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Resumo 
 

O canal do Espinheiro é um dos quatro principais canais da Ria de Aveiro,
fazendo a ligação entre o Rio Vouga e o Oceano Atlântico. Nesta zona é onde 
se dá a mistura entre a água salgada proveniente do oceano e a água doce de 
origem fluvial. Para fazer a monitorização da temperatura da água no Canal do
Espinheiro foi utilizada uma nova tecnologia que consiste num cabo de fibra 
óptica longitudinal de 10 km de extensão, com 18 sensores de temperatura 
espaçados de 500 m, desde a embocadura até à foz do Rio Vouga. 
Resultados de um ano de monitorização da temperatura da água permitiram 
estudar a sua variabilidade espacial e temporal em função de dois forçamentos
principais: maré e condições meteorológicas. 
A evolução temporal longitudinal da temperatura da água foi estudada, tendo 
sido aplicadas técnicas matemáticas, tais como: análise espectral, análise 
espectral cruzada e funções empíricas ortogonais (EOFs). 
A análise espectral mostra picos de maior energia que surgem nas frequências 
semi-diurnas e diurnas. Estas frequências podem estar relacionadas com a
variação diurna da temperatura do ar e da maré, mostrando a importância das
variáveis meteorológicas na modulação da temperatura da água em regiões
pouco profundas. A análise espectral cruzada permitiu avaliar o desfasamento
temporal entre a temperatura da água e do ar, que varia conforme a 
profundidade do local. Também permitiu observar que a maré tem uma grande 
influência na distribuição da temperatura da água, nomeadamente perto da 
embocadura da laguna. As EOFs mostram que a variabilidade da temperatura 
da água pode ser explicada maioritariamente pela primeira componente, que 
está relacionada com a variação anual da temperatura do ar. 
Os resultados mostram que os dois forçamentos principais (maré e condições 
meteorológicas) determinam a temperatura da água no interior do canal do 
Espinheiro. Verifica-se ainda que a distribuição da temperatura da água é 
influenciada também pela variação sazonal das condições meteorológicas e 
pelas variações de profundidade do canal, que apresenta zonas de reduzida
profundidade. 
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Abstract 
 

The Espinheiro channel is one of the four main branches of Ria de Aveiro, 
establishing the connection between the Vouga River and the Atlantic Ocean.
This zone is where occurs the mixing between the salt water from the ocean 
and the freshwater from fluvial origin. In order to monitoring the water 
temperature in the Espinheiro channel a new technology was used, consisting 
on an optical-fibre longitudinal cable 10 km long with 18 temperature sensors 
separated by 500 m, from the mouth of the lagoon to the mouth of Vouga River.
Results of a one year monitoring of water temperature permitted to study its 
spatial and temporal variability in terms of two major forcing: tides and
meteorological conditions. 
The temporal evolution of the longitudinal water temperature was studied, and
mathematical techniques, such as spectral analysis, cross-spectral analysis 
and Empirical Orthogonal Functions (EOFs) were applied to the data. 
The spectral analysis shows high energy peaks in both semidiurnal and diurnal 
frequencies. These frequencies may be related to the daily variation and tidal
forcing, demonstrating the importance of the meteorological variables in the
modulation of the water temperature in shallow areas. The cross-spectral 
analysis permitted to evaluate the time lag between the water and air 
temperature, which varies depending on the local depth. It also permitted to 
observe that the tide has a great influence on the water temperature 
distribution, particularly near the mouth of the lagoon. EOFs show that the 
variability of the water temperature can be explained by the first component, 
which is closely related to the annual variation of the air temperature. 
The results show the importance of the two major forcings (tides and 
meteorological conditions) that determine the water temperature within the
Espinheiro channel. It can also be observed that the water temperature
distribution is also influenced by the seasonal variation of meteorological
conditions and by the channel’s depth variation, which presents very shallow
areas. 
 

 



 



 
 
 

vii 

Contents 

        Acknowledgements                                                                                                        i 

        Resumo                                                                                                                         iii 

        Abstract                                                                                                                         v 

          List of Figures                                                                                                             ix 

        List of Tables                                                                                                               xi 

1 Introduction ....................................................................................................................................... 1 

2 Study area ........................................................................................................................................... 5 

3 Materials and Methods.................................................................................................................. 7 

3.1 Data........................................................................................................................ 7 
3.2 Data analysis........................................................................................................ 10 

4 Observations and environmental data .................................................................................. 13 

4.1 Meteorological conditions ................................................................................... 13 
4.2 Tides .................................................................................................................... 14 
4.3 Water flow ........................................................................................................... 14 

5 Results and Discussion................................................................................................................. 17 

5.1 Spatial variability................................................................................................. 17 
5.1.1 Harmonic analysis ........................................................................................... 19 

5.2 Temporal variability ............................................................................................ 20 
5.2.1 Spectral analysis .............................................................................................. 26 
5.2.2 Cross-spectral analysis .................................................................................... 28 

5.3 Spatial- temporal variability ................................................................................ 36 
5.3.1 Seasonal variability ......................................................................................... 36 
5.3.2 Empirical Orthogonal Functions analysis ....................................................... 42 

6 Conclusions....................................................................................................................................... 45 

 References ......................................................................................................................................... 47 

 



 
 
 

viii 



 
 
 

ix 

List of Figures 

2.1: The Ria Aveiro lagoon and an enlargement of the Espinheiro channel. ............................... 6 

3.1: The Espinheiro channel and the location of the electrical and optical cables. ...................... 7 

3.2: Depth at each sensor’s position. ............................................................................................ 8 

3.3: Schematic representation of the mouth of Ria de Aveiro and the electrodes placed in the 

northern and southern borders for the measurement of the electrical potential difference 

(Dias et al., 2003). ................................................................................................................ 8 

3.4: Duration of the data time series ............................................................................................ 9 

4.1: Air temperature, precipitation and wind velocity in Aveiro meteorological station, from 

October 2004 to October 2005. .......................................................................................... 13 

4.2: Time series of the water level. Hourly records (1 to 26 February 2005). ........................... 14 

4.3: Tidal lunar water flow in mouth of the Ria de Aveiro. a) Records obtained between 6 

January and 30 March 2005; b) Records obtained between 1 and 26 February 2005. ...... 15 

5.1: Mean water temperature along the Espinheiro channel. ..................................................... 18 

5.2: Distribution of tidal amplitude (a) and phase (b) for S1, K1, P1, M2, S2 and T2 along the 

Espinheiro channel. ............................................................................................................ 20 

5.3: Original (a) and filtered time series of the water temperature measured in sensor 1, 

showing the high (b) and low frequencies (c). ................................................................... 23 

5.4: Original (a) and filtered time series of the water temperature measured in sensor 2, 

showing the high (b) and low frequencies (c). ................................................................... 23 

5.5: Original (a) and filtered time series of the water temperature measured in sensor 6, 

showing the high (b) and low frequencies (c). ................................................................... 24 

5.6: Original (a) and filtered time series of the water temperature measured in sensor 10, 

showing the high (b) and low frequencies (c). ................................................................... 24 

5.7: Original (a) and filtered time series of the water temperature measured in sensor 13, 

showing the high (b) and low frequencies (c). ................................................................... 25 

5.8: Original (a) and filtered time series of the water temperature measured in sensor 19, 

showing the high (b) and low frequencies (c). ................................................................... 25 

5.9: Energy spectrum of the time series of water temperature measured in sensors 1, 2, 6, 10, 

13 and 19. The vertical bar indicates a 95% confidence level. .......................................... 27 

5.10: Cross spectrum, coherence and phase between the water level in Barra and the water 

temperature measured in the sensor 1. ............................................................................... 28 



 
 
 

x 

5.11: Cross spectrum, coherence and phase between the water level in Barra and the water 

temperature measured in the sensor 2. ............................................................................... 29 

5.12: Cross spectrum, coherence and phase between the water level in Barra and the water 

temperature measured in the sensor 6. ............................................................................... 29 

5.13: Cross spectrum, coherence and phase between the water level in Barra and the water 

temperature measured in the sensor 10. ............................................................................. 30 

5.14: Cross spectrum, coherence and phase between the water level in Barra and the water 

temperature measured in the sensor 13. ............................................................................. 30 

5.15: Cross spectrum, coherence and phase between the water level in Barra and the water 

temperature measured in the sensor 19. ............................................................................. 31 

5.16: Cross spectrum, coherence and phase between the air temperature and the water 

temperature measured in the sensor 1. ............................................................................... 33 

5.17: Cross spectrum, coherence and phase between the air temperature and the water 

temperature measured in the sensor 2. ............................................................................... 34 

5.18: Cross spectrum, coherence and phase between the air temperature and the water 

temperature measured in the sensor 6. ............................................................................... 34 

5.19: Cross spectrum, coherence and phase between the air temperature and the water 

temperature measured in the sensor 10. ............................................................................. 35 

5.20: Cross spectrum, coherence and phase between the air temperature and the water 

temperature measured in the sensor 13. ............................................................................. 35 

5.21: Cross spectrum, coherence and phase between the air temperature and the water 

temperature measured in the sensor 19. ............................................................................. 36 

5.22: Seasonal representation of the water temperature variability. Color bar shows 

temperature in (ºC). ............................................................................................................ 37 

5.23: Water level (panel 1) and water temperature (panel 2) at sensors 1, 2 and 7 for 

December 2004. ................................................................................................................. 39 

5.24: Water level (panel 1) and water temperature (panel 2) at sensors 1, 2 and 7 for July 

2005.................................................................................................................................... 39 

5.25: MODIS images of sea surface temperature....................................................................... 41 

5.26: Time series of the sea surface temperature, water temperature measured in sensor 1 and 

air temperature. .................................................................................................................. 42 

5.27: Spatial (a) and temporal (b) distribution of the water temperature first EOF. .................. 42 



 
 
 

xi 

List of Tables 

5.1: Correlations between the water temperature measured in the sensors and the PC1, and 

the correlations between the water and air temperature. Strength of correlation is defined 

as **Strong. |r|≥0.8; *Moderate. 0.5≤|r|≤0.8; Weak. r|≤0.5 (Reed et al., 2008). ............... 43 

 



 
 
 

xii 



 
 
  

Introduction   1 

1 Introduction 

Water temperature plays a key environmental, ecological and morphological role 

within an estuary. “An estuary is defined as a semi-enclosed coastal body of water which 

has a free connection with the open sea and within which sea water is measurably diluted 

with freshwater derived from land drainage”(Cameron and Pritchard, 1963). Accordingly, 

an estuary is a zone of transition between the marine-dominated systems (ocean) and the 

upland river systems.  

Water temperature influences the rate of plant photosynthesis (Wang et al., 2007), 

the metabolic rates of aquatic organisms (Atkinson et al., 1987), and the sensitivity of 

organisms to toxic wastes, parasites, and diseases (USEPA, 1997). As example, water 

temperature increases, the capacity of water to hold dissolved oxygen becomes lower. 

Estuarine water temperature in temperate regions is primarily a function of the 

temperatures of influent streams, rivers, the ocean, and tidal stage (Reid and Wood, 1976). 

Estuarine water temperature also varies with air temperature, depth, which leads to vertical 

temperature gradients, changes in the amount of freshwater, and the extent to which 

freshwater is mixed with marine water by winds or tides. Also, discharges of “cooling” 

waters from power plants and municipal or industrial effluents are sources of thermal 

pollution in the coastal zone. Because most estuaries are shallow, there can be considerable 

diurnal and seasonal temperature variations (Kaplan et al., 2003). 

In order to characterize the water temperature in coastal regions some studies have 

been performed: Aliani et al. (2004) applied the tidal harmonic analysis to identify the low 

frequencies in the temperature series at a marine shallow water hydrothermal vent in Milos 

Island. Harcourt-Baldwin and Diedericks (2006) studied the density currents in Tomales 

Bay (California) whose formation is controlled by tidal conditions, ocean temperature, 

wind, insolation and estuary depth; freshwater inflow at the head of the estuary had no 

impact on the density intrusions. Paraso and Valle-Levinson (1996) concluded that the 

barometric pressure and wind forcing were responsible for the horizontal water 

temperature gradient in the lower Chesapeake Bay. Uncles and Stephens (2001) studied the 

annual cycle of temperature and associated heat fluxes in the Tamar Estuary and concluded 

that the daily averaged heat transport towards the coastal zone closely followed the 

temperature difference between freshwater and coastal waters and was modulated by both 
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freshwater flow and spring-neap tidal variations. Newton and Mudge (2003) studied the 

temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa 

(Portugal) and demonstrated that in areas inside of the lagoon there were different 

temperature and salinity characteristics compared to the inflowing coastal water, both in 

Winter and Summer. Thomas et al. (2002) concluded that the differences in sea surface 

temperature (SST) along the central coast of Maine (USA) in Summer are due to 

differences in residual circulation, freshwater input and flushing. Empirical Orthogonal 

Functions (EOFs) analysis was used to study the dominant patterns of SST variance in 

Delaware Bay (Keiner and Yan, 1997) and to study the SST variability off Northern and 

Central California from AVHRR Satellite Imagery (Armstrong, 1995).  

In this work is studied the water temperature variability analysis along the 

Espinheiro Channel. The Espinheiro Channel is one of the four main branches of Ria de 

Aveiro, a mesotidal and shallow coastal lagoon located in the northwest coast of Portugal. 

This channel connects the major source of freshwater of the lagoon, the Vouga River, to 

the Atlantic Ocean, being ideal to perform studies such as the one proposed here. Ria de 

Aveiro provides natural conditions for harbor, navigation and recreation facilities and it is 

also a place of discharge of domestic and industrial wastes. 

The fast and complex dynamics of Ria de Aveiro, along with its physical and 

biogeochemical importance has motivated several studies in the region, including: 

numerical modeling studies of its hydrodynamics (Dias, 2001; Sousa and Dias, 2007; Vaz 

et al., 2007). Previous hydrological characterizations of Ria de Aveiro (Dias et al., 1999; 

Vaz et al., 2005; Vaz and Dias, 2008) conclude that the lagoon can be considered as 

vertically homogeneous, except in very strong freshwater flows events, where the lagoon 

becomes weakly stratified. Several studies were performed to investigate topics such as the 

tidal propagation in the lagoon (Dias et al., 2000), the Lagrangian transport of particles 

(Dias et al., 2001) and sediment transport (Lopes et al., 2001). Abrantes et al. (2006) 

studied the suspended sediment concentration in different parts of the lagoon during tidal 

cycles which showed a significant spatial and temporal variability. 

The characteristics of Ria de Aveiro, as well as of other estuarine systems, make 

permanent monitoring particularly important for its management. The use of conventional 

sampling technologies of physical parameters revealed to be very expensive and hard to 

use in high spatial and temporal scales. Water temperature is closely connected to many 
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biological and chemical processes in the estuary. For this reason, and because it is easily 

measured, temperature is commonly monitored. To monitor the water temperature there 

are various instruments, most of all based on the use of thermistors (type of resistor with 

resistance varying according to its temperature), but most are only used for short time 

periods (Vaz and Dias, 2008). Goto et al. (2003) used the WaDar temperature logger, 

which is a shelf-recording thermometer designed for long term temperature monitoring, in 

order to monitor hydrothermal activity. With the purpose of long term monitoring water 

temperature and without the need of regular human intervention, a new technology 

composed by an optical longitudinal cable integrating fibre Bragg grating sensors was 

developed and installed in the Espinheiro channel, in the frame of the research project 

Proteu (POCTI/MAR/15275/1999). 

The objectives of this work are to study the water temperature variability along the 

channel that connects the ocean to the major freshwater input in the lagoon, evaluating the 

importance of the main forcing mechanisms: tides and meteorological conditions. The 

water temperature is monitored using the new technology referred above. The data under 

analysis consist in 18 annual time series of water temperature from sampling locations 

separated by 500 m, allowing the study of its spatial and temporal variability. The temporal 

evolution of the longitudinal water temperature gradients is studied and mathematical 

techniques such as the spectral and cross-spectral analysis, harmonic analysis and EOFs 

are applied to the data. 

This work is divided into six sections. Section 2, includes the description of the study 

area. Section 3 contains short descriptions of the data and of the mathematical techniques 

applied to study the spatial, temporal and spatial-temporal variability of the water 

temperature. Section 4 shows the observations and environmental data used in this study. 

The results are discussed in Section 5. Section 6 summarizes the main conclusions and the 

future work suggestions.  
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2 Study area 

Ria de Aveiro is a mesotidal shallow (mean depth of about 1 m relative to the local 

datum) vertically homogeneous lagoon with a very complex geometry located on the 

northwest Atlantic coast of the Iberian Peninsula, in Portugal (40º38’N, 8º45’W) (Figure 

2.1). It is 45 km long and 10 km wide and covers an area of 83 km2 at high tide (spring 

tide), which is reduced to 66 km2 at low tide. It is characterized by narrow channels and by 

large areas of mud flats and salt marshes. The lagoon has four main channels: Mira and 

Ílhavo channels in its southern region, S. Jacinto channel in its northern region and the 

Espinheiro channel in the very complex central area of the lagoon. In order to simplify, the 

study area from the mouth up to the channel’s head, close to the mouth of the Vouga River 

will be hereinafter referred as Espinheiro channel. The study area is approximately 11 km 

long, has an average width of 200 m and a mean depth, along its longitudinal axis, of about 

10 m.  

The tides in the Ria de Aveiro are semidiurnal, being M2 and S2 the most important 

constituents, representing more than 90% of the tidal energy (Dias et al., 1999). The 

estimated tidal prism for the lagoon’s mouth at extreme spring and extreme neap is 

according to Dias (2001) 136.7×106 m3 and 34.9×106 m3, respectively. The estimated tidal 

prism for the real Espinheiro channel is about 40×106 at extreme spring tide and 15×106 m3 

at extreme neap tide (Dias, 2001). The total estimated freshwater input for the lagoon is 

very small (about 1.8×106 m3 during tidal cycle) (Moreira et al., 1993) when compared to 

the tidal prism both at the mouth or at the beginning of Espinheiro channel.  

Espinheiro channel may be considered the most important area of the Ria de Aveiro, 

because the strongest currents are observed here, reaching values higher than 2 ms-1. The 

other channels are mainly shallow and tidal flat areas, contributing to a strong damping of 

currents (Vaz, 2007). The salinity ranges from fluvial (about 0 psu) to oceanic typical 

values (between 32 and 35 psu), depending on the freshwater inputs (Dias, 2001; Vaz et al, 

2005). The hydrodynamic of the channel is largely dependent on the tidal wave 

characteristics and freshwater inputs variability. 

The most important freshwater contribution is from Vouga River. Its mouth is 

located near the head of the study area and therefore its freshwater inflow is determinant in 

the establishment of the channel’s physical patterns. When the river flow is low (less than 
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10 m3s-1) the water column is filled with salt water from the ocean until almost 8 km from 

the channel’s mouth. When the river flow is higher than 100 m3s-1 vertical stratification is 

established along the channel, and the freshwater from Vouga River extends its influence 

up to the channel’s mouth. When the river flow is between 30 and 50 m3s-1, the channel 

can be divided into three deferent regions: a lower marine region where the thermohaline 

variables present oceanic values; an intermediate inner region where mixing between 

ocean and river water occurs and a upper fluvial region which is dominated by freshwater 

but is still subject to a semidiurnal tidal action (Vaz and Dias, 2008). 

 
Figure 2.1: The Ria Aveiro lagoon and an enlargement of the Espinheiro channel. 
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3 Materials and Methods 

3.1 Data 

The data used in this study are: the water temperature measured in 18 sensors along 

the channel, the water flow between the lagoon and the ocean, the meteorological data at 

the University of Aveiro, the sea surface elevation (SSE) at the mouth of the lagoon and 

the sea surface temperature (SST) along the Portuguese coast.  

The water temperature was measured through an optical sensing cable integrating 

fibre Bragg grating sensors. This cable is fixed along the channel bed, from the lagoon 

inlet to the river mouth, and is connected to a datalogger and to a GSM system. It has 18 

sensors (separated by 500 m) along the 10 km allowing the long term and real time 

monitoring of this channel with an excellent spatial resolution. The original data have ~18 

minutes of temporal resolution, and the measurements were performed sequentially from 

sensor 1 to 18, and therefore are not simultaneous. The field data used in this study results 

of 1-year measurements of water temperature data (from September 2004 to October 2005, 

when Portugal was under a severe drought). The data under analysis consists of 18 annual 

time series of water temperature with 402 days length from sampling locations 500 m 

distant. The original data was hourly interpolated in order to obtain simultaneously results 

for all sensors. 

It must be noted that in Figure 3.1 and Figure 3.2, 19 sensors are represented, but 

sensor 16 is inactive. Sensor 1 is located near the mouth of the lagoon and the last one 

(sensor 19) is located near the channel’s head, close to the mouth of the Vouga River. 

These sensors were used as a reference to the Atlantic Ocean and to the Vouga River. 

 
Figure 3.1: The Espinheiro channel and the location of the electrical and optical cables. 
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Figure 3.2: Depth at each sensor’s position. 

 

The water flow between the ocean and the lagoon was measured with an electrical 

cable with electrodes at its terminals deployed transversally to the inlet channel (Figure 

3.3). These electrodes measure the electrical potential difference between the mouth and 

border of Ria de Aveiro (Figure 3.1). This electrical potential difference is induced by the 

effect of the geomagnetic field through charge in solitary movement with the water that 

flows through the channel. Then, knowing the geomagnetic field and the electrical 

potential difference, the water flow through the mouth of Ria de Aveiro can be quantified, 

allowing the study of the lagoon-ocean exchanges. This system was previously calibrated, 

adjusting its results with values obtained by hydrodynamic modeling. The implementation 

and basis of this system is fully described in Nolasco et al. (2006). These data are used to 

characterize the entrance and exit of water in Ria de Aveiro.   

 
Figure 3.3: Schematic representation of the mouth of Ria de Aveiro and the electrodes placed in the 
northern and southern borders for the measurement of the electrical potential difference (Dias et al., 
2003). 
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Hourly meteorological data (air temperature, precipitation and wind velocity) were 

measured at the meteorological station located at the University of Aveiro (40º38’N, 

8º39’W). This data set is from October 2004 to October 2005, covering the period under 

analysis.  

The measurements of SSE were obtained from a tidal gauge located at the mouth of 

the lagoon.  

The satellite data were obtained from MODIS (Moderate Resolution Imaging 

Spectroradiometer), a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) 

satellites. Terra's orbit around the Earth is timed so that it passes from north to south across 

the equator in the morning, while Aqua passes south to north over the equator in the 

afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 

to 2 days, acquiring data in 36 spectral bands, between 0.405 and 14.385 µm, and they 

acquire data in three spatial resolutions: 250 m, 500 m and 1000 m. These observations can 

be processed to show many properties of the Earth's surface, from temperature and 

phytoplankton measurements near the surface of the ocean to fire occurrences and land 

cover characteristics on the land surface. The measurements can only be taken in ocean 

regions that are free of clouds and sun glint. These data were used to produce SST daily 

maps for the Summer months. These SST data are concurrent with the period of the water 

temperature data (measured by the sensors), in order to observe the influence of the SST in 

the water temperature measured at the sensors located near the mouth of the lagoon.  

The duration of the data time series are summarized in Figure 3.4. 

 
Figure 3.4: Duration of the data time series (WT-water temperature; WF-water flow; MD- 
meteorological data; SSE –sea surface elevation; SST-sea surface temperature). 
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3.2 Data analysis 

Data were analyzed in order to study the spatial and temporal water temperature 

variability in the Espinheiro channel and its relation with the forcing mechanisms. 

In order to study the spatial variability, it was necessary to proceed to a previous 

statistical analysis, in order to verify the behavior of water temperature along the channel. 

With the purpose of establishing the relevance of each tidal constituent along the 

Espinheiro channel, the classical harmonic analysis was applied to the water temperature 

data using the T_TIDE package (Pawlowicz et al., 2002). 

The next step is the study of the water temperature temporal variability along the 

Espinheiro channel, evaluating the relations between the temperature data and the available 

meteorological and tide data along the channel. In order to separate the high frequency 

signal (tidal oscillations) and the low frequency signal (subtidal oscillations), the trend of 

the water temperature time series was removed and the series were high/low-pass filtered, 

considering a cut-off frequency of 0.0000093 Hz (30 h). 

Spectral analysis in the domain of frequency in this work is very important because it 

allows the evaluation of the ocean-atmosphere interaction. These results permit to 

understand the impact of atmospheric perturbations and the tide over the water 

temperature. This analysis (8 Hanning windows) consists in partitioning the variance of a 

time series into a function of frequency. The study of the energy spectrum provides an 

alternative way of estimating the attenuation of the tidal and subtidal signals in different 

frequencies while progressing landwards. Spectral density plots were constructed using the 

spectrum function of MATLAB on hourly data to determine the power spectrum. Here, 

power is defined as energy per unit time. 

Cross-spectral analysis was applied to two pairs of time series: water temperature 

and water level, as well as water temperature and air temperature. Before the calculations 

were made both high and low-pass filters were applied to all time series. The cross-spectral 

analysis (8 Hanning windows) provides: a co-spectrum (real part of the spectrum), which 

defines the relationship between the two variables (if these variables are completely 

independent the spectrum is zero, and if they are identical it becomes the ordinary power 

spectrum); a coherence spectrum, which indicates how well correlated the two sequences 

are as a function of frequency and a phase spectrum, which quantifies the data time lag.  
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Empirical Orthogonal Function (EOF) analysis provides a convenient method for 

studying the spatial and temporal variability of long time series of the water temperature 

data over large areas. Among the various available methods of analysis, this one is a 

particularly useful tool to study large quantities of multi-variate data. 

EOF analysis divides the temporal variance of the data into orthogonal spatial 

patterns called empirical eigenvectors and establishes spatial patterns of variability. 

Moreover it is computed the associated time variation to each EOF and also assigned a 

value of “importance” to each pattern (Bjornsson and Venegas, 1997). In other words, EOF 

analysis is used to decompose a time-series into its orthogonal component modes, the first 

few of which can be used to describe the dominant patterns of variance in the time series. 

The lowest modes have the largest spatial scales and represent the most dominant modes of 

variability. This method is fully described in Emery and Thompson (1997). 

In order to established the relation between the temporal variation of the water 

temperature inside the channel and the inter-annual variability of the air temperature, the 

correlation between the first principal component (PC1) of the first EOF and the air 

temperature was calculated. 

Finally, correlations between the water temperature measured in the sensors and the 

forcing variables (tide, air temperature, sea surface temperature) were also calculated.  
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4 Observations and environmental data 

4.1 Meteorological conditions 

In Figure 4.1 are plotted the hourly values of air temperature and precipitation and 

daily values of wind velocity measured at the Aveiro meteorological station from October 

2004 to October 2005.  

The annual average temperature during this period is 15.3 ºC; the average 

temperature for Winter months is 9.3 ºC, and for Summer months is 20.2 ºC. In the last 

months of the study period the air temperature reaches unusual high values, such as 35.5 ºC 

in the beginning of June 2005 and 38.2 ºC in the mid-July 2005. 

The rainy season was the Autumn of 2004, reaching a daily maximum of about 58 

mm. During the other seasons almost there was no precipitation in this zone (severe 

drought). The only exception was in March where some rainfall existed. According to 

Fonseca et al. (1988) the annual average precipitation in Aveiro region is 913.5 mm. Since 

there was almost no precipitation during the study period, the river flow was considerably 

lower than the typical values. 

 
Figure 4.1: Air temperature, precipitation and wind velocity in Aveiro meteorological station, from 
October 2004 to October 2005. 
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The wind velocity maximum was found in the beginning of Winter and in the 

beginning of Autumn, reaching a daily maximum of 15 and 18 ms-1. The mean values of 

wind velocity remain almost constant during all year with values around 3.7 ms-1. Figure 

4.1 also shows high frequency of winds blowing from North and Northwest directions. 

These northern winds are characteristic of the Summer season. In the Winter the wind 

regime is more variable, with strong fluctuations in direction and intensity, with 

predominance winds blowing from South and Southwest. 

4.2 Tides 

Figure 4.2 shows (as example) the time series for a 26-day period of hourly values of 

the water level. 

The tide was semi-diurnal with a diurnal inequality. A minimum water level of 0.6 m 

and a maximum water level of 3.3 m in the spring tide have been observed. The minimum 

tidal amplitude during this period was 1.3 m at neap tide and the maximum amplitude at 

spring tide was 2.65 m.  

 
Figure 4.2: Time series of the water level. Hourly records (1 to 26 February 2005). 

 

4.3 Water flow 

Figure 4.3 shows the tidal lunar water flow determined using measurements of 

electrical potential difference in mouth of the Ria de Aveiro for the complete data set 

(Figure 4.3a) and 26-day period (Figure 4.3b).  

 The water flow has a similar behavior to the tide (as expected). These data are used 

only to characterize the water exchange between the Ria de Aveiro and the near ocean. The 
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water transport during the flooding is responsible for the ocean water entrance into the 

estuary. 

The average values of total flow through the inlet during flood and ebb for spring 

and neap tide were computed (Figure 4.3b). During spring tide, the average value of water 

flow passing across the bar during the flood period is 4239.1 m3s-1 and during the ebb 

period is 4260.4 m3s-1. During neap tide, the average value during flood is 2540.2 m3s-1 

and during the ebb is 2813.3 m3s-1. From these results it may be concluded that during this 

period the water exchange is greater in the ebb. The highest values of water flow are found 

in spring tide, and the lowest in neap tide, reinforcing the importance of the fortnight 

modulation in Ria de Aveiro. 

 
Figure 4.3: Tidal lunar water flow in mouth of the Ria de Aveiro. a) Records obtained between 6 
January and 30 March 2005; b) Records obtained between 1 and 26 February 2005. 
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Results and Discussion  17 

5 Results and Discussion 

5.1 Spatial variability 

Figure 5.1 shows the average water temperature distribution along the Espinheiro 

channel. These figures are obtained by monthly-averaging the water temperature data from 

each sensor. The field data for sensor 16 (7.5 km) does not exist, as previously referred. 

In general, it can be observed that the water temperature values decay from Autumn 

to Winter. During the Winter months, water temperature is nearly constant along the 

channel, but slightly decreasing towards the channel’s head (the oceanic water temperature 

is usually higher than the freshwater temperature). In Summer, the water temperature 

distribution along the channel follows the same pattern. Two minima (12-14 ºC) in 

positions 2.5 and 3.5 km and one maximum (18-20 ºC) at 5.5 km from the mouth are 

observed. 

In the mouth of the channel, the water temperature ranges from 14 ºC during Winter to 

17/18 ºC during the Summer. Near the channel’s head, which is the fluvial region, the 

water temperature ranges from 12 ºC during Winter to 16/17 ºC during Summer. The 

measurements show that the water temperature values in the mouth during Summer months 

are higher than those measured in the channel’s head, revealing a tendency opposed to 

what would be expectable. This fact may be explained by a river flow lower than the 

typical values during the study period.  

The difference between the inlet ocean temperature and the temperature at the far 

end of the channel can reach 2 ºC (in Winter season), these spatial differences being 

important in the net export of heat energy from the lagoon toward offshore waters. 

For the entire survey period, the water temperature between positions 2.5 and 3.5 km 

is the lowest. This fact may be explained by the sensors location in the São Jacinto and 

Espinheiro channels convergence, where on ebb the water temperature could be lower, as it 

was recorded in these sensors (the water that leaves the São Jacinto channel could be 

colder than the water that comes from the upstream area of the Espinheiro channel). This 

may also be due to some technical problems affecting these sensors. 

Between positions 5.5 and 6.5 km the water temperature presents its maximum 

values during Spring and Summer (about 20 ºC). This may be explained by the channel’s 
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shallowness, and by the key role of the meteorological variables like air temperature and 

solar radiation in the water heating/cooling cycle. 

The water temperature distribution is less dependent on the river discharge and it is 

closely related to the inter-annual air temperature variation (Figure 4.1). As, in the study 

period the river flow was quasi null. Therefore this forcing should be considered of minor 

importance in the characterization of the longitudinal water temperature distribution during 

the study period. 

 
Figure 5.1: Mean water temperature along the Espinheiro channel. 
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5.1.1 Harmonic analysis 

The importance of each tidal constituent on the water temperature distribution along 

the Espinheiro channel can be evaluated through the application of the classical harmonic 

analysis (Pawlowicz et al., 2002) to the data. The results for six major tidal constituents 

(K1-23.93 h (principal solar); S1-24 h (radiational); P1-24.07 h (principal solar); S2-12 h 

(principal solar); T2-12.02 h (larger elliptical solar); M2-12.42 h (principal lunar)), are 

plotted in Figure 5.2. 

Through the analysis of Figure 5.2a, it can be observed that the major tidal 

constituent is S1 (about 1.4 ºC of amplitude along the channel), revealing the diurnal 

periodicity and the importance of the meteorological variables (air temperature, relative 

humidity, cloud cover and solar radiation) on the water heating/cooling cycle. S2 is the 

constituent that follows in amplitude (about 0.3 ºC) but only in some parts of the channel, 

specifically between positions 1-5 km and 8-9 km. In positions 0.5, 5.5, 6 and 8.5 km M2 is 

the highest (about 0.4 ºC), as expected, since M2 has most of the tidal energy in Ria de 

Aveiro and for this reason can be considered representative of the tide in this lagoon (Dias 

et al., 1999). 

The other constituents, such as T2, P1 and K1, have similar amplitudes (about 0.15 ºC 

along the channel).  

In Figure 5.2b, it can be observed that the phase of the harmonic constituents 

increase along the channel. The water temperature propagation along the channel is altered 

by the channel bathymetry. A change in the estuarine bathymetry will most often alter the 

circulation within an estuary (Harcourt-Baldwin and Diedericks, 2006).  

Between positions 5.5 and 6.5 km the phase is about 92º (almost 6.3 hours) for the S1 

constituent and about 350º (almost 12.1 hours) for the M2 constituent. In these positions, 

there is a rapid phase change due to an increase in the friction (a shallow area). More 

specifically, the phase of the diurnal constituents decreases and the phase of the 

semidiurnal ones increases. This may be due to the fact the phases of harmonic 

constituents are mainly affected by friction while their amplitudes are both damped by 

friction and amplified or eventually diminished by the geometry along the channel (Hsu et 

al., 1999). 
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Figure 5.2: Distribution of tidal amplitude (a) and phase (b) for S1, K1, P1, M2, S2 and T2 along the 
Espinheiro channel. 
 
 

5.2 Temporal variability 

In this section the temporal variability along the Espinheiro channel is studied and 

for reasons of simplification, the following steps of this work will not include results for all 

sensors. The selection was made taking into account the sensors location and general 

contribution to the comprehension of the system and so only the sensors that exhibited 

more important characteristics for the study were selected. The selected studied sites were: 

sensor 1, located near the Barra of Aveiro, which is of interest to the study because it 

measures water characteristics very similar to seawater; sensor 2, located between the tide-

gauge and Triângulo das Marés; sensor 6, located in the beginning of the São Jacinto 

channel; sensor 10, located at beginning of the Ílhavo channel, which is interesting to 

understand the importance of the water exchange between the Espinheiro channel and the 

adjacent channels; sensor 13, located in a shallow area and where the temperature recorded 

by the sensors is higher; finally, sensor 19, which presents a location near the mouth of the 

Vouga River, whose contribution as a main source of freshwater into the Espinheiro 

channel is generally non- negligible.  



 
 
  

Results and Discussion  21 

With the purpose of analyzing the results as a function of frequency, they were 

decomposed into high and low frequencies, using the filter referred on Section 3.2. The 

influence of the meteorological forcing in the time series is recognizable through the 

application of a low-pass filter (subtidal frequencies), while the high-pass filter shows 

evidence of tidal forcing (tidal frequencies).  

From Figure 5.3 to Figure 5.8 both the original and filtered time series of the water 

temperature measured in sensors 1, 2, 6, 10, 13 and 19 are represented. 

In general, all sensors measure similar temperature variations throughout the year. 

There is evidence of seasonal variation, as the water temperature is lower in Winter and 

higher in Summer, which is observed in all sensors. This seasonal variation is mainly 

observed at the low frequencies, and it dictates the behavior of the time series in terms of 

long term general variability. The high frequencies, on the contrary, are responsible for the 

daily variation and do not contribute to the global pattern of variation. The water 

temperature measured by sensor 6 has a quasi-constant pattern during the whole year. 

In the subtidal frequencies, a similar pattern can be observed for all sensors (with the 

exception of sensor 6), which revealed a general trend for water heating during the 

Summer months and for water cooling during the Winter months. Consequently,  the water 

temperature can vary ± 5 ºC due to the long term processes, which can be attributed to the 

warming/cooling global effects inherent to the dynamics of the planet throughout the 

seasons. In the tidal frequencies, the solar heating effect can clearly be observed, 

reinforced by the semidiurnal and diurnal effect the tidal origin. 

At the subtidal frequencies, the pattern obtained for Ria de Aveiro is dictated by 

weather and/or meteorological long term events. The increase of the subtidal oscillations is 

greater in Winter than in Summer, which is likely to be related to sudden changes in the 

meteorological conditions over the area, shown in the abrupt changes in wind direction in 

Figure 4.1. The low frequencies and the wind velocity have similar patterns. Strong winds 

resulted in changes in the water temperature. Depending on the direction, they will either 

cause a decrease if blowing southwards or an increase if blowing northwards (e.g. on 

Julian day 320 (15 November) the wind velocity was 18 ms-1 and the water temperature 

diminishes by 1 ºC). Harcourt-Baldwin and Diedericks (2006) showed that the wind has a 

strong influence on the formation of a density current in Tomales Bay. In the lower 
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Chesapeake Bay, Paraso and Valle-Levinson (1996) found that the wind forcing were 

responsible for the horizontal water temperature gradient. 

Observing in more detail, in Figure 5.3a and Figure 5.4a the behavior of the water 

temperature is similar, what may be explained by the very short distance between these 

sensors. The mean of the water temperature measured in these sensors is about 16 ºC. The 

water temperature measured in these sensors is mainly influenced by the tide and the 

oceanic water temperature (due to the proximity of the sea). The temperature at the 

entrance of the mouth exhibits strong tidal fluctuations and a diurnal inequality.  

In Figure 5.5a, the water temperature is low (about 13 ºC) independently of the 

season for the whole study period. As previously mentioned, it may be due to the sensors 

location in the São Jacinto and Espinheiro channels convergence. However, there is 

evidence of two maxima around Julian days 259 (16 September) and 299 (26 October) of 

17.9 ºC and 18.7 ºC, respectively. The first maximum is observed in the low frequencies (3 

ºC) (Figure 5.5c); this may be due to the occurrence of a strong change in the wind 

direction, as can be observed in Figure 4.1, where the wind changes from southward to 

northward. This maximum is observed in all time series. The second maximum is observed 

in the high frequencies (5.6 ºC).  

The water temperature measured in sensor 13 (Figure 5.7a), located about 1.5 km of 

sensor 10 (Figure 5.6a), presents a similar behavior (the mean of the water temperature is 

about 16.5 ºC), probably due to the higher air temperatures and the shallowness of these 

sensors location (a decrease in depth resulted in warmer water temperatures) (Figure 3.2). 

The maximum temperatures measured in these sensors are reached at the far end of the 

channel, where the tidal effect is not so strong. The mean of the water temperature 

measured in sensor 19 (Figure 5.8a) is 14.8 ºC. The decrease of the water temperature in 

this sensor may be explained, by its location near the mouth of the Vouga River. Although 

the river flow was reduced, it can have some influence on the water temperature. 
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Figure 5.3: Original (a) and filtered time series of the water temperature measured in sensor 1, 
showing the high (b) and low frequencies (c). 

 
Figure 5.4: Original (a) and filtered time series of the water temperature measured in sensor 2, 
showing the high (b) and low frequencies (c). 
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Figure 5.5: Original (a) and filtered time series of the water temperature measured in sensor 6, 
showing the high (b) and low frequencies (c). 

 
Figure 5.6: Original (a) and filtered time series of the water temperature measured in sensor 10, 
showing the high (b) and low frequencies (c). 
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Figure 5.7: Original (a) and filtered time series of the water temperature measured in sensor 13, 
showing the high (b) and low frequencies (c). 

 
Figure 5.8: Original (a) and filtered time series of the water temperature measured in sensor 19, 
showing the high (b) and low frequencies (c). 



 
 
  

Results and Discussion  26 

5.2.1 Spectral analysis 

Spectral density plots were used to determine the power spectrum and to find any 

periodic phenomena. Before performing the spectral analysis, the time series trend and 

mean was removed. Energy spectral density plots of the water temperature measured in 

sensors 1, 2, 6, 10, 13 and 19 are depicted in Figure 5.9. 

The most energetic peaks are found at the diurnal and semidiurnal frequencies, but 

contributions at tridiurnal and quarterdiurnal tidal frequencies were also found. The energy 

spectrum also presents energetic subtidal oscillations (LP). Results also indicate that 

subtidal processes are usually less energetic than the diurnal oscillations, except in 

situations of extreme events, when the subtidal frequencies are amplified along the 

channel. Subtidal processes are more energetic than semidiurnal and quarterdiurnal 

oscillations and have frequencies varying from 3 to 23 days.  

In all sensors spectra, two main peaks are observed: one diurnal and one semidiurnal. 

The diurnal peak is the most energetic (almost 10 times higher) (in sensors 1, 2, 6, 10 and 

19), revealing the importance of the heating solar on the heating/cooling cycle of the water. 

In sensor 13 spectrum, three main peaks are observed, one diurnal, one semidiurnal and 

one quarterdiurnal. The semidiurnal peak is the most energetic one, but with a slight 

difference to the diurnal peak. The semidiurnal peak is associated to the tidal main 

periodicity in Ria de Aveiro. The peaks corresponding to the 3 and 4 cycles/day frequency 

are probably originated by the non-linear interaction between the propagation of the main 

tidal constituents and the bottom friction, as that sensor is located in a shallow area (Figure 

3.2). Concerning sensor 19, the same effect can be observed, but the diurnal peak is more 

energetic than the semidiurnal one (see Figure 5.2).  

The diurnal peak importance in the spectrum can be explained as follows: the Ria de 

Aveiro is a shallow water estuarine system with mean depth of about 1 m (over the local 

datum), and the water temperature is conducted not only by the tide, that has an important 

contribute at these frequencies, but also by heating from solar radiation incidence and air 

temperature daily variability. The semidiurnal peak in spectrum of the water temperature is 

related to the water input due to the tidal wave propagation along the channel. The results 

of the spectral analysis confirm the harmonic analysis results (Figure 5.2). 

 



 
 
  

Results and Discussion  27 

 

 
 

 
 

 
Figure 5.9: Energy spectrum of the time series of water temperature measured in sensors 1, 2, 6, 10, 13 
and 19. The vertical bar indicates a 95% confidence level. 
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5.2.2 Cross-spectral analysis 

The tides are the main forcing of the circulation in the Ria de Aveiro. In order to 

determinate the relationship between the water level and water temperature measured in 

sensors 1, 2, 6, 10 and 13, and also to obtain the phase difference and the coherence, the 

cross-spectral analysis was applied to the data (Figure 5.10 to Figure 5.15).   

In general, through the analysis of these figures, it can be observed that the water 

temperature and the water level reveal more significant coherence in sensor 2.  

Considering now only Figure 5.11, we can see that the water temperature and water 

level were coherent at frequencies between 1 (0.55) and 2 cycles/day (0.75). This highest 

correlation reveals that heat is transported significantly by the tide from the nearly ocean. 

At these frequencies the co-spectral density function indicates that the oscillations of the 

water level are well correlated, in particular at the semidiurnal frequencies (due to the 

proximity of the sea). For this semidiurnal period, the phase lag obtained between the two 

parameters is 2.54º, which corresponds to 5.5 minutes. The minimum of the water 

temperature measured in sensor 2 has a phase lag of 5.5 minutes, relative to the high tide in 

Barra.  

 
Figure 5.10: Cross spectrum, coherence and phase between the water level in Barra and the water 
temperature measured in the sensor 1. 
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Figure 5.11: Cross spectrum, coherence and phase between the water level in Barra and the water 
temperature measured in the sensor 2. 

 
Figure 5.12: Cross spectrum, coherence and phase between the water level in Barra and the water 
temperature measured in the sensor 6. 
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Figure 5.13: Cross spectrum, coherence and phase between the water level in Barra and the water 
temperature measured in the sensor 10. 

 
Figure 5.14: Cross spectrum, coherence and phase between the water level in Barra and the water 
temperature measured in the sensor 13. 
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Figure 5.15: Cross spectrum, coherence and phase between the water level in Barra and the water 
temperature measured in the sensor 19. 
 
 

In Figure 5.12 it can be observed that in semidiurnal frequencies, the co-spectrum 

presents negative values, which means that when the tidal range increases, the water 

temperature decreases. 

The cross spectrum obtained between the water level in Barra and the water 

temperature measured in sensors 10 and 13 has not high coherence in any frequency band, 

as observed, indicating that the influence of the tide in these areas is small. Sensor 10 is 

located at the beginning of the Ílhavo channel, where the tidal prism in this channel is 

about 13.5% relative to the tidal prism at the mouth (Dias, 2001). The tidal effect may be 

attenuated whenever there is convergence of two channels. In other words, the tide is 

distorted as it progress from the mouth towards the end of the channels. 

But at Figure 5.15 the spectra reveal the existence of energy peaks corresponding to 

the first harmonics of the semidiurnal constituents (coherence of about 0.5), revealing the 

importance of the shallow water constituents in a system like the Espinheiro channel. 

Results for the cross-spectral-analysis obtained between the water level in Barra and 

water temperature measured in sensor 18 (not shown) shows that they were coherent (0.6) 
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at the semidiurnal frequencies. For this semidiurnal period, the phase lag obtained between 

the two parameters is 169.5º, which corresponds to 5.85 hours and the minimum of the 

water temperature measured in sensor 18 (8.5 km from the mouth). 

Results show that the semidiurnal and diurnal frequencies are attenuated from the 

mouth to the far end of the channel, and that there is significant phase delay between the 

mouth and each sensor. Ria de Aveiro is a very shallow lagoon with a very complex 

geometry and for these reasons distortion occurs as the tidal wave propagates along the 

shallow channels. 

The air temperature is an important factor in the determination of the water 

temperature variability. In this way it is important to evaluate the phase lag between the air 

temperature and the water temperature measured in the sensors distributed along the 

Espinheiro channel and so the cross-spectral analysis was applied to the data (Figure 5.16 

to Figure 5.21). 

In general, the co-spectrum, coherence and phase spectra show that the time series of 

air temperature and the water temperature measured in each sensor have a coherence of 

almost 1 at the diurnal frequencies. At this frequency the co-spectral density function 

indicates that the oscillations between the air temperature and the water temperature at 

each sensor are well correlated. 

The negative values in the co-spectrum and the behavior of phase spectra show that 

the air temperature at the station is out of phase by approximately 180º relative to each 

sensor.  

Results for the cross-analysis obtained between the air temperature and water 

temperature measured in sensor 1 (Figure 5.16), show that they are coherent (0.83) at the 

diurnal frequencies. For this diurnal period, the phase lag obtained between the two 

parameters is -145.2º, but the diurnal peak of the co-spectrum is negative (180º-145.2º), 

which corresponds to the 2.32 hours. In other words, 2.32 hours is the time of response of 

the water temperature to undergo the influence of the air temperature. It is also visible in 

this figure that, in the low frequency band (about 10 days), the two variables were coherent 

(0.5), with lower energy than the diurnal peak. The same occurs in Figure 5.18 however, 

the coherence decreases significantly, indicating that the influence of the prescribed low 

frequency oscillations in these areas is small. 
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Figure 5.19 shows that the water temperature measured in sensor 10 and the air 

temperature were coherent at the diurnal frequencies. This sensor is located in a shallow 

area (~ 4 m). The phase lag is -150º, which corresponds to 2 hours, while in Figure 5.20 is 

of -157.3º, in this case corresponding to 1.5 hours. As it can be observed, the time of 

response of the water temperature to undergo the influence of the air temperature decreases 

as it goes further into the channel (the water column height decreases) (see Figure 3.2). 

This means that the temperature of the estuarine water column is controlled by the solar 

radiation. A similar result was found by Sepúlveda et al. (2004) in the Rio de la Plata 

estuary. 

In summary, the water temperature distribution along the Espinheiro channel closely 

followed the air temperature and was modulated by tidal variations. The solar radiation 

heating effect is important for the establishment of temperature patterns, especially in the 

sallow areas at the far end of the channel. 

 

 
Figure 5.16: Cross spectrum, coherence and phase between the air temperature and the water 
temperature measured in the sensor 1. 
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Figure 5.17: Cross spectrum, coherence and phase between the air temperature and the water 
temperature measured in the sensor 2. 

 
Figure 5.18: Cross spectrum, coherence and phase between the air temperature and the water 
temperature measured in the sensor 6. 
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Figure 5.19: Cross spectrum, coherence and phase between the air temperature and the water 
temperature measured in the sensor 10. 

 
Figure 5.20: Cross spectrum, coherence and phase between the air temperature and the water 
temperature measured in the sensor 13. 
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Figure 5.21: Cross spectrum, coherence and phase between the air temperature and the water 
temperature measured in the sensor 19. 
 
 

5.3 Spatial- temporal variability 

5.3.1 Seasonal variability  

Figure 5.22 shows the spatial-temporal pattern of water temperature in the 

Espinheiro channel. Through the analysis of this figure, it can be observed that in Winter 

the channel’s mouth presents higher water temperature values than the channel’s head. In 

the Summer months the channel’s head presents smaller water temperature than the mouth, 

as revealing a tendency opposed to what would be expectable. This may be explained by 

the fact the river flow was very low during the period under analysis. Then, the colder 

waters of the ocean mixed with the estuarine water in the channel’s head, causing a 

decrease of the water temperature in that area. 

It may be observed that the oceanic water temperature has a larger annual variability 

when compared to the seasonal fluvial water temperature variability, which presents a 

smaller range. 
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Figure 5.22: Seasonal representation of the water temperature variability. Color bar shows 
temperature in (ºC). 

 

From Autumn to Winter, the water temperature in the inner part of the channel 

decreases almost 5 ºC, from values between 16 and 18 ºC to values between 11 and 13 ºC. 

This effect can be due, not only to the temperature of the ocean and river waters but also, 

to the decrease of the air temperature (Figure 4.1) and the shallowness of these areas. A 

similar result was found by Uncles and Stephens (2001) in the Tamar estuary. 
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In Winter, the water temperature is nearly constant along the channel. The 

observations show higher temperatures near the mouth (sensor 1) and lower temperatures 

in the upstream zone of the channel.  

From Winter to Spring the water in the inner part of the channel becomes warmer 

increasing from about 11 ºC to 17 ºC at the end of the Spring. At this time of the year, the 

air temperature starts to increase (see Figure 4.1). This may be due to an increase in the air 

temperature and solar radiation. 

In fact, starting from the middle of Spring to the middle of Autumn, warmer fluvial 

waters (sensor 19) enter the channel. The opposite occurs during colder seasons when 

warmer waters come into the channel from the sea. Near the fluvial region of the channel, 

the water temperature values are always 2 ºC warmer or cooler, depending on the year 

season, than in the rest of the channel.  

The water temperature recorded by sensors 6 and 8 is low independently of the 

month (around 12 ºC). 

In Summer, the water temperature within the channel increases to values higher than 

24 ºC in sensor 13, which can be due to the fact that it is located in a shallow area (Figure 

3.2), reflecting the influence of the solar radiation daily variability. The oceanic and fluvial 

boundaries of the channel have similar water temperature variations. This result is in 

agreement with Vaz and Dias (2008) for Autumn and Winter seasons. 

Through the analysis of Figure 5.22, it may be verified that, for all seasons, the warm 

or cold waters reach up to sensor 3. 

In order to verify the influence of the tide in transporting the ocean water into the 

estuary during the spring and neap tide in Winter and Summer, the water level and the 

water temperature recorded in sensors 1, 3 and 7 are plotted in Figure 5.23 and Figure 5.24 

for a 21 days-period in December 2004 and July 2005, respectively. 

Observing these figures, the water temperature recorded in sensor 1 and 3 presents 

similar patterns and values, varying with the tide (due to the proximity of the mouth), both 

in Winter and Summer. The daily variation in water temperature is also related to the tidal 

amplitude (the low tide produces an increase in water temperature) (Newton and Mudge, 

2003). The water temperature increases at ebb tide and decreases at flood tide. However, in 

sensor 7 the tidal effect begins to attenuate, as it is already located 3 km from the mouth. 

This attenuation increases along the channel.  
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Figure 5.23: Water level (panel 1) and water temperature (panel 2) at sensors 1, 2 and 7 for December 
2004. 

 
Figure 5.24: Water level (panel 1) and water temperature (panel 2) at sensors 1, 2 and 7 for July 2005. 

 
From Figure 5.23 and Figure 5.24 it can be observed that the maximum tidal range of 

3 m, which represents spring tide conditions, causes a small decrease, approximately 1.5 

and 2.5 ºC in water temperature at sensors 1 and 3, respectively. A decrease in the tidal 

range, representing neap tide conditions, causes an increase about 3 ºC in water 

temperature data. This fact may be explained by the smaller velocities in neap tide, which 

causes a minor water renovation along the channel. But, the decrease in tidal range during 

neap tides results in a shorter tidal excursion within the channel.  
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In spring tide conditions, the tidal excursion extends along the entire channel on the 

flood tide. However, at 3 km into the channel, the tide begins to attenuate and it continues 

to decrease towards the channel’s head.  

The tidal range is considered an important factor for the differences in the water 

temperature along the channel. These results confirm the ones obtained in Tomales Bay 

(Harcourt-Baldwin and Diedericks, 2006) where the tidal range influenced the 

development of a density intrusion, where the tidal range controls whether the cold, dense 

water reaches the plunging area and in so doing, influences whether a density current does 

or does not develop. 

As previously observed, the tidal range has an important role in the water 

temperature variation along the channel, mainly in areas near the mouth. Therefore it is 

thus appropriate to look to the sea surface temperature values, as they are also likely to 

have a signature in the temperature inside the channel. With the purpose of verifying the 

influence of the sea surface temperature in the values recorded by the sensors near the 

mouth of the lagoon, Figure 5.25 shows the satellite images corresponding to the study 

period presented in this section. 

According to Figure 5.25 there is warm seawater (around 18 ºC) propagating 

upstream on 15 June 2005 as confirmed by Figure 5.22, where the influence of this high 

temperature is observed up to sensor 3. The opposite is observed on 6 July 2005, when 

colder water (around 14 ºC) enters in the lagoon, being visible in all sensors data.  

In Figure 5.25 (6 July 2005) a band of cold water (15-17 ºC) can be observed near 

the coast with a length and width of approximately 150 and 50 km, respectively. This may 

be due to upwelling events, which are related to northern winds (Figure 4.1). Probably, the 

cold, upwelled water intrudes on the channel with the flood tide (Figure 5.24), because 

during the flood a greater entrance of water flow occurs (Figure 4.3). The ocean water can 

be one of the driving factor that causes water temperature variability in the Espinheiro 

channel. This was also the case within the Tamar estuary (Uncles and Stephens, 2001). 

In this way and to evaluate the influence of the sea surface temperature in the water 

temperature recorded by the sensor near the mouth, correlations were calculated based on 

time series data represented in Figure 5.26. 
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Figure 5.25: MODIS images of sea surface temperature. 

 

The Figure 5.26 presents the similar behavior of the variables. The water temperature 

measured in sensor 1 between Julian days 152 and 188 is higher (about 0.5 ºC) than sea 

surface temperature. This difference can be due to the fact that a comparison between 

water temperature measured at a depth ~20 m and water temperature measured at the 

surface (satellite). This may also be a consequence of the weakness of the river flow, since 

the water column is completely filled with oceanic water (homogeneous water column) 

(Vaz and Dias, 2008). 

In fact, the sea surface temperature is moderately correlated to the air temperature 

(0.6569) (as expected), because the solar radiation has a direct influence in the heating of 

the water. The sea surface temperature is strongly correlated to the water temperature 

measured in sensor 1 (0.9498) and sensor 2 (0.8878), showing a diminishing of the 

correlation towards the channel’s head, which indicates that, due to the shallowness of the 

upper regions of the channel, the water temperature dynamics is also driven by the air 

temperature variation.  
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Figure 5.26: Time series of the sea surface temperature, water temperature measured in sensor 1 and 
air temperature. 
 

5.3.2 Empirical Orthogonal Functions analysis 

The decomposition of water temperature using empirical orthogonal functions (EOF) 

provides another method of analyzing the spatial and temporal components of water 

temperature variability. EOFs analysis is used to ascertain the most significant coherent 

mode of variation in the channel.  

The highest coherent component (the first EOF) (Figure 5.27) explains 85% of the 

total variance of the water temperature inside the channel. 

 
Figure 5.27: Spatial (a) and temporal (b) distribution of the water temperature first EOF. 
 

The first Principal Component (PC1) (Figure 5.27b) is closely related to the inter-

annual variation of the air temperature. The first EOF (Figure 5.27a) presents a non-

homogeneous behavior along the channel. In sensors 6 and 8 are shown the smallest 

variation (the water temperature is low independently of the month) and sensors 12 and 13 

show the highest variation (Figure 5.22). This may be a consequence of the air temperature 

(a)  (b) 



 
 
  

Results and Discussion  43 

variation throughout the year. The correlations between the water temperature measured in 

the sensors and the PC1, and the correlations between the water and air temperature data 

are summarized in Table 5.1.  

In fact, strong correlations were found between the temporal variation of the first 

EOF (PC1) and all water temperature data. Moreover, strong correlations were also found 

between water and air temperature. The exception is the correlations found at sensors 6 and 

8. The PC1 is strongly correlated to the seawater temperature (0.9498) (sensor 1) and to the 

freshwater temperature (0.9560) (sensor 19), and is moderately correlated to the air 

temperature (0.6790). 
Table 5.1: Correlations between the water temperature measured in the sensors and the PC1, and the 
correlations between the water and air temperature. Strength of correlation is defined as **Strong. 
|r|≥0.8; *Moderate. 0.5≤|r|≤0.8; Weak. r|≤0.5 (Reed et al., 2008). 
 

Sensor PC1 Air temperature 
1 0.9498** 0.5338* 
2 0.9579** 0.6285* 
3 0.9342** 0.6136* 
4 0.9231** 0.5386* 
5 0.8289** 0.3510 
6 0.3230 -0.3056 
7 0.9118** 0.4848 
8 0.5987* 0.0575 
9 0.8842** 0.4267 

10 0.9593** 0.7898* 
11 0.9600** 0.8072** 
12 0.9356** 0.8278** 
13 0.9157** 0.8240** 
14 0.9716** 0.7800* 
15 0.9649** 0.6632* 
17 0.9505** 0.6824* 
18 0.9702** 0.6507* 
19 0.9560** 0.6790* 

 

The calculated correlations between air temperature and the water temperature time 

series are strong in sensors 11, 12 and 13; this may be a consequence of the shallowness of 

the region were sensors are located, in the way that higher influence from solar radiation 

can be found.  

The water temperature distribution does not depend greatly on the river discharge, 

which presents lower values when compared to the typical values (Newton and Mudge, 

2003) and it is closely related to the seawater temperature, tide and air temperature pattern. 
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6 Conclusions 

The general purpose of this work was to analyze the water temperature variability in 

the Espinheiro channel and its relation to the main forcing mechanisms.  

The results showed the importance of the major forcing factors (tide and 

meteorological conditions) that influence the water temperature behavior within the 

Espinheiro channel. 

During the survey period, the water temperature variability presents maximum 

(minimum) values in sensor 13 (6 and 8). These peaks values may be related to the 

influence of the solar heating and also due to the fact that the water that leaves the São 

Jacinto channel could be colder than the water that comes from the upstream area of the 

Espinheiro channel.  

The results for the Espinheiro channel clearly indicate that the oscillations of the 

water temperature are strongly related to the solar heating daily variation and the 

semidiurnal and diurnal tidal effect. On the other hand, the subtidal oscillations are dictated 

by the weather and/or meteorological long term events.  

The spectral analysis (for the water temperature data) reveals high energy peaks in 

both semidiurnal and diurnal frequencies. These frequencies may be related to the daily 

variation of the air temperature and tidal forcing, demonstrating the importance of the 

meteorological variables in the modulation of the water temperature in shallow areas like 

the Espinheiro channel.  

This study indicates that the harmonic analysis of the water temperature is an 

alternative way of estimating the importance of the tidal constituents along the channel. 

The water temperature measured in sensor 2 (close to the lagoon mouth) showed the 

highest coherence (0.75) with the tide. This highest coherence revealed that heat is 

transported significantly from the nearly ocean. In spring tide conditions, the tidal 

excursion extends along the entire channel during the flood tide, causing the water 

temperature to decrease. However, at 3 km into the channel, the tide effect begins to 

attenuate and it continues to decrease towards the channel’s head. In neap tide conditions, 

the water temperature increases about 3 ºC, but results in a shorter tidal excursion within 

the channel. 
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Results for the cross-spectral analysis obtained between the air temperature and 

water temperature showed that the solar radiation heating effect is important for the 

establishment of temperature patterns, especially in the shallow areas at the far end of the 

channel. 

EOF analysis indicates that the variability in the water temperature time series can be 

accounted for by the first component, which is closely related to the annual variation of the 

air temperature. 

The decrease in the correlation between the water temperature and sea surface 

temperature towards the channel’s head indicates that, due to the shallowness of the upper 

regions of the channel, the water temperature dynamics is mainly driven by the air 

temperature variation in this zone. The depth of the channel is another important factor, 

where a decrease in the depth could result in an increase of the water temperature. 

In conclusion, besides the dependence on the water temperature variation at the 

channel’s boundaries (ocean and river), when the incoming freshwater is low (severe 

drought), the water temperature distribution is closely related to the meteorological 

conditions, like air temperature and incoming solar radiation, especially because of the 

shallowness of the Espinheiro channel. Specifically, near the mouth of the lagoon the water 

temperature is closely related to the tide and to the air temperature.  

The results revealed that the fibre Bragg technology produces reliable results and 

therefore it can be used as a pre-operational system to monitor water properties like 

temperature in estuarine systems. 

There are goals that remain for the future. Future work should be conducted to 

address the freshwater inflow data, in order to characterize the influence of the Vouga 

River freshwater inflow within the channel and evaluate the influence of the seasonal 

variation of freshwater inflow in the water temperature pattern inside the channel. Also, it 

should be interesting to carry out work in modeling in order to compensate the 

observations and in conjunction with data acquired in a continuous real time regime, it will 

allow the forecast of the lagoon evolution under critical conditions. 
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