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resumo 

 

 

Na última década houve grandes desenvolvimentos na área de teoria de 
grafos e suas aplicações interdisciplinares. Teoria de grafos (ou redes) é um 
campo de matemática discreta, que, por abstracção dos detalhes de um 
problema exceptuando a ligação entre os seus elementos, é capaz de uma 
descrição das suas características estruturais que de outra maneira não seria 
possível. Muitos sistemas na natureza, e em particular na sociedade, são bem 
representados por, ou evoluem tendo como base, redes complexas. 
Neste trabalho apresentamos alguns avanços para a compreensão das 
características estruturais genéricas destas redes e sistemas. A tese divide-se 
em duas partes principais: 
 
 
Na primeira parte faz-se um estudo da estrutura de redes, começando com 
uma breve introdução histórica do desenvolvimento da teoria de redes e de 
conceitos básicos, continuando com um conjunto de exemplos de redes 
previamente estudadas bem como modelos (Capítulo 1). Seguidamente, 
apresentamos um estudo teórico de propriedades estruturais como a distância 
entre vértices e a presença de subgrafos em redes (Capítulo 2). O último 
capítulo desta primeira parte é dedicado a um estudo detalhado de 
propriedades estruturais da rede real de colaborações científicas promovida 
pelo V Programa Quadro da União Europeia, FP5 (Capítulo 3). 
 
 
Na segunda parte, dividida em três capítulos, processos dinâmicos tendo 
como base duas redes são investigados: primeiro, a frequência com que os 
números ocorrem na World-Wide Web (Capítulo 4); segundo, a estatística 
temporal de actividades humanas, e seus modelos baseados em teoria de filas 
de espera, que será aqui introduzida (Capítulo 5); e, terceiro, um modelo 
teórico servindo como base para o estudo de interacções em redes sociais 
(Capítulo 6). 
 
 
No Capítulo 7 apresentam-se conclusões gerais, possível trabalho futuro e a 
lista de publicações resultante do trabalho realizado. 
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abstract 

 

In the last decade there have been great developments in graph theory, namely 
in its interdisciplinary applications. Graph (or network) theory is a field of 
discrete mathematics, which, by abstracting away the details of a problem 
except the connectivity between its elements, is capable of describing 
important structural features that would be impossible with all the details 
retained. Many systems in nature, and in particular in society, are either well 
represented by, or evolve on the framework of, so called complex networks. 
Here we present some advances in understanding the generic structural 
characteristics of these networks and systems. The thesis is divided in two 
main parts: 
 
 
In the first part, we present a study of networks' structure, beginning with a brief 
historical introduction and of basic concepts of network research, continuing 
with a set of well studied network examples and models (Chapter 1). Next, we 
present a theoretical investigation of structural properties such as the 
intervertex distance and the presence of subgraphs in networks (Chapter 2). 
The last chapter of this first part is devoted to a detailed study of structural 
properties of the real-world network of scientific collaborations promoted by the 
European Union's Fifth Framework Programme, FP5 (Chapter 3). 
 
 
In the second part, divided in three chapters, dynamical processes based on 
two networks are investigated: First, the frequency with which numbers occur 
on the World-Wide Web (Chapter 4); second, the statistics of the timing of 
human activities, and their models based on queueing theory, which will be 
introduced here (Chapter 5); and third, a theoretical queueing model serving as 
base for the study of interactions on social networks (Chapter 6). 
 
 
In Chapter 7 we present general conclusions, outlook future work and the list of 
publications resulting from the work developed. 
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Chapter 1

Introduction

1.1 Brief historical introduction

The study of networks has had a long history in mathematics and the sciences. In 1736 the mathe-

matician Leonard Euler became interested in an enigma called the Königsberg Bridge Problem. The

city of Königsberg (today Kaliningrad in Russia) was divided by the river Pregel into four parts as

shown in Fig. 1.1. Seven bridges connected the land masses. There was a popular question among

the inhabitants of the city: “Is there any single path that crosses all seven bridges exactly once

each?”. Euler proved the impossibility of such path, making use of a graph representation of the

problem (the black dots and lines in Fig. 1.1).

Figure 1.1: Simplified scheme of the 7 bridges (yellow) connecting the land masses in Königsberg.

The graph representation consists of the black dots and lines connecting them.

1



2 CHAPTER 1. INTRODUCTION

A graph (or network) is a mathematical object consisting of points, called vertices or nodes, and

lines, called edges or links, connecting the points — see an example in Fig. 1.2. In this way all the

details of the original problem are removed except the connectivity between its elements: There

are four vertices representing the four land masses and seven edges joining them (representing the

bridges). The bridge problem can then be reformulated in mathematical terms as whether there

exists any Eulerian path on the graph of the Fig. 1.1, which is precisely a path that traverses each

edge exactly once. Euler proved that there is not by observing that, since any such path must both

enter and leave every vertex it passes through, except the first and last, there can at most be two

vertices with odd degree, where the degree of a vertex is the number of edges attached to it. Since all

four vertices in the Königsberg graph have odd degree, the bridge problem does not have a solution.

Euler’s proof is considered by many to be the first theorem in the field of discrete mathematics

known as Graph Theory, which has become the main mathematical tool for describing the properties

of empirical (real-world) networks. The elements and their connections can be almost anything —

people and friendships (Social networks), computers and communication lines (Internet), chemicals

and reactions (Biological networks), scientific papers and citations (Information networks), etc.

By abstracting away the details of a problem, graph theory is capable of describing important

structural features with a clarity that would be impossible with all the details retained. However,

despite graph theory is a powerful and general language many authors distinguish it from Network

Theory (or Science of Networks) in three main aspects: (1) by focusing on the properties of real-

world networks, network theory is concerned with empirical as well as theoretical questions; (2)

it frequently takes the view that networks are not static, but evolve in time according to certain

dynamical rules; (3) it aims to understand networks not just as structural objects, but also as the

framework on which distributed dynamical systems evolve.

In between the Königsberg bridge problem and the 1990’s there were many important devel-

opments of graph theory. Of remarkable importance in the 1950’s is the work of Solomonoff and

Rapoport [1], Gilbert [2], and Erdős and Rényi [3], who began to think of graphs as the medium

through which various modes of influence (like information or disease) could propagate. Associated

with this trend was the notion that graphs are properly regarded as stochastic objects and therefore

that graph properties can be thought in terms of probability distributions. In this way, Solomonoff
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and Rapoport first propose a model of a random graph, in the sense that it is composed of a collec-

tion of vertices randomly connected by a certain number of edges. A particularly important result

obtained was that when the ratio of the number of edges to vertices increases, the graph reaches

a point at which it undergoes an abrupt change from a collection of disconnected vertices to a

connected state in which the graph contains a giant component. More precisely if a graph has N

vertices and L edges, the mean degree of a vertex,〈k〉, is given by

〈k〉 =
2L

N
. (1.1)

Then Solomonoff and Rapoport predicted the existence of a phase transition from a fragmented graph

(with several small disconnected components) for 〈k〉 < 1 to one dominated by a giant component

(whose size tends to infinity as N → ∞) for 〈k〉 > 1. Erdős and Rényi, to whom this result is

many times attributed, rediscovered their result independently and gave a major contribution to

the development of random graph theory publishing eight papers on random graphs between 1959

and 1968, the most important of which in 1960 [4] dealing with the evolution of some structural

properties (see Section 1.2) of random graphs as the mean degree is increased. In the mean time,

sociologists were starting to apply the ideas of graph theory to social networks, but only in the

late 1960’s Stanley Milgram, a social psychologist, brought the field into the public consciousness

with his famous small-world experiments [5]. In these experiments a target individual and a group

of 296 starting volunteers living in the USA were selected, and a document was mailed to each

of the starters containing instructions on how to proceed. The participants should try to get the

document to the target person by passing it to someone they knew on first name basis and who

they believed either would know the target, or might know somebody who did. These acquaintances

were then asked to do the same, repeating the process until the document reached the designated

target. The number of steps between source and target varied from 2 to 12, with average value

6.2. This small value, when compared to the size of the network, N (in this case the population of

the USA), is the origin of the small-world expression. In simple terms, the small-world effect can

be understood by realizing that if a person has on average 〈k〉 acquaintances, then the number of

persons contained in a “circle” ℓ steps away from the starting person is approximately 〈k〉ℓ, meaning

that to reach the USA population we need only about ℓ = 6 steps. More precisely we say that a

network is a small world whenever the average distance between every pair of vertices, ℓ̄ — where
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two nearest neighbor vertices are separated by the unit distance — scales logarithmically with N ,

i.e. ℓ̄ ∼ log N (see Section 1.2.2). In 1965 Derek Price published an article in the journal Science [6]

investigating the network of citations between scientific papers, in which each vertex represents a

paper and citations are represented by directed edges from the citing to the cited paper. Price

seems to have been the first to observe power-law degree distributions in a network, which are now

known to occur in a number of different kinds of networks, often called scale-free networks (given

that a power-law distribution has no natural scale). A decade later he published another paper [7]

proposing a possible mechanism for the observed power laws. Based on previous work by Herbert

Simon [8], he proposed that papers that have many citations receive more citations in proportion to

the number they already have, and called this process “cumulative advantage”, demonstrating that

it generates power-law distributions.

In the beginning of the 1980’s the mathematician Béla Bollobás proposed the configuration

model for random graphs with given degree sequence [9] (see Section 1.4.2), which constituted an-

other important development in graph theory, and published a book summarizing the mathematics

of random graphs [10]. In 1982, the physicist Rodney Baxter published a book [11] with exact

solutions of several statistical physics models, one of which the Ising model on a Bethe lattice, a

regular1, deterministic graph (already introduced in 1935 by Hans Bethe [12]) whose properties are

close to the configuration model. This may have been the starting point from where the statistical

physics community got involved in network theory studies, leading to numerous developments with

statistical physics methods being applied to large networks. In 1998 Sidney Redner [13] indepen-

dently re-obtained Price’s power-law degree distribution observations using two large databases of

citations of physics papers. In another 1998 article [14], Duncan Watts and Steven Strogatz success-

fully proposed a model to explain the small-world effect observed earlier by Milgram. In 1999 the

cumulative advantage process was rediscovered independently by László Barabási and Réka Albert

in what turned out to be the most cited paper of network theory until now [15], introducing the

famous BA model and the term preferential attachment, concepts later developed by them together

with Hawoong Jeong in Ref. [16], and solved by Sergey Dorogovtsev, José Mendes and Alexander

Samukhin in Ref. [17], and also independently by Pavel Krapivsky, S. Redner and F. Leyvraz in

1In a regular graph all vertices have the same degree.
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Ref. [18]. The exact solution was obtained by Bollobás et. al in Ref. [19]. The increasing technologi-

cal capabilities of collecting and processing data, together with these fundamental papers, resulted in

a burst of interest in the theory of so called complex networks, where the term complex has its origin

in the fact that they cannot be modeled by classical random graphs (as proposed by Solomonoff and

Rapoport, or Erdős and Rényi — Section 1.4.1), in the sense that they are small worlds and have

high clustering coefficient (i.e. high probability that if three vertices are connected by two edges,

then the third edge is also present — Section 1.2.3), and/or heterogeneous distribution of degrees of

their vertices, often well approximated by power law (Section 1.2.1). Due to the referred increase in

data availability, many empirical results ( 1.3) were obtained for networks like the Internet [20, 21],

the World Wide Web [22, 23, 24, 25], e-mail networks [26, 27], social networks [33, 34], biological

networks [36, 37, 38, 39, 40]. Also networks more specific to traditional physics have been studied,

like networks of free energy minima by Jonathan Doye [28], gradient networks by Zoltán Toroczkai

et. al [29, 30], or the conformation of polymers by Lúıs Amaral et. al [31], or traditional physics

effects on networks, like Bose-Einstein condensation by Ginestra Bianconi and Barabási [32]. A

series of review articles by Strogatz [41], Albert and Barabási [42], Dorogovtsev, Alexander Goltsev,

and Mendes [43, 44], Mark Newman [45], Tim Evans [46], and Yamir Moreno et. al [47], and books

by Dorogovtsev and Mendes [48], Pastor-Satorras and Alessandro Vespignani [49], Rick Durret [50],

and Guido Caldarelli [51] have been published since then, denoting the rapid evolution the field has

been having. General audience books by Watts [52, 53], Bernardo Huberman [54], Barabási [55], and

Buchanan [56], among others, were published showing how the subject is interesting to the public in

general as well. Also a book consisting of a collection of articles in the field was edited by Newman,

Barabási and Watts [57], forming a good summary of its development and state-of-the-art.

Searching for universality both in the structure (or topology as frequently termed by physicists)

of networks and in the dynamics of their evolution, in addition to uncovering generic properties of

real networks, these studies signal the emergence of a new set of modeling tools that considerably

enhance our ability to characterize and model complex interactive systems. It is not surprising that

physics has been responsible for most of network theory and complex systems studies, since it has

been evolving from its traditional areas of research to the study of organization and its emergence

in all its forms. It is on this framework that the work presented in this thesis is based.
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1.2 Structural properties of networks

We will here introduce and define more precisely some notions of graph theory [58, 59] and structural

properties already mentioned in the historical introduction, as well as new ones that will be used

in the following chapters, allowing us to characterize and distinguish different kinds of networks.

Unlike the graph of Fig. 1.1, which has more than one edge between vertices (and therefore called

a multigraph) we will consider properties of graphs without multiple edges (see Fig. 1.2). As we

will see, however, many of these properties allow us to establish general features and principles of

universality between different networks. This may point, in fact, that graph theory, and therefore

complex networks, are so general tools that they can possibly be used in almost everything around

us, at all scales of the Universe. Despite the structural properties, there are also others, like intrinsic

properties of vertices — for example nodes can be colored according to specificities of the case under

study. We will not mention the study of these properties here, however in Chapter 3 we will make

use of colors to distinguish different characteristics of the real-world network studied there. As

already emphasized in the previous Section, we will be mostly interested in the situation of large

networks.

Figure 1.2: Example of a graph without multiple edges.
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1.2.1 Adjacency matrix and basic notions

The structure of a graph is completely characterized by a matrix called adjacency matrix:

A =

















a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aN1 aN2 . . . aNN

















(1.2)

where N is the number of vertices in the graph and (for unweighted graphs)

aij =







1 if vertex i is linked to vertex j ,

0 otherwise .
(1.3)

Every property of the graph can be extracted from its adjacency matrix, since it is fully described

by it. For example, the most elementary property of node i, the degree ki, is given by

ki =
N
∑

j=1

aij (1.4)

providing the number of links it has (also called its connectivity).

Accordingly the average degree, is given by 〈k〉 =
∑

i,j aij/N = 2L/N (Eq. 1.1), where L is the

number of edges in the graph and 〈· · · 〉 means average over a particular graph. Yet, the average

degree does not probe the degree variations present in the network, which are better characterized

by the degree probability distribution, Pk, providing the probability that a node has exactly k links.

For most networks (called scale-free networks), Pk is a heterogeneous, slowly decaying function,

many times well approximated by a power law Pk ∼ k−γ , where γ is the degree exponent, with

a cutoff at kcut ≡ kmax ∼ N1/(γ−1) [48, 60]. In scale-free networks the majority of nodes has low

degree (of order 1) but a few, called hubs, have very high degree (of order of kcut). In most real

world networks N ≫ 1, so that also kcut ≫ 1, and k can be taken as a real variable, and Pk

as a probability density function2: P (k). Networks can be directed, with links having a specific

direction, or undirected (when the adjacency matrix is symmetric). The number of in-links of a

node in a directed network is its in-degree, and the number of links going out is its out-degree. Also,

2However, note that many times P (k) will be called a probability distribution, as is common in physics.
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a network can be weighted [61, 62] (with its edges having a specific weight, representing the strength

or importance of the link) or unweighted (all edges have the same weight, namely 1). In this thesis

we consider the simplest undirected, unweighted networks.

1.2.2 Distance measures

Processes taking place along the links of a network, such as package routing on the Internet, traveling

via air or contacting a virus from an infected individual are often affected by the length of the paths

between two nodes through the network. A path between two nodes is defined as a sequence of

edges which links them. A graph is connected if for any pair of nodes i and j, there is a path from

i to j. In unweighted graphs, every edge has weight 1, i.e. the distance between two neighboring

nodes takes the unit value. In general, there are many paths connecting any two nodes i and j. The

number of such paths of length l is given by the (i, j) element of the l-th power of the adjacency

matrix (Eq. 1.2).

A useful distance measure is the length of the shortest path, the geodesic, ℓij, between vertices

i and j. The mean shortest path length, defined as the average geodesic over all pairs < ij > of

vertices,

ℓ̄ =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

ℓij (1.5)

is an important structural quantity, characterizing the dimensions of the network. Another dis-

tance measure, the diameter, gives the maximal separation between a pair of vertices in a network,

max<ij> ℓij .

In Chapters 2 (Section 2.1) and 3 (Section 3.2.2) we will investigate the k-dependent geodesic,

ℓ(k), defined as

ℓ(k) =
1

NP (k)

∑

{i:ki=k}

1

N

N
∑

j=1

ℓij , (1.6)

and giving the average distance of a vertex of degree k to all other vertices.

The distribution of shortest path lengths, P(ℓ) (where we drop the index of ℓij), is usually a

narrow function, with small average value3. This small average value signals a small-world network,

for which the relative width of the distribution tends to zero as the network size N →∞ [63, 64, 65].

3Note that Eq. 1.5 is equivalent to ℓ̄ =
P

ℓ
ℓP(ℓ) =

P

k
ℓ(k)P (k) .
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Thus, for a large network, almost all pairs of vertices are at distance ℓ̄, from where, following the

reasoning already introduced in Section 1.1, N ∼ 〈k〉ℓ̄, and

ℓ̄ ∼ log N

log〈k〉 . (1.7)

This formula4 means that ℓ̄ grows slower than any power of N , so that making an analogy with

D-dimensional lattices5, for which ℓ̄ ∼ N1/D, small-world networks are many times said to be

infinite-dimensional objects: The number of neighbors a node can have increases with system size.

1. Assign vertex j distance zero, to indicate that it is zero steps away from itself, and set d← 0.

2. For each vertex l whose assigned distance is d, follow each attached edge to the vertex m at its

other end and, if m has not already been assigned a distance, assign it distance d+ 1. Declare

l to be a predecessor of m.

3. If m has already been assigned distance d + 1, then there is no need to do this again, but l is

still declared a predecessor of m.

4. Set d← d + 1.

5. Repeat from step 2 until there are no unassigned vertices left.

Now the shortest path (if there is one!) from i to j is the path we get by stepping from i to its

predecessor, and then to the predecessor of each successive vertex until j is reached. If a vertex has

two or more predecessors, then there are two or more shortest paths, each of which must be followed

separately if we wish to know all shortest paths from i to j. In unweighted graphs ℓij is the number

of predecessors in each shortest path.

Besides the computation of ℓij , this algorithm can be applied, with slight modifications, to the

computation of betweenness centrality (see Sections 1.2.6 and 3.2.3).

1.2.3 Clustering coefficient

This property measures the extent to which the neighbors of a particular node are connected to each

other. Formally, the local clustering coefficient [14, 68, 69], Ci, of node i is defined as (see Fig. 1.2.3)

4For a more precise derivation see Section 2.1.3
5In a lattice all vertices have the same degree, and are arranged in a specified ordered (deterministic) manner.
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Ci =
2ni

ki(ki − 1)
, (1.8)

Figure 1.3: Illustration of the definition of local clustering coefficient for three graphs: From left to

right Ci for the node in the center is respectively 0, 1/6 and 1.

where ni denotes the number of links connecting the ki neighbors of node i to each other6. Accord-

ingly, we can define the average clustering coefficient of a network as

〈C〉 = 1

N

∑

{i:ki>1}

Ci , (1.9)

where the sum runs over all vertices of degree larger than one. A useful measure is also given by

the k-dependent clustering coefficient [70]:

C(k) =
1

NP (k)

∑

{i:ki=k}

Ci , (1.10)

finding that for certain models of scale-free networks C(k) ∼ k−1 [70, 71], a result corroborated for

some empirical networks as well [39]. More generally, in complex networks, usually C(k) ∼ k−α.

To avoid confusion, it should be noted that another measure of clustering was already in use in

the sociology literature before the one defined in Ref. [14], Eq. 1.8, namely the transitivity or simply

clustering. Contrary to the average clustering coefficient (Eq. 1.9), instead of being given by the

mean of the ratios, the transitivity T is given by the ratio of the means:

T =
〈2ni〉

〈ki(ki − 1)〉 . (1.11)

6It is therefore defined only for vertices of degree ki > 1, and denotes the probability that the neighbors of node i

are themselves connected.
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In the mathematical and physical literature it seems to have been first discussed by Barrat and

Weigt [72]. However, there are significant differences in its algorithmic computation time [73], and

usually the average clustering coefficient (Eq. 1.9) is used.

As we will see in Chapters 2 and 3, real-world networks are usually highly clustered, when

compared to a random graph with the same average degree and number of vertices (see Section 1.4

for the definition of random graph).

1.2.4 Correlations

Correlations in networks may be present in a number of different manners. For example, the

clustering coefficient measures a kind of 3-node correlations [68]. Here we will introduce correlations

of degrees of nearest neighbor vertices, which describe organizational properties [74, 75, 76] that

the degree distribution does not address: Given a degree sequence of all the nodes, do high-degree

vertices in a network preferentially associate with other high-degree vertices, or are they mainly

connected to low-degree ones? This question has different types of answers depending on the level

of detail one wishes to use to address it. The degree correlation coefficient [77] is a number between

-1 and 1, representing the Pearson correlation coefficient of the degrees at either ends of an edge

(see Section 3.2.5 of Chapter 3). Networks in which hubs are preferentially connected to other hubs

are called assortative, and have a positive degree correlation coefficient. Social networks tend to

be assortative, while most of the networks in biology or communication tend to be disassortatively

mixed: hubs in these networks preferentially connect to smaller nodes [77, 78].

More detailed representations of degree correlations are given by the mean degree of the nearest

neighbors (nn) of a vertex as a function of its degree [21] given by

〈k〉nn(k) =
1

kNP (k)

∑

{i:ki=k}

k
∑

j=1

knn,j , (1.12)

where knn,j is the degree of the j-th nearest neighbor of vertex i and the first sum runs over all vertices

of degree k. Also to measure correlations two-dimensional histograms of the degrees of the vertices

at the ends of an edge, i.e. the joint degree-degree distribution P (k, k′). For uncorrelated networks

〈k〉nn(k) is independent of k and P (k, k′) factorizes to the product of the degree distributions

P (k)P (k′).
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We will use these measures in the study of a real network in Chapter 3, Section 3.2.5.

1.2.5 Subgraphs (cycles, trees)

Subgraphs are subsets of connected vertices in a graph, and provide important information about

the structure of many real networks (Section 1.3) [79]. For example, in cellular regulatory networks

feed-forward loops7 play a key role in processing regulatory information [80, 81], while in protein

interaction networks highly connected subgraphs represent evolutionary conserved groups of proteins

[82]. In a similar way, cycles, a special class of subgraphs, offer evidence for autonomous behavior

in ecosystems [83], cyclical exchanges give stability to social structures [84], and cycles contribute

to reader orientation in hypertext [85]. Finally, understanding the nature and frequency of cycles

is important for uncovering the equilibrium properties of various network models [86]. Another

class of subgraphs are trees, i.e. subgraphs without cycles (see Fig. 2.1b-e in Chapter 2). Trees are

important because many times it is possible to assume that a graph is tree-like (i.e. has very few

loops), an approximation that greatly simplifies calculations.

1.2.6 Centrality measures

Centrality measures allow us to probe the influence of a vertex in the network as a whole. The

simplest centrality measure of a vertex is its degree, giving us the number of connections to other

vertices. A more significant centrality measure is the betweenness centrality [87], which measures

the extent to which a vertex m lies on the paths between other vertices. It is defined as

σm =
1

(N − 1)(N − 2)

∑

{i,j:i6=j 6=m}

B(i,m,j)

B(i,j)
, (1.13)

where B(i,j) is the number of shortest paths between nodes i and j, B(i,m,j) is the number of such

shortest paths passing through vertex m, and the sum is taken over all pairs of vertices i and j which

do not include m. Here we introduce the pre-factor 1/[(N −1)(N −2)] (where N is the total number

of vertices) in order to account for normalization, so that 0 ≤ σm ≤ 1, useful for the calculations of

Section 3.2.3.

7Cycles (or loops) are sequences of distinct connected vertices, except the first and last which are the same.
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The centrality index of a vertex v (used in Section 2.1.5) is defined as [88]

cv =
(N − 1)
∑

u ℓvu
, (1.14)

where ℓvu is the length of the shortest path between vertices u and v, and the sum is over all vertices

u of the graph for which there is a path to v.

1.3 Networks in the real world

Networks are ubiquitous in our world8, and many times it is not easy to classify them into a single

category, since they are themselves interconnected. This is one of the reasons why network theory is

an interdisciplinary research field, and maybe also one of the reasons why most networks share the

same generic properties. For example, the World Wide Web can be seen as a communication network,

or information network, or technological network, or even as a social network (as illustrated, for

example, by personal blogs, or social networking websites). The increasing availability of electronic

databases has already established a wide list of complex networks, serving empirical network studies,

which are to be modeled by theoretical research. Here we list and classify a few examples of networks

which can be found around us. Many authors separate the networks in more classes (distinguishing

between communication or information networks, for example) or in a different manner. However,

in many situations this is merely conventional due to the reason referred above. Having this in mind,

we thus list in this section examples of different networks in three main classes: Social Networks;

Communication, Information and Technological Networks; and Biological Networks.

1.3.1 Social Networks

• Friendship Networks

Friendship networks have been studied for a long time in Sociology [89, 90, 91], given their

relevance to understand many social phenomena. Friendships are represented by links between

vertices representing people. These studies usually collect more information about each in-

dividual (rather than just his or her connections), allowing, for example, to see how society

8Indeed, every system involving interactions between its elements has an underlying network, vertices representing

the elements and edges representing interactions.
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organizes itself according to gender, race, personal interests, etc. The data collection for these

networks has been usually made by recurring to questionnaires, which limits the studies to

small nets. However, recently, a new generation of websites9 permitting users to create and

share content (as well as having fun!) by establishing connections between them [92], may

potentially be a way to turn much easier the analysis of these networks by applying automatic

methods, provided the privacy of each user is kept safe.

• Scientific Collaboration Networks

Collaboration networks are represented by graphs whose vertices represent (for example) sci-

entists who worked together, coauthoring at least one publication represented by one edge [93,

94]. On a coarser level a collaboration network can represent collaborations between scien-

tific institutions, such as universities and/or industry related entities [95]. In this thesis we

study two collaboration nets, one of each type as mentioned: The coauthorship network of

mathematical publications in Section 2.2 of Chapter 2 [96, 97] and, in Chapter 3, the network

of collaborations arising from the Fifth Framework Programme, an initiative which sets out

the priorities for the European Union’s research and technological development, promoting

collaborations between scientific institutions and industry related entities [98, 99].

• Movie Actor Networks

The Internet Movie Database10 is the source of one of the largest social networks open to

study. Based on all movies since the 1880’s, the network has over 400,000 actors as its nodes

and movies that represent the links between any of them [14, 100]. The degree distribution of

the actor network has a power-law tail [101], and its clustering coefficient is much larger than

that of a random network of similar size.

• The Network of Human Sexual Contacts

Sexually transmitted diseases like AIDS spread on the subset of the social network described

by sexual relationships. Although precise data about the links of this network is quite hard

to collect, a few investigations have given us insights about its topology. Liljeros et al. [102]

9For example LinkedIn (www.linkedin.com) or Facebook (www.facebook.com).
10URL: www.imdb.com
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have estimated the degree distribution of the sex web using a survey about the number of

sexual partners of 2810 Swedish individuals. Their investigation shows that the distribution

of the number of sexual contacts of both men and women follow power laws. This finding has

a strong impact on epidemiological studies aimed at eradicating diseases spreading on sexual

contact networks, as scale free networks with degree exponents under 3 were found to allow

diseases with arbitrarily low virulence to stay endemic and to show no improvement upon

random immunization of their nodes [26, 103].

1.3.2 Communication, Information and Technological Networks

• The Internet

The Internet, a network of physical cables between computers, routers and other telecom-

munication devices, is one of the favorite models of network studies [48, 49]. Its structure,

defined at two different levels of detail, is continuously mapped, and the huge number of nodes

and links provide good statistical grounds for the measurement of many network features. At

the most basic level the vertices are routers, while edges are the physical connections between

them. The Autonomous System (AS) level is a coarse-grained view of the Internet, where each

autonomous Internet domain (defined by local data routing, such as the whole network domain

of the University of Aveiro) is represented by a single vertex. Maps at both levels have been

publicly available since 1999 [20, 104, 105, 106, 107], when Faloutsos et al. [20] measured the

degree distribution at both levels and concluded that both follow power laws. Further studies

of these networks showed that they also display small world behavior (ℓ̄ around 9 for the

router, 3 for the AS level, Internet), along with high clustering coefficients (see Sections 1.2.2

and 1.2.3) [21, 108].

• The World-Wide Web (WWW)

The World-Wide Web (WWW) [48, 54], often incorrectly referred to as the “Internet”, is a

huge network of Web pages linked by directed URL hyperlinks [25, 109, 110]. It is the largest

available network11, with a number of web pages on the order of 1010, yet it is also very typical

11For a daily estimation of its size see http://www.worldwidewebsize.com/
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in many of its properties: high clustering and small world behavior with an average path length

estimated to be around 16 [23, 25, 111] (meaning that on average 16 clicks are enough to go from

one Web page to another). Moreover, both distributions of the ingoing and the outgoing links

are power laws with scaling over more than five orders of magnitude [23, 24, 112, 113, 111].

In a coarse-grained network representation of the World-Wide Web, each web domain (or

website12) like the whole www.ua.pt page system is represented as a node, while any hyperlink

from a document in this domain to another domain defines an edge between them. This bird-

eye view of the WWW also gives us a scale free network, and an even smaller cyber-world:

the average path length of this graph is 3.1 [111].

In Chapter 4 we look at the Web from a different perspective. Using it as a database, we

study the frequency of numerals in its documents, finding that it is much richer and complex

than would be predicted by classical Benford’s law [114] which states a logarithmic decay for

the frequency of the first digit in numbers occurring in databases.

• E-mail networks

The strucuture of e-mail networks, with electronic addresses as nodes and e-mails as the links,

has been investigated based on data stored in server log files [27, 115, 116]. The importance of

this communication network comes from its ability to spread viruses [117], a process similar to

natural virus spreading along social interactions [26]. Thus, the finding that e-mail networks

have scale free degree distribution explains the surprising prevalence of old viruses13, in spite

of easy-access anti-virus software [103, 118, 119].

• Articles citation networks

Citation networks reflect the way research articles of different scientific areas build on previous

knowledge. They can be constructed using online databases of scientific papers; links of these

networks are the references between them [6, 13, 120]. These references are directed links,

and studies of their topology indicate that the in-degree distribution of these networks follow

power laws [6, 13], while the out-degree distribution has a well-defined maximum and an

12Not to be confused with Web page: a website is formed by a set of web pages.
13For a list of known viruses see for example http://www.wildlist.org/
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exponential tail [121]. These citation networks are particular cases of citation graphs for

which new connections emerge only between a new vertex and already existing ones.

• Power grids

Power grids are networks of generators, transformers and substations linked by high-voltage

transmission lines spanning a whole country or region, distributing electric current. Statistical

studies on the power grid covering western states in the USA indicate that they are small

world networks with relatively high average clustering coefficient and an exponential degree

distribution [14, 52, 101]. Recent interest in vulnerabilities of the power grid has been triggered

by extensive electricity blackouts which affected large regions of the eastern United States [122,

123, 124].

• Telephone network

Defined as a network whose vertices represent telephone numbers and the directed edges calls

from one number to another, the phone-call (directed) network connecting people who had

long-distance conversation via AT&T (in the course of one day in the USA), was mapped

out by Aiello et al. [125, 126] and was found to have a power law degree distribution both for

incoming and outgoing calls. Mobile phone calls network has also been analyzed as a weighted,

undirected network [127], again have heterogeneous degree distribution, as well as non-trivial

clustering and correlations.

• Language networks

Words in a human language can be linked in several ways. Defined as graphs of words linked

if they appear no more than two words apart with a frequency higher than a chosen thresh-

old, co-occurrence networks based on the British National Corpus14 were found to have a

degree distribution with two distinct regimes of power law scaling [128]. Word co-occurrence

networks hint at methods used by people to organize concepts while choosing them for com-

munication [128, 129, 130, 131, 132]. Perhaps not surprisingly, this abstraction of human

language into a network also has a degree distribution with power law tail, along with a very

14URL: http://info.ox.ac.uk/bnc/
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high clustering coefficient. In Section 2.2 we use a semantic network of English synonyms

database to corroborate the theoretically obtained results of that section.

1.3.3 Biological Networks

• Metabolic Pathways, Protein Interaction Networks, Genetic Regulatory Networks

Many biological systems can be usefully represented as networks. Perhaps the classic example

of a biological network is the network of metabolic pathways, which is a representation of

metabolic substrates and products with directed edges joining them if a known metabolic

chemical reaction exists that acts on a given substrate and produces a given product. Molecular

biologists study huge maps of metabolic pathways. Studies of the statistical properties of

metabolic networks can be found, for example, in Refs. [36, 37, 39, 40, 133, 134].

A separate network is the network of mechanistic physical interactions between proteins15,

which is usually referred to as a protein interaction network (or ‘interactome’). These networks

have been studied by a number of authors [38, 82, 136, 137, 138].

Another important class of biological network is the genetic regulatory network. The expres-

sion of a gene, i.e., the production by transcription and translation of the protein for which the

gene codes, can be controlled by the presence of other proteins, both activators and inhibitors,

so that the genome itself forms a switching network with vertices representing the proteins

and directed edges representing dependence of protein production on the proteins at other

vertices [139, 140, 141].

• Neural networks

The worm C. elegans is the only organism with a completely mapped neural network. It has 282

neurons and close to 2000 connections (synapses or gap junctions) [142]. This small but dense

network has an exponential degree distribution and quite high clustering coefficient [14, 101].

Functional magnetic resonance imaging techniques can be used to measure the activity of

regions of the human brain. Correlations between these regions can define a functional network

15Not to be confused with the protein folding process, whose network representation has also been recently given in

Refs. [31, 135]
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of brain sites connected by common patterns of activity. These networks are dynamic, and the

details of their structure is interesting for functional studies of the brain. Nonetheless, their

large-scale organization is scale free, with high clustering coefficients [143].

• Food webs and networks of ecosystems

Food webs are networks of species linked by predator-prey interactions. These networks have

been mapped out in a few habitats by ecologists who use them to investigate interactions

between different species [144]. A few independent studies on food webs of different sizes have

shown that they are highly clustered, and the average path length between species is below

3 [145, 146, 147]. The nature of their degree distribution is unclear, mostly due to the small

size of these systems.

• Disease networks

Disease networks, where diseases and genes are linked in a bipartite 16 network if the disease

is caused by mutations in the gene, have been studied [148, 149, 150] revealing the existence of

distinct disease-specific functional modules associated with characteristic genes and therefore

with proteins, which may allow the production of more specific drugs for diseases [151].

1.4 Network models

In the past few years a series of network models have been developed to explain nontrivial generic

properties of real-world networks, such as the small world property, scale free degree distribution or

high clustering. In this section we review the most influential models.

1.4.1 Classical random graph

The simplest random networks are so-called classical random graphs (CRG’s) [1, 2, 3, 4]. In simple

terms, these are maximally random networks under the constraint that the mean degree of their

vertices, 〈k〉, is fixed. The number of vertices N is also fixed in these uncorrelated graphs. There

16A bipartite network is one formed by two distinct classes of nodes with links existing only between nodes of distinct

classes.
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are two main versions of CRG’s: The Erdős and Rényi model [4] is a statistical ensemble of all

possible graphs of precisely N vertices and precisely L edges, where each member of the ensemble

has equal probability of realization; on the other hand, in the Gilbert model [2], each pair of N

vertices is connected with some probability p. This produces a statistical ensemble of all possible

graphs of N vertices. The members of this ensemble are weighted with some statistical weights. In

the thermodynamic limit (infinitely large networks), these two versions are equivalent, and 〈k〉 =

2L/N = p(N − 1). The degree distribution of a CRG has a Poisson form:

P (k) =
e−〈k〉〈k〉k

k!
. (1.15)

Here 〈k〉 is fixed as N → ∞. This is an extremely rapidly decreasing distribution (faster than

exponential) after the peak close to its natural scale 〈k〉. All moments converge.

Given that all pairs of vertices are connected with the same probability p, the clustering coefficient

of a CRG is 〈C〉 = p.

The limit with fixed 〈k〉 as N →∞ (i.e. p→ 0 when N →∞) corresponds to a sparse graph for

which the mean number of connections of a vertex is much less than the number of connections of

a vertex in a fully connected graph (also called complete graph). This limit is the most interesting

given that it is when the network’s giant connected component — a subgraph of mutually reachable

vertices whose size is a non-vanishing fraction of N (when N → ∞) — is formed. Otherwise the

network is only a set of separated trees (Section 1.2.5). It turns out that in CRG’s, the giant

connected component exists if the mean number of connections of a vertex exceeds one, 〈k〉 > 1. At

〈k〉 = 1≪ N there is a phase transition where the giant connected component is born17.

The giant connected component is also typically present in complex networks, whose main dif-

ference to CRG’s is the presence of high clustering coefficient (in contrast to the vanishing 〈C〉 = p)

and the broad, slowly decaying, degree distribution (in contrast to Eq. 1.15). Common to both

complex networks and CRG’s is the fact that both show the small-world effect (Section 1.2.2).

17This phase transition is the equivalent to the one observed in percolation theory in the infinite-dimensional

limit [42, 44].
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1.4.2 Configuration model

The configuration model (introduced by Bollobás [9]) is the first natural generalization of classical

random graphs. In very simple terms, the configuration model is a maximally random graph with

a given degree distribution P (k). This complex random equilibrium network (actually an ensemble

of networks) is uncorrelated. The configuration model produces tree-like graphs.

More precisely, the configuration model generalizes the classical random graph to a graph with

generic degree distribution by drawing a degree sequence ki (i = 1, ..., N) from the desired distri-

bution P (k). A well known algorithm to generate a graph according to this model was given by

Molloy and Reed [152, 153].

1.4.3 Small-world network model

Watts and Strogatz proposed a specific class of complex networks [14], which display the small-

world effect, and named them small-world networks18. These are lattices with high clustering (e.g.,

a trigonal lattice), where randomly chosen vertices are connected by long-range shortcuts. Actually,

a small-world network is a superposition of a lattice and a classical random graph. Due to the strong

clustering of the lattice, a small-world network has high clustering. Due to the compactness of the

classical random graph, a small-world network is compact.

1.4.4 Preferential attachment model

The most popular self-organization mechanism of networks is preferential attachment (or preferential

linking): vertices of high degree attract new connections with higher probability. More precisely,

the probability that a new edge becomes attached to a vertex with k connections is proportional to

a ‘preference’ function of k, f(k) [17]. The resulting structure of the growing net is determined by

the form of this function.

Scale-free degree distributions may emerge only if the preference function is linear, that is

f(k) =
(k + A)

(〈k〉 + A)
, (1.16)

18Not to be confused with a small world, which is a network displaying the small-world effect (see Section 1.2.2).
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where A is a constant. This seems to be a widespread situation in real networks. This form of

preference produces γ exponents between 2 and ∞.

Models of evolving systems based on this concept were proposed by Yule [154] and Simon [8].

To growing networks, this idea was applied by Price [7] — a linear preference function — and by

Barabási and Albert [15] — a proportional preference function. Specifically, in the BA model the

probability that a new vertex i becomes attached to a vertex j already in the network is given by

Πi→j =
kj
∑

l kl
, (1.17)

and corresponds to the case when A = 0 in the preference function Eq. 1.16. In the BA model, the

growing network is a citation graph: At each time step, a new vertex is added to the network and

becomes attached to m vertices, according to Eq. 1.17. A simple and fast algorithm to generate a

BA network consists of the following steps:

1. Start with m0 completely connected vertices.

2. Initialize a linear array where each vertex i of the network is present ki times. [At this step

ki ≡ m0 − 1,∀i, and the array size is m0 × (m0 − 1)].

3. At each step add a vertex to the network, and randomly choose m elements of the array of

the previous step, to which the new vertex will connect. (To avoid multiple connections, if the

same vertex is chosen more than once, then choose another random element until there is no

repetition.)

4. Update the array by adding to it m new entries corresponding to the new vertex, and another

m entries each corresponding to each selected vertex in the previous step.

5. Repeat from step 3 until the desired network size N is reached.

In Chapter 2 we will use a more general algorithm in order to generate networks according to f(k)

in Eq. 1.16 with A > 0. The difference from the previous algorithm is that with probability m0/(m0+

A) the connection is chosen preferentially (according to Step 3), otherwise, with complementary

probability, the connection is chosen randomly between the existing vertices.
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1.4.5 Deterministic models

In Chapter 2 (see Figure 2.1) we use a set of deterministic growing graphs [70, 155] to study

structural properties of networks. These graphs are built by using a set of rules up to a certain

number of vertices. They correctly reproduce many features of real networks, allowing exact analytic

calculations, and can be used as tools to recursively guess new ones.
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Chapter 2

Structure of complex networks

The first step toward a complete characterization of complex networks consists in a reliable descrip-

tion of their structural properties, which play a relevant role in the functionality of real networks

as well as in the dynamical patterns of processes taking place on them. In this chapter we present

a theoretical study of two of the fundamental properties discussed in Section 1.2 of Chapter 1. In

Section 2.1, we study the average shortest path length (Eq. 1.5) as a function of degree, ℓ(k) for

several types of networks. In Section 2.2 we investigate the abundance of subgraphs and cycles in

networks with both well defined degree distribution, P (k), and k-dependent clustering coefficient,

C(k) (Eq. 1.10).

2.1 k-dependent geodesic in complex networks, ℓ(k)

In this section we study the mean length ℓ(k) of the shortest paths between a vertex of degree k

and the rest of the vertices (see Section 1.2.2) in growing networks, where correlations are non-

negligible. In a number of deterministic scale-free networks we observe a power-law correction to

a logarithmic dependence, ℓ(k) = A ln[N/k(γ−1)/2] − Bkγ−1/N + . . . in a wide range of network

sizes. Here N is the number of vertices in the network, γ is the degree distribution exponent, and

the coefficients A and B depend on a network. We compare this law with a corresponding ℓ(k)

dependence obtained for random scale-free networks growing through the preferential attachment

mechanism. In stochastic and deterministic growing trees with an exponential degree distribution,

25
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we observe a linear dependence on degree, ℓ(k) ∼= A ln N−Bk. We compare our findings for growing

networks with those for uncorrelated graphs.

2.1.1 Introduction

The mean intervertex distances in networks were extensively studied both in the framework of

empirical research [23] and analytically [100, 65, 156, 157]. The typical size dependence of the

mean intervertex separation is logarithmic, ℓ̄(N) ∝ ln N . However, the mean intervertex distance is

an integrated, coarse characteristic. One may be interested in a more delicate issue—the position

of an individual vertex in a network. Recently Holyst et al. [158], have considered the question:

how far are vertices of specific degrees from each other? They have shown that in uncorrelated

networks, the mean length of the shortest path between vertices of degrees k and k′ is ℓ(k, k′) ∼=
D+A ln N−A ln(kk′), where D is independent of N , k, and k′, and the coefficient A depends only of

the mean branching ratio of the network. Note the coincidence of the coefficients of ln N and ln(k, k′)

in this result. The authors of Ref. [158], also calculated ℓ(k, k′) of networks with nonzero clustering

though without degree-degree correlations. In this case, they have arrived at the same expression

as above but with coefficients of ln N and ln(k, k′) additionally depending on the clustering. Here

we present our observations for another (though related) characteristic—the mean length of the

shortest paths from a vertex of a given degree k to the remaining vertices of the network, ℓ(k). This

quantity is related to ℓ(k, k′) in the following way:

ℓ(k) =
∑

k′

P (k′)ℓ(k, k′) , (2.1)

and so

ℓ̄ =
∑

k

P (k)ℓ(k) =
∑

k,k′

P (k)P (k′)ℓ(k, k′) . (2.2)

In simple terms, we reveal the smallness of a network from the point of view of its vertex of a given

degree. Our objects of interest are growing (and so inevitably correlated) networks.

In Section 2.1.2 we list our main observations, so that readers not interested in details may

restrict themselves to this section. Section 2.1.3 contains the discussion of the ℓ(k) dependence in

uncorrelated networks for the sake of comparison. In Section 2.1.4 we explain in detail how the

results were obtained and describe particular cases. In Section 2.1.5 we make a few remarks on the
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degree-dependent intervertex separation in various networks and discuss relations of this quantity

to centrality measures (see Section 1.2.6) used in sociology [88, 160].

2.1.2 Main observations

For the purpose of the analytical description of ℓ(k) we use simple deterministic graphs. Determin-

istic small worlds were considered in a number of recent papers [70, 155, 161, 162, 163, 164, 165, 166,

167, 168, 169] and have turned out to be a useful tool. (We called these networks pseudofractals.

Indeed, at first sight, they look as fractals. However, they are infinite dimensional objects, so that

they are not fractals.) These graphs correctly reproduce practically all known network characteris-

tics. We use a set of deterministic scale-free models with various values of the degree distribution

exponent γ, P (k) ∝ k−γ (see Fig. 2.1). We consider deterministic graphs with γ in the range be-

tween 2 and ∞, where a graph with γ =∞ has an exponentially decreasing (discrete) spectrum of

degrees.

In the studied scale-free deterministic graphs, in a wide range of the graph sizes, the mean

separation of a vertex of degree k from the remaining vertices of the network is found to follow the

dependence:

ℓ(k) = A ln

[

N

k(γ−1)/2

]

−B
kγ−1

N
+ . . . . (2.3)

The constants A and B (as well as the sign of B) depend on a particular network.

In stochastic growing scale-free networks, we observe a dependence ℓ(k,N) shown in Figure 2.2.

This figure demonstrates the results of the simulations of networks growing by the preferential

attachment mechanism with a linear preference function [17]. While the dependence on ln N is

linear practically in the entire range of observation, ℓ(k) vs. ln k is of a more complex form (see

Fig. 2.2). The derivative dℓ(k)/d ln k is non-zero at k = 1 and at large degrees, ℓ(k) is fitted by a

linear function of ln k with a larger slope. One should note that in all growing networks considered

in this section, new connections cannot emerge between already existing vertices. These networks

are often called “citation graphs”.

In the specific point γ = 3, correlations between the degrees of the nearest neighbors in these

graphs are anomalously low. In this situation, the main contribution to ℓ(k) reduces to ℓ(k) ∝
ln(N/k), which coincides with the result for equilibrium uncorrelated networks (see the next section).
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Figure 2.1: The set of deterministic graphs that is used in this section. (a) A scale-free graph with

the exponent of the degree distribution γ = 1+ln 3/ ln 2 = 2.585 . . . [43, 70]. At each step, each edge

of the graph transforms into a triangle. (b) A scale-free tree graph with γ = 1+ln 3/ ln 2 = 2.585 . . .

[161]. At each step, a pair of new vertices is attached to the ends of each edge of the graph. (c) A

scale-free tree graph with γ = 3. At each step, a pair of new vertices is attached to the ends of each

edge plus a new vertex is attached to each vertex of the graph. (d) A scale-free tree graph with

γ = 1 + ln 5/ ln 2 = 3.322 . . .. At each step, a pair of new vertices is attached to the ends of each

edge plus two new vertices are attached to each vertex of the graph. (e) A deterministic tree graph

with an exponentially decreasing spectrum of degrees [161]. At each step, a new vertex is attached

to each vertex of the graph. In all these graphs, a mean intervertex distance grows with the number

N of vertices as ln N .
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Figure 2.2: Degree-dependent mean intervertex separation in a random scale-free network (tree)

growing through the mechanism of preferential attachment. At each time step a new vertex is

added. It becomes attached to a vertex selected with probability proportional to the sum of the

degree of this vertex and a constant A — “additional attractiveness” [17] (see Section 1.4.4). Here

we use A = 1. (a) ℓ(k) vs. log10 k for networks of N = 1000, 3000, 10 000, 30 000, 100 000, and

300 000, vertices. Each of the first four curves were obtained after 50 runs, while for the networks

of 100 000 and 300 000 vertices, 20 and 5 runs were used, correspondingly. Binning was made at

large degrees, which allowed us to reduce noise. The inset demonstrates that in this network, the

difference ℓ(k = 1) − ℓ(k) does not depend on the size N . In the inset, for the sake of clearness

we do not show lines connecting points. The dashed lines highlight two limiting behaviors. As k

approaches its minimal value k = 1, ℓ(k = 1)− ℓ(k) ≈ 1.0 log10 k ≈ 0.43 ln k for all studied network

sizes, while at large degrees, ℓ(k = 1) − ℓ(k) ≈ const + 4.1 log10 k ≈ const + 1.8 ln k. (b) The

dependence of ℓ(k = 1) on log10 N . For comparison, a line with a slope 3 is shown.
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Formula (2.3) fails at γ →∞. E.g., it cannot be applied for networks with an exponential degree

distribution. In growing trees with this distribution, we observe the dependence:

ℓ(k) ∼= A ln N −Bk , (2.4)

where the constants A and B depend on a network. In particular, we found that this law is exact in

deterministic graphs (trees) with an exponential degree distribution [e.g., graph (e) in Fig. 2.1] at

least up to very large sizes. Moreover, we observed the same dependence in a simulated stochastically

growing tree with random attachment. In this tree (with an exponential degree distribution), at

each time step, a new vertex is attached to a randomly selected vertex of the net. The result of

the simulation of this network is shown in Fig. 2.3(a). In both the networks—graph (e) in Fig. 2.1

and the corresponding stochastic net with random attachment—the slope of the degree dependence

turned out to be −1/2. More generally, if in a growing tree of this kind, at each step, n new vertices

become attached to a vertex, the slope of the degree dependence equals −1/(n+1) [see Fig. 2.3(b)].

All networks that we studied, had the generic property:

max
k

ℓ(k) ≈ 2min
k

ℓ(k) , (2.5)

in the large network limit. As is natural, the maximum value of ℓ(k) is attained at the minimal degree

of a vertex in a network, and vice-versa, the minimum value of ℓ(k) is attained at the maximum

degree.

2.1.3 ℓ(k) of an uncorrelated network

The configuration model [170, 171, 172, 173, 174] is a standard model of an uncorrelated (equi-

librium) random network (Section 1.4.2). The mean intervertex distance ℓ̄ in these networks is

estimated in the following way, Ref. [100] (see also Refs. [65, 157]). The mean number of m-th

nearest neighbors of a vertex is

zm = z1(z2/z1)
m−1 , (2.6)

where z1 = 〈k〉 is the mean number of the nearest neighbors of a vertex, i.e. the mean degree.

z2 = 〈k2〉−〈k〉 is the mean number of the second nearest neighbors of a vertex. z2/z1 is the branching

coefficient of the network. By using formula (2.6), one can get ℓ̄: zℓ̄ ∼ N , so ℓ̄(N) ≈ ln N/ ln(z2/z1).
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Figure 2.3: Degree-dependent mean intervertex separation in stochastic networks (trees) growing

under the mechanism of random attachment. These networks have exponential degree distributions.

(a) At each time step, a vertex is attached to a randomly chosen vertex of the network. The

dependence is the result of the simulation of the network of 105 vertices, 50 runs. For comparison,

a line with a slope −1/2 is shown. (b) At each time step, 3 vertices are attached to a randomly

chosen vertex of the network. The dependence is presented for the network of 9998 vertices, 50

runs. The initial configuration consists of two vertices connected by an edge. For comparison, a

line with a slope −1/4 is shown. Note that in these plots max ℓ(k) ≈ 2min ℓ(k). In other words,

in these networks, there are no vertices of degree greater than kmax: ℓ(kmax) = max ℓ(k)/2. Note

fluctuations in the range of the highest degrees.
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Similarly, for the mean number of m-th nearest neighbors of a vertex of degree k, we have

zm(k) = k(z2/z1)
m−1 . (2.7)

So, the estimate is k(z2/z1)
ℓ(k)−1 ∼ N and thus

ℓ(k) ≈ ln(N/k)

ln(z2/z1)
. (2.8)

Here we neglected an additional constant independent of N and k which would be excess precision.

Relation (2.7) is evident. It also may be obtained strictly by using the Z-transformation tech-

nique [100, 175]:

zm(k) =

[

x
d

dx
φk

1(φ1(. . . φ1(x)))

]

x=1

. (2.9)

φ1(x) = φ(x)/z1 is the Z-transformation of the distribution of the number of edges of an end vertex

of an edge with excluded edge itself. φ(x) is the Z-transformation of the degree distribution of the

network: φ(x) ≡∑k P (k)xk (see Ref. [100]). Formula (2.9) is a direct consequence of the following

features of the configuration model: (i) the network has a locally tree-like structure, (ii) vertices

of the network are statistically equivalent, (iii) correlations between degrees of nearest neighbor

vertices are absent. Relation (2.9) together with φ1(1) = φ(1) = 1 readily leads to relation (2.8).

Note that expression (2.8) also follows from the mentioned result of Holyst et al., Ref. [158], that

is ℓ(k, k′) ≈ ln[N/(kk′)]/ ln(z2/z1) for the configuration model. Substituting this result into formula

(2.1) and ignoring terms independent of N and k immediately gives expression (2.8). In its turn,

substituting expression (2.8) into formula (1) leads to the standard formula for the configuration

model: ℓ̄ ≈ ln N/ ln(z2/z1).

One point should be emphasized. In the configuration model, the logarithmic size dependence of

the (degree-independent) mean intervertex distance ℓ̄(N) ∼ ln N is valid only for degree distributions

with a finite second moment 〈k2〉. If 〈k2〉 diverges as N → ∞, ℓ̄(N) grows slower than ln N . One

can see that the result (2.8) may be generalized to any given form ℓ̄(N) of the size-dependence of

the mean intervertex distance. In this general case, the degree-dependent separation is expressed in

terms of the function ℓ̄(N), namely, putting in evidence also its N -dependence, ℓ(k,N) ∼ ℓ̄(N/k).
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2.1.4 Derivations

In this section we study a degree-dependent intervertex separation in the deterministic graphs of

Fig. 2.1. Graphs (a) – (d) have a discrete spectrum of vertex degrees with a power-law envelope.

Graph (e) has a discrete spectrum of vertex degrees with an exponential envelope. We also list some

basic characteristics of these graphs. We stress that the main structural characteristics (clustering,

degree–degree correlations [176, 21, 177, 38, 178, 77], etc.) of these deterministic networks are quite

close to those of their stochastic analogs (see [70]).

(A) Graph (a) in Fig. 2.1.—This graph was proposed in Ref. [43] and extensively studied in

Ref. [70]. The growth starts from a single edge (t = 0). At each time step, each edge of the graph

transforms into a triangle. Actually, we have a deterministic version of a stochastic growing network

with attachment of a new vertex to a randomly chosen edge, see Ref. [179]. The number of vertices

of the graph is Nt = 1 + (3t + 1)/2. (t = 0, 1, 2, . . . is the number of the generation.) In the large

network limit, the mean degree of the graph is 〈k〉 → 4.

Degrees of the vertices in the graph take values k(s) = 2s, s = 1, 2, . . . , t. The spectrum of degrees

has a power-law envelope. This spectrum corresponds to a continuum scale-free spectrum P (k) ∝
k−γ with exponent γ = 1 + ln 3/ ln 2 = 2.585 . . .. Note that this network has numerous triangles,

which suggests high clustering. In more detail, by definition, the average clustering coefficient of a

vertex of degree k is (see also the equivalent Eq. 1.10)

C(k) =

〈

c(k)

k(k − 1)/2

〉

k

=
〈c(k)〉k

k(k − 1)/2
. (2.10)

Here, c(k) is the number of triangles attached to a vertex of degree k, and 〈· · · 〉k means the averaging

over all vertices of degree k. One can see that in this graph (as well as in its stochastic version)

C(k) =
2

k
. (2.11)

[Indeed, by construction, the number of triangles attached to a vertex of degree k in the graph is

k − 1. So, C(k) = (k − 1)/[k(k − 1)/2] = 2/k.] This gives, for the mean clustering,

〈C〉 =
∑

k

P (k)C(k) =
4

5
, (2.12)

while the standard clustering coefficient (transitivity), i.e., the density of loops of length 3 in a
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network,

T =

∑

k P (k)C(k)k(k − 1)
∑

k P (k)k(k − 1)
, (2.13)

approaches zero in the infinite network limit, T = 0. Note the difference between the finite mean

clustering of the network and its zero clustering coefficient.

In principle, one may derive an exact analytical expression for the degree-dependent separation

by using recursion relations and the Z-transformation technique. However, these calculations turn

out to be cumbersome. Instead, here we only check that some analytical formula for ℓ(k) is valid

in a sufficiently large number of generations of a deterministic graph, up to, say, t ∼ 10 or 12. So,

we confirm a guessed expression in networks of sizes up to N ∼ 105. In fact, we implement the

following approach:

(i) Find the mean separation values ℓt(s) for all kinds of vertices in each of several first generations

of the deterministic graph [t is the number of generation, and k = 2s, s = 1, 2, . . . , t];

(ii) by using this array of numbers, guess the form of ℓt(s);

(iii) check this result by computing directly ℓt(s) for several extra generations of the graph.

There are few computations in stage (i): we have to find only t values of ℓt(s) in a t generation of a

graph. For sufficiently small networks, these values can be found even without a computer. Step (ii)

also turns out to be rather easy since we already know the structure of the analytical expressions for

a mean intervertex distance in these networks (see Ref. [70]). Step (iii) may be performed by using a

computer to count paths. This approach is based on our experience with problems on these graphs

and was checked in Ref. [70] for related quantities. Our guess actually exploits underlined recursion

relations without revealing them. Nonetheless, we can only claim that the analytical expressions,

obtained in this way, are valid at the studied generations of our deterministic graphs. In principle,

there exists a (small) chance that at some higher generation (or generations), these formulas fail.

Thus, the results of this section should be considered only as observations of ℓ(k) for a set of networks

of a modest size.

In this way, we get

ℓt(s) =
1

2(Nt − 1)
[2(2t− s + 5)3t−2 − 3s−1 + 1] . (2.14)
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This formula is valid for t ≥ 1. We checked it up to t = 12, which corresponds to Nt = 265 722. We

also checked that this formula leads to the known exact formula for the mean intervertex distance

ℓ̄ for any t and so that N [70]. An asymptotic form of this expression is

ℓ(k,N) =
4

9 ln 3
ln N − 2

9 ln 2
ln k − kγ−1

6N
+

4

9

ln 2

ln 3
+

10

9
+ . . . (2.15)

at large N , where N is the total number of vertices in the graph. This leads to formula (2.3).

One can see that the minimum value of ℓ(k) is ℓmin = ℓ(k = 2t) ∼= 2t/9, where t ∼= ln N/ ln 3.

On the other hand, its maximum value is ℓmax = ℓ(k = 2) ∼= 4t/9. So, we arrive at relation (2.5):

ℓmax = 2ℓmin.

(B) Graph (b) in Fig. 2.1.—This graph was proposed in Ref. [161]. At each time step, each

edge of the graph transforms in the following way: each end vertex of the edge gets a new vertex

attached [see Fig. 2.1, graph (b), instant 0 → instant 1]. This graph is very similar to graph (a).

In particular, the exponent of its degree distribution is the same, γ = 1 + ln 3/ ln 2 = 2.585 . . .. The

difference is that the graph is a tree, so the mean degree 〈k〉 → 2 as N →∞.

The total number of vertices in the graph is Nt = 3t + 1. The vertices have degrees k(s) = 2s,

where s = 0, 1, 2, . . . , t. In the same way as for graph (a), we find the expression

ℓt(s) =
1

2(Nt − 1)
[(4t− 2s + 9)3t−1 − 3s] , (2.16)

which is observed starting with t = 0. This leads to the asymptotic relation

ℓ(k,N) =
2

3 ln 3
ln N − 1

3 ln 2
ln k − kγ−1

2N
+

3

2
+ . . . , (2.17)

that is, to formula (2.3).

The minimum value of ℓ(k) is ℓmin = ℓ(k = 2t) ∼= t/3, where t ∼= ln N/ ln 3. The maximum value

is ℓmax = ℓ(k = 1) ∼= 2t/3, i.e., again, we arrive at relation (2.5).

(C) Graph (c) in Fig. 2.1.—At each step, (i) a new vertex becomes attached to each end vertex

of each edge of this graph and, simultaneously, (ii) a new vertex becomes attached to each vertex

of the graph. This produces a growing deterministic scale-free tree with exponent γ = 3, which is

a deterministic analog of the Barabási-Albert model [15, 16] (for exact solution of the stochastic

model, see Refs. [17, 176, 18]).



36 CHAPTER 2. STRUCTURE OF COMPLEX NETWORKS

The number of vertices in the graph is Nt = 1 + (4t+1 − 1)/3. Their degrees take values

k(s) = 2s − 1, s = 1, 2, 3, ..., t + 1. The observed degree-dependent separation is

ℓt(s ≥ 2) =
1

9(Nt − 1)
[2(6t− 3s + 10)4t − 4s − 1] . (2.18)

Asymptotically, this is

ℓ(k,N) =
1

ln 4
lnN − 1

2 ln 2
ln k − kγ−1

9N
+

ln 3

2 ln 2
+

2

3
+ . . . (2.19)

for k,N ≫ 1 (note that the maximum degree of a vertex in this graph is kmax ∼ N1/2). This leads to

expression (2.3) with γ = 3, which coincides with result (2.8) for uncorrelated networks. This is an

understandable coincidence. Indeed, correlations between degrees of the nearest neighbor vertices

in this deterministic graph, as well as in the Barabási-Albert model are anomalously week. So, the

result must be close to that for an uncorrelated network.

The minimum value of ℓ(k) in this graph is ℓmin = ℓ(k = 2t+1 − 1) ∼= t/2, where t ∼ ln N/ ln 4.

The maximum value is ℓmax = ℓ(k = 1) ∼= t, so that relation (2.5) is fulfilled.

(D) Graph (d) in Fig. 2.1.—At each step, (i) a pair of new vertices is attached to ends of each

edge of the graph plus (ii) two new vertices are attached to each vertex of the graph. This results

in the value of the γ exponent greater than 3, γ = 1 + ln 5/ ln 2 = 3.322 . . ..

The number of vertices in the graph is Nt = (3 · 5t + 1)/2. Degrees of the vertices are k(s) =

3 · 2s−1 − 2, s = 1, 2, 3, ..., t + 1. The observed expression for the degree-dependent separation is

ℓt(s) =
1

8(Nt − 1)
[(72t − 36s + 71 + 53−s)5t−1 + 25s−1 − 6] . (2.20)

The corresponding asymptotic expression is of the following form:

ℓ(k,N) =
6 ln N

5 ln 5
− 3 ln k

5 ln 2
− 5− ln 3/ ln 2

4N
kγ−1 + 1.232 + . . . , (2.21)

where the contribution 1.232 . . . = [6 ln(2/3)]/(5 ln 5) + (3 ln 3)/(5 ln 2) + 7/12. Again, now with the

graph where γ > 3, we arrive at formula (2.3).

In this graph, we have ℓmin = ℓ(k = 3 · 2t − 2) ∼= 3t/5 and ℓmax = ℓ(k = 1) ∼= 6t/5, where

t ∼= ln N/ ln 5.

The important feature of the expressions for ℓ(k,N) in deterministic scale-free networks with

γ 6= 3 were non-equal coefficients of lnN and ln k. For comparison we have measured ℓ(k,N) in
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a random growing scale-free network growing through the mechanism of preferential attachment

with a linear preference function [17]. At each time step, a new vertex emerges and becomes

attached to a vertex chosen with probability proportional to the sum of its degree and a constant

A. Exponent γ = 3 + A. We use A = 1, so that γ = 4. The resulting degree-dependent separations

are shown in Fig. 2.2(a) for networks of up to 300 000 vertices. One can see in the inset that in

these random networks, the difference ℓ(k = 1, N) − ℓ(k,N) is independent of N in contrast to

the deterministic graphs (a)—(d). Furthermore, [ℓ(k = 1, N) − ℓ(k,N)]/ log10 k ≈ 1.0 as log10 k

approaches zero [i.e., dℓ(k,N)/d ln k ≈ −0.43]. However, at large k, we find a linear dependence

on log10 k with a larger slope, namely 4.1 [i.e., dℓ(k,N)/d ln k ≈ −1.8]. In its turn, ℓ(k = 1, N) is

well fitted by a linear dependence on log10 N with a slope approximately 3.1, see Fig. 2.2(b) [i.e.,

dℓ(k = 1, N)/d ln N ≈ 1.35]. The difference in these slopes — 4.1 and 3.1 — is in sharp contrast

to uncorrelated networks. The ratio of these slopes, 1.3 is close to what we had for deterministic

graphs according to Eq. (2.3) with γ = 4 substituted, namely, (γ−1)/2 = 1.5. Moreover, Fig. 2.2(a)

shows that for each network size, ℓmax ≈ 2ℓmin, as was observed in deterministic graphs.

One should note that the contribution ∼ kγ−1/N to ℓ(k,N) for the deterministic graphs, is

noticeable only in a narrow neighborhood of kmax, if results are presented in the form ℓ(k,N) vs.

ln k. On the other hand, the linear dependence ℓ(k,N) on ln k is realized in a much wider range

of ln k. In Eq. (2.15)—graph (a), it is valid for all degrees up to nearly kmax, and in Eqs. (2.17),

(2.19), and (2.21)—graphs (b), (c), and (d), respectively, this law is observable for k ≫ 1. It is in

this region that we compared the rations of the coefficients of ln k and ln N in deterministic and

stochastic growing scale-free networks.

(E) Graph (e) in Fig. 2.1.—At each time step, a new vertex becomes attached to each vertex

of the graph. The growth starts with a single vertex (t = −1). The total number of vertices in

the graph is Nt = 2t+1. The degree distribution is exponential. One can check that the number of

vertices of degree k at time t is Nt(k ≤ t) = 2t+1−k, Nt(k = t + 1) = 2 (t is assumed to be greater

than −1).

By using the above described procedure, we find the exact expression:

ℓt(k) =
2t

2t+1 − 1
(2t + 2− k) . (2.22)

This formula shows that the linear dependence on degree is valid for any k. For the large graphs we
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have

ℓ(k,N) ∼= ln N

ln 2
− k

2
, (2.23)

which confirms formula (2.4).

In this graph, ℓmin
∼= ln N/(2 ln 2) ∼= ℓmax/2 which coincides with relation (2.5).

Graph (e) has a close stochastic analog—a tree, where at each step, a new vertex is attached to

a randomly chosen vertex. It is easy to obtain the asymptotic expression for the mean shortest path

length ℓ̄(N) in this network. Let us consider even more general model. Let at each time step, n new

vertices be attached to a randomly selected vertex. Then the total number of vertices N grows as

Nt
∼= nt. For the total length of the shortest paths between vertices in the network at time t + 1

one can right:

Nt+1(Nt+1 − 1)

2
ℓ̄(t + 1) =

Nt(Nt − 1)

2
ℓ̄(t)

+
1

Nt
Nt

(

1 · n + 2
n(n− 1)

2
+ n(Nt − 1)[ℓ̄(t) + 1]

)

. (2.24)

The first term on the right-hand side of this equation is the total length of the shortest paths in the

network at time t. The second term is the increase of this total length due to the attachment of n

new vertices to a randomly chosen vertex. The factor 1/Nt is due to the random choice. The term

1 · n is the sum of the paths connecting the new vertices to their “host”. The term 2 · n(n− 1)/2 is

the total length of the paths between the new vertices. The last term in the large parentheses is the

sum of the lengths of the paths connecting the n new vertices and the Nt − 1 old vertices distinct

from the vertex receiving new connections. In the large network limit, Eq. (2.24) is readily reduced

to the following one:

N2

2
n

dℓ̄

dN
= −n(n + 1)

2
ℓ̄ + nN ∼= nN, (2.25)

and so we have

ℓ̄ ∼= 2 ln N, (2.26)

independent of n.

The calculation of ℓ(k) is a more difficult problem. So, for comparison, we present here only the

result of the simulation of this stochastic network. Figure 2.3(a) demonstrates that the dependence
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ℓ(k) in the stochastically growing network is a linear function with the same slope −1/2 as in the

deterministic small world (e) in Fig. 2.1.

We also considered more general deterministic graphs of this type, where n new vertices become

attached to each vertex of a network at each time step. The resulting dependence ℓ(k) is a linear

function but with slope −1/(n+1). Figure 2.3(b) shows that ℓ(k) of the corresponding stochastically

growing networks has the same form. We also checked that ℓ(k = 1, N) ≈ 2 ln N , as in expression

(2.26) for ℓ̄(N).

2.1.5 Discussion and summary

Several points should be emphasized:

(i) One can estimate a typical value of the correction term in formula (2.3). At the maximum

degree kmax ∼ N1/(γ−1), this term is of the order of kγ−1
max/N ∼ const. This should be compared to

ln[k
1/(γ−1)
max ∼ ln N ].

(ii) One should indicate that law (2.4), i.e., a linear dependence ℓ(k), was obtained only for

growing trees with an exponential degree distribution. In non-tree growing networks with random

attachment (at each time step, a new vertex becomes attached to several randomly chosen vertices),

we observed a non-linear dependence.

(iii) The relative width of the distribution of the intervertex distance in infinite small worlds

approaches zero [63, 64, 65]. In other words, vertices of an infinite small world are almost surely

mutually equidistant (Section 1.2.2). This circumstance does not allow one to measure ℓ(k) in an

infinite network with the small-world effect, for which ℓ(k) ≡ ℓ̄. However, even in very large real-

world networks (e.g., in the Internet [177]), the distribution of the intervertex distance is still broad

enough. So, in real networks, ℓ(k) is a measurable characteristic, as we will see in Chapter 2 for a

real world network of scientific collaborations.

(iv) The degree-dependent mean intervertex distance may be considered as a measure of “cen-

trality” of a given degree vertex in a network. How does this relate to other centrality characteristics

[160], first of all to the centrality index of a vertex [88]? Recall from Section 1.2.6 that the centrality

index of a vertex v is defined as cv = (N − 1)/
∑

u ℓvu, where ℓvu is the length of the shortest path

between vertices u and v, N is the number of vertices in the graph, and the sum is over all vertices
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of the graph. (The centrality index is often given without the N − 1 factor.) One may see that the

mean centrality index c(k) of a vertex of degree k is related (but not equal) to 1/ℓ(k). Nevertheless,

there is a special case—graphs where every vertex of a given degree k has the same value of the

sum of intervertex distances between this and the rest of the vertices. So, this value is exactly

(N − 1)ℓ(k), and consequently c(k) = 1/ℓ(k). This situation is realized in our deterministic graphs.

Thus, in the deterministic graphs, we actually found the inverse centrality index, but in random

networks, c(k) and ℓ(k) are different characteristics.

In conclusion, we have studied the mean length of the shortest paths between a vertex of degree

k and the other vertices in growing networks with power-law and exponential degree distributions.

In the investigated deterministic and random networks, we have observed dependences ℓ(k) which

strongly differ from those for uncorrelated networks. Our results characterize the compactness of a

network from the point of view of a vertex with a given number of connections.

2.2 Evolution of subgraphs and cycles in complex networks

Subgraphs and cycles are often used to characterize the local properties of complex networks (see

Section 1.2.5). Here we show that the subgraph structure of real-world networks (see also Sec-

tion 1.3) is highly time dependent: as the network grows, the density of some subgraphs remains

unchanged (which we called Type II), while the density of others (Type I) increase at a rate that

is determined by the network’s degree distribution and clustering properties. This inhomogeneous

evolution process, supported by direct measurements on several real networks and on the deter-

ministic model of Fig. 2.1a, leads to systematic shifts in the overall subgraph spectrum and to an

inevitable overrepresentation of some subgraphs and cycles.

2.2.1 Introduction

Motivated by practical and theoretical questions, recently a series of statistical tools have been intro-

duced to evaluate the abundance of subgraphs [80, 81, 82, 79] and cycles [180, 181, 165, 183], offering

a better description of a network’s local structure. Yet, most of these methods were designed to cap-

ture the subgraph structure of a specific snapshot of a network, characterizing static graphs. Most
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(a) (b)

Figure 2.4: Examples of subgraphs and cycles with a central vertex. The subgraph shown in (a) has

n = 5 vertices and n− 1 + t = 5 edges, where t = 1 represents the number of edges connecting the

neighbors of the central vertex (empty circle) together. In (b) we show a subgraph with t = 3 edges

among the neighbors, such that the central vertex and its neighbors form a cycle of length h = 5,

highlighted by the dotted circle

real networks, however, are the result of a growth process, and keep evolving in time [42, 43]. While

growth often leaves some of the network’s global features unchanged, it alters its local, subgraph

based structure, potentially modifying everything from subgraph densities to cycle abundance. Yet,

the currently available statistical methods cannot anticipate or describe such potential changes.

In this section we show that during growth the subgraph structure of complex networks undergoes

a systematic reorganization. We find that the evolution of the relative subgraph and cycle abundance

can be predicted from the degree distribution P (k) and the degree-dependent average clustering

coefficient C(k). The results indicate that the subgraph composition of complex networks changes

in a very inhomogeneous manner: while the density of many subgraphs is independent of the network

size, they coexist with a class of subgraphs whose density increases at a subgraph dependent rate

as the network expands. Therefore in the thermodynamic limit a few subgraphs will be highly

overrepresented [80, 81], a prediction that is supported by direct measurements on a number of

real networks for which time resolved network topologies are available. This finding questions our

ability to characterize networks based on the subgraph abundance obtained from a single topological

snapshot. We show that a combined understanding of network evolution and subgraph abundance

offers a more complete picture.
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2.2.2 Subgraphs

We consider subgraphs with n vertices and n− 1 + t edges, whose central vertex has links to n− 1

neighbors, which in turn have t links among themselves (Fig. 2.4a). The total number of n-node

subgraphs that can pass by a node with degree k is
( k
n−1

)

. Each of these n-node subgraphs can have

at most np = (n−1)(n−2)/2 edges between the n−1 neighbors of the central node. The probability

that there is an edge between two neighbors of a degree k vertex is given by the clustering coefficient

C(k) (Section 1.2.3). Therefore, the probability to obtain t connected pairs and np− t disconnected

pairs is given by the binomial distribution of np trials with probability C(k). The expected number

of (n, t) subgraphs in the network is obtained after averaging over the degree distribution, resulting

in

Nnt = gntN

kmax
∑

k=1

P (k)

(

k

n− 1

)(

np

t

)

C(k)t[1− C(k)]np−t , (2.27)

where kmax is the maximum degree and the geometric factor gnt takes into account that the same

subgraph can have more than one central vertex. For instance, a triangle will be counted three times

since each vertex is connected to the others, therefore g31 = 1/3. For networks where P (k) ∼ k−γ

and C(k) ∼ k−α, where γ and α are the degree distribution and clustering hierarchy exponents, in

the thermodynamic limit kmax ≫ 1, Eq. (2.27) predicts the existence of two subgraph classes [79]

Nnt

N
∼







Ct
0k

n−γ−αt
max , n− γ − αt > 0 , Type I ,

Ct
0 , n− γ − αt < 0 , Type II .

(2.28)

Therefore, for the Type I subgraphs the Nnt/N density increases with increasing network size, and

Nnt/N is independent of N for Type II subgraphs. In the following we provide direct evidence

for the two subgraph types in three real networks for which varying network sizes are available:

coauthorship network of mathematical publications [96], the autonomous system representation of

the Internet [21, 177], and the semantic web of English synonyms [184]. In each of these networks the

maximum degree increases as kmax ∼ N δ. We estimated δ from the scaling of the degree distribution

moments with the graph size, 〈kn〉 ∼ N δ(n+1−γ), with n = 2, 3, 4. Furthermore, we find that C0

from C(k) = C0k
−α also depends on the network size as C0 ∼ N θ, where θ can be estimated using
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Network γ α δ θ ζ3 ζ4 ζ5

Co-authorship 2.4 0.0 0.6 0.00 0.6 1.6 2.6

Internet 2.2 0.75 1.0 0.20 0.3 0.7 1.2

Language 2.7 1.0 0.40 0.68 0.7 1.4 2.0

Model 2.6 1 0.63 0 0 0 0

Table 2.1: Characteristic exponents of the investigated real networks and the deterministic model of

Fig. 2.1a. The exponents are defined through the scaling of the degree distribution P (k) ∼ k−γ , the

clustering coefficient C(k) = C0k
−α, with C0 ∼ N θ, the largest degree kmax ∼ N δ, and the number

of h-cycles Nh/N ∼ N ζh .

C0 =
∑

k≥2 C(k)/
∑

k≥2 k−α, giving a better estimate than a direct fit of C(k). The exponents

characterizing each network are summarized in Table. 2.1.

In Fig. 2.5 we show the density of all five vertex subgraphs (n = 5) as a function of t. For the

Internet and Language networks C0 increases with N , therefore the subgraph’s density increases

with the network size for all subgraphs. This consequence of the non-stationarity of the clustering

coefficient is subtracted by normalizing Nnt by Ct
0. For the co-authorship graph with α = 0 (Table

2.1), only Type I subgraphs are observed, as predicted by (2.28). In contrast, for the Internet and

semantic networks α > 0, therefore the overrepresented Type I phase is expected to end approxi-

mately at the phase boundary predicted by (2.28). Indeed, left to the arrow denoting the n− γ−αt

phase boundary we continue to observe a systematic increase in N5t/NCt
0, as expected for Type I

subgraphs. In contrast, beyond the phase boundary the subgraph densities obtained for different

network sizes are independent of N , collapsing into a single curve.

We compared also our predictions with direct counts in the growing deterministic network

model [70] of Fig. 2.1a, characterized by a degree exponent γ = 1 + ln 3/ ln 2 ≈ 2.6 and a de-

gree dependent clustering coefficient C(k) = C0k
−α, with C0 = 2 and α = 1. In Fig. 2.5d we show

the number of (n = 5,t) subgraphs for different values of t and graph sizes. The arrow indicating

the predicted phase transition point n − γ − αt = 0 clearly separates the Type I from the Type II

subgraphs, a numerical finding that is supported by exact calculations as well. Note that only one

Type II n = 5 subgraph is present in the deterministic network, due to its particular evolution rule.
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Figure 2.5: Number of (n = 5,t) subgraphs for the co-authorship (a), Internet (b), semantic (c)

networks and the deterministic model (d) as a function of t. Different symbols correspond to different

snapshots of the networks evolution, from early stage (circles) to intermediate (squares) and current

(i.e. largest) (triangles). Nnt depends strongly on t (spanning several orders of magnitude) making

difficult to observe the N dependence. Thus we normalized all the quantities (N5t, C0 and N) to

the first year available. The arrows correspond to the phase boundary 5− γ − αt = 0, with Type I

and II subgraphs to the left and right of the arrow, respectively. In the insets showing the system

size dependence we plot log N5t vs log N for different values of t.
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2.2.3 Cycles

The formalism developed above can be generalized to predict cycle abundance as well. Consider the

set of centrally connected cycles shown in Fig. 2.4b. If the central vertex has degree k, we can form
( k
h−1

)

different groups of h vertices, h− 1 selected from its k neighbors and the central vertex. Each

ordering of the h− 1 selected neighbors corresponds to a different cycle, therefore we multiply with

half of the number of their permutations (h − 1)! (assuming that 123 is the same as 321). Finally,

to obtain the number of h-cycles we multiply the result with the probability of having h− 2 edges

between consecutive neighbors, C(k)h−2, and sum over the degree distribution P (k), finding

Nh

N
= gh

kmax
∑

k=h−1

P (k)
(h − 1)!

2

(

k

h− 1

)

C(k)h−2 , (2.29)

where gh is again a geometric factor correcting multiple counting of the same cycle. Note that

(2.29) represents a lower bound for the total number of h-cycles, which also include cycles without

a central vertex. Depending on the values of h, γ and α the sum in (2.29) may converge or diverge

in the limit kmax → ∞. When it converges, the density of h-cycles is independent of N (Type II),

otherwise it grows with N (Type I). Since in preferential attachment models without clustering the

density of h-cycles decreases with increasing N [185], we conclude that clustering is the essential

feature that gives rise to the observed high h-cycle number in such real networks like the Internet

[180]. To further characterize the cycle spectrum, we need distinguish two different cases, 0 < α < 1

and α ≥ 1.

0 < α < 1: In the kmax →∞ limit the cycle density follows

Nh

N
∼







Ch−2
0 , h < hc ,

Ch−2
0 k

(1−α)(h−hc)
max , h > hc ,

(2.30)

where hc = (γ − 2α)/(1 − α). Therefore, large cycles (h > hc) are abundant, their density growing

with the network size N . As α → 1 the threshold hc → ∞, therefore the range of h for which the

density is size-independent expands significantly.

Direct calculations using (2.29) show that Nh exhibits a maximum at some intermediate value of

h (see Fig. 2.6a), already reported for the deterministic model [165, 182]. The maximum represents

a finite size effect, as the characteristic cycle length h∗, corresponding to the maximum of Nh, scales
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Figure 2.6: Number of h-cycles as computed from (2.29), using γ = 2.5, (a) C0 = 1 and α = 0.9, (b)

h value at which Nh has a maximum as a function of kmax, (b) C0 = 2 and α = 1.1, and kmax = 500

(dashed-dotted), 700 (dashed) and 900 (solid).

as h∗ ∼ kmax (Fig. 2.6b). Yet, next we show that this behavior is not generic, but depends on the

value of α.

α ≥ 1: For all γ > 2 only Type II cycles are expected (Nh/N ∼ Ch−2
0 ), as suggested by the

divergence of hc in the α → 1 limit. If C0 > 1 the number of h-cycles continues to exhibit a

maximum and the characteristic cycle length h∗ scales as h∗ ∼ kmax. If C0 < 1, however, the

number of h-cycles decreases with h, although a small local minima is seen for small cycles. More

important, in this case Nh/N is independent of the network size (see Fig. 2.6c), in contrast with the

size dependence observed earlier (Fig. 2.6a and [165]). Thus, for networks with α > 1 or α = 1 and

C0 < 1 the cycle spectrum is stationary, independent of the stage of the growth process in which we

inspect the network.

Our predictions for the cycle abundance are based on centrally connected cycles, in which a

central vertex is connected to all vertices of the cycle (Fig. 2.4b). In the following we show that our

predictions capture the scaling of all h-cycles as well, not only those that are centrally connected.

For this in Fig. 2.7 we plot the number of h = 3, 4, 5 cycles (i.e. all cycles as well as those that
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(circles), 4 (squares) and 5 (diamond) cycles as a function of the graph size. The continuous lines

correspond with our predictions (Tab. 2.1).
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are centrally connected) as a function of the graph size for the studied real and model networks,

together with our predictions (continuous line). First we note that in many cases (h = 3 and 4)

the full cycle density and the density of the centrally connected cycles overlap. In the few cases

(h = 5) where there are systematic differences between the two densities the N -dependence of the

two quantities is the same, indicating that our calculations correctly predict the scaling of all cycles.

For the co-authorship and Internet graphs α < 1 and hc < 3, therefore the h = 3, 4, 5 cycles are

predicted to be in the Type I regime (h > hc). In this case Nh/N ∼ N ζh , where ζh = θ(h − 2) +

δ(1−α)(h−hc). For the language graph α = 1, therefore ζh = θ(h−2). For the deterministic model

a direct count of the h-cycles reveals that they are of Type II, i.e. their density is independent of

N [165], in agreement with our predictions for α ≥ 1. These predictions are shown as continuous

lines in Fig. 2.7, indicating a good agreement with the real measurements.

2.2.4 Conclusion

Our results offer evidence of a quite complex subgraph dynamics. As the network grows, the

density of the Type II subgraphs remains unchanged, being independent of the system size. In

contrast, the density of the Type I subgraphs increases in an inhomogeneous way. Indeed, each

(n,t) subgraph has its own growth exponent ζnt, which means that their density increases in a

differentiated manner: the density of some Type I subgraphs will grow faster than the density of the

other Type I subgraphs. Thus, inspecting the system at several time intervals one expects significant

shifts in subgraphs densities. As a group, with increasing network size the Type I subgraphs will

significantly outnumber the constant density Type II subgraphs. Therefore the inspection of the

subgraph density at a given moment will offer us valuable, but limited information about the overall

local structure of a complex network. Note that nearest neighbor degree correlations, described by

P (k, k′), were neglected. However, the P (k) and the C(k) functions already allow us to predict

with high precision the future shifts in subgraph densities, indicating that a precise knowledge of

the global network characteristics can help us to fully understand the local structure of the network

at any moment. These results will eventually lead us to reevaluate a number of concepts, ranging

from the potential characterization of complex networks based on their subgraph spectrum to our

understanding of the impact of subgraphs on processes taking place on complex networks [29, 186].



Chapter 3

University and industry interplay FP5

network

3.1 Introduction

Understanding the relationship between research and industry is essential to improve the quality

of life in any society. Ranging from faster application of new discoveries to knowing whether or

where investment should be applied, this flow of knowledge between research and industry has

long been of general interest. Yet, knowledge is a special resource whose study demands new

techniques. The traditional approach to resources is based on scarcity since they are usually finite,

but knowledge cannot be seen this way because it grows, and the more it is used the more it

spreads [187]. In addition, existing studies on the research and industry interplay [95, 188, 189]

have neglected its network character. Our approach consists in analyzing this issue from a complex

network viewpoint [42, 48, 45]. In this approach, the interaction between research and industry

is best described as a network whose vertices represent either companies or institutions devoted

to research, and each edge represents collaboration between any two of them. Hence, we can

quantitatively study how research and industry influence each other, by recurring to data describing

a real system.

Here, we focus our attention in the Framework Programme (FP), a mechanism aiming to improve

the transference of knowledge in the European Union (EU) by setting out its priorities for research

49
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and technological development. The data to generate the corresponding FP network were gathered

from the CORDIS website1 by a Perl2 script. Since, at the time the data was collected, the 6th

programme was under execution and the 7th was being planned, we focused our study in the

5th Framework Programme (FP5)—covering the period from 1998 to 2002—in order to analyze a

completely finished programme. Despite the presence of more than 25,000 participants, they can be

split in two major groups: Companies and Universities. The first is made of over 16,700 companies

and other industry related participants who expect their investments in R+D+I to be profitable. The

second group can be regarded as the opposite, more than 8,500 participants involved in some type of

research for whom results do not necessarily return immediate income (see Appendix A). Exploring

the relationship between these two groups not only provides a good example of the interplay between

structure and information flow, but also offers a glimpse on how research links with innovation and

if the distance between basic research, applications and products reduces [190].

It is worth remarking that we are mainly interested in the capacity of the FP5 to create and

transfer information and nothing can be said about this issue inside each node. Notice that some

participants are large institutions or companies with complex organization charts, which may have

several projects whose coordination cannot be guaranteed in general. However, our main concern

is how to set the means to integrate research, development and innovation efficiently, not if these

means are successfully used.

3.2 Analysis of the data

To characterize the FP5, in this section we compute five important features in any network: degree

distribution, shortest path length distribution, betweenness centrality, clustering coefficient and the

degree-degree correlation. The description of these properties is given in Section 1.2. More details

about the network dataset can be found in the Appendix A.

1Community Research and Development Information Service: http://cordis.europa.eu
2Open Source programming language: http://www.perl.org/
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3.2.1 Degree distribution

The question wether empirical distributions are or are not power laws is still object of study [191, 192]

despite the many situations of scientific interest where they occur and of their significant implications

on the phenomena under study. Many times it is safer to report heterogeneous distributions (or

heavy tailed distributions) instead of reporting power laws. Here we will refer to the observed

distributions as power laws, even though sometimes this may be questionable. In this way, we

find that the probability that a University collaborates with k other Universities (i.e., the degree

distribution of the Universities) decays as a power law, P (k) ∼ k−γU with γU = 1.76. Similarly,

Companies follow a power law with γC = 2.76. The two distributions can be seen in Fig. 3.1, where a

log-log scale is used in the plot, providing evidence for the scale-free topology [15] of both networks.

The degree distribution of the whole FP5 network is also well approximated by a power law with

exponent γ close to 2.1.

Note that the degree distribution of Universities is described by a power law with γU < 2,

implying that their mean degree grows in time. Indeed the first moment (i.e. mean degree in this

case) of a distribution with a power–law tail diverges when its exponent is less than 2. This result

suggests that Universities form an accelerated growing network [43, 193], where the total number

of edges grows faster than a linear function of the total number of vertices and, consequently, it is

verified that 1 < γ < 2.

To elucidate this issue, we computed the average degree 〈k〉 during several years to check its

tendency. Though we only have the data corresponding to 4 years (table 3.1), they are enough to

confirm the existence of an accelerated growth since the average degree is not constant (46% increase

for the network of Universities in the four year period). But if the collaborations grow faster than

proportional to the number of participants, it is because they do not emerge by the mere increase

of participants. Not only new participants contribute to increase the number of collaborations,

but also the old ones, meaning that some form of synergy exists encouraging the creation of new

collaborations between Universities.

On the other hand, the average degree of Companies also grows (though significantly slower)

during the four year span of the dataset (table 3.1). However, the fact that γC > 2 suggests that

this increase should be transient. Therefore, although the creation of collaborations is encouraged
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Figure 3.1: This graph depicts with red squares the probability that a University collaborates

with k other Universities, that is, its degree distribution. The degree distribution of Companies

is shown with blue circles. Data were log-binned. We find that both distributions follow a power

law tail, P (k) ∼ k−γ , thus having a scale-free topology, with vertices connecting each other in a

heterogeneous manner: Most vertices have few connections, but some have a very large degree. The

best fit for the straight region of the curves gives γU = 1.76 ± 0.01 with a correlation coefficient

R = 0.998 for Universities, and γC = 2.76 ± 0.03 with R = 0.991 for Companies. However, the fact

that Universities show γU < 2 whereas Companies have γC > 2 implies that the mean degree of

Universities grows in time but not the mean degree of Companies. This result suggests that some

form of synergy encourages the creation of new collaborations mainly between Universities, while

the network of Companies is less dynamic in this respect.
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(since when the FP5 was finished the mean number of collaborations had risen from 10 to 26 and

some participants had surpassed 2,500 collaborations) these results reveal that the synergy is more

pronounced between Universities. In this sense, the FP5 is less effective in improving the network

of Companies and Universities seem to take more advantage of this opportunity to create new

collaborations.

Also noticeable in table 3.1 is the fact that the number of Companies increases faster than

the number of Universities (72% and 64% increase respectively in the four year period), indicating

another difference in the evolution of both networks.

N 〈k〉 〈C〉
Year Univ–Comp Univ–Comp Univ–Comp

1999 3075–4658 17.2–6.2 0.65–0.58

2000 5377–9359 21.9–6.8 0.66–0.53

2001 7355–13905 27.7–7.9 0.67–0.53

2002 8522–16765 31.9–8.2 0.68–0.59

Table 3.1: Evolution of Universities and Companies during the FP5. Here we show the total number

of vertices N , the average degree 〈k〉 and the average clustering coefficient 〈C〉 during the four years

that the FP5 lasted.

3.2.2 Shortest paths

The distance between vertices is the number of edges in the shortest path which links them (Sec-

tion 1.2.2). Defining the set of participants which can be linked through a path as a connected

component, we find that the largest connected component of Universities spans 93.7% of the net-

work (7,987 vertices) while for Companies it is made of 10,801 nodes (64.4%). Hence, while almost

all Universities are linked in only one component, Companies are more fragmented and one third

of them fall in other smaller components (actually, the second biggest component contains only 48

participants). This result shows that Universities are important to compact the network since the

largest connected component of the complete network (U+C) comprises 88.7% of the Companies

and 96.0% of the Universities (i.e. 23,055 vertices in total). In addition, the largest distance in the
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network of Universities is 7 and the average distance is ℓ̄ = 3.34 whereas, in the case of Companies,

the farthest pair is separated by 14 edges and the average distance is3 ℓ̄ = 5.67. This can be seen

in Fig. 3.2 where we plot the geodesic distribution, P(ℓ) versus ℓ. Hence, also here Universities are

essential for Companies since the largest distance in the entire network is only 8 and the average

distance is ℓ̄ = 3.14, which implies that, on average, there are only two intermediaries between two

participants.
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Figure 3.2: The distribution of shortest paths in the largest connected component of Universities

(red squares) and Companies (blue circles) displays the presence of the small-world effect. The mean

value is ℓ̄ = 3.34 for Universities and ℓ̄ = 5.67 for Companies. Moreover, while the farthest pair of

Companies has 13 intermediaries, for Universities the maximum separation is 7 edges. Therefore,

Universities are important for Companies since, when they cooperate, in the whole FP5 network

the largest distance reduces to 8 and the average distance to 3.14.

The average distance is a coarse characteristic though. As a finer measure, it is possible to com-

pute the average distance of a vertex of degree k to all other vertices in the largest component [194].

In Fig. 3.3 we plot ℓ(k) for both networks on a log-linear scale.

Therefore, albeit both networks display the so-called small-world effect [41], there are important

3Both average distances are approximately the value obtained for a random graph [10] with the same number of

nodes and average degree. For Universities is ℓ̄ ≈ log N/ log〈k〉 = 2.61 and for Companies is ℓ̄ = 4.62.
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Figure 3.3: The average distance of a participant with k partners to all other participants in the

largest connected component is depicted. Universities are the red squares and Companies are the

blue circles. It can be seen the logarithmic dependence since it is verified that ℓ(k) ∼ −β log k

where βU = 0.503 ± 0.003 with R = 0.994 for Universities and βC = 1.13 ± 0.03 with R = 0.958 for

Companies. The decay is faster (i.e. βC > βU ) in the net with the larger value of exponent γ (see

Fig. 3.1), providing empirical evidence for the network models of Section 2.1. Note that the lowest

degree vertices in the network of Universities show a distance to other vertices comparable to the

one of the highest degree vertices in the network of Companies. Also note that in both networks

max ℓ(k) ≈ 2min ℓ(k) as had been previously observed in Section 2.1, Ref. [194].
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differences. The presence of Universities eases the flow of information since they are much closer

to each other than Companies. This could be expected since the main purpose of a company is to

satisfy its shareholders, which does not include the spread of information from which competitors

can take advantage. But, interestingly, the consequences of this fact go beyond. When Universities

are excluded from the projects, Companies become isolated despite Universities are only one third

of the participants. Companies tend to form clusters, turning difficult (if not impossible) the com-

munication between them and, consequently, little can be developed or innovated since other results

are not available to work with. Thus the natural tendency of Companies to protect their findings

would finish killing R+D+I. The presence of Universities contributes to moderate this.

3.2.3 Betweenness centrality

To further investigate the interplay between the two kinds of participants, we can also measure

the betweenness centrality (1.2.6 Eq. 1.13) in the FP5.Since its computation for the whole FP5 is

an extremely time-consuming task, we focus our study on one of its subprograms: ‘Promotion of

innovation and encouragement of small and medium sized enterprises participation’ (SME), which

is formed by 195 research institutions and 212 Companies (see Appendix). Given our ability to split

the SME into Universities and Companies, several different situations are considered. The average

betweenness of the SME, taken over all its vertices, turns out to be 〈σ〉 = 5.19 · 10−3. Considering

only those vertices m which are Universities, we find that their average betweenness among all other

vertices in the SME is 〈σU 〉 = 6.76 · 10−3. Likewise, we obtain 〈σC〉 = 3.74 · 10−3 for Companies.

Now, if we only take into account those shortest paths whose endpoints are Companies, the

betweenness measures the role Universities play in linking Companies: 〈σCUC〉 = 5.44 · 10−3; on

the other hand, when the endpoints are Universities, the average betweenness of Companies is

〈σUCU 〉 = 2.34 · 10−3. Thus, we see that the role Universities play between Companies is more than

twice the one played by Companies between Universities. Moreover, given that 〈σU 〉 > 〈σ〉 > 〈σC〉,
we observe again the central function played by research institutions in the FP5 network.
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3.2.4 Clustering coefficient

The clustering coefficient of a vertex i is defined as Ci = 2ni/[ki(ki − 1)], where ni is the number of

edges connecting its ki nearest neighbors (Section 1.2.3). It equals 1 for a participant at the center

of a completely connected cluster, and 0 for a node whose neighbors are not linked at all. Taking

the average of the clustering coefficient, we obtain 〈C〉 = 0.68 for Universities and 〈C〉 = 0.59 for

Companies, which are much higher than the average clustering coefficient of a random graph [10]

with the same number of nodes and average degree (namely, 〈C〉 = 〈k〉/N). Moreover, 〈C〉 is

independent of the number N of participants in both cases (see table 3.1), in contrast with the

prediction of a scale-free model [15] where 〈C〉 ∼ N−0.75 [42, 64]. This high and size-independent

average clustering coefficient evidences the organization of Universities and Companies in modules.

However, when we measure the clustering coefficient of a node with k links, C(k), for both

networks (Fig. 3.4), we find that it decays as a power law for large k. We therefore infer that the two

nets have hierarchical modularity, which is characterized by the scaling law C(k) ∼ k−α, in contrast

to some scale-free or modular networks where the clustering coefficient is degree-independent [39].

This result suggests that Universities and Companies have an inherent self-similar structure [195],

being made of many highly connected small modules, which integrate into larger modules, which

in turn group into even larger modules (Fig. 3.5A). Actually, we observe that 4,333 Universities

(50.8%) and 10,564 Companies (63.5%) have Ci = 1, indicating the presence of many totally con-

nected groups. This is due to the fact that most of these entities participate in only one project,

having as neighbors other vertices, which in turn are all connected between them by virtue of the

participation in the project. Furthermore, given that this result suggests weak geographical con-

straints [196], we searched for communities in them [197] and found precisely that they were not

based on nationality (Fig. 3.5B), whence, the FP is successfully applying a policy which avoids its

segregation by nationality.

3.2.5 Degree-degree correlations

An interesting question is which vertices pair up with which others. It may happen that vertices

connect randomly, no matter how different they are. Usually, however, there is a selective linking,

i.e. there is some feature which makes more (or less) likely the connection (see Section 1.2.4).
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Figure 3.4: In this graph the clustering coefficient as a function of k is shown. After the initial

plateau, where C(k) is approximately constant, it approximately decays as a power law, C(k) ∼ k−α,

where αU = 0.54 ± 0.01 with R = 0.97 for Universities (red squares) and αC = 1.05 ± 0.06 with

R = 0.86 for Companies (blue circles). We therefore conclude that both networks have hierarchi-

cal modularity since scale-free and modular networks are degree-independent, whereas hierarchical

modularity is characterized by the power-law decay C(k) ∼ k−α.



3.2. ANALYSIS OF THE DATA 59

Figure 3.5: The existence of hierarchical modularity in the networks of Universities and Companies

suggests that they have a self-similar structure. Since projects in the FP are classified in 8 sub-

programs depending on their objectives, we choose, for clarity, to illustrate in A this self-similar

structure with the smallest one: ‘Promotion of innovation and encouragement of small and medium

sized enterprises participation’ (SME)—see Appendix A. Also, to verify if there is a bias by national-

ity in the collaborations, we searched for communities reflecting groups of participants collaborating

strongly among them. In the networks of Universities, Companies and both together (even when

they are analyzed by subprogram) the result was similar to B, corresponding to the SME subpro-

gram. If we color the nodes according to their nationalities and arrange them in space with a free

for noncommercial use, standard algorithm software [198], we find that they are all mixed.
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A first approach to elucidate this issue is by means of the joint degree-degree distribution P (k, k′),

which gives us the probability of finding an edge connecting vertices of degree k and k′. We see that

for Companies the distribution has sharp peaks for k = k′ (Fig. 3.6A). This network thus seems to

display assortative mixing, i.e. if one chooses at random a vertex of degree k then, with considerable

probability, it will be connected to vertices of degree k. In other words, Companies with similar

degree tend to collaborate more frequently than Companies with different degrees.

Notice that the fact (mentioned in the previous section) that many entities participate in only

one project may, by itself, explain these peaks: If the X participants of a certain project have no

other projects each of them has degree X − 1 and each of their neighbors has degree X − 1, giving

rise to an assortative trend. On the other hand one can also argue that, when a Company has high

degree it is due to being involved in many projects. It is then reasonable to assume that nodes with

high degree represent large institutions, given that only these can deal with many projects at the

same time. That being the case, the observed assortativity means that the spread of information

between Companies depends on the institution’s size. On the contrary, for Universities P (k, k′) is

scattered throughout the plane k − k′ (Fig. 3.6B). While there are still peaks along the line k = k′,

the presence of many others for k 6= k′ is clear, suggesting that Universities are less selective in what

regards the size of their partners.

It is important to remark, however, that the joint degree-degree distribution requires many

observations in order to obtain good statistics. For example, if we focus our analysis in the range

[0, 200], we need about 200 × 200 points, otherwise fluctuations are important and the plot is far

from smooth [199]. To avoid this problem, one uses the average degree of the nearest neighbors of

a vertex of degree k, 〈k〉nn(k), which is a coarser but less fluctuating measure. To compute it, we

find all participants with k links and take the average degree of all their neighbors. The results

are shown in Fig. 3.7, and confirm those obtained through the joint degree-degree distributions. To

emphasize the presence of the cut-off due to the finite size of the network, the points obtained from

less than 10 observations are plotted as crosses (Universities in red and Companies in blue) and the

rest of the points as squares (Universities) or circles (Companies). Considering then only the circles

and the squares, we confirm that collaborations between Companies are size-dependent (positive

slope) whereas those between Universities are not (no slope).
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Figure 3.6: Determination of the mixing through the joint degree-degree distribution. The X and

Y axes represent the degrees k and k′ and the Z axis gives the corresponding joint degree-degree

probability in per mill. The range is limited from 0 to 200 to illustrate a clearer picture. The

joint degree-degree distribution of Companies (A) peaks on the line k = k′ which implies that the

mixing is assortative. Since the number of links held by a participant is related to its size, we

infer that Companies with similar sizes tend to collaborate more frequently than Companies with

different sizes. The joint degree-degree distribution of Universities (B) is distributed throughout the

X-Y plane which suggests that Universities do not have assortative mixing and thus choose their

collaborators in a less selective manner.
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Figure 3.7: In this plot the average degree of the nearest neighbors of a vertex with k links, 〈k〉nn(k),

is shown. To mark the proximity to the cut-off, the points obtained from less than 10 observations

are plotted as crosses (Universities in red and Companies in blue) and the remaining points as

squares (Universities) or circles (Companies). In this manner, it can be seen that these points are

biased downwards due to the finite size of the network. Then, once focusing our attention on the

circles and the squares, we find that Companies have assortative mixing, while Universities link

between them regardless their degrees.
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It is also interesting to analyze how Universities and Companies link each other, which can be

done as follows. We search for all Companies with k links and then compute the average degree of

all their neighboring Universities. Note that the former degrees are always calculated in the corre-

sponding network, thus a Company with degree k has k neighbor Companies, though it may have

more links (to Universities) in the complete FP5 network. Analogously, we can find all Universities

with k links to average the degrees of all neighbor Companies. The results are depicted in Fig. 3.8

where, as before, it is used a log− log scale. Again, we plot as squares (Universities) or circles

(Companies) the points obtained from more than 10 observations to identify the region where the

tendency is well defined. We find that, while Companies link to Universities independently of their

sizes, Universities with high degree tend to collaborate with large Companies.
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Figure 3.8: Here we plot the average degree of the nearest Companies of a University with k links

to other Universities (red squares) and the average degree of the nearest Universities of a Company

with k links to other Companies (blue circles). As before, if we only consider the circles and the

squares, we find that Companies link to Universities independently of their degrees while Universities

with high degree collaborate mainly with Companies which have also high degree.

Finally, another way to quantify the mixing in the FP5 is by means of the assortativity coeffi-

cient [77], which is just the Pearson correlation coefficient of the degrees of connected vertices. In

this case, we obtain what type of mixing takes place in the network by means of a single number



64 CHAPTER 3. UNIVERSITY AND INDUSTRY INTERPLAY FP5 NETWORK

instead of a distribution. If ejk is the probability that a randomly chosen edge has vertices with

degree j and k at either end, the assortativity coefficient takes the following form:

r =

∑

jk qjqk(ejk − qjqk)
∑

k k2qk − (
∑

k kqk)
2

where qk =
∑

j ejk and qj =
∑

k ejk. This coefficient verifies that −1 ≤ r ≤ 1, being positive when

the network is assortative and negative when it is disassortative. We find rC = 0.13 for the network

of Companies and rU = 0.06 for Universities, corroborating an assortative trend usual in social

networks [78].

Therefore, Companies and Universities differ in the way they establish collaborations. Companies

are organized hierarchically, where positions in that hierarchy are related to the size: The assortative

trend in the network of Companies suggests that large corporations are reluctant to choose as

partners small companies. Between Universities, however, size is not important and it is common to

find a large institution collaborating with a small one. But if we analyze which partners Universities

choose among Companies, we check that large institutions in Universities prefer working with large

Companies. On the contrary, Companies select their collaborators between Universities regardless of

their sizes. We can then conclude that large Companies play indeed a leading role in the FP5 while

Universities play the role of bridges between participants which are separated in the hierarchical

structure of Companies.

3.3 Discussion

We have presented here a study of the interplay between research and industry in the scope of

the Fifth Framework Programme. Using network theory methods, we perform several measures

that allow us to quantify the features of this relationship and assess their potential improvements.

Naturally, the FP5 network does not include all interactions between university and industry (such as

the recruitment of graduates by companies, the transfer of knowledge through scientific and technical

literature or industry conferences). Furthermore, as already mentioned in Section 3.1, it also neglects

the fact that internal connections in an institution (e.g. between different departments) may be

absent, which would mean that a node in the studied network would split into disconnected nodes.

While these issues may significantly influence the flow of information in the network, addressing all



3.3. DISCUSSION 65

of them requires information that is beyond reach for most researchers at this point. The presented

analysis thus represents a starting point for a quantitative understanding of the university-industry

interplay network. It is possible, however, to foresee advances in these directions, given the increasing

availability of information on how institutions self-organize.

The results point to the central function played by Universities in the FP5 network in reducing

the distance between research and applications. Indeed, we show that Universities play a crucial

role in connecting the network of Companies, which would otherwise be separated in many small

clusters. While the network of Universities is well integrated and established in accordance to what

is observed for other social networks, the same doesn’t seem to apply for the Companies network,

mainly due to its relatively small largest connected component. Competition is probably the origin

of this effect, which is moderated by the presence of Universities. It seems reasonable, then, to

conclude that special attention should be devoted to company-company collaborations. Supporting

this, is also the fact that new collaborations arise at a higher rate between Universities.

Our observations suggest in addition that Companies and Universities establish collaborations

differently: While Companies seem to exhibit a hierarchical structure in terms of their size, Uni-

versities are less selective in their collaborations. We also observed that both networks display

hierarchical modularity and that communities in the FP5 network are not nation-based. The FP

appears then to mix all nationalities of the European Union, thus reaching one of its main goals:

Promote the transfer of knowledge throughout Europe.
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Chapter 4

Frequency of numbers on the World

Wide Web

4.1 Introduction

The distribution of numbers in human documents is determined by a variety of diverse natural and

human factors, whose relative significance can be evaluated by studying the numbers’ frequency of

occurrence. Although it has been studied since the 1880’s, this subject remains poorly understood.

Here, we obtain the detailed statistics of numbers in the World Wide Web, finding that their

distribution is a heavy-tailed dependence which splits in a set of power-law ones. In particular, we

find that the frequency of numbers associated to western calendar years shows an uneven behavior:

2004 represents a ‘singular critical’ point, appearing with a strikingly high frequency; as we move

away from it, the decreasing frequency allows us to compare the amounts of existing information

on the past and on the future. Moreover, while powers of ten occur extremely often, allowing us

to obtain statistics up to the huge 10127, ‘non-round’ numbers occur in a much more limited range,

the variations of their frequencies being dramatically different from standard statistical fluctuations.

These findings provide a view of the array of numbers used by humans as a highly non-equilibrium

and inhomogeneous system, and shed a new light on an issue that, once fully investigated, could

lead to a better understanding of many sociological and psychological phenomena.
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4.2 Motivation

Already in the early 1880’s, Newcomb [200] noticed a specific uneven distribution of the first digits

of numbers, which is now known as Benford’s law [114]. The observed form of this distribution

indicates the wide, skewed shape of the frequency of occurrence of numbers in nature [201, 202, 203]

— as an illustration, note that in these first two sentences the numerals 114, 200, 201, 202, 203

and 1880 all occur twice. Benford’s law is directly derived by assuming that a number occurs with

a frequency inversely proportional to it, meaning that the frequencies of numbers in the intervals

(1, 10), (10, 100), (100, 1000), etc. are equal. Yet, this assumption lacks convincing quantitative

support and understanding, in part due to scanty data available. In our days, this problem can be

tackled by resorting (with the help of search engines) to the enormous database constituted by the

World Wide Web.

One should note that the profoundly wide form of the distribution of numbers in human doc-

uments is determined by two sets of factors. The first includes general natural reasons of which

the most important is the multi-scale organization of our World. The second are ‘human factors’

including the current technological level of the society, the structure of languages, adopted numeral

and calendar systems, history, cultural traditions and religions, human psychology, and many others.

By analyzing the occurrence frequency of numbers we can estimate the relative significance and role

of these factors.

4.3 Frequency of Numbers on the Web

The frequency of occurrence of numbers in the World Wide Web (or simply Web) necessarily reflects

the distribution of numbers in all human documents, allowing us to effectively study their statistics

by using search engines, which supply the approximate number of web pages (or web documents)

containing the Arabic numeral that we are looking for. In this respect, the Web provides us with

huge statistics. Yet, the frequencies of occurrence of distinct kinds of numbers are very different

[204]: for example, one can see that 777 and 1000 occur much more frequently than their neighbors

(Table 4.1). Here we report on the markedly distinct statistics of different types of natural numbers
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Table 4.1: Typical numbers with high frequencies of occurrence

Example Description

1000 powers of 10

2460, 2465 ‘round’ numbers: multiples of 10 and 5

777,171717 numbers easy to remember or symmetric

512 = 29 powers of 2

666,777 numbers with strong associations

78701 popular zip codes

866, 877 toll free telephone numbers

1812 important historical dates

747, 8086 serial numbers of popular products

314159 beginning parts of mathematical constants

(or, rather, positive integers) in the Web documents, collected1 through the currently most popular

search engine, Google [205]. We consider separately (i) powers of 10 and (ii) non-round integers, and

find that in both of these cases, the number N(n) of pages containing an integer n decays as a power

law, N(n) ∼ n−β, over many orders of magnitude. The observed values of the β exponent strongly

differ for the different types of numbers, (i) and (ii), and also differ from 1, thus contradicting the

above mentioned assumption of inverse proportionality for their frequency of occurrence.

Note that, previously, scale-free (i.e. power-law) distributions were observed for processes in the

WWW [22, 24] and its structural characteristics [23, 15]. However, and in contrast to these studies,

we use the WWW as a database for measuring one of the basic distributions in nature. In order

to explain the observed distributions, we treat the global array of numbers as a non-equilibrium,

evolving system with a specific influx of numbers, and, as a reflection of this non-equilibrium nature,

we find a ‘critical behavior’ of N(n) in the neighborhood of n = 2004 (the current year at the time

the measurements were made): near this point, the frequency of WWW documents follows a power

law, N(n) ∼ (2005 − n)−α.

1The data was collected by using a Linux shell script together with the open source text web browser Lynx available

at http://lynx.isc.org/.
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Finally, we show that the statistics of variations of the frequencies of WWW pages which contain

close numbers of the same kind, dramatically disagrees with the standard distribution of statistical

fluctuations. We observe, namely, that the amplitude of these variations, δN(n), is much greater

than what would be expected for standard statistical fluctuations. Consequently, the frequencies of

pages containing different numbers fluctuate not independently, these fluctuations being a reflection

of those of the influx of numbers.

4.4 Current-year Singularity

In the second week of December 2004, we obtained the frequency of WWW documents corresponding

to positive integers n in the range between 1 and 100,000 (Fig. 4.1a). This plot contains a set of

regularly distributed peaks, which indicate that different types of numbers occur with very unlike

frequencies. For example, the number of documents containing round (ending with 0) numbers is

much higher than that for non-round numbers. Furthermore, the special number 2004 occurs with

a remarkably high frequency: 3,030,000,000 pages. For comparison, among 8,058,044,651 WWW

pages covered by the used search engine, a single character string a occurs in about 8,000,000,000

pages, while the numbers 0, 1 and 1000 occur in 2,180,000,000, 4,710,000,000 and 154,000,000 pages,

respectively. The high, asymmetric peak of N(n) around n = 2004 (Fig. 4.1b) is naturally identified

as the contribution of documents containing numbers associated to years; below n = 2005, this

peak can be fitted by a power law, following N(n) ∼ (2005 − n)−α, where α = 1.2 ± 0.1 (inset of

Fig. 4.1b). Therefore, in the vicinity of 2004, N(n) increases with n much faster than the total

number of pages in the WWW grows with time, which indicates that there are many pages with

numbers associated to years that disappear from the WWW (or at least, are updated) after a while.

Indeed, our observations prove that the amount of pages holding a number n < t (where t is time

measured in years) in the region of the ‘critical singularity’ decreases with t approximately following

N(n, t) ∼ (t− n)−α.
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Figure 4.1: a, The frequencies N(n) of WWW pages containing numbers n up to 100,000 on a

log-log plot. Note the peak at n = 2004. b, The part of the distribution around n = 2004 shown in

more detail on a log-linear plot. The asymmetric form of the peak gives an idea about the relation

between the stored volumes of information on the past and on the future: the former is much more

referred to than the latter. In the inset, the low-n part of this peak is plotted versus the difference

2005 − n on a log-log plot (1500 < n < 2005). A power-law behavior is observed practically in the

entire range where the contribution of numbers associated to years is main. The slope of the dashed

line is −1.2. It was not possible to find a reliable fit to the dependence for n ≥ 2005. These plots

also demonstrate a hierarchy of peaks for documents holding numbers of different kinds.
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4.5 Power-law Distributions

We find that the frequency of occurrence of natural numbers, considered without separating them

into distinct classes (Fig. 4.1a), is a slowly decreasing dependence. Nevertheless, it can hardly be

fitted by any power law because it is, in fact, the result of the superposition of distributions of

distinct kinds of numbers, which, in turn, are power laws having different exponents. In order to

proceed, we then compare the statistics of the WWW documents which hold two ‘extreme’ types

of numbers: (i) powers of 10, which should occur with the highest frequencies due to the common

decimal numeral system, and, contrastingly, (ii) non-round numbers (i.e. those with a non-zero digit

in the end) which are, on average, the most indistinctive ones, therefore occurring with the lowest

frequencies. It is worth remarking that, even though the non-round include many peculiar numbers,

such as 777 for example, we find that their contribution does not change the statistics noticeably.

The strikingly high frequency of occurrence of powers of 10 in the WWW allows us to obtain

the statistics for numbers up to 10127 (Fig. 4.2a), a range that is restricted by the limited size of

strings being accepted by the used search engine (128 characters)2. Two distinct regions are seen in

the distribution. The region of relatively ‘small’ numbers, up to 1011 (Fig. 4.2b), is of a power-law

form, N(n) ∼ n−β, where β = 0.50 ± 0.02, hence close to the law N(n) ∼ 1/
√

n ; note that this

exponent is much smaller than 1 and far smaller than the values of the exponents of typical Zipf’s

law distributions [15, 206], these being mostly in the range between 2 and 3. For comparison, the

occurrence frequencies of a character string baaa . . .a of varying length were also measured, a quite

different, far from straight line, dependence having been observed (Fig. 4.2c). For n larger than 1011,

we observe an extremely slow decrease of the frequency of occurrence of pages containing powers of

10 (Fig. 2a). It is worth noting that the crossover between these two regimes turns out to be rather

close to the maximum 32 digit binary number, which is about 0.4 × 1010.

For properly measuring the occurrence frequency of non-round numbers, we use a set of intervals

selected in their wide range, each of which having a width of 50 numbers, so that the relative variation

of the frequency of WWW pages inside a specific interval is sufficiently small. In addition, these

2Search engines find the number of pages containing a given positive integer in the WWW and not the total number

of times this integer occurs in the Web. This difference is not essential in our study, since we are mostly interested in

the tail of the distribution. Indeed, the probability that a large number occurs several times in the same page is low.
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Figure 4.2: The frequencies of Web pages containing powers of 10. a, The full log-log plot up to the

maximal searchable 10127. b, The power-law-like part of the distribution. The slope of the dashed

line is −0.5. We emphasize that the power-law dependence is observed over 11 orders of magnitude,

which is a uniquely wide range. c, For comparison, the number of WWW documents containing

a character string baaa . . .a of varying length on a log-linear plot (the length of the string is the

equivalent to the exponent in the power of 10). Note the difference from b.
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Figure 4.3: Log-log plot of the frequencies of WWW pages holding non-round numbers. The circles

show the average amounts of pages with non-round numbers taken from relatively narrow intervals

(50 numbers). Each interval is centered at the 〈n〉 coordinate of a circle. The dashed line has

slope −1.3. Note that the power-law behavior is observed over 6 orders of magnitude. Non-round

numbers occur much less frequently than powers of 10, which explains the essentially narrower range

of numbers in this plot than in Fig. 4.2a. For instance, presently, and as far as search engines report,

there are no WWW documents with the number 12345789014.

intervals are chosen far from the powers of 10, whose close neighborhood includes numbers, such as,

for instance, 1009, that occur more often and whose distribution does not follow a clear power law.

Within each of these intervals, we take the average values of n and N(n), and denote them by 〈n〉
and 〈N〉, respectively; the resulting dependence (Fig. 4.3) has a prominent power-law region with

exponent β = 1.3± 0.05, which strongly differs from that ascertained for powers of 10. As numbers

grow, the ratio of the amount of WWW documents with powers of 10 to that with non-round

numbers increases, following the n0.8 dependence.

A few mechanisms generating power-law distributions [206] are known [8, 154, 207, 208, 209].

Most of these mechanisms explain power laws as a result of a specific self-organization of a non-

equilibrium system, and we treat our observations in the spirit of these approaches. Evidently, the

array of numbers in human documents is an evolving system, and the stochastic growth of this
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array is due to a permanent influx of numbers, added with new documents. The added numbers

(among which may also occur new distinct ones, that were not employed previously) are chosen

from a distribution which is determined by the one for the existing numbers. Here we do not discuss

a specific model exploiting this mechanism and generating the observed complex distributions3,

but instead, we explain the reason for the unusual small values of exponents which we observed

— β = 0.5 and 1.3 (Figs. 4.2b and 4.3), while typical Zipf’s law exponents are 2 and greater. At

least, Zipf’s law exponents must take values greater than 1. At first sight, this difference seems

surprising, since the mechanisms of the power laws are quite similar. But, importantly, these two

sets of exponents are defined for different distributions. In our non-traditional case, the observed

power law describes the behavior of the frequency of WWW pages with a given natural number n,

namely N(n) ∼ n−β. In contrast, typical Zipf’s law exponent γ occurs in a power law for a quite

different quantity: in our terms, this quantity is the amount, m(N), of distinct numbers, where each

of them occurs in every of N Web pages. So, we have the relation m(N) ∼ N−γ . One can show that

the exponents β and γ satisfy a simple relation, β = 1/(γ − 1) [48]. As a result, if the γ exponent is

greater than 2, which is typical for simple linear growth processes, the β exponent is smaller than

1, as in Fig. 4.2b. On the other hand, nonlinear growth may produce exponents γ below 2, which

gives β greater than 1, as in Fig. 4.3.

4.6 Fluctuations of the Number of WWW Pages

The distributions reported here demonstrate that the frequencies of WWW pages holding numbers

even of the same kind (for example, non-round numbers) strongly fluctuate from number to number.

For documents containing non-round integers, we obtain the dependence of the fluctuations’ am-

plitude (i.e. dispersion),
√

〈(N − 〈N〉)2〉 =
√

〈N2〉 − 〈N〉2, on the average frequency, 〈N〉, of these

documents (Fig. 4.4). For calculating these dispersions and mean values, we used the same intervals

as in Fig. 4.3. The resulting dependence turns out to be proportional,
√

〈N2〉 − 〈N〉2 ≈ 0.1〈N〉,
over a broad region of values 〈N〉, which crucially differs from the square root behavior of standard

3Without knowing the details of the evolution of the global array of numbers, one can only propose a class of

evolutionary stochastic models with unknown parameters. So, we cannot calculate the observed values of the exponents

but can explain the range of these values.
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Figure 4.4: Amplitude of the fluctuations,
√

〈N2〉 − 〈N〉2, of the frequencies of pages containing

non-round numbers versus their mean values, 〈N〉, on a log-log plot. The data (circles) were obtained

resorting to the same intervals as in Fig. 4.3. Next to each circle the average (non-round) number,

〈n〉, for the corresponding interval is indicated. The dashed line has slope 1. One can see that
√

〈N2〉 − 〈N〉2 ≈ 0.1〈N〉 for 〈N〉 > 103.

statistical fluctuations [210]. The usual reason for such a strong difference is that the fluctuations of

the quantities under study are not statistically independent [211, 212]. In this respect, there is only

one factor in the evolution of the array of numbers which can break the statistical independence of

fluctuations, namely, the variation of the influx of numbers. So, the observed proportional law proves

that the variations of the occurrence frequencies of numbers are an outcome of the fluctuations of

their global influx in the WWW.

4.7 Discussion and Conclusions

These observations suggest a new view of the array of integers in the WWW (and in nature) as a

complex, evolving, inhomogeneous system. The statistics of numbers turns out to be far more rich

and complex than one might expect based on classical Benford’s law. Moreover, our findings provide

a tool for extracting meaningful information from statistical data on the frequency of occurrence of



4.7. DISCUSSION AND CONCLUSIONS 77

numbers. As an illustration, consider the two integers, 666 and 777, with clear associations. We

find that these numbers occur in the WWW with frequencies of 11,800,000 and 13,600,000 pages,

respectively, which are 1.25 and 1.65 times higher than, on average, the occurrence frequencies of

their non-round neighbors. These deviations are to a great extent higher than what one would

anticipate from the relative amplitude of fluctuations, 0.1. Therefore, we can reasonably compare

the amounts of pages containing 666 and 777 obtained after subtracting the numbers of pages

holding the neighbors of these two integers. These subtractions give 2,400,000 and 5,400,000 pages

for 666 and 777, respectively. It is the difference (or, rather, the relative difference) between the

two last amounts that should be used as a starting point for a subsequent comparative analysis.

The proposed approach is very suggestive. Indeed, by analyzing the frequencies of occurrence of

specific ‘popular’ numbers with clear interpretations one could evaluate the relative significance of

the corresponding underlining factors of this popularity.

Many more questions lie ahead: How do the occurrence frequencies of specific numbers vary in

time? How do different numbers correlate and co-occur in WWW documents? It is well known

that humans can easily memorize only up to rather limited sequences of digits [213, 214], which are,

therefore, many times replaced by words (like, for instance, the IP addresses of computers). Then,

how does the statistics of numbers relate to the organization of human memory and to semantics?

Our findings quantitatively show the key role of the common decimal numeral system — a direct

consequence of the number of fingers. How do other numeral systems (the binary system, for

example) influence the general statistics of numbers?

The global array of numbers is surmised to be a “numeric snapshot of the collective conscious-

ness” [204]. So, the study of their statistics could lead to a better understanding of a wide circle

of sociological and psychological phenomena. The distribution of numbers in human documents

contains a wealth of diverse information in an integrated form. The detailed analysis of the general

statistics of numbers in the WWW could allow the effective extraction and evaluation of this hidden

information.
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Chapter 5

Timing of human dynamics

5.1 Introduction

Humans participate on a daily basis in a large number of distinct activities, from electronic commu-

nication, such as sending emails or browsing the web, to initiating financial transactions or engaging

in entertainment and sports. Given the number of factors that determine the timing of each action,

ranging from work and sleep patterns to resource availability, it appears impossible to seek regular-

ities in the apparently random human activity patterns, apart from the obvious daily and seasonal

periodicities. Therefore, in contrast with the accurate predictive tools common in physical sciences,

forecasting human and social patterns remains a difficult and often elusive goal. Yet, the need to

understand the timing of human actions is increasingly important. Indeed, uncovering the laws

governing human dynamics in a quantitative manner is of major scientific interest, requiring us to

address the factors that determine the timing of human actions. But these questions are driven by

applications as well: most human actions have a strong impact on resource allocation, from phone

line availability and bandwidth allocation in the case of Internet or Web use, all the way to the

design of physical space for retail or service oriented institutions. Despite these fundamental and

practical driving forces, our understanding of the timing of human initiated actions is rather limited

at present [215].

The interest in addressing the timing of events in human dynamics is not new: it has a long

history in the mathematical literature, leading to the development of some of the key concepts
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in probability theory [60], and has reemerged at the beginning of the 20th century as the design

problems surrounding the phone system required a quantitative understanding of the call patterns

of individuals. But most current models of human activity assume that human actions are performed

at constant rate, meaning that a user has a fixed probability to engage in a specific action within a

given time interval. These models approximate the timing of human actions with a Poisson process,

in which the time interval between two consecutive actions by the same individual, called the waiting

or inter-event time, follows an exponential distribution [216] (Eq. 5.3 in the next Section). Poisson

processes are the base of the celebrated Erlang formula [217],

E(q, c) =
qc

c!

(

c
∑

i=0

qi

i!

)−1

, (5.1)

predicting the number of phone lines, c, required in an institution, and where E is the fraction of

callers that find all lines full and q is the number of calls starting per unit time (i.e. the Poisson

process rate, see Figs. 5.1a-c in the next Section). Also, they represent the basic approximation in

the design of most currently used Internet protocols and routers [218]. Yet, the availability of large

datasets recording selected human activity patterns increasingly question the validity of the Poisson

approximation. Indeed, an increasing number of recent measurements indicate that the timing of

many human actions systematically deviate from the Poisson prediction, the waiting or inter-event

times being better approximated by a heavy tailed or Pareto distribution [219, 220, 221, 222]. The

difference between a Poisson and a heavy tailed behavior is striking: the exponential decay of a

Poisson distribution implies that the consecutive events follow each other at relatively regular time

intervals and forbids very long waiting times. In contrast, the slowly decaying heavy tailed processes

allow for very long periods of inactivity that separate bursts of intensive activity.

It has been recently proposed by Barabási that the bursty nature of human dynamics is a

consequence of a queuing process driven by human decision making [219]: whenever an individual is

presented with multiple tasks and chooses among them based on some perceived priority parameter,

the waiting time of the various tasks will be Pareto distributed. In contrast, first-come-first-serve

and random task execution, common in most service oriented or computer driven environments,

lead to a uniform Poisson-like dynamics. Yet, this work has generated just as many questions as it

resolved. What are the different classes of processes that are relevant for human dynamics? What
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determines the scaling exponents? Do we have discrete universality classes (and if so how many) as

in critical phenomena [223], or the exponents characterizing the heavy tails can take up arbitrary

values, as it is the case in network theory [42, 43, 49]? Is human dynamics always heavy tailed?

In this chapter we aim to address some of these questions by studying the different universality

classes that can appear as a result of the queuing of human activities. We first review, in Section 5.2,

the frequently used Poisson approximation, which predicts an exponential distribution of interevent

times. In Section 5.3 we present evidence that the interevent time probability density function (pdf)

P (τ) of many human activities is characterized by the power law tail

P (τ) ∼ τ−α . (5.2)

In Section 5.4 we discuss the general characteristics of the queueing models for how humans time

their various activities. In Sections 5.5-5.6 we study two classes of queuing models designed to

capture human activity patterns. We find that restrictions on the queue length play an important

role in determining the scaling of the queuing process, allowing us to document the existence of two

distinct universality classes, one characterized by α = 3/2 (Section 5.5) and the other by α = 1

(Section 5.6). In Section 5.7 we discuss the relationship between interevent and waiting times.

Finally, in Section 5.8 we discuss the applicability of these models to explain the empirical data, as

well as outline future challenges in modeling human dynamics.

5.2 Poisson processes

Consider an activity performed with some regularity, such as sending emails, placing phone calls,

visiting a library, or browsing the web. We can keep track of this activity by recording the timing

of each event, for example the time each email is sent by an individual. The time between two

consecutive events we call the interevent time for the monitored activity and will be denoted by τ .

Given that the interevent time can be explicitly measured for selected activities, it serves as a test

of our ability to understand and model human dynamics: proper models should be able to capture

its statistical properties.

The most primitive model of human activity would assume that human actions are fundamentally

periodic, with a period determined by the daily sleep patterns. Yet, while certain periodicity is
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Figure 5.1: The difference between the activity patterns predicted by a Poisson process (top) and the

heavy tailed distributions observed in human dynamics (bottom). (a) Succession of events predicted

by a Poisson process, which assumes that in any moment events take place with probability q. The

horizontal axis denotes time, each vertical line corresponding to an individual event. Note that the

interevent times are comparable to each other, long delays being virtually absent. (b) The absence

of long delays is visible on the plot showing the delay times τ for 1,000 consecutive events, the size

of each vertical line corresponding to the gaps seen in (a). (c) The probability of finding exactly

n events within a fixed time interval is P(n; q) = e−qt(qt)n/n!, which predicts that for a Poisson

process the inter-event time distribution follows P (τ) = qe−qτ , shown on a log-linear plot in (c) for

the events displayed in (a, b). (d) The succession of events for a heavy tailed distribution. (e)

The waiting time τ of 1,000 consecutive events, where the mean event time was chosen to coincide

with the mean event time of the Poisson process shown in (a-c). Note the large spikes in the plot,

corresponding to very long delay times. (b) and (e) have the same vertical scale, allowing to compare

the regularity of a Poisson process with the bursty nature of the heavy tailed process. (f) Delay

time distribution P (τ) ≃ τ−2 for the heavy tailed process shown in (d,e), appearing as a straight

line with slope -2 on a log-log plot.
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certainly present, the timing of most human actions are highly stochastic. Indeed, periodic models

are hopeless in capturing the time we check out a book from the library, beyond telling us that it

should be within the library’s operation hours. The first and still most widely used stochastic model

of human activity assumes that the tasks are executed independently from each other at a constant

rate λ, so that the time resolved activity of an individual is well approximated by a Poisson process

[216]. In this case the probability density function (pdf) of the recorded interevent times has the

exponential form

P (τ) = λe−λτ . (5.3)

In practice this means that the predicted activity pattern, while stochastic, will display some regu-

larity in time, events following each other on average at τ ≈ 〈τ〉 = 1/λ intervals. Indeed, given that

for a Poisson process σ =
√

〈τ2〉 − 〈τ〉2 = 〈τ〉 is finite, very long waiting times (i.e. large temporal

gaps in the sequence of events) are exponentially rare. This is illustrated in Fig. 5.1a, where we

show a sequence of events generated by a Poisson process, appearing uniformly distributed in time

(but not periodic).

The Poisson process was originally introduced by Poisson in his major work applying probability

concepts to the administration of justice [224]. Today it is widely used to quantify the consequences

of human actions, such as modeling traffic flow patterns or accident frequencies [216], and is com-

mercially used in call center staffing [225], inventory control [226], or to estimate the number of

congestion caused blocked calls in mobile communications [218]. It has been established as a basic

model of human activity patterns at a time when data collection capabilities on human behavior

were rather limited. In the past few years, however, thanks to detailed computer based data col-

lection methods, there is increasing evidence that the Poisson approximation fails to capture the

timing of many human actions.

5.3 Empirical results

Evidence that non-Poisson activity patterns characterize human activity has first emerged in com-

puter communications, where the timing of many human driven events is automatically recorded.
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Figure 5.2: (a) The interevent time distribution between (a) two consecutive visits of a website by

a single user; (b) two consecutive library loans made by a single individual; (c) two consecutive

emails sent out by a user. For (a-c) we show as a straight line the α = 1 scaling. (d) The interevent

time distribution between two consecutive transactions made by a stock broker. The distribution

follows a power-law with the exponential cut-off P (τ) ∼ τ−1.3 exp(−τ/τ0). (e-g) The distribution of

the exponents (α) characterizing the interevent time distribution of users browsing the website (e),

individual loans from the library (f) and the emails sent by different individuals (g). The exponent

α was determined only for users whose total activity levels exceeded certain thresholds, the values

used being 15 web visits (e), 15 emails (f) and 10 books (g). (h,l) We numerically generate for

10,000 individuals interevent time distributions following a power-law with exponent α = 1. The

distribution of the measured exponents follows a normal distribution similar to the distribution

observed in (e-g). If we double the time window of the simulation (h) the deviation around the

average becomes much smaller (l). (i-k) The distribution of the number of events in the studied

systems: number of HTML hits for each user (i), the number of books checked out by each user

(j) and the number of emails sent by different individuals (k), indicating that the overall activity

patterns of individuals is also heavy tailed.
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For example, measurements capturing the distribution of the time differences between consecutive

instant messages sent by individuals during online chats [227] have found evidence of heavy tailed

statistics. Professional tasks, such as the timing of job submissions on a supercomputer [228], direc-

tory listings and file transfers (FTP requests) initiated by individual users [229] were also reported

to display non-Poisson features. Similar patterns emerge in economic transactions [230, 231], in the

number of hourly trades in a given security [232] or the time interval distribution between individ-

ual trades in currency futures [233]. Finally, heavy tailed distributions characterize entertainment

related events, such as the time intervals between consecutive online games played by users [234].

Note, however, that while these datasets provide clear evidence for non-Poisson human activity

patterns, most of them do not resolve individual human behavior, but capture only the aggregated

behavior of a large number of users. For example, the dataset recording the timing of job submissions

looks at the timing of all jobs submitted to a computer, by any user. Thus for these measurements

the interevent time does not characterize a single user but rather a population of users. Given the

extensive evidence that the activity distribution of the individuals in a population is heavy tailed,

these measurements have difficulty in capturing the origin of the observed heavy tailed patterns.

For example, while most people send only a few emails per day, a few send a very large number on

a daily basis [116, 27].

If the activity pattern of a large number of users is simultaneously captured, it is not clear

where the observed heavy tails come from: are they rooted in the activity of a single individual,

or rather in the heavy tailed distribution of user activities? Therefore, when it comes to our quest

to understand human dynamics, datasets that capture the long term activity pattern of a single

individual are of particular value such as the timing of printing jobs submitted by users [235] or the

activity patterns of individual email users [116]. These measurements offer direct evidence that the

heavy tailed activity patterns emerge at the level of a single individual, and are not a consequence of

the heterogeneous distribution of user activity. Despite this evidence, a number of questions remain

unresolved: Is there a single scaling exponent characterizing all users, or rather each user has its own

exponent? What is the range of these exponents? Next we aim to address these questions through

the study of six datasets, each capturing individual human activity patterns of different nature. First

we describe the datasets and the collection methods, followed by a quantitative characterization of
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the observed human activity patterns.

Web browsing: Automatically assigned cookies allow us to reconstruct the browsing history of

approximately 250,000 unique visitors of the largest Hungarian news and entertainment website

(origo.hu), which provides online news and magazines, community pages, software downloads, free

email and search engine, capturing 40% of all internal Web traffic in Hungary [222, 236]. The site

receives 6,500,000 HTML hits on a typical workday. We used the log files of the site to collect the

visitation pattern of each visitor between 11/08/02 and 12/08/02, recording with second resolution

the timing of each download by each visitor [222]. The interevent time, τ , was defined as the time

interval between consecutive page downloads (clicks) by the same visitor.

Email activity patterns: This dataset contains the email exchange between individuals in a

university environment, capturing the sender, recipient and the time of each email sent during a

three and six month period by 3,188 [116] and 9,665 [27] users, respectively. We focused here on

the data collected by Eckmann [116], which records 129,135 emails with second resolution. The

interevent time corresponds to the time between two consecutive emails sent by the same user.

Library loans: The data contains the time with second resolution at which books or periodicals

were checked out from the library by the faculty at the University of Notre Dame during a three year

period. The number of unique individuals in the dataset is 2,247, together participating in a total

of 48,409 transactions. The interevent time corresponds to the time difference between consecutive

books or periodicals checked out by the same patron.

Trade transactions: A dataset recording all transactions (buy/sell) initiated by a stock broker at

a Central European bank between 6/1999 and 5/2003 helps us quantify the professional activity of

a single individual, giving a glimpse on the human activity patterns driving economic phenomena.

In a typical day the first transactions start at 7AM and end at 7PM and the average number of

transactions initiated by the dealer in one day is around 10, resulting in a total of 54,374 transactions.

The interevent time represents the time between two consecutive transactions by the broker. The

gap between the last transaction at the end of one day and the first transaction at the beginning of

the next trading day was ignored.

The correspondence patterns of Einstein, Darwin and Freud: We start from a record containing

the sender, recipient and the date of each letter [237, 238, 239] sent or received by the three scientists
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during their lifetime. The databases used in our study were provided by the Darwin Correspondence

Project1, the Einstein Papers Project2 and the Freud Museum of London3. Each dataset contains the

information about each sent/received letter in the following format: SENDER, RECIPIENT, DATE,

where either the sender or the recipient is Einstein, Darwin or Freud. The Darwin dataset contained

a record of a total of 7,591 letters sent and 6,530 letters received by Darwin (a total of 14,121 letters).

Similarly, the Einstein database contained 14,512 letters sent and 16,289 letters received (total of

30,801). For Freud we have 3,183 (2,675) sent (received) leters. Note that 1,541 letters in the Darwin

database and 1,861 letters in the Einstein database were not dated or were assigned only potential

time intervals spanning days or months. We discarded these letters from the dataset. Furthermore,

the dataset is naturally incomplete, as not all letters written or received by these scientists were

preserved. Yet, assuming that letters are lost at a uniform rate, they should not affect our main

findings. For these three datasets we do not focus on the interevent times, but rather the response

or waiting times τw. The waiting time, τw, represents the time interval between the date of a letter

received from a given person, and the date of the next letter from Darwin, Einstein or Freud to him

or her, i.e. the time the letter waited on their desk before a response was sent. To analyze Einstein,

Darwin, and Freud’s response time we have followed the following procedure: if individual A sent

a letter to Einstein on DATE1, we search for the next letter from Einstein to individual A, sent on

DATE2, the response time representing the time difference τw = DATE2 −DATE1, expressed in

days. If there are multiple letters from Einstein to the recipient, we always consider the first letter

as the response, and discard the later ones. Missing letters could increase the response time, the

magnitude of this effect depending on the overall frequency of communication between the respective

correspondence partners. Yet, if the response time would follow a distribution with an exponential

tail, then randomly distributed missing letters would not generate a power law waiting time: they

would only shift the exponential waiting times to longer average values. Thus the observed power

law cannot be attributed to data incompleteness.

In the following we will break our discussion in three subsections, each focusing on a specific

class of behavior observed in the studied individual activity patterns.

1http://www.lib.cam.ac.uk/Departments/Darwin/
2http://www.einstein.caltech.edu/
3http://www.freud.org.uk
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5.3.1 The α = 1 universality class: Web browsing, email, and library datasets

In Fig. 5.2a-c we show the interevent time distribution between consecutive events for a single

individual for the first four studied databases: Web browsing, email, and library visitation. For

these datasets we find that the interevent time distribution has a power-law tail

P (τ) ∼ τ−α (5.4)

with exponent α ≈ 1, independent of the nature of the activity. Given that for these activity patterns

we collected data for thousands of users, we need to calculate the distribution of the exponent α

determined separatelly for each user whose activity level exceeds a certain threshold (i.e. avoiding

users that have too few events to allow a meaningful determination of P (τ)). As Fig. 5.2e-g shows,

we find that the distribution of the exponents is peaked around α = 1.

The scattering around α = 1 in the measured exponents could have two different origins. First,

it is possible that each user is characterized by a different scaling exponent α. Second, each user

could have the same exponent α = 1, but given the fact that the available dataset captures only

a finite time interval from one month to several months, with at best a few thousand events in

this interval, there are uncertainties in our ability to determine numerically the exponent α. To

demonstrate that such data incompleteness could indeed explain the observed scattering, in Figs.

5.2h and 5.2l we show the result of a numerical experiment, in which we generated 10,000 time

series, corresponding to 10,000 independent users, the interevent time of the events for each user

being taken from the same distribution P (τ) ∼ τ−1. The total length in time of each time series

was chosen to be 1, 000, 000. We then used the automatic fitting algorithm employed earlier to

measure the exponents in Figs. 5.2e-g to determine numerically the exponent α for each user. In

principle for each user we should observe the same exponent α = 1, given that the datasets were

generated in an identical fashion. In practice, however, due to the finite length of the data, each

numerically determined exponent is slightly different, resulting in the histogram shown in Fig. 5.2h.

As the figure shows, even in this well controlled situation we observe a scattering in the measured

exponents, obtaining a distribution similar to the one seen in Figs. 5.2e-g. The longer the time

series, the sharper the distribution is (Fig. 5.2l), given that the exponent α can be determined more

accurately.
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The distributions obtained for the three studied datasets are not as well controlled as the one

used in our simulation: while the length of the observation period is the same for each user, the

activity level of the users differs widely. Indeed, as we show in Fig. 5.2i-k, the activity distribu-

tion of the different users, representing the number of events recorded for each user, also spans

several orders of magnitude, following a fat tailed distribution. Thus the degree of scattering of

the measured exponent α is expected to be more significant than seen in Fig. 5.2h and l, since we

can determine the exponent accurately only for very active users, for which we have a significant

number of datapoints. Therefore, the obtained results are consistent with the hypothesis that each

user is characterized by a scaling exponent in the vicinity of α = 1, the difference in the numerically

measured exponent values being likely rooted in the finite number of events we record for each user

in the datasets. This conclusion will be corroborated by our modeling efforts, that indicate that

the exponents characterizing human behavior take up discrete values, one of which providing the

empirically observed α = 1.

As we will see in the following sections, an important measure of the human activity patterns

is the waiting time, τw, representing the amount of time a task waits on an individual’s priority list

before being executed. For the email dataset, given that we know when a user receives an email

from another user and the time he sends the next email back to her, we can determine the email’s

waiting or response time. Therefore, we define the waiting time as the difference between the time

user A receives an email from user B, and the time A sends an email to user B. In looking at this

quantity we should be aware of the fact that not all emails A sends to B are direct responses to

emails received from B, thus there are some false positives in the data that could be filtered out

only by reading the text of each email (which is not possible in the available datasets).

5.3.2 The α = 3/2 universality class: The correspondence of Einstein, Darwin

and Freud

In the case of the correspondence patterns of Einstein, Darwin and Freud we will focus on the

response time of the authors, partly because we will see later that this has the most importance

from the modeling perspective. As shown in Fig. 5.3, the probability that a letter will be replied

to in τw days is well approximated by a power law (Eq. 5.4) with α = 3/2, the scaling spanning
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four orders of magnitude, from days to years. Note that this exponent is significantly different from

α = 1 observed in the earlier datasets, and we will show later that modeling efforts indeed establish

α = 3/2 as a scaling exponent characterizing human dynamics.
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Figure 5.3: Distribution of the response times for the letters replied to by Einstein, Darwin and

Freud, as indicated on each plot. Note that the distributions are well approximated with a power

law tail with exponent α = 3/2. While for Darwin and Einstein the datasets provide very good

statistics (the power law regime spanning 4 orders of magnitude), the plot corresponding to Freud’s

responses is not so impressive, yet still being well approximated by the power law distribution. Note

that while in most cases the identified reply is indeed a response to a received letter, there are

exceptions as well: many of the very delayed replies represent the renewal of a long lost relationship.

The dataset allows us to determine the interevent times as well, representing the time interval

between two consecutive letters sent by Einstein, Darwin or Freud to any recipient. We find that the

interevent time distribution is also heavy tailed, albeit the quality of scaling is not as impressive as

we observe for the response time distribution. This is due to the fact that we do not know the precise

time when the letter is written (in contrast with the email, which is known with second resolution),

but only the day on which it was mailed. Given that both Einstein and Darwin wrote at least one

letter most days, this means that long interevent times are rarely observed. Furthermore, owing to

the long observational period (over 70 years), the overall activity pattern of the two scientists has

changed significantly, going from a few letters per year to as many 400-800 letters/year during the

later, more famous phase of their professional life. Thus the interevent time, while it appears to

follow a power law distribution, it is by no means stationary. On the contrary, the observed response
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time distribution is stationary.

5.3.3 The stock broker activity pattern

For the stock broker we again focus on the interevent time distribution, finding that the best fit

follows P (τ) ∼ τ−α exp(−τ/τ0) with α = 1.3 and τ0 = 76 min (see Fig. 1d). This value is

between α = 1 observed for the users in the first three other datasets and α = 3/2 observed for

the correspondence patterns. Yet, given the scattering of the measured exponents, it is difficult

to determine if this represents a standard statistical deviation from α = 1 or α = 3/2, the two

values expected by the modeling efforts (see Sections 5.5 and 5.6), or it stands as evidence for a

new universality class. At this point we believe that the former case is valid, something that can

be decided only once data for more users will become available4. The exponential cutoff is not

inconsistent with the modelling efforts either: as we will show in Appendix B.2, such cutoffs are

expected to accompany all human activity patterns with α < 2.

5.3.4 Qualitative differences between heavy tailed and Poisson activity patterns

The heavy tailed nature of the observed interevent time distribution has clear visual signatures.

Indeed, it implies that an individual’s activity pattern has a bursty character: short time intervals

with intensive activity (bursts) are separated by long periods of no activity (Figs. 5.1d-f). Therefore,

in contrast with the relatively uniform activity pattern predicted by the Poisson process, for a heavy

tailed process very dense successions of events (bursts) are separated by very long gaps, predicted

by the slowly decaying tail of the power-law distribution. This bursty activity pattern agrees with

our experience of an individual’s normal email usage pattern: during a single session we typically

send several emails in quick succession, followed by long periods of no email activity, when we focus

on other activities.

4However, see the next Chapter for a possible explanation.
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5.4 Capturing human dynamics: queuing models

The empirical evidence discussed in the previous Section raises several important questions: Why

does the Poisson process fail to capture the temporal features of human activity? What is the origin

of the observed heavy tailed activity patterns in human dynamics? To address these questions

we need to inspect closely the processes that contribute to the timing of the events in which an

individual participates.

Most of the time humans face simultaneously several work, entertainment, and family related

responsibilities. Indeed, at any moment an individual could choose to participate in one of several

tasks, ranging from shopping to sending emails, making phone calls, attending meetings or talks,

going to a theater, getting tickets for a sports event, and so on. To keep track of the various

responsibilities ahead of them, individuals maintain a to do or priority list, recording the upcoming

tasks. While this list is occasionally written or electronically recorded, in many cases it is simply

kept in memory. A priority list is a dynamic entity, since tasks are removed from it after they are

executed and new tasks are added continuously. The tasks on the list compete with each other for

the individual’s time and attention. Therefore, task management by humans is best described as

a queuing process [240, 241], where the queue represents the tasks on the priority list, the server

is the individual which executes them and maintains the list, and some selection protocol governs

the order in which the tasks are executed. To define the relevant queuing model we must clarify

some key features of the underlying queuing process, ranging from the arrival and service processes

to the nature of the task selection protocol, and the restrictions on the queue length [240]. In the

following we discuss each of these ingredients separately, placing special emphasis on their relevance

to human dynamics.

Server: The server refers to the individual (or agent) that maintains the queue and executes the

tasks. In queuing theory we can have one or several servers in parallel (like checkout counters in a

supermarket). Human dynamics is a single server process, capturing the fact that an individual is

solely responsible for executing the tasks on his/her priority list5.

Task Arrival Pattern: The arrival process specifies the statistics of the arrival of new tasks to

the queue. In queuing theory it is often assumed that the arrival is a Poisson process, meaning that

5However interactions between individuals may influence the execution of tasks, see next Chapter.
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new tasks arrive at a constant rate λ to the queue, randomly and independently from each other.

We will use this approximation for human queues as well, assuming that tasks land at random

times on the priority list. If the arrival process is not captured by a Poisson distribution, it can be

modeled as a renewal process with a general distribution of interarrival times [240]. For example,

our measurements indicate that the arrival time of emails follows a heavy tailed distribution, thus

a detailed modeling of email based queues must take this into account. We must also keep in mind

that the arrival rate of the tasks to the list is filtered by the individual, who decides which tasks to

accept and place on the priority list and which to reject. In principle the rejection of a task is also

a decision process that can be modeled as a high priority short lived task.

Service process: The service process specifies the time it takes for a single task to be executed,

such as the time necessary to write an email, explore a web page or read a book. In queuing theory

the service process is often modeled as a Poisson process, which means that the distribution of the

time devoted to the individual tasks has the exponential form (5.3). However, in some applications

the service time may follow some general distribution. For example, the size distribution of files

transmitted by email is known to be fat tailed [242, 243], suggesting that the time necessary to

review (read) them could also follow a fat tailed distribution. In queuing theory it is often assumed

that the service time is independent of the task arrival process or the number of tasks on the priority

list. While we adopt this assumption here as well, we must also keep in mind that the service time

can decrease if too many tasks are in the queue, as humans may devote less time to individual tasks

when they have many things to do.

Selection protocol or queue discipline: The selection protocol specifies the manner in which the

tasks in the queue are selected for execution. Most human initiated events require an individual to

weigh and prioritize different activities. For example, at the end of each activity an individual needs

to decide what to do next: send an email, do some shopping or place a phone call, allocating time

and resources for the chosen activity. Normally individuals assign to each task a priority parameter,

which allows them to compare the importance of the different tasks on the list. The time a task

waits before it is executed depends on the method the agent uses to choose the task to be executed

next. In this respect three selection protocols are particularly relevant for human dynamics:

(i) The simplest is the first-in-first-out (FIFO) protocol, executing the tasks in the order they
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were added to the list. This is common in service oriented processes, like the first-come-first-serve

execution of orders in a restaurant or getting help from directory assistance and consumer support.

(ii) The second possibility is to execute the tasks in a random order, irrespective of their priority

or time spent on the list. This is common, for example, in educational settings, when students are

called on randomly, and in some packet routing protocols.

(iii) In most human initiated activities task selection is not random, but the individual tends to

execute always the highest priority item on his/her list. The resulting execution dynamics is quite

different from (i) and (ii): high priority tasks will be executed soon after their addition to the list,

while low priority items will have to wait until all higher priority tasks are cleared, forcing them to

stay longer on the list. In the following we show that this selection mechanism, practiced by humans

on a daily basis, is the likely source of the fat tails observed in human initiated processes.

Queue Length or System Capacity: In most queuing models the queue has an infinite capacity

and the queue length can change dynamically, depending on the arrival and the execution rate of the

individual tasks. In some queuing processes there is a physical limitation on the queue length. For

example, the buffers of Internet routers have finite capacity, so that packets arriving while the buffer

is full are systematically dropped. In human activity one could argue that, given the possibility to

maintain the priority list in a written or electronic form, the length of the list has no limitations.

Yet, if confronted with too many responsibilities, humans will start dropping some tasks and not

accept others. Furthermore, while keeping track of a long priority list is not a problem for an

electronic organizer, it is well established that the immediate memory of humans has finite capacity

of about seven tasks [213, 244]. In other words, the number of priorities we can easily remember,

and therefore the length of our priority list, is bounded. These considerations force us to inspect

closely the difference between finite and an unbounded priority lists, and the potential consequences

of the queue length on the the waiting time distribution.

In this paper we follow the hypothesis that the empirically observed heavy tailed distributions

originate in the queuing process of the tasks maintained by humans, and seek appropriate models

to explain and quantify this phenomenon. Particularly valuable are queuing models that do not

contain power law distributions as inputs, and yet generate a heavy tailed output. In the following

we will focus on priority queues, reflecting the fact that humans most likely choose the tasks based
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on their priority for execution.

In the empirical datasets discussed in Section 5.3 we focused on both the interevent time and the

waiting time distribution of the tasks in which humans participate. In the following two Sections

we focus on the waiting time of a task on the priority list rather than the interevent times. In

this context he waiting time, τw, represents the time difference between the arrival of a task to the

priority list and its execution, thus it is the sum of the time a task waits on the list and the time

devoted to executing it. In Section 5.7 we will return to the relationship between the empirically

observed interevent times and the waiting times predicted by the discussed models.

5.5 Variable queue length models: α = 3/2 universality class

Our first goal is to explore the behavior of priority queues in which there are no restrictions on

the queue length. Therefore, in these models an individual’s priority list could contain arbitrary

number of tasks. As we will show below, such models offer a good approximation to the surface

mail correspondence patterns, such as that observed in the case of Einstein, Darwin and Freud (see

Section 5.3.2). Therefore, we will construct the models with direct reference to the the datasets

discussed in Section 5.3. We assume that letters arrive at rate λ following a Poisson process with

exponential arrival time distribution. Replacing letters with tasks, however, provides us a more

general model, in principle applicable to any human activity. The responses are written at rate µ,

reflecting the overall time a person devotes to his correspondence. Each letter is assigned a discrete

priority parameter x = 1, 2, . . . , r upon arrival, such that always the highest priority unanswered

letter (task) will be always chosen for a reply. The lowest priority task will have to wait the

longest before execution, and therefore it dominates the waiting time probability density for large

waiting times. This model was introduced in 1954 by Cobham [245] to describe some manufacturing

processes. Most of the analytical work in queuing theory has concentrated on the waiting time of

the lowest priority task, finding that the waiting time distribution follows [246]

P (τw) ∼ Aτ−3/2
w exp

(

−τw

τ0

)

, (5.5)
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where A and τ0 are functions of the model parameters, the characteristic waiting time τ0 being given

by

τ0 =
1

µ
(

1−√ρ
)2 , (5.6)

where ρ = λ/µ is the traffic intensity. Therefore, the waiting time distribution is characterized by a

power law decay with exponent α = 3/2, combined with an exponential cutoff.

The model can be extended to the case where the priorities are not discrete, but take up contin-

uous values 0 ≤ x <∞ from an arbitrary η(x) distribution. The Laplace transform of the waiting

time distribution for this case has been calculated in Ref. [240], but the resulting equation is difficult

to invert, forcing us to study the model numerically (Fig. 5.4). The natural control parameter is

ρ = λ/µ, allowing us to distinguish three qualitatively different regimes:

Subcritical regime, ρ < 1: Given that the arrival rate of the tasks is smaller than the execution

rate, the queue will be often empty. This significantly limits the waiting time, most tasks being

executed soon after their arrival. The simulations indicate that the waiting time distribution exhibits

an asymptotic scaling behavior consistent with Eq. 5.5 (Fig. 5.4). While in the ρ → 0 limit we

observe mainly the exponential decay, as ρ approaches 1 a power law regime with exponent α = 3/2

emerges, combined with the exponential cutoff.

Critical regime, ρ = 1 : When the arrival and the response rate of the letters are equal, according

to Eqs. 5.5 and 5.6 we should observe a power law waiting time distribution with α = 3/2 (Fig. 5.4).

This regime would imply that, for example, Darwin responds to all letters he receives, which is not

the case, given that their response rate is 0.32 (Darwin), 0.24 (Einstein) and 0.31 (Freud) [220]. In

this case it is easy to show that the queue length performs a one-dimensional random walk bounded

at l = 0. These fluctuations in the queue length will limit the waiting time distribution, as the

tasks will wait at most as long as it takes for the queue length to return to l = 0. Therefore, the

waiting time distribution will have as upper bound the return time distribution of a one-dimensional

random walk. It is known, however, that the return time distribution of a random walker follows

P (t) ∼ t−3/2 [247, 248], which is the origin of the 3/2 exponent in Eq. 5.4. This argument indicates

that Eq. 5.5 is related to the fluctuations in the length of the priority list.

Supercritical regime, ρ > 1 : Given that in this regime the arrival rate exceeds the response rate,
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Figure 5.4: Waiting time distribution for tasks in the queueing model discussed in Section 5.5 with

continuous priorities. The numerical simulations were performed as follows: At each step we generate

an arrival τa and service time τs from an exponential distribution with rate λ and µ, respectively.

If τa < τs or there are no tasks in the queue then we add a new task to the queue, with a priority

x ∈ [0, 1] from uniform distribution, and update the time t → t + τa. Otherwise, we remove from

the queue the task with the largest priority and update the time t → t + τs. The waiting time

distribution is plotted for three ρ = λ/µ values: ρ = 0.9 (circles), ρ = 0.99 (squares) and ρ = 0.999

(diamonds). The data has been rescaled to emphasize the scaling behavior P (τw) = τ
−3/2
w f(τw/τ0),

where τ0 ∼ (1 − √ρ)−2. In the inset we plot the distribution of waiting times for ρ = 1.1, after

collecting up to 104 (plus) and 105 (diamonds) executed tasks, showing that the distribution of

waiting times has a power law tail even for ρ > 1 (supercritical regime). Note, however, that in this

regime a high fraction of tasks are never executed, staying forever on the priority list whose length

increases linearly with time, a fact that is manifested by a shift to the right of the cutoff of the

waiting time distribution.
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the average queue length grows linearly as 〈l(t)〉 = (λ − µ)t. Therefore, a 1 − 1/ρ fraction of the

letters is never responded to, waiting indefinitely in the queue. Given Darwin, Einstein and Freud’s

small response rate, this regime captures best their correspondence pattern. We can measure the

waiting time for each letter that is responded to. In Fig. 5.4 we show the waiting time probability

density obtained from numerical simulations, indicating that it follows a power law with exponent

α = 3/2. Thus the supercritical regime follows the same scaling behavior as the critical regime,

but only for the letters that are responded to. The rest of the letters wait indefinitely in the list

(τw =∞).

A power law distribution emerges only in ρ = 1 and ρ > 1 regimes. The ρ = 1 regime requires a

careful tuning of the human execution rate, so that the execution and the arrival rates are exactly

the same. In contrast, for ρ > 1 no tuning is necessary, but the number of tasks on the list increases

linearly with time, thus many tasks are never executed. This limit is probably the most realistic for

human dynamics: we often take on tasks that we never execute, and technically stay on our priority

list forever. As we discussed above, this is the case for Einstein, Darwin and Freud, who answer

only a fraction of their letters. However, we must not overlook the second important feature of the

discussed model: the only exponent it can predict is α = 3/2, rooted in the fluctuations of the queue

length. While this fully agrees with the correspondence patterns of Einstein, Darwin and Freud, it

is significantly higher than the values observed in the empirical data discussed in Section 5.3.1 on

web browsing, email communications or library visits, which we found to be scattered around α = 1.

5.6 Fixed queue length models: α = 1 universality class

According to the model discussed in the previous Section an individual must have the capacity to

keep track of tens or hundreds of tasks at the same time. This may be appropriate for surface mail,

where the letters pile on our desk until replied to. In contrast, there is extensive evidence from the

psychology literature that the number of tasks humans can easily keep in their short term memory

is bounded [213]. This leads us to inspect a model in which the length of the priority list remains

unchanged [219], a new task being added only when an old task is removed from the list (executed).

We assume that an individual mantains a priority list with L tasks, each task being assigned

a priority parameter xi, i = 1, ..., L, chosen from an η(x) distribution. At each time step with
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probability p the individual selects the highest priority task and executes it, removing it from the

list. At that moment a new task is added to the list, its priority xi is again chosen from η(x),

thus the length L of the list remains unchanged. With probability 1 − p the individual executes

a randomly selected task, independent of its priority. The p → 1 limit of the model describes

the deterministic highest-priority-first protocol, when always the highest priority task is chosen for

execution, while p → 0 corresponds to the random choice protocol, introduced to mimic the fact

that humans occasionally select some low priority items for execution, before all higher priority

items are executed. In the model time is discrete, each task execution corresponding to one unit of

time. Implicit in this assumption is the approximation that the service time distribution follows a

delta function, i.e., each task takes one unit time to execute.

To understand the dynamics of the model we first study it via numerical simulations with

priorities chosen from a uniform distribution xi ∈ [0, 1]. The simulations show that in the p → 1

limit the probability that a task spends τw time on the list has a power law tail with exponent α = 1

(Fig. 5.5a). In the p → 0 limit P (τw) follows an exponential distribution (Fig. 5.5a), as expected

for the random selection protocol. As the typical length of the priority list differs from individual

to individual, it is important for the tail of P (τw) to be independent of L. Numerical simulations

indicate that this is indeed the case: changes in L do not affect the scaling of P (τw) [219]. The fact

that the scaling holds for L = 2 as well indicates that it is not necessary to have a long priority

list: even if an individual balances only two tasks at the same time, a bursty heavy tailed interevent

dynamics will emerge. Next we focus on the L = 2 case, for which the model can be solved exactly,

providing important insights into its scaling behavior that can be generalized for arbitrary L values

as well.

5.6.1 Exact solution for L = 2

For L = 2 the waiting time distribution was exactly determined by A. Vázquez [221] (see Ap-

pendix B.1), obtaining
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Figure 5.5: (a) Waiting time probability distribution function for the model discussed in Section 5.6

for L = 2 and a uniform new task priority distribution function, η(x) = 1, in 0 ≤ x ≤ 1, as obtained

from Eq. 5.7 (lines) and numerical simulations (symbols), for p = 0.5 (circles), p = 0.9 (squares),

p = 0.99 (diamonds) and p = 0.999 (triangles). The inset shows the fraction of tasks with waiting

time τ = 1, as obtained from (5.7) (lines) and numerical simulations (symbols). (b) Average waiting

time of executed tasks vs the list size as obtained from Eq. B.9 (lines) and numerical simulations

(symbols), for p = 0.0 (squares), p = 0.999 (circles) and p = 1 (diamonds).
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P (τw) =























1− 1−p2

4p ln 1+p
1−p , τw = 1

1−p2

4p(τw−1)

[

(

1+p
2

)τw−1
−
(

1−p
2

)τw−1
]

, τw > 1

(5.7)

independent of η(x) from which the task priorities are selected. In the limit p → 0 from Eq. 5.7

follows that

lim
p→0

P (τw) =

(

1

2

)−τw

, (5.8)

i.e. P (τw) decays exponentially, in agreement with the numerical results (Fig. 5.5a). This limit

corresponds to the random selection protocol, where a task is selected with probability 1/2 in each

step. In the p→ 1 limit we obtain

lim
p→1

P (τw) =



















1 + O

(

1−p
2 ln(1− p)

)

, τw = 1

O

(

1−p
2

)

1
τw−1 , τw > 1 .

(5.9)

In this case almost all tasks have a waiting time τw = 1, being executed as soon as they were added

to the priority list. The waiting time of tasks that are not selected in the first step follows a power

law distribution, decaying with α = 1. This behavior is illustrated in Fig. 5.5a by a direct plot of

P (τw) in Eq. 5.7 for a uniform distribution η(x) in 0 ≤ x ≤ 1. For p < 1 the P (τw) distribution

has an exponential cutoff, which can be derived from Eq. 5.7 after taking the τw →∞ limit with p

fixed, resulting in

P (τw) ∼ 1− p2

4

1

τw
exp

(

−τw

τ0

)

, (5.10)

where

τ0 =

(

ln
2

1 + p

)−1

. (5.11)

When p → 1 we obtain that τ0 → ∞ and, therefore, the exponential cutoff is shifted to higher τw

values, while the power law behavior P (τw) ∼ 1/τw becomes more prominent. The P (τw) curve
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systematically shifts, however, to lower values for τw > 1, indicating that the power law applies to

a vanishing task fraction (see Fig. 5.5a and Eq. 5.10). In turn, P (1)→ 1 when p→ 1, corroborated

by the direct plot of P (1) as a function of p (see inset of Fig. 5.5a).

5.6.2 Numerical results for L > 2

Based on the results discussed above, the overall behavior of the model with a uniform priority

distribution can be summarized as follows. For p = 1, corresponding to the case when always the

highest priority task is removed, the model does not have a stationary state. Indeed, each time

the highest priority task is executed, there is a task with smaller priority xm left on the list. With

probability 1−xm the newly added task will have a priority x′
m larger than xm, and will be executed

immediately. With probability xm, however, the new task will have a smaller priority, in which case

the older task will be executed, and the new task will become the ‘resident’ one, with a smaller

priority x′
m < xm. For a long period all new tasks will be executed right away, until an another task

arrives with probability x′′
m that again pushes the non-executed priority to a smaller value x′′

m < x′
m.

Thus with time the priority of the lowest priority task will converge to zero, xm(t) → 0, and thus

with a probability converging to one the new task will be immediately executed. This convergence

of xm to zero implies that for p = 1 the model does not have a stationary state. A stationary state

develops, however, for any p < 1, as in this case there is always a finite chance that the lowest

priority tasks will also be executed, thus the value of xm will be reset, and will converge to some

xm(p) > 0. This qualitative description applies for arbitrary L > 2 values.

To quantify this qualitative picture we studied numerically the L > 2 case assuming that η(x) is

uniformly distributed in the 0 ≤ x ≤ 1 interval. To investigate how fast the system approaches the

stationary state we compute the average priority of the lowest priority task in the queue, 〈xmin(t)〉
(see Fig. 5.6a,b) since it represents a lower bound for the average of any other priorities on the

list. We find that for any L values 〈xmin(t)〉 decreases exponentially up to a time scale t0, when it

reaches a stationary value 〈xmin(∞)〉. The numerical simulations indicate that

t0 ∼
1

1− p
, (5.12)
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Figure 5.6: Rescaled plot of the average priority of the lowest task priority in the list for L = 2 (a)
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different L (points), indicating that θL = θ3/2
L−3 for L > 2 (continuous line). (c) Rescaled plot of

the waiting time distribution for L = 3. Similar plots are obtained for larger vales of L (data not

shown).
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〈xmin(∞)〉 ∼ (1− p)[− ln(1− p)]θL . (5.13)

For L = 2 we can calculate 〈xmin(∞)〉 exactly [221], obtaining

〈xmin(∞)〉 =
1− p

2p

(

1 + p

2p
ln

1 + p

1− p
− 1

)

≈ 1− p

2
[− ln(1− p)] , (5.14)

and therefore θ2 = 1. For L > 2 we determined θL from the best data collapse, obtaining the values

shown in the inset of Fig. 5.6b, indicating that

θL =
θ3

2L−3
,

where θ3 = 0.22 is the value of θL for L = 3. These results support our qualitative discussion,

indicating that for all L ≥ 2 and 0 ≤ p < 1 values the system reaches a stationary state.

Finally we measured the waiting time distribution after the system has reached the stationary

state. The results for L = 3 are shown in Fig. 5.6c, and similar results were obtained for other

L > 2 values. The data collapse of the numerically obtained P (τ) indicates that

P (τ) ∼ (1− p)2
1

τ
exp

(

− τ

τ0

)

, (5.15)

when L > 2 and τ ≫ 1, where

τ0 ∼
1

1− p
(5.16)

in the p → 1 limit. The simulations indicate that the model’s behavior for L > 2 is qualitatively

similar to the behavior derived exactly for L = 2, but different scaling parameters characterize the

scaling functions. For any L ≥ 2, however, the waiting times scale as P (τw) ∼ τ−1
w , i.e. we have

α = 1.

5.6.3 Comparison with the empirical data

As the results in the previous Sections show, the model proposed to account for the α = 1 universality

class has some apparent problems. Indeed, for truly deterministic execution (p = 1) the model does
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not have a stationary state. The problem was solved by introducing a random task execution

(p < 1), which leads to stationarity. In this case, however, a p dependent fraction of tasks are

executed immediately, and only the rest of the long lived tasks follow a power law. As p converges

to zero, the fraction of tasks executed immediately diverges, developing a significant gap between

the power law regime, and the tasks displaying τ = 1 waiting time. Is this behavior realistic, or

represents an artifact of the model? A first comparison with the empirical data would suggest that

this is indeed an artifact, as measurements shown in Fig. 5.2 do not provide evidence of a large

number of tasks that are immediately executed. However, when inspecting the measured results

we should keep in mind that they represent the intervent times, and not the waiting times (see

Ref. [215] for more details related to the email dataset on this issue).

5.7 Relationship between waiting and interevent times

As we discussed above, the empirical measurements provide either the interevent time distribution

P (τ) (Sections 5.3.1 and 5.3.3) or the waiting time distribution P (τw) (Section 5.3.2) of the measured

human activity patterns. In contrast the model predicts only the waiting time τw of a task on an

individual’s priority list. What is the relationship between the observed interevent times and the

predicted waiting times? The basic assumption of this chapter is that the waiting times the various

tasks experience on an individual’s priority list are responsible for the heavy tailed distributions seen

in the interevent times as well. The purpose of this section is to discuss the relationship between

the two quantities.

The model predictions, that the waiting time distribution of the tasks follows a power law, are

directly supported by one dataset in each universality class: the email data and the correspondence

data. As discussed in Section 5.3, we have measured the waiting time distribution for both datasets,

finding that the distribution of the response times indeed follows a power law with exponent α = 1

(email) and α = 3/2 (correspondence mail) as predicted by the models. Therefore, the direct

measurement of the waiting times are likely rooted in the fat tailed response time distribution. For

the other three datasets, however, such as web browsing, library visits and stock purchases, we

cannot determine the waiting time of the individual events, as we do not know when a given task is

added to the individual’s priority list.
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To explore the broader relationship between the waiting times and the interevent times we must

remember that, while during the measurements we are focusing on a specific task (like email), the

models assume the knowledge of all tasks that an individual is involved in. Thus the empirical

measurements offer only a selected subset of an individual’s activity pattern. To see the relationship

between τ and τw next we discuss two different approaches.

Queueing of different task categories: The first approach acknowledges the fact that tasks are

grouped in different categories of priorities: we often do not keep in mind specific emails to be

answered, but rather remember that we need to check our email and answer whatever needs atten-

tion. Given this, one possible modification of the discussed models would assume that the tasks we

monitor correspond to specific activity categories, and when we are done with one of them, we do

not remove it from the list, but we just add it back with some changed priority. That is, checking

our email does not mean that we deleted email activity from our priority list, but only that next

has some different priority. If we monitor only one kind of activity, then a proper model would

be the following: we have L tasks, each assigned a given priority. After a task is executed, it will

be reinserted in the queue with a new priority chosen from the same distribution η(x). If we now

monitor the time at which the different tasks exit the list, we will find that the interevent times for

the monitored tasks correspond exactly to the waiting time of that task on the list. Note that this

conceptual model would work even if the tasks are not immediately reinserted, but after some delay

τd. Indeed in this case the interevent time will be τ = τw + τd, and as long as the distribution from

which τd is selected from is bounded, the tail of the interevent time distribution will be dominated

by the waiting time statistics.

Interaction between individuals: The timing of specific emails also depends on the interaction

between the individuals that are involved in an email based communication. Indeed, if user A gets

an email from user B, she will put the email into her priority list, and answer when she gets to

it. Thus the timing of the response depends on two parameters: the receipt time of the email, and

the waiting time on the priority list. Consider two email users, A and B, that are involved in an

email based conversation. We assume that A sends an email to B as a response to an email B sent

to A, and vice-versa. Thus, the interevent time between two consecutive emails sent by user A to

user B is given by τ = τA
w + τB

w , where τA
w is the waiting time the email experienced on user A’s
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queue, and τB
w is the waiting time of the response of user B to A’s email. If both users prioritize

their tasks, then they both display the same waiting time distribution, i.e. P (τA
w ) ∼ (τA

w )−α and

P (τB
w ) ∼ (τB

w )−α. In this case the interevent time distribution P (τ), which is observed empirically

if we study only the activity pattern of user A, follows also P (τ) ∼ τ−α. Thus the fact that users

communicate with each other turns the waiting time into observable interevent times.

In summary, the discussed mechanisms indicate that the waiting time distribution of the tasks

could in fact drive the interevent time distribution, and that the waiting time and the interevent

time distributions should decay with the same scaling exponent. In reality, of course, the interplay

between the two quantities can be more complex than discussed here, and perhaps even better

mapping between the two measures could be found for selected activities. But these two mechanisms

indicate that if the waiting time distribution is heavy tailed, we would expect that the interevent

time distribution would also be heavy tailed.

5.8 Discussion

In the following we will discuss the main results obtained in this chapter. A more complete discussion

(including model limitations, task optimization and correlations) can be found in Ref. [215].

Universality classes: As summarized in the introduction, the main goal of this chapter was

to discuss the potential origin of the heavy tailed distributed interevent times observed in human

dynamics. To start we provided evidence that in five distinct processes, each on a different human

activity, the interevent time distribution for individual users follows a power law. Our fundamental

hypothesis is that the observed interevent time distributions are rooted in the mechanisms that

humans use to decide when to execute the tasks on their priority list. To support this hypothesis we

studied a family of queuing models, assuming that each task to be executed by an individual waits

some time on the individual’s priority list and we showed that queuing can indeed generate power

law waiting time distributions. We find that a model that allows the queue length to fluctuate leads

to α = 3/2, while a model for which the queue length is fixed displays α = 1. These results indicate

that human dynamics is described by at least two universality classes, characterized by empirically

distinguishable exponents. Note that while we have classified the models based on the limitations

on the queue length, we cannot exclude the existence of models with fixed queue length that scale
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with α = 3/2, or models with fluctuating length that display scaling with α = 1, or some other

exponents (see next Chapter).

In comparing these results with the empirical data, we find that email and phone communication,

web surfing and library visitation belong to the α = 1 universality class. The correspondence

patterns of Einstein, Darwin and Freud offer convincing evidence for the relevance of the α = 3/2

exponent, and the related universality class, for human dynamics. In contrast the fourth process,

capturing a stock broker’s activity, shows α = 1.3. Given, however, that we have data only for a

single user, this value is in principle consistent with the scattering of the exponents from user to user,

thus we cannot take it as evidence for a new universality class. One issue still remains without a

satisfactory answer: why does email and surface mail (Einstein, Darwin and Freud datasets) belong

to different universality classes? We can comprehend why should the mail correspondence belong

to the 3/2 class: letters likely pile on the correspondent’s desk until they are answered, the desk

serving as an external memory, thus we do not need to remember them. But the same argument

could be used to explain the scaling of email communications as well, given that unanswered emails

will stay in our mailbox until we delete them (which is one kind of task execution). Therefore one

could argue that email based communication should also belong to the 3/2 universality class, in

contrast with the empirical evidence, that clearly shows α = 1 [219, 116].

In addition we argued that in a series of processes the waiting time distribution determines the

interevent time distribution as well (see Section 5.7). This argument closes the loop of the chapter’s

logic, establishing the relevance of the discussed queueing models to the datasets for which only

interevent times could be measured. We do not feel, however, that this argument is complete,

and probably future work will strengthen this link. In this respect two directions are particularly

promising. First, designing queueing models that can directly predict the observed interevent times

as well would be a major advance. Second, establishing a more general link between the waiting

time and interevent times could also be of significant value.

Non-human activity patterns: Heavy tailed interevent time distributions do not occur only in

human activity, but emerge in many natural and technological systems. For example, Omori’s law on

earthquakes [249, 250] records heavy tailed interevent times between consecutive seismic activities;

measurements indicate that the fishing patterns of seabirds also display heavy tailed statistics [251];
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plasticity patterns [252] and avalanches in lungs [253] show similar power law interevent times.

While a series of models have been proposed to capture some of these processes individually, there

is also a possibility that some of these modeling frameworks can be reduced to various queuing

processes. Some of the studied queuing models show close relationship to several models designed

to capture self-organized criticality [254, 255, 256, 257, 258, 259]. Could the mechanisms be similar

at some fundamental level? Even if such higher degree of universality is absent, understanding the

mechanisms and queuing processes that drive human dynamics could help us better understand

other natural phenomena as well

Network effects: In searching for the explanation for the observed heavy tailed human activity

patterns we limited our study to the properties of single queues. In reality none of our actions are

performed independently — most of our daily activity is embedded in a web of actions of other

individuals [260]. An important goal is to understand how the various human activities and their

timing is affected by the fact that the individuals are embedded in a network environment. The

next Chapter aims to develop this aspect.
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Chapter 6

Model of interactions on human

dynamics

In the previous Chapter we used queueing theory as a framework to model the heavy tailed statistics

of human activity patterns. The main predictions are the existence of a power law distribution for

the interevent time of human actions and two universality classes, with decay exponents α = 1

and α = 3/2. The proposed models lack, however, a key aspect of human dynamics, i.e. several

tasks require, or are determined by, interactions between individuals. Here we introduce a minimal

queueing model of human dynamics that already takes into account human-human interactions. To

achieve large scale simulations we obtain a coarse-grained version of the model, allowing us to reach

large interevent times and reliable scaling exponents estimations. Using this coarse-grained version,

we show that the interevent distribution of interacting tasks exhibit the scaling exponents α = 2,

3/2 and a series of numerable values between 3/2 and 1. This work demonstrates that, within the

context of queueing models of human dynamics, interactions change the universality class. Beyond

the study of human dynamics, these results are relevant to systems where the event of interest

consists of the simultaneous occurrence of two (or more) events.

111
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6.1 Introduction

In the recent years we have experienced an increased research activity in this area motivated by the

increased availability of empirical data [27, 116, 219, 220, 222]. Thanks to this data we are in a

position to investigate the laws and patterns of human dynamics using a scientific approach.

Within the framework of queueing theory [240, 241], the to do list of an individual is modeled as a

finite length queue with a task selection protocol, such as highest priority first. The main predictions

are the existence of a power law distribution of interevent times Pτ ∼ τ−α and two universality classes

characterized by exponents α = 1 [219, 221, 215] and α = 3/2 [220, 215]. These universality classes

have been corroborated by empirical data for email [219, 215] and regular mail communications

[220, 215], respectively, motivating further theoretical research [261, 119, 262, 263, 264].

The models proposed so far have been limited, however, to single individual dynamics. In

practice people are connected in social networks and several of their activities are not performed

independently. This reality leads us to model human dynamics in the presence of interactions

between individuals. Our past experience with phase transitions has shown us that interactions and

their nature are a key factor determining the universality classes and their corresponding scaling

exponents [223].

Furthermore, beyond the study of human dynamics, there are several systems where the event

of interest consists of the simultaneous occurrence of two (or more) events. For example, collec-

tive phenomena in disordered media, such as the interaction of two (or more) particles in cluster

formation [265].

6.2 The model of interacting queues

To investigate the impact of human-human interactions on the timing of their activities we consider

a minimal model consisting of two agents, A and B (Fig. 6.1). Each agent is modeled by a priority

list containing two tasks, interacting task (I) and aggregate non-interacting task (O). The interacting

task models a common activity such as meeting each other, requiring the simultaneous execution

of that task by both agents. On the other hand, the non-interacting task represents an aggregate

meta-activity accounting for all other tasks the agents execute, which do not require an interaction
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O

BA

I I

O

Figure 6.1: System of two agents with a common interacting task I and an aggregate task O

representing a set of individual tasks.

between them. To each task we assign random priorities xij (i = I,O; j = A,B) extracted from a

probability density function (pdf) fij(x) (see Fig. 6.1).

The rules governing the dynamics are as follows. Initial condition: We start with a random

initial condition, assigning a priority to the I and O tasks from their corresponding pdf. Updating

step: At each time step, both agents select the task with higher priority in their list. If (i) both

agents select the interacting task then it is executed, (ii) otherwise each agent executes the O task,

representing the execution of any of their non-interacting tasks.

Our aim is to determine the impact of the interaction between the agents and the shape of

fij(x) on the scaling exponent α of the interevent time distribution of the interacting task I. For

simplicity, we focus on the following priority distribution. Consider the case where each agent has

Lj (j = A,B) tasks, one I task and Lj − 1 non-interacting tasks, their priorities following a uniform

distribution in the interval [0, 1]. The pdf of the highest priority among Lj − 1 tasks is in this case

given by (Lj − 1)xLj−2, resulting in

fij(x) =







1 , i = I

(Lj − 1)xLj−2 , i = O .
(6.1)

This example shows that the priorities pdf of task I and O are in general different. All the results

shown below were obtained using the pdf in Eq. (6.1).

To investigate the interevent time distribution we perform extensive numerical simulations. Fig-

ure 6.2 shows the interevent time distribution as obtained from direct simulations of the model



114 CHAPTER 6. MODEL OF INTERACTIONS ON HUMAN DYNAMICS

0 5 10

log
10

τ
-20

-15

-10

-5

0

lo
g 10

P τ

L
A

=L
B
=2

L
A

=2 ; L
B
=3

L
A

=L
B
=3

L
A

=L
B
=4

L
A

=L
B
=7

0 5 10 15 20
-30

-20

-10

0

Figure 6.2: Probability distribution of the interevent time τ of the interacting task I, as obtained

from the direct numerical simulations of the model. Each dataset was obtained after 1011 model

time steps, corresponding with total number of I plus O task executions. Note that as LA and/or LB

increases it becomes computationally harder to have a good estimate of Pτ because the execution

of the I task becomes less frequent. The inset shows the distribution for L = 3 as obtained from the

original model with 1012 steps (green diamonds), and the coarse-grained model with N = 109 (red

plus), derived to obtain more reliable estimation of the exponents.
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introduced above. It becomes clear that for large LA and/or LB we do not obtain a good statistics,

even after waiting for 1011 updating steps. This observation is a consequence of the behavior of

fOj(x) when LA and/or LB are large (Fig. 6.3). Focusing on agent A, as LA increases fOA(x) gets

more concentrated around priority one, while the priority of the I task remains uniformly spread

between zero and one. This fact results in increasingly large interevent times between the execution

of the I task.
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Figure 6.3: Probability density function of the non-interacting aggregate task priority of user A, as

obtained from Eq. (6.1). With increasing the queue length LA, fOA(x) concentrates more and more

in the vicinity of x = 1−.

6.3 The coarse-grained model

To speed-off the numerical simulations we derive a coarse-grained version of the model, allowing us

to analyze the scaling behavior of the interevent time distribution over several orders of magnitude

(inset of Fig. 6.2). We start by noticing that, given (xIA, xIB), the joint pdf of (xOA, xOB) factorizes

and the probability q(xIA, xIB) that both agents execute I right after O is given by

q(xIA, xIB) =

∫ xIA

0
dxfOA(x)

∫ xIB

0
dxfOB(x) . (6.2)
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This factorization is possible because the execution of the I task requires its priority to be the largest

for both agents. In turn, with probability 1− q(xIA, xIB) both agents continue to execute O. Thus,

the probability distribution Qτ (xIA, xIB) that I waits τ > 1 steps before being executed follows the

geometric distribution

Qτ (xIA, xIB) = q(xIA, xIB)[1 − q(xIA, xIB)]τ−2 . (6.3)

Once the I task is executed it can be executed again resulting in interevent times of one step (τ = 1).

The overall interevent time distribution of the I task is given by

Pτ =







P1 , τ = 1

(1− P1)〈Qτ (xIA, xIB)〉 , τ > 1
(6.4)

where

P1 =
S1

S1 + 1
, (6.5)

S1 is the expected number of consecutive executions of the I task and 〈· · · 〉 denotes the expectation

over different realizations of (xIA, xIB), just at the step of switching from task I to O. Finally, at

the step of switching from O to I, the O task priority of both agents must fall below that of the I

task. Therefore, the pdf of xOj (j = A,B) just after the switch from O to I is given by

f∗
Oj(x|xIj) =

fOj(x)
∫ xIj

0 fOj(x′)dx′
, (6.6)

where 0 ≤ x < xIj. This later result together with Eq. (6.3) allow us to condense all steps with

consecutive executions of the O task into a single coarse-grained step. More important, this mapping

is exact.

Putting all together the coarse-grained model runs as follows. Initial condition: We start with

random initial priorities extracted from the pdfs fij(x). Updating step: At each step, (i) if for both

agents the I task priority is larger than that for the O task we run the model as defined above, both

agents executing the I task and updating their I task priorities using the pdfs fIj (j = A,B). (ii)

Otherwise, we generate a random interevent time τ from the probability distribution (6.3) and a

new O task priority for each agent using the pdf f∗
Oj(x|xIj) (6.6). This second step avoids going over
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successive executions of the O task which, for a large number of non-interacting tasks, significantly

slow down the simulations.

The second step of the coarse grained model requires us to extract a random number from a

geometric distribution. This can be achieved very efficiently exploiting the fact that the integer part

of a real random variable with an exponential distribution follows a geometric distribution. Using

this fact, when τ > 1, we extract τ exactly from the distribution in Eq. (6.3), which differs from

the corresponding branch of Eq. (6.4). Normalization by the total number of task I executions,

including those with τ = 1, provides τ > 1 distributed according to Eq. (6.4).

The I task interevent time distribution obtained from simulations of the coarse-grained model is

plotted in Fig. 6.4a. When LA = LB = L = 2 it follows a power-law tail with exponent α = 2. As

L increases α approaches one. A guess to this dependence, in good agreement with the measured

values, is given by α = 1 + 1/max(Lj − 1) (inset of Fig. 6.4a). The numerical results indicate

that there are several numerable universality classes parameterized by LA and LB . Notice that the

second largest value of α (obtained when LA = 2 and LB = 3, or vice-versa) is close to 3/2 and,

therefore, our results do not show universality classes with exponent α between 3/2 and 2 (unless

we assume real valued queue lengths).

6.4 Scaling of the interevent time distribution

The power laws in Fig. 6.4a exhibit a cutoff at a certain value of τ . To investigate if this is a

natural cutoff or just a finite size effect, we investigate the shape of the interevent time distribution

as a function of the observation time window T . The later is defined as the total number of steps

considering both the I and O task and satisfy

T =

N
∑

i=1

τi , (6.7)

where N is the number of executions of the I task within the time window T and τi (i = 1, . . . , N)

is the sequence of interevent times between executions of the I task. We assume that the cutoff is

determined by the finite time window and that the interevent time distribution follows the scaling

form
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Figure 6.4: a) Probability distribution of the I task interevent time for several values of the number

of tasks on each queue (LA, LB), as obtained from simulations of the coarse-grained model. When

LA = LB we denote this number by L. The inset shows the exponent α as measured from the

power law tails (black circles) and the guess function α = 1 + 1/max(Lj − 1) (red curve) in good

agreement; to avoid confusion we only plot the case when LA = LB = L, but we checked for the

general case as well. b) Scaling plot of the I task interevent time distribution. Note that, for a given

α, the symbols corresponding to different time windows T collapse into a single plot.
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P (τ) = Aτ−αg
( τ

T z

)

(6.8)

where A is a constant, z > 0 is a scaling exponent and g(x) is a scaling function with the asymptotic

behaviors g(x) ≈ 1 when x ≪ 1 and g(x) ≪ 1 when x ≫ 1. Under this assumption P (τ) ∼ τ−α

when T → ∞, with 1 < α ≤ 2. Given this power law tail and exponent, the number of interevent

times N necessary to cover the window T is of the order of magnitude of Tα−1 [60]. In turn, the

mean intervent time is of the order of

〈τ〉 =
1

N

N
∑

i=1

τi ∼ T 2−α . (6.9)

From Eqs. (6.8) and (6.9) it follows that z = 1.

To check our scaling assumption we plot PτT
α as a function of τ/T (Fig. 6.4b). The symbols

corresponding to different time windows T clearly overlap into a single curve, demonstrating that

the scaling assumption in Eq. (6.8) is correct with z = 1. Thus, in the T → ∞ limit the I task

intervent time distribution exhibits a true power law tail Pτ ∼ τ−α.

6.5 Discussion

Within the context of queuing models of human dynamics, only two universality classes were pre-

viously identified, corresponding to the single queue models of Cobham [220, 245] (α = 3/2) and

Barabási [219] (α = 1) — see Chapter 5. The analysis of the two interacting agents model reveals

that the interaction between agents results in a richer set of exponents. Although we have attempted

to solve the model analytically, the asymmetry between the interacting and non-interacting task,

turns this model more challenging than the Barabási model (Appendix B.1) and thus the exact an-

alytical solution has not yet been found. Our numerical results provide, however, evidence of a new

universality class with exponent α = 2 and exponents between 3/2 and 1. It is worth noticing that

the exponents 2 and 1 may also result from a Poisson process with a time dependent rate [266, 267].

Because the exponent α depends on the systems details, here represented by the agent’s queue

lengths LA and LB , we conclude that the model with two interacting agents exhibits non-universal

behavior. Interestingly, the exponent α = 1 is asymptotically reached when the number of tasks of
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one or both agents becomes large. As humans get engaged in several tasks this later asymptotic

behavior may explain the ubiquitous observation of the exponent α = 1 [215].

We use the number of non-interacting tasks as a mean to modulate the distribution of the non-

interacting aggregate task priority. Yet, it is the distribution shape the primary factor determining

the scaling exponent α. The effect of increasing LA and/or LB is a concentration of the non-

interacting aggregate task priority around priority one, resulting in values of α that approaches one.

This means that the limit α = 1 is achieved for low priority interacting tasks that remain most of

the time in the queue without being executed, at expenses of the execution of tasks which in general

have a higher priorities.

Considering the interaction between agents we also solve one of the standing problems of the

original Barabási model, related to the stationarity of the interevent time distribution [221, 262].

In the Barabási single queue model the task with highest priority is executed with a probability p,

otherwise a task is selected at random for execution. When p is close to one the interevent time

distribution exhibits a peak at one step and P1 → 1 when p → 1. When p = 1 the distribution

is non-stationary and P1 → 1 when time t → ∞. In contrast, in the model considered here there

is no need to introduce the random selection rule and the corresponding model parameter p. The

interacting task interevent time distribution is stationary even when the - highest priority first -

selection rule is applied. In turn, the exponent α is not exactly one, but reaches one asymptotically

with increasing the number of tasks. Finally, the interevent time distribution of the Barabási model

exhibits a natural cutoff determined by the parameter p, while for the model introduced here it is

a true power law up to finite size effects.

This work represents the first step in understanding how interactions among agents affect their

activity pattern. Based on recent works using queueing theory we describe the model in the context

of human dynamics. It can be generalized to consider a larger number of agents connected by a

specific social network. Also, the model can potentially be used more generally to study the time

statistics of events requiring the simultaneous occurrence of two events.



Chapter 7

Conclusions, outlook and list of

publications

In this thesis, after the introduction to network theory in Chapter 1, we started in Chapter 2 with

a study of structural properties of complex networks. The main results of this Chapter are, in

Section 2.1, the finding of the logarithmic k−dependence (Eq. 2.3) of the geodesic ℓ(k) in networks

with power-law degree distribution, and of the linear k-dependence (Eq. 2.4) in networks with

exponential distribution; in Section 2.2, we find the existence of two subgraph classes in scale-free

networks with power law degree-dependent clustering coefficient: The Type I subgraphs whose

density increases with the network size, and the Type II subgraphs whose density is independent

of N (Eq. 2.28). Also in Section 2.2 we find two kinds of cycles: Those with length h > hc, whose

density increases with N , and those (with length h < hc) having N -independent density (Eq. 2.30).

The results of this Section were analytically obtained and empirically verified for several real-world

networks.

In Chapter 3 we have analyzed the real-world network of collaborations between universities

and industry related entities promoted by the 5th Framework Programme in European Union. The

main results are that it is a scale-free, highly correlated network, for which the analytical result of

the previous Chapter (Eq. 2.3) is verified. Also, by splitting the network in two, one whose vertices

are Universities, and another whose vertices are Companies, we find that the former is more tightly

connected than the latter and conjecture some reasons for this as well as possible implications.
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In Chapter 4, serving as joint between the first part of the thesis and the second, we studied

the frequency of numbers on the World-Wide Web documents, finding an heterogeneous, heavy-

tailed distribution, with certain numbers occurring much more frequently than others. This study

generalizes results obtained long time ago by Newcomb and Benford for the frequency of numbers

in human documents.

The statistics of the timing of human activities was the object of study of Chapter 5. By

resorting to empirical data describing the temporal dynamics of several activities (such as email

usage, Web browsing or the surface-mail correspondence of Darwin, Einstein and Freud) we find

that the time between two consecutive actions by a single individual is heavy-tailed distributed,

with periods of intense activity (short interevent times) separated by time gaps of no activity (long

interevent times). Two universality classes are observed, one for the Darwin, Einstein and Freud

correspondence, characterized by the power-law exponent α = 3/2 and another for the other studied

activities characterized by α = 1. These observations are explained by resorting to single, priority

queue models, based on the mathematical queueing theory.

In Chapter 6 we devise a generalized queueing model to account for interactions between indi-

viduals on social networks. It is a first model of two interacting priority queues, which may explain

other possible exponents α in the timing of human dynamics (like, possibly, the stock broker activ-

ity of the previous Chapter). It thus represents a first step in understanding how interactions may

affect the patterns observed in the previous Chapter, and can be easily generalized to N interacting

queues by means, for example, of a social network. The model may also be potentially used in other

areas where the object of study involves the simultaneous occurrence of two, or more, events, like

cluster aggregation in disordered media, or synchronization studies in dynamical systems.

In overall, the work presented in this thesis considered only undirected, unweighted networks.

As was seen, there is still a lot to be explored in this simplest case of graphs, which signals the many

possibilities of research that graph theory presents, considering also that empirical network studies

are within the scope of this mathematical theory and for which physics can be of great importance.

The cases of directed, weighted networks, and also where intrinsic properties of vertices (or edges)

are considered, open up even more possibilities to be investigated. For example, as we said above,

the model of Chapter 6 can be generalized to be applied in a (social) network of N interacting
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agents. More generally, the edges (representing acquaintances) of the network should be weighted,

with weights depending on the time (normally decreasing) since the last interaction (or meeting).

Even more generally, the model can affect the network’s structure, with new edges (acquaintances)

appearing and others whose weight vanishes, and thus practically disappear. In this way, the model

can potentially be generalized to the whole society, for example. Of course, its results should be

confronted with reality, if not we would be just working on the grounds of speculation. This is where,

for example, social networking websites (beyond e-mail, instant messaging services, or telephone)

data can be useful (as discussed in Section 1.3.1), not only to avoid relationships to disappear —

the reason why we are in a connected age [55] — but also to allow for easier and faster analysis of

social data.
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Appendix A

Classification of FP5 participants

The Framework Programme (FP) sets out the priorities for the European Union’s research and

technological development. These priorities are defined following a set of criteria which pursue an

increase of the industrial competitiveness and the quality of life for European citizens. A fact which

shows the effort made by the European Union to promote this global policy for knowledge is the

budget devoted to these programmes. For example, the FP5 (1998-2002) was implemented by means

of 13,700 million euros and the FP6 (2002-2006) has assigned a budget of 17,883 million euros.

All projects in the FP5 are organized in eight specific programmes which can be classified as

follows. There are five focused Thematic Programmes implementing research, technological devel-

opment and demonstration activities:

• QOL: Quality of life and management of living resources (2,524 projects).

• IST: User–friendly information society (2,382 projects).

• GROWTH: Competitive and sustainable growth (2,014 projects).

• EESD: Energy, environment and sustainable development (1,772 projects).

• NUKE: Research and Training in the field of Nuclear Energy (1,032 projects).

And there are three Horizontal Programmes to cover the common needs across all research areas:

• INCO: Confirming the international role of Community research (1,034 projects).
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• SME: Promotion of Innovation and encouragement of small and medium enterprises partici-

pation (142 projects).

• HPOT: Improving human research potential and the socio–economic knowledge base (4,876

projects).

The data to analyze the FP5 as a complex network were obtained from the web pages of CORDIS1

with a robot implemented in Perl2. The result was a database with 15,776 records as follows:

Programme | Year | Participant1 - Nation - Dedication | Participant2 - Nation - Dedication | . . .

The first field refers to the specific programme to which the project belongs and the second field

informs us about the year in which it started. The following fields are the participants in the project

with their corresponding nationality and dedication (‘research’, ‘education’, ‘industry’...). We then

have a bipartite graph [42, 43] since there are two kinds of vertices (participants and projects) and

each edge links a participant with a project. To obtain the graph with 25,287 participants (nodes)

and 329,636 collaborations (edges) used throughout the text, we have only to project it onto the

participants.

The names of the participants were not free of typos since we collected them as they were in the

web. The consequence of this fact was that sometimes the same participant appeared in two projects

with different names and, consequently, it was recorded twice in the data. For instance, ‘François

Company of Something, Ltd.’ and ‘Francois Company of SOMETHING LTD’ would be recorded

as different. To avoid these duplications, we used a parser covering many possibilities which could

lead to false entries. Nevertheless, despite our efforts, not all duplications have been eliminated.

However, after a visual inspection of the data, we estimate that the error is below 10%.

To split the participants in Universities and Companies, we considered the organization type

reported in the project. This information is encoded in the field ‘Dedication’, where we found 11

levels: ‘Commission External Service’, ‘Commission Service’, ‘Consultancy’, ‘Education’, ‘Industry’,

‘Non Commercial’, ‘Not Available’, ‘Other’, ‘Research’, ‘Technology Transfer’ and 〈Void〉.

1Community Research and Development Information Service: http://cordis.europa.eu
2http://www.perl.org/
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The level ‘Not available’ means that the FP itself was not able to obtain the information and

this absence is shown in this manner. In addition, the level 〈Void〉 means that no information at all

is given, i.e. our robot found nothing (not even ‘Not Available’).

The first step to define only two groups was to reduce the number of levels in ‘Dedication’.

We found that eight levels could be merged to define a new one, called ‘Non Companies’. It

was not homogeneous since we found consultancies, universities, hospitals, institutes, laboratories,

observatories, museums, technological parks even cities. However, they all were participants involved

in some type of research for whom results do not necessarily return income. This new level was,

basically, the union of ‘Research’ and ‘Education’ since the other six levels appeared few times in the

data: ‘Commission External Service’ (4 records), ‘Commission Service’ (8 records), ‘Consultancy’

(49 records), ‘Non Commercial’ (389 records), ‘Technology Transfer’ (1 record) and 〈Void〉 (1 record).

The record with 〈Void〉 was identified as ‘Non Company’ by direct inspection.

Therefore, all records could be classified in one of the following levels: ‘Non Companies’ (41,317),

‘Industry’ (6,447), ‘Other’ (17,588) and ‘Not Available’ (12,346). The total number of records

(77,698) is larger than the number of participants (25,287) since many of them collaborate in several

projects. Then, it was necessary to verify if repeated records were always classified in the same level

of ‘Dedication’.

We found that many participants were classified in different levels, thus we had to define a

set of rules which eliminated this ambiguity. Hence, the following step was to study each level to

understand their composition. For every level, we chose 100 records randomly to check by direct

inspection their dedication. The result was that all selected records in ‘Industry’ were companies,

any in ‘Non Companies’, 95 in ‘Other’ and 55 in ‘Not Available’.

With the former information, we proceeded as follows. We first defined for each participant a

vector D={‘Non Companies’, ‘Industry’, ‘Other’, ‘Not Available’}, where the components are the

number of times that it is classified in that level. For instance, D={17, 0, 8, 4} means that the

participant appears 17 times as ‘Non Company’, 8 as ‘Other’ and 4 as ‘Not Available’. Then, we

decided that vectors in the form {a, 0, 0, 0} or {a, 0, 0, d} were Universities and vectors in the form

{0, b, c, d}, {0, b, c, 0}, {0, b, 0, d} and {0, b, 0, 0} were Companies. With only these sensible

rules, we managed to classify 22,001 participants (87%).
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In order to confirm this result and to classify the remaining 3,286 entities, we defined a filter

based in keywords relative to the Universities group, such as ‘univer’, ‘schule’, ‘laborato’... When we

focused our attention in the group of 22,001 participants classified using ‘Dedication’, we found that

those classified as Universities according to the filter were also Universities according to ‘Dedication’.

Since the filter was a completely different manner of splitting the dataset, we could use it for the

rest of the entries. Note that we only believed the result of the filter if it was University, not if the

result was Company. This is reasonable since the filter was designed to identify terms related to

Universities, not to Companies.

By means of the filter we classified all participants but 309. To place these entities, we paid

attention to which value was higher: ‘Non Companies’ or ‘Industry’, independently of the other two

values. If the value ‘Non Companies’ was higher, it was a University, otherwise it was a Company.



Appendix B

Results on the single queue models

B.1 Exact solution of the priority queue model with L = 2

Consider the model discussed in Section 5.6 [219] with L = 2 [221]. The task that has been just

selected and its priority has been reassigned will be called the new task, while the other task

will be called the old task. Let η(x) and R(x) =
∫ x
0 dxη̃(x) be the priority probability density

function (pdf) and distribution function of the new tasks, which are given. In turn, let η̃(x, t) and

R̃(x, t) =
∫ x
0 dxη̃(x, t) be the priority pdf and distribution function of the old task in the t-th step.

At the (t + 1)-th step there are two tasks on the list, their priorities being distributed according

to R(x) and R̃(x, t), respectively. After selecting one task the old task will have the distribution

function

R̃(x, t + 1) =

∫ x

0
dx′η̃(x′, t)q(x′) +

∫ x

0
dx′η(x)q̃(x′, t) , (B.1)

where

q(x) = p[1−R(x)] + (1− p)
1

2
(B.2)

is the probability that the new task is selected given the old task has priority x, and

q̃(x) = p[1− R̃(x, t)] + (1− p)
1

2
(B.3)

129



130 APPENDIX B. RESULTS ON THE SINGLE QUEUE MODELS

is the probability that the old task is selected given the new task has priority x. In the stationary

state, R̃(x, t + 1) = R̃(x, t), thus from (B.1) we obtain

R̃(x) =
1 + p

2p

[

1− 1

1 + 2p
1−pR(x)

]

. (B.4)

Next we turn our attention to the waiting time distribution. Consider a task with priority x that

has just been added to the queue. The selection of this task is independent from one step to the

other. Therefore, the probability that it waits τw steps is given by the product of the probability

that it is not selected in the first τw−1 steps and that it is selected in the τw-th step. The probability

that it is not selected in the first step is q̃(x), while the probability that it is not selected in the

subsequent steps is q(x). Integrating over the new task’s possible priorities we obtain

P (τw) =



















∫∞
0 dR(x) [1− q̃(x)] , τw = 1

∫∞
0 dR(x)q̃(x) [1− q(x)] q(x)τw−2 , τw > 1

(B.5)

Using (B.2)-(B.4) and integrating (B.5) we finally obtain

P (τw) =























1− 1−p2

4p ln 1+p
1−p , τw = 1

1−p2

4p(τw−1)

[

(

1+p
2

)τw−1
−
(

1−p
2

)τw−1
]

, τw > 1

(B.6)

Note that P (τw) is independent of the η(x) pdf from which the tasks are selected. Indeed, what

matters for task selection is their relative order with respect to other tasks, resulting that all de-

pendences in (B.2)-(B.4) and (B.5) appears via R(x).

B.2 The asymptotic characteristics of P (τw)

In Section 5.6 we focused on a model with fixed queue length L, demonstrating that it belongs to

a new universality class with α = 1. Next we derive a series of results that apply to any queuing

model that has a finite queue length, and is characterized by an arbitrary task selection protocol

[221]. In each time step there are L tasks in the queue and one of them is executed. Therefore
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t
∑

i=1

τi +

L−1
∑

i=1

τ ′
i = Lt , (B.7)

where τi is the waiting time of the task executed at the i-th step and τ ′
i , i = 1, . . . , L−1, is the time

interval that task i, that is still active at the t-th step, has already spent on the queue. The first

term in the l.h.s. of (B.7) corresponds to the sum of the waiting times experienced by the t tasks

that were executed in the t steps since the beginning of the queue, while the second term describes

the sum of the waiting times of the L − 1 tasks that are still on the queue after the t step. Given

that in each time step each of the L tasks experience one time step delay, the sum on the l.h.s.

should equal Lt. From (B.7) it follows that

〈τw〉 ≡ lim
t→∞

1

t

t
∑

i=1

τi = L− lim
t→∞

1

t

L−1
∑

i=1

τ ′
i . (B.8)

If all active tasks have a chance to be executed sooner or later, like the case for the model studied

in Section 5.6 in the 0 ≤ p < 1 regime [219], we have 〈τ ′
w〉 ≤ 〈τw〉 and the last term in (B.8)

vanishes when t → ∞. In contrast, for p = 1 the numerical simulations [219] indicate that after

some transient time the most recently added task is always executed, while L − 1 tasks remain

indefinitely in the queue. In this case τ ′
i ∼ t in the t→∞ limit and the last term in (B.8) is of the

order of L− 1. Based on these arguments we conjecture that the average waiting time of executed

tasks is given by

〈τw〉 =







L , 0 ≤ p < 1

1 , p = 1 ,
(B.9)

which is corroborated by numerical simulations (see Fig. 5.5b).

It is important to note that the equality in (B.8) is independent of the selection protocol, allowing

us to reach conclusions that apply beyond the model discussed in Section 5.6. From (B.8) we obtain

〈τw〉 ≤ L . (B.10)

From this constraint follows that P (τw) must decay faster than τ−2
w when τw →∞, otherwise 〈τw〉

would not be bounded. Indeed, it is easy to see that for any α < 2 the average waiting time 〈τw〉
diverges for Eq. (5.2). Thus, when τw →∞, we must either have
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P (τw) ∼ aτ−α
w , α > 2 (B.11)

or

P (τw) = τ−α
w f

(

τw

τ0

)

, (B.12)

where τ0 > 0 and f(x) = O(bxα−2) when x→∞, where b is a constant. That is, each time an α < 2

exponent is observed (as it is for the empirical data discussed in Section 5.3), an exponential cutoff

must accompany the scaling. For example, for the model discussed above with L = 2 and 0 ≤ p < 1

we have α = 1 and f(x) decays exponentially (5.10), in line with the constraint discussed above.

B.3 Transitions between the two universality classes

A basic difference between the models discussed in Section 5.5 and Section 5.6 is the capacity of

the queue. Our results indicate that the model without limitation on the queue length displays

α = 3/2, rooted in the fluctuations of the queue length. In contrast, the model with fixed queue

length (Section 5.6) has α = 1, rooted in the queuing of the low priority tasks on the priority list.

If indeed the limitation in the queue length plays an important role, we should be able to develop

a model that can display a transition from the α = 3/2 to the α = 1 universality class as we limit

the fluctuations in the queue length. In this section we study such a model, interpolating between

the two observed scaling regimes. We start from the model discussed in Section 5.5, and impose

on it a maximum queue length L. This can be achieved by altering the arrival rate of the tasks:

when there are L tasks in the queue no new tasks will be accepted until at least one of the tasks is

executed. Mathematically this implies that the arrival rate depends on the queue length as

λl =







λ , 0 ≤ l < L

0 , l = L .
(B.13)

In the stationary state the queue length distribution P (l) satisfies the balance equation

λl−1P (l − 1) + µl+1P (l + 1) = (λl + µl)P (l) , (B.14)
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where

µl =







0 , l = 0

µ , 0 < l ≤ L .
(B.15)

From (B.14) we obtain the queue length distribution as

P (l) =
1− ρ

1− ρL+1
ρl , (B.16)

suggesting the existence of three scaling regions.

Subcritical regime, ρ ≪ 1: If the arrival rate of the tasks is much smaller than the execution

rate, the fact that the queue length has an upper bound has little significance, since l will rarely

reach its upper bound L, but will fluctuate in the vicinity of l = 0. This regime can be reached

either for ρ ≪ 1 and L fixed or for ρ < 1 and L ≫ 1. Therefore, in this case the waiting time

distribution is well approximated by that of the model with an unlimited queue length, displaying

the scaling predicted by Eq. (5.5), i.e. either exponential, or a power law with α = 3/2, coupled

with an exponential cutoff (see Fig. B.1a).

Critical regime: For ρ = 1 we observe an interesting interplay between the queue length and L.

Normally in this critical regime l(t) should follow a random walk with the return time probability

density scaling with exponent 3/2. However, the limitation imposed on the queue length limits the

power law waiting time distribution predicted by Eq. (5.5), introducing a cutoff (see Fig. B.1a).

Indeed having the number of tasks in the queue limited allows each task to be executed in a finite

time.

Supercritical regime: When ρ≫ 1 from (B.16) follows that

Ll =







O(ρ−1) , 0 ≤ l < L

1− O(ρ−1) , l = L ,
(B.17)

i.e. with probability almost one the queue is filled. Thus, in the supercritical regime ρ≫ 1 new tasks

are added to the queue immediately after a task is executed. If we take the number of executed tasks

as a new reference time then this model corresponds to the one discussed in Section 5.6, displaying

α = 1 [219], as supported by the numerical simulations (see Fig. B.1b).
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Figure B.1: Waiting time distribution for tasks in the queueing model discussed in Section B.3, with

a maximum queue length L. The waiting time distribution is plotted for three L values: L = 10

(circles), L = 100 (squares) and L = 1000 (diamonds). The data has been rescaled to emphasize

the scaling behavior P (τw) = τ
−3/2
w f(τw/τ0), where τ0 ∼ L2. In the inset we plot the waiting time

for ρ = 106, showing the crossover to the model discussed in Section 5.6 in the limit ρ→∞ and L

fixed.
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