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resumo 
 

 

Em Portugal, uma das indústrias com maior expressão e competitividade é, 
sem dúvida, a indústria de moldes. A aposta em produtos de maior valor 
acrescentado e em nichos de mercado tem sido fomentada e extremamente 
valorizada. 
É neste contexto que surge a micromoldação. Uma tecnologia de produção, 
também cíclica, com todas as vantagens da moldação por injecção, que abre 
novos mercados, mas que requer conhecimento tecnológico especifico nas 
diferentes vertentes: equipamento, processo, ferramentas. Neste contexto, 
para as ferramentas de moldação urge solucionar problemas tecnológicos que 
se prendem com questões processuais intrínsecas à micromoldação, 
nomeadamente dificuldades de escoamento em micro-canais, desmoldação, 
etc. No que concerne a interface fluído/ferramenta moldante, deve referir-se 
que esta deve promover um mínimo de adesão, por forma a não comprometer 
a frente de enchimento e a operação de desmoldação. As ferramentas de 
moldação devem portanto ser de materiais com alta dureza, baixo coeficiente 
de atrito e uma condutividade térmica elevada. Uma forma de obter tais 
características é utilizar revestimentos duros, tais como revestimentos de 
diamante, que possuem um conjunto de propriedades físicas excepcionais, 
podendo minimizar substancialmente a necessidade de manutenção no molde. 
Tais propriedades são ainda de importância crucial de forma a garantir a 
qualidade final das peças. 
O presente trabalho visa apresentar uma solução para alguns dos problemas 
acima apontados, bem como estabelecer a metodologia de operação e os 
limites de validade e ou viabilidade da aplicação de filmes finos de diamante 
em ferramentas micro-estruturadas para a industria de moldes. 
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abstract 

 
Molds industry in Portugal is one of the most dynamic sectors in the national 
economy. For that reason, its competitiveness is of utmost importance and 
requires further insight into the development of high value products and new 
markets. The latter has been pointed out, quite often, as a gateway to improve 
the sectors performance. 
Micromolding is, within this context, seen as an area of great potential. 
Nevertheless, when such a dimensional reduction is considered, the tools are 
also subjected to problems due to melt flow characteristics on micro-channels. 
In what concerns the melt flow/molding tool interface it’s worth referring the 
requirements for minimum adhesion to avoid compromising the flow front 
advancement or demolding operations. Molding tools have therefore strict 
requisites in what concerns high hardness, low friction coefficients and high 
thermal conductivity materials. In order to attain the above, the use of hard 
coatings, such as diamond, which display outstanding physical properties, may 
minimize substantially the need for mold intervention. The latter is required to 
reestablish the surface finish to guarantee part quality. 
The present work has as its fundamental objective to evaluate the viability and 
the added value of the diamond coatings on molding tools for thermoplastic 
micromolding. 
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Chapter 1 

 
Introduction 

1 Thermoplastic injection molding and tools 

Injection molding is a manufacturing technique to produce parts, as the ones showed in figure 

1, from thermoplastic and thermosetting polymers. It consists of a cyclic process in which a 

melted (plasticized) polymer is injected into a mold cavity or cavities (impression), where it is 

held under pressure until it is removed in a solid state, thus duplicating the impression of the 

mold. [1] 

Typically, polymers or plastics (as they are commonly named) are defined as materials which 

can be molded or shaped into different forms under the influence of pressure and heat. 

Chemically, polymers are substances composed of long chains of repeating molecules, called 

monomers, made up predominantly of carbon and hydrogen atoms, which under the desirable 

conditions, connect together to form chain structures. In addition to carbon and hydrogen, 

oxygen, nitrogen, chlorine, and other elements may be found in some polymers. [2] 

The main difference between thermoplastics and thermosetting polymers is that the first ones 

may become soft, remoldable and weldable when heated. Thermosetting polymers however 

cannot be welded or remolded when heated. 
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Figure 1 - Plastic molded objects 

Three basic operations take place in the thermoplastic injection molding process: (i) heating 

the thermoplastic in the injection or plasticizing unit, so that it will flow under pressure; (ii) 

allowing the thermoplastic melt to solidify in the mold cavity or cavities; and (iii) opening of 

the mold to extract the molded product. These three steps are the operations in which the 

mechanical and thermal inputs of the injection equipment must be coordinated with the 

fundamental properties and behavior of the thermoplastic being processed. Figure 2 presents 

a picture of an Inauton D65 injection molding machine and figure 3 some mold tools for 

thermoplastic molding. 

Different thermoplastics may display different characteristics, performances and will carry a 

different cost. The characteristics and performance are influenced by factors such as molecular 

size and weight, molecular distribution, and shapes or structures of individual molecules. 

Properties and behavior are also influenced by compounding of different amounts and 

combinations of additives (colorants, flame retardants, heat and light stabilizers, etc.), fillers 

(calcium carbonate, etc.), and reinforcements (glass fibers, glass flakes, graphite fibers, 

whiskers, etc.) that are used with plastics. Compounding also embraces the mixing (alloying, 

blending, etc.) of two or more plastics that may be miscible or immiscible, with or without 

additives. 



Introduction 

 3 

 

Figure 2 - Inauton D65 injection molding machine 

 

Figure 3 - Molds for thermoplastic molding 
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Molding tools or molds are the production tools used to produce polymer parts in injection 

molding. The mold is probably the most important part of the injection molding process. It is a 

controllable, complex and expensive device. If it is not properly designed, operated, handled, 

and maintained its operation will be costly and highly inefficient. 

Under pressure, hot melt moves rapidly through the mold. During the injection into the mold, 

air in the cavity or cavities is released to prevent melt burning and the formation of voids in 

the product. Temperature-controlled cooling media (i.e. water, oil, etc.) circulates in the mold 

to remove heat. 

The mold basically consists of a sprue, a runner, a cavity gate, and a cavity (impression). The 

sprue is the channel located in the stationary platen that transports the melt from the 

plasticator nozzle to the runner. In turn, melt flows through the runner and gate and into the 

cavity. With a single-cavity mold, usually no runner is used, so melt goes from the sprue to the 

gate. Different runner systems are in use to meet different processing requirements. The most 

popular are cold and hot runners. With a cold runner, the melt flowing from the sprue to the 

gate solidifies by the cooling action of the mold as the melt in the cavity or cavities solidifies. 

With a hot runner the sprue to the gate is insulated from the chilled cavity or cavities and 

remains hot, so that the melt never cools; the next shot starts from the gate, rather than from 

the nozzle as in a cold runner. 

Molds are provided with different means, such as sliders, unscrewing devices, undercuts and 

extraction systems to eject products as well as solidified runners at the proper time. These 

basic operations require control of various parameters such as fill time and hold pressure. 

Molds are typically constructed from hardened steel, pre-hardened steel, aluminium, and/or 

beryllium-copper alloy. 

2 The worldwide molds industry – an overview 

Plastics can be divided into natural, semi-natural and synthetic plastics. Natural plastics include 

amber, horn, tortoiseshell and bitumen, and were used in the most ancient civilizations. The 

ancient Egyptians molded amber into items such as jewelry. [2] 

John Wesley Hyatt, an American inventor, was the first to inject hot celluloid (a semi-natural 

polymer) into a mold, using an injection molding machine, producing billiard balls, in 1868. He 

and his brother Isaiah, patented an injection molding machine that used a plunger in 1872. The 

first screw injection molding machine was built on 1946 by James Hendry, revolutionizing the 
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plastics industry. Roughly 95% of all molding machines now use screws to efficiently heat, mix, 

and inject plastic into molds. [3] 

The use of polymers to produce manufactured goods boosted since the boom appearance of 

synthetic polymers and with the end of the Second World War. The British plastic industry 

passed from selling 50 000 tons in 1939, to 160 000 in 1950, and to 550 000 tons in 1960, and 

have continued to grow since. [2] 

Portugal is an international leader in the molds industry. It is the eighth-largest producer of 

dies and molds in the world and it exports to more than 70 countries. Portugal is also one of 

the world’s principal producers of precision molds for the plastics industry. Many multinational 

corporations recognize the industry’s excellence and increasingly choose Portuguese suppliers 

for their molding requirements due to their experience, skills, delivery times and pioneering 

use of advanced technologies. The industry has more than 500 companies active in Portugal, 

working in different specialized areas with specific molds techniques, from simple services to 

highly complex molds production. [4-6] 

In the late 18th century an Englishman named William Stephens opened a glass-making plant in 

the town of Marinha Grande, the Fábrica Escola Irmãos Stephens, employing artisans from 

Genoa and Lisbon. The skill of the town's glassworkers came to rival the best in the world and 

the town still remains today the "glass capital" of Portugal. [7] 

At the beginning of the 20th century, Marinha Grande began producing molds for glassware, 

having previously imported them from Germany and Austria. This was the foundation for the 

growth of the plastics molds industry. Aníbal H. Abrantes, a partner and lathe-worker in the 

first pressed glass molds plant in Marinha Grande, established the first molds plant for Bakelite 

products in 1944. Two years later Abrantes produced Portugal's first plastic injection mold. 

Other plastics mold companies began to open in Marinha Grande and in the northern town of 

Oliveira de Azeméis, another traditional glassmaking centre. The industry developed with the 

importation of foreign technology. Exports began in 1955 with the sale of the first Portuguese 

mold to Britain. By 1980, in the Marinha Grande area alone 64 companies employing 2000 

people were operational. [7] 

Today, the molds sector in Portugal employees about 7500 people, in more than 500 

companies, most of them in the Marinha Grande area. Most of these companies are small to 

medium-sized, employing an average of 30 workers. [4, 6, 7] 

The dynamism and commercial drive of Portuguese molding industry are recognized 

internationally for its competitiveness in quality, delivery times, technological capacity and 
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price. This worldwide reputation has enabled Portuguese mold makers to establish a presence 

in more than 70 countries. [7] 

The industry exports about 90% of its production. These exports earned around € 369 million 

in 2006. In this year, and maintaining the trend of the last 3 years, the main exports 

destinations were France, Spain, Germany, United Kingdom and the United States of America, 

as it can be seen in figure 4. Automobile industry sector by itself accounted for approximately 

78% of the molds produced. Other relevant sectors are electrical domestic appliances, packing, 

and domestic tools, as presented in figure 5. [4] 

Nevertheless, the Portuguese mold making industry, as the European, is coming under 

increasing economic pressure from the Pacific Rim countries, which can supply tooling more 

cheaply. To slow down or reverse the decline in the Small and Medium based EU tooling 

industry, processes that offer mold makers a competitive advantage over non-EU imports are 

required. 

 

Figure 4 - Main export destinations of Portuguese molds in 2006 [4] 
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Figure 5 - Main industries supplied in 2006 [4] 

An American report on Competitive Conditions in the United States and Selected Foreign 

Markets of Tools, Dies, and Industrial Molds by the United States International Trade 

Commission (United States International Trade Commission, 2002) pointed out that the 

Portuguese mold making unique industry characteristic to be composed of small industry 

dedicated almost exclusively to exporting. The same report also highlighted the strengths to 

be: specialist training colleges; quick lead times (time required to produce a die or mold), 

technological capability, price, and low labor costs; quality, technology, service, skilled in 

producing high precision and complex dies and molds. And the weaknesses: small domestic 

market with lowest productivity indicators (sales per worker) among International Special 

Tooling and Machining Association members; lacks modern automotive and aerospace 

industries to stimulate technological advancement; and many die and mold producers tend to 

be small companies with limited financial and management resources. 

New value strategies are being proposed and carried out [8, 9]. The integration of the mold 

tool in a high-tech engineering chain, that is not limited to the mold tool production, but 

assists from its conception to the end of its service, enlarges the intervention period of the 

molding system provider, reducing the importance of the mold production cost. A different or 

complementary business strategy is the specialization in high complexity mold with top 

pioneering and engineering solutions. 

In both strategies, the technology knowledge must be enlarged and network partnerships 

between complementary enterprises, R&D institutions and prime clients must be considered. 
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Increased tool functionality and productivity during component processing, decreased tool 

cost, wider range of tool application, reduced environmental, health and safety impact during 

both tool and component manufacture, and extended tool longevity and reduced maintenance 

times are key parameters for future strategies. [8, 9] 

3 Industry challenge 

As pointed in the previous section, the implementation of new value strategies implies 

challenges for the mold making industry, namely the improvement of technology 

comprehension. One of the main goals of the present doctoral thesis is to modestly contribute 

to the latter. 

Microsystems-based products will be an important contributor to the industrial and economic 

future, as a key value adding element for many sectors of industry — and the predicted 

nanotechnology future will also be largely delivered by microtechnologies. The 21st century will 

most surely adopt micro and nano manufacturing technologies making use of a variety of 

materials, components and knowledge based technologies that provide functionality and 

intelligence to highly miniaturised systems. [10] 

Machining has been the only feasible manufacturing alternative for manufacturers sourcing 

low to moderate quantities of micro components. The process of micro molding has been in 

existence for over 20 years, but because of the modest volumes or the complexity of the 

components it has often been avoided. However, in the last five years, with the advances in 

materials, processing and measurement techniques, micro molding can offer a range of cost-

effective alternatives for components that are miniatures, complex and require high precision 

tolerances. [11, 12] 

Machining places limitations on the material selection process where high-cost ceramics or 

engineered metallic materials are commonly used. As a result, sourcing low to moderate 

volume micro components has been a costly challenge for manufacturers. Advances in 

material science and plastic injection molding equipment permit complex machined micro 

components to be injection molded in metal, plastic, or plastic with metal or ceramic filler. 

Molded micro-switch plungers are shown in figure 6. There are a number of cost and design 

advantages that can be obtained by converting to injection molding. Engineers looking to 

decrease the overall size of their product, to incorporate complex features, to reduce the 
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Figure 6 - Mini Micro-switch Plunger [11] 

 

number of components, or to reduce costs should consider micro molding as an alternative to 

machining. [12] 

Plastic microinjection molding tools can clearly be seen as an added value strategy 

specialization, with a high complexity and top pioneering and engineering solutions 

requirements. 

There are a number of benefits that can be achieved by converting to micro molding. One 

advantage is that the amount of time it takes to mold a component is a fraction of what it 

takes to machine a component. Another is particle contamination. Designers do not want to 

have the possibility of foreign matter being introduced into their fluid-carrying medical 

devices, for example. Micro molding eliminates the potential failure mode of having 

particulates left after machining and enables better surface finishing. Micro molding also gives 

more freedom to designers to place intricate features in products thereby enhancing their 

ability to create more innovative products. As the trend for smaller components becomes 

greater, it might become more difficult to machine complex geometries making micro molding 

the only option. In addition, micro molding also offers a dimensionally stable production 

process and improvement of mechanical and/or electrical properties using alternative resins or 

fillers. [12] 
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Although the advances acquired in the past couple of years in the microinjection molding 

technology process, there are still some problems on the downstream that must be overcome. 

Micro moldings may become statically charged and tend to adhere to surfaces around the 

molding area, making free fall extraction difficult or even impossible. 

In the conventional thermoplastic injection molding, the wear of molding tools is known to be 

one of the main sources of breakdown failures, resulting in production losses [13]. In 

microinjection of thermoplastic parts, molds for components that are miniature, complex and 

require high precision tolerances are not wear free, on the contrary, the cavity wear can be 

even much more critical than in conventional molding [11, 12]. 

Issues such as aspect ratio have to be considered carefully, as fine details that can approach 

micron levels of dimension must be capable of withstanding cavity pressures created during 

the injection phase. The wear out of the molding tools creates demolding problems, 

compromising the polymeric parts finishing quality, speeding up the corrosion of the tools, and 

result in maintenance stops. Most of the mold tools have complex geometries and complex 

moving parts which favor the corrosion and wear mechanisms. Polymer abrasion, adhesion 

and corrosion are the catalyzers of these mechanisms. Furthermore, the increasing usage of 

polymers reinforced with glass fibers, minerals, or even carbon nanotubes, enhance the 

abrasive power of polymers. [14] 

In terms of mold design, new materials are being developed with high coefficients of thermal 

conductivity, and coatings can be applied to assist part removal without damage. 

Hard chrome and nickel plating are currently the most commonly employed method of 

treating the surface of conventional mold tools to improve durability. Although plating is an 

effective technique it does suffer from a number of attendant problems. Most significantly, all 

commercial chromium plating baths utilize CrVI, which is highly toxic and is hazardous to the 

environment and the user, requiring careful monitoring and legislated control. Nickel plating, 

although not as hazardous as Cr plating, still releases significant emissions into the 

environment. From a technical standpoint electrodeposited Cr coatings are inherently micro-

cracked, resulting in poor corrosion resistance and spalling. Two further hard coating 

techniques of note are Physical Vapor Deposition and the Thermal Diffusion process and its 

variants. Both are used to deposit nitrides onto tools (particular TiN, CrN and NbN) but again 

these processes are severely limited by the size of the application cell. [14] 

Chemical Vapor Deposition of polycrystalline diamond, in microcrystalline or nanocrystalline 

morphology, detains a number of extreme properties that point it as a technology suitable for 
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exploitation in numerous industrial applications. It possesses an extreme mechanical hardness 

and wear resistance, one of the highest bulk modulus, the lowest compressibility, the highest 

room temperature thermal conductivity, a very low thermal expansion coefficient at room 

temperature and is very resistant to chemical corrosion (see table 3). Most of these properties 

are attractive for cavities and molding tools. 

The application and evaluation of CVD diamond thin films as a surface engineering to improve 

operation and durability of mold tools will be the prime objective of this doctoral thesis. 





 

 

Chapter 2 

 
Diamond CVD coatings 

1. Introduction 

Diamond is considered an ideal material for many applications due to its extreme properties. It 

is a metastable carbon polymorph at room temperature and atmospheric pressure. Its crystal 

structure belongs to the space group1 Oh
7 (F4, /d 32/m) with two atoms per primitive Bravais 

cell. Its structure can be viewed as two interpenetrating face centered cubic lattices shifted 

along the body diagonal by  
1

4
,

1

4
,

1

4
 𝑎 2, where 𝑎 is the dimension of the cubic (mineralogical) 

unit cell, as shown in figure 7. Each carbon atom has a tetrahedral configuration consisting of 

sp3 hybrid atomic orbitals3. The  111  4 crystallographic plane comprises 6-atom hexagonal 

rings arranged so that the adjacent atoms are alternately dislocated upward and downward 

from the plane. The stacking sequence in the  111  5 direction is ABCABCABC. The lattice 

constant is 3.56 Å and the bond length is 1.54 Å. Natural diamond consists of 98.9% 12C and 

1.1% 13C. The characteristic Raman spectroscopic signals for diamond are 1332 cm−1 for 12C and 

                                                           
1
 The space group of a crystal or crystallographic group is a mathematical description of the symmetry 

inherent in the structure. 
2
 The notation  𝑙𝑚𝑛  denote planes orthogonal to a direction  𝑙, 𝑚, 𝑛  in the basis of the reciprocal lattice 

vectors. 𝑙, 𝑚 and 𝑛 are the Miller indices that are a notation system in crystallography for planes and 

directions in crystal (Bravais) lattices. 
3
Hybridization, in chemistry, is the concept of mixing atomic orbitals to form new hybrid orbitals suitable 

for the qualitative description of atomic bonding properties. The hybridization theory was promoted by 

chemist Linus Pauling in order to explain the shape of molecular orbitals for molecules.  
4
 The notation  𝑙𝑚𝑛  denotes all planes that are equivalent to  𝑙𝑚𝑛  by the symmetry of the crystal. 

5
 The notation  𝑙𝑚𝑛  denotes all directions that are equivalent to  𝑙𝑚𝑛  by symmetry.  𝑙𝑚𝑛  denotes a 

direction in the basis of the direct lattice vectors instead of the reciprocal lattice. 
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1284 cm−1 for 13C. A typical unit cell for the diamond cubic crystal structure can be seen in 

figure 7. [15, 16] 

Carbon has two isomers. The first isomer is lonsdaleite found in meteorites. The positioning of 

atoms in each plane of the structure of lonsdaleite is the same as that in the cubic structure. 

However, the planes are linked in a manner which results in a stacking sequence of ABABAB. 

Consequently, the atoms experience closer chemical bonding, with lattice constants in the a 

and c directions of 2.52 and 4.12 Å, respectively. The distance between adjacent atoms is  

1.52 Å. The corresponding Raman peak is in the range of 1315–1325 cm−1. Another isomer is 

graphite, the most common form of carbon. Each carbon atom has a sp2 atomic configuration 

and therefore, three in-plane sigma bonds. The remaining valence electron forms π bonds 

using a pz atomic orbital. Thus, the trigonally bonded 6-carbon rings are situated in a flat plane 

instead of being in alternate order plaited as in diamond. The planes are layered in an ABABAB 

sequence. The lattice constant in the basal plane between repeating layers is 6.707 Å, and the 

in-plane, nearest neighbor spacing is 1.42 Å. The signature Raman peak of the in-plane layers is 

1580 cm−1. [15] 

 

 

Figure 7 - Unit cell for the diamond cubic crystal structure 

2. History and developments 

The modern use of impregnated tools, which consume the vast majority of the industrial 

diamond used today, is probably a century old, and most of the growth witnessed by the 

industry has taken place in the last fifty years. However, diamond has been recognized as 

being a unique material for several centuries. Originally recognized for its spectacular cosmetic 

properties and found in southern India, its early use as an industrial tool was confined to that 

of engraving. Asian references to the cutting of the very hard jade stone can be traced back to 
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300 BC and possibly further. In the 18th century French philosopher Diderot described the use 

of a hand-held diamond tool for drilling stone. By the mid 1800s this had developed 

considerably, and diamond rock drills were powered by machines.  

The very early developments in diamond tools took place relatively slowly, as presented in 

table 1. When only natural diamond was available, the development of new applications using 

diamond was largely self-defeating, since the more material they consumed, the less feasible 

they were in terms of world supply due to shortage of raw material. 

The scenario changed noticeably in the 1950s when innovation changed to invention and 

synthetic diamond became a commercial reality. Large presses simulate the conditions of high 

pressures and temperatures that created natural diamond deep within the crust of the earth 

and through the application. 

The first CVD diamond growth under low pressures was reported by Spitsyn and Deryagin from 

the Physics and Chemistry Institute of Moscow, in 1956 and by Eversole from the Union 

Carbide Corporation (USA), in 1962. Their method consisted of a cyclic pyrolysis, where 

diamond was used as a substrate and diamond growth occurred homoepitaxially. This method 

was further expanded by Angus et al. and Derjaguin et al. in the early 1970s. However, since 

 

Table 1 - Chronology of diamond utilization [17, 18] 

Date Event 

340 BC Aristotle describes the use of diamond tipped drills in Greece. 
1000s Pliny describes the use of diamond splinters in handles of iron to form an engraving tool in Italy. 

Reports describe the use of a diamond engraving tool called jade cutter knife in China. 
1400s Crushed diamond powder used for polishing diamond. 
1500s Leonardo da Vinci reports the use of diamond tools for glass cutting. 
1600s Report on the first diamond drilling tool. 
1700s Ramsden reports the first single diamond turning tool for application in metal working. 

Smith-Tennant reports diamond to be composed solely of carbon. 
1800s Diamond grinding wheels are being used by Pritchard in England to shape lenses. 

France grants a patent for a diamond core drill for use in the French stone industry.  
Use of diamond as a wire drawing die. 
Diamond drills for dentistry are introduced in the USA by Desau. 

1900s Wheel for glass grinding developed by Carl Zeiss Jena. 
First description of grinding tungsten carbide with diamond. 
First successful diamond synthesis via High Pressure, High Temperature by ASEA, Sweden (February 
16

th
, 1953). 

Shockwave sintering of diamond reported. 
Natural diamond used as heat spreaders for semiconductors. 
First large synthetic diamond crystals grown up to 0.25 cts in weight. 
Polycrystalline diamond launched commercially. 
Growth of diamond crystals via low pressure CVD on non-diamond substrates announced in the 
Soviet Union. 
Sales by volume of synthetic diamond products exceeds natural diamond for the first time. 

2000s Development of high quality single crystal CVD diamond for electronic applications. 
Polycrystalline CVD diamond dome used as tweeter in loudspeaker application. 
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cyclic, hydrocarbon pyrolysis had a very slow diamond deposition rate (1 - 10 nm/h) and 

required a diamond grit substrate, its application was unrealistic. [15, 19] 

In 1982, Matsumoto et al. made a breakthrough in CVD diamond technology. They used hot 

filaments (at 2000 °C) to directly activate hydrogen and hydrocarbon which were passed 

through the hot filament. The diamond film was then deposited onto a non-diamond substrate 

located 10 mm away from the filament. Graphite was etched simultaneously by atomic 

hydrogen during deposition which rendered the cycling of deposition and etching unnecessary 

and therefore led to a higher growth rate (1 µm/h). [20] 

Thermodynamically, the crystal growth process is a matter of chemical potential equilibrium 

between two systems: the environment in the reactor chamber and the crystallites. Chemical 

potential governs the flow of particles between the systems. If two systems have different 

chemical potential, particles will flow from the system at the higher chemical potential to the 

system at lower chemical potential. Chemical potential, µ, is a function of the system 

temperature, T, volume, V, and number of particles, N, and is defined as: 

𝜇 𝑇, 𝑉, 𝑁 ≡  
𝑑𝐹

𝑑𝑁
 
𝑇,𝑉

       (1) 

where F is the Helmholtz free energy. [21-23] 

Applying the chemical potential concept [23], with the Laplace equation: 

𝑃𝐶 − 𝑃𝑉 = 2
𝜎𝑡

𝑟
        (2) 

where t is the surface tension of the crystal and r is the body radius (considering a crystal with 

a shape similar to a droplet) and the product  
2 𝜎𝑡

𝑟
 is known as the Laplace pressure, and with 

the Thomson-Gibbs equation: 

  𝜇𝑉 − 𝜇𝐶 = 2
𝜎𝑡𝑉𝐶

𝑟
       (3) 

it can be supposed that volume, Vc, is gained when transferring n atoms or molecules from the 

supersaturated ambient phase (vapor), with higher chemical potential, µv, to the crystal phase 

with lower bulk chemical potential, µc: 

   𝑃𝐶 − 𝑃𝑉 𝑉𝐶 = 𝑛 𝜇𝑉 − 𝜇𝐶       (4) 

where Pv is the vapor pressure and Pc is the crystal pressure. 

Nevertheless, to be able to promote the crystal growth it is required the appearance of small 

clusters of building units (atoms or molecules) in the volume of the supersaturated ambient 

phase (nucleation sites). 
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The crystal shape is due to the equilibrium of a small crystal with its ambient phase, that leads 

to the formation of a particular shape which is the most favorable from a thermodynamic 

point of view, this is, when the work to form such crystal is at a minimum [23]. 

The surface requires a work equal to tS, where S is the crystal surface, to create a new phase-

dividing surface.  

The volume part depends on the crystal volume or the atoms transferred. At a constant 

volume, the surface part depends only on the crystal shape, tending for a minimum of surface 

energy or an equilibrium shape. Then the conditions for a minimum Gibbs free energy changes 

with the crystal formation at a constant volume. 

If instead of a crystal, there is a liquid droplet, the equilibrium shape would be evidently a 

sphere. In the case of a crystal, equilibrium shape is not that simple, due to the different 

crystallographic orientations and different specific surface energies. The latter meaning that 

the surface energy depends on the crystallographic orientation and in that sense it is 

anisotropic. 

The growth of a polycrystalline diamond film starts from distinct nucleation sites. As individual 

randomly oriented nuclei grow larger, its diameters equal the average distance between the 

nucleation sites and start to form a continuous film. The subsequent film growth is dominated 

by competitive growth between randomly oriented grains. With increasing film thickness, 

more and more grains are overgrown and buried by adjacent grains. Only those crystals with 

the direction of fastest growth perpendicular to the surface will survive. 

As mentioned above, thermal or plasma energy is the key factor to promote the fluctuations of 

the density to achieve small aggregates and to promote the thermodynamic environment to 

lead to crystal growth. Nevertheless, it has been gradually recognized that the 

superequilibrium concentration of atomic hydrogen has also an important role on diamond 

growth. [19] 

It is presently accepted that the growth of diamond crystals at CVD conditions, does not occur 

only due to a simple step process, but due to several stages and phenomena as presented in 

table 2 and figure 8. 

Table 2 - Cyclic reactions leading to the diamond deposition 

Stage Event 

1
st

 Activation of the gas mixture 
2

nd
 Transport of the active gas mixture to the substrate 

3
rd

 sp
2
 and sp

3
 simultaneous deposition 

4
th

 Dissolution of the deposited sp
2
 carbon in the gas phase (etching) or its conversion to sp

3
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Figure 8 - Reactions taking place inside the CVD chamber during diamond growth 

 

Various activating methods for diamond CVD such as DC-plasma, RF-plasma, microwave 

plasma, electron cyclotron resonance-microwave plasma CVD, and their modifications were 

developed. 

A method also worthy of mention is the pyrolysis of fluorocarbons, such as CF4, that could 

produce epitaxial diamond growth. OH radicals, O2, O, F2, and F as graphite etchants are even 

better than atomic hydrogen. 

Besides CVD, physical vapor deposition methods were also attempted and were expected to 

deposit diamond at low temperatures. Recent work has demonstrated that diamond 

nanocrystals in the matrix of amorphous carbon could be produced by direct low-energy ion 

bombardment using a mixture of CH4/H2/Ar ions. [15] 

3. Properties and applications 

Diamond exhibits a number of exceptional properties, as presented in table 3, which 

individually or in combination with other materials, makes it the potential application material 

for a range of industrial applications. 
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The strength of the carbon-carbon bond is the source of the exceptional mechanical properties 

of diamond. Dislocation of the atoms is difficult and consequently diamond is the hardest 

known substance. 

It is chemically inert and due to the high strength of the covalent bonds it is highly resistant to 

chemical attack by acids or other chemical reagents. The only exceptions are materials that at 

high temperatures act as oxidizing agents - these provide the only effective way to attack 

diamond at normal pressures and temperatures (below about 1000 °C). Salts, such as sodium 

nitrate, are known to attack diamond when in the molten state at temperatures as low as  

450 °C and, in oxygen itself, diamond starts to be oxidized at around 650 °C. The only other 

possible form of chemical attack is by two groups of metals. The members of the first group 

are strong carbide formers, and include tungsten, tantalum, titanium and zirconium. At very 

high temperatures, these will react chemically with diamond to form their respective carbides. 

The second group of metals includes iron, cobalt, manganese, nickel and chromium (and also 

the platinum group of metals). In the molten state these metals are true solvents for carbon. 

[17]  

 

Table 3 - Mechanical and thermal properties of diamond [17, 19, 24] 

 Natural Synthetic Polycrystalline Thin Film 

Density (g/cc) 3.51 - 3.52 3.20 - 3.52 3.00 - 4.00 2.65 
Volume Compressibility 

(x 10-10 m²/N) 
18.0 -- -- -- 

Coefficient of friction (dynamic) 0.03 0.03   
Hardness, Knoop 8000 -- -- -- 

Microhardness, Knoop 
(GPa) 

56.0 – 102 
(001) face 
58.0 - 88.0 

(110),(111) face 

54.0 - 84.0 49 - 78 65.0 

Vickers Microhardness (GPa) 88.0 – 147 
(001) face 

98.0 
(111) face 

88.0 - 108 Type Ib 
108 – 145 
Type IIa 

25.0 - 98.0 29.0 - 118 

Hardness, Mohs 10.0 -- -- -- 
Abrasive Hardness 140000 -- -- -- 

Modulus of Elasticity (GPa) 700 - 1200 800 - 925 749 - 953 536 - 1035 
Compressive Yield Strength 

(MPa) 
8680 - 16530 4500 - 5800 1900 - 6900 -- 

Poisson Ratio 0.100 - 0.290 0.200 0.0700 - 0.200 -- 
Fracture Toughness 

(MPa-m½) 
3.40 6.00 - 10.7 6.00 - 8.80 -- 

Thermal Expansion Coef., linear 
(µm/m-°C) 

1.18 -- 1.50 - 3.80 0.8 (at RT) 
4.5 (at 800 °C) 

Specific Heat Capacity 
(J/g-°C) 

0.4715 -- -- 2.76 - 3.49 

Thermal Conductivity (W/m-°C) 2000 2000 1200 - 1800 -- 
Melting Point (°C) 4027 -- -- -- 

Heat of Formation (kJ/mol) 714.4 -- -- -- 
Debye Temperature (°C) 2067 -- -- -- 
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Diamond has always been considered to be a highly suitable material for the fabrication of 

active electronic devices for the most demanding high power and high frequency applications. 

However, until recently it has not been available in sufficient quality or purity. The theoretical 

figure-of-merit comparisons indicate that CVD diamond should offer a substantially higher 

level of performance than other established electronic materials, such as silicon or gallium 

arsenide. Due to its large bandgap and material purity, diamond is an excellent electrical 

insulator. Doping of CVD diamond however, makes it possible to create materials that can 

conduct (semiconductors). [17, 19] 

The use of the electrical properties of diamond is receiving growing interest from the scientific 

community, however diamond-based electronic devices could possibly include high-voltage 

switching in future generation power distribution networks and high power, high frequency 

communication systems. 

It is unmatched in being transparent from near the ultra-violet cut-off at 225 nm to beyond a 

wavelength of 100 µm, including the atmospheric infrared transmission bands. [18, 25] 

The use of diamond materials in optical applications such as infrared laser windows, was, for a 

long time, restricted by the size and cost of natural diamond. The use of CVD diamond is an 

economic alternative to zinc selenide (ZnSe) because of its hardness and high thermal 

conductivity. 

Diamond's strong covalent bonds and rigid lattice result in high stress wave (phonon) velocity. 

This in turn gives diamond a high thermal conductivity, about five times that of copper at room 

temperature. The first natural diamond heat sink for a microwave diode was manufactured in 

1967 and since then, this material has been used for the thermal management for microwave 

and laser diode devices. 

Diamond can be used for many different applications because of its unique properties and 

because it is available in various forms. This versatility is mainly due to the different synthesis 

techniques that are presently employed which enable a diamond product to be tailored to 

match a specific application. High Pressure High Temperature synthesis produces diamond grit 

particles in sizes and characteristics that cater for many different abrasive applications - 

grinding, sawing and drilling. Polycrystalline diamond discs are also synthesized with this 

method to provide the raw material for cutting tools and drill products. As an industrial 

abrasive, diamond is involved in a wide range of industries including stone, construction, 

metalworking, glass, electronics, wood-working and oil and gas drilling. [19] 
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CVD synthesis produces coated and free standing diamond products in the most complex of 

shapes and in specific grades to exploit diamond's optical, thermal or electrical properties. This 

newer technology is expanding the use of diamond within the non-abrasive fields, where the 

range is also very diverse and includes components for usage such as optical windows, thermal 

devices, high performance electronic parts and medical instrumentation. 

Diamond is now one of the most versatile materials used across all industries. From kitchen 

furniture to electric light bulbs; granite and ceramic tiles to silicon chips; aluminium alloy 

wheels to medical scalpels; car windows to face cream; space probes to oil and gas drilling. 

[17-19, 25-28] 

4. Diamond CVD on Steel substrates review 

Diamond films deposited on surfaces of non-diamond materials is termed as heteroepitaxial 

growth. Such thin films and surface coatings can be deposited onto a variety of materials, 

which can be classified into the following three groups: 

 strong carbide-forming materials, including Si, Ti, Cr, W and SiC. 

 strong carbon-dissolving materials, including Fe, Co and Ni. 

 small or non-carbon affinity materials, such as Cu and Au. 

The synthesis of diamond on carbide-forming materials usually leads to the production of 

adherent diamond coatings. Silicon is a widely used material for depositing diamond films 

using CVD processes. This is because silicon has a sufficiently high melting point (1683 K), it 

forms a localized carbide layer and it has a comparatively low thermal expansion coefficient. 

On the other hand, diamond grown directly on strong carbon-dissolving materials, such as 

steel, or on non-carbon affinity materials, such as copper, yields poor adhesion. [29-34] 

The application of diamond coatings on steel substrates would be of great importance for 

numerous industrial applications. The diamond coating can improve steel tool properties, such 

as hardness, wear resistance, chemical inertness and thermal conductivity. 

As stated above, steel is a carbon-dissolving material, especially at diamond CVD conditions 

(1.3 wt.% C at 900°C). Therefore, during diamond CVD, the carbon swiftly diffuses into the 

steel substrate, forming a soot composed of graphite, Fe3C and other carbides, thus leaving 

behind relatively little carbon precursor at the steel surface, to initiate the formation of 
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carbon–carbon sp3 bonds, typically found in the diamond lattice. This normally results in poor 

diamond nucleation densities, film growth and diamond adhesion to the steel substrates. 

Nevertheless, this is not the only problem that hinders the successful deposition of diamond 

coatings on steel using vapor-assisted deposition processes. Iron (Fe) is known to have a high 

vapor pressure (2.53 × 10−8 mbar), so it expectedly diffuses out from the bulk steel material 

towards the substrate surface during the growth process [35]. Iron is known to catalyze the 

growth of sp2 carbon bonds found in graphite and also in carbon nanotubes. Furthermore, the 

difference in the thermal expansion coefficients of diamond (see table 3) and steel 

(11 µm/m.°C at room temperature to 13.2 µm/m.°C at 800 °C [36]) is sufficiently large, which 

results in the incorporation of residual stresses in the deposited diamond films and influences 

the adhesion in a negative way (weakens the adhesion strength at the diamond/steel 

interface). 

Figure 9 shows the schematic of some of the key processes taking place during diamond 

growth from the vapor phase. 

Direct diamond growth on as-received (no pre-treatments) bare steel substrates results in the 

formation of a diamond-based film, which delaminates from the substrate during post-

deposition cooling. Primarily, a graphite layer is deposited on the steel, which acts as a 

precursor for subsequent non-adherent diamond growth. Figure 10 shows the Raman spectra 

representing the front and the reverse sides of a diamond film deposited directly on steel 

using microwave plasma CVD by Fan et al. [34]. The peaks for the reverse side of the film show 

that graphite is present. 

 

 

Figure 9 - Schematic of the critical processes taking place in and on the steel substrate during diamond 

synthesis from the vapour phase 
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Figure 10 - Raman spectra from the front and the reverse sides of an as-deposited diamond film on a steel 

substrate [34] 

 

Interlayer route 

A possible solution to overcome the problems addressed above is to use an interlayer or an 

interlayer system, consisting of several intermediate sandwiched layers that block both inward 

carbon and outward Fe vapor diffusions. An ideal interlayer material should detain the 

following characteristics: 

 refractory material that can tolerate the high CVD temperature used for diamond 

synthesis (usually 700 – 900 °C); 

 good chemical compatibility with carbon (carbide former); 

 good adhesion to the substrate material; 

 thermally stable – structurally and geometrically – when submitted to typical 

temperatures of the CVD process; 

 accommodate thermal-induced stresses developed during the growth and ramp down 

processes, due to thermal expansion coefficient mismatch; 

 promote an effective barrier for carbon diffusion in Fe and outward diffusion of Fe 

vapor; 

 goog control of film thickness and surface morphology; 

 should be competitively priced. 
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Good adhesion requires both substrate/interlayer mutual diffusion and interlayer/carbon 

affinity (carbide formation). Hence, in order to obtain a strong coupling between the substrate 

and the interlayer, Fe must diffuse adequately into the interlayer material. Iron is known to 

have low diffusion in W, Ta and Cr; medium diffusion in Cu, Ag and Au and high diffusion in Ti 

[37]. Among these materials, Cu, Au and Ag do not form carbides, therefore, those are not best 

suited for diamond deposition. However, carbon has a high diffusion in Ti, medium in Cr and Ta 

and weak in W. Diffusion depth calculations by Fan et al. [37] show that W, Cr and Ta are 

excellent diffusion barriers against Fe, while Ti and Si need to be much thicker to be just as 

effective. 

Table 4 presents a summary of the interlayers and interlayer systems used for diamond 

deposition on steels. The table also provides information on the diamond film quality, coating 

adhesion and the coating process used to deposit the interlayer(s). 

Chen et al. [38] reported the use of Si interlayer for the growth of diamond films on steel. They 

have obtained well-adhered diamond films. Silicon and diamond have similar thermal 

expansion coefficients and also similar structure arrangement. A multilayer structure based on 

refractory metals and silver has also been used [29]. This multilayer was effective in relieving 

the stress of the film, so that the CVD diamond displayed good adhesion [29]. 

Ion-implanted Si was used by Fenker et al. [39] with relative success. A very thin chemical 

vapor deposited silicon interlayer (75 nm) was employed by Buijnsters et al. [40], which gave 

very good results, in terms of diamond film quality and coating adhesion strength. 

Cubic silicon carbide 3C–SiC was used by Klages et al. [41]. In this paper, the authors also 

reported the use of metal–diamond-type interlayer that resulted in good adhesion to the steel 

substrate and a push-button-like connection to the CVD diamond coating. Reasonable 

adhesion results for diamond films on steel substrates were achieved using Ni–diamond 

composites. This is possibly due to the additional compensation of thermal stresses by plastic 

deformation of the metal matrix. 

Schäfer et al. [42] used SiC interlayer to produce well-facetted diamond films with good 

crystallinity. However, there was complete delamination of the coatings after post-deposition 

cooling to room temperature. The delamination was found to occur at the SiC–steel interface.  

Diamond films have been successfully grown on steel substrates with intermediate tungsten 

layers, using a d.c. arc plasma system with a CH4/H2 gas mixture, by Ralchenko et al. [36]. 

Although the Rockwell indentation tests revealed good adhesion of the diamond film, Raman 

spectroscopy have shown that the films were under high compressive stress. 
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Table 4 - Summary of interlayers used for diamond deposition on steels 

Interlayer(s) 
Interlayer 

thickness (μm) 
Diamond 
quality

6
 

Diamond 
adhesion

7
 

Interlayer 
coating process 

Reference 

CrNi 5 No film - - [35] 
TiN 5 No film - - [35] 

Ti(C,N) 5 No film - - [35] 
(Ti,Al)N 5 No film - - [35] 

CrN 5 No film - - [35] 
WC/C 5 No film - - [35] 

Ti 2 Good Good Sputtering 
[37, 43, 

44] 
Si - Good Good - [38] 

Mo/Ag/Nb 0.02/2–25/0.02 Medium Good Sputtering [29] 
Si 0.026 Medium Medium Ion Implantation [39] 

Si 0.075 Very good Good Hot-filament [40] 

3C-SiC - - - CVD [41] 
Metal-

diamond 
composite 

- - Good Electrodeposition [41] 

SiC 0.3 Good Very weak Plasma activated CVD [42] 
Ni-diamond 
composite 

15 Good Good Electroplated [42] 

Cr-diamond 
composite 

15 Good Good Electroplated [42] 

W 25 Good Good Hot-wall reactor [36] 

TiN 3 Medium Weak Electron-beam evaporated [45] 

TiN 2.2–3.0 Medium Weak 
PVD and cathodic arc 

evaporation 
[46] 

Cr 0.8 Good Good Electroplated [47] 
Cr 1.0 Medium Good Sputtered [47] 
Ti 1.8 Good Good Sputtered [47] 

ZrN 10 Very good Very weak Reactive cathodic arc [48] 

ZrC 10 Very good Weak Reactive cathodic arc [48] 

TiC/Ti(C,N)/TiN 10 Very good Very weak Reactive cathodic arc [48] 

TiC 10 Good Good Reactive cathodic arc [48] 
Ni - Good Good Electroplated [49] 

Ni/Ni-diamond 
composite 

0.5–1/18–20 Good - 
Nitridation/Watts type 

electroplating bath 
[50] 

N - Good Good Ion beam [51] 
N (CrN) - Good Good Ion nitriding [52] 

Cr 20 – 25 Good Good Chromising [53] 
CrC 10 – 15 Good Good Chromising [54, 55] 

CrN 10 Good Good 
Electrochemical deposition and 

nitridation 
[56] 

CrN 20  Medium Good 
Electrochemical deposition and 

nitridation 
[57-59] 

CrN 20 Medium Good 
Electrochemical 
deposition and 

nitridation 
[60] 

CrN 2.5 Good Good Arc-plated [61, 62] 
B 40 Good Medium Boriding [61, 62] 

Ni/Cu/Ti 3–4/32–36/0.5–2.5 Very good Very weak 
Ni and Cu – electroplated; 

Ti – PVD 
[63, 64] 

Ni/diamond 
embedded 

crystallites/Cu 
7/32/26 Good Medium Ni and Cu – electroplated [65] 

 

                                                           
6
 Diamond quality depends on uniformity; Raman quality; crystalline and film stress. 

7
 Diamond adhesion qualification is based on hardness, wear and other tests. 
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TiN was employed by several researchers [35, 45, 46], however, the results were not very 

impressive. Similar observations were made when using other Ti-based ceramics, such as Ti(C, 

N) and (Ti,Al)N [35]. Nevertheless, Ti and TiC produced good results and show good potential 

for use as intermediate layers in diamond growth on steel substrates. Sputtered Ti, with 

approximately 2 μm thickness, was successfully employed by Fan et al. [34, 44] and Silva et al. 

[47] as a promising interlayer. 

More recently, a 10-μm TiC was employed by Polini et al. [48]. They produced adherent 

polycrystalline diamond films after three hours of deposition. However, with six hours of 

deposition, the diamond films delaminated from the steel substrates. 

Lin and Kuo [49] reported high adhesion and produced good-quality diamond films on steel 

substrate using electroplated Ni interlayer. The nickel–carbon–hydrogen alloy system can 

effectively enhance diamond nucleation density and subsequent film growth and form a high 

retention force. Similar results were obtained by Sikder et al. [50], who initially nitrided the 

steel and then coated it with a Ni–diamond composite using Watts-type electroplating bath, 

thus forming a multilayer system. A similar Ni–diamond composite interlayer was also used by 

Schäfer et al. [42]. In their work, they reported the use of Cr–diamond composite. Both metal 

diamond composites produced well-faceted diamond films. The deposited diamond coatings 

displayed good adhesion. The impressive results obtained using this interlayer system was due 

to the toughness of the metal matrix–steel interfaces and of the diamond–metal composite 

interface. The possible factors contributing to the adhesion of diamond to the metal composite 

interlayers could possibly include the following: 

 the partial compensation of the thermally induced stress by plastic deformation of the 

metal matrix; 

 the reduction of interface stresses due to the additional interfaces; 

 the presence of carbide phases with intermediate thermal expansion coefficients; 

 the bonding of the growing diamond film to the incorporated diamond particles; 

 and, the formation of the carbide layer during the deposition process. 

Shang et al. [51] reported the influence of ion beam nitriding on diamond nucleation and 

growth on steel substrates. This effectively prevented carbon diffusion in steel and provided 

suitable nucleation sites, which resulted in the nucleation and growth of reasonably good-

quality and adherent diamond coatings. 
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A slightly different approach adopted by Borges et al. [52] also produced good results. They 

employed stainless-steel 304 substrates for diamond deposition, which consists of high Cr 

content (Cr 18 wt.%). By nitriding the substrates, the amount of CrN increased on the substrate 

surface layer and, during the initial stages of diamond deposition, carburisation of the 

substrate surface occurred, resulting in the formation of chromium carbide at close vicinity to 

the substrate surface. 

Chromium and chromium composites are widely used interlayers for producing adherent 

diamond coatings on steel. Silva et al. [47] carried out a comparative study using electroplated 

Cr and sputtered Cr interlayers for improving diamond coating adhesion. They found 

electroplated Cr to produce comparatively more adherent coatings. 

Bareiβ et al. [53] reported the production of adherent diamond coatings by using a thick Cr 

layer produced by chromating. A thick chromated CrC layer employed by Schwarz et al. [54, 

55] also displayed good adhesion results. 

The use of CrN as an interlayer has been extensively studied by Fayer et al. [56], Glozman and 

Hoffman [59], Avigal et al. [60] and Glozman et al. [57, 58], Buijnsters et al. [61, 62] and more 

recently by Haubner and Lux [35]. 

Fayer et al. [56] used a chromium film on steel deposited by electrochemical synthesis 

method, followed by a nitridation process, to produce mixed CrN and Cr2N crystalline phases. 

On this mixed of approximately 10 μm interlayer they deposited approximately 2 μm thick 

homogeneous diamond film, which displayed good crystallinity and homogeneity and did not 

show any indication of film delamination up to a load of 1000 N. 

In another work by the same group [57-59], the researchers evaluated the diamond coating 

adhesion at different deposition times on a 20 μm thick nitrided chromium interlayer. They 

used deposition times ranging from 15 minutes to 180 minutes and obtained a continuous film 

after 60 minutes. 

The Raman spectroscopic analysis revealed a dominant peak centered at 1334 cm−1, which is 

representation of diamond. After continuous diamond films were obtained, the Raman 

diamond peak was observed to split and shift to 1345 cm−1. With increasing deposition time, 

the Raman diamond peak shifted to even higher wave numbers, having a maximum shift of the 

peak on the 180 minutes sample (1360 cm−1). The splitting and shifting of the Raman diamond 

peak is due to the increased magnitude of biaxial stress in the deposited films. The films 

deposited for growth times of less than 120 minutes did not delaminate from the substrates 
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up to 1000 N loading using Rockwell indenter. Further wear testing results, namely fretting 

wear, were reported later by Kreines et al. [66]. 

With the aim to improve the tribological performance, namely the friction coefficient, Avigal et 

al. [60] deposited (100) textured diamond crystals on steel substrates, with the addition of N2 

in the precursor gas mixture. The as-deposited diamond coatings displayed good homogeneity, 

uniformity, crystallinity and adhesion. 

Buijnsters et al. [61, 62] employed arc-plated CrN coatings with a thickness of 2.5 μm to 

produce adherent and good-quality diamond coatings on steel. The same group carried out 

experiments using boron as an interlayer material [40, 62]. These samples presented improved 

hardness values, increased wear resistance and better fatigue properties and enhanced 

corrosion resistance compared to nitriding and carburising (deposition of diamond directly to 

the steel substrate) samples. In the absence of FeB phase, having only Fe2B phase, continuous 

and adherent diamond films with low residual stress were obtained. Nevertheless, the 

presence of FeB on the surface of the borided steel resulted in very high thermal stresses and, 

consequently, delamination of the diamond film occurred. 

Haubner and Lux [35] used a 5 μm CrN interlayer, not being able to achieve a considerable 

nucleation density, to successfully grow diamond coatings on steel substrates. Similar results 

were obtained when using CrNi and WC/C interlayers. 

Zirconium compounds, such as ZrC and ZrN, were employed by Polini et al. [48], who produced 

good quality diamond films but with weak and very weak coating adhesion, respectively. 

Some authors have also used multilayer systems, such as Ni/Cu/Ti [63, 64], Ni/diamond 

embedded crystallites/Cu [65] and TiC/Ti(C,N)/TiN [48] to improve diamond adhesion on steel. 

The Ni/Cu/Ti interlayer system [63, 64] enabled the growth of good quality diamond films, with 

good adhesion being confirmed by a 200 N load indentation using a Rockwell indenter. The 

interfaces, constituted by smooth and continuous electroplated Ni and Cu layers, were stated 

to allow adequate plastic deformation during the CVD thermal cycle. The Ti layer was to 

promote diamond nucleation and strengthen coating adhesion of diamond films. The 

multilayer systems consisting of Ni/diamond embedded crystallites/Cu [65] and TiC/Ti(C,N)/TiN 

[48] were successful in initiating diamond nucleation and diamond crystal growth. 

Although a number of researchers have presented reasonably good results using the interlayer 

route to improve coating adhesion (see table 4), there are still few reports attempting direct 

diamond deposition on bare steel substrates, such as the report by Gowri et al. [67]. In this 
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recent paper, the authors report direct deposition of diamond films on steel, using a three-

step growth process. This three-step growth process consisted of: 

 deposition under high CH4 concentration; 

 ultrasonication of samples in diamond slurry to improve the nucleation density; 

 diamond growth under optimized conditions. 

The process produced films consisting of a mixture of diamond crystals, graphite and 

amorphous carbon phases, as shown by Raman spectroscopy and SEM analysis. Also different 

grades of steel were used by the workers to deposit the diamond coatings. 

In this doctoral thesis, the presented results will be adapted to the application that is intended 

in this work and to the existing conditions at the research unit. 

In the next chapter, the experimental techniques and methodologies that will be used in the 

development of the diamond CVD coatings on steel substrates, and the evaluation 

performance of the diamond coated mold tools. 

 





 

 

Chapter 3 

 
Experimental techniques 

1. Introduction 

The current chapter gives detailed information about the experimental techniques and 

methodologies used to develop diamond CVD coatings on steel substrates which will be 

presented in chapter 4. Moreover, this chapter will also describe the techniques used to assess 

the performance of the diamond coated tools, whose results will be presented and discussed 

in chapter 5. 

The overall experimental procedure may be summarized in five main stages: a) substrate/mold 

inserts material selection and preparation; b) diamond deposition; c) diamond coatings 

evaluation; d) thermoplastic injection molding; and e) thermoplastic parts evaluation. 

The substrate/molding inserts preparation consists of the manufacturing of samples; of the 

interlayers deposition (in most of the steel samples); and of the pre-deposition treatments. 

Diamond depositions were carried out in a hot-filament CVD system, using different deposition 

conditions. The deposited diamond films were evaluated and characterized by Scanning 

Electron Microscopy (SEM); Energy Dispersive X-ray Spectroscopy (EDS); Optical Microscopy 

(OM); Raman Spectroscopy; X-ray Diffraction Spectroscopy (XRD); Secondary Ion Mass 

Spectrometry (SIMS), indentation hardness techniques and surface profilometery. The 

thermoplastic injection molding was performed with the assistance of an adapted mold tool, in 

a conventional 65 tons injection molding machine. Finally, the thermoplastic parts evaluation 
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was performed by simple eye observation; optical microscopy; and the dimensions of three 

dimensional features on a coordinate measuring machine.  

2. Substrate/molding inserts selection and preparation 

The steel substrates and the inserts for mold tools were obtained from block material by 

different saw cutting, milling and polishing procedures. The polishing of the steel samples was 

performed with Silicon Carbide paper till a grid of 2000, which are composed of particles with a 

size of 10 µm. 

Four different steels, supplied by F. Ramada, Aços e Indústrias, S.A. [68], have been used: AISI 

P20 modified (F. Ramada, Aços e Indústrias, S.A. trade name is PM300); AISI 304; AISI 310; and 

AISI 316. AISI P20 modified is a pre-treated steel typically used in the production of mold tools. 

AISI 304, AISI 310, and AISI 316 are refractory stainless steels. [69] 

Flat silicon substrates 5.0 x 5.0 x 0.5, with a mirror polished surface, were also used. 

In order to block the diffusion of carbon to the steel and of iron to the growth layer, different 

interlayers were tested, based on the literature review and presented in table 4 (previous 

chapter). Silicon (Si), Titanium (Ti) and Chromium Nitride (CrN) were tested. Si films were 

deposited by reactive radio frequency magnetron sputtering in a reactive atmosphere [70] on 

AISI P20 modified, at the Department of Physics of the University of Minho, Portugal. Ti was 

deposited using a commercial PVD system, also on AISI P20 modified, at GALOL (Valencia, 

Spain) [71]. CrN was deposited also using a commercial PVD system, at Prirev (Vagos, Portugal) 

[72], on AISI P20 modified, AISI 304, AISI 310 and AISI 316. 

Prior to the deposition of diamond coatings, all samples were submitted to a pre-deposition 

treatment to enhance the nucleation of the diamond crystals. Nucleation is the first and critical 

step of CVD diamond growth. The control of nucleation is essential for optimizing the diamond 

properties such as grain size, orientation, transparency, adhesion, and roughness that are 

necessary for targeted applications. [15] 

When in 1982 Matsumoto made a breakthrough in growing diamond on non-diamond 

substrates without using diamond seeds, he achieved a very low nucleation density and a 

continuous film could not be formed. In 1987 Mitsuda found that scratching substrate surfaces 

with diamond powder could greatly enhance the nucleation density. Since then, substrate 

scratching has become the most common and powerful method for achieving nucleation that 

can form diamond with a high nucleation density and fine uniform grain size. [15] 
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The reason why scratching enhances diamond nucleation is not clear.  One possible reason 

may be that, during scratching with diamond, c-BN, or a-SiC powder, the residual powder or 

fragments are unavoidably left in the scratched groove and act as seeds for diamond growth. 

Another opinion is that scratching with powder merely creates a change in the surface 

morphology, such as edges, steps, dislocations, and other surface defects. These kind of 

defects are labeled chemically active sites, which prefer to adsorb diamond precursors 

together due to enhanced bonding at high energy intersecting surfaces with a high density of 

unsaturated bonds and low coordination numbers. [15, 25] 

Several authors have reported the bias-enhanced nucleation method, applying a negative bias 

to the substrate, at the beginning of the process. This is believed to accelerate carbon-

containing ions onto the substrate, causing it to plant beneath the surface and create a  

carbon-rich layer in the topmost few layers of the substrate, leading to a higher initial 

nucleation density. [15, 25] 

Recently, other methods for enhancing diamond nucleation have been reported. One method 

is the nucleation enhancement under very low gas pressures (0.1 to 1.0 Torr) [15]. The 

addition to diamond slurry of various hard material particles (such as alumina, silica, boron-

carbide or silicon-carbide), enhances the nucleation, if compared with pure diamond slurry 

[73]. Recently, a modified New Nucleation Process (NNP), initially proposed by Shlomo S. 

Rotter [74], was suggested. The process consists of two steps. The first step, referred to as the 

“plasma pretreatment”, involves exposure of the substrate to the diamond growth 

environment in the deposition chamber for a short period of time using standard diamond 

growth parameters, except for a higher methane concentration. In the second step, termed 

the “seeding” step, the substrate is taken out of the deposition reactor and subjected to 

ultrasonic treatment in an alcohol solution with diamond powder. The seeded substrate is 

then returned to the deposition chamber and diamond growth is initiated. [75] 

With regards to the mechanical abrasion of the substrate, the method used in the present 

work, it is known that the nucleation density is proportional to the scratching time, and the 

morphology changes, from large isolated crystals for short scratching times, to smaller, high 

number density crystals with increasing scratching time. The grit size of the diamond powder 

used for scratching also influences the nucleation density. A grit size of 0.25 µm is the most 

effective for scratching by hand and a 40 to 50 µm powder is the best for scratching in an 

ultrasonic bath using a grit suspension. [15] 
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Both hand and ultrasonic bath processes where used in the present work, with grit of 0.25, 2 

and 4 µm, with times going from 2 minutes when abrading by hand to 3 hour of ultrasonic 

bath scratching. 

3. Diamond deposition 

The diamond depositions performed during the present work were carried out in a hot-

filament CVD (HFCVD) system. The latter is the earliest used method for the growth of 

diamond under low pressures and it is also the most popular [15, 20, 25]. The HFCVD method 

is relatively cheap and easy to operate and produces reasonable quality polycrystalline 

diamond films at a rate of 1 to 10 μm.h−1, depending upon the exact deposition conditions 

[25]. Despite suffering from a number of disadvantages, namely its sensitivity to oxidizing or 

corrosive gases, which limits the variety of gas mixtures that can be employed and the 

difficulty to avoid contamination of the diamond film with filament material, it is a suitable 

method for the mechanical application being tested in this work. The experimental setup is 

presented in figure 11. 

 

 

Figure 11 - Hot-filament reactor used 
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Hot-filament CVD uses a vacuum chamber continuously evacuated using a rotary pump, while 

process gases are metered, at carefully controlled rates, through mass flow controllers (a total 

flow rate of 200 sccm (200 ml/min) was used in this work). Throttle valves maintain the 

pressure in the chamber at 30 Torr (39.99672 mbar or 3999.672 Pa). The substrate to be 

coated is placed on a holder, a few millimeters (4 to 10 mm) beneath a filament, which is 

electrically heated to temperatures in excess of 2000 C. At this temperature, as H2 passed 

over the hot filament, atomic hydrogen is produced. A schematic of the HFCVD system used to 

deposit the diamond films is presented in figure 12. 

The filament is made of metal that is able to survive the deposition conditions and not react 

significantly with the process gases. Metals such as tungsten and tantalum are most often 

used, although they react with the carbon-containing gases and carburize to form the metal 

carbide. This, changes their resistivity and makes them brittle, reducing their lifetime and 

hence the maximum deposition time that can be performed in one run [25]. Rhenium can also 

be used, with the great advantage of not reacting with the carbon-containing gases and as a 

result are more durable than tungsten or tantalum, but it is much more metal contaminant 

than W and Ta [20, 76], and it is a much more expensive material than the former two. 

Tungsten filaments carburize faster than Ta filaments, and deform to a higher degree during 

carburization. Tungsten carbide (WC) and tantalum carbide (TaC) filaments break easily, 

however, TaC filaments tend to have a longer life and can be reliably operated to a higher 

temperature than tungsten carbide [76]. Carbide-forming refractory metals should be first 

carburized before starting the deposition of diamond films, in order to deform before the 

sample to be coated is introduced into the reactor and the filament-substrate distance is set. 

 

 

Figure 12 - Schematic of the HFCVD system used to deposit the diamond films 
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Tantalum wire, with 0.4 mm of diameter, was selected to perform the diamond depositions 

reported here. The Ta wire was rolled up to form a spiral, with a diameter of 4 mm, normally 

with 5 to 7 coils, depending on the size of the sample to be coated. Also depending on the size 

of the sample to be coated, one or three springs were used. One of the filament setups, inside 

the CVD reactor, is presented in figure 13. 

The carburization process was normally conducted for 30 minutes in a gas mixture of 200 sccm 

of H2 and 6 sccm of CH4 (3% CH4/H2 rate), at a pressure of 30 Torr and a filament temperature 

in excess of 2000 C. 

It is known that with tantalum, carburization proceeds in the sequence of Ta, Ta2C and TaC 

from the outer surface to the center, forming concentric circular carbide layers in cross-

section. The literature also highlights [77], that at these conditions, 30 minutes will ensure the 

formation of TaC. 

 

 

Figure 13 - Filament setup inside the CVD reactor 
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The substrate temperature was measured using a K type (chromel8–alumel9) thermocouple in 

direct contact with the molybdenum substrate holder. The temperature range of a K type 

thermocouple goes from 0 to +1100 °C. In these depositions, no substrate heater was used. 

Substrate temperature accuracy depends upon the thermocouple calibration, but it is also 

greatly influenced by the relative position of the sample and of the filament. The accuracy of 

the substrate temperatures here presented, were determined to be ± 50 C. 

The filament temperature was acquired by an IMPAC IS140 infrared pyrometer, with a 

focusable optics for a spot size of 0.35 mm, and a working range from 749 to 2500 C. The 

instrument has an adjustable emissivity, which depends on the material being measured. For 

the TaC filament, it was used an emissivity of 0.23%. The temperature accuracy of the 

pyrometer, on its technical specifications, is of about 0.5%, for the temperatures in the order 

of 2000 C. Nevertheless, errors can arise from the deformation of the filament (the spot of 

the photoelectric current source moves away from the filament) and from variations on the 

filament surface composition, leading to incorrect emissivity values. To guarantee that the 

atomic hydrogen is formed, the filament must have a temperature above 2000 C. Considering 

that there may be an inaccuracy of ± 50 C, it was normally used a filament temperature 

settled to 2100 C. 

The gas mixture used to grow the diamond films was composed of H2 mixed with small 

amounts of 𝐶𝐻4. In most of the depositions carried out, it was used a recently developed 

time-modulated CVD (TMCVD) process [78-83]. TMCVD consists on the modulation of the 𝐶𝐻4 

gas flow during the deposition time, as schematically represented in figure 14. The high pulses 

of 𝐶𝐻4 enriches the reactor atmosphere with methyl specimens, which at the nucleation stage 

enables a higher nucleation density and during the growth process it is believed to inhibit 

further growth of diamond crystallites and promote a new nucleation site on top of the 

growing crystals [80]. Higher 𝐶𝐻4 content in the diamond CVD reactor leads to the 

incorporation of nondiamond carbon phases in the film, such as graphite and amorphous 

carbon, and degrades the global quality of the deposited film [43]. Therefore, the higher 𝐶𝐻4 

pulse duration must be kept short, relative to the lower 𝐶𝐻4 pulse. It was also found out that 

the concentration of 𝐶𝐻4 has influence on the system temperature. Filament temperature is 

directly proportional to the 𝐶𝐻4 concentration. On the other hand, substrate temperature is 

inversely proportional to the 𝐶𝐻4 concentration. 

                                                           
8
 Chromel is an alloy consisting of approximately 90% nickel and 10% chromium. 

9
 Alumel is an alloy consisting of approximately 95% nickel, 2% manganese, 2% aluminium and 1% 

silicon. 
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Figure 14 - Schematic representation of the time-modulated CVD process 

 

Thus, the duration, value and number of cycles of the high and low 𝐶𝐻4 flow must be tailored 

according to the coating desired characteristics, such as crystal size and film thickness. In the 

majority of the depositions conducted, the objective was to achieve high quality (high purity 

diamond), smooth surface, low intrinsic stress and adherent thin films of diamond coatings. 

Typically, it was used high 𝐶𝐻4 flows of 3 to 4%, for approximately 10 to 15 minutes, and low 

flows of 1 to 2%, for 45 to 120 minutes. 

4. Diamond evaluation 

The deposited diamond films were evaluated and characterized by using Scanning Electron 

Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS); Optical Microscopy (OM); 

Raman spectroscopy; X-ray Diffraction Spectroscopy (XRD); Secondary Ion Mass Spectrometry 

(SIMS); indentation hardness, namely Vickers micro-hardness, Rockwell C and Brinell hardness; 

and surface profilometery. 

 

Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy 

Electron microscopy analyzing techniques are normally employed for high magnification 

characterization of samples. The scanning of the top surface and cross-section surface of 

coated samples with high magnification techniques allows the observation of the coating 

morphology, crystal size, size and shape of the grown film, and qualitative cohesion and 

adhesion of the film to the substrate. 
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Electronic microscopy is a result of the bombardment of specimens with high-energy beam 

and the interaction of the beam with the specimens matter [84-86]. In a general way, it 

consists in scanning a focused electron beam over a material surface, which will penetrate the 

sample, resulting on a number of interactions that can produce the emission of electrons or 

photons from or through, the surface, as it is represented in figure 15. The detection of the 

resulting signals allows the acquisition of images, giving information about the topography and 

crystalline structure, but also chemical composition, among other information. 

During the present work, the goal was to examine the diamond nucleation, the diamond 

coatings and the elemental distribution. In its primary detection mode, secondary electron 

imaging, the SEM has a wide range of magnifications (commonly from about 25 times to  

250 000 times), producing very high-resolution images of a sample surface, revealing details on 

the nano-scale. SEM micrographs have also a very large depth of focus yielding a characteristic 

three-dimensional appearance useful for understanding the surface structure of a sample. X-

rays are emitted when the electron beam removes an inner shell electron from the sample, 

causing a higher energy electron to fill the shell and give off energy. These characteristic x-rays 

are used to identify the elemental composition of the sample, and may be detected in a SEM 

equipped for energy-dispersive X-ray spectroscopy. 

Two SEM equipments were used: a Hitachi S-4100 SEM; and a Hitachi SU-70 UHR Schottky FE-

SEM system. Both instruments are equipped with energy dispersive X-ray spectroscopy (EDS), 

but the SU-70 is a more recent equipment, with superior capabilities. For that reason, the X-

ray maps and profiles were assessed with a Bruker AXS Microanalysis GmbH system associated 

to the SU-70 microscope, due to its high performance and faster acquisition. 

 

 

Figure 15 - Emission of electrons and photons as a result of the bombardment of a sample with an electron 

beam (Adapted from[85]) 
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Due to the electron conducting requirements of the process, whenever the substrate was not 

metallic or if it was mounted in cold-setting epoxy resin, the samples were coated with a thin 

carbon conducting layer. When the samples were embedded in resin, before the conducting 

layer was deposited, the sample was polished to a mirror-like finish. 

 

Optical Microscopy 

Optical microscopy is a magnification equipment that allows the observation of samples with a 

magnification strength of approximately 2000 times. Although it has not the magnification 

range of SEM, nor the depth of focus, it is a very fast preliminary step for the observation of 

the coatings. [87] 

Optical or light microscopes are a type of equipments that uses visible light and a system of 

lenses to magnify images of small samples. 

By using light, the maximum resolution is limited (resolving power of a microscope), this is, the 

ability of the microscope to reveal adjacent structural detail as distinct and separate. After this 

limit, point objects are seen as fuzzy discs surrounded by diffraction rings, called Airy disks. The 

extent and magnitude of the diffraction patterns are affected by the wavelength of light (λ), 

the refractive materials used to manufacture the objective lens and the numerical aperture 

(AN) of the objective lens. Assuming that optical aberrations in the whole optical set-up are 

negligible, the resolution dr, is given by: 

  𝑑𝑟 =
𝜆

2𝐴𝑁
        (5) 

If it is assumed that λ is 550 nm (green light). With air as medium, the highest practical AN is 

0.95, so d is around 0.29 µm. 

Optical microscopes are composed of the eyepiece or an image acquisition system, the 

objective lens, which collect light from the sample, the platform which supports the specimen 

being viewed and the illumination source that is focused through the condenser, with 

diaphragms and filters available to manage the quality and intensity of the light. Different 

filters or accessories may be used to enhance or reveal details not seen in direct illumination 

(bright field). Dark field apparatus blocks the directly transmitted light from being collected 

and just the scattered light enters the objective lens and produces the image. 

While the dark field image may first appear to be a negative of the bright field image, different 

effects are visible in each. In bright field microscopy, features are visible where either a 
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shadow is cast on the surface by the incident light, or part of the surface is less reflective. 

Raised features that are too smooth to cast shadows will not appear in bright field images, but 

the light that reflects off the sides of the feature will be visible in the dark field images. This is 

the case of a smooth polycrystalline diamond film.  

Another useful accessory is the differential interference contrast (DIC), also known as 

Nomarski Interference Contrast, used to enhance the contrast. DIC works with interferometry 

to gain information about the optical density of the sample, giving the appearance of a three-

dimensional physical relief corresponding to the variation of optical density of the sample, 

emphasizing lines and edges though not providing a topographically accurate image. [88] 

The three optical imaging techniques (bright field, dark field and DIC), available in the 

Department’s Nikon Eclipse LV150 microscope, were used to evaluate the as deposited 

diamond films, in a preliminary evaluation of the coating. 

Optical microscopy was also used to analyze the thermoplastic injected parts, as it will be 

referred later. 

 

Raman spectroscopy 

Raman spectroscopy is a technique based on the light dispersion phenomenon [84, 89, 90], 

valuable for coating composition evaluation and stress assessment. 

Raman spectroscopy relies on inelastic (or Raman) scattering of monochromatic light, from a 

laser, to study vibrational, rotational, or other low-frequency modes in a system. The 

illumination of a sample with monochromatic light results in Rayleigh and Raman dispersion, 

due to elastic and inelastic collisions, respectively, as illustrated in figure 16.  

 

Figure 16 - Rayleigh and Raman scattering as a result of the interaction of light with a molecule (Adapted 

from [89]) 
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The scattered light from the illuminated spot is collected with a lens and sent through a 

monochromator. Wavelengths close to the laser line, due to elastic Rayleigh scattering, are 

filtered out, while the rest of the collected light is directed onto a detector. 

A complementary way to understand the Raman effect is by a quantum energy scheme, as 

shown in figure 17. The exchange of energy from the incident phonons to the molecule is not 

large enough to transport the system to the excited state, so a virtual state “quasi-excited”, 

between the fundamental and excited state is formed, giving place in the decay to the Stoke or 

anti-Stokes emission. 

If an electromagnetic wave: 

  𝐸 = 𝐸0 cos 𝜔0𝑡        (6) 

illuminates a diatomic molecule, it will create a vibration on the molecule, inducing a dipolar 

momentum,µe, in the form: 

  𝜇𝑒 = 𝛼𝑃𝐸0 cos 𝜔0𝑡        (7) 

where P is the molecule polarizability and in general is a function of the atomic separation. 

If x is the extra dislocation of the molecule atoms, the polarizability can be expanded by a 

Taylor expansion development, around x0 

  𝛼𝑃 𝑥 = 𝛼𝑃0
+  

𝜕𝛼𝑃

𝜕𝑥
 𝑥 + ⋯      (8) 

where p0 is the polarizability in the average x position. The molecule will vibrate also in its 

natural resonant frequency, m, then: 

  𝑥 = 𝑎 cos 𝜔𝑚 𝑡        (9) 

 

 

Figure 17 - Quantum representation of energy exchange in the non-resonant Raman phenomenon (Adapted 

from [89]) 
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Combining equations (7), (8) and (9): 

   𝜇𝑒 = 𝛼𝑃0
𝐸0 cos 𝜔0𝑡 +  

𝑑𝛼𝑃

𝑑𝑥
 .  𝑎 cos 𝜔𝑚 𝑡  . 𝐸0 cos 𝜔0𝑡 + ⋯ 

  = 𝛼𝑃0
𝐸0 cos 𝜔0𝑡 + 

   +
1

2
 
𝑑𝛼𝑃

𝑑𝑥
 𝑎𝐸0 cos  𝜔0 −𝜔𝑚  𝑡 + cos  𝜔0 + 𝜔𝑚  𝑡  + ⋯ (10) 

 

The dipolar momentum presents the emission of three different frequencies: the Rayleigh 

emission with a frequency of 0; the Raman Stokes emission with a frequency of 0-m; and 

Raman anti-Stokes emission with a frequency of 0+m. 

The inelastic shift of energy is therefore dependent upon the natural resonant frequency, m, of 

each material. Knowing the natural resonant frequency or frequencies of a material (molecule) 

it is possible to identify it in an unknown sample, by identifying the scattered peaks or bands. 

It is known that pure crystalline materials present well defined resonant frequency, so the 

scattering is a perfect peak, tending to a Kronecker delta. As the crystallinity, this is the degree 

of structural order in the solid, is reduced, instead of having a Kronecker delta, the peak will 

tend to a Lorentzian one. As the material becomes amorphous, the Raman scattering will be 

represented by a Gaussian band. 

The list of scattering peak and band for different materials, has been elaborated since the first 

usage of the spectroscopic technique. The list is not finished, nor the discussion about the 

accurate identification of the scattering source. Table 5 presents a list of Raman scattering 

peaks and bands due to different carbon species. 

By the identification of the Raman peaks or bands, the composition of the material can be 

achieved. Nevertheless, most of the materials, as it is the case of diamond coatings, are not 

composed of one single scattering source, but a mixture of sources. In CVD polycrystalline 

diamond films, associated to the diamond crystals, graphite and amorphous carbon are most 

often also present. In these cases, the Raman spectrum will be a convolution of the different 

sources of Raman dispersion, and disconvolution can be useful to understand the acquired 

spectrum. Disconvolution is normally possible by Lorentzian and Gaussian functions. Several 

commercial software’s offer this possibility. 
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Table 5 - Raman scattering of carbon materials 

Scattering 
Center (cm

-1
) 

Peak/Band Scattering source Ref. 

1140 Peak Nanocrystalline diamond [91] 
1140 Band Diamond precursors (sp

2
 disordered carbon) [92] 

1150 Peak Nanocrystalline diamond [93] 
1200 Band Graphite phonons from the K zone boundary [93] 
1200 Band Amorphous glassy Carbon [94] 
1280 Band Disordered graphitic Carbon [94] 
1300 Band Amorphous glassy Carbon [94] 
1326 Peak Hexagonal diamond [93] 
1331 Peak Natural Diamond [93] 
1333 Peak Polycrystalline diamond [93] 
1350 Peak Microcrystalline graphite [93] 
1350 Band Carbon with a high disordered order [93] 
1350 Band Microcrystalline graphite (D band) [93] 
1355 Band Diamond Like Carbon (DLC) [93] 
1357 Peak Polycrystalline graphite [93] 
1357 Band Vitreous carbon [93] 
1360 Band Disordered graphite [93] 
1360 Band Graphite D band [94] 
1380 Band CH3 group phase deformation vibrations [93] 
1400  Band CH2 group anti-phase deformation vibrations [93] 
1415 Peak Luminescence peak [94] 
1450 Band Amorphous carbon or DLC [93] 
1470 Band CH3 group anti-phase deformation vibrations [93] 
1470 Peak Nanocrystalline diamond [93] 
1480 Band sp

2
 amorphous phase structures [95] 

1490 Band Diamond precursors (sp
2
 disordered carbon) [93] 

1500 Band Amorphous carbon [93] 
1500 Band Polyacetylene (PA) [94] 
1510 Band Bridged graphite or diamond [93] 
1530 Band Amorphous Carbon [94] 
1530 Band sp

2
 bonded carbon [93] 

1550 Band Amorphous carbon or DLC [93] 
1550 Band DLC [94] 
1550 Band Carbon without no diamond structure [93] 
1560 Band Bridged graphite or diamond [93] 
1560 Band Graphite (G band) [93] 
1560 Band Carbon phases with inclusions of structures 

similar to graphite (graphite like carbon) 
[93] 

1560 Band Amorphous carbon duplet [93] 
1580 Peak Microcrystalline graphite [93] 
1580 Peak Graphite (crystalline, hexagonal crystalline 

and natural) 
[93] 

1580 Band Vitreous carbon [93] 
1580 Band Diamond Like Carbon (DLC) [93] 
1580 Band Graphite G band [94] 
1581 Peak Graphite (crystalline and hexagonal 

crystalline) 
[93] 

1590 Band Microcrystalline graphite (G bands) [93] 
1600 Band Carbon with a high disordered order [93] 
1610 Band Amorphous carbon duplet [93] 
1610 Peak Microcrystalline graphite (D band) [96, 97] 
1620 Peak Microcrystalline graphite [93] 
1690 Band Tetrahedral amorphous Carbon [94] 
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In diamond films, Kulisch et al. [98] presented a semi-quantitative measurement (see equation 

11) of the quality of the films from the ratio between diamond phases and non-diamond 

phases, obtained from the disconvoluted data. 

  𝑄 =
𝐼𝑑𝑖𝑎𝑚𝑜𝑛𝑑

𝐼𝑑𝑖𝑎𝑚𝑜𝑛𝑑 + 𝐼𝑛𝑜𝑛 −𝑑𝑖𝑎𝑚𝑜𝑛𝑑
      (11) 

where Q is the quality factor of the diamond film, Idiamond is the intensity of the Raman diamond 

peak (at 1333 cm-1), and Inon-diamond is the intensity of the non-diamond peaks or bands. It is 

worth noting that pure crystalline diamond has a quality factor of 1. 

Other authors, such as Silva et al. [99], use a similar equation, but instead of the intensity of 

the peaks or bands, they use the area of the diamond peak and the sum of the areas of the 

non-diamond peaks or bands. Other approaches have been listed in the literature [100]. In 

what concerns the study here reported, the quality factor is determined as presented in 

equation 11. 

Materials are often subjected to stress of diverse sources. In the case of diamond coatings, the 

films residual stress, this is the stress that remains after the original cause of the stresses has 

been removed, results from the sum of three main sources: the thermal stress, originated by 

the difference in thermal expansion coefficients between diamond and the substrate material; 

the intrinsic stress, which rises from the presence of different types of defects, grain 

boundaries, and impurities in the film; and the lattice mismatch stress, due to the difference in 

lattice parameter of the substrate and the film. From the three, thermal stress is found to be 

the dominant one [94]. 

The materials stress affects natural resonant frequency, creating deviation of it center. So the 

Raman shift of a known scattering center may then give an idea of the material stress.  

Ager and Drory [95] first, and Ralchenko et al. [36] later, presented a quantification process for 

an experimental estimation of the coatings stress, from the shift of the diamond typical Raman 

peak positions. 

Ager and Drory [95] proposed that when the diamond peak is divided in two, due to the singlet 

phonon and doublet phonon, the experimental estimation of the coatings stress, 𝜎, measured 

in GPa, may be determined by: 

  𝜎 = −1.08 𝜑𝑠 − 𝜑0 , for singlet phonon    (12) 

  𝜎 = −0.384 𝜑𝑠 − 𝜑0 , for doublet phonon    (13) 
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Where 𝜑0 is the polycrystalline typical peak center, 𝜑𝑠  is the observed maximum of the singlet 

in the spectrum, and 𝜑𝑑  the maximum of the doublet. 

Since most of the times the split of the Raman line due to singlet and doublet is not obvious, 

Ralchenko et al. [36] proposed that the observed peak position, 𝜑𝑚 , is located at the center 

between the singlet, 𝜑𝑠 , and the doublet scattering energy, 𝜑𝑑 , this is: 

  𝜑𝑚 =
1

2
 𝜑𝑠 + 𝜑𝑑        (14) 

Combining equations 12, 13 and 14: 

  𝜎 = −0.567 𝜑𝑚 − 𝜑0        (15) 

The experimental estimation of the coatings stress can be, to some extent, compared to 

theoretical estimated values. The theoretical total stress, 𝜎𝑇, present in the film can then be 

expressed as: 

  𝜎𝑇 = 𝜎𝑡𝑕 + 𝜎𝑖𝑛 + 𝜎𝑙𝑚        (16) 

where 𝜎𝑡𝑕 is the theoretical thermal stress, 𝜎𝑖𝑛  is the theoretical intrinsic stress and 𝜎𝑙𝑚  is the 

theoretical lattice mismatch stress. 

The presence of lattice mismatch stress (expected to be tensile) is rarely observed and it is 

negligible when compared to the thermal and intrinsic stress. [94] 

The theoretical thermal stress, 𝜎𝑡𝑕 , originated by the difference in thermal expansion 

coefficients between diamond and the substrate material can be obtained by: 

  𝜎𝑡𝑕 =  
𝑌𝑑

 1−𝜈𝑑 
   𝛼𝑠 − 𝛼𝑓 𝑑𝑇

𝑇2

𝑇1
      (17) 

where 𝑌𝑑  is diamond Young's modulus and 𝜈𝑑  is the Poisson's ratio of diamond 𝛼𝑠 and 𝛼𝑓  are 

the coefficients of thermal expansion of the substrate and film, respectively, and T1 and T2 are 

the room temperature and deposition temperature, respectively. [36, 94, 95] 

Although the intrinsic stresses are due to impurities, structural defects, and grain boundaries, 

the grain boundaries have been identified as the dominant source of intrinsic stresses in 

diamond films [94]. 

  𝜎𝑖𝑛 ≈  
𝑌𝑑

 1−𝜈𝑑  
 
𝛿

𝑑
        (18) 

where 𝛿 is the constrained relaxation of the lattice constant of diamond (0.077 nm) and 𝑑 is 

the average grain diameter of the diamond film. [94] 

Typical diamond coatings, produced during this study, 𝜎𝑖𝑛  is at least 10% inferior than 𝜎𝑡𝑕 . 
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Slightly different approaches to determine the coatings stress can be found in the literature, 

some of them even more elaborated such as the method presented by Rats et al. [101]. For 

the present  research work, the model presented by  Ralchenko et al. [36] (see equation 15) 

was used. 

The Raman scattering of the samples presented in this work, was assessed by a Raman ISA 

JOBIN YVON-SPEX T6400 spectrometer, at room temperature, equipped with an Ar ion laser 

with a wavenumber of 514.5 nm. Appropriate filter for spectrum acquisition was selected and 

it was used an acquisition time of 30 s. It was also used a Bruckner RFS 100/S FT-Raman 

spectrometer system equipped with an Nd:YAG ion laser with a wavenumber of 1064 nm, at 

room temperature, for carbon diffusion into steel experiments. 

 

X-ray Diffraction Spectroscopy 

X-ray Diffraction Spectroscopy (XRD) is a non-destructive analytical technique, based on the 

observation of the scattered intensity of an X-ray beam hitting a sample as a function of 

incident and scattered angle, polarization, and wavelength or energy, which reveal information 

about the crystallographic structure (crystallite size and preferred orientation in polycrystalline 

samples, such as CVD diamond [102]), chemical composition, and physical properties of 

materials and thin films. [103] 

When a monochromatic X-ray beam, with precise wavelength, is projected onto a crystalline 

material at certain angle, diffraction occurs only when the distance traveled by the rays 

reflected from successive planes, differs by a complete number of wavelengths. By varying the 

projected angle, the Bragg's Law conditions are satisfied by different d-spacings in 

polycrystalline materials: 

  𝑛𝜆 = 2𝑑 sin𝜃        (19) 

where 𝑛 is an integer determined by the order given, 𝜆 is the wavelength of the X-ray, 𝑑 is the 

spacing between the planes in the atomic lattice, and 𝜃 is the angle between the incident ray 

and the scattering planes. 

Plotting the angular positions and intensities of the resultant diffracted peaks of radiation 

produces a pattern, which is characteristic of the sample. If the sample is not monocrystalline, 

a mixture of different phases is present, the resultant diffractogram is formed by the addition 

of the individual patterns.  
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The obtained diffracted peaks can be compared with the database of crystallographic 

diffraction data, maintained by International Centre for Diffraction Data (ICDD), and so the 

composition of the sample being studied may be determined. Table 6 presents the 

crystallographic XRD data for diamond, CrN and FeCr.  

The letters h, k, and l of table 6, represent the Miller Indices, a set of numbers which quantify 

the intercepts and thus may be used to uniquely identify the plane or surface, and in the 

present case, represent the crystallographic orientation of the material being studied. It should 

be noted that (220) equivalent to (110), (222) equivalent to (111) and (400) equivalent to 

(100). 

In the scope of the work developed and presented here, X-ray diffraction was used for 

crystallinity characterization and morphology modification of the steel substrates. 

The X-ray diffraction spectroscopy of the samples presented in this work, was performed by a 

Philips XPERT-MPD (now PANalytical), and the phase identification was assessed with the 

assistance of the search-match algorithm X'Pert HighScore software (PANalytical). 

 

Table 6 - Diamond, CrN and FeCr crystallographic database [104] 

 2 d (Å) Int (%) h k l 

D
ia

m
o

n
d

 43.9154 2.60000 100 1 1 1 
75.3018 1.261000 25 2 2 0 
91.4952 1.075400 16 3 1 1 

119.5215 0.891600 8 4 0 0 
140.587 0.818200 16 3 3 1 

C
rN

 

37.526 2.39480 84.2 1 1 1 
43.605 2.07400 100.0 2 0 0 
63.372 1.46650 44.0 2 2 0 
76.034 1.25070 18.3 3 1 1 
80.078 1.19740 10.9 2 2 2 

Fe
C

r 

44.485 2.03500 100 1 1 0 
64.779 1.43800 20 2 0 0 
81.986 1.17430 50 2 1 1 
98.475 1.01700 18 2 2 0 

115.763 0.90950 30 3 1 0 
136.204 0.83020 12 2 2 2 

 

 

 

Secondary Ion Mass Spectrometry 

Secondary Ion Mass Spectrometry (SIMS) is a technique used to analyze the composition of 

solid surfaces and thin films by sputtering the surface of the specimen with a focused primary 
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ion beam and collecting and analyzing ejected secondary ions. These secondary ions are 

measured with a mass spectrometer to determine the elemental, isotopic, or molecular 

composition of the surface. [105] 

SIMS is a very sensitive surface analysis technique, being able to detect elements present in 

the parts per billion range. 

Dependent on the SIMS type, there are three basic mass analyzers available: sector, 

quadrupole, and time-of-flight. For the measurements done in the scope of this thesis, it was 

used a time of flight mass analyzer. The time of flight mass analyzer separates the ions in a 

field-free drift path according to their kinetic energy. It requires pulsed secondary ion 

generation using either a pulsed primary ion gun or a pulsed secondary ion extraction. It is the 

only analyzer type able to detect all generated secondary ions simultaneously and is the 

standard analyzer for static SIMS instruments. 

The time-of-flight SIMS was performed for the acquisition of the depth profile of the samples 

being studied. It was accomplished by a VG ToF-SIMS (IX23LS) instrument. This system is based 

on Poschenrieder time-of-flight mass analyzer, equipped with a gallium pulsed-metal ion 

source (analysis) and duoplasmatron ion source for etching. Full positive SIMS spectra were 

acquired over a mass range m/z of 0-100 using a pulsed (5 kHz) 12kV Ga+ primary ion beam by 

rastering it over the etched area well in the crater spot. The duoplasmatron ion source was 

used at 8kV ion energy delivering sample current of approximately 500nA of oxygen ions. 

Figure 18 presents a schematic representation of the spectroscopy techniques used in this 

work. 

 

 

 

Figure 18 - Schematic representation of the spectroscopy techniques used. Adapted from [105] 
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Indentation Hardness 

Hardness is a measure of a material’s resistance to localized plastic deformation, such as a 

small dent or a scratch [16]. To perform a hardness measurement, an indenter is forced into 

the surface of the material to be tested, under controlled conditions of load and rate of 

application. The depth or size of the resulting indentation is measured, which in turn is related 

to a hardness number. The softer the material, the larger and deeper is the indentation, and 

the lower the hardness index number. 

Solids generally have three responses to force, depending on the amount of force and the type 

of material: they exhibit elasticity (the ability to temporarily change shape, but return to the 

original shape when the pressure is removed); plasticity (the ability to permanently change 

shape in response to the force, but remain in one piece); and fracture (split into two or more 

pieces). Indentation hardness tests should be done with a load that goes to the plastic region 

of the material to give rise to a permanent deformation in the sample being tested. 

Hardness measurement can be defined as macro-, micro- or nano- scale according to the 

forces applied and displacements obtained. 

Measurement of the macro-hardness of materials is a quick and simple method of obtaining 

mechanical property data for the bulk material from a small sample. It is also widely used for 

the quality control of surface treatments processes. However, when concerned with coatings 

and surface properties of importance to friction and wear processes for instance, the macro-

indentation depth would be too large relative to the surface-scale features. Where materials 

have a fine microstructure, are multi-phase, non-homogeneous or load can lead to the fracture 

region, macro-hardness measurements will be highly variable and will not identify individual 

surface features. It is here that micro-hardness measurements are appropriate. [16, 106] 

Microhardness is the hardness of a material as determined by forcing an indenter such as a 

Vickers or Knoop indenter into the surface of the material under load inferior than 1000 gf. 

Microhardness is capable of determining hardness of different microconstituents within a 

structure, or measuring steep hardness gradients.  

There are three major types of tests used with accuracy by the metals industry: Brinell 

hardness test; Rockwell hardness test; and Vickers hardness test. 

Brinell hardness [16, 106, 107] is determined by forcing a hard steel or carbide sphere of a 

specified diameter under a specified load into the surface of a material and measuring the 
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diameter of the indentation left after the test. The Brinell hardness number (𝐻𝐵) is obtained 

as presented in equation 20: 

  𝐻𝐵 =
2𝑃

𝜋𝐷 𝐷− 𝐷2−𝑑2 
       (20) 

Where 𝑃 is the applied load in kgf (1 kgf = 9.80665 N), 𝐷 is the ball diameter and 𝑑 is the 

indentation diameter, both in millimeters. 

The depth, 𝑕, in mm, of a Brinell indentation can also be calculated from equation 21 [108]: 

  𝑕 =
𝑃

𝜋𝐷 𝐻𝐵 
        (21) 

Depth calculation is useful to determine the minimum sample thickness for a particular HB 

value. The sample thickness should be at least ten times the depth of the indentation. [108] 

The Brinell hardness experiments performed during this study, were done according to DIN10 

50351. According to this latter, the load 
𝑃

𝐷2 must be such that the indentation mark 𝑑 must be 

between 0.2 and 0.7 of 𝐷. Extensive tables can be found relating directly 𝑑 to 𝐻𝐵, in 

accordance with the standard sphere diameter. 

The Rockwell hardness test [16, 106, 107] method consists of indenting the test material with a 

diamond cone or hardened steel ball indenter, depending on the scale being used (A, B, C, …). 

The indenter is forced into the test material under a preliminary minor load. When equilibrium 

has been reached, an indicating device, which follows the movements of the indenter and so 

responds to changes in depth of penetration of the indenter, is set to a reference position. 

While the preliminary minor load is still applied, an additional major load is applied with 

resulting increase in penetration. When equilibrium is again reached, the additional major load 

is removed but the preliminary minor load is still maintained. Removal of the additional major 

load allows a partial recovery, so reducing the depth of penetration. The permanent increase 

in depth of penetration, resulting from the application and removal of the additional major 

load, is used to calculate the Rockwell hardness number (𝐻𝑅): 

  𝐻𝑅 = 𝐸 − 𝑒        (22) 

Where 𝐸 is a constant depending on form of indenter: 100 units for diamond indenter, 130 

units for steel ball indenter and 𝑒 is the permanent increase in depth of penetration due to 

major load, measured in units of 0.002 mm. Rockwell Hardness numbers have no units and are 

commonly given with reference to the used scale. 

                                                           
10

 German Institute for Standardization 
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The procedure followed was according to DIN 50351 and the scale used was HRC. Table 7 

presents the particular details of the used Rockwell indentation test scales. 

Advantages of the Rockwell hardness method include the direct Rockwell hardness number 

readout and rapid testing time. Disadvantages include many arbitrary non-related scales and 

possible effects from the specimen support. 

The Vickers hardness test [16, 106, 107] method consists of indenting the test material with a 

diamond indenter, in the form of a right pyramid with a square base and an angle of 136 

between opposite faces subjected to a load of 1 to 100 kgf, in macro-indentation, and 15 to 

1000 gf, in micro-indentation. The full load is normally applied for 10 to 15 seconds. The two 

diagonals of the indentation left in the surface of the material after removal of the load are 

measured using a microscope and their average calculated. The Vickers hardness is then given 

by: 

  𝐻𝑉 =
2𝑃 sin

136

2

𝐷2 = 1.854 
𝑃

𝐷2      (23) 

Where 𝑃 is the applied load in kgf, and D is the arithmetic average of the two diagonals, in 

mm. The Vickers hardness should be reported like AAA HV/BB, which means a Vickers 

hardness of AAA, obtained using a BB kgf force. Nevertheless, Vickers hardness can be 

expressed in 𝑘𝑔𝑓 𝑚𝑚2  , and hence converted to 𝑃𝑎𝑠𝑐𝑎𝑙 by multiplying by 9.807 × 106. 

Several different loading settings give practically identical hardness numbers on uniform 

material, which is much better than the arbitrary changing of scale with the other hardness 

testing methods. The advantages of the Vickers hardness test are that extremely accurate 

readings can be taken, and just one type of indenter is used for all types of metals and surface 

treatments. 

Vickers microindentation test is carried out in a similar manner to the Vickers 

macroindentation tests, using the same pyramid but lower indentation loads, as stated above. 

 

Table 7 - Particular details of HRA, HRB and HRC Rockwell scales [107] 

Scale Penetration Die 
Initial 
Force 

Total testing 
force 

Main application range 

HRA 
Diamond cone with cone 

angle of 120 
98 N 588 N 

Cemented carbides, thin steel and shallow case 
hardened steel 

HRB 
Ball with diameter of 

1/16’’ 
98 N 980 N 

Copper alloys, soft steels, aluminium alloys, 
malleable irons, etc. 

HRC 
Diamond cone with cone 

angle of 120 
98 N 1471 N 

Steel, hard cast irons, case hardened steel and 
other materials harder than 100 HRB 
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It must be noted that micro-indentation techniques require low roughness surface to achieve 

accurate results. To increase the results accuracy, it must be known that for any given load, the 

hardness increases rapidly at low diagonal lengths, with the effect becoming more pronounced 

as the load decreases. Thus at low loads, small measurement errors will produce large 

hardness deviations. Thus it should always be used the highest possible load in any test. Also, 

in the vertical portion of the curves, small measurement errors will produce large hardness 

deviations. 

When micro-indenting polycrystalline diamond is concerned, it should not be ignored that 

although a diamond coating is only a couple of microns thick, it has the same nature than the 

indentation tip. To achieve good reproducibility, the degradation of the diamond indention tip 

should be regularly checked. Also, proper considerations must be given to the contributions 

from the film and the substrate material, when testing thin surface coatings [109]. 

During the present work, indentation hardness was used for the substrate and system 

(substrate, interlayer and film) hardness assessment, but also to evaluate the adhesion of the 

diamond films to the substrates. 

The deformation imposed to the coated substrates may lead to the appearance of spalling or 

cracking around the indentation craters in the diamond film. The load/deformation that 

imposes the initial appearance of such features can give an indication of the adhesion of the 

diamond film to the substrate. [110-119] 

As it can be depicted from figure 19, the load imposed to the film-substrate system can lead to 

the appearance of concentric ring cracks, lateral cracks and radial cracks. The concentric ring 

cracks are the first one appearing, due to the material dislocation under the indenter. The 

lateral cracks appear after some degree of deformation and give an indication of the level of 

adhesion of the film to the substrate. The lateral cracks may depend on the fracture resistance  

 

 

Figure 19 - Indentation and the appearance of cracks 
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and strength. The fracture resistance depends on the bonding across the interface and is a 

fundamental measurement of the adhesion. Strength is determined by the combined 

influences of the fracture resistance, defects and films residual stresses. 

In the present study, an evaluation of diamond coatings adhesion was done by indentation 

testing employing a Brinell indenter. A range of indentation loads between 50 and 187.5 kgf 

where employed. SEM and Raman spectroscopy were used as a complement of the 

indentation tests. SEM to visually evaluate the cracks at high magnification and the Raman to 

evaluate stress levels. As the coating is released from the substrate, the stress due to the 

connections between the film and the substrate fade. 

All the macro-indentation tests were performed in a Frank hardness tester Frankoskop 38180, 

with the appropriated indenters. The micro-Vickers indentations were achieved in a Shimadzu 

micro-hardness tester HMV-2000. 

 

Surface profilometery 

Surface profilometery is used to measure the surfaces profile, in order to quantify its 

roughness, by direct contact between a diamond stylus and a sample, as shown in figure 20. 

Roughness is the arithmetic average of the absolute values of the measured profile height 

deviations taken within the sampling length and, ensured from the graphical centerline. 

The diamond stylus type profilometers are designed to respond only to irregularity spacing less 

than a given value, called the cutoff. In other words, all irregularities having a spacing less than 

the value of the cutoff are included in a measurement. 

Surface profilometery was conducted in a Hommelwerke T1000 (Japan) surface profilometer. 

 

 

Figure 20 - Films roughness measurement principal 
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5. Thermoplastic injection molding 

An important stage of the carbon-based coatings study for the modern plastics industry was 

the assessment of the diamond coated inserts suitability for thermoplastic injection molding. 

Thermoplastic injection molding was performed in a EURO INJ D065, by Lien Yu Machinery Co 

LTD, injection molding machine. The latter has an intensification factor of the hydraulic 

pressure at the nozzle equal to 12.7. Further characteristics of the machine include: a screw 

diameter of 32 mm, maximum injection rate of 65 g/s, maximum injection pressure of 1777 

bar, maximum injection stroke of 160 mm and maximum locking force of 65 ton. 

The mold tool that accommodates the microstructured coated inserts was an already existing 

multi-cavity mold tool, where one of the cavities houses a 50 × 50 × 5 mm steel sheet in which 

appropriated holes were open to accommodate the testing samples, as it is illustrated in figure 

21. This cavity allows for the testing of all the samples being evaluated in each injection cycle 

and thus at the same processing conditions. 

  

Figure 21 - Schematic drawings of the adapted mold tool (left) and the molded polimeric part (right) 

 

The injection material selected for the experiments was High Density Polyethylene (HDPE) 

“Politeno HDPE IA-59 U3” (Braskem, Brasil). It offers high stiffness and impact strength, 

combined with good processability and low warpage. The characteristics were a density of 

0.96 g/cm3 (ASTM D-792), melt mass-flow rate (MFR) (190 °C/5 kg) at 7.3 g/10 minutes (ASTM 

D1238), a tensile strength at break of 25 MPa (ASTM D-638), a tensile strength at yield of 28 

MPa (ASTM D-638), an izod impact resistance of 73 J/m (ASTM D 256) and a heat deflection 

temperature (HDT) of 81 °C at 0.45 MPa (ASTM D-648).  
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The HDPE injection temperature and pressure throughout this project was kept at 200 °C and 

50 bar, respectively. A holding pressure was used for 5 s followed by a cooling time of 22 s, 

before the samples were extracted, as shown in table 8. 

 

Table 8 - Cycle injection molding processing conditions 

Parameter Value 

Injection pressure 50 bar 

Melt temperature 200 C 
Hold pressure time 5 s 
Cooling time 22 s 

6. Thermoplastic parts evaluation 

The polymeric samples molded by the diamond coated inserts and by other non-coated 

reference inserts were analyzed at naked eye, optical microscopy and the dimensions of three 

microstructured features were acquired using a coordinate measuring machine. 

The naked eye observation provides a first evaluation of the piece being molded. Optical 

quality, such as brightness of the object, may be obtained in this way. 

Further visualization was performed using optical microscopy, where both bright and dark field 

observations techniques were used, as described in previously in this chapter. 

The optical microscopic images of the thermoplastic injected samples enabled the evaluation 

of the homogeneity of the surfaces and allowed for the comparison of the surfaces molded by 

the different coated and non-coated inserts. 

Some 3-dimensional featured inserts were also tested in order to evaluate the diamond 

coating performance in a non-flat surface. For the dimensional stability evaluation of the 

microstructured features it was used a coordinate measuring machine. 

  

Dimensional measurements 

The dimensional stability of the molding insert and of the polymeric object is of utmost 

importance, in order to guaranty the molded parts quality and to comply with customer 

requisites. 
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A coordinate measuring machine is a device for dimensional measuring. It is an equipment 

where the movement of a measuring probe enables to monitor the coordinates of points on 

an object surface, assessing the dimensions of the object.  

The machine uses an X-Y-Z grid to determine its position on a worktable. As the probe touches 

different spots on the part being measured, the X,Y,Z coordinates of each of these points are 

determined, and the dimensional details are recorded.  

In the present work, it was used an Aberlink 3D MAXIM CNC with a Renishaw TP8 probe (1 mm 

ruby ball), control by Aberlink 3D control and measurement software. The dimensional trend 

was only measured for the polymeric injected objects, because it was not feasible to 

periodically measure the inserts. Nevertheless, the dimensional stability of the molding insert 

and of the polymeric objects are directly related to one another. 

In the next chapter, it will be presented experimental work on the development of the 

diamond CVD coatings on steel substrates, which will provide tuned data to be used on the 

production of coated inserts to evaluate their performance as mold tools. 

 





 

 

Chapter 4 

 
Diamond CVD on steel substrates 

1. Introduction 

Diamond CVD on steel substrates has been discussed and its techniques and applications 

extensively reviewed. This chapter presents the work carried out in order to accomplish the 

objectives of this study. The experimental work and the techniques used will be fully 

described.  

The first approach carried out was the direct deposition onto steel substrates. Diamond was 

deposited directly onto the steel substrates, only if enough deposition time was given in order 

to saturate the ferrous substrate with carbon, and then form the diamond crystallites. The 

resulting diamond coating exhibited very poor adhesion to the substrate. 

The direct deposition on steel substrates was followed by the investigation of different 

interlayers, namely chromium nitride (CrN), titanium (Ti) and silicon (Si). The best performance 

was attained with CrN coating. The effect of the film thickness was also investigated and 

results achieved are presented. 

It was also performed some depositions onto non-ferrous substrates materials, such as silicon 

wafers, in order to evaluate the suitability of this type of material to produce injection molding 

microstructured inserts. 
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2. Direct deposition on steel substrates 

A first set of deposition experiments were performed directly onto AISI P20 modified steel, 

under different growth regimes and times, using both conventional and time modulated 

Chemical Vapor Deposition (CVD) processes. Conventional CVD means, in the context of the 

present work, a fixed flow rate of 𝐶𝐻4. The depositions were carried out in the hot filament 

CVD system, with a three filament setup. 

The Time Modulated Chemical Vapor Deposition (TMCVD) was carried out for 2h00, at 5 and 

2% 𝐶𝐻4 𝐻2  rates, with high pulses of 10 minutes and low pulses of 50 minutes, as presented 

in figure 22. 

 

Figure 22 - TMCVD deposition conditions used 

The conventional deposition was performed at 2% 𝐶𝐻4 𝐻2  rate, for 2h00. The common 

parameters for this set of experiments are presented in table 9. The substrate temperature 

was kept around 700 °C, in order to prevent important steel structural modifications. 

 

Table 9 - Deposition conditions 

Parameter Value 

H2 flow (sccm) 150 
CH4 flow (sccm) 3 – 7.5 
Base pressure (Torr) 2 x 10-2 
Deposition pressure (Torr) 30 

Substrate temperature (C) 700 
Filament power (W) 600 
Filament-substrate distance (mm) 8 

 

Prior to the deposition stage, samples were abraded in a polishing machine for 2 minutes, 

using 0.25 µm diamond paste, and then inserted in an ultrasonic bath composed of 10 ml 

isopropyl alcohol with 2 g of polycrystalline diamond powder (2–4 μm crystallite size) for 2h30. 

An additional cleaning was done with acetone, using an ultrasonic bath for 1 minute, to 

remove any non-adherent particles. Inside the CVD reactor, prior to the deposition stage, 
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samples were exposed for 5 minutes to hydrogen plasma, to enhance cleaning and remove any 

native oxide layers. 

As expected, the direct diamond deposition onto steel did not produce a diamond coating, as 

it can be depicted from figure 23. Both deposition techniques (conventional CVD and TMCVD) 

produced an amorphous carbon layer. 

 

Figure 23 - SEM images of direct diamond deposition onto steel using  

conventional CVD (left) and TMCVD (right) 

A third deposition was performed at a substrate temperature around 650 °C, using a 3% 

𝐶𝐻4 𝐻2  gas rate for 10 minutes, followed by 16h50 deposition at 2% 𝐶𝐻4 𝐻2  rate. This 

sample was polished with diamond powder (2–4 μm crystallite size) for 5 minutes (using 

acetone as lubricant), plus 1 minute in acetone using ultrasounds to obtain deeper cleaning. 

This pre-treatment led to the formation of an uniform layer of carbon on top of the steel 

substrate. 

The long deposition carried out, resulted in good diamond crystals with an homogeneous size 

and distribution, as it can be seen in figure 24. It must be noted that although a diamond 

coating was achieved with long deposition time, it was not a completely coalesced and 

homogeneous film. 

 

Figure 24 - SEM image of a 17h deposition directly into steel 
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Further experiments were performed in order to understand the diffusion mechanism of the 

direct deposition on steel. 

 

Carbon diffusion into steel during diamond chemical vapor deposition 

A new set of samples with no interlayer was prepared out of AISI P20 modified steel, with 

10 x 10 x 2 mm. Prior to the deposition process, all samples were subjected to a grinding 

process with 500 and 1200 graded SiC paper, followed by 5 minutes cleaning in an ultrasonic 

bath with isopropyl alcohol. 

The CVD general conditions can be seen in table 10 and the experimental details in table 11.  

Table 10 - Deposition conditions 

Parameter Value 

H2 flow (sccm) 200 
CH4 flow (sccm) 4 – 6 
Base pressure (Torr) 2 x 10-2 
Deposition pressure (Torr) 30 

Substrate temperature (C) 700 – 850 

Filament temperature (C) 2100 – 2300 

Filament-substrate distance (mm) 4 

 

Table 11 - Experimental details 

Sample 
Deposition time 

(min) 

Substrate 
temperature 

(C) 

𝐂𝐇𝟒

𝐇𝟐
 rate 

(%) 

DCA01 30 700 2 
DCA02 60 700 2 
DCA03 120 700 2 
DCA04 180 700 2 
DCA05 120 850 2 
DCA06 120 700 3 

 

When analyzing the experimental samples, the diffusion depth can be measured, and the 

diffusion coefficient for this particular type of steel can be obtained. 

According to the first law of diffusion [120], the transfer of solute atoms per unit area in a one-

dimensional flow can be described by: 

  𝐽 = −𝐷
𝜕𝐶 𝑥,𝑡 

𝜕𝑥
        (24) 

where 𝐽 is the particle flux, 𝐶 is the concentration of the solute, 𝐷 is the diffusion coefficient, 𝑥 

is the distance into the substrate, and 𝑡 is the diffusion time. The negative sign indicates that 

the diffusing mass flows in the direction of the decreasing concentration. Combining equation 
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24 with the conservation of mass, the second law of diffusion can be derived (otherwise 

known as Fick’s Law), which states:  

  
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2        (25) 

In order to solve Fick’s Law, initial and boundary conditions are required. Considering that this 

particular case can be represented by a semi-infinite medium, 𝑥 > 0, where the boundary is 

kept at a constant concentration 𝐶0 (the concentration of carbon in the surrounding 

atmosphere) and the initial concentration, 𝐶0
𝑠𝑡𝑒𝑒𝑙 , throughout the steel medium includes the 

carbon contents of the used steel, this is: 𝐶𝑥 = 𝐶0
𝑠𝑡𝑒𝑒𝑙  for 𝑡 = 0 and 𝐶𝑥 = 𝐶0 for 𝑥 = 0. Using 

the initial and boundary conditions and a Laplace transform, a solution of the following form 

may be obtained: 

  
𝐶𝑥−𝐶0

𝐶0
𝑠𝑡𝑒𝑒𝑙 −𝐶0

= 𝑒𝑟𝑓
𝑥

2 𝐷𝑡
       (26) 

where 𝑒𝑟𝑓 is the error function, a standard mathematical function with extensive look up 

tables available in literature, and 𝐷 is the diffusion coefficient, that is dependent on the 

temperature and is determined by a typical Arrhenius equation, 𝐷 = 𝐷0𝑒𝑥𝑝  −
𝑄

𝑅𝑇
 , where 𝐷0, 

is the maximum diffusion coefficient (at infinite temperature) in  𝑚2 𝑠   unit; 𝑄 is the 

activation energy for diffusion in  𝐽 𝑚𝑜𝑙   unit; 𝑇 is the absolute temperature in  𝐾  and 𝑅, is 

the universal gas constant  8.314 𝐽 𝑚𝑜𝑙. 𝐾  . Diffusivity data, as the values of 𝐷0 and 𝑄 for 

different metallic systems are available in the literature [120]. 

From equation 26, an estimate can be obtained for the value for diffusion depth, 𝑕, the 

diffusion coefficient or the diffusion time, once the other two are known. Taking into 

consideration that 𝐶𝑕 = 𝐶0, then: 

  𝑒𝑟𝑓
𝑕

2 𝐷𝑡
= 1 ⟹  

𝑒𝑟𝑓 𝑧 = 1 ⟺ 𝑧 = 0.8427

𝑧 =
𝑕

2 𝐷𝑡
⟺ 𝑕 = 2𝑧 𝐷𝑡

⟹ 𝑕 = 1.6854 𝐷𝑡  (27) 

From figure 25 and table 12, the average diffusion depth per unit of time can be determined 

being approximately 21.1 ± 5.6 𝜇𝑚 𝑕𝑜𝑢𝑟 . Then using equation 27, the diffusion coefficient 

for the used steel can be calculated and the value of 6.03 × 10−14 ±  1.24 × 10−14  𝑚2 𝑠  

can be obtained. Sample DCA05 was not used for this calculations, as it will be explained 

ahead. 
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Figure 25 - SEM image of the carbon diffusion into the substrate of sample DCA01, DCA02, DCA03, DCA04, 

DCA05 and DCA06 after carbon CVD deposition 

 

Table 12 - Measured mass increase and diffusion depth 

Sample 
Mass increase 

(g) 
Diffusion depth 

(µm) 

DCA01 0.0015 14 
DCA02 0.0017 26 
DCA03 0.0026 37 
DCA04 0.0029 44 
DCA05 0.0199 25 
DCA06 0.0036 37 

 

The diffusion depth can also be measured by surface analysis by SIMS with depth profiling. The 

relative ion emission was calculated from positive TOF-SIMS spectrums at each point. As it can 

be seen in figure 26 and in accordance with the SEM visual measurements, carbon diffusion 

depth increases with increasing time at constant temperature and C+ and C2
+ switch between 

each other with time at constant temperature. The incorporation of hydrogen in the diffusion 
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path cannot be neglected, having a considerable percentage in the sample with shorter 

deposition time. 

The SEM image also reveals further information regarding the morphology of the steel. This 

particular AISI P20 modified steel (PM300 from F. Ramada, Aços e Indústrias, S.A. [68]) is 

delivered in a hardened and tempered to 290 – 330 HB (65 – 68 HRA) condition. Even on the 

sample DCA04 submitted to 700 C for three hours, no significant morphological changes were 

detected. However, in what concerns sample DCA05, submitted to 850 C for two hours, 

martensite and bainite phases appear. Martensite is known to block the carbon diffusion, as it 

can be seen in figure 25 (sample DCA05) and as a result, a carbon layer is more rapidly formed 

on top of the substrate, this being the reason for the significant mass increase (see table 12). 

The morphological modification on this sample is also observable in the XRD spectrum, 

presented in figure 27. Sample DCA05 presents a 𝐹𝑒4𝑀𝑛77𝑆𝑖19 phase, not detectable in any 

other sample. 

Raman spectroscopy of the tested samples, presented in figure 28, are, as expected, very 

similar to one another, presenting mainly three bands centered at 1280 cm–1, 1580 cm–1 and 

1605 cm–1, as it can better be seen in the deconvoluted lines. The peak at 1280 cm–1 is not 

clearly assigned, but some authors consign it to a defect activated phonon absorption, which is 

observed in natural diamond [94, 95], the 1580 cm–1 is attributed to microcrystalline graphite, 

graphite or vitreous carbon [93] and the 1605 cm–1 to microcrystalline graphite (D’ band) [96, 

97]. 

The Raman scattering of this samples was assessed at room temperature using a Bruckner RFS 

100/S FT-Raman system equipped with an Nd:YAG ion laser with 1064 nm of wavelength. 

Vickers micro-hardness and Rockwell A hardness were conducted in order to complement the 

information on the morphological changes due to the treatment procedure. Vickers micro-

hardness provides us information on the hardness of the first micrometers of the samples 

surface. 
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Figure 26 - Relative concentrations of hydrogen, carbon, C2 and Fe depth profile of samples DCA01, DCA03 

and DCA04, by SIMS 
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Figure 27 - X-ray diffraction of the diffusion samples 

 

Figure 28 - Raman spectrum of the tests samples 
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Both Vickers micro-hardness (see figure 29) and Rockwell A hardness (see figure 30) show that 

the hardness of the samples subjected to the CVD process, increased from 225 HV (2207 MPa) 

to a minimum value of 339 HV (3325 MPa), in DCA01, and a maximum value of 457 HV 

(4482 MPa), in DCA04, and from 67.2 HRA (1014 MPa) to a minimum value of 70.7 HRA 

(1220 MPa), in DCA05, and a maximum value of 78.2 HRA, in DCA03(1772 MPa), 

respectively. 

In both the procedures, the hardness rised with the increased diffusion depth (increased CVD 

time). Due to the different amplitude of the test, DCA05 presents a high micro-hardness value 

and a low hardness value, confirming the observations referred above about this sample. 

Vickers micro hardness measurements were made using a force of 200 gf and a holding time of 

10 seconds. Rockwell A hardness was conducted using the HRA scale (cone-shaped diamond 

indenter of 120° cone angle, total force of 60 kgf). 

 

 

Figure 29 - Vickers micro-hardness 

 

 

Figure 30 - Rockwell A hardness 
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The results clearly demonstrate that diffusion mechanism is the only process taking place in 

the sample substrate during the direct attempt to deposit CVD diamond. Therefore, during 

diamond CVD, the carbon diffuses into the steel substrate, forming a soot composed of 

graphite, Fe3C and other carbides, leaving relatively little carbon precursor at the steel surface 

to initiate the diamond nucleation sites. When the substrate face layer is supersaturated, 

diamond nucleation may occur and eventually poor adhered diamond film may grow. 

The literature reports the usage of interlayers to block the diffusion of carbon to the steel 

substrate and the Fe to the diamond coating. The following work addresses the issue and 

reports on the approach undertaken to investigate the use of interlayers for depositing 

diamond films on steel substrates. 

3. Use of interlayers for the deposition on steel substrates 

In a new group of AISI P20 modified steel samples, titanium (Ti) and chromium nitride (CrN) 

were deposited using a commercial PVD system, and silicon (Si) was deposited using a research 

CVD system. These coating materials were selected based upon the good resulted reported in 

the literature, and also due to its availability. 

The interlayer coated samples were subjected to diamond deposition conditions, using both 

conventional and TMCVD processes, at the hot filament CVD system, with a three filament 

setup. 

The TMCVD was carried out for 2h00, with 5 and 2% 𝐶𝐻4 𝐻2  rate, with high pulses of 10 

minutes and low pulses of 50 minutes, as presented previously in figure 22. The conventional 

deposition was performed at 2% 𝐶𝐻4 𝐻2  rate, for 2h00. The common parameters for this set 

of experiments were presented previously in table 9. The substrate temperature was kept 

around 700 °C, in order to prevent important steel structural modifications. 

Prior to the deposition stage, samples were abraded in a polishing machine for 2 minutes, 

using 0.25 µm diamond paste, and then inserted in a ultrasonic bath composed of 10 ml 

isopropyl alcohol with 2 g of polycrystalline diamond powder (2–4 μm crystallite size) for 2h30. 

An additional cleaning was done with acetone, using ultrasounds for 1 minute, to remove any 

non-adherent particles. Inside the CVD reactor, prior to the deposition stage, samples were 

exposed for 5 minutes to hydrogen plasma, to enhance cleaning and remove any native oxide 

layers. 
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The samples coated with silicon did not stand the deposition conditions. Silicon evaporated 

from the samples surface and they were abandoned. In what concerns the samples with Ti and 

CrN interlayers, diamond coatings were achieved with both the conventional and time-

modulated processes. 

In the insert of figure 31 (left) that corresponds to the Ti interlayer using conventional CVD, a 

diamond coating can be observed, and it can also be depicted the presence of amorphous 

carbon. In the time-modulated CVD sample, figure 31 (right), the morphology is completely 

different. From the lower magnification image, it becomes clear the appearance of secondary 

nucleation sites, on top of the previous diamond layer. From the high magnification insert, the 

typical hexagonal geometry diamond crystals that correspond to diamond  111  oriented 

crystals, can be observed. 

 

 

 

Figure 31 - SEM images of diamond deposition onto steel with titanium 

interlayer using conventional CVD (left) and TMCVD (right) 

 

 

Figure 32 - SEM images of diamond deposition onto steel with chromium nitride 

interlayer using conventional CVD (left) and TMCVD (right) 
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From the results obtained during this study, it appears that the deposition on steel samples 

with CrN interlayer, via conventional or time-modulated CVD, presents better results than the 

ones obtained using Ti interlayers. 

The conventional deposition on the sample with CrN, which can be seen in figure 32 (left), 

displays a continuous film coating, composed of diamond crystals of an average size of less 

than 1 μm. It is evident from figure 32 (left) that a ballas like structure is formed. It is most 

likely that the ballas consists of nano-sized diamond crystallites [121]. 

The time-modulated sample, as seen in figure 32 (right), exhibits an homogenous and 

continuous polycrystalline film coating. The polycrystalline film displays predominantly  111  

crystal orientation. 

Extensive studies of the CrN interlayers will be presented in the next sub-chapter. 

4. Deposition using CrN interlayers 

The literature has highlighted several successful attempts where chromium nitride (CrN) 

interlayers were used. A broader range of steel materials were tested and different surface 

treatments and interlayer thicknesses were evaluated. 

The steel materials tested include the stainless steels – austenitic chromium-nickel alloys AISI 

304, 310 and 316, and a common steel used for mold tool production – AISI P20 modified. All 

four different steels were supplied by F. Ramada, Aços e Indústrias, S.A. [68]. 

A set of samples with the dimensions of 10 x 10 x 3 mm was prepared. All samples were 

prepared from steel blocks, by cutting and machining processes until the appropriate 

dimensions were obtained, a methodology used for all the steel samples used in this doctoral 

work. After this stage, the samples were subjected to mechanical polishing with SiC papers, up 

to a 2000 mesh, followed by an ultrasonic cleaning of 5 minutes with isopropyl alcohol. 

Prior to diamond deposition, a commercial PVD CrN interlayer was deposited on the samples. 

An industrial Microcoat PVD-arc system equipped with a random arc source [72] was used to 

deposit a layer of CrN with around 2 µm in thickness according to product specifications. 

Before diamond deposition, the samples coated with CrN were ultrasonically abraded during 

2h30 in a 0.25 µm diamond powder suspension for diamond nucleation seeding, followed by 2 

to 3 minutes of ultrasonic cleaning in isopropyl alcohol. 
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The CVD diamond films were deposited, using the hot filament CVD system, described in figure 

11. The deposition total time varied from 4h30 (270 minutes) in deposition conditions 

identified as DEP1 and DEP2, to 9h00 (540 minutes) in deposition condition DEP3. Deposition 

condition DEP4 had a deposition total time of 6h45 (405 minutes).  The time-modulation 

deposition process used a high 𝐶𝐻4  𝐻2  rates, for 15 minutes, of 3% in deposition conditions 

DEP2, DEP3 and DEP4 and 4% in deposition condition DEP1 and low 𝐶𝐻4  𝐻2  rates of 1% for 

120 minutes in all the deposition condition, as presented in figure 33. During deposition, the 

single filament was kept at a temperature around 2100 C, in order to activate the process 

gases (𝐶𝐻4 and 𝐻2). 

Prior to each deposition, the samples were submitted to 10 minutes at 0.5%  𝐶𝐻4  𝐻2 . This 

period was used to increase the temperature gradually until it reached its desired value, and to 

promote some surface etching before the nucleation of the first diamond crystallites, without 

the filament degradation. At the end of the deposition, 0.5%  𝐶𝐻4  𝐻2  gas rate was again used 

for 10 minute, in order to gradually lower the temperature and to accomplish some etching of 

the amorphous contents of the deposited film. 

 

 

 

Figure 33 - Time-modulated CVD conditions used 
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Diamond deposition onto AISI 304 steel with CrN interlayer 

In all the depositions carried out in AISI 304 steel with CrN interlayer, deposition times lower 

than 4h30 did not result in a fully closed and homogenous film. The latter were only obtained 

for more than 6h00 of deposition time. Figure 34 presents the SEM images of diamond 

deposition onto AISI 304 steel with chromium nitride interlayer using deposition conditions 

DEP1 and DEP4. 

The SEM image of the diamond on AISI 304 steel with chromium nitride interlayer using DEP1 

presents 5 µm round crystals not fully covering the substrate. The  111  crystal orientation 

seems to be the preferential growth orientation. 

The SEM image of the diamond on AISI 304 steel with chromium nitride interlayer using DEP4 

presents an uniform surface, with an average crystal size of 2 µm, with mainly  111  crystal 

orientation. 

 

  

Figure 34 - SEM images of diamond deposition onto AISI 304 steel with 

chromium nitride interlayer using DEP1 (left) and DEP4 (right) 

 

Diamond deposition onto AISI 310 and 316 steel with CrN interlayer 

All the depositions carried out on AISI 310 and 316 steel with CrN interlayer result in a not 

properly closed film. Figure 35 presents SEM images of diamond deposition using DEP1 on AISI 

310 steel and on AISI 316 steel with chromium nitride interlayer. 

On these materials, not even the longer deposition conditions presented good results. Both 

substrates presented individual crystals similar to the ones presented by the AISI 304 steel 

with chromium nitride interlayer using DEP1. 

AISI 310 and 316 steel samples did not present promising results for diamond growth, 

comparatively with the other tested materials. This may be due to their chemical composition 
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and properties, namely their high nickel (Ni) contents, as it can be seen in table 13. Nickel, such 

as iron and cobalt, is a strong carbon-dissolving material [29-34]. For the latter, those materials 

were abandoned. 

 

  

Figure 35 - SEM images of diamond deposition using DEP1 onto AISI 310 steel (left) 

and onto AISI 316 steel (right) with chromium nitride interlayer 

 

Table 13 - Chemical composition of the AISI 310 and 316 steels [69] 

Steel C (%) Si (%) Mn (%) Cr (%) Mo (%) Ni (%) S (%) 

AISI 310 0.20 1.50 2.00 25.00 - 20.50 - 
AISI 316 0.08 1.00 2.00 17.50 2.50 12.00 - 
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Diamond deposition onto AISI P20 modified steel with CrN interlayer 

Diamond deposition on AISI P20 modified steel with CrN interlayer almost always presented 

good results. As it can be seen from the SEM images presented in figure 36, all deposition 

conditions, from the shorter (DEP1 and DEP2) to the longer (DEP3), presented fully covered 

substrates with an uniform and homogeneous diamond film. 

All the displayed films present an average crystal size of 1 µm, with mainly  111  crystal 

orientation, although some  100  crystal may be found. 

 

  

  

Figure 36 - SEM images of diamond deposition onto AISI P20 modified steel with chromium 

nitride interlayer using DEP1 (up-left), DEP2 (up-right), DEP3 (down-left), DEP4 (down-right) 
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Validation of the interlayer as a diffusion blocker 

A bare CrN coated steel sample (without diamond deposition) was cut transversally to the 

surface and the cross-sections were analyzed in terms of elemental composition distribution 

on a section of around 6 µm, measured from the surface to the interior of the sample. Figure 

37 shows the SEM and X-ray profile and map distribution of a AISI P20 modified steel sample 

with CrN. The profile represents an average of a measurement on 100 points. This number is a 

characteristic of the acquisition system. As illustrated, there are well defined layers that define 

the substrate and the interlayer. 

The high iron (Fe) presence in the bottom of the CrN layer is a signal of inter-diffusion, which 

means a good bonding between CrN and the substrate, in a comparable process as the one 

reported by Bareiβ et al. [122] for TiBN-steel. 

The effectiveness of the interlayer during the deposition is shown in figure 38, which presents 

the SEM cross-section image and the EDS map of an AISI 304 sample system after the 

deposition cycle DEP4 and an AISI P20 modified sample system after the deposition cycle 

DEP1. The samples were cut transversally to the surface and mounted in a cold-setting epoxy 

resin with the cut face to the top and polished with SiC paper to a mirror finishing. 

 

 

Figure 37 - SEM and X-ray profile and map of a P20 modified steel sample with a CrN interlayer 
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In all the studied samples, the Fe concentration decreases rapidly at the steel/CrN interface 

when Cr and N increase. At the diamond/CrN interface Fe is scarcely detectable. These data 

show that the CrN interlayer constitute an effective barrier from Fe and C diffusion during 

diamond deposition. 

 

 

Figure 38 - Cross-section SEM images and EDS maps of diamond deposition onto AISI 304 

steel with chromium nitride interlayer using DEP4 (up) and onto AISI P20 modified steel 

with chromium nitride interlayer using DEP1 (down) 
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Influence of CrN interlayer thickness on the deposition of diamond on steel 

The relative influence of the interlayer thickness on the growth, quality and adhesion 

properties of diamond films growth on AISI P20 modified steel was also studied and is here 

reported. 

A number of CrN coatings on steel with thicknesses in the range of 1.3 to 2.4 µm (see table 14) 

were coated by a random arc evaporation PVD system and then submitted to time-modulated 

CVD process. 

Table 14 - Interlayer thickness 

Sample CrN layer 

(m) 

DC1 1.3 
DC2 1.5 
DC3 1.8 
DC4 2.4 

 

The samples, with 10 x 10 x 2 mm, were prepared out of AISI P20 modified steel. Prior to the 

diamond deposition, all samples were subjected to a 2h30 ultrasonic bath in 0.25 µm 

polycrystalline diamond solution, followed by a 2 minutes cleaning with isopropyl alcohol. 

The deposition, carried out in the hot filament CVD reactor, started with a high flow of 

methane (3% 𝐶𝐻4  𝐻2  rate) for 10 minutes, followed by an 80 minute low flow (1%  𝐶𝐻4  𝐻2  

rate), and again a new high and low concentration, for 10 and 80 minutes, respectively, for a 

total deposition time of 3h00. The diamond deposition conditions can be seen in table 15. 

 

Table 15 - Diamond deposition conditions 

Parameter Value 

Pressure (Torr) 30 

Substrate Temperature (C) 700 

Filament Temperature (C) 2100 

Filament-Substrate Distance (mm) 10 
H2 flow (sccm) 200 
CH4 flow (low – high) (sccm) 2 – 6 
High CH4 flow time (minutes) 10 
Low CH4 flow time (minutes) 80 
Deposition time (minutes) 180 

 

Figure 39 shows the surface of the as-deposited diamond film on samples DC1, DC2, DC3 and 

DC4. It can be seen that the coating is composed mainly by  111  oriented crystallites and 

with an averaged crystal size of around 500 nm. Nevertheless, a closer observation of the SEM  
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Figure 39 - SEM images of as-deposit diamond film on samples DC1, DC2, DC3 and DC4 

 

images, can reveal some morphological differences, such as some  110  crystal in the sample 

with the higher interlayer thickness (DC4). The diamond thickness is estimated to be around 

1.5 µm in all four samples. 

From the Raman spectra of the diamond coating, shown in figure 40, the quality of the film can 

be assessed, in terms of diamond carbon-phase purity and the Raman shift of the diamond 

peak (residual stress of the coating) can be measured. 

The measurement of the quality of the diamond film can be calculated from: 

  𝑄 =
𝐼𝑑𝑖𝑎𝑚𝑜𝑛𝑑

𝐼𝑑𝑖𝑎𝑚𝑜𝑛𝑑 + 𝐼𝑛𝑜𝑛 −𝑑𝑖𝑎𝑚𝑜𝑛𝑑
      (11) 

where Q is the quality factor of the diamond film, Idiamond is the intensity of the Raman diamond 

peak (at 1333 cm-1), and Inon-diamond is the intensity of the non-diamond peaks or bands. 

The calculated quality factor values for the diamond coatings are between 50 and 52% and can 

be seen in table 16. 

It is known that CVD diamond typically exhibits a Raman peak centered at 1333 cm-1, although 

this scattering center may shift to the right or to the left of the spectrum depending on the 
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Figure 40 - Raman spectrum of the diamond coatings of samples DC1, DC2, DC3 and DC4 

 

residual stress imposed by the difference in thermal expansion coefficients of the substrate 

and the film, or to the intrinsic stress due the columnar growth of the crystals [36]. 

The Raman peak shift can be transformed on an estimation of the residual stresses (σ), by: 

  𝜎 = −0.567 𝜑𝑚 − 𝜑0        (15) 

where 𝜑0 is the polycrystalline typical peak center and 𝜑𝑚  is the observed peak position. 

The calculated residual stress values for the diamond coatings can be seen in table 16. It can 

be stated, from the results obtained, that the residual stresses are inversely proportional to 

the thickness of the interlayer. 

 

Table 16 - Raman shift of the diamond peak, calculated residual stress and Raman quality factor 

Sample Raman shift (cm
-1

) Residual stress (GPa) Quality factor (%) 

DC1 1340.44 -4.2 50 
DC2 1338.14 -2.9 51 
DC3 1335.38 -1.3 50 
DC4 1335.84 -1.6 52 
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Figure 41 presents the acquired SIMS depth profiles for Fe+, Cr+ and C+. Since the sample were 

analyzed in different days, the erosion speed was hardly kept constant. Therefore, no depth 

scale is plotted. Moreover, the erosion is much faster when the beam is sputtering the carbon 

layer due to its very light mass, when compared with Fe or Cr. 

It is clear in all spectra, the desired blocking effect produced by the CrN interlayer. The surface 

carbon does not diffuse to the bulk, as planned. The decay of the carbon signal is very steeply 

showing very small layer interpenetration. No matter the interlayer thickness the result is very 

similar with a clear blockage effect.  

In the first profile (DC1) it is also plotted the profile for C2
+. This ion is attributed for carbon 

coming from hydrocarbon contaminants, typically from oil used in vacuum pumps. The small 

peak in the interface CrN-Fe is a strong indication of such contamination. Other typical 

hydrocarbon peaks (not plotted) were found with a similar behavior. The profile from DC1 

sample also suggests an outer surface contamination. It may have occurred during film 

processing or during film analysis but it is irrelevant for the purpose of this work. 

Figure 42 presents the EDS spectra of sample DC1, DC2, DC3 and DC4. EDS is used here as a 

complimentary tool of the SIMS data. EDS traces the constitutive elements in the near surface 

region (1 µm depth). Carbon – the diamond base element – and Cr, are the main elements 

detected, nevertheless, small traces of Fe can be detected, mainly in the thinner interlayer 

sample. 

Finally, figure 43 presents the Rockwell C hardness measured values for sample DC1, DC2, DC3 

and DC4. The as delivered steel substrate presents a HRC value of 30. After the diamond 

deposition on the different studied samples, the measured HRC values are between 51.4 and 

52.9. 

After the hardness tests, the indention spots and boundaries were observed by SEM. All 

samples have shown cracks perpendicular to the indention spot. The latter seemed more 

pronounced in the thinner interlayer sample, but becoming less noticed as the thickness 

increased. 
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Figure 41 - TOF-SIMS depth profile of sample DC1, DC2, DC3 and DC4 



Diamond CVD on steel substrates 

 83 

 

Figure 42 - EDS of samples DC1, DC2, DC3 and DC4 

 

 

 

Figure 43 - Rockwell C hardness measured values for samples DC1, DC2, DC3 and DC4 

 

Adhesion assessment of the diamond coated systems 

The adhesion strength was assessed by the measurement of the deformation due to a load 

applied by an indenter, necessary to induce delamination and fracture of the diamond films. 
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A series of Brinell indentations with loads ranging from 10 to 187.5 kgf was performed. SEM 

images from indentation at various loads of samples AISI P20 modified coated system and AISI 

304 coated system, are presented in figure 44 and figure 45, respectively. 

Note that, as presented in chapter 3, Brinell hardness is determined by forcing a hard steel 

sphere of a specified diameter under a load into the surface of a material and measuring the 

diameter of the indentation left after the test. The Brinell hardness number (𝐻𝐵) is obtained 

as presented in equation 20: 

  𝐻𝐵 =
2𝑃

𝜋𝐷 𝐷− 𝐷2−𝑑2 
       (20) 

Where 𝑃 is the applied load in kgf (1 kgf = 9.80665 N), 𝐷 is the ball diameter and 𝑑 is the 

indentation diameter, both in millimeter units. The ball diameter used in these tests was 1 

mm. 

The depth, 𝑕, in mm, of a Brinell indentation can also be calculated from the equation 21: 

  𝑕 =
𝑃

𝜋𝐷 𝐻𝐵 
        (21) 

 

 

Figure 44 - SEM images from Brinell indentations at 187.5 kgf on AISI P20 

modified samples after cycle DEP2 (left) and DEP3 (right) 

 

 

Figure 45 - SEM images from Brinell indentations of a sample of 

AISI 304 after cycle DEP4 at 20 kgf (left) and at 50 kgf (right) 
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From these two equations, the deformation can be evaluated as a function of Brinell hardness, 

indentation diameter and depth. The determined values of Brinell hardness, indentation 

depth, indentation diameter-depth ratio determination and observable cracks for the studied 

samples are presented in table 17. 

 

Table 17 - Brinell hardness, indentation depth, indentation diameter-depth 

ratio determination and observable cracks  

Sample 
Applied 

load  
(kgf) 

Indenter 
diameter  

(mm) 

Indentation 
diameter 

(mm) 

Brinell 
hardness 

(HB) 

Indentation 
depth 
(mm) 

Indentation 
diameter – 
depth ratio 

Cracks 

P20 mod. after DEP2 187.5 1 0.542 748 0.0798 0,1473 Yes 
P20 mod. after DEP3 187.5 1 0.386 1540 0.0388 0,1004 Yes 
304 after DEP4 20.0 1 0.383 167 0.0381 0,0995 No 
304 after DEP4 50.0 1 0.570 178 0.0892 0,1565 Yes 

 

The AISI P20 modified samples after cycle DEP2 presented a hardness of 748 HB and the AISI 

P20 modified samples after cycle DEP3 (a thicker film) presented a hardness of 1540 HB. The 

results show no visible delamination occurring up to a load of 125 kgf for AISI P20 modified 

coated systems. After indentation, it becomes visible a white spallation area around the 

indentations. This feature demonstrates that after indentation, the film is detached from the 

substrate [116]. At 125 kgf load, it could be observed small intergranular concentric cracks in 

both samples. According with Novikov and Dub [117], the absence of radial cracks emanating 

from the concentric cracks, could be explained with a high level of internal compressive 

stresses in the diamond film. 

At a superior load-deformation, more pronounced concentric cracks are present and the films 

delamination is evident. From the images of the surface region near the boundary of the 

indentation, it is visible either inter and intragranular cracks. 

SEM images from indentation at various loads demonstrate evidence that the samples 

deformed to the shape of the indenter. This could be explained by the expected plastic 

deformation of the steel substrates during indentation. 

AISI 304 diamond coated samples presents a lower hardness (average of 173 HB) than the AISI 

P20 modified coated samples. The deformation due to the loads of 10 and 20 kgf didn’t result 

in any crack or delamination of the diamond film. SEM observations of the indented regions 

reveal that the film begins to delaminate between 20 and 50 kgf of the applied load. From the 

images of the surface region near the boundary of the 50 kgf indentation load, it is visible 

either inter and intragranular fine concentric cracks. 
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Due to the columnar growth characteristic of polycrystalline diamond films, when a crack 

occurs on the surface of the film, it tends to propagate through the columnar particles, leading 

to a decrease in toughness [119]. Although, in the case of multilayered films, as the ones 

resulting from time-modulated CVD, the interfaces formed in this structures are expected to 

minimize the crack propagation.  

Comparing the results obtained from the different sample substrates, it is possible to say that 

the formation of cracks in the diamond film, which results in adhesion losses, depends on the 

deformation imposed but also on the film thickness. Thicker films stand a lower value of 

deformation. 

5. Non-ferrous substrate materials 

A group of silicon  100  wafers, with 5 x 5 x 0.5 mm, were tested for diamond growth by 

conventional CVD and by TMCVD. The sample were hand polished with diamond powder (2–4 

μm) for 2 minutes and then cleaned in acetone using ultrasound for 5 minutes. 

The TMCVD was carried out for 2h00, with 5 and 2% 𝐶𝐻4 𝐻2  rate, with high pulses of 10 

minutes and low pulses of 50 minutes, as presented previously in figure 22. The conventional 

deposition was performed at 2% 𝐶𝐻4 𝐻2  rate, for 2h00. The common parameters for this set 

of experiments have been presented previously in table 9. The substrate temperature was 

kept around 700 °C, in order to prevent important steel structural modifications. 

Both, conventional and time-modulated depositions were successful in producing diamond 

layers, as it can be seen in figure 46. It is also clear that crystal density of the two samples is 

quite different. The conventional CVD resulted in an almost close film, with greater size 

  

 

Figure 46 - SEM images of diamond deposition on silicon 

wafers using conventional CVD (left) and TMCVD (right) 
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crystals than those obtained on the film produced by TMCVD. Average crystal sizes are 

0.7 ± 0.1 μm and 0.4 ± 0.1 μm, for the conventional and TMCVD films, respectively. 

Extensive diamond depositions on silicon was performed on the hot filament reactor of the 

research unit and characterized previously [83]. 

 





 

 

Chapter 5 

 
Performance of diamond coated mold 

tools 

1. Introduction 

As presented in the former chapter, diamond coatings were successfully obtained on AISI P20 

modified steel substrates, with the assistance of a chromium nitride interlayer, and also on 

silicon wafers. 

This chapter highlights the work undertaken concerning the usage and evaluation of 

polycrystalline diamond as a surface engineering coating on molding inserts for thermoplastic 

injection molding. 

First, some preliminary tests will be presented. Second, further experiments are conducted, 

namely the evaluation of microcrystalline and sub- microcrystalline diamond films, three-

dimensional featured coated mold tools and also the behavior of non-ferrous coated materials. 

2. Preliminary tests 

In this study, a small steel plate has been diamond coated, mechanically characterized and 

tested under service conditions, to produce high-density polyethylene (HDPE) components. 

A 50 × 50 × 5 mm AISI P20 modified plate, was diamond coated in a hot-filament CVD reactor, 

described previously. Prior to the diamond coating, a chromium nitride (CrN) interlayer was 

deposited onto the steel plate, in a PVD system. In order to enhance the diamond nucleation, 

the sample was subjected to a 3h00 ultrasonic bath in 0.25 μm polycrystalline diamond 

solution, followed by a 2 minutes cleaning with isopropyl alcohol. 
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Diamond deposition parameters were optimized considering the nature of the interlayer and 

the steel substrate, as presented in table 18 and in figure 47. It was used 𝐶𝐻4 modulations 

with respect to deposition time, as shown in figure 47, to enhance the nucleation density in 

the beginning of the deposition and to promote secondary nucleation during the film growth, 

resulting in denser and homogeneous coating. 

The deposited diamond film, as it can be seen in figure 48, presents a 30 mm diameter spot 

centered in the square substrate, where the film has an homogeneous growth, as it can be 

seen in figure 49. Outside this spot, the film loses its crystallinity and just amorphous carbon is 

present. This is probably due to the limitations of CVD equipment used which has a theoretical 

50 × 50 mm deposition area. 

As it can be depicted from figure 49, the as-deposited diamond surface, the film presents a 

predominant  111  and  100  crystallite orientation, which is typical for the used deposition 

temperatures. The latter has been confirmed by X-ray diffraction. It can also be depicted from 

the high amplification shown in figure 49, from measurements, that the predominant crystal 

size is under 500 nm. The film thickness is estimated to be within 1.5 to 2.0 μm and the 

measured average roughness is 0.14 μm. 

 

Table 18 - Diamond deposition conditions 

Parameter Value 

H2 flow (sccm) 200 
CH4 flow (sccm) 2 – 6 
Base pressure (Torr) 2 x 10

-2
 

Deposition pressure (Torr) 30 

Substrate temperature (C) 800 

Number of filaments 3 

Filament temperature (C) 2100  

Filament-substrate distance (mm) 8 

 

 

Figure 47 - Time-modulation of the 𝑪𝑯𝟒 gas related to 𝑯𝟐 
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Figure 48 - Mould cavity (left) and close-up of the diamond-coated insert plate (right) 

 

 

 

Figure 49 - SEM image of the as-deposited diamond film 

After the preliminary analyses of the as-deposited diamond film, the coated steel plate was 

tested for polymer molding, using a mold tool specially designed to accommodate the insert 

(figure 48) and mounted in an “Inautom EuroInj D65” injection molding machine to perform a 

cycle of 250 high-density polyethylene (HDPE) sample plates, as presented in figure 50. The 

injection molding processing conditions are presented in table 19. 
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Figure 50 - High-density polyethylene (HDPE) injected plate 

 

Table 19 - Cycle injection moulding processing conditions 

Parameter Value 

Injection pressure (bar) 50 

Melt temperature (C) 200 

Hold pressure (bar) 30 
Hold pressure time (s) 5 
Cooling time (s) 22 

 

The first injected samples presented a few small dark spots, as the result of the pealing of the 

amorphous carbon. After 10 cycles, the injected objects were perfectly clear of any coating 

contamination. 

After the 250 injection cycles, the insert was again removed from the mold tool and re-

analyzed in order to evaluate wear and degradation of the polycrystalline diamond coating. 

It is common knowledge that a 250 injection cycle is not representative of a routine mold 

production. Nevertheless, for the purpose of assessing the characteristics of the diamond film 

after injection molding and the suitability of the coating for this type of application, it is here 

considered. An increased injection routine will have to be considered in order to fully asses 

wear resistance of the inserts and the improvement of molding release. 
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Figure 51 presents SEM images of the diamond film after the routine injection cycle at high 

magnification (top) and low magnification (bottom). Some darker spots, that may be small 

amounts of plastic attached to the diamond film, can be seen in the high magnification image. 

From the lower amplification image, it can be seen that the film is quite homogeneous. 

Comparing the diamond surface presented in figure 51 with the as-deposited diamond surface 

shown in figure 49, no relevant morphological changes are detected. 

 

 

 

Figure 51 - SEM images of the diamond film after the routine injection cycle at high magnification (top) and 

low magnification (bottom) 
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Energy dispersive X-ray spectroscopy was performed on the diamond coated sample, before 

and after injection. From figure 52, it can be seen that the elements exhibited are carbon, 

probably from the diamond and enhanced form HDPE residues on the after injection 

spectrum, chromium from the interlayer, and iron from the substrate matrix. The EDS spectra 

of the coated plates, before and after injection, are very similar, indicating that no significant 

modification occurred during the injection cycles. 

After the injection molding cycles were carried out, a series of indentation tests were 

performed in a hardness tester with a 2.5 mm steel Brinell indenter, employing a range of 

loads between 153.2 N and 613 N. Vickers micro-hardness of the coated samples where 

measured using a micro-hardness tester, with a range of loads from 0.49 N to 1.96 N. 

The measured Brinell hardness, presented in figure 53, for the coated system was determined 

to be 226 HB, presenting a decrease of 27.9% in hardness when compared with the steel–CrN 

system (289 HB). The steel substrate coated with CrN also presents a decrease of 8.3% of 

Brinell hardness compared with the bare steel substrate (313 HB). These reductions on the 

hardness of the coated systems are probably due to steel and CrN phase transformations 

occurred when the CrN and diamond films are formed. Diamond growth, as shown in table 18, 

was performed at a substrate temperature of 800 °C, above the α → γ transformation 

temperature[16, 108]. The PVD-arc CrN coating, although performed at low temperature, 

involves high kinetic energy (material leaving the cathode at a velocity of around 10 km/s). 

 

 

Figure 52 - EDS of the diamond film 
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Figure 53 - Brinell hardness of the steel substrate, of the steel substrate-coated with CrN and the steel 

substrate with CrN interlayer and diamond coated 

 

The Brinell hardness indentations serve also to qualitatively analyze the coatings adhesion. 

Figure 54 and figure 55 show the effect of the 2.5 mm steel ball indenter with applied loads of 

613 N, 490 N, 306.5 N and 153.2 N. It can be observed that no significant delamination 

occurred, even at the maximum tested load. The coated film deformed to the shape of the 

Brinell indenter tip. The deformation of the coating to the shape of the indenter and in a 

synchronized form with the more plastic steel and CrN system, without slating, is an indication 

of the good adhesion of the diamond film. 

Concentric cracks around the indentation spots can be observed in the 613 N, 490 N and 

306.5 N indentations, more noteworthy on the highest load and decreasing with smaller loads. 

The cracks may be due to the external stress imposed onto the film during indentation loading 

that may force the film to crack in order to dissipate stress and/or energy. 

Raman spectroscopy was used to assess the diamond Raman quality, as proposed by Kulisch et 

al. [98] and to estimate the residual stresses of the diamond film according to Ralchenko et al. 

[36]. To verify the changes in the coatings residual stress, Raman spectroscopy was performed 

before and after the indentation tests for different loads. 

Raman quality was determined to be around 51%. 
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Figure 54 - SEM images of Brinell hardness indentations, using a 2.5 mm steel sphere and loads of 613 N, 490 

N, 306.5 N and 153.2 N 

 

 

Figure 55 - SEM images of Brinell hardness indentations boundary zone, using a 2.5 mm steel sphere and 

loads of 613 N, 490 N, 306.5 N and 153.2 N 
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As it can be observed in figure 56, the as-deposited film has a spectrum shift of 14 cm−1, which 

corresponds to 7.9 GPa of compressive stress, not very different from the one determined by 

Ralchenko et al. [36] on a diamond film growth on steel, at similar conditions as the ones 

presented in this work. 

The Raman spectra acquired in the 613 N indentation area, presents a slightly superior 

compressive stress, decreasing from the boundary of the indentation (∆𝜑 = 21𝑐𝑚−1 → 𝜎 =

11.9 𝐺𝑃𝑎) to its center ∆𝜑 = 18𝑐𝑚−1 → 𝜎 = 10.2 𝐺𝑃𝑎). 

Complimentary to the Brinell hardness measurements, Vickers micro-hardness indentations, 

using 0.49 N (50 g), 0.98 N (100 g) and 1.96 N (200 g) and a holding time of 10 s and 5 s, were 

performed. The measured micro-hardness stabilized at 483 HV (±10%) for the set of 

measurements performed at 0.98 and 1.96 N for both the holding times. The 0.49 N load, held 

for 10 s, presented 270 HV. For the 5 s holding time, at the above-referred load, it was not 

possible to measure the hardness value accurately. Figure 57 shows the SEM images of the 

micro-indentations zones. All indented spots present surface modifications, in what seems to 

occur a reduction of the adhesion of the diamond film to the substrate. 

 

 

Figure 56 - Raman spectrum of the diamond coating before and after Brinell indentation at 613 N (in the 

centre, in the middle and in the boundary of the indentation) 
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Figure 57 - SEM images of Vickers micro-hardness indentations using a load of 0.49 N, 0.98 N and 1.96 N for 

10 s and 5 s 

 

3. Microcrystalline films 

Four AISI P20 modified steel molding inserts with 10 × 10 × 3 mm were prepared with different 

surface engineering treatments, as shown in table 20. The molding surfaces of all the inserts 

were polished with Silicon Carbide paper till grit # 2000. Samples AC1 and AC2 were coated 

with a PVD chromium nitride (CrN) film of 2 µm thickness. Sample AC3 was also coated with 

the same CrN film in order to compare its performance with the diamond coated inserts. 
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Table 20 - Description of the different insert mold tools 

Insert Description 

AC1 2 µm diamond film - 2 µm CrN film - Steel system 
AC2 5 µm diamond film - 2 µm CrN film - Steel system 

AC3 2 µm CrN film - Steel system 
AC4 Bare steel 

 

Prior to the diamond coating, samples AC1 and AC2 were ultrasonic abraded with diamond 

solution (0.25 µm grain size) for 2h30 and then cleaned for 5 minutes in an ultrasonic bath 

with isopropyl alcohol. 

Diamond growth was performed in a hot-filament CVD reactor, described in chapter 3, using 

time-modulated CVD. The deposition conditions employed are shown in table 18. Sample AC1 

was submitted to 4h30 of deposition (2 modulated cycles) and sample AC2 was submitted to 

9h00 of deposition (4 modulated cycles), as it can be seen in figure 58. 

Figure 59 shows the SEM images of inserts AC1, AC2, AC3 and AC4 before injection molding 

and figure 60 presents the X-ray diffraction spectra of the same samples. 

Both diamond coated samples exhibited diamond crystallites mainly displaying  111  crystal 

orientation, although  100  oriented crystals were also observed. These growth directions are 

typical for the processing temperatures employed in this investigation. The measured average 

crystal size of these films was 1.74 and 1.25 μm, and the measured average roughness was 

0.18 and 0.16 μm, for samples AC1 and AC2, respectively. Inserts AC3 and AC4 presented an 

average roughness of 0.10 and 0.11 μm, respectively. 

 

 

Figure 58 - Time-modulated CVD conditions used 
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Figure 59 - SEM images of inserts AC1 (top left), AC2 (top right), AC3 (bottom left) and AC4 (bottom right) 

before injection molding 

 

 

Figure 60 - EDS of the molding inserts 

 

From the X-ray diffraction spectrum presented in figure 60 it may be observed that the 5 µm 
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(C). The presence of chromium on the steel substrate is believed to be due to the 2% that is 

included in the composition of AISI P20 modified. 

Raman spectroscopy was used to assess the diamond Raman quality, on the diamond coated 

samples, as proposed by Kulisch et al. [98] and to estimate the residual stresses of the 

diamond film according to Ralchenko et al. [36]. 

Calculated quality factor values for the diamond coatings are 56.0 and 58.3%, for samples AC1 

and AC2, respectively. 

Samples AC1 and AC2 presented diamond peak shifts  ∆𝜑  of 11 and 13 cm−1, respectively. 

Calculated residual stress  𝜎  values for the diamond coatings are 6.2 and 7.4 GPa, for samples 

AC1 and AC2, respectively. 

After this preliminary analysis to the molding inserts, they were placed in a mold tool specially 

designed to accommodate the 10 x 10 x 3 mm inserts and mounted in an “Inautom EuroInj 

D65” injection molding machine to perform a cycle of 500 high-density polyethylene (HDPE) 

sample plates, at the conditions presented in table 19. 
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Figure 61 - Optical microscopy images of the HDPE molded surfaces 
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The molded samples were analyzed using optical microscopy. Figure 61 displays 150 times 

magnified images of HDPE objects from the run number 1, 100, 300 and 500. Whatever the 

type of insert surface, the first injected object presents more heterogeneous surface than the 

objects injected in cycles 100, 300 or 500. After the first set of injections, the polymeric objects 

molded with both diamond coating are very alike. The molded pieces by AC3 and AC4, present 

some surface scratches, but maintain the optical brightness (observed at the naked eye). The 

samples molded with the diamond coated inserts presented a slightly more tarnished surface 

than the samples molded with bare steel or with the CrN coating. This may be due to the slight 

increased roughness that the diamond coated inserts present, compared with the non-

diamond coated samples, and also due to the crystalline nature of the diamond coatings. It is 

also worth of mention that the injected samples 100 by the bare steel insert is very clean, but 

as the number of injections are increased, the surface of the plastic sample becomes 

heterogeneous. 

The diamond coating was again observed by SEM, after the injection process, and as it can be 

seen in figure 62, apparently no morphological change occurred. 

 

 

Figure 62 - SEM images of inserts AC1 (left) and AC2 (right) after 500 injection molding 

 

4. Sub-microcrystalline films 

In the previous sub-chapter, it was referred that the samples molded with the diamond coated 

inserts presented a slightly more tarnished surface than the samples molded with bare steel or 

with CrN coating. This may be due to the slighty increased roughness that the diamond coated 

inserts present, compared with the non-diamond coated samples, and also due to the 

crystalline nature of the diamond coatings. Nevertheless, it is expected that if the average 

roughness and crystal size of the diamond film is reduced, this problem may be overcome. 
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Diamond average roughness and crystal size reduction may be accomplished by the deposition 

of sub-microcrystalline or nanocrystalline diamond [97]. 

In this study, a similar work to the one performed in previous sub-chapter will be presented, 

but using sub-microcrystalline diamond coatings. 

A set of steel samples made out of AISI P20 modified steel, with the dimensions of 

5 × 5 × 0.5 mm were used in this investigation. The steel samples were pre-coated with PVD 

chromium nitride (CrN) 2 μm thick film, in order to block the mutual diffusion between the 

ferrous substrate and the diamond growth atmosphere. The steel plates had the molding 

surface polished with Silicon Carbide paper till grit #2000.  

Prior to the diamond deposition, the samples coated with CrN were ultrasonic abraded with 

diamond solution (0.25 μm grain size) for 2h30 and then cleaned for 5 minutes in an ultrasonic 

bath with isopropyl alcohol. 

Diamond growth was conducted in a hot-filament CVD reactor, described in chapter 3, using 

time-modulated CVD. The deposition conditions employed are shown in table 18 and figure 63. 

In order to obtain homogeneous coatings with an average crystal size of about 1 μm, cycles of 

15 minutes were employed for high methane pulses, followed by a low methane stage of 120 

minutes.  

 

 

Figure 63 - Diamond deposition conditions 
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Diamond deposition under conditions DEP1, DEP2 and DEP3, as shown in figure 63, was carried 

out using 2 and 4 cycles, which corresponds to a total deposition time of 4h30 and 9h00, 

respectively. Conditions DEP1 and DEP2 differ from one another on the high-pulse methane 

concentration. Higher methane concentration promotes the increase of diamond nucleation 

density [80] and consequently changes in the diamond film morphology, namely crystal size 

can be reduced, but at the expense of diamond quality. In order to illustrate the latter 

conditions, DEP1 and DEP2 were used to observe the effect of those morphology changes. 

The deposition conditions DEP1, DEP2 and DEP3 were used to produce samples FD1, FD2 and 

FD3, respectively, as shown in table 21. A bare steel plate (sample F1) was also used in the 

adapted mold, to serve as a reference sample. 

After the deposition of diamond coatings on all samples, the morphology of the as grown films 

were characterized using scanning electron microscopy (SEM) and the intrinsic stress state and 

quality of the diamond coatings was characterized using Raman 514.5 nm Ar+ ion laser 

spectroscopy. 

Figure 64 shows microscopic images of the diamond coatings. All the as-grown films exhibited 

sub-micron diamond crystallite size, mainly displaying (111) crystal orientation, but (100) 

crystal orientation was also observed. These growth directions are typical for the processing 

temperatures employed in this investigation (700 – 800 C). The average diamond crystallite 

sizes of the deposited films are 0.61, 0.71 and 0.83 µm, for sample FD1, FD2 and FD3, 

respectively. 

Figure 65 displays Raman spectra of the as-deposited samples. Raman spectroscopy was used 

to assess the diamond Raman quality and to estimate the residual stresses of the diamond film 

as deposited. 

The quality factor of the diamond coatings was calculated to be 50.9, 55.9 and 58.3%, for 

samples FD1, FD2 and FD3, respectively. The calculated residual stress  𝜎  values for the 

diamond coatings are 4.5, 6.2 GPa, for samples FD1 and FD2, respectively. The longer 

deposition time sample, FD3, exhibited a residual stress of 7.4 GPa. 

 

Table 21 - Description of the different insert mold tools 

Insert Description 

FD1 Steel plate diamond coated (DEP1) 
FD2 Steel plate diamond coated (DEP2) 
FD3 Steel plate diamond coated (DEP3) 
F1 Bare steel plate 
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Figure 64 - SEM images of diamond coatings on steel substrates 

Sample FD1 (top), FD2 (middle) and FD3 (bottom) 

 

 

Figure 65 - Raman spectra of the diamond-coated steel plates 
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Steel linear thermal expansion coefficient largely differs from the coefficient value displayed by 

CVD diamond [36]. Time-modulated CVD process helps to attenuate the direct time 

dependence of the residual stress of diamond films growth on steel substrates, but does not 

eliminate it. 

The four inserts, described in table 21, were tested for polymer injection molding, using a mold 

tool specially designed to accommodate the inserts and mounted in an injection molding 

machine to perform a cycle of 80 high-density polyethylene (HDPE) sample components at the 

conditions presented in table 19 

Figure 66 displays micrographs of the polymeric molded surface by the different inserts, in run 

number 1, 50 and 80. Apart from the first set of samples, that present marks of the demolding 

spray used in the beginning of the processing work, the injected parts are identical. 

All samples presented a good finishing surface, not showing the tarnished surface that the 

diamond coated insert of the previous sub-chapter originated. 

 

 

Figure 66 - Optical microscopic images of the HDPE-injected plate surface, by the different inserts, in run 

number 1, 50 and 80 
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From the images presented in figure 66, it is evident that the molded objects with the 

diamond-coated inserts, present more homogeneous surfaces than the ones molded by the 

insert without coating. It should be noted that insert F1 has the same or better surface finish 

than the samples that were used to deposit diamond, because their surface was not diamond 

abraded as the ones pre-treated for diamond coating. The initial steel samples were not 

surface polished to achieve a mirror surface, in order to obtain optical smooth surfaces and, 

hence, good quality plastic components/parts. Therefore, the results indicate that polishing 

time may be saved when using diamond-coated surfaces. 

Figure 67 shows SEM micrographs of diamond-coated steel after the injection routine cycles 

were carried out. 

 

Figure 67 - SEM images of diamond coatings on steel substrates after HDPE moulding injection 

Sample FD1 (top), FD2 (middle) and FD3 (bottom) 
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Once again, it should be referred that a reduced number of molding cycles were carried out. 

Nevertheless this study has a relative importance since the suitability of the technique is being 

evaluated in laboratory conditions prior to full industrial assessment. Therefore, by comparing 

SEM images prior to injection (figure 64), with post-injection (figure 67), it can be stated that 

no degradation is observed. 

5. Three-dimensional featured coated mold tools 

In this sub-chapter, it will be presented work focusing the deposition of diamond coatings onto 

three-dimensional (3D) structured steel substrates using interlayer systems and its usage as a 

surface coating to thermoplastic injection molding functional systems. 

The samples considered for the analysis were obtained by injection molding of high density 

polyethylene (HDPE) on an “Inautom EuroInj D65” injection molding machine, at the 

conditions presented in table 19, using an adapted mold plate, where 4 different 3D mold 

inserts were installed. The injection molding cycle was then repeated 500 times. 

All molding inserts had 10 × 10 × 3 mm and a center cross in the surface, with 0.5 mm deep, 

as it can be seen in the schematic drawings of figure 68 and the picture of figure 69. AISI P20 

modified steel was used to produce the 3D molding inserts and each tool was prepared with 

different surface engineering treatments, as shown in table 22. Samples AD1, AD2 and AD3 

were coated with a film of chromium nitride (CrN) 2 µm thick. 

 

Figure 68 - Schematic drawings of the adapted mold tool (left) and the molded polimeric part (right) 
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Figure 69 - Image of the 3D inserts on the mold tool 

 
Table 22 - Description of the different insert mold tools 

Insert Description 

AD1 2 µm diamond film - 2 µm CrN film - Steel system 

AD2 5 µm diamond film - 2 µm CrN film - Steel system 
AD3 2 µm CrN film - Steel system 
AD4 Bare steel 

 

The pre-deposition and deposition process of samples AD1 and AD2 were simultaneous and 

identical to the process applied in samples AC1 and AC2, presented in chapter 5. Low 

magnification images of the diamond coated samples are presented in figure 70. 

Figure 71 shows SEM images of three close-up views of the diamond film on the surface, on 

the valley and on the slope of each of the featured steel inserts. Samples AD1 and AD2 exhibit 

great morphological similarity, with respect to the diamond coatings. All the as-grown films 

exhibited diamond crystallite size of about 1 µm, mainly displaying (111) crystal orientation, 

nevertheless (100) oriented crystals were also observed. 

  

Figure 70 - SEM images of inserts AD1 (left) and AD2 (right) as diamond coated 
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Figure 71 - SEM image of the different regions of the 3D features on inserts AD1 and AD2, as-deposited 

 

The measured average roughnesses of these films, at the top surface, are 0.16 and 0.15 μm, 

for samples AD1 and AD2, respectively. Inserts AD3 and AD4 presented an average roughness 

of 0.10 and 0.11 μm, respectively. 

The edges of the 3D cross are not fully covered with diamond, nor the slope and the valley of 

the feature. The irregular shape of the 3D cross does not allow a good seeding on it, inducing 

an heterogeneous coating. Nevertheless, most of the surface of the 3D feature is coated with 

diamond film. It can be observed that the diamond film crystal size decreases when going from 

the top surfaces of the samples, passing throw the slop, and getting to the valley, as it can be 

seen in figure 71. 

Calculated quality factor values for the diamond coatings are 55.9 and 58.3%, and the 

calculated residual stress values are 6.2 and 7.4 GPa, for samples AD1 and AD2, respectively. 

These parameters were only measured from the top surface films. 

After the preliminary evaluation of the two diamond coated inserts, the system was installed 

in a molding plate, together with two other inserts, one coated with commercial grade 2 µm 

CrN (identical to the coating used as interlayer for the diamond growth) and one bare steel 

insert, as described in table 22 and shown in figure 69. 

The inserts were then subjected to 500 injections of HDPE, at the conditions presented in table 

19. Figure 72 presents the injected plate number 400. 
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Figure 72 - Molded plastic plate on run 400 

 

The dimensional stability of the molding insert and that of the polymeric object is of utmost 

importance, in order to guaranty the molded parts quality and to comply with customer 

requisites. In this investigation, the dimensional trend is only shown for the polymeric injected 

objects. Nevertheless, the dimensional stability of the molding insert and of the polymeric 

objects is directly related to one another. 

A set of injected plates were analyzed for dimension degradation by a coordinate measuring 

machine and the results are presented in figure 73. Samples molded by inserts AD1 and AD2 

show a degradation trend of − 0.0001 mm/injection, with a correlation coefficient of 0.9782 

and 0.9287, respectively. Samples molded by inserts AD3 and AD4 show a degradation trend of 

− 0.0004 mm/injection, with a correlation coefficient of 0.9095 and 0.7936, respectively. It is 

assumed that this is due to polymer aggregation to the cavity. 

 

Figure 73 - Degradation of the feature height 
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The diamond coating was again observed by SEM, after the injection process. Figure 74 

presents the SEM images of inserts AD1 and AD2 after 500 injections, and figure 75 shows SEM 

images of close-up views of the diamond film on the surface, on the valley and on the slope of 

each of the featured steel inserts, after injection molding. Apparently no morphological change 

occurred.  

 

 

Figure 74 - SEM images of inserts AD1 (left) and AD2 (right) after 500 injection molding 
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Figure 75 - SEM image of the different regions of the 3D features 

on inserts AD1 and AD2, after injection molding 
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6. Non-ferrous substrates materials coated mold tools 

Hybrid molds or multi-material molds are currently used for injection molding prototyping or 

to enhance mold heat extraction effectiveness. 

Nevertheless, as the demand for smaller devices continues to increase, current manufacturing 

processes will find it more challenging to meet cost, quantity, and dimensional requirements. 

While microfabrication technology processes can create electronic devices in vast quantities 

with increasingly smaller dimensions, they are challenged to do so for mechanical devices at 

low cost and in large quantity. More traditional manufacturing processes such as machining or 

injection molding can more easily meet cost and quantity requirements, but are unable to 

currently match the dimensional challenges of microfabrication processes. 

By merging microfabrication, namely applied to silicon technology, and traditional injection 

molding techniques, the benefits of both technologies can be combined to produce parts to 

meet all three requirements. [123-125] 

The objective of the work here presented is to investigate the possibilities of injection molding 

polymer parts with silicon diamond coated inserts. 

A set of silicon wafers, with the dimensions of 5 × 5 × 0.5 mm were used. Prior to the diamond 

deposition, silicon wafers were scratched with diamond powder (2–4 μm grain size) for 

approximately 2 minutes, in order to enhance the subsequent diamond nucleation density, 

and then cleaned for 5 minutes in an ultrasonic bath with isopropyl alcohol. 

Diamond growth was conducted in a hot-filament CVD reactor, described in chapter 3, using 

time-modulated CVD. The deposition conditions employed are shown in table 18 and figure 63 

and are the same as the conditions employed for the sub-microcrystallinity study, performed 

earlier as described in chapter 5. 

The deposition conditions DEP1, DEP2 and DEP3 were used to produce samples SD1, SD2 and 

SD3, respectively, as shown in table 23. A bare silicon plate (sample S1) was also used in the 

adapted mold, to serve as a reference sample. 

 

Table 23 - Description of the different insert mold tools 

Insert Description 

SD1 Silicon plate diamond coated (DEP1) 
SD2 Silicon plate diamond coated (DEP2) 
SD3 Silicon plate diamond coated (DEP3) 
S1 Bare silicon plate 
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After the deposition of diamond coatings on all samples, the morphology of the as grown films 

was characterized using scanning electron microscopy (SEM) and the intrinsic stress state and 

quality of the diamond coatings was characterized using Raman 514.5 nm Ar+ ion laser 

spectroscopy. 

Figure 76 shows microscopic images of the diamond coatings. All the as-grown films exhibited 

sub-micron diamond crystallite size, mainly displaying (111) crystal orientation, but (100) 

crystal orientation was also observed. The average diamond crystallite sizes of the deposited 

films are 0.62, 0.68 and 0.85 µm, for sample SD1, SD2 and SD3, respectively. 

Figure 77 displays Raman spectra of the as-deposited samples. Raman spectroscopy was used 

to assess the diamond Raman quality and to estimate the residual stresses of the diamond 

film. 

The quality factor of the diamond coatings was calculated to be 51.6, 66.2 and 67.1%, for 

samples SD1, SD2 and SD3, respectively. The calculated residual stress  𝜎  values for the 

diamond coatings are 0.6, 1.1 GPa, for samples SD1 and SD2, respectively. The longer 

deposition time sample, SD3, exhibited a residual stress of 0.6 GPa. As expected, diamond on 

the silicon plates presented higher quality and comparatively lower residual stress, once 

diamond linear thermal expansion coefficient is similar to the one presented by silicon [126]. 
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Figure 76 - SEM images of diamond coatings on silicon substrates 

Sample SD1 (top), SD2 (middle) and SD3 (bottom) 

 

 

Figure 77 - Raman spectrum of the silicon-coated steel plates 
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The four inserts were tested for polymer injection molding, using a mold tool specially 

designed to accommodate the inserts and mounted in an injection molding machine to 

perform a cycle of 80 high-density polyethylene (HDPE) sample components at the conditions 

presented in table 19. 

Figure 78 displays micrographs of the polymeric molded surface by the different inserts, in run 

number 1, 50 and 80. Apart from the first set of samples, that present marks of the demolding 

spray used in the beginning of the processing work, the injected parts is very identical. All 

samples presented a good finishing surface. 

From the images presented in figure 78, it is evident that the molded objects with the 

diamond-coated inserts, present more homogeneous surfaces than the ones molded by the 

insert without coating. It should be noted that insert S1 has a mirror surface finish and that the 

diamond coated samples were abraded with diamond powder to enhance the diamond 

nucleation process. 

 

 

Figure 78 - Optical microscopic images of the HDPE-injected plate surface, by the different inserts, in run 

number 1, 50 and 80 
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Figure 79 presents SEM micrographs of diamond-coated silicon after the injection routine 

cycles were carried out. 

Although in this work a reduced number of molding cycles were carried out, it is also 

important to assess the characteristics of the diamond films after the injection period. 

Therefore, by comparing SEM images prior to injection (figure 76), with post-injection (figure 

79), it can be stated that no degradation is observed. 

 

 

Figure 79 - SEM images of diamond coatings on silicon substrates after HDPE molding injection 

Sample SD1 (top), SD2 (middle) and SD3 (bottom) 

 

 





 

 

Chapter 6 

 
Conclusions and further work 

1. Conclusions 

Thermoplastic injection molding is a manufacturing technique that enables high production 

rates at low cost. 

Portuguese mold makers detain a considerably good reputation worldwide and therefore are 

responsible for a significant percentage of the worlds mold production. Portugal is also one of 

the world’s principal producers of precision molds for the plastic industry. Nevertheless, the 

Portuguese mold making industry, as the European, is coming under increasing economic 

pressure. To reverse the decline in the Small and Medium based EU tooling industry, processes 

that offer mold makers a competitive advantage over non-EU imports are required. 

Microsystems-based products will be an important contributor to industrial and economic 

future. Moreover, plastic microinjection molding tools, with a high complexity and top 

pioneering and engineering solution requirements, can clearly be seen as an added value to 

industry and to increase competitiveness. 

Despite the above mentioned, there are still some problems on the downstream to plastic 

microinjection molding tools that must be overcome. It is necessary to overcome technological 

problems such as wear rates due to high aspect ratios, complex geometries and aggressive 

polymer and additives, releasing problems due to static charges and complex featured 

requirements. 
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Chemical vapor deposited diamond films present a set of properties that point it as an ideal 

candidate to surface engineer molding tool. It detain an extreme mechanical hardness and 

wear resistance, one of the highest bulk modulus, the lowest compressibility, the highest room 

temperature thermal conductivity, a very low thermal expansion coefficient at room 

temperature and is very resistant to chemical corrosion. 

The growth of diamond on carbide-forming materials usually leads to the production of 

adherent diamond coatings. Silicon is a widely used material for depositing diamond films 

using CVD processes. On the other hand, diamond grown directly on strong carbon-dissolving 

materials, such as steel, or on non-carbon affinity materials, yields poor adhesion. Also, iron is 

known to diffuse out from the bulk steel material towards the substrate surface during the 

growth process, promoting the growth of sp2 carbon specimens, instead of diamond. 

Furthermore, the difference in the thermal expansion coefficients of diamond and steel is 

large, which results in the incorporation of residual stresses in the deposited diamond films 

and influences negatively the adhesion of the diamond coating. 

A possible solution to overcome these problems is to use an interlayer that will block both 

inward carbon and outward Fe vapor diffusions, and provide a mutual good adhesion medium. 

From the state-of-the-art review and the preliminary tests performed with the use of 

chromium nitride (CrN), titanium (Ti) and silicon (Si) as interlayer, physical vapor deposited 

chromium nitride (CrN) was selected as the interlayer material to coat diamond on steel 

substrates in this study. 

A group of different steel substrates was also tested, namely stainless steels – austenitic 

chromium-nickel alloys AISI 304, 310 and 316, and the common steel used for mold tool 

production – AISI P20 modified. The best performer was AISI P20 modified. On AISI 304 steel 

with CrN interlayer, fully closed and homogeneous film was obtained for more than 6h00 of 

deposition. On AISI 310 and 316 steel samples not even the longer deposition conditions 

yielded good results. This performance of the stainless steels maybe due to the high contents 

of nickel, a strong carbon-dissolving material [29-34]. 

AISI P20 modified samples with a 9h00 deposited diamond film presented a Brinell hardness of 

1540 HB and did not present delamination up to a load of 125 kgf. AISI 304 diamond coated 

samples presented a Brinell hardness of 173 HB and withstand a load of at least 20 kgf without 

any cracking or delamination of the diamond film. 

In all the diamond coatings, Raman quality factor is above 50% and the coatings stress is lower 

than the predicted theoretical values. 
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Worth of mention is that diamond films were grown using a recently developed time-

modulation chemical vapor deposition (TMCVD) process. TMCVD consists on the modulation 

of the 𝐶𝐻4 gas flow during the deposition time. The sort high pulses of 𝐶𝐻4 enriches the 

reactor atmosphere with methyl specimens, which at the nucleation stage enables a higher 

nucleation density and during the growth process it is believed to inhibit further growth of 

diamond crystallites and promote a new nucleation site on top of the growing crystals. 

Finally, the usage and evaluation of polycrystalline diamond as surface engineering coatings on 

molding inserts for thermoplastic injection molding was performed. 

Different coated systems were tested to reproduce high-density polyethylene (HDPE) 

components, namely microcrystalline and sub-microcrystalline diamond films, and three 

dimensional featured inserts. 

Each coated system was tested for a number of injection cycles in order to evaluate the 

polymeric produced parts and also the degradation of the coated inserts. All coated samples 

presented good stability at least till 500 runs (the maximum that a single diamond coated 

insert was subjected to, under laboratory conditions). 

The HDPE thermoplastic molded objects presented good quality and reproduced well the 

molding surface. Microcrystalline diamond coated inserts produced slightly tarnished plastic 

parts. The latter, seems to be considerably dimmed with the use of sub-microcrystalline films. 

The three dimensional featured steel inserts presented a good performance and a reduced 

degradation trend comparatively to the non-coated surfaces. 

By merging microfabrication, namely applied to silicon technology, and traditional injection 

molding techniques, the benefits of both technologies can be combined to produce parts to 

meet low cost, high quantity, and complex dimensional requirements. With this approach in 

mind, it was investigated the suitability of polymer injection molding with silicon diamond 

coated inserts. 

Diamond on silicon is rather simpler than diamond on steel, so the diamond films coated on 

silicon substrates presented superior characteristics than the similar grown films on steel. 

The HDPE molded objects, by the silicon diamond coated inserts, presented good quality and 

reproduced well the molding surface. 
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2. Further work proposals 

The research work here undertaken has highlighted the need for further work. Therefore it is 

here considered the need for subjecting the diamond coatings to extensive run cycles in 

industrial environment and the evaluation of nanocrystalline diamond coatings performance. 

 

Extensive run cycles in industrial environment  

The maximum number of injection molding cycles carried out for each coated insert was 500. 

The latter, was considered to be representative of batch production [1] and therefore suitable 

for the type of analysis intended throughout this study. Nevertheless, extensive run cycles in 

industrial environment are desirable in order to establish the performance of the diamond 

coatings during service. 

 

Nanocrystalline diamond coatings performance 

The technology process of depositing nanocrystalline diamond films has achieved considerable 

advancement in the recent years [127]. Similarly to the work accomplished here for 

microcrystalline and sub-microcrystalline diamond films, it should be of interest to evaluate 

nanocrystalline films which may present some surface advantages over microcrystalline films, 

namely the surface roughness. 
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