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Resumo 
 

 

A Lógica Algébrica Abstracta estuda o processo pelo qual uma classe de 
álgebras pode ser associada a uma lógica. Nesta dissertação, analisamos este 
processo agrupando lógicas partilhando certas propriedades em classes. O 
conceito central neste estudo é a congruência de Leibniz que assume o papel 
desempenhado pela equivalência no processo tradicional de Lindenbaum-
Tarski. 
 
Apresentamos uma hierarquia entre essas classes que é designada por 
hierarquia de Leibniz, caracterizando as lógicas de cada classe por 
propriedades meta-lógicas, por exemplo propriedades do operador de Leibniz. 
 
Estudamos também a recente abordagem comportamental que usa lógicas 
multigénero, lógica equacional comportamental e, consequentemente, uma 
versão comportamental do operador de Leibniz. Neste contexto, apresentamos 
alguns exemplos, aos quais aplicamos esta nova teoria, capturando alguns 
fenómenos de algebrização que não era possível formalizar com a abordagem 
standard.  
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Abstract 

 
Abstract Algebraic logic studies the process by which a class of algebras can 
be associated with a logic. In this dissertation, we analyse this process by 
grouping logics sharing certain properties into classes. The central concept in 
this study is the Leibniz Congruence that assumes the role developed by the 
equivalence in the traditional Lindenbaum-Tarski process.  
 
We show a hierarchy between these classes, designated by Leibniz hierarchy, 
by characterizing logics in each class by meta-logical properties, for example 
properties of the Leibniz operator. 
 
We also study a recent behavioral approach which uses many-sorted logics, 
behavioral equational logic and, consequently, a behavioral version of the 
Leibniz operator. In this context, we provide some examples, to which we apply 
this new theory, capturing some phenomena of algebraization that are not 
possible to formalize using the standard approach. 
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Chapter 1

Introduction

The general theory of Abstract Algebraic Logic (AAL) studies the mechanism by which

a class of algebras can be associated with a given logic. This theory provides a general

context in which bridge theorems, relating metalogical properties of a logic to algebraic

properties of its algebraic counterpart, can be formulated precisely. These contrast to

the study of algebraic logic whose main setting is to examine the class of algebras that

are canonically associated with a logic. The strong connection between a logic and

its associated class of algebras can be very useful for metalogical investigation. The

paradigm of the Lindenbaum-Tarski process is the way by which the class of Boolean

Algebras (BA) appears from the Classical Propositional Logic (CPL). Actually, given

a theory T , the Lindenbaum-Tarski algebra induced by T for CPL, is the quotient

algebra FmL/ ≡T , where ≡T is the congruence on the formula algebra defined by

p ≡T q if and only if (iff) p and q are logically equivalent in T , that is, p ↔ q ∈ T

(the connective ↔ denotes the usual classical propositional equivalence). This quotient

algebra is a Boolean algebra. Conversely, every countable Boolean algebra is isomorphic

to an algebra FmL/ ≡T for some theory T of CPL. In this way, the class BA is

associated with CPL. A similar phenomena occurs in the Intuitionistic Propositional

Logic (IPL) with the class of Heyting Algebras (HA). In order to generalize this

process to other logics, the role played by the congruence ≡T is substituted by the

Leibniz congruence and the equivalence connective by a system of equivalence formulas.

Logics with some identical properties have been grouped by classes which can be

characterized by Leibniz operator properties, parameterized system of equivalence for-

mulas and closure properties of the class of reduced matrix models. In this dissertation,

we study these classes for propositional logics and we generalize for many-sorted logics



6

using properties of the behavioral Leibniz operator. This generalization can capture

logics that are not algebraizable in the standard approach but are behaviorally alge-

braizable. Nevertheless, this generalization does not trivialize the notion of algebraiza-

tion because there are again logics which are not algebraizable in any way.

In Chapter 2, we introduce some important concepts and results around the central

notions of logic and algebra. A logic is defined as a pair 〈L,⊢〉 where L is a language

and ⊢ is a binary relation between sets of formulas and individual formulas satisfying

reflexivity, cut, weakening and structurality conditions. We present other alternative

definitions, in some concrete case for (finitary) logic (c.f. [BP89] and [Gon08]). We also

introduce the notion of matrix and the notions of Leibniz and Suszko operators, which

are central in a semantical approach. We conclude this chapter by defining equational

logic, which is an important tool in the study of equivalent (algebraic) semantics for a

logic.

In Chapter 3, we consider a wide class of logics which is the class of protoalgebraic

logics. Blok and Pigozzi proved that this class of logics is exactly the class of non-

pathological defined by Czelakowski. We give some characterizations of protoalgebraic

logics using the Leibniz and the Suszko operators. We also show that a logic is pro-

toalgebraic iff it has a parameterized system of equivalence formulas, or equivalently, if

it has the parameterized local deduction-detachment theorem. We illustrate this latter

result, with BCK logic. We also study the relationship between the structural proper-

ties of the class of reduced matrix models and metalogical properties of protoalgebraic

logics. We prove that a logic is protoalgebraic iff the class of reduced matrix models

is closed under subdirect products. As we work with logics for which the finitariness

condition does not hold, we emphasize some results about finitary protoalgebraic logics.

In Chapter 4, we study the class of equivalential logics which are logics that have

a (possibly infinite) system of equivalence formulas. These logics were introduced by

Prucnal and Wroński in [PW74] and extensively studied by Czelakowski in [Cze81],

[Cze01, Chapter 3] and [Cze04]. They form a proper subclass of the class of protoalge-

braic logics. We prove a useful theorem, called Herrmann′s Test, which provides some

conditions that a set of formulas built up in two variables must satisfy in order for a

protoalgebraic logic to become equivalential. We also study finitely equivalential logics

which are equivalential logics that have a finite system of equivalence formulas. We

give a characterization of (finitely) equivalential logics by means of the Leibniz operator

properties. The class of equivalential logics is also characterized by closure properties
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of the class of reduced matrix models which is closed under submatrices and direct

products. Furthermore, as we did for protoalgebraic logics, we focus on the finitary

(finitely) equivalential logics. We prove that a logic is finitary and finitely equivalential

iff the class of reduced matrix models is a quasivariety. We conclude this chapter with

the presentation of some examples of modal logics which show that the class of finitely

equivalential logics is a proper subclass of equivalential logics (c.f. [Mal89]).

In Chapter 5, we study the algebraization phenomena in a broad sense. In literature

there are several notions of algebraization. In this Chapter, we will present some of

them. First we define the notion of algebraic semantics. Roughly speaking, a class K

of algebras can be considered as an algebraic semantics of a logic S if the consequence

relation ⊢S can be interpreted in the equational consequence relation
K

in a natural

way. We show that a logic can has (if any) many algebraic semantics. In addition,

if there exists an inverse interpretation of
K

in ⊢S, then K is called an equivalent

algebraic semantics for S. It is unique up to a quasivariety. If S is finitary then the

equivalent algebraic semantics K is a quasivariety. We consider weakly algebraizable

logics which are logics that have a pair of interpretations which commute with surjective

substitutions and are mutually inverse. We also give a characterization of weakly

algebraizable logics using the Leibniz operator. We define algebraizable logics as logics

which have an equivalent algebraic semantics. The most of familiar deductive systems

have equivalent algebraic semantics. The process of algebraization is related to the

famous Lindenbaum-Tarski method. For instance, this establishes the relationship

between CPL and the class BA. The central idea is to look at the set of formulas as

an algebra with operations induced by the logical connectives. Tarski observed that

logical equivalence is a congruence on the formula algebra, and therefore a quotient

algebra could be built. Many other logics are algebraizable, namely IPL. We give

some characterizations of the class of algebraizable logics. Among them, we have that

K is an equivalent algebraic semantics for a logic S iff there exists an isomorphism

between the theory lattice of S and the equational theory lattice of K that commutes

with inverse substitution. We finalize this chapter by giving some examples of logics

which show that the inclusion among the different classes of algebraizable logics are

proper.

In Chapter 6, we go behind protoalgebraic logics studying the class of truth-

equational logics, which includes the class of weakly algebraizable logics and has been

recently studied by Raftery (c.f. [Raf06b]). We characterize this class of logics by
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properties of the Suszko operator. A logic is truth equational iff the Suszko operator is

injective on the lattice filters for every algebra. We give examples of logics which are

non-protoalgebraic or truth equational, e.g. Intuitionistic Propositional Logic without

implication IPL∗.

In Chapter 7, we study the generalization of the theory of standard AAL to many-

sorted setting. This generalization is important since propositional logics are not

enough expressive when we want to reason about complex systems. Thus we need

logics over rich languages where elements can be distinguished by sorts. For instance,

the First-Order Logic (FOL) is a logic with two sorts (a sort for terms and a sort for

formulas). The predicates can be naturally seen as operations that transform terms

in formulas and the connectives as operations over formulas. A many-sorted logic is

introduced as logic whose language is obtained from a many-sorted signature with a

distinguished sort φ of formulas, and satisfies structurality condition. The notion of

hidden many-sorted signature is a many-sorted signature which is divided in a visible

and in a hidden part. In a hidden algebra, the elements are naturally split into the

visible and the hidden data. Since we cannot access immediately to the hidden data,

it is not possible to reason directly about the equality of two hidden values. Hence,

equational logic needs to be replaced by behavioral equational logic, also called hidden

equational logic, based on the notion of behavioral equivalence. Two values are consider

Γ-behaviorally equivalent if they cannot be distinguished by any experiments (visible

output) that can be built with the operations in the subsignature Γ. The Γ-behavioral

equivalence is the largest equivalence relation compatible with the operations in Γ

whose visible part is the identity relation. Thus there is a natural connection with

the Leibniz congruence. Actually, in the many-sorted AAL approach, the theory was

developed by replacing the role of unsorted equational logic by many-sorted behavioral

equational logic over the same signature and taking as unique visible sort, the sort φ

of formulas. Since the sort φ is considered visible, we have equational reasoning about

formulas, which compels every connective to be congruent. The standard notion of al-

gebraization is a particular case of many-sorted algebraization (we have a unique sort φ

of the signature Σ). And this former is a particular case of behaviorally algebraization

by considering Γ = Σ. At the end of this chapter we give some examples of logics

which are not algebraizable in the standard sense but are behaviorally algebraizable,

e.g. the paraconsistent logic C1 of da Costa (c.f. [Gon08, Chapter 5]). However, there

are many logics that are not algebraizable in any way.



Chapter 2

Preliminaries

In this chapter, we introduce some important concepts and results around the central

notions of logic and algebra that will be necessary throughout this thesis. For the in-

terested reader, we suggest [ANS01, Chapter 4], [Cze01] and [Wój88] for more on these

subjects and for the proofs of the results presented herein. We assume that the reader

is familiar with some notions of universal algebra, as the notions of homomorphism,

equivalence relation, etc (c.f. [BS81]). We allow the reader to become acquainted with

our notations, terminology, conventions and mathematical language. The expression

“iff” is used as an abbreviation for “if and only if”. We describe four alternative ways of

defining a logic which are showing to be equivalent under some conditions (c.f. [BP89]

and [Gon08]). We also define the notion of matrix and the notions of Leibniz and

Suszko operators, which we need for a semantical approach of our subject. We con-

clude this chapter by defining equational logic, which is an important tool in the study

of equivalent (algebraic) semantics for a logic.

2.1 Propositional Language and L-algebra

A propositional (or sentential) language L is a set of propositional connectives (or fun-

damental operations in algebraic context), for each one it is associated a finite natural

number called rank (or arity). We define L-constants as usual, they are connectives

(if any) of L that have rank 0. Given a propositional language L, FmL denotes the set

of propositional L-formulas, also called L-sentences (or L-terms in algebraic context)

built in the usual recursive way from the countably infinite set Var = {p0, p1, . . . } of

propositional variables (or atomic formulas) using the connectives in L: all variables
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and constants are formulas, and if ϕ0, . . . , ϕn−1 are formulas and ω is a connective of

rank n, then ω(ϕ0, . . . , ϕn−1) is a formula. Let ϕ be a formula, we write ϕ(p0, . . . , pn−1)

to indicate that the variables occurring in ϕ are all included in the list p0, . . . , pn−1.

We denote by Var(ϕ) the finite set of variables that actually occur in ϕ. If Γ ⊆ FmL,

then Var(Γ) =
⋃

{Var(ϕ) : ϕ ∈ Γ}. In the sequel, the letters p, q, . . . denote variables

and X, Y, Z, . . . represent arbitrary sets of variables. We represent formulas by lower

case Greek letters and sets of formulas by upper case Greek letters.

By an algebra of type L (an L-algebra for short) we mean a structure A = 〈A, 〈ωA :

ω ∈ L〉〉 where A is a non-empty set called the universe of A and ωA is an operation on

A of arity k for each connective ω of rank k, i.e., a mapping ωA : Ak → A. We represent

L-algebras by boldface roman letters and their universes by the corresponding lightface

letters. We assume that the reader is familiar with notions of universal algebra, as the

notions of subalgebra, direct product of family of algebras, etc. Let A = 〈A, 〈ωA :

ω ∈ L〉〉 be an L-algebra and L′ a sublanguage of L, i.e., L′ ⊆ L. The L′-algebra

〈A, 〈ωA : ω ∈ L′〉〉 is called the L′-reduct of A. The algebra of L-formulas is the

absolutely free algebra FmL (or TeL(Var)) of type L over the set of generators Var.

For any set X of variables, FmL(X) denotes the set of formulas in which only variables

from X occur, and we denote by FmL(X) the corresponding subalgebra of FmL.

Let A be an L-algebra and ϕ ∈ FmL. Depending on the values in A that variables

of ϕ are assigned, the formula ϕ has a unique interpretation in A. Since FmL is

absolutely freely generated by the set of variables, any mapping h : Var → A can be

uniquely extended to a homomorphism h̄ : FmL → A, called assignment (also named

valuation or evaluation). Conversely, if we have a homomorphism g : FmL → A

then there exists a homomorphism h : Var → A such that h̄ = g. Indeed, we can

always consider h := g|Var. In the sequel, we also write h for h̄. Let A be an algebra,

ϕ(p0, . . . , pn−1) ∈ FmL and a0, . . . , an−1 ∈ A. We write ϕA(a0, . . . , an−1) = h(ϕ), i.e., it

is the interpretation of ϕ in A when h(pi) = ai for i = 0, . . . , n− 1. An endomorphism

e : FmL → FmL is called a substitution. By a substitution instance of a formula ϕ we

mean a formula of the form e(ϕ) where e is any substitution.

A congruence on an algebra A is an equivalence relation that is compatible with

the operations on A (c.f. [BS81, Definition 5.1 in Chapter II]). Let A be an algebra

and a1, . . . , an ∈ A. We denote by θ(a1, . . . , an) the congruence generated by {(ai, aj) :

1 ≤ i, j ≤ n}, which is the smallest congruence such that a1, . . . , an are in the same

equivalence class. The congruence generated by the pair (a1, a2), θ(a1, a2), is called
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principal congruence. The set of all congruences on an L-algebra A is denoted by

CoA. This set is always closed under arbitrary intersections and unions of directed

sets. Thus, it forms a lattice with set-theoretical inclusion, where the meet operation is

the intersection of congruences and the join operation is defined in the following way:

θ1 ∨ θ2 = θ1 ∪ (θ1 ◦ θ2) ∪ (θ1 ◦ θ2 ◦ θ1) ∪ . . . (c.f. [BS81, Theorem 4.6 in Chapter I]).

Let K be a class of L-algebras. We say that θ is a K-congruence of A if θ ∈ CoA and

A/θ ∈ K. The set of all K-congruences of A is denoted by CoKA. Given any R ⊆ A2,

the intersection of all K-congruences on A that includes R is denoted by θA
K
R and is

called the K-congruence generated by R. If R = {(a, b)}, we simply write θA
K

(a, b) for

the smallest congruence θ of A such that a ≡ b(θ) and A/θ ∈ K.

2.2 Logic and Deductive System

A logic S (or logical system) over a propositional language L is defined as a pair

S = 〈L,⊢S〉, where ⊢S is a relation between set of formulas and individual formulas,

called the consequence relation of S, which satisfies the following conditions, for all

Γ,∆ ⊆ FmL and ϕ, ψ ∈ FmL:

ϕ ∈ Γ ⇒ Γ ⊢S ϕ (Reflexivity)

Γ ⊢S ϕ and Γ ⊆ ∆ ⇒ ∆ ⊢S ϕ (Cut)

Γ ⊢S ϕ and ∆ ⊢S ψ for every ψ ∈ Γ ⇒ ∆ ⊢S ϕ (Weakening)

Γ ⊢S ϕ⇒ e[Γ] ⊢S e(ϕ) for every substitution e (Structurality)

where Γ ⊢S ϕ abbreviates that 〈Γ, ϕ〉 ∈ S and reads Γ entails ϕ in S or ϕ is a

consequence of Γ in S. Note that reflexivity and weakening conditions together imply

cut condition. Let Γ,∆ ⊆ FmL, we write Γ ⊢S ∆ for Γ ⊢S δ for all δ ∈ ∆, and we

write Γ ⊣⊢S ∆ when Γ ⊢S ∆ and ∆ ⊢S Γ hold. In the later case, we say that Γ and ∆

are interderivable.

A very important property of a logic is the finitariness. Indeed, there are logicians

(e.g. Blok and Pigozzi) that defined logic being finitary. We say that ⊢S is finitary if

Γ ⊢S ϕ⇒ Γ′ ⊢S ϕ for some finite Γ′ ⊆ Γ.

With this extra property, we obtain stronger results that we will emphasize throughout

the text.
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A formula is called a theorem of S (an S-theorem for short) if ∅ ⊢S ϕ (we write ⊢S ϕ

for short). The set of all theorems is denoted by Thm(S). By the structurality of S,

Thm(S) is closed under substitutions. A set T of formulas is called a theory of S (an

S-theory for short) if it is closed under the consequence relation ⊢S, that is, if, for every

ϕ ∈ FmL, T ⊢S ϕ implies ϕ ∈ T . We represent theories by uppercase Latin letters.

The set of all S-theories is denoted by Th(S) and is closed under inverse substitutions.

Indeed, let e be a substitution, T ∈ Th(S) and ϕ ∈ FmL. Suppose e−1[T ] ⊢S ϕ.

By structurality of S, e[e−1[T ]] ⊢S e(ϕ). Since we always have that e[e−1[T ]] ⊆ T ,

by cut condition, T ⊢S e(ϕ). As T is a theory, e(ϕ) ∈ T , i.e., ϕ ∈ e−1[T ]. Thus

e−1[T ] ∈ Th(S). Observe that the theorems of S belong to every S-theory and it is

not required that this set be nonempty. We say that a theory is consistent if it is not

the set of all formulas. Otherwise, it is called inconsistent. The set Th(S) forms a

complete lattice Th(S) = 〈Th(S),∩,∨S〉, where the meet operation is the intersection

of an arbitrary family of theories and the join operation is defined in the following way:

for any T, T ′ ∈ Th(S), T ∨S T ′ =
⋂

{R ∈ Th(S) : T ∪ T ′ ⊆ R}. The largest theory is

the set FmL and the smallest theory is the set Thm(S). For any Γ ⊆ FmL, we denote

by CnSΓ the smallest S-theory including Γ, i.e., CnSΓ = {ϕ ∈ FmL : Γ ⊢S ϕ} and we

said that Γ generates CnSΓ. It is not difficult to see that T ∨S T ′ = CnS(T ∪ T ′), i.e.,

T ∨S T ′ is the theory generated by T ∪ T ′. An S-theory T is finitely axiomatized or

finitely generated if T = CnSΓ for some finite Γ ⊆ FmL.

Let Γ ∪ {ϕ} ∈ FmL. We have that Γ ⊢S ϕ iff, for all substitutions e and T ∈

Th(S) such that e[Γ] ⊆ T we have e(ϕ) ∈ T . Indeed, suppose that Γ ⊢S ϕ. Let

e be a substitution and T ∈ Th(S) such that e[Γ] ⊆ T . By structurality condition,

e[Γ] ⊢S e(ϕ). And by cut condition, T ⊢S e(ϕ). Since T is a theory, e(ϕ) ∈ T .

Conversely, let Γ ∪ {ϕ} ∈ FmL and consider the substitution e = idFmL
. Thus, for

every T ∈ Th(S) such that e[Γ] ⊆ T , we have that e(ϕ) ∈ T . Let T := CnS(Γ). Since

e[Γ] = Γ ⊆ CnS(Γ) = T , we have that ϕ = e(ϕ) ∈ T . We conclude that Γ ⊢S ϕ.

Let S be a logic. We can see CnS as a function on the power set of FmL into itself,

usually called the consequence operator of S. This operator satisfies the following

conditions, for all Γ,∆ ⊆ FmL:

Γ ⊆ CnSΓ (Reflexivity)

Γ ⊆ ∆ ⇒ CnSΓ ⊆ CnS∆ (Monotonicity)

CnSCnSΓ ⊆ CnSΓ (Idempotency)
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e[CnSΓ] ⊆ CnS(e[Γ]) for every substitution e (Structurality)

In addition, if S is finitary then CnS is finitary in the sense

CnSΓ ⊆
⋃

{CnSΓ′ for all finite set Γ′ ⊆ Γ}.

Conversely, any function C from power set of FmL into itself satisfying reflexivity,

monotonicity, idempotency and structurality conditions, give rise to a logic S. Indeed,

we defined the relation ⊢S in the following way: for all Γ ∪ {ϕ} ⊆ FmL, Γ ⊢S ϕ

iff ϕ ∈ C(Γ). It is not difficult to see that the relation ⊢S satisfies reflexivity, cut,

weakening and structurality conditions. Thus, we obtain a logic over L, which can be

proved finitary whenever C is finitary.

Theorem 2.2.1. Let C be a set of subsets of FmL. C is the set of theories of some

logic iff the following conditions hold:

(i) C is closed under arbitrary intersection, i.e.,
⋂

X ∈ C for every X ⊆ C;

(ii) C is closed under inverse images of substitutions, i.e., if T ∈ C then e−1[T ] ∈ C

for every substitution e.

Proof. Suppose that C is a set of theories of a logic S, i.e., C = Th(S). Since Th(S) is

always closed under arbitrary intersection and inverse images of substitutions, condi-

tions (i) and (ii) hold.

Conversely, assume conditions (i) and (ii). We define a relation ⊢C between set

of formulas and individual formulas as follows, for all Γ ∪ {ϕ} ⊆ FmL, Γ ⊢C ϕ iff

ϕ ∈
⋂

{T ∈ C : Γ ⊆ T} := CnC(Γ). It is not difficult to see that reflexivity, cut and

weakening conditions hold. Let Γ ∪ {ϕ} ⊆ FmL. Suppose Γ ⊢C ϕ, i.e., ϕ ∈ CnCΓ.

Let e be a substitution. Thus e(ϕ) ∈ e[CnC(Γ)]. We always have Γ ⊆ e−1[e[Γ]]. Since

e[Γ] ⊆ CnC(e[Γ]), we have that e−1[e[Γ]] ⊆ e−1[CnC(e[Γ])]. Thus Γ ⊆ e−1[CnC(e[Γ])].

By condition (ii), e−1[CnC(e[Γ])] ∈ C. Thus CnCΓ ⊆ e−1[CnC(e[Γ])], which implies that

e[CnCΓ] ⊆ e[e−1[CnC(e[Γ])]]. Since we always have e[e−1[CnC(e[Γ])]] ⊆ CnC(e[Γ]), we

deduce that e[CnCΓ] ⊆ CnC(e[Γ]). As e(ϕ) ∈ e[CnC(Γ)], we have that e(ϕ) ∈ CnC(e[Γ]),

i.e., e[Γ] ⊢C e(ϕ). Thus structurality condition holds. We conclude that 〈L,⊢C〉 is a

logic. It only remains to show that C = Th(S). Suppose T ∈ Th(S), then T ⊢C ϕ

implies ϕ ∈ T , i.e., CnCT ⊆ T and as T ⊆ CnCT always holds, we have CnCT = T .

Since C is closed under intersection, T ∈ C. Conversely, assume T ∈ C, i.e., CnCT = T .

If T ⊢C ϕ then ϕ ∈ CnCT = T , so T ∈ Th(S).
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If S is a finitary logic then we have the following theorem.

Theorem 2.2.2. Let C be a set of subsets of FmL. C is the set of theories of some

finitary logic iff the following conditions hold:

(i) C is closed under arbitrary intersection;

(ii) C is closed under inverse images of substitutions;

(iii) C is closed under directed unions, i.e.,
⋃

X ∈ C for every X ⊆ C that is

upward-directed in the sense that, for every pair T, T ′ ∈ X, there is an R ∈ C

such that T, T ′ ⊆ R.

Moreover, condition (ii) can be replaced by

(ii′) C is closed under inverse images of surjective substitutions.

Proof. Suppose that C is a set of theories of a finitary logic S, i.e., C = Th(S). We

see the proof of Theorem 2.2.1 for conditions (i) and (ii). Let {Ti : i ∈ I} be an

upward-directed subset of Th(S). Suppose
⋃

i∈I Ti ⊢S ϕ. Since S is finitary, there

exists a finite Γ′ ⊆
⋃

i∈I Ti such that Γ′ ⊢S ϕ. As the set of Ti´s is upward-directed,

there is a j ∈ I such that Γ′ ⊆ Tj. By cut condition, Tj ⊢S ϕ, i.e., ϕ ∈ Tj ⊆
⋃

i∈I Ti.

Hence
⋃

i∈I Ti ∈ Th(S).

Conversely, assume conditions (i), (ii′) and (iii) hold. We define the relation ⊢C as

in the proof of Theorem 2.2.1. It is not difficult to see that the relation ⊢C satisfies

reflexivity, cut and weakening conditions. Let Γ ∪ {ϕ} ⊆ FmL. Suppose Γ ⊢C ϕ.

For each finite Γ′ ⊆ Γ, we consider CnCΓ
′ =

⋂

{R ∈ C : Γ′ ⊆ R}. Since C is closed

under intersection, CnCΓ
′ ∈ C. The set {CnCΓ

′ : Γ′ finite and Γ′ ⊆ Γ} is obviously

upward-directed. By condition (iii), U =
⋃

{CnCΓ
′ : Γ′ finite and Γ′ ⊆ Γ} ∈ C. Since

Γ =
⋃

{Γ′ : Γ′ finite and Γ′ ⊆ Γ} ⊆ U , by cut condition, U ⊢C ϕ, i.e., ϕ ∈ U . Hence,

ϕ ∈ CnCΓ
′ for some finite Γ′ ⊆ Γ, i.e., Γ′ ⊢C ϕ. Thus finitary condition holds. Now, let

Γ ∪ {ϕ} ⊆ FmL. Suppose Γ ⊢C ϕ. By finitary condition, there exists a finite Γ′ ⊆ Γ

such that Γ′ ⊢S ϕ, i.e, ϕ ∈ CnCΓ
′. Let e be substitution. Thus e(ϕ) ∈ e[CnC(Γ

′)]. Since

there are only finitely many variables in Γ′ ∪{ϕ}, there exists a surjective substitution

e′ such that e′(ψ) = e(ψ) for every ψ ∈ Γ′ ∪ {ϕ}. Thus e′(ϕ) ∈ e′[CnC(Γ
′)]. We

always have Γ′ ⊆ e′−1[e′[Γ′]]. Since e′[Γ′] ⊆ CnC(e
′[Γ′]), we have that e′−1[e′[Γ′]] ⊆

e′−1[CnC(e
′[Γ′])]. Thus Γ′ ⊆ e′−1[CnC(e

′[Γ′])]. By condition (ii′), e′−1[CnC(e
′[Γ′])] ∈ C.

Thus CnCΓ
′ ⊆ e′−1[CnC(e

′[Γ′])], which implies that e′[CnCΓ
′] ⊆ e′[e′−1[CnC(e

′[Γ′])]]. By

surjectivity of e′, e′[e′−1[CnC(e
′[Γ′])]] = CnC(e

′[Γ′]). Thus e′[CnCΓ
′] ⊆ CnC(e

′[Γ′]). Since

e′(ϕ) ∈ e′[CnC(Γ
′)], we have that e′(ϕ) ∈ CnC(e

′[Γ′]), i.e., e′[Γ′] ⊢C e
′(ϕ). As Γ′ ⊆ Γ,
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we have that e′[Γ′] ⊆ e′[Γ]. By cut condition, e′[Γ] ⊢C e
′(ϕ), i.e., e[Γ] ⊢C e(ϕ). Thus

structurality condition holds. We conclude that 〈L,⊢C〉 is a finitary logic. To show

that C = Th(S), we see the end of the proof of Theorem 2.2.1.

These two last theorems show that the consequence operator CnS, and hence also

the consequence relation ⊢S, can be defined in terms of the lattice Th(S). Therefore a

logic may be characterized by the properties of its set of theories, i.e, S = 〈L,Th(S)〉.

In the following lemma, we give some properties of Th(S) whenever S is a finitary

logic.

Lemma 2.2.3. [BP89, Lemma 1.1] Let S be a logic. The following conditions are

equivalent:

(i) ⊢S is finitary;

(ii) The compact elements of Th(S) coincide with the finitely generated S-theories;

(iii) ThS is closed under directed unions;

(iv) The lattice Th(S) is algebraic.

Another way of defining a finitary logic is by a set of axioms and a set of inference

rules in the so called Hilbert style. By an inference rule, we mean any pair 〈Γ, ϕ〉
(

also

denoted by
Γ

ϕ

)

where Γ is a finite set of formulas (the premises of the rule) and ϕ

is a single formula (the conclusion of the rule). An axiom, is an inference rule with

Γ = ∅, i.e., a pair 〈∅, ϕ〉, usually just denoted by ϕ. The rules of this type are called

Hilbert-style rules of inference, or H-rules for short.

Let AX be a set of axioms and IR a set of inference rules. We say that a formula

ϕ is directly derivable from a set Γ of formulas by the inference rule 〈∆, ψ〉 if there is

a substitution e such that e(ψ) = ϕ and e[∆] ⊆ Γ. An S-derivation of ϕ from Γ is a

finite sequence ϑ0, . . . , ϑn−1 of formulas such that ϑn−1 = ϕ and, for each i < n, ϑi is

either a member of Γ, a substitution instance of an axiom, or is directly derivable from

{ϑ0, . . . , ϑi−1}. An S-derivation from ∅ is called an S-proof. We can defined a relation

⊢AX,IR between set of formulas and individual formulas such that Γ ⊢AX,IR ϕ iff ϕ is

contained in the smallest set of formulas that includes Γ together with all substitution

instances of the axioms of S and is closed under direct derivability by the inference

rules of S. Clearly, Γ ⊢AX,IR ϕ iff there is an S-derivation of ϕ from Γ, and ⊢AX,IR ϕ

iff there is an S-proof of ϕ. It is not difficult to see that the relation ⊢AX,IR satisfies

reflexivity, cut, weakening, structurality and finitary conditions. Thus 〈L,⊢AX,IR〉 is
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a finitary logic, called the deductive system with the set of axioms AX and the set

of inference rules IR. Conversely, let S = 〈L,⊢S〉 be a finitary logic. By defining

AX := {ϕ : ∅ ⊢S ϕ} and IR := {〈Γ, ϕ〉 : Γ ⊢S ϕ and Γ is finite}, it is not difficult to

see that ⊢AX,IR and ⊢S coincide. The set of axioms and inference rules, 〈AX, IR〉, is

called an axiomatization (or a presentation) of S. Of course, a deductive system may

have several axiomatizations. If both the set of axioms and the set of inference rules

are finite then 〈AX, IR〉 is called a finite axiomatization.

A logic S is trivial if for all Γ 6= ∅, Γ ⊢S ϕ for every ϕ ∈ FmL. There are exactly

two trivial logics for each language L: one has the empty set of theorems, called almost

inconsistent logic, where ∅ and FmL are the only theories, and the other has every

formulas as theorems, called inconsistent logic, where FmL is the only theory. To any

logic we can associate several expansions, extensions, subsystems and fragments. By

an expansion of a logic S we mean any system S ′ = 〈L′,⊢S′〉 such that L ⊆ L′ and

Γ ⊢S ϕ ⇒ Γ ⊢S′ ϕ for all Γ ∪ {ϕ} ⊆ FmL. An expansion is called an extension if

L = L′. In this case, S is called a subsystem of S ′. A deductive system S ′ is an

axiomatic extension of S if it is obtained by adjoining new axioms but leaving the

inference rules invariant. Let L′ be a sublanguage of L, and ⊢S′ the restriction of ⊢S

to L′ in the sense that, for all Γ ∪ {ϕ} ⊆ FmL′, Γ ⊢S′ ϕ iff Γ ⊢S ϕ. It is not difficult

to see that S ′ = 〈L′,⊢S′〉 is a logic over L′. S ′ is called the L′-fragment of S and S is

called a conservative expansion of S ′.

2.3 Matrix with Leibniz and Suszko Operators

An L-matrix (or a logical matrix ) is a pair M = 〈A, D〉 where A is an L-algebra and

D is an arbitrary subset of A. The elements of D are called designated elements (or

designated values) of M. If D = A or A is a trivial algebra (that is, A has only one

element), then the matrix M is called trivial. If M is a matrix,
M

is the consequence

relation defined between a (possibly infinite) set Γ of formulas and individual formulas

ϕ, in the following way;

Γ
M
ϕ iff, for every homomorphism h : FmL → A, h[Γ] ⊆ D implies h(ϕ) ∈ D.

Furthermore, the consequence relation
M

satisfies reflexivity, cut, weakening and

structurality conditions. Thus 〈L,
M
〉 is a logic.

If M is a class of matrices,
M

is the consequence relation between a (possibly



17

infinite) set Γ of formulas and a single formula ϕ defined as follows;

Γ
M
ϕ iff, for every M ∈ M, Γ

M
ϕ.

A matrix M is called a matrix model of S (or an S-matrix for short) if, for all

Γ∪ {ϕ} ⊆ FmL, Γ ⊢S ϕ implies Γ
M
ϕ. The class of all matrix models of a logic S is

denoted by Mod(S). A subset D of A is called a deductive filter or an S-filter (simply

a filter when S is clear from context), if the matrix 〈A, D〉 is an S-matrix. Usually we

denote the S-filter of an S-matrix by the letters F , D and G. If S is a deductive system,

F is an S-filter iff F contains all interpretations of the logical axioms and is closed under

all inference rules of S. More precisely, for every homomorphism h : FmL → A, we

have h(ϕ) ∈ F for each axiom ϕ of S and h[Γ] ⊆ F implies h(ϕ) ∈ F for each inference

rule 〈Γ, ϕ〉 of S. Given an L-algebra A, the set of all S-filters of A, which is denoted

by FiS(A), is closed under arbitrary intersection. Thus it is a complete lattice, denoted

by FiS(A) = 〈FiS(A),
⋂

,
∨

〉, where
∨

i∈I

Fi =
⋂

{G ∈ FiS(A) :
⋃

i∈I

Fi ⊆ G}. Therefore,

given any subset X of A there is always the least S-filter of A that contains X; it

is called the S-filter of A generated by X which we denote by FiAS (X). If X is the

singleton {a}, we write FiAS (a) instead of FiAS ({a}) and it is called principal filter. The

S-filters on the formula algebra are exactly the S-theories and the corresponding matrix

models 〈FmL, T 〉 are called formula matrix models or Lindenbaum matrix models of

S. The class of all Lindenbaum matrix models of a logic S is denoted by L(S). An

S-filter of an S-matrix M = 〈A, D〉 is an S-filter on the algebra A that includes D.

We denote by FiS(M) = {E : E ∈ FiS(A) and D ⊆ E} the set of all S-filters of M

which forms a complete sublattice of FiS(A).

A logic S over the language L is said to be complete relative to a class of S-matrices

M if for all Γ ∪ {ϕ} ⊆ FmL, Γ ⊢S ϕ⇔ Γ
M
ϕ; when this holds, we say that M is a

matrix semantics for S or that M is strongly adequate for S. The next theorem says

that every logic has a matrix semantics.

Theorem 2.3.1 (Completeness Theorem). Let S be a logic. The class of all matrix

models of S forms a matrix semantics for S. Furthermore, the class of all Lindenbaum

matrix models of S is also a matrix semantics for S.

Proof. Let Γ ∪ {ϕ} ⊆ FmL and M ∈ Mod(S). By definition of matrix model of S,

Γ ⊢S ϕ⇒ Γ
M
ϕ.
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Conversely, assume Γ
Mod(S)

ϕ. Let T = CnS(Γ) ∈ Th(S). Thus M = 〈FmL, T 〉 ∈

Mod(S). Consider h = idFmL
(the identity homomorphism on FmL), then h[Γ] = Γ ⊆

CnS(Γ) = T . Hence h(ϕ) = ϕ ∈ T . Since T = CnS(Γ), Γ ⊢S ϕ.

We may consider an L-matrix 〈A, D〉 as a structure over the first order language

without equality containing the operation connectives of L and one unary predicate. If

we consider the matrix model 〈A, D〉 as a first order structure, the unary predicate is

interpreted as D. It admits the intuitive interpretation “it is true that” and it is often

called the truth predicate (c.f. [BP89]).

Let A be an algebra and D ⊆ A. A (matrix ) congruence on a matrix M = 〈A, D〉

(also called strict congruence of the matrix M) is a congruence on A that is compatible

with D in the sense that, if, for all a, b ∈ A, a ∈ D and 〈a, b〉 ∈ θ then b ∈ D . For

any family (θi)i∈I of congruences on A compatible with D, we have that
∨

i∈I

θi is also

a congruence on A compatible with D (c.f. [BP92, Lemma 5.2]).

Definition 2.3.2. Let 〈A, D〉 be a matrix. Then there is the largest matrix congruence

(i.e., the largest congruence on A compatible with D) called the Leibniz congruence of

D on A and denoted by ΩAD.

Observe that the definition of Leibniz congruence is completely independent of any

logic; it is intrinsic to A and D. The Leibniz congruence is the largest congruence θ

of A such that for all a ∈ A we have either a/θ ⊆ D or a/θ ∩D = ∅. In other words,

the Leibniz congruence does not identify elements inside D with elements outside D.

In the following theorem, we give a characterization of the Leibniz congruence.

Theorem 2.3.3. Let 〈A, D〉 be a matrix. Then,

ΩAD = {(a, b) ∈ A2 : ϕA(a, c0, . . . , ck−1) ∈ D iff ϕA(b, c0, . . . , ck−1) ∈ D,

for all ϕ(p, q0, . . . , qk−1) ∈ FmL, k < ω, and all c0, . . . , ck−1 ∈ A}.

This definition justifies the term “Leibniz congruence” for ΩAD since it formalizes

the Leibniz second order criterion of equality according to which two objects of a

domain are equal iff they share exactly the same properties expressed in the language

of the discourse. For the Leibniz congruence on the formula algebra FmL we simply

write Ω instead of ΩFmL
.

The Leibniz operator on A is a function ΩA : P(A) → Co(A), which for any

D ⊆ A associates ΩAD, the largest congruence of A compatible with D. In [Her96],
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Herrmann considered only the Leibniz operator over the formula algebra FmL. For

any T ∈ Th(S), he called ΩT the relation of indiscernibility with respect to T given

by:

α ≡ β(ΩT ) iff for all ϕ ∈ FmL, p ∈ Var, ϕ(p/α) ∈ T ⇔ ϕ(p/β) ∈ T,

where ϕ(p/α) is the formula that results from ϕ replacing p by α.

There are some properties of the Leibniz operator that we need for our study.

Lemma 2.3.4. [BP92, Lemma 5.4] Let A and B be L-algebras, and h : A → B a

surjective homomorphism. Then, for every F ∈ FiS(B), ΩA(h−1[F ]) = h−1[ΩBF ].

Let A be an algebra. We say that the Leibniz operator is monotone on FiS(A)

(also called compatibility property in [BP86, Definition 2.2] or order -preserving), if, for

all F,G ∈ FiS(A) such that F ⊆ G we have ΩAF ⊆ ΩAG. The Leibniz operator is

said to be commute with inverse substitutions on FiS(A), if, for all F ∈ FiS(A) and all

substitutions e, we have e−1[ΩAF ] = ΩA(e−1[F ]). If the Leibniz operator Ω is monotone

and commutes with inverse substitutions on Th(S), then e[ΩT ] ⊆ Ω(CnS(e[T ])) for

all substitutions e and T ∈ Th(S). Indeed, let T ∈ Th(S) and e a substitution. Since

e[T ] ⊆ CnS(e[T ]), we have T ⊆ e−1[CnS(e[T ])] and e−1[CnS(e[T ])] ∈ Th(S). Hence, by

monotonicity of the Leibniz operator, ΩT ⊆ Ω(e−1[CnS(e[T ])]). Since Ω commutes with

inverse substitution, Ω(e−1[CnS(e[T ])]) = e−1[Ω(CnS(e[T ]))] which gives that ΩT ⊆

e−1[Ω(CnS(e[T ]))]. Therefore, e[ΩT ] ⊆ Ω(CnS(e[T ])). We say that the Leibniz operator

is meet-continuous on FiS(A), if, for every family (Fi)i∈I of FiS(A), ΩA

(
⋂

{Fi : i ∈

I}
)

=
⋂

{ΩAFi : i ∈ I}. And we say that it is continuous on FiS(A), if, for every

directed family (Fi)i∈I of FiS(A) such that
⋃

{Fi : i ∈ I} ∈ FiS(A), ΩA

(
⋃

{Fi : i ∈

I}
)

=
⋃

{ΩAFi : i ∈ I}. The Leibniz operator is said to be injective on FiS(A), if, for

all F,G ∈ FiS(A), ΩAF = ΩAG implies F = G.

Lemma 2.3.5. [Raf06b, Lemma 5] If a logic S has no theorem then its Leibniz operator

is non-injective on FiS(A) for every algebra A.

There is another important operator, Ω̃A, called the Suszko operator of S which

maps each S-filter F of an algebra A to the intersection of the Leibniz congruences of

all S-filters containing F . The Suszko operator of S on A is a function with domain

FiS(A) that maps each S-filter F of A to the congruence on A compatible with D

(not necessary the largest) such that Ω̃AF :=
⋂

{ΩAG : F ⊆ G ∈ FiS(A)} which

is called the Suszko congruence. Note that Ω̃AF ⊆ ΩAF , for every S-filter F of an
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algebra A and it is not difficult to see that Ω̃A is always monotone on FiS(A) for every

algebra A. We can characterize the Suszko congruence by the following condition: for

all a, b ∈ A, 〈a, b〉 ∈ Ω̃AF iff for all ϕ(p, q0, . . . , qk−1) ∈ FmL and c0, . . . , ck−1 ∈ A,

FiAS (F ∪ {ϕA(a, c0, . . . , ck−1)}) = FiAS (F ∪ {ϕA(b, c0, . . . , ck−1)}). Observe that the

Suszko congruence does not only depend on A and F but also on S through the

operator FiAS of S-filter generation on A. In the case of theories, the Suszko operator

is simply characterized in the following way: for all ϕ, ψ, α ∈ FmL and p ∈ Var(α),

ϕ ≡ ψ(Ω̃T ) iff T ∪ {α(p/ϕ)} ⊣⊢S T ∪ {α(p/ψ)}.

Given a matrix M = 〈A, D〉 and a matrix congruence θ of M, the quotient of M

by θ is the matrix 〈A/θ,D/θ〉, called the quotient matrix of M by θ, where A/θ

is the quotient algebra and D/θ is the set of equivalence classes of the elements in

D. There is only one matrix congruence on the quotient of a matrix by its Leibniz

congruence, which is the identity relation, denoted by △A (whereas ∇A denotes the

totally relation). A matrix 〈A, D〉 is said to be reduced (or Leibniz -reduced or simple)

if ΩAD = ∆A. To each matrix M = 〈A, D〉 corresponds 〈A/ΩAD,D/ΩAD〉 the

reduced matrix (also called the reduction of M), denoted by M/ΩM or M∗. We denote

by Mod∗(S) the class of all reduced matrix models of S and by L∗(S) the class of all

reduced Lindenbaum matrix models of S.

The class of algebras that is traditionally associated with a logic S is the class

of algebraic reducts (or algebraic Leibniz -reducts) of the reduced matrix models of S,

denoted by Alg∗(S), i.e.,

Alg∗(S) = {A : there exists F ∈ FiS(A) such that 〈A, F 〉 ∈ Mod∗(S)}.

The class of algebraic reducts of the matrices in L∗ is denoted by LAlg∗(S):

LAlg∗(S) = {FmL : there exists T ∈ Th(S) such that 〈FmL, T 〉 ∈ L∗(S)}.

The elements of LAlg∗(S) are called the Lindenbaum algebras of S.

We have the corresponding notation for the Suszko operator. A matrix 〈A, D〉 is

said to be Suszko-reduced if Ω̃AD = ∆A. Thus to each matrix M = 〈A, D〉 corresponds

the Suszko-reduced matrix 〈A/Ω̃AD,D/Ω̃AD〉. Obviously, every Leibniz-reduced ma-

trix of S is Suszko-reduced, but the converse is false. We denote by Mod∗
Su(S), L∗

Su(S),

Alg∗
Su(S) and LAlg∗

Su(S) the class of Suszko-reduced matrix models of S, the class of

Suszko-reduced Lindenbaum matrix models of S, the class of algebraic Suszko-reducts
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of the Suszko-reduced matrix models of S and the class of algebraic Suszko-reducts of

the Suszko-reduced Lindenbaum matrix models of S, respectively. Actually, the class

of algebras that AAL canonically associates to a logic S is the class Alg∗
Su(S). How-

ever, this class coincides with Alg∗(S) for the protoalgebraic logics which are defined

in the following chapter.

A submatrix of a matrix 〈A, D〉 is a matrix of the form 〈B, E〉, where B is a

subalgebra of A and E = D∩B. The direct product of a family of matrices (〈Ai, Di〉)i∈I

is defined by 〈
∏

i∈I

Ai,
∏

i∈I

Di〉, where
∏

i∈I

Ai is the usual direct product of the family of

L-algebras (Ai)i∈I and
∏

i∈I

Di is the cartesian product of the family of sets (Di)i∈I .

A submatrix 〈A, D〉 of this direct product is called a subdirect product of the family

of matrices if A is a subdirect product of the family of algebras (Ai)i∈I , that is, if

πi[A] = Ai for each projection function πi : A ⊆
∏

i∈I

Ai → Ai.

Let F be a filter over I and (〈Ai, Di〉)i∈I a family of matrices. We define on the

direct product
∏

i∈I

Ai the binary relation θF by the condition: for all a, b ∈
∏

i∈I

Ai,

a ≡ b(θF ) iff {i ∈ I : a(i) = b(i)} ∈ F.

The relation θF is a congruence relation on the algebra
∏

i∈I

Ai. The quotient algebra

∏

i∈I

Ai/F is called a reduced product of the family of algebras (Ai)i∈I . The set
∏

i∈I

Di/F

of designated elements is defined as follows: for all a ∈
∏

i∈I

Ai,

a/F ∈ D/F iff {i ∈ I : a(i) ∈ Di} ∈ F.

We denote by 〈 〉F the class of the congruence θF . The reduced product of a family

of matrices (〈Ai, Di〉)i∈I is the matrix 〈
∏

i∈I

Ai/F,
∏

i∈I

Di/F 〉. If F consists on the set

I only, the reduced product is isomorphic with the direct product of the family of

matrices (〈Ai, Di〉)i∈I . We say that F is an ultrafilter over I, if F is a filter over I

such that for all X ∈ P(I), X ∈ F iff I \ X /∈ F . If F is an ultrafilter over I, then

〈
∏

i∈I

Ai/F,
∏

i∈I

Di/F 〉 is called an ultraproduct of the family of matrices (〈Ai, Di〉)i∈I .

2.4 Quasivariety

By an L-equation (or simply an equation), we mean a formal expression ϕ ≈ ψ, with

ϕ, ψ ∈ FmL. Sometimes it is useful to see an equation as a pair of formulas 〈ϕ, ψ〉.
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We denote by EqL the set of all L-equations. A quasi -equation is a formal expression

ξ0 ≈ η0 ∧ · · · ∧ ξn−1 ≈ ηn−1 → ϕ ≈ ψ with ξ0, . . . , ξn−1, η0, . . . , ηn−1, ϕ, ψ ∈ FmL.

Similarly, we can see quasi-equation as a pair 〈Γ, λ〉, where Γ is a finite set of equations

and λ is an equation. Equations can be seen as special case of quasi-equations.

Let ϕ ≈ ψ be an equation, Γ a set of equations and A an algebra. We write

Γ
A
ϕ ≈ ψ if, for every homomorphism h : FmL → A,

h(ξ) = h(η) for every ξ ≈ η ∈ Γ implies h(ϕ) = h(ψ).

If Γ = ∅, we write
A
ϕ ≈ ψ instead of ∅

A
ϕ ≈ ψ. An equation ϕ ≈ ψ is an identity

of A if
A
ϕ ≈ ψ. Similarly, a quasi-equation ξ0 ≈ η0 ∧ · · · ∧ ξn−1 ≈ ηn−1 → ϕ ≈ ψ is

a quasi -identity of A if {ξ0 ≈ η0, . . . , ξn−1 ≈ ηn−1} A
ϕ ≈ ψ.

Let K be a class of L-algebras. The (semantic) equational consequence relation
K

determined by K is the relation between a set Γ of equations and a single equation

ϕ ≈ ψ, denoted by Γ
K
ϕ ≈ ψ and defined in the following way:

Γ
K
ϕ ≈ ψ iff, for every A ∈ K we have Γ

A
ϕ ≈ ψ.

In this case we say that ϕ ≈ ψ is a K-consequence of Γ. We write
K
ϕ ≈ ψ instead

of ∅
K
ϕ ≈ ψ. If Γ,Γ′ are sets of equations, then we write Γ

K
Γ′ for Γ

K
ϕ ≈ ψ

for all ϕ ≈ ψ ∈ Γ′, and Γ
K

Γ′ when Γ
K

Γ′ and Γ′
K

Γ hold. If K is the class

of the L-algebras that satisfy a given set of equations then it is called a variety and

if they satisfy a set of quasi-equations then it is called a quasivariety. A variety or a

quasivariety is trivial if it contains, up to isomorphism, only the one-element algebra.

Since the intersection of a class of varieties of type L is again a variety and the class

of all L-algebras forms a variety, we can conclude that for every class K of algebras

of a same type there is a smallest variety containing K, denoted by V(K) and called

the variety generated by K. If K has a single member A, we write simply V(A). A

variety V is finitely generated if V = V(K) for some finite set K of algebras. We can

defined the same notions for quasivariety. For example, there is a smallest quasivariety

containing K and denoted by Q(K).

We assume that the reader is familiar with notions of universal algebra, as homo-

morphism, isomorphism, direct product, etc. We introduce the following operators

mapping classes of algebras to classes of algebras (all of the same type):

A ∈ I(K) iff A is isomorphic to some member of K;
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A ∈ S(K) iff A is an isomorphic copy of subalgebra of some member of K;

A ∈ H(K) iff A is a homomorphic image of some member of K;

A ∈ P(K) iff A is an isomorphic copy of direct product of a nonempty family of

algebras in K;

A ∈ PS(K) iff A is an isomorphic copy of subdirect product of a nonempty family of

algebras in K;

A ∈ PR(K) iff A is an isomorphic copy of reduced product of a nonempty family of

algebras in K;

A ∈ PU(K) iff A is an isomorphic copy of ultraproduct of a nonempty family of

algebras in K.

A variety can be characterized as a nonempty class K of L-algebras which is closed

under homomorphic images, subalgebras and direct products.

Theorem 2.4.1. [BS81, Chatper II, Theorem 9.5] Let K be a class of algebras. Then,

V(K) = HSP(K)

Theorem 2.4.2. [BS81, Chapter V, Theorem 2.25] Let K be a class of algebras. Then

the following are equivalent:

(i) K can be axiomatized by quasi-identities;

(ii) K is a quasivariety;

(iii) K is closed under I,S,P and PU and contains a trivial algebra;

(iv) K is closed under ISPR and contains a trivial algebra;

(v) K is closed under ISPPU and contains a trivial algebra.

2.5 Equational Logic

The equational consequence relation
K

satisfies the following conditions:

ϕ ≈ ψ ∈ Γ ⇒ Γ
K
ϕ ≈ ψ (Reflexivity)

Γ
K
ϕ ≈ ψ and Γ ⊆ ∆ ⇒ ∆

K
ϕ ≈ ψ (Cut)

Γ
K
ϕ ≈ ψ and ∆

K
ξ ≈ η for all ξ ≈ η ∈ Γ ⇒ ∆

K
ϕ ≈ ψ (Weakening)
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Γ
K
ϕ ≈ ψ ⇒ e[Γ]

K
e(ϕ) ≈ e(ψ) for all substitution e (Structurality)

The relation
K

is called finitary if

Γ
K
ϕ ≈ ψ implies Γ′

K
ϕ ≈ ψ for some finite Γ′ ⊆ Γ.

The equational consequence relation
K

associated with a quasivariety K is an ex-

ample of a 2-deductive system. For more information about k-deductive systems (in a

general case), we point out to [BP92, Chapter 1], [CP99, Definition 2.1] and [CP04a,

Definition 1]. In this context, we deal with an equation ϕ ≈ ψ as a 2-formula 〈ϕ, ψ〉.

We denote by 〈L,
K
〉 the equational logic associated to K. All notions applicable

to deductive systems, which are 1-deductive systems, transfer naturally to 2-deductive

systems, and in particular to equational logic.

A set of equations Γ is called an equational theory of K
(

K
-theory or K-theory

for short
)

if Γ
K
ϕ ≈ ψ implies ϕ ≈ ψ ∈ Γ, i.e., if Γ is closed under K-consequence.

The set of all K-theories is denoted by Th(K). It is closed under arbitrary intersection.

It forms a complete lattice Th(K) = 〈Th(K),∩,∨〉 where the largest theory is the set

EqL and the smallest is the set of identities of K. Let Γ be a set of equations. We

denote by CnKΓ = {ϕ ≈ ψ ∈ EqL : Γ
K
ϕ ≈ ψ} the smallest K-theory containing Γ.

The notion of generators of a K-theory is defined in the obvious way. We note that the

theories of an equational logic are exactly the K-congruences on the formula algebra

FmL.

Lemma 2.5.1. Let K be a class of algebras. If K is closed under ultraproducts, then

K
is finitary.

Proof. Assume that
K

is closed under ultraproducts. Suppose
K

is not finitary.

Let Γ ∪ {ϕ ≈ ψ} ∈ EqL. Consider Γ
K
ϕ ≈ ψ. Thus for all finite set Γ′ ⊆ Γ,

Γ′ 2K ϕ ≈ ψ. Let I be the set of all indices i such that Γi is a finite subset of Γ, i.e.,

I = {i : Γi is a finite subset of Γ}. Consider the set i∗ := {j ∈ I : Γi ⊆ Γj}, for all

i ∈ I. It is not difficult to see that the family (i∗)i∈I have a finite intersection property,

in the sense that for all I ′ ⊆ I,
⋂

i∈I′

i∗ 6= ∅ (because the propositional language have

a countably infinite set of variables). Thus there exists a proper filter which contains

the family (i∗)i∈I . This proper filter can be extended to an ultrafilter, i.e., there exists

an ultrafilter U such that (i∗)i∈I ⊆ U . By hypothesis, we have that for each i ∈ I,

there exists an L-algebra Ai of K such that Γi 2Ai
ϕ ≈ ψ. Thus, for each i ∈ I, there

exists a homomorphism hi : FmL → Ai such that hi(ξ) = hi(η), for all ξ ≈ η ∈ Γi and
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hi(ϕ) 6= hi(ψ). Let A =
∏

i∈I

Ai/U be the ultraproducts of the family (Ai)i∈I . Since K

is closed under ultraproducts, we have that A ∈ K. Let h := 〈hi : i ∈ I〉F : FmL → A.

For all ξ ≈ η ∈ Γ, if h(ξ) = h(η) then hi(ξ) = hi(η) for all i ∈ I. Which implies that

hi(ϕ) 6= hi(ψ) for all i ∈ I, i.e., h(ϕ) 6= h(ψ). Thus, A ∈ K and Γ 2A ϕ ≈ ψ. Hence

we have a contradiction with the hypothesis. Therefore
K

is finitary.

We can also show that if a logic S is finitary then the class Mod(S) is closed under

ultraproducts.

In the following lemma, we give some properties of Th(K) whenever
K

is a finitary

equational logic.

Lemma 2.5.2. [BP89, Lemma 3.1] Let K be a class of algebras. Then the following

conditions are equivalent:

(i)
K

is finitary;

(ii)
K

coincides with
Q(K)

;

(iii) The compact elements of Th(K) coincide with the finitely generated K-

theories;

(iv) Th(K) is closed under directed unions;

(v) The lattice Th(K) is algebraic.

An equational logic
K

can be viewed in several ways. Indeed, it can be also

defined by the consequence operator CnK or by the theory lattice ThK.

If K is a quasivariety axiomatized by a set Γ of identities and quasi-identities, then

K
can be viewed as an equational consequence relation over the set of L-equations

defined by axioms and inference rules as follows: for axioms, we have,

p ≈ p

ϕ ≈ ψ, for every equation ϕ ≈ ψ ∈ Γ

And for inference rules,

p ≈ q

q ≈ p

p ≈ q, q ≈ r

p ≈ r

{pi ≈ qi : i < m}

f(p0, . . . , pm−1) ≈ f(q0, . . . , qm−1)
for every f ∈ L with arity m
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{ϕi ≈ ψi : i < n}

ϕ ≈ ψ
for every quasi-equation (ϕ0 ≈ ψ0 ∧ · · · ∧ ϕn−1 ≈ ψn−1) → ϕ ≈

ψ ∈ Γ.

For each homomorphism h : FmL → A, the set of equations {ϕ ≈ ψ : h(ϕ) = h(ψ)}

is a congruence called the relation-kernel of h. The relation-kernel of the natural

mapping of FmL onto FmL/θ is θ itself. For any homomorphism h of FmL into

a member of K, the relation-kernel θ of h is a K-theory. More generally, for any

Γ ⊆ EqL, the K-theory CnKΓ generated by Γ can be characterized as the intersection

of the relation-kernels θ of all homomorphisms of FmL into members of K such that

h(ξ) = h(η) for all ξ ≈ η ∈ Γ. If K is a quasivariety then a set of equations Γ is a K-

theory iff θ = {(ϕ, ψ) : ϕ ≈ ψ ∈ Γ} is a K-congruence on FmL, i.e., θ is a congruence

on FmL and FmL/θ ∈ K. A matrix homomorphism (a strict homomorphism) from

M = 〈A, D〉 to N = 〈B, E〉 is an h ∈ Hom(A,B) such that D ⊆ h−1[E] (D = h−1[E]

respectively). We denote by Hom(M,N) the set of all matrix homomorphisms from

M to N, and by HomS(M,N) the set of all strict homomorphisms from M to N. The

kernel of a strict homomorphism from M to N is a matrix congruence on M, and every

matrix congruence θ of a matrix 〈A, D〉 can be obtained as the kernel of the projection

of 〈A, D〉 onto 〈A/θ,D/θ〉.

The class Mod(S) is closed under strict homomorphic pre-image, strict homomor-

phic image, submatrices and direct products (c.f. [Cze01, Corollary 0.3.10]). Moreover,

if S is finitary then Mod(S) is closed under reduced products (c.f. [Cze01, Corollary

0.3.10]). We say that a class of matrices is a matrix -quasivariety if it is closed under

submatrices, direct products and ultraproducts.
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Protoalgebraic Logics

In this chapter, we consider a wide class of logics called protoalgebraic logics. We

give some characterizations of this class using two operators, namely the Leibniz

and the Suszko operators. We show that a logic S is protoalgebraic iff it has an

k-parameterized system of equivalence formulas, or equivalently, if it has the param-

eterized local deduction-detachment theorem (PLDDT for short). We also study the

relationship between the structural properties of the class of reduced matrix models

and metalogical properties of protoalgebraic logics. As we have pointed out in the

introduction, we emphasize some results about finitary protoalgebraic logics. We give

examples to illustrate some results. For more details about protoalgebraic logics, we

suggest [BP86] and [Cze01, Chapter 1 and 2].

3.1 Definitions

Let S be a logic and T an S-theory. Two formulas α and β are said to be T -indiscernible

relative to S (or T -equivalent relative to S in [BP86]) if for every formula ϕ ∈ FmL

and every variable p occurring in ϕ, T ⊢S ϕ(p/α) iff T ⊢S ϕ(p/β), where ϕ(p/α) is the

formula that results from ϕ replacing the variable p by α. Equivalently, α and β are

T -indiscernible iff α and β are congruent modulo the Leibniz congruence ΩT on FmL.

We say that two formulas α and β are T -interderivable relative to S (or inferentially

equivalent in [Mal89]) if T, α ⊢S β and T, β ⊢S α where T, α ⊢S β means T ∪{α} ⊢S β.

The notion of protoalgebraic logic was defined by Blok and Pigozzi in [BP86, Definition

2.1].
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Definition 3.1.1. A logic S is called protoalgebraic if, for every S-theory T , any two

formulas which are T -indiscernible relative to S are T -interderivable relative to S, i.e.,

for all T ∈ Th(S) and α, β ∈ FmL,

α ≡ β(ΩT ) implies T, α ⊢S β and T, β ⊢S α.

Moreover, if the reverse implication holds, the logic is called selfextensional.

Any conservative expansion of a protoalgebraic logic is also protoalgebraic ([BP86,

Theorem 2.11]).

A logic S is called non-pathological by Czelakowski (c.f. [Her96]) if there is a set

∆(p, q) of formulas in two variables p and q such that

⊢S ∆(p, p) (Reflexivity)

{p} ∪ ∆(p, q) ⊢S q (Modus Ponens)

The set ∆ is called a system of implication formulas or a protoequivalence system for

S.

The set Tpq := {ϕ(p, q, r1, . . . , rn) : ⊢S ϕ(p, p, r1, . . . , rn)} is a set of all formulas

ϕ(p, q, r1, . . . , rn) which become theorems of S after the identification of the variables

p and q in ϕ. We often use this set because if a logic is protoalgebraic then Tpq is a

protoequivalence system and also an k-parameterized system of equivalence formulas.

Lemma 3.1.2. Let S be a logic. Then,

(i) The set Tpq is closed under any substitution e such that (e(p))(q/p) = (e(q))(q/p).

(ii) p ≡ q(ΩTpq).

Proof. (i) Let ϕ ∈ Tpq and e a substitution such that (e(p))(q/p) = (e(q))(q/p). We

have that ⊢S ϕ(q/p). By structurality of S, ⊢S e(ϕ(q/p)). Note that e(ϕ(q/p)) =

(e(ϕ(q/p))(q/p). Thus ⊢S e(ϕ(q/p))(q/p). This prove that e(ϕ) ∈ Tpq.

(ii) Let ϕ ∈ FmL and r ∈ Var. We have that (ϕ(r/p))(q/p) = (ϕ(r/q))(q/p). Thus

⊢S (ϕ(r/p))(q/p) iff ⊢S (ϕ(r/q))(q/p), i.e., ϕ(r/p) ∈ Tpq iff ϕ(r/q) ∈ Tpq. Which

means that p ≡ q(ΩTpq).

Blok and Pigozzi proved that the protoalgebraic logics are exactly the non-pathological

ones.
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Theorem 3.1.3. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) S is non-pathological.

Proof. Assume S is protoalgebraic. Let e be a substitution such that e(p) = p, e(q) = q

and e(ri) = p for all i ∈ I. Consider ∆(p, q) = e[Tpq]. Since (e(p))(q/p) = (e(q))(q/p),

by Lemma 3.1.2, ∆(p, q) ⊆ Tpq. Thus reflexivity condition holds. Again, by Lemma

3.1.2, p ≡ q(ΩTpq). Since S is protoalgebraic, we have that Tpq, p ⊢S q and Tpq, q ⊢S p.

Thus Tpq satisfies modus ponens condition. Obviously, ∆(p, q) also satisfies modus

ponens condition. We conclude that ∆(p, q) is a protoequivalence system for S.

Conversely, assume S is non-pathological. There exists ∆(p, q) a protoequivalence

system for S. Let α, β ∈ FmL and T ∈ Th(S). Suppose α ≡ β(ΩT ). Then ϕ(α, α) ≡

ϕ(α, β)(ΩT ) for every formula ϕ(p, q) ∈ ∆(p, q). By compatibility, ∆(α, α) ⊆ T iff

∆(α, β) ⊆ T . Since ∆(p, q) is reflexive, ⊢S ∆(α, α), which implies that ∆(α, α) ⊆ T .

Thus ∆(α, β) ⊆ T . Since ∆(α, β) ∪ {α} ⊆ T ∪ {α}, by modus ponens, T, α ⊢S β. In

an analogous way we have T, β ⊢S α.

Whenever a logic S has a binary connective → for which p → p is a theorem and

modus ponens is an inference rule, then S is protoalgebraic with ∆(p, q) = {p→ q} as

a protoequivalence system. The set ∆ may be empty and in this case the logic have

the rule p ⊢S q for all p, q ∈ FmL, i.e., S is inconsistent or almost inconsistent.

Moreover, if S is a finitary and protoalgebraic logic, then the protoequivalence

system ∆ can be taken to be finite. Indeed, since {p} ∪ ∆(p, q) ⊢S q, the finitariness

of S implies {p} ∪ ∆′(p, q) ⊢S q for some finite ∆′ ⊆ ∆. Trivially, ⊢S ∆(p, p) implies

⊢S ∆′(p, p). Thus ∆′ is also a protoequivalence system for S.

Example 3.2 (Orthologic [Mal89]). An algebra A = 〈A,∧,∨,¬〉 is called an ortholat-

tice if the reduct 〈A,∧,∨〉 is a lattice, 0 := x ∧ ¬x and 1 := x ∨ ¬x are distinguished

constant terms in A interpreted as the least and the greatest element of the lattice

〈A,∧,∨〉, and if A satisfies the identities ¬(x ∧ y) ≈ ¬x ∨ ¬y and ¬¬x ≈ x. We

denote by OL the class of all ortholattices. Each ortholattice A can be identified with

the matrix 〈A, {1}〉, where the unit element of the lattice is the only one designated

element.

Let SOL be the minimal orthologic defined in the language L = {∧,∨,¬} by the

structural consequence relation ⊢SOL
determined by the class OL in the following way:
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for all Γ ∪ {ϕ} ⊆ FmL,

Γ ⊢SOL
ϕ iff, for all A ∈ OL, Γ

〈A,{1}〉
ϕ.

Let p → q := ¬p ∨ q. Since p → p = ¬p ∨ p = 1, we have that ⊢SOL
p → p.

By lattices properties, we also have p, p → q ⊢SOL
q. Thus ∆(p, q) = {p → q} is a

protoequivalence system for S. By Theorem 3.1.3, SOL is protoalgebraic. ♦

3.3 Leibniz Operator

In this section, we give theorems that characterized the class of protoalgebraic logics

using the Leibniz operator defined in the Chapter 2 and other properties.

Theorem 3.3.1. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) The Leibniz operator ΩA is monotone on FiS(A) for every algebra A;

(iii) The Leibniz operator Ω is monotone on Th(S).

Proof. (i) ⇒ (ii) Assume S is protoalgebraic. Let A be an L-algebra and E,F ∈

FiS(A). Suppose E ⊆ F . To prove that ΩAE ⊆ ΩAF , it suffices to show that ΩAE

is compatible with F . Let a, b ∈ A. Suppose a ∈ F and a ≡ b(ΩAE). Since S is

protoalgebraic, by Theorem 3.1.3, there exists a protoequivalence system ∆(p, q) for S.

Let δ(p, q) ∈ ∆. Then δ(a, a) ≡ δ(a, b)(ΩAE). By compatibility with E, ∆A(a, a) ⊆ E

iff ∆A(a, b) ⊆ E. Since ∆(p, q) is reflexive, ∆A(a, a) ⊆ E. Hence, ∆A(a, b) ⊆ E. Since

a ∈ F and E ⊆ F , we have that {a} ∪ ∆A(a, b) ⊆ F . By Modus Ponens, we conclude

that b ∈ F , i.e., ΩAE ⊆ ΩAF .

(ii) ⇒ (iii) Assume the Leibniz operator ΩA is monotone on FiS(A), for every

algebra A. Since Th(S) ⊆ FiS(A), Ω is monotone on Th(S).

(iii) ⇒ (i) Assume the Leibniz operator Ω is monotone on Th(S). Let T ∈ Th(S)

and α, β ∈ FmL. Suppose α ≡ β(ΩT ). Since T ⊆ T ∪ {α}, by monotonicity of Ω, we

have ΩT ⊆ Ω(CnS(T∪{α})). Thus α ≡ β(Ω(CnS(T∪{α}))). Since α ∈ CnS(T∪{α}),

by compatibility, β ∈ CnS(T ∪ {α}), i.e., T, α ⊢S β. In an analogous way, we obtain

T, β ⊢S α. Therefore S is protoalgebraic.

In the next theorem, we give another characterization of protoalgebraic logics using

again the Leibniz operator.
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Theorem 3.3.2. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) The Leibniz operator ΩA is meet-continuous on FiS(A) for every algebra A;

(iii) The Leibniz operator Ω is meet-continuous on Th(S).

Proof. (i) ⇒ (ii) Assume S is protoalgebraic. Let A be an L-algebra. The inclusion
⋂

{ΩAFi : i ∈ I} ⊆ ΩA

(
⋂

{Fi : i ∈ I}
)

always holds. Indeed, let a ≡ b
(
⋂

{ΩAFi :

i ∈ I}
)

and a ∈
⋂

{Fi : i ∈ I}. Thus, for all i ∈ I, a ≡ b(ΩAFi) and a ∈ Fi. By

compatibility, for all i ∈ I, b ∈ Fi, i.e., b ∈
⋂

{Fi : i ∈ I}. Hence,
⋂

{ΩAFi : i ∈ I} ⊆

ΩA

(
⋂

{Fi : i ∈ I}
)

. For the reverse inclusion, we have
⋂

{Fi : i ∈ I} ⊆ Fi for all

i ∈ I. Since S is protoalgebraic, by Theorem 3.3.1, ΩA is monotone on FiS(A). Thus,

ΩA

(
⋂

{Fi : i ∈ I}
)

⊆ ΩAFi for all i ∈ I, i.e., ΩA

(
⋂

{Fi : i ∈ I}
)

⊆
⋂

{ΩAFi : i ∈ I}.

We conclude that ΩA is meet-continuous on FiS(A).

(ii) ⇒ (iii) It is obvious.

(iii) ⇒ (i) Let T1, T2 ∈ Th(S). Suppose T1 ⊆ T2. By assumption, Ω
(

T1 ∩ T2

)

=

ΩT1 ∩ ΩT2. Since T1 ∩ T2 = T1, we have ΩT1 = Ω
(

T1 ∩ T2

)

= ΩT1 ∩ ΩT2. Thus

ΩT1 ⊆ ΩT2. By Theorem 3.3.1, S is protoalgebraic.

A logic S has the correspondence property if, for every strict homomorphism h :

M → N between matrix models of S and every filter F ∈ FiS(M), we have F =

h−1[h[F ]]. We say that S has the compatibility property if, for every algebra A, any

θ ∈ CoA which is compatible with an S-filter F of A, is also compatible with every S-

filter that includes F . In the next theorem, we give a characterization of protoalgebraic

logics using these properties.

Theorem 3.3.3. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) S has the compatibility property;

(iii) S has the correspondence property.

Proof. (i) ⇒ (ii) Assume S is protoalgebraic. Let A be an S-algebra, F ∈ FiS(A)

and θ ∈ CoA which is compatible with F . Let G ∈ FiS(A) such that F ⊆ G, and

a, b ∈ A such that a ≡ b(θ) and a ∈ G. Since S is protoalgebraic, by Theorem 3.3.1,

θ ⊆ ΩAF ⊆ ΩAG. Thus a ≡ b(ΩAG) and by compatibility, b ∈ G. Therefore θ is

compatible with G.
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(ii) ⇒ (i) Let F,G ∈ FiS(A). Suppose F ⊆ G. Since ΩAF is compatible with F ,

by the compatibility property, ΩAF is also compatible with G. Thus ΩAF ⊆ ΩAG.

By Theorem 3.3.1, S is protoalgebraic.

(i) ⇒ (iii) Since S is protoalgebraic, by Theorem 3.1.3, there exists a protoequiv-

alence system ∆(p, q) for S. Let M = 〈A, D〉 and N = 〈B, E〉 be matrix models of

S, h a strict homomorphism of M into N and F ∈ FiS(M). We always have that

F ⊆ h−1[h[F ]]. For the reverse inclusion, assume a ∈ h−1h[F ], i.e, h(a) ∈ h[F ]. Then,

there exists c ∈ F such that h(a) = h(c). Since E ∈ FiS(B), ∆B
(

h(c), h(a)
)

⊆ E. As

h is a homomorphism, h
(

∆A(c, a)
)

= ∆B
(

h(c), h(a)
)

. Thus h
(

∆A(c, a)
)

⊆ E. Since h

is strict, ∆A(c, a) ⊆ h−1[E] = D ⊆ F . So {c} ∪ ∆A(c, a) ⊆ F and by modus ponens

a ∈ F . We conclude that F = h−1h[F ].

(iii) ⇒ (i) Assume S has the correspondence property. Let T1, T2 ∈ Th(S). Sup-

pose T1 ⊆ T2. The canonical mapping h : FmL → FmL/ΩT1 is a strict homomorphism

from M := 〈FmL, T1〉 onto N := 〈FmL/ΩT1, T1/ΩT1〉. Since T2 ∈ FiS(M), by as-

sumption, T2 = h−1[h[T2]]. Thus h is a strict homomorphism from 〈FmL, T2〉 onto

〈FmL/ΩT1, h[T2]〉 = 〈FmL/ΩT1, T2/ΩT1〉 which implies that ΩT1 is compatible with

T2. Thus ΩT1 ⊆ ΩT2. By Theorem 3.3.1, S is protoalgebraic.

3.4 Parameterized System of Equivalence Formulas

We say that E(p, q, r) = {ǫi(p, q, r) : i ∈ I} is an k-parameterized system of formulas

if it is a set of formulas of S built up from the variables p, q and possibly other variables

r = r1, r2, . . . called parameters with k the length of the string r. Note that E(p, q, r)

may be infinite; hence the length of the string r could be ω. In order to define the

notion of parameterized system of equivalence formulas, we need to introduce some

notations. Let ϕ, ψ ∈ FmL, we denote by E(〈ϕ, ψ〉) the set of all substitution instances

e(ǫi(p, q, r)) where i ranges over I and e over all substitutions such that e(p) = ϕ and

e(q) = ψ, i.e.,

E(〈ϕ, ψ〉) := {ǫi(p/ϕ, q/ψ, r/γ) : i ∈ I, γ ∈ (FmL)k}.

We extend this notation to L-algebras. If A is an L-algebra and a, b ∈ A, we denote

by EA(〈a, b〉) the set of all elements of A of the form h(ǫi(p, q, r)) where i ranges over

I and h over all homomorphisms h : FmL → A such that h(p) = a and h(q) = b, i.e.,

EA(〈a, b〉) := {ǫAi (p/a, q/b, r/c) : i ∈ I, c ∈ Ak}
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where ǫAi := h(ǫi). If 〈A, D〉 is an S-matrix, then EA(D) is a binary relation on

A, called the (universally parameterized) analytical relation in 〈A, D〉 determined by

E(p, q, r), and is defined in the following way:

a ≡ b(EA(D)) iff EA(〈a, b〉) ⊆ D.

In general, EA(D) need not be an equivalence relation on A.

Definition 3.4.1. Let S be a logic. A set E(p, q, r) is called an k-parameterized system

of equivalence formulas for S (an k-parameterized equivalence for S for short) if the

following conditions hold:

p-(R) ⊢S E(〈p, p〉) (Reflexivity)

p-(S) E(〈p, q〉) ⊢S E(〈q, p〉) (Symmetry)

p-(T) E(〈p, q〉) ∪ E(〈q, t〉) ⊢S E(〈p, t〉) (Transitivity)

p-(MP) E(〈p, q〉) ∪ {p} ⊢S q (Modus Ponens)

p-(RPsim) for each connective f of rank n ≥ 0 (Simple Replacement)

E(〈p1, q1〉) ∪ · · · ∪E(〈pn, qn〉) ⊢S E
(

〈f(p1, . . . , pn), f(q1, . . . , qn)〉
)

Symmetry and transitivity conditions are derivable from the remaining ones and

thus they are redundant (c.f. [Cze01, Corollary 1.2.5]).

A parameterized system of equivalence formulas for S may be empty. In this case

the logic have the rule p ⊢S q for all p, q ∈ FmL, i.e., S is inconsistent or almost

inconsistent.

Simple replacement condition can be substituted by single replacement condition,

that is, for each ϕ ∈ FmL,

E(〈p, q〉) ⊢S E
(

〈ϕ(p), ϕ(q)〉
)

.

Indeed, suppose that simple replacement condition holds. We prove by induction on

formulas. If ϕ is a constant, then single replacement condition holds. Let ϕ = f
(

ϕ1(p),

. . . , ϕn(p)
)

∈ FmL, where f is a connective of rank n. By hypothesis of induction, for

every i = 1 . . . n we have that E(〈p, q〉) ⊢S E
(

〈ϕi(p), ϕi(q)〉
)

. Since simple replacement

condition holds, by structurality condition, we have that E(〈ϕ1(p), ϕ1(q)〉)
⋃

· · ·
⋃
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E(〈ϕn(p), ϕn(q)〉) ⊢S E
(

〈f(ϕ1(p), . . . , ϕn(p)), f(ϕ1(q), . . . , ϕn(q))〉
)

. Thus by consid-

ering ϕ = f(ϕ1(p), . . . , ϕn(p)), we have that E(〈p, q〉) ⊢S E
(

〈ϕ(p), ϕ(q)〉
)

, i.e., single

replacement condition holds. Conversely, suppose that single replacement condition

holds. Let f be a connective of rank n and p1, . . . , pn, q1, . . . , qn ∈ Var. By hypothesi

E(〈p1, q1〉) ⊢S E(〈f(p1, . . . , pn), f(q1, p2, . . . , pn)〉) and E(〈p2, q2〉) ⊢S E(〈f(q1, p2, . . . ,

pn), f(q1, q2, p3, . . . , pn)〉). Since E(p, q, r) is transitive, we have that E(〈f(p1, . . . , pn),

f(q1, p2, . . . , pn〉)
⋃

E(〈f(q1, p2, . . . , pn), f(q1, q2, p3, . . . , pn)〉) ⊢S E(〈f(p1, . . . , pn),

f(q1, q2, p3, . . . , pn)〉). And by cut condition, E(〈p1, q1〉)
⋃

E(〈p2, q2〉) ⊢S E(〈f(p1, . . . ,

pn), f(q1, q2, p3, . . . , pn)〉). In a similar way, we can substitute the variables p3, . . . , pn

by q3, . . . , qn. Therefore we obtain simple replacement condition.

Theorem 3.4.2. Let S be a logic and E(p, q, r) an k-parameterized system of formulas.

The following conditions are equivalent:

(i) E(p, q, r) is an k-parameterized system of equivalence formulas for S;

(ii) EA(D) = ΩAD for all 〈A, D〉 ∈ Mod(S);

(iii) EA(D) = △A for all 〈A, D〉 ∈ Mod∗(S).

Proof. (i) ⇒ (ii). Suppose E(p, q, r) is an k-parameterized system of equivalence

formulas for S. Let M = 〈A, D〉 be an S-matrix. Reflexivity, symmetry, transitivity

and simple replacement conditions guarantee that the relation EA(D) is a congruence

relation on A and modus ponens condition guarantees that EA(D) is compatible with

D. Thus EA(D) ⊆ ΩAD. For the reverse inclusion, let a, b ∈ A. Assume a ≡ b(ΩAD).

Let ǫ(p, q, r) ∈ E(p, q, r) and c ∈ Ak. We have that ǫA(a, a, c) ≡ ǫA(a, b, c)(ΩAD). By

reflexivity condition, ǫA(a, a, c) ∈ D. Since ΩAD is compatible with D, ǫA(a, b, c) ∈ D,

i.e., EA(〈a, b〉) ⊆ D. Thus a ≡ b(EA(D)).

(ii) ⇒ (i). Suppose that EA(D) = ΩAD for all 〈A, D〉 ∈ Mod(S). Let ϕ, ψ ∈ FmL

and T ∈ Th(S). Since ϕ ≡ ϕ(ΩT ), we have that E(〈ϕ, ϕ〉) ⊆ T , i.e., reflexivity

condition holds. Now suppose E(〈ϕ, ψ〉) ⊆ T . Then ϕ ≡ ψ(ΩT ). Hence ψ ≡ ϕ(ΩT )

and consequently E(〈ψ, ϕ〉) ⊆ T . Since this holds for every T ∈ Th(S) and all ϕ, ψ ∈

FmL, symmetry condition holds. The transitivity and simple replacement conditions

can be shown in a similar way. Now, assume {ϕ} ∪ E(〈ϕ, ψ〉) ⊆ T . Then ϕ ≡ ψ(ΩT )

and ϕ ∈ T . Since ΩT is compatible with T , ψ ∈ T . Thus modus ponens condition

holds.

Therefore, E(p, q, r) is an k-parameterized system of equivalence formulas for S.

(ii) ⇒ (iii). This is obvious.
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(iii) ⇒ (ii). Let M = 〈A, D〉 be an S-matrix and a, b ∈ A. We denote by [a]

the equivalence class of a relative to ΩAD. We have a ≡ b(ΩAD) iff [a] = [b] iff (by

assumption) EA/D(〈[a], [b]〉) ⊆ D/ΩAD iff EA(〈a, b〉) ⊆ D iff a ≡ b(EA(D)). Thus

EA(D) = ΩAD for all 〈A, D〉 ∈ Mod(S).

We say that a non-empty k-parameterized system E(p, q, r) defines the leibniz con-

gruences in a logic S if, for every 〈A, D〉 ∈ Mod(S), ΩAF = {(a, b) ∈ A2 : EA(〈a, b〉) ⊆

F}. We can reformulate Theorem 3.4.2 saying that E(p, q, r) is an k-parameterized

system of equivalence formulas for S iff E(p, q, r) defines the Leibniz congruences in S.

In the following theorem, we give a characterization of protoalgebraic logics as the

ones which have an k-parameterized system of equivalence formulas.

Theorem 3.4.3. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) S has an k-parameterized system of equivalence formulas.

Proof. Let S be a protoalgebraic logic. We can represent Tpq as the k-parameterized

system T (p, q, r) with r the string of all variables distinct from p, q. Let δ(p, q, r1, . . . , rk)

∈ Tpq and γ1, . . . , γk a string of formulas. Consider the substitution e such that e(p) = p,

e(q) = q and e(r1) = γ1, . . . , e(rk) = γk. Since e satisfies the condition (e(p))(q/p) =

(e(q))(q/p), by Lemma 3.1.2, we have δ(p, q, γ1, . . . , γk) = e(δ(p, q, r1, . . . , rk)) ∈ Tpq.

Hence, T (p, q, γ) ⊆ T (p, q, r) for every string γ of length k of formulas of S. It is

not difficult to see that T (p, q, r) satisfies reflexivity condition. Now we verify single

replacement condition. Let δ(p, q, r1, . . . , rk) ∈ T (p, q, r) and e a substitution such that

e(p) = ϕ(p), e(q) = ϕ(q), where ϕ ∈ FmL, and e(r1) = γ1, . . . , e(rk) = γk. Since

(e(p))(q/p) = (e(q))(q/p), by Lemma 3.1.2, we obtain that δ(ϕ(p), ϕ(q), γ1, . . . , γk) =

e(δ(p, q, r1, . . . , rk)) ∈ Tpq, i.e., T (ϕ(p), ϕ(q), γ) ⊆ T (p, q, r) for any formula ϕ and any

string γ of formulas. Thus single replacement condition holds. Moreover, by Lemma

3.1.2, p ≡ q(ΩT (p, q, r)). We always have that CnS(T (p, q, r)) ⊆ CnS(T (p, q, r)∪ {p}).

Since S is protoalgebraic, by Theorem 3.3.1, the Leibniz operator is monotone on

Th(S). Thus, Ω(CnS(T (p, q, r))) ⊆ Ω(CnS(T (p, q, r) ∪ {p})). We deduce that p ≡

q(Ω(CnS(T (p, q, r) ∪ {p})). By compatibility, q ∈ CnS(T (p, q, r) ∪ {p}), i.e., modus

ponens condition holds. We conclude that the set T (p, q, r) is an k-parameterized

system of equivalence formulas for S.

Conversely, suppose that E(p, q, r) is an k-parameterized system of equivalence

formulas for S. It is not difficult to see that E(p, q, p, p, p, p, . . . ) (the set of formulas
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obtained by replacing every parameter by p) is a protoequivalence system for S. By

Theorem 3.1.3, S is protoalgebraic.

This proof is constructive in the sense that it produces an k-parameterized system

of equivalence formulas for any protoalgebraic logic, namely the set Tpq.

Suppose that E(p, q, r) and E ′(p, q, s) are respectively k and l-parameterized sys-

tems of equivalence formulas for a logic S. Then, E(p, q, r) and E ′(p, q, s) are inter-

derivable. Conversely, if E(p, q, r) and E ′(p, q, s) are respectively k and l-parameterized

systems of formulas, which are interderivable, then E(p, q, r) is an k-parameterized

system of equivalence formulas for S iff E ′(p, q, s) is also an l-parameterized system of

equivalence formulas for S.

In Chapter 2, we have defined the Suszko operator and seen that Ω̃T ⊆ ΩT for

every T ∈ Th(S). When the Suszko operator coincides with the Leibniz operator in a

logic S then S is protoalgebraic.

Theorem 3.4.4. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) The Leibniz operator coincide with the Suszko operator on Th(S), i.e., Ω̃T =

ΩT for every T ∈ Th(S).

Proof. Assume S is protoalgebraic. By Theorem 3.4.3, there exists an k-parameterized

system of equivalence formulas E(p, q, r) for S. Let T ∈ Th(S) and α, β ∈ FmL. Sup-

pose α ≡ β(ΩT ). Then ϕ(p/α) ≡ ϕ(p/β)(ΩT ) for all ϕ ∈ FmL and p ∈ Var(ϕ). Thus

E
(

〈ϕ(p/α), ϕ(p/β)〉
)

⊆ T . By modus ponens condition, we have E
(

〈ϕ(p/α), ϕ(p/β)〉
)

∪{ϕ(p/α)} ⊢S ϕ(p/β). And by cut condition, T ∪ {ϕ(p/α)} ⊢S ϕ(p/β). Furthermore,

by symmetry condition, E
(

〈ϕ(p/β), ϕ(p/α)〉
)

⊆ T . And again by modus ponens, we

obtain T ∪ {ϕ(p/β)} ⊢S ϕ(p/α). Hence ΩT ⊆ Ω̃T . Since the reverse inclusion always

holds, we conclude that Ω̃T = ΩT for every T ∈ Th(S).

Conversely, assume Ω̃T = ΩT for every T ∈ Th(S). Let α, β ∈ FmL and T1, T2 ∈

Th(S). Suppose that T1 ⊆ T2 and α ≡ β(Ω̃T1). By definition of Suszko congruence we

have T1∪{ϕ(p/α)} ⊣⊢S T1∪{ϕ(p/β)} for all ϕ ∈ FmL and p ∈ Var(ϕ). Since T1 ⊆ T2,

we have T2 ∪ {ϕ(p/α)} ⊢S ϕ(p/β) and T2 ∪ {ϕ(p/β)} ⊢S ϕ(p/α) for all ϕ ∈ FmL and

p ∈ Var(ϕ). Thus α ≡ β(Ω̃T2). Therefore the Suszko operator is monotone on Th(S).

Since Ω̃T = ΩT for every T ∈ Th(S), the Leibniz operator is also monotone on Th(S).

By Theorem 3.3.1, S is protoalgebraic.
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3.5 Reduced Matrix Models

Herein, we study the relationship between the structural properties of the class of

reduced matrix models and metalogical properties of protoalgebraic logics.

Theorem 3.5.1. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) The class Mod∗(S) is closed under subdirect products.

Proof. Assume S is protoalgebraic. By Theorem 3.4.3, there exists an k-parameterized

system E(p, q, r) of equivalence formulas for S. Let M = 〈A, D〉 be a subdirect products

of the family (Mi = 〈Ai, Di〉)i∈I of reduced matrix models of S and a, b ∈ A. Since the

class Mod(S) is closed under submatrices and direct products, it is also closed under

subdirect products. Thus M ∈ Mod(S). Suppose a ≡ b(ΩAD). By Theorem 3.4.2,

a ≡ b(EA(D)), i.e., EA(〈a, b〉) ⊆ D. Then,

EAi(a(i), b(i), c(i)) ⊆ Di, for all i ∈ I and all c ∈ Ak.

Since the projection πi : A → Ai is surjective, we have

EAi(a(i), b(i), d) ⊆ Di, for all i ∈ I and all string d ∈ Ak
i .

That is, a(i) ≡ b(i)(EAi
(Di)), for all i ∈ I. Since each Mi is reduced, by Theorem

3.4.2, EAi
(Di) = ∆Ai

. Thus a(i) = b(i) for all i ∈ I. Hence a = b, which implies that

M is reduced. Therefore the class Mod∗(S) is closed under subdirect products.

Conversely, let A be an L-algebra and F,G ∈ FiS(A). Suppose F ⊆ G. Let

f : A → A/F and g : A → A/G be natural homomorphisms and Θ := ΩAF ∩ ΩAG.

Consider M := 〈A/Θ, F/Θ〉, M1 := 〈A/ΩAF, F/ΩAF 〉 and M2 := 〈A/ΩAG,G/ΩAG〉.

It is not difficult to see that M is isomorphic to a subdirect product of M1 and M2

(via the mapping h([a]Θ) := 〈f(a), g(a)〉, for every a ∈ A). The matrices M1 and M2

are reduced and hence members of Mod∗(S). Since by hypothesis Mod∗(S) is closed

under subdirect products, M is reduced as well. This means that Θ is the largest

congruence of A compatible with F , i.e., Θ = ΩAF . Therefore ΩAF ⊆ ΩAG. By

Theorem 3.3.1, S is protoalgebraic.

It follows from the above theorem that the class of reduced matrix models of a

protoalgebraic logic is closed under direct products.
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3.6 Parameterized Local Deduction - Detachment

Theorem

For the Classical Propositional Logic CPL, the Deduction-Detachment Theorem (DDT

for short) has been studied by many logicians. They have proved that for all Γ∪{α, β} ∈

FmL,

Γ ∪ {α} ⊢CPL β iff Γ ⊢CPL α→ β

where the binary connective → is the usual propositional implication. We can gen-

eralize this notion for logics that does not have an implication connective. It still

is possible to find a family of sets of formulas that play the same role of the bi-

nary connective →. This generalization of DDT has been called Parameterized Local

Deduction-Detachment Theorem (PLDDT for short). It was shown that a logic S has

this property iff it is protoalgebraic.

We illustrate this result giving an example, namely the BCK logic, that has the

Local Deduction-Detachment Theorem (LDDT for short), and consequently it is pro-

toalgebraic. We point out to [Cze01, Chapter 2], [CP04a] and [CP04b] for more details

about the relation between the various kinds of DDT and properties of protoalgebraic

logics.

Definition 3.6.1. A logic S has the Parameterized Local Deduction-Detachment The-

orem, PLDDT, with respect to a family of sets of formulas Φ, if, for all Γ ∪ {α, β} ⊆

FmL,

Γ ∪ {α} ⊢S β iff there exists V (p, q, r) ∈ Φ, and exists γ ∈ (FmL)k, Γ ⊢S V (α, β, γ).

The implication from right to left in the above equivalence is called detachment

property, and the implication in the opposite direction is called the deduction property.

Moreover, if S is finitary then for each V ∈ Φ, we can choose a finite subset Vf ⊆ V

such that the family Φf = {Vf : Vf ⊆ V and V ∈ Φ} also determines PLDDT for S.

The only logics that have the PLDDT with respect to the family {∅} are the trivial

logics.

We say that a logic has the Local Deduction-Detachment Theorem if it has the

PLDDT with an empty set of parameters. More precisely, if there is a family of sets

of formulas Φ in two variables such that for all Γ ∪ {α, β} ⊆ FmL, Γ ∪ {α} ⊢S β iff

there exists V (p, q) ∈ Φ, Γ ⊢S V (α, β). And we say that a logic has the Deduction-

Detachment Theorem if it has the LDDT such that Φ is the family of a single set of
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finite formulas, i.e., if there is a finite set of formulas Φ := V (p, q) in two variables such

that for all Γ ∪ {α, β} ⊆ FmL, Γ ∪ {α} ⊢S β iff Γ ⊢S V (α, β). If the set Φ is unitary

then we say that the logic has the Uniterm Deduction-Detachment Theorem (UDDT for

short). The general case is simply referred as DDT or Multiterm Deduction-Detachment

Theorem (MDDT for short). For more information about these kinds of DDT, the

reader can see [CP04a] and [CP04b], where Czelakowski and Pigozzi described the

MDDT for k-deductive systems in general, and [Cze01, Chapter 2], where Czelakowski

examined in detail the properties of protoalgebraic logics for which the DDT holds.

Theorem 3.6.2. Let S be a logic. The following conditions are equivalent:

(i) S is protoalgebraic;

(ii) S has the PLDDT with respect to the family Φ.

Proof. Assume S is protoalgebraic. If S is a logic without theorems then we consider

Φ := {∅}. Let S be a logic with Thm(S) 6= ∅ and p, q ∈ Var. Consider Φ = {T ∈

Th(S) : T ∪ {p} ⊢S q}. The family Φ is non-empty because the set {ϕ : q ⊢S ϕ} ∈ Φ.

Since Thm(S) is non-empty, p, q ∈ Var(T ) for every T ∈ Th(S). We show that Φ

determines PLDDT for S. Let Γ∪{α, β} ⊆ FmL. Suppose Γ∪{α} ⊢S β. There exists a

surjective substitution e such that e(p) = α and e(q) = β. Let T := e−1[CnS(Γ)], M :=

〈FmL, T 〉 and N := 〈FmL, CnS(Γ)〉. Since Th(S) is closed under inverse substitution,

T ∈ Th(S). It is not difficult to see that e is a strict homomorphism from M onto

N and CnS(T ∪ {p}) ∈ FiS(M). As S is protoalgebraic, by Theorem 3.3.3, S has

the correspondence property and hence CnS(T ∪ {p}) = e−1[e[CnS(T ∪ {p})]]. By

surjectivity of e, e[T ] = e[e−1[CnS(Γ)]] = CnS(Γ). We have that CnS(Γ ∪ {α}) =

CnS(CnS(Γ) ∪ {α}) = CnS(e[T ] ∪ {e(p)}) = CnS(e[T ∪ {p}]) and it is not difficult

to prove that CnS(e[Γ ∪ {p}]) = e[CnS(T ∪ {p})]. Since CnS(Γ ∪ {α}) ∈ FiS(N),

e[CnS(T ∪{p})] ∈ FiS(N). Thus e is a strict homomorphism from 〈FmL,CnS(T ∪{p})〉

onto 〈FmL,CnS(Γ∪{α})〉. As e(q) = β ∈ CnS(Γ∪{α}), we have q ∈ CnS(T ∪{p}). So

T = T (p, q, r) ∈ Φ. Furthermore T (α, β, e(r)) = e[T ] = CnS(Γ). Consider V := T , we

have that V ∪{α} ⊢S β implies Γ ⊢S V (α, β, γ) for some string of formulas γ ∈ (FmL)k.

The reverse implication is obvious by the definition of the family Φ. Therefore S has

the PLDDT with respect to the family Φ.

Conversely, assume that some family Φ determines PLDDT for a logic S. Thus the

sets in Φ have the detachment property, i.e., V ∪ {p} ⊢S q for all V ∈ Φ. Since p ⊢S p,

by PLDDT, there exists a set V (p, q, r) ∈ Φ and a string γ of formulas of S such that
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∅ ⊢S V (p, p, γ). Let e be a substitution such that e(p) = p, e(q) = q, e(r) = p and

e(γ) = p. Consider ∆(p, q) := e[V (p, q, r)]. Since V (p, q, r)∪{p} ⊢S q, by structurality

of S, we have V (p, q, p) ∪ {p} ⊢S q, i.e., ∆(p, q) ∪ {p} ⊢S q modus ponens condition

holds. Moreover, since ⊢S V (p, p, γ), we have ⊢S ∆(p, p), i.e., reflexivity condition

holds. Hence the set ∆(p, q) is a protoequivalence system for S. By Theorem 3.1.3, S

is protoalgebraic.

In the following example, we show that the logic BCK is protoalgebraic since the

LDDT holds.

Example 3.7 (BCK Logic [Cze01]). Let BCK the deductive system defined in the

language L = {→}, where → is a binary connective, by the following axioms:

(p→ q) → ((q → r) → (p→ r)) (B)

(p→ (q → r)) → (q → (p→ r)) (C)

p→ (q → p) (K)

and the only inference rule,
p, p→ q

q
(Modus Ponens)

Let Φ := ({p→n q})n∈N, where p→0 q := q, and p→n+1 q := p→ (p→n q) for all

n ∈ N. The (one-element) sets of Φ do not involve parametric variables. We have that

BCK has the LDDT with respect to the family Φ, i.e., for any Γ ∪ {ϕ, ψ} ⊆ FmL,

Γ ∪ {ϕ} ⊢BCK ψ iff, Γ ⊢BCK ϕ→n ψ for some n ∈ N.

Indeed, suppose that Γ∪{ϕ} ⊢BCK ψ. We show by induction on the length of the proof

of ψ from Γ ∪ {ϕ}. If ψ is an axiom or ψ = ϕ then Γ ⊢BCK ψ → (ϕ→ ψ) since axiom

(K) holds. By modus ponens, we have Γ∪{ψ} ⊢BCK ϕ→ ψ, i.e., detachment property

holds for n = 1. If ψ belongs to Γ ∪ {ϕ} then Γ ⊢BCK ψ, i.e., detachment property

holds for n = 0. If ψ is obtained by modus ponens then there exists a formula ξ such

that applying modus ponens to ξ and ξ → ψ we have ψ. By inductive hypothesis, there

exist i ∈ N such that Γ ⊢BCK ϕ→i ξ and j ∈ N such that Γ ⊢BCK ϕ→j (ξ → ψ). By

induction on i+ j, we can show that

⊢BCK (p→i q) → ((p→j (q → r)) → (p→i+j r))
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Thus, Γ ⊢BCK (ϕ →i ξ) → ((ϕ →j (ξ → ψ)) → (ϕ →i+j ψ)). Since Γ ⊢BCK ϕ →i ξ,

by modus ponens, we obtain Γ ⊢BCK (ϕ →j (ξ → ψ)) → (ϕ →i+j ψ). And since

Γ ⊢BCK ϕ →j (ξ → ψ), by modus ponens, Γ ⊢BCK ϕ →i+j ψ. Thus, detachment

property holds for n = i+ j.

Conversely, if Γ ⊢BCK ϕ→n ψ for some n ∈ N, applying modus ponens n times we

have that Γ ∪ {ϕ} ⊢BCK ψ.

Therefore BCK has the LDDT with respect to the family Φ. By Theorem 3.6.2,

BCK is protoalgebraic. ♦

3.8 Finitary and Protoalgebraic Logics

In this section we only present some results of finitary protoalgebraic logics without

their proofs.

Theorem 3.8.1. [Cze01, Theorem 1.4.1] Let S be a finitary and protoalgebraic logic.

Then the following conditions are equivalent:

(i) The class Mod∗(S) is closed under ultraproducts;

(ii) Every k-parameterized system of equivalence formulas for S contains a finite

k-parameterized system of equivalence formulas for S;

(iii) There exists a finite k-parameterized system of equivalence formulas for S.

The class Mod∗(S) need not be closed under ultraproducts for a finitary and pro-

toalgebraic logic S. Indeed, let S be a deductive system defined as the expansion of the

Intuitionistic Propositional Logic IPL, by adjoining the unary connective 2 and two

axioms 2⊤ and 2(p→ q) → (2p→ 2q). The only inference rule is modus ponens. It

is not difficult to see that the set ∆(p, q) = {p → q} is a protoequivalence system for

S. By Theorem 3.1.3, S is protoalgebraic. However, the class Mod∗(S) is not closed

under ultraproducts (c.f. [BP92]).

In this chapter, we have seen some theorems in which properties of the Leibniz

operator defined on Th(S) can be transfer on FiS(A) for every algebra A. Indeed,

in Theorem 3.3.1, the fact that the Leibniz operator is monotone on Th(S) transfer

on FiS(A) for every algebra A. The same happens for the property of being meet-

continuous in Theorem 3.3.2 . Furthermore, in Chapters 4 and 5, we will see others

properties on Th(S) of the Leibniz operator that can be transfer on FiS(A) for every
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algebra A. This phenomena can be formalized as a so called transfer principle which

is stated in the following theorem.

Theorem 3.8.2. [Cze01, Theorem 1.7.1] Let S be a finitary and protoalgebraic logic.

A property expressible by a universal formula of elementary lattice theory holds in ThS

iff it holds in FiSA for every algebra A.

A class M of matrix models of a logic S is said to have the S-filter extension

property (FEP for short) if for all M = 〈A, D〉 ∈ M, every S-filter F on an arbitrary

submatrix N = 〈B, G〉 of M can be extend to an S-filter on M, i.e., if F ∈ FiS(N)

then there exists an S-filter E ∈ FiS(M) such that E ∩ B = F . For a finitary and

protoalgebraic logic S, the class Mod(S) has the FEP iff the class Mod∗(S) also has

the FEP iff S has the LDDT (c.f. [Cze01, Theorem 2.3.5]).



Chapter 4

Equivalential Logics

Equivalential logics have been introduced by Prucnal and Wroński in [PW74] and ex-

tensively studied by Czelakowski in [Cze81], [Cze01, Chapter 3] and [Cze04]. In this

chapter we define equivalential and finitely equivalential logics, and we give some char-

acterizations using the Leibniz operator. We also study the relationship between the

structural properties of the class of reduced matrix models and metalogical properties

of equivalential logics. Moreover, as we did for protoalgebraic logics we focus on the

finitary logics. We conclude, this chapter, by discussing some examples of logics which

show that the class of finitely equivalential logic is a proper subclass of equivalential

logics and the latter is a proper subclass of protoalgebraic logics.

4.1 Definitions and Characterizations

Equivalential logics are logics which have a system of equivalence formulas without

parameters. Thus, they constitute a subclass of protoalgebraic logics.

Definition 4.1.1. Let S be a logic. A set E(p, q) of formulas of S built-up in two

variables p and q is called a system of equivalence formulas for S (an equivalence for

S for short) if the following conditions are satisfied:

(R) ⊢S E(p, p) (Reflexivity)

(S) E(p, q) ⊢S E(q, p) (Symmetry)

(T) E(p, q) ∪ E(q, r) ⊢S E(p, r) (Transitivity)

(MP) E(p, q) ∪ {p} ⊢S q (Modus Ponens)
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(RPsim) for each connective f of rank n ≥ 0 (Simple Replacement)

E(p1, q1) ∪ · · · ∪E(pn, qn) ⊢S E(f(p1, . . . , pn), f(q1, . . . , qn))

This definition of system of equivalence formulas is the original definition due to

Prucnal and Wroński (c.f. [PW74]). However, Wójcicki has pointed out that symmetry

and transitivity conditions are derivable from the remaining ones and thus redundant

(c.f. [Wój88, Lemma 3.4.3] and [Cze01, Corollary 3.1.4]). Therefore, when we need

to prove that a set E(p, q) is a system of equivalence formulas for S, it is enough to

verify reflexivity, modus ponens and simple replacement conditions. Moreover, we can

substitute simple replacement condition by single replacement condition that is, for

each ϕ ∈ FmL,

E(p, q) ⊢S E
(

ϕ(p), ϕ(q)
)

.

Definition 4.1.2. A logic S is called equivalential (finitely equivalential) if it has a

system (a finite system, respectively) of equivalence formulas.

Every equivalential logic S is protoalgebraic, since any system of equivalence for-

mulas for S is a free parameterized system of equivalence formulas for S. Furthermore,

the system of equivalence formulas E(p, q) may be empty. Indeed, it is not difficult to

see that a logic S has the empty system of equivalence formulas iff S is trivial, i.e., S

is inconsistent or almost inconsistent.

Any extension of (finitely) equivalential logic is also (finitely) equivalential with the

same system of equivalence formulas.

If a logic S is equivalential and E(p, q) is a system of equivalence formulas for S,

then, by Theorem 3.4.2, the Leibniz congruence ΩT for any theory T ∈ Th(S) has a

simple characterization in terms of E(p, q) that is, for any ϕ, ψ ∈ FmL,

ϕ ≡ ψ(ΩT ) iff E(ϕ, ψ) ⊆ T.

If we have two systems of equivalence formulas E(p, q) and E ′(p, q) for an equiv-

alential logic S, then E(p, q) and E ′(p, q) are interderivable relative to S; moreover, if

two sets E(p, q) and E ′(p, q) are interderivable relative to S then, E(p, q) is a system of

equivalence formulas for S iff E ′(p, q) is a system of equivalence formulas for S. Indeed,

since E(p, q) ⊆ CnS(E(p, q)), we have p ≡ q
(

Ω(CnS(E(p, q)))
)

. Let ϕ ∈ E ′(p, q).

Thus ϕ(p, p) ≡ ϕ(p, q)
(

Ω(CnS(E(p, q)))
)

. By compatibility, ϕ(p, p) ∈ CnS(E(p, q))

iff ϕ(p, q) ∈ CnS(E(p, q)). Since ⊢S E(p, p), we have that ϕ(p, q) ∈ CnS(E(p, q)).
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Thus E(p, q) ⊢S E ′(p, q). Analogously, we can show that E ′(p, q) ⊢S E(p, q). Con-

versely, suppose that E(p, q) and E ′(p, q) are sets which are interderivable relative

to a logic S and E(p, q) is a system of equivalence formulas for S. Since E ′(p, p) ⊆

CnS(E ′(p, p)) = CnS(E(p, p)), we have ⊢S E
′(p, p), i.e., reflexivity condition holds. As

E ′(p, q) ⊆ CnS(E ′(p, q)) = CnS(E(p, q)) and E(p, q) ⊆ CnS(E(q, p)) = CnS(E ′(q, p)),

we have E ′(p, q) ⊆ CnS(E ′(q, p)), i.e., symmetry condition is satisfied. In an analogous

way, we show for the remaining conditions.

In the following theorem, we give some conditions that a set E(p, q) must satisfied

in order for a protoalgebraic logic to become equivalential.

Theorem 4.1.3 (Herrmann′s Test). Let S be a protoalgebraic logic. The following

conditions are equivalent:

(i) S is equivalential;

(ii) There exists some set E(p, q) that satisfies the following conditions:

⊢S E(p, p) and p ≡ q
(

Ω
(

CnS(E(p, q))
))

Proof. Assume S is equivalential. Then there exists a system of equivalence formulas

E(p, q) for S. By reflexivity, we have ⊢S E(p, p). Since E(p, q) ⊆ CnS(E(p, q)).

By the characterization of the Leibniz congruence in terms of E(p, q), we have p ≡

q
(

Ω
(

CnS(E(p, q))
))

.

Conversely, assume that there is some set E(p, q) such that ⊢S E(p, p) and p ≡

q
(

Ω
(

CnS

(

E(p, q))
))

. Since ⊢S E(p, p), reflexivity condition holds. We always have

E(p, q) ⊆ E(p, q)∪{p}. As S is protoalgebraic, by Theorem 3.3.1, Ω
(

CnS

(

E(p, q)
))

⊆

Ω
(

CnS

(

E(p, q) ∪ {p}
))

. Thus p ≡ q
(

Ω(CnS(E(p, q) ∪ {p}))
)

, i.e., modus ponens

condition holds. In order to show that single replacement condition is satisfied, we

claim that CnS(Tpq ∩ FmL({p, q})) = CnS(E(p, q)). By reflexivity of E(p, q), we have

E(p, q) ⊆ Tpq ∩ FmL({p, q}). Thus CnS(E(p, q)) ⊆ CnS(Tpq ∩ FmL({p, q})). For the

reverse inclusion, let ϕ ∈ Tpq ∩ FmL({p, q}). Since p ≡ q
(

Ω
(

CnS( E(p, q))
))

, we

have ϕ(p, p) ≡ ϕ(p, q)
(

Ω
(

CnS(E(p, q))
))

. By compatibility, ϕ(p, p) ∈ CnS(E(p, q))

iff ϕ(p, q) ∈ CnS(E(p, q)). By reflexivity, ϕ(p, p) ∈ CnS(E(p, q)). Thus ϕ(p, q) ∈

CnS(E(p, q)). Now, let ϕ ∈ FmL and e a substitution such that e(p) = ϕ(p) and

e(q) = ϕ(q). Since (e(p))(q/p) = (e(q))(q/p), by Lemma 3.1.2, E(ϕ(p), ϕ(q)) =

E(e(p), e(q)) = e(E(p, q)) ⊆ Tpq ∩ FmL({p, q}). Thus, E(ϕ(p), ϕ(q)) ⊆ CnS(Tpq ∩

FmL({p, q})) = CnS(E(p, q)), i.e., E(p, q) ⊢S E(ϕ(p), ϕ(q)). We conclude that E(p, q)

is a system of equivalence formulas for S. Therefore S is equivalential.
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With this proof, it is not difficult to show the following result.

Corollary 4.1.4. Let S be a logic. The following conditions are equivalent:

(i) S is equivalential;

(ii) Tpq ∩ FmL({p, q}) is a system of equivalence formulas for S.

Proof. Suppose that S is equivalential. Thus S is protoalgebraic. By Theorem 4.1.3,

there exists a set E(p, q) such that ⊢S E(p, p) and p ≡ q
(

Ω
(

CnS(E(p, q))
))

. In the

second part of the proof of Theorem 4.1.3, we show that CnS(E(p, q)) = CnS(Tpq ∩

FmL({p, q})) and that E(p, q) is a system of equivalence formulas for S. Therefore

Tpq ∩ FmL({p, q}) is a system of equivalence formulas for S.

The converse is obvious.

The following theorems give characterizations of equivalential and finitely equiv-

alential logics using the Leibniz operator.

Theorem 4.1.5. Let S be a logic. The following conditions are equivalent:

(i) S is equivalential;

(ii) The Leibniz operator Ω is monotone and commutes with inverse substitutions

on Th(S).

Proof. Assume S is equivalential. Thus S is protoalgebraic and by Theorem 3.3.1, the

Leibniz operator Ω is monotone on Th(S). On the other hand, since S is equivalen-

tial, there exists a system of equivalence formulas E(p, q) for S. Let T ∈ Th(S) and

e a substitution. As Th(S) is closed under inverse substitutions, e−1[T ] ∈ Th(S).

Let ϕ, ψ ∈ FmL. Suppose that ϕ ≡ ψ(e−1[ΩT ]). Thus e(ϕ) ≡ e(ψ)(ΩT ), i.e.,

E(e(ϕ), e(ψ)) ⊆ T . Since E(e(ϕ), e(ψ)) = e[E(ϕ, ψ)], we have that e[E(ϕ, ψ)] ⊆ T ,

i.e., E(ϕ, ψ) ⊆ e−1[T ]. Therefore ϕ ≡ ψ(Ωe−1[T ]).

Conversely, assume the Leibniz operator is monotone and commutes with inverse

substitutions on Th(S). Let e be a substitution such that e(p) = p, e(q) = q and

e(r) = p for the remaining variables r. Consider E(p, q) = e[Tpq]. By Lemma 3.1.2,

Tpq is closed with respect to e, i.e, E(p, q) ⊆ Tpq which means that ⊢S E(p, p). Again

by Lemma 3.1.2, p ≡ q(Ω(Tpq)). Thus e(p) ≡ e(q)(e[Ω(Tpq)]), i.e., p ≡ q(e[Ω(Tpq)]).

By hypothesis, e[Ω(Tpq)] ⊆ Ω(CnS(e[Tpq])). Thus p ≡ q(Ω(CnS(e[Tpq]))), i.e., p ≡

q
(

Ω(CnS(E(p, q)))
)

. By Theorem 4.1.3, S is equivalential.

Theorem 4.1.6. Let S be a logic. The following conditions are equivalent:
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(i) S is finitely equivalential;

(ii) ΩA is continuous on FiS(A) for every algebra A;

(iii) Ω is continuous on Th(S).

Proof. (i) ⇒ (ii). Assume S is finitely equivalential. Let E(p, q) be a finite system of

equivalence formulas for S, A an L-algebra and (Di)i∈I an upward directed family of

FiS(A) such that
⋃

{Di : i ∈ I} ∈ FiS(A). We have, Di ⊆
⋃

{Di : i ∈ I} for all i ∈ I.

Since S is also protoalgebraic, by Theorem 3.3.1, ΩA(Di) ⊆ ΩA

(
⋃

{Di : i ∈ I}
)

, for

all i ∈ I. Hence,
⋃

{ΩA(Di) : i ∈ I} ⊆ ΩA

(
⋃

{Di : i ∈ I}
)

. For the reverse inclusion,

suppose that a ≡ b
(

ΩA

(
⋃

{Di : i ∈ I}
))

, i.e., EA(a, b) ⊆
⋃

{Di : i ∈ I}. Since (Di)i∈I

is upward directed and E(p, q) is finite, there exists an i ∈ I such that EA(a, b) ⊆ Di.

Thus, a ≡ b(ΩA(Di)) and therefore ΩA

(
⋃

{Di : i ∈ I}
)

⊆
⋃

{ΩA(Di) : i ∈ I}.

(ii) ⇒ (iii). This is obvious.

(iii) ⇒ (i). Assume Ω is continuous on Th(S). First, we show that Ω is monotone

on Th(S) and the theory Tpq is finitely axiomatizable. Let T1, T2 ∈ Th(S). Suppose

that T1 ⊆ T2. The family (T1, T2) is upward directed and T1 ∪ T2 = T2 ∈ Th(S). By

hypothesis, ΩT2 = Ω(T1 ∪ T2) = ΩT1 ∪ ΩT2. Thus ΩT1 ⊆ ΩT2. By Theorem 3.3.1,

S is protoalgebraic. Now, let (Ti)i∈I be the family of all finitely axiomatizable closed

subtheories of Tpq. Thus each Ti is of the form Ti = CnS(Xi) with Xi a finite subset

of Tpq. The family (Ti)i∈I is upward directed and Tpq =
⋃

{Ti : i ∈ I}. By Lemma

3.1.2, p ≡ q(Ω(Tpq)). Since the Leibniz operator is continuous, p ≡ q(Ω(Ti)) for some

i ∈ I. We have seen that Tpq is an k-parameterized system of equivalence formulas for

S. Thus, Tpq(p, q, δ) ⊆ Ti for every string δ of formulas. In particular, Tpq ⊆ Ti. Hence,

Tpq = Ti = CnS(Xi) with Xi finite, i.e., Tpq is finitely axiomatizable.

In order to proved that S is finitely equivalential, we show that Tpq = CnS(E(p, q))

for some finite set E(p, q) of formulas. We fix an infinite set V = {u1, u2, . . . } of vari-

ables disjoint from the variables in V ar(Xi) ∪ {p, q} and we consider a substitution e

such that e(p) = p, e(q) = q, e(r) = p for every variable r ∈ V ar(Xi) \ {p, q} and

e(u) = u for every u ∈ V . Let E(p, q) = e(Xi). By Lemma 3.1.2, we have e(Tpq) =

CnS(e(Xi)) = CnS(E(p, q)) ⊆ Tpq. For the reverse inclusion, let ϕ(p, q, r1, . . . , rn) ∈ Tpq

where all the variables of ϕ are displayed. If we substitute in ϕ all the variables

r1, . . . , rn by arbitrary formulas, we obtain a formula which belongs to Tpq. In par-

ticular, ϕ(p, q, u1, . . . , un) ∈ Tpq, i.e., ϕ(p, q, u1, . . . , un) ∈ CnS(Xi). Hence by struc-

turality, ϕ(p, q, u1, . . . , un) = ϕ(e(p), e(q), e(u1), . . . , e(un)) = e(ϕ(p, q, u1, . . . , un)) ∈
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CnS(e(Xi)) = CnS(E(p, q)). Replacing the variables u1, . . . , un by r1, . . . , rn, we have

ϕ(p, q, r1, . . . , rn) ∈ CnS(E(p, q)). We conclude that Tpq = CnS(E(p, q)). Now, we

prove that E(p, q) is a finite system of equivalence formulas for S. Since E(p, q) ⊆ Tpq,

reflexivity condition holds. As Tpq is an k-parameterized system of equivalence for-

mulas for S, modus ponens condition holds. Thus, E(p, q) satisfies modus ponens

condition. To prove single replacement condition, we can use the same argument as in

proof of Theorem 4.1.3. Hence E(p, q) is a finite system of equivalence formulas for S.

Therefore S is finitely equivalential.

In the following theorem, we characterize equivalential logics by closure properties

of the class Mod∗(S).

Theorem 4.1.7. Let S be a logic. The following conditions are equivalent:

(i) S is equivalential;

(ii) The class Mod∗(S) is closed under submatrices and direct products.

Proof. Let S be an equivalential logic. Thus S is protoalgebraic and, by Theorem

3.5.1, Mod∗(S) is closed under subdirect products. Then it is also closed under direct

products. Let N = 〈B, E〉 be a submatrix of a matrix M = 〈A, D〉 ∈ Mod∗(S).

Since Mod(S) is closed under submatrix, N ∈ Mod(S). As S is equivalential, there

exists E(p, q) a system of equivalence formulas for S. Let a, b ∈ B. We prove by

contraposition that if a ≡ b(ΩBE) then a ≡ b(ΩAD). Suppose that (a, b) /∈ ΩAD, i.e.,

EA(a, b) * D. Since EB(a, b) ⊆ EA(a, b), EB(a, b) * D. Thus EB(a, b) * D ∩ B,

i.e., (a, b) /∈ ΩB(D ∩ B). As E = D ∩ B, ΩBE = ΩB(B ∩ D). So (a, b) /∈ ΩB(E).

Now suppose that a ≡ b(ΩBE). Then a ≡ b(ΩAD). Since ΩAD = △A, a = b. Thus

ΩBE = △B.

Conversely, assume that Mod∗(S) is closed under submatrices and direct products.

Thus Mod∗(S) is closed under subdirect products and by Theorem 3.5.1, S is pro-

toalgebraic. By Theorem 3.4.3, there exists an k-parameterized system of equivalence

formulas E(p, q, r) = {ǫi(p, q, r) : i ∈ I} for S. Let E ′(p, q) be the set of all formu-

las of the form ǫi(p, q, ϕ1(p, q), . . . , ϕki
(p, q)), where i ∈ I and ϕ1(p, q), . . . , ϕki

(p, q)

range over all formulas that contain only the variables p, q. Let 〈A, F 〉 ∈ Mod(S)

and a, b ∈ A. Consider B the subalgebra of A generated by a and b. Thus, each

elements of B is of the form ϕA(a, b) for some ϕ(p, q) ∈ FmL({p, q}). The matrix

〈A/ΩAF, F/ΩAF 〉 ∈ Mod∗(S), since it is the reduction of the matrix 〈A, F 〉. As the
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matrix 〈B/(ΩAF ∩B2), (F∩B)/(ΩAF ∩B2)〉 is isomorphic to a submatrix of 〈A, F 〉, by

hypothesis, it is reduced. Hence, ΩAF ∩B2 is the largest congruence on B compatible

with F ∩B, i.e., ΩB(F ∩ B) = ΩAF ∩B2. We have that:

a ≡ b(ΩAF ) iff a ≡ b(ΩAF ∩B2) iff a ≡ b(ΩB(F ∩ B))

iff ǫBi (a, b, c) ∈ F ∩B for all i ∈ I, and c ∈ Bki

iff ǫBi (a, b, ϕB

1 (p, q), . . . , ϕB

ki
(p, q)) ∈ F ∩B for all i ∈ I, and ϕ1, . . . , ϕki

∈ FmL({p, q})

iff ǫAi (a, b, ϕA

1 (p, q), . . . , ϕA

ki
(p, q)) ∈ F for all i ∈ I, and ϕ1, . . . , ϕki

∈ FmL({p, q})

iff E ′A(a, b) ⊆ F

By Theorem 3.4.2, E ′(p, q) is a system of equivalence formulas (without parameters)

for S. Therefore, S is equivalential.

As expected, the class of equivalential logics is a proper subclass of the class of

protoalgebraic logics. The next example illustrate this result.

Example 4.2 (Orthologic [Mal89]). In Example 3.2, we have seen that the minimal

orthologic SOL is protoalgebraic. Now we prove that this logic is not equivalential using

the fact that the class Mod∗(SOL) is not closed under submatrices. It is not difficult to

prove that if the matrix 〈A, D〉 ∈ Mod∗(SOL) then A is an ortholattice and D = {1},

where 1 is the unit element of A. An orthomodular lattice is an ortholattice which

satisfies the orthomodularity law: y ≈ (x ∧ y) ∨ (y ∧ (¬(x ∧ y))). The Benzene Ring

B6 is an ortholattice which is not orthomodular because the orthomodularity law does

not hold. Indeed, a < b but a ∨ (b ∧ ¬a) = a ∨ 0 = a 6= b.

Figure 4.1: The Benzene Ring B6

As, we have seen that any class of ortholattices K can be identified with the class

of matrices {〈A, {1}〉 : A ∈ K}, we have that B6 can be identified with the matrix

〈B6, {1}〉. As ΩB6
({1}) = △B6

∪{(a, b), (b, a), (¬a,¬b), (¬b,¬a)}, the matrix 〈B6, {1}〉

is not reduced. Since SOL is an orthologic which is not orthomodular, there exists a
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matrix 〈A, {1}〉 ∈ Mod∗(SOL) such that the ortholattice A is not orthomodular. Mali-

nowski proved in [Mal89, Theorem 3.3.1] that if an ortholattice A is not orthomodular

then it contains the Benzene Ring B6 as a subortholattice. Thus B6 is a subalgebra

of A and consequently 〈B6, {1}〉 is a submatrix of 〈A, {1}〉. Since 〈B6, {1}〉 is not

reduced, Mod∗(SOL) is not closed under submatrices. By Theorem 4.1.7, SOL is not

equivalential. The reader can see [Mal89, Section 3.3], [Mal90] and [CJ00, Chapter

6] for more information about orthologic and orthomodular logic; for instance, in the

class of orthomodular logics, the DDT fails. ♦

4.3 Finitary and (Finitely) Equivalential Logics

In this section, we focus on some results related to finitary logics.

Theorem 4.3.1. Let S be a logic. The following conditions are equivalent:

(i) S is finitary and finitely equivalential;

(ii) Mod∗(S) is a matrix-quasivariety.

Proof. Assume S is finitary and finitely equivalential. There exists a finite system of

equivalence formulas E(p, q) for S. Since S is finitary and also protoalgebraic, by Theo-

rem 3.8.1, Mod∗(S) is closed under ultraproducts. Moreover S is also equivalential, by

Theorem 4.1.7, Mod∗(S) is closed under submatrices and direct products. Therefore,

Mod∗(S) is a matrix-quasivariety.

Conversely, assume Mod∗(S) is a matrix-quasivariety, i.e., Mod∗(S) is closed un-

der submatrices, direct products and ultraproducts. Since Mod∗(S) is closed under

ultraproducts, S is a finitary logic. By Theorem 4.1.7, S is equivalential. Thus, there

exists a (possibly infinite) system of equivalence formulas E(p, q) for S. As S is a

finitary protoalgebraic logic and Mod∗(S) is closed under ultraproducts, by Theorem

3.8.1, E(p, q) contains a finite subsystem of equivalence formulas for S. Therefore S is

finitely equivalential.

4.4 Examples

Herein, we study some examples of modal logics with respect to the existence of system

of equivalence formulas. We also discuss the finitariness of the system of equivalence

formulas.
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We begin by defining a large class of logics which are called implicative logics and

which are finitely equivalential. This class of implicative logics have been extensively

studied by Rasiowa (c.f. [Ras74]) and Sikorski.

Definition 4.4.1. A logic S is called implicative if the language only contains a finite

number of connectives of rank at most 2 and if there exists a formula ϕ(p, q), called

implication of S, such that:

(i) ⊢S ϕ(p, p)

(ii) q ⊢S ϕ(p, q)

(iii) {ϕ(p, q)} ∪ {ϕ(q, r)} ⊢S ϕ(p, r)

(iv) {ϕ(p, q)} ∪ {p} ⊢S q

(v) for each connective f of rank n ≥ 0,

{ϕ(p1, q1), ϕ(q1, p1)}∪· · ·∪{ϕ(pn, qn), ϕ(qn, pn)} ⊢S ϕ(f(p1, . . . , pn), f(q1, . . . , qn))

It is not difficult to see that every implicative logic is finitely equivalential. More-

over, if ϕ(p, q) is an implication for a logic S then S is finitely equivalential with

{ϕ(p, q), ϕ(q, p)} its system of equivalence formulas.

Among modal logics, we can find a variety of logics which show that the class

of finitely equivalential logics is a proper subclass of equivalential logics. We present

examples without proof and we give references where the reader can find detailed

discussions.

Example 4.5 (Modal Logic [Mal89]). Let L = {∧,∨,¬,2} be the language of Modal

Logics, where ∧,∨,¬ are the familiar connectives of conjunction, disjunction and nega-

tion, and 2 is a unary connective representing the logical necessity (2ϕ reads: “It is

necessary that ϕ”). The notation 2
np is defined recursively, for all n ∈ N, by: 2

0p = p

and 2
n+1p = 2(2np). We adopt the usual notation: the formula ϕ → ψ is an abbre-

viation for ¬ϕ ∨ ψ, and ϕ ↔ ψ is an abbreviation for (ϕ → ψ) ∧ (ψ → ϕ), for any

ϕ, ψ ∈ FmL. We denote by Sb(X, r1, . . . , rn) the least invariant set of modal formulas

that includes the set X ⊆ FmL and is closed under the inference rules r1, . . . , rn. We

list some axioms and inference rules that we need to define some modal systems.

(MP )
p, p→ q

q
(Modus Ponens)

(RE)
p↔ q

2p↔ 2q
(Extensionality)
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(NR)
p

2p
(Necessitation)

(Kr) 2(p→ q) → (2p→ 2q)

(T ) 2p → p

(S4n) 2
np→ 2

n+1p, for all n ∈ N

We also defined CL as the least invariant set in FmL containing all classical tautolo-

gies. By a Modal System we mean an invariant set of FmL that contains all classical

tautologies and is closed under modus ponens. In the sequel, we define some interesting

modal systems:

E = Sb(CL, (MP ), (RE)) is the least classical modal system;

Kr = Sb(E, (Kr), (MP ), (NR)) is the least normal classical modal system, called

Kripke system;

T = Sb(K, (T ), (MP ), (NR));

S4n = Sb(T, (S4n), (MP ), (NR)) for n ∈ N.

If L is a modal system, we denote by
−→
L the Modal Logic defined in the language FmL

by the set of axioms L and the inference rule modus ponens. All modal logics are

protoalgebraic because the DDT holds: for any Γ ∪ {ϕ, ψ} ⊆ FmL,

Γ ∪ {ϕ} ⊢−→
L
ψ iff Γ ⊢−→

L
ϕ→ ψ

Malinowski has shown, in [Mal89, Corollary 2.1.3] and in [Mal86, Corollary II.3], that

the logic
−→
E is not equivalential. But the Kripke logic

−→
Kr is finitary and equivalential

with the set of equivalence formulas E(p, q) := {2n(p ↔ q) : n ∈ N}. Since the

modal logic
−→
T is an axiomatic extension of

−→
Kr, it is also equivalential. Malinowski has

also shown, in [Mal89, Theorem 2.2.1] and in [Mal86, Theorem III.1], that
−→
T is not

finitely equivalential. We deduced that
−→
Kr is not finitely equivalential. Furthermore,

the modal logic
−−→
S4n is finitely equivalential, for all n ∈ N with E(p, q) = {2n(p↔ q)}

as the finite system of equivalence formulas. ♦



Chapter 5

Algebraizable Logics

The general theory of AAL studies the mechanism by which a class of algebras can be

associated with a given logic. This contrasts to the study of algebraic logic where the

main setting is to examine the class of algebras that are canonically associated with

a logic. Boole could be considered as the first logician who studied the relationship

between CPL and the class BA. The paradigm of the Lindenbaum-Tarski process is

the way by which the class BA appears from CPL. In [BP89], Blok and Pigozzi give

a precise meaning of the notion of finitary finitely algebraizable logics which are logics

that have equivalent algebraic semantics with a finite set of equivalence formulas and

a finite set of defining equations.

In this chapter, we study the algebraization phenomena in a wide sense. First we

define the notion of algebraic semantics. Roughly speaking, a class K of algebras can

be considered as an algebraic semantics of a logic S if the consequence relation ⊢S can

be interpreted in the equational consequence relation
K

in a natural way. In addition,

if there exists an inverse interpretation of
K

in ⊢S, then K is called an equivalent

algebraic semantics for S (it is unique up to a quasivariety). We study the class of

weakly algebraizable logics which are logics that have a pair of interpretations that

commute with surjective substitutions and are mutually inverse. We characterized this

class using Leibniz operator properties. We also define algebraizable logics as logics

which have an equivalent algebraic semantics and give some characterizations. Among

them, we have that K is an equivalent algebraic semantics for S iff there exists an

isomorphism between the theory lattice of S and the equational theory lattice of K

that commutes with inverse substitution. We finalize by giving examples of logics which

show that the inclusion among different classes of algebraizable logics are proper.
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5.1 Algebraic Semantics

The reader should not confuse the notion of algebraic semantics presented in this

chapter with the notion of matrix semantics defined in Chapter 2. Although every

logic has a matrix semantics, it can does not have an algebraic semantics. We give

an example to illustrate this result. Furthermore, if the logic is finitary, then it has

(if any) a quasivariety semantics which can be axiomatized by a set of axioms and

a set of inference rules. We point out to [BR03], where Blok and Rebagliato have

studied sufficient conditions for a logic to have an algebraic semantics and presented

some examples that illustrate their results.

Definition 5.1.1. Let S be a logic and K a class of L-algebras. We say that ⊢S is

interpretable in
K

if there exists a mapping τ : FmL → P(EqL) such that for all

Γ ∪ {α} ⊆ FmL,

Γ ⊢S α iff τ [Γ]
K
τ(α)

The mapping τ is called an interpretation of ⊢S in
K
.

We say that ∆(p, v) = {δi(p, v) ≈ ǫi(p, v) : i ∈ I} is an l-parameterized system of

equations if it is a set of equations in a single variable p and possibly other variables

v = v1, v2, . . . called parameters with l the length of the string v. Note that ∆(p, v)

may be infinite; hence the length of the string v, could be ω. Let α ∈ FmL, we denote

by ∆(〈α〉) the set of all substitution instances e(δi(p, v)) ≈ e(ǫi(p, v)) where i ranges

over I and e over all substitutions such that e(p) = α, i.e.,

∆(〈α〉) := {δi(p/α, v/ξ) ≈ ǫi(p/α, v/ξ) : i ∈ I, ξ ∈ (FmL)l}.

We extend this notation to L-algebras. If A is an L-algebra and a, b ∈ A, we denote

by ∆A(〈a〉) the set of all elements of A of the form h(δi(p, v)) ≈ h(ǫi(p, v)) where i

ranges over I and h over all homomorphisms h : FmL → A such that h(p) = a, i.e.,

∆A(〈a〉) := {δAi (p/a, v/c) ≈ ǫAi (p/a, v/c) : i ∈ I, c ∈ Al},

where ǫAi := h(ǫi) and δAi := h(δi).

In the following propositions, the mapping τ can be represented, with some as-

sumptions, by a particular set of equations.

Proposition 5.1.2. Let τ : FmL → P(EqL) be an arbitrary mapping. The following

conditions are equivalent:
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(i) τ commutes with surjective substitutions;

(ii) There exists an l-parameterized system of equations ∆(p, v) such that for all

α ∈ FmL, τ(α) = ∆(〈α〉).

Proof. Assume τ commutes with surjective substitutions. We fix a variable p and

define ∆(p, v) := τ(p). Let l be the length of v. Clearly, τ(p) ⊆ {δ(p, ξ) ≈ ǫ(p, ξ) :

δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), ξ ∈ (FmL)l}. For the reverse inclusion, let ξ ∈ (FmL)l and

e a surjective substitution such that e(p) = p, e(v) = ξ. For all δ(p, v) ≈ ǫ(p, v) ∈

∆(p, v), we have that δ
(

e(p), e(v)
)

≈ ǫ
(

e(p), e(v)
)

∈ e[τ(p)]. By hypothesis, e[τ(p)] =

τ(e(p)) = τ(p). Thus for all δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), δ(p, ξ) ≈ ǫ(p, ξ) ∈ τ(p), i.e.,

{δ(p, ξ) ≈ ǫ(p, ξ) : δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), ξ ∈ (FmL)l} ⊆ τ(p). We conclude

that τ(p) = {δ(p, ξ) ≈ ǫ(p, ξ) : δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), ξ ∈ (FmL)l}. Now, let

α ∈ FmL and e a surjective substitution such that e(p) = α. We have that τ(α) =

τ(e(p)) = e[τ(p)] = e[{δ(p, ξ) ≈ ǫ(p, ξ) : δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), ξ ∈ (FmL)l}] =

{δ
(

e(p), e(ξ)
)

≈ ǫ
(

e(p), e(ξ)
)

: δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), ξ ∈ (FmL)l} = {δ
(

α, e(ξ)
)

≈

ǫ
(

α, e(ξ)
)

: δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), ξ ∈ (FmL)l}. Since e is surjective, τ(α) =

{δ(α, η) ≈ ǫ(α, η) : δ(p, v) ≈ ǫ(p, v) ∈ ∆(p, v), η ∈ (FmL)l} = ∆(〈α〉).

Conversely, let e be a surjective substitution and α ∈ FmL. We have that e[τ(α)] =

e[∆(〈α〉)] = ∆(〈e(α)〉) = {δi(e(α), e(ξ)) ≈ ǫi(e(α), e(ξ)) : i ∈ I, ξ ∈ (FmL)l}. By

surjectivity of e, e[τ(α)] = {δi(e(α), η) ≈ ǫi(e(α), η) : i ∈ I, η ∈ (FmL)l} = τ(e(α)).

Proposition 5.1.3. Let τ : FmL → P(EqL) be an arbitrary mapping. The following

conditions are equivalent:

(i) τ commutes with arbitrary substitutions;

(ii) There exists a set ∆(p) = {δi(p) ≈ ǫi(p) : i ∈ I} of equations in a single

variable p such that for all α ∈ FmL, τ(α) = ∆(α).

Proof. Assume τ commutes with arbitrary substitutions. We fix a variable p and

define ∆(p) := τ(p). Suppose Var(∆(p)) ⊆ {p, r1, r2, . . . }. Let e be a substitution

such that for every q ∈ Var(∆(p)), e(q) = p. Then {δ(p, p, p, . . . ) ≈ ǫ(p, p, p, . . . ) :

δ(p, v) ≈ ǫ(p, v) ∈ ∆(p)} = e[{δ(p) ≈ ǫ(p) : δ(p) ≈ ǫ(p) ∈ ∆(p)}] = e[τ(p)] =

τ
(

e(p)
)

= τ(p) = {δ(p, r1, r2, . . . ) ≈ ǫ(p, r1, r2, . . . ) : δ(p, v) ≈ ǫ(p, v) ∈ ∆(p)}. Hence,

{r1, r2, . . . } ⊆ {p}. Thus Var(∆(p)) ⊆ {p}. Now, let α ∈ FmL and e a substitution

such that e(p) = α. Then τ(α) = τ
(

e(p)
)

= e[τ(p)] = e[∆(p)] = ∆
(

e(p)
)

= ∆(α).

The converse is obvious.
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In [Cze01, Definition 4.2.1], Czelakowski defined the notion of interpretation in

more general sense (between two arbitrary logics) and used the term “transformer”.

When an interpretation commutes with arbitrary substitutions and is defined by a finite

set of equations then it coincides with the notion of “translation” introduced by Blok

and Pigozzi in [BP01, Definition 4.1]. There are others logicians that study mappings

between logic (Feitosa and Ottaviano have described in [FD01, Definition 1.10] a more

general notion of translation. They have studied the conservative translation and

established some logical properties that may be preserved via translations).

The following definition of algebraic semantics is due to Blok and Pigozzi in [BP89,

definition 2.2] but with the requirement that the set of equations is finite and the logic

is finitary.

Definition 5.1.4. Let S be a logic and K a class of L-algebras. We say that K is

an algebraic semantics of S if ⊢S is interpretable in
K

in the following sense: there

exists ∆(p) a set of equations such that for all Γ ∪ {α} ⊆ FmL,

Γ ⊢S α iff ∆(Γ)
K

∆(α)

where ∆(Γ) = {δi(p/γ) ≈ ǫi(p/γ) : i ∈ I, γ ∈ Γ}.

The equations in ∆(p) are called the defining equations for ⊢S and
K
.

In other words, K is an algebraic semantics of S iff there exists an interpretation

τ : FmL → P(EqL) of ⊢S in
K

that commutes with arbitrary substitutions. The

algebraic semantics K is also called τ -algebraic semantics of S by Raftery in [Raf06b,

Definition 1].

If τ is an interpretation of ⊢S in
K

, that commutes with arbitrary substitutions,

then for every algebra A ∈ K, we write F τ
A

:= {a ∈ A : δAi (a) = ǫAi (a), i ∈ I}.

Theorem 5.1.5. Let S be a logic, K a class of L-algebras and τ : FmL → P(EqL)

an arbitrary mapping that commutes with arbitrary substitutions. Then the following

conditions are equivalent:

(i) K is an algebraic semantics of S with the set of defining equations τ(p);

(ii) The class M = {〈A, F τ
A
〉 : A ∈ K} is a matrix semantics of S.

Proof. Let M = {〈A, F τ
A
〉 : A ∈ K} be a class of matrices and Γ ∪ {α} ⊆ FmL. We

have that
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Γ
M
α iff, for all M = 〈A, F τ

A
〉 ∈ M, Γ

M
α iff, for all A ∈

K and all homomorphism h : FmL → A, h[Γ] ⊆ F τ
A

implies h(α) ∈ F τ
A

iff, for all A ∈ K, all homomorphism h : FmL → A and all i ∈ I; δAi (γ) =

ǫAi (γ) for all γ ∈ Γ implies δAi (α) = ǫAi (α) iff, for all A ∈ K, all homomorphism h :

FmL → A and all i ∈ I; h(δi(γ)) = h(ǫi(γ)) for all γ ∈ Γ implies h(δi(α)) = h(ǫi(α))

iff, for all A ∈ K, ∆(Γ)
A

∆(α) iff ∆(Γ)
K

∆(α).

Now, assume that the class K is an algebraic semantics of S. Let Γ ∪ {α} ⊆ FmL.

We have that Γ
M
α iff ∆[Γ]

K
∆(α). By assumption, ∆[Γ]

K
∆(α) iff Γ ⊢S α.

Thus M is a matrix semantics of S.

Conversely, assume that the class M is a matrix semantics of S. Let Γ∪{α} ⊆ FmL.

By assumption, Γ ⊢S α iff Γ
M
α. Since, Γ

M
α iff ∆[Γ]

K
∆(α), we have that

K is an algebraic semantics of S.

We give an example of logic that has an algebraic semantics.

Example 5.2 (Classical Propositional Logic [BP01]). Let CPL be the Classical Propo-

sitional Logic defined in the language L = {→,∧,∨,¬,⊥,⊤} by the following axioms:

A1 p→ (q → p)

A2 (p→ (q → r)) → ((p→ q) → (p→ r))

A3 (¬q → ¬p) → (p→ q)

A4 (p ∧ q) → p

A5 (p ∧ q) → q

A6 (r → p) → ((r → q) → (r → (p ∧ q)))

A7 p→ (p ∨ q)

A8 q → (p ∨ q)

A9 (p→ r) → ((q → r) → ((p ∨ q) → r))

A10 ⊥ → p

A11 p→ ⊤

and the inference rule:

p, p→ q

q
(Modus Ponens)

We define Boolean algebra as an L-algebra A = 〈A,→A,∧A,∨A,¬A,⊥A,⊤A〉 such

that 〈A,∧A,∨A,¬A,⊥A,⊤A〉 is a bounded, complemented, distributive lattice with

smallest element ⊥A, largest element ⊤A and complementation ¬A, while →A is rel-

ative complementation (a →A b = ¬Aa ∨A b). We denote by BA the class of all



58

Boolean algebras. Since {〈A, {⊤A}〉 : A ∈ BA} is a matrix semantics of CPL, by

Theorem 5.1.5, the class BA is an algebraic semantics of CPL with the set of defining

equation {p ≈ ⊤}. Therefore, for all Γ∪{ϕ} ⊆ FmL, Γ ⊢CPL ϕ iff Γ ≈ ⊤
BA

ϕ ≈ ⊤.

However, the logic CPL has another algebraic semantics which is the class of Heyting

algebras (HA) with the defining equation {¬¬p ≈ ⊤} (c.f. [BR03, Proposition 2.6]).♦

We say that an algebra A is a τ -model of a logic S if for all Γ ∪ {α} ⊆ FmL,

Γ ⊢S α implies τ [Γ] |=A τ(α).

We denote by K(S, τ) the class of all τ -models of S.

With the above example, we can note that if a logic has an algebraic semantics then

it is not unique. Nevertheless, in the following proposition, we prove that if a logic has

an algebraic semantics then it has the largest one.

Proposition 5.2.1. Let S be a logic and τ : FmL → P(EqL) an arbitrary mapping

that commutes with arbitrary substitutions. If S has an algebraic semantics with the

set of defining equations τ(p), then K(S, τ) is the largest algebraic semantics.

Proof. Let K be an algebraic semantics of S with the set of defining equations τ(p)

and Γ ∪ {α} ∈ FmL. By the definition of K(S, τ), we have that Γ ⊢S α implies

τ [Γ]
K(S,τ)

τ(α). Since K is an algebraic semantics, all the algebras A ∈ K are τ -

models. Thus K ⊆ K(S, τ). Hence τ [Γ]
K(S,τ)

τ(α) implies τ [Γ]
K
τ(α). Since K is

an algebraic semantics of S, Γ ⊢S α. We conclude that K(S, τ) is an algebraic semantics

of S. It is not difficult to see that for all K algebraic semantics of S, K ⊆ K(S, τ).

Thus K(S, τ) is the largest algebraic semantics of S.

Moreover, if S is a deductive system, i.e, is axiomatized by a set of axioms and a

set of inference rules, then the largest algebraic semantics is also axiomatized.

Proposition 5.2.2. [BR03, Proposition 2.9] Let S be a deductive system axiomatized

by a set AX of axioms and a set IR of inference rules, and τ : FmL → P(EqL)

an arbitrary mapping that commutes with arbitrary substitutions which is defined by

a finite set of defining equations. Then, the algebraic 2-deductive system
K(S,τ)

is

axiomatized by the axioms,

(i) p ≈ p

(ii) τ(α) i.e., δi(α) ≈ ǫi(α), for all i ∈ I, and all α ∈ AX

and the inference rules,
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(iii)
p ≈ q

q ≈ p

(iv)
p ≈ q, q ≈ r

p ≈ r

(v)
{pi ≈ qi : i < m}

f(p0, . . . , pm−1) ≈ f(q0, . . . , qm−1)
, for all connectives f of rank m

(vi)

⋃

{τ(αj) : j < n}

τ(β)
i.e.,

{δi(αj) ≈ ǫi(αj) : i ∈ I, j < n}

δi(β) ≈ ǫi(β)
, for all i ∈ I, all 〈{αj :

j < n}, β〉 ∈ IR and n ∈ N.

If a finitary logic S has an algebraic semantics K with the set of defining equations

∆(p) then it has a quasivariety semantics Q(K) with the same set of defining equations.

We give an example of logic that has a quasivariety semantics.

Example 5.3 (Classical Propositional Logic [BP01]). Let 2 = 〈{0, 1},→2,∧2,∨2,¬2,

⊥2,⊤2〉 be the two-element Boolean algebra where ⊥2 = 0 and ⊤2 = 1 denote respec-

tively “false” and “true”, and →2,∧2,∨2 : {0, 1}2 → {0, 1} and ¬2 : {0, 1} → {0, 1} are

given by the usual truth tables. We have that, for all Γ∪{ϕ} ⊆ FmL, Γ ⊢CPL ϕ iff Γ ≈

⊤
2
ϕ ≈ ⊤. Thus the class of two-element Boolean algebras is an algebraic semantics

for CPL with the set of defining equations ∆(p) = {p ≈ ⊤}. The variety of Boolean

algebras is generated by the two-element Boolean algebra, i.e., BA = HSP (2). We

also have that the variety of Boolean algebras is generated by 2 as a quasivariety, i.e.,

BA = SP (2). ♦

If a logic S has an algebraic semantics, then any fragment of S, whose language

includes the connectives occurring in the set of defining equations, has an algebraic

semantics; and any extension of S, also has an algebraic semantics with the same set

of defining equations. Blok and Pigozzi proved this result, in [BP89, Corollary 2.5], for

finitary logic and finite set of defining equations.

Theorem 5.3.1. Let S be a logic, τ : FmL → P(EqL) an arbitrary mapping that

commutes with arbitrary substitutions, K an algebraic semantics of S with the set

of defining equations τ(p) and L′ a sublanguage of L that contains all the primitive

connectives occurring in τ(p). Then the class K′ of all L′-reducts of members of K

is an algebraic semantics of any L′-fragment S ′ of S. Furthermore, if K(S, τ) is a

quasivariety, then K′(S ′, τ) is a quasivariety semantics for S ′.

In order to prove that any extension of logic, which has an algebraic semantics, also

has an algebraic semantics, we need the following lemmas.
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Let τS,K : ThS → ThK be the mapping defined by τS,K[T ] = CnK(τ [T ]), for all

T ∈ ThS.

Lemma 5.3.2. Let S be a logic, τ : FmL → P(EqL) an arbitrary mapping that com-

mutes with arbitrary substitutions and K ⊆ K(S, τ) a class of τ -models of S. Then the

following conditions are equivalent:

(i) K is an algebraic semantics of S with the set of defining equations τ(p).

(ii) τS,K is injective.

Proof. Let T1, T2 ∈ ThS. Suppose τS,K[T1] = τS,K[T2]. Let α ∈ T1. We have that

τ(α) ⊆ τ [T1] ⊆ τS,K[T1] = τS,K[T2]. Hence, τ [T2] K
τ(α). Since K is an algebraic

semantics of S, we have T2 ⊢S α, i.e., α ∈ T2. In an analogous way, we can prove that

T2 ⊆ T1. Therefore τS,K is injective.

Conversely, let Γ ∪ {α} ⊆ FmL. Since K is a class of τ -models of S, we have

that Γ ⊢S α implies τ [Γ]
K
τ(α). Now, suppose τ [Γ]

K
τ(α). Thus, CnK(τ [Γ]) =

CnK(τ [Γ∪ {α}]). Since Γ ⊆ CnS(Γ), we have that τ [Γ] ⊆ τ [CnS(Γ)]. So, CnK(τ [Γ]) ⊆

CnK(τ [CnS(Γ)]) = τS,K[CnS(Γ)]. For the reverse inclusion, let α ≈ β ∈ τS,K[CnS(Γ)],

i.e., τ [CnS(Γ)]
K
α ≈ β. Thus {τ(ξ) : Γ ⊢S ξ} K

α ≈ β. As K is a class of τ -models

of S, for all ξ ∈ FmL we have that Γ ⊢S ξ implies τ [Γ]
K
τ(ξ). Therefore, τ [Γ]

K

α ≈ β, i.e., α ≈ β ∈ CnK(τ [Γ]). We conclude that for all Γ ∈ FmL, τS,K[CnS(Γ)] =

CnK(τ [Γ]). By these results, we have that τS,K[CnS(Γ)] = τS,K[CnS(Γ ∪ {α})]. Since

τS,K is injective, CnS(Γ) = CnS(Γ ∪ {α}) and so, Γ ⊢S α.

Lemma 5.3.3. Let S be a deductive system and τ : FmL → P(EqL) an arbitrary

mapping that commutes with arbitrary substitutions. Suppose that K = K(S, τ) is

an algebraic semantics of S with the finite set of defining equations τ(p). If S ′ is an

extension of S and K′ = K′(S ′, τ) then τS′,K′ equals τS,K restricted to ThS ′.

Proof. Let T ∈ ThS ′. Since S ′ is an extension of S, K′ ⊆ K, so
K′ is an extension

of
K

. Hence CnK(τ [T ]) ⊆ CnK′(τ [T ]), i.e., τS,K[T ] ⊆ τS′,K′[T ]. For the reverse

inclusion, by Proposition 5.2.2, K′ can be axiomatized by a set of axioms and a set

of inference rules. It is not difficult to see that CnK(τ [T ]) contains all substitution

instances of the axioms of
K′ and is closed under the inference rules of

K′. Indeed,

it is obvious that CnK(τ [T ]) contains all substitution instances of the axiom (i) and is

closed under the inference rules (iii) and (iv) of Proposition 5.2.2 . Let α ∈ Thm(S ′)

and e a substitution. Since Thm(S ′) is closed under substitutions, ⊢S′ e(α). Thus for
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all T ∈ ThS ′, we have that e(α) ∈ T . As τ commutes with arbitrary substitutions,

e[τ(α)] = τ [e(α)] ⊆ τ [T ] ⊆ CnK(τ [T ]). Thus CnK(τ [T ]) contains all substitution

instances of axioms of K′. Now, let {αi : i < n} ⊢S′ β be an inference rule of S ′

and e a substitution such that {e[τ(αi)] : i < n} ⊆ CnK(τ [T ]), i.e., τ [T ]
K
e[τ(αi)]

for all i < n. Since τ commutes with arbitrary substitutions, e[τ(αi)] = τ [e(αi)] for

all i < n, i.e., τ [T ]
K
τ [e(αi)] for all i < n. As K is an algebraic semantics of S,

it follows that T ⊢S e(αi) for all i < n, i.e., {e(αi) : i < n} ⊆ T . By structurality

of S ′, {e(αi) : i < n} ⊢S′ e(β). Since T ∈ ThS ′, we have that e(β) ∈ T . Thus

e[τ(β)] = τ [e(β)] ⊆ τ [T ] ⊆ CnK(τ [T ]). Therefore CnK(τ [T ]) is closed under the

inference rules of K′. By the characterization of a theory in a deductive system, we

have proved that CnK(τ [T ]) ∈ Th(K′). Since τ [T ] ⊆ CnK(τ [T ]) and CnK′(τ [T ]) is

the least S ′-theory that contains τ [T ], we have that CnK′(τ [T ]) ⊆ CnK(τ [T ]), i.e.,

τS′,K′[T ] ⊆ τS,K[T ].

Theorem 5.3.4. Let S be a deductive system. If S has an algebraic semantics, then

any extension of S also has an algebraic semantics with the same set of defining equa-

tions.

Proof. Assume that S has an algebraic semantics K with the set of defining equations

τ(p). Let S ′ be an extension of S and K′ = K(S ′, τ). By Proposition 5.2.1, the

class K(S, τ) is an algebraic semantics of S with the set of defining equations τ(p).

Since, by Lemma 5.3.2, the mapping τS,K is injective, we have, by Lemma 5.3.3, that

the mapping τS′,K′ is also injective. Again by Lemma 5.3.2, we have that K′ is an

algebraic semantics of S ′ with the set of defining equations τ(p).

In Example 5.2, we see that a logic can have several algebraic semantics. Now, we

give an example of logic which does not have any algebraic semantics.

Example 5.4. [BR03, Theorem 2.19] Let L = {→} be the language with just one

binary connective and S the deductive system over L with the single axiom,

p→ p

and the single inference rule, Modus Ponens,

p, p→ q

q

The set ∆(p, q) = {p → q} is a protoequivalence system for S. By Theorem 3.1.3, S

is protoalgebraic. In order to prove that S does not have an algebraic semantics, we

argue by contradiction and we need the following Lemmas.
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Lemma 5.4.1. [BR03, Theorem 2.16] Let S be a deductive system which has an al-

gebraic semantics with the set of defining equations ∆(p) = {δi(p) ≈ ǫi(p) : i < n}.

Then

{p, γ(δi(p), ψ0, . . . , ψk−1)} ⊢S γ(ǫi(p), ψ0, . . . , ψk−1) for all i < n

and

{p, γ(ǫi(p), ψ0, . . . , ψk−1)} ⊢S γ(δi(p), ψ0, . . . , ψk−1) for all i < n

for every ψ0, . . . , ψk−1, γ(p, q0, . . . , qk−1) ∈ FmL, where k < ω.

Lemma 5.4.2. [BR03, Lemma 2.18] Let p, q be distinct variables and ϕ, ψ ∈ FmL.

Then {p, q → ϕ} ⊢S ψ iff ψ ∈ {p, q → ϕ} ∪ {γ → γ : γ ∈ FmL}.

Suppose that S has an algebraic semantics, denoted by K, with the set of defining

equations ∆(p) = {δi(p) ≈ ǫi(p) : i < n}. Let q ∈ Var such that q 6= p. By Lemma

5.4.1, {p, q → δi(p)} ⊢S q → ǫi(p) for all i < n. By Lemma 5.4.2, q → ǫi(p) ∈ {p, q →

δi(p)} ∪ {γ → γ : γ ∈ FmL}. Since ∆(p) is a set in only one variable p, q 6= ǫi(p) and

since q 6= p, q → ǫi(p) 6= p. Thus, q → ǫi(p) = q → δi(p). Hence δi(p) is equal to ǫi(p)

for all i < n, i.e.,
K

∆(ϕ) for all ϕ ∈ FmL. As K is an algebraic semantics of S,

⊢S ϕ for all ϕ ∈ FmL. Therefore S is a trivial logic which is a contradiction. ♦

This example prove that not every logic has an algebraic semantics. There are

many other examples of logics which have no algebraic semantics, for instance the

deducibility relation of the formal system from relevance logic, denoted by P−W (c.f.

[Raf06b, Proposition 38]).

5.5 Equivalent Algebraic Semantics

Herein, we define the notion of equivalent algebraic semantics of a logic which is a

useful tool for the study of the class of algebraizable logics.

Definition 5.5.1. Let S be a logic and K a class of L-algebras. We say that ⊢S is

equivalent to
K

iff

1. ⊢S is interpretable in
K
, i.e., there exists an interpretation τ : FmL → P(EqL)

such that for all Γ ∪ {α} ⊆ FmL,

(i) Γ ⊢S α iff τ [Γ]
K
τ(α)
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2.
K

is interpretable in ⊢S, that is, there exists a mapping ρ : EqL → P(FmL),

called interpretation of
K

in ⊢S, such that for all Σ ∪ {ϕ ≈ ψ} ⊆ EqL,

(ii) Σ
K
ϕ ≈ ψ iff ρ[Σ] ⊢S ρ(ϕ ≈ ψ)

3. and, the interpretations τ and ρ are mutually inverse, that is,

(iii) ϕ ≈ ψ
K
τ [ρ(ϕ ≈ ψ)]

(iv) α ⊣⊢S ρ[τ(α)]

Let S be a logic, K a class of L-algebras and τ : FmL → P(EqL) and ρ : EqL →

P(FmL) arbitrary mappings. Conditions (i) and (iii) are equivalent to conditions (ii)

and (iv). Indeed, assume conditions (i) and (iii) hold. Let Σ ∪ {ϕ ≈ ψ} ⊆ EqL.

We have that Σ
K
ϕ ≈ ψ iff (by (iii)) τ [ρ[Σ]]

K
τ [ρ(ϕ ≈ ψ)] iff (by (i)) ρ[Σ] ⊢S

ρ(ϕ ≈ ψ). Thus (ii) holds. Now let α ∈ FmL. Applying (iii) to τ(α) ⊆ EqL, we

have τ(α)
K
τ [ρ[τ(α)]]. Since τ [ρ[τ(α)]]

K
τ(α), by (i), ρ[τ(α)] ⊢S α. And since

τ(α)
K
τ [ρ[τ(α)]], by (i), α ⊢S ρ[τ(α)]. Thus (iv) holds. In an analogous way we can

prove the converse.

Like for the mapping τ , we can represent the mapping ρ, with some assumptions,

by a particular set of formulas.

Proposition 5.5.2. Let ρ : EqL → P(FmL) be an arbitrary mapping. The following

conditions are equivalent:

(i) ρ commutes with surjective substitutions;

(ii) There exists an k-parameterized system of formulas E(p, q, r) such that for all

ϕ ≈ ψ ∈ EqL, ρ(ϕ ≈ ψ) = E(〈ϕ, ψ〉).

Proof. Assume ρ commutes with surjective substitutions. We fix two variables p, q and

define E(p, q, r) := ρ(p ≈ q). Let k be the length of r. Clearly, ρ(p ≈ q) ⊆ {ǫ(p, q, γ) :

ǫ(p, q, r) ∈ E(p, q, r), γ ∈ (FmL)k}. For the reverse inclusion, let γ ∈ (FmL)k and e a

surjective substitution such that e(p) = p, e(q) = q, e(r) = γ. We have that for all

ǫ(p, q, r) ∈ E(p, q, r), ǫ
(

e(p), e(q), e(r)
)

∈ e[ρ(p ≈ q)]. By assumption, e[ρ(p ≈ q)] =

ρ(e(p) ≈ e(q)) = ρ(p ≈ q). Thus, for all ǫ(p, q, r) ∈ E(p, q, r), ǫ(p, q, γ) ∈ ρ(p ≈ q),

i.e., {ǫ(p, q, γ) : ǫ(p, q, r) ∈ E(p, q, r), γ ∈ (FmL)k} ⊆ ρ(p ≈ q). Hence, ρ(p ≈ q) =

{ǫ(p, q, γ) : ǫ(p, q, r) ∈ E(p, q, r), γ ∈ (FmL)k}. Now, let ϕ ≈ ψ ∈ EqL and e a

surjective substitution such that e(p) = ϕ and e(q) = ψ. We have thatρ(ϕ ≈ ψ) =

ρ(e(p) ≈ e(q)) = e(ρ(p ≈ q)) = e
(

{ǫ(p, q, γ) : ǫ(p, q, r) ∈ E(p, q, r), γ ∈ (FmL)k}
)

=
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{ǫ
(

e(p), e(q), e(γ)
)

: ǫ(p, q, r) ∈ E(p, q, r), γ ∈ (FmL)k} = {ǫ
(

ϕ, ψ, e(γ)
)

: ǫ(p, q, r) ∈

E(p, q, r), γ ∈ (FmL)k}. Since e is surjective, ρ(ϕ ≈ ψ) = {ǫ(ϕ, ψ, ξ) : ǫ(p, q, r) ∈

E(p, q, r), ξ ∈ (FmL)k} = E(〈ϕ, ψ〉).

Conversely, let e be a surjective substitution and ϕ ≈ ψ ∈ EqL. We have that

e[ρ(ϕ ≈ ψ)] = e[E(〈ϕ, ψ〉)] = E
(

〈e(ϕ), e(ψ)〉
)

. By surjectivity of e, e[ρ(ϕ ≈ ψ)] =

{ǫi
(

e(ϕ), e(ψ), ξ
)

: i ∈ I, ξ ∈ (FmL)k} = ρ(e(ϕ) ≈ e(ψ)). Thus, ρ commutes with

surjective substitutions.

If the consequence relation of a logic is equivalent to an equational consequence

relation of a class of algebras then, with some conditions on the interpretations, the

logic is protoalgebraic.

Proposition 5.5.3. Let S be a logic and K a class of L-algebras. Suppose that
K

is equivalent to ⊢S by means of interpretations τ and ρ which commute with surjec-

tive substitutions and are determined, respectively, by an l-parameterized system of

equations ∆(p, v) and by an k-parameterized system of formulas E(p, q, r). Then S is

protoalgebraic and E(p, q, r) is an k-parameterized system of equivalence formulas for

S.

Proof. We show that E(p, q, r) satisfies reflexivity, modus ponens, and simple replace-

ment conditions. Since
K
p ≈ p, by condition (ii) of Definition 5.5.1, ⊢S ρ(p ≈ p),

i.e., ⊢S E(〈p, p〉). Thus reflexivity condition holds.

Since ∆(p, v) ∪ {p ≈ q}
K

∆(q, v) is satisfied by any equational consequence

relation, by condition (ii) of Definition 5.5.1, ρ[∆(p, v)] ∪ ρ(p ≈ q) ⊢S ρ[∆(q, v)], i.e,

E
(

〈∆(p, v)〉
)

∪ E(〈p, q〉) ⊢S E
(

〈∆(q, v)〉
)

. And by condition (iv) of Definition 5.5.1,

{p} ∪ E(〈p, q〉) ⊢S q. Thus modus ponens condition holds.

Let f be a connective of S of rank n. Since {p1 ≈ q1} ∪ · · · ∪ {pn ≈ qn} K

f(p1, . . . , pn) ≈ f(q1, . . . , qn), by condition (ii) of Definition 5.5.1, ρ(p1 ≈ q1) ∪ · · · ∪

ρ(pn ≈ qn) ⊢S ρ
(

f(p1, . . . , pn) ≈ f(q1, . . . , qn)
)

, i.e., E(〈p1, q1〉) ∪ · · · ∪ E(〈pn, qn〉) ⊢S

E(〈f(p1, . . . , pn), f(q1, . . . , qn)〉). Thus simple replacement condition holds.

We conclude that E(p, q, r) is an k-parameterized system of equivalence formulas

for S. By Theorem 3.4.3, S is protoalgebraic.

Proposition 5.5.4. Let ρ : EqL → P(FmL) be an arbitrary mapping. The following

conditions are equivalent:

(i) ρ commutes with arbitrary substitutions;
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(ii) There exists a set E(p, q) of formulas in two variables p, q such that for all

ϕ ≈ ψ ∈ EqL, ρ(ϕ ≈ ψ) = E(ϕ, ψ).

Proof. Assume ρ commutes with arbitrary substitutions. We fix p, q distinct variables

and define E(p, q) := ρ(p ≈ q). Suppose Var(E(p, q)) ⊆ {p, q, r1, r2, . . . }. Let e

be a substitution such that e(p) = p, e(q) = q and e(ri) = p for all i ∈ I. By

assumption, E(p, q, p, . . . ) = e(E(p, q)) = e
(

ρ(p ≈ q)
)

= ρ
(

e(p) ≈ e(q)
)

= ρ(p ≈ q) =

E(p, q, r1, r2, . . . ). Hence, {r1, r2, . . . } ⊆ {p, q}. Thus Var(E(p, q)) ⊆ {p, q}. Now, let

ϕ ≈ ψ ∈ EqL and e a substitution such that e(p) = ϕ and e(q) = ψ. We have that

ρ(ϕ ≈ ψ) = ρ
(

e(p) ≈ e(q)
)

= e
(

ρ(p ≈ q)
)

= e
(

E(p, q)
)

= E
(

e(p), e(q)
)

= E(ϕ, ψ).

The converse is obvious.

If the consequence relation of a logic is equivalent to an equational consequence

relation of a class of algebras then, with some conditions on the interpretations, the

logic is equivalential.

Proposition 5.5.5. Let S be a logic and K a class of L-algebras. Suppose that
K

is equivalent to ⊢S by means of interpretations τ and ρ which commute with arbitrary

substitutions and are determined, respectively, by set of equations ∆(p) and a set of for-

mulas E(p, q). Then S is equivalential and E(p, q) is a system of equivalence formulas

for S.

Proof. We show that E(p, q) satisfies reflexivity, modus ponens, and simple replacement

conditions. Since
K
p ≈ p, by condition (ii) of Definition 5.5.1, ⊢S ρ(p ≈ p), i.e.,

⊢S E(p, p). Thus reflexivity condition holds.

Since ∆(p) ∪ {p ≈ q}
K

∆(q) is satisfied by any equational consequence relation,

by condition (ii) of Definition 5.5.1, ρ[∆(p)] ∪ ρ(p ≈ q) ⊢S ρ[∆(q)], i.e, E
(

∆(p)
)

∪

E
(

p, q
)

⊢S E
(

∆(q)
)

. And by condition (iv) of Definition 5.5.1, {p} ∪ E
(

p, q
)

⊢S q.

Thus modus ponens condition holds.

Let f be a connective of S of rank n. Since {p1 ≈ q1} ∪ · · · ∪ {pn ≈ qn} K

f(p1, . . . , pn) ≈ f(q1, . . . , qn), by condition (ii) of Definition 5.5.1, ρ(p1 ≈ q1) ∪ · · · ∪

ρ(pn ≈ qn) ⊢S ρ
(

f(p1, . . . , pn) ≈ f(q1, . . . , qn)
)

, i.e., E(p1, q1) ∪ · · · ∪ E(pn, qn) ⊢S

E(f(p1, . . . , pn), f(q1, . . . , qn)). Thus simple replacement condition holds.

We conclude that E(p, q) is a system of equivalence formulas for S. By Theorem

4.1.1, S is equivalential.

Now, we define the notion of equivalent algebraic semantics.
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Definition 5.5.6. Let S be a logic and K a class of L-algebras. We say that K is an

equivalent algebraic semantics for S if ⊢S is equivalent to
K

in the following sense:

there exist ∆(p) a set of equation in a single variable and E(p, q) a set of formulas in

two variables such that, for every Γ ∪ {α} ⊆ FmL and Σ ∪ {ϕ ≈ ψ} ⊆ EqL,

(i) Γ ⊢S α iff ∆(Γ)
K

∆(α)

(ii) Σ
K
ϕ ≈ ψ iff E(Σ) ⊢S E(ϕ, ψ)

(iii) ϕ ≈ ψ
K

∆(E(ϕ, ψ))

(iv) α ⊣⊢S E(∆(α))

The set E(p, q) is called a set of equivalence formulas and ∆(p) a set of defining

equations for S and K.

In other words, K is an equivalent algebraic semantics for S iff there exists a

pair of interpretations τ : FmL → P(EqL) and ρ : EqL → P(FmL) that commute

with arbitrary substitutions and are mutually inverse. It is not difficult to see that

conditions (i) and (iii) are equivalent to conditions (ii) and (iv).

We have seen, in Example 5.2, that the class BA is an algebraic semantics of CPL.

Now, we show that it is an equivalent algebraic semantics.

Example 5.6 (Classical Propositional Logic [BP01]). The interpretation τ of ⊢CPL

in
BA

commutes with arbitrary substitutions and is defined in the following way:

for all α ∈ FmL, τ(α) = {α ≈ ⊤}. There exists an interpretation ρ of
BA

in ⊢CPL

that commutes with arbitrary substitutions and is defined in the following way: for

all ϕ ≈ ψ ∈ EqL, ρ(ϕ ≈ ψ) = {ϕ → ψ, ψ → ϕ}. We can prove that conditions (i)

and (iii) hold. Therefore, the class of BA forms an equivalent algebraic semantics for

CPL, ∆(p) = {p ≈ ⊤} is the set of defining equations and E(p, q) = {p → q, q → p}

the set of equivalence formulas for CPL and BA. ♦

5.7 Weakly Algebraizable Logics

In this section, we define the class of weakly algebraizable logics which is a proper

subclass of the class of protoalgebraic logics. We also characterized weakly algebraizable

logics using the Leibniz operator. We point out to [CJ00] for more details about these

logics.
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Definition 5.7.1. A logic S is called weakly algebraizable if there exist a class K of L-

algebras, an l-parameterized system of equations ∆(p, v) and an k-parameterized system

of formulas E(p, q, r) such that the following conditions hold, for every Γ∪{α} ⊆ FmL

and Σ ∪ {ϕ ≈ ψ} ⊆ EqL:

(i) Γ ⊢S α iff ∆(〈Γ〉)
K

∆(〈α〉);

(ii) Σ
K
ϕ ≈ ψ iff E(〈Σ〉) ⊢S E(〈ϕ, ψ〉);

(iii) ϕ ≈ ψ
K

∆(〈E(〈ϕ, ψ〉)〉);

(iv) α ⊣⊢S E(〈∆(〈α〉)〉).

In other words, a logic S is weakly algebraizable iff there exists an equational

consequence relation
K

on EqL equivalent to ⊢S, and the equivalence between ⊢S and

K
is established by means of interpretations τ and ρ that commute with surjective

substitutions and are mutually inverse.

In order to prove the theorem that gives a characterization of weakly algebraizable

logics using the Leibniz operator, we need the following lemma.

Lemma 5.7.2. [Cze01, Lemma 1.6.2] Let S be a protoalgebraic logic and E(p, q, r) an

k-parameterized system of equivalence formulas for S. Then the following conditions

are equivalent:

(i) Ω is injective on Th(S);

(ii) p ⊣⊢S

⋃

{E(〈ϕ, ψ〉) : ϕ ≡ ψ(Ω(CnS(p)))};

(iii) There exists a set ∆(p) of equations in a single variable p such that p ⊣⊢S
⋃

{E(〈ϕ, ψ〉) : ϕ ≈ ψ ∈ ∆(p)}.

Theorem 5.7.3. Let S be a logic. The following conditions are equivalent:

(i) S is weakly algebraizable;

(ii) The Leibniz operator Ω is monotone and injective on Th(S);

(iii) The Leibniz operator ΩA is monotone and injective on FiS(A) for every

algebra A.

Proof. (i) ⇒ (ii) Assume S is weakly algebraizable. There exists a class K of L-

algebras, an l-parameterized system of equations ∆(p, v) and an k-parameterized sys-

tem of formulas E(p, q, r) such that they satisfy conditions in Definition 5.7.1. By

Proposition 5.5.3, S is protoalgebraic and E(p, q, r) is an k-parameterized system of
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equivalence formulas for S. By Theorem 3.3.1, the Leibniz operator Ω is monotone on

Th(S). Now, let T1, T2 ∈ Th(S). Suppose ΩT1 = ΩT2. Let α ∈ T1, i.e, T1 ⊢S α. By

condition (iv) of Definition 5.7.1, α ⊣⊢S E(〈∆(〈α〉)〉). Hence T1 ⊢S E(〈∆(〈α〉)〉), i.e.,

E(〈∆(〈α〉)〉) ⊆ CnS(E(〈∆(〈α〉)〉)) ⊆ T1. Thus, for all ϕ ≈ ψ ∈ ∆(〈α〉), ϕ ≡ ψ(ΩT1).

Since Ω(T1) = Ω(T2); for all ϕ ≈ ψ ∈ ∆(〈α〉), ϕ ≡ ψ(ΩT2), i.e., E(〈∆(〈α〉)〉) ⊆ T2. So,

T2 ⊢S E(〈∆(〈α〉)〉). By condition (iv) of Definition 5.7.1, T2 ⊢S α, i.e., α ∈ T2. In an

analogous way, we can prove that T2 ⊆ T1. Therefore T1 = T2.

(ii) ⇒ (iii) Since the Leibniz operator is monotone on Th(S), by Theorem 3.3.1,

it is also monotone on FiS(A) for every algebra A. Now let A be an algebra and

F1, F2 ∈ FiS(A). Suppose that ΩAF1 = ΩAF2. Let a ∈ F1. Then FiAS (a) ⊆ F1.

Since the Leibniz operator is monotone on Th(S), by Theorem 3.3.1, S is protoalge-

braic. By Theorem 3.4.3, S has an k-parameterized system of equivalence formulas

E(p, q, r). As Ω is injective on Th(S), by Lemma 5.7.2, there exists a set ∆(p) of

equations in a single variable p such that p ⊣⊢S

⋃

{E(〈ϕ, ψ〉) : ϕ ≈ ψ ∈ ∆(p)}.

We fixe ϕ(p) ≈ ψ(p) ∈ ∆(p). We have that EA(〈ϕA(a), ψA(a)〉) ⊆ FiAS (a). Hence,

FiAS (
⋃

{EA(〈ϕA(a), ψA(a)〉) : ϕ ≈ ψ ∈ ∆(p)}) ⊆ FiAS (a). We also have that for every

homomorphism h : FmL → A such that h(p) = a, a ∈ FiAS (
⋃

{EA(〈h(ϕ), h(ψ)〉) : ϕ ≈

ψ ∈ ∆(p)}), i.e., a ∈ FiAS (
⋃

{EA(〈ϕA(a), ψA(a)〉) : ϕ ≈ ψ ∈ ∆(p)}). Thus FiAS (a) ⊆

FiAS (
⋃

{EA(〈ϕA(a), ψA(a)〉) : ϕ ≈ ψ ∈ ∆(p)}). Therefore FiAS (a) = FiAS (
⋃

{EA(〈ϕA(a),

ψA(a)〉) : ϕ ≈ ψ ∈ ∆(p)}).

a ∈ F1 iff FiAS (a) ⊆ F1 iff EA(〈ϕA(a), ψA(a)〉) ⊆ F1 for all ϕ ≈ ψ ∈ ∆(p)

iff ϕA(a) ≡ ψA(a)(ΩAF1) for all ϕ ≈ ψ ∈ ∆(p)

iff ϕA(a) ≡ ψA(a)(ΩAF2) for all ϕ ≈ ψ ∈ ∆(p)

iff EA(〈ϕA(a), ψA(a)〉) ⊆ F2 for all ϕ ≈ ψ ∈ ∆(p)

iff FiAS (
⋃

{EA(〈ϕA(a), ψA(a)〉) : ϕ ≈ ψ ∈ ∆(p)}) ⊆ F2 iff FiAS (a) ⊆ F2 iff a ∈ F2.

Hence F1 = F2.

(iii) ⇒ (i) Assume that the Leibniz operator is monotone and injective on FiS(A)

for every algebra A. By Theorem 3.3.1, S is protoalgebraic. And by Theorem 3.4.3,

there exists E(p, q, r) an k-parameterized system of equivalence formulas for S. On the

other hand, since the Leibniz operator is injective on FiS(A) for every algebra A, it

is also injective on Th(S). By Lemma 5.7.2 and structurality of S, there exists a set

∆(p) of equations such that for all α ∈ FmL, α ⊣⊢S

⋃

{E(〈ϕ, ψ〉) : ϕ ≈ ψ ∈ ∆(α)},

i.e., α ⊣⊢S E(〈∆(α)〉). Let K be the class of L-algebras. We define the relation
K
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on P(EqL) as follows: for all Σ ⊆ EqL, Σ
K
ϕ ≈ ψ iff E(〈Σ〉) ⊢S E(〈ϕ, ψ〉). It is not

difficult to see that
K

is an equational consequence relation on EqL. Therefore S is

weakly algebraizable.

A class M of matrices has its filters equationally definable by a set of equations

∆(p) = {δi(p) ≈ ǫi(p) : i ∈ I} in a single variable p, if for any matrix 〈A, F 〉 ∈ M and

any a ∈ A; a ∈ F iff δAi (a) = ǫAi (a). We say that a class of matrices M has its filters

implicitly definable if; for any algebra A if 〈A, F 〉, 〈A, G〉 ∈ M then F = G, i.e., the

matrices in M are uniquely determined by their algebraic reducts. Obviously, if the

filters are equationally definable in M by a set of equations ∆(p) then they are also

implicitly definable.

Theorem 5.7.4. Let S be a logic. The following conditions are equivalent:

(i) S is weakly algebraizable;

(ii) the Leibniz operator is monotone on FiS(A) for every algebra A and the class

Mod∗(S) has its filters equationally definable;

(iii) the Leibniz operator is monotone on Th(S) and the class L∗(S) has its filters

equationally definable;

(iv) the Leibniz operator is monotone on FiS(A) for every algebra A and the class

Mod∗(S) has its filters implicitly definable;

(v) the Leibniz operator is monotone on Th(S) and the class L∗(S) has its filters

implicitly definable.

Proof. (i) ⇒ (ii) Assume S is weakly algebraizable. By Theorem 5.7.3, the Leibniz

operator is monotone on FiS(A) for every algebra A. And by Theorem 3.3.1, S is

protoalgebraic. Thus by Theorem 3.4.3, there exists E(p, q, r) an k-parameterized

system of equivalence formulas for S. Since S is weakly algebraizable, by Theorem 5.7.3,

the Leibniz operator is injective on Th(S). And so, by Lemma 5.7.2, there exists a set

of equations ∆(p) in a single variable such that p ⊣⊢S

⋃

{E(〈ϕ, ψ〉) : ϕ ≈ ψ ∈ ∆(p)},

i.e., p ⊣⊢S E(〈∆(p)〉). Let 〈A, F 〉 ∈ Mod∗(S) and a ∈ F . Since, p ⊣⊢S E(〈∆(p)〉), we

have that EA(〈∆(a)〉) ⊆ F . Thus
⋃

{EA(〈ϕA(a), ψA(a)〉 : ϕ ≈ ψ ∈ ∆(p)}) ⊆ F , i.e.,

ϕA(a) ≡ ψA(a)(ΩAF ) for all ϕ ≈ ψ ∈ ∆(p). Since 〈A, F 〉 ∈ Mod∗(S), ΩAF = △A.

Hence for all ϕ ≈ ψ ∈ ∆(p), ϕA(a) = ψA(a).

(ii) ⇒ (iii) It is obvious, since L∗(S) ⊆ Mod∗(S).
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(ii) ⇒ (iv) It is obvious, since the property equationally definable implies the

property implicitly definable.

(iii) ⇒ (v) It is obvious.

(iv) ⇒ (v) It is obvious.

(v) ⇒ (i) Let T1, T2 ∈ Th(S). Suppose that ΩT1 = ΩT2. The respective reduction

matrices 〈FmL/ΩT1, T1/ΩT1〉 and 〈FmL/ΩT2, T2/ΩT2〉 are in L∗(S). Since ΩT1 =

ΩT2, we have that FmL/ΩT1 = FmL/ΩT2. By assumption, T1/ΩT1 = T2/ΩT2, i.e.,

T1/ΩT1 = T2/ΩT1. Thus, by compatibility, T1 = T2. Hence the Leibniz operator is

injective on Th(S). Since the Leibniz operator is monotone on Th(S), by Theorem

5.7.3, S is weakly algebraizable.

In the Examples 3.2 and 4.2, we have seen that the minimal orthologic SOL is

protoalgebraic but not equivalential. Now, we prove that SOL is weakly algebraizable

using Theorem 5.7.4 .

Example 5.8 (Orthologic [Mal89]). Since SOL is protoalgebraic, by Theorem 3.3.1, the

Leibniz operator is monotone on Th(SOL). Consider a set of equation ∆(p) = {p ≈ 1},

where 1 denotes an arbitrary but fixed theorem of SOL (e.g., 1 := p ∨ ¬p). If we prove

that for any T ∈ Th(SOL) and any α ∈ FmL, α ∈ T iff α ≡ 1(ΩT ); then we have shown

that the class L∗(S) has its filters equationally definable by the set ∆(p).

Let T ∈ Th(S) and α ∈ FmL. Suppose that α ∈ T . Let ϕ ∈ FmL. Since

1 ∈ Thm(S), 1 ∈ T . As α, ϕ(α) ⊢SOL
ϕ(1) (because it is an inference rule of SOL),

we have that ϕ(α) ∈ T implies ϕ(1) ∈ T . Since α, ϕ(1) ⊢SOL
ϕ(α) (because it is also

an inference rules of SOL), we have that ϕ(1) ∈ T implies ϕ(α) ∈ T . Therefore for

all ϕ ∈ FmL, ϕ(α) ∈ T iff ϕ(1) ∈ T . Thus α ≡ 1(ΩT ). Conversely, suppose that

α ≡ 1(ΩT ). Since 1 ∈ Thm(S), 1 ∈ T . By compatibility, α ∈ T .

Since the class L∗(S) has its filters equationally definable by the set ∆(p) and the

Leibniz operator is monotone on Th(SOL), by Theorem 5.7.4, the minimal orthologic

SOL is weakly algebraizable. ♦

5.9 Algebraizable Logics

In [BP89], Blok and Pigozzi have defined the notion of “algebraizable logic” for finitary

logic. They are logics that have an equivalent algebraic semantics. The idea underlying

the definition is the following: a logic is algebraizable if there exists a class of algebras
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that can be associated to the logic in the same way as the class of BA has been

associated to CPL.

Definition 5.9.1. A logic S is called algebraizable (also called possibly infinitely

algebraizable in [Her96]) if there exist a class K of L-algebras, a set of equations

∆(p) and a set of formulas E(p, q) such that the following conditions hold, for every

Γ ∪ {α} ⊆ FmL and Σ ∪ {ϕ ≈ ψ} ⊆ EqL:

(i) Γ ⊢S α iff ∆(Γ)
K

∆(α);

(ii) Σ
K
ϕ ≈ ψ iff E(Σ) ⊢S E(ϕ, ψ);

(iii) ϕ ≈ ψ
K

∆(E(ϕ, ψ));

(iv) α ⊣⊢S E(∆(α)).

The class K is called an equivalent algebraic semantics; and E(p, q) the set of equiv-

alence formulas and ∆(p) the set of defining equations for S and K.

In other words, a logic S is algebraizable iff there exists an equational consequence

relation
K

on EqL equivalent to ⊢S, and the equivalence between ⊢S and
K

is

established by means of interpretations τ and ρ that commute with arbitrary substi-

tutions and are mutually inverse. That is, if there exists a class K of L-algebras that

is an equivalent algebraic semantics for S with τ(p) the set of defining equations and

ρ(p ≈ q) the set of equivalence formulas for S and K.

We note that the difference between weakly algebraizable logic and algebraizable

logic is that in the latter, the set of equations and the set of formulas do not have

parameters. Thus, if a logic S is algebraizable, then it is weakly algebraizable.

Theorem 5.9.2. Let S be a logic. The following conditions are equivalent:

(i) S is algebraizable;

(ii) The Leibniz operator Ω is monotone, injective and commutes with inverse

substitutions on Th(S).

Proof. Assume S is algebraizable. Hence S is weakly algebraizable and by Theorem

5.7.3, the Leibniz operator Ω is monotone and injective on Th(S). Let K be a class of

L-algebras, ∆(p) a set of equations and E(p, q) a set of formulas such that conditions of

Definition 5.7.1 hold. By Proposition 5.5.5, S is equivalential and E(p, q) is a system of

equivalence formulas for S. And by Theorem 4.1.5, the Leibniz operator Ω commutes

with inverse substitutions on Th(S).
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Conversely, suppose Ω is monotone, injective and commutes with inverse substi-

tutions on Th(S). By Theorem 4.1.5, S is equivalential. There exists a system of

equivalence formulas E(p, q) for S. Consider the class of algebras K = {FmL/ΩT :

T ∈ Th(S)}. It is not difficult to see that for every Σ ∪ {ϕ ≈ ψ} ⊆ EqL, Σ
K
ϕ ≈ ψ

iff E(Σ) ⊢S E(ϕ, ψ). Let T = CnS(p) and e a substitution such that e(r) = p for

every r ∈ Var. Consider ∆(p) = e[ΩT ]. As we can see pair of formulas as equations,

∆(p) is a set of equations. Let ϕ, ψ ∈ FmL. We have that ϕ ≡ ψ
(

Ω(CnS(E(ΩT )))
)

iff

E(ϕ, ψ) ⊆ CnS(E(ΩT )) iff E(ΩT ) ⊢S E(ϕ, ψ) iff ΩT
K
ϕ ≈ ψ iff ϕ ≡ ψ(ΩT ). Thus

Ω(CnS(E(ΩT ))) = ΩT . Since the Leibniz operator is injective, CnS(E(ΩT )) = T . As

T = CnS(p), p ⊣⊢S T . Thus p ⊣⊢S E(ΩT ). By structurality of S, e(p) ⊣⊢S e[E(ΩT )].

Since e[E(ΩT )] = E(e[ΩT ]) = E(∆(p)) and e(p) = p, we have that p ⊣⊢S E(∆(p)).

Thus S is algebraizable.

By the above characterization of algebraizable logics, it is not difficult to prove the

following Corollary.

Corollary 5.9.3. The class of algebraizable logics is the intersection of the class of

equivalential logics and the class of weakly algebraizable logics.

If a deductive system is algebraizable then any fragment, whose language includes

the connectives occurring in the set of defining equations and the set of equivalence

formulas; and any extension are algebraizable with the same set of defining equations

and set of equivalence formulas.

Corollary 5.9.4. Let S be a deductive system. If S is algebraizable, then any extension

of S is itself algebraizable with the same set of equivalence formulas and set of defining

equations.

Thus, any axiomatic extension of an algebraizable deductive system is itself alge-

braizable.

Corollary 5.9.5. Let S be an algebraizable deductive system. Then any L′-fragment

of S, where L′ contains all primitive connectives that occur in the set of equivalence

formulas and set of defining equations, is algebraizable with the same set of equivalence

formulas and set of defining equation.

A logic may have (if any) many algebraic semantics, but the equivalent algebraic

semantics associated with an algebraizable logic is unique in a following sense.
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Theorem 5.9.6. Let S be an algebraizable logic, K and K′ two equivalent algebraic

semantics for S such that E(p, q) is the set of equivalence formulas and ∆(p) the set

of defining equations for S and K, and similarly E ′(p′, q′) and ∆′(p′) for S and K′.

Then
K

=
K′, E(p, q) ⊣⊢S E

′(p′, q′) and ∆(p)
K

∆′(p′).

Therefore, there is (if any) one equivalent algebraic semantics that can be canoni-

cally associated with the logic. We write the equivalent algebraic semantics when we

want to refer to the largest equivalent algebraic semantics.

The duality of this result fails to hold. There are distinct logics with the same

equivalent algebraic semantics. In [BP89, Theorem 5.12], Blok and Pigozzi have given

an example of two distinct finitely algebraizable deductive systems with the same

equivalent quasivariety semantics.

Theorem 5.9.7. Let S be a logic. A sufficient condition for S to be algebraizable is

that is equivalential with a set of equivalence formulas E(p, q) that satisfies:

p, q ⊢S E(p, q) (G-rule)

In this case E(p, q) and ∆(p) = {p ≈ E(p, p)} are, respectively, the set of equiva-

lence formulas and the set of defining equations. If the sufficient condition of the above

theorem is satisfied the logic is said to be regularly algebraizable (or 1-equivalential in

[Her96]). That is, a logic is regularly algebraizable if there exists a set E(p, q) of for-

mulas such that conditions of reflexivity, symmetry, transitivity, simple replacement,

modus ponens and G-rule hold (c.f. [CP04b, Definition 2.3]). Moreover, if the set of

equivalence formulas is finite then we say that the logic is finitely regularly algebraiz-

able. Thus, every (finitely) regularly algebraizable logic is (finitely) algebraizable. We

point out to [Cze01, Chapter 5] and [CP04a] for a detailed study of this class of logics.

5.10 Finitely Algebraizable Logics

In this section, we study the class of finitely algebraizable logics that is a proper subclass

of algebraizable logics.

Definition 5.10.1. A logic S is said to be finitely algebraizable if there exist a class

K of L-algebras, a finite set of equations ∆(p) and a finite set of formulas E(p, q) such

that the following conditions hold, for every Γ ∪ {α} ⊆ FmL and Σ ∪ {ϕ ≈ ψ} ⊆ EqL:

(i) Γ ⊢S α iff ∆(Γ)
K

∆(α);
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(ii) Σ
K
ϕ ≈ ψ iff E(Σ) ⊢S E(ϕ, ψ);

(iii) ϕ ≈ ψ
K

∆(E(ϕ, ψ));

(iv) α ⊣⊢S E(∆(α)).

The class K is called an equivalent algebraic semantics; and E(p, q) the set of equiv-

alence formulas and ∆(p) the set of defining equations for S and K.

In other words, a finitely algebraizable logic is an algebraizable logic where the set

of defining equations and the set of equivalence formulas are finite.

In the following theorem, we give a characterization of this class of logics using the

Leibniz operator.

Theorem 5.10.2. Let S be a logic. The following conditions are equivalent:

(i) S is finitely algebraizable;

(ii) The Leibniz operator ΩA is injective and continuous on FiS(A) for every

algebra A.

(iii) The Leibniz operator Ω is injective and continuous on Th(S).

Proof. (i) ⇒ (ii) Assume S is finitely algebraizable. There exist a class K of L-

algebras, a finite set of equations ∆(p) and a finite set of formulas E(p, q) that satisfy

conditions of Definition 5.10.1. Thus S is weakly algebraizable. By Theorem 5.7.3,

the Leibniz operator is injective on FiS(A) for every algebra A. And by Theorem

5.5.5, S is equivalential and E(p, q) is a system of equivalence formulas for S. Since

E(p, q) is finite, S is finitely equivalential. By Theorem 4.1.6, the Leibniz operator Ω

is continuous on FiS(A) for every algebra A.

(ii) ⇒ (iii) It is obvious.

(iii) ⇒ (i) Since the Leibniz operator is continuous on Th(S), by Theorem 4.1.6,

S is finitely equivalential. Thus S is equivalential and by Theorem 4.1.5, the Leibniz

operator is monotone and commutes with inverse substitutions on Th(S). By assump-

tion, the Leibniz operator is also injective on Th(S). Thus by Theorem 5.9.2, S is

algebraizable, i.e, there exists a class K of L-algebras which is an equivalent alge-

braic semantics for S with ∆(p) the set of defining equations and E(p, q) the set of

equivalence formulas. By Theorem 5.5.5, S is equivalential with E(p, q) the system of

equivalence formulas for S. Since S is finitely equivalential, the set E(p, q) must be

finite. Thus the set ∆(p) must be also finite. Therefore S is finitely algebraizable.
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We prove that if a finitely algebraizable logic S is finitary then the equational

consequence relation which is equivalent to ⊢S is also finitary.

Proposition 5.10.3. Let S be a finitely algebraizable logic with the correspondent

equivalent algebraic semantics K. If S is finitary, then
K

is also finitary.

Proof. Assume S is a finitary finitely algebraizable logic. Let K be the equivalent

algebraic semantics for S; and ∆(p) the finite set of defining equations and E(p, q) the

finite set of equivalence formulas for S and K. Let Σ ∪ {ϕ ≈ ψ} ⊆ EqL. By condition

(ii) of Definition 5.5.1, Σ
K
ϕ ≈ ψ iff E(Σ) ⊢S E(ϕ, ψ). Since S is finitary and E(p, q)

is finite, there exists a finite Σf ⊆ Σ such that E(Σ) ⊢S E(ϕ, ψ) iff E(Σf ) ⊢S E(ϕ, ψ).

And by condition (ii) of Definition 5.5.1, E(Σf ) ⊢S E(ϕ, ψ) iff Σf K
ϕ ≈ ψ. Thus

Σ
K
ϕ ≈ ψ iff Σf K

ϕ ≈ ψ for some finite Σf ⊆ Σ. Therefore
K

is finitary.

Now, we define the notion of algebraization as Blok and Pigozzi have studied in

[BP89].

Definition 5.10.4. A logic S is said to be algebraizable in the sense of Blok and

Pigozzi if it is finitary and has an equivalent algebraic semantics K with ∆(p) the

finite set of defining equations and E(p, q) the finite set of equivalence formulas for S

and K.

I.e., S is algebraizable in the sense of Blok and Pigozzi iff S is finitary and finitely

algebraizable.

We show that there is (if any) an equivalent algebraic semantics which is a quasi-

variety for algebraizable in the sense of Blok and Pigozzi logic.

Theorem 5.10.5. Let S be an algebraizable in the sense of Blok and Pigozzi logic; and

K and K′ two equivalent algebraic semantics for S. Then Q(K) = Q(K′), i.e., K and

K′ generate the same quasivariety, and Q(K) is also an equivalent algebraic seman-

tics called equivalent quasivariety semantics (it is unique and is the largest equivalent

algebraic semantics for S).

If S is an algebraizable logic whose algebraic counterpart is a variety, we say that

S is strongly algebraizable.

In the following theorem, we give a characterization for logics which are algebraiz-

able in the sense of Blok and Pigozzi.
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Theorem 5.10.6. [Cze01, Theorem 4.6.5] Let S be a finitary logic and K a quasivariety

of L-algebras. The following conditions are equivalent:

(i) S is finitely algebraizable with equivalent quasivariety semantics K;

(ii) For every L-algebra A, not necessarily in K, the Leibniz operator ΩA estab-

lished an isomorphism between the lattices FiS(A) of S-filters and CoK(A) of

K-congruences of A.

Corollary 5.10.7. Let S be an algebraizable in the sense of Blok and Pigozzi logic and

K the equivalent quasivariety semantics. Then K is the class of all algebraic reducts

of Mod∗(S), i.e., K = Alg∗(S).

Proof. Let M = 〈A, D〉 ∈ Mod∗(S). By assumption and Theorem 5.10.6, ΩAD ∈

CoK(A). Thus A/ΩAD ∈ K. Since M is reduced, ΩAD = △A. Therefore A ∈ K.

For the reverse inclusion, suppose that A ∈ K. Thus △A ∈ CoK(A). By Theorem

5.10.6, there exists a unique D ∈ FiS(A) such that △A = ΩAD. Therefore the matrix

〈A, D〉 ∈ Mod∗(S).

An expansion S ′ of an algebraizable in the sense of Blok and Pigozzi logic S is

not necessarily finitely algebraizable. In [Cai04, Example 1], Caicedo has given an

example of an expansion of the IPL that is not finitely algebraizable. Nevertheless,

if an expansion of S is finitely algebraizable, then it is not necessarily with the same

set of equivalence formulas and set of defining equations as S. Indeed, in [Cai04,

Example 2], we can find an expansion of the CPL that is finitely algebraizable with

the set of equivalence formulas E(p, q) = {2(p→ q),2(q → p)} and the set of defining

equations ∆(p) = {¬¬p ≈ ⊤} which are different that the ones for CPL. However,

if the axioms and inference rules of S ′ define implicitly the new connectives then S ′

is finitely algebraizable with the same set of equivalence formulas and set of defining

equations as S and its equivalent quasivariety semantics is the class of algebras that is

increased algebras of Alg∗(S) (c.f. [Cai04, Theorem 1]).

We have seen that we can characterized all the classes of logics until studied by

properties of the Leibniz operator. Thus, in the following figure, we present the relation

between these different classes which is called the Leibniz hierarchy.
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Figure 5.1: A view of the Leibniz Hierarchy

5.10.1 Bridge Theorems

The relationship between the class of algebras that we associate to algebraizable logic

and a logic itself is very strong. We can find in the literature, several relations between

properties of finitary finitely algebraizable logic S and its equivalent quasivariety se-

mantics Alg∗(S). These relations are important because sometimes it is easier to

understand a problem concerning logic S by translating it to correspondent property

of the algebra in Alg∗(S). In this section, we only enunciate some bridge theorems

without their proofs.

A class K of algebras has the amalgamation property if for any pair of embedding

mappings f : C → A and g : C → B with A,B,C ∈ K, there exists D ∈ K and

embedding mappings h : A → D and k : B → D such that h ◦ f = k ◦ g. A logic

S has the Craig´s interpolation property if for any two formulas ϕ and ψ such that

ϕ ⊢S ψ, there exists a third formula α, called an interpolant, such that every variable

in α occurs both in ϕ and ψ, and we have that ϕ ⊢S α and α ⊢S ψ. A finitary

finitely algebraizable logic S has the Craig´s interpolation property iff Alg∗(S) has the

amalgamation property (c.f. [ANS01, Theorem 6.15] and [CP99, Theorem 3.5]).

A logic S has the Beth´s definability property if implicit definability equals explicit

definability (c.f. [BH06, Definition 3.3]). Let K be a class of algebras and A,B ∈ K.

A morphism h : A → B is called an epimorphism of K if; for every C ∈ K and
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every f, g ∈ Hom(B,C), we have that f ◦ h = g ◦ h implies f = g. A finitary finitely

algebraizable logic S has the Beth´s definability property iff all the epimorphisms of

Alg∗(S) are surjective (c.f. [ANS01, Theorem 6.11] and [BH06, Theorem 3.17]).

We can state that CPL has the Craig´s interpolation property and the Beth´s

definability property. Thus the class BA has the amalgamation property and all epi-

morphisms in BA are surjective.

We say that a class of algebras K has equationally definable principal relative con-

gruence (EDPRC for short) if there is a finite set of equations in at most four variables

{εi(x0, x1, y0, y1) ≈ δi(x0, x1, y0, y1) : i ≤ n} such that for every algebra A ∈ K and

all a, b, c, d ∈ A, c ≡ d
(

θA
K

(a, b)
)

iff εAi (a, b, c, d) = δAi (a, b, c, d) for all i ≤ n. A fini-

tary finitely algebraizable logic S has the DDT iff its equivalent quasivariety semantics

Alg∗(S) has the EDPRC property (c.f. [BP01, Theorem 5.5]). We have a generaliza-

tion of this result in [CP04b, Theorem 3.3], where Czelakowski and Pigozzi described

the relation between the MDDT and the EDPRC property.

5.11 Examples

Example 5.12 (Classical Propositional Logic [BP01]). In Example 5.6, we have seen

that CPL has an equivalent algebraic semantics, which is the class BA, with ∆(p) =

{p ≈ ⊤} the set of defining equation and E(p, q) = {p → q, q → p} the set of equiva-

lence formulas for CPL and BA. Thus CPL is finitary and finitely algebraizable.

Furthermore, CPL has the DDT, that is, for every Γ∪{ϕ, ψ} ⊆ FmL, we have that

Γ ∪ {ϕ} ⊢CPL ψ iff Γ ⊢CPL ϕ→ ψ.

Thus the class BA has the EDPRC property (c.f. [BP01, Theorem 5.6]). Indeed, for

every A ∈ BA and a, b, c, d ∈ A, we have that

c ≡ d(θA
BA

(a, b)) iff (a↔ b) ∧ c = (a↔ b) ∧ d,

where a↔ b abbreviates (a→ b) ∧ (b→ a). ♦

Example 5.13 (Intuitionistic Propositional Logic [BP01]). The Intuitionistic Propo-

sitional Logic, IPL, has the same language as CPL. It is defined by the following

axioms: (A1),(A2),(A4) − (A11), together with

(A12) ¬p→ (p→ ⊥)
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(A13) (p→ ⊥) → ¬p

and by the only inference rule, modus ponens.

A Heyting algebra is an algebra A = 〈A,→A,∧A,∨A,¬A,⊥A,⊤A〉 such that

〈A,∧A,∨A, ⊥A,⊤A〉 is a bounded (where ⊥ is the minimum and ⊤ the maximum),

distributive lattice and for a, b ∈ A, a →A b is the largest element c (with respect to

the lattice order) such that a ∧A c ≤ b and ¬Aa = a →A ⊤A. Thus →A is a binary

operation with the property, for all a, b, c ∈ A; c ≤ a→A b iff a∧A c ≤ b. The operation

→A is called relative pseudo-complementation. Each finite distributive lattice admits

a unique relative pseudo-complementation operation. Hence every finite distributive

lattice is the reduct of a unique Heyting algebra. In contrast with the class of Boolean

algebras, the variety of Heyting algebras, HA, is not generated by a finite algebra.

The class HA forms an equivalent algebraic semantics for IPL with the same set

of defining equations and set of equivalence formulas as for CPL, i.e., ∆(p) = {p ≈ ⊤}

and E(p, q) = {p→ q, q → p}. Thus IPL is finitary and finitely algebraizable.

Furthermore, IPL has the DDT. Indeed, for every Γ∪{ϕ, ψ} ⊆ FmL, we have that

Γ ∪ {ϕ} ⊢IPL ψ iff Γ ⊢IPL ϕ→ ψ.

Thus the class HA has the EDPRC property (c.f. [BP01, Example 5.2.2]). Actually,

for every A ∈ HA and a, b, c, d ∈ A, we have that

c ≡ d(θA
HA

(a, b)) iff (a↔ b) ∧ c = (a↔ b) ∧ d,

where a↔ b abbreviates (a→ b) ∧ (b→ a). ♦

The various implication fragments of CPL and IPL are all finitely algebraizable.

Since the equivalent algebraic semantics of CPL and IPL are the varieties BA and

HA, respectively, the equivalent algebraic semantics of each fragment of CPL or IPL

that contains either → or ↔ is the class of all subalgebras of the appropriate reducts

of Boolean or Heyting algebras, respectively. In particular, the equivalent algebraic

semantics of the {∧,→}, the {∧,↔}, the {→}, and the {↔} fragments are called

the varieties of Brouwerian semilattices, Skolem semilattices, Hilbert algebras, and

equivalential algebras.

Example 5.14 (Logic of Andréka and Németi [CJ00]). The finitary logic of Andréka

and Németi, denoted by SAN, is defined in the language L = {↔, ∗} (where ↔ is a
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binary connective and ∗ is unary), by the axioms:

∗p and p↔ p

and the infinite family of inference rules:

(i) p, p↔ q ⊢AN q;

(ii) p ⊢AN ϕ↔ ϕ(p/ ∗ p), for each ϕ ∈ FmL;

(iii) p ⊢AN ϕ(p/ ∗ p) ↔ ϕ, for each ϕ ∈ FmL.

Theorem 5.14.1. SAN is weakly algebraizable but not algebraizable.

Proof. We show that the Leibniz operator is monotone on Th(SAN) and the class

L∗(SAN) has its filters equationally definable. Let ∆(p, q) = {p ↔ q}. Since p ↔ p

is an axiom and modus ponens can be deduce by the inference rules, ∆(p, q) is a

protoequivalence system for SAN. By Theorem 3.1.3, SAN is protoalgebraic. And by

Theorem 3.3.1, the Leibniz operator is monotone on Th(SAN). Now, let {p ≈ ∗p} be

a set of equation in a single variable p. We have that for every T ∈ Th(SAN), α ∈ T

iff α ≡ ∗α(ΩT ). Indeed, let α ∈ T . By the inference rules (ii) and (iii), we have

that ϕ(p/α) ↔ ϕ(p/ ∗ α) ∈ T and ϕ(p/ ∗ α) ↔ ϕ(p/α) ∈ T , for all ϕ ∈ FmL and

p ∈ Var. And, by the inference rule (i), ϕ(p/α) ∈ T iff ϕ(p/ ∗ α) ∈ T , for all ϕ ∈ FmL

and p ∈ Var. Thus α ≡ ∗α(ΩT ). Conversely, suppose that α ≡ ∗α(ΩT ). Since ΩT

is a congruence, α ↔ α ≡ ∗α ↔ α(ΩT ). By the second axiom, α ↔ α ∈ T . And

by compatibility, ∗α ↔ α ∈ T . Moreover, by the first axiom, ∗α ∈ T . And by the

inference rule (i), we have that α ∈ T . Therefore L∗(SAN) has its filters equationally

definable by {p ≈ ∗p}. By Theorem 5.7.4, SAN is weakly algebraizable.

Finally, we show that the class Mod∗(SAN) is not closed under submatrices. Let

M = 〈A, F 〉 be the matrix where F = {1, 2} and A is a four-element algebra, A =

{0, 1, 2, 3} with ↔A given by the table

↔A 0 1 2 3

0 1 0 0 0

1 0 1 1 0

2 0 1 2 3

3 0 0 3 2

The operation ∗A is defined, for every a ∈ A, by ∗Aa := a ↔A a. It is not difficult to

prove that the matrix M ∈ Mod∗(SAN). Let N = 〈B,B∩F 〉 be a submatrix of M where
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B = {0, 1, 2}. Since Mod(SAN) is closed under submatrices, N ∈ Mod(SAN). And

as 1 ≡ 2(ΩB(B ∩ F )), N is not reduced. By Theorem 4.1.7, SAN is not equivalential.

Therefore SAN is not algebraizable.

♦

Example 5.15 (Last Judgement [Her96]). The finitary logic Last Judgement, denoted

by LJ, is defined in the modal language L = {→,¬,∧,∨,2}, where →,∧,∨ are binary

connectives and ¬,2 are unary, by the following axioms:

(i) all classical tautologies;

(ii) 2
nφ for all intuitionistic tautologies φ and n ≥ 0;

(iii) 2
n(2(p→ q) → (2p→ 2q)), for all n ≥ 0;

(iv) (p→ q) → 2
n(¬q → ¬p), for all n ≥ 0.

and the inference rule modus ponens.

Theorem 5.15.1. LJ is algebraizable but not finitely algebraizable.

Proof. We show that E(p, q) = {2n(p → q) : n ≥ 0} ∪ {2n(q → p) : n ≥ 0}

is a system of equivalence formulas for LJ. We prove by induction on n ≥ 0 that

2
n(p → q) ⊢LJ 2

np → 2
nq. If n = 0, then p → q ⊢LJ p → q, which is always true.

Now assume that it is true for n and we show for n+1. Let e be a substitution such that

e(p) = 2(p→ q) and e(q) = 2p → 2q. By structurality of LJ and induction hypothesi,

e(2n(p → q)) ⊢LJ e(2
np → 2

nq), i.e., 2
n(e(p) → e(q)) ⊢LJ 2

ne(p) → 2
ne(q). Thus,

2
n(2(p → q) → (2p → 2q)) ⊢LJ 2

n(2(p → q)) → 2
n(2p → 2q). By axiom

(iii), we have that ⊢LJ 2
n(2(p → q)) → 2

n(2p → 2q). And by modus ponens,

2
n+1(p → q) ⊢LJ 2

n(2p → 2q). Let e′ be another substitution such that e′(p) = 2p

and e′(q) = 2q. By structurality of LJ and induction hypothesi, e′(2n(p → q)) ⊢LJ

e′(2np → 2
nq), i.e., 2

n(e′(p) → e′(q)) ⊢LJ 2
ne′(p) → 2

ne′(q). Thus, 2
n(2p →

2q) ⊢LJ 2
n
2p → 2

n
2q. Since we have proved that 2

n+1(p → q) ⊢LJ 2
n(2p → 2q),

we obtain that 2
n+1(p → q) ⊢LJ 2

n
2p → 2

n
2q, i.e., the hypothesi is true for n + 1.

Now, we proved that the set E(p, q) satisfies the conditions of Definition 4.1.1. From

axiom (ii), we have that reflexivity condition holds and by the inference rule, modus

ponens condition is satisfied. We verify simple replacement condition for all connectives

in the language L.

For 2 : We proved above that 2
n+1(p → q) ⊢LJ 2

n(2p → 2q). Thus we have

E(p, q) ⊢LJ E(2p,2q).
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For ¬ : We have by axiom (iv) that E(p, q) ⊢LJ E(¬p,¬q).

For →,∧,∨ : It suffices to show that 2
n(p1 → q1),2

n(q1 → p1),2
n(p2 → q2),2

n(q2 →

p2) ⊢LJ 2
n(p1 · p2 → q1 · q2) for each n ≥ 0 where · ∈ {→,∧,∨}. Since

p1 → q1, q1 → p1, p2 → q2, q2 → p2 ⊢IPL p1 · p2 → q1 · q2, we have that

E(p1, q1), E(p2, q2) ⊢LJ E(p1 · p2, q1 · q2).

Therefore E(p, q) is a system of equivalence formulas for LJ. Then LJ is equivalential.

We show that L∗(LJ) has its filters equationally definable. Let ∆(p) = {¬p ≈ 0},

where 0 := ¬(p → p). Since p → (q → p) is an intuitionistic tautology, by axiom (ii),

⊢LJ 2
n(p → (p → p)) for all n ≥ 0. And by axiom (iv), (p → p) → p ⊢LJ 2

n(¬p →

(¬(p → p))) for all n ≥ 0. Thus p ⊢LJ 2
n(¬p → (¬(p → p))) for all n ≥ 0, i.e.,

p ⊢LJ 2
n(¬p → 0) for all n ≥ 0. Since ¬(p → p) → ¬p is an intuitionistic tautology,

by axiom (ii), ⊢LJ 2
n(¬(p → p) → ¬p) for all n ≥ 0. So p ⊢LJ 2

n(0 → ¬p) for all

n ≥ 0. We have proved that p ⊢LJ E(¬p, 0). As (¬p → ¬(p → p)) → p is a classical

tautology, by axiom (i), ⊢LJ (¬p→ ¬(p→ p)) → p, i.e., ⊢LJ (¬p→ 0) → p. By modus

ponens, we have that ¬p → 0 ⊢LJ p, i.e., E(¬p, 0) ⊢LJ p. Therefore p ⊣⊢LJ E(¬p, 0).

Thus L∗(LJ) has its filters equationally definable. Since we have proved that LJ is

equivalential, by Theorem 4.1.5, the Leibniz operator is monotone on Th(LJ). And

by Theorem 5.7.4, LJ is weakly algebraizable. As the intersection of the classes of

equivalential and weakly algebraizable logics is the class of algebraizable logics, we

have that LJ is algebraizable.

Now, we show by contradiction that LJ is not finitely equivalential. Suppose that

LJ is finitely equivalential, i.e., there exists a finite set of equivalence formulas Ef (p, q).

Since two systems of equivalence formulas are interderivable, we have that Ef(p, q) ⊢LJ

E(p, q). Let 1 := p → p and e a substitution such that e(p) = 1 and e(q) = p.

By structurality, e[Ef (p, q)] ⊢LJ e[E(p, q)], i.e., Ef (e(p), e(q)) ⊢LJ E(e(p), e(q)). Thus

Ef(1, p) ⊢LJ E(1, p), i.e., {p,2p, . . . ,2n−1p} ⊢LJ 2
np for some n. Let A = 〈{0, . . . , n+

1},→,∧,∨,¬,2〉 be the (n + 2)-element linearly ordered Heyting algebra, where 0 is

the smallest element and n + 1 the largest element. The operation 2 satisfies the

following conditions: 20 = 0, 2(n + 1) = n + 1 and 2k = k − 1 for 1 ≤ k ≤ n.

Let D := {1, . . . , n + 1}. It is not difficult to see that 〈A, D〉 ∈ Mod∗(LJ). Let h :

FmL → A be a homomorphism such that h(p) = n. Then h[{p,2p, . . . ,2n−1p}] ⊆ D

while h(2np) = 0 /∈ D. Hence, p,2p, . . . ,2n−1p 0LJ 2
np and we have a contradiction.

Therefore LJ is not finitely equivalential.
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♦

Example 5.16 (Relevance [FR94]). The Relevance logic R is defined in the language

L = {¬,→,∧}, where →,∧ are binary connectives and ¬ is unary. We admit that

the formula ϕ ∨ ψ is an abbreviation for ¬(¬ϕ ∧ ¬ψ), ϕ ↔ ψ an abbreviation for

(ϕ → ψ) ∧ (ψ → ϕ), and ϕ ∗ ψ an abbreviation for ¬(ϕ → ¬ψ), for any ϕ, ψ ∈ FmL.

The binary connective ∗ is commonly called intensional conjunction or fusion. The

Relevance logic is defined by the following axioms,

R1 ϕ→ ϕ

R2 (ϕ→ ψ) →
(

(ψ → η) → (ϕ→ η)
)

R3 ϕ→
(

(ϕ→ ψ) → ψ
)

R4

(

ϕ→ (ϕ→ ψ)
)

→ (ϕ→ ψ)

R5 (ϕ ∧ ψ) → ϕ

R6 (ϕ ∧ ψ) → ψ

R7

(

(ϕ→ ψ) ∧ (ϕ→ η)
)

→
(

ϕ→ (ψ ∧ η)
)

R8 ϕ→ (ϕ ∨ ψ)

R9 ψ → (ϕ ∨ ψ)

R10

(

(ϕ→ η) ∧ (ψ → η)
)

→
(

(ϕ ∨ ψ) → η
)

R11

(

ϕ ∧ (ψ ∨ η)
)

→
(

(ϕ ∧ ψ) ∨ η
)

R12 (ϕ→ ¬ψ) → (ψ → ¬ϕ)

R13 ¬¬ϕ → ϕ

and inference rules,

ϕ, ψ ⊢R ϕ ∧ ψ (Adjunction)

ϕ, ϕ→ ψ ⊢R ψ (Modus Ponens)

An algebra A = 〈A,¬,→,∧〉 is a De Morgan semigroup when the following condi-

tions hold, for any a, b, c ∈ A:

(i) 〈A,∧,¬〉 is a De Morgan lattice, whose ordering relation is denoted by ≤ and

the supremum operation is a ∨ b = ¬(¬a ∧ ¬b);

(ii) a→ (b→ c) ≤ b→ (a→ c);

(iii) a ≤
(

(a→ b) ∧ c
)

→ b;

(iv) a→ ¬a ≤ ¬a;

(v) a→ b ≤ ¬b→ ¬a.
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We say that an algebra A is an R-algebra if A = 〈A,¬,→,∧〉 is a De Morgan semigroup

such that, for any a, b, c ∈ A,
(

(a→ a)∧ (b → b)
)

→ c ≤ c. The class of all R-algebras

constitute a variety denoted by R.

Theorem 5.16.1. The Relevance logic R is finitely algebraizable with the class R as

the equivalent algebraic semantics, E(p, q) = {p → q, p → q} the set of equivalence

formulas and ∆(p) = {p ∧ (p → p) ≈ (p → p)} the set of defining equation for R and

R.

Proof. By the axioms R1 and R2, the inference rule of modus ponens and the defini-

tion of E(p, q), conditions of reflexivity, transitivity, modus ponens and symmetry are

satisfied, respectively. It is not difficult to see that simple replacement condition holds.

Thus E(p, q) is a system of equivalence formulas for R.

Now, we show that p ⊣⊢R E(∆(p)). By axiom R3, ⊢R p → ((p → p) → p). And

by modus ponens, we have that p ⊢R (p → p) → p. On the other hand, by axiom

R1, ⊢R (p → p) → (p → p). And by the inference rule adjunction, we have that

p ⊢R ((p → p) → p) ∧ ((p → p) → (p → p)). Which gives, by axiom R7 and modus

ponens, p ⊢R (p → p) → (p ∧ (p → p)). Thus we obtain that p ⊢R E(∆(p)). For

the inference in the other direction, by axiom R1 and modus ponens, we have that

(p → p) → (p ∧ (p → p)) ⊢R p ∧ (p → p). And by axiom R5 and modus ponens,

p ∧ (p → p) ⊢R p. Thus E(∆(p)) ⊢R p. We can conclude that the logic R is finitely

algebraizable.

Furthermore, since the logic RM is an axiomatic extension of R (by the mingle

axiom p→ (p→ p)), it is also algebraizable with the same set of equivalence formulas

and defining equation (c.f. [BP89, Theorem 5.8]). ♦

Example 5.17 (BCK Logic [BP01]). In Example 3.7, we have defined the logic BCK.

We say that A = 〈A, ∗, 1,≤〉 is a partially ordered monoid if A = 〈A, ∗, 1〉 is a monoid,

≤ is a partially order on A and for all x, y, z ∈ A; if x ≤ y then x ∗ z ≤ y ∗ z and

z ∗ x ≤ z ∗ y. A structure A is called integral if x ≤ 1, for all x ∈ A, and is called

residuated if; for all x, y ∈ A, the set {z : x ∗ z ≤ y} contains a largest element called

the residual of x relative to y and denoted by x → y. Since the partial order ≤ can

be recovered via x ≤ y iff x → y = 1, a partially ordered commutative, residuated and

integral monoid 〈A, ∗, 1,≤〉 can be treated as an algebra 〈A, ∗,→, 1〉, called pocrim.

The class PO of all procrims is a quasivariety definable by:
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(PO1) x ∗ 1 ≈ x

(PO2) x ∗ y ≈ y ∗ x

(PO3) x→ 1 ≈ 1

(PO4) 1 → x ≈ x

(PO5) (z → x) → ((x→ y) → (z → y)) ≈ 1

(PO6) x→ (y → z) ≈ (x ∗ y) → z

(PO7) x→ y ≈ 1 and y → x ≈ 1 ⇒ x ≈ y

A BCK algebra is defined as an algebras A = 〈A,→, 1〉 satisfying PO3, PO4, PO5

and PO7 together with

(PO8) x→ x ≈ 1

(PO9) x→ (y → z) ≈ y → (x→ z)

We denoted by BCK, the class of all BCK algebras.

Theorem 5.17.1. The logic BCK is finitely algebraizable with BCK the equivalent

algebraic semantics, E(p, q) = {p → q, q → p} the set of equivalence formulas and

∆(p) = {p ≈ p→ p} the set of defining equations for BCK and BCK.

Proof. By axiom (B), modus ponens and the definition of E(p, q); reflexivity, transi-

tivity, modus ponens and symmetry conditions are satisfied, respectively. We verify

simple replacement condition for the connective →. By axiom (B), we have that

⊢BCK (p1 → q1) → ((q1 → p2) → (p1 → p2)) and ⊢BCK (q1 → p1) → ((p1 → p2) →

(q1 → p2)). And by modus ponens, E(p1, q1) ⊢BCK E(p1 → p2, q1 → p2). Thus

E(p1, q1), E(p2, q2) ⊢BCK E(p1 → p2, q1 → q2). Therefore E(p, q) is a system of equiv-

alence formulas for BCK. Now, we show that p ⊣⊢BCK E(∆(p)). By axiom (K),

p ⊢BCK p → (p → p). Since ⊢BCK p → p, by modus ponens and axiom (B), we have

that ⊢BCK (p → p) → (p → p). Using axiom (C), ⊢BCK p → ((p → p) → p) and by

modus ponens, we have that p ⊢BCK (p → p) → p. Thus, p ⊢BCK E(∆(p)). For the

inference in the other direction, we have that ⊢BCK ((p → p) → p) → ((p → p) → p).

By axiom (C) and modus ponens, we have p→ p ⊢BCK ((p→ p) → p) → p. Again by

modus ponens, (p → p) → p ⊢BCK p. Thus E(∆(p)) ⊢BCK p. We can conclude that

the logic BCK is finitely algebraizable.

♦





Chapter 6

Non-Protoalgebraic Logics

Protoalgebraic logics have been considered by logicians as the largest class of logics

for which an interesting algebraic theory can be evolved. We have seen, in previous

chapters, that some meta-properties of a logic, can be characterized intrinsically by

properties of the Leibniz operator, obtaining, by this way, a hierarchy of classes of

logics called “Leibniz hierarchy”. When S is not protoalgebraic, its Suszko operator

still monotone on Th(S) and the class Mod∗
Su(S) play the role of Mod∗(S). Some

non-protoalgebraic logics have been investigated individually. In this chapter, we will

provide some well known examples of non-protoalgebraic logics. We study the class of

truth-equational logics which contains the class of weakly algebraizable logics and some

non-protoalgebraic logics by discussing some examples and presenting its introductory

theory. This class has been investigated by Raftery (c.f. [Raf06b]).

Definition 6.0.2. A logic S is truth-equational if the class L∗
Su(S) has its filters

equationally definable.

By Theorem 5.7.4, we note that the class of truth-equational logics encompass the

class of weakly algebraizable logics. Indeed, the latter is the intersection of the class

of truth-equational logics and the class of protoalgebraic logics.

Theorem 6.0.3. [Raf06b, Theorem 28] Let S be a logic. The following conditions are

equivalent:

(i) S is truth-equational;

(ii) The class Mod∗
Su(S) has its filters equationally definable;

(iii) The Suszko operator is injective on FiS(A) for every algebra A.
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It is not difficult to see that if the Suszko operator is injective on FiS(A) for every

algebra A then the Leibniz operator is also injective, but the converse is false [Raf06b,

example 2]. Thus truth-equational logics do not encompass all logics which Leibniz

operator is injective on FiS(A) for every algebra A. The Leibniz operator´s injectivity

by itself was investigated in [DM05].

In this thesis, when the logic is finitary, we use the Hilbert systems (defined in

Chapter 2). However, a logic can be also defined in a Gentzen style, which informally

consist on an axiomatization of the consequence relation. These two systems tend to

serve different purposes. In spite of this difference, there exists a relation between

Gentzen and Hilbert systems that we do not explain here. Nevertheless, the reader

can see [Raf06a], where Raftery proved that a logic described in Hilbert system, can

be always seen as Gentzen system (c.f. [Raf06a]). But if a logic is defined by Gentzen

system, it may not have a Hilbert system (c.f. [Raf06a]). He also defined analogous

classes of logics studied in this thesis using Gentzen system. Obviously, these new

classes are different from ours, but the main idea is the same. Furthermore, he proved

that if a logic is algebraizable with Hilbert system (i.e., algebraizable in our sense)

then it is also algebraizable as a Gentzen system (called Gentzen algebraizable), but

the converse is false. We also refer to [GR06], where Gil and Rebagliato give more

details about finitely equivalential Gentzen system, and [Pig97].

Example 6.1 (Intuitionistic Propositional Logic without Implication [BP89]). Intu-

itionistic Propositional Logic without Implication, denoted by IPL∗, is the {∨,∧,¬,⊤,

⊥}-fragment of IPL.

In example 5.13, we have defined a Heyting algebra A = 〈A,→A,∧A,∨A,¬A,⊥A,

⊤A〉. The binary operation, which for all pair of elements x, y correspond the ele-

ment x → y, is called implication. A pseudocomplementation is an operation which

for all x associates x∗ = x → 0; the element x is called pseudocomplemented. Let

A = 〈{⊤, a, b,⊥},∨,∧,¬,⊤,⊥〉 be the four-element chain pseudocomplemented lat-

tice: ⊥ < b < a < ⊤, ¬⊤ = ¬a = ¬b = ⊥, and ¬⊥ = ⊤. Let F1 = {⊤} and

F2 = {⊤, a}. The algebra A is the reduct of the four-element chain Heyting algebra,

and F1 and F2 are filters of the Heyting algebra. Since the class HA is an equivalent

algebraic semantics for IPL, we have that F1 and F2 are IPL-filters. Thus, they are

also IPL∗-filters of A. It is not difficult to see that ΩAF1 = △A ∪ {(a, b), (b, a)} and

ΩAF2 = △A ∪ {(a,⊤), (⊤, a)}. Although F1 ⊆ F2, we have that ΩAF1 * ΩAF2. By

Theorem 3.3.1, IPL∗ is not protoalgebraic.
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Furthermore, it is not difficult to prove that IPL∗ is truth-equational (c.f. [Raf06b,

Example 7]). Since IPL∗ is not protoalgebraic, it is also not algebraizable. However,

Font, Jansana and Pigozzi have proved in [FJP03] that IPL∗ is Gentzen algebraizable.

♦

Example 6.2 ({∧,∨}-fragment of Classical Propositional Logic [FV91]). The {∧,∨}-

fragment of Classical Propositional Logic, denoted by {∧,∨}-CPL, is defined in the

usual Hilbert-style with no axioms and with the following inference rules:

R1 ϕ ∧ ψ ⊢{∧,∨}−CPL ϕ

R2 ϕ ∧ ψ ⊢{∧,∨}−CPL ψ ∧ ϕ

R3 {ϕ, ψ} ⊢{∧,∨}−CPL ϕ ∧ ψ

R4 ϕ ⊢{∧,∨}−CPL ϕ ∨ ψ

R5 ϕ ∨ ψ ⊢{∧,∨}−CPL ψ ∨ ϕ

R6 ϕ ∨ (ϕ ∨ ψ) ⊢{∧,∨}−CPL ϕ ∨ ψ

R7 ϕ ∨ (ψ ∨ ξ) ⊢{∧,∨}−CPL (ϕ ∨ ψ) ∨ ξ

R8 (ϕ ∨ ψ) ∨ ξ ⊢{∧,∨}−CPL ϕ ∨ (ψ ∨ ξ)

R9 ϕ ∨ (ψ ∧ ξ) ⊢{∧,∨}−CPL (ϕ ∨ ψ) ∧ (ϕ ∨ ξ)

R10 (ϕ∨ψ)∧ (ϕ∨ ξ) ⊢{∧,∨}−CPL ϕ∨ (ψ ∧ ξ)

R11 ϕ∧ (ψ ∨ ξ) ⊢{∧,∨}−CPL (ϕ∧ψ)∨ (ϕ∧ ξ)

R12 ϕ ∨ ϕ ⊢{∧,∨}−CPL ϕ

We note that rules (R6), (R8) and (R11) are derivable from the remaining ones (c.f.

[FGV91]). We denote by D2 the two-element distributive lattice on the set D2 = {0, 1}.

It is well-know that 〈D2, {1}〉 is a matrix model for {∧,∨}-CPL. Consider the algebra

D2, there are three {∧,∨}-filters on it, namely ∅, {1} and {0, 1}. It is not difficult

to see that ΩD2
(∅) = ∇D2

and ΩD2
({1}) = △D2

. Thus we have ∅ ⊆ {1} while

ΩD2
(∅) * ΩD2

({1}). By Theorem 3.3.1, {∧,∨}-CPL is not protoalgebraic.

Moreover, the Leibniz operator is non-injective on FiS(A) for every algebra A.

Indeed, it is not difficult to see that ΩD2
({0, 1}) = ∇D2

. And we have ΩD2
(∅) =

ΩD2
({0, 1}), while ∅ 6= {0, 1}. Thus the Suszko operator is non-injective on FiS(A) for

every algebra A. By Theorem 6.0.3, the logic {∧,∨}-CPL is not truth-equational.

Since {∧,∨}-CPL is not protoalgebraic, it is not algebraizable. However, in [FJP03],

Font, Jansana and Pigozzi have shown that {∧,∨}-CPL is Gentzen algebraizable. ♦

Example 6.3 (Minimum System of Positive Modal Logic [Jan02]). The minimum

system of Positive Modal logic, denoted by PML, is the restriction of the minimum

normal modal logic K with the local consequence relation to the positive, or negation-

free, modal language with connectives ∧,∨,⊤,⊥,2 and ⋄. The reader can find a

representation of the Gentzen system of this logic in [Jan02, Chapter 3].
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A positive modal algebra A = 〈A,∧,∨,2, ⋄, 0, 1〉 is an algebra such that 〈A,∧,∨, 0, 1〉

is a bounded distributive lattice and for any a, b ∈ A,

2(a ∧ b) = 2a ∧ 2b

⋄(a ∨ b) = ⋄a ∨ ⋄b

2a ∧ ⋄b ≤ ⋄(a ∧ b)

2(a ∨ b) ≤ 2a ∨ ⋄b

21 = 1

⋄0 = 0

The class of positive modal algebras forms a variety. Consider the four element

chain distributive lattice with universe A = {0, b, a, 1} ordered by 0 < b < a < 1. We

define the operations 2 and ⋄ by:

2p = p if p ∈ {0, 1} ⋄ p = p if p ∈ {0, 1}

2p = b if p ∈ {a, b} ⋄ p = a if p ∈ {a, b}

The sets {1} and {1, a} are PML-filters. It is not difficult to see that ΩA({1}) =

IdA ∪ {〈a, b〉, 〈b, a〉, 〈a, 0〉, 〈0, a〉, 〈0, b〉, 〈b, 0〉} and ΩA({1, a}) = IdA ∪ {〈1, a〉, 〈a, 1〉}.

Although {1} ⊆ {1, a}, we have ΩA({1}) * ΩA({1, a}). By Theorem 3.3.1, PML is

not protoalgebraic.

Thus it is not algebraizable in our sense. However, Jansana proved in [Jan02,

Theorem 26] that the logic PML is Gentzen algebraizable and its equivalent algebraic

semantics is the variety of positive modal algebras. Moreover, he proved in [Jan02,

Theorem 10] that the variety of positive modal algebras is not the equivalent algebraic

semantics, in our sense, of any algebraizable logic. ♦

Example 6.4 (Belnap’s four valued logic [Fon97]). Belnap’s four valued logic, denoted

by B is a finitary logic B = 〈FmL,⊢B〉 which has no axioms and is defined by the

following inference rules:

R1 ϕ ∧ ψ ⊢B ϕ

R2 ϕ ∧ ψ ⊢B ψ

R3 ϕ, ψ ⊢B ϕ ∧ ψ

R4 ϕ ⊢B ϕ ∨ ψ

R5 ϕ ∨ ψ ⊢B ψ ∨ ϕ

R6 ϕ ∨ ϕ ⊢B ϕ

R7 ϕ ∨ (ψ ∨ η) ⊢B (ϕ ∨ ψ) ∨ η

R8 ϕ ∨ ψ ⊢B ¬¬ϕ ∨ ψ

R9 ϕ ∨ (ψ ∧ η) ⊢B (ϕ ∨ ψ) ∧ (ϕ ∨ η)

R10 (ϕ ∨ ψ) ∧ (ϕ ∨ η) ⊢B ϕ ∨ (ψ ∧ η)
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R11 ¬(ϕ ∨ ψ) ∨ η ⊢B (¬ϕ ∧ ¬ψ) ∨ η

R12 ¬(ϕ ∧ ψ) ∨ η ⊢B (¬ϕ ∨ ¬ψ) ∨ η

R13 ¬¬ϕ ∨ ψ ⊢B ϕ ∨ ψ

R14 (¬ϕ ∧ ¬ψ) ∨ η ⊢B ¬(ϕ ∨ ψ) ∨ η

R15 (¬ϕ ∨ ¬ψ) ∨ η ⊢B ¬(ϕ ∧ ψ) ∨ η

A De Morgan lattice is an algebra A = 〈A,∧,∨,¬〉 such that:

(DM1) the reduct 〈A,∧,∨〉 is a distributive lattice;

(DM2) The unary operation ¬ satisfies the following equations:

p ≈ ¬¬p , ¬(p ∨ q) ≈ (¬p ∧ ¬q) , ¬(p ∧ q) ≈ (¬p ∨ ¬q)

The variety of De Morgan lattices, denote by DM, is generated, as a variety, by the

four-element De Morgan lattice M4 with the universe M4 = {f, n, b, t} and with the

algebraic structure specified by the Hasse diagram and negation table as follows:

Figure 6.1: Hasse Diagram and Negation Table

It can be proved that the sets ∅ and Fn = {t, n} are B-filters (c.f. [Fon97, Theorem

2.11]). It is not difficult to see that ΩM4
∅ = ∇M4

and ΩM4
Fn = ∆M4

. Although

∅ ⊆ Fn, we have that ΩM4
∅ * ΩM4

Fn. By Theorem 3.3.1, B is not protoalgebraic.

Thus it is not algebraizable in our sense. However, Font proved in [Fon97, Theorem

4.11] that B is Gentzen algebraizable and its equivalent algebraic semantics is the

variety DM of De Morgan lattices. The reader can see [FJ96, Chapter 5] for more

information about the relation between the logic B and the four-element De Morgan

lattice M4. ♦

Example 6.5 (Weaker Relevance Logic [FR94]). The Weaker Relevance Logic, de-

noted by WR, is defined in the same language as the logic R (c.f. Example 5.16), i.e,

L = {∧,→,¬}. The consequence relation, ⊢WR, is defined in the following way: for
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any Γ ∪ {ϕ} ⊆ FmL,

Γ ⊢WR ϕ iff there are ϕ1, . . . , ϕn ∈ Γ such that ⊢R (ϕ1 ∧ · · · ∧ ϕn) → ϕ.

Thus WR is finitary, has no theorems and for every ϕ, ϕ1, . . . , ϕn ∈ FmL, {ϕ1, . . . , ϕn}

⊢WR ϕ iff ⊢R (ϕ1 ∧ · · · ∧ ϕn) → ϕ. By Lemma 2.3.5, the Leibniz operator is non-

injective on FiS(A) for every algebra A. Thus the Suszko operator is non-injective on

FiS(A) for every algebra A. And by Theorem 6.0.3, WR is not truth-equational.

Since the only protoalgebraic logic without theorems are the trivial logic, we have

that WR is not protoalgebraic (c.f. [FR94, Proposition 3.7]). Indeed, the set of

theorems of R is nonempty and constitutes a proper theory of WR. Thus WR is

neither inconsistent nor almost inconsistent, i.e., it is not a trivial logic. For more

information about the logic WR, the reader can see [FJ96, Chapter 5] and [FR94,

Chapter 3]. ♦



Chapter 7

Generalizations with Many-Sorted

Logic

In this chapter, we study the generalization of the theory of standard AAL to many-

sorted setting. This generalization is important since propositional logics are not

enough expressive when we want to reason about complex systems. Thus we need

logics over rich languages where elements can be distinguished by sorts. Herein, we

study the theory in which logics that lack an algebraic counterpart become algebraiz-

able in a behavior context. Actually, in the many-sorted AAL approach, the theory was

developed by replacing the role of unsorted equational logic by many-sorted behavioral

equational logic over the same signature and taking as unique visible sort, the sort φ

of formulas. The paradigmatic examples are the Paraconsistent logic C1 of da Costa

and the Carnap-style presentation of modal logic S5 which are not algebraizable in the

standard sense but they are behaviorally algebraizable. However, there are many logics

that are not algebraizable in any way. All the notations, notions, proofs and examples

can be found in [Gon08], [CGM09] or in [CG07].

7.1 Basic Notions

Given a set A, we denote by A∗, the set of all finite strings with elements in A. If S

is a set, A = {As}s∈S is an S-sorted or S-indexed set. Given w = s1s2 . . . sn ∈ S∗,

we denote by Aw the product As1
× As2

× · · · × Asn
. A many-sorted signature is a

pair Σ = 〈S, F 〉 where S is a set of sorts and F = {Fws}w∈S∗,s∈S is an indexed family

of sets of operations. We say that a many-sorted signature Σ = 〈S, F 〉 is n-sorted if
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n = |S|. We write f : s1 . . . sn → s ∈ F for an element f of Fs1...sns. We denote

by TΣ(X) = {TΣ,s(X)}s∈S the S-indexed family of carrier sets of the free Σ-algebra

TΣ(X) with generators taken from a sorted family X = {Xs}s∈S of variable sets. We

write x : s for x ∈ Xs. An element of TΣ,s(X) is called a Σ-term of sort s (an s-term

for short). A term without variables is called a closed term. A many-sorted signature

Σ = 〈S, F 〉 is called standard if, for every s ∈ S, there exists a closed s-term. If the

set of variables of a terms is finite then we often write t ∈ TΣ(x1 : s1, . . . , xn : sn) (or

simply t(x1 : s1, . . . , xn : sn)). Moreover, if T is a set whose elements are all terms of

this form, we write T (x1 : s1, . . . , xn : sn).

Given a many-sorted signature Σ = 〈S, F 〉, a substitution over Σ is an S-indexed

family of functions e = {es : Xs → TΣ,s(X)}s∈S. As usual, e(t) denotes the term

obtained by uniformly applying e to each variable in t. Given a term t(x1 : s1, . . . , xn :

sn) and terms t1 ∈ TΣ,s1
(X), . . . , tn ∈ TΣ,sn

(X), if e is a substitution such that es1
(x1) =

t1, . . . , esn
(xn) = tn then we write e(t) = t(t1, . . . , tn). We extend this notion to any

set, given T (x1 : s1, . . . , xn : sn) and U ∈ TΣ,s1
(X) × · · · × TΣ,sn

(X), we write T [U ] =
⋃

〈t1,...,tn〉∈U T (t1, . . . , tn), where T (t1, . . . , tn) := {t(t1, . . . , tn) : t ∈ T}.

A derived operation of type s1, . . . , sn → s over Σ is a term in TΣ,s({x1 : s1, . . . , xn :

sn}) for some n. We denote by DerΣ,s1...sns the set of all derived operations of type

s1, . . . , sn → s. A general many-sorted subsignature of Σ = 〈S, F 〉 is a many-sorted

signature Γ = 〈S, F ′〉 such that, for each w ∈ S∗, F ′
w ⊆ DerΣ,w. Let Γ be a subsignature

of Σ, we say that Σ is Γ-standard if, for every s ∈ S there exists a closed Γ-term of

sort s, that is, a Γ-term of sort s without variables.

We assume fixed a signature Σ = 〈S, F 〉 with a distinguished sort φ for formulas and

a set of variablesX. We define the induced set of formulas LΣ(X) to be the carrier set of

sort φ of the free algebra TΣ(X) with generators taken from X. We define a structural

many-sorted logic as a pair L = 〈Σ,⊢〉 where Σ is a many-sorted signature and ⊢ is a

consequence relation, such that 〈LΣ(X),⊢〉 is a logic (i.e., ⊢ satisfies reflexivity, cut and

weakening conditions) that satisfies, for every Γ∪{ϕ} ⊆ LΣ(X) and every substitution

e: if Γ ⊢ ϕ then e[Γ] ⊢ e(ϕ) (c.f. [Gon08, Examples 2.1.1.5]). Propositional logics are

a particular case of many-sorted logics which are called single-sorted logics, that is,

logics over one sorted signature (i.e., Σ = 〈S, F 〉 with S = {φ}).

The notion of standard universal algebra is the same for many sorted signatures.

However, we describe some definitions to remind the reader. Given a many-sorted

signature Σ = 〈S, F 〉, a Σ-algebra is a pair A = 〈{As}s∈S, A
〉 where each As is a
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non-empty set, the carrier of sorts s, and
A

assigns to each symbol f : s1 . . . sn → s

of Σ a function f
A

: As1
× · · · × Asn

→ As. The set of all Σ-algebras is denoted by

AlgΣ. When the signature is clear from the context we just write algebra instead of

Σ-algebra. A Σ-algebra is trivial if each of its carriers contains exactly one element.

A Σ-algebra B is a subalgebra of A, in symbols B ⊆ A, if B is non-empty subuniverse

of A and for each operation f : s1 . . . sn → s and every b1 ∈ Bs1
, . . . , bn ∈ Bsn

we have

that f
B
(b1, . . . , bn) = f

A
(b1, . . . , bn). Given a subsignature Γ of Σ and a Σ-algebra A =

〈(As)s∈S, A
〉, the reduct of A to Γ, denoted by AΓ, is a Γ-algebra AΓ = 〈(As)s∈S, AΓ

〉

where
AΓ

is the restriction of
A

to the operations in Γ. We can defined as usual

direct product, subdirect product, reduced product, ultraproduct, etc (c.f. [MT92]).

A homomorphism h : A → B from the Σ-algebra A to the Σ-algebra B is

an S-sorted set {hs : As → Bs}s∈S, such that for all f ∈ Fs1...sns, we have that

hs(f
A

(a1, . . . , an)) = f
B
(hs1

(a1), . . . , hsn
(an)). We can defined as usual epimorphism,

embedding, isomorphism, etc. An assignment of X over a Σ-algebra A is a family

h = {hs}s∈S such that, for every s ∈ S, hs : Xs → As. The interpretation of terms

(or denotation of terms) is the free extension of h to TΣ(X), that we also denote by

h. Given a term t(x1 : s1, . . . , xn : sn) and 〈a1, . . . , an〉 ∈ As1
× · · · × Asn

, we denote by

tA(a1, . . . , an) the denotation of t in A when the variables x1, .., xn are interpreted by

a1, . . . , an, respectively. Algebraically, tA(a1, . . . , an) = h(t), where h is any assignment

such that h(xi) = ai for all i ≤ n.

Now, we define all the notions that we need to describe many-sorted equational

logic. Given a many-sorted signature Σ, we denote an equation over Σ by t1 ≈ t2

where t1, t2 ∈ TΣ,s(X) for some s ∈ S. The sets EqΣ,s(X) = {t1 ≈ t2 : t1, t2 ∈ TΣ,s(X)},

EqΣ(X) = {t1 ≈ t2 : t1, t2 ∈ TΣ,s(X) and s ∈ S} and QEqΣ(X) denote, respectively,

the set of all equations over Σ of sort s, the set of all equations over Σ and the set of all

quasi -equations (or conditional equations) over Σ. Given a Σ-algebra A, an assignment

h over A and t1 ≈ t2 ∈ EqΣ(X), we write A, h 
 t1 ≈ t2 if h(t1) = h(t2). We say

that A satisfies (or, is a model of) t1 ≈ t2 if A 
 t1 ≈ t2, that is, if A, h 
 t1 ≈ t2

for every assignment h over A. We have similar notions for quasi-equations. Given a

class K of Σ-algebras, the equational consequence relation associated with K, denoted

by
K

Σ
⊆ 2EqΣ(X) × EqΣ(X) is defined by Ψ

K

Σ
t1 ≈ t2 if, for every A ∈ K and every

assignment h over A, we have that A, h 
 r1 ≈ r2 for every r1 ≈ r2 ∈ Ψ implies

A, h 
 t1 ≈ t2.

Contrary to many-sorted equational logic, in many-sorted behavioral logic, the
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set of sorts is explicitly divided in the visible sorts and the hidden sorts. A hidden

many-sorted signature is a tuple 〈Σ, V 〉 where Σ = 〈S, F 〉 is a many-sorted signature

and V ⊆ S, called the set of visible sorts. The subset of hidden sorts is denoted

by H = S \ V . A hidden subsignature of a hidden many-sorted signature 〈Σ, V 〉 is a

hidden signature 〈Γ, V 〉 such that Γ is a many-sorted subsignature of Σ. Given a hidden

subsignature Γ of Σ, a Γ-context for sorts s is a term t(x : s, x1 : s1, . . . , xm : sm) ∈ TΓ(X),

with a distinguished variable x of sort s and parametric variables x1, . . . , xm of sorts

s1, . . . , sm respectively. We denote by CΓ
Σ[x : s], the set of all Γ-contexts for sort s, and

by EΓ
Σ[x : s], the set of all Γ-experiments, which are the Γ-contexts of visible sort. When

Γ is clear from the context we just write context and experiment instead of Γ-context

and Γ-experiment. Given c ∈ CΓ
Σ,s′[x : s] (this set denotes the set of Γ-contexts of sort s′

for sort s) and t ∈ TΣ,s(X), we denote by c[t] the term obtained from c by substituting

x by t.

Let A be a Σ-algebra, Γ a hidden subsignature of Σ and s ∈ S. We say that a, b ∈ As

are Γ-behaviorally equivalent, in symbols a ≡Γ b, if for every ǫ(x : s, x1 : s1, . . . , xn : sn) ∈

EΓ
Σ[x : s] and for all 〈a1, . . . , an〉 ∈ As1

× · · · × Asn
, we have that ǫA(a, a1, . . . , an) =

ǫA(b, a1, . . . , an). Equivalently, two objects are behaviorally equivalent if they cannot

be distinguished by any experiment. Given a Σ-algebra A, an assignment h over A

and an equation t1 ≈ t2 of sort s ∈ S, we say that A and h Γ-behaviorally satisfy the

equation t1 ≈ t2, in symbols A, h �Γ t1 ≈ t2 if h(t1) ≡Γ h(t2). And we say that A

behaviorally satisfies t1 ≈ t2, in symbols A �Γ t1 ≈ t2 if A, h �Γ t1 ≈ t2 for every

assignment h over A. We define similar notions for quasi-equations. Given a class K

of Σ-algebras, the behavioral consequence relation over Σ associated with K and Γ,
K,Γ

Σ
⊆ 2EqΣ(X) × EqΣ(X) is defined by Ψ

K,Γ

Σ
t1 ≈ t2 if, for every A ∈ K and every

assignment h over A, A, h �Γ u1 ≈ u2 for every u1 ≈ u2 ∈ Ψ implies A, h �Γ t1 ≈ t2.

Let Ψ(x : s) be a set of equations with a distinguished variable x of sort s, then we say

that Ψ is a compatible set of equations for
K,Γ

Σ
, if {x1 ≈ x2}∪Ψ(x1)

K,Γ

Σ
Ψ(x2). We

denote by CompK,Γ
Σ (Y ) the set of all compatible sets of equations for the consequence

relation
K,Γ

Σ
whose variables are contained in Y ⊆ X.

Given a hidden signature 〈Σ, V 〉, a class K of Σ-algebras is a hidden variety if

there exists a set E ⊆ EqΣ(X) of equations such that K contains exactly the Σ-

algebras that behaviorally satisfy all equations in E. Given a class K of Σ-algebras,

the hidden variety generated by K is the smallest hidden variety containing K and it

is denoted by HV (K). We can similarly define the notion for hidden quasivariety by
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considering quasi-equations instead of equations.

Given a many-sorted signature Σ = 〈S, F 〉, we defined an extended signature Σo =

〈So, F o〉 such that So = S ⊎ {v}, where v is to be considered the sort of observations

of formulas. The indexed set of operations F o = {F o
ws}w∈(So)∗,s∈So is such that:

• F o
ws = Fws if ws ∈ S∗;

• F o
φυ = {o};

• F o
ws = ∅ otherwise.

Roughly speaking, we extend the signature with a new sort v for the observations

that we can perform on formulas using operation o. The extended hidden signature

obtained from Σ, that we also denote by Σo, is the pair 〈Σo, {v}〉, where v is intended

to represent the only visible sort of the extended hidden signature. Given a signature

Σ = 〈S, F 〉, a subsignature Γ of Σ and a class K of Σo-algebras, BhvK,Γ
Σ designates

the logic 〈EqΣo ,
K,Γ

Σ
〉, where

K,Γ

Σ
is the behavioral consequence relation over Σo

associated with K and Γ. We can define the logic BEqnK,Γ
Σ = 〈EqΣ,

K,Γ

Σ,bhv
〉, where

K,Γ

Σ,bhv
is just the restriction of

K,Γ

Σ
to Σ. The set of theories of BEqnK,Γ

Σ is denoted

by ThK,Γ
Σ .

Now we define some notions of matrix semantics to the behavioral setting. Thus, a

many-sorted logical matrix over a many-sorted signature Σ is a tuple M = 〈A, D〉 where

A is a Σ-algebra and D ⊆ Aφ is the set of designated values. We define a consequence

relation over Σ, denoted by ⊢M, in the following way, for every T ∪ {ϕ} ⊆ LΣ(X);

T ⊢M ϕ iff for every assignment h over A, we have that h[T ] ⊆ D implies h(ϕ) ∈ D.

We say that a matrix M is a model of a logic L if, for every T ∪ {ϕ} ⊆ LΣ(X), T ⊢L ϕ

implies Γ ⊢M ϕ. In this case, D is called an L-filter of A. The set of all L-filters of A

is denoted by FiL(A) and the class of all matrix models of L is denoted by Mod(L).

A congruence on a Σ-algebra A is an S-sorted set {θs}s∈S such that, for every

s ∈ S and every θs is an equivalence relation on As and, for each f ∈ Fs1...sns and

each 〈a1, . . . , an〉, 〈b1, . . . , bn〉 ∈ As1
× · · · × Asn

, we have a1 ≡ b1(θs1
), . . . , an ≡ bn(θsn

)

implies f
A

(a1, . . . , an) ≡ f
A

(b1, . . . , bn)(θs). Let Γ a subsignature of the signature

Σ = 〈S, F 〉 then a Γ-congruence over a Σ-algebra A is an equivalence relation θ over

A such that, for every a1 ≡ b1(θs1
), . . . , an ≡ bn(θsn

) and f : s1 . . . sn → s ∈ Γ, we

have that fA(a1, . . . , an) ≡ fA(b1, . . . , bn)(θs). We denote by ConΣ
Γ(A) the set of all

Γ-congruences over a Σ-algebra A. It is a complete sublattice of the complete lattice of
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equivalence relations on A, EqvΣ(A). We note that the difference between this notion

and the standard notion of congruence over A is that a Γ-congruence is assumed to

satisfy the congruence property just for contexts generated from the subsignature Γ.

A Γ-congruence θ over a Σ-algebra A is compatible with a set Φ ⊆ Aφ if for every

a1, a2 ∈ Aφ, a1 ≡ a2(θφ) and a1 ∈ Φ implies a2 ∈ Φ. A matrix Γ-congruence over

a matrix M is a Γ-congruence θ over A compatible with D, i.e., θ is a Γ-congruence

over A and for every a, b ∈ Aφ, if a ∈ D and a ≡ b(θφ) then b ∈ D. A Γφ-congruence

over a Σ-algebra A is a φ-reduct of a Γ-congruence over A. It is always an equivalence

relation θ over Aφ which satisfies the condition: if a1 ≡ b1(θ), . . . , an ≡ bn(θ) and f :

φn → φ ∈ DerΓ,φn,φ then fA(a1, . . . , an) ≡ fA(b1, . . . , bn)(θ). We denote by ConΣ
Γ,φ(A)

the set of all Γφ-congruences of A. A matrix Γφ-congruence over a matrix M is the

φ-restriction of a matrix Γ-congruence.

For each T ∈ Th(L), there is the largest Γ-congruence compatible with T denoted

by Ωbhv
Γ (T ) which we call behavioral Leibniz congruence. Obviously, we can defined

the behavioral Leibniz operator on the term algebra has a function Ωbhv
Γ whose domain

is the set Th(L) and it associates to each T ∈ Th(L), the largest Γ-congruence over

TΣ(X) compatible with T . We also define a Γ-behavioral Leibniz congruence of M

as the largest matrix Γ-congruence over M, which we denote by Ωbhv
Γ,A(D) . Given a

matrix M = 〈A, D〉 over Σ, we have that, for every s ∈ S, a ≡ b(Ωbhv
Γ,A(D))s iff for

every c(x : s, x1 : s1, . . . , xn : sn) ∈ CΓ
Σ,φ[x : s] and every 〈a1, . . . , an〉 ∈ As1

× · · · × Asn

we have that cA(a, a1, . . . , an) ∈ D iff cA(b, a1, . . . , an) ∈ D. We denote by Ωbhv
Γ,A,φ(D)

the restriction of Ωbhv
Γ,A(D) to the sort φ. As we cannot perform quotients, since the

behavioral Leibniz congruence is not a congruence (in general), we extend the signature

and the algebras over the extended signature. Given a matrix Γφ-congruence θ over a

matrix M, consider the Σ-algebra Ao
θ such that Ao

θ|Σ = A, (Ao
θ)v = Aφ/θ = {[a]θ : a ∈

Aφ} and oAo

θ
(a) = [a]φ. Thus, we use the visible part (Ao

θ)v to simulate the quotient.

A Γφ-congruence θ over A is said to be a K-Γφ-congruence if Ao
θ ∈ K and we denote

by ConK

Γ (A) the set of all K-Γφ-congruence over A.

7.2 The Behavioral Leibniz Hierarchy

We do not describe the Leibniz hierarchy for many-sorted logics because it is a particu-

lar case of the behavioral Leibniz hierarchy taking the subsignature Γ as the signature

Σ, i.e., Γ = Σ. We follow the same order as we have done for the standard case,
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i.e., first we study the class of behaviorally protoalgebraic logics, then the behaviorally

equivalential logics and we finish with the class of behaviorally weakly algebraizable

and behaviorally (finitely) algebraizable logics.

Definition 7.2.1. Let L = 〈Σ,⊢〉 be a many-sorted logic and Γ a subsignature of Σ. We

say that L is Γ-behaviorally protoalgebraic if, for every T ∈ Th(L) and ϕ, ψ ∈ LΣ(X),

we have

ϕ ≡ ψ
(

Ωbhv
Γ (T )

)

implies T ∪ {ϕ} ⊢ ψ and T ∪ {ψ} ⊢ ϕ.

We say that a logic L = 〈Σ,⊢〉 is behaviorally protoalgebraic if there exists a subsig-

nature Γ of Σ such that L is Γ-behaviorally protoalgebraic.

A set ∆(ξ1, ξ2, z) ⊆ LΓ({ξ1, ξ2, z}), where z = 〈z1 : s1, z2 : s2, . . . 〉 is a set of

parametric variables with sort different from φ and at most one variable of each sort, is

said a Γ-protoequivalence system for a many-sorted logic L if it satisfies the following

conditions:

⊢ ∆(ξ, ξ, z) (Reflexivity)

{ξ1} ∪ ∆(〈ξ1, ξ2〉) ⊢ ξ2 (Modus Ponens)

where ∆(〈ξ1, ξ2〉) := {δi(ξ1, ξ2, z) : i ∈ I, z ∈ LΓ(X)}. Note that there are no para-

metric variables in protoequivalence system for a single-sorted logic (defined at the

beginning of the Chapter 3). Here we cannot remove parametric variables because

substitutions must respect each sort. However, if a behaviorally protoalgebraic logic is

standard then we obtain a Γ-protoequivalence system without parameters.

A set ∆(ξ1, ξ2, z) ⊆ LΓ({ξ1, ξ2, z}), where z = 〈z1 : s1, z2 : s2, . . . 〉 is a set of

parametric variables, is said a parameterized Γ-equivalence system for a many-sorted

logic L if it satisfies the following conditions:

(i) ⊢ ∆(ξ, ξ, z) (Reflexivity)

(ii) ∆(〈ξ1, ξ2〉) ⊢ ∆(〈ξ2, ξ1〉) (Symmetry)

(iii) ∆(〈ξ1, ξ2〉) ∪ ∆(〈ξ2, ξ3〉) ⊢ ∆(〈ξ1, ξ3〉) (Transitivity)

(iv) {ξ1} ∪ ∆(〈ξ1, ξ2〉) ⊢ ξ2 (Modus Ponens)

(v) ∆(〈ξ1, ξ2〉) ⊢ ∆(〈c[ξ1], c[ξ2]〉) for every c ∈ CΓ
Σ,φ[ξ :φ] (Single Replacement)
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In the following theorem, we give a characterization of behaviorally protoalgebraic

logics as we have seen in the case of single-sorted logic, in Chapter 3.

Theorem 7.2.2. [Gon08, Theorem 3.2.9] Let L = 〈Σ,⊢〉 be a many-sorted logic and

Γ a subsignature of Σ. The following conditions are equivalent:

(i) L is Γ-behaviorally protoalgebraic;

(ii) The behavioral Leibniz operator Ωbhv
Γ,φ is monotone on Th(L);

(iii) There exists a Γ-protoequivalence system for L;

(iv) There exists a parameterized Γ-equivalence system for L.

The proof of the above theorem is similar as in the case of single-sorted logic.

Now, we define behaviorally equivalential logics.

Definition 7.2.3. Let L = 〈Σ,⊢〉 be a many-sorted logic and Γ a subsignature of Σ.

We say that L is Γ-behaviorally equivalential if there exists a Γ-behavioral equivalence

set of formulas, that is, a set ∆(ξ1, ξ2) ⊆ LΓ({ξ1, ξ2}) of formulas such that for every

ϕ, ψ, δ, ϕ1, . . . , ϕn, ψ1, . . . , ψn ∈ LΣ(X):

(i) ⊢ ∆(ϕ, ϕ) (Reflexivity)

(ii) ∆(ϕ, ψ) ⊢ ∆(ψ, ϕ) (Symmetry)

(iii) ∆(ϕ, ψ) ∪ ∆(ψ, δ) ⊢ ∆(ϕ, δ) (Transitivity)

(iv) ∆(ϕ, ψ) ∪ {ϕ} ⊢ ψ (Modus Ponens)

(v) ∆(ϕ1, ψ1)∪· · ·∪∆(ϕn, ψn) ⊢ ∆(c[ϕ1, . . . , ϕn], c[ψ1, . . . , ψn]) for every c : φn →

φ ∈ DerΓ,φ (Replacement)

We say that a logic L = 〈Σ,⊢〉 is behaviorally equivalential if there exists a subsigna-

ture Γ of Σ such that L is Γ-behaviorally equivalential.

Note that the main difference between this behavioral version of equivalential logic

and the standard notion is that in the former the set ∆ is not assumed to define a

congruence, i.e, an equivalence relation compatible with all operations.

We define the set T Γ
ξ1,ξ2

:= {ϕ(ξ1, ξ2, z) : ∅ ⊢ ϕ(ξ1, ξ1, z)} as the set of formulas that

becomes theorems of L after the identification of the variables ξ1 and ξ2 in ϕ. In the

following proposition and theorem, we give a characterization of class of logics as we

have seen for single-sorted logic (c.f. Chapter 4).
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Proposition 7.2.4. [Gon08, Proposition 3.2.16] Let L = 〈Σ,⊢〉 be a many-sorted logic,

Γ a subsignature of Σ and ∆(ξ1, ξ2) ⊆ LΓ({ξ1, ξ2}) a set of formulas. Then,

(i) if ∆(ξ1, ξ2) is a Γ-behavioral equivalence set for L then, for every T ∈ Th(L)

and ϕ, ψ ∈ LΣ(X), we have that

ϕ ≡ ψ
(

Ωbhv
Γ,φ(T )

)

iff ∆(ϕ, ψ) ⊆ T.

(ii) Herrmann´s Test: suppose L is Γ-behaviorally protoalgebraic. Then, ∆(ξ1, ξ2) ⊆

LΓ({ξ1, ξ2}) is a Γ-behavioral equivalence set for L iff it satisfies,

∆(ξ1, ξ2) ⊆ T Γ
ξ1,ξ2

and ξ1 ≡ ξ2
(

Ωbhv
Γ,φ

(

CnL(∆(ξ1, ξ2))
))

.

Theorem 7.2.5. [Gon08, Theorem 3.2.17] Let L = 〈Σ,⊢〉 be a many-sorted logic and

Γ a subsignature of Σ. If L is Γ-standard then the following conditions are equivalent:

(i) L is Γ-behaviorally equivalential;

(ii) The behavioral Leibniz operator Ωbhv
Γ,φ is monotone and commutes with inverse

substitutions on Th(L).

Herein, we study the class of behaviorally weakly algebraizable logics and the class

of behaviorally (finitely) algebraizable logics.

Definition 7.2.6. Let L = 〈Σ,⊢〉 be a many-sorted logic and Γ a subsignature of Σ. We

say that L is Γ-behaviorally weakly algebraizable if there exist a class K of Σo-algebras,

a set Θ(ξ, z) ⊆ CompK,Γ
Σ (X) of φ-equations and a set ∆(ξ1, ξ2, w) ⊆ LΓ({ξ1, ξ2, w}) of

formulas such that, for every T ∪ {ϕ} ⊆ LΣ(X) and for every set Φ ∪ {ϕ1 ≈ ϕ2} of

φ-equations,

(i) T ⊢ ϕ iff Θ[〈T 〉]
K,Γ

Σ,bhv
Θ(〈ϕ〉);

(ii) Φ
K,Γ

Σ,bhv
ϕ1 ≈ ϕ2 iff ∆[〈Φ〉] ⊢ ∆(〈ϕ1, ϕ2〉);

(iii) ϕ ⊣⊢ ∆[〈Θ(〈ϕ〉)〉];

(iv) ϕ1 ≈ ϕ2

K,Γ

Σ,bhv
Θ[〈∆(〈ϕ1, ϕ2〉)〉].

We say that a logic L = 〈Σ,⊢〉 is behaviorally weakly algebraizable if there exists a

subsignature Γ of Σ such that L is Γ-behaviorally weakly algebraizable.

As in standard AAL, conditions (i) and (iv) jointly imply (ii) and (iii), and vice-

versa.
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Theorem 7.2.7. [Gon08, Theorem 3.2.15] Let L = 〈Σ,⊢〉 be a many-sorted logic and

Γ a subsignature of Σ. The following conditions are equivalent:

(i) L is Γ-behaviorally weakly algebraizable;

(ii) The behavioral Leibniz operator Ωbhv
Γ,φ is monotone and injective on Th(L).

Definition 7.2.8. Let L = 〈Σ,⊢〉 be a many-sorted logic and Γ a subsignature of Σ.

We say that L is Γ-behaviorally algebraizable if there exist a class K of Σo-algebras, a

set Θ(ξ) ⊆ CompK,Γ
Σ ({ξ}) of φ-equations and a set ∆(ξ1, ξ2) ⊆ LΓ({ξ1, ξ2}) of formulas

such that, for every T ∪ {ϕ} ⊆ LΣ(X) and every set Φ ∪ {ϕ1 ≈ ϕ2} of φ-equations,

(i) T ⊢ ϕ iff Θ[T ]
K,Γ

Σ,bhv
Θ(ϕ);

(ii) Φ
K,Γ

Σ,bhv
ϕ1 ≈ ϕ2 iff ∆[Φ] ⊢ ∆(ϕ1, ϕ2);

(iii) ϕ ⊣⊢ ∆[Θ(ϕ)];

(iv) ϕ1 ≈ ϕ2

K,Γ

Σ,bhv
Θ[∆(ϕ1, ϕ2)].

We say that a logic L = 〈Σ,⊢〉 is behaviorally algebraizable if there exists a subsigna-

ture Γ of Σ such that L is Γ-behaviorally algebraizable.

As in standard AAL, Θ is called the set of defining equations, ∆ the set of equiv-

alence formulas and K a behaviorally equivalent algebraic semantics for L. If the set

of defining equations and the set of equivalence formulas are finite and without pa-

rameters, we say that L is finitely Γ-behaviorally algebraizable. The difference between

behaviorally weakly algebraizable logic and behaviorally algebraizable logic is that in

the former both the set of equivalence formulas and the set of defining equations may

have parametric variables.

Theorem 7.2.9. [Gon08, Theorem 3.2.18] Let L = 〈Σ,⊢〉 be a many-sorted logic and

Γ a subsignature of Σ. If L is Γ-standard, then the following conditions are equivalent:

(i) L is Γ-behaviorally algebraizable;

(ii) The behavioral Leibniz operator Ωbhv
Γ,φ is monotone, injective and commutes

with inverse substitutions on Th(L).

As in the Chapter 5, we give a sufficient condition on the behavioral equivalence

set for a behaviorally equivalential logic becomes behaviorally algebraizable.
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Corollary 7.2.10. [Gon08, Corollary 3.3.2] Let L = 〈Σ,⊢〉 be a many-sorted logic and

Γ a subsignature of Σ. A sufficient condition for L to be Γ-behaviorally algebraizable

is that it is Γ-behaviorally equivalential with Γ-behavioral equivalence set ∆(ξ1, ξ2) that

also satisfies:

{ξ1, ξ2} ⊢ ∆(ξ1, ξ2) (G-rule)

In this case, ∆(ξ1, ξ2) is the set of equivalence formulas and Θ(ξ) = {ξ ≈ δ(ξ, ξ) : δ ∈

∆} the set of defining equations for L.

In the behavioral algebraization process we cannot have a uniqueness result because

it is parameterized by the choice of the subsignature Γ. Nevertheless, it is interesting

to note that, once the subsignature Γ is fixed, we can prove the uniqueness result as

Blok and Pigozzi have proved in [BP89, Theorem 2.15].

Theorem 7.2.11. [Gon08, Theorem 4.1.2] Let L = 〈Σ,⊢〉 be a Γ-behaviorally alge-

braizable many-sorted logic, where Γ is a subsignature of Σ, and let K and K′ be two

Γ-behaviorally equivalent algebraic semantics for L such that ∆(ξ1, ξ2) and Θ(ξ) are the

equivalence formulas and defining equations for K, and similarly ∆′(ξ1, ξ2) and Θ′(ξ)

for K′. Then,
K,Γ

Σ,bhv
=

K
′,Γ

Σ,bhv
, ∆(ξ1, ξ2) ⊣⊢ ∆′(ξ1, ξ2) and Θ(ξ)

K,Γ

Σ,bhv
Θ′(ξ).

Thus we can consider the largest Γ-behaviorally equivalent algebraic semantics,

denoted by KΓ
L. But contrarily to the case of standard AAL, in this approach KΓ

L

is not the class of algebras that should be canonically associated with L. Indeed, it

is a subclass of KΓ
L that will allow us to generalize the standard results of AAL (c.f.

[Gon08]).

Moreover, if L = 〈Σ,⊢〉 is a many-sorted finitary and finitely Γ-behaviorally alge-

braizable logic for some subsignature Γ of Σ and if K and K′ are two Γ-behaviorally

equivalent algebraic semantics for L then K and K′ generate the same Γ-hidden qua-

sivariety, i.e., K and K′ Γ-behaviorally satisfy the same quasi-equations. Therefore,

this Γ-hidden quasivariety is also a Γ-behaviorally equivalent algebraic semantics for L

and we can construct a basis for the quasi-equations of this unique equivalent Γ-hidden

quasivariety semantics given an axiomatization of L, in the following theorem.

Theorem 7.2.12. [Gon08, Theorem 4.1.3]

Let L = 〈Σ,⊢〉 be a finitary many-sorted logic defined by a set of axioms AX and
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a set of inference rules IR and consider Γ a subsignature of Σ. If L is finitely Γ-

behaviorally algebraizable with the set of defining equations Θ(ξ) and the set of equiv-

alence formulas ∆(ξ1, ξ2), then the unique equivalent Γ-hidden quasivariety semantics

for L is axiomatized by the following equations and quasi-equations:

(i) Θ(ϕ), for every theorem ϕ of L;

(ii) Θ[∆(ξ, ξ)];

(iii) Θ(ψ1) ∧ · · · ∧ Θ(ψn) → Θ(ϕ) for every 〈ψ1, . . . , ψn, ϕ〉 ∈ IR;

(iv) Θ[∆(ξ1, ξ2)] → ξ1 ≈ ξ2.

The following theorem is a semantic characterization of behaviorally algebraizable

logics.

Theorem 7.2.13. [Gon08, Theorem 4.2.8]

Let L = 〈Σ,⊢〉 be a many-sorted logic, Γ a subsignature of Σ and K a class of

Σo-algebras.

1. The following conditions are equivalent:

(i) L is Γ-behaviorally algebraizable and K is the Γ-behaviorally equivalent al-

gebraic semantics;

(ii) For every Σ-algebra A we have that Ωbhv
Γ,A,φ is an isomorphism between the

lattices of L-filters and K-Γφ-congruences of A, that commutes with inverse

substitutions.

2. Assume L is Γ-behaviorally algebraizable with K the Γ-behaviorally equivalent

algebraic semantics. Let Θ(ξ) be the set of defining equations for K. For each

Σ-algebra A and Γφ-congruence θ of A define:

HA(θ) = {a ∈ Aφ : γA(a) ≡ δA(a)(θ), for every γ ≈ δ ∈ θ}.

Then HA restricted to the K-Γφ-congruences of A is the inverse of Ωbhv
Γ,A,φ.

We have seen that all the classes of logics can be characterized by properties of the

Leibniz operator. Thus, we present, in the following figure (c.f. [Gon08, figure 3.2]),

the behavioral Leibniz hierarchy.
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Figure 7.1: A view of the Behavioral Leibniz Hierarchy

7.3 Examples

Herein, we only present some examples of behaviorally algebraizable logics which ap-

pear in [Gon08, Chapter 5].

Example 7.4 (First Order Classical Logic). The problem of algebraizing predicate

logic is of a different character than the problem for propositional logics because the

standard deductive systems for predicate logic are not structural. Indeed, the individual

variables may be free or bound variables and it is due to the process of substituting

terms for the free occurrences of an individual variables in a formula. Thus, there are

different approaches to the algebraization of First Order Logic (FOL). One give rise

to the variety of cylindric algebras (c.f [BP86, Appendix C] and [CG07]) and the other

to polyadic algebras. In the cylindric approach, FOL is view as a single-sorted logic

(i.e., as a structural propositional logic), called PR, where atomic formulas of FOL

have to be represented as propositional variables in PR and PR is algebraizable with

the variety of cylindric algebras has an equivalent algebraic semantics. But we can

see FOL as a two-sorted logic, with a sort for terms and a sort for formulas. Thus,

FOL can be shown many-sorted algebraizable with the variety of two-sorted version of

cylindric algebras as equivalent algebraic semantics. ♦

Example 7.5 (Paraconsistent Logic C1 of da Costa). The logic C1 = 〈ΣC1
,⊢C1

〉, where

the single-sorted signature ΣC1
= 〈{φ}, F 〉 is such that Fφ = {t, f}, Fφφ = {¬},
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Fφφφ = {∧,∨,→} and Fws = ∅ otherwise; is the paraconsistent logic of da Costa. A

logic is said to be paraconsistent if its consequence relation is not explosive with respect

to a negation connective ¬ (that is, if for all formulas ϕ and ψ, {ϕ,¬ϕ} ⊢ ψ). More-

over, C1 is a non-truth-functional logic, namely it lacks congruence for paraconsistent

negation connective with respect to the equivalence ↔ that algebraizes the Classi-

cal Propositional logic fragment. In general, it may happen that ⊢C1
(ϕ ↔ ψ) but

0C1
(¬ϕ ↔ ¬ψ). It was proved in [LMS91] that this logic is not algebraizable in the

standard sense (it lack congruence for paraconsistent negation) but it is behaviorally al-

gebraizable by taking as subsignature Γ all connectives without paraconsistent negation

(c.f. [Gon08, Example 2.3.26] and [CGM09, Theorem 19]). The algebraic counterpart

is the class of the so-called da Costa algebras. ♦

Example 7.6 (Carnap-style presentation of modal logic S5). The logic S5 = 〈ΣS5
,⊢S5

〉

where the single-sorted signature ΣS5
= 〈{φ}, F 〉 is such that Fφφ = {¬,2}, Fφφφ =

{∧,∨,→} and Fws = ∅ otherwise; is the modal logic S5. This logic can be seen

as an extension of CPL, with the modality 2. Although S5 is non-algebraizable in

the standard sense (it lack congruence of its modal operator 2), we can identify an

algebraizable fragment of it, namely CPL. The logic S5 is Γ-behaviorally algebraizable

with a subsignature Γ that does not contain the modal operator 2 and the behaviorally

equivalent algebraic semantics is a class of algebras based on Boolean algebras which

is the algebraic counterpart of CPL. ♦

Since the class of behaviorally protoalgebraic logics coincides with the class of pro-

toalgebraic logics, we have that the {∧,∨}-fragment of CPL (c.f. Example 6.2) is not

behaviorally protoalgebraic. Consequently, it is not behaviorally algebraizable. Thus,

this generalization does not trivialize the notion of algebraization.



Chapter 8

Conclusion

In this dissertation, we studied several classes of logics. We initiated with the wider

class of protoalgebraic logics which coincides with the class of non-pathological logics

defined by Czelakowski. This class admits various characterizations, namely by Leibniz

operator properties, by the existence of a parameterized system of equivalence formu-

las, by properties of the class of reduced matrices models and by the existence of a

parameterized local deduction-detachment theorem. Another characterization of this

class is when the Suszko operator coincides with the Leibniz operator. Since, for us,

a logic 〈FmL,⊢S〉 is not necessarily finitary, we examine, throughout this thesis, some

properties concerning finitary logics.

Afterwards, we examined the class of equivalential logics defined as the logics having

a system of equivalence formulas. Obviously, it is a proper subclass of protoalgebraic

logics. Herrmann´s test gives conditions for a protoalgebraic logic becomes equivalen-

tial. When the system of equivalence formulas can be taken finite, we have finitely

equivalential logics. The class of finitely equivalential logics is a proper subclass of

equivalential logics. For both classes, we also have characterizations using properties

of the Leibniz operator and properties of the class of reduced matrix models.

We also analyzed the class of weakly algebraizable logics which contains the class

of algebraizable logics and the class of finitely algebraizable logics. As in the other

classes, we can give a characterization using properties of the Leibniz operator. A

paradigmatic example of finitely algebraizable logic is the CPL for which the class

BA can be associated with a meaningful relationship.

Although, most of the classes investigated in the literature are protoalgebraic logics,

there are many others logics which are non-protoalgebraic. Among them, we have some
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logics which belong to the class of truth-equational logics. This latter class is consti-

tuted by logics for which the class L∗
Su(S) has its filters equationally definable. Thus

it contains some non-protoalgebraic logics and the class of weakly algebraizable logics.

Besides, we have seen logics which are neither protoalgebraic nor truth-equational.

All classes of logics that we have studied, can be characterized by properties of the

Leibniz Operator. This common point, enables the elaboration of a Leibniz Hierarchy.

Figure 8.1: Leibniz Hierarchy and some Examples

We have examined each class for single-sorted logics. However, we have seen that

this study of classes can be generalized for many-sorted logics. In order to capture some

phenomena of behaviorally algebraization, we use the behavioral Leibniz operator for

characterizing each new class. For instance, the Paraconsistent logic of da Costa is not

algebraizable in a standard sense but it is behaviorally algebraizable.

8.0.1 Future work

There are still many open problems in this area: some classic ones and many others

that have emerged through the behavioral approach. For example, we have seen that

a logic S is finitary and finitely equivalential iff the class Mod∗(S) of reduced matrix
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models is a matrix-quasivariety (Theorem 4.3.1). Consequently, the class Alg∗(S) of

algebraic reducts of the reduced matrix models is also a quasivariety. But the fact that

the class Alg∗(S) is a quasivariety does not imply that the logic S is finitary and finitely

equivalential. As a counter-example, we have that
−→
Kr is a finitary equivalential logic

which is not finitely equivalential (c.f. Example 4.5); however, the class Alg∗(
−→
Kr)

is a variety, namely the class of modal algebras (c.f. [Wój88, Theorem 3.6.5]). We

may investigate conditions, weaker than finitely equivalential, which Alg∗(S) must

be a quasivariety. Obviously, this new class includes the class of finitary and finitely

equivalential logics.

In the behavioral approach, the class of behaviorally finitely equivalential logics has

not been considered yet. However, we have already obtained similar results to the ones

on the standard case, namely the class of behaviorally finitely algebraizable logics can

be characterized by the property of Behavioral Leibniz operator being continuous on

FiS(A) for every algebra A. This class can capture some phenomena occurred within

modal logics (c.f. [Mal89] and [BM]).



Index

A∗, 93

Aw, 93

BhvK,Γ
Σ , 97

CompK,Γ
Σ (Y ), 96

ConΣ
Γ(A), 97

ConΣ
Γ,φ(A), 98

DerΣ,s1...sns, 94

EqΣ(X), 95

EqΣ,s(X), 95

HV (K), 96

LΣ(X), 94

QEqΣ(X), 95

S-derivation, 15

S-indexed set, 93

S-proof, 15

S-sorted, 93

S-theorem, 12

S-theory, 12

SAN, 79

AΓ, 95

CnS, 12

CnK, 24

∆(ξ1, ξ2, z), 99

EqL, 22

Γ-behavioral

equivalence set of formulas, 100

Leibniz congruence, 98

Γ-behaviorally

algebraizable, 102

equivalent, 96

equivalential, 100

protoalgebraic, 99

satisfy, 96

weakly algebraizable, 101

Γ-congruence, 97

Γ-context, 96

Γ-experiments, 96

Γ-protoequivalence system, 99

Γ-standard, 94

Γφ-congruence, 98

K-Γφ-congruence, 98

K-congruence, 11

generated, 11

KΓ
L, 103

L∗(S), 20

L∗
Su(S), 20

Mod∗(S), 20

Mod∗
Su(S), 20

ΩAD, 18

Ωbhv
Γ , 98

Ωbhv
Γ (T ), 98

Ωbhv
Γ,A,φ(D), 98

Ωbhv
Γ,A(D), 98

Ψ(x : s), 96

Σ-algebra, 94

Σo, 97
111



112


, 95

�Γ, 96
K,Γ

Σ
, 96

L-fragment, 16

L-reduct, 10

K
, 22

M
, 16

A
, 22

M
, 16

K

Σ
, 95

H(K), 23

I(K), 22

P(K), 23

PR(K), 23

PS(K), 23

PU(K), 23

Q(K), 22

S(K), 23

V(K), 22

FiS(M), 17

FiS(A), 17

FiAS (X), 17

FmL, 9

M∗, 20

CPL, 57

IPL, 78

IPL∗, 88

R, 83

R-algebra, 84

WR, 91

AlgΣ, 95

CΓ
Σ[x : s], 96

EΓ
Σ[x : s], 96

Mod(S), 17

∇A, 20

τ -model, 58

LJ, 81

Alg∗(S), 20

Alg∗
Su(S), 20

LAlg∗(S), 20

LAlg∗
Su(S), 20

L(S), 17

Hom(M,N), 26

HomS(M,N), 26

Thm(S), 12

θA
K
R, 11

Th(S), 12

Th(K), 24

△A, 20

Var, 9

⊢S, 11

{∧,∨}-CPL, 89

c[t], 96

s-term, 94

Logic

Intuitionistic Propositional without Im-

plication, 88

algebra

L-, 10

Lindenbaum-, 20

of formula, 10

trivial, 95

trivial-, 16

algebraic

reducts, 20

semantics, 56

algebraizable, 71



113

finitely-, 73

in the sense of Blok and Pigozzi, 75

weakly-, 67

amalgamation property, 77

analytical relation, 33

arity, 9

assignment, 10, 95, 97

axiom, 15

axiomatization, 16

finite, 16

behavioral

consequence relation, 96

Leibniz congruence, 98

Leibniz operator, 98

behaviorally

algebraizable, 102

equivalent algebraic semantics, 102

equivalential, 100

protoalgebraic, 99

satisfies, 96

weakly algebraizable, 101

Benzene ring B6, 49

Beth´s definability property, 77

Boolean algebra, 57

compatibility property, 19, 31

compatible

set of equations, 96

with, 18, 98

complete relative to, 17

Completeness Theorem, 17

conclusion, 15

congruence, 10, 97

generated, 10

matrix-, 18

principal-, 11

strict-, 18

connective, 9

consequence

K-, 22

operator, 12

relation, 11

constant, 9

continuous, 19

correspondence property, 31

Craig´s interpolation property, 77

De Morgan semigroup, 83

deduction property, 38

deduction-detachment theorem, 38

local-, 38

multiterm-, 39

parameterized local-, 38

uniterm-, 39

deductive system, 16

trivial-, 16

defining equations, 56, 66, 102

denotation, 95

derived operation of type, 94

designated

element, 16

value, 16, 97

detachment property, 38

directly derivable, 15

epimorphism, 77

equation, 21, 95

equational

consequence relation, 22



114

theory, 24

equationally definable, 69

principal relative congruence, 78

equivalence formulas, 66, 102

parameterized system of-, 33

system of-, 43

equivalent, 62

algebraic semantics, 66

quasivariety semantics, 75

equivalential, 44

finitely-, 44

evaluation, 10

expansion, 16

conservative-, 16

explosive, 106

extended

hidden signature, 97

signature, 97

extension, 16

axiomatic-, 16

filter, 97

S-, 17

deductive-, 17

extension property, 42

generated, 17

of matrix, 17

principal-, 17

finitary, 11

finite intersection property, 24

finitely

axiomatized, 12

behaviorally algebraizable, 102

generated, 12

formula, 9

atomic-, 9

fundamental operation, 9

H-rule, 15

Heyting algebra, 79

hidden

many-sorted signature, 96

sorts, 96

subsignature, 96

variety, 96

variety generated, 96

Hilbert-style, 15

homomorphism, 95

matrix-, 26

strict-, 26

identity, 22

implication, 51

formulas, 28

implicative, 51

implicitly definable, 69

inconsistent, 12

inference rule, 15

inferentially equivalent, 27

injective, 19

interderivable, 11

interpolant, 77

interpretable, 54

interpretation, 54, 63, 95

language, 9

lattice orthomodular , 49

Leibniz

algebraic reducts, 20

congruence, 18



115

operator, 18

reduced, 20

Logic

Intuitionistic Propositional-, 78

Weaker Relevance-, 91

logic, 11

BCK-, 40

almost inconsistent-, 16

Classical Propositional-, 57

equational-, 24

inconsistent-, 16

Last Judgement-, 81

Modal-, 52
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