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resumo 
 
 

Os sistemas distribuídos embarcados (Distributed Embedded Systems – DES) 
têm sido usados ao longo dos últimos anos em muitos domínios de aplicação, 
da robótica, ao controlo de processos industriais passando pela aviónica e 
pelas aplicações veiculares, esperando-se que esta tendência continue nos 
próximos anos. 
A confiança no funcionamento é uma propriedade importante nestes domínios 
de aplicação, visto que os serviços têm de ser executados em tempo útil e de 
forma previsível, caso contrário, podem ocorrer danos económicos ou a vida 
de seres humanos poderá ser posta em causa. 
Na fase de projecto destes sistemas é impossível prever todos os cenários de 
falhas devido ao não determinismo do ambiente envolvente, sendo necessária 
a inclusão de mecanismos de tolerância a falhas. 
Adicionalmente, algumas destas aplicações requerem muita largura de banda, 
que também poderá ser usada para a evolução dos sistemas, adicionando-
lhes novas funcionalidades. 
A flexibilidade de um sistema é uma propriedade importante, pois permite a 
sua adaptação às condições e requisitos envolventes, contribuindo também 
para a simplicidade de manutenção e reparação. Adicionalmente, nos sistemas 
embarcados, a flexibilidade também é importante por potenciar uma melhor 
utilização dos, muitas vezes escassos, recursos existentes. 
Uma forma evidente de aumentar a largura de banda e a tolerância a falhas 
dos sistemas embarcados distribuídos é a replicação dos barramentos do 
sistema. Algumas soluções existentes, quer comerciais quer académicas, 
propõem a replicação dos barramentos para aumento da largura de banda ou 
para aumento da tolerância a falhas. No entanto e quase invariavelmente, o 
propósito é apenas um, sendo raras as soluções que disponibilizam uma maior 
largura de banda e um aumento da tolerância a falhas. Um destes raros 
exemplos é o FlexRay, com a limitação de apenas ser permitido o uso de dois 
barramentos. 
Esta tese apresentada e discute uma proposta para usar a replicação de 
barramentos de uma forma flexível com o objectivo duplo de aumentar a 
largura de banda e a tolerância a falhas. A flexibilidade dos protocolos 
propostos também permite a gestão dinâmica da topologia da rede, sendo o 
número de barramentos apenas limitado pelo hardware/software.  
As propostas desta tese foram validadas recorrendo ao barramento de campo 
CAN – Controller Area Network, escolhido devido à sua grande implantação no 
mercado. Mais especificamente, as soluções propostas foram implementadas 
e validadas usando um paradigma que combina flexibilidade com 
comunicações event-triggered e time-triggered: o FTT – Flexible Time-
Triggered. No entanto, uma generalização para CAN nativo é também 
apresentada e discutida. 
 

 



 

  
 
 
 
 
 
 
 
 
 
 

  

  
 

 
 

A inclusão de mecanismos de replicação do barramento impõe a alteração dos 
antigos protocolos de replicação e substituição do nó mestre, bem como a 
definição de novos protocolos para esta finalidade. Este trabalho tira partido da 
arquitectura centralizada e da replicação do nó mestre para suportar de forma 
eficiente e flexível a replicação de barramentos. Em caso de ocorrência de 
uma falta num barramento (ou barramentos) que poderia provocar uma falha 
no sistema, os protocolos e componentes propostos nesta tese fazem com que 
o sistema reaja, mudando para um modo de funcionamento degradado. As 
mensagens que estavam a ser transmitidas nos barramentos onde ocorreu a 
falta são reencaminhadas para os outros barramentos. 
A replicação do nó mestre baseia-se numa estratégia líder-seguidores (leader-
followers), onde o líder (leader) controla todo o sistema enquanto os 
seguidores (followers) servem como nós de reserva. Se um erro ocorrer no nó 
líder, um dos nós seguidores passará a controlar o sistema de uma forma 
transparente e mantendo as mesmas funcionalidades. 
As propostas desta tese foram também generalizadas para CAN nativo, tendo 
sido para tal propostos dois componentes adicionais. É, desta forma possível 
ter as mesmas capacidades de tolerância a falhas ao nível dos barramentos 
juntamente com a gestão dinâmica da topologia de rede. 
Todas as propostas desta tese foram implementadas e avaliadas. Uma 
implementação inicial, apenas com um barramento foi avaliada recorrendo a 
uma aplicação real, uma equipa de futebol robótico onde o protocolo FTT-CAN 
foi usado no controlo de movimento e da odometria. 
A avaliação do sistema com múltiplos barramentos foi feita numa plataforma 
de teste em laboratório. Para tal foi desenvolvido um sistema de injecção de 
faltas que permite impor faltas nos barramentos e nos nós mestre, e um 
sistema de medida de atrasos destinado a medir o tempo de resposta após a 
ocorrência de uma falta. 
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abstract 
 

Distributed embedded systems (DES) have been widely used in the last few 
decades in several application domains, from robotics, industrial process 
control, avionics and automotive. In fact, it is expectable that this trend will 
continue in the next years. 
In some of these application fields the dependability requirements are very 
important since the fail to provide services in a timely and predictable manner 
may cause important economic losses or even put humans in risk. 
In the design phase it is impossible to predict all the possible scenarios of 
faults, due to the non deterministic behaviour of the surrounding environment. 
In that way, the fault tolerance mechanisms must be included in the distributed 
embedded system to prevent failures occurrence. 
Also, many application domains require a high available bandwidth to perform 
the desired functions, or to turn possible the scaling with the addition of new 
features. 
The flexibility of a system also plays an important role, since it improves the 
capability to adapt to the surrounding world, and to the simplicity of the repair 
and maintenance. The flexibility improves the efficiency of all the system by 
providing a way to efficiently manage the available resources. This is very 
important in embedded systems due to the limited resources often available. 
A natural way to improve the bandwidth and the fault tolerance in distributed 
systems is to use replicated buses. Commercial and academic solutions 
propose the use of replicated fieldbuses for a single purpose only, either to 
improve the fault tolerance or to improve the available bandwidth, being the first 
the most common. One illustrative exception is FlexRay where the bus replica 
can be used to improve the bandwidth of the overall system, besides enabling 
redundant communications. However, only one bus replica can be used. 
In this thesis, a flexible bus replication scheme to improve both the 
dependability and the throughput of fieldbuses is presented and studied. It can 
be applied to any number of replicated buses, provided the required hardware 
support is available. The flexible use of the replicated buses can achieve an 
also flexible management of the network topology. 
This claim has been validated using the Controller Area Network (CAN) 
fieldbus, which has been chosen because it is widely spread in millions of 
systems. In fact, the proposed solution uses a paradigm that combines 
flexibility, time and event triggered communication, that is the Flexible Time-
Triggered over CAN network (FTT-CAN). However, a generalization to native 
CAN is also presented and studied. 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  

  
 

 
 

The inclusion of bus replication in FTT-CAN imposes not only new mechanisms 
but also changes of the mechanisms associated with the master replication, 
which has been already studied in previous research work. In this work, these 
mechanisms were combined and take advantage of the centralized architecture 
and of the redundant masters to support an efficient and flexible bus 
replication. 
When considering the system operation, if a fault in the bus (or buses) occurs, 
and the consequent error leads to a system failure, the system reacts, 
switching to a degraded mode, where the message flows that were transmitted 
in the faulty bus (or buses) change to the non-faulty ones. 
The central node replication uses a leader-follower strategy, where the leader 
controls the system while the followers serve as backups. If an error occurs in 
the leader, a backup will take the system control maintaining the system with 
the same functionalities. 
The system has been generalized for native CAN, using two additional 
components that provide the same fault tolerance capabilities at the bus level, 
and also enable the dynamic management of the network topology. 
All the referred proposals were implemented and assessed in the scope of this 
work. The single bus version of FTT-CAN was assessed using a real 
application, a robotic soccer team, which has obtained excellent results in 
international competitions. There, the FTT-CAN based embedded system has 
been applied in the low level control, where, mainly it is responsible for the 
motion control and odometry. 
For the case of the multiple buses system, the assessment was performed in a 
laboratory test bed. For this, a fault injector was developed in order to impose 
faults in the buses and in the central nodes. To measure the time reaction of 
the system, a special hardware has been developed: a delay measurement 
system. It is able to measure delays between two important time marks for 
posterior offline analysis of the obtained values. 
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Chapter 1

Introduction

1.1 The problem

In the last few decades Distributed Embedded Systems (DES) have been widely used in
several application fields, ranging from industrial machinery to avionics, automotive systems
and robotics. Most of these applications have strict timeliness requirements. Also, the
requirements of these systems that can only be met with deterministic networks, and rely on
distributed coordination that require synchronization protocols. Besides in many cases, they
require mechanisms for online reconfiguration and fault tolerance. These mechanisms impose
an overhead in terms of network bandwidth and computational performance of the nodes.

Fieldbuses are usually adopted for the network infrastructure. One of the most popular
fieldbuses is CAN - Controller Area Network [BOS91]. CAN protocol was initially targeted to
automotive control systems, as a single digital bus to replace traditional point-to-point cables
that were growing in complexity, weight and cost with the introduction of new electrical and
electronic systems. The widespread and successful use of CAN in the automotive industry,
the low cost associated with high volume production of controllers and its inherent technical
merit, have driven to CAN adoption in other application domains. Despite its success story,
CAN application designers would be happier if CAN could be made faster, cover longer
distances, be more deterministic and more dependable. Some current distributed control
applications require higher bandwidth [SFNM05] and the dependability of native CAN is not
adequate for some applications, e.g., wheel-chairs robots [BHHP01], autonomous robots for
urban transportation vehicles [BNMS05], urban transportation system [MZP+02, WTSW03],
x-by-wire system for automotive [Tea98] and home automation systems [BFS+07, FBS+08].

The shortcomings of CAN call for new solutions, either based on CAN exten-
sions/improvements or on the adoption of another fieldbus protocol. It can be said that
CAN technology is now mature and engineers are well trained in designing and maintaining
CAN based DES, with relative low time to market. So a potential migration to other fieldbus
technology is challenging and it could take several years.

1
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In this scenario, and not only to replace CAN, new fieldbuses were proposed, notably
FlexRay [Fle02] and TTP/C [KG94] (TTP stands for Time-Triggered Protocol). In parallel
with the advent of new fieldbus protocols, extensions/improvements of CAN have been pro-
posed over the years, such as: Time-Triggered CAN (TTCAN) [HMFH00, ISO01], Flexible
Time-Triggered over CAN (FTT-CAN) [APF02] or FlexCAN [PF04]. Notice, however, that
none of these solutions solve the problems of native CAN, just minimize them. Indeed some
solutions address fault tolerance issues, while others increase the available bandwidth.

In this context, it would be desirable to increase the available bandwidth of CAN and to
improve its fault tolerance capabilities while maintaining the backward compatibility with
legacy systems. A possible solution to this problem is using multiple buses to provide additio-
nal bandwidth, which is proportional to the number of used buses. This extra bandwidth can
be used either to provide bus media redundancy only, transmitting different data in different
buses, or to provide data redundancy, transmitting the same data in different buses. A third
alternative would be combining these two approaches in a flexible way, i.e., the network could
provide a mix of bus media redundancy and data redundancy. This is a flexible approach in
the sense that the bus media redundancy and the data redundancy trade-off can be assigned
online according to the application requirements in terms of bandwidth and dependability.

Besides the described features, a multiple buses architecture can also be used to tolerate
bus failures, so that the network can be switched to degraded modes using less buses than
originally.

This thesis proposes components and protocols to take advantage of multiple CAN buses,
and to achieve bus fault tolerance and efficient bandwidth usage. Notice that FTT-CAN is
used as a proof of concept, since the proposal can be generalized to other fieldbus protocol,
including native CAN.

1.2 The thesis

The thesis supported by the present dissertation argues that:

The use of a flexible bus replication scheme could improve both the dependability
and the throughput of a network. Furthermore, it is possible to adapt online the
network topology to evolving operational scenarios.

1.3 Contributions

The main contributions presented in this dissertation are:

• A proposed solution to use multiple buses in a flexible way;

• Mechanisms to provide fault detection among multiple masters;
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• A generalization of the proposed solutions for native CAN;

• A fault injector system for bus based communication systems;

• A delay measurement system (DMS);

• An implementation of the FTT-CAN middleware.

Despite the system architecture, protocols and components, are targeted to the FTT-CAN
protocol [APF02] and native CAN, most of the contributions could equally generalized to
other fieldbuses.

Next, the contributions are summarized.

1.3.1 A proposed solution to use multiple buses in a flexible way

The previous versions of FTT-CAN support only one bus making it a single point of
failure. One way to avoid this problem is by replicating the bus.

This thesis presents a proposal to replicate the bus to provide flexible bus media redun-
dancy and data redundancy.

The proposal takes advantage of the bus media redundancy to increase the dependability
while providing additional bandwidth. In this way, whenever a bus would fail, the affected
traffic could be switched to other bus and the network would start operating in a degraded
mode. The maximum number of buses the system can accommodate is only limited by
the hardware, such as the number of CAN interfaces or by the performance limits of the
microcontrollers used.

The management of buses and messages is made by the FTT-CAN central node, the
master, that is also replicated. The proposal was implemented and validated using a fault
injection system combined with a delay measurement system.

1.3.2 Mechanisms to provide fault detection among multiple masters

The previous FTT-CAN architecture included a protocol to handle master replica-
tion [MFA+02]. However, with the introduction of bus media redundancy, the master re-
plication protocol needs to be updated in order to accommodate the management of multiple
buses. This thesis proposes a new master replacement protocol, based on the single bus
version [FPAF02], where the active master node is responsible to detect and to react to per-
manent bus faults. This protocol relies on the masters location, at both ends of the buses,
to have a global view of the network and to avoid bus partitions.

1.3.3 A generalization of the proposed solutions for native CAN

The proposed multiple buses and multiple master system is targeted to FTT-CAN, ho-
wever, it can be generalized to any fieldbuses. A proposal to generalize the bus media redun-
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dancy to native CAN is presented in this work. The generalization of the concept requires two
new components, a Topology Management Unit (TMU) and a Network Switch Unit (NSU),
that were designed and partially implemented. The network topology management has a
global view of the network and controls all the network switch units. The network topology
management is replicated and follows the same strategy as the master replication node in
the FTT-CAN bus replication presented before. This is, the network topology management
units are located at the end of the CAN bus and exchange messages with the other located
in the other end.

1.3.4 A fault injector system for bus based communication systems

A hardware of a fault injector was developed to assess the multiple buses and multiple
masters system. This fault injector imposes faults in the CAN bus (or buses) or in the
FTT-CAN master node. The fault injector is capable of injecting different kinds of faults at
pre-defined instants.

The fault injector has been designed for the FTT-CAN, but it can be used in native CAN
without any adaptation. Moreover, it can be easily adapted to any other fieldbus protocol.

1.3.5 A delay measurement system

The fault injector works in close cooperation with a delay measurement system that
recognizes the instant of the fault injection and the relevant timing instants of the FTT-CAN,
to measure the time elapsed between these different instants. The collected data, a histogram,
is stored internally in the Delay Measurement System (DMS) and it can be uploaded to a
personal computer.

The DMS is generic, thus it can be used in other contexts, where the events to recognize are
not related to FTT-CAN. For example, it has been used in an Ethernet based system [BSF07].

1.3.6 An implementation of the FTT-CAN middleware

A new, designed from scratch, FTT-CAN implementation was made. This implementa-
tion became the FTT-CAN reference implementation, used in real world applications.

The FTT-CAN implementation includes the single bus nodes with all the defined features.
For the case of the multiple buses, only the master node was implemented. Slave nodes with
multiple buses were not implemented because they are out of scope of this thesis.

1.4 Publications

The presented contributions have been published in a book chapter, journals and confe-
rence proceedings. They are listed below:
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Book chapter

• Luís Almeida, Paulo Pedreiras, Joaquim Ferreira, Mário Calha, José Fonseca, Ricardo
Marau, Valter Silva, and Ernesto Martins. Handbook of Real-Time and Embedded
Systems, chapter 19, pages 19–1 to 19–22. CRC Press, 2007;

Journal papers

• Ricardo Moraes, Francisco Carreiro, Paulo Bartolomeu, Valter Silva, José Fonseca,
and Francisco Vasques. Enforcing the timing behavior of real-time stations in legacy
bus-based industrial Ethernet networks. Computer Standards & Interfaces, In Press,
Corrected Proof, 2010;

• Ricardo Marau, Valter Silva, Joaquim Ferreira, Luís Almeida, and José Fonseca.
Assessment of FTT-CAN master replication mechanisms for safety-critical applications.
Transactions Journal of Passenger Cars-Electronic and Electrical Systems, pages 447–
455, March 2007♣. Also presented at SAE 2006 World Congress (see paper ♠);

Conference papers

• Valter Silva, Paulo Bartolomeu, Joaquim Ferreira, and José Fonseca. Assessment of
multi-bus fault-tolerant communications. In proceedings of the 7th IEEE International
Conference on Industrial Informatics (INDIN), pages 72 –78, Cardiff, Wales, UK, June
2009;

• José Fonseca, Paulo Bartolomeu, Valter Silva, Vasco Santos, Carlos Abreu, Alexandre
Mota, Margarida Cunha, and Arminda Lopes. Using CAN to retrofit houses for quadri-
plegic people. In 12th International CAN Conference, Barcelona, Spain, March 2008;

• Valter Silva, José Fonseca, and Joaquim Ferreira. Adapting the FTT-CAN Master for
Multiple-bus Operation. In proceedings of the 5th IEEE International Conference on
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1.5 Organization of the dissertation

In order to support the thesis previously stated, this dissertation is organized as follows:

Chapter 2 – Presents background information concerning dependability, and more specifi-
cally redundancy in fieldbuses. This chapter presents a survey of the protocols which
support redundant buses or nodes. In particular, the CAN protocol is analyzed, with
special attention to its dependability features. This chapter also presents a comparative
study regarding the use of redundancy.

Chapter 3 – This chapter begins with the presentation of the FTT-CAN protocol in its
single bus, multiple master version, highlighting the limitations in terms of dependa-
bility and bandwidth. The FTT-CAN protocol with bus media redundancy is then
presented and discussed. This chapter also presents the necessary adaptations of the
master node so it could handle multiple buses. Special attention is given to the master
replication protocol for the multiple buses case.
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Chapter 4 – This chapter describes the implementation of FTT-CAN protocol with special
emphasis on the application programming interface available for FTT-CAN applications
and presents the relevant data structures. The single bus implementation is a particular
instance of the multiple buses one. Despite the slave implementation is only made for
the single bus version, it is also discussed in this chapter.

Chapter 5 – The implementation presented in the previous chapter is verified and validated
in this chapter. This chapter describes test platforms which are different for the single
and multiple buses implementation. The additional hardware needed to perform the
verification and validation, the fault injector and delay measurement system, is also
described. The chapter is concluded with the experimental results and their discussion.

Chapter 6 – This chapter presents a generalization of the proposed solutions to legacy
CAN networks. Two new components are introduced: the network switch unit and the
topology management unit. A preliminary implementation of the network switch unit
is presented.

Chapter 7 – Sets the conclusion of the dissertation and points out several directions for
future work.



Chapter 2

Bus media redundancy: a survey

2.1 Introduction

This chapter presents a survey of the state of the art concerning media redundancy tech-
niques used in communications for safety critical applications. The chapter is divided into five
main sections: a brief introduction of fault tolerant communications (section 2.2), buses for
industrial automation (section 2.3), buses for embedded applications (section 2.4), Ethernet
based solutions (section 2.5) and Controller Area Network (section 2.6).

The first section presents relevant definitions and concepts on the dependability, redun-
dancy and fault tolerance techniques applied to communications.

The second section considers the fieldbuses for interconnecting industrial automation de-
vices, such as the ones used in factory automation, process control and similar applications,
e.g., WorldFIP, PROFIBUS and P-NET.

The third section considers fieldbuses that operate embedded in machines, in a general
sense. Typical applications include avionics, automotive and robotics. Examples of such
fieldbuses are TTP and FlexRay.

The fourth section addresses the protocols based on Ethernet (section 2.5), that are
sometimes derived from the mentioned before.

Controller Area Network could obviously be included in one of the previous sections (buses
for automation and/or buses for embedded applications), considering either its upper layer
protocols such as DeviceNet and CANopen or the native CAN protocol itself. However, since
the work presented in this thesis uses CAN, it was decided to describe CAN and its higher
layer protocols in a specific section. The CAN section presents the fundamentals of CAN,
with a special emphasis on the physical medium and introduces the redundancy techniques
used in CAN based communications. Some adaptations of CAN like star topologies are also
analyzed.

When considering the communication solutions analyzed in this chapter, it was decided
to include a general overview of each and to devote a special attention to the physical layer

9
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redundancy. This was required to enable comparisons with the main results of the work
presented in this dissertation.

2.2 Fault tolerant communication: a brief introduction

2.2.1 Introduction

When talking about fault tolerant communication it becomes necessary to introduce a set
of definitions and a set of principles. The main works that include definitions concerning fault
tolerant systems are [Lap92], [Lap95] and [ALR01]. There, dependability is defined using a
set of attributes and means that must be met by the system to resist the threats it is subject
to. Fault tolerance is one of the means to achieve dependability.

The definition of a fault tolerant system needs first the definition of a dependable system
to be understandable. Both definitions will be presented in this section.

The dependability of a distributed system can be affected by the implicit use of the
network. One reason for this is that the use of the communication network needs more
electronic components and includes a novel resource, the physical medium. Also, the use of a
communication network implies that this network can suffer from external interferences, such
as electromagnetic interferences. The availability of the medium is then another concern.

One way to improve the system fault tolerance is to provide components replication,
either software or hardware based. In this section the discussion on the replication issues is
focused in the network. The component replicas must be synchronized to guarantee a correct
operation of the system. Replica consistency is also briefly discussed further in this section.

2.2.2 Dependability

As stated in [ALR01], dependability of a computer system is “The ability to deliver service
that can justifiably be trusted. The service delivered by a system is its behaviour as it is
perceived by its user(s); a user is another system (physical, human) that interacts with the
former at the service interface. The function of a system is what the system is intended
for, and is described by the system specification”

The concept of dependability can be explained with support of three elements: the
threats to, the attributes of, and the means by which dependability is attained as shown
is figure 2.1.

As it can be seen in figure 2.1, dependability is a complex concept. Mainly, there are six
attributes: availability, reliability, safety, confidentiality, integrity and maintainability. More
specifically:

• Availability is the capacity of the system to be ready to offer a correct service;

• Reliability is the attribute of the system to offer the continuity of a correct service;
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Figure 2.1: The dependability tree (from [ALR01])

• Safety is the attribute of guaranteeing the absence of catastrophic consequences to the
user(s) and the environment;

• Confidentiality is the attribute for the absence of unauthorized disclosure of information;

• Integrity is the attribute for the absence of improper system state change;

• Maintainability is the ability to undergo repairs and modifications.

In Portuguese we use the word “segurança” with a broader meaning than in English. In
English “segurança” can be mapped either in safety and in security. Security is the ab-
sence of unauthorized access to, or handling of, system state [ALR01]. Security is also
defined in [ALR04] by “the concurrent existence of a) availability for authorized users only,
b) confidentiality, and c) integrity”, where integrity means the attribute for the absence of
unauthorized system state change.

Although security is currently an important issue to attain dependability considering the
increasing openness of embedded systems (remote access is currently used), and, as explained
before, it deals with several of the six attributes referred previously, it is out of the scope of
this work and thus it will not be discussed further in this dissertation.

To develop a dependable system, different means are to be used. They can be grouped in
four categories: fault prevention, fault tolerance, fault removal and fault forecasting [ALR04].
More specifically:

• Fault prevention is the means to prevent the occurrence or introduction of faults;

• Fault tolerance is the means to avoid service failure in the presence of faults. Fault
tolerance can be accomplished using replication of system components or using specific
components to prevent a specific fault (example of such component is a bus guardian);

• Fault removal is the means to reduce the number or severity of the faults;
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• Fault forecasting is the means to predict the number, severity and consequence of the
faults in the future.

In the scope of our work, and in what concerns dependability, two types of systems are of
concern:

• Fail-safe systems: When there are failures in the system, it responds in a way that will
cause no harm, or a minimum of harm to the other systems and humans;

• Fail-operational: When there are failures in the system, it responds in a way that will
keep the minimum working performance to perform the task continuation.

The concept of fault cannot be dissociated from the concept of error and failure. In the next
section these three concepts are explained and discussed.

2.2.3 Fault, error and failure

The concepts of fault (sometimes called defect), error and failure can be found ambiguous
in the literature concerning the meaning of fault and failure [Gär99]. These three terms can
sometimes be interpreted as the same or can be easily confused. In [Cri91] we can read:
“what one person calls a failure, a second person calls a fault, and a third person might call
an error”. This statement demonstrates very well the misconceptions that exist in persons
about these three terms used in the fault tolerance scientific community.

Laprie et al. [Lap92] and Avižienis [ALR01], define fault, error and failure as threats for
dependability. A system failure occurs when the delivered service deviates from the correct
service for the system, this is, a failure occurs when the system changes from a correct service
delivery to an incorrect service delivery.

Error is what causes the failure [VR01]. This is, an error that reaches the service interface
will cause a failure. An activation of a fault results on an error, that reaching the service
interface will provoke a failure.

Fault is an abnormal condition that causes a reduction or a loss of the capability of a
functional unit to perform a required function.

Even in Portuguese there has been a discussion about the terminology of these three
definition. For more information and details about this topic, refer to [VL89] and [Ver96].

2.2.4 Fieldbuses and dependability

The use of fieldbuses combined with the use of sensors and actuators enables the reduction
and simplification of the wiring when compared with a centralized topology. Thus, it leads
to a system with a lower cost and contributes to the dissemination of the solution. The
increasing use of fieldbuses makes the network interfaces and transceivers cheaper and then
it is possible to connect more data points in the field. Also, the use of a fieldbus compared
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with the use of a centralized topology enables the distribution of the tasks among all the
nodes of the network. On the other hand, centralized topologies have a central point of
failure. This point of failure is the central node that carries out functions such as the control
of the network and control algorithms.

However, fieldbuses introduced new possible failures in components, namely the network
and the network interfaces. According to [CCTB03], the error rate of an electrical bus is
very low. It can be read in [CCTB03]: “By its passive electrical nature, a bus has a very
low failure rate”. However, there are some faults that can occur and propagate to errors and
system failures. The type of errors that can occur in the physical layer are:

1. A continuous transmission to the network due to an internal failure of any node or due
to infinite repetitions of the transmissions attemps (babbling idiot behaviour);

2. The non-reception of information by one or by several nodes in the network. This can
be caused by:

• disruption of transmission on the medium causing illegible frames;

• external aggression such as: cuts, impedance mismatch, loss of line termination,
electromagnetic interference.

To make the communication system safe in relation to these faults it is necessary to choose
a transmission support adequate to the system and environmental conditions. The dependa-
bility of fieldbus systems also depends on the redundancy of the physical layer. There has
been some research work analyzing the dependability of fieldbuses such as [KP91], [PC01]
and [LY05].

In [KP91] the bus and ring communication topologies for the Delta-4 distributed fault
tolerant architecture [Bar93] are evaluated. In this paper, the conclusion is, for the specific
case of Delta-4, that the single bus and the single ring topology are equivalent in terms of
dependability. In [KP91], for a failure rate of the bus less than 4 × 10−3/h, duplication of
the medium is more interesting in the case of the bus than in the case of the ring.

In [PC01] the dependability of fieldbus systems in the presence of permanent failures in
the bus is analyzed. This analysis includes the study of a redundant mode and also of a
degraded mode. Comparing a single bus with a dual bus architecture, the authors conclude
that the most important factor is a coverage factor (the coverage factor is modelled as a
probability of automatic recovery from a node fault1). The coverage factor considers the
existence of two types of failures: a failure that does not lead to fieldbus failure, due to a
system recovery and a failure that leads to a fieldbus failure. The authors also conclude
that just in case of a node coverage factor greater than 0.9 the bus duplication leads to an

1Node element fault, not a system failure.
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appreciable increase on dependability. This is because the failure rate of the bus is low, the
dependability is mainly conditioned by the nodes failure rate and by the coverage factor.

In [LY05] the authors compare a single CAN bus architecture with a dual CAN bus
architecture in terms of reliability and stability for a small aircraft. The authors conclude
that, “from the simulations and implementations, the dual bus architecture enhances the fault
tolerance of the system and satisfies, reliability and stability” [LY05].

In [LY05], Lin and Yen refer stability as an important parameter, not yet referred in
this dissertation. Some disciplines, such as control theory, define stability as property which
specifies that, for a given parameter with bounded inputs, the parameter is bounded [Sta85].
However, Stankovic defines a more specific notion for stability, please refer to [Sta85] for more
details. Applying this definition to embedded distributed systems seems to be reasonable with
the necessary adaptations.

2.2.5 Redundancy and fault tolerance

In presence of a failure, one way to promote fault tolerance is to use redundant compo-
nents [Sch90]. The replication of the components can be done in a hardware level or in the
application software level. In this dissertation, the redundancy studied is in the hardware,
more specifically in the network.

Redundancy is “The use of more elements than necessary to maintain the performance of a
system in the event of failure of one or more of the elements” [LHB03]. According to [LHB03]
there are four types of redundancy: diverse, homogeneous, active and passive [LHB03].

• Diverse redundancy is the use of more than one element of different types to provide
redundancy. An example of such redundancy is the use of mechanical and electrical
brakes in cars;

• Homogeneous redundancy is the use of more than one element of a single type. One
example of such is the use of two wires in a CAN bus, enabling differential operation
in the absence of failures and single-ended if one of the wires is, by example, cut;

• Active redundancy is the use of more than one element at all times. Active redundancy
distributes the load across all the elements and allows an element failure, repair and
substitution with minimal interference in the system performance;

• Passive redundancy is the application of the redundant element only when the active
element fails. Example of such redundancy is the use of a spare tire in a car.

In our opinion the first two types of redundancy (diverse and homogeneous) refer to the
redundant elements themselves and the last two (active and passive) to the operation of the
redundant elements. This is, we are defining two dimensions of redundancy: on the elements
(diverse or homogeneous) and regarding type of operation (active or passive).
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In the previous paragraphs, the redundancy is seen in a general point of view. However
the same definitions can be applied and used in the fieldbuses domain. One example of diverse
redundancy is the use of more than one fieldbus type to send the same information.

Concerning the type of operation, other authors [DSS98, WPS+00] define more types
besides the two referred before: semi-active and semi-passive. Défago et al. [DSS98] stated
that a system uses semi-passive redundancy, when there is a primary server and backups.
Concerning databases, in semi-passive replication, the selection of the server that processes
the request from the client is based on a rotating coordinator paradigm. The same au-
thors [DSS98], define semi-active redundancy for databases. In semi-active replication, all
the servers process the request and the primary master applies the changes in all backups.
Applying these definitions (semi-passive replication and semi-active replication) to bus re-
dundancy seams to be inadequate, however it can be applied to node redundancy.

Regarding fieldbuses, a passive redundancy is considered when the additional buses are in
standby and one of them is activated in the case of a failure in the primary bus. Conversely,
when using active redundancy, all the available buses are used to send redundant data.

Each type of redundancy is more adequate for each type of system. In that way, if the
cause of the failure cannot be anticipated, the most suitable redundancy type is diverse
redundancy. On the other hand, if the probable cause of failure can be anticipated, the most
suitable redundancy is the homogeneous redundancy. Active redundancy is used in critical
systems that must maintain continuous operation in a case of a system element failure.
Passive redundancy is used in elements of a system that are noncritical or in systems where
performance interruption is tolerable. In table 2.1 this is systematize.

System/failure Redundancy
Failure can be antecipated Homogeneous

Failure cannot be antecipated Diverse
System must maitain operation Active

Performance interruption tolerable Passive

Table 2.1: Type of redundancy

As it can be seen in figure 2.2, for the network there are mainly four topologies (or hybrid
solutions among them) that can be used: star, mesh, ring and bus.

Star topology implies that there is a central point that controls all the system network.
This central node can be replicated and, also, the links to the nodes can be replicated.
Moreover, all the processing must be done by the central point, which must be a system with
an appreciable processing power. This can be costly due to the need to replicate this element.

In case of a mesh network topology, all nodes connect to all others. In this network
topology, if a link is broken, the communication can be done by other links.

The ring topology connects all the nodes forming a ring (the communication network
forms a circular architecture). This kind of topology provides some redundancy, because if
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Figure 2.2: Network topologies

a partition is made in the network, the system can work in a degraded mode since all nodes
still have a communication path with the others. The degraded mode is achieved because
no electrical termination is done in the cut wires. In the case of the partition, the network
topology becomes a bus topology without termination.

In the bus topology all the nodes are connected to the same physical wires. Conversely
to star topology, where a faulty node can be isolated, in bus topology a node fault can affect
all the system. In case of a partition, the bus will be divided into two buses. For the bus
topology, the redundancy of the bus can contribute to the system availability and reliability.
However it will not contribute to the system safety because it does not avoid catastrophic
consequence to persons and environment [CCTB03].

In the case of redundancy, all replicas must be consistent. This topic will be discussed
further.

2.2.6 Replica consistency

The issue of replication is of interest in several domains, in particular in databases and in
distributed systems. One of the main issues is achieving consistency among replicas which is
fundamental to guarantee a correct operation of the system when one of the replicas replaces
the unit that failed [PSL80, PLS82]. In the database area, examples of discussion of techniques
to guarantee consistency can be found in [Bir92], [PB95] and [Mar03]. However, definitions
and solutions are conceptually similar for databases and distributed systems [WPS+00].

The replication of a system component brings new problems in what concerns the synchro-
nization of all the replicas. The component replicas must be synchronized in value and in time
domains [HWV03]. The literature defines two main consistency criteria for the distributed
systems [WPS+00]: linearisability and sequential consistency.

Linearisability is based in real-time dependencies while sequential consistency is only
based on the order of the sequential operations performed in individual processes. Thus, li-
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nearisability is a stronger criteria than sequential consistency. A detailed comparison between
them can be found in [AW94] and [GS96].

As expected, a full synchronization in every instant is hard to achieve. However, a semi-
synchronous approach can be made, where the distributed replicas are not synchronized all
the time. There are instants where the replicas are not synchronized. But, after a bounded
time interval, all the replicas should maintain a coherent view of the system parameters or
data [FNTTJ04].

To enforce replica consistency some authors propose a voting system [Mar03]. When using
replication, the use of a voting system determines what are the data that will be chosen. In
that case, a certain number of votes is given to each node and an operation can only be made
if there is a sufficient quorum [Gif79, GMB85].

To deal with the complexity of synchronization, the notion of group and communication
primitives was introduced. The group provides a logical addressing mechanism to join toge-
ther a set of replicas. Communication primitives provide multicast communication. The two
main group communication primitives are atomic broadcast and view synchronous broad-
cast. Atomic broadcast ensures atomicity and order, that is, the data that will be received
by all replicas is the same and in the exact same order. “View synchronous broadcast is
a property that specifies that membership information is ordered relatively to the message
flow” [Mar03]. For more details about atomic broadcast and view synchronous broadcast
refer to [CASD85], [HT93] and [SS93].

2.3 Buses for industrial automation

2.3.1 Introduction

The use of fieldbuses in industrial automation begun with ModBus from
Modicon [Has80a, Has80b] and the Westinghouse Distributed Processing Family (WDPF)
from Westinghouse [Mor82, Sch82] because of their functionality and worldwide accep-
tance [Dec05, Tho05]. Some other networks were already in use in the time of the birth
of ModBus and WDPF. However, they are confined to a small number of applications and
companies.

After this, several research projects concerning the development of fieldbuses appeared in
the 1980s. These projects led to the communication protocols known nowadays. In France
the FIP project was started (now known as WorldFIP), in Germany the PROFIBUS and in
Denmark the P-NET [Tho05].

2.3.2 WorldFIP

WorldFIP was developed at the early 1980s with the name FIP (Factory Instrumentation
Protocol), and later known as WorldFIP and also becoming a French standard. Currently
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WorldFIP is a profile of the European fieldbus standard EN-50170 [CEN96]. Other profiles
of the EN-50170 are PROFIBUS and P-NET. Also, it is one of the profiles of the IEC
International Standard 61158 [IEC00].

WorldFIP is organized according to the Open System Interconnection (OSI) reference
model and it only defines the layer 1, layer 2 and layer 7 of the OSI model, i.e., the physical
layer, the data link layer and an user interface (application layer).

A WorldFIP network interconnects two types of nodes: Bus Arbitrators (BA) and produ-
cer/consumer nodes. The MAC protocol adopts a Producers-Distributor-Consumers (PDC)
model [Tho93, ATFV02], where each node can perform these functions simultaneously, but
at any given time just one node can perform the bus arbitration [AC98].

A static schedule table (BAT - Bus Arbitrator Table) is present in the Bus Arbitrator (BA)
to organize the transmission on the bus. The available bus time is divided into Elementary
Cycles (EC) and, at each EC, the BA promotes the corresponding information exchange.
Each elementary cycle can have the transmission of more than one producer, and the number
of elementary cycles that join together all transmissions is called the macro-cycle.

The bus arbitrator node (BA) broadcasts a question frame with one variable identifier
that will be answered by the producer. The answer of the producer will be simultaneously
captured by all consuming stations. There will be one producer node and one or more
consumer nodes. The consumer(s) of the variable and the bus arbitrator will receive the
variable. With this reception, the bus arbitrator can go to the next entry in its internal table
and the cycle will begin again.

In table 2.2 is an example of the bus arbitrator table and in figure 2.3 the correspon-
ding macro cycle is presented. Note that each elementary cycle has 5ms. Note also, the
time duration is determined using 2.5Mbps, a turnaround time of 20µs and equation 1 of
paper [TV01]2.

Variable Period Data bytes
A 5 1
B 10 128
C 5 1
D 15 128

Table 2.2: Bus arbitrator table example

In the example of figure 2.3, the remaining available time in each elementary cycle can be
used for the aperiodic traffic. This aperiodic traffic is also controlled by the bus arbitrator and
also has preliminary stages to perform a variable transmission. The mechanism that supports
the aperiodic traffic has three stages, the first where the producer asks the BA to transmit
the variable/message (this is done during the periodic window, piggy-backing information in
one of its periodic messages identifiers), the second stage, where the bus arbitrator asks the

2For more details about the calculation, please refer to [TV01].
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Figure 2.3: Macro cycle example (from [AC98])

producer of the variable/message to transmit the request and the third stage, where the node
transmits the variable/message.

In what concerns the physical layer definition, it is compliant with IEC1158-2 and defines
two types of physical medium: twisted pair and optical fibber. For these two media, there
are three defined bus speeds:

• S1: 31.25kb/s (low speed);

• S2: 1Mb/s (high speed);

• S3: 2.5Mbp/s (high speed).

Speeds S1 and S3 are only used for special purposes and applications, while speed S2 is the
standard speed. Additionally, there is an extra speed definition for the optical fibber medium
which is capable of 5Mb/s.

Concerning the bus media redundancy, it is possible in WorldFIP using two buses [AC98].
All the messages are replicated in both media. Each receiver has the capacity of receiving the
first message that is detected. Network management can force stations to transmit or listen
in a particular channel. This can be done for reasons of maintenance or after a detection of
several errors in one channel. To detect this, network management uses a set of error flags
and performance counters [AC98].

Since WorldFIP uses a master-slave architecture (the BA is a single point of failure), the
master (called bus arbitrator) is also replicated in order to prevent a failure of the BA in
charge. Like stated before, there is only one BA active at a time. However, in the global
system, several BAs can coexist. Each BA has an identifier that is used to determine the BA
that will become in charge if the active BA fails.
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2.3.3 PROFIBUS

PROFIBUS (Process Field Bus) is one of the general purpose fieldbuses included in the
European Standard, EN 50170 [CEN96] specification. It was proposed in 1989 in Germany
by a consortium of Universities and factory automation equipment manufacturers.

PROFIBUS is organized according to the Open System Interconnection (OSI) reference
model and it only defines the layer 1, layer 2 and layer 7 of the OSI model, i.e., the physical
layer, the data link layer and an user interface (application layer).

There are several PROFIBUS bus protocol definitions: PROFIBUS FMS, PROFIBUS
DP, PROFIBUS PA and PROFINET. PROFIBUS DP (DP stands for Decentralized
Periphery) is used to connect distributed I/O devices via a fast serial data link with a central
controller. PROFIBUS DP supports both analog and digital signals and communicates at
speeds from 9.6kbps to 12Mbps over distances from 100m to 1200m.

PROFIBUS FMS (FMS stands for Fieldbus Message Communications) is a control bus
for communications among PLC (Programmable Logic Controller) systems. It is complex,
and thus is often replaced by a simpler protocol, the PROFIBUS DP.

PROFIBUS PA (PA stands for Process Automation), is used to monitor measuring
equipment via a control system, specially in hazardous environment. It communicates at
31.25kbps with a maximum distance of 1900m per segment. This protocol is derived from
the PROFIBUS DP.

PROFINET is a protocol to allow PROFIBUS communications over Ethernet networks.
PROFINET will be discussed further in this chapter.

PROFIBUS DP is the widely used protocol from PROFIBUS family, and thus it will be
discussed. The PROFIBUS MAC is based on a token-passing mechanism used by masters
stations to grant bus access [CMTV02]. The PROFIBUS token-passing procedure is a sim-
plified version of a Time Token protocol (TT) [TV99]. It is based on a master-slave scheme
for the master stations to communicate with the slave stations. These MAC mechanisms are
implemented in layer 2 of the OSI model which is called, in the original PROFIBUS definition
Fieldbus Data Link (FDL).

PROFIBUS uses a master-slave scheme where several masters can coexist. A PROFIBUS
slave could be any peripheral device (e.g. measurement sensor device) which processes infor-
mation and sends output to the master. The slave is a passive station because it does not
have autonomous bus access rights, it just answers to the master requests or acknowledges
master messages.

On the other hand, a PROFIBUS master is an active node since it has autonomous bus
access rights. PROFIBUS defines two types of masters: class 1 and class 2 masters. Class 1
masters handle the normal communications and exchange of data with the slaves assigned to
it. A class 2 master is a special purpose master used for slave commissioning, maintenance
and diagnosis. Some masters can support class 1 and class 2 functionalities. A master to
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master communication can be held between two PROFIBUS systems using a gateway.
PROFIBUS DP operates using a cyclic transfer of data between the master and slaves

on a RS485 serial network. Each slave has an assigned master. The master can just write
information to its slaves and can read information from every slave. The master grants bus
access to its slaves in a cyclic way.

PROFIBUS exhibits a deterministic temporal behaviour due to its cyclical operation
mode. Please refer to Cavalieri et al. [CMTV02], for a worst case response time analysis.

The PROFIBUS frame is composed by different octets. The octets are transmitted
in a asynchronous way with start, stop and even parity bit. According to Felser [Fel06],
PROFIBUS DP installations show also unexpected transmission errors due to the incorrect
cabling, shielding, grounding and termination of the bus (these problems represent more than
80% of the errors).

Concerning dependability, PROFIBUS supports replicated buses with a maximum of two
communication channels connected to a separated bus interface in each node [LS95]. The
data is transmitted simultaneously in both communication channels and a bus selector switch
located in the node selects the channel from which the node will receive the information.
There are pre-defined criteria to decide when to switch to an alternative receiver. Figure 2.4
depicts the general architecture of a PROFIBUS node with media redundancy.

Figure 2.4: PROFIBUS node architecture with redundant bus(from [LS95])

In what concerns the node redundancy, it is possible to implement, as stated in the
PROFIBUS web-page [PRO09]. Namely, the master node can be replicated. Example of
such replicated nodes can be found in [Com09].

2.3.4 P-NET

P-NET is part of the European Standard, EN 50170 [CEN96] and International Fieldbus
Standard IEC 61158 type 4 [Fel02, IEC07].

As stated in the standard, the P-NET fieldbus was designed to connected distributed
process components replacing the wires imposed by a centralized control system. Examples
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of these components are sensors, actuators and controllers [CEN96].

The electrical specifications are based on the RS-485 standard using a shielded twisted
pair cable. This specification allows a cable length of 1200 meters without repeaters. The
data is sent in NRZ (Non-Return-to-Zero) in an asynchronous way. The maximum bitrate is
76.8kbps using one start bit, one stop bit, eight data bits and one address/data bit.

Each system can have more than one bus segment coupled with a multi-port master
(acting as a gateway between the two buses segments), where each bus can handle up to
125 devices. In each segment up to 32 masters can coexist. The communication is based on
a master-slave structure where the master sends a request and the addressed slave returns
an immediate response.

The system uses a virtual token passing scheme. In this strategy, the master who has
the token is able to transmit and the token is passed to the next master without an explicit
exchange of a message. This is done using local counters that are incremented in each
transmission. When the counter reaches the master address, the master may transmit. This
virtual toking passing scheme is an interesting solution to arbitrate the access to the medium
and has also been proposed for shared Ethernet [CFP03, Car08].

According to the P-NET specification [CEN96], the ability to use a multi-net system
provides “a natural redundancy which makes the total plant installation very robust with
respect to errors”. According to the same specifications [CEN96], the redundancy is provided,
because the errors cannot be propagated from one bus segment to the other bus segments.

A company named Proces-Data develops a module to provide network redundancy using
P-NET. This module [PD09] connects to two P-NET networks. The data is sent over the two
ports (each port connect to one P-NET network) and is received over the two ports. If a short-
circuit or a cable break is detected in one network, the corresponding port is automatically
switched off and all the communications are done in the other port.

2.4 Buses for embedded applications

2.4.1 Introduction

Nowadays, embedded applications are increasingly using more microcontrollers and field-
buses to connect their systems. For example modern cars use several microcontrollers, up to
50 in some high-end models, interconnected by fieldbuses. In some cases, more than one type
of fieldbus are used. In vehicular applications as well as in other safety critical applications,
e.g., avionics, physical redundancy plays an important role. This section presents the main
fieldbuses used in embedded applications with a special focus on the bus media redundancy
aspect.
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2.4.2 TTP

The Time Triggered Protocol (TTP/C)3 has been developed at the Technical University
of Vienna by Kopetz et al. [KG94] intended to be used in safety critical real-time systems.
The goals of the TTP/C project were to achieve safety, composability and flexibility in the
communications [KG94].

In what concerns the network topology, TTP/C does not define any specific topology.
Kopetz and Grünsteidl in [KG94] say “The communications channel is a passive LAN, e.g.,
a broadcast bus, that transports one message at a time”. The Time Triggered Architecture
(TTA) [KB03] defines the entire communications and computer architectures to be used in
TTP/C.

The basic building block of a TTA architecture is the node. A node is a self-contained
unit composed by a processor with memory, an input-output subsystem, a communication
controller, an operating system and the application software. The communication control-
ler connected to the replicated communication channels forms the so called cluster [KB03].
Clusters can be connected by gateway nodes which restrict the view of one cluster in order to
reduce the complexity of the system. In other words, the cluster is a way of creating physical
segments in the system network.

The Time Triggered Architecture defines two different topologies for a cluster, the
TTA-bus and the TTA-star. In the TTA-bus the physical network consists of two repli-
cated passive buses where the information is sent in both channels at the same time. In the
nodes there is one communication controller with two bus guardians (one for each broadcast
channel). Ideally, the bus guardians operate in an independent way, each one with its own
clock, power supply, distributed clock synchronization and local copy of the message’s sche-
dule. Furthermore, the bus guardians should be at a physical distance sufficient to protect
the node from spatial proximity faults. This leads to an implementation of the node and
the two bus guardians in separated chips. However, the implementation of such system is
expensive and the authors in their prototypes put these three systems in the same chip. This
only guarantee the enforcement of the fail silent state of the application in case of violation
of the fault hypothesis defined.

The TTA-star can tolerate arbitrary node faults, e.g. byzantine faults [KB03]. The
byzantine fault was first described by Pease et al. as a agreement problem in a military
environment [PLS82]. Nowadays is considered that a “byzantine faulty process may behave
arbitrarily” [ZV08].

In the TTA-star network architecture, the nodes are connected to a duplicated star cou-
pler. This means, the nodes have two network interfaces each one connecting to the star
coupler, resulting on a duplicated star. The bus guardians have been moved to the star
coupler [BKS03] because, according to the authors, there are some advantages, namely: the

3C stands for class C applications of Society Automotive Engineers, page 20.272 of [SAE92].
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guardians are fully independent and located at a physical distance of the nodes, the algo-
rithms of the guardians can be extended to provide additional monitoring services, if the
guardians reshape the physical signals, the architecture becomes resilient to arbitrary node
faults and the point-to-point links have better electromagnetic interference characteristics
than a bus.

The TTP/C provides the fault tolerant internal synchronization of the local clocks to
generate a global clock of known precision. The receiver knows a priori the sending time of
a specific frame. Moreover, the receiver knows the time of its reception, thus it knows the
difference between these two occurrences [KG93]. Thus, it knows the difference between the
sender and receiver clocks.

TTP/C supports redundancy at the node level defining Fault-Tolerant Units (FTU).
Fault-tolerant units are composed by two or more computational systems act as redundant
nodes [Ins97]. Pimentel and Sacristan [PS01] propose an adaptation on this mechanism
where a node can belong to several FTUs at the same time. Authors claim this allows a
higher level of dependability keeping the same number of replicated nodes.

Besides supporting message replication in the space domain (as explained, using two
buses), TTP/C also supports the message replication in the time domain, by sending the
messages twice on each bus.

2.4.3 FlexRay

FlexRay is a protocol defined by the FlexRay consortium [Fle02]. This consortium star-
ted its activities in 2000 with the founding companies BMW, Daimler-Chrysler (now Daimler
AG), Philips and Motorola. The consortium has grown and today it includes the largest auto-
motive manufacturers together with the leading microcontrollers manufacturers: Volkswagen,
Toyota, General Motors, Ford, Honda, Nissan, Renault, Bosch, Freescale and many others.
The target application domains of the FlexRay protocol is the automotive industry where
the most used protocol is CAN.

The FlexRay consortium published a set of documents to specify the FlexRay pro-
tocol. These documents are the Protocol Specifications [Fle04c], the Physical Layer
Specifications [Fle04b] and the Bus Guardian Specifications [Fle04a].

In what concerns fault tolerance, FlexRay supports the concept of scalable fault tolerance,
i.e., FlexRay can be used in systems requiring low fault tolerance capabilities and also in
systems with strict fault tolerance requirements. The topology flexibility, the fault tolerant
clock synchronization and the conceptual separation of the functional and structural domain
supports the scalable fault tolerance model of FlexRay [MT06].

The network topology can be a single bus or star, or, for safety critical applications, can be
a replicated bus or a replicated star topology. The network can only have three cascade stars
between two arbitrary nodes. Systems with hybrid topologies are possible, since FlexRay can
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accommodate a mixture of stars with bus. Some results [Fle02] show that the bus running
at full bitrate (10Mbit/s) is limited to 8 stubs of a maximum of 25cm each. In figure 2.5 all
type of possible bus topologies are presented.

Figure 2.5: FlexRay network topologies

Figure 2.5A depicts the passive bus where some nodes connect to just one channel, while
others connect to both channels. Figure 2.5B presents a duplicated active star. In this
topology it is also possible to have some nodes which connect just to one channel, however
this situation is not represented in the figure. The star can have only one channel instead of
the two presented. Figure 2.5C and figure 2.5D present hybrid topologies. Figure 2.5C is a
dual channel topology where one channel is a bus and the other is an active star whence figure
2.5D has only one channel having some nodes connected to a star and the others connected
to a bus. As it can be seen on the these examples, it is possible to build many network
topologies using FlexRay, however all are limited to use two channels.

The medium access control is based on a TDMA (Time Division Multiple Access) scheme
where the communication cycle is the fundamental element of the media access scheme.
Figure 2.6 depicts the communication cycle.

The communication cycle (see figure 2.6) is composed by the static segment, the dynamic
segment, the Symbol Window (SW) and the Network Idle Time (NIT). The static segment
is dedicated to the time-triggered data while the dynamic segment is dedicated to the event-
triggered data. The symbol window is a communication period in which a symbol can be
transmitted in the network. This symbol can be for example, a runtime testing command or a
command to wake up an active star. The network idle time is a period free of communication
in the channels, and serves to delimit two consecutive communication cycles.

In the static segment a static TDMA scheme is used to arbitrate the transmissions. The
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Figure 2.6: FlexRay communication cycle (from [MT06])

number of time slots of the static segment, which have fixed duration, is configured at pre-
runtime [Fle04c]. Within the static segment, only one node is allowed to transmit in each
communication slot [Fle04c].

In what concerns the dynamic segment, it is used a dynamic mini-slotting scheme to
arbitrate transmissions. In the dynamic segment the duration of the slots may vary in order
to accommodate the frames of different length (see slot 11 e 12 of channel B in figure 2.6).
As it can be seen in figure 2.6, the slot counters in the static part increment at the same time
in both channels, while these counters are independent in the dynamic part.

In the static segment, nodes connected to both channels must transmit each frame in both
channels at the same time. However, if a node just connects to one channel, the node just
transmits information in the channel it is connected to, leading to different data streams in
both channels (see figure 2.6, frame 5d and 1a). If two nodes are connected to two different
channels they may share the same slot in the static part, leading to a better usage of the
available bandwidth.

Moreover, in the dynamic part the traffic in both channels can be different (see figure 2.6).
Thus, as stated before, the total available bandwidth of FlexRay corresponds to transmitting
different data in both channels.

The FlexRay frame can have a maximum of 262 bytes. Three bytes are dedicated to the
CRC (Cyclic Redundancy Check) while five are dedicated to the frame header. Thus, the
payload can have at maximum of 254 bytes (the minimum is 0 bytes) leading to a minimum
overhead of 3.05% (payload equal to 254 bytes) and a maximum overhead of 88.88% (payload
of 1 byte). Note that, although a frame with 0 bytes of payload is possible, it is not commonly
used.

A detailed comparison between FlexRay and TTP (presented in section 2.4.2) can be
found in [Kop01].
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2.4.4 MIL-STD-1553B

The MIL-STD-1553B is an American military standard published by the American
Department of Defense [Mil06].

The nodes in a MIL-STD-1553B network can be of one of three types: Bus Controllers
(BC), Bus Monitors (BM) or Remote Terminals (RT). The bus controller is responsible
for the initialization of all transmissions in the data bus. The bus monitor is responsible
for monitoring the bus and collecting information for offline analysis and record. The bus
monitor is a passive node, thus it cannot transmit to the bus. The remote terminals are all
the other nodes that are neither bus monitor nor bus monitors. Each remote terminal has an
unique identifier that identifies it in the network (e.g. for the addressing of the bus controller).
Each remote terminal can be an interface between the bus and an attached subsystem or can
be a bridge between two MIL-STD-1553B buses.

MIL-STD-1553B describes an optional data bus redundancy [DOD78, SL02]. In this
standard, the active bus is controlled by the bus controller node (see figure 2.7). Only
one bus is active at a time, and the bus controller is responsible for the initialization and
management of the communications. Like in the cases of TTP and PROFIBUS, the redundant
buses cannot be used to improve the available bandwidth of the system, because only one
bus is in use at any given time.

In MIL-STD-1553B there is also the possibility to have three or four data buses, leading
to tri or quad redundant buses. These configurations with 3 or 4 buses are normally used in
avionics [Con09]. However, as explained before, just one bus is active at any given moment.

Figure 2.7: MIL-STD-1553B system architecture

The bus controller is a single point of failure of the system. In the literature the informa-
tion about the replication of this node is rare. In [BPGN05] the authors write: “Most avionics
applications of this databus require a duplicated, redundant bus cable and bus controller to
ensure continued system operation in case of a single bus or controller failure”. However, it
is not explicit if the standard supports the node replication.
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2.5 Ethernet based solutions

Some Ethernet based solutions are currently in use in the automation field. This was
possible because the Ethernet is a well established standard with many hardware implemen-
tations which are cheap and easy to obtain and install [MFF09]. In addition, the bandwidth
provided by Ethernet is suitable for most applications. Ethernet throughput can vary from
10Mbps to 1Gbps [DHLV96], and more recently 10Gbps [MH00].

According [Han05] and [KD06], protocols based on Ethernet targeting industrial automa-
tion also require redundancy. In this section these protocols will be briefly discussed with
emphasis to the more relevant that uses redundancy in the physical layer.

Ethernet for industrial automation can be based on existing protocols. Examples of such
kind of solutions are PROFINET IO (based on PROFIBUS), Time Triggered Ethernet (TTE,
based on TTP) and Ethernet Powerlink (based on CANOpen).

PROFINET IO is a standard of PROFIBUS that enables the use of Ethernet in the
industrial automation. A typical application for a PROFINET IO system is to allow a
PLC (Programmable Logic Controller) to control decentralized field devices [Fel04]. Media
redundancy for PROFINET IO is possible and is based on the Spanning-Tree Protocol
(the Spanning-Tree Protocol, STP, is a protocol to prevent loops in Ethernet solutions
and is also a redundancy protocol, standard 802.1w [IEE09]) and Rapid Spanning-Tree
Protocol (RSTP) [Fel08]. As stated in [Hen09], node replication is planned to be included in
PROFINET IO.

TTEthernet (TTE) expands the classical Ethernet with services to meet time-trigger
constraints. The authors of TTEthernet stand that TTE can be considered the unification
of the best properties of standard Ethernet and TTP/C [KAGS05]. A switch with real-time
capabilities has been designed to be used in TTEthernet [SGAK06]. With this switch it is
also possible to have a redundant medium for safety critical TTEthernet [SGAK06]. The
switch is the central point of the network and is replicated, like all the links to the nodes.

Regarding switched Ethernet and targeting FTT-Ethernet (Flexible Time-Trigger over
Ethernet [APF02]), Santos et al. [SMO+08] are developing a network switch with real-time
capabilities.

Ethernet Powerlink is a protocol based on Ethernet and on the CANopen [CAN00] pro-
file [SV07]. Redundancy in Ethernet Powerlink is also possible. Limal et al. present a
formal verification of media redundancy in Ethernet Powerlink [LPDL07]. Also, the IXXAT
company develops a Ethernet Powerlink stack solution for a redundant Ethernet Powerlink
controller [CAN09]. In this solution, the Powerlink Managing node (the managing node is a
network manager, that checks all the communications to avoid collisions) can be replicated.
This solution can be used together with a dual channel communication network resulting on
a replicated network with a replicated managing node.
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There are other commercial and proprietary solutions for Ethernet. Examples of such type
of protocols are EtherChannel (from Cisco Systems, Inc) and DualNet from Nvidia [NVi06].
Another solution, EtherCAT has been originally developed for commercial purposes (develo-
ped by the company Beckoff). However, nowadays EtherCAT is an open solution.

Cisco EtherChannel cannot be viewed as a replacement for fieldbuses. It is designed to
the Ethernet market, more specifically for campus Ethernet connection. However, it has
some similarities with the solution presented in this dissertation. The Cisco EtherChannel
solution provides a transparent way of increasing the redundancy and the bandwidth in
Ethernet installations. The EtherChannel can aggregate up to eight links providing up to
800Mbps, 8Gbps or 80Gbps [Cis03, Huc07] (aggregation of eight 100Mbps, 1Gbps or 10Gbps
respectively). The supplementary buses can also be used to provide redundancy [Cis03].
EtherChannel does not require any other protocol to maintain the topology state [Cis03]
(like Spanning-Tree Protocol, STP, standard 802.1w [IEE09])

Also, there is an IEEE standard that defines link aggregation for the Ethernet:
802.3ad [FDH+07]. This standard defines the aggregation of N Ethernet channels in one
link. In the data layer of the OSI reference model, there is a link aggregation sublayer that
aggregates all the underlying Ethernet channels.

DualNet from NVidia [NVi06] is a technology for home and small office personal compu-
ters (PCs). It provides one chip with two Ethernet controllers with capabilities of teaming
and fail-over, among others, not so important for this dissertation: refer to [NVi06] for more
details. Teaming allows the two Ethernet ports to be used in parallel to increase the overall
link speed of the Ethernet connection. The Fail-over capability allows the chip to switch to
the standby port if the active port fails or is disconnected.

EtherCAT (Ethernet for Control Automation Technology) is an open standard based on
Ethernet developed by Beckoff to interconnect automation systems. This protocol is based
on the principle of the insertion and extraction of the data. The frames are modified on-the-
fly by the nodes. The topology can be line, tree, star or ring. The fault tolerance is only
obtained in the ring topology [Eth09]. In that way, the system can tolerate the failure of one
node or the partition of the ring (if it occurs, the ring becomes a bus).

2.6 Controller Area Network (CAN)

2.6.1 Introduction

Controller Area Network (CAN) is one of the most used fieldbuses for embedded appli-
cation. It has many application domains ranging from automotive to avionics or industrial
machines. The CAN fieldbus has physical redundancy already built-in, since it uses two wires
with a differential voltage communication network. Also, some research has been made in
the past to add dependability to the CAN fieldbus.
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In this subsection the CAN fieldbus will be presented and some important research work
about the redundancy of the physical bus will be addressed. There will also be a special focus
on the physical layer of the CAN bus, since it is very relevant for this work.

2.6.2 CAN Basics

Physical layer

The CAN ISO standard [ISO93] defines the physical signalling, the synchronization and
the bit timing of CAN. Concerning the bit timing of CAN, it is divided in four phases (see
figure 2.8 and refer to [HB99]):

• Synchronization Segment (SYNC in figure 2.8), to synchronize the various nodes;

• Propagation Time Segment (PRP in figure 2.8), used to accommodate the signal propa-
gation delay across the bus line and through the bus nodes electronic interface elements.
This segment can have different lengths in different nodes, normally configured through
the CAN controller;

• Phase Buffer Segment 1 (PH1 in figure 2.8), serving to accommodate the edge phase
errors. At the end of this segment, the node will sample the bit. This segment is used
in conjunction with the phase buffer segment 2;

• Phase Buffer Segment 2 (PH2 in figure 2.8), also used to compensate the edge phase
errors. The length of this segment is programmable, but it has to be at least as long
as the information processing time and may not be more than the length of phase
buffer segment 1. The information processing time begins at the sampling point and is
reserved for the determination of the subsequent bit level.

Figure 2.8: CAN bit timing (from [RVA99])
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The sum of the four segments presented above is the bit time and, of course, leads to the
corresponding bitrate of the bus.

In what concerns the bitrate and the bus length, ISO defines:

• ISO 11898-2 High Speed [ISO93]. This is one of the most used standards for CAN sys-
tems. In this physical layer standard the maximum bitrate is 1Mbps and the maximum
defined bus length is 40m for that maximum rate. The bus is composed by two wires
with differential voltage levels;

• ISO 11898-3 Fault Tolerant [ISO93]. This standard defines data rates up to 125kbps
with a maximum of 32 nodes in the network. The transceivers which support this
standard will switch automatically to one wire signal transmission in case of a wire
cutting or shorted to ground or Vcc;

• SAE J2411 Single Wire [SAE00]. This standard defines a single-wire standard for
application requiring up to 33.3kbps with a maximum of 32 nodes. The main application
area of this standard is the comfort electronics systems in vehicles;

• ISO 11992 Point-to-Point [ISO03]. This standard defines a point-to-point connection
for use mainly in vehicles with trailers. The nominal data rate is 125kbps with the
maximum bus line length of 40m [CAN99].

The most popular CAN physical layer is the ISO 11898-2 high speed standard [ISO93] that
is available in most of the CAN transceivers. The mechanisms proposed in this thesis are
based on this standard.

This standard defines differential voltage to transmit the information through the bus.
This scheme makes the signal transmission more robust and immune to electromagnetic in-
terference. There are two defined states for the medium, the dominant and the recessive,
corresponding to a “binary zero” and a “binary one” respectively. If two nodes try to com-
municate in the bus at the same time, the dominant bit will overwrite the recessive bit. This
bitwise arbitration is used for the message prioritization and it will be discussed further in
this dissertation.

Concerning the bit coding, CAN bus uses a NRZ line coding where a logic one is represen-
ted by a significant condition and a logic zero is represented by other condition. This coding
technique has no timing synchronization information because it does not use transictions in
all the bits (as the RZ coding scheme).

Data link layer

The CAN data link layer defines the mechanisms to transmit data from one node to
another on the CAN network. This layer defines the Medium Access Control (MAC), the
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frame formats, the error detection and handling, and the protocol versions (standard or
extended).

The bus arbitration is based on a “wired-AND” of the bits. That is, the dominant bits
overwrite the recessive bits, meaning that any node which tries to send a recessive bit will be
overridden by other nodes which are transmitting a dominant bit.

The data link layer defines four type of messages to be transmitted in the network: error
frames, data frames, remote transmission request frames and overload frames. The most used
frames are the error frames and data frames.

Error frames are transmitted by any node upon detecting a bus error. This frame can
transport an active error flag, or a passive error flag. See further in this dissertation details
about these two kinds of error flags.

Concerning the data frame format, the standard defines two kinds of frames (also known
as messages), the base frame and the extended frame. The difference between these two
types of frames is the length of the identifier, the base frame having an 11 bits identifier,
while the extended frame has a 29 bits identifier. These two types are formally known as
CAN 2.0A and CAN 2.0B, respectively. In figure 2.9 the general format of the CAN 2.0A
frame is shown.

Figure 2.9: CAN 2.0A frame format

The Start of Frame (SOF in figure 2.9) is one dominant bit to signal the beginning of the
CAN frame and it is intended to synchronize all the nodes in the network.

The start of frame bit is followed by the arbitration field consisting of 12 bit: the 11 bit
identifier (in CAN 2.0A, in CAN 2.0B the identifier has 29 bit), which reflects the contents
and the priority of the message, and the Remote Transmission Request bit (RTR in figure
2.9). The remote transmission request bit is used to distinguish a data frame (where RTR is
a dominant bit) from a remote frame (where RTR is a recessive bit).

The next field is the control field consisting of six bits. The first bit of this field is called
Identifier Extension (IDE) and is a dominant state to specify that the frame is a standard
frame. The next bit is reserved and defined as a dominant bit (’r0’ in figure 2.9). The
remaining four bits of the control field contain the Data Length Code (DLC in figure 2.9)
which specifies the number of bytes of data contained in the data field of the message from 0
to 8 bytes. The data being sent follows the DLC Field. The Cyclic Redundancy Field (CRC
field in figure 2.9) follows and is used to detect possible transmission errors. The CRC field
consists of 15 bits of the redundancy check sequence followed by the CRC delimiter (’CRC
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Dlmt’ in figure 2.9) bit which is a recessive bit.
The next field is the Acknowledge Field (ACK). During the ’ACK slot’ bit, the transmit-

ting node issues a recessive bit. Any node that has received an error free frame acknowledges
the correct reception by sending back a dominant bit (regardless the node is configured to
accept that specific message or not). The recessive acknowledge delimiter completes the
acknowledge slot and cannot be overwritten by a dominant bit (’ACK Dlmt’ in figure 2.9).

To complete the frame seven recessive bits follow (EOF in figure 2.9). The Intermission
Frame Space (IFS in figure 2.9) is the minimum time in equivalent number of bits separating
consecutive messages. Unless another station starts transmitting, the bus remains idle after
this.

Like stated before, CAN uses a NRZ coding scheme which could stay for long periods
at the same electrical level (e.g. due to a long sequence of the same bit). This can lead to
loose of synchronization in nodes. Thus, a bit stuffing technique is used in CAN to prevent
nodes from losing synchronization by receiving a long sequence of dominant or recessive bits.
The transmitter of a frame adds a stuff bit after five consecutive bits of the same value (the
bit added is of opposite value). The receiver of the frame detects the stuff bit and removes
it, detecting any possible violation of the stuffing rule. The number of bits introduced by
the stuffing mechanism has consequences in determining the worst case transmission time of
CAN messages. Nolte et al. [NHNP01, NHN02] address this issue and propose a technique
to manipulate the message contents in order to reduce the number of stuff bits and thus the
uncertainty in the message transmission time.

CAN fault tolerance

The CAN standard defines a fault tolerance scheme for the transmission of data in a two
differential wired bus (normally called CAN_H, CAN high and CAN_L, CAN low). In this
sense, CAN is able to run in a less robust configuration if a single fault occurs in one wire of
the bus. The CAN standard only includes reaction to the following type of failures:

• One wire interruption. An interruption of one of the two wires of the bus is tolerated.
This fault is identified in figure 2.10 by ’A’ and ’B’;

• One wire short-circuit either to power or to ground. The CAN protocol can tolerate
one short-circuit to power or to ground in one of the two wires. In figure 2.10 these
faults are identified by ’C’, ’D’ for the short-circuit to the power (Vcc) and ’E’, ’F’ for
short-circuit to the ground;

• Two wires short-circuit. The two wires of the circuit are short-circuited one to the
other, making the bus to be just one logical wire. Identified by ’G’ in figure 2.10.

Upon an electrical fault, the CAN medium interface will switch automatically to single
wire operation and switch back to the differential mode when recovered from the fault. The
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Figure 2.10: Failures in CAN ISO 11898-2 (from [RVA99])

devices which make this commutation are intended for low-speed applications (up to 125kbps)
with up to 32 nodes [Sem97]. According to [RVA99], there is one exception, a CAN controller
from Alcatel [Alc95].

The CAN bus wires are connected together at both ends with a terminator impedance
of 120Ω. Resilience to the failure of one terminator (see example ’H’ in figure 2.10) can be
achieved by taking into account the extra time needed for bus signalling stabilization (this
can be done when dimensioning the propagation delay in the bit time calculation [CAN99],
see figure 2.8).

In what concerns the detection and signalling of errors, CAN has:

• Cyclic redundancy check to detect corrupted messages. The transmitting node com-
putes the CRC and encapsulates it within the message (see CRC field in figure 2.9).
The reception node decodes the message, computes the CRC and compares it with the
one conveyed on the message. If they do not match, it means that there has been a
CRC error and the reception node will issue an error frame and the erroneous message
will be retransmitted;

• Acknowledge errors. The acknowledge bit of the CAN frame is transmitted with a
recessive level. If at least one of the receivers correctly decodes the message, it places
a dominant level in the ACK field (see figure 2.9). If the transmitter sees a recessive
level at the ACK field, it means that the transmitting node is alone in the network
or that none of the potential receiving nodes has found the message acknowledgeable.
Notice that, any node in the network acknowledge any message in the bus. In case of
an acknowledge error no error frames will be generate by the receiver nodes;

• Frame check. This mechanism detects message format violation, i.e., it checks each
field of the frame against the fixed format and the frame size correctness. The trans-
mitter also detects a form error if it detects a dominant bit in the fields: CRC delimiter,
acknowledge delimiter, end of frame or intermission frame space. If a frame error has
occurred, then an error frame is generated and the erroneous frame will be retransmit-
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ted;

• Bit monitoring. This mechanism detects bit faults that occur whenever the transmitter
sends a dominant bit but senses a recessive bit on the bus line, or vice-versa. If such
fault occurs, an error frame is generated and the message will be retransmitted. This
mechanism is not applied in the arbitration field and acknowledge field;

• Bit stuffing. A supplementary bit is inserted by the transmitter into the bit stream
after five consecutive equal bits between the SOF and CRC delimiter. This leads to a
variable frame length even using always the same number of data bytes. As referred,
in [NHN03] a study about the bit stuffing insertion is made. If six consecutive bits of
the same polarity are detected between start of frame and CRC delimiter, it means that
the bit stuffing rule has been violated, an error frame is generated and the message is
retransmitted.

If at least one station detects an error it will start the transmission of an error frame as soon
as possible aborting the current message transmission. This prevents the other stations from
receiving erroneous messages that could lead to inconsistencies. The sender will automatically
retransmit the message as soon as possible. However, the message retransmission can be
delayed due to the normal arbitration of CAN that favours higher priority messages.

The error frame has a format presented in figure 2.11.

Figure 2.11: Error frame

To prevent a faulty CAN controller to abort all transmissions, including the correct ones,
the CAN protocol provides a mechanism to distinguish sporadic errors from permanent errors.
This is done locally at each CAN controller by means of error counters and error states. Each
CAN controller is in one of three error states, error active, error passive or bus off according
to the value of their internal error counters. In figure 2.12 a state diagram of this behaviour
is shown.

Nodes have two internal counters: REC (Receive Error Counter) and TEC (Transmit
Error Counter). When a node is reset, it goes to the error active mode (most common mode
of working). In this mode, the node can send active error frames (composed by dominant
bits). If one of these counters reaches 127, the node will switch to error passive mode and
the node is only allowed to transmit passive error frames (composed by recessive bits). If the
transmit error counter reaches 255 the node will be switched off. The node can go back to
the error active state if it monitors 128 occurrences of 11 consecutive recessive bits. In this
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case the error counters (TEC and REC) will be reset to zero. Some CAN controllers also
issue a warning (hardware interrupt) when the counters go above 96 or the controller goes to
bus off.

Notice that the counters, besides increasing, also decrease after a correct transmission
(TEC) or a reception (REC). However, the counters are not always increased by 1. For
details about the increasing and decreasing of the error counters, please refer to [BOS91].

Figure 2.12: CAN error states

2.6.3 CAN protocols with media redundancy

The CAN protocol has a limited fault tolerant scheme in the physical layer. It is based
on the dual wires communication scheme as explained before. However, some improvements
on this limited fault tolerant solution have been made in the last years. Next, some of these
solutions will be presented and briefly discussed.

TTCAN

The ISO organization has standardized an additional layer to the CAN protocol called
Time-Triggered Communication on CAN [HMFH00, ISO01].

The TTCAN nodes are fully compatible with the legacy CAN nodes [HMFH00], both in
the data link layer and in the physical layer. However, legacy CAN nodes are able to receive
TTCAN messages, but not to transmit them. This means that they use the same bus line
and transceivers. Existing CAN controllers can receive every TTCAN messages and TTCAN
controllers can operate in existing CAN networks, making possible a gradual migration from
CAN to TTCAN.

The TTCAN communications is based on one time master that transmits a Reference
Message (RM) in a regular basis [HMFH00, MFH+02]. The time between two reference
messages is a basic cycle that is dedicated to the transmission of messages [HMFH00].
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Muller et al. [MFH+02] proposed a fault tolerant TTCAN architecture based on repli-
cated buses, if there is at least one gateway node that has access to both buses. Authors
call the system a coupled TTCAN pair [MFH+02]. Authors consider that a “fault tole-
rant TTCAN network is a system of TTCAN buses where each two of them are TTCAN
coupled” [MFH+02]. Thus, figure 2.13 presents one example of a fault tolerant TTCAN
network.

Figure 2.13: TTCAN network example (from [MFH+02])

As it can be seen in figure 2.13 all the three CAN networks depicted are connected via
the CAN node 1 and CAN node 2, thus both nodes are considered as TTCAN gateways.

TTCAN network configuration is flexible and other network topologies can be envisaged,
as in figure 2.14. In the example depicted in figure 2.14 there is one CAN network (CAN A)
acting as gateway between all the CAN nodes. For example, this bus provides communication
between node 5 and node 7 (through node 2 and node 3).

Figure 2.14: Fault tolerant TTCAN network example (from [MFH+02])

The management of the redundant transmission media is assigned to a higher layer pro-
tocol, e.g., FTcom or OSEKtime [MFH+02]. In this way, the communication system does
not inhibit the transmission of the same message in different buses, or different messages into
different buses.
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In a TTCAN network the synchronization of the nodes is maintained by the reference
messages issued by the time master node. In the TTCAN network up to 8 time masters can
coexist at the same time [NNFSL08].

FlexCAN

According to Pimentel and Fonseca [PF04], FlexCAN is a flexible architecture for highly
dependable embedded application. This architecture is associated with the SafeCAN proto-
col. FlexCAN deals with control systems that use three types of devices: sensors, controllers
and actuators. Each of this type of devices corresponds to a safeware type. Safeware is the
application that needs to be defined and designed (safeware stands for safe software). These
applications are located on the top of a safety layer. Refer to figure 2.15 for the software
layers running at each node.

Figure 2.15: FlexCAN node and OSI layers (from [PF04])

FlexCAN is able to support more than one bus. Unlike other protocols (e.g. Columbus
Egg Idea, presented further on this section), FlexCAN supports more than two buses, more
precisely it supports as many buses as the microcontroller can support [PF04]. However, the
additional buses cannot be used to improve the total available bandwidth of the system.

According to Pimentel and Fonseca [PF04], FlexCAN offers four important groups of pro-
perties: reliability, availability, safety and security. Reliability and availability are provided
by a well known strategy based on the replication of the nodes and also on the replication
of the communication channel. The SafeCAN protocol is responsible for the management of
the replicated components. Figure 2.16 presents a FlexCAN system with three buses. Notice
that it is not required that all the nodes are connected to all the buses.

As it can be seen in figure 2.16, each node can have internal replicas forming a structure
called FTU (Fault Tolerant Unit). The network manager does not produce any traffic for the
network, being a passive node. However, it can use some messages in order to determine the
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Figure 2.16: FlexCAN architecture (from [PF04])

status of the network components.
Standard off-the-shelf CAN applications running at standard CAN nodes can coexist with

nodes running the SafeCAN protocol, as depicted in figure 2.16.

RedCAN

RedCAN is a CAN based protocol that requires specialized hardware. The concept relies
on a ring instead of a bus to increase the dependability of the CAN protocol [SOJT04]. The
ring is divided into several sections interconnected by the RedCAN module. The RedCAN
module has the ability to isolate one section of the CAN ring.

This hardware can connect one node to the bus, disconnect it or do a partition on the
bus. This is done using commutation switches that take about 5 to 10ms to switch [SOJT04].
In figure 2.17 the architecture of the RedCAN node is presented.

Figure 2.17: RedCAN module (from [SOJT04])
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The CAN communications controller connects or disconnects the CAN controller to the
network and it can also isolate a bus segment changing the state of the existing switches. As
it can be seen in figure 2.17, the switches ’A’, ’B’, ’C’ and ’D’ can isolate the node from the
bus. These four switches also terminate the bus with the corresponding terminator resistor.
Switch ’E’, if closed, terminates the bus, however it does not isolate the node from it.

The switches change their state responding to an order from the king of the network.
This king is a special node which has the knowledge of the entire network. The nodes that
have the RedCAN module are called cities. The communications between the king and the
cities are made using CAN Kingdom. For more details about CAN Kingdom, please refer
to [Fre95] and [SGN02].

Columbus Egg Idea

The Columbus Egg Idea is a media redundancy solution for CAN [RVA99]. The authors
use more than one bus to send the same data over two different physical CAN channels.
The information transmitted by the CAN controller is replicated in both CAN channels. At
the reception side, the information received in both channels is “ANDed” together (for more
details, look at figure 2.18). This strategy is coherent with the strategy used by the CAN
arbitration, since the dominant bit (represented by a logic zero) overlaps the recessive bit
(represented by a logic one).

All the necessary operations are performed by the hardware, thus the software does not
have any knowledge about them. This is an advantage since no software overhead is necessary.

Both buses are wired together via an “AND” gate and thus are both logically and electri-
cally the same bus. In this way, both buses are used to send the same data and, consequently,
CAN bandwidth remains unchanged. This means that the total bandwidth available in the
system is equal to one system using just one CAN bus. Figure 2.18 presents the structure of
the node.

Figure 2.18: Columbus Egg Idea physical layer (from [RVA99])

The medium interfaces are connected to the redundant physical buses. As it can be seen
in figure 2.18, the data transmitted by the node is replicated on both buses.
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More recently, this system is applied to a more complete system called CANELy (CAN
Enhanced Layer). CANELy is a framework able to enhance with some simple mechanisms
the off-the-shelf CAN products [RPA08]. More details about this architecture can be found
in [Ruf02] and [RPA08].

As an own opinion, the Columbus Egg Idea can be expanded to accommodate three or
more buses, leading to a higher dependable system.

CANdor

CANdor is another architecture to increase the dependability in CAN networks. CANdor
stands for CAN Duplicated Organization for Reliability [PPMJ99]. Figure 2.19 depicts the
architecture of a CANdor node. As it can be seen in the figure 2.19, the CAN network, the
controllers and the processor are replicated.

Each CAN channel has a replicated controller, both of them receive the same data from
the network transceiver. The outputs of the CAN controllers are compared in a component
named CANdor Comparator (CC1 and CC2 in figure 2.19). The data is then “ANDed”
together and written to the CAN transceiver.

The data produced by the processors is compared by the Main Comparator (MC) system
to check if the data transmitted and received is the same.

Figure 2.19: CANdor node (from [FNP+98])

A CAN system based on CANdor architecture exhibits three different levels of redun-
dancy [FNP+98]: component level redundancy; channel level redundancy; and system level
redundancy.

Ferriol et al. [FNP+98] claim that the component level redundancy is the inherent re-
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dundancy of the CAN network and the redundancy introduced in the CAN controllers. The
channel level redundancy refers to the duplicated channel to transmit redundant data. And
the third level of redundancy (system level redundancy) means the use of a set of communi-
cation nodes.

The CANdor architecture is also applicable to industrial networks where each node is
a personal computer [PPMJ99]. In [PPMJ99] the authors present a circuit called RCMP
(Redundancy and Communication Management Processor) that is a fundamental piece of
the strategy for adding fault tolerance to industrial control systems. RCMP is an interface
between each computer and the communication channel.

Fault-Active Mechanism

The Fault-Active Mechanism (FAM) is a CAN based fault tolerant system architec-
ture [HKD97] with two CAN networks and a protocol to deal with the redundant buses.
According to [HKD97], the transmitter of a CAN message does not know if the receiver re-
ceives that message. If no error frames are sent the transmitter assumes a correct reception at
the receiver. This will lead to a larger time to detect possible loss of a network node [HKD97].

A fault tolerant communication node for the FAM is presented in figure 2.20. As it can
be seen in figure 2.20, there are two redundant buses (’Bus A’ and ’Bus B’). Each of them is
monitored by the other. In addition, in case of a component fault, a node is able to become
active autonomously, i.e., it informs all the network nodes about the failure by transmitting
an error notification message through the operational channel. In this way the redundant
bus is a kind of a watchdog bus.

Figure 2.20: Fault tolerant communication node (from [HKD97])

The authors of the FAM argue that the negative confirmation mechanism of the CAN
protocol leads to high latencies since the transmitter does not detect the failure of other
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network nodes, rather it assumes that, if no error message is received, all of the receivers
have correctly received the message.

During the normal operation, data exchange is only done through one communication
channel. In the case of a CAN controller fault of the active communication channel, the fault
tolerance process takes place as follows:

• The CAN controller fails;

• Reaching 96, the CAN controller sends an interrupt to the corresponding microcontrol-
ler;

• The error counter of the CAN controller reaches 128;

• The microcontroller informs the microcontroller of the other link of the loss of the CAN
controller;

• The microcontrollers which receive this indication start to transmit the error notification
through the other buses;

• All the network nodes receives the error message through non-faulty bus;

• All nodes switch off the faulty bus.

In addition to the watchdog system provided by the use of two parallel links, this architec-
ture also provides reception and transmission monitoring. This mechanisms allow a faster
detection of some faults than in a normal CAN controller.

This Fault-Active Mechanism is applicable, as an example, in large-scale manipulators
for heavy weights to work in tunnels as described in [KGHL98]. This particular application
has to cope with some requirements that cannot be fulfilled with a normal communication
system [KGHL98].

CANopen

CANopen is a higher layer protocol based on CAN and on the CAN Application Layer
(CAL) [FR97]. CAL is a higher layer protocol developed by Philips Medical Systems [CAN96].
CAL was adopted by the independent CAN group, CAN in Automation (CiA) [Bot00]. It
provides all the network management services and all the message protocols. However, as
referred by Boterenbrood [Bot00], it does not provide any kind of object: “It defines how, not
what”.

CANopen is based on the profile concept. The devices with the same functionality will
have the same profile and the same behaviour. For example, two digital I/O modules from
different manufacturers will have common functionalities, such as setting the outputs and
reading the inputs. This strategy leads to an improved interoperability and also imposes
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some standardization. Moreover, the vendors of the devices are not limited to the existing
profiles, they can develop their own profiles or functions to a specific device.

The essential part of the device profile is the object dictionary [FRB99]. This consists of
a set of data objects, communication objects and commands (or actions).

The communication in CANopen is divided into four classes:

• Service Data Objects (SDO). Mainly used for device parameterization and configura-
tion;

• Process Data Objects (PDO). Are used during the normal operation to transfer real-
time data without processing overhead (or, more precisely, with minor processing ove-
rhead);

• Network management functions, for coordinating device operations. These are accom-
plished by a network management facility. This is organized according to a logical
master-slave relationship;

• Predefined format messages. These messages target the timing and synchronization.

In what concerns the bus redundancy of CANopen protocol, IXXAT (an industrial and
automotive communications supply company [IXX08]) develops a software framework that
implements redundant communications for the CANopen protocol targeting maritime appli-
cations [EHN+08].

In figure 2.21 the architecture of the CANopen node with the redundant buses is presented.
As it can be seen in figure 2.21, there are two independent CAN buses with independent
controllers and independent drivers. The software developed by IXXAT provides complete
support for the redundancy management according to specification CiA R© 307 [CAN07]. The
same data is always transmitted in both channels. If a channel fails, the system continues
working using the other channel, without interrupt or data loss.

Figure 2.21: CANopen redundant communication
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Concerning node redundancy, in [TO08], the authors present a master redundant system
for the network management of CANopen. The authors call the system FTNMSCAN (Fault
Tolerant Network Management System for CAN).

MilCAN

MilCAN [Mil06] is an open standard interface targeting the military applications. It is
based on CAN, achieving deterministic network operation using a prioritized bus access and
bounded throughput. The priority of the access to the bus is defined by the criticality of each
node function. The maximum transmission latency for the different priorities is guaranteed.
The message generation can be limited within their allocated period, and the network traffic
can be pre-scheduled to provide deterministic operation.

In the MilCAN specification there are no definitions for the physical layer redun-
dancy [Mil06]. In this specification it can be read: “N-level media redundancy is not specifi-
cally addressed in the MilCAN specification”. However, one can find in the bibliography solu-
tions to introduce redundancy to the MilCAN networks. One example is presented in [Tay06],
where a redundant MilCAN bus is applied to a battle tank, called Terrier [VSI04, Mil05].
In this project there are several segments of MilCAN redundant buses. The use of multiple
MilCAN dual redundant buses segments serves to minimize data loading in each segment and
also to restrict the fault propagation [Mil05].

In [OSCA08], a fault tolerant layer to apply in MilCAN has been presented. This layer
is located between the application and the MilCAN layer and is called Fault Tolerant layer
(FT). This layer is responsible to manage the physical connections of the node with multiple
buses. The authors claim that the FT layer can operate in two or more buses.

DeviceNet

DeviceNet is a network technology based on CAN used in the automation industry to
interconnect field devices. In DeviceNet all the system is organized in an object oriented way,
where all the operations must be done using the objects definitions.

Regarding the network model, DeviceNet follows the OSI model, where the data link layer
is derived from the CAN specifications. For the upper layers, DeviceNet uses the Common
Industrial Protocol (CIP) [Ope04]. The common industrial protocol defines an application
layer to cover a range of device profiles [Imo02]. Each object has attributes, services and
behaviours. For a given device type, a minimum set of common objects will be implemented.
The user benefits from interoperability among devices regardless of the manufacturer or the
device type [Ope04]. However, vendor specific objects can be defined when there is no suitable
object in the definitions.

The common industrial protocol is a definition from ODVA (Open DeviceNet Vendor
Association) [Ope10] to unify the communication using media independence. Thus, the
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underlying media is masked, and several technologies can be used, such as: Ethernet/IP or
CAN (resulting into DeviceNet).

Concerning the physical layer, DeviceNet uses two separated twisted pairs: one for si-
gnals and the other for power distribution. The network topology can be bus using stubs
(called drop lines) with a maximum of 64 nodes [Ope04]. In the stubs several devices can be
connected forming a daisy chain. The possible data rates are 125kbps, 250kbps and 500kbps,
resulting in different bus lengths and drop line lengths. The maximum distance between two
nodes cannot exceed the defined length for each speed [Ope04].

Concerning the bus redundancy, a third party manufacturer called Auma [Aum10] sells
devices which use bus redundancy. In [Aum03], an actuator to operate industrial valves is
presented, and the connection to the DeviceNet network can be redundant. This redundancy
uses a dual DeviceNet interface. If an interface fails, the communication can be done using
the other interface because the information is always sent in both interfaces. Thus, if the com-
munication is available through both interfaces, the data that arrives first at the destination
is used.

Regarding the node redundancy, no information has been found during this work.

2.6.4 CAN star topologies

Star topologies are also often used in communications systems, an example of such being
Ethernet. Some years ago, Ethernet migrated from a bus topology to a star topology near the
station computers. Currently, Ethernet uses a star topology where the computers connect to
a switch (or in rare cases, to a hub). This migration has also been found in adaptations of
fieldbuses, particularly in CAN.

Research has been made in the last years concerning star topologies for use in the CAN
protocol. Examples of such can be found in [CDV01], [BPRNA06], [SO06] and [BPA09].
According to the star supporters, when compared with the bus topology, the star topology
has some advantages, namely: better error containment, the links come to spatial proximity
just near the star hub and this hub has a privileged view of the system.

Because of this privileged view of the global system, the hub can isolate any node that may
cause problems. In the bus topology this is not true unless bus guardians are used [BPA09].
Barranco et al. [BPA08, BPA09] claim that, even using replicated buses, the buses are nor-
mally placed near one from the other, leading to common-mode failure, such as a partition
in both buses.

On the other hand, the star architecture has some disadvantages like the appearance of a
single point of failure (the central hub), the increase of the cabling in the installation and the
associated higher cost. The higher cost is derived from the use of a more complex component
(the central point) and much more cabling and physical interfaces.

Barranco et al. present an active CAN star hub (CANCentrate [BPRNA06]) that can be
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replicated (ReCANCentrate [BPA09]). Other solutions are based on passive stars, such as
the one found in [CDV01]. In passive stars there are electrical problems and lower bitrate on
the radius of the star. Saha et al. [SO06] present an active star that just receives bits from
the nodes, does a logical “AND”, and transmits the result to all the nodes. However, even
this last active star cannot isolate faulty nodes.

In the work presented by Barranco et al. [BPA09], each node connects to the hub using
one uplink and one downlink. Uplink and downlink are point-to-point unidirectional links
providing isolation of the signals from/to the hub. CANCentrate relies on an active star
that is able to isolate nodes/links that suffered one of three types of faults: stuck-at faults,
medium partition and bit flipping [BPA09].

ReCANCentrate [BAP05] defines a redundant star topology where the hubs are connec-
ted together (with a link called interlink). The nodes are connected to both hubs. This
architecture is depicted in figure 2.22.

Figure 2.22: ReCANCentrate architecture (from [BPA09])

As it can be seen in figure 2.22, if there is a fault in any downlink or uplink, the system
has an alternate path for the data communication. This path uses the interlink connection
to the other hub. In case of one of the hubs goes off, the system still works, since there is
another hub to maintain the star topology. However, if there is a fault on a link and also in
a hub, the system can stop working (depending on the hub and link).

Cena et al. [CDV01] present a star topology intended to enlarge the CAN network and
also to increase the bitrate by the same factor, called StarCAN. StarCAN also uses an uplink
(called FL - Forward Link) and a downlink (called RL - Reverse Link) to perform the com-
munication between the nodes and the central hub (called LSC - Logic Star Coupler). This
LSC carries out all the operations involving the control, the access to the network and is also
in charge of resolving possible collisions.

Saha et al. [SO06] present an active high-speed CAN hub. This hub is able to connect
nodes that use off-the-shelf CAN transceivers. This connection can be made without any
modification to the CAN physical layer. In that way, the authors claim that this hub is
compliant with the ISO 11898-2 CAN physical layer standard. In [SO06], the authors present
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a developed prototype based on a CPLD (Complex Programmable Logic Device) and three
CAN interfaces.

2.7 Brief comparison

In the previous sections, protocols where redundancy in the physical layer can be applied
were presented. These protocols were divided into four main groups, where the criteria was
the target application. A final comparison among them will be performed in this section. The
comparison will also be divided into four tables, respecting the previous separation. However,
the same assessment criteria will be used in all of them.

In table 2.3, protocols for industrial automation are compared regarding: Maximum num-
ber of buses; the use of the additional buses for bandwidth improvement, the type of redun-
dancy and the possibility of node replication.

Protocol Maximum
number
of buses

Bandwidth
improve-
ment

Type of re-
dundancy
(for bus)

Node re-
dundancy

Comments

WorldFIP 2 No Active Yes: bus
arbitrator

PROFIBUS 2 No Active Yes
P-NET 2 No Passive No The redundant buses

are developed by a
third party company.
Information about

node redundancy not
found.

Table 2.3: Industrial automation protocols comparison

Comparing the protocols presented in table 2.3, they are all similar concerning the assess-
ment criterias. The P-NET has no redundancy at node level while the other two have this
feature. Concerning the bus redundancy, specification does not provide it for P-NET. This
buses redundancy has been developed by a third party company.

WorldFIP can use bus redundancy and node redundancy. Node redundancy is only ap-
plicable to the bus arbitrator node. On the other hand, PROFIBUS can use replicated buses
and also redundant nodes.

The three protocols presented in table 2.3 can only have a supplementary bus and none
of them can use the additional bus to increment the total available bandwidth of the system.

Regarding the protocols for embedded applications, in table 2.4, the characteristics of
them are summarized.

For embedded applications (presented in table 2.4), the analyzed protocols have node
replication and bus replication. Regarding the bus replication, MIL-STD-1553B can use up
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Protocol Maximum
number of

buses

Bandwidth
improve-
ment

Type of re-
dundancy
(for bus)

Node
replication

Comments

TTP 2 No Active Yes
FlexRay 2 Yes Active Yes
MIL-STD-
1553B

4 No Passive Yes Few information
about node
replication.

Table 2.4: Embedded applications protocols comparison

to 4 buses in a passive redundancy scheme. FlexRay and TTP can use up to 2 buses (or
stars) using an active redundancy.

FlexRay is able to improve the bandwidth using the additional buses. This means that,
in theory, the bandwidth can be doubled using the two buses.

Concerning protocols based on CAN, in table 2.5 they are compared.
TTCAN, FlexCAN and MilCAN can use an unlimited number of buses. In this sense,

unlimited means as many buses as the microcontroller can support. This number is limited by
the number of CAN controllers, by the processing power and available memory. In the case of
TTCAN, the additional buses can be used to increase the system bandwidth. Despite this, the
redundant buses are managed by higher layers and thus is not transparent to the application.
However, no other analyzed protocol can use the additional buses for this purpose.

Concerning the node redundancy, in RedCAN and Columbus Egg Idea it doesn’t make
sense to talk about it, because the definitions are only based on the fault tolerance of the
bus. In RedCAN the base is a module to isolate nodes or to transform the formed ring CAN
in a bus. The Columbus Egg Idea is based on one node, and thus, the replication of a node
is not considered. In fact, Columbus Egg Idea is not a protocol definition, but a change to
the physical layer.

The Fault Active Mechanism, CANdor and CANopen can use up to 2 buses and replication
of the node. In the three protocols, the additional buses cannot be used to send different
data in different buses.

DeviceNet is an important standard concerning the industry. However, there is few infor-
mation about the node and network replication. There is a device developed by a third party
company that claims to have DeviceNet network redundancy. Regarding node replication no
information has been found.

Except the Fault-Active Mechanism, the others CAN based protocols that provide some
kind of network redundancy use an active redundancy.

Regarding the CAN star solutions, the comparison is presented in table 2.6.
In the case of the star topologies, talking about the replication of the network is not the

same as talking about the network replication of the bus. In the case of the stars, the link
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Protocol Maximum
number of

buses

Bandwidth
improve-
ment

Type of re-
dundancy
(for bus)

Node
replication

Comments

TTCAN Unlimited Yes Active Yes Node replication is
provided for the time
master. Bandwidth

improvement
managed by higher

layers.
FlexCAN Unlimited No Active Yes
RedCAN 1 No — No
Columbus
Egg Idea

2 No Active No Expanding the
number of buses can

be done.
CANdor 2 No Active Yes
Fault-
Active

Mechanism

2 No Passive Yes

CANopen 2 No Active Yes
MilCAN Unlimited No Active No Information about

node replication not
found in literature.

DeviceNet 2 No Active No The redundant buses
are developed by a

third party company.
Information about

node redundancy not
found.

Table 2.5: CAN based protocols comparison

from the node to the star hub is a dedicated link, and can only be used by the node itself.
ReCANCentrate and StarCAN use one link for the uplink and one link for the downlink.

Additionally, ReCANCentrate can use a replicated central hub linked together. Moreover, in
ReCANCentrate all the nodes are connected to both hubs.

Concerning the Ethernet based solutions, in table 2.7, the protocols presented in section
2.5 are compared.

As it can be seen in table 2.5 only the commercial solution DualNet and EtherChannel
can use the additional buses to improve the bandwidth. The other solutions do not have this
feature (or no information about it could be found).

EtherCAT, uses a ring topology to provide redundancy. In that way, one partition on the
media is supported. There is no bandwidth increasing because of the use of the ring topology.

DualNet is a type of Ethernet controller for personal computers. Thus, there is no defi-
nition for the node replication.

Regarding PROFINET, node replication is planned (like stated in [Hen09]). No more
information about node replication in PROFINET could be found in the literature.
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Protocol Maximum
number of

buses

Bandwidth
improve-
ment

Type of re-
dundancy
(for links)

Node
replication

Comments

ReCANCentrate 4 No Active Yes Node replication is
valid for the central
hub. The nodes are
connected to both
hubs using uplink
and downlink.

StarCAN 2 No — No Use of two
unidirectional links

(downlink and
uplink).

Saha’s Hub 1 No — No

Table 2.6: CAN star topologies comparison

2.8 Conclusions

In this chapter definitions concerning dependability and fault tolerant communications
have been discussed. Among others, definitions that must be taken into account are the
dependability, fault, error and failure. These last three are defined as a sequence of events in
a system.

In architectures relying in fieldbuses, the use of a common communication medium can
introduce additional dependability problems. These problems arise from the use of more
electric/electronic components. In that way, there are more components in the system which
can have faults.

The focus of the discussion is fault tolerance and system/architecture to achieve it. In
particular, redundancy is discussed since it is a fundamental way to provided dependability.
However, the use of redundancy in a specific component can introduce other problem, namely
replica consistency problems. The consistency problem can be compared with the consistency
problem used in a database system. This problem has been addressed regarding distributed
systems in a general way. There are communication primitives to ensure the consistency of
the replicas, namely the atomic broadcast.

In this chapter, protocols/communications systems that provide replication in the physical
layer have been presented. These protocols have been divided into four main categories
regarding their target applications and support on a widely accepted standard: buses for
industrial automation, buses for embedded systems, Ethernet based solutions and CAN based
solutions.

In section 2.7 a brief comparison among the presented protocols was performed. The
used criterias are the bus replication, node replication and if the additional buses serve to
increase the bandwidth. The type of redundancy is also assessed. In the presented analysis,
only TTCAN can have an unlimited number of active redundant buses with bandwidth
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Protocol Maximum
number of

buses

Bandwidth
improve-
ment

Type of re-
dundancy
(for bus)

Node
replication

Comments

PROFINET 2 No Active Planned No information found
about the bandwidth
improvement using
the replicated buses.

TTE 2 No Active Yes TTE can use
replicated Ethernet

channels. The
topology is a star

with redundant hub.
Powerlink 2 No Active Yes Node replication

available for
managing node.

EtherChannel 8 Yes Active Yes
DualNet 2 Yes Active No
EtherCAT 1 No — No Ring topology.

Information about
node replication not

found.

Table 2.7: Ethernet based protocols comparison

improvement, and also node replication. However, the bandwidth improvement is managed
by the higher layers and thus is not transparent to the application. TTCAN also provides
node replication, even if only for the time master node.

The use of the CAN network is still actual since it supports many applications, namely in
automotive and avionics. The presented CAN protocols that have redundancy cannot fully
satisfy requirements such as redundancy and bandwidth improvement in the lower layers.
Moreover, the number of buses that can be used is normally limited (in rare cases there can
be used an unlimited number of buses).

In the next chapter, a proposal to achieve active buses redundancy is described. The
proposal is targeted to a particular paradigm (FTT-Flexible Time-Triggered), however it can
be generalized as it will be presented further on.



Chapter 3

A proposal for bus media
redundancy in FTT-CAN

3.1 Introduction

The FTT-CAN protocol (Flexible Time-Triggered communication on CAN) [APF02,
APF+07] is a time-triggered protocol based on CAN that provides a high level of opera-
tional flexibility. FTT-CAN adopts a master-multislave architecture and in its initial speci-
fication it did not consider master replication or other fault tolerance issues. In the last few
years, some work was carried out to add fault tolerance properties without compromising
dependability [Fer05]. However, the bus media redundancy was not considered, making the
non-replicated bus a single point of failure. Also, the available bandwidth of the FTT-CAN
system is inherited from the CAN network less the overhead imposed by the FTT-CAN
protocol.

The use of replicated buses is the obvious solution, both to remove the single point of
failure and, if possible, to gain additional bandwidth. With this solution, the flexibility of
FTT-CAN is increased since more traffic can be be transmitted over one or several buses.
In case of the unavailability of one bus, the system can switch to a degraded mode where it
will operate safely but with some performance penalty, considering that at least one bus is
working properly.

In [Fer05], a master replication scheme was been presented to improve the fault tolerance.
When applying this replication to a multiple buses system, new problems arise. However,
new features can be added using this replication.

In the proposed architecture, the number of replicas (buses and masters) can be unlimited
enforcing the dependability of the system as well as improving the bandwidth (in case of
bus replication). It should be noticed that the improvement of the bandwidth is a very
important feature since the limitations of bandwidth in CAN were considered severe for some
applications such as automotive and thus lead to the emergence of new protocols such as

53
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FlexRay [Fle04c].

3.2 The FTT-CAN protocol

The FTT-CAN protocol [APF02] has been developed with the main purpose of combi-
ning a high level of operational flexibility with timeliness guarantees. It uses the dual-phase
elementary cycle concept for isolated time and event-triggered communication. The time-
triggered traffic is scheduled centrally and online in a particular node called a master, facili-
tating online admission control of requests. The protocol relies on a relaxed master-multislave
medium access control in which the same master message triggers the transmission of mes-
sages in several slaves (also known as stations) simultaneously (master-multislave). The
eventual collisions among slaves’ messages are handled by the native distributed arbitration
of CAN.

In figure 3.1 the general architecture of the system is depicted.

Figure 3.1: FTT-CAN architecture

FTT-CAN bus time is slotted in consecutive Elementary Cycles (EC) with fixed duration:
LEC - Length of the Elementary Cycle. All nodes are synchronized at the start of each EC
by the reception of a particular message known as an EC Trigger Message (TM). This trigger
message is sent by the master node. Within each EC the protocol defines two consecutive
windows, asynchronous and synchronous, that correspond to two separate phases (see figure
3.2). The first is used to convey event-triggered traffic, here called asynchronous because
the transmission requests can be issued at any instant. The second is used to convey time-
triggered traffic, herein called synchronous because its transmission occurs synchronously
with the ECs. These two windows are separated by a guard time (α in figuere 3.2). The
slaves cannot begin any transmission during this time however, an asynchronous message
that began before can occupy this time. Thus, it belongs to the asynchronous window.

The synchronous window of the nth EC has a duration that is set according to the traffic
scheduled for it. The schedule for each EC is conveyed in the respective data field of the EC
trigger message (see figure 3.3). Since this window is placed at the end of the EC, its starting
instant is variable and it is also encoded in the respective EC trigger message.

The communication requirements are held in a database located in the master
node [Ped03], the System Requirements Database (SRDB). This database holds several com-
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Figure 3.2: The elementary cycle in FTT-CAN

Figure 3.3: Master-multislave access control and EC schedule coding scheme

ponents, one of which is the Synchronous Requirements Table (SRT), that contains the
description of the periodic message streams. Based on the SRT, an online scheduler builds
the synchronous schedules for each EC (EC - schedule). These schedules are then inserted in
the data area (each bit triggers a message, and is called a trigger flag) of the appropriate EC
trigger message (see figure 3.3) and broadcasted with it. In the data field of the trigger mes-
sage, information concerning the control of the system is piggybacked. This information is
the length of the synchronous window, a sequence number for control, a master identification,
among other. Two data bytes of the data field are reserved for this information.

Moreover, the FTT master can also trigger tasks on the slave nodes [CF04]. The tasks
to be triggered are also encoded in the trigger message using the same mechanisms adopted
for the synchronous messages. After decoding the TM, the slaves activate the corresponding
tasks at the middle of the next TM. Due to the synchronous behaviour of the TM, the task
activation has a low jitter. Figure 3.3 shows task 13 activation. This task activation can be
used to trigger functions in one or more slave nodes, leading to synchronization among slaves.

Due to the master-multislave architecture, the master has the control of all the commu-
nications on the bus and has a centralized view of the traffic, knowing all the messages which
must be scheduled at any given time. As a result, these features make possible the use of
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any uniprocessor non-preemptive scheduling algorithm by the master node. The slaves send
asynchronous messages to the master whenever they need to change the set of messages or
tasks to be scheduled. If the new schedule is feasible, the master will reflect this in subsequent
trigger messages.

Calha and Fonseca defined an architecture to trigger tasks remotely using FTT in a
platform independent way [CF03, Cal06]. This architecture uses the native independence
of hardware of the Java language to trigger tasks remotely, the so called FTTlet that are
scheduled by the FTT master like the servelets used in the Java language [CFSM06]. In
the slaves the FTTlets are managed by the Java Virtual Machine (JVM) which must be
changed in order to trigger the FTTlets. The authors claim that the system is fast because
code is loaded into memory once and runs from memory thereafter; is relatively simple to
implement; and it inherits the independence of platform of the Java architecture. However,
the use of Java in small devices is not yet very disseminated. Regarding this issue, refer
to [Sil02] and [IJCS08] for more details.

Also, the slave nodes can online change the synchronous messages of the system. The
slaves ask the master to change the synchronous requirement for a particular message or task
(generally called variables). This is done using an asynchronous message sent by the slave to
the master.

3.2.1 FTT master replication

Since the master is a single point of failure, it must be replicated. The master replication
has already been object of intensive work by Ferreira [Fer05]. The master can have one or
more replicas to improve the fault tolerance of the system.

The system adopts a leader-follower behaviour, where the leader sends the trigger message
and the follower also tries to send it in parallel. If the follower cannot send it (because the
bus is busy with the leader trigger message), it remains as the follower. On the other hand, if
the follower successfully transmits the trigger message, it becomes the leader, meaning that
any problem has occurred with the leader master node. The masters need to be synchronized
to perform the same schedule for each EC. This is done using a master replication protocol
and synchronization defined in [Fer05]. After receiving the trigger message sent by the leader
master, the follower master nodes compare it with the one generated internally. This com-
parison is made in the entire message, namely, the identifier and data (recall that the data
contains the scheduling and control information). Two situations can then occur:

• The trigger messages match. The follower master prepares the next elementary cycle;

• The trigger messages do not match. The follower master enters in the synchronization
state.
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In the synchronization state, the follower will send an asynchronous message to the master
leader. In the subsequent elementary cycles the leader master node will send asynchronous
messages with the SRT and with information about the elementary cycle that must be met
to successfully re-synchronize the follower master.

Concerning the online changes issued by the slaves, they are received by all the masters
which update their synchronous requirement tables.

Regarding the localization of the masters, the active and backup masters can be placed
anywhere across the bus.

Next, the FTT features will be summarized.

3.2.2 FTT features summary

Before the start of this work, the main features defined for FTT were:

• Time divided into consecutive elementary cycles;

• Coexistence of synchronous and asynchronous messages;

• Master schedule messages in the bus;

• Master schedule tasks to be triggered in slaves;

• Master replication with synchronization between them;

• Slaves can change online the synchronous’ variables properties.

Despite these features, FTT-CAN has limitations that will be detailed in next section.

3.3 Limitations of the FTT-CAN

3.3.1 The priority inversion and jitter problem

Due to the distributed behaviour of FTT-CAN, the software applications run at different
nodes, each with different clock skew, even if the hardware is identical. All the nodes are
synchronized at the beginning of the elementary cycle using the reception of the trigger
message. The time elapsed from the reception of the trigger message until the beginning of
the synchronous window is sufficient to cause skew in the clocks of the distributed nodes.
These small variations are sufficient to have a priority inversion problem at the beginning of
the synchronous window.

All the synchronous messages are triggered by different slaves at the beginning of the
synchronous window. If the timer of the slave who needs to send the highest priority message
has a small delay compared with the timer of the slave who needs to send a lower prio-
rity message, the lower priority message will be transmitted first than the highest priority
message [APS06].
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Because all the synchronous messages are sent in sequence, this means that the last
message in the synchronous window has less priority (if the problem presented in the last
paragraph is ignored) than the first ones. The last messages of the synchronous window
are affected by the jitter introduced by the bit stuffing imposed by the previous ones on
the current elementary cycle. This jitter decreases for higher bit-rates. However, depending
on the application and on the bitrate, jitter can affect the performance and the response
time of the system [AAP06, APLA06]. In [TBW95], Tindell et al. computed the CAN
message response time, not considering the bit stuffing, while, in [NHN03] a probabilistic
worst-case transmission time based on bit stuffing distributions instead of the worst case
values is discussed.

Ataide et al. [APLA06] propose a new scheme to the synchronous part of the elementary
cycle of FTT-CAN to deal with jitter and priority inversion problems. In this solution the
synchronous part is divided into slots, as in TDMA, where each slot is assigned to a specific
message. Each slot allocates room for the largest possible message, i.e., 8 bytes of data and
maximum bit stuffing. This implies a bandwidth loss every time the transmitted message is
smaller than the largest one. According to the scheme, messages are not sent in burst and
between each two messages there is a guard window. The guard window corresponds to the
stuff bits that are not inserted (because they were not necessary) plus the time to complete
the largest message. This technique solves the priority inversion problem and decreases the
jitter. In this guard time the slaves cannot begin any transmission.

In the asynchronous part of the elementary cycle, there is also a priority inversion pro-
blem. This problem is the same as the inversion problem of some CAN controllers documented
in [THW95]. This problem has been reported in the literature for the Earliest Deadline First
(EDF) scheduling policy [MNS96]. This problem is common in CAN controllers with more
than one transmission buffer. The relative priority of the transmission buffers is usually assi-
gned by software. However, to do a correct buffer management, the software must inspect all
ready messages and assign the correct priority to the buffers just before message transmission.
Some CAN controllers will do this by hardware making the correct priority assignment to the
buffers according to the identifiers of the message to be transmitted. According to [THW95],
an example of such controllers is the Intel 82527 [Int04]. This priority inversion will occur if
the CAN controller has to wait for the bus to become idle (because there is messages on bus)
while the application tries to send messages, that must wait at buffers.

Regarding the physical layer, FTT-CAN has two major limitations, the redundancy sup-
port and the limited available bandwidth. These limitations will be explained in next two
sections (sections 3.3.2 and 3.3.3).
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3.3.2 Network redundancy support

The CAN physical layer defines support for fault tolerance and error detection, through
mechanisms to perform error detection at the message level: cyclic redundancy check, frame
check and acknowledge errors.

At the bit level there are two error detection mechanisms, transmission monitoring, where
each node transmitting a message also reads that message to ensure its correct transmission
and bit stuffing (even if this is not used natively for error detection but for synchronization).

This error detection is effective and can be considered efficient for a large number of
applications. On the other hand, the redundancy support in CAN is not so effective as the
error detection. The CAN definition determines that the signal is transmitted in a dual wire
operating in differential voltage. This kind of redundancy is implemented in a transparent
way to the application and no information is passed to the application. The transmission of
the electrical signal in a differential manner, just supports the partition of one wire. When
this occurs, the noise signal ratio becomes lower and some CAN controllers switch to a
degraded mode, configured at 125kbps [RVA99]. Thus, the bus redundancy is limited, since
the controllers are switched to a degraded mode while operating with just one wire.

FTT-CAN does not define any redundancy at the physical layer. The available redun-
dancy on FTT-CAN is inherited from the redundancy of the CAN underlying network layer.
The use of redundant buses enables the transmission of different messages in different buses,
leading to an improvement of the available bandwidth. The bandwidth problem will be
addressed in the next section.

3.3.3 Available bandwidth

The available bandwidth in FTT-CAN is limited by the available bandwidth of the CAN
underlying network. In addition to this limitation, the FTT-CAN uses some extra bandwidth
to the trigger message, thus the bandwidth which can be used by the application decreases.

The CAN protocol data link layer imposes significant overhead. This overhead is due to
the necessary signalling bits (identifier, CRC, etc) and due to bit stuffing. The CAN frame
payload can vary from 0 to 64 bits while the number of signalling bits remains constant.

For CAN 2.0A (11 bits identifier), the minimum number of bits of a CAN frame without
stuffing is represented by equation 3.1 [NHNP01]. In the referred equation, the three bits of
intermission time are taken into account because these bits contribute for the total overhead.
Equation 3.2 represents the maximum number of bits of a CAN frame [NHNP01].

min(Nbits) = 8×DLC + 13 + g (3.1)

max(Nbits) = 8×DLC + 13 + g +
⌊
g + 8×DLC − 1

4

⌋
(3.2)
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The variable g in these equations (equations 3.1 and 3.2) is the number of bits exposed
to stuffing. For CAN 2.A (11 bits identifier) is 34 and for CAN 2.0B (29 bits identifier) is
54 [NHNP01, NHN03], thus g ∈ {34, 54}. The number of bits, Nbits, represents the number of
bits of a CAN message, which is an integer between min(Nbits) and max(Nbits) (as expressed
in statement 3.3).

Nbits ∈ N ∧ Nbits ∈ [min(Nbits),max(Nbits)] (3.3)

The overhead of the CAN message is represented by equation 3.4 while in equation 3.5
the CAN data payload throughput is presented.

CANovh = (1− 8×DLC
Nbits

)× 100(%) (3.4)

CANthp = 8×DLC
Nbits

× 100(%) (3.5)

The overhead of the CAN message is the percentage of bits which do not transport any
useful information for the CAN user. This is the percentage of bits used by the protocol. The
maximum and minimum CAN overhead is represented by equation 3.6 and 3.7, respectivelly.

max(CANovh) = (1− 8×DLC
max(Nbits))× 100(%) (3.6)

min(CANovh) = (1− 8×DLC
min(Nbits))× 100(%) (3.7)

From equation 3.1 to 3.7, DLC is the number of data bytes of the CAN message (please
refer to section 2.6.2).

In table 3.1, the CAN message overhead is presented considering the minimum and maxi-
mum stuff bits (using equations 3.6 and 3.7) for all possible DLC cases.
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Data bytes CAN Overhead
Min S (%) Max S (%)

04 - -
1 85.5 87.7
2 74.6 78.7
3 66.2 71.8
4 59.5 66.3
5 54 61.9
6 49.5 58.3
7 45.6 55.2
8 42.3 52.6

Table 3.1: CAN overhead
Min S: Minimum number of stuff bits
Max S: Maximum number of stuff bits

In table 3.1, the case of zero data bytes is a particular situation where no useful data is
sent over the CAN network. However, sometimes a message with no data bytes can be useful,
e.g., to signal some event or to ask the transmission of a value (remote frame).

As it can be seen in table 3.1 the minimum overhead is achieved with 8 data bytes and
without stuff bits. However, even with this scenario, the native CAN protocol overhead is
42.3%. A message without stuff bits has a low probability of occurrence.

Message manipulation can be performed to reduce bit stuffing [NHNP01, NHN02]. The
proposed method is to perform a XOR of a bit pattern with the data to be transmitted at the
transmission side. At the reception side the same operation must be done in order to restore
the original data. The bit pattern must be chosen according to the data to be transmitted,
thus adding a significant computing overhead. Even using the method presented by Nolte et
al. [NHN02], it is not possible to get an overhead less than 42.3%.

As presented in table 3.1, the overhead can be as high as 87.7% (in the worst case). This
means that, in a bus running at 1Mbps, the maximum payload throughput achievable is
577kbps in the best case and 123kbps in the worst case.

The previous analysis was for the case of an identifier length of 11 bits. The same analysis
can be made for CAN 2.0B (29 bits identifier). For this case, the overhead will be higher. As
an example, for eight data bytes without stuffing, the overhead is 51.1% and for 1 data bytes
with maximum bit stuffing the overhead is 89.3%. The work presented in this dissertation
uses CAN 2.0A as reference, thus this issue will not be further discussed.

Other important factor that impacts on the CAN bitrate is the cable length. At the
maximum bitrate (1Mbps) the cable length can be only 40m, maximum. This length can be
limitative if the bus is to be used in an industrial environment. To use a 1km bus the bitrate
must be decreased for a value as low as 50kbps [Pas04]. This means that, even in the best
case, the system will just have a throughput of 28.85kbps in CAN 2.0A (assuming the case

4Unusable for data transmission.
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of no stuffing and 8 data bytes). This value is very low for the actual bandwidth demands of
typical applications on the fieldbus domains.

In addition to the limitations of the CAN network physical layer, the FTT-CAN also
imposes an overhead due to control messages, mostly by the trigger message. The bandwidth
consumed by the trigger message depends on the length of the elementary cycle (in percen-
tage), the bitrate and on the data bytes of the trigger message (recall that the number of
data bytes of the trigger message is directly related with the number of synchronous messages
in the system). Equation 3.9 represents the trigger message overhead without bit stuffing,
while equation 3.10 represents the trigger message overhead with the maximum bit stuffing.

TMovh =
Nbits × 1

Br

LEC
× 100(%) (3.8)

min(TMovh) =
min(Nbits)× 1

Br

LEC
⇔ min(TMovh) =

(13 + g + 8×DLCT M )× 1
Br

LEC
× 100(%)

(3.9)

max(TMovh) =
max(Nbits)× 1

Br

LEC
⇔

⇔ max(TMovh) =
(13 + g + 8×DLC +

⌊
g+8×DLCT M−1

4

⌋
)× 1

Br

LEC
× 100(%) (3.10)

Where:

• Nbits is the number of bits of a CAN message (the trigger message). Refer to equations
3.1, 3.2 and 3.3;

• g ∈ {34, 54}, according the CAN standard used (as for equations 3.1 and 3.2);

• DLCT M is the number of data bytes of the trigger message;

• LEC is the length of the elementary cycle;

• Br is the CAN bitrate.

Table 3.2 presents the overhead of the trigger message (values in percentage) for an elementary
cycle of 5ms while table 3.3 presents the overhead of the trigger message (values in percentage)
using an elementary cycle of 20ms. For a correct assessment of the tables 3.2 and 3.3 a note
must be kept in mind: the trigger message needs at least two data bytes for the master to
transmit specific information regarding the control of the network.

For an elementary cycle of 5ms, the overhead of the trigger message cannot be less than
1.4%. This value is achieved with just one byte for the trigger message flags for a bitrate of
1Mbps.



3.3 Limitations of the FTT-CAN 63

`````````````̀Br (kbps)
DLCT M 3 4 5 6 7 8

Min S Max S Min S Max S Min S Max S Min S Max S Min S Max S Min S Max S
50 28.4 34 31.6 38 34.8 42 38 46 41.2 50 44.4 54
100 14.2 17 15.8 19 17.4 21 19 23 20.6 25 22.2 27
125 11.4 13.6 12.6 15.2 13.9 16.8 15.2 18.4 16.5 20 17.8 21.6
250 5.7 6.8 6.3 7.6 7 8.4 7.6 9.2 8.2 10 8.9 10.8
500 2.8 3.4 3.2 3.8 3.5 4.2 3.8 4.6 4.1 5 4.4 5.4
1000 1.4 1.7 1.6 1.9 1.7 2.1 1.9 2.3 2.1 2.5 2.2 2.7

Table 3.2: Trigger message overhead for 5ms of elementary cycle
Min S: Minimum number of stuff bits
Max S: Maximum number of stuff bits

`````````````̀Br (kbps)
DLCT M 3 4 5 6 7 8

Min S Max S Min S Max S Min S Max S Min S Max S Min S Max S Min S Max S
50 7.1 8.5 7.9 9.5 8.7 10.5 9.5 11.5 10.3 12.5 11.1 13.5
100 3.6 4.3 4 4.8 4.4 5.3 4.8 5.8 5.2 6.3 5.6 6.8
125 2.8 3.4 3.2 3.8 3.5 4.2 3.8 4.6 4.1 5 4.4 5.4
250 1.4 1.7 1.6 1.9 1.7 2.1 1.9 2.3 2.1 2.5 2.2 2.7
500 0.7 0.8 0.8 1 0.9 1.1 1 1.2 1 1.3 1.1 1.4
1000 0.4 0.4 0.4 0.5 0.4 0.5 0.5 0.6 0.5 0.6 0.6 0.7

Table 3.3: Trigger message overhead for 20ms of elementary cycle
Min S: Minimum number of stuff bits
Max S: Maximum number of stuff bits

With a larger elementary cycle the trigger message overhead decreases. However, with a
larger elementary cycle, the time resolution of the system would also decrease. In table 3.3
the minimum overhead of the trigger message is 0.4%. This is achieved with 1 data byte for
trigger flags and without stuff bits. For 8 data bytes, with a bitrate of 1Mbps, the overhead
of the trigger message varies from 0.6% (without stuffing) to 0.7% (with maximum stuffing).

As an example, in the CAMBADA (Cooperative Autonomous Mobile roBots with
Advanced Distributed Architecture) soccer robot with distributed control, where the
FTT-CAN is applied to connect sensors, controllers and actuators, the trigger message has
6 data bytes, the elementary cycle was set to 5ms and the bitrate was set to 250kbps [ASF+04],
leading to an overhead of the trigger message of 7.6%. Also note that this value assumes zero
bit stuffing (unrealistic in a real environment). If the worst case of stuff bits is used, the
trigger message overhead will be 9.2%.

In that way, the total overhead regarding the FTT-CAN is the combined overhead of the
CAN overhead and the trigger message overhead. Thus, the maximum available bandwidth
for the application is:

BW = Br × (100− CANovh)× (100− TMovh)(kbps) (3.11)

Using the example explained before (the CAMBADA soccer robot), with:

• Elementary cycle of 5ms;

• Trigger message with 6 data bytes;
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• Bitrate of 250kbps;

• Synchronous and asynchronous messages of 8 data bytes (FTT-CAN messages for data
exchange);

• Assuming no stuff bits in all the messages (trigger, synchronous and asynchronous
messages).

In this case, the available bandwidth for the application is:

BW = 250× (100− 7.6)× (100− 42.3) = 133.28kbps (3.12)

Notice that the presented analysis used a real-world example for the system parameters,
but with no bit stuffing. This means that the throughput can be even worse.

To overcome the bandwidth limitation and the lack of bus media redundancy in CAN and
FTT-CAN, the bus replication is the main focus of this dissertation and several proposals
will be detailed next.

3.4 FTT-CAN with multiple buses

3.4.1 Introduction

The use of more than one communication channel is a paradigm already used in some
systems, e.g. FlexRay, TTP/C and Ethernet. However, all of them have limitations, as
presented in section 2.7. FlexRay, for example, only allows the use of two redundant buses
that can also be used to send different data, improving the available bandwidth of the system.
On the other hand, TTP only allows the transmission of the same message over all the buses.

Concerning CAN, the available protocols also exhibit limitations regarding the bus re-
dundancy support. More specifically, TTCAN and FlexCAN are the more featured solutions
regarding the bus redundancy. However, FlexCAN cannot use the additional buses for im-
proving the available bandwidth while TTCAN has this feature managed by higher layers
protocols.

FTT-CAN can achieve high efficiency and flexibility. To improve this flexibility and
overcome the limitations presented in section 3.3, an architecture with support for two or more
buses is proposed in this dissertation. The data can be the same in all the buses, increasing
the redundancy of a message, or can be different, increasing the available bandwidth of the
system [SF06, SFF07a]. This flexibility is an easy way to overcome the redundancy and
bandwidth limitation, without adding significant modifications to the nodes in the system.
Even the slave nodes can be exactly the same as for the case of a single bus.

The following sections present the architecture and required modifications to FTT-CAN
necessary to provide bus media redundancy and/or increase its payload.
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3.4.2 Multiple buses architecture

The natural solution to overcome the presented limitations is to use more than one bus
in FTT-CAN, since, with multiple buses, both the bandwidth and the dependability can be
increased [SF06, SFF06b]. In addition, in the last years, the microcontrollers manufacturers
added extra CAN controllers to their microcontrollers stimulating the use of multiple buses
and facilitates any possible implementation. In figure 3.4 an example of the planned system
architecture with four buses is presented.

Figure 3.4: FTT-CAN with multiple buses architecture

FTT-CAN is a master-multislave architecture where the master has a complete view of
the system. As it can be seen in figure 3.4, the master node connects to all the available
buses while the slaves can connect to just one, to a subset or to all buses. As in the case
of FTT-CAN with one bus, the master node performs the scheduling for all the buses. The
slave nodes can connect to just one bus (slave 5 in figure 3.4) or to a set of buses (slaves 1, 2
and 3 in figure 3.4). Thus, the slaves used by the FTT-CAN with just one CAN bus, can be
used in this new architecture.

The additional buses improve the overall bandwidth of the system while increasing the
fault tolerance. The additional buses can be used to transmit the same message on all the
buses (or a subset of them) or to transmit different messages in different buses. Moreover,
a hybrid scheduling of the messages is possible, e.g., a message could be transmitted in two
buses and other message in other buses at the same time. This also improves the flexibility
of FTT-CAN, a major design goal since its initial design stages [APF02].

3.4.3 The trigger message

The trigger message (TM) needs to be adapted to the new multiple buses architecture.
Several approaches can be devised to trigger message transmission in the multiple buses
system.

The trigger message can be transmitted in all the buses or it could also be transmitted in a
subset of the buses. If transmitted in all the buses it can be synchronized with the other trigger
messages in the other buses, or it could be unsynchronized. However, to take advantage of the
possibility of synchronizing the slaves with the trigger message, it was decided to synchronize
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the TM transmission in all the buses, i.e., in all the buses the elementary cycle begins and
ends at the same time. This design decision has some advantages comparing with having
different elementary cycle lengths in different buses:

• All the buses have the same timing mark. In that way, slaves that are connected to
just one bus are synchronized in time with all the other slaves in the system. If the
trigger messages were not transmitted at the same instant in all the buses, an important
property of the system would be lost: the synchronization of all the slaves;

• It is easy to send redundant messages in different buses. If all the buses were not syn-
chronized, it would be almost impossible to send redundant messages since it would
be necessary to send information concerning message scheduling and time of produc-
tion/consumption.

In the case of just one bus, the trigger message is transmitted, containing the scheduling for
the present elementary cycle. However, for the case of more than one bus, several approaches
can be foreseen for the behaviour of the trigger message [SF06]. Three approaches to transmit
the trigger messages have been identified:

(a) Only one trigger message is transmitted in one bus per each elementary cycle;

(b) N identical trigger messages are transmitted in all the buses per each elementary cycle;

(c) Different trigger messages are transmitted in different buses per each elementary cycle.

The transmission of the trigger message in just one bus or a subset of buses (scenario (a)
above) can be considered with low interest, since some of the slaves may only be connected to
just one bus. This would imply that all the slaves should be connected to the bus where the
trigger message is transmitted. Notice that this scheme leads to a better bandwidth usage
since it requires less trigger messages, but it decreases the flexibility of the entire system.

In what concerns the trigger flags (bits of the trigger message data field, see figure 3.3)
also three scenarios are possible (or a hybrid solution between them):

1. A trigger flag indicating the transmission of a certain message in every bus to which
the producer is connected;

2. The message should be transmitted only in the bus where the respective trigger flag
was set active in the trigger message;

3. The trigger flag indicates the transmission of the message in a set of buses previously
assigned to it and known by the producer.

Scenario (a) requires that the timings of all buses should be derived from the reception of the
trigger message in the specific bus where it was transmitted. This scenario for the trigger
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message can only be combined with scenarios 1 and 3 for the trigger flags. Its advantages are
essentially the similarity of the master with the current FTT master and the additional band-
width derived from the absence of redundant trigger messages. This additional bandwidth
can be used by additional synchronous messages. The bandwidth is lost if the master is not
able to schedule the maximum number of messages in every bus. As this is almost impossible
to happen, this scenario becomes of reduced interest. Since the length of the synchronous
window (lsw) is coded in the trigger message, slaves must compute two different values of lsw:
with and without TM. Figure 3.5 shows a simplified example of this combination of scenarios
for a reduced number of synchronous messages (the meanings of the additional parameters in
the figure are: LEC - Length of the Elementary Cycle; ltm - Length of the Trigger Message;
law - Length of the Asynchronous Window; uppercase means fixed sized windows, lower case
means variable).

For now on, the subscript element indicates the bus while the superscript element in-
dicates the elementary cycle of a specific parameter. Example: law0

1 means the length of
asynchronous window of elementary cycle zero of bus one.

Figure 3.5: Scenario (a)

Scenario (b) presented in figure 3.6, describes the transmission of redundant synchronous
messages in every bus. In this case the length of the synchronous window, lsw, is identical
in every bus. It should be associated with scenario 1 or 2 otherwise bandwidth would be lost
(recall that the lsw is equal in all the buses).

This scenario leads to a larger bandwidth usage than the first scenario. Also, the slave
nodes have the elementary cycle well defined in all buses (comparing with scenario (a)),
because all of them are separated by the trigger messages. Thus, the computational overhead
for the slave’s middleware is smaller than in the first scenario where the slaves must compute
different elementary cycles in different buses. In addition, in scenario (b), there is not a well
defined separation between elementary cycles in Nbuses − 1 buses.

Finally, scenario (c) combined with strategy 2, is quite useful and flexible (see figure 3.7).
In fact, if Nbuses redundancy is not required (Nbuses represents the number of buses of the
system), bandwidth can be spared by just using the adequate number of redundant messages.
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Figure 3.6: Scenario (b)

For example, in a system with 3 buses, safety critical messages can be transmitted in bus 1
and bus 2, while bus 3 is used to transmit non-critical messages. If bus 1 fails, the master can
reschedule the replicas that use bus 1 to bus 3, keeping the level of redundancy at the cost of
delaying or discarding non-critical messages. In what concerns the computational overhead
in the slaves, this scenario leads to more overhead than scenario (b), but less than scenario
(a). In this case the slaves must decode Nbuses trigger messages in each EC while in scenario
(b) it can be enough to decode just one trigger message per EC, because all are supposed to
be identical.

Figure 3.7: Scenario (c)

A remark must be made here. With a maximum payload of 8 bytes, i.e., 64 bits in
the CAN messages, the trigger message can only have 48 flags (2 bytes are used for coding
additional information). If a larger number of synchronous messages is to be used, then the
trigger message must be extended with at least one more CAN message. So, at least two
CAN messages will be used as triggers in the beginning of the elementary cycle. This can
have a significant impact in the bandwidth usage.

Also, it can suffer from the limited number of trigger flags if the system wide message
identification is used, i.e., if a trigger flag in position K always triggers the same message
in every bus. An alternative is to use also bus aware message identification. In that case a
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trigger flag in position K will trigger a different message in each bus. This approach explores
well the possibility to connect some slaves to a reduced set (or just one) of the available buses.

If Nsw is the number of system wide flags and Nba the number of bus aware flags, it is
possible then to trigger the following number of synchronous messages (or tasks):

Nsm = Nsw +Nbuses ×Nba (3.13)

With one trigger message per elementary cycle, Nsw and Nba are related by:

Nsw +Nba = 8× (DLCT M −Nreserved) (3.14)

Where DLCT M is the DLC CAN message field of the trigger message, and Nreserved

is the number of data bytes of the trigger message reserved to other information (not the
trigger flags). With one trigger message per elementary cycle, using 2 data bytes for reserved
information,Nsw and Nba are related by:

Nsw +Nba = 48 (3.15)

Using any of the strategies presented before, the remote triggering of tasks defined by
Calha et al. [CF04, CSF05] is still valid for the case of multiple buses. This is, using any of
the strategies for the trigger flags, it is possible to trigger tasks in the slaves. The trigger
flags indicate the number of the task to be triggered in the current elementary cycle as for
the single bus FTT-CAN version.

Asynchronous messages can fully use the Nbuses asynchronous windows.

Bandwidth allocation for synchronous and asynchronous messages

In what concerns the bandwidth available for the synchronous and asynchronous mes-
sages the three scenarios presented before are different. For characterization of the different
available bandwidth using more than one bus, first it is necessary to recall the quantification
of the available bandwidth using just one CAN bus [APF02].

When using just one trigger message, the number of flags and thus, the number of data
bytes of the trigger messages, depends on the number of synchronous messages to trigger.
However, if the maximum is used, then a CAN message with 8 bytes in the payload will
be used. The number of bits of a CAN frame depends on the stuff bits which are variable
depending on the contents of the frame. According to [NHN03], the maximum CAN frame
has 135 bits (including the 3 bits of the inter frame space, ’IFS’ in figure 2.9). The frame
duration is:

tfd = Nbits ×
1
Br

(3.16)
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And the maximum frame duration, max(tfd), i.e., the maximum transmission time for a
given bitrate by:

max(tfd) = 135× 1
Br

(3.17)

Thus, the maximum length of the trigger message for the single bus version, LTM , is:

LTM = max(ltmi) = max(tfd),∀i = 0, ...∞ (3.18)

Where i represents the number of the elementary cycle.
In FTT-CAN systems, the system designer imposes the EC duration: LEC, and a maxi-

mum length for the synchronous messages window, lswmax. This last value guarantees some
room for the asynchronous messages (and corresponds to a lawmin) which then have a mini-
mum window per EC. Thus,

lawmin = LEC − LTM − lswmax (3.19)

Using a pessimistic analysis where all the messages have the maximum size, the maxi-
mum number of synchronous messages, when using the maximum length for the synchronous
window in a single bus system, is:

max(Nsm) =
⌊
lswmax

max(tfd)

⌋
(3.20)

On the other hand, the minimum number of asynchronous messages with the maximum
number of bits that can be sent in the system with one CAN bus is:

min(Nam) =
⌊
lawmin

max(tfd)

⌋
(3.21)

However, if more than one CAN bus is used, these equations will change. In case of
scenario (a) the maximum number of synchronous messages in the system is:

max(Nsm) =
⌊
lswmax

max(tfd)

⌋
+ (Nbuses − 1)×

⌊
lswmax + LTM

max(tfd)

⌋
(3.22)

Note that, in this scenario, the synchronous window is increased in all the buses except in
the one where the trigger message is transmitted. Thus, the maximum number of synchronous
messages results from the adding of the the possible number of messages in one bus with
trigger message (represented by

⌊
lswmax

max(tfd)

⌋
in equation 3.22) with the number of possible

messages in the other buses (represented by (Nbuses − 1)×
⌊

lswmax+LT M
max(tfd)

⌋
in equation 3.22).

For scenario (b), the number of synchronous messages which can be scheduled in all the
buses is:
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max(Nsm) = Nbuses ×
⌊
lswmax

max(tfd)

⌋
(3.23)

This equation is the same for the case with just one bus multiplied by the number of
existing buses in the system. This is because the trigger message is equal in all the buses,
the maximum length of the synchronous window is equal in all the buses.

For scenario (c), the trigger messages can be different in all the buses leading to a different
length of the synchronous window in each bus. Thus, the maximum number of synchronous
messages is:

max(Nsm) =
Nbuses∑

i=1

⌊
lswmaxi

max(tfd)

⌋
(3.24)

Where lswmaxi represents the maximum of the synchronous window of bus i.
In what concerns the minimum number of asynchronous messages in the system with

more than one bus, for scenarios (a) and (b):

min(Nam) = Nbuses ×
⌊
lawmin

max(tfd)

⌋
(3.25)

For the scenario (c) the minimum number of asynchronous messages is:

min(Nam) =
Nbuses∑

i=1

⌊
LEC − ltmi − lswmaxi

max(tfd)

⌋
(3.26)

It should be noticed that, in this scenario, there can be a variation in the length of the
trigger messages. This length becomes then bus dependent and was named ltmi.

Strategy and trigger flags example

For an effective combination of redundancy and increased bandwidth the scenario (c)
must be used, because it is the one that permits different trigger messages in different buses,
enabling more flexibility. Using this scenario, and taking advantage of having a central node
(master), the scheduling of the traffic can be changed online from a bus to the other, for
example if one has a failure.

Also, if the system, in a moment, needs to transmit a large amount of synchronous
information through the buses, the master can provide the available bandwidth using the
entire synchronous window in all the buses. On the other hand, if a particular message needs
redundancy, the master can schedule the same message in more than one bus.

In figure 3.8 an example of such is shown.
In figure 3.8, synchronous message 0 is transmitted in all the buses, while synchronous

message 1 is transmitted in bus 1 and bus 2. The remaining bandwidth is used to send
different information in all the available buses. The trigger message is different in all the
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Figure 3.8: Example of trigger message with multiple buses

buses and the trigger flags have a global meaning. This is, one trigger flag has the same
meaning in all the buses. For example of the trigger flag 0 triggers the synchronous message
0 in the bus 1, bus 2 and bus 3. Each bus has its own trigger message with different trigger
flags. The size of the synchronous window is different in all the buses and it is encoded in
the respective trigger message.

All the trigger messages are issued by the master node, that needs to be replicated to
avoid the single point of failure inherited by its central nature. This master replication is
addressed in next section.

3.4.4 Master replication

The master replication requirement has been defined for the FTT-CAN using just one bus
by Pedreiras [Ped03]. Recent work by Rodríguez-Navas et al. [RNPR+04] defines protocols
to enforce synchronization among masters. Ferreira et al. [FAF+03] also define a protocol to
enforce consistency while a request for online changes of the SRT is performed by the slaves.

The master replication for multiple buses will be discussed here. However, the enforcement
of the consistency among masters during a request for online changes of the synchronous
requirement database by the slaves is out of scope of this work.

One of the advantages that could be taken from the existence of multiple buses in
FTT-CAN, is the fault tolerance in the physical layer of the communication network.
However, the use of a single master remains a single point of failure that must be replicated.

In figure 3.9, the architecture of the system using replicated masters is presented.
The master nodes are located in both ends of the buses and are connected to all the buses.
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Figure 3.9: System architecture for multiple masters

They must be connected to all the buses to have a complete view of the system. The location
in the buses ends aims the detection of errors that will be explained further. However, the
location of the master can be elsewhere, but the error detection capability is lost (or reduced).

An important remark must be made concerning the number of active masters and their
replicas relation. The number of backup masters in one end must be equal to the number of
backup masters in the other end. This will maintain the system working after several masters
failures. An exception is made, if there is a even number of masters (odd number of backup
masters).

The master replication is considered to be a semi-passive replication as the backup masters
process all requests of the slaves and works at the same time as the active master. The backup
masters replace automatically the active master upon its failure. This can be assumed as an
active redundancy, but, on the other hand, the active and backup masters do not transmit
trigger messages at the same time.

Notice that, if the system has just one master or the backups are located at the same end as
the active, the system works in a degraded mode regarding the bus error detection capabilities.
Thus, the location of the masters (backups divided among both ends) is important to maintain
the bus error detection capabilities in case of a failure of the active master.

Thus, master replication is essential to the error detection and replacement. In the next
section the master replacement and the bus replacement mechanisms, in case of an error, are
presented.

3.5 Masters and buses: errors and replacement

3.5.1 Introduction

Concerning the masters node and the buses of the system, it is possible to take advantage
of their multiplicity in order to increase the dependability of the system. The use of a
replicated master scheme improves the dependability of the system. Besides that, it also
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enables detection of bus failures and master failures.
The use of more than one bus in the system enables the replacement of a faulty bus.

In that way, if a bus has a problem the system can replace this bus. The messages that
are normally sent on the faulty bus must be switched to a non-faulty bus. This implies a
mechanism of faulty bus detection and also a mechanism to switch messages from the faulty
bus to a non-faulty one.

3.5.2 Fault model and assumptions

The following fault model and assumptions were considered in this work:

• The multiple buses architecture of FTT-CAN is able to detect partitions in one or more
buses, but not in all buses simultaneously;

• Only transient errors that affect the bus in more than one elementary cycle plus a
guard time (further denoted as TMTW , Trigger Message Transmission Window) can
be detected and treated by the system;

• The system must have at least one bus free of errors at any time. This ensure that
the masters have a bus to communicate between them the control data and recovery
procedures. It is also assumed that the bus stubs which connect to masters are free of
errors;

• Possible electromagnetic interference does not occur in all the buses at the same time.
This means that no simultaneous problems will occur in all the buses. If the buses
follow different paths this assumption is quite reasonable;

• There is only one active master at any given moment;

• If a message is transmitted from one master and is received by a backup master on the
other end of the bus, then the bus is not partitioned;

• The master nodes have a fail silent behaviour both in time and value domains;

• Besides detecting bus partitions it is assumed that the masters also detect stuck-at
faults.

3.5.3 Detectable faults

The system can detect the following faults:

• Medium partition fault. The medium partition occurs in such a way that the bus is
broken in two or more sub networks. As a result, two nodes that are in different sub
networks are not able to communicate. The detection of the bus partition is based on
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the systolic nature of the trigger message. In section 3.5.5, the bus partition detection
will be explained. This fault is detected due to the error it produces: the missing of
the trigger message in the bus;

• Stuck-at fault. Stuck-at faults can be dominant or recessive. Since the CAN bus is
an “AND” of all the contributions of all the nodes, then the stuck-at recessive fault
does not cause any error in the system. If there is a stuck-at dominant fault, the
error counters of the master node will increase and the fault can be detected. The
number of consecutive dominant bits necessary to detect an error is presented in [RVA99]
and [BPRNA06]. One way to detect the stuck-at recessive bit is to check the ’ACK’ bit
sent by individual nodes. However, this is impossible in a bus architecture. In a star
architecture [BPRNA06] the authors propose this method for detection the stuck-at
recessive fault;

• Bit-flipping fault. This fault occurs whenever a system component (node or medium)
starts behaving in an uncontrolled way in the value domain by sending random bits.
The dominant bits of the uncontrolled stream will overcome the correct recessive bits
of a node that tries to send a correct frame;

• Master fault. As explained before, the master has a fail-safe behaviour, in that case
the system can detect a master fault and replace it.

The system cannot detect:

• Babbling-idiot fault. It occurs whenever a node sends incorrect messages in the time
domain [BB03]. It can be caused by hardware or software. An example of such fault
appear when the software enters in an infinite loop sending constantly messages to the
bus. The babbling-idiot fault can be minimized using bus guardians such as the ones
presented in [BB03] and [FAM+03]. Ferreira et al. [FAM+03, Fer05] define bus guar-
dians to prevent the babbling-idiot fault in FTT-CAN systems. These bus guardians
are still valid in case of the multiple buses system with the necessary adaptations. The
proposed architecture does not consider the use of bus guardians, thus it is not able to
detect babbling-idiot faults.

3.5.4 Master errors: replacement and analysis

To deal with the trigger messages omissions, Ferreira [Fer05] defines the Trigger Message
Transmission Window (TMTW ). The trigger message can be retransmitted during this
window if a transient fault occurs during its transmission [Fer05]. In case of a delay in a
trigger message (within TMTW ), the next trigger message will not be delayed. Thus, the
elementary cycle will be reduced. This is an important property because all the trigger
messages must be issued at the same time in all the buses, even with a retransmission in one
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of them. In that way just one trigger message is not synchronized with the others, but in the
next activation it will be synchronized again.

As it was stated on the fault hypothesis, the system has always a non-faulty bus working.
This means that all trigger messages received by the backup masters were correctly trans-
mitted by the active master (at least in one bus). Thus, if no trigger message is received in
any bus during the trigger message transmission window, that means the active master has
failed and it needs to be replaced by a backup master. Figure 3.10 depicts the state diagram
of the master replacement protocol. Also, the bus error detection is included in figure 3.10,
since it cannot be dissociated. The bus error will be discussed later.

Figure 3.10: Master replacement state diagram

If the backup masters do not receive any trigger message, in any bus, during the TMTW ,
then all backup masters will try to become active by sending a trigger message in all buses,
aborting the transmission in the next instruction cycle. The first backup master that suc-
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ceeds transmitting the trigger messages will become the active master. The master knows
that it now the active master because it senses a transmission interrupt prior to the receive
interrupt. The others masters will stay in backup mode because they will succeed to abort
the transmission of the trigger messages.

Summarizing, master replacement occurs whenever no trigger messages are received wi-
thin TMTW . Notice that, if only one trigger message is missing, then a backup master
assumes that the particular bus is faulty. Figure 3.11 depicts the bus master replacement
protocol.

Figure 3.11: Master replacement protocol

As it can be seen in figure 3.11, after the error of the active master, the trigger messages
TMX

i that should be issued by the active master are missing (where i is the bus number,
thus an integer and i ∈ [1, Nbuses] and X is the number of the missing trigger messages).
After elapsing the TMTW , the backup master will transmit its own trigger message in all
the buses, becoming the active.

The time required for the replacement of the master is given by (refer to figure 3.11):

treplace_master = TMTW + max(ltmX
1 , ltm

X
2 , . . . , ltm

X
Nbuses

) (3.27)

The worst case corresponds to the duration of the trigger message transmission window
plus the maximum duration of the trigger message, which is:

max(treplace_master) = TMTW + LTM (3.28)

The time since the active master error to the new trigger messages are send by the backup



78 Chapter 3. A proposal for bus media redundancy in FTT-CAN

master is:

tT M_new = treplace_master + max(ltmX
1 , ltm

X
2 , . . . , ltm

X
Nbuses

) + σ (3.29)

This time corresponds to the time the system will be without a master. The worst case
situation, that occurs when the error happens just after the trigger message X − 1, which
correspondent to:

max(tT M_new) = LEC + TMTW + LTM (3.30)

Taking into account the stuff bits difference between trigger messages X − 1 and X, this
equation can be re-written to:

max(tT M_new) = LEC + TMTW + LTM + (max(Nbits)−max(Nbits))× 1
Br

(3.31)

Note that, the value tT M_new can be different for different buses, because different buses
imply different trigger messages and thus, different number of bit stuffing. Further in this
dissertation this issue will be discussed in detail.

If there are more than one backup masters in the system, the one that will become active
will be the one that first starts to transmit its TM and not the one with the highest priority.
However, if two (or more) backup masters start transmitting at the same time, the one with
the highest priority TM will win the CAN arbitration and will become active. The priority
of the trigger message is dependent of the identifier (ID) of the master, that is coded in the
CAN message identifier.

Regarding the masters synchronization, the same method defined by Ferreira et
al. [FAF+03] for the single bus system is still valid. However, modifications must be done to
accommodate the multiple buses. This issue is considered to be out of scope of this work.

In the previous version of FTT-CAN (with just one bus), the backup master will always
try to transmit its own trigger message in the middle of the trigger message sent by the
active master, aborting in the next instruction. In case of the active master sends the trigger
message, the backup master will always succeed in aborting the transmission of its own TM.

For the multiple buses case the backup master cannot follow the same strategy because it
will lead to an inconsistent state. This state is reached when one master becomes the active
master for one bus and other master becomes the active master for other buses. This can
occur in case of an error in one bus, since just one trigger message is missing.

Comparing with the strategy adopted for the case of FTT-CAN with just one
bus [FAF+06], where the replacement time is about one half of the trigger message [MSF+06],
the master replacement time is considerably higher in case of a multiple buses FTT-CAN
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network due to the used strategy that must wait the TMTW to issue the new trigger message.

3.5.5 Bus errors: replacement and analysis

The use of more than one master with multiple buses permits the detection of er-
rors [SFF07b], such as the master error (explained before) and bus errors. As in the case
of the master replacement protocol, the bus partition error detection mechanism also takes
advantage of the systolic nature of the trigger message. A bus fault is detected whenever a
backup master receives, in a given elementary cycle, less trigger messages than the number of
buses. The bus where a trigger message was not received is considered faulty. As depicted in
figure 3.12, trigger message TMX

2 cannot be delivered to one backup master due to an error
at bus 2. Recall that at least one backup master is at the other end of the bus. This means
that if an error in the bus occurs, at least one backup master will detect it.

Figure 3.12: Bus error detection mechanism

The backup master will detect the bus error after the trigger message transmission window
elapses. Meaning that:

tdetect_bus = TMTW + ζ + ltmX
I (3.32)

where:

• I corresponds to the number of the erroneous bus (in case of figure 3.12, I = 2);

• X corresponds to the number of the missing trigger messages;

• ζ represents the time from the bus error until the missing trigger message.

The worst case detection time occurs when the bus becomes faulty right after the reception
of the previous trigger message, thus:
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max(tdetected_bus) = TMTW + LEC (3.33)

Where LEC is the length of the elementary cycle. Note that, this equation do not take
into account the bit stuffing.

Notice that is considered that a permanent fault last for longer than LEC−LTM (where
LTM is the maximum length of the trigger message).

Note that the previous protocol and analysis assumes that the microcontroller acting
as an active master can send the trigger messages at exactly the same time in both buses.
However, in practice, this is not true and, using two or more buses, the time taken by the
active master to send the trigger messages in all buses is not equal. This will be discussed
further.

After the detection of a bus error, the backup master informs the occurrence to the
active master, transmitting a high priority asynchronous message (named BEAM - Bus Error
Asynchronous Message) to the active master using all the non-faulty buses (refer to figure
3.12).

In figure 3.12, the time tBEAM represents the delay from the the bus error until the
reception of the BEAM. Thus:

tBEAM = LEC + ζ + fdBEAM + max
i 6=I

(ltmX+1
i ) (3.34)

where fdBEAM represents the BEAM frame duration and I the number of the erroneous
bus. The worst case value for tBEAM happens if the bus error occurs just after TMX−1

i .
Meaning that:

max(tBEAM ) = 2× LEC + fdBEAM (3.35)

If the stuff bits are take into account, the maximum value for tBEAM are:

max(tBEAM ) = 2× LEC + max(fdBEAM ) + (max(Nbits)−min(Nbits))× 1
Br

(3.36)

where max(fdBEAM ) is the maximum duration of the BEAM message. According to
figure 3.13 it is a CAN frame with DLC = 2 thus, using equation 3.2 max(fdBEAM ) value
can be found.

If the system has more than one backup master, any one of them can consider that a
particular bus is faulty. Thus, several BEAM messages could be transmitted in the same
elementary cycle. However, if a a backup master receives a BEAM message it can compare
this BEAM with the one it will send. If both are equal it can abort the transmission, sending
it, if both are different. The structure of a BEAM asynchronous message is presented in
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figure 3.13.

Figure 3.13: Bus error asynchronous message (BEAM)

A high priority identifier is assigned to this BEAM asynchronous message. Thus it will
be transmitted before any regular asynchronous messages issued by slave nodes. Notice that
the message sent by the backup masters encodes the state of the buses before the error and
right after the error in a bitwise manner, i.e., the non-faulty buses are coded as ’1’ while the
faulty ones are coded as ’0’. When compared with the possibility of encoding only the faulty
buses, this approach has two advantages:

• After receiving these messages, the active master can easily determine which bus (or
buses) is (are) faulty, by executing a logic “AND” between the buses state before and
after the error (CAN data 0 and CAN data 1 in figure 3.13);

• The active master obtains a global view of the buses that is consistent with the view
of the backup masters.

After receiving this message the active master and the backups master should change the
buses where the synchronous messages were issued and recompute the bus scheduling. This
reconfiguration will be explained next.

Reconfiguring the buses

The bus reconfiguration is done at the active master side just after the reception of
the BEAM message and at the backup master side right after the transmit interrupt of
this message. This operation needs to be done in all masters, both active and backup, to
maintain the consistency among masters [SFF07c]. However, if this is not done in a backup
master due to some unforeseen reason, this is not so critical because such a backup master
will declare itself as unsynchronized and will ask for a re-synchronization using the protocol
defined in [FAF+06].

For the bus reconfiguration, the synchronous requirement table in the masters must be
changed. This change will be made in the fields of each synchronous message that support
the multiple buses (explained more detailed further in this dissertation). Each synchronous
message has three characterization fields for bus management, which are:

• Initial Bus Allocation (IBA). This byte indicates the buses where the message is initially
transmitted;
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• Physically Connected Bus (PCB). This byte indicates the buses where the message can
be issued;

• Current Bus Allocation (CBA). This byte indicates which are the current buses (or
bus) where the message must be issued.

To perform the bus change for specific synchronous messages some operations must be per-
formed by the masters (refer to figure 3.14). The operational sequence is:

1. Reception of the BEAM message from the bus (causing an interrupt). Denoted as ’INT’
in figure 3.14;

2. After the scheduling (denoted as ’SCH’ in figure 3.14, that begins during the TMX+1
i )

for the next EC (for the EC (X + 2)th) has finished, the SRT must be copied to a
new table. This ensures the mutual exclusion during the process. Note that this copy
must be made after the scheduler finishes since when the BEAM message arrives it is
possible that the scheduler is already running (during the time of BEAM) and making
operations on the synchronous requirements table. This copy operation is denoted as
’CPY’ in figure 3.14;

3. Perform a logic “AND” between the data byte 1 of BEAM message, the CBA byte
(see figure 3.13) and the PCB byte (refer to section 4.2.1) of each synchronous message
stored in the copy of the SRT. This is a simple operation that just takes few instructions.
However, it must be performed for all synchronous messages of the system. Denoted as
’Logical “ANDs”’ in figure 3.14;

4. After the scheduler action for the (X +K + 1)th EC, the changed SRT is copied back
(K is the number of elementary cycles the bus changing operation takes to complete
and K ∈ {N − {0}}). This ensure that, in the next EC, the schedule will take into
account the new bus configuration (denoted as ’CPB’ in figure 3.14);

5. In TMX+K+2
1 the scheduling with the messages from bus 2 will be present.

Since the bus changing operation (denoted as ’Bus changing’ in figure 3.14) will use K
elementary cycles, the messages that are issued in bus 2 will be masked for K+ 2 elementary
cycles. This is the time taken for the bus changes of all messages upon a bus failure. As a
result, the time elapsed from the error to the new scheduling is:

tre_scheduling = LEC × (K + 2) + ζ + max
i 6=I

(ltmX+K+2
i ) (3.37)

Where I is the number of the erroneous bus.
The worst case occurs when the bus error occurs after the trigger message X − 1, thus:
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Figure 3.14: Bus changing time flow

max(tre_scheduling) = LEC × (K + 2) + LEC (3.38)

However, if the CAN bit stuffing is take into account, this equation can be re-written as:

max(tre_scheduling) = LEC × (K + 2) + LEC + (max(Nbits)−min(Nbits))× 1
Br

(3.39)

Note that, synchronous messages can be lost. These messages are the ones that will be
transmitted in the faulty bus during the ζ interval.

Bus error detection in two or more buses and practical issues

In the previous sections the error detection for one bus in a multiple buses system was
presented. However, if more than one bus fails at the same time (or, more precisely, at the
same elementary cycle) some minor differences must be introduced to the previous protocol.

The active master cannot trigger at the exact same time two or more messages in different
buses, since, in the current solution, it is just one microprocessor controlling more than one
CAN controller (this can be changed). Also, the size of the trigger messages are different for
each bus, since the scheduling embedded in the data field are different and the number of the
stuff bits may also be different (briefly discussed in previous section). These two differences
must be accommodated by the detection protocol. Figure 3.15 depicts this case.

For the case of more than one erroneous buses in the same EC, equation 3.32 can be
re-written to:

tdetect_busI
= TMTW + ζI + ltmX

I + δ (3.40)



84 Chapter 3. A proposal for bus media redundancy in FTT-CAN

Figure 3.15: Multiple errors detection

where:

• I represents the number of erroneous bus. Thus, in case of figure 3.15, I ∈ {2, 3};

• tdetect_busI
is the time to detect the bus error in bus number I;

• ζI is the time from the bus fault until the expected trigger message in bus number I.

Note that, all the equations presented before for a single error in one bus, still valid for the
case of more than one erroneous buses in the same EC. However they need to be adapt.

In the example of figure 3.15 bus 2 and 3 become faulty at the same elementary cycle. The
backup master waits the trigger message transmission window (TMTW ) and must also wait
δ, i.e., δ represents the necessary time for the active master to send all the trigger messages
in all buses due to the incapacity of a node to send CAN messages simultaneously in several
buses. δ will increase with the increasing of the number of buses of the system. In that way:

δ = (Nbuses − 1)× ε (3.41)

where:

• Nbuses is the number of buses in the system;
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• ε is the maximum time taken by the processor between the transmission of two conse-
cutive trigger messages in two different buses.

Assuming that the messages are triggered in sequential instructions in all the buses by the
microprocessor and there is no delay between the trigger of the message and the beginning
of its transmission on the bus, ε is the instruction cycle time of the processor. In fact, δ is
the delay imposed by the processor to trigger all the messages in all the buses.

This is presented in the figure 3.16.

Figure 3.16: Delay in transmission of the trigger messages in different buses

The delay between the sending of several trigger messages among all the buses is represen-
ted by δ = (Nbuses− 1)× ε. This means that the partial delays are equal for all the buses (as
it is represented in figure 3.16). If the partial delays, ε, are not equal and the bit stuffing are
taken into account (because the trigger messages can occupy different time among different
buses), the equation becomes:

δ = (
Nbuses∑

i=2
εi) + (max(Nbits)−min(Nbits))× 1

Br
(3.42)

Where εi is the delay between the beginning of the trigger message in bus i and the
beginning of the last trigger message of the current EC in the other buses.

Additionally, within a trigger message, there could be clock skew among different clocks in
the several masters. In practical implementations this time must also be taken into account
by adding a delay in equation 3.42 that represents the maximum skew that can occur among
all the masters.
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3.6 Final remarks

To detect the bus errors and also to permit the master replacement, the system cannot
act similarity to the solution proposed for a single bus. This is, the backup master will
transmit and abort, in all elementary cycles and in all buses, its own trigger message. This
transmission is done at the middle of the time reserved for the trigger message transmitted
by the active master. If the backup master succeeds the transmission in all the buses, it
becomes the active. However, if it just succeeds in one bus or in a set of buses it declares the
buses as faulty.

In fact, this strategy will lead to a system where two active masters coexists. And, because
the masters are located at the bus ends, a set of slaves will have a master, while the other
slaves will have other master. The slaves cannot communicate with each others in case of a
bus partition.

It is also true that the design assumption of only one active master per elementary cycle
(section 3.5.2) is allowed. With this strategy explained before, there could be an active master
in one bus and other active master in other bus(es). On the other hand, the replacement
time with this strategy will be smaller. In the worst case it will be one half of the maximum
time of a trigger message (as for the case of FTT-CAN with one bus).

Comparing the proposal with other protocols presented in chapter 2, there are several
advantages in this proposal, namely:

• Number of buses only dependent on the number of the CAN controllers the micropro-
cessor can support. In other solutions, this is limited to two buses. Example of such
are Columbus Egg Idea and CANdor. Other solutions can use more buses but do not
use them to provide bandwidth improvement. If so, this feature is manage by a higher
layer;

• One can consider active redundancy in buses. This proposal uses active redundancy
while other similar proposals use passive redundancy. There are many application do-
mains that could not cope with the delays resulting from passive redundancy. Example
of such applications domains is avionics;

• Semi-passive redundancy in the master replication. All the backup masters are able to
replace the active master (leader-follower strategy). All of them have an updated copy
of the synchronous messages requirement table. In addition, the master replication is
proposed with an unlimited number of masters. Node replication is not considered in
some of the presented protocols;

• It can be generalized to other protocols different from FTT-CAN. The proposed protocol
can be generalized to master-slave architectures. If there is not a periodic message (like
the trigger message in FTT-CAN) it can be introduced;
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• Fail-safe system. If there is a failure, it responds in a way that will cause no harm to
other systems and humans. In case of a failure, the system replaces the master or the
bus without notice. The system still work, however it can switch to a degraded mode.

Further in this dissertation, in chapter 6, a proposal to improve dependability and bandwidth
in CAN will be presented. It can be seen as a generalization of the presented work for non
master-slave systems using additional hardware components.

In the presented proposal, there are some issues that were not considered because they are
out of the scope of this work, namely: the asynchronous messaging system and the multiple
buses slave nodes. They are considered to be future work, and will be presented with more
detail in the conclusions, chapter 7.

3.7 Conclusions

As it was pointed out at the beginning of this chapter the single bus FTT-CAN architec-
ture has some limitations related with redundancy support and limited bandwidth. These
two limitations arise from the CAN network and, in the case of the bandwidth, it has an
extra overhead penalty due to the FTT-CAN protocol.

This chapter has presented some possible improvements that can be made to the
FTT-CAN system to deal with more than one bus. These improvements do not affect the
essentials of the protocol and existing slave nodes are still usable for the system with more
than one CAN bus. However, they cannot take advantage of all the features provided by
the new architecture. The FTT-CAN master cannot be the same, because it must control
more than one bus to have a global view of the system. The additional buses can be used to
improve both the fault tolerance and the available bandwidth.

This chapter has also addressed the issue of having multiple trigger messages in multiple
buses and several scenarios have been proposed and discussed, resulting in different degrees
of flexibility and available bandwidth both for the synchronous and asynchronous messages.

The FTT-CAN master node replication was considered, and a new master replication
scheme has been proposed. The master replicas are located at both ends of the buses and
a leader-follower behaviour is proposed for master replication where the active master is the
leader and the other replicas are the followers. The location of the masters in conjunction
with the systolic nature of the trigger message permits the detection of errors in the buses.
When a bus error is detected, a backup master informs the active master of this event, and it
will switch the messages to non-faulty buses. The backup masters are also able to substitute
the active master whenever it fails to transmit trigger messages in all buses. In our case, the
master replication is considered to be a semi-passive replication because only one master is
active at a time and there is a active master and backups.

For the case of the bus replication it is considered an active redundancy, since, when a
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message is replicated is sent in the respective buses at the same time (in fact, at the same
elementary cycle).



Chapter 4

FTT-CAN Implementation

4.1 Introduction

This chapter describes the implementation of FTT-CAN from scratch. There were some
previous implementations of FTT-CAN [APF02], however, they targeted old microcontrol-
lers and the porting effort to more recent microcontrollers posed some challenges. Thus,
it was decided to design and implement a newer version of FTT-CAN optimizing the soft-
ware architecture to handle multiple buses. The design and implementation effort started
with the single bus, single master FTT-CAN. Afterwards, the master node was adapted to
handle master replication and, finally a master node version to handle multiple buses has
been designed. A single bus slave node was also implemented.

This chapter presents the data structures and the Application Programming
Interface (API) based on the FTT-CAN requirements along with the internal modules of
the master node.

Since the target environment of FTT-CAN is the embedded applications, where the low
computing power microcontrollers are common, the evaluation of the computational overhead
of the implementation is an important issue that is also addressed in this chapter.

4.2 Data structures and API

A distributed system based on the FTT paradigm can handle periodic messages and tasks
and aperiodic messages. The periodic messages and tasks are schedule by the master node
according to their parameters. In general, a periodic message, σj , can be characterized by
its period, worst-case transmission time, and relative phase [Cal06]. In that way, the set of
messages in the system is:

ψ = {σj(Cj , Tj , Phj), ∀j = 1, ..., n} (4.1)

Where:

89
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• Tj is the message period;

• Cj is the worst-case transmission time;

• Phj is the relative phase.

According to Calha [Cal06], from these parameters an extended set of parameters can be
derived to define the set of instances of one message:

ψ = {σj,k(Cj , Tj , Phj , Dj , PTj , CTLj,i, dj,k, rj,k),

∀k = 1, ..., nInstj , ∀j = 1, ..., n, ∀i = 1, ...,m} (4.2)

where the additional parameters are:

• Dj is the deadline measured relatively to the release instant;

• PTj is the producer task;

• CTLj,i is the consumer task list;

• dj,k is the absolute deadline;

• rj,k is the release instant;

• nInstj is the number of instances of a message σj ;

• n is the number of messages;

• m is the number of tasks (as will be defined bellow for the task set).

However, this set of message parameters is defined to support a global synchronization in the
holistic schedule defined by Calha [Cal06]. In the present work, the consumer and producer
task list are not important, since the master does not need to know this information to
implement the FTT-CAN protocols. In this way, the set of messages is defined by:

ψ = {σj,k(Cj , Tj , Phj , Dj , dj,k, rj,k),∀k = 1, ..., nInstj , ∀j = 1, ..., n} (4.3)

The presented work is focused on the FTT-CAN message system. However, the imple-
mentation also includes the task triggering system. The tasks are scheduled by the master
node but, they run in the slaves. The master do not know the state of the tasks or they
dynamic parameters, such as the computational overhead or deadline.

For the case of interactive tasks, the set of tasks τi,k, is defined in equation 4.4. Interactive
tasks perform a closed-loop control and communicate with other tasks (producing or consu-
ming one message, as defined in [Cal06]). Conversely, stand-alone tasks do not communicate
with other tasks.
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Γ = {τi,k(Ci, Ti, Phi, Di, Ni,MPi,MCi, di,k, ri,k), ∀k = 1, ..., nInsti,∀i = 1, ...,m} (4.4)

With the necessary adaptations, the parameters defined for the messages are identical to
the parameters for the tasks (e.g. Cj is the worst-case transmission time of a message, while
Ci is the worst-case computational time of a task).

Where the additional parameters are:

• Ni represents the node where the task runs;

• MPi is the message produced;

• MCi is the message consumed;

• nInsti is the number of instances of a task τi;

• m is the number of tasks.

For the present work, the master does not need to know in which node the task will run
(the master node will just trigger the task), nor the messages it produces or consumes.
Thus, the tasks are stand-alone where Ni parameter is not considered. Also, the worst-case
computational time is not required, because it is assumed that all the tasks are limited to
the time available for it execution. This is, all tasks triggered in the slaves will finish their
execution prior to the beginning of the execution of the next task (same or other task). The
absolute deadline and release instants are constants at the master, thus can be omitted.

In that way, the set of tasks are defined as:

Γ = {τi,k(Ti, Phi, Di), ∀k = 1, ..., nInsti,∀i = 1, ...,m} (4.5)

The master and bus redundancy protocols are based on the periodic nature of the trigger
message, enabling the detection of master and bus faults. The trigger message also conveys
the information about the messages and tasks that should be produced during the next
elementary cycle. The trigger message is a set of trigger flags for tasks (βl

q,o in equation 4.6)
and messages (ξl

q,p in equation 4.6). The trigger message can be expressed as:

Υl
q = {q, Sl

q,Θl
q(βl

q,o,∀o = 1, ..., n_tasksl
q),Λl

q(ξl
q,p,∀p = 1, ..., n_messl

q)},

∀l = 0, ...,∞, ∀q = 1, ..., Nbuses (4.6)

Where:

• q is the bus number where the trigger message is transmitted;
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• Sl
q is the size in bits occupied by the trigger message in the bus;

• Θl
q is the set of the tasks scheduled for the present elementary cycle, whose number is

n_tasksl
q;

• Λl
q is the set of the messages scheduled for the present elementary cycle, whose number

is n_messl
q;

• l represents the elementary cycle number.

The application programming interface provides the necessary interface for the developers to
deploy their applications and the functions to manipulate the middleware of the masters and
the slaves.

Figure 4.1 presents the implemented communication stack. The applications access to
the API which interacts with the FTT middleware (see figure 4.1). The FTT stack also
controls, at the data link layer, features of some of the others layers proposed in the OSI
model [Zim80, ISO94]. Example of such feature is the message filtering implemented in
software. In that way there is a upper data link layer (see figure 4.1) that is part of the FTT
stack. This upper data layer communicates with the lower data link layer (see figure 4.1).

Figure 4.1: FTT stack

The master node does not need any application to work. The FTT system will provide all
the functionalities that the master needs. Eventually, the master can run other applications,
however, this could be undesirable in case of the use of a low processing power microcontroller.

Concerning the initial state, there are three different types of FTT-CAN master nodes:

• Master with Initial Configuration (MIC). The master parametrize the synchronous mes-
sages flows and boots the FTT protocol. There are no other applications running on
the FTT master;

• Stand-Alone Master (SAM). The master just boots the FTT protocol. The synchronous
messages parametrization is done online upon slave requests. This kind of master can
be used in any system;
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• Master with Online Reconfiguration (MOR). The master may perform the parametri-
zation of the synchronous messages and boot the FTT protocol. The application can
change the synchronous flows online, for example to respond to an external event.

Thus, the following operations can be done by the master:

• Initialization and parametrization;

• Add, remove or change variables (messages or tasks).

Applications running on the slave nodes can perform the following operations:

• Initialization and parametrization;

• Add variables, messages or tasks, upon master approval;

• Request parameter changes (for messages or tasks) to the masters;

• Send/produce messages and receive/consume variables (messages or tasks).

Further in this chapter the application programming interface to perform the presented ope-
rations will be described in detail.

4.2.1 The synchronous requirement database

The main memory area managed by the FTT middleware is the Synchronous Requirement
Database (SRDB) which includes several tables and which stores:

• The synchronous messages requirements and properties stored in the Synchronous
Requirement Table (SRT);

• The tasks requirements and properties are also stored in the Synchronous Requirement
Table (SRT). In this table each line corresponds to a message or task (will be explained
further);

• Asynchronous requirements. The asynchronous requirements are stored at the
Asynchronous Requirements Table (ART) and at the Non-Real-Time Requirements
Table (NRT). The ART stores the properties of asynchronous messages that may have
timeliness requirements (such as alarms). The NRT stores the size of the longest non-
real-time message produced by each node (this can be useful to determine the maximum
size of the synchronous and asynchronous window). However, in this implementation,
the asynchronous requirements are not taken into account, and thus, this will not be
discussed further in the implementation.

• Configuration and Status Record (CSR). This data structure stores parameters related
with the physical layer and with the maximum dimension of the system:
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– CAN bitrate;

– Maximum length of a CAN message, in number of bits, including the stuff bits
(this is also the maximum number of bits of the trigger message, max(Nbits));

– Maximum number of synchronous messages. This value is defined by the system
developer and depends on the maximum number of trigger flags the system can
have and the tasks the master can trigger;

– Maximum number of system tasks. This value is calculated by the master and is
dependent of the maximum number of trigger flags the system can have and the
maximum number of messages defined by the developer;

– Length of the elementary cycle (LEC);

– Maximum size of synchronous window (lswmaxi), where i is the bus number;

– Implementation dependent auxiliary parameters, such as timers pre-scalers and
other low-level parameters.

The defined message and task parameters must be mapped in the SRT. Some of the task
and message parameters are identical (such as the period, the first release instant and the
deadline measured relatively to the release instant) and can be mapped into the same field
in the SRT. However, the messages have parameters that the tasks do not and thus, need
additional fields in SRT.

In table 4.1, the mapping of the messages and tasks parameters to the SRT fields is
presented. Each variable corresponds to a SRT entry (line) that is composed by a set of fields
presented in table 4.1 (see also figures 4.2 and 4.3).

Message parameter Task parameter SRT field (units)
Worst-case transmission

time (Cj) NA Bit size (number of bits)

Period (Tj) Period (Ti) Period (number of ECs)
First release instant (phj) First release instant (phi) Init (number of ECs)

Deadline measured
relatively to the release

instant (Dj)

Deadline measured
relatively to the release

instant (Di)
Deadline (number of ECs)

Absolute deadline (dj,k) NA Absolute deadline
(number of ECs)

Release instant (rj,k) NA Init (number of ECs)

Table 4.1: Message and task parameters mapping
NA: Not Available

Note that, in table 4.1 the bit size is not consider for the tasks because the tasks do
not occupied time at the bus and, as referred, finish their execution before the beginning of
the next instance of other task running in the respective slave. For the point of view of the
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master node, the release instant is constant, thus the absolute deadline is also constant (and
derived from the release instant and from the relative deadline).

In the SRT the fields are stored according the FTT-CAN rules, i.e., they are multiples
of the elementary cycle (except the number of bits). Notice that the memory footprint
is an important limitation on embedded systems, that has been carried out in this SRT
implementation. There are some additional fields that are needed to support and speed up
the master operation, these are:

• Size, in bytes, of the message. If the line of the SRT belongs to a task, this value is
zero because a task does not occupy any bandwidth. The size of the message occupies
one byte in each database entry. However, it can just be greater or equal to zero and
less than nine;

• Size in bits. This is the total size of the message in bits. If the variable is a task
this value is zero, otherwise it is different from zero. The bit size value is calculated
according the rules of the CAN protocol message and it is equal to the sum of all CAN
message fields with the worst case bit stuffing that a message can have (according to
equation 3.2). This value is calculated when the message is added to the system;

• Byte index. The byte index field corresponds to the byte in which the data field of the
trigger message flags the variable (refer to figure 3.3). This value is calculated when a
variable is added to the system according to its identifier. The identifier of the message
imposes a specific byte on the trigger flags of the trigger message. All the variables
with an identifier within zero and seven have byte index zero, all the variables with
identifier within eight and fifteen have byte index one, and so on. This means that this
value can be calculated by the integer of the division between the identifier value and
8 (“ID mod 8”);

• Bit mask. The bit of the trigger flags that marks the position of the flag inside the byte
index. This value is calculated when a variable is added to the system and depends
on the identifier of the variable. For example the variable with identifier zero has byte
index zero and bit mask 0x01 and, for example, the variable with identifier eleven has
byte index one and bit mask 0x08, i.e., the bit mask is the necessary “AND mask” to
get the trigger flag for the variable (see figure 3.3)5;

• Begin mask. This field represents the initial instant the variable must be mask. Masking
a message means that the message is scheduled for a specific EC but the system will
not dispatch it in order to perform any housekeeping of the communications. The begin
field of the SRT line is a dynamic field, i.e., it may have different values in different

5This may look a bit complex but it is important to reduce the overhead in processing the trigger message
at the nodes.
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elementary cycles. Beginning means the startup of the system or the time after one
variable has been added upon a successful request from a slave. When masked, the
variable is still scheduled. The variable is unmasked when the number of elementary
cycles indicated by this field has elapsed. This value is an add-on to provide more
flexibility to the system designer;

• Physically Connected Bus (PCB in figure 4.2). This byte indicates the buses where the
message can be transmitted. Recall that the slaves can connect to a bus, a set of buses
or to all buses. This field is not necessary in case of a single bus system. This has been
explained in section 3.5.5;

• Initial Bus Allocation (IBA in figure 4.2). This byte indicates the buses where the
message is initially transmitted. This is useful in case of reverting to the initial settings.
This field is not necessary in case of a single bus system. This has been explained in
section 3.5.5;

• Current Bus Allocation (CBA in figure 4.2). This byte indicates which are the current
buses where the message must be transmitted. This field is not necessary in case of a
single bus system. This has been explained in section 3.5.5.

The set of fields from table 4.1 and these additional ones compose a SRT line, corresponding
to a variable: message or task. The set of lines compose the SRT (the SRT can be seen as a
table, see figure 4.3). Figure 4.2 depicts a SRT line.

Figure 4.2: SRT line for multiple buses

The SRT is divided into two sections: the message section and the task section (see figure
4.3). The messages and the tasks are stored in the same table to speedup the scheduler
algorithm, since it just needs to consult one table instead of two to get all the information
regarding all the variables (messages and tasks).

Each message or task has the static part and the dynamic part stored in the table (as
presented in figures 4.2 and 4.3). The static part corresponds to the information that is
constant in time, like the period and the identifier, and the dynamic part is the information
the master changes while it is scheduling the variables. Examples of dynamic information
are the number of elementary cycles to the next activation and the mask field.

The table is sorted in an ascending order regarding to a specific field of the variable.
Again this is done to speedup the scheduler algorithm, because it is more efficient to search
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Figure 4.3: Synchronous requirement table architecture

an ordered table.

4.2.2 The trigger message

The size of the synchronous window (expressed in terms of the total number of bits of
the respective synchronous messages), is transmitted to the slaves using the trigger message.
Thus, the size of the asynchronous window is also transmitted in a indirect way, because
LEC is a global parameter. However, to preserve the number of bits of the trigger message,
this value is encoded in another value, the FTT Time Quantum (FTTTQ). The length of
the elementary cycle is divided into time ticks, each representing a FTTTQ. This value is
calculated in a way to have sufficient resolution and, at the same time, to be just 1 byte
long (The minimum FTTTQ becomes then the maximum length of the synchronous window
divided by 250).

Table 4.2 presents the way how trigger message parameters are mapped into the fields of
the trigger message.

Parameter TM field CAN message field (figure 4.4)
Size in bits (Sl) FTTTQ data byte 0

Tasks trigger flags (βl
q,o) Trigger flags data byte 2 to 7

Messages trigger flags (ξl
q,p) Trigger flags data byte 2 to 7

Table 4.2: Trigger message parameters mapping

In addition to the CAN fields presented in table 4.2, the trigger message has some ad-
ditional fields to exchange other information among slaves and masters or for functionality
reasons. These additional fields are:

• Signature. The most significant 4 bits of the CAN message identifier are dedicated to
identify the CAN message as a trigger message. In this case, this 4 bits are ”0001”;
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• Master identification. The next four bits of the CAN identifier of the trigger message
are dedicated to the number of the master that is currently transmitting the trigger
message. Each master has a unique identifier in the system that can be used by the
slaves to detect what is the actual active master. Identified as ’Master ID’ in figure 4.4;

• Sequence number. The three less significant bits of the CAN identifier of the CAN
message encapsulates a sequence number so that the slaves can verify if some trigger
message was missed or received out of order. Identified as ’Sequence number’ in figure
4.4;

• Answers to slave requests (denoted as ’Request answer’ in figure 4.4). The second byte
of the data field of the trigger message is the answer from the active master to the
online requests made by a slave to change the SRT.

In figure 4.4 a general structure of the trigger message is shown.

Figure 4.4: Trigger message structure

The FTTTQ and the request answers are encoded into the CAN data field (as depicted
in figure 4.4). Thus, from equation 3.14, the length of the CAN message data field of the
trigger message is:

DLCT M = Nreserved + Nsw

8 (4.7)

Because Nsw is the number of system wide flags (for messages and tasks), DLCT M is an
integer number and Nreserved = 2, the equation can be re-written as:

DLCT M = 2 +
⌈
n+m

8

⌉
(4.8)

Where:

• n is the number of triggers flags for messages (as in equation 4.3), i.e., the maximum
number of messages the master can trigger;

• m is the number of the trigger flags dedicated to trigger tasks in the slaves (as in
equation 4.5), i.e., the maximum number of tasks the master can trigger.

The maximum number of CAN data bytes is 8, that lead to a maximum number of variables
of 48. This is a reasonable value for the target applications of the FTT-CAN protocol.
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4.2.3 Application programming interface

The application programming interface allows an application using the FTT-CAN pro-
tocol to interact with the underlying network. In the master node, the available functions
are:

• MstTab_AddVar. This function adds variables (messages or tasks) to the synchronous
requirement table. In fact this function adds a line to the SRT, using parameters and
fields passed to it. It is called one time for each variable (message or task);

• MstTab_DelVar. This function deletes variables (messages or tasks) from the synchro-
nous requirement table;

• MstTab_ChangeVar. This function changes the variables (messages or tasks) parameters
on the synchronous requirement table;

• FTT_MstInit. This function is called at the startup of the application to initialize all
the system. These initializations include the global parameters and the initializations
of the microcontroller peripherals;

• FTT_MstStart. This function is called to startup the master, initializing the interrupts,
turning on the timers and starting the scheduling for the first elementary cycle.

The available functions in the slave nodes are:

• AM_SlvTab_AddVar. This function adds an asynchronous message to the asynchronous
table;

• SlvTab_AddVar. This function is called to add a variable (message or task) to the
synchronous table6 in the slaves. The message parameters (for example length and if
the slave is producer or consumer) are passed to the function as input parameters;

• produce. This function is called when the application needs to produce a synchronous
message. The FTT slave middleware verifies if the current slave is a producer of the
message and updates the data accordingly. Note the synchronous message is sent to
the CAN bus when the master schedules it;

• consume. This function is called when the application needs to consume a synchronous
variable (task or message). In case of a message the FTT verifies if the slave is a
consumer of the message and returns the synchronous message data. In case of a task,
the FTT system, after the verifications, triggers the task;

• VarStatus. This function verifies the status of a variable and returns it;
6This synchronous table is similar to the one existing in the masters, however, having just the necessary

parameters for the slaves to work.
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• AM_send. This function sends an asynchronous message to the CAN bus. In fact, the
message is not immediately sent, it is placed into a buffer and will be transmitted in
the asynchronous part of the elementary cycle;

• AM_receive. This function receives an asynchronous message. In fact it reads a message
from a buffer where the FTT system puts all the asynchronous messages received;

• AddVariable. This function adds a variable (message or task) to the synchronous
requirement table of the master. It sends an asynchronous message to the master with
parameters (passed as input parameters to the function) of the synchronous variable to
be added. It will wait for the answer of the master to check if the synchronous variable
has been accepted and added correctly. The master answers to the slave in the second
byte of the data field of the trigger message (as explained before);

• ChangeVariable. This function provides a way to change parameters or fields of a
variable on the synchronous requirements table. The slave sends an asynchronous
message with the parameters (passed as input parameters to the function) to the master,
which processes the change request and anwsers in second byte of the data field of the
trigger message. Only dynamic fields of a variable can be changed;

• DelVariable. With this function a slave can request the master to delete a variable
from the synchronous requirement table and waits for the answer which will come
piggybacked in the trigger message (as for the AddVariable and ChangeVariable);

• FTT_SlvIni. This function is called at the beginning of the application to initialize the
slave FTT-CAN system, including the timer generations values, the hardware periphe-
rals and the interrupt system;

• FTT_SlvStart. This function starts the slave FTT system.

4.3 The master implementation

As it was discussed at the beginning of this chapter, previous implementations of
FTT-CAN were targeted to old microprocessors with low processing power and small memory.
For this reason, features such as the tasks triggering in the slaves and master replication were
not implemented then. Notice that early implementations of FTT-CAN were made prior to
the definition of remote task triggering and master replication.

The new implementation of the FTT-CAN protocol started with the single bus, single
master FTT-CAN. Afterwards, the master node was adapted to handle master replication
and, finally, a master node version to handle multiple buses has been implemented. Both
implementations (single and multiple buses) use the same microcontroller brand, however
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from different families with different internal architecture. The single bus master version has
been implemented on a Microchip PIC18F258 [Mic06], while the master node for multiple
buses has been implemented in a Microchip dsPIC30F6012A [Mic08].

The master firmware takes care of the main functionalities of the FTT-CAN protocol.
These functionalities are:

• Scheduling, based on the communications requirements;

• Coordination of the network, includes the management of the bus replicas and the
transmission of the trigger message using the scheduling data;

• Communication requirements management;

• Master replication.

Figure 4.5 depicts the FTT-CAN master board developed for the single bus version while
figure 4.6 shows the developed multiple buses FTT-CAN master node version.

Figure 4.5: Development board for PIC18F258

4.3.1 Single bus master

Figure 4.7 depicts the general overview of the single bus master firmware. The operation
of the master is carried out by the scheduler module which is responsible for defining which
messages should be transmitted in the next elementary cycle. The output of the scheduler
is sent to the dispatcher module which prepares and controls the transmission of the trigger
message, accessing the hardware drivers to send it. The systolic nature of the trigger message
and other timeliness functions are controlled by the timer handler module which relies on a
time mark generated at hardware level.
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Figure 4.6: Development board for dsPIC30F6012A

Each event of the timer handler is signalled with a hardware interrupt. In figure 4.8
the timing events occurrences during one elementary cycle are presented. These events can
be generated by a timer event (by the timer handler) or generated asynchronously (such
as generated by the completion of a function). Notice that the timing events are different
depending if the master is active or backup (as depicted in figure 4.8). This events are valid
for the single bus master and for the multiple buses master.

In the active master there are four events triggered by the timer handler:

• Timing event 0. This event occurs when the timer handler triggers the dispatching of
the trigger message. A trigger message is scheduled in the previous elementary cycle,
or in case of being the first trigger message, it is scheduled at startup time;

• Timing event 1. This event triggers the scheduling for the next elementary cycle.
The trigger of the scheduler is done after the completion of the dispatcher, i.e., the
scheduler is called after the dispatcher finishes transmitting the previous EC trigger
message. Thus, this event is an asynchronous event;

• Timing event 2. This event marks the end of the trigger message transmission window
(TMTW ). In the active master is the time available for the retransmission of the
trigger message;

• Timing event 3. This event corresponds to the beginning of the synchronous window
of the elementary cycle. The dispatcher handler informs the timer handler about the
size of the synchronous window. Thus, the timer handler can then compute the length
of the asynchronous window knowing the length of the elementary cycle. Recall that
the master node needs to know the asynchronous window duration to be able to receive
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Figure 4.7: Master firmware overview

online changes request send by the slaves and also to perform the synchronization
algorithm among all the masters presented in [FAF+03].

The timer handler of the backup master generates timer events in other moments of the
elementary cycle. They are:

• Timing event 0. This event is a timer mark that occurs at the middle of the trigger
message and is intended to trigger the dispatching of the trigger message on the backup
master. In the case of figure 4.8 the trigger message X was dispatched by the active
master. The backup master tries to send its own trigger message at this timer event
and tries to abort the TM transmission at next processor instruction cycle. If the
active master has a problem (it will not send the trigger message due to its fail-silent
behaviour), the backup master will succeed transmitting its own trigger message and
become active. On the other hand, if the backup master aborts its own trigger message,
means the active master still healthy. This event is only valid for the single bus master;
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Figure 4.8: Timer occurrences in masters

• Timing event 1. In this event, the scheduler for the next trigger message starts working.
In figure 4.8 it is marked at the end of the trigger message, but, in fact the scheduling
for the next elementary cycle begin as soon as the dispatcher finish her job. Thus, this
event is an asynchronous event;

• Timing event 2. This event marks the end of the trigger message transmission window.
In the backup master signals the time it must wait for the trigger message. In addition,
in the multiple buses system marks the occurrence of an error (in active master or in
the bus);

• Timing event 3. This timer handler signals the end of the asynchronous window. This
mark is synchronized with the active master. As it happens in the active master, the
dispatcher informs the timer handler about the duration of the synchronous window.
The timer handler then computes the asynchronous window size knowing the CAN
bitrate and the elementary cycle size. The backup masters need to know the length of
the asynchronous window to receive the requests from the slaves for changing the SRT
and, as in the active master, to perform the synchronization algorithm.

In addition to the scheduler, dispatcher and timer handler, the other modules of the
FTT-CAN master node depicted in figure 4.7, are:

• The asynchronous messages handler (denoted as ’AM handler’ in figure 4.7) receives
the online requests sent in the asynchronous window. Notice that this handler is also
used by other tasks concerning the master replication and synchronization and it needs
the information of the elementary cycle temporization to define the synchronous and
asynchronous window boundaries;
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• The ’online changes handler’ processes the online requests made by the slaves, which
were received by the ’AM handler’, and sends them to the admission control for pro-
cessing. The answer of the request is then sent to the dispatcher and is piggybacked in
the trigger message;

• The ’admission control’ is responsible for analyzing and changing the SRT. Thus, it
checks if a request from the online changes handler is admissible;

• The ’TM receiver handler’ is responsible for the trigger message reception. This handler
is only active if the master is a backup master, because in this case it must receive the
trigger message transmitted by the active master to compare it with its own, so it can
detect possible inconsistencies;

• The ’replication handler’ manages all the issues related with the master replication.
Depending on the reception of the correct trigger message in the correct time, this
handler could detect if a backup master must become active master or must remain in
the same state;

• The ’consistency manager’ is responsible for the management of the consistency proto-
col. It can declare the backup master7 inconsistent whenever the local trigger message
does not match with the received trigger message issued by the active master. If they
differ, the backup master sends an asynchronous message to the active master so it can
start to upload the correct SRT.

Finally, it should be referred that the access to the hardware is made through the hard-
ware drivers. In figure 4.7 these hardware drivers include the CAN controllers access for
configuration, reception and transmission of the messages.

4.3.2 Multiple buses master

The firmware overview of the master with multiple buses is depicted in figure 4.9. The
master node firmware requires some adaptations to cope with multiple buses [SFF07c]. Two
new handlers (shadowed in figure 4.9) were added to the single bus FTT-CAN master node:

• The ’bus error detector’ handler is responsible for the detection of faulty buses. After
the detection of a faulty bus, this handler informs the multiple buses handler about the
error;

• The ’multiple buses handler’ manages the bus replication. It receives the information
about the faulty buses from the bus error detector and changes the SRT accordingly.
This handler also processes requests from the slaves to change the bus where a specific

7The active master is always considered consistent by the fail silence assumption.
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message is transmitted. Notice that the reception of these requests is made by the
online changes handler. Also notice, in the current implementation, it is not possible
to the change bus configuration online upon a slave request.

Figure 4.9: Master firmware with multiple buses

Four handlers have to be modified (reverse coloured in figure 4.9) to deal with the multiple
buses system:

• ’Scheduler’. The scheduler was adapted to do the scheduling for all the buses;

• ’Dispatcher’. The dispatcher was adapted so it can transmit trigger messages in all the
available buses;

• ’Replication handler’. The master replication protocol is different for the multiple buses
version. In the single bus version, the master replication is based on a transmit and
abort technique, while in the multiple buses version, the master replication protocol is
based on trigger messages reception (as explained in chapter 3);

• ’Timer handler’. For the case of a backup master, the timer event 0 is not generated (see
figure 4.8), but the generation of a timer event marking the end of the trigger message
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transmission window is kept (see figure 3.11 and 3.12). This event is also used for the
detection of a faulty bus.

4.4 The slave implementation

This section describes the implementation of the slave node for the single bus version.
The multiple buses slave node was not implemented because this thesis is focused on the
FTT-CAN master node with multiple buses and, for a proof of concept implementation,
a single bus slave node is enough. In that way, figure 4.10 depicts the single bus slave
implementation.

Typically, the slave nodes perform data acquisition, data treatment and send actuation in-
formation to the actuators in case of a control system. The slaves exchange data among them,
either synchronously or asynchronously, to execute a distributed algorithm. Synchronous
messages are scheduled by the master and the slaves are informed of their dispatching ins-
tants via the trigger message. The asynchronous messages processing is a responsibility of
the slave nodes. The synchronous message handler (’SM handler’ in figure 4.10) takes care of
the time-triggered messages while the asynchronous message handler (’AM handler’ in 4.10)
handles the sporadic event-triggered messages.

The online changes handler (figure 4.10) manages slave requests to the master to change
synchronous messages flows.

The slave node can run in a microprocessor with no other applications or it can run in
a microprocessor or computer with multiprocessing. An application running in a slave node
can have several tasks that interact with the slave middleware via the API. The initialization
tasks initialize all the messages (synchronous and asynchronous) and the tasks to be triggered
in the slave. Note that the tasks can interact with other tasks, depending on the particular
operation being executed.

The hardware access is made through the hardware specific device drivers. For example,
the hardware timers are managed by the timer handler (see figure 4.10) that controls the
synchronous and asynchronous window and the tasks execution.

4.5 Evaluation of the computational overhead

The aim of computing the master operational overhead is to assess the possibility of exe-
cuting all master operations in less than an elementary cycle, because otherwise it would not
be possible to implement the protocol. The FTT-CAN master middleware was implemented
in a Microchip PIC18F258 [Mic06] microcontroller and it takes advantage of its interrupt sys-
tem. Since the scheduler (the most time consuming task of the FTT-CAN master) and the
dispatcher are preemptable, to compute the operational overhead, one has to know which are
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Figure 4.10: Slave firmware overview

the interrupt service routines (ISRs) that can occur while the scheduler and the dispatcher
are running. These ISRs are the following:

• Trigger message reception ISR. If the master is a backup master, it must receive the
trigger message for comparison with the one internally generated for inconsistency ve-
rification;

• Asynchronous message ISR:

– Asynchronous data messages among slaves. These messages do not cause any ISR,
since they are filtered in the CAN controller hardware of the master node;

– Online change requests to the SRT. Each of these messages generates a reception
ISR (at active and backup masters). The minimum size of these messages is 2
data bytes [Fer05];

– Request from a backup master for sending the SRT for re-synchronization pur-
poses. This messages cause a reception ISR at the active master and a transmis-
sion ISR at the backup master. The minimum size of these messages is 0 data
bytes [Fer05];
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– SRT transmission for synchronization purposes. The SRT is split and transmitted
in multiple asynchronous messages. These messages cause transmission ISRs at the
active master and reception ISRs in the backup master which issued the request.
These messages can have three different sizes. Eight data bytes to transfer the
static part of the SRT line, messages with three data bytes to transfer the dynamic
part of the SRT line and delimiters with one data byte to distinguish between the
static and dynamic part [Fer05].

To assess the computational overhead it is necessary to compute the time taken to process
asynchronous messages that are interrupt sources, plus the time taken to run the scheduler,
the dispatcher and TM reception ISR (at a backup master). Note that the worst case only
noticeable difference in the computation overhead from the active master to the backup
master is the trigger message reception at the backup master. The trigger message reception
is an exclusive overhead of the backup master and does not occur in the active master. All
the other overheads are similar in the active and backup masters.

This computational overhead assessment is hard to perform, since the length of the mes-
sages varies and the execution time of the ISRs depends on each type of message. In this way,
the computational overhead of the master node using just one bus is (in figure 4.11 there is
the graphical representation of this):

CMst = CSch + CDisp + CISR (4.9)

CISR =
NISRR∑

i=1
CISRR(i) +

NISRT∑
i=1

CISRT (i) (4.10)

CMst = CSch + CDisp +
NISRR∑

i=1
CISRR(i) +

NISRT∑
i=1

CISRT (i) (4.11)

Where:

• CMst is the computational overhead of the master node;

• CSch is the computational overhead of the scheduler;

• CDisp is the computational overhead of the dispatcher;

• CISR is the computational overhead of all interrupt service routines;

• CISRR
is the computational overhead of the reception interrupt service routine. It

includes the trigger message reception, in case of a backup master (denoted as ’TMR’
in figure 4.11);

• NISRR
is the number of reception ISRs;



110 Chapter 4. FTT-CAN Implementation

• CISRT
is the computational overhead of transmission interrupt service routine and

NISRT
is the number of transmission ISRs.

Figure 4.11: Backup master computational overhead

In figure 4.11, the time available for the dispatcher is represented as ’Disp’ while the
time available for the scheduler is represented as ’SCH’. In this figure, the worst case is
represented, because the asynchronous window is filled with asynchronous messages received
by the backup master. There is no transmission ISR represented, but the system will have a
similar behaviour and the computational overhead assessment is still valid, since in equation
4.12 the maximum of an ISR overhead is used (reception or transmission).

A possible simplification of this procedure is to consider the maximum number of asyn-
chronous messages that fit in a maximum sized asynchronous window and that each message
causes an interrupt that takes the highest processing time among all of them. In this way,
the computational overhead of the interrupt service routines can be approximated to:

CISR = max(Nam)×max(CISRR(i), CISRT (j)), ∀i = 1, ..., NISRR
, ∀j = 1, ..., NISRT

(4.12)

Where max(CISRR(i), CISRT (j)) is the maximum computational overhead of an interrupt
service routine, and max(Nam) is the maximum number of asynchronous messages on the
bus. Thus:

max(Nam) =
⌊
lawmax

min(tfd)

⌋
(4.13)

Where:

• lawmax is the maximum length of the asynchronous window;

• min(tfd) is the minimum frame duration of a CAN message. This is a frame with
zero data bytes an no stuff bits. In fact this is a very particular frame, with very low
usability, but for a pessimistic analysis it can be used.

The maximum length of the asynchronous window occurs considering the synchronous window
do not exists. Thus, lawmax is:
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lawmax = LEC −min(ltmk), ∀k = 0, ...,∞ (4.14)

Where:

• LEC is the length of the elementary cycle;

• k is the number of the elementary cycle;

Thus, the maximum computational overhead is:

CISR =
⌊
LEC −min(ltmk)

min(tfd)

⌋
×max(CISRR(i), CISRT (j)),

∀i = 1, ..., NISRR
,∀j = 1, ..., NISRT

,∀k = 0, ...,∞ (4.15)

Making a pessimistic analysis, the maximum computational overhead occurs when the
trigger message has two data bytes and the asynchronous messages have no data bytes. In
fact, this is an unrealistic scenario (and very pessimistic), since a trigger message with two
data bytes cannot trigger any messages or tasks. It is also true that asynchronous messages
with zero data bytes are useless, but this scenario will be considered for a worst case analysis.

The minimum CAN message length, without stuff bits, is 47 bits (please refer to equation
3.1 using g = 34 and DLC = 0), thus, the time taken by such message is:

min(tfd) = 47× 1
Br

(4.16)

where Br is the bitrate of the CAN bus.
The minimum length for the trigger message (using 2 data bytes, DLC = 2, and g = 34

in equation 3.1), is:

min(ltmk) = 63× 1
Br

(4.17)

For the case of a multiple buses master, the computational overhead of a FTT-CAN
master with multiple buses can be determined using the same approach as before, since the
new modules required by the multiple buses implementation are quite simple. However, an
additional assumption must be made in order to calculate the computational overhead of the
master:

• All FTT-CAN protocol related messages are conveyed on the same bus, i.e., update
request messages and master synchronization.

Based on this assumption, the computational overhead imposed by the asynchronous inter-
rupt service routines is the same as for a single bus. So, re-writing equation 4.9 for the case
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of a multiple buses system, the computational overhead for the active master and for the
backup master is:

CMst_N_Bus = Nbuses × (Csch + Cdisp) + CISR (4.18)

Where Nbuses is the number of existing buses in the system.
Equation 4.18 considers the execution of the scheduler and dispatcher module in a round

robin scheme.

4.5.1 Experimental results

A single bus system with six slaves, one active and a backup master was implemented in
an autonomous robot [MSF+06, MSF+07]. The elementary cycle was set to 5ms which is
the minimum period of tasks and messages in the system (see section 5.2.2 and table 5.1).
The set of messages added to the system is composed of 9 messages with periods from 4
to 200 elementary cycles (thus, 20ms to 1s). This set of synchronous messages results in a
communication load close to 27% (using the maximum number of stuff bits) or 22,5% (using
the minimum number of stuff bits), with FTT-CAN running at 250kbps (these loads have
been calculated using table 5.1). The maximum duration of the asynchronous window is the
duration of the EC minus the duration of the trigger message. Concerning the hardware,
it was used the PIC18F258 running at 40Mhz which corresponds to an instruction cycle of
100ns (there is an internal divisor of the external crystal oscillator).

In these conditions, the worst execution times measured in a long run were:

• Scheduler module, Csch = 628µs;

• Dispatcher module, CDisp = 82µs;

• The maximum execution time observed for the interrupt service routine,
max(CISRR(i), CISRT (j)) = 105µs.

The minimum size of the trigger message in the presented test platform is 6 data bytes. Thus,
considering no stuff bits in the trigger message (see equation 3.1):

min(ltmk) = (47 + 6× 8)× 1
250× 103 = 380µs (4.19)

min(tfd) = 47× 1
250× 103 = 188µs (4.20)

lawmax = 5m− 380µ = 4.62ms (4.21)
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max(Nam) =
⌊4.62m

188µ

⌋
= 24messages (4.22)

CMst = 628µ+ 82µ+ 24× 105µ = 3.23ms (4.23)

Considering the elementary cycle duration of 5ms, the results show that the master
running at this microcontroller is able to do all the necessary tasks in less than an EC time.
Note that the analysis performed is pessimist because it has been assumed that the CAN
messages (synchronous or asynchronous messages) always have no stuff bits. In this case, the
maximum number of messages occurs, thus the maximum number of ISRs.

For a master with three CAN buses and using the same processor, the overhead can be
extrapolated to:

CMst_N_Bus = 3× (628µ+ 82µ) + 24× 105µ = 4.65ms (4.24)

Thus, using three buses this microcontroller can still perform all the necessary tasks within
one elementary cycle.

4.6 Conclusions

This chapter presented the implementation of FTT-CAN in small embedded systems,
describing the data structures and the application program interface. The asynchronous mes-
saging system was not considered because it does not impact the master node. Asynchronous
messages are handled by the slave nodes only by themselves.

The FTT-CAN protocol was developed to support applications that require flexibility
and real-time and synchronization capabilities. An application programming interface was
implemented to support those requirements and a detailed description of each API function
was presented in this chapter. The data structures to support the execution of the middle-
ware in the master have been presented. Special focus has been given to the synchronous
requirement database and to the trigger message structure. The mapping of these structures
into the developed software has been addressed because it is an important development issue.

The software modules (handlers) of the master node with one bus and with multiple buses
were also presented. In fact, the multiple buses version is an adaptation of the single bus
version, where some of the internal modules were adapted and a few new modules were added.

Experimental results have shown that the computational overhead of running the
FTT-CAN protocol on low computational power microcontrollers is small, enabling the im-
plementation of the protocol with single or multiple buses in one microcontroller.
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Experimental evaluation

5.1 Introduction

The FTT-CAN implementation described in the previous chapter is assessed and validated
in this chapter. Two different evaluation approaches were adopted, one for the single bus case
and other for the multiple buses implementation.

The single bus implementation has been extensively tested and it is running on soccer
robots since 2005 [SMA+05]. Its most critical issue, the master replication protocol, was pre-
viously validated using the model checking formal verification tool SPIN (Simple PROMELA
Interpreter) [RNPR+04]. Formal validation results have shown that the master replication
protocol works correctly for the considered fault hypothesis. However, it was not demons-
trated then that the system could be implemented on low processing power microcontrollers.
Thus, the main purpose of designing from scratch the single bus FTT-CAN implementation,
described in the previous section, was to validate the conjecture that microcontrollers with
low processing power and memory may, in fact, implement the single bus FTT-CAN with
master replication with little overhead.

The introduction of the multiple buses to FTT-CAN system brings new potential problems
that require preliminary extensive laboratory validation prior to deploying them in real world
applications (such as the soccer robots). The approach adopted to validate the multiple buses
FTT-CAN architecture was based on fault injection. With the custom fault injector hardware,
one can generate very specific fault scenarios that contribute to access the dependability of
the system while proving that it can be deployed, with small overhead, in low memory and
low processing power microcontrollers.

5.2 Single bus mechanisms’ assessment

The single bus FTT-CAN architecture was evaluated using a soccer robot platform that
was developed at our research lab. The soccer robot operates in a highly dynamic environment
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where it interacts with other robots from the same team, with external devices and with robots
of the opposite team.

The robot platform is being developed for several years and the initial distributed control
system was based on native CAN bus connecting all nodes without any upper level synchro-
nization of the messages and the tasks running in different nodes.

The deployment of FTT-CAN as the backbone communication system of the soccer robots
favours an explicit synchronization among all the nodes, a tight control of the traffic flows
transmission, thus reducing message’s jitter. Adding to this, it enables also the simultaneous
triggering of tasks in different nodes.

This section addresses the deployment and assessment of single bus FTT-CAN and com-
pares the experimental results, obtained on the soccer robots, with the initial implementation,
in order to highlight the benefits of using this protocol.

5.2.1 Experimental platform: the CAMBADA soccer robot

The robotic platform CAMBADA [ASF+04] was developed to participate in the RoboCup
soccer competition [KAK+97]. Currently, the requirements posed on such teams of autono-
mous robots have evolved in two directions. On one hand, robots must move faster and with
accurate trajectories to close the gap with the dynamics of the processes that they interact
with, e.g., a ball can move very fast. On the other hand, robots must interact with each other
in order to develop coordinated actions more efficiently, e.g., only the robot closer to the ball
should try to get it while others should move to appropriate positions. The former require-
ment calls for tight closed-loop motion control while the latter demands for an appropriate
communication system that allows building a global information base to support cooperation.
Both cases are subject to time constraints that must be met for adequate performance.

The robot architecture for such application is based on a biomorphic (see figure 5.1) para-
digm [SMA+05] being centred in the main processing unit, the brain, which is responsible for
the higher level coordination behaviour. This main processing unit handles external commu-
nication with other robots and has high bandwidth sensors, typically vision, directly attached
to it. This unit receives low bandwidth sensing information and sends actuation commands
to control the robot behaviour by means of a distributed low-level sensing/actuation system,
the nervous system (see figure 5.1).

The low-level sensing/actuating system follows the fine-grain distributed model [Kop97]
where most of the elementary functions, e.g. basic reactive behaviours and closed-loop control
of complex actuators, are encapsulated in small microcontroller-based nodes interconnected
by a network. The nodes are based on the PIC18Fx58 microcontroller [Mic06] operating at
40MHz. At this level there are 3 DC motors with their respective controllers plus an extra
controller that, altogether, provide holonomic motion. Each motor has an incremental enco-
der that is used to obtain speed and displacement information. Another node is responsible
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Figure 5.1: The biomorphic architecture of the CAMBADA robots

for combining the encoder readings from the 3 motors and building a coherent displacement
information that is then sent to the coordination layer.

Also, there is a node responsible for the control of the kicking electro-mechanical sub-
system. It consists of a couple of sensors to detect the ball in position to be kicked and to
trigger the kicker. This node also carries out the battery voltage monitoring. In figure 5.2
the functional modules of the robot are presented.

Figure 5.2: Functional robot modules

5.2.2 Communication requirements

The specific mapping of the functional architecture over the hardware platform leads to
an operational architecture which presents requirements concerning both the tasks that need
being executed on each node as well as the messages that must be exchanged by the nodes.
The communication requirements are shown in table 5.1.

The motion function spans across 4 nodes, the 3 motor controllers plus the holonomic
controller. This controller that translates the robot velocity vector set-point received from the
upper layer into individual speed set-points for each of the motors. Both the motor controllers
and the holonomic controller execute in a periodic fashion but with different periods. The
former ones execute a PI-type closed-loop motor speed control once every 5ms. This value
has been deduced from the dynamics of the robot. Moreover, these tasks are relatively light,
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ID Source Target Type Period/mit (ms) Size (B) Short Description
M1 Holonomic

ctrl
Motor node

[1:3]
Periodic 30 6 Aggregate

motor speeds
set points

M2 Kicker Higher level
node

Periodic 1000 2 Battery status

M3.1-M3.3 Motor node
[1:3]

Odometry
node

Periodic 5 to 20 3*3 Wheels encoder
values

M4.1-M4.2 Odometry
node

Higher level
node

Periodic 50 7+4 Robot position
+ orientation

M5.1-M5.2 Higher level
node

Odometry
node

Sporadic 500 7+4 Set/reset robot
position +
orientation

M6.1-M6.2 Higher level
node

Holonomic
ctrl

Periodic 30 7+4 Velocity vector
(li-
near+angular)

M7 Higher level
node

Kicker Sporadic 1000 1 Kicker actuation

M8-M12 Every node Higher level
node

Sporadic 1000 5*2 Node hard reset

Table 5.1: Low-level control layer communication requirements

taking less than 1ms to accomplish. On the other hand, the holonomic controller executes
a cyclic conversion of the higher layer set-points once every 30ms. This node is relatively
loaded as each conversion takes about 16ms to carry out. The chosen period is, nevertheless,
sufficiently small to support a smooth robot motion.

In terms of communication, the motion function requires the periodic transfer of the robot
velocity vector set-point from the higher level node to the holonomic controller and then the
periodic transfer of the motor speed set-points from the holonomic controller to the individual
motor controllers. Both transfers are carried out once every 30ms.

The former transfer requires two messages (M6.1 and M6.2 in table 5.1) to convey the
linear and angular information, respectively. Concerning the latter transfer, the motor speed
set-points generated for the motor controllers should be applied to each motor approxima-
tely at the same time thus they are piggybacked on the same message and transferred as
a broadcast (M1 in table 5.1). Finally, the control loops of the 3 motor controllers should
also be synchronized among themselves so that they generate motor actuation signals at
approximately the same time.

Another important subsystem is the one corresponding to the odometry function. This
function also spans across 4 nodes, the 3 motor controllers plus a fourth node that combines
the individual encoder readings into a coherent displacement information sent up to the
higher layer. The encoder readings are the same as used by the closed-loop motor speed
control and thus they are sampled every 5ms, and this should be carried out synchronously
in all three motors. However, depending on the desired precision in constructing the robot
displacement information, these readings can be sent with a periodicity that varies from 5ms
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to 20ms (higher to lower precision).
During the execution of certain high level behaviours the odometry information is not

needed, e.g. when tracking the ball, and thus it can also be temporarily switched off.
Three messages are used to convey the encoder readings (M3.1 to M3.3 in table 5.1).

Upon reception of these messages, the odometry node calculates the robot position and
orientation, taking approximately 4ms, and sends it to the higher layer, every 50ms, using
2 messages (M4.1 and M4.2 in table 5.1). This period is compatible with the cycles used
by the processes running within the higher layer. The odometry function also includes a
pair of sporadic messages (M5.1 and M5.2 in table 5.1) received from the higher layer to set
or reset the current robot position and orientation information within the odometry node.
These messages are not expected to be generated within less than 500ms intervals (minimum
inter-arrival time: column ’Period/mit’ in table 5.1).

Finally, the kick and system monitor functions are integrated in the same node, the kicker
controller, which is lightly loaded. The former corresponds to execution the kicking commands
received from the higher layer. These are conveyed within one sporadic message (M7 in table
5.1) which is not expected to be transmitted more often than once every second. In fact, the
kicker is electromagnetic and takes about this time to recharge between consecutive kicks.
On the other hand, the latter function currently encompasses the batteries level sampling
which is sent up to the higher layer using a periodic message (M2 from table 5.1) with a
period of 1s, as well as a set of five sporadic messages (M8 to M12 in table 5.1) that inform
the higher layer whenever a hard reset occurs in the respective node.

5.2.3 Communications architecture

The first version of the communication architecture of the robot was based on a native
CAN network. New master nodes (active and backup) and a new software layer were required
to deploy the FTT-CAN protocol (components shadowed in figure 5.3).

In order to effectively use FTT-CAN it is necessary to identify the information flows
related with cyclic activities. Knowing the respective transmission and execution times (pre-
sented in table 5.1), one determine which activity triggers each flow and also which should
be the appropriate offset of each transmission or activity.

The first aspect is to separate the periodic from the sporadic traffic, as presented in table
5.1. The latter is handled by the asynchronous subsystem similarly to a non-synchronized
framework. The periodic traffic is then named using FTT-CAN synchronous identifiers.

The EC duration was set to 5ms which is the shortest period among all periodic activities
and messages, i.e., the closed-loop motor speed control period. For a trigger message with
5 bytes, the communication overhead is lower than 8.4% (420µs/5ms) (refer to table 3.2)
while the communication load according to table 5.1 is close to 27% of the bus bandwidth at
250kbps. This value is obtained adding the individual contribution of each information flow.
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This is encapsulating each one in a CAN message with DLC equal to the respective number
of bytes and using the maximum bit stuffing.

The next step is to analyze the synchronization requirements to identify the set of ac-
tivities that need synchronization and the respective set of synchronous triggers. Examples
of such are the encoders reading or a production of the message with the encoders data.
The former results in FTT-CAN identifier 8 (in table 5.2) and the later results in FTT-CAN
identifier 9 (in table 5.2).

Finally, the offsets of all messages and synchronous triggers are established so that trans-
missions are carried out soon after the respective data becomes available and, conversely,
activities are triggered with enough slack, so data can be generated as close as possible to
the respective transmission instant. Moreover, the synchronous triggers allow triggering of
several remote activities at approximately the same time (within a few micro-seconds), as it
is required by the odometry function. These concerns lead to increase the freshness of the
data in the information flows, reducing the respective end-to-end latency and jitter, with a
positive impact in the performance of the respective global control loops associated to the
high level behaviours.

Table 5.2 shows the system synchronous requirements, including both synchronous mes-
sages and tasks. For the case of the tasks, the ’Destination’ column represents the node
where the task runs. The offsets extracted from the system requirements are expressed in
the column ’Init time’ and they are also expressed in number of elementary cycles. Notice
that, all periods and offsets (’Init time’) are expressed in multiples of the elementary cycle
duration.

The table 5.2 was mapped in the hardware and software of the low-level control system.In
figure 5.3, the robot low-level communication architecture is depicted (shadowed parts cor-
respond to FTT elements).

It was necessary to add two extra nodes to control the synchronous communications in
the CAN bus. These nodes are the master and its replica. Also, a gateway is used to interface
the higher level unit with the low-level control system.

Applications running on both the master node and in its replica, add new synchronous
messages to the FTT-CAN protocol using the API presented in section 4.2. After that, these
masters are started.

At the slave nodes, the application should configure the synchronous variables (messages
and tasks) and the asynchronous messages. The function provided by the FTT-CAN slave
API that adds a synchronous message (or task), requires the identification of the synchronous
message and the nature of the node (producer or consumer). For the asynchronous messages,
the application running at the slave must indicate its role (sender or receiver) and the identifier
of the message. After this two initial configuration steps, the slaves are ready to start to
send/receive messages and trigger tasks.
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FTT-CAN ID Source Destination Period (#ECs) Init time (#ECs) Short Description
0 Holonomic ctrl Motor node [1:3] 6 5 Motor speed setpoints
1 Motor 1 node Odometry node (1:4) 2 Encoder count in

motor 1
2 Motor 2 node Odometry node (1:4) 2 Encoder count in

motor 2
3 Motor 3 node Odometry node (1:4) 2 Encoder count in

motor 3
4 Odometry node Gateway 10 4 Current position
5 Odometry node Gateway 10 4 Current orientation
6 Gateway Holonomic ctrl 6 0 Velocity vector (linear)
7 Gateway Holonomic ctrl 6 0 Velocity vector

(angular)
8 — Motor node [1:3] 1 0 Triggers the encoder

readings
9 — Motor node [1:3] 2 1 Triggers production of

messages 1,2,3 at the
motor nodes (encoder

readings)
10 — Odometry node 2 3 Triggers the

consumption of encoder
messages 1,2,3 at the

odometry node
11 — Odometry node 10 3 Event to produce

messages 4,5
12 — Holonomic ctrl 6 1 Triggers the

consumption of
messages 6,7 in the
holonomic controller

13 — motor node [1:3] 6 6 Triggers the
consumption of

message 0 in the motor
nodes

14 Kicker Gateway 200 200 Battery status

Table 5.2: Low-level control layer message set and activity tasks

5.2.4 Synchronizing data flows

One of the key features of FTT-CAN is the synchronization among applications. Figure
5.4 shows the timeline of the two main synchronous information flows, related with the motion
function (top in figure 5.4) and the odometry function (bottom in figure 5.4).

In what concerns the motion function, the flow is triggered by a pair of messages (6 and
7 in table 5.2 and figure 5.4) sent by the gateway with offset 0 and arriving from the higher
layer. These messages contain a velocity vector. These values are received by the holonomic
controller that is synchronized in trigger 12 (see table 5.2 and figure 5.4), which is produced
right after the transmission of the messages, with offset of 1 EC. This trigger starts the
execution of the holonomic controller to process the new velocity vector. The resulting motor
speed set-points will be available after 16ms, which rounds up to 4 ECs [SMA+05, MSF+06,
MSF+07]. Thus the respective message (0 in table 5.2 and in figure 5.4) is transmitted to
the motor nodes in the following cycle, i.e. with an offset of 5 ECs. Trigger 13 (see table 5.2
and figure 5.4) is used to synchronize the closed-loop speed control of each motor with the
arriving set-point. The offset is 6 ECs to enforce a reduced latency between reception and
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Figure 5.3: FTT-CAN low-level control system

use of the set-points.

The transmission of the next velocity vector, and thus the start of the next cycle, is
carried out in the following EC.

In what concerns the odometry function, the respective information flow starts with trig-
ger 8 (see table 5.2 and figure 5.4), with offset 0, which causes the synchronous sampling of
the encoders in the 3 motors. These values are locally accumulated until they are transmit-
ted. In the example, the transmission of the encoder readings is set to have a period of 2 ECs
(messages 1-3) and the respective values are produced with trigger 9 (see table 5.2 and figure
5.4), in the EC before their transmission. Thus the offset of messages 1-3 is 2 ECs while the
offset of trigger 9 is 1 EC. The periods of these entities can vary depending on the desired
odometry precision from 1 EC (highest) to 4 ECs (lowest) as expressed in tables 5.1 and 5.2.
They can also be suspended (period set to 0) when the odometry function is not needed.

The odometry node work is triggered right after the transmission of the messages 1-3 (see
table 5.2 and figure 5.4) carrying the encoder readings, using trigger 10 (see table 5.2 and
figure 5.4) with an offset of 3 ECs. Since it executes in less than one EC, the production of
the current position and orientation (trigger 11 in table 5.2 and in figure 5.4) is carried out
in that EC (same offset of 3 ECs) while the message transmissions (messages 4 and 5 in table
5.2 and in figure 5.4) are assigned to the following EC thus with an offset of 4 ECs.
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Figure 5.4: Timeline for motion information flow
Top: motion. Bottom: odometry.

5.2.5 Experimental validation

Soccer robots with the FTT-CAN network have been extensively tested in competitions.
The low-level control system based on FTT-CAN with one bus and a replicated master have
met all the requirements both in terms of performance of the communications and in terms of
reliability. The CAMBADA soccer team with five robots have participated in over 50 matches
of 30 minutes each (clock-time) [ABB+09, Uni10], besides other robot demonstrations and
festivals where the team has played demonstration games. Among others good classifications,
the CAMBADA soccer team has won the world cup in 2008 and had the third place in 2009
in world tournament [Uni10]. During all this time, the low-level distributed control system
based on FTT-CAN did not have any malfunction (as for the case of standard CAN). This
has been considered a sufficient test to validate the noticed operation of a FTT based system
in real environment with stringent requirements. In order to further assess the benefits of
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using FTT-CAN, some experiments were carried out, aiming to compare timeliness properties
with the case in which CAN was used without support for synchronization among remote
tasks. For that comparison, the end-to-end delay associated with the two information flows,
were measured [MSF+06, MSF+07]:

• Motion control information flow. Measured from the instant in which the gateway
starts transmitting a velocity vector to the instant when one of the motors receives the
corresponding speed set-point (see top of figure 5.4);

• Odometry information flow. Measured from the instant in which the encoder of one
motor is read to the instant when the respective new position is received by the gateway
(see bottom of figure 5.4).

The results are presented in table 5.3, concerning the maximum and minimum values observed
for the end-to-end delays (dee) of both information flows in the two approaches referred before,
i.e. unsynchronized using CAN and globally synchronized using FTT-CAN.

Information
flow

CAN FTT-CAN
Max dee (ms) Min dee(ms) Max dee(ms) Min dee(ms)

Motion 64.4 38.8 27.7 26.7
Odometry 21 12 21.7 21.6

Table 5.3: Timeliness of information flow

It can be seen that the absence of synchronization among multiple chained cycles creates
large delays and, mainly, large delay variations (jitter). On the other hand, the synchroniza-
tion capabilities of FTT-CAN allow establishing adequate offsets that can be used to reduce
end-to-end delays and, more important, the associated jitter. The reduction of end-to-end
delays is only noticeable when the cycle durations are large enough, at least 3 ECs long. For
shorter cycles, as it is the case with the odometry information flow, the temporal resolu-
tion of FTT-CAN limits the achievable reduction of the end-to-end delay. However, there is
still a high jitter reduction, nearly elimination, which is probably more beneficial for control
purposes than the reduction on the end-to-end delay.

Another advantage of FTT-CAN is the simple and efficient process of triggering tasks
synchronously. In fact, this is done without extra messages, just using the trigger messages.
These triggers allow synchronizing tasks in remote nodes with relatively high precision. In
the specific case of the closed-loop speed control in the 3 motors, the use of triggers allo-
wed to synchronize all the loops within +/- 130µs (this value has been obtained using an
oscilloscope).

To assess the feasibility and correctness of the master replacement, some experiments
were carried out in the network. Apart from the synchronous messages, asynchronous ones
(M5.1, M5.2, M7, M8, M9, M10, M11 and M12 in table 5.1) were also injected onto the bus
but with lower priority than those involved in the master replication mechanisms.
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In order to assess both the accuracy of the worst-case synchronization time estimation and
the reliability of the master replica re-synchronization scheme, a software routine injects an
inconsistency in the backup’s master requirement table and measured the elapsed time until
the backup master became synchronized with the active master. Measured values ranged from
40.2ms to 45.4ms (this value has been obtained using an oscilloscope). This variation can
be explained with the different synchronous scheduling in each EC which directly interferes
with the FTT-CAN asynchronous window size, that is often larger than 2.1ms (minimum
asynchronous window size). Thus, if more room is available in the asynchronous windows,
the SRT is transferred faster.

As referred in previous chapter (see figure 4.2), the static data of the SRT are the message
identifier, data size (the bit size is derived from the data size), period and deadline, while
the scheduling state data consists of the absolute deadline, the ’Mask’ field (see figure 4.2)
and the relative phasing of the messages at the beginning of the next plan. Each of these
properties are encoded in one byte, resulting in a synchronous requirement table occupying
126 bytes (there are 14 variables, see table 5.2, occupying 9 bytes each).

To test the mechanism of master replacement upon a failure of the active master, the
active master was unplugged from the network several times. The backup master took an
average time of 310µs, measured with an oscilloscope, to replace the active master (see figure
5.5, where ’TMA’ is a trigger message sent by the active master and ’TMB’ is a trigger
message sent by the backup master). Notice that this value depends on the bit stuffing of
the trigger messages. In fact, the replacement timer of the backup masters is triggered when
the previous TM is received, which is affected by bit stuffing. When trigger messages have
5 data bytes, the number of stuff bits ranges from 0 to 15 [NHN03]. This corresponds to a
maximum variation of 60µs at the current bitrate. The time taken by the backup master to
replace the active is not noticed in the robot behaviour and thus, there is no effect on its
movements or tasks.

Figure 5.5: Master replacement delay

In order to assess the synchronous requirement table update protocol, the high level robot
control application issued several update requests to the master node in order to change the
sampling period of the wheel encoder values. This is something to be done automatically in
the future because it enables an adjustment to the robot dynamics. That is, the sampling
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rate is increased when the robot speed is high and decreased when the robot speed is low.
The response time of each synchronous requirement table update request ranged between
15.8ms and 19ms (between 3 and 4 ECs), as expected by Ferreira [Fer05].

5.3 Multiple buses experimental platform and results

In the previous section, the single bus assessment made in a robotic soccer team has been
presented.

In this section, the test platform and results for the multiple buses are presented. For this
test platform, a fault injection system and a delay measurement system was developed. Next,
this test platform and their elements will be explained. The results follow the presentation
of the test platform, with special focus to the practical and expected values.

5.3.1 Experiment’s rationale

The validation of the multiple buses FTT-CAN network is based on a fault injector
capable causing faults both on the buses and at the master nodes. A fault injector requires a
measurement equipment to register the impact of the fault in the network, and in the master
nodes. A Delay Measurement System (DMS) was developed for this purpose. It is capable of
monitor the buses to identify the relevant events, mainly trigger messages, so it can measure
the delays between the instant a fault is injected and the instant the corresponding error is
visible on the buses.

Only the replacement of buses and masters were assessed, thus, inclusion of slaves in the
test platform are not so important.

Figure 5.6 depicts a global view of the experimental validation setup.

Figure 5.6: Assessment setup global view

This fault injector is able to cause entire fault scenarios presented in section 3.5.3 consi-
dering on the fault hypothesis defined in section 3.5.2.
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For the case of the master nodes, the fault injector imposes a fail silent behaviour, by
turning a master node off.

For the case of the bus faults, the fault injector can cause the following faults:

• Force lines at logic ’1’. This corresponds to a stuck-at recessive bits fault;

• Force lines at a logic ’0’. This corresponds to a stuck-at dominant bits fault;

• Open the bus. This corresponds to a situation of cutting the bus wires (partitioning).

To understand the time marks the DMS must sense when a bus or master fault occurs, the
bus fault timeline and the master fault timeline will be explained next.

Bus fault timeline

The fault measuring equipment takes advantage of the systolic nature of the trigger mes-
sage and the position of the masters (at the end of the buses) in order to detect bus and
master errors [SBFF09]. Notice that the masters are placed at both ends of the buses to
ensure that bus partitions are always detected.

A bus is assumed to be faulty whenever the trigger message issued by the active master
is not received by the backup master within a given time window (TMTW ). If a backup
master detects a faulty bus, a high priority asynchronous message is transmitted in all buses,
indicating the active master that a reconfiguration is required [SBFF09]. The reconfiguration
corresponds to reallocate and reschedule all the messages from the faulty bus to the remaining
ones according to a best effort policy. Figure 3.12 presents the timeline of a bus error detection
while figure 5.7 depicts the timeline of an error recovery.

In figure 5.7, the asynchronous message issued by the backup master to indicate an error
in bus 2 is identified as ’BEAM’ (Bus Error Asynchronous Message). The time elapsed since
the transmission of the last trigger message (TMX-1

y in figure 5.7, where ’y’ represents the bus
number) and the instant of the error is presented as tphase. After missing the TMX

2 in bus
2, the backup master waits the transmission window (TMTW ) to issue the BEAM message.
The delay from the fault to the reception of this message is identified as tBEAM . After its
reception, the active master changes the bus 2 messages to bus 1 (operation indicated as
’Bus changing’ in figure 5.7) and their schedule will appear in TMX+3

1 (elapsing tre_schedule

time). The time elapsed from the last correct trigger message (TMX-1
y ) to the respective

occurrence is called a relative delay for that occurrence (Rel(tBEAM ) for the BEAM message
and Rel(tre_schedule) for the new schedule).

Note that the new schedule cannot be present in TMX+2
1 since the scheduling for this EC

is initiated during the TMX+1
1 and eventually terminates after the reception of the request

message. To guarantee the mutual exclusion of the internal tables, as presented in [SFF07c]
and discussed before (at section 3.5.5), the bus changing operation is performed in a copy
instance of the SRT.
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Figure 5.7: Bus error timeline

Master fault timeline

Concerning master errors, as defined in the fault hypothesis, at least one bus at a time will
be working correctly. As a result, if the backup master does not receive the trigger messages
in any bus, this can only mean that the active master is faulty [SBFF09]. Whenever this
happens, the backup master waits the transmission window (TMTW ) before gaining control
of the buses and starting the trigger message transmission. In that way if the backup master
is the only working master, bus error detection is unsupported [SFF07c], thus the system
enters in a degraded mode. Figure 5.8 depicts the timeline of an error in the active master.

In figure 5.8, tphase indicates the time elapsed from the last trigger message (TMX-1
y ,

where ’y’ is the bus number) to the error occurrence in the FTT-CAN master. Since the
trigger messages can have a different number of bits (due to bit stuffing), two different delays
were defined: tT M_first and tT M_second (in chapter 3 only tT M_new was defined because was
assumed that the master sends both trigger messages at same time with the same number
of bit stuffing). The former is the time elapsed from the error in the active master and the
first trigger message reception instant. The later is similar, but regarding the second trigger
message reception. The time elapsed from the last correct trigger message (TMX-1

y ) to the
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Figure 5.8: Master error timeline

respective occurrence is called a relative delay for that occurrence (Rel(tT M_first) for the
tT M_first and Rel(tT M_second) for the tT M_second).

5.3.2 Fault injector and delay measurement system

Fault injector

To switch off a FTT-CAN master (simulating a fail silent behaviour), the fault injector
acts on the reset pin of the microcontroller (holding it at reset state).

The fault injection hardware, the way how to cause faults on the buses, is more complex
than the one required to turning off the master node, since it must be able to cut the buses or
to put them in a recessive or dominant state. To meet these goals, some specialized hardware
was developed. The specialized hardware is based on a multiplexer made of three 4066 analog
switches [Mot95]. Figure 5.9 presents the structure and connections of the multiplexer.

Figure 5.9: Multiplexer structure

The multiplexer is suitable for the CAN low and CAN high bus lines, thus, two multi-
plexers are needed for each bus, as depicted in figure 5.10. In table 5.4, the voltages for CAN
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high and CAN low according the ISO11898 signalling [ISO93] are presented.
`````````````̀Parameter

CAN bit Dominant Recessive

Logical value ’0’ ’1’
CAN_H voltage 3.5V 2.5V
CAN_L voltage 1.5V 2.5V

Table 5.4: CAN high and CAN low lines voltages

In figure 5.9, the signals S0, S2 and S3 are the control switches signals. According to the
combination the control signals S0, S2 and S3, the output takes a value presented in table
5.5, where:

• “0” means the respective switch is open and ”1” means the respective switch is closed;

• ND stands for “not defined” as it is an inconsistent combination from the point of view
of the CAN bus.

S0 S1 S2 OUT
0 0 0 ND
0 0 1 IN
0 1 0 Recessive
0 1 1 Recessive
1 0 0 Dominant
1 0 1 Dominant
1 1 0 ND
1 1 1 ND

Table 5.5: Multiplexer functions

As referred, each bus needs a set of two multiplexers. The combination of two multiplexers
for using in one bus is presented in figure 5.10.

The internal structure of the fault injector is presented in figure 5.11.
A personal computer is used to configure the fault injector through its parameters confi-

gurator (see figure 5.11). Examples of parameters to configure are the type of fault to inject
and the instant of the fault occurrence.

The multiplexers are controlled by the ’fault handler’, a module of the fault injector (see
figure 5.11), through the hardware drivers. The ’fault handler’ also has digital outputs that
are used to reset the master nodes (see figure 5.11). The ’timer handler’ controls the timers
and imposes the moment to inject the fault.

The delay measurement system (DMS)

The Delay Measurement System (DMS) measures the time elapsed between the injected
fault and the respective error, so it needs information from the fault injector and also from
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Figure 5.10: CAN bus multiplexers

the buses.
The fault injector and the DMS are able to repeat an experiment several times. The delay

measurements are sent to a personal computer for offline processing and analysis.
The internal structure of the DMS is presented in figure 5.12.
The delay measurement system is configured through the parameters configurator that, in

turn, programs the event recognizer. The event recognizer can distinguish events through the
hardware drivers that arrive from a computational or communication system. The parameters
configurator can also program the time stamper, for example to define the base time or the
time range of the delays.

One of the outputs of the DMS is a histogram representing the collected delays. The
histogram parameters that can be configured are resolution, the number of bars and the
value of the first bar of the histogram.

The DMS also computes the average and standard deviation of the measured delays.
The delay measurement system is built on top of a dsPIC30F6012A microcontrol-

ler [BSF07].

Using the DMS in related work

The DMS is a low cost, flexible, customizable and easy to operate device allowing the
performance assessment of several communication systems through the transmission of a serial
data stream. Its architecture makes it suitable to be used in any communication technology
supporting the transmission of a serial data stream or, with changes, any communication
protocol. Thus, the DMS is not a system specific for the purpose of this work and can be
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Figure 5.11: Fault injector internal modules

applied to other test platforms.

The delay measurement system was used during the validation process of the Virtual
Token Passing Ethernet h-BEB (VTPE-hBEB) protocol proposed by Carreiro et al. [CFSV04,
Car08, MCB+10].

The use of a serial stream in VTPE-hBEB is justified by the option, in an early deve-
lopment stage, to perform two assessments on the communication system: subjective and
objective. The subjective assessment consisted in transmitting music through the commu-
nication system and evaluating its quality at the receiver end. Although this approach can
be interesting for demonstration purposes, it is not suitable for assessing a real-time com-
munication system, since it does not provide quantitative figures [BSF07]. In the context
of VTPE-hBEB protocol objective validation, DMS was able to measure the Ethernet frame
transmission delays and the corresponding processing delays on the microprocessors [FBSC07]
and compute the respective delays histograms.

Recently, the DMS was used for measuring delays in location systems based on wireless
personal area networks with Zigbee. Also, it was used to delay measurements in a system
used to capture channels in noisy wireless communications environments [BF10].
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Figure 5.12: DMS internal structure

Joining time measurement and fault injection

As it was obvious from previous sections, there is a logical dependency between fault
injection and delay measurement. So, both modules were physically implemented together,
because:

• The delay measurement system must communicate with the fault injector;

• Since both modules must communicate, the communication delays are smaller and the
resulting precision is higher if both modules share the the same processor;

• As both systems must be configured, it is easier to configure them if they are located
in the same microcontroller;

• The implementation of both modules in a single microprocessor is easier because the
communication between them is via internal memory.

Figure 5.13 depicts the new device that joins the DMS and the fault injector, the eXtended
Delay Measurement System (xDMS).

The xDMS has been developed also in a dsPIC30F6012A [Mic08] as the initial DMS
(the hardware is shown in figure 4.6). The communication with the personal computer for
configuration and data upload purposes is done through a RS232 serial line.
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Figure 5.13: xDMS internal modules

5.3.3 Experimental setup and results

A measurement setup was developed to validate the multiple buses multiple masters
FTT-CAN communication system. This setup aims at providing the basic features required
for the assessment of bus and master redundancy and, as such, it includes an active master
and a backup master connected by two CAN buses (bus 1 and bus 2).

The evaluation of the delays associated with reconfiguration as result of bus or master
errors is conducted using the extended delay measurement system (xDMS) [BSF07] presented
before. This evaluation aims the assessment of the delays presented in figure 5.7 for the case
of a bus error (tBEAM , Rel(tBEAM ), tre_scheduling and Rel(tre_scheduling)) and in figure 5.8
for the case of a master error (tT M_first, Rel(tT M_first), tT M_second and Rel(tT M_second)).

For the present assessment, a bus error is either a bus segmentation or setting it in a
dominant state. For proof of concept, the recessive state was also evaluated, however, no
results will be presented.

Figure 5.14 presents a general architecture of the measurement setup including the xDMS.
Figure 5.15 displays a picture of the measurement setup, excluding the PC presented in figure
5.14.

For each measured delay, a set of trials will be performed in an automatic way by the
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Figure 5.14: Measurement architecture

xDMS (configured by the personal computer). This set of trials is called a batch.
A trial is conducted using the following sequence of operations:

1. Reset the masters (active and backup) begins the trial;

2. Wait for a random number of trigger messages (the xDMS has the possibility to bound
this random number). This random number is X − 1 figures 5.7 and 5.8;

3. Wait for a random amount of time (less than an elementary cycle). This value is
represented as tphase in figures 5.7 and 5.8;

4. Apply the specified error (the error is specified as parameter using the personal com-
puter);

5. Measure the delays: tBEAM and tre_scheduling (or Rel(tBEAM ) and Rel(tre_scheduling))
in case of bus bus error and tT M_first and tT M_second (or Rel(tT M_first) and
Rel(tT M_second)) for the case of master error.

The random amount of time elapsed since the last trigger message (tphase in figure 5.7 and
5.8) is limited by the first next received trigger message. Figure 5.16 describes the delay
components of the maximum permitted phase for error injection.

The delay between the dispatching of two trigger messages in two buses results from the
processing overhead on the master, represented in figure 5.16 by t1. The time duration of a
trigger message (TM) is not constant, i.e. it depends on the payload and on the associated
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Figure 5.15: Developed system

stuffing bits. The worst case scenario occurs when one TM has the maximum length (TMX
2 )

and the other has the minimum length (TMX+1
1 ). In figure 5.16, the size of the trigger message

and of the elementary cycle is represented by ltmx
y (where y is the number of bus and x is the

elementary cycle number) and LEC, respectively. The extended delay measurement system
handles trigger messages with interrupt service routines. The time elapsing from the end of
a TM to the instant of its processing in the interrupt service routine is represented by t2.

Thus:

max(tphase) = LEC − t1 − t2 − (max(ltmx
y)−min(ltmx

y)), ∀y = 1, ..., Nbuses,∀x = 0, ...,∞
(5.1)

Where max(ltmx
y) and min(ltmx

y) are the maximum and minimum length of a trigger
message, respectively.

Thus, max(ltmx
y) − min(ltmx

y) is the maximum delay associated with bit stuffing in a
TM. max(tphase) is the value of the maximum phase that can be used (tphase). This value
ensures that the error is never triggered in the time window elapsing between the end of TM
transmissions, which could result in an error injection on the next elementary cycle, thus
invalidating the trial due to error triggering in the wrong elementary cycle.
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Figure 5.16: Maximum of tphase

The main parameters for the max(tphase) calculation and for the setup previous presented
are:

• Number of buses: Nbuses = 2;

• Elementary cycle time duration: LEC = 5ms;

• CAN bitrate: 250kbps;

• Trigger message transmission window: TMTW = EC
4 + LT M

2 = 1.514ms;

• Time between the sending of trigger messages in different buses (t1 in figure 5.16):
t1 = 28µs (this value has been measured with an oscilloscope);

• Time for the processing of an interrupt reception of the trigger message in the xDMS,
and prepare the fault injection (t2 in figure 5.16): t2 = 89µs (this value has been
measured with an oscilloscope);

• min(ltmx
y) = 444µs, corresponding to 8 data bytes without bit stuffing, refer to equa-

tions 3.1 and 3.16;

• max(ltmx
y) = 540µs, corresponding to 8 data bytes, maximum number of stuff bits

(refer to equation 3.17).

Using these parameters and equation 5.1, the phase of an error (tphase) can take the maximum
value of max(tphase) = 4.787ms. Thus, faults are injected in the bus or in the active master
at random instants within an elementary cycle (in fact within 0 and 4.787ms). In figure 5.17,
a histogram of the fault injection time is presented.

Note that the instant of the fault injection is randomly distributed across an elementary
cycle. The histogram presented in figure 5.17 has been acquired during one experience batch
to demonstrate that the instant of the injection is randomly distributed. It is assumed that,
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Figure 5.17: Fault-injection instant histogram

the random distribution is sufficient to perform the measurements and it is not necessary to
have a uniform distribution of this instant. Also note, this random distribution of the error
injection delay is valid for the bus error and master error measurements.

Adding to the main parameters of the system presented before, the xDMS has the possi-
bility to configure the trial parameters, that are:

• Number of trials per batch. Represented by Ntrials in tables 5.6 and 5.7;

• Maximum number of EC elapsed before the error occurrence (is the number of ele-
mentary cycles before ’EC X’ in figure 5.7 and in figure 5.8). This value is randomly
distributed. Represented by max(NEC_b_f ) in tables 5.6 and 5.7;

• Maximum time within an elementary cycle elapsed before an error (tphase in figure 5.7
and in figure 5.8. Explained in equation 5.1);

• Type of fault to inject. This can be a bus fault (cut off or dominant or recessive bit)
or a master fault (acting on master reset pin to shut it down);

• Histogram parameters. The xDMS will produce histogram data that can be plotted in
a PC software like Microsoft Excel R©. These parameters are:

– Number of bars. Represented as Nbars_hist in tables 5.6 and 5.7;

– Value for the first bar. Represented as firstbar in tables 5.6 and 5.7;

– Resolution for each bar. Represented as Reshist in tables 5.6 and 5.7.

Experimental results for each type of fault and delay to measure were obtained with the
xDMS configured with the parameters presented in tables 5.6 (for bus faults) and 5.7 (for
master faults).
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Bus fault
XXXXXXXXXXXParameter

Delay
tBEAM Rel(tBEAM ) tre_scheduling Rel(tre_scheduling)

Ntrials 1000
max(NEC_b_f ) 1000

max(tphase) (ms) 4.787
Nbars_hist 500

Fault description Bus partition recurring to multiplexers
firstbar (ms) 5.2 10 15 19.9
Reshist (µs) 10 0.5 10 0.5

Table 5.6: xDMS parameters for bus faults

Master fault
XXXXXXXXXXXParameter

Delay
tT M_first Rel(tT M_first) tT M_second Rel(tT M_second)

Ntrials 1000
max(NEC_b_f ) 1000

max(tphase) (ms) 4.787
Nbars_hist 500

Fault description Hold reset pin of active master at reset state
firstbar (ms) 2 6.6 2 6.6
Reshist (µs) 10 1 10 1

Table 5.7: xDMS parameters for master faults

Using the parameters presented in tables 5.6 and 5.7, several batches were run in order
to validate the system, namely:

• Just for proof of concept, one of the two wires of the CAN bus was cut off. It was verified
that the bus continued to work correctly just with the other wire. This property is a
built-in CAN specification property;

• Bus error: recessive. This was also just a proof of concept. Since, with recessive bits, by
definition, no interference in the bus is made. Thus, forcing the bus to the recessive state
does not affect the communications of the CAN physical layer. The system behaves as
expected, this is, no interference in the communication system has been noticed with
the injection of recessive bits;

• Bus error: cut off both wires of the bus;

• Bus error: dominant bits. In this test, the bus was injected with dominant bits (the
obtained results are similar as the ones obtained for the bus cut off);

• Active master error: the active master was reset to simulate a fail silent master beha-
viour.
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Results presented further are divided into two delay categories: absolute and relative.
Absolute delays are measured from the fault instant itself while relative delays are mea-
sured from the last trigger message before the occurrence of the fault. In that way a relative
delay corresponds to the absolute delay plus the respective tphase (as presented in figure 5.7
and 5.8).

Bus error test results

Figure 5.18 presents an histogram of the bus error asynchronous message delay (tBEAM

in figure 5.7) measured from the instant of the fault injection (in presented case is a bus
partition). As shown in figure 5.7, this delay is random (depends on the instant where the
error was injected thus, depends on tphase) and it ranges between 5ms and 10ms (1 and
2 ECs, respectively). However, if tBEAM is measured from the last TM, it is reasonably
constant as shown in figure 5.19.

Figure 5.18: tBEAM histogram (absolute delay)

As it can be seen in figure 5.19, the time elapsing from the last TM to the transmission
of the re-scheduling request message is almost constant in all trials, which suggests that the
backup master recognizes the bus error and requests a bus re-scheduling in a consistent and
timely fashion. The small difference between the maximum and minimum value observed
(difference of 17µs with minimum 10, 173µs and maximum 10, 190µs) results from the bit
stuffing of the trigger message. The average of tBEAM is 10, 182µs with a standard deviation
of 7µs. Because tBEAM includes the duration of the associated BEAM message it can take
values higher than 10ms (2 ECs) (refer to figure 5.7).

After the reception of the request message, the active master reschedules the faulty bus
traffic in the remaining (operational) buses. The new scheduling will appear two trigger mes-
sages ahead (TMX+3

1 in figure 5.7). This time is denoted by tre_schedulling and was measured



5.3 Multiple buses experimental platform and results 141

Figure 5.19: Rel(tBEAM ) histogram (relative delay)

using the xDMS with the set of parameters specified in table 5.6. The corresponding results
are shown in absolute and relative terms in figure 5.20 and 5.21, respectively. Absolute delays
are measured from the occurrence of the error while absolute delays are measured from the
TM before the error.

The histogram of figure 5.21 shows that the time elapsed from the last trigger message
before an error to the re-scheduling of the synchronous messages has a maximum value of
19, 920µs, i.e. the system takes a maximum of 4 elementary cycles to recover from the error.
The minimum value obtained in the batch were 19, 820µs. Thus, the difference between the
minimum and maximum is 100µs. These values demonstrate the system reacts to the bus
error in a very narrow time interval. Notice also that the average of tre_scheduling is 19, 910µs
with a standard deviation of 4µs.

Figure 5.20: tre_scheduling histogram (absolute delay)
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Figure 5.21: Rel(tre_scheduling) histogram (relative delay)

Note that the presented values are for the case of bus partition. For the case of injecting
a dominant bit the histograms are similar to the ones presented in figures 5.18, 5.19, 5.20 and
5.21. Just for the comparison with the bus partition, in figure 5.22 there are presented the
delays Rel(tBEAM ) and Rel(tre_scheduling) when dominant bits are injected in the bus (left
of figure 5.22 and right of figure 5.22, respectively).

Figure 5.22: Rel(tBEAM ) and Rel(tre_scheduling) injecting a dominant bit

Active master error test results

As in bus errors, the xDMS waits a random number of ECs (randomly distributed) before
injecting a fault in the active master. As a consequence, the active master fails by crashing
(fail silent) and the backup master waits a period of time denoted by TMTW before gain
control of the buses and transmitting the next trigger message. As such, the first elementary
cycle transmitted by the new active master lasts longer than usual, (see figure 5.8) depending
on the defined TMTW (in the presented case TMTW = 1.514ms).

As illustrated in figure 5.8, there is a small difference in the reception instants of the
trigger message in both buses (TMX

1 and TMX
2 ). This occurs because the active master



5.3 Multiple buses experimental platform and results 143

has a single processor architecture that hinders simultaneous transmissions. Therefore, TM
transmissions are dephased by a small amount of time that, together with the TM length
variation introduced by stuffing bits, results in different reception instants. The histogram
of the absolute delays associated with the first trigger message reception, after the active
master fault injection (tT M_first), is presented in figure 5.23. Figure 5.24 shows the relative
delays (Rel(tT M_first)) corresponding to the sum of tphase and absolute tT M_first delays.

Figure 5.23: tT M_first histogram (absolute delay)

Figure 5.24: Rel(tT M_first) histogram (relative delay)

The first trigger message is received after an average delay of 6, 927µs with a standard
deviation of 3µs. The maximum value obtained was 6, 935µs, while the minimum value
was 6, 912µs. Thus, the difference between the maximum and the minimum is 23µs. This
difference between the maximum and the minimum of 4 bits time can be can arise bit stuffing
of the CAN messages. These value demonstrate the system reacts to a master error with a



144 Chapter 5. Experimental evaluation

very predictable behaviour.
The absolute delay for the reception of the second trigger message (tT M_second) is shown

in figure 5.25. It can be seen that tT M_second and tT M_first histograms are similar although
tT M_second is delayed relatively to tT M_first due to the different dispatch instants and stuff
bits.

Figure 5.25: Rel(tT M_second) histogram (relative delay)

For the set of measures presented in figure 5.25, the average delay is 6, 965µs with a
standard deviation of 3µs. The minimum value obtained was 6, 950µs, while the maximum
value obtained is 6, 974µs. Thus, the difference between the maximum and the minimum is
24µs.

Note that the difference of the average relative delays, Rel(tT M_first) and Rel(tT M_second)
is 38µs (with very similar standard deviation). As stated before, this difference results from
the delayed transmission of the TM (t1 = 28µs) plus the delays associated with stuffing bits.

Also note that, all the values presented where are the values measured by the xDMS. In
fact they are affected by practical issues that will be explained in next section.

5.3.4 Practical issues

The experimental results presented in previous section are similar with the theoretical
results presented in chapter 3 with some minor differences arising from some practical issues
not considered in the theoretical analysis. In this section these practical issues are presented.
Also, the obtained results are compared with the theoretical analysis.

All experimental results (delays) are measured with the timers of the xDMS device, which
does not starts and stops at the exact moment of the event occurrence due to the overheads
resulting from the interrupt processing and event recognition. In a similar work regarding
this issue [FBSC07], a detailed study of the overheads in the DMS is presented when it is
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used for measuring delays in a Ethernet token passing system.
In this section the measure delays performed by the xDMS are compared with the cor-

rected delays and, these last ones with the expected delays. For this, three definitions are
needed:

• Observed delays are the measured delays presented in previous section. These delays
measured by the xDMS are affected by practical issues not considered before;

• The corrected delays are the delay measured by the xDMS but applying the practical
issues;

• The Theoretical delays (or expected delays). Are the delays expected by the theoretical
analysis.

Figure 5.26 represents the overheads in the xDMS for the case of measuring the tBEAM and
tre_scheduling delay, without taking into account the bit stuffing.

Figure 5.26: Practical analysis for bus error timeline

For the case of the master error, the practical overheads are presented in figure 5.27.
Figures 5.26 and 5.27 assume all the timings explained in figure 5.7 and in 5.8 respectively.

Additionally:

• t1 represents the time between the sending of trigger messages in different buses:
t1=28µs (this value has been measured with an oscilloscope). This value is also va-
lid for figure 5.27 and is the same as in section 5.3.3;
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Figure 5.27: Practical analysis for master error timeline

• t2 represents the time to the processing of an interrupt reception of the trigger message
in the xDMS, and prepare the fault injection: t2 = 89µs. This value has been measured
with an oscilloscope. This value is also valid for figure 5.27 and is the same as in section
5.3.3;

• t3 represents the time to process the interrupt of the event reception: t3 = 6µs (this
value has been measured with an oscilloscope). In case of bus error (figure 5.26) is the
time to process the BEAM message or the TMX+3

1 trigger message. In case of master
error (figure 5.27) is the time to process TMX

1 or TMX
2 ;

• As an example, the delay Rel(tBEAM ) is the delay measured by the xDMS, however
the corrected delay for Rel(tBEAM ) is Corr(Rel(tBEAM )). For all delays of bus and
master errors timeline there are the measure delay and the corrected delay.

As it can been seen from figures 5.26 and 5.27 all the delays are affected in the same manner.
This is, all of them are affected by the t1, t2 and t3. Thus:

Corr(F ) = F − t3 + t1 + t2 (5.2)

Tables 5.8 and 5.9 (for bus error and master error respectively) compare the delays ob-
served and presented in previous section with the corrected delays according to equation 5.2
and with the expected theoretical delays.
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Comparing expected and practical delays

In tables 5.8 and 5.9, the observed delays with the xDMS and the corrected delays are
presented. The corrected delays can now be compared with the expected theoretical ones
obtained in chapter 3. In chapter 3 only absolute delays are presented, however, the relative
delays can be extrapolated from the absolute ones. The maximum and minimum values
result from a combination of bit stuffing where some reference messages have the maximum
bit stuffing, while others have zero bit stuffing. As an example, for the case of Rel(tBEAM ),
the maximum occurs when TMX+1

1 and BEAM has the maximum stuff bits and TMX−1
1 has

zero stuff bits. In that way, the maximum and minimum values for the four studied delays
are presented next. For the case of Rel(tBEAM ), the theoretical maximum is:

max(Rel(tBEAM )) = 2× LEC + max(ltmx
y)−min(ltmx

y) + max(fdBEAM ) (5.3)

And, the minimum value for Rel(tBEAM ) is:

min(Rel(tBEAM )) = 2× LEC + min(ltmx
y)−max(ltmx

y) + min(fdBEAM ) (5.4)

For the Rel(tre_scheduling) the maximum and minimum values expected are (using equa-
tion 3.39 with K = 1):

max(Rel(tre_scheduling)) = 4× LEC + max(ltmx
y)−min(ltmx

y) (5.5)

min(Rel(tre_scheduling)) = 4× LEC + min(ltmx
y)−max(ltmx

y) (5.6)

For the case of the master error, from a theoretical point of view, only tT M_new is specified
(see equation 3.31). Thus, for Rel(tT M_first) and Rel(tT M_first) the maximum and minimum
values expected are:

max(Rel(tT M_second)) = max(Rel(tT M_first)) =

LEC + TMTW + 2×max(ltmx
y)−min(ltmx

y) (5.7)

min(Rel(tT M_second)) = min(Rel(tT M_first)) =

LEC + TMTW + 2×min(ltmx
y)−max(ltmx

y) (5.8)
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From equation 5.3 to equation 5.8:

• y is the number of the trigger message and y ∈ N;

• x is the number of the bus, for the present case: x ∈ {1, 2}.

In tables 5.8 and 5.9, compare the observed delays (measured by the xDMS) with the cor-
rected delays and with the expected theoretical delays. For the computation of the expected
theoretical delays, the used maximums and minimums for the trigger message and BEAM
message are (assuming the parameters of the test platform):

• min(ltmx
y) = 444µs, that corresponds to a trigger message with 8 data bytes with no

stuff bits;

• max(ltmx
y) = 528µs, that corresponds to a trigger message with 8 data bytes maximum

bit stuffing;

• min(fdBEAM ) = 252µs, that corresponds to the BEAM message with no bit stuffing
(refer to figure 3.13);

• max(fdBEAM ) = 300µs, that corresponds to the BEAM message with the maximum
of bit stuffing (refer to figure 3.13).

Rel(tBEAM ) Rel(tre_scheduling)
XXXXXXXXXXXValue

delay (µs) Observed Corr() Expected Observed Corr() Expected

Average 10, 182 10, 293 10, 276 19, 910 20, 021 20, 000
Minimum 10, 173 10, 284 10, 168 19, 820 19, 931 19, 916
Maximum 10, 190 10, 301 10, 384 19, 920 20, 031 20, 084

Table 5.8: Observed, corrected and theoretical delays for bus error

Rel(tT M_first) Rel(tT M_second)
XXXXXXXXXXXValue

delay (µs) Observed Corr() Expected Observed Corr() Expected

Average 6, 927 7, 038 7, 000 6, 965 7, 076 7, 000
Minimum 6, 912 7, 023 6, 874 6, 950 7, 061 6, 874
Maximum 6, 935 7, 046 7, 126 6, 974 7, 085 7, 126

Table 5.9: Observed, corrected and theoretical delays for bus master error

In tables 5.8 and 5.9, the average of the expected delays is an arithmetic average between
the respective maximum and the minimum.

The values presented in table 5.8 and 5.9 demonstrate the correctness of the analysis. All
the corrected delays are within the maximum and minimum expected theoretical values. As



5.4 Results summary 149

an example, the theoretical (expected) minimum and maximum values for the Rel(tBEAM )
are 10, 168µs and 10, 384µs, respectively. The corrected maximum and minimum values
(corrected from the measured) are 10, 284µs and 10, 301µs, meaning the system behaves as
expected.

The corrected average values (derived from the measured) are very close to the expected
ones, validating the assessment made.

5.4 Results summary

For the case of the single bus assessment, the use of FTT-CAN in the low-level control
system of a soccer robot permits a synchronization among tasks, reducing the jitter associated
with the end-to-end delay of the information flows. More particularly, the jitter of the end-to-
end delay of the motion flow reduces from 25.6ms to 1ms while the jitter for the end-to-end
delay of the odometry flow reduces from 9ms to 100µs. Adding to this, the system is able to
replace the master node in a very narrow time interval, 310µs. During the tests, this value
is unnoticeable for the robot motion and behaviour. Besides the timeliness results, one could
refer a subjective practical evaluation, resulting from the use of the robots where the system
is running playing several tournaments and demonstration games. In fact, the robot team
has achieved the following results:

• 1st place in RoboCup World Championship 2008;

• 2nd place in RoboCup German Open 2010;

• 3rd place in RoboCup World Championship 2009;

• 1st place in Portuguese Robotic Open 2010, 2009, 2008 and 2007.

For the case of the multiple buses, the system was tested using a laboratory test bed. The
tests are divided into bus error and active master error. The delays associated with the bus
error were presented in figure 5.7 while the delays associated with the active master error
were presented in figure 5.8. The obtained results for these delays are summarized in table
5.10. In table 5.10 only the relative delays (the corrected delays) are presented because they
are easier to interpret due to the strong marks associated (recall that absolute delays are
measured from the randomly instant of the error injection). Also, from the relative results is
possible to obtain the absolute results.

As presented in table 5.10, for the bus error, the trigger message and the BEAM message
are extremely precise. The standard deviation is 7µs, corresponding to one bit and a half
at the current bitrate. The difference between the maximum and minimum value obtained
is 17µs, corresponding to four bits. The message with the new scheduling is transmitted
after an average of 20, 021µs with a standard deviation of 4µs. This means that the system
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Bus error (dominant or cut off) Active master error
XXXXXXXXXXXValue

delay (µs)
Rel(tBEAM ) Rel(tre_scheduling) Rel(tT M_first) Rel(tT M_second)

Average 10, 293 20, 021 7, 038 7, 076
Std. deviation 7 4 3 3
Maximum 10, 301 20, 031 7, 046 7, 085
Minimum 10, 284 19, 931 7, 023 7, 061
Max-Min 17 100 23 24

Table 5.10: Results summary

recovery from a bus fault is performed after 4 elementary cycles (5ms each elementary cycle).
This value can be considered a very low value and, we foresee that it will be unnoticeable
for most applications. The standard deviation for this delay is 4µs, which corresponds to a
bit time. These values prove that the system reacts to a bus failure in a very timely and
predictable way.

In what concerns the active master error, the values obtained for Rel(tT M_first) and for
Rel(tT M_second) are very similar, but Rel(tT M_second) is delayed relatively to Rel(tT M_first)
due to the difference of the triggering of messages in different buses by the master and
due to the stuff bits. The standard deviation obtained is very low (less than a bit time),
and similar for the two trigger messages send in the two different buses. Note also that
the difference between the maximum and minimum is also similar for Rel(tT M_first) and
Rel(tT M_secod) and is of the order of four bit times. In the presented tests, for the case of
master replacement, the system will be without a master for 40% of an elementary cycle
(2ms). The values obtained (namely the standard deviation) mean that the system reacts in
a very predictable way, resulting in the same behaviour in every trial of the batch test (recall
the batch test is 1000 trials). Moreover, the time the system will be without a master node
is very low, making the active master replacement almost or practically unnoticeable for the
system.

The values obtained seem to be very promising, because the worst recovery time, which
happens when a bus fault occur (partition or bus dominant bits), is less than 20ms.
Comparing this value with other recovery intervals found in the literature, e.g. CAN
Kingdom, this result is several orders of magnitude better. In fact, considering CAN
Kingdom, authors claim in [SGN02] that “The time for recovery is estimated to be at maxi-
mum 1s”.

5.5 Conclusions

This chapter has presented the experimental validation of FTT-CAN with single and
multiple buses.
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The single bus FTT-CAN implementation was deployed in a robotic soccer team where
it was used in the low-level control to coordinate the motion and the ball kicking. The single
bus FTT-CAN architecture with redundant master nodes was previously validated using
model checking, but it was not clear then if it was suitable for implementation in low power
microcontrollers. This work has shown that the overhead of the protocol when implemented
in microcontrollers is low and it can be used in real competitions with a timely and dependable
behaviour. It was verified that the addition of the FTT-CAN protocol to the control of the
robots contributed to the synchronization of all the data streams and tasks running in the
nodes. Furthermore, the jitter associated with the communication flows has been reduced
from 25.6ms and 9ms to 1ms and 0.1ms (for motion and odometry respectively).

In what concerns the multiple buses experimental results, a preliminary validation was
presented using fault injection and an error measurement equipment. The extended delay
measurement system (xDMS), that incorporates a fault injector and a delay measurement
system, was developed for that purpose and showed to be useful for other research projects.
The fault injector is able to inject faults in the CAN buses and in the master nodes, according
to the considered fault hypothesis.

Experimental results have shown that the FTT-CAN architecture with multiple masters
and multiple buses is feasible and it can be implemented in a real applications using low
processing power processors.

The obtained delays for the multiple buses architecture are very narrow with very low
standard deviation, indicating the system behaves has expected in a timeliness and predicable
way.



Chapter 6

Using multiple buses in native
CAN - A generalization

6.1 Introduction

The previous chapters have addressed bus media redundancy for FTT-CAN based systems
both to improve their dependability and to increase the available bandwidth.

On the scope of this work it was realized that a solution could also be envisaged for legacy
CAN systems. This chapter contains the description of the solution, some preliminary steps
concerning its validation and some proposals for the implementation of the system elements
used in the solution. With the proposed solution it is possible to improve the dependability
and bandwidth of legacy CAN networks, without modifying existing nodes’ hardware or
software.

The chapter starts, with a short comparison between star and bus technologies. This
comparison is required due to the recent and, in our opinion, unsustained interest in star
topologies. Indeed, it is easy to see that these are a particular case of bus topologies, with
many drawbacks and with a unsatisfactory use of cabling. In fact, alternatives among the
pure star and the pure bus as discussed in this work seem much more promising than pure
star topologies.

The system components and behaviour have been proposed by the author while the preli-
minary implementation and validation have been developed by Sher [She09] and Silva [Sil09]
under the author’ supervision.

6.2 Comparing bus and stars architecture in terms of wiring

Star topologies are becoming increasingly popular in fieldbus networks due to their fault
isolation capabilities. This trend partially contradicts one of the first arguments used back
in last century’ eighties: the reduced cabling that favoured distributed computer controlled
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systems based in fieldbuses over their centralized counterparts. The cabling harness of a fully
star based network, with only a node per branch and with the nodes distributed over a circle,
is comparable with the one of a centralized system and it is proportional to the number of
nodes, while the cabling of the corresponding bus based network is constant. If one considers
the opposite scenario, i.e., nodes equally spaced over an imaginary line, the cabling required
for a solution based in a central star is also much higher than the one of a bus based topology.
These scenarios are depicted in figure 6.1 and figure 6.2.

Figure 6.1: Star topology best scenario

Figure 6.2: Bus topology best scenario
Top: Bus. Bottom: Star with the same spatial node distribution.

Figure 6.1 depicts the case where nodes are aligned over a circumference (the most fa-
vourable case for the star wiring length). Using a star interconnection network requires a
total cable length of N × R, where N is the number of nodes of the system and R is the
distance from the central point. If replicated connections are used, the total cable length is
N ×R×M , where M is the number of connections from the central point to each node.
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On the other hand, if the nodes are interconnected by a bus and aligned over a circum-
ference, , the total cable needed is constant and equal to 2πRM where M is the number of
buses to interconnect the nodes. In fact this is the total length for a ring topology. However,
this value can be used as a worst case value.

Figure 6.2 depicts the case where nodes are equally spaced by an L distance and aligned
over an imaginary line (the most favourable case for the bus wiring length). The total cable
length for a bus interconnection network is L×M×(N -1), while the total cable needed for a
star interconnection network is given by:



{
N
2∑

i=1
L(2i− 1)} ×M if N is even

{(
bN

2 c∑
i=1

L(2i− 1)) +
⌊
N

2

⌋
× L+ L

2 } ×M if N is odd

(6.1)

Knowing that
⌊

N
2

⌋
= N−1

2 , the equation 6.1 can be simplified:


L× N2

4 ×M if N is even

L× (N2+1
4 )×M if N is odd

(6.2)

A comparison summary of the cable length (in m) is presented in table 6.1. This table
compares a system where the nodes are aligned over a circumference with a system where the
nodes are aligned over a line. There are values for 2 to 10 nodes with 1 to 3 communications
channels. In table 6.1, R and L are assumed to be 1m.

Nodes in circumference Nodes in line
Star Bus Star Bus

HH
HHHHN

M 1 2 3 1 2 3 1 2 3 1 2 3

2 2 4 6 6.28 12.56 18.85 1 2 3 1 2 3
3 3 6 9 6.28 12.56 18.85 2.5 5 7.5 2 4 6
4 4 8 12 6.28 12.56 18.85 4 8 12 3 6 9
5 5 10 15 6.28 12.56 18.85 6.5 13 19.5 4 8 12
6 6 12 18 6.28 12.56 18.85 9 18 27 5 10 15
7 7 14 21 6.28 12.56 18.85 12.5 25 37.5 6 12 18
8 8 16 24 6.28 12.56 18.85 16 32 48 7 14 21
9 9 18 27 6.28 12.56 18.85 20.5 41 61.5 8 16 24
10 10 20 30 6.28 12.56 18.85 25 50 75 9 18 27

Table 6.1: Cable length comparison

From this two opposite situations it becomes clear from table 6.1 that bus interconnection
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networks require less cabling. This is true for the case depicted in figure 6.1 when the number
of nodes is greater than 2π:

2πR ≤ N ×R⇔ N ≥ 2π (6.3)

Thus, N must be greater than 6 (as shown in table 6.1).
In the case of figure 6.2 when the number of nodes is greater than 2 (thus, in every

situations) the bus interconnection requires less cabling. Note that, when two nodes are
aligned over a circumference, in fact they are aligned in a line, and thus, the cable length
is equal in both network topologies. This can be extrapolated to the case of more nodes
and thus, the cable length presented in table 6.1 for a circumference alignment with bus
interconnection can be reduced. However, in table 6.1 the worst case scenario is presented.

The reduced cabling required by a bus interconnection network becomes even more impor-
tant when network replication is considered to provide additional fault tolerance capabilities.

6.3 Providing automatic bus redundancy in legacy CAN

Bus replication alone, in some cases, is not enough to enforce the full connectivity of the
network. Consider, for example, the case presented in figure 6.3, where node 2 and 3 have
only one communication interface. These two nodes are connected to bus 1. In case of this
bus fails, node 2 and 3 cannot communicate anymore.

Figure 6.3: Replicated network with heterogeneous nodes

It would be desirable to have a CAN based network infrastructure capable of preserving
the proved merits of CAN while providing fault confinement, via online network reconfigu-
ration using replicated buses and additional bandwidth in a transparent way. The proposed
architecture, depicted in figure 6.4, uses two components, the Network Switch Unit (NSU)
and a Topology Management Unit (TMU) to handle these tasks.

The TMU is responsible for the definition of the topology used at each instant. It issues
commands to the NSUs to indicate which bus should be used to connect the node. This
can be seen as a Dynamic Redundancy Management (DRM) as the buses can be switched
online upon failure detection [SFF06a]. Moreover, the DRM operation is transparent to the
node. Additionally and whenever required, the NSU can act as a bus guardian [FAF+06].
Notice that the topology management unit needs to be replicated, since otherwise it would
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be a single point of failure. This replication requires a protocol to enforce determinism and
synchronism in case of failure of the active TMU.

Figure 6.4: Proposed architecture

With this architecture it is possible to react to permanent bus faults by dynamically
redefining system topology, replacing the faulty bus and keeping the system running, possibly
with a degraded quality of service.

Notice that, in a limit situation, the proposed network architecture can be used for online
change the network topology, for example, configuring a star network [SFF06a] (this topic
will be discussed further in this chapter).

6.4 Fault hypothesis

A fault hypothesis specific for the FTT-CAN network has been presented in section 3.5.2.
The proposals presented in this chapter are targeted to native CAN, thus the fault hypothesis
is adapted accordingly:

• Node faults - the node and the corresponding network switch unit are a fault tolerant
unit (FTU). This FTU is fail-silent both in time and value domains. The topology
manager unit is also considered to be fail silent both in time and value domain. To
enforce of this behaviour some of the techniques adopted in [FAF+06] could be used;

• Channel transient faults - only transient faults that change the value of, at least, one
bit are considered;

• Message atomicity - when a message is transmitted in parallel in several replicated buses
and received by nodes with at least two bus interfaces, its transmission is considered
atomic. This assumption is based in experimental data of CAN bit error rate [FOFF04]
showing that CAN bit error rate in an aggressive environment can be as low as 2.6×10−7

with a corresponding inconsistent message omission rate below 10−9 per hour;
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• Channel permanent faults - the transmission medium is a single point of failure of CAN
and permanent faults of the transmission medium, such as bus partition or stuck-at
faults could occur. In order to prevent the occurrence of inconsistent message omissions,
the bus is also considered permanently faulty whenever the respective CAN controller
located in the Topology Manager Unit reaches the error passive state;

• Bus partitions - bus partition detection takes advantage of the topology manager unit
replication, with both replicas located at each end of the bus. Therefore, if the active
replica fails, the system begins to operate in a degraded mode without bus partition
detection capabilities;

• Is assumed that at least one bus is free of erros;

• There is only one topology management unit in the system at a time.

6.5 Network switch unit

The Network Switch Unit (NSU), connects the N interfaces of each node to the M available
CAN buses as an N ×M switch matrix that can be implemented in specialized hardware
such as a FPGA (Field Programmable Gate Array). The internal architecture of the network
switch unit is depicted in figure 6.5.

Notice that this architecture represents a fully connected NSU, however, a reduced version
could be envisaged connecting each node to only a subset of the M available CAN buses.

The NSU is composed of a switch matrix, a switch controller and a switch table. The
switch matrix is responsible for the physical connection between the CAN interfaces of the
nodes and the CAN buses, implementing the connection rules stored in the switch table.
This table is a flag matrix with M columns and N rows, where each column represents the
connection of each CAN bus and each row represents the connection of each device bus.

The switch table can be changed dynamically so that the network can be adapted to
evolving operational scenarios, e.g., a bus failure or the need to provide additional bandwidth.
The switch controller receives special identified messages sent by the topology management
unit and changes the switching matrix accordingly. The switch controller has one CAN
controller for each bus and is also responsible for replying to special messages issued by the
topology management unit. These messages aim the verification of the status of the NSU
and the status of the buses. The address and status register stores the address identification
of the NSU and the flags to indicate its actual operation mode, such as receiving new table
or normal operation.
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Figure 6.5: Network switch unit architecture

6.6 Topology management unit

The Topology Management Unit (TMU) is responsible for the dynamic online configura-
tion of the network topology. It operates in a master-slave mode, where the network switch
units (NSU) assume the slave role. Figure 6.6 depicts the architecture of the topology ma-
nagement unit (TMU). The TMU can be fully implemented in hardware, using an approach
similar to the one adopted for the scheduling co-processor of the FTT-CAN master [MNF02]
or using a processor with enough processing power.

The topology management unit is made of several modules which process the data stored
in a set of tables. The Topology Reconfigurator (TR, see figure 6.5) is the most important
module of the TMU as it takes the decisions concerning the topology management. The TR
starts working upon information about bus failure coming from the Bus Fault Detector (BFD,
see figure 6.5). This information can result from a spontaneous event, e.g. the detection of a
stuck-at fault in one of the buses, or after a periodic verification of the bus status issued by the
BFD, e.g. detecting a bus partition. As stated in the fault hypothesis, and in order to prevent
the occurrence of inconsistent message omissions, the bus is also considered permanently
faulty whenever the respective CAN controller located in the topology management unit
reaches the error passive state. The TR reacts to a bus failure according to the procedures
stored in the Reconfiguration Table (RT, see figure 6.5) that specify what should be done in
case of a failure of a specific bus.

The RT includes a procedure for every possible bus failure situation. Considering the
most simple operation scenario, any fault in the bus leads to a bus failure (more complex
scenarios could eventually allow using part of the bus, e.g., a bus partition). This means
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Figure 6.6: Topology management unit architecture

that the RT has an entry for each failure scenario that still enables the system to operate,
even if in a degraded mode. As the fully operational situation is when all the buses are
available and the total system failure is when all buses fail, then failure situations happen
when 1, 2, ... M-1 buses fail. The number of bus failures and, in consequence, the number of
RT entries, DIM(RT ), is then given by the possible combinations of those failures, that is:

DIM(RT ) =
M−1∑
i=1

CM,i =
M−1∑
i=1

M !
i!(M − i)! (6.4)

It should be noticed that the system designer should consider that some of these combi-
nations lead to situations in which the operation of the system is impossible. In those cases
the RT must just contain an indication to stop the system. Besides these data, the RT also
holds the location where the default configuration is stored so, in case of temporary faults,
the system can recover back to the fully operational mode.

Although the topology management unit is autonomous in configuring the physical
connections and, thus, there is no mandatory need of any other system element, it may
be of interest, either for high level decisions or for statistical operation data recording, to
have information about the system operation status. For this purpose, the TMU provides an
interface, the QoS Indication Interface, which indicates the operation status by means of a
code that can be related to the reconfiguration table in use.

It should be reinforced that this dynamic topology management could be enhanced by



6.6 Topology management unit 161

integrating a complex scheduler into the TMU. However, this commutation between confi-
gurations ensures a simple and effective operation. As it was implicit in the simple example
discussed above, the TR stores the actual state of the system in the NSU tables. Whenever
these are changed, the TR activates the reconfiguration manager which sends the information
of the new system topology to the NSUs. The NSU tables contain the current state of all
the network switches present in the network. The NSU identification is also stored there. To
enable external configuration, the TMU includes an external configuration interface used to
program the reconfiguration table. The last component of the TMU is an optional topology
table that contains information on the physical location of the NSUs along the buses to enable
diagnosing possible bus partitions.

6.6.1 Topology management unit replication protocol

The topology management unit is a single point of failure that needs to be replicated in
order to increase the dependability of the network. The approach adopted for this purpose
is similar to the one used in the FTT-CAN master to enforce replica determinism and syn-
chronization [FAF+06]. The TMUs follow a leader-follower behaviour where the leader issues
periodic commands with the actual state of the buses (comparable to trigger messages in
FTT-CAN) and the follower also tries to do it at the same time. If the leader successfully
transmits the command message, the follower aborts its transmission, receiving the command
message from the leader. If the leader fails to transmit the TMU synchronization message,
the follower becomes the leader, upon successful TMU synchronization message transmission.
TMUs could be internally duplicated, to enforce fail-silent behaviour, using a dual-processor
CAN controller interface as described in [FAM+03]. An advantage of using a replicated TMU,
at both ends of the network, is a simplified protocol to detect bus partitions using ping like
commands only. In this way, the leader and the follower periodically exchange messages with
their view of the buses state and look for possible mismatches indicating bus partitions or
other fault scenarios. According to this protocol, the worst case bus partition detection time
equals the period of the ping commands plus a blocking factor equal to the size of a maximum
sized CAN message. Bus faults are always detected only by the leader. The follower sends its
view to the leader but never decides that a particular bus is faulty. Upon bus fault detection,
the leader reconfigures the network topology and the follower is implicitly notified through
the reconfiguration commands issued by the leader. Notice that all commands are issued in
parallel to all the buses, using high priority messages and, according to the fault hypothesis,
these messages are assumed to be atomic.
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6.7 Operational scenarios

Figure 6.7 presents an example of application of the proposed system. Node 1, node 4
and node 5 use more than one CAN bus to communicate, while the other nodes have just
one CAN interface.

Figure 6.7: Architecture example

In figure 6.7 node 1 and node 4 communicate using three CAN buses. Note that the
network itself has four buses. Thus, the additional bus is used for redundancy purposes.

In the example depicted in figure 6.7, the system designer could choose to use a default
connection in which node 1 connects to buses 1, 2 and 3; node 5 connects to buses 1 and 2;
node 2 and 3 connects to bus 1; and node 4 is connected to buses 1, 2 and 3. In figure 6.7
this default configuration is marked with ticker lines. This default configuration would lead
to the NSU switch table presented in table 6.2.

Node switch Switches Bus in use
Node 1 1,1,1,0 Bus 1,2,3
Node 2 1,0,0,0 Bus 1
Node 3 1,0,0,0 Bus 1
Node 4 1,1,1,0 Bus 1,2,3
Node 5 1,0,1,0 Bus 1,3

Table 6.2: NSU table example

If the bus 1 becomes faulty, the topology manager unit detects it and reconfigures the
bus in order to maintain the system in operation. In that case, the available bus will be used
to enable the substitution of the bus 1. In that case, the network switch unit table will show
the configuration presented in table 6.3. The NSU tabe is, in fact, a connection matrix where
the row corresponds to the node and the column to the bus. As so, rebuilding the network
transferring the connections from bus 1 to bus 4 corresponds to moving the data from column
1 to column 4.

The reconfiguration table (see figure 6.6) for this specific case has 14 reconfiguration
scenarios:
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Node switch Switches Bus in use
Node 1 0,1,1,1 Bus 2,3,4
Node 2 0,0,0,1 Bus 4
Node 3 0,0,0,1 Bus 4
Node 4 0,1,1,1 Bus 2,3,4
Node 5 0,0,1,1 Bus 3,4

Table 6.3: NSU table example after faulty bus

DIM(RT ) =
M−1∑
i=1

CM,i =
M−1∑
i=1

M !
i!(M − i)! = 4!

1× 3! + 4!
1× 2 + 4!

1× 3! = 14 (6.5)

Notice there are some specific scenarios that are not taken into account since they will
generate an incorrect configuration, for example the use of only bus 1 in all node [SFF06a].

The proposed architecture may also be used to allocate a dedicated CAN bus linking two
nodes. This feature is useful to provide permanent or temporary extra bandwidth to more
demanding applications without interfering with other traffic. Other possible feature provided
by the proposed architecture is the use of virtual paths, as depicted in figure 6.8, where node
1 communicates with node 4, node 2 communicates with node 3 and node 5 communicates
with node 6 (thicker lines). Notice that this can be a temporary topology configuration.
For example, in a normal behaviour this topology can use only one bus, and, due to a
temporary bandwidth increase request for a particular traffic flow, the topology is modified
to accommodate it. Moreover, using this strategy, dynamic stars can be implemented. To do
that, the central node must have as many CAN interfaces as the number of nodes it needs
to communicate to. This scenario is depicted in figure 6.9, where dynamic star paths are
represented by thicker lines. Notice that, in examples of figures 6.8 and 6.9, bus 4 can be
used for redundancy, thus, if some of the others fail, the traffic is re-routed for bus 4.

Figure 6.8: Operational scenario example
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Figure 6.9: Operational scenario: star

6.8 Implementation

A prototype implementation of both the network switch unit and the topology mana-
gement unit has been carried on [Sil09]. Both units were implemented in a FPGA (Field
Programmable Gate Array) and the switch matrix was made using an analog switch. It was
used a RC10 development board from Celoxica [Cel05] with a Xilinx Spartan-3 FPGA [Xil09]
where the CAN controllers were based on a IP core developed in our laboratory [Oli07].

Some design space exploration made during the design process concluded that a good
approach would be hardware/software co-design. Silva [Sil09] defends that the TMU is
difficult to implement in hardware and thus, he has implemented it partially in hardware on
the FPGA and partially in software using the PicoBlaze from Xilinx [Xil10]. PicoBlaze is a
8 bit microprocessor implemented in the FPGA.

Figure 6.10 presents the internal architecture of the NSU module that controls the switch
matrix (see figure 6.5).

Sher [She09], has made a detailed study on the topology management unit replication
protocol and has proposed a new solution based on the cyclic redundancy check code (cal-
led Distributable Table Content Consistency Checker - DT3C) to maintain the consistency
among the topology management units. Sher defends that his network switch unit repli-
cation protocol is more efficient to maintain the consistency because network switch units
only exchange the information about the CRC, and just the parts of the TMU table that are
inconsistent are transmitted in the buses.

The presented implementations have been carried out in the scope of Master thesis and
are merely exploratory. However they already enable us to verify that the FPGA based
implementation is feasible.
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Figure 6.10: Switch controller (from [Sil09])

6.9 Conclusions

In this chapter a generalization to support redundancy and bandwidth improvement in
native CAN has been presented. The proposed solution uses two additional components: the
network topology management and the network switch unit.

The network switch unit connects the node to the CAN network using a switch matrix
while the network topology management unit has a global view of the network and controls
all the network switch units. The topology management unit is replicated and follows the
same strategy already adopted by the FTT-CAN master node, i.e., one network topology
management unit is located at one of the ends of the CAN bus and exchanges messages with
the other located at the other end.

A preliminary hardware implementation of the network switch, based on a FPGA, was
assessed together with a first draft implementation of the topology management unit using a
hardware/software co-design approach. Preliminary results indicate that the network switch
unit can be implemented in the FPGA and the topology management unit can be implemen-
ted in hardware and software using a PicoBlaze microprocessor.
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Conclusions and future work

The central proposition of the thesis supported by the present dissertation, claims that
the use of a flexible bus replication scheme could improve both the dependability and the
throughput of a network. Furthermore, it is possible to adapt online the network topology
to evolving operational scenarios.

The Flexible Time-Trigger (FTT) paradigm over the CAN network (FTT-CAN) was used,
as a case study, to prove this claim. FTT-CAN is a protocol that combines the predictabi-
lity of time-triggered systems, favouring the design of fault tolerance mechanisms with the
flexibility of CAN, increasing the adaptation to evolving conditions. For the case of native
CAN, there is also a proposal for using redundancy at the bus level leading to a flexible
bus topology with redundancy and bandwidth management. All these three properties can
be joined together making a flexible CAN network with possible online modifications of the
topology.

The FTT-CAN protocol has been designed to provide flexibility, timeliness and efficiency
for supporting event-triggered and time-triggered message transmission. Opposite to other
protocols, such as TTCAN and FlexRay, FTT-CAN allows time-triggered messages to be
scheduled online and dynamically, supporting modification of the message flows while the
system is running. On the one hand, protocols such as FlexRay support the use of replicated
bus both to improve fault tolerance and to increase the available bandwidth. Notice, however,
that FlexRay cannot use more than one replicated bus and it does not have the flexibility of
FTT-CAN. On the other hand, FTT-CAN has limited fault tolerance capabilities. Recent
work has proposed the replication of the master node and has defined a scheme to maintain
consistency among masters. This scheme is based on a leader-follower behaviour, where the
active master is the leader and the followers are the backup masters.

In what concerns the bus replication, some fieldbuses or fieldbus-based adapted solutions
address this issue, e.g., FlexRay and CAN Columbus Egg Idea. However, and for these two
particular cases, just one bus replica can be used. Other protocols have other limitations, e.g.,
only replicated messages are allowed in the replicated buses. To cope with these limitations,
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this work proposes the use of multiple buses, both to increase the bandwidth and to improve
the dependability, with no limits on the number of redundant buses.

The main function of the FTT-CAN master node is to schedule the synchronous messages
and to dispatch the trigger message to the buses. For the case of multiple buses, a trigger
message for each elementary cycle is transmitted in each bus, thus the message scheduler
must work in both time and spatial (bus) dimensions.

The single bus master replication protocol was adapted in order to support multiple buses.
The basic idea is similar to the single bus version, but replicated masters rely on the trigger
message transmission window (TMTW ) to replace the active master if no trigger message
is received within the TMTW . The master error detection and replacement is slower than
for the single bus version. More specifically, in the multiple buses case, this procedure takes
the TMTW window length, while for the single bus version it takes half of a trigger message
duration. Other difference to the single bus version is the location of the replicated masters,
that are now placed at the end of the buses. The physical location of the replicated masters is
crucial both to the bus error detection algorithm and to the master replication protocol. If no
trigger message is received from all the buses, this means, according to the fault hypothesis,
that there is an active master failure. If there is a missing of one (or a set) of trigger message,
then the bus where the trigger message is missing is considered faulty.

All the protocols and components proposed in this document were implemented and
experimentally validated. The validation process was carried out in two phases: for the single
bus version and for the multiple buses version. For the single bus version, the validation was
made on soccer robotic platforms during many soccer games. The multiple buses version was
validated using fault injection and an experimental setup including two master nodes with
two CAN buses each, a fault injector and a delay measurement system. The fault injector
and the delay measurement system are located in the same hardware platform, the extended
delay measurement system. The fault injector is able to impose faults in the buses (stuck-at
and partition) and also at the master nodes (resetting them). Experimental results have
shown that the system behaves as expected, with measured average delays according to the
theoretical expectations and with very narrow standard deviation.

Partial results of this thesis were used in other contexts, notably the delay measurement
system that has performed the assessment of real-time information flows of an Ethernet based
network.

This thesis also proposes a generalization of its claims to native CAN networks. The
solution relies on multiple CAN buses where the nodes can connect to one, to a set of all buses
or to all buses. This system needs two additional components, the topology management unit
and the network switch unit. A preliminary work concerning the development of the required
components has shown that it is possible to implement them with current technology and
that they are not too complex.
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Summarizing, it could be said that the proposals presented on this thesis contributed to
the increase of dependability and bandwidth of networks in a flexible and timely way.

7.1 Thesis validation

The thesis stated in chapter 1, arguing that it is possible to improve both the dependability
and the throughput of a network using a flexible bus replication scheme. This solution was
validated for the specific case of FTT-CAN and for native CAN. Furthermore, for the case of
native CAN, it was demonstrated that it is possible to change online the network topology.

In fact, it has been shown, mainly with the work presented in chapters 3, 4 and 5, that
it is possible to use, in a flexible way, more than one bus to improve the dependability and
the available bandwidth of the system. Moreover, in chapter 6, it has been shown a way to
flexibly change the topology of the network without compromising the overall performance
of a legacy CAN network.

7.2 Future research

The work conducted for this thesis unveiled some interesting research ideas that indicate
future research lines, which are are summarized and briefly discussed next.

7.2.1 The asynchronous messaging system

FTT-CAN has an asynchronous messaging system where the messages are sent by the
slaves without the coordination of the master node. In this way, the asynchronous messaging
system is equivalent to legacy CAN with inaccessibility periods corresponding to the trigger
message and to the synchronous window. It is possible to bound the worst case transmission
time of an asynchronous message for the case of the single bus version [AFF99]. However, the
addition of bus media redundancy introduces some new problems arising from the possibility
of having different asynchronous traffic in each replicated bus.

The main foreseen problem is the possible priority inversion whenever a specific bus has
more asynchronous traffic than the others. A message with lower priority can be transmitted
first in a bus with less load than a higher priority message transmitted in the overloaded bus.
Note that, this problem only arises if the set of buses is seen as one (as it is viewed by the
application layer).

Possible solutions to this problem include the allocation of the asynchronous traffic to
just one bus.
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7.2.2 Slave nodes

This thesis has not addressed the necessary changes of the slaves to accommodate more
than one bus. In fact, slave nodes for the single bus FTT-CAN can be used without modifi-
cation in the multiple buses version, but they are limited to just one bus.

The synchronous messaging subsystem for the multiple buses slave nodes is mostly a re-
plication of the existent synchronous message subsystem defined in section 4.4. It is necessary
to add extra interfaces to the slave nodes and to adapt their synchronous and asynchronous
messaging subsystems.

So, this future line of work is more targeted to fully demonstrate the operation than to a
challenging research topic.

7.2.3 Dependability evaluation

The dependability evaluation is associated with the development of a model that describes
the system behaviour in presence of faults and their impact on the dependability.

The proposals presented on this thesis increase the wiring and the hardware/software
complexity. Although the increased complexity and the extra hardware components were
part of the fault tolerance mechanisms, it is not clear the real impact on the overall sys-
tem dependability. The idea is to assess the dependability of the single bus single master
FTT-CAN network and compare it with the full featured multiple buses multiple masters
FTT-CAN implementation.

There are several methodologies and tools that can be adopted to investigate this is-
sue, notably, Stochastic Preti Nets that have become a widely used framework to perform
dependability evaluation of fieldbuses [PC01, MDM07, KLMB08].

7.2.4 Generalization to other protocols

The work presented in this dissertation is mainly intended for CAN. In fact most of the
work is dedicated to FTT-CAN as it was the target protocol of the case study. However, the
proposals can be generalized to other fieldbuses. At a first view, the FTT-CAN redundancy
system presented in this work cannot be generalized as is, since it requires a master-slave
scheme.

On the other hand, one could foresee generic topology management unit and generic
network switch units with a common core and specialized interfaces for each fieldbus.

7.2.5 Wireless and heterogeneous networks

The presented proposal is intend to wired networks. Currently, however, wireless networks
are widely adopted in many application domains and in millions of consumer electronics sys-
tems. Thus, migrating some of the proposed solutions to the wireless world is a natural
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evolution path. It seems reasonable to define a equivalent system using wireless communica-
tions such as WiFi, Bluetooth or ZibBee. Instead of using multiple buses, multiple channels
can be used in the same way as the multiple buses, with the necessary adaptions.

Also, it is possible to apply most of the proposals of this thesis to hybrid networks, e.g.,
different channels can use diverse network media, for example one channel could use WiFi
while other could use CAN. This research line requires an extensive work because of the
differences among technologies.
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