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Resumo 
 

 

Foram simulados numericamente jogos de recursos públicos em redes usando 
algoritmo de Monte Carlo. Foram usadas redes regulares unidimensionais em 
anel, redes regulares bidimensionais (rede quadrada) e redes scale-free. São 
apresentados os métodos seguidos, a teoria e os algoritmos usados. Estes 
jogos apresentam uma transição de fase entre uma fase dominada por 
oportunistas de uma fase dominada por cooperadores em função de um 
parâmetro de rendimento das contribuições. Foi encontrado um intervalo, 
dependente do número médio de vizinhos, para o qual a fracção de 
configurações sobreviventes tende para 1 quando o tamanho da rede 
aumenta. Foi também encontrada uma dependência no valor de parâmetro 
crítico de transição no número médio de vizinhos para as configurações 
sobreviventes. Esses efeitos foram observados em todos os tipos de rede 
estudados neste trabalho. 
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Abstract 

 
Public goods games were numerically simulated in networks using Monte Carlo 
Algorithm. Regular one-dimensional ring networks, regular two-dimensional 
lattice networks and scale-free networks had been used. The methods 
followed, the theory and the algorithms used are presented.  This games have 
a phase transition between one phase dominated by defectors from one 
dominated by cooperators in function of the value of efficiency from the 
contributions. It was found an interval, dependent on the average number of 
neighbors, where the fraction of surviving configurations tens to 1 when the 
size of the network increases. It was found dependence in the critical value of 
transition value with the average number of neighbors. Both effects were 
observed in all types of networks studied in this work. 
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Introduction

Adam Smith published in 1776 the book An Inquiry into the Nature and Causes of the Wealth

of Nations. That book was for economists as Philosophiae Naturalis Principia Mathematica was
for physicists. Naturally, economics went beyond Smith's book as physics did with Newton's, so
game theory is for economists as relativity is to physicists [1]. The importance of the book had
gone beyond economics: the historian Silvan Schweber was the �rst to point out that Smith's
book had in�uence on Darwin. Stephen Jay Gould wrote : � In fact, I would advance the
even stronger claim that the theory of natural selection is, in essence, Adam Smith's economics
transfered to nature...� [2]. It is not suprising that in nowdays evolutionary game theory is an
object of study of both economists and biologists.

In the sixties, Stanley Milgram conducted a famous experiment [3], some people in Nebraska
were instructed to send a parcel to someone they knew personally who in turn could forward it to
another acquaintance with the eventual goal of reaching a Boston-area stockbroker. On average,
it took less that six steps to reach the goal. Sugesting, that two people could be connected
by less than �Six degrees of separation�. That experiment introduced the ideia that human
relations could be described as a network. In 1999 a milestone paper had been published in
Science by Réka Albert and Albert-László Barabási [4]. In that paper they noted the scale-free
nature of many kinds of networks. In scale-free networks many lonely nodes will have almost no
connections at all, some nodes will be moderately well connected, and few will be superconnected
hubs. Those kind of networks obey a power law, being the World Wide Web one of the most
studied networks. Following that article, many scientists began studying networks, in particular
scale-free ones.

In the last three centuries, most of a physicist's notion of everything had been a bit limited
to matter and the forces guiding its motion. In 1905 Einstein added cosmic time and space to
the mix [5], that had simpli�ed reality as he combined matter with energy and space with time
[6]. At the end of the 20th century physicists realized that one ingredient was missing: informa-
tion. Information is an indispensable element in codifying and quantifying the understanding
of nature. It has opened physicists eyes to the rest of reality, and they started to use statistical
mechanics for everything. It turned out that game theory and statistical mechanics could help
describe everything from the stock market to quantum physics [1].

In this work, regular and scale-free networks will be combined with public goods games and
simulated though a stochastic method: Markov chains and the Monte Carlo algorithm. Although
there are several works on the subject [7] [8] [9] [10] [11] [12] [13] , some e�ects had not been
studied. So the aim of this work is to add some information to the work already done.
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Chapter 1

Evolutionary Game Theory

Games in game theory are generally formulated in terms of a payo� matrix, which de�ne
the payo� of a given choice when interacting with the choice of another player. In this work,
�tness is the accumulated payo� of an individual in a game. One can easily conclude that the
�tness of one player is dependent of the actions of the others. The players are often denoted as
population [14].

A phenotype is any observable characteristic of an organism: such as its morphology, de-
velopment, biochemistry or behavior [15]. In game theory the phenotype of an individual only
interferes with its �tness. Therefore one can always de�ne the �tness as a function of the pheno-
type. The most important feature in evolutionary game theory is the �tness dependence of the
frequence of di�erent phenotypes in the population. A good example is the Hawk-Dove game,
whose payo� matrix can be found in table 1.1, being C > G.

Table 1.1: Payo� matrix for the Hawk-Dove game

if it meets a hawk if it meets a dove

A hawk recieves G−C
2 G

A dove recieves 0 G/2

In a given population where the number of doves is much bigger than the number of hawks,
hawks will have a bigger �tness as it is likely they will �nd doves and get a gain G, while the
doves only get a gain of G/2. But in a population consisting mostly of hawks, doves will win as
they will avoid the �ght and have their �tness unchaged while the hawks will be �gthing with
an average loss of �tness of G−C

2 . So one can conclude that none of the phenotypes is better
than the other, their sucess depends on the frequence of that phenotype in the population [16].

The strategy is what will de�ne the actions of a player (eg. the strategy of a player could
be making all moves at random). The Nash equilibrium [17] [18] [19] [20] is a special case of a
strategy, if two players adopt it, then none of them could improve their payo� by using another
strategy. If an entire population adopts an evolutionarily stable strategy, which is a re�nement
of the Nash equilibrium, then no other strategy will be e�ective there.

Nash equilibrium can be calculated for any game, if the payo� matrix is known. The �Alice's
game� is presented in table 1.2. Bob owns Alice 10 euro. As alice wants to have some of her
money back, she proposed to Bob a game: they go to the library every week, so based on the
way they both use to reach the library Bob will pay to Alice a given amount of money as shown
in table 1.2. Alice's payo� is always positive while the Bob's payo� is always negative, meaning
that is a zero-sum game, what Bob loses Alice wins. This game is to be played in rounds. The

7



Table 1.2: Payo� matrix for Alice's game

Bob goes on the Bus Bob Walks

Alice goes on the Bus 3 6
Alice Walks 5 4

calculation of Nash equilibrium allows one to know which is the best mixed strategy. Alice
chooses Bus with probability p and Walk with probability 1 − p, while Bob chooses Bus with
probability q and Walk with probability 1 − q. Her expected payo� from choosing bus will be
the sum of her payo� from Bus when Bob chooses Bus multiplied by the probability that Bob
will choose Bus, plus her payo� from Bus when Bob chooses Walk times the probability that
Bob plays Walk. Applying the same method for Alice expected payo� when she chooses Walk
and for Bob, one obtains the following sets of payo�s:

Alice's expected payo� for Bus: 3q + 6(1− q)
Alice's expected payo� for Walk: 5q + 4(1− q)
Bob's expected payo� for Bus: −3p− 5(1− p)
Bob's expected payo� for Walk: −6p− 4(1− p)
Alice's total payo� will be her probability of choosing Bus times her Bus expected payo�

plus her probability of choosing Walk times her Walk payo�. Bob's total payo� will be similar.
To achieve the Nash equilibrium the expected payo� for both choices must be equal. Bob would
not change his strategy if:

−3p− 5(1− p) = −6p− 4(1− p) (1.1)

While Alice will not change her strategy if:

3q + 6(1− q) = 5q + 4(1− q) (1.2)

Solving both equation 1.1 in order to p and equation 1.2 in order to q, one get p = 1
4 and

q = 1
2 . If Alice chooses Bus one in four times and Bob choose Bus half of the times, then

both have achived the Nash equlibrium and none of them can improve their payo� by deviating
themselves from those values [1].

There are many types of games, in which several characteristics may vary: number of iterated
rounds, payo� matrix, number of players, etc (ie: The payo� matrix for the games stag hunt
and chicken are di�erent).

One could analyse many games, coming to many useful conclusions, but often scientists
resume their study on the Prisoner's Dilemma. Two prisioners are suspected of having commited
a joint crime, they are con�ned to di�erent rooms and cannot talk to each other. The police
do not have enough evidence to convince a judge and the attorney o�ers each of the suspects
a deal: confess your crime and you will avoid a prison sentence. If one of them confesses and
the other doesn't, then the �rst will go free immediately and the second will recieve a prison
sentence of ten years. If both confess, they will each get seven years, and if neither of them
confess, then both will recieve one year. The payo� matrix for the Prisoner's Dillema can be
found in Table 1.3. Both players in the Prisioner's Dilemma would obtain the maximum �tness
if they both cooperate. Then comes the relevant part, if one player looks at the game only by
their own point of view, no matter what the other players does, the best choice is to defect [14].

The iterated Prisioner's Dilemma requires a more complex strategy, because if a player tries
to cooperate and the oponent always defects the best approach is to not cooperate. Simple
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Table 1.3: Payo� matrix for the Prisoner's Dillema

Cooperate Defect
Cooperate -1 -10
Defect 0 -7

strategies, like always cooperating (ALLC) and always defecting (ALLD) could have very good
scores in some games, but on average their score are smaller because they are higly sensitive
to the frequence of the other strategies. One of the most sucessful strategies is Tit-for-tat
(TFT), which cooperates in the �rst round and then copies the last choice of the oponent. TFT
proves itself one of the most e�ective, because when competing with other strategies on average
its �tness will usually be bigger. TFT is also a catalyst for cooperation, because it always
cooperate with cooperators and always punish the defectors. There are some modi�cations to
TFT, one of them is Generous Tit-for-tat (GTFT), which has a probability of not punishing an
oponent's mistake in order to promote the cooperation, but it is weak when it �nds an ALLD.
Many other modi�cations, using the same concept, have been proposed and implemented, but
TFT's lack of dependence of the frequence of strategies in the population still makes it the most
efective strategy [14].

The N-person prisioner's dilemma is usally the chosen paradigm to study public goods games
(PGGs). A network is de�ned as the space where the game is played. For each node of the
network there is a player with a de�ned strategy, always cooperate or always defect. Usually
cooperators (C) contribute with an amount c to the public good and defectors (D) do not
contribute. The public good is then multiplied by a factor r and the result is equally distributed
between all members of the group regardless of their strategy. The evolution of the strategies
of each node is then calculated based in the gain of each node. Both in Prisioner's Dillema and
in PGGs defecting looks a better choice if one analyses the game from it's own point of view,
but cooperation is what gives better rewards for all the population. The results aren't only
dependent on the game itself but also on the network where the game takes place. That network
is nothing more than the relations between the nodes, meaning a node will not just interact
directly with the nodes connected to it, but also with the next neighbor's and ultimatelly with
all the network. Early experiments in the �eld, with regular networks, had shown that most
of the poputation tends to defect, which is not what is observed in society where a large scale
cooperation is known to take place. The use of scale-free networks in PGGs soon corrected that,
showing an increase in the cooperation because it takes in account that in a society context
everyone is di�erent.
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Chapter 2

Public Goods Games

One can see similarities between PGGs and human society. Di�erent situations from family
issues to global warming can be described as PGGs [7] [21]. Like PGGs, cooperation is the best
option if we look from a population's point of view, and defection always looks better for a single
human. In PGGs, cooperation can be achived even in absence of enforcing mechanisms [13].

PGGs on regular and scale-free networks have already been studied [7] [8] [9] [10] [11] [12]
[13]. This chapter is a sumary of the methods used [13].

2.1 Networks

A network is a set of nodes connected by links.
The number of nodes in a given network will be denoted by the letter N. The total number

of links of a node or connectivity is often called the node's degree and it is represented by the
letter k. The average connectivity in this work will be represented by z.

In the examples presented, the networks do not include unitary loops, i.e. a given node
cannot connect with itself. All these networks are undirected, meaning that the links are not
oriented.

Figure 2.1: Degree distribution for (left) regular networks and (right) scale-free networks [23]

Three types of networks are considered and the schematics are presented in �gure 2.2: one-
dimensional regular ring networks, two-dimensional regular lattice networks and scale-free net-
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works.

Figure 2.2: Schematics for di�erent kinds of networks
(left) One-dimensional regular network with N = 16 and z = 2
(center) Two-dimensional regular network with N = 25 and z = 4
(right) Scale-free network with N = 15 and z = 4

In the regular network type, all nodes have exactly the same number of connections z = 2m
as show in �gure 2.1 (left). An easy algorithm to build a network with m = 1 is:

• node a links to node a + 1 ;

• node N links to node 1.

This produces a ring-shaped network as presented in �gure 2.2 (left). With m = 2, the
logic is similar, but instead of one ring, two concentric rings are obtained. In this situation the
algorithm is:

• node a links to node a + 1 and a + 2 ;

• node N - 1 links to node N and 1 ;

• node N links to node 1 and 2.

In general, for one-dimensional regular ring networks, node a will connect to nodes a−m, a−
m+ 1, ..., a− 1, a+ 1, ..., a+m− 1 and a+m .

An algorithm to build two-dimensional regular networks could be the following:

• place all nodes on a square latice;

• each node connect with its k nearest neighbors, making sure there are periodic boundary
conditions, i.e. for k = 4 each node will connect will with all nodes that are a-distant; for
k = 8 each node will connect to all nodes that are

√
2a-distant or less.

In the scale-free network type, node's degree follow a power law distribution P (k) ∝ k−γ , k 6=
0 [23], where γ is the exponent of the distribution as show in �gure 2.1 (right). A way of building
scale-free networks was proposed by Albert & Barabási (1999) [4]. The schematic for scale-free
networks is presented in �gure 2.2 (right). The method to build such networks with z = 2m is:

• connect m nodes with each other;
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• keep a list of the nodes that have been linked to the new nodes. However, only the old
nodes (nodes which are linked to new ones) must be added to the list;

• build the network by adding nodes. A new node connects with m already existing nodes.
Each time a node is added, there is a probability p that it will link to a node, chosen with
probability proportional to (k−m). Otherwise, the new node will be linked to an existing
node at random. The best way to choose a node with a probability proportional to (k−m)
is to select a node at random from the list mentioned above.

The exponent γ obtained with this algorithm is given by γ = 1 + 1/p, and it can vary from
2 to in�nity.

Figure 2.3: Number of nodes with a given degree k for our scalefree network with N = 1000,
m = 2 and p = 0.5. The modulus of the slope obtained give us the γ and it is equal to 2.566.

For the scale-free case with p = 0.5, the expected exponent is γ = 3. In this case, the
obtained exponent was 2.566 as presented in �gure 2.1. Such di�erence is acceptable given
that the theoretical value of γ was calculated considering in�nite-size networks, whereas in this
�nite-size network there are cut-o�s and N = 1000 is a rather small network.

In this work we will use the following networks:

• regular one-dimensional ring networks with N = 1000 and 500; z = 2, 4, 6, 8 and 16;

• regular two-dimensional lattice networks with N = 1024 (32 × 32) and 529 (23 × 23);
z = 4, 8 and 12;

• scale-free networks with N = 1000 and 500; p = 0.5; z = 2, 4, 6, 8 and 16;

2.2 Types of Games

A group is a set of nodes connected to a center node, that is, one node (the center) and all
nodes connected to it. For each node there is a game centered in that node and all nodes from
its group take part.

Two types of games will be considered. The games only di�er in the quantity payed by the
cooperators. In the �rst type, from now on called game A, each cooperator will pay in each
interaction a quantity c. In the other, from now on called game B, each cooperator contributes
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with a total c for all interactions in the same round, meaning it will pay c/(k + 1) for each
interaction where k is the number of neighbors. After that, the accumulated gains from all
interactions are divided by all nodes, regardless of being cooperators or not [13].

The strategy from node i is denoted by si which takes the value of 1 in case of a cooperator
and 0 if defector.

For the game A, in a single game, the gains are:{
G(D) = crnc

k+1

G(C) = G(D)− c (2.1)

G(D) and G(C) are the respective gains of a defector and a cooperator, k + 1 is the number of
members of the group and nc is the number of cooperators in the neighborhood of the defector
[13]. For game B, for a single round, the gains of node y in the game centered in x follow this
form:

G(sy) =
∑
x

Gx(sy) =
r

kx + 1

kx∑
i=0

c

ki + 1
si −

c

ky + 1
sy (2.2)

G(sy) is the gain of the node y from the group centered in x. sy and si are the respective
strategies from the nodes y and i which belong in the group centered in x, and take the value 0
if defector and 1 if cooperator. kx and ki are the respective number of neighbors of the nodes x
and i [13].

The two types were simulated separately, and only for the scale-free networks as one can
easily show that for regular networks both games give the same results.

Instead of r, in this work η = r/(z + 1) will be used.

2.3 Evolution

Each node x will compare his gain with one of his neighbors, chosen at random. If the
gain of x is smaller than the gain og the neighbor y then x will adopt the strategy of y with a
probability given by:

p =
G(sy)−G(sx)

M
(2.3)

Where M is the normalization constant, G(sx) and G(sy) are the respective sum of the gains of
each game in which they had participated in the round. If the gain of x is bigger or equal than
the gain of y the strategy of x will remain unchanged [13].

Into this work two di�erent M have been used. A �xed M , equal to the maximum possible
value of the probability when η = 3.5, is used when the time dependence is important. A
M = max(G(sy) − G(sx)) is used when the time dependence isn't important and a better
computacional performance is required.

Two types of actualization had been used, the synchronous and asynchronous. The syn-
chronous one only compares the gains after all nodes in all groups from the network interact,
calculating all the changes of strategies at same time. The asynchronous one calculates those
changes for a given node x after calculating all its gains from interation with its neighbors,
updating only one node each time.
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Chapter 3

Markov Chains

Games in �nite populations are de�ned stochastically corresponding to Markov Chains.
A Markov chain [24] is a discrete random process where the evolution of the system only

depends on the present state, and does not depend on the previous states. As the process is
random it is impossible to predict the future states, but statistical properties can be studied.

In an unidimensional system with z neighbours with length N there are 2N possible states.
The quantity p(..., si−1, si, si+1, ...; t) is the probability of �nding one state of the system
..., si−1, si, si+1, ... at the time t. p(si; t) is the probability of the node i to be in the state
si at the time t. G(i) is the total gain of the node i (ie: for a regular network is the sum of the
gain from z + 1 games, one centered in the node and z in each of the z neighbours):

G(i) =
rc

z + 1

z/2∑
k=−z/2

z/2∑
j=−z/2

si+j−k − (z + 1)csi (3.1)

The gain of the node i depends on the state of the system in si−z, si−z+1, ... , si, ..., si+z−1,
si+z, a total of 2z + 1 variables. wi represents the probability of the node i changing from the
state si to the state 1− si and can be writen as:

wi(Si) =
1

zM

z/2∑
k=−z/2

max((G(i− k)−G(i))|si−k − si|, 0) (3.2)

where M is the chosen normalization.
If the nodes i and i− k are in the same state, |si−k − si| = 0, then there is no contribution

from that term. If both nodes are in di�erent state then |si−k − si| = 1. wi depends on the
states of the nodes ..., si−z−z/2, si−z−z/2+1, ... , si+z+z/2−1, si+z+z/2, making a total of 3z + 1
variables.

Each one of these states can be transformed in another N states by changing one variable
sk with 1 ≤ k ≤ N .

The time dependence of the probability of one state of the system is described by the Master
Equation:

d

dt
p(..., si−1, si, si+1, ...; t) =

N/2∑
k=−N/2

p(..., 1− sk, ...; t)wk(1− sk)

−p(..., si−1, si, si+1, ...; t)

N/2∑
k=−N/2

wk(sk) (3.3)
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The state ..., 1 − sk, ... is equal to the state ..., si−1, si, si+1, ..., except in the node k where
state is 1−sk instead of sk. The �rst term has all the contributions from the di�erent states that
are di�erent from the original state ..., si−1, si, si+1, ... in only one node and put the system back
in the original state. The second term subtracts all the transitions of only one node that change
the system from the original state. This dynamic is only valid for the asynchronous update, as
one assume that only one node could change at each step.

In a network with N nodes, one can label all possible i (states) by numbers, starting from 1
(only defectors) to 2N (only cooperators).

A Πi,j matrix can be de�ned to represent the rate of transition between the state j and the
state i. The equation (3.3) can be writen as a matrix:

p(i, t+ δt) =
∑
j

Πi,jp(j, t) (3.4)

Where Πi,j = dtwk(1−sk) if i 6= j and the state i is di�erent from the state j in only a value
of the variable sk that takes the value 1− sk in the state i. As the states i = 1 and i = 2N are
absorvent states, one get the following relations:

Πj,j = 1− δt
N/2∑

k=−N/2

wk(sk) (3.5a)

Πi,2N = 0 for i 6= 2N (3.5b)

Π2N ,2N = 1 (3.5c)

Πi,1 = 0 for i 6= 1 (3.5d)

Π1,1 = 1 (3.5e)

One de�nes the matrix Qi,j by eliminating the lines 1 and N and the collums 1 and N ,
leaving all the other elements unchanged. So Qi,j = Πi+1,j+1 with i = 1, 2, ..., 2L − 2 and
j = 1, 2, ..., 2L − 2.

One can obtain the probability distribution for t = ndt from p(i, t = nδt) =
∑
j

Πn
ijp(j, 0)

and so Πn
ij represents the probability that in n steps the system goes from the state j to the state

i. Also p(i, t = nδt) =
∑
j

Qnijp(j, 0) if i isn't an absorbing state. One de�nes p(i, t = nδt|j, 0; s)

as the probability of the system to be in the state i starting from the state j without hiting any
absorvent states. The probability of not falling in any absorbing state in t = nδt starting from
t = 0 in the state j is given by:

ps(t = nδt|j, 0) =
∑
i

Qnij (3.6)

Then:

p(i, t = nδt|j, 0; s) =
Qnij∑
i

Qnij
(3.7)

The average number of steps which the system spends in the state i starting from the state j,
Uij can be writen as Uij = δij +Qij +Q2

ij +Q3
ij + ... so the matrix U is given by U = (I−Q)−1.
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The average number of steps before falling into an absorbing state when the system starts

in the state j is ts =
∑
i

Uij .

Being Ri,j the matrix obtained from Πi,j which contains the transition rates from any state j
to an absorbing state i, then the probability for the system to hit the absorbing state i starting
from the state j, the �xation probabilities, can be writen as:

Ai,j =
∑

k not absorvent

(δk,j +Qkj +Q2
kj + ...)Rik =

∑
k

RikUkj (3.8)

Taking into account that the system visits the state k an arbirtrary number of times before
it falls in the absorbing state in the next step and de�ning ρ(i) as the particle density in the
state i, one can calculate the average density of cooperators in con�gurations that haven't fallen
into an absorbing state, assuming that the system starts with equal probability from any of the
starting states j.

ρ(t) =
1

2N − 2

∑
i,j

ρ(i)p(i, t = nδt|j, 0; s) (3.9)

With:

p(i, t = nδt|j, 0; s) =
Qnij∑
i

Qnij
(3.10)

One can also calculate υ(t) which represents the number of neighbors of a node (in the
neighborhood of z) that are in a state di�erent than the state of the central node. Also the
number of active nodes ∆(t) which are the number of nodes with at least one neighbor in a
di�erent state can be calculated. And �nally the probabilitiy for an in�nite time for the system
to hit a given absorvent state Āi can also be de�ned. The formulae to do the calculations are:

ρ(t) =
1

N
〈
∑
i

si〉 (3.11a)

υ(t) =
1

N
〈
∑
i

z/2∑
k=−z/2

|si − si−k|〉 (3.11b)

∆(t) =
1

N
〈
∑
i

1−
z/2∏

k=−z/2,k 6=0

(1− |si − si−k|)

〉 (3.11c)

Āi =
1

2N − 2

∑
j

Aij (3.11d)

In the results section Ā1 will be denoted by p(0), while Ā2L will be denoted by p(1). The
probability to survive, p(2) is then equal to 1− Ā1 − Ā2L .

Solving 3.10 requires Qnij . Qij is a big sparse matrix, and therefore lots of memory can be
saved, but Qnij isn't sparse anymore. So for a big N one can't calculate the exact result for a
given network (ie: Matlab suports matrices up to 40000 × 40000 elements so it can't be used
to solve any system with N > 15). The solution used in this work is to use the Monte Carlo
Method to generate some initial states, apply the algoritm explained in the next section and
then derive the statistical properties of the system.
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3.1 Algorithm

In this section the algorithm will be explained, as the basic formulae and dynamical rules
have already been discussed, this section will only describe the numerical method used in our
computer program. The algorithm only contemplates one realization of the system.

As it is impossible to apply the algorithm to all the possible initial states, three types of initial
states have been selected: one cooperator surrounded by defectors, one defector surrounded
by cooperators and a random distribution of cooperators and defectors. In one cooperator
surrounded by defectors all the nodes are set as defector, then one node at random is chosen
and changed to cooperator. In one defector surrounded by cooperators all nodes are set as
cooperator and one of them chosen at random is set as defector. In the random distribution for
each node the state defector or cooperator is chosen at random. In the algoritm the initial state
is set in the function set_initial_state().

The algorithm for the asyncronous update program can be found in �gure 3.1, while the
syncronous one can be found in �gure 3.2.

The function select_active_nodes(state) will make a list of all nodes which are active,
meaning they have at least one neighbor in a di�erent state. The function length(active)
returns the number of active nodes. The function random_select_active_node(active) se-
lects one node at random from the active nodes. The function gain(node) will calculate the
gain of a node, using the formula (2.1) for the game A and (2.2) for the game B, suming
the calculation coming from the game at that node and each of its neighbors. The function
select_neighbors(node) will create a list of the neighbors from a given node. The function
random_choose_neighbor(node) will choose one neighbor of given node at random. Finally,
the function calculate_probability(gain(node), gain(neig)) will output one number between 0
and 1 which is the probability that the node node will change its state to the state of the node
neig or not, using (2.3).

Figure 3.1: Algorithm for the program with asyncronous update
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Figure 3.2: Algorithm for the program with syncronous update
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Chapter 4

Results for one-dimensional regular

ring networks

In this chapter results for one-dimensional regular ring networks are presented.

4.1 Asynchronous Update

4.1.1 One cooperator surrounded by defectors

In order to understand more complex con�gurations, one must �rst study the simpler ones.
A con�guration with one cooperator surrounded by defectors is presented in table 4.1. In table
4.1 the �rst line corresponds to the index i of the position of the node in the lattice.

Table 4.1: One cooperator surrounded by defectors

i −z/2 ... −2 −1 0 1 2 ... z/2

state D D D D C D D D D

One wants to compare the defectors with smaller and bigger gain that are in the range to be
converted by the cooperator. Nodes that satisfy that condition are the defectors with smaller
gain present in i = z/2 or i = −z/2 and the defectors with bigger gain present in i = 1 or
i = −1, the cooperator is present in i = 0. The respective gains for them are:

G(0) = η(z + 1)− (z + 1)
G(1) = G(−1) = ηz
G(z/2) = G(−z/2) = η(z/2 + 1)

(4.1)

Solving G(0) ≤ G(1) and G(0) ≥ G(z/2) one gets η ≤ z + 1 and η ≥ 2(z+1)
z . Figure 4.1

shows the fraction of con�gurations that fall in the absorbing abstate with only defectors after
105 rounds, starting from the con�guration with one cooperator surrounded by defectors, as
a function of η for asynchronous update. It's not possible to have a con�guration with only
defectors for η > z + 1 as one can see in �gure 4.1 for di�erent values of z, and it's not possible
to have a con�guration with only cooperators for η < 2(z+1)

z . The expected transition values are
present in table 4.2. Figure 4.1 clearly displays the transition's dependence on z, at η = z + 1,
all realizations with di�erent z show the same behavior, and the value was exact (neglecting the
inherent small errors of a numeric calculation).
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Table 4.2: Expected maximum values of η for which is possible to have con�gurations with only
defectors

z 2 4 6 8 16

η = z + 1 3 5 7 9 17

Figure 4.1: Fraction of con�gurations which have fall in the state with only defectors p(0), for
one-dimensional regular ring networks with n = 1000 and z = 2, 4, 6, 8 and 16, using 104 samples
and 105 rounds. The initial state was one cooperator surrounded by defectors and the update
was asynchronous

4.1.2 A number l ≤ z/2 + 1 cooperators surrounded by defectors

The next con�guration to be analised is the group which have l ≤ z/2 + 1 cooperators
surrounded by defectors, as can be seen in table 4.3. For lower values of η it will eventually
fall in one con�guration with one cooperator surrounded by defectors. For η > 2(z+1)

z the
con�gurations with one cooperator surrounded by defectors have a probability to fall in one
con�guration with more than one cooperator.

Table 4.3: A number l ≤ z/2 + 1 cooperators surrounded by defectors

i −z
2 ... −2 −1 0 1 2 ... l − 1 ... z

2 + 1 z
2 + 2

state D D D D C C C C C D D D

One wants to compare the gains from the weakest cooperator G(0) with the gain from the
strongest defector G(−1). The gains for them are:

G(−z ≤ i ≤ l − z − 1) = η
2 (2 + i+ z)(i+ z + 1)

G(l − z − 1 ≤ i < 0) = η
2 l(l + 1) + ηl(i− l + z + 1)

G(0) = G(−1) + ηl − (z + 1)
(4.2)

Solving G(0) ≤ G(−1) one gets η ≤ z+1
l , meaning that the cooperator at i = 0 can only be

converted into a defector when this condition is veri�ed. For η > z+1
l the number of cooperators

increases.
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4.1.3 Between z/2 + 1 and z + 1 cooperators surrounded by defectors

The con�guration in table 4.4 represents the group of con�gurations with a number of coop-
erators between z/2 + 1 and z + 1 surrounded by defectors.

Table 4.4: Between z/2 + 1 < l ≤ z + 1 cooperators surrounded by defectors

i −z/2 ... −2 −1 0 1 2 ... l − 1 l ... z + 1

state D D D D C C C C C D D D

Like the previous case one wants to compare the weakest cooperator (i = 0) with the
strongest defector (i = −1). The respective gains, assuming l = z

2 + 1 are:{
G(−1) = η

2 ( z2 + 2)( z2 + 1) + η( z2 − 1)( z2 + 1)
G(0) = G(−1) + ηl − (z + 1)

(4.3)

The same result as the previous case is obtained when solving G(0) ≤ G(−1). So, the
cooperator can only be converted into a defector if η ≤ z+1

l otherwise the number of connected
cooperators will increase.

4.1.4 More than z + 1 cooperators surrounded by defectors

Finally, the con�gurations with more than z+ 1 cooperators surrounded by defectors, which
are represented in table 4.5 will be studied.

Table 4.5: More than z + 1 cooperators surrounded by defectors

i −z/2 ... −2 −1 0 1 2 ... l − 1 l

state D D D D C C C C C D

Yet again, one wants to compare the gain of the strongest defector G(−1) with the gain of
the weakest cooperator G(0) and the gain from the weakest defector G(−z/2) with the gain
from the weakest cooperator. The gains for them are:

G(−z/2) = η( z
2

8 + 3z
4 + 1)

G(−1) = ηz2+ηz
2

G(0) = G(−1) + η(z + 1)− (z + 1)

(4.4)

Solving G(−1) < G(0) one gets η > 1, so a group with more than z + 1 cooperators can
resist the invasion of defectors and grow if that condition is veri�ed. Solving G(−1) < G(−z/2)
the result η < z+1

3z2

8
+ z

4
+1

is obtained, which is the interval where the defectors will win over the

cooperators.

4.1.5 One defector surrounded by cooperators

So far, only con�gurations formed by groups of cooperators had been discussed, but now
groups of defectors will be considered. The schematic for the con�guration with one defector
surrounded by cooperators is presented in table 4.6.
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Table 4.6: One defector surrounded by cooperators

i −z/2 ... −2 −1 0 1 2 ... z/2

state C C C C D C C C C

One wants to compare the cooperators with smaller and bigger gain that are in range to be
converted by the defector. The nodes that satisfy that condition are the cooperators present in
i = z/2 or i = −z/2 and the cooperators present in i = 1 or i = −1. The respective gains for
them are: 

G(0) = η(z + 1)z
G(1) = G(−1) = η(z + 1 + z2)− (z + 1)
G(z/2) = G(−z/2) = η(z/2(z + 1) + z(z/2))− (z + 1)

(4.5)

Solving G(0) ≤ G(1) and G(0) ≥ G(z/2) one gets η ≤ z+1 and η ≥ 2(z+1)
z , that are the same

values for one cooperator in the middle of defectors, so the same conclusions can be derived.
The expected values of η are presented in table 4.7.

Table 4.7: Expected mininum values of η for which it is possible to have con�gurations with
only cooperators

z 2 4 6 8 16

η = 2(z+1)
z 3 5

2 = 2.5 7
3 = 2.33(3) 9

4 = 2.25 17
8 = 2.125

4.1.6 A number l ≤ z/2 + 1 defectors surrounded by cooperators

A con�guration with a maximum number of z/2 + 1 defectors surrounded by cooperators is
presented in table 4.8.

Table 4.8: A number l ≤ z/2 + 1 defectors surrounded by cooperators

i −z
2 ... −2 −1 0 1 2 ... l − 1 ... z

2 + 1 z
2 + 2

state C C C C D D D D D C C C

One wants to compare the strongest cooperator i = −z/2 with the defector in the border
i = 0 to know what is the minimum value of η for which it is possible for the cooperators to
take over the defectors. It is also important to compare the weakest cooperator i = −1 with the
defector present in i = 0. The gains for them are:

G(0) = η
2

(
z2 + 2z + l2

2 + 1− lz − 3l
2

)
G(−1) = G(0) + ηl − (z + 1)

G(−z/2) = η
(
z2 + 2z + l2

2 + 1− l(z+3)
2

)
− (z + 1)

(4.6)

Solving G(0) > G(−1) the result η < z+1
l is obtained, which means the number of defectors

will increase for values of η less than z+1
l . By solving G(−z/2) > G(0) one get the solution
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η > 2(z+1)(
z2+2z+ l2

2
+1−lz− 3l

2

) , which means that the number of defectors can not decrease for smaller

values of η.

4.1.7 Between z/2 + 1 and z + 1 defectors surrounded by cooperators

Following the same steps for the groups of cooperators, a schematic for the group of con�g-
urations with a number of defectors between z/2 + 1 and z + 1 surrounded by cooperators is
presented in table 4.9.

Table 4.9: Between z/2 + 1 < l ≤ z + 1 defectors surrounded by cooperatos

i −z/2 ... −2 −1 0 1 2 ... l − 1 l ... z + 1

state C C C C D D D D D C C C

Like in previous examples, the nodes in which the gain must be compared are i = 0 with
i = −1 and i = 0 with i = −z/2. The gains for these nodes are:

G(0) = η
2

(
5l(z + 1)− z2 − 3z − 2− 3l2

)
G(−1) = G(0) + ηl − (z + 1)

G(−z/2) = ηz(7z+10)
8 − (z + 1)

(4.7)

When one solves G(0) > G(−1) the result is η < z+1
l which is the interval where the number

of defectors can increase. Solving G(0) < G(−z/2) the interval where the number of defectors

can not decrease is found to be η < 8(z+1)
20l(z+1)−23z2−22z−8−12l .

4.1.8 More than z + 1 defectors surrounded by cooperators

Finally, a con�guration with more than z+1 defectors surrounded by cooperators is presented
in table 4.10.

Table 4.10: More than z + 1 defectors surrounded by cooperators

i −z/2 ... −2 −1 0 1 ... l − 1 l

state C C C C D D D D D C

The gains of the nodes i = 0 with i = −1 and i = 0 with i = −z/2 will be compared:
G(0) = ηz(z+1)

2
G(−1) = G(0) + η(z + 1)− (z + 1)

G(−z/2) = ηz(7z+10)
8 − (z + 1)

(4.8)

Solving G(0) > G(−1) one sees that the number of defectors can only increase for η < 1.

The number of defectors will not decrease for η < 8(z+1)
3z(z+2) , as it can be obtained also from the

condition G(−z/2) > G(0).
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4.1.9 Initial random distribution of cooperators and defectors

Two groups, one with a large number of cooperators and the other with a large number of
defectors will be considered, so conclusions can be obtained. The schematic for such con�guration
is presented in table 4.11.

Table 4.11: Interface between more than z + 1 cooperators and more than z + 1 defectors

i ... −z/2 ... −1 0 ... z/2− 1 ...

state C C C C D D D D

One want to compare the rates of change between the nodes i = 0 and i = −z/2 with the
rates for the nodes i = −1 and i = 0, when these respective nodes have the following gains:

G(0) = ηz(z+1)
2

G(−1) = G(0) + η(z + 1)− (z + 1)

G(−z/2) = ηz(7z+10)
8 − (z + 1)

(4.9)

First one de�nes the rate Rc as G(0) − G(−z/2) which is equal to (z + 1) + 3ηz(z+2)
8 and

the rate Rd as G(−1) − G(0) which is equal to −(z + 1) + η(z + 1). The rate Rc, which
compares the gains from the strongest cooperator with the strongest defector, points out that
the cooperators can win over the defectors if η > 8(z+1)

3z(z+2) . The rate Rd, which compares the gains
from the weakest cooperator with the strongest defector, shows that the defectors can win over
the cooperators if η < 1. If one equates both rates, a critical value of η will be obtained which
is equal to ηc = 2(z+1)

3z(z+2)
8

+z+1
. At ηc both rates are equal and neither defectors or cooperators win

over. If the fraction of cooperators in surviving con�gurations are analysed, that value should
correspond to a discontinuity between one phase with only defectors, for lower values of η to a
phase dominated by cooperators for higher values of η. The critical values of ηc can be found
in table 4.12, and the fraction of cooperators in the surviving con�gurations ρ(2) is present in
�gure 4.6 (z = 2), �gure 4.7 (z = 4), �gure 4.8 (z = 6) and �gure 4.9 (z = 16).

Table 4.12: Expected critical values of η for regular one-dimensional ring network with asyn-
chronous update

z 2 4 6 8 16

ηc = 2(z+1)
3z(z+2)

8
+z+1

1 5
7 = 0.714 14

25 = 0.56 6
13 = 0.462 34

125 = 0.272

A dependence on the number of surviving con�gurations on the size of the network, N , had
been found, as shown in �gure 4.2 (z = 2), �gure 4.3 (z = 4), �gure 4.4 (z = 6) and �gure 4.5
(z = 16). Those �gures show that when the size of the system grows to in�nity, the probability
of getting a surviving con�guration goes to 1, and the probability to get an absorbing state goes
to 0, so, information for the behaviour of in�nite systems should be studied considering only
surviving con�gurations.

In �gures 4.6, 4.7, 4.8 and 4.9 one can see that the calculated values agree with the compu-
tational results. For di�erent z, the ηc agree with the values from table 4.12, and a transition
between a state dominated by defectors for values of η < ηc and a state dominated by coopera-
tors for values of η > ηc is observed. For di�erent N regardeless of the value of z, the obtained
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Figure 4.2: Fraction of surviving con�gurations p(2), fraction of con�gurations with only defec-
tors p(0) and fraction of con�gurations with only cooperators p(1), for in�nite time using an
asynchronous update in the regular one-dimensional ring network, with z = 2 and M = 7.5;
N = 10 (.), N = 20 (o) and N = 40 (*). The vertical line is the critical value predicted, ηc = 1

Figure 4.3: Fraction of surviving con�gurations p(2), fraction of con�gurations with only de-
fectors p(0) and fraction of con�gurations with only cooperators p(1), for in�nite time using
an asynchronous update in the regular one-dimensional ring network, with z = 4 and M = 40;
N = 20 (.), N = 40 (o) and N = 100 (*). The vertical line is the critical value predicted, ηc = 5

7 .
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Figure 4.4: Fraction of surviving con�gurations p(2), fraction of con�gurations with only defec-
tors p(0) and fraction of con�gurations with only cooperators p(1), for in�nite time using an
asynchronous update in the regular one-dimensional ring network, with z = 6 and M = 115;
N = 40 (o) and N = 100 (*). The vertical line is the critical value predicted, ηc = 14

25 .

Figure 4.5: Fraction of surviving con�gurations p(2), fraction of con�gurations with only defec-
tors p(0) and fraction of con�gurations with only cooperators p(1), for in�nite time using an
asynchronous update in the regular one-dimensional ring network, with z = 16 and M = 1550;
N = 100 (*) and N = 500 (x). The vertical line is the critical value predicted, ηc = 34

125 .
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Figure 4.6: Cooperator's density in the surviving con�gurations for in�nite time, using an asyn-
chronous update in the regular one-dimensional ring network, with z = 2 and M = 7.5; N = 10
(.), N = 20 (o) and N = 40 (*). The vertical line is the critical value predicted, ηc = 1.

Figure 4.7: Cooperator's density in the surviving con�gurations for in�nite time, using an asyn-
chronous update in the regular one-dimensional ring network, with z = 4 and M = 40; N = 20
(.), N = 40 (o) and N = 100 (*). The vertical line is the critical value predicted, ηc = 5

7 .
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Figure 4.8: Cooperator's density in the surviving con�gurations for in�nite time, using an asyn-
chronous update in the regular one-dimensional ring network, with z = 6 and M = 115; N = 40
(o) and N = 100 (*). The vertical line is the critical value predicted, ηc = 14

25 .

Figure 4.9: Cooperator's density in the surviving con�gurations for in�nite time, using an asyn-
chronous update in the regular one-dimensional ring network, with z = 16 and M = 1550;
N = 100 (*) and N = 500 (x). The vertical line is the critical value predicted, ηc = 34

125 .
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curves are di�erent. Those feature can be easly explained, for example: one defector alone in
one network with N = 10 represents 1/10 of the network, while in one with N = 20 represents
1/20.

4.2 Synchronous Update

4.2.1 One cooperator surrounded by defectors

The results are similar to the ones obtained in the same con�guration for the asyncronous
update calculated in section 4.1.1 and present in table 4.2, with exception that exists a possibility
for η > z+1 to create con�gurations with only defectors. That probability is due to the creation
of a colaborator in a position not adjacent to the �rst one, the defectors in between will always
have a bigger gain so they can convert both cooperators in the same round as the update is
synchronous.

4.2.2 One defector surrounded by cooperators

Some of the conclusions for the same con�guration in the asyncronous are invalid for the
sincronous update, because a group of up to z defectors could be converted simultaneously.
Many con�gurations remain active for a critical value of η lower than for the synchronous case,
with exception for z = 2 as show in �gure 4.10. That value of ηc obtained will be explained in
section 4.2.3.

Figure 4.10: Fraction of surviving con�gurations p(2) and fraction of con�gurations with only
defectors p(0), for one-dimensional regular ring networks with n = 1000 and z = 2, 4, 6, 8 and 16,
using 105 samples and 105 rounds. The initial state was all cooperators with only one defector,
and the update was synchronous

The minimum values for which it is possible to have con�gurations with only cooperators in
the �gure 4.11 are in agreement with the ones calculated in the section 4.1.5 and found in the
table 4.7. They obey to relation η > 2(z+1)

z . As it is a minimum value and the number of runs
is not high enough, the exact value for higher values of z is not observed in plot.
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Figure 4.11: Fraction of con�gurations with only cooperators p(1), for one-dimensional regular
ring networks with n = 1000 and z = 2, 4, 6, 8 and 16, using 105 samples and 105 rounds. The
initial state was all cooperators with only one defector, and the update was synchronous

4.2.3 Initial random distribution of cooperators and defectors

From the analysis of �gure 4.12, which shows the fraction of cooperators averaged over all
con�gurations, one can see that the results suggest that ηc do not depend on z (excluding z = 2).

Figure 4.12: Total fraction of cooperators, for one-dimensional regular ring networks with n =
1000 and z = 2, 4, 6, 8 and 16, using 104 samples and 105 rounds. The initial state was a random
distribution of cooperators and defectors, and the update was synchronous

When the fraction of cooperators is averaged only in the surviving con�gurations, as shown
in �gure 4.13, a clear dependence of z on ηc appears. However when those values are compared
with the ones derived for the asynchronous update calculated in the section 4.1.9 and present
in the table 4.12, they are not coincident except for z = 2. The small drift for lower values of η
found may be due to the possibility from several defectors to be converted in the same round.

However, the main conclusions and dependences are still present. When analysing the frac-
tion of �nal con�gurations shown in �gures 4.14 and 4.15 the dependences on z and N are found.
When analysing the �gure 4.14 and comparing with the �gures 4.2 4.3 4.4 and 4.5 obtained with
asynchronous update, one can see that the interval where the surviving con�gurations dominate
is smaller. The dependence on z of the values of η where the surviving con�gurations are more
probable can be seen, but dependence seems only evident in the higher value of the interval as
for the lower value they seem almost equal for all considered values of z except for 2 and 16.
That is due to the possibility of up to z defectors be converted into cooperators in a single round.
The analysis of the �gure 4.15 shows a clear dependence on N of the number of con�gurations.
For smaller values of N the fraction of surviving con�gurations decreases and the number of
con�gurations that fall in an absorbing state increases.

Like in asynchronous update the dependence on z on the intervals where a surviving state
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Figure 4.13: Fraction of cooperators in the surviving con�guration, for one-dimensional regular
ring networks with n = 1000 and z = 2, 4, 6, 8 and 16, using 104 samples and 105 rounds.
The initial state was a random distribution of cooperators and defectors, and the update was
synchronous

is more probable, and on the critical values of the e�ciency paramenter ηc was observed. The
dependence on N of the fraction of surviving con�gurations was also observed.
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Figure 4.14: Fraction of surviving con�gurations p(2), fraction of con�gurations with only coop-
erators p(1) and fraction of con�gurations with only defectors p(0), for one-dimensional regular
ring networks with n = 1000 and z = 2, 4, 6, 8 and 16, using 104 samples and 105 rounds.
The initial state was a random distribution of cooperators and defectors, and the update was
synchronous

Figure 4.15: Fraction of surviving con�gurations p(2), fraction of con�gurations with only coop-
erators p(1)and fraction of con�gurations with only defectors p(0), for one-dimensional regular
ring networks with n = 1000 and z = 2, 4, 6, 8 and 16, using 105 samples and 105 rounds.
The initial state was a random distribution of cooperators and defectors, and the update was
synchronous
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Chapter 5

Results for two-dimensional lattice

regular networks

Here public goods games de�ned on two-dimensional lattice with di�erent number of neighbors
are considered. A synchronous update was used in the simulations.

5.1 One cooperator surrounded by defectors

In order to understand more complex con�gurations one must �rst treat the simpler ones,
therefore this chapter will start by considering the initial con�guration of one cooperator sur-
rounded by defectors. With the help of the representation of neighbors in �gure 5.1 the gains
from the di�erent nodes can be calculated. The cooperator in all of those schemes is represented
as a red square (A), and the colored squares are the �rst neighbors, for each of the 3 cases
considered (z = 4, 8 and 12).

Figure 5.1: Neighbors of a given site A in regular two-dimensional networks: (left) z=4, (center)
z=8 and (right) z=12 A cooperator is on site A and neighbors labelled with the same letter and
color are equivalent.

In the case z = 4 all yellow sites (B) are equivalent, so the gains can be writen as:{
G(A) = η(z + 1)− (z + 1)
G(B) = 2η

(5.1)

In the case z = 8 the neighbors from the nodes in yellow (B) will have 6 nodes in common
with the neighbors from the node in red (A) , while the green ones (E) only have 4 nodes in
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common, so the gains can be writen as:
G(A) = η(z + 1)− (z + 1)
G(B) = 6η
G(E) = 4η

(5.2)

In the case z = 12, following the same method as in the case z = 8 one get three di�erent
gains for the neighbors of the red node (A):

G(A) = η(z + 1)− (z + 1)
G(B) = 8η
G(E) = 7η
G(F ) = 5η

(5.3)

Figure 5.2: Fraction of con�gurations with only cooperators p(1) and fraction of con�gurations
with only defectors p(0), for two-dimensional regular networks with n = 1024 and z = 4, 8 and
12, using 105 samples and 105 rounds. The initial state was a cooperator placed at random in a
network with defectors, the update was synchronous, and it was normalized with a �xed value.

When comparing, for di�erent z, the gains of the di�erent defectors with the gains from the
cooperator, the results are the η values present in table 5.1, which are the values where the
cooperator is able to win over the defectors.

Table 5.1: Expected values of η for which one cooperator is able to win over the defectors for
two-dimensional lattice networks

Number of neighbors B E F

z = 4 5
3 − −

z = 8 3 1.8 −
z = 12 2.6 13

6 1.625
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The theoretical results found in table 5.1 and the simulation found in �gure 5.2 agree once
more. The smallest η values listed in table 5.1, for each case, are also the smallest η values
observed in the �gure that allow the system to reach the absorbing state with only cooperators.
The bigger calculated value of η is present as a step in the probabilities which grow closer to
reaching a value of 1. As in the results for the unidimensional ring network, the η which have
transitions associated depends only on the initial state and on z.

5.2 One defector surrounded by cooperators

The next initial con�guration to be analised is one defector surrounded by cooperators. One
could use the representation of neighbors present in �gure 5.1 again, but now the red square
(A) represents the defector, while the other colors represent the cooperators with di�erent gains.
With the same logic one gets the following gains, for z = 4:{

G(A) = 20η
G(B) = 23η − 5

(5.4)

Also, for z = 8 the gains are: 
G(A) = 71η
G(B) = 75η − 9
G(E) = 77η − 9

(5.5)

And �nally the gains for z = 12:
G(A) = 156η
G(B) = 161η − 13
G(E) = 161η − 13
G(F ) = 164η − 13

(5.6)

Using the same method, one get the values of η present in table 5.2. When those values are
compared with �gure 5.3 they disagree. The reason being that many defectors can be converted
in the same round.

Table 5.2: Expected values of η for which one defector is defeated by the cooperators for two-
dimensional lattice networks

Number of neighbors B E F

z = 4 5
3 − −

z = 8 9
4

3
2 −

z = 12 13
5

13
5

13
8

If one assumes two con�gurations for z = 4, one of them with only four defectors and another
with three defectors, those results can be explained. Those con�gurations are pictured in �gure
5.4. The yellow or blue squares are cooperators, while the red or green ones are defectors.
Considering the con�guration with four defectors, in �gure 5.4 (left), the respective gains are:{

G(B) = 16η
G(E) = 24η − 5

(5.7)

For the con�guration with three defectors the gains are:
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Figure 5.3: Fraction of surviving con�gurations p(2), fraction of con�gurations with only coop-
erators p(1) and fraction of con�gurations with only defectors p(0), for two-dimensional regular
networks with n = 1024 and z = 4, 8 and 12, using 105 samples and 105 rounds. The initial state
was a cooperator placed at random in a network with defectors, the update was synchronous,
and it was normalized with a �xed value.


G(B) = 18η
G(A) = 17η
G(E) = 24η − 5

(5.8)

Comparing the gains of the node B with those from the node E for the con�guration with
four defectors, the result η = 5

8 is obtained. When comparing the gain from the node E with
the node A for the con�guration with three defectors, the result η = 5

7 ; the node E compared
with the node B, the result η = 5

6 is obtained.
The conclusion for this kind of con�guration, is that the number of defectors will increase

for lower values of η eventually leading to the colapse of all the defectors in the group. Two
speci�c cases have been shown, but there are many equivalent and similar con�gurations, but
those will lead to the same values of η. For z = 8 and z = 12 the intervals are di�erent, as they
depend on z, but the same conclusions can be drawn.

5.3 Random initial distribution of defectors and cooperators

Stating from an initial con�guration with a random distribution of cooperators and defectors,
one gets the fraction of cooperators close to ηc present in �gure 5.5. It is quite evident the
dependence on z of the value of ηc, but in �gure 5.6, which has the fraction of cooperators in
the surviving con�gurations, it is even more evident.

When analysing the graphs present in the �gures 5.6 and 5.7 which show the dependence of
z and N in the ηc, again, the only one that have a noteworthy e�ect is z in �gure 5.7. In both
�gures there are con�gurations far away from any absorbing state near to ηc. That e�ect can
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Figure 5.4: Classes of sites in regular two-dimensional networks with z = 4: (left) con�guration
with 4 defectors (right) con�guration with 3 defectors. Red (A) and green (B) sites are defectors
while blue (E) and yellow are cooperators.

be explained with the number of rounds used, for an in�nite number of rounds, that lenght will
be reduced to an abrupt transition.

In the plot of �gures 5.8 and 5.9 the dependence on N , of the fraction of the con�gurations
in the di�erent states after 105 rounds is shown. Both �gures show that the places where the
transitions take place are the same, but the number of con�gurations in each state are di�erent.
Like the results for the regular one-dimensional ring network, with the bigger size of the system,
more con�gurations are out of both absorbing states. These plots show that for an in�nite
size network there exists an interval in the values of η where the system remains out of both
absorbing states. Those con�gurations are almost ocupied by cooperators, while only a small
group of defectors survives, as show in �gure 5.6. For lower values of η the system is in the
absorbing state with only defectors, while for higher values the system is in the absorbing state
with only cooperators, as presented in �gures 5.8 and 5.9.

In general, despite the di�erent topology of the regular two-dimensional lattice network when
compared with the regular one-dimensional ring network, in both the dependence of ηc on z and
the dependence on N of the surviving con�gurations are observed.
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Figure 5.5: Total fraction of cooperators in regular two-dimensional lattice networks, with N =
1024 and z = 4, 8, and 12, using 104 samples and 105 rounds. The initial state was a random
distribution of cooperators and defectors, the update was syncronous, and it was normalized
with the maximum value.

Figure 5.6: Fraction of cooperators in the surviving con�gurations for regular two-dimensional
lattice network using synchronous update, using 104 samples and 105 rounds. The initial state
was a random distribution of cooperators and defectors, it was normalized with the maximum
value, with N = 1024 and z = 4, 8 and 12.
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Figure 5.7: Fraction of cooperators in the surviving con�gurations for regular two-dimensional
lattice network using synchronous update, using 104 samples and 105 rounds. The initial state
was a random distribution of cooperators and defectors, it was normalized with the maximum
value, with N = 529 and 1024; z = 4 and (no = 0) normalized with the maximum value or
(no = 2) normalized with a �xed value.

Figure 5.8: Fraction of surviving con�gurations p(2), fraction of con�gurations with only coop-
erators p(1) and fraction of con�gurations with only defectors for the regular two-dimensional
lattice network with N = 529 and 1024; and z = 8. The simulations were made using syn-
chronous update, with 104 samples and 105 rounds. The initial state was a random distribution
of cooperators and defectors, it was normalized with the maximum value.
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Figure 5.9: Fraction of surviving con�gurations p(2), fraction of con�gurations with only cooper-
ators p(1) and fraction of con�gurations with only defectors p(0) for the regular two-dimensional
lattice network with N = 1024 and 529 and z = 12, using synchronous update, using 104 sam-
ples and 105 rounds. The initial state was a random distribution of cooperators and defectors,
and it was normalized with the maximum value.
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Chapter 6

Results for scale-free networks

Simulations using a random distribution of cooperators and defectors in the scale-free network
were made. The update was synchronous and it was normalized with the maximum value.

Unlike the previous chapters, the gains will not be discussed, because the network structure
is not regular, meaning that without a �xed number of neighbors, the number of possible cases
that exist are large. As the scale-free networks have a random component in its creation, the
conclusions taken for a particular case have to be averaged over the network structure itself.

6.1 Game A

When comparing the fraction of cooperators averaged over all con�gurations presented in
�gure 6.1 with the results from the regular network's results present in �gure 4.12, the conclusion
is that the values of η where the transition takes place are lower [13].

Figure 6.1: Total fraction of cooperators in scale-free networks in the game A, with n = 1000 and
m = 1, 2, 3, 4 and 8, using 100 di�erent realizations of the network, each of them simulated 100
times for 105 rounds. The initial state was a random distribution of cooperators and defectors,
the update was syncronous, it was normalized with the maximum value.

The total fraction of cooperators as function of η and z is shown in �gure 6.1. For η > 1,
only z = 16 does not have almost total or total cooperation. When the size of the group where
the games take place becomes bigger, the cooperators will colapse because of the high cost of
cooperation.

The fraction of surviving con�gurations is presented in �gure 6.2. From the analysis of
the �gure, a dependence on the average connectivity z can be seen. A region where many
con�gurations stay in the active state can be found. In the �gure these intervals are located in
0.5 / η / 1 for z = 2, 4, 6 and 8. For bigger values of z the fraction is smaller when N and η
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Figure 6.2: Fraction of surviving con�gurations p(2), fraction of con�gurations with only cooper-
ators p(1) and fraction of con�gurations with only defectors p(0), for scale-free network using the
game A with synchronous update, using 100 di�erent realizations of the network, each of them
simulated 100 times for 105 rounds. The initial state was a random distribution of cooperators
and defectors, it was normalized with the maximum value, with N = 1000 and z = 2, 4, 6, 8
and 16.

Figure 6.3: Fraction of surviving con�gurations p(2), fraction of con�gurations with only cooper-
ators p(1) and fraction of con�gurations with only defectors p(0), for scale-free network using the
game A with synchronous update, using 100 di�erent realizations of the network, each of them
simulated 100 times for 105 rounds. The initial state was a random distribution of cooperators
and defectors, it was normalized with the maximum value, with N = 500 and 1000; and z = 16.
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Figure 6.4: Fraction of surviving con�gurations p(2), fraction of con�gurations with only cooper-
ators p(1) and fraction of con�gurations with only defectors p(0) for scale-free network using the
game A with synchronous update, using 100 di�erent realizations of the network, each of them
simulated 100 times for 105 rounds. The initial state was a random distribution of cooperators
and defectors, it was normalized with the maximum value, with N = 500 and 1000; and z = 8.

are held constant.
In �gures 6.3 and 6.4 the fraction of con�gurations is ploted for di�erent N for z = 16 and

z = 8 respectively. A dependence of the fraction of active con�gurations on N was found. For
bigger values of N the number of con�gurations in the active state is bigger, the fraction of
con�gurations with only cooperators is slightly bigger and the fraction of con�gurations with
only defectors is smaller. From the analysis of both �gures a dependence on z of the η intervals
is more evident than in �gure 6.2.

To discuss the critical value of the e�ciency paramenter ηc, one must analyse the fraction
of cooperators in the surviving con�guration present in the �gure 6.5. The dependence on z of
the critical value of ηc, is evident in the �gure 6.5. The bigger values of z have lower values of
ηc. This may seem contraditory to the conclusion taken from the �gure 6.1, the defectors will
take over easly in networks which the average number of connection of a node is bigger. The
explanation for that is quite simple, if a given con�guration with big z keeps itself out of an
absorbing state for low values of η, the cooperators present will eventually take over. Meaning,
as the value of z grows, that number of connected nodes required to win over the defectors
will increase, so that in a given random con�guration with a �xed N the probability to have
those groups will deacrease as z increase. In the end, even for bigger values of z, if the required
number of cooperators is present the fraction of cooperators can be almost 1 for lower values of η.
Another feature present in that graph is the reduction of the fraction of cooperators, they hit a
peak right after the ηc and then their fraction decrease. For larger values of z the e�ect the e�ect
is more evident. That e�ect is due to the decrease in the number of the surviving con�gurations
that more and more fall in the state with only cooperators, only the con�gurations far from
falling in any absorbing state remain out of those state from values of η > ηc. That decrease in
the number of surviving con�gurations can be observed in the �gure 6.2, due to that the results
for the fraction of cooperators in the surviving con�gurations have a big statistical error.
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Figure 6.5: Fraction of cooperators in the surviving con�gurations for scale-free network using
the game A with synchronous update, using 100 di�erent realizations of the network, each of
them simulated 100 times for 105 rounds, with for N = 1000 and m = 1, 2, 3, 4 and 8. The
initial state was a random distribution of cooperators and defectors, it was normalized with the
maximum value.

For the game A in the scale-free networks, using the synchronous update, the same depen-
dence on η with the average number of neighbors and the dependende on N of the numbers of
the con�gurations that fall in an absorbing state or remain out of it, had been found, similarly
to the results found for the regular network.

6.2 Game B

In the �gure 6.6 the total fraction of cooperators are shown as function of η and z. The
values of η where the transition takes place are lower than the ones found for the same situation
in the game A, regardeless of the considered z.

Figure 6.6: Total fraction of cooperators in scale-free networks in the game B, withN = 1000 and
z = 2, 4, 6, 8 and 16, using 100 di�erent realizations of the network, each of them simulated 100
times in 105 rounds. The initial state was a random distribution of cooperators and defectors,
the update was syncronous, it was normalized with the maximum value.
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The fraction of surviving con�gurations, shown in the �gure 6.7, are equal or close to 1 in a
bigger interval, stating for lower values of η and ending for bigger values, when compared with
the intervals for the game A. This bigger fraction of con�gurations for a large η interval can be
explained by the decrease of the cost of the cooperation. Many of the con�gurations that had
collapsed in the game A into the state with only defectors can now remain out of it due to the
decreased value for cooperation. After those peak in the value of the surviving con�gurations,
the number of con�gurations with only cooperators stay even closer to 1 when compared with
the values of the game A. The intervals where the two absorbing states dominate and where
exists the active state depend upon the average connectivity of the network z.

Figure 6.7: Fraction of surviving con�gurations p(2), fraction of con�gurations with only cooper-
ators p(1) and fraction of con�gurations with only defectors p(0) for scale-free network using the
game B with synchronous update, using 100 di�erent realizations of the network, each of them
simulated 100 times in 105 rounds. The initial state was a random distribution of cooperators
and defectors, it was normalized with the maximum value, with for N = 1000 and z = 2, 4, 6,
8 and 16.

Analysing the �gures 6.8 and 6.9 the same features observed for the game A are present. A
dependence on N in the fraction of con�gurations in each state is found. The bigger the size of
the network, bigger the fraction of con�gurations in the active state.

In the �gure 6.10 one sees that like the results in the game A, for η > ηc, the fraction of
cooperators decrease after hitting a maximum. Also, the dependence on z in the value of ηc is
present. In the interval, generaly the number of con�gurations with only defectors is smaller.
The same conclusions for the ηc dependence on N can be drawn.

In general, both games A and B show the same dependences of N in the fraction of the
di�erent �nal states and of z in the value of ηc. A existence of an interval where for an in�nite
size network where the fraction of con�gurations in the active state is close to 1 is also present.
Those e�ects are simillar to the ones found in the results for both one-dimensional regular ring
network and two-dimensional lattice network.
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Figure 6.8: Fraction of surviving con�gurations p(2), fraction of con�gurations with only cooper-
ators p(1) and fraction of con�gurations with only defectors p(0) for scale-free network using the
game B with synchronous update, using 100 di�erent realizations of the network, each of them
simulated 100 times in 105 rounds. The initial state was a random distribution of cooperators
and defectors, it was normalized with the maximum value, with for N = 500 and 1000; and
z = 6.

Figure 6.9: Fraction of surviving con�gurations p(2), fraction of con�gurations with only cooper-
ators p(1) and fraction of con�gurations with only defectors p(0) for scale-free network using the
game B with synchronous update, using 100 di�erent realizations of the network, each of them
simulated 100 times in 105 rounds. The initial state was a random distribution of cooperators
and defectors, it was normalized with the maximum value, with N = 500 and 1000; and z = 8.
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Figure 6.10: Fraction of cooperators in the surviving con�gurations for scale-free network using
the game B with synchronous update, using 100 di�erent realizations of the network, each of them
simulated 100 times in 105 rounds. The initial state was a random distribution of cooperators
and defectors, it was normalized with the maximum value, with N = 1000 and z = 2, 4, 6, 8
and 16.
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Chapter 7

Future Work

The work presented in these pages is not complete. The next logical step is to complete the
results with simulations from the asynchronous actualization for both regular two-dimensional
lattice and scale-free networks.

The �tness distribution was not studied in this work.
There is a function already programed and tested for small-world networks [25]. In these

kind of networks, each node connects m = z
2 times to other nodes chosen at random. Those

networks when used with this model will hopefully contribute to provide a better understanding
of the model.

A new type of game can be considered with a variable η for the game centered in each node
depending on the number of nodes that take part in that game.

It would be interesting to consider a variable η dependent on time. Meaning, the value of η
would be dependent on the round.

For small-world networks it would also be an interesting experiment to change some of the
connections between each round.

Another possible inovation is allowing to have several moves in a round, and instead of, each
node having one simple answer, they can have a stategy (eg. a TFT would cooperate if most of
the nodes in the group in the last move had cooperate, instead it would defect).

A possible and interesting option, instead of introducing several moves in a round and create
complex strategies, it would be to introduce the reciprocators, which only contribute if a given
number of nodes are cooperators otherwise they will defect [26].

One must notice that most of these ideias are in this moment only ideias and no deep study
about their usefulness was made.
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Conclusion

The results of the simulations for the one-dimensional regular ring networks and for scale-
free networks are in agreement with previous results [13]. The behavior of the total fraction
of cooperators averaged over all con�gurations and starting with a random initial condition
was similar in both cases. A boost in the cooperation was found for the scale-free network
when compared with the regular one-dimensional ring network, meaning the total fraction of
cooperators is bigger for lower values of the parameter of the e�ciency of the contributions η.
The same boost was found for the game B in scale-free network when compared with the game
A. This e�ect was previously reported [13].

A di�erent type of network was studied: a regular two-dimensional lattice network.
Di�erent quantities were also studied for each of the networks mentioned above: the fraction

of cooperators in the surviving con�gurations and the fraction of con�gurations that fall in one
of the absorbing states for large amount times.

When analysing the number of con�gurations in each state it was found the existence of two
absorbing states, one with only cooperators and other with only defectors. It was found that the
number of con�gurations reaching the absorbing states depends on the size of the networkN , and
for an in�nite size network it exists an interval where the the fraction of surviving con�gurations
tends to 1 when the size of the network goes to in�nity. These surviving con�gurations are
dominated by cooperators, but a small group of defectors persists keeping that con�guration
away from the absorbing state with only cooperators. Consequentely it is important to study
averages considering only the surviving con�gurations. When comparing the results from the
asynchronous actualization with the ones from the synchronous actualization it was found that
the η interval where the system remains active is smaller in the later case. It turns out that for
a synchronous actualization a group up to z defectors can be converted simultaneously.

The study of the fraction of cooperators in the surviving con�gurations shows a phase tran-
sition value from an absorbing state full of defectors to a state dominated by cooperators as
a function of the e�ciency parameter η. It was found that this critical value depends on the
average connectivity z of the network, decreasing as the connectivity z of the network increases.
For the one-dimensional regular ring network it is possible, from an analysis of the gains of nodes
in selected con�gurations to predict critical values of η.
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