
 Universidade de Aveiro

200

BRUNO
FIGUEIREDO
PIMENTEL

Síntese de aceleradores baseados em FPGAs
implementando algoritmos

Synthesis of
implementing recursive algorithms

Universidade de Aveiro
2009

Departamento de Electrónica, Telecomunicações
e Informática

Síntese de aceleradores baseados em FPGAs
implementando algoritmos recursivos

Synthesis of FPGA-based accelerators
implementing recursive algorithms

Departamento de Electrónica, Telecomunicações

Síntese de aceleradores baseados em FPGAs
recursivos

based accelerators

 Universidade de Aveiro
2009

Departamento de Electrónica, Telecomunicações
e Informática

BRUNO
FIGUEIREDO
PIMENTEL

Síntese de aceleradores baseados em FPGAs
implementando algoritmos recursivos

Synthesis of FPGA-based accelerators
implementing recursive algorithms

dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutorado em Engenharia
Informática, realizada sob a orientação científica do Dr. Valeri Skliarov,
Professor Catedrático do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro, e co-orientação da Dr.ª Iouliia Skliarova,
Professora Auxiliar do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro

Apoio financeiro da FCT e do FSE no
âmbito do III Quadro Comunitário de
Apoio.

Dedico este trabalho aos meus pais – Noémia e João.

o júri

presidente Prof. Dr. Paulo Jorge de Melo Matias Faria de Vila Real
professor catedrático da Universidade de Aveiro

 Prof. Dr. António Manuel de Brito Ferrari Almeida

professor catedrático da Universidade de Aveiro

 Prof. Dr. Valeri Skliarov

professor catedrático da Universidade de Aveiro (orientador)

 Prof. Dr. Horácio Cláudio de Campos Neto

professor associado do Instituto Superior Técnico da Universidade Técnica de Lisboa

 Prof. Dr. Henrique Manuel Dinis Santos

professor associado da Universidade do Minho

 Prof.ª Dr.ª Iouliia Skliarova

professora auxiliar da Universidade de Aveiro (co-orientadora)

agradecimentos

Chegado ao fim desta importante etapa, quero expressar o meu
agradecimento:

Ao Prof. Dr. Valeri Skliarov e à Prof.ª Dr.ª Iouliia Skliarova, pela sábia
orientação, pelo dedicado contributo para este trabalho e pela querida
amizade que deles recebi ao longo deste período;

Ao Prof. Dr. António de Brito Ferrari e ao Prof. Dr. António Rui Borges,
pelas palavras amigas e de grande motivação que me foram dirigindo
durante este trabalho;

Ao Prof. Dr. Rui Tomaz Valadas e ao Prof. Dr. Luís Seabra Lopes, pela
simpatia demonstrada, nomeadamente com a escrita das cartas de
referência;

À Prof.ª Dr.ª Ana Maria Tomé e ao Prof. Dr. Rui Manuel Escadas, pelo
interesse demonstrado pelo andamento deste trabalho e pelas palavras
amigas que me dirigiram em várias ocasiões;

À Fundação para a Ciência e a Tecnologia por todo o apoio financeiro
no âmbito da Bolsa de Doutoramento que me concedeu;

Aos membros de diferentes órgãos da Universidade de Aveiro e ao
Instituto de Engenharia Electrotécnica e Telemática de Aveiro pelas
boas condições que me proporcionaram;

Ao meu pai, pelos importantes conselhos orientadores que me deu
desde muito cedo;

À minha família, em particular à minha mãe, ao meu irmão César, à
Ana, ao Alexandre e à Helena, por todo um confortante suporte familiar
que me deram;

Ao meu amigo Aneesh Chauhan e ao meu irmão César, pelo
companheirismo e pelas inúmeras e produtivas trocas de ideias;

Ao meu colega e amigo Manuel Almeida, pela saudável cooperação e
companheirismo que tornaram confortável o laboratório que partilhámos.

palavras-chave

FPGA, algoritmos recursivos, computação reconfigurável, desenvolvimento de
sistemas computacionais

resumo

O desenvolvimento de sistemas computacionais é um processo complexo,
com múltiplas etapas, que requer uma análise profunda do problema, levando
em consideração as limitações e os requisitos aplicáveis. Tal tarefa envolve a
exploração de técnicas alternativas e de algoritmos computacionais para
optimizar o sistema e satisfazer os requisitos estabelecidos. Neste contexto,
uma das mais importantes etapas é a análise e implementação de algoritmos
computacionais.
Enormes avanços tecnológicos no âmbito das FPGAs (Field-Programmable
Gate Arrays) tornaram possível o desenvolvimento de sistemas de engenharia
extremamente complexos. Contudo, o número de transístores disponíveis por
chip está a crescer mais rapidamente do que a capacidade que temos para
desenvolver sistemas que tirem proveito desse crescimento. Esta limitação já
bem conhecida, antes de se revelar com FPGAs, já se verificava com ASICs
(Application-Specific Integrated Circuits) e tem vindo a aumentar
continuamente.
O desenvolvimento de sistemas com base em FPGAs de alta capacidade
envolve uma grande variedade de ferramentas, incluindo métodos para a
implementação eficiente de algoritmos computacionais. Esta tese pretende
proporcionar uma contribuição nesta área, tirando partido da reutilização, do
aumento do nível de abstracção e de especificações algorítmicas mais
automatizadas e claras. Mais especificamente, é apresentado um estudo que
foi levado a cabo no sentido de obter critérios relativos à implementação em
hardware de algoritmos recursivos versus iterativos. Depois de serem
apresentadas algumas das estratégias para implementar recursividade em
hardware mais significativas, descreve-se, em pormenor, um conjunto de
algoritmos para resolver problemas de pesquisa combinatória (considerados
enquanto exemplos de aplicação). Versões recursivas e iterativas destes
algoritmos foram implementados e testados em FPGA. Com base nos
resultados obtidos, é feita uma cuidada análise comparativa.
Novas ferramentas e técnicas de investigação que foram desenvolvidas no
âmbito desta tese são também discutidas e demonstradas.

keywords

FPGA, recursive algorithms, reconfigurable computing, design of computational
systems

abstract

Design of computational systems is a complex multistage process which
requires a deep analysis of the problem, taking into account relevant limitations
and constraints as well as software/hardware co-design. Such task involves
exploring competitive techniques and computational algorithms, enabling the
system to be optimized while satisfying given requirements. In this context, one
of the most important stages is analysis and implementation of computational
algorithms.
Tremendous progress in the scope of FPGA (Field-Programmable Gate Array)
technology has made it possible to design very complicated engineering
systems. However, the number of available transistors grows faster than the
ability to meaningfully design with them. This situation is a well known design
productivity gap, which was inherited by FPGA from ASIC (Application-Specific
Integrated Circuit) and which is increasing continuously.
Developing engineering systems on the basis of high capacity FPGAs involves
a wide variety of design tools, including methods for efficient implementation of
computational algorithms. The thesis is intended to provide a contribution in
this area by aiming at reuse, high level abstraction, automation, and clearness
of algorithmic specifications. More specifically, it presents research studies
which have been carried out in order to obtain criteria regarding implementation
of recursive vs. iterative algorithms in hardware. After describing some of the
most relevant strategies for implementing recursion in hardware, a selection of
algorithms for solving combinatorial search problems (considered as
application examples) are also described in detail. Iterative and recursive
versions of these algorithms have been implemented and tested in FPGA.
Taking into consideration the results obtained, a careful comparative analysis is
given.
New research-oriented tools and techniques for hardware design which have
been developed in the scope of this thesis are also discussed and
demonstrated.

IINNDDEEXX OOFF CCOONNTTEENNTTSS

IInnddeexx ooff CCoonntteennttss

1. INTRODUCTION 1

1.1. Motivation ...1

1.1.1. General approach to hardware/software co-design 2

1.1.2. FPGA-based digital systems and reconfigurable computing 3

1.1.3. Recursive implementation of computational algorithms 10

1.2. Design prototyping ... 13

1.3. Main objectives .. 15

1.4. Thesis structure ... 16

2. BACKGROUND AND STATE OF THE ART 19

2.1. Background ... 19

2.1.1. Recursion ... 19

2.1.2. Combinatorial problems ... 20

2.1.3. Backtracking search algorithms ... 21

2.2. State of the art .. 24

2.2.1. Comparison of recursive and iterative algorithms 24

2.2.2. Strategies for implementing recursion in hardware 25

2.2.2.1. Maruyama, Takagi, and Hoshino ... 26

2.2.2.2. Sklyarov .. 26

2.2.2.3. Ferizis and El Gindy ... 28

2.2.2.4. Ninos and Dollas ... 29

2.3. Conclusion .. 31

IINNDDEEXX OOFF CCOONNTTEENNTTSS

3. DESIGN SPACE EXPLORATION 33

3.1. Introduction ... 33

3.2. Backtracking search algorithms ... 34

3.2.1. Generic approach to backtracking search algorithms 34

3.2.2. The set covering problem ... 36

3.2.3. The Boolean satisfiability problem ... 41

3.2.4. The graph coloring problem .. 47

3.2.5. The knapsack problem ... 53

3.3. Other selected algorithms .. 55

3.3.1. Sorting .. 56

3.3.2. The greatest common divisor .. 58

3.4. Conclusion ... 58

4. SOFTWARE/HARDWARE TOOLS FOR PROTOTYPING AND

EXPERIMENTS 61

4.1. Prototyping system ... 61

4.1.1. The DETIUA-S3 FPGA-based prototyping board 62

4.1.2. The PBM system software for DETIUA-S3 64

4.1.3. Remote interaction .. 66

4.1.4. Hardware/software co-simulation .. 67

4.1.4.1. Interaction with virtual peripheral devices 70

4.1.4.2. Reprogrammable FSM-based architecture.................................... 74

4.2. Advantages and applicability of the designed prototyping
tools .. 79

4.3. Conclusion ... 83

IINNDDEEXX OOFF CCOONNTTEENNTTSS

5. ALGORITHM MODELING AND IMPLEMENTATION 85

5.1. Modeling in software .. 86

5.1.1. Data structures ... 86

5.1.1.1. Common classes ... 86

5.1.1.2. Classes for set covering algorithms ... 90

5.1.1.3. Classes for SAT solving algorithms .. 90

5.1.1.4. Classes for graph coloring algorithms .. 91

5.1.1.5. Classes for solving the knapsack problem 93

5.1.1.6. Classes for tree-based sorting algorithms 94

5.1.1.7. Classes for calculating the greatest common divisor 96

5.1.2. Algorithmic flows .. 97

5.1.2.1. The set covering algorithm ... 97

5.1.2.2. The SAT solving algorithm ... 99

5.1.2.3. The graph coloring algorithm .. 102

5.1.2.4. The algorithm for solving the knapsack problem 104

5.1.2.5. The tree-based sorting algorithm .. 105

5.1.2.6. The algorithm for calculating the GCD 109

5.2. Implementation in hardware ... 109

5.2.1. Data storage .. 110

5.2.1.1. Binary vectors and ternary vectors .. 110

5.2.1.2. Binary matrices and ternary matrices .. 111

5.2.1.3. Supplementary problem-oriented data structures 112

5.2.2. Control unit .. 114

5.2.3. Processing unit ... 118

5.2.3.1. Similarities amongst matrix-based backtracking search
algorithms ... 118

5.2.3.2. Stacks ... 120

5.2.3.3. Architecture for the processing unit ... 121

5.2.4. Proposed architecture for a generic matrix-oriented solver 122

5.3. Validation and implementation of the hardware
accelerators ... 125

5.4. Conclusion .. 127

IINNDDEEXX OOFF CCOONNTTEENNTTSS

6. EXPERIMENTS, RESULTS, AND ANALYSIS 131

6.1. Experiments and comparison of iterative and recursive
implementations in hardware ... 132

6.1.1. Experiment results .. 134

6.1.2. Result analysis.. 135

6.1.2.1. Experiments based on hardware description specifications............ 135

6.1.2.2. Experiments based on system-level specifications 139

6.1.2.3. Summary and further discussion ... 142

6.2. Validation and analysis of the architecture for generic
matrix-oriented solvers ... 143

6.3. Assessment of the developed prototyping tools and
summary of potential applications 147

6.4. Conclusion .. 148

7. CONCLUSION 153

7.1. Contributions ... 153

7.2. Future work ... 158

REFERENCES 159

IINNDDEEXX OOFF FFIIGGUURREESS

IInnddeexx ooff FFiigguurreess

Figure 1.1 – SOC reconfigurability from 2007 to 2022 .. 3

Figure 1.2 – FPGA usage in industry ... 4

Figure 1.3 - Typical FPGA design flow ... 7

Figure 1.4 - Comparison of specification methods (from [Sklyarov07b]) 8

Figure 2.1 - Recursive definitions for procedures (a) and data types (b) 20

Figure 2.2 – Traversed part of the search tree for solving the four queens

problem ... 23

Figure 2.3 - Queen placements represented by the 4-tuples in Figure 2.2 23

Figure 2.4 - Parallel execution of algorithm-related and flow control

operations ... 27

Figure 2.5 – An originally recursive state diagram after recursion

simplification (from [Ninos08]) ... 30

Figure 3.1 - Pseudocode for calculating the factorial iteratively (a) and

recursively (b) .. 34

Figure 3.2 - Basic structure for backtracking search algorithms 34

Figure 3.3 - Practical example diagram for the set covering problem 36

Figure 3.4 - Converting a set covering problem instance to a binary matrix 37

Figure 3.5 - Iterative approximate algorithm to solve the matrix covering

problem ... 38

Figure 3.6 - Solving a set covering problem instance .. 39

IINNDDEEXX OOFF FFIIGGUURREESS

Figure 3.7 - Converting a Boolean formula to a ternary matrix 42

Figure 3.8 - Determining the ith element of the intersection of ternary

vectors u and v .. 43

Figure 3.9 - Solving a Boolean satisfiability problem instance 45

Figure 3.10 – Search tree for the SAT problem example 46

Figure 3.11 - Portugal’s historical province map (a) and the corresponding

province adjacency graph (b) .. 48

Figure 3.12 - Converting a graph coloring problem instance to a ternary

matrix ... 49

Figure 3.13 – Part of the search tree for the vertex coloring problem

example .. 51

Figure 3.14 - Recursive exact algorithm to solve the knapsack problem 54

Figure 3.15 - Search tree for the knapsack problem example 55

Figure 3.16 - Constructing an ordered binary tree ... 57

Figure 3.17 - Retrieving ordered binary tree nodes .. 57

Figure 3.18 - Pseudocode for calculating the GCD of two integers

iteratively (a) and recursively (b) ... 58

Figure 4.1 – The DETIUA-S3 board with interface module alternatives 62

Figure 4.2 – The DETIUA-S3 board basic architecture 63

Figure 4.3 - Logical division of the flash memory in DETIUA-S3 64

Figure 4.4 - Examples of DETIUA-S3 and PBM prototyping capabilities 65

Figure 4.5 - Remote access to DETIUA-S3 .. 67

Figure 4.6 – Demonstrating virtual and physical peripheral devices 69

Figure 4.7 - Signal routing with the agent module ... 71

Figure 4.8 - Partial class diagram used in the software for running virtual

peripheral devices .. 72

Figure 4.9 – Using the proposed reprogrammable FSM-based model 74

IINNDDEEXX OOFF FFIIGGUURREESS

Figure 4.10 – An example of a hardware template ... 75

Figure 4.11 – Incremental circuit design with the proposed technique 77

Figure 4.12 - Assembly line scenario .. 78

Figure 4.13 - Feasible FSM for controlling the assembly line component 79

Figure 4.14 – Overview of the virtual visual environment.................................. 80

Figure 4.15 – Structure of a combinatorial accelerator...................................... 82

Figure 4.16 - Using different hardware/software co-simulation frameworks 84

Figure 5.1 - Class members of Vector and Mask .. 87

Figure 5.2 - Using deletion (a) and selection (b) masks 88

Figure 5.3 - Properties, methods, and derived classes of Matrix 88

Figure 5.4 - Class members of Matrix ... 89

Figure 5.5 - Class members of SetCoveringMatrix .. 90

Figure 5.6 - Class members of SATSolvingMatrix ... 91

Figure 5.7 - Class members of GraphColoringMatrix ... 92

Figure 5.8 - Class diagram for knapsack-solving algorithms 93

Figure 5.9 - Class diagram for iterative and the recursive tree-based

sorting .. 94

Figure 5.10 - Constructing a sorting tree with occurrence accumulation 95

Figure 5.11 - Retrieving the values of a sorting tree with occurrence

accumulation ... 95

Figure 5.12 - The GCDCalculator class .. 96

Figure 5.13 - Recursive method for finding an exact cover 97

Figure 5.14 - Iterative method for finding an exact cover 98

Figure 5.15 – Recursive method for solving the Boolean satisfiability

problem ... 100

IINNDDEEXX OOFF FFIIGGUURREESS

Figure 5.16 – Iterative method for solving the Boolean satisfiability

problem .. 101

Figure 5.17 - Recursive method for finding an exact vertex coloring 103

Figure 5.18 - Iterative method for finding an exact vertex coloring 104

Figure 5.19 - Recursive method for finding the most profitable knapsack

configuration ... 105

Figure 5.20 - Recursive method for inserting a value in a sorted tree 106

Figure 5.21 - Iterative method for inserting a value in a sorted tree 107

Figure 5.22 - Recursive method for retrieving tree values 108

Figure 5.23 - Iterative method for retrieving tree values 108

Figure 5.24 - Recursive (a) and iterative (b) algorithms for calculating the

GCD of two integers A and B ... 109

Figure 5.25 – General architecture of hardware solvers 110

Figure 5.26 – Coding of a 4x4 ternary matrix by two binary matrices 111

Figure 5.27 - Representation of a 4x4 binary matrix in two memory blocks 111

Figure 5.28 – Memory block with sorting tree nodes’ data 113

Figure 5.29 – Simplified hardware data structures for solving the knapsack

problem .. 113

Figure 5.30 – Design template for an FSM and VHDL description 115

Figure 5.31 – Design template for an FSM described in Handel-C 116

Figure 5.32 – Design template for an HFSM and VHDL description 117

Figure 5.33 – Design template for an HFSM described in Handel-C 118

Figure 5.34 – Stacks with dedicated (a) and shared (b) stack pointers 120

Figure 5.35 – Overview of the processing unit ... 121

Figure 5.36 – Proposal for a generic solver architecture 123

IINNDDEEXX OOFF FFIIGGUURREESS

Figure 5.37 – Hardware model of a reprogrammable HFSM (from

[Sklyarov06c]) ... 124

Figure 6.1 - Number of FPGA slices occupied by VHDL-based

implementations ... 136

Figure 6.2 - Maximum clock frequency allowed on the VHDL-based

implementations ... 137

Figure 6.3 - Number of clock cycles used for solving the problem on the

VHDL-based implementations .. 137

Figure 6.4 - Time required by the VHDL-based implementations for solving

the problem ... 138

Figure 6.5 - Number of FPGA slices occupied by Handel-C-based

implementations ... 139

Figure 6.6 - Maximum clock frequency allowed on the Handel-C-based

implementations ... 140

Figure 6.7 - Number of clock cycles used for solving the problem on the

Handel-C-based implementations ... 141

Figure 6.8 - Time required by the Handel-C-based implementations for

solving the problem .. 141

IINNDDEEXX OOFF TTAABBLLEESS

IInnddeexx ooff TTaabblleess

Table 1.1 – Details of Xilinx Virtex-6 and Spartan-6 FPGA families 6

Table 4.1 - Sensor and actuator roles in the assembly line scenario 78

Table 5.1 - Representing binary and ternary vectors 110

Table 5.2 - Number of embedded memory blocks in function of matrix and

matrix access types .. 112

Table 5.3 - Languages and CAD tools chosen for design at different

abstraction levels ... 126

Table 6.1 – Algorithms implemented in hardware for comparison 132

Table 6.2 - Prototyping tools used for algorithm implementation and

comparison .. 133

Table 6.3 - VHDL-based experiment results .. 134

Table 6.4 - Handel-C-based experiment results ... 135

Table 6.5 - Summary of general criteria achieved with this experiment set 142

Table 6.6 - Data structure usage in different matrix-based backtracking

search algorithms ... 144

Table 6.7 - Functional block usage in different matrix-based backtracking

search algorithms ... 146

Table 6.8 - Average execution time in function of task and interface used 147

GGLLOOSSSSAARRYY OOFF AABBBBRREEVVIIAATTIIOONNSS

GGlloossssaarryy ooff AAbbbbrreevviiaattiioonnss

ASIC Application-Specific Integrated Circuit

BV Binary Vector

CAD Computer-Aided Design

CLB Configurable Logic Block

CNF Conjunctive Normal Form

CPLD Complex Programmable Logic Device

DABM Dual Access Binary Matrix

DATM Dual Access Ternary Matrix

DSP Digital Signal Processor

EDIF Electronic Design Interchange Format

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GCD Greatest Common Divisor

GPPL General-Purpose Programming Language

HDL Hardware Description Language

HFSM Hierarchical Finite State Machine

HT Hardware Template

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

LCD Liquid Crystal Display

LED Light-Emitting Diode

PBM Prototyping Board Manager

PC Personal Computer

RAM Random Access Memory

RHFSM Recursive Hierarchical Finite State Machine

GGLLOOSSSSAARRYY OOFF AABBBBRREEVVIIAATTIIOONNSS

RTL Register Transfer Level

SABM Single Access Binary Matrix

SAT Boolean Satisfiability

SATM Single Access Ternary Matrix

SLSL System-Level Specification Language

SOC System-On-Chip

TCP Transmission Control Protocol

TV Ternary Vector

UML Unified Modeling Language

USB Universal Serial Bus

VEW Virtual Execution Workbench

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large-Scale Integration

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 1

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

11.. IInnttrroodduuccttiioonn

1.1. Motivation

Design of computational systems is a complex multistage process which requires a

deep analysis of the problem, taking into account relevant limitations and constraints

as well as software/hardware co-design strategies. These factors are essential to

achieve the required functionality while optimizing the most important system’s

characteristics (e.g. maximizing the performance or minimizing the needed hardware

resources).

The system requirements are the constraints whose satisfaction is to be guaranteed.

Typical constraints concern maximum respond time to different requests, maximum

power consumption, etc. So long as the requirements are met, the computational

system can be optimized in terms of complementary goals, such as minimizing the

hardware resources, providing clearness of specifications, simplifying system

maintenance, design reuse, opportunities for further updates and improvements, etc.

Trade-offs between such system characteristics often take place, and determining the

most appropriate choices involves exploring competitive techniques and computational

algorithms, which is a process that can be seen as design space exploration. Analysis

and implementation of computational algorithms is therefore a very important step to

guarantee that the system functions in strong conformity with the given requirements

and to achieve a good compromise between mutually-dependable system

characteristics.

Algorithmic structure plays a very important role in the development of computational

systems and it has direct relationship with important issues, such as: how well the

algorithms are organized; how the algorithms are implemented; how clearly the

algorithms are described; how different parts of the algorithms can be reused; how

easily the algorithms can be modified and improved if required; etc. In case these

features are carefully taken into account, it becomes possible to optimize algorithms,

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 2

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

to simplify their implementation, to shorten their development lead time, and to

increase their effectiveness.

The thesis is dedicated to the problem of optimizing computational algorithms, and it

explores and compares two known alternative ways to implement them, namely

recursive and iterative. Additionally, important algorithmic features such as

modularity, reusability, clearness, and verifiability are carefully studied.

1.1.1. General approach to hardware/software co-design

Hardware/software co-design of a computational system requires an answer to the

following general question: Which parts of that system should be implemented in

hardware and which parts of it should be implemented in software? In order to

answer this question, it is necessary to consider multiple sub-questions, namely: What

exactly is software and what exactly is hardware? For instance, software can be

considered for general-purpose computers, for application-specific computers, for

application-specific microcontrollers, for built-in ‘hard/soft’ cores such as the FPGA

(Field-Programmable Gate Array) Power PC processor [EETimes02] which is built-in to

FPGA or the Micro Blaze soft core [Xilinx], etc. Nevertheless, all these types of

software have a number of common features, such as sequential processing of

machine instructions, and implementation of fundamental concepts like procedure

calls, interrupts, etc. Hardware can also be ‘hard’, like ASICs (Application-Specific

Integrated Circuits), and ‘soft’, like FPGAs. Comparing with software, hardware is

significantly more heterogeneous, and it is either difficult or even impossible to

indicate a number of common features like for software. The main objective of this

thesis is to explore hardware implementation of different algorithms. Due to

complexity, not all of them can be realized entirely in hardware, urging

software/hardware co-design to be employed. Exploring this topic also constitutes an

objective of this thesis.

Special attention should be paid to reconfigurable computing. Indeed, the market for

FPGAs and other programmable logic devices is expected to grow from $3.2 billion in

2005 to $6.7 billion in 2010, according to Gartner Dataquest [EETimes06a]. Figure 1.1

demonstrates the increasing reconfigurability (see percentage in vertical axis) of SOCs

(Systems-On-Chip) from 2007 to 2022 [Roadmap07].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 3

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

Figure 1.1 – SOC reconfigurability from 2007 to 2022

Such increase of SOC reconfigurability is expected because “the growing system

complexity will make it impossible to ship designs without errors in the future. Hence,

it is essential to be able to fix errors after fabrication” [Roadmap07]. These

circumstances lead to extensive on-going research in digital circuit test and diagnosis

[Ubar07, Jutman07], as well as in fault detection and fault tolerance strategies

[Raik07, Ubar08]. Moreover, the increase of SOC reconfigurability is also due to the

fact that “reconfigurability increases reuse, since existing devices can be

reprogrammed to fulfill new tasks” [Roadmap07].

Since a forecast of importance of reconfigurable systems in general, and FPGAs in

particular, is very promising for the future, this technology is assumed for

implementation of computational algorithms in hardware within this work.

Particularities of FPGA-based systems are considered in detail in the next subsection.

1.1.2. FPGA-based digital systems and reconfigurable computing

Tremendous progress in the scope of FPGA technology has made it possible to evolve

configurable microchips from simple gate arrays that appeared on the market in the

mid-1980s, to multi-platform FPGAs containing more than 10 million system gates and

targeted to the design of very complicated engineering systems. Today, the way to

evolve high performance computing from a general-purpose computer, proposed more

than 50 years ago [Estrin60], has finally been implemented in reality. As mentioned in

0

10

20

30

40

50

60

70

80

90

100

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

S
O

C
 R

e
c

o
n

fi
g

u
ra

b
il

it
y

 (
%

)

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 4

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

the previous subsection, the market for FPGAs and other programmable logic devices

is expected to grow from $3.2 billion in 2005 to $6.7 billion in 2010 [EETimes06a].

Developing engineering systems on the basis of high capacity FPGAs involves a large

variety of design tools, including methods for efficient implementation of

computational algorithms. The thesis is intended to provide significant contribution in

this area.

An analysis presented in [D&R06] clearly demonstrates that the largest FPGA

consumers will be in engineering, with numerous applications in the scope of

electronic system design, from glue logic to high-complexity application-specific

(ASIC-type) devices. Pioneering products such as Xilinx's Virtex or Altera’s Stratix

FPGA families will find their main applications in the development of high-volume

products. Figure 1.2 demonstrates how FPGAs have been employed in different

industries [Turley05]. Furthermore, Light Reading Inc.'s Components Insider

conducted a worldwide survey in which 91 industry professionals participated,

including equipment-manufacturing engineers, product developers and managers from

more than 50 major equipment makers, and “90 percent of survey respondents said

their company now uses FPGAs” [EETimes06c].

Figure 1.2 – FPGA usage in industry

In particular, FPGAs have been intensively used in the areas of mobile computing

[Sridharanand05, Jung07] and multimedia. For example, Xylon company combines

0

10

20

30

40

50

60

70

80

90

100

Aerospace Video Military Automotive Networking Government Security

Q
u

a
n

ti
ty

 o
f

d
e
v

e
lo

p
e
rs

 u
s

in
g

F
P

G
A

s
 (

%
)

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 5

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

Xilinx FPGAs of Spartan-3 family with the logicBRICKS IP (Intellectual Property) cores

library [Kovacec05], allowing to quickly customize system designs running on generic

FPGA development platforms into specialized multimedia products. Xilinx multimedia

solutions provide the programmable hardware platforms, design tools, intellectual

property, and reference designs which are needed to develop real-time video and

image processing systems for a wide diversity of applications, such as video

broadcasting and video conferencing, surveillance cameras, medical imaging, home

gateway and digital TV [Newswire05].

The Xilinx Virtex-4 programmable technology enables the developers to rapidly

implement state-of-the-art DSP (Digital Signal Processor) systems with high

performance. Using FPGA-based reconfigurable processors for computation-intensive

multimedia functions was considered in [Panainte04], reporting significant reduction in

the number of clock cycles. Announced in 2006, Xilinx Virtex-5 FPGAs are a

programmable alternative to custom ASIC technology and offer the best solution for

addressing the needs of designers in the scope of high-performance logic, DSP, and

embedded systems with unprecedented logic, hard/soft microprocessor, and

connectivity capabilities [Xilinx06]. Virtex-5 microchips are built upon advanced 65nm

triple-oxide technology with speed on average 30 percent higher and with capacity

increased 65 percent over previous generation 90nm FPGAs.

The enormous potential of reconfigurable devices that recently appeared on the

market for the design of complex systems can be seen from the example of the

XC5VLX330 FPGA (Virtex-5 family) [Xilinx06]. This chip contains 25,920 configurable

logic blocks (CLBs), 192 DSP slices, 10,368 Kb of block RAM (including 18 Kb and 36

Kb blocks), and 6 devices for advanced clock management. The plenary talk by Mike

Butts in FPL’03 (the International Conference on Field-Programmable Logic and

Applications, 2003), entitled ‘Molecular Electronics: All chips will be reconfigurable’,

reports that future project densities are likely to be upwards of 100 billion devices per

square centimeter and argues that cheap molecular-scale reconfigurable logic,

memory, and interconnect are likely to become the predominant digital technology a

decade hence. The advances and promising applications of reconfigurable systems

given above clearly demonstrate future prospects of FPGA technology and its

challenging capabilities for both industrial needs [Salcic06, Aimé07, Du07, Zhuang07]

and research activity.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 6

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

Announced in 2008, Xilinx Virtex-6 and Spartan-6 FPGAs can be seen as one more

example demonstrating rapid progress in the scope of reconfigurable computing. Table

1.1 presents some of the characteristics of these two recent FPGA families [Xilinx09].

Table 1.1 – Details of Xilinx Virtex-6 and Spartan-6 FPGA families

Feature Virtex-6 Spartan-6

Logic Cells 74,500 – 759,000 3,400 – 147,000

Distributed RAM (Kb) 1,045 – 8,280 32 – 1,358

Block RAM (Kb) 5,616 – 38,304 144 – 4,824

DSP Slices 288 – 2,016 4 – 182

Developing digital systems on the basis of high capacity FPGAs requires the extensive

use of computer-aided design (CAD) tools. In fact, the electronic design automation

business has profoundly influenced the integrated circuit business and vice versa, e.g.

in the scope of design methodology, verification, libraries, and intellectual property

[MacMillen00]. Traditionally, FPGA-targeted CAD systems support schematic and

hardware description language-based design flows involving model-specific tools (such

as those for synthesizing finite state machines (FSMs) from graphical specifications)

and IP core generators based on parameterization or templates. Recently, commercial

CAD tools which allow digital circuits to be synthesized from system-level specification

languages (such as Handel-C and SystemC) as well as high-level programming

languages (such as C) have appeared on the market. The domain of reconfigurable

systems design turns out to be very dynamic and many-sided.

Designers of FPGA-based systems must wade through several layers of design before

programming the actual device. The typical FPGA flow includes five major phases

illustrated in Figure 1.3: design entry; synthesis; mapping, placement and routing;

FPGA programming; and verification. The latter may occur at different levels, such as

behavioral simulation, functional simulation, static timing analysis, post-layout timing

simulation and, finally, in-circuit verification. If we focus our attention on the design

entry, four different specification methods can be envisioned: schematic entry,

hardware description languages, system-level specification languages (SLSLs) and,

finally, general-purpose programming languages (GPPLs) [Sklyarov07b].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 7

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

VerificationVerification

FPGA
progr.

behavioral
simulation

functional
simulation

timing
simulation

in-circuit
verification

Design entry: SpecificationDesign entry: Specification

Implementation
(mapping, placement and routing)

Implementation
(mapping, placement and routing)

SynthesisSynthesis

Figure 1.3 - Typical FPGA design flow

The schematic-based approach is nowadays not very appropriate for specifying the

functionality of modern systems because, instead of thinking in terms of algorithms

and data structures, it forces the designer to deal directly with the hardware

components and their interconnections. Contrariwise, the hardware description

languages (HDLs), such as VHDL and Verilog, are widely used for design specification

since they typically include means for describing structure and functionality at a

number of levels, from the most abstract algorithmic level, down to the gate level.

Recently, commercial tools for synthesizing digital circuits from system-level

specification languages, such as Handel-C and SystemC, have appeared on the

market. In this area, C and C++, with application-specific class libraries and with the

addition of inherent parallelism, are emerging as the dominant languages in which

system descriptions are provided. This fact allows the designer to work at a very high

level of abstraction, virtually without worrying about how the underlying computations

are executed. Consequently, even computer engineers with a limited knowledge of the

targeted FPGA architecture are capable of rapidly producing functional,

algorithmically-optimized designs.

An even higher level of abstraction is achieved with general-purpose programming

languages, such as C or Java. During the last years, commercial tools (e.g. Catapult

Synthesis from Mentor Graphics and CoDeveloper from Impulse) started appearing on

the market, allowing the respective high-level descriptions to be automatically

converted to HDL descriptions, which are then used for synthesis. In this case, the

code portions that can be executed in parallel are automatically identified by the

design tools. In addition to the design specification methods mentioned, there are

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 8

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

other available tools, such as vendor libraries, graphical finite state machine editors,

parameterizable IP cores, and so on.

In the graph of Figure 1.4 [Sklyarov07b], different design specification methods are

assessed according to performance, FPGA resource usage, portability, ease to learn,

ease to change and maintenance, and development time (for the first five groups of

vertical bars: the higher, the better; for the last group: the lower, the better).

Figure 1.4 - Comparison of specification methods (from [Sklyarov07b])

From the graph, we can see that the schematic-based approach leads to circuits with

very good performance and efficient resource usage. However, when we consider

portability and ease to learn, change and maintenance, and the associated

development time, schematic entry is an obvious outsider. As mentioned in an

Electrical Engineering Times survey, “the days of designing FPGA with schematics are

gone” [EETimes06b].

Hardware description languages are currently the golden mean of the design entry

methods [Sklyarov07b]. They allow creating high-performance circuits that are

optimized from the resource usage point of view, the associated development time is

not too long, and design changes are not so difficult. The only weak point is that it’s

not very easy to learn HDLs.

System-level and high-level languages possess the highest portability and the highest

level of abstraction. Of course, the higher level of abstraction leads to some

Performance Resource
usage

Portability Ease to learn Ease to
change and

maintainance

Development
time

Schematic
HDL
SLSL
GPPL

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 9

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

performance degradation and not very efficient resource usage. On the other hand,

SLSLs and GPPLs have important advantages such as ease to learn, ease of change

and maintenance, and a very short development time. We can therefore expect that,

as the tools responsible for generating hardware from high-level source code advance,

the SLSLs and GPPLs may become the predominant hardware description

methodology, in the same way as general-purpose high-level programming languages

have already supplanted microprocessor assembly languages [Skliarova06a]. Due to

such advantages, system-level specification languages and the relevant synthesis

tools are considered within this work to be basic instruments for comparing alternative

recursive and iterative implementations of computational algorithms.

According to Moore’s law [Moore65], chip complexity grows exponentially with time.

But more important is that the number of available transistors grows faster than the

ability to meaningfully design with them. This situation is a well known design

productivity gap, which was inherited by FPGA from ASIC and which is increasing

continuously. Therefore, the design productivity will be the real challenge for future

systems. It is believed that platform FPGAs could alleviate this problem since they

offer the flexibility, time-to-market, and the bandwidth requirements to rapidly bring

electronic systems to market. With such highly programmable platforms that include

one or more programmable processors and/or reconfigurable logic, derivative designs

may be created without fabricating a new system-on-chip (SOC) [Roadmap05].

Platform customization for a particular SOC derivative then becomes a constrained

form of design space exploration: the basic communications architecture and platform

processor choices are fixed, and the design team is restricted to choosing certain

customization parameters and optional IPs from a library [Roadmap05].

In order to increase the design productivity, three important strategic directions must

be followed. First of all, design reuse must be encouraged. Reusable, high-level

functional blocks (such as IP blocks) offer great potential for productivity gains

because design effort for the reused logic is only a portion of the effort needed for

newly designed logic. According to International Technology Roadmap for

Semiconductors (ITRS), reuse rate for system-level design will increase from 35% in

2007, to 58% in 2022 [Roadmap07].

The second strategic line concerns design abstraction levels, which must be raised.

Higher levels of abstraction allow many forms of verification to be performed much

earlier in the design process, reducing time-to-market and lowering cost by

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 10

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

discovering problems earlier [Roadmap05]. As previously mentioned, tools which allow

for hardware design at a very high level of abstraction are currently emerging.

And last, the third strategic direction is to increase the level of automation and

clearness of algorithmic specification, which will inevitably allow the number of design

iterations to be reduced. In case of platform-based design, further improvements in

automated software/hardware partitioning tools are strongly required.

It is now clear that reconfigurability will certainly be the key aspect of future systems,

since it will be required for fault tolerance, e.g. for molecular-scale systems, and for

development of adaptive and self-correcting or self-repairing circuits. In addition,

reconfigurability increases reuse, since existing devices can be reprogrammed to fulfill

new tasks. According to what ITRS estimates (see Figure 1.1), more and more SOC

functionality will become reconfigurable [Roadmap07].

Another important aspect of SOC design is the exploration of efficient methods for

implementation of computational algorithms which allow for clearness of specification,

reuse and effectiveness of future implementation. Contributing to this topic is the

primary target of the thesis. The following section discusses widely used ways of

implementing computational algorithms.

1.1.3. Recursive implementation of computational algorithms

It is known that recursion is an extremely powerful problem-solving technique

[Carrano95] that permits a problem to be decomposed into smaller sub-problems that

are of exactly the same form as the original problem.

Many examples that demonstrate advantages of recursion are presented in

[Kernighan88, Carrano95, Maruyama99, Sklyarov04]. However this technique is not

always appropriate, particularly when a clear efficient iterative solution exists

[Carrano95, Sklyarov04]. This fact is primarily due to the large amount of states that

are accumulated during deep recursive calls. Besides, in most high-level programming

languages, a function call incurs a bookkeeping overhead. Recursive functions

magnify this overhead because a single initial call to the function might generate a

large number of recursive invocations of the function.

The paper [Sklyarov04] provides significant contribution to solve this problem and

proves that recursion can be implemented in hardware more efficiently than in

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 11

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

software. This achievement resulted from combining any activation of a recursive

subsequence of operations with the execution of the operations that are required by

the respective algorithm. The same combination takes place when any recursive sub-

sequence is being terminated, i.e. when control has to be returned to the point after

the last recursive call, and the following operation of the executing algorithm has to be

activated.

The number of states that are required for the execution of recursion in hardware can

be made smaller than in software, but it is still greater than for iterative solutions.

However, codes for such states are accumulated on stacks that are typically

implemented on built-in memory blocks, which are very regular and relatively cheap.

The results obtained for some known methods for implementing recursive calls in

hardware, such as a technique based on multi-thread and speculative execution

[Maruyama99], have shown that hardware circuits can be faster than software

programs running on general-purpose computers, with respect to this matter.

Moreover, it is known that a recursive algorithm can be implemented in hardware with

the aid of a hierarchical finite state machine (HFSM) [Sklyarov84, Sklyarov99] and this

strategy is explored in this thesis.

Note that recursive algorithms have a wide scope of practical applications (see, for

example, [Sklyarov04, Carrano95, Maruyama99]). However, they are most often

employed for various kinds of binary search and this is a notable exception, even

when implemented in software [Carrano95], because the recursive solutions are quite

efficient in this area. There are many examples of recursive binary search and we will

briefly discuss just a few of them.

Let us consider a binary tree whose nodes contain four fields, which are: a pointer to

the left child node, a pointer to the right child node, a counter, and a value (let us say

an integer or a pointer to a string). The nodes are maintained so that, at any

considered node, the left sub-tree contains only values that are smaller than the one

at the considered node, and the right sub-tree contains only values that are bigger

than that. The counter indicates the number of occurrences of the value associated

with the respective node. It is known that such a tree can be constructed and used

for sorting various types of data [Kernighan88]. In order to build such a tree for a

given set of values, we have to find the appropriate place for each incoming node in

the current tree. In order to sort the data, we can apply a special technique

[Kernighan88] using forward and backtracking propagation steps that are exactly the

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 12

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

same for each node. Thus a recursive procedure is very efficient. Sorting of this type

was considered in [Sklyarov04] as a working example.

Other useful applications can be encountered in the area of lossless data compression

[Sklyarov04]. Many techniques have been proposed in this context, such as Huffman

coding, arithmetic coding, run-length coding, and Lempel-Ziv compression algorithms

(see, for example, the Internet site [EFF], which collects many useful publications,

methods, and software tools). They combine components for modeling (classified by

statistical methods and dictionary methods [Nunez03]) and coding.

Recursive algorithms are quite efficient for such applications and we will show two

examples taken from [Sklyarov04]. Huffman coding requires a sequential invocation of

two procedures: data sorting, and incremental construction of a Huffman binary tree

[Rosen00]. The latter contains information about Huffman codes with different

lengths. We have already mentioned that recursive algorithms can be efficiently

employed for data sorting. However, they can also be used for constructing a Huffman

tree. Moreover, these two procedures can be combined in a single recursive

procedure. Dictionary methods often require a content-addressable memory, which is

resource-consuming [Nunez03]. On the other hand, searching in dictionaries can be

performed using recursive methods that are employed for software applications

[Carrano95]. Thus the considered technique can be helpful. This is especially

important today because many data compression algorithms need to be implemented

in hardware, in general, and in reconfigurable hardware (such as FPGA), in particular

[Nunez03]. One potential example of applying recursive algorithms for Huffman

coding was examined in [Sklyarov04].

Another important application area that can be addressed is in the scope of

combinatorial optimization [Sklyarov04, Skliarova04a, Skliarova08]. Combinatorial

search algorithms that are widely used in this area have two distinctive features.

Firstly, as a rule they require a huge number of different feasible solutions to be

considered. Secondly, these feasible solutions can be ordered and examined with the

aid of a search tree that provides an efficient way for handling intermediate solutions.

The search tree is constructed during the search process and it is traversed starting

from the root. Typically, this is an N-ary tree [Rosen00] with N≥2. Note that a

recursive search can also be efficiently applied to N-ary trees and this has been

demonstrated in [Sklyarov03b] on an example of discovering a minimal column cover

of a binary matrix. A similar approach can be used for solving many other

combinatorial problems, such as Boolean satisfiability, graph coloring, etc. Two

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 13

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

examples from this scope which can make use of recursive calls (namely the knapsack

and the knight’s tour problems) were discussed in [Maruyama99].

Let us note that many combinatorial algorithms deal with a huge amount of data

which have to be transferred between a host computer and a hardware accelerator

[Skliarova04b]. In many circumstances, due to the complexity, the problem cannot be

completely solved in hardware, and combined hardware/software solutions are

therefore employed. This is a typical way of hardware/software co-design and it

involves multiple time consuming data transfers. Thus recursion can be employed

[Sklyarov04] on the one hand for the data compression/decompression operations

mentioned above (enabling the amount of data and consequently the data transfer

time to be significantly reduced), and on the other hand for the combinatorial

algorithms themselves, allowing more efficient solutions for tree search problems to

be provided (see, for instance, some assessments in [Maruyama99, Sklyarov03b]).

As already mentioned, FPGA-based systems are going to be used for implementation

and evaluation of the considered computational algorithms. Thus, it is necessary to

analyze the basic distinctive features of FPGA-based systems and to take advantage of

them. The relevant features of such systems are the following:

• Can be seen as ‘soft’ ASICs;

• Introduce a new computing paradigm;

• Eliminate the necessity for the von Neumann architecture although such

architecture can be used if required;

• Enable the designers to implement algorithms directly in silicon;

• Make parallelism a key feature;

• Permit any required interface with external devices to be established.

1.2. Design prototyping

There are a number of available prototyping boards that support various experiments

with FPGA-based circuits [Xilinx, Celoxica, Trenz]. These boards permit to implement

digital systems in FPGAs and to provide for an interaction of these systems with both

onboard microchips and external devices (such as static RAM and micro controllers),

which might be connected through expansion headers. The use of such boards

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 14

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

significantly simplifies the design of new FPGA-based systems and allows the

development lead time to be shortened.

Prototyping boards are widely employed in engineering practice, in research activity,

and in education. When choosing an FPGA-based prototyping board, it is necessary to

find a compromise between the required hardware/software resources and the price;

but with the large number of available boards, it becomes difficult to make the best

choice for a particular application. Taking into account that the majority of prototyping

boards include many typical components (memories, LCDs, standard interfaces, etc.),

it is very difficult to find a board that contains only elements that are required and

nothing else, which only occupies the space and increases the cost. Moreover, it is

necessary to develop software targeted to the desired experiments, taking into

account numerous particularities of the developed algorithms. However, it is either

difficult or even impossible to satisfy all the requirements mentioned above due to

unavailability of detailed technical documentation and hardware support projects

implemented by relevant manufacturers. As a rule, such materials are not supplied.

Thus, an extendable set of hardware/software tools have been proposed. Hardware

tools have been developed in [Almeida06, Almeida08], and software tools have been

designed and explored within the scope of this research. It is important that any

particular problem can be solved using only the subset of hardware/software

components that are required (from the considered extendable set), excluding all the

other available components. In case the desired components are not available, they

can easily be constructed and integrated/attached.

In general, the suggested tools have to provide prioritized support for the following

distinctive functionality:

• Configuration of the core FPGA using wired (USB) and wireless (Bluetooth)

interfaces, the latter making the prototyping system ideal for remote

applications;

• Dynamic onboard reconfiguration and remote wireless reconfiguration and/or

interaction;

• Implementation and comparison of recursive and iterative algorithms in

hardware and software/hardware partitioning;

• Versatile, efficient, user-friendly workflows (by integration with other CAD tools)

for system design on the basis of hardware description languages (VHDL in

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 15

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

particular), system-level specification languages (Handel-C in particular),

templates, design libraries and IP cores.

1.3. Main objectives

The three main objectives of this research are the following:

1. Implementation of recursive algorithms in reconfigurable hardware

and comparison of recursive and iterative implementations. Analysis

of the design space where recursive/iterative algorithms are more

advantageous taking into account the design objectives and target

requirements;

2. Exploration of a reuse technique, in hardware design, on the basis of

parameterizable, reprogrammable architecture and generic IP

modules;

3. Development of software tools for hardware/software co-design and

co-simulation of FPGA-based reconfigurable prototyping systems.

In order to pursue the first main objective, it is necessary to address the following

tasks:

• Answering the question: How to implement recursion in hardware? Note that

known hardware and system-level specification languages do not provide support

for implementing recursion;

• Exploring hardware architectures enabling recursive algorithms to be

implemented in hardware;

• Designing system components, such as IP modules, which support the

development of hardware from recursive specifications;

• Considering particular design examples allowing to compare alternative recursive

and iterative algorithms;

• Experiments and comparisons of recursive and iterative algorithms. Determining

design space for recursive and iterative algorithms.

To satisfy the second objective it is necessary to address the following tasks:

• Explore the relationship between recursion and modularity in hardware design

(indeed, recursion assumes modularity);

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 16

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

• Explore and compare different opportunities for the design of reusable modules;

• Provide a set of experiments and recommendations;

• Analyze a relationship between modularity and dynamic reconfigurability.

To attain the third objective, it is necessary to carry out the following set of tasks:

• Analyze potential ways to explore such type of software/hardware co-design and

co-simulation, which enable designers to easily explore digital systems with

either more software and less hardware or vice versa;

• Suggest an FPGA-based prototyping system suitable for such purposes;

• Develop software oriented to the comparison and implementation of alternative

FPGA-based accelerators;

• Provide a set of experiments based on the developed methods and tools.

1.4. Thesis structure

This thesis is organized in seven chapters. Chapter 2 starts with describing

background concepts which are essential for understanding the remainder of the

thesis (namely recursion, combinatorial problems, and backtracking search

algorithms) and then presents the state of the art relevant to the thesis area,

addressing known results on the comparison of recursive and iterative algorithms, and

strategies for implementing recursion in hardware. The last section of chapter 2

summarizes the main aspects of the background and strategies considered.

Chapter 3 analyzes computationally intensive problems which are taken mainly from

the scope of combinatorial search. The latter is relevant because both targeted

techniques, i.e. recursive and iterative, can rationally be applied. For each of six

selected problems, the following is provided: problem description, application

domains, an algorithm for solving it, and a detailed illustration in which the given

algorithm is applied to solve the problem on the basis of a practical example. Four

particular problems are solved with the aid of backtracking search algorithms, namely:

set covering, Boolean satisfiability, graph coloring, and knapsack. Two supplementary

problems (tree-based data sorting and discovering of a greatest common divisor) are

also studied. A generic approach to backtracking search algorithms is described and

discussed.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 17

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

Chapter 4 describes the developed prototyping system and software tools that enable

experiments with hardware accelerators and comparisons of alternative recursive and

iterative algorithms to be carried out easier and more efficiently. The system is based

on the DETIUA-S3 prototyping board, featuring wired and wireless interfaces with a

host computer, and on software tools proposed and implemented in the scope of this

thesis. These software tools provide user-friendly interface with the board (including

wireless interaction) and high-level support for many different experiments which are

required for the hardware accelerators considered. Virtual peripheral devices, modules

for software/hardware co-simulation, and procedures for extracting intermediate

results for analysis are examples of the software tools developed. A more advanced

technique assumes the application of the developed tools through the Internet in such

a way that allows different users to configure and to interact with the remotely

accessed prototyping board. Although this work was not initially planned, many tools

have been developed, implemented and tested, permitting to conclude that the

proposed system can efficiently be used for remote interactions.

Chapter 5 provides details of reconfigurable hardware implementation of iterative and

recursive algorithms for the selected problems. Every algorithm was first modeled in

software in order to simplify the design process, and the respective object-oriented

classes and activity diagrams are presented. After modeling, some of the algorithms

were described in a system-level specification language (Handel-C) and a hardware

description language (VHDL). The respective specifications were finally synthesized

and implemented in commercially available FPGAs and carefully analyzed.

Chapter 6 presents the details and results of the various sets of experiments which

were carried out, followed by careful analyses. The first set of experiments addresses

the comparison of iterative and recursive implementations in hardware. Results are

not only shown in tables with the relevant numerical results but put into perspective

by means of graphical charts, allowing for an easier analysis. Relevant remarks

beyond the observation of the results are made in order to complement the

comparison. The second subsection of this chapter describes the validation and

analysis of the architecture for generic matrix-oriented solvers, providing an overview

of the key data structure and functional block usage amongst different matrix-based

backtracking search algorithms. The third section provides an assessment of the

prototyping tools which were developed in the scope of this thesis and a summary of

relevant potential applications.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 18

CCHHAAPPTTEERR 11 -- IINNTTRROODDUUCCTTIIOONN

Chapter 7 summarizes the author’s contribution, lists the most important results and

suggests future work in the considered area.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 19

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

22.. BBaacckkggrroouunndd aanndd SSttaattee ooff tthhee AArrtt

This chapter is composed of the following three sections: background (section 2.1)

which describes recursion, combinatorial problems, and backtracking search

algorithms; state of the art relevant to the thesis area (section 2.2), presenting known

results in comparison of recursive and iterative algorithms as well as strategies for

implementing recursion in hardware; and finally a conclusion (section 2.3).

2.1. Background

2.1.1. Recursion

Something is said to be recursive if it partially consists or is defined in terms of itself

[Wirth86]. Recursion can be applied and observed in many fields and, in problem

solving, it is known to be an extremely powerful technique [Carrano95] which permits

to decompose a problem into smaller sub-problems that are of the same form as the

original problem [Sklyarov04].

Within the context of algorithm implementation, recursion is mainly used in the

definition of procedures (see Figure 2.1-a) and structured data types (Figure 2.1-b).

The thesis focuses on the procedure-oriented kind of recursion but, in fact, recursive

algorithms are particularly appropriate when the data to be processed and the

problem to be solved are defined in recursive terms [Wirth86].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 20

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

a)

procedure(...)

{

 ... // some eventual operations

 procedure(...) // self invocation

 ... // other eventual operations

}

b)

datatype is composed of

{

 ... // some eventual data fields

 datatype field_n // field of the type being defined

 ... // other eventual data fields

}

Figure 2.1 - Recursive definitions for procedures (a) and data types (b)

Recursion can be direct and indirect. A procedure that includes an explicit invocation

of itself is said to be directly recursive (see Figure 2.1-a). On the other hand, an

indirectly recursive procedure is one that invokes some other procedure which directly

or indirectly invokes the first one. For example, most recursive algorithms developed

for solving combinatorial problems are directly recursive. Nonetheless, both kinds of

recursion present essentially the same implementation challenges. It should also be

noted that, although recursion is often very useful, it has been proven that any

recursive algorithm can be re-expressed non-recursively [Kruse87].

In order to illustrate the applicability and advantages of recursive algorithms when

they are implemented in hardware for solving computationally intensive problems, we

will explore combinatorial search problems as an example. The subsequent two

sections present general characteristics of such problems and a technique widely used

to solve them.

2.1.2. Combinatorial problems

Combinatorics is a branch of mathematics with increasing importance which can be

described as the study of how discrete sets of objects can be arranged, counted, and

constructed, according to specified constraints [Cameron94, Erickson96].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 21

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

Combinatorial search problems are divided in four types, depending on the kind of

solution that is required [Kreher99, Skliarova04a]:

• Decision problems, in which a question is to be answered ‘yes’ or ‘no’;

• Search problems, in which a question is to be answered ‘yes’ or ‘no’ and, in case

the answer is ‘yes’, an n-tuple
1[,...,]nx x that verifies the given constraints is to

be provided;

• Enumeration problems, in which the number of different n-tuples
1[,...,]nx x that

verify the given constraints is to be found;

• Optimization problems, in which an n-tuple
1[, ...,] {0,1}∈

n

n
x x which maximizes

the value of a specified profit-evaluating function (or minimizes the value of a

specified cost-evaluating function) is to be provided.

A significant characteristic of combinatorial problems is their vast applicability, which

is also the reason for their increasing importance. Algorithms for solving such

problems are therefore getting a lot of attention today [Zakrevskij08]. Applications of

combinatorial problems can be found in Boolean expression simplification [Breuer70];

resource allocation [Rubin73, Walker74, Gleeson94, Rodin90, Bodin91, Henig90];

mathematical logic, artificial intelligence, VLSI engineering, and computing theory

[Gu97]; automated reasoning, computer-aided design, computer-aided

manufacturing, machine vision, database, robotics, integrated circuit design

automation, computer architecture design, embedded systems, and computer network

design [Gu97, Goossens97, Subramonian04]; microprogramming for application-

specific embedded microprocessors and resource distribution [Culberson, Wu93];

cutting stock systems [Gilmore61, Hahn68, Madsen79, Seth87]; cryptography

[Merkle78, Chor88, Jan93], broadband communications [Ross89, Gavious94], etc.

More detailed application examples of particular combinatorial problems will be

considered in chapter 3, when describing the problems which will be used in the scope

of this thesis.

2.1.3. Backtracking search algorithms

Most algorithms for solving combinatorial problems have a top-down approach based

on search trees [Zhang89]. Search trees are typically implemented by means of a

backtracking mechanism [Golomb65, Floyd67, Bitner75, Cohen79, Skliarova04a]. In

this context, the search consists of a multi-stage decision process in which some

choice is made at each stage [Helsgaun95]. At every stage, a solvability test which

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 22

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

takes the earlier choices into account is also performed and, under certain

circumstances, such test can determine that some of those choices cannot lead to a

solution. If this is the case, the algorithm restores the context belonging to the

previous stage, i.e. it backtracks, in order to make an alternative choice. If all

alternative choices based on that context have already been tried, the algorithm

backtracks again. The process continues until the whole search tree is traversed or, in

case the given problem is not an optimization problem, when a satisfactory solution is

found. In either case, algorithms which follow this general strategy are called

backtracking search algorithms.

The eight queens problem [Ball60] is a classic combinatorial problem that is very

appropriate for illustrating backtracking search algorithms. Let us consider a simplified

version which consists of finding a way to place 4 queens in a 4 by 4 chessboard in

such a way that no queen is able to attack another. In this problem, there is no

distinction between white and black queens. Thus, in order to achieve a solution, no

pair of queens can be placed in the same row, column, or diagonal.

In order to solve this problem, Bitner and Reingold chose the following strategy

[Bitner75]: Because exactly one queen must be placed in each column, a solution can

be represented as a tuple
1 2 3 4[, , ,]x x x x in which

ix represents the row of the queen

placed in the ith column. They do not consider all possible combinations of queen

placements; only those with one queen in each column. This way, all combinations

with more than a queen per column (which are obviously not solutions) are excluded

from the beginning.

Using this strategy, one can conceive a search process with 4 stages in which the

value of
ix is chosen at stage i . Each choice is made amongst 4 possible values: 1 to

4 (which identify the 4 rows). As a result, a quaternary search tree with a depth of 4

levels is obtained. Figure 2.2 depicts the part of that search tree which is actually

traversed by a backtracking search algorithm that would follow this approach. At the

root of the search tree, the 4-tuple variable which will provide the solution is

completely unassigned. At each level, one of its elements is assigned and hence the

variable becomes completely assigned when a leaf is reached. White circles

correspond to legal partial queen placements which are therefore explored further. On

the other hand, grey circles illustrate partial or complete queen placements which are

illegal and therefore trigger a backtrack movement. The black circle is the leaf of the

search tree in which a solution is found (see Figure 2.2-t).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 23

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

[?,?,?,?]

x1=1
[1,?,?,?]

x2=1
[1,1,?,?]

x2=4
[1,4,?,?]

x1=2
[2,?,?,?]

x4=1
[1,4,2,1]

x3=1
[1,4,1,?]

x2=2
[1,2,?,?]

x2=3
[1,3,?,?]

x3=1
[1,3,1,?]

x3=2
[1,3,2,?]

x3=3
[1,3,3,?]

x3=4
[1,3,4,?]

x4=2
[1,4,2,2]

x4=3
[1,4,2,3]

x4=4
[1,4,2,4]

x2=1
[2,1,?,?]

x2=2
[2,2,?,?]

x2=3
[2,3,?,?]

x2=4
[2,4,?,?]

x3=1
[2,4,1,?]

x4=1
[2,4,1,1]

x4=2
[2,4,1,2]

x4=3
[2,4,1,3]

x3=3
[1,4,3,?]

x3=4
[1,4,4,?]

x3=2
[1,4,2,?]

d)

t)s)r)

q)p)o)

n)m)

l)k)j)i)

h)g)f)e)

c)b)

a)

Figure 2.2 – Traversed part of the search tree for solving the four queens problem

Figure 2.3 - Queen placements represented by the 4-tuples in Figure 2.2

a) b) c) d) e)

♛ ♛♛ ♛ ♛ ♛ ♛
♛ ♛

♛ ♛
f) g) h) i) j)

♛ ♛ ♛ ♛ ♛ ♛ ♛
♛ ♛♛

♛♛ ♛
♛ ♛ ♛ ♛

k) l) m) n) o)

♛ ♛ ♛ ♛ ♛
♛ ♛ ♛

♛ ♛
♛ ♛ ♛ ♛ ♛♛

p) q) r) s) t)

♛♛ ♛ ♛
♛♛ ♛ ♛ ♛ ♛ ♛

♛ ♛
♛ ♛ ♛

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 24

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

In order to better understand the traversed search tree and the reason for which some

of its nodes correspond to illegal placements, the queen placements that are

represented by the 4-tuples in Figure 2.2-a to Figure 2.2-t are depicted in Figure 2.3-a

to Figure 2.3-t, respectively.

Recursion is often used to support backtracking. At any branch point of the search

process, i.e. any non-leaf node of the search tree, choosing one of the alternative

search branches corresponds to making a recursive call, whereas backtracking

corresponds to returning from a recursive call. When backtracking, all the variables

which define the search context must be re-assigned in order to restore the values

they had when the corresponding recursive call was made.

2.2. State of the art

2.2.1. Comparison of recursive and iterative algorithms

Comparing recursive and iterative algorithms can be carried out with two perspectives

[Pimentel09]. From the point of view of the designer, there are pros and cons

concerning the design process, such as design time, ease of modification, etc. These

characteristics are generally independent from implementation issues (like

programming/description language or computational platform) because they are

related only to how the algorithm is described at a high-level of abstraction. These

design-based comparison criteria are often considered subjective, as there are

currently no known methods for evaluating them objectively. However, despite their

subjectiveness, these criteria can be of great relevance to designers.

On the other hand, one can compare characteristics of the resulting solution, such as

execution time, area/memory usage, etc. In this perspective, comparison results are

very dependent on the implementation issues. Moreover, available CAD tools and the

measurability of the solution properties grant objectiveness to these solution-based

comparison criteria.

Within the software applications domain, recursive and iterative algorithms have been

subject to comparison for a long time and therefore concrete comparison results in

this area are already well-known. On the one hand, it is widely accepted that, for

certain classes of algorithms, recursion provides clean, concise, elegant, and robust

designs that are easy to conceive, understand, and modify with minimal design costs

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 25

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

(namely design time). On the other hand, recursive algorithms in software are

generally considered slow and very memory-consuming [Ninos08] when compared to

iterative ones. Although some authors believe that inappropriate examples are

sometimes used to reinforce such disadvantages [Noble03], the latter are widely

accepted. As a consequence, the use of recursion in software is quite often avoided,

even when implementing algorithms that are inherently recursive. In fact, methods for

transforming general recursion into iteration have been extensively studied [Arsac82,

Backus85, Partsch90, Harrison92, Kfoury97, Liu99, Tang06].

Despite this widely accepted heuristic indicating that recursion is generally less

advantageous than iteration, in software, the suitability of recursion (versus iteration)

has been found highly dependent on the class of the implemented algorithm. When

applying a divide-and-conquer approach, the original problem is replaced with similar

smaller problems. With this approach, recursion is known to be most efficient

[Noble03] and therefore arguably advantageous when compared to iteration.

Implementing recursion in hardware deals with platform features and limitations which

are different from those dealt with in software. For instance, general purpose

computers generally offer wide allocable memory space (which is of great use for

keeping ever-changing size stacks) but, on the other hand, do not support parallel

execution (which speeds up the completion of sets of independent operation

sequences). However, the opposite scenario unfolds for hardware implementations.

This means that the pros and cons of using recursion (versus iteration) in hardware

applications can be quite different from the results known in software applications.

However, strategies for implementing recursion in hardware [Maruyama99,

Maruyama00, Sklyarov99, Ferizis06, Ninos08] have started to be proposed only in

1999 and therefore very few results are available for comparison. Furthermore, these

strategies implement recursion in different ways, which means they may lead to

different iteration-versus-recursion comparison results.

2.2.2. Strategies for implementing recursion in hardware

In software, recursion has a standard support already provided by programming

language compilers, which implement it transparently on the basis of procedure calls

which make use of stacks. In contrast, different strategies for hardware

implementation of recursion are still being proposed and discussed. Let us have an

overview of some important proposals regarding this topic.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 26

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

2.2.2.1. Maruyama, Takagi, and Hoshino

Tsutomu Maruyama, Masaaki Takagi, and Tsutomu Hoshino have proposed the

following two techniques for implementing recursion in hardware: multi-thread

execution and speculative execution [Maruyama99]. Both of them are aimed at the

implementation and optimization of recursion in backtracking search algorithms on the

basis of pipelining and with the use of a logic stack.

Analogously to Bondalapati and Prasanna’s proposal on mapping loops onto

reconfigurable architectures [Bondalapati98] (optimized later in [Bondalapati00]),

each of the pipeline stages is activated for a different recursive call and therefore all

stages are activated simultaneously, and idle cycles are avoided.

While multi-thread execution is more appropriate for algorithms which require

traversing the whole search tree (searching for the optimal solution), speculative

execution is better suited for finding any solution (the first that is found).

The research [Maruyama99] has shown that multi-threaded execution of recursion

calls leads to higher performance than simple sequential execution with negligible

hardware resource usage and clock frequency overheads.

Later on, Maruyama and Hoshino have developed a compiler for generating pipeline

circuits on the basis of loops and recursive programs written in the C programming

language [Maruyama00]. Stacks are implemented using FPGA internal memory blocks,

when available.

Known limitations regarding these authors’ proposals concern the following issues:

a) the maximum speedup equaling the pipeline’s depth [Maruyama99,

Ninos08];

b) the speed increase obtained at the expense of area utilization

[Ninos08];

c) the efficiency when handling recursive functions that call themselves

multiple times [Ferizis06].

2.2.2.2. Sklyarov

Having the objective of developing an approach to the design of virtual control devices

that would provide the properties of extensibility, flexibility, and reusability, Valery

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 27

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

Sklyarov has proposed a technique for synthesizing finite state machines from

hierarchical behavioral specifications (namely hierarchical graph schemes)

[Sklyarov99].

Later on, Sklyarov has addressed some disadvantages of this hierarchical finite state

machine model and proposed an enhanced version: the Recursive HFSM (RHFSM)

model [Sklyarov04]. The typical time overhead that is caused by recursive invocations

was reduced by means of executing the algorithm-related operations and the flow

control operations in parallel (see Figure 2.4).

Algorithm-related
operations

Flow control
operations

Figure 2.4 - Parallel execution of algorithm-related and flow control operations

The RHFSM model requires three stacks for storing and restoring module identifiers,

state identifiers, and context data when performing or returning from hierarchical

calls. As shown in practical applications of this model [Sklyarov05, Sklyarov06a],

these stacks can be implemented on built-in memory blocks, significantly reducing the

use of FPGA logic.

The RHFSM model allows for correct implementation of both directly and indirectly

recursive calls at the same time that it provides the advantages of modular and

hierarchical algorithm decompositions, which are generalized in software algorithm

design.

Drawbacks that have been pointed out on the RHFSM model are as follows:

a) The use of three stacks per algorithm implementation suggests

greater utilization of logic or block memory vs. a conventional single

stack solution [Ninos08];

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 28

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

b) Either the stacks for keeping state and module identifiers are as large

as the data stack, incurring significant area overhead; or the

hierarchical invocation depth must be bounded to a lower stack size

[Ninos08].

Both drawbacks loose their significance with algorithms which require higher amounts

of context data to be kept in the data stack and also when the number of modules and

states per module is lower. For instance, if the storage of a context data entry

requires 72 bits and there are 3 modules and 8 states per module, then all information

(context data, module identifier, and state identifier) could be stored in 77 bits.

Moreover, if one wants to reduce the number of stacks (at the expense of algorithm

clarity), then a single 77-bit wide stack can be used.

2.2.2.3. Ferizis and El Gindy

George Ferizis and Hossam El Gindy have proposed a method for mapping recursive

functions to reconfigurable hardware which does not require stacks [Ferizis06]. This

method consists of unrolling recursive functions by means of runtime reconfiguration

and placing them into a pipeline.

Mapping a loop into a pipelined linear array is the basis of the methods earlier

proposed by Bondalapati and Prasanna [Bondalapati98, Bondalapati00] (who also

inspired Maruyama et al. [Maruyama99, Maruyama00]) and by Weinhardt and Luk

[Weinhardt99]. Ferizis and El Gindy pushed the idea further in such a way that the

pipelines created by recursive functions can be mapped as trees instead of arrays in

case they contain multiple recursive calls. This approach led to a series of significant

challenges which the authors had to address with techniques that are rather complex

and resource consuming.

In order to compare this method’s performance with that of regular stack

implementations, its authors have carried out experiments on the basis of two

algorithms (quicksort and force approximation) and reported high speedups

[Ferizis06]. However, it seems that the stack implementations have not been subject

to any kind of optimization, and some design details, such as the synthesis tools and

the language(s) that have been used were left unidentified.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 29

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

The drawbacks which have been found in Ferizis and El Gindy’s approach are the

following:

a) Algorithm-generality limitation: area-related problems arise when

mapping recursive functions with a process growth rate greater than

1 [Ferizis06];

b) Platform-specificity: it relies on run-time reconfiguration, which is

only available for certain FPGAs;

c) High concept-to-implementation time span [Ninos08]: complex

preliminary algorithm-specific analysis must be carried out by the

designer, as there is no known CAD tool available for the task, so far;

d) Error-prone design: the complexity and diversity of the techniques

that have to be used for solving algorithm-specific challenges raises

the probability of making mistakes [Ninos08];

e) Incompatibility with System-On-Chip (SOC) design [Ninos08]:

because of implementation requirements, the design cannot coexist in

the same reconfigurable device with other designs.

2.2.2.4. Ninos and Dollas

In contrast with the previous processing-oriented approaches to implement recursion

in hardware, Spyridon Ninos and Apostolos Dollas have proposed a data-oriented

solution [Ninos08].

The method is based on a recursion simplification procedure which requires, for each

recursive call state, the following preliminary tasks:

1. Identification of the condition for recursion, i.e. the condition which

determines whether that recursive call is to be activated;

2. Identification of the local data, i.e. the context values which must be

stored onto the data stack when that recursive call is activated and

restored when returning.

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR

Figure 2.5 – An originally

After the recursion simplification procedure, recursion can be thought of as conditional

flow (see Figure 2.5): when a

with a recursive invocation, local data

back to the initial state (transition F in

the final state, local data are

the invocating state (transition E in

Ninos and Dollas have reported (i)

implementations of up to 2.86 and

enhancements compared to Sklyarov’s HFSM

However, this data-oriented

fact, not even modularity is supported

as a single function that is

algorithm which the designer

recursive function, clarity and readability

Moreover, the recursion simplification stage can constitute a complex and time

consuming task for many algorithms. In particular, complex scenarios can lead to

challenging identification of the local data. Thus, while there is no well

rules which assures correctness of this process, it is impossible to develop software

tools for automatic (and, ideally, transparent) recursion simplification. This hard task

must therefore be carried out by the designers, which might lead to mistakes.

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

RR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

n originally recursive state diagram after recursion simplification

(from [Ninos08])

the recursion simplification procedure, recursion can be thought of as conditional

when a condition for recursion is met, upon testing

, local data are pushed onto the stack and execution is

(transition F in Figure 2.5); after a recursive call has activated

local data are restored from the stack and execution is brought back to

(transition E in Figure 2.5).

have reported (i) speedups of this method compared to software

2.86 and (ii) relevant area occupation and clock speed

enhancements compared to Sklyarov’s HFSM-based approach [Ninos08

oriented approach provides no support for indirect recurs

is supported. Designers must describe the whole

that is implemented by means of an FSM. Thus,

algorithm which the designer needs to implement consists of a simple directly

clarity and readability of the description become compromised

Moreover, the recursion simplification stage can constitute a complex and time

consuming task for many algorithms. In particular, complex scenarios can lead to

dentification of the local data. Thus, while there is no well

rules which assures correctness of this process, it is impossible to develop software

tools for automatic (and, ideally, transparent) recursion simplification. This hard task

therefore be carried out by the designers, which might lead to mistakes.

LGORITHMS - 30

recursive state diagram after recursion simplification

the recursion simplification procedure, recursion can be thought of as conditional

upon testing in a state

execution is sent

a recursive call has activated

brought back to

compared to software

(ii) relevant area occupation and clock speed

Ninos08].

no support for indirect recursion. In

Designers must describe the whole algorithm

. Thus, unless the

a simple directly

compromised.

Moreover, the recursion simplification stage can constitute a complex and time-

consuming task for many algorithms. In particular, complex scenarios can lead to

dentification of the local data. Thus, while there is no well-defined set of

rules which assures correctness of this process, it is impossible to develop software

tools for automatic (and, ideally, transparent) recursion simplification. This hard task

therefore be carried out by the designers, which might lead to mistakes.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 31

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

2.3. Conclusion

Something is said to be recursive if it partially consists or is defined in terms of itself.

This thesis focuses on the procedure-oriented kind of recursion, although recursive

data structures are used therein. Recursion can be direct and indirect.

In order to illustrate the applicability and advantages of recursive algorithms when

they are implemented in hardware for solving computationally intensive problems, we

will explore combinatorial search problems as an example.

Combinatorics is a branch of mathematics which can be described as the study of how

discrete sets of objects can be arranged, counted, and constructed, according to

specified constraints. Combinatorial search problems are divided in four types:

decision problems, search problems, enumeration problems, and optimization

problems.

Search trees are typically implemented by means of a backtracking mechanism. In

this context, the search consists of a multi-stage decision process in which some

choice is made at each stage. In case the algorithm detects that the previous choices

can not lead to a solution, the context belonging to the previous stage is restored, in

order to try alternative choices. Algorithms that use this technique for solving search

problems are called backtracking search algorithms and they are often described

recursively. Choosing one of the alternative search branches corresponds to making a

recursive call, whereas backtracking corresponds to returning from a recursive call.

When implementing any algorithm in software, the use of recursion instead of iteration

can be better or worse, depending on the criteria that are chosen and the class of

algorithm. It is widely accepted that, for certain classes of algorithms, recursion

provides clean, concise, elegant, and robust designs that are easy to conceive,

understand, and modify with minimal design costs. However, recursive algorithms in

software are generally considered slow and very resource-consuming when compared

to iterative ones. Strategies for implementing recursion in hardware have started to be

proposed only recently and therefore very few results are available for comparison.

Furthermore, these strategies implement recursion in different ways, which means

they may lead to different iteration-versus-recursion comparison results.

Tsutomu Maruyama, Masaaki Takagi, and Tsutomu Hoshino are amongst the first

known authors to propose a strategy for implementing recursion in hardware. Multi-

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 32

CCHHAAPPTTEERR 22 –– BBAACCKKGGRROOUUNNDD AANNDD SSTTAATTEE OOFF TTHHEE AARRTT

thread execution and speculative execution are two techniques that aim for the

implementation and optimization of recursion in backtracking search algorithms on the

basis of pipelining and the use of a logic stack. Known limitations regarding these

authors’ proposals concern (i) the maximum speedup equaling the pipeline’s depth,

(ii) the speed increase obtained at the expense of area utilization, and (iii) the

efficiency when handling recursive functions that call themselves multiple times.

Sklyarov has proposed the RHFSM model that allows for correct implementation of

both direct and indirect recursive calls at the same time that it provides the

advantages of modular and hierarchical algorithm decompositions (which are

generalized in software algorithm design). It uses three stacks but prevents the typical

time overhead that is caused by recursive invocations by means of executing the

algorithm-related operations and the flow control operations in parallel. Two

drawbacks that have been pointed out on the RHFSM model have been found. One

suggests that it requires significant utilization of logic or block memory when

compared to a conventional single stack solution. The second states that either the

support stacks are as large as the data stack, incurring significant area overhead; or

the hierarchical invocation depth must be bounded to a lower stack size. However, a

few remarks which render the relevance of these drawbacks low have been presented.

George Ferizis and Hossam El Gindy have proposed a method for mapping recursive

functions to reconfigurable hardware which does not require stacks and consists of

unrolling recursive functions by means of runtime reconfiguration and placing them

into a pipeline. This proposal has been inspired by research carried out by Bondalapati

and Prasanna and some details are not very clear. Several disadvantages of Ferizis

and El Gindy’s proposal have been pointed out.

Spyridon Ninos and Apostolos Dollas have proposed a data-oriented solution for

implementing recursion in hardware which is based on a preliminary recursion

simplification procedure. For each recursive call state, the condition for recursion and

the local data must be identified. The drawbacks of Ninos and Dollas’ strategy includes

the time-consuming and error-prone recursion simplification procedure, which is

presently impossible to automate, and lack of support for indirect recursion and

modularity, forcing designers to describe whole algorithms as single functions that are

implemented with an FSM.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 33

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

33.. DDeessiiggnn SSppaaccee EExxpplloorraattiioonn

This chapter analyzes computationally intensive problems which are taken mainly from

the scope of combinatorial search, in which both recursion and iteration can rationally

be applied. For each of six selected problems, the following is provided: problem

description, application domains, an algorithm for solving it, and a detailed illustration

in which the given algorithm is applied to solve the problem on the basis of a practical

example. Four particular problems are solved with the aid of backtracking search

algorithms, namely: set covering, Boolean satisfiability, graph coloring, and knapsack.

Two supplementary problems (tree-based data sorting and discovering of a greatest

common divisor) are also studied. A generic approach to backtracking search

algorithms is proposed and discussed.

3.1. Introduction

A primary objective of this research is the comparison and evaluation of alternative

recursive and iterative implementations for different algorithms. For this purpose, it is

necessary to select a set of algorithms which can be described both iteratively and

recursively. For instance, if we want to calculate the factorial of a non-negative integer

using either an iterative algorithm or a recursive algorithm, we can use the

pseudocode depicted in Figure 3.1-a and Figure 3.1-b, respectively.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 34

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

a) b)

it_fact(n)

{

 fact = 1

 for each i from 1 up to n

 fact = fact * i

 return fact

}

rec_fact(n)

{

 if n < 2

 return 1

 else

 return n * rec_fact(n - 1)

}

Figure 3.1 - Pseudocode for calculating the factorial iteratively (a) and

recursively (b)

3.2. Backtracking search algorithms

A class of algorithms that can be implemented on the basis of recursive descriptions is

backtracking search algorithms. A set of problems has been selected in order to study

the advantages and disadvantages of recursive algorithms in comparison with iterative

algorithms.

3.2.1. Generic approach to backtracking search algorithms

A basic structure for backtracking search algorithms has been explained in detail in

[Skliarova04a] and used in [Pimentel07] (see Figure 3.2).

Reduction

Yes

No

No

Yes

Unsolvable

Solution

found
Has the

problem been
solved?

Z

Recursive
call of Z

Selection

Is it known
that the problem is

not solvable?

Figure 3.2 - Basic structure for backtracking search algorithms

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 35

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

The structure expresses a recursive procedure which is executed at every node of the

search tree and it determines which nodes to visit next. The process starts by

simplifying the current problem instance using a set of reduction operations. When no

further reduction is possible, a resolution test is performed to determine whether the

problem has been solved. In case it has been solved, the process ends and the

solution is provided. Otherwise, a solvability test is carried out to verify if the current

problem is unsolvable. In case the problem is found unsolvable, the process ends with

no solution. Otherwise, the solver might have to try alternative paths in the search

tree in order to check whether there is one which leads to a solution. The set of

operations that determines which path to follow is called selection. When a chosen

search path fails to provide a solution, the algorithm backtracks and selects another

one, if available.

The implementation of each stage of this process, i.e. the reduction, the resolution

test (‘Has the problem been solved?’), the solvability test (‘Is it known that the sub-

problem is not solvable?’) and the selection, depends on the particular algorithm which

is executed. Small adaptations of the structure itself can also be required.

The basic algorithmic structure is not the only characteristic that different backtracking

search algorithms can share. In fact, a common data structure can be used to specify

problem instances for a variety of such algorithms. Most combinatorial search

problems can be expressed in several equivalent mathematical formulations based on

different standard data structures, such as matrices, graphs and Boolean functions.

However, matrices can be found very appropriate for hardware implementations

[Skliarova04a] because matrices can easily be stored and processed in both software

and hardware, and because most combinatorial search problems can efficiently be

formulated over matrices. Thus, without loss of generality, we have selected matrices

as the data structure to be used for specifying the combinatorial problem instances,

when applicable.

Let us now address the combinatorial problems which were selected for this research

and how the considered basic algorithmic structure can be used to implement the

correspondent solving algorithms.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 36

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

3.2.2. The set covering problem

Given a group G of finite sets whose union is a universe U, a cover is a group C G⊆

of sets whose union is still U. The set covering problem consists of finding a cover with

the minimum number of subsets [Bäck95].

Applications of the set covering problem can be found in Boolean expression

simplification [Breuer70], resource allocation [Rubin73, Walker74] and committee

forming endeavors (as illustrated next).

Let us solve the set covering problem for a simple practical example of choosing a

group of specialists to hire for a scientific research expedition. In order to make both

its scientific research component and its logistic support component possible, the

expedition requires skills in 6 different fields of specialization: telecommunications,

mountaineering, pilotage, zoology, botany, and climatology. There are 8 available

specialists, each one skilled in at least one of those fields. In order to reduce the

expedition costs, we want to hire the minimum number of specialists required to cover

the 6 fields of specialization. The Euler diagram shown in Figure 3.3 identifies the

universe of required specialization fields (rectangle U) and the set of specialization

fields of each available specialist (ellipses G1 to G8). The same diagram reveals a

minimum cover for this scenario: the ellipses with a white circumference (G2, G5 and

G8).

Climatology

BotanyMountaineering

Zoology

Telecommunications

Pilotage

G1

G2

G3

G4

G5

G6

G7

G8

U

Figure 3.3 - Practical example diagram for the set covering problem

In this example, the universe for which a cover must be determined is the set of

required specialization fields { }, , , , ,U t m p z b c= , where t, m, p, z, b and c stand for

telecommunications, mountaineering, pilotage, zoology, botany, and climatology,

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 37

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

respectively. The given group of sets which can be used to compose the cover is

{ }1 2 8, ,...,G G G G= , where { }1 ,G b c= , { }2 ,G m p= , { }3 ,G z c= , { }4G m= , { }5 , ,G t p c=

, { }6G b= , { }7G t= , and { }8 ,G z b= .

Instances of the set covering problem can be expressed by matrices in such a way

that a solution can be found by means of some algorithm operating over those data

structures. For this problem, binary matrices are used [Zakrevskij08]. Figure 3.4

illustrates the conversion steps for the given example. The relevant details of each

step are emphasized with a black background.

Figure 3.4 - Converting a set covering problem instance to a binary matrix

If the given family of sets G is composed of S sets, and the universe U, which is the

union of all sets in G, contains E elements, then a binary matrix with S rows and E

columns is required for this conversion (see Figure 3.4-a). Thus, each row corresponds

to a given set and each column to an element of U. For each time an element of U

belongs to a set in G, the correspondent cell must be filled with 1 (see Figure 3.4-b),

i.e. we must guarantee:

{1, 2,..., }, {1, 2,..., }, 1
j i ij

i S j E U G M∀ ∈ ∀ ∈ ∈ ⇔ =

where Mij is the matrix cell in row i, column j. For instance, the cells of column z in

rows G3 and G8 must be filled with 1 because z is element of sets G3 and G8. Finally,

all empty cells must be filled with 0 (see Figure 3.4-c).

By analogy, in the scientific research expedition example, each row corresponds to an

available specialist and the values 1 in that row indicate the specialization fields in

which he or she is skilled.

a) b) c)

t m p z b c t m p z b c t m p z b c
G1 G1 1 1 G1 0 0 0 0 1 1

G2 G2 1 1 G2 0 1 1 0 0 0
G3 G3 1 1 G3 0 0 0 1 0 1

G4 G4 1 G4 0 1 0 0 0 0

G5 G5 1 1 1 G5 1 0 1 0 0 1
G6 G6 1 G6 0 0 0 0 1 0

G7 G7 1 G7 1 0 0 0 0 0
G8 G8 1 1 G8 0 0 0 1 1 0

(6 elements)

(8
 s

e
ts

)

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 38

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

After the problem instance has been converted to a binary matrix, solving the set

covering problem corresponds to finding the minimal number of rows that include at

least one value 1 in each column. This description is actually that of the matrix

covering problem [Zakrevskij71]. The approximate algorithm proposed in

[Zakrevskij81] to solve this problem is depicted in the diagram of Figure 3.5. When

the algorithm finishes, the solution is the set of rows that have been removed.

Identify a column C
which has the minimal

number N of 1s

yes

no

no

yes

Remove row R
and all columns
with 1 in row R

Unsolvable

All columns
removed?

N=0?

Solution found
Identify a row R,

with a 1 in column C,
which has the most 1s

Figure 3.5 - Iterative approximate algorithm to solve the matrix covering problem

Note that this algorithm includes a solvability test, which is shown at the top right-

hand corner of the diagram in Figure 3.5. In fact, unsolvable instances for the matrix

covering problem emerge if the given matrix contains a column with no values 1.

However, the set covering problem description given in the beginning of this section

leads to solvable instances only, and therefore the algorithm could simply continue

choosing the next given set (row) to include in the cover and a solution would

eventually be found. In the worst case scenario, the solution found would be a cover

which would include all given sets (all rows).

Figure 3.6 demonstrates the resulting steps of the algorithm when applied to the

binary matrix obtained for the given example (see Figure 3.4), depicting the three

iterations of the algorithm which lead to the solution. The rows and the columns which

are removed at each iteration are presented with a black background while a grey

background indicates previously removed matrix parts.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 39

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

Figure 3.6 - Solving a set covering problem instance

At the first iteration, row G5 is removed because no other row contains more values 1,

and then columns t, p and c are removed because these contain a value 1 in that row.

After two more iterations with the same procedure, the algorithm reveals the solution

composed of the rows which were removed: G2, G5 and G8.

In the context of the given problem instance, this solution points to hiring the

specialists skilled in: mountaineering and pilotage; telecommunications, pilotage and

climatology; and zoology and biology. These correspond to the ellipses with a white

circumference in Figure 3.3.

The solution found for the given example is optimal, as no cover with less than 3 sets

can be found. However, the approximate algorithm considered does not guarantee an

optimal solution for an arbitrary problem instance. Furthermore, it should be noticed

that the algorithm does not include a backtracking mechanism.

Let us now consider how an exact algorithm for solving the set covering problem can

make use of backtracking in order to obtain an optimal solution in all cases, and how

the basic structure for backtracking algorithms (depicted in Figure 3.2) can be used

for that purpose.

The exact algorithm for solving the matrix covering problem proposed in

[Zakrevskij81] was adapted to the basic structure for backtracking algorithms in

[Skliarova04a]. The reduction rules, selection rules, solvability test and resolution test

which were applied, in fact, provide minimum covers composed of columns. Let us

rephrase these rules and tests in such a way that permits covers composed of rows to

be obtained.

a) b) c)

t m p z b c t m p z b c t m p z b c
G1 0 0 0 0 1 1 G1 0 0 0 0 1 1 G1 0 0 0 0 1 1

G2 0 1 1 0 0 0 G2 0 1 1 0 0 0 G2 0 1 1 0 0 0

G3 0 0 0 1 0 1 G3 0 0 0 1 0 1 G3 0 0 0 1 0 1

G4 0 1 0 0 0 0 G4 0 1 0 0 0 0 G4 0 1 0 0 0 0
G5 1 0 1 0 0 1 G5 1 0 1 0 0 1 G5 1 0 1 0 0 1

G6 0 0 0 0 1 0 G6 0 0 0 0 1 0 G6 0 0 0 0 1 0

G7 1 0 0 0 0 0 G7 1 0 0 0 0 0 G7 1 0 0 0 0 0
G8 0 0 0 1 1 0 G8 0 0 0 1 1 0 G8 0 0 0 1 1 0

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 40

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

The adjusted resolution and solvability tests correspond to those presented in Figure

3.5, i.e.: a solution has been found if all columns have been erased; and the current

instance is unsolvable if the minimum number of values 1 in a column is 0.

The reduction rules become the following:

R1 - For every pair of columns
icol and

j
col in the matrix, where i j≠ , if

i j i
col col col∧ = , then

j
col must be removed. For instance, if the

matrix would contain columns [0, 0,1] and [0,1,1] , then the latter

would be removed because [0,0,1] [0,1,1] [0,0,1]∧ = . This procedure is

called subsumption for columns.

R2 - For every pair of rows
irow and

j
row in the matrix, where i j≠ , if

i j i
row row row∧ = , then

irow must be removed. For instance, G7 (in

Figure 3.6) should be removed because
5 7 7G G G∧ = . This procedure

is called subsumption for rows.

On the other hand, the selection rules become:

S1 - For every column that contains a single element with value 1, the

row which has this element must be included in the cover.

S2 - When all columns contain multiple elements with values 1, a column

C with the minimum number of values 1 must be selected. Then, for

every row R which includes an element with value 1 in column C, the

same algorithm must be called to continue constructing the cover

after including row R. When a first cover becomes complete, it is

stored as ‘the best cover’, i.e. as the cover with the minimum number

of rows. After that, ‘the best cover’ is replaced every time a cover

which includes a lower number of rows is found. On the other hand, if

the number of rows included in a cover under construction reaches

that of ‘the best cover’, the current algorithm invocation must be

discontinued.

Additionally, every time a row is included in the cover under construction, it is also

removed from the matrix. All columns with value 1 in that row are removed as well.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 41

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

After finding a cover, the exact algorithm backtracks in order to find an optimal

solution (a cover with the minimum number of rows) which might be found in others

leaves of the search tree.

3.2.3. The Boolean satisfiability problem

The Boolean satisfiability problem (also known as SAT) consists of determining

whether it is possible to assign values to the variables of a given Boolean formula in

such a way as to make the formula evaluate to true [Micheli94, Zakrevskij08].

In fact, any Boolean formula is said to be either:

i) contingent, if its value depends on the values of the variables;

ii) a tautology, if it always evaluates to true;

iii) a contradiction, if it always evaluates to false.

When a Boolean formula is a contradiction, the corresponding SAT problem instance is

unsatisfiable. Otherwise, it is satisfiable.

In the context of the Boolean satisfiability problem, the Boolean formulae are usually

presented in the Conjunctive Normal Form (CNF), i.e. as a conjunction of clauses. A

clause is a disjunction of literals and a literal is a variable or its negation. The formula

() () () ()1 2 3 2 4 2 1 4 5x x x x x x x x x∨ ∨ ∧ ∨ ∧ ∧ ∨ ∨ is an example of a Boolean formula in

CNF.

There are multiple versions of the SAT problem deriving from the original version. For

example, the 3-SAT problem can be obtained by restricting the maximum number of

literals in each clause to 3. It is known that the conversion of SAT problem instances

into 3-SAT problem instances is achievable in polynomial time [Zhong99].

An overview of the most well-known applications of SAT and an outline of several

other successful applications of SAT is presented in [Marques-Silva08]. The SAT

problem has direct applications in mathematical logic, artificial intelligence, VLSI

engineering, and computing theory [Gu97]. Furthermore, problems such as constraint

satisfaction problems and constrained optimization problems can be transferred to SAT

[Gu04]. In fact, methods to solve SAT formulae play an important role in solving many

problems in automated reasoning, computer-aided design, computer-aided

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 42

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

manufacturing, machine vision, database, robotics, integrated circuit design

automation, computer architecture design, and computer network design [Gu97].

Let us consider an example of a Boolean formula in CNF:

() () () () ()1 4 1 4 1 2 4 1 2 3 4 3x x x x x x x x x x x x∨ ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∨ ∧

This particular formula is satisfiable because it evaluates to true, for instance, with the

following set of variable assignments:

1

3

4

x true

x true

x false

=


=
 =

Boolean formulas can be converted to matrices in such a way that allows the SAT

problem to be solved with some algorithm operating over those matrices [Gu97].

Figure 3.7 illustrates this conversion, emphasizing the relevant details of each step

with a black background, for the given Boolean formula.

Figure 3.7 - Converting a Boolean formula to a ternary matrix

As mentioned before, a SAT problem instance is usually a Boolean formula in CNF. If

this formula is composed of C clauses and includes V distinct variables, the ternary

matrix which can be used to express the corresponding problem instance must have C

rows and V columns (see Figure 3.7-a). Thus, each row corresponds to a clause and

each column corresponds to a variable. In other words, the ith cell in the jth matrix row

corresponds to the occurrence of the ith variable in the jth clause of the Boolean

formula.

For each time a variable appears in the Boolean formula, the corresponding matrix cell

must be filled in with 0 if the variable is negated, or with 1 if it’s not (see Figure 3.7-

b). For example, the forth cell in the second row must be filled in with 0 because the

a) b) c)

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1st 1st 1 0 1st 1 - - 0

2nd 2nd 0 0 2nd 0 - - 0

3rd 3rd 1 1 1 3rd 1 1 - 1

4th 4th 1 0 0 1 4th 1 0 0 1

5th 5th 1 5th - - 1 -

(5
 c

la
u
s
e

s
)

(4 variables)

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 43

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

second clause contains the forth variable negated, i.e. the second conjunction contains

the literal 4x .

After all the literals in the Boolean formula have been mapped onto the ternary matrix

using this method, every empty cell must be filled in with ‘-’, which stands for the

don’t-care value (see Figure 3.7-c).

Two equally sized ternary vectors u and v are considered orthogonal if there is an

index i for which { } { }, 0,1
i i

u v = . For instance, vectors [1,1,0,0,0] and [1, ,0, ,1]− − are

orthogonal because their fifth elements are 0 in one vector and 1 in the other. Without

this pair of homologous elements, these two vectors would not be orthogonal. On the

other hand, if two equally sized ternary vectors are not orthogonal, they intersect in

the Boolean space. In such case, the ternary vector (w) which represents the

intersection of those two vectors (u and v, with n elements each) is determined as

follows: for each index 1, 2,...,i n= , if
i iu v= then

i i iw u v= = ; otherwise, either 1) ui is

a don’t-care value, in which case
i iw v= , or 2) vi is a don’t-care value, in which case

i iw u= . For instance, the intersection of [0,0,-,-,-1,1] and [0,-,0,-,1,-,1] is

[0,0,0,-,1,1,1] . Figure 3.8 summarizes how to assign the ith element of the intersection

vector as a function of the ith elements of the intersecting vectors u and v. Black cells

correspond to values of ui and vi that are not valid for intersecting vectors.

Figure 3.8 - Determining the ith element of the intersection of ternary vectors u

and v

Solving the Boolean satisfiability problem corresponds to finding a ternary vector

which is orthogonal to every row in the ternary matrix that was built using the

described method [Skliarova04a]. If such a vector is found, the solution is obtained in

two more steps:

1. Negate every non-don’t-care element in the vector that was found

(i.e. replace its 0s and 1s respectively with 1s and 0s);

v i

0 1 -

0 0 0

u i 1 1 1

- 0 1 -

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 44

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

2. For each 1 or 0 obtained in step 1, assign the corresponding variable

to true or false, respectively (e.g. if the second element of the

negated vector is 0,
2x must be assigned to false).

In order to apply the basic structure for backtracking algorithms which was previously

mentioned (see Figure 3.2), it is necessary to define which operations are executed at

each stage. In the case of the exact SAT solving algorithm presented in [Skliarova03],

the resolution test (‘Has the problem been solved?’) is satisfied in case all matrix rows

have been deleted; and the solvability test (‘Is it known that the problem is not

solvable?’) is satisfied in case the problem has not yet been solved and all matrix

columns have been deleted. The reduction operations used implement the following

rules:

R1 - If a column contains just don’t-care values, it must be deleted from

the matrix;

R2 - All rows that are orthogonal to an intermediate vector w (that

incrementally forms a solution) must be removed from the matrix;

and all columns that correspond to the components of vector w with

values 1 and 0 must be removed from the matrix;

R3 - If the matrix contains a row with just one component 1 (0) with an

index i, then the ith element of vector w must be assigned value 0 (1),

i.e. the negated value;

R4 - If there is a column j in the matrix without values 1 (0) then the jth

element of w can be assigned value 1 (0).

Finally, the selection operations implement the following rules:

S1 - A column Cmax containing a maximum number of non-don’t-care

values is selected. Let us designate the number of values 1 and the

number of values 0 in column Cmax respectively N1 and N0;

S2 - If
1 0N N≥ , then value 0 for column Cmax is included in w. If

1 0N < N ,

then value 1 for column Cmax is included in w. This creates a sub-

matrix that will be examined at the next iteration;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 45

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

S3 - If this path fails, it is necessary to backtrack and repeat the attempt

including the alternative value for column Cmax in vector w.

Let us now combine these algorithm stage descriptions with the basic structure for

backtracking algorithms. Figure 3.9 depicts the resulting search steps for the matrix

example obtained in Figure 3.7. Above each step illustration, the reduction and

selection rules which are applied are indicated using labels R1 to R4, and S1 to S3,

respectively. The rows and columns which are removed at each step are presented

with a black background, while a grey background indicates previously removed

matrix parts. When an element of vector w is assigned a value, it is also highlighted

with a black background.

Figure 3.9 - Solving a Boolean satisfiability problem instance

Figure 3.10 depicts the search tree used to solve the given SAT problem instance.

Each of the six steps illustrated in Figure 3.9 (labeled from ‘a’ to ‘f’) is identified in

Figure 3.10 using the same letter. Throughout the search process, reduction

operations prune certain branches (nodes represented in gray), and make

deterministic assignments to elements of vector w (nodes represented in white). On

the other hand, when there are alternative search branches (nodes represented in

black), selection operations determine which branch to try next.

a) b) c)

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1st 1 - - 0 1st 1 - - 0 1st 1 - - 0

2nd 0 - - 0 2nd 0 - - 0 2nd 0 - - 0

3rd 1 1 - 1 3rd 1 1 - 1 3rd 1 1 - 1

4th 1 0 0 1 4th 1 0 0 1 4th 1 0 0 1

5th - - 1 - 5th - - 1 - 5th - - 1 -

w - - 0 - w - - 0 0 w - - 0 0

d) e) f)

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1st 1 - - 0 1st 1 - - 0 1st 1 - - 0

2nd 0 - - 0 2nd 0 - - 0 2nd 0 - - 0

3rd 1 1 - 1 3rd 1 1 - 1 3rd 1 1 - 1

4th 1 0 0 1 4th 1 0 0 1 4th 1 0 0 1

5th - - 1 - 5th - - 1 - 5th - - 1 -

w 0 - 0 0 w - - 0 1 w 0 - 0 1

R3 and R2

R1

S3 and R2 R4 and R2

R3 and R2 S1, S2, and R2

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 46

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

Solution:
[0, - ,0,1]

Cannot provide
a solution

a)

b)

c)

d)

e)

f)

w3=1w3=0

w4=1w4=0

w1=1w1=0 w1=1w1=0

w2=1 w2=0

w = [- , - , - , -]

Figure 3.10 – Search tree for the SAT problem example

The search starts with a first invocation to the Z module depicted in Figure 3.2 and

with the don’t-care value assigned to every element of the solution vector w. After

Figure 3.9-a, no more reduction can take place and there are still rows and columns

left, so in Figure 3.9-b value 0 for column x4 is included in vector w according to the

selection procedure. Then, some reduction takes place and, after the step depicted in

Figure 3.9-d, there is still one row left (the second row), which means a solution was

not yet found; but all columns have been removed, meaning this search path cannot

provide a solution.

Hence, the search must backtrack in order to try the search path alternative to the

one chosen in Figure 3.9-b. This time (see Figure 3.9-e), value 1 for column x4 is

included in vector w and then reduction rules are applied again. Finally, in Figure 3.9-

f, all rows have been removed, meaning a solution has been found. Vector w (

[0, , 0,1]− , at the end) has been constructed throughout this process and is now

orthogonal to all given matrix rows.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 47

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

As previously mentioned, the solution is obtained by assigning the negation of each 1

or 0 element in vector w to its corresponding variable, i.e.:

1

3

4

x true

x true

x false

=


=
 =

3.2.4. The graph coloring problem

There are various graph coloring problems, such as the vertex coloring problem, the

edge coloring problem and the face coloring problem. The most usual is the vertex

coloring problem which consists of coloring the vertices of a graph using the minimum

number of colors and making sure that no two adjacent vertices get the same color

[Zakrevskij00, Diestel00].

Graph coloring algorithms are widely used for solving different engineering problems

in robotics and embedded systems [Goossens97, Subramonian04, Ezick],

microprogramming for application-specific embedded microprocessors, resource

distribution, etc. [Culberson, Wu93].

Let us solve the graph coloring problem applied to the practical example of coloring a

map of Portugal provinces. Historically, Portugal has been divided in eleven provinces

delineated in Figure 3.11-a: Minho (A), Trás-os-Montes e Alto Douro (B), Douro Litoral

(C), Beira Alta (D), Beira Litoral (E), Beira Baixa (F), Estremadura (G), Ribatejo (H),

Alto Alentejo (I), Baixo Alentejo (J), and Algarve (K).

In order to solve this problem, the map of provinces must be converted to a graph in

which: each province in the map is represented by a vertex; and vertices

corresponding to contiguous provinces are connected by edges, i.e. are adjacent. For

instance, vertex J must be connected by edges to vertices G, I and K because Baixo

Alentejo has common borders with Estremadura, Alto Alentejo and Algarve.

The resulting province adjacency graph is depicted in Figure 3.11-b, in which black,

gray and white colors reveal an optimal coloring. In fact, the minimum number of

colors for this example is 3: one color for Minho, Beira Alta, Ribatejo, and Baixo

Alentejo; another color for Trás-os-Montes e Alto Douro, Beira Litoral, Alto Alentejo,

and Algarve; and a third color for Douro Litoral, Beira Baixa, and Estremadura.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 48

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

G

A
B

C

D

E
F

H

I

J

K

G

C

F

A

D

H

J

B

E

I

K

a) b)

Figure 3.11 - Portugal’s historical province map (a) and the corresponding

province adjacency graph (b)

Conversion of a graph to a ternary matrix is illustrated in Figure 3.12, for the province

adjacency graph example, and it consists of the following steps:

1. Creating a matrix with N rows and N columns, where N is the number

of vertices in the graph (see Figure 3.12-a);

2. Inserting value 0 in every cell which belongs to the main diagonal of

the matrix (see Figure 3.12-a);

3. In each cell below the main diagonal (because the cells above it won’t

be used), inserting a value 1 if and only if the cell’s coordinates

correspond to adjacent vertices (see Figure 3.12-b). For instance, the

cell in row J and column G must have value 1 because there is an

edge connecting vertex G to vertex J;

4. Inserting don’t-care values in all empty matrix cells;

5. Removing every column which has no value 1 (e.g. column K, in

Figure 3.12-b), keeping track of which vertex each column

corresponds to.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 49

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

Figure 3.12 - Converting a graph coloring problem instance to a ternary matrix

It should be noticed that, as a result of these conversion steps, if two vertices are

adjacent, the correspondent matrix rows are orthogonal. For instance, vertices F and I

are connected by an edge and the correspondent matrix rows (respectively

[, , ,1,1,0, , , ,]− − − − − − − and [, , , , ,1,1,1,0,]− − − − − −) are indeed orthogonal, namely

regarding their sixth elements. Therefore, solving the vertex coloring problem

corresponds to finding a minimum number of row subsets which satisfy the following

conditions [Sklyarov06b]:

a) Each subset contains no orthogonal pair of rows;

b) Every matrix row must belong to exactly one subset.

At the end, the number of compiled subsets expresses the minimum number of colors

that the given graph requires, while rows grouped in each subset correspond to

vertices assigned the same color [Pimentel07].

Let us now consider which solvability and resolution tests and which reduction and

selection operations should be embedded in the basic structure for backtracking

search algorithms, in order to implement an exact algorithm for solving the vertex

coloring problem.

There are no unsolvable instances for the vertex coloring problem. The worst case

scenario corresponds to graphs in which every vertex is connected to all other vertices

and even such instances are solvable. The solution, in these cases, consists of

a) b)

A B C D E F G H I J K A B C D E F G H I J K

A 0 A 0 - - - - - - - - - -

B 0 B 1 0 - - - - - - - - -

C 0 C 1 1 0 - - - - - - - -

D 0 D - 1 1 0 - - - - - - -

E 0 E - - 1 1 0 - - - - - -

F 0 F - - - 1 1 0 - - - - -

G 0 G - - - - 1 - 0 - - - -

H 0 H - - - - 1 1 1 0 - - -

I 0 I - - - - - 1 1 1 0 - -

J 0 J - - - - - - 1 - 1 0 -

K 0 K - - - - - - - - - 1 0

(11 vertices)
(1

1
 v

e
rt

ic
e

s
)

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 50

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

assigning a different color to each vertex. Thus, the outcome of a solvability test is

constant: always ‘solvable’.

The resolution test is satisfied in case the matrix is empty, i.e. if all rows have been

removed.

The method of condensation proposed in [Zakrevskij81] can be used in the

implementation of the graph coloring algorithm [Sklyarov06b, Sklyarov07a] as a basis

for the reduction and selection rules. Let us consider the reduction rules:

R1 - After selecting a new color, all matrix columns which contain no

value 0 or no value 1, must be removed;

R2 - At any intermediate step of the algorithm, all matrix rows which

contain only don’t-care values must be removed and included in the

subset under construction (meaning the correspondent vertices are

assigned the current color);

R3 - All rows included in the constructed subsets must be removed from

the matrix.

Finally, the selection rules used implement the following sequence of algorithm steps:

1. Choose a new color (i.e. create a new, initially empty subset);

2. Apply reduction rules R1 and R2;

3. Consider the topmost row mi in the matrix;

4. Include row mi in the constructed subset and remove it from the

matrix (reduction rule R3);

5. Find out all other rows intersecting (i.e. not orthogonal) with vector

mi;

6. Select the first row found during step 5 which has not been tried yet

(let us designate this mj), include it in the constructed subset and

then delete it from the matrix;

7. Reassign mi to the intersection of mi and mj and repeat steps 5 to 7 if

this is possible. If this is not possible, go to step 8;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 51

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

8. If the intermediate matrix is not empty repeat steps 1 to 7.

Otherwise, store the solution found, then backtrack to the nearest

branching point (set at step 6), and try to find a better solution by

repeating steps 6 to 8.

e)

New Color (3)

F (first inclusion)
C (by reduction)
J (by reduction)

New Color (4)

H (first inclusion)

Coloring Update:
Color 1 – A,D,G,K
Color 2 – B,E,I
Color 3 – C,F,J
Color 4 – H

New Color (3)

F (first inclusion)
C (by reduction)

New Color (4)

New Color (2)

B (first inclusion)

New Color (3)

C (first inclusion)

New Color (4)

Cannot provide
a better coloring

New Color (4)

Cannot provide
a better coloring

Cannot provide
a better coloring

New Color (2)

B (first inclusion)
K (by reduction)

New Color (3)

C (by reduction)
F (by reduction)
G (by reduction)

Coloring Update:
Color 1 – A,D,H,J
Color 2 – B,E,I,K
Color 3 – C,F,G

New Color (1)

A (first inclusion)
a)

b)

c)

d) g)

f)

JIHFE IGFE

JI J I

ED K. . .

KHG . . .

K J K

IH

Figure 3.13 – Part of the search tree for the vertex coloring problem example

Figure 3.13 depicts a part of the search tree obtained when applying the described

exact backtracking search algorithm to the graph example in Figure 3.11-b. Text

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 52

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

boxes contain operations which are deterministic at the current branch point, namely:

starting a new color (a new subset of rows); including a graph vertex (a row) either as

a first pick or by reduction; updating the stored coloring; and branch pruning. On the

other hand, when a branch point is reached, current data must be stored in stacks in

order to allow for alternative search branches to be explored. Each alternative branch

starts with a selection-based vertex inclusion represented by a black circle in Figure

3.13. When the algorithm must backtrack, the branch point data are restored and

other vertices are selected and analyzed.

A first subset (color 1) is initialized at the root of the search tree and a first row (A) is

included, i.e. a first vertex is assigned color 1 (see Figure 3.13-a). A branch point with

8 alternatives is reached because there are 8 rows (D to K) which are not orthogonal

to any of the rows in the current subset under construction: { }A .

As a first attempt, D is selected and included in the subset, and a new branch point is

reached (see Figure 3.13-b). The subset under construction is now { , }A D and there

are 5 rows which are not orthogonal to any of its rows: G to K. The same procedure

continues until every remaining row is orthogonal to at least one row in the subset

under construction. This occurs for the first time when the first subset under

construction becomes { , , , }A D G K (see Figure 3.13-c). Then, a new subset of rows

must be initialized and the search proceeds until all rows have been included in the

constructed subsets (see Figure 3.13-d). A leaf of the search tree has been reached,

having all vertices colored. The algorithm backtracks to the nearest branch point (see

Figure 3.13-e) and alternative row J is selected and included in the subset under

construction, which has been restored meanwhile.

The need to start a fourth subset renders the current search branch useless (see

Figure 3.13-f) because a solution consisting of 4 colors has already been found. This

search branch is therefore pruned and the algorithm backtracks again. The search

continues and, when a new coloring is found having fewer subsets than the stored

one, the solution is updated. Eventually, an optimal solution is stored (see Figure

3.13-g); the search continues until all search branches are implicitly tested but the

solution is obviously not replaced again.

When the algorithm finishes, the solution is composed of the following 3 subsets of

rows: { , , , }A D H J , { , , , }B E I K , and { , , }C F G . Finally, each group of vertices

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 53

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

corresponding to one of these row subsets is assigned a different color, as illustrated

in Figure 3.11-b.

3.2.5. The knapsack problem

Given a set of items, each with a profit and a weight, and a knapsack with a certain

weight capacity, the 0-1 knapsack problem consists of selecting a subset of items

whose total weight does not exceed the knapsack capacity and whose total profit is as

large as possible [Beier04].

Applications of the knapsack problem can be found in a variety of resource allocation

tasks [Gleeson94, Rodin90, Bodin91, Henig90], in cutting stock problems [Gilmore61,

Hahn68, Madsen79, Seth87], cryptography [Merkle78, Chor88, Jan93], broadband

communications [Ross89, Gavious94], etc.

Typical knapsack problem solvers make use of backtracking search. On the other

hand, matrices are not a suitable data structure in this context.

Let us solve the knapsack problem on the basis of an example in which:

a) there are 4 items: 1 to 4;

b)
ip and

iw designate respectively the profit and weight of item i ,

1, 2,3, 4i = ;

c) vectors p and w are composed of
1p to

4p , and
1w to

4w ,

respectively;

d) [7,6,4,6]p = and [4,7,5,4]w = ;

e) the weight capacity of the knapsack is 10c = .

In order to provide the solution, a binary vector x composed of
1x to

4x must be

constructed. If an item i is to be inserted in the knapsack then the ith element of

vector x (
ix) must be assigned to 1; otherwise to 0. For instance, if the solution

would correspond to the insertion of items 2 and 3, then solution vector x should be

assigned to [0,1,1,0] .

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 54

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

The exact algorithm which has been used in [Skliarova05] for solving the Knapsack

problem makes no use of matrices but it is based on the basic structure for

backtracking search algorithms (see Figure 3.2). The reduction rules, selection rules,

resolution test, and solvability test have been defined in such a way that the algorithm

executed is the one described in Figure 3.14.

Store current
solution, profit,

and weight.

Yes

No

No

Yes

Recursive
call of Y

Exclude
the item

Recursive
call of Y

Have
all items been
considered?

Is the
knapsack capacity

exceeded with the next
item’s weight?No

Yes

Is the
current profit higher

than the stored
one?

Include the item.
Update current

profit and weight.

left subtree right subtree

Y

b)

a)

c)

d)

Figure 3.14 - Recursive exact algorithm to solve the knapsack problem

The search process is triggered with the invocation of module Y which includes

potential recursive invocations of itself. Each recursive invocation corresponds to

processing a subtree of the current search tree node. Left subtrees correspond to

including the considered item (see Figure 3.14-a), while right subtrees correspond to

excluding it (see Figure 3.14-b).

This algorithm also features pruning of search branches. Indeed, if the inclusion of an

item implies an accumulated weight which exceeds the knapsack capacity (see Figure

3.14-c), the item cannot be included and thus the left subtree is not processed.

When a leaf in the search tree is reached (see Figure 3.14-d), the current

(accumulated) profit is compared with the one previously stored (initially 0). If the

current profit is higher, the current solution, profit and weight replace the stored ones.

Figure 3.15 depicts the search tree which results of applying this exact algorithm to

solve the given knapsack problem example. The inclusion of an item i , in the solution

vector under construction (x), is indicated as 1ix = . Analogously, 0ix = indicates its

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 55

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

exclusion. The accumulated profit and weight are shown at the bottom of each node.

Gray nodes indicate pruned subtrees. The algorithm carries out a pre-order traversal,

i.e., starting from the root, the processing sequence is: first the node, then the left

subtree, and finally the right subtree.

Solution
update:
[1,0,1,0]

Capacity
exceeded

0 / 0

x1=1

7 / 4

x1=0

0 / 0

x=[?,?,?,?]

x2=1

13 / 11

x4=1

17 / 13

x4=0

11 / 9

x2=0

7 / 4

x3=1

11 / 9

x3=0

7 / 4

x4=1

13 / 8

x4=0

7 / 4

x2=1

6 / 7

x3=1

10 / 12

x3=0

6 / 7

x4=1

12 / 11

x4=0

6 / 7

x4=1

10 / 9

x4=0

4 / 5

x2=0

0 / 0

x3=1

4 / 5

x3=0

0 / 0

x4=1

6 / 4

x4=0

0 / 0

Capacity
exceeded

Solution
update:
[1,0,0,1]

Capacity
exceeded

Capacity
exceeded

Figure 3.15 - Search tree for the knapsack problem example

After the second update, the stored solution vector is [1,0,0,1] , which means that

items 1 and 4 are to be selected. The corresponding profit and weight is 13 and 8,

respectively. The search continues, until the whole search tree gets traversed, but no

other leaf provides a more profitable set of items.

3.3. Other selected algorithms

Two other classical problems, which are not usually addressed with backtracking

search algorithms, have been selected for this research: sorting; and the calculus of

the greatest common divisor.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 56

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

3.3.1. Sorting

Sorting consists of rearranging the elements of a given set using a specific ordering

criterion. For instance, a given group of people can be sorted by alphabetic order of

their first names, or by numerical order of their ages, etc. However, for

implementation purposes, any sorting criterion is usually converted to numerical

ordering.

Sorting facilitates the search of elements within the given set and it is therefore very

often executed within a broad range of more complex algorithms. In fact, its

applicability is so wide that the list of sorting algorithms keeps growing, as designers

try to reach higher efficiency. Some of the most famous are Bubble sort

[Astrachan03], Insertion sort [Astrachan03], Binary Tree sort [Wirth86], and Merge

sort [Kernighan88].

Sorting based on a binary tree (also known as binary tree sort) was selected for

comparison of alternative recursive and iterative implementations. This algorithm

includes the following two stages:

1. Construction of an ordered binary tree, using the numerical value of

each given element to form a tree node. The node insertion is

performed in such a way that:

a. the left subtree of any node contains only values less than the

node’s value;

b. the right subtree of any node contains only values greater than or

equal to the node's value.

2. Retrieval of every tree node using in-order traversal, i.e., with the

root node as the starting point, performing the following three steps:

a. in-order traversing the left subtree, if there is one;

b. retrieving the current node;

c. in-order traversing the right subtree, if there is one.

Figure 3.16 illustrates, step by step, the tree construction stage of the algorithm. The

given sequence of integers used as an example in this illustration is 4-2-9-5-9. Black

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 57

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

circles are used to identify the tree node inserted at each step, while white circles

represent previously inserted nodes. Symbols < and ≥ can be used to easier

understand the location of each inserted node.

a) b) c) d) f)

4

< ≥ ≥ ≥

≥<

4 2 9 5 9 4 2 9 5 9 4 2 9 5 9 4 2 9 5 9 4 2 9 5 9

4

2

4

2 9

4

2 9

5

4

2 9

5 9

Figure 3.16 - Constructing an ordered binary tree

The tree node in-order retrieval stage of the algorithm is illustrated in Figure 3.17. The

ordered binary tree used for this illustration is the one constructed in the previous

example (see Figure 3.16-f). Within each step illustration (Figure 3.17-a to Figure

3.17-f), black circles identify the tree node being retrieved, while the resulting ordered

sequence is updated below the tree. Gray circles represent nodes already retrieved,

while white circles correspond to nodes yet to be retrieved. With the fifth step (see

Figure 3.17-f), the last integer is retrieved, thus completing the sorted sequence: 2-4-

5-9-9.

a) b) c) d) f)

2 2 4 2 4 5 2 4 5 9 2 4 5 9 9

4

2 9

5 9

4

2 9

5 9

4

2 9

5 9

4

2 9

5 9

4

2 9

5 9

Figure 3.17 - Retrieving ordered binary tree nodes

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 58

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

3.3.2. The greatest common divisor

The greatest common divisor (GCD) of 2 integers a and b, not both zero, is written as

gcd(,)a b and defined to be the largest integer that divides both a and b with no

remainder [Knuth97, Abelson96]. This definition can be extended to three or more

integers, in which case the greatest common divisor is the largest integer that divides

each of them with no remainder. The greatest common divisor is also known as

greatest common factor and as highest common factor.

Applications of the GCD can be found in rational arithmetic and in multiple-precision

arithmetic [Knuth97].

The GCD of two integers can be efficiently calculated using Euclid’s algorithm, which is

over two thousand years old [Knuth97]. Figure 3.18 describes Euclid’s algorithm both

iteratively and recursively, by means of pseudocode. Keyword ‘mod’ represents the

modulo operation, which calculates the remainder of dividing the left operand by the

right operand. For instance, expression ‘10 mod 3’ evaluates to 1, as the remainder

after dividing 10 by 3 is 1.

a) b)

it_gcd(a, b)

{

 while b ≠ 0
 {

 temp = b

 b = a mod b

 a = temp

 }

 return a

}

rec_gcd(a, b)

{

 if b ≠ 0

 return rec_gcd(b, a mod b)

 else

 return a

}

Figure 3.18 - Pseudocode for calculating the GCD of two integers iteratively (a)

and recursively (b)

3.4. Conclusion

A primary objective of this research is the comparison and evaluation of alternative

recursive and iterative implementations for different algorithms. For this purpose, it

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 59

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

was necessary to select a set of algorithms which can be described both iteratively

and recursively.

A class of algorithms which is often implemented on the basis of recursive descriptions

is backtracking search algorithms. Such algorithms can be developed on the basis of a

generic algorithmic structure which expresses a recursive procedure to be executed at

every node of the relevant search tree. The process starts by simplifying the current

problem instance using a set of reduction operations. When no further reduction is

possible, a resolution test is performed. In case the problem has been solved, the

process ends, and the solution is provided. Otherwise, a solvability test is carried out.

In case the problem is found unsolvable, the process ends with no solution. Otherwise,

the solver might have to try alternative paths in the search tree in order to check

whether there is one which leads to a solution. The set of operations that determines

which path to follow is called selection. When a chosen search path fails to provide a

solution, the algorithm backtracks and selects another one, if available.

A common data structure can be used to specify problem instances for different

backtracking search algorithms. Most combinatorial search problems can be expressed

in several equivalent mathematical formulations based on different standard data

structures. Matrices can be stored and processed easily in both software and hardware

and most combinatorial search problems can efficiently be formulated over matrices.

For these reasons, and without loss of generality, we have selected matrices as the

data structure to be used for specifying the combinatorial problem instances, when

applicable.

In order to compare and evaluate recursive and iterative implementations in

hardware, six problems have been considered for experiments: 1) set covering, 2)

Boolean satisfiability, 3) graph coloring, 4) knapsack, 5) tree-based sorting, and 6)

calculating the greatest common divisor.

We have demonstrated in detail the applicability of backtracking search algorithms

operating over matrices for solving the first four selected problems. For each of the

four corresponding algorithms, a particular method for converting problem-instances

to matrices is used. The same applies for the reduction rules, selection rules,

resolution test, and solvability test.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 60

CCHHAAPPTTEERR 33 –– DDEESSIIGGNN SSPPAACCEE EEXXPPLLOORRAATTIIOONN

Algorithms for tree-based sorting and the calculus of the greatest common divisor

have also been presented and demonstrated in detail. For solving these problems,

specific data structures were used.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 61

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

44.. SSooffttwwaarree//HHaarrddwwaarree TToooollss ffoorr

PPrroottoottyyppiinngg aanndd EExxppeerriimmeennttss

This chapter describes the developed prototyping system and software tools that

enable experiments with hardware accelerators and comparisons of alternative

recursive and iterative algorithms to be carried out easier and more efficiently. The

system is based on the DETIUA-S3 prototyping board with wired and wireless interface

with a host computer developed at the department of Electronics, Telecommunications

and Informatics of Aveiro University, as well as on software tools proposed and

implemented within this thesis. The software tools establish user-friendly interface

with the board (including wireless interaction) and provide high-level support for many

different experiments required for the considered hardware accelerators, such as the

developed virtual peripheral devices, modules for software/hardware co-simulation

which simplifies hardware/software partitioning, procedures which extract

intermediate results for analysis, etc. A more advanced technique assumes the

application of the developed tools through the Internet in such a way that allows

different users to configure and to interact with the remotely accessed prototyping

board. Although this work was not initially planned, many tools have been developed,

implemented and tested, which permits to conclude that the proposed system can

efficiently be used for remote interactions. In the end, an overview of the advantages

and potential applications of the prototyping system is provided.

4.1. Prototyping system

This section presents the set of developed hardware/software components, namely an

FPGA-based prototyping board, the board-targeted software, and useful tools mainly

needed for fulfilling the objectives of this thesis.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 62

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

4.1.1. The DETIUA-S3 FPGA-based prototyping board

The FPGA-based prototyping board named DETIUA-S3 [Almeida08] (see Figure 4.1)

has been developed in such a way that permits to provide the following main features:

• Programming and data transferring from a PC (personal computer) through USB or

Bluetooth interface;

• Powering the board through a USB port or using an external power source;

• Keeping bitstreams for the FPGA in a flash memory, which allows to use the board

as an autonomous device, without any connection to a PC, and only external

powering has to be provided;

• Keeping more than one bitstream in the flash memory for dynamic reconfiguration

of the FPGA. The capacity of the selected flash memory permits to store up to 8

bitstreams. This is very practical not only for run-time reconfiguration but also for

verification of different types of alternative and competitive implementations;

• User-friendly interface (see section 4.1.2) for programming the board and data

exchange with a PC;

• Expansion headers for interacting with application-specific, externally connected

devices.

Figure 4.1 – The DETIUA-S3 board with interface module alternatives

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 63

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

Spartan 3
FPGA

Expansion
Connectors

Flash
Memory

USB/
Bluetooth
Module

Control

Control

Control

Data

Data

Control
CPLD

Figure 4.2 – The DETIUA-S3 board basic architecture

The basic architecture outlined for DETIUA-S3 (see Figure 4.2) includes the following

main components:

• An FPGA of Xilinx Spartan-3 family (see Figure 4.1-a), namely XC3S400 [Xilinx],

based on 90 nm technology, with 400.000 system gates, 288 Kb of block RAM, 16

embedded multipliers and 264 inputs/outputs;

• A flash memory of AMD (see Figure 4.1-b), namely Am29LV160D [AMD], divided

into three logical sections, as shown in Figure 4.3. The first section contains the

default bitstream. This bitstream has to be pre-loaded to the FPGA in order to

allow the following set of operations: 1) transferring an application-specific

bitstream to the second logical section; 2) erasing flash memory sectors; 3)

transferring data from a host device to the third section of the flash memory and

vice versa. This technique has already been used in Trenz prototyping boards

[Trenz]. The second logical section stores an application-specific bitstream (user

bitstream) for subsequent quick loading into the FPGA (pressing the ‘project’

pushbutton available on the board). The third memory section enables the

designer to keep additional bitstreams for configuring the FPGA or any arbitrary

user data;

• A CPLD (Complex Programmable Logic Device). This component (see Figure 4.1-c)

is needed for controlling the flash memory and pushbuttons assembled on the

board, because the FPGA cannot execute these functions during configuration. The

CPLD also generates an initial reset signal for FPGA circuits as soon as a new

configuration is completed;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 64

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

• Either of two available interface modules, USB (see Figure 4.1-d) and Bluetooth

(see Figure 4.1-e), can be plugged into the board interface socket (see Figure 4.1-

f). The selected interface can be established with any compatible device, allowing

for any required bi-directional data exchange (for instance, to supply the board

with user bitstreams). Connecting the board to a computer using the USB module

eliminates the need for another power source and provides higher bandwidth,

while Bluetooth has the advantage of a wireless communication and portability (a

small battery-based source can be used for powering);

• Expansion connectors (see Figure 4.1-g and Figure 4.1-h) permit to attach any

application-specific external hardware, such as mini boards with extra components,

human interaction peripherals and even other FPGA-based boards (other DETIUA-

S3 boards, for instance).

Default
bitstream

User
bitstream

User data
or

Alternative
bitstreams

First logical section

Second logical section

Third logical section

Figure 4.3 - Logical division of the flash memory in DETIUA-S3

4.1.2. The PBM system software for DETIUA-S3

A software application called PBM (Prototyping Board Manager) has been developed to

provide important functionality with respect to DETIUA-S3 with a convenient user-

friendly interface. Basic PBM tools, possible workflows, and system integration

scenarios that are achievable with DETIUA-S3 and PBM are revealed in Figure 4.4

[Almeida06].

The most basic function of PBM is uploading a user bitstream into the second section

for quick configuration of the FPGA (by pressing the ‘project’ pushbutton). This

technique is the most appropriate to integrate design workflows for single-bitstream

projects.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 65

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

PBM application

Bitstream
uploading tool

User data
transferring tool

Terminal Window
DK

ISE

Handel-C
specification

EDIF file

VHDL
description

bitstream

Prototyping board running
the default bitstream

Flash

Prototyping board running
a user bitstream

Flash

X
X

FPGA
other

devices

FPGA

Application-specific
software program Expansion

connectors

USB or

Bluetooth

Figure 4.4 - Examples of DETIUA-S3 and PBM prototyping capabilities

PBM also features a terminal window for run-time data exchange between the user

and the prototyping system, thus constituting an integrated input/output peripheral,

which is very convenient for project monitoring and testing.

A more advanced function allows to send multiple bitstreams (let us refer to them as

alternative bitstreams) and to store them in the third logical section of the flash

memory (see Figure 4.3). The latter is logically divided in six predefined subsections

for storing alternative bitstreams, which can be used for FPGA reconfiguration by the

following means:

a) Attaching a simple additional switch through expansion connectors

and pressing the ‘project’ pushbutton, the board reconfigures the

FPGA with the bitstream that is stored in the subsection indicated by

the switch;

b) Any circuit running in the FPGA can send to the CPLD a request for

run-time reconfiguration, using techniques such as those described in

[Shirazi98, Sklyarov98], indicating which bitstream has to be loaded.

c) Sending any required bitstream through expansion connectors to

another prototyping board in order to configure its FPGA.

The software application includes a user manual in English and Portuguese (available

online [Pimentel]) which gives detailed information on how to take full advantage of all

the available functionality.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 66

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

In order to be able to work with PBM, either through USB or Bluetooth interface, a

user must first press the board’s ‘configuration’ button. This operation loads the

default bitstream from the first logical section of the flash memory into the FPGA,

configuring it to establish the protocol which PBM uses to manage the board. Each

function available to the user generates a sequence of basic operations supported by

this protocol, such as: erase a sector, read from a specified range of addresses, or

write a sequence of bytes.

PBM also provides compatibility with new boards which may include different FPGAs,

flash memories, etc. The basic rules to develop PBM-compatible prototyping boards

are provided in the user manual [Pimentel].

4.1.3. Remote interaction

A conceptual framework called Remote Lab [Pimentel08] has been proposed, enabling

a remote interaction with DETIUA-S3. We assume that the following conditions have to

be satisfied:

a) DETIUA-S3 is connected through either USB or Bluetooth interface to

a server PC;

b) The server PC is running PBM in Remote Lab Server Mode;

c) The client PC (on which the remote user is) can reach the server PC

through the Internet;

d) The client PC is running PBM in Remote Lab Client Mode.

The developed software tools provide remote users with most of the PBM functionality

through the Internet (see Figure 4.5). In addition, co-simulation tools have been

developed, enabling remote users to construct digital systems in such a way that they

are partially implemented in FPGA and partially modeled in software of a user

computer. The developed software enables only one user to work with the board at

the same time. As soon as communication between a user’s computer and the board is

terminated, the latter becomes available for another user. Such system is very helpful

for educational process.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 67

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

Figure 4.5 - Remote access to DETIUA-S3

Potential applications of this remote interaction system are the following:

• Remote design;

• Using virtual peripheral devices [Sklyarov08a];

• Co-simulating the developed and virtual components.

Additional details will be given in section 4.2.

4.1.4. Hardware/software co-simulation

As a rule, the considered hardware accelerators are parts of larger circuits which, in

combination with some other components, make up a complete system. Traditional

approaches to the design of such circuits, such as top-down, bottom-up and

combined, assume decomposition of the entire system into sub-systems, which at

different levels of decomposition are of varying complexity. For many practical

problems it is necessary to examine the communication between relatively

autonomous sub-systems in order to assess the characteristics of the system, such as

the correctness of the functionality, the adequacy of the performance, the accuracy of

execution, and so on. Note that this assessment has to be done at a point when all the

components of the system have not yet been implemented. Paper [Sklyarov02b]

proposes a combined software/hardware model of a system that consists of a control

part that is mainly implemented in hardware (in an FPGA) and a datapath that is

modeled partially in hardware and partially in software. The hardware and software

components communicate through a pre-established interface.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 68

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

The reasons for choosing such decomposition are the following:

1. Very often, a control algorithm (such as a micro-program) operates

primarily with individual bits of data in such a way that it analyzes a

predefined subset of bits from a given set (such as the flags of a

processor) and generates control signals that can also be considered

as a subset of a set of individual bits (such as the signals that affect

data flow). These operations can be implemented in hardware much

faster than in software. Note that control can be considered at

different levels. A high level control is usually implemented in

software. A low-level control might be realized more efficiently in

hardware.

2. An execution unit deals mainly with words of data that have a

predefined size. Operations on these words can be performed with the

aid of general-purpose processors. For many practical applications,

implementing execution units in FPGAs is very profitable because it

allows the speed of data flow to be accelerated. However, a software

model of a datapath enables us to estimate how profitable it may

ultimately be, and provides the information needed to decide whether

to partition an execution unit into a software component plus

hardware. Note that this question is especially interesting in the

educational context.

3. Using the proposed approach makes it possible to implement a

distributed control, which combines autonomous control circuits that

directly affect the external FPGA devices, and a more sophisticated

control that requires the use of a datapath emulated in software. Such

control devices are widely needed in embedded systems requiring the

considered hardware accelerators.

4. Reconfigurable hardware can improve the performance of datapath by

using parallelism and pipelined execution. The proposed approach

does not exclude this possibility. We have already mentioned that the

boundary between hardware/software components is adjustable and

we can combine a hardware implementation of highly parallel parts of

an execution unit with the remainder implemented in software.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 69

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

5. A control unit can be implemented as a virtual device. As a result, it

can have dynamically modifiable functionality. One interesting

approach in this context is to implement only part of a control

algorithm in the dynamically modifiable area of an FPGA, and to

reload other parts of the control algorithm when required, with the aid

of software tools. The developed software tools for the DETIUA-S3

board provide support for such opportunity.

We consider a similar technique but will not restrict types of circuits implemented in

software and hardware (such as control and execution units).

A top-level architecture of an FPGA-based virtual system [Sklyarov02b] consists of

three primary components: virtual hardware (modeled in software), physical hardware

(implemented in an FPGA), and a software/hardware interface. This architecture

permits to examine various alternative implementations by shifting the boundary

between the hardware and software parts, i.e. by examining the systems with more

hardware and less software or vice versa. This is especially important for hardware

accelerators because it permits to select the most favorable fragments of the studied

algorithms requiring acceleration and also the relevant increase in performance.

A software/hardware interface enables connections and the interchange of signals to

be established between hardware/software components shown in Figure 4.6.

Figure 4.6 – Demonstrating virtual and physical peripheral devices

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 70

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

In our case, the software models have been developed on a PC. The hardware part

has been implemented in DETIUA-S3. The interface was partially implemented in

software and partially in an FPGA, and it provides for the transmission of signals

through either USB or Bluetooth interface. The following subsections (0 and 4.1.4.2)

present different proposed and implemented tools which provide support for the

hardware/software co-simulation considered above.

4.1.4.1. Interaction with virtual peripheral devices

One of the most important components of the hardware/software co-simulator is a

virtual visual sub-system [Sklyarov08a], which enables the designer to verify the

functionality of the developed system in a visual mode using the host computer

monitor (see Figure 4.6). It is important that the virtual visual environment allows the

creation of a vast variety of virtual peripheral devices for the FPGA-based prototyping

core considered in section 4.1.1. Indeed, it permits to visualize and to virtually attach

peripheral devices, providing data input and output and modeling typical (push

buttons, LCD, etc.) and application-specific (stack watchers, function calls watchers,

etc.) devices. The number of potential devices is, indeed, unlimited because any newly

required one can be modeled and included in the existing virtual peripherals library.

A system depicted in Figure 4.6 displays virtual peripheral devices (namely

pushbuttons, an LCD panel, a segment display, and LEDs), and communications with

such devices are organized much like communications with physical peripheral

devices. The proposed technique can be very efficiently used in the scope of design

space exploration. For example, there are many practical applications that require

solving combinatorial search problems. It is possible to design a reusable circuit

[Sklyarov08a] that might be customized for solving many problems from the area of

combinatorial computations. Such a reusable circuit can be entirely modeled in

software. However, it may be beneficial to implement this circuit in FPGA. One of the

easiest ways is a sequential conversion of the software model to hardware

implementation in such a way that the required hardware is incrementally extended

replacing more and more software. This, in particular, significantly simplifies testing

and debugging of hardware circuits. Besides, the considered hardware/software

architecture opens practically unlimited capabilities for experiments in the scope of

design space exploration. For example, we can:

• Use debugging facilities of software in order to test different operations available

for the circuit;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 71

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

• Verify different algorithms step by step, either in software or in hardware,

assessing the results in a convenient visual mode (see example in Figure 4.6);

• Provide hardware/software partitioning and execute algorithms partially in

software and partially in hardware, changing the boundary between software and

hardware. This is indeed design space exploration because we can check if

hardware implementation is really capable to improve performance and other

characteristics of the system.

The described system for hardware/software co-simulation has been implemented

using the following technique. DETIUA-S3 has two expansion buses connected to the

FPGA (see Figure 4.1-g and Figure 4.1-h) with a total of 80 connectors that can be

used to attach physical external devices. The developed agent module routes the

corresponding 80 circuit input/output signals from/to a computer, instead of the board

expansion connectors, in order to establish full interaction with the virtual user

peripheral components.

Figure 4.7 - Signal routing with the agent module

To allow user projects to interact with both physical and virtual peripherals, the agent

module has two running modes: physical and virtual. In physical mode, signals are

simply transferred to/from the expansion connectors. In virtual mode, signals pass

through the interface (either USB or Bluetooth) using an exchange protocol created for

that purpose. Figure 4.7 illustrates these routing capabilities. The agent module starts

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARRE

in physical mode and switches to virtual mode in case t

requests it through the established interface.

For a more complete understanding of how the designed tools work, let us now look at

the developed object-oriented classes

devices (see the class diagram depicted in

Figure 4.8 - Partial class diagram

The functionality of the most frequently used peripherals is emulated by object

oriented classes which have been described in C#. The

manage any required number of instances of

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

REE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEE

in physical mode and switches to virtual mode in case the software

requests it through the established interface.

For a more complete understanding of how the designed tools work, let us now look at

oriented classes that provide support for virtual peripheral

lass diagram depicted in Figure 4.8).

Partial class diagram used in the software for running virtual

peripheral devices

The functionality of the most frequently used peripherals is emulated by object

oriented classes which have been described in C#. The developed

manage any required number of instances of each virtual peripheral class.

LGORITHMS - 72

EERRIIMMEENNTTSS

software application

For a more complete understanding of how the designed tools work, let us now look at

that provide support for virtual peripheral

ning virtual

The functionality of the most frequently used peripherals is emulated by object-

developed application can

each virtual peripheral class.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 73

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

All classes for emulating physical peripheral devices conform to the following:

a) They are derived from the class UserControl (from the .NET library),

providing functions for graphical visualization based on images of the

corresponding physical devices;

b) They implement the vPeripheral interface (see the top left-hand

corner of Figure 4.8) which contains a set of methods common to all

virtual peripherals (such as GetName, GetOutputPins, etc.), thus

taking advantage of the object oriented paradigm.

Two special classes named vPin and vConnector (respectively at the center and top

right corner of Figure 4.8) are the basis for signal propagation. Each of the 80

connectors mentioned before is represented by a vConnector; and every pin in the set

of real peripherals is represented by a vPin. Before running the project, the user must

associate vPins with vConnectors. Such association corresponds to connecting real

peripheral pins to DETIUA-S3 expansion connectors, according to the scenario the

user needs to emulate.

When the project is running, any signal change in a virtual peripheral output (caused

for instance by user action) triggers a signal update in the associated vPin. Such a

change is propagated to the associated vConnector, updating its value. The continuous

cycle of signal exchange between the application and the agent module keeps sending

the last signal value stored in each vConnector, through the interface module. Every

time a signal exchange packet reaches DETIUA-S3, the agent module updates the

user circuit inputs with new signal values.

The user circuit output signals are propagated basically in the same way but in the

opposite direction. When a signal update reaches a vPin for input, the application

invokes the UpdateStatus method on the owner vPeripheral and the user can visualize

the resulting feedback on a monitor screen.

The developed tools can easily be combined with remote interaction through the

Internet, which permits to execute similar functions in a distant mode. The remote

interaction requires constant signal exchange between the application and DETIUA-S3

over the Internet. For this purpose, a dedicated PBM tool establishes a new TCP

(Transmission Control Protocol) connection with the remote client through which all

data (including PBM operation commands) sent by the board are forwarded to the

remote client and vice versa (see Figure 4.5).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 74

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

Note that the components emulated with this framework are peripherals for

interaction with humans. The delays inherent in this kind of interaction are

significantly long and irregular, considering the response time of digital circuits. For

this reason, the delay overhead which is inflicted by the whole signal propagation

process can be considered tolerable. In fact, the signal propagation delay overhead

ranges from tens of milliseconds, when the user’s computer is directly connected to

the board, to a few seconds, when remotely connected across the Internet.

4.1.4.2. Reprogrammable FSM-based architecture

This section describes the model proposed for validation of different types of

interactions between the execution and control units. Paper [Sklyarov02b] proves that

such interaction is needed for many practical applications and discusses a number of

examples. The main contribution is in the adaptation of a reprogrammable FSM model

described in [Sklyarova02a].

Figure 4.9 – Using the proposed reprogrammable FSM-based model

We assume the following characteristics for the designed system (see Figure 4.9 as a

potential example):

a) Control units are modeled by a reprogrammable FSM implemented in

hardware;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 75

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

b) Execution units and application-specific peripheral devices are

modeled in software;

c) Input, output, reset, and clock signals of the control unit are

propagated at each clock transition triggered by the user, allowing for

step-by-step control and monitoring of the developed system, from

the computer.

The reprogrammable FSM can be implemented with the aid of a hardware template

(HT) [Sklyarov06d]. An HT is a circuit that contains elements with functions that can

be changed and which are initially undefined. All the external connections of elements

are fixed and they cannot be modified. The customization of the HT is carried out by

programming (reprogramming) its elements with changeable functions. In order to

construct the HT, it is necessary to estimate all the likely constraints for future

applications. In other words, we should define a class of applications and the

constraints for that class.

For an FSM, these constraints might be the maximum numbers of the input variables

(Lmax), the output variables (Nmax), the states (Mmax) and the transitions from any

state; also the maximum size of state codes (Rmax), etc. Figure 4.10 shows an

example of an HT for an FSM.

Figure 4.10 – An example of a hardware template

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 76

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

It is composed of two RAM blocks, an FSM memory and a multiplexer. MRAM permits

any input xl∈{x0,...,xL-1} of the multiplexer to be selected in such a way that p=xl and

value l can be specified by MRAM. For example, if the FSM codes are binary values of

state subscripts and if input x9 affects transitions from state a5 then, at the address

101, MRAM forms outputs 1001 which control the 16:1 multiplexer. If, for another

application, the transitions from a5 are affected by x3 then at the address 101, MRAM

has to form outputs 0011. Clearly we can provide any correspondence between states

a0,...,aM-1 and inputs x0,...,xL-1. The RIV (Replacement of Input Variables) block shown

in Figure 4.10, in the dashed rectangle, permits any variable from set X={x0,...,xL-1}

to be replaced by a single variable p. State transition RAM (STRAM) enables us to

generate codes for the next states and outputs. For example, if R=4 and we have

state transitions a10x2⇒a7 and 210 xa ⇒a4 then, at the address 10101, STRAM contains

the code (D1,...,D4) = 0111 and, at the address 10100, the code (D1,...,D4) = 0100.

Obviously any subset of output signals y1,...,yN can be arbitrarily generated in any

state transition.

By modifying the contents of MRAM and STRAM we can implement any desired FSM

behavior within the scope of the constraints predefined for the HT. In case of the HT

depicted in Figure 4.10, there is a very significant constraint: any state transition can

only be affected by a single input variable. Different ways to solve this problem and

many details regarding RAM-based reprogrammable FSMs are considered in

[Sklyarov06d].

The developed hardware/software tools can be employed in different areas enabling

the designers to partition the developed system in such a way that one part of the

system will be implemented in reconfigurable hardware and another part will be

modeled in software. Suppose we need to design a reprogrammable FSM which

implements different algorithms over ternary vectors whose elements have one of

three possible values: 1, 0 and – (don’t-care). Different algorithms permit to execute

such operations as: testing if the given vector contains N successive 1s (0s, don’t-

cares); if the vector does not have values 1 (0s, don’t-cares); if the number of 1s in

the vector is greater than the number of 0s, etc. Such operations are frequently

required for numerous combinatorial search problems [Skliarova06b] and we would

like to examine the execution time for different algorithms and the ability of FSM to be

efficiently reprogrammed (using, for example, methods described in [Sklyarov02a]).

Suppose an initial vector has to be entered from either pushbuttons or DIP switches

and the results of the selected operation together with the execution time have to be

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 77

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

displayed on an LCD. The designed circuit includes the following two primary blocks

(see Figure 4.11): the reprogrammable FSM and the handler making it possible to

customize the FSM in such a way that enables the desired algorithm to be realized.

HardwareSoftware

Displaying the results

FSM programmer
(handler)

a)

Reprogrammable
FSM

FSM

memory
STRAM

T1

TR

p
MRAM

M
x0
x1

xL-1

D1

DR

y1 yN

RIV

Entering the vector
from pushbuttons
or DIP switches

1000-10-1---1-1-0

HardwareSoftware

Displaying the results

FSM programmer
(handler)

b)

Reprogrammable
FSM

FSM

memory
STRAM

T1

TR

p
MRAM

M
x0
x1

xL-1

D1

DR

y1 yN

RIV

Entering the vector
from pushbuttons
or DIP switches

1000-10-1---1-1-0

Figure 4.11 – Incremental circuit design with the proposed technique

Suppose that in the beginning (see Figure 4.11-a) the FSM is implemented in FPGA

and the handler is modeled in software of a host computer. After the FSM has been

tested, both blocks (i.e. the FSM and the handler) can be implemented in FPGA (see

Figure 4.11-b). Thus, the considered technique enables the circuit to be designed

incrementally. Dependently on the availability of peripheral devices (such as the LCD

shown in Figure 4.11), either physical or virtual interaction with such devices can be

employed (see also Figure 4.6).

It should be noted that the described technique is very useful not only for accelerators

considered in this thesis. It is applicable to many other applications outside the thesis

area and thus, it is rather universal. Let us consider an example from [Pimentel08] in

which the developed tools are used to simulate an assembly line whose basic

functionality is depicted in Figure 4.12. Incoming items, which are brought by the left-

hand side conveyer, must be passed onto the right-hand side conveyer with the aid of

a magnetic crane.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 78

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

Figure 4.12 - Assembly line scenario

The crane can check sensors S1 to S3, and switch actuators A1 to A3 (see Figure

4.12), whose roles are listed in Table 4.1. Each sensor indicates that its specific

condition test is verified using value 1, and otherwise using value 0. For instance, the

value of sensor S3 becomes 1 as soon as an item arrives from the left hand side

conveyer, and it turns to 0 when the magnetic crane pulls it off. Analogously, each

actuator is turned on with value 1, and off with value 0. Therefore, the control signal

of actuator A3 must be set to 1 and 0 in order to turn the magnetic pull on and off,

respectively.

Table 4.1 - Sensor and actuator roles in the assembly line scenario

Sensor roles Actuator roles

S1 Crane is at the left end A1 Move crane to the left

S2 Crane is at the right end A2 Move crane to the right

S3 Item is on platform A3 Grab item

The FSM depicted in Figure 4.13 defines a feasible crane behavior based on the given

sensor and actuator signals.

The presented example demonstrates potentialities of the developed hardware and

software tools for visual simulation based on virtual graphical models of physical

objects. Similar techniques can be used (and have been used) for representing

systems implemented just in hardware (such as a SAT solver).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 79

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

Start

[S1=1]

[S3=1]

[S3=0]

[S2=1]

Return

A1 = 1
A2 = 0
A3 = 0

Transfer

A1 = 0
A2 = 1
A3 = 1

Wait

A1 = 0
A2 = 0
A3 = 0

Grab

A1 = 0
A2 = 0
A3 = 1

Figure 4.13 - Feasible FSM for controlling the assembly line component

4.2. Advantages and applicability of the designed prototyping
tools

It is known that there are many prototyping boards available on the market. Why has

one more board been designed? First of all, the board was planned to be used by

undergraduate and postgraduate students of electronics, telecommunications and

computer engineering curricula. These students have to acquire profound knowledge

and abundant experience in the scope of electronic circuit design and software

engineering. Therefore, we would like to use open-source hardware/software tools

which are completely understandable without any hidden feature. This requirement is

also very important for the thesis area because we would like to avoid any

misunderstanding in both software and hardware used for experimental purposes.

Besides, such tools have to satisfy all necessary functional requirements. The most

appropriate solution was to develop the board in the department by postgraduate

students, which can easily spread the required knowledge and experience to other

students. It was done in [Almeida08] and the following benefits have been obtained:

• The board has become an ideal platform for the development of both electronic

devices and software which interacts with hardware. Indeed it does not have any

hidden or unknown element or source code. Such open hardware and software is

very uncommon for commercial prototyping systems, i.e. source code for FPGA

configuration, communication with host computers, etc. are usually not provided.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 80

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

• The board is a very suitable element for remotely controlled embedded systems,

mainly because it supports wireless interface. The latter is not widely available for

FPGA-based prototyping systems.

• The board is very flexible and easily extendable; it can be customized for many

practical applications in such a way that the developed board-based system will

include only the required components. This feature is also not so common for the

majority of commercially available boards, which contain many auxiliary devices

that are not required for particular user applications.

InterfaceVirtual
devices

Physical
devices

FPGA hardwareSoftware

Prototyping boardHost computer

Hidden from
the end users

Example
Example

Hardware/Software
(FPGA/Host computer)

interface hidden
from the end users

Virtual changes of stack
memory in hardware accelerator

for combinatorial search
algorithms

Modeling selected circuits of
combinatorial accelerator
interacting with physical

hardware through the interface

Implemented
in FPGA

circuits for
combinatorial
accelerator

Figure 4.14 – Overview of the virtual visual environment

Figure 4.14 summarizes the main characteristics of a virtual visual environment:

1. Virtual devices are implemented in a host computer. They are virtual

devices because they are implemented in software and provide

functionality that is very similar to physical devices. They are visual

because we are able to observe the functionality (such as different

changes in stack memory during forward and backward propagation

steps in combinatorial search algorithms) in visual mode on a monitor

screen (or possibly in some other connected peripheral devices). They

are easily controllable because we can carry out numerous functional

and timing scenarios, for example, test only selected fragments of the

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 81

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

implemented algorithms, execute algorithmic steps faster or slower,

etc.

2. Physical devices are implemented in FPGA and they interact with

virtual devices in such a way that allows to make up the designed

system, i.e.: physical devices + virtual devices = the designed

system. Such system is flexible and extendable, because functionality

of both software and reconfigurable hardware can be altered.

3. Software/reconfigurable hardware interface providing interaction

between the virtual and physical devices are hidden from the end

users.

The proposed technique permits:

• To verify the accelerator entirely in software;

• To implement the accelerator partially in software and partially in hardware;

• To carry out hardware/software co-simulation with adjustable boundary between

hardware and software (i.e. to analyze the accelerator with either more software

and less hardware or vice versa).

Let us consider one more example. Suppose we have to design the combinatorial

accelerator shown in Figure 4.15. The main idea is to verify if this accelerator can be

reused for solving different combinatorial problems formulated over Boolean and

ternary matrices (such as that discussed in [Skliarova06b]). The part shown with grey

background is projected to be reusable and the control unit is intended to be

reprogrammable in such a way that allows implementing different combinatorial

algorithms (such types of combinatorial accelerators are described in detail in

[Skliarova06b]). Let us model the reusable part (i.e. the part shown with grey

background) in software, and implement the control unit in FPGA. Suppose that a

request for reprogramming the control unit has to be done from a host computer,

which knows a particular problem that must be solved. Examples of such problems

might be the SAT, binary matrix covering, etc. In order to model the considered

reusable circuit in the host computer, it is necessary to develop a program using a

library of classes which model the relevant hardware parts, such as matrices, stacks,

registers (see Figure 4.15), etc. These classes will be described in detail in chapter 5.

Suppose the control unit is modeled by a reprogrammable FSM whose functionality

can be changed through reloading the FSM’s RAM blocks. Methods for synthesis of

reprogrammable FSMs are proposed in [Sklyarov02a]. Interaction between software

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 82

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

and hardware parts can be provided with the aid of the developed interface

components (the agent module and the PBM), which establish links between the

designated inputs and outputs of the circuit implemented in hardware (in FPGA) and

hardware parts modeled in software (see Figure 4.15). Finally, we can test the circuit

for a particular algorithm (for example for the Boolean satisfiability) with the aid of

class functions which visually demonstrate the functionality of the simulated hardware

parts in a monitor screen.

general-purpose registers

Column address

Line
address

Column mask

Line
masks

Storage for
a Boolean

or a ternary matrix

Stacks for masks and for
general-purpose registers

Control Unit

Figure 4.15 – Structure of a combinatorial accelerator

Let us now consider how to change the circuit functionality in order to examine

different algorithms. For such purposes, it is necessary to implement a handler which

is able to alter the algorithm of the control unit (we assume that the execution unit,

shown with grey background, is exactly the same). Thus, we have to apply the same

technique that is demonstrated in Figure 4.11. In the beginning, the handler can be

modeled in software. After the handler has been tested, it can be implemented in

FPGA. Incrementally, other blocks of the explored system (see Figure 4.15) might be

converted from software to hardware. This technique gives vast opportunities for

hardware/software co-simulation and consequently for the design space exploration.

Obviously, this task is very interesting and helpful for students. The system presented

above has not been completely finished yet, although the majority of basic

components (such as the DETIUA-S3 board, software libraries for virtual peripheral

devices and for numerous hardware objects, remote interaction with the board

through the Internet) have been implemented and tested. The results of testing

demonstrate good capabilities of the developed components for remote monitoring

and design of reconfigurable systems. Many developed elements have been used for

prototyping and experiments (see chapter 6).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 83

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

4.3. Conclusion

The proposed tools for hardware/software co-simulation of reconfigurable systems,

including remote monitoring and design, are very promising in a vast scope of

practical applications, such as virtual design space exploration, rapid dissemination of

different models and methods in the scope of hardware design, comparison of

alternative and competitive circuit implementations using the Internet facilities,

education, engineering training, etc. These tools possess the following distinctive

features:

1. Prototyping board managing through either wired (USB) or wireless

(Bluetooth) interface;

2. Remote design and monitoring of reconfigurable systems;

3. Software/reconfigurable hardware co-simulation through the

developed interfaces supported by the relevant hardware projects and

software tools.

All the developed software tools were modeled in C#, while the developed hardware

tools have been implemented in hardware on the basis of Handel-C specifications or

VHDL descriptions. Dependently on the specific component, Microsoft Visual Studio

with the .NET framework, the Celoxica DK, the Xilinx ISE, and the Mentor Graphics

ModelSim have been used.

A new prototyping system which includes an FPGA-based board (called DETIUA-S3)

has been developed (with Manuel Almeida [Almeida08]). The board architecture is

based on five main components: an FPGA, a flash memory, a CPLD, an interface

module (either USB or Bluetooth), and expansion connectors. A new software

application (called PBM) was developed to take full advantage of the board, allowing

for its configuration and for data-exchange with a general-purpose computer.

A framework called Remote Lab has been under development to support remote

interaction with DETIUA-S3. When finished, a server computer connected to a

DETIUA-S3 board will be able to provide most of the PBM functionality to users

through the internet.

Two hardware/software co-simulation frameworks have been developed based on

input and output signal exchange between circuits implemented in FPGA and virtual

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 84

CCHHAAPPTTEERR 44 –– SSOOFFTTWWAARREE//HHAARRDDWWAARREE TTOOOOLLSS FFOORR PPRROOTTOOTTYYPPIINNGG AANNDD EEXXPPEERRIIMMEENNTTSS

environment software applications and they can be combined with the Remote Lab

framework. They are the following:

1. A virtual visual sub-system allows virtual peripherals to be used

instead of real ones. The visual and the internal behaviors of the most

typical peripherals, such as LEDs, pushbuttons, dipswitches, seven-

segment displays, and LCDs, have been modeled in software to

emulate real peripherals, and more can be added.

2. A reprogrammable FSM-based partition architecture allows designers

to implement control units in FPGA using a reprogrammable FSM, to

model execution units and application-specific peripheral devices in

software, and to monitor projects with step-by-step capabilities.

Figure 4.16 discloses the key characteristics of the developed hardware/software co-

simulation models. Light-gray indicates hardware implementation, while dark-gray

indicates software emulation.

Control
Circuit

Execution
Circuit

Peripheral
Devices

Core circuit implemented in FPGA. Real peripherals
connected with the FPGA with extension connectors.

Core circuit implemented in FPGA.

Control unit
implemented by a
reprogrammable
FSM in FPGA.

Execution unit and application-specific
peripheral devices modeled by user and

emulated in software.

Real peripherals
emulated by virtual

peripherals.

Simply
DETIUA-S3
(no partition)

Using virtual
peripheral
devices

Reprogrammable
FSM-based

partition
architecture

Figure 4.16 - Using different hardware/software co-simulation frameworks

The developed tools have been used for the majority of experiments provided for

analysis and comparison of recursive and iterative algorithms studied in this thesis.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 85

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

55.. AAllggoorriitthhmm MMooddeelliinngg aanndd

IImmpplleemmeennttaattiioonn

The algorithms considered in chapter 3 have one common characteristic: they require

generation and evaluation of a huge number of different variants before a solution is

found. It was shown that feasible solutions can be generated with the aid of a search

tree, whose nodes represent different situations that are reached during the search for

results, and whose edges specify steps of the algorithm that have to be performed. A

distinctive feature of this approach is that, at each node of the search tree, the same

problem is being solved. The only thing that changes from node to node is the input

data. This means that the whole problem can simply be solved by repeating an often

large number of times the execution of a single limited set of operations over a

periodically modified set of data.

It has already been shown by various researches that reconfigurable hardware can

provide some benefits (over software) when solving these problems. This is mainly

due to the possibility to parallelize execution of some repeated operations, as well as

to tailor memory interface to the required data structures. The main objective of this

work is however not to find the best reconfigurable hardware implementation (in

terms of the required resources or performance). Instead, the main idea is to assess

the relative cost of using iterative and recursive algorithms in hardware.

This chapter therefore provides details of reconfigurable hardware implementation of

iterative and recursive algorithms for the selected problems. To simplify the design

process, every algorithm was first modeled in software (the first part of chapter 5 is

devoted to this topic). Then, descriptions of some of the algorithms were created in a

system-level specification language (Handel-C) and a hardware description language

(VHDL). The second part of chapter 5 gives all the details. The respective

specifications were finally synthesized and implemented in commercially available

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 86

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

FPGAs and carefully analyzed (the respective results being reported in the next

chapter).

5.1. Modeling in software

In order to estimate relative effectiveness of recursive and iterative specifications of

different algorithms, as well as to check their correctness, all the algorithms were first

modeled in software and only after that implemented in hardware. The subsequent

sections will provide all necessary details.

5.1.1. Data structures

It was indicated in chapter 3 that discrete matrices were selected as the primary

mathematical model because of two reasons: matrices can easily be stored and

processed in both software and hardware; and the majority of the considered

combinatorial search problems can efficiently be formulated over matrices. Taking into

account this decision, relevant data structures need to be created so as to provide

support for storing and manipulation of matrices, by the respective algorithms.

We suppose that a discrete matrix is composed of a set of discrete vectors (either

rows or columns). Therefore data structures are needed for representing both vectors

and matrices. An object-oriented design approach was followed and, as a result,

several classes were created. These will be represented with the aid of class diagrams

which were generated in Microsoft Visual Studio .NET. Note that, for this reason, the

Unified Modeling Language (UML) regulations are not strictly followed. A relevant

difference is the use of two-headed arrows to identify arrays of objects.

5.1.1.1. Common classes

The two most basic classes which are required by the majority of the selected

algorithms allow the storing of vectors and masks. Class Vector can keep general-

purpose vectors, as well as matrix rows and columns, and they can be either binary or

ternary. Class Mask keeps a series of binary values which are used to mark their

indexes, for instance, as deleted/not deleted or as selected/not selected.

Let us consider Vector and Mask classes in detail. The class diagram in Figure 5.1

reveals the most relevant functionality which is implemented by these two classes.

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR

Figure

Vector class contains a single data field, which is an integer array for sto

vector elements. Although integers have a wide range of possible values, the selected

algorithms require only values 0, 1, and, when using ternary values,

latter is coded with integer value 2.

conjunction, the disjunction, and the intersection with another

Class Mask is derived from

vector. The purpose of class

with index masking. Hence, it provides methods for index masking and unmasking,

checking whether an index is masked, and also counting masked and unmasked

indexes. In practice, masked indexes correspond to values 1, whereas

indexes correspond to values 0. A masked index can denote a deleted row/column,

when applying deletion masks to a matrix (see

deletion operations simple, in opposition to actual memory deallocation. Eventual row

and column recovering is equally simple. The only emerging requirement is that some

operations over Vectors

account. Furthermore, the

choosing subsets of rows or columns (see

graph coloring algorithms.

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

RR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Figure 5.1 - Class members of Vector and Mask

class contains a single data field, which is an integer array for sto

vector elements. Although integers have a wide range of possible values, the selected

algorithms require only values 0, 1, and, when using ternary values,

latter is coded with integer value 2. Class Vector provides methods for calc

conjunction, the disjunction, and the intersection with another Vector

from Vector, as the data structure it requires

vector. The purpose of class Mask is to allow for an intuitive set of methods

with index masking. Hence, it provides methods for index masking and unmasking,

checking whether an index is masked, and also counting masked and unmasked

masked indexes correspond to values 1, whereas

respond to values 0. A masked index can denote a deleted row/column,

when applying deletion masks to a matrix (see Figure 5.2-a). This technique keeps

deletion operations simple, in opposition to actual memory deallocation. Eventual row

and column recovering is equally simple. The only emerging requirement is that some

 must take these masks (provided as p

account. Furthermore, the Mask class can also be used as selection masks for

subsets of rows or columns (see Figure 5.2-b), e.g. in set covering, SAT, and

graph coloring algorithms.

LGORITHMS - 87

NN

Mask

class contains a single data field, which is an integer array for storing the

vector elements. Although integers have a wide range of possible values, the selected

algorithms require only values 0, 1, and, when using ternary values, don’t-care. The

provides methods for calculating the

Vector, etc.

, as the data structure it requires is that of a binary

set of methods for dealing

with index masking. Hence, it provides methods for index masking and unmasking,

checking whether an index is masked, and also counting masked and unmasked

masked indexes correspond to values 1, whereas unmasked

respond to values 0. A masked index can denote a deleted row/column,

a). This technique keeps

deletion operations simple, in opposition to actual memory deallocation. Eventual row

and column recovering is equally simple. The only emerging requirement is that some

must take these masks (provided as parameters) into

class can also be used as selection masks for

in set covering, SAT, and

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR 55 ––

Figure 5.2 - Using deletion (a) and selection (b) masks

Class Matrix provides general

classes implementing matrix-

the relevant properties, methods and derived classes of

Figure 5.3 - Properties, methods, and derived classes of

As previously mentioned, once t

considered matrix-based algorithms do not require methods for writing rows, columns,

a)

0 0 0

0 0 1 0

0 1 1 1

1 ►

1 ►

0 0 1 0

0 0 0 1

1 ►M
as

k
of

 d
el

et
ed

 r
ow

s

Mask of deleted columns

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

–– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Using deletion (a) and selection (b) masks

provides general-purpose properties and methods which are

-based algorithms. The class diagram in Figure

the relevant properties, methods and derived classes of Matrix.

Properties, methods, and derived classes of Matrix

As previously mentioned, once the original problem matrix has been stored, the

based algorithms do not require methods for writing rows, columns,

b)

0 1 0

▼

0 1 0 0 1 0 0

0 1 0 1 1 1 0

1 ► 0 0 1 0

0 1 0 1 0

1 1 1 ► 0 1 0 1

0 0 1 ► 0 0 1 0

0 1 1 1 1M
as

k
of

 s
el

ec
te

d
ro

w
s

Mask of deleted columns

LGORITHMS - 88

Using deletion (a) and selection (b) masks

are inherited by

Figure 5.3 depicts

Matrix

he original problem matrix has been stored, the

based algorithms do not require methods for writing rows, columns,

1 1

0 1

0 0

0 0

0 1

1 0

0 0

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR

or elements. Thus, elements are written only within the class constructor, and only

reading and deleting methods are provided. Throughout the execution of an algorithm,

matrix rows eventually have to be

properties provide the original and the current number of undeleted rows in the matrix

(respectively OriginalNumberOfRows

scheme applies to columns. Methods

to test whether a specific row or column has been deleted.

The class diagram in Figure

order to implement its functionality.

Figure

Matrix elements are organized by rows, as an array of

fields of class Mask are used for masking the subset of matrix rows and the subset of

matrix columns which have already been deleted. Matrix properties

CurrentNumberOfRows and

unmasked indexes of those

features Mask-storing Stacks

to recover matrix states that have previously been stored.

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

RR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

or elements. Thus, elements are written only within the class constructor, and only

reading and deleting methods are provided. Throughout the execution of an algorithm,

have to be deleted. At any step of the algorithm,

properties provide the original and the current number of undeleted rows in the matrix

OriginalNumberOfRows and CurrentNumberOfRows); and the same

ns. Methods RowIsDeleted and ColumnIsDeleted

to test whether a specific row or column has been deleted.

Figure 5.4 reveals private data fields on which

ment its functionality.

Figure 5.4 - Class members of Matrix

Matrix elements are organized by rows, as an array of Vectors (the

are used for masking the subset of matrix rows and the subset of

matrix columns which have already been deleted. Matrix properties

and CurrentNumberOfColumns provide the current number of

unmasked indexes of those Masks. In order to support backtracking, class

Stacks which permit to store the current state of the matrix and

to recover matrix states that have previously been stored.

LGORITHMS - 89

NN

or elements. Thus, elements are written only within the class constructor, and only

reading and deleting methods are provided. Throughout the execution of an algorithm,

deleted. At any step of the algorithm, two matrix

properties provide the original and the current number of undeleted rows in the matrix

); and the same

ColumnIsDeleted can be used

reveals private data fields on which Matrix operates in

(the Rows field). Two

are used for masking the subset of matrix rows and the subset of

matrix columns which have already been deleted. Matrix properties

provide the current number of

pport backtracking, class Matrix also

which permit to store the current state of the matrix and

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR 55 ––

The classes described in this

selected algorithms to be modeled in software. As a result, a new set of cla

created (including those which are shown

detailed descriptions are provided in the

5.1.1.2. Classes for set covering algorithms

The SetCoveringMatrix class

additional fields and methods

The relevant members of this subclass are depicted in the class diagram of

Figure 5.5

Two Masks are used for keeping the current and minimum row covers, masking the

indexes of the rows included therein. One

current cover throughout the search tree of the set covering algorithm. A

methods model the functionality of the solvability and resolution tests, and the

reduction and selection rules that

5.1.1.3. Classes for SAT solving algorithms

Also deriving from the Matrix

functionality which is required for running Boolean satisfiability algorithms. The class

diagram in Figure 5.6 depicts the relevant members of this new

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

–– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

 section were augmented with methods that

selected algorithms to be modeled in software. As a result, a new set of cla

which are shown at the bottom of Figure

provided in the following sections.

Classes for set covering algorithms

class is derived from the Matrix class and

fields and methods which are required for running set covering algorithms.

The relevant members of this subclass are depicted in the class diagram of

 - Class members of SetCoveringMatrix

are used for keeping the current and minimum row covers, masking the

indexes of the rows included therein. One Stack is used for storing and restoring the

current cover throughout the search tree of the set covering algorithm. A

methods model the functionality of the solvability and resolution tests, and the

reduction and selection rules that were presented in section 3.2.2.

Classes for SAT solving algorithms

Matrix class, the class SATSolvingMatrix contains the additional

functionality which is required for running Boolean satisfiability algorithms. The class

depicts the relevant members of this new class.

LGORITHMS - 90

were augmented with methods that permit all the

selected algorithms to be modeled in software. As a result, a new set of classes was

Figure 5.3) and their

and features the

or running set covering algorithms.

The relevant members of this subclass are depicted in the class diagram of Figure 5.5.

are used for keeping the current and minimum row covers, masking the

is used for storing and restoring the

current cover throughout the search tree of the set covering algorithm. Auxiliary

methods model the functionality of the solvability and resolution tests, and the

contains the additional

functionality which is required for running Boolean satisfiability algorithms. The class

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR

Figure 5

Vector w is used for incremental construction of the solution vector. Three

required for storing and restoring the context while

additional attributes provide support for correct algorithmic flow. Last, several private

methods carry out the required reduction and selection rules, and the resolution and

solvability tests which were presented in section

5.1.1.4. Classes for graph coloring algorithms

One more subclass of Matrix

members for running graph coloring algorithms. The relevant methods and properties

of this new class are depicted in the class diagram of

A Mask-storing Stack denominated

of Figure 5.7) is used to incrementally compose the coloring currently under

construction. When a new c

When a row R (corresponding to a graph vertex) is to be assigned the current color,

the Mask at the top of that

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

RR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

5.6 - Class members of SATSolvingMatrix

is used for incremental construction of the solution vector. Three

required for storing and restoring the context while traversing the search tree. Three

additional attributes provide support for correct algorithmic flow. Last, several private

methods carry out the required reduction and selection rules, and the resolution and

re presented in section 3.2.3.

Classes for graph coloring algorithms

Matrix – GraphColoringMatrix – contains the necessary class

members for running graph coloring algorithms. The relevant methods and properties

of this new class are depicted in the class diagram of Figure 5.7.

denominated CurrentColoring (see lower right

) is used to incrementally compose the coloring currently under

construction. When a new color is required, a new Mask is pushed onto that

When a row R (corresponding to a graph vertex) is to be assigned the current color,

at the top of that Stack is used for masking the index of row R.

LGORITHMS - 91

NN

SATSolvingMatrix

is used for incremental construction of the solution vector. Three Stacks are

he search tree. Three

additional attributes provide support for correct algorithmic flow. Last, several private

methods carry out the required reduction and selection rules, and the resolution and

contains the necessary class

members for running graph coloring algorithms. The relevant methods and properties

(see lower right-hand side corner

) is used to incrementally compose the coloring currently under

is pushed onto that Stack.

When a row R (corresponding to a graph vertex) is to be assigned the current color,

the index of row R.

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR 55 ––

Figure 5.7 -

On the other hand, an array of

side of Figure 5.7) is used to keep the

witch has the minimum number of colors

complete and contains fewer

contents of the CurrentColoring

MinimumColoring Mask array

A Mask denominated MaskOfCombinableRows

which can be assigned the current col

the IntersectionVector is updated so as to keep the result of the intersection of

rows assigned the current color (including S).

Four other Stacks are used for context storing and restoring, by means of

GraphColoringMatrix pushing and popping methods, respectively (see left

Figure 5.7). These methods support the backtracking mechanism.

Other auxiliary methods provide the functionality of the solvability and resolution

tests, and the reduction and selection rules presented in section

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

–– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

- Class members of GraphColoringMatrix

On the other hand, an array of Masks denominated MinimumColoring

) is used to keep the minimum coloring, i.e. the complete coloring

minimum number of colors found so far. If the current coloring

complete and contains fewer colors (fewer Masks) than the minimum coloring

CurrentColoring Stack are used to replace those of the

array.

MaskOfCombinableRows is used to identify the indexes of rows

which can be assigned the current color. When a row S is assigned the current color,

is updated so as to keep the result of the intersection of

assigned the current color (including S).

are used for context storing and restoring, by means of

pushing and popping methods, respectively (see left

). These methods support the backtracking mechanism.

Other auxiliary methods provide the functionality of the solvability and resolution

tests, and the reduction and selection rules presented in section 3.2.4.

LGORITHMS - 92

 (see right-hand

complete coloring

If the current coloring becomes

) than the minimum coloring, the

are used to replace those of the

is used to identify the indexes of rows

or. When a row S is assigned the current color,

is updated so as to keep the result of the intersection of all

are used for context storing and restoring, by means of

pushing and popping methods, respectively (see left-hand side of

Other auxiliary methods provide the functionality of the solvability and resolution

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR

5.1.1.5. Classes for solving the knapsack problem

Three classes have been created for solving the knapsack problem. The relevant class

diagram is depicted in Figure

Figure 5.8 - Class diagram for knapsack

The KnapsackItem class is used for representing the available items, each one holding

its own profit and weight, and methods for reading those (see top left

Figure 5.8).

An instance of the KnapsackConfigurat

Mask is used for determining which items are included in the knapsack, and two other

fields provide the total profit and weight (see top right

The constructor method for the

and the knapsack weight capacity as parameters. These parameters characterize the

problem instance. When searching for the most profitable knapsack configuration, the

CurrentConfiguration field is used for building up, one by one, all the feasible solutions

to the problem. The BestConfiguration

configuration found so far

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

RR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Classes for solving the knapsack problem

e been created for solving the knapsack problem. The relevant class

Figure 5.8.

Class diagram for knapsack-solving algorithms

class is used for representing the available items, each one holding

its own profit and weight, and methods for reading those (see top left

KnapsackConfiguration class represents a selection of such items. A

is used for determining which items are included in the knapsack, and two other

fields provide the total profit and weight (see top right-hand corner of

The constructor method for the KnapsackSolver class takes an array of

and the knapsack weight capacity as parameters. These parameters characterize the

problem instance. When searching for the most profitable knapsack configuration, the

field is used for building up, one by one, all the feasible solutions

BestConfiguration field keeps the most profitable knapsack

so far. In order to iterate through the array of available items, an

LGORITHMS - 93

NN

e been created for solving the knapsack problem. The relevant class

solving algorithms

class is used for representing the available items, each one holding

its own profit and weight, and methods for reading those (see top left-hand corner of

class represents a selection of such items. A

is used for determining which items are included in the knapsack, and two other

corner of Figure 5.8).

class takes an array of KnapsackItems

and the knapsack weight capacity as parameters. These parameters characterize the

problem instance. When searching for the most profitable knapsack configuration, the

field is used for building up, one by one, all the feasible solutions

he most profitable knapsack

. In order to iterate through the array of available items, an

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR 55 ––

integer attribute is incremented at each stage of the algorithm, keeping track of the

current item’s index.

A Stack is used for stor

construction throughout the algorithm search tree (see bottom right

Figure 5.8).

5.1.1.6. Classes for tree-based sorting algorithms

Tree-based sorting algorithms require modeling of binary tree nodes, whose instances

assume different values to be sorted.

built for this purpose.

Figure 5.9 - Class diagram for iterative and the recursive tree

The iterative and the recursive sorting algorit

regarding the node class members. For this reason, a

IterativeSortingNode classes have been modeled, inheriting the class members which

they share from the same class: the

Any object which implements the

SortingNode’s Value field. The utilization of this interface allows the developed

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

–– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

integer attribute is incremented at each stage of the algorithm, keeping track of the

storing and restoring the knapsack configuration under

construction throughout the algorithm search tree (see bottom right-

based sorting algorithms

based sorting algorithms require modeling of binary tree nodes, whose instances

assume different values to be sorted. Figure 5.9 presents the class diagram which was

Class diagram for iterative and the recursive tree-based sorting

The iterative and the recursive sorting algorithms have different requirements

regarding the node class members. For this reason, a RecursiveSortingNode

classes have been modeled, inheriting the class members which

they share from the same class: the SortingNode abstract class.

Any object which implements the IComparable interface can be the assignment of

field. The utilization of this interface allows the developed

LGORITHMS - 94

integer attribute is incremented at each stage of the algorithm, keeping track of the

the knapsack configuration under

-hand corner of

based sorting algorithms require modeling of binary tree nodes, whose instances

presents the class diagram which was

based sorting

hms have different requirements

RecursiveSortingNode and an

classes have been modeled, inheriting the class members which

interface can be the assignment of

field. The utilization of this interface allows the developed

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 95

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

algorithms to sort objects of different classes, as long as they implement the required

comparison method.

Integer field Counter is used for keeping track of the number of occurrences of the

assigned value. In fact, this field leads to sorting algorithms somewhat more enhanced

than the algorithm which was presented in section 3.3.1. The differences take place in

the insertion and the retrieval of repeated values. In the tree construction stage, when

inserting a value which has already been inserted in a node N, the Counter of N can

simply be incremented, instead of constructing a new node. Moreover, in the retrieval

stage, the value of each node must then be retrieved as many times as stated by the

Counter. Figure 5.10 and Figure 5.11 respectively illustrate the tree construction and

value retrieval stages, when integrating this strategy into the tree-based sorting

algorithm. The value of the nodes’ Counter is revealed within parenthesis, when

different from 1 (see Figure 5.10-d). The sequence of values which is given in the

example is 4-2-7-5-7-9, the sorted result being 2-4-5-7-7-9.

a) b) c) d) f)

< ≥ > >

<

4

2

4

2 7

4

2 7

5

4

2 7(2)

5

4 2 7 5 7 9 4 2 7 5 7 9 4 2 7 5 7 9 4 2 7 5 7 9

=

>

>

4

2 7(2)

5 9

4 2 7 5 7 9

Figure 5.10 - Constructing a sorting tree with occurrence accumulation

a) b) c) d) f)

2

4

2 7(2)

5 9

9

4

2 7(2)

5 9

4

2 7(2)

5 9

4

2 7(2)

5 9

4

2 7(2)

5 9

2 4 2 4 5 2 4 5 7 7 2 4 5 7 7

Figure 5.11 - Retrieving the values of a sorting tree with occurrence accumulation

SYNTHESIS OF FPGA-BASED

CCHHAAPPTTEERR 55 ––

Moving on to node fields, although there is

both the derived classes of SortingNode

because their type (class) is distinct. In fact, sub

should be composed solely of nodes of the

IterativeSortingNode.

The most relevant differences between the

IterativeSortingNode classes are:

1. the recursive vs. iterative nature of their methods for:

a. inserting a value in the tree;

b. in-order retrieving the tree values;

2. the IterativeSortingNode

iterative algorithm to backtrack in the tree towards its root.

The Microsoft Visual Studio built

dequeuing of generic objects. For this reason, the

SortingNode’s sub-classes takes as a parameter a

which are to be sorted. One-

the sorting tree by means of the

5.1.1.7. Classes for calculating the greatest common divisor

A simple GCDCalculator class (see

and iterative public methods for calculating

integers.

Figure

BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS

–– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Moving on to node fields, although there is a LeftSubtree and a RightSubtree

SortingNode, these fields do not belong to that base class

because their type (class) is distinct. In fact, sub-trees of RecursiveSortingNodes

should be composed solely of nodes of the same type, and the same applies for an

The most relevant differences between the RecursiveSortingNode

classes are:

iterative nature of their methods for:

inserting a value in the tree;

order retrieving the tree values;

IterativeSortingNode’s Parent field which is required for the

iterative algorithm to backtrack in the tree towards its root.

The Microsoft Visual Studio built-in Queue class features easy-to-use queuing and

of generic objects. For this reason, the BuildTree public method of both

classes takes as a parameter a Queue of the IComparable

-by-one, each of these objects is dequeued and inserted in

ee by means of the InsertValueInTree private method.

Classes for calculating the greatest common divisor

class (see Figure 5.12) has been created to provide recursive

and iterative public methods for calculating the greatest common divisor of two

Figure 5.12 - The GCDCalculator class

LGORITHMS - 96

RightSubtree fields in

, these fields do not belong to that base class

RecursiveSortingNodes

same type, and the same applies for an

RecursiveSortingNode and the

field which is required for the

use queuing and

public method of both

IComparable objects

one, each of these objects is dequeued and inserted in

) has been created to provide recursive

the greatest common divisor of two

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 97

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Both GCD-calculating methods take two integer parameters for providing the values

between which the GCD is to be calculated. No auxiliary methods or composite types

are required.

5.1.2. Algorithmic flows

This section presents the UML Activity Diagrams which were prepared when modeling

the selected algorithms in software. Algorithmic flows described here were later

reused as a basis for algorithm implementation in hardware as well.

5.1.2.1. The set covering algorithm

Section 3.2.2 presents the reduction and selection rules which are employed in the

exact set covering algorithm. Figure 5.13 and Figure 5.14 respectively depict the

recursive and iterative top-level activity diagrams built on the basis of those rules.

Have
all collumns been

deleted?

Apply subsumption for
columns and for rows

Cover critical columns

Update minimum
cover with

current cover

Identify a column C
which has the

minimum number of 1s

Store context
onto stacks

Recursively find
a minimum cover

End

yes
yes

no

no

yes

no

Begin

Is current
cover size too

high?

Is
there any

row left with a 1
in column

C?

Include row R in current cover
and erase row R and all

columns with a 1 in row R

Identify next row R
with a 1 in column C

Restore context
from stacks

Figure 5.13 - Recursive method for finding an exact cover

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 98

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

When starting a new branch of the search tree, the recursive algorithm applies

reduction rules R1 and R2 (see section 3.2.2), i.e. carries out subsumption for

columns and subsumption for rows until it is no longer possible. At the second step,

selection rule S1 is applied, i.e. for any column C containing a single value 1, the row

which includes this value is included in the current cover. The remaining part of the

diagram is dedicated to application of the selection rule S2 (see section 3.2.2).

The darkened node in Figure 5.13 corresponds to a recursive invocation call. The

search for a minimum cover, using the recursive algorithm, is therefore carried out by

re-executing exactly the same method. The search tree backtracking mechanism is

supported by the use of stacks, onto which context variables are stored before starting

a new search tree branch, and from which they are restored when backtracking.

Have
all collumns been

deleted?

Apply subsumption for
columns and for rows

Cover critical columns

Update minimum cover
with current cover

Identify a column C
which has the minimum

number N of 1s

Store context
onto stacks

yes

noyes yes

no

Begin

Is current
cover size too

high?

Are
context stacks

empty?

yes

no

Restore context
from stacks

Determine mask of rows
with a 1 in column C

backtracking?

Are
there still

rows with a 1 in
column

C?

Let backtracking = FALSE

Let backtracking = TRUE

End

no

yes

no

Include row R in
current cover and erase
row R and all columns

with a 1 in row R

Identify next row R
with a 1 in column C

Figure 5.14 - Iterative method for finding an exact cover

As explained in section 3.2.2, the set covering problem description given in the

beginning of that section leads to solvable instances only. Moreover, both the

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 99

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

recursive and the iterative algorithms which are presented in this section do not

include any operation which would render the processed matrix uncoverable. For these

two reasons, no solvability test has been included in the proposed algorithms.

Nevertheless, if we require considering unsolvable instances (i.e. uncoverable

matrices), executing a simple solvability test prior to running any of the proposed

algorithms would suffice. Such test would consist of determining whether the given

matrix contains a column without values 1 and finding such a column would indicate

that the given instance is unsolvable.

Let us now compare the recursive activity diagram depicted in Figure 5.13 with the

iterative one in Figure 5.14. Although, both algorithms follow the same reduction and

selection rules indicated in section 3.2.2, the superior clearness and simplicity of the

recursive algorithm are rather obvious.

5.1.2.2. The SAT solving algorithm

The reduction and selection rules and the solvability and resolution tests which can be

used to solve the Boolean satisfiability problem are described in section 3.2.3. The

activity diagrams in Figure 5.15 and Figure 5.16 (created on the basis of those

descriptions) depict the recursive and iterative algorithms for solving the SAT problem.

Note that, although no initialization operation is shown is those diagrams, all elements

of vector w must be assigned to don’t-care before running any of those two

algorithms. In both algorithms, if vector w becomes orthogonal to all rows, its

negation is calculated and stored in the solution vector. If the latter is still unassigned

(i.e., if all its elements are still don’t-cares) when the algorithm finishes, it means that

the problem instance is unsatisfiable.

One of the areas identified with a gray background (see Figure 5.15-a) comprehends

the sequence of operations which implement the reduction rules (see section 3.2.3).

When reduction rule R2, R3, or R4 carries out any changes, the latter might create the

conditions for some more reduction rules to be applicable. Thus, when at least one of

those rules is effectively applied, the whole reduction sequence is repeated. The

iterative algorithm proposed includes exactly the same reduction cycle (see Figure

5.16).

After reduction, if both the resolution and the solvability tests fail — i.e., if w is not yet

orthogonal to all rows and it is not known that the current search subtree cannot

provide a solution —, then selection rules are applied (see section 3.2.3). At this point,

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 100

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

a branching in the search tree has been reached. An assignment to a chosen element

of vector w is made. Then, a recursive call to the same method continues the search

through the corresponding subtree. If the solution vector is not assigned when

returning from this recursive call, a second assignment to the chosen element of

vector w is made using the inverted value, and another recursive call is made. Once

again, the forward and backward steps in the search tree are supported by

storing/restoring context variables onto/from stacks.

Have
all rows been

deleted?

Have
relevant changes
been made during

this reduction
iteration?

Delete all columns
which correspond to

values 0 or 1 in vector w

If a row R has only one
component C different
from don’t-care, then

include the inverted value
for column C in vector w

If a column C without
0s (1s) can be found,

then include in vector w
value 0 (1) for column C

Delete all columns
without 0s and 1s

Delete all rows which are
orthogonal to vector w

Let solution = negation of vector w

Have
all columns been

deleted?

Identify a column
Cmax which has the
maximum number

of 0s and 1s

Does
column Cmax

contain more 0s
than 1s?

Include value 1 for
column Cmax in vector w

Include value 0 for
column Cmax in vector w

Store context
onto stacks

Recursively
solve SAT

Restore context
from stacks

Invert Cmax
value in vector w

Has
solution been

assigned

Store context
onto stacks

Recursively
solve SAT

Restore context
from stacks

Begin

End

yes

no

yes

no

yes

no

no

yes

yes

no

Reduction

Recursive call

Recursive call

a) b)

c)

Figure 5.15 – Recursive method for solving the Boolean satisfiability problem

The proposed iterative algorithm for solving the SAT problem implements the same

reduction and selection rules as the recursive algorithm. Although these two

algorithms were not implemented in hardware, their modeling in software permits to

validate the presented activity diagrams which, in turn, allows for a valuable

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 101

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

comparison between recursive and iterative descriptions, regarding an important set

of design issues. Indeed, differences in their description’s clearness, structural

simplicity, and ease of modification can be identified by comparing the activity

diagrams in Figure 5.15 and Figure 5.16.

Are
context stacks

empty?

Restore context
from stacks

inverted?

Invert Cmax
value in vector w

Store context
onto stacks

yes

yes

no

no

Have
relevant changes
been made during

this reduction
iteration?

Begin

yes

no

Reduction

Have
all rows been

deleted?

Let solution = negation of vector w

Have
all columns been

deleted?

Identify a column Cmax
which has the maximum

number of 0s and 1s

Does
column Cmax

contain more 0s
than 1s?

Include value 1 for
column Cmax in vector w

Include value 0 for
column Cmax in vector w

yes

no

yes

no

no

yes

End

Let inverted = false

Let inverted = true

Delete all columns
which correspond to

values 0 or 1 in vector w

If a row R has only one
component C different
from don’t-care, then

include the inverted value
for column C in vector w

If a column C without
0s (1s) can be found,

then include in vector w
value 0 (1) for column C

Delete all columns
without 0s and 1s

Delete all rows which are
orthogonal to vector w

Figure 5.16 – Iterative method for solving the Boolean satisfiability problem

A relevant difference is related to the need for assigning and testing of auxiliary

variables (namely inverted and the state of the stacks). The iterative algorithm

requires such operations to correctly traverse the search tree, whereas the recursive

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 102

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

one does not. As a consequence of this drawback, the overall structure of the iterative

diagram becomes more complex, lowering its clearness.

Note that the whole reduction cycle in both activity diagrams could be wrapped up

inside a module. In the case of the recursive algorithm (see Figure 5.15), other parts

of the diagram have well-defined and context-intuitive boundaries too. Thus,

hierarchical modularity could be applied to such parts as well. Additionally, the use of

modules enables reuse, and such is the case of the diagram blocks in Figure 5.15-b

and Figure 5.15-c. Contrariwise, the complex algorithmic flow obtained with the

iterative diagram (see Figure 5.16) prevents any useful modularity to be applied and,

as a consequence, reuse is also not possible.

In fact, these disadvantages of using iteration are generally detected when comparing

the pair of activity diagrams of all the selected algorithms (see sections 5.1.2.1-

5.1.2.6).

5.1.2.3. The graph coloring algorithm

The top-level activity diagram in Figure 5.18 describes a recursive exact algorithm for

solving the graph coloring problem. This activity diagram is based on the reduction

and selection rules, and the solvability and resolution tests which were presented in

section 3.2.4.

As previously mentioned, the graph coloring problem has no unsolvable instances.

Instead of a solvability test, a condition determines whether the current (under

construction) coloring may still converge into a complete coloring which would be

smaller (i.e. include fewer colors) than that previously stored as the minimum

coloring. This condition is tested in the ‘Is the current coloring size too high?’ node, at

the top-left corner of Figure 5.17.

In the context of this algorithm, a matrix row is said to be combinable if it is not

orthogonal to the combination vector. The combination vector stores the intersection

of all the rows that were assigned the current color. In practice, combining a row R

consists of three operations:

1. Assign row R to the current color;

2. Update the combination vector to the intersection of the current

combination vector and row R;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 103

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

3. Remove row R from the matrix (see reduction rule R3 in section

3.2.4).

yes

no

Begin

Is
the current

coloring size too
high?

Have
all rows been

deleted?

Is
current

coloring smaller
than minimum

coloring?

Update
minimum coloring

Determine mask of
combinable rows

Does
current coloring
already have a

color?

Reduction rules
R1 and R2

Add new color to
current coloring

Are there
combinable

rows?

Combine first
non-deleted row

Have
all rows been

deleted?

Recursively find
best coloring

Combine next
combinable row

Store context
onto stacks

Recursively find
best coloring

Restore context
from stacks

End

Are there
combinable

rows?

End

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

Figure 5.17 - Recursive method for finding an exact vertex coloring

The overall contour of the activity diagram conforms to the step sequence outlined in

section 3.2.4.

Once again, the backtracking mechanism is supported by stacks, onto which context

variables are stored before starting a new search tree branch, and from which they

are restored when backtracking.

Let us now consider the top-level activity diagram in Figure 5.18. On the basis of the

same reduction and selection rules, and solvability and resolution tests presented in

section 3.2.4, this activity diagram describes an exact iterative algorithm for solving

the graph coloring problem.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 104

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Minimum Coloring

AchievedHave
all rows been

deleted or is current
coloring size

too high?

Let R = next combinable row

backtracking?

Are there
combinable

rows?

Let backtracking = FALSE

Combine next
combinable row

Have
all rows been

deleted?

Are
context stacks

empty?

Restore context
from stacks

Are there
combinable

rows?

Store context
onto stacks

Begin

search

Is
the current

coloring smaller than
the minimum

coloring?

Update
minimum coloring

Let R = first non-deleted row

Combine
row R

yes

yes

yes

yes

yes

yes

no

yes

no

no

no

no

no

no

Let backtracking = TRUE

Reduction rules R1 and R2

Add new color to
current coloring

Store context
onto stacks

Determine mask of
combinable rows

Figure 5.18 - Iterative method for finding an exact vertex coloring

5.1.2.4. The algorithm for solving the knapsack problem

The activity diagram in Figure 3.14 describes the main algorithmic flow of the

recursive method for finding the most profitable knapsack configuration. Let us now

examine the same algorithm in more detail with the aid of the activity diagram in

Figure 5.19.

Any new item that is considered (see the ‘Let I = next item’ node in Figure 5.19)

starts masked as not included in the current configuration. In case its weight exceeds

the knapsack capacity, the inclusion path is skipped in order to try only knapsack

configurations which do not include this item.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 105

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Update the best
configuration

with the current
configuration

yes

no

no

yes

Recursively find
best configuration

Have
all items been
considered?

noyes

Current
configuration’s profit
> best configuration’s

profit?

Better

configuration
achieved

No better
configuration

achieved

Finished

Mask item I as included
in current configuration

Add profit and weight of item I
respectively to profit and weight

of current configuration

Mask item I as excluded
in current configuration

Subtract profit and weight of item
I respectively from profit and

weight of current configuration

Begin

Store context onto stacks

Restore context from stacks

Recursively find
best configuration

Store context
onto stacks

Restore context from stacks

Let I = next item

Weight
of current

configuration + weight of
item I > knapsack

capacity?

Figure 5.19 - Recursive method for finding the most profitable knapsack

configuration

Analogously to the previous algorithms, backtracking is supported by executing

operations for context storing and restoring respectively before and after each of the

two recursive invocations.

5.1.2.5. The tree-based sorting algorithm

As previously mentioned, tree-based sorting comprehends two stages: first, build a

binary sorted tree using the given data; then retrieve those values by means of in-

order traversing. Each node holds a value to be sorted, a counter for accumulating

multiple occurrences of that value, and two nodes which are the roots of the left and

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 106

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

right subtrees. If any of these two nodes is unassigned, it means the holding node

does not have the corresponding subtree.

Insertion finished

Begin insertion

yes

no

Is there a
node assigned

to CN?

Incoming
value = value

of CN?

Incoming
value < value

of CN?

Create a new node for
the incoming value. Let
its counter = 1. Let both
its subtrees = no node

Increment CN’s counter

Recursively insert
the incoming value

in subtree CN

yes

yes

no

no

Let CN = new node

Let CN = left
subtree of CN

Let CN = right
subtree of CN

Figure 5.20 - Recursive method for inserting a value in a sorted tree

Figure 5.20 and Figure 5.21 depict the activity diagrams respectively for the recursive

and iterative methods for inserting an incoming value in a sorted tree. Let us notice

that both these methods make use of a variable CN (‘CN’ stands for ‘current node’) in

which the node to be processed is stored. Prior to each insertion, CN is assigned the

root of the sorted tree. When an incoming value must be inserted in one of the

subtrees, variable CN is assigned to that subtree’s root. In case this root has not been

assigned (i.e. there is no subtree), a new node is created, thus initiating a subtree

(see Figure 5.20).

The iterative method, additionally, makes use of a variable PN (‘PN’ standing for

‘parent node’), assigning it to CN before processing one of its subtrees. This way, in

case the subtree to process does not exist, it is possible to assign PN’s left subtree or

right subtree (whichever is the case) to a new node then created: CN (see Figure

5.21).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 107

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Insertion
finished

Begin
insertion

yes

no

Is there a
node assigned

to CN?

Incoming
value = value

of CN?

Incoming
value < value

of CN?

Create a new node for
the incoming value. Let
its counter = 1. Let both
its subtrees = no node

Increment
CN’s counter

yes

yes

no

no

Let CN = new node

Let CN = left subtree of CN

(choosing left subtree)

Let CN = right subtree of CN

(choosing right subtree)

Is there a
node assigned

to PN?

Which
subtree has been

chosen?

Let left
subtree of
PN = CN

Let right
subtree of
PN = CN

left right

Let PN = CN

yes

no

Figure 5.21 - Iterative method for inserting a value in a sorted tree

Figure 5.22 and Figure 5.23 depict the activity diagrams respectively for the recursive

and the iterative methods that are used for retrieving the tree values. In both cases,

the retrieval starts with variable CN assigned to the tree root.

For the iterative method, nodes must hold not only a value, a counter, and the root

nodes of both its subtrees, but also a third node: the parent node (see top right corner

of Figure 5.23). In this context, a tree root is therefore a node with an unassigned

parent node.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 108

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Retrieval

finished

Begin

retrieval
no

yes

Recursively retrieve values
from the left subtree of CN

Retrieve CN’s value as
many times as indicated

in CN’s counter

Is there a
node assigned

to CN?

Recursively retrieve values
from the right subtree of CN

Figure 5.22 - Recursive method for retrieving tree values

Retrieval

finished

Begin

retrieval

yes

no

Let CN = left
subtree of CN

Let CN = PN

Let CN = parent of CN

Let CN = right
subtree of CN

Is
CN’s parent
assigned?

Let CN = parent of CN

no

yes

no

yes

yes

no

Retrieve CN’s value as
many times as indicated

in CN’s counter

Is
there a node
assigned to

CN?

Let PN = CN

Is CN’s
right subtree
assigned?

Is
CN the left

subtree of CN’s
parent?

Figure 5.23 - Iterative method for retrieving tree values

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 109

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

5.1.2.6. The algorithm for calculating the GCD

The pseudocode for calculating the greatest common divisor of two integer values

which is presented in Figure 3.18 leads to the activity diagrams in Figure 5.24. The

recursive algorithm is described in Figure 5.24-a, whereas the iterative one is in Figure

5.24-b. Let us recall that keyword mod represents the modulo operation, which

calculates the remainder of dividing the first operand by the second operand. The

iterative algorithm uses an auxiliary variable T (temp in Figure 3.18’s pseudocode) for

swapping the values of A and B.

Calculus finished

Begin calculus

yes

no

B = 0?

Return ARecursively calculate
the GCD between
B and A mod B

Calculus finished

Begin calculus

yes

no

B = 0?

Return A

Let A = T

Let B = A mod B

Let T = B

a) b)

Figure 5.24 - Recursive (a) and iterative (b) algorithms for calculating the GCD of

two integers A and B

5.2. Implementation in hardware

Most of the selected algorithms were implemented on the basis of the general

hardware architecture depicted in Figure 5.25. A centralized control unit coordinates

the execution of the required sequence of algorithmic steps. For the majority of the

implemented algorithms, the data storage block is matrix-oriented and all operations

over individual rows and columns are executed in the processing unit. When

implementing other kinds of algorithm, different data storage blocks were used.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 110

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Control
Unit

Processing
Unit

Data
Storage

Figure 5.25 – General architecture of hardware solvers

This architecture has been used for implementing instance-specific solvers. Using such

approach, the results of experiments can more expressively highlight the differences

between the compared systems (for instance, regarding the resources required)

because there is less interference caused by secondary system components. Thus we

believe it leads to a more reliable comparison between recursive and iterative

implementations.

The following subsections present the three blocks of the architecture.

5.2.1. Data storage

The architectural block for storing problem data has to be able to keep basic data

structures, such as binary and ternary vectors. Let us consider such components first.

5.2.1.1. Binary vectors and ternary vectors

For storing binary vectors, the developed circuits keep arrays of bits explicitly stating

the binary values. Two logic vectors are used for storing ternary vectors: one marking

the position of values 0 and the other marking the position of values 1, while positions

marked by none of those values correspond to don’t-care values (see Table 5.1, in

which ‘-’s represent don’t-care values).

Table 5.1 - Representing binary and ternary vectors

 Binary vector Ternary vector

Vector to store:

Storing logic vectors:
zeros:

ones:

1 0 0 1 0 1 1 0 1 - 0 -

1 0 0 1 0 1
0 1 0 0 1 0

1 0 1 0 0 0

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 111

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

5.2.1.2. Binary matrices and ternary matrices

Some matrix-based algorithms require binary matrices, while others use ternary

matrices. Analogously to the ternary vector-storing technique (see the last column in

Table 5.1), two binary matrices can be used to compose a ternary matrix. Figure 5.26

shows how a ternary matrix can be coded by two binary matrices.

Figure 5.26 – Coding of a 4x4 ternary matrix by two binary matrices

A second criterion regarding the matrices which are required by matrix-based

algorithms also divides these algorithms in two groups: one with simple access to the

matrices (by either rows or columns) and the other one requiring dual access (by both

rows and columns).

Figure 5.27 - Representation of a 4x4 binary matrix in two memory blocks

- 0 1 1

1 0 - 1

0 - - 0

1 1 - -

Zeros Ones

0 1 0 0 0 0 1 1

0 1 0 0 1 0 0 1

1 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

Ternary matrix

Binary matrices

0 0 1 1

1 0 0 1

0 0 0 0

1 1 0 0

0 0 1 1 0 1 0 1

1 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0
Memory blocks

Binary matrix

Rows Columns

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 112

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Using embedded memory blocks for keeping matrices, if we want to achieve good

performance, then dual access to a matrix requires a replication of its data: one

memory block can be organized as an array of rows; and the other as an array of

columns. Figure 5.27 presents an example.

Let us notice that replicating a ternary matrix implies the replication of both binary

matrices which result from the ternary-to-binary decomposition (see ‘zeros’ and ‘ones’

in Figure 5.26). This means that up to four memory blocks may be required to store a

single ternary matrix.

Combining the two presented criteria, four solver classes emerge with direct

correspondence to four kinds of matrix:

a) Single Access Binary Matrix (SABM);

b) Single Access Ternary Matrix (SATM);

c) Dual Access Binary Matrix (DABM);

d) Dual Access Ternary Matrix (DATM).

The number of embedded memory blocks used to implement binary and ternary

matrices in function of the access type is presented in Table 5.2.

Table 5.2 - Number of embedded memory blocks in function of matrix and matrix

access types

Access Binary Matrices Ternary Matrices

Simple
SABM:
1 memory block required

SATM:
2 memory blocks required

Dual
DABM:
2 memory blocks required

DATM:
4 memory blocks required

5.2.1.3. Supplementary problem-oriented data structures

With respect to the tree-based sorting algorithm implementation in hardware, every

node-referencing variable contains an address which indicates the node’s position

within a memory block. Let us look at an example on the basis of the sorting tree built

in section 5.1.1.6 (see Figure 5.10-f). Figure 5.28 illustrates the storage of the

respective nodes’ data in a simplified memory block.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 113

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

 Value Counter Parent Left Subtree Right Subtree

 (0-15 value) (0-7 value) (ref. to a node) (ref. to a node) (ref. to a node)

111

110

101

100 1001 (9) 001 (1) 0010 1111 1111

011 0101 (5) 001 (1) 0010 1111 1111

010 0111 (7) 010 (2) 0000 0011 0100

001 0010 (2) 001 (1) 0000 1111 1111

000 0100 (4) 001 (1) 1111 0001 0010

Figure 5.28 – Memory block with sorting tree nodes’ data

The three rightmost fields of each memory word are used to store addresses of other

related nodes in the same memory. Only 3 bits are required to address any of the 8

memory words, but using an extra bit permits to represent the equivalent to a null

pointer (‘1111’ in this example), indicating that the respective child or parent node

does not exist. Thus, node-referencing fields are 4-bit wide. In case one of these fields

does not contain ‘1111’, then the three rightmost bits of this field constitute the

memory address at which the pointed node is stored. In Figure 5.28, numbers in

parenthesis are the decimal equivalents of the stored binary numbers.

100 (4)110 (6)11

101 (5)100 (4)10

111 (7)110 (6)01

100 (4)111 (7)00

(0-7 value)(0-7 value)

WeightProfit

Best Configuration

Current Configuration

Available Items

1000 (8)1101 (13)1 0 0 1
(0-15 value)(0-15 value)(4-bit vector)

Total
Weight

Total
Profit

Mask of
included

items

Figure 5.29 – Simplified hardware data structures for solving the knapsack

problem

For solving the knapsack problem, the available items are stored in a memory block

(see a simplified example at the bottom of Figure 5.29), each memory word

containing the profit and weight of an item. On the other hand, the current and best

knapsack configurations (see top of Figure 5.29) keep not only the total profit and

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 114

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

total weight but also a logic vector which is used as a mask of included items. If an

item i must be included in the configuration, then the i th bit of the mask is assigned

to 1. Figure 5.29 illustrates the use of these data structures when applied to the

Knapsack problem instance that was given as an example in section 3.2.5. Again,

numbers in parenthesis are the decimal equivalents of the stored binary numbers.

5.2.2. Control unit

Independently of the implementation (i.e. either in software or in hardware), recursive

calls invoke operations over stacks in such a way that the states of the algorithm

(where recursive invocations have happened) are saved onto a stack and the stack

pointer is incremented to address the storage for a recursively called sub-algorithm.

When the recursive sub-algorithm ends, the stack pointer is decremented in order to

restore the state of the interrupted algorithm. If we consider an equivalent iterative

algorithm, such stack is not required and computations are performed in a loop, which

ends as soon as some conditions are satisfied.

Iterative algorithms can be described and implemented using either flat or hierarchical

specifications. In the first case, we can recur to the traditional FSM model and employ

any suitable language (such as VHDL, Verilog, or Handel-C) for specifying the

algorithmic steps.

The hardware FSM model is shown in Figure 5.30 [Skliarova08]. The FSM consists of a

combinational circuit (that produces the primary outputs and calculates the next state

on the basis of the input values and the current state) and a register that stores the

current FSM state. Figure 5.30 includes a VHDL template illustrating how the

combinational circuit and the FSM register can be described with the aid of two

processes. The template is parameterizable and can therefore be used for describing

functionality of any FSM. Figure 5.31 presents a Handel-C template for the same FSM

model.

In the case of an iterative hierarchical specification, the algorithm description is

decomposed in modules (for example, a module implementing reduction rules, a

module for testing the quality of solutions, etc.). The resulting modular descriptions

have a number of advantages over traditional FSMs which can be justified as follows.

It is well known that the best way to simplify the problem solving process is to divide

the initial problem into small, manageable parts [Skliarova08]. The resulting design

will contain modules, which are self-contained circuits. Besides of simplifying the

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 115

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

design process, such an approach provides a direct support for reusability, since the

developed modules might be reused in different parts of the project, as well as in

other projects. Another very important aspect is design’s modifiability. Imagine that

the initial problem specification is changed after some period of time. When the

project is divided in modules, incorporating changes into a single module is a simpler

task than changing the implementation of the whole circuit.

FSM_register
Combinational

circuit (CC)

x1 xL

y1 yN

current
state

next
state

Control:
clk,rst

process(clk,rst)

begin -- the first process describing the FSM register

if rst = '1' then

-- setting to an initial state a0:

current_state <= a0;

elsif rising_edge(clk) then

-- executing state transition:

current_state <= next_state;

end if;

end process;

process (current_state,inputs)

begin -- the second process for the block CC

case current_state is

when a0 =>

-- generating outputs for state a0

-- calculating the next state

when a1 =>

-- generating outputs for state a1

-- calculating the next state

-- repeating for all the states

end case;

end process;

inputs

outputs

Figure 5.30 – Design template for an FSM and VHDL description

Recursive algorithms are also constructed from modules but, in this case, each module

is allowed to call itself. It is well known that hardware description languages (such as

VHDL) and system-level specification languages (such as Handel-C) do not provide

direct support for recursive algorithms [Skliarova08]. However, recursion can be

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 116

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

implemented in a hierarchical finite state machine [Sklyarov99] and the latter can

easily be described in hardware and system-level specification languages.

void FSM()

{ STATE_ID state;

 BOOLEAN done;

 //set to an initial state and initialize

 do

 { switch(state)

 { case a0:

 par

 { //algorithm-related operations for a0

 //calculate next state

 }

 break;

 case a1:

 par

 { //algorithm-related operations for a1

 //calculate next state

 }

 break;

 //repeating for all states

 default:

 delay;

 }

 } while(!done);

}

Figure 5.31 – Design template for an FSM described in Handel-C

The hardware HFSM model is depicted in Figure 5.32. The HFSM consists of a

combinational circuit and two stacks (that keep track of hierarchical module

invocations), one for states (FSM_stack) and the other for modules (M_stack).

The stacks are managed by a combinational circuit that is responsible for new module

invocations and state transitions in any active module that is designated by the

outputs of M_stack. Any non-hierarchical transition is performed through a change of

a code only on the top register of FSM_stack. Any hierarchical call alters the states of

both stacks in such a way that M_stack will store the code for the new module and two

values will be pushed onto FSM_stack: first, the code of the next state in the calling

module and then the code of the first state in the called module. Any hierarchical

return just activates a pop operation without any change in the stacks. As a result, a

transition to the state following the state where the terminated module was called will

be performed. The stack pointer (stack_ptr) is common to both stacks.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 117

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

M_stack FSM_stack
Combinational

circuit (CC)

x1 xL

y1 yN

current
state

current
module

next
state

new
moduleControl: clk, rst, push, pop

Control: clk,
rst, push, pop

process(clk,rst) -- the first process for the blocks

begin -- M_stack and FSM_stack

if rst = '1' then

-- setting to an initial state and initializing

elsif rising_edge(clk) then

-- test for possible errors

-- executing transitions of the following types

-- a) between states within the same module

-- b) between states that belong to different modules

end if;

end process;

process (current_module,current_state,inputs)

begin -- the second process for the block CC

case M_stack(stack_ptr) is

when z0 =>

case FSM_stack(stack_ptr) is

-- state transitions in the module z0

-- generating outputs for the module z0

end case;

when z1 =>

case FSM_stack(stack_ptr) is

-- state transitions in the module z1

-- generating outputs for the module z1

end case;

-- repeating for all the modules

end process;

Figure 5.32 – Design template for an HFSM and VHDL description

Figure 5.32 illustrates an example of VHDL code for an HFSM, which makes it possible

to describe modular and recursive algorithms [Sklyarov04]. There are two

concurrently executing VHDL processes in Figure 5.32. The first process describes two

stacks (the stack of modules and the stack of states) and the second process

describes the combinational circuit, which is able to manage transitions between the

FSM modules and FSM states. It is important that the second process can easily be

customized for executing any desired hierarchical algorithm [Skliarova08]. A similar

template is presented in Figure 5.33 using Handel-C.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 118

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

void HFSM()

{ MODULE_ID module;

 STATE_ID state;

 BOOLEAN done;

 //set to an initial module and state and initialize

 do

 { par

 { module = M_stack(stack_ptr);

 state = FSM_stack(stack_ptr);

 }

 switch(module)

 { case z0:

 switch(state)

 { //algorithm-related operations in the module z0

 //stack management operations in the module z0

 }

 break;

 case z1:

 switch(state)

 { //algorithm-related operations in the module z1

 //stack management operations in the module z1

 }

 break;

 //repeating for all modules

 default:

 delay;

 }

 } while(!done);

}

Figure 5.33 – Design template for an HFSM described in Handel-C

Although modular design incurs some overhead and therefore occupies more

resources, it is not slower than non-modular dedicated design (as will be evidenced by

the results of experiments given in chapter 6). Moreover, if the stacks are constructed

on the basis of memory blocks embedded in FPGA, the additional FPGA resources

required for stack management are negligible.

5.2.3. Processing unit

5.2.3.1. Similarities amongst matrix-based backtracking search algorithms

Matrix-based backtracking search algorithms have similar characteristics. One of them

is the execution of problem-specific operations, and another one is the traversal of a

search tree, starting from the root, by involving such procedures as forward search

and backtracking. Any branching point can be considered as extracting a sub-tree with

a local root. Moreover, because the data structures that they manipulate are basically

the same, the operations used as basic blocks to implement those algorithms are, in

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 119

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

fact, very much the same. Examples of generally used micro-operations are the

following:

• Remove a row/column;

• Read a row/column;

• Check whether two binary/ternary vectors are orthogonal;

• Intersect two binary/ternary vectors.

Let us notice that each operation that is used by matrix-based search algorithms can

have variations, such as: use or not the contents of a mask register; store or not store

the result; use just one vector of a binary matrix or two vectors of a ternary matrix.

There are also composed operations (groups of micro-operations) which are still very

commonly used, such as:

• Find the row/column with the most/fewest 0s/1s in a matrix;

• Find the index of the first 0/1 in a binary/ternary vector;

• Count the number of rows/columns which have no 0s/1s in a matrix;

• Count 1s/0s in a binary/ternary vector;

• Check whether there are matrix rows/columns orthogonal to some binary/ternary

vector;

• Intersect all rows/columns of a matrix with some binary/ternary vector.

In the end, matrix-based search algorithms possess several common features

identified in [Skliarova06b]:

1. They can be formulated both recursively and iteratively.

2. They do not change the initial data (i.e. the initial matrix) because the

matrix reduction can be provided by masking some rows/columns and

using just the remainder of the matrix.

3. They invoke a very limited number of operations (such as reduction

and selection operations), which have to be applied to a large volume

of data.

4. Subsets of the required operations are usually not the same for

different combinatorial problems.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 120

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

5. In order to perform forward and backward propagation we can use a

stack memory that stores and restores intermediate results (such as

the values of mask registers) in branching points.

6. The algorithms can be decomposed into two levels of control

operations. The top-level sequence is the same (or similar) for

different algorithms. The bottom-level sequence permits the problem-

specific operations over Boolean and ternary vectors to be executed.

These features make it possible to select a number of reusable blocks for constructing

the processing unit. So let us first consider the hardware implementation of stacks and

then address the functional blocks which are required by the processing unit

architecture.

5.2.3.2. Stacks

Stacks for storing the context (masks of deleted rows, masks of selected rows, etc.)

are implemented in block RAM. Multiple context variables can be stored in a single

embedded memory block. For example, one block RAM of Spartan-3 FPGAs can hold

18 Kb and has a configurable width/depth ratio. Therefore, if an algorithm requires a

stack with a depth up to 512 levels, 36 bits can be stored at one level. Figure 5.34-a

illustrates these settings.

36 bits

512 levels

9-bit stack pointer Shared stack pointer

a) Single 512-level deep 36-bit wide stack

b) Two stacks with shared stack pointer

Figure 5.34 – Stacks with dedicated (a) and shared (b) stack pointers

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 121

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

If this number of bits is not sufficient for keeping all the context variables, multiple

block RAMs have to be employed. A single stack pointer bus can be shared by different

embedded memory blocks because all context variables, belonging to the same level

in the search tree, must be stored/restored simultaneously (as a group). Figure 5.34-b

illustrates the use of two memory blocks in order to duplicate the quantity of context

data which can be stored, using a shared stack pointer bus.

5.2.3.3. Architecture for the processing unit

The architecture for the processing unit is depicted in Figure 5.35.

Module for
computations over

discrete vectors

General-purpose vector
and mask registers

Row
mask

Column mask

Debug-oriented
module controlling

push-buttons
and an LCD

0 0 0 1 0 0

0
0
1
0
0
1

Row address

Column address

Stacks for
solver-specific data

Stack for
HFSM states

Stack for
HFSM modules

Shared
stack pointer

Figure 5.35 – Overview of the processing unit

The following functional blocks have been selected on the basis of analysis of different

search algorithms and their primary operations:

1. Mask registers allowing to use the same storage for handling the

initial matrix and all the sub-matrices, which have to be constructed

during the search for results.

2. Stacks for managing forward and backward propagation steps.

3. General-purpose registers for keeping vectors.

4. A device for computations over discrete vectors.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 122

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

5. Additional auxiliary circuits for testing, debugging and interacting with

the hardware processor.

To make the blocks considered above reusable, we have to provide them with the

property of parameterization. This property allows for scalability in such a way that

the considered blocks can be applicable to matrices of different dimensions (i.e. with

different number of rows and columns). All the implemented blocks are

parameterizable in VHDL with the aid of generic and generate statements and in

Handel-C by means of statements with the #define directive and parameterized macro

expressions.

The proposed functional blocks take into account many specific features of the search

algorithms analyzed and they have been optimized for the considered problems. It

makes possible to provide block-based high-level design, i.e. to concentrate the

efforts of the designer on the considered algorithms, avoiding (or at least minimizing)

the details of hardware implementation. Since the proposed reusable blocks were

implemented as a set of Handel-C macros and VHDL library modules, it allows

considering either the design flow on the basis of a system-level specification language

or a widely-used hardware description language.

5.2.4. Proposed architecture for a generic matrix-oriented solver

As previously mentioned, the solvers which were implemented for comparing recursion

and iteration in hardware were instance-specific because such approach guarantees a

more reliable comparison. However, when designing combinatorial search hardware

accelerators, it is desirable to implement a problem-specific solver only once and then

use it to solve different problem instances. Furthermore, a reprogrammable generic

solver with the ability to implement different problem-solving algorithms can be very

useful. This section suggests an extended version of the architecture depicted in

Figure 5.25 for implementing systems which can be reprogrammed to execute

different matrix-based algorithms for solving problem instances transferred from a

host computer (see Figure 5.36). This generic architecture presents three new

characteristics:

1. There is now an interface module which communicates with a

computer to receive the required reconfiguration data as well as

matrices to be processed, and to return the results;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 123

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

2. The control unit is now reprogrammable, with the aid of a

reprogrammable HFSM which has changeable functionality and can

therefore be customized for implementing different algorithms.

3. The data storage block is now matrix-oriented.

Reprogrammable
Control Unit

Processing
Unit

Storage for
a matrix

Interface
Module

interface

Figure 5.36 – Proposal for a generic solver architecture

In order to establish communication between the interface module and a general-

purpose computer, from/to which the matrices, algorithms, and results would be

received/sent, a new tool was included in PBM. This tool manages data transfer

through USB or Bluetooth and it can be used in any system which requires run-time

data exchange between computer and DETIUA-S3. The required hardware IP module

is reusable. When designing the reprogrammable HFSM-based generic solver,

debugging data can also be sent using this communication channel instead of using

extra components, such as LCDs.

The reprogrammability of the control unit can be achieved with the aid of a

reprogrammable HFSM, whose basic structure is depicted in Figure 5.37

[Sklyarov06c]. Reloading the RAM blocks allows for the reconfiguration of the

combinational circuit’s functionality, thus enabling different algorithms to be

implemented. This generic solver architecture has been only partially implemented.

Nevertheless, software validation and partial hardware implementation was carried

out, permitting to consider Figure 5.36 as a valid architecture [Pimentel07].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 124

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Figure 5.37 – Hardware model of a reprogrammable HFSM (from [Sklyarov06c])

The processing unit and all interaction between its functional blocks have been

validated in a software application programmed in C# in which each block was

described by a class that emulates the behavior expected from its hardware

implementation. A special class emulated the reprogrammable control unit to validate

the execution of those different algorithms.

After software validation, the architecture was implemented and successfully tested

using Handel-C and the DETIUA-S3 prototyping board. The four binary vector arrays

for storing the matrix were implemented using the FPGA’s embedded block RAM. USB

interface was used for data exchange.

The reprogrammable control unit and the interface module were then implemented in

VHDL, while simulating the processing unit in C# for monitoring purposes. Some

experiments with simpler algorithms were carried out and the expected run-time

reprogramming was successfully achieved.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 125

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

Since the proposed generic architecture has not been completely validated and tested,

we plan to continue working in this direction. For now, the following has been entirely

implemented, validated and tested:

• the reprogrammable HFSM. The same hard-wired RHFSM was applied for solving

different problems and the customization of its behavior was achieved just through

reprogramming its primary RAM blocks;

• remote customization of RHFSM functionality through wired (USB) and wireless

(Bluetooth) interface;

• interaction between the customizable control unit (the RHFSM) and software

models of combinatorial problem solvers. This, in particular, permits to compare

iterative and recursive algorithms applied to processing units modeled in software.

5.3. Validation and implementation of the hardware
accelerators

In order to study and compare different hardware implementations of the selected

algorithms, the latter have first been validated in software. For this purpose, each

algorithm was modeled using a high-level programming language. Only after

validation, hardware solvers were synthesized from specifications in system-level and

hardware description languages.

In order to validate the proposed specific architectures for implementing matrix-based

backtracking search algorithms, the interaction between the most important functional

blocks was also described and analyzed in a high-level language and modeled in

software, allowing to estimate expected hardware behavior.

Table 5.3 lists the languages and CAD tools which have been chosen for design at

different abstraction levels. Software implementations have been developed using C#

and Microsoft Visual Studio with the .NET framework. Design sequence for hardware

implementations based on system-level specifications included:

1. Specification in Handel-C;

2. Synthesis producing an EDIF file in Celoxica DK [Celoxica];

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 126

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

3. Generating a bitstream from EDIF files in Xilinx ISE implementation

tools (mapping, placement and routing).

Table 5.3 - Languages and CAD tools chosen for design at different abstraction

levels

Platform Abstraction level Languages CAD tools

Software High-Level
Programming C# Microsoft Visual Studio

with the .NET framework

Hardware

System-Level
Specification Handel-C Celoxica DK and Xilinx ISE

Register Transfer
Level VHDL Xilinx ISE and ModelSim

Implementations based on RTL (Register Transfer Level) descriptions recurred to

VHDL projects, Xilinx ISE synthesis and implementation software, and simulation tools

available from ModelSim [MentorGraphics].

Two kinds of mixed specifications have also been examined. The first one combines

hardware descriptions with system-level specifications. The second one relies on

software/hardware co-design (co-simulation). Such mixed systems require

communication mechanisms between software and hardware.

Mixed specifications allow proper selection of the most appropriate abstraction level

for each system component independently. In fact, some components may require a

low level description in order to achieve good performance, while others need higher

level decompositions to cope with hierarchical complexity. However, the latter makes

it harder to study and to compare algorithm implementations in terms of execution

and design time, capabilities for modification, etc. Hence, in the scope of experiments,

mixed specifications were only considered for transferring data to hardware

implementations and monitoring the latter using a proper software interface running

on general-purpose computers.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 127

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

5.4. Conclusion

In order to estimate relative effectiveness of recursive and iterative specifications of

different algorithms, as well as to check their correctness, all the algorithms were first

modeled in software and only after that implemented in hardware.

When modeling in software, an object-oriented design approach was followed and thus

several classes were created. Class Vector can keep general-purpose vectors as well

as matrix rows and columns, and they can be either binary or ternary. Class Mask

keeps a series of binary values which are used to mark their indexes, for instance, as

deleted/not deleted or as selected/not selected. The use of deletion masks keeps

deletion operations simple, in opposition to actual memory deallocation, and eventual

row and column recovering is equally simple. Class Matrix provides general-purpose

properties and methods which are inherited by classes implementing matrix-based

algorithms, namely class SetCoveringMatrix, class SATSolvingMatrix, and class

GraphColoringMatrix, each one providing functionality for solving its specific problem.

Specific classes have also been created for the knapsack problem solver, tree-based

sorting, and the calculus of the greatest common divisor. Built-in Stack and Queue

class templates are used for handling any data type required by the different

algorithms. In general, the data fields required by the iterative solvers outnumber

those required by their recursive counterparts.

Recursive and iterative algorithmic flows were described in detail for each selected

algorithm, rendering obvious the fact that, generally, the iterative algorithmic

structures are more complex (and thus less clear). Furthermore, iterative algorithms

often reveal the need for auxiliary variables to correctly traverse the relevant search

tree, whereas the recursive ones do not. Finally, recursion favors modularity and

consequently reuse, whilst the iterative algorithmic structures are often too complex

to do the same.

The selected algorithms were then described in Handel-C and in VHDL, and

implemented in instance-specific solvers. With such approach, the results of

experiments can more expressively highlight the differences between the compared

systems because there is less interference caused by secondary system components.

Thus we believe it leads to a more reliable comparison between recursive and iterative

implementations. Most of the solvers are based on a general hardware architecture

which consists of a control unit, a processing unit and a data storage block.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 128

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

For storing binary vectors, the developed circuits keep arrays of bits explicitly stating

the binary values. Two logic vectors are used for storing ternary vectors: one marking

the position of values 0 and the other marking the position of values 1, while positions

marked by none of those values correspond to don’t-care values. Two binary vectors

can be used to compose a ternary vector. Analogously, two binary matrices can be

used to compose a ternary matrix. Some matrix-based algorithms require simple

access to the matrices (by either rows or columns) while others require dual access

(by both rows and columns). Using embedded memory blocks for keeping matrices,

the need for dual access to a matrix leads to a replication of its data: one memory

block can be organized as an array of rows; and the other as an array of columns.

Replicating a ternary matrix implies the replication of both binary matrices which

result from the ternary-to-binary decomposition.

For implementing the tree-based sorting algorithm in hardware, every node-

referencing variable contains an address which indicates the node’s position within a

memory block. The node data is organized in five fields: value, counter, left subtree,

and right subtree. The last three fields are, again, addresses which indicate node

positions within that same memory block. For solving the knapsack problem in

hardware, the available items are stored in a memory block, each memory word

containing the profit and weight of an item. The current and best knapsack

configurations keep not only the total profit and total weight, but also a logic vector

which is used as a mask of included items.

It is well known that neither hardware description languages nor system-level

specification languages provide direct support for recursive algorithms. However,

recursion can be implemented in a hierarchical finite state machine. The control unit is

therefore based on a hardware model of an HFSM, consisting of a combinational circuit

and two stacks that keep track of hierarchical module invocations: one stack for states

and one stack for modules. The stacks are managed by a combinational circuit that is

responsible for new module invocations and state transitions in any active module that

is designated by the outputs of the stack for modules. Non-hierarchical transitions

require access to the stack for states only, whereas hierarchical calls and returns

access both stacks. A single stack pointer is used for addressing both stacks. Such a

control unit allows to describe not only modular and hierarchical but also recursive

algorithms.

Matrix-based backtracking search algorithms have similar characteristics. One of them

is the execution of problem-specific operations, and another one is the traversal of a

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 129

CCHHAAPPTTEERR 55 –– AALLGGOORRIITTHHMM MMOODDEELLIINNGG AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

search tree, starting from the root, by involving such procedures as forward search

and backtracking. Any branching point can be considered as extracting a sub-tree with

a local root. Moreover, because the data structures that they manipulate are basically

the same, the operations used as basic blocks to implement those algorithms are, in

fact, very much the same. Such similarities make it possible to select a number of

reusable blocks for constructing the processing unit.

Stacks for storing the context are implemented in block RAM. Multiple context

variables can be stored in a single embedded memory block. However, if one is not

sufficient, multiple block RAMs have to be employed. A single stack pointer bus can be

shared by different embedded memory blocks because all context variables, belonging

to the same level in the search tree, must be stored/restored simultaneously.

The chosen architecture for the processing unit includes mask registers, stacks,

general-purpose registers, a device for computations over discrete vectors, and

additional auxiliary circuits for testing, debugging and interacting with the hardware

processor. All the implemented blocks are parameterizable in VHDL with the aid of

generic and generate statements and in Handel-C by means of statements with the

#define directive and parameterized macro expressions.

The proposed functional blocks provide support for block-based high-level design.

Since the proposed reusable blocks were implemented as a set of Handel-C macros

and VHDL library modules, it allows considering either the design flow on the basis of

a system-level specification language or a widely-used hardware description language.

The solvers which were implemented on the basis of the hardware blocks described for

comparing recursion and iteration in hardware are instance-specific because such

approach guarantees a more reliable comparison. In addition, an extended

architecture has been suggested for designing reprogrammable generic solvers with

the ability to implement different matrix-oriented algorithms. On the basis of the

instant-specific architecture used, the extended version also includes an interface

module, which communicates with a computer, and its control unit is now

reprogrammable. Such reprogrammability can be achieved with the aid of the

Reprogrammable HFSM model. Reloading the RAM blocks allows for the

reconfiguration of the combinational circuit’s functionality, thus enabling different

algorithms to be implemented.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 131

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

66.. EExxppeerriimmeennttss,, RReessuullttss,, aanndd

AAnnaallyyssiiss

This chapter presents the results of experiments and analysis. The following general

approach is used. In the beginning, a limited number of problems are examined and a

comparison of relevant recursive and iterative algorithms is done. Synthesis was

carried out from system level-specification (namely Handel-C) and hardware-level

description (namely VHDL) languages. Similar comparison for the same problems was

done in software using a general-purpose programming language (C#). The obtained

results were compared and it was found that a similar tendency is taking place for

particular algorithms described at different levels of abstraction. For example, the

results of synthesis has revealed that recursive VHDL-based implementations are

either equally or more advantageous than iterative VHDL-based implementations. On

the other hand, recursive implementations of the same algorithms in software were

always worse (in terms of execution time) when compared to iterative

implementations in software. Analysis of different algorithms permitted to draw out

algorithmic characteristics that allow potential benefits to be predicted. For example,

particularities of hardware implementations permit to benefit from fast stack

unwinding. We can measure potential acceleration taking into account some

algorithmic features (e.g. the number of unwinding steps) and this can be done just in

software. This tendency has always taken place for the considered backtracking search

algorithms. Thus, for many experiments it was possible to avoid very complicated

design and implementation steps required for synthesis of hardware and rely

considerably on modeling in software. Finally, only some of the studied problems (see

chapter 3) are implemented and tested in hardware and the remaining problems are

modeled just in software in order to validate correctness of the respective algorithms.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 132

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

6.1. Experiments and comparison of iterative and recursive
implementations in hardware

In order to compare iterative and recursive hardware implementations, a set of

experiments executing a subset of the selected algorithms have been carried out

[Sklyarov05]. The four algorithms which have been implemented within the scope of

this set of experiments are identified in Table 6.1:

Table 6.1 – Algorithms implemented in hardware for comparison

Algorithm
Describing

section

Algorithm for sorting
based on a binary tree 3.3.1

Approximate algorithm for
solving the set covering problem 3.2.2

Exact algorithm for
solving the knapsack problem 3.2.5

Calculus of the greatest common
divisor between two integers 3.3.2

Each of the four algorithms of this experiment set has been implemented on the basis

of both recursive and iterative descriptions. After careful modeling and debugging in

C#, each of the eight resulting algorithms has been specified both in VHDL and in

Handel-C, with the exception of the approximate set covering algorithm which was

specified solely in Handel-C.

Moreover, different versions of VHDL-based implementations have been prepared in

order to obtain some additional criteria regarding:

a) design modularity, i.e., hierarchical decomposition of the algorithm in

self-contained sub-tasks that are performed in sequence by means of

an HFSM;

b) embedded memory usage, in order to compare implementations

which use block RAM vs. distributed RAM vs. pure logic (no RAM).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 133

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

On the other hand, Handel-C projects differ only in the addressed problem, and in

whether they implement the algorithm recursively or iteratively.

It should be noticed that recursive solutions must always be modular, as recursion is

achieved by means of an HFSM (see section 2.2.2).

The projects provide generic parameters for initial data and can therefore be

customized. Note that each circuit includes not only components that are needed for

comparison, but also auxiliary blocks for visualizing the results. Let us designate by

experiment the set of different implementations of a particular algorithm, described in

a particular language (i.e. in either VHDL or Handel-C). It is important to notice that,

for each experiment, the auxiliary components used in its different implementations

are exactly the same. This way, the results such as the amount of required resources

and the execution time that are obtained in each experiment constitute valid data for

comparison [Sklyarov05].

At the time of these experiments, not all software and hardware tools which are

mentioned in chapter 4 were available. In order to provide an accurate context for

result analysis, Table 6.2 presents the tools which have actually been used to carry

out this experiment set.

Table 6.2 - Prototyping tools used for algorithm implementation and comparison

 Algorithm

S
y
n

th
e
s
is

C

A
D

 t
o

o
l

Im
p

le
m

e
n

ta
ti

o
n

C

A
D

 t
o

o
l

P
ro

to
ty

p
in

g

b
o

a
rd

FPGA

V
H

D
L

 Tree-based Sorter

Xilinx
ISE

Trenz
TE-XC2Se

[Trenz]

Xilinx
xc2S400e-6ft256

(Spartan-IIE family)
Knapsack Problem Solver

GCD Calculator

H
a
n

d
e
l-

C

Tree-based Sorter

Celoxica
DK

Xilinx
ISE

Celoxica
RC200

Xilinx
xc2v1000-4fg456
(Virtex-II family) Set Covering Problem Solver

Knapsack Problem Solver Celoxica
RC100

Xilinx
xc2s200-5fg456
(Spartan-II family) GCD Calculator

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 134

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

6.1.1. Experiment results

The results of the experiments based on VHDL and on Handel-C are presented in Table

6.3 and Table 6.4, respectively.

Table 6.3 - VHDL-based experiment results

Algorithm

M
o

d
u

la
ri

ty

Memory
usage

Algorithm
description

N
u

m
b

e
r

o
f

o
c
c
u

p
ie

d

F
P

G
A

 s
li

c
e
s

M
a
x
im

u
m

a
tt

a
in

a
b

le
 c

lo
c
k

fr
e
q

u
e
n

c
y
 (

M
H

z
)

N
u

m
b

e
r

o
f

c
lo

c
k

c
y
c
le

s
 t

o
 s

o
lv

e

th
e
 p

ro
b

le
m

T
im

e
 r

e
q

u
ir

e
d

to

 s
o

lv
e
 t

h
e

p
ro

b
le

m
 (

n
s
)

Tree-based
Sorter

No

Pure logic

Iterative 443 35.1 70 1994

Yes

Recursive 623 74.8 72 963

Iterative 599 76.0 87 1145

Block
Recursive 474 52.2 72 1379

Iterative 473 70.2 87 1239

Distributed Recursive 477 58.8 72 1224

Knapsack
Problem
Solver

No

Pure logic

Iterative 153 59.9 88 1469

Yes

Recursive 165 37.3 62 1662

Iterative - - - -

Block
Recursive 149 40.3 62 1538

Iterative - - - -

Distributed Recursive 150 43.1 62 1438

GCD
Calculator

No

Pure logic

Iterative 448 41.3 9 217

Yes

Recursive 515 42 11 261

Iterative - - - -

Block
Recursive 454 43.5 11 252

Iterative - - - -

Distributed Recursive 454 42.4 11 259

The greatest common divisor calculator has been tested for many pairs of unsigned

integers. Although different numbers produce different results, the ratio between

recursive and iterative implementations for each measured parameter is nearly the

same. For this reason, Table 6.3 and Table 6.4 present the results regarding a single

pair of numbers: 189 and 135 (27 being the result). A similar approach has been used

for the tree-based sorting experiments and the corresponding data that are shown in

those tables refer to the following input sequence: 30-14-9-7-13-37-2-8-17-21. The

presented results regarding the knapsack problem implementations are given for 5

objects. The chosen binary matrix dimensions for the set covering problem are 128

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 135

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

rows by 128 columns. In total, 9 different randomly generated problem instances have

been tested, generating similar results. For this reason, the results for only one

problem instance are shown in Table 6.4.

Table 6.4 - Handel-C-based experiment results

Algorithm
Algorithm

description

N
u

m
b

e
r

o
f

o
c
c
u

p
ie

d

F
P

G
A

 s
li

c
e
s

M
a
x
im

u
m

a
tt

a
in

a
b

le
 c

lo
c
k

fr
e
q

u
e
n

c
y
 (

M
H

z
)

N
u

m
b

e
r

o
f

c
lo

c
k

c
y
c
le

s
 t

o
 s

o
lv

e

th
e
 p

ro
b

le
m

T
im

e
 r

e
q

u
ir

e
d

to

 s
o

lv
e
 t

h
e

p

ro
b

le
m

 (
n

s
)

Tree-based
Sorter

Recursive 1293 37.3 73 1953

Iterative 750 45.5 61 1340

Set Covering
Problem Solver

Recursive 5118 25.1 182700 7.28×106

Iterative 5118 25.1 182688 7.28×106

Knapsack
Problem Solver

Recursive 624 31.5 265 8407

Iterative 228 36.7 474 12915

GCD
Calculator

Recursive 242 16.4 6 365

Iterative 234 16.3 6 367

6.1.2. Result analysis

The comparison between implementations based on hardware description

specifications and implementations based on system-level specifications is not a target

of the experiment set. In fact, the auxiliary circuits synthesized in VHDL projects are

very different from those synthesized in Handel-C projects. Besides, different

prototyping boards and FPGAs have been used for VHDL and Handel-C projects (see

Table 6.2). Thus, only the comparison between implementations based on the same

language is relevant.

6.1.2.1. Experiments based on hardware description specifications

The graph in Figure 6.1 helps comparing the number of FPGA slices that are occupied

by different circuits which have been implemented on the basis of VHDL descriptions.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 136

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

Figure 6.1 - Number of FPGA slices occupied by VHDL-based implementations

The results depicted in Figure 6.1 show no relevant differences between the number of

occupied FPGA slices of recursive and iterative implementations.

However, let us notice that, amongst the pure logic implementations, the modular

ones present significant overheads in the number of occupied FPGA slices. This

drawback can be imputed to the circuitry supporting the HFSM, namely the stacks for

storing module and state codes. However, such overhead practically disappears when

making use of block or distributed memory, to which most of this support circuitry is

synthesized.

The graph in Figure 6.2 highlights the differences in the maximum clock frequency

which is attainable for the various VHDL-based experiments.

The results that have been obtained for the maximum clock frequency do not reveal

obvious dependency on either modularity, use of recursion, or memory usage. Thus,

no algorithm-independent criteria for this parameter can be identified.

0

100

200

300

400

500

600

700

Tree-based Sorting Knapsack Calculus of the GCD

N
u

m
b

e
r

o
f

F
P

G
A

 s
li
c
e
s

Non-modular / Pure logic / Iterative Modular / Pure logic / Recursive
Modular / Pure logic / Iterative Modular / Block Mem. / Recursive
Modular / Block Mem. / Iterative Modular / Distrib. Mem. / Recursive

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 137

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

Figure 6.2 - Maximum clock frequency allowed on the VHDL-based

implementations

The number of clock cycles which are required to solve the problem instances in each

VHDL-based experiment is set side by side in Figure 6.3 for comparison.

Figure 6.3 - Number of clock cycles used for solving the problem on the VHDL-

based implementations

0

10

20

30

40

50

60

70

80

Tree-based Sorting Knapsack Calculus of the GCD

M
a
x
im

u
m

 c
lo

c
k

 f
re

q
u

e
n

c
y
 (

M
H

z
)

Non-modular / Pure logic / Iterative Modular / Pure logic / Recursive
Modular / Pure logic / Iterative Modular / Block Mem. / Recursive
Modular / Block Mem. / Iterative Modular / Distrib. Mem. / Recursive

0

10

20

30

40

50

60

70

80

90

100

Tree-based Sorting Knapsack Calculus of the GCD

N
u

m
b

e
r

o
f

c
lo

c
k
 c

y
c
le

s

Non-modular / Pure logic / Iterative Modular / Pure logic / Recursive
Modular / Pure logic / Iterative Modular / Block Mem. / Recursive
Modular / Block Mem. / Iterative Modular / Distrib. Mem. / Recursive

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 138

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

As one would expect, the use of pure logic, distributed memory, or block memory had

no influence on the number of clock cycles that are required for solving a problem. On

the other hand, modularity reveals some influence in respect to this parameter.

However, no algorithm-independent criteria can be deduced on the basis of design

modularity because the kind of influence depends on the associated problem.

Recursive implementations of tree-based algorithmic flows required fewer clock cycles

to solve problems than iterative ones. For example, the modular implementations of

tree-based iterative sorters required nearly 21% more clock cycles than their recursive

equivalents, whether using block memory or pure logic. For solving the Knapsack

problem, the pure logic non-modular iterative implementation required practically

42% more clock cycles than any of the three recursive versions.

Last, the graph in Figure 6.4 emphasizes the differences in time that is necessary for

solving the problem on the various VHDL-based experiments.

Figure 6.4 - Time required by the VHDL-based implementations for solving the

problem

The results regarding the time required for problem solving reveal no dependency on

either modularity, use of recursion, or memory usage. For this reason, no general

criteria can be inferred for this parameter.

0

0,5

1

1,5

2

2,5

Tree-based Sorting Knapsack Calculus of the GCD

E
x
e
c
u

ti
o

n
 t

im
e
 (
µ

s
)

Non-modular / Pure logic / Iterative Modular / Pure logic / Recursive
Modular / Pure logic / Iterative Modular / Block Mem. / Recursive
Modular / Block Mem. / Iterative Modular / Distrib. Mem. / Recursive

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 139

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

6.1.2.2. Experiments based on system-level specifications

The graph in Figure 6.5 permits to compare the numbers of FPGA slices that are

occupied by the different circuits which have been implemented on the basis of

Handel-C descriptions.

Figure 6.5 - Number of FPGA slices occupied by Handel-C-based implementations

The results of the Handel-C projects reveal that the number of FPGA slices that are

required for non-backtracking algorithms (namely sorting, knapsack, and CGD) is

higher in recursive implementations than in iterative ones. This drawback seems to be

related to the use of stacks. In the case of the algorithm for calculating the CGD, this

difference is rather insignificant, probably due to the very small stack dimensions

required by the HFSM which was used in the recursive implementation. However, in

the recursive implementations of the tree-based sorting and the knapsack algorithms,

the dimensions of the HFSM-supporting stacks were considerably higher and thus the

significant difference in the required FPGA resources. On the other hand, both the

recursive and the iterative implementations of the set covering algorithm made use of

stacks because both required a backtracking mechanism. For this reason, the number

of required FPGA slices is the same for both versions.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Tree-based
Sorting

Set Covering Knapsack Calculus of the
GCD

N
u

m
b

e
r

o
f

F
P

G
A

 s
li
c
e
s
 (

th
o

u
s
a
n

d
s
)

Recursive

Iterative

10×

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 140

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

Figure 6.6 - Maximum clock frequency allowed on the Handel-C-based

implementations

The graph in Figure 6.6 highlights the differences in the maximum clock frequency

which guarantees correct circuit behavior for the various Handel-C-based experiments.

In maximum clock frequency, iterative projects have revealed:

i) to be more advantageous (allowing higher frequencies) than

recursive ones, when implementing non-backtracking tree-based

algorithms;

ii) virtually no difference from recursive projects, when implementing

backtracking or cyclic algorithms.

The number of clock cycles which are required to solve the problem instances in each

Handel-C-based experiment is set side by side in Figure 6.7 for comparison.

In number of clock cycles that are required to solve the problems, iterative and

recursive Handel-C projects (unlike the VHDL projects) have revealed:

i) to be equally advantageous, when implementing backtracking or

cyclic algorithms;

ii) no algorithm-independent differences, when implementing non-

backtracking tree-based algorithms.

0

5

10

15

20

25

30

35

40

45

50

Tree-based
Sorting

Set Covering Knapsack Calculus of the
GCD

M
a
x
im

u
m

 c
lo

c
k
 f

re
q

u
e
n

c
y
 (

M
H

z
) Recursive

Iterative

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 141

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

Figure 6.7 - Number of clock cycles used for solving the problem on the Handel-C-

based implementations

Last, the graph in Figure 6.8 emphasizes the differences in time that is necessary to

achieve a solution on the various Handel-C-based experiments.

Figure 6.8 - Time required by the Handel-C-based implementations for solving the

problem

The relative results regarding the time required for solving the problems, using the

maximum attainable clock frequency for each implementation, are very similar to

0

50

100

150

200

250

300

350

400

450

500

Tree-based
Sorting

Set Covering Knapsack Calculus of the
GCD

N
u

m
b

e
r

o
f

c
lo

c
k
 c

y
c
le

s
Recursive

Iterative

0

2

4

6

8

10

12

14

Tree-based
Sorting

Set Covering Knapsack Calculus of the
GCD

E
x
e
c
u

ti
o

n
 t

im
e
 (
µ

s
)

Recursive

Iterative

310×

110−
×

310×

110−
×

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 142

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

those regarding the number of clock cycles spent on the same task. Thus, also in

execution time, iterative and recursive Handel-C projects have revealed:

i) to be equally advantageous, when implementing backtracking or

cyclic algorithms;

ii) no algorithm-independent differences, when implementing non-

backtracking tree-based algorithms.

6.1.2.3. Summary and further discussion

Some of the general criteria which have been achieved by means of this experiment

set can be summarized in Table 6.5.

Table 6.5 - Summary of general criteria achieved with this experiment set

 Algorithm scope
Number of

FPGA slices

Maximum

clock

frequency

Number of

clock cycles

Execution

time

V
H

D
L

Cyclic
Less advantageous

when using pure

logic and modularity

simultaneously

No general criteria

T
re

e-
ba

se
d Backtracking No

General

criteria

Recursive

implementations

generally more

advantageous

No

general

criteria Non-backtracking

H
a
n

d
e
l-

C

Cyclic

No general criteria
Iterative and recursive

equally advantageous

T
re

e-
ba

se
d Backtracking

Non-backtracking
More advantageous in

iterative implementations
No general criteria

Furthermore, from examining the complexity of the resulting circuits one concludes

that the use of embedded (block or distributed) memory significantly reduces the

amount of FPGA resources that are occupied by the solvers. This fact allows recursive

algorithms to be nearly as resource-demanding as iterative ones. Each new FPGA

family put on the market has usually more embedded memory than the previous ones.

This memory can therefore be used to store more stack data virtually without

increasing the number of occupied FPGA slices, and this allows much more complex

algorithms to be implemented. The only additional resources that are required for

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 143

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

recursive algorithms are those keeping stack pointers. Thus, one can expect modular

implementations to be significantly more advantageous for very complex problem

instances. Moreover, a highly integrated stack memory for HFSMs might potentially be

included as an embedded block in future generations of FPGAs [Sklyarov05]. Such

feature would encourage the generalization of hierarchical implementations (recursive

ones included) which, in turn, would encourage FPGA manufacturers to generalize that

feature.

Besides those criteria which are obtained from quantifiable results, a more subjective

deliberation can also lead to important conclusions. Examples of important project

characteristics that are hard to quantify include design time, clarity of the algorithm’s

description (compare e.g. Figure 5.22 and Figure 5.23), ease of modification, etc.

These characteristics can be improved through strategies such as divide and conquer

(hierarchical specification), modularity, and design of reusable components. In fact,

hierarchical modular specifications provide direct support for reusability, as a given

module can be included multiple times in the same or even different algorithms. This

possibility obviously leads to significant reductions in the design time and, in some

cases, in the required hardware resources. Furthermore, if hierarchy is applied on the

basis of an HFSM, recursive calls are inherently supported without any additional

hardware, as previously mentioned. In such cases, the use of recursion or iteration

should be assessed on the basis of algorithm clearness. For all these reasons,

designers should keep in mind that HFSM-based hierarchical modular implementations

possess strong design advantages, which are particularly important when developing

complex projects.

6.2. Validation and analysis of the architecture for generic
matrix-oriented solvers

For easy reference in this section, let us divide the architecture for generic matrix-

oriented solvers in two components:

• The control component, composed of the reprogrammable control unit and the

interface module, together with the software application;

• The operational component, which is composed of all the other functional blocks

and implements the whole set of operations over the considered data.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 144

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

The operational component and all interaction between its functional blocks have been

validated in a software application which was modeled in the C# programming

language. Each functional block was described by a class that emulates the behavior

which is expected from its hardware implementation. When the application starts,

objects of those classes are instantiated and they are reused to solve as many number

of problem instances as required. Furthermore, each instance can correspond to any

of the three matrix-based backtracking search algorithms described in section 5.1.2,

i.e. those regarding set covering (DABM class solver), Boolean satisfiability (DATM

class solver), and graph coloring (DATM class solver). A special class emulates the

reprogrammable control unit behavior in order to validate the execution of different

algorithms. Experiments were carried out using different sequences of problem

instances and the application was able to correctly solve them.

After validation, the architecture’s operational component was implemented and

successfully tested using the Handel-C system-level specification language and the

DETIUA-S3 prototyping board, which incorporates a Xilinx Spartan-3 FPGA (namely a

XC3S400). A USB interface was used for data exchange between hardware and

software.

The hardware reprogrammable control unit and the user agent module were designed

using VHDL, whilst a software application to interact with the user agent was

developed in C#. The expected run-time control unit reprogramming, for

implementing different algorithms, was tested and successfully achieved.

Table 6.6 presents a summary of the data structures’ usage in each implemented

combinatorial search algorithm, permitting to assess the reusability of the structures

amongst this type of solvers. For each of the three algorithms, Table 6.6 indicates

whether each of the data structures is either explicitly declared by the designer,

implicitly employed as a building block (for those which are explicitly declared), or not

used at all. When a data structure is used both explicitly and implicitly, its usage is

labeled as explicit.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 145

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

Table 6.6 - Data structure usage in different matrix-based backtracking search

algorithms

Data Structure
Set

Covering
SAT

Graph
Coloring

Binary Vector Explicit Explicit Explicit

Ternary Vector None Explicit Explicit

Mask Explicit Explicit Explicit

Stack Explicit Explicit Explicit

Simple Access Binary Matrix Implicit Implicit Implicit

Dual Access Binary Matrix Explicit None None

Simple Access Ternary Matrix None Implicit Implicit

Dual Access Ternary Matrix None Explicit Explicit

Table 6.6 reveals that the most basic data structures, such as binary vectors, masks,

and simple access binary matrices, are explicitly or implicitly used across the three

implemented combinatorial search algorithms. Stacks are also thoroughly employed

because they are required for supporting backtracking, which is typical amongst this

type of algorithms. On the other hand, more complex structures are less often used;

as is the case of dual access binary matrices, which are exploited only in one of the

implemented algorithms.

Table 6.7 indicates whether each of the different functional blocks is: explicitly

employed by the designer; implicitly constructed as a building block (for those which

are explicitly employed); or not used, in each of the analyzed combinatorial search

algorithms. In the table, abbreviations BV, TV, SABM, DABM, SATM, and DATM

respectively stand for binary vector, ternary vector, simple access binary matrix, dual

access binary matrix, simple access ternary matrix, and dual access ternary matrix.

When a functional block is used both explicitly and implicitly, its usage is labeled as

explicit.

The use of operations for accessing matrix rows and columns, which can be binary or

ternary vectors, is not considered in Table 6.7, as it can directly be deduced from the

matrix type. It should be noticed that writing rows and columns is only needed for

initialization of problem instances because the solving algorithms do not require

changing matrix contents in order to find a solution.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 146

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

Table 6.7 - Functional block usage in different matrix-based backtracking search

algorithms

Method
description

Input
variant S

e
t

C
o

v
e
ri

n
g

S
A

T

G
ra

p
h

C

o
lo

ri
n

g

Calculate the number of zeros (ones*) in a
vector.

BV None None None

TV None None None

BV, Mask Explicit None None

TV, Mask None Explicit None

Determine whether 2 vectors are orthogonal.
TV, TV None Implicit Explicit

TV, TV, Mask None Explicit None

Calculate the intersection of 2 ternary
vectors. TV, TV None None Explicit

Determine whether a ternary vector is
constituted by only don’t-care values (ones*,
zeros*).

TV None Implicit Implicit

TV, Mask None Explicit Explicit

Determine whether a ternary vector has no
zeros (ones*)

TV None None Implicit
TV, Mask None None Explicit

Create a mask which identifies the position
of don’t-care (non-don’t-care*) values in a
ternary vector.

TV None None None

TV, Mask None None None

Identify the position of the first zero (one*)
in a vector/mask.

BV Explicit None Explicit
Mask None None Explicit
BV, Mask Explicit None None
TV, Mask None Explicit None

Given a mask m and two vectors a and b,
create a new vector, copying values from a,
for positions that are masked by m; and from
b, for positions that are not masked by m.

BV, BV, Mask None None Implicit

TV, TV, Mask None None Explicit

Build the transpose of a matrix.

SABM Implicit** Implicit** Implicit**

DABM Explicit** None None

SATM None Implicit** Implicit**

DATM None Explicit** Explicit**

Push (pop*) a vector/mask onto (from) the
top of a stack.

Stack, BV Explicit Implicit Explicit

Stack, Mask Explicit Explicit Explicit

Stack, TV None Explicit Explicit
* in another version of the method (typically used in combination in an algorithm)
** only for problem instance initialization purposes (not part of the solving algorithm)

Table 6.7 reveals that some of the developed functional blocks have not been used.

Nevertheless, they can be helpful for implementing matrix-based combinatorial search

algorithms which have not been addressed here.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 147

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

6.3. Assessment of the developed prototyping tools and
summary of potential applications

PBM has been tested in various ways. Furthermore, this tool is subject to an on-going

continuous testing and improvement process. The software has been made available

through the internet [Pimentel] and installed in classroom computers at the

Department of Electronics, Telecommunications and Informatics of the University of

Aveiro. Some of the disciplines taught at the department already use several DETIUA-

S3 boards and PBM as working tools, and important feedback is accessible from

students.

The fact that DETIUA-S3 and PBM have been used in practical classes reveals to some

extent the reliability and the practical potential of this set of tools. Many projects of

undergraduate students consisted of extension boards which implement different

interfaces for peripherals, such as a keyboard, a mouse, and a VGA monitor.

Moving on to usability issues, some experiments have been carried out in order to

determine the expected execution time for PBM’s most basic operations with respect

to the DETIUA-S3 board. Several measurements have been made through USB and

Bluetooth interfaces, using a few different computers.

Table 6.8 - Average execution time in function of task and interface used

Interface
Task

USB Bluetooth

Erase a sector 0.7 sec 1 sec

Read an entire sector 0.4 sec 11 sec

Write an entire sector 1.5 sec 28 sec

Write a bitstream 5.5 sec 1 min 27 sec

Table 6.8 presents the average time by task and by interface which resulted from

those measurements. When reading the table values, one should take into

consideration the following:

a) Each flash memory sector has 64 KB;

b) Writing a bitstream involves 4 sectors;

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 148

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

c) Writing tasks require previous erasure of the targeted sectors, and

this overhead is included in the time values presented.

As previously mentioned, PBM offers the possibility of sending multiple bitstreams to

DETIUA-S3 and storing them in the third logical section of the flash memory (see

Figure 4.3) in a format that is ready to be loaded onto an FPGA. This feature allows for

the following potential applications:

1. Autonomous experiments with different single bitstream projects

without connection to a host computer. In particular, this mode allows

for the comparison and validation of alternative implementations. A

simple additional switch, attached through expansion connectors, can

be used to select the logic subsection that keeps the bitstream to be

loaded to the FPGA.

2. FPGA run-time reconfiguration, permitting to implement circuits that

require more resources than the resources available in the FPGA.

3. Programming FPGAs installed on additional extension boards. In this

case, the core FPGA is considered to be a controller (manager) for a

runtime reconfigurable system which includes multiple FPGAs.

The first two possibilities have already been tested and found successful.

6.4. Conclusion

In the beginning, a limited number of problems were examined and a comparison of

relevant recursive and iterative algorithms was done. Synthesis was carried out on the

basis of Handel-C and VHDL languages. Similar comparison for the same problems

was done in software using C#. The obtained results were compared, revealing that a

similar tendency was taking place for particular algorithms described at different

levels. Analysis of different algorithms permitted to draw out algorithmic

characteristics that allow potential benefits to be predicted, as a tendency always took

place for the considered backtracking search algorithms. Thus, for many experiments,

it was possible to avoid very complicated design and implementation steps required

for synthesis of hardware and rely considerably on modeling in software. Finally, only

some of the studied problems were implemented and tested in hardware and the

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 149

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

remaining problems were modeled just in software in order to validate the correctness

of the respective algorithms.

In order to compare iterative and recursive hardware implementations, a set of

experiments was carried out using the following four algorithms: sorting based on a

binary tree, approximate algorithm for solving the set covering problem, exact

algorithm for solving the knapsack problem, and calculus of the greatest common

divisor between two integers. The first and third use context data stacks, whereas the

other two do not.

The recursive and iterative versions of each of these four algorithms was carefully

modeled and debugged in C#, and then specified both in VHDL and in Handel-C, with

the exception of the approximate set covering algorithm which has not been specified

in VHDL. Moreover, different versions of each of the VHDL-based implementations

have been prepared in order to obtain some additional criteria regarding design

modularity and embedded memory usage. Recursive solutions must always be

modular, as recursion is achieved by means of an HFSM.

The results of the experiments indicate the following general criteria:

1. The number of FPGA slices occupied by VHDL implementations is

higher if using pure logic and modularity simultaneously;

2. When designing solvers with non-backtracking tree-based algorithms

in Handel-C, both the average number of occupied FPGA slices and

the average maximum allowed clock frequency are more

advantageous when implemented iteratively;

3. When designing solvers with tree-based algorithms in VHDL, the

average number of clock cycles required to reach a solution is lower if

implemented recursively;

4. When designing solvers with cyclic or backtracking tree-based

algorithms in Handel-C, iterative and recursive implementations

require the same average number of clock cycles and the same

average time to reach a solution.

From examining the complexity of the resulting circuits one concludes that the use of

embedded memory allows recursive algorithms to be nearly as resource-demanding as

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 150

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

iterative ones. Each new FPGA family put on the market has usually more embedded

memory than the previous ones. This memory can therefore be used to store more

stack data virtually without increasing the number of occupied FPGA slices, and this

allows much more complex algorithms to be implemented. Thus, one can expect

modular implementations to be significantly more advantageous for very complex

problem instances. Moreover, a highly integrated stack memory for HFSMs might

potentially be included as an embedded block in future generations of FPGAs,

encouraging the generalization of hierarchical implementations (recursive ones

included) which, in turn, would encourage FPGA manufacturers to generalize that

feature.

Other important project characteristics, such as design time, clarity of the algorithm’s

description, and ease of modification, can be improved through strategies such as

divide and conquer, modularity, and design of reusable components. HFSM-based

hierarchical modular implementations possess strong design advantages, which are

particularly important when developing complex projects. They provide direct support

for reusability, significantly reducing the design time and, in some cases, the hardware

resources required. Furthermore, if hierarchy is applied on the basis of an HFSM,

recursive calls are inherently supported without any additional hardware.

The operational component of the architecture for generic matrix-oriented solvers, and

all interaction between its functional blocks have been validated in a software

application modeled in C#. Each functional block was described by a class that

emulates the behavior which is expected from its hardware implementation. A special

class emulates the reprogrammable control unit behavior in order to validate the

execution of different algorithms. The application was able to correctly solve different

sequences of problems (from set covering, Boolean satisfiability, and graph coloring)

and problem instances, reusing its functional block-emulating objects instantiated only

once. After validation, the architecture’s operational component was implemented and

successfully tested using Handel-C and DETIUA-S3. A USB interface was used for data

exchange. Hardware reprogrammable control unit and user agent modules were

designed using VHDL, whilst a software application to interact with the user agent was

developed in C#. The expected run-time control unit reprogramming, for

implementing different algorithms, was tested and successfully achieved.

Detailed analysis reveals that binary vectors, masks, simple access binary matrices

and stacks are explicitly or implicitly used across the three implemented combinatorial

search algorithms, whereas dual access binary matrices are used less often. Some of

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 151

CCHHAAPPTTEERR 66 –– EEXXPPEERRIIMMEENNTTSS,, RREESSUULLTTSS,, AANNDD AANNAALLYYSSIISS

the developed functional blocks have not been used but they can be helpful for

implementing matrix-based combinatorial search algorithms which have not been

addressed here.

Prototyping Board Manager has been tested in various ways and it is subject to an on-

going continuous testing and improvement process. Some of the disciplines taught at

the Department of Electronics, Telecommunications and Informatics of the University

of Aveiro already use several DETIUA-S3 boards and PBM as working tools and

important feedback is accessible from students. Many projects of undergraduate

students consisted of extension boards which implement different interfaces for

peripherals. We can therefore claim that this software has a significant practical

usefulness.

The possibility of sending multiple bitstreams to DETIUA-S3 and storing them in the

flash memory, ready to be loaded onto an FPGA allows for: autonomous experiments

with different single bitstream projects without connection to a host computer; FPGA

run-time reconfiguration (permitting to implement circuits that require more resources

than the resources available in the FPGA); and programming FPGAs installed on

additional extension boards. The first two possibilities have already been tested and

found successful.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 153

CCHHAAPPTTEERR 77 -- CCOONNCCLLUUSSIIOONNSS

77.. CCoonncclluussiioonn

This chapter summarizes the author’s contribution, lists the most important results

and suggests future work in the considered area. When some results are described,

the relevant references to the thesis chapters (where the proper contribution is

presented) are done.

7.1. Contributions

Basic contributions of the thesis are provided within the following three areas:

1. Analysis of recursive and iterative implementations of computational

algorithms in hardware.

2. Synthesis and FPGA-based prototyping of computationally intensive

algorithms applying recursive and iterative techniques. Note that the

analysis of previous results, obtained in software development, has

allowed us to select an area (namely tree-based computations) where

recursive algorithms might be better than the iterative ones. The

thesis presents analysis and implementation of tree-based

computations that are used in combinatorial search algorithms applied

to binary and ternary matrices. In addition, some other applications

(such as tree-based data sorting) are studied.

3. Software tools for an FPGA-based prototyping system with the

primary objective of satisfying research-specific requirements. Such

tools are convenient for implementing circuits, demonstrating its

advantages and carry out various experiments with them. The

hardware of the FPGA-based prototyping system has been designed

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 154

CCHHAAPPTTEERR 77 -- CCOONNCCLLUUSSIIOONNSS

by Manuel Almeida [Almeida08], whereas all the necessary software

and relevant experiments were made within this thesis.

The most important results within each area of the thesis indicated above are as

follows.

Within the first area:

1.1. Analysis of recursive and iterative implementations of different

algorithms and comparison of their advantages and disadvantages

(chapter 2).

1.2. Review of known approaches and presenting the state of the art in

the scope of hardware implementation of recursive algorithms

(chapter 2).

1.3. Applying recursive and iterative techniques to the computationally

intensive algorithms selected, namely set covering, Boolean

satisfiability, graph coloring, and data sorting. Some simple

computational algorithms (such as discovering the greatest common

divisor of integers) have been presented for illustrative purposes,

making it easier to demonstrate implementation and other

necessary details (chapter 5).

1.4. Prototyping and experiments with the algorithms mentioned in the

previous point. Results and conclusions allow to estimate which

technique (recursive or iterative) is more likely to be the most

advantageous for particular applications (chapter 6).

Within the second area:

2.1. Selection and analysis of computationally intensive algorithms for

further design space exploration targeted to recursive and iterative

implementations and comparison of the relevant characteristics

(chapter 3).

2.2. Software modeling and analysis of recursive and iterative

implementations for algorithms mentioned in point 2.1 (chapter 5).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 155

CCHHAAPPTTEERR 77 -- CCOONNCCLLUUSSIIOONNSS

2.3. Hardware implementation and analysis of recursive and iterative

algorithms referenced in point 2.1 on the basis of Handel-C

specifications and VHDL descriptions (chapter 6).

2.4. Conclusions from experiments. Given the importance of these

conclusions, they will be separately emphasized after presenting the

results in the scope of area 3 below.

Within the third area:

3.1. A set of software tools incorporated in PBM has been designed for

FPGA-based prototyping system DETIUA-S3 [Almeida08] developed

at the department of Electronics, Telecommunications and

Informatics of Aveiro University. The tools include the necessary

drivers as well as user-friendly interface for configuring and

interacting with the system and for experimental purposes. Support

for both wired and wireless interactions between a host computer

and the system is provided. Contributions of point 3.1 are presented

in chapter 4.

3.2. The tool set also provides support for co-simulation, enabling local

and remote users to construct digital systems in such a way that

they are partially implemented in FPGA and partially modeled in

software of a user computer.

3.3. A set of tools that provide remote users with most of the PBM

functionality through the Internet. The tool set also provides support

for co-simulation, enabling local and remote users to construct

digital systems in such a way that they are partially implemented in

FPGA and partially modeled in software of a user computer. This

work was not initially planned for the thesis. Since this work has not

been finished yet (and the completion is not required by the thesis

objectives), we consider it as a useful direction of future work.

3.4. A set of experiments that have been done with the aid of the

proposed methods and software/hardware tools (chapter 4).

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 156

CCHHAAPPTTEERR 77 -- CCOONNCCLLUUSSIIOONNSS

The results of experiments and analysis of alternative recursive and iterative

specifications and the relevant circuits permit to present the following summary for

the considered hardware implementations:

a) The number of FPGA slices occupied by VHDL implementations is

higher if using pure logic and modularity simultaneously. This

drawback can be imputed to the circuitry supporting the HFSM. Such

overhead practically disappears when making use of block or

distributed memory, to which most of this support circuitry is

synthesized.

b) When designing solvers with tree-based algorithms in VHDL, the

average number of clock cycles required to reach a solution is lower if

implemented recursively. However, the corresponding execution time

is not necessarily shorter.

c) When designing solvers with non-backtracking tree-based algorithms

in Handel-C, both the average number of occupied FPGA slices and

the average maximum allowed clock frequency are less advantageous

when implemented recursively. Because these drawbacks emerge

with the use of stacks, recursive and iterative versions of either cyclic

or backtracking tree-based algorithms lead to equally advantageous

results.

d) When designing solvers with cyclic or backtracking tree-based

algorithms in Handel-C, iterative and recursive implementations

require the same average number of clock cycles and the same

average time to reach a solution.

e) The use of embedded (block or distributed) memory significantly

reduces the amount of FPGA resources that are occupied by solvers.

This memory can be used to store stack data virtually without

occupied more FPGA slices, allowing recursive algorithms to be nearly

as resource-demanding as iterative ones. Overall, one can expect

modular implementations to be significantly more advantageous for

very complex problem instances.

f) For many applications, additional circuit complexity is not as

important as clearness of the algorithm. In particular, we can benefit

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 157

CCHHAAPPTTEERR 77 -- CCOONNCCLLUUSSIIOONNSS

from using a divide-and-conquer strategy, which can be applied by

means of hierarchical specification. Hierarchical modular specifications

provide direct support for reusability, which leads to significant

reductions in the design time and, in some cases, in the required

hardware resources. If hierarchy is applied on the basis of an HFSM,

recursive calls are inherently supported without any additional

hardware. In such cases, the use of recursion or iteration should be

assessed on the basis of algorithm clearness. For the majority of tree-

based algorithms, recursion leads to clearer and more easily

understandable specifications.

g) Analysis that was carried out in previous publications [Sklyarov05]

and summarized in the thesis has shown that extra hardware

complexity for recursive calls usually appears due to the

implementation of stack memories (especially for allowing deep

recursive calls). However, this memory is very regular and it can be

constructed from FPGA embedded memory blocks. We found out that

this technique significantly reduces the number of FPGA slices for

such implementations. A highly integrated stack memory for HFSMs

might potentially be implemented as an embedded block in future

generations of FPGAs and this would attract additional attention to

hierarchical and even recursive, implementations.

The results of the design and implementation of FPGA-based hardware accelerators

can be reused in the following directions:

• The general architecture for hardware solvers described in section 5.2 is reusable

and thus, can be selected for potential future algorithms which require the relevant

search techniques.

• The use of dynamically reprogrammable HFSMs enables to change the algorithm

which is executed, providing a base for the design and implementation of

customizable hardware accelerators. This work is very promising and can be

postponed for future (see the next section).

• Many object-oriented software classes which were developed, tested, and

described in chapter 5 can be reused in future applications. They are a useful basis

for developing algorithms such as those discussed in chapter 5.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 158

CCHHAAPPTTEERR 77 -- CCOONNCCLLUUSSIIOONNSS

• Many developed software/hardware tools have been successfully used in

educational process at the Department of Electronics, Telecommunications and

Informatics of Aveiro University for students of two specialties, namely Electronics

and Telecommunications, and Computers and Telematics. These tools include the

prototyping FPGA-based system, prototyping board manager (PBM), and

hardware/software partition frameworks. We can mention various student

publications, such as [Silva09], [Dias08], and [Silva08], which explicitly indicate

the use of the developed tools, confirming their usefulness and successful

utilization. Furthermore, reusable library modules which are developed by students

for communication between DETIUA-S3 FPGA and peripheral devices are made

available in a dedicated online repository [Sousa].

7.2. Future work

We believe that the following directions are important for future work:

• Developing automatic software tools for detecting recursive fragments in hardware

description code and system-level specifications and generating the respective

hierarchical finite state machines. The integration of this functionality in CAD tools

could promote the use of recursion and consequently motivate reconfigurable

hardware manufacturers to include highly integrated stack memories for

hierarchical finite state machines as an embedded block in future generations of

FPGAs.

• Exploring parallel architectures of hardware-accelerators on the basis of recently

proposed parallel hierarchical finite state machines [Sklyarov08b].

• Examining the results of the thesis for other types of hardware accelerators

implementing tree-based computations. This is interesting in two following

aspects: additional validation of the thesis results; and exploring potential

extensions of applicability for recursive algorithms in hardware implementations.

• Developing a full set of tools that enable the designed hardware/software systems

(FPGA-based prototyping system, PBM, etc.) to be used remotely (see chapter 4).

Many basic results have been obtained in this thesis but this work has not been

finished yet.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 159

RREEFFEERREENNCCEESS

RReeffeerreenncceess

[Abelson96] H. Abelson, G. J. Sussman, with J. Sussman, Structure and

Interpretation of Computer Programs, Second edition,

Cambridge, Massachusetts: The MIT Press, 1996. [Online].

Available: The SICP Web Site, http://mitpress.mit.edu/sicp.

[Accessed January 6, 2009].

[Aimé07] M. Aimé, G. Gateau, T. Meynard, “Implementation of a Peak-

Current-Control Algorithm Within a Field-Programmable Gate

Array,” IEEE Transactions on Industrial Electronics, vol. 54,

no. 1, pp. 406-418, February 2007.

[Almeida06] M. Almeida, B. Pimentel, V. Sklyarov, I. Skliarova, “Design

Tools for Rapid Prototyping of Embedded Controllers,” in

Proceedings of the Third International Conference on

Autonomous Robots and Agents, 2006, pp. 683-688.

[Almeida08] M. Almeida, “Métodos e Ferramentas para Reconfiguração de

FPGAs Remotamente,” M.Sc. thesis, University of Aveiro,

Portugal, 2008. (In Portuguese)

[AMD] Advanced Micro Devices, Inc. [Online]. Available:

http://www.amd.com. [Accessed February 26, 2009].

[Arsac82] J. Arsac, Y. Kodrato, “Some techniques for recursion removal

from recursive functions,” Association of Computing

Machinery Transactions on Programming Languages and

Systems, vol. 4, no. 2, pp. 295-322, April 1982.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 160

RREEFFEERREENNCCEESS

[Astrachan03] O. Astrachan, “Bubble sort: an archaeological algorithmic

analysis,” in Proceedings of the Thirty-fourth SIGCSE

Technical Symposium on Computer Science Education, 2003,

pp. 1-5.

[Bäck95] T. Bäck, M. Schütz, S. Khuri, “A Comparative Study of a

Penalty Function, a Repair Heuristic and Stochastic Operators

with the Set-Covering Problem,” in Artificial Evolution, vol.

1063 of Lecture Notes in Computer Science, Berlin /

Heidelberg: Springer, 1995, pp. 320-332.

[Backus85] J. Backus, “From function level semantics to program

transformation and optimization,” in Mathematical

Foundations of Software Development, vol. 185 of Lecture

Notes in Computer Science, Berlin / Heidelberg: Springer,

1985, pp. 60-91.

[Ball60] W. Ball, Mathematical Recreations and Essays, Eleventh

edition, revised by H. Coxeter, New York: Macmillan, 1960.

[Beier04] R. Beier, B. Vöcking, “Probabilistic Analysis of Knapsack Core

Algorithms,” in Proceedings of the Fifteenth annual ACM-SIAM

symposium on Discrete algorithms, 2004, pp. 468-477.

[Bitner75] J. Bitner, E. Reingold, “Backtrack Programming Techniques,”

Communications of the Association of Computing Machinery,

vol. 18, no. 11, pp. 651-656, November 1975.

[Bodin91] L. Bodin, A. Kashani, “The zone hopping problem,” Computers

and Operations Research, vol. 18, no. 1, pp. 75-86, January

1991.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 161

RREEFFEERREENNCCEESS

[Bondalapati98] K. Bondalapati, V. Prasanna, “Mapping loops onto

reconfigurable architectures,” in Field-Programmable Logic:

From FPGAs to Computing Paradigm, vol. 1482 of Lecture

Notes In Computer Science, London: Springer-Verlag, 1998,

pp. 268–277.

[Bondalapati00] K. Bondalapati, V. Prasanna, “Loop pipelining and optimization

for run time reconfiguration,” in Proceedings of the Fifteenth

IPDPS 2000 Workshops on Parallel and Distributed Processing,

vol. 1800 of Lecture Notes In Computer Science, London:

Springer-Verlag, 2000, pp. 906–915.

[Breuer70] M. Breuer, “Simplification of the covering problem with

application to Boolean expressions,” Journal of the Association

of Computing Machinery, vol. 17, no. 1, pp. 166-181, January

1970.

[Cameron94] P. J. Cameron, Combinatorics: Topics, Techniques,

Algorithms, Cambridge University Press, 1994.

[Carrano95] F. M. Carrano, Data Abstraction and Problem Solving with

C++, Redwood City, California: The Benjamin / Cummings

Publishing Company, Inc., 1995.

[Celoxica] Celoxica: Low-latency and accelerated computing solutions for

Capital Markets. [Online]. Available:

http://www.celoxica.com. [Accessed February 26, 2009].

[Chor88] B. Chor, R. L. Rivest, “Knapsack-type public key cryptosystem

based on arithmetic in finite fields,” IEEE Transactions on

Information Theory, vol. 34, no. 5, pp. 901-909, September

1988.

[Cohen79] J. Cohen, “Non-deterministic algorithms,” in Association of

Computing Machinery Computing Surveys, vol. 11, no. 2, pp.

79-94, June 1979.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 162

RREEFFEERREENNCCEESS

[Culberson] J. Culberson, Graph Coloring Page. [Online]. Available:

http://www.cs.ualberta.ca/~joe/Coloring/index.html.

[Accessed: Jan. 7, 2009].

[D&R06] “FPGA Market Will Reach $2.75 Billion by Decade's End,”

Design And Reuse, May 24, 2006. [Online]. Available:

http://www.design-reuse.com/news/13441/fpga-market-

reach-2-75-billion-decade-end.html. [Accessed: January 8,

2009].

[Dias08] N. Dias, S. Tafula, “Implementação em FPGA de um

ordenador numérico recursivo com interface gráfica,”

Electrónica e Telecomunicações, vol. 4, no. 9, 2008, pp.

1006-1009.

[Du07] H. Du, H. Qi, X. Wang, “Comparative Study of VLSI Solutions

to Independent Component Analysis,” IEEE Transactions on

Industrial Electronics, vol. 54, no. 1, pp. 548-558, February

2007.

[EETimes02] “Xilinx FPGAs integrate PowerPC processor,” EE Times Asia,

March 8, 2002. [Online]. Available:

http://www.eetasia.com/ART_8800212173_1034362_NP_14f

8c950.HTM. [Accessed: January 8, 2009].

[EETimes06a] “Semiconductor FPGA/PLD market to grow 14% in '06, says

Gartner,” EE Times Asia, May 30, 2006. [Online]. Available:

http://www.eetasia.com/ART_8800419580_499485_NT_07a6

c7d3.HTM. [Accessed: January 13, 2009].

[EETimes06b] R. Goering, “FPGA users rank challenges, tasks,” EE Times,

July 31, 2006. [Online]. Available: http://www.eetimes.com

(search key: 191600017). [Accessed: January 8, 2009].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 163

RREEFFEERREENNCCEESS

[EETimes06c] D. McGrath, “FPGAs top choice for some telecom equipment,

survey says,” Embedded.com, October 8, 2006. [Online].

Available: http://www.eetimes.com (search key: 191901726).

[Accessed: January 8, 2009].

[EFF] EFF, Data-Compression. [Online]. Available: http://www.data-

compression.com. [Accessed: January 8, 2009].

[Erickson96] M. J. Erickson, Introduction to combinatorics, New York:

Wiley-Interscience, 1996.

[Estrin60] G. Estrin, “Organization of Computer Systems – The Fixed

Plus Variable Structure Computer,” in Proceedings of the

Western Joint Computer Conference, 1960, pp. 33-40.

[Ezick] J. Ezick, Robotics. [Online]. Available:

http://dimacs.rutgers.edu/REU/1996/ezick.html. [Accessed:

January 13, 2009].

[Ferizis06] G. Ferizis, H. El Gindy, “Mapping recursive functions to

reconfigurable hardware,” in Proceedings of the Field

Programmable Logic and Applications International

Conference, 2006, pp. 1-6.

[Floyd67] R. W. Floyd, “Nondeterministic algorithms,” Journal of the

Association of Computing Machinery, vol. 14, no. 4, pp. 636-

644, October 1967.

[Gavious94] A. Gavious, Z. Rosberg, “A restricted complete sharing policy

for a stochastic knapsack problem in b-isdn,” IEEE

Transactions on Communications, vol. 42, no. 7, pp. 2375-

2379, July 1994.

[Gilmore61] R. Gilmore, R. E. Gomory, “A linear programming approach to

cutting-stock problem,” Operations Research, vol. 9, no.6, pp.

863-888, November-December 1961.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 164

RREEFFEERREENNCCEESS

[Gleeson94] M. Gleeson, J. Ottensman, “A decision support system for

acquisitions budgeting in public libraries,” Interfaces, vol. 24,

no. 5, pp. 107-117, September-October 1994.

[Golomb65] S. Golomb, L. Baumert, “Backtrack programming,” Journal of

the Association of Computing Machinery, vol. 12, no. 4, pp.

516-524, October 1965.

[Goossens97] G. Goossens, J. Van Praet, D. Lanneer, W. Geurts, A. Kifli, C.

Liem, P. G. Paulin, “Embedded software in real-time signal

processing systems: design technologies,” in Proceedings of

the IEEE, vol. 85, no. 3, pp. 436-454, March 1997.

[Gu97] J. Gu, P. W. Purdom, J. Franco, B. W. Wah, “Algorithms for

the Satisfiability (SAT) Problem: A Survey,” DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, vol.

35, pp. 19-151, 1997.

[Gu04] J. Gu, Constraint-Based Search, New York: Cambridge

University Press, 1994.

[Hahn68] S. G. Hahn, “On the optimal cutting of defective sheets,”

Operations Research, vol. 16, no.6, pp. 1100-1114,

November-December 1968.

[Harrison92] P. G. Harrison, H. Khoshnevisan, “A new approach to

recursion removal,” Theoretical Computer Science, vol. 93,

no. 1, pp. 91-113, February 1992.

[Helsgaun95] K. Helsgaun, “CBack: a simple tool for backtrack

programming in C,” Software - Practice & Experience, vol. 32,

no. 8, pp. 905-934, August 1995.

[Henig90] M. Henig, “Risk criteria in a stochastic knapsack problem,”

Operations Research, vol. 38, no. 5, pp. 820-825, September-

October 1990.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 165

RREEFFEERREENNCCEESS

[Jan93] J. Jan, S. Wang, “A dynamic access control scheme based

upon the knapsack problem,” International Journal of

Computers ＆ Mathematics with Applications, vol. 26, no. 12,

pp. 75-86, 1993.

[Jung07] S. Jung, S. su Kim, “Hardware Implementation of a Real-Time

Neural Network Controller With a DSP and an FPGA for

Nonlinear Systems,” IEEE Transactions on Industrial

Electronics, vol. 54, no. 1, pp. 265-271, February 2007.

[Jutman07] A. Jutman, A. Tsertov, A. Tsepurov, I. Aleksejev, R. Ubar, H.

Wuttke, “BIST Analyzer: a Training Platform for SoC Testing,”

in Proceedings of Frontiers in Education Conference, 2007, pp.

S3H-8 - S3H-13.

[Kernighan88] B. W. Kernighan, D. M. Ritchie, The C Programming

Language, Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

[Kfoury97] A. J. Kfoury, “Recursion versus iteration at higher-orders,” in

Foundations of Software Technology and Theoretical

Computer Science, vol. 1346 of Lecture Notes in Computer

Science, Berlin: Springer-Verlag, 1997, pp. 57-73.

[Knuth97] D. E. Knuth, The Art of Computer Programming:

Seminumerical Algorithms, Third edition, Vol. 2, Addison

Wesley, 1997.

[Knuth98] D. E. Knuth, The Art of Computer Programming: Sorting and

Searching, Second edition, Vol. 3, Addison Wesley, 1998.

[Kovacec05] D. Kovacec, “A Multimedia Platform for Automotive and

Consumer Markets,” Xcell Journal [Online]. Available:

http://china.xilinx.com. [Accessed: January 12, 2009].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 166

RREEFFEERREENNCCEESS

[Kreher99] D. L. Kreher, D. R. Stinson, Combinatorial algorithms:

generation, enumeration, and search, Florida: CRC Press,

1999.

[Kruse87] R. L. Kruse, Data Structures and Program Design, Second

edition, Prentice-Hall, 1987.

[Liu99] Y. A. Liu, S. D. Stoller, “From recursion to iteration: what are

the optimizations?,” in Proceedings of the ACM SIGPLAN

Notices, vol. 34, no. 11, pp. 73-82, November 1999.

[MacMillen00] D. MacMillen, M. Butts, R. Camposano, D. Hill, T. W. Williams,

“An Industrial View of Electronic Design Automation,” IEEE

Transactions on Computer Aided Design of Integrated Circuits

and Systems, vol. 19, no. 12, pp. 1428-1448, December

2000.

[Madsen79] O. B. G. Madsen, “Glass cutting in a small firm,” Mathematical

Programming, vol. 17, no. 1, pp. 85-90, December 1979.

[Marques-Silva08] J. Marques-Silva, “Practical Applications of Boolean

Satisfiability,” in Proceedings of the Ninth International

Workshop on Discrete Event Systems, 2008, pp. 74-80.

[Maruyama99] T. Maruyama, M. Takagi, T. Hoshino, “Hardware

Implementation Techniques for Recursive Calls and Loops,” in

Field Programmable Logic and Applications, vol. 1673 of

Lecture Notes in Computer Science, Berlin / Heidelberg:

Springer, 1999, pp. 450-455.

[Maruyama00] T. Maruyama, T. Hoshino, “A C to HDL Compiler for Pipeline

Processing on FPGAs,” in Proceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines, 2000,

pp. 101-110.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 167

RREEFFEERREENNCCEESS

[MentorGraphics] Mentor Graphics, ModelSim – a comprehensive simulation and

debug environment for complex ASIC and FPGA designs.

[Online]. Available: http://www.model.com/. [Accessed:

February 24, 2009].

[Merkle78] R. Merkle, M. Hellman, "Hiding information and signatures in

trapdoor knapsack,” IEEE Transactions on Information

Theory, vol. 24, no. 5, pp. 525-530, September 1978.

[Micheli94] G. De Micheli, Synthesis and Optimization of Digital Circuits,

USA: McGraw-Hill, Inc., 1994.

[Moore65] G. E. Moore, "Cramming more components onto integrated

circuits," Electronics, vol. 38, no. 8, pp. 114-117, April 1965.

[Newswire05] PR Newswire, “Xilinx Delivers Highest Performance DSP

Solutions for Multimedia, Video and Imaging Applications”, in

FPGA and Structured ASIC Journal, October 24, 2005.

[Online]. Available: http://www.fpgajournal.com (search key:

20051024_01). [Accessed: January 13, 2009].

[Ninos08] S. Ninos, A. Dollas. “Modeling recursion data structures for

FPGA-based implementation,” in Proceedings of the

Eighteenth International Conference on Field-Programmable

Logic and its Applications, 2008, pp. 11-16.

[Noble03] J. V. Noble. “Recurses!,” Computing in Science & Engineering,

vol. 5, no. 3, pp. 76- 81, May-June 2003.

[Nunez03] J. L. Nunez, S. Jones, “Gbit/s Lossless Data Compression

Hardware,” IEEE Transactions on Very Large Scale Integration

Systems, vol. 11, no. 3, pp. 499-510, June 2003.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 168

RREEFFEERREENNCCEESS

[Panainte04] E. M. Panainte, K. Bertels, S. Vassiliadis, “Multimedia

Reconfigurable Hardware Design Space Exploration,” in

Proceedings of the Sixteenth IASTED International Conference

on Parallel and Distributed Computing and Systems, 2004, pp.

398-403.

[Partsch90] H. A. Partsch, Specification and Transformation of Programs -

A Formal Approach to Software Development, Berlin:

Springer-Verlag, 1990.

[Pimentel] B. Pimentel, Homepage of Bruno Figueiredo Pimentel.

[Online]. Available:

https://sites.google.com/site/brunofigueiredopimentel/.

[Accessed February 26, 2009].

[Pimentel07] B. Pimentel, “A Dynamically Reprogrammable CSA-Generic

Platform Architecture,” in Proceedings of the Fourth

FPGAworld Conference, 2007, pp. 16-21.

[Pimentel08] B. Pimentel, V. Sklyarov, M. Almeida, “Virtual and Remote

Laboratories for Circuit Design e-Learning,” in Proceedings of

the International Conference on Interactive Computer Aided

Learning, 2008.

[Pimentel09] B. Pimentel, “Recursion in Hardware: Applicability and

Implementation Strategies,” in Proceedings of the Second

International Conference on Advances in Circuits, Electronics

and Micro-electronics, 2009.

[Raik07] J. Raik, R. Ubar, A. Krivenko, M. Kruus, “Hierarchical

Identification of Untestable Faults in Sequential Circuits,” in

Proceedings of Tenth IEEE EUROMICRO Conference on Digital

System Design, 2007, pp. 668-671.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 169

RREEFFEERREENNCCEESS

[Roadmap05] “International Technology Roadmap for Semiconductors. ITRS

2005 Edition: Design,” 2005. Available:

http://www.itrs.net/reports.html.

[Roadmap07] “International Technology Roadmap for Semiconductors. ITRS

2007 Edition: Design,” 2007. Available:

http://www.itrs.net/reports.html.

[Rodin90] E. Y. Rodin, D. Geist, “Flight and fire control with logic

programming,” Computers & Mathematics with Applications,

vol. 20, no. 9/10, pp. 15-27, 1990.

[Rosen00] K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, D. R.

Shier, Handbook of Discrete and Combinatorial Mathematics,

CRC Press, 2000.

[Ross89] K. W. Ross, D. Tsang, “The stochastic knapsack problem,”

IEEE Transactions on Communications, vol. 37, no. 7, pp.

740-747, July 1989.

[Rubin73] J. Rubin, “A technique for the solution of massive set-covering

problems with applications to airline crew scheduling,”

Transportation Science, vol. 7, pp. 34-48, 1973.

[Salcic06] Z. Salcic, J. Cao, S. K. Nguang, “A Floating-Point FPGA-Based

Self-Tuning Regulator,” IEEE Transactions on Industrial

Electronics, vol. 53, no. 2, pp. 693-704, April 2006.

[Seth87] A. Seth, “Wastage reduction in wood cutting,“ Opsearch, vol.

24, no. 2, pp. 94-105, 1987.

[Shirazi98] N. Shirazi, W. Luk, P. Y. K. Cheung, “Run-time management

of dynamically reconfigurable designs,” in Proceedings of the

Eighth International Workshop on Programmable Logic and

Applications, 1998, pp. 59-68.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 170

RREEFFEERREENNCCEESS

[Silva08] B. Silva, “Especificação, síntese e implementação em VHDL de

um processador MIPS Single Cycle simplificado,” Electrónica e

Telecomunicações, vol. 4, no. 9, 2008, pp. 998-1005.

[Silva09] B. Silva, “Um Processador com Arquitectura MIPS para

ensino,” M.Sc. thesis, University of Aveiro, Portugal, 2009. (In

Portuguese).

[Skliarova01] I. Skliarova, A. B. Ferrari, "Synthesis of reprogrammable

control unit for combinatorial processor,” in Proceedings of

the Fourth IEEE International Workshop on Design and

Diagnostics of Electronic Circuits and Systems, 2001, pp. 179-

186.

[Skliarova03] I. Skliarova, A. B. Ferrari, “The Design and Implementation of

a Reconfigurable Processor for Problems of Combinatorial

Computation,” Journal of Systems Architecture: the

EUROMICRO Journal, vol. 49, no. 4-6, 2003, pp. 211-226.

[Skliarova04a] I. Skliarova, "Reconfigurable Architectures for Problems of

Combinatorial Optimization,” Ph.D. dissertation, University of

Aveiro, Portugal, 2004.

[Skliarova04b] I. Skliarova, A. B. Ferrari, "Reconfigurable Hardware SAT

Solvers: A Survey of Systems,” IEEE Transactions on

Computers, vol. 53, no. 11, pp. 1449-1461, November 2004.

[Skliarova05] I. Skliarova, "Implementation of Recursive Search Algorithms

in Reconfigurable Hardware,” in Proceedings of the Fourth

Winter International Symposium on Information and

Communication Technologies, 2005, pp. 142-147.

[Skliarova06a] I. Skliarova, "Intelligent Systems Engineering with

Reconfigurable Computing,” in International Federation for

Information Processing: Professional Practice in Artificial

Intelligence, vol. 218, Boston: Springer, 2006, pp. 161-170.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 171

RREEFFEERREENNCCEESS

[Skliarova06b] I. Skliarova, V. Sklyarov, "Design Methods for FPGA-based

implementation of combinatorial Search Algorithms," in

Proceedings of the International Workshop on SoC and MCSoC

Design, Fourth International Conference on Advances in

Mobile Computing and Multimedia, 2006, pp. 359-368.

[Skliarova08] I. Skliarova, V. Sklyarov, "Recursive versus Iterative

Algorithms for Solving Combinatorial Search Problems in

Hardware," in Proceedings of the Twenty-First International

Conference on VLSI Design, 2008, pp. 255-260.

[Sklyarov84] V. Sklyarov, Synthesis of Finite State Machines Based on

Matrix LSI, Minsk, Belarus: Science & Techniques, 1984. (In

Russian)

[Sklyarov98] V. Sklyarov, A. da Rocha, A. B. Ferrari, “Synthesis of

Reconfigurable Control Devices Based on Object-oriented

Specifications,” in Advanced Techniques for Embedded

Systems Design and Test, Kluwer Academic Publishers Group,

1998, pp 151-177.

[Sklyarov99] V. Sklyarov, “Hierarchical Finite-State Machines and Their Use

for Digital Control,” IEEE Transactions on Very Large Scale

Integration Systems, vol. 7, no. 2, pp. 222-228, June 1999.

[Sklyarov00] V. Sklyarov, “Synthesis of Control Circuits with Dynamically

Modifiable Behavior on the Basis of Statically Reconfigurable

FPGAs,” in Proceedings of the Thirteenth Symposium on

Integrated Circuits and Systems Design, 2000, pp. 353-358.

[Sklyarov02a] V. Sklyarov, “Reconfigurable models of finite state machines

and their implementation in FPGAs,” Journal of Systems

Architecture, vol. 47, no. 14-15, pp. 1043-1064, August

2002.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 172

RREEFFEERREENNCCEESS

[Sklyarov02b] V.Sklyarov, “Hardware/Software Modeling of FPGA-based

Systems,” in Parallel Algorithms and Applications (ISSN 1063-

7192), vol. 17, no. 1, 2002, pp. 19-39.

[Sklyarov03a] V. Sklyarov, I. Skliarova, "Design of Digital Circuits on the

Basis of Hardware Templates", in Proceedings of the

International Conference on Embedded Systems and

Applications, 2003, pp. 56-62.

[Sklyarov03b] V. Sklyarov, I. Skliarova, “Architecture of a Reconfigurable

Processor for Implementing Search Algorithms over Discrete

Matrices,” in Proceedings of International Conference on

Engineering of Reconfigurable Systems and Algorithms, 2003,

pp. 127-133.

[Sklyarov03c] V. Sklyarov, I. Skliarova, A. Oliveira, A. B. Ferrari, “A

Dynamically Reconfigurable Accelerator for Operations over

Boolean and Ternary Vectors,” in Proceedings of the

EUROMICRO Symposium on Digital System Design, 2003, pp.

222-229.

[Sklyarov04] V. Sklyarov, “FPGA-based implementation of recursive

algorithms,” Microprocessors and Microsystems, vol. 28, no.

5-6, pp. 197-211.

[Sklyarov05] V. Sklyarov, I. Skliarova, B. Pimentel, “FPGA-based

Implementation and Comparison of Recursive and Iterative

Algorithms,” in Proceedings of the Fifteenth International

Conference on Field-Programmable Logic and its Applications,

2005, pp. 235-240.

[Sklyarov06a] V. Sklyarov, I. Skliarova, “Recursive and Iterative Algorithms

for N-ary Search Problems,” in Professional Practice in

Artificial Intelligence, vol. 218 of IFIP International Federation

for Information Processing, Boston: Springer, 2006, pp. 81-

90.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 173

RREEFFEERREENNCCEESS

[Sklyarov06b] V. Sklyarov, I. Skliarova, B. Pimentel, “Modeling and FPGA-

based implementation of graph coloring algorithms,” in

Proceedings of the Third International Conference on

Autonomous Robots and Agents, 2006, pp. 443-448.

[Sklyarov06c] V. Sklyarov, I. Skliarova, “Reconfigurable Hierarchical Finite

State Machines,” in Proceedings of the Third International

Conference on Autonomous Robots and Agents, 2006, pp.

599-604.

[Sklyarov06d] V. Sklyarov, I. Skliarova, B. Pimentel, “Synthesis of FSMs on

the Basis of Reusable Hardware Templates,” WSEAS

Transactions on Systems, vol. 5, no. 11, pp. 2548-2553,

November 2006.

[Sklyarov07a] V. Sklyarov, I. Skliarova, B. Pimentel, "FPGA-based

Implementation of Graph Colouring Algorithms,” in Studies in

Computational Intelligence: Autonomous Robots and Agents,

vol. 76, Berlin / Heidelberg: Springer-Verlag, 2007, pp. 225–

231.

[Sklyarov07b] V. Sklyarov, I. Skliarova, "Reuse Technique in Hardware

Design," in Proceedings of the IEEE International Conference

on Information Reuse and Integration, 2007, pp. 36-41.

[Sklyarov08a] V. Sklyarov, I. Skliarova, B. Pimentel, M. Almeida,

"Multimedia Tools and Architectures for Hardware/Software

Co-Simulation of Reconfigurable Systems," in Proceedings of

the Twenty-First International Conference on VLSI Design,

2008, pp. 85-90.

[Sklyarov08b] V. Sklyarov, I. Skliarova, "Design and Implementation of

Parallel Hierarchical Finite State Machines", in Proceedings of

the Second International Conference on Communications and

Electronics, 2008, pp. 33-38.

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 174

RREEFFEERREENNCCEESS

[Sousa] R. Sousa, FPGA Design Repository. [Online]. Available:

http://sweet.ua.pt/~a16360/. [Accessed February 26, 2009].

[Sridharanand05] K. Sridharanand, T. K. Priya, “The Design of a Hardware

Accelerator for Real-Time Complete Visibility Graph

Construction and Efficient FPGA Implementation,” IEEE

Transactions on Industrial Electronics, vol. 52, no. 4, pp.

1185-1187, August 2005.

[Steiger04] C. Steiger, H. Walder, M. Platzner, “Operating systems for

reconfigurable embedded platforms: online scheduling of real-

time tasks,” IEEE Transactions on Computers, vol. 53, no. 11,

pp. 1393-1407, November 2004.

[Subramonian04] V. Subramonian, H. M. Huang, G. Xing, C. Gill, C. Lu, R.

Cytron, “Middleware specialization for memory-constrained

networked embedded systems,” in Proceedings of the Tenth

IEEE Real-Time and Embedded Technology and Applications

Symposium, 2004, pp. 306-313.

[Tang06] P. Tang, “Complete inlining of recursive calls: beyond tail-

recursion elimination,” in Proceedings of the Forty-fourth

Annual Southeast Regional Conference, 2006, pp. 579-584.

[Trenz] Trenz Electronic. Products. [Online]. Available:

http://www.trenz-electronic.de. [Accessed February 26,

2009].

[Turley05] J. Turley, “Survey: Who uses custom chips,” Embedded

Systems Design, January 8, 2005. [Online]. Available:

http://www.embedded.com (search key: 166404172).

[Accessed: January 13, 2009].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 175

RREEFFEERREENNCCEESS

[Ubar07] R. Ubar, S. Kostin, J. Raik, T. Evartson, H. Lensen, “Fault

Diagnosis in Integrated Circuits with BIST,” in Proceedings of

Tenth IEEE EUROMICRO Conference on Digital System Design,

2007, pp. 604-610.

[Ubar08] R. Ubar, S. Devadze, M. Jenihhin, J. Raik, G. Jervan, P.

Ellervee, “Hierarchical Calculation of Malicious Faults for

Evaluating the Fault-Tolerance,” in Proceedings of the Fourth

IEEE International Symposium on Electronic Design, Test &

Applications, 2008, pp. 23-25, 2008.

[Walker74] W. Walker, “Using the set-covering problem to assign Fire

companies to Fire houses,” Operations Research, vol. 22, no.

2, pp. 275-277, March-April 1974.

[Weinhardt99] M. Weinhardt, W. Luk, “Pipeline vectorization for

reconfigurable systems,” in Proceedings of the Seventh

Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 1999, p. 52-62.

[Wirth86] N. Wirth, Algorithms and Data Structures, Prentice-Hall, 1986.

[Wu93] Y. L. Wu, M. Marek-Sadowska, “Graph based analysis of FPGA

routing,” in Proceedings of the European Design Automation

Conference, 1993, pp. 104-109.

[Xilinx] Xilinx, Inc. Products and services. [Online]. Available:

http://www.xilinx.com. [Accessed February 26, 2009].

[Xilinx06] Virtex-5 LX Platform Overview. [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/d

s100.pdf. [Accessed: January 13, 2009].

SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 176

RREEFFEERREENNCCEESS

[Xilinx09] Virtex-6 and Spartan-6 FPGA Families Brochure. [Online].

Available:

http://www.xilinx.com/publications/prod_mktg/Virtex6_Spart

an6_Product_Brief.pdf. [Accessed: February 24, 2009].

[Zakrevskij71] A. Zakrevskij, Algorithms of Discrete Automata Synthesis,

Moscow: Nauka, 1971. (In Russian)

[Zakrevskij81] A. Zakrevskij, Logical Synthesis of Cascade Networks,

Moscow: Nauka, 1981. (In Russian)

[Zakrevskij00] A. Zakrevskij, “Graph Coloring and Decomposition of Boolean

Functions,” Logical Design, no. 5, 2000. (In Russian)

[Zakrevskij08] A. Zakrevskij, Yu. Pottosin, L. Cheremisinova, Combinatorial

Algorithms of Discrete Mathematics, Tallinn, Estonia: Tallinn

University Press, 2008.

[Zhang89] Y. Zhang, R. Karp, “Parallel algorithms for combinatorial

search problems,” Ph.D. dissertation, University of California,

Berkeley, California, 1989.

[Zhong99] P. Zhong, “Using Configurable Computing to Accelerate

Boolean Satisfiability,” Ph.D. dissertation, Princeton

University, New Jersey, 1999.

[Zhuang07] H. Zhuang, K. S. Low, W. Y. Yau, “A Pulsed Neural Network

With On-Chip Learning and Its Practical Applications,” IEEE

Transactions on Industrial Electronics, vol. 54, no. 1, pp. 34-

42, February 2007.

