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palavras-chave 
 

Análise de Clifford, famílias normais, critério de Marty, funções
polymonogénicas, Teoria de Wiman-Valiron, crescimento assimptótico. 

resumo 
 
 

Este trabalho tem como objectivo contribuir para um estudo de famílias
normais de funções meromórficas especiais  assim como para o  estudo  do
comportamento assimptótico de funções polimonogénicas  no domínio da
Análise Hipercomplexa. 
 
 
Neste contexto, obtemos condições necessárias e/ou suficientes de
normalidade para famílias de funções meromórficas especiais, nomeadamente
a generalização do Teorema de Marty e a Lema de Zalcman. 
 
 
Para a classe de funções polimonogénicas são demonstradas desigualdades
do tipo de  Cauchy e algumas generalizações de resultados da teoria de
Wiman e Valiron.  Consequentemente, são obtidas relações entre o máximo
módulo da função, o termo máximo e índice central da sua respectiva série de
Taylor-Almansi.  Aplicam-se estes resultados ao crescimento assimptótico
desta classe de funções. 
 
Como aplicação, são  obtidos teoremas sobre soluções assimptóticas de
determinadas equações diferenciais de derivadas parciais e  a classificação de
algumas soluções das mesmas. 
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Clifford Analysis, normal families, Marty criteria, polymonogenic functions,
Wiman-Valiron Theory, asymptotic growth. 
 

abstract 
 

The aim of this work is to provide some contributions to the study of normal
family  of  special meromorphic functions as well as to the study of the
asymptotic behaviour of polymonogenic functions in the framework of
Hypercomplex Analysis. 
 
 
In this context we have obtained necessary and/or sufficient normality
conditions for families of special meromorphic functions, in particular, a
generalization of Marty’s criterion and also of  Zalcman’s lemma.   
 
 
We prove inequalities of Cauchy-type estimates for a class of polymonogenic
functions and also some generalizations of results of the Wiman-Valiron theory.
Consequently, relations of the maximum modulus, the maximum term and  the
norm of the central index with respect to their Taylor-Almansi series expansion
are obtained. These results are applied to the asymptotic growth behaviour of
those functions classes. 
 
As applications we establish theorems on the asymptotic of solutions of certain
partial differential equations which allow us to provide a classification of some
of such solutions. 
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Introduction

In this thesis we study normal families of Clifford-algebra-valued functions and the growth

behavior of polymonogenic functions.

The numerous applications of normal families and growth estimates in the theory of

holomorphic functions motivated us to perform an analogous study in the framework of

Clifford Analysis.

Concrete applications arise, for instance, in complex dynamics, boundary valued prob-

lems and asymptotic behavior of solutions of partial differential equations or other fields

of Physics and Engineering (see e.g. [8, 61] and also [33, 36, 37, 43, 70, 71]).

There exists manly two ways of generalizing the theory of functions of one complex

variable. One is the function theory of several complex variables and the other way can

be realized by using Clifford algebras which leads to hypercomplex function theory. In

both theories the starting point can be the consideration of null-solutions of particular

systems of first order partial differential equations in Euclidean spaces.

Hypercomplex function theory has several advantages compared with the theory of

several complex variables. One advantage is that it does not depend on the dimension

(even or odd) of the related real vector space. Another advantage is that higher order

differential operators can be factorized into products of lower order operators (for exam-

ple, the Laplace operator of several real variables can be factorized by two first order

hypercomplex differential operators like in the plane case).

Hypercomplex analysis can be used synonymously with Clifford analysis [13, 21]. In

turn, Clifford analysis is frequently considered as a generalization of quaternionic analysis

(see [25, 28]). In this work we use both terms, Hypercomplex analysis as well as Clifford

1



2 Introduction

analysis. If we would like to stress the relationship to subjects of complex function theory

we also use hypercomplex function theory.

The classes of functions which will be studied here are the class of solutions of

the iterated Dirac equation Dkf = 0, k ∈ N, where D =
n∑

i=1

ei
∂

∂xi

, and also the

class of solutions of the iterated generalized Cauchy-Riemann equation Dkf = 0, where

D := e0
∂

∂x0

+ D. The elements of these classes are usually denoted as polymonogenic

functions or also referred to as k-monogenic functions.

The starting points are 1-monogenic and, more general, meromorphic Clifford valued

functions with the aim to extend the theory of normal families to these classes of functions.

The notion of normal families was first introduced by Montel in [53] for holomorphic

functions, and more generally, for meromorphic functions in 1927. Montel defines:

”A family of meromorphic complex valued functions is called normal if every sequence

of functions of the family contains a locally uniformly convergent subsequence.”

In 1931, Marty gave a necessary and sufficient criterion for normality of families of

meromorphic functions [48]. However this criterion is, in general, not easy to verify.

Therefore, in 1975, Zalcman proves an equivalent criterion for normality [72]. Usually

this is cited as Zalcman’s lemma. Both results are the basic tools in the development of

the theory of normal families. In this work we give a generalization of Marty’s criterion

as well as a generalization of Zalcman’s lemma for special meromorphic functions in the

hypercomplex setting. Special meromorphic functions are monogenic functions having at

most isolated poles in which they converge to infinity. This is not true, in general, for

meromorphic hypercomplex functions, and therefore different to the complex case.

The study of the growth behavior of polymonogenic functions is the main topic of the

second part. In holomorphic function theory growth estimates have several applications

to partial differential equations (see e.g. [33, 37, 43, 70, 71]).

The fundamentals in the study of the asymptotic growth of holomorphic and meromorphic

functions have been established by Wiman [71], Valiron [70], Nevalinna [56], Clunie [16]

and others.



Introduction 3

Among other problems, Wiman and Valiron have considered questions like:

” Does a holomorphic function have the same growth behavior as its derivative? What

is the relationship between the maximum modulus and the maximum of the coefficients

in the power series?” Or ”What is the relation between the growth of the function and

the index of the maximum term in the power series, called central index?”

The results that we present in this thesis give an answer to this kind of questions in

the context of polymonogenic functions.

We also obtain an explicit relation between special radial symmetric differential opera-

tors that act on polymonogenic functions. These include in particular the Euler operator

E :=
n∑

i=0

xi
∂

∂xi
and the Gamma operator Γ :=

n∑
i,j=1,i<j

(xi
∂

∂xj
− xj

∂
∂xi

)eiej. These opera-

tors generalize the real part and imaginary part of the complex differential operator z d
dz

,

respectively.

For the case of iterates of the Dirac operator, we give an explicit relation between a

polynomial of the Euler operator and the square of the Gamma operator applied to a

polymonogenic function and the function itself. We also obtain a similar result for the

case of the iterated generalized Cauchy-Riemann operator. Moreover, some applications

to certain classes of partial differential equations are given.

The thesis is divided into five chapters. The outline of the contents of each chapter is

as follows:

In Chapter 1 basic properties of special Clifford algebra of signature (0, n) are given.

We start by recalling the fundamental notions and results from hypercomplex function

theory, which provides us with the basic tools for our analysis in the following chapters.

Then a special class of Clifford algebra valued functions, named special meromorphic is

introduced in the last section. Furthermore, a generalization of the spherical derivative is

discussed.
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In Chapter 2, using the one point compactification in Rs (s ∈ N) the chordal dis-

tance and its properties are considered. Criteria of normality for families of Clifford

valued monogenic functions and special meromorphic functions are studied. A gene-

ralized Marty’s criteria is presented. Furthermore, a generalization of Zalcman’s lemma

is also obtained.

In Chapter 3 and Chapter 4 some rudiments of Wiman-Valiron’s theory in the frame-

work of hypercomplex function theory, are given.

More specifically:

In Chapter 3 we start by developing Cauchy type estimates for solutions of the

iterated Dirac or iterated generalized Cauchy-Riemann equations. Relations between

the generalized maximum modulus, the maximum term and the norm of the central index

are obtained. In particular, we derive some Valiron type inequalities. In the last section

of this chapter the growth behavior of a 1-monogenic function which maps the interior

into the exterior of the unit ball is also studied.

In Chapter 4 some results on the asymptotic growth behavior of entire solutions of

the iterated Dirac equations in Rn or iterated generalized Cauchy-Riemann equation are

established. These are applied to obtain explicit asymptotic relations between the growth

of these solutions and that of their iterated radial derivatives. We conclude Chapter 4

with remarks on functions classes which arise from applications of the iterated Gamma

operator as well as iterated generalized Cauchy-Riemann operator.

In Chapter 5 some open problems for future research are stated.



Chapter 1

Some basic concepts of Clifford
analysis

In this chapter we start by introducing the basic concepts of Clifford algebras and their

associated function theory. For detailed information we refer, for instance to [13, 21, 67].

In the second part of this chapter we discuss a higher dimensional generalization of the

spherical derivative and some of its properties.

1.1 Clifford algebras

The geometric properties induced by using complex numbers provided a strong motivation

for Hamilton to look for higher dimensional in generalization of the complex number

system. Searching for a three dimensional vector system he discovered the quaternions,

in 1843, which is usually denoted by H. Although, the associativity is obtained, another

basic rule of arithmetics is lost, namely the commutativity.

For the standard basis system of the Hamiltonion quaternions, one often uses the no-

tation {1, i, j,k}. In this thesis we prefer to use {e0, e1, e2, e3} instead. The basis elements

satisfy the following multiplication rules:

e2
0 = e0; eie0 = e0ei = ei, i = 1, 2, 3;

e2
1 = e2

2 = −1; e1e2 = −e2e1 := e3.

An element z of H is represented in the form

z = Sc(z)e0 + Vec(z) := x0e0 + x1e1 + x2e2 + x3e3,

5



6 1.1. Clifford algebras

where Sc(z) := x0 and Vec(z) := x1e1 + x2e2 + x3e3 are the scalar and vector part of z,

respectively. A pure quaternion

z = Vec(z) = x1e1 + x2e2 + x3e3

can be identified with a vector in R3. In this sense, due to Gibbs, the product of two pure

quaternions z :=
3∑

i=1

xiei and w :=
3∑

i=1

wiei is given by

zw := 〈z, w〉+ z × w,

where z, w are identified as vectors in R3. Also

〈z, w〉 := x1w1 + x2w2 + x3w3

and

z × w := (x2w3 − x3w2)e1 + (x3w1 − x1w3)e2 + (x1w2 − x2w1)e3,

represent the scalar (or inner) and vector (or cross) products, respectively.

Inspired by the work of Hamilton, in 1878, Clifford introduced an n-dimensional

geometrical algebra in which the generalization of the scalar and vector product to higher

dimensions are also obtained. This algebra is known as Clifford algebra. In 1844, Grass-

mann had already introduced the higher dimensional vector product - exterior product

(or wedge product) - when he discovered the exterior algebra. For more information on

the history of Clifford algebras we refer to [13, 44, 50].

A Clifford algebra is an associative but non-commutative algebra over the real or the

complex field. In this work we consider the Clifford algebra of signature (0, n) denoted

by Cln and {e0, e1, e2, . . . , en} stands for the canonical basis of the Euclidean vector space

Rn+1.

The basis elements satisfy the following multiplication rules

eiej + ejei = −2δije0, i, j = 1, · · · , n,

where δij is the Kronecker symbol.
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A basis for the Clifford algebra Cln is given by the set {eA : A ⊆ {1, · · · , n}} with

eA = el1el2 · · · elr , where 1 ≤ l1 < · · · < lr ≤ n, e∅ := e0 = 1. Each element a ∈ Cln can

be written in the form a =
∑

A aAeA with aA ∈ R. Notice that a is the direct sum of a

scalar element, a vector element, a bi-vector element, ..., a k-vector element,..., a n-vector

element, i.e.,

Sc(a) = a∅ := a0,

V ec(a) =
∑
|A|=1

aAeA :=
n∑

i=1

aiei,

Bi-V ec(a) =
∑
|A|=2

aAeA,

· · ·
k-V ec(a) =

∑
|A|=k

aAeA,

· · ·
n-V ec(a) = a123...ne123...n,

where |A| means the cardinality of the set A ⊆ {1, · · · , n}. Every k-vector can be inter-

preted geometrically as an oriented k-dimensional volume element.

Remark 1.1 The associated complex Clifford algebra is represented by Cln ⊗R C, where

each element is represented by a :=
∑

A⊆{1,··· ,n}
aAeA, with aA := a0

A + ia1
A for a0

A, a1
A ∈ R.

Let Clkn be the subspace of k-vectors, i.e., the space spanned by the product of k different

basis elements. Then the even subalgebra Cl+n of the Clifford algebra Cln is defined by

Cl+n =
⊕

k even

Clkn.

Some elementary involutions in the Clifford algebras Cln are:

a :=
∑

A

aAeA; a∗ :=
∑

A

(−1)|A|
(|A|−1)

2 aAeA; a′ :=
∑

A

(−1)|A|aAeA (1.1)

where eA = elrelr−1 · · · el1 , and ej := −ej for j = 1, · · · , n, e0 = e0 = 1. These are

called conjugation, reversion and main involution, respectively. The conjugation and the

reversion are anti-automorphism and the main involution is an automorphism.
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Next we give some basic properties of these involutions. For a, b ∈ Cln, we have

ab = ba; (ab)∗ = b∗a∗; (ab)′ = a′b′.

The scalar product between two Clifford numbers a =
∑

A aAeA and b =
∑

A bAeA is

defined by:

〈a, b〉 := Sc(ab) :=
∑

A

aAbA. (1.2)

From the scalar product (1.2), the Clifford norm may be derived by

‖a‖ :=
√
〈a, a〉 =

√√√√
(∑

A

|aA|2
)

.

Three important subspaces of the Clifford algebra Cln are the paravector space, the

quaternion algebra and the field of the complex numbers.

The paravector space is the linear subspace defined by

An+1 := spanR{1, e1, · · · , en} = R⊕ Rn ≡ Rn+1 ⊂ Cln

with elements of the form z = x0+x1e1+x2e2+ · · ·+xnen. Taking two vectors a :=
n∑

i=1

aiei

and b :=
n∑

i=1

biei we obtain the wedge product given by

a ∧ b :=
1

2
(ab− ba).

Each non-zero paravector z ∈ An+1\{0} has an inverse element given by z−1 =
z

‖z‖2
.

Another known subspace is the skew-field of real quaternions H, which is identified

with Cl+3 . On the other hand, the Hamiltonian quaternions may be also identified with

Cl2. One also have the field of complex numbers which is identified with Cl1.

Remark 1.2 The involutions defined in (1.1), satisfy a = a′ and a∗ = a, for a ∈ An+1

(or H).
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1.2 Vahlen group and Möbius transformations

In the complex case, any planar Möbius transformation can be expressed by

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C with ad − bc 6= 0. This can also be extended to C ∪ {∞} by setting

f
(−d

c

)
= ∞ and f(∞) = a

c
. One convenient way to express a Möbius transformation

is done by matrix notation. In 1902, using this process Vahlen treated Möbius transfor-

mation in higher dimensions [69]. Unfortunately, this paper had been forgotten. Only

in 1949, Maass rediscovered and improved Vahlen’s original approach. In 1923, Fueter

rediscovered this representation for the quaternion case.

Further important contributions to the study of Möbius transformation in higher di-

mensional Euclidean spaces were also provide by Ahlfors [4, 5, 6], by Zöll in [74], among

others.

From [4, 5] and [6] we recall:

Definition 1.1 (Clifford group) The Clifford group, Γn, is defined as the set of elements

z ∈ Cln for which exist a natural number k ∈ N and elements a1, a1, ..., ak ∈ An+1 \ {0},
such that z =

k∏
i=1

ai.

This group is also known as the Lipschitz group (see [32, p.118]).

One can verify that Γn is actually a group with respect to the Clifford multiplication.

In the next proposition we recall some basic properties of the Clifford group.

Proposition 1.1 Let a, b ∈ Γn and z ∈ An+1. Then

(i) ‖a‖2 = aa and ‖ab‖ = ‖a‖‖b‖,

(ii) ab−1, a∗b, b−1a, ba∗ ∈ An+1,

(iii) the map ha : An+1 → An+1 defined by ha(z) = az(a′)−1 is a bijective and sense-

-preserving isometry. In particular, if a ∈ An+1 then ha(z) ∈ Γn.

Based on the notion of the Clifford group one defines Vahlen matrix as follows:
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Definition 1.2 (Vahlen matrix) Consider the set of matrices defined by

Γ2×2
n =

{
A =

(
a b

c d

)
| a, b, c, d ∈ Γn ∪ {0}

}
.

A matrix A =

(
a b

c d

)
is a Vahlen matrix if the coefficients a, b, c and d satisfy the

following conditions:
ad∗ − bc∗ ∈ R \ {0}
a−1b ∈ An+1, a 6= 0

c−1d ∈ An+1, c 6= 0.

(1.3)

The expression ad∗ − bc∗ is known as the pseudo-determinant of the matrix A.

The set of Vahlen matrices is a group and it is denoted as the Vahlen group (see e.g.

[32, p.119], [69]). This group is a generalization of the general linear group GL(2,C). Using

these matrices, it is possible to describe Möbius transformations in higher dimensional

spaces in an analogous compact form as one can do in R2 using matrices from the general

linear group GL(2,C).

Definition 1.3 The left, resp. the right representation of the Möbius transformation:

MLA
: An+1 \ {−c−1d} → Cln; MRA1

: An+1 \ {−c−1
1 d1} → Cln,

are defined, respectively, as:

MLA
(z) = (az + b)(cz + d)−1, a, b, c, d ∈ Γn ∪ {0}

MRA1
(z) = (zc1 + d1)

−1(za1 + b1), a1, b1, c1, d1 ∈ Γn ∪ {0}

where the associated matrices A :=

(
a b

c d

)
, A1 :=

(
a1 b1

c1 d1

)
belong to the Vahlen

group.

In the quaternionic case a Möbius transformation can be represented as:

Definition 1.4 Denote

MLA
: H \ {−c−1d} −→ H; MRA1

: H \ {−c−1
1 d1} −→ H,

as the representation of a left, resp. the right Möbius transformation, given explicitly by

MLA
(z) = (az + b)(cz + d)−1, a, b, c, d ∈ H

MRA1
(z) = (zc1 + d1)

−1(za1 + b1), a1, b1, c1, d1 ∈ H
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where
‖b− ac−1d‖‖c‖ 6= 0, c 6= 0 or ‖ad‖ 6= 0, c = 0

‖b1 − a1c
−1
1 d1‖‖c1‖ 6= 0, c1 6= 0 or ‖a1d1‖ 6= 0, c1 = 0.

(1.4)

In many context one considers, in particular, Vahlen matrices whose pseudo-determinant

is equal to ±1. This consideration leads to introduce:

Definition 1.5 (Special Vahlen group) Consider a Vahlen matrix A =

(
a b

c d

)
. This

matrix belongs to the special Vahlen group if the coefficients satisfy in addition to the

condition (1.3), the normalization condition:

ad∗ − bc∗ = ±1.

The special Vahlen group denoted as SL(2, Γn) is a generalization of the special linear

group SL(2,C). In this context, Vahlen and Maass proved the following theorem. (see

e.g. [6]).

Theorem 1.1 The special Vahlen group, SL(2, Γn) forms a group under matrix multipli-

cation.

Each matrix from SL(2, Γn) induces a Möbius transformations in Rn+1. Conversely,

every Möbius transformations is induced by SL(2, Γn).

Remark 1.3 The Möbius transformations associated to the special Vahlen group satisfy-

ing ad∗ − bc∗ = 1 are the orientation preserving transformations, while ad∗ − bc∗ = −1

does not preserve the orientation.

By Definition 1.3 and Definition 1.4 one has a left, resp. right representation for a

Möbius transformations. The next result proves that, by means of the Vahlen matrix

representation, a left Möbius transformations can be expressed by a right Möbius trans-

formations (see [74]).

Theorem 1.2 Any Möbius transformations can be represented equivalently by left coeffi-

cients and right coefficients.
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Proof. Consider the representation of a Möbius transformations with left coefficients

MLA
(z) = (az + b)(cz + d)−1. Let us first suppose that c = 0. Then

MLA
(z) = (az + b)d−1

= (a−1)−1(zd−1 + a−1bd−1) = MRA1
(z)

where A1 =


 a1 b1

c1 d1


 =


 d−1 a−1bd−1

0 a−1


 . Suppose c 6= 0, then

MLA
(z) = (az + b)(cz + d)−1

= (az + b)[(c−1)−1(z + c−1d)]−1

= (az + b− ac−1d + ac−1d)(z + c−1d)−1c−1

= [a(z + c−1d) + b− ac−1d](z + c−1d)−1c−1

= a(z + c−1d)(z + c−1d)−1c−1 + (b− ac−1d)(z + c−1d)−1c−1

= ac−1 + c−1c(b− ac−1d)(z + c−1d)−1c−1

= ac−1 + c−1(cb− cac−1d)(z + c−1d)−1c−1.

Denote K := cb− cac−1d, the aim is to prove that K 6= 0.

Suppose that a, b, c, d ∈ H. Then, in view of (1.4), we have that ‖b− ac−1d‖ 6= 0. This

implies that K has an inverse. If a, b, c, d ∈ Γn ∪ {0}, then in view of condition (1.3), we

have that c−1d = (c−1d)∗ = d∗(c−1)∗ = d∗(c∗)−1. Hence:

K = cb− cac−1d = c(b− ad∗(c∗)−1) = c(bc∗ − ad∗)(c∗)−1 6= 0.

Since K 6= 0, we conclude that

MLA
(z) = ac−1 + c−1K(z + c−1d)−1c−1

= ac−1 + (zK−1c + c−1dK−1c)−1c−1

= (zK−1c + c−1dK−1c)−1((zK−1c + c−1dK−1c)ac−1 + c−1)

= (zK−1c + c−1dK−1c)−1(zK−1cac−1 + (c−1dK−1cac−1 + c−1))

= MRA1
(z),

where A1 =


 a1 b1

c1 d1


 =


 K−1cac−1 c−1dK−1cac−1 + c−1

K−1c c−1dK−1c


 . ¤
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As a consequence of this theorem, there is no ambiguity in writing from now on

M(z) := MLA
(z) for a Möbius transformation.

1.3 Clifford analysis

An important issue in Clifford analysis is to introduce the concept of derivative of a

Clifford valued function. In the complex case, this can be defined by the following limit

lim
∆z→0

(
f(z + ∆z)− f(z)

∆z

)
= f ′(z),

where f is a complex valued function in C.

At the end of the 19th century some attempts were made to extend this definition to

quaternionic valued functions in H. However, the lack of commutativity, brought two

cases into consideration:

lim
∆z→0

(f(z + ∆z)− f(z))(∆z)−1 and lim
∆z→0

(∆z)−1(f(z + ∆z)− f(z)).

However, the only quaternionic valued functions for which these limits exists have,

respectively, the form

f(z) = az + b and f(z) = za + b, a, b ∈ H.

For more details we refer, for instance, [42, 49, 68].

Another possibility to generalize complex holomorphy is offered by following the

Riemann approach. In this context we consider the differential operator

D :=
n∑

i=1

ei
∂

∂xi

(1.5)

which is the Dirac operator in Rn, and the generalized Cauchy-Riemann operator, i.e.,

D :=
∂

∂x0

+D. (1.6)

The operator (1.6) is used when working in the paravector formalism, i.e., An+1.

In the sense of the Riemann approach one introduces, cf. [21, p.138]
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Definition 1.6 (Monogenicity) Let U be an open subset of An+1. A real differentiable

function

f : U → Cln

is called left (right) monogenic or Clifford holomorphic in U if and only if

Df = 0 (or fD = 0).

Functions that are left (right) monogenic in the whole space are called left (right) entire

monogenic.

Analogously one may define the notion of monogenicity in the context of the Dirac

operator.

In contrast to the complex case, the composition of monogenic functions does not

remain monogenic, in general. However, the generalized Cauchy-Riemann operator is

quasi-invariant under the set of Möbius transformations.

More precisely, following for example [74, pp.45], we have

Theorem 1.3 Let Ω ⊂ An+1 be a domain and f : Ω → Cln be a left monogenic function.

If M(z) = (az + b)(cz + d)−1 is a Möbius transformation, then

G(z) =
(cz + d)

‖cz + d‖n+1
(f ◦M)(z)

is also left monogenic in M−1(Ω). In the case dealing with right monogenic functions we

have that

G(z) = (f ◦M)(z)
(zc∗ + d∗)

‖zc∗ + d∗‖n+1

is also right monogenic in M−1(Ω).

The notion of left (right) monogenicity in An+1 provides a powerful generalization

of the concept of complex analyticity to Clifford analysis, since many classical theorems

from complex analysis could be generalized to higher dimensions by this approach, we

refer for instance [13, 21] and [25, 26, 27]. As for example the Cauchy integral theorem

and Cauchy integral formula (cf. [13, pp.52]).
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Theorem 1.4 (Cauchy’s integral theorem) Let Ω ⊂ An+1 be an open set and S ⊂ Ω be an

(n+1)-dimensional compact differentiable and oriented manifold-with-boundary. Suppose

that C is a (n + 1)-chain on S. If f is left (right) monogenic in Ω then

∫

∂C

dσf = 0


resp.

∫

∂C

fdσ = 0


 ,

where dσ denotes the n-dimensional oriented Lebesgue surface measure.

Theorem 1.5 (Cauchy’s integral formula) Let Ω ⊂ An+1 be an open set and S ⊂ Ω be

an (n + 1)-dimensional compact differentiable and oriented manifold-with-boundary. If f

is left (right) monogenic in Ω then

1

wn+1

∫

∂S

q0(z − y)dσyf(y) =

{
f(z), z ∈ S◦

0, z ∈ Ω \ S.
(1.7)

Here, q0(z−y) = z−y
‖z−y‖n+1 , S◦ is the open kernel of S and wn+1 := 2π(n+1)/2 1

Γ((n+1)/2)
(see.

[24, p.75]) is the area of the unit hypersphere with Γ(·) the Gamma function.

Further generalizations of the classical theory are for instance:

Theorem 1.6 (Maximum modulus theorem) Let f be a left (right) monogenic function

in a domain Ω. If there exists a point z0 ∈ Ω such that

‖f(z)‖ ≤ ‖f(z0)‖,

for all z ∈ Ω, then f must be a constant function in Ω.

Theorem 1.7 (Maximum principle) Let Ω be a bounded open set in An+1. If f is con-

tinuous in Ω (the closure of Ω) and left (right) monogenic in Ω, then

sup
z∈ Ω

‖f(z)‖ = sup
z ∈ ∂Ω

‖f(z)‖.

Another important theorem is the Cauchy-Kowalewski extension theorem. This

theorem establishes that any real-analytic function f in Rn can be uniquely extended

to a monogenic function F in Rn+1. First we introduce the notion of x0-normal neighbor-

hood, cf. [13, p.110].

Definition 1.7 (x0-normal neighborhood) Let U ⊂ Rn be open. Then an open neighbor-

hood V ⊂ An+1 of U is called a x0-normal neighborhood if for each z = x0 + x in V the

line segment {z + t : t ∈ R} ∩ U is connected and contains just one point of V .
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Following for example [21, p.151], we have:

Theorem 1.8 (Cauchy-Kowalewski extension) Let U ⊂ Rn be open and connected. Sup-

pose that f : U → Cln is a real-analytic function. Then the function F defined by

F (z) :=
+∞∑

k=0

1

k!
(−x0)

k

(
n∑

i=1

∂

∂xi

)k

f(x)

satisfies the left generalized Cauchy-Riemann equation DF = 0 in an open connected and

x0-normal neighborhood V ⊂ An+1 of U . Furthermore, F |x0=0 = f in U . F is called the

Cauchy-Kowalewski extension of f into the x0-direction.

This extension allows to define the Cauchy-Kowalewski product (CK-product) which

preserves the monogenicity of the factors, despite of the non-commutativity of the Clifford

algebra ([13, p.68]).

In order to present the calculations in a more compact form, the following notations

will be used. With m = (m1, . . . , mn) ∈ Nn
0 as a n-dimensional multi-index we denote:

xm := xm1
1 · · · xmn

n , m! := m1! · · ·mn!, |m| := m1 + · · ·+ mn

where x ≡ (x1, x2, . . . , xn) ∈ Rn. We also denote the multi-index (m1, . . . , mn) with

mj = δij for 1 ≤ i, j ≤ n by τ(i). From [21, p.173], we recall

Definition 1.8 Let m ∈ Nn
0 \{0} and p(x) =

xm

m!
, then the Cauchy-Kowalewski extension

of p(x) is given by

CK(p(x)) = Pm(z) :=
1

|m|!
∑

π∈perm(m)

zπ(m1)...zπ(mn), (1.8)

where perm(m) denotes the set of all permutations of the sequence (m1, ..., mn) and

zi := xi − x0ei for i = 1, ..., n. The functions Pm(z) are the Fueter polynomials.

In [45, p.18], Malonek proved that all these functions take their values in An+1. They

can be written in the form of powers using permutational products. They also can be

interpreted as generalized positive powers replacing the classic positive powers in many

generalizations of the classical theorems. An estimate of these functions, is given by:

‖Pm(z)‖ ≤ ‖z‖|m|
m!

. (1.9)
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These estimates were first established in the case of quaternionic valued functions by

Fueter in [26], and for higher dimensions by Krauβhar in [38, p.19].

Using these functions instead of the powers of zm for m ∈ N0, we obtain (e.g. cf. [13,

pp.71]):

Theorem 1.9 (Taylor expansion) Let B(z0, R) ⊂ An+1 be an open ball with center z0

and radius R. Suppose that f : B(z0, R) → Cln is a left (right) monogenic function.

Then, for any 0 < r < R, the function f has a unique Taylor series representation in

B(z0, r) of the form

f(z) =
+∞∑

|m|=0

Pm(z − z0)am,


f(z) =

+∞∑

|m|=0

amPm(z − z0)




where a0 := f(z0) and am :=
∂|m|f
∂xm

(z0).

The analogue of the negative power functions were first introduced for the quaternion

case by Fueter in [26] and for Rn+1 by Delanghe in [23]. These generalized negative power

functions arise from the Cauchy kernel function q0 and their partial derivatives

q0(z) :=
z

‖z‖n+1
, qm(z) =

∂m0+m1+···+mn

∂xm0
0 ∂xm1

1 · · · ∂xmn
n

q0(z), (1.10)

for m := (m0,m1, ..., mn). In view of the monogenicity, one can restrict to multi-indices

with m0 = 0.

These functions are left and right monogenic in An+1 \ {0} and take their values in

An+1. In [38, pp.24] the following recurrence formula is given:

∂|m|+1

∂x(m+τ(i))
q0(z) =

|m|∑

|j|=0

(|m|
|j|

)
|j|!qm−j(z)×

[(
n− 1

2

) |j|+1∏

k=1

(z−1etk)]

+ (−1)|j|+1

(
n− 1

2

) |j|+1∏

k=1

(etkz
−1)

]
(1.11)

with tk ∈ {1, ..., n} not necessarily distinct numbers. From this representation one can

easily derive the following estimate on these functions, see [20] and also [38, p.26]:

∥∥∥∥
∂|m|

∂xm
q0(z)

∥∥∥∥ ≤
n(n + 1)...(n + |m| − 1)

‖z‖n+|m| . (1.12)
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These functions play the same role as the negative complex powers in the Laurent series

expansion of an holomorphic function in an annular domain. The following theorem

provides a representation of a monogenic function in an annular domain (see e.g. [23],

[13, p.90]).

Theorem 1.10 (Generalized Laurent expansion) Suppose that f is left (right) monogenic

in B(0, R) \ B(0, r) where 0 < r < R. Then f has a unique Laurent series expansion of

the form

f(z) =
+∞∑

|m|=0

Pm(z)am +
+∞∑

|m|=0

qm(z)bm, (1.13)


f(z) =

+∞∑

|m|=0

amPm(z) +
+∞∑

|m|=0

bmqm(z)




where

am =
1

wn+1

∫

∂B(0,r)

qm(ξ)dσ(ξ)f(ξ), bm =
1

wn+1

∫

∂B(0,r)

Pm(ξ)dσ(ξ)f(ξ).

Notice that both series converge normally in B(0, R), respectively in Rn+1 \B(0, r).

Although a monogenic function in An+1 can have singularities of manifolds of dimen-

sion 0, 1, ..., n− 1, in our study we focus on the singularities of manifolds of dimension 0.

These are called isolated singularities. Notice that it is not possible to have singularities

of manifolds of dimension n and n + 1. This is a consequence of the generalized Cauchy-

-Riemann equation. For detailed information about singularities of monogenic functions

we refer to [28, 29, 54, 55]. The following definitions are cited from [13, p.94] or [23].

Definition 1.9 (Regular and Singular points) A point z0 ∈ An+1 is called

(i) a left (right) regular point of the Clifford valued function f , if there exists an open

neighborhood Vz0 where f is left (right) monogenic;

(ii) a singular point of the Clifford valued function f , if there exists no open neighborhood

Vz0 where f is left (right) monogenic;

(iii) an isolated singularity if it is a left (right) singular point of the Clifford valued func-

tion f and if there exists an open neighborhood Vz0 where f is left (right) monogenic

in Vz0 \ {z0}.
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Definition 1.10 (Classification of isolated singularities) Let Ω ⊂ An+1 be an open set

and z0 ∈ Ω. Suppose that f : Ω \ {z0} → Cln is left (right) monogenic and z0 is a left

(right) isolated singularity. Then z0 is called a left (right)

(i) isolated pole (or pole) of order n + |m|, if the coefficients, bk of the second series in

the Laurent series expansion (1.13) are zero for |k| > |m|;

(ii) isolated essential singularity, if the cardinality of the set {k | bk 6= 0} is infinite,

where bk are the coefficients of the second series of the Laurent series expansion

(1.13).

Definition 1.11 (Meromorphic functions) Let Ω be an open subset of An+1 and

f : Ω → Cln. The function f is called left (right) meromorphic function in Ω if there

exists a subset S ⊂ Ω such that:

(i) S has no accumulation point in Ω;

(ii) f is left (right) monogenic in Ω \ S;

(iii) f has a left (right) isolated pole at each point of S.

The condition (i) implies that no compact subset of Ω contains infinitely many points

of S, i.e., S is at most countable (see [23, Lemma C]).

Remark 1.4 In classical complex theory of one variable, if f is a meromorphic function

and z0 a pole of f then

lim
z→z0

f(z) = ∞.

In case of meromorphic Clifford valued functions this is not always true. In order to

present an example we first consider the representation formula of the generalized negative

powers presented in [20].

In the formula of [20] the following notation is used: p,m ∈ Nn
0 are defined as

p = (p1, p2, ..., pn), m = (m1,m2, ..., mn) :

p ≤ m :⇔ p1 ≤ m1, ..., pn ≤ mn.

Furthermore, we need the Pochhammer symbol (k)s := k(k + 1)(k + 2)...(k + s− 1) where

k ∈ R, s ∈ N. From [20] we recall

qm(z) =
1

n− 1

∑
0≤2p≤m

a(n,m,p)
(2Z)m−2p

‖z‖n−1+2|m|−2|p|

×
(

n− 1 + 2|m| − 2|p|
z

+
n∑

q=1

mq − 2pq

xq

eq

)
(1.14)
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where a(n,m,p) := m!
(m−2p)!p!

(
n−1

2

)
|m|−|p| (−1)|m|−|p|, and Z := x1x2...xn.

Next, we present an example which the function does not converge to infinity at the

isolated pole. Consider m = τ(i) + τ(j) for 0 < i 6= j ≤ n, using (1.14) we obtain the

function qτ(i)+τ(j) defined as

qτ(i)+τ(j)(z) =
1

n− 1
a(n, τ(i) + τ(j), 0)

(2Z)τ(i)+τ(j)

‖z‖n+3

(
n + 3

z
+

n∑
q=1

mq

xq

eq

)

=
1

n− 1
a(n, τ(i) + τ(j), 0)

(
(n + 3)

(2xi)(2xj)z

‖z‖n+5
+

(2xi)ej + (2xj)ei

‖z‖n+3

)
,

where z = 0 is an isolated pole. Substituting z := x0e0 we have

qτ(i)+τ(j)(x0, 0, ..., 0) = 0.

This implies that the function in the direction of x0 will remain bounded when approaching

the pole.

In [64] Ryan proved, for left monogenic functions f : A3 \ {0} → H with negative

degree of homogeneity, that the set of lines radiating from the origin on which f vanishes

has a finite cardinality.

In view of Remark 1.4 it becomes natural to think about isolated zeros regarded as

points. Many questions related to value distribution theory in Clifford analysis are still

not solved. However, Hempfling and Krauβhar in [35] obtained some results for some

meromorphic functions in Clifford analysis. From [35] we take the following definition:

Definition 1.12 Let f : Ω → An+1, where Ω is an open set of An+1.

(i) Let y ∈ An+1. Then an element x ∈ Ω is called a y-point of f if f(x) = y.

(ii) x∗ ∈ Ω is called an isolated y-point, if there exists ε > 0 such that f(x) 6= y for all

x ∈ B(x∗, ε) \ {x∗}.

We also define ∞-point as follows.

Definition 1.13 Let f : Ω → Cln, where Ω is an open set of An+1. x∗ ∈ Ω is called

an ∞-point, if x∗ is an isolated singularity of f and lim
x→x∗

f(x) = ∞, independently from

which path we approximate x∗.
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Next we define a special class of functions which will be studied later on.

Definition 1.14 (Special meromorphic functions) Let f be a Clifford valued function

defined in a domain Ω ⊂ An+1. f is called a left (right) special meromorphic function in

Ω if f is left (right) meromorphic and each isolated singularity of f is an ∞-point.

Some examples of this type of special meromorphic functions are presented next.

Example 1.1 The Cauchy kernel q0(z) :=
z

‖z‖n+1
is an example of a special meromor-

phic function. We know that q0(z) has an isolated pole of order n at the origin. Moreover

0 is an ∞-point, since lim
z→0

q0(z) = ∞.

Furthermore, from [35] we also know that q0 has only isolated x-points.

Example 1.2 Consider the simply-periodic Clifford cotangent function associated with

the lattice 2Zej (0 ≤ j ≤ p) (1 < p < n) defined by

cot(1)(z, 2Zej) :=
∑

m∈Z
q0(z + 2mej)

and the simply-periodic Clifford tangent function defined by

tan(1)(z, 2Zej) = −cot(1)(z + ej, 2Zej),

from [35, 38]. The poles of these functions are the points of 2Zej and Zej \ 2Zej, respec-

tively. Consequently the poles are ∞-points. Hence, these functions are special meromor-

phic functions.

Example 1.3 The function qτ(i)(z) =
∂

∂xi

q0(z), (i = 1, 2, ..., n) has an isolated pole at

zero. Let us prove that these functions are special meromorphic.

Using formula (1.11) these functions can be rewritten as

qτ(i)(z) = q0(z)

[
n− 1

2
(z−1ei)− n + 1

2
(eiz

−1)

]
.

Taking the norm, leads to

‖qτ(i)(z)‖ = ‖q0(z)‖
[∥∥∥∥−

n− 1

2
(z−1ei) +

n + 1

2
(eiz

−1)

∥∥∥∥
]

≥ ‖q0(z)‖
[

n + 1

2
‖(eiz

−1)‖ − n− 1

2
‖(z−1ei)‖

]

= ‖q0(z)‖
(

n + 1

2
− n− 1

2

)
‖z‖−1

=
1

‖z‖n+1
. (1.15)
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Applying inequality (1.12) and (1.15), we have:

1

‖z‖n+1
≤ ‖qτ(i)(z)‖ ≤ n

‖z‖n+1
.

Taking the limit over the isolated singularity, it yields lim
z→0

‖qτ(i)(z)‖ = ∞. Hence, we

conclude that qτ(i) are special meromorphic.

Relaying on the representation formula given in (1.14) we present the following example.

Example 1.4 Let m = 2τ(i) for 0 < i ≤ n. Then

q2τ(i)(z) =
1

n− 1

(
a(n, 2τ(i), 0)

Z2τ(i)

‖z‖n+3

(
n + 3

z
+

2

xi

ei

)
+ a(n, 2τ(i), τ(i))(n + 1)

z

‖z‖n+3

)

=
1

n− 1

(
a(n, 2τ(i), 0)

(
zx2

i (n + 3)

‖z‖n+5
+

2xi‖z‖2

‖z‖n+5
ei

)
+ a(n, 2τ(i), τ(i))

z(n + 1)

‖z‖n+3

)
.

Taking the norm, one has:

∥∥q2τ(i)

∥∥2
=

(n + 1)2

4‖z‖2n+8

[‖z‖4 + 4(n2 + 4n + 3)x4
i − 4(n + 1)x2

i ‖z‖2
]

=
(n + 1)2

4‖z‖2n+8
(‖z‖2 − 2(n + 1)x2

i )
2 + 8(n + 1)x2

i

where a solution of (‖z‖2 − 2(n + 1)x2
i )

2 + 8(n + 1)x2
i = 0 is zero.

Therefore, we obtain

lim
z→0

q2τ(i)(z) = ∞.

In the next example we consider functions which have at most isolated pole of order

n + 1.

Example 1.5 Let z0 be a pole of order n + 1 of a left monogenic function f . Consider

the following series expansion of f in a neighborhood of z0

f(z) =
+∞∑

|m|=0

Pm(z − z0)am +
1∑

|m|=0

qm(z − z0)bm, (1.16)

such that, for |m∗| = 1, bm∗ ∈ Γn and

‖bm∗‖ > n
∑

|m|=1
m6=m∗

‖bm‖. (1.17)

Let us prove that f is also a left special meromorphic function.
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In order to do so, we start by proving that there exists two positive constants cinf and

csup such that in a neighborhood of z0 we have

cinf

‖z − z0‖n+1
− o(1) ≤ ‖f(z)‖ ≤ csup

‖z − z0‖n+1
+ o(1). (1.18)

Without loss of generality, assume that z0 = 0. Using formulas (1.12) and (1.9), we obtain

‖f(z)‖ ≤
+∞∑

|m|=0

‖Pm(z)‖‖am‖+
1∑

|m|=0

‖qm(z)‖‖bm‖

≤ 1

‖z‖n+1

[
n

∑

|m|=1

‖bm‖+ ‖z‖‖b0‖+ ‖z‖n+1

+∞∑

|m|=0

‖am‖‖z‖
m

m!

]

≤ 1

‖z‖n+1

[
n

∑

|m|=1

‖bm‖+ o(1)

]
. (1.19)

Using the same arguments as in Example 1.3 and applying the condition (1.17) on the

coefficients, leads to:

‖f(z)‖ ≥ 1

‖z‖n+1

[(
‖bm∗‖ − n

∑

m 6=m∗
|m|=1

‖bm‖
)
− ‖z‖

(
‖b0‖+ ‖z‖n

∥∥∥∥∥
+∞∑

|m|=0

Vm(z)am

∥∥∥∥∥

)]

≥ 1

‖z‖n+1

[(
‖bm∗‖ − n

∑

m 6=m∗
|m|=1

‖bm‖
)
− o(1)

]
. (1.20)

Taking the limit towards the isolated singularity, in view of (1.19) and (1.20), we obtain

lim
z→0

‖f(z)‖ = ∞.

This proves that f is left special meromorphic.

In order to proceed we define the Jacobian matrix of a Clifford valued function g defined

as

g(z) =
n∑

i=0

gi(z)ei +
∑
i1<i2

|(i1,i2)|=2

g(i1,i2)(z)ei1i2 + ...

+
∑

i1<...<in

|(i1,...,in−1)|=n−1

g(i1,...,in−1)(z)ei1...in−1 + g(1,2,...,n)(z)e12...n,
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where the real valued functions gm (m := (m1,m2, . . . , mn) for m1 < . . . < mn, and

mi ∈ {0, 1, 2, · · · , n}, i = 1, ..., n) are denoted as the real component functions of g.

Identifying this function with a vector in R2n
, the Jacobian matrix Jg is represented by

Jg(z) :=


∂
∂x0

g0(z) ∂
∂x1

g0(z) · · · ∂
∂xn

g0(z)

∂
∂x0

g1(z) ∂
∂x1

g1(z) · · · ∂
∂xn

g1(z)
...

...
...

...

∂
∂x0

gn(z) ∂
∂x1

gn(z) · · · ∂
∂xn

gn(z)

∂
∂x0

g(1,2)(z) ∂
∂x1

g(1,2)(z) · · · ∂
∂xn

g(1,2)(z)

∂
∂x0

g(1,3)(z) ∂
∂x1

g(1,3)(z) · · · ∂
∂xn

g(1,3)(z)
...

...
...

...

∂
∂x0

g(1,n)(z) ∂
∂x1

g(1,n)(z) · · · ∂
∂xn

g(1,n)(z)

∂
∂x0

g(2,3)(z) ∂
∂x1

g(2,3)(z) · · · ∂
∂xn

g(2,3)(z)
...

...
...

...

∂
∂x0

g(n−1,n)(z) ∂
∂x1

g(n−1,n)(z) · · · ∂
∂xn

g(n−1,n)(z)

∂
∂x0

g(1,2,3)(z) ∂
∂x1

g(1,2,3)(z) · · · ∂
∂xn

g(1,2,3)(z)
...

...
...

...

∂
∂x0

g(n−2,n−1,n)(z) ∂
∂x1

g(n−2,n−1,n)(z) · · · ∂
∂xn

g(n−2,n−1,n)(z)
...

...
...

...
...

...
...

...

∂
∂x0

g(1,2,3,...,n)(z) ∂
∂x1

g(1,2,3,...,n)(z) · · · ∂
∂xn

g(1,2,3,...,n)(z)




2n×(n+1)

.

(1.21)

This can also be written in a more compact form as ∇g.

Remark 1.5 Notice that for a An+1-valued function f , the Jacobian matrix is a

(n + 1)× (n + 1) matrix.

If the determinant of the Jacobian matrix of the function f at an y-point of f , x∗ is non

zero (i.e., det Jf (x
∗) 6= 0) then x∗ is an isolated y-point of f . This is a consequence of

the implicit function theorem.

An interesting type of Clifford valued function is the Clifford group valued function

(ClG-valued function) in a domain Ω ⊂ An+1. A Clifford group valued function g as the
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form

g(z) :=
k∏

i=0

Gi(z), k ∈ N

where Gi are paravector valued functions in Ω. Since these functions are products of

paravector valued functions, then they also have an inverse with respect to the Clifford

multiplication. This is

g−1(z) :=
g(z)

‖g(z)‖2
=

Gk(z)

‖Gk(z)‖2

Gk−1(z)

‖Gk−1(z)‖2
· · · G0(z)

‖G0(z)‖2
.

If we assume that these functions belongs at least to the class C1(Ω′) for Ω′ ⊂ Ω then we

may establish the following result.

Proposition 1.2 Let g be a left (right) monogenic Clifford group valued function in a

domain Ω ⊂ An+1. If g−1(z) := g(z)
‖g(z)‖2 belongs to the class C1(Ω′) for Ω′ ⊂ Ω, then

Jg−1(z) =
1

‖g(z)‖2

[
Jg(z)− 2

‖g(z)‖2
MJg(z)

]
,

where M :=
[
gAgB

]
|A|×|B|

for |A|, |B| = 0, . . . , n, is at most 2n× 2n matrix. Furthermore,

‖Jg−1(z)‖ ≤ (2n + 2)

‖g(z)‖2
‖Jg(z)‖.

In particular, if g is a paravector valued function in Ω and if g−1 belongs at least to C1(Ω′)
then

‖Jg−1(z)‖ ≤ (n + 3)

‖g(z)‖2
‖Jg(z)‖.

Proof. We decompose g into its real components, i.e.,

g(z) :=
n∑

|A|=0

gA(z)eA, A ⊂ {1, · · ·, n}.

This representation in turn can be identified with a vector in R2n
. Then the Jacobian

matrix is given by

Jg(z) :=

[
∂gA

∂xi

(z)

]

2n×(n+1)

|A| = 0, · · · , n, i = 0, 1, . . . , n.
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Since the function g consists of a product of paravector valued functions, g has an inverse

with respect to the Clifford multiplication which has the form

g−1(z) :=
g(z)

‖g(z)‖2
=

n∑

|A|=0

(−1)|A|
gA(z)

‖g(z)‖2
eA, |A| = 0, · · · , n. (1.22)

Identifying (1.22) as a vector in R2n
and calculating the partial derivative of each

component function of g−1, one obtains

∂

∂xi

(
gA(z)

‖g(z)‖2

)
:=

1

‖g(z)‖4


∂gA

∂xi

(z)‖g(z)‖2 − 2gA(z)
n∑

|B|=0

∂gB

∂xi

(z)gB(z)


 ,

for A,B ⊆ {1, · · ·, n} and i = 0, 1, . . . , n. Therefore, the Jacobian matrix of g−1 has the

following form

Jg−1(z) =
1

‖g(z)‖2

(
Jg(z)− 2

‖g(z)‖2
MJg(z)

)

=
1

‖g(z)‖2

(
I2n×2n − 2

‖g(z)‖2
M

)
Jg(z), (1.23)

where

Jg(z) :=

[
(−1)|A|

∂

∂xi

(gA(z))

]

2n×(n+1)

,

I2n×2n the identity matrix and the matrix M is defined as




g2
0(z) · · · −g0(z)gn(z) −g0(z)g(1,2)(z) · · · −g0(z)g(1,2,3,...,n)(z)

−g1(z)g0(z) · · · −g1(z)gn(z) −g1(z)g(1,2)(z) · · · −g1(z)g(1,2,3,...,n)(z)

−g2(z)g0(z) · · · −g2(z)gn(z) −g2(z)g(1,2)(z) · · · −g2(z)g(1,2,3,...,n)(z)
...

...
...

...

−gn(z)g0(z) · · · g2
n(z) −gn(z)g(1,2)(z) · · · −gn(z)g(1,2,3,...,n)(z)

...
...

...
...

−g(1,2)(z)g0(z) · · · −g(1,2)(z)gn(z) g2
(1,2)(z) · · · −g(1,2)(z)g(1,2,3,...,n)(z)

...
...

...
...

−g(1,2,3,...,n)(z)g0(z) · · · −g(1,2,3,...,n)(z)gn(z) −g(1,2,3,...,n)(z)g(1,2)(z)· · · g2
(1,2,3,...,n)(z)




.
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For simplicity, M is denoted by M :=
[
gAgB

]
|A|×|B|

for |A|, |B| = 0, . . . , n. Moreover,

since ‖Jg(z)‖ = ‖Jg(z)‖ and ‖M‖ = ‖g(z)‖2 we infer that

‖Jg−1(z)‖ ≤ 1

‖g(z)‖2

∥∥∥∥
[
I2n×2n − 2

‖g(z)‖2
M

]∥∥∥∥ ‖Jg(z)‖

≤ (2n + 2)

‖g(z)‖2
‖Jg(z)‖.

For the particular case where g is a paravector valued function then ‖I(n+1)×(n+1)‖ = n+1,

consequently we obtain

‖Jg−1(z)‖ ≤ 1

‖g(z)‖2

∥∥∥∥
[
I(n+1)×(n+1) − 2

‖g(z)‖2
M

]∥∥∥∥ ‖Jg(z)‖

≤ (n + 3)

‖g(z)‖2
‖Jg(z)‖.

¤

We conclude this chapter introducing a generalization of the classical spherical deriva-

tive and discuss some of its properties.

Definition 1.15 Let f be a special meromorphic Clifford valued function defined in a

domain Ω of An+1. We define Θ(f) : Ω → R+
0 by

Θ(f)(z) :=
||Jf (z)||

1 + ‖f(z)‖2

whenever z is not an isolated pole of f , and

Θ(f)(z) := lim
w→z

Θ(f)(w)

if z is an isolated pole of f .

Analogously as in the complex case we obtain the following property.

Proposition 1.3 If z0 is an isolated pole of a special meromorphic Clifford valued func-

tion f, then Θ(f)(z0) = 0.



28 1.3. Clifford analysis

Proof. Without loss of generality, let z = 0 be a pole of order n + p. Since f is special

meromorphic we know that the function has the following behavior

cinf

‖z‖n+p
− o(1) ≤ ‖f(z)‖ ≤ csup

‖z‖n+p
+ o(1), (1.24)

in a neighborhood of 0, where cinf , csup are positive constants, i.e., ‖f(z)‖ ∼= c
‖z‖n+p where

c is a positive constant.

Consider the series expansion of f :

f(z) =
+∞∑

|m|=0

Pm(z)am +

p∑

|m|=0

qm(z)bm,

with principal part Pp(z) :=
p∑

|m|=0

qm(z)bm where

cinf

‖z‖n+p
− o(1) ≤ ‖Pp(z)‖ ≤ csup

‖z‖n+p
+ o(1)

for cinf , csup two positive constants.

The next step is to obtain an upper bound estimate for ‖Jf‖. Computing the partial

derivatives of f we obtain:

∂f

∂xi

(z) =
+∞∑

|m|=0

∂Pm

∂xi

(z)am +

p∑

|m|=0

∂qm

∂xi

(z)bm. (1.25)

Taking the norm of (1.25) and using (1.12) we obtain

∥∥∥∥
∂f

∂xi

(z)

∥∥∥∥ ≤
∥∥∥∥∥∥

+∞∑

|m|=0

∂Pm

∂xi

(z)am

∥∥∥∥∥∥
+

p∑

|m|=0

∥∥∥∥
∂qm

∂xi

(z)

∥∥∥∥ ‖bm‖

≤
∥∥∥∥∥

+∞∑

|m|=0

∂Pm

∂xi

(z)am

∥∥∥∥∥ +

p∑

|m|=0

n(n + 1)...(n + |m|)
‖z‖n+|m|+1

‖bm‖

=
1

‖z‖n+p+1

[
n(n + 1)...(n + p)

∑

|m|=p

‖bm‖

+ ‖z‖p

(
p−1∑

|m|=0

n(n + 1)...(n + |m|)
‖z‖|m| ‖bm‖+ ‖z‖n+1

∥∥∥∥∥
+∞∑

|m|=0

∂Pm

∂xi

(z)am

∥∥∥∥∥

)]

≤ b

‖z‖n+p+1
+ o(1) (1.26)
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where b := n(n + 1)...(n + p)
∑
|m|=p

‖bm‖ and i = 0, ..., n.

Using inequality (1.26), we obtain

‖Jf (z)‖2 =
n∑

i=0

∥∥∥∥
∂f

∂xi

(z)

∥∥∥∥
2

≤
n∑

i=0

(
b

‖z‖n+p+1
+ o(1)

)2

= (n + 1)

(
b

‖z‖n+p+1
+ o(1)

)2

. (1.27)

Applying inequalities (1.27) and (1.24), yields:

Θ(f)(z) =
‖Jf (z)‖

1 + ‖f(z)‖2

≤ √
n + 1

(
b

‖z‖n+p+1 + o(1)

)

1 +
(

cinf

‖z‖n+p − o(1)
)2

=
√

n + 1
‖z‖(n+p−1) (b + o(1)‖z‖n+p+1)

‖z‖2(n+p) + (cinf − o(1)‖z‖n+p)2 .

Since cinf 6= 0 and n + p > 1, we get

Θ(f)(0) := lim
z→0

Θ(f)(z) = 0.

Hence, we conclude that the function Θ(f)(z0) = 0 for an arbitrary pole z0 of f . ¤

Remark 1.6 In the classical case the spherical derivative is defined as

Θ(f)(z) :=





|f ′(z)|
1 + |f(z)|2 , z is not a pole

1
|Res(f,z)| , z is a pole of order 1

0, z is a pole of order s ≥ 2

where Res(f, z) is the residue of f at z.

Next we discuss some basic properties of the higher dimensional generalization.



30 1.3. Clifford analysis

Proposition 1.4 Let f be a special meromorphic Clifford valued function in Ω. Then:

(i) Θ(f) is a continuous function;

(ii) Θ(f)(z) < ∞ for all z ∈ Ω.

Proof. From the definition of Θ(f) and the property that f is special meromorphic, we

obtain that Θ(f) is continuous.

It remains to prove (ii). Since f is special meromorphic, it has only isolated singu-

larities which are ∞-points. Let Σ be the set of all isolated singularities of f . If z0 ∈ Σ

then, by Proposition 1.3, Θ(f)(z0) = 0.

If z0 ∈ Ω \Σ then there exists a positive constant M < ∞ such that Θ(f)(z0) ≤ M. ¤

Consider the following examples:

Example 1.6 Consider the quaternion valued Cauchy kernel function

q0(z) :=
z

‖z‖4
,

where z = 0 is a pole of order 3. The function q0 is a special meromorphic where each

component function is given by

q0j
(z) = ej

xj

‖z‖4
, j = 0, 1, 2, . . .

and the partial derivatives by

∂q00(z)

∂x0

=
‖z‖4 − 4x0xi

‖z‖6
;

∂q00(z)

∂xi

=
−4x0xi

‖z‖6
i = 1, 2, 3;

(1.28)

∂q0j
(z)

∂xj

= −‖z‖
4 − 4xjxi

‖z‖6
;

∂q0j
(z)

∂xi

= −−4xjxi

‖z‖6
i 6= j i, j = 1, 2, 3.

Therefore, ‖Jq0
(z)‖ =

√
12‖z‖2

‖z‖6
obtaining the following expression for

Θ(q0)(z) =

√
12‖z‖2

1 + ‖z‖6
.

For z = 0 we have Θ(q0)(0) = 0.

In fact, for ‖z‖ < r (r > 0) we obtain the following upper bound estimate

Θ(q0)(z) <
√

12r2.
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Example 1.7 Let us consider the generalized monogenic exponential function given in

[13, p.117] by

g(z) = exp(x0, x1, . . . , xn)

= ex1+···+xn

(
cos(x0

√
n)− 1√

n
(e1 + · · ·+ en) sin(x0

√
n)

)
.

The component functions are given by

g0(z) = ex1+···+xn cos(x0

√
n);

gi(z) = −ex1+···+xn

√
n

sin(x0

√
n), i = 1, 2, . . . , n.

and the partial derivatives by

∂g0

∂x0

(z) = −√nex1+···+xn sin(x0

√
n);

∂g0

∂xi

(z) = ex1+···+xn cos(x0

√
n), i = 1, 2, . . . , n;

∂gi

∂x0

(z) = −ex1+···+xn cos(x0

√
n);

∂gi

∂xj

(z) = −ex1+···+xn

√
n

sin(x0

√
n), j, i = 1, 2, . . . , n.

Therefore, we obtain the following expression for

Θ(g)(z) =
ex1+···+xn

√
n + 1

1 + e2(x1+···+xn)
.

Take ‖z‖ < r where r > 0. The function Θ(g)(z) is bounded by

Θ(g)(z) ≤ ex1+···+xn
√

n + 1 < enr
√

n + 1.
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Chapter 2

Marty’s criterion and Zalcman’s
Lemma in Clifford analysis

The aim of this chapter is to develop some fundamentals of the theory of normal families

in the framework of Clifford analysis. We provide a generalization of Marty’s criterion

which is one of the basic results in the classical theory. As an application we proved a

generalization of Zalcman’s lemma.

The concept of a normal family of holomorphic and meromorphic complex valued

functions was introduced by Montel [53]. A necessary and sufficient condition of normality

was obtained by Marty [48]. A proof from a more geometrical point of view of Marty’s

criterion was given by Ahlfors [3, pp.218]. An analytic proof was also given by Hayman

[34, pp.158].

Although Marty’s criterion gives a complete answer to the question ” When is a family

of functions normal?”, in practice it is very difficult to check normality by this criterion.

Based on Marty’s criterion, Zalcman established a necessary and sufficient condition of

normality in [72]. A refinement has been obtained in [73].

In 1982, Miniowitz generalized the Zalcman lemma for families of K-quasimeromorphic

mappings1 in the (n+1)-dimensional unit ball [51].

In this chapter, we give the basic notions, such as chordal distance in An+1, and

also normality of a family of left (right) monogenic and left (right) special meromorphic

1see e.g. [52]

33
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functions defined in a fixed domain Ω.

Throughout this chapter A is to be denoted as either An+1 or H when no ambiguity

occurs.

2.1 Chordal distance

Since A ≡ An+1 is isomorphic to Rn+1, a one point compactification of Rn+1 is used. The

extended space is denoted by A = A ∪ {∞}.
As a model for A we introduce a hypersphere in Rn+2. The relation which links the

coordinates in A and the rectangular coordinates in the image on the hypersphere is as

follows.

Consider an orthonormal coordinate system defined by the standard basis

{e0, e1, ..., en, en+1} in Rn+2 which can be identified with Rn+2 = R ⊕ A. A point of

A is denoted by

z = x0e0 + x1e1 + ... + xnen

and identified with (x0, x1, ..., xn). The hypersphere Sn+1
1
2

(0, . . . , 1
2
) is defined as:

Sn+1
1
2

(0, . . . ,
1

2
) :=

{
ỹ = (y0, y1, ..., yn+1) : y2

0 + y2
1 + ... +

(
yn+1 − 1

2

)2

=
1

4

}
. (2.1)

The relation between y0, y1, ..., yn, 1− yn+1 for (y0, y1, ..., yn, 1− yn+1) ∈ Sn+1
1
2

(0, . . . , 1
2
)

and the components of z ∈ A are obtained by

yi = α xi, 1− yn+1 = α, (2.2)

for i = 0, 1, ..., n and α a positive real number. Substituting the system of equations

given by (2.2) into y2
0 + y2

1 + ... +
(
yn+1 − 1

2

)2
= 1

4
, one obtains the explicit expression

α =
1

1 + ‖x‖2
.

Using (2.2), the map φ : Sn+1
1
2

(0, . . . , 1
2
) → A is defined as

φ(ỹ) :=





n∑
i=0

yi

1− yn+1

ei, ỹ ∈ Sn+1
1
2

(0, . . . , 1
2
) \ {(0, ..., 0, 1)}

∞, ỹ = (0, ..., 0, 1),

(2.3)
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and its inverse ψ : A→ Sn+1
1
2

(0, . . . , 1
2
) as

ψ(z) :=





(
x0

1 + ‖x‖2
, ...,

xn

1 + ‖x‖2
,
‖x‖2

1 + ‖x‖2

)
, z ∈ A

(0, ..., 0, 1), z = ∞,

(2.4)

where we identify z := x0e0 +x1e1 + ..., +xnen with (x0, x1, ..., xn), and use the expression

for α. We obtain a relation between A and Sn+1
1
2

(0, . . . , 1
2
) in terms of φ and ψ. The next

step is to obtain a metric on A.

As an example, consider the Euclidian distance between two elements of A,

a :=
n∑

i=0

aiei and b :=
n∑

i=0

biei, given by ‖a − b‖2 =
n∑

i=0

(ai − bi)
2. In this metric the

ideal point z = ∞ plays an exceptional role. However, it is possible to introduce a metric

avoiding this problem.

Let a, b denote two points in A and let ã, b̃ their corresponding points on the hyper-

sphere Sn+1
1
2

(0, . . . , 1
2
) induced by (2.1). The length of the line segment between ã, b̃ is

defined to be the chordal distance between a, b and is denoted by dch[a, b]. To set up a

closed expression of the chordal distance, we distinguish three cases:

(i) Both elements are finite

dch[a, b]2 = ‖ψ(a)− ψ(b)‖2

=
n∑

i=0

(
ai

1 + ‖a‖2
− bi

1 + ‖b‖2

)2

+

( ‖a‖2

1 + ‖a‖2
− ‖b‖2

1 + ‖b‖2

)2

=
‖a‖2 (1 + ‖a‖2)

(1 + ‖a‖2)2 +
‖b‖2 (1 + ‖b‖2)

(1 + ‖b‖2)2 − 2

n∑
i=0

aibi + ‖a‖2‖b‖2

(1 + ‖a‖2) (1 + ‖b‖2)

=
‖a‖2 (1 + ‖b‖2) + ‖b‖2 (1 + ‖a‖2)

(1 + ‖a‖2) (1 + ‖b‖2)
− 2

n∑
i=0

aibi + ‖a‖2‖b‖2

(1 + ‖a‖2) (1 + ‖b‖2)

=
‖a− b‖2

(1 + ‖a‖2) (1 + ‖b‖2)
.

Therefore, we obtain:

dch[a, b] =
‖a− b‖√

(1 + ‖a‖2)
√

(1 + ‖b‖2)
.
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(ii) One of the elements is finite and the other one is infinity, for instance b = ∞. Using

the same arguments as given in (i), we obtain:

dch[a, b]2 = ‖ψ(a)− ψ(b)‖2

=
n∑

i=0

(
ai

1 + ‖a‖2

)2

+

( ‖a‖2

1 + ‖a‖2
− 1

)2

=
‖a‖2

(1 + ‖a‖2)2 +
1

(1 + ‖a‖2)2

=
1

1 + ‖a‖2
.

(iii) If both a = b = ∞ then dch[a, b] = 0.

Consequently it makes sense to introduce:

Definition 2.1 (Chordal distance) Let dch : An+1 → R+
0 be defined by:

dch[a, b] :=





‖a− b‖
(
√

1 + ‖a‖2)(
√

1 + ‖b‖2)
, a, b finite

1√
1 + ‖a‖2

, b = ∞, a finite

0, a = ∞, b = ∞.

(2.5)

dch[a, b] is called the chordal distance since it measures the length of the chord between the

corresponding points on the hypersphere.

Remark 2.1 It is also possible to define the chordal distance for any two elements in the

Clifford group, Γn. Let a :=
k1∏
i=0

αi and b :=
k2∏

j=0

βj be two elements of the Clifford group,

where αi, βj ∈ An+1\{0} for all i = 0, 1, . . . , k1 and j = 0, 1, . . . , k2 for k1, k2 ∈ N. Further

let us write a :=
k1∑

|A|=0

aAeA and b :=
k2∑

|A|=0

bAeA. The elements a and b can be identified

with elements of Rm where m =
k∑

s=0

(
k
s

)
, for k = max{k1, k2}. Moreover, when extending

the Clifford group Γn to Γn ∪ {0,∞} we denote 0−1 := ∞ and ∞−1 := 0. For a ∈ Γn

we define a + ∞ = ∞ + a := ∞, a 0 = 0 a := 0, a ∞ = ∞ a := ∞ and consequently
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a 0−1 := ∞, a ∞−1 := 0. We define dch : Γn ∪ {0, ∞} → R+
0 by

dch[a, b] :=





√
k∑

|A|=0

(aA − bA)2

√
1 +

k∑
|A|=0

a2
A

√
1 +

k∑
|A|=0

b2
A

, a, b finite

1√
1 +

k∑
|A|=0

a2
A

, b = ∞, a finite

0, a = ∞, b = ∞.

(2.6)

An important invariance property of the chordal distance is stated in the following

proposition.

Proposition 2.1 If a, b ∈ A then dch

[
a

‖a‖2 ,
b

‖b‖2

]
= dch [a, b] .

Proof. If a, b ∈ A \ {0}
(

dch

[
a

‖a‖2 ,
b

‖b‖2

])2

=

∥∥∥ a
‖a‖2 − b

‖b‖2
∥∥∥

2

(
1 +

∥∥∥ a
‖a‖2

∥∥∥
2
)(

1 +
∥∥∥ b
‖b‖2

∥∥∥
2
)

=
‖a‖2 ‖b‖2

∥∥∥ a
‖a‖2 − b

‖b‖2
∥∥∥

2

(
1 + ‖a‖2) (

1 + ‖b‖2)

=

‖a‖2 ‖b‖2

((
a0

‖a‖2 − b0
‖b‖2

)2

+
∑n

k=1

(
ak

‖a‖2 −
bk

‖b‖2
)2

)

(
1 + ‖a‖2) (

1 + ‖b‖2)

=
‖a‖2 ‖b‖2

(
‖a‖2
‖a‖4 + ‖b‖2

‖b‖4 − 2
∑n

k=0
akbk

‖a‖2‖b‖2
)

(
1 + ‖a‖2) (

1 + ‖b‖2)

=
‖b‖2 + ‖a‖2 − 2

∑n
k=0 akbk(

1 + ‖a‖2) (
1 + ‖b‖2)

=
‖a− b‖2

(
1 + ‖a‖2) (

1 + ‖b‖2)

= (dch [a, b])2.

If a = ∞, then
a

‖a‖2
= a−1 = 0 and

dch

[
0,

b

‖b‖2

]
=

1√
1 + 1

‖b‖2
=

‖b‖√
1 + ‖b‖2

= dch [∞, b] .
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An analogous result is obtained for b = ∞.

If a = 0, then
a

‖a‖2
= a−1 = ∞ and

dch

[
∞,

b

‖b‖2

]
=

‖b‖√
1 + ‖b‖2

=
1√

1 + 1
‖b‖2

= dch [0, b] .

¤

Remark 2.2 This property also holds for any two arbitrary elements in the extended

Clifford group, Γn ∪ {0,∞} .

Another property of the chordal distance, which is analogous to the one in the complex

case (see [14, p.4]), is described in:

Proposition 2.2 Consider z, w in A. Let A < B be two positive numbers where B can

also be ∞. Then there is a positive number µ = µ(A, B) depending only on A and B such

that for ‖z‖ ≤ A, ‖w‖ ≥ B, dch [z, w] ≥ µ is obtained.

Proof. If ‖z‖ ≤ A, ‖w‖ ≥ B with w 6= ∞, then

dch [z, w] =
‖z − w‖√

1 + ‖z‖2
√

1 + ‖w‖2
≥ ‖w‖ − ‖z‖√

1 + ‖z‖2
√

1 + ‖w‖2

≥
1− ‖z‖

‖w‖√
1 + ‖z‖2

√
1 + 1

‖w‖2
≥ 1− A

B√
1 + A2

√
1 +

(
1
B

)2
.

If ‖z‖ ≤ A and w = ∞, then

dch[z, w] =
1√

1 + ‖z‖2
≥ 1√

1 + A2
.

Therefore, we obtain dch[z, w] ≥ µ(A,B), where

µ(A,B) :=





1− A
B√

1 + A2

√
1 + 1

B2

, if A,B finite

1√
1 + A2

, if A finite, B = ∞.

¤

In the next section we study normal families of Clifford valued functions.
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2.2 Normal families

The theory of normal families plays an important role in complex function theory and has

a wide range of applications, as for example, it provides us with tools to prove extensions

of Picard’s theorem, Schottky’s theorem, Landau’s theorem (see e.g. [61]), and also to

study for example, problems in complex dynamics as well as extremal problems (see e.g.

[8]).

In this section we start to study convergence of sequences that consist of Clifford

valued functions. In the sequel, some fundamental definitions and results are presented.

Definition 2.2 Let Ω be a non-empty open subset of An+1 and {fm}m∈N be a sequence

of real valued functions in Ω.

(i) A sequence {fm}m∈N converges uniformly in Ω to f : Ω → R, if for all ε > 0 there

exists m0 ∈ N such that for m > m0

dch[fm(z), f(z)] < ε, ∀z ∈ Ω,

where dch denotes the chordal distance on R. We also say that {fm}m∈N converges

uniformly with respect to the chordal distance to f .

(ii) A sequence {fm}m∈N converges locally uniformly to f if for each z0 ∈ Ω there exists

a neighborhood Vz0 ⊂ Ω such that {fm}m∈N converges uniformly on Vz0 to f .

(iii) A sequence of Clifford valued functions in Ω converges locally uniformly in Ω if every

component function converges locally uniformly as defined in (ii).

From [21, p.149] an analogue to the classical Weierstrass’ theorem is presented, for

sequences of monogenic Clifford valued functions.
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Theorem 2.1 Let Ω be a non empty open subset of An+1. If a sequence of Clifford valued

left (right) monogenic functions {fm}m∈N in Ω converges locally uniformly to a Clifford

valued function f , then

(i) f is left (right) monogenic in Ω.

(ii) for each multi-index s := (s0, s1, ..., sn) ∈ Nn+1, the sequence

{
∂|s|

∂xs
fm

}

m∈N
con-

verges locally uniformly to
∂|s|

∂xs
f.

The next step is to study the limit function of a uniformly convergent sequence of

special meromorphic A-valued functions.

Since A is either H or An+1, a non-zero element of A has an inverse with respect to

the Clifford multiplication. Therefore, for each A-valued function defined in a domain Ω

there exists an inverse with respect to the Clifford multiplication of the following form

f−1(z) :=
f(z)

‖f(z)‖2
, z ∈ Ω′

where Ω′ := {z ∈ Ω : f(z) 6= 0} ⊆ Ω.

The following result establishes a relation between uniform convergence with respect

to the chordal distance and uniform convergence with respect to the Euclidean distance.

Theorem 2.2 Let {fm}m∈N be a sequence of left (right) special meromorphic A-valued

functions in B(z0, r) for r > 0. If {fm}m∈N is uniformly convergent in B(z0, r) with

respect to the chordal distance and if f is the limit function, then

(i) if f(z0) 6= ∞, there exists r0 > 0, r0 < r, such that for z ∈ B(z0, r0) the functions

fm and f are left (right) monogenic, moreover

lim
m→+∞

‖fm(z)− f(z)‖ = 0,

uniformly in B(z0, r0).
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(ii) if f(z0) = ∞, then {f−1
m }m∈N converges locally uniformly to f−1, i.e.,

lim
m→+∞

‖f−1
m (z)− f−1(z)‖ = 0,

uniformly in B(z0, r0) where 0 < r0 < r.

In order to prove this theorem it is convenient to establish the following result which

is analogous to the one given in [14, pp.8] for the complex case.

Lemma 2.1 If f is a left (right) special meromorphic A-valued (or ClG-valued) function

in a domain Ω, then f is continuous in Ω with respect to the chordal distance.

Proof. Consider a point z0 ∈ Ω and Vz0 ⊂ Ω an open neighborhood of z0. First assume

that f(z0) 6= ∞. Applying Definition 2.1 (or (2.6)), for z ∈ Vz0 , the following inequality

holds dch[f(z), f(z0)] ≤ ‖f(z) − f(z0)‖. In view of the continuity of f in Vz0 , it follows

that

lim
z→z0

dch[f(z), f(z0)] = 0.

For the case f(z0) = ∞ it follows for z ∈ Vz0 that lim
z→z0

f(z) = f(z0) = ∞, since f is

special meromorphic. Therefore, using the function f−1, we obtain

lim
z→z0

dch

[
f−1(z), f−1(z0)

]
= 0.

Applying Proposition 2.1 leads to

lim
z→z0

dch[f(z), f(z0)] = lim
z→z0

dch

[
f−1(z), f−1(z0)

]
= 0.

This proves that f is continuous in Ω with respect to the chordal distance. ¤

Proposition 2.2 and Lemma 2.1 enable us to prove Theorem 2.2.
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Proof of Theorem 2.2.

(i) Assume that f(z0) 6= ∞. Consider k := dch[f (z0) ,∞] > 0, define A := 2
k
,

B :=
√

3( 2
k

+ 1) and let µ(A,B) be a positive number as defined in Proposition 2.2.

For ε0 := min
{

k
6
, µ (A,B)

}
, there exists m0 ∈ N such that for all m ≥ m0

dch[fm (z) , f (z)] < ε0, z ∈ B(z0, r). (2.7)

Since each fm is special meromorphic then fm are continuous with respect to the

chordal distance, in view of Lemma 2.1. Therefore, there exist r0 (r > r0 > 0) such

that

dch[fm (z) , fm (z0)] <
k

6
, z ∈ B(z0, r0). (2.8)

Using the triangular inequality, the following holds

dch[f (z0) ,∞] ≤ dch[f (z0) , fm(z0)] + dch[fm (z0) , fm (z)]

+ dch[fm (z) , f (z)] + dch[f(z),∞]. (2.9)

Inserting (2.7) and (2.8) into (2.9), leads to

dch[f(z0),∞] <
k

2
+ dch[f(z),∞]. (2.10)

Since k := dch[f(z0),∞], we infer by inequality (2.10)

k − k

2
< dch[f(z),∞]. (2.11)

Therefore, we obtain

k

2
< dch[f(z),∞] :=

1√
1 + ‖f(z)‖2

, (2.12)

and consequently ‖f(z)‖2 ≤ (
2
k

)2 − 1 <
(

2
k

)2
=: A2.

On the other hand, since dch[f(z),∞] ≤ dch[fm(z), f(z)] + dch[fm(z),∞] and using

(2.11), it follows

k

2
< dch[f(z),∞] ≤ dch[fm(z), f(z)] + dch[fm(z),∞].
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In view of (2.7) we have
k

2
<

k

6
+ dch[fm(z),∞].

Therefore, we obtain

1√
1 + ‖fm(z)‖2

=: dch[fm(z),∞] >
k

2
− k

6
=

k

3
, z ∈ B(z0, r0)

which implies that ‖fm(z)‖2 ≤ (
3
k

)2 − 1 < 3
(

2
k

+ 1
)2

:= B2.

Then, for all m ≥ m0 and z ∈ B(z0, r0), we obtain

‖fm(z)− f(z)‖ = dch[fm(z), f(z)]

√
1 + ‖fm(z)‖2

√
1 + ‖f(z)‖2

≤ dch[fm(z), f(z)]
√

1 + B2
√

1 + A2. (2.13)

Since {fm}m∈N converges locally uniformly with respect to the chordal distance and

since {fm}m∈N satisfies condition (2.13), for z ∈ B(z0, r0) we have

lim
m→∞

‖fm(z)− f(z)‖ = 0.

Furthermore, applying Theorem 2.1 the limit function f is left (right) monogenic in

B(z0, r0).

(ii) Consider f(z0) = ∞. Applying the same arguments as in (i) to the functions f−1
m (z)

and f−1(z) in B(z0, r0), we obtain:

‖f−1(z)‖ < A and ‖f−1
m (z)‖ < B.

Therefore, for all m ≥ m0 and z ∈ B(z0, r0) (r > r0 > 0) it follows

‖f−1
m (z)− f−1(z)‖ = dch[f

−1
m (z) , f−1 (z)]

√
1 + ‖f−1

m (z)‖2
√

1 + ‖f−1(z)‖2

≤ dch[f
−1
m (z), f−1(z)]

√
1 + B2

√
1 + A2.

Since

dch[f
−1
m (z), f−1(z)] = dch[fm(z), f(z)],

it follows that

‖f−1
m (z)− f−1(z)‖ ≤ dch[fm(z), f(z)]

√
1 + B2

√
1 + A2.
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Since {fm}m∈N is locally uniformly convergent with respect to the chordal distance,

we conclude that {f−1
m }m∈N converges locally uniformly, i.e.,

lim
m→∞

‖f−1
m (z)− f−1(z)‖ = 0, z ∈ B(z0, r0).

¤

Theorem 2.3 Let Ω ⊂ An+1 be a domain, {fm}m∈N be a sequence of left (right) special

meromorphic A-valued function and let Σ ⊂ Ω be a discrete set containing all poles of all

functions fm of the sequence. If {fm}m∈N converges locally uniformly in Ω with respect to

the chordal distance, then the limit function f is left (right) special meromorphic.

Proof. Since each function in the sequence {fm}m∈N is left (right) special meromorphic in

Ω then the functions are left (right) monogenic in Ω\Σ. Theorem 2.1 implies that f is left

(right) monogenic in Ω\Σ. It remains to prove that f is continuous for elements of Σ with

respect to the chordal distance, i.e., elements of Σ are ∞-points of f . Let z0 ∈ Σ. Since

the functions of the sequence are left (right) special meromorphic then by Lemma 2.1

they are continuous with respect to the chordal distance. In view of the continuity of the

functions and the fact that the sequence is locally uniformly convergent, it follows that

f is continuous with respect to the chordal distance. Hence forth f is left (right) special

meromorphic. ¤

From now on F denotes a family of Clifford valued functions in a domain Ω, and the

subscript indicates the set to which the values of the functions belong to. Hence, we have:

FH := {f | f : Ω → H}; FAn+1 := {f | f : Ω → An+1}; FCln := {f | f : Ω → Cln}.

When no ambiguity occurs we write FA for the family of A-valued functions, where A is

either H or An+1.

Let us recall the following definition:
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Definition 2.3 (i) Let FCln be a family of left (right) monogenic functions in Ω. The

family FCln is called equi-continuous in E ⊂ Ω if for all z0 ∈ E and for all ε > 0

there exists δ > 0, such that for all f ∈ FCln

‖f(z)− f(z0)‖ < ε, ∀z ∈ B(z0, δ) ∩ E.

(ii) Let FCln be a family of left (right) special meromorphic functions in Ω. The family

FCln is called equi-continuous in E ⊂ Ω with respect to the chordal distance, if for

all z0 ∈ E and for all ε > 0 there exists δ > 0, such that for all f ∈ FCln

dch[f(z)− f(z0)] < ε, ∀z ∈ B(z0, δ) ∩ E.

The next proposition establishes a relation between equi-continuity and locally uniform

convergence of a sequence. The proof of this proposition is analogous to the one given in

[14, pp.15] for the classical case.

Proposition 2.3 Let {fm}m∈N be a sequence of left (right) special meromorphic A-valued

functions in a domain Ω. If {fm}m∈N is locally uniformly convergent with respect to the

chordal distance, then {fm}m∈N is an equi-continuous sequence with respect to the chordal

distance.

Next we prove a sufficient condition for equi-continuity:

Proposition 2.4 Let FCln be a family of left (right) monogenic Clifford valued functions

in a domain Ω ⊂ An+1. If the norm of the Jacobian matrix of f is locally bounded for all

f ∈ FCln, then FCln is equi-continuous.

Proof. Let f be an element of FCln and z∗ ∈ Ω. For r > 0 let B(z∗, r) ⊂ Ω. Consider

γ : [0, 1] → B(z∗, r) to be defined as γ(t) := tz1+(1−t)z0, which we identify as an element

of Rn+1. Since ‖Jf (γ(t))‖ ≤ M for all f ∈ FCln and for all t ∈ [0, 1], with ϕ(t) := f(γ(t))
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we obtain

‖f(z1)− f(z0)‖ = ‖ϕ(1)− ϕ(0)‖ =

∥∥∥∥∥∥

1∫

0

Jf (γ(t))
dγ(t)

dt
dt

∥∥∥∥∥∥

≤
1∫

0

‖Jf (γ(t))‖
∥∥∥∥
dγ(t)

dt

∥∥∥∥ dt

≤ M‖z1 − z0‖.

Therefore, since M is independent of f , FCln is equi-continuous. ¤

Another property of families of functions is normality. Next we introduce the concept

of normal families and give some necessary and/or sufficient conditions.

From [3] we recall the following definition.

Definition 2.4 A family of functions G is called normal, if every sequence of functions

from G contains a locally uniformly convergent subsequence.

The next result which is analogous to the classical case, gives a necessary and sufficient

condition for normality.

Theorem 2.4 Let FA be a family of left (right) special meromorphic functions defined

in a domain Ω. FA is normal if and only if the family FA is equi-continuous in Ω with

respect to the chordal distance.

Analogously this is obtained for families of left (right) monogenic Cln-valued functions.

Proof. Let us start by proving that equi-continuity is a sufficient condition for normality.

Consider a sequence {zm}m∈N of points dense in Ω. Let S := {fm}m∈N be a sequence of

FA. For z1 ∈ Ω consider the sequence of points

S1 := {fm(z1)}m∈N,

in A. Since A is compact, there exists a subsequence {fm1
j
(z1)}j∈N of S1 and a point

w1 ∈ A such that

lim
j→∞

dch[fm1
j
(z1), w1] = 0.
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In the next step, consider the sequence of points

S2 := {fm1
j
(z2)}j∈N

for which it is possible to find a subsequence {fm2
j
(z2)}j∈N of S2 and a point w2 ∈ A where

lim
j→∞

dch[fm2
j
(z2), w2] = 0 and lim

j→∞
dch[fm2

j
(z1), w1] = 0.

By repeating the above procedure, we obtain sequences {fmi
j
(zs)}j∈N such that

lim
j→∞

dch[fmi
j
(zs), ws] = 0, s = 1, 2, . . . , i, . . . i = 1, 2, . . . . (2.14)

where ws ∈ A.

Consider the diagonal sequence

{
gk(zj) := fmj

k
(zj)

}
k∈N

such that lim
k→∞

dch[gk(zj), wj] = 0 for j = 1, 2, · · · . Let us prove that the sequence

{gk(z)}k∈N is locally uniformly convergent with respect to the chordal distance.

Since all f ∈ FA are special meromorphic then by Lemma 2.1, we observe that f is

continuous with respect to the chordal distance, i.e., let x ∈ Ω then for all ε > 0 there

exist δ > 0 such that for y ∈ B(x, δ) ⊂ Ω

dch[f(y), f(x)] <
ε

5
.

Next, since the points {zm}m∈N are dense in Ω, there exists zj ∈ B(x, δ). In view of

pointwise convergence of the sequence {gk(zj) := fmj
k
(zj)}k∈N, there exists a positive

integer kx, such that for k, k1 > kx

dch[gk(zj), gk1(zj)] <
ε

5
.

Therefore, for z ∈ B(x, δ) and k, k1 > kx, the following is obtained

dch[gk(z), gk1(z)] ≤ dch[gk(z), gk(x)] + dch[gk(x), gk(zj)]

+ dch[gk(zj), gk1(zj)] + dch[gk1(zj), gk1(x)]

+ dch[gk1(x), gk1(z)]

<
5ε

5
= ε. (2.15)
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This proves uniformly convergence of {gk}k∈N in B(x, δ). Since x was chosen arbitrarily,

we conclude that {gk}k∈N is locally uniformly convergent in Ω. Hence, the arbitrary chosen

sequence {fm}m∈N has a locally uniformly convergent subsequence. Thus, the family FA
is normal.

Next we prove that equi-continuity is a necessary condition for normality. Suppose

that FA is not equi-continuous. Then it is possible to find a sequence S := {fm}m∈N in FA
and z0 ∈ Ω such that for ε0 > 0 and a sequence δm of positive integers with lim

m→∞
δm = 0,

holds:

sup
z∈B(z0,δm)

dch[fm(z), fm(z0)] ≥ ε0. (2.16)

Since FA is normal in Ω, there is a subsequence S1 := {fmk
}k∈N of S which converges

locally uniformly with respect to the chordal distance.

The aim, is to prove that S1 is equi-continuous and consequently to obtain a contra-

diction.

Since {fmk
}k∈N is locally uniformly convergent with respect to the chordal distance,

then for all ε > 0 there exists r0 > 0 and k0 > 0 such that for k, k1 > k0

dch[fmk
(z), fmk1

(z)] <
ε

3
, z ∈ B(z0, r0) ∩ Ω.

Moreover, one has in view of continuity of fmk0
, for r1 > 0 with r1 < r0

dch[fmk0
(z), fmk0

(z0)] <
ε

3

for z ∈ B(z0, r1) ∩ Ω. Therefore, for k ≥ k0 and z ∈ B(z0, r1) ∩ Ω we infer

dch[fmk
(z), fmk

(z0)] ≤ dch[fmk
(z), fmk0

(z)] + dch[fmk0
(z), fmk0

(z0)]

+ dch[fmk0
(z0), fmk

(z0)]

< ε.

For the finite number of continuous functions fmk
, k = 1, 2, ..., k0 there exists r2 > 0

(r2 < r1) such that

dch[fmk
(z), fmk

(z0)] < ε, z ∈ B(z0, r2) ∩ Ω.
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Therefore if we choose ε < ε0, we obtain for all k ≥ 1

dch[fmk
(z), fmk

(z0)] < ε, z ∈ B(z0, r2) ∩ Ω, (2.17)

which is a contradiction to condition (2.16). ¤

In the following sections, we establish some results which provide us with criteria

of normality for families of left (right) monogenic and left (right) special meromorphic

functions.

2.3 Normal families of monogenic functions

Throughout this section, we consider families of left (right) monogenic Clifford valued

functions defined in a domain Ω of An+1, i.e., FCln .

To obtain a Montel-type criterion of normality for these families, the following defini-

tion is needed.

Definition 2.5 FCln is called locally bounded in Ω if for each point in Ω there exists a

neighborhood V in Ω and a positive constant C, such that for all f ∈ FCln the following

inequality ‖f(z)‖ ≤ C holds in V.

Proposition 2.5 Let FCln be a family of left (right) monogenic functions in Ω. If FCln

is locally bounded, then FCln is normal.

Proof. Let f be a left monogenic function of FCln and r > 0 such that B(z, r) ⊂ Ω.

Using Cauchy’s integral formula (Theorem 1.5), we obtain:

f(z) =
1

wn+1

∫

‖y−z‖=r

q0(y − z)dσyf(y). (2.18)

Furthermore, the partial derivatives of f are given by:

∂f

∂xi

(z) =
1

wn+1

∫

‖y−z‖=r

∂q0

∂xi

(y − z)dσyf(y), i = 0, 1, ..., n. (2.19)
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Applying the upper bound estimate on the generalized negative powers given in (1.12) it

follows ∥∥∥∥
∂q0

∂xi

(y − z)

∥∥∥∥ ≤
n

‖y − z‖n−1
≤ n

rn−1
.

Hence, altogether and for M := max
‖y−z‖=r

‖f(y)‖, yields:

∥∥∥∥
∂f

∂xi

(z)

∥∥∥∥ ≤ M
n

rn−1
, i = 0, 1, . . . , n. (2.20)

Next we consider the Jacobian matrix of the function f defined in (1.21). Using the

inequality (2.20), we obtain:

‖Jf (z)‖ ≤ (n + 1)nM

rn−1
.

Applying Proposition 2.4 it follows that FCln is equi-continuous. Consequently, in view

of (2.6), the family FCln is equi-continuous with respect to the chordal distance. Finally,

as a consequence of Theorem 2.4, we conclude that the family FCln is normal. ¤

In this proposition the monogenicity property is involved when we use Cauchy’s inte-

gral formula.

A direct conclusion is stated in the following corollary.

Corollary 2.1 Let FCln be a family of left (right) monogenic functions in a domain Ω.

If the family

F ′
Cln :=

{
∂f

∂xi

| f ∈ FCln , i = 0, 1, ..., n

}

is locally bounded, then FCln is normal in Ω.

Proof. Let z0 ∈ Ω and Vz0 ⊂ Ω be a neighborhood of z0. For f ∈ FCln and

i ∈ {0, 1, . . . , n}, there exists a positive constant c such that

∥∥∥∥
∂f

∂xi

(z)

∥∥∥∥ ≤ c, z ∈ Vz0 .

Moreover, for f ∈ FCln we obtain

‖Jf (z)‖ ≤ nc, z ∈ Vz0 .
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Since f is an arbitrary element of FCln and z0 is an arbitrary point of Ω, with Proposi-

tion 2.4, it follows that FCln is equi-continuous. According to the definition of the chordal

distance, FCln is equi-continuous with respect to the chordal distance. Finally, applying

Theorem 2.4, we conclude that the family FCln is normal. ¤

Next we give some examples of normal and non-normal families.

Example 2.1 The family

PCln =



fk| fk(z) =

∑

|m|=k

Pm(z)am, k ∈ N, ‖z‖ < 1





is normal. It is known that PCln is a family of left monogenic functions and for each

fk ∈ PCln we have

‖fk(z)‖ ≤
∑

|m|=k

‖Pm(z)‖ ‖am‖ ≤ ‖z‖k
∑

|m|=k

‖am‖
m!

<
∑

|m|=k

‖am‖ =: a.

Since PCln is locally bounded we obtain, applying Proposition 2.5, that PCln is normal.

One can also observe that PCln is normal in any compact subset of An+1.

Example 2.2 Let m ∈ Nn
0\{0} be a fixed multi-index. The family

GCln = {fk| fk(z) = kPm(z); ‖z‖ < 1}

is not a normal family. For z = 0 we obtain lim
k→∞

fk(0) = 0. Taking z 6= 0, the limit

is lim
k→∞

fk(z) = ∞. Since the sequence and every subsequence are not locally uniformly

convergent, we have that the family is not normal.
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2.4 Normal families of special meromorphic functions

In this section we restrict to the class of left (right) special meromorphic functions with

values in An+1. A normality criterion of families of these functions is based on the classical

Marty’s criterion [48].

Theorem 2.5 (Marty’s criterion) A family G of holomorphic or meromorphic complex

valued functions in a domain D ⊂ C is normal if and only if

|f ′(z)|
1 + |f(z)|2

is locally bounded in D.

In order to prove a generalization of Marty’s criterion in the framework of hypercom-

plex function theory it is necessary to start by defining the set ΣFAn+1
as the set of all

isolated poles of the family of left (right) special meromorphic An+1-valued functions in

a domain Ω ⊂ An+1, FAn+1 . We define

F∗
An+1

:=
{

f ∈ FAn+1 : ΣFAn+1
is discrete

}
. (2.21)

For F∗
An+1

we obtain the following result:

Theorem 2.6 The family F∗
An+1

defined in (2.21) is normal if and only if

‖Jf (z)‖
1 + ‖f(z)‖2

(2.22)

is locally bounded in Ω.

Proof. Let us start by proving that local boundedness of expression (2.22) is a sufficient

condition for normality. First, we prove that the family F∗
An+1

is equi-continuous. In order

to do so it is necessary to prove a local estimate either for f or for f−1.

Since expression (2.22) is locally bounded, for z0 ∈ Ω, there exists δ > 0 such that

B(z0, δ) ⊂ Ω, and there exists a positive constant K such that for every f ∈ F∗
An+1

‖Jf (z)‖
1 + ‖f(z)‖2

≤ K, ∀z ∈ B(z0, δ). (2.23)
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We define the curve γ : [0, δ] → An+1(∼= Rn+1), by γ(t) = z0 + tu, where u is an

element of An+1 with ‖u‖ = 1.

On one hand we obtain, for 0 < r ≤ δ:

r∫

0

‖Jf (γ(t))‖
1 + ‖f (γ(t)) ‖2

dt ≤ Kr ≤ Kδ. (2.24)

On the other hand, interpreting γ(t) as a vector in Rn+1 (which will be done during this

proof) we have

‖Jf (γ(t))‖‖γ′(t)‖ ≥ ‖Jf (γ(t))γ′(t)‖.

Therefore, since ‖γ′(t)‖ = 1 for t ∈ [0, δ], we obtain

r∫

0

‖Jf (γ(t))‖
1 + ‖f (γ(t)) ‖2

dt =

r∫

0

‖Jf (γ(t))‖‖γ′(t)‖
1 + ‖f(γ(t))‖2

dt

≥
r∫

0

‖Jf (γ(t))γ′(t)‖
1 + ‖f(γ(t))‖2

dt

=

∫

ϕ

‖df(z)‖
1 + ‖f(z)‖2

(2.25)

where ϕ = f ◦γ with ϕ(0) = f(z0) and ϕ(r) = f(γ(r)) = f(z). Hence, ϕ is an An+1-valued

function, which can be represented by the following spherical coordinates

ϕ0 = R cos θ1

ϕ1 = R sin θ1 cos θ2

ϕ2 = R sin θ1 sin θ2 cos θ3

ϕ3 = R sin θ1 sin θ2 sin θ3 cos θ4

...
...

ϕn = R sin θ1 sin θ2 sin θ3... sin θn−1 sin θn.

where 0 < R < +∞, 0 < θ1, θ2, · · · , θn−1 ≤ π and 0 < θn ≤ 2π. Rewriting ϕ in spherical

coordinates, yields:

ϕ(t) = R(t)U(t), (2.26)
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where R(t) := ‖f(γ(t))‖ = ‖ϕ(t)‖ ∈ R+ and U(t) :=
n∑

i=0

ei
ϕi(t)
‖ϕ(t)‖ satisfies ‖U(t)‖ = 1 (see

[13, pp.48]). Therefore, if we substitute the expression (2.26) into (2.25), we get

∫

ϕ

‖df(z)‖
1 + ‖f(z)‖2

=

r∫

0

‖ϕ′(t)‖
1 + ‖ϕ(t)‖2

dt.

Since ‖df‖2 = (dR)2 + R2(angular differentials) ≥ (dR)2 we obtain:

∫

ϕ

‖df(z)‖
1 + ‖f(z)‖2

≥
r∫

0

|dR(t)|
1 + ‖f(γ(t))‖2

=

r∫

0

|R′(t)|
1 + R2(t)

dt

≥
∣∣∣∣∣∣

r∫

0

R′(t)
1 + R2(t)

∣∣∣∣∣∣
= |arctan ‖f(z)‖ − arctan ‖f(z0)‖| .

Finally, after applying inequality (2.24), we obtain:

|arctan ‖f(z)‖ − arctan ‖f(z0)‖| ≤ Kδ, z ∈ B(z0, δ). (2.27)

Taking δ ≤ π
12K

the following cases occur:

(i) If ‖f(z0)‖ ≤ 1, then

arctan ‖f(z)‖ ≤ Kδ + arctan ‖f(z0)‖ ≤ K
π

12K
+ arctan(1) =

π

12
+

π

4
=

π

3
.

Therefore ‖f(z)‖ ≤ √
3 for all z ∈ B(z0, δ). Moreover, in view of (2.23) we obtain:

‖Jf (z)‖ ≤ (
1 + ‖f(z)‖2

)
K ≤

(
1 + (

√
3)2

)
K = 4K. (2.28)

(ii) If ‖f(z0)‖ ≥ 1, then

arctan ‖f(z)‖ ≥ arctan ‖f(z0)‖ −Kδ ≥ π

4
−K

π

12K
=

π

4
− π

12
=

π

6
.

Hence, we obtain ‖f(z)‖ ≥
√

3
3

for all z ∈ B(z0, δ).
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Therefore, using the inequality ‖Jf−1(z)‖ ≤ n+3
‖f(z)‖2 ‖Jf (z)‖ from Proposition 1.2,

condition (2.23) and the inequality ‖f(z)‖ ≥ √
3 we have:

‖Jf−1(z)‖ ≤ 1 + ‖f−1(z)‖2

1 + ‖f−1(z)‖2

(n + 3)

‖f(z)‖2
‖Jf (z)‖

=
(
1 + ‖f−1(z)‖2

)
(n + 3)

‖Jf (z)‖
1 + ‖f(z)‖2

≤ 4(n + 3)K. (2.29)

To proceed in the proof of equi-continuity of f or f−1, we consider z1, z2 ∈ B(z0, δ) for

B(z0, δ) ⊂ An+1 and the curve γ : [0, 1] → An+1 defined as γ(t) := tz2 +(1− t)z1. Denote

ϕ(t) = f (γ(t)) where ϕ′(t) = Jf (γ(t))γ′(t).

If ‖f(z0)‖ ≤ 1 together with inequality (2.28) we obtain:

‖f(z2)− f(z1)‖ = ‖ϕ(1)− ϕ(0)‖ =

∥∥∥∥∥∥

1∫

0

Jf (γ(t))γ′(t)dt

∥∥∥∥∥∥

≤
1∫

0

‖Jf (γ(t))‖ ‖γ′(t)‖ dt

≤ 4K‖z2 − z1‖, (2.30)

for all z1, z2 ∈ B(z0, δ) and all functions f ∈ F∗
An+1

, since K does not depend on the

function.

If ‖f(z0)‖ ≥ 1, then we obtain analogously with ϕ1(t) = f−1 (γ(t)) where γ is the

rectifiable curve defined by γ(t) = tz2 +(1− t)z1 for t ∈ [0, 1] and ϕ′1(t) = Jf−1(γ(t))γ′(t),

together with inequality (2.29) the following

∥∥f−1(z2)− f−1(z1)
∥∥ = ‖ϕ1(1)− ϕ1(0)‖ =

∥∥∥∥∥∥

1∫

0

Jf−1(γ(t))γ′(t)dt

∥∥∥∥∥∥

≤
1∫

0

‖Jf−1(γ(t))‖‖γ′(t)‖dt

≤ 4(n + 3)K‖z2 − z1‖, (2.31)
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for z1, z2 ∈ B(z0, δ) and all functions f ∈ F∗
An+1

.

Let z0 ∈ Ω, z1, z2 ∈ B(z0, δ). If ‖z2 − z1‖ ≤ ε
12(n+3)K

for ε > 0, then following

Proposition 2.1 two cases occur.

For the case ‖f(z0)‖ ≤ 1, we have in view of Definition 2.1 and (2.30)

dch [f(z2), f(z1)] :=
‖f(z2)− f(z1)‖

(1 + ‖f(z2)‖2)
1
2 (1 + ‖f(z1)‖2)

1
2

≤ ‖f(z2)− f(z1)‖
< 4K‖z2 − z1‖
≤ 4K

ε

12(n + 3)K
≤ ε.

In the case ‖f(z0)‖ ≥ 1, we obtain in view of the definition of the chordal distance and

(2.31)

dch [f−1(z2), f
−1(z1)] :=

‖f−1(z2)− f−1(z1)‖
(1 + ‖f−1(z2)‖2)

1
2 (1 + ‖f−1(z1)‖2)

1
2

≤ ‖f−1(z2)− f−1(z1)‖
< 4(n + 3)K‖z2 − z1‖
≤ 4(n + 3)K

ε

12(n + 3)K
≤ ε.

Since this holds for all z0 ∈ Ω and for all f ∈ F∗
An+1

the family is equi-continuous. In view

of Theorem 2.4 we conclude that F∗
An+1

is normal.

Let us prove the reciprocal statement. Suppose that

Θ(f)(z) :=
‖Jf (z)‖

1 + ‖f(z)‖2

is not locally bounded. Then there exists a sequence of functions {fm}m∈N in F∗
An+1

, a

point z0 and a sequence of points {zm}m∈N in Ω that converges to z0 such that

Θ(fm)(zm) =
‖Jfm (zm)‖

1 + ‖fm (zm) ‖2
→ +∞, m →∞. (2.32)

Since F∗
An+1

is normal, by assumption, for any sequence {fm}m∈N there exists a subse-

quence {fmk
}k∈N that converges locally uniformly with respect to the chordal distance.
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Since {fmk
}k∈N is a sequence of special meromorphic functions with at most isolated

poles in a discrete set ΣFAn+1
, by Theorem 2.3 the limit function is special meromorphic.

Applying Theorem 2.2 we infer that

‖Jfm(z)‖
1 + ‖fm(z)‖2

→ ‖Jf (z)‖
1 + ‖f(z)‖2

, m →∞,

locally uniformly in Ω \ ΣFAn+1
. Let z∗ ∈ ΣFAn+1

such that fm(z∗) = ∞ for a infinitely

many m ∈ N. ( Otherwise f is monogenic in z∗. Hence Θ(f) is bounded in a neighbor-

hood of z∗.) Then there exists a subsequence {fmk
}k∈N of {fm}m∈N such that in view of

Proposition 1.3

Θ(fmk
)(z∗) =

‖Jfmk
(z∗)‖

1 + ‖fmk
(z∗)‖2

= 0,

for k = 1, 2, . . . . Since f is special meromorphic it must have a pole at z∗. Therefore, we

also have
‖Jf (z∗)‖

1+‖f(z∗)‖2 = 0. This reveals that

lim
k→∞

‖Jfmk
(z)‖

1 + ‖fmk
(z)‖2

=
‖Jf (z)‖

1 + ‖f(z)‖2
< C,

where C is a positive real constant depends on z0 and on δ for B(z0, δ) ⊂ Ω. Since

lim
k→∞

zmk
= z0 and ‖zmk

− z0‖ < δ we obtain

‖Jfmk
(zmk

)‖
1 + ‖fmk

(zmk
)‖2

≤ C,

for k sufficiently large. This contradicts

lim
m→∞

‖Jfm(zm)‖
1 + ‖fm(zm)‖2

= lim
k→∞

‖Jfmk
(zmk

)‖
1 + ‖fmk

(zmk
)‖2

= ∞,

for lim
m→∞

zm = lim
k→∞

zmk
= z0. ¤

Notice that this result is also true for families of real-analytic paravector valued func-

tions.

In the next section we present a generalization of a famous result due to Zalcman.
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2.5 Zalcman’s Lemma

In 1975, Zalcman gave a necessary and sufficient condition for normality in [72], which

is now known as Zalcman’s lemma. Later, in 1998, a new version of this lemma was

presented in [73]. The new version uses a parameter depending on the multiplicity of all

zeros and all poles of the functions.

The following result is a generalization of Zalcman’s lemma for a family F∗
An+1

defined

in (2.21).

Theorem 2.7 Let F∗
An+1

be a family of special meromorphic functions in the unit ball

B(0, 1) with the same conditions as in (2.21). F∗
An+1

is not normal in B(0, 1) if and only

if there exists a

(i) number 0 < r < 1;

(ii) sequence of points {zm}m∈N;

(iii) sequence of functions {fm}m∈N in F∗
An+1

and

(iv) sequence of positive numbers ρm with lim
m→∞

ρm = 0,

such that the sequence of functions defined by

gm(ξ) := fm (zm + ρmξ) (2.33)

converges locally uniformly with respect to the chordal distance in An+1 to a non-constant

special meromorphic function g.

Proof. We start by proving that conditions (i) to (iv) are sufficient for non normality.

If F∗
An+1

is not normal in B(0, 1) then, in view of Theorem 2.6, there exists a number

0 < r0 < 1, a sequence {fm}m∈N in F∗
An+1

and a sequence of points z∗m in B(0, r0) tending

to z0, such that

Θ(fm)(z∗m) :=
‖Jfm(z∗m)‖

1 + ‖fm(z∗m)‖2
→∞, m →∞. (2.34)



Chapter 2. Marty’s criterion and Zalcman’s Lemma in Clifford analysis 59

Without loss of generality, let us assume that z0 = 0. Take r > 0 fixed, such that

0 < r0 < r < 1 and ‖z‖ < r. In view of continuity of Θ(fm) we define:

Mm := max
‖z‖≤r

(
1− ‖z‖2

r2

)
Θ(fm)(z) =

(
1− ‖zm‖2

r2

)
Θ(fm)(zm). (2.35)

Since ‖zm‖ < r, the expression

(
1− ‖zm‖2

r2

)
remains bounded. Moreover, using condi-

tion (2.34) for ‖zm‖ < r0 we obtain lim
m→∞

Mm = ∞. Furthermore, let us define

ρm :=
1

Mm

(
1− ‖zm‖2

r2

)
. (2.36)

We have

lim
m→∞

ρm = 0. (2.37)

Moreover, we obtain

ρm

r − ‖zm‖ =
1

Mm

(r + ‖zm‖)
r2

≤ 2

rMm

→ 0, m →∞. (2.38)

Consider the functions gm defined by

gm(ξ) := fm(zm + ρmξ),

where ξ ∈ B(0, Rm) for Rm := r−‖zm‖
ρm

. By (2.38) follows that lim
m→∞

Rm = ∞. Evaluating,

the Jacobian matrix of gm we obtain:

Jgm(ξ) =

[
∂

∂ξi

gj
m(ξ)

]

j,i

=

[
ρm

∂

∂ui
m

f j
m(um)

]

j,i

= ρmJfm(um) (2.39)

where 0 ≤ i, j ≤ n, ξ :=
n∑

i=0

ξiei and um :=
n∑

i=0

ui
mei = zm + ρmξ. Calculating Θ(gm)(0)

yields

Θ(gm)(0) =
‖Jgm (ξ)‖

1 + ‖gm(ξ)‖2

∣∣∣∣
ξ=0

= ρm
‖Jfm (zm + ρmξ)‖

1 + ‖fm(zm + ρmξ)‖2

∣∣∣∣
ξ=0

,

which, in view of (2.36), for each m gives

Θ(gm)(0) = ρm
‖Jfm(zm)‖

1 + ‖fm(zm)‖2
= 1. (2.40)

Taking a fixed R, such that ‖ξ‖ < R < Rm and ‖zm + ρmξ‖ < r, it follows:

Θ(gm)(ξ) = ρmΘ(fm)(zm + ρmξ)

≤ ρm
Mm

1− ‖zm+ρmξ‖2
r2

.
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Using the definition of ρm (see (2.36)) and the fact that
r + ‖zm‖

r + (‖zm‖+ ρm‖ξ‖) ≤ 1, we

obtain for ‖ξ‖ < R

Θ(gm)(ξ) ≤ (r2 − ‖zm‖2)

r2 − ‖zm + ρmξ‖2

=
(r + ‖zm‖)

(r + [‖zm‖+ ρm‖ξ‖])
(r − ‖zm‖)

(r − [‖zm‖+ ρm‖ξ‖])
≤ r − ‖zm‖

r − (‖zm‖+ ρm‖ξ‖)
<

r − ‖zm‖
r − (‖zm‖+ ρmR)

. (2.41)

Furthermore, in view of (2.37) we have lim
m→∞

r − ‖zm‖
r − (‖zm‖+ ρmR)

= 1. Then, in view of

(2.41) and for ‖ξ‖ < R we conclude that Θ(gm)(ξ) is bounded.

Applying Theorem 2.6 it follows that the sequence {gm}m∈N is normal in ‖ξ‖ < R.

As a consequence of the normality, there exists a subsequence {gmk
}k∈N that converges

locally uniformly with respect to the chordal distance to a function g. By Theorem 2.3

we conclude that g is special meromorphic. Thus, for ξ = 0

Θ(g)(0) = lim
k→∞

Θ(gmk
)(0) = 1. (2.42)

If the limit function of {gmk
}k∈N was constant then for all ξ ∈ An+1 we would have

Θ(g)(ξ) = 0, in particular for ξ = 0, but from (2.42) we get a contradiction. Therefore,

we conclude that g is not constant.

Let us prove the reciprocal. Suppose that (i) to (iv) holds as well as

fm(zm + ρmξ) → g(ξ), m →∞. (2.43)

If F∗
An+1

is normal, then we infer by Theorem 2.6 that, there exists positive constants

M, r such that for z ∈ {z : ‖z‖ ≤ 1+r
2
} ⊂ B(0, 1) and for all fm ∈ F∗

An+1
holds

max
‖z‖≤ 1+r

2

Θ(fm)(z) ≤ M.

Using (2.39) for a fixed ξ ∈ An+1 we have

Θ(g)(ξ) = lim
m→∞

ρmΘ(fm)(zm + ρmξ) = 0,
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where ‖zm + ρmξ‖ ≤ 1+r
2

. Since ξ is arbitrarily chosen, then g must be a constant. This

gives a contradiction. ¤

In the next result we obtain a sufficient condition for normality. In order to do so it

is necessary to start with the following definition:

Let f be a A-valued function. We define

Ef (a) := {z ∈ A : f(z) = a}

as the set of elements where f has the value a.

We proceed with the proof of the following result.

Lemma 2.2 Let f be a special meromorphic A-valued function in the unit ball, B(0, 1),

K a positive constant such that ‖Jf (z)‖ ≤ K and det(Jf (z)) 6= 0 for z ∈ Ef (0). Let

−1 < α ≤ 1. Suppose that there exists a point z∗, ‖z∗‖ < r < 1 such that

(
1− ‖z∗‖2

r2

)1+α

‖Jf (z∗)‖
(
1− ‖z∗‖2

r2

)2α

+ ‖f (z∗) ‖2

≥ K + 1. (2.44)

Then there exists an element z0 ∈ B(0, 1) with ‖z0‖ < r and 0 < t < 1 such that

sup
‖z‖<r

(
1− ‖z‖2

r2

)1+α

t1+α ‖Jf (z)‖
(
1− ‖z‖2

r2

)2α

t2α + ‖f(z)‖2

=

(
1− ‖z0‖2

r2

)1+α

t1+α ‖Jf (z0)‖
(
1− ‖z0‖2

r2

)2α

t2α + ‖f(z0)‖2

= K + 1. (2.45)

Proof. Fixing α (−1 < α ≤ 1) we define

F (z, t) :=

(
1− ‖z‖2

r2

)1+α

t1+α ‖Jf (z)‖
(
1− ‖z‖2

r2

)2α

t2α + ‖f(z)‖2

,

which is continuous on the cylinder C = {(z, t) : ‖z‖ < r, 0 < t ≤ 1}.
Let us now, consider a sequence {zm}m∈N such that for all m ∈ N one has ‖zm‖ < r0

and lim
m→∞

zm = z0 for ‖z0‖ ≤ r. For 0 < tm < 1 we define

ρm :=

(
1− ‖zm‖2

r2

)
tm, (2.46)
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where

lim
m→∞

ρm = 0. (2.47)

Next we prove that

lim sup
m→∞

F (zm, tm) ≤ K. (2.48)

If f(z0) 6= 0, then

lim sup
m→∞

F (zm, tm) = lim sup
m→∞

ρ1+α
m ‖Jf (zm)‖

ρ2α
m + ‖f(zm)‖2

≤ lim sup
m→∞

ρ1+α
m

‖Jf (zm)‖
‖f(zm)‖2

.

Since f and its partial derivatives are continuous functions, thus f(zm) and ‖Jf (zm)‖ are

pointwise convergent, this implies that

lim
m→∞

‖Jf (zm)‖
‖f(zm)‖2

=
‖Jf (z0)‖
‖f(z0)‖2

= c, (2.49)

where c is a positive constant. Using (2.47) and (2.49), it follows

lim sup
m→∞

ρ1+α
m

‖Jf (zm)‖
‖f(zm)‖2

= 0.

Therefore, for f(z0) 6= 0, ‖zm‖ < r0 and 0 < tm < 1

lim sup
m→∞

F (zm, tm) = 0.

For the case f(z0) = 0 we have that det Jf (z0) 6= 0 which implies that z0 is an isolated

point. Therefore, for −1 < α < 1

lim sup
m→∞

F (zm, tm) = lim sup
m→∞

(
1− ‖zm‖2

r2

)1+α

t1+α
m ‖Jf (zm)‖

(
1− ‖zm‖2

r2

)2α

t2α
m + ‖f(zm)‖2

≤ lim
m→∞

ρ1+α
m ρ−2α

m ‖Jf (zm)‖
= 0.

If α = 1, and since ‖Jf (z0)‖ ≤ K we have

lim sup
m→∞

F (zm, tm) = lim
m→∞

ρ2
m ‖Jf (zm)‖

ρ2
m + ‖f(zm)‖2

= ‖Jf (z0)‖ ≤ K.

We conclude that

lim sup
m→∞

F (zm, tm) ≤ K. (2.50)
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Let us now complete the proof. Using the inequality (2.44), there exists a point

‖z∗‖ < r < 1 such that F (z∗, 1) > K + 1. Consider

U = {(z, t) ∈ C : F (z, t) > K + 1} and t0 = inf{t : (z, t) ∈ U}. (2.51)

Notice that t0 < 1 since it is an infimum and t0 > 0 in view of (2.50). Take z0 such that

(z0, t0) ∈ U . Then as consequence of (2.50) we have ‖z0‖ < r and in view of the continuity

of F in C we infer:

sup
‖z‖<r

F (z, t0) = F (z0, t0) = K + 1.

¤

Applying Lemma 2.2 we obtain.

Proposition 2.6 Let F∗
An+1

be a family of special meromorphic functions in the unit ball

B(0, 1), as defined in (2.21). Suppose that there exists K ≥ 1 such that ‖Jf (z)‖ ≤ K

and det(Jf (z)) 6= 0 for z ∈ Ef (0) for all f in F∗
An+1

, and the same assumptions given in

Lemma 2.2. If F∗
An+1

is not normal, then there exist, for each −1 < α ≤ 1

(i) a number 0 < r < 1;

(ii) a sequence of points zm, z0 of B(0, 1) satisfying lim
m→∞

zm = z0;

(iii) sequence of functions {fm}m∈N in F∗
An+1

;

(iv) a sequence of real positive numbers {ρm}m∈N with lim
m→∞

ρm = 0,

such that the sequence
{

gm(ξ) := fm(zm+ρmξ)
ρα

m

}
m∈N

converges locally uniformly with respect

to the chordal distance to a non-constant special meromorphic function g in An+1. More-

over, g satisfies

Θ(g)(ξ) ≤ Θ(g)(0) = K + 1.
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Proof. Since F∗
An+1

is not normal, then by Theorem 2.6 there exists: 0 < r∗ < 1, a

sequence of points z∗m ∈ {z : ‖z‖ < r∗} and a sequence of functions fm in F∗
An+1

such that

Θ(fm)(z∗m) =
‖Jfm(z∗m)‖

1 + ‖fm(z∗m)‖2
→∞, m →∞. (2.52)

For a fixed r, r∗ < r < 1 we have:

(
1− ‖ z∗m

r
‖2

)1+α

‖Jfm(z∗m)‖
(
1− ‖z∗m‖2

r2

)2α

+ ‖fm(z∗m)‖2

≥
(

1− ‖z∗m‖2

r2

)1+α ‖Jfm (z∗m)‖
1 + ‖fm(z∗m)‖2

. (2.53)

Under condition (2.52) we assume that (2.53) is always greater then K + 1. Relying on

Lemma 2.2, there exists a m ∈ N where ‖zm‖ < r and 0 < tm < 1 such that:

sup
‖z‖<r

(
1− ‖z‖2

r2

)1+α

t1+α
m ‖Jfm(z)‖

(
1− ‖z‖2

r2

)2α

t2α
m + ‖fm(z)‖2

=

(
1− ‖zm‖2

r2

)1+α

t1+α
m ‖Jfm(zm)‖

(
1− ‖zm‖2

r2

)2α

t2α
m + ‖fm(zm)‖2

= K + 1. (2.54)

Furthermore,

K + 1 ≥

(
1− ‖z∗m‖2

r2

)1+α

t1+α
m ‖Jfm(z∗m)‖

(
1− ‖z∗m‖2

r2

)2α

t2α
m + ‖fm(z∗m)‖2

≥ t1+α
m

(
1− ‖z∗m‖2

r2

)1+α

‖Jfm(z∗m)‖
(
1− ‖z∗m‖2

r2

)2α

+ ‖fm(z∗m)‖2

. (2.55)

In view of (2.52), the expression (2.55) tends to infinity, hence tm tends to 0. Setting

ρm :=
(
1− ‖zm‖2

r2

)
tm, one has

lim
m→∞

ρm

r − ‖zm‖ = 0. (2.56)

For ‖ξ‖ < Rm, where Rm = r−‖zm‖
ρm

we define:

gm(ξ) :=
fm(zm + ρmξ)

ρα
m

. (2.57)

Observe that gm is defined in An+1, since lim
m→∞

Rm = ∞. Evaluating the Jacobian of gm,

we obtain the following relation

Jgm(ξ) = ρ1−α
m Jfm(zm + ρmξ). (2.58)
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Therefore, Θ(gm)(ξ) is given by

‖Jgm (ξ)‖
1 + ‖gm(ξ)‖2

=
ρ1+α

m ‖Jfm(zm + ρmξ)‖
ρ2α

m + ‖fm(zm + ρmξ)‖2

=

(
1−

(
‖zm‖

r

)2
)1+α

t1+α
m ‖Jfm(zm + ρmξ)‖

(
1−

(
‖zm‖

r

)2
)2α

t2α
m + ‖fm(zm + ρmξ)‖2

.

Applying inequality (2.54) for ξ = 0, it follows

‖Jgm(0)‖
1 + ‖gm(0)‖2

=

(
1−

(
‖zm‖

r

)2
)1+α

t1+α
m ‖Jfm(zm)‖

(
1−

(
‖zm‖

r

)2
)2α

t2α
m + ‖fm(zm)‖2

= K + 1. (2.59)

For an arbitrary ξ, where ‖ξ‖ < R < Rm we have

‖zm‖ − ρmR ≤ ‖zm + ρmξ‖ ≤ ‖zm‖+ ρmR

which yields

r2 − ‖zm‖2

r2 − ‖zm‖+ 2ρmR−R2
≤ r2 − ‖zm‖2

r2 − ‖zm + ρmξ‖ ≤
r2 − ‖zm‖2

r2 − ‖zm‖ − (2ρmR + R2)
.

Consequently, we have that

r2 − ‖zm‖2

r2 − (‖zm‖+ ρmR)2
≤ r2 − ‖zm‖2

r2 − ‖zm + ρmξ‖2
≤ r2 − ‖zm‖2

r2 − (‖zm‖ − ρmR)2
.

Using (2.56) we obtain

lim
m→∞

r2 − ‖zm‖2

r2 − ‖zm + ρmξ‖2
= 1. (2.60)

Using (2.58), (2.59) and (2.60) we obtain for ε1 > 0 the following

‖Jgm(ξ)‖
1 + ‖gm(ξ)‖2

≤ (1 + ε1)

(
1−

(
‖zm+ρmξ‖

r

)2
)1+α

t1+α
m ‖Jfm(zm + ρmξ)‖

(
1−

(
‖zm+ρmξ‖

r

)2
)2α

t2α
m + ‖fm(zm + ρmξ)‖2

≤ (1 + ε1)(K + 1). (2.61)
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Using Theorem 2.6, one concludes that the sequence {gm}m∈N is normal. Then there

exists a subsequence {gmk
}k∈N of {gm}m∈N, which is locally uniformly convergent with

respect to the chordal distance.

By Theorem 2.3 the subsequence converges to a special meromorphic function g. There-

fore, using (2.59) and (2.61) it follows

‖Jg(ξ)‖
1 + ‖g(ξ)‖2

≤ K + 1,

in particular,
‖Jg(0)‖

1 + ‖g(0)‖2
= K + 1

which implies that g is a non-constant function. ¤



Chapter 3

On the growth of polymonogenic
functions

In this chapter the growth of entire polymonogenic Clifford valued functions is studied.

Generalizations of the order of growth, the maximum term and the central index are

introduced. Relations between them, as for example some generalizations of Valiron’s

inequalities, are also established.

The first step is to obtain generalizations of the Cauchy estimate for solutions of

iterated Dirac and also of iterated generalized Cauchy-Riemann equations. In the last

section of this chapter is established a relation between ‖Df‖ and ‖f‖, for a 1-monogenic

function that maps the unit ball to the complement of the closed unit ball.

In one variable complex analysis much effort has been done in the study of the asymp-

totic growth of holomorphic and meromorphic functions during the last century, starting

for example with the work of Wiman [71], Valiron [70], Nevalinna [56], Clunie [16] and

others. Their asymptotic analysis provided powerful tools to study complex partial differ-

ential equations (see [34, 37, 43]). Therefore our aim is to establish some first rudiments

of a generalized Wiman-Valiron theory in the context of hypercomplex analysis.

Throughout this chapter we consider real-analytic functions of the form:

(i) f : Rn → Cln, solutions of the iterated Dirac system, i.e., Dkf = 0 for a positive

integer k ∈ N, where D is the Dirac operator (1.5), and

67
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(ii) f : Rn+1 → Cln, solutions of the iterated generalized Cauchy-Riemann system, i.e.,

Dkf = 0 for a positive integer k ∈ N, where D is the generalized Cauchy-Riemann

operator (1.6).

Both function classes differ essentially from each other, when k ≥ 2. In the case of

iterations of the Dirac operator, one gets for k even that Dk = (−1)k/2∆k/2 where ∆ is

the Laplace operator, whereas in the case of the iterated generalized Cauchy-Riemann

operator already k = 2 results in D2 =
(

∂2

∂x2
0
−∆

)
+ 2 ∂

∂x0
D.

However, both classes of functions are called k-monogenic functions or polymonogenic

functions. In the case that they are solutions of these systems in the whole space (Rn,

resp. Rn+1) they are called entire k-monogenic or entire polymonogenic.

To distinguish both cases more clearly, we write x when working in the vector formal-

ism and z when working in the paravector formalism.

3.1 Cauchy estimates for solutions of iterated Dirac

equations in Rn

In this section Cauchy type estimates are established for entire polymonogenic functions

f : Rn → Cln with respect to the Dirac operator.

Recalling that for k < n the fundamental solution of Dkf = 0, is given by

1

ωn

q
(k)
0 (x) :=





Cn,kx

‖x‖n+1−k
k odd with k ≤ n− 1

Cn,k

‖x‖n−k
k even with k ≤ n− 1,

(3.1)

where ωn is the measure of the unit hypersphere Sn = {x ∈ Rn | ‖x‖ = 1} and

Cn,k =
(−1)k−1

2k−1[k−1
2

]!

(n
2
− 1− [k

2
])!

(n
2
− 1)!

. (3.2)

Notice that |Cn,k| ≤ 1 for all n, k.



Chapter 3. On the growth of polymonogenic functions 69

It is well known (see for instance [65]), that k-monogenic functions satisfy the following

Green’s integral formula:

f(x) =
1

ωn

k−1∑
j=0

∫

∂B(0,r)

q
(j+1)
0 (y − x)dσ(y)(Djf)(y), (3.3)

where we suppose that f is k-monogenic in a domain that contains the closed ball B(0, r).

A fundamental ingredient of this formula are the functions q
(k)
0 (x). These functions are

denoted as the Cauchy-Green’s kernel.

The partial derivatives of the Cauchy-Green’s kernel q
(k)
0 (x) will be denoted by

q(k)
m (x) :=

∂|m|

∂xm
q

(k)
0 (x) =

∂m1+···+mn

∂xm1
1 · · · ∂xmn

n

q
(k)
0 (x). (3.4)

As proved in [39], they satisfy the following sharp estimates

∥∥∥q(k)
m (x)

∥∥∥ ≤ |Cn,k|(n− k)(n + 1− k) · · · (n + |m| − 1− k)

‖x‖n+|m|−k
. (3.5)

As a consequence of Green’s integral formula, one notices that every Cln-valued func-

tion that is entire k-monogenic is real-analytic in Rn. Hence, it can be represented as a

normally convergent Taylor series of the form

f(x) =
+∞∑

|m|=0

xmam. (3.6)

The Clifford algebra valued coefficients am are given by

am =
1

m!

∂|m|

∂xm
f(x)

∣∣∣
x=0

. (3.7)

Using Green’s integral formula and the estimates (3.5) of the functions q
(k)
m (x), a first

version of a Cauchy type estimates is obtained.

Proposition 3.1 Let f be an entire k-monogenic function in Rn, with the following Tay-

lor series representation f(x) =
+∞∑
|m|=0

xmam. Then

‖am‖ ≤
k−1∑
j=0

A(n,m, j)
1

r|m|−j
M(r,Djf)

where A(n,m, j) =
|Cn,j+1|(n−1−j)(n−j)···(n+|m|−2−j)

m!
and Cn,j+1 = (−1)j

2j [ j
2
]!

(n
2
−1−[ j+1

2
])!

(n
2
−1)!

.



70 3.1. Cauchy estimates for solutions of iterated Dirac equations in Rn

Proof. Applying (3.3) on (3.7) it follows

am =
1

m!ωn

k−1∑
j=0

∫

∂B(0,r)

q(j+1)
m (y)dσ(y)(Djf)(y).

Using the estimates given by the formula (3.5), one gets:

‖am‖ ≤ 1

m!ωn

k−1∑
j=0

∫

∂B(0,r)

‖q(j+1)
m (y)‖ ‖dσ(y)‖ ‖(Djf)(y)‖

≤ 1

ωn

k−1∑
j=0

[
|Cn,j+1|(n− 1− j)(n− j) · · · (n + |m| − 2− j)

m!rn+|m|−(j+1)
rn−1ωnM(r,Djf)

]

=
k−1∑
j=0

A(n,m, j)
1

r|m|−j
M(r,Djf), (3.8)

where

A(n,m, j) =
|Cn,j+1|(n− 1− j)(n− j) · · · (n + |m| − 2− j)

m!
, (3.9)

and Cn,j+1 =
(−1)j

2j[ j
2
]!

(n
2
− 1− [ j+1

2
])!

(n
2
− 1)!

. ¤

In the particular monogenic case k = 1 this inequality simplifies to

‖am‖ ≤ A(n,m, 0)

r|m|
M(r, f) =

(n− 1)n · · · (n− |m| − 2)

m!r|m|
M(r, f)

which is the sharp upper bound for the Taylor coefficients of 1-monogenic functions (see

[20]).

The relation (3.8) describes an estimate of the Taylor coefficients am of the

k-monogenic function f that appear in its Taylor series representation formula (3.6),

which is valid for general real-analytic functions. The property of k-monogenicity is in-

volved only later, when applying Green’s integral formula (3.3).

Due to k-monogenicity, the function f a priori also admits a more specific kind of

Taylor series representation involving the monogenic Fueter polynomials. To proceed in

this direction, it is important to recall that if f is an entire k-monogenic function, then

there exist k entire 1-monogenic functions, say f0, . . . , fk−1, such that

f = f0 + xf1 + x2f2 + · · ·+ xk−1fk−1. (3.10)
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The decomposition (3.10) is called Almansi type decomposition. In the case where f is a

polynomial k-monogenic function this representation is also called Fischer decomposition

(see for instance [47]). The term xlfl in this decomposition can in turn be recovered from

the original k-monogenic function f . More precisely, there are described by the following

projective formula.

Proposition 3.2 Let f be a k-monogenic function and f0, f1, · · · , fk−1 1-monogenic such

that f = f0 + xf1 + x2f2 + · · ·+ xk−1fk−1. Then

Plf = xlfl. (3.11)

with

Pl =

(+∞)∑

q=l

aqlx
qDq (3.12)

which is actually a finite sum, where

aql :=





(−1)[ l
2
]+[ q

2
]+lq

2q[ l
2
]![ q−l

2
]!

(n
2

+ E − [ l+q+1
2

]− 1)!

(n
2

+ E − [ l
2
]− 1)!

, if q ≥ l,

0, if q < l.

(3.13)

Here E :=
∑n

i=1 xi
∂

∂xi
denotes the Euler operator.

The expression in (3.13) has to be understood symbolically.

To establish Proposition 3.2 we relay on the following proposition.

Proposition 3.3 Let f be a 1-monogenic function. Then

xmDm(xpf) :=





(−1)m2m[p
2
]!(n

2
+ E − [p

2
]− 1)!

[p−m
2

]!(n
2

+ E − [p+m
2

]− 1)!
xpf, if p ≥ m,

0, if p < m.

(3.14)

In order to prove Proposition 3.3 the following result is needed.

Lemma 3.1 Let f be a 1-monogenic function, a ∈ R and p, s ∈ N. Then

(i) for p ≥ s, xsEm(xp−sf) = [E − s]m(xpf);

(ii) D[(E + a)(xpf)] = (E + a + 1)[D(xpf)].
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Proof. To prove (i) we use mathematical induction with respect to m. Take m = 1, let

us prove that

xsE(xp−sf) = [E − s](xpf). (3.15)

Using E(xp) = pxp the first term of (3.15) is rewritten in the form

xsE(xp−sf) = xs(E(xp−s)f + xp−sE(f))

= (p− s)xpf + xpE(f),

and the second term is given by

[E − s](xpf) = E(xp)f + xpE(f)− sxpf

= pxpf + xpE(f)− sxpf.

Hence, (i) is established for m = 1.

Suppose that xsEm(xp−sf) = [E − s]m(xpf) is true. Then we obtain

[E − s]m+1(xpf) = [E − s](xsEm(xp−sf))

= E(xsEm(xp−sf))− sxsEm(xp−sf)

= sxsEm(xp−sf) + xsEm+1(xp−sf)− sxsEm(xp−sf)

= xsEm+1(xp−sf).

To prove (ii) one uses that

D(E(xpf)) = [E + 1](D(xpf)).

¤

Next follows the Proof of Proposition 3.3

The proof is again made applying mathematical induction. Consider p = 1. From

Lemma 3.1 we obtain

xD(xf) = x
n∑

i=1

ei
∂

∂xi

(xf)

= −nxf + x
n∑

i=1

eix
∂

∂xi

f. (3.16)
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Since
n∑

i=1

eix
∂

∂xi

f = −xD(f)− 2E(f), (3.17)

and D(f) := 0 it follows

xD(xf) = (−1)x(n + 2E)f

= (−1)2
(n

2
+ E − 1

)
xf. (3.18)

Consider now the case p > 1. Notice that if p = 2s for s ∈ N then x2s = (−1)s‖x‖s,

and D(x2s) = −2sx2s−1. Consequently, using Lemma 3.1 and (3.18), we get

xD(xpf) =

{
xD(xp)f + xpxD(f), p even

xD(xp−1)xf + xp−1xD(xf), p odd

=

{
xD(xp)f, p even

xD(xp−1)xf − xp−1((n + 2E − 2)(xf)), p odd

=

{
−pxpf, p even

−(p− 1)xp−1xf − (n + 2E − 2(p− 1)− 2)xpf, p odd

=

{
(−1)pxpf, p even

(−1)2
(

n
2

+ E − 1− p−1
2

)
xpf, p odd

=
(−1)2[p

2
]!(n

2
+ E − [p

2
]− 1)!

[p−1
2

]!(n
2

+ E − [p+1
2

]− 1)!
xpf. (3.19)

Notice that for p even [p
2
] = [p+1

2
] = [p−1

2
] + 1 and for p odd [p−1

2
] = [p

2
] = [p+1

2
]− 1.

Next we prove the formula (3.14) for m = 2. For D2 we have:

D2(xpf) = D (D(xpf))

=

{ D
(
− pxp−1f

)
, p even

D
(
− 2(n

2
+ E − p−1

2
)xp−1f

)
, p odd.

Since DE = (E + 1)(D), then we obtain

D2(xpf) =





−p(−2)(n
2

+ E − p−2
2

)xp−2f, p even

−2(n
2

+ E + 1− p−1
2

)(−(p− 1))xp−2f, p odd.
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In view of x2E(xp−2f) = [E − 2](xpf), it follows

x2D2(xpf) =





(−1)2 2 p(n
2

+ E − 2− p−2
2

)xpf, p even

(−1)2 2(n
2

+ E − 2 + 1− p−1
2

)(p− 1)xpf, p odd

=
22[p

2
]!(n

2
+ E − [p

2
]− 1)!

[p−2
2

]!(n
2

+ E − [p+2
2

]− 1)!
xpf.

For s < p the following expression is obtained

Ds(xpf)=





(−1)s 2[ s
2 ]

[ s−1
2 ]∏

i=0

χ(
[

s−1
2

]− i)(p− 2i)
[ s
2 ]∏

j=1

χ(
[

s
2

]− j)(n
2

+ E + s− j − p
2
)xp−sf,

p even

(−1)s 2[ s+1
2 ]

[ s
2 ]∏

i=1

χ(
[

s
2

]− i)(p− 2i + 1)×
[ s+1

2 ]∏
j=1

χ(
[

s+1
2

]− j)(n
2

+ E + s− j + 1− p+1
2

)xp−sf, p odd,

where χ(a) ≡ 1 for a ≥ 0 and χ(a) ≡ 0 otherwise. Furthermore,

xsDs(xpf) =





(−1)s 2[ s
2 ]

[ s−1
2 ]∏

i=0

χ(
[

s−1
2

]− i)(p− 2i)×
[ s
2 ]−1∏
j=0

χ(
[

s
2

]− 1− j)(n
2

+ E − 1− (p
2

+ j))xp−sf, p even

(−1)s 2[ s+1
2 ]

[ s
2 ]∏

i=1

χ(
[

s
2

]− i)(p− 2i + 1)×
[ s−1

2 ]∏
j=0

χ(
[

s−1
2

]− j)(n
2

+ E − 1− (p−1
2

+ j))xp−sf, p odd

=
(−1)s2s[p

2
]!(n

2
+ E − 1− [p

2
])!

[p−s
2

]!(n
2

+ E − 1− [p+s
2

])!
xpf. (3.20)

Finally, for the case where s > p it follows

xsDs(xpf) = 0. ¤

Using Proposition 3.3 we obtain ([17]) the Proof of Proposition 3.2.
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The aim is to prove that

Sij :=

(+∞)∑
m=0

amix
mDm(xjfj) = δij.

Taking Simj := amix
mDm(xjfj) and using Proposition 3.3 we obtain the following

Simj :=
(−1)[ i

2
]+[m

2
]+(i+1)m

(
n
2

+ E − 1− [
m+i+1

2

])
!

[m−i
2

]![ j−m
2

]!
(

n
2

+ E − 1− [
j+m

2

])
!

[ j
2
]!

(
n
2

+ E − 1− [
j
2

])
!

[ i
2
]!

(
n
2

+ E − 1− [
i
2

])
!
. (3.21)

For the case where j < i one has that Sij = 0.

If we take j = i, therefore for i = m = j one has

Sii = (−1)2[ i
2
]+i2+i

(
n
2

+ E + [2i+1
2

]− 1
)
!(

n
2

+ E + [2i
2
]− 1

)
!

= (−1)2[ i
2
]+i2+i = 1.

Next, let us replace m = i + m and j = i + j in (3.21) where we obtain

Simj := K(1)
imjK(2)

ij (3.22)

where

K(1)
imj :=

(−1)[ i+m
2

]+(i+1)m
(

n
2

+ E − 1− i− [
m+1

2

])
!

[m
2
]![ j−m

2
]!

(
n
2

+ E − 1− i− [
j+m

2

])
!

(3.23)

and

K(2)
ij :=

(−1)[ i
2
]+(i+1)i[ j+i

2
]!

(
n
2

+ E − 1− [
j+i
2

])
!

[ i
2
]!

(
n
2

+ E − 1− [
i
2

])
!

. (3.24)

For the expression Simj one has the following four cases:

(i) if m = 2m and j = 2j then

S
(1)
imj =

(−1)[ i
2
]+m+(i+1)2m

(
n
2

+ E − 1− i−m
)
!

m!(j −m)!
(

n
2

+ E − 1− i− (j + m)
)
!
K(2)

ij . (3.25)

(ii) if m = 2m and j = 2j + 1 then

S
(2)
imj =

(−1)[ i
2
]+m+(i+1)2m

(
n
2

+ E − 1− i−m
)
!

m!(j −m)!
(

n
2

+ E − 1− i− (j + m)
)
!
K(2)

ij . (3.26)
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(iii) if m = 2m + 1 and j = 2j then

S
(3)
imj =

(−1)[ i+1
2

]+m+(i+1)(1+2m)
(

n
2

+ E − 1− i− (m + 1)
)
!

m!(j −m− 1)!
(

n
2

+ E − 1− i− (j + m)
)
!

K(2)
ij . (3.27)

(iv) if m = 2m + 1 and j = 2j + 1 then

S
(4)
imj =

(−1)[ i+1
2

]+m+(i+1)(1+2m)
(

n
2

+ E − 1− i− (m + 1)
)
!

m!(j −m− 1)!
(

n
2

+ E − 1− i− (j + m)
)
!

K(2)
ij . (3.28)

Taking the sum over m we have that S
(s)
imj (s = 1, 2, 3, 4) are the terms of an hypergeometric

series (see e.g. [62]). Therefore, we obtain

S
(s)
ij :=

j∑
m=0

S
(s)
imj

=
(−1)[

i
2 ]Γ(n

2
+ E − i)

Γ(j + 1)Γ(n
2

+ E − i− j)
2F1(−j, j − n

2
− E + i, 1− n

2
− E + i, 1)K(2)

ij ,

for s = 1, 2 since S
(1)
imj = S

(2)
imj, and

S
(s)
ij :=

j∑
m=0

S
(s)
imj

=
(−1)[

i+1
2 ]+i+1Γ(n

2
+ E − i− 1)

Γ(j + 1)Γ(n
2

+ E − 1− i− j)
2F1(−j, j − n

2
− E + i + 2, 2− n

2
− E + i, 1)K(2)

ij

for s = 3, 4 since S
(3)
imj = S

(4)
imj and where 2F1 is an hypergeometric function.

Using the following inequalities from [30, 62], for j ∈ N and α := j − n
2
− E + i

2F1(−j, α, α− j, 1) = lim
δ→0

2F1(−j, α, α− j − δ, 1) =
Γ(α− j)

Γ(α)
(−1)jj!

Γ(α)Γ(1− α) =
π

sin(απ)
,

one obtains

S
(1)
ij = S

(2)
ij =

(−1)[
i
2 ]Γ(n

2
+ E − i)

Γ(j + 1)Γ(n
2

+ E − i− j)

Γ(1− n
2
− E + i)

Γ(1− n
2
− E + i + j)

(−1)jj! K(2)
ij

= (−1)[
i
2 ]+j sin(π(n

2
+ E − i− j))

sin(π(n
2

+ E − i))
K(2)

ij

= (−1)[
i
2 ]+j K(2)

ij , (3.29)
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and

S
(3)
ij = S

(4)
ij =

(−1)[
i+1
2 ]+i+1Γ(n

2
+ E − i− 1)

Γ(j + 1)Γ(n
2

+ E − 1− i− j)

Γ(2− n
2
− E + i)

Γ(2− n
2
− E + i + j)

(−1)jj! K(2)
ij

= (−1)[
i+1
2 ]+i+1+j sin(π(n

2
+ E − i− j − 1))

sin(π(n
2

+ E − i− 1))
K(2)

ij

= (−1)[
i+1
2 ]+i+1+j K(2)

ij . (3.30)

Summarizing, we obtain

4∑
s=1

S
(s)
ij = 2

(
(−1)[

i
2 ]+j + (−1)[

i+1
2 ]+i+1+j

)
K(2)

ij

= 0.

Therefore, we conclude that

Pif :=

(+∞)∑
m=0

amix
mDm(

k−1∑
j=0

xjfj) = xifi.

¤

Next we need to recall the property that every monogenic component function fj has

a Taylor expansion of the form
+∞∑

|m|=0

Vm(x)αm (3.31)

where α are uniquely defined Clifford numbers, Vm(x) := m!Pm(x) and

Pm2,...,mn(x) :=
1

|m|!
∑

(xσ(1) + x1e1eσ(1)) . . . (xσ(|m|) + x1e1eσ(|m|)) (3.32)

where |m| := m2 + · · · + mn, σ(i) ∈ {2, . . . , n}. Here, the summation runs over all

distinguished permutations of the expressions (xσ(i) + x1e1eσ(i)).

When applying the Almansi type decomposition formula (3.10) one may further infer

that every k-monogenic function has the following Taylor-Almansi series representation

f(x) :=
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j. (3.33)

The associated Taylor-Almansi coefficients am,j appearing in this series expansion

satisfy the inequality

‖am,j‖ =

∥∥∥∥∥
∂|m|

∂xm
fj

∥∥∥∥∥ ≤
(n− 1)n · · · (n + |m| − 2)

m!r|m|
M(r, fj) (3.34)
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where we rely on Cauchy’s inequality for 1-monogenic functions applied to the monogenic

component function fj.

It is possible to obtain a Cauchy type estimate in terms of the original k-monogenic

function f and their Dirac derivatives, by applying the following proposition.

Proposition 3.4 Let f be an entire k-monogenic function with the following Taylor-

-Almansi series representation f(x) :=
+∞∑
|m|=0

k−1∑
l=0

xlVm(x)am,l. Then

‖am,l‖ ≤ (n− 1)n · · · (n + |m| − 2)

m!r|m|

k−1∑

q=l

[ q
2
]∑

i=0

‖γlqi‖rq−l M(r,Dqf)

α(q, l, i, n)
. (3.35)

where

γlqi =

(
[ l
2
] + [ q−l

2
]

[ l
2
]

)
(−1)q+[ l+1

2
]+1

2q[ l
2
]![ q−1

2
]!

(−1)i

(
[ l+q−1

2
]− [ l

2
]

i

)

and α(q, l, i, n) := q + n
2
− 1− i− [

l
2

]
> 0.

Proof. In order to prove this, we use the projection formula (3.11). It follows

M(r, fl) ≤
k−1∑

q=l

M(r,x−lβlq(E)xqDqf) (3.36)

where

βlq(E) =

(
[ l
2
] + [ q−l

2
]

[ l
2
]

)
(−1)q+[ l+1

2
]+1

2q[ l
2
]![ q−1

2
]!

[ q
2
]∑

i=0

(−1)i
(
[ l+q−1

2
]−[ l

2
]

i

)
n
2

+ E − 1− i− [ l
2
]
, (3.37)

for l = 1, . . . , k− 1, q ≥ l with (l, q) 6= (0, 0). For (l, q) = (0, 0) we have β0,0 := 1. For the

sake of convenience and clarity we rewrite this expression in the following form

βlq(E) :=

[ q
2
]∑

i=0

γlqi
1

E + n
2
− 1− i− [ l

2
]
, (3.38)

where

γlqi =

(
[ l
2
] + [ q−l

2
]

[ l
2
]

)
(−1)q+[ l+1

2
]+1

2q[ l
2
]![ q−1

2
]!

(−1)i

(
[ l+q−1

2
]− [ l

2
]

i

)
. (3.39)

Next one observes that

x−lβlq(E)xqDqf = x−lxqβlq(E + q)Dqf = x−lxq

[ q
2
]∑

i=0

γlqi
1

E + α(q, l, i, n)
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where α := α(q, l, i, n) := q + n
2
− 1− i− [

l
2

]
> 0.

Relying on the relation

[
1

E + α

]
g(x) =

1∫

0

tα−1g(tx)dt ≤ M(r, g)

α
(3.40)

where
[

1
E+α

]
is the inverse operator of [E + α], which holds for a general C1-function g.

Finally, one gets

M(r,x−lβlq(E)xqDqf) ≤
[ q
2
]∑

i=0

‖γlqi‖rq−l M(r,Dqf)

α(q, l, i, n)
. (3.41)

¤

In the next section the analogous results for functions which are solutions of the iterated

generalized Cauchy-Riemann equation are established.

3.2 Cauchy estimates for solutions of iterated Cauchy-

-Riemann equations in Rn+1

In this section, D denotes the generalized Cauchy-Riemann operator

D := e0
∂

∂x0

+
n∑

i=1

ei
∂

∂xi

,

acting on the Euclidean paravector space R ⊕ Rn '
= Rn+1 whose elements have the form

z = x0 + x with x ∈ Rn. The subject of study is the class of functions f : Rn+1 → Cln

that satisfy Dkf = 0 for a positive integer k ∈ N, with k < n + 1.

As shown in [11, 12], k-monogenic functions satisfy the following Green’s integral

formula:

f(z) =
1

ωn+1

k−1∑
j=0

∫

∂B(0,r)

(−1)jg
(j+1)
0 (ζ − z)dσ(ζ)(Djf)(ζ), (3.42)

where f is k-monogenic in a domain that contains the closed ball B(0, r). The functions

given by
1

ωn+1

g
(k)
0 (z) =

1

ωn+1

q0(z)
xk−1

0

(k − 1)!
. (3.43)
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are denoted as Cauchy-Green’s kernel functions for k-monogenic functions with respect

to the iterated generalized Cauchy-Riemann operator.

An estimate of the partial derivatives of the kernel functions g
(k)
0 (z) is needed.

Proposition 3.5 Let m = (m0,m1, . . . , mn) ∈ Nn+1
0 \{0}. Then

g(k)
m (z) :=

∂m0+···+mn

∂xm0
0 · · · ∂xmn

n

g
(k)
0 (z)

=

m0∑
j=0

(
m0

j

)
qm0−j,m1,...,mn(z)

χ(k − 1− j)xk−1−j
0

(k − 1− j)!
, (3.44)

are the general partial derivatives of the kernel function g
(k)
0 (z) with the following estimates

‖g(k)
m (z)‖ ≤

m0∑
j=0

(
m0

j

)
n(n + 1) · · · (n + |m̃|+ m0 − j − 1)

‖z‖n+|m̃|+m0−j

χ(k − 1− j)|x0|k−1−j

(k − 1− j)!
, (3.45)

where χ(a) ≡ 1 for a ≥ 0 and χ(a) ≡ 0 otherwise.

Proof. For particular multi-indices of the form m = (0,m1, . . . , mn) the following ex-

pression is true

g(k)
m (z) = qm(z)

xk−1
0

(k − 1)!
.

Therefore, using the estimates given in (1.12) we obtain

‖g(k)
m (z)‖ ≤ n(n + 1) · · · (n + |m| − 1)

‖z‖n+|m|
|x0|k−1

(k − 1)!

≤ n(n + 1) · · · (n + |m| − 1)

(k − 1)!‖z‖n+|m|+1−k
.

To deduce an estimate for the general partial derivatives of g
(k)
0 , involving also derivations

in the x0-direction, first one observes that for k ≥ 2:

∂

∂x0

g
(k)
0 (z) = qτ(0)(z)

xk−1
0

(k − 1)!
+ q0(z)

xk−2
0

(k − 2)!

where τ(0) stands for the index (1, 0, · · · , 0). The next differentiation step implies

∂2

∂x2
0

g
(k)
0 (z) = q2τ(0)(z)

xk−1
0

(k − 1)!
+ 2qτ(0)(z)χ(k − 2)

xk−2
0

(k − 2)!

+q0(z)χ(k − 3)
xk−3

0

(k − 3)!
,
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where χ(a) ≡ 1 for a ≥ 0 and χ(a) ≡ 0 otherwise. By a direct induction argument one

can establish that

∂m0

∂xm0
0

g
(k)
0 (z) =

m0∑
j=0

(
m0

j

)
q(m0−j)τ(0)(z)

χ(k − 1− j)xk−1−j
0

(k − 1− j)!
.

As a consequence the following representation for the general partial derivatives of the

kernel function is obtained:

∂m0+···+mn

∂xm0
0 · · · ∂xmn

n

g
(k)
0 (z) =

m0∑
j=0

(
m0

j

)
qm0−j,m1,...,mn(z)

χ(k − 1− j)xk−1−j
0

(k − 1− j)!
.

Hence, for all m = (m0, m̃) ∈ Nn+1
0 \{0} with m̃ = (m1, . . . , mn) it follows

‖g(k)
m (z)‖ ≤

m0∑
j=0

(
m0

j

)
n(n + 1) · · · (n + |m̃|+ m0 − j − 1)

‖z‖n+|m̃|+m0−j

χ(k − 1− j)|x0|k−1−j

(k − 1− j)!
, (3.46)

where the estimates of ‖qm0−j,m1,...,mn(z)‖ given in (1.12) have been applied. ¤

Formulas (3.46) allows us to derive a Cauchy type estimate of the Taylor coefficients

of a k-monogenic function that appear in the Taylor series expansion of the form

f(z) =
+∞∑

|m|=0

xm0
0 · · ·xmn

n am.

This Taylor series representation is valid for general real-analytic functions. In fact, every

k-monogenic function is real-analytic, which follows from Green’s integral formula (3.42).

Indeed,

am =
1

m!

∂m0+···+mn

∂xm0
0 · · · ∂xmn

n

f(z)|z=0

=
1

m!ωn+1

k−1∑
j=0

∫

∂B(0,r)

(−1)jg(j+1)
m (ζ)dσ(ζ)Djf(ζ). (3.47)

Next applying the estimate deduced in (3.45), the following inequality is established

‖am‖ ≤ 1

m!ωn+1

k−1∑
j=0

m0∑

l=0

(
m0

l

)
n(n + 1) · · · (n + |m̃|+ m0 − l − 1)

rn+|m̃|+m0−l

×χ(j − l)rj−l

(j − l)!
rnωn+1M(r,Djf)

≤ 1

m!

k−1∑
j=0

m0∑

l=0

(
m0

l

)
χ(j − l)

n(n + 1) · · · (n + |m̃|+ m0 − l − 1)

r|m̃|+m0−j(j − l)!
M(r,Djf).
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Also for this class of k-monogenic function an analogue of the Almansi type decomposition

into monogenic functions is valued. Actually, it has even a simpler form than in the case

treated in the previous subsection. Following e.g. [12], if f is an entire solution of Dkf = 0,

then there exist k 1-monogenic functions, say f0, f1, · · · , fk−1, such that

f = f0 + x0f1 + x2
0f2 + · · ·+ xk−1

0 fk−1. (3.48)

Moreover, one has the following result.

Proposition 3.6 Let f be a k-monogenic function as defined in (3.48). The terms

x0f0, · · · , xk−1
0 fk−1 can be recovered by the following projective formula

xl
0fl = Plf with Pl =

(+∞)∑

q=l

(−1)l−q 1

l!(q − l)!
xq

0D
q. (3.49)

Proof. Using induction with respect to q it follows

xq
0D

q(xl
0fl) =

{
l(l − 1) · · · (l − q + 1)xl

0fl(z) + xl+q
0 Dq(fl(z)), q ≤ l

0, q > l.
(3.50)

First we prove that xl
0fl = Pl(f) for f = f0 + x0f1 + x2

0f2 + · · · + xk−1
0 fk−1. For l = 0,

using (3.50) we obtain

P0(f) :=
k−1∑
q=0

(−1)−q 1

q!
xq

0D
q(f)

=
k−1∑

l=0

k−1∑
q=0

(−1)q

q!
xq

0D
q(xl

0fl)

=
k−1∑

l=0

k−1∑

q=l

(−1)q

q!
xq

0D
q(xl

0fl)

=
k−1∑

l=0

k−1∑

q=l

(−1)q

q!
l(l − 1) · · · (l − q + 1)xl

0fl

= f −
k−1∑

l=1

k−1∑

q=l

(−1)q

q!
l(l − 1) · · · (l − q + 1)xl

0fl − · · ·+ (−1)k−1xk−1
0 fk−1

=
k−1∑

l=0

l∑
s=0

(
l

s

)
(−1)sxl

0fl

= f0,
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since
l∑

s=0

(−1)s
(

l
s

)
= 0. Therefore, using the same arguments as before the following relation

for any l (0 ≤ l ≤ k − 1) is true, i.e.,

Pl(f) =
k−1∑

q=l

(−1)l−q 1

l!(q − l)!
xq

0D
q(f)

=
k−1∑
s=0

k−1∑

q=l

(−1)l−q 1

l!(q − l)!
xq

0D
q(xs

0fs)

=
k−1∑

q=l

k−1∑
s=q

(−1)l−q 1

l!(q − l)!
s(s− 1) · · · (s− q + 1)xs

0fs

= xl
0fl +

l+1∑
p=0

(−1)p

(
l + 1

p

)
xl+1

0 fl+1 + · · ·+
k−1∑
p=0

(−1)p

(
k − 1

p

)
xk−1

0 fk−1

= xl
0fl. ¤

As a consequence of the Almansi type decomposition (3.48) one again has a Taylor-

-Almansi series representation for this class of k-monogenic functions involving the mono-

genic Fueter polynomials. Following, e.g. [11, 12], each entire k-monogenic function has

the following Taylor-Almansi series representation

f(z) =
+∞∑

|m|=0

k−1∑
j=0

xj
0Vm(z)am,j, am,j =

∂|m|

∂xm
fj (3.51)

where Vm(z) := m!Pm(z) and Pm(z) is given in (1.8).

Next a Cauchy estimate for the Taylor-Almansi coefficients am,j in series expansion

(3.51) for k-monogenic functions is established.

Proposition 3.7 Consider f to be an entire k-monogenic function with series expansion

given by (3.51). Then

‖am,j‖ ≤ n(n + 1) · · · (n + |m| − 1)

m!r|m|
M(r, fj)

≤ n(n + 1) · · · (n + |m| − 1)

m!r|m|

k−1∑

q=l

1

l!(q − l)!
rq−lM(r,Dqf). (3.52)

Proof. Applying the classical Cauchy integral formula (Theorem 1.5) for 1-monogenic

functions on the monogenic component functions fl (l = 0, . . . , k − 1), one obtains:
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‖am,j‖ =

∥∥∥∥
∂|m|

∂xm
fj

∥∥∥∥ ≤
n(n + 1) · · · (n + |m| − 1)

m!r|m|
M(r, fj). (3.53)

Relying on the projection formula (3.49), it yields

M(r, fl) ≤
k−1∑

q=l

1

l!(q − l)!
M(r, xq−l

0 Dqf)

≤
k−1∑

q=l

1

l!(q − l)!
M(r, rq−lDqf)

≤
k−1∑

q=l

1

l!(q − l)!
rq−lM(r,Dqf).

¤

3.3 Order of growth of polymonogenic functions

In this section we restrict mainly to treat the iterated Dirac equation in detail. The other

function class can be treated rather analogously.

To analyze the growth behavior of functions belonging to these classes it is impor-

tant to mention that the maximum principle (see Theorem 1.7) is only valid in its strict

form for special subclasses. These classes are 1-monogenic (k = 1) and for k = 2 the

solutions of the iterated Dirac operator, i.e. for harmonic functions. For the other

cases k ≥ 3 a strict maximum principle does not exist. Take for instance the function

f(x1, x2, x3) = 1 − x2
1 − x2

2 − x2
3. This is 3-monogenic, but ‖f(0)‖ = 1 at the origin and

‖f(x)‖ = 0 for all ‖x‖ = 1.

In what follows, by

M(r, f) := max
‖x‖=r

{‖f(x)‖}

is denoted the maximum modulus of f on the boundary of the ball of radius r and by

M(r, f) := max
‖x‖≤r

{‖f(x)‖}
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its maximum modulus of f on the whole closed ball. When no ambiguity occurs we denote

M(r) := M(r, f) and also M(r) := M(r, f).

However one still obtains a number of analogous properties for the function M(r, f)

and M(r, f), as in the classical complex case (see [37]).

Proposition 3.8 Let f be a non-constant left (right) entire k-monogenic function. Then

the functions M(r, f) and M(r, f) are continuous functions.

Proof. Let us prove that M(r, f) := max
‖x‖=r

{‖f(x)‖} is continuous. From [13, p.48] we

express x :=
n∑

i=1

eixi by means of its spherical coordinates

x1 = r cos θ1

x2 = r sin θ1 cos θ2

... =
...

xn = r sin θ1 sin θ2 · · · sin θn−1

for 0 < θ1, · · · , θn−2 ≤ π and 0 < θn−1 ≤ 2π. We have x = rw with r = ‖x‖ and

w :=
n∑

i=1

ei
xi

‖x‖ . Let

M(r, f) = ‖f(x0)‖ and M(R, f) = ‖f(x1)‖

for x0 := rw0 and x1 := Rw1. Then for |R− r| < δ it follows

M(R, f)−M(r, f) = ‖f(Rω1)‖ − ‖f(rω0)‖ < ‖f(Rω1)‖ − ‖f(rω1)‖ < ε

and also

M(r, f)−M(R, f) = ‖f(rω0)‖ − ‖f(Rω1)‖ < ‖f(rω0)‖ − ‖f(Rω0)‖ < ε.

Therefore, for |R− r| < δ it follows |M(R, f)−M(r, f)| < ε. ¤

We continue by generalizing some classical results on the asymptotic of holomorphic

polynomials to the context of polynomials that are in the kernel of iterated Dirac or

iterated generalized Cauchy-Riemann operators.
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Theorem 3.1 Let

P (x) =
N∑

|m|=0

k−1∑
j=0

xjVm(x)am,j,


resp. P (z) =

N∑

|m|=0

k−1∑
j=0

xj
0Vm(z)am,j




be a k-monogenic polynomial of degree N + k − 1 with am,j ∈ Cln. Then for arbitrary

ε > 0 there exists an r0 > 0 such that for all ‖x‖ = r > r0

‖P (x)‖ ≤
(

k(n + N + k − 1)!

n!N !
+ ε

)
‖aN,j∗‖rN+k−1 (3.54)

where N is a multi-index and j∗ ∈ {0, 1, . . . , k − 1} such that |N| + j∗ = N + k − 1 and

‖aN,j∗‖ ≥ ‖am,j‖ for all multi-indices m and j satisfying |m|+ j = N + k − 1.

Proof. The estimates ‖Vm(x)‖ ≤ ‖x‖|m| leads to

‖P (x)‖ ≤
N∑

|m|=0

k−1∑
j=0

‖x‖|m|+j‖am,j‖

≤ ‖aN,j∗‖‖x‖N+k−1

( ∑

|m|+j=N+k−1

1 +
N+k−2∑

|m|+j=0

‖am,j‖
‖aN,j∗‖‖x‖

|m|+j−(N+k−1)

)

≤ ‖aN,j∗‖‖x‖N+k−1

(
k(n + N + k − 1)!

n!N !
+ rN+k−2(x)

)
,

where

rN+k−2(x) =
∑

|m|+j≤N+k−2

‖am,j‖
‖aN,j∗‖‖x‖

|m|+j−(N+k−1).

For a sufficiently large r0 > 0 it follows

|rN+k−2(x)| < ε, ∀‖x‖ > r0.

Therefore, for all ‖x‖ > r0 it holds

‖P (x)‖ ≤
(

k(n + N + k − 1)!

n!N !
+ ε

)
‖aN,j∗‖rN+k−1.

¤

The following theorem is a generalization of the classical Liouville theorem.
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Theorem 3.2 Suppose that f : Rn → Cln (resp. f : Rn+1 → Cln) is an entire k-

-monogenic function given in the Almasi type decomposition form

f(x) = f0(x)+xf1(x)+· · ·+xk−1fk−1(x) (resp. f(z) = f0(z)+x0f1(z)+· · ·+xk−1
0 fk−1(z)).

If there exist a non-negative integers s ∈ N0 and Lj for j = 0, 1, ..., k − 1 such that

(i) lim inf
r→∞

M(r, fj)

rs−j
= Lj < ∞, (3.55)

or
(ii) lim inf

r→∞
M(r,Djf)

rs−j
= Lj < ∞,

(
resp. lim inf

r→∞
M(r,Djf)

rs−j
= Lj < ∞

)
(3.56)

then f is a polynomial function of total degree s.

Proof. Consider L = max
0≤j≤k−1

{Lj} and take an arbitrary sequence {ri}i∈N with ri →∞.

(i) By (3.55) holds
M(ri, fj)

rs−j
i

≤ L + 1, (3.57)

for all j = 0, ..., k − 1. Applying Cauchy’s inequality (3.34) (resp. (3.53)) on the

Taylor-Almansi coefficients al,j of the function f in combination with (3.57) leads

to

‖al,j‖ ≤ (n− 1)n · · · (n + |l| − 2)

l!
(L + 1)r

s−|l|−j
i

from which follows that al,j = 0 for all (l, j) with |l|+ j > s.

(ii) By (3.56) holds

M(ri,Djf)

rs−j
i

≤ L + 1,

(
resp.

M(ri, D
jf)

rs−j
i

≤ L + 1

)
(3.58)

for all j = 0, ..., k − 1.

Using Proposition 3.4 (resp. Proposition 3.7) and (3.58) leads to

‖al,j‖ ≤ (L + 1)
(n− 1)n · · · (n + |l| − 2)

l!

k−1∑
q=j

[ q
2
]∑

i=0

‖γjqi‖rs−j−|l|
i

α(q, j, i, n)

(
resp. ‖al,j‖ ≤ (L + 1)

n(n + 1) · · · (n + |l| − 1)

l!

k−1∑
q=j

r
s−j−|l|
i

j!(q − j)!
,

)

from which follows that al,j = 0 for all (l, j) with |l|+ j > s. ¤
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We recall from [37, pp.17] the definition of the plus-logarithm and some of its properties.

Definition 3.1 Let α ≥ 0. Then the plus-logarithm is defined by

log+(α) := max{0, log(α)}. (3.59)

Proposition 3.9 Let α, α1, α2, . . . , αs be non-negative real numbers. Then

i) log(α) ≤ log+(α);

ii) if α1 ≤ α2 then log+(α1) ≤ log+(α2);

iii) log(α) = log+(α)− log+
(

1
α

)
;

iv) |log(α)| = log+(α) + log+
(

1
α

)
;

v) log+

(
s∏

i=1

αi

)
≤

s∑
i=1

log+(αi);

vi) log+

(
s∑

i=1

αi

)
≤

s∑
i=1

log+(αi) + log(s).

In the same way as in the planar case (see [37]) one also may introduce the notion of

order of growth for the hypercomplex case (see also [1, 2]).

Definition 3.2 Let f : Rn → Cln (resp. f : Rn+1 → Cln) be a left (right) entire k-

-monogenic function. Then

ρ(f) := lim sup
r→∞

log+(log+M(r, f))

log(r)
, 0 ≤ ρ ≤ ∞ (3.60)

is called the order of growth of the function f . Furthermore,

λ(f) := lim inf
r→∞

log+(log+M(r, f))

log(r)
, 0 ≤ λ ≤ ∞ (3.61)

is defined as the lower order of growth of f .

If ρ = λ, then we say that f is a function of regular growth. If ρ > λ then f is called of

irregular growth.
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Let us discuss some particular examples of 1-monogenic functions which are solutions

of the generalized Cauchy-Riemann equation.

Example 3.1 Let P (z) be an arbitrary left 1-monogenic polynomial, i.e., there exist Clif-

ford numbers am ∈ Cln and N ∈ N0 such that P (z) =
N∑

|m|=0

Vm(z)am. From Theorem 3.1

it is known, for an arbitrarily small ε > 0 and for r sufficiently large, that

‖P (z)‖ ≤
(

(n− 1 + N)!

(n− 1)!N !
+ ε

)
‖aN‖rN ,

where N is the index of length N for which ‖aN‖ ≥ ‖am‖ for all |m| = N .

Hence, it follows with C(N) :=
(

(n−1+N)!
(n−1)!N !

+ ε
)
‖aN‖ that

lim
r→∞

log+(log+(M(r, P ))

log(r)
≤ lim

r→∞
log+(log+(C(N)rN))

log(r)
= 0.

Thus, all 1-monogenic polynomials satisfy ρ(P ) = λ(P ) = 0, like holomorphic polynomials

in the complex case.

In the classical case, the exponential function has growth order equal to 1. In the

case of 1-monogenic function the different generalized exponential function considered in

[13, 21, 31] turn out to have the same growth order.

Example 3.2 The monogenic plane wave function from [21]:

P (m, z) := (1 + im)e−x0ei<m,x>, (3.62)

where m is an arbitrary fixed vector from the (n − 1)-dimensional unit sphere Sn, is left

entire and satisfies

max
‖z‖=r

‖P (m, z)‖ = ‖1 + im‖er.

Hence, for r > 1 the following is obtained

lim
r→∞

log+(log+(M(r, P (m, z)))

log(r)
= lim

r→∞
log+(log+(‖1 + im‖) + r)

log(r)
= 1,

i.e., for all m ∈ Sn

ρ(P (m, z)) = λ(P (m, z)) = 1.
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Example 3.3 Also the previously introduced monogenic generalization from [13, p.117]

g(z) = exp(x0, x1, . . . , xn)

= ex1+···+xn

(
cos(x0

√
n)− 1√

n
(e1 + · · ·+ en) sin(x0

√
n)

)

satisfies ‖g(z)‖ = ex1+···+xn ≤ enr. On the other hand, there must be a positive real number

0 < c ≤ n with

max
‖z‖=r

‖g(z)‖ ≥ ecr.

The constant c needs to be positive, otherwise it would have max
‖z‖=r

ex1+···+xn = 1 which

would be wrong. Hence,

lim
r→∞

log+(log+(M(r, g))

log(r)
= lim

r→∞
log+(log+(ecr))

log(r)
= 1,

with 0 < c ≤ n, so that we again get ρ(g) = λ(g) = 1, analogously to the classical case

dealing with the complex analytic exponential function.

Example 3.4 Consider the four-dimensional quaternionic 3-fold periodic exponential func-

tion from [31], which has the representation

EXP (x) = e0Exp0(x) + e1Exp1(x) + e2Exp2(x) + e3Exp3(x),

with x := (x0, x1, x2, x3) and

Exp0(x) = ex0(cos(
x1√
3
) cos(

x2√
3
) cos(

x3√
3
)− sin(

x1√
3
) sin(

x2√
3
) sin(

x3√
3
)),

Exp1(x) = ex0

√
3

3
(sin(

x1√
3
) cos(

x2√
3
) cos(

x3√
3
) + cos(

x1√
3
) sin(

x2√
3
) sin(

x3√
3
)),

Exp2(x) = ex0

√
3

3
(cos(

x1√
3
) sin(

x2√
3
) cos(

x3√
3
) + sin(

x1√
3
) cos(

x2√
3
) sin(

x3√
3
)),

Exp3(x) = ex0

√
3

3
(sin(

x1√
3
) sin(

x2√
3
) cos(

x3√
3
) + cos(

x1√
3
) cos(

x2√
3
) sin(

x3√
3
)).

By a direct computation, one notices that

√
3

3
er ≤ max

‖x‖=r
‖EXP (x)‖ ≤ er,
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hence, once more

1 = lim
r→∞

log(log(
√

3
3

er))

log(r)
≤ lim

r→∞
log+(log+ M(r, EXP ))

log(r)
≤ lim

r→∞
log(log(er))

log(r)
= 1.

As in the classical case, a refinement in the same class of functions with the same

order can be classified by its type. Analogously to the complex case the definition of the

type of an entire k-monogenic function is presented by (see also [1]).

Definition 3.3 Let f be a left (right) entire k-monogenic function in Rn+1 of order ρ

with 0 < ρ < ∞. Then

τ(f) := lim sup
r→∞

log+(M(r, f))

rρ

is called the type of f. When no ambiguity occurs we denote τ(f) = τ.

Notice that the Examples 3.2, 3.4 are all of type τ = 1, while Example 3.3 has type

τ(g) = n.

In classical complex analysis, one has the result that the order of growth of a holomor-

phic function and that of its derivative is the same. For 1-monogenic functions a similar

result was established (see [10]).

Theorem 3.3 Let g be a left (right) entire 1-monogenic function in Rn+1, gi given by

gi := ∂
∂xi

g and Mi(r) := max
‖z‖=r

{‖gi(z)‖} where r > 0 and i ∈ {0, . . . , n}. Then

ρ(g) = ρ′(g) and λ(g) = λ′(g), (3.63)

where

ρ′(g) := lim sup
r→∞

log+(log+(M ′(r)))
log(r)

and λ′(g) := lim inf
r→∞

log+(log+(M ′(r)))
log(r)

,

for M ′(r) := max
i=0,1,...,n

{Mi(r)}.

In the more general context of entire k-monogenic functions (k > 1), the following

result is obtained:
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Theorem 3.4 Let g be an entire k-monogenic function. Consider gi denoted as the func-

tion gi := ∂
∂xi

g and Mi(r) := max
‖x‖≤r

{
‖gi(x)‖

}
where r > 0 and i ∈ {1, . . . , n}. Then

ρ(g) ≤ ρ′(g) and λ(g) ≤ λ′(g), (3.64)

and

ρ(gi) ≤ ρ∗(g) and λ(gi) ≤ λ∗(g), (3.65)

where

ρ′(g) := lim sup
r→∞

log+(log+(M′(r)))
log(r)

λ′(g) := lim inf
r→∞

log+(log+(M′(r)))
log(r)

,

and

ρ∗(g) := lim sup
r→∞

log+(log+(M̃(r)))

log(r)
λ∗(g) := lim inf

r→∞
log+(log+(M̃(r)))

log(r)
,

for M′(r) := max
1≤i≤n

{Mi(r)} and M̃(r) := max
0≤i≤k−1

{
max
‖x‖≤r

{
ri‖Dig(x)‖

}}
.

Proof. To prove (3.64), consider an arbitrary rectifiable curve from the origin to x, then

g(x) = g(0) +

1∫

0

n∑
i=1

xi gi(tx)dt. (3.66)

For x ∈ Rn with ‖x‖ ≤ r the following is true

‖g(x)‖ ≤ ‖g(0)‖+ r

n∑
i=1

Mi(r)

≤ ‖g(0)‖+ nrM′(r). (3.67)

Therefore, it follows

M(r) ≤ ‖g(0)‖+ nrM′(r).

Applying Proposition 3.9 ((v) and (vi)), we obtain

log+(M(r)) ≤ log+(‖g(0)‖) + log+(nr) + log+(M′(r)) + log(2),

which in turn leads to

ρ(g) ≤ ρ′(g) and λ(g) ≤ λ′(g). (3.68)
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Next let 0 < r < R < +∞. By Green’s integral formula (3.3) holds

gi(x) =
1

wn

k−1∑
j=0

∫

‖y−x‖=R−r

q
(j+1)
τ(i) (y − x)dσ(y)Djg(y). (3.69)

Applying the estimate (3.5) into (3.69) it follows

‖gi(x)‖ =
1

ωn

k−1∑
j=0

∫

‖y−x‖=R−r

|Cn,j+1|(n− 1− j)

(R− r)n+1−(j+1)
‖dσ(y)‖‖Djg(y)‖

≤
k−1∑
j=0

|Cn,j+1|(n− 1− j)

(R− r)−j
R−j max

‖y‖=R
{Rj‖Djg(y)‖}.

Note that |Cn,k| ≥ |Cn,j+1| for all j = 0, 1, . . . , k − 1, i.e.,

Mi(r) ≤ |Cn,k|(n− 1)
k−1∑
j=0

(
R− r

R

)j

M̃(R)

≤ |Cn,k|(n− 1)
k−1∑
j=0

(
R− r

R

)j

M̃(R). (3.70)

Inserting R = 2r into (3.70) leads to

Mi(r) ≤ |Cn,k|(n− 1)
k−1∑
j=0

(1

2

)j

M̃(2r)

= |Cn,k|a(n− 1)M̃(2r) with a =
2k − 1

2k−1
.

Thus, we have

log+Mi(r) ≤ log+ M̃(2r) + log+
(
|Cn,k|a(n− 1)

)
+ log 2.

Hence, for r > 1 the following estimate is obtained

log+ log+Mi(r)

log r
≤ log+ log+ M̃(2r)

log 2r

log 2r

log r

+
log+ log+(|Cn,k|a(n− 1))

log r
+

log 2

log r
.

Consequently, we have

ρ(gi) ≤ ρ∗(g) and λ(gi) ≤ λ∗(g).

¤
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Remark 3.1 Dealing with entire solutions h of the iterated generalized Cauchy-Riemann

equation the result is analogous. The only difference is given in the proof of

ρ(hi) ≤ ρ∗(h) and λ(hi) ≤ λ∗(h),

where hi :=
∂h

∂xi

for i = 0, · · · , n. For this case we use Green’s integral formula (3.42)

h(z) =
1

ωn+1

k−1∑
j=0

∫

‖ζ−z‖=R−r

(−1)jg
(j+1)
0 (ζ − z)dσ(ζ)(Djh)(ζ),

where

g
(k)
0 (z) = q0(z)

xk−1
0

(k − 1)!
. (3.71)

In the cases i 6= 0, one obtains

‖hi(z)‖ ≤ 1

ωn+1

k−1∑
j=0

∫

‖ζ−z‖=R−r

‖g(j+1)
τ(i) (ζ − z)‖‖dσ(ζ)‖‖(Djh)(ζ)‖

≤ 1

ωn+1

k−1∑
j=0

∫

‖ζ−z‖=R−r

n

‖ζ − z‖n+1

|ζ0 − z0|j
j!

‖dσ(ζ)‖R−j‖RjDjh(ζ)‖

≤
k−1∑
j=0

n

j!

(
R− r

R

)j

max
‖ζ‖=R

{Rj‖Djh(ζ)‖}

≤ n

k−1∑
j=0

(
R− r

R

)j

M̃(R).

In the remaining case, i = 0, the following holds

‖h0(z)‖ ≤ 1

ωn+1

∫

‖ζ−z‖=R−r

[
‖qτ(0)(ζ − z)‖‖dσ(ζ)‖‖h(ζ)‖

+
k−1∑
j=1

‖g(j+1)
τ(0) (ζ − z)‖‖dσ(ζ)‖‖Djh(ζ)‖

]

≤ nM̃(R) +
1

ωn+1

k−1∑
j=1

∫

‖ζ−z‖=R−r

[∥∥∥qτ(0)(ζ − z)(ζ0 − z0)
j

j!
+

q0(ζ − z)(ζ0 − z0)
j−1

(j − 1)!

∥∥∥

× ‖dσ(ζ)‖‖Djh(ζ)‖
]



Chapter 3. On the growth of polymonogenic functions 95

‖h0(z)‖ ≤ nM̃(R) +
k−1∑
j=1

[
n(R− r)j

(R− r)n+1j!
+

(R− r)j−1

(R− r)n(j − 1)!

]
(R− r)n+1

Rj
M̃(R)

= nM̃(R) +
k−1∑
j=1

1

j!

(
R− r

R

)j

(n + j)M̃(R)

≤ (n + k − 1)
k−1∑
j=0

(
R− r

R

)j

M̃(R).

By the same arguments one can prove that in the iterated generalized Cauchy-Riemann

operator case one obtains

ρ(hi) ≤ ρ∗(h) and λ(hi) ≤ λ∗(h).

3.4 The maximum term and central indices of poly-

monogenic functions

Both, for the class of null solutions of the iterated Dirac equation and of the iterated

generalized Cauchy-Riemann equation it makes sense to introduce the notion of maximum

term in the following way.

Let f be an entire k-monogenic function with the following Taylor-Almansi series

expansion

f(x) =
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j.

The norm of the function satisfies

‖f(x)‖ ≤
+∞∑

|m|=0

k−1∑
j=0

‖xj‖‖Vm(x)‖‖am,j‖

≤
+∞∑

|m|=0

k−1∑
j=0

‖x‖|m|+j‖am,j‖

≤
+∞∑
s=0

‖x‖s

(
n− 1 + s

s

)
ds

≤
+∞∑
s=0

‖x‖s(n− 1)sds, (3.72)
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where ds = max
|m|+j=s

{‖am,j‖}. If f is transcendental, then the series (3.72) converges. There-

fore, if ‖x‖ = r is fixed, then

lim
s→∞

ds‖x‖s(n− 1)s = 0,

i.e., there must exist a term in the sequence which is greater or equal than all the other

terms of the sequence. This term will be denoted as the maximum term in the following

way.

Definition 3.4 (Maximum term)

Let f : Rn → Cln (resp. f : Rn+1 → Cln) be an entire solution of Dkf = 0 (resp. of

Dkf = 0) for a positive integer k. Let

f(x) =
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j,

(resp. f(z) =
+∞∑

|m|=0

k−1∑
j=0

xj
0Vm(z)am,j, )

be its Taylor-Almansi series expansion. Then the maximum term in this series expansion

is defined by

µ(r, f) := max
|m|,j

{‖am,j‖r|m|+j
}
. (3.73)

In case of no ambiguity we denote µ(r, f) = µ(r) or simply µ.

Definition 3.5 (Central indices)

Let f : Rn → Cln (resp. f : Rn+1 → Cln) be an entire solution of Dkf = 0 (resp. of

Dkf = 0) for a positive integer k. Let

f(x) =
+∞∑

|m|=p

k−1∑
j=0

xjVm(x)am,j,

(resp. f(z) =
+∞∑

|m|=p

k−1∑
j=0

xj
0Vm(z)am,j).
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For r > 0 the index (or the indices) (m, j) with maximal length |m| + j with

µ(r) = ‖am,j‖r|m|+j is (are) called central index (indices) and denoted by

ν(r, f) := (m, j).

When no ambiguity occurs we denote ν(r, f) = ν(r) or simply ν. Denoting ν(0) as the

indices (m, 0) which satisfy |m| = p.

Remark 3.2 In the particular case k = 1 the definitions of the maximum term and

central indices coincide with those introduced in [10] for the 1-monogenic case.

In a similar way these notions can also be introduced for k-monogenic polynomials.

For a k-monogenic polynomial P (z) =
N∑

|m|=0

k−1∑
j=0

xjVm(z)am,j, the maximum term is given

by µ(r, P ) = ‖aN,i‖r|N|+i (where (N, i) is (are) the index (indices) of length N + k − 1

satisfying ‖aN,i‖ ≥ ‖am,j‖ for all |m| + j = N + k − 1) and ν(r, P ) = (N, i), provided r

is sufficiently large.

The case of transcendental functions is more complicated. This will be studied now.

We start by proving

Theorem 3.5 Assume that f : Rn+1 → Cln is an entire k-monogenic transcendental

function. Then

(i) µ(r) increases for r ≤ r0 strictly monotonically and lim
r→∞

µ(r) = ∞.

(ii) |ν(r)| increases monotonically and lim
r→∞

|ν(r)| = ∞. Furthermore, |ν(r)| is piecewise

constant.

Proof.

(i) Since f is not a constant function, there exists an r0 > 0 such that |ν(r)| ≥ 1 for

r ≥ r0. From the definition follows, that for R > r ≥ r0:

µ(r) = ‖aν(r)‖r|ν(r)| < ‖aν(r)‖R|ν(r)| ≤ ‖aν(R)‖R|ν(R)| = µ(R). (3.74)
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Thus, µ(r) is strictly monotonically increasing. Let l ∈ Nn
0 . Then

lim inf
r→∞

log(µ(r))

log(r)
≥ lim inf

r→∞
log(‖al,j‖r|l|)

log(r)

= lim inf
r→∞

log ‖al,j‖+ (|l|+ j) log(r)

log(r)

= lim inf
r→∞

(
log ‖al,j‖
log(r)

+ |l|+ j

)
= |l|+ j ∀l ∈ Nn

0 .

Since f is a transcendental function, it follows that

lim inf
r→∞

log(µ(r))

log(r)
= ∞, (3.75)

which implies that µ(r) tends to infinity for r →∞.

(ii) Next we prove that |ν(r)| is monotonically increasing. For r < R the following two

estimates are given:

‖aν(R)‖R|ν(R)| ≥ ‖aν(r)‖R|ν(r)|

‖aν(r)‖ r|ν(r)| ≥ ‖aν(R)‖r|ν(R)|

from which is inferred (
R

r

)|ν(R)|

≥
(

R

r

)|ν(r)|

. (3.76)

Thus, |ν(r)| is monotonically increasing. Taking ds := max
|l|+j=s

{‖al,j‖} it is known

that lim
s→∞

ds = 0. Hence, there exists a positive constant C such that

µ(r) = ‖aν(r)‖r|ν(r)| ≤ Cr|ν(r)| (3.77)

from which
log(µ(r))

log(r)
≤ log(C)

log(r)
+ |ν(r)|. (3.78)

Formula (3.75), i.e.,

lim
r→∞

log(µ(r))

log(r)
= ∞

means that lim
r→∞

|ν(r)| = ∞. Since ν(r) ∈ Nn+1
0 and |ν(r)| tends monotonically to

infinity, |ν(r)| has to be piecewise constant and has at most a countable number of

discontinuities. ¤
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Analogous to the classical case (see e.g. [37, p.34]) one proves the following result,

simply relying on Theorem 3.5.

Proposition 3.10 If f is a k-monogenic function, then

(i) |ν(r, f)| is right continuous,

(ii) µ(r, f) is continuous.

Theorem 3.6 Suppose that f : Rn → Cln is an entire k-monogenic transcendental func-

tion with the property that its first Taylor-Almansi coefficient a0,0 6= 0. Then

log(µ(r))− log ‖a0,0‖ =

r∫

0

|ν(t)|
t

dt. (3.79)

Proof. Assume, without loss of generality, that the first Taylor-Almansi coefficient

a0,0 = f(0) = 1. If 0 = t0 < t1 < t2 < · · · are the discontinuities of |ν(r)|, then for

tj < t < tj+1 we infer

µ(t) = ‖am∗,j∗‖t|m∗|+j∗ (3.80)

with a fixed (m∗, j∗) = ν(t). Furthermore,

µ′(t) = (|m∗|+ j∗)‖am∗,j∗‖t|m∗|+j∗−1 =
|ν(t)|

t
µ(t). (3.81)

Thus, in an interval [0, r] it holds with exception of a finite number of points

d

dt

{
log(µ(t))

}
=

µ′(t)
µ(t)

=
|ν(t)|

t
. (3.82)

Since µ(t) is a continuous function, we obtain

log(µ(r)) = log(µ(r))− log(µ(0)) =

r∫

0

d

dt

(
log(µ(t))

)
dt

=

r∫

0

|ν(t)|
t

dt.

¤
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3.5 Generalized Valiron type theorems for polymono-

genic functions

For the function class of entire k-monogenic functions the following Valiron type inequality

is established:

Theorem 3.7 Let f : Rn → Cln be an entire k-monogenic function, then for all r > 0

such that r < R

M(r) ≤ µ(r)
[
k|ν(R)|(1 + |ν(R)|)n−2 +

R(Rk − rk)

rk−1(R− r)2

]
. (3.83)

Proof. Since f is entire k-monogenic, it can be represented in the form

f(x) =
+∞∑

|l|=0

k−1∑
j=0

xjVl(x)al,j.

Taking ν(R) = (l∗, j∗), for 0 < r < R holds

M(r) ≤
+∞∑

|l|=0

k−1∑
j=0

‖al,j‖r|l|+j

=

|ν(R)|−j∗−1∑

|l|=0

k−1∑
j=0

‖al,j‖r|l|+j +
+∞∑

|l|=|ν(R)|−j∗

k−1∑
j=0

‖al,j‖r|l|+j

≤ k

|ν(R)|−j∗−1∑

|l|=0

µ(r) +
+∞∑

|l|=|ν(R)|−j∗

k−1∑
j=0

‖al,j‖r|l|+j. (3.84)

Notice that, we get

|ν(R)|−j∗−1∑

|l|=0

1 =
∑

|l|=0

1 +
∑

|l|=1

1 + · · ·+
∑

|l|=|ν(R)|−j∗−1

1

= 1 +
((n− 2) + 1)!

(n− 2)!1!
+ · · ·+ [(n− 2) + (|ν(R)| − j∗ − 1)]!

(n− 2)!(|ν(R)| − j∗ − 1)!

≤ (|ν(R)| − j∗)

[
[(n− 2) + |ν(R)| − j∗ − 1]!

(n− 2)!(|ν(R)| − j∗ − 1)!

]
.

This is obtained, relying on the inequality

(n− 2 + s)!

(n− 2)!s!
≤ (n− 2 + (s + 1))!

(n− 2)!(s + 1)!
, n ≥ 2.
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Furthermore, it follows

(|ν(R)| − j∗)

[
[(n− 2) + |ν(R)| − j∗ − 1]!

(n− 2)!(|ν(R)| − j∗ − 1)!

]

=
n−2∏

β=1

[
|ν(R)| − j∗ + (β − 1)

β

]

≤ (|ν(R)| − j∗)

[
(1 +

|ν(R)| − j∗

n− 2︸ ︷︷ ︸
≤1+|ν(R)|−j∗

)(1 +
|ν(R)| − j∗

n− 3︸ ︷︷ ︸
≤1+|ν(R)|−j∗

) · · · · · (1 +
|ν(R)| − j∗

1︸ ︷︷ ︸
=1+|ν(R)|−j∗

)

]

≤ |ν(R)|
[
(1 + |ν(R)|)n−2

]
.

Concluding

+∞∑

|l|=|ν(R)|−j∗

k−1∑
j=0

‖al,j‖r|l|+j ≤
+∞∑

|l|=|ν(R)|−j∗

k−1∑
j=0

‖al,j‖r|l|+j ‖aν(r)‖r|ν(r)|R|l|+j+|ν(R)|−j∗

‖aν(R)‖r|ν(R)|R|l|+j+|ν(R)|−j∗

= µ(r)
+∞∑

|l|=|ν(R)|−j∗

k−1∑
j=0

‖al,j‖R|l|+j

‖aν(R)‖R|ν(R)|
r|l|+jR|ν(R)|−j∗

r|ν(R)|R|l|+j−j∗

≤ µ(r)
+∞∑

|l|=|ν(R)|−j∗

k−1∑
j=0

( r

R

)|l|−|ν(R)|+j∗ rj−j∗

Rj−j∗

= µ(r)
+∞∑

|l|=|ν(R)|−j∗

( r

R

)|l|−|ν(R)|+j∗
(

R

r

)j∗ k−1∑
j=0

(
r

R

)j

≤ µ(r)
+∞∑

|l|=|ν(R)|−j∗

( r

R

)|l|−|ν(R)|+j∗
(

R

r

)k−1
Rk − rk

Rk−1(R− r)

≤ µ(r)
R(Rk − rk)

rk−1(R− r)2
.

Applying this inequalities into (3.84) leads to

M(r) ≤ µ(r)

[
k|ν(R)|(1 + |ν(R)|)n−2 +

R(Rk − rk)

rk−1(R− r)2

]
.

¤
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Remark 3.3 Within the context of entire solutions of the iterated generalized Cauchy-

-Riemann equation in Rn+1 the same result is obtained, simply replacing n by n + 1.

For the case k = 1, this inequality simplifies to

M(r) = M(r) ≤ µ(r)
[
|ν(R)|(1 + |ν(R)|)n−1 +

R

R− r

]
.

This is the Valiron inequality for 1-monogenic functions established in [10, Theorem 5.2].

For 1-monogenic functions we also obtain, applying Cauchy’s inequality, the following

direct estimate

µ(r) ≤ M(r)
n(n + 1) · · · (n− |ν(r)| − 1)

ν(r)!
, (3.85)

where ν(r) is one central index (see [10]). Furthermore, applying Stirling’s formula to

(3.85) ([17]), one has

µ(r) ≤ M(r)
n(n + 1) · · · (n + |ν(r)| − 1)

ν(r)!
≤ M(r)

(n− 1)!(
√

2π)n−1
|ν(r)|n−1

2 n
n
2
+|ν(r)|.

For polymonogenic functions also holds:

Proposition 3.11 For an entire k-monogenic function g : Rn → Cln (g : Rn+1 → Cln)

of order ρ and lower order λ, we set

ρ1 := lim sup
r→∞

log+(log+ µ(r))

log(r)
ρ2 := lim sup

r→∞

log+(|ν(r)|)
log(r)

(3.86)

and

λ1 := lim inf
r→∞

log+(log+ µ(r))

log(r)
λ2 := lim inf

r→∞
log+(|ν(r)|)

log(r)
. (3.87)

Then ρ ≤ ρ1 = ρ2 and λ ≤ λ1 = λ2.

Proof. Although the proof of ρ1 = ρ2 and λ1 = λ2 can be done in analogy to the complex

case presented in [37, Theorem 4.5], we present it here.

Let us start by proving ρ1 ≤ ρ2. Suppose that g is a transcendental k-monogenic

function with the following Taylor-Almansi series expansion

g(x) =
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j.
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Since this series is convergent, we have for a sufficient large r > 0 and c > 0

µ(r, g) = ‖aν(r)‖r|ν(r)| ≤ cr|ν(r)|.

Furthermore, it yields

log+(µ(r, g)) ≤ |ν(r)| log+(r) + log+(c).

Moreover, it follows

lim sup
r→∞

log+(log+(µ(r, g)))

log r
≤ lim sup

r→∞

log+(|ν(r)|) + log+(log+(r)) + log+(log+(c)) + log 2

log r

≤ lim sup
r→∞

log+(|ν(r)|)
log r

.

To prove that λ1 ≤ λ2, we use the same argument as in the proof of ρ1 ≤ ρ2. To prove

that ρ1 ≥ ρ2 we take 0 < r < R and infer

(
R

r

)|ν(r)|
=
‖aν(r)‖R|ν(r)|

‖aν(r)‖r|ν(r)| ≤
µ(R, g)

µ(r, g)
.

Moreover, we obtain

|ν(r)| log+

(
R

r

)
≤ log+(µ(R, g))− log+(µ(r, g)) ≤ log+(µ(R, g)).

Taking R = 2r, follows

log+(|ν(r)|) + log(log 2) ≤ log+(log+(µ(2r, g))).

Furthermore, yields

lim sup
r→∞

log+(|ν(r)|) + log(log 2)

log r
≤ lim sup

r→∞

log+(log+(µ(2r, g)))

log(r)

≤ lim sup
r→∞

log+(log+(µ(2r, g)))

log(2r)

log(2r)

log(r)
.

Hence, ρ1 ≥ ρ2. In a similar way we obtain λ1 ≥ λ2.

Now we give the proof of ρ ≤ ρ1. Without loss of generality, it is sufficient to consider

the case ρ1 < ∞, since the assertion is true in the remaining case where ρ1 = ∞.

Inserting in particular r = R/2 into Theorem 3.7, leads to

M(r) ≤ µ(r)[k|ν(2r)|[1 + |ν(2r)|]n−2 + 2(2k − 1)]. (3.88)
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In view of
log |ν(2r)|
log(2r)

≤ ρ2 + ε, ε > 0

which equivalently reads as

|ν(2r)| ≤ e(ρ2+ε) log(2r) = (2r)ρ2+ε,

one concludes that for a sufficiently large r there is an ε1 > 0 and a δ > 0 such that

M(r) ≤ µ(r)

(
|ν(2r)|n(k + ε1)

)

≤ µ(r)((2r)n(ρ2+ε)(k + ε1))

≤ µ(r)(2r)nρ2+nε(2r)δ.

Hence with ε2 := nε + δ it follows

M(r) ≤ µ(r)(2r)nρ2+ε2 . (3.89)

Therefore, we arrive to

log+(log+M(r))

log(r)
≤ log+ log+[µ(r)(2r)nρ2+ε2 ]

log(r)

≤ log+[log+ µ(r) + log+(2r)nρ2+ε2 ]

log(r)

≤ log+(log+(µ(r))) + log+(log+((2r)nρ2+ε2)) + log(2)

log(r)

≤ log+(log+ µ(r)) + log+((nρ2 + ε2) log+(2r)) + log(2)

log(r)
.

Furthermore, we have

lim sup
r→∞

log+(log+M(r))

log(r)
≤ lim sup

r→∞

log+(log+ µ(r))

log(r)
=: ρ1.

It remains to prove that λ ≤ λ2(= λ1). If λ2 = ∞, then the assertion is true. Assume

without loss of generality that λ2 < ∞. Then there exists a sufficiently large R such that

log+ |ν(R)|
log R

≤ λ2 + ε,

which equivalently reads

|ν(R)| ≤ Rλ2+ε. (3.90)
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Since the Taylor-Almansi series converges, follows for sufficiently large R and ε0 > 0

µ(R) = |aν(R)|R|ν(R)| ≤ RRλ2+ε0 . (3.91)

Inserting r = R/2 into Theorem 3.7 and applying (3.90) and (3.91) leads to

M(r) ≤ RRλ2+ε0 [Rnλ2+nε0(k + ε′)]

≤ RRλ2+ε0Rnλ2+nε0+δ

≤ RRλ2+ε0+δ′
= (2r)(2r)λ2+ε∗ ≤ rrλ2+ε1

with some appropriately chosen ε′, ε∗, ε1, δ, δ
′ > 0. Finally one gets

lim inf
r→∞

log+(log+M(r))

log(r)
≤ lim inf

r→∞
log+(rλ2+ε1 log r)

log(r)
=: λ2 = λ1.

¤

Remark 3.4 In the two-dimensional complex case the inequality (3.85) corresponds to

µ(r) ≤ M(r), allowing to establish the stronger result ρ = ρ1 = ρ2 and λ = λ1 = λ2, as

shown for instance in [37, Theorem 4.5].

Proposition 3.12 Let f : Rn → Cln ( resp. f : Rn+1 → Cln) be an entire k-monogenic

function with ρ1(f) = 0. Then, for all k, s ∈ N

lim
r→∞

|ν(r, f)|k
rs

= 0. (3.92)

Proof. As a consequence of Proposition 3.11

0 = ρ1(f) = ρ2(f) := lim sup
r→∞

log+(|ν(r, f)|)
log(r)

,

we obtain

log(|ν(r, f)|k) = k log(|ν(r, f)|) ≤ k log+(|ν(r, f)|) ≤ kε log(r) = log(rkε),

for all r sufficiently large and ε > 0 sufficiently small such that kε < 1. Therefore we get

|ν(r, f)|k
rs

≤ |ν(r, f)|k
r

≤ rkε

r
= rkε−1,
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since kε < 1. This concludes the proof. ¤

This proposition allows us to establish the following result.

Theorem 3.8 Let f : Rn → Cln ( resp. f : Rn+1 → Cln) be an entire k-monogenic

function with ρ2(f) < ∞. Then

lim sup
r→∞

logMi(r)

log µ(r)
≤ 1 (3.93)

where Mi(r) := max
‖x‖≤r

{∥∥∥ ∂
∂xi

f(x)
∥∥∥
}

for i = 2, . . . , n (resp. i = 1, . . . , n).

Proof. Since f is entire k-monogenic, we have

f(x) =
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j,


resp. f(z) =

+∞∑

|m|=0

k−1∑
j=0

xj
0Vm(z)am,j




in the whole space Rn (resp. Rn+1). Hence, so is

fi(x) :=
∂

∂xi

f(x) =
+∞∑

|m|=0

k−1∑
j=0

∂

∂xi

(
xjVm(x)

)
am,j

=
+∞∑

|m|=0

k−1∑
j=0

(
∂

∂xi

(xj)Vm(x) + xj m!

(m− τ(i))!
Vm−τ(i)(x)

)
am,j

(resp. fi(z) :=
∂

∂xi

f(z) =
+∞∑

|m|=0

k−1∑
j=0

xj
0

∂

∂xi

Vm(z)am,j

=
+∞∑

|m|=1

k−1∑
j=0

xj
0

m!

(m− τ(i))!
Vm−τ(i)(z)am,j, i 6= 0.)

Since

xj =





(−1)m

(
n∑

i=1

x2
i

)m

j = 2m, m ∈ N

(−1)m

(
n∑

i=1

x2
i

)m

x j = 2m + 1, m ∈ N,

then one gets

∂xj

∂xi

=




−2mxix

2m−2 j = 2m, m ∈ N
−2mxix

2m−1 + x2mei j = 2m + 1, m ∈ N,
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obtaining for ‖x‖ ≤ r:

‖fi(x)‖ ≤
+∞∑

|m|=1

k−1∑
j=0

(
j +

m!

(m− τ(i))!

)
r|m|+j−1‖am,j‖

≤
+∞∑

|m|=1

k−1∑
j=0

(j + |m|) r|m|+j−1‖am,j‖. (3.94)

In what follows µi is the maximum term of fi and, similarly, νi are the central indices

of fi. If

µ(r) = ‖am∗,j∗‖r|m∗|+j∗ ,

then (m∗, j∗) = ν(r) and concluding that

µi(r) ≤ ‖aν(r)‖r|ν(r)|−1|ν(r)| = µ(r)
1

r
|ν(r)|. (3.95)

In view of |ν(r)| = |νi(r)|+ 1 the following is obtained

lim sup
r→∞

log+(|νi(r)|+ 1)

log(r)
= lim sup

r→∞

log+ |ν(r)|
log(r)

=: ρ2.

Further, for ε > 0, yields

|νi(r)| ≤ |νi(r)|+ 1 ≤ rρ2+ε.

Applying the same arguments as in the proof of Proposition 3.11, using Theorem 3.7 as

well as inequality (3.95), for ε1 > 0 follows

Mi(r) ≤ µ(r)rn(ρ2+ε)+ε1−1,

because of |ν(r)| < rρ2+ε. Finally, putting δ1 := ε1 + nε this leads to

logMi(r) ≤ log µ(r) + [nρ2 + δ1 − 1] log r.

This permits to conclude that

lim sup
r→∞

logMi(r)

log µ(r)
≤ lim sup

r→∞

(
1 +

(
nρ2 + δ1 − 1

) log r

log µ(r)

)
= 1.

¤
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Remark 3.5 In the complex case, under the same hypothesis as given in Theorem 3.8

and in view of

µ(r) ≤ M(r) ≤ µ(r)rk (k ∈ N),

one obtains

log M ′(r) ∼ log M(r)

where M ′(r) = max
‖z‖=r

{‖g′(z)‖}. For more details, see [37, p.38].

3.6 Monogenic functions mapping the interior to the

exterior of the unit ball

In this section an estimate for a 1-monogenic Clifford valued function f , which maps the

interior of the unit ball B(0, 1) to the complement of the closed unit ball is obtained.

Applying Schwarz’s lemma it is possible to estimate the norm of Df by the norm of f in

the origin. Moreover, an estimate of f is obtained in the whole unit ball which describes

the growth behavior of the function f . For this a generalization of lemma 6.5 of [34] is

used, following an approach similar to the one given in [41].

Theorem 3.9 Let Ω ⊂ An+1 be a domain that contains the unit ball B(0, 1). Let f be a

left 1-monogenic function with the following Taylor series representation

f(z) =
+∞∑
s=0

∑

|m|=s

Vm(z)am

such that

lim sup
s→∞

s
√

(s + 1)nds = lim sup
s→∞

s
√

ds ≤ 1, (3.96)

where ds = max
|m|=s

{‖am‖}. If ‖f(z)‖ > 1 for ‖z‖ < 1, then

(i) ‖Df(0)‖ ≤ 4‖f(0)‖ log(‖f(0)‖) and
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(ii) if f is a Clifford group valued function, ‖w0‖ < 1 and ‖w‖ < 1 , then

‖f(w)‖ < (2n ‖f(w0)‖)
1+k
1−k ,

where k =
‖w − w0‖
‖1− w0w‖ .

Proof. Let us prove (i). Since f is left 1-monogenic in Ω, then f has the following series

expansion in B(0, 1)

f(z) = a0 +
n∑

i=1

ziaτ(i) +
+∞∑
s=2

∑

|m|=s

Vm(z)am, (3.97)

where am :=
1

m!

∂sf

∂xm1
1 ∂xm2

2 · · · ∂xmn
n

(0).

For t ∈ C we formally define a power series g whose coefficients are the moduli of the

Taylor coefficients of the function f , i.e.,

g(t) = ‖a0‖+
n∑

i=1

∥∥aτ(i)

∥∥ t +
+∞∑
s=2

∑

|m|=s

‖am‖ ts

s!
. (3.98)

As a consequence of condition (3.96) the power series g converges in |t| < 1.

Since a0 := f(0) and ‖f(0)‖ 6= 0, taking an appropriate branch of the complex loga-

rithm of g, we define h as

h(t) := log(g(t)) = u(t) + iv(t). (3.99)

The function h is holomorphic and has the following Taylor series expansion

h(t) = h0 + h1t + h2
t2

2!
+ ... (3.100)

where h0 = log(g(0)) = log(‖f(0)‖) > 0 since ‖f(0)‖ > 1. Now consider the complex

valued function ψ defined as

ψ(t) :=
h(t)− h0

h(t) + h0

. (3.101)

The function ψ has the following properties |ψ(t)|2 =
(u(t)− h0)

2 + v2(t)

(u(t) + h0)2 + v2(t)
< 1 for

|t| < 1 and ψ(0) = 0.
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Since ψ satisfies the hypothesis of Schwarz’s lemma (see [3, pp.135]), the following is

obtained

|ψ′(0)| =
∣∣∣∣

h1

2h0

∣∣∣∣ ≤ 1, (3.102)

where h0 = log(‖f(0)‖) and h1 =

∑n
i=1

∥∥aτ(i)

∥∥
‖f(0)‖ for aτ(i) =

∂f

∂xi

(0).

Since
(
D + D

)
f(z) |z=0= 2 ∂f

∂x0
(0) and f is left 1-monogenic, we have 2 ∂f

∂x0
(0) = Df(0).

From (3.102) we infer that

∥∥∥∥
1

2
Df(0)

∥∥∥∥ =

∥∥∥∥
∂f

∂x0

(0)

∥∥∥∥ ≤
n∑

i=1

∥∥∥∥
∂f

∂xi

(0)

∥∥∥∥ ≤ 2‖f(0)‖ log(‖f(0)‖). (3.103)

To prove (ii), we use the same functions defined in (3.98), (3.100) and (3.101) as well

as Schwarz’s lemma. Let z ∈ An+1 such that ‖z‖ = |t| = k. Then |ψ(t)| ≤ k and by

definition of ψ it follows ∣∣∣∣
h(t)− h0

h(t) + h0

∣∣∣∣ ≤ k. (3.104)

This implies that

|h(t)| − |h0| ≤ |h(t)− h0| ≤ k (|h(t)|+ |h0|), (3.105)

with h0 = h(0) this results in

|h(t)| ≤ |h(0)|1 + k

1− k
. (3.106)

Furthermore, one has

|g(t)| = |eh(t)| ≤ e|h(t)| = ‖f(0)‖ 1+k
1−k . (3.107)

Since the coefficients of the series expansion of g are non-negative, one gets

max
θ∈[0,2π[

∣∣g (|t|eiθ
)∣∣ = g (|t|) . (3.108)

Therefore, using (3.97), (3.98), (3.107) and (3.108) the following inequality is obtained

‖f(z)‖ ≤ g (|t|) = max
θ∈[0,2π[

|g (t)| ≤ ‖f(0)‖ 1+k
1−k . (3.109)

Define the function F (z) by

F (z) := 2n(1 + w0z)‖1 + w0z‖−(n+1)f((z + w0)(1 + w0z)−1). (3.110)
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Then, from Theorem 1.3 it follows that the function F is again left monogenic in B(0, 1),

since the Möbius transformation that we applied is an endomorphism of the B(0, 1).

Moreover,

‖F (z)‖ = 2n‖1 + w0z‖−n‖f((z + w0)(1 + w0z)−1)‖ > 1 (3.111)

for ‖z‖ < 1 and ‖w0‖ < 1, since also F maps the interior to the exterior of B(0, 1). The

previous inequality holds in view of

‖f((z + w0)(1 + w0z)−1)‖ > 1

and ‖1 + w0z‖ < 2.

By applying (3.109) we obtain the inequality

‖F (z)‖ ≤ ‖F (0)‖ 1+k
1−k = (2n ‖f(w0)‖)

1+k
1−k . (3.112)

Therefore, from (3.111) it follows that

‖F (z)‖ ≥
∥∥f((z + w0)(1 + w0z)−1)

∥∥ (3.113)

and together with (3.112) we obtain

‖f(w)‖ ≤ (2n ‖f(w0)‖)
1+k
1−k ,

where

w = (z + w0)(1 + w0z)−1.

Consequently,

z = (w − w∗
0)(1− w∗

0w)−1 = (w − w0)(1− w0w)−1

since w0 is a paravector w∗
0 = w0. Moreover, one has

‖w − w0‖
‖1− w0w‖ = ‖z‖ = k. ¤
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Chapter 4

Asymptotic growth of
polymonogenic function

In this chapter we analyze the behavior of growth of entire polymonogenic Clifford algebra

valued functions.

In the first part we establish some preparatory results which will be used in the follow-

ing sections. Some estimates between the maximum modulus, the maximum term and the

norm of the central index are obtained. In the last two sections we establish a relation on

the asymptotic behavior between solutions of iterated generalized Cauchy-Riemann and

iterated Euler operators. We also obtain a relation on the asymptotic behavior between

solutions of iterated Dirac and polynomials in the Euler operator and in the Gamma

operator.

4.1 Some fundamental results

In this section we denote the standard Euler operator in Rn (and in Rn+1) by

E :=
n∑

i=1

xi
∂

∂xi

(E :=
n∑

i=0

xi
∂

∂xi

).

The Gamma operator in Rn (see e.g. [21]) is given by

Γ :=
n∑

i,j=1,i<j

(xi
∂

∂xj

− xj
∂

∂xi

)eiej. (4.1)

Notice that

Γ = xD + E,

113
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when working in the vector formalism. These operators generalize the real part and

imaginary part of the complex differential operator z d
dz

to higher dimensional equations.

Under this point of view it seems natural to regard polynomial expressions in E and

Γ as generalizations of iterations of the z d
dz

operator.

To establish a relation between the asymptotic behavior of the maximum term of a

k-monogenic function and that of their polynomial expressions in terms of E and Γ it

turns out to be convenient to prove first some preparatory propositions.

For simplicity we use the notation ν := ν(r, g) for the central index of an entire

k-monogenic function g if no ambiguity occurs. Let us assume that ν = (m∗, j∗).

Proposition 4.1 Let g be a transcendental entire k-monogenic function in Rn (in Rn+1).

Then

M(r, g) ≤ µ(r)L(r), (4.2)

where

L(r) :=

[
A(n,m∗) +

∑
|m|=|m∗|

(
j∗−1∑
j=0

‖am,j‖
‖am∗,j∗‖r

j−j∗ +
k−1∑

j=j∗+1

‖am,j‖
‖am∗,j∗‖r

j−j∗

)

+
|m∗|−1∑
|m|=0

k−1∑
j=0

‖am,j‖
‖am∗,j∗‖r

|m|+j−|ν| +
+∞∑

|m|=|m∗|+1

k−1∑
j=0

‖am,j‖
‖am∗,j∗‖r

|m|+j−|ν|
]
,

and A(n,m∗) := (n−2+|m∗|)!
(n−2)!|m∗|! (resp. A(n,m∗) := (n−1+|m∗|)!

(n−1)!|m∗|! ).

Proof. Since g is a transcendental entire k-monogenic function it has a Taylor-Almansi

expansion of the form

g(x) =
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j,

(see also (3.51)). For ‖x‖ ≤ r we have

‖g(x)‖ ≤
+∞∑

|m|=0

k−1∑
j=0

rj+|m|‖am,j‖.
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By the same reason, there exists (m∗, j∗) ∈ Nn
0 (resp. (m∗, j∗) ∈ Nn+1

0 ) such that

am∗,j∗ 6= 0. Then

‖g(x)‖ ≤ ‖am∗,j∗‖r|m∗|+j∗

[
∑

|m|=|m∗|
1 +

∑
|m|=|m∗|

j∗−1∑
j=0

‖am,j‖
‖am∗,j∗‖r

j−j∗

+
∑

|m|=|m∗|

k−1∑
j=j∗+1

‖am,j‖
‖am∗,j∗‖r

j−j∗ +
|m∗|−1∑
|m|=0

k−1∑
j=0

‖am,j‖
‖am∗,j∗‖r

|m|+j−|m∗|−j∗

+
+∞∑

|m|=|m∗|+1

k−1∑
j=0

‖am,j‖
‖am∗,j∗‖r

|m|+j−|m∗|−j∗

]
.

In view of
∑

|m|=|m∗|
1 ≤ A(n,m∗), and if we take in particular the central index as

(m∗, j∗) = ν then the maximum term is given by µ(r) = ‖am∗,j∗‖r|m∗|+j∗ , one arrives

at the stated result. ¤

In order to proceed we recall the notion of logarithmic measure (see e.g. [37, 70]),

which shall be used later on.

Definition 4.1 We denote a set F to be of finite logarithmic measure if

∫

F

dr

r
< ∞.

The following proposition provides an estimate for the function L(r) of (4.2).

Proposition 4.2 Let g be a transcendental entire k-monogenic function in Rn, with the

following Taylor-Almansi series expansion

g(x) =
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j.

Let (Pk)k∈N be a sequence of real positive numbers satisfying

1 < P1 < P2 · · · and lim
k→∞

Pk = P < ∞.
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Then there exists a real r > 0 such that

‖am∗−m,j∗−j‖r|ν|−|m|−j

‖aν‖r|ν| ≤

|ν|∏
i=|ν|−|m|−j+1

Pi

P
|m|+j
|ν|

, |m|+ j = 1, · · · , |ν| (4.3)

‖am∗+m,j∗+j‖r|ν|+|m|+j

‖aν‖r|ν| <
P
|m|+j
|ν|

|ν|+|m|+j∏
i=|ν|+1

Pi

, |m|+ j = 1, 2, 3, . . .
(4.4)

where ν = (m∗, j∗) and µ(r) = ‖aν‖r|ν| are respectively the central index and maximum

term of g.

Proof. Consider

H(x) =
+∞∑

|m|=0

k−1∑
j=0

xjVm(x)am,j



|m|+j∏
i=1

Pi


 :=

+∞∑

|m|=0

k−1∑
j=0

xjVm(x)bm,j.

In view of Pi < P , we infer:

‖H(x)‖ ≤
+∞∑

|m|=0

k−1∑
j=0

‖x‖|m|+j‖am,j‖


|m|+j∏
i=1

Pi




≤
+∞∑

|m|=0

k−1∑
j=0

‖x‖|m|+j‖am,j‖P |m|+j

=
+∞∑

|m|=0

k−1∑
j=0

(‖x‖P )|m|+j‖am,j‖. (4.5)

For % := ‖x‖ > 0 we obtain

‖bm,j‖%|m|+j ≤ µ(%,H) = ‖bm∗,j∗‖%|m∗|+j∗ , |m|+ j = 0, 1, ..., |m∗|+ j∗

‖bm,j‖%|m|+j < µ(%,H) = ‖bm∗,j∗‖%|m∗|+j∗ , |m|+ j > |m∗|+ j∗.

Since ‖bm,j‖ = ‖am,j‖
(
|m|+j∏
i=1

Pi

)
, we obtain

‖am,j‖


|m|+j∏
i=1

Pi


 %|m|+j ≤ ‖am∗,j∗‖



|m∗|+j∗∏

i=1

Pi


 %|m

∗|+j∗ , |m|+ j = 0, 1, ..., |m∗|+ j∗

(4.6)
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and also

‖am,j‖


|m|+j∏
i=1

Pi


 %|m|+j < ‖am∗,j∗‖



|m∗|+j∗∏

i=1

Pi


 %|m

∗|+j∗ , |m|+ j > |m∗|+ j∗. (4.7)

Furthermore, for (4.6) and (4.7) we have

‖am,j‖%|m|+j

‖am∗,j∗‖%|m∗|+j∗ ≤
|m∗|+j∗∏

i=1+|m|+j

Pi, |m|+ j = 0, 1, ..., |m∗|+ j∗

‖am,j‖%|m|+j

‖am∗,j∗‖%|m∗|+j∗ <
1

|m|+j∏
i=1+|m∗|+j∗

Pi

, |m|+ j > |m∗|+ j∗.

Taking m := m∗ − l, j := j∗ − l for the first inequality and m := m∗ + l, j := j∗ + l for

the second inequality (l ∈ Nn
0 and l ∈ N) we have for ν := ν(%,H)

‖am∗−l,j∗−l‖%|m∗−l|+j∗−l

‖am∗,j∗‖%|m∗|+j∗ ≤
|l|+l∏
i=1

P|ν|−i+1, |l|+ l = 0, 1, ..., |ν|

(4.8)

‖am∗+l,j∗+l‖%|m∗+l|+j∗+l

‖am∗,j∗‖%|m∗|+j∗ <
1

|l|+l∏
i=1

P|ν|+i

, |l|+ l = 0, 1, ....

For each % > 0 we define r := %P|ν(%,H)| > 0. Using (4.8) we obtain

‖am∗−l,j∗−l‖r|m∗−l|+j∗−l

‖am∗,j∗‖r|m∗|+j∗ ≤

|l|+l∏
i=1

P|ν|−i+1

P
|l|+l
|ν|

≤ 1, |l|+ l = 0, 1, ..., |ν|

(4.9)

‖am∗+l,j∗+l‖r|m∗+l|+j∗+l

‖am∗,j∗‖r|m∗|+j∗ <
P
|l|+l
|ν|

|l|+l∏
i=1

P|ν|+i

< 1, |l|+ l = 0, 1, ....

The inequalities (4.9) imply that

‖am∗−l,j∗−l‖r|m∗−l|+j∗−l ≤ ‖am∗,j∗‖r|m∗|+j∗ , |l|+ l = 0, 1, ..., |ν|
(4.10)

‖am∗+l,j∗+l‖r|m∗+l|+j∗+l < ‖am∗,j∗‖r|m∗|+j∗ , |l|+ l = 0, 1, ...
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which means that ‖am∗,j∗‖r|m∗|+j∗ is the maximum term of g and ν := (m∗, j∗) its central

index.

The inequalities (4.3) and (4.4) are valid for each of those r := %P|ν(%,H)|, for % > 0.

Next we prove that (4.3) and (4.4) are valid for all r except for a set of finite logarithmic

measure.

Let %1, %2, ... be the discontinuity points of |ν(%,H)|. Consider |ν(%,H)| to be the

constant νm for %m ≤ % ≤ %m+1.

The inequalities (4.8) are satisfied as well as (4.9) for all r with

Sm := %mPνm ≤ r ≤ %m+1Pνm =: S1
m. (4.11)

For the case where r belongs to the interval [S1
m, Sm+1[ it can happen that the inequalities

are not true. For that reason we define a set F :=
∞⋃

m=1

[S1
m, Sm+1[. A calculation gives

∫

F

dr

r
=

∞∑
m=1

log

(
Sm+1

S1
m

)

=
∞∑

m=1

log

(
%m+1Pνm+1

%m+1Pνm

)

= lim
k→∞

log(Pνk+1
)− log(Pν1)

= log(P )− log(Pν1) < ∞,

and we may conclude that F has finite logarithmic measure. ¤

Remark 4.1 The proof is analogous to the classical one, see Proposition 21.1 from [37,

pp.189]. The auxiliary function H(z), given in [37] is obtained by taking k = 1.

The proof can directly be adapted to the case of solutions of the iterated generalized

Cauchy-Riemann equation.

For our purpose we also need an asymptotic lower estimate of |ν(r)|.
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Proposition 4.3 Let

L∗(r) :=
+∞∑

|m|=0

k−1∑
j=0

‖am∗−m,j∗−j‖r|ν|−|m|−j

‖aν‖r|ν| ,

(m, j) 6= (m∗, j∗)

then for ε > 0

L∗(r) < |ν(r)| 12+ε, (4.12)

where r 6∈ F and F is a set of finite logarithmic measure.

Proof. We consider

L(r) := A(n,m∗) +
∑

|m|=|m∗|

(
j∗−1∑

l=0

‖am,l‖
‖am∗,j∗‖rl−j∗ +

k−1∑

l=j∗+1

‖am,l‖
‖am∗,j∗‖rl−j∗

)

+

|m∗|−1∑

|w|=0

k−1∑

l=0

‖aw,l‖
‖am∗,j∗‖r|w|+l−|ν| +

+∞∑

|w|=|m∗|+1

k−1∑

l=0

‖aw,l‖
‖am∗,j∗‖r|w|+l−|ν|.

(4.13)

Now we take a suitable substitutions of w, l and apply inequalities (4.3) and (4.4).

Substituting l := j∗ + j in the following sum, one obtains

∑

|m|=|m∗|

j∗−1∑

l=0

‖am,l‖
‖am∗,j∗‖rl−j∗ ≤

∑

|m|=|m∗|

j∗∑
j=1

‖am,j∗−j‖
‖am∗,j∗‖ r−(j−|m|)

≤
∑

|m|=|m∗|

|m|∑
j=1

|ν|∏
i=|ν|−j+|m|+1

Pi

P
j−|m|
|ν|

+
∑

|m|=|m∗|

j∗∑

j=|m|+1

P
j−|m|
|ν|
|ν|∏

i=|ν|−j+|m|+1

Pi

. (4.14)

Furthermore, after substituting l := j∗ − j, one gets

∑

|m|=|m∗|

k−1∑

l=j∗+1

‖am,l‖
‖am∗,j∗‖rl−j∗ =

∑

|m|=|m∗|

k−1−j∗∑
j=1

‖am,j∗+j‖
‖am∗,j∗‖ rj+|m|

<
∑

|m|=|m∗|

k−1−j∗∑
j=1

P
j+|m|
|ν|

|ν|+j+|m|∏
i=|ν|+1

Pi

. (4.15)
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If we replace w := m∗ −m and l := j∗ − j, then

|m∗|−1∑

|w|=0

j∗∑

l=0

‖aw,l‖
‖am∗,j∗‖r|w|+l−|ν| =

|m∗|∑

|m|=1

j∗∑
j=0

‖am∗−m,j∗−j‖
‖am∗,j∗‖

r|ν|−(|m|+j)

r|ν|

≤
|m∗|∑

|m|=1

j∗∑
j=0

|ν|∏
i=|ν|−(|m|+j)+1

Pi

P
|m|+j
|ν|

. (4.16)

For the next sum we replace w := m∗ −m and l := j∗ − j

+∞∑

|w|=|m∗|−1

k−1∑

l=j∗

‖aw,l‖
‖am∗,j∗‖r|w|+l−|ν| =

+∞∑

|m|=1

k−1−j∗∑
j=0

‖am∗+m,j∗+j‖
‖am∗,j∗‖

r|ν|+(|m|+j)

r|ν|

<

+∞∑

|m|=1

k−1−j∗∑
j=0

P
|m|+j
|ν|

|ν|+|m|+j∏
i=|ν|+1

Pi

. (4.17)

For the other terms of (4.13) we substitute w := m∗ −m, l := j∗ + j and w := m∗ + m,

l := j∗ − j, respectively

|m∗|−1∑

|w|=0

k−1∑

l=j∗

‖aw,l‖
‖am∗,j∗‖r|w|+l−|ν| =

|m∗|∑

|m|=1

k−1−j∗∑
j=0

‖am∗−m,j∗+j‖
‖am∗,j∗‖

r|ν|−(|m|−j)

r|ν|

<

|m∗|∑

|m|=1

min{k−1−j∗,|m|}∑
j=0

|ν|∏
i=|ν|−|m|+j+1

Pi

P
|m|−j
|ν|

+

|m∗|∑

|m|=1

k−1−j∗∑

j=min{k−1−j∗,|m|}+1

P
|m|−j
|ν|

|ν|+|m|−j∏
i=|ν|+1

Pi

(4.18)

and also

+∞∑

|w|=|m∗|+1

j∗∑

l=0

‖aw,l‖
‖am∗,j∗‖r|w|+l−|ν| =

+∞∑

|m|=1

j∗∑
j=0

‖am∗+m,j∗−j‖
‖am∗,j∗‖

r|ν|+|m|−j

r|ν|

<

+∞∑

|m|=1

min{j∗,|m|}∑
j=0

P
|m|−j
|ν|

|ν|+|m|−j∏
i=|ν|+1

Pi

+
+∞∑

|m|=1

j∗∑

j=min{j∗,|m|}+1

|ν|∏
i=|ν|−|m|+j+1

Pi

P
|m|−j
|ν|

. (4.19)
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To proceed we consider

log(P1) := 1, log(Pi) := 1 +
1

1α
+

1

2α
+

1

3α
+ ... +

1

(i− 1)α
(4.20)

for i = 2, 3, . . . and α = 1 + δ, δ > 0. Taking m ∈ N and log(Pi) (i ∈ N) as defined in

(4.20), we get the following:

log




m−1∏
i=1

P|ν|−i

Pm−1
|ν|


 =

m−1∑
s=1

log(P|ν|−s)− (m− 1) log(P|ν|)

=
m−1∑
s=1


1 +

|ν|−s−1∑
κ=1

1

κα


− (m− 1)


1 +

|ν|−1∑
κ=1

1

κα




= −
m−1∑
s=1

(m− s)
1

(|ν| − s)α

<
−m(m− 1)

2(|ν|+ m− 1)α
, (4.21)

and also

log




Pm
|ν|

m∏
i=1

P|ν|+i


 = m log(P|ν|)−

m∑
s=1

log(P|ν|+s)

= m


1 +

|ν|−1∑
κ=1

1

κα


−

m∑
s=1


1 +

|ν|+s−1∑
κ=1

1

κα




= −
m−1∑
s=0

(m− s)
1

(|ν|+ s)α

<
−m2

2(|ν|+ m)α
. (4.22)
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Applying the inequalities (4.21) and (4.22) in (4.14)-(4.19), one obtains

∑
|m|=|m∗|

(
j∗−1∑
l=0

‖am,l‖
‖am∗,j∗‖r

l−j∗ +
k−1∑

l=j∗+1

‖am,l‖
‖am∗,j∗‖r

l−j∗

)
+
|m∗|−1∑
|w|=0

k−1∑
l=0

‖aw,l‖
‖am∗,j∗‖r

|w|+l−|ν|

+
+∞∑

|w|=|m∗|+1

k−1∑
l=0

‖aw,l‖
‖am∗,j∗‖r

|w|+l−|ν|

≤ ∑
|m|=|m∗|

|m|∑
j=1

e
−(j−|m|)(j−|m|−1)
2(|ν|+j−|m|−1)α +

∑
|m|=|m∗|

j∗∑
j=|m|+1

e
−(j−|m|)2

2(|ν|+j−|m|)α +
∑

|m|=|m∗|

k−1−j∗∑
j=1

e
−(j+|m|)2

2(|ν|+j+|m|)α

+
|m∗|∑
|m|=1

j∗∑
j=1

e
−(|m|+j)(|m|+j−1)
2(|ν|+|m|+j−1)α +

+∞∑
|m|=1

k−1−j∗∑
j=1

e
−(|m|+j)2

2(|ν|+|m|+j)α +
|m∗|∑
|m|=1

min{k−1−j∗,|m|}∑
j=0

e
−(|m|−j)(|m|−j−1)
2(|ν|+|m|−j−1)α

+
|m∗|∑
|m|=1

k−1−j∗∑
j=min{k−1−j∗,|m|}+1

e
−(|m|−j)2

2(|ν|+|m|−j)α +
+∞∑
|m|=1

min{j∗,|m|}∑
j=0

e
−(|m|−j)2

2(|ν|+|m|−j)α

+
+∞∑
|m|=1

j∗∑
j=min{j∗,|m|}+1

e
−(|m|−j)(|m|−j−1)
2(|ν|+|m|−j−1)α .

Moreover, one obtains the following upper estimate for L(r).

L(r) ≤ A(n,m∗) + 5
+∞∑
s=1

e
−s(s−1)
2(|ν|+s)α + 5

+∞∑
s=0

e
−s2

2(|ν|+s−1)α

≤ A(n,m∗) + 10 + 10
+∞∑
s=1

e
−s2

2(|ν|+s)α . (4.23)

Furthermore, one has

L(r) ≤ A(n,m∗) + 10 + 10

+∞∫

0

e
−x2

2(|ν|+x)α dx

≤ A(n,m∗) + 10 + 10




|ν|∫

0

e
−x2

2(2|ν|)α dx +

+∞∫

|ν|

e
−x2−α

21+α dx


 .
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Using that α < 2, then we obtain by applying the substitution t2 = x2

21+α|ν|α

|ν|∫

0

e
−x2

2(2|ν|)α dx ≤
√

21+α|ν|α
+∞∫

0

e−t2dt

=
√

21+α|ν|α
√

π

2

and

+∞∫

|ν|

e
−x2−α

21+α dx ≤ (2−1−α)
1

α−2 Γ

(
1 +

1

2− α

)
,

where Γ(·) is the Gamma function.

Summarizing, one has

L(r) ≤ A(n,m∗) + 10

(
C +

√
π

2

√
21+α|ν|α2

)

for A(n,m∗) = (n−1+|m∗|)!
(n−1)!(|m∗|) and C := Γ

(
1 + 1

2−α

) (
2−(1+α)

) 1
α−2 .

Therefore,

L∗(r) ≤ C0|ν|α2

for C0 a positive constant. Taking α := 1 + δ for δ < 2ε, ε > 0 we arrive at the desired

inequality. ¤

One also obtains the following asymptotic upper bound estimate of |ν(r)|.

Proposition 4.4 For a given ε > 0 we have

|ν(r)| < (log µ(r))1+ε , (4.24)

for r 6∈ F, where F denotes a set of finite logarithmic measure.

Proof. In view of Proposition 4.2 and taking ν := (m∗, j∗), we obtain

‖am∗−m,j∗−j‖r|ν|−|m|−j

‖aν‖r|ν| ≤
∏|ν|

i=|ν|−|m|−j+1 Pi

P
|m|+j
|ν|

, |m|+ j = 1, · · · , |ν|.
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For m = m∗ and j = j∗, it follows that

‖a0,0‖r0

‖am∗,j∗‖r|m∗|+j∗ ≤
∏|ν|

i=1 Pi

P
|ν|
|ν|

,

where

µ(r) ≥ ‖a0,0‖
P
|ν|
|ν|∏|ν|

i=1 Pi

.

Next we use the same arguments as in [37, p.193]. Applying inequality (4.22) for

‖a0,0‖ 6= 0, one gets

log+

(
µ(r)

‖a0,0‖
)

≥ log

(
P
|ν|
|ν|∏|ν|

i=1 Pi

)
=

|ν|−1∑
i=1

i

iα
. (4.25)

Furthermore, one obtains

log+

(
µ(r)

‖a0,0‖
)

≥
|ν|∫

1

x1−αdx =
|ν|2−α

2− α
− 1

2− α
. (4.26)

Taking α := 1 + ε1, for 0 < ε1 < 1 we obtain the following estimate

|ν|1−ε1 < (−ε log+(‖a0,0‖) + 1)(1− ε1) log+(µ(r))

for 0 < ε < 1. Furthermore, for ε > 0

|ν(r)| < [
log+((µ(r)))

]1+ε
.

¤

In order to proceed, the following proposition is needed. Here, for m ∈ Zn we denote

[m] for the expression [m] =
n∑

i=1

mi.

Proposition 4.5 For ε > 0, p′, l ∈ N, p, s ∈ N0 and l ∈ Nn
0 (or l ∈ Nn−1

0 ), one has

+∞∑

[m]=−|m∗|

k−1−j∗∑
j=−j∗

(
|[m] + j|
|ν(r)|

)p′

‖a[m]+m∗,j+j∗‖r[m]+j+|ν(r)| < µ(r)|ν(r)| 1−p′
2

+ε, (4.27)

+∞∑

[m]=[l−m∗]

k−1−j∗∑
j=s−j∗

|[m] + j|p
|ν(r)|p+l

‖am∗+m,j∗+j‖r[m]+j+|ν(r)| < µ(r)|ν(r)|− 1
2
+ε. (4.28)

where |ν(r)| := |m∗|+ j∗ and r 6∈ F for F a set of finite logarithmic measure.
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Notice that the first indices m appearing in this sum are elements from −Nn
0 . The

expression [m] coincides with the previously introduced length of an index for all m ∈ Nn
0 .

Proof. We first prove the inequality (4.27). Since ν(r) := (m∗, j∗) we obtain

+∞∑

[m]=−|m∗|

k−1−j∗∑
j=−j∗

(
|[m] + j|
|ν(r)|

)p′

‖a[m]+m∗,j+j∗‖r[m]+j+|ν(r)|

= ‖am∗,j∗‖r|m∗|+j∗
[

+∞∑

[m]=−|m∗|

k−1−j∗∑
j=−j∗

(
|[m] + j|
|ν(r)|

)p′ ‖a[m]+m∗,j+j∗‖
‖am∗,j∗‖ r[m]+j

]

≤ ‖am∗,j∗‖r|m∗|+j∗
[ −1∑

[m]=−|m∗|

0∑
j=−j∗

(
|[m] + j|
|ν(r)|

)p′ ‖a[m]+m∗,j+j∗‖
‖am∗,j∗‖ r[m]+j

+
+∞∑

[m]=0

k−1∑
j=1

(
|[m] + j|
|ν(r)|

)p′ ‖a[m]+m∗,j+j∗‖
‖am∗,j∗‖ r[m]+j

+
−1∑

[m]=−|m∗|

k−1−j∗∑
j=0

(
|[m] + j|
|ν(r)|

)p′ ‖a[m]+m∗,j+j∗‖
‖am∗,j∗‖ r[m]+j

+
+∞∑

[m]=0

0∑
j=−j∗

(
|[m] + j|
|ν(r)|

)p′ ‖a[m]+m∗,j+j∗‖
‖am∗,j∗‖ r[m]+j

]

≤ ‖am∗,j∗‖r|m∗|+j∗
[ |m∗|∑

[m]=1

j∗∑
j=0

(
|[m] + j|
|ν(r)|

)p′ ‖a[m]−m∗,j−j∗‖
‖am∗,j∗‖ r−([m]+j)

+
+∞∑

[m]=0

k−1∑
j=1

(
|[m] + j|
|ν(r)|

)p′ ‖a[m]+m∗,j+j∗‖
‖am∗,j∗‖ r[m]+j

+

|m∗|∑

[m]=0

k−1∑
j=j∗

(
|[m] + j|
|ν(r)|

)p′ ‖a[m],j‖
‖am∗,j∗‖r[m]+j−|ν|

+
+∞∑

[m]=|m∗|

j∗∑
j=0

(
|[m] + j|
|ν(r)|

)p′ ‖a[m],j‖
‖am∗,j∗‖r[m]+j−|ν|

]
. (4.29)
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Applying Proposition 4.2 in the expression (4.29) we obtain

+∞∑

[m]=−|m∗|

k−1∑
j=−j∗

(
|[m] + j|
|ν(r)|

)p′

‖a[m]+m∗,j+j∗‖r[m]+j+|ν(r)|

< ‖am∗,j∗‖r|m∗|+j∗
[
5

|ν|∑

[m]+j=1

(
|[m] + j|
|ν(r)|

)p′
|ν|∏

i=|m|+j

P|ν|−i

P
|m|+j
|ν|

+ 5
+∞∑

[m]+j=|ν|+1

(
|[m] + j|
|ν(r)|

)p′
P
|m|+j
|ν|

|m|+j∏
i=1

P|ν|+i

]
.

=: ‖am∗,j∗‖r|m∗|+j∗5Ψ|m|+j(r). (4.30)

Applying the estimates (4.21) and (4.22) into (4.30), we obtain

Ψ|m|+j(r) ≤
|ν|∑

[m]+j=1

(
|[m] + j|
|ν|

)p′

e
−(|m|+j)(|m|+j−1)
2(|ν|+|m|+j−1)α

+
+∞∑

[m]+j=|ν|+1

(
|[m] + j|
|ν|

)p′

e
−(|m|+j)2

2(|ν|+|m|+j)α

≤ (n + 1)

|ν|p′ +

|ν|∑

[m]+j=2

(
|[m] + j|
|ν|

)p′

e
−(|m|+j)2

2(|ν|+|m|+j−1)α

+
+∞∑

[m]+j=|ν|+1

(
|[m] + j|
|ν|

)p′

e
−(|m|+j)2

2(|ν|+|m|+j)α . (4.31)

For x := |m|+ j we obtain that

Ψ|m|+j(r) ≤ (n + 1)

|ν|p′ + 2

+∞∫

0

(
x

|ν|

)p′

e
−x2

2(|ν|+x)α dx. (4.32)

Using the substitution y2 := x2

2(|ν|+x)α , one obtains
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+∞∫

0

(
x

|ν|

)p′

e
−x2

2(|ν|+x)α dx ≤ C1|ν(r)|α2 (p′+1)−p′
+∞∫

0

(y)p′e−y2

dy

= C1|ν(r)|α2 (p′+1)−p′ 1

2
Γ

(
1 + p′

2

)

= C0|ν(r)| 1−p′
2

+ε,

where C0 is an adequately chosen real positive constant. This completes the proof of

(4.27).

To prove inequality (4.28) we use mathematical induction with respect to p. Let us

first consider p = 0. Applying inequality (4.12) one obtains a lower bound estimate for

|ν(r)|:
+∞∑

[m]=[l−m∗]

k−1∑
j=s−j∗

1

|ν|l‖am∗+m,j∗+j‖r[m]+j+|ν|

≤ µ(r)

|ν|
+∞∑

[m]=−[m∗]

k−1∑
j=−j∗

‖am∗+m,j∗+j‖
‖am∗,j∗‖ r[m]+j

≤ µ(r)

|ν| L∗(r) < µ(r)|ν|− 1
2
+ε.

The proof for the case p ≥ 1 is done by using the estimate (4.27). ¤

These propositions will be useful in the study of the asymptotic behavior between

some special iterated operators applied to entire k-monogenic functions and the function

itself.

4.2 Asymptotic growth of solutions of iterated Cauchy-

-Riemann equations in Rn+1

In this section we will prove a relation between the asymptotic behavior of the maximum

term of a k-monogenic function and that of their iterated ”generalized” radial derivatives.

Such derivatives arise from the application of iterated Euler-type operators.
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Theorem 4.1 Let g be a transcendental entire k-monogenic function. Then for all κ ∈ N
holds asymptotically

∥∥∥∥∥
1

|ν(r)|κ [Eκ]g(z)− g(z)

∥∥∥∥∥ ≤ Cµ(r)|ν(r)|− 1
2
+ε, r 6∈ F (4.33)

where E :=
n∑

i=0

xi
∂

∂xi
is the Euler operator on Rn+1 , C is a real positive constant, ε > 0

and F is a set of finite logarithmic measure.

Proof. Using induction with respect to κ one obtains the following relation

Eκ(xj
0Vm(z)) = (|m|+ j)κ xj

0Vm(z). (4.34)

Therefore, applying (4.34) we have

1

|ν|κ
[

n∑
i=0

xi
∂

∂xi

]κ

g(z)− g(z)

=
1

|ν|κ
[

+∞∑

|m|=1

k−1∑
j=0

(|m|+ j)κ xj
0Vm(z)am,j

]
−

+∞∑

|m|=0

k−1∑
j=0

xj
0Vm(z)am,j.

Considering ν := (m∗, j∗) and making the index substitution |m| = [n] + |m∗|, j = i + j∗

together with the binomial expansion leads to

1

|ν|κ
[

n∑
i=0

xi
∂

∂xi

]κ

g(z)− g(z)

= −a0,0 +
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

([n] + i + |ν|)κ − |ν|κ
|ν|κ xi+j∗

0 Vn+m∗(z)an+m∗,i+j∗

= −a0,0 +
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

κ∑
s=1

([n] + i)s|ν|−s

(
κ

s

)
xi+j∗

0 Vn+m∗(z)an+m∗,i+j∗

= −a0,0 +
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

κ∑
s=1

|ν|−sPs([n] + i)xi+j∗
0 Vn+m∗(z)an+m∗,i+j∗ ,

where Ps([n] + i) := ([n] + i)s
(

κ
s

)
.

Let us define

Ss(z) :=
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

|ν|−sPs([n] + i)xi+j∗
0 Vn+m∗(z)an+m∗,i+j∗ . (4.35)
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Taking ‖z‖ = r > 0 we estimate ‖Ss(z)‖ by

‖Ss(z)‖ ≤
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

|ν|−s|Ps([n] + i)|‖x0‖i+j∗‖Vn+m∗(z)‖‖an+m∗,i+j∗‖

≤
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

|ν|−sPs(|[n] + i|)‖an+m∗,i+j∗‖r[n]+|m∗|+i+j∗

=
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

(
|[n] + i|
|ν|

)s
κ!

(κ− s)!s!
‖an+m∗,i+j∗‖r[n]+i+|ν|.

We thus have

‖Ss(z)‖ ≤ κ!

(κ− s)!s!

+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

(
|[n] + i|
|ν|

)s

‖an+m∗,i+j∗‖r[n]+i+|ν|. (4.36)

Applying inequality (4.28) of Proposition 4.5, in the particular case l = 0, s = 0 and

|l| = 1, to the previous line, one has

‖Ss(z)‖ ≤ κ!

(κ− s)!s!
µ(r)|ν(r)|− 1

2
+ε, r 6∈ F. (4.37)

Summarizing, we obtain for r sufficiently large

∥∥∥∥∥
1

|ν|κ
[

n∑
i=0

xi
∂

∂xi

]κ

g(z)− g(z)

∥∥∥∥∥

≤ ‖a0,0‖+
κ∑

s=1

‖Ss(z)‖

≤ ‖a0,0‖+
κ∑

s=1

κ!

(κ− s)!s!
µ(r)|ν(r)|− 1

2
+ε, r 6∈ F

= ‖a0,0‖+ (2κ − 1)µ(r)|ν(r)|− 1
2
+ε, r 6∈ F,

≤ Cµ(r)|ν(r)|− 1
2
+ε, r 6∈ F,

where C is a positive real constant. ¤

As an application one has the following.
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Proposition 4.6 Let 0 < δ < 1
2

and z such that for ‖z‖ = r, the relation

‖g(z)‖ > µ(r)|ν(r)|− 1
2
+δ, r 6∈ F (4.38)

for z in a neighborhood Vz0 of z0 such that ‖g(z0)‖ = max
‖z‖=r

{‖g(z)‖} is satisfied. Then for

all k ∈ N holds asymptotically

1

|ν(r)|k [Ek]g(z)− g(z) = o(1)g(z) z ∈ Vz0 . (4.39)

Proof. Let us now suppose that ‖z‖ = r 6∈ F . In view of condition (4.38) and Theo-

rem 4.1, one has

1

‖g(z)‖

∥∥∥∥∥
1

|ν|k
[

n∑
i=0

xi
∂

∂xi

]k

g(z)− g(z)

∥∥∥∥∥

≤ C

µ(r)
|ν(r)| 12−δµ(r)|ν(r)|− 1

2
+ε

= C|ν(r)|ε−δ (4.40)

which tends to zero if one chooses a ε sufficiently small (i.e. ε < δ). In other words, one

gets
1

|ν|k [Ek]g(z)− g(z) = o(1)g(z)

under the given condition. ¤

Remark 4.2 This statement provides us with an analogy in the context of Clifford ana-

lysis of the classical Theorem 21.3 from [37] which states that entire complex analytic

functions which satisfy

‖g(z)‖ > M(r, g)[ν(r)]−
1
4
+δ

for 0 < δ < 1
4

and z such that ‖z‖ = r, have the asymptotic behavior

g(m)(z) =
(ν(r)

z

)m

(1 + o(1))g(z).

In the Clifford analysis setting, one thus obtains a similar asymptotic result when substi-

tuting the complex operator z d
dz

by the higher dimensional Euler operator E.
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For the particular case of a 1-monogenic entire function one obtains the following result.

Theorem 4.2 Let g be an entire 1-monogenic ClG-valued function of finite order ρ2 < ∞
and for z such that ‖z‖ = r sufficiently large, the relation

‖g(z)‖ > µ(r)|ν(r)|− 1
2
+δ, r 6∈ F

for z in a neighborhood Vz0 of z0 such that ‖g(z0)‖ := max
‖z‖=r

{‖g(z)‖} is satisfied. Let

Mj[g] = aj

k∏
i=0

(Ei(g))ni ,

where aj are polynomials of degree j, and Mj[g] has degree γMj
=

k∑
i=0

ni and weight

ΓMj
=

k∑
i=0

ini. Let

Q[g] =
s∑

j=0

Mj[g]

be of degree γQ and weight ΓQ. If γQ = γM0 then the differential equation Q[g] = 0 has no

transcendental entire solutions.

Proof. If Q[g] = 0, then M0[g] = −
s∑

j=1

Mj[g]. From the definition of Mj it follows that

a0

[
k∏

i=0

(Ei(g))ni

]

M0

= −
s∑

j=1

[
aj

k∏
i=0

(Ei(g))ni

]

Mj

.

Applying Proposition 4.6 we obtain that

‖a0‖|ν(r)|ΓM0‖g(z)‖γM0 ≤
s∑

j=1

(
‖aj‖|ν(r)|ΓMj ‖g(z)‖γMj

)
.

Since a0 is a non zero constant and aj are polynomials of degree j, taking the maximum

over the norm, and applying Theorem 3.1 leads to

|ν(r)|ΓM0M(r, g)γM0 ≤ |ν(r)|ΓQM(r, g)γQ−1

s∑
j=1

max
‖z‖=r

‖aj‖
‖a0‖

≤ |ν(r)|ΓQM(r, g)γQ−1rα. (4.41)
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Therefore, in view of γQ = γM0 one has

M(r, g) ≤ |ν(r)|ΓQ−ΓM0rα. (4.42)

For ΓQ − ΓM0 < 0 it follows

lim inf
r→∞

M(r, g)

rα
≤ lim inf

r→∞
|ν(r)|ΓQ−ΓM0 = 0

which implies that g is a polynomial.

Let us now consider the case where ΓQ − ΓM0 > 0. Since ρ2 < ∞, we have that

|ν(r)| < rρ2+ε for ε > 0. Therefore, there exists a β > (ΓQ − ΓM0)(ρ2 + ε) such that

lim inf
r→∞

M(r, g)

rβ+α
≤ lim inf

r→∞
|ν(r)|ΓQ−ΓM0

rβ

≤ lim inf
r→∞

r(ΓQ−ΓM0
)(ρ2+ε)−β = 0

which implies that g is a polynomial. ¤

4.3 Asymptotic growth of solutions of iterated Dirac

equations in Rn

In this section we establish an explicit asymptotic relation between the growth of solutions

of the iterated Dirac equation and that of their iterated “generalized” radial derivatives

resulting from the application of the Euler operator

E :=
n∑

i=1

xi
∂

∂xi

and from the application of even iterates of the Gamma operator from [21],

Γ :=
n∑

i,j=1,i<j

(xi
∂

∂xj

− xj
∂

∂xi

)eiej.

More generally, one also establish asymptotic relations between the growth of solutions

of the iterated Dirac equation and that from applying on them a polynomial expression

consisting of the radial symmetric operators E and Γ2.
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Theorem 4.3 Let s, d, N ∈ N0 and f : Rn → Cln be an entire k-monogenic function,

and γs,d some arbitrary real numbers. Then f satisfies asymptotically

∥∥∥∥∥
N∑

s,d=0

γs,d
Es[Γ2d[f(x)]]

|ν|s+2d
−

N∑

s,d=0

γs,df(x)

∥∥∥∥∥ ≤ Cµ(r)|ν(r)|− 1
2
+ε, r 6∈ F, (4.43)

where C is a real constant, ε > 0 and F is a set of finite logarithmic measure.

Proof. Relying on formula (3.14) one gets

xD(xpVm(x)) =





(−p)xpVm(x), p even

(−n− 2|m| − p + 1)xpVm(x), p odd.
(4.44)

In view of

∂xj

∂xi

=




−2mxix

2m−2, j = 2m, m ∈ N
−2mxix

2m−1 + x2mei, j = 2m + 1, m ∈ N,
(4.45)

and using (4.45) one gets

E(xpVm(x)) =
n∑

i=1

xi
∂

∂xi

(xpVm (x))

=
n∑

i=1

xi
∂

∂xi

(xp) Vm (x) + xp

(
n∑

i=1

xi
∂

∂xi

Vm(x)

)

= pxpVm(x) + |m|xpVm(x)

= (p + |m|)xpVm(x). (4.46)

Applying (4.44) and (4.46) we obtain, in view of Γ := xD + E

Γ(xpVm(x)) =




|m|xpVm(x), p even

(−n + 1− |m|)xpVm(x), p odd.

By induction, it follows that for any s ∈ N:

Es(xpVm(x)) = (p + |m|)sxpVm(x),

(4.47)

Γs(xpVm(x)) =




|m|sxpVm(x), p even,

(1− n− |m|)sxpVm(x), p odd.
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Considering the composition of the operators E and Γ2 for an arbitrary s, d ∈ N0 and

using (4.47) one obtains:

Es[Γ2d[f(x)]] =
+∞∑

|m|=0

[
k−1∑

p=0,p even

|m|2d(p + |m|)sxpVm(x)am,p

+
k−1∑

p=1,p odd

(1− n− |m|)2d(p + |m|)sxpVm(x)am,p

]
.

Performing the index substitutions |m| := [n] + |m∗| and p := i + j∗, we thus get

Es[Γ2d[f(x)]]

|ν|s+2d
− f(x)

= −a0,0 +
+∞∑

|m|=1

[
k−1∑

p = 0,

p even

|m|2d(p + |m|)s − |ν|s+2d

|ν|s+2d
xpVm(x)am,p

+
k−1∑

p = 1,

p odd

(1− n− |m|)2d(p + |m|)s − |ν|s+2d

|ν|s+2d
xpVm(x)am,p

]

= −a0,0

+
+∞∑

[n]=1−|m∗|

[
k−1−j∗∑

i = −j∗,

i + j∗ even

([n] + |m∗|)2d(i + [n] + |ν|)s − |ν|s+2d

|ν|s+2d
xi+j∗V[n]+m∗a[n]+m∗,i+j∗

+

k−1−j∗∑

i = −j∗,

i + j∗ odd

(1− n− [n]− |m∗|)2d(i + [n] + |ν|)s − |ν|s+2d

|ν|s+2d

× xi+j∗V[n]+m∗a[n]+m∗,i+j∗

]
. (4.48)

In view of |ν| = |m∗| + j∗ and applying the binomial expansion, we can rewrite the
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expression appearing in the first sum of (4.48) as follows:

(
([n] + |m∗|)2d(i + [n] + |ν|)s − |ν|s+2d

)

=
(
([n] + |ν| − j∗)2d(i + [n] + |ν|)s − |ν|s+2d

)

=

[
2d∑

p=1

(
2d

p

)
([n]− j∗)p|ν|2d−p + |ν|2d

]
×

[
s∑

L=1

(
s

L

)
([n] + i)L|ν|s−L + |ν|s

]
− |ν|s+2d

=
2d∑

p=1

s∑
L=1

(
2d

p

)(
s

L

)
([n]− j∗)p([n] + i)L|ν|2d+s−(L+p) +

2d∑
p=1

(
2d

p

)
([n]− j∗)p|ν|2d+s−p

+
s∑

L=1

(
s

L

)
([n] + i)L|ν|2d+s−L + |ν|s+2d − |ν|s+2d

=
2d∑

p=1

s∑
L=1

(
2d

p

)(
s

L

)
([n]− j∗)p([n] + i)L|ν|2d+s−(L+p) +

2d∑
p=1

(
2d

p

)
([n]− j∗)p|ν|2d+s−p

+
s∑

L=1

(
s

L

)
([n] + i)L|ν|2d+s−L. (4.49)

The second sum of (4.48) can be expressed as follows:

(1− n− [n]− |m∗|)2d(i + [n] + |ν|)s − |ν|2d+s

= (1− n− [n] + j∗ − j∗ − |m∗|)2d(i + [n] + |ν|)s − |ν|2d+s

= (1− n− [n] + j∗ − |ν|)2d(i + [n] + |ν|)s − |ν|2d+s

=

(
2d∑

p1=0

(
2d

p1

)
(−1)2d−p1(1− n− [n] + j∗)p1|ν|2d−p1

)

×
(

s∑
L1=0

(
s

L1

)
([n] + i)L1|ν|s−L1

)
− |ν|s+2d

=

(
2d∑

p1=1

(
2d

p1

)
(−1)2d−p1(1− n− [n] + j∗)p1|ν|2d−p1 + (−1)2d|ν|2d

)

×
(

s∑
L1=1

(
s

L1

)
([n] + i)L1|ν|s−L1 + |ν|s

)
− |ν|s+2d

(4.50)
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(1− n− [n]− |m∗|)2d(i + [n] + |ν|)s − |ν|2d+s

=

(
2d∑

p1=1

(
2d

p1

)
(−1)2d−p1(1− n− [n] + j∗)p1|ν|2d−p1

)

×
(

s∑
L1=1

(
s

L1

)
([n] + i)L1|ν|s−L1

)
+ (−1)2d|ν|2d

(
s∑

L1=1

(
s

L1

)
([n] + i)L1|ν|s−L1

)

+ |ν|s
(

2d∑
p1=1

(
2d

p1

)
(−1)2d−p1(1− n− [n] + j∗)p1|ν|2d−p1

)

+ (−1)2d|ν|s+2d − |ν|s+2d

=
2d∑

p1=0

s∑
L1=1

(
2d

p1

)(
s

L1

)
(−1)−p1([n] + i)L1(1− n− [n] + j∗)p1|ν|2d+s−(p1+L1)

+
2d∑

p1=1

(
2d

p1

)
(−1)−p1(1− n− [n] + j∗)p1|ν|2d+s−p1 , (4.51)

the last equality is based on the fact that the number of iterations of the Gamma operator

is even and equal to 2d. With (4.49) and (4.51) we thus have arrived at

([n] + |m∗|)2d(i + [n] + |ν|)s − |ν|s+2d

|ν|s+2d
(4.52)

=
2d∑

p=0

s∑
L=1

(
2d

p

)(
s

L

)
[([n] + i)L([n]− j∗)p]|ν|−(L+p) +

2d∑
p=1

(
2d

p

)
([n]− j∗)p|ν|−p,

and

(1− n− [n]− |m∗|)2d(i + [n] + |ν|)s − |ν|2d+s

|ν|2d+s

=
2d∑

p1=0

s∑
L1=1

(
2d

p1

)(
s

L1

)
(−1)−p1([n] + i)L1(1− n− [n] + j∗)p1|ν|−(L1+p1)

+
2d∑

p1=0

(
2d

p1

)
(−1)−p1(1− n− [n] + j∗)p1|ν|−p1 , (4.53)

respectively. Applying the norm in the expression (4.48) and using (4.52) and (4.53), we
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obtain for ‖x‖ = r the following estimates

∥∥∥∥∥
Es[Γ2d[f(x)]]

|ν|s+2d
− f(x)

∥∥∥∥∥
≤ ‖a0,0‖

+
∑

[n]=1−|m∗|

[
k−1−j∗∑

i=−j∗,i+j∗ even

[
2d∑

p=0

s∑
L=1

(
2d

p

)(
s

L

)
|([n] + i)|L |[n]− j∗|p︸ ︷︷ ︸

(I)

|ν|−(L+p)

+
2d∑

p=1

(
2d

p

)
|[n]− j∗|p︸ ︷︷ ︸

(I)

|ν|−p

]
ri+[n]+|ν|‖a[n]+m∗,i+j∗‖

+

k−1−j∗∑

i=−j∗,i+j∗ odd

[
2d∑

p1=0

s∑
L1=1

(
2d

p1

)(
s

L1

)
|[n] + i|L1 |1− n− [n] + j∗|p1

︸ ︷︷ ︸
(II)

|ν|−(L1+p1)

+
2d∑

p1=0

(
2d

p1

)
|1− n− [n] + j∗|p1

︸ ︷︷ ︸
(II)

|ν|−p1

]
ri+[n]+|ν|‖a[n]+m∗,i+j∗‖

]
. (4.54)

In order to proceed we estimate the expressions (I) and (II) in (4.54) by again applying

the binomial expansion. For (I) we get

|[n]− j∗|p = |[n] + i− i− j∗|p

≤ (|[n] + i|+ |i + j∗|)p

=

p∑
α=0

(
p

α

)
|[n] + i|p−α|i + j∗|α

≤ (2(k − 1))p

p∑
α=0

(
p

α

)
|[n] + i|p−α (4.55)

the last inequality is obtain by |i + j∗| ≤ 2(k − 1). For (II) one has

|1− n− [n] + j∗|p1 = |1− n− [n] + i− i + j∗|p1

≤ (|[n] + i|+ |1− n + i + j∗|)p1

=

p1∑

β=0

(
p1

β

)
|[n] + i|p1−β|1− n + i + j∗|β

≤ ((n− 1) + 2(k − 1))p1

p1∑

β=0

(
p1

β

)
|[n] + i|p1−β, (4.56)

since |1− n + i + j∗| ≤ |1− n|+ |i + j∗| ≤ (n− 1) + 2(k − 1).
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Notice that one also has for (4.55) the same estimate as the one given in (4.56), since

|[n]− j∗|p ≤ (2(k − 1))p

p∑
α=0

(
p

α

)
|[n] + i|p−α

≤ ((n− 1) + 2(k − 1))p

p∑
α=0

(
p

α

)
|[n] + i|p−α, n ≥ 1. (4.57)

Substituting (4.57) and (4.56) in the expression (4.54) then leads to

∥∥∥∥∥
Es[Γ2d[f(x)]]

|ν|s+2d
− f(x)

∥∥∥∥∥
≤ ‖a0,0‖

+
+∞∑

[n]=1−|m∗|

[
k−1−j∗∑

i=−j∗,i+j∗ even

[ ∑

0 ≤ L ≤ s,

0 ≤ p ≤ 2d,

L + p 6= 0

(
2d

p

)(
s

L

)
((n− 1) + 2(k − 1))p

×
p∑

α=0

(
p

α

)
|[n] + i|L+p−α|ν|−(L+p)

]
ri+[n]+|ν|‖a[n]+m∗,i+j∗‖

+

k−1−j∗∑

i=−j∗,i+j∗ odd

[ ∑

0 ≤ L1 ≤ s,

0 ≤ p1 ≤ 2d,

L1 + p1 6= 0

(
2d

p1

)(
s

L1

)
((n− 1) + 2(k − 1))p1

×
p1∑

β=0

(
p1

β

)
|[n] + i|L1+p1−β|ν|−(L1+p1)

]
ri+[n]+|ν|‖a[n]+m∗,i+j∗‖

]
. (4.58)

Since the terms of the sum running over the even i + j∗ and odd i + j∗ are equal, one

obtains the following relation

∥∥∥∥∥
Es[Γ2d[f(x)]]

|ν|s+2d
− f(x)

∥∥∥∥∥

≤ ‖a0,0‖+
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

[ ∑

0 ≤ L ≤ s,

0 ≤ p ≤ 2d,

L + p 6= 0

(
2d

p

)(
s

L

)
((n− 1) + 2(k − 1))p

×
p∑

α=0

(
p

α

)
|[n] + i|L+p−α|ν|−(L+p)

]
ri+[n]+|ν|‖a[n]+m∗,i+j∗‖. (4.59)
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Let us now take

SL,p(r) :=
+∞∑

[n]=1−|m∗|

k−1−j∗∑
i=−j∗

|[n] + i|L+p−αri+[n]+|ν|

|ν|L+p
‖a[n]+m∗,i+j∗‖. (4.60)

Applying inequality (4.28) for the particular case l = α, s = 0 and |l| = 1 to the previous

line, leads to

SL,p(r) ≤ µ(r)|ν(r)|− 1
2
+ε, r 6∈ F. (4.61)

Therefore, one gets∥∥∥∥∥
Es[Γ2d[f(x)]]

|ν|s+2d
− f(x)

∥∥∥∥∥

≤ ‖a0,0‖+ µ(r)|ν(r)|− 1
2
+ε

∑

0 ≤ L ≤ s,

0 ≤ p ≤ 2d,

L + p 6= 0

(
2d

p

)(
s

L

)
((n− 1) + 2(k − 1))p

p∑
α=0

(
p

α

)

≤ ‖a0,0‖+

(
((n− 1) + 2(k − 1))2d

s∑
L=0

(
s

L

) 2d∑
p=0

(
2d

p

) p∑
α=0

(
p

α

))
µ(r)|ν(r)|− 1

2
+ε

and, using
2d∑

p=0

(
2d
p

) ≤ 22d, one obtains

∥∥∥∥∥
Es[Γ2d[f(x)]]

|ν|s+2d
− f(x)

∥∥∥∥∥

≤ ‖a0,0‖+

(
((n− 1) + 2(k − 1))2d

s∑
L=0

(
s

L

) 2d∑
p=0

(
2d

p

)
2p

)
µ(r)|ν(r)|− 1

2
+ε

≤ ‖a0,0‖+
(
((n− 1) + 2(k − 1))2d24d+s

)
µ(r)|ν(r)|− 1

2
+ε

≤ cs,dµ(r)|ν(r)|− 1
2
+ε. (4.62)

Applying (4.62) it follows
∥∥∥∥∥

N∑

s,d=0

γs,d
Es[Γ2d[f(x)]]

|ν|s+2d
−

N∑

s,d=0

γs,df(x)

∥∥∥∥∥

≤
N∑

s,d=0

|γs,d|
∥∥∥∥∥
Es[Γ2d[f(x)]]

|ν|s+2d
− f(x)

∥∥∥∥∥

≤
N∑

s,d=0

|γs,d|cs,dµ(r)|ν(r)|− 1
2
+ε

= Cµ(r)|ν(r)|− 1
2
+ε. (4.63)
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Here C is a proper positive real constant. ¤

As special cases we obtain particularly.

Corollary 4.1 Let d ∈ N be an arbitrary positive integer and f : Rn → Cln be an entire

k-monogenic function. Then f satisfies asymptotically
∥∥∥∥∥

Γ2d[f(x)]

|ν|2d
− f(x)

∥∥∥∥∥ ≤ Cµ(r)|ν(r)|− 1
2
+ε, r 6∈ F, (4.64)

where C is a real constant, ε > 0 and F is a set of finite logarithmic measure.

Corollary 4.2 Let s ∈ N be an arbitrary positive integer and f : Rn → Cln be an entire

k-monogenic function. Then f satisfies asymptotically
∥∥∥∥∥
Es[f(x)]

|ν|s − f(x)

∥∥∥∥∥ ≤ Cµ(r)|ν(r)|− 1
2
+ε, r 6∈ F, (4.65)

where C is a real constant, ε > 0 and F is a set of finite logarithmic measure.

The following result gives an explicit asymptotic relation between the growth of solu-

tions of the iterated Dirac and that of the polynomial in E and Γ2

Proposition 4.7 Let f be a k-monogenic function, 0 < δ < 1
2

and ‖x‖ be sufficiently

large such that for ‖x‖ = r, the relation

‖f(x)‖ > µ(r)|ν(r)|− 1
2
+δ, r 6∈ F (4.66)

for x in a neighborhood Vx0 such that ‖f(x0)‖ := max
‖x‖=r

{‖f(x)‖} is satisfied. Let

L[f(x)] :=
N∑

s,d=0

γs,d
Es[Γ2d[f(x)]]

|ν|s+2d

be a polynomial in E and Γ2 with real coefficients. Then we get the asymptotic estimate

L[f(x)]−
N∑

s,d=0

γs,df(x) = o(1)f(x), r ∈ Vx0 . (4.67)
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Proof. Let us now suppose that ‖x‖ = r 6∈ F . In view of (4.66) and Theorem 4.3 we

have

1

‖f(x)‖

∥∥∥∥∥
N∑

s,d=0

γs,d
Es[Γ2d[f(x)]]

|ν|s+2d
−

N∑

s,d=0

γs,df(x)

∥∥∥∥∥

≤ C

µ(r)
|ν(r)| 12−δµ(r)|ν(r)|− 1

2
+ε

≤ C|ν(r)|ε−δ, (4.68)

which tends to zero, when choosing ε sufficiently small (i.e., ε < δ ). We then obtain

L[f(x)]−
N∑

s,d=0

γs,df(x) = o(1)f(x).

¤

In the next theorem one obtains a classification of the solution of special type of partial

differential equation of 1-monogenic paravector valued function. The proof can be done

analogously to the one given in Theorem 4.2.

Theorem 4.4 If g is an entire 1-monogenic paravector valued function with order

ρ2 < ∞ and

‖g(x)‖ > µ(r)|ν(r)|− 1
2
+δ, r 6∈ F

for x in a neighborhood Vx0 of x0 such that ‖g(x0)‖ := max
‖x‖=r

{‖g(x)‖} is satisfied. Let

Mj[g] = aj

k∏

i = s + 2d

i = 0

[Es(Γ2d(g)))]ni

where aj are polynomials of degree j, and Mj[g] has degree γMj
=

k∑
i=0

ni and weight

ΓMj
=

k∑
i=0

ini. Let

Q[g] =
s∑

j=0

Mj[g]

be of degree γQ and weight ΓQ. If γQ = γM0, then the differential equation Q[g] = 0 has

no transcendental entire solution.
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Chapter 5

Open problems

We conclude this work by presenting some open problems for future research.

In the construction of normality criteria (given in Chapter 2) the possible occurrence

of singularities of dimension 0, 1, ..., n − 1 in the context of Clifford valued functions,

caused great difficulties. One also has that the behavior in the neighborhood of an iso-

lated singularity is very irregular, when comparing it to the behavior of the meromorphic

functions in the complex case. Consequently, the following questions can be posed:

Question 1: Which type of compactification of the space can be found, such that a

general Clifford valued function has a regular behavior in a neighborhood of the singular-

ities?

Question 2: Is it possible to obtain similar criteria for general Clifford valued mero-

morphic functions, or even for the general case dealing with Clifford valued functions?

Regarding sufficient conditions for normality, for instance, the known classical results:

Due to Montel [53]:

Montel’s Theorem: Let F be a family of meromorphic complex valued functions

defined in the domain D. If there exists three points w1, w2, w3 on the Riemann sphere

such that wi 6∈ f(D) (i = 1, 2, 3) for each f ∈ F , then F is a normal family.
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Due to X. Pang and L. Zalcman [57]:

Theorem: Let F be a family of meromorphic functions in the unit disc D, with the

property that all their zeros are of multiplicity (at least) k. If there exist b 6= 0 and a

positive constant c such that for every f ∈ F , Ef (0) = Ef (k)(b) and 0 < ‖f (k+1)(z)‖ ≤ c

whenever z ∈ Ef (0) := {z ∈ D : f(z) = 0}, then F is a normal family on D.

It is natural to ask:

Question 3: Is it possible to establish generalizations of these types of results to

general Clifford valued functions?

In the analysis of the growth behavior we observed relations between the maximum

modulus, the maximum term and the norm of the central index in the framework of poly-

monogenic functions.

In the complex case, due to Borel [7], one has a relation between the growth of an

entire function and the growth of its real part, i.e.,

Borel’s Theorem: Let g be an entire transcendental function, M(r) := max
‖z‖=r

‖g(z)‖
and A(r) := max

‖z‖=r
|Re(g(z))|. Then, for 0 < r < R

M(r) ≤ R

R− r
[4A(R) + 2‖g(0)‖].

Question 4: In the context of polymonogenic functions, can one estimate the growth of

an entire function by the growth of one of its component functions?

Another question arise when observing that the different generalized exponential func-

tions in Example 3.2, Example 3.4 and Example 3.3 have the same order of growth but

different type.

Question 5: What can one say about the growth behavior of other elementary

examples of Clifford valued functions? Which general relations do exist between the

type and the order of growth of polymonogenic functions?
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Since this work is based on polymonogenic functions it is natural to ask:

Question 6: Is it possible to establish similar results for meromorphic functions ?

In this work we studied entire solutions of the iterated Dirac equation as well as entire

solutions of the iterated generalized Cauchy-Riemann equation. One can also analyze the

asymptotic growth behavior concerning, for example:

• entire solutions to higher dimension polynomial Cauchy-Riemann equation;

• entire paravector valued solution to the hypermonogenic equation.

Furthermore, one could also look for normality criteria for these classes of functions.
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