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resumo 
 

 

O presente trabalho consistiu no desenvolvimento de ferramentas de corte 
de diamante CVD (Chemical Vapour Deposition) obtido na forma de 
revestimento em materiais cerâmicos à base de nitreto de silício monolítico 
(Si3N4) ou compósitos nitreto de silício-nitreto de titânio (Si3N4-TiN). A 
adição de TiN acima de 23 vol.% conferiu conductividade eléctrica ao 
compósito, na ordem de 1×10-1 Ω−1.cm-1, possibilitando a sua maquinagem 
por electroerosão. 
Duas técnicas foram utilizadas para o crescimento dos filmes de diamante: 
deposição química em fase vapor por plasma gerado por microondas, 
MPCVD (Microwave Plasma Chemical Vapour Deposition), e por filamento 
quente, HFCVD (Hot Filament Chemical Vapour Deposition). Previamente 
os substratos cerâmicos sofreram uma preparação superficial por diversos 
métodos: rectificação por mós diamantadas; polimento com suspensão de 
diamante (15µm); ataque da superfície por plasma de CF4; riscagem 
manual ou por ultra-sons com pó de diamante (0.5-1.0 µm). 
A caracterização das ferramentas revestidas envolveu: o estudo da 
qualidade e tensões residuais dos filmes de diamante a partir da difracção 
dos raios X e espectroscopia Raman; a análise da respectiva 
microestrutura e medida da espessura por microscopia electrónica de 
varrimento (SEM); a determinação dos valores de rugosidade dos filmes 
por microscopia de força atómica (AFM); e a avaliação da adesão dos 
filmes aos substratos por indentação com penetrador Brale. 
Foram obtidos filmes com granulometria que variaram da gama do 
diamante nanométrico (< 100 nm) até ao micrométrico convencional (3-12 
µm), com consequências na rugosidade superficial do filme. Os filmes de 
diamante CVD apresentaram espessuras de 15 a 150µm. Os 
revestimentos apresentaram elevada adesão ao substrato, sendo que o 
melhor resultado foi atingido pelo diamante micrométrico, suportando um 
limite de carga aplicada de até 1600 N. 
 
 

 

 



  

 

 

 

 

 

 

 

 

  

  

 

 
O estudo do comportamento em serviço das ferramentas foi efectuado na 
operação de torneamento de metal duro (WC-Co) e de eléctrodos de 
grafite, com medição de forças de corte em tempo real por meio de um 
dinamómetro. Os ensaios foram realizados num torno CNC, em ambiente 
industrial, na empresa Durit (Albergaria-a-Velha), produtora de metal duro. 
Os modos de desgaste das ferramentas foram avaliados por meio de 
observação em microscopia óptica e electrónica de varrimento e o grau de 
acabamento da superfície maquinada por rugosimetria. A influência destes 
parâmetros foi estudada em termos das forças envolvidas em operações 
de torneamento, desgaste das ferramentas e do acabamento conferido à 
peça maquinada. 
Os melhores resultados do torneamento de metal duro foram atingidos 
pelas ferramentas com geometria de aresta em quina-viva, recobertas com 
os filmes de diamante de 100-200 nm de tamanho de grão, 
correspondentes às menores forças de corte (<150N), melhor qualidade da 
peça maquinada (rugosidade aritmética igual a 0,2 µm) e menor desgaste 
(flanco igual a 110µm). No torneamento de eléctrodos de grafite, as forças 
de corte foram baixas (< 20N), sendo que o principal modo de desgaste foi 
a formação de cratera na superfície de ataque (valor máximo igual a 
22 µm). O fio da aresta de corte permaneceu inalterado (devido ao mínimo 
desgaste de flanco), sendo que as diferentes granulometrias do diamante 
não tiveram influência significativa no comportamento geral das 
ferramentas. 
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abstract 

 
This work consisted on the development of CVD (Chemical Vapour 
Deposition) diamond cutting tools directly deposited on monolithic silicon 
nitride (Si3N4) based ceramics and silicon nitride-titanium nitride composites 
(Si3N4-TiN). A TiN content higher than 23 vol.% confers electric conductivity 
to the composite in the order of 1×10-1 Ω−1.cm-1, making possible its 
machinability by means of electrodischarge machining. 
Two techniques were used for diamond growth: Microwave Plasma 
Chemical Vapour Deposition (MPCVD) and Hot Filament Chemical Vapour 
Deposition (HFCVD). The substrate pre-treatment steps prior to diamond 
deposition were: grinding with diamond wheels; polishing with diamond 
suspension (15µm); chemical etching with CF4 plasma; manual scratching 
or ultrasonic bath scratching with diamond powder (0.5-1.0 µm) for seeding 
purposes. 
The diamond cutting tools characterization involved: study of the quality 
and the residual stress of the films by X ray diffraction and Raman 
spectroscopy; analysis of respective film microstructure and measurement 
of film thickness by scanning electron microscopy (SEM); quantification of 
film surface roughness by atomic force microscopy (AFM); evaluation of 
adhesion strength of the thin films to Si3N4 substrate by the indentation 
technique with a Brale indenter. 
The grain size of the films varied from nanometric (< 100 nm) to 
conventional micrometric (3-12 µm), therefore giving different surface 
roughness. The CVD diamond film thickness was in the range of (15-150 
µm). The diamond films presented a high adhesion level to the Si3N4 
ceramic substrates, the best results being achieved by the micrometric 
grain sized film, which undergo a normal load of until 1600N. 
 

 

 



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 The study of the cutting tool behaviour was performed in turning operations 
of hardmetal (WC-Co) and graphite electrodes, by real-time acquisition of 
the cutting forces using a dynamometer. The turning operations were 
carried out in a CNC lathe, at industrial environment of a hardmetal 
producer company, Durit (Albergaria-a-Velha). The wear modes of the 
tested cutting tools were analysed by optical and electronic microscopy 
observations and the finishing quality of the machined workpiece was 
measured by surface roughness measurements. The influence of these 
parameters was studied in terms of the cutting forces developed during 
turning operations, of tool wear and of the finishing quality of the machined 
workpieces. 
The best results attained in hardmetal turning were achieved by the cutting 
tools with sharp edges, covered with diamond films of 100-200 nm of grain 
size, which presented the lowest cutting forces (<150N), the best workpiece 
surface quality (Ra=0.2µm) and the lowest flank wear (110µm). In graphite 
turning, the cutting forces were very low (<20N) and the main wear mode 
was the crater one on the rake face (maximum value of 22µm). The cutting 
edge remained almost intact (due to the minimum flank wear) while the 
different diamond grain sizes did not have a significant influence on the 
overall cutting behaviour. 
 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A worker may be the hammer’s master, but the hammer still 

prevails. A tool knows exactly how it is meant to be handled, 

while the user of the tool can only have an approximate idea. 

 

Milan Kundera 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Idade da Pedra não terminou por falta de pedra… mas 

pela necessidade de transformação. 

 

Renata Dainese 

 

 

 

 

 







 

 

 

 

 

Foreword 

 

 



 2 



 3 

The continuous improvement of materials properties leads the cutting tools 

researchers to find out economical and reliable solutions for the success of their products in 

today’s very competitive markets. For instance, automotive and aeronautic industries are 

employing lightweight materials such as hypereutectic aluminium-silicon alloys, carbon 

and glass fibre-reinforced composites and aluminium-silicon carbide metal-matrix 

composites, which offer better mechanical behaviour, along with economy in energy 

consumption. However, many of these materials are very abrasive and difficult-to-

machine, becoming impractical the use of conventional cutting tools. Another example is 

the use of hardmetal (mainly WC-Co) for metal forming tools like in deep-drawing or in 

rolling process, which demands new superhard tools for WC-Co parts shaping. Graphite 

electrodes for electrical discharge machining (EDM) are difficult-to-shape due to the 

abrasiveness or their polycrystalline nature and strong anisotropy, requiring the use of 

adequate cutting tools to ensure the tight tolerances. 

 

The most common superhard tools are polycrystalline diamond (PCD) and 

polycrystalline cubic boron nitride (PCBN). PCBN tools are used mostly for machining 

hard ferrous materials whereas PCD tools are used for non-ferrous alloys and composites 

that are difficult-to-cut. Due to the high costs involved in HPHT (High Pressure High 

Temperature) manufacturing and in tool finishing, PCD and PCBN tools are very 

expensive. The relatively new diamond grade manufactured by chemical vapour deposition 

technique (CVD) uses mainly hydrogen and methane at low pressure and low temperature 

to produce high quality diamond at lower costs than that with HPHT technique. So, it is 

being more and more established as an economically and attractive way for diamond 

cutting tools production. Comparatively to PCD, CVD diamond is harder, better corrosion 

and wear resistant, and presents higher thermal conductivity since it has no Co binder. To 

offset these advantages, the absence of Co binder decreases the fracture toughness and also 

the electrical conductivity. This means that CVD diamond can not be cut by EDM, but by 

alternative ways, like laser or ultrasound cutting. However, as a consequence of the Co 

absence, the CVD diamond is more refractory, so higher cutting velocities can be used. 

 

The main objective of the research presented in this thesis is the development and 

real testing of CVD diamond cutting tools in turning of highly hard and abrasive materials, 

like hardmetal and EDM graphite. The workpiece surface finishing/tolerances and tool 
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wear mechanisms, which determine the performance of the cutting tool, are evaluated. The 

turning tests were done in industry environment, due to the association of a hardmetal 

producer, Durit, located at Albergaria-a-Velha, district of Aveiro, Portugal. 

 

This thesis is a compilation of scientific papers, published or accepted to publish, in 

relevant journals of this research area. The introductory Chapter 1 resumes the background 

on the cutting tools subject. It starts with a brief presentation of the historical evolution of 

cutting tool materials, followed by a description of the currently available diamond tools. 

Moreover, an introduction about machining terminology, chip formation, cutting forces 

and tool wear is given. Chapter 2 reports the preparation of the silicon nitride based 

ceramic cutting tools, from powder processing to the surface finishing step, and their 

mechanical, electrical, and microstructural characterization. A detailed description of the 

chemical vapour deposition (CVD) of diamond is given in Chapter 3, regarding the 

optimization of deposition parameters and physical characterization. Chapter 4 groups the 

papers on the cutting behaviour of the diamond coated tools and their wear mechanisms in 

real turning of different hardmetal and graphite workpieces. Chapter 5 resumes the main 

conclusions of this thesis and, finally, the perspectives of future work are proposed in 

Chapter 6. 

Foreword 
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Chapter 1 

 

 

Background 
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1.1 

 

 

A brief history of the evolution of 

the cutting tools 
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Carbon steels were the only tool materials for metal cutting from the beginning of 

Industrial Revolution until the1860s. These consist essentially of iron alloyed with 0.8 to 

about 2wt% carbon, the other alloying elements present – manganese, silicon, sulphur and 

phosphorus – being impurities of additions to facilitate steelmaking
1
. Although these 

materials display high fracture resistance, the low hardness and low wear resistance limit 

their wear life in industrial machining of metals and highly abrasive materials
2
. 

 

The introduction of the high speed steels (HSS), which use alloying elements to 

improve the mechanical properties of tool steel, was first made public in 1868 by Robert 

Mushet
1
. This contained about 6 to 10wt% tungsten and 1.2 to 2wt% manganese and, later, 

0.5wt% chromium, with carbon contents of 1.2 to 2.5wt%
3
. By 1906 the optimum 

composition was: 0.67wt.% C; 18.91wt.% W; 5.47wt.% Cr; 0.11wt.% Mn; 0.29wt.% V; Fe 

balance. High-speed steel is superior relatively to the older high carbon steel tools as it can 

withstand higher temperatures without losing its tempered structure. This property allows 

HSS to cut faster than high carbon steel, hence the name high speed steel. At the same 

time, other cutting tools materials were developed, namely nonferrous cast alloys 

containing varied amounts of Cr, W, C, and Co. 

 

The development of cemented carbides by the powder metallurgy process at the 

1920s led to a revolution of the machining industry
3
. The first industrial production of 

sintered tungsten carbide (or hardmetal) was in 1926 by the German company Fredrich 

Krupp A. G., with the name Widia (wie Diamant – “like diamond”). In 1928, the General 

Electric Company (USA) started to produce the Carboloy hardmetal. The combination of 

very hard, high wear resistant tungsten carbide with a tough binder, usually cobalt (WC-

Co), results in a completely consolidated material presenting suitable properties for cutting 

tool applications, such as mechanical resistance, hardness and toughness. To increase the 

mechanical and tribological properties at high temperature as, for instance, the hot 

hardness, titanium and tantalum carbide can be added to the WC-Co
3
. Although WC-Co 

cutting tools have lower fracture resistance than HSS, their mechanical properties are 

suitable for a very wide range of heavy-duty applications, allowing cutting speeds three to 

five times higher than that with HSS
2,3

. 

 

                                                                                                                          Chapter 1 - Background 



 10 

During the Second World War, the British side used a new cutting tool material, 

previously studied in Germany and Soviet Union, getting superior cutting speeds than that 

with hardmetals. This material was a ceramic aluminium oxide, Al2O3, with a commercial 

designation of “Degussit” (Degussa, Germany)
4,5

. The major advantages were: retention of 

hardness and compressive strength to higher temperatures than with carbides; high 

resistance do crater formation; much lower solubility in steel than any carbide, as it is 

practically inert with steel up to its melting point. Opposed to these advantages, its 

toughness and strength in tension are much lower. Many additives, e.g. MgO and TiO2, can 

be used to promote densification while retaining a fine grain size. In order to increase the 

fracture toughness, ceramic composite tool materials consisting of alumina with 30% or 

more of a refractory carbide - usually TiC or (Ta,Ti)C – have been commercially available 

since the 1960s
1
. Also, the addition of ZrO2 to alumina matrix and, more recently, the use 

of SiC whisker reinforced alumina are significant alternatives to improve the fracture 

toughness mechanisms of alumina based cutting tools
5
. 

 

Synthetic diamond has been produced since the early 1950s by heating graphitic 

carbon with a catalyst at temperatures and pressures of the order of 1500ºC and 8 GPa, 

respectively
1
. This process is usually called the HPHT process (High Pressure-High 

Temperature), and the credits of this discovering were given to scientists of the General 

Electric Company
5
. This same process also made possible the transformation of cubic 

boron nitride (cBN), from hexagonal form to a structure like diamond. 

 

Following the introduction of the synthetic diamond grit, the 1970s yielded the 

polycrystalline diamond cutting tool material – PCD
6
. PCD tools microstructure consists of 

randomly oriented diamond particles and a catalytic second phase (metallic and/or 

ceramic-based system) that forms a solid material by HPHT method. A layer of 

consolidated PCD, usually 0.5 to 1.0 mm thick, is bonded to a cemented carbide insert. A 

range of PCD tools is available, with diamond grain sizes from 2 to 25 µm, and the 

diamond to bonding agent ratio can also be varied for different applications
1
. The 

introduction of this cutting tool material opened up the field of machining abrasive non-

ferrous materials with defined cutting edge tools, for example turning and milling
6
. 
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PCBN (polycrystalline cubic boron nitride) was developed soon after PCD for 

machining hard ferrous materials, such as hardened steels and grey cast iron
5
. These 

applications are due to the resistance to chemical dissolution in iron (in contrast to 

diamond), in addition to the excellent abrasion wear resistance
1
. Likely to PCD 

manufacture procedure, the resultant microstructure is composed of cubic Boron Nitride 

(cBN) crystals and a metallic/ceramic second phase consolidated by HPHT process. As the 

second hardest material after diamond, and possessing a high importance on the 

manufacture industry, nowadays special attention has been given in the preparation of cBN 

thin films by less expensive chemical and physical vapour deposition, CVD and PVD 

routes, respectively
7-9

. 

 

The deposition of TiC and TiN hard coatings was firstly developed by the chemical 

vapour deposition (CVD) process in Germany, in 1953
10

. At the end of the 1960s, TiC-

coated cemented carbide and high-speed steel tools become commercially available and at 

the begging of 1970s coatings of TiN, Ti(C,N), and Al2O3 monolayers were presented 
2,10

. 

The high-temperature wear resistance, better corrosion resistance and hardness of these 

advanced ceramic coatings coupled with superior fracture resistance of the underlying 

body, played a key role in the furthering performance of commercial cutting tools. The 

development of multilayer and gradient structures began between 1972 and 1974
10

. The 

combination of different coating materials, each one appropriated for different 

applications, enlarged the universal applicability of these coatings and improved the 

resistance against complex wear loads. Nowadays, since the 1990s, most of these coatings 

are produced by physical vapour deposition (PVD) method. The PVD process is carried 

out at lower temperatures, typically around 350-500ºC, avoiding substrate phase 

transformations that could occur at high CVD coating temperatures
10

. 

 

At the 1980s, TiC and TiN cermets (their name derived from ceramic materials with 

a metallic binder) started to be commercialized as cutting tools. The production route, the 

powder metallurgy method, is the same as for tungsten carbide, and uses mainly 

molybdenum and nickel as binder material
3
. They are more effective material for 

machining steels at higher cutting speeds than some tungsten carbides, as they are wear 

and crater resistant to the continuous chip formation of steels
5
. Cermets hardness is 

superior to the average hardness of tungsten carbides, but their shock resistance is lower
3
. 
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Cost benefits are achieved with higher productivity through higher cutting speeds and 

longer tool life, besides the fact that cermets are about 20% lower in cost than coated 

carbide
5
. 

 

Also in the 1980s decade, cutting tools made of advanced covalent ceramics as 

silicon nitride (Si3N4), SiALON (Si-Al-O-N) and silicon carbide (SiC), in monolithic form 

or as composites, were developed. SiC particles are used as second phase in Si3N4 tools, 

improving the creep resistance
11

 and increasing the hardness of the composite relatively to 

the monolithic material
12

. Si3N4 is widely used for machining cast iron because of its high 

abrasion resistance
5
. In addition, Si3N4 has a low thermal expansion coefficient 

(responsible for the high thermal shock resistance), a high thermal conductivity (which 

confers high resistance to thermal fatigue), good fracture toughness and a very high 

chemical stability
1,5

. These tools are nowadays of great interest for the CVD diamond film 

deposition, because of referred low thermal expansion, which is near to that of diamond, 

together with their chemical compatibility. These are some of the important properties of 

Si3N4, which will be further evidenced in this thesis. SiAlONs are solid solutions between 

silicon nitride and alumina, where the presence of alumina provides improved resistance to 

oxidation
5
. These substrates are also used as substrates for CVD diamond coatings

2
. 

 

The growth of diamond crystals by low pressure CVD technique was first 

documented in 1952, almost at the same time of the development of HPHT method, by 

William Eversole of Union Carbide
13

. Nevertheless, the process was dismissed by most 

researches because the growth rate was very low, since graphite was co-deposited with the 

diamond leading to impure mixed phases
14

. In 1968, the Angus’ group was able to improve 

the diamond growth rate by including hydrogen in the carbon-containing gases
15

. They 

discovered that the presence of atomic hydrogen during the deposition process lead to 

preferential etching of graphite, rather than of diamond. Initially, the process deposition 

was restricted only to discrete diamond grains grown over pre-existent diamond grains. 

Nowadays, a great variety of materials can be used as diamond film substrates. The 

commercial availability of synthetic diamond cutting tools made by CVD route took place 

at the beginning of 1990s in two product forms: thick-film freestanding CVD diamond 

cutting tool tips and thin-film CVD diamond coatings
2,16

. The first form is produced by 

depositing a thick layer (from 150-1000µm) of diamond on Si or Mo wafers, detached 
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from the substrate and cleaned with acid solution. The next step is the laser cutting of the 

free-standing diamond wafer in tool tips that are brazed to a steel or hardmetal body/insert 

tool. Finishing is made by grinding/polishing procedure of the tool cutting edge with the 

desired radius and edge angle. The second one is made with fewer steps, by direct 

deposition of diamond films on a suitable substrate, as silicon nitride, silicon carbide and, 

the commercially more common, cemented carbide (WC-Co) with Co content lower than 6 

wt.%. The thickness is generally in the range of 5 to 50 µm. Although the second form is 

the simplest one, the problems with adhesion mainly on WC-Co substrates delayed the 

progress of the diamond direct coated tools. So, this kind of diamond cutting tool 

fabrication has been much investigated and is in continuous improvement. Some examples 

of the metallic and non-metallic materials along with their associated machining 

challenges, which justify the use of the diamond tools, are listed in Table 1. 

 

The development of successful brazing techniques for thick-film diamond in the 

early 1990s bypassed the adhesion and substrate selection challenges of thin-film CVD 

diamond tools and it was faster absorbed by the machining industry
2
. One of the biggest 

diamond producer, De Beers, has been commercializing the free-standing thick-film CVD 

diamond since 1992, with the name of DIAFILM
17

. Direct coated CVD diamond tools 

became commercially available as prototypes also in the early 1990’s using silicon nitride, 

silicon carbide or tungsten carbide substrates
18-21

. As said before, the reason for the fairly 

slow progress of the thin-film CVD diamond coated tools is due to the unsatisfactory and 

inconsistent adhesion between the diamond coating and the substrate, especially cemented 

carbide, and great progress on different methods of mechanical and chemical substrate 

surface pretreatments has been made
22-25

. 
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Table 1. Examples of difficult-to-cut machine composite materials (adapted from 
2
) 

Material Example Example of use Machining issues 

Hypereutectic silicon-

aluminium alloy 

A390 (18 wt.% Si particles in Al 

matrix) 

Reduced-weight, wear resistant, 

temperature-resistant pistons 

Hard silicon particles are extremely 

abrasive 

Metal matrix 

composites (MMC) 

Duralcan (20wt.% SiC in Al matrix) Brake rotors, light-weight 

structures 

Hard SiC ceramic particles are 

extremely abrasive 

Cemented tungsten 

carbide 

WC- 25wt%Co (sintered WC grain 

in Co based alloy matrix) 

High-fracture-toughness wear 

parts, mould industries 

WC grains are very hard and strong 

bonded. The Co metal binder can 

react with the carbon in diamond 

Structural aerospace 

composites 

Carbon-epoxy (high density carbon 

fibres in epoxy polymer) 

Stiff and light-weight support 

structures for commercial 

aircraft, strong and light-weight 

sporting goods 

Carbon fibres are extremely abrasive 

Glass fibre reinforced 

polymers (GFRP) 

G10 (highly compressed fibre glass 

in epoxy polymer matrix 

Light-weight, insulative circuit 

boards, low-cost structural 

composites 

Glass fibre induce abrasive tool 

wear; polymer can cause corrosive 

(chemical) tool wear 

Graphite ISO 88 polycrystalline graphite Electrodes to electrodischarge 

machining process (EDM) in 

mould industries 

Abrasive aggregates of 

polycrystalline graphite are formed 

during machining and wears the 

cutting edge parts 
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There is some divergence about the thin-film CVD diamond coating tool 

performance, which denotes the need for the improvement of this kind of tool. The tool life 

would span an order of magnitude in terms of cutting time, with some tools wearing at 

about the same rate as that of a PCD tool
26

. Shen
26

 tested thin film diamond coated 

indexable WC-Co and Si3N4 ceramic inserts from a large number of sources in dry 

machining of the hypereutectic A390 (18wt.% Si) aluminium alloy. He associated the 

different adhesion strengths with the reflected differences in the turning performance. 

Among the tools tested, two or three coatings sources were able to have good film-to-

substrate adhesion and a machining performance comparable to that of the PCD inserts. 

When comparing the flank wear of these tools at the same cutting conditions, he found a 

great inconsistency even within a batch or among batches by the same coating source. 

Uhlmann and co-workers
27

 compared Si3N4 and WC-Co diamond coated tools in turning, 

milling and drilling of AlSi and AlCu alloys, and a fiber-reinforced polymer. They show 

that, in turning operations, the diamond coated silicon nitride tools provide the higher wear 

resistance, increasing the tool life and enlarging the usable cutting speed range. For 

milling, in some cases, and in all cases for drilling, the diamond coated WC-Co tools 

presented the best performance because of the high thermo-mechanical stress imposed to 

the tools in such operations. In a study carried out by Uhlmann and Brucher
28

 with thin 

film diamond coated and thick brazed films tools in machining of the same AlSi alloy, the 

authors arrived to different conclusions. They found that the thick brazed films could be 

successfully used with a tool life of 7 min (wear criteria adopted of VB=0.2mm), while it 

was not possible to conduct tool life tests on both WC-Co and Si3N4 ceramic coated tools 

due to the occurrence of film delamination after cutting times of only 30s. These results 

contradict the previous work above mentioned, which reports values of 50 min of tool life 

adopting the same wear criteria. The turning parameters were similar concerning to cutting 

speed, but differ on feed and depth-of-cut conditions. In the first work, these parameters 

were: 0.04 and 0.8mm for feed and depth, respectively, while in the second they were: 0.1 

and 0.5mm. D’Errico and Calzavarini
16

 reported the turning of metal-matrix composites 

(MMC) based on SiC (20wt.%) reinforced Al matrix (Duralcan) with CVD thick diamond 

brazed (~500 µm) and thin-film coated WC-Co (20-50 µm) from different sources and 

compared with PCD tools. They concluded that the thick film can be considered as a 

competitor for PCD by its superior wear resistance (binder-free, pure diamond 
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construction), reducing the tendency for diamond grain “pullout” when eroded by the SiC 

particles. On the other hand, the thin coated tools failed by coating delamination after a 

very short cutting time (the average was 10 s). More recently, Chou and Liu
29

 

demonstrated, in turning of the same MMC material with diamond coated WC-Co tools, 

that adjusting the cutting parameters (mainly diminishing the feed), the film could delay 

the onset of tool failure by film delamination from few seconds until almost 15 minutes, 

although all the tested tools failed by this way before reaching a tool life criteria by 

abrasion. Another problem addressed in that work was the adhesion of the work material 

on the asperities of the diamond film, which forms a built-up-edge (BUE) formation on the 

rake face. This can be very harmful to diamond coatings, since it can also cause chipping at 

the cutting edge of the tool when the adhesive junctions are broken
26

.  

 

Nevertheless, direct comparisons and conclusions seems to be very difficult to be 

assumed since the properties of both diamond coatings and substrates, as well as their 

manufacturing process (substrate characteristics, surface pretreatments, diamond 

deposition conditions) certainly differs from producer to producer, affecting the overall 

quality of the final product. In addition, other factors as cutting parameters, cutting 

conditions (lathe stability, use and type of lubricant), workpiece characteristics 

(mechanical properties, homogeneity, dimensions) will direct affect the machining 

performance of a tool. 

 

Friction between the tool/workpiece contact zones is influenced by the nature of the 

materials pairs, but also and in a great extent by the quality of the cutting edge, namely the 

tool surface roughness. A number of techniques were developed to polish the free surface 

of diamond films, as mechanical
30

, thermo-mechanical
31

, thermo-chemical
32

 and laser
33

. 

But the stress imposed by some of these techniques as well as the time spent and the 

complexity of the equipments needed led to the development of diamond film growth with 

controllable grain texture and/or very small grain sizes, in order to diminish the inherent 

roughness created by columnar structure of the CVD growth
34

. The development of the 

“nanocrystalline diamond” (NCD) films is clamed to be the best solution for mechanical 

and tribological applications. Although just few works concerning the uses as cutting tools 

are available, they show a very promising prospective in cutting AlSi
35,36

 alloys and 

GFRP
36

. 
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There is a very strong global trend to minimize the use of fluids (lubricants/coolants) 

in metalworking industries because of industrial pollution, health problems and costs
26

. In 

this way, CVD diamond tools are the most promising to be used in “dry” conditions, since 

they gather key properties as low friction, low chemical affinity to non-ferrous materials, 

high thermal conductivity and anti-sticking properties (because of the absence of Co 

binder). Nevertheless, the use of coolants is of major importance to control the temperature 

of the workpiece, especially when high tolerances have to be achieved, at the same time it 

facilitates chip evacuation and diminishes the tool wear. 

 

The increasing world consumption of industrial diamond justifies the growing 

investments in research and enlargement of production scale capabilities. The United 

States remains the world’s largest market for industrial diamond, with an increasing of 

about 21% from 2001-2005 and account almost exclusively for the world growth of about 

10%, as can be seen on Table 2 
37

. Among the major consuming industries are: machinery 

manufacturing, mining services (drilling) and transportation systems (vehicles)
38

. For 

instance, the manufacturing of every automobile made in USA consumes 1.5 carats of 

diamond. Other important fields include close-tolerance machining of composite parts for 

the aerospace industry, heat sinks in electronic circuits, lenses for laser radiation 

equipment, and products manufacturing for the computer industry
38

. Among the main 

world sellers of CVD diamond coatings producers and diamond cutting tools are: Element 

Six, CemeCon AG, DiaCCon, sp
3
 diamond technologies, Advanced Diamond Solutions 

Inc., Diamond Tool Coating, Delaware Diamond Knives Inc., Iljin Diamond Co. Ltd and 

Crystallume. This last company has an on-line catalogue
39

, with direct coated inserts on 

WC-Co varying from 45 to 200 $ each insert, concerning shape geometry and size. 
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Table 2. Synthetic diamond: estimated world production by country (thousand carats).
37 

 

Country 2001 2002 2003 2004 2005 

Belarus 25,000 25,000 25,000 25,000 25,000 

China 17,000 17,000 17,000 17,000 17,000 

Czech Republic 5 5 5 5 5 

France 3,000 3,000 3,000 3,000 3,000 

Ireland 60,000 60,000 60,000 60,000 60,000 

Japan 33,000 34,000 34,000 34,000 34,000 

Russia 80,000 80,000 80,000 80,000 80,000 

South Africa 60,000 60,000 60,000 60,000 60,000 

Sweden 20,000 20,000 20,000 20,000 20,000 

Ukraine 8,000 8,000 8,000 8,000 8,000 

United States 202,000 222,000 236,000 252,000 256,000 

Total 508,000 529,000 543,000 559,000 563,000 
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1.2 

 

 

Some concepts about machining 
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In product manufacture processes, such as metal casting and ceramics sintering, there 

are great efforts to make components with a very near net shape. However, these parts 

usually need further machining operations to achieve a specified dimensional tolerance, 

which is dictated by their applications. For example, in the metallic parts submitted to heat 

treatment, the formed outside layer is generally fragile and need to be removed before 

utilization. Quality and cost-effective aspects are very dependent on choosing the 

appropriated machining operations together with adequate tools. Thus, the improvement of 

the performance of machining operations is an economically important objective. The term 

machining is used for the operations which confer to the workpiece the shape, dimensions, 

surface finishing, or a combination of these three conditions that involve chip formation
3
. 

Examples of such process are turning, grinding, drilling and milling, schematically 

presented in Fig. 1: 

 

 

 
 

 
 

 

Fig. 1. Examples of machining process: a) turning; b) grinding; c) drilling and d) milling. 
40

 

 

 

a) b) 

c) d) 
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The production costs concerned to machining process involve several contributions, 

like cutting tools, lathe maintenance, cutting fluids, energy/manpower, among others. The 

distribution of the production costs variables is presented in Fig. 2: 

 

 

 

Fig. 2. Division of production costs by machining (adapted from
41

). 

 

 

Despite the fact that only 3% of the total machining costs are directly related to the 

cutting tool, costs involving the down-time with the replacement of the cutting tool along 

with the energy/manpower are the most important factors contributing to the final cost. The 

use of incorrect cutting tool materials and/or cutting parameters will certainly cause high 

wear rate, consequently diminishing the tool life and so, the replacement by a new tool has 

to be made more frequently. It also implicates an undesired workpiece finishing and/or bad 

tolerances and so, the workpiece is rejected, contributing to the fraction “others” of the 

total machining costs pie. 

 

The turning process is possibly the more adequated way for studying the thermo-

mechanical solicitation suffered by the tools as well as their tribologycal response and was 

thus chosen for evaluate the quality of the tools developed in this thesis. 

 

 

 

 

 

 

 

Maintenance costs 

7 % 
Cutting fluids 

16 % 

Energy / manpower 

30 % Cutting tool 

3 % 

Other 

19 % 

Change of cutting tool 

25 % 
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1.2.1 - Turning 

 

 

Turning is used to obtain solids of revolution using a single point cutting tool by the 

combination of basically two movements: rotation of the workpiece (material to be 

machined) and feed movement of the tool 
3,42

. The workpiece is grasped in the chuck of a 

lathe and rotated while the tool is held rigidly in a tool post and moved at a constant rate 

along the axis of the bar, cutting away a layer of material to form a cylinder or a surface of 

more complex profile
1
. Fig. 3 schematically presents the workpiece and cutting tool 

position. 

 

 

Fig. 3. Turning operation and main process parameters. 

 

Cutting speed (v), feed (f), and depth of cut (d) are some of the terminology used in 

turning operations, constituting the main parameters in the process (Fig. 3). Cutting speed 

is defined as the rate (or speed) at which the uncut surface of the workpiece move passes 

the cutting edge of the tool 
1
, expressed in metric units as m·min

-1
. In another words, it is 

the speed at which the periphery of the cut diameter passes the cutting edge, given by the 

Eq. 1: 

1000

nD
v

××
=

π
 

 

where: v = cutting speed (m·min
-1

); 

  D = workpiece diameter (mm); 

  n = number of revolutions per minute (rpm). 

Eq. 1 
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A number of factors can affect the cutting speed, including workpiece material, 

cutting tool material and cooling conditions. The choice of the right cutting speed is also 

influenced by the economical life of the cutting tool, namely the cost to regrind it or 

acquire a new one when compared to the quantity of parts produced, always respecting the 

required tolerances. The rigidity of the lathe is another factor that affects the calculation of 

the cutting speed, taking into account the reduction in vibration. Some problems that can 

occur due to the incorrect choice of cutting speed are related in Table 3 
43

: 

 

Table 3. Some problems in the incorrect choose of the cutting speed. 

Higher speed  Lower speed 

1. Loosening of the mechanical properties, as 

hardness and toughness, by the overheating of 

the tool. 

2. Changing of the workpiece shape and 

dimensions accuracy by its overheating. 

3. Premature wear and/or failure of the cutting 

tool. 

 1. Cut overloading, causing cutting tool failure 

and even the rejection of the machined 

workpiece. 

2. Low machine lathe ability due to its underuse, 

also causing low production efficiency. 

 

The feed is the distance covered by the tool in an axial direction at each workpiece 

revolution
1
, expressed in metric units as mm·rev

-1
. When the tool passes in a given feed 

rate, feed marks are left on the workpiece. So, the input value of the feed motion is the first 

parameter to be considered on the determination of the machined surface quality. 

 

The depth of cut is the thickness of material removed from the piece in a radial 

direction
1
, given in mm. The product of these three parameters, cutting speed, feed and 

depth of cut, gives the rate of material removal, a parameter often used to evaluate the 

efficiency of the cutting operation. 

 

There are four basic turning operations (Fig. 4) 
42

: longitudinal turning (1), facing 

(2), round profiling (3) and copying at angles (4). Turning processes can be used either for 

roughing and finishing purposes. It is common to start with successive passes using as high 

feed and depth of cut as permitted by the cutting tool and the workpiece (rough turning), 

and the last pass with low values of depth of cut and mainly feed (finish turning). 
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Fig. 4. Four basic turning operations: (1) longitudinal turning; (2) facing; (3) round 

profiling; (4) copying at angle.
42 

 

 

 

1.2.2 – Cutting tool terminology 

 

 

 The cutting edge of a cutting insert is formed by the intersection of the rake face 

with the clearance (or flank) face (Fig. 5). Rake face is the surface of the tool over which 

the chip flows, whereas the clearance face is at contact with the freshly cut surface of the 

workpiece
1
. The tool is positioned in such angle that the clearance face dos not rub against 

the workpiece. This angle often varies in a range of 6 to 11º. The rake face is inclined at an 

angle to the axis of the workpiece and can be adjusted to achieve optimum cutting 

performance for particular cutting tools, workpieces and cutting conditions
1
. The rake 

angle can be positive, zero or negative, relatively to the line parallel to the axis of rotation 

of the workpiece, as shown schematically on Fig. 6.a, Fig. 6b and Fig. 6c, respectively. 

 

 

Fig. 5. Rake and clearance faces of a tool. 
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Fig. 6. a) positive; b) zero and c) negative rake angles. 

  

Positive rake angles give a keen cutting edge, but easily damaged and even may lead 

to fracture. This configuration can be used by tough cutting tools when machining ductile 

materials, presenting low resistance to cut operation, as is the case of low carbon steel, for 

instance
44

. In the case of hard, difficult-to-cut materials, a more robust configuration shall 

be used, as is the case of zero or negative rake angles
1,43

. Negative rake angles also permit 

a higher feed and depth-of-cut, though increasing the cutting forces and so, demanding 

higher power and rigidity of the lathe
44

. 

 

 

 

 

 

 

γ 

γ < 0º 

γ 

γ > 0º 

γ = 0º 

a) 

b) 

c) 
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1.2.3- Chip formation 
3,45,46

 

 

 

During machining, due to the entrance of the cutting tool edge on the workpiece, a 

layer of workpiece material is stressed against the rake face of the tool (Fig. 7). This 

stressed layer suffers a progressive plastic deformation, until shear stresses becomes 

sufficiently high to originate a sliding movement between the stressed material and the 

workpiece (primary shear or deformation zone). This region can heat up considerably due 

to the plastic deformation. Afterwards, a partial or complete rupture in this region can 

occur, depending on the workpiece material ductility and cutting conditions, originating 

different chip types, from continuous to short, segmented ones. The chip formed flows 

over a region on the rake face of the tool, called secondary shear or deformation zone (Fig. 

7). This is an area where friction and slipping occur, causing crater wear on the tool. Here, 

additional heat is generated due to the friction between the cutting tool and the chip. At 

low cutting speeds, friction between the chip and the rake face of the tool can be high 

enough to cause adherence of the chip to the tool face. This deposit of material is known as 

built-up edge, and has detrimental effects on the tool integrity, tool life and workpiece 

surface finishing. The tertiary shearing area, between the flank and the machined surface, 

gives rise to flank wear. The wear modes will be further discussed in the section 1.2.5 of 

this chapter. 

 

 

Fig. 7. Chip formation (adapted from 
46

). 
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1.2.4- Cutting forces 

 

 

The knowledge of the cutting forces that act on the cutting edge during cutting is 

very important, since they are directly related with required power consumption, wear state 

and operation progress. The cutting forces are dependent of two main factors
1,47

: tool-chip 

contact area and shear resistance of the workpiece on primary and secondary shearing 

areas. As a result, they vary with tool angles, machining parameters, as speed and feed, and 

wear state of the tool. For instance, the use of positive rake angles or increasing cutting 

speed leads to lower cutting forces. In this way, an accurate measurement of forces is 

helpful in optimizing tool design and cutting conditions. 

 

The cutting forces required to shear the workpiece material and move away the chips 

over the cutting tool, lead to a localized compressive and shear stress state at the contact 

zone, reaching the highest value at the edge and being reduced to zero where the chip 

leaves the tool
1,48

. The cutting edge also heats up considerably, and so, it is under a very 

heavy thermo-mechanical solicitation. 

 

The cutting force is divided into three measurable components (Fig. 8): the tangential 

or main cutting force (Fc), acting in Y direction, the radial or depth-of-cut force (Fd), acting 

in X direction, and the axial of feed force (Ff), which acts in Z direction. 

 

 

Fig. 8. The three components of the cutting force. 
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The magnitude of the main cutting force contributes directly to the torque, and so, 

influences the power required for the cutting process. Theoretically, the product of the 

main cutting force and the cutting speed corresponds to the power needed
42

. 

 

As the cutting edge becomes worn, the area of contact on the clearance face is 

increased by flank wear, invariably increasing the tool force. The increment in force may 

be used to monitor the wear on the tool, indirectly guaranteeing the workpiece finish and 

dimensions and helping to prevent catastrophic tool failure. 

 

The use of lubricants may also affect the contact length and cutting forces 

magnitude, particularly when cutting at low speed. In this case, the lubricant may restrict 

the area of seizure between tool and workpiece to a smaller region and thus greatly 

reducing the forces
1
. 

 

 

 

1.2.5- Tool wear 

 

 

Wear is the result of the interaction between tool, workpiece material and machining 

conditions, which causes changes in tool edge geometry and even its damage. Tool wear is 

the consequence of a combination of mechanical, thermal and chemical loading, which act 

simultaneously on the cutting edge. As the result of these load factors, five basic wear 

mechanisms can develop
42

: 

1 – abrasion; 

2 – diffusion; 

3 – oxidation; 

4 – fatigue; 

5 – adhesion. 

 

These wear mechanisms cause different modes of wear, as illustrated in Fig. 9: 
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Fig. 9. Different modes of wear that can occur in a cutting tool (adapted from 
42,49

). 

 

 

Abrasion wear is a result of the mechanical load on the insert that leads to the 

wearing of a flat face on the cutting edge flank (causing flank wear, Fig. 9). It is very 

common and is caused mainly by hard particles of the workpiece material. The most 

critical property of a cutting tool to resist abrasive wear is hardness, more specifically the 

“hot hardness”. At high temperatures, which invariably are developed during cutting, the 

tool material becomes soft and thus its ability to resist particle penetration and abrasive 

wear decreases significantly 
48

. This is a problem when using a metallic cutting tool rather 

than a ceramic tool, since the last is able to much better preserve its hardness at high 

temperatures. 

 

Diffusion wear is more affected by the chemical loading. The chemical inertness or 

affinity between the cutting tool material and the workpiece, at elevated temperatures, 

dictates the appearance of this wear mechanism. Elemental diffusion may take place 
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between the chip and the top rake surface of the cutting edge, contributing to crater wear 

(Fig. 9) 
50

. The mechanism is highly temperature dependent and is thus greatest at high 

cutting speeds 
42

. In fact, diffusion is considered as the dominant process of tool wear in 

high cutting speed 
51

. This kind of wear occurs, as an example, in the case of high speed 

machining of steels with tungsten carbide inserts, by atoms motion from the tool to the 

chip, reducing the tool life and being the diffusion type of wear the limiting factor 
42,50,51

. 

 

Oxidation wear is also a result of chemical loading. The presence of air in high 

temperature machining results in oxidation for most metals, while the oxide ceramic tools 

are the highest resistant materials to this kind of wear. In the case of hardmetal inserts, for 

example, tungsten and cobalt form porous oxide films, easily removed by the chip, 

exposing a new area for oxidation and further removal in a cyclic process
42

. The more 

propitious area to oxidation wear is at the interface part of the edge that intersects the 

workpiece surface (at the depth of cut). This area is accessible to air, leading to notch wear 

(Fig. 9) in the cutting tool
42

. Notch wear can also be caused by workpiece hardening, by 

the previous pass of the tool
42,52

. 

 

Fatigue wear is the result of the combination of thermo-mechanical effects. The 

cutting edge of a tool is subjected to load-unload cycles of cutting forces and temperature 

fluctuations, which creates cracks (Fig. 9) on the surface or subsurface of the cutting 

material. After a number of cycles, these cracks can reach such an extent, that parts of the 

tool are broken off. Therefore, fatigue wear is a function of loading cycles number and 

becomes mainly critical in intermittent cutting action, as milling, or even when the 

workpiece material contains non homogeneous hard particles or pores in a continuous 

cutting. The main mechanical property of the cutting material to resist the fatigue wear is 

the fracture toughness. 

 

Adhesive wear occurs at the asperities of the cutting edge material. It occurs mainly 

at low cutting speeds, when the temperature at the contact is not so high, but enough to 

weld part of the chip material to the rake face of the tool, causing the built-up edge (BUE) 

(Fig. 9) formation, as referred in the section 1.2.3. It is a dynamic structure, with 

successive layers from the chip being welded and hardened, becoming part of the edge. An 

adhesive layer can also be formed at the flank face, by the contact of this area with the 
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machined workpiece, contributing to the flank wear. So, this kind of wear is caused by the 

mechanical removal of the tool material when the adhesive junctions are broken 
51

. This 

wear can also cause chipping at the cutting edge of the tool (Fig. 9). In the machining of 

ductile workpiece materials, like aluminium alloys, it is more susceptible to the occurrence 

of the adhesive wear. 

 

When analysing the wear modes of a cutting tool, it is difficult to discriminate the 

contribution of each wear mechanism to the resultant tool wear. Most of the time, the wear 

in a cutting tool takes place as the sum of two or more wear mechanisms, being their 

influence the product of workpiece/cutting tool materials, cutting environment/parameters 

53
. Some consequences of tool wear are listed below: 

- decrease of the dimension accuracy; 

- increase of the surface roughness; 

- increase of the cutting force; 

- increase of the temperature; 

- possibly can cause vibration; 

- lower of the production efficiency (component quality); 

- increase of the material production cost. 

 

The cutting tool and workpiece material properties are the most important factors for 

withstand the tool wear progress. They are listed as follows 
42

: 

- hardness; 

- strength/toughness; 

- chemical stability; 

- thermal conductivity; 

- thermal expansion; 

- coating adhesion (when used). 

 

The study of the wear types and their progress has a great importance in the 

development of a cutting tool. To understand the causes of tool wear and their 

consequences is essential to delineate the limits of tool work, respecting some production 

standards, and not of less importance, the optimization of machining economics. Tool wear 
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dictates the limit of utilization of a cutting tool. In the next section a description of some 

tool life criteria, usually adopted in the industry, is given. 

 

 

 

1.2.6- Tool life 

 

 

Tool life can be expressed as the effective cutting time of a tool until its regrind or 

replacement. It can be also expressed in number of pieces produced, machined length or 

volume of material removed. The reason why the useful life of a cutting tool is considered 

to be ended is often changed in different machining operations 
52

. The simplest case is that 

the tool suffers catastrophic failure, as rupture of the edge, for example. There are several 

factors that could determine when the tool has to be renewed 
47

: 

- when the tool wear reach high levels that rupture of the edge can occur. This can 

happen in the case of rough machining, which permits high values of tool wear since no 

tight dimensional tolerances and good surface finishing are required; 

- when the wear at the flank face is high enough to hinder the fabrication of 

extremely accurate parts or in the case of finishing operations; 

- when the wear rate is high and, as consequence, the temperature at the edge exceeds 

the temperature limit of the tool; 

- when the cutting process becomes unstable (vibration) by the action of the 

augmented cutting forces caused by the tool wear. 

 

By economic and quality reasons enumerated before, it is very important to monitor, 

directly or indirectly, the wear state of a tool. The direct way consists in optical 

measurement of the wear with the assistance of a microscope. This is the most common 

and reliable technique used, but the machining operation needs to be stopped. The indirect 

approach make a correlation between tool wear and process variables, as cutting force, 

power, temperature, surface finishing, noise and vibration. Very good relationships can be 

achieved by the monitoring of these variables. Cutting forces, acquired by means of a 

piezoelectric dynamometer coupled in the machine lathe, and temperature, estimated by 

thermocouples fixed near the cutting edge or by an infrared pyrometer, are the most used in 

laboratory research and in the cutting tool industry. In the present thesis, the study of the 
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diamond cutting tools behaviour in industry environment is done with the help of cutting 

forces acquisition. Examples of cutting forces measurements can also be found in Sikdar 

and Chen 
54

 in turning a AISI 4340 steel with a coated carbide tool, in Oliveira et al 
55 

in 

turning of two different steels with Si3N4 based ceramic tools, in Zhou et al 
56

 in turning of 

100Cr6 steel with PCBN insert, and in Belmonte at al 
57

, the first published work 

concerning cutting forces measurement in turning hardmetal with a thick CVD diamond 

tool. 

 

Measurements of the wear marks by optical and SEM micrographs can be correlated 

with the cutting parameters and developed cutting forces. These measurements may be 

done accordingly with the ISO 3685 Standard 
52

, adopting the wear parameters KT (crater 

depth) and VB (flank wear), Fig. 10. 

 

The tool life criteria for high-speed steel, hardmetal and ceramic cutting tools, 

accordingly with this standard, are as follows: 

- average flank wear (in the case of regular worn flank wear land), VBB = 0.3 mm; 

- maximum flank wear (in the case of irregular worn flank wear land), VBBmax = 

0.6 mm; 

- maximum crater depth in the range of 0.14 to 0.25 mm for a feed of 0.25 to 0.63 

mm·rev
-1

. 

- catastrophic failure. 

 

Crater wear is not the main mode of tool wear for diamond tools, due to the high 

thermal conductivity and very low coefficient of friction with most materials. Instead, 

flank wear is more common and usually determine the tool life
58

. 

 

Chapter 1 - Background 



 35 

 

 

 

Fig. 10. Measurement of flank and crater wear on turning cutting tools (adapted from
52

). 

 

 

 

1.2.7- Diamond coated tools 

 

 

The use of coatings can significantly improve the tribological properties of the 

cutting tools, and thus the tool life. By combining and adjusting the necessary properties 

for a larger applicability of the tool, a composite tool is an advantage in extreme 

requirements. The more frequently property combination is the toughness of the tool centre 

material with the hardness of the coating shell. Some examples of coatings used in cutting 

tools include TiN, Al2O3, TiC, TiCN, AlN, ZrN, TiB2, diamond-like carbon, CBN and 

diamond 
10,47,59-62

. Novel protective coatings are deposited in the form of nanocomposite 

multilayers or compositionally graded coating systems such as that containing a 

combination of (Ti,Si)N, (Ti,Si,Al)N, Cr/TiN, (Ti/W)N 
63-66

. By the adjustment of some 

KF = crater front distance 

KB = crater width 

KM = crater centre distance 

KT = crater depth 

VBBmax = maximum flank wear 

VBB = average flank wear 

VBC = flank wear at the end of 

trailing edge 

VBN = notch wear width 
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factors, as crystallite size, interface nature/volume, single layer thickness/period, surface 

and interfacial energy, some of these coatings can exceed the superhardness value of 40 

GPa, approaching diamond and CBN values 
67,68

. The use of coatings reached a so high 

importance in cutting tools industry that 90%
59

of tungsten carbide tools, as for example, 

are used with coatings. Coating processes for cutting tools are CVD (chemical vapour 

deposition) and PVD (physical vapour deposition) technologies 
10

. 

 

The main functions of coatings are
10,44

: protection of the tool base material; reduction 

of friction coefficients at the tool/chip interface, thus lowering the thermal stresses; 

increase of hardness; rise of thermal conduction rate far from cutting edge; thermal 

isolation of base tool material, mainly when this has low heat resistance. 

 

Polycrystalline CVD diamond causes a significant decrease of the mechanical 

strength comparatively to single crystals, as transverse rupture and tensile strength, but 

presents a higher toughness values. Table 4 shows some properties of the intrinsic 

superhard materials. 

 

Table 4. Properties of the intrinsic superhard materials 
2,6,62,69-73

. 

 

Mechanical and physical properties 
Single crystal 

diamond 

CVD 

diamond 

CBN (PVD and 

CVD) 

Hardness (GPa) 50-100 75-100 40-60 

Coefficient of friction against steel in 

dry contact 
- - 0.4 

Coefficient of friction against 

AlSi17Cu4Mg in dry contact 
- 0.1 - 

Maximum working temperature (ºC) 600 600 1200 

Fracture toughness (MPa·m
1/2

) 3.4 5.5-8.5 5 

Young’s modulus (GPa) 1000-1100 1000-1100 500-800 

Tensile strength (GPa) 1050-3000* 800-1300** - 

Transverse rupture strength (GPa) 2.9 1.3 - 

Compressive strength (GPa) 9.0 9.0 - 

*Crystallographic orientation dependent. ** Values for the growth face and for nucleation 

face in tension, respectively, measured by three-point bend test. 
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CVD diamond coatings are used for cutting tools in machining of abrasive and hard 

materials, such as metal-matrix composites (MMC’s), carbon fiber reinforced carbon 

materials (CFRC’s) and aluminum-silicon alloys 
2,16,27

. However, the surface roughness of 

conventional microcrystalline CVD diamond is a major problem when considering such 

purposes. Concerning other tribological applications, like mechanical seals, the large grain 

size of microcrystalline CVD diamond induces extremely long running-in polishing times 

before the full sealing condition is reached 
74

. To overcome this drawback, research efforts 

have started to focus on nanocrystalline diamond (NCD) coatings, due to its small grain 

size and very low surface smoothness 
75-79

. One of the main advantages of these coatings is 

the almost constant crystallite size of the diamond through the entire film cross-section, 

contrarily to columnar growth observed in microcrystalline CVD diamond
75

. 

 

When considering tribological and mechanical applications, adhesion of the diamond 

film to the substrate determines the success of the component in service. The CVD process 

ideally requires a substrate material with a thermal expansion coefficient similar to that of 

diamond (~1x10
-6

K
-1

), in order to reduce the thermal induced stresses developed on the 

cooling step. Hardmetal is the most common substrate for cutting tools 
80,81

, but it 

possesses a higher thermal expansion coefficient (~6x10
-6

K
-1

), leading to a higher thermal 

mismatch. A promising solution is proposed in this thesis and consists on the use of silicon 

nitride (~2x10
-6

K
-1

) cutting substrates. These ceramics do not induce graphite formation at 

the interface during deposition and enhance chemical bonding 
82

. 
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Introduction 

 

 

The needs for engines operating at high temperatures motivated the development of 

silicon nitride based ceramics in the 60’s and 70’s, especially for application in high-

efficiency gas-turbine and reciprocating engines
1,2

. Due to the properties of these ceramics 

as high hardness, good fracture toughness and thermal conductivity, low thermal expansion 

coefficient, low density and good creep, wear and thermal shock resistance, they have been 

extensively applied in aerospace, automotive and defence industries
3
. In cutting tools 

applications, their major advantage is the combination of a high hardness and fracture 

toughness, even at high temperatures, as well as the chemical stability. The high 

temperature strength of silicon nitride made possible its use in metal machining 

applications with significantly increased machining rates
4
. The main physical and 

mechanical properties of silicon nitride are listed in Table 1. 

 

     Table 1 – Typical properties of silicon nitride ceramics
4
. 

Property  

Bulk density (g·cm
-3

) 3.2-3.3 

Flexural strength (MPa) 800-1000 

Fracture toughness (MPa·m
-1/2

) 6-8 

Hardness (GPa) 15-16 

Elastic modulus (GPa) 300-380 

 

 

In addition to silicon nitride (Si3N4), other nitrides such as boron (BN), aluminium 

(AlN) and titanium (TiN) are used as structural materials. The compound combinations 

within this group and with other ceramics like SiC, TiC, Al2O3, ZrO2, can result in 

interesting composites with an even wide range of applications when compared with their 

monolithic composition
5-9

. For instance, the increment of BN, SiC, TiC and TiN as second 

phase in the Si3N4 matrix confers to the composite the improvement of the high-

temperature mechanical properties, due to the higher refractoriness of these ceramics
10

. 

TiC and TiN also give electrical conductivity to the composite when the percolation 
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concentration is achieved, which can be around 20-40 vol.% being dependent on the 

uniformity of the conductive phase network, grain size, shape and the interaction with the 

matrix
11

. The electrical conductivity of hard ceramics is an important characteristic, since 

they are able to be machined by electrical discharge machining (EDM), making easier the 

preparation of pieces with complex geometries that could be very difficult and even 

impossible to obtain by conventional machining
12-16

. Another aspect is the use of these 

ceramics as reinforcement of the silicon nitride matrix, increasing the fracture toughness 

values related to the monolithic material. When the reinforcement has high aspect ratio, as 

whiskers or platelets, higher values of fracture toughness are achieved. On the other hand, 

the price of such materials and the difficulty to obtain a fully dense final product are some 

disadvantages when compared with particulate ones
8,11

. 

 

Silicon nitride has two different crystal structures: α and β. They are hexagonal for 

both phases, differing basically in the lattice parameter “c”. Their cell parameters can be 

found in Table 2. The α-phase is stable only at temperatures below 1450ºC and the 

irreversibly transition of α → β phase becomes easier during liquid phase sintering by 

dissolution – reprecipitation mechanisms
17,18

. 

 

Table 2 – Crystal structures of α and β- Si3N4 

18,19
. 

Lattice parameters (nm) Phase Crystal structure 

        a               c             c/a 

Unit cell 

α-Si3N4 Hexagonal 0,782 0,561 0,717 Si12N16 

β-Si3N4 Hexagonal 0,759 0,291 0,383 Si6N8 

 

 

The low mobility of the atoms, due to the strong covalent chemical bonds, limits the 

attaining of high densification levels by solid state sintering. As said before, silicon nitride 

ceramics densification needs sintering aids, generally oxide additives, to promote liquid 

phase sintering (LPS). These additives, as Al2O3, Y2O3, MgO and Ce2O3, react with the 

SiO2 present in the surface of Si3N4 grains to form a liquid phase that, upon cooling, forms 

an intergranular vitreous material or can partially solidify as a silicate or as a silicon 

oxynitride
8,19

. 
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Basically, the LPS mechanism can be divided into three stages
18,19

: (i) rearrangement 

of the particles by capillary forces, due to the formation of an eutectic melt consisting of 

additives and the SiO2 present on the Si3N4 surface; (ii) dissolution of α-Si3N4, diffusion of 

Si and N through the liquid phase and reprecipitation into a more stable β-Si3N4 nuclei; 

(iii) grain coarsening and coalescence of β-Si3N4 crystals, elimination or lowering of 

residual porosity. The final microstructure consists of prismatic β-Si3N4 grains, with high 

aspect ratio (length/diameter ratio), surrounded by an amorphous or partially crystallized 

intergranular glassy phase. The acicular characteristic of the β-Si3N4 grains is responsible 

for the high fracture toughness of this ceramic, and a close control of the aspect ratio can 

be used to improve this property
19,20

. 

 

 

 

Sintering of silicon nitride 

 

 

The main processes used to sintering silicon nitride are
1,19

: reaction bonded silicon 

nitride (RBSN), pressureless sintering silicon nitride (PSSN), hot pressed silicon nitride 

(HPSN) and hot isostatic pressed silicon nitride (HIPSN). In this thesis, two process were 

used, presureless and hot pressing. The basic process of monolithic Si3N4 ceramics 

production is described below as flow chart in Fig. 1: 

 

The starting powder composition and the production steps were chosen accordingly 

to previous works of our group
8,21

 in order to obtain fully dense materials, combining good 

mechanical properties. The composition was chosen based on the SiO2-Y2O3-Al2O3 ternary 

phase diagram to form a vitreous phase at approximately 1550ºC and all the SiO2 is found 

in the surface of α-Si3N4 grains. The production of the Si3N4-TiN composites followed the 

same procedure, with partial substitution of the Si3N4 matrix amount, and will be further 

described in the article presented in this chapter. 
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Fig. 1. Flow chart of the production of Si3N4 ceramics. 

 

 

The pressureless sintering step was performed in a graphite furnace (Thermal 

Technology Inc.), which is able to work in vacuum or controlled atmosphere (N2, Ar). The 

near-net shaped silicon nitride ceramics were displaced in a closed graphite container in a 

mixture of 50% Si3N4+additives with 50% BN (powder bed). In this way, the direct contact 

with the surrounding graphite walls is avoided and also reduces the decomposition of the 

Si3N4 powder. After air evacuation of the chamber, a flow of N2 was passed performed 

throughout the sintering cycle to avoid Si3N4 thermal decomposition, displacing the 

equilibrium given by eq. 1 to the left, as follows
1
: 

 

89.3% α-Si3N4 + 7.0% Y2O3+ 3.7% Al2O3 

(in weight) 

Planetary ball milling 

agata jar/Si3N4 balls 

(2-propanol media/8 hours) 

Drying - Sieving 

(60ºC/24 hours - 115 µm) 

Shaping 
Uniaxial cold pressing 

(40 MPa, discs Ø = 13 mm; t = 5mm) 

Cold isostatic pressing 

(200 Mpa/5min) 

Uniaxial hot pressing 

(20 MPa / 1650ºC / 1h /  

discs Ø = 25 mm; t = 5mm) 

Pressureless sintering 

(1750ºC/2h/0.1 MPa N2) 

discs Ø = 10 mm; t = 3.5 mm 
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)(2),()(43
23 glgs NSiNSi +→                                              (eq.1) 

 

As an alternative for densification, uniaxial hot pressing was done in an induction 

furnace (Inductelec) using graphite moulds and punches. The moulds were previously 

covered by a BN layer (brushing it with a suspension of BN powder in ethanol), the 

powder disposed between two graphite punches and them covered with alumina powder. A 

small hole on the alumina was open to make possible the reading of the graphite 

temperature by means of a pyrometer (Mikron M67). 

 

After densification, the samples were cut (in the case of HP samples), ground (47µm 

diamond wheel), lapped (15µm diamond suspension) and mirror-polished (0.25 µm silica 

suspension). The samples characterization involved the determination of density by liquid 

immersion (ethylene glycol), hardness by Vickers indentation and fracture toughness by 

measurement of the indentation cracks length, crystalline phases detection by XRD, 

electrical conductivity by four-point probe and morphology by SEM of the surfaces etched 

with CF4 plasma (Emitech K1050X). The following article presents the characterizations 

of the monolithic Si3N4 ceramic and Si3N4-TiN composites, used as substrates for further 

CVD diamond deposition. 
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Abstract 

 

The addition of titanium nitride (TiN) particles to a Si3N4 matrix reduces the intrinsic 

electric resistivity of this ceramic allowing it to be machined by EDM in cutting tools 

manufacturing. Gains can be expected given the cost reduction by the increase of 

productivity when shaping these hard to machine ceramic materials. Si3N4 ceramic matrix 

composites (CMC’s) with 0-30vol.% of TiN sub-micrometric particles were produced by 

uniaxial hot pressing (HP) and pressureless sintering (PS). For the PS samples, EDM tests 

showed that machining of the composites is possible when they contain at least 23vol.% 

TiN particles what corresponds to a resistivity of 7.5 Ω.cm. For HP samples at least 

30vol.% of TiN is required to get an electroconductive material for EDM machining. This 

difference is due to the lower temperatures used in the HP process that delays the 

formation of a conductive network between the TiN particles. 

 

Keywords: Silicon Nitride, Titanium Nitride, Ceramic Matrix Composites (CMC´s), 

Electrical Discharge Machining. 

                                  Chapter 2 - Processing and characterization of Si3N4 and Si3N4-TiN substrates 



 56 

1. Introduction 

 

 

Silicon nitride (Si3N4) is one of the ceramic materials having a strong penetration in 

the market of applications for structural components due to its low density, high hardness, 

high bending strength and fracture toughness and excellent thermal shock resistance
1
. The 

shaping and surface finishing of this ceramic still are time consuming steps. These are 

usually done by conventional grinding and polishing methods that can induce subsurface 

flaws to the components and diminish their strength
2
. Within this scope, appropriate 

amounts of an electrical conductive second phase, such as TiN, TiC or ZrN, can be 

incorporated into an insulating matrix, making it workable by the EDM (Electrical 

Discharge Machining) method
3
. This process is based on short duration electric discharges 

between an electrode and the workpiece that provokes material removal by erosion
4
. This 

second phase can be incorporated in the form of particles, fibres or whiskers, and may 

contribute to enhance the fracture toughness relatively to the unreinforced matrix 
5,6

. 

 

These materials can be densified by several methods such as hot-pressing (HP), gas 

pressure sintering (HIP, GPS) or pressureless sintering (PS). The latter technique has been 

used for producing Si3N4 cutting inserts, coated with diamond and successfully tested in 

turning operations of hard materials
7
. The feasibility of such method to produce particle 

reinforced composites is a less used subject since HP, HIP or GPS are generally required to 

reach full densification of these composites. The aim of the present work is to produce and 

characterize electrically conductive Si3N4 matrix ceramic composites with TiN particles. 

Titanium nitride is chemically compatible with the silicon nitride matrix, possesses high 

hardness, low electric resistivity and has a coefficient of thermal expansion close to that of 

silicon nitride, what diminishes the residual stresses
5
. PS and HP routes were used to fully 

densify composites containing up to 30vol.% TiN particles. 

 

 

 

2. Experimental Procedure 

 

 

The matrix of Si3N4/TiN ceramic composites is composed by 89.3% of Si3N4, 3.7% 

of Al2O3 and 7.0% of Y2O3 (in weight). Details on the choice of this composition were 
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previously reported
8
. TiN replaces the matrix in volume percentages of 9, 23 and 30%, 

consequently diminishing the amount of additives available for the formation of the glassy 

phase sintering aid. For the higher volume fraction of TiN, and anticipating lower sintering 

rates due to this diminution of the glassy phase fraction, another composite was made by 

replacing 30% of Si3N4 with the same volume amount of TiN. In this way the vitreous 

phase fraction and composition of the sample (called “30C”) are equivalent to that of the 

unreinforced matrix. This composite has effectively 26vol.% of TiN. The composites were 

densified by HP (1650ºC/20MPa/1h) and by PS (1750ºC/2-5h/0.1MPa of N2). The phase 

composition of all samples was analysed by X-ray diffraction (XRD). The dense ceramics 

were polished, etched by CF4 plasma and observed by Scanning Electron Microscopy 

(SEM). Vickers hardness and indentation fracture toughness (KIc) were measured with 98N 

of applied load. The electrical resistivity was measured using the dc four-point-probe 

technique. Samples having low electric resistivity were machined by wire EDM (W-Cu-

Zn, 0.25mm diameter wire). The EDM parameters, the duration and time between electric 

discharges, were fixed at 1.2 and 10µs, respectively, for a current of 16A and voltage of 

50V. 

 

 

 

3. Results and Discussion 

 

 

Phase composition. All the samples produced by both the PS and HP processes were fully 

dense after the adequate sintering cycles. In the case of PS cycles, the sintering time was 

2h for the matrix, 3 hours for the additive corrected composite (30C), and 5h for all the 

other composites to allow them to completely densify. Fig. 1a shows the XRD patterns of 

the matrix sintered by HP and PS. The two methods yield slightly different materials with 

respect to composition. For the HP matrix the tailored composition
8
 results in β-Si3N4 and 

amorphous intergranular phase. In the case of the PS matrix, and besides β-Si3N4, there are 

minor secondary phases such as Y2SiAlO5N, Y3AlSi2O7N2 and Y2Si2O7 that formed upon 

cooling from the crystallization of the vitreous phase. These differences are due to the 

smaller reaction temperature and shorter time in the case of HP but also due to the sintering 

environments. For HP, the ceramics are tightly confined inside a graphite pressing die, 

while in PS the samples are in a graphite container, surrounded by a Si3N4 /BN powder bed 
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and under a N2 atmosphere. The incorporation of TiN changes the local chemistry, since 

different phases are present after sintering (Fig. 1b). All the HP composites contain Si2N2O 

as a minor crystalline phase that increases its amount relatively to Si3N4 with increasing 

fraction of TiN. TiN always contains a surface oxidized layer (TiO2) that reacts with Si3N4 

to form TiN
5
. The amount of oxygen on the glassy phase then increases, displacing the 

equilibrium towards Si2N2O that crystallizes during cooling
9
. In the PS method, the 

incorporation of TiN in the composites also leads to the formation of yttrium silicates and 

yttrium oxynitrides, similarly to what happens with the Si3N4 monolithic materials, and 

traces of Y2Ti2O7. 
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Fig. 1. XRD patterns: a) PS and HP Si3N4 matrices; b) HP Si3N4 matrix and Si3N4-TiN 

composites. 

 

a) 

b) 
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Microstructure. The two sintering methods yield quite dissimilar microstructures due to 

the different temperatures and sintering times used for densification. The higher the 

temperature, the larger is the grain size. The etched microstructures in Fig. 2a and 2b 

illustrate this for the unreinforced matrix. Both matrices consist of β-Si3N4 grains of large 

aspect ratio surrounded by the intergranular phase. During sintering, the glassy phase 

surrounds a larger area fraction of Si3N4 particles in the HP matrix than in the PS matrix. 

This contributes for the compositional differences detected by XRD, as above discussed. 

The larger grain size obtained by the PS method is also observed for the TiN containing 

composites (Figs. 2c-j). There is no appreciable difference between the grain size of the 

matrix and that of the corresponding composites, although TiN has been referred to as a 

Si3N4 grain growth inhibitor
3, 10, 11

. 

 

The mechanical behaviour of these materials reflects these differences. The ceramics 

with the smaller grain sizes (HP) are harder but less tough than those with larger grain 

sizes (PS), Fig. 3. When considering the effect of TiN, there is a clear trend for an increase 

of KIc with its volume fraction, Fig. 3b. On the contrary, the composites hardness slightly 

decreases due to the lower intrinsic hardness of TiN grains then those of Si3N4

5
. Sample 

30C has the lowest hardness due to the larger volume content of sintering aids when 

comparing with the other composites. 
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Fig.2. SEM micrographs of etched microstructures of matrix and composites produced by 

PS method (a, c, e, g, i) and by HP (b, d, f, h, j). Dark phase is β-Si3N4; bright phase is 

intergranular phase; light grey phase in composites is TiN. 

a) Matrix - PS b) Matrix - HP 

c) 9% TiN - PS d) 9% TiN - HP 

e) 23% TiN - PS f) 23% TiN - HP 

g) 30C% TiN - PS h) 30C% TiN - HP 

i) 30% TiN - PS j) 30% TiN - HP 
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Fig. 3. Vickers hardness (a) and fracture toughness (b) of Si3N4-TiN composites. 

 

 

 

Electric resistivity. The microstructures of the composites in Fig. 2 show that with the 

increment of the TiN content, the inter-particle contacts increase and even the TiN grains 

enlarge. Others
12, 13

 demonstrated that in two phase materials the percolation threshold is 

reached for volume fractions of about 16%, and above 22% all inclusions are part of the 

same network in the case of spherical particles. Electrical resistivity measurements are a 

good indirect way of determining this percolation limit while simultaneously allows 

determining the ability of composites for EDM operations when conductive particles are 

used as reinforcement. In Fig. 4 the electrical resistivity is graphically represented as a 

function of TiN fraction for both sintering methods. The electrical resistivity decreases 

drastically from insulator (ρ=10
13

-10
14

Ω.cm) to a conductive ceramic material (ρ<10Ω.cm) 

a) 

b) 
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when the percolation concentration is reached. For the PS samples, the sharp decrease 

happens for the 23vol.% TiN composite, while for the HP ones it occurs for 26vol.%TiN 

(30C). This difference comes from the higher temperatures used in the former processing 

route that enhance the diffusion paths between TiN particles via the intergranular liquid 

phase, leading to an electroconductive network for lower TiN contents. This mechanism 

also explains the growth of the TiN grains by dissolution-reprecipitation mechanism 

observed in the PS composites. Above the percolation threshold, grain coalescence also 

takes place. After the sudden drop, further decreases in resistivity occur due to the 

improved quality of the conductive network
5
 when more TiN is added. 
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Fig. 4. Electric resistivity as a function of TiN volume fraction. 

 

According to some authors, the measured resistivity values are low enough to allow 

EDM machining since they are below a required minimum of 100Ω.cm
4, 5, 14

. This was 

tested in a series of EDM operations, where all the PS composites containing 23vol.% or 

more of TiN could be cut while in the case of HP composites only the 30vol.%TiN 

composite is machinable. The sparks between the electrode and the sample generate high 

local temperatures, causing melting and evaporation of both the surface material and the 

wire
3, 4, 6

. The micrograph of Fig. 5, representative of the surfaces after EDM machining, 

shows craters, caused by the electric discharges, and re-solidified material adhered to the 

freshly cut surface. 
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Fig. 5. Surface of the PS composite with 30% TiN cut by EDM. 

 

 

 

4. Conclusions 

 

 

Dense ceramic composites containing up to 30vol.% TiN particles were produced by 

pressureless sintering (PS) and by hot-pressing (HP). The higher temperature and longer 

times in the PS method induces a larger grain size of the β-Si3N4 grains with different 

intergranular crystallinity relatively to HP samples. Introduction of TiN in the matrix 

changes the equilibrium to more oxidizing conditions where oxynitrides and silicates are 

formed. PS composites are less hard (~15GPa) but tougher (up to 7.5MPa⋅m
1/2

) then their 

corresponding HP samples. 

 

For the PS densified composites, the TiN percolation threshold occurs with 23vol.% 

TiN, while for the low temperature HP route, the TiN fraction has to be increased up to 

30vol.% to result in an effective electroconductive network. All samples having an electric 

resistivity below 7.5Ω.cm could be machined by EDM. 
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Introduction 

 

 

Diamond films are among the most versatile and useful materials for advanced 

technological applications due to their highest hardness, chemical inertness, highest 

thermal conductivity, optical transparency, wide energy band gap, low dielectric constant 

and high carrier mobility. The crystal structure of diamond is cubic, consisting of 

essentially pure carbon with a hydrogen content less than 1% 
1
. Each carbon atom is 

tetrahedrally coordinated to other four carbon atoms through sigma bonds formed from the 

sp
3
 orbital hybridization. The lattice constant is 3.56 Å and the bond length is 1.54 Å 

2
. 

 

Diamond growth at low pressures is a metastable process. Fig. 1 represents the phase 

diagram of carbon, where it is shown the very limited area where metastable diamond 

growth by chemical vapour deposition (CVD) is possible. In this region, graphite is still the 

thermodynamically stable phase. However, the growth of diamond at low pressures is 

determined by the adsorption, diffusion and linking of hydrocarbons radicals on the growth 

surface, as well as the reorganization of carbon atoms on the diamond lattice. 

 

 

 

Fig 1. Phase equilibrium of diamond and graphite (adapted from 
3
). 
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Fig. 2. Schematics of the main parts on the process of CVD diamond growth (after 
4
). 

 

 

CVD diamond growth process consists on the conversion of gases containing carbon 

species into diamond. Generally, the precursor gases are composed by hydrogen with a low 

percentage or hydrocarbons. The most used is methane (CH4) in 0.1 to 5 vol.% 
3,4

. The 

mixture of these gases flows over an activation region and react within the gas phase to 

produce precursor carbon species. These carbon species reach the substrate and react on its 

surface to promote diamond nucleation and growth. The process is schematically shown on 

Fig. 2. 

 

The reason for the growth of diamond at low pressures was first theoretically 

advanced by Derjargin and co-workers, together with Angus 
5
. They stated that the process 

is kinetically controlled rather than thermodynamically. The “kinetic advantage” consists 

on the preferential etching of graphite over diamond by hydrogen atoms. Since these two 

allotropic forms of carbon are formed simultaneously on the process, graphite (or graphitic 

phases) is removed by reaction with H faster than diamond. The sequence of events that 

take place on the process are shown: 

 

1- Formation of atomic hydrogen on the activation region: In this region, 

supersaturation of atomic hydrogen is reached by the dissociation of molecular hydrogen at 
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temperatures over 2000ºC, as shown in reaction (1). Examples of energetic sources are: hot 

filaments, microwave plasmas, DC arcjet plasmas and combustion flames 
4
. 

 

•+•⇔ HHH
2

                                                (1) 

 

2- Formation of carbon growth precursors: The kinetics of the chemical reactions 

occurring inside the chamber is complex, and becomes even more intricate with the 

increment of different reactant gases, as O2, Ar, N2, CF4 
4
. The modelling of gas kinetics 

based on in situ diagnostics indicate methyl radical and acetylene (C2H2, produced from 

endothermic reaction of CH4) as the most probable gas precursors of diamond growth 

because they are the most abundant species 
4,6

. The formation of methyl radicals is due to 

the abstraction reaction of hydrogen with CH4 molecule, as exemplified in the reaction (2): 

 

234
HCHHCH +•⇔•+                                          (2) 

 

3- Transport and adsorption of active species on the substrate surface: The 

hydrogen-terminated bond on the substrate surface is “attacked” by atomic hydrogen on 

the gas (hydrogen abstraction reaction), creating a carbon radical site on its place (Fig. 3). 

The acetylene molecule or methyl radical is adsorbed on this radical site (Fig. 4). After 

that, a recombination reaction occurs, allowing the formation of carbon-carbon bonds and 

thus, carbon incorporation into the diamond lattice (Fig. 4)
5
. Stabilization of the 

tetrahedracoordinated (sp
3
 bonding) carbon species is achieved by a recombination 

mechanism of atomic hydrogen on the active sites, passivating the surface
5,7

. 
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Fig 3. Scheme of diamond growth: Abstraction of atomic hydrogen and the consequent 

formation of activate sites on the growth surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Scheme of diamond growth: Adsorption and recombination of methyl radicals on the 

growth surface (formation of sp
3
 diamond bonds). 
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Mechanisms of diamond nucleation 

 

 

The nucleation of diamond on the substrate is a very important step for high rate 

growth and uniformity. In the case of non-diamond substrates, the nucleation density is 

very low, and an efficient pre-treatment before diamond deposition is crucial. One of the 

most effective methods is the “scratching/seeding” one. It consists on the impregnation of 

the substrate with diamond powder, where very fine diamond particles are established in 

the irregularities of the surface. This can be done by scratching the surface with diamond 

powders in a dry way form 
9
, or by impacting it ultrasonically with a diamond suspension 

in an organic solvent 
10

. Others abrasive powders were also used, as Al2O3, SiO2, for 

roughening of the surfaces to create high energy sites for diamond growth. However, a 

much smaller nucleation density of 1.4 × 10
5
 cm

-2
 created by Al2O3 against 5.7 × 10

9
 

created by diamond particles was reported 
10

. 

 

A complete review on this subject is presented by Liu and Dandy 
11

. They collected a 

number of possible explanations for diamond nucleation enhancement on scratched 

substrates, some of them are: (a) seeding effect, (b) minimization of interfacial energy on 

sharp convex surfaces, (c) breaking of a number of surface bonds, or presence of a number 

of dangling bonds at sharp edges, (d) strain field effects and (e) rapid carbon saturation 

(fast carbide formation) at sharp edges. 

 

Although the scratching/seeding are simple and effective for diamond nucleation, it 

also causes surface damage and contamination. Some applications require extremely 

smooth and clean surfaces, as electronic devices and optical window. In such cases, 

alternative methods as biasing or interlayer coatings can be used with comparable to or 

even better results than those achieved by seeding of scratching 
11-14

. 

 

Other explanations of diamond nucleation on non-diamond substrates include the 

formation of:  

-  diamond-like amorphous carbon (a-C) 
11,15,16

. This mechanism proposes the 

formation of an a-C interlayer, providing nucleation sites to diamond. Carbon cluster are 

formed on the substrate surface, where the change of sp
1
 to sp

2
 bonds occur. The 

subsequent atomic hydrogen changes the bond structure to sp
3
 and the competition of 

                                       Chapter 3 - CVD diamond: deposition parameters and film characterization 



 72 

sp
2
/sp

3
 etching occurs. The diamond structure develops due to the lower etching rate of sp

3
 

bonds relatively to the sp
1
 and sp

2
 (about 10 times). The formation of an amorphous-

carbon layer was also observed by Fitzgerald and co-workers
17

 using (100) silicon as 

diamond substrate. 

 

- graphite 
11,18

. It is proposed that graphite initially condenses on the substrate surface 

and that the {1100} prism planes are subsequently hydrogenated, where diamond 

preferentially nucleates with an almost perfect interface. 

 

-  metal carbide 
11,18

. It can occur when the substrate is a carbide former, as Si, Ti, 

Mo, Ta and W. This mechanism proposes that initially carbon diffusion into the substrate 

takes place, resulting in the formation of stable metal carbide. The diamond nucleation is 

believed to occur only after the formation of a thin carbide layer, when the saturation of 

carbon on the surface reaches the limit. The formation of an interfacial SiC layer was 

evidenced by infrared measurements on Si substrate 
19

. Another work 
20

, based on HRTEM 

analysis, reported the formation of amourphous SiC layer on Si substrates of 10 to 100 Å, 

followed by amourphous carbon film, where diamond nucleation occurs. Nistor and co-

workers
21

 related the formation of an amourphous SiC interlayer of 20-70 nm when CH4 

concentration was higher than 5% while no visible interlayer by TEM cross-section 

analysis was observed at lower CH4 values 
21

. Morrison and co-workers
22

 performed CVD 

diamond growth on titanium and molybdenum. Analysis of X-Ray diffractometry showed 

the presence of TiC and Mo2C. The formation of TiC interlayer was also found in an 

important titanium alloy, Ti6Al4V, used in biomedical and aerospace applications 
23

. A 

graded interlayer of amouphous TiCN of only 8 Å was suggested by Contreras on TiN 

substrate, as observed by HRTEM images and EDS measurements 
12

. In the case of Si3N4 

substrate, it is believed that the SiO2 presented on the surface reacts with carbon to produce 

a β-SiC interlayer 
18,24

. A graded interlayer of SiCN by reaction of Si3N4 surface with 

hydrocarbons is also taken into account 
18

. The formation of SiC from direct reaction of 

Si3N4 with C is reported to be possible only at temperatures above 1350 ºC 
25

. Although the 

substrate temperature generally do not surpass 900-1000ºC, the temperature of the plasma 

near the surface sample can be much higher than that, and the reaction turns feasible 
18

. 

Buchkremer-Hermanns and co-workers
26

 consider the formation of a SiC interlayer 

between diamond and Si3N4, although they could not detect it by glazing incidence X-Ray 
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diffraction. They believed that insufficient detection sensitivity for very thin films, texture 

effects or presence of amorphous layers are possible reasons. 

 

The knowledge of the exact nature of the diamond/substrate interface is not an easy 

task, as shared by Fitzgerald
17

. This study has also been made by cross-sectional TEM 

observations, and the preparation of the samples is known to have practical problems. Due 

to the small dimensions of the interface layers, the accurate identification of their 

composition and phase can not be done by electron diffraction or electron energy loss 

spectroscopy
17

. 

 

 

 

CVD diamond deposition techniques 

 

 

The CVD techniques used to grow diamond films basically differ on the way that the 

gases are activated. The main ones are: microwave plasma (MPCVD), hot filament 

(HFCVD), arc-jet plasma (AJCVD) and combustion flame. Two techniques were used in 

the present thesis, the MPCVD and HFCVD, and they will be following detailed: 

 

Microwave Plasma assisted Chemical Vapour Deposition (MPCVD): in this 

technique, plasma can be generated using a microwave generator of 2.45 GHz with an 

electron density of typically 10
20

 electrons/m
3 2

. The gases are ionized by the high 

frequency electric field, and the electrons are accelerated to high energy levels, colliding 

with the gas molecules. Consequently, heating and dissociation of the gas molecules 

occurs, originating the active species to diamond deposition. Samples are placed beneath 

the plasma ball, being the area of deposition limited by the size of the plasma formed. 

Diamond growth rate is typically from < 1 µm·h
-1 

up to 10 µm·h
-1

, but it is dependent not 

only of the growth parameters, but is also strongly dependent of the microwave power 
4
. 

The commercial microwave reactor, produced by Applied Science Technology Inc. 

(ASTEX PDS 18), was used to grow diamond on silicon nitride cutting tools. The 

deposition area of this reactor is 20 cm
2
. Fig. 5 shows the overview of the reactor and a 

close-up image of the samples inside the chamber while diamond growth occurs. This 

reactor is located at the Physics Department of University of Aveiro. 
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Fig. 5. General overview of the microwave plasma chemical vapour deposition system. 

 

 

During MPCVD deposition, the substrate is heated only by the plasma ball and, 

although its temperature can not be measured accurately, it is estimated to be above 800 

ºC. Growth conditions were set in earlier works of the group, taking into account requisites 

as: high growth rate of about 6 µm·h
-1

, good quality of the film characterized by a sharp 

diamond Raman peak at 1332 cm
-1

 with low graphitic contents, good adhesion to silicon 

nitride substrates supporting critical loads of about 1000N, as evaluated by Brale 

indentation method 
27

. Considering this, the used deposition parameters of microcrystalline 

diamond were as follows: microwave power=2.25 kW; total pressure=1.2×10
4
 Pa; H2/CH4 

flow=400/25 sccm. 

 

 

Hot Filament Chemical Vapour Deposition (HFCVD): in this case, the gas precursors 

of diamond deposition flow over hot filaments where the hydrogen is catalytically 

dissociated, starting the production of active species. The temperatures of the hot filaments 

are generally between 2000 and 2400ºC and can be made of tungsten (the most common), 

tantalum, rhenium or molybdenum 
4
. The configuration can be coiled or linearly stretched, 

being the substrates placed at about 5-10 mm below the filaments. The area of deposition is 

restricted by the active region of an individual filament, which comprises just a small 

Reactor 
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Tuner and 

Waveguide 

Microwave 

generator 

Plasma ball 

Substrates 
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volume around it. However, a system of multi-filaments can increase substantially the 

deposition area and the simplicity of such scale-up constituted a great advantage over the 

microwave reactors. The HFCVD growth rate range can be of the same magnitude of 

MPCVD, between <1-10 µm·h
-1

, depending on the deposition conditions and the required 

quality of the films, but is usually lower for high quality films, not exceeding 2-3 µm·h
-1

. 

The HFCVD reactor used in this work is a home-made steel chamber, located at the 

Department of Glass and Ceramics Engineering of the University of Aveiro. The overview 

of the reactor is presented in Fig. 6. In this system, the substrate is pre-heated by the 

thermal radiation of the filaments, and aided by an external power supply. The substrate 

temperature is measured by a K-type thermocouple placed at the back side and controlled 

by using a Shymaden SR24 controller while the filament temperature is measured by a 

two-colour pyrometer RAITEK (Marathon series MR15).  

 

 

 

 

 

 

 

 

Fig. 6. General overview of the hot filament chemical vapour deposition system. 

 

 

Four linear tungsten filaments wires of 250 µm diameter distanced about 5mm of 

each other were used as gas activator. With this configuration, a homogeneous deposition 

area of 6 cm
2
 is possible. Before diamond deposition, a carburization step of the filaments 
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is necessary to avoid contamination of the samples with volatized tungsten of the wire. The 

carburization parameters were optimized by Tallaire
28

 in his M.Sc. dissertation work. The 

carburization is done at the following conditions: start filament temperature = 2400ºC, 

CH4/H2 = 0.02, total pressure = 67 mbar, total flow = 100 sccm, time = 30 minutes. In this 

process, the formation of W2C at the outer shell occurs, followed by a secondary 

conversion of W2C/WC from the outside of the filament to the centre 
29

. These structural 

changes increase the resistance of the filament and the temperature drops drastically. It was 

found that, after 30 minutes at such carburization conditions, the temperature remains 

constant at 2200ºC and it is ready to be used to growth step. Care has to be taken after the 

carburization, since the filaments are now very brittle due to the volume expansion of 

about 9-12% leading to crack formation on the surface of the wire 
29

. 

 

 

 

Comparison between MPCVD and HFCVD techniques 

 

 

Some advantages/disadvantages of both CVD apparatus can be listed: 

 

- Higher stability of the MPCVD deposition process, which allows uninterrupted 

deposition, lasting for days if necessary, while in the case of HFCVD such stability 

depends of filament integrity (distortion, volatizing, embrittlement); 

- Cleaner MPCVD environment, no film contamination from metal wires, as in the 

case of HFCVD; 

- Growth rate is at least twice for the MPCVD diamond films than those of HFCVD 

for similar quality films; 

- In the case of the apparatus used in this work, the deposition area of the MPCVD 

method is more than three times of HFCVD, at the present; 

- Much easier and cost effective fabrication or up-scaling potential of HFCVD 

reactor, the deposition area is only dependent of number of the multi-filaments, gas 

distribution over them and power supply; 

- Higher film thickness uniformity, less edge effect of the HFCVD films against the 

MPCVD ones; 
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- Complex sample geometry is much easier to be uniformly coated with HFCVD 

method than with MPCVD one; 

- Both methods can use bias to enhance nucleation. 

 

Complex geometries, edges of pointed zones disturb the electrical field, leading to a 

non-uniform temperature distribution, irregular grain sizes and uneven film thickness 
30

. 

To minimize the edge effect, masks can be used to fill the empty spaces between the 

samples, or use the maximum number of samples keeping them as close as possible. Figure 

7 presents a SEM cross-sectional view of a microcrystalline diamond film growth by the 

MPCVD method, were the difference of film thickness between the edge and the central 

part of the sample can be as high as the double (Fig. 7a and 7b, respectively). Diamond 

grain size is also higher on the edge than on the centre, as the respective Fig. 8 c) and d) 

show. 

 

  

  

Fig. 7. Microcrystalline diamond film deposited by MPCVD method. 

 

In the case of samples coated by HFCVD method, such difference is not so evident, 

although film thickness varies at about 30% from centre to the edge parts. In this case, a 

higher convection movement of the gases may cause such difference. 

 

a) b) 

c) d) 
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The HFCVD technique is mainly exploited for the production of nananocrystalline 

diamond (NCD) because a previous deposition study performed by the group successfully 

led to growth rates of up to 1.6 µm·h
-1 31

. Also, the MPCVD reactor became inoperative for 

a long time. The growth parameters were: filament temperature = 2300ºC; total pressure= 

25-50 mbar; CH4/H2 = 0.02-0.04; Ar/H2 = 0-0.1; total flow = 50-100 sccm; substrate 

temperature = 750-850ºC. 

 

 

 

Micro- and nanocrystalline CVD diamond characteristics 

 

 

The growth of CVD polycrystalline diamond can promote, basically, two kinds of 

microstructure 
32

: 

- Columnar: consisting of columnar grains of preferred orientation that grow from 

the first nucleated layer deposited on the substrate. This structure is typical of 

microcrystalline (MCD) diamond films. 

- Equiaxed: consisting of fine and randomly oriented grains, typical of 

nanocrystalline (NCD) diamond. 

 

In the case of MCD, well-faceted single crystallites are observed (Fig. 7) while in 

NCD deposition round-shaped crystallites grow. This change in microstructure is caused 

by the rate of secondary nucleation, which is low for MCD but very high for NCD 

diamond deposition. The most important characteristic of NCD growth is that the 

crystallite size does not depend on the film thickness 
33,34

. Conversely, the growth of MCD 

films is columnar, and the crystallite size increases with thickness as a consequence of the 

evolutionary crystal growth mechanism 
32

.  

 

The synthesis and characterization of NCD diamond film has recently received 

considerable attention, since it possesses several unique properties compared to the 

conventional MCD one 
16,31-47

. The main properties can be said to have a smoother surface, 

lower friction coefficient against a wide range of materials, together with a wide band gap 

and higher electron emission efficiency 
47

. These special characteristics make NCD 

diamond a better coating material for mechanical applications, a better candidate as an 

optical or electrical component and as a cold cathode material. 
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The control of CVD diamond film microstructure is achieved by changing the 

deposition parameters to growth or re-nucleation conditions of diamond. Such parameters 

are highly dependent on the technique used as well as geometric factors of the reactor 

chamber. NCD films can be produced in a microwave plasma CVD reactor from a variety 

of feed gas mixtures such as fullerenes/Ar, CH4/Ar, CH4/N2, or CO/H2 
36,40,41,44,46

. The 

diamond crystallite size typically varies from 3 to 30 nm and the surface roughness from 

15 to 40 nm 
42

. The hot filament CVD technique can also be used to grow such coatings 

either by applying a bias current that can be used to enhance growth rate and minimize 

grain size and surface roughness 
48

 or by carefully adjusting deposition conditions under 

H2/Ar/CH4 gas mixtures 
31,40,49

. The increase of CH4/H2 ratio also enhances the secondary 

diamond nucleation, but above a given ratio, graphite may form and prevents diamond 

nucleation 
48

. 

 

NCD is normally described as nanocrystalline diamond grains embedded in a 

predominant tetrahedrally coordinated amorphous carbon network 
42

. However, this kind 

of NCD film are often termed “cauliflower” or “ballas” diamond, because of the 

substancial amount of sp
2
-bonded nature of the grain boundaries 

40,41,46
. The so-called 

“Ultra-Nanocrystalline” diamond (UNCD), is said to differ from NCD due to its much 

smaller grain sizes (3-5 nm) and have an abrupt grain boundaries with negligible sp
2
- 

bonded carbon 
40

. This material has been used to fabricate UNCD probes for 

nanolithography in atomic force microscopy (AFM) in non-conducting (undoped) and 

conducting (nitrogen-doped) states 
50

. Kulisch and co-workers
32,35

 classify their NCD films 

of “NCD/a-C films”. Although their diamond grain sizes reached the UNCD domain, the 

µ-Raman spectra of the films showed a large contribution of the D and G band (band of the 

disordered (~1340 cm
-1

) and microcrystalline (~1560 cm
-1

) graphite, respectively), 

together with a suppression of the diamond peak (~ 1332 cm
-1

). The presence of bands 

around 1140 and 1490 cm
-1

, related to acetylene C-H chains, were also detected and are 

accepted as NCD signature 
51

. 

 

 

 

 

                                       Chapter 3 - CVD diamond: deposition parameters and film characterization 



 80 

Stress and adhesion of diamond film 

 

 

The adhesion of the diamond film to the substrate is strongly affected by the stress 

that usually remains after growth. Stressed films tend to split under tension and can even 

peel off from the substrate under compressive strain 
52

. So, the understanding of the source 

and nature of the residual stresses in the CVD diamond films is an important matter. 

Generally, the residual stress in these films is divided in two components: 

 

- Extrinsic (thermal) stress: it appears when the sample is cooled from growth down 

to room temperature, caused by the difference between the thermal expansion coefficients 

of film and substrate. Thermal stress (σth) can be estimated as shown in Eq. 3 
53

: 

 

          ∫ −
−

=
dep

amb

T

T
substdiamth dT

E
)(

1
αα

ν
σ                                       (Eq.3) 

 

where E = 1143 GPa and υ = 0.07 are Young’s modulus and Poisson’s ratio for diamond, 

αdiam and αsubst are the temperature-dependent coefficients of thermal expansion of 

diamond film and substrate, respectively. 

 

-  Intrinsic stress: it develops during film growth, and is associated to the non-

diamond material at the grain boundaries and also to structural defects, like impurities, 

micro twins, dislocations, etc. 

 

The most common methods to determine the residual stress in diamond films are the 

substrate curvature technique 
54

, peak deviation in x-ray diffraction 
55

 and Raman spectra 

53,56
. Particularly, Raman spectroscopy gives a simple method that evaluates the residual 

stress through the diamond Raman peak shifts. The diamond shift values are used to 

evaluate the residual stress (σres) of the coating by the expression given in Eq. 4 
53

: 

 

                                      )(567.0)(
1−∆−= cmGPares υσ                                        (Eq. 4) 
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where ∆ν is the difference between the measured and the natural stress-free (1332 cm
-1

) 

diamond peak shifts. The positive shift of Raman peak from 1332 cm
-1

 is attributed to the 

compressive stress, while the negative shift means a tensile stress state 
57

. 

 

Residual stress can be the cause of poor substrate adhesion and also contribute to the 

failure of the coating by its delamination. The mismatch in the thermal expansion 

coefficient is one of the limitating factors on the choice of the appropriate substrate of 

CVD diamond films for mechanical and tribological applications. In such applications, the 

diamond film is usually subjected to very high tensile/compressive stress, and shear forces 

as well as high and fluctuating temperatures. From the materials used in tooling 

applications, Si3N4 has the closest thermal expansion coefficient to diamond, together with 

better chemical compatibility for diamond nucleation and growth than tungsten carbide, as 

said before 
58

. Besides the higher thermal stress, the major problem of the tungsten carbide 

tool inserts is the chemical interaction between the cobalt binder and diamond, catalyzing 

the formation of graphite and avoiding a sufficiently bonding between diamond and the 

carbide 
4
. Efforts has been made to improve adhesion of diamond coatings to tungsten 

carbide tools, as using of interlayers of Si, Si3N4, SiC, Si(C,N), Ti-Si and CrN 
58-60

, 

introducing Si-chemical reagents to the gases during diamond growth 
61

 or removing the 

cobalt from the surface by chemical etching with H2O2, H2SO4, HNO3 
13,62

. 

 

Adhesion is the interaction (bonding) between two adjacent surfaces (film and 

substrate), and can be of chemical and/or mechanical nature. The chemical bonding of the 

diamond film to the substrate is related to the nature and formation of an interlayer, as said 

before. Mechanical bonding is due to the mechanical interlocking of the surface asperities 

in contact 
18

. As earlier referred, Si3N4 is chemically compatible to diamond and so, 

chemical bonding is assured. In order to improve the adhesion strength, the mechanical 

surface preparation of the substrate is a critical step to enhance the physical interlocking on 

the interface, at the same time that increases the surface area available for chemical 

bonding. The surface of the tool is usually first finished by grinding, but the strength of the 

mechanical bonding in this case is dependent on the direction of the force applied, parallel 

or normal to the feed marks 
18

. More isotropic interface strength of the bonding can be 

reached by polishing the tool surface followed by chemical etching, e.g. HF and HNO3 hot 

acids or CF4 and H2 plasmas, , roughening it on a microscale level. This type of interface 
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may provide a tough, crack deflection mechanism, redirecting the crack extension from the 

interface through the film or substrate 
63

. Belmonte and co-workers 
27

 have studied the 

adhesion behavior of diamond coated silicon nitride by acoustic emission coupled with 

Brale indentation test. By this method, the interfacial cracking resistance is calculated by 

measuring the radial cracks produced on the vicinity of the indentation mark. They found 

that the adhesion can be improved with a higher roughness of the substrate. 

 

The following papers present the characterization of the diamond films by scanning 

electron microscopy (SEM) with respect to their morphology, macroscopic structure and 

thickness, by X-ray diffraction (XRD) concerning their crystalline properties, by µ-Raman 

spectroscopy to access their quality and residual stress state, atomic force microscopy 

(AFM) to investigate the morphology and surface roughness, and Brale indentation test to 

evaluate the film adhesion. 
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Abstract 

 

In the present study, hot filament chemical vapour deposition technique was used to grow 

diamond films from nanometric to microcrystalline grain sizes. Their adhesion levels to a 

silicon nitride ceramic were compared after Brale tip indentation testing. The best 

behaviour was attained by the microcrystalline diamond (MCD) grade due to its higher 

crystallinity and superior hardness. In contrast, nanocrystalline diamond (NCD) coatings 

showed the less effective chemical bonding to the ceramic substrate due to the higher 

degree of sp
2
 content. The MCD coating supported a normal load of 1600N without 

spalling-off and presented an interfacial crack resistance of 12.0 N·µm
-1

, much better than 

that reported until the present. This behaviour may be attributed to the CF4 plasma pre-

treatment of the substrate. 

 

 

 

 

 

 

 

Keywords: CVD diamond films; Silicon nitride; Adhesion 
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1. Introduction 

 

 

CVD diamond coated materials possess unique properties (hardness, thermal 

conductivity, chemical inertness) that demand their selection as components of 

tribosystems working under mechanical and/or chemical severe conditions. Examples of 

industrial applications are cutting tools for highly abrasive materials and mechanical seals 

for pumping of corrosive liquids
1
. Furthermore, an interesting field of application is 

biomedicine, namely as coatings for articulated implants
2
, where diamond’s 

biocompatibility is an essential issue. Nevertheless, the high surface roughness of 

conventional microcrystalline CVD diamond is a major problem when considering such 

purposes, as the sliding contact of diamond asperities may increase the stress and 

temperature levels, leading to a wear-rate increase. To overcome this drawback, today’s 

goal is the development of diamond crystals with nanometric size by selecting adequate 

CVD parameters, avoiding the typical columnar growth of microcrystalline diamond 

(MCD) structures. In this way, nanocrystalline diamond (NCD) coated materials are very 

suitable for tribological applications due to the excellent combination of high hardness and 

very low nominal surface roughness. 

 

In all these tribological applications, adhesion of the film to the substrate determines 

the success of the component in service. In spite of the evaluation of NCD adhesion not be 

well characterized, namely on ceramic substrates such as silicon nitride (Si3N4), it 

represents one of the most compatible materials for CVD diamond deposition 
3
. In this 

study, distinct grades of CVD diamond coatings of nanocrystalline, submicrometric and 

micrometric grain sizes were grown by hot filament technique on Si3N4 ceramic substrates. 

Their relative adhesion levels were also evaluated by Brale tip indentation. 
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2. Experimental Procedure 

 

 

Disc-shaped Si3N4 substrates (Ø 10 mm × 3 mm thickness) were pressureless sintered 

(1750ºC-2h-0.1MPa N2) using Y2O3 (7.0 wt %) and Al2O3 (3.7 wt %) as sintering aids. The 

substrates were sequentially ground with a 46 µm diamond wheel, polished with 15 µm 

diamond slurry in an iron/polymer plate, chemically dry etched with CF4 plasma (1 h) and 

diamond seeded by a 0.5-1 µm suspension in n-hexane by ultrasound agitation (1 h). 

 

Diamond growth was then conducted by hot filament chemical vapour deposition 

(HFCVD), in an in-house developed reactor. The thermal heat created by four linear and 

parallel tungsten wires (0.25mm diameter) were used as gas activation energy source. The 

distance between filaments and samples was kept at about 5 mm. Three kinds of diamond 

grain sizes were grown by selected deposition parameters: i) microcrystalline diamond 

(MCD) with flow ratio CH4/H2 = 0.02, chamber pressure (P) = 2.5 kPa, substrate 

temperature (Ts) = 850ºC, total flow (Q) = 100 sccm, deposition time (t) = 15 h; ii) 

submicrocrystalline diamond (SMCD) with CH4/H2 = 0.03, P = 2.5 kPa, Ts = 850ºC, Q = 

100 sccm, t = 15 h ; iii) nanocrystalline diamond (NCD) with CH4/H2 = 0.04, Ar/H2 = 0.10, 

P = 5.0 kPa, Ts = 750ºC, Q = 50 sccm, t = 19 h. Filament temperature was kept at about 

2300ºC in all conditions. The thicknesses of the diamond films were about 30 µm, 33 µm 

and 39 µm for NCD, SMCD and MCD films, respectively. The diamond crystallite sizes 

were evaluated by X-ray diffraction as 27 nm (NCD) and 43 nm (SMCD). Although the 

submicrometric diamond with 43 nm of crystallite size reaches the usual nanometric 

assignement, this value taken from the Scherrer formula is only the lower limit of the real 

value
4
, since SEM micrographs reveal that most of diamond grains fall in the range of 100-

200 nm. The MCD grain size was estimated from SEM to be 12 µm. 

 

The identification of diamond and graphitic phases were done by Raman 

spectroscopy at room temperature with an Ar ion laser (λ=488 nm). Adhesion was 

evaluated using diamond Brale indenters (cone angle of 120º and tip radius of 0.2 mm) 

adapted to an universal testing machine at discrete loads from 50 to 1700 N with a 

crosshead speed of 0.5 mm·min
-1

. During the experiments, the diamond indenter was 

carefully observed using a stereoscope and replaced when damaged. At least three 
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indentations per load were performed for each diamond grade. Circumferential (lateral) 

cracks of all the indentation imprints were measured using optical and scanning electron 

microscopy. 

 

 

 

3. Results and Discussion 

 

 

Highly faceted diamond grains and the columnar growth, typical of conventional 

microcrystalline diamond, can be seen in Fig. 1a for the MCD samples. The SMCD grade 

was obtained after increasing the methane concentration by 1vol.% relatively to the MCD 

growth, which lead to a much smaller diamond grain size and a very smooth surface, as 

can be seen in Fig. 1b. Finally, NCD films were grown by partial substitution of hydrogen 

by Argon and further methane increase, promoting the renucleation of diamond 
5
, resulting 

in tiny diamond grains with an intrinsic ultra-smooth film surface (Fig. 1c). These 

morphological differences are further evidenced by their physical properties, as can be 

seen by the corresponding Raman signatures (Fig. 1d-f). One important feature is the 

suppressing of the diamond peak (1332 cm
-1

) and the raising of the graphitic D-band (~ 

1360 cm
-1

), as the diamond crystallite size decreases. Also, the intensity of the G-band of 

graphite (~1560 cm
-1

) notably increases in both the SMCD and NCD coatings. In addition, 

the Raman spectra deconvolution evidences the presence of peaks near 1140 and 1480 cm
-

1
, assigned to C-H chain structures as trans-polyacetylene [trans-(CH)n] and widely 

accepted as typical of nanocrystalline diamond. The increase in the sp
2
 character of the 

films can be explained by the high hydrocarbon supersaturation and decrease of atomic H 

density in SMCD and NCD samples, which is responsible for etching the non-diamond 

carbon phases
5, 6

. 
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Fig. 1. SEM micrographs and cross-section insets of: a) MCD; b) SMCD and c) NCD; d) 

to f) are the respective Raman spectra. 
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Despite the very low difference in the thermal expansion coefficient between 

diamond and silicon nitride ceramic when compared to other substrates such as hardmetal
7
, 

intrinsic and thermal stresses may develop during film growth and cooling down step, 

respectively. Stress effects elastically deform the diamond crystals and cause the 

displacement of the Raman diamond shift from the value of natural diamond (1332 cm
-1

). 

The peak fitting of the Raman spectra resulted in diamond shift values at 1331.3 cm
-1 

for 

MCD, 1331.6 cm
-1

 for SMCD samples, which corresponds to very low tensile stresses (σ) 

of 0.40 and 0.23 GPa, respectively, using the expression σ(GPa) = -0.567∆ν(cm
-1

), where 

∆ν is the difference between the measured and the natural stress-free diamond peak shifts
 8

. 

The slight diminution of the tensile stress of SMCD relatively to MCD one can be a result 

of the higher graphitic phase content at the diamond grain boundaries of the former 

diamond grade, which contribute with compressive stresses
9
. 

 

SEM micrographs of the Brale imprints at selected loads on the three different 

diamond grades are depicted in Fig. 2. The left hand column groups the crack patterns for 

loads just below film spalling-off (1600 N, 1000N and 400 N for MCD, SMCD and NCD, 

respectively), while in the right hand side the corresponding indent features at the spalling-

off loads (1700 N, 1100N and 500 N for MCD, SMCD and NCD, respectively) are shown. 

As the indenter penetrates through the film and leaves the sample, a sequence of events 

takes place: i) in the silicon nitride substrate: elastic and quasi-plastic deformation, lateral 

and radial/median vents nucleation at the elastic/plastic transition and their growth towards 

the film/substrate interface; ii) at the film/substrate interface: propagation of the radial and 

lateral (circumferential) cracks due to the combination of a set of factors - residual stresses, 

mechanical properties of both the film and the substrate and interfacial fracture resistance 

10
; iii) propagation of the former vents along the film and its spalling-off when both crack 

systems meet. It must be emphasized that, due to the brittle nature of the substrate, 

cracking phenomena initiate in the substrate, as it was illustrated by Belmonte et al
11

 

showing that the crack pattern of the diamond coated silicon nitride is the same for the bare 

one, although amplified in that case. 
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Fig. 2. SEM micrographs of the Brale imprints at selected loads on the three different 

diamond grades; left column: crack patterns for loads just below film spalling-off; right 

side: the corresponding indent features at the spalling-off loads. 
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Measurements of the circumferential (lateral) crack radii are plotted as a function of 

the indentation load in Fig. 3. As can be seen in Fig. 2 and 3, the MCD samples supported 

the largest load before spalling-off and presented the lowest values of circumferential crack 

dimensions for all the applied loads. From the above estimation on the Raman diamond 

peak deviation, the MCD samples undertook higher residual stress values than the SMCD 

ones, which suggest that the stress alone is not governing the film adhesion. As stated with 

respect to the crack propagation sequence, diamond film features (crystallinity, hardness 

and thickness) and interfacial characteristics (bonding strength and nature) also contribute 

to the response under the indentation testing. First of all, the MCD crystalline purity, and 

thus hardness, is higher when compared to the other grades. In fact, the MCD sample has 

the smallest non-diamond phase content, as could be seen on the Raman spectra (Fig. 1d-

f), and consequently the highest hardness. Also, the thickness of MCD film is slightly 

higher than those of the SMCD and NCD coatings. The combination of a harder and 

thicker coating upholds the applied load and reduces the plastic deformation volume in the 

substrate
12

. Moreover, the lower is the graphite content at the interface the higher is the 

bonding strength to the substrate
13

. As a result of all these contributions, adhesion of the 

diamond coating to the substrate is much improved in the MCD grade relatively to SMCD 

and NCD. 

 

The same trend is emphasized when comparing SMCD and NCD samples (Fig. 2 and 

3). Adhesion is much lower for the NCD grade and this may be attributed to the higher 

degree of sp
2
 content, as proved by Raman spectra (Figures 1e-f), together with a distinct 

surface chemistry and deposition temperature. The SMCD deposition process was carried 

out with methane supersaturation which is considered to promote the formation of a SiC or 

a SiCxNy interlayer on the Si3N4 surface, enhancing the adhesion to this ceramic
13

. In the 

case of NCD, Argon is the renucleation agent and so the surface carburization step prior to 

diamond growth is probably not so effective. In addition, the deposition temperature of the 

NCD process (750ºC) was lower than for the SMCD growth (850ºC) which dictates a less 

thermally activated process, lowering the species interdiffusion at the substrate surface. 
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Fig. 3. Circumferential crack radius versus indentation load measured for the three CVD 

diamond coated silicon nitride substrates. 

 

From the reciprocal of slopes in Fig. 3 it is possible to estimate the interfacial crack 

resistance parameter before film spalling-off for the three diamond grades: 12.0 N·µm
-1

, 

8.3 N·µm
-1

 and 6.8 N·µm
-1

, corresponding to the intervals 200-1400 N, 200-800 N, 200-

400N, respectively, for MCD, SMCD and NCD. In the literature, a value of app. 5.0 N·µm
-

1
 is reported for microcrystalline diamond deposition assisted by microwave plasma using 

the same kind of ceramic substrate
13

. In the same work, the coating delaminated at 600N of 

applied load close to that observed for NCD, while in the present work the MCD film 

survived until 1600N. Despite the distinct CVD technique and deposition parameters, the 

better adhesion found in the present work may be attributed to a much improved 

mechanical interlocking provided by CF4 plasma etching of the ceramic. Besides, this 

treatment activates the Si3N4 grains by surface fluorination, roughening the surface at the 

silicon nitride grain scale. 
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4. Conclusions 

 

 

CVD diamond coatings with nanometric (NCD, 27 nm), submicrometric (SMCD, 43 

nm) and microcrystalline (MCD, 12 µm) average grain sizes were grown on ceramic 

silicon nitride substrates with high adhesion levels, suitable for tribological purposes. 

Optical and SEM observations of Brale indentation imprints in the range 50-1700N, and 

measurements of the corresponding circumferential crack radii, allow the ranking of the 

different diamond grades as NCD→SMCD→MCD, from the lowest to the highest 

adhesion resistance. The lowest graphitic phase content and the highest hardness explain 

the best behaviour of the MCD grade. On the contrary, the deposition conditions for the 

NCD coating, cause a less effective chemical bonding to the ceramic substrate. 

 

The MCD coating supported a normal load of 1600N without spalling-off and 

presented an interfacial crack resistance of 12.0 N·µm
-1

, much higher than the values 

reported in the literature with Si3N4 ceramic substrates. The SMCD presents a value of 

interfacial crack resistance of 8.3 N·µm
-1 

and NCD of 6.8 N·µm
-1

. These values are 

calculated in the load intervals of 200-1400 N, 200-800 N and 200-400 N for the MCD, 

SMCD and NCD, respectively. This enhanced adhesion level comes from the more 

effective mechanical interlocking provided by CF4 plasma etching of the substrate prior to 

the deposition. 
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Abstract 

 

A study of microwave plasma (MPCVD) diamond deposition on Si3N4–TiN 

composites with different TiN amounts (0–30 vol.% TiN) is performed. These ceramic 

composites are requested in order to obtain a suitable material to be cut by electrodischarge 

machining (EDM), aiming their use as substrates for cutting tools and tribological 

components. TiN is an electrical conductor, contrarily to Si3N4, but it is characterized by a 

higher thermal expansion coefficient value than Si3N4 and diamond. The estimated thermal 

stresses are found to be low and tensile (0.90 GPa) when using the monolithic Si3N4 

substrate, but compressive for the Si3N4–TiN composites, and even relatively high in 

magnitude (−1.9 GPa) for the Si3N4–30 vol.% TiN composite. Brale indentation assessed 

the adhesion strength of diamond on the different substrate grades. Optimal behaviour 

(very low residual stress; no film delamination under 1000 N) is observed for the Si3N4–9 

vol.% TiN substrate, corresponding to the lowest thermal mismatch and minimal residual 

stress magnitude. 

 

Keywords: CVD diamond; Silicon nitride, Titanium nitride, Ceramic matrix composites 

(CMC's). 
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1. Introduction 

 

 

Silicon nitride (Si3N4) ceramics have been successfully coated with micro and 

nanocrystalline CVD diamond for mechanical application purposes, such as cutting tools 

for machining of hard and abrasive alloys
1,2

, and tribological components such as 

mechanical seals
3
. Shaping of Si3N4 parts is usually done by time-consuming mechanical 

cutting and grinding methods with abrasive diamond tools. In the case of the cutting 

inserts, the edges have to be accurately sharpened, together with the limitation of the 

geometries for simple shapes. A gainful alternative is electrical discharge machining 

(EDM) but, in order to do so, the Si3N4-based materials must be electroconductive which 

can be accomplished by the incorporation of conductive phases, namely titanium nitride 

(TiN)
 4

. So, the EDM technique can be used on the substrates before the deposition of 

CVD diamond films. 

 

Like Si3N4, TiN is used for tribological applications, but in coating configuration, due 

to its high thermal conductivity, low friction coefficient against a wide range of materials, 

chemical inertness and wear resistance. Titanium nitride is commonly used as a thin film 

buffer layer for CVD diamond deposition in metal substrates, e.g. iron and steel
5
. It acts as 

a barrier diffusion for C and Fe, preventing soot formation on the surface by hindering the 

catalytic effect of the Fe substrate and also the diffusion of C into the bulk Fe. Moreover, 

TiN relaxes the stress state caused by the high thermal coefficient mismatch (8.0×10
−6

 K
−1

 

4
 for TiN and 12×10

−6
 K

−1
 
6
 for high speed steel. 

 

In the present work, Si3N4–TiN composites with a TiN content varying from 0 to 30 

vol.% were coated with CVD microcrystalline diamond in a microwave reactor. In addition 

to the electrical conductivity advantage, the use of TiN as second phase on the Si3N4 

matrix affords higher fracture toughness values to the substrate material
7
. The resulting 

CVD diamond microstructure and film adhesion were correlated with the different 

substrate properties, namely the thermal conductivity and thermal expansion coefficient. 
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2. Experimental Procedure 

 

 

Si3N4–TiN substrates were manufactured by powder processing technology and 

pressureless sintering as detailed elsewhere
7
. The Si3N4 matrix (with 3.7 wt.% Al2O3 and 

7.0 wt.% Y2O3 sintering aids), hereinafter termed SN, was replaced by TiN powder in 

volume percentages of 9, 23 and 30%, so the composites are named as 9TiN, 23TiN and 

30TiN, respectively. 

 

The thermal diffusivity (α) of the ceramic composites was measured by the laser 

flash method. Tests were carried out from room temperature up to 1273 K in argon 

atmosphere. The thermal conductivity (κ) was calculated by κ = ρ·α·Cp, where ρ is the 

density of the material, α is the thermal diffusivity and Cp is the specific heat, which was 

estimated by the Si3N4 and TiN weight fractions and the corresponding specific heat data 

from de Pablos et al. calculations
8
 and JANAF tables

9
, respectively. The coefficients of 

thermal expansion (CTE) were measured by dilatometry technique, in air, in the range 

473–1073 K. 

 

All the substrate grades were ground with 46 µm diamond grit wheel, polished with 

15 µm diamond slurry in an iron/polymer plate, diamond (0.5–1.0 µm) seeded in n-hexane 

suspension by ultrasonic agitation (1 h), and rinsed in ethanol for 10 min to remove loose 

diamond particles. Diamond depositions were performed in a microwave plasma CVD 

reactor with the following growth parameters: microwave power=2.25 kW; total 

pressure=1.2×10
4
 Pa; H2/CH4 flow=400/25 sccm; deposition time=4 h. 

 

The characterization of the coatings was performed by: SEM, to observe the diamond 

film microstructure and cross section; AFM with scan field sizes of 50×50 µm
2
 in 

intermittent contact mode, to evaluate the diamond surface roughness (RMS); and micro-

Raman spectroscopy (λ=488 nm) to access the diamond quality. 

 

Adhesion was evaluated by the indentation technique at discrete loads from 200 to 

1000 N. A Brale diamond indenter with a cone angle of 120° and a tip radius of 0.2 mm, 

adapted to a universal testing machine, was employed to carry out the experiments at a 

crosshead speed of 0.5 mm·min
−1

. 
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3. Results and Discussion 

 

 

The thermal conductivity of the different materials is plotted in Fig. 1. At room 

temperature the addition of TiN significantly increases the thermal conductivity of the 

composites (~30 W·m
−1
·K

−1
), compared to the reference SN material (~25 W·m

−1
·K

−1
), 

despite the reported k value of bulk TiN (~29 W·m
−1
·K

−1 10
), which is relatively close to 

the reference SN. Moreover, the augment in thermal conductivity is independent of the 

amount of TiN of the composite. This could be explained considering that TiN additions 

affect the amount and location of glassy phases at the grain boundaries, the glassy phase 

crystallization and even result in the occurrence of solid solutions, influencing in a 

different way the thermal conductivity. 
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Fig. 1. Thermal conductivity as a function of temperature for the Si3N4–TiN composites. 

 

On the other hand, the thermal behaviour as a function of temperature mainly 

depends on the TiN content. In this way, the thermal conductivity variation with 

temperature is less steep for 30TiN than that for lower TiN content materials (Fig. 1). The 

evolution of the thermal conductivity with temperature depends on the carriers of heat. 

While in insulating Si3N4 ceramics the thermal conduction carriers are phonons
8,11

, the heat 
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in the electrical conductor TiN is carried by conduction phonons and mostly by conduction 

electrons, which leads to a different temperature dependence
12

. In fact, the conduction by 

electrons increases the thermal conductivity with temperature, whereas the conduction by 

phonons produces the reversed effect. 

 

At 800 °C, the common temperature reached during the diamond deposition process, 

the thermal conductivity of the specimens increases with the TiN content, from 11.3 

W·m
−1
·K

−1
 for SN to 18.3 W·m

−1
·K

−1
 for 30TiN. Accordingly, during the diamond 

deposition, the SN surface attains a higher temperature than 30TiN, which leads to a larger 

nucleation density and growth rate and, therefore, to a thicker diamond film
13

. Such 

relationship between the film thickness and the thermal conductivity of the ceramic 

substrates was confirmed in the present work (Table 1). Diamond grain sizes and surface 

roughness have no clear dependence on the TiN content (Table 1), although the richer TiN 

grade (30TiN samples) presents the smallest grain size (5.5 µm) and surface roughness 

(437 nm), related to the lowest film thickness (22 µm), as would be expected. 

 

Table 1. Diamond grain size, film thickness, surface roughness (RMS), coefficient of 

thermal expansion (CTE), thermal stress and residual stress of the diamond coated Si3N4–

TiN composites. 

 

Grade Film 

thickness 

(µm) 

Diamond 

grain size 

(µm) 

RMS  

(nm) 

CTE  

(10
-6

K
-1

) 

Thermal 

stress 

(GPa) 

Residual 

stress 

(GPa) 

SN 29 6.5 494 
7.8×10

-1 

+2.3×10
-3

T 
0.90 0.45 

       

9TiN 30 8.2 495 3.9 -0.57 0.28 
       

23TiN 25 7.0 473 4.3 -0.95 -1.76 
       

30TiN 22 5.5 437 5.3 -1.90 -2.21 
       

 

The dependence of the CTE values on temperature is presented in Table 1. It can be 

observed an increasing relationship between CTE and TiN content. For room temperature, 

the monolithic SN sample presents a CTE value of 1.5×10
−6
 K

−1
, while in the literature, a 

value of 8.0×10
−6
 K

−1 
is reported for monolithic TiN

4
. This corroborates the trend for the 
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CTE increment in the composite materials. The CTE dependence on temperature for CVD 

diamond is CTE (10
−6

 K
−1

) = −1.4 + 9.7 × 10
−3

 T − 3.7 × 10
−6

 T
2
, as estimated from the 

values reported by others
14

, which means an average value of 3.3×10
−6

 K
−1

 in the range 

298–1073 K. During cooling from diamond growth temperature to room temperature, 

thermal stresses at the interface arise due to the CTE mismatch between the diamond film 

and the substrate. Using the CTE variation with temperature for the different substrate 

grades and diamond, it is possible to calculate the thermal stress values presented in Table 

1, from the well known equation reported by Ralckenko et al.
15

. It can be seen that these 

extrinsic stresses are fairly low and tensile when using the SN substrate, but change to a 

compressive nature when the Si3N4–TiN substrates are coated. The lowest value is reported 

for the sample 9TiN, corresponding to the minimal CTE mismatch relative to diamond 

among all the composites (Table 1). The composites with TiN content above 23 vol.% 

present quite large compressive values, although much lower than those found for metal 

substrates, e.g. steel (−7.2 GPa
15

) and Ti6Al4V (−6.0 GPa
16

). 

 

The residual stress of the diamond coatings can be assessed by Raman spectroscopy, 

since it is related with the displacement of the Raman diamond shift from the value of 

natural diamond (1332 cm
−1

). The Raman shifts of the diamond films tend to displace for 

higher values with the increment of TiN on the Si3N4 composite (Fig. 2). The peak fitting 

of the Raman spectra resulted in diamond shift values that were used to evaluate the 

residual stress of the coating by the expression σ (GPa)= −0.567∆ν (cm
−1

), where ∆ν is the 

difference between the measured and the natural stress-free diamond peak shifts
15

. The 

complete set of results for the different grades is presented in Table 1. Similar to the 

thermal stresses, the trend is the change from slight tensile to compressive stresses with 

increasing TiN content, denoting that the thermal mismatch plays an important role in the 

residual stress state. 
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Fig. 2. Raman spectra of the diamond coated Si3N4–TiN composites. 

 

SEM micrographs of the Brale imprints at selected loads on the SN, 9TiN, 23TiN and 

30TiN samples are depicted in Fig. 3. The left column groups the indentation marks at a 

load of 600 N, while in the right hand side the corresponding indent features at maximum 

applied load of 1000 N (for SN, 9TiN, 23TiN) and 800 N (for 30TiN) are shown. Radial 

(star-shaped) and lateral (circumferential-shaped) cracks are visible in some cases. It is 

reported
17

 that lateral and radial/median vents nucleate on the Si3N4 substrate, and they 

grow towards the film/substrate interface. At the interface, radial and lateral cracks 

propagate due to the combination of factors, namely residual stress, mechanical properties 

of both the film and the substrate, and interfacial fracture resistance. It is worth noting that 

the radial cracks decrease in number and length when TiN is added to SN (Fig. 3, left 

column). This is related to the higher fracture toughness values of the composites, since the 

cracking phenomena initiate in the substrate
17

. The mechanical properties of these ceramics 

were evaluated in a previous work
7
. It was found that the hardness of the composites 

slightly decreases from a value of about 15.5 to 15.0 GPa for the SN and 30TiN samples, 

due to the lower intrinsic hardness of TiN grains. But, the fracture toughness is improved 

with the addition of TiN, which values range from ~6.0 to 7.5 MPa·m
1/2

 for SN and 30TiN 

samples, respectively. 
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Fig. 3. SEM micrographs of the Brale imprints at selected loads on the different CVD 

diamond/substrates grades; left column: indentation marks at a load of 600 N; right 

column: the corresponding indent features at a maximum load of 1000 N (for SN, 9TiN, 

and 23TiN) and 800 N (for 30TiN), respectively. 
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However, at 600 N of applied load no film delamination takes place in all cases. On 

the contrary, under 1000 N, partial circumferential cracking is observed in the SN coated 

sample and full circumferential cracking develops in the 23TiN grade. In the case of the 

richest TiN composite (30TiN), extensive delamination takes place at 800 N denoting a 

lack of adhesion. The best behaviour is observed for the 9TiN grade, where only the 

subsurface radial cracks arise, even with 1000 N of indentation load. This optimal 

condition is linked to the minimal residual stress magnitude (Table 1). For comparison, 

critical loads of about 600 N were reported for Si3N4 CVD diamond coated materials
18

. 

Although the 23TiN and 30TiN undergo a compressive state, its absolute value is relatively 

high for the present ceramic/diamond system and 1000 N, in the first case, or 800 N, in the 

second, represents critical delamination loads. A further explanation of this behaviour can 

be found regarding the detrimental effect of TiN content on diamond nucleation adhesion. 

The TiN chemical interlocking with diamond is probably weak as no formation of either 

TiC or TiCN at the substrate/film interface is reported, but only of a-C thin film
5
. 

However, this is not a closed issue as other authors
19 

describe the formation of a very thin 

(8 Å) carbon nitride layer. So, it is not conclusive if TiN has a positive effect on diamond 

adhesion comparatively to Si3N4. For the latter, it is thought to happen as a reaction of 

carbon and hydrogen with the SiO2 coating that invariably covers the Si3N4 surface, 

resulting in the formation of a SiC layer with a great affinity to diamond
18

. 

 

 

 

4. Conclusions 

 

 

CVD diamond deposition on Si3N4–TiN composites with different TiN contents was 

performed. The addition of TiN to the Si3N4 matrix enhances the thermal conductivity of 

the bulk leading to a decreasing surface temperature during diamond growth and, therefore, 

to thinner, finer grained, smoother diamond films. 

 

TiN has a higher coefficient of thermal expansion (CTE) than Si3N4, consequently, 

the CTE values increase with the increment of the TiN content, and so the thermal 

expansionmismatch between the substrate and the diamond film. The estimated thermal 

stresses were found to be low and tensile (0.90 GPa) for the monolithic Si3N4 substrate, 

                                       Chapter 3 - CVD diamond: deposition parameters and film characterization 



 114 

changing to a compressive nature for the Si3N4–TiN composite substrates (−1.90 GPa for 

Si3N4–30 vol.% TiN). The residual stress values calculated from the deviation of the 

Raman diamond shift corroborate this trend, denoting the influence of the thermal 

mismatch. 

 

Brale imprints demonstrate that the subsurface radial cracks decrease in number and 

length when TiN is added to Si3N4, this behaviour being related to increasing fracture 

toughness of the substrate. No CVD diamond film delamination takes place at 600 N for 

every kind of substrate, but at 1000 N partial or full circumferential cracking is observed 

for the monolithic Si3N4 sample or the high content TiN grades. The optimal behaviour (no 

film delamination under 1000 N), which corresponds to the minimal residual stress 

magnitude, is observed for the Si3N4–9 vol.% TiN substrate. 
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Introduction 

 

 

The produced CVD diamond direct coated cutting tools were tested in turning 

operations using two kinds of hard and abrasive workpieces: hardmetal and EDM graphite. 

The machining capabilities of the first material are of great general industrial interest, in 

particular for Durit, a Portuguese hardmetal producer. Their products are developed to 

attend a wide branch of industry, including chemical, medical, automotive, packaging, 

textiles, mining, oil and gas, siderurgy, and for shaping and drawing technologies. 

 

The machining of hardmetal using superhard cutting inserts is a recent technology, 

due to the high hardness and abrasive nature of hardmetal. The option for turning process 

instead of grinding ones brings several advantages as: better surface quality, reduction of 

production steps, reduction of product time delivery, shortening the manufacture cycles, 

higher geometry flexibility (corners, radius and grooves) and finally less energy 

consumption. A tenfold decrease on the machining time compared with the conventional 

diamond wheel grinding method was achieved by thick CVD diamond brazed tools in 

facing WC-27wt%Co 
1
. In such applications, polycrystalline diamond (PCD) and 

polycrystalline cubic boron nitride (PCBN) are the most established market options, 

together with thick CVD diamond brazed films. Just a few works are devoted to this issue 

1-6
, despite some of them are about micro-machining, where the depth-of-cut is only of a 

few micrometers (3 µm) 
4,5

. There is a technical guide on the use of PCD or PCBN tools 

associated to the binder phase content, typically cobalt, of the hardmetal workpiece 
3
. 

Accordingly, PCD is used when the binder content is below 18wt%, due to its superior 

abrasion resistance. However, PCBN should be used when the binder content is above this 

value, regarding its higher thermal and chemical stability. This is due to the chemical 

affinity between carbon and cobalt, and so, binder contents higher than 18wt% increases 

considerably the carbon solubility, leading to detrimental effects in its wear resistance 

properties 
3
. Chemical vapour deposited (CVD) diamond can be an excellent alternative for 

both PCBN and PCD tools, considering that its higher hardness and absence of cobalt 

binder allows its use for machining a wider range of hardmetal’s cobalt content without 

need to have several types of cutting tools. Previous works 
1,2

 of our group had already 
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proved the adequacy of using a thick CVD diamond brazed tool in hardmetal turning and, 

comparatively to PCD and PCBN ones, it presented higher wear resistance 
1
.  

 

Another workpiece material used in this thesis is graphite for electrodischarge 

machining (EDM) electrodes. This material was supplied by the company Moldit 

(Loureiro), specialized in manufacturing moulds for plastic injection. EDM graphite is not 

so difficult-to-machine like hardmetal, but its polycrystalline nature and, above all, its 

strong anisotropy, confers abrasiveness, quickly wearing conventional cutting tools. In 

turning operations, an improvement in tool life of almost three-fold was achieved by PCD 

tools comparatively to hardmetal 
7
. In milling operations a tool life gain of more than 10 

times was reported using CVD diamond coated hardmetal tools in comparison with the 

uncoated ones 
8,9

. Coatings of TiAlN and TiN on hardmetal tools are also used in milling 

and turning operations of EDM graphite 
10,11

, but the diamond coated hardmetal tools still 

presented an improved life time of more than 25 times compared to TiN-coated ones, 

accordingly to a EDM graphite producer 
11

. A recent work reports the advantage of using a 

CVD diamond film coated hardmetal with a controllable diamond grain size in graphite 

turning in comparison to conventional diamond coatings and PCD, although delamination 

of the film occurred after about 1480 m of cutting length, which was attributed to the high 

blasting velocity of the graphite powder against the insert rake face, combined with the 

compressive residual stress in the diamond film 
12

. 

 

The sintered ceramic parts produced in this thesis were ground to standard 

normalized geometries of round or triangle shaped indexable inserts, accordingly to ISO 

5608 
13

 insert identification system. An example, the designation TNMN160308FN means: 

Position 1 - insert shape: “T” letter is used for triangle shaped inserts and “R” for 

round shaped ones; 

Position 2 – clearance angle: “N” letter is used to inserts with right angled side (0º); 

Position 3 – dimension tolerances: “M” letter is used to tolerances range from 0.08 to 

0.18 mm; 

Position 4 – chip breaker/central hole: “N” letter is used to inserts without 

chipbreaker and without central hole; 

Position 5 – cutting edge length: “16” number is side length of the insert, in 

millimeters; 
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Position 6 – insert thickness: “03” number is the thickness of 3.18 mm; 

Position 7 – corner radius: “08” number means 0.8 mm; 

Position 8 - cutting edge geometry: “F” letter means a sharp edge, while “E” and “T” 

is used to honed (rounded) an chamfered (negative land) edges, respectively; 

Position 9 – hand of the tool: “N” letter means that the tool can either be right (R) or 

left (L) hand cutting. 

 

The turning tests were done in Durit using a CNC lathe (Mori Seiki) with a 

maximum spindle speed of 3500 rpm. A three-axis piezoelectric dynamometer platform 

(Kistler 9257BA) was coupled into the lathe, where the tool holder is fixed. In this way, 

the signals were amplified in a Kistler 5011 apparatus and connected to a PC by coaxial 

cables and an acquisition board (PCMCIA, Keithley). The workpiece surface quality was 

determined using a portable profilometer (Mahr). Fig. 1a shows the overall apparatus and 

while in Fig 1b is possible to see some equipment details in a turning operation. The 

resultant wear modes were measured accordingly with the ISO 3685 standard 
14

 using 

optical (Nikon) and scanning electron microscopes (Hitachi). 

 

  

Fig. 1. a) overall apparatus for turning tests; b) turning of WC-Co. 

 

 

The following papers present the cutting tool behaviour in real turning of hardmetal 

and graphite workpieces. Aspects related to tool wear, workpiece surface finish, effect of 

tool edge geometry, effect of diamond grain size and film thickness effect are here 

presented. 

 

tool holder 
3-x dynamometer 

Workpiece (WC-Co) 

a) b) 
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Abstract 

 

A new challenge for chemical vapour deposited (CVD) diamond tools is the 

machining of hardmetal, one of the most difficult tasks a tool has to accomplish due to the 

extreme hardness of the workpiece. The development of cutting tool inserts made via direct 

diamond deposition on silicon nitride ceramic substrates for machining WC–Co materials 

was recently pointed as an alternative to the conventional brazed CVD diamond tips. In the 

present work, silicon nitride round inserts having different edge geometry, namely sharp, 

honed and chamfered edges, were produced by pressureless sintering. Turning of 

hardmetal containing 25 wt.% Co was conducted in a numerically controlled lathe with 

~15 µm thick CVD diamond coatings. The effects of depth of cut (0.1 to 0.3 mm), feed 

rate (0.03 to 0.3 mm rev
-1

) and wear on the cutting forces were monitored online using a 

dynamometer and were related to the surface finishing of the workpiece. Honed tools were 

more prone to diamond film delamination from the cutting edge than the chamfer or sharp 

edge ones. Adequate finishing quality (Ra<0.2 µm) can be achieved with the sharp edge 

tools while machining tolerances are respected. 

 

Keywords: CVD diamond, Silicon nitride, Machining, Hardmetal. 
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1. Introduction 

 

 

A recent issue on precision hard turning is the use of polycrystalline diamond (PCD), 

polycrystalline cubic boron nitride (PCBN) tools and of chemical vapour deposited (CVD) 

diamond ones in machining of hardmetals (WC–Co)
1,2

. A successful solution to this 

challenge will allow diminishing the costs associated to the conventional time consuming 

methods (grinding and polishing) used for hardmetal shaping. Also, dry machining has 

been an important environmental matter since it does not require the use of polluting 

coolants. 

 

There exists actual industrial knowledge on the machining of certain grades of 

hardmetal with diamond and PCBN tools
3
 but efforts have to be made regarding the study 

of directly diamond coated tools before they can be advantageously used. Preliminary 

work has shown that for extreme conditions delamination of diamond from the flank face 

of a sharp diamond coated tool may occur
4
, depending on the cutting conditions. Edge 

geometries such as sharp, chamfer (or T-land) and hone (or round) are commercially 

employed with the purpose of strengthening the cutting edge of conventional tools
5
. 

Although complex substrate preparation could enhance the wear resistance of diamond 

films
6,7

, the use of these tools on aggressive machining operations is still restricted due to 

insufficient adhesion
6, 8, 9

. The good thermal and chemical compatibility of silicon nitride 

ceramics makes them suitable substrates for enhanced adhesion of diamond and allows 

using them as cutting tools
6, 10 ,11

. In this work, Si3N4 round tools coated with a diamond 

film were used for dry turning WC–25wt.%Co cylindrical bars at different feed ( f ), depth-

of-cut (d ) and edge geometries conditions. The cutting forces were monitored during the 

tests by a dynamometer and the final tool damage was evaluated using scanning electron 

microscopy while workpiece finish was assessed by surface roughness measurements. 
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2. Experimental 

 

 

Disc-shaped Si3N4 substrates with a relative density over 99% were obtained by 

pressureless sintering in a graphite furnace at 1750 ºC for 2 h under an N2 atmosphere. All 

the substrates were ground to three distinct normalized insert geometries concerning 

cutting edge shape (RNMN1003FR; RNMN1003TR; RNMN1003ER), as illustrated by the 

sketches in Fig. 1. After edge preparation, the substrates were polished with 15 µm 

diamond paste followed by scratching with 0.5–1 µm sized diamond powder. This last 

procedure is required for diamond seeding and specific surface area improvement purposes 

before the diamond coating step. 

 

Diamond depositions were performed in a microwave plasma CVD reactor (ASTeX 

PDS 18) with the following growth parameters: microwave power=2.7 kW; total pressure= 

1.2×10
4
 Pa; H2/CH4 flow=400/22 sccm; deposition time=2.5 h. The samples were fitted 

into graphite holders in order to avoid the “edge effect” caused by higher plasma 

concentration and locally increased temperature. 

 

The workpiece material for dry turning experiments was sintered WC–25 wt.% Co 

with an average hardness of 8.5 GPa. The tests were carried out in a CNC lathe (Mori 

Seiko) under the following conditions: fixed cutting speed (v) of 15 m·min
-1

; depth of cut 

(d) varying in the range 0.1–0.3 mm; and feed rate ( f ) within 0.03–0.30 mm·rev
-1

. 

 

The orthogonal components of the cutting force, namely Fc (main cutting force), Fd 

(depth-of-cut force), and Ff (feed force), were assessed at real time by a dynamometer 

(Kistler). Scanning electron microscopy (SEM, Hitachi) was used to evaluate tool wear, 

namely rake face wear (KM) and maximum flank wear (VBmax). The workpiece surface 

quality was determined using a portable profilometer (Mahr). 
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Fig. 1. SEM micrographs and sketches of the diamond coating of the three different edge 

geometries: (a) sharp; (b) chamfer; (c) hone. 

 

 

 

3. Results and discussion 

 

 

Low magnification SEM micrographs of the diamond coatings on the three distinct 

tools before the cutting tests are shown in Fig. 1a–c. Besides edge geometry, another 
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difference is put in evidence: the formation of a few “igloo-shaped” aggregates of 

submicrometric diamond crystallites on the sharp tool flank face (Fig. 1a). These 

hemispherical structures display a broad, low-intensity, Raman peak at ~1332 cm
-1

, 

resulting from an insufficient process temperature for the growth of good quality 

diamond
12

. On the contrary, the chamfered and honed inserts present more homogeneous 

diamond morphology along the transition from the rake to the tool flank face. 

 

The hard turning experiments on the cemented carbide workpiece showed notable 

differences among the distinct edge geometries. Firstly, the force components increase 

with the edge bluntness, the lower values being found for the sharp tool and the higher for 

the honed insert, as illustrated in Fig. 2. This behaviour is related to the wider contact area 

between the workpiece and the tool leading to larger forces for material shearing. 

According to Yen et al
5
, experiments and FEM calculations on cutting forces as a function 

of the edge hone radius showed that the force components and the specific cutting energy 

increase with the edge radius. The same is reported by Thiele and Melkote
13

 in the 

machining AISI 52100 steel with CBN inserts. 
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Fig. 2. Real time evolution of Fd force as a function of the cutting length (L) for the 

three different cutting edges at v=15 m·min
-1

; d=0.1 mm and f=0.03 mm·rev
-1

. 
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The evolution of the machining force, as illustrated in Fig. 2 for Fd, depicts the type 

of events occurring during the cutting process. For the sharp edge inserts, after an initial 

peak, the force is nearly constant throughout the machining operation. The transient higher 

forces result from early film delamination on the flank face, as shown in Fig. 3a. Here, 

diamond/substrate interfacial failure is favoured under the specific stress state imposed by 

the right angle geometry. The exposed ceramic substrate suffers from the hardmetal 

abrasive action, leading to measurable flank wear (VB) (Fig. 3a and Table 1) while the 

diamond on the rake face withstands the chip flow and allows the tool to continue the 

cutting action. For the chamfered tool (Fig. 3b), the diamond coating did not delaminate at 

the flank face, but it progressively worn out in this zone, also exposing the silicon nitride 

substrate. In spite of much larger cutting forces on the cutting edge, this geometry, unlike 

that of sharp edge tools, prevents the film delamination at low feeds. This is evidenced in 

the SEM micrograph of Fig. 3b, where the wear land on the flank face is surrounded by 

adherent diamond. Although with a less steep variation, the depth-of-cut cutting force 

follows a similar trend to that of the sharp edge tool, with initial high values that decrease 

with the cutting length (Fig. 2). Diamond film and substrate wear recess the edge and cause 

a slight loss in the machined tolerances that account for the decrease in the cutting force. 

Finally, for all the tests with honed edge inserts, the tools failed catastrophically in the 

early stages of machining, by film delamination on both flank and rake faces and substrate 

rupture. This corroborates the above-mentioned effect of this particular tool geometry on 

causing a severe mechanical solicitation. The excessive abrasive wear and chipping of the 

uncoated ceramic edge (Fig. 3c) provoke changes in the tool geometry further increasing 

the cutting force (Fd) to nearly 10 times those of the sharp edge inserts (Fig. 2). 

 

The ratio of the depth-of-cut and feed forces to the main cutting force, Fd /Fc and 

Ff/Fc, respectively, can be used to better understand the effect of edge geometries on the 

orthogonal components of the cutting force. Data in Table 1 show that both ratios are 

larger for the chamfered tools than for the sharp ones. Generally, Fd is the force component 

with the larger modulus and Ff is the one with smaller values for all geometries and cutting 

conditions. Fd values are represented as a function of cutting length in Fig. 4a varying the 

feed rate in the range 0.03 to 0.30 mm·rev
-1

, for turning tests performed with sharp tools at 

d=0.1 mm. Interestingly, in spite of the increase of the cutting force with the feed rate as 

portrayed in Fig. 4a, the Fd/Fc ratio decreases reaching a nearly constant value of 0.9 
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(Table 1). In the case of chamfer tools, the Fd/Fc ratio has a similar trend, decreasing with 

increasing feed ratio at depth of cut of 0.1 mm (Table 1). For the tested round-shaped 

inserts, higher feed rates result in larger chip/rake face contact area which mainly affects 

the Fc value comparatively to Fd, this one being more dependant on the depth-of-cut 

parameter.
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Fig 3. SEM micrographs of the tools cutting edges after turning tests at v= 15m·min
-1

; 

d=0.2mm; f=0.03mm·rev
-1

: a) sharp; b) chamfered; c) honed tool. d) Flank wear, cratering 

on the rake face and hardmetal deposition on the sharp cutting edge at v= 15m·min
-1

; 

d=0.3mm; f=0.09mm·rev
-1

. e) High magnification of the cratering on the rake face for 

sharp tool at v=15m·min
-1

; d=0.1mm; f=0.24mm·rev
-1

. f) Hardmetal chips produced 

during turning tests at v= 15m·min
-1

; d=0.1mm; f=0.15mm·rev
-1

. 
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Table 1. Fd/Fc and Ff/Fc ratios, KM and VBmax wear values as a function of edge 

geometry and cutting parameters. 

 

  Sharp edge Chamfer edge 

d 

(mm) 

f 

(mm rev
-1

) 

Fd/Fc Ff/Fc KM 

(µm) 

VBmax 

(µm) 

Fd/Fc Ff/Fc KM 

(µm) 

VBmax 

(µm) 

0.1 0.03 1.5 0.2 46 89 3.5 0.4 31 227 

 0.06 1.2 0.2 14 75 3.2 0.3 31 293 

 0.09 1.1 0.2 64 112 2.3 0.2 49 287 

 0.12 1 0.1 64 87 2.8  66 229 

 0.15 0.9 0.1 86 100 -  -  -  - 

 0.18 0.9 0.1 76 152 - -  -  - 

 0.21 0.9 0.1 91 162 -  -  -  -  

 0.24 0.9 0.1 95 179 -  -  -  -  

 0.3 0.8 0.1 - * - * -  -  -  -  

0.2 0.03 1.1 0.2 36 74 3.6 0.2 - -  

 0.09 1.0 0.2 75 135 -  -  - * - * 

0.3 0.09 0.9 0.2 84 223 -  -  -  -  

 

Fig. 4a also shows that the cutting force steeply increases for feed rates larger than 

0.15 mm·rev
-1

. For the highest feed rate, tool failure even occurs during cutting. Evaluation 

of tool integrity can thus be done by monitoring the real time evolution of forces which 

allows stopping the operation before damage could occur to both tool and workpiece. This 

type of evolution has been related to wear of the cutting tip and the associated geometry 

change
14

 and in the present case yields the upper limit of the feed rate (0.15 mm·rev
-1

) for 

a depth of cut of 0.1 mm when using these diamond coated sharp tools. Data graphically 

presented in Fig. 4b illustrates the result of both effects on the cutting force. Although 

affecting the cutting force, the depth-of-cut condition is less stringent than the feed rate. 

 

Measurements of wear on the rake and flank faces of sharp tools showed that KM 

and VB increase with the feed rate (Table 1) while for the chamfered ones KM increases 

and VB is approximately constant. Even considering that for large feed rates the machining 

distances are shorter, the effects of the force increase exceed those and the edges wear 

more rapidly. The chamfered tools always present larger VB values than the sharp tools 

and comparable values of KM for the same machining conditions. The chamfer of the tool 

insert results in larger Fd forces and thus in an increased flank wear. A comparison can be 

made between Fig. 3a and d to illustrate the effect of cutting conditions on the damage 

extension of a sharp tool. 
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Fig. 4. a) Effect of feed rate and machining length (L) on Fd for sharp edge tools at 

v=15m·min
-1

 and d=0.1mm; b) effect of depth of cut and feed rate on Fd for sharp edge 

tools at v=15m·min
-1

. 

 

Fig. 3e is a detailed micrograph of the wear land on the rake face provoked by the 

sliding action of the discontinuous chips (Fig. 3f). The trailing edge of the crater contains 

bright agglomerates of debris from the workpiece material that also spread along the worn 

land. The chips are intrinsically abrasive not only due to the WC content, but also by the 

a) 

b) 

Chapter 4 - Cutting tool behaviour and wear mechanisms 



 137 

diamond debris transport and as such, intensive scratching of both the debris layer and the 

diamond film takes place. 

 

Within the established working conditions of sharp and chamfered tools, namely feed 

rate below 0.15 mm·rev
-1 

for a depth of cut up to 0.2 mm, the surface roughness of 

workpiece is given in Fig. 5. Smaller Ra values were measured in the workpieces 

machined with the chamfered tools where the forces are larger than for the sharp tools for 

identical machining conditions. This can be due to temperature raise, and thus workpiece 

plasticity enhancement, coupled to the higher cutting energy required for chip formation
5
. 

A similar behaviour takes place for the sharp tools, since for larger depths of cut and feed 

rates, and thus larger forces, the roughness lowers or becomes nearly constant (Fig. 5). For 

the sharp tools, Ra increases with the feed rate but decreases with the cut depth. The 

finishing condition of Ra<0.2 µm is attained only for feed rates smaller than 0.06 mm·rev
-1

 

when machining with the chamfered tool and for feed rates of ≈ 0.03 mm·rev
-1 

when 

turning with sharp tools. Productivity increases together with good finishing can be 

achieved with these tools if only the last pass of the tool is made at these conditions. 
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Fig. 5. Workpiece surface roughness as a function of the different cutting edges and cutting 

conditions. 
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4. Conclusions 

 

 

The cutting forces developed in hardmetal turning with CVD diamond tools increase 

with the bluntness of the cutting edge in the following order: sharp<chamfer<hone. 

Chamfer tools preserve the diamond film integrity on the edge at feed rates below 0.06 

mm·rev
-1

 whereas for sharp edge tools film delaminates from the flank face during the 

machining test although without affecting the tool performance. Flank wear is always 

larger for the chamfered tools than for sharp ones while rake face wear is similar for the 

same machining conditions. Although wear of the cutting edges increases by aggravating 

the machining conditions, sharp edge tool integrity can be kept for a machining speed of 15 

m min
-1

, depth of cut of 0.1 mm for feed rates up to 0.15 mm·rev
-1

. A good workpiece 

finishing is obtained for the same cutting speed and depth of cut but for the lowest feed 

rate of 0.03 mm·rev
-1

. Film delamination and edge fracture occurred for honed edge tools 

at all tested conditions. The absence of diamond film delamination from the rake face at 

high feed rates suggests that thicker films could be used for long time machining of 

hardmetal under near production requirements. 
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Abstract 

 

Sharpening and re-sharpening ability of CVD diamond-coated ceramic tools for 

turning operations is addressed in this work. Thick CVD diamond films (150 µm) were 

deposited by MPCVD on pressure-less sintered silicon nitride ceramics. These disc-shaped 

tools could be sharpened to the desired geometry using grinding wheels without film 

detachment. The tools were tested in the dry turning of three types of hardmetal differing 

in WC grain size (2–6 µm) and Co content (18–27 wt.%). The lower Co content hardmetal 

grade (GD40) is more aggressive than GD50 or GD60 to the cutting edge, always resulting 

in faster wear and larger cutting forces for the same machining parameters. The depth of 

cut was fixed at 0.2 mm for the three hardmetal grades while the speed and feed were 

reduced from 30 m·min
−1

 and 0.15 mm·rev
−1

 (GD50 and GD60) to 20 m·min
−1

 and 0.1 

mm·rev
−1

 for GD40. Wear changes the cutting edge geometry and increases the cutting 

force to values above which the tool fails (Fd~700 N). Wear of the tool occurs by 

microchipping of the CVD diamond, resulting in abrasion of the rake and flank faces by 

diamond debris. Up to 2000 m dry machining length per tool could be achieved before the 

re-sharpening operation has to be performed. When a cutting fluid is used, increased tool 

life is easily achieved due to reduction of Co adhesion and enhancement of diamond debris 

removal from the cutting edge. 

 

Keywords: Machining, Sharpening, Hardmetal, Thick CVD diamond film, Direct coating, 

Silicon nitride. 
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1. Introduction 

 

 

Tungsten carbide-based cermets (hardmetals) are well known hard and tough 

materials that are usually machined by conventional grinding and polishing or by EDM 

(electrodischarge machining). Recent reports have shown the feasibility of turning using 

superhard cutting tools such as PCBN
1–4

 and PCD
3, 5, 6

 and thick brazed CVD diamond
4, 6, 

7
. Even more recently, a silicon nitride tool coated with a thin diamond film was used in 

the machining of hardmetal
8
. 

 

CVD diamond cutting tools are commercially available as thick film brazed CVD 

diamond tips and thin film CVD diamond coatings. Several steps are involved in the 

production of brazed tools. After thick film diamond (150 to 1000 µm) growth on Si 

wafers, the diamond sheet becomes free-standing by chemically etching the silicon. It is 

then laser cut in small tips and brazed onto hardmetal inserts. The final geometry is 

achieved by grinding and polishing techniques. An alternative approach is the thin film 

CVD diamond coating by depositing a layer directly on hardmetals or non-oxide ceramic 

inserts. The thickness is generally in the range of 5 to 50 µm
6, 9

. There are problems 

inherent to the use of hardmetal as substrate, since the Co binder induces the formation of 

sp
2
 bonded carbon (graphitization). Adhesion is poor due to the weak mechanical 

properties at the interface and to the high-thermal expansion mismatch between diamond 

and hardmetal. A number of techniques have been adopted to overcome this problem
10, 11 

but the use of chemically and thermally compatible ceramic substrates such as SiAlON, 

SiC, and Si3N4 is another approach that guarantees a suitable adhesion
6, 12, 13

. These 

ceramics have been used as substrates for diamond direct coating and tested as cutting 

tools in the machining of different materials such as Al–Si alloys, C–C composites and 

hardmetal
14–16

. 

 

Previous results with thin CVD diamond (~15 µm) coated Si3N4 tools in the turning 

of WC–25 wt.% Co showed satisfactory results using tools with sharp edge geometry
16

. In 

that work, all the tests with sharp edge tools resulted in delamination of the diamond film 

from the flank face at the very beginning of cutting, although without affecting the tool 

performance. Good workpiece finishing, tolerances and stable cutting forces were achieved 

for finishing conditions. The absence of diamond film detachment from the rake face even 
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at high feeds demonstrated a sufficient diamond coating adhesion to silicon nitride 

substrates. A drawback of those tools is that, as a consequence of the small thickness of the 

diamond coating, the recession of the cutting edge due to wear results in flank wear that 

rapidly reaches the silicon nitride substrate. 

 

In the present work, a third kind of CVD diamond tool, falling between the thick 

brazed and thin coated ones, is proposed: thick film direct coating with sharpening and 

resharpening capabilities. These new tools should possess as advantages a smaller number 

of fabrication steps, increased tool geometry flexibility and cost reductions compared to 

the other thick film techniques
17

. The new tools, produced by sharpening much in the same 

way of PCD, PCBN, and CVD thick diamond brazed ones, are tested in the turning of 

three hardmetals differing in Co content and WC grain size. The cutting forces and wear of 

the tools are investigated as a function of the workpiece material and cutting parameters. 

 

 

 

2. Experimental 

 

 

2.1. Tools fabrication 

 

Disc shaped silicon nitride tools were made by pressure-less sintering (1750 °C–2 h–

N2) using aluminium and yttrium oxides as sintering aids
16

. The dense substrates (>99% 

theoretical density) were machined to the normalized geometry RBMN1003M0FN and the 

tool rake face was flat lapped with 15 µm diamond slurry. Before diamond deposition, the 

tools were scratched for seeding purposes with 0.5–1.0 µm size diamond powder and then 

ultrasonically cleaned using ethanol. The ceramic tools were diamond coated in a 

microwave plasma assisted CVD (MPCVD) reactor (ASTeX PDS 18) using the following 

parameters: microwave power= 2.7 kW; total pressure=1.2×10
4
 Pa; H2/CH4 flow=400/25 

sccm; deposition time=18 h. After diamond deposition, the cutting edge was dry sharpened 

by diamond wheels to achieve the final radius of 5.6 mm and a tool flank angle of 5°. The 

average thickness of the diamond film near the cutting edge of the tools was ~ 150 µm. 
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2.2. Workpiece materials 

 

Three hardmetal grades with Co content in the range 18– 27 wt.% were used in this 

work. The main properties of these materials are summarized in Table 1. The 

microstructure differences are evidenced in Fig. 1, namely the bi-modal grain size of GD60 

(and GD50, whose only difference to GD60 is the Co content) and the smaller grain size of 

GD40. 

 

Table 1. Characteristics of the three hardmetal workpieces. 

Grade Co (wt.%) WC grain size (µm) HV30 (GPa) 

GD40 18 2.5 10.2±0.1 

GD50 25 2 - 6 7.9±0.1 

GD60 27 2 - 6 7.5±0.1 

 

 

  

 

Fig. 1. Optical micrographs illustrating the microstructures of: a) GD40 and b) GD60. 
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2.3. Machining tests 

 

Unlubricated tests were carried out at 20–30 m·min
−1

 of cutting speed (S), depth-of-

cut (d) of 0.2–0.4 mm and feed (f) of 0.1–0.15 mm·rev
−1

. The three orthogonal 

components of the cutting force, namely Fc (main cutting force), Fd (depth-of-cut force), 

and Ff (feed force) were assessed in real time by a dynamometer (KISTLER, Switzerland) 

while the workpiece quality was evaluated by a portable roughness profilometer (Mahr, 

Germany). The final tool damage was evaluated by optical (OM) and scanning electron 

microscopy (SEM S-4100, Hitachi, Japan) observations. 

 

 

 

3. Results and discussion 

 

 

3.1. Tool preparation 

 

The use of cutting tools with directly coated thick (>50 µm) diamond films is not a 

straightforward issue. During diamond deposition in a MPCVD reactor, and due to 

geometric constraints on the electric field distribution and thus on the plasma shape, the 

temperature at the edges of the substrates is increased relatively to more central areas. In 

the case of silicon nitride ceramic substrates, it was demonstrated that the grain size of 

diamond at the edges is larger than at the centre of 60° and 75° edged samples
18

. For very 

long deposition times, this effect may become more pronounced even for 90° edged 

substrates where the heat removal is easier than for the 60° and 75° ones. The 

photomicrograph in Fig. 2a illustrates this, where excessive diamond growth leads to a 

blunt edge. It has already been shown that this type of geometry is clearly unfavourable for 

machining hardmetal
16

. The diamond in the flank face is not fully uniform due to the 

deposition process. A columnar structure develops during growth, the diamond grain size 

being much larger at the free surface than at the interface with the substrate. 

 

In Fig. 2b, the same edge appears after being sharpened with resin-bonded diamond 

wheels. Due to the referred grain structure of microcrystalline diamond films, small 

vertical scratches are visible near the free surface while small pullouts appear at the tool 

flank, as can be observed in Fig. 2b. The system Si3N4 ceramic/thick diamond film has thus 
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proven to have adhesion high enough to withstand the very aggressive dry grinding needed 

for producing sharp cutting edges. After this operation, the cutting edge and rake face 

roughness are determined by the grain size of the diamond. The removal of diamond 

deposited on the flank face is not an issue since on one hand the diamond film is thick and 

on the other hand, previous tests have shown that it would spontaneously delaminate 

during the turning operation
16

. 

 

  

 

Fig. 2. General aspect of the edge of the diamond coated silicon nitride tool seen under 

SEM at 45º tilt: a) after MPCVD growth; b) after sharpening. 

 

 

3.2. Machining performance 

 

Part of the present work aims at determining the best machining parameters for the 

three hardmetal grades. Their inherent differences in WC grain size, Co content and 

hardness suggest that the depth-of-cut, feed and speed can not be the same for the three 

grades if the tool life is to be kept at comparable levels. Also, the machining must be 

performed under conditions such that their use may fit industrial productivity needs. 

Bearing these limits in mind along with the conclusions of previous works
4, 7, 8, 16

, the 

cutting speed was fixed at 20–30 m·min
−1

, the depth of cut at 0.2–0.4 mm and the feed at 

0.1–0.15 mm·rev
−1

. They correspond to what may be termed as “rough machining” 

opposed to “finishing” in hardmetal turning. The effect of these cutting parameters on the 

cutting force is depicted in Fig. 3, where a comparison is made for the evolution of the 

three orthogonal components of the cutting force with cutting length, for GD50 and GD60. 

300 µm 

a b 
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For the present tool geometry (RBMN1003M0FN) the larger component of the cutting 

force is the depth-of-cut force (Fd), followed by the main cutting force (Fc) and finally by 

the smaller one (feed force – Ff). Considering that small differences exist between the 

WC–Co materials GD50 and GD60, Table 1, their effect on the cutting force is 

nevertheless evident. It has been previously shown that wear of the cutting edge in 

diamond tools induces larger values of the cutting force, mainly of Fd, due to increased 

contact area and to diminished cutting efficiency
16

. The comparison of data in Fig. 3a and 

b clearly indicates that, for the same machining conditions, GD50 is more aggressive to the 

cutting edge than GD60, as the larger starting cutting forces and their steeper increase with 

machining distance shows. This may indicate that the turning parameters are near the limit 

of the tool for GD50 machining. 
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Fig. 3. Evolution of the cutting force with distance at a cutting speed of 30 m·min
-1

, depth 

of cut of 0.2 mm and feed of 0.15 mm·rev
-1

 in the machining of: a) GD50; b) GD60. 

 

In spite of the lower starting cutting forces relative to GD50, the turning of GD60 

also results in wear of the cutting edge, as the continuously increased values of the cutting 

force indicate. However, instead of a steady increase up to the usable limit of the cutting 

tool, it is clear that additional features are at stake during machining, since force leaps 

occur during and between successive passes of the same cutting test (Fig. 3b). The result of 

a first pass of these newly developed tools in the machining of rods of the three hardmetals 

can be seen in the micrographs of Fig. 4. The top view micrographs show the cutting edge 

a) b) 
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and the rake face of the tools. It becomes clear that the larger the content of Co binder, the 

larger is the tendency for formation of built-up-edge (BUE). This is eased by the 

considerable high roughness due the diamond grains on the tool rake face that favour 

anchoring of the Co binder. The jumps in the machining force observed during 

unlubricated dry turning of GD60 are most likely related to sudden removal of Co built up 

at the edge and formation of new BUE (Fig. 3b). This effect should become even more 

pronounced for larger depths of cut as the BUE shown in the micrograph of Fig. 4d 

indicates. 

 

  

  

 

Fig. 4. Top views of the rake face and cutting edge of the coated and sharpened CVD 

diamond tool after one pass in the machining of three hardmetal rods: a) GD40 (S = 20 

m·min
-1

, d = 0.2 mm, f = 0.10 mm·rev
-1

); b) GD50 (S = 30 m·min
-1

, d = 0.2 mm, f = 0.15 

mm·rev
-1

); c) GD60 at (S = 30 m·min
-1

, d = 0.2 mm, f = 0.15 mm·rev
-1

); d) GD60 (S = 30 

m·min
-1

, d = 0.4 mm, f = 0.15 mm·rev
-1

). 

 

 

60 µm 

a b 
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Chapter 4 - Cutting tool behaviour and wear mechanisms 



 151 

The machining conditions of GD40 had to be adjusted after a first set of experiments. 

Tool failure occurred when the same cutting conditions used for machining GD50 and 

GD60 were tested. According to the knowledge on the relationships between cutting 

parameters, cutting force and tool wear in the machining of hardmetal
7, 8, 16

, the cutting 

speed and feed were slightly lowered (to 20 m·min
−1

 and 0.1 mm·rev
−1

, respectively) for 

turning GD40 hardmetal. This allowed successful machining of GD40 with cutting forces 

and tool wear comparable to that obtained for GD50 and GD60 turning. The micrographs 

of Fig. 5a and b allow comparing the effect of the machining length on the cutting edge 

and flank face, evidencing the recession of the cutting edge after 300 m (Fig. 5b) that 

allows the flank wear scars to reach the silicon nitride substrate. The same effect occurs for 

GD50 and GD60 (Fig. 5c) machining, although here Co appears extensively smeared at the 

flank and rake faces. 

 

During machining, the cutting forces increase (Fig. 3a and b), but even when the 

substrate is reached, the diamond edge keeps cutting the hardmetal workpieces, although at 

larger stress levels. For the depth of cut component of the cutting force, Fd, if a value of 

about 700 N is surpassed due to wear on the flank face, the tools fail by fracture of the 

edge and/or delamination of the diamond film. This value corresponds to the working limit 

of these sharpened cutting tools and may used as a trigger to stop the machining operation 

when real-time force acquisition is used. It is worth noting that the flank wear land (VB) 

does not reach the standard tool life criterion of 0.3 mm
19

 after the 300 m test. However, 

considering the coating thickness of the present cutting tools, a maximum VB value of 0.15 

mm should be assumed. Although a crater is visible on the rake face, its depth, KT, is of 

the order of only a few micrometers for all tested conditions. 
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Fig. 5. Details of the wear observed after different machining: (a,b) GD40 (S = 20 m·min
-1

, 

d = 0.2 mm, f = 0.10 mm·rev
-1

) turned for one pass and 300 m, respectively. (c,d) GD60 

turned for 300 m at S = 30 m·min
-1

, d = 0.2 mm, f = 0.15 mm·rev
-1

 before and after cobalt 

removal, respectively. All micrographs taken with 45º tilt under SEM. 

 

 

3.3. Tool wear mechanisms 

 

The wear of the diamond tools when machining hardmetals is characterised by scars 

on both the rake and flank faces, denoting a prevailing abrasion mechanism
3
. The main 

visual difference after machining of low Co content GD40 grade and the two other grades 

is the presence of adhered Co in the case of the latter (Fig. 5c). However, after Co leaching 

(20 min HF/HNO3 1:1), the wear features are the same, regardless the workpiece material, 

as the micrographs in Fig. 5c and d show. 

 

Other failure mechanisms contribute to the wear of the diamond tools in the 

machining of WC–Co, their relative importance being a function of the machining 

parameters. While for high speed machining diffusion plays a determinant role, for the low 

a b 

c d 

150 µm 
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and medium ranges of optimised cutting conditions used in the present work, Co adhesion 

leads to microweldings and to the formation of the BUE. The cutting edge is thus 

periodically loaded with localised extreme stresses for a short time, Fig. 3b. This may 

result in diamond chipping near the cutting edge (Fig. 6a), leading to uneven edge break-

out (Fig. 6b). Loose diamond debris from both microchipping and transgranular fracture 

are the abrasive agents contributing to the general abrasion of the rake and flank faces, 

together with the action of the WC hard particles. Notching due to the depth-of-cut and to 

the escape of the small WC–Co chips is another observed wear mechanism. 

 

Although most of the work done has been carried out under dry cutting conditions, 

some tests were also conducted using a coolant/lubricant fluid to allow determining its 

effect on the wear of the tools. Another reason is that in multi-pass turning of cylinders, as 

is the case of the present experimental tests, they heat excessively, rendering nearly 

impossible to obtain reproducible machining tolerances. Fig. 6c and d illustrate the 

differences in wear of the cutting edge without and with coolant, respectively, when 

machining GD60 at 0.4 mm of cutting depth. The differences are remarkable, since when 

using a cutting fluid the wear is much decreased and nearly no Co adhered to the cutting 

edge. Without cooling and for this depth of cut value, the cutting edge wears rapidly, 

rendering the tool unusable for further machining, Fig. 6c, and forcing the tool re-

sharpening. Debris removing and cooling/lubrication actions have thus a large effect on the 

weight of the mentioned wear mechanisms of both diamond abrasion and Co adhesion to 

the tool. A balance between the tool life and productivity on one side and environmental 

issues
14

 and machine protection from WC–Co debris on the other side has to be solved to 

define the best turning conditions. 
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Fig. 6. Aspects of the cutting edge after machining: a) micro-chipping (GD50, S = 20 

m·min
-1

, d = 0.2 mm, f = 0.15 mm·rev
-1

); b) uneven wear (GD40, S = 30 m·min
-1

, d = 0.2 

mm, f = 0.10 mm·rev
-1

). Morphology of wear in the machining of GD60 at S = 30 m·min
-

1
, d = 0.4 mm, f = 0.15 mm·rev

-1
 with (c) and without (d) lubrication observed with 45º tilt. 

 

 

3.4. Re-sharpening 

 

On what matters the re-sharpening of these new tool materials, one must bear in 

mind that after long term machining (about 300 m in the present work), the flank wear 

reaches the substrate surpassing the adopted tool life criterion of VB≈coating thickness. 

Issues related to tool construction and tool life assessment are here at stake. When 

comparing the recession of the cutting edge due to wear (e.g. Fig. 4a) with the amount of 

diamond that was machined to form the first cutting edge (Fig. 2), it becomes clear that re-

sharpening is a much easier operation than the initial sharpening one. The resultant tool has 

the same morphology of the sharpened tool shown in Fig. 2b. To retain here is the fact that 

if tool integrity is kept after sharpening, resharpening will not pose any problems since 

 30 µm 

a b 

150 µm 

c d 
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diamond adhesion is guaranteed during machining by selecting the right parameters for 

each workpiece material. For the particular geometry of these tools, a machining length of 

2000 m is possible before resharpening by successively exposing unused edge, what 

permits dry machining lengths of up to 10000 m (considering up to 4 resharpening 

operations) with a single disc-shaped thick film diamond coated silicon nitride tool. 

 

 

 

5. Conclusions 

 

 

Thick film CVD diamond (~150 µm) was directly deposited by the microwave 

plasma technique on silicon nitride tools and sharpened using grinding processes without 

loss of adhesion or film detachment from the substrate. 

 

Machining parameters were adjusted to suit different hardmetal grades, the speed and 

feed being respectively reduced to 20 m·min
−1

 and 0.1 mm·rev
−1

 for the lowest Co binder 

grade (18 wt.%), while for the coarser WC grades containing larger amounts of Co, the 

speed and feed were kept at 30 m·min
−1

 and 0.15 mm·rev
−1

, keeping the depth of cut at 0.2 

mm. For the selected tool geometry (RBMN1003M0FN), the larger component of the 

cutting force is the one due to the depth-of-cut. The lower Co content hardmetal grade, 

GD40, yields the larger cutting force and wear when using the same machining parameters 

for GD50 and GD60. The higher Co content grade induces easy formation of built up edge 

resulting in discontinuities in the cutting force. 

 

Due to the wear, the cutting edge recession occurs and flank wear increases. This 

change of the cutting edge geometry increases the cutting force and reaches a threshold 

value corresponding to Fd~700 N above which the tool fails. Wear of the CVD diamond 

tool occurs due to abrasion of the rake and flank faces mainly by diamond debris. Diamond 

microchipping, enhanced by the adherent Co built-up-edge (BUE), and transgranular 

fracture are the source of the loose diamond particles. 

 

A tool life criterion of VB≈diamond thickness was considered allowing cutting 

lengths of 2000 m per tool under optimised dry turning conditions. Up to four re-

sharpening operations are expected before the tool has to be rejected. When a cutting fluid 
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is used, increased tool life is easily achieved due to reduction of Co adhesion and 

enhancement of diamond debris removal from the cutting edge. 
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Abstract 

 

Very smooth CVD diamond films are used as direct coatings on Si3N4 tool 

substrates. By adjusting deposition parameters, namely Ar/H2 and CH4/H2 gas ratios, and 

substrate temperature, nano- (27 nm) and submicrometric (43 nm) crystallite sized grades 

were produced in a hot filament reactor. Also, a conventional 5 and 12 µm micrometric 

grain size types were produced for comparison. Normalized coated inserts were tested for 

dry turning of WC–25 wt.% Co hardmetal. All the CVD diamond grades endured the 

hardmetal turning showing slight cratering, having the flank wear as the main wear mode. 

Their turning performance was distinct, as a consequence of morphology and surface 

roughness characteristics. Among all the tested tools, the more even surface and the 

submicrometric grade presented the best behaviour regarding cutting forces, tool wear and 

workpiece surface finishing. For this coating, the depth-of-cut force attained the lowest 

value, 150 N, the best combination of wear types (KM=30 µm, KT=2 µm and VB=110 

µm) and workpiece surface finishing (Ra=0.2 µm). 

 

 

Keywords: Cutting tools, Diamond film, Hot filament CVD, Nanocrystalline.
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1. Introduction 

 

 

CVD diamond coated materials possess outstanding tribological properties due to 

diamond extreme hardness, high thermal conductivity and low friction coefficient against a 

wide range of materials. A widespread application is the case of cutting tools, where CVD 

diamond coatings are used for machining abrasive and hard materials, such as MMC's, 

aluminum–silicon alloys and tungsten carbide
1–3

. However, the relatively high surface 

roughness of conventional microcrystalline CVD diamond can be detrimental for wear 

resistance. To overcome this drawback a solution is the development of diamond crystals 

with submicrometric or even nanometric size. These diamond grades can be produced in a 

microwave plasma CVD reactor from a variety of feed gas mixtures such as fullerenes/Ar, 

CH4/Ar, CH4/N2, or just using higher ratios of CH4/H2

4–8
. This way, the columnar structure 

that forms during the microcrystalline diamond growth, which is responsible for a high 

roughness of the free surface, is avoided. The hot filament CVD technique is a less referred 

method to grow such coatings. Here, a bias current can be applied to enhance the growth 

rate and minimize the grain size and surface roughness
9
 or carefully adjusted deposition 

conditions under H2/Ar/CH4 gas mixtures can be used
5, 10

. 

 

Machining of hardmetal parts by chip removal is a challenge for a cutting tool but 

microcrystalline CVD diamond has already proved its adequacy
3, 11

. However, there are no 

published works concerning the use of smoother CVD diamond in this application, 

although it has been reported for machining of Al–Si alloys and GFRP
12

. In the present 

work, diamond films with two distinct crystallite sizes are investigated as direct coatings 

on Si3N4 tool substrates: i) submicrometric diamond (43 nm) and ii) nanocrystalline 

diamond (27 nm). These diamond films were grown by hot filament CVD technique, and 

also as conventional micrometric (5–12 µm) sized ones, for comparative purposes. The 

cutting performance of normalized coated inserts is evaluated in turning of WC–25 wt.% 

Co hardmetal workpieces. 
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2. Experimental 

 

 

Fully dense Si3N4 ceramic discs were made by pressureless sintering
11

. The ceramic 

parts were grinded to achieve final tool insert geometry of RNMN1003M0FN. Surface 

treatments before CVD diamond deposition included: flank face grinding with diamond 

wheel, rake face polishing with 15 µm diamond slurry, etching by CF4 plasma (1 h), and 

scratching/seeding in a diamond suspension in n-hexane by ultrasonification (1 h). 

 

Diamond growth was conducted by hot filament chemical vapour deposition 

(HFCVD). The selected growth parameters resulted in three types of diamond films found 

that are labelled in Table 1 as: MCD, for microcrystalline diamond; SMCD, for 

submicrocrystalline diamond; and NCD, for nanocrystalline diamond. For each diamond 

grade, short (labelled 1) and long time (labelled 2) deposition runs were conducted. 

Filament and substrate temperature were measured with a two colour pyrometer and a K-

type thermocouple placed at the back side of the substrate, respectively. The samples were 

heated by thermal radiation to a temperature of about 550 °C. Further substrate temperature 

increment was given by an external power supply. The surface roughness of the different 

diamond films was determined using AFM microscopy from 50 µm×50 µm scan areas. 

Diamond crystallite sizes were estimated by the broadening of the XRD diffraction peak at 

2θ~44°, corresponding to the diamond (111) plane. 

 

The turning tests were conducted in a CNC lathe under dry cutting conditions. The 

workpiece material was a WC–25 wt.% Co cylinder (Ø=32 mm, length=60 mm). The 

cutting performance of the three types of diamond coated tools was evaluated at fixed 

conditions: speed=15 m min−1, depth-of-cut=0.1 mm and feed=0.1 mm rev−1. The three 

components of the cutting force, namely Fd (depth-of-cut force), Fc (main cutting force) 

and Ff (feed force), were acquired for all tests using a dynamometer. The workpiece 

surface finishing was determined by profilometry. Tool damage was evaluated using SEM 

and optical microscopy. 
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3. Results and discussion 

 

 

3.1. Coatings morphology and surface roughness characterization 

 

SEM cross-sections at the cutting edges of the CVD diamond distinct grades are 

shown on Fig. 1a, b and c. The respective insets were taken from the rake face of the 

inserts. The different morphologies are further evidenced in Fig. 1d, e and f where 3D 

AFM scans are shown. The MCD film has a columnar structure, originating large diamond 

grains at the free surface (Fig. 1.a). These are responsible for the high values of roughness 

well visualized by AFM 3D scanning (Fig. 1.d). SMCD and NCD films have a very 

distinct kind of structure, as grain growth is suppressed by decreasing the atomic H density 

with the increment of CH4, in the former case, or partial substitution by Ar, in the latter, 

thus increasing the renucleation of diamond
4
. Therefore, very small crystallites develop 

along all the thickness (Fig. 1.b and c) and the surface roughness is very low when 

compared with the MCD ones (Fig. 1.e and 1.f). RMS roughness of the films can be found 

in Table 1. The nominal RMS value of the silicon nitride substrate is about 0.4 µm. Both 

MCD films had rougher surface values than the substrate, as is expected by the columnar 

grain growth and sustained by the larger value of the thicker film. For the smoother films, 

SMCD and NCD, their RMS values were lower than the substrate, surpassing the high 

differences between peaks and valleys, by lateral growth of the surfaces
13

. 
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Fig. 1. SEM cross-sections and top view insets of: a) MCD-2; b) SMCD-2 and c) NCD-2. 

Pictures d) to f ) are the respective AFM scans. 

 

Table 1. Hot filament deposition parameters and characteristics of different CVD diamond 

coating. 

Tool 

type 

CH4

/H2 

Ar/

H2 

Gas 

flow 

(sccm) 

Total 

pressure 

(mbar) 

Filament 

temperature 

(ºC) 

Substrate 

temperature 

(ºC) 

Growth 

rate 

(µm⋅h-1
) 

Thickness 

(µm) 

RMS 

(µm) 

Crystallite 

size (nm) 

MCD-1 20 0.55 

MCD-2 
0.02 2.7 

42 0.78 
- 

SMCD-1 23 0.18 

SMCD-2 
0.03 

- 100 25 850 

3.1 
50 0.23 

43 

NCD-1 13 0.18 

NCD-2 
0.04 

0.1

0 
50 50 

2300 

750 1.3 
23 0.26 

27 

 

100 µµµµm 

20 µµµµm 

1 µµµµm 

1 µµµµm 

b 

c 

d 

e 

f 

a 
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The crystallite size estimated from the broadening of the XRD diamond peak is 43 

and 27 nm for SMCD and NCD films, respectively. Although the submicrometric diamond 

with 43 nm of crystallite size reaches the usual nanometric assignment, the crystallite size 

taken from the Scherrer formula is only a lower limit of the real value, as it involves peak 

broadening only caused by the finite crystallite size, ignoring broadening by mechanical 

stress in the layer
14

. Besides, the crystallite size is only equivalent to the grain size if the 

individual grains are defect-free single crystals
15

. Supporting this, SEM micrographs of the 

submicrometric grade reveal a grain size of about 100–200 nm (see inset of Fig. 

1b).Differently, the NCD morphology appears to be formed by agglomerates of very tiny 

grains (inset of Fig. 1c). Raman spectroscopy in the centre and near the insert edges 

revealed the diamond characteristic peak at ~1332 cm
−1

 and the features usually associated 

to the graphitic phases D and G bands (at 1350 cm
−1

 and 1580 cm
−1

, respectively) and 

transpolyacetylene (at 1140 and 1480 cm
−1

), typical of NCD films
16

. In the case of MCD 

films, the grain size at the free surface was calculated by image analysis from a SEM 

micrograph of the films, since the broadening of the DRX peak is negligible when the 

crystallite size is larger than 200 nm
15

. The mean grain size values found were about 5 and 

12 µm for MCD-1 and MCD-2, respectively. 

 

An important feature of the HFCVD method is the accentuated attenuation of the 

“edge effect” characteristic of the MPCVD process. In the latter process, plasma 

discharges concentrate at sharp edges locally rising the temperature and the growth rate, 

leading to a heterogeneous distribution of grain size and bumped edges. Thus, the 

roundness of the cutting edges of the HFCVD diamond inserts is mainly related to the film 

thickness and curvature radius. 

 

 

3.2. Cutting performance of distinct crystallite size diamond films 

 

The differences between the coatings characteristics are somehow reflected in the 

force analysis performed during the hardmetal cutting. The values of the depth-of-cut, 

main and feed component of the cutting force, Fd, Fc and Ff, respectively, are shown in Fig. 

2. The effect of film thickness is only evident for MCD, where further rounding of the tool 

due to the increase in thickness is complemented by the increment of the edge roughness 

(Table 1). When the tool surface is very rough, the friction between tool and workpiece is 
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excessive and high forces are generated during the cutting operation. SMCD tools, 

although being thicker than the NCD ones and having quite the same value of surface 

roughness, present an even surface, while the NCD coatings are formed by ball-shaped 

agglomerates (Fig. 1e and f). As a result of this, the SMCD tools present the smallest 

cutting forces, followed by NCD and MCD tools (Fig. 2a). In all grades, Fd has the highest 

value, a characteristic feature of circular shaped insert geometries, due to the high contact 

area with the workpiece. 
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Fig. 2. Cutting forces (a) and wear parameters at rake and flank faces (b) of the distinct 

diamond grades and film thickness after one turning pass (∼60 m cutting length, 4 min of 

cutting time). 
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The evolution of the cutting forces is closely linked with the tool wear. SEM 

micrographs of the cutting edge feature after one pass (∼60 m cutting length, which 

corresponds to 4 min of cutting time) are visualized in Fig. 3.a–c and e–g. Fig. 2.b 

summarizes the set of values of the crater centre distance (KM), average flank wear width 

(VB) and crater depth (KT). KT was estimated by focus/de-focus procedure in an optical 

microscope, while KM and VB were measured from SEM micrographs. KT values have a 

very low magnitude, from 2 to 6 µm, the lowest values occurring for the SMCD grade and 

the largest ones for the MCD tools. This is likely to be a consequence of the increasing 

surface roughness and higher probability of diamond microchipping and transgranular 

fracture. The dominant wear mechanism is abrasion caused by loose diamond debris and 

WC hard particles from the sliding action of the chip and workpiece rubbing on the rake 

and flank faces, respectively
11

. KM has a lower magnitude than VB, presenting a value of 

about 30 µm for all tool types. Flank wear is the predominant kind of tool wear. 

Comparing left and right columns of Fig. 3, it is worth noting that the VB width increases 

with the diamond thickness, for all the three types of diamond tools. This is a consequence 

of the simultaneous increment of the cutting forces due to the edge curvature radius and 

film surface roughness, with film thickness. For the thickest coatings among all the 

diamond grades, there is a relationship between the magnitude of the forces and the width 

of the wear scars. This is patent in the VB wear type as SMCD-2 performance is superior 

both in terms of cutting forces and tool wear (Fig. 2.a and b). 

 

According to the ISO Standard 3685, a VB value of 0.3 mm is adopted for tool life 

criterion. This value of VB limit was not achieved after 4 min of cutting time by any of the 

tools. The MCD-2 tool was tested for longer times, reaching the VB limit after 12 min 

(Fig. 3.d and h). For this cutting edge, wear values were about 13 µm (KT), 40 µm (KM) 

and 310 µm (VB). 
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Fig. 3. Rake and flank faces of the distinct CVD diamond tools. a) to c) correspond to 

MCD-1, SMCD-1 and NCD-1 coatings, respectively, and e) to g) correspond to MCD-2, 

SMCD-2 and NCD-2 coatings, respectively, after one turning pass. Top (d) and inclined 

view (h) of MCD-2 cutting tool after three machining passes (∼180 m cutting length, 12 

min of cutting time). 
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A remarkable feature after all the turning tests was the absence of diamond film 

delamination at the cutting edge. In a previous work
3
, the use of diamond coated tools for 

turning the same grade of hardmetal presented some drawbacks related to diamond 

adhesion on the flank face. In the present work, there was a significant increase of the 

adhesion strength by the improvement of the surface pre-treatments of the Si3N4 substrates, 

since all kinds of the tools upheld the strong compressive loading developed under cutting. 

 

Differences on the edge quality, concerning to different roughness levels, affect the 

chip removal and workpiece surface finishing
17

. A rough surface may lead to built-up-edge 

(BUE) formation, weakening the cutting edge. In this work, BUE was not significantly 

developed, even for the roughest cutting tool. Nevertheless, a higher amount of adherent 

material was found in NCD-2 tool, as a consequence of the irregular wear at this cutting 

edge (Fig. 3g). The surface roughness influences the workpiece surface quality. Data in 

Fig. 4, measured after 4 min machining time, shows that there is a nearly linear correlation 

between the tool and hardmetal surface roughness. Good surface finishing could be 

achieved by the lower diamond crystallites sizes, SMCD and NCD, reaching the accepted 

industrial Ra of about 0.2 µm. 
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Fig. 4. Relationship between the tool surface roughness and the workpiece surface 

finishing for the different CVD diamond grades. 
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6. Conclusions 

 

 

Silicon nitride inserts were successfully coated by CVD hot filament method with 

continuous and highly adherent diamond films of nano- (27 nm) and submicro- (43 nm) 

crystallite sizes, and conventional 5 and 12 µm micrometric grain size types. The 

respective coatings morphology and surface roughness resulted in dissimilar cutting 

performance in dry turning of WC–25 wt.% Co at 15 m·min
−1

 of cutting speed, 0.1 mm 

depth-of-cut and 0.1 mm·rev
−1

 feed. The submicrometric grade presented the best 

behaviour regarding cutting forces, tool wear and workpiece surface finishing. For this 

coating, the depth-of-cut, main and feed cutting forces attained the lowest values, 

respectively of Fd=150 N, Fc=100 N and Ff=15 N. The thinnest (23 µm) submicrometric 

coated inserts presented the best combination of types of wear (KM=30 µm, KT=2 µm and 

VB=110 µm) and workpiece surface finishing (Ra=0.2 µm), after 60 m cutting length. The 

performance of the nanometric grade was slightly inferior due to frictional interaction of 

surface ball-shaped agglomerates, although having a smaller crystallite size and a similar 

surface roughness (RMS < 0.26 µm). The conventional micrometric grade, featured by the 

presence of high asperities originated by the large crystals, suffered a higher abrasive 

action from the loose hard particles carried by the chip flow and from rubbing at the 

contact with the workpiece.  
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Abstract 

 

Electrical discharge machining (EDM) is a widely used technique, namely in metal 

mould shaping. High quality EDM graphite is the foremost choice as electrode material but 

the random oriented graphite aggregates cause an abrasive action over the tools used in its 

machining. In order to guarantee tight tolerances and good surface finishing, wear-resistant 

diamond tools are the best option. In this work, microcrystalline (MCD) and 

nanocrystalline (NCD) CVD diamond coated inserts are used in turning operations. Cutting 

forces were always very low (< 20 N) within the cutting speed (200-800 m⋅min
-1

) and feed 

(0.02-0.2 mm·rev
-1

) ranges. Long turning tests of at least 15 minutes reached a KT ~ 22 µm 

(the coating thickness) for 10 km of cutting length, although without affecting the cutting 

performance. Another important result is the absence of diamond film delamination 

showing the high adhesion level offered by the silicon nitride ceramic substrates for CVD 

diamond coating. The smoother NCD coatings allowed to obtain a better workpiece 

surface roughness (Ra ~ 0.23 µm) than MCD ones (Ra ~ 0.37 µm) 

 

Keywords: Cutting tools, Diamond film, Hot filament CVD, EDM graphite. 

 

 

 

 

                                                                     Chapter 4 - Cutting tool behaviour and wear mechanisms 



 178 

1. Introduction 

 

 

Electrical discharge machining (EDM) is used to shape high-performance, intricate 

and accurate parts in leading aeronautical, automotive and moulds manufacturing 

companies. Graphite is the most widely used material for EDM electrodes due to its low 

cost and especially because of its high temperature resistance in the spark arc when 

compared, for instance, with copper 
1
. High quality EDM graphite is fine grained and has 

low porosity content. The different C-C bond strength in the basal planes and between 

adjacent layers confers to graphite anisotropic mechanical and electrical properties, namely 

a considerable high strength and electrical conductivity in the basal plane 
2
. An important 

consequence of the strong variation of mechanical strength with direction is the difficult 

machinability of graphite. In graphite machining, the random oriented graphite aggregates 

lead to a very abrasive powdery chip. This feature explains why diamond tools became the 

best solution for this application. The first option was the polycrystalline diamond (PCD) 

grade: the benefits of using PCD inserts comparing to conventional cemented carbide ones 

in turning of graphite were proved at high cutting speeds, such as 500m⋅min
-1

, where the 

tool life increased almost three-fold 
3
. However, the graphite debris created by machining 

abrade the cobalt binding phase of the PCD tools, leading to diamond particles loosening 

and, consequently, tool wear. An improving solution is the use of binderless CVD diamond 

coatings. A tool-life gain of more than 10 times was reported in milling operations with 

CVD diamond cemented carbide coated tools, comparing to uncoated ones 
4
. An EDM 

graphite producer reported an improved life of 25 to 30 times of diamond coated cemented 

carbides tools comparing to TiN-coated ones in turning operations 
5
. An impressive gain of 

242 percent in cost per graphite part produced is estimated by Myers 
6
 in an economic 

comparison projection between CVD diamond coated and uncoated cemented carbide end 

mills. In the same work, a few examples of parts machining, like EDM electrodes milling 

for making injection molds, attested the real benefit of CVD diamond showing 15 times 

gains in tool life and tight accuracies. 

 

This work consists in the evaluation of the cutting performance of hot filament CVD 

diamond coated silicon nitride (Si3N4) ceramic tools in turning of EDM graphite. This 

substrate is the best choice regarding the inferior risk of film delamination due to the 
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chemical compatibility and low thermal expansion mismatch to diamond 
7
. The influence 

of cutting parameters (cutting speed: 200 to 800 m·min
-1

 and feed: up to 0.2 mm·rev
-1

) on 

the cutting forces and tool wear were evaluated for different cutting tool geometries (round 

and triangle cutting tips) and different CVD diamond coatings (micro- and nano-crystallite 

sizes). 

 

 

 

2. Experimental 

 

 

The Si3N4 ceramic cutting tools were full densified by pressureless sintering at a 

dwelling temperature of 1750ºC for 2 hours, in an atmosphere of 0.1 MPa N2, using 

aluminium and yttrium oxides as densification additives. The weight percentages were: 

89.3% α-Si3N4 (Starck grade M11), 7.0% Y2O3 (Starck grade C) and 3.7% Al2O3 (CT-

3000SG, Alcoa). The sintered ceramic parts were ground to standard normalized 

geometries of round (RNMN1003M0FN) and triangle (TNMN160308FN) shaped inserts. 

The rake face was lapped with 15 µm diamond slurry in an iron/polymer plate, followed by 

dry etching with CF4 plasma for a controlled micro-roughening purpose. Before diamond 

deposition, the ceramic inserts were ultrasonically seeded in a n-hexane suspension of 

diamond powder (0.5-1 µm) during 1 hour.  

 

Micro- (MCD) and nano- (NCD) crystalline diamond depositions were made in a hot 

filament chemical vapour deposition (HFCVD) reactor, using 4 straight and parallel 

tungsten wires as gas activators. Almost all the MCD and NCD deposition parameters were 

similar: filament temperature = 2300 ºC; substrate temperature = 850ºC; total pressure = 

2.5 kPa; total gas flow= 100 sccm; deposition time = 7.5 hours. The unlike deposition 

parameter was the methane/hydrogen volume ratio. To deposit MCD diamond, a volume 

ratio of 0.02 (CH4/H2) was used, while in the case of NCD, this ratio was 0.03. The film 

thickness of both diamond grades was 22 ± 2 µm and the rake face surface roughness RMS 

values were 0.55 µm, for the MCD grade, and 0.18 µm, for the NCD one. 

 

Dry turning tests were done in an industry facility, using a CNC lathe (Mori Seiki). 

The ISO code of the tool holders were as follows: CRSNR2525M 06 and CTGNR2525M 
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16. A three-axis piezoelectric dynamometer platform (Kistler 9257BA) was coupled into 

the lathe, where the tool holder is fixed. In this way, the signals were amplified in a Kistler 

5011 apparatus and connected to a PC by coaxial cables and an acquisition board 

(PCMCIA, Keithley). The analogical signals were converted and filtered in real time using 

dedicated software. The variable cutting parameters were the cutting speed (200-800 

m·min
-1

) and feed (0.02-0.2 mm·rev
-1

), while the depth-of-cut was fixed to 0.5 mm. The 

overall set of performed tests is given in Table I. The main resultant wear modes, flank 

wear (VB) and crater depth wear (KT), were measured accordingly with the ISO 3685 

standard
8
. 

 

 

Table I. Overall set parameters used in the graphite turning. 

 

Coating  Geometry v (m·min
-1

) f (mm·rev
-1

) L (m) t (min) n (rpm) 

200 1499 7.5 754 

400 1481 3.7 1526 

600 1464 2.4 2316 
MCD 

800 1446 1.8 3126 

200 1375 6.9 822 

400 1393 3.5 1623 

600 1410 2.4 2404 
NCD 

800 

0.02 

1428 1.8 3165 

0.05 394 1.0 2297 

0.1 193 0.5 2339 MCD 

0.2 95 0.2 2383 

0.05 415 1.0 2179 

0.1 204 0.5 2217 NCD 

Round 

400 

0.2 100 0.2 2256 

1357 2.3 2498 
MCD 

10075* 17.8* 2832* 

1339 2.2 2531 
NCD 

Triangle 600 0.02 

8936* 14.9* 3214* 

* Values corresponding to the long cutting tests after 8 passes. The spindle speed (n) is at 

the last pass. 

 

 

The initial dimension of the EDM graphite cylindrical bar used in the turning tests 

was ∅85.46 mm × 113 mm. The density of the graphite workpiece was 1.88 g·cm
-3

, as 

measured by immersion in ethylene-glycol, and falls in the upper limit of the densities 

range available in the market (1.6-1.9 g·cm
-3

) 
9,10

. Nominal mechanical characteristics are: 
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Shore hardness = 62; flexural strength = 80 MPa; compressive strength = 112.6 MPa. The 

grain size is about 10 µm. The ASTM D1762-84 standard 
11

 was used to determine 

moisture, volatile matter and ash content in wood charcoal, and so the fixed carbon. The 

analysis of carbon content revealed the high purity of the workpiece, with a value of about 

98 wt.%. A volatile matter amount of about 1.7 wt.% was detected and may be constituted 

by residues of hydrocarbons, resulted from the graphite manufacturing 
2
. Low values of 

moisture (0.2 wt%) and ash content (0.14 wt%) were found. The last one has an important 

effect on the graphite machinability, since it is formed by metallic oxides that have a high 

abrasive nature 
3
. 

 

 

 

3. Results and Discussion 

 

 

The diamond coated Si3N4 round tools were employed in a first set of turning tests, 

Table I, due to the large number of cutting locations available in the cutting edge of each 

insert (from 4 to 8, depending on the depth-of-cut). Figs. 1a) and 1b) present the values of 

the three components of the cutting force as a function of the cutting speed when using 

MCD and NCD coated tools, respectively. It can be seen that, irrespectively of the 

diamond grain size, the cutting forces are very low and do not show a clear dependence on 

the cutting speed. This behaviour markedly differs from that observed in metal machining, 

where higher speeds lead to an overheating of the workpiece/tool contact point, with net 

effects on the cutting forces. In that case, cutting forces can decrease due to the higher 

metal ductility, but, conversely, they may rise if the tool wear rate increases. Indeed, in the 

machining of graphite the absence of heating and high forces at the tool cutting edge is a 

common evidence 
12,13

. Unlike metals, when graphite is machined a continuous chip does 

not shear off from the workpiece. This is because brittle fracture of the polycrystalline 

aggregates takes place instead of plastic deformation. Also, the energy required for the 

initiation and propagation of the cracks is much lower 
12,13

. A combination of crushing, by 

compressive stresses action, and flaking, from tensile stresses, occurs. Flaking leads to 

larger fragment particles and it is undesirable, particularly in finishing operations. Using of 

insert geometries with negative rake angles, such as in the present work, increases the 
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compressive stresses, leading to finer graphite soot formation and better workpiece surface 

finish 
12

.  
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Fig. 1. Cutting forces in function of: a-b) cutting speed (at f = 0.02 mm·rev
-1

); c-d) feed (at 

v = 400 m·min
-1

) for MCD and NCD silicon nitride coated tools. 

 

The graphite particulate aggregates cause a grooving abrasive action on the cutting 

edge, leading to a very narrow regular depression on the rake face of the tool (crater wear), 

Fig. 2. Figs. 2a),b) and 2c),d) are SEM micrographs of the MCD and NCD diamond tools 

after testing at lower and upper cutting speed limits of 200 and 800 m·min
-1

, respectively. 

Besides crater wear, another wear mode is visible: the small notch at the entrance of the 

tool on the workpiece. No significant differences among the behavior of the diamond 

coatings at different cutting speeds could be detected. Nevertheless, a closer inspection and 

the measurement of the crater depth (KT) show that there is an almost linear decrease of 

c) d) 

a) b) 
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KT with increasing cutting speed, as plotted in Fig. 3. Again, no considerable difference 

between MCD and NCD diamond coatings was noticed confirming that the rake face 

roughness did not influence neither the cutting forces nor the wear parameters. This 

behavior is very distinct from that reported in a previous work on hardmetal machining, 

where the large surface roughness of the MCD coatings led to increased friction with the 

chip, higher cutting forces and larger tool wear with compared with NCD coatings 
14

. The 

reduction on tool wear with cutting speed in graphite turning is probably due the easier 

fragmentation of such a brittle material at high impact rates. As particle aggregates sizes 

diminish, not only the abrasive action on the rake face is lesser but also dust is more 

effectively evacuated from the machining area. The improvement of the cutting 

performance, namely of the tool life, for higher cutting speeds was also reported by other 

authors 
12

. 

 

 

 
 

 

  

 

Fig. 2. Crater and notch wear for: a-b) MCD and c-d) NCD at the lowest (200 m·min
-1

) and 

highest (800 m·min
-1

) cutting speed, respectively (f = 0.02 mm·rev
-1

; L ~ 1400 m). 
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Fig 3. Crater depth (KT) in function of cutting speed (f = 0.02 mm·rev
-1

; L ~ 1400 m). 

 

 

Another important feature visible in Fig. 2 is the absence of flank wear at the main 

tool/workpiece contact area, resulting in the preservation of the cutting edge. This assured 

that the tolerances are kept within a hundredth of a millimeter throughout the workpiece 

length. Only at the minor cutting edge/workpiece contact, a small wear land on the flank 

face (VBC of about 40 to 49 µm) was formed, as can be seen in Fig. 4. The machined 

workpiece, which may have an irregular surface due to the fracture events during turning, 

rubs this area and causes a small abrasive effect on the cutting tool. Here, some differences 

are seen when using MCD and NCD diamond tools, since the workpiece rubs the top 

asperities of the diamond crystals, in the case of MCD, while a more polished area results, 

in the case of the smoother NCD one, Figs. 4a) and 4b respectively. This was reflected on 

the workpiece finishing, with Ra values of 0.37 ± 0.04 µm using MCD coated tools and 

0.23 ± 0.05 µm using NCD ones. 

 

Regarding the influence of the feed value when passing from 0.02 to 0.2 mm·rev
-1

, an 

increment of about 2 to 3 times of the cutting forces occurred for both the MCD and NCD 

tools, Figs. 1c) and 1d), although their magnitude remained very low. Generally, the 

increase of feed leads to higher compressive stresses and, as consequence, generates higher 

cutting forces 
15

. The wear of the tools was negligible in all cases, meaning that the 
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machining of graphite by diamond tools can be done in a wide range of parameters, 

accordingly with their function and geometry. For instance, when machining a thin and 

intricate wall section in a brittle material, the use of small feed values is recommended to 

avoid any risk of breakage and chipping by the tool pressure 
3
. 

 

  

 

 

Fig. 4. Flank wear at the end of the minor cutting edge of a) MCD and b) NCD tools (v = 

800 m·min
-1

, f = 0.02 mm·rev
-1

; L ~ 1400 m). 

 

 

For turning of complex profiles, more flexible tool geometries than round ones are 

required and so triangular shaped inserts were also tested. The relatively high fracture 

toughness (about 6 MPa·m
-1/2

) of silicon nitride ceramics 
16

 successfully allowed the use of 

this less resistant edge geometry, and no signs of cracks or edge breakage were observed 

after the turning tests. Fig. 5 presents values of the cutting forces for these tools and 

compares them with the round shaped ones when turning at the same cutting parameters of 

speed= 600 m·min
-1

; feed= 0.02 mm·rev
-1

; depth-of-cut= 0.5 mm. Corner and edge radius, 

clearance, rake and tool entrance angles are some of the key factors that influence the 

progression and magnitude of the cutting forces 
17,18

. It can be seen that the magnitude of 

the Fd component of the cutting force is much smaller for the triangular tool comparing to 

the round shaped one. This is a consequence of the smaller included angle and corner 

radius of the former, by diminishing tool/workpiece contact area, and so, the pushing back 

force reaction exerted by the workpiece over the cutting tool. The relative magnitude of the 

other cutting forces also changed. The entrance angle of the triangular shaped tool of 91º, 

given by the tool holder, implies that the depth of cut is performed mostly by the main 

cutting edge, while in the case of the round tools the cut is isometric, and the depth of cut 

 60 µµµµm  60 µµµµm 
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is distributed over the main and minor cutting edges. Such differences could account for 

the higher relative value of the feed force (Ff) in the case of the triangle tools in 

comparison with the round ones. In the case of chip formation, the increase of feed force 

also means an increase in the shear stress acting on the rake face 
18

. As a result of the 

different force behaviour, the wear features of the triangular tools (VBC≈36 µm and KT≈5 

µm) were slightly less than the reported values for the round ones in the same cutting 

conditions. 
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Fig. 5. Cutting forces in function of the different tool geometries and diamond coatings (v 

= 600 m·min
-1

, f = 0.02 mm·rev
-1

). 

 

 

The triangular shaped tools were finally tested in long turning operations (8 passes, 

Table I). Representative SEM micrographs of the MCD and NCD edges (30º tilted and top 

view) are shown in Figs. 6a),b) and 6c),d), respectively. The development of flank wear at 

the end of the edge and the crater formation is clearly seen on both kinds of diamond 

grades. The measurements of VBC showed values of 113 and 158 µm and KT values of 21 

and 24 µm for the MCD and NCD diamond tools, respectively. The crater in the NCD tool 

reached the Si3N4 substrate, as can be seen in Fig. 6d, but without affecting the cutting 

forces and cutting ability. The inset in Fig. 6d shows the revealed Si3N4 microstructure by 

the polishing action of the abrasive graphite particles, where the hexagonal β-Si3N4 grains 
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are clearly discernible contrasting to the light gray vitreous intergranular phase. Due to the 

high spindle speed (~3000 rpm) used in these tests, vibrations and workpiece bending were 

sensed which lead to a variation on the workpiece Ra value from 1.29 µm near the chuck 

to 3.04 µm at the end. Nevertheless, the workpiece tolerances were maintained in both 

MCD and NCD long turning cases.  

 

 
 

 

  

 

Figure 6. Rake and flank faces of a) MCD and c) NCD tools; b) and d) are the respective 

top view, where the crater on the rake face can be seen. The inset on Fig. c) presents the 

high magnification of the polished silicon nitride by the graphite particles on the surface of 

the NCD coated tool (v = 600 m·min
-1

, f = 0.02 mm·rev
-1

; L ~ 10 km). 

 

 

These tests showed the potential of both MCD and NCD diamond coated cutting 

tools, even at situations where vibrations takes place. A coating endurance life of at least 

45 minutes or 30 km of machined length can be achieved by these tools, considering the 3 

edges per tool. The absence of diamond film delamination is an important point and 

confirms that silicon nitride ceramic tool is a superior substrate for CVD diamond coatings 

than hardmetal. A recent work published on EDM graphite machining with different 

c) d) 

300 µµµµm  60 µµµµm 

300 µµµµm  60 µµµµm   2 µµµµm 

                                                                     Chapter 4 - Cutting tool behaviour and wear mechanisms 



 188 

diamond coatings on hardmetal tools shows that, regarding the different diamond crystal 

sizes, delamination of the coatings at the rake face occurred between 80 and 1480 m of 

cutting length 
13

. In that work, the cutting speed varied in the range 100-400 m·min
-1

, the 

depth of cut and feed were fixed at 0.3mm and 0.05 mm·rev
-1

, respectively, and a lower 

corner radius was used (0.4mm) than that of the present experiments (0.8mm). 

 

 

 

4. Conclusions 

 

 

Microcrystalline (MCD) and nanocrystalline (NCD) diamond coated Si3N4 ceramic 

inserts were successfully used to turn EDM graphite electrodes for the mould industry.  

 

Although the cutting forces were very low (< 20 N), the abrasive action of graphite 

aggregates caused small crater and flank wear lands. The crater depth values (5 µm 

<KT<10 µm) after tests in the cutting speed range of 200-800m⋅min
-1

 showed that there is 

a linear inverse relationship between these parameters. This is attributed to the easier 

fragmentation of graphite aggregates at high speed values. Flank wear occurred only at the 

end of the cutting edge/workpiece contact with small magnitude (max. 49 µm). 

 

No significant differences were observed between MCD and NCD films, except the 

small advantage of the smoother NCD coatings on the workpiece finishing: for the same 

cutting parameters, a workpiece roughness of Ra ~ 0.23 µm was obtained with NCD tools, 

while a Ra of ~ 0.37 µm was achieved by MCD ones. 

 

Long turning tests of at least 15 minutes reached a KT ~ 22 µm (the coating 

thickness) after about 10 km of cutting length, although without affecting the cutting 

performance as the cutting edge and the flank face kept their integrity. The absence of 

diamond film delamination is a key point and shows the superiority of silicon nitride 

ceramics as substrate material for diamond coated tools. 
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CVD diamond cutting tools with high quality and promising behaviour in machining 

of hard and abrasive materials were developed. The results showed that Si3N4 and Si3N4-

TiN ceramic are effective substrates, attaining high adhesion levels to the diamond coating. 

The addition of TiN to Si3N4 matrix presented a slight decrease in hardness of about 3% 

but an increment of the fracture toughness of approximately 20%, corresponding to values 

up to 7.5MPa⋅m
1/2

 for the composite with 30vol.% TiN An effective electroconductive 

network was achieved with TiN content above 23 vol.%, making possible the use of 

electrodischarge machining. TiN has a higher coefficient of thermal expansion (CTE) than 

Si3N4, consequently, the CTE values increase with the increment of the TiN content, and 

so does the thermal expansion mismatch between the substrate and the diamond film. The 

estimated thermal stresses were found to be low and tensile (0.90 GPa) for the monolithic 

Si3N4 substrate, changing to a compressive nature for the Si3N4–TiN composite substrates 

(−1.90 GPa for Si3N4–30 vol.% TiN). Brale imprints demonstrated that the subsurface 

radial cracks decreased in number and length when TiN was added to Si3N4, this behaviour 

being related to increasing fracture toughness of the composite. No CVD diamond film 

delamination took place at 600 N for every kind of substrate, but at 1000 N partial or full 

circumferential cracking was observed for the monolithic Si3N4 sample or the high content 

TiN grades. The optimal behaviour (no film delamination under 1000 N), which 

corresponds to the minimal residual stress magnitude, was observed for the Si3N4–9 vol.% 

TiN substrate. 

 

Three different diamond structures could be developed in the HFCVD reactor: nano – 

NCD - (27 nm), submicron- SMCD - (43 nm) crystallite sizes, and conventional 5-12 µm 

micrometric – MCD - grain size types. A low surface roughness was attained by the nano 

and submicron grades (RMS 0.18-0.26 µm), comparatively to the microcrystalline (RMS 

0.55-0.78 µm) one. Optical and SEM observations of Brale indentation imprints in the 

range 50-1700N, and measurements of the corresponding circumferential crack radii, allow 

the ranking of the different diamond grades as NCD→SMCD→MCD, from the lowest to 

the highest adhesion resistance. The lowest graphitic phase content and the highest 

hardness explain the best behaviour of the MCD grade. On the contrary, the deposition 

conditions for the NCD coating, cause a less effective chemical bond to the ceramic 

substrate. The MCD coating supported a normal load of 1600N without spalling-off and 

presented an interfacial crack resistance of 12.0 N·µm
-1

. The SMCD presents a value of 
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interfacial crack resistance of 8.3 N·µm
-1 

and NCD of 6.8 N·µm
-1

. The enhanced adhesion 

level of these films when compared with the literature comes from the more effective 

mechanical interlocking provided by CF4 plasma etching of the substrate prior to the 

deposition. 

 

The coatings morphology and surface roughness of the different diamond grades 

resulted in dissimilar cutting performance in dry turning of WC–25 wt.% Co at 15 m·min
−1

 

of cutting speed, 0.1 mm depth-of-cut and 0.1 mm·rev
−1

 feed. The submicrometric grade 

presented the best behaviour regarding cutting forces, tool wear and workpiece surface 

finishing. For this coating, the depth-of-cut, main and feed cutting forces attained the 

lowest values, respectively of Fd=150 N, Fc=100 N and Ff=15 N. Also, it presented the best 

combination of wear modes (KM=30 µm, KT=2 µm and VB=110 µm) and workpiece 

surface finishing (Ra=0.2 µm).  

 

With respect to the effect of the cutting edge geometry, the cutting forces increased 

with the bluntness of the cutting edge in the following order: sharp<chamfer<hone. 

Although wear of the cutting edges increases by aggravating the machining conditions, 

sharp edge tool integrity could be kept for a machining speed of 15 m min
-1

, depth of cut of 

0.1 mm for feed rates up to 0.15 mm·rev
-1

. A good workpiece finishing was obtained for 

the same cutting speed and depth of cut but for the lowest feed rate of 0.03 mm·rev
-1

. Film 

delamination and edge fracture occurred for honed edge tools at all tested conditions. 

Rough machining was performed in turning of three hardmetal compositions with a thick 

diamond film (150 µm). The machining parameters were adjusted to suit different 

hardmetal grades, the speed and feed being respectively reduced to 20 m·min
−1

 and 0.1 

mm·rev
−1

 for the lowest Co binder grade (18 wt.%), while for the coarser WC grades 

containing larger amounts of Co, the speed and feed were kept at 30 m·min
−1

 and 0.15 

mm·rev
−1

, keeping the depth of cut at 0.2 mm. The lower Co content hardmetal grade, 

GD40, yielded the largest cutting force and wear when the same machining parameters for 

GD50 and GD60 were used. The higher Co content grade induced easy formation of built 

up edge resulting in discontinuities in the cutting force. Due to the wear, the cutting edge 

recession occurs and flank wear increases. This change of the cutting edge geometry 

increases the cutting force and reaches a threshold value corresponding to Fd~700 N above 

which the tool fails. Wear of the CVD diamond tool occurs due to abrasion of the rake and 
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flank faces mainly by diamond debris. Diamond microchipping, enhanced by the adherent 

Co built-up-edge (BUE), and transgranular fracture are the source of the loose diamond 

particles. A tool life criterion of VB≈diamond thickness was considered allowing cutting 

lengths of 2000 m per tool under optimised dry turning conditions. When using cutting 

fluids, increased tool life is easily achieved due to reduction of Co adhesion and 

enhancement of diamond debris removal from the cutting edge. 

 

In the turning of EDM graphite, the cutting forces were very low (< 20 N), but the 

abrasive action of graphite aggregates caused small crater (5 µm <KT<10 µm) and flank 

(max. 49 µm) wear lands in the cutting speed range of 200-800m⋅min
-1

. No significant 

differences were observed between MCD and NCD films, except the small advantage of 

the smoother NCD coatings on the workpiece finishing: for the same cutting parameters, a 

workpiece roughness of Ra ~ 0.23 µm was obtained with NCD tools, while a Ra of ~ 0.37 

µm was achieved by MCD ones. Long turning tests of at least 15 minutes reached a KT ~ 

22 µm (the coating thickness) after about 10 km of cutting length, although without 

affecting the cutting performance as the cutting edge and the flank face kept their integrity. 

Once more, the absence of diamond film delamination showed the superiority of silicon 

nitride ceramics as substrate material for diamond coated tools. 
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The following works are thought to be made to better characterize and test the cutting 

tools developed during this thesis: 

 

- Study of the interface nature and microstructure between the diamond grains and 

between the film and substrate by high resolution transmission electron microscopy TEM. 

- Evaluation of the mechanical properties (compression and flexural strengths) of the 

bare ceramic cutting tools and coated with the different diamond coatings at room and high 

temperatures (about 500ºC) using an universal mechanical testing machine equipped with a 

furnace with controllable atmosphere. 

- Thermo-mechanical tests applying a cyclic force upon the surface of the coatings to 

evaluate the fatigue response and diamond film adhesion. 

- Study of polishing procedure of microcrystalline thick diamond coatings, evaluation 

of the resulted surface quality by Raman spectroscopy, X-Ray diffraction and optical, 

electronic and atomic force microscopy.  

- Deposition bilayered coatings (thick nanocrystalline diamond onto thin 

microcrystalline diamond coatings) and comparison with the polished ones in terms of 

surface quality as well as in cutting action. 

- Study of multi-layered nano-micro diamond coatings and evaluation in order to 

improve fracture toughness. 

- Use of different tool inserts geometries (square, rhombic) and angles (neutral and 

positive) in machining tests. 

- Evaluation of the scaling up possibilities of the diamond coated cutting tools 

manufacture by the hot filament technique. 

- Machining tests on other important materials, such as: carbon fiber reinforced 

plastics, alluminium silicon alloys and metal matrix composites. 
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