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palavras-chave 
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resumo 
 
 

Um grande ensemble de simulações AMIP (Model Intercomparison Project) II 
geradas pelo MUGCM (Melbourne University General Circulation Model) são 
usadas para estudar o forçamento da pressão média ao nível das águas do 
mar (MSLP, mean sea level pressure) na região Euro-Atlântica (EA) pelas 
anomalias da temperatura superficial do oceano (SST, sea level temperature).  
 
Uma Análise de Variância (ANOVA) mostra que a variabilidade de médias 
sazonais de MSLP na região EA, e o seu maior modo de variabilidade - a 
Oscilação do Atlântico Norte (NAO, North Atlantic Oscillation) – são 
significativamente forçadas pelas SSTs no Inverno e na Primavera.    
 
Os dois primeiros modos de variabilidade forçada das anomalias sazonais de 
MSLP na região EA são estimados usando uma Análise de Componentes 
Principais de Detecção Optimizada. Análises de regressão e correlação 
usando anomalias sazonais de SST e as séries temporais associadas aos 
padrões forçados fornecem evidência estatística de que: (i) uma fase 
positiva/negativa do El Niño - Oscilação Austral (ENSO) induz uma fase 
negativa/positiva da NÃO no Inverno e na Primavera; (ii) uma fase 
positiva/negativa do Gradiente Inter-hemisférico de SST no Atântico induz uma 
fase negativa/positiva da NAO.   
 
A sensibilidade da NAO à polaridade e intensidade do ENSO é também 
analisada. Os resultados revelam sinais das fases do ENSO quer na 
intensidade média da NAO, quer na sua variabilidade interna. Durante a fase 
fria do ENSO, a Função de Densidade de Probabilidade (PDF) do índice da 
NAO evidencia um pequeno mas positivo valor médio, enquanto que este é 
negativo na fase quente do ENSO. Além disso, a variabilidade da NAO tem um 
comportamento diferente para cada fase do ENSO: durante a fase quente, a 
PDF apresenta maior variância e sugere uma bimodalidade, enquanto que na 
fase fria nenhuma bimodalidade é sugerida.  
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abstract 
 

A large Atmospheric Model Intercomparison Project II ensemble of the 
Melbourne University General Circulation Model is used to asses sea surface 
temperature (SST) anomaly forcing of mean sea level pressure (MSLP) 
seasonal mean anomalies over the Euro-Atlantic (EA) region. Tropical SST 
forcing is focused. 
 
An Analysis of Variance shows that seasonal mean MSLP variability in the EA 
region, and its major mode of variability (the North Atlantic Oscillation, NAO), 
are significantly SST-forced in winter and spring. 
 
The two leading SST-forced variability modes of MSLP seasonal mean 
anomalies in the EA region are estimated, using Optimal Detection Principal 
Component Analysis. Regression and correlation analysis using SST 
anomalies and the time series associated to the forced patterns, give statistical 
evidence that: (i) a warm (cold) phase of the El Niño-Southern Oscillation 
(ENSO) induces a negative (positive) phase of the NAO in winter and spring; 
and (ii) a positive (negative) phase of the Atlantic Inter-hemispheric SST 
Gradient  induces a negative (positive) phase of the NAO in spring. 
 
The sensitivity of the NAO to ENSO polarity and strength is also analysed. The 
results show signals of the ENSO phases in both the mean strength of the 
NAO as well as in its internal variability. During the cold ENSO phase, the 
Probability Density Function (PDF) of the NAO index presents a small but 
positive mean value, whereas it is negative during the warm ENSO phase. 
Also, the NAO variability associated with each ENSO phase shows a different 
behaviour: during the warm phase, the PDF presents a larger variance and 
suggests bimodality, whereas no bimodality is suggested in the cold ENSO 
phase. 
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Chapter 1

Introduction

Lorenz [1963, 1965] demonstrated that, due to the inherent nature of instability and

nonlinearity, atmospheric flows with only slightly different initial states will depart from

each other and evolve eventually to flows that are just randomly related. Because of

this, daily weather variations, which are due primarily to the internal dynamics of the

atmosphere, cannot be predicted in detail by more than 2-3 weeks in advance [Lorenz,

1982; Chen, 1989]. In other words, synoptic predictability is an initial condition problem

bounded by the time the atmosphere can “remember” its initial state.

Weather variability induces unpredictable variability on interannual variability of sea-

sonal mean quantities [Leith, 1973; Madden, 1976; Chervin, 1986], usually referred to

as natural or internal variability. On the other hand, slowly varying external boundary

conditions, such as anomalies of sea surface temperature (SST) and sea ice concentra-

tion (SIC) can cause predictable variations in seasonal mean quantities, referred to as

external or forced variability. Consequently, interannual climate variability is formed

by two components: a component due to the internal dynamics of the atmosphere (in-

ternal variability) and a component forced by the slowly varying anomalous boundary

conditions external to the atmospheric climate system (external variability). Since the

internal component is random and the external component is predictable, interannual

climate predictability is a boundary condition problem [Chervin, 1986; Branković et al.,

1994; Chen and Van den Dool, 1997].

1



2 1. Introduction

As an external boundary condition problem, interannual climate predictability re-

quires, in the first place, the prediction of the external boundary evolution. Because

of this, it is usually referred to as interannual climate potential predictability. Estima-

tion of potential predictability in the globe has been a topic of ongoing research in the

climate community. This estimation requires the estimation of at least one of the two

components of climate variability, internal or external variability, and is, therefore, diffi-

cult to achieve using the observational record alone [Madden, 1976]. This difficulty has

led the climate community to use Atmospheric General Circulation Model (AGCM)

simulations to estimate potential predictability. Several experiments have been con-

ducted with AGCMs to achieve this task [Chervin and Schneider, 1976; Chervin, 1986]

but the one which has proven to be more suitable consists of performing an ensemble

of integrations all forced by the same observed boundary conditions (SST and SIC)

but started from different initial conditions [Dix and Hunt, 1995; Stern and Miyakoda,

1995; Harzallah and Sadourny, 1995; Kumar and Hoerling, 1995; Kumar et al., 1996],

such as the experiments following the rules of the Atmospheric Model Intercomparison

Project (AMIP) and AMIP II [Gates, 1992]. The philosophy is that sensitivity to initial

atmospheric conditions can be used to quantify internal variability whereas the rela-

tive similarity between ensemble members can be used to quantify external variability.

Since the works of Rowell et al. [1995]; Zwiers [1996]; Davis et al. [1997]; Rowell [1998]

and Wang and Zwiers [1999], the Analysis of Variance (ANOVA) [Scheffé, 1959] became

the standard statistical technique to extract the internal and external components of

variability from an ensemble of simulations, and thus to obtain estimates of potential

predictability. Of course, the reliability of these estimates rely themselves on the ability

of the AGCM to simulate the observed interannual variability (e.g., Smith [1995]) .

From the potential predictability studies above mentioned there is a general consensus

that it is high in the tropics and rather low in the extratropics. In the tropics, the high

potential predictability results not only from the low internal variability but also from

the high forced variability which results from the direct thermodynamic response to

SST variations. On seasonal-to-interannual timescales, the high values of potential pre-
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dictability are associated with the El Niño-Southern Oscillation (ENSO) phenomenon.

In the extratropics, the North Pacific-American (NPA) sector has the highest values

of potential predictability [Barnett et al., 1997; Rowell, 1998; Renshaw et al., 1998;

Feldstein, 2000; Zwiers et al., 2000], while the Euro-Atlantic (EA) region has low but

still significant values of potential predictability [Davis et al., 1997; Cassou and Terray,

2001]. As in the tropics, ENSO events cause higher values of potential predictability in

the NPA [Branković et al., 1994; Barnett et al., 1997; Chen and Van den Dool, 1997;

Renshaw et al., 1998] and EA [Branković et al., 1994; Chen and Van den Dool, 1997;

Mathieu et al., 2004] sectors. In both sectors, most locations have their highest po-

tential predictability during winter or spring [Barnston, 1994; Branković et al., 1994;

Chen and Van den Dool, 1997; Rowell, 1998; Zwiers et al., 2000]. A partial explanation

for this seasonality was given by Opsteegh and den Dool [1980] and Webster [1982],

whose linear models show that only when the extratropical westerly flow is far enough

south can the Rossby waves communicate predictable signals from the tropics to the

extratropics.

ENSO is an atmosphere-ocean coupled mode of interannual variability in the equa-

torial Pacific. Literature on the atmospheric component of ENSO, the Southern Os-

cillation, dates back to the classical series of papers of Walker, named World Weather

(Walker [1928] and Walker and Bliss [1932], among others), followed by the observa-

tional work of Chen [1982]. The oceanic component of ENSO the El Niño, has been

extensively documented since the observational works of Wyrtki [1975], Weare et al.

[1976] and Weare [1982]. After the works of Bjerknes (Bjerknes [1969] and Bjerknes

[1972], among others), Julian and Chervin [1978] and Barnett [1981] reporting the

physical link between the Southern Oscillation and El Niño, the two phenomena has

been taken as two components of the same phenomenon, the ENSO [Philander, 1981;

Rasmunsson and Carpenter, 1982; Philander, 1985; Wang, 1992; Neelin et al., 1998;

Trenberth and Caron, 2000].
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Since ENSO is the strongest mode of interannual SST variability in the globe and

is predictable several months in advance1, a large number of observational works have

been done to determine its relationship with worldwide atmospheric changes [Bjerknes,

1969; van Loon and Madden, 1981; van Loon and Rogers, 1981; Horel and Wallace,

1981; Pan and Oort, 1983; Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989].

Especial attention has been given to the ENSO forcing of the two major patterns of

atmospheric variability in Northern Hemisphere: the Pacific North American (PNA)

pattern [Dickson and Namias, 1976; Wallace and Gutzler, 1981; Barnston and Livezey,

1987] in the NPA sector, and the North Atlantic Oscillation (NAO) [Walker and Bliss,

1932; van Loon and Rogers, 1978; Wallace and Gutzler, 1981; Barnston and Livezey,

1987] in the EA region. Note that both the PNA and the NAO patterns are natural

modes of variability in the northern hemisphere. They are identified as preferred modes

of variability in AGCMs forced with climatological SSTs [Barnett, 1985; Glowienka-

Hense, 1990; Cassou and Terray, 2001], in AMIP experiments using internal variability

data [Harzallah and Sadourny, 1995], and, since internal variability is higher than the

forced variability in the extratropics, also using total variability data [Zwiers et al.,

2000].

A theoretical explanation for the ENSO forcing on the NPA region was given by

Hoskins and Karoly [1981] (see also Opsteegh and den Dool [1980]; Webster [1981,

1982] and Lau and Lim [1984]). These authors showed that the PNA pattern found

in the mid-tropospheric geopotential height field of the northern hemisphere bears a

strong qualitative resemblance to the steady-state solutions of the linearised primitive

equations on a sphere, forced by a tropical heat source. Anomalous SST in the tropical

Pacific forces anomalies in convection and large-scale overturning with subsidence in

the descending branch of the local Hadley circulation. The resulting strong upper

tropospheric divergence in the tropics and convergence in the subtropics act as a Rossby

1Barnett [1993] proposed that forecasts of winter SST at lead times of at least 6 months are good

enough to be used with atmospheric models to attempt long-range winter forecasts for the North

American continent. Collins et al. [2002] found that ENSO could be usefully predicted, on average, up

to 8 months in advance.
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wave source. The emanating wave trains carry energy into the extratropics in a great

circle path that projects on the PNA pattern. Sardeshmukh and Hoskins [1988] showed

that the climatological stationary waves and associated jet streams can make the total

Rossby wave sources somewhat insensitive to the position of the tropical heating that

induces them and thus can create preferred teleconnection response patterns, such as

the PNA.

There is a general agreement that the impact of ENSO on the EA region is weaker

and less robust than on the PNA sector but still significant [Pozo-Vásquez et al., 2001;

Cassou and Terray, 2001; Gouirand and Moron, 2003; Mathieu et al., 2004]. Although

largely studied, the response of the EA atmosphere to ENSO forcing is not consensual

and the physical mechanisms involved are not yet fully understood. One of the objec-

tives of this work is, thus, to improve the knowledge on this subject, focusing on the

non-linear behaviour of the response. It will be showed that the impact on the EA

region can be characterised, at least in part, in terms of changes in the frequency of

occurrence of the NAO regimes Melo-Gonçalves et al. [2005].

In the Atlantic sector, it is consensual that the NAO forces the underlying SSTs

resulting in the North Atlantic SST anomaly Tripole pattern [Deser and Blackmon,

1993], but recent works suggest that the latter may feedback on the former at longer

timescales. Several works have also been published reporting the response of the EA

atmosphere to the tropical Atlantic SSTs at the decadal timescale Venzke et al. [1999];

Sutton and Hodson [2003]; Hodson et al. [2003]. However, the response of the atmo-

spheric circulation to both tropical and extratropical SSTs on interannual timescales

is less studied and understood [Czaja and Frankignoul, 2002; Frankignoul et al., 2003],

probably because of its blending with the remote signal from the tropical Pacific asso-

ciated with ENSO events, and the influence of the latter on the tropical Atlantic SSTs

through the so called atmospheric bridge [Klein et al., 1999; Saravanan and Chang,

2000; Giannini et al., 2001; Alexander et al., 2002; Huang, 2004]. For this reason, an-

other purpose of this work is the study of the interannual Atlantic SST forcing on the

EA atmospheric circulation.
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In order to achieve the above mentioned objectives, two experiments were conducted

with the Melbourne University General Circulation Model (MUGCM). The first ex-

periment conducted with the MUGCM followed the rules specified by AMIP II. In

the second experiment, the MUGCM was forced by the climatological annual cycle of

monthly mean SST and SIC.

The layout of this thesis is as follows. Chapter 2 describes the datasets assumed

to represent the observed atmosphere and the model experiments performed with the

MUGCM to obtain the simulated data. In chapter 3, the ability of the MUGCM to

simulate the observed climate and variability is assessed, using the reanalysis from

the National Centers for Environmental Prediction (NCEP) as representative of the

observed atmosphere. Chapter 4 presents estimates of internal and forced variabilities

at each grid point of the EAregion, obtained by performing an ANOVA to the MUGCM

AMIP II ensemble. Potential predictability estimates are also provided for each grid

point of the EA sector, and the regions with significant SST-forcing are identified. The

total variability of two indices of the NAO is also decomposed into its internal and

forced components, and its potential predictability is estimated for consecutive and

overlapping three-month seasons throughout the year. In chapter 5, the leading modes

of mean sea level pressure (MSLP) variability in the EA region forced by SST and

SIC variability are estimated. The regions of the global ocean where SST anomaly

variability is responsible for the detected MSLP forced modes are localised, and the

forcing SST modes of variability are identified. Chapter 6 addresses the forcing of the

tropical Pacific SST anomalies on the MSLP variability in the EA sector by studying

the sensitivity of the NAO to ENSO polarity and strength. Finally, chapter 7 provides

a summary of the analyses and the major conclusions of the this work.



Chapter 2

Observed and Simulated Data

This chapter describes the observed data and the model experiments performed with

the MUGCM to obtain the simulated data used in this work.

2.1 Observed data

It is assumed here that the observed data will represent the “’real” atmospheric circu-

lation and sea surface temperatures. The following datasets were used:

• NCEP datasets - monthly mean data of several variables on a global 2.5o latitude

by 2.5o longitude grid, from 1950 to 2001, extracted from the NCEP reanalysis

[Kalnay and co authors, 1996].

• CMAP dataset - monthly means of precipitation from 1979 to 2001, on a 2.5o

latitude by 2.5o longitude grid, from the Climate Prediction Center (CPC) Merged

Analysis of Precipitation (CMAP) [Xie and Arkin, 1996]).

2.2 Model and numerical experiments

The AGCM used was the version VIII.2 of the MUGCM. The MUGCM is a spectral

atmospheric model with rhomboidal truncation at wave 31, which corresponds to a

horizontal resolution of approximately 3.75o longitude by 2.25o latitude. The MUGCM

7
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uses nine vertical sigma levels: 0.991, 0.926, 0.811, 0.664, 0.500, 0.336, 0.189, 0.074 and

0.009. Both the diurnal and the seasonal cycle are included and radiation is allowed

to interact with CO2, ozone, water vapour and clouds centre. The model includes

prognostic clouds, SIC and prescribed SSTs. The model was derived from a hemispheric

version of the model described by Bourke et al. [1977] and McAvaney et al. [1978].

Several modifications were made to the physics of the model and the structure of the

code, and description of some of these may be found in Simmonds [1985].

Two experiments have been performed with the MUGCM. The first experiment

conducted with the MUGCM followed the rules specified by AMIP II. AMIP II is the

successor of AMIP [Gates, 1992; Gates et al., 1998], but uses improved SST and SIC

boundary conditions [Taylor et al., 2000], and the time period was extended from Jan-

uary 1979 - December 1988 to January 1979 - February 1996. The experimental design

proposed by the AMIP projects consists in performing, with an AGCM an ensemble of

integrations all forced by the same monthly varying observed SST and SIC boundary

conditions, specified for a determined period of time, and random initialised. In our

experiment with the MUGCM we performed twenty nine integrations, all forced by the

SST and SIC boundary conditions specified by AMIP II for the period January 1979

- February 1996 [Taylor et al., 2000], and randomly initialised with initial conditions

obtained by a previous control run.

Our AMIP II experiment with the MUGCM results in twenty nine realisations of the

climate’s path through its phase space from January 1979 to February 1996. Since the

atmosphere forgets its initial state very quickly [Lorenz, 1963], these realisations are

independent. Despite the model deficiencies in simulating the climate, the availability

of several independent realisations of the climate is a major advantage of this kind of

model data over the observed datasets, since these can only offer one realisation of the

climate.

For some years now, the term Global Ocean Global Atmosphere (GOGA) appeared

in the literature [Lau and Nath, 1994] to name an AGCM experiment where monthly
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varying SSTs are used for the entire global ocean to force one AGCM simulation over the

global atmosphere. Neither the database of the boundary conditions nor the time period

of the simulation are specified. Usually, SSTs are prescribed to the monthly values

observed for a particular period of time. Such nomenclature arose to distinguish this

experiment from those where SSTs are monthly varying only in some part of the global

ocean and kept constant and equal to the monthly climatology elsewhere. Examples

of such experiments are the Tropical Ocean Global Atmosphere (TOGA)1 and the

Midlatitude Ocean Global Atmosphere (MOGA).

The purpose of experiment designs to force AGCMs, such as TOGA, MOGA, and

even Pacific Ocean Global Atmosphere (POGA), Indo-Pacific Ocean Global Atmo-

sphere (I-POGA) and Topical Atlantic Global Atmosphere (TAGA), is to isolate the

SST forcing of a particular ocean region of the global ocean, or to study the relative

importance of different ocean regions in SST-forcing the atmospheric circulation. For

example, Lau and Nath [1994], performed GOGA and TOGA experiments in order to

study the relative importance of tropical versus extratropical Pacific SST anomalies

in forcing the midlatitude atmospheric circulation (see also Lau [1997]). The TAGA

experiment has been successful in determining the atmospheric response over the trop-

ical Atlantic and over the EA region to SST anomalies in the tropical Atlantic without

the interference of the ENSO signal [Chang et al., 2000; Saravanan and Chang, 2000;

Giannini et al., 2001].

By the GOGA definition, an AMIP experiment can be considered as an ensemble of

GOGA simulations and, for this reason, we will often use the term GOGA to refer to

our AMIP II simulations.

1TOGA is also an international research programme designed to study the short-term climate

variations (time scales of months to years) using the 1985-1994 period - the TOGA decade. The

TOGA programme focused on the interannual variability of the coupled ocean-atmosphere system

associated with ENSO. See National Research Council [1996] and the especial issue of the Journal of

Geophysical Research (No. C7, Vol. 103, June 1998), for example, McPhaden et al. [1998], Trenberth

et al. [1998], Wallace et al. [1998] and Neelin et al. [1998].
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In the second experiment, the MUGCM was forced by the climatological annual cycle

of monthly mean SSTs and SIC. The climatology for each month was computed from

the SST and SIC data of used to forced the AMIP II simulations. In this experiment,

the MUGCM also includes radiative forcing from sulphate aerosols. The geographical

distribution of the concentration of aerosols is the same used by the Hadley Centre

Coupled Climate Model 2 [Johns et al., 1997]. An ensemble of thirty three integrations,

all forced by the same monthly mean SST and SIC annual cycle and random initialised,

were performed. We will refer to these simulations as the Annual CYCle (ACYC)

simulations. The simulations will be used to estimate the internal variability of the

MUGCM which will be compared with the one obtained by the AMIP II ensemble.

2.3 Seasonal mean data

The analysis in this work was performed using seasonal mean data (chapter 3, sections

3.1 to 3.3) and seasonal mean anomaly data (rest of the work) for the each of the four

standard seasons: winter - December, January and February (DJF), spring - March,

April and May (MAM), summer - June, July and August (JJA), and autumn - Septem-

ber, October and November (SON). Seasonal mean data for each season was calculated

by averaging monthly mean data of the corresponding calendar months. Seasonal mean

anomaly data was obtained by averaging monthly mean anomaly data of the corre-

sponding calendar months. Monthly mean anomaly data was computed by removing

the annual cycle from monthly mean data. January climatology was subtracted from

January data of all years, February climatology was subtracted from February data of

all years, and so on.

Seasonal mean data and seasonal mean anomaly data for the four standard seasons

were obtained from (i) the MUGCM AMIP II monthly mean dataset (29 simulations

of monthly means from January 1979 to February 1996), (ii) the NCEP monthly mean

dataset (monthly means from January 1950 to December 2001), and (iii) the Climate

Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) monthly mean
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Table 2.1: Time range and number of seasonal means (N) of the MUGCM AMIP II, NCEP

and CMAP datasets.

Dataset Winter (DJF) Spring (MAM) Summer (JJA) Autumn (SON)

MUGCM AMIP II 1980 - 1996 1979 - 1995 1979 - 1995 1979 - 1995

N 29× 17 = 493 29× 17 = 493 29× 17 = 493 29× 17 = 493

NCEP 1951 - 2001 1950 - 2001 1950 - 2001 1950 - 2001

N 51 52 52 52

CMAP 1980-2001 1979 - 2001 1979 - 2001 1979 - 2001

N 22 23 23 23

dataset (monthly means from January 1979 to December 2001). The time range and

number of seasonal means of each dataset and season are presented in table 2.1.

Since seasonal mean data is only used in chapter 3, sections 3.1 to 3.3, where the

seasonal climatology of the model is compared with the NCEP and CMAP climatologies,

the term seasonal mean anomalies are often simply referred to as seasonal means in

the rest of the work.





Chapter 3

Model Validation

The reliability of the results obtained by an experiment performed with an AGCM

depends on the capability of the model to simulate the true atmospheric behaviour. It

is thus mandatory to assess the performance of the model. In the case of an AMIP II

experiment, in which the model is forced by observed SST and SIC, the model’s cli-

mate variability must be compared with the observed climate variability. Furthermore,

much of the variability from interannual to decadal timescales is closely linked to the

location and intensity of the mean atmospheric features. The model’s ability to repro-

duce them as well as their seasonal fluctuations thus appears essential [Kumar et al.,

1996; Smith, 1995; Cassou and Terray, 2001]. For the MUGCM, much of this work has

already been done and published. An extensive atlas of its climatology can be found

in Simmonds et al. [1988]. It’s performance has been compared with other AGCMs

[Simmonds, 1990; Boer et al., 1991, 1992], and it has been shown to simulate well the

interannual variability over the globe [Simmonds and Smith, 1986; Castanheira, 2000],

Northern Hemisphere [Walland and Simmonds, 1997], world’s oceans [Simmonds and

Dix, 1989], Antarctic [Simmonds, 1990], Australia [Simmonds and Lynch, 1992], south-

eastern Africa [Rocha, 1992; Rocha and Simmonds, 1997], and the Iberian Peninsula

[Alves and Rocha, 2003].

Despite the numerous cited works supporting the ability of the MUGCM to simulate

the observed climatology and variability, the validation of MUGCM’s climatology and

13
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variability is presented in this chapter, using the NCEP reanalysis. The validation is

performed using seasonal means for winter, spring, summer and autumn (see table 2.1).

Although the time range of the MUGCM simulations is confined to the January 1979

to February 1996 period, we use the entire time range of the NCEP data (January

1950 to December 2001) because we consider the NCEP data set as a sample of reali-

sations of the atmospheric random variables. The statistics of this sample, namely the

sample mean (climatology) and the sample variance-covariance matrix (variability) are

estimators of the true, that is populational, mean and variance-covariance matrix of

the atmospheric random variables. Since the mathematical expectation of these sam-

ple statistics are the populational statistics, it would be a waste not to use all the

observations available.

The layout of this chapter is as follows. In section 3.1, MUGCM’s climatology in

the EA region is compared to the NCEP climatology using winter, spring, summer

and autumn seasonal means of MSLP, surface temperature (TMP-SFC), precipitation

(PRECIP), and geopotential height (HGT) at 850 (HGT-850), 500 (HGT-500) and 200

(HGT-200) mb.

In section 3.2, modelled and observed vertical structures of zonal-mean zonal circu-

lation, in winter and summer, are compared. Departures of winter and summer upper

tropospheric zonal wind from zonal-mean symmetry, in particular the jet streams, are

discussed in section 3.2.1. Section 3.2.2 discusses the model upper tropospheric plan-

etary standing waves in winter, and the roles of orographic and midlatitude thermal

forcings.

In section 3.3, the simulated winter climatology of meridional and zonal mass over-

turning circulations in the Pacific and Atlantic (Hadley, Ferrel and Walker circulation)

are compared to the corresponding NCEP climatologies.
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In section 3.4, MUGCM’s variability is compared to the observed variability using two

different methodologies. In section 3.4.1, the same variables used to test the climatology

of the model (MSLP, TMP-SFC, PRECIP, HGT-850, HGT-500 and HGT-200) are used

to compute the correlation between the MUGCM AMIP II ensemble mean and NCEP,

at each grid point of the MUGCM’s grid in the EA sector, for each of the four standard

seasons. In section 3.4.2, we compare the spatial patterns of variability of MUGCM

and NCEP seasonal mean anomalies of MSLP, in the EA region, obtained by Principal

Component Analysis (PCA).

Since the purpose of this chapter is the validation of the model, objective quantitative

comparisons between modelled and observed features are done. Is is tried, however, to

go beyond a merely quantitative approach by also providing a qualitative description of

the atmospheric phenomena involved. Besides the published works referenced in text,

much of the descriptions and discussions were done with the aid of the exceptional

books of Peixoto and Oort [1992] and Holton [1992].

3.1 Climatology of the Euro-Atlantic atmosphere

MUGCM and NCEP climatologies in the EA region of MSLP, TMP-SFC, PRECIP,

HGT-850, HGT-500 and HGT-200, in the four standard seasons (see table 2.1), are

compared and discussed in sections 3.1.1 to 3.1.4. In order to assist this comparison

with a quantitative measure, the following hypothesis test (see, for example, Milton

and Arnold [1995]) was performed:

H0 : µ1 = µ2 vs H1 : µ1 6= µ2, (3.1)

where µ1 and µ2 are the populational (true) means of a particular atmospheric variable

from the MUGCM and NCEP dataset, respectively, at each grid point of the MUGCM

EA domain. Note that the NCEP data was regridded to the MUGCM’s grid, using

bilinear interpolation, prior to the computation of the test. In the test 6.14, it is not

assumed that the populational variances of MUGCM and NCEP are equal. A Z random

variable, with the populational variances replaced by the sample variances, is used as
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the test statistic,

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1/n1 + S2

2/n2

(3.2)

where X̄, S2 and n are the sample means, sample variances and the number of obser-

vations, respectively, and the subscripts 1 and 2 refer to MUGCM and NCEP data re-

spectively. The number of observations is 29 simulations × 17 years = 493 for MUGCM

data and 51 (for winter) or 52 (for spring, summer and autumn) years for NCEP data,

respectively (see table 2.1). Note that these observations are independent, as required

by the hypothesis test. Invoking the Central Limit Theorem, this test statistic has, if

H0 is true, a t-Student distribution with a number of degrees of freedom that can be

estimated by the Smith-Satterthwaite procedure (see, for example, Milton and Arnold

[1995]),

T ∼ tγ, γ =
(S2

1/n1 + S2
2/n2)

2

(S2
1/n1)2

n1−1
+

(S2
1/n1)2

n2−1

. (3.3)

The hypothesis test 6.14 was performed, at a significance level of α = 0.001, at each

grid point of the MUGCM EA domain, for each variable in each season. The rejection

of the null hypothesis at a significance level of α, at a particular grid point, which occurs

when

|t| > tγ,1−α/2, (3.4)

where t1 is a realisation of the test statistic T of equation 3.3, implies that we can

not consider that the means of the MUGCM and NCEP populations are equal, which

means that the model does not simulate accurately the observed data at that grid point.

The percentage of the EA area where the null hypothesis is rejected, for each variable

and season, is presented in table 3.1 (value on the top left-hand corner of each entry

of the table). These percentages are also shown in figures 3.1 to 3.7 (value on the top

right-hand of the left panels).

The agreement between the MUGCM and NCEP climatologies is also assessed, as

in Davis et al. [1997], computing the spatial correlation between MUGCM and NCEP

climatology patterns for each variable and each season. Note again that the NCEP

1In equation 3.4, tγ,1−α/2 is such that P [T ≤ tγ,1−α/2] = 1− α/2.
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Table 3.1: Percentage of the EA area where MUGCM and NCEP seasonal climatologies

are significantly different, at the significance level of 0.001 (hypothesis test 6.14), and spatial

correlations between MUGCM and NCEP climatologies. In each entry of the table, the left

values are area percentages and the right values are correlations. The top values were obtained

when all NCEP years were used and the bottom values were obtained when only the AMIP

II years of the NCEP data were used.

Variable DJF MAM JJA SON

SLP 80.7 0.9998 89.7 0.9998 96.0 0.9999 82.4 0.9999

52.6 0.9999 81.7 0.9999 87.7 0.9999 57.4 0.9999

TMP-SFC 61.0 0.9724 61.1 0.9810 60.4 0.9860 54.1 0.9896

46.5 0.9740 43.1 0.9816 46.2 0.9858 41.4 0.9891

PRECIP 82.5 0.7427 75.0 0.6855 80.0 0.4306 80.4 0.7010

71.6 0.7608 66.7 0.6963 67.6 0.4280 69.7 0.6986

HGT-850 75.7 0.9973 89.2 0.9970 91.9 0.9981 77.6 0.9991

43.7 0.9974 79.3 0.9972 86.6 0.9978 59.8 0.9990

HGT-500 70.3 0.9995 87.8 0.9995 92.5 0.9999 86.9 0.9999

45.5 0.9995 73.3 0.9996 89.9 0.9999 75.4 0.9999

HGT-200 81.3 0.9997 91.2 0.9996 74.1 0.9999 70.5 0.9999

58.0 0.9997 81.5 0.9997 58.1 0.9999 55.5 0.9999
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data was regridded to the MUGCM’s grid, using bilinear interpolation, prior to the

computation of the correlations. The significance of these correlations was not tested

because the observations are not independent (values at the grid points of the EA

region). The spatial correlation, for each variable and season, is shown in table 3.1

(value on the top right-hand corner of each entry of the table).

The percentage of the EA area where the null hypothesis of test 6.14 is rejected and

the spatial correlation between MUGCM and NCEP data, were also calculated using

only the AMIP II years of the NCEP data. The percentages are shown in table 3.1

on the bottom left-hand corner of each entry of the table, and the spatial correlations

are presented on the bottom right-hand corner. These percentages and correlations are

higher for all cases, as expected, since the time period used to compute the climatologies

is the same.

The percentage of the EA area where modelled and observed climatologies are sig-

nificantly different from zero, at a significance level of 0.001, is high for all variables

and seasons. The percentages for TMP-SFC are much lower than the others because

the temperatures on the surface of the model oceans are observed SSTs. All the per-

centages are, however, much lower when only the AMIP II years are used to compute

NCEP climatologies. Still, they are around 50%. These results suggest that the model

does not reproduce well the NCEP climatology. However, it should be noted that the

hypothesis test 6.14 compares the climatologies at one grid point at a time. It does

not compare the spatial patterns of the two climatologies as a whole. For example,

figure 3.1 shows that the model is able to reproduce the Icelandic Low and the Azores

High, but the position of these centres are biased relative to the observed ones. These

biases cause that test 6.14 compares, for example, the highest pressure grid point of the

observed Azores High with a grid point that is not the highest pressure grid point of the

modelled Azores high, and, consequently, rejects the null hypothesis at that grid point.

Note also that figures 3.1 to 3.7 and the high spatial correlations between modelled and

observed climatologies support that the model is able to reproduce the main features

of the observed climatology spatial patterns.
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3.1.1 Mean sea level pressure

For MSLP, the model provides a good simulation of the observed seasonal spatial pat-

tern including the Icelandic Low and Azores High, the meridional southward pressure

gradient and also its seasonal variation. The simulated meridional MSLP gradient

reaches its maximum in the winter season, as expected, because it is when the polar-to-

equator temperature gradient is higher (section 3.1.2, figure 3.2). However, it is slightly

overestimated between the Azores High and the Icelandic Low because the simulated

pressure cells are too intense in winter. Another bias of the MSLP MUGCM climatol-

ogy is found in the direction of the isobars between the two large-scale pressure cells: in

all seasons except summer, modelled isobars are almost parallel to the latitude circles

while observed isobars cross the them from south to north.

3.1.2 Surface temperature

Figure 3.2 shows that the MUGCM simulates well the climatologies of the surface tem-

perature and also the pole-to-equator gradient and its seasonal variation. As expected,

the simulated pole-to-equator temperature gradient is highest in winter, consistent with

the seasonal variation of the differential heating.

3.1.3 Precipitation

Precipitation (figure 3.3) is less well reproduced than the other analysed variables, a

characteristic common to all models because it is a difficult variable to model due to

its highly irregular spatial and temporal behaviour. Nevertheless, the main features of

the observed distribution are reproduced by the model. These include low precipitation

rate associated to low moisture content at high latitudes where temperature is very

low, specially in Greenland (see figure 3.2) and in the region under the influence of the

semi-permanent Azores High and associated subsidence (see figure 3.1).

Roughly, the simulated precipitation is underestimated over the western Atlantic

ocean and Mediterranean sea in summer and spring and overestimated (underestimated)
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Figure 3.1: MSLP seasonal climatologies in the EA region. From the MUGCM ensemble

mean: (a) DJF, (d) MAM, (g) JJA and (j) SON. From NCEP data: (b) DJF, (e) MAM, (h)

JJA and (l) SON. Difference MUGCM - NCEP: (c) DJF, (f) MAM, (i) JJA and (m) SON.

Units in mb. Isobar spacing of 4 mb for (a,b,d,e,g,h,j,l) and 2 mb for (c,f,i,m). The area is

stippled where the difference between MUGCM and NCEP pressure is significantly different

from zero, at a significance level of 0.001 (hypothesis test 6.14). The percentage of total area

that is stippled is printed on the top right-hand corner of each panel. Grid lines represented

every 20o.
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Figure 3.2: As in figure 3.1, but for TMP-SFC. Units in oC. Isotherm spacing of 5o C for

(a,b,d,e,g,h,j,l) and 2o C for (c,f,i,m).
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Figure 3.3: As in figure 3.1, but for PRECIP. Units in mm/day. Isoline spacing of 2 mm/day

for (a,b,d,e,g,h,j,l) and 1 mm/day for (c,f,i,m).
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Figure 3.4: CMAP seasonal climatologies (1979-2001) in the EA region in (a) DJF and (b)

SON. Units in mm/day. Isoline spacing of 1 mm/day. Grid lines represented every 20o.

over the central and eastern Europe in winter (summer).

Note that the MUGCM winter and summer climatology is considered biased in central

and eastern Europe because the NCEP precipitation rate in this region is higher in

summer than in winter. Since this winter/summer contrast is the opposite of that

found in the rest of the Euro-Atlantic sector, it is pertinent to wonder if it is the NCEP

climatology, rather than the MUGCM climatology, that is biased in this region. This is

not, however, the case, as it may be confirmed by the winter and summer climatologies

computed with the CMAP [Xie and Arkin, 1996] dataset (see chapter 2) shown in

figure 3.4.

3.1.4 Geopotential height

Observed geopotential height climatologies at 850, 500 and 200 mb (figures 3.5 to 3.7)

are well simulated by the model, specially in middle and upper tropospheric levels.

The patterns of geopotential height at 850 mb are, as expected, similar to the MSLP

patterns, as well as the biases relative to the observed patterns.
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Since extratropical midlatitude atmospheric large-scale horizontal2 circulation is nearly

geostrophic, the wind field at pressure level p can be approximated to by the geostrophic

wind field at the same level,

Vg = k× 1

f
∇pΦ (3.5)

= k× 1

f
∇p

(
goZ

)
, (3.6)

where and Φ is the geopotential, Z = Φ/go is the geopotential height, f is the Coriolis

parameter and go is the global average of gravity at mean sea level.

From equation 3.6 follows that goZ is proportional to the streamfunction of the

geostrophic wind and thus isolines of geopotential height are a good approximation to

the streamlines of the actual wind field at the corresponding pressure level. Because of

this, the maps of figures 3.5 to 3.7 can be used to qualitatively diagnose the seasonal

climatology of the tropospheric circulation.

The maps of MSLP (figure 3.1) and 850 mb HGT (figure 3.5) show that the model

reproduces fairly well the observed low-tropospheric circulation in all seasons including

the cyclonic (anticyclonic) circulation associated to the Low (High) pressure cells and

the intensification of the westerly wind between the two pressure systems during winter.

However, since the model overestimates the pressure/height gradient between the two

pressure systems in all seasons and specially in winter, the same overestimation can be

attributed to the low-tropospheric wind.

The model overestimation of the low-tropospheric winter circulation is consistent with

the positive bias of the modelled precipitation in Europe during winter: an intensified

westerly wind increases the advection of moisture into Europe which combined with

the ocean/land temperature contrast (land colder than ocean in winter, figure 3.2(a))

leads to an intensification of the precipitation winter climatology.

2Throughout this work horizonal fields is used interchangeably to refer to isoheight or isobaric

surface fields.
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Figure 3.5: As in figure 3.1, but for 850-mb HGT. Units in gpm and isoline spacing of 20

gpm.

Finally, and using again the geostrophic approximation and the maps of 500 and

200 mb HGT (figures 3.6 and 3.7), we note that the observed nearly zonal westerly

circulations at the middle and upper troposphere are also fairly reproduced by the

model.
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Figure 3.6: As in figure 3.1, but for 500-mb HGT. Units in gpm. Isoline spacing of 50 gpm

for (a,b,d,e,g,h,j,l) and 20 gpm for (c,f,i,m).
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Figure 3.7: As in figure 3.1, but for 200-mb HGT. Units in gpm. Isoline spacing of 100 gpm

for (a,b,d,e,g,h,j,l) and 40 gpm for (c,f,i,m).
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3.2 Climatology of the zonal-mean zonal circulation

An AGCM midlatitude response to SST forcing depends sensitively on the details of the

climatological flow [Kumar et al., 1996]. It is thus essential to validate the MUGCM’s

flow climatology. The vertical structure of the zonal-mean circulation simulated by the

model is now compared to the NCEP structure, using cross sections of longitudinally

averaged zonal wind (UWIND) and temperature (TMP) for the solstice seasons, winter

and summer (figure 3.8). Although the vertical-meridional planes in figure 3.8 are

displayed from 90oS to 90oN, only the Northern Hemisphere is discussed here.

At midlatitudes, the zonal-mean zonal wind is nearly geostrophic,

ūg = − 1

f

∂Φ̄

∂y
, (3.7)

and, hence, satisfies to a high degree of accuracy the thermal wind relationship

∂ūg

∂ln p
=

R

f

∂T̄

∂y
, (3.8)

where R = 287 J kg−1 K−1 is the gas constant for dry air, and the overbar represents

zonally averaged quantities.

The model is able to simulate the general structure of the observed zonal-mean wind

and also its seasonal variation. In particular, the observed behaviour of the jet stream

is reproduced by the model. It is located just below the tropopause at the latitude

where the thermal wind (equation 3.8) integrated through the troposphere reaches

its maximum. This maximum is higher and further south in winter than in summer,

according, by thermal balance, to the seasonal variation of the pole-to-equator gradient.

Some biases are present, however. In both winter and summer, the modelled jet stream

axis lies within the 100-150 mb layer whereas the observed axis is centred around 200

mb. The modelled jet oscillates between 40oN (winter) and 50oN (summer) while the

observed jet changes between 30oN (winter) and 40oN (summer). The intensity of the

jet is accurately simulated in winter, reaching 40 m s−1, but is 8 m s−1 higher than the

observed value (16 m s−1) in summer.
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Figure 3.8: Meridional cross sections of zonal-mean zonal wind (UWIND) and temperature

(TMP) for (a-d) winter and (e-f) summer climatologies computed from MUGCM (left panels)

and NCEP (right panels) data. Isotach spacing of 8 m s−1 and isotherm spacing of 10o K.
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It also worth to note that, during winter, the simulated lower tropospheric zonal-mean

zonal wind is stronger than observed.

3.2.1 Zonal asymmetries. Jet streams

Once the level of the zonal-mean modelled jet stream has been identified (see last sec-

tion), its zonal asymmetries can be diagnosed. Figure 3.9 presents winter and summer

climatologies of upper tropospheric zonal wind. Modelled and observed wind contours

are plotted at 150 mb and 200 mb, respectively.

The model is able to simulate the three major departures from the zonal-mean zonal

circulation observed in winter, located over eastern Asia and western Pacific (Pacific jet

stream or Asian jet stream), over eastern North America and western North Atlantic

(Atlantic jet stream or North America jet stream), and also over northeastern Africa

and Middle East. For easier comparison between modelled and observed jets and their

seasonal changes, the location and maximum speed of the jets in winter and summer

are presented in table 3.2.

Both observed Pacific and Atlantic jet streams share the main features of the zonal-

mean jet, namely its equatorward displacement and intensification in speed from sum-

mer to winter. This behaviour is also present in the modelled Pacific and Atlantic jets.

See details in table 3.2. In particular, both modelled and observed Pacific and Atlantic

jets have the same position of the corresponding zonal-mean jet in summer (with the

exception of the observed Atlantic jet which is 5o to the north), but are 5o further north

in winter.

Both Pacific and Atlantic modelled jet streams are biased 10o to the north in winter.

In summer, the Pacific (Atlantic) jet is displaced 10o (5o) to the north.

In winter, the observed Pacific jet stream is located around 140oE reaching 60 m s−1,

retrograding to 90oE and weakening to 30 m s−1 in summer. The modelled jet is
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Figure 3.9: Winter (upper panels) and summer (lower panels) climatologies of upper tropo-

spheric zonal wind (UWIND) computed from MUGCM (left panels) and NCEP (right panels)

data. Isotach spacing of 5 m s−1. Grid latitude (longitude) lines represented every 10o (20o).
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biased 10o (30o) downstream in winter (summer). The speed of the observed jet is well

simulated by the model in summer but it is 15 m s−1 stronger in winter.

The Atlantic jet stream is located around 80oW reaching 40 m s−1 in winter, pro-

gressing to 70oW and weakening to 20 m s−1 in summer. The modelled jet is biased

20o downstream in winter and about 10o upstream in summer. The speed of the ob-

served jet is well reproduced by the model in winter but it is overestimated 10 m s−1

in summer.

Table 3.2: Location and speed of zonal-mean, Pacific and Atlantic jet streams.

Location (lat,lon) Speed (m s−1)

DJF JJA DJF JJA

NCEP ū200 (30N,-) (40N,-) 40 16

MUGCM ū150 (40N,-) (50N,-) 40 24

NCEP Pacific u200 (35N,140E) (40N,90E) 60 30

MUGCM Pacific u150 (45N,150E) (50N,120E) 75 30

NCEP Atlantic u200 (35N,80W) (45N,70W) 40 20

MUGCM Atlantic u150 (45N,60W) (50N,80W) 40 30

3.2.2 Orographic and thermal forcing

It seems clear from the last section that departures of upper tropospheric zonal wind

from zonal symmetry are linked to the distribution of continents and oceans. In par-

ticular, the pronounced departures over eastern Asia and eastern North America (the

Pacific and Atlantic jet streams) are linked to the Hymmalias and Rocky mountains,

respectively.

Asymmetries of upper tropospheric westerly flow can also be inferred from upper

tropospheric geopotential heights. In the upper panels of Figure 3.10, modelled and

observed winter climatologies of geopotential height at 150 mb and 200 mb, respectively,
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are presented. They exhibit a planetary wave pattern with a preferred wave-number-two

configuration with two troughs (just to the east of the asian and american continents)

and two ridges (just to the west of Europe and North America).

Atmospheric waves are usually analysed using the linear perturbation method in

which all quantities are decomposed into a basic state portion and a perturbation por-

tion. For stationary planetary waves, the basic state and the perturbation portion of

a quantity A are taken as the zonal-mean Ā and the longitudinal deviation from this

zonal-mean A′, referred as eddy, respectively, such that A = Ā + A′ . The eddy wave

components of the stationary planetary waves shown in the upper panels of figure 3.10

are shown in the lower panels of the same figure. Meridional averages between 30oN

and 60oN of these eddy fields are shown in figure 3.11. The observed eddy winter clima-

tology has an hemispheric wave-pattern of alternating lows and highs: two lows just to

the east of the asian and american continents, and two highs just to the west of Europe

and North America. The highs are well reproduced by the model but the asian low is

too deep and, consequently, the american low vanishes.

The eddy wave patterns of figure 3.10 are in qualitatively agreement with the con-

servation of Ertel’s potential vorticity,

P = (ζθ + f)
(
−g

∂θ

∂p

)
, (3.9)

where ζθ is the vertical component of the relative vorticity evaluated on an isentropic

surface, by a steady westerly adiabatic and frictionless flow over a large-scale moun-

tain barrier. As the air column begins to cross the barrier its vertical extent decreases

(−∂θ/∂p > 0) and must acquire anticyclonic vorticity (ζθ < 0) turning equatorward.

When the air column has passed over the mountain and return to its original depth it

will be south of its original latitude so that f will be smaller and the flow must acquire

cyclonic vorticity (ζθ > 0) deflecting poleward. When the flow returns to its original

latitude, it still have a poleward velocity component and will continue poleward gradu-

ally acquiring anticyclonic curvature until its its direction is again reversed. Therefore,

the resulting flow will have a wave-like pattern with a trough immediately downstream
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Figure 3.10: Winter climatology of MUGCM 150 mb HGT (upper left panel) and NCEP

200 mb HGT (upper right panel), and corresponding eddy component (lower panels). Isolines

spaced by 200 gpm (upper panels) and 50 gpm (lower panels). Grid lines represented every

20o.
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Figure 3.11: Meridional average between 30oN and 60oN of upper tropospheric HGT eddy

climatology (shown in the lower panels of figure 3.10). MUGCM (NCEP) height anomalies

in gpm plotted with a solid line (dashed line).

the barrier (the lee side) and ridge further downstream.

The effect of orography upon the stationary planetary-scale flow field in the atmo-

sphere was first studied by Charney and Eliassen [1949]. Using a one-dimensional

barotropic model, they concluded that the large-scale quasi-stationary disturbances of

the middle latitudes are produced mainly by forced ascent of the westerly flow over the

continental land masses. On the other hand, Smagorinsky [1953] evaluated the effects

of heat sources and sinks upon stationary flow using a baroclinic model, concluding that

the thermal effects account for the essential features of the observed sea level pressure,

whereas the relative importance of mountain effects increases with increasing altitude.

Derome and Wiin-Nielsen [1971] used a β-plane quasi-geostrophic model to study

the response to the effects of earth topography and diabatic heating for January 1962,

near 45oN. They showed that the standing waves forced by topography are in about

the same position as those forced by the diabatic heating, and that the former have

somewhat larger amplitudes than the latter. They also showed that the troughs tend

to occur near the regions of large-scale heating and the ridges consequently occur near

the regions of large-scale cooling. This result agrees with the patterns of figure 3.10

(lower panels) and corresponding middle latitude meridional averages (figure 3.11), and
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Figure 3.12: Meridional average between 30oN and 60oN of latent heat flux (LHF) eddy

climatology. MUGCM (NCEP) anomalies in W m−2 plotted with a solid line (dashed line).

to the winter middle latitude zonal distribution of latent heat flux (LHF) presented in

figure 3.12.

General circulation models have also been used to try to explain how the large-scale

atmospheric standing waves are maintained against dissipative forces. Manabe and

Terpstra [1974] ran a general circulation model with and without mountains and con-

firmed that it is necessary to consider the effects of mountains for the successful simula-

tion of the stationary flow field in the atmosphere, particular in the upper troposphere

and stratosphere as indicated by Smagorinsky [1953].

3.3 Winter climatology of the atmospheric circula-

tion cells

A theorem of Helmholtz states that any horizontal velocity field V can be divided into

a nondivergent (or rotational) part VΨ and a irrotational (or divergent) part VΦ:

V = VΨ + VΦ, (3.10)

where

∇ ·VΨ = 0 (3.11)
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and

∇×VΦ = 0. (3.12)

From equation 3.12 follows that
∂vΦ

∂x
=

∂uΦ

∂y
(3.13)

where uΦ and vΦ are the components of the horizonal irrotational velocity VΦ. The

last equation implies that uΦdx + vΦdy is an exact differential and hence we can define

dΦ = uΦdx + vΦdy, (3.14)

from which we have

uΦ =
∂Φ

∂x
and vΦ =

∂Φ

∂y
,

that is,

VΦ = ∇Φ, (3.15)

which means that Φ is the velocity potential.

It is well known that Hadley and Walker cells are thermally direct cells, that is, they

are thermally driven [Holton, 1992]. Atmospheric heating associated with convection

induces atmospheric convergence/divergence that drives atmospheric vertical motion

and circulation. Therefore, Hadley and Walker cells are usually described by the diver-

gent part of the horizontal wind, VΦ, and by vertical motion [Hastenrath, 2001; Wang,

2002b,a].

Here the three-dimensional circulation is assessed using the divergent component,

VΦ, of the horizontal wind, referred here as divergent wind (DIV WIND), at the lower

troposphere and upper troposphere, and vertical velocity (VVEL) at the middle tropo-

sphere. The pressure levels of 800 mb, 500 mb and 200 mb are taken to represent the

lower, middle at upper troposphere. Figure 3.13 (a-d) shows winter climatologies of the

DIV WIND at 200 and 850 mb, along with the associated, by equation 3.15, velocity

potential (VEL POT) climatologies. VVEL (figure 3.13 (e,f)) is taken here to be the

negative of the pressure vertical velocity climatologies at 500 mb. Figure 3.13 (g,h)

shows the precipitation climatology, which is a proxy of convective upward motion in
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the tropics. NCEP precipitation results from convection activity only, but the MUGCM

map shows total precipitation, and therefore, must be taken as convective only in the

tropical belt.

The model reproduces reasonably well the divergent circulation in winter. Centres

of high positive (low negative) velocity potential are centres of strong convergence (di-

vergence). Figure 3.13 shows that centres of strong convergence (divergence) at the

lower troposphere are mirrored by centres of strong divergence (convergence) at the

upper troposphere, and connected by strong upward (downward) vertical motion. The

general three-dimensional structure of the divergent circulation is well reproduced by

the model, but with larger amplitudes.

The meridional overturning circulation is longitudinally asymmetric and, because

of this, zonal sectors were defined using the information given by the maps of figure

3.13. These are presented in table 3.3 along with sectors used by other authors. In

section 3.3.1, the meridional overturning circulation in each sector is described in terms

of the zonal-mean3 meridional mass streamfunction (streamfunction in the meridional-

vertical plane). The Walker circulation is described using the meridional-mean4 zonal

mass streamfunction (streamfunction in the zonal-vertical plane) in section 3.3.2.

3.3.1 Hadley and Ferrel cells

Figure 3.13 shows that the meridional overturning, represented by the divergent merid-

ional circulation at 850 and 200 mb and by the vertical velocity at 500 mb, is longi-

tudinally asymmetric. Consequently, the meridional cells (Hadley and Ferrel) are also

longitudinally asymmetric. Because of this, zonal sectors with approximately zonal

symmetry must be defined in order to capture the zonal variations of the overturn-

ing circulation. These zonal sectors, bounded by longitudes λ1 and λ2 (λ2 > λ1), are

defined such that the zonal-mean meridional circulation in the sector approximately

satisfies the continuity equation, written here in log-pressure coordinates whose vertical

3Zonal average over the longitude range of the sector.
4Meridional average over the entire equatorial band.
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Figure 3.13: MUGCM (left panels) and NCEP (right panels) winter climatology of velocity

potential (VEL POT) and divergent wind (DIV WIND) at 200 mb (a,b) and 850 mb (c,d),

vertical velocity (VVEL) at 500 mb (e,f), and total (g) and convective (h) precipitation

(PRECIP) (g,h). Negative, zero and positive contours in blue, black and red. Divergent wind

in m.s−1. Isoline spacings are 2 × 106 m2.s−1 for velocity potential and 2 × 10−4 mb.s−1 for

vertical velocity. Vertical velocity is taken to be negative of the pressure vertical velocity, i.e.,

positive values indicate upward motion.
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Table 3.3: Zonal sectors of meridional mass overturning: Indonesia (IND), West Pacific

(WPAC), East Pacific (EPAC), West Atlantic (WATL) and East Atlantic (EATL).

IND WPAC EPAC WATL EATL

This work 270:220W 210:160W 150:100W 70:40W 20W:10E

Wang [2002b] - 240:190W 150:100W - -

Wang [2002a] - - - 60:40W 10W:10E

Hastenrath and Lamb [2004] - 180:150W 120:90W - 30W-0

Trenberth et al. [2000] - - 170:90W - 30W:10E

coordinate is z∗ = −Hln(p/ps) where H = RTs/g is the scale height, ps is a standard

reference pressure (1000 mb), Ts is a global average temperature and g is gravity,

∂ρov̄

∂y
+

∂ρow̄
∗

∂z∗
' 0, (3.16)

where is v̄ and w̄∗ are the zonal averages, from λ1 and λ2, of the meridional and vertical

velocity respectively, and ρo ≡ ρo(z
∗) is density.

Neglecting the errors resulting from this approximation, the continuity equation 3.16

implies that −ρov̄dz∗ + ρow̄
∗dy is an exact differential and hence we can define

dΠ = −ρov̄dz∗ + ρow̄
∗dy, (3.17)

from which we have

ρov̄ = − ∂Π

∂z∗
and ρow̄

∗ =
∂Π

∂y
, (3.18)

or changing to pressure coordinates,

v̄ = g
∂Π

∂p
and ω̄ = −g

∂Π

∂y
. (3.19)

Integrating the first equation of 3.19, where v̄ ≡ v̄(p, θ) with θ denoting latitude, from

p to ps, yields

Π(p, θ) =
1

g

∫ ps

p

v̄(p′, θ)dp′, (3.20)
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whose units are kg s−1 m−1, that is, it represents the rate of mass overturning per unit

zonal-length. The total rate of mass overturning in a sector bounded by longitudes λ1

and λ2 (λ2 > λ1), with a zonal-length of a cos θ(λ2 − λ1), is

Π[λ1,λ2](p, θ) =
a cos θ(λ2 − λ1)

g

∫ ps

p

v̄(p′, θ)dp′, (3.21)

whose units are kg s−1.

Modelled and observed monthly mean time series of v̄, averaged over the longitude

range of each sector of table 3.3, were used to compute equation 3.21. The resulting

monthly mean time series of the zonal-mean meridional mass streamfunction were then

used to calculate the winter climatologies presented in figure 3.14.

Figure 3.14 clearly shows that the modelled meridional mass circulation is overes-

timated. In particular, the thermally direct Hadley cells are too intense, which may

have important consequences on the extratropical atmospheric response to tropical SST

forcing. In section 3.2.1 it was found that the Pacific jet stream is overestimated by the

model. We see now that this may be a consequence of the intensified Pacific Hadley

cells.

3.3.2 Walker cells

The Walker circulation is described here using the zonal circulation averaged over the

equatorial band, which approximately satisfies the continuity equation, in log-pressure

coordinates,
∂ρoū

∂x
+

∂ρow̄
∗

∂z∗
' 0, (3.22)

where is ū and w̄∗ are the meridional averages, taken over an equatorial band, of the

zonal and vertical velocity respectively, and ρo ≡ ρo(z
∗) is density.

Neglecting the errors resulting from this approximation, follows from the continuity

equation 3.22 that −ρoūdz∗ + ρow̄
∗dx is an exact differential and hence we can define

dΞ = −ρoūdz∗ + ρow̄
∗dx, (3.23)
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Figure 3.14: Winter climatology of meridional mass streamfunction zonally averaged in the

sectors defined in table 3.3. Negative, zero and positive contours in dashed blue, solid black

and solid red. Isoline spacing is 20× 109 kg s−1.
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Figure 3.15: Winter climatology of zonal mass streamfunction averaged from 5oS to 5oN.

Negative, zero and positive contours in dashed blue, solid black and solid red. Isoline spacing

is 20× 109 kg s−1.

from which we have

ρoū = − ∂Ξ

∂z∗
and ρow̄

∗ =
∂Ξ

∂x
, (3.24)

or changing to pressure coordinates,

ū = g
∂Ξ

∂p
and ω̄ = −g

∂Ξ

∂x
. (3.25)

Integrating the first equation of 3.25, where ū ≡ ū(p, λ) with λ denoting longitude, from

p to ps yields

Ξ(p, λ) =
1

g

∫ ps

p

ū(p′, λ)dp′, (3.26)

whose units are kg s−1 m−1, that is, it represents the rate of mass overturning per unit

meridional-length. The total rate of mass overturning in the equatorial band ∆θ, with

a meridional-length of a∆θ, is

Ξ∆θ(p, λ) =
a∆θ

g

∫ ps

p

ū(p′, λ)dp′, (3.27)

whose units are kg s−1.

Modelled and observed monthly mean time series of ū, averaged from 5oS-5oN,

were used to compute equation 3.27. The resulting monthly mean time series of the

meridional-mean zonal mass streamfunction were then used to calculate winter clima-

tologies presented in figure 3.15.
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Figure figure 3.13 shows strong low-level convergence over western Pacific (the Pa-

cific warm pool) associated with strong convection and precipitation, and upper-level

divergence. In the eastern Pacific, upper-level convergence and lower-level divergence

are connected with downward vertical velocity. The circulation is closed with low-level

easterlies and upper-level westerlies. In the equatorial Atlantic, an analogous circula-

tion, although weaker and less clear, is also present. This type of zonal circulation is

the so called Walker circulation first identified in the equatorial Pacific ocean [Bjerknes,

1969; Julian and Chervin, 1978; Trenberth et al., 1998; Wang, 2002b; Hastenrath and

Lamb, 2004] and latter in the equatorial Atlantic ocean [Trenberth et al., 1998; Has-

tenrath, 2001; Wang, 2002a; Hastenrath and Lamb, 2004]. Figure 3.15 shows that the

mass overturning in the zonal-vertical plane, associated with the Pacific and Atlantic

Walker cells, is reproduced by the MUGCM but with higher amplitude in both oceans.

3.4 Variability of the Euro-Atlantic atmosphere

In this section, MUGCM’s variability is compared to the observed variability using two

different methodologies. In subsection 3.4.1, the correlation at each grid point of the

MUGCM’s grid in the EA sector, between the MUGCM-AMIP II ensemble mean and

NCEP MSLP, TMP-SFC, PRECIP, HGT-850, HGT-500 and HGT-200 time series, is

determined for each of the four standard seasons. In subsection 3.4.2, we compare

the spatial patterns of variability of MUGCM and NCEP seasonal mean anomalies of

MSLP, in the EA region, obtained by Principal Component Analysis (PCA).

3.4.1 Correlation patterns

The agreement between the MUGCM and NCEP time variability is here measured by

the correlation between the MUGCM ensemble mean and NCEP time series of the

AMIP II time range (see table 2.1), at each grid point of the MUGCM’s grid in the

EA sector. Note that the NCEP data was regridded to the MUGCM’s grid, using

bilinear interpolation, prior to the computation of the correlations. The correlations

were determined for MSLP, TMP-SFC, PRECIP, HGT-850, HGT-500 and HGT-200,
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at each of the four standard seasons. The patterns of correlations are presented in

figures 3.16 to 3.21.

The correlations between between MUGCM ensemble mean and NCEP time series

of seasonal means at each grid point of a particular variable at a particular season were

subjected to the hypothesis test (see, for example, Milton and Arnold [1995]),

H0 : ρ = 0 vs H1 : ρ > 0, (3.28)

where ρ is the population (true) correlation between the MUGCM ensemble mean and

NCEP time series at a particular grid point. Note that a right-tailed test is used instead

of a two-tailed test because the rejection of the null hypothesis of the right-tailed test

implies that the correlation is positive.5

The test statistic of this test has, invoking again the Central Limit Theorem, a t-

Student distribution with n− 2 degrees of freedom,

T =
r
√

n− 2√
1− r2

∼ tn−2, (3.29)

where r is the sample correlation and n = 17 is the number of observations (seasonal

means). Note that the seasonal means are independent observations, as required by the

test. The criterion to reject the null hypothesis, at a significance level of α, is

t > tn−2,1−α, (3.30)

where t6 is a realisation of the test statistic T of equation 3.29.

Figures 3.16 to 3.21 show the correlation between the model ensemble-mean and the

NCEP time series, at each grid point of the EA region, of MSLP, TMP-SFC, PRECIP,

HGT-850, HGT-500 and HGT-200 in winter, spring, summer and autumn. Regions

5A two-tailed test could also be used. The rejection of the null hypothesis of a two-tailed test

implies that the correlation is different from zero, and thus may be positive or negative. In this case,

the grid points where the model simulates well the observed variability are those grid points where the

null hypothesis is rejected and where the correlation is positive.
6In equation 3.30, tn−2,1−α is such that P [T ≤ tn−2,1−α] = 1− α.
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Figure 3.16: Correlations between MUGCM ensemble-mean and NCEP seasonal mean time

series of MSLP in the EA region. (a) DJF, (b) MAM, (c) JJA and (d) SON. Isoline spacing of

0.1. The area is stippled where the correlation is significantly greater than zero, at a signifi-

cance level of 0.01 (hypothesis test 3.28). The percentage of total area with significant positive

correlation is printed on the top right-hand corner of each panel. Grid lines represented every

20o.
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Figure 3.17: As in 3.16 but for TMP-SFC.

Figure 3.18: As in 3.16 but for PRECIP.
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Figure 3.19: As in 3.16 but for HGT-850.

Figure 3.20: As in 3.16 but for HGT-500.
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Figure 3.21: As in 3.16 but for HGT-200.

with significant (α = 0.01) positive correlations are stippled. The percentage of the

total EA area with significant positive correlations is printed on the right-hand top of

each panel of the figures.

The percentages of figures 3.16 to 3.21 are high, meaning that the model simulates well

the observed variability of all tested variables. TMP-SFC has the highest percentages

due to the fact that surface temperatures in the ocean are observed sea level pressures.

PRECIP has the lowest percentages. As already said in section 3.1.3, where the model

climatology of PRECIP was tested, PRECIP is a difficult variable to simulate due

to its highly irregular spatial and temporal behaviour. An interesting result is that

winter is the better modelled season for all variables but TMP-SFC, for which it has,

nevertheless, a percentage of 89.1%.
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3.4.2 EOF patterns of MSLP

In this section we test the MUGCM skill to simulate atmospheric interannual variability

over the EA region. To achieve this we applied an Empirical Orthogonal Function

(EOF) analysis to both MUGCM and NCEP MSLP seasonal mean anomalies in the

four standard seasons. In appendix A, the mathematical formulation of EOF analysis,

or PCA, is presented. The EOF analysis of a time series of fields yield pairs of spatial

patterns and associated time series. The pattern is usually referred to as EOF pattern

and the associated time series is called Principal Component (PC) (see appendix A for

the detailed nomenclature). Here, we focus only on the EOF patterns, which, when

physical meaningful, are also named teleconnections [Wallace and Gutzler, 1981; Horel,

1981; Barnston and Livezey, 1987; Blackmon et al., 1984].

Remember that the MUGCM data set consists of 29 simulations of monthly means

from January 1979 to February 1996. This results in 29 simulations of 17 DJF, MAM,

JJA and SON seasonal means (see section 2.3, table 2.1). The MUGCM’s grid over the

EA region consists of 27 latitudes and 41 longitudes. There are, thus, M = 27× 41 =

1107 spatial locations and N = 29×17 = 493 observations. The MUGCM data matrix,

X (appendix A), for each MUGCM season, is built putting the (1107 × 17) matrix of

each simulation, one after another, in the row direction and by increasing k (simulation

number, see appendix A), yielding a (1107× 493) data matrix.

The NCEP data set consists of monthly means from January 1959 to December

2001. This results in 51 DJF and 52 MAM, JJA and SON seasonal means. The NCEP

grid over the EA region consists of 24 latitudes and 61 longitudes. Then we have

M = 25× 61 = 1525 spatial locations and N = 51 observations for the DJF season and

N = 52 observations for the MAM, JJA and SON seasons. Thus, the size of the NCEP

data matrix, X , is (1525× 51) for DJF and (1525× 52) for MAM, JJA and SON (see

section 2.3, table 2.1).

The computation of MUGCM and NCEP EOFs is performed using the appropriate

data matrix X . These EOFs represent the total interannual variability in the modelled
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and observed atmosphere over the EA region7. The first four EOFs of MUGCM and

NCEP MSLP seasonal mean anomalies for the DJF, MAM, JJA and SON seasons are

plotted in figures 3.22 to 3.25, respectively. Note that we removed the annual-mean

cycle from the data prior to EOF computation, that is, the season climatology was

removed from each seasonal mean value. The EOF loadings were not rescaled after

computation and, thus, are dimensionless unit length vectors. The percentage of total

variance represented by each EOF is indicated on the top right-hand corner of each

panel. The sum of the percentages of total variance represented by the first four EOFs

is 74.2(82.9), 72.5(72.8), 60.6(66.4) and 66.2(66.6)% for MUGCM (NCEP) in winter,

spring, summer and autumn, respectively.

A quantitative measure of the similarity between the MUGCM and NCEP EOF pat-

terns is supplied by table 3.4, where cross-correlations between modelled and observed

EOFs are presented. We performed cross-correlations instead of simple correlations

between equal ranked EOFs, because the same teleconnection pattern, that is, a large-

scale mode of variability [Wallace and Gutzler, 1981], may be captured by one EOF

of the NCEP data set and by a different EOF of the MUGCM data set. This is even

more likely to occur when two modes of variability represent near values of the fraction

of total variance. In this case the patterns may switch positions from one data set to

the other. The main reason behind this behaviour is the difference in the number of

observations of each data set and the different time periods to which they refer (see

section 2.3, table 2.1).

Because one teleconnection pattern may be captured by different order MUGCM

and NCEP EOFs, as explained in the previous paragraph, we used, in table 3.4, the

bold face type to print the correlations computed from EOFs that represent the same

teleconnection pattern. Normally these correlations are the highest in the line or column

they belong, but not necessarily.

7It will be shown in sections 4.3 and 5.1 that the modelled EOFs obtained using the data matrix X
built as explained above, are biased estimators of the Principal Vectors of total variability. Nevertheless,

this bias is not important for the present purposes.
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Figure 3.22: EOFs of MSLP DJF seasonal mean anomalies over the EA region. From

MUGCM data: (a) EOF-1, (c) EOF-2, (e) EOF-3 and (g) EOF-4. From NCEP data: (b)

EOF-1, (d) EOF-2, (f) EOF-3 and (h) EOF-4. Negative, zero and positive loadings plotted

with dashed blue , solid black and solid red isopleths, respectively. EOFs are unit length and

dimensionless. Grid lines represented every 20o.
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Figure 3.23: As in figure 3.22, but for MAM.
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Figure 3.24: As in figure 3.22, but for JJA.
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Figure 3.25: As in figure 3.22, but for SON.
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Table 3.4: Spatial cross-correlations between MUGCM and NCEP MSLP seasonal EOFs

over the EA region.

DJF EOFs NCEP1 (47.1) NCEP-2 (13.8) NCEP-3 (11.9) NCEP-4 (10.1)

MUGCM-1 (31.3) 0.75 -0.20 0.44 -0.02

MUGCM-2 (23.5) -0.70 0.01 0.61 -0.05

MUGCM-3 (11.5) 0.08 0.80 0.28 -0.51

MUGCM-4 (7.9) 0.00 0.48 0.00 0.73

MAM EOFs NCEP1 (30.5) NCEP-2 (19.7) NCEP-3 (13.7) NCEP-4 (8.9)

MUGCM-1 (31.2) 0.78 0.32 0.00 0.23

MUGCM-2 (19.2) -0.41 0.71 -0.24 0.38

MUGCM-3 (14.8) -0.27 0.49 0.18 0.61

MUGCM-4 (7.3) -0.24 -0.12 0.72 -0.49

JJA EOFs NCEP1 (30.7) NCEP-2 (17.8) NCEP-3 (9.9) NCEP-4 (8.0)

MUGCM-1 (21.4) 0.54 0.32 -0.60 0.08

MUGCM-2 (18.3) 0.67 0.50 -0.39 -0.09

MUGCM-3 (11.9) 0.08 0.34 0.30 0.78

MUGCM-4 (9.0) 0.42 -0.20 -0.33 0.28

SON EOFs NCEP1 (27.7) NCEP-2 (17.8) NCEP-3 (11.1) NCEP-4 (10.0)

MUGCM-1 (25.8) 0.73 0.29 0.47 -0.01

MUGCM-2 (19.9) -0.53 0.74 0.29 0.08

MUGCM-3 (12.4) 0.45 0.55 -0.61 0.01

MUGCM-4 (8.1) 0.05 0.01 0.12 0.90
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Winter is the season with the highest percentage of total variance captured by the first

four EOFs: 74.2 and 82.9% for MUGCM and NCEP, respectively. This is mainly due

to the fact that the first EOF (figure 3.22 (a,b)) manages to represent 31.3 and 47.1%

of total MUGCM and NCEP variance, respectively. The spatial pattern responsible

for this high variance is a north-south dipole which, for NCEP data, represents well

the North Atlantic Oscillation in winter [Walker and Bliss, 1932; van Loon and Rogers,

1978; Wallace and Gutzler, 1981; Barnston and Livezey, 1987]: a meridional see-saw

feature in the atmospheric mass between the Icelandic Low near 65oN and a broad

east-west belt, centred near 40oN, extending from the east coast of the United States to

the Mediterranean. The modelled pattern has also these characteristics but the highest

loadings of the southern centre of action are shifted to the east by about 15o. The

spatial correlation with the observed pattern is 0.75.

In the second NCEP EOF pattern (figure 3.22 (d)), representing 13.8% of NCEP

total variance, we recognise the East Atlantic pattern which is characterised by a major

centre of action, centred west of Great Britain and spanning the entire North Atlantic

ocean from east to west, with a weaker centre of opposite sign south of it. This is the

pattern reported by Barnston and Livezey [1987]. Its structure resembles the NAO

shifted southward, however, its southern centre of action is dynamically linked to the

tropical Atlantic. The eastern Atlantic pattern of Wallace and Gutzler [1981] has a

third centre of action near the Black Sea, which also slightly appears in the NCEP

pattern. The modelled East Atlantic pattern is captured by EOF-3 (figure 3.22 (e)),

which accounts for 11.5% of total model variance and has a correlation of 0.80 with

NCEP EOF-2. The northern and southern centres of action are well simulated, but

another centre of action, in phase with the southern one, appears to the east of the

northern one, making this pattern also similar to NCEP EOF-4, with which it has a

correlation of -0.51.

NCEP EOF-3 (figure 3.22 (f)) explains 11.9% of total variance and shows the Scandi-

navia pattern, the EURASIA I pattern of Barnston and Livezey [1987]. The Scandinavia

pattern is usually described as a primary centre over Scandinavia and two centres of
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opposite sign over the eastern Atlantic extending to western Europe, and over eastern

Russia (this one falling out of our domain). The modelled pattern appears in EOF-2,

representing 23.5% of the MUGCM total variance. Its correlation with NCEP EOF-2

is only 0.61 because the “eastern Atlantic - western Europe” centre in the NCEP EOF

is actually a “western Atlantic” centre extended to western Europe. Despite this low

correlation, the primary circulation centre over Scandinavia is well simulated.

Finally, the East Atlantic/Western Russia pattern, the EURASIA II of Barnston and

Livezey [1987], is identified in both NCEP and MUGCM EOF-4 (figure 3.22 (g,h)).

These EOFs, representing 7.9% and 10.1% of MUGCM and NCEP total variance,

respectively, show three of the four centres of the pattern which has a wave-train struc-

ture with anomaly centres over the Atlantic, western Europe, north eastern Siberia

and northern China (out of the EA domain). The modelled pattern is very similar to

the observed one (with a spatial correlation of 0.73) but the simulated european cen-

tre, which should cross Europe from the North Sea to the Mediterranean, is displaced

southeastward.

In spring, the NAO pattern is still found in the first EOF of both MUGCM and NCEP

data. Although the correlation between the two patterns increases from 0.75 in winter

to 0.78 in spring, the southern belt of positive anomalies (in the NAO’s positive phase)

is now broken in two centres of equal sign located in western Atlantic and Europe. The

Scandinavia pattern is now captured by the same EOF in both modelled and observed

data, the second EOF, with a correlation of 0.71. The East Atlantic pattern is still found

in EOF-3 of modelled data but changed to EOF-4 in observed data. The correlation

between the two is 0.61. The East Atlantic/Western Russia pattern continues to be

found in MUGCM EOF-4 but is now represented by NCEP EOF-3, with correlation of

0.72.

In summer, despite some high correlations, none of the four discussed teleconnection

patterns are found.
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In autumn, the East Atlantic pattern is recognised in MUGCM EOF-3 and NCEP

EOF-2, with a correlation of 055, and the East Atlantic/Western Russia pattern is

found in EOF-4 of both MUGCM and NCEP, with a correlation of 0.90. Apart from

this, MUGCM EOF-2 resembles the NAO pattern and NCEP EOF-3 resembles the

Scandinavia pattern.

3.5 Summary and conclusions

The validation of MUGCM’s climatology and variability was presented in this chapter

using the reanalysis from NCEP. The model climatology was assessed using: MSLP,

TMP-SFC, PRECIP, HGT-850, HGT-500 and HGT-200 seasonal means in winter,

spring, summer and autumn; vertical structures of zonal-mean zonal circulation and

temperature in winter and summer; upper tropospheric zonal wind, in particular the

jet streams, in winter and summer; planetary standing waves and eddy components

(departures from zonal symmetry) in winter; and meridional and zonal mass overturn-

ing circulations in the Pacific and Atlantic (Hadley, Ferrel and Walker circulation) in

winter.

MUGCM and NCEP seasonal climatologies for MSLP, TMP-SFC, PRECIP, HGT-

850, HGT-500 and HGT-200 are significantly different, at a significance level of 0.001,

at each grid point of the EA region. However, the patterns of these climatologies are

in a fairly agreement, when compared visually and by spatial correlation. Overall, the

model is able to reproduce the main features of the observed seasonal climatology, but

some important biases were detected. The pressure cells over the Atlantic ocean are

overestimated in winter, resulting in the overestimation of the meridional MSLP gradi-

ent between the Azores High and the Icelandic Low. Accordingly, the low-tropospheric

circulation in the EA sector was also found to be overestimated by the model, as well

as surface temperature and precipitation.

The modelled Pacific jet stream is biased 10o (30o) downstream in winter (summer),

is displaced 10o to the north in both seasons, and is 15 m s−1 stronger in winter. The
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Atlantic jet stream is biased 20o downstream (10o upstream) in winter (summer), is

shifted 10o (5o) to the north in winter (summer), and is 10 m s−1 stronger in summer.

The modelled meridional mass circulation is overestimated. In particular, the ther-

mally direct Hadley cells are too intense, which may have important consequences on

the extratropical atmospheric response to tropical SST forcing. The Pacific jet stream

overestimation may be a consequence of the intensified Pacific Hadley cells. It was

also shown that the Walker cell in the equatorial Pacific and Atlantic are also overesti-

mated by the model. The overestimation of the tropical atmospheric response to SST

climatology indicates that its response to SST anomaly variability may also be over-

estimated. In conjuction with the overestimation of the mean state of the Pacific jet

stream, this may lead to an overestimation of the extratropical atmospheric response

to tropical Pacific SST anomalies, in particular, a stronger ENSO forcing in the NPA

and EA regions.

Modelled and observed variability was tested using two different methodologies.

Firstly, the correlation at each grid point of the MUGCM’s grid in the EA sector,

between the MUGCM-AMIP II ensemble mean and the NCEP MSLP, TMP-SFC, PRE-

CIP, HGT-850, HGT-500 and HGT-200, was determined for each of the four standard

seasons. Secondly, the spatial patterns of variability of MUGCM and NCEP seasonal

mean anomalies of MSLP, in the EA region, obtained by PCA, were compared.

The correlations between modelled and observed grid point time series are signifi-

cantly greater than zero, at a significance level of 0.01, in almost the entire area of the

EA region.

PCA of seasonal mean MSLP in the EA region captured the major observed modes

of MSLP anomaly variability in the EA region, namely, the North Atlantic Oscilla-

tion, the East Atlantic mode, the Scandinavia or EURASIA I mode, and the East

Atlantic/Western Russia or EURASIA II mode. These modes are better captured by

the model in winter and spring.
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The NAO modelled pattern has the characteristic meridional see-saw in the atmo-

spheric mass between the Icelandic Low and a broad east-west belt, centred near 40oN,

extending from the east coast of the United States to the Mediterranean. However, the

southern belt of NAO pattern has its highest loadings shifted to the east by about 15o

in winter, and is broken in two centres of equal sign located in western Atlantic and

Europe in spring.





Chapter 4

Internal and Forced Variability

The AMIP II experiment performed with the MUGCM allows the separation of total

atmospheric variability of into a component due to atmospheric internal dynamics only,

called internal or natural variability , and a component due to the variability of the

lower-boundary conditions (SST and SIC) referred as external or forced variability.

In this chapter we describe the model of the ANOVA that better suits the layout of

AMIP seasonal mean data for the purpose of this research: the random-effects model

[Scheffé, 1959]. Statistics to estimate the partition of total seasonal mean variance into a

boundary forced component and an internal component are presented. We also present

an hypothesis test to determine if the variability due to boundary forcing is statistically

greater than zero. Two test statistics are supplied, one of which is the popular potential

predictability.

The MUGCM seasonal mean internal and forced variabilities are inferred applying

the ANOVA to mean MSLP seasonal means in winter (DJF), spring (MAM), summer

(JJA) and autumn (SON), in the EA sector. Winter is found to be the season with

higher internal variability whereas spring is the season with higher forced variability,

followed by winter, in the EA region. Accordingly, the percentage of total EA area with

significant potential predictability is found to be higher in spring followed by winter.

63
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The time series associated with the winter and spring modes of total variability of

MSLP anomalies the EA region, obtained in section 3.4.2, are also subjected to the

ANOVA. The North Atlantic Oscillation is found to more externally forced in spring

than in winter.

Since the NAO is the major mode of atmospheric variability in the EA region, the

ANOVA is also applied to the NAO index in twelve consecutive and overlapping 3-month

seasons. Significant forcing is found in all seasons, except for autumn and October to

November, the stronger forcing found again in spring.

4.1 Introduction

Lorenz [1963, 1965] demonstrated that, due to the inherent nature of instability and

nonlinearity, atmospheric flows with only slightly different initial states will depart from

each other and evolve eventually to flows that are just randomly related. Because of

this, daily weather variations, which are due primarily to the internal dynamics of the

atmosphere, cannot be predicted in detail more than 2-3 weeks in advance [Lorenz,

1982; Chen, 1989]. These short timescale fluctuations induce unpredictable variability

in interannual variability of seasonal mean quantities [Leith, 1973], usually referred as

climate noise, natural or internal variability. However, slowly varying external bound-

ary conditions, such as anomalies of SST and SIC can cause predictable variations in

seasonal mean quantities, referred as external or forced variability. It is clearly im-

portant to be able to asses where on the globe atmospheric variations are sufficiently

affected by oceanic forcing to enable practical seasonal prediction. This requires the

estimation, at each grid point of a global grid, of atmospheric potential predictability

(potential indicates that this also depends in predictions of anomalous oceanic forcing,

such as SST anomalies), usually defined as the signal-to-noise ratio (forced to internal

variance ratio) or the forced to total (internal plus forced) variance ratio.

The estimation of potential predictability has been a topic of ongoing research in the

climate community. One approach is to use the observational record, as proposed by
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Madden [1976] (see also Shukla [1983]). In this method, internal variability is defined

as the variability resulting from the variance and autocorrelation associated with daily

weather fluctuations, and total variability is determined as the actual interannual vari-

ance of monthly or seasonal means. This method has the advantage that can be based

purely on observational data. It also includes secondary sources of predictability, not

just that due to the ocean surface. However, the use of the observational record alone

may also be considered a disadvantage since it represents only one realisation of the

atmospheric evolution.

Atmospheric General Circulation Models (AGCMs) have also been used to estimate

potential predictability. Different experimental approaches with AGCMs have been

conducted. One approach [Chervin and Schneider, 1976] consists of performing an

ensemble of AGCM integrations, all forced by the SST climatology of one calendar

month. Usually the January climatology is chosen because it is when internal variability

is higher in the Northern Hemisphere. The ensemble variance then provides an estimate

of the internal variance. The total interannual variability is estimated performing an

integration of the same AGCM forced by realistic interannual variations of SST.

Another approach [Chervin, 1986] consists of performing an ensemble of AGCM in-

tegrations, all forced by the climatological annual cycle of SST (ACYC simulations,

see chapter 2). The ensemble variance for each month provides an estimate of the

internal variance for that calendar month. The average of the twelve calendar month

variances then provides an estimate of internal variability. Again, the total interannual

variability is estimated performing an integration of the same AGCM forced by realistic

interannual variations of SST.

More recently, potential predictability has been measured using an ensemble of cli-

mate simulations all forced by the same observed interannually varying SSTs but started

from different initial conditions, such as the AMIP and AMIP II experiments. Since

these simulations provide temporally and spatially complete climate data, they are also

valuable in other areas of climate research. For predictability studies, the philosophy is
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that sensitivity to initial atmospheric conditions can be used to quantify the random

component of interannual variability, whereas the relative similarity (or lack of it) be-

tween ensemble members can be used to quantify the potential predictable component

of variance. The output of such ensemble has been analysed differently to asses potential

predictability. Dix and Hunt [1995] performed an AMIP experiment (1979-1988) with

three runs. The authors did not estimated potential predictability using estimates of

internal, forced or total variabilities. Instead, they used monthly correlations between

the individual simulations. The grid points with higher correlation are then considered

to have higher potential predictability.

Stern and Miyakoda [1995] used a 9-member AMIP ensemble to estimate winter

(DJF) and summer (JJA) potential predictability, which they preferred to term re-

producibility. The authors defined the reproducibility index as the variability among

the ensemble (internal variability) normalised by the climatological seasonal variability

(total seasonal variability).

Kumar et al. [1996] used potential predictability to compare the suitability of two

different AGCMs to make seasonal predictions. They performed an AMIP-like exper-

iment (1982-1983) with 9 simulations with the two models, and determined maps of

forced variability, which they defined as the variance of the ensemble mean around the

climatological mean. After confirming that the internal variability was similar in the

two models, they then used the maps of forced variability as a measure of potential

predictability.

Nowadays, ANOVA is considered the best method to estimate potential predictability

from an AMIP-like ensemble. This method was used by Harzallah and Sadourny [1995]

(with a slightly variation of the method), Rowell et al. [1995]; Zwiers [1996]; Davis et al.

[1997]; Rowell [1998] and Wang and Zwiers [1999].
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4.2 The ANOVA model for AMIP seasonal mean

data

In an AMIP experiment, an AGCM is initialised with a state of the atmosphere, ran-

domly chosen from a previous control run, and forced by a time series of lower-boundary

states of SST and SIC fields. This procedure is repeated several times, using, for

each simulation, another randomly chosen initial state of the atmosphere and the same

boundary states of SST and SIC fields. In other words, for each boundary forcing, we

get an ensemble of responses of the atmosphere to that forcing. For seasonal mean data,

we get an ensemble of K simulations of the response of the atmosphere to the boundary

forcing in year p = 1, ..., P . Let xpk be the seasonal mean variable resulting from the kth

simulation in year p of our experiment. Since the simulations are initialised randomly,

xpk is actually one realisation of the random variable Xpk.

Now, since de atmosphere forgets its initial state very quickly [Lorenz, 1963], the effect

of selecting different initial conditions is basically to select independent realisations of

the simulated climate’s path through its phase space. Thus, the K simulations are

independent. Furthermore, since the seasonal means can be considered independent

from one year to the next, the P ensembles are also independent. Therefore, the random

variables Xpk, where p = 1, ..., P and k = 1, ..., K, are P + PK mutually independent

random variables.

In summary, we can treat the AMIP seasonal mean data as independent random

samples of length K of P populations that differ one from another by the boundary

condition that forced it:

Xp1, Xp2, ..., XpK , p = 1, ..., P.

This type of data is suitable to be analysed by the one-way ANOVA model:

Xpk = µ + Ap + Epk
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where (i) µ is the overall mean response which is the mean of the responses to all P

boundary forcings, (ii) Ap is the treatment effect which is the deviation of the response

to the boundary forcing in year p from the overall mean response, µ, and (iii) Epk is the

error effect which is a random deviation from µ + Ap, is independent of the boundary

forcing and is due only to internal dynamics. In the atmospheric sciences, the terms

treatment and error are usually replaced by forced and internal, respectively.

The issue to discuss now is if we should consider the forced effects Ap, as constants

or as a random variables, since this will determine if the one-way ANOVA model is a

fixed-effects model or a random-effects model, respectively.

Indeed, the two options fits our data, depending on the point of view. By one side,

the SST-SIC boundary in an particular year was not chosen at random, since it is the

boundary observed in that year. Thus, since the SST-SIC boundaries are fixed, the

responses of the atmosphere, Ap, p = 1, ..., P , are constants. On the other side, since

the observed SSTs and SICs are realisations of random variables (they could have been

different), we may consider that the choice of the SST-SIC boundaries was (indirectly)

random. By this reasoning we may consider Ap, p = 1, ..., P , as random variables.

We conclude then that both ANOVA models fit our data and, thus, another criterium

must be used in order to choose between one of them. This criterium relates to the

purpose of the experiment. Murteira [1990] wrote “se os ńıveis do factor constituem um

conjunto por assim dizer exaustivo, isto é, se o investigador tem intenção de confinar

a análise a esse conjunto e não pretende raciocinar em relação a ńıveis que poderiam

ter sido explicitados mas que não o foram, o modelo I é em geral mais adequado. Se os

nv́eis constituem uma amostra de um conjunto mais vasto de ńıveis em relação ao qual

o investigador tem o propósito de alargar as conclusões, então o modelo II é em regra

mais recomendável”1.

1Here, “ńıveis do factor” are the treatments and models I and II are the fixed-effects and random-

effects models, respectively.
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In our AMIP experiment, the P populations from which the P samples were drawn

are part of a larger (infinite) set of populations and our purpose is to use the ANOVA to

make inferences about this general set of populations, not only about the P populations.

That is, we are not only interested in the atmospheric response to the 1979-1996 SST-

SIC boundaries, but in the atmospheric response to the oceanic forcing in general.

By this idea, we conclude that the appropriate model to use in this research is the

random-effects model:

Xpk = µ + Ap + Epk (4.1a)

Ap ∼ N (0, σ2
F ) (4.1b)

Epk ∼ N (0, σ2
I ) (4.1c)

where µ is a constant, Ap and Epk are P +PK mutually independent random variables,

p = 1, ..., P , k = 1, ..., K, N represents the Gaussian probability distribution, and σ2
F

and σ2
I are the forced and internal variances, respectively.

Although we dedicated some attention in choosing between the fixed-effects and the

random-effects model, we must stress out that main results of the analysis are insensitive

to this choice. The test of the SST-SIC effects in the fixed-effects is done testing the

null hypothesis that the constants Ap are all zero. In the random-effects model we

test the null hypothesis that the random variables Ap all have zero variance. Although

different, these tests are equivalent and yield the same results. The reason for this is

that, in the random-effects, the random variables Ap have zero mean and thus the null

hypothesis of the two tests are equivalent. Consequently, the same test statistic is used

in both tests.

The only difference between the results of the two models is that, in the random-

effects model, the variability of the forced effects is quantified by its variance, the

forced variance σ2
F , whereas in the fixed-effects the variance statistic cannot be used

because Ap are constants, not random variables. Castanheira [2000], who used the

fixed-effects model to analyse its AMIP simulations, overcame this problem by defining
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forced variance as

σ2
F =

1

P − 1

P∑
p=1

(Ap − µ)2,

whose unbiased estimator is the same of that of the random-effects model.

Finally, we note that other authors [Rowell et al., 1995; Davis et al., 1997; Rowell,

1998] also considered the random-effects model the best model of the One-way ANOVA

to analyse their AMIP-like data.

4.3 Partition of variability into forced and internal

components

In this section we present the guidelines to obtain the partition of the variability in

random-effects model of the one-way ANOVA. The complete derivation of the formulae

can be be found in any statistics book that covers the subject such as Murteira [1990],

Milton and Arnold [1995] and, of course, the more complete Scheffé [1959]. It can also

be found in von Storch and Zwiers [1999] which is a statistics book oriented to climate

science.

The total sum of squares,

SST =
P∑

p=1

K∑

k=1

(Xpk −X••)2, (4.2)

where the dot notation indicates averaging over the missing subscript, can be decom-

posed into a treatment or forced sum of squares, SSF , and a error or internal sum of

squares, SSI ,

SST = SSF + SSI ,

where

SSF = K
P∑

p=1

(Xp• −X••)2 (4.3)

and

SSI =
P∑

p=1

K∑

k=1

(Xpk −Xp•)2. (4.4)
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The forced sum of squares, SSF , is taken over P deviations that sum to zero,
∑P

p=1(Xp•−X••) = 0, thus it has P−1 degrees of freedom. The internal sum of squares,

SSI , is taken over PK deviations such that deviations within a particular ensemble must

sum to zero,
∑K

k=1(Xpk −Xp•) = 0. That is, SSI is taken over deviations that are sub-

ject to P constraints. Consequently, SSI has P (K − 1) degrees of freedom. The SST

is summed over PK deviations that sum to zero, SST =
∑P

p=1

∑K
k=1(Xpk −X••) = 0,

and therefore it has PK − 1 degrees of freedom. Note that the degrees of freedom SST

is equal to the sum of the degrees of freedom of SSF and SSI , as should be.

By dividing a sum of squares, SS, by the corresponding degrees of freedom, we obtain

a statistic called the mean square, MS. Thus, the treatment or forced mean square is

given by

MSF =
K

P − 1

P∑
p=1

(Xp• −X••)2 (4.5)

and the error or internal mean square is obtained by

MSI =
1

P (K − 1)

P∑
p=1

K∑

k=1

(Xpk −Xp•)2. (4.6)

Substituting model 4.1 in equations 4.5 and 4.6, and taking the expectations of MSF

and MSI , noting that E[
1/(P − 1)

∑P
p=1(Ap − µ)2

]
= σ2

F , E[
1/(P − 1)

∑P
p=1(Ep• −

E••)2
]

= σ2
I/K, and E[

1/(K − 1)
∑K

k=1(Epk − Ep•)2
]

= σ2
I , we obtain

E[
MSF

]
= Kσ2

F + σ2
I (4.7)

and

E[
MSI

]
= σ2

I . (4.8)

From equations 4.7 and 4.8 we obtain unbiased estimators of the forced variance

σ̂2
F =

MSF −MSI

K
, (4.9)

and internal variance

σ̂2
I = MSI . (4.10)
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It is also common in research works with ensembles to use the so called ensemble-

mean variance. The ensemble-means are also a random variables since are the average

(over the ensemble) of random variables:

Xp• =
1

K

K∑

k=1

Xpk.

Substituting model 4.1 into this equation, we have

Xp• = µ + Ap + Ep•,

where Ap ∼ N (0, σ2
F ) and Epk ∼ N (0, σ2

I/K) are independent random variables. Thus,

the variance of the random variables Xp•, the ensemble-mean variance, is

σ2
EM = σ2

F +
σ2

I

K
, (4.11)

whose unbiased estimator is

σ̂2
EM = σ̂2

F +
σ̂2

I

K
, (4.12)

which, substituting equation 4.7 into equation 4.11, or using equations 4.9 and 4.10,

becomes

σ̂2
EM =

MSF

K
. (4.13)

Equation 4.11 shows that if we had an infinite ensemble, the forced variability would

be obtained by the ensemble-mean variability. It also shows how the ensemble mean

is contaminated by internal variability, demonstrating the importance of the size of

the ensemble when the ensemble mean is used to represent the forced response of the

atmosphere.

Finally, the total variability

σ2
T = σ2

F + σ2
I , (4.14)

can be estimated without bias by

σ̂2
T = σ̂2

F + σ̂2
I , (4.15)



4.3. Partition of variability into forced and internal components 73

Considering Xpk of model 4.1 the seasonal mean MSLP (anomalies or not) at each

grid point of the EA sector, with P = 17 years and K = 29 simulations, we computed

equations 4.5, 4.6, 4.9 and 4.10 to estimate the forced and internal variabilities. The

results are plotted in figure 4.1.

Note that, to use anomalies (season climatology removed) or the original data, has no

effect on the results of the ANOVA. The reason for this is found in equation 4.2 where

the operation Xpk − X•• is precisely the removal of the season climatology from the

data. This term has the same value whether the season climatology has been previously

removed or not. Thus, since all the ANOVA formulae originates from this equation,

the ANOVA results are insensitive to the climatology of the data.

Alternatively, we may simply notice that the climatology, X••, has only impact on

the overall mean response, µ = E [X••] of model 4.1, and therefore it has no effect on

the variance components.

As expected, internal variability is higher in the extratropics because of the great eddy

activity in this region. In the tropics, internal variability is negligible in all seasons.

Winter is clearly the season with highest internal variability, whereas the lowest values

of internal variability are found in summer.

In average, winter and spring are the seasons with higher forced variability. However,

at high latitudes, spring presents higher forced variability than in winter, whereas in

the longitudinal belt at midlatitudes extending from Florida to central Europe, forced

variability is higher in winter than in spring.

Figure 4.1 shows that, in general, the regions of maximum forced variability also

have high internal variability. We thus need to test, at every grid point, if the forced

variability make a statistically significant contribution to the seasonal mean MSLP

variability, in order to localise the regions of significant SST-SIC forcing.
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Figure 4.1: Internal (left) and forced (right) variance of MSLP seasonal mean anomalies,

obtained by a Random-Effects One-Way ANOVA applied to the MUGCM ensemble, for (a,b)

DJF, (c,d) MAM, (e,f) JJA, and (g,h) SON. Units in mb2. Grid lines represented every 20o.
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4.4 Testing the SST-SIC forcing. Potential pre-

dictability

Once the total variability of the seasonal mean data has been partitioned into a SST-

SIC forced and an internal component, the next step is to test if the total variability

has a statistically significant contribution from the SST-SIC variability. That is, we

want to perform the following test

H0 : σ2
F = 0 vs H1 : σ2

F > 0. (4.16)

From equations 4.7 and 4.8 we see that, when H0 is true, we expect that MSI and

MSF to be close in value since both of them estimate σ2
I . When H0 is not true, we

expect MSF to be larger than MSI . This suggests the ratio MSF /MSI as a logical test

statistic. If H0 is true, its value is expected to be close to 1, otherwise it is expected

to be larger than 1. Under H0 we have that Xpk ∼ N (µ, σ2
I ) and it can be easily

shown [Murteira, 1990; Milton and Arnold, 1995; Scheffé, 1959] that SSF /σ2
I ∼ χ2

P−1

and SSI/σ
2
I ∼ χ2

P (K−1). where χ2 represents the Qui-squared distribution. Since we

also have that SSF and SSI are independent, then

F =
MSF

MSI

=

SSF /σ2
I

P−1

SSI/σ2
I

P (K−1)

∼ FP−1,P (K−1) (4.17)

if H0 is true, where F is the Fisher distribution. Also note that, using equations 4.10

and 4.13, the test statistic 4.17 can be expressed as

F =
Kσ̂2

EM

σ̂2
I

∼ FP−1,P (K−1) (4.18)

under H0. Finally, we have that the criterion for rejecting H0 at the α significance level

is

F > FP−1,P (K−1),α (4.19)

An alternative test statistic to F which is very popular in the atmospheric sciences

is the so called potential predictability, defined as the fraction of the variability due to

SST forcing:

R =
σ̂2

F

σ̂2
T

. (4.20)
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After equation 4.18 and using the equations 4.12 and 4.15, we have that

F = 1 + K(R−1 − 1)−1. (4.21)

Then, using the test rule 4.19 and equation 4.21, the criterion for rejecting H0 at the α

significance level can ve expressed as

R >
(
1 + K

(FP−1,P (K−1),α − 1
)−1

)−1

. (4.22)

The fraction of total seasonal MUGCM MSLP variance due to SST-SIC forcing,

R, that is, the potential predictability, is calculated using equation 4.20. The results

for each season are presented in figure 4.2. To test if the SST-SIC forced variance is

significantly greater that zero at the 0.05 significance level, we performed the test 4.16

using the test rule 4.22 with K = 29, P = 17 and α = 0.05. Rejection of the null

hypothesis, which occurs for R > 0.0225, implies significant SST-SIC forcing. At the

grid points where the null hypothesis was not rejected, the value of R was not plotted.

Thus, white regions in figure 4.2 are not significantly forced by the lower boundary

(R ≤ 0.0225).

Overall, potential predictability in the EA region is low (blue areas) but significant

(not white areas). The percentage of the total area of the EA that has significant

potential predictability is 90.4%, 91.1%, 85.5% and 63.7% in winter, spring, summer

and autumn, respectively. These percentages are shown on the top right-hand corner

of the panels of figure 4.2.

All seasons share high values of R in the tropical latitudes except in Africa. Note

also the high values of R in the Arabian Peninsula, where it exceeds 40% in winter and

in spring, probably because of the direct influence of the adjacent Indian Ocean.

In winter, the highest values of R are found in central and western part of the 20oN

- 40oN domain, and and eastern Canada. Europe has low, but significant, values. The

southern Iberian Peninsula, northwestern Africa and Scandinavia have no significant

forced variability. In spring, the highest values of R are found across the Atlantic
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Figure 4.2: Percentage of total variance of seasonal mean MSLP anomalies due to SST-SIC

forcing (potential predictability), obtained by a Random-Effects One-Way ANOVA applied to

the MUGCM ensemble, for (a) DJF, (b) MAM, (c) JJA and (d) SON. White areas show where

SST-SIC forcing is not significantly greater than zero at the 0.05 significance level (R ≤ 2.25%,

see hypothesis test 4.16. The percentage of the EA area with significant SST-SIC forcing is

shown on the top right-hand corner of each panel. Grid lines represented every 20o.
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basin between 20oN and 40oN, reaching Portugal, and at high latitudes, matching large

regions of the NAO centres of action. On the other hand, the eastern and western half

parts of Spain and France, respectively, have insignificant values of R. In summer, the

Atlantic basin south of 40oN have the highest values of R, but almost everywhere north

of 60oN, except Scandinavia, present insignificant R values. In autumn, large areas over

the middle Atlantic and Europe have no significant SST-SIC forcing.

In section 3.4.2 we performed an EOF analysis to the seasonal mean anomalies of

MUGCM MSLP for the four standard seasons. We found that the primary teleconnec-

tion patterns in the EA region (North Atlantic Oscillation, Scandinavia or EURASIA

I, East Atlantic, and East Atlantic/West Russia or EURASIA II [Wallace and Gutzler,

1981; Barnston and Livezey, 1987]) were better identified as the first four EOFs in win-

ter and spring. Since these EOFs represent uncorrelated modes of the total variability

in the EA sector2, we applied the ANOVA to the principal components (PCs) of these

EOFs, in winter and spring, to see if the teleconnection patterns they represent are

significantly forced by SST-SIC variations. The calculations are performed consider-

ing Xpk of model 4.1, the PC of each variability mode, and performing the hypothesis

test 4.16 using potential predictability (equation 4.20) as the test statistic and the test

rule 4.22.

The results, presented in table 4.1 (first value in each entry of the table), show that

all patterns of variability, except EOF-2 in winter (winter SCAND), have a statisti-

cal significant contribution from the lower-boundary variability (values greater than

2.25%). As expected from figure 4.2, where spring stands out as the season with the

highest SST-SIC forcing over almost the entire EA area, the NAO, Scandinavia and

East Atlantic/Western Russia modes have more external forcing in spring than in win-

ter. For the East Atlantic mode, the opposite occurs just because the lower-latitude

centre of action, where the oceanic forcing is higher, have higher loadings in winter than

in spring.

2Actually these EOFs are biased estimators of the EOFs of total variability (see sections 4.3 and

5.1. Nevertheless, this bias is not important for the present purposes.
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Table 4.1: Percentage of total variance of the PCs of winter (DJF) and spring (MAM) seasonal

mean MSLP anomalies over the EA region, due to SST-SIC forcing, obtained by a Random-

Effects One-Way ANOVA (first value of each season/PC entry). All values significantly exceed

zero at the 0.05 significance level (R > 2.25%). The second value of each entry represents the

percentage of the total MSLP EA variance represented by the PC. The third value represents

the percentage of the total MSLP EA variance due to the SST-SIC forced variability of the

PC.

Season PC-1 (NAO) PC-2 (SCAND) PC-3 (EA) PC-4 (EA-WR)

DJF 9.4 31.3 3.0 1.1 23.5 0.3 9.2 11.5 1.1 10.0 7.9 0.8

MAM 30.0 31.2 9.4 3.1 19.2 0.6 6.1 14.8 0.9 9.9 7.3 0.7

NAO - North Atlantic Oscillation; SCAND - Scandinavia;

EA - East Atlantic; EA-WR - East Atlantic/Western Russia

For completeness, we also present, in the second value in each season/PC entry of

table 4.1, the percentage of the total seasonal mean MSLP variability in the EA region

that is represented by the corresponding mode in that season (see figures 3.22 and

3.23). The third value in each entry shows the contribution of the forced variability

of the same mode in that season to the total MSLP variability in the EA region. For

example, 30.0% of the NAO (EOF-1) variability in spring is SST-SIC forced. However,

since the NAO itself only represents 31.2% of the total EA variability in spring, this

value represents only 9.4% of the total variability. These low values are in agreement

with the low values of figure 4.2 (blue areas) and stand out as a first and indication of

the difficulty in determining oceanic forcing signals in the EA region.

The fraction of the modelled NAO variance due to SST-SIC forcing in winter (9.4%)

and in spring (30.0%) should be interpreted with caution. We must realise that these

values are computed from modelled PCs whose associated EOF patterns are biased

with respect to their NCEP counterparts (see discussion in section 3.4.2). For this

reason, and also because the NAO is the major mode of atmospheric variability in

the EA region in winter and spring (see figures 3.22 and 3.23), we also applied the
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Figure 4.3: Percentage of total variance of the NAO (solid line), Stykkisholmur (dashed line)

and Lisbon (dotted line) indices due to SST-SIC forcing (potential predictability, R), obtained

by a Random-Effects One-Way ANOVA, for 3-month running mean calendar seasons. The

dashed-dotted horizontal line indicates the value above which the percentage exceeds zero at

the 0.05% significance level (R = 2.25%). Seasons identified by its middle month.

ANOVA to a station-based NAO index. This index is usually formed by subtracting the

normalised time series of MSLP at Stykkisholmur, Iceland (65.1oN, 22.7oW) from that

at Lisbon, Portugal (38.7oN, 9.1oW). Here we used the MUGCM grid points nearest to

Stykkisholmur and Lisbon: (65.96N, 22.50W) and (39.13oN, 7.5oW), respectively. The

analysis was performed to twelve 3-month seasons. The seasonal means were computed

by a 3-month running mean.

Figure 4.3 shows the percentage of the seasonal mean NAO index variance due to SST-

SIC forcing (solid curve). The horizontal dashed-dotted line indicates the value above

which the percentage significantly exceeds zero at the 0.05 (R = 2.25%) significance

level, and seasons are identified by its middle month. This figure shows that the NAO

is forced by the lower boundary fluctuations in all seasons except for SON (autumn)

and OND, the highest forcing found in MAM, in agreement with figure 4.2. Note that

negative values have no physical meaning arising simply from sampling variability (see

equations 4.20 and 4.9).
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The same analysis was performed to the time series of seasonal MSLP at Stykkishol-

mur and at Lisbon used to build the NAO index. The purpose of this analysis is to see

if one of the poles, Stykkisholmur or Lisbon, contributes more to the external forcing

of the NAO index than the other. It is clear from figure 4.3 that the NAO index curve

follows that of Lisbon. The correlation of the NAO index curve with the Lisbon (Stykk-

isholmur) index curve is 0.84 (0.56). This suggest that NAO is forced mainly through

its southern pole, specially from late spring to late summer, when the percentages of

the Lisbon index curve are much larger than the ones of the Stykkisholmur index curve.

4.5 Summary and conclusions

In section 4.2 we discussed the nature of the simulated seasonal mean data and found

that can be analysed by the one-way ANOVA. We argued that the model of the one-

way ANOVA that better suits the nature of the data and the purpose of the research is

the random-effects model. In the framework of this model, we showed how to partition

the total variability into forced and internal components. Unbiased estimators of these

variances and an hypothesis test to determine the significance of the forced variance

were presented. The test was supplied with two different test statistics: the traditional

one and the so called potential predictability which is the fraction of the total variability

that is due only to SST-SIC forcing.

In section 4.3 the random-effects one-way ANOVA was applied to the MUGCM sea-

sonal mean MSLP data over the EA region for the all standard seasons: winter (DJF),

spring (MAM), summer (JJA) and autumn (SON). Maps of the estimated internal and

forced variances were presented (figure 4.1) and it was found that winter is the sea-

son with higher internal variability and that winter and spring are the seasons with

higher forced variability. The maps for the percentage of total variance due to bound-

ary forcing were also presented (figure 4.2), where only the values significantly, at the

0.05 significance level, greater that zero were plotted. It was found that seasonal mean

MSLP is significantly SST-SIC forced in almost the entire area of the EA, except in
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SON, the higher forcing occurring in winter and spring.

In section 3.4.2, using the EOF technique, we represented the modelled seasonal

mean anomaly MSLP variability in the EA sector by orthogonal patterns of variability

and identified the NAO as the major mode in winter and spring (figures 3.22(a) and

3.23(a)), representing 31.3% and 31.2% of total variance, respectively.

In section 4.4 we computed the percentage of the seasonal mean variance of the four

modes of variability, identified by the EOF analysis, due to SST-SIC forcing, in winter

and spring, and found that all modes are significantly forced in both seasons (table 4.1).

The NAO was found to be the mode with strongest forcing in spring (30.0%).

The ANOVA was also performed to the NAO index in overlapping 3-month mean

seasons (figure 4.3) and it was found that the NAO is significantly forced in all seasons

except in SON (autumn) and OND, the higher forcing found again in MAM.

In summary, the MUGCM MSLP variability in the EA region, in general, and its

major mode of variability (the NAO), in particular, have a weak but significant SST-

SIC contribution, the forcing being strong in winter and specially in spring. These

results agree with the seasonal predictability results found by Davis et al. [1997] when

analysing an ensemble of MSLP simulated by the Hadley Centre atmospheric climate

model HADAM1.



Chapter 5

Global Ocean Forcing

In chapter 4 an ANOVA was performed to the 29-member ensemble of MSLP seasonal

means generated by the MUGCM. The ANOVA revealed significant boundary layer

forcing in the EA region, specially in winter and spring. This forcing was found in

MSLP raw data and also in its major mode of total variability, the NAO. With this

knowledge at hand, the logical next step is to determine the spatial pattern of the

MSLP anomaly variability in the EA that is solely originated by this SST-SIC forcing.

In this chapter, the first and second leading modes of MSLP variability in the EA

region forced by SST and SIC variability are estimated using three methods: PCA of

the ensemble mean (standard PCA), Singular Value Decomposition Analysis (SVDA)

proposed by Ward and Navarra [1997] and the optimal detection algorithm introduced

by Venzke et al. [1999] (optimal PCA). The analysis is done on seasonal mean MSLP

anomaly data in winter and spring. The spring season is chosen because it is when

the global SST-SIC forcing on seasonal MSLP variability in the EA sector is higher,

as consistently demonstrated in section 4.4. Winter is also chosen not only because it

is the second standard season with higher boundary forcing, but also because it is the

season with higher seasonal mean MSLP total variability in the EA region (internal

plus forced, see figure 4.1). Furthermore, winter and spring are the seasons when

the teleconnection patterns of the NAO, Scandinavia, East Atlantic or Eurasia I, and

East Atlantic-Western Russia or Eurasia II [Wallace and Gutzler, 1981; Horel, 1981;

83
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Blackmon et al., 1984; Barnston and Livezey, 1987], are better identified (section 3.4.2).

Due to the large ensemble size (29 members), the first and second forced modes of

variability (spatial patterns and associated time series) obtained by SVDA are almost

identical to those obtained by standard PCA. The reader may skip section 5.2, where

the SVDA modes are determined, since, as they are almost equal to the standard PCA

modes, they will not be used in subsequent analyses. Also due to the size of the

ensemble, the standard PCA leading mode is also almost identical to the leading mode

of optimal PCA, but the second modes obtained by the two methods are different.

In order to localise the regions of the global ocean where SST anomaly variability is

responsible for the detected MSLP forced modes in the EA region, SST anomalies at

each grid point of the globe are regressed onto the standard and optimal PCs. From

the resulting global regression patterns, three localised statistical significant regression

patterns outstand: (i) the regression pattern in the equatorial Pacific, found by the

regression of the SST anomaly field onto standard PC-1 and optimal PC-1, in winter and

spring, resembling the SST anomaly pattern of the ENSO; (ii) the regression pattern in

the tropical Atlantic, found by the regression of the SST anomaly field onto the optimal

PC-1 in spring, resembling the pattern of the Atlantic Interhemispheric SST anomaly

Gradient (AISG); and (iii) the regression pattern in the north Atlantic basin, found by

the regression of the SST anomaly field onto the optimal PC-2 in winter, resembling

the SST anomaly pattern of the North Atlantic SST anomaly Tripole (SST Tripole).

Further analysis comparing the patterns and time series associated to the three men-

tioned SST modes with the regression patterns and the forced PCs, give evidence that

(i) the ENSO forces the standard and optimal PC-1, in winter and in spring, (ii) the

AISG also forces the optimal PC-1 in spring, and (iii) the SST Tripole forces the optimal

PC-2 in winter.

Optimal detection PCA proves to be efficient in extracting SST-forced signals from an

ensemble of data with high internal variability, such as the MUGCM AMIP II ensemble
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of MSLP in the EA sector. Without optimal detection, the forcing from the two Atlantic

SST modes would not be detected. Furthermore, an ANOVA-based test shows that the

leading optimal detected response is not only significant but also consistent, in both

seasons, and comparison with observations give reliability to the optimal PC-1 in winter

and spring and also to the optimal PC-2 in spring.

5.1 Forced response by standard PCA

When an ensemble of GOGA simulations are available, such as our AMIP II simulations,

the response pattern of some atmospheric variable to the global SST-SIC forcing is

usually determined performing an EOF analysis of the ensemble mean of that variable.

The reason to use the ensemble mean lies in the multivariate version of equation 4.11,

E[
SEM

]
= ΣF +

1

K
ΣI , (5.1)

where E is the mathematical expectation operator, SEM is the ensemble mean sample

covariance matrix, and ΣF and ΣI are the true or populational forced and internal

covariance matrices, respectively.

Equation 5.1 shows that, in the limit of an infinite ensemble, the forced variability

would be given by the ensemble mean variability, SEM → ΣF as K → ∞. So this is

why the EOFs of the ensemble mean (normalised eigenvectors of SEM) are usually used

to estimate the forced PVs (normalised eigenvectors of ΣF ), and the usual practice is to

perform the maximum economically possible number of simulations to achieve a better

estimation.

For an uncorrelated in space internal variability, ΣI = σ2
II, where I is the unitary ma-

trix, the eigenvalues of SEM would be σ2
I times the eigenvalues of ΣF but its normalised

eigenvectors would be the same. However, internal variability is not uncorrelated in

space. Worse still, the directions defined by the higher ranked ensemble mean EOFs,

where the variance of the ensemble mean PCs is higher and where we expect to find the
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forced response, are also the directions where the internal variability is higher. Before

we demonstrate this, let us first define the notation of the variables at work.

Let Xmpk be a random seasonal mean atmospheric variable at spatial location m (m =

1, ..., M) in year p (p = 1, ..., P = 17) of the kth (k = 1, ..., K = 29) simulation. Note

that this is the same notation used in the Analysis of Variance of chapter 4 with an extra

subscript, m, to indicate the spatial location. In appendix A, where the mathematical

formalism of Principal Component Analysis was presented, Xmn represents the nth

(n = 1, ..., N) observation of a random seasonal atmospheric variable at spatial location

m. The correspondence between Xmn of appendix A and Xmpk is that n = (k−1)P +p,

as we did in the EOF analysis of the total variability of seasonal MSLP in section 3.4.2.

Each random variable Xmpk can be expressed as the sum of the ensemble mean in

year p and the departure of the kth ensemble member from this mean:

Xmpk = Xmp• + X ′
mpk, (5.2)

where the dot notation represents, as before, averaging over the missing subscript.

Let XEM be a (M × P ) random data matrix whose (m, p) entry is Xmp• and XI,k

be a (M × P ) random data matrix whose (m, p) entry is X ′
mpk. That is, XEM is the

data matrix of the ensemble mean and XI,k is the data matrix of the departures of

the kth simulation from the ensemble mean. Also let XI =
[XI,1|...|XI,k|...|XI,K

]
be a

(M × PK) random data matrix of the departures of all simulations.

The sample covariance matrices of XEM , XI,k and XI are, respectively:

SEM =
1

P − 1
XEMXT

EM , (5.3)

SI,k =
1

P (K − 1)
XI,kXT

I,k, (5.4)

SI =
1

P (K − 1)
XIXT

I . (5.5)
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Note that equation 6.7 is a multivariate version of equation 4.10 and is an unbiased

estimator of ΣI . Note also that

SI =
K∑

k=1

SI,k. (5.6)

The ensemble mean sample covariance matrix, SEM , is (M ×M) symmetric matrix

and therefore admits M eigenvectors. However, as seen in appendix A, since XEM is a

(M × P ) matrix with P < M , only the first P eigenvalues of SEM are non-zero. Thus,

the EOFs of XEM are the first P normalised eigenvectors of SEM . Let them to be

denoted by eEM,r, with r = 1, ..., P , and assembled as columns in the (M × P ) matrix

EEM . The associated principal components are, as seen in equation A.9

Y = ET
EMXEM , (5.7)

whose covariance matrix is, as also seen in equations A.5 and A.6,

SY = ET
EMSEMEEM = ΛEM (5.8)

where ΛEM a (P × P ) diagonal matrix whose elements are the non-zero eigenvalues of

SEM .

The first two leading modes for the MUGCM seasonal DJF and MAM MSLP are

presented in figure 5.1. In winter, the first and second mode account for 51.7% and

15.2% of the ensemble mean variance, respectively, and in spring they represent 69.1%

and 12.5%, respectively.

Figure 5.2 (a,b) presents, for winter and spring, the first PC of the ensemble mean,

eT
EM,1XEM , and the projections of the individual ensemble members k = 1, ..., K = 29

onto the first EOF of the ensemble mean, eT
EM,1XI,k. Figure 5.2 (c,d) shows analogous

plots but for the second ensemble mean EOF.

The spread of the projections of the individual ensemble members onto the first two

leading EOFs of the ensemble mean show that internal variability is high in the space

spanned by these two directions. In fact, as stated above, the higher ranked ensemble
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Figure 5.1: First two leading standard EOFs of MUGCM MSLP anomalies in (a,c) DJF and

(b,d) MAM. Negative, zero and positive loadings plotted with dashed blue, solid black and

solid red lines. The percentage of total variance explained by each EOF is printed on the

upper right-hand corner of each panel. Grid lines represented every 20o.

mean EOFs, where the associated PCs have higher variance and where we expect to

find the forced response, define directions where the internal variability is also high.

This feature can be confirmed by figure 5.2 (e,f) which shows the variances of the first

15 ensemble mean PCs (red line), eT
EM,rSEMeEM,r = λEM,r and the variances of the

projections of the k = 1, ..., K = 29 individual ensemble members onto the first 15

EOFs of the ensemble mean (black lines) eT
EM,rSI,keEM,r, where r = 1, ..., 15. Also

shown in figure 5.2 (e,f, red dotted line) is the average of these 29 variances:

1

K

K∑

k=1

eT
EM,rSI,keEM,r =

1

K
eT

EM,rSIeEM,r,

which, according to equation 5.1, is an estimation of the variance, in the directions of

eEM,r, that we would obtain in the absence of any true forced response.
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Figure 5.2: Results of PCA of DJF and MAM seasonal mean MSLP ensemble mean in the

EA region. (a,b) Projection of the ensemble mean (red line) and of the individual ensemble

members (black lines) onto EOF-1. (c,d) As in (a,b) but for EOF-2. (e,f) Variance of the

projections of the ensemble mean (red solid line), of the individual ensemble members (black

lines) and their mean (red dashed line) onto the first 15 EOFs.
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The purpose of comparing eT
EM,rSEMeEM,r with (1/K)eT

EM,rSIeEM,r is to determine

if exists a forced response in the state space direction defined by eEM,r. Or, if the

pattern eEM,r is a good estimator of a true forced pattern. This question is formulated

by an ANOVA test analogous to the ANOVA test 4.16:

H0 : eT
EM,r ΣF eEM,r = 0 vs H1 : eT

EM,r ΣF eEM,r > 0. (5.9)

The test statistic is, analogously to the test statistic 4.18,

F = K
eT

EM,rSEMeEM,r

eT
EM,rSIeEM,r

∼ FP−1,P (K−1) (5.10)

under H0. Since E [eT
EM,rSEMeEM,r] = eT

EM,rΣIeEM,r if Ho is true and E [eT
EM,rSIeEM,r] =

eT
EM,rΣIeEM,r then the expected value of the F is 1 if Ho is true. If Ho is not true, F

is expected to have a value greater than 1. Thus, the criterion for rejecting Ho with a

significance level of α is

F > FP−1,P (K−1),α. (5.11)

Table 5.1 presents the results of the test 5.9 applied to the first and second EOFs

of the MUGCM ensemble mean of winter and spring MSLP seasonal means. Since all

values of the F statistic exceed the cutoff value F16,17×29,0.05 = 1.66, the null hypothesis

is rejected, meaning that the forced response in both patterns and in both seasons

significantly exceed zero at the 5% significance level.

Venzke et al. [1999] defines a forced response that significantly exceeds zero at the

5% significance level (F > F0.05) as a detectable response (at the 95% level) and recall

that, since the F statistic increases linearly with the ensemble size, “it is always possi-

ble to detect a non-zero but arbitrarily weak forced response given a sufficiently large

ensemble”. They then define a consistent response, at the 95% level, as a response

whose statistic F/K exceeds the cutoff value F0.05. The physical difference between a

detectable response and a consistent response on a pattern eEM,r, at the 95% level, is

that, while in the former we have a 95% chance of finding a positive correlation between

eT
EM,rXEM and the true forced time series of that pattern, in the later we also have a

95% chance of finding a positive correlation between eT
EM,rXI,k and the true forced time

series associated with eEM,r.
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Table 5.1: Variances of the projections of the ensemble mean and of individual ensemble

members onto the first two leading EOFs of the MUGCM ensemble mean of DJF and MAM

MSLP seasonal means. Values of the F statistic greater than 1.66 (bold) indicate a detectable

response, that is, a forced response that significantly exceed zero at the 0.05 significance level.

r eT
EM,rSEMeEM,r eT

EM,rSIeEM,r F F/K

DJF EOF 1 218.94 794.28 7.99 0.28

MAM EOF 1 347.98 573.04 17.61 0.61

DJF EOF 2 64.49 599.69 3.12 0.11

MAM EOF 2 63.11 338.08 5.41 0.19

Under the definitions of Venzke et al. [1999], it can be seen in table 5.1 that we

detected a forced response on EOF-1 and EOF-2 of the MUGCM ensemble mean

of winter and spring MSLP seasonal means, but these responses are not consistent.

Obviously, these forced responses (figure 5.2 (a-d)) failed the test of consistency be-

cause of the large values of eT
EM,1SIe

T
EM,1 and eT

EM,2SIe
T
EM,e compared to those of

eT
1 SEMeT

1 and eT
2 SEMeT

2 , respectively (figure 5.2 (e,f) and table 5.1). In section 5.3

we present and apply the method proposed by Venzke et al. [1999] that also estimates

the forced patterns using the ensemble mean but maximizes the signal-to-noise ratio

(eT
EM,rSEMeT

EM,r)/(e
T
EM,rSIe

T
EM,r). The purpose is, of course, to detect forced signals

and see if they are strong enough to be considered consistent.

5.2 Forced response by SVDA

An alternative method to PCA of the ensemble mean to obtain forced modes of vari-

ability was proposed by Ward and Navarra [1997]. As referred at the beginning of this

chapter, the first and second modes obtained by this method are almost equal to those

obtained by standard PCA, and because of this these results will not be used in subse-

quent analyses. The reader may confirm the equality of the results of both methods by

comparing figures 5.1 and 5.3, and by inspection of figure 5.4, and then move directly

to section 5.3.
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The method proposed by Ward and Navarra [1997] is based on the Singular Value

Decomposition Analysis (SVDA) of Bretherton et al. [1992]. The general SVDA of

Bretherton et al. [1992] consists of performing the singular value decomposition of the

cross-covariance matrix of the time series of two data fields1. The resulting leading pair

of patterns is such that the covariance between the time series associated to each pattern

is maximum. The leading pair of modes (patterns and time series) is, thus, a pair of

modes of maximum covariability. Bretherton et al. [1992] and Wallace et al. [1992]

compared the method with other methods such as Principal Component Analysis with

fields combined (CPCA) and Canonical Correlation (CCA), among others. The method

was also compared with CCA by Cherry [1996]. An early example of the application of

the method can be found in Wallace et al. [1992] who performed a SVDA to wintertime

sea surface temperature anomalies in the North Pacific and 500 mb height anomalies

in the northern hemisphere.

Using the notation of equation 6.6, let Xmpk represent a random seasonal mean

atmospheric anomaly at spatial location m (m = 1, ...,M) in year p (p = 1, ..., P ) of the

kth (K = 1, ..., K) simulation. Let Xk be a (M ×P ) random matrix whose (m, p) entry

is Xmpk, that is, it holds the data of the kth simulation. The first step of the method

proposed by Ward and Navarra [1997] consists of building two matrices, XL/2 and XR/2,

where XL/2 is built putting Xk matrices one after another in the row direction, and

XR/2 is built in the same way but using X ′
k matrices (the L and R subscripts stand

for left and right, respectively). Each pair of indices (k, k′) is a combination formed by

selecting two diferent elements, at a time, from the set of numbers {1, 2, . . . , K}. Thus,

the combinations are

(1, 2); (1, 3); . . . ; (1, K); (2, 3); (2, 4); . . . ; (2, K); (K − 1, K), (5.12)

1Bretherton et al. [1992] used the abbreviation SVD to denote both the general matrix operation

and the method they proposed. Here, we will differentiate them using the abbreviation SVDA to

denote the method and singular value decomposition to refer to the matrix operation.
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and the matrices XL/2 and XR/2 are then formed as follows:

XL/2 =
[ K−1︷ ︸︸ ︷
X1| . . . |X1 |

K−2︷ ︸︸ ︷
X2| . . . |X2 | . . . | XK−1

]
(5.13)

XR/2 =
[
X2| . . . |XK | X3| . . . |XK | . . . | XK

]
. (5.14)

The second step of the method consists of building other two matrices from XL/2 and

XR/2 as follows,

XL =
[
XL/2 | XR/2

]
(5.15)

XR =
[
XR/2 | XL/2

]
. (5.16)

It can be seen straightforwardly from the series of combinations 5.12 that there are

(K−1)+(K−2)+ . . .+1 combinations. We can, alternatively, determine this number

recurring to a theorem of Combinatorial Analysis (e.g., Apostol [1969], pg. 481; Milton

and Arnold [1995], pg. 14) that states that the number of distinct subsets of r elements

that may be formed from a set of K ≥ r distinct elements, denoted by KCr, is given by

KCr =

(
K

r

)
=

K!

r!(K − r)!
.

For r = 2, the number of combinations is

KC2 =

(
K

2

)
=

K(K − 1)

2
,

which is equal to (K − 1) + (K − 2) + . . . + 1.

In the third step of the method, the cross-covariance matrix between XL and XR is

determined,

SLR =
1

(K − 1)(KP − 1)
XLXT

R , (5.17)

which is a M -dimensioned square matrix. Note that XL and XR are formed with Xmpk

anomalies relative to the global mean, that is, for each station m, we have

K∑

k=1

P∑
p=1

Xmpk = 0,
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so, each one of the KP observations in station m can be expressed in terms of the rest

KP − 1 observations. Note also that SLR is taken over 2KC2P products between Xmpk

anomalies. Thus, there are

2KC2P

KP
(KP − 1) = (K − 1)(KP − 1)

degrees of freedom, which are used in equation 6.4.

Finally, the singular value decomposition of SLR is performed,

SLR = UΛVT, (5.18)

where U and V are (M × M) matrices whose columns form an orthonormal set of

vectors called the left and right singular vectors of SLR, respectively, and Λ is a (M×M)

diagonal matrix whose elements are called the singular values of SLR. Now note that,

the constructs 5.15 and 5.16 of Xl and Xr assure that XLXT
R = (XLXT

R )T and, thus,

SLR is symmetric. Consequently, its singular right vectors are equal to its singular

left vectors which are the seeked forced patterns, E = U = V. The fraction of total

variance represented by the mth spatial pattern is given by λm/
∑M

m′=1 λm, where λm

is the mth singular value of SLR, that is, the value of the (m,m) entry in Λ.

The method was applied to MUGCM MSLP seasonal anomalies in winter and spring.

Figure 5.3 shows the two leading spatial patterns for each season. These patterns

are equal to the forced patterns obtained by standard PCA of the ensemble mean

(section 5.1, figure 5.1).

Projecting the individual ensemble members, Xk, k = 1, . . . , K, onto the forced

patterns, we obtain

Yk = ETXk, k = 1, . . . K, (5.19)

which are (M × P ) matrices whose lines are the time series associated with the forced

patterns.
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Figure 5.3: First two leading SVDA spatial patterns of MUGCM MSLP seasonal mean

anomalies in (a,c) DJF and (b,d) MAM. Negative, zero and positive loadings plotted with

dashed blue, solid black and solid red lines. The percentage of total variance explained by each

SVDA mode is printed on the upper right-hand corner of each panel. Grid lines represented

every 20o.

Figure 5.4 shows, for winter and spring, the time series associated to the two leading

forced patterns obtained by standard PCA and SVDA. The time series associated to

the standard PCA forced patterns (dashed lines) are the principal components of the

ensemble mean of MSLP anomalies. The time series associated to the SVDA patterns

are the ensemble mean of the projections of individual ensemble members of MSLP

anomalies onto these patterns, that is, the first two lines of the (M × P ) matrix

YEM =
1

K

K∑

k=1

Yk, (5.20)

where the matrices Yk, k = 1, . . . , K, are given by equation 5.19.

The agreement between the patterns and between the time series (correlation higher

then 0.98), obtained by the two methods, means that SVDA has brought no further
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Figure 5.4: Normalised forced time series of winter and spring MUGCM MSLP in the EA

region obtained by standard PCA of the ensemble mean (dashed lines) and by SVDA (solid

lines): (a) DJF PC-1, (b) MAM PC-1, (c) DJF PC-2 and (d) MAM PC-2. The correlation

between the two time series is printed on the upper left-hand corner of each panel.

information than the standard PCA, in this case. For an infinite ensemble size, the

contribution from internal variability to the ensemble mean tends to zero (equation 5.1),

and the forced modes of standard PCA become equivalent to those of SVDA [Ward and

Navarra, 1997]. It seems, thus, that for our ensemble with 29 members the use of SVDA

is redundant.

5.3 Forced response by Optimal Detection PCA

As we have already mentioned, equation 5.1 shows that if the internal variability had the

form ΣI = σ2
II (uncorrelated in space) then the expectation of the eigenvectors of the

sample covariance of the ensemble mean, SEM , would have the direction of the eigenvec-

tors of ΣF . Further, if σ2 = 1 then the expected eigenvalues of SEM would be equal the

to eigenvalues of ΣF , that is, the variance represented by the PCs associated with the

expected eigenvectors of SEM would be the same as the variance of the true forced PCs.
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Prewhitening operator

Following this idea, the so called optimal detection algorithm, proposed by Venzke et al.

[1999]2, seeks to find an operator, W such that, when applied to the ensemble mean,

WTXEM , implies, using equation 5.1, that

E[WTSEMW
]

= WTΣFW + I. (5.21)

Such operator must then satisfy equation

WTΣIW = KI. (5.22)

Since ΣI is unknown, W has to be estimated from the sample covariance matrix of the

internal variability, through the equation

WTSIW = KI, (5.23)

where W is an estimator of W , called the prewhitening operator. Now, noting that

SI = EIΛIE
T
I , (5.24)

where the columns of EI and the diagonal of ΛI contain the eigenvectors and eigenval-

ues, respectively, of SI ,
3 equation 5.23 may be written as

WTEIΛIE
T
I W = KI,

equation from which it is easy to see, using ET
I EI = I, that the operator W that

satisfies it is equal to K1/2EIΛ
−1/2
I .

Venzke et al. [1999] point out that, since the variance of the lowest ranked EOFs of

internal variability is generally underestimated, we will only have

WTΣIW ' KI, (5.25)

2Actually, this algorithm was previously introduced by Allen and Smith [1997] to make the Singular

Spectrum Analysis able to separate signal from “coloured” noise, and is based on the fingerprinting

algorithm of Hasselmann [1979].
3Note that since SI = [P (K − 1)]−1XIXT

I , where XI is a (M × KP ) matrix, only the first

min(M, KP ) diagonal elements (eigenvalues) of ΛI will be non-zero and thus only the first min(M, KP )

columns (eigenvectors) of EI are associated with non-zero eigenvalues.



98 5. Global Ocean Forcing

if only the EOFs with realistic variance, the highest ranked EOFs, are retained in the

computation of the prewhitening operator. Thus the prewhitening operator must be

computed by

W = K1/2E
(Q)
I (Λ

(Q)
I )−1/2, (5.26)

where E
(Q)
I is a (M × Q) matrix whose columns are the first Q columns of EI (the Q

highest ranked eigenvectors of SI) and Λ
(Q)
I is a (Q×Q) diagonal matrix whose elements

are the first Q elements of ΛI (the Q highest eigenvalues of SI). The prewhitening oper-

ator W is thus a (M×Q) matrix and it can be easily verified that satisfies equation 5.23

whatever the number of retained internal EOFs, Q.

The truncation level, Q, must then be as high as possible in order to achieve a better

estimation of the forced EOFs (see latter discussion associated to equation 5.41) but

low enough to avoid sampling problems. Chang et al. [2000] propose the following rule

of thumb to determine the maximum number of well sampled EOFs: the minimum

number of samples per EOF must be greater than five. Since, in our experiment, we

have 17× 29 = 493 samples, than the truncation level must not exceed 98 EOFs.

The criterion proposed by Venzke et al. [1999] is that Q should be the number which

the cumulative average ratio between the variance of the projection of the ensemble

mean onto the EOFs of internal variability and the variance of the PCs of internal

variability multiplied by a factor of 1/K = 1/29,

K

Q

Q∑
r=1

eT
I,rSEMeI,r

eT
I,rSIeI,r

(5.27)

becomes stable.

Figure 5.5 (a,b) presents the values of eT
I,rSEMeI,r and (1/K)eT

I,rSIeI,r, and figure 5.5

(c,d) shows the cumulative average ratio of these variances, for r = 1, ..., 100, applied

to the MUGCM MSLP winter and spring seasonal mean in the EA sector. Inspection

of figure 5.5 (c,d) suggests the choice of Q = 30 for both seasons.
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Figure 5.5: (a,b) Variance of the projection of the MUGCM ensemble mean of DJF and

MAM seasonal means of MSLP onto the EOFs of internal variability (solid line) and variance

of internal variability PCs multiplied by a factor of 1/29 (dashed line). (c,d) Cumulative

average ratio of the variances plotted in (a,b).

Optimal Filters and Optimised Forced Principal Components

Once the value of Q has been chosen and the associated prewhitening operator de-

termined, the next step is to apply the prewhitening transformation to the sample

covariance matrix of the ensemble mean,

S′EM = WTSEMW, (5.28)

and to perform a singular value decomposition of the (Q × Q) prewhitened sample

covariance matrix,

S′EM = E′
EMΛ′

EME′T
EM , (5.29)

to obtain the eigenvectors of S′EM which are, as can be seen by equations 5.21 and 5.28,

estimators of the eigenvectors of WTΣFW . By the same reasoning, the eigenvalues of
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S′EM ,

Λ′
EM = E′T

EMS′EME′
EM , (5.30)

are estimators of the eigenvalues of WTΣFW .

Note that the covariance matrix of equation 5.28 is the sample covariance matrix

of the prewhitened ensemble mean X ′
EM = WTXEM , and the eigenvectors of S′EM ,

E′
EM , are the EOFs of this transformed ensemble mean. This implies that the vectors

E′
EM define the directions that maximise the variance of the transformed ensemble

mean. Since the transformed internal variability, WTSiW, has equal variance in all

directions (equation 5.23), than E′
EM are the set of vectors that maximise the ratio of

the transformed signal variance to the transformed noise variance,

K
E′T

EMS′EME′
EM

E′T
EMWTSIWE′

EM

= K
Λ′

EM

KI
= Λ′

EM , (5.31)

where we used equations 5.23 and 5.30. Using equation 5.28 and defining

F = WE′
EM , (5.32)

equation 5.31 becomes

K
FTSEMF

FTSIF
= Λ′

EM , (5.33)

which means that the set of vectors F maximise the ratio of the ensemble mean vari-

ance to internal variance. The columns of the (M × Q) matrix F are patterns with

large weights where the signal-to-noise ratio is high and, thus, are used to project the

ensemble mean to obtain the signal-to-noise maximised time-varying forced response:

Ys/n = FTXEM . (5.34)

For this reason, these patterns are called also optimal filter patterns and the forced

time series, the lines of the (Q × P ) matrix Ys/n, are called optimal forced principal

components.
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The covariance matrix of Ys/n is

SYs/n
= FTSEMF (5.35)

= E′T
EMS′EME′

EM (5.36)

= Λ′
EM , (5.37)

where we used equations 5.34, 5.3, 5.32, 5.28 and 5.30. Note that equation 5.36 means

that, since E′ are the eigenvectors of S′EM , the optimised forced PCs, Ys/n, are the prin-

cipal components of the prewhitened ensemble mean X ′
EM = WTXEM . In fact, sub-

stituting equation 5.32 into equation 5.34 we get Ys/n = E′T
EMWTXEM = E′T

EMX ′
EM ,

which is the projection of the prewhitened ensemble mean onto its EOFs.

Equations 5.33, 5.35 and 5.37 provide together an important property of the optimised

principal components, Ys/n: in the directions of the optimal filter patterns, F, the

variances of Ys/n (diagonal elements of Λ′
EM) are equal to the corresponding signal-

to-noise ratios. This is why they are also called the signal-to-noise maximised forced

PCs.

Figure 5.6 (a,b) presents, for winter and spring, the projection of the ensemble mean

onto the first optimal filter pattern, fT
EM,1XEM , i.e., the first optimised forced PC,

and the projections of the K individual ensemble members onto this filter pattern,

fT
EM,1XI,k, k = 1, ..., K = 29. Figure 5.6 (c,d) shows analogous plots but for the

second optimal filter pattern.

Figure 5.6 (a-d) shows that the spread of the projection of the individual ensemble

members onto the first two leading optimal filter patterns has been successfully reduced,

specially for the first mode, when compared with the spread of their projections onto

the first two leading standard EOFs of the ensemble mean (Figure 5.2 (a-d)).

Figure 5.6 (e,f) shows the variance of the projection of the ensemble mean onto the

15 highest ranked optimal filter pattern (the 15 highest ranked optimised forced PCs),
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Figure 5.6: Results of optimal detection PCA of DJF and MAM seasonal mean MSLP

ensemble mean in the EA region. (a,b) Projection of the ensemble mean (red line) and of

the individual ensemble members (black lines) onto the first optimal filter pattern. (c,d) As

in (a,b) but for the second optimal filter pattern. (e,f) Variance of the projections of the

ensemble mean (red solid line), of the individual ensemble members (black lines) and their

mean (red dashed line) onto the first 15 optimal filter patterns.

fT
EM,rSEM fEM,r = λ′EM,r, where r = 1, ..., 15. Note again that, since (1/K)fT

EM,rSIfEM,r =

1, these variances are actually, signal-to-noise ratios.
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Also shown figure 5.2 (e,f) is the variance of the projections of the individual ensemble

members onto these optimal filter patterns, fT
EM,rSI,kfEM,r, with r = 1, ..., 15, and the

average of these 29 variances, (1/K)
∑K

k=1 fT
EM,rSI,kfEM,r = (1/K)fT

EM,rSIfEM,r = 1,

which, according to equation 5.1 is an estimation of the variance, in the directions of

fEM,r, that we would obtain in the absence of any true forced response.

Analogously to what was done in section 5.1 to test if the ensemble mean PCs

represented statistically significant forced responses, the significance of the response

ys/n,r = fT
EM,rXEM (the rth line of Ys/n ) is tested with the hypothesis test

H0 : fT
EM,r ΣF fEM,r = 0 vs H1 : fT

EM,r ΣF fEM,r > 0, (5.38)

using the test statistic

F = K
fT
EM,rSEM fEM,r

fT
EM,rSIfEM,r

∼ FP−1,P (K−1), (5.39)

under H0, and the test criterion for rejecting Ho with a significance level of α,

F > FP−1,P (K−1),α. (5.40)

Table 5.2 presents the results of the test 5.38 applied to the first and second PCs

obtained by the optimal detection PCA of the MUGCM winter and spring MSLP in the

EA region. Since all values of the F statistic exceed the cutoff value F16,17×29,0.05 = 1.66,

the null hypothesis is rejected, meaning that the forced response in both patterns and in

both seasons significantly exceed zero at the 5% significance level. Using the definition

of Venzke et al. [1999] we say that all responses are detectable, as also verified for the

responses obtained by the standard PCA (table 5.1).

The values of the F/K statistic (table 5.2, last column) indicates that the domi-

nant forced response is consistent in both seasons (F/K > F16,17×29,0.05 = 1.66). This

fact represents an important improvement achieved by the optimal detection algorithm.

Remember that the dominant forced response obtained by the standard PCA was de-

tectable but not consistent (table 5.1). The responses associated with the second op-

timal filter have values of F/K four (in winter) and three (in spring) times greater
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Table 5.2: Variances of the projections of the ensemble mean and of individual ensemble

members onto the first two leading optimal filter patterns of the MUGCM MSLP in DJF and

MAM. Values of the F statistic greater than 1.66 (bold) indicate a detectable response, that

is, a forced response that significantly exceed zero at the 0.05 significance level. Values of

F/K greater than 1.66 (bold) indicates a consistent response.

r fT
EM,rSEM fEM,r fT

EM,rSIfEM,r F F/K

DJF Optimal Filter 1 65.26 29 65.26 2.25

MAM Optimal Filter 1 62.99 29 62.99 2.17

DJF Optimal Filter 2 12.35 29 12.35 0.43

MAM Optimal Filter 2 17.43 29 17.43 0.06

than the corresponding values of the responses obtained by the conventional method.

However, these values are not large enough to represent consistent responses.

Optimised Patterns of the Forced Response

So far, we determined the two time-varying forced responses of the MUGCM seasonal

MSLP with higher signal-to-noise ratios and, using an ANOVA test, concluded that

both are detectable in winter and spring, being the first also consistent in both seasons.

We saw that these responses are the two highest ranked principal components of the

prewhitened ensemble mean or, equivalently, are the projections of the MUGCM MSLP

ensemble mean onto the two dominant optimal filter patterns. Although the optimal

filter patterns, F, provide a set of vectors to extract signal-to-noise maximised time-

varying forced responses, they are not estimators of the eigenvectors of ΣF . Note, for

instance, that they do not form an orthonormal basis in the Euclidean metric, since

FFT = WWT = K(S
(Q)
I )−1.

The sample spatial forced patterns may be obtained as follows. We have already

seen that the eigenvectors and eigenvalues of S′EM are estimators of the eigenvectors

and eigenvalues of WTΣFW . Thus, assuming that we have sufficient data that S′EM '
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E [S′EM ] and W ' W , we have

WTΣFW = E′
EMΛ′

EME′T
EM .

Multiplying on the left by (WT)−1 and on the right by W−1 and rearranging we get

(WW−1)TΣF (WW−1) = [(W−1)TE′
EM ]Λ′

EM [(W−1)TE′
EM ]T, (5.41)

where

W−1 = K−1/2(Λ
(Q)
I )1/2(E

(Q)
I )T (5.42)

is the pseudo-inverse of W.

Since WW−1 = E
(Q)
I (E

(Q)
I )T, if all the EOFs of internal variability were used to

construct the prewhitening operator (Q = M), than, by equation 5.24, the vectors

E
(M)
I = EI would be an orthonormal basis and, consequently, the left hand side of

equation 5.41 would be equal to ΣF . In this situation, equation 5.41 would imply that

the vectors (W−1)TE′
EM would be (estimators of) the eigenvectors of ΣF . This is

the reason why we define the forced spatial patterns or optimised forced EOFs as the

columns of the M ×Q matrix

EF = (W−1)TE′
EM . (5.43)

Since we must truncate the EOFs of internal variability in the construction of the

prewhitening operator, for the reasons exposed above, the optimised forced EOFs, EF

are estimators of the eigenvectors of E
(Q)
I (E

(Q)
I )TΣFE

(Q)
I (E

(Q)
I )T. That is, they provide

an estimate of the subspace in which the true eigenvectors lie but do not provide an

estimate of the true forced eigenvectors themselves, since EF is not an orthonormal

basis in the Euclidean metric [Venzke et al., 1999]: EFET
F = (W−1)TW−1 = K−1S

(Q)
I .

From equation 5.29, since E′
EM is orthonormal and Λ′

EM is invertible, we have

E′
EM = S′EME′

EMΛ′−1
EM . Substituting this equation in equation 5.45 using equations

5.28, 5.3, 5.32 and 5.34 we obtain

EF =
1

P − 1
WW−1XEMYT

s/mΛ′−1

=
1

P − 1
E

(Q)
I (E

(Q)
I )TXEMYT

s/mΛ′−1
, (5.44)
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which, by analogy to equation A.10 is equivalent to regressing the filtered ensemble-

mean WW−1XEM = E
(Q)
I (E

(Q)
I )TXEM onto the optimised PCs.

Because of equation 5.44 Venzke et al. [1999] propose the following approximation to

determine the forced patterns

EF ' 1

P − 1
XEMYT

s/nΛ
′−1

(5.45)

which, again by analogy to equation A.10, is equivalent to regressing the ensemble mean

onto the optimised PCs. This approximation was also used by Chang et al. [2000] to

determine the SST-forced patterns of wind stress and surface heat flux in the Tropical

Atlantic.

As already mentioned, the vectors EF , given by the accurate computation (equa-

tion 5.43) or by the approximate computation (equation 5.45), are not orthogonal.

Allen and Smith [1997] show how to build an orthonormal basis of signal-to-noise max-

imising vectors from the leading signal-to-noise maximising components of E′. First

we reconstruct a filtered transformed covariance matrix from SEM using the R < Q

highest ranked signal-to-noise components of E′

S′(R)
EM = E′(R)

Λ′(R)
(E′(R)

)T, (5.46)

where E′(R) is a (Q×R) matrix whose columns are the first R columns of E′ and Λ
(R)
I

is a (R×R) diagonal matrix whose elements are the first R elements of ΛI . Then, we

back-transform to the coordinates of the original state space

S
(R)
EM = (W−1)TS′(R)

EMW−1, (5.47)

and re-diagonalise

S
(R)
EM = Ef

(R)Λf
(R)(Ef

(R))T, (5.48)

where Ef
(R) and Λf

(R) are (M ×M) matrices. The first R column vectors of Ef
(R) are

the R highest ranked signal-to-noise maximising EOFs and are estimators of the R true

dominant forced EOFs.
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We have computed the first and second highest ranked optimised (or signal-to-noise

maximising) forced EOFs of the MUGCM MSLP seasonal means in winter and spring in

the EA region, using the three methods presented above: (i) the accurate computation of

the non-orthonormal vectors of Venzke et al. [1999] (equation 5.43), (ii) the approximate

computation of the non-orthonormal vectors of Venzke et al. [1999] (equation 5.45), and

(iii) the computation of the orthonormal vectors of Allen and Smith [1997] (equation

5.48) with R = 2. The patterns obtained by the three methods for both EOFs and

seasons present negligible differences. Because of this, although the patterns shown in

figure 5.7 were computed using the Allen and Smith [1997] procedure, we propose that

they should be regarded as computed by equation 5.45 since its interpretation is easier:

patterns obtained by regressing the ensemble mean MSLP onto the optimised PCs.

Figure 5.7 (a,b) shows the leading signal-to-noise maximising EOFs estimating the

leading modes of true forced response of the MUGCM MSLP in winter and spring.

Analogous plots for the second leading modes are presented in Figure 5.7 (c,d).

The dominant modes, in winter and spring, have a meridional dipole structure that

projects on the dipole of the NAO. These patterns are very similar to the patterns

obtained by standard PCA of the ensemble mean, figure 5.1 (a,b). The second EOFs

of the ensemble mean (figure 5.1 (c,d)) also presents a dipole design but the axis of

the dipole has a southwest-northeast direction. The second optimised forced EOF in

spring also presents some resemblance with the corresponding ensemble mean EOF, but

with a stronger southern pole. In winter, the dipole structure found in EOF-2 of the

ensemble mean seem to disappear in the optimised EOF, whose pattern is dominated

by a centre of action located over the western Atlantic between 40oN and 60oN.

5.4 Comparison with observations

In this section we compare the results obtained by the two methods exposed in the last

two sections with the observations. Before doing this, let us first compare the results

of the two methodologies with each other.
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Figure 5.7: First two leading optimal EOFs of MUGCM MSLP seasonal mean anomalies in

(a,c) DJF and (b,d) MAM. Negative, zero and positive loadings plotted with dashed blue,

solid black and solid red lines. Grid lines represented every 20o.

As already noticed in the last section, the winter and spring MSLP forced patterns

obtained by standard PCA of the ensemble mean (figure 5.1) and by optimal detection

PCA (figure 5.7) are noticeable different only for the second EOF. The agreement

between the first standard and optimal EOFs was somehow expected given the relatively

large number (29) of integrations performed with the MUGCM.

Figure 5.8 compares the time-varying forced responses, normalised to unit variance,

obtained by standard PCA in winter and spring (red lines of figure 5.2 (a-d)) and those

obtained by optimal detection (red lines of figure 5.6 (a-d)). The leading responses ob-

tained by the two methods are almost equal, in both seasons, with correlations higher

that 0.9. By contrast, the responses associated with the second mode differ substan-

tially. The correlation in winter is 0.1 and in spring is -0.49.
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Figure 5.8: Normalised forced principal components of winter and spring MUGCM MSLP in

the EA region obtained by standard PCA of the ensemble mean (dashed lines) and by optimal

detection PCA (solid lines): (a) DJF PC-1, (b) MAM PC-1, (c) DJF PC-2 and (d) MAM

PC-2. The correlation between the two time series is printed on the upper left-hand corner

of each panel.

In summary, the results (spatial patterns and associated time series), for the MUGCM

ensemble, obtained by conventional PCA of the ensemble mean and by the optimal

detection algorithm are noticeable different only for the second mode.

In order to see if the determined time series of the forced response have any resem-

blance with fluctuations of the observed MSLP in the EA region, we project the NCEP

seasonal mean MSLP anomalies, in winter and spring, onto the first two EOFs of the

ensemble mean and onto the first two optimal filter patterns obtained by the optimal

detection procedure. Before computing the projections, the NCEP MSLP was interpo-

lated to the MUGCM grid in the EA region, and the time series were truncated to the

years simulated by the MUGCM, that is, from DJF 1980 to DJF 1996 and from MAM

1979 to MAM 1995. The time series obtained by these projections are presented, along

with the associated MUGCM time series, in figure 5.9.
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Figure 5.9: Normalised projections of MUGCM MSLP ensemble mean (dashed lines) and of

NCEP MSLP (solid lines) onto: (a) DJF ensemble mean EOF-1, (b) MAM ensemble mean

EOF-1, (c) DJF ensemble mean EOF-2 and (d) MAM ensemble mean EOF-2. (e) DJF optimal

filter 1, (f) MAM optimal filter, (g) DJF optimal filter 2 and (h) MAM optimal filter 2. The

correlation between the two time series is printed on the upper left-hand corner of each panel.
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The four upper panels of figure 5.9 reveals that the principal components of the

ensemble mean have little agreement with the projections of the observed data onto the

associated forced patterns. The first optimal principal component, however, correlates

very well (around 0.7 in both seasons) with the projection of the observed data onto the

associated optimal filter pattern. The second optimal principal component in winter

correlates better with the observations than its counterpart obtained by standard PCA,

0.4 and 0.1 respectively, but the same cannot be said for the spring season, when the

modelled and observed time series appear out of phase.

In summary, the comparison with observations suggest that we may rely only on the

first and second optimal response in winter and on the first optimal response in spring.

5.5 Localisation of the forcing oceanic regions

The analyses performed so far to study the forced response of the MSLP in the EA region

to fluctuations in the SST-SIC field (the ANOVA in chapter 4 and the conventional

and optimal detection PCA in sections 5.1 and 5.3) did not explicitly use this field.

Consequently, the forced signals obtained by these analyses are known to be forced

by the variability of the SST and SIC fields but the specific regions of these fields

whose variability is responsible for the forced signals in the EA region are unknown.

The purpose of this section is, therfore, to localise these regions and associated SST

anomaly patterns responsible for the forced patterns obtained in the last sections.

The patterns of SST anomalies associated with (or responsible for) the time series of

the forced response are determined by linear regressing the time series of seasonal SST

anomalies at each gird point of the globe onto these time series, after being normalised

to unit variance. The percentage of the SST anomaly variability explained by the

regression is given by the squared correlation between the time series involved in the

regression.
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Figure 5.10 presents the patterns of SST anomalies associated with the first and sec-

ond principal components of the MUGCM MSLP ensemble mean, in winter and spring.

Figure 5.11 shows analogue plots, but for the optimal detected principal components.

In figures 5.10 and 5.11 the regression coefficients are represented by contour lines and

the percentage of the SST anomaly variability explained by the regression is represented

by shaded contours.

Figure 5.10: Regression coefficients (contour lines) and percentage of total variance explained

(shaded contours) by the regression of SST anomalies onto the normalised standard forced

(a) DJF PC-1, (b) MAM PC-1, (c) DJF PC-2, and (d) MAM PC-2, of the Euro-Atlantic

MUGCM MSLP anomalies. White areas are where the regression is not significant at the

0.07 significance level. Contour interval is 0.2 K per standard deviation of the PC. Dashed

blue, solid black and solid red lines for negative, zero and positive coefficients, respectively.

In winter, the first response obtained by both methods is mainly associated with

SST anomalies in the equatorial Pacific (figures 5.10 (a) and 5.11 (a)). Large areas of
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Figure 5.11: As figure 5.10 but for the regression of SST anomalies onto the normalised

optimal forced PCs.

significant regression coefficients are also found in the extratropical Pacific.

In spring, the first response of the two methods (figures 5.10 (b) and 5.11 (b)) are, as

in winter, associated with SST anomalies in the equatorial Pacific but SST significant

anomalies in the tropical Atlantic and tropical Indian oceans are also found. In the

first optimal forced mode, the SST regression pattern is similar to the one found for the

standard forced mode, but the area of significant regression coefficients in the tropical

Atlantic is much larger (figure e5.11 (b)).

The winter second standard response is not statistically significantly associated with

any region in the globe (figure 5.10 (c)) but the optimal response is found to be asso-

ciated with SST anomalies in the north Atlantic (figure 5.11 (b)).
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The second standard mode in spring is associated with SST anomalies in the western

tropical Atlantic off the Nordeste Brazil coast (figure 5.10 (d)) whereas the optimal

mode is associated with SST anomalies in the tropical Pacific outside the equatorial

belt (figure 5.11 (d)).

5.6 Modes of SST forcing

Three statistical significant regression patterns outstand from the figures 5.10 and 5.11:

• the regression pattern in the equatorial Pacific, found by the regression of the

SST anomaly field onto standard PC-1 and optimal PC-1, in winter and spring,

resembling the SST anomaly pattern of the El Niño-Southern Oscillation (ENSO);

• the regression pattern in the tropical Atlantic, found by the regression of the

SST anomaly field onto the optimal PC-1 in spring, resembling the pattern of the

Atlantic Interhemispheric SST anomaly Gradient mode (AISG).

• the regression pattern in the north Atlantic basin, found by the regression of the

SST anomaly field onto the optimal PC-2 in winter, resembling the SST anomaly

pattern of the North Atlantic SST Tripole mode (SST Tripole).

In order to test if these three SST modes force indeed the first and/or second detected

forced modes of MSLP in the EA, as suggested by the item list above, we began by

expressing each SST mode by a spatial pattern of variability and its associated time

series (often called the mode index). This was done by performing a PCA of the SST

anomalies in the oceanic regions where the SST mode occur. Then, for each item of

the list above, the forced MSLP PC was compared with the time series of the forcing

SST mode. We also compared the pattern of the regression of SST anomalies onto the

forced MSLP PC with the pattern of the forcing SST mode.

Note that computing the SST indices using PCA, instead of area-weighted SST in-

dices, provides also the spatial patterns of variability, associated with the indices, that

can be compared with the regression patterns.
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5.6.1 ENSO SST forcing

The ENSO SST mode is defined here as the first mode of a PCA of the SST anomalies in

the equatorial Pacific belt (20oS-20oN, 120oE-70oW)4. This mode, representing 65.5%

(55.8%) of the winter (spring) SST variability in the equatorial Pacific, is shown in

figure 5.12. The pattern is plotted as coloured shadings in figure 5.12 (a,b) and its

normalised PC (representing the ENSO index) is plotted in figure 5.12 (c,d) as red

dashed lines.

Figure 5.12 (a,b) also shows the winter and spring patterns in the tropical Pacific

of the regression of SST anomalies onto the normalised optimal forced PC-1 of the

EA MSLP (the same of figure 5.11 (a,c)), as contour lines overlaid on the SST ENSO

pattern. Figure 5.12 (c,d) shows, along with the ENSO index, the MSLP normalised

optimal forced PC-1 (plotted as a continuous blue line, with opposite sign for easier

comparison).

The agreement between the patterns and between the time series of figure 5.12 is

remarkable. The correlation between the time series is -0.943 in winter and -0.944 in

spring, with a significance level not higher than 0.001. This results shows that the SST

anomalies associated with ENSO are responsible for the leading optimal forced PC of

MUGCM MSLP in the EA region, which means that ENSO SST anomalies are the

major SST-forcing of the EA MUGCM MSLP.

Now that the leading forced mode of MSLP anomalies in the EA region has been

shown to be forced by ENSO SST anomalies, it is useful to better understand the

relationship between the time series associated to this mode and the MSLP anomalies

in the EA region. As mentioned in section 5.3, the optimal forced patterns (figure 5.7)

4This region is similar to the region (20oS-20oN, 120oE-60oW) used for the Tropical Pacific

SST EOF defined by the Climate Analysis Branch (CAB) of the Physical Sciences Division

(PSD), formerly the Climate Diagnostics Division (CDC), of the Earth System Research Lab-

oratory (ESRL) of the american National Oceanic and Atmospheric Administration (NOAA) -

www.cdc.noaa.gov/ClimateIndices/List/#Tropicaleof.
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Figure 5.12: (a) Regression coefficients of SST anomalies onto the EA MSLP normalised

optimal forced PC-1 (contour lines; contour interval is 0.2 K per standard deviation of the

PC), dashed lines for negative coefficients) overlaid on the SST EOF-1 (coloured shading;

representing the SST ENSO pattern), in DJF. (b) Same as (b) but for MAM. (c) EA MSLP

normalised optimal forced PC-1 (blue line, plotted with opposite sign) and tropical Pacific

normalised SST PC-1 (red dashed line; representing the ENSO index), in DJF. (d) Same as (c)

but for MAM. Correlations significantly different from zero at a significance level not higher

than 0.001. Values printed on the top right-hand corner of the panels represent the percentage

of total variance explained by the ENSO mode in (a,b) and the correlations between the time

series in (c,d).

may be interpreted as the regression patterns of the ensemble mean MSLP anomalies

onto the corresponding optimised PCs. Figure 5.13 shows, for winter and spring, the

pattern (contour isolines) obtained by linear regressing the ensemble mean of MSLP

anomalies at each grid point of the EA region onto the normalised to unit variance

optimal forced PC-1, and also the pattern (shaded contours) of the fraction of total

MSLP variance at each grid point explained by the regression, given by the squared
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correlation between the time series5.

Figure 5.13: Regression coefficients (contour lines) and percentage of total variance explained

(shaded contours) by the regression of the MUGCM ensemble mean of MSLP anomalies

onto the normalised optimal forced (a) DJF PC-1 and (b) MAM PC-2 of the Euro-Atlantic

MUGCM MSLP anomalies. White areas are where the regression is not significant at the 0.05

significance level. Contour interval is 0.2 mb per standard deviation of the PC. Dashed blue,

solid black and solid red lines for negative, zero and positive coefficients, respectively. Grid

lines represented every 20o.

From figures 5.12 and 5.13 it can be seen that, in winter and spring, positive SST

anomalies in the tropical Pacific during a warm ENSO episode induces a pattern of

MSLP anomalies in the EA region that projects on the negative phase of the leading

EOF of the total variability MUGCM MSLP anomalies in the EA region (section 3.4.2,

figures 3.22 (a) and 3.23 (a)) that were recognised to be similar to the observed NAO

pattern (section 3.4.2, figures 3.22 (b) and 3.23 (b)), specially in winter. In both

seasons, the regressions are statistical significant and explain a high fraction of total

MSLP variance at those grid points that belong to the majors centres of action of the

EOF.

5If the regressions were taken onto non-normalised PCs, the patterns would be very similar to the

optimal forced patterns of figure 5.7. Note also that, since the fraction of total variance explained by

the regression are squared correlations, they are insensitive to the normalisation.
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Since the analysis is linear, the opposite also applies: negative SST anomalies in the

tropical Pacific during a cold ENSO episode induces a pattern of MSLP anomalies in

the EA region that projects on the positive phase of the leading EOF of total variability

MUGCM MSLP anomalies in the EA region.

In summary, it was shown that SST anomalies associated with ENSO forces the NAO,

in winter and spring. The linear analysis showed that the warm (cold) ENSO phase

induces a negative (positive) phase of the NAO, specially in winter.

The same analysis was performed using the normalised standard forced PC-1, instead

of the optimal forced PC-1, and almost identical results (not shown) were obtained.

Note that the correlation between the standard and optimal leading PCs is higher

that 0.93 (see figure 5.8) (a,b) and that they represent the same pattern of variability

(compare figures 5.1 (a,b) with 5.7 (a,b)). The choice of using the optimal forced PC-1

instead of the standard forced PC-1 is justified by the fact that the optimal PC is more

reliable, when compared to analogue time series obtained from the NCEP data, than

the standard PC (see figure 5.9).

5.6.2 Atlantic Interhemispheric SST Gradient forcing

The Atlantic Interhemispheric SST Gradient (AISG) mode is defined here as the leading

mode of a PCA of the SST anomalies in tropical Atlantic (20oS-20oN, 80oW-20oE)6.

The AISG mode represents 48.3% of the spring SST variability in the tropical Atlantic

and is presented in figure 5.14. The pattern is plotted in panel (a), as coloured shadings,

in and its normalised PC (representing the MAM index) is plotted in panel (b) with a

red dashed line.

Overlaid on the spring AISG pattern in figure 5.14 (a), we plotted, as contour lines,

the pattern of regression coefficients of SST anomalies onto the normalised optimal

PC-1 in spring. The normalised optimal forced PC-1 is presented, along with the AISG

6This region is similar to the region (21oS-32oN, 74oW-15oE) used for the Atlantic Meridional Mode

(AMM) defined by the CAB/PSD/ESRL/NOAA - www.cdc.noaa.gov/ClimateIndices/List/#AMM.
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Figure 5.14: (a) Regression coefficients of SST anomalies onto the EA MSLP normalised

optimal forced PC-1 (contour lines; contour interval is 0.1K, dashed for negative coefficients)

overlaid on the SST EOF-1 (coloured shading; representing the AISG pattern in MAM. (b)

EA MSLP normalised optimal forced PC-1 (blue line, plotted with opposite sign) and the

normalised SST PC-1 (red dashed line; representing the AISG index) in MAM. Correlations

significantly different from zero at a significance level not higher than 0.002. Values printed

on the top right-hand corner of the panels represent the percentage of total variance explained

by the SST Inter-Hemispheric mode in (a) and the correlation between the time series in (b).

index, in figure 5.14 (b) as a continuous blue line plotted with opposite sign for easier

comparison.

The results from figure 5.14 confirms that the spring AISG forces the optimal forced

PC-1 in spring. The correlation between the SST gradient index and the optimal forced

PC-1 is -0.71, with a significant level not higher then 0.002.
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Figures 5.14 and 5.13 (b) show that a positive northward SST anomaly gradient in

the tropical Atlantic (positive AISG: positive SST anomalies in the northern hemi-

sphere and negative anomalies in the southern hemisphere), induces a pattern of MSLP

anomalies in the EA region that projects onto the negative phase of the leading EOF of

the total variability MUGCM MSLP anomalies in the EA region in spring (section 3.4.2,

figure 3.23 (a)) that, as mentioned in section 5.6.1, was recognised to be similar to the

observed NAO pattern (section 3.4.2, figure 3.23 (b)).

Since the analysis is linear, the opposite can also applies: a negative northward SST

anomaly gradient in the tropical Atlantic (negative AISG) induces a pattern of MSLP

anomalies in the EA region that projects on the positive phase of the leading EOF of

total variability MUGCM MSLP anomalies in the EA region in spring.

In summary, it was shown that SST anomalies associated with the AISG forces the

NAO, in spring. The linear analysis showed that a positive (negative) AISG induces a

negative (positive) phase of the NAO.

5.6.3 North Atlantic SST Tripole forcing

The North Atlantic SST anomaly Tripole mode is defined here as the leading mode of

a PCA of the SST anomalies in north Atlantic basin (0o-60oN, 80oW-0o)7. This mode

represents 30.4% of the winter SST variability in the north Atlantic and is presented

in figure 5.15. The pattern is plotted in panel (a), as coloured shadings, in and its

normalised PC (representing the Tripole index) is plotted in panel (b) with a red dashed

line.

Overlaid on the winter SST Tripole pattern figure 5.15(a), we plot, as contour lines,

the pattern of regression coefficients of SST anomalies onto the normalised optimal PC-

2 in winter. The normalised optimal forced PC-2 is presented, along with SST Tripole

7This region is similar to the region (10oS-70oN, 80oW-0o) used for the

Atlantic Meridional Mode (AMM) defined by the CAB/PSD/ESRL/NOAA -

www.cdc.noaa.gov/ClimateIndices/List/#Atlantictripole
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index, in figure 5.15(b).

Figure 5.15: (a) Regression coefficients of SST anomalies onto the EA MSLP normalised

optimal forced PC-2 (contour lines; contour interval is 0.1K, dashed for negative coefficients)

overlaid on the SST EOF-1 (coloured shading; representing the North Atlantic SST Tripole

pattern), in DJF. (b) EA MSLP normalised optimal forced PC-2 (blue line) and the SST PC-1

(red dashed line; representing the Tripole index) in DJF. Correlations significantly different

from zero at a significance level not higher than 0.001. Values printed on the top right-hand

corner of the panels represent the percentage of total variance explained variance by the SST

Tripole mode in (a) and the correlation between the time series in (b).

The results from figure 5.15 confirms that the winter SST anomaly Tripole in the

Atlantic forces the optimal PC-2 in winter. The correlation between the SST Tripole

index and the optimal forced PC-2 is 0.82, with a significant level not higher then 0.001.
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Figure 5.16 shows the pattern (contour isolines) obtained by linear regressing the

ensemble mean of MSLP anomalies at each grid point of the EA region, in spring,

onto the normalised to unit variance spring optimal forced PC-2, and also the pattern

(shaded contours) of the fraction of total MSLP variance at each grid point explained

by the regression, given by the squared correlation between the time series.

Figure 5.16: Regression coefficients (contour lines) and percentage of total variance explained

(shaded contours) by the regression of the MUGCM ensemble mean of MSLP anomalies onto

the normalised optimal forced PC-2 of the Euro-Atlantic MUGCM MSLP anomalies, in winter.

White areas are where the regression is not significant at the 0.05 significance level. Contour

interval is 0.05 mb per standard deviation of the PC. Dashed blue, solid black and solid red

lines for negative, zero and positive coefficients, respectively. Grid lines represented every 20o.

As can be seen in 5.16 the regressions are not significant at the 0.05 significance

level. This means that the forcing of the SST Tripole on the optimal PC-2 in winter is

not strong enough to be induce a statistical significant forcing on the MUGCM MSLP

anomalies at the grid points of the EA region.
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5.7 Summary and conclusions

In sections 5.1 to 5.3 we determined, for winter and spring, estimates of the two leading

forced variability modes of MSLP in the EA region, using three different methods:

PCA of the ensemble-mean (standard PCA), SVDA of Ward and Navarra [1997] and

the optimal detection method of Venzke et al. [1999] (optimal PCA). Due to the large

ensemble size (29), the results of SVDA are equivalent to those of standard PCA, and,

because of this, no further analysis was done with the SVDA results. So, only the

standard and optimal PCA results are discussed here.

The standard and optimal patterns of these modes are presented in figures 5.1 and

5.7, respectively, and the associated time series (standard and optimal PCs) are shown,

respectively, in figures 5.2 (a-d) and 5.6 (a-d) as red lines. The leading forced patterns

obtained, in each season, by the the two methods are similar, certainly because of the

large number (29) of the MUGCM’s ensemble. For the second mode, the difference

between the patterns yielded by the two methods become more evident, specially in

winter.

Using an ANOVA based test, it was found that both standard PC-1 and PC-2 are

statistically significant in both seasons (table 5.1). The same test performed onto the

optimal PCs showed that both optimal PC-1 and PC-2 are also statistically significant

in both seasons, and even statistically consistent (by the definition of Venzke et al.

[1999]) in the case of the optimal PC-1 in both seasons.

In section 5.4, the standard PCs and optimal PCs, in winter and spring, were com-

pared with each other (figure 5.8) and also compared with analogue signals obtained

from the observations (figure 5.9). It was found that the two methodologies yield differ-

ent results only for the second mode. Despite the high agreement between the standard

PC1 and optimal PC1, only the optimal PC-1 was found to be very well correlated with

the observations, in both seasons. The optimal PC-2 also shows some agreement with

the observed counterpart but only in winter.
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In section 5.5, the time series of seasonal SST anomalies, at each grid point of the

globe, is regressed onto the normalised standard and optimal forced PCs (figures 5.10

and 5.11). From these global regression patterns, three localised statistical significant

regression patterns outstand: (i) the regression pattern in the equatorial Pacific, found

by the regression of the SST anomaly field onto standard PC-1 and optimal PC-1, in

winter and spring, resembling the SST anomaly pattern of the ENSO; (ii) the regression

pattern in the tropical Atlantic, found by the regression of the SST anomaly field onto

the optimal PC-1 in spring, resembling the pattern of the AISG. (ii) the regression

pattern in the north Atlantic basin, found by the regression of the SST anomaly field

onto the optimal PC-2 in winter, resembling the SST Tripole.

The results of section 5.5, summarised in the last paragraph, motivated the analysis

performed in section 5.6. The issue was to test if the three SST modes of variability

(ENSO SST, AISG and SST Tripole) do force the MSLP variability in the EA region.

This issue was addressed by (i) comparing the forcing SST pattern with the regression

pattern of SST anomalies onto the forced optimal PC, (ii) comparing the forcing SST

index with the optimal forced PC, and (iii) diagnosing the percentage of the MUGCM

ensemble mean MSLP variance, at each grid point of the EA region, explained by the

optimal PC.

In subsection 5.6.1 it was shown that ENSO SST pattern has a remarkable agreement

with the regression pattern of SST anomalies onto the optimal forced PC-1, in both

winter and spring (figure 5.12 (a,b)), and that the associated time series, the ENSO

index and the optimal forced PC-1, have a statistical significant high correlation (0.94)

in both seasons (figure 5.12 (c,d)). Furthermore, the regression pattern of the ensemble

mean MSLP anomalies in the EA region onto the optimal forced PC-1 (5.13 (a,b))

projects well onto the positive phase of the NAO, specially in winter, and explain a

high fraction of total MSLP variance in the centres of action of the NAO. Consequently,

positive (negative) SST anomalies in the tropical Pacific during a warm (cold) ENSO

episode induces a pattern of MSLP anomalies in the EA region that projects onto the

negative (positive) phase of the NAO.
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In subsection 5.6.2 it was shown that, in spring, the Atlantic Inter-Hemispheric SST

anomaly Gradient pattern agrees very well with the regression pattern of SST anomalies

onto the optimal forced PC-1 (figure 5.14 (a)), and that the associated time series, the

AISG index and the optimal forced PC-1, have a statistical significant correlation of

-0.71 (figure 5.14 (b)). Since the regression pattern of the MUGCM ensemble mean

MSLP anomalies onto the optimal PC-1 in spring (5.16) projects onto the positive

phase of the NAO, and explain a high fraction of total MSLP variance in the centres

of action of the NAO, it was concluded a positive (negative) AISG induces a negative

(positive) phase of the NAO in spring.

In subsection 5.6.3 it was shown that, in winter, the North Atlantic SST Tripole

pattern is very similar to the regression pattern of SST anomalies onto the optimal

forced PC-2 (figure 5.15 (a)), and that the associated time series, the Tripole index and

the optimal forced PC-2, have a statistical significant correlation of 0.82 (figure 5.15

(b)). However, the regression pattern of the MUGCM ensemble mean MSLP anomalies

onto the optimal PC-1 in winter (5.16) is no statistical significant. Consequently, the

forcing of the SST Tripole on the optimal PC-2 in winter is not strong enough to be

induce a statistical significant forcing on the MUGCM MSLP anomalies at the grid

points of the EA region.

Combining the results of last sections, we conclude that the use of the optimal detec-

tion PCA brings no huge advantage, relative to standard PCA, in detecting the leading

forced mode of MSLP in the EA region. The patterns are similar, the time series (PCs)

are highly correlated and the regression patterns of the global SST anomalies onto the

PCs are also similar: the regression patterns in the equatorial Pacific (associated to

the ENSO SST pattern) and in the tropical Atlantic (associated to the AISG pattern).

Nevertheless, the ANOVA shows that the leading optimal detected response is not only

significant but also consistent, and the comparison with observations give reliability

to the optimal detected forced response. Furthermore, while the regression pattern of

SST anomalies onto the optimal PC-1 is statistical significant in the tropical Atlantic

in winter, the regression pattern onto the standard PC-1 is not significant in this region
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(or, more precisely, it is significant only in part of the pattern).



Chapter 6

Tropical Pacific Ocean Forcing

In chapter 5 it was shown that, the winter and spring major forced mode of MSLP

variability in the EA region is forced by SST anomalies associated with the ENSO

phenomenon. Furthermore, it was shown that the forced MSLP pattern projects very

well on the NAO pattern in winter. These results, thus, suggest that the NAO is forced

by the ENSO in the winter season, and motivate further investigation.

In this chapter, we address the forcing of the tropical Pacific SST anomalies on the

MSLP variability in the EA sector by studying the sensitivity of the NAO to ENSO

polarity and strength. We use the 29 17-year integrations of the MUGCM to estimate

the Probability Density Functions of composites of NAO indices associated with warm

and cold ENSO years.

The results show signals of the ENSO phases both in the mean strength of the NAO as

well as in its internal variability. During the cold ENSO phase, the Probability Density

Function (PDF) of the NAO index presents a small but positive mean value, whereas

it is negative during the warm ENSO phase. Also the NAO variability associated with

each ENSO phase shows a different behaviour: during the warm phase the PDF of the

NAO index presents a larger variance and suggests a bimodality, whereas no bimodality

is suggested in the cold phase.

127
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Part of the study presented in this chapter is analogous to the study of Melo-

Gonçalves et al. [2005]. Note, however, that Melo-Gonçalves et al. [2005] used HGT-850

seasonal anomalies instead of MSLP seasonal anomalies. The authors chose HGT-850

because it is a level at the top of the boundary layer and so more sensitive to large scale

effects. They note, however, that this choice is not important for the identification

of the NAO. In fact the NAO has been identified both at the mean sea level pressure

(see figure 3.22 (b) or Glowienka-Hense [1990]) as well as at the 700 hPa geopotential

field (e.g. Barnston and Livezey [1987]). Another difference between the work of Melo-

Gonçalves et al. [2005] and this chapter is the definition of the Euro-Atlantic domain:

(20oN-85oN, 60oW-60oE) instead of (20oN-80oN, 90oW-60oE) used here.

6.1 Introduction

The NAO is the most prominent atmospheric variability mode over the EA region. It

is a mode identified long time ago in the observations [Walker and Bliss, 1932]. In the

late 20th century, the simulation of the NAO using AGCMs forced by climatological

surface boundaries gave a clear proof that the NAO appears as an internal mode of

the atmospheric circulation (e.g., Barnett [1985]; Glowienka-Hense [1990]). The NAO

is also well reproduced by the current coupled ocean-atmospheric models [Paeth et al.,

1999] and, if the SST field is prescribed as observed during the last century, also part

of the historic behaviour of a low-pass filtered NAO index can be reproduced [Rodwell

et al., 1999; Latif et al., 2000].

An important finding of section 5.6.1 is that the dominant MSLP mode of forced

variability in winter, in the EA region, has a meridional dipole structure that projects

on the positive phase of the NAO (figure 5.7 (a)). Consequently, the forcing of the

ENSO SST mode on the dominant forced PC suggests a negative correlation between

the ENSO index and NAO index. The observed correlation between these indices is,

however, close to zero, as shown in figure 6.1 where a standardised station-based NAO

index and the standardised Niño 3.4 index are plotted.
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Figure 6.1: Station-based NAO index (dashed line), Niño 3.4 index from SST NCEP data

(solid thin line) and Niño 3.4 index from SST AMIP II data (solid heavy line). All indices

computed from DJF seasonal mean anomalies and normalised to unit variance.

The NAO index was computed, as in section 4.4, by subtracting the normalised

time series of MSLP at Stykkisholmur, Iceland (65.1oN, 22.7oW) from that at Lisbon,

Portugal (38.7oN, 9.1oW). The resulting time series was then normalised to unit variance

for plotting purposes. Here we used the NCEP grid points nearest to Stykkisholmur and

Lisbon: (65.0oN, 22.5oW) and (37.5oN, 10.00W), respectively. The Niño 3.4 index is

defined as the area-average of SST anomalies over the domain (5oS-5oN, 190oE-240oE).

The index was also normalised to unit variance for plotting purposes. Two normalised

Niño 3.4 indices are shown in figure 6.1: one computed using the full time range of the

NCEP reanalysis (DJF 1951 - DJF 2000) and the other using the AMIP II time range

data (DJF 1980 - DJF 1986). Note that both Niño 3.4 indices may be considered the

same in the AMIP II years. Their correlation is 0.999 with a significance level lower

that 1%.

The correlation between Niño 3.4 index and the observed NAO index is -0.04 and 0.24,

when the NCEP time range and the AMIP II time range, respectively, are considered.

Although low, these correlations are not significant at the 1% (or even 10%) significance

level.
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The lack of a significant correlation between Niño 3.4 index and the observed NAO

index does not imply necessarily that SST anomalies associated with ENSO do not

force MSLP variability associated with the NAO. Note that, as seen in section 4.4,

the fraction of the modelled station-based NAO index total variance due to SST-SIC

forcing in DJF does not exceed 5%. Feldstein [2000] used NCEP winter daily data

from 1958 to 1997 to estimate the signal (interannual variance due to external forcing)

to noise (interannual variance from stochastic processes) ratio. The estimated ratio

of 0.09 indicates that interannual variability of the NAO arises primarily from climate

noise. Thus, it is quite obvious that it is the internal variability of the NAO that

is uncorrelated with ENSO. On the other hand, the observed (NCEP) NAO must be

regarded as only one realisation of a random variable, and the correlation between this

realisation with Niño 3.4 is itself also a single realisation of a random variable.

6.2 Seasonal modulation of the ENSO forcing

In this work, winter seasonal means have been defined as averages of December, January

and February monthly means. These are the months traditionally used to define the

boreal winter season (e.g., Walker [1925]), and, because of that, it has been called

the standard winter season in this work. The December to February season has been

extensively used to study worldwide ENSO teleconnections [van Loon and Madden,

1981; van Loon and Rogers, 1981; Horel and Wallace, 1981; Pan and Oort, 1983; Kiladis

and Diaz, 1989; Hoerling et al., 1997], the impact of ENSO on the EA atmosphere [Dong

et al., 2000; Cassou and Terray, 2001; Pozo-Vásquez et al., 2001; Merkel and Latif, 2001;

Cassou and Terray, 2004; Lin and Derome, 2004; Mathieu et al., 2004; van Oldenborgh,

2005; Pozo-Vásquez et al., 2005b,a], and also the ENSO impact on the NAO [Rogers,

1984; Rodwell et al., 1999; Peterson et al., 2002; Lin and Derome, 2002; Lin et al., 2005;

Coppola et al., 2005; Melo-Gonçalves et al., 2005].

The use of the December to February season to study ENSO teleconnections on the

EA region has been questioned since the work of Huang et al. [1998]. These authors
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applied a multi-resolution cross-spectral analysis to the time series of monthly mean

NAO index (defined by Hurrel [1995] as the difference in MSLP between Lisbon and

Stykkisholmur) and monthly mean Niño 3 index, computed for each calendar month

from 1965 to 1995, to identify the El Niño years in which the two time series are

coherent. For all calendar months, the composite of the Niño 3 index formed with

coherent years (70% of all El Niño years) have higher values than the composite formed

with incoherent years (30% of all El Niño years). This means that coherent years

are associated to moderate and strong ENSO events. The composite of the NAO index

formed with those coherent years decays from a maximum (positive) value in November

to a minimum (negative) value in February, the change of the sign occurring from about

December to January. The negative index value persists for another four months or so

(see figure 2 of Huang et al. [1998]).

Latter, Moron and Gouirand [2003] performed a singular value decomposition anal-

ysis and a composite analysis to monthly data from 1873 to 1996, and showed that the

pattern of north Atlantic MSLP anomalies associated with tropical Pacific SST anoma-

lies projects onto the positive phase of the NAO in November-December, and onto the

negative phase of the NAO in February-March.

The results of Huang et al. [1998] and Moron and Gouirand [2003] suggest that

the December-February season is not appropriate to study the ENSO signal in the

EA region, since the signal in November-December is opposite to the one observed in

January-March. In order to test if this is also the case in our model simulations, we

performed a SVDA [Bretherton et al., 1992]) between monthly mean SST anomalies in

the tropical Pacific and monthly mean MSLP anomalies over the EA region, for each

calendar month from December to May.

Let LmLp represent the monthly mean anomaly of SST at spatial location mL (mL =

1, ..., ML) in year p (p = 1, ..., P ), and let R′
mRpk be the monthly mean anomaly of MSLP

at spatial location mR (mR = 1, ..., MR) in year p (p = 1, ..., P ) of the kth (K = 1, ..., K)

simulation. Note that R′
mRpk represents the departure of the MSLP anomaly from the
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ensemble mean (see equation 6.6). Now, let L1 be a (ML × P ) random data matrix

whose (m, p) entry is XmLp, and let

L =
[ K times︷ ︸︸ ︷
L1|...|L1

]
, (6.1)

which is a (MR ×ML) matrix. Let also Rk be a (MR × P ) random data matrix whose

(m, p) entry is R′
mLpk, and let

R =
[R1|...|Rk|...|RK

]
, (6.2)

which is also (M × PK) matrix.

The SVDA of Bretherton et al. [1992] consists of performing a singular value decom-

position of the sample cross-covariance matrix between L and R,

SLR =
1

P (K − 1)
LRT, (6.3)

which is a (MR ×ML) matrix, that is,

SLR = UΛVT, (6.4)

where U is a ML-dimensioned square matrix whose columns form an orthonormal set

of vectors called the left singular vectors, U is a MR-dimensioned square matrix whose

columns form an orthonormal set of vectors called the right singular vectors, and Λ is

a (MR × ML) diagonal matrix whose non-zero M = min(MR,ML) diagonal elements

are called the singular values of SLR.

The strength of coupling between L and R represented by the mth pair of patterns is

measured by the fraction of total squared covariance - the squared covariance fraction

(SCF, Bretherton et al. [1992]) - given by

SCFm =
λ2

m∑M
m′=1 λ2

m

, m = 1, . . . , M = min(ML,MR) (6.5)

where λm is the mth singular value, that is, the value of the (m,m) entry in Λ.
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Bretherton et al. [1992] defined the mth left (right) homogeneous correlation map as

the spatial pattern of correlations between the grid point values of the left (right) field

and the time series associated to the left (right) mth spatial pattern, that is, the time

series given by the mth line of the ML × PK (MR × PK) matrix UTL (VTR).

SVDA was performed using the monthly SST anomalies in the tropical Pacific (20oS-

20oN, 120oE-290oE) to build the left matrix, L (equation 6.1), and the monthly MSLP

anomaly departures from the MUGCM ensemble mean in the EA region (20oN-80oN,

90oW-60oE) to build the right matrix, R (equation 6.2). Both time series at each grid

point were normalised to unit variance prior to the computation of the cross-covariance

matrix SLR (equation 6.4). The analysis was done for each month from December to

May. The homogeneous correlation maps of the first SVDA mode for each month is

shown in figure 6.2 where the SCF (equation 6.5 with m = 1) is printed on the top

left-hand corner of each panel.

The pattern of the right correlation map projects onto the negative phase of the

NAO in all months, which confirms the results found in section 5.6.1. Note that,

unlike the observational results of Huang et al. [1998] and Moron and Gouirand [2003],

our modelled ENSO teleconnection on the EA region does not changes sign between

December and January. Therefore, we will continue to use the December-February

season, instead of January-March, as the boreal winter season to study the ENSO

forcing on the EA sector.

6.3 NAO patterns and indices

In this section we use the MUGCM AMIP II ensemble of winter mean (DJF) MSLP

anomalies over the EA sector to obtain two NAO patterns and associated indices:

EOF-based and correlation-based NAO patterns and indices. First, these patterns are

computed using internal variability data because the NAO arises primarily from internal

dynamics (see section 4.4 and Feldstein [2000]). Analogous patterns are also computed

with the 33-year ACYC experiment with the MUGCM (see chapter 2) and also with
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Figure 6.2: Homogenous correlation maps of the MUGCM first SVDA mode of tropical

Pacific SST anomalies (left panels) and EA MSLP anomalies (right panels) in (a) October,

(b) November, (c) December, (d) January, (e) February, (f) March, and (g) April. Negative,

zero and positive correlations plotted with dashed blue, solid black and solid red isolines,

respectively. Contour interval is 0.2. The percentages represent squared covariance fractions.

.

NCEP data. The ACYC NAO pattern is computed only to prove that the size of the

AMIP ensemble is large enough to estimate the MUGCM internal variability. The
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NAO pattern from the NCEP data is shown to test the capability of the MUGCM in

simulating the internal dynamics of the atmosphere in the EA region.

Once the EOF-based and correlation-based NAO patterns are obtained, two NAO

indices, associated with each pattern, are computed using the AMIP II data: a index

representing the internal variability of the NAO and another representing its total

variability.

Consider, as in section 5.1, that the random variable Xmpk represents the AMIP

seasonal mean anomaly of MSLP at spatial location m (m = 1, ..., M) in year p (p =

1, ..., P = 17) of the kth (k = 1, ..., K = 30) simulation.

Each random variable Xmpk can be expressed as the sum of the ensemble mean in

year p and the departure of the kth ensemble member from this mean:

Xmpk = Xmp• + X ′
mpk, (6.6)

where the dot notation represents, as before, averaging over the missing subscript.

Let Xk and XI,k be (M × P ) random data matrices whose (m, p) entries are Xmpk

and X ′
mpk, respectively. Also let X =

[X1|...|Xk|...|XK

]
and XI =

[XI,1|...|XI,k|...|XI,K

]

be (M ×PK) random data matrices. These represent the total variability and internal

variability data, respectively.

Both EOF-based and correlation based patterns are obtained from the the sample

covariance matrix of internal variability XI ,

SI =
1

P (K − 1)
XIXT

I , (6.7)

which is a multivariate version of equation 4.10 and is an unbiased estimator of the true

covariance matrix of internal variability, ΣI .
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6.3.1 PCA-based NAO pattern

To obtain the model internal NAO pattern we performed an Orthogonal Empirical

Function (EOF) analysis onto the internal variability data XI . We use XI instead of

the total variability data, X , because, as already mentioned above, the NAO arises

primarily from internal dynamics. Note that in section 3.4.2 the EOF analysis was

performed onto a (biased) estimate of total variability data X because the purpose was

to validate the total variability of the modelled data (MUGCM) against the observed

data (NCEP).

The internal variability EOFs are computed as the unit-length eigenvectors of the

sample covariance matrix of internal variability SI (equation 6.7). The two leading

patterns of internal variability of winter (DJF) seasonal mean MSLP anomalies is pre-

sented in figure 6.3 (a,b). They represent 30.7% and 25.0% of total internal variance.

The NAO pattern is identified as the EOF-1 pattern.

In order to test if the AMIP II EOFs of internal variability represent well the true

internal variability of the MUGCM, the two leading EOFs of the ACYC (see chapter

2) seasonal mean DJF MSLP anomalies (annual cycle removed) were also computed for

the EA region. Note that, since the SST-SIC forcing is the same for all 33 ACYC simu-

lations, internal variability can be estimated by the inter-member variability [Chervin,

1986; Chervin and Schneider, 1976] and, thus, the spatial patterns of internal variability

in the EA region can be estimated by these EOF patterns [Saravanan, 1998; Cassou

and Terray, 2001].

The first and second ACYC EOFs, presented in figure 6.3 (c,d), represent 37.6% and

25.0% of the variability. The NAO pattern, identified as the first EOF, agrees very

well with the AMIP II NAO pattern. Both patterns show the characteristic meridional

NAO dipole, and the amplitudes of the centres of action are similar.

In order to validate our simulated patterns of internal variability, we also computed

the EOFs using NCEP data. The first and second EOFs are presented in figure 6.3
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Figure 6.3: First (left) and second (right) EOFs of DJF seasonal mean MSLP anomalies of

(a,b) MUGCM AMIP II internal variability, (c,d) MUGCM ACYC and (e,f) NCEP. Negative,

zero and positive loadings plotted with blue, black and red isopleths, respectively. EOFs are

unit length and dimensionless. Grid lines represented every 20o.

(e,f), representing 47.1% and 13.8% of total variability. The NAO pattern, identified

as the first EOF, is well simulated by the MUGCM.

The NCEP MSLP data represent, of course, total variability data containing the

component due to internal dynamics of the atmosphere and the component due to ex-

ternal forcing agents (SST, volcanic eruptions, anthropogenic gases, etc). A traditional
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method to extract internal variability from the observed data (or from a single AGCM

simulation) is based on the principle that internal variability is originated from dy-

namical weather processes which have a time scale smaller than the timescale of the

processes due to external forcing. Usually, the daily signal of a meteorological variable is

decomposed into high frequency variability signal and a low frequency variability signal.

The high frequency signal is then averaged over a season to obtain the seasonal internal

variability signal (see, for example, von Storch and Zwiers [1999]). Melo-Gonçalves

et al. [2005] filtered out low frequency variability from the NCEP HGT-850 winter sea-

sonal mean anomalies by subtracting a 5-year running mean from the data. The aim

of authors was to remove the observed positive trend of the NAO observed in the last

four decades [Hurrel, 1995] which is considered as a result of external forcing. This

procedure is not able, however, to remove all external forced signals and even worst, it

may remove some components of interannual variability that result from seasonal inte-

gration of synoptic instabilities, that is, it may dump out some components of internal

variability. Furthermore, since the variability at midlatitudes arises primarily from in-

ternal dynamics, total variability EOFs in the EA region are good approximations of

internal variability EOFs. For these reasons, we simply show in figure 6.3 (e,f) the

EOFs of total variability. These are the same patterns of patterns shown in figure 3.22

(b,d) and are reproduced here for better comparison with the MUGCM AMIP II EOFs.

In summary, the NAO pattern was identified as the leading EOF of both simulated

(AMIP II and ACYC) and observed data. The similarity between AMIP II and ACYC

leading EOFs prove that the AMIP II ensemble is large enough to estimate the leading

mode of MUGCM internal variability. Besides the discrepancies with the NCEP NAO

pattern, the AMIP II NAO pattern seem to be a fair simulation for the present purposes.

6.3.2 Correlation-based NAO pattern

The simulated NAO teleconnection is also demonstrated computing the teleconnectiv-

ity maps [Wallace and Gutzler, 1981] of the model AMIP internal variability. The
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teleconnectivity at mth grid point is computed by

Tm = −100×min(rmm′), m′ = 1, ..., M (6.8)

where rmm′ is the sample correlation between the mth and m′th stations and is the

(m,m′) entry in the sample correlation matrix

RI = D−1SID
−1, (6.9)

where D is a diagonal matrix whose elements are the square roots of the corresponding

elements in SI (equation 6.7), that is, dmm =
√

smm, m = 1, ..., M .

Note that the sample correlation matrix R is a (M ×M) matrix where the elements

in the mth column are the correlations of the data at the mth station with all the

stations. Thus, equation 6.8 is equivalent to finding the minimum value (strongest

negative correlation) in the mth column of R and multiplying this value -100.

Figure 6.4 maps the teleconnectivities Tm computed from RI , that is, the telecon-

nectivity map of winter MSLP anomalies of internal variability, XI . The grid points

of the dipole with highest teleconnectivity are marked with black points along with its

teleconnectivity value.

Figure 6.4: Teleconnectivity map of internal variability of MUGCM AMIP II DJF MSLP

anomalies. The dots identify the pair of grid points with highest teleconnectivity value. Isoline

interval is 5. Grid lines represented every 20o.
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The highest teleconnectivity (T = 53.2) dipole data has its north and south poles

located at (70.4oN, 0oE) and (39.1oN, 15oW), respectively, that is, close to the locations

usually used to compute the NAO index: Iceland and Azores or Lisbon. The northern

grid point of the AMIP II dipole was used as base point to compute one-point correlation

maps [Wallace and Gutzler, 1981] for AMIP II, ACYC and NCEP MSLP anomalies in

winter. These are presented in figure 6.5. Both maps show the characteristic meridional

NAO dipole pattern.

Figure 6.5: One-point correlation maps of DJF MSLP anomalies of (a) MUGCM AMIP II

internal variability, (b) MUGCM ACYC and (c) NCEP. Isoline spacing is 0.2. Negative, zero

and positive correlations plotted with blue, black and red isopleths, respectively. Grid lines

represented every 20o.

6.3.3 NAO indices

From the AMIP EOF-based NAO pattern (figure 6.3 (a)) two indices were computed:

an internal variability index,

NAOpcT = eT
I,1XI , (6.10)
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which is the principal component associated with the leading EOF of internal variability,

eI,1, and a total variability index

NAOpcT = eT
I,1X (6.11)

which is the projection of total variability data, X , onto the same EOF. Each index

was then normalised by its standard deviation.

A second pair of indices is based on the AMIP one-point correlation map of fig-

ure 6.5(a). We computed the area-weighted averages of the internal, X ′
mpk, and total,

Xmpk, winter anomalies inside each stippled region (correlations greater or equal to 0.8

in the northern pole and less or equal to -0.4 in the southern pole). For each centre,

both internal and total area-weighted averaged anomalies were normalised by their re-

spective standard deviation. Internal and total NAO indices were then defined as the

difference between the northern and southern normalised series of the internal and total

variabilities, respectively. Each index was then normalised by its standard deviation.

We designate these indices by NAOiI and NAOiT for the internal and total variability,

respectively.

6.4 ENSO episodes

In order to detect the winters of occurrence of cold and warm ENSO episodes, the

Niño 3.4 index computed from the AMIP II DJF seasonal mean anomalies is shown

in figure 6.6 as blue (negative values) and red bars (positive values). Note that this is

exactly the same index shown in figure 6.1 as a solid heavy line.

Since ENSO is a coupled oceanic-atmospheric mode of variability, the Multivariate

ENSO Index (MEI) from PSD/ESRL/NOAA 1 is also shown in figure 6.6 as black bars.

The MEI is derived from tropical Pacific Comprehensive Ocean-Atmosphere Data Set

(COADS) records and is a multivariate measure of the ENSO signal, since it is the first

1Physical Sciences Division/Earth System Research Laboratory/National Oceanic and Atmospheric

Administration - www.cdc.noaa.gov/ENSO/enso.mei index.html
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Figure 6.6: Niño 3.4 index computed from SST AMIP II data (blue/red bars for nega-

tive/positive values), Multivariate ENSO index (MEI) from PSD/ESRL/NOAA (black bars)

and Convective Index (CI) computed from PRECIP AMIP II data (green dots). Niño 3.4

and CI computed from DJF seasonal mean anomalies and normalised to unit variance. MEI

values are DJ seasonal mean anomalies and renormalised to unit variance with respect to the

1980-96 period.

principal component of six observed variables over the tropical Pacific: SST, TMP-

SFC, MSLP, surface zonal and meridional wind components and cloudiness [Wolter

and Timlin, 1998]. Positive (negative) values of the MEI represent the warm (cold)

ENSO phase. The MEI was normalised to unit variance with respect to the 1980-1996

period.

Figure 6.6 also shows, as green dots, an index representing the convection in the

tropical Pacific, the Convective Index (CI, Lin et al. [2005]). This index was constructed

by averaging the DJF seasonal mean MUGCM AMIP II PRECIP anomalies over the

area of (5oS-5oN, 120oE-90oW), and normalising to unit variance.

The years with occurrence of cold and warm ENSO episodes were selected by the non-

normalised Niño 3.4 index plotted in figure 6.6, using the criterion presented in table 6.1,

with the exception of 1988 that was not considered a weak warm event because its CI

value is very low. Under this criterion, 53% of the years are characterised by either an

El Niño (warm ENSO SST) or La Niña (cold ENSO SST) event, which is consistent

with the definition of El Niño and La Niña given by [Trenberth, 1997].
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Table 6.1: Years used for composites of ENSO episodes in the 1980-1996 period, based on

the normalised Niño 3.4 index. The winter of 1988 that was not considered a weak warm

event because its CI value is very low (see the plots of Niño 3.4 index and CI in figure 6.6).

ENSO composite name Niño 3.4 (s) Years

Cold ENSO s ≤ −1 1985 1989 1996

Cold ENSO & Weak cold ENSO s ≤ −0.5 1984 1985 1986 1989 1996

Warm ENSO & Weak Warm ENSO s ≥ 0.5 1983 1987 1992 1995

Warm ENSO s ≥ 1 1983 1987 1992

6.5 Probability Density Functions

In section 6.3.3 we defined four indices to measure the strength of the simulated NAO:

NAOpcI and NAOiI for the internal variability and NAOpcT and NAOiT for the total

variability. To assess the NAO sensitivity to ENSO polarity, we extracted two subsets

from these unit variance indices: one consisting of cold ENSO winters and another

composed by warm ENSO winters.

We estimated the Probability Density Functions (PDFs) for all years, cold and warm

ENSO phases composites, and for ’neutral’ years, i.e. all years from 1980 to 1996 that

are not included in table 6.1. The PDFs were estimated by the Kernel method [Silver-

man, 1986] using a normalised Gaussian Kernel function.The smoothing parameter was

objectively determined by the least-squares cross-validation procedure for each index

(NAOpcI, NAOpcT, NAOiI and NAOiT) and used for all composites.

Figure 6.7 shows the estimated PDFs for the simulated internal and total NAO

variabilities represented by NAOpcI and NAOpcT indices, respectively, and the corre-

sponding PDFs of the NAOiI and NAOiT indices.

The PDFs were also estimated for the ENSO phases when the weak cold and weak

warm ENSO episodes were included. These are presented in figure 6.8 along with the
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Figure 6.7: Estimated Probability Density functions (PDFs) for the NAO indices: (a)

NAOpcI, (b) NAOpcT, (c) NAOiI, and (d) NAOiT. In each panel solid thick black, solid

thin red, dashed blue and dotted black lines represent the PDFs for all, warm ENSO, cold

ENSO, and neutral years composites, respectively. PDFs estimated by the Kernel method

using a normalised Gaussian Kernel function. The smoothing parameter, computed by the

least-squares cross-validation procedure using the all years composite and used for all com-

posites, is 0.32 (a,b,d), and 0.31 (c).
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Figure 6.8: As in Figure 6.7 but including the weak ENSO episodes in the Cold ENSO

composite and the weak warm ENSO episodes in the warm ENSO composite.

.

PDFs for all years and neutral years.

Figures 6.7 and 6.8 suggest a different NAO behaviour in cold and warm ENSO

phases. In order to test if the PDFs of the NAO signal are statistically different for

cold and warm ENSO phases, we applied the Smirnov test [Conover, 1971], also known

as Kolmogorov-Smirnov two-sample test, to the cold ENSO and warm ENSO series.

This is a non-parametric test whose test statistic is the largest difference between the

Empirical Distribution Functions of the two samples. The Probability Distribution

Functions are given by

F (x) =
∫ x

−∞
f(x′)dx′, (6.12)

where f(x′) is the PDF.



146 6. Tropical Pacific Ocean Forcing

Table 6.2: p-values of the hypothesis tests applied to the cold ENSO and warm ENSO series.

Hypothesis Test NAOpcI NAOpcT NAOiI NAOiT

Smirnov test (equation 6.13) 0.379 0.000 0.556 0.001

t-test (equation 6.14) – 0.000 – 0.000

F -test (equation 6.15) 0.002 0.039 0.000 0.000

Since the lower panels of Figures 6.7 and 6.8 suggest that smaller indices values are

more probable in warm ENSO, the Empirical Distribution Functions for warm ENSO

must be greater than the respective Functions for the cold ENSO phase. To assess the

significance of this difference, we performed the one-sided test

H0 : ∀x, Fw(x) ≤ Fc(x) vs H1 : ∃x, Fw(x) > Fc(x), (6.13)

where Fc and Fw are the true Probability Distribution Functions of the cold ENSO and

warm ENSO populations, respectively. The p-values (Table 6.2) obtained for internal

variability are too high to reject the null hypothesis with a reasonably level of signifi-

cance. However, for total variability, the Smirnov test rejects the null hypothesis at a

significance level smaller than 0.1%, meaning that warm and cold ENSO samples come

from different populations. The NAO indices tend to have lower values for the warm

than for the cold ENSO phase.

The PDF of a population fully describes it. However, for the sake of interpretability,

it is useful to extract some statistics from it. In Table 6.3 we present first and second

order statistics (µ, σ2) computed from the estimated PDFs of cold ENSO and warm

ENSO series for internal and total variability. First and second order sample statistics

(X, s2) are also included for latter discussion.

For internal variability both cold and warm ENSO estimated populations have zero

mean. This must be the case because the internal variability data is centred for each

year. However, the variance of NAOpcI (NAOiI) is 18.9% (28.4%) greater for warm



6.5. Probability Density Functions 147

Table 6.3: Sample and estimated population statistics of cold ENSO and warm ENSO internal

and total variabilities.

NAOpcI NAOpcT NAOiI NAOiT

X WARM 0 -0.404 0 -0.338

COLD 0 0.522 0 0.232

s2 WARM 1.012 0.895 1.103 0.981

COLD 0.764 0.753 0.700 0.664

µ WARM 0 -0.404 0 -0.338

COLD 0 0.522 0 0.232

σ2 WARM 1.075 1.145 1.139 1.185

COLD 0.904 1.128 0.887 0.912

P (X ≤ 0) WARM 0.485 0.613 0.490 0.618

COLD 0.459 0.358 0.475 0.362

P (X < 1) WARM 0.193 0.274 0.193 0.280

COLD 0.136 0.100 0.127 0.091

P (X > 1) WARM 0.197 0.083 0.215 0.082

COLD 0.123 0.184 0.127 0.179
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ENSO years. Despite the difference in the internal variances, the applied Smirnov test

did not reject the null hypothesis that the NAOpcI and NAOiI indices for the warm

and cold ENSO composites are samples of a same population.

Besides the differences of variances given in Table 6.3, the cold and warm ENSO

distributions have different shapes. The PDFs for warm ENSO show a bimodality,

more evident for correlation-based indices. Such a bimodality is not apparent in the

cold ENSO phase. To test the robustness of this bimodality we recomputed the warm

ENSO PDFs removing one year from the data subset at each estimation. This bi-

modality appeared in the three cases and seems to be a robust characteristic of the

data. Furthermore, the bimodality is still present even when the weak episodes of each

phase are included in the analysis.

For total variability, the statistically different cold and warm ENSO estimated popula-

tions have positive and negative means, respectively. The variance of NAOpcT (NAOiT)

is 1.5% (29.9%) greater for warm ENSO years. The rejection of the null hypothesis by

the Smirnov test seems to be due more to the shifts (different means) of the distri-

butions than to the differences in the variances. Note that the variances of the warm

and cold ENSO phases in NAOpcT are not very different, and still the null hypothesis

was rejected. Note also that in the case of internal variability, with larger variance

differences, the null hypothesis was not rejected.

Table 6.3 also shows first and second order sample statistics. To take in consideration

the subtraction of the ensemble means, the internal variances for the warm and cold

ENSO phases were computed using 3× (29− 1) degrees of freedom. We performed the

following hypothesis tests:

H0 : µc = µw vs H1 : µc > µw (6.14)

H0 : σ2
w = σ2

c vs H1 : σ2
w > σ2

c (6.15)

For the test of equation 6.14 we do not assume that the true variances are equal. We

used a Z random variable, with the true variances replaced by the sample variances, as
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test statistic. Invoking the Central Limit Theorem, this test statistic has, if H0 is true,

a t-Student distribution with a number of degrees of freedom that can be estimated by

the Smith-Satterthwaite procedure [Milton and Arnold, 1995]. We will call this test,

the t-test. For the test of equation 6.15, we used the usual test statistic which have,

if H0 is true, a Fisher distribution (we also invoke, here, the Central Limit Theorem

because we do not assume that our samples come from Gaussian distributions). We

will refer to this test as the F -test.

The p-values of the t-test and F -test are listed in Table 6.2. By the t-test we can

conclude with a high level of significance that, for total variability, cold and warm

ENSO samples come from populations with different means, the cold ENSO mean

being higher that the warm ENSO mean. The F -test indicates that the warm ENSO

population variance is higher than the cold ENSO population variance, for both internal

and total variability. All variances are distinct at a significance level of lower than 0.1%

except the NAOpcT whose significance level is lower than 4%.

6.6 Summary and conclusions

We analysed here a large ensemble of NAO indices simulated by the MUGCM. The

indices were constructed to represent the internal and total variabilities of the NAO.

To assess the NAO sensitivity to the ENSO polarity, the indices were partitioned into

two subsets: one for cold ENSO years and another for warm ENSO years. Then we

computed the PDF for each index. The obtained PDFs for the total variability are

statistically different at a significance level lower than 0.1%. It is also worth to note the

difference in the shape of the PDFs: in warm ENSO years the PDF shows a bimodality

while it is unimodal for the cold ENSO phase.

A t-test applied to the sample means showed that the NAO index has a higher mean

during the cold ENSO phase. A F -test of the sampled variances showed that both the

internal and total variabilities are statistically different for the two ENSO phases.
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We cannot disregard the possibility that these results may be model dependent.

However, the results are useful to illustrate a methodology to uncover a forced signal in

a climate variable with high climate noise. As may be seen in Table 6.3, although the

mean of total variability NAO indices is negative for warm ENSO years, the probability

to get positive indices is very high (almost 40%). A similar comment applies to the

cold ENSO years. Furthermore, for total variability, the probability of an index to get

extreme values of the opposite sign of its mean is about 8 to 10%. These non-negligible

probabilities help us to understand the difficulty to uncover the climate signal in a

single realisation of the atmospheric circulation.

The results also show as the SST forcing may be found in the second and higher

moments of internal variability. Indeed, in the present modelling experiment, we show

that the internal NAO variances for cold and warm ENSO phases are different at a

significance level lower than 1%. Figure 6.8 and 6.8 also suggests a bimodality on the

internal variability in the warm ENSO phase but not in the cold ENSO phase.

We note that our results are consistent with some recent published works. First, the

bimodality on the warm ENSO phase may contribute for a nonstationary relationship

between the ENSO SST anomalies and the variability of North Atlantic climate [Walter

and Graf, 2002; Sutton and Hodson, 2003]. We could hypothesise SSTs anomalies

over other oceanic basins that may ’choose’ between one of the variability modes (the

positive or the negative maxima in the PDF). Note that it was shown in section 5.6.2

that interannual variability of SST anomalies in the tropical Atlantic forces the NAO

in spring: a positive (negative) northward Atlantic Inter-Hemispheric SST anomaly

Gradient (AISG) induces a negative (positive) phase of the NAO. Figure 6.9 shows the

homogeneous correlation maps of the MUGCM first SVDA mode of tropical Atlantic

SST anomalies and the EA MSLP anomalies in winter, accounting for 32.8% of total

squared covariance fraction. The patterns suggest that the AISG forcing of the NAO in

spring also occurs in winter. Furthermore, north tropical Atlantic SSTs are known to

be forced by ENSO through the NAO itself playing the role of the so called atmospheric

bridge [Klein et al., 1999; Saravanan and Chang, 2000; Giannini et al., 2001; Alexander
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et al., 2002; Huang, 2004]. All together, these processes may interact contributing

to the bimodality of the warm ENSO signal in the NAO. This issue is under current

investigation.

Figure 6.9: Homogenous correlation maps of the MUGCM first SVDA mode of tropical

Atlantic SST anomalies (lower panel) and EA MSLP anomalies (upper panel) in winter (DJF).

Negative, zero and positive correlations plotted with dashed blue, solid black and solid red

isolines, respectively. Contour interval is 0.1. The percentage printed on the right-hand top

of the figure is the squared covariance fraction.

.

The bimodality may also be important to understand the results of Pozo-Vásquez

et al. [2001] and Cassou and Terray [2001]. These authors found a statistically sig-

nificant SLP anomaly pattern resembling the NAO associated with the cold ENSO

episodes, but no statistically significant pattern was found during the warm phase.
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We also note that the bimodality is consistent with the work of Wu and Hsieh [2004].

They showed that the main component of the the Euro-Atlantic climate to ENSO is

nonlinear.

A nonlinear component of atmospheric response to ENSO anomalies is also found

over the Pacific-North American sector [Wu et al., 2003]. A major characteristic of the

nonlinearity of the Pacific-North America climate response to ENSO is that there is an

eastward phase shift of the circulation anomalies (by about 35o) between the composites

of warm ENSO episodes and cold ENSO episodes [Hoerling et al., 1997]. Figure 6.10

shows this zonal shift reproduced by our simulations. The composites in this figure

also show a positive (negative) NAO teleconnection associated with the cold (warm)

ENSO phase. This is in agreement with the shift of the means derived from the PDF-

statistics. If and how the zonal shift of the Pacific-North America wave train may impact

on the cyclogenesis over the western North Atlantic [Fraedrich, 1994] contributing to a

nonlinear response over the Atlantic-European sector is still an unsolved problem.

Finally, we note that the higher simulated NAO variability during warm ENSO

episodes is consistent with the results of Gouirand and Moron [2003]. These authors

found higher variance of observed MSLP anomalies over the North Atlantic during the

warm ENSO phase.
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Figure 6.10: Composites of DJF seasonal mean MUGCM MSLP anomalies for the (a) cold

and (b) warm ENSO phases, and (c) their difference (cold - warm ENSO). The contour interval

is 0.5 mb in the composites for each phase, and 1 mb in the difference map.





Chapter 7

Summary and Conclusions

A large AMIP II ensemble of the MUGCM was used to assess SST anomaly forcing of

MSLP seasonal mean anomalies over the EA region. Tropical SST forcing on interannual

time scales was focused.

The validation of MUGCM’s climatology and variability was performed using the

reanalysis from the NCEP. The validation was performed using seasonal means of winter

(DJF), spring (MAM), summer (JJA) and autumn (SON). The model climatology

was assessed using: MSLP, TMP-SFC, PRECIP, HGT-850, HGT-500 and HGT-200

seasonal means in winter, spring, summer and autumn; vertical structures of zonal-mean

zonal circulation and temperature in winter and summer; upper tropospheric zonal

wind, in particular the jet streams, in winter and summer; planetary standing waves

and eddy components (departures from zonal symmetry) in winter; and meridional

and zonal mass overturning circulations in the Pacific and Atlantic (Hadley, Ferrel and

Walker circulation) in winter.

Overall, the model is able to reproduce the main features of the observed seasonal

climatology, but some important biases were detected. The pressure cells over the At-

lantic ocean are overestimated in winter, resulting in the overestimation of the merid-

ional MSLP gradient between the Azores High and the Icelandic Low. Accordingly, the

low-tropospheric circulation in the EA sector was also found to be overestimated by

155
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the model, as well as surface temperature and precipitation.

The modelled Pacific jet stream is biased 10o (30o) downstream in winter (summer),

is displaced 10o to the north in both seasons, and is 15 m s−1 stronger in winter. The

Atlantic jet stream is biased 20o downstream (10o upstream) in winter (summer), is

shifted 10o (5o) to the north in winter (summer), and is 10 m s−1 stronger in summer.

The modelled meridional mass circulation is overestimated. In particular, the ther-

mally direct Hadley cells are too intense, which may have important consequences on

the extratropical atmospheric response to tropical SST forcing. The Pacific jet stream

overestimation may be a consequence of the intensified Pacific Hadley cells. It was

also shown that the Walker cell in the equatorial Pacific and Atlantic are also overesti-

mated by the model. The overestimation of the tropical atmospheric response to SST

climatology indicates that its response to SST anomaly variability may also be over-

estimated. In conjuction with the overestimation of the mean state of the Pacific jet

stream, this may lead to an overestimation of the extratropical atmospheric response

to tropical Pacific SST anomalies, in particular, a stronger ENSO forcing in the NPA

and EA regions.

Modelled and observed variability was tested using two different methodologies. First,

the correlation at each grid point of the MUGCM’s grid in the EA sector, between

the MUGCM-AMIP II ensemble mean and the NCEP MSLP, TMP-SFC, PRECIP,

HGT-850, HGT-500 and HGT-200, was determined for each of the four standard sea-

sons. Second, the spatial patterns of variability of MUGCM and NCEP seasonal mean

anomalies of MSLP, in the EA region, obtained by PCA, were compared.

The correlations between modelled and observed grid point time series are signifi-

cantly different from zero, at a significance level of 1%, in almost the entire area of the

EA region.
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PCA of seasonal mean MSLP in the EA region captured the major observed modes

of MSLP anomaly variability in the EA region, namely, the North Atlantic Oscilla-

tion, the East Atlantic mode, the Scandinavia or EURASIA I mode, and the East

Atlantic/Western Russia or EURASIA II mode. These modes are better captured by

the model in winter and spring.

The NAO modelled pattern has the characteristic meridional see-saw in the atmo-

spheric mass between the Icelandic Low and a broad east-west belt, centred near 40oN,

extending from the east coast of the United States to the Mediterranean. However, the

southern the southern belt of NAO pattern has its highest loadings shifted to the east

by about 15o in winter, and is broken in two centres of equal sign located in western

Atlantic and Europe in spring.

An ANOVA showed that seasonal mean MSLP is significantly SST-forced in almost

the entire area of the EA, except in SON, the higher forcing occurring in winter and

spring.

The ANOVA of the time series associated to the four modes of variability, identified

by the PCA, in winter and spring, showed that these are significantly forced in both

seasons. The NAO was found to be the mode with strongest forcing in spring (30.0%).

The ANOVA was also performed to the NAO index in overlapping 3-month mean

seasons and it was found that the NAO is significantly forced in all seasons except in

autumn and OND, the higher forcing found again in spring.

In summary, the MUGCM MSLP variability in the EA region, in general, and its

major mode of variability (the NAO), in particular, have a weak but significant SST-

contribution, the forcing being strong in winter and specially in spring.

The two leading SST-forced variability modes of MSLP anomalies in the EA region, in

winter and spring, were estimated using three different methods: PCA of the ensemble-

mean (standard PCA), SVDA and optimal detection PCA (optimal PCA).
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Regression and correlation analysis using SST anomalies and the time series associ-

ated to the forced patterns, gave statistical significant evidence that

• SST anomalies in the tropical Pacific associated to the ENSO forces the NAO

in winter and spring. A warm (cold) ENSO phase induces a negative (positive)

phase of the NAO, specially in winter; and

• SST anomalies in the tropical Atlantic associated to the AISG forces the NAO

in spring. A positive (negative) phase of the AISG induces a negative (positive)

phase of the NAO.

SVDA analysis of tropical Pacific monthly mean SST anomalies and EA monthly

mean MSLP anomalies, from December to May, showed that the pattern of the MSLP

correlation map projects onto the negative phase of the NAO in all months, which

confirms the results given above. Unlike the observational results of other authors,

our modelled ENSO teleconnection on the EA region does not changes sign between

December and January.

A large ensemble of two NAO indices simulated by the MUGCM were constructed to

represent the internal and total variabilities of the NAO. To assess the NAO sensitivity

to the ENSO polarity, the indices were partitioned into two subsets: one for cold ENSO

years and another for warm ENSO years. Then we computed the PDF for each index.

The obtained PDFs for the total variability are statistically different at a significance

level lower than 0.1%. It is also worth to note the difference in the shape of the PDFs:

in warm ENSO years the PDF shows a bimodality while it is unimodal for the cold

ENSO phase.

A t-test applied to the sample means showed that the NAO index has a higher mean

during the cold ENSO phase. A F -test of the sampled variances showed that both the

internal and total variabilities are statistically different for the two ENSO phases.

Using composites of the NAO indices associated to the cold and warm ENSO phases,

it was shown that the ENSO forces the NAO through the PNA wave train.
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We cannot disregard the possibility that these results may be model dependent.

However, the results are useful to illustrate a methodology to uncover a forced signal in

a climate variable with high climate noise. Although the mean of total variability NAO

indices is negative for warm ENSO years, the probability to get positive indices is very

high (almost 40%). A similar comment applies to the cold ENSO years. Furthermore,

for total variability, the probability of an index to get extreme values of the opposite sign

of its mean is about 8 to 10%. These non-negligible probabilities help us to understand

the difficulty to uncover the climate signal in a single realisation of the atmospheric

circulation.

The results also showed that ENSO SST forcing is found in the second and higher

moments of internal variability. Indeed, in the present modelling experiment, we showed

that the internal NAO variances for cold and warm ENSO phases are different at a

significance level lower than 1%. The PDFs suggests a bimodality on both internal and

forced variabilities in the warm ENSO phase but not in the cold ENSO phase. This

intriguing result shows that internal variability is not independent from SST forced

variability. This paradox shows that the ANOVA model used to estimate potential

predictability is inaccurate.

The bimodality of the NAO found during the warm ENSO phase could be explained

hypothesising SSTs anomalies over other oceanic basins that may ’choose’ between one

of the variability modes (the positive or the negative maxima in the PDF). It was sug-

gested that the AISG forcing of the NAO in spring also occurs in winter. Furthermore,

north tropical Atlantic SSTs are known to be forced by ENSO through the NAO itself

playing the role of the so called atmospheric bridge. The zonal shift of the PNA wave

train may also impact the cyclogenesis over the western North Atlantic. All together,

these processes may interact, contributing to a nonlinear response over the Atlantic-

European sector and inducing a bimodality of the warm ENSO signal in the NAO. This

issue is still an unsolved problem and is under current investigation.





Appendix A

Principal Component Analysis

Here brief summary of the mathematical formulation of Principal Component (EOF)

Analysis is presented. The EOF analysis is a multivariate statistical technique gener-

ally known as Principal Component Analysis (PCA). The name Empirical Orthogonal

Function is due to Lorenz [1956] and is the the more popular term in the geophysical

sciences. Book-length descriptions of PCA can be found in Jolliffe [1986], in a general

context, and in Preisendorfer [1988], in the geophysical context. It merits a chapter

in all multivariate statistical analysis books such as Johnson and Wichern [1998], just

to name one, and also in statistics books oriented to the atmospheric sciences such as

von Storch and Zwiers [1999], with a formal approach, and Wilks [1995] with a more

descriptive approach, but both rich in real world examples. Geophysicists may also find

a very short and simple introduction to PCA in the papers of Jolliffe [1990, 1993].

Principal Vectors Consider that the random variable Xm represents the seasonal

mean anomaly of some variable at spatial location m, with m = 1, ..., M . Remember

that seasonal mean anomaly is the deviation of the seasonal mean variable from the

season climatology, which implies that E[
Xm

]
= 0, where E is the expectation operator.

These M random variables can be assembled in a (M × 1)-dimensional random vector

X =
[
X1|X2|...|XM

]T
, where the upperscipt T denotes the transpose operator. The

variance-covariance matrix of X,

ΣX = E[
XXT

]
, (A.1)
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where E denotes the expectation operator, is a (M×M) simmetric matrix that assumes

M non-negative eigenvalues and M orthogonal eigenvectors. The first principal vector

(PV) of X, e1, is defined as the normalized eigenvector of ΣX with the largest eigenvalue,

λ1, the second PV, e2, is the normalized eigenvector with the second largest eigenvalue,

λ2, and so on.

Each PV is (M×1) dimensioned, that is, it has M elements which are called loadings.

Note that the mth loading of the kth PV, emk, is associated with the mth spatial

location. Consequently, each PV is a field of loadings that can be plotted with smooth

contours. This graphical representation of an PV is called the PV pattern.

An important property of the PVs is that they diagonalize the covariance matrix ΣX .

This can be seen by first grouping the PVs into the (M×M) matrix E =
[
e1|e2|...|eM

]
:

E−1ΣXE = ETΣXE = Λ, (A.2)

where Λ is a diagonal matrix whose entries (1,1), (2,2), ..., (M,M) are the eigenvalues

λ1 ≥ λ2 ≥ .... ≥ λM ≥ 0. Furthermore, noting that eT
k ΣXek represents the variance

of the random vector X in the direction defined by kth PV, ek, equation A.2 reveals

that the first PV defines the direction in which the variance of X is maximized, the

second PV defines the direction in which the variance of X is maximized subjected to

the constraint that it must be orthogonal with direction defined by the first PV, and

so on.

An useful equation equivelent to equation A.2 is

ΣX = EΛET, (A.3)

which is a singular value decomposition of the covariance matrix.

Principal Components The PVs determine a new M -dimensional space in which

we can view the data. Projecting the (M × 1)-dimensional random vector X onto the

(M × M) matrix of the PVs we obtain another (M × 1)-dimensional random vector
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Y =
[
Y1|Y2|...|YM

]T
,

Y = ETX, (A.4)

whose components are called the principal components (PCs) because they are the

components (coordinates) of X in the basis of the principal vectors. The variance-

covariance matrix of Y, ΣY = E[
YYT

]
may be written, using equation A.4, as ΣY =

E[
ETXXTE

]
, and, using equations A.1 and A.2, we have

ΣY = ETΣXE (A.5)

= Λ. (A.6)

Equation A.5 shows that the variance of the kth PC of Y, E[
YkY

T
k

]
, is equal to the

variance of X in the direction defined by the k PV, eT
k ΣXek. This must be so, because

Yk is the projection of X onto the kth PV, Yk = eT
k X. Equation A.6 reveals two very

important properties of the Y random vector. The first is that its components (PCs) are

uncorrelated and the second one is that the variance of the kth PC is the kth eigenvalue

of ΣX. Furthemore, since λ1 ≥ λ2 ≥ .... ≥ λM , V ar
[
Y1

] ≥ V ar
[
Y2

] ≥ ... ≥ V ar
[
YM

]
.

By Equation A.4, the kth PC, Yk, may be seen as a linear combination of the compo-

nents of X at the M spatial locations, X1, X2, ..., XM . The weight at the mth spatial

location on the kth linear combination is the kth PV loading at mth location, emk.

Thus, the stations with higher PV loadings contribute more to the PC. Furthermore,

the weights of the first linear combination - the first PV loadings - are such that max-

imize the variance of Y1, the weights of the second linear combination- the second PV

loadings - are such that maximize the variace of Y2 subjected to the constraint that the

second PV must be orthogonal to the first PV, and so on.

A final property remains to be exposed: the total variance of X is equal to the

sum of the eigenvalues of ΣX which is equal to the total variance of Y. In fact, from

equation A.3 we have that the total variance of X is
∑M

m=1 E
[
XmXm

]
= tr

(
ΣX

)
=

tr
(
EΛET

)
, where tr is the trace matrix operator, that is the sum of the diagonal

elements of the operand matrix. Then, noting that tr
(
EΛET

)
= tr

(
Λ

)
and using
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equation A.6, we obtain

M∑
m=1

E[
XmXm

]
= tr

(
Λ

)
=

M∑

k=1

E[
YkYk

]
. (A.7)

Finally, from equations A.6 and A.7 we obtain that proportion of the total population

variance due to the kth PC is λk/tr(Λ).

Briefly, PCA can be described as follows: Given a M × 1-dimensional random vector

X =
[
X1|X2|...|XM

]T
, whose components are correlated with each other, the PCA

analysis finds an orthonormal basis of M (M × 1)-dimensional vectors - the PVs - that

defines the directions of maximum variability of X subjected to the constraint that

they must be orthogonal, that is, the components of X on this new basis - the PCs -

have the maximum possible variance and are uncorrelated with each other.

Estimation of Principal Vectors: the EOFs The above presentation of PCA

was based on the assumption that the covariance matrix of the random vector X is

known. In practice, the probability distribution of X is unkown and, consequently, the

covariance matrix ΣX is also unkown. Fortunately, it can be estimated recurring to the

sample theory.

Let
(
Xm1, Xm2, ..., XmN

)
represent a random sample of the random variable Xm. One

realization of this random sample would be
(
xm1, xm2, ..., xmN

)
, that is, N realizations

(or observations) of the seasonal mean anomaly at station m. Since there are M spatial

locations, we have M random samples, of length N , of X, which we can cluster in a

(M × N) random matrix X whose mth row
[
Xm1, Xm2, ..., XmN

]
is the mth random

sample, of length N , of the random variable Xm.

The covariance matrix ΣX of the random vector X can then be estimated by the

sample covariance matrix of X

SX =
1

N − 1
XXT. (A.8)
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Since SX is an estimator of ΣX, the eigenvalue-eigenvector pairs computed from it

will also be estimators of the eigenvalue-eigenvector pairs of ΣX. Furthermore, the

projection of the N realizations of X onto these eigenvectors will yield N realizations

of Y:

Y = ÊTX . (A.9)

where Y is a (M ×N) matrix whose N columns are N observations of the M PCs. The

element ymn of Y is the nth observation of the mth PC. The elements ymn (n = 1, ..., N)

are called the scores of the mth PC.

The principal vectors of the sample covariance matrix SX are generally called sample

principal vectors, but the term Empirical Orthogonal Functions (EOFs) is preferred

to the geophysical community, which also prefers to call PCA by EOF analysis, as

already said. Some authors, such as von Storch and Zwiers [1999] use the term EOF to

name the eigenvectors of both ΣX and SX, noticing that the latter are estimators of the

former. However, as pointed out by Wilks [1995], the term empirical means that the

orthogonal functions are “defined empirically according to the particular data set at

hand”, a realization of X . Thus, it makes no sense to refer to the eigenvectors of ΣX as

EOFs, because they are not empirically defined. They are parameters that characterize

the covariance matrix which is a populational parameter (not a sample parameter) of

the random vector X.

An important property of the EOFs of a (M × N) data matrix X is that only the

first min(M,N) EOFs will have non-zero eigenvalues. Since the variance of the kth

(k = 1, ..., M) PC is equal to the kth eigenvalue (equation A.6), only the EOFs with

non-zero eigenvalues, the first min(M, N) EOFs, will be meaningful.

Finally, we present a relation that will be useful in chapter 5 (equation 5.44). Mul-

tiplying both sides of equation A.9 by XT, using equations A.8 and the sample version

of equation A.3, and the orthonormality of Ê we obtain

YXT = (N − 1)Λ̂ÊT.
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Now, multiplying this equation by the pseudo-inverse of Λ̂, noting that Λ̂−1Λ̂ = I(K),

where I(K), with k = min(M,N), is a (M ×M) matrix with entries (i, j) equal to unit

if i = j < K and zero elsewhere, we have

Ê(K) =
1

N − 1
XYTΛ̂−1 (A.10)

where Ê(K) = ÊI(K) is a (M × M) matrix whose first K columns are the first K

columns of E, with the rest M −K columns filled with zeros, and Λ̂−1Y contains the

standardized PCs. This equation is equivelent to regressing X onto the PCs.
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