {n ∈ N | XnY n ∈ U} and |a−b| or |c−d| are inM := {n ∈ N | X−nY n ∈ U}.Hen
e, the sets L and M are non-empty. Be
ause N is a well-ordered set, L and
M have minimums. Let l := minL and m := minM . From the de�nition of l and
m, it follows that if XpY q ∈ U , then 2l | p+ q if and only if 2m | −p+ q. Indeed, if
XpY q ∈ U , then 2l | p+q ⇔ X

p+q

2 Y
p+q

2 ∈ U ⇔ X−−p+q

2 Y
−p+q

2 ∈ U ⇔ 2m | −p+q.Case 1: For all p and q su
h that 0 < p+q < 2l, 0 < −p+q < 2m, UXpY q 6= U , thatis, XpY q /∈ U . In this 
ase U 
an be represented by the Eu
lidean parallelogramwith opposite sides identi�ed and verti
es 0, l+li,−m+mi, (l−m)+(l+m)i. Hen
e
F = |det(M)| = 2lm. Sin
e X lY l, X−mY m ∈ U , by Lemma 4.1.13, d+ | l+ l = 2l,
d− | −m−m = −2m and 2lm = |ad− bc| | −l(c− d), l(a− b),−m(c+ d),m(a+ b).Thus 2l | d+ and 2m | d−. Be
ause l,m, d+, d− are non-negative integers, 2l = d+and 2m = d− Naturally, d− = 2m and d+ = 2l are even and |det(M)| = |ad−bc| =

2lm = d+d−

2 . In addition there are r, s, t, u ∈ Z su
h that su
h that ru − st = ±1and (
d+

2 −d−

2
d+

2
d−

2

)
=

(
a c
b d

)(
r t
s u

)
. (4.4)Case 2: There are p, q ∈ Z su
h that 0 < p + q < 2l, 0 < −p + q < 2m and

UXpY q = U , that is, XpY q ∈ U . Sin
e Xp+qY p+q, X−(p−q)Y p−q ∈ U , by de�nitionof l and m (and the Eu
lidean division algorithm), l | p + q and m | −(p − q).Consequently l = p + q and m = −(p − q). In this 
ase U 
an be represented bythe Eu
lidean parallelogram with opposite sides identi�ed and verti
es 0, p+qi, q+
pi, (p + q) + (p + q)i (see Figure 4.3). Hen
e |det(M)| = F = 2lm/2 = lm =
(p+ q)(−p+ q). By Lemma 4.1.13, XpY q ∈ U implies d+ | p+ q, d− | −p+ q, and
(p+q)(−p+q) = |ad−bc| | dp−cq, aq−bp, dq−cp, ap−bq. So lm = (p+q)(−p+q) |
−(−p + q)(c + d) = −m(c + d), (p + q)(c − d) = l(c − d),−(−p + q)(a + b) =
−m(a+ b), (p+ q)(a− b) = l(a− b). Thus l | d+ and m | d−. Be
ause l,m, d+, d−are non-negative integers, l = d+ and m = d−. From lm | ap − bq,−cq + dp weget 2lm | 2(ap − bq) = (a − b)l − (a + b)m, 2(−cq + dp) = −(c − d)l − (c + d)m,
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m − a+b

l and c−d
m − c+d

l must be even. In addition there are r, s, t, u ∈ Z su
hthat su
h that ru− st = ±1 and
(
d+−d−

2
d++d−

2
d++d−

2
d+−d−

2

)
=

(
a c
b d

)(
r t
s u

)
. (4.5)

(q,p)

x

y

(p,q)

(-m,m)

(l,l)

(0,0)Figure 4.3: R1 ∈ N∆(U)(e) Let K := {p2 +q2 | p, q ∈ Z & (p, q) 6= (0, 0) & XpY q ∈ U}. Sin
e a2 +b2, c2 +d2 ∈
K, K is non-empty. Be
ause N is a well-ordered set, K has a minimum. Let
k := minK. Let l,m ∈ Z su
h that l2 + m2 = k. By de�nition, l2 + m2 = k ≤
min{a2+b2, c2+d2}. Corollary 4.1.4 implies that U∆(XpY q)R2R1 = U∆X

−qY p and
U∆X

p−qY p+q = U∆X
pY q · U∆(XpY q)R2R1 . Sin
e R2R1 ∈ N∆(U), if XpY q ∈ U ,then X−qY p, (XpY q)R2R1 ∈ U . Repla
ing (p, q) by (d,−b) and by (−c, a), it followsthat X−bY a, X−dY c ∈ U . By Lemma 4.1.13, ad− bc | a2 + b2, c2 + d2, ac+ bd.We note that X0Y 0, X lY m, X−mY l, X l−mY l+m ∈ U . We now show that U 
an berepresented by the Eu
lidean parallelogram with opposite sides identi�ed and withverti
es 0, l+mi,−m+ li, (l−m) + (l+m)i by proving that there are no p, q ∈ Zsu
h that XpY q ∈ U and (p, q) is inside of the square with verti
es (0, 0), (l,m),

(−m, l) and (l −m, l +m). Let p, q ∈ Z su
h that and P := (p, q) is inside of thesquare with verti
es A := (0, 0), B := (l,m), C := (−m, l) and D := (l−m, l+m),that is, su
h that 0 < −mp + lq, lp + mq < l2 + m2 = k, and let r, s, t, u be thedistan
es of P to A,B,C,D, respe
tively. Observe that P must lie in at least oneof the 
ir
les with 
enter in A, B, C, D, and radius √
k, so the distan
e of P toea
h of the 4 verti
es of the square 
annot be simultaneously greater or equal than√

k =
√
l2 +m2, whi
h is the length of the side of the square (see Figure 4.4). Thisimplies that XpY q /∈ U be
ause otherwise there would be Q ∈ {A,B,C,D} and

u, v ∈ Z su
h that (u, v) = P − Q, XuY v ∈ U and 0 < u2 + v2 < l2 + m2 = k,
ontradi
ting the minimality of k.Hen
e |ad − bc| = |det(M)| = F = k = l2 + m2. Sin
e X lY m, X−mY l ∈ U , byLemma 4.1.13, l2 +m2 = |ad−bc| divides al+bm, bl−am, cl+dm and dl−cm. Bythe de�nition of l and m, (l,m) must be inside of the parallelogram with verti
es
α(a, b) + β(c, d), where α, β ∈ {±1} (see �gure 4.5); else there would be a latti
e-preserving translation τ of the plane su
h that (0, 0) is 
loser to (l,m)τ than to
(l,m)). Therefore −(ad− bc) ≤ −bl + am, dl − cm ≤ ad− bc. Owing to this, and
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x

y

A

P

u
t

s
B

C
D

r
s

t
u

Figure 4.4: r, s, t, u 
annot be all greater than √
k =

√
l2 +m2.be
ause |ad−bc| | −bl+am, dl−cm, it follows that (ld−mc,−lb+ma) = (ku, kv),with u, v ∈ {−1, 0, 1}.

y

x

(c,d)

(a,b)

(a+c,b+d)

(l,m)(-a+c,-b+d)

(a-c,b-d)

(-a-c,-b-d)Figure 4.5: (l,m) is inside the parallelogram.Then: (
d −c
−b a

)(
l
m

)
=

(
k 0
0 k

)(
u
v

)
.Multiplying both members of this equation by (a c

b d

), we get
(
k 0
0 k

)(
l
m

)
=

(
k 0
0 k

)(
a c
b d

)(
u
v

)sin
e (k 0
0 k

) 
omutes with (a c
b d

). Hen
e
(
l
m

)
=

(
a c
b d

)(
u
v

)
= u

(
a
b

)
+ v

(
c
d

)
.



4.1 Uniform hypermaps on the torus 59This gives the 9 possible values for (l,m), namely u(a, b) + v(c, d), with u, v ∈
{−1, 0, 1}. Sin
e |det(M)| > 0, |det(M)| = k = l2 + m2 is a2 + b2, c2 + d2 or
(a− c)2 + (b− d)2, (a+ c)2 + (b+ d)2. In addition, there are r, s, t, u ∈ Z su
h thatsu
h that ru− st = ±1 and

(
l −m
m l

)
=

(
a c
b d

)(
r t
s u

)
. (4.6)(f) Looking ba
k at the proof of (
), ifR1 ∈ N∆(U), thenXm = (Y R1)m = (Y m)R1 , Y l =

(XR1)l = (X l)R1 ∈ UR1 = U , so m ∈ A and l ∈ B. Hen
e l = minA ≤ m and
m = minB ≤ l. Consequently d1 = l = m = d2. In addition, taking d := d1 = d2,there are r, s, t, u ∈ Z su
h that su
h that ru− st = ±1 and

(
d 0
0 d

)
=

(
a c
b d

)(
r t
s u

)
, (4.7)or (

d −d
d d

)
=

(
a c
b d

)(
r t
s u

)
. (4.8)The proofs of 2. are similar to those presented in 1.We re
all that if g ∈ N∆(U), then Ug ∈ N∆(U)/U ∼= Aut(U) 
orresponds to the automor-phism of U that maps a �ag Ud, with d ∈ ∆, to Ugd. In parti
ular, if U is a uniform map onthe torus of type (4, 2, 4), then R1 ∈ N∆(U) if and only if Aut(U) in
ludes re�e
tions on thediagonals; R0, R2 ∈ N∆(U) if and only if Aut(U) in
ludes re�e
tions on verti
al or horizontallines.Theorem 4.1.15 (Θ-regularity of (4, 2, 4)M and (6, 2, 3)M ). Let M =

(
a c
b d

) with det(M) 6=
0, d1 = gcd(a, c), d2 = gcd(b, d), d+ = gcd(a+ b, c+ d) and d− = gcd(a− b, c− d).1. Let U = (4, 2, 4)M . Then:(a) U is ∆0̂-, ∆2̂-, ∆0-, ∆2-regular if and only if a − b and c − d are even and U isregular;(b) U is ∆1̂-regular if and only if |det(M)| is d1d2, or |det(M)| is 2d1d2 and a

d1
−

b
d2
, cd1 − d

d2
are even;(
) U is ∆1-regular if and only if a − b and c − d are even and |det(M)| is d+d−

2 , or
|det(M)| is d+d− and a−b

d−
− a+b

d+
and c−d

d−
− c+d

d+
are even;(d) U is ∆+-regular if and only if |det(M)| is a2 + b2, c2 + d2, (a − b)2 + (c − d)2 or

(a+ b)2 + (c+ d)2 and det(M) divides a2 + b2, c2 + d2 and ac+ bd;(e) U is regular if and only if d1 = d2 and |det(M)| is d1
2, or |det(M)| is 2d1

2 and
2d1 divides d−.2. Let U = (6, 2, 3)M . Then:(a) U is ∆2̂-, ∆2-regular if and only if U is regular;(b) U is not ∆0̂-, ∆1̂-, ∆0-, ∆1-regular;



60 Chapter 4. Hypermaps on the torus(
) U is ∆+-regular if and only if |det(M)| is a2 + ab + b2, c2 + cd + d2, (a − b)2 +
(a− b)(c− d) + (c− d)2 or (a+ b)2 + (a+ b)(c+ d) + (c+ d)2 and det(M) divides
a2 +ab+b2, c2 +cd+d2, ac+ad+bd (and ac+bc+bd = (ac+ad+bd)−(ad−bc));(d) U is regular if and only if d1 = d2 and |det(M)| is d1

2 or |det(M)| is 3d1
2 and

3d1 divides d−.Proof. 1. (a) Let Θ ∈ {∆0̂,∆2̂,∆0,∆2}. By Proposition 4.1.14, if Θ ⊆ N∆(U), then
N∆(U) = ∆. Hen
e U is Θ-regular if and only if U is Θ-
onservative, that is, if a − band c− d are even (Proposition 4.1.8).(b), (
), (d), (e) Let Θ ∈ {∆1̂,∆1,∆+,∆}. By Proposition 4.1.8 every uniform map onthe torus of type (4, 2, 4) is Θ-
onservative.
(⇒)'s are 
onsequen
es of 1.(
), 1.(d), 1.(e), 1.(f) of Proposition 4.1.14, respe
tively;
(⇐)'s Using (4.2), (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8), together with Theorem 4.1.10,we 
an see that U is isomorphi
 to one of the hypermaps listed in 1. of Proposition 4.1.12;by this result U is ∆1̂-, ∆1-, ∆+-, or ∆-regular, respe
tively.2. (a) Let Θ ∈ {∆2̂,∆2}. Every uniform map on the torus of type (6, 2, 3) is Θ-
onservativeby Proposition 4.1.8. By 2.(b) of Proposition 4.1.14, U is Θ-regular if and only if U isregular.(b) If Θ ∈ {∆0̂,∆1̂,∆0,∆1}, then U is not Θ-
onservative (Proposition 4.1.8), hen
e Uis not Θ-regular.(
), (d) Let Θ ∈ {∆+,∆}. As in 1.(d), 1. (f), U is always Θ-
onservative.
(⇒)'s are 
onsequen
es of 2.(
), 2.(d) of Proposition 4.1.14;
(⇐)'s follow from 2. of Lemma 4.1.13.Corollary 4.1.16. Let M =

(
a c
b d

) su
h that det(M) 6= 0.1. (a) (4, 2, 4)M is ∆1̂-regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is ( l 0
0 m

) or
(
l −l
m m

), for some l,m ∈ N;(b) (�irá¬, Tu
ker and Watkins [66℄)
(4, 2, 4)M is ∆1-regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is (l −m

l m

)or ( l m
m l

), for some l,m ∈ N;(
) (Coxeter and Moser [33℄)
(4, 2, 4)M is ∆+-regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is ( l −m

m l

),for some l,m ∈ N;(d) (Coxeter and Moser [33℄)
(4, 2, 4)M is regular if and only if (4, 2, 4)M ∼= (4, 2, 4)N , where N is (k 0

0 k

) or
(
k −k
k k

), for some k ∈ N.2. (a) (Coxeter and Moser [33℄)
(6, 2, 3)M is ∆+-regular if and only if (6, 2, 3)M ∼= (6, 2, 3)N , where N is ( l −l−m

m l

),for some l,m ∈ N;



4.1 Uniform hypermaps on the torus 61(b) (Coxeter and Moser [33℄)
(6, 2, 3)M is regular if and only if (6, 2, 3)M ∼= (6, 2, 3)N , where N is (k 0

0 k

) or
(
k −2k
k k

), for some k ∈ N.Note that the orientably-regular hypermaps (4, 2, 4)� l
m
-m
l

� and (6, 2, 3)� l
m
-l-m

l

� ({4, 4}l,mand {3, 6}l,m in the notation of Coxeter and Moser [33℄) are regular if and only if l = 0 or
m = 0 or l = m.Remark 4.1.17. In [66℄, �irá¬, Tu
ker and Watkins proved that a uniform map U of type
(4, 2, 4) is ∆1-regular if and only if U ∼= (4, 2, 4)� r1

r2

-s
s

�, where s | r1 − r2. If (r1 − r2)/s is even,say r1 − r2 = 2ks, then
(
r1 −s
r2 s

)
=

(
r2 + 2ks −s

r2 s

)
=

(
r2 + ks −s
r2 + ks s

)(
1 0
−k 1

)and (4, 2, 4)� r1
r2

-s
s

� ∼= (4, 2, 4)� r2+ks

r2+ks

-s
s

� sin
e det
(

1 0
−k 1

)
= 1; else if (r1 − r2)/s is odd, say

r1 − r2 = (2k + 1)s, then
(
r1 −s
r2 s

)
=

(
r2 + s+ 2ks −s

r2 s

)
=

(
r2 + s+ ks −s
r2 + ks s

)(
1 0
−k 1

)

=

(
r2 + s+ ks r2 + ks
r2 + ks r2 + s+ ks

)(
1 −1
0 1

)(
1 0
−k 1

)

=

(
r2 + s+ ks r2 + ks
r2 + ks r2 + s+ ks

)(
1 + k −1
−k 1

)and (4, 2, 4)� r1
r2

-s
s

� ∼= (4, 2, 4)� r2+s+ks

r2+ks

r2+ks

r2+s+ks

� sin
e det
(

1 + k −1
−k 1

)
= 1.It is also shown that a uniform map U of type (6, 2, 3) is orientably-regular if and only if

U ∼= (6, 2, 3)� r
s
-s

r+s

�. However, sin
e
(
r −s
s r + s

)
=

(
r −r − s
s r

)(
1 1
0 1

)and det
(

1 1
0 1

)
= 1, (6, 2, 3)� r

s
-s

r+s

� ∼= (6, 2, 3)� r
s
-r-s

r

�.Remark 4.1.18. One 
an easily see that
(

2k k
0 k

)
=

(
k −k
k k

)(
1 1
−1 0

)
,

(
3k k
0 k

)
=

(
k −2k
k k

)(
1 1
−1 0

) and det

(
1 1
−1 0

)
= 1.Let R = (l,m, n)M , where (l,m, n) is (4, 2, 4) or (6, 2, 3) and M is (k 0

0 k

) or (kl/2 k
0 k

),for some k ∈ N. Then R is a regular map and the automorphism group, Aut(R), andthe rotation group, Aut+(R), of R are isomorphi
 to ∆/R and ∆+/R, respe
tively. Sin
e
∆/R = 〈RX,RY,RR1, RR2〉, ∆+/R = 〈RX,RY,RR1R2〉, 〈RX,RY 〉 is a normal subgroup of
∆/R (see Corollary 4.1.4) and 〈RX,RY 〉 ∩ 〈RR1, RR2〉 = {1}, we have

Aut(R) ∼= (Ck × Ck) ⋊Dl and Aut+(R) ∼= (Ck × Ck) ⋊ Cl, if M is (k 0
0 k

)
, (4.9)
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Aut(R) ∼= (Ckl/2 × Ck) ⋊Dl and Aut+(R) ∼= (Ckl/2 × Ck) ⋊ Cl, if M is (kl/2 k

0 k

). (4.10)As remarked by Coxeter and Moser (see Table 7 of [33℄), the automorphism groups of
(4, 2, 4)� k

k
-k
k

� and (6, 2, 3)( k
0

0
k ) are the groups G4,4,2k and G3,6,2k, with orders 16k2 and 12k2respe
tively.4.1.2 Uniform hypermaps on the torus of type (3, 3, 3)The uniform hypermaps on the torus of type (3, 3, 3) 
an be obtained from the uniform mapson the torus of type (6, 2, 3) in the following way. If U is a uniform hypermap on the torus oftype (3, 3, 3), then Walsh(U) is a bipartite-uniform hypermap on the torus of bipartite-type

(3, 3; 2; 6). Owing to this, Walsh(U) and M := D(02)(Walsh(U)) are uniform maps on thetorus of types (3, 2, 6) and (6, 2, 3). Re
ipro
ally, if M is a uniform map on the torus of type
(6, 2, 3), then, by Proposition 4.1.8, M is ∆2̂-
onservative and D(02)(M) is ∆0̂-
onservative,that is, bipartite. Now, D(02)(M), being bipartite and uniform, is bipartite-uniform and itsbipartite-type is (3, 3; 2; 6). Then, by Theorem 1.6.5, D(02)(M) ∼= Walsh(U), for some uniformhypermap U on the torus of type (3, 3, 3). Furthermore, if V is another hypermap su
h that
Walsh(V) ∼= D(02)(M) ∼= Walsh(U), then, by Theorem 1.6.6, V ∼= U or V ∼= D(01)(U). If Uand M are hypermap subgroups of U and M, then M = Uϕ

W

−1(02), Uϕ
W

−1 = M(02) and
U = Uϕ

W

−1ϕ
W

= M(02)ϕ
W
.Let X3 := X6(02)ϕ

W
= R2R1R0R1 = Y4

−1, Y3 := Y6(02)ϕ
W

= R1R2R1R0 = X4
−1 and

N3 := N6(02)ϕ
W

= 〈(R1R2)
6, (R2R0)

2, (R0R1)
3〉∆(02)ϕ

W

= 〈(R1R2)
3, (R2R0)

2, (R0R1)
6〉∆ϕ

W

= 〈(R1R2)
3, [(R1R2)

3]R0 , (R2R0)
2, (R0R1)

6〉∆0̂
ϕ

W

= 〈(R1R2)
3, (R1

R0R2
R0)3, R2R2

R0 , (R1
R0R1)

3〉∆0̂
ϕ

W

= 〈(R1R2)
3, (R2R0)

3, (R0R1)
3〉∆.Clearly, Y3 = X4

−1 = (Y4
−1)R1 = X3

R1 . Let ϕ∗
W

: ∆2̂ → ∆, g 7→ g(02)ϕ
W
. Sin
e N6ϕ

∗
W

= N3,
ϕ∗

W
indu
es an epimorphism Φ∗

W
: ∆2̂/N6 → ∆/N3, su
h that (N6g)Φ

∗
W

= N3(gϕ
∗
W

). By abuseof language, we speak of ϕ∗
W
, meaning Φ∗

W
.Lemma 4.1.19 (Properties of N3, X3 and Y3).1. N3X3 ⇌ N3Y3;2. N3X3

R0 = N3X3Y3
−1, N3X3

R1 = N3Y3, N3X3
R2 = N3X3

−1,
N3Y3

R0 = N3Y3
−1, N3Y3

R1 = N3X3, N3Y3
R2 = N3X3

−1Y3.Proof. This Lemma follows from the de�nitions of N3, X3 and Y3, the fa
t that ϕ∗
W

is a groupepimorphism and 2. of Lemma 4.1.2.1. N3X3N3Y3 = N3X3Y3 = (N6X6Y6)ϕ
∗
W

= (N6Y6X6)ϕ
∗
W

= N3Y3X3 = N3Y3N3X3.2. Sin
e R0 = R1
R2ϕ∗

W
, R1 = R1ϕ

∗
W

and R2 = R0ϕ
∗
W
, we have:
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N3X3

R0 = (N6X6
R2R1R2)ϕ∗

W
= (N6X6Y6

−1)ϕ∗
W

= N3X3Y3
−1,

N3X3
R1 = (N6X6

R1)ϕ∗
W

= (N6Y6)ϕ
∗
W

= N3Y3,
N3X3

R2 = (N6X6
R0)ϕ∗

W
= (N6X6

−1)ϕ∗
W

= N3X3
−1,

N3Y3
R0 = (N6Y6

R2R1R2)ϕ∗
W

= (N6Y6
−1)ϕ∗

W
= N3Y3

−1,
N3Y3

R1 = (N6Y6
R1)ϕ∗

W
= (N6X6)ϕ

∗
W

= N3X3,
N3Y3

R2 = (N6Y6
R0)ϕ∗

W
= (N6X6

−1Y6)ϕ
∗
W

= N3X3
−1Y3.We shall omit the index 3 in N3, X3 and Y3 if it is 
lear from the 
ontext.Be
ause N is a normal subgroup of ∆ 
ontained in U , N ⊆ U∆ and hen
e:Corollary 4.1.20. Let U be a uniform hypermap on the torus of type (3, 3, 3) and U a hyper-map subgroup of U . Then:1. U∆X ⇌ U∆Y ;2. U∆X

R0 = U∆XY
−1, U∆X

R1 = U∆Y , U∆X
R2 = U∆X

−1,
U∆Y

R0 = U∆Y
−1, U∆Y

R1 = U∆X, U∆Y
R2 = U∆X

−1Y .Remark 4.1.21. 1. N3(01) = N3;Therefore, (01) indu
es an isomorphism ∆/N3 → ∆/N3, N3g 7→ N3g(01), whi
h, byabuse of language, we also denote by (01);2. N3X3(01) = N3R2R0R1R0 = N3X3(R1R0)
3 = N3X3 = (N3X3

R2)−1;3. N3Y3(01) = (N3X3
R1)(01) = (N3X3(01))

R1(01)
= N3X3

R0 = N3X3Y3
−1 = (N3Y3

R2)−1;Lemma 4.1.22. If U is a uniform hypermap on the torus of type (3, 3, 3), then U ∼= D(01)(U).Proof. Let V = D(01)(U) and M =
(
a c
b d

) su
h that (6, 2, 3)M ∼= D(02)(Walsh(U)). Then U =

(N6〈X6
aY6

b, X6
cY6

d〉)ϕ∗
W

= N3〈X3
aY3

b, X3
cY3

d〉 and V = U(01) are hypermap subgroups of
U and V. By Remark 4.1.21 N3X3(01) = (N3X3

R2)−1 and N3Y3(01) = (N3Y3
R2)−1, so

V/N3 = U(01)/N3

= (N3〈X3
aY3

b, X3
cY3

d〉)(01)/N3

= (〈N3[(X3
aY3

b)(01)], N3[(X3
cY3

d)(01)]〉)
= 〈[N3(X3

aY3
b)R2 ]−1, [N3(X3

cY3
d)R2 ]−1〉

= 〈N3(X3
aY3

b)R2 , N3(X3
cY3

d)R2)〉
= 〈N3X3

aY3
b, N3X3

cY3
d〉R2

= UR2/N3.Thus V = U(01) = UR2 . Having 
onjugate hypermap subgroups, U and V are isomorphi
.We denote by (3, 3, 3)M the uniform hypermap on the torus of type (3, 3, 3) (unique up toisomorphism) su
h that Walsh((3, 3, 3)M ) ∼= D(02)((6, 2, 3)M ).Lemma 4.1.23. The hypermap U = (3, 3, 3)M has |ΩU | = 6|det(M)| �ags, V = |det(M)|verti
es, E = |det(M)| edges and F = |det(M)| fa
es.



64 Chapter 4. Hypermaps on the torusProof. The number of �ags of (3, 3, 3)M is half the number of �ags of D(02)((6, 2, 3)M ), whi
his 12|det(M)|. The numbers of verti
es, edges and fa
es of U are given by the formula
|ΩU | = 2lV = 2mE = 2nF .Theorem 4.1.24 (Hypermap subgroup of (3, 3, 3)M ). The hypermap U = (3, 3, 3)M hashypermap subgroup U = N〈XaY b, XcY d〉 = 〈(R1R2)

6, (R2R0)
2, (R0, R1)

3〉∆〈XaY b, XcY d〉.Proposition 4.1.25 (Θ-
onservativeness of (3, 3, 3)M ). The uniform hypermap (3, 3, 3)M is
∆+-
onservative but is not Θ-
onservative for any other Θ ⊳2 ∆.Proof. Sin
e (R1R2)

3, (R2R0)
3, (R0R1)

3, X3 = R2R1R0R1, Y3 = R1R2R1R0 ∈ ∆+, U ⊆ ∆+.However, (RiRj)
3 /∈ ∆k̂,∆k for every k ∈ {0, 1, 2}, so U * Θ, for Θ ⊳2 ∆, Θ 6= ∆+.Lemma 4.1.26. (3, 3, 3)M → (3, 3, 3)M ′ if and only if (6, 2, 3)M → (6, 2, 3)M ′.Proof. Let U and U ′ be hypermap subgroups of (3, 3, 3)M and (3, 3, 3)M ′ . Then V := Uϕ∗

W

−1and V ′ := U ′ϕ∗
W

−1 are hypermap subgroups of (6, 2, 3)M (6, 2, 3)M ′ . If (3, 3, 3)M → (3, 3, 3)M ′ ,then U ⊆ (U ′)y, for some y ∈ ∆. Sin
e ϕ∗
W

is an epimorphism, there is x ∈ ∆2̂ su
h that
xϕ∗

W
= y. Hen
e V = Uϕ∗

W

−1 ⊆ (U ′)yϕ∗
W

−1 = (U ′)xϕ
∗

W ϕ∗
W

−1 = (U ′ϕ∗
W

−1)x = (V ′)x, that is,
(6, 2, 3)M → (6, 2, 3)M ′ .Re
ipro
ally, if (6, 2, 3)M → (6, 2, 3)M ′ , then there is g ∈ ∆ su
h that Uϕ∗

W

−1 ⊆ (U ′ϕ∗
W

−1)g.If g ∈ ∆2̂, then U = V ϕ∗
W

⊆ (V ′)gϕ∗
W

= (V ′ϕ∗
W

)gϕ
∗

W = (U ′)gϕ
∗

W ; else, if g /∈ ∆2̂, then
R2R0g ∈ ∆2̂ and, by Lemma 4.1.7, (V ′(02))R2R0 = V ′(02), or equivalently, (V ′)R0R2 = V ′,so U = V ϕ∗

W
⊆ (V ′)gϕ∗

W
= [(V ′)R0R2 ]R2R0gϕ∗

W
= (V ′)R2R0gϕ∗

W
= (V ′ϕ∗

W
)R2R0gϕ∗

W =

(U ′)R0R2gϕ∗

W .Using the previous Lemma together with Theorem 4.1.10 we get:Theorem 4.1.27.1. U → U ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and Q ∈M(2,Z) su
h that

det(Q) 6= 0 and M = PM ′Q.2. U ∼= U ′ if and only if there are P ∈
〈(

0 1
1 0

)
,
(

1 1
0 -1)〉 ∼= D6 and Q ∈ GL(2,Z) su
hthat M = PM ′Q.Now we give examples of restri
tedly-regular uniform hypermaps on the torus of type

(3, 3, 3). The proof is similar to the proof of Proposition 4.1.12.Proposition 4.1.28. Let k, l,m ∈ Z.1. (Corn and Singerman [28℄)
(3, 3, 3)� l

m
-l-m

l

� is ∆+-regular, that is, orientably-regular;2. (Corn and Singerman [28℄ together with Breda and Nedela [10℄1)
(3, 3, 3)( k

0
0
k ) and (3, 3, 3)� k

k
-2k
k

� are ∆-regular, that is, regular.1Theorem 11 of [28℄ states that a uniform hypermap H on the torus of type (3, 3, 3) is orientably-regular ifand only if Walsh(H) is orientably-regular. By Theorem 1 of [10℄, H is orientably-
hiral if and only if Walsh(H)is orientably-
hiral, and hen
e H is regular if and only if Walsh(H) is regular.



4.1 Uniform hypermaps on the torus 65Finally we have:Theorem 4.1.29 (Θ-regularity of (3, 3, 3)M ). Let M =
(
a c
b d

) su
h that det(M) 6= 0.1. (3, 3, 3)M is ∆+-regular if and only if (6, 2, 3)M is ∆+-regular, that is, if and only if
|det(M)| is a2 + ab+ b2, c2 + cd+ d2, (a− b)2 + (a− b)(c− d) + (c− d)2 or (a+ b)2 +
(a+ b)(c+ d) + (c+ d)2, and det(M) divide a2 + ab+ b2, c2 + cd+ d2, ac+ ad+ bd (and
ac+ bc+ bd = (ac+ ad+ bd) − (ad− bc));2. (3, 3, 3)M is not ∆0̂-, ∆1̂-, ∆2̂-, ∆0-, ∆1-, ∆2-regular;3. (3, 3, 3)M is regular if and only if (6, 2, 3)M is regular, that is, if and only if d1 = d2 and
|det(M)| = d1

2 or |det(M)| = 3d1
2 and 3d1 | gcd(a− b, c−d), where d1 = gcd(a, c) and

d2 = gcd(b, d).Proof. If Θ ⊳2 ∆, Θ 6= ∆+, then (3, 3, 3)M is not Θ-regular, be
ause (3, 3, 3)M is not Θ-
onservative (Proposition 4.1.25).Now let U and V be hypermap subgroups of U := (3, 3, 3)M and V := (6, 2, 3)M . Then
V = Uϕ

W

−1(02) and U ⊳ ∆ ⇔ Uϕ
W

−1
⊳ ∆ϕ

W

−1 = ∆0̂ ⇔ V ⊳ ∆2̂ ⇔ V ⊳ ∆ (see Theorem4.1.15). Similarly U ⊳ ∆+ ⇔ Uϕ
W

−1
⊳ ∆+ϕ

W

−1 = ∆+ ∩ ∆0̂ ⇔ V ⊳ ∆+ ∩ ∆2̂. Owing tothis, and be
ause V R2R0 = V (see Corollary 4.1.7), ∆+ = 〈∆+ ∩∆2̂, R2R0〉 ⊆ N∆(V ), that is
V ⊳ ∆.Using this Theorem, together withCorollary 4.1.30. Let M =

(
a c
b d

) su
h that det(M) 6= 0.1. (Corn and Singerman [28℄)
(3, 3, 3)M is ∆+-regular if and only if (3, 3, 3)M ∼= (3, 3, 3)� l

m
-l-m

l

� for some l,m ∈ N;2. (Corn and Singerman [28℄)
(3, 3, 3)M is regular if and only if (3, 3, 3)M ∼= (3, 3, 3)( k

0
0
k ) or (3, 3, 3)M ∼= (3, 3, 3)� k

k
-2k
k

�,for some k ∈ N.Remark 4.1.31. Let R = (3, 3, 3)M , where M is (k 0
0 k

) or (k −2k
k k

), for some k ∈ N.As in Remark 4.1.18, R is a regular map and the automorphism group, Aut(R), and therotation group, Aut+(R), of R are isomorphi
 to ∆/R and ∆+/R, respe
tively. Sin
e ∆/R =
〈RX,RY,RR1, RR2〉, ∆+/R = 〈RX,RY,RR1R2〉, 〈RX,RY 〉 is a normal subgroup of ∆/R(see Corollary 4.1.20) and 〈RX,RY 〉 ∩ 〈RR1, RR2〉 = {1}, we have

Aut(R) ∼= (Ck × Ck) ⋊D3 and Aut+(R) ∼= (Ck × Ck) ⋊ C3, if M is (k 0
0 k

)
, (4.11)and

Aut(R) ∼= (C3k × Ck) ⋊D3 and Aut+(R) ∼= (C3k × Ck) ⋊ C3, if M is (k −2k
k k

). (4.12)



66 Chapter 4. Hypermaps on the torus4.2 Bipartite-uniform hypermaps on the torusLet B is a bipartite-uniform hypermap on the torus of bipartite-type (l1, l2;m;n). As before, wemay assume, without loss of generality, that l1 ≤ l2 and m ≤ n. Then, by Lemma 1.3.6, m and
n are even. Repla
ing χB = 0 in the Euler formula for bipartite-uniform hypermaps (Corollary1.4.3), it follows from Lemma 1.4.7 that l1 = 1 or m/2 = 1 or l1 = l2 = m/2 = n/2 = 2. When
l1 = 1 orm/2 = 1, Theorems 1.6.5 and 1.6.9 imply that B ∼= Pin(U) or B ∼= Walsh(U), for someuniform hypermap U on the torus; in addition, B is bipartite-regular if and only if U is regular.When l1 = l2 = m/2 = n/2 = 2, B is uniform of type (2, 4, 4) and so B ∼= D(01)((4, 2, 4)M ),for some M ∈M(2,Z) su
h that det(M) 6= 0. Obviously, B is bipartite-regular if and only if
D(01)(B) ∼= (4, 2, 4)M is ∆1̂-regular.Theorem 4.2.1. If B is a bipartite-uniform hypermap on the torus, then B ∼= Walsh(U) or
B ∼= Pin(U), for some uniform hypermap U on the torus, or D(01)(B) is a uniform map onthe torus of type (4, 2, 4). Furthermore, B is bipartite regular if and only if B ∼= Walsh(R) or
B ∼= Pin(R) for some regular hypermap R on the torus, or if D(01)(B) ∼= (4, 2, 4)M , where Mis ( l 0

0 m

) or ( l −l
m m

), for some l,m ∈ N.
# l1 l2 m n V1 V2 E F |Ω| B
1 1 2 6 12 6k 3k 2k k 24k Pin(D(021)((6, 2, 3)M ))

2 1 2 8 8 4k 2k k k 16k Pin(D(01)((4, 2, 4)M ))

3 1 3 4 12 6k 2k 3k k 24k Pin(D(02)((6, 2, 3)M ))

4 1 3 6 6 3k k k k 12k Pin((3, 3, 3)M )

5 1 4 4 8 4k k 2k k 16k Pin((4, 2, 4)M )

6 1 6 4 6 6k k 3k 2k 24k Pin((6, 2, 3)M )

7 2 2 4 4 k k k k 8k D(01)((4, 2, 4)M )

8 2 3 2 12 3k 2k 6k k 24k Walsh(D(02)((6, 2, 3)M ))

9 2 4 2 8 2k k 4k k 16k Walsh((4, 2, 4)M )

10 2 6 2 6 3k k 6k 2k 24k Walsh((6, 2, 3)M )

11 3 3 2 6 k k 3k k 12k Walsh((3, 3, 3)M )

12 3 6 2 4 2k k 6k 3k 24k Walsh(D(12)((6, 2, 3)M ))

13 4 4 2 4 k k 4k 2k 16k Walsh(D(12)((4, 2, 4)M ))Table 4.1: The bipartite-uniform hypermaps on the torus (up to duality). (k = det(M).)Table 4.1 lists all possible values for the bipartite-type of a bipartite-uniform hypermapon the torus, up to duality. The hypermaps listed in lines 1-6 and 8-13 are obtained fromuniform hypermaps by the Pin and Walsh 
onstru
tions, and the hypermap in line 7 is dualof a uniform map of type (4, 2, 4).4.3 Chirality groups and 
hirality indi
es of the 2-restri
tedly-regular hypermaps on the torusIn this Se
tion we 
ompute the 
hirality groups and the 
hirality indi
es of the 2-restri
tedly-regular hypermaps on the torus. In Table 4.2 we display the 
hirality groups, 
hirality indi
es



4.3 Chirality groups and 
hirality indi
es... 67and 
losure 
overs of the restri
tedly-regular hypermaps listed in Proposition 4.1.12. Table 4.3lists the 
hirality groups, 
hirality indi
es and 
losure 
overs of the bipartite-regular hypermapson the torus obtained by the Walsh and Pin 
onstru
tions.The following Lemma will be very useful in this se
tion.Lemma 4.3.1. Let M :=
(
a c
b d

).1. (a) If M is ( l 0
0 m

) or ( l −l
m m

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, [(R2R0)

2]R1 , (R0R1)
4, XaY b, XcY d〉∆1̂;(b) If M is (l −m

l m

) or ( l m
m l

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, (R0R1)

4, XaY b, XcY d〉∆1;(
) If M is ( l −m
m l

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, (R0R1)

4, X lY m, X−mY l〉∆+;(d) If M is (k 0
0 k

) or (k −k
k k

), then (4, 2, 4)M has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, (R0R1)

4, XaY b, XcY d〉∆.2. (a) If M is ( l −l −m
m l

), then (6, 2, 3)M has hypermap subgroup
〈(R1R2)

6, (R2R0)
2, (R0R1)

3, X lY m, X−l−mY l〉∆+;(b) If M is (k 0
0 k

) or (k −2k
k k

), then (6, 2, 3)M has hypermap subgroup
〈(R1R2)

6, (R2R0)
2, (R0R1)

3, XaY b, XcY d〉∆.3. (a) If M is ( l −l −m
m l

), then (3, 3, 3)M has hypermap subgroup
〈(R1R2)

3, (R2R0)
3, (R0R1)

3, X lY m, X−l−mY l〉∆+;(b) If M is (a c
b d

) is (k 0
0 k

) or (kk −2k
k

), then (3, 3, 3)M has hypermap subgroup
〈(R1R2)

3, (R2R0)
3, (R0R1)

3, XaY b, XcY d〉∆.Proof. 1. Let Θ be ∆1, ∆0̂ or ∆+, and H = (4, 2, 4)M a Θ-regular hypermap with hypermapsubgroup H := 〈S〉∆〈XaY b, XcY d〉, where S := {(R1R2)
4, (R2R0)

2, (R0R1)
4}.Sin
e R1 /∈ ∆1̂, by 1. of Lemma 1.9.2,

〈S〉∆ = 〈S, SR1〉∆1̂
= 〈S, [(R1R2)

4]−1, [(R2R0)
2]R1 , [(R0R1)

4]−1〉∆1̂
= 〈S, [(R2R0)

2]R1〉∆1̂
.When Θ is ∆+ or ∆1, R0 /∈ Θ, but R2R0 ∈ Θ, so

〈S〉∆ = 〈S, SR0〉Θ = 〈S, ([(R1R2)
4]−1)R2R0 , [(R2R0)

2]−1, [(R0R1)
4]−1〉Θ = 〈S〉Θ.Let P = S ∪ {XaY b, XcY d} and Q = P ∪ {[(R1R2)

4]−1, [(R2R0)
2]R1}. If Θ is ∆, ∆+ or ∆1,and H is Θ-regular, then H ⊆ 〈P 〉Θ. On the other hand, sin
e H is a normal subgroup of Θ
ontaining P , H also 
ontains 〈P 〉Θ. Similarly, if H is ∆0̂-regular, then H = 〈Q〉∆0̂ .2. and 3. are similar to 1.Having in mind that NiXi ⇌ NiYi and



68 Chapter 4. Hypermaps on the torus1. (a) N4Y4 = N4X4
R1 and N4X4 = N4(R0R1R2R1),(b) N4X4

−1Y4 = N4(X4Y4)
R0 and N4X4Y4 = N4(R0R1R2)

2,2. (a) N6Y6 = N6X6
R1 and N6Y6 = N6R0R1R0R2R1R2 = N6(R0R1R2)

2,(b) N6X6
−2Y6 = N6(X6Y6)

R0 and N6X6Y6 = N6(R0R1R2R1R2)
2,3. (a) N3Y3 = N3X3

R1 and N3X3 = N3(R2R1R0R1),(b) N3X3
−2Y3 = N3(X3Y3)

R2 and N3X3Y3 = N3(R2R1R0)
2,we 
an �nd more 
onvenient presentations for the hypermap subgroups of the regular hyper-maps on the torus.Corollary 4.3.2.1. (a) (4, 2, 4)( k

0
0
k ) has hypermap subgroup 〈(R1R2)

4, (R2R0)
2, (R0R1)

4, (R0R1R2R1)
k〉∆;(b) (4, 2, 4)� k

k
-k
k

� has hypermap subgroup 〈(R1R2)
4, (R2R0)

2, (R0R1)
4, (R0R1R2)

2k〉∆.2. (a) (6, 2, 3)( k
0

0
k ) has hypermap subgroup 〈(R1R2)

6, (R2R0)
2, (R0R1)

3, (R0R1R2)
2k〉∆;(b) (6, 2, 3)� k

k
-2k
k

� has hypermap subgroup 〈(R1R2)
6, (R2R0)

2, (R0R1)
3, (R0R1R2R1R2)

2k〉∆.3. (a) (3, 3, 3)( k
0

0
k ) has hypermap subgroup 〈(R1R2)

3, (R2R0)
3, (R0R1)

3, (R2R1R0R1)
k〉∆;(b) (3, 3, 3)� k

k
-2k
k

� has hypermap subgroup 〈(R1R2)
3, (R2R0)

3, (R0R1)
3, (R2R1R0)

2k〉∆.4.3.1 Chirality groups and 
hirality indi
es of the orientably-regular hy-permaps on the torusUp to duality, there are 3 families of orientably-regular hypermaps on the torus:
(4, 2, 4)( l

m
−m

l ), (6, 2, 3)( l
m

−l−m
l ), (3, 3, 3)( l

m
−l−m

l ), with l,m ∈ N. The 
hirality groups and
hirality indi
es of the �rst two families (that is, the families of maps) have been 
omputed in[4℄.
• Q = (4, 2, 4)( l

m
−m

l ) has hypermap subgroup
Q = 〈(R1R2)

4, (R2R0)
2, (R0R1)

4, X lY m, X−mY l〉∆+ .Let k := gcd(l,m). Then
Υ = Q∆/Q = QQR1/Q = 〈Q(X lY m)R1 , Q(X−mY l)R1〉∆+/Q

= 〈QXmY l, QX lY −m〉∆+/Q

= 〈QXmY l, QX lY −m〉
= 〈QX2m, QX2l〉
= 〈QX2k〉.Be
ause QX has order (l2 +m2)/k in ∆+/Q, QX2k has order (l2+m2)/k

gcd(2k,(l2+m2)/k)
.



4.3 Chirality groups and 
hirality indi
es... 69If l/k and m/k are both odd, that is, if 2k | l − m, then gcd(2k, (l2 + m2)/k) = 2k,
Υ ∼= C(l2+m2)/2k2 and ι = (l2 +m2)/2k2. In addition

(
l −m
m l

)
=

(
k −k
k k

)(
l+m
2k

l−m
2k

−l+m
2k

l+m
2k

) and Q∆ = (4, 2, 4)� k
k
-k
k

�.If l/k and m/k are not both odd, that is, if 2k ∤ l −m, then gcd(2k, (l2 +m2)/k) = k,
Υ ∼= C(l2+m2)/k2 and ι = (l2 +m2)/k2. In addition

(
l −m
m l

)
=

(
k 0
0 k

)(
l/k −m/k
m/k l/k

) and Q∆ = (4, 2, 4)( k
0

0
k ).

• Q = (6, 2, 3)( l
m

−l−m
l ) has hypermap subgroup

Q = 〈(R1R2)
6, (R2R0)

2, (R0R1)
3, X lY m, X−l−mY l〉∆+ .Let k := gcd(l,m). Then

Υ = Q∆/Q = QQR1/Q = 〈Q(X lY m)R1 , Q(X−l−mY l)R1〉∆+/Q

= 〈QXmY l, QX lY −l−m〉∆+/Q

= 〈QXmY l, QX lY −l−m〉
= 〈QX l+2m, QX l−m〉
= 〈QX3l, QX l−m〉
= 〈QXgcd(3l,l−m)〉.We note that QX has order (l2 + lm+m2)/k in ∆+/Q.If 3k | l−m, then gcd(3l, l−m) = 3k, 3k2 | l2 + lm+m2 = (l−m)(l+ 2m) + 3m2 and

QX3k has order
(l2 + lm+m2)/k

gcd(3k, (l2 + lm+m2)/k)
=

(l2 + lm+m2)/k

3k
= (l2 + lm+m2)/3k2.Furthermore Υ = 〈QX3k〉 ∼= C(l2+lm+m2)/3k2 , ι = (l2 + lm+m2)/3k2,

(
l −l −m
m l

)
=

(
k −2k
k k

)(
l+2m

3k
l−m
3k

−l+m
3k

2l+m
3k

) and Q∆ = (6, 2, 3)� k
k
-2k
k

�.If 3k ∤ l −m, then gcd(3l, l −m) = k and QXk has order
(l2 + lm+m2)/k

gcd(k, (l2 + lm+m2)/k)
=

(l2 + lm+m2)/k

k
= (l2 + lm+m2)/k2.Furthermore Υ = 〈QXk〉 ∼= C(l2+lm+m2)/k2 , ι = (l2 + lm+m2)/k2,

(
l −l −m
m l

)
=

(
k 0
0 k

)(
l/k −(l +m)/k
m/k l/k

) and Q∆ = (6, 2, 3)( k
0

0
k ).
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• Q = (3, 3, 3)� l

m
-l-m

l

� has hypermap subgroup
Q = 〈(R1R2)

3, (R2R0)
3, (R0R1)

3, X lY m, X−l−mY l〉∆+ .Let M =
(
l −l−m
m l

), H = (6, 2, 3)M and ϕ∗
W

:= (02)|∆2̂ ◦ ϕ
W

: ∆2̂ → ∆. Then
D(02)(H) ∼= Walsh(Q) and H = Qϕ∗

W

−1. We 
laim that H∆2̂
= H∆ and Υ(Q) ∼= Υ(H).By Corollary 4.1.7, R2R0 ∈ N∆(H). A

ording to 4. of Proposition A.1.6, R2R0 ∈

N∆(H∆2̂
), so ∆ = 〈∆2̂, R2R0〉 ⊆ N∆(H∆2̂

), that is, N∆(H∆2̂
) = ∆, or equivalently,

N∆(H∆2̂
) ⊳ ∆. Finally, using 2. of Proposition A.1.6, we have H∆2̂

= (H∆2̂
)∆ = H∆.Sin
e ϕ∗

W
is an epimorphism, H∆2̂

= Q∆ϕ∗
W

−1 (by Corollary A.1.9) and
Υ(H) = H∆/H = H∆2̂

/H = Q∆ϕ∗
W

−1/Qϕ∗
W

−1 ∼= Q∆/Q = Υ(Q).Let k := gcd(l,m). Like in the previous 
ase Υ = 〈QXgcd(3l,l−m)〉.If 3k | l−m, then Υ ∼= C(l2+lm+m2)/3k2 , ι = (l2+lm+m2)/3k2 and Q∆ = (3, 3, 3)� k
k
-2k
k

�.If 3k ∤ l −m, then Υ ∼= C(l2+lm+m2)/k2 , ι = (l2 + lm+m2)/k2 and Q∆ = (3, 3, 3)( k
0

0
k ).4.3.2 Chirality groups and 
hirality indi
es of the pseudo-orientably-regularhypermaps on the torusThere are 2 families of pseudo-orientably-regular hypermaps on the torus:the duals of (4, 2, 4)( l

l
−m
m ) and (4, 2, 4)( l

m
m
l ), with l,m ∈ N.

• P = (4, 2, 4)( l
l
−m
m ) has hypermap subgroup

P = 〈(R1R2)
4, (R2R0)

2, (R0R1)
4, X lY l, X−mY m〉∆1 .Let k := gcd(l,m). Then

Υ = P∆/P = PPR0/P = 〈P (X lY l)R0 , P (X−mY m)R0〉∆1/P

= 〈PX−lY l, PXmY m〉∆1/P

= 〈P (X−1Y )l, P (XY )m〉∆1/P

= 〈P (X−1Y )k, P (XY )k〉∆1/P

= 〈PX−kY k, PXkY k〉∆1/P

= 〈PX−kY k, PXkY k〉
∼= Cl/k × Cm/k.Sin
e gcd(l/k,m/k) is 1, Υ ∼= Cl/k × Cm/k ∼= Clm/k2 and ι = lm/k2. In addition

(
l −m
l m

)
=

(
k −k
k k

)(
l/k 0
0 m/k

) and P∆ = (4, 2, 4)� k
k
-k
k

�.
• P = (4, 2, 4)( l

m
m
l ) has hypermap subgroup

P = 〈(R1R2)
4, (R2R0)

2, (R0R1)
4, X lY m, XmY l〉∆1 .



4.3 Chirality groups and 
hirality indi
es... 71Let k := gcd(l,m). Then
Υ = P∆/P = PPR0/P = 〈P (X lY m)R0 , P (XmY l)R0〉∆1/P

= 〈PX−lY m, PX−mY l〉∆1/P

= 〈PX−lY m, PX−mY l〉
= 〈PX−2l, PX−2m〉
= 〈PX2k〉.Be
ause PX has order |l2 −m2|/k in ∆1/P , PX2k has order

|l2 −m2|/k
gcd(2k, |l2 −m2|/k) =

|l2 −m2|/k
k gcd(2, |l2 −m2|/k2)

=
|l2 −m2|/k2

gcd(2, |l2 −m2|/k2)
.If l/k and m/k are both odd, then Υ = C|l2−m2|/2k2 , ι = |l2 −m2|/2k2,

(
l m
m l

)
=

(
k −k
k k

)(
l+m
2k

l−m
2k

−l+m
2k

l+m
2k

) and P∆ = (4, 2, 4)� k
k
-k
k

�;else if l/k and m/k are not simultaneously odd, then Υ = C|l2−m2|/k2 , ι = |l2 −m2|/k2,
(
l m
m l

)
=

(
k 0
0 k

)(
l/k m/k
m/k l/k

) and P∆ = (4, 2, 4)( k
0

0
k ).4.3.3 Chirality groups and 
hirality indi
es of the bipartite-regular hyper-maps on the torusWe have seen in Se
tion 4.2 that there are 3 kinds of bipartite-regular hypermaps on the torus:the duals of ∆1̂-regular maps of type (4, 2, 4), and the hypermaps obtained from regular mapsby the Walsh and Pin 
onstru
tions.We re
all that (4, 2, 4)M and D(01)((4, 2, 4)M ) have the same 
hirality group.

• B = (4, 2, 4)( l
0

0
m) has hypermap subgroup

〈(R1R2)
4, (R2R0)

2, [(R2R0)
2]R1 , (R0R1)

4, X l, Y m〉∆1̂ .Let k := gcd(l,m). Then
Υ = B∆/B = BBR1/B = 〈B(X l)R1 , B(Y m)R1〉∆1̂/B

= 〈BY l, BXm〉∆1̂/B

= 〈BY k, BXk〉∆1̂/B

= 〈BY k, BXk〉
∼= Cl/k × Cm/k.Sin
e gcd(l/k,m/k) is 1, Υ ∼= Cl/k × Cm/k ∼= Clm/k2 and ι = lm/k2. In addition

(
l 0
0 m

)
=

(
k 0
0 k

)(
l/k 0
0 m/k

) and B∆ = (4, 2, 4)( k
0

0
k ).
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• B = (4, 2, 4)� l

m
-l
m

� has hypermap subgroup
〈(R1R2)

4, (R2R0)
2, [(R2R0)

2]R1 , (R0R1)
4, X lY m, X−lY m〉∆1̂ .Let k := gcd(l,m). Then

Υ = B∆/B = BBR1/B = 〈B(X lY m)R1 , B(X−lY m)R1〉∆1̂/B

= 〈BXmY l, BXmY −l〉∆1̂/B

= 〈BXmY l, BXmY −l〉
= 〈BX l+mY l+m, BX−l+mY −l+m〉
= 〈B(XY )l+m, B(XY )−l+m〉
= 〈B(XY )gcd(l+m,−l+m)〉.If l/k and m/k are both odd, then gcd(l + m,−l + m) = gcd(l + m, 2m) = 2k, BXYhas order lm/k in ∆1̂/B, BX2kY 2k = B(XY )2k has order

lm/k

gcd(2k, lm/k)
=
lm/k

k
= lm/k2,

Υ = 〈BXkY k〉 = Clm/k2 and ι = lm/k2. In addition
(
l −l
m m

)
=

(
k −k
k k

)(
l+m
2k

l+m
2k

−l+m
2k

−l+m
2k

) and B∆ = (4, 2, 4)� k
k
-k
k

�.If l/k and m/k are not both odd, then gcd(l+m,−l+m) = gcd(l+m, 2m) = k, BXYhas order 2lm/k in ∆1̂/B, BXkY k = B(XY )k has order
2lm/k

gcd(k, 2lm/k)
=

2lm/k

k
= 2lm/k2,

Υ = 〈BX2kY 2k〉 = C2lm/k2 and ι = 2lm/k2. In addition
(
l −l
m m

)
=

(
k −k
k k

)(
l/k m/k
−l/k m/k

) and B∆ = (4, 2, 4)( k
0

0
k ).As a by-produ
t of these 
al
ulations, we get the following result:Theorem 4.3.3. The 
hirality groups of 2-restri
tedly-regular uniform hypermaps on the torusare 
y
li
 groups.Finally, we 
ompute the 
hirality groups and 
hirality indi
es of the bipartite-regular hy-permaps on the torus obtained via the Walsh and Pin 
onstru
tions.Re
all that the hypermap subgroup R of a regular hypermap R on the torus of type

(l,m, n) is the normal 
losure in ∆ of a set with 4 elements 
ontaining (R1R2)
l, (R2R0)

m and
(R0R1)

n. Indeed, R = 〈T 〉∆, where T = {(R1R2)
l, (R2R0)

m, (R0R1)
n, w}, and w is, up toduality, (R0R1R2R1)

k, (R0R1R2)
2k or (R0R1R2R1R2)

2k.
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hirality indi
es... 73Chirality groups and 
hirality indi
es of B = Walsh(R)The bipartite-regular hypermaps on the torus obtained by the Walsh 
onstru
tion are listed,up to duality, in 
ases 8-13 of Table 4.1. We use the notations of Proposition 1.9.6.Remark 4.3.4. Let B = Walsh(R) and ι the 
hirality index of B. If K is a hypermap 
overedby H su
h that Walsh(K) is regular and has |ΩB|/ι �ags, then B∆ = Walsh(K).Note that if {i, j, k} = {0, 1, 2} and R is a normal subgroup of ∆ 
ontaining (RiRjRk)
2,then R also 
ontains (RiRjRk)

2αW : if j = 2, then (RiRjRk)
2αW = (RkRjRi)

2 = [(RiRjRk)
2]−1,else, if j 6= 2, then (RiRjRk)

2αW = [(RkRjRi)
2]R2 = ([(RiRjRk)

2]−1)R2 .
• Case 8: B = Walsh(D(02)((6, 2, 3)M )), d1 = 1.Corollary 1.9.7 implies that Υ(B) ∼= ∆+/R ∼= Aut+(R).If M =

(
k 0
0 k

), then ι = |ΩR|/2 = 12k2/2 = 6k2.If M =
(
k −2k
k k

), then ι = |ΩR|/2 = 36k2/2 = 18k2.In both 
ases B∆ is S2.
• Case 9: B = Walsh((4, 2, 4)M ), d1 = 2.If M =

(
k 0
0 k

), then S = {(R0R1R2R1)
k},

R(R0R1R2R1)
kαW = R(R1R0R2R0)

k = R(R1R2)
k and

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2, R(R1R2)
k〉∆/R = 〈R(R1R2)

gcd(2,k)〉∆/R.Note that RX2 = R[(R1R2)
2]R0(R1R2)

−2 andRY 2 = R(X2)R1 = R[(R1R2)
2]R0R1(R1R2)

2are in 〈R(R1R2)
gcd(2,k)〉∆/R.When 2 ∤ k,

Υ(B) ∼= 〈RR1R2〉∆/R = 〈RR1R2, R(R1R2)
R0 , R(R1R2)

R0R1〉.Then 〈RR1R2〉∆/R 
ontains RX = (RX2)
k+1
2 and RR0R1 = RXR1R2. Therefore

Υ(B) ∼= ∆+/R ∼= Aut+(R), ι = |ΩR|/2 = 8k2/2 = 4k2 and B∆ is S2.When 2 | k,
Υ(B) ∼= 〈R(R1R2)

2〉∆/R
= 〈R(R1R2)

2, R[(R1R2)
2]R0 , R[(R1R2)

2]R0R1〉
= 〈R(R1R2)

2, RX2, RY 2〉
∼= (Ck/2 × Ck/2) ⋊ C2,

ι = k2/2 and B∆ is P8 = Walsh(P4).If M =
(
k −k
k k

), then S = {(R0R1R2)
2k}, R(R0R1R2)

2kαW = R and
Υ(B) ∼= 〈R(R1R2)

2, R(R2R0)
2〉∆/R

= 〈R(R1R2)
2〉∆/R

= 〈R(R1R2)
2, R[(R1R2)

2]R0 , R[(R1R2)
2]R0R1〉

= 〈R(R1R2)
2, RX2, RY 2〉

= 〈R(R1R2)
2, RX2, RX2Y 2〉.
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k+1
2 , so

Υ(B) ∼= 〈R(R1R2)
2, RX2, RX2Y 2〉

= 〈R(R1R2)
2, RX2, RXY 〉

∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is P4 = Walsh(P2).When 2 | k,
Υ(B) ∼= 〈R(R1R2)

2, RX2, RX2Y 2〉
∼= (Ck × Ck/2) ⋊ C2,

ι = k2 and B∆ is P8 = Walsh(P4).
• Case 10: B = Walsh((6, 2, 3)M ), d1 = gcd(l,m) = 2.If M =

(
k 0
0 k

), then S = {(R0R1R2)
2k}, R(R0R1R2)

2kαW = R, and
Υ(B) ∼= 〈R(R1R2)

2, R(R2R0)
2〉∆/R

= 〈R(R1R2)
2〉∆/R

= 〈R(R1R2)
2, R[(R1R2)

2]R0〉.Sin
e RXY = R[(R1R2)
2]R0(R1R2)

2 and RX−2Y = R(R1R2)
2[(R1R2)

2]R0 , RX3 and
RY 3 are in 〈R(R1R2)

2〉∆/R, and Υ(B) ∼= 〈R(R1R2)
2, RXY,RX−2Y 〉.When 3 ∤ k, RX and RY are in 〈R(R1R2)

2〉∆/R, as well as RR0R1 = RX[(R1R2)
2]−1.Then

Υ(B) ∼= 〈R(R1R2)
2, RXY,RX−2Y 〉

= 〈R(R1R2)
2, RX3, RXY 〉

= 〈R(R1R2)
2, RX,RXY 〉

= 〈R(R1R2)
2, RX,RY 〉

∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is P2 = Walsh(P1).When 3 | k,
Υ(B) ∼= 〈R(R1R2)

2, RXY,RX−2Y 〉
= 〈R(R1R2)

2, RXY,RX3〉
∼= (Ck × Ck/3) ⋊ C3,

ι = k2 and B∆ is P6 = Walsh(P3).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k},

R(R0R1R2R1R2)
2kαW = R(R1R0R2R0R2)

2k = RR1
2k = R,

Υ(B) ∼= 〈R(R1R2)
2, R(R2R0)

2〉∆/R = 〈R(R1R2)
2〉∆/R

= 〈R(R1R2)
2, R[(R1R2)

2]R0〉
= 〈R(R1R2)

2, RXY,RX−2Y 〉
∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is P6 = Walsh(P3).
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• Case 11: B = Walsh((3, 3, 3)M ) = D(02)((6, 2, 3)M ), Υ(B) ∼= 1 and ι = 1. Then B isregular and B∆ = B.
• Case 12: B = Walsh(D(12)((6, 2, 3)M )), d1 = gcd(l,m) = 3.Let X = X(12) = R0R2R1R2R1R2 and Y = Y (12) = R2R0R2R1R2R1. Be
ause
R(12)X ⇌ R(12)Y , RX ⇌ RY .If M =

(
k 0
0 k

), then S = {(R0R1R2)
2k(12)} = {(R0R2R1)

2k}, R(R0R2R1)
2kαW = R.Be
ause RX2

= R[(R1R2)
3]R0(R1R2)

3, RY 2
= R[(R1R2)

3]R0R2(R1R2)
3,

Υ(B) ∼= 〈R(R1R2)
3, R(R2R0)

3〉∆/R
= 〈R(R1R2)

3〉∆/R
= 〈R(R1R2)

3, R[(R1R2)
3]R0 , R[(R1R2)

3]R0R2〉
= 〈R(R1R2)

3, RX
2
, RY

2〉.When 2 ∤ k, RX = (RX
2
)

k+1
2 and RY = (RY

2
)

k+1
2 are in 〈R(R1R2)

3〉∆/R,
Υ(B) ∼= 〈R(R1R2)

3, RX,RY 〉 ∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is D(02)(P3) = Walsh(D3).When 2 | k,
Υ(B) ∼= 〈R(R1R2)

3, RX
2
, RY

2〉 ∼= (Ck/2 × Ck/2) ⋊ C2,

ι = k2/2 and B∆ is C = Walsh(D(12)(T )).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k(12)} = {(R0R2R1R2R1)

2k} and
R(R0R2R1R2R1)

2kαW = R(R1R2R0R2R0)
2k = R(R1R0R2)

2k = R(R0R1R2)
2k = R(X Y

−1
)k.Sin
e RX = R(X Y

−1
)R1R2 and RY = R(X Y

−1
)R1 ,

Υ(B) ∼= 〈R(R1R2)
3, R(R2R0)

3, R(X Y
−1

)k〉∆/R

= 〈R(R1R2)
3, R(X Y

−1
)k〉∆/R

= 〈R(R1R2)
3, RX

k
, RY

k〉∆/R
= 〈R(R1R2)

3, R[(R1R2)
3]R0 , R[(R1R2)

3]R0R2 , RX,RY 〉∆/R

= 〈R(R1R2)
3, RX

2
, RY

2
, RX

k
, RY

k〉∆/R

= 〈R(R1R2)
3, RX

gcd(2,k)
, RY

gcd(2,k)〉∆/R

= 〈R(R1R2)
3, RX

gcd(2,k)
, RY

gcd(2,k)〉.When 2 ∤ k,
Υ(B) ∼= 〈R(R1R2)

3, RX,RY 〉
= 〈R(R1R2)

3, RX,RX Y 〉
∼= (C3k × Ck) ⋊ C2,

ι = 6k2 and B∆ is D(02)(P3) = Walsh(D3).When 2 | k,
Υ(B) ∼= 〈R(R1R2)

3, RX
2
, RY

2〉
= 〈R(R1R2)

3, RX
2
, RX

2
Y

2
= R(X Y )2〉

∼= (C3k/2 × Ck/2) ⋊ C2,
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ι = 3k2/2 and B∆ is C = Walsh(D(12)(T )).

• Case 13: B = Walsh(D(12)((4, 2, 4)M )), d1 = gcd(l,m) = 4.If M =
(
k 0
0 k

), then S = {(R0R1R2R1)
k(12)} = {(R0R2R1R2)

k},
R(R0R2R1R2)

kαW = R(R1R2R0R2)
k = R[(R0R2R1R2)

k]R2R1 = R,
Υ(B) ∼= 〈R(R1R2)

4, R(R2R0)
4〉∆/R = 1 and ι = 1.If M =

(
k −k
k k

), then S = {(R0R1R2)
2k(12)} = {(R0R2R1)

2k},
R(R0R2R1)

2kαW = R,
Υ(B) ∼= 〈R(R1R2)

4, R(R2R0)
4〉∆/R = 1 and ι = 1.Either way, B is regular and B∆ = B.Chirality groups and 
hirality indi
es of B = Pin(R)The bipartite-regular hypermaps on the torus obtained by the Pin 
onstru
tion are listed, upto duality, in 
ases 1-6 of Table 4.1. We use the notations of Proposition 1.9.6.Remark 4.3.5. Let B = Pin(R) and ι the 
hirality index of B. If K is a hypermap 
overedby H su
h that Pin(K) is regular and has |ΩB|/ι �ags, then B∆ = Pin(K).Note also that when B = Pin(R), B∆ is a regular hypermap su
h that all verti
es havevalen
y 1 and hen
e, by Lemma 1.4.4, is on the sphere.In order to fa
ilitate our work we note that if {i, j, k} = {0, 1, 2}, then (RiRjRk)

2αP = 1:if j = 0, then (RiRjRk)
2αP = (R1

R0)2 = 1, else, if j 6= 0, then (RiRjRk)
2αP = (R1)

2 = 1.
• Case 1: B = Pin(D(021)((6, 2, 3)M )), d2 = gcd(m,n) = 3.If M =

(
k 0
0 k

), then S = {(R0R1R2)
2k(021)} = {(R2R0R1)

2k}, R(R2R0R1)
2kαP = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
3〉∆/R = 〈RR1R2, R(R1R2)

R0 , R(R0R1)
3〉

= 〈RR1R2, R(R1R2)
R0R1R2, R(R1R2)

R0(R0R1)
3〉

∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is S6 = Pin(S3).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k(021) = (R2R0R1R0R1)

2k},
R(R2R0R1R0R1)

2kαP = R(R0R1R0R1R0)
2k = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
3〉∆/R = 〈RR1R2, R(R1R2)

R0 , R(R0R1)
3〉

= 〈RR1R2, R(R1R2)
R0R1R2, R(R1R2)

R0(R0R1)
3〉

∼= (C3k × Ck) ⋊ C2,

ι = 6k2 and B∆ is S6 = Pin(S3).
• Case 2: B = Pin(D(01)((4, 2, 4)M )), d2 = gcd(m,n) = 4.Let X = X(01) and Y = Y (01). We have RX = RR1R0R2R0 = R(R1R2)(R2R0)

2,
RY = RR0R1R0R2 = R(R0R1)

2(R1R2), RX Y = R(R0R1)
2(R2R0)

2 = RR(R1R2)
R0R1(R1R2)and RX−1

Y = R(R1R2)
R0(R1R2).
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hirality indi
es... 77If M =
(
k 0
0 k

), then S = {(R0R1R2R1)
k(01)} = {(R1R0R2R0)

k},
R(R1R0R2R0)

kαP = R(R0R1R0R1)
k = R(R0R1)

2k and
Υ(B) ∼= 〈RR1R2, R(R0R1)

4, R(R0R1)
2k〉∆/R = 〈RR1R2, R(R0R1)

gcd(4,2k)〉∆/R.When 2 ∤ k, R(R2R0)
2 = R(R1R2)

R0(R0R1)
2(R1R2), so

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R = 〈RR1R2, R(R0R1)

2〉∆/R
= 〈RR1R2, R(R1R2)

R0 , R(R0R1)
2〉

= 〈RR1R2, R(R0R1)
2, R(R2R0)

2〉
= 〈RR1R2, RX,RY 〉
∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is S4 = Pin(S2).When 2 | k,
Υ(B) ∼= 〈RR1R2, R(R0R1)

4〉∆/R = 〈RR1R2〉∆/R
= 〈RR1R2, R(R1R2)

R0 , R(R1R2)
R0R1〉

= 〈RR1R2, RX Y ,RX
−1
Y 〉

= 〈RR1R2, RX
2
, RX Y 〉

∼= (Ck × Ck/2) ⋊ C2,

ι = k2 and B∆ is S8 = Pin(S4).If M =
(
k −k
k k

), then S = {(R2R1R0)
2k(01)} = {(R2R0R1)

2k}, R(R2R0R1)
2kαP = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
4〉∆/R = 〈RR1R2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R1R2)

R0R1〉
= 〈RR1R2, RX Y ,RX

−1
Y 〉

∼= (Ck × Ck) ⋊ C2,

ι = 2k2 and B∆ is S8 = Pin(S4).
• Case 3: B = Pin(D(02)((6, 2, 3)M )), d2 = gcd(m,n) = 2.LetX = X(02) and Y = Y (02). We haveRX = RR2R1R0R1R0R1 = R(R1R2)

−1(R0R1)
2,

RY = RR1R2R1R0R1R0 = R(R1R2)
2[(R1R2)

R0 ]−1.If M =
(
k 0
0 k

), then S = {(R0R1R2)
2k(02)} = {(R2R1R0)

2k}, R(R2R1R0)
2kαP = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R0R1)

2〉
= 〈RR1R2, RX,RY 〉
∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is S4 = Pin(S2).If M =
(
k −2k
k k

), then S = {(R0R1R2R1R2)
2k(02)} = {(R2R1R0R1R0)

2k},
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R(R2R1R0R1R0)

2kαP = R(R0R1R0R1R0)
2k = R,

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R0R1)

2〉
= 〈RR1R2, RX,RY 〉
= 〈RR1R2, RX,RX Y 〉
∼= (C3k × Ck) ⋊ C3,

ι = 9k2 and B∆ is S4 = Pin(S2).
• Case 4: B = Pin((3, 3, 3)M ), d2 = gcd(m,n) = 3.If M =

(
k 0
0 k

), then S = {(R2R1R0R1)
k},

R(R2R1R0R1)
kαP = R(R0R0R1R0)

k = R(R0R1)
k and

Υ(B) ∼= 〈RR1R2, R(R0R1)
3, R(R0R1)

k〉∆/R = 〈RR1R2, R(R0R1)
gcd(3,k)〉∆/R.We have RXY = R[(R1R2)

R0(R1R2)]
−1 and RX−2Y = R(R1R2)[(R1R2)

R0 ]−1(R1R2).When 3 ∤ k, Υ(B) ∼= 〈RR1R2, RR0R1〉∆/R = ∆+/R ∼= Aut+(R), ι = |ΩR|/2 = 6k2/2 =
3k2 and B∆ is S2 = Pin(S1).When 3 | k,

Υ(B) ∼= 〈RR1R2〉∆/R
= 〈RR1R2, R(R1R2)

R0〉
= 〈RR1R2, RXY,RX

−2Y 〉
= 〈RR1R2, RXY,RX

3〉
∼= (Ck × Ck/3) ⋊ C3,

ι = k2 and B∆ is S6 = Pin(S3).If M =
(
k −2k
k k

), then S = {(R2R1R0)
2k}, R(R2R1R0)

2kαP = R,
Υ(B) ∼= 〈RR1R2, R(R0R1)

3〉∆/R
= 〈RR1R2〉∆/R
= 〈RR1R2, R(R1R2)

R0〉
= 〈RR1R2, RXY,RX

−2Y 〉
∼= (Ck × Ck) ⋊ C3,

ι = 3k2 and B∆ is S6 = Pin(S3).
• Case 5: B = Pin((4, 2, 4)M ), d2 = gcd(m,n) = 2.If M =

(
k 0
0 k

), then S = {(R0R1R2R1)
k},

R(R0R1R2R1)
kαP = R(R1R0R0R0)

k = R(R1R0)
k and

Υ(B) ∼= 〈RR1R2, R(R0R1)
2, R(R1R0)

k〉∆/R = 〈RR1R2, R(R0R1)
gcd(2,k)〉∆/R.
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es... 79When 2 ∤ k, Υ(B) ∼= 〈RR1R2, RR0R1〉∆/R = ∆+/R ∼= Aut+(R), ι = |ΩR|/2 = 8k2/2 =
4k2 and B∆ is S2 = Pin(S1).When 2 | k, RXY = R(R1R2)

R0(R1R2), RX−1Y = R(R1R2)(R0R1)
−2(R1R2),

Υ(B) ∼= 〈RR1R2, R(R0R1)
2〉∆/R

= 〈RR1R2, R(R1R2)
R0 , R(R0R1)

2〉
= 〈RR1R2, RXY,RX

−1Y 〉
= 〈RR1R2, RXY,RX

2〉
= (Ck × Ck/2) × C4,

ι = 2k2 and B∆ is S4 = Pin(S2).If M =
(
k −k
k k

), then S = {(R0R1R2)
2k}, R(R0R1R2)

2kαP = R,
Υ(B) ∼= 〈RR1R2, R(R0R1)

2〉∆/R
= 〈RR1R2, R(R1R2)

R0 , R(R0R1)
2〉

= 〈RR1R2, RXY,RX
−1Y 〉

= (Ck × Ck) × C4,

ι = 4k2 and B∆ is S4 = Pin(S2).
• Case 6: B = Pin((6, 2, 3)M ), d2 = gcd(m,n) = 1. From Corollary 1.9.7, we see that

Υ(B) ∼= ∆+/R ∼= Aut+(R).If M =
(
k 0
0 k

), then ι = |ΩR|/2 = 12k2/2 = 6k2.If M =
(
k −2k
k k

), then ι = |ΩR|/2 = 36k2/2 = 18k2.In both 
ases B∆ is S2 = Pin(S1).4.4 A note on restri
tedly-regular hypermaps on the Klein bot-tleIn [33℄, Coxeter and Moser show that there are no regular maps on the Klein bottle, and in [15℄,Breda and Jones extend this result to hypermaps. However, the Klein bottle has Θ-regularhypermaps for every Θ ⊳2 ∆, Θ 6= ∆+. The hypermap B with hypermap subgroup B =
〈(R1R2)

4, (R2R0)
2, (R0R1)

4〉∆〈X4
2, Y4, X4Y4R2〉 is a ∆1̂-regular hypermap on the Klein bottlewith 8 �ags, 1 vertex, 2 edges and 1 fa
e. It is obtained from its orientable double 
overing

B+ = (4, 2, 4)( 2
0

0
1)

and the involutory ∆1̂-
onservative orientation-reversing automorphism of
B+ whi
h maps B+ to B+X4Y4R2. Similarly, the hypermap P with hypermap subgroup
P = 〈(R1R2)

4, (R2R0)
2, (R0R1)

4〉∆〈X4
2Y4

2, X4
−1Y4, X4Y4R1〉 is a ∆1-regular hypermap onthe Klein bottle with 16 �ags, 2 verti
es, 4 edges and 2 fa
es. It is obtained from its orientabledouble 
overing P+ = (4, 2, 4)� 2

2
-1
1

� and the involutory ∆1-
onservative orientation-reversingautomorphism of P+ whi
h maps P+ to P+X4Y4R1. Other 2-restri
tedly-regular hypermapson the Klein bottle 
an be obtained by duality.We intend to 
lassify the 2-restri
tedly-regular hypermaps on the Klein bottle in a futurework.
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# U Note U∆ Υ ι

1 (4, 2, 4)( l
m

-m
l ) 2k | l −m (4, 2, 4)( k

k
-k
k ) C(l2+m2)/2k2

l2+m2

2k2

2k ∤ l −m (4, 2, 4)( k
0

0
k ) C(l2+m2)/k2

l2+m2

k2

2 (6, 2, 3)( l
m

-l-m
l ) 3k | l −m (6, 2, 3)( k

k
-2k
k ) C(l2+lm+m2)/3k2

l2+lm+m2

3k2

3k ∤ l −m (6, 2, 3)( k
0

0
k ) C(l2+lm+m2)/k2

l2+lm+m2

k2

3 (3, 3, 3)( l
m

-l-m
l ) 3k | l −m (3, 3, 3)( k

k
-2k
k ) C(l2+lm+m2)/3k2

l2+lm+m2

3k2

3k ∤ l −m (3, 3, 3)( k
0

0
k ) C(l2+lm+m2)/k2

l2+lm+m2

k2

4 (4, 2, 4)( l
l
-m
m ) (4, 2, 4)( k

k
-k
k ) Clm/k2

lm
k2

5 (4, 2, 4)( l
m

m
l ) 2k | l −m (4, 2, 4)( k

k
-k
k ) C|l2−m2|/2k2

|l2−m2|
2k2

2k ∤ l −m (4, 2, 4)( k
0

0
k ) C|l2−m2|/k2

|l2−m2|
k2

6 (4, 2, 4)( l
0

0
m) (4, 2, 4)( k

0
0
k ) Clm/k2

lm
k2

7 (4, 2, 4)( l
m

-l
m) 2k | l −m (4, 2, 4)( k

k
-k
k ) Clm/k2

lm
k2

2k ∤ l −m (4, 2, 4)( k
0

0
k ) C2lm/k2

2lm
k2Table 4.2: Chirality groups, 
hirality indi
es and 
losure 
overs of the 2-restri
tedly-regularuniform hypermaps on the torus. (k = gcd(l,m))
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# B Note B∆

Υ ι

1 Pin(D(021)((6, 2, 3)M )) M =
(

k
0

0
k

)
S6 (Ck × Ck) ⋊ C2 2k2

M =
(

k
k
-2k
k

)
S6 (C3k × Ck) ⋊ C2 6k2

2 Pin(D(01)((4, 2, 4)M )) M =
(

k
0

0
k

)
, 2 ∤ k S4 (Ck × Ck) ⋊ C2 2k2

M =
(

k
0

0
k

)
, 2 | k S8 (Ck × Ck/2) ⋊ C2 k2

M =
(

k
k
-k
k

)
S8 (Ck × Ck) ⋊ C2 2k2

3 Pin(D(02)((6, 2, 3)M )) M =
(

k
0

0
k

)
S4 (Ck × Ck) ⋊ C3 3k2

M =
(

k
k
-2k
k

)
S4 (C3k × Ck) ⋊ C3 9k2

4 Pin((3, 3, 3)M ) M =
(

k
0

0
k

)
, 3 ∤ k S2 (Ck × Ck) ⋊ C3 3k2

M =
(

k
0

0
k

)
, 3 | k S6 (Ck × Ck/3) ⋊ C3 k2

M =
(

k
k
-2k
k

)
S6 (Ck × Ck) ⋊ C3 3k2

5 Pin((4, 2, 4)M ) M =
(

k
0

0
k

)
, 2 ∤ k S2 (Ck × Ck) ⋊ C4 4k2

M =
(

k
0

0
k

)
, 2 | k S4 (Ck × Ck/2) × C4 2k2

M =
(

k
k
-k
k

)
S4 (Ck × Ck) × C4 4k2

6 Pin((6, 2, 3)M ) M =
(

k
0

0
k

)
S2 (Ck × Ck) ⋊ C6 6k2

M =
(

k
k
-2k
k

)
S2 (C3k × Ck) ⋊ C6 18k2

7 Walsh(D(02)((6, 2, 3)M )) M =
(

k
0

0
k

)
S2 (Ck × Ck) ⋊ C6 6k2

M =
(

k
k
-2k
k

)
S2 (C3k × Ck) ⋊ C6 18k2

8 Walsh((4, 2, 4)M ) M =
(

k
0

0
k

)
, 2 ∤ k S2 (Ck × Ck) ⋊ C4 4k2

M =
(

k
0

0
k

)
, 2 | k P8 (Ck/2 × Ck/2) ⋊ C2 k2/2

M =
(

k
k
-k
k

)
, 2 ∤ k P4 (Ck × Ck) ⋊ C2 2k2

M =
(

k
k
-k
k

)
, 2 | k P8 (Ck × Ck/2) ⋊ C2 k2

9 Walsh((6, 2, 3)M ) M =
(

k
0

0
k

)
, 3 ∤ k P2 (Ck × Ck) ⋊ C3 3k2

M =
(

k
0

0
k

)
, 3 | k P6 (Ck × Ck/3) ⋊ C3 k2

M =
(

k
k
-2k
k

)
P6 (Ck × Ck) ⋊ C3 3k2

10 Walsh((3, 3, 3)M ) B 1 1

11 Walsh(D(12)((6, 2, 3)M )) M =
(

k
0

0
k

)
, 2 ∤ k D(02)(P3) (Ck × Ck) ⋊ C2 2k2

M =
(

k
0

0
k

)
, 2 | k C (Ck/2 × Ck/2) ⋊ C2 k2/2

M =
(

k
k
-2k
k

)
, 2 ∤ k D(02)(D3) (C3k × Ck) ⋊ C2 6k2

M =
(

k
k
-2k
k

)
, 2 | k C (C3k/2 × Ck/2) ⋊ C2 3k2/2

12 Walsh(D(12)((4, 2, 4)M )) M =
(

k
0

0
k

)
B 1 1Table 4.3: Chirality groups, 
hirality indi
es and 
losure 
overs of the bipartite-regular hyper-maps on the torus obtained via the Walsh and Pin 
onstru
tions.
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Chapter 5Hypermaps on the double torusIn this 
hapter we deal with the 2-restri
tedly-regular hypermaps on the double torus.The 
lassi�
ation of the orientably-regular maps on the double torus was made by Threlfall[62℄ in 1932, 
ompleting earlier work of Brahana [3℄ (see Table 9 of [33℄). In 1988, Corn andSingerman [28℄ determined all possible types for the remaining orientably-regular hypermapson the double torus (those of type (l,m, n) with l,m, n ≥ 3), as well as their rotation groups(see Table 2 of [28℄). Breda and Jones [15℄ 
lassi�ed the orientably-regular hypermaps on thedouble torus and 
omputed their rotation and automorphism groups. More re
ently, Singer-man and Syddall [59℄ determined the number of isomorphism 
lasses of uniform hypermapson the double torus using using Conder's small index subgroup programme [20℄.5.1 Regular and orientably-regular hypermaps on the doubletorusBe
ause the double torus is an orientable surfa
e, the regular hypermaps on the double torusare among the orientably-regular.In this se
tion we assume that H is an orientably-regular hypermap on the double torusof type (l,m, n). Sin
e H is uniform and has 
hara
teristi
 −2, using the Euler formula foruniform hypermaps (Corollary 1.4.2), we get
|ΩH|

2
=

2

1 − (1/l + 1/m+ 1/n)
. (5.1)Naturally, l,m, n divide |ΩH|/2 be
ause V = |ΩH|/2l, E = |ΩH|/2m and F = |ΩH|/2n arethe numbers of verti
es, edges and fa
es of H, respe
tively. In addition, Theorem 1.4.6 statesthat |ΩH| ≤ −84χ = 168, or equivalently, |ΩH|/2 ≤ 84.Table 5.1 lists all 22 possibilities for the number |Ω| of �ags and type (l,m, n) of a uniformhypermap on the double torus, with l ≤ m ≤ n as well as its numbers of verti
es, edges andfa
es. These values were obtained using GAP [34℄. In the last 
olumn we display the numberof orientably-regular hypermaps on the double torus of type (l,m, n) (determined by Bredaand Jones in [15℄). The numbers of non-isomorphi
 uniform hypermaps on the double torusof type (l,m, n), with l ≤ m ≤ n, 
an be found in [59℄.In what follows we give a brief des
ription of how to �nd all orientably-regular hypermapson the double torus. 83
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# |Ω| l m n V E F orient.-reg.
1 10 5 5 5 1 1 1 3

2 12 3 6 6 2 1 1 1

3 16 2 8 8 4 1 1 1

4 16 4 4 4 2 2 2 1

5 18 3 3 9 3 3 1 0

6 20 2 5 10 5 2 1 1

7 24 2 4 12 6 3 1 0

8 24 2 6 6 6 2 2 1

9 24 3 3 6 4 4 2 0

10 24 3 4 4 4 3 3 1

11 30 3 3 5 5 5 3 0

12 32 2 4 8 8 4 2 1

13 36 2 3 18 9 6 1 0

14 40 2 5 5 10 4 4 0

15 48 2 3 12 12 8 2 0

16 48 2 4 6 12 6 4 1

17 48 3 3 4 8 8 6 1

18 60 2 3 10 15 10 3 0

19 72 2 3 9 18 12 4 0

20 80 2 4 5 20 10 8 0

21 96 2 3 8 24 16 6 1

22 168 2 3 7 42 28 12 0Table 5.1: All possible values for the number of �ags and type of an orientably-regular hyper-map on the double torusLet H be a hypermap subgroup of H, G+ := ∆+/H, x := HR1R2, y := HR2R0 and
z := HR0R1. Then G+ = 〈x, y, z〉 and xyz = 1.Using the Sylow theorems it is easy to show that there are no orientably-regular hypermaps
orresponding to 
ases 11, 14, 20 and 22. In 
ases 20 and 22, n is prime and 〈z〉 is the unique
n-Sylow-subgroup. Hen
e 〈z〉 ⊳ G+. Sin
e xy = z−1 ∈ 〈z〉, 〈z〉x = 〈z〉y−1. It follows that
〈z〉 = 〈z〉x2 = 〈z〉y−2 and y−2 ∈ 〈z〉. On the other hand, Lagrange's theorem ensures that
y−2 /∈ 〈z〉 be
ause in both 
ases the order of y−2 does not divide the order of z. In 
ases 11and 14, m is prime and 〈y〉 is the unique m-Sylow-subgroup. In 
ase 11, x has order m, so
x ∈ 〈y〉 but z = (xy)−1 /∈ 〈y〉 be
ause n ∤ m. Similarly, in 
ase 14, z has order m, so z ∈ 〈y〉but x = (yz)−1 /∈ 〈y〉 be
ause l ∤ m.A brief 
onsideration shows that there are no orientably-regular hypermaps 
orrespondingto 
ases 9 and 15. First of all, we remark that if a fa
e is adja
ent to itself, then it is unique.Indeed, if Hg and HgR2 are �ags on the same fa
e f , then HgR2R0 = Hgx is also in f . Itfollows that x ∈ 〈z〉, so 〈z〉 = 〈x, z〉 = G+. Se
ond, y (resp. x) indu
es a permutation of thefa
es in
ident at an edge (resp. a vertex) su
h that all its disjoint 
y
les have the same length.Clearly, this length divides the valen
y m (resp. l) of all edges (resp. verti
es). Similarly, zindu
es a permutation of the fa
es adja
ent to a fa
e su
h that all its disjoint 
y
les have thesame length d. This length d is divides n and must be smaller than n. Finally, we note that



5.1 Regular and orientably-regular hypermaps on the double torus 85a hypermap 
orresponding to 
ases 9 or 15 has 2 fa
es, and its edges have valen
y 3.In 
ases 1, 2, 3, 5, 6, 7 and 13, F = 1, so |G+| = |〈z〉|, that is G+ = 〈z〉 ∼= Cn. It followsthat there is 0 ≤ k < n su
h that x = zk and y = x−1z−1 = z−k−1. Be
ause x and y haveorders l and m, gcd(n, k) = n/l and gcd(n, k + 1) = n/m.In 
ases 4, 8 and 12 (as well as in 
ases 9 and 15), F = 2, so |G+| = 2|〈z〉| and hen
e
〈z〉⊳2G

+. Sin
e x2, y2 ∈ 〈z〉⊳2G
+, there are 0 ≤ j, k < n su
h that x2 = zj and y2 = zk. Inaddition l/ gcd(l, 2) = n/ gcd(n, j) and m/ gcd(m, 2) = n/ gcd(n, j). Alternatively, note that

zx, zy ∈ 〈z〉 be
ause 〈z〉 ⊳2 G
+, so there are 0 ≤ p, q < n su
h that zx = zp, zy = zq and

gcd(n, p) = 1 = gcd(n, q).In 
ase 10, the number of fa
es in
ident at ea
h edge must be 2, so y2 ∈ 〈z〉. Be
ause yand z have order 4, y2 = z2.In 
ases 18 and 19, the number d of fa
es adja
ent to a fa
e is 2 and 3, respe
tively. Then
(zd)x ∈ 〈z〉, that is, (zd)x = zk for some 0 ≤ k < n.In 
ase 21, the number d of fa
es adja
ent to a fa
e is 2 or 4. Either way (z4)x ∈ 〈z〉.Be
ause z has order 8, z4 and (z4)x have order 2, so (z4)x = z4, that is, (z4x)2 = 1.In 
ase 16, the number d of fa
es adja
ent to a fa
e is 2 or 3. Be
ause ea
h fa
e is adja
entto the same number of fa
es, d 
annot be 3. Then d = 2 and (y2)x ∈ 〈y〉. Having in mindthat y has order 4 and x has order 2, (y2)x = y2 = y−2, that is, (y2x)2 = 1.In 
ase 17, z indu
es 2 permutations of the fa
es adja
ent to a fa
e su
h that their orderdivides 4. The disjoint 
y
les of these 2 permutations must have the same length, so theyhave order 1 or 2. Either way (z2)x ∈ 〈z〉 and, be
ause z has order 4, (z2)x = z2.With the help of GAP [34℄, this last pro
edure allows us to �nd hypermap subgroupsfor the orientably-regular hypermaps on the double torus. In ea
h 
ase we 
an determine a�nite set T , 
ontained in H and 
ontaining S = {(R1R2)

l, (R2R0)
m, (R0R1)

n}, su
h that
[∆+ : 〈T 〉∆+

] = |ΩH|/2. Clearly, H is regular if and only if H = 〈T 〉∆, or equivalently, if andonly if [∆ : 〈T 〉∆] = 2[∆+ : 〈T 〉∆] = 2[∆+ : H]. By inspe
tion, or using GAP [34℄ again, weget:Theorem 5.1.1 (Breda and Jones [15℄). All orientably-regular hypermaps on the double torusare regular.In other words, there are no orientably-
hiral hypermaps on the double torus.Table 5.2 lists, up to duality, all regular hypermaps on the double torus. For ea
h regularhypermap R on the double torus of type (l,m, n) with l ≤ m ≤ n we give a list X of additionalrelations su
h that the normal 
losure in ∆ of T := S∪X is a hypermap subgroup ofR. Finally,in the last two 
olumns we give the rotation group, Aut+(R) and the automorphism group,
Aut(R), whi
h 
an be found in [15℄. In the semi-dire
t produ
t C3 ⋊ C4, the generator of C4a
ts on C3 by inverting its elements. This group is denoted by 〈2, 3, 3〉 in [33℄ and by D̂3 in [15℄.Noti
e that the hypermaps in lines 1, 2 and 3 are not isomorphi
. However, H2

∼= D(12)(H1),
H3

∼= D(01)(H1) and H1
∼= D(02)(H1). The automorphism group of the hypermap H13 isthe group of genus two [63℄, the unique group for whi
h the minimum genus over all surfa
es
ontaining an imbedded Cayley graph for the group is two.Lemma 5.1.2 (Conservativeness of the regular hypermaps on the double torus). Let Θ ⊳2 ∆and let Hj be the regular hypermap listed in line j of Table 5.2. Then:1. H1, H2, H3 and H12 are Θ-
onservative if and only if Θ = ∆+;2. H4, H5 and H9 are Θ-
onservative if and only if Θ ∈ {∆+,∆0,∆0̂};
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# R |Ω| l m n Additional relations Aut+(R) Aut(R) Θ-
ons.
1 H1 10 5 5 5 (R1R2)(R0R1)

−1 C5 D5 ∆+

2 H2 10 5 5 5 (R1R2)(R0R1)
−2 C5 D5 ∆+

3 H3 10 5 5 5 (R1R2)(R0R1)
−3 C5 D5 ∆+

4 H4 12 3 6 6 (R1R2)(R0R1)
−4 C6 D6 ∆+,∆0,∆0̂

5 H5 16 2 8 8 (R1R2)(R0R1)
−4 C8 D8 ∆+,∆0,∆0̂

6 H6 16 4 4 4
(R1R2)

2(R0R1)
−2,

(R2R0)
2(R0R1)

−2 Q8 Q8 · C4 all
7 H7 20 2 5 10 (R1R2)(R0R1)

−5 C10 D10 ∆+,∆1,∆1̂

8 H8 24 2 6 6 (R2R0)
2(R0R1)

−4 C6 × C2 D6 × C2 all
9 H9 24 3 4 4 (R2R0)

2(R0R1)
−2 C3 ⋊ C4 (4, 6 | 2, 2) ∆+,∆0,∆0̂

10 H10 32 2 4 8 (R2R0)
2(R0R1)

−4 〈−2, 4 | 2〉 Hol(C8) all
11 H11 48 2 4 6 ((R2R0)

2(R1R2))
2 (4, 6 | 2, 2) D3 ×D4 all

12 H12 48 3 3 4 [(R0R1)
2, (R1R2)] SL2(3) GL2(3) ∆+

13 H13 96 2 3 8 ((R0R1)
4(R1R2))

2 GL2(3) GL2(3) ⋊ C2 ∆+,∆1,∆1̂Table 5.2: The orientably-regular hypermaps on the double torus `up to duality'3. H7 and H13 are Θ-
onservative if and only if Θ ∈ {∆+,∆1,∆1̂};4. H6, H8, H10 and H11 are Θ-
onservative for all Θ ⊳2 ∆.5.2 Pseudo-orientably-regular and bipartite-regular hypermapson the double torusSin
e ∆+00̂ = ∆+ ∩ ∆0 = ∆+ ∩ ∆0̂, every pseudo-orientably-regular hypermap P on anorientable surfa
e S is ∆+00̂-regular, as well as every bipartite-regular hypermap B on S. Forthis reason, we 
an derive the 
lassi�
ations of pseudo-orientably-regular and bipartite-regularhypermaps on S from the 
lassi�
ation of ∆+00̂-regular hypermaps on S.In this se
tion we determine all ∆+00̂-regular hypermaps on the double torus in order to
lassify all pseudo-orientably-regular and bipartite-regular hypermaps on the double torus.Now we assume that H is a ∆+00̂-regular hypermap and H is a hypermap subgroup of H.A

ording to Lemma 1.3.9, H is bipartite-uniform. Let (l1, l2;m;n) be the bipartite-type of
H. Sin
e H ⊳ ∆+00̂ and |ΩH| = [∆ : H] = [∆ : ∆+00̂] · [∆+00̂ : H] = 4[∆+00̂ : H], ∆+00̂/H isa group with order |ΩH|/4. By the Euler formula for bipartite-uniform hypermaps (Corollary1.4.3), (a, b, c, d) = (l1, l2,m/2, n/2) is a solution of

|ΩH|
4

=
2

2 − (1/a+ 1/b+ 1/c+ 1/d)
, (5.2)su
h that a, b, c, d | |ΩH|/4. Theorem 1.4.8 states that |ΩH| ≤ −168χ = 336, or equivalently,

|ΩH|/4 ≤ 84.Using GAP [34℄, one 
an easily determine all values for |ΩH|/4 and (a, b, c, d) su
h that
a ≤ b ≤ c ≤ d, |Ω|/4 is a multiple of a, b, c, d and equation (5.2) holds. These values are listedin Table 5.3 and give rise a total of 119 distin
t values for the bipartite-type (l1, l2;m;n) of abipartite-uniform hypermap on the double torus, with l1 ≤ l2 and m ≤ n.



5.2 Pseudo-orientably-regular and bipartite-regular hypermaps on the double torus 87
# |Ω| a b c d

1 12 3 3 3 3

2 16 2 2 4 4

3 20 1 5 5 5

4 24 1 3 6 6

5 24 2 2 2 6

6 24 2 2 3 3

7 32 1 2 8 8

8 32 1 4 4 4

9 32 2 2 2 4

10 36 1 3 3 9

11 40 1 2 5 10

12 48 1 2 4 12

13 48 1 2 6 6

14 48 1 3 3 6

# |Ω| a b c d

15 48 1 3 4 4

16 48 2 2 2 3

17 60 1 3 3 5

18 64 1 2 4 8

19 72 1 2 3 18

20 80 1 2 5 5

21 96 1 2 3 12

22 96 1 2 4 6

23 96 1 3 3 4

24 120 1 2 3 10

25 144 1 2 3 9

26 160 1 2 4 5

27 192 1 2 3 8

28 336 1 2 3 7Table 5.3: Solutions of (5.2) with a ≤ b ≤ c ≤ dIf l1 = 1 (53 
ases) or m/2 = 1 (another 53 
ases), then H ∼= Pin(K) or H ∼= Walsh(K)for some hypermap K on the double torus. Sin
e ∆+00̂ = ∆+ ∩ ∆0̂ = ∆+ϕ
P

−1 = ∆+ϕ
W

−1and H is ∆+00̂-regular, K is ∆+-regular, that is, orientably-regular. By Theorem 5.1.1, K isregular and hen
e H is bipartite-regular. This shows the following result.Lemma 5.2.1. If H is a ∆+00̂-regular hypermap on the double torus obtained by the Pin or
Walsh 
onstru
tion, then H is bipartite-regular. Thus, H is ∆0-regular if and only if H isregular.The bipartite-regular hypermaps on the double torus obtained by the Pin and Walsh
onstru
tions are displayed in Tables 5.5 and 5.4, respe
tively. Be
ause H3

∼= D(01)(H1),
Walsh(H3) ∼= Walsh(D(01)(H1)) ∼= Walsh(H1) (by Theorem 1.6.6). Sin
e H2

∼= D(12)(H1),
Pin(H2) ∼= Pin(D(12)(H1)) ∼= D(12)(Pin(H1)) (by Theorem 1.6.10); however Pin(H2) is notisomorphi
 to Pin(H1).Remark 5.2.2. The bipartite-regular hypermaps on the double torus obtained by the Pin
onstru
tion are non-uniform and hen
e bipartite-
hiral.The Walsh 
onstru
tion gives rise to 17 non-uniform bipartite-regular hypermaps on thedouble torus. One easily 
he
ks that

• Walsh(H2) = D(01)(H7),
• Walsh(D(02)(H4)) = D(01)(H8),
• Walsh(D(02)(H5)) = D(012)(H10),
• Walsh(H6) = D(01)(H10),
• Walsh(D(02)(H8)) = D(012)(H11),
• Walsh(D(02)(H9)) = H11,
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# |Ω| l1 l2 m/2 n/2 Walsh(·)
1 20 5 5 1 5 H2

2 20 5 5 1 5 H1 or H3

3 24 3 6 1 6 H4

4 24 6 6 1 3 D(02)(H4)

5 32 2 8 1 8 H5

6 32 8 8 1 2 D(02)(H5)

7 32 4 4 1 4 H6

8 40 2 5 1 10 H7

9 40 2 10 1 5 D(12)(H7)

10 40 5 10 1 2 D(021)(H7)

11 48 2 6 1 6 H8

12 48 6 6 1 2 D(02)(H8)

# |Ω| l1 l2 m/2 n/2 Walsh(·)
13 48 3 4 1 4 H9

14 48 4 4 1 3 D(02)(H9)

15 64 2 4 1 8 H10

16 64 2 8 1 4 D(12)(H10)

17 64 4 8 1 2 D(021)(H10)

18 96 2 4 1 6 H11

19 96 2 6 1 4 D(12)(H11)

20 96 4 6 1 2 D(021)(H11)

21 96 3 3 1 4 H12

22 96 3 4 1 3 D(12)(H12)

23 192 2 3 1 8 H13

24 192 2 8 1 3 D(12)(H13)

25 192 3 8 1 2 D(021)(H13)Table 5.4: Bipartite-regular hypermaps on the double torus obtained by the Walsh 
onstru
-tion.
• Walsh(H12) = H13,
• Walsh(H1) ∼= Walsh(H3) is bipartite-regular and uniform but it is not regular.In other words, the hypermaps listed in lines 1, 4, 6, 7, 12, 14 and 21 of Table 5.4 are regular,so their 
hirality groups are trivial and their 
hirality indi
es are 1; the other 18 hypermapsare bipartite-
hiral.It remains to analyze the ∆+00̂-regular hypermaps whi
h are not obtained via the Walshand Pin 
onstru
tions. The list of all possible values for the bipartite-type (l1, l2;m;n) of a

∆+00̂-regular hypermap on the double torus whi
h is not 
onstru
ted by the Walsh or Pin
onstru
tions (that is, su
h that l1, l2,m/2, n/2 ≥ 2) is given in Table 5.6.Let H be one of these ∆+00̂-regular hypermaps, H a hypermap subgroup of H and
G∗ = ∆+00̂/H. Let r = HR1R2, s = H(R1R2)

R0 , t = H(R2R0)
2 = HR2R2

R0 and
u = H(R0R1)

2 = HR1
R0R1. Sin
e ∆+00̂ = 〈R1R2, (R1R2)

R0 , (R2R0)
2, (R0R1)

2〉 (see Se
-tion 1.2), G∗/H = 〈r, s, t, u〉 and s = urt. In addition:
• rR1 = rR2 = r−1, rR0 = s = urt;
• tR2 = tR0 = t−1, tR1 = (t−1)r

−1 ;
• uR0 = uR1 = u−1, uR2 = (u−1)r;
• sR0 = r, sR1 = (urt)R1 = u−1r−1(t−1)r

−1
= u−1t−1r−1, sR2 = (sR1)r = r−1u−1t−1.In 
ase 1, G∗ = 〈u〉 ∼= C3. Be
ause s has order 3, u, r, t 
annot be all equal. So u =

r−1 = t = s or u = r = t−1 = s or u−1 = r = t = s. The relations u = r = t−1 = s or
u−1 = r = t = s give rise to hypermaps subgroups whi
h are 
onjugate under R0. For thisreason there are 2 non-isomorphi
 ∆+00̂-regular hypermaps of type (3, 3; 6; 6).
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# |Ω| l1 l2 m/2 n/2 Pin(·)
1 20 1 5 5 5 H1

2 20 1 5 5 5 H2

3 20 1 5 5 5 H3

4 24 1 3 6 6 H4

5 24 1 6 3 6 D(01)(H4)

6 32 1 2 8 8 H5

7 32 1 8 2 8 D(01)(H5)

8 32 1 4 4 4 H6

9 40 1 2 5 10 H7

10 40 1 5 2 10 D(01)(H7)

11 40 1 10 2 5 D(012)(H7)

12 48 1 2 6 6 H8

13 48 1 6 2 6 D(01)(H8)

# |Ω| l1 l2 m/2 n/2 Pin(·)
14 48 1 3 4 4 H9

15 48 1 4 3 4 D(01)(H9)

16 64 1 2 4 8 H10

17 64 1 4 2 8 D(01)(H10)

18 64 1 8 2 4 D(012)(H10)

19 96 1 2 4 6 H11

20 96 1 4 2 6 D(01)(H11)

21 96 1 6 2 4 D(012)(H11)

22 96 1 3 3 4 H12

23 96 1 4 3 3 D(02)(H12)

24 192 1 2 3 8 H13

25 192 1 3 2 8 D(01)(H13)

26 192 1 8 2 3 D(012)(H13)Table 5.5: Bipartite-regular hypermaps on the double torus obtained by the Pin 
onstru
tion.
# |Ω| l1 l2 m/2 n/2

1 12 3 3 3 3

2 16 2 2 4 4

3 16 2 4 2 4

4 16 4 4 2 2

5 24 2 2 2 6

6 24 2 6 2 2

7 24 2 2 3 3

8 24 2 3 2 3

9 24 3 3 2 2

10 32 2 2 2 4

11 32 2 4 2 2

12 48 2 2 2 3

13 48 2 3 2 2Table 5.6: Possible values for the bipartite-type (l1, l2;m;n) of a ∆+00̂-regular hypermap onthe double torus whi
h is not obtained from regular hypermaps by the Walsh or the Pin
onstru
tions.
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ase 2, G∗ = 〈u〉 ∼= C4. This group only has 1 element of order 2, so r = s = u2.In addition, sin
e G∗ is abelian, s = urt implies that t = u−1. In 
ase 3, G∗ = 〈u〉 ∼= C4,
r = t = u2 and s = u. In 
ase 4, G∗ = 〈r〉 ∼= C4, t = u = r2 and s = r. For ea
h bipartite-type
(2, 2; 8; 8), (2, 4; 4; 8) and (4, 4; 4; 4) there is only one ∆+00̂-regular hypermap with su
h type.In 
ases 5 and 6, G∗ has elements of order 6, so G∗ ∼= C6 is abelian. However, s2 6= u2r2t2be
ause exa
tly one of these elements does not have order 2. Consequently there is no ∆+00̂hypermap 
orresponding to these 
ases.In 
ases 7, 8 and 9, G∗ is C6 or D3

∼= S3 and G∗ has exa
tly one 3-Sylow-subgroup. In
ase 7, if G∗ = C6, then u ⇌ r and s = r, be
ause G∗ is abelian and has only 1 element oforder 2; else, if G∗ ∼= D3, then u 6= ur = u−1, so t = u and r = s, or t = u−1 and s = ru.These last relations give rise to hypermaps subgroups whi
h are 
onjugate under R1. In 
ase8, if G∗ = C6, then u ⇌ r and t = r; else, if G∗ ∼= D3, then u 6= ur = u−1, so s = uand r = t, or s = u−1 and t = ru. In 
ase 9, if G∗ = C6, then u ⇌ r and t = u; else, if
G∗ ∼= D3, then r 6= ru = r−1, so s = r and u = tr, or s = r−1 and t = u. These last relationsgive rise to hypermaps subgroups whi
h are 
onjugate under R1. Be
ause of this, there are 2non-isomorphi
 ∆+00̂-regular hypermaps of bipartite-type (2, 2; 6; 6), 3 non-isomorphi
 ∆+00̂-regular hypermaps of bipartite-type (2, 3; 4; 6) and 2 non-isomorphi
 ∆+00̂-regular hypermapsof bipartite-type (3, 3; 4; 4).In 
ases 10 and 11, G∗ is not abelian be
ause s2 6= u2r2t2. In addition G∗ 6= Q8, forotherwise the unique element of Q8 that has order 2 is in the 
enter of Q8, so s = urt implies
r = s = t = u. Hen
e G∗ = D4. In 
ase 10, r, s, t 
annot be all in 〈u〉 ⊳2 G

∗. On theother hand s = urt implies that at the number of elements of {r, s, t} outside 〈u〉 is even.If r, s /∈ 〈u〉, then ur = u−1, t = u2 and s = ru; if r, t /∈ 〈u〉, then ur = u−1, s = u2 and
t = ru; if s, t /∈ 〈u〉, then ut = u−1, r = u2 and s = tu. These last 2 sets of relationsgive rise to hypermaps subgroups whi
h are 
onjugate under R0. In 
ase 11, 〈s〉 ⊳2 G

∗; if
r, t /∈ 〈s〉, then u = s2 and t = sr; if r, u /∈ 〈s〉, then t = s2 and u = rs; if t, u /∈ 〈s〉, then
r = s2 and u = ts. These �rst 2 sets of relations give rise to hypermaps subgroups, H and
H(12), of non-isomorphi
 dual hypermaps. Be
ause of this, there are 2 non-isomorphi
 ∆+00̂-regular hypermaps of bipartite-type (2, 2; 4; 8) and 3 non-isomorphi
 ∆+00̂-regular hypermapsof bipartite-type (2, 4; 4; 4).Finally, in 
ases 12 and 13, sin
e s2 6= u2r2t2, G∗ is not abelian. There are 3 non-abeliangroups of order 12: D6

∼= D3 × C2, A4 and C3 ⋊ C4. The number of 3-Sylow-subgroups ofa group with 12 elements is 1 ou 4; if the number of 3-Sylow-subgroups if 4, then there are8 elements of order 3 and the remaining 4 elements form the only 2-Sylow-subgroup of G∗.However, be
ause every involution is in a 2-Sylow-subgroup and s = urt, or u−1 = rts−1,both groups 
annot have just 1 2-Sylow-subgroup. Hen
e G∗ 6= A4. In addition, G∗ 
annotbe C3 ⋊ C4 = 〈R,S | S3 = T 2 = (ST )2〉 be
ause this group has exa
tly 1 element of order2 whi
h generates the 
enter of the group, so if 3 elements of {r, s, t, u} have order 2, then
s = urt implies that all have order 2 and r = s = t = u. Indeed C3 ⋊ C4 has 1 element oforder 1, 1 of order 2, 2 of order 3, 6 of order 4 and 2 of order 6. Reasoning by elimination weget G∗ ∼= D6. Let N ∼= C6 ⊳G∗. In 
ase 12, u ∈ N ⊳2 G

∗. Be
ause s = urt, the set {r, s, t}has 1 element inside and 2 outside G∗. If r, s /∈ N , then t, u ∈ N and t ⇌ u; if s, t /∈ N ,then r, u ∈ N and r ⇌ u; if r, t /∈ N , then s, u ∈ N and s ⇌ u. These last 2 sets of relationsgive rise to hypermaps subgroups whi
h are 
onjugate under R0. In 
ase 13, s ∈ N ⊳2 G
∗. If

r, t /∈ N , then u, s ∈ N and u ⇌ s; if r, u /∈ N , then t, s ∈ N and t ⇌ s; if t, u /∈ N , then
r, s ∈ N and r ⇌ s. These �rst 2 sets of relations give rise to hypermaps subgroups, H and
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# |Ω| a, b, c, d Additional relations N∆(H) ι G∗

1 12 3, 3, 3, 3 (R0R1)
2[(R2R0)

2]−1, (R0R1)
2(R1R2) ∆ 1 C3

2 12 3, 3, 3, 3 (R0R1)
2(R2R0)

2, (R0R1)
2(R1R2)

−1 ∆0̂ 3 C3

3 16 2, 2, 4, 4 (R0R1)
2(R2R0)

2, [(R0R1)
2]2(R1R2)

−1 ∆ 1 C4

4 16 2, 4, 2, 4 [(R0R1)
2]2(R1R2)

−1, [(R0R1)
2]2[(R2R0)

2]−1 ∆0̂ 4 C4

5 16 4, 4, 2, 2 (R1R2)
2[(R2R0)

2]−1, (R1R2)
2[(R0R1)

2]−1 ∆ 1 C4

6 24 2, 2, 3, 3 [(R0R1)
2]R1R2 [(R0R1)

2]−1, (R1
R0R2

R0)(R1R2)
−1 ∆ 1 C6

7 24 2, 2, 3, 3 [(R1R2)(R0R1)
2]2, (R2R0)

2[(R0R1)
2]−1 ∆0 3 D3

8 24 2, 3, 2, 3 [(R0R1)
2]R1R2 [(R0R1)

2]−1, (R2R0)
2(R1R2)

−1 ∆0̂ 6 C6

9 24 2, 3, 2, 3 [(R1R2)(R0R1)
2]2, (R1

R0R2
R0)[(R0R1)

2]−1 ∆0̂ 6 D3

10 24 2, 3, 2, 3 [(R1R2)(R0R1)
2]2, (R1

R0R2
R0)[(R0R1)

2] ∆0̂ 6 D3

11 24 3, 3, 2, 2 [(R0R1)
2]R1R2 [(R0R1)

2]−1, (R2R0)
2[(R0R1)

2]−1 ∆ 1 C6

12 24 3, 3, 2, 2 [(R0R1)
2(R1R2)]

2, (R1
R0R2

R0)(R1R2)
−1 ∆0 3 D3

13 32 2, 2, 2, 4 [(R0R1)
2]2[(R2R0)

2]−1, (R1R2)(R0R1)
2(R1

R0R2
R0)−1 ∆ 1 D4

14 32 2, 2, 2, 4 [(R0R1)
2]2(R1

R0R2
R0)−1, (R1R2)(R0R1)

2[(R2R0)
2]−1 ∆0̂ 4 D4

15 32 2, 4, 2, 2 (R1
R0R2

R0)2[(R0R1)
2]−1, (R1

R0R2
R0)(R1R2)(R2R0)

2 ∆0̂ 2 D4

16 32 2, 4, 2, 2 (R1
R0R2

R0)2[(R2R0)
2]−1, (R1

R0R2
R0)(R0R1)

2(R1R2) ∆0̂ 2 D4

17 32 2, 4, 2, 2 (R1
R0R2

R0)2(R1R2)
−1, (R1

R0R2
R0)(R0R1)

2(R2R0)
2 ∆0̂ 4 D4

18 48 2, 2, 2, 3 (R2R0)
2(R0R1)

2(R2R0)
2[(R0R1)

2]−1 ∆ 1 D6

19 48 2, 2, 2, 3 (R1R2)(R0R1)
2(R1R2)[(R0R1)

2]−1 ∆0̂ 3 D6

20 48 2, 3, 2, 2 (R0R1)
2(R1

R0R2
R0)(R0R1)

2(R1
R0R2

R0)−1 ∆0̂ 6 D6

21 48 2, 3, 2, 2 (R2R0)
2(R1

R0R2
R0)(R2R0)

2(R1
R0R2

R0)−1 ∆0̂ 6 D6

22 48 2, 3, 2, 2 (R1R2)(R1
R0R2

R0)(R1R2)(R1
R0R2

R0)−1 ∆0̂ 6 D6Table 5.7: ∆+00̂-regular hypermaps on the double torus whi
h are not obtained by the Pin or
Walsh 
onstru
tions
H(12), of non-isomorphi
 dual hypermaps. Be
ause of this, there are 2 non-isomorphi
 ∆+00̂-regular hypermaps of bipartite-type (2, 2; 4; 6) and 3 non-isomorphi
 ∆+00̂-regular hypermapsof bipartite-type (2, 3; 4; 4).Table 5.7 lists all ∆+00̂-regular hypermaps H on the double torus whi
h are not obtainedby the Walsh or Pin 
onstru
tions. It also displays a list X of additional relations su
hthat the normal 
losure in ∆+00̂ of T := X ∪ {(R1R2)

a, [(R1R2)
R0 ]b, (R2R0)

2c, (R0R1)
2d} is ahypermap subgroup H of H.Using GAP [34℄, one 
an determine if H is regular or 2-restri
tedly-regular in the followingway. The normalizer N in ∆ of H, 
ontaining ∆+00̂, is ∆+00̂, ∆+, ∆0, ∆0̂ or ∆. Theorem 5.1.1states that every orientably-regular hypermap on the double torus is regular, so N 
annot be

∆+. Let Θ ∈ {∆0,∆0̂}. Now N = N∆(H) 
ontains Θ if and only if HΘ = H, or equivalently,if and only if
[Θ : TΘ] = [Θ : HΘ] = [Θ : ∆+00̂] · [∆+00̂ : HΘ] = 2 · [∆+00̂ : H] = 2[∆+00̂ : T∆+00̂

]. (5.3)Furthermore, if H = TΘ is not normal in Λ, where {Θ,Λ} = {∆0,∆0̂}, then H∆ = HΛ and
|ΩH| = [∆ : H] = [∆ : Λ] · [Λ : H∆] · [H∆ : H] = 2 · [Λ : HΛ] · [H∆ : H], (5.4)
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hirality index of H is equal to |ΩH|/(2[Λ : HΛ]). Obviously, when H is not uniform,we just need to 
he
k if H is bipartite-regular or not, sin
e H 
annot be ∆0-regular or regular.In the last 
olumns of Table 5.7 we display the normalizer in ∆ of H, the 
hirality index ι of
H and the group G∗ = ∆+00̂/H.Remark 5.2.3. The hypermaps listed in lines 1, 3, 5, 6, 11, 13 and 18 of Table 5.7 are theregular hypermaps H4, H5, H6, H8, H9, H10 and H11 of Table 5.2.5.3 Chirality groups and 
hirality indi
es of the 2-restri
tedly-regular hypermaps on the double torusIn this se
tion we 
ompute the 
hirality groups and 
hirality indi
es of the 2-restri
tedly-regular hypermaps on the torus.A

ording to Theorem 5.1.1, there are no orientably-
hiral hypermaps on the double torus.Looking at Tables 5.5, 5.4 and 5.7 and Remarks 5.2.2 and 5.2.3, we 
an see that, up to duality,there are 4 pseudo-orientably-
hiral and 60 bipartite-
hiral hypermaps on the double torus.5.3.1 Chirality groups and 
hirality indi
es of the bipartite-regular hyper-maps on the double torus obtained by the Walsh or Pin 
onstru
tionsChirality groups and 
hirality indi
es of B = Walsh(R)Let Wj = Walsh(Oj) be the bipartite-regular hypermap on the double torus listed in line j ofTable 5.4. Sin
e Wj is ∆+00̂-regular, Wj 
overs S2. Let Oj be a hypermap subgroup of Oj ,
x := OjR1R2, y := OjR2R0 and z := OjR0R1. Then ∆+/Oj = 〈x, y, z〉 and xyz = 1.

• If j is 1, 4, 6, 7, 12, 14 or 21, then Wj is regular, so Υ(Wj) = 1 and Wj
∆ = Wj .

• If j is 8, 13, 22, 23 or 25, then, by Corollary 1.9.7, Υ(Wj) ∼= Aut+(Oj) and Wj
∆ = S2.

• If j is 9, 11, 15, 16, 17, 18 or 19, Υ(Wj) ∼= 〈y2〉 ∼= Cm/2 and ι = m/2. Let p = |Ω|/4m.In all 7 
ases Oj → Pp, so Wj = Walsh(Oj) → Walsh(Pp) ∼= P2p and Wj
∆ = P2p.

• If j is 2 or 5, Υ(Wj) ∼= 〈z〉 ∼= Cn and Wj
∆ = S2.

• If j is 3 or 10, then Υ(Wj) ∼= 〈yl〉 ∼= Cm/l and Wj
∆ ∼= D(02)(Pl). In both 
ases Oj → Dl,so Wj = Walsh(Oj) → Walsh(Dl) ∼= D(02)(Pl) and Wj

∆ = D(02)(Pl).
• Υ(W20) ∼= 〈y2, x2〉 ∼= C3 × C2

∼= C6 be
ause x2 ∈ Z(∆+/O20). Sin
e O20 → P2,
W20 = Walsh(O20) → Walsh(P2) ∼= P4 and W20

∆ = P4.
• Υ(W24) ∼= 〈y2, (y2)z〉 ∼= Q8, sin
e y4 ∈ Z(∆+/O24), [(y2)z]2 = (y4)z = y4 = (y2)2 and

(y2(y2)z)2 = (y2x)4 = [(yxy)4]y
−1

= [(xyx)−4]y
−1

= [xy−4x]y
−1

= (y4)xy
−1

= y4. Sin
e
O24 → P3, W24 = Walsh(O24) → Walsh(P3) ∼= P6 and W24

∆ = P6.Table 5.8 lists the 
hirality groups, 
hirality indi
es and 
losure 
overs of the bipartite-regular hypermaps on the double torus obtained by the Walsh 
onstru
tion.
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# B = Walsh(·) Υ ι B∆

1 Walsh(H2) 1 1 D(01)(H7)

2 Walsh(H1) ∼= Walsh(H3) C5 5 S2

3 Walsh(H4) C2 2 D(02)(P3)

4 Walsh(D(02)(H4)) 1 1 D(01)(H8)

5 Walsh(H5) C8 8 S2

6 Walsh(D(02)(H5)) 1 1 D(012)(H10)

7 Walsh(H6) 1 1 D(01)(H10)

8 Walsh(H7) C10 10 S2

9 Walsh(D(12)(H7)) C5 5 P2

10 Walsh(D(021)(H7)) C2 2 D(02)(P5)

11 Walsh(H8) C3 3 P4

12 Walsh(D(02)(H8)) 1 1 D(012)(H11)

13 Walsh(H9) C3 ⋊ C4 12 S2

14 Walsh(D(02)(H9)) 1 1 H11

15 Walsh(H10) C2 2 P8

16 Walsh(D(12)(H10)) C4 4 P4

17 Walsh(D(021)(H10)) C4 4 P4

18 Walsh(H11) C2 2 P12

19 Walsh(D(12)(H11)) C3 3 P8

20 Walsh(D(021)(H11)) C6 6 P4

21 Walsh(H12) 1 1 H13

22 Walsh(D(12)(H12)) SL2(3) 24 S2

23 Walsh(H13) GL2(3) 48 S2

24 Walsh(D(12)(H13)) Q8 8 P6

25 Walsh(D(021)(H13)) GL2(3) 48 S2Table 5.8: Chirality groups, 
hirality indi
es and 
losure 
overs of the bipartite-regular hyper-maps on the double torus obtained by the Walsh 
onstru
tion.
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hirality indi
es of B = Pin(R)Let Pj = Pin(Oj) be the bipartite-regular hypermap on the double torus listed in line jof Table 5.5. Sin
e Pj is ∆+00̂-regular, Pj 
overs S2. By Proposition 1.8.5, Pj∆ has type
(1, 2k, 2k) and hen
e Pj∆ = S2k, for some k ∈ N. Let Oj be a hypermap subgroup of Oj ,
x := OjR1R2, y := OjR2R0 and z := OjR0R1. Then ∆+/Oj = 〈x, y, z〉 and xyz = 1.

• If j is 11, 15, 22, 24 or 26, then, by Corollary 1.9.7, Υ(Pj) ∼= Aut+(Oj) and Pj∆ = S2.
• By Corollary 1.9.7, Υ(P7) ∼= Aut+(D(01)(H5)) ∼= Aut+(H5) and P7

∆ = S2, be
ause
d2 = 2 but O7 = D(01)(H5) is not bipartite (see Lemma 5.1.2).

• If j is 10, 13, 17, 18, 19, 20, 21 or 25, then by Corollary 1.9.7, Υ(Pj) ∼= Aut+00̂(Oj) and
Pj∆ = S4, be
ause d2 = 2 and Oj is bipartite (see Lemma 5.1.2).Sin
e Aut+00̂(Oj) is a subgroup of index 2 in Aut+(Oj), and C10 and GL2(3) just haveone subgroup of index 2, Υ(P10) ∼= C5 and Υ(P25) ∼= SL2(3).In 
ase 13, Υ(P13) ∼= C6 be
ause all 3 subgroups of C6 × C2

∼= V4 × C3 of index 2 areisomorphi
 to C6.In 
ase 17, x2 = z4 = (z2)2 and zx = x2xzx = z3(zx)2 = z3y−2 = z3; therefore
(xz2)2 = x2x−1z2xz2 = x2z6z2 = x2 and Υ(P17) ∼= 〈x, z2〉 ∼= Q8.In 
ase 18, Υ(P18) ∼= 〈x〉 ∼= C8 be
ause x has order 8.In 
ase 19, (y2x)2 = 1 implies that (z2)x = z−2 and that x ⇌ y2. Sin
e y ⇌ y2,
y2 ∈ Z(∆+/O19) and Υ ∼= 〈x, y2, z2〉 ∼= 〈x, z2〉 × 〈y2〉 ∼= D3 × C2

∼= D6.In 
ase 20, (x2y)2 = 1 implies that (z2)x = z−2, so Υ(P19) ∼= 〈x, z2〉 ∼= C3 ⋊ C4.In 
ase 21, (z2y)2 = 1 implies that z2
⇌ y. Sin
e z2

⇌ z, z2 ∈ Z(∆+/O21) and
Υ(P21) ∼= 〈x, z2〉 ∼= C6 × C2.

• If j is 1, 2, 3, 4, 5, 6, 8, 9, 12, 13 or 14, Υ(Pj) ∼= 〈x〉 ∼= Cl and Pj∆ ∼= Sp, where
p = |Ω|/2l.

• Υ(P16) ∼= 〈x, z2〉 ∼= D4 be
ause y2 = z4 implies that zx = z−5 and (z2)x = z−10 = z−2.Sin
e O16 = H10 → S4, P16 = Pin(O16) → Pin(S4) ∼= S8 and P16
∆ = S8.

• Υ(P23) ∼= 〈x, xz〉 ∼= Q8 sin
e z ⇌ x2, (xz)3 = 1 = (zx)3, (xz)2 = (x2)z = x2 and
(xxz)2 = xz(zx)3x−1zxz = xzx−1zxz = xzxx2zxz = x2(xz)3 = x2. Sin
e O23 → S3,
P23 = Pin(O23) → Pin(S3) ∼= S6 and P23

∆ = S6.Table 5.9 lists the 
hirality groups, 
hirality indi
es and 
losure 
overs of the bipartite-regular hypermaps on the double torus obtained by the Pin 
onstru
tion.5.3.2 Chirality groups and 
hirality indi
es of the ∆+00̂-regular hypermapson the double torus whi
h are not obtained by the Walsh or Pin 
on-stru
tionsLet Bj be the ∆+00̂-regular hypermap listed in line j of Table 5.7 and Bj a hypermap subgroupof Bj . Then Bj 
overs S2 and Υ(Bj) = Bj
∆/Bj ⊳ ∆+00̂/Bj . As before, let r = BjR1R2,

s = Bj(R1R2)
R0 , t = Bj(R2R0)

2 and u = Bj(R0R1)
2.

• If j is 1, 3, 5, 6, 11, 13 or 18, then Bj is regular (see Remark 5.2.3), so Υ(Bj) = 1 and
Bj∆ = Bj .
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# B = Pin(·) Υ ι B∆

1 Pin(H1) C5 5 S2

2 Pin(H2) C5 5 S2

3 Pin(H3) C5 5 S2

4 Pin(H4) C3 3 S4

5 Pin(D(01)(H4)) C6 6 S2

6 Pin(H5) C2 2 S8

7 Pin(D(01)(H5)) C8 8 S2

8 Pin(H6) C4 4 S4

9 Pin(H7) C2 2 S10

10 Pin(D(01)(H7)) C5 5 S4

11 Pin(D(012)(H7)) C10 10 S2

12 Pin(H8) C2 2 S12

13 Pin(D(01)(H8)) C6 6 S4

14 Pin(H9) C3 3 S8

15 Pin(D(01)(H9)) C3 ⋊ C4 12 S2

16 Pin(H10) D4 8 S4

17 Pin(D(01)(H10)) Q8 8 S4

18 Pin(D(012)(H10)) C8 8 S4

19 Pin(H11) D6 12 S4

20 Pin(D(01)(H11)) C3 ⋊ C4 12 S4

21 Pin(D(012)(H11)) C6 × C2 12 S4

22 Pin(H12) SL2(3) 24 S2

23 Pin(D(02)(H12)) Q8 8 S6

24 Pin(H13) GL2(3) 48 S2

25 Pin(D(01)(H13)) SL2(3) 24 S4

26 Pin(D(012)(H13)) GL2(3) 48 S2Table 5.9: Bipartite-regular hypermaps on the double torus obtained by the Pin 
onstru
tion.
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# |Ω| H bip.-type ι Υ H∆

1 12 B1 (3, 3; 6, 6) 1 1 H4

2 12 B2 (3, 3; 6; 6) 3 C3 S2

3 16 B3 (2, 2; 8; 8) 1 1 H5

4 16 B4 (2, 4; 4; 8) 4 C4 S2

5 16 B5 (4, 4; 4; 4) 1 1 H6

6 24 B6 (2, 2; 6; 6) 1 1 H8

7 24 B7 (2, 2; 6; 6) 3 C3 P2

8 24 B8 (2, 3; 4; 6) 6 C6 S2

9 24 B9 (2, 3; 4; 6) 6 D3 S2

10 24 B10 (2, 3; 4; 6) 6 D3 S2

11 24 B11 (3, 3; 4; 4) 1 1 H9

12 24 B12 (3, 3; 4; 4) 3 C3 S4

13 32 B13 (2, 2; 4; 8) 1 1 H10

14 32 B14 (2, 2; 4; 8) 4 V4 S4

15 32 B15 (2, 4; 4; 4) 2 C2 D(12)(P4)

16 32 B16 (2, 4; 4; 4) 2 C2 P4

17 32 B17 (2, 4; 4; 4) 4 C4 S4

18 48 B18 (2, 2; 4; 6) 1 1 H11

19 48 B19 (2, 2; 4; 6) 3 C3 D(12)(P4)

20 48 B20 (2, 3; 4; 4) 6 D3 S4

21 48 B21 (2, 3; 4; 4) 6 D3 S4

22 48 B22 (2, 3; 4; 4) 6 C6 S4Table 5.10: ∆+00̂-regular hypermaps on the double torus whi
h are not obtained by the Pinor the Walsh 
onstru
tions
• If j is 2, 4, 8, 9 or 10, Υ(Bj) = ∆+00̂/Bj , be
ause Υ(Bj) and ∆+00̂/Bj have the sameorder. In addition, Bj∆ = S2.
• If j is 7, 12, 15, 16 or 19, Υ(Bj) has prime order and hen
e is 
y
li
. An easy 
al
ulationreveals that B7 
overs P2, B12 
overs S4, and B15 and B19 
over D(12)(P2). Owingto this, B7

∆ = P2, B12
∆ = S4 and B15

∆ = B19
∆ = D(12)(P4). The 
losure 
over of

B16
∼= D(12)(B15) is B16

∆ ∼= D(12)(B15)
∆ ∼= D(12)(B15

∆) ∼= D(12)(D(12)(P4)) ∼= P4.
• Υ(B14) = 〈r, u2〉 ∼= V4 and B14

∆ = P2 be
ause B14
∆ has 8 �ags and 
overs P2.

• Υ(B17) = 〈s〉 ∼= C4 and B17
∆ = S4 be
ause B17

∆ has 8 �ags and 
overs S4.
• If j is 20, 21 or 22, Υ(Bj) = 〈r, s〉 and Bj∆ = S4. When j is 22, r ⇌ s and so

Υ(B22) ∼= C2 × C3
∼= C6. When j is 20 or 21, rs 6= sr and hen
e Υ(Bj) ∼= D3.Table 5.10 displays the 
hirality groups, 
hirality indi
es and 
losure 
overs of the 2-restri
tedly-regular hypermaps on the double torus whi
h are not obtained by the Walsh or

Pin 
onstru
tions.



Appendix ANormal 
losures, 
ores andhomomorphismsWe list here some results about group theory used in the thesis.In what follows we assume that G and G′ are groups. As mentioned before, the normalizerof H in G is be denoted by NG(H) and the 
enter of G is denoted by Z(G). The kernel of agroup homomorphism ϕ : G→ G′ is denoted by kerϕ.Proposition A.1.1. Let ϕ : G → G′ be a group homomorphism and H ′ a subgroup of G′.Then:1. [G : H ′ϕ−1] ≤ [G′ : H ′].2. If ϕ is onto, then [G : H ′ϕ−1] = [G′ : H ′].3. If ϕ is onto and H ′
⊳G′, G/H ′ϕ−1 is isomorphi
 to G′/H ′.Applying Proposition A.1.1 to the in
lusion ι : H → G and to the proje
tion π : G→ G/N ,we get the following result.Corollary A.1.2. Let H and N be subgroups of G. Then:1. [H : H ∩N ] ≤ [G : N ].2. If N is normal in G, then [H : H ∩N ] = [G : N ] if and only if G = HN .3. If N is normal in G and N ⊆ H, then [G : H] = [G/N : H/N ].4. If [G : N ] = 2 and H * N , then [H : H ∩N ] = 2.The following result 
omes as Exer
ise 9 in page 75 of [50℄ and as Exer
ise 1.1.2 in page 3of [60℄.Lemma A.1.3. 1. Let H be a subgroup of G of �nite index. Then there is a normalsubgroup N of G 
ontained in H and also of �nite index.2. Let H and H ′ be subgroups of G of �nite index. Then H ∩H ′ also has �nite index.As a by-produ
t of the proof of Lemma A.1.3, we get:97



98 Chapter A. Normal 
losures, 
ores and homomorphismsRemark A.1.4. If H is a subgroup of G of �nite index, then HG has �nite index, be
ause
[G : HG] ≤ [G : HG] · [HG : H] = [G : H], and HG has �nite index by the previous lemma.It is easy to see that HG is a normal subgroup of H and that H is a normal subgroup of
NG(H). However H may not be normal in HG. The following result gives us a ne
essary andsu�
ient 
ondition for a subgroup H to be normal in its 
losure 
over HG.Lemma A.1.5. Let H be a subgroup of G. Then H is normal in HG if and only if there isa normal subgroup N of G su
h that H is normal in N .Proposition A.1.6. Let G be a group, N a normal subgroup of G and H a subgroup of Gsu
h that H ⊆ N .1. HN ⊆ HG and HN ⊇ HG.2. (HN

)G
= HG and (HN )G = HG.3. For all g ∈ G, (Hg)N =

(
HN

)g.4. NG(H) ⊆ NG(HN ).Lemma A.1.7. Let N be a normal subgroup of G of index 2, k ∈ G \ N and H a normalsubgroup of N . Then HG = H ∩Hk and HG = HHk.Proposition A.1.8. Let ϕ : G→ G′ be a group homomorphism, H ≤ G and H ′ ≤ G′. Then:1. (H ′ϕ−1
)G ⊆

(
H ′G

′
)
ϕ−1 and (H ′ϕ−1

)
G
⊇ (H ′

G′)ϕ−1.2. If ϕ is an epimorphism, then (H ′ϕ−1
)G ⊇

(
H ′G

′
)
ϕ−1 and (H ′ϕ−1

)
G
⊆ (H ′

G′)ϕ−1.3. (Hϕ)G
′ ⊇

(
HG
)
ϕ; if H ⊇ kerϕ, then (Hϕ)G′ ⊆ (HG)ϕ.4. If ϕ is an epimorphism, then (Hϕ)G

′ ⊆
(
HG
)
ϕ and (Hϕ)G′ ⊇ (HG)ϕ.Corollary A.1.9. Let ϕ : G→ G′ be an epimorphism, H ≤ G and H ′ ≤ G′. Then:1. (H ′ϕ−1)G = (H ′G

′

)ϕ−1 and (H ′ϕ−1)G = (H ′
G′)ϕ−1.2. (Hϕ)G

′

= (HG)ϕ; if ϕ is an isomorphism, then (Hϕ)G′ = (HG)ϕ.When ϕ is an inner automorphism of G we get:Corollary A.1.10. For all g ∈ G, HG = (Hg)G and HG = (Hg)G.
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