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resumo 
 
 

Esta tese insere-se na área de electrónica de rádio-frequência e microondas e 
visa a formulação, extracção e validação de um modelo não-linear de 
transístores de elevada mobilidade electrónica (HEMT), baseados na 
tecnologia emergente de Nitreto de Gálio (GaN). 
Nos últimos anos, tem-se assistido a um rápido desenvolvimento de 
tecnologias de semicondutores capazes de restringir, ainda mais, o domínio 
dos tubos de vazio. Em particular, nos sistemas de telecomunicações, tem-se 
procurado substituir os amplificadores a TWT por amplificadores do estado 
sólido capazes de oferecer características competitivas de frequência de 
operação, potência de saída, rendimento e linearidade. 
Neste sentido, a muito recente utilização de novas ligas semicondutoras, como 
é o caso do GaN, parece ser bastante promissora, já que combina uma 
elevada banda proibida com uma também elevada mobilidade electrónica. Se 
a primeira característica é essencial a uma tensão de disrupção elevada, e, 
consequentemente, grande capacidade de potência por unidade de área, a 
segunda é fundamental na extensão da frequência de operação. Espera-se, 
por isso, que, nos anos mais próximos, transístores de GaN venham a 
desempenhar papel determinante na amplificação de potência de RF e 
microondas. 
No entanto, para que isso seja possível, é necessário dispor de um 
conhecimento preciso da tecnologia e, assim, de modelos matemáticos dos 
dispositivos, actividades que só agora estão a dar os primeiros passos. 
Esta tese visa a obtenção de uma topologia de circuito equivalente de 
transístores HEMT a GaN encapsulados seguida pela extracção dos valores 
dos elementos deste modelo para uma fina rede de pontos de repouso. 
Passar-se-á então ao estudo das características DC e AC de sinal forte (em 
especial de distorção harmónica), formulando descrições funcionais 
convenientes para a corrente e carga acumulada no canal em função das 
tensões aplicadas. Tal modelo, servirá para estudar os efeitos de memória 
provocados pela malhas de adaptação e polarização empregues em circuitos 
deste género.  
O modelo será validado pelo projecto e teste de um amplificador de potência 
de microondas que, para além da validação do modelo não-linear, 
proporcionará, ainda, uma antevisão das reais capacidades deste tipo de 
dispositivos a nível do compromisso entre rendimento e linearidade. 
 

 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords 
 

Equivalent Circuit Model, Gallium Nitrade, Nonlinear Modelling, Power 
Amplifiers, Radio Frequency. 

abstract 
 

This thesis belongs in the radio frequency and microwave electronics area and 
is intended to formulate, extract and validate a nonlinear model of high electron 
mobility transistors (HEMT), based on the Gallium Nitride (GaN) emerging 
semiconductor technology. 
In the past few years, we have seen a fast development of new semiconductors 
capable of further reducing the use of the bulky, expensive and inefficient 
vacuum tubes. The idea is to replace the old TWT amplifiers by solid-state 
devices providing competitive performance figures of operation frequency, 
output power, power added efficiency and linearity.  
It seems particularly promising the use of new semiconductor compounds as 
GaN, since it combines very wide bandgap with also surprisingly high electron 
mobility. If the former is determinant to the offered breakdown voltage, and thus 
to the available output power capabilities, the latter is fundamental to get 
reasonable amounts of gain at very high frequencies. Therefore, the scientific 
community is expecting that those transistors will play a significant role in RF 
and microwave power amplifier applications.  
However, to make this dream a reality, it is of paramount importance that the 
technology is precisely known, and so that accurate nonlinear models for those 
devices are proposed, scientific activities which are just now taking the first 
steps.  
This thesis aims at proposing an appropriate equivalent circuit model topology 
for encapsulated GaN HEMTs. Then, the element values of this small signal 
equivalent circuit will be extracted for a fine grid of quiescent points. 
Afterwards, the devices' DC and large-signal AC data (obtained via harmonic 
distortion measurements) will be studied in order to produce convenient 
nonlinear descriptions of the FET's channel current and accumulated charge as 
a function of the applied voltages. The model will be applied to study the 
memory effects due to matching networks and bias circuitry expected to impair 
the linearity of GaN amplifier circuits. 
This GaN HEMT nonlinear model will be validated by the design and test of a 
microwave power amplifier that, beyond the model validation, will provide a first 
preview of the real capabilities that these devices can offer in terms of the 
crucial compromise between power added efficiency and linearity. 
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1. Introduction 
The electronics era started with scientists like Maxwell, Hertz, Faraday, and Edison, in the 

1800's, when the control of electricity was made possible. After that, and until today, there has 

been an unprecedented set of discoveries that is yet to finish. 

So, let us start in the beginning of the twentieth century when, in 1904, based on the work 

of Thomas Edison, sir John Ambrose Fleming invented the thermionic valve, or diode. Three 

years later, in 1907, Lee De Forest filed in a patent on a triode vacuum tube, the first 

electronic device capable of amplification. 

However, the most important achievement was still to come. Only in 1947, John Bardeen, 

Walter Brattain and William Shockley discovered the transistor effect and developed the first 

device at Bell Laboratories.  

 

 

 
Fig. 1. Photograph of the first working transistor replica. 
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A generic name for the new invention was needed: "Semiconductor Triode", "Solid 

Triode", "Surface States Triode", "Crystal Triode" and "Iotatron" were all considered, but 

"Transistor" won the Bell Laboratories internal voting. The following extract of the company's 

Technical Memoranda, calling for votes, explains the reasons for the chosen name. 

 

 
Fig. 2. Extract of the Bell Telephone Laboratories Technical Memorandum, [1]. 

 

The importance of this work was proved, in November 1956, with the attribution of the 

physics Nobel Prize to those three men. Bardeen would go on to win a second Nobel in 

physics, one of only two people to receive more than one in the same discipline, for his work 

on the exploration of superconductivity. 

Later, from 1948 until 1951, William Schockley, at Bell Labs, conceived and presented the 

first working junction field effect transistor (JFET). 

The metal-oxide semiconductor field-effect transistor (MOSFET) was invented, in 1962, 

by Steven Hofstein and Fredderic Heinman, at Princeton. Although slower than the bipolar 

junction transistor (BJT), a MOSFET was smaller, cheaper and used less power. 

In the 1970s, the introduction of gallium arsenide (GaAs) metal semiconductor field-effect 

transistors (MESFETs) revolutionized the radio frequency (RF) and microwave market. GaAs 

monolithic microwave integrated circuits (MMICs) brought integration capability. 

In the 1980s, the complementary metal-oxide semiconductor (CMOS) field effect transistor 

(FET) started to have a significant impact on the electronics field. Today, the advancement of 

CMOS has made it competitive with bipolar technology. Nowadays, silicon laterally diffused 

MOS (LDMOS) devices are used in power amplifiers for Global System for Mobile 

Communications (GSM) base stations.  

In the 1990s a variety of new solid-state devices, including high-electron mobility 

transistors (HEMTs) and heterojunction bipolar transistors (HBTs) were introduced. 
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 Many advances on design and power amplifier active device technology have been made 

public. In this respect, and despite of its recognized device processing infancy, one of the 

most promising technologies is the one based on wide bandgap materials, like Gallium Nitride 

(GaN), already exceeding the best results reported by many other materials. 

The study of wide bandgap semiconductors started over 30 years ago. However, only in the 

late 1980s, for Silicon Carbide (SiC), and in the mid-1990s, for GaN, occurred significant 

breakthroughs. The first commercial applications were blue Light Emitting Diodes (LEDs) 

fabricated from SiC, and later from GaN-related materials. The first GaN metal 

semiconductor field-effect transistor (MESFET) was only reported in 1993 [2], and the first 

Aluminium Gallium Nitride/Gallium Nitride (AlGaN/GaN) HEMT one year later, [3]. 

Nowadays, there is a very wide range of application fields for GaN that goes from Power 

Management to Military and Medical fields. Fig. 3 presents some of those applications. 

 

 
Fig. 3. Examples of GaN application fields. 
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Table 1 presents a summary of relevant semiconductor material properties to the electronic 

device performance for Silicon (Si), GaAs, SiC and GaN [4-8]. 
 

Table 1. Material properties for several semiconductors. 

Property Units Si GaAs SiC GaN 
Energy Bandgap 

Ability to support internal electric 
fields before breakdown. 

Determines the upper temperature 
limit of device operation. 

eV  1.1 1.42 3.26 3.49 

Critical Electric Field  
Maximum electric field that can be 
supported internally to the device 

before breakdown. 
Determines the highest operating 
voltage of a transistor for a given 
device design and channel doping, 
and thus limits the RF power swing 

in the device. 

cmV610× 0.3 0.4 3.0 3.0 

Dielectric Constant 
Indication of the capacitive loading 
of a device affecting the transistor 

terminal impedance. 

- 11.8 12.8 10.0 9.0 

Thermal Conductivity  
Determines the ease with which 

heat generated from unconverted 
DC power can be removed from 

the device. 

)( KcmW −  1.5 0.5 4.5 >1.5 

Electron Mobility  
Speed of the electrons in the 

material under the influence of 
relatively weak electric fields. 

)(2 sVcm ⋅ 1500 8500 700 1000-
2000 

Saturated (peak) 
Electron Velocity  

Maximum speed the electrons are 
capable of reaching under the 

influence of a relatively strong field. 

scm710×
1.0 

(1.0) 
1.3 

(2.1) 
2.0 

(2.0) 
1.3 

(2.1) 

 

The combination of high energy bandgap, high critical electric field, low dielectric constant 

and high thermal conductivity may ultimately lead to devices, based on wide bandgap 

materials, capable of handling higher power densities in a more efficient way than devices 

fabricated from other semiconductor materials. Remarkable results have already been 

reported. Actually, a Continuous Wave (CW) output power density of 32.2 W/mm, with a 

power added efficiency (PAE) of 54.8%, at 4 GHz was already obtained, [9]. In addition, the 

total output power and PAE have continuously increased their figures, as it can be seen in [10-

16], where it is possible to find PAs delivering from 100W until 500W, with efficiencies above 

45%. Furthermore, noise figures of 0.6dB at 10 GHz have already been reported, [17, 18]. 
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While the impact, of the above studied material properties’, on the overall device 

performance is relatively straightforward, the electron transport characteristics that permit 

high frequency operation are much more delicate. 

The transport of electrons in a semiconductor typically depends on two factors, known as 

electron mobility and saturation electron velocity. The electron mobility in GaN is better than 

in SiC but still lower than in GaAs, although the saturated electron velocities are comparable. 

However, those numbers can be misleading. When AlGaN is grown on top of a layer of a 

similar crystal, a Heterojunction is formed between the two different crystals, contributing to 

the GaN’s outstanding high frequency characteristics, already presenting devices with cut-off 

frequencies of hundreds of GHz, [4, 19, 20]. 

However, there have been many reports of some performance limitations, due to several 

physical effects associated with the semiconductor material: e.g. current decrease [21], RF 

stress [22] and premature gain compression [23]. This is mainly due to the material growth 

immaturity and solutions to these problems are emerging every day. 

Different substrates have been used for growing of GaN such as: Sapphire, SiC and Si. 

Most of the reported work is carried out on sapphire that is relatively cheap, is offered in large 

diameter wafers and provides an excellent low-loss microwave substrate. However, the 

thermal conductivity of Sapphire is extremely poor and will severely limit the power density 

and total power performance of devices fabricated on it. SiC has more promising 

characteristics in terms of lattice matching and thermal conductivity and is also an excellent 

microwave substrate, but has some severe disadvantages like cost, wafer size, and material 

defects. Si substrates offer new possibilities in terms of using large size wafers, maintaining 

good thermal properties with very low cost [7, 24]. 
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1.1. Motivation 
The deployment of modern digital telecommunication systems, with continuously 

increasing capacity and, using more and more complex modulation schemes, has demanded a 

steady improvement of the RF front-end’s performance. Fig. 4 presents the block diagram of 

a typical wireless communications receiver link. 

 

 
Fig. 4. Block diagram of a typical wireless communications receiver link. 

 

Looking now to the transmitter part of the wireless link, Fig. 5, we can see that power 

amplifiers (PAs) are the last active blocks in the system, handling the highest levels of RF 

signal and supply power. 

 

 
Fig. 5. Block diagram of a typical wireless communications transmitter link. 
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The PAs’ performance is usually evaluated with the help of some figures of merit such as: 

output power (Pout), gain, PAE, bandwidth (Bw), or even nonlinear distortion. The overall 

amplifier performance will be a compromise between all the above mentioned parameters. On 

one hand, if a highly linear performance is desired, the PA has to operate with sufficient 

power back-off in order to confine the input-signal envelope variation within the region of 

linear amplification. On the other hand, a highly efficient PA will work in a region where the 

input-signal envelope’s peaks are strongly clipped, thus producing a highly distorted output 

signal. As a result, there must be a linearity-efficiency trade-off in order to satisfy both 

requirements. 

In what the linearity characteristics are concerned, linearization enforcing techniques 

relying on either adding external circuitry to the PA, or simply improving its design [25], are 

necessary. The first set of methods, known as external linearization [26], is illustrated in Fig. 6. 

 

 
Fig. 6. General external linearization arrangement. 

 

This scheme, although of the feedforward type, presents a general external linearization 

arrangement that can be applied to any linearization structure (pre- or pos- distortion). In fact, 

since it is a conceptual diagram, it represents the intermodulation distortion (IMD) 

compensation between the PA and Linearizer. 

External linearization involves several drawbacks like cost, size, effective bandwidth or 

difficulty of adjustment and can be severely affected by the so-called Memory Effects (MEs). 

Section 1.1.2 presents a brief introduction to this topic. 

In order to circumvent these limitations, there has been a growing interest in directly 

optimizing the actual PA linearity. One possible way to achieve this design goal is to rely on 

certain bias points and power operating conditions, the so-called large-signal IMD sweet-

spots, which lead to improved intermodulation distortion ratio (IMR) near the zones where 

the Pout and PAE are maximized [25, 27].  
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In an IMD versus input power (Pin) plot, they can take many forms from a barely 

noticeable decrease in the IMD slope to mild valleys or even sharp deeps in the IMD 

characteristic, see Fig. 7 a, b and c, respectively. 
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Fig. 7. IMD vs Pin plot with a) barely noticeable decrease in the IMD slope; b) mild valley or c) 

sharp deep in the IMD characteristic. 

 

Unfortunately, the critical dependence of these IMD valleys on almost unsuspected issues 

like: out-of-band terminations [28, 29], strong and mild device nonlinearities [25, 27] and 

quiescent point (not unusually in ranges of only a few tenths of Volt) have raised the needs for 

high-quality PA design methodologies and nonlinear device models. 
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Using recent developments in the PA IMD understanding under small- and large-signal 

regimes, it is possible to conclude that large-signal IMD sweet-spots are not particular to a 

specific transistor, or PA topology, but are inherent to a large variety of PA circuits and active 

device technologies. This topic will be studied in more detail in Section 1.1.1. 

In what the nonlinear device model is concerned, it is known, from Volterra series analysis, 

that adjacent channel distortion (see Fig. 8), or close side-band IMD description, over 

moderate signal levels requires a model capable of accurately reproducing the I/V and Q/V 

characteristics, at least up to 3rd order. On the other hand, alternate channel distortion level 

description (see Fig. 8) would need, at least, 5th order detail. In mathematical terms, this 

implies that 3rd or 5th order derivatives of I/V and Q/V functions must be carefully 

extracted and modelled.  

 

Adjacent ChannelMain ChannelAlternate Channel Alternate ChannelAdjacent Channel

Po
w

er

Frequency

IM3

IM5

 
Fig. 8. Off-channel leakage caused by intermodulation due to 3rd and 5th order PA nonlinearity. 

 

Unfortunately, such a local model is not capable of reproducing the full range of large-

signal device characteristics. For that, an accurate description of the device’s strong 

nonlinearities like saturation to triode-zone transition, current cut-off, gate-channel diode 

conduction and gate-channel breakdown are also required. This leads to the necessity of a 

nonlinear global model. 

 



Nonlinear Modelling of Power Transistors for RF and Microwaves 
 

 
 
 

10 

1.1.1. Self-Linearization Effects in Different PA 

Technologies 
Power amplifier’s intermodulation distortion varies dramatically with the amplifier’s 

operation class, traditionally defined with the help of the conduction angle concept, θ2 , 

expressing the waveform period percentage in which the device is on. This definition is based 

on an idealized piece-wise linear form of the active device’s transfer function (TF), which is 

the transformation of the known nonlinear bi-dimensional dependence of the output current, 

iO(t), on the input and output control voltages, vI(t) and vO(t), iO[vI(t), vO(t)], into an one-

dimensional model, iO[vI(t)], assuming a determined output boundary condition imposed by the 

load impedance. 

Using this traditional conduction angle concept, if º1802 <θ  the amplifier is said to be in 

class C, if º1802 =θ  it is in class B, if º3602º180 << θ  in class AB, and if º3602 =θ  the PA 

is said to operate in class A, [26]. Besides the typical piece-wise approximation of the active 

device’s TF, Fig. 9 illustrates the input voltage and output current waveforms, for each of the 

above mentioned operation classes. 

As shown in Fig. 9, this traditional conduction angle concept assumes an unsaturated 

piece-wise approximation to the device’s turn-on, defining an ideal threshold voltage, VT. If 

TI Vv < then 0=Oi , if TI Vv > , Io vGi ⋅= 1 , in which G1 is the device’s transconductance, 

herein assumed independent of bias or excitation amplitude. 

Unfortunately, this is an oversimplified model of operation because, as illustrated in Fig. 

10, no actual device presents such a discontinuous behaviour (VT is, in fact, undefined). The 

assumed linear zone still presents some residual nonlinearity, and can not go on forever, but 

tends to saturate when vI looses control over the output current, transferring it to vO (a FET 

enters the triode region and a BJT or HBT enters in saturation). 
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Fig. 9. Typical piece-wise approximation of an active device’s TF and corresponding vin and iout for 

classes C, B, AB and A. 
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Fig. 10. Typical TF of a FET, a bipolar and their piece-wise approximation, magnified near turn-on. 
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Therefore, before starting any explanation of the IMD characteristics versus PA operation 

class, we need to revisit the definition of PA operation regimes, keeping in mind these 

observed smooth TFs. Indeed, provided saturation of the TF is included, any increase in 

model detail will not be paid back in terms of the prediction of fundamental Pout or PAE 

(reason why this model has been left unquestioned for so long); however, only when the TF’s 

soft turn-on is described, it is possible to accurately model IMD. Moreover, despite the 

variability in nonlinear device models and the levels of detail we are dealing with, a large range 

of device technologies share a very similar set of IMD characteristics. 

So, let us start by comparing the two most important and distinct groups of active device 

technologies used in nowadays microwave PAs: BJTs and FETs. 

If the TF characteristic of a bipolar device were given in terms of the dependence of 

collector current on base-emitter voltage, iC[vBE], it would be approximately exponential [30].  

This is in contrast with a FET whose drain-source current dependence on gate-source 

voltage, iDS[vGS], is only approximately exponential in the sub-threshold region, and then shows 

a quadratic zone near turn-on, which is further linearized due to non-uniform channel doping 

profile and short-channel effects [31]. 

However, this situation changes dramatically if the TF of the BJT were not given as iC[vBE] 

but as iC[vS], where vS is no longer the intrinsic, but the extrinsic base-emitter control voltage. 

Because the voltage drop in the total series resistance of the base-emitter mesh (both base and 

emitter parasitic resistances and input generator internal impedance) is proportional to base 

current (also an exponential function of intrinsic vBE), the overall effect is an exponential TF 

near turn-on followed by a linearized characteristic imposed by the series resistance [25], 

which is much more similar to the FET’s TF. 

In fact, as illustrated in Fig. 10, the resemblance between the TF curves originated from 

FETs or BJT devices is so evident that they can be approximated by the same global 

equivalent model. 

In order to obtain an unambiguous and consistent definition of the various PA operation 

classes, we will use a low order Volterra series of the output current of an active device, or its 

memoryless subset, the Taylor series: 

 

 ( )[ ] ( ) ( ) ( ) ...3
3

2
2 +⋅+⋅+⋅+= tvGtvGtvGItvI inininDCoutinout  (1) 
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Fig. 11 presents the variation of these three small-signal coefficients, with bias point, for a 

real active device introduced in a PA circuit. The variation of G3 with bias indicates that the 

small-signal 3rd order IMD (which is directly related to the PA’s 3rd harmonic and gain 

compression or expansion) will change with bias point, not only in amplitude, but also in 

phase (the sign of G3 in our memoryless nonlinearity).  
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Fig. 11. Active Device TF and its first three coefficients of the Taylor series expansion: G, G2 and G3 of 

an active device introduced in a PA circuit. 
 

Comparing Fig. 10 and Fig. 11, we conclude that we can find a null in the G3(VI) 

characteristic close to the position of the ideal threshold voltage, VT. So, biasing the PA at that 

point implies a null in the output 3rd order IMD. This result is consistent with the one 

obtained if the ideal PA were biased exactly at the break point of the piece-wise 

approximation, i.e. at VT, originating the so-called linear (for odd order distortion) class B PA. 

This observation leads to the desired and more precise definition of a generalized cut-off 

voltage, and thus of PA operation classes, if the bias point of this G3 null (the so-called small-

signal IMD sweet-spot [32]) is taken as the ideal VT. Class C would then be the operating 

regime of a PA biased below that bias point, class B would correspond to a PA biased exactly 

at the null, and classes A and AB would be the operating regimes of PAs biased above that 

point. 
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This refinement of PA operation class is still consistent with every other property of the 

circuit, as it is shown in Fig. 12. As a matter of fact, this figure presents a comparison between 

the first four Fourier waveform normalized expansion coefficients vs generalized conduction 

angle, obtained from three PA active device approximations: a FET based PA, a BJT based 

PA and the ideal piece-wise model [25]. 

The similarity of the three curve families is obvious except for the region close to 

º3602 =θ  (class A). This is an indication that, contrary to the piece-wise linear model that 

only represents the devices’ strong nonlinearities, the actual devices also manifest mild 

nonlinearities. So, they still show some residual distortion even when operated in the ideally 

linear class A regime. 
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Fig. 12. Comparison of FET, BJT and piece-wise models, presented in [25]. 

 

With the PA operation classes precisely defined, we can focus our attention on the large-

signal IMD sweet-spots. So, it is convenient to study small- and large-signal nonlinear 

characteristics separately. 
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In an IMD vs Pin plot, using logarithmic scales, small-signal 3rd order IMD (IM3) presents 

a slope of 3dB/dB, its phase is determined by the TF local derivatives and it can be controlled 

by changing the active device’s bias point. So, as seen in Fig. 11, the small-signal IMD, 

determined by the coefficients of (1), can be either in phase with the fundamentals (a 

symptom of small-signal gain expansion), in opposition (gain compression), or of null 

amplitude. This last situation would correspond to highly linear class A, or class B, regimes, as 

previously reported in [32]. 

Under large-signal operation, the nonlinear response is determined by the PA energy 

balance considerations. As the PA becomes short in supply power, the phase of the large-

signal IMD sidebands tends to a constant value of 180º [27], describing the inevitable gain 

compression. 

Now, three different scenarios, corresponding to the three discussed PA operation classes, 

are possible: 

In the first one, the PA is biased for class C, in which small- and large-signal IMD phases 

are in opposition, as illustrated in Fig. 13a. So, at the on-set of PA saturation the IMD must 

reverse its phase and there will be at least one IMD null (a large-signal IMD sweet-spot), as 

depicted in Fig. 13b. 

In the second scenario, the PA is biased for class A. As seen in Fig. 14a, small- and large-

signal IMD phases are now coincident, and no large-signal IMD sweet-spot can occur (Fig. 

14b). 

In the third and last scenario, the PA is biased for class AB, a more or less imprecise region 

of quiescent points just above the G3 null. Despite small- and large-signal IMD phases are still 

coincident, depending on the difference between the contribution of the positive lobe of G3, 

and the negative one (see Fig. 11), it can be proved that a transition from 180º to 0º can occur 

for low values of output power [33, 34] (Fig. 15a) generating an unexpected IMD sweet-spot. 

Beyond this signal level, the IMD presents an opposite phase to the one imposed by the large-

signal asymptote, and thus a new IMD sweet-spot will have to appear at the on-set of 

saturation. So, in this case, and depending on the PA quiescent point, two sweet-spots can be 

generated (Fig. 15b). Fager et al. in [33, 34] give further details on the theoretical explanation 

of this behaviour. 
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Fig. 13. Typical Pout and IM3 vs Pin characteristic for different small- and large-signal IMD phases 

(Scenario 1). 
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Fig. 14. Typical Pout and IM3 vs Pin characteristic for equal small- and large-signal IMD phases 

(Scenario 2). 
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Fig. 15. Typical Pout and IM3 vs Pin characteristic for equal small- and large-signal IMD phases 

(Scenario 3). 
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In order to illustrate the ability of this analysis in describing IMD behaviour in several PA 

technologies, various harmonic balance (HB) simulations of PAs biased for classes C, AB and 

A were performed. The models used were: BSIM3v3 model [35] for Si MOSFET, Fager et al. 

[33] for Si LDMOS, Angelov-Zirath [36] for GaAs-AlGaAs HEMTs, Pedro [37] for GaAs 

MESFETs and the Gummel-Poon [30] for the Si BJTs. 

As we want to analyze each of the above mentioned PA technologies, in three different 

operation classes, the simulated IMD results will be presented in the form of IMR vs Pin for 

class C, AB and A, instead of the usual IMD vs Pin, since this enables a faster and more 

obvious comparison between them. 

 

A. Si MOSFET 

From Fig. 16 it is possible to see that, for this Si MOSFET based PA, a large-signal IMD 

sweet-spot appears at class C, for high values of input power, while a double IMD sweet-spot 

appears at class AB, and no sweet-spot is visible in class A [34], as predicted. 

 

-30 -20 -10 0 10 20-40

20

40

60

80

100

0

120

IM
R

 (d
B

)

Pin (dBm)

Class C
Class AB
Class A

 
Fig. 16. Simulated IMR for a Si MOSFET PA at three operation classes: C, AB and A. 
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B. Si LDMOS 
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Fig. 17. Simulated IMR for a Si LDMOS PA at three operation classes: C, AB and A. 

 

As depicted in Fig. 17, this Si LDMOS based PA presents similar results to the ones shown 

by the Si MOSFET PA [33]. 

 

 

C. GaAs-AlGaAs HEMT 

Fig. 18 shows the results for this GaAs-AlGaAs HEMT based PA. These plots are similar 

to the ones already obtained for Si MOSFET and Si LDMOS.  
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Fig. 18. Simulated IMR for a GaAs-AlGaAs HEMT PA at three operation classes: C, AB and A. 
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D. GaAs MESFET 
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Fig. 19. Simulated IMR for a GaAs MESFET PA at three operation classes: C, AB and A. 

 

Fig. 19 shows the results obtained for this GaAs MESFET based PA [38], in which IMR 

for classes A and C present the same aspect as seen before. However, class AB no longer has 

two peaks, but a rather smoother one. That slight increase in IMR at medium signal level 

regime can be attributed to an interaction between the negative G3 and the positive higher 

orders’ contributions. Nevertheless, they were found not strong enough to generate the 

previous phase reversal, and thus neither a strong IMR maximum at medium signal excursions 

is visible, nor there is any large-signal IMD sweet-spot. 

 

E. Si BJT 

-30 -20 -10 0-40

20

40

60

0

IM
R

 (d
B

)

Pin (dBm)

80
Class C
Class AB
Class A

 
Fig. 20. Simulated IMR for a Si BJT PA at three operation classes: C, AB and A. 
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As seen from Fig. 20, the results obtained for the Si BJT based PA are similar to the ones 

observed for the GaAs MESFET. 

As it is possible to see from Fig. 16 up to Fig. 20, class A presents the best small-signal 

linearity. But, for high values of input power, IMR in classes AB and C is better than in class 

A. This fact, associated with the low gain and PAE recognized for microwave PAs biased in 

deep class C, justifies their use in class AB where optimized linearity and efficiency can be 

simultaneously obtained. 

In order to provide experimental illustration of these simulated predictions, Fig. 21 and Fig. 

22 present measured results for two-tone IMR performance of a Si CMOS and, a GaAs 

MESFET based PAs in classes C, AB and A at 950 MHz, and 2 GHz, respectively. 
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Fig. 21. Measured IMR for a Si CMOS PA at three operation classes: C, AB and A. 
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Fig. 22. Measured IMR for a GaAs MESFET PA at three operation classes: C, AB and A. 
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The experimental observations clearly support the simulated predictions shown in Fig. 16 

and Fig. 19 for the corresponding PA technologies, validating the unified IMD theory above 

presented. 

 

The measured IMD is always a summation of several contributions. When a sweet-spot 

occurs, this means that there was an exact cancellation between all involved components 

(memoryless PA). However, memory effects jeopardize this compensation by introducing an 

extra IMD component that will not be compensated. This prevents the presence of the sharp 

sweet-spots and a rather smoother version, similar to a valley, will be obtained, instead. 

This is especially significant in linearization schemes that rely on cancellation mechanisms. 

So, a brief overview of these memory effects is presented in the next section. 
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1.1.2. Memory Effects in PA Circuits 
The use of more complex signals, with higher bandwidths and envelope variations, has 

further increased the amplifier design constraints, demanding special attention to the PA’s 

dynamic effects. These, usually known as memory effects (MEs) are properties of nonlinear 

dynamic systems in which circuits, presenting an almost static behaviour for small-signal (i.e., 

for their linear characteristics), show evident memory when driven into their nonlinear 

regimes. [25] 

Memory effects are usually divided into two different types, depending on the time 

constants involved.  

Short term MEs involve time constants of the order of the period of the microwave 

excitation and are caused by both the reactive components of the active device and the input 

and output matching networks. Since these MEs are much shorter than the information time 

scale, a PA presenting only short term MEs will behave as static for the information signal, 

reason why it is usually treated as being memoryless. The output response of a PA, presenting 

these effects, depends on the actual value, on the past samples, of its input and at the RF time 

scale, leading to an impulse response (IR) with short time tail, as illustrated in Fig. 23. 

 

ns

 
Fig. 23. Impulse response of a PA presenting short term memory effects, presented in [39]. 
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On the contrary, long term MEs are low frequency phenomena (from dc to a few kHz or 

MHz) involving time constants that are comparable to the information time scale. Thus, they 

can press dynamic effects onto the envelope being processed. In this case, the impulse 

response of a PA presenting these effects depends on the actual value of its input and on the 

past samples at the envelope time scale, leading to a IR with long time tail behaviour, as 

depicted in Fig. 24. 

 
ms

 
Fig. 24. Impulse response of a PA long term memory effects, presented in [39]. 

 

These long term MEs can only arise from some form of dynamic nonlinearity. They can be 

attributed to characteristics inherent to the active device: thermal effects and charge carrier 

traps; or imposed by external circuitry: bias networks. Fig. 25 presents a representation of the 

possible origins of long term memory effects in a generic PA circuit. 
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Fig. 25. Representation of the possible origins of long term memory effects in a generic PA circuit, 

adapted from [39]. 
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In fact, the most striking factor for the baseband impedance variation are the bias 

networks. If the information bandwidth spans from dc to a few MHz and the impedance of 

the baseband matching network changes over that frequency range, the PA response over that 

same bandwidth will present some kind of memory effects. Fig. 26 presents a generic 

schematic used for bias networks and its typical S11 variation. 

 

 
Fig. 26. Generic schematic used for bias networks and its typical S11 variation from dc to a few MHz. 
 

From a behavioural viewpoint, these long term MEs show up as hysteresis in the 

Amplitude Modulation to Amplitude Modulation and Amplitude Modulation to Phase 

Modulation (AM/AM and AM/PM) plots, different two-tone IMD characteristics for varying 

tone spacing, IMD asymmetry, or even transient step response of an On-Off CW modulation 

test rending inoperative any conventional PA linearizer circuit conceived for static AM/AM 

and AM/PM nonlinearities.  

This fact explains why the bias networks should be designed with great care if a highly 

linear PA is to be achieved. 
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1.2. State of the Art of GaN Power HEMT 

Modelling 
Although various nonlinear global models have been proposed for many different 

microwave device types [25], GaN power HEMT modelling activities are still making their 

first steps so that, to the best of the authors’ knowledge, no nonlinear model conceived to 

reproduce distortion properties has ever been published. Indeed, Green et al. [40] and Lee et 

al. [41] introduced a Curtice Cubic nonlinear model which has very poor IMD prediction 

capabilities [42, 43]. More recently, Raay et al. [44] used the Angelov-Zirath model but no 

IMD data have also been presented. 

As this device uses a HEMT structure, the first choice for the nonlinear functional 

description of iDS(vGS,vDS) is the standard Chalmers, or Angelov-Zirath, Model [36], commonly 

accepted for GaAs HEMT devices. Its major advantage resides on its capability for 

reproducing the typical bell-shaped transconductance of heterojunction field effect transistor 

(HFET) devices, usually explained by the so-called “parasitic MESFET” behaviour, observed 

at high channel currents.  

 

The complete iDS(vGS,vDS) model is given by: 

 

 ( ) ( )[ ]{ } ( ) ( )DSDSGSpkDSGSDS vvvIvvi αλψ tanh1tanh1, ⋅+⋅+⋅=  (2) 

 

Ipk is the drain current at which there is a maximum transconductance, subtracted the 

output conductance contribution. λ  is the channel length modulation parameter and α  is the 

saturation voltage parameter. 

( ).ψ  is a power series function centred at Vpk with vGS as a variable, i.e.  

 

 ( ) ( ) ( ) ( )3
3

2
21 pkGSpkGSpkGSGS VvPVvPVvPv −+−+−=ψ  (3) 

 

where Vpk is the gate voltage for maximum transconductance and P1, P2 and P3 are constants. 
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Using this model, we tried to evaluate its capabilities in predicting the fundamental output 

power and IMD of GaN devices. Keeping the transistor in three different operation classes 

(C, AB and A), a two-tone signal (f1 and f2), centred at 900 MHz with a frequency separation of 

10 MHz, was applied to the transistor’s input. 

Fig. 27 up to Fig. 29 present the comparison between measurements and model predictions 

of the two fundamentals (f1 and f2) and IMD components (2f1-f2 and 2f2-f1) for the above 

referred bias operation points. 
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Fig. 27. Measured and simulated Pout and IM3 vs Pin for class C operation. 
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Fig. 28. Measured and simulated Pout and IM3 vs Pin for class AB operation. 
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Fig. 29. Measured and simulated Pout and IM3 vs Pin for class A operation. 

 

Trying to find out an explanation to these observed discrepancies, we discovered that, the 

best fit provided by the Chalmers model to the measured Gm(vGS) and Gds(vGS), for a constant 

VDS in the saturation zone, is the one presented in Fig. 30 and Fig. 31, respectively. 
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Fig. 30. Gm measured and modelled with the Chalmers Model, for a constant VDS of 6 V. 
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Fig. 31. Gds measured and modelled with the Chalmers Model, for a constant VDS of 6 V. 

 

Although these results may not be considered dramatically bad, in a mean square error 

sense, they were considered unacceptable as they completely failed the Gm(vGS) higher order 

derivatives: Gm2(vGS) and Gm3(vGS), in particular 3

3

GS

DS

v
i

∂
∂ , as seen in Fig. 32 and Fig. 33. Hence, 

this compromises the model’s accuracy in predicting the in-band intermodulation [25]. 
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Fig. 32. Gm2 measured and modelled with the Chalmers Model, for a constant VDS of 6 V. 
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Fig. 33. Gm3 measured and modelled with the Chalmers Model, for a constant VDS of 6 V. 

 

 

A detailed study of these disappointing results led us to the puzzling conclusion that this 

difficulty of the Chalmers Model in reproducing this HEMT I/V characteristic probably also 

comes from its referred main advantage: it tends to produce pronounced bell-shaped Gm(vGS) 

forms. In fact, as it basically describes the iDS(vGS) dependence as an hyperbolic function, it 

tends to produce Gm(vGS) of a distinct sech(vGS)2 form. As it is widely known, this is a 

symmetric function across the transconductance’s peak, notoriously different from the one 

extracted from S-parameter measurements, and shown in Fig. 30. 

This being the case, and since there are no other models capable of predicting the IMD 

characteristics of these new GaN devices, there is a real need to develop a model meeting 

these requirements,  

Furthermore, this need was, indeed, felt by one of GaN HEMT foundries, Nitronex Corp., 

when they contracted our group exactly for that purpose. 
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1.3. Objectives 
This thesis deals with the nonlinear modelling activities directed to an emergent active 

device technology: GaN HEMTs. GaN is expected to play a key role in future power amplifier 

applications of microwave and wireless digital telecommunication systems. This, in turn, 

justifies all the time spent on improving their accurate nonlinear representation. 

It is now clear that nonlinear modelling is crucial, not only for power amplifier design, 

taking advantage of large-signal IMD sweet-spots, but also for the detection and 

compensation of memory effects arising from intrinsic or extrinsic sources. 

As stated in the previous sections, GaN modelling is making its first steps and there is not 

a model capable of accurately predicting the nonlinear distortion characteristics that, as shown 

before, have common roots and share similar origins with other technologies. 

So, the main objective of this thesis is to formulate, extract, implement and test a nonlinear 

equivalent circuit model for Gallium Nitride HEMTs, capable of accurately predicting their 

Pout, AM/AM and AM/PM conversions, PAE and IMD characteristics. 

In order to accomplish this main goal we sub-divided it into four other intermediate goals: 

• Characterize the GaN devices and detect similarities/differences with devices 

from other technologies; 

• Adjust an existing, or propose a new model, and its required parameter 

extraction methodology; 

• Validate the nonlinear model at the transistor level and under a real application 

environment; 

• Evaluate the robustness of the proposed GaN HEMT model, considering the 

observed variability of GaN device performance; 

• Show the new model’s applicability with the study of the AM/AM and 

AM/PM conversions. 
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1.4. Summary 
To fulfil the above mentioned objectives, this thesis was organized as follows: 

Chapter 1 provides the motivation to this work and introduces the most important 

wide bandgap semiconductor material properties and their relationship with the device 

performance. In addition, the state-of-the-art is presented, the prime objectives are explained 

and the main contributions, to the RF and microwave nonlinear modelling area, are addressed. 

Chapter 2 presents the most important characteristics of the devices used and 

addresses the formulation and extraction procedure of a nonlinear equivalent circuit model for 

a microwave power GaN HEMT, amenable for integration into commercial harmonic balance 

or transient simulators. All the steps taken to extract its parameter set are explained.  

Chapter 3 validates the model addressing its predictive capabilities by comparing 

measured and simulated broadband S-parameters, AM/AM and AM/PM conversions, Pout, 

PAE and IMD data, at the transistor level and using a PA circuit (real application 

environment).  

Chapter 4 studies the robustness of the proposed GaN HEMT model, for a new set of 

GaN devices, all from the same manufacturer, evaluating its capabilities of representing the 

Pout and IMD behaviour of the whole set of available devices; 

Chapter 5 applies the model to a comprehensive study of the memory effects, arising 

from different in-band and out-of-band load terminations impact, on the AM/AM and 

AM/PM conversions. 

Finally, Chapter 6 concludes this thesis by summarizing its most important 

achievements and opens the door for the research topics to be addressed in the future. 
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1.5. Original Contributions 
The thesis is believed to represent an important contribution in what GaN active device 

modelling is concerned. The nonlinear equivalent circuit model, arising from this work, was 

the first one capable of predicting the intermodulation distortion characteristics, observed on 

real GaN HEMT power devices. 

The extensive model extraction procedure presented eases the optimization needs when 

dealing with this type of nonlinear models and the model robustness test verifies its usefulness 

and reliability. Additionally, it also sheds light into the development stage already achieved by 

these devices. 

The detailed and extensive comparison, between experimental and modelled results, is also 

very valuable, and it can be used as a good benchmark for comparing future modelling work 

on GaN devices. 

Moreover, the use of this model to study the different in-band and out-of-band load 

terminations impact, on the overall AM/AM and AM/PM conversions, can help PA designers 

to understand and compensate the static and dynamic effects. 

Proving this work original contributions’, it is next presented a list of the already published 

material in international conferences and journals: 

 

Papers in International Conferences: 

Pedro M. Cabral, Nuno B. Carvalho and José C. Pedro, “An Integrated View of 

Nonlinear Distortion Phenomena in Various Power Amplifier Technologies”, European 

Microwave Conference Dig., Munich, Germany, pp. 69-73, Oct. 2003. (invited paper). 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “New Nonlinear Device Model 

for Microwave Power GaN HEMTs”, IEEE MTT-S Int. Microwave Symp. Dig., Fort-

Worth, Texas, United States, pp. 51-54, Jun. 2004. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Nonlinear Model with 

AM/AM, AM/PM and IMD prediction capabilities for GaN HEMTs”, Int. Workshop on 

Electronics and System Analysis Proc. CDROM, Bilbao, Spain, Oct. 2004. 
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Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Modeling AM/AM and 

AM/PM Conversions in Microwave Power Amplifier Circuits”, Integrated Non-linear 

Microwave and Millimetre-wave Circuits Workshop Proc., Rome, Italy, pp. 139-142, Nov. 2004. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Highly Linear GaN Class AB 

Power Amplifier Design”, Asia Pacific Microwave Conference Proc. CDROM, New Delhi, 

India, Dec. 2004. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Extraction Procedure and 

Validation of a Large-Signal Model for GaN HEMTs”, XX Conference on Design of Circuits 

and Integrated Systems Proc. CDROM, Lisbon, Portugal, Nov. 2005. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Dynamic AM-AM and AM-PM 

Behavior in Microwave PA Circuits”, Asia Pacific Microwave Conference Proc., Suzhou, 

China, vol. 4, pp. 2386-2389, Dec. 2005. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Bias Networks Impact on the 

Dynamic AM/AM Contours in Microwave Power Amplifiers”, Integrated Non-linear 

Microwave and Millimetre-wave Circuits Workshop Proc. CDROM, Aveiro, Portugal, Jan. 2006. 

 

Nuno B. Carvalho Pedro M. Cabral and José C. Pedro, “Modeling Strategies and 

Characterization Techniques for Microwave GaN Power Amplifiers”, Microwave 

Technology and Techniques Workshop: Enabling Future Space Systems’ Proc. CDROM, ESTEC, 

Noordwijk, The Netherlands, 15-16 May 2006. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Envelope Time Domain 

Characterization of Microwave Power Amplifiers”, Mediterranean Microwave Symposium 

Proc. CDROM, Genova, Italy, 19-21 Sept. 2006. (invited paper). 
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Papers in International Journals: 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Nonlinear Device Model of 

Microwave Power GaN HEMTs for High-Power Amplifier Design”, IEEE Trans. 

Microwave Theory Tech., vol. 52, pp. 2585-2592, Nov. 2004. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “A Unified Theory for 

Nonlinear Distortion Characteristics in Different Amplifier Technologies”, Microwave 

Journal, pp. 62-78, Apr. 2005. 

 

George D. Vendelin, José C. Pedro and Pedro M. Cabral, “Amplifier and Transistor 

Gains Revisited: GP, Av, Ai, Gm and Zm”, Microwave Journal, pp. 80-92, Apr. 2005. 

 

Pedro M. Cabral, José C. Pedro and Nuno B. Carvalho, “Modeling Nonlinear Memory 

Effects on the AM/AM, AM/PM and Two-Tone IMD in Microwave PA Circuits”, Int. 

Journal of RF and Microwave Computer-Aided Engineering, vol. 16, pp. 13-23, Jan. 2006. 
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2. GaN Nonlinear Model 

Formulation and Extraction 
This chapter is dedicated to the GaN nonlinear device modelling activities. Here, it is 

possible to find information concerning the GaN device characteristics, model formulation 

and extraction. All these steps will be discussed having in mind the nonlinear analysis, from a 

distortion prediction point of view. 

Mathematical representations of real active devices can be divided into two major groups: 

physical and empirical modelling, [25]. Fig. 34 presents a summary of their most important 

characteristics.  

 

 
Fig. 34. Modelling classification. 
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Nonlinear models, used in circuit simulations, are mostly based on equivalent circuits that 

are neither pure physical, nor even empirical models, but a combination of both. 

Based on the knowledge of the device physical characteristics, the equivalent circuit model 

is characterized by a specific topology, particular for that type of devices. On one hand, the 

equivalent circuit model includes elements that provide a lumped approximation to some 

aspect of the device and, on the other hand, it also uses functional descriptions taken from 

measured I/V or Q/V data. 

Nowadays, all computer aided design (CAD) circuit simulators can accept equivalent circuit 

models. They are easy to implement and computationally very efficient. These factors are very 

important, particularly for circuit optimization, where several simulation interactions are 

required and for large scale integrated circuit analysis. However, the increasing complexity 

needed to accurately describe high frequency circuits, is a severe drawback to their 

implementation. 

Another factor, that limits the usefulness of equivalent circuit models, is the difficulty in 

relating circuit element values to physical and process parameters, such as geometry, mobility, 

doping profile, carrier types, etc. Consequently, when there is a need to design and develop 

new, or improved devices, it is preferable to use physical models. 

However, in this case, since we were interested in a relatively low frequency and 

computationally efficient model, we adopted an equivalent circuit approach. Furthermore, the 

physical characteristics of the devices were protected by intellectual property rights and we 

had no possibilities of accessing them. 
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2.1. GaN Device Characteristics and 

Measurement Setup 
The devices used were GaN HEMTs on Si substrate with 2mm gate periphery (Unit Cell), 

encapsulated in a standard high power microwave package. Fig. 35 shows the packaged device 

and Fig. 36 a magnified version of its interior. 

 

 
Fig. 35. 2mm packaged GaN HEMT. 

 

 
Fig. 36. Magnified version of the packaged 

device showing the chip inside.

 

The HFET device structure is schematically represented in Fig. 37, taken from [45]. 
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Fig. 37. HFET Device Structure, taken from [45]. 
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 Fig. 38 shows measured IDS vs VDS characteristics, under static conditions, for six different 

VGS biases and Fig. 39 depicts its transfer characteristic and transconductance for a fixed VDS 

of 6 V.  
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Fig. 38. Typical IDS vs VDS curves measured under static conditions, for six different VGS biases. 

 

 

As seen, this is a depletion mode transistor with a Vpinch off of -4.3 V, a IDSS of 1 A and a 

GmMAX of 330 mS. 
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Fig. 39. iDS(vGS) transfer characteristic and Gm(vGS) for a fixed VDS of 6 V. 
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Since we are working with power devices, it is necessary to pay a special attention to the 

transistor mounting. Fig. 40 presents the GaN transistor embedded in a copper base (serves as 

physical structure and as heatsink) and placed on a printed circuit board (PCB). 

 

 
Fig. 40. GaN transistor embedded in a copper base and placed on a PCB. 

 

In order to re-use the GaN HEMTs, a special setup was designed that allows changing the 

active device, without damaging it, using a TEFLON piece screwed in the copper base that 

presses the transistor leads to the PCB board, see Fig. 41. 
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Fig. 41. Flexible setup that allows changing the transistor without damaging it. 

 

 

 

The complete setup implementation used during the model extraction is presented in Fig. 

42. An Anritsu Universal Test Fixture was used to attach the setup to SMA connectors and 

two positioners sustained the all set. 
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Fig. 42. Complete setup implementation used during the model extraction. 
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2.2. Model Formulation and Extraction 
This section presents a large-signal empirical model amenable for integration into any 

standard harmonic balance or transient simulator.  

The model is based on the equivalent circuit topology shown in Fig. 43, which includes 

both extrinsic (parasitic to the device’s ideal behaviour), and intrinsic elements (specific to the 

device operation) that try to represent electromagnetic effects caused by the particular device 

structure, discussed in more detail in the next sections. 
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Fig. 43. Equivalent circuit model topology used. 

 

The extrinsic elements can be considered linear, and so, they will maintain their values 

constant, independently of bias, or even, applied signal. On the other hand, the intrinsic 

elements are usually considered as nonlinear, and so, they will be dependent on the applied 

signal or bias. Nevertheless, and depending on the sought application, some intrinsic elements 

can also be considered as linear since their variation will have a small impact on the overall 

model prediction capabilities. 

The nonlinear elements will require a convenient functional description that, not only has 

to guarantee a minimum error between the measured and modelled device characteristics but, 

more important than that, has to present a good approximation of the curve shape, achieved 

fitting the curve’s higher order derivatives. 
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2.2.1. Extrinsic and Linear Intrinsic Elements 
The extrinsic part is mainly dependent on the device’s external environment and is usually 

composed by lumped elements trying to emulate actual distributed effects. In this case, Rg, Rd 

and Rs represent contact and semiconductor bulk resistances; Lg, Lg_B, Ld, Ld_B, and Ls contact 

and bond-wire inductances, while Cpg and Cpd model distributed effects caused by the gate and 

drain chip pads, respectively. Fig. 44 shows the metal-ceramic package terminology, presented 

in [46]. 

 

 
Fig. 44. Metal-ceramic package terminology, presented in [46]. 

 

Besides the usual extrinsic FET elements, the equivalent circuit of Fig. 43 includes three R-

C series networks: one at the gate (R11 and C11), one at the drain (R21 and C21), and another 

connecting both ports (R31 and C31). These fairly low quality factor networks were first 

introduced by Chumbes et al. in [47] and then by Manohar et al. in [48]. They are meant to 

reproduce the impact of the lossy p-Si/GaN/metal structure on the S-parameters, especially a 

pronounced resistive component observed under channel current cut-off (cold FET 

operation). 
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The determination of all series resistances and inductances was performed using S-

parameter measurements (from 30 kHz up to 3 GHz), taken under forward gate bias 

conditions, as described by Dambrine et al. in [49] and, more recently by Lai et al. in [50]. This 

was possible since, as reported in [48], the transversal R-C networks have minimum effect on 

the Z-parameters measured under this 0 V VDS operating mode. 

The remaining extrinsic elements’ values were extracted from an optimization of the cold 

FET (VDS=0V, VGS=-8V) S-parameter data, using a linear microwave CAD tool. 

The extrinsic element values, finally obtained, are shown in Table 2. 

 
Table 2. Extrinsic element values. 

Elements Value 

Rg 1.67 Ω 

Rd 0.9 Ω 

Rs 0.1 Ω 

Lg 0.9 nH 

Ld 1.7 nH 

Ls 0.1 nH 

Lg_B 0.7 nH 

Ld_B 1.0 nH 

Cpg 0 pF 

Cpd 0 pF 

R11 20 Ω 

C11 2.3 pF 

R21 70 Ω 

C21 1.2 pF 

R31 5 Ω 

C31 0.1 pF 
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In what the intrinsic elements are concerned, Ri, models the distributed resistance of the 

semiconductor region under the gate, between the source and channel, usually known as 

intrinsic resistance, or even, charging resistance. Its inclusion in the equivalent circuit model is 

primarily due to improvements in the S11 match. This resistor value is very difficult to extract 

and its physical significance is questionable, [51, 52]. 

The drain source capacitance, Cds, represented in the equivalent circuit model as the 

intrinsic output capacitance, can be separated in two different parts: one invariant, originated 

from the capacitive coupling between source and drain and, another one, bias dependent on 

the channel carrier distribution, [51, 52]. 

The gate-channel junction was split into two independent voltage controlled current 

sources and corresponding voltage controlled charge sources. The latter are represented in the 

equivalent circuit of Fig. 43 by the diode symbols, a nonlinear (depletion capacitance) Cgs(vGS) 

and linear (constant depletion capacitance) Cgd that model the change in the depletion charge, 

with respect to the gate-source and gate-drain voltages, respectively. 

Both Cds and Ri were taken as bias-invariant elements. Furthermore, since such devices are 

primarily intended for highly efficient and low distortion power amplifier applications, and are 

thus usually kept in the saturation region, Cgd was also assumed to be approximately linear. 

In order to determine all the linear intrinsic elements, the methods, presented in [49] and 

[50], were again used. The obtained values are shown in Table 3. 

 
Table 3. Invariant intrinsic element values. 

Element Value 

Ri 5 Ω 

Cgd 0.3 pF 

Cds 3.0 pF 

 

Considering the intended microwave PA application, a quasi-static global model is now 

needed for each of the nonlinear intrinsic elements: drain-source current and gate-channel 

junction current and stored charge. 
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2.2.2. Nonlinear Drain-Source Current Model 
The drain-source current global model should be capable of reproducing the device’s 

strong nonlinearities but also nonlinear details, i.e., meeting the local modelling criteria. 

Therefore, the selected model should be one of the traditional large-signal models seen in all 

harmonic-balance or SPICE like simulators, but still capable of reproducing, at least, the first 

three derivatives of the major source of HEMT nonlinearity: the gate-source and drain-source 

voltage dependent channel-current, iDS(vGS,vDS). 

A convenient way to elaborate such a mathematical representation is to rely on a global 

model that may be expressed as: 

 

 ( ) ( ) ( )GSDSdDSGSgDSGSDS vvfvvfvvi ,,, ⋅⋅= β  (4) 

 

fg(.) and fd(.) are the functions responsible for representing the dependence of iDS on vGS and 

vDS while β  is simply a scaling factor. Moreover, this model must produce accurate 

coefficients of the two-dimensional Taylor series expansion defined by: 

 

( )
3

3
2

2
2

2
3

3
2

2
2

2

,

sddsdgsdmsdgsdmgsmsdddsgsmdgsmdsdsgsmDS

DSGSDS

vGvvGvvGvGvGvvGvGvGvGI

vvi

+++++++++

=

   (5) 

 

where vgs and vds are the incremental deviations of the terminal voltages vGS and vDS around the 

quiescent point VGS and VDS.  

 

The asymmetric behaviour of Gm, seen in Fig. 39 (sudden rise near turn-on followed by a 

smooth decrease towards 0 V), directed our attention to the in-house FET model previously 

proposed, in our research group, by Fager et al. for Si LDMOS [33]. Intended for detailed 

nonlinear distortion description, it relies on behavioural device data, of both dc and small-

signal iDS(vGS,vDS): first derivative in order to vDS, Gds, and first, second and third order 

derivatives in order to vGS, Gm, Gm2 and Gm3, respectively. 
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This drain-to-source nonlinear current model is defined by a set of equations, each one 

representing one specific device operation region. The overall expression is obtained by the 

combination of the individual control functions. The obvious, and thus most common way of 

dealing with such a problem, is to perform a blind nonlinear optimization of the overall model 

parameters. From my point of view, this approach is not the appropriate one, since it is very 

time consuming and the user has a very limited control over the model extraction procedure. 

The chosen approach breaks the overall problem into smaller sections related with the device 

operation regions. Furthermore, this method enables a fast model readjustment. In order to 

illustrate the nonlinear drain-source current model parameter extraction procedure, a study of 

the individual expressions will be performed and, after that, a step by step iDS(vGS,vDS) fitting is 

presented. In each step, the present stage versus the final function will be shown. We will start 

with the model’s dependence on vGS. 

 

Threshold Location 

The threshold voltage, VT, [unclear in iDS(vGS) due to the FET’s soft turn-on] can be 

precisely extracted from the Gm2(vGS) peak or Gm3(vGS) null, [25].  
 

 ( ) TGSGSGS Vvvv −=1  (6) 

 

This linear function, responsible for the threshold location, is illustrated in Fig. 45, for 

three different values of VT, (VT1=-2, VT2=-1 and VT3=0). 
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Fig. 45. Variation of the threshold voltage, for three different values of VT, (VT1=-2, VT2=-1 and VT3=0).  
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Saturation Smoothness 

This second step, responsible for the iDS(vGS) saturation smoothness, for high values of vGS, 

and for the important transconductance decrease, observed in these HFETs, was previously 

proposed in the MET model, [53]. 

 

 ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ Δ+−Δ+−+−= 2222

2 2
1 VKVKvvvvv GSGSGSGSGS  (7) 

 

The control function, vGS2, depends on both VK and Δ . In order to study the importance 

that each parameter has on the overall function, two different situations were considered: the 

first one studies the effect of VK when Δ  is zero and, the second one, the effect of Δ  when 

VK is zero. 

So, setting Δ  to zero, we can re-write (7) as: 

 

 ( ) ( )VKVKvvvvv GSGSGSGSGS −−+−=
2
1

2  (8) 

 

Fig. 46 presents the variation of vGS2, when Δ  equals zero, for three different values of VK, 

(VK1=0, VK2=2 and VK3=4). 
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Fig. 46. Variation of the effective voltage when Δ =0, for three different values of VK, (VK1=0, VK2=2 

and VK3=4). 
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As it is possible to see, VK represents the gate voltage at which the device becomes 

saturated.  

Now, re-writing (7) for the case where VK equals zero, we will get: 
 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛ Δ−Δ++−= 22

2 2
1

GSGSGSGSGS vvvvv  (9) 

 

Fig. 47 presents the corresponding variation of vGS2, for three different values of Δ , ( Δ 1=0, 

Δ 2=2 and Δ 3=4). 
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Fig. 47. Variation of the effective voltage when VK=0, for three different values of Δ , ( Δ 1=0, Δ 2=2 and 

Δ 3=4). 
 

As it is possible to see in Fig. 47, Δ  controls the saturation smoothness. If Δ  is zero, we 

will have a sharp transition between the linear region and saturation but, as Δ  becomes 

greater than zero, this transition becomes much more soft. 

After considering these two limit situations (VK=0 and Δ =0), it is now easy to understand 

that, when both parameter values are different from zero, both effects will work together. 

However, the behaviour principles just presented will be kept. 
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Turn-on Abruptness 

For accurately describing the FET’s sub-threshold conduction and soft turn-on, the 

expression used is a smoothed version of the usually assumed piece-wise characteristic.  

 

 ( ) ( )VSTv
GSGS

GSeVSTvv +⋅= 1ln3  (10) 

 

This expression, first proposed in [54] for MESFETs and, after that, used for Si LDMOS 

in [55] and [33], provides a smooth and continuously differentiable approximating function to 

the device turn-on. 

The only parameter involved, VST, controls the effective gate voltage, vGS3, exponential 

increase rate. This is illustrated in Fig. 48, for three different values of VST, (VST1=0.1, 

VST2=0.3 and VST3=0.5). 
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Fig. 48. Variation of the effective voltage, for three different values of VST, (VST1=0.1, VST2=0.3 and 

VST3=0.5). 
 

If we take a closer look at (10) and at Fig. 48, we can se that vGS3 will asymptotically tend to 

vGS or to zero for high or low vGS values, respectively. 
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Transition between Turn-on and Saturation 

 

 ( )

L

plin
GS

GS
GSDS

V
v

vvi
+

⋅=
1

2

1 β  (11) 

As is well known, short channel FETs present an exponential turn-on followed by the 

typical FET quadratic region, which, for high vGS voltage, becomes smoothly linearized. This 

expression is used to control the regions of the referred iDS(vGS) quadric and linear regions. 

Indeed, when plin is close to zero the iDS(vGS) behaviour is always quadratic. When plin is close 

to one this iDS(vGS) dependence asymptotically tends to the short channel linearized region for 

vGS values higher than the constant VL. The other parameter involved, β , is simply a scaling 

factor. 

 

f(vGS,vDS) Construction 

Basically, the various fitting parameters are used to set the transitions in the different 

regions and their relative abruptness. This allows an almost one-by-one first parameter set 

extraction. Unfortunately, since there is no absolute orthogonality, the final parameter set 

must be obtained from a fine optimization of the modelled and measured Gm, Gds, Gm2 and Gm3 

functions. The error function used was defined as follows: 

 

 ( ) ( ) ( ) ( )measm

mmeasm

measm

mmeasm
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G
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3

mod33

2

mod22modmod

maxmaxmaxmax

−
+

−
+

−
+

−
=ε  (12) 

 

The nonlinear equations (6), (7), (10) and (11) can now be combined to create (13)-(16), 

defining the complete nonlinear current equations, as a function of vGS. For each intermediate 

expression, we will present the current stage and the final function, Fig. 49 up to Fig. 52.  
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 ( ) TGSGSGS Vvvv −=1  (13) 
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Fig. 49. First stage current (—) and final function (•••). 
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Fig. 50. Second stage current (—) and final function (•••). 
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 ( ) ( )VSTv
GSGS

GSeVSTvv 21ln23 +⋅=  (15) 
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Fig. 51. Third stage current (—) and final function (•••). 
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Fig. 52. Comparison between measured and modeled iDS(vGS) values. 
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iDS Dependence on vDS 

In what the iDS(vDS) dependence is concerned, the model relies on the traditional Curtice 

hyperbolic tangent function to set the linear to saturation regions’ transition, beyond a linear 

factor to account for the non-null Gds in saturation. However, the argument of the tanh(vDS) 

was modified to reproduce the displacement of the knee voltage with vGS. 
 

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
⋅⋅+⋅= psat

GS

DS
DSGSDSDSGSDS v

v
vvivvi

3
1 tanh1)(),(

α
λ  (17) 

 

Both α  and λ  can be easily extracted from the pulsed current-voltage (IV) curve slopes in 

the linear region and saturation, respectively or from Gds(vGs,vDS). The parameter psat sets the 

dependence on vGS of the transition from the triode to saturated region. 

It is also necessary to consider the dependence of VT with VDS, which can be acquired 

from several third order harmonic or intermodulation tests. For each VDS, the VGS value in 

which an IM3 null occurs gives the value of VT. Then, the parameter γ  can be extracted to fit 

these measured VT(vDS): 
 

 ( ) DSTDST vVvV ⋅+= γ  (18) 

 

 

 

This in-house model, although able of also reproducing the desired bell-shaped 

transconductance of an HEMT, is capable of a much more flexible iDS(vGS) fit. Indeed, and 

contrary to the ( )[ ]{ }GSvψtanh1+  form of the Chalmers Model, this new ( )[ ]xff 21 1 +  

current saturating function, in which x is another saturating function of vGS, has the ability of 

allowing a more independent control on the Gm(vGS) turn-on abruptness, subsequent Gm(vGS) 

saturation smoothness and transconductance peak broadness. 
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Table 4 presents the obtained iDS(vGS,vDS) model parameter set. 

 
Table 4. In-House iDS(vGS, vDS) model parameter values. 

Parameter Value 

β  0.40 A/V2 

VT0 -4.425 V 

VST 0.15 V 

VK 4 V 

Δ  5 V 

VL 1.35 V 

λ  0.0256 V-1 

α  0.40 V-1 

psat -0.62 

plin 1 
γ  0 

 

Fig. 53 up to Fig. 56 show the resulting prediction of the small-signal Gm(vGS), Gds(vGS) and 

the corresponding Gm(vGS) higher order derivatives: Gm2(vGS) and Gm3(vGS) for a constant VDS in 

the saturation zone. 
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Fig. 53. Gm measured and modelled with the In-House Model, for a constant VDS of 6 V. 
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Fig. 54. Gds measured and modelled with the In-House Model, for a constant VDS of 6 V. 
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Fig. 55. Gm2 measured and modelled with the In-House Model, for a constant VDS of 6 V. 

 

 

 



Chapter 2 - GaN Nonlinear Model Formulation and Extraction 

 
 
 

57

-0.10
-8 -6 -4 -2 0

Vgs (V)

0

0.10

0.20

0.30

G
m

3  
(A

/V
3 )

Modelled
Measured

 
Fig. 56. Gm3, measured and modelled with the In-House Model, for a constant VDS of 6 V. 

 

Note the remarkable good agreement, up to 3rd order, obtained with this iDS(.) model. 
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2.2.3. Gate-Source Capacitance Nonlinear Model 
For the nonlinear gate-source capacitance, Cgs(vGS), we used the model proposed in [33]. 
 

 ( )[ ]( )gsCGSgsC
gsC

gsGSgs VvK
A

CvC −⋅+⋅+= tanh1
2

)( 0  (19) 

 

As expressed in (12), a constant (Cgs0) plus a hyperbolic tangent are used to describe Cgs 

behaviour with vGS, which determines a ramp plus a [ ]GSve+1ln  charge. As in the iDS(.) model, 

the parameters of (12) are used to control the position (VCgs) and the abruptness (KCgs) of the 

transition between the residual Cgs0 and the actual depletion capacitance. 

Fig. 57 shows the comparison between modelled and measured Cgs(vGS) values (obtained 

from the S-parameter data previously collected, using the method explained in [49]). 
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Fig. 57. Comparison between measured and modelled Cgs(vGS) values. 

 

The complete Cgs(vGS) parameter set is shown in Table 5. 
 

Table 5. In-House Cgs(vgs) model parameters. 

Parameter Value 

Cgs0 1.5 pF 

ACgs 2.0 pF 

KCgs 2.0 V-1 

VCgs -4.5 V 
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2.2.4. Schottky Junction Nonlinear Model 
Finally, the gate-source and gate-drain diodes were considered as approximately equal and 

modelled by the conventional Schottky formula.  

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 1T

GS

V
v

SG eII η  (20) 

 

Where: 

IG is the diode current, 

IS is a scale factor called the saturation current, 

vGS is the voltage across the diode, 

VT is the thermal voltage, 

and η  is the ideality coefficient. 

 

The thermal voltage VT is approximately 25.9 mV, at room temperature (approximately 

25ºC or 298K), given by: 

 

 
e

kTVT =  (21) 

 

where: 

e is the electron charge, 

k is Boltzmann's constant, 

T is the absolute temperature of the p-n junction. 

 

The inverse saturation current, IS, and ideality factor, η , were extracted from measured IG 

versus vGS data, when source and drain were short-circuited.  
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Fig. 58a shows the I/V characteristic of the Schottky diode, in cartesian coordinates, and 

Fig. 58b the same characteristic plot now on semilog axis and, superimposed to it, the best 

regression line.  
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Fig. 58. a) I/V characteristic of the Schottky diode in cartesian coordinates and b) the same 

characteristic plot on semilog axis. 
 

That led to the parameters shown in Table 6. 

 
Table 6. Gate-Channel junction model parameters. 

Parameter Value 

IS 3.25e-4 A
η  26 

 

A note on these values is obviously required as they seem well far from the ordinary ones 

observed in similar GaAs or Si based MES junctions. They are a direct consequence of the 

measured low currents for comparably large applied voltages. In fact, currents on the order of 

a few mA could only be observed for applied forward voltages of nearly 1.5 V, while 100 mA 

were measured for unexpected values of around 3.5 V. Furthermore, the rather large Is value 

was verified against the diode currents measured under reverse bias. Although some process 

variation was observed for those values, they all seemed to be much larger than the ones of 

GaAs and Si devices. If such a trend is confirmed in other GaN technologies, this could be an 

indication that such wide bandgap HEMTs allow a very high input voltage excursion before 

gate-channel junction clamping takes place. 
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2.3. Conclusions 
In this chapter, the GaN devices used were presented. Besides that, an equivalent circuit 

nonlinear global model was formulated and extracted for the 2mm GaN power HEMT. 

Modelling studies proved that the form now adopted for the iDS(vGS,vDS) characteristic was 

found more flexible than the standard HEMT model developed for GaAs devices. That 

allowed a precise fitting of measured small-signal Gm(vGS), Gds(vDS) and thus of iDS(vGS) higher 

order derivatives Gm2(vGS) and Gm3(vGS). 
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3. GaN Nonlinear Model 

Validation 
This chapter is dedicated to the GaN nonlinear device model validation stage, performed at 

the transistor level and using a real PA. The tests used in this comparison were: small-signal S-

parameters, AM/AM and AM/PM conversions and large-signal one- and two-tone 

measurements.  

At this stage, the nonlinear model previously extracted had to be implemented in a 

standard harmonic balance simulator (Agilent’s Advanced Design System, [56]), enabling the 

comparison between measurements and results obtained with the model, when the overall 

measurement setup is carefully reproduced in the simulator. 

The iDS(vGS,vDS) and Cgs(vGS) nonlinear equations were introduced in the simulator, using a 

two-port symbolic defined device (SDD), that enables the creation of equation based, user-

defined, nonlinear components specifying algebraic relationships between port voltages, 

currents, and their derivatives. 

Fig. 59 shows the SDD and the equations used for the drain-source current and gate-

source capacitance (defined in its charge form). 

 

 
Fig. 59. SDD and the equations used for the drain-source current and gate-source capacitance (defined 

in its charge form). 
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The other equivalent circuit elements were then added to the schematic. Fig. 60 presents 

the complete nonlinear equivalent circuit model implementation in that simulator and Fig. 61, 

the correspondent sub-circuit component. 
 

 
Fig. 60. Nonlinear equivalent circuit model implementation in Agilent’s Advanced Design System.  
 

 

 
Fig. 61. Sub-circuit component. 
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3.1. Model Validation at the Transistor Level 
The first model validation phase was performed at the transistor level. Fig. 62 shows the 

actual setup implementation. 
 

 
Fig. 62. Actual setup implementation used during the model validation at the transistor level. 
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3.1.1. Small-Signal S-parameter Measurements 
The first validation tests consisted in the comparison of modelled and measured, broad 

band small-signal S-parameter measurements, from 1 MHz to 1 GHz, taken for three different 

bias points: a quiescent point below VT, a quiescent point slightly above VT, and another one 

well above VT (corresponding to what would be respectively classified as Class C, AB and A 

in a power amplifier application), see Fig. 63. 
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Fig. 63. S-parameters measured (x) and simulated (–) with the In-House Model for 3 different bias 

points corresponding to Class C, AB and A operation. 
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As it is possible to see, the results obtained with the In-House Model can be considered 

very good, especially if one realizes the parasitics introduced by the transistor mounting and 

large package. These were, in fact, responsible for the frequency limitations. 

 

3.1.2. AM/AM and AM/PM Measurements 
Since these wide bandgap transistors are primarily intended for PA applications in the 

emerging terrestrial and spatial communication systems, which use complex modulation 

schemes, several AM/AM and AM/PM conversion measurements were conducted. The 

transistor was biased to operate under class AB (vGS=-4.20V), while VDS was kept constant at 

6V. This bias point provides the best compromise between Pout, IMD and PAE, [25], often 

required in PA applications. 

Fig. 64 and Fig. 65 show static AM/AM and AM/PM conversion measurements and HB 

simulations, obtained with a 900 MHz CW excitation. 
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Fig. 64. Modelled and measured AM/AM conversion. 
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Fig. 65. Modelled and measured AM/PM conversion. 

 

 

Looking into Fig. 64 and Fig. 65, it is possible to see that, not only the comparison between 

absolute values of measurements and simulations is quite good, but also the patterns are well 

reproduced throughout the whole input drive level. 
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3.1.3. Large-Signal Two-Tone Measurements  
Afterwards, the model’s IMD performance was evaluated. Keeping the transistor in Class 

AB (vGS=-4.20V), a two-tone signal, centred at 900 MHz with a frequency separation of 10 

MHz, was applied to the transistor’s input. Fig. 66 presents the large-signal two-tone 

measurement setup. 

DUT

f1 f1 2f13f1 f1 f1

f2 f2 2f23f2 f2 f2

f1 f2 f1 f22f1-f2 2f2-f1

Spectrum 
Analyzer

Signal
Generator

Signal
Generator  

Fig. 66. Large-signal two-tone measurement setup. 

 

The tone’s power was swept from small- to large-signal regimes. Fig. 67 shows 

measurements and the model’s predictions of the two fundamentals (f1 and f2) and IMD 

components (2f1-f2 and 2f2-f1) for the above referred bias operation point. 
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Fig. 67. Measured and simulated Pout and IM3 vs Pin for class AB operation (vGS=-4.20V). 
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As it is possible to see, there is again a good agreement between the predicted and 

observed results. 

A handy and practical property of these GaN HEMTs can be observed at class AB (Fig. 

67). The presence of a notorious distortion valley in the IMD vs Pin pattern, can be used as an 

important tool to design highly efficient wireless PAs of also very good linearity, since it is 

known that, in this operation class, the device tends to present its optimized values of Pout 

and PAE. Previous studies, conducted for other FET device types [27, 33], led to the 

conclusion that those valleys, or, sometimes, even double minima, can be explained as the 

interaction of small- and large-signal IMD. Their prediction is thus determined by the model’s 

ability in precisely describing the iDS(vGS,vDS) higher order derivatives [25, 42, 43]. 

More important than predicting the observations of a particular bias point is the model’s 

capability of reproducing the dramatic variations of IMD vs Pin when there is a change of 

bias. Indeed, Fig. 68 and Fig. 69 show the two fundamentals (f1 and f2) and IMD components 

(2f1-f2 and 2f2-f1) for classes C (vGS=-4.50V) and A (vGS=-3.0V), respectively. 
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Fig. 68. Measured and simulated Pout and IM3 vs Pin for class C operation (vGS=-4.50V). 

 
 

For class C, in addition to a very good small-signal IMD description, the model can also 

predict, with very good accuracy, the observed large-signal IMD sweet-spot [8]. 

 

 

 



Chapter 3 - GaN Nonlinear Model Validation 

 
 
 

71

 

In class A, no large-signal IMD sweet-spot is either predicted by the model or observed in 

the measurements. 
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Fig. 69. Measured and simulated Pout and IM3 vs Pin for class A operation, (vGS=-3.0V). 

 

As seen in Fig. 67 up to Fig. 69, measured and simulated results compared remarkably well. 

Indeed, not only the general Pout and IMD behaviour is represented, as the details of the 

IMD versus Pin pattern are accurately described, allowing a thorough study of the model 

performance for various PA operation classes. 
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3.2. Model Validation under a real PA 

Application 
In order to test the model in a real application environment, the next validation step was 

the comparison between measured and simulated results of a real PA circuit. For that, and 

using the GaN nonlinear device model previously extracted, we will now present the PA 

design stage. 

Although the equivalent circuit model parameters had been extracted for a constant VDS of 

6 V, we decided to move it up to 20 V to take full profit of the device’s output voltage and 

current excursion capabilities. 

VGS bias (PA operation class) was selected to simultaneously maximize Pout, IMR and 

PAE. After a few tests around VT (i.e., close to class B and AB) it became clear that best 

performance could be achieved when the device presented double-minima in the IMD vs Pin 

pattern. This led to a quiescent point of about VGS1 = -4.20 V or 4% of IDSS. 

The output matching network design, for maximum output power, can be achieved using 

two different methods: load-pull or load-line approximation (Cripps method, [57]). The load-

pull method provides a mapping between load impedance and output power level. From the 

obtained load contours, the PA designer can choose the optimum load impedance. Using the 

Cripps method, maximization of Pout and PAE demands a careful selection of the Cripps 

load-line and fine tuning of the even harmonics [57]. In what the choice of the fundamental 

class AB PA load line is concerned, [57], shows that: 

 

 

2
MAX

kneeDSQ
opt I

VV
R

−
=  (22) 

 

where: 

VDSQ is the drain supply voltage; 

Vknee is the transistor knee voltage; 

IMAX is the maximum drain current. 
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These values are obtained from the IDS versus VDS plot, illustrated in Fig. 70. 

 

0.5

1.0

0

I D
S (

A
)

5 10 15 20 25 30 35 40
VDS (V)

VDSQ

IMAX

Vknee

 
Fig. 70. (-) Measured iDS vs vDS characteristics, for six different vGS values and (--) desired  drain load 

line.  
 

 

Fig. 71 shows the schematic used to determine the output matching network requirements 

in order to achieve drain constraints. 
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Fig. 71. Schematic used to determine the output matching network requirements. 
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A two-stub output matching network was designed to guarantee the calculated intrinsic 

34 Ω  load-line at 900 MHz (central frequency) and a short-circuit at 1.8 GHz (2nd harmonic), 

see Fig. 71.  Fig. 72 shows the simulated output match response at the drain from 900 MHz to 

1800 MHz. 

 

900 MHz

1800 MHz

 
Fig. 72. Simulated output match response seen at the drain from 900 MHz to 1800 MHz. 

 

 

After designing the output network, the next stage was to conceive an input network 

capable of providing possible source matching and optimized gain, without in-band instability. 

As it is known, that is important to compensate for the expected gain loss caused by the PA 

output mismatch. After this, a broad band stability analysis was conducted which showed 

potential problems at very high frequency (VHF). This was solved by the design of convenient 

lossy gate and drain bias networks. 

However, since it is known that the bias circuitry also determines the device terminations at 

the envelope frequencies and thus nonlinear distortion performance, they were retuned to 

guarantee very low impedances at most of the envelope bandwidth (4 MHz).  
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Fig. 73 shows the simulated output match response at the drain from 30 kHz to 4 MHz. 
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Fig. 73. Simulated output match response seen at the drain from 30 kHz to 4 MHz. 

 

Fig. 74 shows the simulated iDS vs vDS characteristics, for six different VGS biases and, 

superimposed to it, the desired and obtained drain load line.  
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Fig. 74. (-) Simulated iDS vs vDS characteristics, for six different vGS values, (--) desired and (-x-) obtained 

dynamic drain load line. 
 

Comparing the IDS vs VDS characteristics, presented in Fig. 38 and predicted iDS vs vDS data 

of Fig. 74, it is possible to see that the simulated curves do not decrease. This was expected 

since, conceived to describe dynamic behaviour, and extracted to fit measured RF Gm and Gds, 
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the model does not include any self-heating or trapping effects. Although this will obviously 

affect the model predictions at dc, it will not compromise the primarily sought ac Pout and 

IMD characteristics. 

The PA was implemented in MIC technology using a RT/Duroid high frequency laminate 

with a 2.10=rε . Fig. 75 and Fig. 76 show the final output and input matching networks 

schematics with all component values. 
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Fig. 75.  Output matching network schematic with all component values. 
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Fig. 76.  Input matching network schematic with all component values. 
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Fig. 77 shows a photograph of the implemented amplifier board. 

 

 
Fig. 77. Photograph of the implemented PA MIC board. 

 

3.2.1. Small-Signal S-Parameter Measurements 
Using the PA previously constructed, we passed to the comparison between measured and 

modelled broadband S-parameters. Fig. 78, Fig. 79 and Fig. 80 show those comparisons for 

|S11|, |S21| and |S22|, respectively. 
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Fig. 78. Measured and modelled PA |S11|. 
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Fig. 79. Measured and modelled PA |S21|. 
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Fig. 80. Measured and modelled PA |S22|. 

 

There is a reasonable good agreement between measured and modelled results. This attests 

the quality of the model’s small-signal predictions, both in terms of the nonlinear functions’ 

consistency and equivalent circuit element extraction. The discrepancy in the |S22| of Fig. 80 

is estimated to be caused by the difference between VDS values used in model extraction (6 V) 

and in amplifier design (20 V). Even so, the general shape of the curves is similar. 
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3.2.2. Large-Signal One-Tone Measurements 
The second test step consisted in several 900 MHz CW experiments to evaluate the model 

capabilities of predicting transducer power gain, Pout and PAE versus input drive level. 

The transistor was set to operate under class AB, operation (VGS=-4.20 V) while VDS was 

kept constant at 20V. 

The setup used is presented in Fig. 81. 

 

 
Fig. 81. Large-Signal one-tone measurement setup. 

 

As seen in Fig. 82, the PA presents a 1dB compression point of 2 W with an associated 

Gain of 15 dB and a PAE of nearly 32 %. 
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Fig. 82. Measured and modelled Pout and PAE under CW operation. 
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Nevertheless, one remarkable result that should be pointed out is the correct prediction of 

the Gain vs Pin pattern, Fig. 83, despite its rather complex behaviour. First, for small-signal 

levels, the PA presents gain compression, which is then followed by gain expansion, to end up 

again in gain compression, for very large-signal. This is a direct consequence of the selected 

bias point, and is consistent with the double minima IMD pattern aimed at the PA design 

phase [25]. 
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Fig. 83. Measured and modelled Gain vs Pin under CW operation. 

 
 

Compared to the model predictions, it is clear that the efficiency came somewhat lower 

than expected, while the Pout and Gain deviations were within the measurement error. 
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3.2.3. Large-Signal Two-Tone Nonlinear Distortion 

Measurements 
Afterwards, PA IMD performance was tested. The excitation was a two-tone centred at 

900 MHz, with the tones separated by 100 kHz and the transistor was kept constant at the 

same bias point used in the previous section (VGS1=-4.20 V and VDS= 20V). The setup used 

was similar to the one presented in Fig. 66.  

Fig. 84 presents the comparison between the two fundamentals (f1 and f2) and IMD 

components (2f1-f2 and 2f2-f1), measured and modelled, for the above referred bias operation 

point.  
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Fig. 84. Measured and simulated PA Pout and IM3 vs Pin for VGS1. 

 

 

As seen from the data depicted in Fig. 84, there is a good agreement between the predicted 

and observed results. More important than the capacity of accurately predicting the 

observations of a particular bias point, is the model’s capability to reproduce the dramatic 

variations of IMD versus Pin pattern when there is a change of bias. Indeed, Fig. 85 and Fig. 

86, show measurements and simulations taken for two more bias points still under class AB 

operation (VGS2=-4.15 V and VGS3=-4.10 V). 
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Fig. 85. Measured and simulated PA Pout and IM3 vs Pin for VGS2. 
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Fig. 86. Measured and simulated PA Pout and IM3 vs Pin for VGS3. 

 

 

Note the possibility of changing the double minima position to achieve broader or 

narrower Pin zones of high signal to IMD ratio. That is important for real signal operation 

since, nowadays, communication systems use disparate modulation schemes and wideband 

signals which present a statistical amplitude distribution that is quite different from the one of 

a simple CW or two-tone excitation [58]. 
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3.3. Conclusions 
This chapter was dedicated to the model validation. This task was divided into two 

different stages. In the first one, at the transistor level, the model gave a very accurate 

prediction of the device’s output power, AM/AM and AM/PM conversions and 

intermodulation distortion characteristics. Indeed, the remarkable good agreement obtained 

between measured and simulated Pout and two-tone IM3, in a practical class AB 2W power 

amplifier circuit (second part), validated the developed nonlinear GaN HEMT model and 

clearly showed its value for nonlinear microwave computer aided design. 
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4. GaN Model Robustness 
Sceptics usually argue that equivalent circuit models, extracted from one device, are always 

linked to it and are unable to predict, with the desired accuracy, the observed behaviour of 

other devices, even from the same family. In order to assess those claims and, since this thesis 

is devoted to GaN modelling, in terms of distortion prediction, a preliminary robustness test 

was conducted to evaluate the model capabilities in representing, not a single transistor, but a 

certain set of similar devices, from the same manufacturer. 

Moreover, since we are using GaN devices, this test is even more important. Those 

transistors have already demonstrated to be capable of producing very high Pout devices, with 

very good characteristics, but these results are not consistently obtained and the RF behaviour 

varies from device-to-device and from run-to-run, [23]. This is especially true in large-signal 

operation, where the devices suffer from a series of physical phenomena limiting their 

performance, already discussed in Chapter 1. Fortunately, the device fabrication processes 

have been improving very fast in the latest years [59-62] so that a lot of ground has already 

been conquered. 
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4.1. GaN Device Characteristics 
The second set of devices used were more recent and already commercial, 2mm GaN 

HEMTs on Si substrate (eleven samples), encapsulated in a standard high power microwave 

package, different from the one used in the first set described in Chapter 2. Fig. 87 shows the 

packaged device and Fig. 88, a magnified version of its interior. 

 

 
Fig. 87. 2mm packaged GaN HEMT. 

 

 
Fig. 88. Magnified version of the packaged 

device showing the chip inside. 

 
Fig. 89 shows measured IDS versus VDS characteristics, under static conditions, for seven 

different VGS biases (from -3V to 0V).  
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Fig. 89. IDS vs VDS curves measured under static conditions, for seven different VGS biases . 
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As it is possible to see in Fig. 89, the IDS vs VDS curves present some quick increases of the 

drain current, in the saturation region, for a given value of drain voltage (Vkink), in our case, 

Vkink=5V. This phenomenon, usually known as kink effects, already seen for GaN devices is, 

according to the literature, possibly due to impact ionization or even trapping effects, [63]. 

Since the device operation area, defined by the PA load line, will fall outside the affected 

region (see Fig. 90 for a typical Class AB PA design), no special attention was directed to 

model those effects. 
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Fig. 90. (--) Measured IDS vs VDS curves under static conditions, for seven different VGS biases and (-) 

typical class-AB PA load line. 
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4.2. Comparison between different devices 
The objective of this chapter is to study the model robustness in predicting the behaviour 

of a set of different GaN devices, all coming from the same manufacturer. Due to the 

technology immaturity, a preliminary device performance variation test was conducted in all 

available transistors. This was done by the comparison between the fundamental output 

power and IMD measurement results, obtained from two-tone tests. 

Using the measurement setup already presented in Fig. 66, all the available transistors were 

excited with a two-tone signal, centred at 900 MHz, with a frequency separation of 100 kHz. 

The drain bias was kept constant at 20V and the gate bias was swept, from deep class C 

(VGS=-3V) up to Class A (VGS=0V). 

Fig. 91 illustrates the three-dimensional Fundamental output power and IMD variation 

with gate voltage and input power, obtained for one of the devices tested, randomly selected 

from the set. 
 

 
Fig. 91. Three-dimensional variation of the Fundamental (f1 and f2) and IMD (2f1-f2 and 2f2-f1) 

components with gate bias and input power, measured for one of the devices, randomly selected. 
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The transistors were found very similar. The only detected difference was a 0.2V variation 

in the threshold voltage, which is also very common in transistors manufactured in more 

mature technologies. 

This variation was easily identified by comparing the obtained IMD characteristics since, as 

it was already explained in Chapter 1, when the active device is biased near class-AB, it will 

present a double sweet-spot IMD pattern. 

In order to illustrate this variation, a root mean squared error, ε , was determined for each 

one of the measurements (two fundamental output power and two IMD components) by the 

following expression: 

 

 ∑
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N is the number of measured transistors; 

nP  is the fundamental or IMD component, in watt; 

P  is the eleven devices mean response, calculated by the following expression: 
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Fig. 92 presents the root mean squared error results, obtained for the two fundamental 

output power and IMD components, as a function of bias and input power. If we take a closer 

look to both 3D IMD plots, it is very easy to see that the maximum error occurs near VGS=-

2.1V, which, unsurprisingly, corresponds to the device’s threshold voltage. 
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Fig. 92. Root mean squared error between each set of measurements and the corresponding mean 

response. 
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4.3. Nonlinear Model Extraction and 

Validation 
Using the methodology explained in Chapter 2, we proceeded with the extraction of the 

nonlinear equivalent circuit model, for one of the new devices, randomly selected from the set. 

The obtained model parameters are listed from Table 7 to Table 10. 

 
Table 7. Extrinsic element values for the second set of transistors. 

Elements Value 

Rg 2.20 Ω 

Rd 1.0 Ω 

Rs 0.1 Ω 

Lg 1.0 nH 

Ld 0.5 nH 

Ls 0.11 nH 

Lg_B 0 nH 

Ld_B 0 nH 

Cpg 1.4 pF 

Cpd 1.4 pF 

R11 60 Ω 

C11 0.9 pF 

R21 300 Ω 

C21 0.9 pF 

R31 20 Ω 

C31 0 pF 

 
Table 8. Invariant intrinsic element values for the second set of transistors. 

Element Value 

Ri 1 Ω 

Cgd 0.35 pF 

Cds 0.5 pF 
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Table 9. In-House iDS(vGS, vDS) model parameter values for the second set of transistors. 

Parameter Value 

β  0.85 A/V2 

VT0 -2.12 V 

VST 0.07 V 

VK 1 V 

Δ  3.2 V 

VL 2.4 V 

λ  0.0026 V-1 

α  0.40 V-1 

psat -0.742 

plin 1 
γ  -0.01 

 
Table 10. In-House Cgs(vgs) model parameters for the second set of devices. 

Parameter Value 

Cgs0 0.8 pF 

ACgs 3.75 pF 

KCgs 5 V-1 

VCgs -2.5 V 

 

Afterwards, the model’s IMD performance was evaluated. A two-tone signal, centred at 

900 MHz and with a frequency separation of 100 kHz, was applied to the transistor’s input. 

The drain bias was kept constant at 20V and the gate bias was swept, from deep class C 

(VGS=-3V) up to Class A (VGS=0V), using the same measurement setup already presented in 

Fig. 66. 

Due to the large number of points involved, the measurements were only compared with 

the model prediction for three cases, for each of the operation classes (C, AB and A). 

The comparison between measurements and model predictions, for all nine cases, is 

presented in Fig. 93 for Class C (VGS=-3.0V, VGS=-2.6V and VGS=-2.2V); Fig. 94 for Class 

AB (VGS=-2.1V, VGS=-2.0V and VGS=-1.9V) and, finally, in Fig. 95, for Class A (VGS=-1.1V, 

VGS=-0.5V and VGS=-0.1V).  
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Fig. 93. Measured and simulated PA Pout and IM3 vs Pin, for three different points under Class C 

operation, (VGS=-3.0V, VGS=-2.6 and VGS=-2.2V). 
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Fig. 94. Measured and simulated PA Pout and IM3 vs Pin, for three different points under Class AB 

operation, (VGS=-2.1V, VGS=-2.0 and VGS=-1.9V). 
 



Chapter 4 - GaN Model Robustness 

 
 
 

95

 

 

 

-5 0 5 10 15 20-10 25

-40

-20

0

20

-60

40

P
o

u
t 

[d
B

m
]

Modelled
Measured

-5 0 5 10 15 20-10 25

-40

-20

0

20

-60

40

P
o

u
t 

[d
B

m
]

Modelled
Measured

-5 0 5 10 15 20-10 25

-40

-20

0

20

-60

40

P
o

u
t 

[d
B

m
]

Modelled
Measured

Pin [dBm]  
Fig. 95. Measured and simulated PA Pout and IM3 vs Pin, for three different points under Class A 

operation, (VGS=-1.1V, VGS=-0.5 and VGS=-0.1V). 
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As it is possible to see, there is a very good agreement between measured results and 

simulations. 

In Class C, the large-signal sweet-spot position is very well predicted. For Class AB 

operation, not only the presence of the two minima is well represented, but also their position 

evolution is also captured. For Class A, both the fundamental output power and IMD 

components are well predicted throughout the complete input drive level. 

4.4. GaN Model Performance 
In order to evaluate the model performance, when predicting the behaviour of GaN 

devices, different from the one used to extract it, we compared the two-tone fundamental 

output power and IMD characteristics, obtained with the nonlinear model, with the ones 

obtained from the mean response of all devices, previously stored.  

Once again, due to the large number of points involved, the comparison between 

measurements and model predictions was performed, for three cases for each of the operation 

classes (C, AB and A). Fig. 96 presents the results obtained for Class C (VGS=-2.8V, VGS=-

2.6V and VGS=-2.5V); Fig. 97 for Class AB (VGS=-2.3V, VGS=-2.2V and VGS=-2.0V) and, 

finally, Fig. 98, for Class A (VGS=-1.1V, VGS=-0.4V and VGS=-0.3V). 

After the results presented in Section 4.2, stating that there was a threshold voltage 

variation of 0.2V between all devices tested, we tried different correction factors and the 

results presented were obtained with that voltage shift. 

A first look at those comparisons indicates that there is a fairly good agreement between 

the fundamental output power and IMD measurements and modelled results. Furthermore, 

the model could still predict the intermodulation distortion characteristic patterns of the mean 

device response, which re-enforces all efforts made to use this kind of equivalent circuit 

models when dealing, not only with a specific transistor, but also with a complete family of 

devices. 

After this, a closer look at the fundamental measurements taken from the device heavily 

tested with the model extraction and validation, revealed a 1.5 dB decrease in the output 

power, when compared with all the other devices. This could be an indication of RF stress 

since the device was tested under strong amplitude signals. 
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Fig. 96. Pout and IM3 vs Pin, for three different points under Class C operation, obtained with the 

nonlinear model and with the mean response of all devices, (VGS=-2.8V, VGS=-2.6V and VGS=-2.5V). 
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Fig. 97. Pout and IM3 vs Pin, for three different points under Class AB operation, obtained with the 
nonlinear model and with the mean response of all devices, (VGS=-2.3V, VGS=-2.2V and VGS=-2.0V). 
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Fig. 98. Pout and IM3 vs Pin, for three different points under Class A operation, obtained with the 
nonlinear model and with the mean response of all devices, (VGS=-1.1V, VGS=-0.4V and VGS=-0.3V). 
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4.5. Conclusions 
In this chapter, a simple model robustness test was conducted. Eleven transistors were 

measured under exactly the same conditions and their fundamental output power and IMD 

characteristics compared. The results obtained showed a 0.2V variation in the threshold 

voltage. 

After that, we extracted the nonlinear equivalent circuit model for one device randomly 

selected. The model validation tests gave, once again, very good results. 

The comparison between the fundamental output power and IMD characteristics predicted 

by the model and obtained from a mean device of all the available transistors showed that this 

model is very robust being indeed able to represent not only one transistor, but the whole 

family of available devices. 

 

 



Chapter 5 - GaN Model Application: Study of AM/AM and AM/PM Conversions 

 
 
 

101

5. GaN Model Application: Study 

of  AM/AM and AM/PM 

Conversions 
Due to their significance in PA linearization techniques, the AM/AM and AM/PM 

conversions are very important characterization measurements. They consist in the 

transformation, by the nonlinear active device, of the input amplitude variations, AM, into 

variations of the output amplitude or phase, AM or PM, respectively. 

AM/AM conversion is particularly important in systems based on amplitude modulation; 

while AM/PM has its major impact in non-constant envelope phase modulation formats. 

Fig. 99 shows a 64-quadrature amplitude modulation (QAM) constellation diagram where it 

is possible to see the amplitude and phase conversions’ impact in the symbol decoding. 
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Fig. 99. 64-QAM constellation diagram. 
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Such performance measurements are usually obtained via a CW test using a vector network 

analyser, (VNA), and thus, correspond to a static analysis, from the envelope (or long term 

dynamics) viewpoint. So, they can not provide any information regarding the dynamic effects 

that can impair the slowly varying modulating signals. 

One alternative way to overcome this limitation is to use real excitation signals through the 

use of a vector signal analyzer, (VSA). Despite some problems interpreting the raw 

measurements obtained from this piece of equipment [64], there are already several important 

studies helping to achieve the dynamic amplitude and phase characteristics [65]. 

 

This Chapter presents an application for the GaN model, previously formulated and 

extracted, providing a comprehensive study of the PA’s in-band and out-of-band output 

terminations’ impact on the static and dynamic signal distortion impairments: AM/AM and 

AM/PM conversions. 

Section 5.1 describes the load impedance impact on the above referred conversions. This 

study is done theoretically, using Volterra series analysis and, in practice, with envelope 

simulations of the nonlinear model, with different load terminations. 

Finally, section 5.2 is devoted to analyze the bias networks’ impact on the dynamic 

AM/AM contours in microwave PAs and, using that knowledge, to give an interpretation of 

the hysteretic paths shape. 
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5.1. Load Impedance Impact 
Fig. 100 presents the PA equivalent circuit model, a simplified version of the GaN HEMT 

based PA prototype, presented in Chapters 2 and 3. 

 

iDS(vGS,vDS)
vS(t) vDS(t)

Rs

vGS(t) R0

Linear
Dynamic
Matching
Network

Mi(ω)

Linear
Dynamic
Matching
Network
Mo(ω)

vi(t) vDS(t)vGS(t) ZL(ω)

Input Thevenin 
Equivalent Circuit

Output Thevenin 
Equivalent Circuit

iDS(vGS,vDS)

Zi(ω)

 
Fig. 100. Simplified FET based PA circuit used for the nonlinear analysis. 

 

As it is possible to see in Fig. 100, iDS(vGS,vDS) is a nonlinear function, dependent on two 

control voltages: vGS and vDS. Using a low order Taylor series expansion we get: 

 

 
( )

3
3

2
2

2
2

3
3

2
2
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,

sddsdgsdmsdgsdmgsmsdddsgsmdgsmdsdgsmDS

DSGSDS
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vvi

+++++++++

=
 (25) 

 

Applying a mildly nonlinear Volterra series analysis to this circuit (where vgs(t) and vds(t) are 

the input and output, respectively), we can obtain the first three Volterra frequency domain 

nonlinear transfer functions (NLTFs): ),...,( 1 nnH ωω with n=1…3 [66]. 
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Defining the auxiliary function )(ωCF  as: 

 

 ( ) ( )
( )ω

ωω
Lds

L
C ZG

ZF
⋅+

=
1

 (26) 

 

The generic NLTFs are presented in the following expressions: 

 

 ( ) ( )111 ωω Cm FGH ⋅−=  (27) 
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( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]
⎭
⎬
⎫⋅+⋅+⋅⋅+

++⋅+⋅⋅⋅+

⋅+⋅+⋅⋅+

⎩
⎨
⎧ ++⋅+⋅++−=

2123131221322112

3123222123121113

3111312121112

312111233213213

,,,
3
2

,,,
3
1

3
1

3
1,,

ωωωωωωωωω

ωωωωωωωωω

ωωωωωω

ωωωωωωωωω

HHHHHHG

HHHGHHHG

HHHHHHG

HHHGGFH

d

mdd

md

dmmC

 (29) 

 

 

Although the validity of these transfer functions for large-signal analysis is questionable, 

they can still be used to qualitatively explain the physical origins of the PA AM/AM and 

AM/PM distortions. 

Considering a two-tone input excitation, with amplitudes )( 1ωgsV  and )( 2ωgsV , the time 

domain signal corresponds to: 

 

 ( ) ( ) ( ) ( ) ( ){ }tj
gs

tj
gs eVeVtx 21

21Re ωω ωω ⋅+⋅=  (30) 
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In order to express the input excitation as a cosine carrier modulated, in amplitude, by the 

purely real ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ

⋅ tVgs 2
cos2 ωω  envelope, we need to re-write (30) as: 
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where: 

 
2

21 ωωω +
=c  (32) 

and 

 

 12 ωωω −=Δ  (33) 

 

The output time domain waveform will be given by: 
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where 1oθ , 2oθ  are the fundamental and 3oθ , 4oθ  the IMD phase variations at the output, and: 

 

 ( ) ( ) ( ) ( ) ( )*211211321 ,,32 ωωωωωωωω gsgsgsds VVVHV ⋅⋅⋅−=−  (35) 
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Therefore, using (32)-(33), we can re-write (34) as: 
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Contrary to the usual way of identifying AM/AM and AM/PM from a time variation of 

the input and output envelopes, now we have to look for these in (34), via their Fourier 

representation. Amplitude modulation can be described by a real envelope, while phase 

modulation must involve a complex envelope. So, the presence of the envelope harmonic 

components at the power amplifier output (the IMD side-bands) describes the envelope 

amplitude distortion and is thus AM/AM. On the contrary, AM/PM, or output phase 

modulation, requires an envelope with a non null imaginary part, or a base-band modulation 

whose spectrum does not obey the complex conjugate symmetry of purely real signals. So, 

AM/PM must be identified from the asymmetric amplitudes or phases of the fundamental 

and IMD components. 

As seen from (32)-(39) and (29), all ( )212 ωω −dsV , ( )1ωdsV , ( )2ωdsV , ( )122 ωω −dsV  and, 3oθ , 

1oθ , 2oθ , 4oθ  depend on both cω  and 
2
ωΔ , which means that, in general, we should expect 

AM/AM and AM/PM variation with the short and long-term dynamics on the amplifier via 

cω  and 
2
ωΔ , respectively. 

It is this long-term dynamics, shown in (39) by the dependence on 
2
ωΔ , that explains the 

hysteretic AM/AM and AM/PM characteristics observed in the studied PA examples. 
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5.1.1. Practical Example 
Since the quasi-static approximation implies that iDS is a memoryless nonlinearity, it can 

only present AM/AM conversion. However, the different phase contributions, introduced by 

the device parasitic reactances and dynamic load impedance )(ωLZ , through the dependence 

of iDS on vDS, will finally establish the overall PA AM/AM and AM/PM conversions. 

The impact of the load terminations on the above referred conversions was studied using a 

non-ideal bias-T, Fig. 101, at the active device’s output, followed by one of four alternative 

loads. 

C=100 nF

L=0.318 mH

C=500 pFDC + RF

DC

RF
 

Fig. 101. Non-ideal bias-T. 
 

 

Several envelope simulations [67, 68] were performed using time-varying envelope stimulus 

(two-tone signals) with different separation frequencies, carefully chosen knowing the PA’s 

output impedance at the base-band components, 
2
ωΔ  (a short circuit, 21FΔ =50 Hz, or two 

different reactive terminations, 22FΔ =5 kHz and 23FΔ =25 kHz, Fig. 102). 
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ΔF1/2 = 50 Hz

ΔF2/2 = 5 kHz

ΔF3/2 = 25 kHz

 
Fig. 102. Base-band impedances at three different two-tone separation frequencies ( 21FΔ , 22FΔ  

and 23FΔ ). 

 

 

The tests made with tone separation 1FΔ  correspond to a static analysis since the bias-T 

terminated with the load presents a short circuit to the base-band components. So, in this 

case, there will be no long-term memory effects visible on the AM/AM, or even, on the 

AM/PM conversion plot. 

For the other separation frequencies ( 2FΔ  and 3FΔ ) 
2
ωΔ  long-term dynamics will explain 

the hysteretic AM/AM and AM/PM conversions. If that is the case, the power amplifier will 

not respond instantaneously to its envelope input, and the output amplitude and phase will no 

longer be single valued functions of the instantaneous excitation amplitude. They will also 

depend on the amplifier’s state, or input history. This issue will be studied in more detail in the 

next section. 
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The first load, our reference case, will be purely resistive, Load L1. Fig. 103 shows the load 

and its impedance, at the frequencies of interest. 

 

R0 1st Harm

2nd Harm

 
Fig. 103. Load L1 and its impedances, at the frequencies of interest. 

 

Using the band-pass characteristics of our nonlinear model, we can define:  

 

 ( ) ( ) ( )ωωωωω 1211121 HHH ≈≈⇒≈  and ( ) ( ) ( ) ( )ωωωωω 222 12112111 HHHH ≈+≈≈  (40) 

 

Since Load L1 is purely resistive, from (27)-(29) and (40) we can see that ( ) ( )2111 ωω HH = , 

( ) ( )22231113 ,,,, ωωωωωω −=− HH  are all real values and that ( ) ( )*11232213 ,,,, ωωωωωω −=− HH  and 

( ) ( )*12232113 ,,,, ωωωωωω −=− HH . 

From the previous expressions and from (35)-(38), it is possible to see that the envelope 

harmonic components, at the power amplifier’s output, will be non null. So, there will be 

AM/AM. Furthermore, as it was theoretically explained, since ( ) ( )*21 ωω dsds VV =  and 

( ) ( )*122212 ωωωω −=− dsds VV , no AM/PM conversion will occur. Several envelope simulations of 

the active device model, terminated with Load L1, for the three different separation 

frequencies ( 1FΔ , 2FΔ  and 3FΔ ), were conducted. The AM/AM and AM/PM conversion 

plots obtained are shown in Fig. 104, where the proposed theoretical explanations are fully 

validated. 

 

 

 



Nonlinear Modelling of Power Transistors for RF and Microwaves 
 

 
 
 

110

 

10

20

30

0

40

A
M

/A
M

 Δ
F

1
 (

d
B

)

10

20

30

0

40

-20 -15 -10 -5 0 5 10 15 20-25 25

10

20

30

0

40

-184

-180

-176

-188

-172

-184

-180

-176

-188

-172

-20 -15 -10 -5 0 5 10 15 20-25 25

-184

-180

-176

-188

-172
A

M
/P

M
 Δ

F
1

 (
º)

A
M

/A
M

 Δ
F

2
 (

d
B

)
A

M
/A

M
 Δ

F
3

 (
d

B
)

A
M

/P
M

 Δ
F

2
 (

º)
A

M
/P

M
 Δ

F
3

 (
º)

Pin (dBm) Pin (dBm)  
Fig. 104. AM/AM and AM/PM conversions when the active device model is terminated with a non-

ideal bias-T and with Load L1, for three input tone separations ( 1FΔ , 2FΔ  and 3FΔ ). 

 

 

The next step was to terminate the active device model with Load L2 (resistor in parallel 

with a capacitor and stub tuned to short circuit )2( ωLZ ). Fig. 105 shows the load and its 

impedance, at the frequencies of interest. 

R0 C0

1st Harm

2nd Harm

 
Fig. 105. Load L2 and its impedances, at the frequencies of interest. 
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Observing Fig. 105, and from (27)-(29) and (40), it is possible to see that, contrary to the 

previous case, in spite of ( ) ( )2111 ωω HH =  and ( ) ( )22231113 ,,,, ωωωωωω −=− HH , these are no 

longer real quantities and ( ) ( )*11232213 ,,,, ωωωωωω −≠− HH . 

Once again, the envelope harmonic components, at the power amplifier’s output, will be 

non null. So, AM/AM will still occur. Besides that, as it was theoretically explained, since 

( ) ( )*21 ωω dsds VV ≠ , there will also be AM/PM conversion. 

Fig. 106 shows the AM/AM and AM/PM conversions, obtained from several envelope 

simulations of the active device model, terminated with Load L2, for the three different 

separation frequencies ( 1FΔ , 2FΔ  and 3FΔ ), where the proposed theoretical explanations are 

fully validated. 
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Fig. 106. AM/AM and AM/PM conversions when the active device model is terminated with a non-

ideal bias-T and with Load L2, for three input tone separations ( 1FΔ , 2FΔ  and 3FΔ ). 
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After that, in order to evaluate the )2( ωLZ  contribution, a parallel inductance was used to 

reset the impedance at the fundamental to Ω50 , but leaving a reactive second harmonic 

termination (Load L3). Fig. 107 shows the load and its impedance, at the frequencies of 

interest. 

 

R0 C0

1st Harm

2nd Harm

 
Fig. 107. Load L3 and its impedances, at the frequencies of interest. 

 

 

Once again, from (27)-(29) and (40) it is possible to see that, ( ) ( )2111 ωω HH =  are real values. 

On the contrary, ( ) ( )22231113 ,,,, ωωωωωω −=− HH  are not real quantities. Besides that, the 

dependence on ω2  implies that ( ) ( )*11232213 ,,,, ωωωωωω −≠− HH . 

For the reasons previously explained, this PA circuit will manifest AM/AM and, since 

( ) ( )*21 ωω dsds VV ≠ , there will also be AM/PM conversion. 

Fig. 108 shows the AM/AM and AM/PM conversions obtained, from several envelope 

simulations of the active device model, terminated with Load L3, for the three different 

separation frequencies ( 1FΔ , 2FΔ  and 3FΔ ). 
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Fig. 108. AM/AM and AM/PM conversions when the active device model is terminated with a non-

ideal bias-T and with Load L3, for three input tone separations ( 1FΔ , 2FΔ  and 3FΔ ). 

 

Finally, we loaded the active device with Load L4. This is only a resistor in parallel with a 

capacitor, which provides a reactive termination to both the fundamental and the second 

harmonic. Fig. 109 shows the load and its impedance, at the frequencies of interest. 
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Fig. 109. Load L4 and its impedances, at the frequencies of interest. 
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Fig. 110 shows the AM/AM and AM/PM conversions, obtained from several envelope 

simulations of the active device model terminated with Load L4, for the three different 

separation frequencies ( 1FΔ , 2FΔ  and 3FΔ ). As expected from the previous analysis, since 

this case is the aggregate of the last two, we will once again have AM/AM and AM/PM 

conversions. 
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Fig. 110. AM/AM and AM/PM conversions when the active device model is terminated with a non-

ideal bias-T and with Load L4, for three input tone separations ( 1FΔ , 2FΔ  and 3FΔ ). 

 

Summarizing, four different loads were considered and several two-tone input signals, with 

different separation frequencies, were used. This allowed, on the one hand, the isolation of the 

fundamental and second harmonic contributions for the overall AM/AM and AM/PM 

conversions and, on the other hand, it also enabled a first study of the long-term memory 

effects that arise from the presence of reactive based-band terminations that will be studied in 

more detail in the next section. 
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5.2. Baseband Terminations Impact  
In this section, we will focus our attention on the memory effects arising from bias 

networks. Neither thermal nor trapping related effects will be directly studied, although the 

conclusions herein derived are valid for general dynamic nonlinear systems, regardless of the 

physical sources of the memory effects and the nonlinearity. 

The dynamic AM/AM conversion plots will be obtained from envelope-driven harmonic 

balance simulations and their shape, and time evolution, will be related with the output bias 

network (impedance presented to the transistor’s output). 

Fig. 111 presents the output PA equivalent circuit, presented in Section 5.1, which will be 

used for our theoretical study. It comprises the non-ideal bias-T of Fig. 101, connected to a 

linear dynamic matching network. For the sake of simplicity, it is assumed that this matching 

network presents a short circuit to all envelope components and has a much wider bandwidth 

than the signals processed - i.e., its low-pass equivalent is memoryless. 

 

iDS(t)

vDS(t)

Linear
Dynamic
Matching
Network 

+VDD

LB

CB

 
Fig. 111. Simplified output PA circuit. 
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We will assume an input RF signal composed by a carrier at cω , modulated by a complex 

envelope: 

 

 ( ) ( )[ ]tjj
in

ceertv ωτφττ ⋅⋅= )(Re,  (41) 

 

in which )(τr  and )(τφ  are the modulating complex envelope’s amplitude and phase, 

respectively. 

Similarly, the output will be given by a sum of all harmonic components of the envelope 

and the carrier: 

 

 ( ) ( )[ ]∑ ∑
−= −=

⋅⋅=
1

11

2

22

221

21

)(Re,
K

Kk

K

Kk

tjkj
kkDS

ckk eertv ωτφττ  (42) 

 

Looking into Fig. 111, and performing a simple circuit analysis, it is possible to derive a set 

of differential equations that governs the vDS(t) and iDS(t) envelope dynamics, )(τDSv  and 

)(τDSi :  

 

 )0()(1)(
)(

0
BB

B
CC

B

L
BDDDS vdi

Cd
id

LVv −−=−= ∫
τ

ττ
τ

τ
τ  (43) 

 

 )()()( τττ
BB CLDS iii +=  (44) 

 

This analysis indicates that the PA dynamic behaviour will be strongly affected by the 

baseband impedance presented to the transistor, which must be shown by the AM/AM plots. 

Indeed, as it is shown next, if the output envelope signal frequency range coincides with a 

zone where the output impedance, seen by the transistor, is resistive, inductive or capacitive, 

the dynamic AM/AM contours will reflect these different types of induced long-term 

memory. 
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5.2.1. Practical Example 
In order to illustrate these hypotheses through a practical example, we considered the 

simplified amplifier schematic shown in Fig. 112. 

 

 

Rs

+VGG +VDD

RFCLB

CB

ZL(ω)

DC- 4.2 + 20

Voltage Source

vin(t)

vout(t)

GaN Model

 
Fig. 112. Simulated PA circuit example. 

 

 

The PA used in this example is a simplified version of the GaN HEMT based PA 

prototype previously presented in Chapter 3. The non-ideal output drain bias-T is composed 

by a RFC inductor, LB=0.318mH, plus a dc blocking capacitor, CB=500pF and the output 

matching network presents a short circuit to all envelope components and has a much wider 

bandwidth than the signals processed. Finally, the input excitation is an AM signal, with unity 

modulation index. 

 

 ( )[ ] ( )ttAtv cmin ωω coscos1)( ⋅+⋅=  (45) 

 

where mm f⋅= πω 2  and cc f⋅= πω 2 . 
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The carrier frequency was kept constant (fc=900MHz) and four different modulation 

frequencies were carefully chosen (fm1=10Hz, fm2=10kHz, fm3=250kHz and fm4= 1MHz). The 

first one corresponds to a static regime: CB behaves as an open circuit BB LC ⋅Δ>>⋅Δ ωω )(1  

while LB appears as a short-circuit DDL VdLdi
B

<<ττ )( . For the second, third and fourth 

cases, the drain bias-T can be seen as a dynamic bias path (either inductive or capacitive), as 

depicted in Fig. 113. 

 

Z L
(ω
)

10Hz

10kHz

250kHz

1MHz

fm1

fm2

fm4

fm3

 
Fig. 113. Impedance presented to the transistor’s output when the modulation frequency is fm1, fm2, fm3 

and fm4. 
 

Several envelope-driven harmonic balance simulations, of the above circuit, were 

conducted. 

According to what was shown in [69], the AM/AM plots can not show any long-term 

memory effects both in small- or large-signal regimes. This means that, in those regions, the 

AM/AM plots will show no hysteresis. Furthermore, the lower input level asymptote will be 

constant, while, in deep saturation, the AM-AM gain plot will tend to a straight line asymptote 

with a -1dB/dB slope. 

Since we are not considering thermal or trapping effects, the presence of long-term 

memory (visible in the AM/AM curves as hysteresis) in the input power mid-range will only 

depend on the baseband impedance presented to the transistor’s output. 
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Fig. 114 presents the observed input and output time domain waveforms, )(τinv  and 

)(τDSv , obtained for the case when the modulation frequency is fm1. 
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Fig. 114. Time domain input and output waveforms for fm1. 

 

The resulting dynamic AM/AM conversion plot is shown in Fig. 115. 
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Fig. 115. Dynamic AM/AM obtained with fm1. 

 

As it is possible to see in Fig. 113, this first case study corresponds to a static analysis and, 

thus there are no memory effects visible on the AM/AM plot presented in Fig. 115. 

In the other three cases, as seen in Fig. 113, the impedance presented to the transistor’s 

output is no longer a short circuit. As a matter of fact, fm2 corresponds to a clearly inductive 

termination, fm4 to a capacitive one and fm3 will correspond to a mixed behaviour, since the 

impedance, presented to the transistor’s output, has harmonic envelope components on both 
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the inductive and capacitive sides of the Smith chart. Hence, not only the obtained AM/AM 

curves will show a hysteretic behaviour, but also the plots can display a clockwise or counter-

clockwise time evolution. Whenever these effects are present in the plots, their dynamic 

progress  in time will be indicated in the figures by arrows. 

In the case of fm2 envelope, an increase in excitation level corresponds to a smaller gain. In 

fact, since ττ ddi
BL )(  is positive, )(τDSv  will be lower than its small-signal value (VDD), the 

FET’s dynamic load-line enters the FET’s triode region and the output starts to compress. If 

we now have a decrease in input level, the behaviour will be opposite to this one. So, fm2 

corresponds to a counter-clockwise time evolution. Indeed, this is the behaviour observed in 

Fig. 116 and Fig. 117. 
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Fig. 116. Time domain input and output waveforms for fm2. 
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Fig. 117. Dynamic AM/AM obtained with fm2. 
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On the other hand, when the envelope has fm4 frequency, an excitation level increase leads 

to a higher gain. In fact, since, at these higher frequencies, 
BLi tends to remain constant at its 

IDS bias value, ∫
τ

ττ
0

)( di
BC

 is negative. Hence, (43) indicates that )(τDSv  becomes higher than its 

small-signal value (VDD). Once again, in this same operating regime, but for a decreasing input 

level, the behaviour will be opposite to the one previously explained. This corresponds to a 

clockwise time evolution. 

Fig. 118 presents the observed input and output time domain waveforms, obtained for the 

case when the modulation frequency is fm4. 
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Fig. 118. Time domain input and output waveforms for fm4. 

 

The resulting dynamic AM/AM conversion plot is shown in Fig. 119. 
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Fig. 119. Dynamic AM/AM obtained with fm4. 
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Finally for fm3, since the distorted output signal envelope will have some harmonic 

components in the inductive part and some others in the capacitive part of the Smith chart, 

(contrary to what was observed with fm2 and fm4 where all the relevant envelope harmonic 

components stand on the inductive or capacitive part, respectively), the AM/AM plot will 

have a mixed behaviour between these two. 

Fig. 120 presents the observed input and output time domain waveforms, obtained for the 

case when the modulation frequency is fm3. 
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Fig. 120. Time domain input and output waveforms for fm3. 

 

The resulting dynamic AM/AM conversion plot is shown in Fig. 121. 
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Fig. 121. Dynamic AM/AM obtained with fm3. 
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Summarizing, when the output signal envelope spectrum is concentrated in a region where 

the transistor sees an inductive impedance, the AM/AM contour will follow a counter-

clockwise path. If the impedance, seen by the transistor, is capacitive, the curve will follow a 

clockwise path. In between, i.e., when some of the envelope harmonic components see 

inductive behaviour while many others see a capacitive termination, we will have a mixed 

behaviour. 

This led to the identification of specific contours for each modulation frequency, which 

could be explained through the different baseband output impedances seen by the transistor. 

 

5.3. Conclusions 
This chapter presented an application, of the previously extracted GaN equivalent circuit 

nonlinear model, to the AM/AM and AM/PM conversions study. The simulated results, 

obtained with the model, provided a comprehensive analysis of the baseband, fundamental 

and second-harmonic terminations impact in the static and dynamic AM/AM and AM/PM 

conversions, helping PA designers to understand and possibly prevent such amplitude and 

phase signal impairments, recurring to the proper load termination and bias tee design. 
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6. Discussions and Conclusions 
Throughout this thesis, an overview of the partial results was presented at the end of each 

chapter. This final section summarizes the most important outcomes, explaining the main 

difficulties and successes obtained during this work. In addition, it also provides some clues 

for future research activities. 

 

 

This thesis has been organized into six different chapters. Chapter 1, besides the 

motivation and state-of-the-art, provided an introduction to all main issues, giving special 

attention to the wide bandgap material characteristics and their influence on the overall RF 

device performance. The linearity-efficiency compromise was also addressed. The large-signal 

intermodulation distortion sweet-spots, very well known self-linearization points, visible in an 

IMD vs Pin logarithmic plot, were looked into in different PA technologies. One of the most 

important limiting factors in external linearization techniques, the so-called memory effects, 

were also presented and briefly discussed. 

In Chapter 2, an equivalent circuit nonlinear global model was proposed and its extraction 

procedure explained, step by step, for a 2mm GaN power HEMT on Si substrate. Modelling 

studies proved that the expression adopted for the iDS(vGS,vDS) characteristic is very flexible and 

of intuitive extraction since it can be broken into several other smaller expressions, related 

with specific device operating regions, easing up the parameter extraction process. 

Moreover, with this nonlinear, equivalent circuit based, large-signal model, an accurate 

prediction of the device’s AM/AM and AM/PM conversions, output power, power added 

efficiency and intermodulation distortion was obtained, at the transistor level, and with a 

practical class AB 2W power amplifier circuit. All this, presented in Chapter 3, validated the 

proposed nonlinear GaN HEMT model and clearly showed its value for nonlinear microwave 

computer aided design. 
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Chapter 4, proved the robustness of the proposed GaN HEMT model. A new extraction 

procedure was conducted for eleven new GaN sample devices (commercially available) and 

the results obtained verified the model capabilities of representing the Pout and IMD 

behaviour of the whole set of available devices. 

Finally, in Chapter 5, as an application of the nonlinear model, a comprehensive study of 

the different in-band and out-of-band load terminations’ impact on the AM/AM and AM/PM 

conversions was performed. The possibility of using a nonlinear model in a commercial 

simulator, led to a fast and intuitive way of determining whether a certain PA circuit can 

present memory effects, when dealing with input signals with time-varying envelopes. 

 

Four years ago, when this work started, the GaN devices were still in a very immature 

development stage. This was a very important issue since, after working with other transistor 

technologies, this was the first time I contacted with devices that were not yet ready to be 

lunched into the market. 

Furthermore, since we were dealing with power transistors, the obtained samples were all 

packaged devices with wide gate and drain leads. This can be easily seen looking into the setup 

photographs presented throughout the whole thesis. From my experience, it is now obvious 

that this kind of modelling studies should be conducted with devices on chip, which would 

allow extending the model’s frequency range of validity. Nevertheless, this solution has also 

some problems related with the transistor’s power dissipation and with the power handling 

capabilities of the probing station itself. 

Another issue I would like to address, that already produced some very interesting 

discussions in the scientific community, is related with the negative output conductance 

obtained in the IV characteristics, when performing static measurements, for high drain 

voltage values. Unfortunately, pulsed IV measurements are not sufficient to overcome this 

problem since, the thermal issues that originate those effects, also influence S-parameter 

measurements, affecting the extraction of Gm and jeopardize the overall nonlinear model. 

From my point of view, RF device modelling should evolve and use pulsed S-parameter data 

when extracting models for high power devices. 
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6.1. Future Work 
In modern base-stations, due to reasons like thermal management, reliability and cost, 

power amplifiers have to be highly efficient. This, coupled with other requirements, such as 

high output power, gain, bandwidth, and linearity, puts big challenges in PA design.  

Moreover, since modern communication signals, such as wideband code division multiple 

access (W-CDMA), have high peak-to-average ratios, during operation over that wide range of 

instantaneous powers, PA efficiency comes degraded. Furthermore, multiple carriers must be 

amplified simultaneously, resulting in very high bandwidths. So, if we add up all these strict 

requirements, it is easy to see that conventional RF power amplifiers can not respond 

properly. 

Actually, one of the hottest research topics, within the field of power amplifier 

performance enhancement methods, is the use of new transmitter architectures in which the 

RF PA is working as a switch processing only the RF PM signal and the envelope is 

introduced via an AM modulated power supply, producing highly efficient PAs. The envelope 

elimination and restoration [70] or envelope tracking [71] techniques are very good examples 

of these new polar transmitter topologies.  

The already reported results of power amplifier systems employing those techniques leave 

no doubts about the way to proceed clearly indicating the road towards future. 

In such architectures there are many possible contributions to the undesirable signal 

distortion such as finite bandwidth of the envelope path or different time delay between phase 

and envelope paths, just to mention two widely known examples. Besides that, the power 

transistor itself can originate distortion. Particularly, the AM variations introduced by the 

modulated power supply can also produce undesired PM in its output signal.  

The best way of studying all of these contributions it is to simulate those, more or less, 

complicated systems. For that, large-signal nonlinear active device models are crucial and can 

help PA designers to identify possible problems and to improve their system designs. The 

difficulty that now arises is concerned with the difference between the PA operation modes, in 

these new architectures, and the ones nowadays assumed for PAs, which determines a certain 

number of assumptions that influence the nonlinear model’s extraction. 
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Conventional PAs, which I will denominate as non-switching PAs, usually operate in class 

C, B, AB or A and the above mentioned techniques use switching-mode amplifiers, usually 

operating in class E, F or D. In the new operation classes, the active device is either OFF (in 

the cutoff region) or ON (in the triode region). Under this ideal switching operation, the 

output voltage and current waveforms do not exist simultaneously. Therefore, power 

dissipation within the device is zero, leading to a theoretical power conversion efficiency of 

100%. It is obvious that the conventional model extractions usually disregard the triode region 

which will now be crucial in the PA operation.  

All this leaves a very big question mark in whether the formulations previously used can 

now be applied to the switched PAs and, I think, deserves to be studied. 

Moreover, in order to exploit all the wide bandgap possibilities, already studied in this 

thesis, it is important to design circuits that can make use of all their unique properties. One of 

the hottest properties of GaN devices is the high breakdown voltage, which determines the 

highest operating voltage of a transistor, for a given device design and channel doping, and 

thus limits the RF power swing in the device. In this work, this limit region was not studied 

and so, in order to take advantage of all the potential of these devices should be included on 

the device model. 

 

Conclusion 

From a scientific point of view, this work was very challenging and was a wonderful 

opportunity to work on the RF active device modelling area, in a state-of-the-art technology, 

as it is, at this moment, GaN. Moreover, it enabled the contact with several companies, not 

only in the USA but also in South Korea (where I stayed working for one month), providing 

an industrial experience that I appreciated very much. As a matter of fact, the model presented 

in this thesis is already being used by two of the major GaN foundries (Nitronex Corp. and 

Cree Inc.) to simulate their devices, which is, I believe, one of this work’s major success 

indicator. 
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