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palavras-chave

resumo

Analise de Clifford, familias normais, critério de Marty, funcdes
polymonogénicas, Teoria de Wiman-Valiron, crescimento assimptético.

Este trabalho tem como objectivo contribuir para um estudo de familias
normais de funcdes meromorficas especiais assim como para o estudo do
comportamento assimptético de fungdes polimonogénicas no dominio da
Andlise Hipercomplexa.

Neste contexto, obtemos condicdes necessarias e/ou suficientes de
normalidade para familias de fungées meromoérficas especiais, nomeadamente
a generalizacdo do Teorema de Marty e a Lema de Zalcman.

Para a classe de fun¢des polimonogénicas sdo demonstradas desigualdades
do tipo de Cauchy e algumas generalizacbes de resultados da teoria de
Wiman e Valiron. Consequentemente, sdo obtidas relacdes entre 0 maximo
mddulo da funcdo, o termo maximo e indice central da sua respectiva série de
Taylor-Almansi. Aplicam-se estes resultados ao crescimento assimptético
desta classe de funcoes.

Como aplicagdo, sdo obtidos teoremas sobre solugdes assimptoticas de
determinadas equacdes diferenciais de derivadas parciais e a classificacdo de
algumas solucdes das mesmas.



keywords

abstract

Clifford Analysis, normal families, Marty criteria, polymonogenic functions,
Wiman-Valiron Theory, asymptotic growth.

The aim of this work is to provide some contributions to the study of normal
family of special meromorphic functions as well as to the study of the
asymptotic behaviour of polymonogenic functions in the framework of
Hypercomplex Analysis.

In this context we have obtained necessary and/or sufficient normality
conditions for families of special meromorphic functions, in particular, a
generalization of Marty’s criterion and also of Zalcman’s lemma.

We prove inequalities of Cauchy-type estimates for a class of polymonogenic
functions and also some generalizations of results of the Wiman-Valiron theory.
Consequently, relations of the maximum modulus, the maximum term and the
norm of the central index with respect to their Taylor-Almansi series expansion
are obtained. These results are applied to the asymptotic growth behaviour of
those functions classes.

As applications we establish theorems on the asymptotic of solutions of certain
partial differential equations which allow us to provide a classification of some
of such solutions.
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Introduction

In this thesis we study normal families of Clifford-algebra-valued functions and the growth

behavior of polymonogenic functions.

The numerous applications of normal families and growth estimates in the theory of
holomorphic functions motivated us to perform an analogous study in the framework of
Clifford Analysis.

Concrete applications arise, for instance, in complex dynamics, boundary valued prob-
lems and asymptotic behavior of solutions of partial differential equations or other fields

of Physics and Engineering (see e.g. [8, 61] and also [33] 36, 37, 143, 70, [71]).

There exists manly two ways of generalizing the theory of functions of one complex
variable. One is the function theory of several complex variables and the other way can
be realized by using Clifford algebras which leads to hypercomplex function theory. In
both theories the starting point can be the consideration of null-solutions of particular
systems of first order partial differential equations in Euclidean spaces.

Hypercomplex function theory has several advantages compared with the theory of
several complex variables. One advantage is that it does not depend on the dimension
(even or odd) of the related real vector space. Another advantage is that higher order
differential operators can be factorized into products of lower order operators (for exam-
ple, the Laplace operator of several real variables can be factorized by two first order

hypercomplex differential operators like in the plane case).

Hypercomplex analysis can be used synonymously with Clifford analysis [13, 21]. In
turn, Clifford analysis is frequently considered as a generalization of quaternionic analysis

(see [25, 28]). In this work we use both terms, Hypercomplex analysis as well as Clifford

1



2 Introduction

analysis. If we would like to stress the relationship to subjects of complex function theory
we also use hypercomplex function theory.

The classes of functions which will be studied here are the class of solutions of
the iterated Dirac equation D*f = 0, k € N, where D = ﬁ:ei%, and also the
class of solutions of the iterated generalized Cauchy-Riemann eqﬁétion bk f =0, where

0

D := eg—— + D. The elements of these classes are usually denoted as polymonogenic

aZL'o

functions or also referred to as k-monogenic functions.

The starting points are 1-monogenic and, more general, meromorphic Clifford valued
functions with the aim to extend the theory of normal families to these classes of functions.
The notion of normal families was first introduced by Montel in [53] for holomorphic

functions, and more generally, for meromorphic functions in 1927. Montel defines:

7 A family of meromorphic complex valued functions is called normal if every sequence

of functions of the family contains a locally uniformly convergent subsequence.”

In 1931, Marty gave a necessary and sufficient criterion for normality of families of
meromorphic functions [48]. However this criterion is, in general, not easy to verify.
Therefore, in 1975, Zalcman proves an equivalent criterion for normality [72]. Usually
this is cited as Zalcman’s lemma. Both results are the basic tools in the development of
the theory of normal families. In this work we give a generalization of Marty’s criterion
as well as a generalization of Zalecman’s lemma for special meromorphic functions in the
hypercomplex setting. Special meromorphic functions are monogenic functions having at
most isolated poles in which they converge to infinity. This is not true, in general, for

meromorphic hypercomplex functions, and therefore different to the complex case.

The study of the growth behavior of polymonogenic functions is the main topic of the
second part. In holomorphic function theory growth estimates have several applications
to partial differential equations (see e.g. [33, 37, 43, 70, [71]).

The fundamentals in the study of the asymptotic growth of holomorphic and meromorphic
functions have been established by Wiman [71], Valiron [70], Nevalinna [56], Clunie [16]

and others.
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Among other problems, Wiman and Valiron have considered questions like:

” Does a holomorphic function have the same growth behavior as its derivative? What
is the relationship between the maximum modulus and the maximum of the coefficients
in the power series?” Or ”What is the relation between the growth of the function and

the index of the maximum term in the power series, called central index?”

The results that we present in this thesis give an answer to this kind of questions in
the context of polymonogenic functions.

We also obtain an explicit relation between special radial symmetric differential opera-
tors that act on polymonogenic functions. These include in particular the Euler operator
E = i%’% and the Gamma operator I' := i (mi% — xj%)eiej. These opera-

i=0 ‘ i,j=1,i<j ’ ! ;

tors generalize the real part and imaginary part of the complex differential operator 2,

respectively.

For the case of iterates of the Dirac operator, we give an explicit relation between a
polynomial of the Fuler operator and the square of the Gamma operator applied to a
polymonogenic function and the function itself. We also obtain a similar result for the
case of the iterated generalized Cauchy-Riemann operator. Moreover, some applications

to certain classes of partial differential equations are given.

The thesis is divided into five chapters. The outline of the contents of each chapter is

as follows:

In Chapter 1 basic properties of special Clifford algebra of signature (0,n) are given.
We start by recalling the fundamental notions and results from hypercomplex function
theory, which provides us with the basic tools for our analysis in the following chapters.
Then a special class of Clifford algebra valued functions, named special meromorphic is
introduced in the last section. Furthermore, a generalization of the spherical derivative is

discussed.



4 Introduction

In Chapter 2, using the one point compactification in R* (s € N) the chordal dis-
tance and its properties are considered. Criteria of normality for families of Clifford
valued monogenic functions and special meromorphic functions are studied. A gene-
ralized Marty’s criteria is presented. Furthermore, a generalization of Zalcman’s lemma

is also obtained.

In Chapter 3 and Chapter 4 some rudiments of Wiman-Valiron’s theory in the frame-
work of hypercomplex function theory, are given.

More specifically:

In Chapter 3 we start by developing Cauchy type estimates for solutions of the
iterated Dirac or iterated generalized Cauchy-Riemann equations. Relations between
the generalized maximum modulus, the maximum term and the norm of the central index
are obtained. In particular, we derive some Valiron type inequalities. In the last section
of this chapter the growth behavior of a 1-monogenic function which maps the interior

into the exterior of the unit ball is also studied.

In Chapter 4 some results on the asymptotic growth behavior of entire solutions of
the iterated Dirac equations in R™ or iterated generalized Cauchy-Riemann equation are
established. These are applied to obtain explicit asymptotic relations between the growth
of these solutions and that of their iterated radial derivatives. We conclude Chapter 4
with remarks on functions classes which arise from applications of the iterated Gamma

operator as well as iterated generalized Cauchy-Riemann operator.

In Chapter 5 some open problems for future research are stated.



Chapter 1

Some basic concepts of Clifford
analysis

In this chapter we start by introducing the basic concepts of Clifford algebras and their
associated function theory. For detailed information we refer, for instance to [13, 21 [67].
In the second part of this chapter we discuss a higher dimensional generalization of the

spherical derivative and some of its properties.

1.1 Clifford algebras

The geometric properties induced by using complex numbers provided a strong motivation
for Hamilton to look for higher dimensional in generalization of the complex number
system. Searching for a three dimensional vector system he discovered the quaternions,
in 1843, which is usually denoted by H. Although, the associativity is obtained, another

basic rule of arithmetics is lost, namely the commutativity.

For the standard basis system of the Hamiltonion quaternions, one often uses the no-
tation {1, 1, j,k}. In this thesis we prefer to use {eg, e1, €, €3} instead. The basis elements
satisfy the following multiplication rules:

6(2) = € €i€op = €& = € 1=1,2,3;
e = e2 =-1; ey = —eye; = es.

An element z of H is represented in the form
z = Sc(z)eg + Vec(z) := xoeg + x1e1 + Taes + w363,

5



6 1.1. Clifford algebras

where Sc(z) := xy and Vec(z) := x1e; + x99 + x3e3 are the scalar and vector part of z,

respectively. A pure quaternion
z = Vec(z) = x1e1 + xaea + w363

can be identified with a vector in R3. In this sense, due to Gibbs, the product of two pure
3 3
quaternions z := Y x;e; and w := Y wje; is given by
i=1 i=1

2w = (z,w) + z X w,
where z, w are identified as vectors in R3. Also
(z,w) 1= w1 + Towy + T3Ww;3

and

ZXW .= (l’g’wg — LC3”LUQ)€1 + (513311)1 — .%111]3)62 + (.I'l’LUg — 27211}1)63,
represent the scalar (or inner) and vector (or cross) products, respectively.

Inspired by the work of Hamilton, in 1878, Clifford introduced an n-dimensional
geometrical algebra in which the generalization of the scalar and vector product to higher
dimensions are also obtained. This algebra is known as Clifford algebra. In 1844, Grass-
mann had already introduced the higher dimensional vector product - exterior product
(or wedge product) - when he discovered the exterior algebra. For more information on

the history of Clifford algebras we refer to [13, [44] 50].

A Clifford algebra is an associative but non-commutative algebra over the real or the
complex field. In this work we consider the Clifford algebra of signature (0,n) denoted
by Cl,, and {eq, €1, €9, ..., e, } stands for the canonical basis of the Euclidean vector space
R+,

The basis elements satisfy the following multiplication rules
€i€; +ej€i = _252']'607 Z,j = 1, ,n,

where 6;; is the Kronecker symbol.
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A basis for the Clifford algebra C1,, is given by the set {e4 : A C {1,--- ,n}} with
es =ey€e, e, where 1 <1y <--- <. <n, ey:=e¢ey=1. Each element a € Cl,, can
be written in the form a = ), ases with a4 € R. Notice that a is the direct sum of a
scalar element, a vector element, a bi-vector element, ..., a k-vector element,..., a n-vector

element, i.e.,

Sc(a) = ag:= ap,
n
Vec(a) = > asea: =), ae;,
|A|=1 i=1
Bi-Vec(a) = ). aaea,
|A[=2
k-Vec(a) = > aaea,
| A=k
n-Vec(a) = ai93 n€123.m,
where |A| means the cardinality of the set A C {1,--- ,n}. Every k-vector can be inter-

preted geometrically as an oriented k-dimensional volume element.

Remark 1.1 The associated complex Clifford algebra is represented by Cl,, ®r C, where

each element is represented by a == Y. aaea, with ay := a% +ial for a%,aly € R.
AC{1, ,n}

Let C’l,’fb be the subspace of k-vectors, i.e., the space spanned by the product of k different
basis elements. Then the even subalgebra CI; of the Clifford algebra C1,, is defined by

cly = @ o

k even

Some elementary involutions in the Clifford algebras C1,, are:
a=Y s a =3 (DA aen o= 3 (-)aaes (L)
A A A

where €4 = e€,€, ,---€,, and ¢; ;= —e; for j = 1,---,n, € = ¢y = 1. These are
called conjugation, reversion and main involution, respectively. The conjugation and the

reversion are anti-automorphism and the main involution is an automorphism.
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Next we give some basic properties of these involutions. For a,b € Cl,,, we have
ab = ba; (ab)* = b*a*; (ab) = d'V.

The scalar product between two Clifford numbers a = >, a4e4 and b = >, baey is

defined by:
{a,b) := Sc(ab) := ZGAbA- (1.2)

A

From the scalar product (1.2), the Clifford norm may be derived by

Jall = v/Tara) = 4 (z W).

Three important subspaces of the Clifford algebra CIl, are the paravector space, the

quaternion algebra and the field of the complex numbers.

The paravector space is the linear subspace defined by

An—l—l = SpanR{]-7617 e 7671} =ReR"= Rn—H C Cln

n
with elements of the form z = xq+z1e1 + x99+ - - +x6,. Taking two vectors a := > a;e;
i=1

and b:= )" be; we obtain the wedge product given by
i=1

1
alb:= i(ab —ba).

z
1|

Another known subspace is the skew-field of real quaternions H, which is identified

Each non-zero paravector z € A, 1\{0} has an inverse element given by z ™' =

>

I

with CI. On the other hand, the Hamiltonian quaternions may be also identified with

Cls. One also have the field of complex numbers which is identified with Cl;.

Remark 1.2 The involutions defined in (1.1), satisfy @ = o' and a* = a, for a € A,
(or H).
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1.2 Vahlen group and Mobius transformations

In the complex case, any planar Mobius transformation can be expressed by

az+b

f(Z):ma

where a,b,c¢,d € C with ad — be # 0. This can also be extended to C U {oo} by setting
f (_Td) = oo and f(oco) = 2. One convenient way to express a Mobius transformation
is done by matrix notation. In 1902, using this process Vahlen treated Mobius transfor-
mation in higher dimensions [69]. Unfortunately, this paper had been forgotten. Only
in 1949, Maass rediscovered and improved Vahlen’s original approach. In 1923, Fueter
rediscovered this representation for the quaternion case.

Further important contributions to the study of Mébius transformation in higher di-
mensional Euclidean spaces were also provide by Ahlfors [4, [5, 6], by Zoll in [74], among

others.

From [4, [5] and [6] we recall:

Definition 1.1 (Clifford group) The Clifford group, T',,, is defined as the set of elements
z € Cl,, for which exist a natural number k € N and elements ay, ay,...,a; € Anyq \ {0},

k
such that z = [] a;.
i=1

This group is also known as the Lipschitz group (see [32, p.118]).

One can verify that I';, is actually a group with respect to the Clifford multiplication.

In the next proposition we recall some basic properties of the Clifford group.
Proposition 1.1 Leta,b €T, and z € A, 1. Then

(i) llall* = @a and ||ab|| = ||all||b]l,

(ii) ab™t, a*b, b~la, ba* € A, i1,

(iii) the map hy : Apy1 — Ani1 defined by ha(z) = az(a')™ is a bijective and sense-
-preserving isometry. In particular, if a € A,y 1 then hy(z) € Ty,.

Based on the notion of the Clifford group one defines Vahlen matrix as follows:
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Definition 1.2 (Vahlen matriz) Consider the set of matrices defined by

FiXQZ{A: (CCL Z)]a,b,c,dGFnU{O}}'

a b

A matriz A = ( J > is a Vahlen matrixz if the coefficients a,b,c and d satisfy the

c
following conditions:
ad* —bc* € R\ {0}

a'b €A1, a#0 (1.3)
cd S An+1, C §é 0.

The expression ad* — bc* is known as the pseudo-determinant of the matrix A.

The set of Vahlen matrices is a group and it is denoted as the Vahlen group (see e.g.
[32, p.119], [69]). This group is a generalization of the general linear group GL(2,C). Using
these matrices, it is possible to describe Mobius transformations in higher dimensional
spaces in an analogous compact form as one can do in R? using matrices from the general

linear group GL(2,C).
Definition 1.3 The left, resp. the right representation of the Mobius transformation:
My, Apir \ {—ctd} — Cly; Mg, :Anp \ {—c;'d,} — Cl,,

are defined, respectively, as:

Mp,(2) = (az+0b)(cz+d)7 1, a,b,c,d € ', U{0}
MRAl(Z) = (ZC1+d1)_1(ZCL1+bl), al,bl,cl,dlefnU{O}

where the associated matrices A = | © b , Ay = @ b belong to the Vahlen
c d C1 dl

group.

In the quaternionic case a Mobius transformation can be represented as:
Definition 1.4 Denote
My, :H\{-c'd} —H; Mg, :H\{-¢'d}— H,
as the representation of a left, resp. the right Mobius transformation, given explicitly by

Mp,(z) = (az+0b)(cz+d)H, a,b,c,d € H
MRAl(Z) = (zcl+d1)_1(za1+b1), al,b1,61,d1€H
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where
[ —ac™"d||[|e]| # 0, c#0 or [lad]|#0, c¢=0

||b1 — (llcl_ld1||||01|| 7é 07 C1 7é 0 or Ha1d1|| 7é 0, Cc1 = 0.

In many context one considers, in particular, Vahlen matrices whose pseudo-determinant

is equal to 1. This consideration leads to introduce:

b
Definition 1.5 (Special Vahlen group) Consider a Vahlen matriz A = “ J | This
c

matrix belongs to the special Vahlen group if the coefficients satisfy in addition to the
condition (1.3), the normalization condition:

ad* — bc* = £1.

The special Vahlen group denoted as SL(2,I',) is a generalization of the special linear

group SL(2,C). In this context, Vahlen and Maass proved the following theorem. (see
e.g. [6]).

Theorem 1.1 The special Vahlen group, SL(2,T,) forms a group under matriz multipli-
cation.

Each matriz from SL(2,T,,) induces a Mébius transformations in R™™. Conversely,
every Mébius transformations is induced by SL(2,T,).

Remark 1.3 The Mobius transformations associated to the special Vahlen group satisfy-
g ad* — bc* = 1 are the orientation preserving transformations, while ad* — bc* = —1
does not preserve the orientation.

By Definition [1.3/ and Definition [1.4/ one has a left, resp. right representation for a
Mobius transformations. The next result proves that, by means of the Vahlen matrix
representation, a left Mobius transformations can be expressed by a right Mobius trans-

formations (see [74]).

Theorem 1.2 Any Mébius transformations can be represented equivalently by left coeffi-
cients and right coefficients.
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Proof. Consider the representation of a Mobius transformations with left coefficients

My, (2) = (az +b)(cz + d)~'. Let us first suppose that ¢ = 0. Then

Mp,(z) = (az+b)d™!
= (@) Y ed ' +aod™t) = Mp,, (2)
aq b1 d_l a_lbd_l
where A; = = . Suppose ¢ # 0, then
C1 d1 0 CL_l
(az +b)(cz +d)™*
= (az+b)[(cH) 2z +cta)]!
(az +b—ac™td+ actd)(z + c71d) "t
[a

= la(z+c'd)+b—acd](z+cd) e
= alz+c'd)(z+ c‘ld) el 4 (b —ac™td) (2 + ¢ td) ~Let
= act+clte(b—actd)(z +ctd) et

= ac ' +cHeb— cac’ld)(z +ctd) et
Denote K := cb — cac™'d, the aim is to prove that K # 0.
Suppose that a, b, c,d € H. Then, in view of (1.4), we have that ||b —ac™d|| # 0. This

implies that K has an inverse. If a,b,¢,d € T',, U {0}, then in view of condition (1.3), we
have that ¢™'d = (¢7'd)* = d*(c™)* = d*(¢*)~!. Hence:

K =cb—cac'd = c(b— ad*(c*) ™) = c(bc* — ad*)(c*)™" # 0.
Since K # 0, we conclude that

Mp,(z) = act+c'K(z4ctd) e
= ac '+ K e+l dK o) et
= (K lc+cHdK o) (2K e+ ctdKe)ac™ + ¢71)
= (K lc+c'dK o) (2K cac™ + (¢ 7K teac™! + ¢7Y))
= Mg, (),

a, by K 'cac™ ¢ 'dK tecac™ + ¢t
¢ dp K 'e cldK e
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As a consequence of this theorem, there is no ambiguity in writing from now on

M(z) := My, ,(z) for a Mobius transformation.

1.3 Clifford analysis

An important issue in Clifford analysis is to introduce the concept of derivative of a
Clifford valued function. In the complex case, this can be defined by the following limit

(L2489 = 10

Az—0 AZ

= f'(2),

where f is a complex valued function in C.

At the end of the 19th century some attempts were made to extend this definition to
quaternionic valued functions in H. However, the lack of commutativity, brought two
cases into consideration:

lim (f(z + Az) — f(2))(Az)™" and  lim (A2) 7 (f(z + Az) — f(2)).

Az—0 Az—0

However, the only quaternionic valued functions for which these limits exists have,

respectively, the form
f(z) =az+b and f(z) =za+Db, a, be H.

For more details we refer, for instance, [42} 49, 68].
Another possibility to generalize complex holomorphy is offered by following the

Riemann approach. In this context we consider the differential operator

a 0
i=1 !

which is the Dirac operator in R", and the generalized Cauchy-Riemann operator, i.e.,

0
D:=_—+D, 1.
oze + (1.6)

The operator (1.6) is used when working in the paravector formalism, i.e., A, 1.

In the sense of the Riemann approach one introduces, cf. [21), p.13§]
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Definition 1.6 (Monogenicity) Let U be an open subset of A,.1. A real differentiable
function

.U —Cl,

is called left (right) monogenic or Clifford holomorphic in U if and only if
Df=0 (or fD=0).

Functions that are left (right) monogenic in the whole space are called left (right) entire
monogenic.

Analogously one may define the notion of monogenicity in the context of the Dirac
operator.

In contrast to the complex case, the composition of monogenic functions does not
remain monogenic, in general. However, the generalized Cauchy-Riemann operator is
quasi-invariant under the set of Mobius transformations.

More precisely, following for example [74, pp.45], we have

Theorem 1.3 Let Q C A1 be a domain and f : Q — Cl, be a left monogenic function.
If M(2) = (az + b)(cz + d)~' is a Mdbius transformation, then

(cz +d)

C) = ey ap

(f o M)(2)

is also left monogenic in M—1(Q). In the case dealing with right monogenic functions we
have that

(zc* 4 d¥)
[z + d*||"+!

G(z) = (f o M)(2)

is also right monogenic in M~1(Q).

The notion of left (right) monogenicity in 4,11 provides a powerful generalization
of the concept of complex analyticity to Clifford analysis, since many classical theorems
from complex analysis could be generalized to higher dimensions by this approach, we
refer for instance [13| 21] and [25] 26, 27]. As for example the Cauchy integral theorem
and Cauchy integral formula (cf. [13, pp.52]).
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Theorem 1.4 (Cauchy’s integral theorem) Let Q C A, 41 be an open set and S C € be an
(n+1)-dimensional compact differentiable and oriented manifold-with-boundary. Suppose
that C' is a (n+ 1)-chain on S. If f is left (right) monogenic in € then

/daf:() resp. /fda:(] ,
oC

ocC

where do denotes the n-dimensional oriented Lebesque surface measure.

Theorem 1.5 (Cauchy’s integral formula) Let Q2 C A,41 be an open set and S C 2 be
an (n + 1)-dimensional compact differentiable and oriented manifold-with-boundary. If f
is left (right) monogenic in € then

L [tz = o st0) = {M’ 2e ¥ (1.7)

W41 0, z€eQ\S.
oS
Here, qo(z—vy) = %, S° is the open kernel of S and wy, 1 := 27T(”+1)/2m (see.

[24, p.75]) is the area of the unit hypersphere with I'(-) the Gamma function.

Further generalizations of the classical theory are for instance:

Theorem 1.6 (Mazimum modulus theorem) Let f be a left (right) monogenic function
i a domain . If there exists a point zy € 2 such that

IF I < 11 (=),

for all z € Q, then f must be a constant function in Q.

Theorem 1.7 (Mazimum principle) Let 2 be a bounded open set in Anq1. If [ is con-
tinuous in Q (the closure of 1) and left (right) monogenic in €2, then

sup [ f(2)ll = sup [[f(2)]|
o0

z€ Q z €

Another important theorem is the Cauchy-Kowalewski extension theorem. This
theorem establishes that any real-analytic function f in R™ can be uniquely extended
to a monogenic function F in R**. First we introduce the notion of zo-normal neighbor-
hood, cf. [13} p.110].

Definition 1.7 (x¢-normal neighborhood) Let U C R™ be open. Then an open neighbor-

hood V- C A,4+1 of U is called a xo-normal neighborhood if for each z = xq +x in V the
line segment {z +t:t € R} NU is connected and contains just one point of V.
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Following for example [21, p.151], we have:

Theorem 1.8 (Cauchy-Kowalewski extension) Let U C R™ be open and connected. Sup-
pose that f : U — Cl,, is a real-analytic function. Then the function F defined by

g2 o

satisfies the left generalized Cauchy-Riemann equation DF = 0 in an open connected and
xo-normal neighborhood V-C A, .1 of U. Furthermore, F|y,—o = f in U. F is called the
Cauchy-Kowalewsk: extension of f into the xg-direction.

This extension allows to define the Cauchy-Kowalewski product (CK-product) which
preserves the monogenicity of the factors, despite of the non-commutativity of the Clifford
algebra ([13, p.68]).

In order to present the calculations in a more compact form, the following notations

will be used. With m = (my, ..., m,) € Nj as a n-dimensional multi-index we denote:
x® = e m! o= omyleoemy!, jm| o= my 4+ my,
where x = (x1,29,...,2,) € R". We also denote the multi-index (my,...,m,) with

m; = 0;; for 1 <, j <n by 7(¢). From [21], p.173], we recall

m

Definition 1.8 Let m € Nj\{0} and p(x) = X—|, then the Cauchy-Kowalewski extension
m!
of p(x) is given by

CK(p(X)) = Pm(z) = Z Zﬂ(ml)...zﬁ(mn), (18)

" weperm(m)

where perm(m) denotes the set of all permutations of the sequence (my,...,m,) and
zi = x; — xoe; fori=1,...,n. The functions Pm(2) are the Fueter polynomials.

In [45, p.18], Malonek proved that all these functions take their values in A, ;1. They
can be written in the form of powers using permutational products. They also can be
interpreted as generalized positive powers replacing the classic positive powers in many

generalizations of the classical theorems. An estimate of these functions, is given by:

(Bl
—.

[P (2)[| < (1.9)
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These estimates were first established in the case of quaternionic valued functions by
Fueter in [20], and for higher dimensions by Kraufhar in [38, p.19].

Using these functions instead of the powers of 2™ for m € Ny, we obtain (e.g. cf. [13|

pp.71]):

Theorem 1.9 (Taylor expansion) Let B(zy, R) C Any1 be an open ball with center z
and radius R. Suppose that f : B(zo, R) — Cl, is a left (right) monogenic function.
Then, for any 0 < r < R, the function f has a unique Taylor series representation in
B(zg,7) of the form

+00 +oo
f(Z) - Z Pm(z ZO>ama f(Z) = Z CLm'Pm(Z - ZO)
|m|=0 |m|=0
oml f

where ag == f(z) and ay, = (20)-

Oxm

The analogue of the negative power functions were first introduced for the quaternion
case by Fueter in [26] and for R"™! by Delanghe in [23]. These generalized negative power
functions arise from the Cauchy kernel function gg and their partial derivatives

z omotmit-tmy

:: _ 1.1
QO(Z) ”Z||n+17 qm(z) axgnoaljlnl . 8.1}2”” qO(z)7 ( O)

for m := (mg, mq,...,m,). In view of the monogenicity, one can restrict to multi-indices
These functions are left and right monogenic in A, \ {0} and take their values in

A1 In [38, pp.24] the following recurrence formula is given:

%%(2) = lfj ('E')!j!!qmj(zw [(%) jﬁl(?letkﬂ

=0 k=1
41

with ¢, € {1,...,n} not necessarily distinct numbers. From this representation one can

casily derive the following estimate on these functions, see [20] and also [38, p.26]:

l

olml

n(n+1)..(n+ |m| —1)
Oxm '

N 2|7

qo(z (1.12)
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These functions play the same role as the negative complex powers in the Laurent series
expansion of an holomorphic function in an annular domain. The following theorem

provides a representation of a monogenic function in an annular domain (see e.g. [23],

[13, p.90]).

Theorem 1.10 (Generalized Laurent expansion) Suppose that f is left (right) monogenic

in B(0,R) \ B(0,r) where 0 <r < R. Then f has a unique Laurent series expansion of
the form

+00 +00
FE) = Pu()am+ D tm(2)bm, (1.13)
|m|=0 |m|=0
+oo +oo
)= amPm(2)+ D bmtm(2)
|m|=0 |m|=0
where
tm= [ (OO b= [ Pul@de@1(©)
o 0B(0,r) i 0B(0,r)

Notice that both series converge normally in B(0, R), respectively in R™*1\ B(0,r).

Although a monogenic function in 4, can have singularities of manifolds of dimen-
sion 0,1,...,n — 1, in our study we focus on the singularities of manifolds of dimension 0.
These are called isolated singularities. Notice that it is not possible to have singularities
of manifolds of dimension n and n + 1. This is a consequence of the generalized Cauchy-
-Riemann equation. For detailed information about singularities of monogenic functions

we refer to [28] 29, 54, 55]. The following definitions are cited from [13, p.94] or [23].

Definition 1.9 (Regular and Singular points) A point zy € A, is called

(i) a left (right) regular point of the Clifford valued function f, if there exists an open
neighborhood V,, where f is left (right) monogenic;

(ii) a singular point of the Clifford valued function f, if there exists no open neighborhood
V., where f is left (right) monogenic,

(#ii) an isolated singularity if it is a left (right) singular point of the Clifford valued func-
tion f and if there exists an open neighborhood V., where f is left (right) monogenic

inV, \ {20}



Chapter 1. Some basic concepts of Clifford analysis 19

Definition 1.10 (Classification of isolated singularities) Let Q2 C A,41 be an open set
and zy € 2. Suppose that f : Q\ {z0} — Cl,, is left (right) monogenic and zy is a left
(right) isolated singularity. Then zq is called a left (right)

(1) isolated pole (or pole) of order n+ |ml|, if the coefficients, by of the second series in
the Laurent series expansion (1.13) are zero for |k| > |m|;

(i) isolated essential singularity, if the cardinality of the set {k | b # 0} is infinite,
where by are the coefficients of the second series of the Laurent series expansion
(1.13).

Definition 1.11 (Meromorphic functions) Let 0 be an open subset of A,.1 and
f:Q — Cl,. The function f is called left (right) meromorphic function in Q if there
exists a subset S C ) such that:

(i) S has no accumulation point in €);
(i1) f is left (right) monogenic in Q\ S;

(iii) f has a left (right) isolated pole at each point of S.

The condition (i) implies that no compact subset of {2 contains infinitely many points

of S, i.e., S is at most countable (see [23, Lemma CJ).

Remark 1.4 In classical complex theory of one variable, if f is a meromorphic function
and zy a pole of f then
lim f(z) = oo.

220
In case of meromorphic Clifford valued functions this is not always true. In order to
present an example we first consider the representation formula of the generalized negative
powers presented in [20)].
In the formula of [20] the following notation is used: p,m € Ny are defined as

P= (p17p27 ‘“7p'n)7 m = (m17m27 7mn) :
pém = b1 Smly‘“upnémn‘

Furthermore, we need the Pochhammer symbol (k)s := k(k+1)(k+2)...(k + s — 1) where
ke R, s e N. From [20] we recall

1 (2z)m72p
Qm(z) - L1 0<§<ma(ng m, p) ||Z||n_1+2|m|_2|p|

n—1+2m| —2p| <~ my—2p,
—_— 1.14
( Y ey (1.14)

z
q=1 1
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where a(n, m, p) := (m+£,)!p! (”Tfl)hn‘flp| (—=1)™=Pl and Z := 2129...2,.

Next, we present an example which the function does not converge to infinity at the
isolated pole. Consider m = 7(i) + 7(j) for 0 < i # j < n, using (1.14)) we obtain the
Junction qrgy4-;) defined as

1 @2y (a3 Iam
Gr(i)+r()(2) = a(n, 7(i) + 7(5),0) || *3 z e

n—1
q=1

o 1 aln. (i (i n (2:}02)(2%)2 (QJZZ‘)GJ‘ + (QJZJ‘)GZ‘
= el 7)) (09 T ¢ Bt )

n—1

where z = 0 is an isolated pole. Substituting z := xgeq we have

qT(i)-‘rT(j) (IOJ 07 cey O) =0.

This implies that the function in the direction of xoq will remain bounded when approaching
the pole.

In [64] Ryan proved, for left monogenic functions f : Az \ {0} — H with negative
degree of homogeneity, that the set of lines radiating from the origin on which f vanishes
has a finite cardinality.

In view of Remark [1.4' it becomes natural to think about isolated zeros regarded as
points. Many questions related to value distribution theory in Clifford analysis are still
not solved. However, Hempfling and Kraufhar in [35] obtained some results for some

meromorphic functions in Clifford analysis. From [35] we take the following definition:

Definition 1.12 Let f : Q — A, 11, where 2 is an open set of A, 41.

(i) Lety € A,11. Then an element x € Q is called a y-point of f if f(x) =y.

(ii) x* € Q is called an isolated y-point, if there exists € > 0 such that f(x) #y for all
x € B(a*,e) \ {z*}.

We also define oo-point as follows.

Definition 1.13 Let f : Q — Cl,, where  is an open set of An,i1. x* € 0 is called
an oo-point, if x* is an isolated singularity of f and lim f(x) = oo, independently from

which path we approrimate x*.
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Next we define a special class of functions which will be studied later on.

Definition 1.14 (Special meromorphic functions) Let f be a Clifford valued function
defined in a domain Q2 C A,y1. f is called a left (right) special meromorphic function in
Q if [ is left (right) meromorphic and each isolated singularity of f is an oco-point.

Some examples of this type of special meromorphic functions are presented next.

Example 1.1 The Cauchy kernel go(2) := H”LH
z n

phic function. We know that qo(2) has an isolated pole of order n at the origin. Moreover
0 is an oo-point, since liH(l) qo(2) = oo.

s an example of a special meromor-

Furthermore, from [35] we also know that qo has only isolated z-points.

Example 1.2 Consider the simply-periodic Clifford cotangent function associated with
the lattice 2Ze; (0 < j <p) (1 <p <n) defined by

cotW(z,2Ze;) := Z qo(z + 2me;)

meZ

and the simply-periodic Clifford tangent function defined by
tanV(z,2Ze;) = —cotV(z + ¢;, 2Ze;),

from [35,38]. The poles of these functions are the points of 2Ze; and Ze; \ 2Ze;, respec-
tively. Consequently the poles are co-points. Hence, these functions are special meromor-
phic functions.

Example 1.3 The function q.;(2) =

5 qo(z), (i =1,2,...,n) has an isolated pole at
T

zero. Let us prove that these functions are special meromorphic.
Using formula (1.11) these functions can be rewritten as

n—1,__4

(z _n—l—l
2

5 (eiz_l)] :

Gi)

4r1)(2) = qo(2) [

Taking the norm, leads to

—1 1
n - (E’lei) n n +

(eiz™")

|

laeol = lanCo) || -

_n+l B n—1,
> lgo(2)l l(e:z™ )1l = 1z es) |
2 2
n+1 n-1 _
= Nl | 5= - )qul

= . (1.15)
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Applying inequality (1.12) and (1.15), we have:

L el <
> || 4r(6)\R >~ .
2]+ © 2]+

Taking the limit over the isolated singularity, it yields lirrg)HqT(i)(z)H = o00. Hence, we

conclude that q.;) are special meromorphic.
Relaying on the representation formula given in (1.14) we present the following example.

Example 1.4 Let m = 27(i) for 0 <i <n. Then

() = - ! 1 (a(n, 27(i), 0) Hi\QI’:?’ <” j n %e) +a(n, 20 (3), 7())(n + UHZHL"”)
- - ! 1 (a(n, 27(i), 0) (zﬁéﬁnziﬂ) . 2H9:||||5+||52 ei) + aln, 27(@'),7@))%> .
Taking the norm, one has:
ez = M—Qlfg 2]+ 4(n® + 4n + 3)a7 — 4(n + 1)7||=])?]
= %(Hz“2 —2(n+1)z3)* + 8(n + 1)a?

where a solution of (||z]|* — 2(n+ 1)2?)* + 8(n + 1)z = 0 is zero.
Therefore, we obtain

li ; = 00.
Zlir(l] q2‘r(7,) (Z) o
In the next example we consider functions which have at most isolated pole of order

n+ 1.

Example 1.5 Let zy be a pole of order n + 1 of a left monogenic function f. Consider
the following series expansion of f in a neighborhood of zy

f(z) = Z Pm(z — z0)am + Z Gm (2 — 20)bm, (1.16)
jml=0 jml=0

such that, for |m*| =1, by~ € T, and

”bm*

>n Y bl (1.17)
|m|=1

m#m*

Let us prove that f is also a left special meromorphic function.
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In order to do so, we start by proving that there exists two positive constants ¢,y and
Csup Such that in a neighborhood of zy we have

i o) < IR < [ + o) (1.18)

Iz = zof"+! Iz = zof"+!

Without loss of generality, assume that zg = 0. Using formulas (1.12) and (1.9), we obtain

IF)I < Z [[Pan( ||||am||+z [1Gen (2)[[1[oan |

|m|=0 |m|=0
1| i X Els
< | > Mell + 2 lBoll + 1217 D llamll =~
L |m|=1 |m|=0 ’
o
S P S bl + o(1) (1.19)
L |m|=1

> Vin(2)

|m|=0

—n .y ||me|> - HZII(IIboll + 20"

Using the same arguments as in Example [1.5 and applying the condition (1.17) on the
m#m*

coefficients, leads to:
|m|=1

||z||;"+1 <||bm* - ||bm||> —of )] (1.20)

|m|=1

.
IF&I = T (IIbm*

Vv

Taking the limit towards the isolated singularity, in view of (1.19) and (1.20), we obtain

lim [[f(2)]| = oo

z—0

This proves that f is left special meromorphic.

In order to proceed we define the Jacobian matrix of a Clifford valued function g defined

as

Zgl z)e; + Z 9(i1,i2) 61112 + ...

i1 <ig
(i1,12)|=2

+ Z Gir,sin—1)(2)€i1in_1 T 9(1,2,...0)(Z)€12..m)

i1<...<in
|(i17"'77:’ﬂ*1)|:n_1
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where the real valued functions ¢, (m := (mq,mo,...

,my,) for my < ... < my,, and

m; € {0,1,2,---,n}, i = 1,...,n) are denoted as the real component functions of g.

Identifying this function with a vector in R*", the Jacobian matrix J, is represented by

Jy(2) =
3%90(2) 3%90(2)
9 d

37091(2) 3—93191(2)
= 9n(2) 7= gn(2)
3 )

2z, J(1 2)(3) a—mlg(m)(z)

=913 (2) 2913 (2)

a;ilg(l,n)(z>

3%19(2,3)(2)

a9 (2)
3%)9(2,3)(2)

2]

912 g dm-1m(2)

%9(1,273)(2) 3%19(1,2,3) (2)

o Yn-2n-1m)(2) s In-20n-1m)(2)

| %9(1,2,3,“.,7@)(2) 3%19(1,2,3,...,71)(2)

57 90(2)

%gl(z)

%gn(z)

%g(n—l,n) (Z)

%9(1,2,3)(2)

%g(n—ln—l,n)(z)

o)
92, 9(1,2,3,...n) (2) donxn+1)

(1.21)

This can also be written in a more compact form as Vg.

Remark 1.5 Notice that for a A,i1-valued function f, the Jacobian matriz is a

(n+1) x (n+ 1) matriz.

If the determinant of the Jacobian matrix of the function f at an y-point of f, * is non
zero (i.e., det Jp(x*) # 0) then x* is an isolated y-point of f. This is a consequence of

the implicit function theorem.

An interesting type of Clifford valued function is the Clifford group valued function

(ClG-valued function) in a domain ©Q C A, ;1. A Clifford group valued function g as the
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form
g9(z) = HGZ'<Z), keN

where G; are paravector valued functions in €. Since these functions are products of
paravector valued functions, then they also have an inverse with respect to the Clifford

multiplication. This is

g(z) = 9(2) _ Gils) Gial(s)  Go(2)
g2 GG (N* 1Go(2)]*

If we assume that these functions belongs at least to the class C'(Q') for Q' C © then we

may establish the following result.

Proposition 1.2 Let g be a left (rz’ght) monogenic Clifford group valued function in a
domain Q C Apy1. If g71(2) := belongs to the class C*(Y) for Q' C Q, then

Hg )H2

1 2

J1(2) = ——— | J(2) — ————=MJ(2) ]|,
! lg())I* [ lg(z)l12 7
where M := [gAgB] Al for |Al,|B| =0,...,n, is at most 2™ x 2™ matriz. Furthermore,
X
(2" +2)
[J-1(2)[| < 175(2)l.

lg(=)I]*

In particular, if g is a paravector valued function in Q and if g~ belongs at least to C* ()

then
(n +3)

[lg(=)II?

Proof. We decompose ¢ into its real components, i.e.,

[ g1 ()] < 15 (2)1

= Z ga(z)ea, AcA{l, - n}.

|A|=0

This representation in turn can be identified with a vector in R?". Then the Jacobian

matrix is given by

994 :
Jy(2) = [ ()} |A|=0,---,n, i=0,1,...,n.
! O 2 x (n+1)
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Since the function g consists of a product of paravector valued functions, ¢ has an inverse

with respect to the Clifford multiplication which has the form

g Hz) = 9(2) _ Z (_1)\A| gA(Z)|26A, Al =0,---,n. (1.22)

Identifying (1.22) as a vector in R*" and calculating the partial derivative of each

1

component function of g7, one obtains

d ga(z) \ 1 g , A2 — ; "\ dgp s B
oz (ot ) = T | G I —204) 32 S ante) .

|B|=0

for A,B C {l,---,n}and i = 0,1,...,n. Therefore, the Jacobian matrix of g~! has the

following form

1 2
7B = Loe (‘]g(z) - ug<z>|PM‘]9(z>)

2
TEIE (I - ||g<z>|r2M) Iol2). (1.23)

—_

where

Jg(2) = [(—1)|A| aii (QA(Z))] :

21 (n+1)

Ionyon the identity matrix and the matrix M is defined as

98(2) T —90(2)gn(2) —90(2)9(1,2)(2) e —90(2)9(1,2,3,...,n)(2)
—g1(2)g0(2) T —g1(2)gn(2) —91(2)9(1,2)(2) T —91(2)9(1,2,3,...,n)(2)
—92(2)g0(2) T —92(2)gn(2) —92(2’)9(1,2)(2) e —92(2)9(1,2,37...,n)(2)
—gn(2)go(2) - 9a(2) —gn(2)90.2)(2) - —gn(2)90.23...m)(2)

—9a1,2)(2)go(2) -+ —9(12)(2)gn(2) 9(21,2)(2) s —=ga.2)(2)90.23,..0)(2)

—9(1,2,3,...,n)(2)90(2) o =9023,..0)(2)9n(2)  —90,23,..m)(2)901,2)(2) - 9(217273,”,7,1)(2)
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For simplicity, M is denoted by M := [gAgBL s for |A|,|B| =0,...,n. Moreover,
A|x|B
since || J5(2)|| = [[J4(2)|| and [|M|| = [|g(2)[|* we infer that

1 2
sl < s | [ = 1t
! l9(2)1? g lg(2)|]?
(2" 4 2)
< [ Jg(2)]]-
lg(2)[]> "7
For the particular case where g is a paravector valued function then || I, 11)xm+1)|| = n+1,

consequently we obtain

1 2
it < g | oo = et ]|
< nE3) Gl

lg()II?

We conclude this chapter introducing a generalization of the classical spherical deriva-

tive and discuss some of its properties.

Definition 1.15 Let f be a special meromorphic Clifford valued function defined in a
domain Q0 of A,11. We define O(f) : Q — R by

AN

N = TR

whenever z is not an isolated pole of f, and

O(/f)(z) = lim ©(f)(w)

w—=z

if z is an isolated pole of f.

Analogously as in the complex case we obtain the following property.

Proposition 1.3 If zy is an isolated pole of a special meromorphic Clifford valued func-
tion f, then ©(f)(z0) = 0.
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Proof. Without loss of generality, let z = 0 be a pole of order n + p. Since f is special

meromorphic we know that the function has the following behavior

Cinf C

[

in a neighborhood of 0, where ¢in s, Csup are positive constants, i.e., [|f(2)|| = & where

c is a positive constant.

Consider the series expansion of f:

= Z Pm(z)am + Z dm(2)b

|m|=0 |m|=0

P
with principal part P,(z) := > ¢m(2)bm where

|m|=0

Cinf Csu,
||Z||n+p - 0<1) < ||PP<Z)|| < HZHnI:_p + 0<1)

for cing, Csup two positive constants.
The next step is to obtain an upper bound estimate for ||.J¢||. Computing the partial

derivatives of f we obtain:

Of = Pum Ot
890,-<Z) Z 890, ot Z 3961 (1.25)

lm|=0 |m|=0

Taking the norm of (1.25) and using (1.12) we obtain

8qm

o X P
ai(z)H < | > L Z

|m|=0 |m|=0

H ™

+oo p
OPm n(n+1)...(n + |m|)
< | £ Foone| - £ o
|m|=0 |m|=0
1
= e | n(n+1)..(n+p) > [bm]
|m|=p
o e 5 MDDy ] SR P
|m|=0 HZH‘m‘ " lon]=0 (9:131 m
+o(1) (1.26)

= [z



Chapter 1. Some basic concepts of Clifford analysis 29
where b:=n(n+1)...(n+p) > ||bm|landi=0,...,n
|m|=p
Using inequality (1.26), we obtain
Jr(2)|? =
17521 Z L.
2
: Z <||z||n+p+1 O(”)
; 2
Applying inequalities (1.27) and (1.24), yields:
REACIE
O(f)(z) =
L+ [[f(2)I?
<W + 0(1))
< vn+1 5
1+ (5 — o)
(n+p-1) b+ o)z n+p+1
Wil ki 2||n+ (b+o(1)]|z]] n+)2'
[P0+ + (cing — o(1)]|2]"*7)
Since ¢y # 0 and n +p > 1, we get
O(/)(0) := lm O(/)(2) = 0.
Hence, we conclude that the function ©(f)(z9) = 0 for an arbitrary pole zy of f. O

Remark 1.6 In the classical case the spherical derivative is defined as

/(2] :
————,  zisnotapole
O(f)(z) := L+ [f(=)]
o |R—es%f BIE z is a pole of order 1
0, z is a pole of order s > 2

where Res(f,z) is the residue of [ at z.

Next we discuss some basic properties of the higher dimensional generalization.
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Proposition 1.4 Let f be a special meromorphic Clifford valued function in 2. Then:

(i) O(f) is a continuous function;

(i1) O(f)(z) < oo for all z € Q.

Proof. From the definition of ©(f) and the property that f is special meromorphic, we
obtain that O(f) is continuous.

It remains to prove (ii). Since f is special meromorphic, it has only isolated singu-
larities which are oo-points. Let ¥ be the set of all isolated singularities of f. If 2y € X
then, by Proposition [1.3, ©(f)(zy) = 0.

If zo € Q\ X then there exists a positive constant M < oo such that ©(f)(z) < M. O

Consider the following examples:

Example 1.6 Consider the quaternion valued Cauchy kernel function

) =

where z = 0 is a pole of order 3. The function qo is a special meromorphic where each
component function is given by

qu(Z):e_j ! j:071727"‘

and the partial derivatives by

0q0,(2) |2]|* — dwor; 0q0,(z)  —4wo;

= : = 1=1,2,3;
O 12]]° Or; 2]/
(1.28)
Jqo,(2) |2]|* — 4z Jqo,(2) —4ajx;
- = - ; - = - 7’#3 7’7]:17273
Oz I2(]° Iz I2]]°
V12||2|?
Therefore, ||Jy, (2)|| = % obtaining the following expression for
z
12 2|7
Olao)(z) = Y

Ll
For z = 0 we have ©(go)(0) = 0.

In fact, for ||z|| <r (r > 0) we obtain the following upper bound estimate

O(go)(2) < V122,
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Example 1.7 Let us consider the generalized monogenic exponential function given in
[15, p.117] by

g(z) = exp(zo,T1,...,%,)

N (cos(xo\/ﬁ) - %(61 b ten) sin(xoﬁ)) |

The component functions are given by

go(z) = T cos(mo/n);
6x1+"'+mn

gi(2) = ————sin(xgv/n), i=1,2,...,n.

vn

and the partial derivatives by

0 0
90 (2) = —v/ne™ Tt sin(xgy/n); 90 (2) = " T cos(zov/n), 1= 1,2,...,m;

856’0 8951
0gi dgi ettt -

“(z) = —e" T cos(zy/N); —(2) = —————sin(zov/n), j,i =1,2,...,n.
B N = Q

Therefore, we obtain the following expression for

erit e fp 1

1 4 e2(@it+zn) °

O(9)(2) =
Take ||z|| < r where v > 0. The function ©(g)(z) is bounded by

O(g9)(z) < et Hnyn+1 < e™vn + 1.



32

1.3. Clifford analysis




Chapter 2

Marty’s criterion and Zalcman’s
Lemma in Clifford analysis

The aim of this chapter is to develop some fundamentals of the theory of normal families
in the framework of Clifford analysis. We provide a generalization of Marty’s criterion
which is one of the basic results in the classical theory. As an application we proved a

generalization of Zalcman’s lemma.

The concept of a normal family of holomorphic and meromorphic complex valued
functions was introduced by Montel [53]. A necessary and sufficient condition of normality
was obtained by Marty [48]. A proof from a more geometrical point of view of Marty’s
criterion was given by Ahlfors [3, pp.218]. An analytic proof was also given by Hayman

[34, pp.158].

Although Marty’s criterion gives a complete answer to the question ” When is a family
of functions normal?”, in practice it is very difficult to check normality by this criterion.
Based on Marty’s criterion, Zalcman established a necessary and sufficient condition of
normality in [72]. A refinement has been obtained in [73].

In 1982, Miniowitz generalized the Zalcman lemma for families of K-quasimeromorphic

mappings® in the (n+1)-dimensional unit ball [51].

In this chapter, we give the basic notions, such as chordal distance in A, 1, and

also normality of a family of left (right) monogenic and left (right) special meromorphic

lsee e.g. [52]

33
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functions defined in a fixed domain 2.
Throughout this chapter A is to be denoted as either A,,;; or H when no ambiguity

occurs.

2.1 Chordal distance

Since A = A, is isomorphic to R"*!, a one point compactification of R"*! is used. The
extended space is denoted by A = A U {co}.

As a model for A we introduce a hypersphere in R”*2. The relation which links the
coordinates in A and the rectangular coordinates in the image on the hypersphere is as
follows.

Consider an orthonormal coordinate system defined by the standard basis
{€0, €1,y €, eni1} in R™2 which can be identified with R"™ = R @ A. A point of
A is denoted by

2 =o€y + T1€1 + ... + THER

and identified with (2,21, ..., ,). The hypersphere S7t(0, ..., %) is defined as:
2

2

. 1 _ 1\* 1
Sl+1(07 ey 5) = {y = (y():yb ...,yn+1) . y(Q) + y% + ...+ (yn—i—l — 5) = 1} . (21)

The relation between Yo, Y1y -5 Yn, 1- Ynt1 for (y07 Y15 -5 Yns 1- yn+1) € Serl(O? M) %)
2

and the components of z € A are obtained by
Yi = Ty, 1 —y,1 = a, (2.2)

for « = 0,1,...,n and « a positive real number. Substituting the system of equations
given by (2.2) into y2 + y? + ... + (Ynp1 — %)2 = 1, one obtains the explicit expression
1

T It el i
Using (2.2), the map ¢ : S77'(0,..., 1) — A is defined as
2

(0%

n

) Zol—LynHe FEST0. . DV, 0,1}

00, 7=1(0,..,0,1),

(2.3)
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and its inverse ¢ : A — Sg“(O, ., 3) as
( LCR S ) ceA
W(z) = L+l 7 T4 (]2 1+ ]2 ) (2.4)
(0,...,0,1), 2 = 00,

where we identify z := xoeg +x1€1 + ..., +x5€, With (zg, 21, ..., ,), and use the expression
for . We obtain a relation between A and sg“(o, . %) in terms of ¢ and 1. The next
step is to obtain a metric on A.

As an example, consider the Euclidian distance between two elements of A,

a = > ae; and b := > be;, given by |la — b||* = > (a; — b;)*. In this metric the
i=0 i=0

=0

ideal point z = oo plays an exceptional role. However, it is possible to introduce a metric
avoiding this problem.

Let a,b denote two points in A and let 6,5 their corresponding points on the hyper-
sphere S’%‘“(O, ...,3) induced by (2.1). The length of the line segment between a,b is
defined to be the chordal distance between a,b and is denoted by d.[a,b]. To set up a

closed expression of the chordal distance, we distinguish three cases:

(i) Both elements are finite

denla, 0" = |[¥o(a) — ¥ (0)]
_ N ai b\’ la* Iof> \?
__§2C+WW_i+MW>+(I+MW_1+MW)

=0

gm@+MWWP
(1+ ||a|?)? L+ p12)? T+ al) @+ (]2
gw@+MWWP

lal® (X + flall®) |, [1BI* (1 + [1b]*)

lal® (1 + [161%) + 161 (1 + [lal®)
(1 flaf*) (1 + [|o[]?) (1 + [laf®) (1 +[[61]%)
la — ]

(L+ flall®) (1 [6)1%)°

Therefore, we obtain:

la — 0]
VI Tal?) /(1 + ol

dch[a, b] =
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(ii) One of the elements is finite and the other one is infinity, for instance b = co. Using

the same arguments as given in (7), we obtain:

dena, b = [[vo(a) — ¥(b)|

n 2 2 2
“\1+lal]? L+ [|af[®
]I 1
(L+llal>® (1 + fal?)’
1

1+ [lal*

(iii) If both a = b = oo then dla, b = 0.

Consequently it makes sense to introduce:

Definition 2.1 (Chordal distance) Let dgp, : A1 — Ry be defined by:

( la — bl -
- = a,b finite
(V1 N lall) (/1 + [[]]2)
depla,b] = _— b = 0, a finite (2.5)
V1+|al?
0, a =00, b=o00.

\

depla, b is called the chordal distance since it measures the length of the chord between the

corresponding points on the hypersphere.

Remark 2.1 [t is also possible to define the chordal distance for any two elements in the
k k

Clifford group, T',,. Let a := 1_1[ a; and b := 1_2[ B; be two elements of the Clifford group,
i=0 §=0

where oy, B € Any1\{0} foralli =0,1,...,k; and j = 0,1,... ko for ki, ks € N. Further

kl k2
let us write a :== Y. aaes and b := > baea. The elements a and b can be identified
|[Al=0 |A|=0

k
with elements of R™ where m = 3" (), for k = max{ki, ko}. Morcover, when extending
5=0

the Clifford group T, to T',, U {0,00} we denote 07! := oo and co™! := 0. Fora €T,

we define a +00 =00+ a:=00,a0=0a:=0,a00=00a:=0o0 and consequently
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a07!l:=00, aco™ :=0. We define d, : T,, U{0, oo} — RS by

(

k
> (aa —ba)?
|A|=0 .
., a,b finite
k k
\/1 + > d4 1+ > ¥,
dapla,b] = 4 |4]=0 4]=0 (2.6)
, b = 00, a finite
k
1+ > a%
|A|=0
0, a =00, b=o00

An important invariance property of the chordal distance is stated in the following

proposition.
— a b
Proposition 2.1 I[fa,b € A then do, {# W} = dey [a,b].
a
Proof. If a,b € A\ {0}
2
_a_ _ _b_

(o [ ) - ( 03(~ =)

_ b

lall* 181° | o — o
(1 + llall®) (1 + [161)

wuwr@wf~ﬁ)+zkxwrw%f)

(L+llal®) (1 + [l81)

2 2 (el Lol axb
ol 01® (e + o — 2505t
(L4 llall®) (1 +f21%)

111 + llall* — 2 35 anbs
(L+ llall®) (L + [1B1)

la —b]*
(1+ [lal®) (1 + [1]1*)
= (de [a, b])*.
If a = o0, then#:a_lzoand
a
b 1 b
%th: = i = daleo

St VI



38 2.2. Normal families

An analogous result is obtained for b = oo

If a =0, then —— = a~! = 0o and

[lalf? ||2

b o] 1

den [oo, 2} = = =d., [0,0].
b 1+ 6] 1
7]~ VIETP

Remark 2.2 This property also holds for any two arbitrary elements in the extended

Clifford group, T'y, U {0, 00} .

Another property of the chordal distance, which is analogous to the one in the complex

case (see [14, p.4]), is described in:

Proposition 2.2 Consider z,w in A. Let A < B be two positive numbers where B can
also be co. Then there is a positive number p = (A, B) depending only on A and B such
that for ||z|| < A, ||w|| > B, dey [z, w] > p is obtained.

Proof. If ||z|| < A, ||w|| > B with w # oo, then

Iz — wll [l — [I=]]

VI+IEP YL+ el ¢1+|| 12y/1+ [l

1=
lel

1__
VI + e \/1+A2\/1+ %

If [|2]] < A and w = oo, then

dep |2, W]

1 1
> .
VIt+]z)2 T V14 A2
Therefore, we obtain de[z, w] > u(A, B) where
1—4

u(A,B):={ Vi +A2\/1 + 5
\/1+A2

dep|z, w] =

if A, B finite

if A finite, B = oo.

In the next section we study normal families of Clifford valued functions.
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2.2 Normal families

The theory of normal families plays an important role in complex function theory and has
a wide range of applications, as for example, it provides us with tools to prove extensions
of Picard’s theorem, Schottky’s theorem, Landau’s theorem (see e.g. [61]), and also to

study for example, problems in complex dynamics as well as extremal problems (see e.g.

8])-

In this section we start to study convergence of sequences that consist of Clifford

valued functions. In the sequel, some fundamental definitions and results are presented.

Definition 2.2 Let Q2 be a non-empty open subset of A,y1 and {fm}tmen be a sequence

of real valued functions in 2.

(i) A sequence {fmYmen converges uniformly in Q to f : Q — R, if for all ¢ > 0 there

exists mg € N such that for m > my

dch[fm(z)a f(Z)] < g Vz € Qu

where d., denotes the chordal distance on R. We also say that { fm}men converges

uniformly with respect to the chordal distance to f.

(i1) A sequence { fu}men converges locally uniformly to f if for each zy € ) there exists

a neighborhood V,, C Q such that { f,, }men converges uniformly on V,, to f.

(iii) A sequence of Clifford valued functions in Q) converges locally uniformly in Q if every

component function converges locally uniformly as defined in (i).

From [21, p.149] an analogue to the classical Weierstrass’ theorem is presented, for

sequences of monogenic Clifford valued functions.
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Theorem 2.1 Let €2 be a non empty open subset of A,.1. If a sequence of Clifford valued
left (right) monogenic functions { fumtmen in  converges locally uniformly to a Clifford

valued function f, then

(i) f is left (right) monogenic in €.

olsl
ii) for each multi-index s := (sg, 51, ...,5,) € N1 the sequence { —— fm con-
0
x® meN

Is|

verges locally uniformly to f.
0xs
The next step is to study the limit function of a uniformly convergent sequence of
special meromorphic A-valued functions.
Since A is either H or A, 1, a non-zero element of A has an inverse with respect to

the Clifford multiplication. Therefore, for each A-valued function defined in a domain €2

there exists an inverse with respect to the Clifford multiplication of the following form

-1 L f(2> Py /
R VP TEREA

where ' :={z € Q: f(z)#0} C Q.
The following result establishes a relation between uniform convergence with respect

to the chordal distance and uniform convergence with respect to the Euclidean distance.

Theorem 2.2 Let {fy}men be a sequence of left (right) special meromorphic A-valued
functions in B(zo,r) for r > 0. If {fm}men is uniformly convergent in B(zo,r) with

respect to the chordal distance and if f is the limit function, then

(i) if f(z0) # oo, there exists ro > 0, ro < 1, such that for z € B(zy, o) the functions

fm and f are left (right) monogenic, moreover

lim [ fm(z) = f(2)] = 0,

m——+o00

uniformly in B(zg,70).
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(ii) if f(20) = oo, then {f, '} men converges locally uniformly to f=', i.e.,

lim [|f,'(2) = f7H (=) =0,

m—-+o0

uniformly in B(zo,70) where 0 < ry <.

In order to prove this theorem it is convenient to establish the following result which

is analogous to the one given in [14, pp.8] for the complex case.

Lemma 2.1 If f is a left (right) special meromorphic A-valued (or ClG-valued) function

m a domain ), then f is continuous in ) with respect to the chordal distance.

Proof. Consider a point 2y € €2 and V,, C 2 an open neighborhood of zy. First assume
that f(zy) # oo. Applying Definition 2.1/ (or (2.6)), for z € V., the following inequality
holds du[f(2), f(20)] < || f(2) — f(20)||- In view of the continuity of f in V,,, it follows
that

lim dey[f(2), f(20)] = 0.

z—20

For the case f(z9) = oo it follows for z € V,, that lim f(z) = f(z0) = oo, since f is

zZ—20

special meromorphic. Therefore, using the function f~!, we obtain

lim d.p [f_l(z),f_l(zo)] =0.

z—20

Applying Proposition 2.1 leads to

lim de[f(2), f(20)] = lim de, [f7'(2), f"(20)] = 0.

z—20 z—20

This proves that f is continuous in 2 with respect to the chordal distance. U

Proposition 2.2/ and Lemma 2.1 enable us to prove Theorem 2.2.
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Proof of Theorem 2.2

(i) Assume that f(z9) # oo. Conmsider k := du[f (20),00] > 0, define A = 2,

B :=+/3(2+1) and let (A, B) be a positive number as defined in Proposition 2.2.

For £¢ := min {%, (A, B)}, there exists mg € N such that for all m > my
den[fm (2), f(2)] <e0, 2z € B(z,7). (2.7)

Since each f,, is special meromorphic then f,, are continuous with respect to the
chordal distance, in view of Lemma 2.1. Therefore, there exist o (r > ¢ > 0) such

that
den[fn (2), [ (20)] < g, z € B(zo,10). (2.8)

Using the triangular inequality, the following holds

den[f (20) ,00] < denlf (20), fm(20)] + denlfim (20) , fin (2)]
+ denlfm (2), f (2)] + den[f(2), 00]. (2.9)

Inserting (2.7) and (2.8) into (2.9), leads to

Aol (20),09] < & + dnl (=), 9] (2.10)

Since k := d.p[f(20), 0], we infer by inequality (2.10)

k—g < dep|f(2), 0. (2.11)
Therefore, we obtain
K < danlf(2),00) = e (2.12)
2 VIS ()

and consequently || f(2)[|? < (%)2 —1< (%)2 =: A%
On the other hand, since dg[f(2),00] < den[fin(2), f(2)] + den[fm(z), 00] and using
(2.11)), it follows

k

5 <dalf(2),00] < den[fn(2), f(2)] + denlfin(2), 0],
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In view of (2.7) we have

kk
5 < 3 + den| fin(2), 00].

Therefore, we obtain

1
L4 [ fm(2)]?

which implies that || f,.(2)]]* < (%)2 —-1<3 (% + 1)2 = B2,

k- k k
= dch[fm(Z)7OO] > E — 6 = g, z € B(Z(),T’())

Then, for all m > mg and z € B(zg,79), we obtain

1n(2) = SO = denlfn2), FOIW T+ Lm(2)IPY 1+ 1F P
< denlfim(2), f(2)V1 4+ B2V1 + A2, (2.13)

Since { fim bmen converges locally uniformly with respect to the chordal distance and

since { fi tmen satisfies condition (2.13), for z € B(zg,79) we have

T | fu(2) — £(2)] = 0.

Furthermore, applying Theorem 2.1/ the limit function f is left (right) monogenic in

B(Z(), 7“0).

Consider f(z9) = co. Applying the same arguments as in (i) to the functions f, *(z)

and f~1(2) in B(zg,79), we obtain:
17 ) <A and [ N(2)] < B.

Therefore, for all m > mqg and z € B(zg,ro) (r > ro > 0) it follows

1£21 ) = FH @ = dalfn (2), £ I+ GIPVIH ()P

IN

denlft (2), f7H(2) V1 + B2V1 + A2
Since
denlf' (2), F71(2)] = denl fin (2), F(2)];

it follows that

£l (2) — )| < denlfin(2), F(2)]V1 4+ B2V1 + A2,
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Since { fin fmen is locally uniformly convergent with respect to the chordal distance,

we conclude that {f-1},.en converges locally uniformly, i.e.,

T /')~ (2 =0, =€ Bla,ro).

Theorem 2.3 Let Q C A, 1 be a domain, {fm}men be a sequence of left (right) special
meromorphic A-valued function and let 3> C ) be a discrete set containing all poles of all
functions f,, of the sequence. If { fu }men converges locally uniformly in Q with respect to

the chordal distance, then the limit function f is left (right) special meromorphic.

Proof. Since each function in the sequence { f,, }men is left (right) special meromorphic in
€2 then the functions are left (right) monogenic in Q\¥. Theorem 2.1/ implies that f is left
(right) monogenic in 2\X. It remains to prove that f is continuous for elements of ¥ with
respect to the chordal distance, i.e., elements of ¥ are oo-points of f. Let zy € X. Since
the functions of the sequence are left (right) special meromorphic then by Lemma 2.1
they are continuous with respect to the chordal distance. In view of the continuity of the
functions and the fact that the sequence is locally uniformly convergent, it follows that
f is continuous with respect to the chordal distance. Hence forth f is left (right) special

meromorphic. O

From now on F denotes a family of Clifford valued functions in a domain €2, and the

subscript indicates the set to which the values of the functions belong to. Hence, we have:

Fu=A{fl [:Q—H} Fa,={fl [:Q—=Aus}; Fo, ={f] [:Q—CL}

When no ambiguity occurs we write F, for the family of A-valued functions, where A is

either H or A, ;.

Let us recall the following definition:
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Definition 2.3 (i) Let Fey, be a family of left (right) monogenic functions in 2. The
family Fey, is called equi-continuous in E C Q if for all zg € E and for all € > 0

there exists 0 > 0, such that for all f € Fey,

If(2) = f(z0)]| <&, Vz€ B(z,0)NE.

(ii) Let Fey, be a family of left (right) special meromorphic functions in Q2. The family
Feu, s called equi-continuous in E C 2 with respect to the chordal distance, if for

all zg € E and for all € > 0 there exists 6 > 0, such that for all f € Fey,

den]f(2) — f(20)] <&, Vze€ B(z,0)NE.

The next proposition establishes a relation between equi-continuity and locally uniform
convergence of a sequence. The proof of this proposition is analogous to the one given in

[14, pp.15] for the classical case.

Proposition 2.3 Let {f,,}men be a sequence of left (right) special meromorphic A-valued
functions in a domain Q. If {fm}men is locally uniformly convergent with respect to the
chordal distance, then { fu, }men s an equi-continuous sequence with respect to the chordal

distance.

Next we prove a sufficient condition for equi-continuity:

Proposition 2.4 Let Fey, be a family of left (right) monogenic Clifford valued functions
in a domain Q C A,1. If the norm of the Jacobian matriz of f is locally bounded for all

f € Fea,, then Fey, is equi-continuous.

Proof. Let f be an element of F¢;, and z* € . For r > 0 let B(z*,r) C . Consider
v :[0,1] — B(z*,r) to be defined as y(t) := tz;+ (1 —t)zo, which we identify as an element
of R™*1. Since ||J;(y(¢))|| < M for all f € Fey, and for all ¢ € [0, 1], with p(t) := f(y(t))
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we obtain
1
dv(t)
1/ (z1) = f(z0) || = [l(1) = (0)] = /Jf(V(t))Tdt
0
i (1)
v(t
< [ortenn| 2 a
0
< Mz = 2.
Therefore, since M is independent of f, F¢;, is equi-continuous. O

Another property of families of functions is normality. Next we introduce the concept
of normal families and give some necessary and/or sufficient conditions.

From [3] we recall the following definition.

Definition 2.4 A family of functions G is called normal, if every sequence of functions

from G contains a locally uniformly convergent subsequence.

The next result which is analogous to the classical case, gives a necessary and sufficient

condition for normality.

Theorem 2.4 Let F be a family of left (right) special meromorphic functions defined
in a domain Q). Fu is normal if and only if the family Fu is equi-continuous in 2 with
respect to the chordal distance.

Analogously this is obtained for families of left (right) monogenic Cl,-valued functions.

Proof. Let us start by proving that equi-continuity is a sufficient condition for normality.
Consider a sequence {z,, }men of points dense in Q. Let S := {f,,}men be a sequence of

Fa. For z; € Q) consider the sequence of points

S = {fm('zl)}meNv

in A. Since A is compact, there exists a subsequence {f,,1(z1)}jen of S; and a point
J

w; € A such that
lim den[f1 (21), w1] = 0.

J]—00
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In the next step, consider the sequence of points

Sy = {1 (22) }jen
for which it is possible to find a subsequence { 2 (22)}jen of Sa and a point wy € A where

lim dch[fm?(ZQ),UJQ] =0 and lim dch[fm?(zl),wl] =0.

J—o0 J—o0

By repeating the above procedure, we obtain sequences { f,,i (z;)}jen such that
J

Hm dp[f (2),ws] =0, s=1,2,....i,... i=12,.... (2.14)

o0 ;

where w, € A.

Consider the diagonal sequence

{oe) = )}

such that khigo denlgr(2),w;] = 0 for j = 1,2,--- . Let us prove that the sequence
{9r(2)} ey is locally uniformly convergent with respect to the chordal distance.

Since all f € F, are special meromorphic then by Lemma 2.1, we observe that f is
continuous with respect to the chordal distance, i.e., let © € Q then for all € > 0 there

exist 0 > 0 such that for y € B(x,0) C Q

€

dalf (). f(2)] <

Next, since the points {2z, }men are dense in Q, there exists z; € B(x,d). In view of
pointwise convergence of the sequence {gi(z;) := fmi(zj)}keN, there exists a positive

integer k,, such that for k, k; > k,

(28 Ne)

dch [gk(zj)7 Gk (Z])] <

Therefore, for z € B(z,d) and k, k; > k,, the following is obtained

IN

den[9x(2), g, (2)] den[91(2), gr ()] + denlgr (), gr(2;)]

den[9x(25)s Gky (25)] + denlgr, (25), gr, (7))

+ 4

den g, (%), g, (2)]

5
EE _ (2.15)

A\
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This proves uniformly convergence of {gi }ren in B(z,d). Since  was chosen arbitrarily,
we conclude that { g }ren is locally uniformly convergent in 2. Hence, the arbitrary chosen
sequence { fi, }men has a locally uniformly convergent subsequence. Thus, the family Fj
is normal.

Next we prove that equi-continuity is a necessary condition for normality. Suppose
that F, is not equi-continuous. Then it is possible to find a sequence S := { f, }men in Fa

and zg € Q such that for ¢y > 0 and a sequence §,, of positive integers with lim 9,, = 0,

holds:

sup  den|fin(2), fim(20)] > €o- (2.16)

2€B(20,0m)

Since Fy is normal in €, there is a subsequence &y := { fin, }xen of S which converges
locally uniformly with respect to the chordal distance.

The aim, is to prove that &7 is equi-continuous and consequently to obtain a contra-
diction.

Since { fin, tren is locally uniformly convergent with respect to the chordal distance,

then for all € > 0 there exists o > 0 and ky > 0 such that for k, k1 > kg

Aenl i (2): Sy ()] < 5, 2 € Blao,ro) N2

Moreover, one has in view of continuity of f,,, , for r; > 0 with r < ry
0

dch[fmko (Z), fmko (ZO)] <

Wl m

for z € B(zp,r1) N Q. Therefore, for k > kg and z € B(zg,71) N ) we infer

e[ frmp (2); fimy (20)] den [ fmy, (), Jrg (2)] + den [fmko (2), Jrg (20)]

<
+ dch [fmko (20)7 ka ('ZO)]
<

€.

For the finite number of continuous functions f,,,, k = 1,2, ..., ko there exists ro > 0

(rg < 11) such that

den] fng (2), frny (20)] < €, z € B(zg,72) N Q.
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Therefore if we choose € < €y, we obtain for all £ > 1

den[ iy, (2), i (20)] < €, 2 € B(zg,12) N1, (2.17)

which is a contradiction to condition (2.16). O

In the following sections, we establish some results which provide us with criteria
of normality for families of left (right) monogenic and left (right) special meromorphic

functions.

2.3 Normal families of monogenic functions

Throughout this section, we consider families of left (right) monogenic Clifford valued

functions defined in a domain Q of 4,1, i.e., F¢y, .

To obtain a Montel-type criterion of normality for these families, the following defini-

tion is needed.

Definition 2.5 F¢;, s called locally bounded in €2 if for each point in ) there exists a
neighborhood V in 2 and a positive constant C, such that for all f € Fey, the following
inequality || f(z)]] < C holds in V.

Proposition 2.5 Let F¢y, be a family of left (right) monogenic functions in Q. If Fey,

15 locally bounded, then Fcy, is normal.

Proof. Let f be a left monogenic function of F¢y, and r > 0 such that B(z,r) C .
Using Cauchy’s integral formula (Theorem [1.5), we obtain:

== [ aoly=2)ios). (2.18)
ly—z[l=r

Furthermore, the partial derivatives of f are given by:

O (1) = /aqo(y—z)doyf(y), i—0.1...n. (2.19)

Ox; Wn1 0x;
ly—=zll=r
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Applying the upper bound estimate on the generalized negative powers given in (1.12) it

follows
n n
1"

H%g@—Z)

~ Ay ==t T

Hence, altogether and for M := | mahx Ilf ()], yields:
y—z||=r

Next we consider the Jacobian matrix of the function f defined in (1.21). Using the

L

i=0,1,...,n. (2.20)

inequality (2.20)), we obtain:
(n+1)nM
[ ¢ ()]l < B —
,
Applying Proposition 2.4 it follows that F¢y, is equi-continuous. Consequently, in view
of (2.6), the family F¢y, is equi-continuous with respect to the chordal distance. Finally,

as a consequence of Theorem 2.4, we conclude that the family F¢;, is normal. ([l

In this proposition the monogenicity property is involved when we use Cauchy’s inte-
gral formula.

A direct conclusion is stated in the following corollary.

Corollary 2.1 Let F¢y, be a family of left (right) monogenic functions in a domain €.
If the family

’ 9 .
Fou, = {83{| f€Fa,, 1=0, 1,...,n}

15 locally bounded, then Fcy, is normal in €.

Proof. Let zp € © and V,, C Q be a neighborhood of z,. For f € F¢y, and

i€{0,1,...,n}, there exists a positive constant ¢ such that
5

8362-
Moreover, for f € F¢y, we obtain

(2)

<, 2 €V,.

|J¢(2)]] < ne, z2€V,.
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Since f is an arbitrary element of F¢y, and 2 is an arbitrary point of €2, with Proposi-
tion 2.4, it follows that F¢;, is equi-continuous. According to the definition of the chordal
distance, F¢y, is equi-continuous with respect to the chordal distance. Finally, applying

Theorem 2.4, we conclude that the family F¢;, is normal. O

Next we give some examples of normal and non-normal families.

Example 2.1 The family
Per, = fil fie2) = D Pml(2)am, keN, |z <1
|m|=k

1s normal. It is known that Pey, is a family of left monogenic functions and for each

fr € Pcou, we have

1A < Y 1PaE ol < ¢ 3 120 < S o) =

|m|=k |m|=k ) |m|=k

Since Pey,, s locally bounded we obtain, applying Proposition 2.5, that Pcy, s normal.

One can also observe that Pcy, is normal in any compact subset of Ap1.

Example 2.2 Let m € Nj\{0} be a fized multi-index. The family

Gor, = {fel fr(2) = kPm(2); Izl <1}

is not a normal family. For z = 0 we obtain klim fx(0) = 0. Taking z # 0, the limit
18 klim fr(2) = oo. Since the sequence and every subsequence are not locally uniformly

convergent, we have that the family is not normal.
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2.4 Normal families of special meromorphic functions

In this section we restrict to the class of left (right) special meromorphic functions with
values in A,, 1. A normality criterion of families of these functions is based on the classical

Marty’s criterion [48].

Theorem 2.5 (Marty’s criterion) A family G of holomorphic or meromorphic complex

valued functions in a domain D C C is normal if and only if

/(=)

1+ [f(2)]
15 locally bounded in D.

In order to prove a generalization of Marty’s criterion in the framework of hypercom-
plex function theory it is necessary to start by defining the set Xz A, 88 the set of all
isolated poles of the family of left (right) special meromorphic A, 1-valued functions in

a domain Q C A, 41, Fa,.,. We define
Fohnir = {f € Ftnsr = BFa,,, I8 discrete} . (2.21)

For F3 ., we obtain the following result:

Theorem 2.6 The family F . defined in (2.21) is normal if and only if

17,6l
T /)P (2.22)

18 locally bounded in €2.

Proof. Let us start by proving that local boundedness of expression (2.22) is a sufficient
condition for normality. First, we prove that the family 7 ., is equi-continuous. In order
to do so it is necessary to prove a local estimate either for f or for f=1.

Since expression (2.22) is locally bounded, for zy, € €, there exists § > 0 such that

B(zp,0) C 2, and there exists a positive constant K such that for every f € Fhin

174l .
1+ | f(2)|2 < K, Vz € B(20,9). (2.23)
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We define the curve v : [0,0] — A,1(= R™™), by v(t) = 2z + tu, where u is an
element of A, with ||ul| = 1.

On one hand we obtain, for 0 < r < §:

EACON]
[y < < . (224)

On the other hand, interpreting v(t) as a vector in R"™! (which will be done during this

proof) we have
1Ty @Y @I = 11T (v ()Y ()]]-

Therefore, since ||7/(t)|| = 1 for t € [0, 0], we obtain

T

L "||Jf<w<t>>||||w<>||dt
t

R = ) Trra@)P
17 OW Ol
Z /1+|rf<w Y
e
- / T+ 7P 22)

©

where ¢ = foy with ¢(0) = f(z0) and ¢(r) = f(v(r)) = f(z). Hence, ¢ is an A, 1-valued

function, which can be represented by the following spherical coordinates

o = Rcosb

p1 = Rsin# cosby

Yo = Rsin#;sinbycosbs
w3 = Rsin6;sinbysinbscosby
Y, = HRsin#;sinfysinbs...sinf, ;sinb,.
where 0 < R < +00, 0 < 61,05,--- 6,1 <mand 0 < 6, < 2. Rewriting ¢ in spherical

coordinates, yields:

p(t) = ROU(), (2.26)
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where R(t) := || f(v(1))]| = ||¢(t)|| € RT and U(t) := Zei% satisfies ||U(t)|| = 1 (see
i=0
[13, pp.48]). Therefore, if we substitute the expression (2.26) into (2.25), we get

2] I 0]
| T - 0/1+||so<>||2dt

%)

Since ||df]|* = (dR)? + R?*(angular differentials) > (dR)? we obtain:

ldr ()] [ |dR@)
Z ETEI / I+ [FGOP

R
= / T+

0

[ R(@)
= /1+R2(t)

0
= |arctan || f(2)|| — arctan || f(z0)]|] -

Finally, after applying inequality (2.24), we obtain:
larctan || f(2)|| — arctan || f(z0)]|| < K9, z € B(2p,9). (2.27)

Taking § < 135 the following cases occur:

(i) It || f(z0)|| < 1, then

T T T 0w
t < Ké t < K—— t )= —+ — = —.
arctan || f(2)] < + arctan || f(20)]| < TV + arctan(1) G + 13

Therefore || f(2)| < v/3 for all z € B(z,6). Moreover, in view of (2.23) we obtain:

175 < L+ 1FEIP) K < (1+(V3)?) K = 4K. (2.28)

(i) If || f(20)]] > 1, then

arctan || f(2)|| > arctan || f(zo)|| — K¢ > Z_Kﬁ_g % %

Hence, we obtain || f(2)|| > \/Tg for all z € B(zp,0).
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Therefore, using the inequality ||J-1(2)] < ﬁ |.J¢(2)|| from Proposition 1.2,

condition (2.23) and the inequality ||f(2)| > v/3 we have:

L+ /7 @) (n+3)

S Y [ C R e e
= (IR
< A(n+3)K. (2.29)

To proceed in the proof of equi-continuity of f or f~!, we consider zy, 29 € B(2, ) for
B(zp,0) C A,11 and the curve v : [0,1] — A,4; defined as y(t) := tzo + (1 —t)2z;. Denote

p(t) = f (v(t)) where ¢'(t) = Jp(v(t))7'(1).
If || f(20)]| <1 together with inequality (2.28)) we obtain:

1

1f(z2) = fz)ll = lle(1) = @(0)]] = /Jf(v(t))v’(t)dt

for all z1,29 € B(z0,9) and all functions f € F,.1» since K does not depend on the

function.

If || f(20)]] > 1, then we obtain analogously with o;(t) = f~1(y(t)) where ~ is the
rectifiable curve defined by v(¢) = tzo 4+ (1 —t)z; for t € [0,1] and ¢} () = J—1(7(t))7 (1),
together with inequality (2.29) the following

/7 (z2) = (2D = ler (1) = 1 (0)] = /Jf—l(”Y(t»’V/(t)dt

< / 1Ty (o) 1 () e

< 4(n+3)K||z2 — 21|, (2.31)
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for 21,22 € B(20,0) and all functions f € F .

Let zp € Q, 21,20 € B(20,9). If ||z2 — z| < Tk for € > 0, then following

Proposition 2.1/ two cases occur.

For the case || f(20)]| < 1, we have in view of Definition 2.1 and (2.30)

1/ (22) = f(z0)
(L4 1F )22 (L + 1))

den [f(22), f(21)]

=

< S (z2) = f(z)ll
< 4KHZQ — 21H
5
< AK——— < e
= P Rm K = €

In the case || f(z0)|| > 1, we obtain in view of the definition of the chordal distance and

(2.31)

1/~ (z2) = [ =) 1
(L4 2 )12 (L4 11z )12)2

den [ H22), [ H21)] =

< N z) = )
< 4(n+3)K||lze — ||
< A+ HK—" < e

12(n+3)K

Since this holds for all 2o € 2 and for all f € F7 | the family is equi-continuous. In view

of Theorem 2.4l we conclude that F j‘nﬂ is normal.

Let us prove the reciprocal statement. Suppose that

175 ()
O(f)(z) =
L+ [ f(2)[
is not locally bounded. Then there exists a sequence of functions {f; }men in Fihirs &

point zy and a sequence of points {2, },,.y in € that converges to 2z such that

1 ()l

O(fm)(zm) = T o o) |2 — 400, m — 00. (2.32)

Since F7 ., is normal, by assumption, for any sequence {fm}en there exists a subse-

quence { fm, }cy that converges locally uniformly with respect to the chordal distance.
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Since { fin, } ey i @ sequence of special meromorphic functions with at most isolated
poles in a discrete set Y r A by Theorem 2.3/ the limit function is special meromorphic.

Applying Theorem 2.2/ we infer that

[/ GOl RG]
L+ 1P T+ F )P

m — 00,

locally uniformly in Q\ Xz u,,, - Let 27 € Xg,  such that fm(z") = oo for a infinitely
many m € N. ( Otherwise f is monogenic in z*. Hence ©(f) is bounded in a neighbor-
hood of 2*.) Then there exists a subsequence { fy, },en Of {fm ey Such that in view of

Proposition 1.3

15, (Z9)l
O(fm,)(2") = 3 =0,
' L [ fon (2912
for k=1,2,.... Since f is special meromorphic it must have a pole at z*. Therefore, we
also have % = (0. This reveals that
Jr (2
SN /O N /1 TR

oo T+ [ ()2 1+ [P

where C' is a positive real constant depends on zy and on & for B(z,d) C 2. Since

lim 2, = 2 and ||z, — 2|| < 0 we obtain
k—o0

J i
[ENCHN I
Ea FAREm]

for k sufficiently large. This contradicts

J Zm
SN 1/ T /%)
m—=00 1+ || frn(zm )| k=00 1+ [ finy (2, )|

Y

for lim z, = lim z,, = 2. ]

m— 00 k—oo

Notice that this result is also true for families of real-analytic paravector valued func-
tions.

In the next section we present a generalization of a famous result due to Zalcman.
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2.5 Zalcman’s Lemma

In 1975, Zalcman gave a necessary and sufficient condition for normality in [72], which
is now known as Zalcman’s lemma. Later, in 1998, a new version of this lemma was
presented in [73]. The new version uses a parameter depending on the multiplicity of all

zeros and all poles of the functions.

The following result is a generalization of Zalcman’s lemma for a family F7 , defined

in (2.21).

Theorem 2.7 Let F7 . be a family of special meromorphic functions in the unit ball
B(0,1) with the same conditions as in (2.21). F7 ., is not normal in B(0,1) if and only

if there exists a
(i) number 0 <r < 1,
(ii) sequence of points {zm tmen;
(i) sequence of functions {fu}men in Fy ., and

(iv) sequence of positive numbers p,, with lim p,, =0,
m—oQ

such that the sequence of functions defined by

9n(&) = fm (2m + pm&) (2.33)

converges locally uniformly with respect to the chordal distance in A, 1 to a non-constant

special meromorphic function g.

Proof. We start by proving that conditions (i) to (iv) are sufficient for non normality.
If 73,., is not normal in B (0,1) then, in view of Theorem 2.6, there exists a number
0 <o < 1, asequence { fi}men in Fy | and a sequence of points z;, in B(0,7¢) tending
to zp, such that

e MG
Ofm)zm) = 17 TREDIE : : (2.34)
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Without loss of generality, let us assume that zy = 0. Take r > 0 fixed, such that

0<ro<r<1land|z] <r. Inview of continuity of ©(f,,) we define:

M,, = 1 ERY o _ (1= g 2.35
wm e (1- B e = (1-20) o, @)
2
Since ||zm|| < 7, the expression (1 - “Z”;H > remains bounded. Moreover, using condi-
r
tion (2.34)) for ||z,,|| < ro we obtain lim M, = co. Furthermore, let us define
1 2m]|?
SR S LT 2.36
We have
lim p,, =0. (2.37)
Moreover, we obtain
P L(r+llzml) _ 2
= < 0 . 2.38
r =Nl M, 2 M, % (2.38)

Consider the functions g,, defined by

gm(g) = fm(zm + Pm§)>

where £ € B(0, R,,,) for R, := % By (2.38) follows that lim R,, = co. Evaluating,

m m—00

the Jacobian matrix of g,, we obtain:

S nl6)

- {pmai. fgﬁ(“m)} = Pmd g (Um) (2.39)

(2
m J,t

16 = |

3t

where 0 < i,j < n, £ := > &e; and u,, = Y. ule; = 2z, + pué. Calculating O(g,,)(0)
i=0 i=0
yields

1, (©)] 15 G + )]
S} m = T 1 = Pm )
)0 = g sy = ™ T [nlom + P e

which, in view of (2.36), for each m gives

Olam)(0) = po 15N — 1. (2.40)

Taking a fixed R, such that ||&|| < R < R, and ||z, + pm&]| < r, it follows:

@(gm)(g) = pm@(fm)(zm—"pmg)
Mm

| _ Emtomt
r2

< Pm
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T+ Hzm“

Using the definition of p,, (see (2.36)) and the fact that < 1, we
r+ (zmll + pmll€]D
obtain for ||€]| < R
(r* = llzmll®)
O(gm <
(9m)©) = T
_ (r + [lzm]) (r = [lzml])
(r =+ llzmll + o€l (7 = {llzmll + pmliEN])
_ =l
== (llzmll + pmli€l])

r = (lzmll + pmR)

r— l[zmll

Furthermore, in view of (2.37) we have lim = 1. Then, in view of

w5 7 — (ol + pn D)
(2.41) and for [|£]| < R we conclude that ©(g,,)(§) is bounded.

Applying Theorem 2.6/ it follows that the sequence {g, }men is normal in ||€|| < R.
As a consequence of the normality, there exists a subsequence {g, }ren that converges
locally uniformly with respect to the chordal distance to a function g. By Theorem 2.3
we conclude that g is special meromorphic. Thus, for £ =0

6(9)(0) = lim 6(g,,)(0) = L, (2.42)

k—oo

If the limit function of {gm, }ren Was constant then for all £ € A, we would have
©(9)(¢) = 0, in particular for & = 0, but from (2.42) we get a contradiction. Therefore,
we conclude that ¢ is not constant.

Let us prove the reciprocal. Suppose that (i) to (iv) holds as well as

fn(Zm + pm&) — 9(£), m — 00. (2.43)

It 74,,, s normal, then we infer by Theorem 2.0/ that, there exists positive constants

M, 7 such that for z € {z: [|z]| < %} € B(0,1) and for all f,, € Fj  holds

max O(f,)(z) < M.

1
[l 2| <5~

Using (2.39) for a fixed £ € A, 11 we have

9(9)(5) = 1li Oopm@(fm>(zm + pm§> =0,

m—
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where ||z, + pmé|| < 1—;”” Since £ is arbitrarily chosen, then g must be a constant. This

gives a contradiction. 0

In the next result we obtain a sufficient condition for normality. In order to do so it
is necessary to start with the following definition:

Let f be a A-valued function. We define

Er(a) ={z€A: f(z) =a}

as the set of elements where f has the value a.

We proceed with the proof of the following result.

Lemma 2.2 Let f be a special meromorphic A-valued function in the unit ball, B(0,1),
K a positive constant such that ||J¢(2)|| < K and det(J¢(z)) # 0 for z € E¢(0). Let

—1 < a < 1. Suppose that there exists a point z*, ||z*|| < r < 1 such that
(1= =)y (=)
r2 f
2a0
2% 2 %
(1= 18"+ s e )

Then there ezists an element zy € B(0,1) with ||zo|| < r and 0 <t <1 such that

> K+ 1. (2.44)

1 — llz]2 o o 1 l|zo]I2 o o || g
2 15 (=)l e [[J¢(20) |
sup = 5 =K+ 1 (2.45)

20 o
ler (1= B e ple (1 ) g (a0

Proof. Fixing o (—1 < a < 1) we define

1+«
(1= L) e
9\ 2¢
(1= )" et sl

which is continuous on the cylinder C = {(z,t) : [|z]| < 7,0 <t < 1}.

F(z,t) :=

)

Let us now, consider a sequence {z,, }men such that for all m € N one has ||z,,|| < ro

and lim z,, = z for ||z|| <. For 0 < t,, <1 we define

2
P = (1 _ lzml )tm, (2.46)

r2
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where
lim p,, =0. (2.47)
Next we prove that
lim sup F'(zp, tm) < K. (2.48)

m—0o0

If f(20) # 0, then

14+«
. . Pm HJf(Zm)H . 1+ ”Jf(zm)H
limsup F'(zy,, t,,) = limsup < limsup p,, .
m—00 mooo Pae + || f (zm) || m—00 £ (2m)][2

Since f and its partial derivatives are continuous functions, thus f(z,,) and ||J¢(zy,)| are

pointwise convergent, this implies that

i 1)l _ 195Gl _
w2 F )P Gl

where ¢ is a positive constant. Using (2.47) and (2.49), it follows

(2.49)

lim sup pl+aM = 0.

m—co  [1f(zm)[I?

Therefore, for f(zo) # 0, ||zm| < ro and 0 < t,, <1

lim sup F'(zp, t,) = 0.

m—00

For the case f(z9) = 0 we have that det J;(2) # 0 which implies that 2, is an isolated

point. Therefore, for —1 < a <1

Zm2 o «
| () el
limsup F(z,,t,) = limsup %
Mmoo o (1= L) gz 7 () 2

< lim 2 || Ty (2|

= 0.

If @ =1, and since ||J¢(z)|| < K we have

2
. P s (zm)]
limsup F'(zp, ty,) = lim —™ = ||Js (20)]| < K.
meos m=so 2, + [ f(zm)F

We conclude that
limsup F(zp,, t,) < K. (2.50)

m—00
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Let us now complete the proof. Using the inequality (2.44), there exists a point
|z*|| <7 < 1such that F(z*,1) > K 4+ 1. Consider

U={(2,t) € C: F(z,t) > K+ 1} and t,=inf{t: (2,t) € U}. (2.51)

Notice that ty < 1 since it is an infimum and to > 0 in view of (2.50)). Take zg such that
(20,t0) € U. Then as consequence of (2.50) we have ||z < 7 and in view of the continuity

of F'in C we infer:

sup F(z,ty) = F(z0,t0) = K + 1.

|zl <r

Applying Lemma 2.2/ we obtain.

Proposition 2.6 Let 77 . be a family of special meromorphic functions in the unit ball
B(0,1), as defined in (2.21). Suppose that there exists K > 1 such that ||J;(2)| < K
and det(Jp(z)) # 0 for z € E¢(0) for all f in F} ., and the same assumptions given in

Lemma 2.2. If Foa,, s not normal, then there exist, for each —1 < a <1
(i) a number 0 <r < 1;
(i1) a sequence of points z,, zo of B(0,1) satisfying 7&1_1}13)0 Zm = 20;
(ii) sequence of functions { fy}men in Fy
(iv) a sequence of real positive numbers {pm }men with nlllréo pm =0,

P

such that the sequence { gm (&) == M} converges locally uniformly with respect
meN
to the chordal distance to a non-constant special meromorphic function g in A, 1. More-

over, g satisfies

O(g9)(§) <O(9)(0) = K + 1.
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Proof. Since F,,, 1s not normal, then by Theorem 2.6 there exists: 0 < r* < 1, a

sequence of points z;;, € {2 : ||z|| < r*} and a sequence of functions f,, in 7 ,, such that

oy = I (Rl
O(fm)(z,) = R TRENE — 00, m — o0. (2.52)

For a fixed r, r* < r < 1 we have:

" 1+
(113 07) W] 2N G

A ) e O
o R TAC (e

Under condition (2.52) we assume that (2.53) is always greater then K + 1. Relying on

Lemma 2.2, there exists a m € N where ||z,,|| < r and 0 < ¢,,, < 1 such that:

(1= )t ol (1 ) " e 7
r2 m fm r2 m fm \Fm
sup = =K+1. (2.54)
‘ 2

20& 2(1
Jl<r (1_lj!) 120 4 | £(2)1? (1—“2;';”2) 129 4 || fon (2o |12

Furthermore,

1_ ||Z:n||2 1+at1+oz J *
S0 e g )
. 2a
(1= L) " 20 ) ()
. 1+o
(1= 1), Gl

w2 2o :
1= L) ) ) 12

(2.55)

In view of (2.52), the expression (2.55) tends to infinity, hence ¢,, tends to 0. Setting
Pm = (1 — ”ZTLQW> tm, one has

lim — ™ — . (2.56)

m—oo T — ||z
For ||¢|| < R, where R, = % we define:

gm(§) = W. (2.57)

Observe that g, is defined in A, 1, since lim R,, = co. Evaluating the Jacobian of g,,,

we obtain the following relation

Tom(€) = P “ T (2 + p). (2.58)
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Therefore, ©(g,,)(§) is given by

o O o 11 (2 + )

T+ lam@F ~ 2% NG+ pu I

1+a
(1 _ (H_m)2> e 1T, (2 + pd) ||
2« ’
(1 - (@)2) 120 4 | + P

Applying inequality (2.54) for £ = 0, it follows

oo 0~ (=)) e Gl

= =K+ 1. 2.59
PRI e (259)
1= (L)) e o) 2
For an arbitrary £, where ||¢|| < R < R,, we have
1zmll = pmB < [2m + pmé|l < 2ml + pm R
which yields
r? — |lzmll? r? — Jzmll? r? — [lzml|?

72— ||zl + 2pm R — B2 7 12 — |z + pmll T 72 = [|2mll — 2pm R + R?)
Consequently, we have that

r? — |lzml” r? — ||zml” r? — [|zm|”
2 = (lzmll + pmB)? = 72 = llzm + pm€lI* — 72 = ([2m] — pmRR)?

Using (2.56) we obtain
r? — |lzml?

(2.60)

lim —
m—00 12 — ||z, + pm]|?

Using (2.58), (2.59) and (2.60) we obtain for £; > 0 the following

9 1+«
(1  (tentzust) ) 5 Ty (o o+ p)|

2a
<1 ~ (wf) £20 4 | fon (2 + o) 12

15, (O
L+ [lgm(OI*

(1 + 61)

< (I+e)(K+1). (2.61)
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Using Theorem 2.6, one concludes that the sequence {g,}men is normal. Then there
exists a subsequence {gm, }ren Of {gm }men, which is locally uniformly convergent with
respect to the chordal distance.

By Theorem 2.3/the subsequence converges to a special meromorphic function g. There-
fore, using (2.59) and (2.61)) it follows

17,0l
— K
T+ g@F =%

in particular,

Lol
T+ g0 -~

which implies that ¢ is a non-constant function. 0



Chapter 3

On the growth of polymonogenic
functions

In this chapter the growth of entire polymonogenic Clifford valued functions is studied.
Generalizations of the order of growth, the maximum term and the central index are
introduced. Relations between them, as for example some generalizations of Valiron’s

inequalities, are also established.

The first step is to obtain generalizations of the Cauchy estimate for solutions of
iterated Dirac and also of iterated generalized Cauchy-Riemann equations. In the last
section of this chapter is established a relation between || Df|| and || f||, for a 1-monogenic

function that maps the unit ball to the complement of the closed unit ball.

In one variable complex analysis much effort has been done in the study of the asymp-
totic growth of holomorphic and meromorphic functions during the last century, starting
for example with the work of Wiman [71], Valiron [70], Nevalinna [56], Clunie [16] and
others. Their asymptotic analysis provided powerful tools to study complex partial differ-
ential equations (see [34, [37, 43]). Therefore our aim is to establish some first rudiments

of a generalized Wiman-Valiron theory in the context of hypercomplex analysis.

Throughout this chapter we consider real-analytic functions of the form:

(i) f: R" — Cl,, solutions of the iterated Dirac system, i.e., D*f = 0 for a positive
integer k € N, where D is the Dirac operator (1.5), and

67
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(i) f:R"™ — (1, solutions of the iterated generalized Cauchy-Riemann system, i.e.,
D*f = 0 for a positive integer k& € N, where D is the generalized Cauchy-Riemann

operator (1.6).

Both function classes differ essentially from each other, when £ > 2. In the case of
iterations of the Dirac operator, one gets for k even that DF = (—1)¥/2A*/2 where A is
the Laplace operator, whereas in the case of the iterated generalized Cauchy-Riemann

operator already k = 2 results in D? = (‘9—2 - A) +2-2.D.

Gx% oxg

However, both classes of functions are called k-monogenic functions or polymonogenic
functions. In the case that they are solutions of these systems in the whole space (R”,
resp. R"*1) they are called entire k-monogenic or entire polymonogenic.

To distinguish both cases more clearly, we write x when working in the vector formal-

ism and z when working in the paravector formalism.

3.1 Cauchy estimates for solutions of iterated Dirac
equations in R"

In this section Cauchy type estimates are established for entire polymonogenic functions

f:R™ — Cl, with respect to the Dirac operator.

Recalling that for & < n the fundamental solution of D*f = 0, is given by

_CnkXp dd with k< — 1

iqgc) (x) = nyﬂ_k (3.1)

Wn .k k even with k <n —1,
[o

where w, is the measure of the unit hypersphere S" = {x € R" | ||x|| = 1} and

(=DF' (5 —1-[5)!
22

Cn,k - — — n
k1A (5 - 1)

(3.2)

Notice that |C), x| < 1 for all n, k.
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It is well known (see for instance [65]), that k-monogenic functions satisfy the following

Green’s integral formula:
1 . )
flx)=— a§  (y — x)do(y) (D f)(y), (3.3)

where we suppose that f is k-monogenic in a domain that contains the closed ball B(0,r).
A fundamental ingredient of this formula are the functions qgk) (x). These functions are
denoted as the Cauchy-Green’s kernel.

The partial derivatives of the Cauchy-Green’s kernel qgk) (x) will be denoted by

alm\ Hmit-tms
W (x) =2 P (x)= -2 ¥ 3.4
) = Gzl () = i) (34
As proved in [39], they satisfy the following sharp estimates

R

As a consequence of Green’s integral formula, one notices that every Cl,,-valued func-
tion that is entire k-monogenic is real-analytic in R™. Hence, it can be represented as a

normally convergent Taylor series of the form
f(x) = Z XMy (3.6)

The Clifford algebra valued coefficients a,, are given by

1 Hlml
m! Oxm

f(x)

(3.7)

A = .
x=0

Using Green'’s integral formula and the estimates (3.5) of the functions q® (x), a first

version of a Cauchy type estimates is obtained.

Proposition 3.1 Let f be an entire k-monogenic function in R™, with the following Tay-

+oo
lor series representation f(x) = Y. X™am. Then

El
L

N
—_

M(r, D’ f)

Jaml < 37 Al m, )~

|m|—j

<
Il
o

_ [Cnjsal(n=1-j)(n—j)--(n+|m|-2—j

(—1)7 (2-1-[Z)!
m! .

2[4 (-1

where A(n, m, 7) ) and Chjt1 =
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Proof. Applying (3.3) on (3.7) it follows

1 . .
o= Y [ PN
" =% B0,

1 ) .
lamll < =3 [ 1S )] IO DG
" =05(0.)
k—1 ) ) )
1 Crjriln—=1—j)(n—3)---(n+|m|—-2—j) :
= w_n =0 m!rntim|—=G+1) " wnM(r, D' f)
k—1 .
= A(n,m,j)mM(T, D]f)a (38)
=0
where
A —1—3 — ). —9_j
14<n7 m,]) _ |Cn7]+1|(n ])(n j) (TL + |m| ])7 (39)
m!
1) (2 — 1 — [
anan’j+1:<‘j) (2 o ['2}) |:|
2 G-

In the particular monogenic case k = 1 this inequality simplifies to

A(n,m,0)

HamH STMOn?f): (n—l)n(n—’m|_

2 M. f)

m!rm
which is the sharp upper bound for the Taylor coefficients of 1-monogenic functions (see

[200).

The relation (3.8) describes an estimate of the Taylor coefficients an, of the
k-monogenic function f that appear in its Taylor series representation formula (3.6),
which is valid for general real-analytic functions. The property of k-monogenicity is in-
volved only later, when applying Green’s integral formula (3.3).

Due to k-monogenicity, the function f a prior: also admits a more specific kind of
Taylor series representation involving the monogenic Fueter polynomials. To proceed in
this direction, it is important to recall that if f is an entire k-monogenic function, then

there exist k entire 1-monogenic functions, say fo, ..., fx_1, such that

f=fo+xh+xfot - +x"fy (3.10)
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The decomposition (3.10) is called Almansi type decomposition. In the case where f is a

polynomial k-monogenic function this representation is also called Fischer decomposition

(see for instance [47]). The term x'f; in this decomposition can in turn be recovered from

the original k-monogenic function f. More precisely, there are described by the following

projective formula.

Proposition 3.2 Let f be a k-monogenic function and fo, f1,--- , fx_1 1-monogenic such

that f = fo +xfi +x2fo+ - +x"1fi_1. Then
Pf=xf.

with (+400)
P= Y agciDr
q=l
which is actually a finite sum, where
(—1)lel+lHe (2 g [ )
=] PG GHE-[-D
0, if q<l.

Here E:=)"" | mia%i denotes the Euler operator.

The expression in (3.13) has to be understood symbolically.

To establish Proposition 3.2/ we relay on the following proposition.

Proposition 3.3 Let f be a 1-monogenic function. Then
(12BN + B - 5] - 1)

x"D"(xPf) = [5G + B - 5] - 1)
0, ifp < m.

!
xPf, ifp>m,

In order to prove Proposition 3.3/ the following result is needed.
Lemma 3.1 Let f be a 1-monogenic function, a € R and p,s € N. Then
(i) forp>s, x*E™(xP~°f) =[FE — s]|™(xPf);

(i) DIE + a)(x"f)] = (E + a+ 1[DE"f)].

(3.11)

(3.12)

(3.13)

(3.14)
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Proof. To prove (i) we use mathematical induction with respect to m. Take m = 1, let

us prove that

XE(Xf) = [E = s](xX"f). (3.15)
Using E(x?) = px? the first term of (3.15) is rewritten in the form
xX*E(x'*f) = x*(E(x'"*)f +x"E(f))
= (p—s)X"f+x"E(f),
and the second term is given by
[E—sl(x"f) = E&")f+x"E(f) —sxf
= pxPf+xPE(f) — sxPf.
Hence, (7) is established for m = 1.
Suppose that x*E™(xP~°f) = [F — s|™(xPf) is true. Then we obtain
[E—s|" N (xf) = [E—s|(x"E™(x""f))
= BGCEM () - s B (0 )
— BP0 f) 4+ X EMT (P f) — sx* B (xP0 )
= xX*E"(xP0f).
To prove (ii) one uses that

D(E(X"[)) = [E+ 1(D("f)).

Next follows the Proof of Proposition 3.3
The proof is again made applying mathematical induction. Consider p = 1. From

Lemma 3.1 we obtain

xD(xf) = Xzeiﬁi’i (xf)

= —nforXZeiX%f. (3.16)
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Since
n

Z}mgﬁz—ﬂW%ﬂﬂﬁ, (3.17)

and D(f) := 0 it follows
xD(xf) = (=1)x(n+2E)f
— (~1)2 (g+E—1> xf. (3.18)

Consider now the case p > 1. Notice that if p = 2s for s € N then x* = (—1)*||x||*,

and D(x*) = —2sx**~1. Consequently, using Lemma 3.1 and (3.18)), we get

{ xD(xP) f +xPxD(f), D even
xD(x"f) =
xD(xPNxf +xP7'xD(xf), podd
xD(x") f, p even

- { xD(xP~)xf —xP~H((n +2E = 2)(xf)),  podd

B —pxP f, p even

- { —(p—1)xP'xf —(n+2E—2(p—1) —2)x"f, podd

B (=1)pxPf, p even

) { (-12(5+E-1-23)x"f,  podd

_ PI(n —_ 21— 1\

- ([%12]2'[@]':-2 e [’%E?]— TR (3.19)

Notice that for p even [2] = [E£}] = [E21] + 1 and for p odd [E}] = [B] = [2H1] — 1.

Next we prove the formula (3.14) for m = 2. For D? we have:
D*x"f) = D(DRE"S))
D( — pxp_1f>, p even
{ D< —2(3+E— I%l)xp_lf>, p odd.
Since DE = (E + 1)(D), then we obtain
—p(=2)(5 + £ — }%)X”_Qf, p even
Dxrf) -

=23+ E+1-24)(=(p—1))x""2f, p odd.
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In view of x*E(xP~2f) = [E — 2](xf), it follows

(-1)*2p(3+F—2— )xpf p even
XD f) =

(—122(2+E—2+1-21(p—1)x"f, p odd

_ PBIGHE-E-
B2+ BB
For s < p the following expression is obtained
( NS 3
(0 2B T ([55] = = 20) TTx([3] = )5 + B+ 5 == 5
p even
D (x"f)= vy 18]
(—1)s 23] [T x([5] =) — 2+ 1)x
5]
1;[1 X([%]—j)(§+E+S—j+1—’%l)x”’sf, p odd,
where x(a) =1 for a > 0 and y(a) = 0 otherwise. Furthermore,
( 2 2]
(=17 2B T x([51] = ) — 200
3]t
1 X[ —1-DE+E—1—E+)xf,  p even
XSDS(pr) — Jj=0 [%]
(—1) 2] [1x([3) =)0 =20+ 1)x
*z’]
I x([(F]-NE+E-1- (g +)f,  p odd
_ COTEGHE-1-[)
- TEgesEo1-ED) f (3.20)
Finally, for the case where s > p it follows
x*D*(xPf) = 0. O

Using Proposition [3.3/ we obtain ([17]) the Proof of Proposition [3.2.



Chapter 3. On the growth of polymonogenic functions 75
The aim is to prove that
(+00) 4
= amix"D" (X f;) = 6.
m=0
Taking Sim; := mix™D™(x’ f;) and using Proposition 3.3 we obtain the following
(1A (5 4 = 1~ [ (5 4 5 - 1~ [4])
Simj = T e T AR (3.21)
EENEE G+ E-1- [ B G+ E-1-[3))!
For the case where j < ¢ one has that S;; = 0.
If we take j = i, therefore for © = m = j one has
n 2141
S = (cppiiren G EH T = O e g
(2+E+[Z]-1)!
Next, let us replace m =i+ m and j =i + j in (3.21) where we obtain
1) -2
Simj 1= K KL (3.22)
where
A Ym (0 gy [mEL]))
SRR it el i 829
BN (5 + B -1 —i— [57])!
and
1Nl 4 (i4-1)i ]—H + E— 1 — [ZE])
5 (3 YE-1- [5])!
For the expression S;,,; one has the following four cases:
(7) if m = 2m and j = 2j then
o _ (CDERmHEEn G B -1 m) ) (3.25)
T mlGem (B 4+ E—-1—i—(+m)l Y
(1) if m = 2m and j = 2j + 1 then
@ _ (DB @ B 1 —i—m)l o) (3.26)

Tl —m) (B E—1—i—(j+m))l 7



76 3.1. Cauchy estimates for solutions of iterated Dirac equations in R"

(7ii) if m =2m + 1 and j = 25 then

(_1)[i§1]+m+(i+l)(1+2m) (g 4+ E—1—i— (m + 1))|

SB K2, 3.27

imj mG-m-)(E+E—1—i-(G+m) ¢ (3.27)
() if m=2m+1and j =2j + 1 then

gy _ (ST (5 4 B -1 —i— (m A D)) (3.28)

o ml(G—m—-D(2+E—-1—i—(j+m))! &

Taking the sum over m we have that Sff,? (s =1,2,3,4) are the terms of an hypergeometric

series (see e.g. [62]). Therefore, we obtain

j
() ._ (s)
Sy = Z Simj

DElree + B
_ GG Eod 2Fi(=jj— 5 —E+il— 5 - B+i, DK,

(j—i—l)F(%—i—E—i—j) 2
for s = 1,2 since Slmj Smj, and
(s) .
SZ] = Z Slmj
m=0
(-plFlrpE e p—io)

..on ‘ n ‘ )
- 215 —5 - F 2,2 — — E+i, 1)K
FG+DIG+E—-1—1i— j) 1(=J: 92 i+, 5 + 14, 1)K

for s = 3,4 since Slmj Szm] and where 5 F} is an hypergeometric function.

Using the following inequalities from [30, 62], for j € Nand a:=j — § — E +

: S : : _ Tla—13) i
2F1(—],Oé,0é—],]-)—(lsli:I(l)QFl(_j,Of,a/—]—(S,]-)— F(CY) ( 1)]
T
I'(a)(1l — ) =
(@)(1 = a) sin(am)’
one obtains
~nilpe + B - M(1—2—FE+i |
SZ(];) _g® _ (=1) ( i) ( 2 i) (—1)75! ’Cﬁ)

i TG+ +E—i—j)T(1—%—E+i+j)
.sm(( +E—Z—J)) (2)

= (—plEl @ (3.29)
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and
g0 _gw _ COFITG LBl TR-g-Frd) e
9T T TGO E+E—1—i—j)T2—C—E+i+j) 70

B (_1)[%]+i+1+jsin(7r(% +E—-i—j—1))

Kc®
sin(m(§ + £ —i—1)) “

— S i1t o (2)
— ()l @ (3.30)

Summarizing, we obtain
4

ZSZ(;) _ 2((_1)[§]+j+(_1)[i;1]+z‘+1+j> @

2
s=1

= 0.

Therefore, we conclude that

(+20)

k—1
m=0 7=0
]

Next we need to recall the property that every monogenic component function f; has

a Taylor expansion of the form

D Vin(x)om (3.31)

1
P () = m]! D (@) + T1€166(1)) - - (To(im)) + T110(jm))) (3.32)

where |m| := mg + -+ + m,, o(i) € {2,...,n}. Here, the summation runs over all
distinguished permutations of the expressions (z,(;) + T1€1€4(3;)).
When applying the Almansi type decomposition formula (3.10) one may further infer

that every k-monogenic function has the following Taylor-Almansi series representation
400 k-1

F&) =) Vi (x)am,. (3.33)

lm|=0 j=0
The associated Taylor-Almansi coefficients ay, ; appearing in this series expansion
satisfy the inequality

oml
_fj

oxm

(n—1n---(n+ |m|—2)

<
m!riml

M(r, f;) (3.34)

lam,;]| =
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where we rely on Cauchy’s inequality for 1-monogenic functions applied to the monogenic
component function f;.
It is possible to obtain a Cauchy type estimate in terms of the original k-monogenic

function f and their Dirac derivatives, by applying the following proposition.

Proposition 3.4 Let f be an entire k-monogenic function with the following Taylor-

+oo k—1
-Almansi series representation f(x):= Y. > x'Vin(X)am,. Then
|m|=0 [=0
(n—1)n---(n+ |m| —2) 2 & L M(r, D)
lamall < {nd il S 335
mr O‘(Qalvzan)
q=l =0
where
-1 141 _
o (B I G - )
ai = - ‘
ST i
and a(q,l,i,n) =g+ 2 —1—1i— [%] >0
Proof. In order to prove this, we use the projection formula (3.11). It follows
k—1
M(r, f)) <Y M(r,x ' B,(E)x"D* f) (3.36)
q=l

where

I ra=t 1 3] i (1247214
3 + = q+ + _1)
By(E) = <[ | [é][ ]) =y ZO +E(_1_Z_ ?é]’ (3.37)

forl=1,...,k—1,¢>1with (I,q) # (O, 0). For (I,q) = (0,0) we have 3y := 1. For the

sake of convenience and clarity we rewrite this expression in the following form

2 1
Gig(E) = Z’quE T g (3.38)

where

o ([é} H—]) w 1y ([—1 - [é]) )

Next one observes that
(4]

1
X_lﬁlq(E)quqf = X_lxqﬁlq(E +q)Df = xIxa Z Vigi
i=0

E + a(Q? l? Z’? n)
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where o := a(q,l,i,n) =q+ 5§ —1—1i— [%} > 0.

Relying on the relation
1

1 - M(r, g)
= [ t* Tg(tx)dt < : 4
a |oe0 = [ ety < 2 (3.40)
0
where [ELM] is the inverse operator of [E + «], which holds for a general C''-function g.

Finally, one gets

[SIS)

(4]
M(r, D?
M x By E)Df) < 3 [Py lr- 2 D)

—. 3.41
’LZO a(Q7l727n) ( )

O

In the next section the analogous results for functions which are solutions of the iterated

generalized Cauchy-Riemann equation are established.

3.2 Cauchy estimates for solutions of iterated Cauchy-

-Riemann equations in R"*!

In this section, D denotes the generalized Cauchy-Riemann operator

= eoa—xo—f—iz axz

acting on the Euclidean paravector space R @ R® = R"*! whose elements have the form
2 = 19 + x with x € R". The subject of study is the class of functions f : R*** — (1,

that satisfy D*f = 0 for a positive integer k¥ € N, with k¥ < n + 1.

As shown in [11 [12], k-monogenic functions satisfy the following Green’s integral

formula:
=3 [ 0 a0 0), (3.02)
=950,

where f is k-monogenic in a domain that contains the closed ball B(0,r). The functions

given by
1 zg

qo(2)

Wn+1 N Wn+1 (k' — 1)' '

(3.43)
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are denoted as Cauchy-Green’s kernel functions for k-monogenic functions with respect
to the iterated generalized Cauchy-Riemann operator.

An estimate of the partial derivatives of the kernel functions g(()k)(z) is needed.

Proposition 3.5 Let m = (mg,my, ..., m,) € NoT'\{0}. Then

gmotetmn
Oz’ -+ - Oximm g(() )<Z>

mo N _k—1—j

my X(k—1—j)zg
= mo—7,M1,...,,m - 5 344
Z(] )q 0—7 eeey n(z) (k—l—j)‘ ( )

j=0

g (2) =

are the general partial derivatives of the kernel function g((,k)(z) with the following estimates

L + 1) -(n+|m|+mo—j—1)x(k—1—j)|aelt~ 177
) < (mo) n(n 0—J X J)1Zo 345
g z . —~ — . ) M
fom 2] ]ZO J [ 2|t mlmo=s (k—=1-7) (3:49)

where x(a) =1 fora >0 and x(a) = 0 otherwise.

Proof. For particular multi-indices of the form m = (0,my,...,m,) the following ex-

pression is true
(k) O

Therefore, using the estimates given in (1.12) we obtain
||g(k)(z)|| n(n+1)---(n+|m| = 1) |zo|**
m = | z ||+l (k—1)!

n(n+ 1) (0 + ] — 1)
= T DIl

To deduce an estimate for the general partial derivatives of g(()k), involving also derivations

in the xg-direction, first one observes that for k& > 2:

0 .y _ x5 ! x5 °
8_%90 (2) = qT(O)(Z)m + qo(2) (k —2)!

where 7(0) stands for the index (1,0,---,0). The next differentiation step implies

P ) = aorion ()= 2000002k — 2)
920 V) T PrOWE G Ty T OEX (k- 2)!

k-3
Ly

(k —3)

+o(2)x(k —3)
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where x(a) =1 for @ > 0 and x(a) = 0 otherwise. By a direct induction argument one

can establish that

0™y, _ N~ (Mo X(k—1—j)ag
Do (Z)_jz_% PR e e e

As a consequence the following representation for the general partial derivatives of the

kernel function is obtained:

gmottmn k) 0 mo X(k 11— j)xlgflfj
T a0 ) = 20 s ()

=0
Hence, for all m = (mg, m) € Ngt\{0} with m = (my,...,m,) it follows
mo ~ s . s k*l*j
oy < (oY nln 1) (04 [ g~ = 1) (kL= o
where the estimates of ||¢yg—jmi,...m.(2)]] given in (1.12) have been applied. O

Formulas (3.46)) allows us to derive a Cauchy type estimate of the Taylor coefficients

of a k-monogenic function that appear in the Taylor series expansion of the form

“+oo
)= S @ a .

|m|=0
This Taylor series representation is valid for general real-analytic functions. In fact, every
k-monogenic function is real-analytic, which follows from Green’s integral formula (3.42).

Indeed,
1 gmot-+mn

am = [ (2)]2=0

m! 0z - - - Jxmn
k-1
1

- > / (1) g5 (C)do (Q) D (C). (3.47)

m!wn-i-l —0
I=6B(0,r)

Next applying the estimate deduced in (3.45), the following inequality is established

k—1 mg ~
1 mo\nn+1)---(n+m|+my—1—1)
”am” < m!wn+1 § , E :( l ) prtml+mo—1
7=0 [=0
X(j = rit ’
o ", M (r, D’
X (] _ l)' T Wntl (T' f)
k—1 mg ~
1 mo , nn+1)---(n+ m|+my—1—1) j
< > (- =)~ 1) MU D),
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Also for this class of k-monogenic function an analogue of the Almansi type decomposition
into monogenic functions is valued. Actually, it has even a simpler form than in the case
treated in the previous subsection. Following e.g. [12], if f is an entire solution of D* f = 0,

then there exist k 1-monogenic functions, say fo, f1,--- , fx—1, such that
f = fo + ng1 + $(2)f2 + -+ l’]é_lfkfl. (348)
Moreover, one has the following result.

Proposition 3.6 Let f be a k-monogenic function as defined in (3.48). The terms

zofo, 26 fu_1 can be recovered by the following projective formula
(+00) 1
Ly _ : _ - q
whfi=Pf with P =) (-1) g =il (3.49)

q=l
Proof. Using induction with respect to ¢ it follows
(1=1)--- (1= g+ Dy filz) + 25" DU fi(2), a <l
0, q>1.

2D (o fi) = { (3.50)

First we prove that zbf; = Pi(f) for f = fo+ xofi +a2fo + - +ab  fu1. Forl =0,

using (3.50) we obtain

T
L

Py(f) = (—1)‘%%819"0)

I
TIMT 1
_ O = O
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since Z( 1) ( ) = 0. Therefore, using the same arguments as before the following relation

for any l (0<1<Ek-—1)is true, ie.,

k—1
1
B(f) = Z(—l)l‘ququ(f)
— ! !
k—1 k-1
= l) ngq(xst)
s=0 g= l
k—1 k—1
q=l s=q )
I+1 k—1 k1
= ﬂfofz+z ( ) oo fra 4+ (—1)p( » )Ilg i
p=0
= $0fl. ]

As a consequence of the Almansi type decomposition (3.48) one again has a Taylor-
-Almansi series representation for this class of k-monogenic functions involving the mono-
genic Fueter polynomials. Following, e.g. [11, 12], each entire k-monogenic function has
the following Taylor-Almansi series representation

+o0o k-1

; Hlml
- Z Zxévﬂl(z)am’j’ Um,j = axmf] (35].)

jml=0 =0
where Vin(2) := m!Pn(z) and Pm(2) is given in (1.8).

Next a Cauchy estimate for the Taylor-Almansi coefficients ap, ; in series expansion

(3.51) for k-monogenic functions is established.

Proposition 3.7 Consider f to be an entire k-monogenic function with series expansion

given by (3.51). Then

fomyll < POFD b=y gy
n(n+1)...(n+|m’_1)k*1 1 N q
N m!y/m| qz:; (g — l)!r 'M(r, D). (3.52)

Proof. Applying the classical Cauchy integral formula (Theorem [1.5) for 1-monogenic

functions on the monogenic component functions f; (I =0,...,k — 1), one obtains:
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Hlml

A+ 1)--- (0 + m] - 1)
lomoll = |

m!y/ml

M(r, f;). (3.53)

Relying on the projection formula (3.49), it yields

M(r, fi) < Zﬁng—lmﬁ

IN
=
—_

=
<
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3.3 Order of growth of polymonogenic functions

In this section we restrict mainly to treat the iterated Dirac equation in detail. The other

function class can be treated rather analogously.

To analyze the growth behavior of functions belonging to these classes it is impor-
tant to mention that the maximum principle (see Theorem [1.7)) is only valid in its strict
form for special subclasses. These classes are 1-monogenic (k = 1) and for & = 2 the
solutions of the iterated Dirac operator, i.e. for harmonic functions. For the other
cases k > 3 a strict maximum principle does not exist. Take for instance the function

2 2

f(x1,29,23) = 1 — 2% — 25 — x3. This is 3-monogenic, but || f(0)|| = 1 at the origin and

1£()]| = 0 for all [x] = 1.

In what follows, by
M(r, f) := max{[| f(x)[[}

lIx[|=r

is denoted the maximum modulus of f on the boundary of the ball of radius r and by

M(r, f) = max{[[f(x)|[}

[Ix[|<r
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its maximum modulus of f on the whole closed ball. When no ambiguity occurs we denote

M(r) := M(r, f) and also M(r) := M(r, ).

However one still obtains a number of analogous properties for the function M (r, f)

and M(r, f), as in the classical complex case (see [37]).

Proposition 3.8 Let f be a non-constant left (right) entire k-monogenic function. Then

the functions M(r, f) and M(r, f) are continuous functions.

Proof. Let us prove that M(r, f) := |TnHaX {||f(x)||} is continuous. From [13| p.48] we
express X := »_ e;x; by means of its spherical coordinates
i=1

r1 = rcosb
To = 7rsinf cosb,
T, = rsinf;sinfy---sinf,,_;
for 0 < 0y, -+ ,0, o < mand 0 < 0, 1 < 27. We have x = rw with r = ||x|| and

w = ile”%” Let
M(r, f) = |f(x0)[| and M(R, f) = | f(x)]
for xo == rwo and x; := Ruwy. Then for |R — r| < 6 it follows
M(R, f) = M(r, f) = [[f(Rwi)|| = | f (rwo)|| < [[f(Bwi)|| — [[f(rwr)|| < e
and also

M(r, f) = M(R, f) = [[f (rwo) | = I[f (Rwn) || < [[f (rawo)ll = [If (Rwo)l| <.

Therefore, for |R —r| < ¢ it follows |M (R, f) — M(r, f)| < e. O

We continue by generalizing some classical results on the asymptotic of holomorphic
polynomials to the context of polynomials that are in the kernel of iterated Dirac or

iterated generalized Cauchy-Riemann operators.
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Theorem 3.1 Let

N k-1 Nkl
= Z ZX]Vm(X)amJ‘, resp. P(z) = Z Zx{)Vm(z)amJ
|m|=0 j=0 |m|=0 j=0

be a k-monogenic polynomial of degree N +k — 1 with amj € Cl,. Then for arbitrary

e > 0 there exists an ro > 0 such that for all |x|| =7 > r¢

1P < (’“(”“”k 2 +€>||GN3 ¥ (3.54)

n!N|

where N is a multi-index and j* € {0,1,...,k — 1} such that [N| +j* = N +k — 1 and
=N+k—-1

Proof. The estimates ||[Viu(x)|| < [|x|™ leads to

N k-1
PO < D > 1™ lamy]

lm|=0 j=0
N+k—2 |
< | - ( DONEE R D DI Pl S ”)
|m|+j=N+k—1 |m|+j= 0 N.j

[ k(n+ N+k—1)!

< o ) ( A Nkl +rN+k_2<x>>,

where
lamll |1 1ijm
70N+k72(x) = Z H ]HH H‘ = (N 1)

Im|+j<Ntk—2 1 TI"

For a sufficiently large rq > 0 it follows
Irnik—2(X)] < e, Y||x|| > 0.

Therefore, for all ||x|| > 7 it holds

k N+ k—
HP(X)H§< (nt N+ )+6)HaN,j*HrN*’”-

n!N!

The following theorem is a generalization of the classical Liouville theorem.
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Theorem 3.2 Suppose that f : R* — Cl, (resp. [ : R"™ — Cl,) is an entire k-

-monogenic function given in the Almasi type decomposition form

f(x) = fo(x)+xf1(x)+- - 4+x" fro1(x) (resp. f(z) = fol2)+mofi(2)+ - +xh  fio1(z)).

If there exist a non-negative integers s € Ny and L; for j =0,1,...,k — 1 such that

(i) liminf M =L; < o0, (3.55)
r—00 rsT
or Di Di
(#4) liminf M =L; <oo, [resp. lim infM =L, <00 (3.56)
T—00 rs—J J r—00 pS=J J

then f is a polynomial function of total degree s.

Proof. Consider L = [ Jnax 1{L } and take an arbitrary sequence {r;};eny with r; — oo.
SIS

(i) By (3.55) holds
M(T’i,'fj)
r;

for all 7 = 0,...,k — 1. Applying Cauchy’s inequality (3.34) (resp. (3.53)) on the

< L+1, (3.57)

Taylor-Almansi coefficients a; ; of the function f in combination with (3.57) leads

to
m—Dn---(n+1] —2
1!

from which follows that a;; = 0 for all (1, j) with |I| + 5 > s.

T N(L 4 1y

(ii) By (3.56) holds
./\/l(Ti7 Djf)

s=j

T

forall j =0,....k — 1.

M (T,‘, D]f)
i

< L+1, (resp. < L+ 1> (3.58)

Using Proposition 3.4/ (resp. Proposition [3.7) and (3.58) leads to

k-1 (3] s—i—I1
n—1)n n+ 1| —2) ill7;
. qm,n)
q=j =0
k=1 s—j—|l
nn+1)---(n+|1|—1) r; 7
resp. arjll <(L+1 ——,

from which follows that a;; = 0 for all (1, j) with [I| +j > s. O
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We recall from [37, pp.17] the definition of the plus-logarithm and some of its properties.

Definition 3.1 Let o > 0. Then the plus-logarithm is defined by
log* (@) := max{0, log(a)}. (3.59)
Proposition 3.9 Let o, aq, s, ..., as be non-negative real numbers. Then
i) log(a) < log™ (a);
it) if an < g then log™(an) < log™(aw);
iti) log(ar) = log*(ar) —log™ (%)

w) Nlog(a)| = log™ () +log™ (3);
v) log® (f[lOéi) < i:llOg+<04i)f

vi) log* (z ozi) < ; log™ (a;) + log(s).

i=1

In the same way as in the planar case (see [37]) one also may introduce the notion of

order of growth for the hypercomplex case (see also [1, 2]).

Definition 3.2 Let f : R® — Cl, (resp. f : R*"" — Cl,) be a left (right) entire k-

-monogenic function. Then

+ + r
o(f) 1= Tim sup 128108 M /)

0<p< 3.60
00 log(r) ’ p=e0 (3.60)

18 called the order of growth of the function f. Furthermore,

i g 108" (08" M. £)
A(f) = lim inf ez

, 0< A< (3.61)

18 defined as the lower order of growth of f.
If p = A, then we say that f is a function of reqular growth. If p > X then f is called of

wrreqular growth.
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Let us discuss some particular examples of 1-monogenic functions which are solutions

of the generalized Cauchy-Riemann equation.

Example 3.1 Let P(z) be an arbitrary left 1-monogenic polynomial, i.e., there exist Clif-
N
ford numbers ay € Cl,, and N € Ny such that P(z) = Y. Vm(z)am. From Theorem 3.1

|m|=0

it is known, for an arbitrarily small € > 0 and for r sufficiently large, that

1P < (% +a> ™,

where N is the index of length N for which ||lax|| > ||am|| for all jm| = N.

Hence, it follows with C(N) := (““HN)! + 8) lan|| that

(n—1)!N!
(1ot ot N
. log™ (log™ (M(r, P)) < lim log™ (log™ (C(N)r)) —0
r—00 log('r) =00 log(r)

Thus, all 1-monogenic polynomials satisfy p(P) = X\(P) = 0, like holomorphic polynomials

i the complex case.

In the classical case, the exponential function has growth order equal to 1. In the
case of 1-monogenic function the different generalized exponential function considered in

[13, 21, [31] turn out to have the same growth order.

Example 3.2 The monogenic plane wave function from [21):
P(m, 2) := (1 +im)e 0/ ~™*> (3.62)

where m is an arbitrary fived vector from the (n — 1)-dimensional unit sphere S™, is left
entire and satisfies

max ||P(m. )| = |1+ imle”

Hence, for r > 1 the following is obtained

+ + N N '
lip 108 (og” (M(r P(m, 2))) _ p, log7(log (1 +imf) +7) _
r—00 log(r) r—00 IOg(T)

?

i.e., for allm € S"

p(P(m,z)) = A(P(m, z)) = 1.
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Example 3.3 Also the previously introduced monogenic generalization from [13, p.117]

g(z) = exp(zo,x1,...,%)

= ettt (cos(:vox/ﬁ) — %(61 +--+ep) sin(xo\/ﬁ))

satisfies ||g(z)|| = e* T < e On the other hand, there must be a positive real number
0 <c<n with

max [g(2)]| > e

llzll=r
The constant ¢ needs to be positive, otherwise it would have |1|nHaX eCrt Tt — 1 which
would be wrong. Hence,
1 + 1 + M 1 + 1 +( cr
li 108 (08" (M(r.9)) _,  log"(log7(e”)) _
r—00 log () r—00 log(r)

with 0 < ¢ < n, so that we again get p(g) = Ag) = 1, analogously to the classical case

dealing with the complex analytic exponential function.

Example 3.4 Consider the four-dimensional quaternionic 3-fold periodic exponential func-

tion from [31)], which has the representation
EXP(z) = egExpo(z) + e1 Expi(z) + eaBxps(x) + es Bxps(x),
with x = (o, x1, 2, 3) and

Eapo(z) = ™ (cos(—L) cos(—2) cos(—2) — sin(—L) sin(—2) sin(

V3 V3

Eap(z) = emg(sm(%) 005(%) COS(%) + cos(%) Sin(%) Sin(%)),

at = ﬁ) +sin(£)cos(2) sin(

x0—3 cos(—=) sin(—=) cos
Eaps(z) = e —=( <\/§) (\/3) (\/g 73 U R

Exps(z) = e“”og(sin(%) Sin(%) cos(%) + cos(%) COS(%) sin(%

By a direct computation, one notices that

3
o < ma |BXP)| <
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hence, once more

log(log(*2e" +(log™ r
| = i o8loels ) o logT(log” M(r, EXP)) _ o logflog(e”) _
r—co  log(r) r—00 log(r) r—co  log(r)

As in the classical case, a refinement in the same class of functions with the same
order can be classified by its type. Analogously to the complex case the definition of the

type of an entire k-monogenic function is presented by (see also [1]).

Definition 3.3 Let f be a left (right) entire k-monogenic function in R™ of order p

with 0 < p < 0o. Then
+
7(f) := limsup log” (M(r, /))

r—00 rp

is called the type of f. When no ambiguity occurs we denote 7(f) = .

Notice that the Examples 3.2, 3.4 are all of type 7 = 1, while Example 3.3 has type
T(g9) = n.
In classical complex analysis, one has the result that the order of growth of a holomor-

phic function and that of its derivative is the same. For 1-monogenic functions a similar

result was established (see [10]).

Theorem 3.3 Let g be a left (right) entire 1-monogenic function in R" g; given by

gi == a%ig and M;(r) := max {||g:(2)[|} wherer >0 andi € {0,...,n}. Then

|2ll=

plg) =p'(9) and Ag)=N(g), (3.63)
where
o) =ty 5 and N = it B D

for M'(r) := max n{]\/[z(r)}

i=0,1,...,

In the more general context of entire k-monogenic functions (k > 1), the following

result is obtained:
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Theorem 3.4 Let g be an entire k-monogenic function. Consider g; denoted as the func-

tion g; == %g and M;(r) := max {HgZ(X)H} where v >0 and i € {1,...,n}. Then

lIx([<r

plg) <p'(g) and Ag) < X(g), (3.64)
and
p(g:) < p(g) and  Agi) < X(9), (3.65)
where
p(g) = limsup log (ki(g)g((;;/l’(r))) N(g) = limnf log (l(ifg((:;/l/(r)))’
and
p(g) = lim sup e (hl)fg((;)w(r))) A(g) := lim inf log (lfg((rj)w(r))),

for M/(r) := max {M;(r)} and M(r) ;= max { max {rlHng(x)H}}

1<i<n 0<i<k—1 U ||x||<r

Proof. To prove (3.64), consider an arbitrary rectifiable curve from the origin to x, then

1
o) =9(0)+ [ > gt (3.66)
0 i=1
For x € R” with ||x|| < the following is true
lgll < g0l + 7Y Mi(r)
i=1
< lg(0)|| + nrM'(r). (3.67)

Therefore, it follows

M(r) < [lg(O)|] + nrM'(r).
Applying Proposition 3.9 ((v) and (vi)), we obtain
log"(M(r)) < log" (|lg(0)[]) + log™ (nr) + log™ (M'(r)) + log(2),

which in turn leads to

p(g) < p'(9) and A(g) < N(g). (3.68)
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Next let 0 < r < R < 400. By Green’s integral formula (3.3)) holds

k-1

1 : .
gi(x)=—>_ / Q0 (v = x)do(y)Dig(y). (3.69)
=0 ly—x]|=R—r
Applying the estimate (3.5) into (3.69) it follows
(Jn .
ool = LY [ el g
=0y —x|}=R-r
[Crgsrl(n —1—74)
< R max RI||D? .
< Z (R_T) max {7/ [D7g(y)ll}

Note that |C), | > |Cw~+1| forall 7 =0,1,...,k—1, ie.,

Mi(r) < |Cusl(n—1) 3 (R_T> M(R)

< [Curl(n—1) (R‘T) M(R). (3.70)

Inserting R = 2r into (3.70) leads to

??‘

Mir) < |Cosl(n—1) 1(%)%7(27»)

J

— |Cugla(n —1)M(2r) with a =

¥
=)

2k —1
2k—1 "~

Thus, we have
log™ M;(r) < log* MV(QT) + log™ <|Cn7k|a(n - 1)) + log 2.

Hence, for » > 1 the following estimate is obtained

log* log™ M, (r) < log™t log™ Mv(2r) log 2r

logr - log 2r log r
log™ log™(|Cila(n — 1))  log2
logr logr’

Consequently, we have

plgi) < p(g) and  A(gi) < A*(9g).
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Remark 3.1 Dealing with entire solutions h of the iterated generalized Cauchy-Riemann

equation the result is analogous. The only difference is given in the proof of

p(hi) < p™(h) and  A(h;) < X*(h),

Ooh

where h; := ‘ fori=20,--- n. For this case we use Green’s integral formula (5.42)
= '
=3 [ 2R
n+l .
I ¢—2ll=R—r
where
(k) w5 ! -
8(2) = w2, (3.71)
In the cases i # 0, one obtains
=
- :
< =3 [ 16 = 2l
=0zl =R
1 n G0 — 20
< — , do(Q)||R|| R D h(¢
o | e e QR Do)
I¢—zll=R—r
A (R—r ’
< — max {R||D’h
< ;;ﬂ< - ) mas (| D7R(C) )
k—1 J
R—r\ ~
< R).
< njzo ( I ) M(R)

In the remaining case, i = 0, the following holds

el < —— [mmmc—amwdomm«m
I¢—2]|=R~r
+ .H¢$W<—6WWdOMD%@M]

4-(0)(€ = 2)(C = 20) n qo(C — 2)(Co — 20)7 !
7! G- 1)

IN

3

N

=

_l’_
™
—

X HdU(C)HHDjh(C)H]
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k—1 j )t Y S R
It < b+ Y | AT S N Ry
- nMRHi%(R;T) (0 + ) M(R)
< k- (R]:) M(R).

By the same arguments one can prove that in the iterated generalized Cauchy-Riemann

operator case one obtains

p(h) < p"(h) and A(h) < N (h).

3.4 The maximum term and central indices of poly-

monogenic functions

Both, for the class of null solutions of the iterated Dirac equation and of the iterated
generalized Cauchy-Riemann equation it makes sense to introduce the notion of maximum

term in the following way.

Let f be an entire k-monogenic function with the following Taylor-Almansi series

expansion
+oo k-1
) =D X Vin(X)tm-
|m|=0 j=0
The norm of the function satisfies
+oo k-1
LFG < >0 1 Via ()l tam |
|m|=0 j=0
+oco k—1
< DY I fa
|m|=0 j=0
+oo
fn—1+s
< Ll (" T e
s=0
+o0o
< > x[F(n - 1)%ds, (3.72)
s=0
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where d; = | H‘laX {llam,;||}. If f is transcendental, then the series (3.72) converges. There-
m|+j=s
fore, if ||x|| = r is fixed, then

lim ds||x]|*(n — 1)° =0,

i.e., there must exist a term in the sequence which is greater or equal than all the other
terms of the sequence. This term will be denoted as the maximum term in the following

way.

Definition 3.4 (Mazimum term)
Let f : R* — Cl,, (resp. f : R"™ — Cl,) be an entire solution of D*f = 0 (resp. of
D*f =0) for a positive integer k. Let

+oo k—1

Z ZX]V X)lm s

jm[=0 j=0

+oo k-1

(resp. f(z Z Zm (2)am.,;, )

|m|=0 j=0
be its Taylor-Almansi series expansion. Then the mazimum term in this series expansion
1s defined by

p(r, f) = Iﬁr}f\Dj({Ham’jHT'mHj}. (3.73)

In case of no ambiguity we denote u(r, f) = u(r) or simply .

Definition 3.5 (Central indices)
Let f : R" — Cl, (resp. f : R"™ — Cl,) be an entire solution of D*f = 0 (resp. of
D*f =0) for a positive integer k. Let

+oo k-1

Z ZX]V X)lm s

|m|=p j=0

+o0o k—1

(resp f Z Z o am,]

|m|=p j=0
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For r > 0 the index (or the indices) (m,j) with mazimal length |m| + j with

(1) = || ;||7™!F7 is (are) called central index (indices) and denoted by

v(r, f) = (m, j).

When no ambiguity occurs we denote v(r, f) = v(r) or simply v. Denoting v(0) as the

indices (m,0) which satisfy | m| = p.

Remark 3.2 In the particular case k = 1 the definitions of the maximum term and

central indices coincide with those introduced in [10] for the 1-monogenic case.

In a similar way these notions can also be introduced for k-monogenic polynomials.
For a k-monogenic polynomial P(z) = fj kz_:;xj Vin(2)@m j, the maximum term is given
by u(r, P) = |lan.||r™* (where (N,z')h?s (E;re) the index (indices) of length N + k — 1
satisfying [|an;|| > ||am,|| for all jm|+j = N 4+ k — 1) and v(r, P) = (N, 1), provided r
is sufficiently large.

The case of transcendental functions is more complicated. This will be studied now.

We start by proving

Theorem 3.5 Assume that f : R — Cl, is an entire k-monogenic transcendental

function. Then

(i) wu(r) increases for r < rqy strictly monotonically and lim p(r) = oco.

T—00
(i) |v(r)| increases monotonically and lim |v(r)| = oo. Furthermore, |v(r)| is piecewise
r—00

constant.
Proof.

(i) Since f is not a constant function, there exists an ry > 0 such that |v(r)] > 1 for

r > rg. From the definition follows, that for R > r > rq:

u(r) = llaw Ir™" < flay o | RPN < Yy [|ROT = u(R). (3.74)
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Thus, u(r) is strictly monotonically increasing. Let 1 € Nj. Then

! 1 )|
lim inf log(n(r)) > liminf log([la{lr™)
r—oo log(r) roo log(r)
_ i ing 08 loll 4 (1 + ) log(r)
T log(r)

1 .
— timint (281l ) Sy wens
22 Togr)

Since f is a transcendental function, it follows that

tm inf 2BLT)

r—00 IOg(T’) % <375>

which implies that u(r) tends to infinity for r — oo.

Next we prove that |v(r)| is monotonically increasing. For r < R the following two

estimates are given:

|| R

v

”azx(r) HRIV(T)I

lavmll T > Yaygyllr )

lv(R)] [v(r)
<§> z(?) | (3.76)

Thus, |v(r)| is monotonically increasing. Taking dy := |lr‘nax {lJar;]|} it is known
+)=s

from which is inferred

that lim d, = 0. Hence, there exists a positive constant C' such that

§—00

p(r) = llaye [P0 < ) (3.77)

from which
log(u(r)) _ log(C)
log(r) = log(r)

+ (). (3.78)

Formula (3.75), i.e.,
log(u(r) _
r—o log(r)

means that lim |v(r)| = co. Since v(r) € NI and |v(r)| tends monotonically to
T—00

infinity, |v(r)| has to be piecewise constant and has at most a countable number of

discontinuities. O
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Analogous to the classical case (see e.g. [37, p.34]) one proves the following result,

simply relying on Theorem 3.5.
Proposition 3.10 If f is a k-monogenic function, then
(i) |v(r, f)| is right continuous,

(i) wu(r, f) is continuous.

Theorem 3.6 Suppose that f : R™ — Cl,, is an entire k-monogenic transcendental func-

tion with the property that its first Taylor-Almansi coefficient ago # 0. Then

fog(u(r)) ~1og ool = [ 120t

(3.79)

Proof. Assume, without loss of generality, that the first Taylor-Almansi coefficient

app = f(0) =1. If 0 =ty < t; < ty < --- are the discontinuities of |v(r)|, then for

t; <t <tj11 we infer
p(t) = llame - [#
with a fixed (m*, j*) = v(t). Furthermore,

m* i v(t

p(t) = (Im’ 4 5°) || ame -

Thus, in an interval [0, 7] it holds with exception of a finite number of points

%{bg(u(t))} = “I(t)) = |”Ef)|.

Since p(t) is a continuous function, we obtain

log(p(r)) = log(pu(r)) — log(u(0)) =

(3.80)

(3.81)

(3.82)
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3.5 Generalized Valiron type theorems for polymono-

genic functions

For the function class of entire k-monogenic functions the following Valiron type inequality

is established:

Theorem 3.7 Let f : R — (Cl,, be an entire k-monogenic function, then for all r > 0

such that r < R

n— R(Rk — rk)
M(r) < p(r) [’fIV(R)I(l + B+ S s |- (3.83)
rk=1(R —r)
Proof. Since f is entire k-monogenic, it can be represented in the form
+oo k—1
fx) =2 > ¥Way,
[1]=0 j=0
Taking v(R) = (1*, 5%), for 0 < r < R holds
400 k—1
M) < 3D Nl
1]=0 j=0
[v(R)|—5" -1 k-1 +00 k—1
- g+ ST S a1
=0  j=0 N[=[v(R)|—j* j=0
[v(R)|—5"—1 +00 k—1 ‘
< k pr)+ > gl (3.84)
[1]=0 N=lv(R)|—5* 7=0
Notice that, we get
lv(R)|—5*—1
SN DTSRRI VI
[1]=0 [1]=0 =1 N=lv(R)|—5*—1
—2)4+1)! -2 R)| =5 =1
=2 =)+ (uR) = 5~ 1)

< (R =77

This is obtained, relying on the inequality

(n—2+s)!<(n—2+(s+1))!
(n=2)sl = (n=2)(s+ 1)’
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Furthermore, it follows

o [ [n=2) + ()] - — 1]
“”R”‘J)[m—zwwuavv*—n!]
SR -+ (81
. ; (8 >]
=1
< (WR) -9 |+ %)(1+%) e (14_’”(]%)#)
§1+\VTR)|—j* §1+|V\(,R)\—j* =1+ (R)|—j*

< [v(R)]

(1+ \V(R)D“] :

Concluding

|70 RO+ (R =5

— ]+j ~ 1+ (r)
Z Z l|ar;lr < Z Z a7 o [ N RI5 B —5*

M=l (R)[—5* =0 M=l (R)|—5* 7=0

- lay || RS i+ gl
= () Z ZH 1y | RV (R Rl
[=lv(R)|-j* 5=0

W—=|v(R)|+5* pd—3"
< Y §j( ) 7
N=[w(R)|—j* §=0
+o00 . i* k—1 J
rAN=-v@®)+* R\’ T
=0 3 (3) (%) (E)
N=|w(R)|-j* =0
+oo . k—1
A\ N-(B+5* [ R RF — pk
< — _ -
<un 2 (@) wmey
N=|w(R)|-j*
R(RF —r¥)
< _
= 'u(r>7“k_1(R—T)2

Applying this inequalities into (3.84) leads to

M(r) < p(r)

n—2 R(Rk - Tk)
klv(R)[(1 + [v(R))" " + m] :
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Remark 3.3 Within the context of entire solutions of the iterated generalized Cauchy-
-Riemann equation in R the same result is obtained, simply replacing n by n + 1.

For the case k = 1, this inequality simplifies to

R]‘

M(r) = M(r) < u(r) (B (1 + (B +

This is the Valiron inequality for 1-monogenic functions established in [10, Theorem 5.2].

For 1-monogenic functions we also obtain, applying Cauchy’s inequality, the following

direct estimate

n(n+1)---(n—[v(r) =1
v(r)! ’

where v(r) is one central index (see [10]). Furthermore, applying Stirling’s formula to

(3.85) ([17]), one has

u(r) < M(r) (3.85)

nn+1)---(ntpr)-1) _
v(r)! = (n— DI(V2m)!

M(r ngl B ()

p(r) < M(r) p(r)] = n2 L

For polymonogenic functions also holds:

Proposition 3.11 For an entire k-monogenic function g : R* — Cl, (g : R"™ — Cl,)

of order p and lower order \, we set

log™ (log™ log™
p1 := lim sup og (log” u(r)) po = lim sup o8 W1 (v () (3.86)
r—00 log(?“) r—00 log(?“)

and

log™* (log™ log™t
A1 = liminf og” (log™ pu(r)) Ao = liminf s BLA WA V) (‘V(T)D
r—00 log(’l“) r—00 log(fr)

Then p < py = py and X < A\; = Ao.

(3.87)

Proof. Although the proof of p; = py and A\; = A\ can be done in analogy to the complex
case presented in [37, Theorem 4.5], we present it here.
Let us start by proving p; < ps. Suppose that g is a transcendental k-monogenic

function with the following Taylor-Almansi series expansion

oo k-1

g(x) = Z ijvm(x)am,j'

jml=0 j=0
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Since this series is convergent, we have for a sufficient large » > 0 and ¢ > 0

Iu(r’ g) = H&U(T)HHV(T)' < CT‘V(TN.

Furthermore, it yields
log™ (u(r, 9)) < [v(r)|log™(r) +log™ (c).

Moreover, it follows

log™ (log™ (u(r, 9))) log™* (|(r)]) +log™ (log™ (r)) +log™ (log™ (c)) + log 2

lim sup log. < limsup log 7
1 +
= ey 22 (0
o0 log r

To prove that \; < A9, we use the same argument as in the proof of p; < ps. To prove
that p; > ps we take 0 < r < R and infer

(@)W)' _ v |B*OF _ (R, g)
a8 = u(r, g)

r

Moreover, we obtain
(R + + +
[v(r)llog™ { — | <log™ (u(R, g)) —log™ (u(r,9)) < log™ (u(L, 9))-
Taking R = 2r, follows

log™ (|v(r)]) + log(log 2) < log™ (log™(u(2r,9))).

Furthermore, yields

lim sup log™ (|v(r)]) +log(log2) _ . sup log™ (log™ (uu(2r, 9)))
r—00 IOgT - r—00 lOg(T)
o lim s, 108 (og” (1(2r, 9))) log(2r)
= TP log(2r) log(r)

Hence, p; > po. In a similar way we obtain A\; > As.
Now we give the proof of p < p;. Without loss of generality, it is sufficient to consider
the case p; < oo, since the assertion is true in the remaining case where p; = oo.

Inserting in particular r = R/2 into Theorem [3.7, leads to

M(r) < p(r)[klp@n)|[1 + [p(2r)[]"72 +2(2" = 1)]. (3.88)
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In view of
log [v(2r)]

log(2r) = p2 + €, e>0

which equivalently reads as
o (2r)] < €790 = (aryt,

one concludes that for a sufficiently large r there is an €1 > 0 and a 6 > 0 such that

M(r) < p(r) IV(QT)!”(k+€1)>

< p(r) ()" (k + e))
< ulr)(@ey ey,
Hence with g5 := ne + ¢ it follows
M(r) < p(r)(2r)"rte. (3.89)

Therefore, we arrive to

log"(log™ M(r)) _ log™ log™ [u(r)(2r)"=**]

log(r) - log ()
o log™flog" p(r) +log™ (2r)"> <]
- log(r)
~ log"(log™ (u(r))) +log™ (log™ ((2r)">*=)) +log(2)
- log(r)
< log"(log” p(r)) +log™ ((np2 + £2) log™ (2r)) + log(2)
- log(r) '
Furthermore, we have
lim sup log™* (log* M(r)) < Timsup log " (log* p(r)) __ .
r—00 log(r) r—00 log(?“)

It remains to prove that A < \y(= A\;). If Ay = oo, then the assertion is true. Assume

without loss of generality that Ay < co. Then there exists a sufficiently large R such that

log™ [v(R)|

<A
logR — 2+5

which equivalently reads

Iv(R)| < R, (3.90)



Chapter 3. On the growth of polymonogenic functions 105

Since the Taylor-Almansi series converges, follows for sufficiently large R and g5 > 0
H(R) = oy |R¥P) < RIS (391)

Inserting r = R/2 into Theorem 3.7 and applying (3.90) and (3.91)) leads to

M(T) S RRA2+50 [Rn,\2+ngo (k + €/>]
< RRAQJFEO Rn)\2+n80+5
< RRA2+SO+5’ _ (QT)(QT.)XQJrs* < T7,.A2+61

with some appropriately chosen ¢’,¢*, 1,4, > 0. Finally one gets
logt (r*2*etlogr)

log™ (log™
i g 1081087 M) o — g = Al
r—00 log(r) r—00 log(r)

Remark 3.4 In the two-dimensional complex case the inequality (3.85) corresponds to
w(r) < M(r), allowing to establish the stronger result p = p1 = pa and A = Ay = Ag, as

shown for instance in |37, Theorem 4.5].
Proposition 3.12 Let f : R" — Cl, (resp. f:R"™ — Cl,) be an entire k-monogenic
function with p1(f) = 0. Then, for all k,s € N

k

r—00 rs

0. (3.92)
Proof. As a consequence of Proposition 3.11
. log™ (Jv(r, f)])
0= = =1
pi(f) = pa(f) = lim sup og(r)

we obtain

log(|v(r, f)I*) = klog(|v(r, f)]) < klog™([v(r, f)]) < kelog(r) = log(r™),

for all r sufficiently large and € > 0 sufficiently small such that ke < 1. Therefore we get

v HIF _ v, I < ™ ke
T

rs - r ’
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since ke < 1. This concludes the proof. O

This proposition allows us to establish the following result.

Theorem 3.8 Let f : R" — Cl, (resp. [ : R"™ — Cl,) be an entire k-monogenic
function with po(f) < co. Then

r—>oop log M(T)

C,,?cf(x)H} fori=2,...,n (resp. i=1,...,n).

<1 (3.93)

where M;(r) := max {‘

lIx[|<r

Proof. Since f is entire k-monogenic, we have

+oo k-1 +oo k-1
f(x) = Z ZX]Vm(X)amJ, resp. f(z) = Z Zx{]Vm(z)am,j
jml=0 =0 jml=0 J=0

400 k-1
F0 = 1) = Y Y o (6 Vin()) g

8%- r] =0 j=0
+oo k-1 a m'
— XV (x) + x7 — Vm_”x)am
1%;0]_0 &L’Z( )Vin(x) (m — 7(3))! ()( ) J

b S = 5 f(2) = Y S wVinlZ)om,

[m[=0 j=0
+oo k-1 ' m!

= Z|: Z; .Cl}{) (m — T(Z,>>!Vm_7(i)<2)am,j, 1 7£ O)
m|=1 7=

Since
(=)™ (Z xf) j=2m, meN
x! = 'n m
(=)™ (fo) x j=2m+1 meN,
then one gets

ox’ —2ma;x*" j=2m, méeN

O —2ma; x>t 4 x®e;  j=2m+1, meN,
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obtaining for ||x|| < r:

+oo k-1

- N g,
601 < 303 (5 gy ) 7™ o]

=1 j=0
+oo k-1

< DD G m) I ag). (3.94)

m|=1 j=0
In what follows p; is the maximum term of f; and, similarly, v; are the central indices

of fi. If

I+ 7

p(r) = llam= -
then (m*, j*) = v(r) and concluding that

1

pi(r) < v [ ()] = p(r)~[v(r)]. (3.95)

In view of |v(r)| = |v;(r)| + 1 the following is obtained

(15, +
s PE O+ o fu(r)

P00 log(r) el log(r) ™

Further, for € > 0, yields

()| < [wi(r)] +1 < e

Applying the same arguments as in the proof of Proposition 3.11, using Theorem 3.7 as

well as inequality (3.95)), for €; > 0 follows
My(r) < p(r)rmteetorat,
because of |v(r)| < r”2*¢. Finally, putting d; := & + ne this leads to
log M;(r) < log u(r) + [nps + 01 — 1] log r.

This permits to conclude that

1 i 1
hmsupM < lim sup (1+ <np2+51—1> o8 T ) 1
r—oo  10g p(r) r—00 log u(r)




108 3.6. A Schwarz-type lemma for 1-monogenic functions

Remark 3.5 In the complex case, under the same hypothesis as given in Theorem 3.8

and in view of

p(r) < M(r) < p(r)r* - (k €N),

one obtains

log M'(r) ~ log M(r)

where M'(r) = max{||¢'(z)||}. For more details, see |37, p.38].

lI=l=r

3.6 Monogenic functions mapping the interior to the

exterior of the unit ball

In this section an estimate for a 1-monogenic Clifford valued function f, which maps the
interior of the unit ball B(0,1) to the complement of the closed unit ball is obtained.
Applying Schwarz’s lemma it is possible to estimate the norm of D f by the norm of f in
the origin. Moreover, an estimate of f is obtained in the whole unit ball which describes
the growth behavior of the function f. For this a generalization of lemma 6.5 of [34] is

used, following an approach similar to the one given in [41].

Theorem 3.9 Let Q C A, 11 be a domain that contains the unit ball B(0,1). Let f be a
left 1-monogenic function with the following Taylor series representation
+oo
=35 Y Vil
s=0 |m|=s
such that

limsup /(s + 1)"d, = limsup v/dy < 1, (3.96)

§—00 S§—00

where ds = |1rn|zax{||am||}. If | f(2)]| > 1 for ||z]] < 1, then

(i) 1 DFO)] < 4]1£(0) [ log ([l f(0)II) and
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(i1) if f is a Clifford group valued function, ||wo| <1 and ||w| <1, then

()]l < @ |1 (wo)|[) =

where k = M.
11— wow|

Proof. Let us prove (7). Since f is left 1-monogenic in €2, then f has the following series

expansion in B(0,1)

n —+o0

fE)=a0+> ztm+ Y Y Via(2)am, (3.97)
=1 s=2 ‘m|:5

1 o°f

m! 9z 922 - - P

(0).

where a,, :=

For t € C we formally define a power series g whose coefficients are the moduli of the

Taylor coefficients of the function f, i.e.,
n +oo 15
9(t) = llaoll + D _ flar|[t+ 3> laml - (3.98)
i=1 s=2|m|=s ’
As a consequence of condition (3.96) the power series g converges in [¢| < 1.

Since ag := f(0) and ||f(0)|| # 0, taking an appropriate branch of the complex loga-

rithm of g, we define h as
h(t) :=log(g(t)) = u(t) + wv(t). (3.99)
The function h is holomorphic and has the following Taylor series expansion
t2

Alt) = ho + bt + hagy + . (3.100)

where hy = log(g(0)) = log(||f(0)||) > 0 since ||f(0)]] > 1. Now consider the complex

valued function 1 defined as

h(t) — ho
t) = . 3.101
o) = (3.101)
t) — ho)? 4+ v3(t
The function ¢ has the following properties [¢)(t)|* = (u(t) = ho)” + v*(1) < 1 for

lt| < 1 and 9(0) =0 (u(t) + ho)? + v*(t)
<1an = 0.
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Since 1) satisfies the hypothesis of Schwarz’s lemma (see [3, pp.135]), the following is

obtained
/ hl
[ (0)] = | < (3.102)
2im HCLT(i)H of
where hy = lo 0)]|) and hy = =——— for a,;) = 0).
o = log((LF(O)]) and by = S25S 0 =50

Since (D + D) f(z) |s—0= 28‘9—3{0(0) and f is left 1-monogenic, we have 28‘9—;;(0) = Df(0).
From (3.102) we infer that

n

o)<

i=1

of

7

o] |

<0>H < 20O oI O])- (3.103)

To prove (ii), we use the same functions defined in (3.98), (3.100) and (3.101) as well
as Schwarz’s lemma. Let z € A, such that ||z|| = |{| = k. Then |¢(¢)| < k and by
definition of ¢ it follows

‘% <k (3.104)
This implies that
[h()] = [hol < [h(t) — ho| <k (|R(t)] + |hol), (3.105)
with hy = h(0) this results in
h(0)] < Ih(O) (3.106)
Furthermore, one has
l9(8)] = "] < O = || (o). (3.107)

Since the coefficients of the series expansion of g are non-negative, one gets

Jmax g (Itle”)| = g (1) (3.108)

Therefore, using (3.97), (3.98)), (3.107) and (3.108) the following inequality is obtained

IFI < g(1t]) = max |g(6)] < [ £(0)] 7. (3.109)

0el0,2n[

Define the function F'(z) by

F(z) = 2"(1 + Wo2)||1 + oz || " "V f((2 + wo) (1 + Woz)™h). (3.110)
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Then, from Theorem [1.3]it follows that the function F is again left monogenic in B(0, 1),
since the Mobius transformation that we applied is an endomorphism of the B(0,1).

Moreover,

IF ()]l = 2711 + @oz || [ ((2 + wo) (1 + Woz) )| > 1 (3.111)

for ||z|| < 1 and |Jwo|l < 1, since also F' maps the interior to the exterior of B(0,1). The

previous inequality holds in view of
1f((2 +wo) (1 +wg2) ") > 1

and |1+ woz|| < 2.

By applying (3.109) we obtain the inequality

IFG) < IFO)FF = 2" | f(wo)ll) 7 . (3.112)
Therefore, from (3.111)) it follows that
1) = (£ (2 + wo) (1 +7m02) ]| (3.113)

and together with (3.112) we obtain

1 (w)]] < @ |1 (wo)[|) T

where
w = (2 4+ w) (1 +wpz) .

Consequently,
2 = (w— wf)(L — wgw) ™ = (w— wp)(1 — wow) "

[w — wo
A = |2]| = k. O

since wy is a paravector w; = wy. Moreover, one has 1= mwl]
— WoWw
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Chapter 4

Asymptotic growth of
polymonogenic function

In this chapter we analyze the behavior of growth of entire polymonogenic Clifford algebra
valued functions.

In the first part we establish some preparatory results which will be used in the follow-
ing sections. Some estimates between the maximum modulus, the maximum term and the
norm of the central index are obtained. In the last two sections we establish a relation on
the asymptotic behavior between solutions of iterated generalized Cauchy-Riemann and
iterated Euler operators. We also obtain a relation on the asymptotic behavior between
solutions of iterated Dirac and polynomials in the Euler operator and in the Gamma

operator.

4.1 Some fundamental results

In this section we denote the standard Euler operator in R” (and in R"*!) by

E=N"0u"2 (E=> 5
20n P L)
The Gamma operator in R™ (see e.g. [21]) is given by

- 0 0
4,J=1,1<j
Notice that

I'=xD+E,

113
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when working in the vector formalism. These operators generalize the real part and
imaginary part of the complex differential operator zdiz to higher dimensional equations.
Under this point of view it seems natural to regard polynomial expressions in F and
I' as generalizations of iterations of the zdiz operator.
To establish a relation between the asymptotic behavior of the maximum term of a
k-monogenic function and that of their polynomial expressions in terms of F and I it

turns out to be convenient to prove first some preparatory propositions.

For simplicity we use the notation v := v(r,g) for the central index of an entire

k-monogenic function g if no ambiguity occurs. Let us assume that v = (m*, j*).

Proposition 4.1 Let g be a transcendental entire k-monogenic function in R™ (in R™*1).

Then

M(r,g) < p(r)L(r), (4.2)

where

*+1

=1 )
A 2 (Z e L " Z oty _]>

e IIa || m|-+—|] 2 amgll mleiopy]
m,j m|+j—|v m,j m|+j—|v
S ity S e

lm|=|m*|+1 j=0 -l

and A(n,m*) ;= C=ZHR D oy A(n, m) = )

(n—2)!m*|! (n—1)!m*|!

Proof. Since g is a transcendental entire k-monogenic function it has a Taylor-Almansi

expansion of the form
400 k-1

Z ZX]V X)lm s

|m|=0 j=0
(see also (3.51))). For ||x|| < r we have

400 k-1

gl < > > 7 ™ lamyll.

jmn[=0 j=0
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By the same reason, there exists (m*,j*) € N2 (resp. (m*,j*) € Ny*') such that
Qm* j* §£ 0. Then

) i1 .
196 < a5 7“'“‘*“[ DR PRI v

|m|=|m*| lm|=[m*| j

Al oyl AT AL il
m,j J ] m,j m+j m ]
LD DREND DR recsey AP ZH ey L4
|m|=|m*| j=j"+1 |m[=0 j

* *
|m|=[m*|+1 j=0 5

S Z”“amall |m|+j—|m*—j*]_

In view of > 1 < A(n,m*), and if we take in particular the central index as

jm|=Jm|
(m*,j*) = v then the maximum term is given by u(r) = ||am= - ||7™ #7" one arrives
at the stated result. O

In order to proceed we recall the notion of logarithmic measure (see e.g. [37, [70]),

which shall be used later on.

Definition 4.1 We denote a set F' to be of finite logarithmic measure if

/dr
— < Q.
r T

The following proposition provides an estimate for the function L(r) of (4.2).

Proposition 4.2 Let g be a transcendental entire k-monogenic function in R™, with the
following Taylor-Almansi series expansion

400 k-1

= Z Z X! Vi (X) @ -

jm|=0 j=0

Let (Py)ren be a sequence of real positive numbers satisfying

l<P<P--- and lim P, = P < oo.

k—o00
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Then there exists a real r > 0 such that

|

. F;
|| gy [P i=|v|—|m|—j+1 . (4.3)
||CLVH7“|V| - P)‘|n|ﬂ|+j ’ |m| +‘7 o 1’ ’|V|
; |m |+
|@m=+m j*-l—j”T'VHlmHj || :
: _ =1,2,3,...
[ [|r!”! 0 ml+i=1.2.3, (4.4)
i=|v|+1 '
where v = (m*, j*) and p(r) = ||a,||r™! are respectively the central index and mazimum
term of g.
Proof. Consider
400 k-1 |m|+5 400 k-1
H(x) = Z ZXJVm(X)CLmJ H Pl = Z ZX]Vm<X)bm,j-
Im|=0 j=0 i=1 Im|=0 j=0
In view of P, < P, we infer:
+o0 k-1 ‘ lm|+j
IHGO < > > IxI™ llamgll | T] 2
|m|=0 j=0 =1
+oo k-1
< D D Il g | PP
|m|=0 j=0
+oo k-1
= D> (D)™ lamll- (4.5)
|m|=0 j=0

For ¢ := ||x|| > 0 we obtain

o™ m| 45 =0,1,..., |m*| + j*

[bm.j[|@™ %7 < 1o, H) = ||bym= ;-

b 3 1[0 < p(0, H) = [[bue g+ |™ 7, || + j > |m*| + 5.
[m|+j
Since ||bm j|| = llam|| { II P |, we obtain
i=1
jml+) | 45 |
lamill | 1] 2| ™% <llamegll | ]I 2] ™ Im|+j=01,.. |m*|+;
i=1 =1

(4.6)
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and also
[+ ' |45 '
lamsll | TT 2 ) @™ < llame s | | [T 2] @™, Jm|+j > m*|+5 (47)
i=1 =1

Furthermore, for (4.6) and (4.7) we have

||aijQ|mH—j [m*|+5* | * )
7 m*|+j* < H Pia |m|+j:0,1,,|m ’—i—j
HCL * 4% Q' H‘]
. i=1+ml+j
[ @ g« [| ol 17" o+ , |ml g > fm? 457
=
=1 me 45

Taking m := m* — 1, j := j* — [ for the first inequality and m := m* +1, j := j* + [ for
the second inequality (1 € Nj and [ € N) we have for v := v(p, H)

S HH}A—H—D |l|+l:O,1,,‘V|
i=1

[re— s

(4.8)
e g, P 1 1| +1=
— T T . +1=0,1,...
|am= |0 1
I1 P
=1
For each ¢ > 0 we define r := 0P, (o, > 0. Using (4.8) we obtain
|11|_JIrl
[ A = B
|am* G r‘m*|+j* = P||1|‘+l S ]-7 |l| +l - 0717"'7|V|
(4.9)
R ]+
lam gl ™ T Ty =0
[tz - |77 1+ ’ = e
[T P+
i=1
The inequalities (4.9) imply that
Ham*fl,j*flHr‘m*ilHj*il < “am*,j* rlm*Hj*? |l’ +1= 07 17 L) ‘V‘
(4.10)

*

|m* 41| +5* +1 < ||am*,j T"m*Hj*’ |1| + 1= 0,1,...

|G 1t [|7
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™+ is the maximum term of g and v := (m*, j*) its central

which means that ||am« ;+
index.

The inequalities (4.3) and (4.4) are valid for each of those 7 := 9P, (o, for o > 0.

Next we prove that (4.3) and (4.4) are valid for all r except for a set of finite logarithmic
measure.

Let o1, 02, ... be the discontinuity points of |v(p, H)|. Consider |v(p, H)| to be the
constant v, for 0, < 0 < 0ma1-

The inequalities (4.8)) are satisfied as well as (4.9) for all r with

Sm = QmPVm <r< Qm+1P = Sl

'm m*

(4.11)

For the case where r belongs to the interval [S} . S,,,1[ it can happen that the inequalities
o0

are not true. For that reason we define a set F':= J [S}, S,ni1]. A calculation gives
m=1

dr > Sm+1
RPN
m=1
= m Pl/
_ Zl()g(@ +1 m+1)
Qm—HPym

m=1

- khm 1Og(PVk+1) - log(Pyl)

F

= 10g(P> o log(Pm) < 00,

and we may conclude that F' has finite logarithmic measure. 0

Remark 4.1 The proof is analogous to the classical one, see Proposition 21.1 from [37,
pp.189]. The auziliary function H(z), given in [37] is obtained by taking k = 1.
The proof can directly be adapted to the case of solutions of the iterated generalized

Cauchy-Riemann equation.

For our purpose we also need an asymptotic lower estimate of |v(r)].
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Proposition 4.3 Let
+oo k-1 |v|—|m|—j
L*(r) Z ZHam —m |l
b
|m|=0 j=0 law | |TIV|
(m, j) # (m*, j*)

then for e >0
L*(r) < |v(r)]2 ", (4.12)
where r & F and F is a set of finite logarithmic measure.

Proof. We consider

L(r) = A(n,m*)+ Z (i ||

|m|=|m*|

am* j*

Moty g~ el )

l]+1|| m*,j*

(4.13)

lm* |1 k-1

S IIan‘|| Wl f Z lawill jwisi-p

lw|=0 (=0 e 5+ w|=|m*|+1 1=0 e -1

Now we take a suitable substitutions of w,l and apply inequalities (4.3) and (4.4).

Substituting [ := 7* + 7 in the following sum, one obtains

|aml|| < Z ZHama i —(i—lml)

|| * * || * *
m.j jml=fm| =1 %

7*=1

D0 2

|m|=[m*| =0

IV\

Z Z =|v| J+|m|+1

Jj—|m|
mi=me| =1 Ly

B,

IN

PJ |m]|

+ ) Z “V”l' . (4.14)

m=m*j=ml+1 ] P,
i=lv]—j+m|+1

Furthermore, after substituting [ := j* — j, one gets

ZZ

|m|=|m*| l=75*+1

k—1—j*

A Z Z ||am,g il i+ m]

| * *
ml=fme| j=1 0

|m**

—1—j5* PJ+\m|

< ) Z V|+]+\m\ . (4.15)

[m[=|m*|  j=1

V|+1
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If we replace w := m* — m and [ := j* — j, then

|m*|—1 [m*| 5~ _ ;
mz: i law,ll Wi+ i i [[r— jHrM (Im|+5)
V]
\w|010Hm |m|=1 j=0 r
|v]
o i <p| &
v m—l—] +1
< ) Z . 4.16)
|m|+j (
m|=1 j=0 P|l/\

For the next sum we replace w := m* —m and [ := j* — j

& too k—1—j*
~ ” Qv lH \w|+l—|u| . i Zj Ham*erj*+]H 7~|V|+ |m|+5)
‘ B i vl
|w|=|m*|—1I=j5* ’ lm|=1 j=0 ||CLm »J r

400 k—1—j5* P‘m|+J

< 2 Z |u\+\:1|\+a ' (4.17)

|m|=1

\u|+1
For the other terms of (4.13) we substitute w := m* —m, [ := j* + j and w := m* + m,

[ := j* — 7, respectively

|m*|—1 k—1 |m*| k—1-j* v|—(jm|—j
- —J
MAwtlljwl—lr] 2: 2: | @ m]*-HHTH [ml=5)
: [v|
lw|=0 I=j* lm|=1 lame - "
lv|
jm*| min{k—1—;*|m]} b
< Z Z i=|v|—|m|+j+1
|m|—j
m=1 =0 By
|m* | k—1—j* plml=i
14
+ 3 e |+|' ‘| . (4.18)
v|+|m|—j
[ml=1 j=min{k—1—j*m[}+1 " T >
i=|y|+1
and also

| plvi+ml

+oo  j*
Z Z |6Lwl|| plwlti=lvl ZZ||am*+m,j*—j|
7“|V‘

|w|=[m*|+1 =0 lam: -1 Im|=1j=0 s 5+

+oo min{j*,lm[}  plm|-—j

< 2 Z e
[v]+|m|—j

=1 1l r
i=[v|+1

|v]

P

- & i=|v| Ewﬂ
+ 0y > e (4.19)

|m|=1 j=min{;*,[m[}+1 v
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To proceed we consider

111 1
log(P1) :=1,  log(P) =1+ 7+ 55 + 2 +- -+ G

(4.20)

fori =2/3,...and a = 1+46, 6 > 0. Taking m € N and log(P;) (i € N) as defined in
(4.20), we get the following:

m—1
I P m-l
log W = Z log(Plyj—s) — (m —1)log(£))
|1/| s=1
m—1 ] —s—1 =y
- L+ Y, | —m=-D{1+) —
s=1 k=1 K k=1 "
m—1
1
= — (m S)
2. ==
Cm(m—1
__mm-1) (4.21)

and also

log i = mlog(P, |,,‘ Zlog P|,,|+s
HPIVIH
1
lv[—1 m [v|+s—1
R R I B M EEaD Sl
k=1 s=1 k=1

(4.22)
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Applying the inequalities (4.21) and (4.22) in (4.14)-(4.19), one obtains

T Mamall - Mamll 15+ A lawill . |w|+i—|v|

Qm, [ j m,l —j w,l w|+l—|v
Z z Ay * % Z a** Z Za**r
S = ey L P e = 5 T

+ Z Z IIaszI T\w|+l—|u|

|w|=|m*|+1 I= 0

Im| (i jm]) (- |m|-1) —(j—|m])? k=1—3"  _(j+im])?
< Z Ze 2(vl+j—lm[-D)T Z Z e2(v[+i—TmD® 4 Z Z e 2(v[+5-+me
|m|=[m*|j=1 lm|=|m*| j=|m|+1 |m[=[m*| j=1
lm* | 5" _(jm|j) (i oo k—1=j"  _(jm[+j)2 lm*| min{k—1—5"m[} _(m|—j)(m|-j-1)
+ > >e e 1>a + > DD eWHEmENT + Z > e 2(WF[m[—j—D
lm|=1j=1 lm|=1 Jj=1 |m|= 7=0
|m| k—1-j" —(jm|—j)> too min{j*,[mf} = _(m|_;)2
+ > e2WHm=-D% 4 > e2iFm=NT
lm|=1 j=min{k—1—j*,|m|}+1 |m|=1 7=0

-k

—(Im|=§)(|m|—-j—1)

+o0
+ 3 e 2(vIFlm|= =1

lm|=1 j=min{;*,[m[}+1

Moreover, one obtains the following upper estimate for L(r).

+oo +oo
—s(s—1) _s2
L(r) < A(n,m")+5 E e2(vi+)% 4 5 E e 2+

s=1 s=0
+o00o 2
< A(n,m*) +10+10) e, (4.23)
s=1
Furthermore, one has
+o00 )
L(r) < A(n,m")+10+10 / T e
0
|v] +o0

—a? _p2—a

0 lv|
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2

Using that o < 2, then we obtain by applying the substitution ¢ = W

v|®

lv|

400
_z2
/ez<2|u>adg; < \/21+a\u|°‘/e_t2dt
0 0

— /21+a‘ylo¢g

and

—+o00

g2« 1 1
2 dr < (2717 (1
/ e r < ( ) < + 5 a) ,

lv|

where I'(+) is the Gamma function.

Summarizing, one has

L(r) < A(n,m*) + 10 <C + \/7%\/ 21+a|y|3)

. E
for A(n, m*) = % and C:=T (1+ ;1) (27(Fe))a—2,

Therefore,

L*(r) < Golv|?

for Cy a positive constant. Taking o := 1+ 9 for § < 2¢, ¢ > 0 we arrive at the desired

inequality. 0J

One also obtains the following asymptotic upper bound estimate of |v(r)].

Proposition 4.4 For a given € > 0 we have

(r)] < (log pu(r)) ", (4.24)
forr & F, where F denotes a set of finite logarithmic measure.

Proof. In view of Proposition [4.2 and taking v := (m*, j*), we obtain

el v
|t g e g | Ilimpof—jier P
lal T = T pme

|

’ |m|+.]:177|y|
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For m = m* and j = j*, it follows that

ol TR
plm*|+5* = P||V‘|

I

| @m=

where
|v]
|v]

[, P

Next we use the same arguments as in [37, p.193]. Applying inequality (4.22) for

p(r) = llao,ol|

laooll # 0, one gets

vl -1 .
log™ ( ur) ) > log< Pl ) = Z zia (4.25)

lao,ol] [, A

Furthermore, one obtains

¥
2—« 1

1o+(“<7")) > / RIS Ld . 1.26

& laooll ) = 1 " 9-a 2-a (4.26)

Taking o := 1+ ¢4, for 0 < &1 < 1 we obtain the following estimate

v|'~* < (—elog™ (laoll) + 1)(1 — e1) log™ (u(r))

for 0 < € < 1. Furthermore, for € > 0

()] < [log* ((u(r)))] .

In order to proceed, the following proposition is needed. Here, for m € Z" we denote
[m] for the expression [m] = > m,.
i=1

Proposition 4.5 Fore >0, p/,l € N,p,s € Ng and1 € NP (or1 € NJ™!), one has

/

400 k—1—j* +]|
Z Z ( ) [T E———— I

[m]=—[m*| j=—j*

OF < u(r)|w(r) 77, (4.27)

400 k—1—7*

Jim) + 7 e
> X g lemeemae Ol < gl (429

where |v(r)| == |m*| 4+ j* and r € F' for F a set of finite logarithmic measure.

[m]=[1-m*] j=s—7*
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Notice that the first indices m appearing in this sum are elements from —Nfj. The

expression [m] coincides with the previously introduced length of an index for all m € Nj.

Proof. We first prove the inequality (4.27). Since v(r) := (m*, j*) we obtain

/

+o0 k—1—j3* p
Z Z < > [T ———— I

[m]+j+[v(r)]

fm]=—lm*| j=—3"

|45 _ < +J| " N0 me e [+
= llame - lIr Z Z lame o]
m*’]*

5" J+j

VAN
M
Mo
/—\
_I_
<.
\__/

b 3yl ||am]+m*m [
= A0 |
—1 k—1—9* . P/
N (] 0 e gl
[m]=f|m*\ j=0 |I/(7’>’ Hajm*mj* H

0
N Z(Hm]ﬂl) - r[mm]
=\ )] o1

S5

[m]+5)

IN

||am*7j*

Ha [m]4+m*,j

) “am*,J*

" Jagml i

lm*| k-1 .
] +
i Z( v(r)

(| @ =

23 i)+ 1\ ol 4
, & Z( ) ) ‘ ] (4.29)

[m]=fm*| j=0 - 5+
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Applying Proposition 4.2 in the expression (4.29) we obtain

/

+00 p
Z Z ( > [T ———— I

—|m*| j==73*

()l

- 'i o] + 51\ i ‘+jP|V|*z

< e e [T [5 ( ) A

| Im|+j

[m]+j=1 v (r)] p

+o00 ) P i+

+ 5 Y [m] +51)"
[m]-+j=[v|+1 v(r)] |m|+j
1:[1 P|V|+i

=t lame o [ 5 W (). (4.30)

Applying the estimates (4.21) and (4.22) into (4.30)), we obtain

/

2
—(m|+5)(|m]| 1
Vimpag(r) < Y (H H‘”) e AT mi Ty

[m]+j=1
<= [[m] + j] P g
+ Z i BRI B (R =
o \ Y
v A\
(n+1) |[m] + j| 2—07>
L B (wT+ml+5 -1
AP ]
m]+j=
+ f lin]+ 31" (4.31)
6 v m ] . .
i A Y
For z := |m| + j we obtain that
+00 !
(n+1) R N
Wiy () < D +2 ] eI d. (4.32)
0
Using the substitution y? := M%)a, one obtains
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’ —+o0

+00 P
_ 52 a( ’ 2
/ (ﬁ) e dr < Cylu(r)| 20 / ()" e dy
v

0

o 11 1—|—p’
= C AR
()] 30707 (—

= Colv(r)| =",
where Cj is an adequately chosen real positive constant. This completes the proof of
(4.27).
To prove inequality (4.28) we use mathematical induction with respect to p. Let us

first consider p = 0. Applying inequality (4.12)) one obtains a lower bound estimate for
v (r)]:

||am *4+m,j* +J||T[m+J+| Y]

ZZ

=[l-m*] j=s—j*

—+o00
Z Z ||am*+m,J +ll lml+

<
—[m*] j=—J* ||6Lm* A
( ) ; e
" ’L() p(r)v| 72"
The proof for the case p > 1 is done by using the estimate (4.27). 0

These propositions will be useful in the study of the asymptotic behavior between
some special iterated operators applied to entire k-monogenic functions and the function

itself.

4.2 Asymptotic growth of solutions of iterated Cauchy-

-Riemann equations in R"*!

In this section we will prove a relation between the asymptotic behavior of the maximum
term of a k-monogenic function and that of their iterated ”generalized” radial derivatives.

Such derivatives arise from the application of iterated Euler-type operators.
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Theorem 4.1 Let g be a transcendental entire k-monogenic function. Then for all k € N
holds asymptotically

1

< Cu(r)v()[2™, rgF (4.33)

[E"]g(2) — g(2)

v (r)l

n
where E =) xi£ is the Euler operator on R"™' | C is a real positive constant, € > 0
i=0 ‘

and F is a set of finite logarithmic measure.
Proof. Using induction with respect to x one obtains the following relation
E*(2Vm(2)) = (Im| + )" 23 Vim(2)- (4.34)

Therefore, applying (4.34) we have

# sz Z] _g( )

1 _+oo k—1 +oo k-1
- ] S S| - £ 5 o,
L l/m|=1 j=0 |lm|=0 j=0

Considering v := (m*, j*) and making the index substitution |m| = [n] 4+ |m*|, j =i+ j*

together with the binomial expansion leads to

ﬁ[za%] o(:) - 9(2)

k—1—75*
= —Goo T Z Z +Z—7V|’Vn|> T H_j Vatm* (z)an—i-m*,i-i-j*
[n]=1—|m*| i=—j*
k—1—75* &
<ot 38 (5) P o s
=1—|m*| i=—j* s=1
k=1—j* k

- _a00+ Z Z Z‘V‘ SP ) E)Jrj*Vner*(Z)aner*,Hj*’

[n]=1—|m*| i=—j* s=1

where Py([n] +4) := ([n] +i)*(%).
Let us define

k—1—j*

Ss(z) :== Z Z n] +3)2h Virme (2)dnme i+ (4.35)

[n]=1—|m*| i=—j*
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Taking ||z|| = r > 0 we estimate ||S5(2)| by

400 k—1—7*

IS < > > IR+ ol ™ [ Vasme () | angme i

[n]=1—|m*| i=—j"

+o00 k—1—7*

Z Z +Z|)Han+m*

[n]=1—|m*| i=—j"

ol m it

IN

+oo k—1—75* . s
= > 2. o) ¢ i s [
[n]=1—|m*| i=—j* 4 (K — s)!s! g
We thus have
& S +Z| J+i+|v|
||SS(Z)|| < m Z Z ||an+m*7. Ll ‘ (4.36)
7 [n)=1-|m*| i=—j*

Applying inequality (4.28) of Proposition 4.5, in the particular case [ = 0, s = 0 and

[1| = 1, to the previous line, one has

U € L u ), g (4.37)

(k=)

Summarizing, we obtain for r sufficiently large

| 2 £J o)~ o)

< [laooll +Z 155(2)

=< ||a00||+z ,S,M N2, ré¢Fr

= wmm+@ﬂ—nmwwww%ﬁ réF,

< Cu(r)lv(r)|[7=*, r¢F,

where C' is a positive real constant. U

As an application one has the following.
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Proposition 4.6 Let 0 < § < 5 and z such that for ||z|| = r, the relation

lg()ll > u(r)lv(r)| =2, r ¢ F (4.38)

for z in a neighborhood V,, of zy such that ||g(20)|| = ﬁﬁx{Hg(z)H} is satisfied. Then for
all k € N holds asymptotically

1
v (r)*

Proof. Let us now suppose that ||z|| = r € F. In view of condition (4.38) and Theo-

(EMg(=) — 9(z) = o(1)g(z) = € Vs, (4.39)

rem 4.1, one has

1 1 " ) k
lg(2)[l || ] [g”%] 9(z) —9(2)
Lur 570 (1) ()|~ 3t
< O )
= OO (4.40)

which tends to zero if one chooses a ¢ sufficiently small (i.e. € < §). In other words, one

gets

under the given condition. 0

Remark 4.2 This statement provides us with an analogy in the context of Clifford ana-
lysis of the classical Theorem 21.3 from [37] which states that entire complex analytic

functions which satisfy
lg(2)ll > M (r, g)[w(r)] 1+

for0<d < }l and z such that ||z|| = r, have the asymptotic behavior

6 = (1) "1 4 o)l

z
In the Clifford analysis setting, one thus obtains a similar asymptotic result when substi-

tuting the complex operator zdilz by the higher dimensional Euler operator E.
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For the particular case of a 1-monogenic entire function one obtains the following result.

Theorem 4.2 Let g be an entire 1-monogenic ClG-valued function of finite order py < oo

and for z such that ||z|| = r sufficiently large, the relation

lg(2)I| > p(r)|w(r)| 2%, rg F

for z in a neighborhood V,, of zy such that ||g(20)|| := max{||g(2)||} is satisfied. Let

ll2ll=r
k
M;lg] = a; [ [(E (9))™,
i=0
k
where a; are polynomials of degree j, and M;[g] has degree va;, = Y n; and weight
i=0
k
Ly, = ) ing. Let
i=0
Qlyl =Y Mylg]
=0

be of degree vo and weight T'g. If vg = Y, then the differential equation Q[g] = 0 has no
transcendental entire solutions.

Proof. If Q[g] =0, then My[g] = — > M;[g]. From the definition of M it follows that

Jj=1

Qo

=0 i=0

H(Ei(g))m] = —Z [aj H(E"(g))’”] :

J

Applying Proposition 4.6 we obtain that

ol e lg(z) P < 3 (Haj\r\u(r)r”fjHg(zm”””)'

Since ag is a non zero constant and a; are polynomials of degree j, taking the maximum

over the norm, and applying Theorem 3.1/ leads to

s

)P Mg < ()M (r.g oY max 1]
= llzli=r [laol]

< )M (r, e e, (4.41)
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Therefore, in view of vg = 7y one has
M(r,g) < |v(r)|'e a0, (4.42)
For I'g — 'y, < 0 it follows

M
lim inf M < liminf |v(r)[Fe "0 = 0

r—00 r r—00
which implies that ¢ is a polynomial.
Let us now consider the case where I'g — I'y;, > 0. Since p; < oo, we have that

lv(r)] < rr2te for € > 0. Therefore, there exists a 3 > (I'g — I'ay, ) (p2 + €) such that

o M(ng) _ . p()lfe T
11;2 g}lf B < hgg g}lf —
< liminf rTe-Tam)lta-6
which implies that ¢ is a polynomial. 0

4.3 Asymptotic growth of solutions of iterated Dirac
equations in R"

In this section we establish an explicit asymptotic relation between the growth of solutions
of the iterated Dirac equation and that of their iterated “generalized” radial derivatives

resulting from the application of the Euler operator

- 0
E = T;—
Z Z@xi
=1
and from the application of even iterates of the Gamma operator from [21],
n
0 0
i,j=1,1<j
More generally, one also establish asymptotic relations between the growth of solutions
of the iterated Dirac equation and that from applying on them a polynomial expression

consisting of the radial symmetric operators F and I'2.
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Theorem 4.3 Let s,d,N € Ny and f : R" — Cl, be an entire k-monogenic function,

and 75 q some arbitrary real numbers. Then f satisfies asymptotically

where C' is a real constant, € > 0 and F is a set of finite logarithmic measure.

Proof. Relying on formula (3.14) one gets

—p)xPVin (%), even
ey § PR Val) v
(—n —2|m| — p + 1)xPVu(x), podd.
In view of
Ox —2ma;x*" 2, j=2m, meN
O —2max?mt 4 x?Me;, j=2m+1, meN,

and using (4.45) one gets

E(x'Vin(x) = sz ())

= le&vl (xP) Vin (x) + %P (Z xi&%:ivm(x)>

= pxXVin(x) + Im|xPV, (%)

= (p+ m|)x"Vin(x).
Applying (4.44) and (4.46) we obtain, in view of I' := xD + F

|m|xPVin(x), p even

(—n + 1 — lm|)xPVu(x), p odd.

[(xPVi(x)) =
By induction, it follows that for any s € N:

E*(x"Vin(x)) = (p + [m[)*x"Vin(x),

|m|*xPVp, (%), p even,

(1 —n—|m|)*xPViu(x), podd.

[¥(xPVm(x)) =

A s R ,
Z %,dw Z Voaf (X)|| < Cu(r)lv(r)|"2, r & F,
s,d=0 s,d=0

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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Considering the composition of the operators E and I'? for an arbitrary s,d € Ny and

using (4.47) one obtains:

400 k—1
ELe0l = | Y Imfp o+ m]) X Vin(xX)am,
lm|=0 Lp=0,p even

k-1

FY 0 )+ im0 V(e |
p=1,p odd
Performing the index substitutions |m| := [n] + |[m*| and p := i + j*, we thus get
B[ (x)]]
W — f(x)
400 k—1
m*(p + [m|)* — Jp|*
- s 3| 3 IR
|m|=1

p=0,

p even

k—1
(1—n — [m|)%(p + [m])* — [v]=+2d
+ Z |V|s+2d vam(x)am,p
p=1,
p odd
= —Qop0
< "< (] + )2+ o] + v])T — |
> > V]2 X7 Vin)tme Q] tme i
[n]=1—|m*|

. 1—n — _ *|\2d(,; s __ s+2d
Py (1 —n—[n] — jm"))*(i + [n] + [v])* — |v|
|V|s+2d

In view of |v| = |m*| + j* and applying the binomial expansion, we can rewrite the
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expression appearing in the first sum of (4.48) as follows:

((In] + [m* 246 + 0] + fw])* = [v]2?)
- ( n| + |v| - 2d(z+[ ]+]V|)S—|y|5+2d>

s+2d

JYWPEE + 4

» [Z (7)) + o+

=1 L=1

&"8

s (2;) (L) (=l 0 5 () g e

p=1

]
I

_|_
~
1§ El
7 N\
h

3

S) ([n] + i)L|V|2d+S_L + |l/|8+2d o |V|s+2d

() (3) =t e 57 () gy

p=1

[\
U

1M
-

ol

n 8) ({n] + i)L|I/|2d+S_L. (4.49)

t~

W
I

The second sum of (4.48) can be expressed as follows:

(1= n— [n] = [m*[)*(i + [n] + [v])° — [v***
= (1 —-n — [n] +j* —j* _ ]m*|)2d(@ + [n] + |l/’)s B |V|2d+s

= (L=n—[n]+ 5" = W)*(i + [n] + [v])* = [p[*"*

(v - i+ j*>m|u|2d-m)

(1) ul s z’>LlrursLl> e

() apm @l gy + <—1>2d\v‘2d>

P 4!
< | 2 ( Z)““] )P )+ |u|8) — ]+
L1=1

(4.50)
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> () *2')“"48‘“) + <—1>2d|v!2d( > () +¢>L1|V|S-L1)

Li1=1

;L: (zd) ( S )“”p“[“] £ )P (1 =0 ] 4 ) [y o)

(4.51)

Do
N\
()
IS
~_
i
—_
S~—
&
—~
—
|
3
|
B
+
.
*
N—
=
<
T
u
+
i
=

the last equality is based on the fact that the number of iterations of the Gamma operator

is even and equal to 2d. With (4.49) and (4.51) we thus have arrived at

and

(0] + [m*)*(i + [n] + |v])* — [v]*+*

|p|5+2d (4.52)

s 794\ /s N A, 24 /o B
35 (5) (1) ot sy 3 (3 ol =y

(1—n— 0] — |m*)*(i + [n] + |v])°* — [p***

|V|2d+s

ey <;d> (Z)“”_’”““] i) (L= n = ] + 7))

2d
+ Z(if)(—lrma—n—[n]+j*>m|u|—m, (453)

respectively. Applying the norm in the expression (4.48) and using (4.52)) and (4.53), we
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obtain for ||x|| = r the following estimates

B
|p|s+2d I )||

< laopl|

> [ bl [ii(zpd)(Z)K[n]ﬂ)lLl[n]—j*|p|v|‘<”’”’

[n]=1—|m*| Li=—j*,i+j* even L p=0 L=1 0
2d
2d .
+ Z < ) |[1’l] _j*|p |V|_p] TZ+[n]+|V‘||a[n]+m*,i+j*
A

'

k—1—j* 2d s 2d s
D> [Z S () (5 i [ == g e
1 1 N 4

i=—j*i+j* odd | p1=0Li=1 D

2d
2d )
+ Z( )11—n— ] + j*|7 \u\pl]ﬂ““]*'”||a[n]+m*,z-+j*
(1)

(4.54)

In order to proceed we estimate the expressions (I) and (/) in (4.54) by again applying

the binomial expansion. For (1) we get

o] =5 = In]+i—i—j"

< (] 44l + i+ 57

- Z (2 )ml+ ipetice gl
< k- 0r 3 (V)i

a=0

the last inequality is obtain by |i + j*| < 2(k — 1). For (II) one has

1—n—[n]+j P = [1—-n—|n]+i—i+ "
< (] +i| + |1 —=n+i+ 5"

P
— Z (pﬁl) ]+ P11 —n+i+ 5%
B=0

< (n=1)+2(k—1)™ (7 [n] + i[P* 7,
> (3)

since [l —n+i+j | <[1—n|+|i+<(n—1)+2(k—-1).

(4.55)

(4.56)
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Notice that one also has for (4.55) the same estimate as the one given in (4.56), since

] =5 < Q-1 (Z) [n] + i~

a=0

< (n-D+2k—1P> (Z) m] +iP, n>1. (4.57)

Substituting (4.57) and (4.56)) in the expression (4.54) then leads to

Es F2df
|
< laoll
= R 2d\ [ s
CELE LS ey
[n]=1—|m*| Li=—j*i+j* even L o, -,
0L§+pps:z,

p
x Z( > _|_Z|L+p a‘yl L+p)] Ti+[n]+|u|||a[n]+m*,‘ .,

+ Z SR o | G [CERER S

i=—j*i+j*odd L <, <5, b1
0 < p1 <24,
Li+p1 #0
p1 P
< (ﬁ) o] + 7:|L1+p1—ﬁrvr‘(“””] e (4.58)
£B=0

Since the terms of the sum running over the even ¢ + j* and odd i + j* are equal, one

obtains the following relation

Es[T% f(x
B
o ML 2d\ [ s
< laooll + [ ((n—1)+2(k—-1))
IZW ; OES, <p> (L)

p
p . —« — 1+ |n|+|v
8 (a)![n]ﬂl”p vl (”p)]TH g e i
0

a=

(4.59)
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Let us now take
400 k—1—j*
+Z|L+p o pit+[n]+[v|

SL,p(T> = Z Z |V|L+p ||a/[n}+m*7i+j* || . (460)

n]=1—|m*| i=—j*

Applying inequality (4.28) for the particular case [ = o, s = 0 and || = 1 to the previous

line, leads to

1

Spp(r) < p(r)|v(r)~z", r¢F. (4.61)

Therefore, one gets

s[T2d x
o - f(X)H
B 2d s ) P P
) () (3= raw—r > (2)
s 2d P
< llaooll + (<<n —1) +2(k — 1)) (L) > (zpd) (2)) u(r) ()| 3+
and, using % (i,d) < 224 one obtains
Es FQd x
ol f(X)H
s 2d
= el <(<n -n+a- 03 (1)3(5) 2p> p )| 4
< laool| + (((n = 1) + 2(k — 1))29214+) pu(r) ()| "3
< caanAITE (4.62)

Applying (4.62) it follows

FQd
Z Vsd I/‘s+2d Z Vs, df

s,d=0 s,d=0
ESFQd
<3 b =
s,d=0

N
_1
S Z "Vs,d|cs,dlu’(r>|y(r)| ate

$,d=0

= Cp(r)|v(r)| 72" (4.63)
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Here C' is a proper positive real constant. 0

As special cases we obtain particularly.

Corollary 4.1 Let d € N be an arbitrary positive integer and f : R™ — Cl,, be an entire

k-monogenic function. Then f satisfies asymptotically

P2 f (x)]

2 — fX)|| < Cu(r)|v(r)[~2", r&F, (4.64)

where C' s a real constant, € > 0 and F' is a set of finite logarithmic measure.

Corollary 4.2 Let s € N be an arbitrary positive integer and f : R™ — Cl,, be an entire

k-monogenic function. Then f satisfies asymptotically

E*[f(x)]

v]?

— f@)|| < Cu()|v(r)| 2+, r¢ P, (4.65)

where C' is a real constant, € > 0 and F is a set of finite logarithmic measure.

The following result gives an explicit asymptotic relation between the growth of solu-

tions of the iterated Dirac and that of the polynomial in £ and I'?

1

Proposition 4.7 Let f be a k-monogenic function, 0 < § < 5 and ||x|| be sufficiently

large such that for ||x|| = r, the relation
1
IF GO > p(r)lp(r)| =", r ¢ F (4.66)

for x in a neighborhood Vy, such that || f(Xo)|| := max{||f(x)]|} is satisfied. Let

Ixl|=r
N s[12d x
lMﬂ;Zmﬂ%%ﬂ

be a polynomial in E and I'* with real coefficients. Then we get the asymptotic estimate

LIFEN = Y voaf () = 0(1)f(x), T € Vs (4.67)

s,d=0
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Proof. Let us now suppose that ||x|]| = r ¢ F. In view of (4.66) and Theorem 4.3 we

have
Ll s, 2T 5
'Ys,ds— Vsaf (X
T00N| 2=, et 2
< L)t
— p(r)
< O, (4.68)

In the next theorem one obtains a classification of the solution of special type of partial
differential equation of 1-monogenic paravector valued function. The proof can be done

analogously to the one given in Theorem 4.2.

Theorem 4.4 If g is an entire 1-monogenic paravector valued function with order

p2 < 00 and
lg)| > p(r)lp(r)[ 2, r ¢ F

for x in a neighborhood Vy, of xo such that ||g(xo)|| := HmHaX{Hg( x)||} is satisfied. Let

Mjlgl=a; ] [E(T*(9))"

i =s+2d
i=0

k
where a; are polynomials of degree j, and M;[g] has degree vu, = Y n; and weight
i=0

k
Lp, = ) ing. Let
i=0

= ZMJ[Q]

be of degree vo and weight U'q. If g = Yu,, then the differential equation Q[g] = 0 has

no transcendental entire solution.
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Chapter 5

Open problems

We conclude this work by presenting some open problems for future research.

In the construction of normality criteria (given in Chapter 2) the possible occurrence
of singularities of dimension 0, 1, ..., n — 1 in the context of Clifford valued functions,
caused great difficulties. One also has that the behavior in the neighborhood of an iso-
lated singularity is very irregular, when comparing it to the behavior of the meromorphic

functions in the complex case. Consequently, the following questions can be posed:

Question 1: Which type of compactification of the space can be found, such that a
general Clifford valued function has a regular behavior in a neighborhood of the singular-

ities?

Question 2: Is it possible to obtain similar criteria for general Clifford valued mero-

morphic functions, or even for the general case dealing with Clifford valued functions?

Regarding sufficient conditions for normality, for instance, the known classical results:

Due to Montel [53]:

Montel’s Theorem: Let F be a family of meromorphic complex valued functions
defined in the domain D. If there exists three points wy,wq, w3 on the Riemann sphere

such that w; & f(D) (i =1,2,3) for each f € F, then F is a normal family.

143
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Due to X. Pang and L. Zalcman [57]:

Theorem: Let F be a family of meromorphic functions in the unit disc D, with the
property that all their zeros are of multiplicity (at least) k. If there exist b # 0 and a
positive constant ¢ such that for every f € F, E4(0) = Epum(b) and 0 < || fEV(2)| < ¢
whenever z € £4(0) := {2z € D: f(z) =0}, then F is a normal family on D.

It is natural to ask:

Question 3: Is it possible to establish generalizations of these types of results to

general Clifford valued functions?

In the analysis of the growth behavior we observed relations between the maximum
modulus, the maximum term and the norm of the central index in the framework of poly-

monogenic functions.

In the complex case, due to Borel [7], one has a relation between the growth of an

entire function and the growth of its real part, i.e.,

Borel’s Theorem: Let g be an entire transcendental function, M(r) = ﬁn”ax lg(2)||

and A(r) := max |Re(g(z))|. Then, for0 <r <R

=l=r

R

M(r) < 7

[4A(R) + 2([g(0)][]-

Question 4: In the context of polymonogenic functions, can one estimate the growth of

an entire function by the growth of one of its component functions?

Another question arise when observing that the different generalized exponential func-
tions in Example [3.2, Example 3.4/ and Example 3.3 have the same order of growth but

different type.

Question 5: What can one say about the growth behavior of other elementary
examples of Clifford valued functions? Which general relations do exist between the

type and the order of growth of polymonogenic functions?
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Since this work is based on polymonogenic functions it is natural to ask:

Question 6: Is it possible to establish similar results for meromorphic functions 7

In this work we studied entire solutions of the iterated Dirac equation as well as entire
solutions of the iterated generalized Cauchy-Riemann equation. One can also analyze the

asymptotic growth behavior concerning, for example:

e entire solutions to higher dimension polynomial Cauchy-Riemann equation;

e entire paravector valued solution to the hypermonogenic equation.

Furthermore, one could also look for normality criteria for these classes of functions.
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List of principal symbols

Anp1 set of paravector in R @ R™ . ... 8
A set of paravector elements or quaternions elements................................ 34
A = AU 00} 34
B(zp,7) open ball with center zp and radius 7.......... ... .o i 17
B(z,r) closed ball with center zy and radius r..........................c .. 18
Cl, Clifford algebra . ........ . 6
Clt even subalgebra of the Clifford algebra Cl,, ..., 7
ClG- Clifford group valued function......... ... .. . . i 24
CH(€Y) set of continuously differentiable functions in a domain Q' ................... 25
D generalized Cauchy-Riemann operator.............. ... ... 13
DF iterated generalized Cauchy-Riemann operator .................................. 68
D Dirac Operator ... ..ot 13
DF iterated DIirac OPerator . ... ......oueir et 67
den[-, -] chordal distance ....... ... . 35
do oriented differential of a surface.......... ... .. 15
0;; Kronecker symbol. .. ... ... . . 6
0S boundary of a set S ... ... 15
E Euler operator. .. ... 3
EF iterated Buler Operator. ... ......o.o o 128
Fp family of B-valued functions........ ... . . 44
F,., family of A, -valued functions with a discrete set of isolated poles........... 52
log™ plus-logarithmic ............. ... 88
[' Gamma OPErator . ... ...ttt e 3
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148 List of principal symbols

% iterated Gamma OPerator. ... ........o..iue i 133
() Gamma function ....... ... 15
[, Clfford group .. ... 9
[2%2 gt of Vahlen MatTices . . ... ...ouitu ettt 10
H set of Hamiltonian quaternions. ......... ... .. .. 5
Jg or Vg Jacobian matrix of the function g......... ... ... ... ..o 24
M (r, f) maximum modulus of f on the boundary of the ball of radius r............. 84
M(r, f) maximum modulus of f on the whole closed ball of radius 7 ................ 84
p(r, f) maximum term of the function f........ ... ... .. 96
v(r, f) central index of the function f....... ... . . . . . 96
p(r, f) order of growth of the function f......... . ... .. . 88
Sc scalar part of a Clifford number....... ... ... .. 7
T(1) = (ma,...,my) With my; = 055 ..o 16
T(f) type of the function f...... ... 91
O(f)(-) generalized spherical derivative............ .. .. ... i 27
Vec vector part of a Clifford number........ ... ... ... ... 16
Wy41 area of the unit hypersphere in R™™ . ... . .. .. . 15
<+, - > scalar (or inner) product . ... ... 6
||| Clifford mormy ... e 8
|A| cardinality of the set A subset of {1,2, -+ ,n}..... ... 7
S° open kernel of a set S ... 15
S oclosure of & Set S .o 15
m := (my,...,m,) n-dimensional multi-index in Ny ............. ... L. 16
M = g 16
M| i M A M 16

(k)s Pochhammer symbol ............ 19
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