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Abstract Valid inequalities for 0-1 knapsack polytopes often prove useful when
tackling hard 0-1 Linear Programming problems. To generate such inequalities, one
needs separation algorithms for them, i.e., routines for detecting when they are vio-
lated. We present new exact and heuristic separation algorithms for several classes of
inequalities, namely lifted cover, extended cover, weight and lifted pack inequalities.
Moreover, we show how to improve a recent separation algorithm for the 0-1 knapsack
polytope itself. Extensive computational results, on MIPLIB and OR Library instances,
show the strengths and limitations of the inequalities and algorithms considered.
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1 Introduction

A 0-1 knapsack problem (0-1 KP) is a problem of the form:

max {cT x : aT x ≤ b, x ∈ {0, 1}n},
where c ∈ Z

n+ is the vector of profits, a ∈ Z
n+ is the vector of weights and b ∈ Z+ is

the knapsack capacity. It is well-known that the 0-1 KP is N P-hard, but can be solved
in O(nb) time by dynamic programming.
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70 K. Kaparis, A. N. Letchford

A 0-1 knapsack polytope is the convex hull of feasible solutions to a 0-1 KP, i.e., a
polytope of the form:

K P(a, b) = conv {x ∈ {0, 1}n : aT x ≤ b}.

Such polytopes have been widely studied and many classes of valid inequalities are
known, such as the lifted cover inequalities (LCIs) of Balas [3] and Wolsey [31],
the extended cover inequalities (ECIs) of Balas [3], the weight inequalities (WIs) of
Weismantel [29] and the lifted pack inequalities (LPIs) of Atamtürk [2].

One motive for studying these polytopes is that valid inequalities for them can be
used as cutting planes for general 0-1 linear programs (0-1 LPs). The idea is to consider
each individual constraint of a 0-1 LP as a 0-1 knapsack constraint (complementing
variables if necessary to obtain non-negative coefficients) and derive cutting planes
from the associated polytope [13,16,24].

The separation problem for 0-1 knapsack polytopes is this: given n, a, b and a
vector x∗ ∈ [0, 1]n , either find an inequality that is valid for K P(a, b) and violated by
x∗, or prove that none exists. One can define the separation problem for a given class of
inequalities (such as LCIs, ECIs, WIs or LPIs) analogously. Separation algorithms are
needed if one wishes to use valid inequalities as cutting planes (see, e.g., Nemhauser
and Wolsey [24]).

Several exact and heuristic separation algorithms for 0-1 knapsack polytopes
already exist in the literature [7–10,13,16,19,24,29]. The purpose of the present paper
is to review these algorithms and present several new ones. The structure of the paper
is as follows:

– In Sect. 2, we present a brief literature review.
– In Sect. 3, we present two exact algorithms and a heuristic for ECIs, and then show

how to convert them into heuristics for LCIs, which are more general.
– In Sect. 4, we present two exact algorithms and a heuristic for WIs, and then show

how to convert them into heuristics for LPIs, which are more general.
– In Sect. 5, we examine an exact algorithm for the 0-1 knapsack polytope itself, due

to Boccia [7], and show how to improve its performance.
– In Sect. 6, we give extensive computational results, conducted on MIPLIB instances

[1] and OR Lib instances [5].
– Finally, concluding remarks are made in Sect. 7.

Throughout the paper, we use the notation N = {1, . . . , n} and amax = max j∈N a j .

2 Literature review

2.1 Lifted cover inequalities

A set C ⊆ N is called a cover if it satisfies
∑

j∈C a j > b. Given any cover C , the
cover inequality (CI)

∑
j∈C x j ≤ |C |−1 is valid for K P(a, b). The strongest CIs are

obtained when the cover C is minimal, in the sense that no proper subset of C is also
a cover.
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0-1 knapsack polytopes 71

Given a minimal cover C , there exists at least one facet-defining lifted cover
inequality (LCI) of the following form [3,31]:

∑

j∈C

x j +
∑

j∈N\C

α j x j ≤ |C | − 1. (1)

The lifting coefficients α j are usually computed sequentially, i.e., one at a time. Zemel
[32] showed that, given a fixed cover C and a fixed lifting sequence, one can compute
all lifting coefficients in O(n|C |) time. His algorithm can be made even faster using
results in [4,18], which enable one to determine most of the lifting coefficients in
O(n + |C | log |C |) time.

As pointed out by Balas [3], a fast but naive way of lifting a CI is as follows. We
compute a∗ := max j∈C a j and define the extension of C as E(C) := C ∪{ j ∈ N\C :
a j ≥ a∗}. Then the extended cover inequality (ECI)

∑
j∈E(C) x j ≤ |C | − 1 is valid,

but not guaranteed to be facet-defining.
Van Roy and Wolsey [27] noted that one can derive more general LCIs of the form:

∑

j∈C\D

x j +
∑

j∈N\C

α j x j +
∑

j∈D

β j x j ≤ |C\D| +
∑

j∈D

β j − 1,

where C is a cover and D ⊂ C . We will follow Gu et al. [16] in referring to the
computation of the α and β coefficients as up-lifting and down-lifting, respectively,
and in referring to the inequalities (1) as ‘simple’ LCIs. The general LCIs include,
not only the simple LCIs, but also the so-called ‘(1, k)-configuration’ inequalities of
Padberg [25] as special cases. Gu et al. [16] remark that Zemel’s algorithm can be
adapted to perform down-lifting in O(|C |n3) time. In practice, lifting can usually be
performed very quickly.

The separation problems for CIs, LCIs and simple LCIs are all N P-hard [14,17,23],
and the same seems likely for ECIs. Crowder et al. [13] noted that the separation prob-
lem for CIs can itself be written as a 0-1 KP, of the following form:

min
∑

j∈N

(1 − x∗
j )y j (2)

s.t.
∑

j∈N

a j y j > b (3)

y j ∈ {0, 1} ( j ∈ N ). (4)

A CI is violated if and only if the optimal solution y∗ has a cost less than one, in which
case setting C = { j ∈ N : y∗

j = 1} yields the violated CI. To save time, Crowder
et al. solved this 0-1 KP heuristically, simply inserting items into C in non-decreasing
order of (1− x∗

j )/a j . They then converted any CI found into a simple LCI, to increase
the violation.

Hoffman and Padberg [20] recommended using general LCIs rather than simple
LCIs. They obtained the best results by setting D = { j ∈ C : x∗

j = 1}, and using
the following lifting sequence: first up-lift the variables with x∗

j > 0, then down-lift
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the variables in D, then up-lift the variables with x∗
j = 0. Gu et al. [16] used the

same lifting sequence, but recommended an alternative greedy heuristic for building
the cover: simply insert items into C in non-increasing order of x∗

j .
In Kaparis and Letchford [21], we pointed out a small drawback of the

Hoffman-Padberg lifting scheme: if there exists a k ∈ N\C such that x∗
k > 0 and

ak > b − ∑
j∈D a j , then the up-lifting coefficient of xk will be undefined. To resolve

this problem, one can iteratively delete items from D, in arbitrary order, until no such
item k exists.

Finally, we mention the paper by Gabrel and Minoux [15], which gives an exact
separation algorithm for ECIs, based on the solution of at least n 0-1 KPs. Since our
own algorithms (Subsect. 3.1 and 3.2) are both simpler and faster, we do not go into
details.

2.2 Lifted pack inequalities

A set P ⊂ N is called a pack if
∑

j∈P a j ≤ b. Given any pack P , the pack inequal-
ity (PI)

∑
j∈P a j x j ≤ ∑

j∈P a j is trivially valid for K P(a, b). PIs are very weak,
being dominated by the upper bounds x j ≤ 1 for all j ∈ P . Nevertheless, there exist
non-dominated lifted pack inequalities (LPIs).

A simple form of LPIs, involving up-lifting only, was presented by Weismantel
[29]. Given a pack P , let us define the residual capacity r = b − ∑

j∈P a j . Note that,
if there exists a j ∈ N\P such that a j > r , then x j can be up-lifted. Based on this
observation, Weismantel proposed the following weight inequalities (WIs):

∑

j∈P

a j x j +
∑

j∈N\P

max{0, a j − r}x j ≤
∑

j∈P

a j . (5)

The WIs can be thought of as being obtained from PIs by a simultaneous up-lifting
procedure. The up-lifting coefficients are, however, not best possible. Atamtürk [2]
showed how to derive slightly stronger LPIs using superadditive functions. Some other
related inequalities can be found in [29], but we do not go into details, for the sake of
brevity.

Weismantel [29] also derived a pseudo-polynomial-time exact separation algorithm
for WIs. The idea is to write the WI (5) in the following form:

∑

j∈P:a j ≤r

a j x j +
∑

j∈P:a j >r

r x j ≤ b − r −
∑

j∈N :a j >r

(a j − r)x j . (6)

For fixed r , the separation problem amounts to finding the set P that maximises the
left-hand side of (6). This can be formulated as an equality-constrained 0-1 KP, which
can be solved in pseudo-polynomial time. Doing this for each possible value of r
yields the desired separation algorithm.

Helmberg and Weismantel [19] presented a fast separation heuristic for WIs, that
simply inserts items into P in non-increasing order of x∗ value. To our knowledge,

123



0-1 knapsack polytopes 73

there are no other papers on separation for WIs, and none at all on separation for other
kinds of LPIs.

2.3 Separation from the polytope itself

Finally, we turn our attention to separation algorithms for K P(a, b) itself. To our
knowledge, four such algorithms have been proposed: three due to Boyd [8–10] and
one due to Boccia [7]. For the sake of brevity, we concentrate on the method of Boccia,
which in our experience gives rather good results.

Boccia begins by using the idea of polarity (see, e.g., Nemhauser and Wolsey [24]),
to formulate the separation problem itself as the following LP:

max
∑

j∈N

x∗
j α j (7)

s.t.
∑

j∈P

α j ≤ 1 (∀P ⊂ N :
∑

j∈P

a j ≤ b) (8)

α j ∈ [0, 1] ( j ∈ N ). (9)

The constraints (8) ensure that the inequality αT x ≤ 1 is valid for K P(a, b). If the
optimal solution α∗ has a profit larger than 1, then the inequality (α∗)T x ≤ 1 is
violated by x∗.

Since the separation LP has an exponential number of constraints, Boccia solves
it with a cutting plane method. To check if a constraint (8) is violated by a given
α∗ ∈ [0, 1]n , it suffices to solve the following 0-1 KP:

max
∑

j∈N

α∗
j y j (10)

s.t.
∑

j∈N

a j y j ≤ b (11)

y j ∈ {0, 1} ( j ∈ N ). (12)

If the solution y∗ to this 0-1 KP has a profit larger than 1, and we set P = { j ∈ N :
y∗

j = 1}, then the inequality
∑

j∈P α j ≤ 1 is violated by α∗.
As Boccia points out, this naive approach suffers from very long computing times,

and significant problems with rounding errors. To address these problems, he pro-
poses a three-stage procedure. In the first stage, variables that satisfy x∗

j ∈ {0, 1} are
temporarily eliminated from the problem, so that the separation LP can be solved in
the subspace of the fractional variables. If a violated inequality is found, one proceeds
to the second stage, in which the inequality is scaled and rounded to integers. Boccia
does this by solving a small integer linear program. In the third and final stage, the
violated inequality is lifted to make it valid and facet-inducing for K P(a, b). To do
this, Boccia solves a sequence of 0-1 KPs. As in Gu et al. [16], Boccia recommends
down-lifting the variables with x∗

j = 1 before up-lifting the variables with x∗
j = 0.
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3 On ECI and LCI separation

In this section, we present two exact algorithms and a heuristic for ECI separation,
and then show how all three algorithms can be modified to yield heuristics for the
separation of the (stronger and more general) LCIs.

3.1 An O(n2b) exact algorithm for ECIs

We begin by presenting a fairly simple exact algorithm for ECI separation, that involves
the solution of a sequence of 0-1 KPs.

Recall from Subsect. 2.1 that Crowder et al. [13] formulated the separation problem
for CIs as the 0-1 KP (2)–(4). We will need the following lemma:

Lemma 1 Let C∗ ⊂ N be the cover obtained by solving the 0-1 KP (2)–(4), and let
a∗ := max j∈C∗ a j . If the ECI with C = C∗ is not violated, then a violated ECI must
satisfy C ⊂ {

j ∈ N : a j ≤ a∗}.

Proof The violation of an ECI with cover C is equal to the sum of two terms:

1.
∑

j∈C x∗
j − |C | + 1 (the violation of the CI with cover C)

2.
∑

j∈N\C :a j ≥a∗ x∗
j .

By definition, C∗ is the cover that maximises the first term. So, if we replace C∗ with
a different cover C , the first term cannot increase. Moreover, if max j∈C a j > a∗, then
the second term cannot increase either. 
�

If one could make the inequality in Lemma 1 strict, an iterative algorithm for ECI
separation would immediately follow: solve the 0-1 KP (2)–(4), eliminate the items
with a j ≥ a∗, and repeat until the total weight of the remaining items no longer
exceeds the knapsack capacity. However, we were unable to determine whether the
lemma is valid with strict inequality. Fortunately, we have the following refinement of
Lemma 1:

Proposition 1 Let C∗ and a∗ be defined as in Lemma 1, let S∗ = {
j ∈ C∗ : a j = a∗}

and let k∗ be an item in S∗ of minimum x∗ value. If the ECI corresponding to C∗ is
not violated, yet there exists a violated ECI, then there exists a violated ECI such that
C ⊂ {

j ∈ N\{k∗} : a j ≤ a∗}.

Proof Suppose that the ECI corresponding to C∗ is not violated, but the cover C yields
a violated ECI. By Lemma 1, we can assume that C ⊂ {

j ∈ N : a j ≤ a∗}. Now recall
again the two components of the violation mentioned in the proof of Lemma 1. If S∗
were a subset of C , then the second term would be no larger for C than it was for C∗,
and the ECI would not be violated. Thus, S∗ cannot be a subset of C . Since k∗ is the
item with smallest x∗ value in S∗, we can assume that k∗ does not belong to C . 
�

The following separation algorithm follows immediately from Proposition 1:

1. Set Ñ := { j ∈ N : x∗
j > 0}.
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0-1 knapsack polytopes 75

2. Solve the 0-1 KP:

min

⎧
⎨

⎩

∑

j∈Ñ

(1 − x∗
j )y j :

∑

j∈Ñ

a j y j > b, y ∈ {0, 1}Ñ

⎫
⎬

⎭
.

3. Let C∗ be the resulting cover. If the corresponding ECI is violated, output it.

4. Compute a∗ and k∗ as above. Delete from Ñ the item k∗ and all items in Ñ with
weight larger than a∗.

5. If
∑

j∈Ñ a j ≤ b, stop. Otherwise return to 2.

This algorithm involves the solution of at most n 0-1 KPs of ‘greater-than’ type.
We show in the next subsection that each such 0-1 KP can be solved in O(nb) time.
So, the algorithm runs in O(n2b) time. In practice, however, only a small number of
0-1 KPs, of rapidly decreasing size, typically need to be solved. They can often be
solved quickly by branch-and-bound. Moreover, the algorithm can return more than
one violated inequality.

3.2 An O(nb) exact algorithm for ECIs

In this subsection, we present a faster exact algorithm for ECI separation. First, we
show explicitly how to solve the separation problem for the weaker CIs [i.e., the 0-1
KP (2)–(4)] in O(nb) time. Then, we will show how to modify the algorithm in order
to solve the separation problem for the ECIs themselves in O(nb) time.

For k = 1, . . . , n and r = 0, . . . , b, define:

f (k, r) := min

⎧
⎨

⎩

k∑

j=1

(1 − x∗
j )y j :

k∑

j=1

a j y j = r, y ∈ {0, 1}k

⎫
⎬

⎭
.

Also, for k = 1, . . . , n, define:

g(k) := min

⎧
⎨

⎩

k∑

j=1

(1 − x∗
j )y j :

k∑

j=1

a j y j ≥ b + 1, y ∈ {0, 1}k

⎫
⎬

⎭
.

The following dynamic programming algorithm computes all of the f (k, r) and g(k)

values, and thereby solves the CI separation problem:

Set f (k, r) := ∞ for k = 1, . . . , n and r = 0, . . . , b. Set f (0, 0) := 0.
Set g(k) := ∞ for k = 1, . . . , n.
For k = 1, . . . , n

For r = 0, . . . , b
If f (k − 1, r) < f (k, r)

Set f (k, r) := f (k − 1, r).
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For r = 0, . . . , b − ak

If f (k − 1, r) + (1 − x∗
k ) < f (k, r + ak)

Set f (k, r + ak) := f (k − 1, r) + (1 − x∗
k ).

For r = b − ak + 1, . . . , b
If f (k − 1, r) + (1 − x∗

k ) < g(k)

Set g(k) := f (k − 1, r) + (1 − x∗
k ).

If g(k) < 1, output the violated CI.

It is easy to see that this algorithm runs in O(nb) time.
Suppose now that the items in N have been sorted in non-decreasing order of a j .

Under this assumption, we have a violated ECI if and only if g(k) − ∑n
j=k+1 x∗

j < 1
for some k ∈ N . Thus, to convert the exact CI separation algorithm into an exact ECI
separation algorithm, it suffices to make the following two minor changes:

(i) Sort the items in non-decreasing order of a j before running the algorithm.

(ii) Change the last ‘if’ statement to:

If g(k) − ∑n
j=k+1 x∗

j < 1, output the violated ECI.

This leads to the following result:

Theorem 1 The separation problem for ECIs can be solved exactly in O(nb) time.

Proof The initial sorting can be performed in O(n + amax) time, using bucket sort
(see [12]). This time is dominated by the time taken to solve the dynamic program,
O(nb). 
�

We remark that this algorithm can return more than one violated inequality. More-
over, it can be made faster in practice by excluding variables with x∗

j = 0 from the
DP, although, each time a violated ECI is found, one should check whether any such
variables can be inserted into the extension E(C).

3.3 A fast heuristic for ECIs

The exact algorithm for ECIs presented in Subsect. 3.1 can be easily converted into
a fast heuristic for ECIs: one simply solves the subproblems in step 2 heuristically
instead of exactly. Following Crowder et al. [13], we simply insert items into C in
non-decreasing order of (1 − x∗

j )/a j . This leads to the following algorithm:

1. Sort the items in N in non-decreasing order of (1 − x∗
j )/a j , and store them in a

list L . Initialise the cover C as the empty set and initialise a∗ = b.
2. Remove an item from the head of the sorted list L . If its weight is larger than a∗,

ignore it, otherwise insert it into C . If C is now a cover, go to step 4.
3. If L is empty, stop. Otherwise, return to step 2.
4. If the ECI corresponding to C is violated by x∗, output it.
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0-1 knapsack polytopes 77

5. Find k∗, the heaviest item in C , decrease a∗ accordingly, and delete k∗ from C .
Return to step 2.

This heuristic can easily be implemented so that it runs in O(n2) time. Like the exact
algorithms, it can return more than one violated inequality.

3.4 Heuristics for LCIs

Recall that ECIs are a special case of, and dominated by, the LCIs. Any of the algo-
rithms for ECI separation presented in the previous three subsections can be easily
converted into a heuristic for LCI separation. Namely, each time we generate an ECI,
we convert it into an LCI that is violated by at least as much. This can be done by
taking the cover C , setting D = { j ∈ C : x∗

j = 1}, and using the Hoffman-Padberg
lifting order mentioned in Subsect. 2.1.

4 On WI and LPI separation

In this section, we present three algorithms for WI separation: an enhanced version of
Weismantel’s exact algorithm, an alternative exact algorithm with a reduced running
time, and a new heuristic algorithm. We then show how all three algorithms can be
modified to yield heuristics for the separation of other LPIs.

4.1 Enhancements to Weismantel’s algorithm

The worst-case running time of Weismantel’s exact algorithm for WI separation is
rather high, as shown in the following proposition:

Proposition 2 Weismantel’s algorithm runs in O(nbamax) time.

Proof An equality-constrained 0-1 KP has to be solved for each possible value of the
residual capacity r = b − ∑

j∈P a j . We can assume that 0 < r < amax, since the WI
is redundant when either r = 0 or r ≥ amax. Thus, only amax −1 equality-constrained
0-1 KPs need to be solved. It takes O(nb) time to solve one such 0-1 KP by dynamic
programming. 
�
We have found three simple ways to speed up the algorithm, which make a dramatic
difference in practice:

1. It can be shown that, if x∗
k = 0, then one can assume that k /∈ P without losing

any violated WIs. Similarly, if x∗
k = 1, then one can assume that k ∈ P . This

reduces the number of variables in the equality-constrained 0-1 KPs.
2. If, for a given value of r , no P ⊂ N exists satisfying

∑
j∈P a j = b −r , the equal-

ity-constrained 0-1 KP will be infeasible. To avoid wasting time solving infeasible
problems, one can compute the possible values that

∑
j∈P a j can take. This can

easily be done in O(nb) time and O(b) space, by dynamic programming.
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3. If one solves the remaining equality-constrained 0-1 KPs via branch-and-bound,
one can abort the branch-and-bound run as soon as the upper bound is less than
or equal to the right-hand side of (6).

Another way to reduce running times is, of course, to run a separation heuristic first,
and only call the exact algorithm when the heuristic fails.

4.2 An O((n + amax)b) exact algorithm for WIs

Improving on the running time bound of O(nbamax) turns out to be a non-trivial exer-
cise. We found it helpful to treat the two terms on the left-hand side of (6), and the
right-hand side of (6), separately. Thus, we make the following three definitions.

Definition 1 For given integers r, s, with 0 < r < amax and 0 ≤ s ≤ b−r , we define:

f (r, s) :=max

⎧
⎨

⎩

∑

j∈N :a j ≤r

a j x∗
j y j :

∑

j∈N :a j ≤r

a j y j =s, y j ∈{0, 1} ( j ∈ N : a j ≤ r)

⎫
⎬

⎭
.

Definition 2 For given integers r, s, with 0 < r < amax and 0 ≤ s ≤ b−r , we define:

g(r, s) :=max

⎧
⎨

⎩

∑

j∈N :a j >r

x∗
j y j :

∑

j∈N :a j >r

a j y j = s, y j ∈ {0, 1} ( j ∈ N : a j >r)

⎫
⎬

⎭
.

Definition 3 For a given integer r , with 0 < r < amax, we define:

h(r) := b − r −
∑

j∈N :a j >r

(a j − r)x∗
j .

Armed with these definitions, we propose the following exact separation algorithm
for WIs:

1. Sort the items in N in non-decreasing order of weight.
2. Compute f (r, s) for r = 1, . . . , amax − 1 and for s = 0, . . . , b − r .
3. Compute g(r, s) for r = 1, . . . , amax − 1 and for s = 0, . . . , b − r .
4. Compute h(r) for r = 1, . . . , amax − 1.
5. For r = 1, . . . , amax − 1, compute the maximum possible violation of a WI with
∑

j∈P a j = b − r . That is, compute:

max
0≤s≤b−r

f (r, s) + rg(r, b − r − s) − h(r).

If this quantity is positive, output the violated WI.
We have the following theorem.
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0-1 knapsack polytopes 79

Theorem 2 The separation problem for WIs can be solved exactly in O((n +amax)b)

time.

Proof As noted in Subsect. 3.2, Step 1 can be performed in O(n + amax) time. Step
2 can be performed in O(nb) time: just use the standard dynamic programming algo-
rithm for the 0-1 KP, but introduce new items in non-decreasing order of weight.
Similarly, Step 3 can be performed in O(nb) time: use the standard dynamic program-
ming algorithm for the 0-1 KP, but introduce new items in non-increasing order of
weight. Step 4 can be performed in O(namax) time. Finally, step 5 takes O(bamax)

time. The terms O(n + amax) and O(namax) are dominated by O(nb). 
�

4.3 A simple new heuristic for WIs

In our implementation of the heuristic of Helmberg and Weismantel [19], the items are
sorted in non-increasing order of x∗ value, and then placed in a list. We then proceed
through the list, iteratively inserting items into the pack P , until we encounter an item
whose weight is greater than or equal to the residual capacity. We then stop and output
the pack P obtained.

A small modification of this procedure enables one to construct additional packs:
simply continue through the sorted list and, each time an item is encountered whose
weight is less than the residual capacity, insert it into the pack and output the pack
thus formed. In our experiments, this modified procedure typically produced two or
three packs, rather than only one as in the Helmberg–Weismantel heuristic.

4.4 Heuristics for LPIs

Recall that WIs can be viewed as a special kind of LPI, derived by up-lifting simul-
taneously (Subsect. 2.2). We have found that, in practice, sequential lifting usu-
ally yields stronger inequalities. To derive sequentially-lifted LPIs, we simply take
each pack P generated by one of the above-mentioned heuristics (the Helmberg–
Weismantel heuristic or our modified version of it), and apply sequential lifting. Spe-
cifically, we set the down-lifting set D to { j ∈ P : x∗

j = 1}, and then follow the
Hoffman-Padberg lifting order (see Subsect. 2.1).

LPIs differ from LCIs, however, in two respects. First, LPIs are not guaranteed to
induce facets of K P(a, b), even if the lifting coefficients are computed exactly. All we
can say is that they induce faces of dimension at least n − |P\D|. Second, computing
lifting coefficients exactly is non-trivial. In fact, it can be easily shown (by reduction
from the subset-sum problem [22]) that computing even a single up-lifting coefficient
of an LPI is N P-hard.

On the positive side, we have discovered a dynamic programming algorithm that
computes all lifting coefficients exactly in O(nb) time. For the sake of brevity, we
describe the algorithm for the case of up-lifting only.

Assume, without loss of generality, that P = {1, . . . , p}, and we wish to compute
up-lifting coefficients for x p+1, . . . , xn , in that order. Let αp+1, . . . , αn denote these
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up-lifting coefficients. For k = 1, . . . , p and r = 0, . . . , b, let f (k, r) denote the
solution to the following 0-1 KP:

max

⎧
⎨

⎩

k∑

j=1

a j y j :
k∑

j=1

a j y j ≤ r, y ∈ {0, 1}k

⎫
⎬

⎭
.

Note that the first up-lifting coefficient, αp+1, is equal to f (p, b) − f (p, b − ak).
Now, for k = p + 1, . . . , n and r = 0, . . . , b, let f (k, r) denote instead the solution
to the following 0-1 KP:

max

⎧
⎨

⎩

p∑

j=1

a j y j +
k∑

j=p+1

α j y j :
k∑

j=1

a j y j ≤ r, y ∈ {0, 1}k

⎫
⎬

⎭
.

The kth up-lifting coefficient, αk , is then equal to f (k − 1, b) − f (k − 1, b − ak).
The following dynamic programming algorithm computes the desired f (k, r) and

αk values:

Initialise f (0, r) := 0 for r = 0, . . . , b.
For k = 1, . . . , p do:

For r = 0, . . . , b do:
Set f (k, r) := f (k − 1, r).

For r = ak, . . . , b do:
If f (k − 1, r − ak) + ak > f (k, r)

Set f (k, r) := f (k − 1, r − ak) + ak .
For k = p + 1, . . . , n do:

Set αk := f (k − 1, b) − f (k − 1, b − ak).
For r = 0, . . . , b do:

Set f (k, r) := f (k − 1, r).
For r = ak, . . . , b do:

If f (k − 1, r − ak) + αk > f (k, r)

Set f (k, r) := f (k − 1, r − ak) + αk .

This routine runs in O(nb) time, and can be implemented to take only O(b) space.
Moreover, it can be made faster in practice using the following observation: for any
k ∈ {p + 1, . . . , n}, the quantity f (p, b) − f (p, b − ak) is an upper bound on αk .
Thus, once all of the f (p, r) have been computed, one can compute an upper bound
on the violation of the LPI in linear time. If this upper bound is non-positive, one need
not proceed any further.

We remark that our lifting algorithm can be easily adapted to compute exact lifting
coefficients for any valid inequality in O(nb) time.

5 Enhancing Boccia’s algorithm

In this section, we present some simple and effective ways to enhance Boccia’s sepa-
ration algorithm for K P(a, b) itself. Throughout this section, N 0, N 1 and F denote
{ j ∈ N : x∗

j = 0}, { j ∈ N : x∗
j = 1} and { j ∈ N : 0 < x∗

j < 1}, respectively.
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5.1 Eliminating rows from consideration

Suppose that x∗ ∈ [0, 1]n and aT x∗ ≤ b. It can be shown that, if
∑

j∈N\N 0 a j ≤ b,
then x∗ ∈ K P(a, b). There is therefore no point in searching for violated inequalities
in that case. The same applies if a ∈ {0, 1}n , since in that case K P(a, b) is an integral
polytope.

5.2 Looking for violated LCIs first

Our best algorithm for LCI separation (see Subsect. 6.5) is very fast and effective.
Moreover, the LCIs are typically less dense and better behaved numerically than
general facet-inducing inequalities. Thus, we recommend calling the LCI separation
algorithm first, and resorting to exact knapsack separation only when one does not
find a violated LCI.

5.3 Solving knapsack subproblems heuristically

To find violated constraints of the form (8), one has to repeatedly solve 0-1 KPs of the
form (10)–(12). We solve these 0-1 KPs heuristically, and only call an exact routine
when the heuristic fails. We run a simple greedy heuristic, based on profit-to-weight
ratio, and then try to improve the solution obtained via local search. A ‘move’ in our
local search algorithm consists in deleting one item from the knapsack and inserting
one or more other items.

5.4 Warm-starting the LP

In each call of the separation algorithm, apart from the first, it helps a lot to ‘warm-start’
the LP (7)–(9) by including, not only the trivial bounds (9), but also the constraints
(8) that were binding in the previous call. Although this is a simple idea, there is a
complication: the separation LP is solved in the space of the fractional variables F ,
but the set F can change from one call to the next. To deal with this, we iteratively
delete items from the corresponding packs P , until feasible packs are obtained. We
then enlarge the packs, if possible, by iteratively inserting items that have moved from
N 0 ∪ N 1 to F since the last call.

5.5 A fast scaling heuristic

Recall that, once a violated inequality is found, it has to be scaled to integers. Boccia
formulates this scaling problem itself as an integer linear program. We have found that
the following heuristic works in over 90% of cases: let αmin be the smallest fractional
α∗ value. Divide the entire inequality by αmin, and check if the resulting inequality is
integral (to within a tolerance of 10−5). To prevent rounding errors, we check that the
resulting inequality is valid before proceeding to the lifting step.
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5.6 One other minor consideration

We mentioned in Subsect. 2.1 that, when deriving LCIs, one or more items may have
to be removed from the down-lifting set D if there exists an item k ∈ N\(C ∪ N 0)

such that ak > b − ∑
j∈D a j . An analogous issue arises in Boccia’s method, if there

exists an item k ∈ F such that ak > b − ∑
j∈N 1 a j . When this problem arises, we

iteratively move items from N 1 to F until no such item exists.

6 Computational experiments

In this section, we present the results of some computational experiments, to assess
the usefulness of our separation algorithms when applied to 0-1 LPs. We used the
following very simple cutting plane algorithm:

1. Solve the initial LP relaxation of the problem.
2. If the solution is integer, stop.
3. For each row of the problem, call one or more separation algorithms. If any vio-

lated inequalities are found, add all of them to the LP, re-optimise and go to step
2.

4. Output the final upper bound and stop.

We used the primal simplex algorithm to solve the initial LP in step 1 and dual simplex
to re-optimise after cutting planes have been added.

The algorithm was implemented in Microsoft Visual Studio.Net 2003 and called on
functions from version 10.0 of the ILOG CPLEX Callable Library. All experiments
were performed using a PC with an Intel Pentium IV, 2.8 GHz processor and 512 MB
of RAM.

6.1 The MIPLIB instances

Following Gu et al. [16], we conducted experiments on 15 instances taken from MIP-
LIB [1]. Table 1 shows the following for each instance: instance name, number of
variables n, number of constraints m, density of the constraint matrix (as a percent-
age), number of ‘genuine’ knapsack constraints (i.e., constraints whose left-hand-side
coefficients are not all 0, 1 or −1), cost of the integer optimum, lower bound obtained
by solving the initial LP relaxation (before cuts are added), and the corresponding
integrality gap, expressed as a percentage of the optimum. We remark that the seven
‘p’ instances were used by both Crowder et al. [13] and Boyd [9,10] as benchmarks.

The instances l152lav, lp41 and mod010 have only one knapsack constraint
each (an equation, treated as two inequalities in the table). We found that no family of
knapsack-based cutting planes, not even the general knapsack facets, closed a signif-
icant proportion of the integrality gap for these instances. Thus, we omit them in the
following tables.

In a few cases, we observed knapsack constraints for which one or more left-
hand-side coefficients exceeded the right-hand side. This phenomenon indicates the
presence of one or more variables that can be fixed permanently at either zero or
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Table 1 Description of the MIPLIB instances

Name n m %Dens. KPs Opt. Init. LB IG (%)

bm23 27 20 88.5 20 34.0 20.6 39.50

l152lav 1,989 97 50.8 2 4,722 4,656.4 1.39

lp41 1,086 85 12.0 2 2,967 2,942.5 0.83

lseu 89 28 12.4 11 1,120 834.7 25.47

mod008 319 6 64.9 6 307 290.9 5.24

mod010 2,655 146 5.8 2 6,548 6,532.1 0.24

p0033 33 16 17.4 11 3,089 2,520.6 18.40

p0040 40 24 11.3 13 62,027 61,796.5 0.37

p0201 201 134 5.0 107 7,615 6,875.0 9.72

p0282 282 242 2.0 44 258,411 1,76867.5 31.56

p0291 291 253 1.9 14 5,223.75 1,705.1 67.36

p0548 548 177 1.8 92 8,691 315.3 96.37

p2756 2,756 756 0.4 382 3,124 2,688.7 13.93

pipex 48 25 16.0 9 788.263 773.8 1.88

sentoy 60 30 100.0 30 −7772 −7839.3 0.87

one. We performed this fixing right at the start, to avoid problems with our separation
routines.

6.2 Cover inequalities

Table 2 reports the results obtained when applying CIs to the MIPLIB instances. The
columns headed ‘% gap closed’ report the percentage of the integrality gap closed
by the inequalities, and the columns headed ‘time (s)’ report the total running time
of the cutting plane algorithm, in seconds. The columns headed ‘CJP’ were obtained
using the greedy heuristic of Crowder et al. [13]. The column headed ‘Exact’ was
obtained by solving the separation problem exactly. The column headed ‘Ex1’ reports
the time taken when using the exact separation algorithm in its original form. The
column headed ‘Ex2’ reports the time taken by a hybrid approach, in which the exact
algorithm is called only when the Crowder et al. heuristic fails.

We see that the CIs, though theoretically weak, close half of the gap on average.
Moreover, the Crowder et al. heuristic is very effective. All running times are negligi-
ble.

6.3 Extended cover inequalities

Table 3 reports the results obtained when applying ECIs to the MIPLIB instances. The
columns headed ‘CJP’ were again obtained using the Crowder et al. heuristic. The col-
umns headed ‘GNS’ were obtained using the alternative greedy heuristic of Gu et al.
[16]. The columns headed ‘N.H.’ were obtained using the new heuristic presented
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Table 2 Results obtained with
cover inequalities

Name %Gap closed Time (s)

CJP Exact CJP Ex1 Ex2

bm23 5.57 5.57 0.002 0.105 0.080

lseu 39.87 39.87 0.001 0.024 0.013

mod008 3.34 3.75 0.015 0.074 0.043

p0033 63.55 63.55 0.002 0.020 0.010

p0040 76.82 76.82 0.001 0.002 0.001

p0201 33.78 33.78 0.005 0.018 0.010

p0282 94.25 94.27 0.020 0.325 0.174

p0291 95.19 95.23 0.011 0.099 0.033

p0548 66.89 67.68 0.042 0.732 0.292

p2756 86.26 86.26 0.154 0.379 0.169

pipex 16.69 16.69 0.001 0.014 0.009

sentoy 16.33 16.58 0.004 0.351 0.208

Aver. 49.88 50.00 0.022 0.179 0.087

Table 3 Results obtained with extended cover inequalities

Name %Gap closed Time (s)

CJP GNS N.H. Exact CJP GNS N.H. Ex1 Ex2 Ex3

bm23 15.36 15.36 15.82 15.82 0.00 0.00 0.00 0.08 0.02 0.05

lseu 39.87 39.85 61.01 61.36 0.00 0.00 0.02 0.13 3.16 0.06

mod008 4.58 4.42 6.31 17.59 0.00 0.02 0.20 0.44 236.6 0.34

p0033 66.50 66.50 71.51 71.93 0.00 0.02 0.02 0.06 0.09 0.03

p0040 76.82 76.82 100.00 100.00 0.00 0.02 0.00 0.00 0.19 0.00

p0201 33.78 33.78 33.78 33.78 0.02 0.00 0.02 0.02 0.19 0.00

p0282 94.19 93.48 92.72 94.35 0.03 0.03 0.02 0.44 0.39 0.22

p0291 95.19 95.15 94.96 95.23 0.03 0.02 0.02 0.09 5.71 0.08

p0548 67.55 66.48 67.37 67.68 0.06 0.08 0.06 1.05 16.9 0.30

p2756 86.26 78.16 86.26 86.26 0.17 0.22 0.16 0.52 70.6 0.20

pipex 16.68 16.68 23.82 27.96 0.00 0.00 0.00 0.06 0.03 0.09

sentoy 16.53 15.99 17.27 21.57 0.02 0.00 0.02 0.94 8.06 0.70

Aver. 51.11 50.22 55.90 57.79 0.03 0.03 0.05 0.32 28.5 0.17

in Subsect. 3.3. The column headed ‘Exact’ was obtained by solving the separation
problem exactly. The column headed ‘Ex1’ corresponds to the O(n2b) exact algorithm
described in Subsect. 3.1. The column headed ‘Ex2’ corresponds to the O(nb) exact
algorithm described in Subsect. 3.2. Finally, the column headed ‘Ex3’ corresponds to
a hybrid approach, in which the O(n2b) exact algorithm is called only when the new
heuristic fails.
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We found these results rather surprising, for several reasons. First, the ECIs do not
close a substantially larger proportion of the integrality gap than the CIs. Second, the
Gu et al. heuristic performs no better than the Crowder et al. heuristic. Third, although
the O(nb) exact algorithm is theoretically faster than the O(n2b) exact algorithm, it
is much slower in practice. Indeed, the running times are negligible for all schemes
apart from the O(nb) exact algorithm.

All things considered, the new ECI heuristic and the new hybrid exact ECI algorithm
look promising.

6.4 Simple lifted cover inequalities

Next, we converted the ECI algorithms into simple LCI algorithms, as explained in
Subsect. 3.4. We were disappointed to find that the simple LCIs closed no more gap
than the ECIs, for any instance. Further investigation revealed that up-lifting coef-
ficients larger than 1 occurred very rarely. We do not report the running times, for
brevity, but they were all slightly larger than the running times for ECIs.

6.5 General lifted cover inequalities

Table 4 reports the results obtained when applying general LCIs to the MIPLIB
instances. Four different separation heuristics are compared. The columns headed
‘CJP’ and ‘GNS’ were again obtained using the Crowder et al. and Gu et al. heuristics
to generate the covers. The columns headed ‘N.H.1’ were obtained using our best
exact ECI separation algorithm (labelled ‘Ex3’ in Subsect. 6.3) to generate the covers.
The columns headed ‘N.H.2’ were obtained using a hybrid method, in which our best
ECI algorithm is called only when the Gu et al. heuristic fails to yield a violated LCI.
In all four cases, the Hoffman-Padberg lifting sequence was used to derive the general
LCIs.

The general LCIs close significantly more gap than the ECIs on several instances.
This confirms the value of down-lifting. Moreover, in our view, the running times are
promising. All things considered, we recommend using the strategy represented by
‘N.H.2’.

6.6 Weight inequalities and other lifted pack inequalities

Table 5 reports results obtained with weight inequalities and sequentially-lifted pack
inequalities. The columns headed ‘WI1’, ‘WI2’ and ‘WI3’ were obtained with the
Helmberg–Weismantel WI heuristic, the new WI heuristic described in Subsect. 4.3,
and the enhanced version of Weismantel’s exact WI algorithm presented in Sub-
sect. 4.1. (We do not report results for the exact WI algorithm presented in Subsect. 4.2,
because it ran into time and/or memory problems for several instances.) The columns
headed ‘sLPI’ and ‘LPI’ were obtained with our heuristics for simple LPIs and general
LPIs, respectively.
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Table 4 Results obtained with lifted cover inequalities

Name %Gap closed Time (s)

CJP GNS N.H.1 N.H.2 CJP GNS N.H.1 N.H.2

bm23 16.11 16.00 16.11 16.11 0.000 0.000 0.047 0.047

lseu 56.99 59.28 61.56 66.20 0.000 0.016 0.062 0.062

mod008 17.81 17.55 18.24 18.24 0.047 0.031 0.359 0.094

p0033 70.36 80.62 80.62 80.62 0.000 0.015 0.031 0.031

p0040 100.00 100.00 100.00 100.00 0.000 0.000 0.000 0.000

p0201 33.78 33.78 33.78 33.78 0.015 0.016 0.016 0.016

p0282 95.97 94.84 96.15 96.21 0.046 0.031 0.625 0.437

p0291 95.19 96.39 95.41 96.40 0.015 0.031 0.110 0.047

p0548 67.56 66.81 67.71 67.71 0.062 0.078 0.437 0.297

p2756 86.26 80.52 86.26 86.26 0.187 0.219 0.265 0.250

pipex 72.78 72.62 73.34 73.34 0.000 0.000 0.062 0.032

sentoy 16.53 16.50 22.69 22.72 0.000 0.016 0.641 0.813

Aver. 60.78 61.24 62.66 63.13 0.031 0.038 0.221 0.178

Table 5 Results obtained with weight inequalities and sequentially-lifted pack inequalities

Name %Gap closed Time (s)

WI1 WI2 WI3 sLPI LPI WI1 WI2 WI3 sLPI LPI

bm23 1.81 1.81 1.81 6.21 16.90 0.004 0.005 0.117 0.007 0.013

lseu 15.23 15.24 15.25 21.54 73.60 0.007 0.008 1.037 0.593 0.641

mod008 2.62 2.62 2.62 3.73 66.95 0.504 0.579 3.534 130.6 351.9

p0033 6.44 6.44 6.44 83.80 85.77 0.001 0.002 0.028 0.066 0.052

p0040 29.24 29.24 29.24 84.29 100.0 0.003 0.003 0.008 0.072 0.029

p0201 12.50 12.50 12.50 12.50 33.78 0.010 0.011 0.653 0.152 0.059

p0282 76.96 90.48 93.99 92.57 94.97 0.022 0.044 18.28 0.258 0.482

p0291 88.72 88.72 95.23 89.18 90.57 0.008 0.008 2.612 0.458 0.849

p0548 43.27 45.58 70.12 46.47 53.39 0.038 0.045 47.87 3.158 3.568

p2756 21.07 25.15 63.63 26.90 44.85 0.159 0.210 4.650 10.80 20.41

pipex 4.56 4.56 4.56 55.97 64.06 0.001 0.001 0.037 0.024 0.036

sentoy 5.85 5.91 7.34 6.10 19.39 0.005 0.006 62.47 0.840 2.385

Aver. 25.69 27.35 33.56 44.11 61.10 0.064 0.077 11.77 12.25 31.70

Our new heuristic for WIs gives slightly better bounds than the Helmberg-
Weismantel heuristic, but the results obtained with WIs are not impressive. Simple
LPIs perform a little better, but it is only the general LPIs that give bounds comparable
to those obtained using LCIs. On the other hand, the running time is excessively high
for some instances.

We also tried using both LCIs and LPIs in combination. The average amount of
gap closed was 67.74%, which shows that LCIs and LPIs are to some extent comple-
mentary.
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Table 6 Results obtained with
general knapsack facets

Name %Gap T1 T2 T3

bm23 20.08 2.734 0.578 0.703

lseu 76.09 3.297 0.687 1.625

mod008 89.23 68.906 41.438 57.687

p0033 87.42 0.594 0.109 0.265

p0040 100.0 0.015 0.000 0.016

p0201 33.78 1.031 0.031 0.718

p0282 98.59 29.188 5.172 7.734

p0291 99.43 9.454 1.875 3.579

p0548 84.34 37.250 2.250 16.391

p2756 86.36 38.469 1.000 24.547

pipex 86.55 4.640 0.797 1.188

sentoy 30.97 38.844 3.829 11.141

Aver. 74.49 19.533 4.814 10.466

6.7 General knapsack facets

Table 6 reports results obtained using general facets of the knapsack polytope. The
percentage gap closed is shown, along with the running times for three variants of Boc-
cia’s separation scheme. The columns headed ‘T1’ and ‘T2’ correspond to Boccia’s
original scheme and our enhanced scheme, respectively. The column headed ‘T3’ was
obtained with a scheme that incorporates all of our enhancements apart from the one
mentioned in Subsect. 5.2, i.e., a scheme that does not use LCIs.

Several things are apparent from the table. First, we see that the general knapsack
facets close significantly more of the integrality gap than the LCIs and LPIs. Second,
our enhanced scheme is around four times faster, on average, than the original one.
Third, it definitely pays off to call LCI separation first, provided of course that one
has a fast and effective separation heuristic for LCIs. Fourth, our best exact separation
algorithm for general knapsack facets is (bizarrely) less time-consuming than our best
exact separation algorithms for WIs and LPIs.

A couple of further comments are in order. First, we were using a general-purpose
branch-and-bound solver to solve the knapsack subproblems. One could probably
obtain a substantial speed-up using a specialised algorithm for the 0-1 KP (Boccia
himself uses a modified version of the MINKNAP algorithm of Pisinger [26]). Second,
we wish to point out that, for the ‘p’ instances, the percentage gaps closed by the
general knapsack facets are exactly the same as those reported by Boyd [9,10], with
one exception: for p2756, Boyd obtained a slightly smaller value of 86.16%. Indeed,
this instance contains a few very dense constraints that, according to Boyd, caused his
algorithm to run into difficulties.

6.8 Experiments with multi-dimensional knapsack instances

To gain further insight into the relative performance of the different inequalities, and
also to explore the limits of our approaches, we also performed experiments on the
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Table 7 Percentage gap closed by inequalities on 0-1 MKP instances

n m α(%) IG (%) CIs ECIs LCIs WIs sLPIs LPIs All

100 5 25 0.99 2.39 3.66 4.20 1.96 2.19 9.53 17.96

100 5 50 0.45 2.88 5.13 5.81 2.82 2.88 10.52 21.65

100 5 75 0.32 3.48 5.41 6.77 3.15 3.18 12.14 22.88

100 10 25 1.59 0.34 0.62 0.79 0.13 0.14 1.55 5.55

100 10 50 0.80 0.51 1.59 1.73 0.60 0.62 2.75 7.33

100 10 75 0.48 0.17 0.72 1.01 0.21 0.21 2.47 7.23

100 30 25 2.97 0.00 0.00 0.00 0.00 0.00 0.00 0.16

100 30 50 1.34 0.00 0.01 0.01 0.00 0.00 0.00 0.49

100 30 75 0.83 0.00 0.01 0.01 0.00 0.00 0.00 0.52

250 5 25 0.25 0.93 1.68 2.02 1.02 1.03 5.28 14.56

250 5 50 0.11 1.44 2.39 3.04 1.19 1.20 5.97 15.68

250 5 75 0.08 1.21 2.82 3.94 0.96 0.96 7.77 17.48

250 10 25 0.46 0.10 0.37 0.58 0.12 0.12 1.35 4.53

250 10 50 0.23 0.21 0.40 0.47 0.14 0.14 1.28 4.48

250 10 75 0.14 0.14 0.39 0.58 0.09 0.10 1.65 5.03

500 5 25 0.07 1.28 1.63 2.14 1.30 1.31 5.17 13.80

500 5 50 0.04 0.88 1.61 1.90 0.82 0.83 4.39 11.91

500 5 75 0.02 0.87 1.64 1.98 0.88 0.88 74.41 13.70

Aver. 0.94 1.67 2.06 0.86 0.88 4.24 10.28

0-1 multi-dimensional knapsack problem (0-1 MKP). We used the library of 0-1 MKP
instances created by Chu and Beasley [11], which are available in the OR Lib [5].
In these instances, the constraint matrix A consists entirely of positive integers—
and is therefore 100% dense. Although the library contains 270 instances, the largest
instances have not yet been solved to proven optimality (see, e.g., Vimont et al. [28]).
Thus, we restrict our attention to 180 of the instances, for which the optima are known.

The 180 instances are arranged in blocks of ten. Table 7 reports the following infor-
mation for each block. The first three columns show the number of variables n, the
number of constraints m and the so-called tightness ratio α. The next column shows
the percentage integrality gap of the initial LP relaxation (before the addition of cutting
planes). The remaining columns show the percentage of the integrality gap closed by
each of seven classes of inequalities. Each figure in the last seven columns is averaged
over the given ten instances.

Before interpreting the results, there are three points that we need to make. First,
just as with the MIPLIB instances, the simple LCIs gave exactly the same results
as the ECIs, and therefore there is no separate column for them. Second, the col-
umn headed ‘WIs’ was obtained using the heuristic mentioned in Subsect. 4.3, since
our exact algorithm ran into time and memory problems for most of these instances.
Third, some of the results in the table have been reported elsewhere in the literature
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(Bektas and Oguz [6], Gabrel and Minoux [15], Kaparis and Letchford [21]), but only
for n = 100 and only for CIs, ECIs and LCIs.

Compared to the results obtained with the MIPLIB instances, there are some strik-
ing differences. The first is that simple LPIs perform no better than WIs. The second
is that LPIs perform significantly better than both LCIs and simple LPIs. The third
is that general knapsack facets close a much larger proportion of the gap than either
LCIs or LPIs. This suggests that, for constraints involving many variables, LCIs and
LPIs give a rather poor partial description of the knapsack polytope. Finally, even
the general knapsack facets close only a small proportion of the gap when m > 5.
This demonstrates that the intersection of the individual 0-1 knapsack polytopes give
a poor approximation to the true polytope for problems with more than a few dense
constraints.

For the sake of brevity, we do not report the running times in detail. We just want
to say that the average running time was a fraction of a second for the CIs, ECIs, LCIs
and WIs, several seconds for the simple and general LPIs, but around 5 min for the
general knapsack facets. This latter figure may seem excessive, but it should be borne
in mind that the separation algorithms of Boyd [8–10] run into serious difficulties as
soon as a constraint has more than about 30 non-zeroes on the left-hand side, rather
than hundreds of non-zeroes as we have in this case.

7 Concluding remarks

In this paper, we have presented new or improved separation algorithms for several
classes of valid inequalities for the 0-1 knapsack polytope—namely, the CIs, ECIs,
LCIs, WIs and LPIs—and also for the 0-1 knapsack polytope itself. We have also
presented extensive computational results.

Our computational results with LCIs confirm the claim in [13] that the LCIs make
very useful cutting planes for sparse unstructured 0-1 LPs. They also confirm the claim
in [16,20] that general LCIs are more useful than simple LCIs. One surprising result,
however, is that the simple LCIs generated in practice tend to be ‘mere’ ECIs. Thus,
if one does not wish to bother implementing down-lifting, then one might as well not
bother implementing up-lifting either, and instead work directly with ECIs.

To our knowledge, this paper is the first to report detailed computational results
for WIs and sequentially-lifted LPIs. The WIs and simple LPIs exhibited rather dis-
appointing performance, but the general LPIs look more promising. In any case, we
believe that further research on WIs and LPIs is warranted. In particular, it would be
nice to determine whether or not WI separation is N P-hard. It would also be good to
further examine alternative exact and approximate lifting techniques for LPIs, such as
the simultaneous-lifting procedure of Atamtürk [2].

Finally, we recall that, on some instances, the general knapsack facets close consid-
erably more of the integrality gap than the LCIs and LPIs. This indicates that the LCIs
and WIs give a poor approximation of the 0-1 knapsack polytope, especially when the
number of variables in the knapsack constraint is large. Since separation of general
knapsack facets is still rather time-consuming, it might be worthwhile devising and
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testing separation algorithms for other known classes of valid inequalities (such as the
extended weight inequalities [29]). In fact, we believe that the 0-1 knapsack polytope
itself deserves further study.
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