

Universidade de Aveiro

2010

Departamento de Electrónica, Telecomunicações e
Informática

Marco Paulo dos
Santos Fernandes

Arquitectura P2P e SOA para bibliotecas digitais

P2P and SOA architecture for digital libraries

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15562750?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade de Aveiro

2010

Departamento de Electrónica, Telecomunicações e
Informática

Marco Paulo dos
Santos Fernandes

Arquitectura P2P e SOA para bibliotecas digitais

P2P and SOA architecture for digital libraries

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Engenharia Informática,
realizada sob a orientação científica do Doutor Joaquim Arnaldo Martins,
Professor Catedrático do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro, e do Doutor Joaquim Sousa Pinto,
Professor Auxiliar do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro.

Apoio financeiro da FCT e do FSE no
âmbito do III Quadro Comunitário de
Apoio.

o júri

presidente Prof. Doutor Vítor Brás de Sequeira Amaral
Professor Catedrático da Universidade de Aveiro

 Prof. Doutor Joaquim Arnaldo Carvalho Martins
Professor Catedrático da Universidade de Aveiro (orientador)

 Prof. Doutora Ana Alice Rodrigues Pereira Baptista
Professora Auxiliar da Escola de Engenharia da Universidade do Minho

 Prof. Doutor Osvaldo Manuel da Rocha Pacheco
Professor Auxiliar da Universidade de Aveiro

 Prof. Doutor Joaquim Henriques de Sousa Pinto
Professor Auxiliar da Universidade de Aveiro (co-orientador)

 Prof. Doutor José Javier Samper Zapater
Professor Contratado do Instituto Universitário de Robótica da Universidade de Valência

agradecimentos

O meu agradecimento para todos os que, directamente ou indirectamente,
contribuiram para a realização deste trabalho, em especial:

Aos meus orientadores, Prof. Doutor Joaquim Arnaldo Martins e Prof. Doutor
Joaquim Sousa Pinto, pela orientação e motivação que recebi ao longo destes
últimos anos.

À Fundação para a Ciência e a Tecnologia, pelo apoio financeiro que tornou
possível a realização desta tese, através da bolsa SFRH/BD/23976/2005.

À minha namorada, pelo incentivo e apoio incondicional. À minha família e aos
meus amigos, pela força.

palavras-chave

bibliotecas digitais, sistemas distribuídos, peer-to-peer, computação orientada
a serviços

resumo

Numa sociedade em que o volume e o valor da informação produzida e
disseminada tem um peso cada vez maior, o papel das bibliotecas digitais
assume especial relevo. O presente trabalho analisa as limitações dos actuais
sistemas de gestão de bibliotecas digitais e as oportunidades criadas pelos
mais recentes modelos de computação distribuída.
Deste trabalho resultou a implementação do sistema integrado para bibliotecas
e arquivos digitais da Universidade de Aveiro. Este trabalho finaliza
debruçando-se sobre o sistema em produção e propondo uma nova
arquitectura de biblioteca digital sustentada numa infrastrutura peer-to-peer e
orientada a serviços.

keywords

digital libraries, distributed systems, peer-to-peer, service oriented computing

abstract

In an information-driven society where the volume and value of produced and
consumed data assumes a growing importance, the role of digital libraries
gains particular importance. This work analyzes the limitations in current digital
library management systems and the opportunities brought by recent
distributed computing models.
The result of this work is the implementation of the University of Aveiro
integrated system for digital libraries and archives. It concludes by analyzing
the system in production and proposing a new service oriented digital library
architecture supported in a peer-to-peer infrastructure.

 13

Table of contents

CHAPTER 1 – INTRODUCTION ... 21

1.1 Digital libraries .. 22

1.2 Digital libraries evolution ... 24

1.2.1 Technology impact ... 25

1.2.2 Technology evolution ... 25

1.3 Motivation ... 27

1.3.1 SInBAD .. 27

1.4 New computational models ... 28

1.4.1 Peer-to-peer ... 28

1.4.2 Grid .. 29

1.4.3 Grid vs. P2P ... 30

1.4.4 Service Oriented Architectures ... 31

1.5 Results .. 33

1.6 Document outline .. 34

CHAPTER 2 – STATE OF THE ART ... 37

2.1 Introduction ... 37

2.1.1 University of Athens (Greece): ... 38

2.1.2 Eidgenössische Technische Hochschule Zürich (Switzerland): 38

2.1.3 Istituto di Scienza e Tecnologie (Germany): ... 38

2.1.4 Kuratorium OFFIS e.V. (Germany): .. 39

2.2 Digital library management systems ... 40

2.2.1 DSpace .. 40

2.2.2 EPrints ... 41

2.2.3 Fedora ... 42

2.2.4 Greenstone .. 42

2.2.5 BRICKS ... 43

P2P and SOA architecture for digital libraries

14

2.3 Peer-to-peer ... 44

2.3.1 Introduction .. 44

2.3.2 Common features and issues .. 44

2.3.3 P2P Topology .. 46

2.3.4 Data structure .. 50

2.3.5 File sharing .. 51

2.3.6 P2P-based digital libraries ... 55

2.3.7 Frameworks and platforms .. 56

2.3.8 Other applications .. 60

2.4 Grid... 60

2.4.1 Globus ... 62

2.4.2 GridIR (or GIR) .. 63

2.4.3 Alchemi.. 64

2.5 Services Oriented Computing ... 65

2.5.1 Core technology .. 67

2.5.2 Service orchestration ... 71

2.6 Results ... 79

2.7 Summary .. 80

CHAPTER 3 – SINBAD .. 83

3.1 Introduction ... 83

3.2 Other systems .. 85

3.2.1 Legacy applications ... 85

3.2.2 New services ... 86

3.3 Metadata .. 87

3.3.1 Repository structure... 88

3.3.2 Monographic content ... 89

3.3.3 Posters and photographs ... 93

3.3.4 Multimedia ... 93

3.3.5 Jazz ... 95

3.3.6 Museum items ... 96

3.4 Architecture .. 97

3.4.1 DisQS .. 98

 15

3.4.2 A SInBAD subsystem ... 102

3.4.3 SInBAD portal .. 104

3.4.4 Utility services .. 105

3.4.5 Interoperation with external applications .. 106

3.5 Summary .. 108

CHAPTER 4 – A SOA AND P2P BASED ARCHITECTURE FOR DIGITAL

LIBRARIES ... 111

4.1 Introduction ... 111

4.2 Architecture .. 113

4.2.1 Networking ... 115

4.3 P2P ... 116

4.3.1 Metadata .. 117

4.3.2 Indexing and searching .. 118

4.3.3 Topology .. 120

4.3.4 Optimization ... 121

4.4 Service oriented architecture .. 122

4.4.1 Dynamic Service discovery .. 122

4.4.2 Service invocation in P2P ... 136

4.4.3 Replication ... 140

4.4.4 Orchestration ... 141

4.5 Results .. 151

4.5.1 Search engines evaluation ... 151

4.5.2 Adapting SInBAD to the new architecture .. 154

4.6 Summary .. 157

CHAPTER 5 – CONCLUSIONS ... 159

5.1 Future work ... 163

REFERENCES .. 167

P2P and SOA architecture for digital libraries

16

Index of figures

Figure 2.1 – Digital library process decentralized execution 39

Figure 2.2 – DSpace architecture .. 41

Figure 2.3 – BRICKS architecture ... 43

Figure 2.4 - Centralized P2P topology ... 47

Figure 2.5 - Decentralized P2P topology ... 48

Figure 2.6 – Hybrid P2P topology .. 49

Figure 2.7 - A simple P-Grid .. 54

Figure 2.8 – JXTA architecture .. 57

Figure 2.9 - Windows P2P Networking architecture .. 59

Figure 2.10 - The Grid vs. the Internet protocol architectures 60

Figure 2.11 - The Grid architecture ... 62

Figure 2.12 - GridIR architecture ... 64

Figure 2.13 - Integrating Windows and Unix-like resources 65

Figure 2.14 - The exchange of process designs .. 75

Figure 2.15 – Centralized (a) and decentralized (b) orchestration............................. 78

Figure 2.16 – Search performance with and without a super-peer in a small LAN

network .. 80

Figure 3.1 – SInBAD repository structure .. 89

Figure 3.2 – Metadata for monographic objects in SInBAD 90

Figure 3.3 – Structure for table of contents ... 91

Figure 3.4 – Metadata for articles in SInBAD .. 92

Figure 3.5 – Metadata for graphical resources in SInBAD .. 94

Figure 3.6 – Subset of the MPEG-7 description standard ... 95

Figure 3.7 – Jazz database simplified entity-relationship model................................ 96

Figure 3.8 – Subset of the metadata schema for museum items 97

Figure 3.9 – SInBAD architecture .. 98

Figure 3.10 – DisQS architecture .. 99

Figure 3.11 – DisQS Catalog Manager configuration .. 100

Figure 3.12 – DisQS catalog configuration .. 100

 17

Figure 3.13 – OAI-PMH GetRecord structure .. 105

Figure 4.1 – Digital library architecture based on SOA and P2P 114

Figure 4.2 – Networking of service-enabled peers .. 115

Figure 4.3 – UDDI core data structures ... 125

Figure 4.4 – Service taxonomy .. 133

Figure 4.5 – Direct and relayed Web Service invocation ... 138

Figure 4.6 – A common centralized orchestration in a digital library system 145

Figure 4.7 - Decentralizing the orchestration of the digital library process 146

Figure 4.8 - Cross functional diagram of the document submission process 148

Figure 4.9 – Proposed SInBAD system architecture ... 156

P2P and SOA architecture for digital libraries

18

Index of tables

Table 3-1 – Simple Dublin Core schema elements .. 87

Table 4-1 – Service description elements .. 134

Table 4-2 – Indexing engines feature comparison .. 152

Table 4-3 – Indexing engines performance comparison 153

Table 4-4 – Service taxonomy for SInBAD ... 154

 19

List of acronyms

API – Application programming interface

BPC - Business Process Choreography

BPEL, BPELWS – Business Process Execution Language (for Web Services)

BPMN - Business Process Management Notation

CPU – Central processing unit

DC – Dublin Core

DCMI - Dublin Core Metadata Initiative

DHT – Distributed hash table

DL – Digital library

DLMS – Digital library management system

DMFT - Distributed Management Task Force

DNS – Domain name system

FTP – File transfer protocol

GGF - Global Grid Forum

HTML – HyperText Markup Language

HTTP – HyperText transport protocol

IDE – Integrated development environment

IP – Internet protocol

ISBN - International Standard Book Number

IT – Information technology

MPEG – Moving Picture Experts Group

NAT – Network address translator

OAI-PMH – Open Archives Initiative Protocol for Metadata Harvesting

OASIS - Organization for the Advancement of Structured Information Standards

OGSA - Open Grid Services Architecture

OGSI - Open Grid Services Infrastructure

P2P – Peer-to-peer

P2PTV - Peer-to-peer television

PDF – Portable Document Format

P2P and SOA architecture for digital libraries

20

PNRP - Peer Name Resolution Protocol

QoS – Quality of service

RCU - Central User Registry (Registo Central de Utilizadores)

REST – Representational state transfer

RPC – Remote procedure call

RSS – Really Simple Syndication

SaaS - Software as a service

SHA-# - Secure Hash Algorithm

SiNBAD - Integrated System for Digital Libraries and Archives (Sistema Integrado

para Bibliotecas e Arquivos Digitais)

SOA – Service Oriented Architecture

TCP – Transmission Control Protocol

TTL – Time to live

UDDI – Universal Description Discovery Integration

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

UU - Unique electronic identity (utilizador único)

VNC - Virtual network computing

VO – Virtual organization

VRA – Visual Resources Association

W3C - World Wide Web Consortium

WS-I - Web Service Interoperability Organization

WSDL – Web Service Definition Language

WSRF - Web Services Resource Framework

XHTML – Extensible Hyper-Text Markup Language

XML – Extensible Markup Language

XPDL - XML Process Definition Language

XSLT – Extensible Stylesheet Language Transformation

 CHAPTER 1 – Introduction

 21

CHAPTER 1 – Introduction

In the information society we are currently living in, the volume of knowledge

and information available to the public has been growing steeply. This growth can

be explained by the sum of a number of factors, such as the multiplicity of

dissemination media (from desktop computers to mobile devices connected to the

internet), globalization and the increasing democratization of access to information

and its production.

Aiming to simplify the users‟ task of finding relevant information within such a

dense and heterogeneous volume of data, several search engines were

developed, such as Altavista, Yahoo! and Google. Despite recent developments

and related products which have been created alongside with these web

applications in the last years, which somehow redefine the role of search websites,

a search engine can be defined as:

“Program to find answers to queries in a collection of information,

which might be a library catalog or a database but is most commonly

the World Wide Web. A Web search engine produces a list of „pages‟

P2P and SOA architecture for digital libraries

22

– computer files listed on the Web – that contain the terms in a query.”

[1]

Such applications function as pointers to resources, which in general are not

part of the application itself. To allow users to search for those resources, search

engines usually make use of two distinct entities: a web crawler and an indexing

service. The first is responsible for scanning known resources and finding new

ones by using the new hyperlinks found. The indexing service usually builds an

inverted index of scanned resources: each word or term found occupies an entry

of the index and the identifiers of resources which contain that term are then

associated with it in the index. This approach allows for a quicker search of

matching resources.

Traditional search engines provide however a general-purpose information

retrieval. Although they allow for specific search scenarios (such as videos and

images) they lack the structure and semantic knowledge of specific collections,

thus treating a group of resources of unrelated matters in identical manners.

Digital libraries, on the other hand, store large amounts of well described

data in a structured and well organized model and, although that is not always the

case, they rely on internet. Its goal is to direct users to electronic collections, which

may offer unique thematic value to researchers, historians, and general

audiences.

1.1 DIGITAL LIBRARIES

Universities, museums, and other institutions that promote knowledge

creation and dissemination, are being encouraged to build digital

libraries/institutional repositories. The goal of these systems is to provide the

necessary technological infrastructure to store, preserve and disseminate scientific

and cultural information.

There is not a consensus regarding the definition of digital libraries. The

Digital Library Federation states that:

 CHAPTER 1 – Introduction

 23

“Digital libraries are organizations that provide the resources, including

the specialized staff, to select, structure, offer intellectual access to,

interpret, distribute, preserve the integrity of, and ensure the

persistence over time of collections of digital works so that they are

readily and economically available for use by a defined community or

set of communities." [2]

The DLib Working Group on Digital Library Metrics defined a digital library in

a different manner:

“The collection of services and information objects that support users

in dealing with information, and the organization and presentation of

those objects, available directly or indirectly via electronic means.” [3]

Another common approach to define digital libraries is to use the traditional

library metaphor [4], comparing the provided services – information access, search

methodologies – in both scenarios. In that sense, digital libraries almost appear as

an natural evolution, in which there is a similar paradigm with enhanced

functionalities (full text search, bookmarking, annotation, etc.).

From the above definitions, we summarize the various concepts into the

digital library definition we will use from this point forward:

An information system which provides online search, selection, and

dissemination of structured collections of digital services and objects

(globally known as resources), and promotes the preservation and

integrity of those resources.

It should be noted that we employ the term digital library in its more broad

definition, comprising digital archives, museums, and every similar system. Digital

archives, for instance, differ from digital libraries (in its strict definition) in the

sources of information (primary/unedited instead of secondary), organization of

information (categorically rather than individually), and preservation (a primary

concern in archives). We will not make such a distinction.

P2P and SOA architecture for digital libraries

24

1.2 DIGITAL LIBRARIES EVOLUTION

Surprisingly, some of the concepts behind digital libraries such as

preservation have been present for more than a century. Microfilm technology, a

compact storage medium for paper documents, is reported to have been first used

in 1870 during the Franco-Prussian War [5]. Later in the 1930s, when World War II

threatened to destroy the archive of the British Museum, University Microfilms

started the preservation of printed works on microfilm.

In 1945, Vannevar Bush's [6] proposed a system called memex, where ultra

high resolution microfilm reels were coupled to multiple cameras by

electromechanical controls. The prophetic essay also introduced a concept similar

to hypertext.

The first remotely accessible databases came online in the late 1960s. These

early databases mainly dealt with legal, scientific, and government information [7].

CD-ROM and local databases appeared in the mid-1980s, allowing images to be

stored and retrieved.

In 1989, Tim Berners-Lee proposed a global and distributed hypertext

information exchange network, which would become the HTML (Hyper-Text

Markup Language) based internet [8].

In 1994, the Library of Congress announced a National Digital Library, and

Libraries Initiative, a research effort involving several universities in the study of

digital libraries [7].

In 1995, Kahn and Wilensky [9] defined an architecture of distributed digital

objects services. According to the authors, a digital library belongs to such a

category: it is a repository of digital documents, properly and uniquely identified,

and information about those objects, named metadata. Later, in 1997 [10] an

architecture for digital libraries was presented with four main components: digital

objects, identifiers, repository, and user interfaces.

 CHAPTER 1 – Introduction

 25

With the maturing of the involved technologies, current digital libraries face

more challenges outside the technical scope, namely copyright and legal issues

[11].

1.2.1 Technology impact

Internet growth and its degree of adherence is the single most important

factor in the evolution of technology in information systems. It has become the

favored media of production and dissemination of information. Millions of users

connect daily to a network with more than half a billion hosts [12].

The need for document preservation, along with internet and the evolvement

of desktop software and hardware, have ignited a quest for mass digitization of

historic material: printed (books, letters, etc.), photographic (photos, posters),

video (VHS and Beta) and audio (vinyl).

On the other hand, it has accomplished a dramatic shift in how society

functions. For instance, many private institutional and commercial publications are

no longer created in paper – only electronic versions are produced. Companies

and individuals are starting to rely solely on digital invoices, reports, and

correspondence.

While it seems clear that having all this digital material makes it easier to

access and distribute information, it also points that efficient and easy to use

information management software is crucial. Without one, searching for a

document in a repository with millions of files becomes little different from looking

for a piece of paper in a stack of documents.

1.2.2 Technology evolution

The first digital libraries, as the generality of information systems, were

monolithic applications which used proprietary data and description rules. With the

evolution of internet, researchers, librarians and software architects found the

need for a standardization of information and protocols to simplify communication

between systems and ease the understanding of external data.

P2P and SOA architecture for digital libraries

26

XML (Extensible Markup Language) has been the de facto standard for

describing and transmitting data for some years. It provides a text-based language

whose main purpose is to facilitate the sharing of data across applications,

platforms, institutions, etc. Due to its flexible and customizable nature, XML has

been the skeleton for numerous standards, such as SOAP, WSDL (Web Service

Definition Language), XHTML (Extensible HyperText Markup Language), RSS

(Really Simple Syndication), and technologies such as Web Services, OAI-PMH

(Open Archive Initiative Protocol for Metadata Harvesting), and BPEL (Business

Process Execution Language).

Web Services provide a standard and interoperable means of machine to

machine interaction, using a well know interface, based on SOAP and WSDL.

Web Services allow the transparent communication of machines from different

programming languages, platforms and operating systems. They also allow the

aggregation and consuming of information in a simple way. Despite the standard

interaction, there is no standard for the data structures being passed. Even in the

case in which two digital libraries store data with the exact same schema and

metadata, each system does not have a priori knowledge on how to access

information on the other: which remote methods to invoke, what data structures

are provided, etc.

Open access and open archives initiatives have become popular in the last

years. The underlying philosophy in these initiatives is the availability of digital

content free of charge. It commonly embraces the concept of self-archiving, by

which researches make available their own work. Particularly important for the

interoperability between digital libraries is the OAI-PMH [13] protocol (Open

Archives Initiative Protocol for Metadata Harvesting). This HTTP based protocol

defines how a data provider exposes its metadata to harvesters (other digital

libraries, federation sites, etc.) by using clearly defined XML structures, thus

eliminating the problem of a priori knowledge.

 CHAPTER 1 – Introduction

 27

1.3 MOTIVATION

Current digital libraries face new challenges and demands. With the

opportunities given by the Internet, these information systems must be able to

deliver very high amounts of data to a growing number of users. Also, from our

digital libraries definition, such information systems must not act only as data

repositories – they should provide services for both humans and machines.

The centralized model, in which a server not only hosts the web site but is

also responsible for all the underlying tasks required by the digital library, therefore

lacks the necessary scalability and flexibility. A distributed approach, which

promotes interoperability and cooperation, is a key element for success.

1.3.1 SInBAD

Beginning in 2004, the author was an active member of the conception and

development of SInBAD, the integrated system for the digital library and digital

archive from the University of Aveiro. It is composed by a number of

heterogeneous collections, such as photographs, books, articles, and videos.

In the scope of this project, a number of issues had to be addressed:

1. Metadata must be uniformly described using standards, which is not a trivial

task due to the heterogeneity of resources;

2. Instead of being an isolated system, SInBAD must be able to interoperate

with other systems in the institution such as the scientific bibliographic

archive or library‟s bibliographic application;

3. Even small or medium sized organizations can produce very large amounts

of data and metadata, both of which must me consistently stored, secured,

and backed up – the system should be able to handle such volumes of data

without degrading user experience.

The objective of this doctoral thesis was to design and implement the

SInBAD digital library and, using it as a first conceptual and working basis, to

study new computational models, such as Peer-to-Peer and Service Oriented

P2P and SOA architecture for digital libraries

28

Architectures, and how they can provide the skeleton for better distributed digital

libraries. This work should result in a digital library architecture which allows:

 To collaboratively store very high volumes of data. Digital libraries typically

store large amounts of information, which a decentralized approach can

more properly accommodate;

 To create a distributed service overlay. More than a simple repository, a

digital library depends on a number of – possibly time consuming – services

to its normal functioning. Distributing the execution of those services can

greatly improve the performance and responsiveness of systems;

 Standardize interoperation between systems and components, and

consume services in workflows which are flexible and dynamic;

 To efficiently search distributed resources. As data and services become

decentralized, it is crucial to have efficient mechanisms to find these

resources.

1.4 NEW COMPUTATIONAL MODELS

1.4.1 Peer-to-peer

New computational models and protocols have been proposed to create

more scalable, interoperable and robust systems. One such model is Peer-to-peer

(P2P), which is radically different from the classic/server architecture. In P2P, each

network node acts both as server and client, producer and consumer. Numerous

advantages derive from this approach [14]:

 It can operate at the edges of the Internet, behind firewalls and NAT

(network address translator) systems;

 It supports highly transient connections;

 It can take advantage of unused resources of connected nodes;

Current P2P applications are capable of creating network overlays which

connect millions of users with a virtually unlimited data volume. Also, by using a

decentralized architecture, P2P does not have specific (central) points of failure

 CHAPTER 1 – Introduction

 29

which can break an application or significantly reduce its performance. To provide

even greater redundancy, some solutions apply replication of data and metadata

between peers.

P2P has been traditionally associated with file-sharing applications, such as

Kazaa and Napster, in which each user (node) can share its files, search for and

download other resources. We believe that its numerous advantages make it

attractive for the implementation of more complex systems, such as a digital

library.

1.4.2 Grid

The Grid model refers to an infrastructure which allows the integration of

computers (usually dedicated), networks (high bandwidth), information and other

resources (CPU cycles, memory, etc.) of several organizations in a cooperative

manner. Such integration is accomplished through a distributed system which

allows searching, aggregating, and selecting geographically disperse resources

[15].

Grid computing, which originated from the need to efficiently solve

computationally intensive tasks, distinguishes from other distributed applications

for being oriented to the resolution of complex and demanding problems,

traditionally scientific and multi-institutional.

Each group of organizations and/or individuals which share resources based

on a set of common rules is usually called a “virtual organization” (VO). Taking

advantage of a Grid environment requires using specific software with certain

requisites [16].

1.4.2.1 Standards

Although there are numerous individual Grid projects and emerging

standards [17], one of the challenges has been trying to find an international

consensus on which global standards to adopt to make these autonomous and

independent projects to interact in a larger Grid. The exception is GridFTP, a file

transfer protocol defined within the Globus Toolkit (see section 2.4.1).

P2P and SOA architecture for digital libraries

30

Standard bodies include the Global Grid Forum (GGF), the Organization for

the Advancement of Structured Information Standards (OASIS), the World Wide

Web Consortium (W3C), the Distributed Management Task Force (DMTF), the

Web Services Interoperability Organization (WS-I), and groups within Internet2.

GGF, which is the primary standards-setting body, promoted the OGSA

(Open Grid Services Architecture), which aims to define a common service-

oriented architecture for Grid-based applications.

The first instantiation of the OGSA architecture resulted in OGSI (Open Grid

Services Infrastructure), based on the concept of Grid Services, which represented

a modified version of Web Services that supported state management (unlike the

standard, stateless, Web Services). Growing dissatisfaction and criticism towards

OGSI, due to the extent of the specification and the need to use modified WSDL

descriptions, led to the development of a new infrastructure: the Web Services

Resource Framework (WSRF). Unlike OGSI, WSRF is based on unmodified Web

Services specifications. OGSI is now considered obsolete.

1.4.3 Grid vs. P2P

Some authors argue that Grid computing is essentially a P2P system with

distinct implementation details and that, in the future, both concepts will become

one. Such synergy, predicted and desired by many [18][19], and which may speed

up the development of both study areas, is based on the similarities in both

paradigms. So far, however, they both still present some distinct characteristics:

 Decentralization – Although it promotes resource decentralization, Grid

computing always performs some form of centralization in a reduced

number of computers; P2P, on the other hand, allows a complete

decentralization and treats all peers as equals. This makes P2P more

scalable and failure resilient, although it raises discovery and search

implementation issues.

 Security – Security plays an important role in Grid, and a great deal of

importance is given to authentication, authorization, and integrity; in P2P,

 CHAPTER 1 – Introduction

 31

mostly due its file-sharing origins, generally only a few basic security and

integrity mechanisms are implemented, if any.

 Connection – Grid connection is typically too rigid to accommodate a simple

and dynamic connection of new nodes in the network; P2P allows very

dynamic connections and disconnections to the network.

 Services – While one of the Grid motivations is to allow the remote

invocation of resource attribution and task execution services, there is no

such mechanism in traditional P2P, although information transfer protocols

are well developed.

 Discovery – Nodes and resources information in Grid are stored in a

centralized fashion which allows them to be easily found; P2P deals with

more dynamic scenarios and promotes self organization, making resource

discovery a dynamic procedure.

 Fault tolerance – The nature of Grid computing demands the existence of

some sort of fault tolerance mechanisms, although this remains somewhat

rudimentary; although most P2P do not have sophisticated fault tolerance

mechanisms, its decentralized nature reduces this problem.

 Standards – While Grid applications generally adopt standard interfaces,

representation schemes, and communication patterns, most P2P

environments still use proprietary protocols.

 Usage – Grid networks are usually composed by stable and homogeneous

nodes from closed communities; it aims to solve problems too complex to

execute in a timely fashion on a single computer. P2P tend to favor open

communities with anonymous users and unpredictable behaviors.

1.4.4 Service Oriented Architectures

Traditionally, applications were built in an isolated and closed environment.

Even if such applications are designed in a modular fashion, its components and

methods are only known by and available to the application itself.

Service Oriented Architectures (SOA) refers to a conceptual model in which a

business process is made available as a loosely coupled service. SOA evolves

from both the distributed computing concept (services can be and usually are

P2P and SOA architecture for digital libraries

32

consumed from remote machines) and modular programming (its units/services

commonly aggregate related functions).

There are several definitions available for the Service Oriented Architectures

model:

“SOA is a paradigm for organizing and utilizing distributed capabilities

that may be under the control of different ownership domains.” [20]

SOA is a computer system's architectural style for creating and using

business processes, packaged as services, throughout their lifecycle.

[21]

“SOA is a business-centric IT architectural approach that supports

integrating your business as linked, repeatable business tasks, or

services” [22]

“SOA is the organizational and technical framework that enables an

enterprise to deliver self-describing, platform-independent business

functionality and make it available as building blocks of current and

future applications.” [23]

It is worth mentioning that none of these definitions is bound to any

specific technology. SOA refers to an abstract model which can be

implemented by using many different frameworks and platforms.

Although being usually associated with benefits for large enterprises, the

SOA approach is a shift in design and style of software which can bring numerous

advantages to small companies and organizations as well.

Some of advantages identified [24] are:

 Allows creating new business value from existing data. New services can

use data federation from different databases to create a new view of

information.

 CHAPTER 1 – Introduction

 33

 Creates and abstraction layer, in which each service only needs to know

about how it implements its functionality and makes it responsible for its

own data.

 Facilitates software maintenance. SOA promotes the creation of basic

services (such as for data access) highly focused on a specific need.

Applications can then be built using these simple services as well as

composite services. This service modularity makes it easier to maintain,

update and redesign existing functionalities.

 Enables service marketplaces. By using composite services as the

application‟s building blocks, basic services can be consumed from external

and dedicated service marketplaces. These businesses have the

advantage of making administration of contracts to service providers more

streamlined and uniform and providing a service registry to help finding

services, help users sharing problems and solutions.

1.5 RESULTS

The primary result of this work is the conception and implementation of the

University of Aveiro digital library and archive, of which most modules have been

in production since 2005. This system has also become the entry point for the

University digital repository to external researchers, historians, and generic users.

The finalized system successfully responds to the goals set, such as

distributed architecture, flexible description models, high granularity, high

interoperability, and modularity. As will be shown throughout this work, and unlike

popular digital library and archive systems, SInBAD was designed so that its

components could be distributed – subsystems, services, and data. It also

provides a higher description and search granularity, and seemingly integrates

heterogeonous data. As a result, the author has published a book chapter [25] and

four scientific articles related to the system [26][27][28][29].

To empower SInBAD with the ability to distribute data and workload to other

network nodes, it was built on top a distributed system also conceived in this work

- DisQS. Results show the system successfully scales and has a modular and

P2P and SOA architecture for digital libraries

34

service oriented model which provides a more flexible and dynamic architecture.

Three articles were published regarding that system alone [30][31][32].

The culminating of this work‟s research is the proposed architecture for digital

libraries based in peer-to-peer technologies and service oriented computing. The

architecture is designed to allow services and data (treated as generic

“resources”) to be distributed through a network, to achieve a greater flexibility to

discover services, and to optimize the execution of the business processes.

Two publications were made describing the proposed distributed architecture

[33][34]. Also, the preliminary analysis of the state of the art, the study of similar

technologies, and the conception of the architecture several articles originated

several published articles related to resource integration and aggregation [35][36],

peer-to-peer networks [37], grid computing [38] and search engines [39].

1.6 DOCUMENT OUTLINE

The rest of this document is structured as follows. CHAPTER 2 overviews the

relevant state of the art in digital library management systems (DLMS) and the

new computational models applicable to the conception and development of digital

libraries, namely Peer-to-peer, Grid computing and service oriented architectures.

As a consequence of the limitations found in existing DLMS, CHAPTER 3

describes the design and conception methodology used for the development of

SInBAD, and discusses the adopted architecture. This architecture is based on a

distributed system conceived to essentially take advantage of data storage

capabilities in remote machines. Such storage is made according to a

comprehensive metadata analysis of several standards suited for the very

heterogeneous repository. The devised system is also extensively based on both

internal and external services.

 CHAPTER 4 follows the discussions made in the last section of the previous

chapter, namely regarding the possible improvements in the system, and analyses

a group of contributions in the scope of service orientation, business process

execution, and peer-to-peer networks. The proposal presents a service layer on

 CHAPTER 1 – Introduction

 35

top of a peer-to-peer infrastructure which allows services to be discovered and

invoked within such networks even when there is low or inexistent connectivity

between consumer and provider. It also offers insights on the improvements of

business process execution when based on such infrastructure.

Finally, CHAPTER 5 presents the conclusions of the work and discusses

possible directions for future work.

P2P and SOA architecture for digital libraries

36

CHAPTER 2 – State of the art

 37

CHAPTER 2 – State of the art

2.1 INTRODUCTION

In this chapter an overview of existing digital library management systems is

made. The following sections review the state of the art of tools, systems and

frameworks regarding P2P, Grid and service oriented computing.

Regarding the general conception of digital libraries the work of DELOS is of

particular interest. Funded by the European Union‟s Sixth Framework Programme,

DELOS is a network working for the excellence in digital libraries. It is formed by a

number of workgroups spread throughout Europe.

In [40], each workgroup contributed with its vision of a digital library

architecture. Most contributions point towards the use of P2P, Grid and SOA

concepts in the infrastructure of future systems. We highlight some contributions in

the next sections.

P2P and SOA architecture for digital libraries

38

2.1.1 University of Athens (Greece):

With the increase of the volume of available information, the size of future

digital libraries should lead to the adoption of federated databases or ones based

on the Grid or P2P paradigm. Regardless of the progresses made in hardware,

distributed architectures are seen as the only solution to scalability issues.

2.1.2 Eidgenössische Technische Hochschule Zürich (Switzerland):

The future digital library should be highly scalable, customizable and with an

adaptive infrastructure. To accomplish such goals, that infrastructure should use a

combination of P2P (loosely coupled service integration, information sharing), Grid

(dynamic allocation and deployment of complex and computationally intensive

services) and SOA (definition of the semantics and usage of services).

Figure 2.1 (copied from the reference) depicts an example of how the

services available in a network are used in the Insert Image process.

2.1.3 Istituto di Scienza e Tecnologie (Italy) and Fraunhofer-

Gesellschaft Institute (Germany):

The Istituto di Scienza e Tecnologie – Consiglio Nazionale delle Ricerche

and the Fraunhofer-Gesellschaft Integrated Publication and Information Systems

Institute workgroup places some focus on the need to create virtual organizations,

composed by distributed individuals working together in a temporary basis.

From the infrastructure point of view, the workgroup aims to create an

architectural framework composed by three elements:

 The technical infrastructure responsible for supporting basic functionalities

such as dynamic resource allocation, sharing, security, or QoS;

 A set of services which implement the typical digital library functionalities;

 Application specific services which provide access to shared repositories or

tools and comply with the infrastructure rules.

CHAPTER 2 – State of the art

 39

Figure 2.1 – Digital library process decentralized execution

2.1.4 Kuratorium OFFIS e.V. (Germany):

The research focus is made on super peer networks, in which nodes are

chosen to form a hierarchical network. Super nodes maintain metadata indexes of

available resources and allow combining the efficiency of centralized client-server

model with the autonomy, load balancing, and robustness of distributed solutions.

It also permits implementing distinct protocols and rules within each cluster.

P2P and SOA architecture for digital libraries

40

2.2 DIGITAL LIBRARY MANAGEMENT SYSTEMS

2.2.1 DSpace

DSpace [41], one of the most popular DLMS in archives and universities, is

an open-source system developed by HP and MIT which acts mainly as a

repository for educational and scientific material produced by an organization or

institution. DSpace is able to store virtually any type of document, which is

described using the Dublin Core Metadata Initiative (DCMI) [42] metadata set and

exposed to external entities through an OAI-PMH interface, thus promoting

interoperability.

The DSpace system is organized into three layers (Figure 2.2, available at

the MIT website): the storage layer is responsible for the physical storage of data

and metadata; the business logic layer handles the management of archive, its

users, authorization, and workflow; the application layer contains components for

the communication with other applications.

DSpace has some limitations which reduce its applicability in more complex

digital libraries, such as:

 The lack of restriction in the access to documents (or parts of it) disregards

copyright issues;

 The use of a single repository reduces its scalability and error resilience;

 A rigid description model reduces cataloguing and indexing flexibility;

 Search granularity is limited to a complete document and only the Dublin

Core descriptors can be searched;

 At the time of writing, Web Services for DSpace were still under

development by MIT;

 An authority database, which maintains information about the authors and

links them to the records, is inexistent;

 Complete installation and configuration of a DSpace repository may take

several weeks [43].

CHAPTER 2 – State of the art

 41

Figure 2.2 – DSpace architecture

2.2.2 EPrints

EPrints [44] is Linux based software for the deployment of a generic web-

based open-source institutional repository developed by the University of

Southampton. It is mainly intended to create open archives of research papers,

although it can be adapted to store any digital file.

EPrints has identical features to DSpace. It supports self-archiving, OAI-

PHM, and is flexible enough to store any file type. It has also basically the same

limitations: the lack of a granular document control, centralized approach, and long

installation and configuration.

P2P and SOA architecture for digital libraries

42

2.2.3 Fedora

Fedora [45] is a Java based open source framework for the management and

delivery of digital content developed jointly by Cornell University Information

Science and the University of Virginia Library.

It is Web Services based, supports distributed repositories, and is

programming language agnostic. It also has REST (Representational State

Transfer) APIs and an OAI-PMH provider. One of its most interesting features is its

plugability for the storage mechanism: instead of using the (default) file-based

storage, one can develop a custom plug-in or use existing ones, such as the

Amazon S3 service or the iRods plug-in, which allow data to be stored in

Amazon‟s data storage or in an iRods installation.

It is not, however, a complete and ready to use system, but instead a

repository system with Web Service interfaces. It is reportedly complex to use [46].

2.2.4 Greenstone

Greenstone [47] is an open source software suite which allows creating

collections for digital libraries produced by the University of Waikato in cooperation

with UNESCO and the Human Info NGO. It is flexible and supports several media

formats. Data is composed of resources (the digital objects) and documents (the

metadata).

Greenstone may be distributed by using Agents, which use SOAP messages

through a Message Router to accomplish tasks.

Greenstone not only has an OAI-PHM provider but can also import records

from an external OAI-PHM repository. Data can also be imported from and

exported to a DSpace repository.

A severe limitation of the system lies in the fact that indexes must be rebuilt

each time the repository is updated, which means Greenstone is more suitable for

static (or semi-static) collections.

CHAPTER 2 – State of the art

 43

2.2.5 BRICKS

The BRICKS Project – Building Resources for Integrated Cultural Knowledge

Services – is a European Commission funded research project aiming the creation

of a cultural heritage network [48]. The BRICKS Community is a worldwide

federation of cultural heritage institutions, research organizations, and

technological providers.

Its approach is based in the decentralization of resources, to increase error

resilience, scalability and reduce maintenance costs. Such decentralization is

obtained using a P2P layer implemented with P-Grid (see section 2.3.5.6).

Figure 2.3 – BRICKS architecture

The infrastructure also relies on a SOAP module upon which services are

built. Figure 2.3 (from the BRICKS website) depicts the architecture of a BRICKS

node (called BNodes).

P2P and SOA architecture for digital libraries

44

2.3 PEER-TO-PEER

2.3.1 Introduction

A Peer-to-peer (P2P) application is a networked system whose architecture

does not rely on dedicated servers. Instead, each network node (the peers) act as

both client and server – thus becoming responsible for its own resources – and

communication is established between multiple nodes. P2P networks are usually

simpler than those from traditional client/server, although they introduce a number

of issues regarding performance, management, and availability.

Implementing P2P systems usually involve the use of a P2P network overlay,

an abstract layer which transparently and independently of the physical network

deals with connectivity, addressing, and communication. To the upper layers, this

overlay acts as a messaging channel, in which only notification (connect or

disconnect, ping, topology change, etc.) and search (query and query response)

messages are exchanged. To actually transfer resources between peers,

communication is usually accomplished by using a different protocol, such as

HTTP.

In summary, a P2P system adopts three principles:

 Resources are shared (files, services, disk space, bandwidth)

 Resources are decentralized, which derives from the fact that each peer

manages its own (local) resources

 The network is self-organizable: since there is no central entity to

coordinate the nodes, peers self organize in an autonomous fashion by

using pre-established behaviors.

2.3.2 Common features and issues

Most popular P2P based applications aim the anonymous sharing of files

between users. However, P2P can help solving the scalability issues inherent of

centralized solutions in many different scenarios. In this section an overview is

made of the basic characteristics common to a large majority of P2P applications.

CHAPTER 2 – State of the art

 45

2.3.2.1 Binding

When a user accesses a website on the internet, an early-binding takes

place: a DNS server performs a static translation between a name and an IP

address. In practice, most sites have long-term internet connections with the same

IP address, and therefore the early-binding mechanism performs reasonably well.

In the case of modern P2P systems, however, nodes may belong to a wide

range of mobile devices, have dynamic addresses, be placed behind network

address translators, use different protocols, etc. In this scenario, there occurs the

dynamic translation between names and physical addresses: late-binding.

2.3.2.2 Scalability

P2P systems can be extremely dynamic in size, adopted topology and

network activity. To allow for a high quality of service (QoS), P2P applications

should tackle issues such as high load, network congestion, appearance of

hotspots (peers with very popular resources), among others. To properly tackle

possible problems, some systems employ mechanisms for caching, replication

and homogeneous load balancing.

2.3.2.3 Failure resilience

In most cases, thanks to the decentralization of control and coordination, P2P

can be more resilient to hardware or software failures. Nevertheless, since some

peers are more relevant to the network than others, the failure of certain nodes

can be troublesome even in decentralized environments.

2.3.2.4 Security

Although the first P2P systems did not adopt more than trivial security

mechanisms, the P2P community has been gradually paying more attention to this

topic. Attacks to a P2P system usually make use of the knowledge of the adopted

topology. In hybrid P2P, where some form of centralization is used, attacks aim

the central peers. In completely decentralized topologies, targets are typically the

most popular nodes.

P2P and SOA architecture for digital libraries

46

P2P may suffer attacks which are similar to those perpetrated to centralized

applications, such as denial of service. The most common attacks are however

performed from inside the network when:

 Peers provide resources that do not match the description (for instance, the

Recording Industry Association of America reportedly distributed fake audio

files in popular P2P networks to disencourage users from illegally

downloading music);

 Peers distribute corrupted resources;

 Peers act as “leechers” and do not contribute with resources, they only

consume others‟.

2.3.2.5 Anonymity

Since the P2P concept became popular in file sharing applications, providing

an anonymous access to the network has always been a matter of concern. Some

of the most sophisticated programs implement anonymity for both the peers and

the queries.

2.3.3 P2P Topology

In this and in the next sections existing P2P topologies and data structures

are analyzed in the scope of digital libraries. It is worth noting that such analysis

could differ within a different domain area. The following discussion would be

different if the intended application scope was that of an instant messaging, for

instance.

Regarding the network topology P2P systems can be classified with one of

four main categories: centralized, decentralized, hierarchical, or hybrid [14].

2.3.3.1 Centralized

In centralized P2P systems (Figure 2.4), such as Napster, nodes connect to

the network by registering themselves at a central server and sending an index of

the resources they maintain. When a node wishes to find resources, it sends

search queries to the server, which looks up its global index to retrieve matching

CHAPTER 2 – State of the art

 47

items. The actual file transfers are performed between the peers without the

intervention of the server.

Figure 2.4 - Centralized P2P topology

Although centralized based P2P systems are bandwidth-efficient and easier

to administer, such systems cannot scale as much as decentralized ones due to

the bandwidth and processing power limitations of the server. More crucial than

this, if the server becomes temporarily unavailable, the entire network ceases to

work properly.

2.3.3.2 Decentralized

Completely decentralized (or pure) P2P systems (Figure 2.5), such as

Gnutella 0.4, are based in the inexistence of structure or hierarchy. All peers

remain equal among each other throughout their life-cycle. To enter a network,

new nodes connect to any known peer and become neighbors of a small set of

peers. When a search is made in a peer, a query package is broadcasted to the

connected neighbors with a fixed time to live (TTL). Decentralized P2P networks

are also generally self-organized, hence they adapt themselves dynamically.

P2P and SOA architecture for digital libraries

48

Pure P2P systems can grow up to millions of connected users without

significantly degrading performance but cannot properly scale. While a search

query performed in a P2P network composed by only a few hundred nodes could

eventually find every matching resource, this no longer remains true in much

larger networks due to the TTL. From our point of view, this fact alone is sufficient

to not implement digital libraries in pure P2P.

Figure 2.5 - Decentralized P2P topology

2.3.3.3 Hierarchical

A hierarchical topology usually follows an underlying structure: social,

geographical, etc. In this topology, nodes connect to the network in a predefined

level of the tree. Indexes of the metadata can be stored only in each node or

parent nodes may aggregate the indexes from all its child nodes.

Such type of network has the advantage of mimicking a known and logical

structure, which makes it easier to find information based on locality.

CHAPTER 2 – State of the art

 49

2.3.3.4 Hybrid

Most modern P2P applications apply some sort of hybrid topology, aiming to

achieve a robust network solution by combining characteristics of other topologies.

To implement our framework the chosen topology relies on the concept of super

peers [49][50] – peers that act as an interface between a cluster of peers and the

rest of the network. This allows combining the robustness of centralized solutions

with the flexibility and scalability of decentralized ones.

Figure 2.6 – Hybrid P2P topology

Super peers, however, only reduce the number of peers to query by some

order of magnitude. In very large scale scenarios, its behavior becomes identical

to that of a decentralized topology. To solve that problem, super-nodes can be

arranged in a hierarchical tree-like topology which follows a geographical or

organizational model. Large organizations can have super peers distributed

according to geographic locations and different organizations can collaborate to

the same digital library by becoming a tree branch of the same tree.

P2P and SOA architecture for digital libraries

50

This has many advantages: queries can be adjusted according to the

hierarchy; different rules may be set in each organization/tree branch; indexing

can optionally be hierarchical – searches can be made in an entire branch by

querying the root.

2.3.4 Data structure

Regardless of the topology chosen, which defines how nodes connect

themselves, one must decide how to actually populate peers with data. P2P

systems usually take one of two basic approaches: structured or unstructured.

Mischke and Stiller [51] analyzed the problem of distributed searches in

different structural data space designs.

2.3.4.1 Structured network

Structured networks such as Chord [52] or CAN [53] rely on distributed hash

tables (DHT) – a class of decentralized systems which provide lookup

mechanisms – to retrieve the network location (current or to be) of a file.

The most common approach consists of conceptualizing a grid-like data

space (the key space). Upon entering the network, peers are assigned one (or

more) of the grid cells (usually by hashing their own identifiers), and they become

responsible for all the data mapped into those cells. Resources are mapped into

keys by hashing one or more descriptors into the key space. Usually, the hashing

mechanism allows an efficient routing mechanism, since each node can redirect

requests to the neighbors whose key is closer to the query hash.

Structured P2P networks are highly scalable and rely on the fact that there is

a metric for a peer to quickly retrieve any resource by using the mapping function.

Also, redundancy (and load balancing) can be achieved in a simple manner by

assigning two or more peers to the same key space.

Its main disadvantage is the fact that searching by metadata is a complex

task which may require broadcasting queries to the network. Although solutions

based on metadata summary propagation have been developed [54], they do not

CHAPTER 2 – State of the art

 51

provide satisfactory search capabilities for digital libraries. Also, in very dynamic

scenarios, peers leaving and entering the network require intense computation

and communication to maintain the network properly structured.

2.3.4.2 Unstructured network

Unstructured networks, on the other hand, have no predefined strict rules for

storing data. Resources are initially stored in its originating peers and can be later

replicated according to the protocol rules.

These classes of P2P networks are ideal in very dynamic networks, where

constantly updating a hash table can be troublesome.

Unstructured networks scale worst than DHT based ones and may generate

larger network traffic in some situations. However, its flexibility makes it more

attractive to digital libraries and is the chosen data model for our framework. It

does have the limitations of the structured model and, since each node is

responsible for its own data, queries can be as complex as desired – each node

will answer with the best result possible.

2.3.5 File sharing

The traditional application scope for P2P is file-sharing. In this section, we

outline some of the most popular file-sharing protocols and applications.

2.3.5.1 Gnutella

Gnutella is one of the most popular file-sharing P2P protocols. It is used and

supported by applications such as LimeWire, Shareaza and iMesh. The now

outdated 0.4 version of the Gnutella protocol [55][56] operates on a purely

decentralized fashion. To enter the network, a node must connect to an already

connected peer. In order to find resources, a search query is broadcasted to all

directly connected peers, which in turn retransmit it to their neighbors. Since

queries are “blindly” sent, network packages include a time-to-live (TTL) field to

avoid the perpetual retransmission of messages. The actual transfer of files is

accomplished by using HTTP.

P2P and SOA architecture for digital libraries

52

From the user point of view, applications running Gnutella may offer

satisfactory results, mainly because of its volume of data. Gnutella is also

generally tolerant to network failures and can easily adapt to highly dynamic

environments. This protocol has however several limitations: it promotes the

flooding of messages; it does not guarantee that all nodes can be reached (due

the TTL); and it has limited query capabilities.

Several protocol extensions have been made to the 0.4 version in an attempt

to solve these limitations. Improvements such as using “ultrapeers” (super-peers),

XML metadata, and parallel downloading are being built in the 0.6 version which is

about to be finalized but is already the officially recommended version. This is the

protocol used by LimeWire clients.

In 2002, Michael Stokes announced the Gnutella2 [57] protocol which,

although inspired by the original protocol and still using the 0.6 handshake

mechanism (an attempt to obtain backward compatibility), is more of a redesign

than an upgrade of previous versions. A major difference consists in categorizing

nodes as hubs (super-peers) and leafs. Hubs may have hundreds of connections

and maintain an index of files in its connected leafs. Other new features include an

extensible binary packet format, SHA-1 integrity checking, package compression,

and a metadata system for file description. Most of old Gnutella clients do not

support the Gnutella2 network.

2.3.5.2 BitTorrent

BitTorrent [58][59] is a P2P file-sharing and content distribution protocol.

Files being distributed are described in a metadata document (torrents) as a

number of identically-sized pieces, along with the “tracker” info – the peer who

maintains a list of nodes participating in the torrent. Clients of the protocol can also

implement a trackerless system by using a distributed hash table.

To start downloading a file, peers retrieve the participating nodes list from the

tracker in the torrent, and make several requests over distinct TCP sockets to

retrieve as many pieces of the file as possible. Although BitTorrent can enhance

performance and improve scalability of resource publishers, it provides no

CHAPTER 2 – State of the art

 53

indexing mechanisms. Torrents are usually listed on websites, which provide the

searching mechanisms.

2.3.5.3 Napster

Napster [60] is a known file-sharing program based on a hybrid P2P

topology. Every time a node connects itself to the network, it uploads an index of

local (shared) files to a central server. All queries made in the network are directed

to this server, which looks up in its merged index. While this solution is simple and

solves the Gnutella search limitation, it is not however a scalable solution: if there

is a traffic peak, the server(s) may be overloaded with requests.

2.3.5.4 FastTrack

FastTrack [61] is perhaps the most popular P2P protocol, which is used in

clients such as KaZaA and iMesh. While based on the Gnutella protocol and also

used for file-sharing, it presents some improvements worth noting:

 Automatic super-peer creation: the “best” nodes on the network (processing

power, hard disk space, and bandwidth) become super-peers, thus

providing (temporary) indexing services for “weaker” nodes. This allows for

greater system scalability.

 The file transfer protocol is still HTTP; however FastTrack has algorithms

which allow the download from simultaneous sources. It can also resume

canceled or interrupted downloads.

FastTrack is a closed proprietary protocol, and for this reason some

implementation details are not disclosed.

2.3.5.5 Farsite

Farsite – Federated, Available, and Reliable Storage for an Incompletely

Trusted Environment [62][63] – is a distributed file system which does not rely on a

central server. The system logically aggregates several file systems as a single

virtual disk. Each network node supplies a local disk quota which can be used by

the remaining users.

P2P and SOA architecture for digital libraries

54

Farsite allows for such collaboration, without the assumption of complete

trust between the nodes, by implementing cryptographic and fault tolerance

mechanisms. It also performs the automatic file replication by several peers, which

functions as an efficient backup system.

2.3.5.6 P-Grid

P-Grid [64] is a self-organizable P2P system, based on a virtual tree

structure. To each peer is assigned part of the tree, and its position is determined

by the corresponding binary path. For instance, peer 4 in Figure 2.7 (from the

referenced publication) has the binary path 10, which makes it responsible for

storing resources whose binary key starts with 10. Redundancy, error resilience,

and load balancing can be achieved by placing 2 or more peers in the same path

(1-6 and 3-4 in the figure).

Figure 2.7 - A simple P-Grid

Search queries include the desired resource key and nodes retransmit each

query to the path which approximates the key, until the final peer is reached. The

CHAPTER 2 – State of the art

 55

advantage of this approach over Gnutella‟s is that the tree structure makes the

query route to be oriented, which allows a reduction in the network traffic.

Unlike other structured P2P systems, the peer identifiers are independent of

the paths identifiers, which are dynamically changed by the maintenance protocol.

2.3.6 P2P-based digital libraries

While most of the available P2P protocols aim the sharing of files, there are

however other application scopes. In this section, we review the most important

projects and frameworks in the scope of digital libraries.

2.3.6.1 P2P-4-DL

P2P-4-DL [65] aims to build a system for digital libraries which operates in a

P2P network. It uses a brokered approach, by storing in a single node the global

resource index. There is no replication or load balancing mechanism, as

documents always remain only in the owner node.

2.3.6.2 Edutella

Edutella [66] is a P2P network infrastructure based on RDF aimed at the

exchange of educational resources (metadata) between academic institutions. It is

built on the JXTA framework (see 2.3.7.1) and implements three different services:

Query, which uses a query exchange language; Replication, to achieve metadata

persistence and availability; and Mapping, Mediation, and Clustering, which

perform mapping between schemas, mediate access between services and set up

semantic routing and clustering. Edutella does not handle the data itself and is

only responsible for the metadata.

2.3.6.3 P2P Digital Library

P2P DL [67], currently a prototype, is based on the JXTA framework and is a

joint work of the University of Edinburgh (UK), the University of Athens (Greece),

and the Foundation for Research and Technology (Greece).

In the proposed architecture, nodes should store data organized in RDF

schemas. To allow each peer to have its own RDF schema, the P2P DL has a

P2P and SOA architecture for digital libraries

56

mapping mechanism which reformulates queries, prior to its propagation, in order

to match the information at the remote nodes.

2.3.6.4 FreeLib

FreeLib [68] is a project from the Old Dominion University Digital Library

Research Group, which applies pure P2P techniques in the context of digital

libraries.

FreeLib proposes a different approach from other P2P based digital libraries

since it is built on top of OAI mechanisms: each FreeLib node is both an OAI

service provider (harvests data and provides end user services such as indexing

and searching) and OAI data provider (holds and archive of resources).

2.3.6.5 dLibra

dLibra [69] is a digital library framework developed in the Poznan

Supercomputing and Network Center which aims to facilitate the main phases of

the digital publication process.

Content management is accomplished by using a hierarchical directory

structure. Document versioning is also supported by the framework. A particular

version is made public by creating an edition – a set of publication‟s objects.

dLibra digital library is implemented as a client-server system. In the server

side there are a number of modules connected via network interfaces

(implemented using Java Remote Method Invocation)

2.3.7 Frameworks and platforms

2.3.7.1 JXTA

JXTA [70] is an open-source project which consists in a group of open and

generic protocols to connect heterogeneous devices in a P2P network. The Java

based framework aims the creation of an interoperable and platform independent

P2P network.

CHAPTER 2 – State of the art

 57

Although JXTA represents data in XML, its protocols are not based on

standards.

Its architecture (Figure 2.8, from the JXTA documentation) is composed by

three layers:

 Core, which supports services and applications built with JXTA, defines

mechanisms for managing, publishing and discovering groups (Peer

groups), the communication methodology (Peer pipes), and controlling,

prioritizing, and monitoring access (Peer monitoring);

 Services, in which access libraries are made available to the upper layers;

some indexing, searching, and sharing services are implemented;

 Applications, the upper layer in JXTA, uses the functionality provided by

Core and Services to create specific applications.

Figure 2.8 – JXTA architecture

JXTA defines the following protocols:

 Peer Discovery, used to find nodes, groups or other advertised resources;

 Peer Resolver, generic set of queries for finding information;

 Peer Information, used to determine other nodes capabilities;

P2P and SOA architecture for digital libraries

58

 Rendezvous, to propagate messages;

 Pipe Binding, which allows peers to advertise resources;

 Endpoint Routing, protocol which allows peers to use routers to find

connections to other nodes.

Besides Edutella, (section 2.3.6.2), there is a large number of projects in a

wide variety of fields associated with the framework. For example, jxta-cad is a

community effort to adopt JXTA in Computer Aided Design, and trinytalk aims to

develop an instant messaging system tool for wireless users based on voice.

 Both the JXTA framework and the JXTA-SOAP project were used in this

doctoral work and will be referred to later.

2.3.7.2 Windows Peer-to-Peer Networking

Shipped with Windows XP SP2 and Windows Vista, the Microsoft Windows

Peer-to-Peer Networking component allows to create P2P applications which do

not require central servers. The platform has the following characteristics:

 End-to-end connectivity, which uses the IPv6 protocol to assure the

connection between nodes without compromising security;

 Peer Name Resolution Protocol (PNRP), a protocol designed to allow

scalable and secure name registration and resolution;

 Ability to create and organize peer groups, in which information can be

synchronized and isolated from outer nodes.

The intended usage scenarios of the framework include real-time

communication, collaboration, content distribution, and distributed processing. Its

architecture is depicted in Figure 2.9 (from the website) and is divided in the

following modules:

 Graphing, responsible for maintaining a set of connected nodes (graph) and

providing flooding and replication of data;

CHAPTER 2 – State of the art

 59

 Grouping, which is the security layer provided by default on top of a graph –

it defines the security model behind group creation, invitation, and

connection to the group;

 Name Service Provider (NSP), which provides a mechanism to access an

arbitrary name service provider (the PNRP in Windows P2P Networking);

 PNRP, for P2P name resolution.

 Identity Manager, which enables the creation and management of P2P

identities.

Figure 2.9 - Windows P2P Networking architecture

2.3.7.3 CSpace

CSpace aim is to provide a platform for secure, decentralized, user-to-user

communication. It is developed in Python, uses OpenSSL for cryptography, and a

distributed hash table (DHT) based on the Kadmelia protocol, where a mapping

between the user‟s public key and his IP address is created. User identity is

accomplished using 2048-bit RSA keys.

P2P and SOA architecture for digital libraries

60

At the time of writing CSpace was still in beta status and the available

applications were limited to text chat, file transfer, and remote desktop based on

the Virtual Network Computing (VNC) platform-independent system.

2.3.8 Other applications

P2P networks can also benefit a wide range of social and entertainment

applications, such as instant messaging [71], web television/P2PTV [72], social

networking [73], and gaming networks [74][75], especially in massively multiplayer

games.

In any case, the goal behind the use of P2P is to use shared resources to

increase performance and lower the costs inherent from high bandwidth

centralized services.

2.4 GRID

In 2001 a generic architecture for Grid systems was proposed [76], which

became the reference for many current implementations, such as Globus.

Figure 2.10 - The Grid vs. the Internet protocol architectures

CHAPTER 2 – State of the art

 61

The architecture depicted in Figure 2.10 (from the referenced publication)

presents an abstract structure composed by a small number of fundamental

blocks:

 Fabric – This layer provides the system resources (catalogs, memory,

processing cycles, etc.) according to an access protocol; depending on the

underlying hardware, each resource implements specific operations and

has a description mechanism which allows discovering the structure, state

and capabilities of resources.

 Connectivity – The Connectivity layer defines the communication and

authentication protocols required in Grid specific network transactions;

these protocols allow the sharing of resources in the Fabric layer and

provides cryptography and authentication mechanisms; according to the

architecture specification, implemented authentication solutions should

have some characteristics such as single sign-on, delegation, and

integration with local/custom security mechanisms.

 Resource – This layer defines protocols to securely negotiate, initialize,

monitor, and control individual resources; two protocol classes are defined

– Information (used to obtain information about configurations, state,

restrictions, etc.) and Management (used to manage the access to shared

resources).

 Collective – In this block resides the responsibility of coordinating multiple

resources; unlike Resource, this layer defines protocols associated not to a

single resource but instead to the interactions between collections of

resources.

 Applications – Finally, the Applications layer is composed by the

applications which operate on top of a given VO. Figure 2.11 (from the

referenced publication) depicts the proposed architecture in more detail.

P2P and SOA architecture for digital libraries

62

Figure 2.11 - The Grid architecture

2.4.1 Globus

The Globus Alliance [77] researches and develops Grid technologies and the

Globus Toolkit is the main result of such research. This open source software was

one of the first large-scale implementations of the OGSA specifications, and

includes several components to monitor, discover, and manage resources.

In the last years, the Alliance has made an approach towards Web Services,

using an OGSA compliant architecture (Open Grid Services Architecture) [78] in

order to create a distributed platform based in the OGSI infrastructure – the Open

Grid Services Infrastructure [79]. The adoption of these concepts lead to the

creation of the Grid Services notion, which allow the integration of distributed,

heterogeneous and dynamic resources and systems, by defining standard

interfaces and behaviors.

Defined as part of the Globus Toolkit is GridFTP, a standard file transfer

protocol for use with Grid computing. Its goal is to provide a high-performance,

CHAPTER 2 – State of the art

 63

secure, and reliable transfer protocol based on the regular FTP protocol. It has

been the single standard to be widely accepted by the Grid community [80].

2.4.2 GridIR (or GIR)

GridIR [81] is a distributed architecture designed for information retrieval.

This retrieval is implemented by using Grid computing tools, and creating a

common infrastructure for distributed information systems.

The main characteristics of GridIR are:

 The ability to perform distributed searches;

 The creation of standard based methodologies to distribute the aggregation,

processing, and indexing of resources;

 It allows to dynamically create information retrieval systems;

 It allows to create and customize security models specific to each VO;

The GridIR architecture is based on the implementation of three autonomous

and distributed services: Collection Manager (which monitors catalog documents

and issues re-indexing requests), Indexing/Searching (indexes the repository

documents and creates searchable data bases) and Query Processing (provides

single access point for multiple indexing services and performs pre- and post-

processing of queries and results).

It is worth noting that each search result is simply an URL, which can then be

retrieved using an Internet protocol. Each of these services can be dynamically

created to serve a VO or connect several VOs. Figure 2.12 represents the

simplified architecture.

P2P and SOA architecture for digital libraries

64

Figure 2.12 - GridIR architecture

2.4.3 Alchemi

Most current Grid applications were developed for UNIX-like operating

systems, which reduces its applicability for Windows users. To circumvent this

issue, the Alchemi [82] framework was created, which is implemented using the

Microsoft‟s .NET platform. Alchemi‟s main features are:

 Aggregation of computers without a centralized file-sharing system;

 Hierarchical organization and cooperation of Grids;

 Object-oriented programming model;

 Web Service interfaces to allow the interoperability between heterogeneous

platforms;

A scenario where a modular architecture uses Alchemi and other Grid

technologies (such as Globus Toolkit) is depicted in Figure 2.13.

Collection

Manager

Indexing &

Searching

Query

Processing

HTTP FTP other...
Indexes and

IR Engines

Query

expansion

Distributed

search/merge

IR notification

CHAPTER 2 – State of the art

 65

Figure 2.13 - Integrating Windows and Unix-like resources

2.5 SERVICES ORIENTED COMPUTING

Service oriented computing has been a popular research topic in the last

years. The basic principle behind service orientation is that distributed, modular,

autonomous and interoperable services available in the network can be (re-)used

to enhance or extend application capabilities or even to perform some of its core

functionalities. It has become one of the main drivers for the software industry [83].

Several concepts based on service orientation have surfaced in recent years.

Some of the most popular are:

 Service-oriented architectures (SOA) – an infrastructure in which business

processes are implemented through distributed services (typically Web

Services) [24][84];

P2P and SOA architecture for digital libraries

66

 Software as a service (SaaS) – a model of software licensing in which

services are provided on demand [85].

 Cloud computing – the availability of services and resources on the internet,

which can be consumed (and meshed) in a variety of applications. Unlike

the previous concepts, cloud computing is commonly thought as collections

of services which can also be consumed for personal use (such as in blogs)

[86].

Properly managing and consuming a wide range of available services

presents a problem of standardization of those services. Even in the case where

all services are SOAP Web Services, a standard and widely adopted technology, it

is required to define a priori which methods, data structures and interactions will

be used.

In the simplest case, consumers may use only a few services separately to

add extra functionality or perform very specific tasks, and in this case developers

can easily perform a service call or create a service proxy. However, service

orientation advantages are only being partially explored in this scenario.

Service orientation allows creating complex, composite services which are a

logical aggregation of other services in a flow – the business process.

Orchestration and choreography languages allow defining information flows and

creating these composite services to accomplish processes.

A combination of SOA, business process choreography and Web Services

can bring numerous advantages for businesses [87]:

 Higher automation and process integration;

 Increased productivity with cost reduction and better performance in

process execution;

 Simplification in the reuse of services and components;

 Standardization allows replacing unsupported components by commercially

available products.

CHAPTER 2 – State of the art

 67

2.5.1 Core technology

SOA refers to a new architectural style which is not tied to a specific

technology. At most, common SOA frameworks and platforms generally use XML

enabled services. SOA can be implemented using a wide range of technologies,

from which RPC, SOAP, Web Services, and REST are the most popular.

2.5.1.1 Web Services

Although service-oriented architectures are not bound to a specific

technology or protocol, Web Services [88][21] became the standard for its

implementation. Web Services, an extensively XML based standard, use the

SOAP protocol for the invocation of services and WSDL for describing the

interfaces. The following XML is the WSDL description for a Web Service with a

single method (Add) which adds two integers.

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:tns="http://Math" targetNamespace="http://Math"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <s:schema elementFormDefault="qualified"
 targetNamespace="http://Math">
 <s:element name="Add">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="a"
 type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="b"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="AddResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="AddResult"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>

P2P and SOA architecture for digital libraries

68

 <wsdl:message name="AddSoapIn">
 <wsdl:part name="parameters" element="tns:Add" />
 </wsdl:message>
 <wsdl:message name="AddSoapOut">
 <wsdl:part name="parameters" element="tns:AddResponse" />
 </wsdl:message>

 <wsdl:portType name="wsMathSoap">
 <wsdl:operation name="Add">
 <wsdl:input message="tns:AddSoapIn" />
 <wsdl:output message="tns:AddSoapOut" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="wsMathSoap" type="tns:wsMathSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="Add">
 <soap:operation soapAction="http://Math/Add" style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="wsMath">
 <wsdl:port name="wsMathSoap" binding="tns:wsMathSoap">
 <soap:address location="http://localhost/wsMath " />
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Below the declaration of all namespaces used in the document, the WSDL

defines the types of messages (Add and AddResponse) and its variables (a, b,

and AddResult). The interfaces (the wsMathSoap portType) are then defined. The

binding defines the operations for the interface and associates it to a specific

transport protocol (HTTP). Finally, a service (wsMath) is declared as a binding at a

specific location (http://localhost/wsMath).

Several other specifications were created in the Web Service universe to aid

the completing of certain tasks: Universal Description Discovery and Integration

(UDDI) and the WS-Discovery specification are used for service discovery, WS-

Routing is a protocol for asynchronous message routing over several transports,

CHAPTER 2 – State of the art

 69

the WS-Eventing and WS-Notification specifications allow the subscription to

events and notification messages, and many more.

The main advantage of using Web Services, which are driven by software

giants such as Microsoft and IBM, is that it provides an interoperable and

autonomous mechanism for describing and invoking remote services. Services

and data provided by a Java Web Service can be consumed in same way by

clients written in .NET and running in Windows or any other platform or operating

system. Some criticism regarding Web Services is often related either to its

complexity or due to performance concerns, since it is uses XML, SOAP, and

HTTP.

2.5.1.2 SOAP

Once the acronym for “Simple Object Access Protocol” (definition abandoned

in version 1.2), SOAP is a protocol for the exchange of XML based messages over

the network, and uses the Internet application layer protocol (either HTTP or

SMTP) as a transport protocol.

SOAP is platform and language independent, extensible, and based on

widely adopted standards. It does, however, rely on a rather verbose XML format

which can degrade performance (parsing time, network bandwidth).

2.5.1.3 RPC

RPC or Remote Procedure Call is a generic technique which allows a

program running on a computer to call (invoke) procedures provided in a different

computer [89].

A set of tools are responsible for making the communication details

transparent to the developer; however, extra care is usually needed to catch and

process unexpected network problems.

The history of the RPC concept dates back at least three decades and there

are several models and implementations. The first popular implementations were

P2P and SOA architecture for digital libraries

70

Xerox‟s Courier and Sun‟s UNIX RPC. Currently, every major software vendor has

its own solution, such as Java RMI or Microsoft .NET Remoting.

The main problem with RPC is that there many different protocols and

technologies to implement it, which are commonly incompatible between each

other.

2.5.1.4 REST

REST or Representational State Transfer [90] is a style of software

architecture based on the concept of resources which are addressed by identifiers

such as a URIs. The acronym was first coined by Roy Fielding in its doctoral

dissertation [91].

The motivation behind REST was to capture the characteristics which made

the Web simple and successful – REST reflects the architectural style of Web

itself. The most common REST application is based on the HTTP protocol and the

GET, POST, PUT, and DELETE verbs. For instance, a school‟s web site may

provide a list of students at the URL:

http://myschool.com/students

And the “representation” of the student with ID 238709 could be available at:

http://myschool.com/students/238709

For other applications to communicate with this system there must be a

sequence of actions very similar to those triggered by a user‟s browser. Both the

list of students and the data of a particular one could be retrieved by issuing a

GET verb on the students URLs, very much like the HTTP headers the browser

would send to the server. Creating or updating student files would require issuing

POST or PUT headers, while deleting them would require a DELETE verb.

Despite its apparent simplicity, REST does place some implementation

issues. While Web Services provide standard mechanisms to describe service

interfaces and data/message types, REST does not – it is simply an architectural

CHAPTER 2 – State of the art

 71

style and does not explicitly define the service model it exposes. Also, while simple

and atomic read actions could be easier to implement with REST, more complex

operations (such as transactions) may be simplified using SOAP tools.

2.5.2 Service orchestration

In service oriented architectures there are several distributed services which

can be used by an application to perform tasks of distinct complexity. Even in the

case where all services are SOAP Web Services, a standard and widely adopted

technology, it is required to define a priori which methods, data structures and

interactions will be used. Orchestration and choreography languages allow

defining information flows and creating composite services to accomplish

processes.

2.5.2.1 Orchestration vs. choreography

Although both service orchestration and service choreography serve the

same purpose – to achieve a certain goal based on the cooperation of several

intervenients – they relate to two distinct concepts. The main difference relies at

the level of control:

 in an orchestration there is a “maestro”, some participant who controls and

instructs the process interpreters;

 in a service choreography all interpreters know and execute their role

without external control.

At the description level, orchestration is focused on the behavior of an

intervenient, which executes a certain task of the process. The process definition

is bottom-up: it starts with the declaration of individual tasks followed by the

definition of the collaboration.

Choreography defines global, peer-to-peer, and interoperable collaborations.

Its intervenients act as stateful nodes in a coordinate fashion and there is not a

centralized management peer. Process definition is top-down: from the global

process to its tasks.

P2P and SOA architecture for digital libraries

72

2.5.2.2 BPEL

Both IBM and Microsoft had proprietary languages for service orchestration –

WSFL and XLANG, respectively – but ultimately decided to merge the

specifications into the new BPEL4WS (Business Process Execution Language for

Web Services) language, later renamed into WS-BPEL or simply BPEL. The BPEL

language allows defining composite services through a logic control flow of

existing Web Services. It supports synchronous and asynchronous interactions,

flux control and transaction compensation (instead of rollback mechanisms).

BPEL makes use of several XML standards: WSDL 1.1 and XML Schema

1.0 (data model), and XPath 1.0 and XSLT 1.0 (data manipulation).

The initial goals of BPEL were [92]:

 To define business process that can interact with external entities through

XML and Web Services, and are themselves expressed as Web Services;

 To use Web Services in a modular and composable fashion;

 Do not define any design methodology or graphical representation for

processes;

 Define a set orchestration concepts to be used by both the external

(abstract) and internal (execution) views of a business process;

 Provide simple data manipulation functions needed to define process

relevant data and control flow;

 Support an identification mechanism for process instances;

 Support the implicit creation and termination of processes;

 Define a long-running transaction model based on compensation and

scoping to support failure recovery;

The following activities are defined in the BPEL 2.0 standard [93]:

 Basic activities:

o Invoke: invoke a method from a service provider

o Receive: wait for external invocation of a method

o Reply: send a response to a previously received request

CHAPTER 2 – State of the art

 73

o Assign: update (and/or copy) variables values

o Throw: signal an internal exception

o Rethrow: re-send the exception signal

o Wait: standby with no activity (sleep) for a period of time

o Empty: define an null activity (sometimes required for synchronism)

o Exit: terminates the process instance

o ExtensionActivity: not defined

 Structured activities:

o Sequence: execute activities in sequence

o If/ElseIf/Else: execute activities if conditions met

o While: execute activities while condition met

o RepeatUntil: execute activities until condition met

o Pick: execute one of the activities according to an event

o ForEach: loop activities execution a defined number of times

o Flow: encapsulate activities to be executed in parallel

2.5.2.3 Engines and tools

There are currently several orchestration engines available, both commercial

and open source. Every major software vendor has its own BPEL product, which

reflects the importance given to the topic:

 ActiveBPEL [94]: a comprehensive BPEL open source IDE developed in

Java (commercial products also available);

 ODE [95]: the Apache family engine, which evolved from the discontinued

Agila BPEL;

 WebSphere Process Server [96]: the IBM process engine executes in the

WebSphere Application Server Java EE platform;

 BizTalk Server [97]: Microsoft‟s process server (previously based in

XLANG) allows transforming BPEL orchestrations into BizTalk descriptions

and vice versa;

 Oracle BPEL Process Manager [98]: the engine previously known as

Collaxa BPEL Orchestration Server, later acquired by Oracle, executes as a

P2P and SOA architecture for digital libraries

74

J2EE application on Oracle Application Server, Jboss, BEA Weblogic e IBM

WebSphere;

 Netbeans SOA [99]: the IDE‟s SOA pack integrates a BPEL project type;

 Eclipse BPEL [100]: a BPEL plug-in (designer and runtime included) for the

popular open-source IDE.

2.5.2.4 Other languages

The Web Service Choreography Description Language (WS-CDL) [101] is a

XML based language which allows specifying peer-to-peer protocols in which

there is no central control and every peer remains autonomous. WS-CDL

abstracts itself from the type of processes involved; unlike BPEL it is not based on

WSDL, although it can be used with Web Services. Rather than being involved in

the execution or implementation of processes, it defines a controlled and

complementary behavior by each party (i.e. the interactions between services),

which can be implemented using different technologies. WS-CDL is not as widely

accepted (and supported) as BPEL.

XML Process Definition Language (XPDL) [102] is a language standardized

by the Workflow Management Coalition to design processes. The 2.0 version

contemplates the use of extensions to allow representing all aspects of the

Business Process Management Notation (BPMN). While BPEL defines an

orchestration, the interactions and data flows, XPDL is responsible for the storage

and interaction of process diagrams, although it is primarily associated with

traditional workflows [103]. Hence, two engines can share the same XPDL

definition e use distinct execution mechanisms (Figure 2.14, from Swenson‟s

website).

CHAPTER 2 – State of the art

 75

Figure 2.14 - The exchange of process designs

The BPML language was recommended by the Business Process

Management Initiative (BPMI), currently abandoned in favor of BPEL4WS.

A few other works have tried to accommodate a wider range of services into

BPEL processes.

In [104] a platform is presented for the hybrid composition of both Web

Services and Grid Services. BPEL only supports Web Services, a limitation the

authors circumvent by creating the concept of Virtual Web Services, which

encapsulate Grid Services. The OWL-S [105] ontology is also used to achieve a

richer description for the Web Services.

In light of the recent popularity of REST, some work has also been made in

order to allow RESTful services to be supported by BPEL engines. The

professional edition of ActiveBPEL, for instance, supports activities that handle

messages based on the REST architecture rather than WSDL operations [106].

Some authors [107] have also proposed to natively support the composition of

RESTful services with business processes using BPEL extensions.

P2P and SOA architecture for digital libraries

76

2.5.2.5 Decentralization

BPEL engines (as all major engines for orchestration in proprietary protocols

and schemas) are installed on a server and are responsible for interpreting the

orchestration description, invoking services, monitoring data flow, storing state for

long-running transactions and eventually aggregating results.

Although BPEL consists in the execution of distributed Web Services, its

orchestration is in fact centralized. In a data-intensive process, the communication

of inputs and outputs between the services and the “maestro” (the service

orchestrator) can become very inefficient.

Orchestrations described with the BPEL specification have several limitations

which make them less than ideal to be used in a dynamic scenario such as a P2P

network. A natural limitation to BPEL consists in the lack of support for dynamically

discovering and assigning service providers. A process description must be

completely defined with its providers from the beginning. On the other hand, the

specification defines activity execution in a sequential manner and there is no

event based model [87].

Distributing the orchestration process by the service providers has several

advantages, especially in high load scenarios and/or when there is a high amount

of data to be transferred between services. A careful partitioning process can

reduce the number of messages and amount of data transferred and increase

throughput.

There are, however, a number of issues which make distributing tasks a non-

trivial procedure:

 Scenarios in which parallel operation is important, and where there are

complex inter-service dependencies, can be difficult to distribute;

 In a centralized engine it is easy to determine the current process state and

where the execution is at each instant, while on a decentralized

orchestration there may need to exist feedback mechanisms to the machine

which initiated the process;

CHAPTER 2 – State of the art

 77

 Delegating service orchestration and invocation in an untrusted network can

be unattractive.

To circumvent this possible bottleneck and try to boost performance in the

execution of complex processes, some solutions have been proposed.

One possible technique proposed by IBM researchers [108] consists in

partitioning a BPEL instruction sequence into a set of distributed processes,

eventually reordered but with the same final output, under the assumption that

every node has BPEL runtime capabilities. The algorithm consists in dividing

BPEL activities into fixed (receive, reply, and invoke) and portable (other) ones.

Each fixed activity is aggregated with a process services (receive/reply pair with

the entry point), while portable ones can be moved. The final arrangement

consists in partitions with one fixed activity and zero or more portable ones.

According to the authors, partitioning processes using this algorithm may increase

its throughput 30% at normal system load and by a factor of two under high load.

Figure 2.15 (from the article) depicts an example of a composite service executed

with centralized and decentralized orchestration.

P2P and SOA architecture for digital libraries

78

Figure 2.15 – Centralized (a) and decentralized (b) orchestration

Another proposal [109] consists in decentralizing the flow control and

dynamically selecting roles. The presented approach considers only simple flows,

without synchronization, restrictions, or error handling. It is adopted a stateless

model: a node, after executing an activity, transfers all state information to the next

node.

CHAPTER 2 – State of the art

 79

Other authors [110] propose enacting decentralized workflows with a different

approach. It is based in basically two steps: 1) process segmentation (manual, for

now) is made by analyzing the physical infrastructure and annotating the process

with information about how activities and variables are mapped into the

participants, and 2) transformation of a BPEL process into a decentralized model

called Executable Workflow Networks (EWFN).

Khalaf et. al [111] discuss how to maintain data dependencies when

partitioning a BPEL process into fragments. The proposal aims to tackle issues

that arise from parallelism and shared variables. Our work is for now focused on

the technology integration for simpler processes.

2.6 RESULTS

We have started this chapter by analyzing existing digital library management

systems and related technologies. We then studied in detail P2P data structures

and topologies. As discussed, a hybrid topology seems to better fit the needs of a

digital library. However, such analyses are usually made on large networks where

high latency and communication costs play an important role. Let one however

consider the case of a small digital library, whose services are provided by a small

number of machines connected by a high-speed LAN network. There is probably a

high percentage of small to medium universities and organizations with valuable

scientific and historical repository facing an identical scenario. In order to evaluate

if the benefits of having super-peers in such environments would still be so

apparent, we conducted an experiment [37].

The benchmark was made on a 100 Mbit LAN network where 7 peers with

Lucene indexes were connected. The test was divided into two scenarios: in the

first stage, a peer was designated as a super-peer and hence search queries were

centralized; on a second stage, peers were set to work on a completely

decentralized topology. In both scenarios a series of tests were made by

performing search queries which would return from zero to about 8.000 results.

Figure 2.16 depicts the test results in both stages.

P2P and SOA architecture for digital libraries

80

Figure 2.16 – Search performance with and without a super-peer in a small LAN network

Results show that even in a small and fast network a super-peer allows for

better search performance than that offered by a decentralized topology. However,

the difference tends to be marginal except when the number of results is very

small, a case in which the overhead involved in establishing connections with

other peers becomes important. It also indicates that returning a very high number

of search results may lead to undesirable response times, even in small and fast

networks. In order to keep the search performance acceptable, the number of hits

should be limited so that results arrive in less than a second. Alternatively, they

should be presented to users as they are sent by each peer.

2.7 SUMMARY

This chapter has overviewed a range of existing concepts, technologies, and

standards related to digital libraries or what can be adapted to build or improve

such systems.

CHAPTER 2 – State of the art

 81

We started by summarizing the vision of future digital library architectures

from workgroups in the DELOS network of excellence. We then reviewed the most

popular digital library management systems and discussed its advantages and

limitations, taken into account in the development of SInBAD.

In the following sections an overview was made on three of the most

important concepts to have appeared recently – P2P networking, Grid computing,

and service oriented computing. The most relevant state of the art of these

concepts was discussed, particularly in the scope of digital library development.

The limitations found in existent DLMS (poor search granularity, rigid

metadata models, reduced Web Service support, etc.) led to the creation of a new

digital library system for SInBAD, which had to be a flexible and interoperable

system for storing and viewing very heterogeneous resources. To use a service

oriented architecture and technologies was therefore a requirement set from the

beginning.

Also, and although P2P technologies were not included in the first version of

SInBAD, we have discussed the advantages P2P may bring to a DLMS and

decided to start designing an alternative architecture based on both SOA and a

hybrid P2P network. To validate that hybrid topologies remain a valid choice even

in very small LAN networks, we benchmarked the search performance on such a

scenario with and without a super-peer and confirmed the assumption.

P2P and SOA architecture for digital libraries

82

CHAPTER 3 – SInBAD

 83

CHAPTER 3 – SInBAD

3.1 INTRODUCTION

In the late 2004 the University of Aveiro, funded by the Aveiro Digital 2003-

2006 program, started to remodel its internet sites and applications and develop

new ones. Most sites installed at the institution by that time provided standalone

services, but the paradigm dramatically changed. The new applications to be

produced – the library's site, departmental pages, user management services, and

many more – had to integrate and interoperate with each other, thus creating a

network of cooperative and complementary systems.

In this new scenario, each system is solely responsible for its own data and

must provide a predefined set of services and data when another system makes a

request. In the scope of this project, the author was an active member of the

conception and development of SInBAD [25][26][27] – an integrated system for the

digital library and digital archive from the University of Aveiro.

The objective of SInBAD was to design and implement the university‟s

institutional repository, which should have a web application with the purpose of

P2P and SOA architecture for digital libraries

84

allowing the storage, cataloging, searching, and dissemination of the digital

assets. These assets are heterogeneous contents originating from several

departments and services within the campus:

 The university‟s Library supplies digitized books and journals to support

classes, and theses and dissertations from its students and researchers;

one of the largest national collections of posters (political, event-related,

and others) is managed by the Library;

 The External Relations Service provides the historical archive of

photographs of the campus and its events;

 CEMED – the Multimedia and e-Learning Center – is responsible for

producing and providing the video archive; “3810”, a television program

which aired in one of the national televisions, was the main collection;

 The Centre of Jazz Studies – CEJ – digitizes a large collection of audio

records (CDs and vinyl albums), and jazz-related books and magazines;

 The museological archive digitizes and catalogs items from its three main

collections (Ceramics, Iron, and Glass).

Upon such scenario, the design of the architecture had to take into

consideration several issues in its conception:

 The heterogeneity of the resources (books, photographs, audio, videos)

makes it difficult to use a common metadata standard that appropriately

describes each type of content;

 The multitude of providers demands for a decentralized control mechanism;

 The volume of the data was expected to increase very rapidly, since a large

part of the system‟s items is multimedia.

Furthermore, the goal was that the system should interoperate with other

campus applications, both legacy and ones being created at the same time in the

scope of the Aveiro Digital programme. Such integration included the new

centralized authentication mechanism, but it was mainly related to interoperating

with other data repositories.

CHAPTER 3 – SInBAD

 85

It therefore became apparent the need for a service-based architecture,

which could interoperate with other systems in a standard and controlled way.

3.2 OTHER SYSTEMS

At the beginning of the design process, and regarding to scientific and

cultural publications, two existing systems provided most of the bibliographic

information of the University: e-ABC (Bibliographic Archive for Scientific

production) and Aleph.

3.2.1 Legacy applications

e-ABC [112] is used by departments in the University of Aveiro to maintain an

updated index of the work of researchers and teachers. e-ABC not only stores the

bibliographic references of the work developed in the university but also maintains

an authority database. In this database, all known authors are stored along with an

historic of its affiliations, and on each paper author information is linked with the

authority records.

The system is therefore capable of generating annual production reports for a

department or institute, maintaining an updated publications list for authors, and

show who published with whom (who published with an author, which departments

published together, etc.).

e-ABC was remodeled to use the new centralized user management service

and to provide Web Services from which other systems can consume information.

The university's library uses Aleph [113], an integrated library system for the

management of the bibliographic entries from most of the existing documents

available (not only in the library itself, but also in the archive, the multimedia

centre, etc.).

This system cannot be considered a digital library, since only bibliographic

information (the metadata) is managed – the documents in digital format are not

stored. Metadata is stored according to the UNIMARC standard.

P2P and SOA architecture for digital libraries

86

3.2.2 New services

With the shift in the architectural paradigm of the campus applications, new

systems and services were created to provide common and centralized

functionality to all systems.

One of such systems is the Central User Registry (RCU), which provides

unique identifiers to individuals. Before the RCU was created, users in the campus

(students, teachers, and staff) had several distinct credentials for the many

applications and services. For instance, a student would have a credential to

access his e-mail account, another to connect to the wireless network, and yet

another to make his inscription in the courses at the academic portal. All other

specific applications, developed at a particular department or unit, would also

require new credentials.

With the development of RCU, each person was assigned with a unique

electronic identity (UU), whose credential should be used to enter in all campus-

wide applications. This forced existing applications to adapt its authentication

mechanisms and change the structure of its databases, and was established as

prerequisite to any new application (since SInBAD‟s first working versions were

created at an earlier stage, the authentication and account management had also

to be adapted later on).

Finally, the rethinking of the paradigm of the campus applications coincided

with a reformulation of the University„s corporate image and the redesign of all its

web sites, which from that point on were created with an identical layout. In such

layout, a large fixed-sized header was mandatory, created by composing four

240x160 background images, on top of which were layered the University logo, the

specific site logo (department, unit, or service), and optional contextual text (such

as “home” or “contacts”). To centralize the management of the campus web image

and automate some processes the Banners service was created. Applications

developed for the University could then use banners provided by this service in

REST style requests (either made by a JavaScript component or a .NET

CHAPTER 3 – SInBAD

 87

component). A final drop down menu was layered on top of the header by each

application in a uniform way.

3.3 METADATA

Metadata must be uniformly described using standards, which is not a trivial

task due to the heterogeneity of resources. In order to adhere to a simple a

generic description standard, which could easily be indexed and used on simple

search queries, the widely used Dublin Core Metadata Initiative [42] XML Schema

was adopted.

 The simple Dublin Core metadata schema consists in 15 generic elements

described in Table 3-1 (a qualified schema has also become available, with added

elements and refinements). A description is made by attributing values to these

(repeatable) elements.

While this set of qualifiers may suffice to generically describe any resource,

different document types require more fine-grained definition models to better

describe – and later search for – objects. For example, one may wish to store

information with more details about a book (the ISBN number, the number of

pages), a picture (the dimensions), or a video (the segments in which it is divided).

Hence, while the Dublin Core schema was used to describe the common attributes

of all objects, the XML was adapted to include description values from other

standards.

Table 3-1 – Simple Dublin Core schema elements

Element Definition

Identifier An unambiguous identifier within a given context.

Title The title of the resource.

Creator The author or entity responsible for creating the resource.

Contributor An entity with contributions made to the resource.

P2P and SOA architecture for digital libraries

88

Date The date or period of time associated with the resource.

Description A description of the resource.

Subject
The topic of the resource, expressed by keywords or classification
codes.

Coverage
The spatial or temporal scope of the resource, or the jurisdiction
under which it is relevant or applicable.

Format The format or medium of the resource.

Type The nature or genre of the resource.

Language The language of the resource.

Publisher
The entity responsible for the publishing or availability of the
resource.

Relation A related resource.

Source A related resource from which the described one is derived.

Rights
Information about rights associated with the resource (property,
intellectual, etc.)

Some very specific descriptors were used internally to further describe each

object, using the sinbad prefix in the corresponding XML documents. The most

common one (and the only applicable to every object type) is changed, containing

the date and author of the last cataloguing update. This does not describe the

object itself, and is used for internal purposes only. Other sinbad descriptors are

mentioned later in the section.

3.3.1 Repository structure

The repository was logically divided into subsystems and catalogs with a

structure derived from content ownership (or publishing entity) and type, as

depicted in Figure 3.1.

CHAPTER 3 – SInBAD

 89

Figure 3.1 – SInBAD repository structure

The Library subsystem contains the theses and dissertations, books,

scientific publications, and magazines catalogs; the Archive holds the graphic and

audiovisual material (except for the jazz content) catalogs; Jazz contains one

catalog for the albums and other for jazz-related books and magazines; finally all

the museological items are in the Museum subsystem.

To allow for a more fine-grained structure, some catalogs are also organized

in collections. The Posters catalog, for instance, is divided into a number of

collections, such as Political, Social, Sports, or Concerts, while a photograph may

belong to the Academic Ceremonies, Cultural Events, or Scientific Events

collections.

Finally, some indexes and vocabularies were created to help better organize

the repository, although they do not actually act as containers. For example, a

doctoral student is associated with one or more departments in the University

(sometimes an external university is also involved), and therefore his dissertation

must be associated to these units in a controlled manner.

3.3.2 Monographic content

Due to the limited coverage of the Simple Dublin Core element set, the

metadata for monographic objects (books, theses, magazines) is enhanced with

descriptors from two other Dublin Core namespaces: the “terms” namespace

Library Archive Jazz Museum

Theses

Books

Publications

Magazines

Posters

Photographs

Videos

Albums

General

General

P2P and SOA architecture for digital libraries

90

(used in the Qualified Dublin Core) and the DC-Library Application Profile (DC-

Lib). The metadata schema is depicted in Figure 3.2.

Figure 3.2 – Metadata
1
 for monographic objects in SInBAD

1
 XML diagrams used in this document use the following notation: a) solid boxes represent mandatory

elements, while dashed ones are optional, b) child elements are grouped inside a hexagonal box with 3 dots

crossed by a line, c) an hexagonal box with a switch indicates only one of its children should be present, and

d) the definition of minimum and maximum quantity is represented numerically below the corresponding

element with the min..max format.

CHAPTER 3 – SInBAD

 91

While most descriptors are self-explanatory, others are worth discussing:

 As with any object in the SInBAD repository, the <dc:identifier/> descriptor

holds the unique URL for the object (http://sinbad.ua.pt/[catalog]/[id]);

 For theses, the <dc:coverage/> element is used to indicate the department

or unit associated with the object, and the <dc:contributor/> holds the

names of the supervisors;

 The description may hold several abstracts, one per language;

 A structured table of contents is stored to allow a better navigation

throughout the document later on; a custom <sinbad:documentStructure/>

element was created to accommodate it (Figure 3.3).

Figure 3.3 – Structure for table of contents

P2P and SOA architecture for digital libraries

92

The table of contents is composed by a sequence of parts and has two global

Boolean attributes: printable indicates if users can download or print the document

and IntranetOnly if the access to outside campus is restricted. Each part (chapter

or section) has the following properties: identifier, name, type (either a regular

section or an attachment), the first page of section (both physical and textual), and

the page count. View and download restrictions, along with an optional period in

which they are applicable, can also be applied to each part.

While such model is fit for books and theses, it is inadequate to properly

describe scientific magazines and journals. The rationale is simple: while a book or

thesis has (generically) document-wide title, authors, and descriptions, a journal

contains multiple articles, each with its own title, authors, and abstracts. The

magazines catalog has a slight variation in its metadata. While magazines and

journals as a whole are described in a similar manner, each part has also its own

metadata (Figure 3.4). A reference to the parent object is made through the

<dcterms:isPartOf/> element.

Figure 3.4 – Metadata for articles in SInBAD

CHAPTER 3 – SInBAD

 93

3.3.3 Posters and photographs

For the image based resources (posters and photographs), the VRA Core 3.0

[114] was used. The VRA Core consists in an element set to describe works of

visual culture as well as the images that document them. It therefore offers a

number of descriptors that better categorize a graphic object, such as the

measurements, the material of which the image is composed, or the style or

period. Several of its descriptors match those of Dublin Core (title, creator, date,

subject, relation, description, source, rights), making it simple to map between

both standards. The metadata for graphical objects in the repository is depicted in

Figure 3.5.

Some usage details:

 The <dc:subject/> descriptor is repeatable and used for storing keywords,

while the <vracore:subject/> is used to indicate the collection the item

belongs to; furthermore, the <vracore:relation.identity/> holds the collection

identifier;

 The rights element is used to contain the access rights definition (e.g., a

viewLevel of 1 indicates everyone can view the object, while a viewLevel of

2 restrains the access to editors);

 When the metadata is imported from an existing record of the Aleph

system, its former identifier must be stored in the

<vracore:idNumber.formerRepository/> element.

3.3.4 Multimedia

The generic metadata used for videos in SInBAD is based solely on the

Simple Dublin Core terms and on <dcterms:tableOfContents/>. Inside this

element, a detailed MPEG-7 [115] based metadata is placed. The complete

structure of such XML is too complex to represent in a model, but the main subset

is depicted in Figure 3.6.

P2P and SOA architecture for digital libraries

94

The most fine-grained description which can be made on a video object is

obtained by segmenting it into AudioVisualSegments, which in turn can be

described according to its creation and to temporal information.

Figure 3.5 – Metadata for graphical resources in SInBAD

CHAPTER 3 – SInBAD

 95

Figure 3.6 – Subset of the MPEG-7 description standard

3.3.5 Jazz

The core catalog in the Jazz subsystem, Albums, was built around an

existing database donated by the Portuguese jazz critic José Duarte. As result, its

metadata is not represented in XML but in relational tables. Nevertheless, the

most common fields can be mapped into Dublin Core and back when necessary.

Such mapping is not made without some significant loss of information (the

identifiers of musicians, tracks and instruments, required for referential integrity in

the database, is not mapped), but the most important descriptors are preserved in

the operation (e.g. album name to dc:title, album year to dc:date, and musician

name to dc:creator).

The Jazz database is a rather complete information source – with about 20

tables relating entities such as albums, books, magazines, and labels – and is too

P2P and SOA architecture for digital libraries

96

complex to show a diagram here. A simplified entity-relationship model2 of a

subset of the database diagram (the albums) is depicted in Figure 3.7.

Figure 3.7 – Jazz database simplified entity-relationship model

3.3.6 Museum items

The items in the collections are described using Dublin Core and a custom

schema defined by the Portuguese Museums Institute. The metadata information

is extremely comprehensive and includes descriptors for an item's authorship,

2
 In such diagrams, entities are represented by squared boxes, its attributes by ellipses and the

relationships between entities by diamonds.

Musician

Instrument

id

id
id

id

name

name

name
name

number

year

lyrics

ISRC

callNumber

leader

label country

Album

Track

tracks

CHAPTER 3 – SInBAD

 97

historical track, employed techniques, composing parts, past exhibitions in which it

was features, among others. Figure 3.8 depicts a small subset of these

descriptors.

Figure 3.8 – Subset of the metadata schema for museum items

3.4 ARCHITECTURE

Figure 3.9 shows the architecture of the SInBAD system and some of the

services it uses (only the Library and the Jazz subsystems are shown for clarity

P2P and SOA architecture for digital libraries

98

purposes). On top of the stack, the SInBAD portal is the main website for the

system, and it provides an OAI-PMH interface. This website may get data from

each subsystem‟s Web Server (e.g. on searches), but users will mostly access

objects through each one‟s website. Each subsystem, on the other hand, uses the

DisQS module (details in the next chapter) to retrieve data and metadata from a

distributed repository, while authorization rules are stored in a shared relational

database. Some utility and external Web Services are also used to obtain some

functionality.

Figure 3.9 – SInBAD architecture

3.4.1 DisQS

Before SInBAD, researchers from the Digital Libraries laboratory in the

Instituto de Engenharia Electrónica e Telemática de Aveiro designed and

developed some information systems such as the Portuguese Parliamentary

Records Digital Library [116] and the Audiovisual Archive [117]. A common

external servicesutility services

SInBAD portal

OAI-PMH

provider

Library

Web

Service
Website

Jazz

Web

Service
Website

DisQS

Manager

DisQS

Manager

users database

DisQS Agent
DisQS Agent

DisQS AgentDisQS

Agent

Catterpillar

Web Service

ID Manager

Web Service

RCU

Web Service

e-ABC

Web Service

CHAPTER 3 – SInBAD

 99

characteristic in all systems is the large amount of data that needs to be stored,

queried and retrieved.

Research inside the DL group led to the conception of DisQS – Distributed

Query System [32][30][31]. The objective of DisQS is to allow a standardized

interoperation between network nodes, which is accomplished with the interaction

between the Web Services of a DisQS Manager and those of at least one DisQS

Agent. The architecture of DisQS is depicted in Figure 3.10.

Figure 3.10 – DisQS architecture

The Manager has a cache which enables it to quickly respond to previous

requests (search queries) and is further composed into three modules. Query

Manager performs the distribution of search queries to the Agents and optionally

filters results. Resource Manager is responsible for retrieving documents from and

uploading to Agents; it can be configured to upload documents redundantly to

P2P and SOA architecture for digital libraries

100

several Agents. Catalog Manager is responsible for inspecting a XML

configuration file to determine which remote repositories must be accessed; it also

controls updates in the network and manages the catalogs and its properties. The

structure of the configuration is depicted in Figure 3.11 and Figure 3.12.

Figure 3.11 – DisQS Catalog Manager configuration

Figure 3.12 – DisQS catalog configuration

Each Agent is registered in the Manager, with an entry composed by its

identifier, URL (of the Web Services), and a list of catalogs.

The catalog definition exists both inside the Manager‟s XML configuration file

and at providing Agents. Each catalog has a unique name, a root directory

(optional and only at the Agent) and a group of properties. These properties –

described by a local identifier, name, and data type – define which terms in the

metadata are searchable and/or retrievable in search results. A standard catalog

CHAPTER 3 – SInBAD

 101

may, for instance, be pre-populated with the 15 terms from the Simple Dublin Core

schema.

Inside each Agent, a Local Indexer module acts both as a wrapper to a

search engine and as a manager for the catalogs and properties defined in its

local XML configuration file. For instance, when a new document is created or

uploaded in a catalog, it is up to this module to extract the metadata specified for

the catalog and index it. It is also this module which interacts with the search

engine in order to reply to search queries. Tests were conducted using Microsoft‟s

Indexing Engine [118] and Swish-e [119], and SInBAD uses the former. Indexing

Engine automatically indexes properties for some common file types (HTML, TXT)

but to make it index our metadata files a two-step procedure was conducted:

 The QuiLogic‟s Ifilter [120] was installed in order to make the engine

capable of indexing XML elements and attributes in a configurable way (by

default the engine will only index the elements contents);

 To make the engine distinguish between these XML metadata files and

other XML files that may exist, the system description files were given the

extension “mtd”; the rules defined in the previous point could then be

applied only to this extension.

Regarding the Web Services, both the Manager and Agents have an identical

interface, which provides the most common file operations (GetFile, UploadFile)

and methods to do a repository-wide search or only in specific catalogs. There

were however introduced some methods to better distribute computing tasks. For

instance, getting an image file from the repository and creating a thumbnail is a

common operation in most digital libraries. We therefore introduced a

GetImageFile method – which accepts the file identifier and the desired

dimensions and format – thus making such image processing a distributed

process, to be executed by the image owner Agent.

The SInBAD digital library was designed on top of the DisQS system, hence

taking benefit of the following features:

P2P and SOA architecture for digital libraries

102

 Distributed solution based on modular and interoperable design;

 Transparent access to a distributed file repository as if it was a single one;

 Configurable automatic replication of data;

 Load balancing, either by using a replicated data scenario where the

provider (Agent) may be chosen dynamically, or by delegating

computationally intensive tasks (image processing);

 Remote catalog creation and management.

3.4.2 A SInBAD subsystem

The core of each subsystem is a Web Service which acts as a client to the

DisQS system. In the case of the Library, for instance, Agents with at least one of

its catalogs (Theses, Books, Publications, and Magazines) are used with search or

file requests.

All Web Services have a common set of operations (e.g., Authenticate,

GetCatalogs, and Search) and others specific to each catalog (e.g., GetThesis,

InsertPhoto). These methods not only perform the communication with DisQS, but

they also handle communication with the external services overviewed in section

3.2, namely the RCU which is common to every subsystem.

3.4.2.1 Authentication

While access to the WSDL of the Web Service of each subsystem is open

and unrestricted, several methods can be only used by providing a security token.

Such mechanism works in a way very similar to how browsers send cookies

between a website and a user computer.

Before any of such secured operation is used, the Authenticate method

must be invoked with the RCU login and the encrypted password. If successful,

the Web Service initiates session variables and generates a token to be returned

in the HTTP response. Subsequent requests made by a client must be

accompanied by such token.

The authorization process, on the other hand, is completely handled by each

application in the campus. SInBAD enforces a role-based authorization

CHAPTER 3 – SInBAD

 103

mechanism on a per-catalog basis. Thus, users from the CEMED centre can be

granted editing permissions on videos, while those from the External Relations

Service can only create and modify photographic records.

3.4.2.2 Website

Every subsystem has a frontend where users can browse, search, and view

the documents in the repository.

Both simple (quick) and customized advanced search forms are available for

each catalog – some fields may only be queried in a subset of the catalogs and

terminology may differ. A search is processed in the following way:

a) the subsystem‟s Web Service Search method is invoked with property-

value pairs (ANDed);

b) the Web Service submits the query into the DisQS Manager;

c) the Manager determines which Agent(s) support the catalog(s) and

dispatches the query;

d) each Agent uses its search engine to retrieve the results and responds

back to the Manager;

e) which in turn aggregates results, that are returned up until the website.

In the case of simple searches, the Web Service uses pre-defined set of

properties (the most common), assigns them the query value and in this case

sends it to DisQS to be ORed.

While a different viewer is used for each type of document, a common set of

graphical and layout rules are enforced in order to conform to the University‟s

institutional image. The common and most prominent element in all websites is its

header, provided by the Banners service, and consumed using the JavaScript

client in a REST style. Each catalog has its own set of images configured in this

external service.

Regarding the media viewers themselves, they take advantage of all the

structural information obtained from the XML description. For example, users can

read through a dissertation page by page or quickly navigate into a specific

P2P and SOA architecture for digital libraries

104

chapter (as defined in the table of contents). Identically, users can either watch

through an entire “3810” program or only one of its segments.

3.4.3 SInBAD portal

Each subsystem has its own repository, Web Service, and website, and can

be considered independent and autonomous in almost any aspect. Nevertheless,

the SInBAD portal is the main entry point for visitors and editors of any catalog.

Besides linking to the available catalogs, it serves two important purposes:

 Search aggregation. The SInBAD portal provides a global and generic

search that spans the entire repository. It accomplishes that by querying the

Web Services of all its subsystems and aggregating and uniformizing the

results.

 Authentication. SInBAD implements a single sign-on mechanism – all

users login at the portal and their credentials (HTTP cookies) are

transparently used by all subsystems.

3.4.3.1 OAI-PMH

In 2001, one protocol emerged to promote the standardized interoperability

between digital libraries and archives: OAI-PMH [13]. This HTTP based protocol

describes the interface a repository must provide (the Identify, GetRecord,

ListIdentifiers, ListMetadataFormats, ListRecords, and ListSets methods or

“verbs”) and defines the XML structures metadata must be exposed in. Dublin

Core is the recommend standards for describing resources and in SInBAD only

those terms are exposed in this interface.

Figure 3.13 depicts the OAI-PMH model for a GetRecord response. Both the

responseDate and the request structures exist in all responses and in this case

contain: the date the response was generated, the verb (GetRecord), the

metadata standard (oai_dc for Dublin Core), and the unique identifier of the

document requested. The record retrieved contains a header (with the resource‟s

identifier, date, and catalog) and the metadata itself, exposed inside the oai_dc:dc

CHAPTER 3 – SInBAD

 105

element (most Dublin Core terms from the repository XML are copied without

changes).

Figure 3.13 – OAI-PMH GetRecord structure

3.4.4 Utility services

Several tasks involved in the creation and dissemination of digital objects in a

digital library are time and CPU-intensive. Images must be converted and resized

to different formats and dimensions, videos must be split, and text must extracted

from documents, and all these operations can occur at external service providers

rather than on the servers where the websites run.

A utility service – the Caterpillar Web Service – was therefore created to

perform such operations. Once installed in a network connected computer, the

subsystems can delegate such intensive tasks to any of these Web Services.

Another advantage is that, since almost every such task occurs in submission

processes (such as inserting a new photograph or book), time constraints are

usually less strict than those involved in the dissemination of information by

general users. Hence, commodity computers which are idle most of the time can

be used.

P2P and SOA architecture for digital libraries

106

A decision on the system design was also made early on which required that

every object had a coherent but unique identifier throughout the entire distributed

repository. The concept of an ID Manager was then created and later implemented

as Web Service. This service can maintain numerical counters for unlimited

scopes (i.e. applications), each with its defined format. SInBAD uses it with a size

of 10 and the optional year attribute enabled (e.g. the ID 2008000373 was the

373th generated in the year 2008).

3.4.5 Interoperation with external applications

When data and metadata must be aggregated from external applications, the

question on which methodology to adopt arises [35]. A common strategy used by

content harvesters is to periodically collect (harvest) the data from the known

providers and save it (usually merged) in a local database. When these harvesters

are later used for search purposes, they can provide results quicker since data is

already prepared. The disadvantages of such methodology are however clear:

data can quickly become out of sync, which can produce unexpected results such

as the existence of multiple copies of the same object, or search results with non-

working links. SInBAD retrieves information from other systems with a dynamic

approach, thus querying its services in real-time.

3.4.5.1 E-ABC

As seen in section 3.2.1, e-ABC maintains an updated index of bibliographic

references to scientific publications: articles, books, reports, and other material

whose authors include teachers and researchers. No digital copy of those

publications, however, was available to users, since this was not the purpose of

the system.

With the development of SInBAD, this scenario has changed dramatically.

Both e-ABC and SInBAD provide a Web Service by which the systems

communicate. Whenever an author or an institution anchor (on behalf of the

authors) inserts a new publication on e-ABC, he may also upload the

corresponding PDF file. This file, however, is delivered at SInBAD's Web Service,

along with the e-ABC generated identifier, which processes it (with Caterpillar) and

CHAPTER 3 – SInBAD

 107

stores it in the Library's repository. If this operation is successful, e-ABC stores the

URL for the document in its UNIMARC description file, in the format

http://sinbad.ua.pt/publicacoes/[identifier].

When users search in e-ABC, each result whose digital manifestation is

stored in SInBAD provides a link to it (in the above format). On the other hand,

when users search for scientific publications in SInBAD, the system actually

performs the search in eABC's Web Service, limiting the results to digitized

entries. When accessing the digital document, SInBAD fetches the UNIMARC

description from e-ABC and displays it along side with the images (converted from

the PDF).

Finally, SInBAD provides an OAI-PMH interface to e-ABC. It uses its Web

Service to fetch all digitized records, converts them to Dublin Core, and formats

the output to OAI-PMH compliant XML.

3.4.5.2 Aleph

Since the bibliographic references for most of the existent material in the

University is stored in this library's system, it would make little sense to ignore it

and require the time consuming task of re-cataloguing documents (or even copy-

pasting the metadata). With this in mind, every developed back-office application

has an Aleph communication module.

This module receives an identifier from the application (such as a system

identifier or call number) and fetches the correspondent UNIMARC metadata

description from Aleph. This description is presented to the administrator (or

editor) in the application's interface so he can check the correctness of the

information. When everything is validated and other tasks specific to the media are

completed (such as specifying the table of contents and its permissions), data can

be submitted. The back-office will transparently translate the UNIMARC into Dublin

Core and whichever other description standard.

P2P and SOA architecture for digital libraries

108

3.5 SUMMARY

The SInBAD system has become (in conjunction with e-ABC) not only the

University‟s institutional repository, but also the entry point for users (internal and

external) to access the digital content provided by several distinct sources.

By analyzing the features and capabilities offered by the system, namely in

comparison with those obtained from popular digital library management systems,

we believe the objectives were met:

 The flexible description model allows the system to fully support virtually

any multimedia object, not only as storage tool but as customized viewing

application; also, metadata can be exported both to Dublin Core and more

specific standards;

 Its high granularity allows for both generic and repository-wide, or complex

and customized search queries to be made, specific to a given media type;

 Such granularity is also used to control access to objects or some of its

parts, thus better aligning with copyright issues;

 It is not an isolated application but instead one that provides and consumes

information to and from other applications; its interoperation with e-ABC, for

example, allows integrated views of scientific work and corresponding

production reports, authority indexes, and the direct association with users,

with the possibility to view the actual publications;

 It is Web Service based, therefore facilitating a standard based

interoperation with other applications;

 Its modular design allows transparently replacing components or

methodologies, such as the search engines, the storage functions, or the

tools used in document processing;

 It is a distributed and scalable solution that can take advantage of remote

resources.

Nevertheless, some issues and opportunities were identified at this point

which could be improved in existing system by applying the most recent

computational models.

CHAPTER 3 – SInBAD

 109

 The first one is concerned with the definition of workflows definition and

execution. While most processes are service-based, they are currently hard-coded

into the Web Services logic. Several of these processes could benefit from being

described with a business process language such as BPEL and run with a

business process engine.

On the other hand, since digital libraries store very large amounts of data, the

decentralization could be taken to an even higher degree by collaboratively

handling that data using peer-to-peer networks. This could prove to be especially

important in an institution with hundreds to thousands computers idle most of the

time.

In the next chapter some improvements to the digital library architecture are

discussed and proposed.

P2P and SOA architecture for digital libraries

110

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 111

CHAPTER 4 – A SOA and P2P based architecture for

digital libraries

4.1 INTRODUCTION

In the last chapter the conception, designing, and implementation of the

SInBAD digital library were discussed. While its architecture does comply with the

initial objectives, a large computational capability remains nonetheless underused.

The campus network is composed by thousands wired computers and hundreds

connect to it wirelessly every day.

First of all, this represents a very large distributed storage space which can

be tackled basically by any P2P product. This is not, therefore, an innovation per

se. One has nevertheless to properly store resources and make them discoverable

in light of the requirements of a digital library system. This leads to discussing the

models, storage, indexing and searching of metadata of heterogeneous resources.

While the advantages of having a virtually unlimited storage space become

easily apparent, such large number of mostly underused personal computers may

P2P and SOA architecture for digital libraries

112

offer other resources such as computational power. In fact, the most time-

consuming and computationally intensive tasks involved in the normal operation of

SInBAD relate to the submission of new digital objects. In such tasks, it is the

document processing services which become the bottleneck of operations, with

CPU processing power being used to its full capacity.

The proposed architecture in this chapter therefore aims to tackle such

distributed resources – both storage and processing power – using an underlying

P2P framework.

There was identified one further refinement that could be made to such

(business) processes. While they are currently Web Service based, its

composition is hard-coded into the logic of each subsystem. There exists no

declarative execution flow but rather a sequence of instructions with data

preparation and service calls. An execution language such as BPEL can thus

improve the modularity and flexibility of system, introduce a standard mechanism

to compose and invoke services, and allow for changes to be made without the

need for recompiling source code.

Furthermore, if we can properly integrate BPEL and peer-to-peer networks, a

great number of advantages inherent from P2P will become available for the

execution of business processes:

 Service availability can be largely increased by replicating services in

several peers;

 Also, services located in computers behind firewalls and NAT systems can

become reachable;

 Previously unused machines can host services to be used in an

orchestration; idle times can also potentially be reduced;

 Dynamic service discovery and assignment in the P2P network can

increase the flexibility and fault-tolerance of processes;

 Delegating part of the orchestration to other engines can help reduce the

data on the messages transferred in the network and improve the overall

performance.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 113

The scope of this work is about analyzing how each of these characteristics

and behaviors could be used to improve the efficiency of a service oriented

environment. Specifically, a group of proposals are made on how business

process management and execution software can become more efficient. These

cover both architectural and small, localized, changes.

4.2 ARCHITECTURE

The proposed digital library architecture is based on two fundamental

concepts: P2P and SOA. Figure 4.1 depicts the architecture from a node point of

view. While both storage and services are distributed, the P2P and Service

modules make sure a node transparently accesses those resources.

Applications created for such digital library interact with the Service module.

Examples of such applications include service registries, service composition and,

more specifically, enhanced BPEL execution engines (BPEL-e) may also exist (as

can a regular one) in some peers. Such engines are discussed further ahead.

The Service module abstracts the digital library implementation details and

storage specificities by transparently providing interfaces to both services and data

repositories. Every application‟s functionality relies on one or more Web Service

available at this module.

The P2P module is built on top of the JXTA framework, which provides the

basic P2P communication mechanisms. In JXTA, super-peers are named

rendezvous peers and others are edge peers. If communication with peer groups

from other networks is required, at least one relay peer must provide the outside

communication.

P2P and SOA architecture for digital libraries

114

Figure 4.1 – Digital library architecture based on SOA and P2P

The Query and Metadata module prepares and pre-processes search

queries before delivering them to the search engine. It is also responsible for

processing results (ranking, description uniformization, etc.). Due to the modular

design of this architecture, it is possible to change the search/indexing engine

being used. Nevertheless, the query syntax used by this module must be coherent

among all peers; otherwise proper communication between P2P modules would

not be possible.

Indexing serves as a wrapper module for the search engine used in the

digital library. As discussed earlier, it is desirable to make use of index/search

engines in order to achieve high performance queries. This module creates a local

index for the metadata of the resources it holds. In case of super-peers a group

index is also created for the indexing of child nodes.

To improve the performance and responsiveness of applications a Cache

module is also included. This may store data about previous search queries and

information about other peers (neighbours, super-peers, etc.)

Storage

Service

Proxy

Service module

Services

Cache Indexing

local

index

data &

metadata

P2P module

Service 1 Service 2

group

index

Query and Metadata

 Applications

Web

Services

Service

registry

Service

composition

BPEL-e

engine

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 115

On the services side, the Web Services block implements a basic SOAP

Web service client for regular HTTP services. The Service Proxy, on the other

hand, interoperates with services available across the P2P network and otherwise

unreachable. This proxy will be discussed further ahead.

4.2.1 Networking

Figure 4.2 shows how network communication occurs between the peers.

Two interfaces are available at the peer – P2P communication or service –, and

both use XML as the message format.

Figure 4.2 – Networking of service-enabled peers

The Service module performs all network communication related to Web

Service description (WSDL) and invocation. Hence, this communication channel

operates over the HTTP protocol using SOAP and XML.

The P2P module, on the other hand, handles P2P communication between

nodes. With JXTA, this is accomplished with the generic concept of JXTA pipes,

which are virtual connections between two endpoints [121]. A peer endpoint is a

Service communication

P2P communication

peer

peerpeer

Service

module
 P2P module

 HTTP, SOAP, XML

JXTA Pipes, XML

P2P and SOA architecture for digital libraries

116

logical abstraction of an address on a network transport capable of sending and

receiving messages. Pipes enable the transparent connection of two endpoints

which can be on distinct networks and use different transport protocols. Other than

the messaging capabilities, no assumption is made about connectivity. Pipes also

transparently handle the communication‟s routing process, which may require

intermediary peers to accomplish, and deal with the details of message delivery

between firewalled machines.

Data is sent over pipes using the concept of message, a set of named and

typed contents called elements (i.e. name/value pairs). Two standard message

encoding formats are used by JXTA messages: XML and binary.

XML is used for most of the communication between peers, especially for

text-based messages. However, since some transports cannot transmit raw binary

data, XML may also be used to encode binary content.

The JXTA Binary Message Format is designed to facilitate the efficient

transmission of data between peers. Encoding large binary files in XML to be sent

to other node can be both computationally intensive and require a much higher

network bandwidth. If the underlying network transport supports binary data this is

the preferred format for those scenarios.

4.3 P2P

An array of autonomous nodes (the P2P network) is capable of performing

the data storage required by digital libraries. For this purpose, and following the

discussion from section 2.3.3, hybrid topologies offer greater flexibility, as they

offer much of the centralized robustness while maintaining the advantages of the

decentralized topology.

This architecture is designed to take advantage of such hybrid topologies. In

each peer group (small institutions, departments, I&D units, etc.) a super-peer

maintains an updated index of the group resources (documents and services).

Other peers periodically send their local indexes to be merged at the super-peer

(in the group index). When requesting a file or service provider, peers start by

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 117

inspecting their local cache and, if no match is found, a query is made to the

corresponding super-peer. Each super-peer may also forward queries to other

super-peers.

4.3.1 Metadata

Most P2P applications enrich data with very limited metadata and restrict

search queries to simple and common criteria, such as filename or file type. This

leads to a higher simplicity in development and query processing, and reduces

communications package size and memory required to store indexes.

Full-featured digital libraries, however, place much more complex

requirements on its infrastructures. Using proper metadata to describe resources

is crucial for digital libraries, not only when resources are presented to users but

also when they are searched for. For example, it is commonly desirable to allow

users to search for books by its author, musical tracks by duration, or movies by

genre.

Metadata should also be coherent so that two peers can properly

interoperate, since searching and requesting heterogeneous description

languages is not a trivial task.

As discussed in the design process of the SInBAD system, we find it

desirable to have two description levels: transparent to the format and format-

specific. In the former, there are descriptors which can be used by almost any type

of digital manifestation, such as title, author, and date. In the later, there are

descriptors which are specific to the type of manifestation of the digital content,

such as bibliographic references for books, or resolution for photographic data.

The adopted metadata model therefore does not differ from those used in SInBAD:

Dublin Core for the common property set, and a specific standard according to

document type.

P2P and SOA architecture for digital libraries

118

4.3.2 Indexing and searching

It is not efficient to search for file names or types in real-time, and querying

for heterogeneous and complex metadata that way would not be feasible.

Therefore some sort of search engine should be used.

A search engine is commonly based on inverted indexes, where words are

stored (usually alphabetically, for better search performance) alongside with the

identifiers of the documents where they were found.

To allow for phrase search or more complex queries – such as pattern-

matching (wildcard expressions) or proximity expressions (one term near another)

–, the positions of words in each document can also be stored. These are called

inverted indexes because its structure is opposite to those of regular databases:

words are the keys (what to look up), while documents identifiers are regular

fields. When a query is submitted to the engine, the words are looked up in the

inverted index and the documents matching all the words are retrieved.

In SInBAD the Microsoft‟s Indexing Service [118] was used in DisQS Agents

for providing the indexing and searching capabilities. It became apparent,

however, that it had several limitations and it was not adequate for this new

architecture. Section 4.5 summarizes the analysis and evaluation of six search

engines in the scope of a hybrid network. Results obtained from such evaluations

indicate Lucene search engine to be currently the most suitable engine for this

proposed architecture.

4.3.2.1 Indexing configuration

Since this new architecture is based on the same metadata models than

those used by SInBAD, some configuration is needed to allow for each peer to

know what terms to index and search for.

An identical mechanism was used with the DisQS distributed system, where

XML configuration files with the indexable properties existed at both a manager

and its agents. The adopted strategy in this architecture combines this approach

with the results from previous work [122] based on JXTA handlers.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 119

Upon installation, all peers can properly index and search a pre-defined set

of file types and terms. This is done using message handlers, which associate a

class (the handler) to a file extension. By default peers index the text from text

(TXT, DOC, HTML, and PDF) and XML (only the content values) files into the

index term “content”. Most importantly, they handle MTD files, which are XML

documents reflecting the Dublin Core based metadata model. In this case, the

search engine is instructed to index the basic Dublin Core‟s 15 term set and the

relevant terms (i.e. searchable) from the other standards.

On top of this basic configuration, new handlers can be later added to

search-enable the system regarding other objects. For example, in a service-

enabled peer, we may store the WSDL files of the provided Web Services in a

special folder and create a handler to read the XML and index the namespace, the

operations, etc. Should SInBAD be adapted to this architecture, and since

metadata is supplied in separate files, only the handler for MTD files would be

required for every peer. As a matter of commodity, however, handlers could be

developed to automatically extract some specific features (e.g. duration in audio

and video files or page count in PDFs).

Similar to the first version of SInBAD, where configuration files for indexing

exist at both the DisQS Manager and Agents, super-peers should assure the

propagation of the configuration files and required handlers to its nodes. This

should occur both when a node first enters the network and periodically to keep

changes synchronized. A schema identical to that shown in Figure 3.12 can still be

applied.

4.3.2.2 Querying language

As it should be clear, the queries transmitted in messages throughout the

network must be uniform in order for every node to interpret it. For a matter of

simplicity a query language identical to that used by some search engines3 can be

3
 See for example http://lucene.apache.org/java/2_0_0/queryparsersyntax.html

P2P and SOA architecture for digital libraries

120

used. The syntax consists in a set of one or more <term_name>:<value> pairs,

separated by Boolean operators. Grouping is achieved by using parentheses,

phrase searches using double quotes, and term modifiers (fuzzy, proximity, and

range searches) using wildcards. The following is a query example for our

metadata model:

dc_title:Aveiro AND vra_subject:”Cartazes de desporto”

4.3.3 Topology

In order to fully evaluate the benefits of a hybrid topology one must be aware

that for this semi-centralized search to work, peer indexes must be stored at the

super-peer. Such operation, roughly equivalent to a file transfer and a file merger,

can become a bottleneck to the network if indexes are too large or if index updates

are requested too often. An index with some gigabytes could take several minutes

to be transferred to the super-peer.

Ideally, a P2P application should adapt to changing scenarios and to the

dynamics of peers entering and leaving the network. Hence, the P2P layer should

be configured to use a super-peer based topology but to fall back to a

decentralized environment when required:

 When the network is first initiated and a super-peer is designated, the

system should temporarily function in the decentralized mode while indexes

are transferred.

 If a leaf peer has a very large index which was still not transferred, the

super-peer may flag it so that it forwards search queries and combines

results with those from its indexed nodes. These large file transfers can be

scheduled to occur at lower activity periods.

A JXTA-based infrastructure was designed adopting these principles. In its

normal functioning mode, networks are hybrid, with some of the nodes acting as

indexing super-peers. However, in some occasions the network may fall back to a

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 121

(semi-)decentralized mode: in the startup process, when a node with a very large

index enters the network, or if existing super-peers leave the network.

4.3.4 Optimization

While the hybrid configuration offers more stability and robustness to

applications, the weaknesses of centralized models can still be observed locally. A

cluster of leaf nodes can be suddenly left orphan if the super-peer is shut down or

leaves the network. While the network will fall back to a working decentralized

topology, applications could benefit from a more efficient approach.

Nodes should thus be classified as peers, super peers or backup (B-) peers.

Regular peers maintain a connection to the super peer and a reduced number of

other peers. A super peer maintains connections to all peers in the network and an

index of its resources (data and services). To ensure a high availability, we

introduce a backup peer, which periodically fetches the connections and the index

from the super peer. In case of failure of the super peer, the B-peer becomes the

network super peer and instructs all peers to act accordingly.

Super peers and B-peers should be selected based on their hardware

capabilities and an estimate of the uptime rather than on the amount of resources

they offer. In fact, a super peer may not even share any data, since it is of greater

importance that it replies very quickly to requests and forces the minimum network

changes.

Within the organization, resource access can be optimized by periodically

and automatically balancing the load: by moving resources or replicating them

over nodes to maximize throughput.

If an organization has few computational resources, it can form a virtual

organization with other trusted entity. On the other hand, if one organization has

too many nodes to aggregate under a single super peer, it can follow a multi level

scheme: one super peer will aggregate several other super peers, which are

responsible for a subnet of the organization.

P2P and SOA architecture for digital libraries

122

4.4 SERVICE ORIENTED ARCHITECTURE

4.4.1 Dynamic Service discovery

In a widely distributed and heterogeneous service oriented environment,

several applications may make use of Web Services created by multiple

developers and hosted at several providers. However, in order to take full

advantage of the potential of such services, the proper service must be found at

the right time. Having some sort of discovery mechanism in such environments is

therefore a desirable feature.

The importance of service discovery is better thought in the two different

application stages. In a first stage, at design time, developers must have the

necessary tools to find existing Web Services (either internally within the

organization, or externally in the Web or at some business partner) in order to

reuse existing components, thus boosting productivity. When their applications are

running in production, a different requirement can be placed on the discovery

system: providers may become unavailable, new versions can be deployed, and a

provider may be chosen from a list of complying parties.

Let one consider the case of a BPEL business process. The BPEL language

is built upon Web Services and therefore uses the Web Service Definition

Language (WSDL) extensively. In fact, both the partners (the service providers)

and the process itself are exposed as WSDL services.

A simplified skeleton of a BPEL process definition is presented below4.

<wsdl:definitions>?
 <!-- types, messages, portTypes, and parternLinkTypes -->
</wsdl:definitions>

<process>

4
 The pattern should be interpreted as follows: elements with an asterisk can have zero or more

occurrences, with a plus sign have at least one occurrence, and those with a question mark are optional but

non repeatable.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 123

 <import namespace="URI" location="URI" importType="URI" />*

 <partnerLinks>?
 <partnerLink name="NAME" partnerLinkType="QNAME" myRole="NAME"?
 partnerRole="NCName"? />
 </partnerLinks>

 <variables>?
 <!-- the variables -->
 </variables>

 <sequence>
 <!-- the activities -->
 </sequence>

</process>

The process definition starts by declaring the WSDL types, messages,

portTypes and parterLinkTypes involved in the activity execution. Namespaces are

then imported, the partner links and its roles defined, and the variables declared.

Partner links are instances of typed connectors specifying the WSDL port types

involved (see section 2.5.1.1). Roles define the services the process will use, and

a myRole is a service provided by the BPEL process itself. Variables are used to

contain data (WSDL messages, or XML schema types or elements) in a process

and they constitute its state during runtime. Only then the actual process activities

are defined within the <sequence /> element.

When a service provider hosts a Web Service, it makes its WSDL definition

available at some URL. By inspecting this WSDL, we can find something similar to

the following XML elements:

<wsdl:service name="myService">
 <wsdl:port name="myServicePort" binding="tns:myServiceBinding">
 <soap:address location="http://example.com/Serv" />
 </wsdl:port>
</wsdl:service>

Usually, before execution, a BPEL engine will compile all definitions (BPEL

and WSDL) into a runtime, and the service addresses become coded. A BPEL

engine could however use a discovery service to find providers hosting the same

service – with identical WSDL definitions but obviously with different

P2P and SOA architecture for digital libraries

124

<soap:address /> elements. Such a simple modification in the behavior of a BPEL

engine makes the process execution more flexible, as it is no longer tightly bound

to specific providers. As a consequence, services can be dynamically chosen to

improve flexibility, fault tolerance and throughput.

A possible approach is to use service registries to provide such discovery

mechanisms.

4.4.1.1 UDDI

There are two main service registry standards – ebXML and UDDI. ebXML

[123] or Electronic Business using eXtensible Markup Language was created in

1999 as a joint initiative between OASIS and the United Nations Center for Trade

Facilitation and Electronic Business. In 2000, a consortium led by IBM, Microsoft,

and Ariba created a platform-independent and XML-based registry for Web

Services: the UDDI – Universal Description, Discovery and Integration. From the

major software vendors only Sun appears to support ebXML, while UDDI is

supported by products from HP, IBM, Microsoft, Oracle, and Sun. Hence, UDDI

remains the only standard which is widely adopted and can assure a high degree

of interoperability.

The UDDI specification [124] defines a standard method for publishing (at

UBRs – UDDI business registries), discovering, and managing information about

Web Services, their providers, and technical interfaces which can be used. UDDI

is itself a set of Web Services and is therefore based on standards such as HTTP,

XML, SOAP and WSDL.

There are four core data structures in the standard, which express the

relationships depicted in Figure 4.3.

The businessEntity structure describes businesses and service providers

(enterprises, departments, or groups). This entity may include several names (one

per language), contacts, URLs, descriptions, and classifiers according to some

categorization system (in the categoryBag element).

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 125

A provider may contain multiple logical services, described by the

businessService structure. Services are described with names, descriptions and

categoryBag elements. The physical implementations of a service are not defined

at the businessService element but rather using the binding structure.

Figure 4.3 – UDDI core data structures

The technical information about a service is found in the bindingTemplate

structure. Each of such elements describes an instance of a Web Service located

at a specific network address, and may include descriptions and categoryBag

elements. A bindingTemplate also contains details for each tModel referenced,

along with description and documentation URLs.

Additional information about an instance of a service can be described using

the tModel, an abstract structure which can represent any concept or construct.

tModels are commonly used to link to WSDL documents, but may also be used to

define transport protocols, security models, or categorize the service (using

thesauruses, free-text keywords, etc.).

Following the discussion of the business benefits inherent from using a

service discovery mechanism, the advantages of using UDDI seem apparent. First

of all, it helps improve development efficiency, by providing the means to find

businessEntitybusinessEntity

businessServicebusinessService

bindingTemplatebindingTemplate

tModeltModelcontains

contains

references

P2P and SOA architecture for digital libraries

126

existing services, thus reducing the chances of duplicate development and

reducing the time required to create new applications or services. Also, since

technical documentation can also be found using a UBR, developers may more

easily gain knowledge about the interface protocols and how to interact with the

services. On the other hand, there is an increased manageability of the services

created across the enterprise. A single view of different services, versions, legacy

applications and interface formats is discoverable.

A document from Microsoft [125] published in 2003 describes the vision of

this enterprise on the benefits of UDDI and uses three different business scenarios

to illustrate them. The first one focuses on the developers and IT efficiency at

design time; at this particular stage the Microsoft‟s current development IDE –

Visual Studio .NET – natively supports UDDI services. The second shows the

advantages of run time discovery, making applications more flexible and robust.

The third scenario outlines how UDDI services can be extended beyond an

enterprise to external business partners, allowing them to not only discover its

services but also the knowledge that makes it easier to integrate.

The latest versions of the UDDI standard (3.0) have recognized the need for

federated control in real-world scenarios and have therefore tried to offer more

implementation options in order to better integrate into different network

topologies. For that matter, registries can be of three types – private (corporate),

affiliated, or public – that comply with the same specifications.

From the end-user‟s perspective, public domain registries act as an open and

public service in a cloud. In this scenario, UBR nodes can automatically share and

replicate data changes between each other. Administrative functions can

nevertheless be secured.

 A registry can also operate in a firewalled, private mode, allowing a

corporation to manage and discover its own services isolated from the public

network. There is no sharing of data with other registries.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 127

Registries can finally be affiliated, a policy based configuration which allows

for a controlled environment with access limited to authorized users and sharing of

data in a controlled manner. This is one of the most important concepts introduced

with the 3.0 version of the standard.

4.4.1.2 Issues and opportunities

UDDI seems the obvious technology to implement a service discovery

mechanism in a network. However, a closer analysis of how to design the service

discovery process in a P2P network suggests it is impractical in such

environments.

Let one consider the design of a P2P based digital library. The first

architectural issue to arise is where to install the UBRs. Due to the hybrid

configuration of the network, the first natural choice would be the super-peers.

However, what if a given super-peer leaves the network? If its leaf nodes cannot

directly query – via Web Services – any other super-peer (which can actually be a

common situation, since super-peers frequently act as relay nodes) they will

become incapable of discovering services.

While federation and affiliation concepts introduced in the new version of the

standard have given a broader range of design options, the physical

implementation is still nevertheless basically static. Installing a distributed UDDI

registry composed of dynamic nodes is a non-trivial task which could lead to

unacceptable results. The highly dynamic nature of P2P could lead to a very large

and frequent number of messages being transmitted to update these registries, a

number which could exponentially increase if a replication mechanism was in

place. Implementing a completely decentralized UDDI solution (with no super-

peer) is also clearly impractical.

On the other hand, the dynamics of the network could lead to UDDI registries

being filled with obsolete entries. When peers enter the network, they can

automatically register the services they provide in a UDDI publishing node.

However, if they later leave or are shut down in an uncontrolled manner (power

loss, for instance), no entity would unregister the services the node provided.

P2P and SOA architecture for digital libraries

128

Some sort of P2P notification mechanism would be required to prevent such

scenario.

There are also several issues regarding UDDI registries which are common

to any network topology. While XML and Web Service standards (SOAP, WSDL)

have been widely accepted and adopted in the industry, UDDI has seen a slower

and more limited acceptance. There were also indentified the following limitations

[126]:

 The mapping of Web Service artifacts into UDDI is inappropriate. Since

UDDI is not designed to store WSDL definitions, the current technical

approach consists in mapping wsdl:portType elements into UDDI tModel

entities. Consequently, the results of a search query for a specific tModel

name do not include important information (such as the namespace,

mapped in a categoryBag) and more UDDI requests are needed, reducing

performance.

 No interoperability exists between service registries from different vendors,

making it difficult to later copy data to a different implementation.

 There is no standard way of limiting the access to records in the registry;

existing solutions are non-official extensions.

 The querying capability of the registries is very limited. There is the lack of

the logical NOT operator, support for arbitrary combination of logical AND

and OR operators, nested find_tModel queries, or group-by operators.

Despite the limitations of the UDDI registries and its querying capabilities, the

standard provides nonetheless agreed upon schemas for registering services and

their providers. Whatever discovery mechanism is created, these schemas can

eventually be adopted (or exported into). More importantly, one should understand

the advantages of service categorization (financial, mathematical, document

processing, etc.) and categorization contexts for search decisions (service level

agreements, localization information, etc.).

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 129

4.4.1.3 Service discovery in P2P

Traditionally, P2P applications were designed for file sharing purposes.

Networks such as Gnutella, BitTorrent, and Napster are file oriented rather than

resource oriented (files, services, etc.).

In the most common P2P systems, file properties (such as the name, size,

and type) are indexed in order to speed up queries; in hybrid topologies, indexes

from a cluster‟s peers are also merged into the super-peers indexes.

To make use of a P2P network for service discovery, we need an

infrastructure which allows:

 Publishing and indexing service definitions;

 Querying for peers which provide specific services.

To accommodate these requirements, we can use JXTA, an open-source

project which consists in a group of open and generic protocols to connect

heterogeneous devices in a P2P network. This Java based framework aims the

creation of an interoperable and platform independent P2P network. While JXTA

protocols are not standards, they are XML based and therefore programming

language and platform agnostic.

JXTA peers are known between each other through advertisements: nodes

publish information about themselves (and eventually the resources they have)

using Peer, Peer Group, Module Class, Module Specification, and Module

Implementation advertisements.

WSDL definitions from service providers in a P2P network can also be

published using advertisements; in the JXTA-SOAP project, for instance, they are

encapsulated in Module Specification advertisements. For service discovery to

properly function under JXTA-SOAP, such advertisements must include the

service WSDL and a tag indicating whether a “secure” pipe shall be created. Apart

from those two tags, one is able to provide additional information in a

ServiceDescription class: properties such as a service‟s name, creator, version,

P2P and SOA architecture for digital libraries

130

and description. As will be discussed in a following section, however, we chose not

to use the JXTA-SOAP project.

4.4.1.4 Publishing

Publishing a service in peer‟s repository is a two step operation: 1) the

description and technical details required to consume the service must be stored,

and 2) metadata must be indexed to allow for an effective search. For both

operations the requirements vary according to the type of discovery that will be

used:

 Design-time discovery. At this stage, developers and system architects

may need to find and gain knowledge on how to use services for a

multitude of purposes: reuse existing functionality to speed up the

development process, gain access to systems and resources managed by

other entities, or communicate with services from business partners.

 Run-time discovery. Once systems are configured and in production, run-

time service discovery can offer an increased degree of robustness and

failure resilience, allowing faulty or inactive providers to be replaced.

Hence, for design-time discovery the (distributed) service registry must at

least contain the WSDL definition documents and the access point network

addresses. Additional information is however recommended to maintain a proper

registry: details about the provider and its contacts, descriptions, URLs for more

technical insight, and categorization.

Finding adequate service taxonomy (a hierarchical classification structure) is

fundamental to enable developers to quickly discover suitable services to solve a

specific problem (financial, mathematical, document processing, etc.) and is itself

a complex research subject. It is difficult to adequately define a service because

too many types of services exist. Although there are some popular categorization

systems available for products and services, such as UNSPCS [127] – United

Nations Standard Products and Services Code – and eClass [128], most are

closed and too complex and product oriented to apply in this scenario.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 131

Instead, the adopted taxonomy follows the methodology suggested by

Richards [129], in which a hierarchy should be based on (or even using only) four

basic SOA service types:

 Business services. These are abstract services derived from specific

use cases or scenarios. In the case of SInBAD, for instance, this

classification would be given to specific subsystem services (GetThesis,

CreateVideo, UpdatePoster, etc.).

 Enterprise services. These are concrete services needed to implement

Business services, usually in one (business) to many (enterprise)

relationships. Despite what the name would suggest, they may or not be

shared across the enterprise. From the SInBAD digital library we could

include in this category the user-related services (CreateUser,

AuthenticateUser, …) or fine-grained services that implement specific

parts of a business service (such as InsertVideoFile).

 Application services. These are supporting services tightly bound to a

specific application context, and therefore are not usually shared across

an enterprise. They are generally used to perform fine-grained functions

such as data validation, collection, and transfer. Examples of such

services in SInBAD include CheckMagazinePdfExists, MoveVideoFile,

and GetPublicationPageCount.

 Infrastructure services. These are business-agnostic services, typically

shared across the enterprise and used by different applications in various

scopes. Caterpillar, ID Manager, and even DisQS Web Services are

examples of infrastructure services, since they provide functionality to any

type of application.

Since this work is focused on harnessing the computational power and

distributed storage space available in the P2P based service-enabled network

(rather than trying to improve specific application services) we will only further

categorize infrastructure services. And hence new categories were defined:

P2P and SOA architecture for digital libraries

132

 Storage and Indexing. This includes methods for storing and indexing

data and metadata associated with a particular application (although not in

a way or place designed for that specific application); the idea is to have a

common infrastructure available to any application;

 Security. This refers to services which provide security related (but

application agnostic) functionality, such as encryption and hashing;

 Document processing. This relates to generic services whose function is

to transform or extract features from documents; this category is further

refined into four divisions:

o Textual – refers to functionality related with text formats (DOC, PDF,

RTF, TXT) such as format conversion, splitting, merging, but also

the extraction of information (description from embedded metadata,

page count, word count, etc.);

o Imaging – all the processes related to transforming image files –

format conversion, resizing, cropping, rotation and flipping,

watermark embedding, and application of filters or styling effects –

and extracting metadata from them;

o Multimedia – identical to the previous category, this relates to the

processing of video and audio files and obtaining embedded

information.

The diagram of the adopted taxonomy is depicted in Figure 4.4. Two notes

about the hierarchy: 1) while it was purposely kept simple, new blocks can be

added if it necessary later on; and 2) if no subcategory is suitable for a given

infrastructure service at a certain level, the “parent” classification should be used

(e.g. a service such as ID Manager can be considered a Infrastructure service

while not being adequately defined by neither of its subclassifications).

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 133

Figure 4.4 – Service taxonomy

Regarding runtime discovery we are first of all concerned in finding equal

services from different providers, i.e. methods with identical signatures. There are

a few valid options for choosing which values should be used in the service

description (publishing) and in the queries sent to the network (discovery).

Probably the most error-resilient method would be to hash the WSDL (without the

<soap:address /> element, which may vary in different nodes) and query for

services using those hashes. This could however be inconvenient both at the

provider side (as more parsing and computing operations would be needed) and

the consumer/application end (hashes would have to be either hardcoded or

stored in a configuration file). It also assumes two providers must offer the exact

same group of operations in its definition. Two providers with the exact same

ConvertImage method would not be interchangeable at runtime if only one of them

had a CropImage method, for instance.

A simpler option consists in using the targetNamespace attribute of the

<wsdl:definitions/> element in the service WSDL. We would then use the declared

namespace for any disambiguation, which is its purpose. Also, the service provider

can easily publish this property, since it likely already has access to it or can

SOA Service

Business Enterprise Application Infrastructure

Storage and

Indexing
Security

Document

processing

Textual Imaging Multimedia

P2P and SOA architecture for digital libraries

134

simply scan the XML to find it. On the consumer end, discovering services using

an URI rather than a hash string is simpler and easier to remember.

There is however additional information that can be relevant to the runtime

selection process: quality of service, pricing, localization, etc. Such added layer of

intelligence is beyond the scope of this work.

4.4.1.5 Indexing and searching

We have identified the required and the recommended metadata fields to be

indexed and discoverable in the network, summarized in Table 4-1.

Table 4-1 – Service description elements

Field Definition

Identifier
(mandatory)

An unambiguous identifier of a service. This is the URI composed
by the namespace and the operation name, i.e. the operation‟s
soapAction attribute in the WSDL.

Title (optional) The title of the service.

Creator (optional)
The author or entity responsible for developing and/or maintaining
the service.

Date (optional) The date or period of time associated with the resource.

Description
(recommended)

A description of the service. This can include general information,
service usage, or any other information deemed relevant.

Subject
(recommended)

The service category, expressed using the proposed taxonomy.
For multi-level categories, one can repeat this element as
necessary (e.g. one entry for Infrastructure and other for
Infrastructure/Security).

Coverage
(mandatory)

The actual URI location of the Web Service. This can be a public
URL or a private one (localhost), and one can retrieve such
information from the location attribute of the soap:address
element in the WSDL description.

Type (mandatory) The fixed “service” value.

Language
(optional)

If applicable, the language in which the service interoperates
(data, interfaces).

Publisher
(optional)

The entity responsible for the publishing or availability of the
service.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 135

Relation
(mandatory)

The URI location of the Web Service‟s WSDL.

Source (optional) A related service from which the described one is derived.

Rights (optional)
Information about rights associated with the service (property,
intellectual, etc.)

As it should be evident, the descriptors set is a subset from the Simple Dublin

Core element set. The purpose of this methodology is to take advantage of the

existing infrastructure: one can use a single index and the same indexing and

search modules with the metadata of any kind of resource – documents and

services – by creating, as observed in section 4.3.2.1, an index handler for WSDL

files.

As noted in the table, only four fields are mandatory, and these are the ones

we always have access to: any handler can extract the soapAction and

soap:address from the WSDL file, the WSDL location is obtained when indexed

(either locally saved or from an external provider), and the type is fixed. The other

fields, however, are not commonly made available in the WSDL. It should be noted

that while several initiatives [105][130] have appeared regarding the annotation of

Web Services, they focus on the semantics of operations and data. That is an

important research area, and one that can add additional layers of knowledge to

this network; nevertheless, we have focused on providing additional description

and authorship information for developers. We therefore propose using the

ubiquitous <wsdl:documentation/> element to inject such information using Dublin

Core XML. We can use it either at a document level inside the <wsdl:definitions/>

root node or on a per operation basis inside each <wsdl:operation/> (the

documentation element can also be used in other locations which are not relevant

for this purpose). The two usage locations are exemplified below.

<wsdl:definitions targetNamespace=”srv://security.infrastructure.dl”>
 <wsdl:documentation>
 <dc:description>
 Group of methods related to encryption and hashing
 </dc:description>
 <dc:subject>Infrastructure</dc:subject>

P2P and SOA architecture for digital libraries

136

 <dc:subject>Infrastructure/Security</dc:subject>
 <dc:type>Service</dc:type>
 </wsdl:documentation>
 ...

 <wsdl:portType name=”SecuritySoap”>
 <wsdl:operation name=”Hash”>
 <wsdl:documentation>
 <dc:identifier>

 srv://security.infrastructure.dl/Hash
 </dc:identifier>

 <dc:creator>Marco Fernandes</dc:creator>
 <dc:date>Fri, 07 Sep 2009</dc:date>

 <dc:description>
 This method encrypts a text file using
 the MD5 or the SHA1 algorithm.
 </dc:description>
 </wsdl:documentation>
 ...
 </wsdl:operation/>
 ...
 </wsdl:portType>
</wsdl>

When indexing this file, instead of creating a single entry in the index, the

handler will enter each operation as an individual “resource”. One should note that,

when applicable, top-level descriptors should be inherited by each operation – the

subject and type tags in the example above.

Providing such additional information requires, of course, that some IDEs and

other development tools help developers in this task. Some already facilitate that

job although by only accepting a generic text – Visual Studio, for example, allows

a developer to document a method using an attribute with a Description

parameter, which then appears in a <wsdl:documentation/> element:

[WebMethod(Description="This is the Encrypt method description")]
public string Encrypt(string input) {
 ...
}

4.4.2 Service invocation in P2P

The typical development of a Web Service based application proceeds as

follows: 1) a developer will add a reference (either manually or using a discovery

service) to the services, which 2) creates proxy classes to interact with them and

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 137

3) stores the address URLs in a configuration file. Once the application is in its

production stage, one can safely change the address to that on another machine

provided its methods have identical interfaces.

This is where a dynamic discovery mechanism can be placed – if we can

change the provider in runtime, we will augment the application‟s flexibility and

robustness. The challenge however has now moved to the invocation stage: with

the service-enabled P2P network we have created the possibility of having a wider

range of providers, but if a peer can only connect to another through the P2P

network, how will it interoperate with the second‟s Web Service?

4.4.2.1 JXTA-SOAP

The JXTA-SOAP project aims to solve that exact question. JXTA-SOAP is an

add-on to the JXTA framework which allows Web Services to be invoked in the

P2P network by transmitting SOAP messages using JXTA pipes.

A Web Service is first made available in a peer by creating and publishing it

with Axis [131], an Apache SOAP engine written in Java. Advertisements are then

created and sent to the network, containing the WSDL of the service. When other

peer needs to invoke that service, a Java proxy client is then created.

While this seems to solve the P2P invocation problem, there are several

disadvantages in the approach used by the JXTA-SOAP API:

 Since Web Services must be created and published with Axis, one is

obliged to only use Java based services (unlike the JXTA framework,

whose API is available in a variety of programming languages);

 The transparency is lost with the creation of this additional layer: instead

of calling a Web Service, one will have to now call a Java function;

 This also is very limitative, since it makes all existing non-Axis Web

Services useless unless an Axis proxy is made for each of them with an

identical interface;

 Finally, replacing the Web Service logic with this add-on neglects the fact

that two peers can sometimes interoperate outside the P2P network, i.e.

P2P and SOA architecture for digital libraries

138

using regular HTTP request. Peers are not in every occasion behind a

firewall or NAT systems, and in this particular scenario they may

frequently be in the same LAN. Going through the P2P network when a

simple HTTP request could be made would only add further serialization

to the process.

4.4.2.2 A simpler approach

A closer look to what happens under the hood hints on another direction. The

JXTA-SOAP modules are responsible for creating the proxy classes and sending

the service advertisements to the network. The actual service invocation, however,

is a very simply process which splits SOAP messages into packets (the JXTA

network has a message size limit) and sends from the client to the server peer

using pipes. On the server side a module regroups the message, invokes the Web

Service, and replies in a similar fashion.

One wishes to both enable Web Service invocation over the P2P network

and to overcome the issues summarized in the previous section. The solution is

depicted in Figure 4.5. Peer 1 is running an application which is client of services

with the same interface of the Security Web Service, available at Peer 2. If this

service is publically available and the two peers are within reach, direct HTTP

requests can be used to invoke it (solid line, black). If, on the other hand, they can

only communicate using the P2P infrastructure, a Web Service proxy is used

(dotted line, gray).

Figure 4.5 – Direct and relayed Web Service invocation

Peer 2

Web Service

proxy

Web Service

proxy
JXTA JXTA

Application
(Security client)

Security
Web Service

Peer 1

HTTP, SOAP HTTP, SOAP

JXTA Pipes

Embedded SOAP

HTTP, SOAP

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 139

The complete process is described as follows:

 The service address in the application‟s configuration is changed to a

fixed location (e.g. http://localhost:8080/wsProxy); this is the actual

running endpoint, not the WSDL location. In fact, the proxy is never

aware of the WSDL definitions at any point;

 The proxy parses the incoming HTTP SOAP request and retrieves the

namespace and the operation name (see example below); no actual

service functionality is provided here;

 The proxy, which has a JXTA client, then proceeds to query the

network with the operation‟s unique identifier and in return the Peer 2

JXTA identifier is obtained;

 If required, the SOAP envelope is divided into smaller segments (each

message can have up to 64k) and sent in messages to the provider

peer;

 The receiving peer acknowledges there is a SOAP request, locates

the execution address (either local or remote) and resends it to the

Web Service;

 The reverse process is identical, with the SOAP response travelling

between the proxies and back to the application.

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="srv://security.infrastructure.dl">
 <m:Hash>
 <m:input>Generate an hash of this text.</m:input>
 <m:mode>MD5</m:mode>
 </m:Hash>

</soap:Body>

</soap:Envelope>

P2P and SOA architecture for digital libraries

140

With this approach we are able to successfully invoke Web Services through

the P2P network. This allows for interoperating with Web Services which could be

otherwise unreachable: not only those behind firewalls or NAT systems, but also

those only locally available (not even inside a LAN, only at the machine). Other

significant result is that it can also allow a public Web Service located at an

internet address to be used by a computer without internet connection.

Also, unlike the methodology adopted by JXTA-SOAP, there is a transparent

transition from the regular HTTP invocation process to that occurring in the P2P

framework. There is no change required in applications other than updating

service network addresses. Also of great importance is the fact that the introduced

proxies do not limit the frameworks or languages one can use. Both the Web

Services and the proxies can be created using any suitable framework or

language (Java, .NET, PHP, etc.).

There is one final issue to be addressed, and it relates to how a peer (its

proxy) will be aware if it can use the HTTP channel instead of the JXTA one. The

simplest case is when the URL in search results starts with “http://localhost”. In

those situations, the services will evidently only be available locally, so the service

call is proxied through the P2P network. In the other cases, the Web Service proxy

should try sending an (empty) HTTP request to the network address. If there is a

response (possibly an erroneous SOAP message), the service is within reach. In

either case, the performance of this trial-and-error procedure can be improved by

caching such information.

4.4.3 Replication

We have discussed in the previous sections how a wide network of services

can be made available and discoverable in a P2P network. One extra optimization

layer can be set up on top of this service network. Since JXTA has Java and C/C#

bindings, we can safely assume most JXTA peers will be running the Java or .NET

framework. Let us consider a Java implemented image processing Web Service

which only requires a specific minimum framework runtime version and a group of

JAR files as its dependencies. To make such service run on a different node, one

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 141

would have only to assure those files existed at the target peer (eventually

updating the CLASSPATH) and that its runtime version met the requirements.

Similarly, replicating a .NET service could require a version of the framework and

some DLL files.

It therefore becomes apparent that services could be replicated on a P2P

network to increase availability and eventually responsiveness. Such concept does

not differ much from file replication, which is implemented by several file-sharing

P2P applications. The requirements and dependencies make it however a lesser

trivial issue to address. Many services may need more complex dependencies

(such as installed programs or libraries) or even have specific hardware

requirements.

Describing and managing software (and hardware) dependencies is a difficult

task, and several issues and possible conflicts must be taken into account. For

now, let us consider the simplest case: a self contained executable or folder with

no installation or CLASSPATH modification required. For such components, one

could think of replication as yet another service available at some peers (a service

“push”), which could be published and discovered as any other. The input

parameters of such service are the required resources (executables, WSDL, and

dependencies).

On a different level, replication mechanisms can also enhance the peers

indexing capabilities. As mentioned in section 4.3.2.1, the capability of indexing a

specific file or format is obtained by having a handler. In the case of Java, this is

usually nothing more than having a class file (and eventually some file

dependencies) and adding an entry to a configuration file.

4.4.4 Orchestration

In the previous sections the issues regarding service discovery, availability

and invocation in a distributed P2P network were discussed. While the proposed

modifications in the P2P layer can be seen as independent to any specific service

environment, one must think in terms of a business process management and

execution application to fully take advantage of them.

P2P and SOA architecture for digital libraries

142

4.4.4.1 Dynamic binding

The BPEL specification already supports the concept of dynamic partner

links. In a static BPEL process, the partner link information is defined at design

time. One can, however, declare a generic and abstract service (a template)

whose endpoint is set later in the process (for instance in an assign task). Such

strategy has the disadvantage of forcing BPEL definitions to be rewritten in order

to accommodate such dynamism.

By using the service invocation proposal discussed in section 4.4.2.2, a

BPEL engine can take advantage of the available distributed (and eventually

replicated) services to dynamically discover and invoke them in a very simple way.

The only requirement is that addresses are all replaced by the local proxy address.

When invoked the proxy will, in runtime, search service providers in the P2P

network. The main advantage of this approach in the scope of business process is

related to the inherent dynamism: service providers (peers) can leave and join the

network in what can be long-time running processes, hence finding a suitable

service only at this time is more appropriate.

There are basically two implementation choices: either change the addresses

in runtime in the BPEL engine or replace them on the XML definition document

itself before the process starts. Only the later seems a reasonable option, since

the former requires developers to change components or modules in the engines,

a task that will differ in each BPEL engine one wishes to support.

4.4.4.2 Process delegation

The opportunities created by the service network are not limited to dynamic

discovery. Traditionally, BPEL execution is a centralized process, in which service

calls are dispatched to partner links and state (the process variables) is centrally

managed. However, distributing the orchestration process by the service providers

has several advantages, especially in high load scenarios and/or when there is a

large amount of data being transferred between service providers and consumers.

A careful partitioning process can reduce the number of messages and amount of

data transferred and increase throughput.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 143

Previous work assumes all partner nodes have BPEL capabilities [108][104],

which may not be convenient in most enterprises, or that the infrastructure of the

execution environment is known a priori [110]. We can however fall back to an

always working solution.

Lets us consider our initial (starting point) engine is capable of dynamically

discovering services. Before the execution starts, the runtime can find not only the

service providers but also which nodes offer BPEL execution – since BPEL is seen

itself as a Web Service, it can as easily be referenced in the indexes. If no other

engine is found, process management must proceed as usual – in a centralized

fashion. If, however, one or more engines are found, the BPEL process definition

can be partitioned and parts of the process delegated to those peers. If any of

those engines are P2P aware, this procedure could eventually be further

partitioned.

Without the “BPEL in every peer” assumption, the partitioning mechanism

proposed in related work is no longer valid. Nevertheless, some principles remain

true: when there is parallel execution (a flow activity), an entire branch can still be

partitioned if the first invoke activity exists at a BPEL-capable peer.

Furthermore, information about the services themselves could be used to try

to infer the best tasks to be delegated. Process delegation can greatly reduce the

amount of data being transferred by eliminating the round trips in the invocation

calls. We are therefore interested in those services whose transmitted

messages/variables are predictably large, particularly in the response message.

While there is no standard way to know a priori which those services are, a few

assumptions could be made.

The return type of a service, for instance, can provide hints on the extent or

size of the response message. It is safe to assume that the efficiency gain will

likely be much smaller when delegating the process to a service returning an

integer than the gain when doing so on a service returning an array of bytes. We

suggest the enforcement of a simple rule: perform no process delegation if the

P2P and SOA architecture for digital libraries

144

next service returns messages with simple types (numeric, Boolean, and strings or

complex types based on these types).

By further refining the orchestration mechanism this efficiency and

performance gain can be increased:

 By searching peers which provide more two or more services to be

executed in sequence, some data transfers can be eliminated;

 Define the notion of “portable” services, transferable between providers

without complex dependencies or installation, can be replicated to augment

responsiveness;

If one combines the data storage capabilities of P2P with this service overlay

there is no need for the final step (sending data to a repository service).

4.4.4.3 A sequential service example

Let one consider the example of inserting a document such as a thesis in a

digital library system. For simplicity of argument, let us assume input data consists

of one PDF file and one XML document with the required metadata. The insertion

process could consist in the following independent tasks:

 Converting the PDF file into individual image files;

 Creating thumbnails of different dimensions;

 Extracting the text from the PDF;

 Generating an unique identifier for the thesis;

 Storing data and metadata in the repository.

The operation sequence with a BPEL orchestration server is presented in

Figure 4.6. When both the PDF and XML files are submitted to the server, the

process defined in the BPEL description invokes the services from the providers

included in the declaration.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 145

Figure 4.6 – A common centralized orchestration in a digital library system

If we discard the network packages of the ID generation message and the

XML transmission to the repository, the total size of data transmitted in this

orchestration is approximately:

Strans = 3 * SPDF + 2 * STXT + 2 * SIMG

where SPDF, STXT, and SIMG are the sizes of the PDF file, extracted text, and

extracted images, respectively. If these have the values of 60MB, 1MB, and 30MB,

for instance, the data transmitted over the wire amounts to over 302 megabytes.

Figure 4.7 depicts a decentralized version of the orchestration for the same

digital library process. After the completion of each task, the service provider can

either invoke the following service or transfer execution to other node. For

example, since the ID generation service does not require the original document to

PDF > TXT

BPEL

engine

ID

Generator

XML

BPEL

PDF

PDF > IMG

Data >

Repository

2. send PDF

7. send all files

6. get new ID

3. send text

4. send PDF

5. get images

P2P and SOA architecture for digital libraries

146

be inputted, it is better to invoke it to obtain a new identifier rather than transferring

the orchestration control.

Figure 4.7 - Decentralizing the orchestration of the digital library process

With this configuration and with the same considerations used in the

centralized scenario, the data transfer size is reduced to about:

Strans = 3 * SPDF + STXT + SIMG

which amounts to 212 MB with the sizes from the previous example, a reduction of

about 30%. The diagram illustrates another important concept. In a dynamic

environment, such as P2P, service providers can enter and abandon the network,

and the orchestration should not therefore be tightly bound to specific peers.

Instead, services can be dynamically discovered and providers assigned to the

PDF > TXT

Discovery

service

ID

Generator

XML

BPEL

PDF

PDF > IMG

Data >

Repository

1. send PDF+TXT

2. send

PDF+TXT+XML

4. send all files

3. get new ID

locate service

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 147

process, either by using a central directory (such as UDDI) or by using other

available querying mechanisms.

This simple example demonstrates how properly distributing service

orchestration can reduce the amount of data transferred between services.

Network usage is however only one of the values we can try to optimize. In a

distributed application we are also usually interested in reducing completion time

and increase throughput.

Let us consider a real case scenario, in which a digital newsstand website

allows registered users to view a range of newspapers as they were published.

The website receives PDF files from publishers, which are converted into an

image format (JPEG) to be shown in a viewer, and whose texts are extracted for

searching purposes.

As part of the submission process, several services are invoked:

 Image conversion/resizing;

 Automatic image whitespace cropping;

 PDF text extraction;

 Optical character recognition (OCR);

 Storage (whose response is the new system identifier) and indexing.

Figure 4.8 depicts a functional diagram of how this process is implemented.

P2P and SOA architecture for digital libraries

148

Figure 4.8 - Cross functional diagram of the document submission process

The input to this process is a PDF file and a XML document with the

metadata. The process starts with two parallel branches. In the first one, the text

from the PDF file is extracted. In the second, the PDF is converted to an array of

PNG files, whose white space is then cropped. The resulting images are then used

to make an OCR (whose service input must be in TIFF files) and to convert to the

final, screen resolution, JPEG images. The final activity consists in sending all

non-intermediary files to a storage service.

Assuming each of the blocks in the diagram represent a service in a different

peer (the worst case scenario), there is a large amount of data being passed back

and forth through the wire. With centralized orchestration, one expects the total

amount of data to be:

 Document Submission Process

T
e

x
t
E

x
tr

a
c
t.

S
to

ra
g

e
C

o
n

v
/R

e
s
z

O
C

R
C

ro
p PDF à

PNG
CropWS(PNG)

PNG à

TIF
OCR(TIF)

PNG à

JPG

Text(PDF)

StoreDoc(PDF, XML, *)

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 149

T = 3SPDF + 5SPNG + 2STIF + 2SOCR + 2STXT + 2SJPG + SXML + SID

where SX represents the message size of the transmission of X.

The simplest improvement one can do in branched processes is to delegate

an entire branch of activities. Let us suppose the image conversion service is

available at a BPEL-capable node. In that case, a BPEL process can be made

with the activities in the “OCR” band from the diagram. By doing so, the PNG to

TIFF conversion call is replaced with a process start call and, since the TIFF files

don‟t have to be returned to the original caller, those response messages no

longer have to be transmitted through the wire. In this particular digital newsstand

application, the intermediate TIFFs generated are about 3MB each, and so this

modification would reduce close to 120 MB of traffic in a 40 page newspaper.

This procedure could be repeated and, in the optimal scenario where all

peers can run BPEL processes, the partitioning algorithm could be identical to

those used in the related work. However, some delegation could prove to be

counter-productive: consider there were services just before the storage stage

dedicated to provide unique identifiers, produce checksums, or calculate hashes

based on the metadata of the new document. Delegating the orchestration of one

those services and the storage to those providers would actually increase network

usage: instead of invoking the first service, receiving the id/checksum and sending

all to the StoreDoc, PDF and image files would have to go to the first service and

from there to the StoreDoc provider. Therefore, instead of

Tfinal = 2SXML + 2SID + SPDF + SJPG

we would have

Tfinal = 2SXML + SID + 2SPDF + 2SJPG

which represents one less SID but one more SPDF and SJPG. Since the id/checksum

service has a predictably small (numeric) response message, no delegation would

take place.

P2P and SOA architecture for digital libraries

150

A final optimization could consist in trying to merge activities in peers

providing multiple consecutive services. Although this could greatly reduce

network traffic, it would be difficult to analyze the improvements of this strategy if

factors such as throughput were to be weighed. The case of the last service called

(storage) is however a particular one – if the P2P network were to be used also as

the storage medium, this service could be directly executed by the caller peer.

4.4.4.4 Implementation

Unlike the simpler implementation made with the discovery improvement (a

SOAP proxy is relatively easy to develop), creating a BPEL process delegation

mechanism is a non trivial task.

By following the same dynamic network assumptions, the BPEL

decomposition should not be made before process start, and instead before

service invocation. Furthermore, a simple proxy is no longer sufficient, since

invoking a peer‟s regular Web Service or its BPEL engine Web Service would

require different input data. One has therefore to change the BPEL engines

themselves and, without an out-of-the-box solution, that task requires one to

perform different implementations for each engine.

4.4.4.5 Tracking progress

A common feature in process execution solutions is that of showing the

current state of the workflow to the user (process monitoring), either in a web page

available at some port or within a desktop application. While keeping track of this

progress is simple in a centralized scenario, since the engine has all the

information of the activities currently executing and of those already finished, doing

so in a decentralized orchestration environment is not as trivial.

While this may be a non-critical issue and one which only occurs for those

engines enhanced to support BPEL delegation, there are nevertheless a few

possible approaches to handle it. One can simply ignore the existence of

composite services (processes) within the process. In this always-working

solution, the new process is seen by the end user as another basic activity.

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 151

The original BPEL engine can also provide links (if any) to the feedback page

on the other engines. This has a number of issues related with the underlying P2P

network. While a service in the first engine was successfully invoked, there is no

guarantee that the end user can access the other inner process. Network

topology, security issues, and local/private services are some of the possible

factors that can prevent these two entities from connecting.

Another possible approach would be to embed the status response from the

inner process into the first engine‟s feedback page (or eventually use some sort

feed if available). This would require however the address of such pages to be

known a priori by the calling engine.

4.5 RESULTS

4.5.1 Search engines evaluation

The role of a search engine in a digital library and in particular in hybrid

scenarios has been discussed in section 4.3.2 and previous chapters. With the

goal of finding a suitable engine for our new architecture, one that could be

properly integrated into our infrastructure, an evaluation of six free or open-source

available engines was conducted [132]. Having considered the requirements of a

hybrid P2P infrastructure for digital libraries, the engines were analyzed and

compared primarily focusing on six characteristics:

 XML indexing. By default, typical search engines index text files,

HTML, PDF and eventually office documents. However, as XML

becomes the standard de facto for description storage and

transmission, and it is already ubiquitously used, modern search

engines should provide means for searching XML documents.

 Ability to move and merge indexes. In a P2P based Digital Library,

search engines will be running on each peer, indexing the local node

repository. Periodically – or whenever an update is made –, the local

indexes must be sent to the super-peer where they are merged. This

requires indexes to be movable between nodes.

P2P and SOA architecture for digital libraries

152

 Platform independence. Ideally, the P2P network is able to support

different operating systems, so components should be interoperable.

The search engines should have different APIs while keeping

generated indexes transparent to the programming language.

 Ranking. Effectively ranking results is one of the most important

features of search engines, since users tend to view only the first

result pages [133].

 Off-line searching. In some engines, the index and search services

are not clearly separated, so performing a query in the later requires

the first to be running. This behavior is not recommended primarily for

two reasons: if there is critical or private data being transferred

between nodes, the system may enforce some sort of data encryption

to assure it is not tampered with. If the data is to be indexed, however,

it is necessary to use a procedure that decrypts indexes and encrypts

the data again before saving it on a node‟s hard drive. Also, such

tightly coupled indexing and searching mechanism makes it difficult to

search indexes stored in a different computer.

The engines evaluated in the test were Indri [134], Apache Lucene [135],

Microsoft Indexing, Swish-e [119], Terrier [136], and Zebra [137].

The results of the evaluation are summarized in Table 4-2 (with latest release

dates updated) and Table 4-3. The performance benchmark was made in two

stages: the first with a repository comprising of 25.000 plain text files and 5.000

XML files from the SInBAD‟s digital repository and the later with extra 25.000

miscellaneous and HTML files. Speed measurements were all taken from the

same machine – a Pentium 4 with 3.2 GHz, 2 GB of RAM, and a SATA 7.200 rpm

hard drive running Windows XP.

Table 4-2 – Indexing engines feature comparison

 IN IS LU SW TE ZE

Incremental indexing

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 153

XML support
filter
req.

filter
req.

XML native
namespaces support

 n/a n/a

Offline searches

Platform independent
indexes

Latest stable release
Dec.
2009

2003
Nov.
2009

Apr.
2009

Jan.
2009

Nov.
2009

From our analysis, we consider Lucene to be the search engine to use on our

P2P digital library. Lucene has the best searching performance, is platform

independent, supports incremental indexes, is a fast evolving application and,

although it does not support XML natively, parsers can be easily constructed. It is

also available in several APIs, such as C, Java, and .Net. Swish-e provides a wide

range of options and it also has an excellent performance, but it lacks more

powerful APIs and the ability to use incremental indexes.

Table 4-3 – Indexing engines performance comparison

 IN IS LU SW TE ZE

Stage 1

Index size (MB) 88 41 74 27 68 157

Full index (s) 6854 300 3478 38 228 59

Full-text search (s) 21.4 44.6 8.5 38.5 34.0 59.2

XML search (ms) 15.6 14.8 1.9 46.6 15.7 58.1

Stage 2

Index size (MB) 223 104 325 83 n/a 1090

Full index (s) 72313 604 11280 226 n/a 495

Full-text search (s) 27.3 46.5 10.9 61.2 n/a 69.8

P2P and SOA architecture for digital libraries

154

4.5.2 Adapting SInBAD to the new architecture

The preliminary results from SInBAD serve as the building blocks for the

work and analysis that followed. The proposals made in this chapter follow the

discussion on the strengths and weaknesses of SInBAD and allow for the proposal

of a new architecture for the system.

We will start by categorizing the existing services according to the service

taxonomy discussed in section 4.4.1.4. As shown, Business services include the

“abstract” services (i.e. related to conceptual notions such as a thesis or poster

instead of the actual physical representations), Enterprise services include the

user and role based operations (which interoperate with RCU), and Application

services include all the “helper” functions needed under the hood for the different

catalogs.

Infrastructure services will contain functionality typically available at any

node. The Storage and Indexing subcategory groups core and mandatory services

(I/O, Service interoperation, Search), Security includes services related to security

operations (hashing, encryption) and Document Processing services deal with

resource conversion and transformation (thus acting as a distributed replacement

for Caterpillar).

Table 4-4 – Service taxonomy for SInBAD

Category Service examples

Business

InsertThesis, InsertPoster, …
UpdateThesis, UpdatePoster, …
GetThesis, GetPoster, …
SearchTheses, SearchPosters, …

Enterprise
AuthenticateSinbadUser, GetUserRoles,
AuthorizeOperation, …

Application
CheckMagazinePdfExists, MoveVideoFile,
GetPublicationPageCount, GetThesisUrlFromId,
MapMetadata, CreateCatalog…

Infrastructure GenerateId, CreateIdScope, RemoveIdScope, …

Infrastructure Store, Get, Search, Reindex, InvokeService…

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 155

> Storage & Indexing

Infrastructure
> Security

Hash, SymmetricEncrypt, SymmetricDecrypt,
AsymetricEncrypt, AsymmetricDecrypt…

Infrastructure
> Document processing

ConvertImage, ResizeImage, ExtractText, OCR, …

After the proper analysis and categorization of required services, one should

design BPEL definitions for every composite service, i.e. those who rely on other

services. Infrastructure services should be autonomous and therefore should not

require a workflow definition.

The proposed system architecture is presented in Figure 4.9. As can be

noticed the diagram is very similar to Figure 4.1 since only the applications layer is

replaced by the SInBAD System; the “infrastructure” models, P2P and Service,

remain unaltered. The SInBAD system is composed by front-end applications

(Website, Web Services, and OAI-PMH provider), a module with the system‟s core

logic, a BPEL engine, and a synchronization module (SInBAD Sync). The system

is configured by a set of configuration and service description files.

External access to SInBAD resources is accomplished by using one of three

interfaces: 1) the Website is the primary front-end for generic users to search and

access resources; special users can also login and use the back-office to create or

update data; 2) Web Services allow external systems such as e-ABC to

interoperate with SInBAD; 3) the OAI-PMH module provides metadata in a

standard compliant format so that open archive harvesters can index it.

Each of the theses interfaces uses the DL Logic module to search and

access data from the underlying network. This module is the “glue” responsible for

implementing the core functionality of the system. Aside from assuring

communication with the network (using the P2P and Service modules) it

coordinates two other components: a BPEL engine and a synchronization module.

By transposing the (previously hardcoded) business processes to BPEL

descriptions, the BPEL engine can bring to the application the benefits of dynamic

P2P and SOA architecture for digital libraries

156

service discovery and binding. Also, if other BPEL engines exist in the network,

process partitioning can be employed. This is accomplished with the interaction

between BPEL-e and the Service module (namely the Service Proxy).

SInBAD Sync is responsible for the synchronization of the application

configuration and rules between the nodes and to keep business processes in

existing backup peers (B-Peers) updated. If the node where the SInBAD

application is shut down or unexpectedly leaves the network, a B-Peer can

assume its role and eventually continue providing all front-ends.

Figure 4.9 – Proposed SInBAD system architecture

Regarding the P2P layer, the Indexing module should use an engine having

in consideration the features discussed in 4.3.2, such as movable and mergeable

indexes (Lucene seems the best candidate at the moment). Also a considerable

Storage

Service

Proxy

Services

Cache Indexing (Lucene)

Service 1 Service 2

Query and Metadata

SInBAD System

Web

Services

data &

metadata

local

index

group

index

P2P module (JXTA)

BPEL-e

engine
network

rules

OAI-PMH

provider

Web

Services

catalog

config

metadata

config

SInBAD

Sync
BPEL

processes

Website

DL Logic

Service module

CHAPTER 4 – A SOA and P2P based architecture for digital libraries

 157

difference from the architecture currently in use concerns to the concept of

resource, which aggregates both files and services. All the querying, storage, and

indexing modules have therefore the abstraction notion of a resource which has

specific metadata to be indexed and searched for.

4.6 SUMMARY

As a sequence of the analysis of the strengths and issues of the SInBAD

system, made in the end of the previous chapter, we have presented a novel

architecture based on P2P and services.

Regarding the P2P infrastructure, we have started by acknowledging the

need for an indexing and search engine and performed a comparison analysis

between available free or open-source tools. With the results of that test, an

indexing configuration was devised.

We then introduced the service layer in the P2P network, and presented a

proposal that improves service discovery and widely broadens the range of

possibilities for service invocation. The advantages that can be derived from the

presented approach are also applied to the execution of business processes.

A generic resource concept – applicable to both documents and services –

was also proposed as a main direction in the system design. This uniformization

allows for generic rules to be applied for both cases in a variety of situations

including metadata definition, indexing, and searching.

P2P and SOA architecture for digital libraries

158

CHAPTER 5 – Conclusions

 159

CHAPTER 5 – Conclusions

This thesis has presented a novel architecture for digital libraries based on

peer-to-peer networks and service oriented technologies and concepts.

This chapter summarizes the results and contributions realized in this

doctoral work in its three main stages: the study of DLMS related technologies, the

development of the University of Aveiro digital library and archive, and the

conception an architecture proposal for digital libraries based on P2P and SOA.

In the first part of this doctoral dissertation, we discussed the rationale which

led to the conception of the current architecture of SInBAD, the digital library

system of the University of Aveiro. We started by examining popular DLMS under

the light of research advances and recommendations given by workgroups from a

known best practice network for the excellence of digital libraries. We concluded

they lacked important features or where of limited use in decentralized scenario.

P2P and SOA architecture for digital libraries

160

We then analyzed the main characteristics of P2P networks and what are its

main advantages and issues in the scope of a digital library infrastructure. In

conclusion of the analysis made we have selected hybrid P2P networks with

unstructured data as the ideal configuration for digital libraries.

We concluded this preliminary work by benchmarking search performance

with and without a super-peer in a small LAN network. With such an experience,

we thus validated that a hybrid topology is also suitable for very small networks.

The result of this work‟s second stage is the conceived architecture and the

SInBAD system itself, which successfully overcomes limitations found in existing

digital library management systems, such as 1) lack of restrictions in the access to

copyrighted documents, 2) use of a centralized data repository, 3) rigid description

model, or 4) limited search capabilities. It is a service oriented application which

can store resources in a distributed manner and handle (search, view, manage)

heterogeneous metadata from different catalogs in a flexible way.

The designed and implemented University of Aveiro‟s digital archive and

library is the primary result of this work. Together with e-ABC, the system became

the university‟s institutional repository. The implementation issues and the

emerging challenges were thoroughly analyzed in CHAPTER 3. In order to

describe very heterogeneous data we have analyzed different metadata standards

and created schemas for the different resources using a Dublin Core base and

terms from other specific standards.

The conceived SInBAD architecture was based in the concept of subsystems

– network nodes with coherent and cooperating microsites exposing data using

Web Services with common predefined interfaces and specific methods related to

the resources in scope. On top of the subsystems, the SInBAD portal is the main

entry point for system, and is responsible for the transparent interoperation

between subsystems. Apart from implementing a single sign on and presenting

institutional information, the portal‟s main feature is related to the repository wide

searches. It can aggregate information and search results from the subsystems

CHAPTER 5 – Conclusions

 161

and present it to users in a uniform way. This capability is also used to feed the

created OAI-PMH provider interface.

An important part of that system – the one which enables the system to

handle distributed resources – is however hidden from users: DisQS. The DisQS

system was the first approach to implement a distributed storage and service

mechanism.

The system is composed by a number of Agents which are coordinated by a

Manager, and it allows resources with custom metadata models to be stored,

indexed, and searched for. It can also be configured with specific settings per

catalog, therefore allowing for distinct rules to be applied for different content.

DisQS is also service oriented, and all communication between an Agent and

the Manager – search requests, storage and retrieval, etc. – is made through Web

Services interfaces.

What also makes DisQS different from common distribution of resources –

focused on data only – is its ability to distribute the workload of applications using

it. With DisQS, instead of preparing and transforming data before storing it, the

Manager can delegate most of those tasks to the Agents where data will be

stored.

By the end of 2009, the system stored over 2.500 thesis and dissertations,

300 magazine articles, 6.500 digitized posters, 2800 photographs, 6.700 jazz

records, and 600 jazz books, among others.

Almost every resource available in the repository can be accessed by any

user (regardless of whether he has or not a connection to the university) from

outside campus. The exception to the rule is copyrighted content which must have

a controlled access, such as books and music records. The most popular content

includes the doctoral theses and the master dissertations.

The January of 2010 access reports show about 14.000 visits and 82.000

page views. From those visits, about 2.000 are from outside Portugal (mostly from

P2P and SOA architecture for digital libraries

162

Brazil, and less significantly from France, Cape Verde, Spain, and USA) and

10.000 from outside Aveiro.

Its open archive infrastructure (OAI-PMH) allows metadata from the

repository to be harvested by external services such as RCAAP – Repositório

Científico de Acesso Aberto em Portugal [138].

The final stage of this work results from the analysis of the designed digital

library and the issues which were identified. More importantly, it focuses on how

the opportunities offered by recent computational models, such as peer-to-peer

and service oriented architectures, can greatly improve performance, robustness,

and flexibility.

CHAPTER 4 presents a novel digital library architecture based on P2P and

SOA which overcomes those issues. The architecture addresses 3 main areas:

 P2P for a digital library. Traditional P2P applications handle only

very simple metadata which make them inadequate for digital libraries.

We have shown how an existing P2P framework can be adapted and

integrated with an open-source search engine to successfully index

and search very heterogeneous metadata in a flexible way. We also

presented the concept of B-Peer, to increase the network robustness

and availability.

 Service publishing and discovery. We have shown how a service

oriented application can make use of a P2P infrastructure to

dynamically find matching service providers. A service taxonomy was

also proposed to help software developers easily find suitable

services. Finally, a novel approach was conceived to seemingly

handle both data and services as abstract services, which can be

described, indexed and queried using a common metadata schema.

 Service invocation. This work has presented a mechanism which

allows two computers to interoperate using Web Services in scenarios

with very limited or no connectivity. We finally discussed service

orchestration and the adaptation of business process to take

CHAPTER 5 – Conclusions

 163

advantage of the underlying service network, by resorting to dynamic

service binding and delegation of sub processes. This work has shown

how one can achieve a higher performance using proper orchestration

of services available in a P2P network.

Even without having developed a fully functional digital library using this

architecture, we have shown how the combination of P2P and SOA help overcome

limitations in the current state of the art and can offer a novel resource handling

paradigm in a distributed scenario.

Since the importance of the role of a search engine was clearly discussed

throughout this dissertation, an evaluation of a set of free and open-source search

engines was made in the context of the proposed architecture.

We finalized our work by showing how the current SInBAD infrastructure

could be adapted to this new architecture, which includes but is not limited to:

adopting the service taxonomy, using a BPEL engine for business processes,

creating a synchronization mechanism to maintain a backup peer up to date, and

changing the metadata and indexing mechanism.

5.1 FUTURE WORK

Although prototypes were developed as proof of concept for parts in this

proposal, as a future work we wish to create a fully functional running

environment. One wishes to fully adapt the SInBAD digital library and archive

system to the new architecture in order to better evaluate and validate the

contributions made in this doctoral work. The orchestration decentralizing process

is predictably the most complex task, since it will require modifying or developing

new modules of a given BPEL engine.

Several other investigation areas remain open for further research and more

comprehensive analysis. Regarding the search infrastructure in the P2P network,

it is important to not only assure determinist results but also guarantee a proper

ranking mechanism. When querying for distributed (and replicated) resources,

rank values are commonly generated with repository dependent formulas making

P2P and SOA architecture for digital libraries

164

identical resources to be ranked very differently according to the size and content

of the local collections where are located. Having a unique centralized index

solves the issue only to some extent since other problems arise from the

centralization such as lower fault resilience and higher indexing network traffic. A

simple query language was presented for prototyping and testing purposes. A

more comprehensive study of query languages should be made in the future in

order to search resources in a standard fashion.

Regarding data stored with the P2P infrastructure, an important research

area for the future is the study of mechanisms to automatically replicate resources

within the network. This includes the replication of metadata, indexes, catalog

information, and data itself. Although replication can be especially important in a

digital library to assure a higher availability, it does increase network traffic and

creates a versioning problem.

Also regarding replication of resources, we briefly approached the problems

that arise when trying to replicate a service in a distributed P2P based

infrastructure. Several issues are subject of research in other workgroups, from

deployment itself, replication scheduling and priority management, dependencies

handling, and routing.

The author has also participated in a workgroup regarding the application of

grid computing in digital libraries, which is research topic closely related to P2P.

More specifically, the workgroup developed and evaluated prototypes to more

efficiently execute CPU intensive tasks of digital libraries with Grid computing [38].

Unlike the research made with P2P, the goal we tried to achieve with grid

computing was to optimize a single and complex service, by subdividing it into

smaller and distributable tasks.

Although significant performance gains were achieved, services had to be

developed or adapted in a way that made it possible to send it to “executors” when

they were available. In the future, we hope to further investigate this research area

and try to combine the grid performance with the P2P flexibility.

CHAPTER 5 – Conclusions

 165

Some efforts of the workgroup have also been applied to analyzing data

preservation mechanisms using grid computing. Although a prototype was already

developed using a rule-based grid platform and the SInBAD OAI-PMH and Web

Services interfaces [29], we wish to work further on this topic.

The semantic web is yet another topic which has been actively discussed

and researched in the last years. We believe a semantic layer should be added on

top of the architecture we have designed, closely integrated with the metadata and

indexing modules, to offer digital library applications a higher degree of knowledge

of concepts and relationships.

Finally, security is the one of the obvious topics to handle next. This work has

deliberately left out of scope security issues which should now be integrated on

top of the designed architecture, both at the service and application level. This

primarily includes authentication and authorization processes, which should take

into account the distributed nature of the system and the resources. Therefore,

security methods such as single-sign-on should be taken into account. Also, one

should consider enforcing encryption mechanisms in order to prevent

unauthorized users from accessing or modifying data.

P2P and SOA architecture for digital libraries

166

References

 167

References

[1] Britannica Encyclopædia. (2008) Britannica Online Encyclopedia. [Online].

http://www.britannica.com/EBchecked/topic/1017484/search-engine

[2] Digital Library Federation. (2004) Digital Library Federation. [Online].

http://www.diglib.org/about/dldefinition.htm

[3] Barry M. Leiner. (1998) DLib. [Online].

http://www.dlib.org/metrics/public/papers/dig-lib-scope.html

[4] Mary E. Brown. (n.a.) Southern Connecticut State University. [Online].

http://www.southernct.edu/~brownm/dl_history.html

[5] University of California. (n.a.) UC Southern Regional Library Facility.

[Online]. http://www.srlf.ucla.edu/exhibit/text/BriefHistory.htm

P2P and SOA architecture for digital libraries

168

[6] Vannevar Bush, "As we may think," Atlantic Monthly, vol. 176, no. 1, pp.

101-108, 1945.

[7] University of Missouri. (2003) Interactive Digital Library Resources

Information System. [Online]. http://www.coe.missouri.edu/

DL/iDLR/viewpaper.php?pid=21

[8] Tim Berners-Lee. (1989) CERN. [Online].

http://www.w3.org/History/1989/proposal.html

[9] Robert Kahn and Robert Wilensky. (1995) Corporation for National

Research Initiatives. [Online].

http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

[10] William Y. Arms, Christophe Blanchi, and Edward A. Overly, "An

architecture for information in digital libraries," D-Lib Magazine, February

1997, http://www.dlib.org/dlib/february97/cnri/02arms1.html.

[11] B. Kahle, R. Prelinger, and M. E. Jackson, "Public access to digital

material," D-Lib Magazine, 2001.

[12] Internet Systems Consortium. (2009, July) Internet Systems Consortium.

[Online]. https://www.isc.org/solutions/survey/history

[13] Open Archives Initiative. (2004) Open Archives Initiative. [Online].

http://www.openarchives.org/OAI/openarchivesprotocol.html

[14] IJ Taylor, From P2P to Web Services and Grids: peers in a client/server

world. London: Springer-Verlag, 2005.

[15] The Gridbus Project. (2008) Grid Computing Info Centre (GRID Infoware).

[Online]. http://www.gridcomputing.com/

References

 169

[16] Webopedia. (2006) Webopedia.com. [Online].

http://itmanagement.webopedia.com/TERM/G/grid_computing.html

[17] Mark Baker, Amy Apon, Clayton Ferner, and Jeff Brown, "Emerging Grid

Standards," IEEE Computer, vol. 38, no. 4, pp. 43-50, April 2005.

[18] D. Talia and P. Trunfio, "Toward a synergy between P2P and Grids," IEEE

Internet Computing, vol. 7, no. 4, 2003.

[19] M. Cannataro and D. Talia, "Semantics and knowledge Grids: building the

next-generation Grid," IEEE Intelligent Systems, vol. 19, no. 1, pp. 56-63,

2004.

[20] OASIS. (2006) OASIS. [Online]. http://docs.oasis-open.org/soa-

rm/v1.0/soa-rm.html

[21] Eric Newcomer and Greg Lomow, Understanding SOA with Web

Services.: Addison-Wesley, 2005.

[22] IBM. (2008) IBM. [Online]. http://www-306.ibm.com/software/solutions/soa/

[23] Carl Simon. (2005) Carl's Consulting Adventures. [Online].

http://carlaugustsimon.blogspot.com/2005_09_01_archive.html

[24] Thomas Erl, Service-oriented architecture: concepts, technology, and

design.: Prentice Hall, 2005.

[25] Marco Fernandes, Pedro Almeida, Joaquim A. Martins, and Joaquim S.

Pinto, "A digital library framework for the University of Aveiro," in

Communicating Mathematics in the digital era, E. M. Rocha and J. F.

Rodrigues, Eds.: A K Peters, Ltd., 2008.

P2P and SOA architecture for digital libraries

170

[26] Pedro Almeida, Marco Fernandes, Miguel Alho, Joaquim Arnaldo Martins,

and Joaquim Sousa Pinto, "SInBAD - A Digital Library to Aggregate

Multimedia Documents," in Proceedings of the Advanced International

Conference on Telecommunications and International Conference on

Internet and Web Applications and Services (AICT/ICIW 2006),

Guadeloupe, French Caribbean, 2006, p. 173.

[27] Pedro Almeida, Marco Fernandes, Miguel Alho, Joaquim Arnaldo Martins,

and Joaquim Sousa Pinto, "SInBAD - Sistema Integrado de Biblioteca e

Arquivo Digital," in XATA 2006 : XML - Aplicações e Tecnologias

Associadas, Portalegre, Portugal, 2006, pp. 139-149.

[28] Pedro Almeida, Marco Fernandes, Miguel Alho, Joaquim Arnaldo Martins,

and Joaquim Sousa Pinto, "SInBAD - Sistema integrado de arquivo e

biblioteca digital," in IADIS Ibero-Americana: WWW/Internet 2005, Lisbon,

2005, pp. 129-136.

[29] Marco Pereira, Marco Fernandes, Joaquim Arnaldo Martins, and Joaquim

Sousa Pinto, "SInBAD digital library preservation using IRODS data grid,"

in ICSOFT 2009: 4th International Conference on Software and Data

Technologies Abstracts, vol. 2, Sofia, 2009, pp. 107-112.

[30] Marco Fernandes, Joaquim Arnaldo Martins, Joaquim Sousa Pinto, Pedro

Almeida, and Helder Zagalo, "DisQS - Web Services based distributed

query system," in XATA 2005 : XML - Aplicações e Tecnologias

Associadas, Braga, Portugal, 2005, pp. 370-371.

[31] Marco Fernandes, Pedro Almeida, Helder Zagalo, Joaquim A. Martins, and

Joaquim S. Pinto, "Sistema de pesquisa distribuído (DisQS) para suporte

a bibliotecas e arquivos digitais baseado em web services," in CLME'

2005-ICEM : 4º Congresso Luso-Moçambicano de Engenharia - 1º

Congresso de Engenharia de Moçambique, Maputo, Mozambique, 2005,

pp. 1179-1188.

References

 171

[32] Pedro Almeida, Marco Fernandes, Joaquim Arnaldo Martins, Joaquim

Sousa Pinto, and Helder Zagalo, "DisQS - Distributed Query System

based on Web Services for digital libraries ," in ITA' 05 - First International

Conference on Internet Technologies and Applications, Wrexham, Wales,

2005.

[33] Marco Fernandes, Joaquim A. Martins, and Joaquim S. Pinto, "SOPPA -

Service Oriented P2P Framework for Digital Libraries," in Joint Conference

on Digital Libraries [doctoral consortium], Vancouver, 2007.

[34] Marco Fernandes, Pedro Almeida, Joaquim A. Martins, and Joaquim S.

Pinto, "SOPPA: Service oriented P2P framework for digital libraries," in

ICEIS 2008: 10th International Conference on Enterprise Information

Systems, Barcelona, 2008, pp. 215-219.

[35] Pedro Almeida, Marco Fernandes, Joaquim Arnaldo Martins, and Joaquim

Sousa Pinto, "Resource aggregation in digital libraries: static vs. dynamic

protocols," in ICEIS 2008: International Conference on Enterprise

Information Systems, Barcelona, Spain, 2008, pp. 405-412.

[36] Pedro Almeida, Marco Fernandes, Helder Zagalo, Joaquim A. Martins, and

Joaquim S. Pinto, "Visão geral de sistemas de integração de fontes de

informação heterogéneas," in CLEM' 05 - ICEM: 4º Congresso Luso-

Moçambicano de Engenharia - 1º Congresso de Engenharia de

Moçambique, Maputo, 2005, pp. 1169-1178.

[37] Marco Pereira, Marco Fernandes, Joaquim Martins, and Joaquim Pinto,

"Service oriented P2P networks for digital libraries, based on JXTA," in 4th

International Conference on Software and Data Technologies, Sofia,

Bulgaria, 2009.

P2P and SOA architecture for digital libraries

172

[38] Marco Fernandes, Pedro Almeida, Joaquim A. Martins, and Joaquim S.

Pinto, "Improving performance of background jobs in digital libraries using

Grid computing," in ICEIS 2008: 10th International Conference on

Enterprise Information Systems, Barcelona, 2008, pp. 221-225.

[39] Sara Silva, Marco Fernandes, Pedro Almeida, Joaquim A. Martins, and

Joaquim S. Pinto, "SWIT: An open-source web-based database

management system with indexing engine integration," in EATIS 2008:

Euro American Conference on Telematics and information Systems,

Aracaju, 2008.

[40] Hans Schek and Can Türker. (2004, October) DELOS Network of

Excellence on Digital Libraries. [Online]. http://delos-

old.isti.cnr.it/newsletter/issue2/feature1/

[41] MacKenzie Smith et al., "DSpace - an open source dynamic digital

repository," D-Lib Magazine, January 2003.

[42] Dublin Core Metadata Initiative. (2008) DCMI. [Online].

http://dublincore.org

[43] William Nixon, "DAEDALUS: Initial experiences with EPrints and DSpace

at the University of Glasgow," Ariadne Magazine, no. 37, October 2003.

[44] EPrints. (2008) EPrints. [Online]. http://www.eprints.org

[45] Carl Lagoze, Sandy Payette, Edwin Shin, and Chris Wilper, "Fedora: an

architecture for complex objects and their relationships," International

Journal on Digital Libraries, vol. 6, no. 2, pp. 124-138, 2006.

[46] Sheridan Libraries. (2008) Sheridan Libraries. [Online].

https://wiki.library.jhu.edu/display/RepoAnalysis/

References

 173

[47] Ian H. Witten, Rodger J. Mcnab, Stefan J. Boddie, and David Bainbridge,

"Greenstone: a comprehensive open-source digital library software

system," in Proc. ACM DL, 2000, pp. 113-121.

[48] Carlo Meghini and Thomas Risse, "BRICKS: A digital library management

system for cultural heritage," ERCIM News, no. 61, pp. 54-55, April 2005.

[49] Y Ma and R.S. Aygun, "Peer-to-peer based multimedia digital library," in

Proceedings of the Thirty-Seventh Southeastern Symposium on System

Theory, 2005, pp. 130- 134.

[50] Carlo Mastroianni, Domenico Talia, and Oreste Verta, "A super-peer

model for resource discovery services in large-scale Grids," Future

Generation Computer Systems, vol. 21, no. 8, pp. 1235-1248, October

2005.

[51] J. Mischke and B. Stiller, "A methodology for the design of distributed

search in P2P middleware," IEEE Network, vol. 18, no. 1, pp. 30-37,

Jan/Feb 2004.

[52] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan, "Chord: A scalable peer-to-peer lookup service for internet

applications," in Proceedings of the 2001 conference on Applications,

technologies, architectures, and protocols for computer communications,

San Diego, California, 2001, pp. 149-160.

[53] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker, "A scalable content-addressable network," in Proceedings of the

ACM SIGCOMM, San Diego, California, 2001, pp. 161-172.

P2P and SOA architecture for digital libraries

174

[54] Wolfgang Müller, Martin Eisenhardt, and Andreas Henrich, "Scalable

summary based retrieval in P2P networks," in ACM Conference on

Information and Knowledge Management, Bremen, Germany, 2005, pp.

586-593.

[55] The Gnutella Developer Forum. (2003) Gnutella - A Protocol for a

Revolution. [Online]. http://rfc-

gnutella.sourceforge.net/developer/stable/index.html

[56] Matei Ripeanu, "Peer-to-peer architecture case study: Gnutella network,"

in Proceedings of the First International Conference on Peer-to-Peer

Computing, Linkoping, Sweden, 2001, pp. 99-100.

[57] G2DN. (2007) Gnutella2 Developer Network. [Online]. http://g2.trillinux.org

[58] BitTorrent, Inc. (2008) BitTorrent. [Online]. http://www.bittorrent.com/

[59] Wikipedia. (2008) Wikipedia, the free encyclopedia. [Online].

http://en.wikipedia.org/wiki/BitTorrent_(protocol)

[60] Wikipedia. (2008) Wikipedia, the free encyclopedia. [Online].

http://en.wikipedia.org/wiki/Napster

[61] Wikipedia. (2008) Wikipedia, the free encyclopedia. [Online].

http://en.wikipedia.org/wiki/FastTrack

[62] John R. Douceur, Atul Adya, Josh Benaloh, William J. Bolosky, and

Gideon Yuval, "A Secure Directory Service based on Exclusive

Encryption," in 18th Annual Computer Security Applications Conference,

Las Vegas, Nevada, USA, 2002.

[63] William J. Bolosky, John R. Douceur, and Jon Howell, "The Farsite project:

a retrospective," ACM SIGOPS Operating Systems Review, vol. 41, no. 2,

pp. 17-26, 2007.

References

 175

[64] Karl Aberer et al., "P-Grid: a self-organizing structured P2P system," ACM

SIGMOD Record, vol. 32, no. 3, 2003.

[65] J. Walkerdine and P. Rayson, "P2P-4-DL: digital library over peer-to-peer,"

in Proceedings of the Fourth International Conference on Peer-to-Peer

Computing, 2004, pp. 264-265.

[66] W. et al. Nedjl, "EDUTELLA: a P2P networking infrastructure based on

RDF," in Proceedings of the 11th international conference on World Wide

Web, 2002, pp. 604-615.

[67] Stratis D. Viglas, Theodore Dalamagas, Vassilis Christophides, Timos

Sellis, and Aggeliki Dimitrou. School of Electrical and Computer

Engineering. [Online]. http://milos.dblab.ece.ntua.gr/p2pdl/

[68] Old Dominion University Digital Library Group. Old Dominion University.

[Online]. http://p2pdl.cs.odu.edu/

[69] Pawel Gruszczynski, Cezary Mazurek, Stanislaw Osinski, Andrzej

Swedrzynski, and Sebastian Szuber, "dLibra - Content management for

digital libraries," in Euromedia'2002 - 7th Annual Scientific Conference,

2002, pp. 28-32.

[70] CollabNet, Inc. (2008) JXTA. [Online]. http://www.jxta.org

[71] Jabber, Inc. (2008) Jabber.org. [Online]. http://www.jabber.org/

[72] Joost N.V. (2008) Joost - Free online TV. [Online]. http://www.joost.com

[73] Krawler Networks. (2008) Krawler[x]. [Online]. http://www.krawlerx.com/

[74] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins, "Peer-to-Peer

support for massively multiplayer games," in INFOCOM, 2004, p. 107.

P2P and SOA architecture for digital libraries

176

[75] Christoph Neumann, Nicolas Prigent, Matteo Varvello, and Kyoungwon

Suh, "Challenges in peer-to-peer gaming," ACM SIGCOMM Computer

Communication Review, pp. 79-82, 2007.

[76] I. Foster, C. Kesselman, and S. Tuecke, "The anatomy of the grid,"

International Journal of Supercomputer Applications, 2001.

[77] University of Chicago. (2008) The Globus Alliance. [Online].

http://www.globus.org/toolkit/

[78] Ian Foster, Car Kesselman, Jeffrey M. Nick, and Steven Tuecke, "The

Physiology of the Grid: An Open Grid Services Architecture for Distributed

Systems Integration," p. 31, 2002.

[79] S. Tuecke et al., "Open Grid Services Infrastructure (OGSI)," 2003.

[80] Cristy Burne, "Policy - Grid computing walks the standard line: thinking

inside the box," International Science Grid This Week, June 2008.

[81] Gregory B. Newby, Kevin Gamiel, and Nassib Nassar, "Secure information

sharing and information retrieval infrastructure with GridIR.," in Intelligence

and Security Informatics: Proceedings of the First NSF/NIJ Symposium,

New York, 2003.

[82] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, "Alchemi: A.NET-

based Grid computing framework and its integration into global grids,"

2003.

[83] Martin Bichler and Kwei-Jay Lin, "Service-oriented computing," Computer,

vol. 39, no. 3, pp. 99-101, Mar 2006.

[84] Eric A. Marks and Michael Bell, Service Oriented Architecture (SOA): A

Planning and Implementation Guide for Business and Technology.: John

Wiley & Sons, Inc., 2006.

References

 177

[85] Keith Bennett et al., "Service-based software: The future for flexible

software," in Seventh Asia-Pacific Software Engineering Conference,

Singapore, 2000, pp. 214-221.

[86] Galen Gruman and Eric Knorr. Infoworld. [Online].

http://www.infoworld.com/article/08/04/07/15FE-cloud-computing-

reality_1.html

[87] Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Kerard Hogg,

"Service-oriented architecture and business process choreography in an

order management scenario: rationale, concepts, lessons learned," in

Conference on Object Oriented Programming Systems Languages and

Applications, San Diego, CA, 2005, pp. 301-312.

[88] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju, Web

Services - Concepts, Architectures and Applications.: Springer, 2004.

[89] Tim Berners-Lee, Weaving the Web: the original design of the World Wide

Web by its inventor.: HarperCollins, 2000.

[90] Roy T. Fielding and Richard N. Taylor, "Principled Design of the Modern

Web Architecture," ACM Transactions on Internet Technology, vol. 2, no.

2, pp. 115-150, May 2002.

[91] Roy Thomas Fielding, "Architectural Styles and the Design of Network-

based Software Architectures," 2000.

[92] Frank Leymann, Dieter Roller, and Satish Thatte. (2003, August) Goals of

the BPEL4WS Specification.

[93] OASIS. (2007, April) Web Services Business Process Execution Language

Version 2.0. [Online]. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-

v2.0.html

P2P and SOA architecture for digital libraries

178

[94] Active Endpoints. Active Endpoints. [Online].

http://www.activevos.com/community-open-source.php

[95] The Apache Software Foundation. Apache ODE. [Online].

http://ode.apache.org/

[96] IBM. (2009) IBM. [Online]. www.ibm.com/software/integration/wps/

[97] Microsoft Corporation. (2009) Microsoft Corporation. [Online].

www.microsoft.com/biztalk

[98] Oracle. (2009) Oracle Technology Network. [Online].

http://www.oracle.com/technology/products/ias/bpel

[99] NetBeans. (2009) NetBeans. [Online]. http://enterprise.netbeans.org/

[100] The Eclipse Foundation. (2009) Eclipse.org. [Online].

http://www.eclipse.org/bpel/

[101] W3C. (2005, November) World Wide Web Consortium - Web Standards.

[Online]. http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

[102] Workflow Management Coalition. (2009) Workflow Management Coalition.

[Online]. http://www.wfmc.org/xpdl.html

[103] Keith Swenson. (2006, May) Thoughts on collaborative planning. [Online].

http://kswenson.wordpress.com/2006/05/26/bpmn-xpdl-and-bpel/

[104] Rachid Anane, Kuo-Ming Chao, and Yinsheng Li, "Hybrid Composition of

Web Services and Grid Services," in IEEE International Conference on e-

Technology, e-Commerce and e-Service (EEE'05), Hong Kong, China,

2005, pp. 426-431.

References

 179

[105] W3C. (2004, November) World Wide Web Consortium. [Online].

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

[106] Active Endpoints. (2008) ActiveBPEL Infocenter. [Online].

http://www.activebpel.org/infocenter/ActiveVOS/v50/index.jsp?topic=/com.

activee.bpel.doc/html/UG22-1-2.html

[107] Cesare Pautasso, "BPEL for REST," in 7th International Conference on

Business Process Management (BPM08), Milan, Italy, 2008, pp. 278-293.

[108] M.G. Nanda, S. Chandra, and V. Sarkar, "Decentralizing execution of

composite Web Services," in Proceedings of the 19th annual ACM

SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, Vancouver, 2004, pp. 170-187.

[109] F. Montagut and R. Molva, "Enabling pervasive execution of workflows," in

International Conference on Collaborative Computing Networking,

Applications and Worksharing, San Jose, CA, EUA, 2005.

[110] Daniel Martin, Daniel Wutke, and Frank Leymann, "A novel approach to

decentralized workflow enactment," in 12th International IEEE Enterprise

Distributed Object Computing Conference, Munich, Germany, 2008, pp.

127-136.

[111] R. Khalaf, O. Kopp, and F. Leymann, "Maintaining data dependencies

across BPEL process fragments," International Journal of Cooperative

Information Systems, World Scientific Publishing, vol. 17, no. 3, pp. 259-

282, 2008.

[112] Cláudio Teixeira, Joaquim Sousa Pinto, and Joaquim Arnaldo Martins,

"eABC: um repositório institucional virtual," in ADIS Ibero-Americana :

WWW/Internet 2005, Lisbon, Portugal, 2005, pp. 653-656.

P2P and SOA architecture for digital libraries

180

[113] Ex Libris. (2008) Ex Libris. [Online].

http://www.exlibrisgroup.com/category/Aleph

[114] Visual Resources Association. (2009, May) Visual Resources Association.

[Online]. http://www.vraweb.org/resources/datastandards/vracore3/

[115] Moving Picture Experts Group. (2004) Moving Picture Experts Group.

[Online]. http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm

[116] Joaquim S. Pinto, Joaquim A. Martins, Pedro Almeida, Marco Fernandes,

and Helder Zagalo, "Portuguese Parliamentary Records: a Multimedia

Digital Library Distributed Architecture, based on Web Services," in

NWeSP 2005: Next Generation Web Services Practices, Seoul, South

Korea, 2005, pp. 57-62.

[117] Pedro Almeida, Joaquim Arnaldo Martins, Joaquim Sousa Pinto, and

Helder Troca Zagalo, "Audiovisual archive with MPEG-7 video description

and XML database," in ICEIS 2004: Sixth International Conference on

Enterprise Information Systems, Porto, Portugal, 2004, pp. 536-540.

[118] Microsoft Corporation. (2009) MSDN. [Online].

http://msdn.microsoft.com/en-us/library/ms689718%28VS.85%29.aspx

[119] Swish-e. (2007) Swish-e: Simple Web Indexing for Humans - Enhanced.

[Online]. http://swish-e.org/

[120] QuiLogic Technologies. (2003) QuiLogic Technologies. [Online].

http://www.quilogic.cc/ifilter.htm

[121] Scott Oaks, Bernard Traversat, and Li Gong, JXTA in a nutshell.: O'Reilly

Media, 2002.

[122] Marco Pereira, Tecnologia peer-to-peer para bibliotecas digitais [masters

dissertation], 2008.

References

 181

[123] OASIS. (2006) ebXML - Enabling a global electronic market. [Online].

http://www.ebxml.org/

[124] OASIS. (2004, October) UDDI.org. [Online].

http://uddi.org/pubs/uddi_v3.htm

[125] Microsoft Corporation. (2003, February) Windows Server 2003. [Online].

http://www.microsoft.com/windowsserver2003/techinfo/overview/uddiscen.

mspx

[126] Alexander Mintchev, "Interoperability among service registry

implementations: is UDDI standard enough?," in 2008 IEEE International

Conference on Web Services, Beijing, 2008, pp. 724-731.

[127] UNSPSC. (2009) UNSPSC. [Online]. http://www.unspsc.org/

[128] eCl@ss e.V. (2009) eCl@ss, the international standard for the

classification of products and services. [Online].

http://www.eclass.de/index.html?no=intro&svt=2&navid=3065

[129] Mark Richards, "Creating an effective SOA service taxonomy," SOA World

Magazine, November 2008.

[130] W3C. (2005, November) World Wide Web Consortium. [Online].

http://www.w3.org/Submission/WSDL-S

[131] The Apache Software Foundation. (2005) WebServices - Axis. [Online].

http://ws.apache.org/axis

[132] Marco Fernandes, Joaquim A. Martins, Joaquim S. Pinto, and Pedro

Almeida, "Search engines evaluation for P2P based Digital Libraries," in

EATIS 2008: Euro American Conference on Telematics and Information

Systems, Aracaju, Brasil, 2008.

P2P and SOA architecture for digital libraries

182

[133] Ronny Lempel and Shlomo Moran, "Predictive caching and prefetching of

query results in search engines," in 12th International Conference on

World Wide Web, Budapest, Hungary, 2003, pp. 19-28.

[134] Indri. (2007) Indri. [Online]. http://www.lemurproject.org/indri

[135] The Apache Software Foundation. (2006) Apache Lucene. [Online].

http://lucene.apache.org/java/docs/

[136] University of Glasgow. (2007) Terrier Information Retrieval Platform.

[Online]. http://ir.dcs.gla.ac.uk/terrier/

[137] Index Data. (2009) Index Data. [Online]. http://www.indexdata.com/zebra

[138] UMIC - Agência para a Sociedade do Conhecimento. (2010) RCAAP -

Repositório Científico de Acesso Aberto de Portugal. [Online].

http://www.rcaap.pt/

[139] Eric Newcomer and Greg Lomow, Understanding SOA with Web

Services.: Addison-Wesley, 2004.

