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resumo 
 

 

O desenvolvimento de sistemas computacionais é um processo complexo, 
com múltiplas etapas, que requer uma análise profunda do problema, levando 
em consideração as limitações e os requisitos aplicáveis. Tal tarefa envolve a 
exploração de técnicas alternativas e de algoritmos computacionais para 
optimizar o sistema e satisfazer os requisitos estabelecidos. Neste contexto, 
uma das mais importantes etapas é a análise e implementação de algoritmos 
computacionais. 
Enormes avanços tecnológicos no âmbito das FPGAs (Field-Programmable 
Gate Arrays) tornaram possível o desenvolvimento de sistemas de engenharia 
extremamente complexos. Contudo, o número de transístores disponíveis por 
chip está a crescer mais rapidamente do que a capacidade que temos para 
desenvolver sistemas que tirem proveito desse crescimento. Esta limitação já 
bem conhecida, antes de se revelar com FPGAs, já se verificava com ASICs 
(Application-Specific Integrated Circuits) e tem vindo a aumentar 
continuamente. 
O desenvolvimento de sistemas com base em FPGAs de alta capacidade 
envolve uma grande variedade de ferramentas, incluindo métodos para a 
implementação eficiente de algoritmos computacionais. Esta tese pretende 
proporcionar uma contribuição nesta área, tirando partido da reutilização, do 
aumento do nível de abstracção e de especificações algorítmicas mais 
automatizadas e claras. Mais especificamente, é apresentado um estudo que 
foi levado a cabo no sentido de obter critérios relativos à implementação em 
hardware de algoritmos recursivos versus iterativos. Depois de serem 
apresentadas algumas das estratégias para implementar recursividade em 
hardware mais significativas, descreve-se, em pormenor, um conjunto de 
algoritmos para resolver problemas de pesquisa combinatória (considerados 
enquanto exemplos de aplicação). Versões recursivas e iterativas destes 
algoritmos foram implementados e testados em FPGA. Com base nos 
resultados obtidos, é feita uma cuidada análise comparativa. 
Novas ferramentas e técnicas de investigação que foram desenvolvidas no 
âmbito desta tese são também discutidas e demonstradas. 
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abstract 

 
Design of computational systems is a complex multistage process which 
requires a deep analysis of the problem, taking into account relevant limitations 
and constraints as well as software/hardware co-design. Such task involves 
exploring competitive techniques and computational algorithms, enabling the 
system to be optimized while satisfying given requirements. In this context, one 
of the most important stages is analysis and implementation of computational 
algorithms. 
Tremendous progress in the scope of FPGA (Field-Programmable Gate Array) 
technology has made it possible to design very complicated engineering 
systems. However, the number of available transistors grows faster than the 
ability to meaningfully design with them. This situation is a well known design 
productivity gap, which was inherited by FPGA from ASIC (Application-Specific 
Integrated Circuit) and which is increasing continuously. 
Developing engineering systems on the basis of high capacity FPGAs involves 
a wide variety of design tools, including methods for efficient implementation of 
computational algorithms. The thesis is intended to provide a contribution in 
this area by aiming at reuse, high level abstraction, automation, and clearness 
of algorithmic specifications. More specifically, it presents research studies 
which have been carried out in order to obtain criteria regarding implementation 
of recursive vs. iterative algorithms in hardware. After describing some of the 
most relevant strategies for implementing recursion in hardware, a selection of 
algorithms for solving combinatorial search problems (considered as 
application examples) are also described in detail. Iterative and recursive 
versions of these algorithms have been implemented and tested in FPGA. 
Taking into consideration the results obtained, a careful comparative analysis is 
given. 
New research-oriented tools and techniques for hardware design which have 
been developed in the scope of this thesis are also discussed and 
demonstrated. 
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1.1. Motivation 

Design of computational systems is a complex multistage process which requires a 

deep analysis of the problem, taking into account relevant limitations and constraints 

as well as software/hardware co-design strategies. These factors are essential to 

achieve the required functionality while optimizing the most important system’s 

characteristics (e.g. maximizing the performance or minimizing the needed hardware 

resources). 

The system requirements are the constraints whose satisfaction is to be guaranteed. 

Typical constraints concern maximum respond time to different requests, maximum 

power consumption, etc. So long as the requirements are met, the computational 

system can be optimized in terms of complementary goals, such as minimizing the 

hardware resources, providing clearness of specifications, simplifying system 

maintenance, design reuse, opportunities for further updates and improvements, etc. 

Trade-offs between such system characteristics often take place, and determining the 

most appropriate choices involves exploring competitive techniques and computational 

algorithms, which is a process that can be seen as design space exploration. Analysis 

and implementation of computational algorithms is therefore a very important step to 

guarantee that the system functions in strong conformity with the given requirements 

and to achieve a good compromise between mutually-dependable system 

characteristics. 

Algorithmic structure plays a very important role in the development of computational 

systems and it has direct relationship with important issues, such as: how well the 

algorithms are organized; how the algorithms are implemented; how clearly the 

algorithms are described; how different parts of the algorithms can be reused; how 

easily the algorithms can be modified and improved if required; etc. In case these 

features are carefully taken into account, it becomes possible to optimize algorithms, 
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to simplify their implementation, to shorten their development lead time, and to 

increase their effectiveness. 

The thesis is dedicated to the problem of optimizing computational algorithms, and it 

explores and compares two known alternative ways to implement them, namely 

recursive and iterative. Additionally, important algorithmic features such as 

modularity, reusability, clearness, and verifiability are carefully studied. 

1.1.1. General approach to hardware/software co-design 

Hardware/software co-design of a computational system requires an answer to the 

following general question: Which parts of that system should be implemented in 

hardware and which parts of it should be implemented in software?  In order to 

answer this question, it is necessary to consider multiple sub-questions, namely: What 

exactly is software and what exactly is hardware? For instance, software can be 

considered for general-purpose computers, for application-specific computers, for 

application-specific microcontrollers, for built-in ‘hard/soft’ cores such as the FPGA 

(Field-Programmable Gate Array) Power PC processor [EETimes02] which is built-in to 

FPGA or the Micro Blaze soft core [Xilinx], etc. Nevertheless, all these types of 

software have a number of common features, such as sequential processing of 

machine instructions, and implementation of fundamental concepts like procedure 

calls, interrupts, etc. Hardware can also be ‘hard’, like ASICs (Application-Specific 

Integrated Circuits), and ‘soft’, like FPGAs. Comparing with software, hardware is 

significantly more heterogeneous, and it is either difficult or even impossible to 

indicate a number of common features like for software. The main objective of this 

thesis is to explore hardware implementation of different algorithms. Due to 

complexity, not all of them can be realized entirely in hardware, urging 

software/hardware co-design to be employed. Exploring this topic also constitutes an 

objective of this thesis. 

Special attention should be paid to reconfigurable computing. Indeed, the market for 

FPGAs and other programmable logic devices is expected to grow from $3.2 billion in 

2005 to $6.7 billion in 2010, according to Gartner Dataquest [EETimes06a]. Figure 1.1 

demonstrates the increasing reconfigurability (see percentage in vertical axis) of SOCs 

(Systems-On-Chip) from 2007 to 2022 [Roadmap07]. 



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 3 

CCHHAAPPTTEERR  11  --  IINNTTRROODDUUCCTTIIOONN  

 

Figure 1.1 – SOC reconfigurability from 2007 to 2022 

Such increase of SOC reconfigurability is expected because “the growing system 

complexity will make it impossible to ship designs without errors in the future. Hence, 

it is essential to be able to fix errors after fabrication” [Roadmap07]. These 

circumstances lead to extensive on-going research in digital circuit test and diagnosis 

[Ubar07, Jutman07], as well as in fault detection and fault tolerance strategies 

[Raik07, Ubar08]. Moreover, the increase of SOC reconfigurability is also due to the 

fact that “reconfigurability increases reuse, since existing devices can be 

reprogrammed to fulfill new tasks” [Roadmap07]. 

Since a forecast of importance of reconfigurable systems in general, and FPGAs in 

particular, is very promising for the future, this technology is assumed for 

implementation of computational algorithms in hardware within this work. 

Particularities of FPGA-based systems are considered in detail in the next subsection. 

1.1.2. FPGA-based digital systems and reconfigurable computing 

Tremendous progress in the scope of FPGA technology has made it possible to evolve 

configurable microchips from simple gate arrays that appeared on the market in the 

mid-1980s, to multi-platform FPGAs containing more than 10 million system gates and 

targeted to the design of very complicated engineering systems. Today, the way to 

evolve high performance computing from a general-purpose computer, proposed more 

than 50 years ago [Estrin60], has finally been implemented in reality. As mentioned in 
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the previous subsection, the market for FPGAs and other programmable logic devices 

is expected to grow from $3.2 billion in 2005 to $6.7 billion in 2010 [EETimes06a].  

Developing engineering systems on the basis of high capacity FPGAs involves a large 

variety of design tools, including methods for efficient implementation of 

computational algorithms. The thesis is intended to provide significant contribution in 

this area. 

An analysis presented in [D&R06] clearly demonstrates that the largest FPGA 

consumers will be in engineering, with numerous applications in the scope of 

electronic system design, from glue logic to high-complexity application-specific 

(ASIC-type) devices. Pioneering products such as Xilinx's Virtex or Altera’s Stratix 

FPGA families will find their main applications in the development of high-volume 

products.  Figure 1.2 demonstrates how FPGAs have been employed in different 

industries [Turley05]. Furthermore, Light Reading Inc.'s Components Insider 

conducted a worldwide survey in which 91 industry professionals participated, 

including equipment-manufacturing engineers, product developers and managers from 

more than 50 major equipment makers, and “90 percent of survey respondents said 

their company now uses FPGAs” [EETimes06c]. 

 

Figure 1.2 – FPGA usage in industry 

In particular, FPGAs have been intensively used in the areas of mobile computing 

[Sridharanand05, Jung07] and multimedia. For example, Xylon company combines 
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Xilinx FPGAs of Spartan-3 family with the logicBRICKS IP (Intellectual Property) cores 

library [Kovacec05], allowing to quickly customize system designs running on generic 

FPGA development platforms into specialized multimedia products. Xilinx multimedia 

solutions provide the programmable hardware platforms, design tools, intellectual 

property, and reference designs which are needed to develop real-time video and 

image processing systems for a wide diversity of applications, such as video 

broadcasting and video conferencing, surveillance cameras, medical imaging, home 

gateway and digital TV [Newswire05]. 

The Xilinx Virtex-4 programmable technology enables the developers to rapidly 

implement state-of-the-art DSP (Digital Signal Processor) systems with high 

performance. Using FPGA-based reconfigurable processors for computation-intensive 

multimedia functions was considered in [Panainte04], reporting significant reduction in 

the number of clock cycles. Announced in 2006, Xilinx Virtex-5 FPGAs are a 

programmable alternative to custom ASIC technology and offer the best solution for 

addressing the needs of designers in the scope of high-performance logic, DSP, and 

embedded systems with unprecedented logic, hard/soft microprocessor, and 

connectivity capabilities [Xilinx06]. Virtex-5 microchips are built upon advanced 65nm 

triple-oxide technology with speed on average 30 percent higher and with capacity 

increased 65 percent over previous generation 90nm FPGAs. 

The enormous potential of reconfigurable devices that recently appeared on the 

market for the design of complex systems can be seen from the example of the 

XC5VLX330 FPGA (Virtex-5 family) [Xilinx06]. This chip contains 25,920 configurable 

logic blocks (CLBs), 192 DSP slices, 10,368 Kb of block RAM (including 18 Kb and 36 

Kb blocks), and 6 devices for advanced clock management. The plenary talk by Mike 

Butts in FPL’03 (the International Conference on Field-Programmable Logic and 

Applications, 2003), entitled ‘Molecular Electronics: All chips will be reconfigurable’, 

reports that future project densities are likely to be upwards of 100 billion devices per 

square centimeter and argues that cheap molecular-scale reconfigurable logic, 

memory, and interconnect are likely to become the predominant digital technology a 

decade hence. The advances and promising applications of reconfigurable systems 

given above clearly demonstrate future prospects of FPGA technology and its 

challenging capabilities for both industrial needs [Salcic06, Aimé07, Du07, Zhuang07] 

and research activity. 
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Announced in 2008, Xilinx Virtex-6 and Spartan-6 FPGAs can be seen as one more 

example demonstrating rapid progress in the scope of reconfigurable computing. Table 

1.1 presents some of the characteristics of these two recent FPGA families [Xilinx09]. 

Table 1.1 – Details of Xilinx Virtex-6 and Spartan-6 FPGA families 

Feature Virtex-6 Spartan-6 

Logic Cells 74,500 – 759,000 3,400 – 147,000 

Distributed RAM (Kb) 1,045 – 8,280 32 – 1,358 

Block RAM (Kb) 5,616 – 38,304 144 – 4,824 

DSP Slices 288 – 2,016 4 – 182 

 

Developing digital systems on the basis of high capacity FPGAs requires the extensive 

use of computer-aided design (CAD) tools. In fact, the electronic design automation 

business has profoundly influenced the integrated circuit business and vice versa, e.g. 

in the scope of design methodology, verification, libraries, and intellectual property 

[MacMillen00]. Traditionally, FPGA-targeted CAD systems support schematic and 

hardware description language-based design flows involving model-specific tools (such 

as those for synthesizing finite state machines (FSMs) from graphical specifications) 

and IP core generators based on parameterization or templates. Recently, commercial 

CAD tools which allow digital circuits to be synthesized from system-level specification 

languages (such as Handel-C and SystemC) as well as high-level programming 

languages (such as C) have appeared on the market. The domain of reconfigurable 

systems design turns out to be very dynamic and many-sided. 

Designers of FPGA-based systems must wade through several layers of design before 

programming the actual device. The typical FPGA flow includes five major phases 

illustrated in Figure 1.3: design entry; synthesis; mapping, placement and routing; 

FPGA programming; and verification. The latter may occur at different levels, such as 

behavioral simulation, functional simulation, static timing analysis, post-layout timing 

simulation and, finally, in-circuit verification. If we focus our attention on the design 

entry, four different specification methods can be envisioned: schematic entry, 

hardware description languages, system-level specification languages (SLSLs) and, 

finally, general-purpose programming languages (GPPLs) [Sklyarov07b]. 



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 7 

CCHHAAPPTTEERR  11  --  IINNTTRROODDUUCCTTIIOONN  

VerificationVerification

FPGA
progr.

behavioral
simulation

functional
simulation

timing
simulation

in-circuit
verification

Design entry: SpecificationDesign entry: Specification

Implementation
(mapping, placement and routing)

Implementation
(mapping, placement and routing)

SynthesisSynthesis

 

Figure 1.3 - Typical FPGA design flow 

The schematic-based approach is nowadays not very appropriate for specifying the 

functionality of modern systems because, instead of thinking in terms of algorithms 

and data structures, it forces the designer to deal directly with the hardware 

components and their interconnections. Contrariwise, the hardware description 

languages (HDLs), such as VHDL and Verilog, are widely used for design specification 

since they typically include means for describing structure and functionality at a 

number of levels, from the most abstract algorithmic level, down to the gate level. 

Recently, commercial tools for synthesizing digital circuits from system-level 

specification languages, such as Handel-C and SystemC, have appeared on the 

market. In this area, C and C++, with application-specific class libraries and with the 

addition of inherent parallelism, are emerging as the dominant languages in which 

system descriptions are provided. This fact allows the designer to work at a very high 

level of abstraction, virtually without worrying about how the underlying computations 

are executed. Consequently, even computer engineers with a limited knowledge of the 

targeted FPGA architecture are capable of rapidly producing functional, 

algorithmically-optimized designs. 

An even higher level of abstraction is achieved with general-purpose programming 

languages, such as C or Java. During the last years, commercial tools (e.g. Catapult 

Synthesis from Mentor Graphics and CoDeveloper from Impulse) started appearing on 

the market, allowing the respective high-level descriptions to be automatically 

converted to HDL descriptions, which are then used for synthesis. In this case, the 

code portions that can be executed in parallel are automatically identified by the 

design tools. In addition to the design specification methods mentioned, there are 
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other available tools, such as vendor libraries, graphical finite state machine editors, 

parameterizable IP cores, and so on. 

In the graph of Figure 1.4 [Sklyarov07b], different design specification methods are 

assessed according to performance, FPGA resource usage, portability, ease to learn, 

ease to change and maintenance, and development time (for the first five groups of 

vertical bars: the higher, the better; for the last group: the lower, the better). 

 

Figure 1.4 - Comparison of specification methods (from [Sklyarov07b]) 

From the graph, we can see that the schematic-based approach leads to circuits with 

very good performance and efficient resource usage. However, when we consider 

portability and ease to learn, change and maintenance, and the associated 

development time, schematic entry is an obvious outsider. As mentioned in an 

Electrical Engineering Times survey, “the days of designing FPGA with schematics are 

gone” [EETimes06b]. 

Hardware description languages are currently the golden mean of the design entry 

methods [Sklyarov07b]. They allow creating high-performance circuits that are 

optimized from the resource usage point of view, the associated development time is 

not too long, and design changes are not so difficult. The only weak point is that it’s 

not very easy to learn HDLs. 

System-level and high-level languages possess the highest portability and the highest 

level of abstraction. Of course, the higher level of abstraction leads to some 
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performance degradation and not very efficient resource usage. On the other hand, 

SLSLs and GPPLs have important advantages such as ease to learn, ease of change 

and maintenance, and a very short development time. We can therefore expect that, 

as the tools responsible for generating hardware from high-level source code advance, 

the SLSLs and GPPLs may become the predominant hardware description 

methodology, in the same way as general-purpose high-level programming languages 

have already supplanted microprocessor assembly languages [Skliarova06a]. Due to 

such advantages, system-level specification languages and the relevant synthesis 

tools are considered within this work to be basic instruments for comparing alternative 

recursive and iterative implementations of computational algorithms. 

According to Moore’s law [Moore65], chip complexity grows exponentially with time. 

But more important is that the number of available transistors grows faster than the 

ability to meaningfully design with them. This situation is a well known design 

productivity gap, which was inherited by FPGA from ASIC and which is increasing 

continuously. Therefore, the design productivity will be the real challenge for future 

systems. It is believed that platform FPGAs could alleviate this problem since they 

offer the flexibility, time-to-market, and the bandwidth requirements to rapidly bring 

electronic systems to market. With such highly programmable platforms that include 

one or more programmable processors and/or reconfigurable logic, derivative designs 

may be created without fabricating a new system-on-chip (SOC) [Roadmap05]. 

Platform customization for a particular SOC derivative then becomes a constrained 

form of design space exploration: the basic communications architecture and platform 

processor choices are fixed, and the design team is restricted to choosing certain 

customization parameters and optional IPs from a library [Roadmap05]. 

In order to increase the design productivity, three important strategic directions must 

be followed. First of all, design reuse must be encouraged. Reusable, high-level 

functional blocks (such as IP blocks) offer great potential for productivity gains 

because design effort for the reused logic is only a portion of the effort needed for 

newly designed logic. According to International Technology Roadmap for 

Semiconductors (ITRS), reuse rate for system-level design will increase from 35% in 

2007, to 58% in 2022 [Roadmap07]. 

The second strategic line concerns design abstraction levels, which must be raised. 

Higher levels of abstraction allow many forms of verification to be performed much 

earlier in the design process, reducing time-to-market and lowering cost by 
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discovering problems earlier [Roadmap05]. As previously mentioned, tools which allow 

for hardware design at a very high level of abstraction are currently emerging. 

And last, the third strategic direction is to increase the level of automation and 

clearness of algorithmic specification, which will inevitably allow the number of design 

iterations to be reduced. In case of platform-based design, further improvements in 

automated software/hardware partitioning tools are strongly required.  

It is now clear that reconfigurability will certainly be the key aspect of future systems, 

since it will be required for fault tolerance, e.g. for molecular-scale systems, and for 

development of adaptive and self-correcting or self-repairing circuits. In addition, 

reconfigurability increases reuse, since existing devices can be reprogrammed to fulfill 

new tasks. According to what ITRS estimates (see Figure 1.1), more and more SOC 

functionality will become reconfigurable [Roadmap07]. 

Another important aspect of SOC design is the exploration of efficient methods for 

implementation of computational algorithms which allow for clearness of specification, 

reuse and effectiveness of future implementation. Contributing to this topic is the 

primary target of the thesis. The following section discusses widely used ways of 

implementing computational algorithms. 

1.1.3. Recursive implementation of computational algorithms 

It is known that recursion is an extremely powerful problem-solving technique 

[Carrano95] that permits a problem to be decomposed into smaller sub-problems that 

are of exactly the same form as the original problem. 

Many examples that demonstrate advantages of recursion are presented in 

[Kernighan88, Carrano95, Maruyama99, Sklyarov04]. However this technique is not 

always appropriate, particularly when a clear efficient iterative solution exists 

[Carrano95, Sklyarov04]. This fact is primarily due to the large amount of states that 

are accumulated during deep recursive calls. Besides, in most high-level programming 

languages, a function call incurs a bookkeeping overhead.  Recursive functions 

magnify this overhead because a single initial call to the function might generate a 

large number of recursive invocations of the function. 

The paper [Sklyarov04] provides significant contribution to solve this problem and 

proves that recursion can be implemented in hardware more efficiently than in 
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software. This achievement resulted from combining any activation of a recursive 

subsequence of operations with the execution of the operations that are required by 

the respective algorithm. The same combination takes place when any recursive sub-

sequence is being terminated, i.e. when control has to be returned to the point after 

the last recursive call, and the following operation of the executing algorithm has to be 

activated. 

The number of states that are required for the execution of recursion in hardware can 

be made smaller than in software, but it is still greater than for iterative solutions. 

However, codes for such states are accumulated on stacks that are typically 

implemented on built-in memory blocks, which are very regular and relatively cheap. 

The results obtained for some known methods for implementing recursive calls in 

hardware, such as a technique based on multi-thread and speculative execution 

[Maruyama99], have shown that hardware circuits can be faster than software 

programs running on general-purpose computers, with respect to this matter. 

Moreover, it is known that a recursive algorithm can be implemented in hardware with 

the aid of a hierarchical finite state machine (HFSM) [Sklyarov84, Sklyarov99] and this 

strategy is explored in this thesis. 

Note that recursive algorithms have a wide scope of practical applications (see, for 

example, [Sklyarov04, Carrano95, Maruyama99]). However, they are most often 

employed for various kinds of binary search and this is a notable exception, even 

when implemented in software [Carrano95], because the recursive solutions are quite 

efficient in this area. There are many examples of recursive binary search and we will 

briefly discuss just a few of them. 

Let us consider a binary tree whose nodes contain four fields, which are: a pointer to 

the left child node, a pointer to the right child node, a counter, and a value (let us say 

an integer or a pointer to a string). The nodes are maintained so that, at any 

considered node, the left sub-tree contains only values that are smaller than the one 

at the considered node, and the right sub-tree contains only values that are bigger 

than that. The counter indicates the number of occurrences of the value associated 

with the respective node.  It is known that such a tree can be constructed and used 

for sorting various types of data [Kernighan88]. In order to build such a tree for a 

given set of values, we have to find the appropriate place for each incoming node in 

the current tree. In order to sort the data, we can apply a special technique 

[Kernighan88] using forward and backtracking propagation steps that are exactly the 
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same for each node. Thus a recursive procedure is very efficient. Sorting of this type 

was considered in [Sklyarov04] as a working example. 

Other useful applications can be encountered in the area of lossless data compression 

[Sklyarov04]. Many techniques have been proposed in this context, such as Huffman 

coding, arithmetic coding, run-length coding, and Lempel-Ziv compression algorithms 

(see, for example, the Internet site [EFF], which collects many useful publications, 

methods, and software tools). They combine components for modeling (classified by 

statistical methods and dictionary methods [Nunez03]) and coding. 

Recursive algorithms are quite efficient for such applications and we will show two 

examples taken from [Sklyarov04]. Huffman coding requires a sequential invocation of 

two procedures: data sorting, and incremental construction of a Huffman binary tree 

[Rosen00]. The latter contains information about Huffman codes with different 

lengths. We have already mentioned that recursive algorithms can be efficiently 

employed for data sorting. However, they can also be used for constructing a Huffman 

tree. Moreover, these two procedures can be combined in a single recursive 

procedure. Dictionary methods often require a content-addressable memory, which is 

resource-consuming [Nunez03]. On the other hand, searching in dictionaries can be 

performed using recursive methods that are employed for software applications 

[Carrano95]. Thus the considered technique can be helpful. This is especially 

important today because many data compression algorithms need to be implemented 

in hardware, in general, and in reconfigurable hardware (such as FPGA), in particular 

[Nunez03].  One potential example of applying recursive algorithms for Huffman 

coding was examined in [Sklyarov04]. 

Another important application area that can be addressed is in the scope of 

combinatorial optimization [Sklyarov04, Skliarova04a, Skliarova08]. Combinatorial 

search algorithms that are widely used in this area have two distinctive features. 

Firstly, as a rule they require a huge number of different feasible solutions to be 

considered. Secondly, these feasible solutions can be ordered and examined with the 

aid of a search tree that provides an efficient way for handling intermediate solutions. 

The search tree is constructed during the search process and it is traversed starting 

from the root. Typically, this is an N-ary tree [Rosen00] with N≥2. Note that a 

recursive search can also be efficiently applied to N-ary trees and this has been 

demonstrated in [Sklyarov03b] on an example of discovering a minimal column cover 

of a binary matrix. A similar approach can be used for solving many other 

combinatorial problems, such as Boolean satisfiability, graph coloring, etc. Two 
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examples from this scope which can make use of recursive calls (namely the knapsack 

and the knight’s tour problems) were discussed in [Maruyama99]. 

Let us note that many combinatorial algorithms deal with a huge amount of data 

which have to be transferred between a host computer and a hardware accelerator 

[Skliarova04b]. In many circumstances, due to the complexity, the problem cannot be 

completely solved in hardware, and combined hardware/software solutions are 

therefore employed. This is a typical way of hardware/software co-design and it 

involves multiple time consuming data transfers. Thus recursion can be employed 

[Sklyarov04] on the one hand for the data compression/decompression operations 

mentioned above (enabling the amount of data and consequently the data transfer 

time to be significantly reduced), and on the other hand for the combinatorial 

algorithms themselves, allowing more efficient solutions for tree search problems to 

be provided (see, for instance, some assessments in [Maruyama99, Sklyarov03b]). 

As already mentioned, FPGA-based systems are going to be used for implementation 

and evaluation of the considered computational algorithms. Thus, it is necessary to 

analyze the basic distinctive features of FPGA-based systems and to take advantage of 

them. The relevant features of such systems are the following:  

• Can be seen as ‘soft’ ASICs; 

• Introduce a new computing paradigm; 

• Eliminate the necessity for the von Neumann architecture although such 

architecture can be used if required; 

• Enable the designers to implement algorithms directly in silicon; 

• Make parallelism a key feature; 

• Permit any required interface with external devices to be established. 

1.2. Design prototyping 

There are a number of available prototyping boards that support various experiments 

with FPGA-based circuits [Xilinx, Celoxica, Trenz]. These boards permit to implement 

digital systems in FPGAs and to provide for an interaction of these systems with both 

onboard microchips and external devices (such as static RAM and micro controllers), 

which might be connected through expansion headers. The use of such boards 
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significantly simplifies the design of new FPGA-based systems and allows the 

development lead time to be shortened. 

Prototyping boards are widely employed in engineering practice, in research activity, 

and in education. When choosing an FPGA-based prototyping board, it is necessary to 

find a compromise between the required hardware/software resources and the price; 

but with the large number of available boards, it becomes difficult to make the best 

choice for a particular application. Taking into account that the majority of prototyping 

boards include many typical components (memories, LCDs, standard interfaces, etc.), 

it is very difficult to find a board that contains only elements that are required and 

nothing else, which only occupies the space and increases the cost. Moreover, it is 

necessary to develop software targeted to the desired experiments, taking into 

account numerous particularities of the developed algorithms. However, it is either 

difficult or even impossible to satisfy all the requirements mentioned above due to 

unavailability of detailed technical documentation and hardware support projects 

implemented by relevant manufacturers. As a rule, such materials are not supplied. 

Thus, an extendable set of hardware/software tools have been proposed. Hardware 

tools have been developed in [Almeida06, Almeida08], and software tools have been 

designed and explored within the scope of this research. It is important that any 

particular problem can be solved using only the subset of hardware/software 

components that are required (from the considered extendable set), excluding all the 

other available components. In case the desired components are not available, they 

can easily be constructed and integrated/attached. 

In general, the suggested tools have to provide prioritized support for the following 

distinctive functionality: 

• Configuration of the core FPGA using wired (USB) and wireless (Bluetooth) 

interfaces, the latter making the prototyping system ideal for remote 

applications; 

• Dynamic onboard reconfiguration and remote wireless reconfiguration and/or 

interaction; 

• Implementation and comparison of recursive and iterative algorithms in 

hardware and software/hardware partitioning; 

• Versatile, efficient, user-friendly workflows (by integration with other CAD tools) 

for system design on the basis of hardware description languages (VHDL in 
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particular), system-level specification languages (Handel-C in particular), 

templates, design libraries and IP cores. 

1.3. Main objectives 

The three main objectives of this research are the following: 

1. Implementation of recursive algorithms in reconfigurable hardware 

and comparison of recursive and iterative implementations. Analysis 

of the design space where recursive/iterative algorithms are more 

advantageous taking into account the design objectives and target 

requirements; 

2. Exploration of a reuse technique, in hardware design, on the basis of 

parameterizable, reprogrammable architecture and generic IP 

modules; 

3. Development of software tools for hardware/software co-design and 

co-simulation of FPGA-based reconfigurable prototyping systems. 

In order to pursue the first main objective, it is necessary to address the following 

tasks: 

• Answering the question: How to implement recursion in hardware? Note that 

known hardware and system-level specification languages do not provide support 

for implementing recursion; 

• Exploring hardware architectures enabling recursive algorithms to be 

implemented in hardware; 

• Designing system components, such as IP modules, which support the 

development of hardware from recursive specifications; 

• Considering particular design examples allowing to compare alternative recursive 

and iterative algorithms; 

• Experiments and comparisons of recursive and iterative algorithms. Determining 

design space for recursive and iterative algorithms. 

To satisfy the second objective it is necessary to address the following tasks: 

• Explore the relationship between recursion and modularity in hardware design 

(indeed, recursion assumes modularity); 
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• Explore and compare different opportunities for the design of reusable modules; 

• Provide a set of experiments and recommendations; 

• Analyze a relationship between modularity and dynamic reconfigurability. 

To attain the third objective, it is necessary to carry out the following set of tasks: 

• Analyze potential ways to explore such type of software/hardware co-design and 

co-simulation, which enable designers to easily explore digital systems with 

either more software and less hardware or vice versa; 

• Suggest an FPGA-based prototyping system suitable for such purposes; 

• Develop software oriented to the comparison and implementation of alternative 

FPGA-based accelerators; 

• Provide a set of experiments based on the developed methods and tools. 

1.4. Thesis structure 

This thesis is organized in seven chapters. Chapter 2 starts with describing 

background concepts which are essential for understanding the remainder of the 

thesis (namely recursion, combinatorial problems, and backtracking search 

algorithms) and then presents the state of the art relevant to the thesis area, 

addressing known results on the comparison of recursive and iterative algorithms, and 

strategies for implementing recursion in hardware. The last section of chapter 2 

summarizes the main aspects of the background and strategies considered. 

Chapter 3 analyzes computationally intensive problems which are taken mainly from 

the scope of combinatorial search. The latter is relevant because both targeted 

techniques, i.e. recursive and iterative, can rationally be applied. For each of six 

selected problems, the following is provided: problem description, application 

domains, an algorithm for solving it, and a detailed illustration in which the given 

algorithm is applied to solve the problem on the basis of a practical example. Four 

particular problems are solved with the aid of backtracking search algorithms, namely: 

set covering, Boolean satisfiability, graph coloring, and knapsack. Two supplementary 

problems (tree-based data sorting and discovering of a greatest common divisor) are 

also studied. A generic approach to backtracking search algorithms is described and 

discussed. 
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Chapter 4 describes the developed prototyping system and software tools that enable 

experiments with hardware accelerators and comparisons of alternative recursive and 

iterative algorithms to be carried out easier and more efficiently. The system is based 

on the DETIUA-S3 prototyping board, featuring wired and wireless interfaces with a 

host computer, and on software tools proposed and implemented in the scope of this 

thesis. These software tools provide user-friendly interface with the board (including 

wireless interaction) and high-level support for many different experiments which are 

required for the hardware accelerators considered. Virtual peripheral devices, modules 

for software/hardware co-simulation, and procedures for extracting intermediate 

results for analysis are examples of the software tools developed. A more advanced 

technique assumes the application of the developed tools through the Internet in such 

a way that allows different users to configure and to interact with the remotely 

accessed prototyping board. Although this work was not initially planned, many tools 

have been developed, implemented and tested, permitting to conclude that the 

proposed system can efficiently be used for remote interactions. 

Chapter 5 provides details of reconfigurable hardware implementation of iterative and 

recursive algorithms for the selected problems. Every algorithm was first modeled in 

software in order to simplify the design process, and the respective object-oriented 

classes and activity diagrams are presented.  After modeling, some of the algorithms 

were described in a system-level specification language (Handel-C) and a hardware 

description language (VHDL). The respective specifications were finally synthesized 

and implemented in commercially available FPGAs and carefully analyzed. 

Chapter 6 presents the details and results of the various sets of experiments which 

were carried out, followed by careful analyses. The first set of experiments addresses 

the comparison of iterative and recursive implementations in hardware. Results are 

not only shown in tables with the relevant numerical results but put into perspective 

by means of graphical charts, allowing for an easier analysis. Relevant remarks 

beyond the observation of the results are made in order to complement the 

comparison. The second subsection of this chapter describes the validation and 

analysis of the architecture for generic matrix-oriented solvers, providing an overview 

of the key data structure and functional block usage amongst different matrix-based 

backtracking search algorithms. The third section provides an assessment of the 

prototyping tools which were developed in the scope of this thesis and a summary of 

relevant potential applications. 
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Chapter 7 summarizes the author’s contribution, lists the most important results and 

suggests future work in the considered area. 
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22..  BBaacckkggrroouunndd  aanndd  SSttaattee  ooff  tthhee  AArrtt  

This chapter is composed of the following three sections: background (section 2.1) 

which describes recursion, combinatorial problems, and backtracking search 

algorithms; state of the art relevant to the thesis area (section 2.2), presenting known 

results in comparison of recursive and iterative algorithms as well as strategies for 

implementing recursion in hardware; and finally a conclusion (section 2.3). 

2.1. Background 

2.1.1. Recursion 

Something is said to be recursive if it partially consists or is defined in terms of itself 

[Wirth86]. Recursion can be applied and observed in many fields and, in problem 

solving, it is known to be an extremely powerful technique [Carrano95] which permits 

to decompose a problem into smaller sub-problems that are of the same form as the 

original problem [Sklyarov04].  

Within the context of algorithm implementation, recursion is mainly used in the 

definition of procedures (see Figure 2.1-a) and structured data types (Figure 2.1-b). 

The thesis focuses on the procedure-oriented kind of recursion but, in fact, recursive 

algorithms are particularly appropriate when the data to be processed and the 

problem to be solved are defined in recursive terms [Wirth86]. 
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a) 

procedure(...) 

{ 

   ...             // some eventual operations 

   procedure(...)  // self invocation 

   ...             // other eventual operations  

} 

 

 

b) 

datatype is composed of 

{ 

   ...               // some eventual data fields 

   datatype field_n  // field of the type being defined 

   ...               // other eventual data fields  

} 

Figure 2.1 - Recursive definitions for procedures (a) and data types (b) 

Recursion can be direct and indirect. A procedure that includes an explicit invocation 

of itself is said to be directly recursive (see Figure 2.1-a). On the other hand, an 

indirectly recursive procedure is one that invokes some other procedure which directly 

or indirectly invokes the first one. For example, most recursive algorithms developed 

for solving combinatorial problems are directly recursive. Nonetheless, both kinds of 

recursion present essentially the same implementation challenges. It should also be 

noted that, although recursion is often very useful, it has been proven that any 

recursive algorithm can be re-expressed non-recursively [Kruse87]. 

In order to illustrate the applicability and advantages of recursive algorithms when 

they are implemented in hardware for solving computationally intensive problems, we 

will explore combinatorial search problems as an example. The subsequent two 

sections present general characteristics of such problems and a technique widely used 

to solve them. 

2.1.2. Combinatorial problems 

Combinatorics is a branch of mathematics with increasing importance which can be 

described as the study of how discrete sets of objects can be arranged, counted, and 

constructed, according to specified constraints [Cameron94, Erickson96]. 
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Combinatorial search problems are divided in four types, depending on the kind of 

solution that is required [Kreher99, Skliarova04a]: 

• Decision problems, in which a question is to be answered ‘yes’ or ‘no’; 

• Search problems, in which a question is to be answered ‘yes’ or ‘no’ and, in case 

the answer is ‘yes’, an n-tuple 
1[ ,..., ]nx x  that verifies the given constraints is to 

be provided; 

• Enumeration problems, in which the number of different n-tuples 
1[ ,..., ]nx x  that 

verify the given constraints is to be found; 

• Optimization problems, in which an n-tuple 
1[ , ..., ] {0,1}∈

n

n
x x  which maximizes 

the value of a specified profit-evaluating function (or minimizes the value of a 

specified cost-evaluating function) is to be provided. 

A significant characteristic of combinatorial problems is their vast applicability, which 

is also the reason for their increasing importance. Algorithms for solving such 

problems are therefore getting a lot of attention today [Zakrevskij08]. Applications of 

combinatorial problems can be found in Boolean expression simplification [Breuer70]; 

resource allocation [Rubin73, Walker74, Gleeson94, Rodin90, Bodin91, Henig90]; 

mathematical logic, artificial intelligence, VLSI engineering, and computing theory 

[Gu97]; automated reasoning, computer-aided design, computer-aided 

manufacturing, machine vision, database, robotics, integrated circuit design 

automation, computer architecture design, embedded systems, and computer network 

design [Gu97, Goossens97, Subramonian04]; microprogramming for application-

specific embedded microprocessors and resource distribution [Culberson, Wu93]; 

cutting stock systems [Gilmore61, Hahn68, Madsen79, Seth87]; cryptography 

[Merkle78, Chor88, Jan93], broadband communications [Ross89, Gavious94], etc. 

More detailed application examples of particular combinatorial problems will be 

considered in chapter 3, when describing the problems which will be used in the scope 

of this thesis. 

2.1.3. Backtracking search algorithms 

Most algorithms for solving combinatorial problems have a top-down approach based 

on search trees [Zhang89]. Search trees are typically implemented by means of a 

backtracking mechanism [Golomb65, Floyd67, Bitner75, Cohen79, Skliarova04a]. In 

this context, the search consists of a multi-stage decision process in which some 

choice is made at each stage [Helsgaun95]. At every stage, a solvability test which 
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takes the earlier choices into account is also performed and, under certain 

circumstances, such test can determine that some of those choices cannot lead to a 

solution. If this is the case, the algorithm restores the context belonging to the 

previous stage, i.e. it backtracks, in order to make an alternative choice. If all 

alternative choices based on that context have already been tried, the algorithm 

backtracks again. The process continues until the whole search tree is traversed or, in 

case the given problem is not an optimization problem, when a satisfactory solution is 

found. In either case, algorithms which follow this general strategy are called 

backtracking search algorithms. 

The eight queens problem [Ball60] is a classic combinatorial problem that is very 

appropriate for illustrating backtracking search algorithms. Let us consider a simplified 

version which consists of finding a way to place 4 queens in a 4 by 4 chessboard in 

such a way that no queen is able to attack another. In this problem, there is no 

distinction between white and black queens. Thus, in order to achieve a solution, no 

pair of queens can be placed in the same row, column, or diagonal. 

In order to solve this problem, Bitner and Reingold chose the following strategy 

[Bitner75]: Because exactly one queen must be placed in each column, a solution can 

be represented as a tuple 
1 2 3 4[ , , , ]x x x x  in which 

ix  represents the row of the queen 

placed in the ith column. They do not consider all possible combinations of queen 

placements; only those with one queen in each column. This way, all combinations 

with more than a queen per column (which are obviously not solutions) are excluded 

from the beginning. 

Using this strategy, one can conceive a search process with 4 stages in which the 

value of 
ix  is chosen at stage i . Each choice is made amongst 4 possible values: 1 to 

4 (which identify the 4 rows). As a result, a quaternary search tree with a depth of 4 

levels is obtained. Figure 2.2 depicts the part of that search tree which is actually 

traversed by a backtracking search algorithm that would follow this approach. At the 

root of the search tree, the 4-tuple variable which will provide the solution is 

completely unassigned. At each level, one of its elements is assigned and hence the 

variable becomes completely assigned when a leaf is reached. White circles 

correspond to legal partial queen placements which are therefore explored further. On 

the other hand, grey circles illustrate partial or complete queen placements which are 

illegal and therefore trigger a backtrack movement. The black circle is the leaf of the 

search tree in which a solution is found (see Figure 2.2-t). 
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Figure 2.2 – Traversed part of the search tree for solving the four queens problem 

 

Figure 2.3 - Queen placements represented by the 4-tuples in Figure 2.2 
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In order to better understand the traversed search tree and the reason for which some 

of its nodes correspond to illegal placements, the queen placements that are 

represented by the 4-tuples in Figure 2.2-a to Figure 2.2-t are depicted in Figure 2.3-a 

to Figure 2.3-t, respectively. 

Recursion is often used to support backtracking. At any branch point of the search 

process, i.e. any non-leaf node of the search tree, choosing one of the alternative 

search branches corresponds to making a recursive call, whereas backtracking 

corresponds to returning from a recursive call. When backtracking, all the variables 

which define the search context must be re-assigned in order to restore the values 

they had when the corresponding recursive call was made. 

2.2. State of the art 

2.2.1. Comparison of recursive and iterative algorithms 

Comparing recursive and iterative algorithms can be carried out with two perspectives 

[Pimentel09]. From the point of view of the designer, there are pros and cons 

concerning the design process, such as design time, ease of modification, etc. These 

characteristics are generally independent from implementation issues (like 

programming/description language or computational platform) because they are 

related only to how the algorithm is described at a high-level of abstraction. These 

design-based comparison criteria are often considered subjective, as there are 

currently no known methods for evaluating them objectively. However, despite their 

subjectiveness, these criteria can be of great relevance to designers. 

On the other hand, one can compare characteristics of the resulting solution, such as 

execution time, area/memory usage, etc. In this perspective, comparison results are 

very dependent on the implementation issues. Moreover, available CAD tools and the 

measurability of the solution properties grant objectiveness to these solution-based 

comparison criteria. 

Within the software applications domain, recursive and iterative algorithms have been 

subject to comparison for a long time and therefore concrete comparison results in 

this area are already well-known. On the one hand, it is widely accepted that, for 

certain classes of algorithms, recursion provides clean, concise, elegant, and robust 

designs that are easy to conceive, understand, and modify with minimal design costs 
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(namely design time). On the other hand, recursive algorithms in software are 

generally considered slow and very memory-consuming [Ninos08] when compared to 

iterative ones. Although some authors believe that inappropriate examples are 

sometimes used to reinforce such disadvantages [Noble03], the latter are widely 

accepted. As a consequence, the use of recursion in software is quite often avoided, 

even when implementing algorithms that are inherently recursive. In fact, methods for 

transforming general recursion into iteration have been extensively studied [Arsac82, 

Backus85, Partsch90, Harrison92, Kfoury97, Liu99, Tang06]. 

Despite this widely accepted heuristic indicating that recursion is generally less 

advantageous than iteration, in software, the suitability of recursion (versus iteration) 

has been found highly dependent on the class of the implemented algorithm. When 

applying a divide-and-conquer approach, the original problem is replaced with similar 

smaller problems. With this approach, recursion is known to be most efficient 

[Noble03] and therefore arguably advantageous when compared to iteration. 

Implementing recursion in hardware deals with platform features and limitations which 

are different from those dealt with in software. For instance, general purpose 

computers generally offer wide allocable memory space (which is of great use for 

keeping ever-changing size stacks) but, on the other hand, do not support parallel 

execution (which speeds up the completion of sets of independent operation 

sequences).  However, the opposite scenario unfolds for hardware implementations. 

This means that the pros and cons of using recursion (versus iteration) in hardware 

applications can be quite different from the results known in software applications. 

However, strategies for implementing recursion in hardware [Maruyama99, 

Maruyama00, Sklyarov99, Ferizis06, Ninos08] have started to be proposed only in 

1999 and therefore very few results are available for comparison. Furthermore, these 

strategies implement recursion in different ways, which means they may lead to 

different iteration-versus-recursion comparison results. 

2.2.2. Strategies for implementing recursion in hardware 

In software, recursion has a standard support already provided by programming 

language compilers, which implement it transparently on the basis of procedure calls 

which make use of stacks. In contrast, different strategies for hardware 

implementation of recursion are still being proposed and discussed. Let us have an 

overview of some important proposals regarding this topic. 
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2.2.2.1. Maruyama, Takagi, and Hoshino 

Tsutomu Maruyama, Masaaki Takagi, and Tsutomu Hoshino have proposed the 

following two techniques for implementing recursion in hardware: multi-thread 

execution and speculative execution [Maruyama99]. Both of them are aimed at the 

implementation and optimization of recursion in backtracking search algorithms on the 

basis of pipelining and with the use of a logic stack. 

Analogously to Bondalapati and Prasanna’s proposal on mapping loops onto 

reconfigurable architectures [Bondalapati98] (optimized later in [Bondalapati00]), 

each of the pipeline stages is activated for a different recursive call and therefore all 

stages are activated simultaneously, and idle cycles are avoided.  

While multi-thread execution is more appropriate for algorithms which require 

traversing the whole search tree (searching for the optimal solution), speculative 

execution is better suited for finding any solution (the first that is found). 

The research [Maruyama99] has shown that multi-threaded execution of recursion 

calls leads to higher performance than simple sequential execution with negligible 

hardware resource usage and clock frequency overheads. 

Later on, Maruyama and Hoshino have developed a compiler for generating pipeline 

circuits on the basis of loops and recursive programs written in the C programming 

language [Maruyama00]. Stacks are implemented using FPGA internal memory blocks, 

when available. 

Known limitations regarding these authors’ proposals concern the following issues: 

a) the maximum speedup equaling the pipeline’s depth [Maruyama99, 

Ninos08]; 

b) the speed increase obtained at the expense of area utilization 

[Ninos08]; 

c) the efficiency when handling recursive functions that call themselves 

multiple times [Ferizis06]. 

2.2.2.2. Sklyarov 

Having the objective of developing an approach to the design of virtual control devices 

that would provide the properties of extensibility, flexibility, and reusability, Valery 
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Sklyarov has proposed a technique for synthesizing finite state machines from 

hierarchical behavioral specifications (namely hierarchical graph schemes) 

[Sklyarov99].   

Later on, Sklyarov has addressed some disadvantages of this hierarchical finite state 

machine model and proposed an enhanced version: the Recursive HFSM (RHFSM) 

model [Sklyarov04]. The typical time overhead that is caused by recursive invocations 

was reduced by means of executing the algorithm-related operations and the flow 

control operations in parallel (see Figure 2.4). 

Algorithm-related 
operations

Flow control 
operations

 

Figure 2.4 - Parallel execution of algorithm-related and flow control operations 

The RHFSM model requires three stacks for storing and restoring module identifiers, 

state identifiers, and context data when performing or returning from hierarchical 

calls. As shown in practical applications of this model [Sklyarov05, Sklyarov06a], 

these stacks can be implemented on built-in memory blocks, significantly reducing the 

use of FPGA logic. 

The RHFSM model allows for correct implementation of both directly and indirectly 

recursive calls at the same time that it provides the advantages of modular and 

hierarchical algorithm decompositions, which are generalized in software algorithm 

design. 

Drawbacks that have been pointed out on the RHFSM model are as follows: 

a) The use of three stacks per algorithm implementation suggests 

greater utilization of logic or block memory vs. a conventional single 

stack solution [Ninos08]; 
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b) Either the stacks for keeping state and module identifiers are as large 

as the data stack, incurring significant area overhead; or the 

hierarchical invocation depth must be bounded to a lower stack size 

[Ninos08]. 

Both drawbacks loose their significance with algorithms which require higher amounts 

of context data to be kept in the data stack and also when the number of modules and 

states per module is lower. For instance, if the storage of a context data entry 

requires 72 bits and there are 3 modules and 8 states per module, then all information 

(context data, module identifier, and state identifier) could be stored in 77 bits. 

Moreover, if one wants to reduce the number of stacks (at the expense of algorithm 

clarity), then a single 77-bit wide stack can be used. 

2.2.2.3. Ferizis and El Gindy 

George Ferizis and Hossam El Gindy have proposed a method for mapping recursive 

functions to reconfigurable hardware which does not require stacks [Ferizis06]. This 

method consists of unrolling recursive functions by means of runtime reconfiguration 

and placing them into a pipeline. 

Mapping a loop into a pipelined linear array is the basis of the methods earlier 

proposed by Bondalapati and Prasanna [Bondalapati98, Bondalapati00] (who also 

inspired Maruyama et al. [Maruyama99, Maruyama00]) and by Weinhardt and Luk 

[Weinhardt99]. Ferizis and El Gindy pushed the idea further in such a way that the 

pipelines created by recursive functions can be mapped as trees instead of arrays in 

case they contain multiple recursive calls. This approach led to a series of significant 

challenges which the authors had to address with techniques that are rather complex 

and resource consuming. 

In order to compare this method’s performance with that of regular stack 

implementations, its authors have carried out experiments on the basis of two 

algorithms (quicksort and force approximation) and reported high speedups 

[Ferizis06]. However, it seems that the stack implementations have not been subject 

to any kind of optimization, and some design details, such as the synthesis tools and 

the language(s) that have been used were left unidentified. 
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The drawbacks which have been found in Ferizis and El Gindy’s approach are the 

following: 

a) Algorithm-generality limitation: area-related problems arise when 

mapping recursive functions with a process growth rate greater than 

1 [Ferizis06]; 

b) Platform-specificity: it relies on run-time reconfiguration, which is 

only available for certain FPGAs; 

c) High concept-to-implementation time span [Ninos08]: complex 

preliminary algorithm-specific analysis must be carried out by the 

designer, as there is no known CAD tool available for the task, so far; 

d) Error-prone design: the complexity and diversity of the techniques 

that have to be used for solving algorithm-specific challenges raises 

the probability of making mistakes [Ninos08]; 

e) Incompatibility with System-On-Chip (SOC) design [Ninos08]: 

because of implementation requirements, the design cannot coexist in 

the same reconfigurable device with other designs. 

2.2.2.4. Ninos and Dollas 

In contrast with the previous processing-oriented approaches to implement recursion 

in hardware, Spyridon Ninos and Apostolos Dollas have proposed a data-oriented 

solution [Ninos08]. 

The method is based on a recursion simplification procedure which requires, for each 

recursive call state, the following preliminary tasks: 

1. Identification of the condition for recursion, i.e. the condition which 

determines whether that recursive call is to be activated; 

2. Identification of the local data, i.e. the context values which must be 

stored onto the data stack when that recursive call is activated and 

restored when returning. 
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n originally recursive state diagram after recursion simplification 

(from [Ninos08])  

the recursion simplification procedure, recursion can be thought of as conditional 

when a condition for recursion is met, upon testing 

, local data are pushed onto the stack and execution is 

(transition F in Figure 2.5); after a recursive call has activated 

local data are restored from the stack and execution is brought back to 

(transition E in Figure 2.5). 
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oriented approach provides no support for indirect recurs

is supported. Designers must describe the whole

that is implemented by means of an FSM. Thus,

algorithm which the designer needs to implement consists of a simple directly 

clarity and readability of the description become compromised

Moreover, the recursion simplification stage can constitute a complex and time

consuming task for many algorithms. In particular, complex scenarios can lead to 

dentification of the local data. Thus, while there is no well

rules which assures correctness of this process, it is impossible to develop software 

tools for automatic (and, ideally, transparent) recursion simplification. This hard task 

therefore be carried out by the designers, which might lead to mistakes.
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no support for indirect recursion. In 

Designers must describe the whole algorithm 

. Thus, unless the 

a simple directly 

compromised. 

Moreover, the recursion simplification stage can constitute a complex and time-

consuming task for many algorithms. In particular, complex scenarios can lead to 

dentification of the local data. Thus, while there is no well-defined set of 

rules which assures correctness of this process, it is impossible to develop software 

tools for automatic (and, ideally, transparent) recursion simplification. This hard task 

therefore be carried out by the designers, which might lead to mistakes. 
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2.3. Conclusion 

Something is said to be recursive if it partially consists or is defined in terms of itself. 

This thesis focuses on the procedure-oriented kind of recursion, although recursive 

data structures are used therein. Recursion can be direct and indirect. 

In order to illustrate the applicability and advantages of recursive algorithms when 

they are implemented in hardware for solving computationally intensive problems, we 

will explore combinatorial search problems as an example. 

Combinatorics is a branch of mathematics which can be described as the study of how 

discrete sets of objects can be arranged, counted, and constructed, according to 

specified constraints. Combinatorial search problems are divided in four types: 

decision problems, search problems, enumeration problems, and optimization 

problems. 

Search trees are typically implemented by means of a backtracking mechanism. In 

this context, the search consists of a multi-stage decision process in which some 

choice is made at each stage. In case the algorithm detects that the previous choices 

can not lead to a solution, the context belonging to the previous stage is restored, in 

order to try alternative choices. Algorithms that use this technique for solving search 

problems are called backtracking search algorithms and they are often described 

recursively. Choosing one of the alternative search branches corresponds to making a 

recursive call, whereas backtracking corresponds to returning from a recursive call. 

When implementing any algorithm in software, the use of recursion instead of iteration 

can be better or worse, depending on the criteria that are chosen and the class of 

algorithm. It is widely accepted that, for certain classes of algorithms, recursion 

provides clean, concise, elegant, and robust designs that are easy to conceive, 

understand, and modify with minimal design costs. However, recursive algorithms in 

software are generally considered slow and very resource-consuming when compared 

to iterative ones. Strategies for implementing recursion in hardware have started to be 

proposed only recently and therefore very few results are available for comparison. 

Furthermore, these strategies implement recursion in different ways, which means 

they may lead to different iteration-versus-recursion comparison results. 

Tsutomu Maruyama, Masaaki Takagi, and Tsutomu Hoshino are amongst the first 

known authors to propose a strategy for implementing recursion in hardware. Multi-
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thread execution and speculative execution are two techniques that aim for the 

implementation and optimization of recursion in backtracking search algorithms on the 

basis of pipelining and the use of a logic stack. Known limitations regarding these 

authors’ proposals concern (i) the maximum speedup equaling the pipeline’s depth, 

(ii) the speed increase obtained at the expense of area utilization, and (iii) the 

efficiency when handling recursive functions that call themselves multiple times. 

Sklyarov has proposed the RHFSM model that allows for correct implementation of 

both direct and indirect recursive calls at the same time that it provides the 

advantages of modular and hierarchical algorithm decompositions (which are 

generalized in software algorithm design). It uses three stacks but prevents the typical 

time overhead that is caused by recursive invocations by means of executing the 

algorithm-related operations and the flow control operations in parallel. Two 

drawbacks that have been pointed out on the RHFSM model have been found. One 

suggests that it requires significant utilization of logic or block memory when 

compared to a conventional single stack solution. The second states that either the 

support stacks are as large as the data stack, incurring significant area overhead; or 

the hierarchical invocation depth must be bounded to a lower stack size. However, a 

few remarks which render the relevance of these drawbacks low have been presented. 

George Ferizis and Hossam El Gindy have proposed a method for mapping recursive 

functions to reconfigurable hardware which does not require stacks and consists of 

unrolling recursive functions by means of runtime reconfiguration and placing them 

into a pipeline. This proposal has been inspired by research carried out by Bondalapati 

and Prasanna and some details are not very clear. Several disadvantages of Ferizis 

and El Gindy’s proposal have been pointed out. 

Spyridon Ninos and Apostolos Dollas have proposed a data-oriented solution for 

implementing recursion in hardware which is based on a preliminary recursion 

simplification procedure. For each recursive call state, the condition for recursion and 

the local data must be identified. The drawbacks of Ninos and Dollas’ strategy includes 

the time-consuming and error-prone recursion simplification procedure, which is 

presently impossible to automate, and lack of support for indirect recursion and 

modularity, forcing designers to describe whole algorithms as single functions that are 

implemented with an FSM. 
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33..  DDeessiiggnn  SSppaaccee  EExxpplloorraattiioonn  

This chapter analyzes computationally intensive problems which are taken mainly from 

the scope of combinatorial search, in which both recursion and iteration can rationally 

be applied. For each of six selected problems, the following is provided: problem 

description, application domains, an algorithm for solving it, and a detailed illustration 

in which the given algorithm is applied to solve the problem on the basis of a practical 

example. Four particular problems are solved with the aid of backtracking search 

algorithms, namely: set covering, Boolean satisfiability, graph coloring, and knapsack. 

Two supplementary problems (tree-based data sorting and discovering of a greatest 

common divisor) are also studied. A generic approach to backtracking search 

algorithms is proposed and discussed. 

3.1. Introduction 

A primary objective of this research is the comparison and evaluation of alternative 

recursive and iterative implementations for different algorithms. For this purpose, it is 

necessary to select a set of algorithms which can be described both iteratively and 

recursively. For instance, if we want to calculate the factorial of a non-negative integer 

using either an iterative algorithm or a recursive algorithm, we can use the 

pseudocode depicted in Figure 3.1-a and Figure 3.1-b, respectively. 
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a)  b) 

it_fact(n) 

{ 

 fact = 1 

 for each i from 1 up to n 

  fact = fact * i 

 return fact 

} 

 

 

 

rec_fact(n) 

{ 

 if n < 2 

  return 1 

 else 

  return n * rec_fact(n - 1) 

} 

Figure 3.1 - Pseudocode for calculating the factorial iteratively (a) and 

recursively (b) 

3.2. Backtracking search algorithms 

A class of algorithms that can be implemented on the basis of recursive descriptions is 

backtracking search algorithms. A set of problems has been selected in order to study 

the advantages and disadvantages of recursive algorithms in comparison with iterative 

algorithms. 

3.2.1. Generic approach to backtracking search algorithms 

A basic structure for backtracking search algorithms has been explained in detail in 

[Skliarova04a] and used in [Pimentel07] (see Figure 3.2). 

Reduction

Yes

No

No

Yes

Unsolvable

Solution  

found
Has the 

problem been 
solved? 

Z

Recursive
call of Z

Selection

Is it known
that the problem is

not solvable?

 

Figure 3.2 - Basic structure for backtracking search algorithms 
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The structure expresses a recursive procedure which is executed at every node of the 

search tree and it determines which nodes to visit next. The process starts by 

simplifying the current problem instance using a set of reduction operations. When no 

further reduction is possible, a resolution test is performed to determine whether the 

problem has been solved. In case it has been solved, the process ends and the 

solution is provided. Otherwise, a solvability test is carried out to verify if the current 

problem is unsolvable. In case the problem is found unsolvable, the process ends with 

no solution. Otherwise, the solver might have to try alternative paths in the search 

tree in order to check whether there is one which leads to a solution. The set of 

operations that determines which path to follow is called selection. When a chosen 

search path fails to provide a solution, the algorithm backtracks and selects another 

one, if available. 

The implementation of each stage of this process, i.e. the reduction, the resolution 

test (‘Has the problem been solved?’), the solvability test (‘Is it known that the sub-

problem is not solvable?’) and the selection, depends on the particular algorithm which 

is executed. Small adaptations of the structure itself can also be required. 

The basic algorithmic structure is not the only characteristic that different backtracking 

search algorithms can share. In fact, a common data structure can be used to specify 

problem instances for a variety of such algorithms. Most combinatorial search 

problems can be expressed in several equivalent mathematical formulations based on 

different standard data structures, such as matrices, graphs and Boolean functions. 

However, matrices can be found very appropriate for hardware implementations 

[Skliarova04a] because matrices can easily be stored and processed in both software 

and hardware, and because most combinatorial search problems can efficiently be 

formulated over matrices. Thus, without loss of generality, we have selected matrices 

as the data structure to be used for specifying the combinatorial problem instances, 

when applicable. 

Let us now address the combinatorial problems which were selected for this research 

and how the considered basic algorithmic structure can be used to implement the 

correspondent solving algorithms. 
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3.2.2. The set covering problem 

Given a group G of finite sets whose union is a universe U, a cover is a group C G⊆  

of sets whose union is still U. The set covering problem consists of finding a cover with 

the minimum number of subsets [Bäck95]. 

Applications of the set covering problem can be found in Boolean expression 

simplification [Breuer70], resource allocation [Rubin73, Walker74] and committee 

forming endeavors (as illustrated next). 

Let us solve the set covering problem for a simple practical example of choosing a 

group of specialists to hire for a scientific research expedition. In order to make both 

its scientific research component and its logistic support component possible, the 

expedition requires skills in 6 different fields of specialization: telecommunications, 

mountaineering, pilotage, zoology, botany, and climatology. There are 8 available 

specialists, each one skilled in at least one of those fields. In order to reduce the 

expedition costs, we want to hire the minimum number of specialists required to cover 

the 6 fields of specialization. The Euler diagram shown in Figure 3.3 identifies the 

universe of required specialization fields (rectangle U) and the set of specialization 

fields of each available specialist (ellipses G1 to G8). The same diagram reveals a 

minimum cover for this scenario: the ellipses with a white circumference (G2, G5 and 

G8). 

Climatology

BotanyMountaineering

Zoology

Telecommunications

Pilotage

G1

G2

G3

G4

G5

G6

G7

G8

U

 

Figure 3.3 - Practical example diagram for the set covering problem 

In this example, the universe for which a cover must be determined is the set of 

required specialization fields { }, , , , ,U t m p z b c= , where t, m, p, z, b and c stand for 

telecommunications, mountaineering, pilotage, zoology, botany, and climatology, 
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respectively. The given group of sets which can be used to compose the cover is 

{ }1 2 8, ,...,G G G G= , where { }1 ,G b c= , { }2 ,G m p= , { }3 ,G z c= , { }4G m= , { }5 , ,G t p c=

, { }6G b= , { }7G t= , and { }8 ,G z b= . 

Instances of the set covering problem can be expressed by matrices in such a way 

that a solution can be found by means of some algorithm operating over those data 

structures. For this problem, binary matrices are used [Zakrevskij08]. Figure 3.4 

illustrates the conversion steps for the given example. The relevant details of each 

step are emphasized with a black background. 

 

Figure 3.4 - Converting a set covering problem instance to a binary matrix 

If the given family of sets G is composed of S sets, and the universe U, which is the 

union of all sets in G, contains E elements, then a binary matrix with S rows and E 

columns is required for this conversion (see Figure 3.4-a). Thus, each row corresponds 

to a given set and each column to an element of U. For each time an element of U 

belongs to a set in G, the correspondent cell must be filled with 1 (see Figure 3.4-b), 

i.e. we must guarantee: 

{1, 2,..., }, {1, 2,..., }, 1
j i ij

i S j E U G M∀ ∈ ∀ ∈ ∈ ⇔ =  

where Mij is the matrix cell in row i, column j. For instance, the cells of column z in 

rows G3 and G8 must be filled with 1 because z is element of sets G3 and G8. Finally, 

all empty cells must be filled with 0 (see Figure 3.4-c). 

By analogy, in the scientific research expedition example, each row corresponds to an 

available specialist and the values 1 in that row indicate the specialization fields in 

which he or she is skilled. 

a) b) c)

t m p z b c t m p z b c t m p z b c
G1 G1 1 1 G1 0 0 0 0 1 1

G2 G2 1 1 G2 0 1 1 0 0 0
G3 G3 1 1 G3 0 0 0 1 0 1

G4 G4 1 G4 0 1 0 0 0 0

G5 G5 1 1 1 G5 1 0 1 0 0 1
G6 G6 1 G6 0 0 0 0 1 0

G7 G7 1 G7 1 0 0 0 0 0
G8 G8 1 1 G8 0 0 0 1 1 0

(6 elements)

(8
 s

e
ts

)
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After the problem instance has been converted to a binary matrix, solving the set 

covering problem corresponds to finding the minimal number of rows that include at 

least one value 1 in each column. This description is actually that of the matrix 

covering problem [Zakrevskij71]. The approximate algorithm proposed in 

[Zakrevskij81] to solve this problem is depicted in the diagram of Figure 3.5. When 

the algorithm finishes, the solution is the set of rows that have been removed.  

Identify a column C 
which has the minimal 

number N of 1s

yes

no

no

yes

Remove row R 
and all columns 
with 1 in row R

Unsolvable

All columns 
removed?

N=0?

Solution found
Identify a row R,

with a 1 in column C, 
which has the most 1s

 

Figure 3.5 - Iterative approximate algorithm to solve the matrix covering problem 

Note that this algorithm includes a solvability test, which is shown at the top right-

hand corner of the diagram in Figure 3.5. In fact, unsolvable instances for the matrix 

covering problem emerge if the given matrix contains a column with no values 1. 

However, the set covering problem description given in the beginning of this section 

leads to solvable instances only, and therefore the algorithm could simply continue 

choosing the next given set (row) to include in the cover and a solution would 

eventually be found. In the worst case scenario, the solution found would be a cover 

which would include all given sets (all rows). 

Figure 3.6 demonstrates the resulting steps of the algorithm when applied to the 

binary matrix obtained for the given example (see Figure 3.4), depicting the three 

iterations of the algorithm which lead to the solution. The rows and the columns which 

are removed at each iteration are presented with a black background while a grey 

background indicates previously removed matrix parts. 
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Figure 3.6 - Solving a set covering problem instance 

At the first iteration, row G5 is removed because no other row contains more values 1, 

and then columns t, p and c are removed because these contain a value 1 in that row. 

After two more iterations with the same procedure, the algorithm reveals the solution 

composed of the rows which were removed: G2, G5 and G8. 

In the context of the given problem instance, this solution points to hiring the 

specialists skilled in: mountaineering and pilotage; telecommunications, pilotage and 

climatology; and zoology and biology. These correspond to the ellipses with a white 

circumference in Figure 3.3. 

The solution found for the given example is optimal, as no cover with less than 3 sets 

can be found. However, the approximate algorithm considered does not guarantee an 

optimal solution for an arbitrary problem instance. Furthermore, it should be noticed 

that the algorithm does not include a backtracking mechanism. 

Let us now consider how an exact algorithm for solving the set covering problem can 

make use of backtracking in order to obtain an optimal solution in all cases, and how 

the basic structure for backtracking algorithms (depicted in Figure 3.2) can be used 

for that purpose. 

The exact algorithm for solving the matrix covering problem proposed in 

[Zakrevskij81] was adapted to the basic structure for backtracking algorithms in 

[Skliarova04a]. The reduction rules, selection rules, solvability test and resolution test 

which were applied, in fact, provide minimum covers composed of columns. Let us 

rephrase these rules and tests in such a way that permits covers composed of rows to 

be obtained. 

a) b) c)

t m p z b c t m p z b c t m p z b c
G1 0 0 0 0 1 1 G1 0 0 0 0 1 1 G1 0 0 0 0 1 1

G2 0 1 1 0 0 0 G2 0 1 1 0 0 0 G2 0 1 1 0 0 0

G3 0 0 0 1 0 1 G3 0 0 0 1 0 1 G3 0 0 0 1 0 1

G4 0 1 0 0 0 0 G4 0 1 0 0 0 0 G4 0 1 0 0 0 0
G5 1 0 1 0 0 1 G5 1 0 1 0 0 1 G5 1 0 1 0 0 1

G6 0 0 0 0 1 0 G6 0 0 0 0 1 0 G6 0 0 0 0 1 0

G7 1 0 0 0 0 0 G7 1 0 0 0 0 0 G7 1 0 0 0 0 0
G8 0 0 0 1 1 0 G8 0 0 0 1 1 0 G8 0 0 0 1 1 0
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The adjusted resolution and solvability tests correspond to those presented in Figure 

3.5, i.e.: a solution has been found if all columns have been erased; and the current 

instance is unsolvable if the minimum number of values 1 in a column is 0. 

The reduction rules become the following: 

R1 - For every pair of columns 
icol  and 

j
col  in the matrix, where i j≠ , if 

i j i
col col col∧ = , then 

j
col  must be removed. For instance, if the 

matrix would contain columns [0, 0,1]  and [0,1,1] , then the latter 

would be removed because [0,0,1] [0,1,1] [0,0,1]∧ = . This procedure is 

called subsumption for columns. 

R2 - For every pair of rows 
irow  and 

j
row  in the matrix, where i j≠ , if 

i j i
row row row∧ = , then 

irow  must be removed. For instance, G7 (in 

Figure 3.6) should be removed because 
5 7 7G G G∧ = . This procedure 

is called subsumption for rows. 

On the other hand, the selection rules become: 

S1 - For every column that contains a single element with value 1, the 

row which has this element must be included in the cover. 

S2 - When all columns contain multiple elements with values 1, a column 

C with the minimum number of values 1 must be selected. Then, for 

every row R which includes an element with value 1 in column C, the 

same algorithm must be called to continue constructing the cover 

after including row R. When a first cover becomes complete, it is 

stored as ‘the best cover’, i.e. as the cover with the minimum number 

of rows. After that, ‘the best cover’ is replaced every time a cover 

which includes a lower number of rows is found. On the other hand, if 

the number of rows included in a cover under construction reaches 

that of ‘the best cover’, the current algorithm invocation must be 

discontinued. 

Additionally, every time a row is included in the cover under construction, it is also 

removed from the matrix. All columns with value 1 in that row are removed as well. 



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 41 

CCHHAAPPTTEERR  33  ––  DDEESSIIGGNN  SSPPAACCEE  EEXXPPLLOORRAATTIIOONN  

After finding a cover, the exact algorithm backtracks in order to find an optimal 

solution (a cover with the minimum number of rows) which might be found in others 

leaves of the search tree. 

3.2.3. The Boolean satisfiability problem 

The Boolean satisfiability problem (also known as SAT) consists of determining 

whether it is possible to assign values to the variables of a given Boolean formula in 

such a way as to make the formula evaluate to true [Micheli94, Zakrevskij08]. 

In fact, any Boolean formula is said to be either: 

i) contingent, if its value depends on the values of the variables; 

ii) a tautology, if it always evaluates to true; 

iii) a contradiction, if it always evaluates to false. 

When a Boolean formula is a contradiction, the corresponding SAT problem instance is 

unsatisfiable. Otherwise, it is satisfiable. 

In the context of the Boolean satisfiability problem, the Boolean formulae are usually 

presented in the Conjunctive Normal Form (CNF), i.e. as a conjunction of clauses. A 

clause is a disjunction of literals and a literal is a variable or its negation. The formula 

( ) ( ) ( ) ( )1 2 3 2 4 2 1 4 5x x x x x x x x x∨ ∨ ∧ ∨ ∧ ∧ ∨ ∨  is an example of a Boolean formula in 

CNF. 

There are multiple versions of the SAT problem deriving from the original version. For 

example, the 3-SAT problem can be obtained by restricting the maximum number of 

literals in each clause to 3. It is known that the conversion of SAT problem instances 

into 3-SAT problem instances is achievable in polynomial time [Zhong99]. 

An overview of the most well-known applications of SAT and an outline of several 

other successful applications of SAT is presented in [Marques-Silva08]. The SAT 

problem has direct applications in mathematical logic, artificial intelligence, VLSI 

engineering, and computing theory [Gu97]. Furthermore, problems such as constraint 

satisfaction problems and constrained optimization problems can be transferred to SAT 

[Gu04]. In fact, methods to solve SAT formulae play an important role in solving many 

problems in automated reasoning, computer-aided design, computer-aided 
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manufacturing, machine vision, database, robotics, integrated circuit design 

automation, computer architecture design, and computer network design [Gu97]. 

Let us consider an example of a Boolean formula in CNF: 

( ) ( ) ( ) ( ) ( )1 4 1 4 1 2 4 1 2 3 4 3x x x x x x x x x x x x∨ ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∨ ∧  

This particular formula is satisfiable because it evaluates to true, for instance, with the 

following set of variable assignments: 

1

3

4

x true

x true

x false

=


=
 =

 

Boolean formulas can be converted to matrices in such a way that allows the SAT 

problem to be solved with some algorithm operating over those matrices [Gu97]. 

Figure 3.7 illustrates this conversion, emphasizing the relevant details of each step 

with a black background, for the given Boolean formula. 

 

Figure 3.7 - Converting a Boolean formula to a ternary matrix 

As mentioned before, a SAT problem instance is usually a Boolean formula in CNF. If 

this formula is composed of C clauses and includes V distinct variables, the ternary 

matrix which can be used to express the corresponding problem instance must have C 

rows and V columns (see Figure 3.7-a). Thus, each row corresponds to a clause and 

each column corresponds to a variable. In other words, the ith cell in the jth matrix row 

corresponds to the occurrence of the ith variable in the jth clause of the Boolean 

formula. 

For each time a variable appears in the Boolean formula, the corresponding matrix cell 

must be filled in with 0 if the variable is negated, or with 1 if it’s not (see Figure 3.7-

b). For example, the forth cell in the second row must be filled in with 0 because the 

a) b) c)

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1st 1st 1 0 1st 1 - - 0

2nd 2nd 0 0 2nd 0 - - 0

3rd 3rd 1 1 1 3rd 1 1 - 1

4th 4th 1 0 0 1 4th 1 0 0 1

5th 5th 1 5th - - 1 -

(5
 c

la
u
s
e

s
)

(4 variables)
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second clause contains the forth variable negated, i.e. the second conjunction contains 

the literal 4x . 

After all the literals in the Boolean formula have been mapped onto the ternary matrix 

using this method, every empty cell must be filled in with ‘-’, which stands for the 

don’t-care value (see Figure 3.7-c). 

Two equally sized ternary vectors u and v are considered orthogonal if there is an 

index i for which { } { }, 0,1
i i

u v = . For instance, vectors [1,1,0,0,0]  and [1, ,0, ,1]− −  are 

orthogonal because their fifth elements are 0 in one vector and 1 in the other. Without 

this pair of homologous elements, these two vectors would not be orthogonal. On the 

other hand, if two equally sized ternary vectors are not orthogonal, they intersect in 

the Boolean space. In such case, the ternary vector (w) which represents the 

intersection of those two vectors (u and v, with n elements each) is determined as 

follows: for each index 1, 2,...,i n= , if 
i iu v=  then 

i i iw u v= = ; otherwise, either 1) ui is 

a don’t-care value, in which case 
i iw v= , or 2) vi is a don’t-care value, in which case 

i iw u= . For instance, the intersection of [0,0,-,-,-1,1]  and [0,-,0,-,1,-,1]  is 

[0,0,0,-,1,1,1] . Figure 3.8 summarizes how to assign the ith element of the intersection 

vector as a function of the ith elements of the intersecting vectors u and v. Black cells 

correspond to values of ui and vi that are not valid for intersecting vectors. 

 

Figure 3.8 - Determining the ith element of the intersection of ternary vectors u 

and v 

Solving the Boolean satisfiability problem corresponds to finding a ternary vector 

which is orthogonal to every row in the ternary matrix that was built using the 

described method [Skliarova04a]. If such a vector is found, the solution is obtained in 

two more steps: 

1. Negate every non-don’t-care element in the vector that was found 

(i.e. replace its 0s and 1s respectively with 1s and 0s); 

v i

0 1 -

0 0 0

u i 1 1 1

- 0 1 -
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2. For each 1 or 0 obtained in step 1, assign the corresponding variable 

to true or false, respectively (e.g. if the second element of the 

negated vector is 0, 
2x  must be assigned to false). 

In order to apply the basic structure for backtracking algorithms which was previously 

mentioned (see Figure 3.2), it is necessary to define which operations are executed at 

each stage. In the case of the exact SAT solving algorithm presented in [Skliarova03], 

the resolution test (‘Has the problem been solved?’) is satisfied in case all matrix rows 

have been deleted; and the solvability test (‘Is it known that the problem is not 

solvable?’) is satisfied in case the problem has not yet been solved and all matrix 

columns have been deleted. The reduction operations used implement the following 

rules: 

R1 - If a column contains just don’t-care values, it must be deleted from 

the matrix; 

R2 - All rows that are orthogonal to an intermediate vector w (that 

incrementally forms a solution) must be removed from the matrix; 

and all columns that correspond to the components of vector w with 

values 1 and 0 must be removed from the matrix; 

R3 - If the matrix contains a row with just one component 1 (0) with an 

index i, then the ith element of vector w must be assigned value 0 (1), 

i.e. the negated value; 

R4 - If there is a column j in the matrix without values 1 (0) then the jth 

element of w can be assigned value 1 (0). 

Finally, the selection operations implement the following rules: 

S1 - A column Cmax containing a maximum number of non-don’t-care 

values is selected. Let us designate the number of values 1 and the 

number of values 0 in column Cmax respectively N1 and N0; 

S2 - If 
1 0N N≥ , then value 0 for column Cmax is included in w. If 

1 0N < N , 

then value 1 for column Cmax is included in w. This creates a sub-

matrix that will be examined at the next iteration; 
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S3 - If this path fails, it is necessary to backtrack and repeat the attempt 

including the alternative value for column Cmax in vector w. 

Let us now combine these algorithm stage descriptions with the basic structure for 

backtracking algorithms. Figure 3.9 depicts the resulting search steps for the matrix 

example obtained in Figure 3.7. Above each step illustration, the reduction and 

selection rules which are applied are indicated using labels R1 to R4, and S1 to S3, 

respectively. The rows and columns which are removed at each step are presented 

with a black background, while a grey background indicates previously removed 

matrix parts. When an element of vector w is assigned a value, it is also highlighted 

with a black background. 

 

Figure 3.9 - Solving a Boolean satisfiability problem instance 

Figure 3.10 depicts the search tree used to solve the given SAT problem instance. 

Each of the six steps illustrated in Figure 3.9 (labeled from ‘a’ to ‘f’) is identified in 

Figure 3.10 using the same letter. Throughout the search process, reduction 

operations prune certain branches (nodes represented in gray), and make 

deterministic assignments to elements of vector w (nodes represented in white). On 

the other hand, when there are alternative search branches (nodes represented in 

black), selection operations determine which branch to try next. 

a) b) c)

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1st 1 - - 0 1st 1 - - 0 1st 1 - - 0

2nd 0 - - 0 2nd 0 - - 0 2nd 0 - - 0

3rd 1 1 - 1 3rd 1 1 - 1 3rd 1 1 - 1

4th 1 0 0 1 4th 1 0 0 1 4th 1 0 0 1

5th - - 1 - 5th - - 1 - 5th - - 1 -

w - - 0 - w - - 0 0 w - - 0 0

d) e) f)

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1st 1 - - 0 1st 1 - - 0 1st 1 - - 0

2nd 0 - - 0 2nd 0 - - 0 2nd 0 - - 0

3rd 1 1 - 1 3rd 1 1 - 1 3rd 1 1 - 1

4th 1 0 0 1 4th 1 0 0 1 4th 1 0 0 1

5th - - 1 - 5th - - 1 - 5th - - 1 -

w 0 - 0 0 w - - 0 1 w 0 - 0 1

R3 and R2

R1

S3 and R2 R4 and R2

R3 and R2 S1, S2, and R2
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Solution:
[0, - ,0,1]

Cannot provide 
a solution

a)

b)

c)

d)

e)

f)

w3=1w3=0

w4=1w4=0

w1=1w1=0 w1=1w1=0

w2=1 w2=0

w = [ - , - , - , - ]

 

Figure 3.10 – Search tree for the SAT problem example 

The search starts with a first invocation to the Z module depicted in Figure 3.2 and 

with the don’t-care value assigned to every element of the solution vector w. After 

Figure 3.9-a, no more reduction can take place and there are still rows and columns 

left, so in Figure 3.9-b value 0 for column x4 is included in vector w according to the 

selection procedure. Then, some reduction takes place and, after the step depicted in 

Figure 3.9-d, there is still one row left (the second row), which means a solution was 

not yet found; but all columns have been removed, meaning this search path cannot 

provide a solution. 

Hence, the search must backtrack in order to try the search path alternative to the 

one chosen in Figure 3.9-b. This time (see Figure 3.9-e), value 1 for column x4 is 

included in vector w and then reduction rules are applied again. Finally, in Figure 3.9-

f, all rows have been removed, meaning a solution has been found. Vector w (

[0, , 0,1]− , at the end) has been constructed throughout this process and is now 

orthogonal to all given matrix rows. 
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As previously mentioned, the solution is obtained by assigning the negation of each 1 

or 0 element in vector w to its corresponding variable, i.e.: 

1

3

4

x true

x true

x false

=


=
 =

 

3.2.4. The graph coloring problem 

There are various graph coloring problems, such as the vertex coloring problem, the 

edge coloring problem and the face coloring problem. The most usual is the vertex 

coloring problem which consists of coloring the vertices of a graph using the minimum 

number of colors and making sure that no two adjacent vertices get the same color 

[Zakrevskij00, Diestel00]. 

Graph coloring algorithms are widely used for solving different engineering problems 

in robotics and embedded systems [Goossens97, Subramonian04, Ezick], 

microprogramming for application-specific embedded microprocessors, resource 

distribution, etc. [Culberson, Wu93]. 

Let us solve the graph coloring problem applied to the practical example of coloring a 

map of Portugal provinces. Historically, Portugal has been divided in eleven provinces 

delineated in Figure 3.11-a: Minho (A), Trás-os-Montes e Alto Douro (B), Douro Litoral 

(C), Beira Alta (D), Beira Litoral (E), Beira Baixa (F), Estremadura (G), Ribatejo (H), 

Alto Alentejo (I), Baixo Alentejo (J), and Algarve (K).  

In order to solve this problem, the map of provinces must be converted to a graph in 

which: each province in the map is represented by a vertex; and vertices 

corresponding to contiguous provinces are connected by edges, i.e. are adjacent. For 

instance, vertex J must be connected by edges to vertices G, I and K because Baixo 

Alentejo has common borders with Estremadura, Alto Alentejo and Algarve.  

The resulting province adjacency graph is depicted in Figure 3.11-b, in which black, 

gray and white colors reveal an optimal coloring. In fact, the minimum number of 

colors for this example is 3: one color for Minho, Beira Alta, Ribatejo, and Baixo 

Alentejo; another color for Trás-os-Montes e Alto Douro, Beira Litoral, Alto Alentejo, 

and Algarve; and a third color for Douro Litoral, Beira Baixa, and Estremadura. 
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a) b)

 

Figure 3.11 - Portugal’s historical province map (a) and the corresponding 

province adjacency graph (b) 

Conversion of a graph to a ternary matrix is illustrated in Figure 3.12, for the province 

adjacency graph example, and it consists of the following steps: 

1. Creating a matrix with N rows and N columns, where N is the number 

of vertices in the graph (see Figure 3.12-a); 

2. Inserting value 0 in every cell which belongs to the main diagonal of 

the matrix (see Figure 3.12-a); 

3. In each cell below the main diagonal (because the cells above it won’t 

be used), inserting a value 1 if and only if the cell’s coordinates 

correspond to adjacent vertices (see Figure 3.12-b). For instance, the 

cell in row J and column G must have value 1 because there is an 

edge connecting vertex G to vertex J; 

4. Inserting don’t-care values in all empty matrix cells; 

5. Removing every column which has no value 1 (e.g. column K, in 

Figure 3.12-b), keeping track of which vertex each column 

corresponds to. 
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Figure 3.12 - Converting a graph coloring problem instance to a ternary matrix 

It should be noticed that, as a result of these conversion steps, if two vertices are 

adjacent, the correspondent matrix rows are orthogonal. For instance, vertices F and I 

are connected by an edge and the correspondent matrix rows (respectively 

[ , , ,1,1,0, , , , ]− − − − − − −  and [ , , , , ,1,1,1,0, ]− − − − − − ) are indeed orthogonal, namely 

regarding their sixth elements. Therefore, solving the vertex coloring problem 

corresponds to finding a minimum number of row subsets which satisfy the following 

conditions [Sklyarov06b]: 

a) Each subset contains no orthogonal pair of rows; 

b) Every matrix row must belong to exactly one subset. 

At the end, the number of compiled subsets expresses the minimum number of colors 

that the given graph requires, while rows grouped in each subset correspond to 

vertices assigned the same color [Pimentel07]. 

Let us now consider which solvability and resolution tests and which reduction and 

selection operations should be embedded in the basic structure for backtracking 

search algorithms, in order to implement an exact algorithm for solving the vertex 

coloring problem. 

There are no unsolvable instances for the vertex coloring problem. The worst case 

scenario corresponds to graphs in which every vertex is connected to all other vertices 

and even such instances are solvable. The solution, in these cases, consists of 

a) b)

A B C D E F G H I J K A B C D E F G H I J K

A 0 A 0 - - - - - - - - - -

B 0 B 1 0 - - - - - - - - -

C 0 C 1 1 0 - - - - - - - -

D 0 D - 1 1 0 - - - - - - -

E 0 E - - 1 1 0 - - - - - -

F 0 F - - - 1 1 0 - - - - -

G 0 G - - - - 1 - 0 - - - -

H 0 H - - - - 1 1 1 0 - - -

I 0 I - - - - - 1 1 1 0 - -

J 0 J - - - - - - 1 - 1 0 -

K 0 K - - - - - - - - - 1 0

(11 vertices)
(1

1
 v

e
rt

ic
e

s
)
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assigning a different color to each vertex. Thus, the outcome of a solvability test is 

constant: always ‘solvable’. 

The resolution test is satisfied in case the matrix is empty, i.e. if all rows have been 

removed. 

The method of condensation proposed in [Zakrevskij81] can be used in the 

implementation of the graph coloring algorithm [Sklyarov06b, Sklyarov07a] as a basis 

for the reduction and selection rules. Let us consider the reduction rules: 

R1 - After selecting a new color, all matrix columns which contain no 

value 0 or no value 1, must be removed; 

R2 - At any intermediate step of the algorithm, all matrix rows which 

contain only don’t-care values must be removed and included in the 

subset under construction (meaning the correspondent vertices are 

assigned the current color); 

R3 - All rows included in the constructed subsets must be removed from 

the matrix. 

Finally, the selection rules used implement the following sequence of algorithm steps: 

1. Choose a new color (i.e. create a new, initially empty subset); 

2. Apply reduction rules R1 and R2; 

3. Consider the topmost row mi in the matrix; 

4. Include row mi in the constructed subset and remove it from the 

matrix (reduction rule R3); 

5. Find out all other rows intersecting (i.e. not orthogonal) with vector 

mi; 

6. Select the first row found during step 5 which has not been tried yet 

(let us designate this mj), include it in the constructed subset and 

then delete it from the matrix; 

7. Reassign mi to the intersection of mi and mj and repeat steps 5 to 7 if 

this is possible. If this is not possible, go to step 8; 
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8. If the intermediate matrix is not empty repeat steps 1 to 7. 

Otherwise, store the solution found, then backtrack to the nearest 

branching point (set at step 6), and try to find a better solution by 

repeating steps 6 to 8. 

e)

New Color (3)

F (first inclusion)
C (by reduction)
J (by reduction)

New Color (4)

H (first inclusion)

Coloring Update:
Color 1 – A,D,G,K
Color 2 – B,E,I
Color 3 – C,F,J
Color 4 – H

New Color (3)

F (first inclusion)
C (by reduction)

New Color (4)

New Color (2)

B (first inclusion)

New Color (3)

C (first inclusion)

New Color (4)

Cannot provide
a better coloring

New Color (4)

Cannot provide
a better coloring

Cannot provide
a better coloring

New Color (2)

B (first inclusion)
K (by reduction)

New Color (3)

C (by reduction)
F (by reduction)
G (by reduction)

Coloring Update:
Color 1 – A,D,H,J
Color 2 – B,E,I,K
Color 3 – C,F,G

New Color (1)

A (first inclusion)
a)

b)

c)

d) g)

f)

JIHFE IGFE

JI J I

ED K. . .

KHG . . .

K J K

IH

 

Figure 3.13 – Part of the search tree for the vertex coloring problem example 

Figure 3.13 depicts a part of the search tree obtained when applying the described 

exact backtracking search algorithm to the graph example in Figure 3.11-b. Text 
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boxes contain operations which are deterministic at the current branch point, namely: 

starting a new color (a new subset of rows); including a graph vertex (a row) either as 

a first pick or by reduction; updating the stored coloring; and branch pruning. On the 

other hand, when a branch point is reached, current data must be stored in stacks in 

order to allow for alternative search branches to be explored. Each alternative branch 

starts with a selection-based vertex inclusion represented by a black circle in Figure 

3.13. When the algorithm must backtrack, the branch point data are restored and 

other vertices are selected and analyzed.  

A first subset (color 1) is initialized at the root of the search tree and a first row (A) is 

included, i.e. a first vertex is assigned color 1 (see Figure 3.13-a). A branch point with 

8 alternatives is reached because there are 8 rows (D to K) which are not orthogonal 

to any of the rows in the current subset under construction: { }A . 

As a first attempt, D is selected and included in the subset, and a new branch point is 

reached (see Figure 3.13-b). The subset under construction is now { , }A D  and there 

are 5 rows which are not orthogonal to any of its rows: G to K. The same procedure 

continues until every remaining row is orthogonal to at least one row in the subset 

under construction. This occurs for the first time when the first subset under 

construction becomes { , , , }A D G K  (see Figure 3.13-c). Then, a new subset of rows 

must be initialized and the search proceeds until all rows have been included in the 

constructed subsets (see Figure 3.13-d). A leaf of the search tree has been reached, 

having all vertices colored. The algorithm backtracks to the nearest branch point (see 

Figure 3.13-e) and alternative row J is selected and included in the subset under 

construction, which has been restored meanwhile. 

The need to start a fourth subset renders the current search branch useless (see 

Figure 3.13-f) because a solution consisting of 4 colors has already been found. This 

search branch is therefore pruned and the algorithm backtracks again. The search 

continues and, when a new coloring is found having fewer subsets than the stored 

one, the solution is updated. Eventually, an optimal solution is stored (see Figure 

3.13-g); the search continues until all search branches are implicitly tested but the 

solution is obviously not replaced again. 

When the algorithm finishes, the solution is composed of the following 3 subsets of 

rows: { , , , }A D H J , { , , , }B E I K , and { , , }C F G . Finally, each group of vertices 
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corresponding to one of these row subsets is assigned a different color, as illustrated 

in Figure 3.11-b. 

3.2.5. The knapsack problem 

Given a set of items, each with a profit and a weight, and a knapsack with a certain 

weight capacity, the 0-1 knapsack problem consists of selecting a subset of items 

whose total weight does not exceed the knapsack capacity and whose total profit is as 

large as possible [Beier04]. 

Applications of the knapsack problem can be found in a variety of resource allocation 

tasks [Gleeson94, Rodin90, Bodin91, Henig90], in cutting stock problems [Gilmore61, 

Hahn68, Madsen79, Seth87], cryptography [Merkle78, Chor88, Jan93], broadband 

communications [Ross89, Gavious94], etc. 

Typical knapsack problem solvers make use of backtracking search. On the other 

hand, matrices are not a suitable data structure in this context. 

Let us solve the knapsack problem on the basis of an example in which: 

a) there are 4 items: 1 to 4; 

b) 
ip  and 

iw  designate respectively the profit and weight of item i , 

1, 2,3, 4i = ; 

c) vectors p  and w  are composed of 
1p  to 

4p , and 
1w  to 

4w , 

respectively; 

d) [7,6,4,6]p =  and [4,7,5,4]w = ; 

e) the weight capacity of the knapsack is 10c = . 

In order to provide the solution, a binary vector x  composed of 
1x  to 

4x  must be 

constructed. If an item i  is to be inserted in the knapsack then the ith element of 

vector x  (
ix ) must be assigned to 1; otherwise to 0. For instance, if the solution 

would correspond to the insertion of items 2 and 3, then solution vector x  should be 

assigned to [0,1,1,0] . 
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The exact algorithm which has been used in [Skliarova05] for solving the Knapsack 

problem makes no use of matrices but it is based on the basic structure for 

backtracking search algorithms (see Figure 3.2). The reduction rules, selection rules, 

resolution test, and solvability test have been defined in such a way that the algorithm 

executed is the one described in Figure 3.14. 

Store current
solution, profit,

and weight.

Yes

No

No

Yes

Recursive
call of Y

Exclude
the item

Recursive
call of Y

Have
all items been
considered?

Is the
knapsack capacity

exceeded with the next
item’s weight?No

Yes

Is the
current profit higher

than the stored
one?

Include the item.
Update current

profit and weight.

left subtree right subtree

Y

b)

a)

c)

d)

 

Figure 3.14 - Recursive exact algorithm to solve the knapsack problem 

The search process is triggered with the invocation of module Y which includes 

potential recursive invocations of itself. Each recursive invocation corresponds to 

processing a subtree of the current search tree node. Left subtrees correspond to 

including the considered item (see Figure 3.14-a), while right subtrees correspond to 

excluding it (see Figure 3.14-b). 

This algorithm also features pruning of search branches. Indeed, if the inclusion of an 

item implies an accumulated weight which exceeds the knapsack capacity (see Figure 

3.14-c), the item cannot be included and thus the left subtree is not processed. 

When a leaf in the search tree is reached (see Figure 3.14-d), the current 

(accumulated) profit is compared with the one previously stored (initially 0). If the 

current profit is higher, the current solution, profit and weight replace the stored ones. 

Figure 3.15 depicts the search tree which results of applying this exact algorithm to 

solve the given knapsack problem example. The inclusion of an item i , in the solution 

vector under construction ( x ), is indicated as 1ix = . Analogously, 0ix =  indicates its 
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exclusion. The accumulated profit and weight are shown at the bottom of each node. 

Gray nodes indicate pruned subtrees. The algorithm carries out a pre-order traversal, 

i.e., starting from the root, the processing sequence is: first the node, then the left 

subtree, and finally the right subtree. 

Solution 
update:
[1,0,1,0]

Capacity 
exceeded

0 / 0

x1=1

7 / 4

x1=0

0 / 0

x=[ ?,?,?,? ]

x2=1

13 / 11

x4=1

17 / 13

x4=0

11 / 9

x2=0

7 / 4

x3=1

11 / 9

x3=0

7 / 4

x4=1

13 / 8

x4=0

7 / 4

x2=1

6 / 7

x3=1

10 / 12

x3=0

6 / 7

x4=1

12 / 11

x4=0

6 / 7

x4=1

10 / 9

x4=0

4 / 5

x2=0

0 / 0

x3=1

4 / 5

x3=0

0 / 0

x4=1

6 / 4

x4=0

0 / 0

Capacity 
exceeded

Solution 
update:
[1,0,0,1]

Capacity 
exceeded

Capacity 
exceeded

 

Figure 3.15 - Search tree for the knapsack problem example 

After the second update, the stored solution vector is [1,0,0,1] , which means that 

items 1 and 4 are to be selected. The corresponding profit and weight is 13 and 8, 

respectively. The search continues, until the whole search tree gets traversed, but no 

other leaf provides a more profitable set of items. 

3.3. Other selected algorithms 

Two other classical problems, which are not usually addressed with backtracking 

search algorithms, have been selected for this research: sorting; and the calculus of 

the greatest common divisor. 
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3.3.1. Sorting 

Sorting consists of rearranging the elements of a given set using a specific ordering 

criterion. For instance, a given group of people can be sorted by alphabetic order of 

their first names, or by numerical order of their ages, etc. However, for 

implementation purposes, any sorting criterion is usually converted to numerical 

ordering. 

Sorting facilitates the search of elements within the given set and it is therefore very 

often executed within a broad range of more complex algorithms. In fact, its 

applicability is so wide that the list of sorting algorithms keeps growing, as designers 

try to reach higher efficiency. Some of the most famous are Bubble sort 

[Astrachan03], Insertion sort [Astrachan03], Binary Tree sort [Wirth86], and Merge 

sort [Kernighan88]. 

Sorting based on a binary tree (also known as binary tree sort) was selected for 

comparison of alternative recursive and iterative implementations. This algorithm 

includes the following two stages: 

1. Construction of an ordered binary tree, using the numerical value of 

each given element to form a tree node. The node insertion is 

performed in such a way that: 

a. the left subtree of any node contains only values less than the 

node’s value; 

b. the right subtree of any node contains only values greater than or 

equal to the node's value. 

2. Retrieval of every tree node using in-order traversal, i.e., with the 

root node as the starting point, performing the following three steps: 

a. in-order traversing the left subtree, if there is one; 

b. retrieving the current node; 

c. in-order traversing the right subtree, if there is one. 

Figure 3.16 illustrates, step by step, the tree construction stage of the algorithm. The 

given sequence of integers used as an example in this illustration is 4-2-9-5-9. Black 
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circles are used to identify the tree node inserted at each step, while white circles 

represent previously inserted nodes. Symbols < and ≥ can be used to easier 

understand the location of each inserted node. 

a) b) c) d) f)

4

< ≥ ≥ ≥

≥<

4 2 9 5 9 4 2 9 5 9 4 2 9 5 9 4 2 9 5 9 4 2 9 5 9

4
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4
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5 9

 

Figure 3.16 - Constructing an ordered binary tree 

The tree node in-order retrieval stage of the algorithm is illustrated in Figure 3.17. The 

ordered binary tree used for this illustration is the one constructed in the previous 

example (see Figure 3.16-f). Within each step illustration (Figure 3.17-a to Figure 

3.17-f), black circles identify the tree node being retrieved, while the resulting ordered 

sequence is updated below the tree. Gray circles represent nodes already retrieved, 

while white circles correspond to nodes yet to be retrieved. With the fifth step (see 

Figure 3.17-f), the last integer is retrieved, thus completing the sorted sequence: 2-4-

5-9-9. 

a) b) c) d) f)
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Figure 3.17 - Retrieving ordered binary tree nodes 
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3.3.2. The greatest common divisor 

The greatest common divisor (GCD) of 2 integers a and b, not both zero, is written as 

gcd( , )a b  and defined to be the largest integer that divides both a and b with no 

remainder [Knuth97, Abelson96]. This definition can be extended to three or more 

integers, in which case the greatest common divisor is the largest integer that divides 

each of them with no remainder. The greatest common divisor is also known as 

greatest common factor and as highest common factor. 

Applications of the GCD can be found in rational arithmetic and in multiple-precision 

arithmetic [Knuth97]. 

The GCD of two integers can be efficiently calculated using Euclid’s algorithm, which is 

over two thousand years old [Knuth97]. Figure 3.18 describes Euclid’s algorithm both 

iteratively and recursively, by means of pseudocode. Keyword ‘mod’ represents the 

modulo operation, which calculates the remainder of dividing the left operand by the 

right operand. For instance, expression ‘10 mod 3’ evaluates to 1, as the remainder 

after dividing 10 by 3 is 1. 

a)  b) 

it_gcd(a, b) 

{ 

 while b ≠ 0 
 { 

  temp = b 

  b = a mod b 

  a = temp 

 } 

 return a 

} 

 

  

rec_gcd(a, b) 

{ 

 if b ≠ 0 

  return rec_gcd(b, a mod b)  

 else 

  return a 

} 

  

Figure 3.18 - Pseudocode for calculating the GCD of two integers iteratively (a) 

and recursively (b) 

3.4. Conclusion 

A primary objective of this research is the comparison and evaluation of alternative 

recursive and iterative implementations for different algorithms. For this purpose, it 
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was necessary to select a set of algorithms which can be described both iteratively 

and recursively. 

A class of algorithms which is often implemented on the basis of recursive descriptions 

is backtracking search algorithms. Such algorithms can be developed on the basis of a 

generic algorithmic structure which expresses a recursive procedure to be executed at 

every node of the relevant search tree. The process starts by simplifying the current 

problem instance using a set of reduction operations. When no further reduction is 

possible, a resolution test is performed. In case the problem has been solved, the 

process ends, and the solution is provided. Otherwise, a solvability test is carried out. 

In case the problem is found unsolvable, the process ends with no solution. Otherwise, 

the solver might have to try alternative paths in the search tree in order to check 

whether there is one which leads to a solution. The set of operations that determines 

which path to follow is called selection. When a chosen search path fails to provide a 

solution, the algorithm backtracks and selects another one, if available. 

A common data structure can be used to specify problem instances for different 

backtracking search algorithms. Most combinatorial search problems can be expressed 

in several equivalent mathematical formulations based on different standard data 

structures. Matrices can be stored and processed easily in both software and hardware 

and most combinatorial search problems can efficiently be formulated over matrices. 

For these reasons, and without loss of generality, we have selected matrices as the 

data structure to be used for specifying the combinatorial problem instances, when 

applicable. 

In order to compare and evaluate recursive and iterative implementations in 

hardware, six problems have been considered for experiments: 1) set covering, 2) 

Boolean satisfiability, 3) graph coloring, 4) knapsack, 5) tree-based sorting, and 6) 

calculating the greatest common divisor. 

We have demonstrated in detail the applicability of backtracking search algorithms 

operating over matrices for solving the first four selected problems. For each of the 

four corresponding algorithms, a particular method for converting problem-instances 

to matrices is used. The same applies for the reduction rules, selection rules, 

resolution test, and solvability test. 
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Algorithms for tree-based sorting and the calculus of the greatest common divisor 

have also been presented and demonstrated in detail. For solving these problems, 

specific data structures were used. 
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44..  SSooffttwwaarree//HHaarrddwwaarree  TToooollss  ffoorr  

PPrroottoottyyppiinngg  aanndd  EExxppeerriimmeennttss  

This chapter describes the developed prototyping system and software tools that 

enable experiments with hardware accelerators and comparisons of alternative 

recursive and iterative algorithms to be carried out easier and more efficiently. The 

system is based on the DETIUA-S3 prototyping board with wired and wireless interface 

with a host computer developed at the department of Electronics, Telecommunications 

and Informatics of Aveiro University, as well as on software tools proposed and 

implemented within this thesis. The software tools establish user-friendly interface 

with the board (including wireless interaction) and provide high-level support for many 

different experiments required for the considered hardware accelerators, such as the 

developed virtual peripheral devices, modules for software/hardware co-simulation 

which simplifies hardware/software partitioning, procedures which extract 

intermediate results for analysis, etc. A more advanced technique assumes the 

application of the developed tools through the Internet in such a way that allows 

different users to configure and to interact with the remotely accessed prototyping 

board. Although this work was not initially planned, many tools have been developed, 

implemented and tested, which permits to conclude that the proposed system can 

efficiently be used for remote interactions. In the end, an overview of the advantages 

and potential applications of the prototyping system is provided. 

4.1. Prototyping system 

This section presents the set of developed hardware/software components, namely an 

FPGA-based prototyping board, the board-targeted software, and useful tools mainly 

needed for fulfilling the objectives of this thesis. 
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4.1.1. The DETIUA-S3 FPGA-based prototyping board 

The FPGA-based prototyping board named DETIUA-S3 [Almeida08] (see Figure 4.1) 

has been developed in such a way that permits to provide the following main features: 

• Programming and data transferring from a PC (personal computer) through USB or 

Bluetooth interface; 

• Powering the board through a USB port or using an external power source; 

• Keeping bitstreams for the FPGA in a flash memory, which allows to use the board 

as an autonomous device, without any connection to a PC, and only external 

powering has to be provided; 

• Keeping more than one bitstream in the flash memory for dynamic reconfiguration 

of the FPGA. The capacity of the selected flash memory permits to store up to 8 

bitstreams. This is very practical not only for run-time reconfiguration but also for 

verification of different types of alternative and competitive implementations; 

• User-friendly interface (see section 4.1.2) for programming the board and data 

exchange with a PC; 

• Expansion headers for interacting with application-specific, externally connected 

devices. 

 

Figure 4.1 – The DETIUA-S3 board with interface module alternatives 
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Figure 4.2 – The DETIUA-S3 board basic architecture 

The basic architecture outlined for DETIUA-S3 (see Figure 4.2) includes the following 

main components: 

• An FPGA of Xilinx Spartan-3 family (see Figure 4.1-a), namely XC3S400 [Xilinx], 

based on 90 nm technology, with 400.000 system gates, 288 Kb of block RAM, 16 

embedded multipliers and 264 inputs/outputs; 

• A flash memory of AMD (see Figure 4.1-b), namely Am29LV160D [AMD], divided 

into three logical sections, as shown in Figure 4.3. The first section contains the 

default bitstream. This bitstream has to be pre-loaded to the FPGA in order to 

allow the following set of operations: 1) transferring an application-specific 

bitstream to the second logical section; 2) erasing flash memory sectors; 3) 

transferring data from a host device to the third section of the flash memory and 

vice versa. This technique has already been used in Trenz prototyping boards 

[Trenz]. The second logical section stores an application-specific bitstream (user 

bitstream) for subsequent quick loading into the FPGA (pressing the ‘project’ 

pushbutton available on the board). The third memory section enables the 

designer to keep additional bitstreams for configuring the FPGA or any arbitrary 

user data; 

• A CPLD (Complex Programmable Logic Device). This component (see Figure 4.1-c) 

is needed for controlling the flash memory and pushbuttons assembled on the 

board, because the FPGA cannot execute these functions during configuration. The 

CPLD also generates an initial reset signal for FPGA circuits as soon as a new 

configuration is completed; 
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• Either of two available interface modules, USB (see Figure 4.1-d) and Bluetooth 

(see Figure 4.1-e), can be plugged into the board interface socket (see Figure 4.1-

f). The selected interface can be established with any compatible device, allowing 

for any required bi-directional data exchange (for instance, to supply the board 

with user bitstreams). Connecting the board to a computer using the USB module 

eliminates the need for another power source and provides higher bandwidth, 

while Bluetooth has the advantage of a wireless communication and portability (a 

small battery-based source can be used for powering); 

• Expansion connectors (see Figure 4.1-g and Figure 4.1-h) permit to attach any 

application-specific external hardware, such as mini boards with extra components, 

human interaction peripherals and even other FPGA-based boards (other DETIUA-

S3 boards, for instance). 

Default
bitstream

User
bitstream

User data
or

Alternative
bitstreams

First logical section

Second logical section

Third logical section

 

Figure 4.3 - Logical division of the flash memory in DETIUA-S3  

4.1.2. The PBM system software for DETIUA-S3 

A software application called PBM (Prototyping Board Manager) has been developed to 

provide important functionality with respect to DETIUA-S3 with a convenient user-

friendly interface. Basic PBM tools, possible workflows, and system integration 

scenarios that are achievable with DETIUA-S3 and PBM are revealed in Figure 4.4 

[Almeida06].  

The most basic function of PBM is uploading a user bitstream into the second section 

for quick configuration of the FPGA (by pressing the ‘project’ pushbutton). This 

technique is the most appropriate to integrate design workflows for single-bitstream 

projects. 
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Figure 4.4 - Examples of DETIUA-S3 and PBM prototyping capabilities 

PBM also features a terminal window for run-time data exchange between the user 

and the prototyping system, thus constituting an integrated input/output peripheral, 

which is very convenient for project monitoring and testing. 

A more advanced function allows to send multiple bitstreams (let us refer to them as 

alternative bitstreams) and to store them in the third logical section of the flash 

memory (see Figure 4.3). The latter is logically divided in six predefined subsections 

for storing alternative bitstreams, which can be used for FPGA reconfiguration by the 

following means: 

a) Attaching a simple additional switch through expansion connectors 

and pressing the ‘project’ pushbutton, the board reconfigures the 

FPGA with the bitstream that is stored in the subsection indicated by 

the switch; 

b) Any circuit running in the FPGA can send to the CPLD a request for 

run-time reconfiguration, using techniques such as those described in 

[Shirazi98, Sklyarov98], indicating which bitstream has to be loaded. 

c) Sending any required bitstream through expansion connectors to 

another prototyping board in order to configure its FPGA. 

The software application includes a user manual in English and Portuguese (available 

online [Pimentel]) which gives detailed information on how to take full advantage of all 

the available functionality. 
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In order to be able to work with PBM, either through USB or Bluetooth interface, a 

user must first press the board’s ‘configuration’ button. This operation loads the 

default bitstream from the first logical section of the flash memory into the FPGA, 

configuring it to establish the protocol which PBM uses to manage the board. Each 

function available to the user generates a sequence of basic operations supported by 

this protocol, such as: erase a sector, read from a specified range of addresses, or 

write a sequence of bytes. 

PBM also provides compatibility with new boards which may include different FPGAs, 

flash memories, etc. The basic rules to develop PBM-compatible prototyping boards 

are provided in the user manual [Pimentel]. 

4.1.3. Remote interaction 

A conceptual framework called Remote Lab [Pimentel08] has been proposed, enabling 

a remote interaction with DETIUA-S3. We assume that the following conditions have to 

be satisfied: 

a) DETIUA-S3 is connected through either USB or Bluetooth interface to 

a server PC; 

b) The server PC is running PBM in Remote Lab Server Mode; 

c) The client PC (on which the remote user is) can reach the server PC 

through the Internet; 

d) The client PC is running PBM in Remote Lab Client Mode. 

The developed software tools provide remote users with most of the PBM functionality 

through the Internet (see Figure 4.5). In addition, co-simulation tools have been 

developed, enabling remote users to construct digital systems in such a way that they 

are partially implemented in FPGA and partially modeled in software of a user 

computer. The developed software enables only one user to work with the board at 

the same time. As soon as communication between a user’s computer and the board is 

terminated, the latter becomes available for another user. Such system is very helpful 

for educational process. 
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Figure 4.5 - Remote access to DETIUA-S3 

Potential applications of this remote interaction system are the following: 

• Remote design; 

• Using virtual peripheral devices [Sklyarov08a]; 

• Co-simulating the developed and virtual components. 

Additional details will be given in section 4.2. 

4.1.4. Hardware/software co-simulation 

As a rule, the considered hardware accelerators are parts of larger circuits which, in 

combination with some other components, make up a complete system. Traditional 

approaches to the design of such circuits, such as top-down, bottom-up and 

combined, assume decomposition of the entire system into sub-systems, which at 

different levels of decomposition are of varying complexity. For many practical 

problems it is necessary to examine the communication between relatively 

autonomous sub-systems in order to assess the characteristics of the system, such as 

the correctness of the functionality, the adequacy of the performance, the accuracy of 

execution, and so on. Note that this assessment has to be done at a point when all the 

components of the system have not yet been implemented. Paper [Sklyarov02b] 

proposes a combined software/hardware model of a system that consists of a control 

part that is mainly implemented in hardware (in an FPGA) and a datapath that is 

modeled partially in hardware and partially in software. The hardware and software 

components communicate through a pre-established interface.  
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The reasons for choosing such decomposition are the following: 

1. Very often, a control algorithm (such as a micro-program) operates 

primarily with individual bits of data in such a way that it analyzes a 

predefined subset of bits from a given set (such as the flags of a 

processor) and generates control signals that can also be considered 

as a subset of a set of individual bits (such as the signals that affect 

data flow). These operations can be implemented in hardware much 

faster than in software. Note that control can be considered at 

different levels. A high level control is usually implemented in 

software. A low-level control might be realized more efficiently in 

hardware.   

2. An execution unit deals mainly with words of data that have a 

predefined size. Operations on these words can be performed with the 

aid of general-purpose processors. For many practical applications, 

implementing execution units in FPGAs is very profitable because it 

allows the speed of data flow to be accelerated. However, a software 

model of a datapath enables us to estimate how profitable it may 

ultimately be, and provides the information needed to decide whether 

to partition an execution unit into a software component plus 

hardware. Note that this question is especially interesting in the 

educational context. 

3. Using the proposed approach makes it possible to implement a 

distributed control, which combines autonomous control circuits that 

directly affect the external FPGA devices, and a more sophisticated 

control that requires the use of a datapath emulated in software. Such 

control devices are widely needed in embedded systems requiring the 

considered hardware accelerators. 

4. Reconfigurable hardware can improve the performance of datapath by 

using parallelism and pipelined execution. The proposed approach 

does not exclude this possibility. We have already mentioned that the 

boundary between hardware/software components is adjustable and 

we can combine a hardware implementation of highly parallel parts of 

an execution unit with the remainder implemented in software. 
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5. A control unit can be implemented as a virtual device. As a result, it 

can have dynamically modifiable functionality. One interesting 

approach in this context is to implement only part of a control 

algorithm in the dynamically modifiable area of an FPGA, and to 

reload other parts of the control algorithm when required, with the aid 

of software tools. The developed software tools for the DETIUA-S3 

board provide support for such opportunity. 

We consider a similar technique but will not restrict types of circuits implemented in 

software and hardware (such as control and execution units). 

A top-level architecture of an FPGA-based virtual system [Sklyarov02b] consists of 

three primary components: virtual hardware (modeled in software), physical hardware 

(implemented in an FPGA), and a software/hardware interface. This architecture 

permits to examine various alternative implementations by shifting the boundary 

between the hardware and software parts, i.e. by examining the systems with more 

hardware and less software or vice versa. This is especially important for hardware 

accelerators because it permits to select the most favorable fragments of the studied 

algorithms requiring acceleration and also the relevant increase in performance. 

A software/hardware interface enables connections and the interchange of signals to 

be established between hardware/software components shown in Figure 4.6. 

 

Figure 4.6 – Demonstrating virtual and physical peripheral devices 
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In our case, the software models have been developed on a PC. The hardware part 

has been implemented in DETIUA-S3. The interface was partially implemented in 

software and partially in an FPGA, and it provides for the transmission of signals 

through either USB or Bluetooth interface. The following subsections (0 and 4.1.4.2) 

present different proposed and implemented tools which provide support for the 

hardware/software co-simulation considered above. 

4.1.4.1. Interaction with virtual peripheral devices 

One of the most important components of the hardware/software co-simulator is a 

virtual visual sub-system [Sklyarov08a], which enables the designer to verify the 

functionality of the developed system in a visual mode using the host computer 

monitor (see Figure 4.6). It is important that the virtual visual environment allows the 

creation of a vast variety of virtual peripheral devices for the FPGA-based prototyping 

core considered in section 4.1.1. Indeed, it permits to visualize and to virtually attach 

peripheral devices, providing data input and output and modeling typical (push 

buttons, LCD, etc.) and application-specific (stack watchers, function calls watchers, 

etc.) devices. The number of potential devices is, indeed, unlimited because any newly 

required one can be modeled and included in the existing virtual peripherals library. 

A system depicted in Figure 4.6 displays virtual peripheral devices (namely 

pushbuttons, an LCD panel, a segment display, and LEDs), and communications with 

such devices are organized much like communications with physical peripheral 

devices. The proposed technique can be very efficiently used in the scope of design 

space exploration. For example, there are many practical applications that require 

solving combinatorial search problems. It is possible to design a reusable circuit  

[Sklyarov08a] that might be customized for solving many problems from the area of 

combinatorial computations. Such a reusable circuit can be entirely modeled in 

software. However, it may be beneficial to implement this circuit in FPGA. One of the 

easiest ways is a sequential conversion of the software model to hardware 

implementation in such a way that the required hardware is incrementally extended 

replacing more and more software. This, in particular, significantly simplifies testing 

and debugging of hardware circuits. Besides, the considered hardware/software 

architecture opens practically unlimited capabilities for experiments in the scope of 

design space exploration. For example, we can: 

• Use debugging facilities of software in order to test different operations available 

for the circuit; 
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• Verify different algorithms step by step, either in software or in hardware, 

assessing the results in a convenient visual mode (see example in Figure 4.6); 

• Provide hardware/software partitioning and execute algorithms partially in 

software and partially in hardware, changing the boundary between software and 

hardware. This is indeed design space exploration because we can check if 

hardware implementation is really capable to improve performance and other 

characteristics of the system. 

The described system for hardware/software co-simulation has been implemented 

using the following technique. DETIUA-S3 has two expansion buses connected to the 

FPGA (see Figure 4.1-g and Figure 4.1-h) with a total of 80 connectors that can be 

used to attach physical external devices. The developed agent module routes the 

corresponding 80 circuit input/output signals from/to a computer, instead of the board 

expansion connectors, in order to establish full interaction with the virtual user 

peripheral components. 

 

Figure 4.7 - Signal routing with the agent module 

To allow user projects to interact with both physical and virtual peripherals, the agent 

module has two running modes: physical and virtual. In physical mode, signals are 

simply transferred to/from the expansion connectors. In virtual mode, signals pass 

through the interface (either USB or Bluetooth) using an exchange protocol created for 

that purpose. Figure 4.7 illustrates these routing capabilities. The agent module starts 
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All classes for emulating physical peripheral devices conform to the following: 

a) They are derived from the class UserControl (from the .NET library), 

providing functions for graphical visualization based on images of the 

corresponding physical devices; 

b) They implement the vPeripheral interface (see the top left-hand 

corner of Figure 4.8) which contains a set of methods common to all 

virtual peripherals (such as GetName, GetOutputPins, etc.), thus 

taking advantage of the object oriented paradigm. 

Two special classes named vPin and vConnector (respectively at the center and top 

right corner of Figure 4.8) are the basis for signal propagation. Each of the 80 

connectors mentioned before is represented by a vConnector; and every pin in the set 

of real peripherals is represented by a vPin. Before running the project, the user must 

associate vPins with vConnectors. Such association corresponds to connecting real 

peripheral pins to DETIUA-S3 expansion connectors, according to the scenario the 

user needs to emulate. 

When the project is running, any signal change in a virtual peripheral output (caused 

for instance by user action) triggers a signal update in the associated vPin. Such a 

change is propagated to the associated vConnector, updating its value. The continuous 

cycle of signal exchange between the application and the agent module keeps sending 

the last signal value stored in each vConnector, through the interface module. Every 

time a signal exchange packet reaches DETIUA-S3, the agent module updates the 

user circuit inputs with new signal values. 

The user circuit output signals are propagated basically in the same way but in the 

opposite direction. When a signal update reaches a vPin for input, the application 

invokes the UpdateStatus method on the owner vPeripheral and the user can visualize 

the resulting feedback on a monitor screen. 

The developed tools can easily be combined with remote interaction through the 

Internet, which permits to execute similar functions in a distant mode. The remote 

interaction requires constant signal exchange between the application and DETIUA-S3 

over the Internet. For this purpose, a dedicated PBM tool establishes a new TCP 

(Transmission Control Protocol) connection with the remote client through which all 

data (including PBM operation commands) sent by the board are forwarded to the 

remote client and vice versa (see Figure 4.5). 
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Note that the components emulated with this framework are peripherals for 

interaction with humans. The delays inherent in this kind of interaction are 

significantly long and irregular, considering the response time of digital circuits. For 

this reason, the delay overhead which is inflicted by the whole signal propagation 

process can be considered tolerable. In fact, the signal propagation delay overhead 

ranges from tens of milliseconds, when the user’s computer is directly connected to 

the board, to a few seconds, when remotely connected across the Internet. 

4.1.4.2. Reprogrammable FSM-based architecture 

This section describes the model proposed for validation of different types of 

interactions between the execution and control units. Paper [Sklyarov02b] proves that 

such interaction is needed for many practical applications and discusses a number of 

examples. The main contribution is in the adaptation of a reprogrammable FSM model 

described in [Sklyarova02a]. 

 

Figure 4.9 – Using the proposed reprogrammable FSM-based model 

We assume the following characteristics for the designed system (see Figure 4.9 as a 

potential example): 

a) Control units are modeled by a reprogrammable FSM implemented in 

hardware; 
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b) Execution units and application-specific peripheral devices are 

modeled in software; 

c) Input, output, reset, and clock signals of the control unit are 

propagated at each clock transition triggered by the user, allowing for 

step-by-step control and monitoring of the developed system, from 

the computer. 

The reprogrammable FSM can be implemented with the aid of a hardware template 

(HT) [Sklyarov06d]. An HT is a circuit that contains elements with functions that can 

be changed and which are initially undefined. All the external connections of elements 

are fixed and they cannot be modified. The customization of the HT is carried out by 

programming (reprogramming) its elements with changeable functions. In order to 

construct the HT, it is necessary to estimate all the likely constraints for future 

applications. In other words, we should define a class of applications and the 

constraints for that class. 

For an FSM, these constraints might be the maximum numbers of the input variables 

(Lmax), the output variables (Nmax), the states (Mmax) and the transitions from any 

state; also the maximum size of state codes (Rmax), etc. Figure 4.10 shows an 

example of an HT for an FSM. 

 

Figure 4.10 – An example of a hardware template 
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It is composed of two RAM blocks, an FSM memory and a multiplexer. MRAM permits 

any input xl∈{x0,...,xL-1} of the multiplexer to be selected in such a way that p=xl and 

value l can be specified by MRAM. For example, if the FSM codes are binary values of 

state subscripts and if input x9 affects transitions from state a5 then, at the address 

101, MRAM forms outputs 1001 which control the 16:1 multiplexer. If, for another 

application, the transitions from a5 are affected by x3 then at the address 101, MRAM 

has to form outputs 0011. Clearly we can provide any correspondence between states 

a0,...,aM-1 and inputs x0,...,xL-1. The RIV (Replacement of Input Variables) block shown 

in Figure 4.10, in the dashed rectangle, permits any variable from set  X={x0,...,xL-1} 

to be replaced by a single variable p. State transition RAM (STRAM) enables us to 

generate codes for the next states and outputs. For example, if R=4 and we have 

state transitions a10x2⇒a7 and 210 xa ⇒a4 then, at the address 10101, STRAM contains 

the code (D1,...,D4) = 0111 and, at the address 10100, the code (D1,...,D4) = 0100. 

Obviously any subset of output signals y1,...,yN can be arbitrarily generated in any 

state transition.  

By modifying the contents of MRAM and STRAM we can implement any desired FSM 

behavior within the scope of the constraints predefined for the HT. In case of the HT 

depicted in Figure 4.10, there is a very significant constraint: any state transition can 

only be affected by a single input variable. Different ways to solve this problem and 

many details regarding RAM-based reprogrammable FSMs are considered in 

[Sklyarov06d]. 

The developed hardware/software tools can be employed in different areas enabling 

the designers to partition the developed system in such a way that one part of the 

system will be implemented in reconfigurable hardware and another part will be 

modeled in software. Suppose we need to design a reprogrammable FSM which 

implements different algorithms over ternary vectors whose elements have one of 

three possible values: 1, 0 and – (don’t-care). Different algorithms permit to execute 

such operations as: testing if the given vector contains N successive 1s (0s, don’t-

cares); if the vector does not have values 1 (0s, don’t-cares); if the number of 1s in 

the vector is greater than the number of 0s, etc. Such operations are frequently 

required for numerous combinatorial search problems [Skliarova06b] and we would 

like to examine the execution time for different algorithms and the ability of FSM to be 

efficiently reprogrammed (using, for example, methods described in [Sklyarov02a]). 

Suppose an initial vector has to be entered from either pushbuttons or DIP switches 

and the results of the selected operation together with the execution time have to be 
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displayed on an LCD. The designed circuit includes the following two primary blocks 

(see Figure 4.11): the reprogrammable FSM and the handler making it possible to 

customize the FSM in such a way that enables the desired algorithm to be realized. 
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Figure 4.11 – Incremental circuit design with the proposed technique 

Suppose that in the beginning (see Figure 4.11-a) the FSM is implemented in FPGA 

and the handler is modeled in software of a host computer. After the FSM has been 

tested, both blocks (i.e. the FSM and the handler) can be implemented in FPGA (see 

Figure 4.11-b). Thus, the considered technique enables the circuit to be designed 

incrementally. Dependently on the availability of peripheral devices (such as the LCD 

shown in Figure 4.11), either physical or virtual interaction with such devices can be 

employed (see also Figure 4.6). 

It should be noted that the described technique is very useful not only for accelerators 

considered in this thesis. It is applicable to many other applications outside the thesis 

area and thus, it is rather universal. Let us consider an example from [Pimentel08] in 

which the developed tools are used to simulate an assembly line whose basic 

functionality is depicted in Figure 4.12. Incoming items, which are brought by the left-

hand side conveyer, must be passed onto the right-hand side conveyer with the aid of 

a magnetic crane. 
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Figure 4.12 - Assembly line scenario 

The crane can check sensors S1 to S3, and switch actuators A1 to A3 (see Figure 

4.12), whose roles are listed in Table 4.1. Each sensor indicates that its specific 

condition test is verified using value 1, and otherwise using value 0. For instance, the 

value of sensor S3 becomes 1 as soon as an item arrives from the left hand side 

conveyer, and it turns to 0 when the magnetic crane pulls it off. Analogously, each 

actuator is turned on with value 1, and off with value 0. Therefore, the control signal 

of actuator A3 must be set to 1 and 0 in order to turn the magnetic pull on and off, 

respectively. 

Table 4.1 - Sensor and actuator roles in the assembly line scenario 

Sensor roles Actuator roles 

S1 Crane is at the left end A1 Move crane to the left 

S2 Crane is at the right end A2 Move crane to the right 

S3 Item is on platform A3 Grab item 

 

The FSM depicted in Figure 4.13 defines a feasible crane behavior based on the given 

sensor and actuator signals. 

The presented example demonstrates potentialities of the developed hardware and 

software tools for visual simulation based on virtual graphical models of physical 

objects. Similar techniques can be used (and have been used) for representing 

systems implemented just in hardware (such as a SAT solver). 
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Figure 4.13 - Feasible FSM for controlling the assembly line component 

4.2. Advantages and applicability of the designed prototyping 
tools 

It is known that there are many prototyping boards available on the market. Why has 

one more board been designed? First of all, the board was planned to be used by 

undergraduate and postgraduate students of electronics, telecommunications and 

computer engineering curricula. These students have to acquire profound knowledge 

and abundant experience in the scope of electronic circuit design and software 

engineering. Therefore, we would like to use open-source hardware/software tools 

which are completely understandable without any hidden feature. This requirement is 

also very important for the thesis area because we would like to avoid any 

misunderstanding in both software and hardware used for experimental purposes. 

Besides, such tools have to satisfy all necessary functional requirements. The most 

appropriate solution was to develop the board in the department by postgraduate 

students, which can easily spread the required knowledge and experience to other 

students. It was done in [Almeida08] and the following benefits have been obtained: 

• The board has become an ideal platform for the development of both electronic 

devices and software which interacts with hardware. Indeed it does not have any 

hidden or unknown element or source code. Such open hardware and software is 

very uncommon for commercial prototyping systems, i.e. source code for FPGA 

configuration, communication with host computers, etc. are usually not provided. 
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• The board is a very suitable element for remotely controlled embedded systems, 

mainly because it supports wireless interface. The latter is not widely available for 

FPGA-based prototyping systems. 

• The board is very flexible and easily extendable; it can be customized for many 

practical applications in such a way that the developed board-based system will 

include only the required components. This feature is also not so common for the 

majority of commercially available boards, which contain many auxiliary devices 

that are not required for particular user applications. 
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Figure 4.14 – Overview of the virtual visual environment 

Figure 4.14 summarizes the main characteristics of a virtual visual environment: 

1. Virtual devices are implemented in a host computer. They are virtual 

devices because they are implemented in software and provide 

functionality that is very similar to physical devices. They are visual 

because we are able to observe the functionality (such as different 

changes in stack memory during forward and backward propagation 

steps in combinatorial search algorithms) in visual mode on a monitor 

screen (or possibly in some other connected peripheral devices). They 

are easily controllable because we can carry out numerous functional 

and timing scenarios, for example, test only selected fragments of the 
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implemented algorithms, execute algorithmic steps faster or slower, 

etc. 

2. Physical devices are implemented in FPGA and they interact with 

virtual devices in such a way that allows to make up the designed 

system, i.e.: physical devices + virtual devices = the designed 

system. Such system is flexible and extendable, because functionality 

of both software and reconfigurable hardware can be altered. 

3. Software/reconfigurable hardware interface providing interaction 

between the virtual and physical devices are hidden from the end 

users. 

The proposed technique permits: 

• To verify the accelerator entirely in software; 

• To implement the accelerator partially in software and partially in hardware; 

• To carry out hardware/software co-simulation with adjustable boundary between 

hardware and software (i.e. to analyze the accelerator with either more software 

and less hardware or vice versa). 

Let us consider one more example. Suppose we have to design the combinatorial 

accelerator shown in Figure 4.15. The main idea is to verify if this accelerator can be 

reused for solving different combinatorial problems formulated over Boolean and 

ternary matrices (such as that discussed in [Skliarova06b]). The part shown with grey 

background is projected to be reusable and the control unit is intended to be 

reprogrammable in such a way that allows implementing different combinatorial 

algorithms (such types of combinatorial accelerators are described in detail in 

[Skliarova06b]). Let us model the reusable part (i.e. the part shown with grey 

background) in software, and implement the control unit in FPGA. Suppose that a 

request for reprogramming the control unit has to be done from a host computer, 

which knows a particular problem that must be solved. Examples of such problems 

might be the SAT, binary matrix covering, etc. In order to model the considered 

reusable circuit in the host computer, it is necessary to develop a program using a 

library of classes which model the relevant hardware parts, such as matrices, stacks, 

registers (see Figure 4.15), etc. These classes will be described in detail in chapter 5. 

Suppose the control unit is modeled by a reprogrammable FSM whose functionality 

can be changed through reloading the FSM’s RAM blocks. Methods for synthesis of 

reprogrammable FSMs are proposed in [Sklyarov02a]. Interaction between software 
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and hardware parts can be provided with the aid of the developed interface 

components (the agent module and the PBM), which establish links between the 

designated inputs and outputs of the circuit implemented in hardware (in FPGA) and 

hardware parts modeled in software (see Figure 4.15). Finally, we can test the circuit 

for a particular algorithm (for example for the Boolean satisfiability) with the aid of 

class functions which visually demonstrate the functionality of the simulated hardware 

parts in a monitor screen. 

general-purpose registers 

Column address 

Line
address
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masks
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Stacks for masks and for
general-purpose registers

Control Unit

 

Figure 4.15 – Structure of a combinatorial accelerator 

Let us now consider how to change the circuit functionality in order to examine 

different algorithms. For such purposes, it is necessary to implement a handler which 

is able to alter the algorithm of the control unit (we assume that the execution unit, 

shown with grey background, is exactly the same). Thus, we have to apply the same 

technique that is demonstrated in Figure 4.11. In the beginning, the handler can be 

modeled in software. After the handler has been tested, it can be implemented in 

FPGA. Incrementally, other blocks of the explored system (see Figure 4.15) might be 

converted from software to hardware. This technique gives vast opportunities for 

hardware/software co-simulation and consequently for the design space exploration. 

Obviously, this task is very interesting and helpful for students. The system presented 

above has not been completely finished yet, although the majority of basic 

components (such as the DETIUA-S3 board, software libraries for virtual peripheral 

devices and for numerous hardware objects, remote interaction with the board 

through the Internet) have been implemented and tested. The results of testing 

demonstrate good capabilities of the developed components for remote monitoring 

and design of reconfigurable systems. Many developed elements have been used for 

prototyping and experiments (see chapter 6). 
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4.3. Conclusion 

The proposed tools for hardware/software co-simulation of reconfigurable systems, 

including remote monitoring and design, are very promising in a vast scope of 

practical applications, such as virtual design space exploration, rapid dissemination of 

different models and methods in the scope of hardware design, comparison of 

alternative and competitive circuit implementations using the Internet facilities, 

education, engineering training, etc. These tools possess the following distinctive 

features: 

1. Prototyping board managing through either wired (USB) or wireless 

(Bluetooth) interface; 

2. Remote design and monitoring of reconfigurable systems; 

3. Software/reconfigurable hardware co-simulation through the 

developed interfaces supported by the relevant hardware projects and 

software tools. 

All the developed software tools were modeled in C#, while the developed hardware 

tools have been implemented in hardware on the basis of Handel-C specifications or 

VHDL descriptions. Dependently on the specific component, Microsoft Visual Studio 

with the .NET framework, the Celoxica DK, the Xilinx ISE, and the Mentor Graphics 

ModelSim have been used. 

A new prototyping system which includes an FPGA-based board (called DETIUA-S3) 

has been developed (with Manuel Almeida [Almeida08]). The board architecture is 

based on five main components: an FPGA, a flash memory, a CPLD, an interface 

module (either USB or Bluetooth), and expansion connectors. A new software 

application (called PBM) was developed to take full advantage of the board, allowing 

for its configuration and for data-exchange with a general-purpose computer. 

A framework called Remote Lab has been under development to support remote 

interaction with DETIUA-S3. When finished, a server computer connected to a 

DETIUA-S3 board will be able to provide most of the PBM functionality to users 

through the internet. 

Two hardware/software co-simulation frameworks have been developed based on 

input and output signal exchange between circuits implemented in FPGA and virtual 
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environment software applications and they can be combined with the Remote Lab 

framework. They are the following: 

1. A virtual visual sub-system allows virtual peripherals to be used 

instead of real ones. The visual and the internal behaviors of the most 

typical peripherals, such as LEDs, pushbuttons, dipswitches, seven-

segment displays, and LCDs, have been modeled in software to 

emulate real peripherals, and more can be added. 

2. A reprogrammable FSM-based partition architecture allows designers 

to implement control units in FPGA using a reprogrammable FSM, to 

model execution units and application-specific peripheral devices in 

software, and to monitor projects with step-by-step capabilities. 

Figure 4.16 discloses the key characteristics of the developed hardware/software co-

simulation models. Light-gray indicates hardware implementation, while dark-gray 

indicates software emulation. 
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Figure 4.16 - Using different hardware/software co-simulation frameworks 

The developed tools have been used for the majority of experiments provided for 

analysis and comparison of recursive and iterative algorithms studied in this thesis. 
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The algorithms considered in chapter 3 have one common characteristic: they require 

generation and evaluation of a huge number of different variants before a solution is 

found. It was shown that feasible solutions can be generated with the aid of a search 

tree, whose nodes represent different situations that are reached during the search for 

results, and whose edges specify steps of the algorithm that have to be performed. A 

distinctive feature of this approach is that, at each node of the search tree, the same 

problem is being solved. The only thing that changes from node to node is the input 

data. This means that the whole problem can simply be solved by repeating an often 

large number of times the execution of a single limited set of operations over a 

periodically modified set of data. 

It has already been shown by various researches that reconfigurable hardware can 

provide some benefits (over software) when solving these problems. This is mainly 

due to the possibility to parallelize execution of some repeated operations, as well as 

to tailor memory interface to the required data structures. The main objective of this 

work is however not to find the best reconfigurable hardware implementation (in 

terms of the required resources or performance). Instead, the main idea is to assess 

the relative cost of using iterative and recursive algorithms in hardware.  

This chapter therefore provides details of reconfigurable hardware implementation of 

iterative and recursive algorithms for the selected problems. To simplify the design 

process, every algorithm was first modeled in software (the first part of chapter 5 is 

devoted to this topic). Then, descriptions of some of the algorithms were created in a 

system-level specification language (Handel-C) and a hardware description language 

(VHDL). The second part of chapter 5 gives all the details. The respective 

specifications were finally synthesized and implemented in commercially available 
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FPGAs and carefully analyzed (the respective results being reported in the next 

chapter). 

5.1. Modeling in software 

In order to estimate relative effectiveness of recursive and iterative specifications of 

different algorithms, as well as to check their correctness, all the algorithms were first 

modeled in software and only after that implemented in hardware. The subsequent 

sections will provide all necessary details. 

5.1.1. Data structures 

It was indicated in chapter 3 that discrete matrices were selected as the primary 

mathematical model because of two reasons: matrices can easily be stored and 

processed in both software and hardware; and the majority of the considered 

combinatorial search problems can efficiently be formulated over matrices. Taking into 

account this decision, relevant data structures need to be created so as to provide 

support for storing and manipulation of matrices, by the respective algorithms. 

We suppose that a discrete matrix is composed of a set of discrete vectors (either 

rows or columns). Therefore data structures are needed for representing both vectors 

and matrices. An object-oriented design approach was followed and, as a result, 

several classes were created. These will be represented with the aid of class diagrams 

which were generated in Microsoft Visual Studio .NET. Note that, for this reason, the 

Unified Modeling Language (UML) regulations are not strictly followed. A relevant 

difference is the use of two-headed arrows to identify arrays of objects. 

5.1.1.1. Common classes 

The two most basic classes which are required by the majority of the selected 

algorithms allow the storing of vectors and masks. Class Vector can keep general-

purpose vectors, as well as matrix rows and columns, and they can be either binary or 

ternary. Class Mask keeps a series of binary values which are used to mark their 

indexes, for instance, as deleted/not deleted or as selected/not selected. 

Let us consider Vector and Mask classes in detail. The class diagram in Figure 5.1 

reveals the most relevant functionality which is implemented by these two classes. 
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Figure 5.1 - Class members of Vector and Mask

class contains a single data field, which is an integer array for sto

vector elements. Although integers have a wide range of possible values, the selected 

algorithms require only values 0, 1, and, when using ternary values, 

latter is coded with integer value 2. Class Vector provides methods for calc

conjunction, the disjunction, and the intersection with another Vector

from Vector, as the data structure it requires 

vector. The purpose of class Mask is to allow for an intuitive set of methods

with index masking. Hence, it provides methods for index masking and unmasking, 

checking whether an index is masked, and also counting masked and unmasked 

masked indexes correspond to values 1, whereas 

respond to values 0. A masked index can denote a deleted row/column, 

when applying deletion masks to a matrix (see Figure 5.2-a). This technique keeps 

deletion operations simple, in opposition to actual memory deallocation. Eventual row 

and column recovering is equally simple. The only emerging requirement is that some 

 must take these masks (provided as p

account. Furthermore, the Mask class can also be used as selection masks for 

subsets of rows or columns (see Figure 5.2-b), e.g. in set covering, SAT, and 

graph coloring algorithms. 
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Mask 

class contains a single data field, which is an integer array for storing the 

vector elements. Although integers have a wide range of possible values, the selected 

algorithms require only values 0, 1, and, when using ternary values, don’t-care. The 

provides methods for calculating the 

Vector, etc. 

, as the data structure it requires is that of a binary 

set of methods for dealing 

with index masking. Hence, it provides methods for index masking and unmasking, 

checking whether an index is masked, and also counting masked and unmasked 

masked indexes correspond to values 1, whereas unmasked 

respond to values 0. A masked index can denote a deleted row/column, 

a). This technique keeps 

deletion operations simple, in opposition to actual memory deallocation. Eventual row 

and column recovering is equally simple. The only emerging requirement is that some 

must take these masks (provided as parameters) into 

class can also be used as selection masks for 

in set covering, SAT, and 
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Figure 5.2 - Using deletion (a) and selection (b) masks

Class Matrix provides general

classes implementing matrix-

the relevant properties, methods and derived classes of 

Figure 5.3 - Properties, methods, and derived classes of 

As previously mentioned, once t

considered matrix-based algorithms do not require methods for writing rows, columns, 
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Using deletion (a) and selection (b) masks

provides general-purpose properties and methods which are

-based algorithms. The class diagram in Figure 

the relevant properties, methods and derived classes of Matrix. 

Properties, methods, and derived classes of Matrix

As previously mentioned, once the original problem matrix has been stored, the 

based algorithms do not require methods for writing rows, columns, 
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Using deletion (a) and selection (b) masks 

are inherited by 

Figure 5.3 depicts 

 

Matrix 

he original problem matrix has been stored, the 

based algorithms do not require methods for writing rows, columns, 
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or elements. Thus, elements are written only within the class constructor, and only 

reading and deleting methods are provided. Throughout the execution of an algorithm, 

matrix rows eventually have to be

properties provide the original and the current number of undeleted rows in the matrix 

(respectively OriginalNumberOfRows

scheme applies to columns. Methods 

to test whether a specific row or column has been deleted.

The class diagram in Figure 

order to implement its functionality.

Figure 

Matrix elements are organized by rows, as an array of 

fields of class Mask are used for masking the subset of matrix rows and the subset of 

matrix columns which have already been deleted. Matrix properties 

CurrentNumberOfRows and 

unmasked indexes of those 

features Mask-storing Stacks

to recover matrix states that have previously been stored.
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or elements. Thus, elements are written only within the class constructor, and only 

reading and deleting methods are provided. Throughout the execution of an algorithm, 

have to be deleted. At any step of the algorithm, 

properties provide the original and the current number of undeleted rows in the matrix 

OriginalNumberOfRows and CurrentNumberOfRows); and the same 

ns. Methods RowIsDeleted and ColumnIsDeleted

to test whether a specific row or column has been deleted. 

Figure 5.4 reveals private data fields on which 

ment its functionality. 

Figure 5.4 - Class members of Matrix 

Matrix elements are organized by rows, as an array of Vectors (the 

are used for masking the subset of matrix rows and the subset of 

matrix columns which have already been deleted. Matrix properties 

and CurrentNumberOfColumns provide the current number of 

unmasked indexes of those Masks. In order to support backtracking, class 

Stacks which permit to store the current state of the matrix and 

to recover matrix states that have previously been stored. 
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or elements. Thus, elements are written only within the class constructor, and only 

reading and deleting methods are provided. Throughout the execution of an algorithm, 

deleted. At any step of the algorithm, two matrix 

properties provide the original and the current number of undeleted rows in the matrix 

); and the same 

ColumnIsDeleted can be used 

reveals private data fields on which Matrix operates in 

 

(the Rows field). Two 

are used for masking the subset of matrix rows and the subset of 

matrix columns which have already been deleted. Matrix properties 

provide the current number of 

pport backtracking, class Matrix also 

which permit to store the current state of the matrix and 
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The classes described in this 

selected algorithms to be modeled in software. As a result, a new set of cla

created (including those which are shown 

detailed descriptions are provided in the 

5.1.1.2. Classes for set covering algorithms

The SetCoveringMatrix class 

additional fields and methods

The relevant members of this subclass are depicted in the class diagram of 

Figure 5.5 

Two Masks are used for keeping the current and minimum row covers, masking the 

indexes of the rows included therein. One 

current cover throughout the search tree of the set covering algorithm. A

methods model the functionality of the solvability and resolution tests, and the 

reduction and selection rules that 

5.1.1.3. Classes for SAT solving algorithms

Also deriving from the Matrix

functionality which is required for running Boolean satisfiability algorithms. The class 

diagram in Figure 5.6 depicts the relevant members of this new 
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 section were augmented with methods that 

selected algorithms to be modeled in software. As a result, a new set of cla

which are shown at the bottom of Figure 

provided in the following sections. 

Classes for set covering algorithms 

class is derived from the Matrix class and 

fields and methods which are required for running set covering algorithms. 

The relevant members of this subclass are depicted in the class diagram of 

 - Class members of SetCoveringMatrix 

are used for keeping the current and minimum row covers, masking the 

indexes of the rows included therein. One Stack is used for storing and restoring the 

current cover throughout the search tree of the set covering algorithm. A

methods model the functionality of the solvability and resolution tests, and the 

reduction and selection rules that were presented in section 3.2.2. 

Classes for SAT solving algorithms 

Matrix class, the class SATSolvingMatrix contains the additional 

functionality which is required for running Boolean satisfiability algorithms. The class 

depicts the relevant members of this new class. 
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were augmented with methods that permit all the 

selected algorithms to be modeled in software. As a result, a new set of classes was 

Figure 5.3) and their 

and features the 

or running set covering algorithms. 

The relevant members of this subclass are depicted in the class diagram of Figure 5.5. 

 

are used for keeping the current and minimum row covers, masking the 

is used for storing and restoring the 

current cover throughout the search tree of the set covering algorithm. Auxiliary 

methods model the functionality of the solvability and resolution tests, and the 

contains the additional 

functionality which is required for running Boolean satisfiability algorithms. The class 
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Figure 5

Vector w is used for incremental construction of the solution vector. Three 

required for storing and restoring the context while 

additional attributes provide support for correct algorithmic flow. Last, several private 

methods carry out the required reduction and selection rules, and the resolution and 

solvability tests which were presented in section 

5.1.1.4. Classes for graph coloring algorithms

One more subclass of Matrix

members for running graph coloring algorithms. The relevant methods and properties 

of this new class are depicted in the class diagram of 

A Mask-storing Stack denominated 

of Figure 5.7) is used to incrementally compose the coloring currently under 

construction. When a new c

When a row R (corresponding to a graph vertex) is to be assigned the current color, 

the Mask at the top of that 
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5.6 - Class members of SATSolvingMatrix

is used for incremental construction of the solution vector. Three 

required for storing and restoring the context while traversing the search tree. Three 

additional attributes provide support for correct algorithmic flow. Last, several private 

methods carry out the required reduction and selection rules, and the resolution and 

re presented in section 3.2.3.  

Classes for graph coloring algorithms 

Matrix – GraphColoringMatrix – contains the necessary class 

members for running graph coloring algorithms. The relevant methods and properties 

of this new class are depicted in the class diagram of Figure 5.7. 

denominated CurrentColoring (see lower right

) is used to incrementally compose the coloring currently under 

construction. When a new color is required, a new Mask is pushed onto that 

When a row R (corresponding to a graph vertex) is to be assigned the current color, 

at the top of that Stack is used for masking the index of row R.
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SATSolvingMatrix 

is used for incremental construction of the solution vector. Three Stacks are 

he search tree. Three 

additional attributes provide support for correct algorithmic flow. Last, several private 

methods carry out the required reduction and selection rules, and the resolution and 

contains the necessary class 

members for running graph coloring algorithms. The relevant methods and properties 

(see lower right-hand side corner 

) is used to incrementally compose the coloring currently under 

is pushed onto that Stack. 

When a row R (corresponding to a graph vertex) is to be assigned the current color, 

the index of row R. 



SYNTHESIS OF FPGA-BASED 

CCHHAAPPTTEERR  55  ––

Figure 5.7 -

On the other hand, an array of 

side of Figure 5.7) is used to keep the 

witch has the minimum number of colors

complete and contains fewer 

contents of the CurrentColoring

MinimumColoring Mask array

A Mask denominated MaskOfCombinableRows

which can be assigned the current col

the IntersectionVector is updated so as to keep the result of the intersection of 

rows assigned the current color (including S).

Four other Stacks are used for context storing and restoring, by means of 

GraphColoringMatrix pushing and popping methods, respectively (see left

Figure 5.7). These methods support the backtracking mechanism.

Other auxiliary methods provide the functionality of the solvability and resolution 

tests, and the reduction and selection rules presented in section 
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- Class members of GraphColoringMatrix 

On the other hand, an array of Masks denominated MinimumColoring 

) is used to keep the minimum coloring, i.e. the complete coloring 

minimum number of colors found so far. If the current coloring

complete and contains fewer colors (fewer Masks) than the minimum coloring

CurrentColoring Stack are used to replace those of the

array. 

MaskOfCombinableRows is used to identify the indexes of rows 

which can be assigned the current color. When a row S is assigned the current color, 

is updated so as to keep the result of the intersection of 

assigned the current color (including S). 

are used for context storing and restoring, by means of 

pushing and popping methods, respectively (see left

). These methods support the backtracking mechanism. 

Other auxiliary methods provide the functionality of the solvability and resolution 

tests, and the reduction and selection rules presented in section 3.2.4. 
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 (see right-hand 

complete coloring 

If the current coloring becomes 

) than the minimum coloring, the 

are used to replace those of the 

is used to identify the indexes of rows 

or. When a row S is assigned the current color, 

is updated so as to keep the result of the intersection of all 

are used for context storing and restoring, by means of 

pushing and popping methods, respectively (see left-hand side of 

Other auxiliary methods provide the functionality of the solvability and resolution 
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5.1.1.5. Classes for solving the knapsack problem

Three classes have been created for solving the knapsack problem. The relevant class 

diagram is depicted in Figure 

Figure 5.8 - Class diagram for knapsack

The KnapsackItem class is used for representing the available items, each one holding 

its own profit and weight, and methods for reading those (see top left

Figure 5.8). 

An instance of the KnapsackConfigurat

Mask is used for determining which items are included in the knapsack, and two other 

fields provide the total profit and weight (see top right

The constructor method for the 

and the knapsack weight capacity as parameters. These parameters characterize the 

problem instance. When searching for the most profitable knapsack configuration, the 

CurrentConfiguration field is used for building up, one by one, all the feasible solutions 

to the problem. The BestConfiguration

configuration found so far
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Classes for solving the knapsack problem 

e been created for solving the knapsack problem. The relevant class 

Figure 5.8. 

Class diagram for knapsack-solving algorithms

class is used for representing the available items, each one holding 

its own profit and weight, and methods for reading those (see top left

KnapsackConfiguration class represents a selection of such items. A 

is used for determining which items are included in the knapsack, and two other 

fields provide the total profit and weight (see top right-hand corner of 

The constructor method for the KnapsackSolver class takes an array of 

and the knapsack weight capacity as parameters. These parameters characterize the 

problem instance. When searching for the most profitable knapsack configuration, the 

field is used for building up, one by one, all the feasible solutions 

BestConfiguration field keeps the most profitable knapsack 

so far. In order to iterate through the array of available items, an
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e been created for solving the knapsack problem. The relevant class 

 

solving algorithms 

class is used for representing the available items, each one holding 

its own profit and weight, and methods for reading those (see top left-hand corner of 

class represents a selection of such items. A 

is used for determining which items are included in the knapsack, and two other 

corner of Figure 5.8). 

class takes an array of KnapsackItems 

and the knapsack weight capacity as parameters. These parameters characterize the 

problem instance. When searching for the most profitable knapsack configuration, the 

field is used for building up, one by one, all the feasible solutions 

he most profitable knapsack 

. In order to iterate through the array of available items, an 
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integer attribute is incremented at each stage of the algorithm, keeping track of the 

current item’s index. 

A Stack is used for stor

construction throughout the algorithm search tree (see bottom right

Figure 5.8). 

5.1.1.6. Classes for tree-based sorting algorithms

Tree-based sorting algorithms require modeling of binary tree nodes, whose instances 

assume different values to be sorted. 

built for this purpose. 

Figure 5.9 - Class diagram for iterative and the recursive tree

The iterative and the recursive sorting algorit

regarding the node class members. For this reason, a 

IterativeSortingNode classes have been modeled, inheriting the class members which 

they share from the same class: the 

Any object which implements the 

SortingNode’s Value field. The utilization of this interface allows the developed 
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integer attribute is incremented at each stage of the algorithm, keeping track of the 

storing and restoring the knapsack configuration under 

construction throughout the algorithm search tree (see bottom right-

based sorting algorithms 

based sorting algorithms require modeling of binary tree nodes, whose instances 

assume different values to be sorted. Figure 5.9 presents the class diagram which was 

Class diagram for iterative and the recursive tree-based sorting

The iterative and the recursive sorting algorithms have different requirements 

regarding the node class members. For this reason, a RecursiveSortingNode

classes have been modeled, inheriting the class members which 

they share from the same class: the SortingNode abstract class. 

Any object which implements the IComparable interface can be the assignment of 

field. The utilization of this interface allows the developed 
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integer attribute is incremented at each stage of the algorithm, keeping track of the 

the knapsack configuration under 

-hand corner of 

based sorting algorithms require modeling of binary tree nodes, whose instances 

presents the class diagram which was 

 

based sorting 

hms have different requirements 

RecursiveSortingNode and an 

classes have been modeled, inheriting the class members which 

interface can be the assignment of 

field. The utilization of this interface allows the developed 
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algorithms to sort objects of different classes, as long as they implement the required 

comparison method. 

Integer field Counter is used for keeping track of the number of occurrences of the 

assigned value. In fact, this field leads to sorting algorithms somewhat more enhanced 

than the algorithm which was presented in section 3.3.1. The differences take place in 

the insertion and the retrieval of repeated values. In the tree construction stage, when 

inserting a value which has already been inserted in a node N, the Counter of N can 

simply be incremented, instead of constructing a new node. Moreover, in the retrieval 

stage, the value of each node must then be retrieved as many times as stated by the 

Counter. Figure 5.10 and Figure 5.11 respectively illustrate the tree construction and 

value retrieval stages, when integrating this strategy into the tree-based sorting 

algorithm. The value of the nodes’ Counter is revealed within parenthesis, when 

different from 1 (see Figure 5.10-d). The sequence of values which is given in the 

example is 4-2-7-5-7-9, the sorted result being 2-4-5-7-7-9. 

a) b) c) d) f)
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Figure 5.10 - Constructing a sorting tree with occurrence accumulation  
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Figure 5.11 - Retrieving the values of a sorting tree with occurrence accumulation 
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Moving on to node fields, although there is

both the derived classes of SortingNode

because their type (class) is distinct. In fact, sub

should be composed solely of nodes of the

IterativeSortingNode. 

The most relevant differences between the 

IterativeSortingNode classes are:

1. the recursive vs. iterative nature of their methods for:

a. inserting a value in the tree;

b. in-order retrieving the tree values;

2. the IterativeSortingNode

iterative algorithm to backtrack in the tree towards its root.

The Microsoft Visual Studio built

dequeuing of generic objects. For this reason, the 

SortingNode’s sub-classes takes as a parameter a 

which are to be sorted. One-

the sorting tree by means of the 

5.1.1.7. Classes for calculating the greatest common divisor

A simple GCDCalculator class (see 

and iterative public methods for calculating 

integers. 

Figure 
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Moving on to node fields, although there is a LeftSubtree and a RightSubtree

SortingNode, these fields do not belong to that base class 

because their type (class) is distinct. In fact, sub-trees of RecursiveSortingNodes

should be composed solely of nodes of the same type, and the same applies for an 

The most relevant differences between the RecursiveSortingNode

classes are: 

iterative nature of their methods for: 

inserting a value in the tree; 

order retrieving the tree values; 

IterativeSortingNode’s Parent field which is required for the 

iterative algorithm to backtrack in the tree towards its root. 

The Microsoft Visual Studio built-in Queue class features easy-to-use queuing and 

of generic objects. For this reason, the BuildTree public method of both 

classes takes as a parameter a Queue of the IComparable

-by-one, each of these objects is dequeued and inserted in 

ee by means of the InsertValueInTree private method. 

Classes for calculating the greatest common divisor 

class (see Figure 5.12) has been created to provide recursive 

and iterative public methods for calculating the greatest common divisor of two

 

Figure 5.12 - The GCDCalculator class 
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RightSubtree fields in 

, these fields do not belong to that base class 

RecursiveSortingNodes 

same type, and the same applies for an 

RecursiveSortingNode and the 

field which is required for the 

 

use queuing and 

public method of both 

IComparable objects 

one, each of these objects is dequeued and inserted in 

) has been created to provide recursive 

the greatest common divisor of two 
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Both GCD-calculating methods take two integer parameters for providing the values 

between which the GCD is to be calculated. No auxiliary methods or composite types 

are required. 

5.1.2. Algorithmic flows 

This section presents the UML Activity Diagrams which were prepared when modeling 

the selected algorithms in software. Algorithmic flows described here were later 

reused as a basis for algorithm implementation in hardware as well.  

5.1.2.1. The set covering algorithm 

Section 3.2.2 presents the reduction and selection rules which are employed in the 

exact set covering algorithm. Figure 5.13 and Figure 5.14 respectively depict the 

recursive and iterative top-level activity diagrams built on the basis of those rules. 

Have
all collumns been

deleted?

Apply subsumption for
columns and for rows

Cover critical columns

Update minimum
cover with

current cover

Identify a column C
which has the

minimum number of 1s

Store context
onto stacks

Recursively find
a minimum cover

End

yes
yes

no

no

yes

no

Begin

Is current
cover size too

high?

Is
there any

row left with a 1
in column

C?

Include row R in current cover
and erase row R and all

columns with a 1 in row R

Identify next row R
with a 1 in column C

Restore context
from stacks

 

Figure 5.13 - Recursive method for finding an exact cover 
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When starting a new branch of the search tree, the recursive algorithm applies 

reduction rules R1 and R2 (see section 3.2.2), i.e. carries out subsumption for 

columns and subsumption for rows until it is no longer possible. At the second step, 

selection rule S1 is applied, i.e. for any column C containing a single value 1, the row 

which includes this value is included in the current cover. The remaining part of the 

diagram is dedicated to application of the selection rule S2 (see section 3.2.2). 

The darkened node in Figure 5.13 corresponds to a recursive invocation call. The 

search for a minimum cover, using the recursive algorithm, is therefore carried out by 

re-executing exactly the same method. The search tree backtracking mechanism is 

supported by the use of stacks, onto which context variables are stored before starting 

a new search tree branch, and from which they are restored when backtracking. 

Have
all collumns been

deleted?

Apply subsumption for
columns and for rows

Cover critical columns

Update minimum cover
with current cover

Identify a column C
which has the minimum

number N of 1s

Store context
onto stacks

yes

noyes yes

no

Begin

Is current
cover size too

high?

Are
context stacks

empty?

yes

no

Restore context
from stacks

Determine mask of rows
with a 1 in column C

backtracking?

Are
there still

rows with a 1 in
column

C?

Let backtracking = FALSE

Let backtracking = TRUE

End

no

yes

no

Include row R in
current cover and erase
row R and all columns

with a 1 in row R

Identify next row R
with a 1 in column C

 

Figure 5.14 - Iterative method for finding an exact cover 

As explained in section 3.2.2, the set covering problem description given in the 

beginning of that section leads to solvable instances only. Moreover, both the 
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recursive and the iterative algorithms which are presented in this section do not 

include any operation which would render the processed matrix uncoverable. For these 

two reasons, no solvability test has been included in the proposed algorithms. 

Nevertheless, if we require considering unsolvable instances (i.e. uncoverable 

matrices), executing a simple solvability test prior to running any of the proposed 

algorithms would suffice. Such test would consist of determining whether the given 

matrix contains a column without values 1 and finding such a column would indicate 

that the given instance is unsolvable. 

Let us now compare the recursive activity diagram depicted in Figure 5.13 with the 

iterative one in Figure 5.14. Although, both algorithms follow the same reduction and 

selection rules indicated in section 3.2.2, the superior clearness and simplicity of the 

recursive algorithm are rather obvious. 

5.1.2.2. The SAT solving algorithm 

The reduction and selection rules and the solvability and resolution tests which can be 

used to solve the Boolean satisfiability problem are described in section 3.2.3. The 

activity diagrams in Figure 5.15 and Figure 5.16 (created on the basis of those 

descriptions) depict the recursive and iterative algorithms for solving the SAT problem. 

Note that, although no initialization operation is shown is those diagrams, all elements 

of vector w must be assigned to don’t-care before running any of those two 

algorithms. In both algorithms, if vector w becomes orthogonal to all rows, its 

negation is calculated and stored in the solution vector. If the latter is still unassigned 

(i.e., if all its elements are still don’t-cares) when the algorithm finishes, it means that 

the problem instance is unsatisfiable.  

One of the areas identified with a gray background (see Figure 5.15-a) comprehends 

the sequence of operations which implement the reduction rules (see section 3.2.3). 

When reduction rule R2, R3, or R4 carries out any changes, the latter might create the 

conditions for some more reduction rules to be applicable. Thus, when at least one of 

those rules is effectively applied, the whole reduction sequence is repeated. The 

iterative algorithm proposed includes exactly the same reduction cycle (see Figure 

5.16).  

After reduction, if both the resolution and the solvability tests fail — i.e., if w is not yet 

orthogonal to all rows and it is not known that the current search subtree cannot 

provide a solution —, then selection rules are applied (see section 3.2.3). At this point, 
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a branching in the search tree has been reached. An assignment to a chosen element 

of vector w is made. Then, a recursive call to the same method continues the search 

through the corresponding subtree. If the solution vector is not assigned when 

returning from this recursive call, a second assignment to the chosen element of 

vector w is made using the inverted value, and another recursive call is made. Once 

again, the forward and backward steps in the search tree are supported by 

storing/restoring context variables onto/from stacks. 

Have
all rows been

deleted?

Have
relevant changes
been made during

this reduction
iteration?

Delete all columns
which correspond to

values 0 or 1 in vector w

If a row R has only one
component C different
from don’t-care, then

include the inverted value
for column C in vector w

If a column C without
0s (1s) can be found,

then include in vector w
value 0 (1) for column C

Delete all columns
without 0s and 1s

Delete all rows which are
orthogonal to vector w

Let solution = negation of vector w

Have
all columns been

deleted?

Identify a column
Cmax which has the
maximum number

of 0s and 1s

Does
column Cmax

contain more 0s
than 1s?

Include value 1 for
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Recursively
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Restore context
from stacks

Invert Cmax
value in vector w

Has
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assigned

Store context
onto stacks

Recursively
solve SAT

Restore context
from stacks

Begin

End

yes

no

yes

no

yes

no

no

yes

yes

no

Reduction

Recursive call

Recursive call

a) b)

c)

 

Figure 5.15 – Recursive method for solving the Boolean satisfiability problem 

The proposed iterative algorithm for solving the SAT problem implements the same 

reduction and selection rules as the recursive algorithm. Although these two 

algorithms were not implemented in hardware, their modeling in software permits to 

validate the presented activity diagrams which, in turn, allows for a valuable 
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comparison between recursive and iterative descriptions, regarding an important set 

of design issues. Indeed, differences in their description’s clearness, structural 

simplicity, and ease of modification can be identified by comparing the activity 

diagrams in Figure 5.15 and Figure 5.16. 
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context stacks

empty?

Restore context
from stacks

inverted?

Invert Cmax
value in vector w

Store context
onto stacks

yes

yes

no

no
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no

Reduction
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all rows been
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Let solution = negation of vector w
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number of 0s and 1s
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yes

no

yes

no

no

yes

End

Let inverted = false

Let inverted = true

Delete all columns
which correspond to

values 0 or 1 in vector w

If a row R has only one
component C different
from don’t-care, then

include the inverted value
for column C in vector w

If a column C without
0s (1s) can be found,

then include in vector w
value 0 (1) for column C

Delete all columns
without 0s and 1s

Delete all rows which are
orthogonal to vector w

 

Figure 5.16 – Iterative method for solving the Boolean satisfiability problem 

A relevant difference is related to the need for assigning and testing of auxiliary 

variables (namely inverted and the state of the stacks). The iterative algorithm 

requires such operations to correctly traverse the search tree, whereas the recursive 
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one does not. As a consequence of this drawback, the overall structure of the iterative 

diagram becomes more complex, lowering its clearness. 

Note that the whole reduction cycle in both activity diagrams could be wrapped up 

inside a module. In the case of the recursive algorithm (see Figure 5.15), other parts 

of the diagram have well-defined and context-intuitive boundaries too. Thus, 

hierarchical modularity could be applied to such parts as well. Additionally, the use of 

modules enables reuse, and such is the case of the diagram blocks in Figure 5.15-b 

and Figure 5.15-c. Contrariwise, the complex algorithmic flow obtained with the 

iterative diagram (see Figure 5.16) prevents any useful modularity to be applied and, 

as a consequence, reuse is also not possible. 

In fact, these disadvantages of using iteration are generally detected when comparing 

the pair of activity diagrams of all the selected algorithms (see sections 5.1.2.1-

5.1.2.6). 

5.1.2.3. The graph coloring algorithm 

The top-level activity diagram in Figure 5.18 describes a recursive exact algorithm for 

solving the graph coloring problem. This activity diagram is based on the reduction 

and selection rules, and the solvability and resolution tests which were presented in 

section 3.2.4.  

As previously mentioned, the graph coloring problem has no unsolvable instances. 

Instead of a solvability test, a condition determines whether the current (under 

construction) coloring may still converge into a complete coloring which would be 

smaller (i.e. include fewer colors) than that previously stored as the minimum 

coloring. This condition is tested in the ‘Is the current coloring size too high?’ node, at 

the top-left corner of Figure 5.17. 

In the context of this algorithm, a matrix row is said to be combinable if it is not 

orthogonal to the combination vector. The combination vector stores the intersection 

of all the rows that were assigned the current color. In practice, combining a row R 

consists of three operations: 

1. Assign row R to the current color; 

2. Update the combination vector to the intersection of the current 

combination vector and row R; 
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3. Remove row R from the matrix (see reduction rule R3 in section 

3.2.4). 

yes

no

Begin

Is
the current

coloring size too
high?

Have
all rows been

deleted?

Is
current

coloring smaller
than minimum

coloring?
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R1 and R2

Add new color to
current coloring

Are there
combinable
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Combine first
non-deleted row
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all rows been

deleted?

Recursively find
best coloring

Combine next
combinable row

Store context
onto stacks

Recursively find
best coloring

Restore context
from stacks

End

Are there
combinable

rows?

End

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

 

Figure 5.17 - Recursive method for finding an exact vertex coloring 

The overall contour of the activity diagram conforms to the step sequence outlined in 

section 3.2.4. 

Once again, the backtracking mechanism is supported by stacks, onto which context 

variables are stored before starting a new search tree branch, and from which they 

are restored when backtracking. 

Let us now consider the top-level activity diagram in Figure 5.18.  On the basis of the 

same reduction and selection rules, and solvability and resolution tests presented in 

section 3.2.4, this activity diagram describes an exact iterative algorithm for solving 

the graph coloring problem. 
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Figure 5.18 - Iterative method for finding an exact vertex coloring 

5.1.2.4. The algorithm for solving the knapsack problem 

The activity diagram in Figure 3.14 describes the main algorithmic flow of the 

recursive method for finding the most profitable knapsack configuration. Let us now 

examine the same algorithm in more detail with the aid of the activity diagram in 

Figure 5.19.  

Any new item that is considered (see the ‘Let I = next item’ node in Figure 5.19) 

starts masked as not included in the current configuration. In case its weight exceeds 

the knapsack capacity, the inclusion path is skipped in order to try only knapsack 

configurations which do not include this item. 



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 105 

CCHHAAPPTTEERR  55  ––  AALLGGOORRIITTHHMM  MMOODDEELLIINNGG  AANNDD  IIMMPPLLEEMMEENNTTAATTIIOONN  

Update the best
configuration

with the current
configuration

yes

no

no

yes

Recursively find
best configuration

Have
all items been
considered?

noyes

Current
configuration’s profit
> best configuration’s

profit?

Better

configuration
achieved

No better
configuration

achieved

Finished

Mask item I as included
in current configuration

Add profit and weight of item I
respectively to profit and weight

of current configuration

Mask item I as excluded
in current configuration

Subtract profit and weight of item
I  respectively from profit and

weight of current configuration

Begin

Store context onto stacks

Restore context from stacks

Recursively find
best configuration

Store context
onto stacks

Restore context from stacks

Let I = next item

Weight
of current

configuration + weight of
item I > knapsack

capacity?

 

Figure 5.19 - Recursive method for finding the most profitable knapsack 

configuration 

Analogously to the previous algorithms, backtracking is supported by executing 

operations for context storing and restoring respectively before and after each of the 

two recursive invocations. 

5.1.2.5. The tree-based sorting algorithm 

As previously mentioned, tree-based sorting comprehends two stages: first, build a 

binary sorted tree using the given data; then retrieve those values by means of in-

order traversing. Each node holds a value to be sorted, a counter for accumulating 

multiple occurrences of that value, and two nodes which are the roots of the left and 
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right subtrees. If any of these two nodes is unassigned, it means the holding node 

does not have the corresponding subtree. 

Insertion finished

Begin insertion

yes

no

Is there a
node assigned

to CN?

Incoming
value = value

of CN?

Incoming
value < value

of CN?

Create a new node for
the incoming value. Let
its counter = 1. Let both
its subtrees = no node

Increment CN’s counter

Recursively insert
the incoming value

in subtree CN

yes

yes

no

no

Let CN = new node

Let CN = left
subtree of CN

Let CN = right
subtree of CN  

Figure 5.20 - Recursive method for inserting a value in a sorted tree 

Figure 5.20 and Figure 5.21 depict the activity diagrams respectively for the recursive 

and iterative methods for inserting an incoming value in a sorted tree. Let us notice 

that both these methods make use of a variable CN (‘CN’ stands for ‘current node’) in 

which the node to be processed is stored. Prior to each insertion, CN is assigned the 

root of the sorted tree. When an incoming value must be inserted in one of the 

subtrees, variable CN is assigned to that subtree’s root. In case this root has not been 

assigned (i.e. there is no subtree), a new node is created, thus initiating a subtree 

(see Figure 5.20). 

The iterative method, additionally, makes use of a variable PN (‘PN’ standing for 

‘parent node’), assigning it to CN before processing one of its subtrees. This way, in 

case the subtree to process does not exist, it is possible to assign PN’s left subtree or 

right subtree (whichever is the case) to a new node then created: CN (see Figure 

5.21). 
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Figure 5.21 - Iterative method for inserting a value in a sorted tree 

Figure 5.22 and Figure 5.23 depict the activity diagrams respectively for the recursive 

and the iterative methods that are used for retrieving the tree values. In both cases, 

the retrieval starts with variable CN assigned to the tree root. 

For the iterative method, nodes must hold not only a value, a counter, and the root 

nodes of both its subtrees, but also a third node: the parent node (see top right corner 

of Figure 5.23). In this context, a tree root is therefore a node with an unassigned 

parent node. 
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Figure 5.22 - Recursive method for retrieving tree values 
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Figure 5.23 - Iterative method for retrieving tree values 
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5.1.2.6. The algorithm for calculating the GCD 

The pseudocode for calculating the greatest common divisor of two integer values 

which is presented in Figure 3.18 leads to the activity diagrams in Figure 5.24. The 

recursive algorithm is described in Figure 5.24-a, whereas the iterative one is in Figure 

5.24-b. Let us recall that keyword mod represents the modulo operation, which 

calculates the remainder of dividing the first operand by the second operand. The 

iterative algorithm uses an auxiliary variable T (temp in Figure 3.18’s pseudocode) for 

swapping the values of A and B. 

Calculus finished

Begin calculus

yes

no

B = 0?

Return ARecursively calculate
the GCD between
B and A mod B

Calculus finished

Begin calculus

yes

no

B = 0?

Return A

Let A = T

Let B = A mod B

Let T = B

a) b)

 

Figure 5.24 - Recursive (a) and iterative (b) algorithms for calculating the GCD of 

two integers A and B 

5.2. Implementation in hardware  

Most of the selected algorithms were implemented on the basis of the general 

hardware architecture depicted in Figure 5.25. A centralized control unit coordinates 

the execution of the required sequence of algorithmic steps. For the majority of the 

implemented algorithms, the data storage block is matrix-oriented and all operations 

over individual rows and columns are executed in the processing unit. When 

implementing other kinds of algorithm, different data storage blocks were used.  
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Figure 5.25 – General architecture of hardware solvers 

This architecture has been used for implementing instance-specific solvers. Using such 

approach, the results of experiments can more expressively highlight the differences 

between the compared systems (for instance, regarding the resources required) 

because there is less interference caused by secondary system components. Thus we 

believe it leads to a more reliable comparison between recursive and iterative 

implementations.  

The following subsections present the three blocks of the architecture. 

5.2.1. Data storage 

The architectural block for storing problem data has to be able to keep basic data 

structures, such as binary and ternary vectors. Let us consider such components first. 

5.2.1.1. Binary vectors and ternary vectors 

For storing binary vectors, the developed circuits keep arrays of bits explicitly stating 

the binary values. Two logic vectors are used for storing ternary vectors: one marking 

the position of values 0 and the other marking the position of values 1, while positions 

marked by none of those values correspond to don’t-care values (see Table 5.1, in 

which ‘-’s represent don’t-care values). 

Table 5.1 - Representing binary and ternary vectors 

 Binary vector Ternary vector 

Vector to store:   

Storing logic vectors:  
zeros:  

ones:  

1 0 0 1 0 1 1 0 1 - 0 -

1 0 0 1 0 1
0 1 0 0 1 0

1 0 1 0 0 0
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5.2.1.2. Binary matrices and ternary matrices 

Some matrix-based algorithms require binary matrices, while others use ternary 

matrices. Analogously to the ternary vector-storing technique (see the last column in 

Table 5.1), two binary matrices can be used to compose a ternary matrix. Figure 5.26 

shows how a ternary matrix can be coded by two binary matrices. 

 

Figure 5.26 – Coding of a 4x4 ternary matrix by two binary matrices 

A second criterion regarding the matrices which are required by matrix-based 

algorithms also divides these algorithms in two groups: one with simple access to the 

matrices (by either rows or columns) and the other one requiring dual access (by both 

rows and columns).  

 

Figure 5.27 - Representation of a 4x4 binary matrix in two memory blocks 
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Using embedded memory blocks for keeping matrices, if we want to achieve good 

performance, then dual access to a matrix requires a replication of its data: one 

memory block can be organized as an array of rows; and the other as an array of 

columns. Figure 5.27 presents an example. 

Let us notice that replicating a ternary matrix implies the replication of both binary 

matrices which result from the ternary-to-binary decomposition (see ‘zeros’ and ‘ones’ 

in Figure 5.26). This means that up to four memory blocks may be required to store a 

single ternary matrix. 

Combining the two presented criteria, four solver classes emerge with direct 

correspondence to four kinds of matrix: 

a) Single Access Binary Matrix (SABM); 

b) Single Access Ternary Matrix (SATM); 

c) Dual Access Binary Matrix (DABM); 

d) Dual Access Ternary Matrix (DATM). 

The number of embedded memory blocks used to implement binary and ternary 

matrices in function of the access type is presented in Table 5.2. 

Table 5.2 - Number of embedded memory blocks in function of matrix and matrix 

access types 

Access Binary Matrices Ternary Matrices 

Simple 
SABM: 
1 memory block required 

SATM: 
2 memory blocks required 

Dual 
DABM: 
2 memory blocks required 

DATM: 
4 memory blocks required 

 

5.2.1.3. Supplementary problem-oriented data structures 

With respect to the tree-based sorting algorithm implementation in hardware, every 

node-referencing variable contains an address which indicates the node’s position 

within a memory block. Let us look at an example on the basis of the sorting tree built 

in section 5.1.1.6 (see Figure 5.10-f). Figure 5.28 illustrates the storage of the 

respective nodes’ data in a simplified memory block. 
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 Value Counter Parent Left Subtree Right Subtree 

 (0-15 value) (0-7 value) (ref. to a node) (ref. to a node) (ref. to a node) 

111      

110      

101      

100 1001 (9) 001 (1) 0010 1111 1111 

011 0101 (5) 001 (1) 0010 1111 1111 

010 0111 (7) 010 (2) 0000 0011 0100 

001 0010 (2) 001 (1) 0000 1111 1111 

000 0100 (4) 001 (1) 1111 0001 0010 

Figure 5.28 – Memory block with sorting tree nodes’ data 

The three rightmost fields of each memory word are used to store addresses of other 

related nodes in the same memory. Only 3 bits are required to address any of the 8 

memory words, but using an extra bit permits to represent the equivalent to a null 

pointer (‘1111’ in this example), indicating that the respective child or parent node 

does not exist. Thus, node-referencing fields are 4-bit wide. In case one of these fields 

does not contain ‘1111’, then the three rightmost bits of this field constitute the 

memory address at which the pointed node is stored. In Figure 5.28, numbers in 

parenthesis are the decimal equivalents of the stored binary numbers. 

100 (4)110 (6)11

101 (5)100 (4)10

111 (7)110 (6)01

100 (4)111 (7)00

(0-7 value)(0-7 value)

WeightProfit

Best Configuration

Current Configuration

Available Items

1000 (8)1101 (13)1  0  0  1
(0-15 value)(0-15 value)(4-bit vector)

Total
Weight

Total
Profit

Mask of
included

items

 

Figure 5.29 – Simplified hardware data structures for solving the knapsack 

problem 

For solving the knapsack problem, the available items are stored in a memory block 

(see a simplified example at the bottom of Figure 5.29), each memory word 

containing the profit and weight of an item. On the other hand, the current and best 

knapsack configurations (see top of Figure 5.29) keep not only the total profit and 
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total weight but also a logic vector which is used as a mask of included items. If an 

item i  must be included in the configuration, then the i th bit of the mask is assigned 

to 1. Figure 5.29 illustrates the use of these data structures when applied to the 

Knapsack problem instance that was given as an example in section 3.2.5. Again, 

numbers in parenthesis are the decimal equivalents of the stored binary numbers. 

5.2.2. Control unit 

Independently of the implementation (i.e. either in software or in hardware), recursive 

calls invoke operations over stacks in such a way that the states of the algorithm 

(where recursive invocations have happened) are saved onto a stack and the stack 

pointer is incremented to address the storage for a recursively called sub-algorithm. 

When the recursive sub-algorithm ends, the stack pointer is decremented in order to 

restore the state of the interrupted algorithm. If we consider an equivalent iterative 

algorithm, such stack is not required and computations are performed in a loop, which 

ends as soon as some conditions are satisfied.   

Iterative algorithms can be described and implemented using either flat or hierarchical 

specifications. In the first case, we can recur to the traditional FSM model and employ 

any suitable language (such as VHDL, Verilog, or Handel-C) for specifying the 

algorithmic steps. 

The hardware FSM model is shown in Figure 5.30 [Skliarova08]. The FSM consists of a 

combinational circuit (that produces the primary outputs and calculates the next state 

on the basis of the input values and the current state) and a register that stores the 

current FSM state. Figure 5.30 includes a VHDL template illustrating how the 

combinational circuit and the FSM register can be described with the aid of two 

processes. The template is parameterizable and can therefore be used for describing 

functionality of any FSM. Figure 5.31 presents a Handel-C template for the same FSM 

model.  

In the case of an iterative hierarchical specification, the algorithm description is 

decomposed in modules (for example, a module implementing reduction rules, a 

module for testing the quality of solutions, etc.). The resulting modular descriptions 

have a number of advantages over traditional FSMs which can be justified as follows. 

It is well known that the best way to simplify the problem solving process is to divide 

the initial problem into small, manageable parts [Skliarova08]. The resulting design 

will contain modules, which are self-contained circuits. Besides of simplifying the 
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design process, such an approach provides a direct support for reusability, since the 

developed modules might be reused in different parts of the project, as well as in 

other projects. Another very important aspect is design’s modifiability. Imagine that 

the initial problem specification is changed after some period of time. When the 

project is divided in modules, incorporating changes into a single module is a simpler 

task than changing the implementation of the whole circuit. 

FSM_register
Combinational

circuit (CC)

x1 xL

y1 yN

current
state

next
state

Control: 
clk,rst

process(clk,rst)

begin -- the first process describing the FSM register 

if rst = '1' then  

-- setting to an initial state a0:

current_state <= a0; 

elsif rising_edge(clk) then 

-- executing state transition:

current_state <= next_state; 

end if;

end process;

process (current_state,inputs)

begin -- the second process for the block CC

case current_state is    

when a0 =>   

-- generating outputs for state a0

-- calculating the next state 

when a1 =>

-- generating outputs for state a1

-- calculating the next state

-- repeating for all the states

end case;

end process; 

inputs

outputs

 

Figure 5.30 – Design template for an FSM and VHDL description 

Recursive algorithms are also constructed from modules but, in this case, each module 

is allowed to call itself. It is well known that hardware description languages (such as 

VHDL) and system-level specification languages (such as Handel-C) do not provide 

direct support for recursive algorithms [Skliarova08]. However, recursion can be 
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implemented in a hierarchical finite state machine [Sklyarov99] and the latter can 

easily be described in hardware and system-level specification languages. 

void FSM() 

{ STATE_ID state; 

 BOOLEAN  done; 

 //set to an initial state and initialize 

 do 

 { switch(state) 

  { case a0: 

    par 

    { //algorithm-related operations for a0 

     //calculate next state 

    } 

    break; 

   case a1: 

    par 

    { //algorithm-related operations for a1 

     //calculate next state     

    } 

    break; 

   //repeating for all states 

   default: 

    delay; 

  } 

 } while(!done); 

} 

Figure 5.31 – Design template for an FSM described in Handel-C 

The hardware HFSM model is depicted in Figure 5.32. The HFSM consists of a 

combinational circuit and two stacks (that keep track of hierarchical module 

invocations), one for states (FSM_stack) and the other for modules (M_stack).  

The stacks are managed by a combinational circuit that is responsible for new module 

invocations and state transitions in any active module that is designated by the 

outputs of M_stack. Any non-hierarchical transition is performed through a change of 

a code only on the top register of FSM_stack. Any hierarchical call alters the states of 

both stacks in such a way that M_stack will store the code for the new module and two 

values will be pushed onto FSM_stack: first, the code of the next state in the calling 

module and then the code of the first state in the called module. Any hierarchical 

return just activates a pop operation without any change in the stacks. As a result, a 

transition to the state following the state where the terminated module was called will 

be performed. The stack pointer (stack_ptr) is common to both stacks. 
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M_stack FSM_stack
Combinational

circuit (CC)

x1 xL

y1 yN

current
state

current
module

next
state

new
moduleControl: clk, rst, push, pop

Control: clk,
rst, push, pop

process(clk,rst) -- the first process for the blocks

begin -- M_stack and FSM_stack

if rst = '1' then  

-- setting to an initial state and initializing

elsif rising_edge(clk) then 

-- test for possible errors

-- executing transitions of the following types

-- a) between states within the same module

-- b) between states that belong to different modules

end if;

end process;

process (current_module,current_state,inputs)

begin -- the second process for the block CC

case M_stack(stack_ptr) is

when z0 =>

case FSM_stack(stack_ptr) is

-- state transitions in the module z0

-- generating outputs for the module z0

end case;

when z1 =>

case FSM_stack(stack_ptr) is

-- state transitions in the module z1

-- generating outputs for the module z1   

end case;

-- repeating for all the modules

end process; 

 

Figure 5.32 – Design template for an HFSM and VHDL description 

Figure 5.32 illustrates an example of VHDL code for an HFSM, which makes it possible 

to describe modular and recursive algorithms [Sklyarov04]. There are two 

concurrently executing VHDL processes in Figure 5.32. The first process describes two 

stacks (the stack of modules and the stack of states) and the second process 

describes the combinational circuit, which is able to manage transitions between the 

FSM modules and FSM states. It is important that the second process can easily be 

customized for executing any desired hierarchical algorithm [Skliarova08]. A similar 

template is presented in Figure 5.33 using Handel-C. 
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void HFSM() 

{ MODULE_ID  module; 

 STATE_ID  state; 

 BOOLEAN   done; 

 //set to an initial module and state and initialize 

 do 

 { par 

  { module = M_stack(stack_ptr); 

   state = FSM_stack(stack_ptr); 

  } 

  switch(module) 

  { case z0: 

    switch(state) 

    { //algorithm-related operations in the module z0 

     //stack management operations in the module z0 

    } 

    break; 

   case z1: 

    switch(state) 

    { //algorithm-related operations in the module z1 

     //stack management operations in the module z1 

    } 

    break; 

   //repeating for all modules 

   default: 

    delay; 

  } 

 } while(!done); 

} 

Figure 5.33 – Design template for an HFSM described in Handel-C 

Although modular design incurs some overhead and therefore occupies more 

resources, it is not slower than non-modular dedicated design (as will be evidenced by 

the results of experiments given in chapter 6). Moreover, if the stacks are constructed 

on the basis of memory blocks embedded in FPGA, the additional FPGA resources 

required for stack management are negligible. 

5.2.3. Processing unit 

5.2.3.1. Similarities amongst matrix-based backtracking search algorithms 

Matrix-based backtracking search algorithms have similar characteristics. One of them 

is the execution of problem-specific operations, and another one is the traversal of a 

search tree, starting from the root, by involving such procedures as forward search 

and backtracking. Any branching point can be considered as extracting a sub-tree with 

a local root. Moreover, because the data structures that they manipulate are basically 

the same, the operations used as basic blocks to implement those algorithms are, in 
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fact, very much the same. Examples of generally used micro-operations are the 

following: 

• Remove a row/column; 

• Read a row/column; 

• Check whether two binary/ternary vectors are orthogonal; 

• Intersect two binary/ternary vectors. 

Let us notice that each operation that is used by matrix-based search algorithms can 

have variations, such as: use or not the contents of a mask register; store or not store 

the result; use just one vector of a binary matrix or two vectors of a ternary matrix. 

There are also composed operations (groups of micro-operations) which are still very 

commonly used, such as: 

• Find the row/column with the most/fewest 0s/1s in a matrix; 

• Find the index of the first 0/1 in a binary/ternary vector; 

• Count the number of rows/columns which have no 0s/1s in a matrix; 

• Count 1s/0s in a binary/ternary vector; 

• Check whether there are matrix rows/columns orthogonal to some binary/ternary 

vector; 

• Intersect all rows/columns of a matrix with some binary/ternary vector. 

In the end, matrix-based search algorithms possess several common features 

identified in [Skliarova06b]: 

1. They can be formulated both recursively and iteratively.  

2. They do not change the initial data (i.e. the initial matrix) because the 

matrix reduction can be provided by masking some rows/columns and 

using just the remainder of the matrix. 

3. They invoke a very limited number of operations (such as reduction 

and selection operations), which have to be applied to a large volume 

of data. 

4. Subsets of the required operations are usually not the same for 

different combinatorial problems.  
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5. In order to perform forward and backward propagation we can use a 

stack memory that stores and restores intermediate results (such as 

the values of mask registers) in branching points. 

6. The algorithms can be decomposed into two levels of control 

operations. The top-level sequence is the same (or similar) for 

different algorithms. The bottom-level sequence permits the problem-

specific operations over Boolean and ternary vectors to be executed.  

These features make it possible to select a number of reusable blocks for constructing 

the processing unit. So let us first consider the hardware implementation of stacks and 

then address the functional blocks which are required by the processing unit 

architecture. 

5.2.3.2. Stacks 

Stacks for storing the context (masks of deleted rows, masks of selected rows, etc.) 

are implemented in block RAM. Multiple context variables can be stored in a single 

embedded memory block. For example, one block RAM of Spartan-3 FPGAs can hold 

18 Kb and has a configurable width/depth ratio. Therefore, if an algorithm requires a 

stack with a depth up to 512 levels, 36 bits can be stored at one level. Figure 5.34-a 

illustrates these settings. 

36 bits

512 levels

9-bit stack pointer Shared stack pointer

a) Single 512-level deep 36-bit wide stack

b) Two stacks with shared stack pointer

 

Figure 5.34 – Stacks with dedicated (a) and shared (b) stack pointers 
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If this number of bits is not sufficient for keeping all the context variables, multiple 

block RAMs have to be employed. A single stack pointer bus can be shared by different 

embedded memory blocks because all context variables, belonging to the same level 

in the search tree, must be stored/restored simultaneously (as a group). Figure 5.34-b 

illustrates the use of two memory blocks in order to duplicate the quantity of context 

data which can be stored, using a shared stack pointer bus. 

5.2.3.3. Architecture for the processing unit 

The architecture for the processing unit is depicted in Figure 5.35. 

Module for 
computations over 

discrete vectors

General-purpose vector
and mask registers

Row
mask

Column mask

Debug-oriented
module controlling

push-buttons
and an LCD

0 0 0 1 0 0

0
0
1
0
0
1

Row address

Column address

Stacks for
solver-specific data

Stack for
HFSM states

Stack for
HFSM modules

Shared
stack pointer

 

Figure 5.35 – Overview of the processing unit 

The following functional blocks have been selected on the basis of analysis of different 

search algorithms and their primary operations: 

1. Mask registers allowing to use the same storage for handling the 

initial matrix and all the sub-matrices, which have to be constructed 

during the search for results. 

2. Stacks for managing forward and backward propagation steps. 

3. General-purpose registers for keeping vectors. 

4. A device for computations over discrete vectors. 
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5. Additional auxiliary circuits for testing, debugging and interacting with 

the hardware processor. 

To make the blocks considered above reusable, we have to provide them with the 

property of parameterization. This property allows for scalability in such a way that 

the considered blocks can be applicable to matrices of different dimensions (i.e. with 

different number of rows and columns). All the implemented blocks are 

parameterizable in VHDL with the aid of generic and generate statements and in 

Handel-C by means of statements with the #define directive and parameterized macro 

expressions. 

The proposed functional blocks take into account many specific features of the search 

algorithms analyzed and they have been optimized for the considered problems. It 

makes possible to provide block-based high-level design, i.e. to concentrate the 

efforts of the designer on the considered algorithms, avoiding (or at least minimizing) 

the details of hardware implementation. Since the proposed reusable blocks were 

implemented as a set of Handel-C macros and VHDL library modules, it allows 

considering either the design flow on the basis of a system-level specification language 

or a widely-used hardware description language. 

5.2.4. Proposed architecture for a generic matrix-oriented solver  

As previously mentioned, the solvers which were implemented for comparing recursion 

and iteration in hardware were instance-specific because such approach guarantees a 

more reliable comparison. However, when designing combinatorial search hardware 

accelerators, it is desirable to implement a problem-specific solver only once and then 

use it to solve different problem instances. Furthermore, a reprogrammable generic 

solver with the ability to implement different problem-solving algorithms can be very 

useful. This section suggests an extended version of the architecture depicted in 

Figure 5.25 for implementing systems which can be reprogrammed to execute 

different matrix-based algorithms for solving problem instances transferred from a 

host computer (see Figure 5.36). This generic architecture presents three new 

characteristics: 

1. There is now an interface module which communicates with a 

computer to receive the required reconfiguration data as well as 

matrices to be processed, and to return the results; 
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2. The control unit is now reprogrammable, with the aid of a 

reprogrammable HFSM which has changeable functionality and can 

therefore be customized for implementing different algorithms. 

3. The data storage block is now matrix-oriented. 

Reprogrammable
Control Unit

Processing
Unit

Storage for 
a matrix

Interface
Module

interface

 

Figure 5.36 – Proposal for a generic solver architecture 

In order to establish communication between the interface module and a general-

purpose computer, from/to which the matrices, algorithms, and results would be 

received/sent, a new tool was included in PBM. This tool manages data transfer 

through USB or Bluetooth and it can be used in any system which requires run-time 

data exchange between computer and DETIUA-S3. The required hardware IP module 

is reusable. When designing the reprogrammable HFSM-based generic solver, 

debugging data can also be sent using this communication channel instead of using 

extra components, such as LCDs. 

The reprogrammability of the control unit can be achieved with the aid of a 

reprogrammable HFSM, whose basic structure is depicted in Figure 5.37 

[Sklyarov06c]. Reloading the RAM blocks allows for the reconfiguration of the 

combinational circuit’s functionality, thus enabling different algorithms to be 

implemented. This generic solver architecture has been only partially implemented. 

Nevertheless, software validation and partial hardware implementation was carried 

out, permitting to consider Figure 5.36 as a valid architecture [Pimentel07]. 
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Figure 5.37 – Hardware model of a reprogrammable HFSM (from [Sklyarov06c]) 

The processing unit and all interaction between its functional blocks have been 

validated in a software application programmed in C# in which each block was 

described by a class that emulates the behavior expected from its hardware 

implementation. A special class emulated the reprogrammable control unit to validate 

the execution of those different algorithms. 

After software validation, the architecture was implemented and successfully tested 

using Handel-C and the DETIUA-S3 prototyping board. The four binary vector arrays 

for storing the matrix were implemented using the FPGA’s embedded block RAM. USB 

interface was used for data exchange. 

The reprogrammable control unit and the interface module were then implemented in 

VHDL, while simulating the processing unit in C# for monitoring purposes. Some 

experiments with simpler algorithms were carried out and the expected run-time 

reprogramming was successfully achieved. 
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Since the proposed generic architecture has not been completely validated and tested, 

we plan to continue working in this direction. For now, the following has been entirely 

implemented, validated and tested: 

• the reprogrammable HFSM. The same hard-wired RHFSM was applied for solving 

different problems and the customization of its behavior was achieved just through 

reprogramming its primary RAM blocks; 

• remote customization of RHFSM functionality through wired (USB) and wireless 

(Bluetooth) interface; 

• interaction between the customizable control unit (the RHFSM) and software 

models of combinatorial problem solvers. This, in particular, permits to compare 

iterative and recursive algorithms applied to processing units modeled in software. 

5.3. Validation and implementation of the hardware 
accelerators  

In order to study and compare different hardware implementations of the selected 

algorithms, the latter have first been validated in software. For this purpose, each 

algorithm was modeled using a high-level programming language. Only after 

validation, hardware solvers were synthesized from specifications in system-level and 

hardware description languages. 

In order to validate the proposed specific architectures for implementing matrix-based 

backtracking search algorithms, the interaction between the most important functional 

blocks was also described and analyzed in a high-level language and modeled in 

software, allowing to estimate expected hardware behavior. 

Table 5.3 lists the languages and CAD tools which have been chosen for design at 

different abstraction levels. Software implementations have been developed using C# 

and Microsoft Visual Studio with the .NET framework. Design sequence for hardware 

implementations based on system-level specifications included: 

1. Specification in Handel-C; 

2. Synthesis producing an EDIF file in Celoxica DK [Celoxica]; 
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3. Generating a bitstream from EDIF files in Xilinx ISE implementation 

tools (mapping, placement and routing). 

Table 5.3 - Languages and CAD tools chosen for design at different abstraction 

levels 

Platform Abstraction level Languages CAD tools 

Software High-Level 
Programming C# Microsoft Visual Studio 

with the .NET framework 

Hardware 

System-Level 
Specification Handel-C Celoxica DK and Xilinx ISE 

Register Transfer 
Level VHDL Xilinx ISE and ModelSim 

 

Implementations based on RTL (Register Transfer Level) descriptions recurred to 

VHDL projects, Xilinx ISE synthesis and implementation software, and simulation tools 

available from ModelSim [MentorGraphics]. 

Two kinds of mixed specifications have also been examined. The first one combines 

hardware descriptions with system-level specifications. The second one relies on 

software/hardware co-design (co-simulation). Such mixed systems require 

communication mechanisms between software and hardware. 

Mixed specifications allow proper selection of the most appropriate abstraction level 

for each system component independently. In fact, some components may require a 

low level description in order to achieve good performance, while others need higher 

level decompositions to cope with hierarchical complexity. However, the latter makes 

it harder to study and to compare algorithm implementations in terms of execution 

and design time, capabilities for modification, etc. Hence, in the scope of experiments, 

mixed specifications were only considered for transferring data to hardware 

implementations and monitoring the latter using a proper software interface running 

on general-purpose computers. 
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5.4. Conclusion 

In order to estimate relative effectiveness of recursive and iterative specifications of 

different algorithms, as well as to check their correctness, all the algorithms were first 

modeled in software and only after that implemented in hardware. 

When modeling in software, an object-oriented design approach was followed and thus 

several classes were created. Class Vector can keep general-purpose vectors as well 

as matrix rows and columns, and they can be either binary or ternary. Class Mask 

keeps a series of binary values which are used to mark their indexes, for instance, as 

deleted/not deleted or as selected/not selected. The use of deletion masks keeps 

deletion operations simple, in opposition to actual memory deallocation, and eventual 

row and column recovering is equally simple. Class Matrix provides general-purpose 

properties and methods which are inherited by classes implementing matrix-based 

algorithms, namely class SetCoveringMatrix, class SATSolvingMatrix, and class 

GraphColoringMatrix, each one providing functionality for solving its specific problem. 

Specific classes have also been created for the knapsack problem solver, tree-based 

sorting, and the calculus of the greatest common divisor. Built-in Stack and Queue 

class templates are used for handling any data type required by the different 

algorithms. In general, the data fields required by the iterative solvers outnumber 

those required by their recursive counterparts. 

Recursive and iterative algorithmic flows were described in detail for each selected 

algorithm, rendering obvious the fact that, generally, the iterative algorithmic 

structures are more complex (and thus less clear). Furthermore, iterative algorithms 

often reveal the need for auxiliary variables to correctly traverse the relevant search 

tree, whereas the recursive ones do not. Finally, recursion favors modularity and 

consequently reuse, whilst the iterative algorithmic structures are often too complex 

to do the same. 

The selected algorithms were then described in Handel-C and in VHDL, and 

implemented in instance-specific solvers. With such approach, the results of 

experiments can more expressively highlight the differences between the compared 

systems because there is less interference caused by secondary system components. 

Thus we believe it leads to a more reliable comparison between recursive and iterative 

implementations. Most of the solvers are based on a general hardware architecture 

which consists of a control unit, a processing unit and a data storage block. 
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For storing binary vectors, the developed circuits keep arrays of bits explicitly stating 

the binary values. Two logic vectors are used for storing ternary vectors: one marking 

the position of values 0 and the other marking the position of values 1, while positions 

marked by none of those values correspond to don’t-care values. Two binary vectors 

can be used to compose a ternary vector. Analogously, two binary matrices can be 

used to compose a ternary matrix. Some matrix-based algorithms require simple 

access to the matrices (by either rows or columns) while others require dual access 

(by both rows and columns). Using embedded memory blocks for keeping matrices, 

the need for dual access to a matrix leads to a replication of its data: one memory 

block can be organized as an array of rows; and the other as an array of columns. 

Replicating a ternary matrix implies the replication of both binary matrices which 

result from the ternary-to-binary decomposition. 

For implementing the tree-based sorting algorithm in hardware, every node-

referencing variable contains an address which indicates the node’s position within a 

memory block. The node data is organized in five fields: value, counter, left subtree, 

and right subtree. The last three fields are, again, addresses which indicate node 

positions within that same memory block. For solving the knapsack problem in 

hardware, the available items are stored in a memory block, each memory word 

containing the profit and weight of an item. The current and best knapsack 

configurations keep not only the total profit and total weight, but also a logic vector 

which is used as a mask of included items. 

It is well known that neither hardware description languages nor system-level 

specification languages provide direct support for recursive algorithms. However, 

recursion can be implemented in a hierarchical finite state machine. The control unit is 

therefore based on a hardware model of an HFSM, consisting of a combinational circuit 

and two stacks that keep track of hierarchical module invocations: one stack for states 

and one stack for modules. The stacks are managed by a combinational circuit that is 

responsible for new module invocations and state transitions in any active module that 

is designated by the outputs of the stack for modules. Non-hierarchical transitions 

require access to the stack for states only, whereas hierarchical calls and returns 

access both stacks. A single stack pointer is used for addressing both stacks. Such a 

control unit allows to describe not only modular and hierarchical but also recursive 

algorithms. 

Matrix-based backtracking search algorithms have similar characteristics. One of them 

is the execution of problem-specific operations, and another one is the traversal of a 
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search tree, starting from the root, by involving such procedures as forward search 

and backtracking. Any branching point can be considered as extracting a sub-tree with 

a local root. Moreover, because the data structures that they manipulate are basically 

the same, the operations used as basic blocks to implement those algorithms are, in 

fact, very much the same. Such similarities make it possible to select a number of 

reusable blocks for constructing the processing unit. 

Stacks for storing the context are implemented in block RAM. Multiple context 

variables can be stored in a single embedded memory block. However, if one is not 

sufficient, multiple block RAMs have to be employed. A single stack pointer bus can be 

shared by different embedded memory blocks because all context variables, belonging 

to the same level in the search tree, must be stored/restored simultaneously. 

The chosen architecture for the processing unit includes mask registers, stacks, 

general-purpose registers, a device for computations over discrete vectors, and 

additional auxiliary circuits for testing, debugging and interacting with the hardware 

processor. All the implemented blocks are parameterizable in VHDL with the aid of 

generic and generate statements and in Handel-C by means of statements with the 

#define directive and parameterized macro expressions. 

The proposed functional blocks provide support for block-based high-level design. 

Since the proposed reusable blocks were implemented as a set of Handel-C macros 

and VHDL library modules, it allows considering either the design flow on the basis of 

a system-level specification language or a widely-used hardware description language. 

The solvers which were implemented on the basis of the hardware blocks described for 

comparing recursion and iteration in hardware are instance-specific because such 

approach guarantees a more reliable comparison. In addition, an extended 

architecture has been suggested for designing reprogrammable generic solvers with 

the ability to implement different matrix-oriented algorithms. On the basis of the 

instant-specific architecture used, the extended version also includes an interface 

module, which communicates with a computer, and its control unit is now 

reprogrammable. Such reprogrammability can be achieved with the aid of the 

Reprogrammable HFSM model. Reloading the RAM blocks allows for the 

reconfiguration of the combinational circuit’s functionality, thus enabling different 

algorithms to be implemented. 
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66..  EExxppeerriimmeennttss,,  RReessuullttss,,  aanndd  

AAnnaallyyssiiss  

This chapter presents the results of experiments and analysis. The following general 

approach is used. In the beginning, a limited number of problems are examined and a 

comparison of relevant recursive and iterative algorithms is done. Synthesis was 

carried out from system level-specification (namely Handel-C) and hardware-level 

description (namely VHDL) languages. Similar comparison for the same problems was 

done in software using a general-purpose programming language (C#). The obtained 

results were compared and it was found that a similar tendency is taking place for 

particular algorithms described at different levels of abstraction. For example, the 

results of synthesis has revealed that recursive VHDL-based implementations are 

either equally or more advantageous than iterative VHDL-based implementations. On 

the other hand, recursive implementations of the same algorithms in software were 

always worse (in terms of execution time) when compared to iterative 

implementations in software. Analysis of different algorithms permitted to draw out 

algorithmic characteristics that allow potential benefits to be predicted. For example, 

particularities of hardware implementations permit to benefit from fast stack 

unwinding. We can measure potential acceleration taking into account some 

algorithmic features (e.g. the number of unwinding steps) and this can be done just in 

software. This tendency has always taken place for the considered backtracking search 

algorithms. Thus, for many experiments it was possible to avoid very complicated 

design and implementation steps required for synthesis of hardware and rely 

considerably on modeling in software. Finally, only some of the studied problems (see 

chapter 3) are implemented and tested in hardware and the remaining problems are 

modeled just in software in order to validate correctness of the respective algorithms. 



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 132 

CCHHAAPPTTEERR  66  ––  EEXXPPEERRIIMMEENNTTSS,,  RREESSUULLTTSS,,  AANNDD  AANNAALLYYSSIISS  

6.1. Experiments and comparison of iterative and recursive 
implementations in hardware 

In order to compare iterative and recursive hardware implementations, a set of 

experiments executing a subset of the selected algorithms have been carried out 

[Sklyarov05]. The four algorithms which have been implemented within the scope of 

this set of experiments are identified in Table 6.1: 

Table 6.1 – Algorithms implemented in hardware for comparison 

Algorithm 
Describing 

section 

Algorithm for sorting 
based on a binary tree  3.3.1 

Approximate algorithm for 
solving the set covering problem 3.2.2 

Exact algorithm for 
solving the knapsack problem 3.2.5 

Calculus of the greatest common 
divisor between two integers 3.3.2 

 

Each of the four algorithms of this experiment set has been implemented on the basis 

of both recursive and iterative descriptions. After careful modeling and debugging in 

C#, each of the eight resulting algorithms has been specified both in VHDL and in 

Handel-C, with the exception of the approximate set covering algorithm which was 

specified solely in Handel-C. 

Moreover, different versions of VHDL-based implementations have been prepared in 

order to obtain some additional criteria regarding: 

a) design modularity, i.e., hierarchical decomposition of the algorithm in 

self-contained sub-tasks that are performed in sequence by means of 

an HFSM; 

b) embedded memory usage, in order to compare implementations 

which use block RAM vs. distributed RAM vs. pure logic (no RAM). 
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On the other hand, Handel-C projects differ only in the addressed problem, and in 

whether they implement the algorithm recursively or iteratively. 

It should be noticed that recursive solutions must always be modular, as recursion is 

achieved by means of an HFSM (see section 2.2.2). 

The projects provide generic parameters for initial data and can therefore be 

customized. Note that each circuit includes not only components that are needed for 

comparison, but also auxiliary blocks for visualizing the results. Let us designate by 

experiment the set of different implementations of a particular algorithm, described in 

a particular language (i.e. in either VHDL or Handel-C). It is important to notice that, 

for each experiment, the auxiliary components used in its different implementations 

are exactly the same. This way, the results such as the amount of required resources 

and the execution time that are obtained in each experiment constitute valid data for 

comparison [Sklyarov05]. 

At the time of these experiments, not all software and hardware tools which are 

mentioned in chapter 4 were available. In order to provide an accurate context for 

result analysis, Table 6.2 presents the tools which have actually been used to carry 

out this experiment set. 

Table 6.2 - Prototyping tools used for algorithm implementation and comparison 

 Algorithm 

S
y
n

th
e
s
is

 
C

A
D

 t
o

o
l 

Im
p

le
m

e
n

ta
ti

o
n

 
C

A
D

 t
o

o
l 

P
ro

to
ty

p
in

g
 

b
o

a
rd

 

FPGA 

V
H

D
L

 Tree-based Sorter 

Xilinx 
ISE 

Trenz 
TE-XC2Se 

[Trenz] 

Xilinx 
xc2S400e-6ft256 

(Spartan-IIE family) 
Knapsack Problem Solver 

GCD Calculator 

H
a
n

d
e
l-

C
 

Tree-based Sorter 

Celoxica 
DK 

Xilinx 
ISE 

Celoxica 
RC200 

Xilinx 
xc2v1000-4fg456 
(Virtex-II family) Set Covering Problem Solver 

Knapsack Problem Solver Celoxica 
RC100 

Xilinx 
xc2s200-5fg456 
(Spartan-II family) GCD Calculator 
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6.1.1. Experiment results 

The results of the experiments based on VHDL and on Handel-C are presented in Table 

6.3 and Table 6.4, respectively. 

Table 6.3 - VHDL-based experiment results 

Algorithm 

M
o

d
u

la
ri

ty
 

Memory 
usage 

Algorithm 
description 

N
u
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k
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y
c
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s
 t

o
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T
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e
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e
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u
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e
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to

 s
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e
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h
e
 

p
ro

b
le

m
 (

n
s
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Tree-based 
Sorter 

No 

Pure logic 

Iterative 443 35.1 70 1994 

Yes 

Recursive 623 74.8 72 963 

Iterative 599 76.0 87 1145 

Block 
Recursive 474 52.2 72 1379 

Iterative 473 70.2 87 1239 

Distributed Recursive 477 58.8 72 1224 

Knapsack 
Problem 
Solver 

No 

Pure logic 

Iterative 153 59.9 88 1469 

Yes 

Recursive 165 37.3 62 1662 

Iterative - - - - 

Block 
Recursive 149 40.3 62 1538 

Iterative - - - - 

Distributed Recursive 150 43.1 62 1438 

GCD 
Calculator 

No 

Pure logic 

Iterative 448 41.3 9 217 

Yes 

Recursive 515 42 11 261 

Iterative - - - - 

Block 
Recursive 454 43.5 11 252 

Iterative - - - - 

Distributed Recursive 454 42.4 11 259 

 

The greatest common divisor calculator has been tested for many pairs of unsigned 

integers. Although different numbers produce different results, the ratio between 

recursive and iterative implementations for each measured parameter is nearly the 

same. For this reason, Table 6.3 and Table 6.4 present the results regarding a single 

pair of numbers: 189 and 135 (27 being the result). A similar approach has been used 

for the tree-based sorting experiments and the corresponding data that are shown in 

those tables refer to the following input sequence: 30-14-9-7-13-37-2-8-17-21. The 

presented results regarding the knapsack problem implementations are given for 5 

objects. The chosen binary matrix dimensions for the set covering problem are 128 
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rows by 128 columns. In total, 9 different randomly generated problem instances have 

been tested, generating similar results. For this reason, the results for only one 

problem instance are shown in Table 6.4. 

Table 6.4 - Handel-C-based experiment results 

Algorithm 
Algorithm 

description 
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Tree-based 
Sorter 

Recursive 1293 37.3 73 1953 

Iterative 750 45.5 61 1340 

Set Covering 
Problem Solver 

Recursive 5118 25.1 182700 7.28×106 

Iterative 5118 25.1 182688 7.28×106 

Knapsack 
Problem Solver 

Recursive 624 31.5 265 8407 

Iterative 228 36.7 474 12915 

GCD 
Calculator 

Recursive 242 16.4 6 365 

Iterative 234 16.3 6 367 

 

6.1.2. Result analysis 

The comparison between implementations based on hardware description 

specifications and implementations based on system-level specifications is not a target 

of the experiment set. In fact, the auxiliary circuits synthesized in VHDL projects are 

very different from those synthesized in Handel-C projects. Besides, different 

prototyping boards and FPGAs have been used for VHDL and Handel-C projects (see 

Table 6.2). Thus, only the comparison between implementations based on the same 

language is relevant. 

6.1.2.1. Experiments based on hardware description specifications 

The graph in Figure 6.1 helps comparing the number of FPGA slices that are occupied 

by different circuits which have been implemented on the basis of VHDL descriptions.  



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 136 

CCHHAAPPTTEERR  66  ––  EEXXPPEERRIIMMEENNTTSS,,  RREESSUULLTTSS,,  AANNDD  AANNAALLYYSSIISS  

  

Figure 6.1 - Number of FPGA slices occupied by VHDL-based implementations 

The results depicted in Figure 6.1 show no relevant differences between the number of 

occupied FPGA slices of recursive and iterative implementations. 

However, let us notice that, amongst the pure logic implementations, the modular 

ones present significant overheads in the number of occupied FPGA slices. This 

drawback can be imputed to the circuitry supporting the HFSM, namely the stacks for 

storing module and state codes. However, such overhead practically disappears when 

making use of block or distributed memory, to which most of this support circuitry is 

synthesized. 

The graph in Figure 6.2 highlights the differences in the maximum clock frequency 

which is attainable for the various VHDL-based experiments.  

The results that have been obtained for the maximum clock frequency do not reveal 

obvious dependency on either modularity, use of recursion, or memory usage. Thus, 

no algorithm-independent criteria for this parameter can be identified. 
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Figure 6.2 - Maximum clock frequency allowed on the VHDL-based 

implementations 

The number of clock cycles which are required to solve the problem instances in each 

VHDL-based experiment is set side by side in Figure 6.3 for comparison. 

 

Figure 6.3 - Number of clock cycles used for solving the problem on the VHDL-

based implementations 
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As one would expect, the use of pure logic, distributed memory, or block memory had 

no influence on the number of clock cycles that are required for solving a problem. On 

the other hand, modularity reveals some influence in respect to this parameter. 

However, no algorithm-independent criteria can be deduced on the basis of design 

modularity because the kind of influence depends on the associated problem. 

Recursive implementations of tree-based algorithmic flows required fewer clock cycles 

to solve problems than iterative ones. For example, the modular implementations of 

tree-based iterative sorters required nearly 21% more clock cycles than their recursive 

equivalents, whether using block memory or pure logic. For solving the Knapsack 

problem, the pure logic non-modular iterative implementation required practically 

42% more clock cycles than any of the three recursive versions. 

Last, the graph in Figure 6.4 emphasizes the differences in time that is necessary for 

solving the problem on the various VHDL-based experiments. 

 

Figure 6.4 - Time required by the VHDL-based implementations for solving the 

problem  

The results regarding the time required for problem solving reveal no dependency on 

either modularity, use of recursion, or memory usage. For this reason, no general 

criteria can be inferred for this parameter. 

0

0,5

1

1,5

2

2,5

Tree-based Sorting Knapsack Calculus of the GCD

E
x
e
c
u

ti
o

n
 t

im
e
 (
µ

s
)

Non-modular / Pure logic / Iterative Modular / Pure logic / Recursive
Modular / Pure logic / Iterative Modular / Block Mem. / Recursive
Modular / Block Mem. / Iterative Modular / Distrib. Mem. / Recursive



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 139 

CCHHAAPPTTEERR  66  ––  EEXXPPEERRIIMMEENNTTSS,,  RREESSUULLTTSS,,  AANNDD  AANNAALLYYSSIISS  

6.1.2.2. Experiments based on system-level specifications 

The graph in Figure 6.5 permits to compare the numbers of FPGA slices that are 

occupied by the different circuits which have been implemented on the basis of 

Handel-C descriptions. 

 

Figure 6.5 - Number of FPGA slices occupied by Handel-C-based implementations 

The results of the Handel-C projects reveal that the number of FPGA slices that are 

required for non-backtracking algorithms (namely sorting, knapsack, and CGD) is 

higher in recursive implementations than in iterative ones. This drawback seems to be 

related to the use of stacks. In the case of the algorithm for calculating the CGD, this 

difference is rather insignificant, probably due to the very small stack dimensions 

required by the HFSM which was used in the recursive implementation. However, in 

the recursive implementations of the tree-based sorting and the knapsack algorithms, 

the dimensions of the HFSM-supporting stacks were considerably higher and thus the 

significant difference in the required FPGA resources. On the other hand, both the 

recursive and the iterative implementations of the set covering algorithm made use of 

stacks because both required a backtracking mechanism. For this reason, the number 

of required FPGA slices is the same for both versions. 
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Figure 6.6 - Maximum clock frequency allowed on the Handel-C-based 

implementations 

The graph in Figure 6.6 highlights the differences in the maximum clock frequency 

which guarantees correct circuit behavior for the various Handel-C-based experiments.  

In maximum clock frequency, iterative projects have revealed: 

i) to be more advantageous (allowing higher frequencies) than 

recursive ones, when implementing non-backtracking tree-based 

algorithms; 

ii) virtually no difference from recursive projects, when implementing 

backtracking or cyclic algorithms. 

The number of clock cycles which are required to solve the problem instances in each 

Handel-C-based experiment is set side by side in Figure 6.7 for comparison. 

In number of clock cycles that are required to solve the problems, iterative and 

recursive Handel-C projects (unlike the VHDL projects) have revealed: 

i) to be equally advantageous, when implementing backtracking or 

cyclic algorithms; 

ii) no algorithm-independent differences, when implementing non-

backtracking tree-based algorithms. 
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Figure 6.7 - Number of clock cycles used for solving the problem on the Handel-C-

based implementations 

Last, the graph in Figure 6.8 emphasizes the differences in time that is necessary to 

achieve a solution on the various Handel-C-based experiments. 

 

Figure 6.8 - Time required by the Handel-C-based implementations for solving the 

problem 
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those regarding the number of clock cycles spent on the same task. Thus, also in 

execution time, iterative and recursive Handel-C projects have revealed: 

i) to be equally advantageous, when implementing backtracking or 

cyclic algorithms; 

ii) no algorithm-independent differences, when implementing non-

backtracking tree-based algorithms. 

6.1.2.3. Summary and further discussion 

Some of the general criteria which have been achieved by means of this experiment 

set can be summarized in Table 6.5. 

Table 6.5 - Summary of general criteria achieved with this experiment set 

 Algorithm scope 
Number of 

FPGA slices 

Maximum 

clock 

frequency 

Number of 

clock cycles 

Execution 

time 

V
H

D
L

 

Cyclic 
Less advantageous 

when using pure 

logic and modularity 

simultaneously 

No general criteria 

T
re

e-
ba

se
d Backtracking No 

General 

criteria 

Recursive 

implementations 

generally more 

advantageous 

No 

general 

criteria Non-backtracking 

H
a
n

d
e
l-

C
 

Cyclic 

No general criteria 
Iterative and recursive 

equally advantageous 

T
re

e-
ba

se
d Backtracking 

Non-backtracking 
More advantageous in 

iterative implementations 
No general criteria 

 

Furthermore, from examining the complexity of the resulting circuits one concludes 

that the use of embedded (block or distributed) memory significantly reduces the 

amount of FPGA resources that are occupied by the solvers. This fact allows recursive 

algorithms to be nearly as resource-demanding as iterative ones. Each new FPGA 

family put on the market has usually more embedded memory than the previous ones. 

This memory can therefore be used to store more stack data virtually without 

increasing the number of occupied FPGA slices, and this allows much more complex 

algorithms to be implemented. The only additional resources that are required for 
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recursive algorithms are those keeping stack pointers. Thus, one can expect modular 

implementations to be significantly more advantageous for very complex problem 

instances. Moreover, a highly integrated stack memory for HFSMs might potentially be 

included as an embedded block in future generations of FPGAs [Sklyarov05]. Such 

feature would encourage the generalization of hierarchical implementations (recursive 

ones included) which, in turn, would encourage FPGA manufacturers to generalize that 

feature. 

Besides those criteria which are obtained from quantifiable results, a more subjective 

deliberation can also lead to important conclusions. Examples of important project 

characteristics that are hard to quantify include design time, clarity of the algorithm’s 

description (compare e.g. Figure 5.22 and Figure 5.23), ease of modification, etc. 

These characteristics can be improved through strategies such as divide and conquer 

(hierarchical specification), modularity, and design of reusable components. In fact, 

hierarchical modular specifications provide direct support for reusability, as a given 

module can be included multiple times in the same or even different algorithms. This 

possibility obviously leads to significant reductions in the design time and, in some 

cases, in the required hardware resources. Furthermore, if hierarchy is applied on the 

basis of an HFSM, recursive calls are inherently supported without any additional 

hardware, as previously mentioned. In such cases, the use of recursion or iteration 

should be assessed on the basis of algorithm clearness. For all these reasons, 

designers should keep in mind that HFSM-based hierarchical modular implementations 

possess strong design advantages, which are particularly important when developing 

complex projects. 

6.2. Validation and analysis of the architecture for generic 
matrix-oriented solvers 

For easy reference in this section, let us divide the architecture for generic matrix-

oriented solvers in two components: 

• The control component, composed of the reprogrammable control unit and the 

interface module, together with the software application; 

• The operational component, which is composed of all the other functional blocks 

and implements the whole set of operations over the considered data. 
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The operational component and all interaction between its functional blocks have been 

validated in a software application which was modeled in the C# programming 

language. Each functional block was described by a class that emulates the behavior 

which is expected from its hardware implementation. When the application starts, 

objects of those classes are instantiated and they are reused to solve as many number 

of problem instances as required. Furthermore, each instance can correspond to any 

of the three matrix-based backtracking search algorithms described in section 5.1.2, 

i.e. those regarding set covering (DABM class solver), Boolean satisfiability (DATM 

class solver), and graph coloring (DATM class solver). A special class emulates the 

reprogrammable control unit behavior in order to validate the execution of different 

algorithms. Experiments were carried out using different sequences of problem 

instances and the application was able to correctly solve them. 

After validation, the architecture’s operational component was implemented and 

successfully tested using the Handel-C system-level specification language and the 

DETIUA-S3 prototyping board, which incorporates a Xilinx Spartan-3 FPGA (namely a 

XC3S400). A USB interface was used for data exchange between hardware and 

software. 

The hardware reprogrammable control unit and the user agent module were designed 

using VHDL, whilst a software application to interact with the user agent was 

developed in C#. The expected run-time control unit reprogramming, for 

implementing different algorithms, was tested and successfully achieved. 

Table 6.6 presents a summary of the data structures’ usage in each implemented 

combinatorial search algorithm, permitting to assess the reusability of the structures 

amongst this type of solvers. For each of the three algorithms, Table 6.6 indicates 

whether each of the data structures is either explicitly declared by the designer, 

implicitly employed as a building block (for those which are explicitly declared), or not 

used at all. When a data structure is used both explicitly and implicitly, its usage is 

labeled as explicit. 
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Table 6.6 - Data structure usage in different matrix-based backtracking search 

algorithms 

Data Structure 
Set 

Covering 
SAT 

Graph 
Coloring 

Binary Vector Explicit Explicit Explicit 

Ternary Vector None Explicit Explicit 

Mask Explicit Explicit Explicit 

Stack Explicit Explicit Explicit 

Simple Access Binary Matrix Implicit Implicit Implicit 

Dual Access Binary Matrix Explicit None None 

Simple Access Ternary Matrix None Implicit Implicit 

Dual Access Ternary Matrix None Explicit Explicit 

 

Table 6.6 reveals that the most basic data structures, such as binary vectors, masks, 

and simple access binary matrices, are explicitly or implicitly used across the three 

implemented combinatorial search algorithms. Stacks are also thoroughly employed 

because they are required for supporting backtracking, which is typical amongst this 

type of algorithms. On the other hand, more complex structures are less often used; 

as is the case of dual access binary matrices, which are exploited only in one of the 

implemented algorithms. 

Table 6.7 indicates whether each of the different functional blocks is: explicitly 

employed by the designer; implicitly constructed as a building block (for those which 

are explicitly employed); or not used, in each of the analyzed combinatorial search 

algorithms. In the table, abbreviations BV, TV, SABM, DABM, SATM, and DATM 

respectively stand for binary vector, ternary vector, simple access binary matrix, dual 

access binary matrix, simple access ternary matrix, and dual access ternary matrix. 

When a functional block is used both explicitly and implicitly, its usage is labeled as 

explicit. 

The use of operations for accessing matrix rows and columns, which can be binary or 

ternary vectors, is not considered in Table 6.7, as it can directly be deduced from the 

matrix type. It should be noticed that writing rows and columns is only needed for 

initialization of problem instances because the solving algorithms do not require 

changing matrix contents in order to find a solution. 



SYNTHESIS OF FPGA-BASED ACCELERATORS IMPLEMENTING RECURSIVE ALGORITHMS - 146 

CCHHAAPPTTEERR  66  ––  EEXXPPEERRIIMMEENNTTSS,,  RREESSUULLTTSS,,  AANNDD  AANNAALLYYSSIISS  

Table 6.7 - Functional block usage in different matrix-based backtracking search 

algorithms 

Method 
description 

Input 
variant S

e
t 

C
o

v
e
ri

n
g

 

S
A

T
 

G
ra

p
h

 
C

o
lo

ri
n

g
 

Calculate the number of zeros (ones*) in a 
vector. 

BV None None None 

TV None None None 

BV, Mask Explicit None None 

TV, Mask None Explicit None 

Determine whether 2 vectors are orthogonal. 
TV, TV None Implicit Explicit 

TV, TV, Mask None Explicit None 

Calculate the intersection of 2 ternary 
vectors. TV, TV None None Explicit 

Determine whether a ternary vector is 
constituted by only don’t-care values (ones*, 
zeros*). 

TV None Implicit Implicit 

TV, Mask None Explicit Explicit 

Determine whether a ternary vector has no 
zeros (ones*) 

TV None None Implicit 
TV, Mask None None Explicit 

Create a mask which identifies the position 
of don’t-care (non-don’t-care*) values in a 
ternary vector. 

TV None None None 

TV, Mask None None None 

Identify the position of the first zero (one*) 
in a vector/mask. 

BV Explicit None Explicit 
Mask None None Explicit 
BV, Mask Explicit None None 
TV, Mask None Explicit None 

Given a mask m and two vectors a and b, 
create a new vector, copying values from a, 
for positions that are masked by m; and from 
b, for positions that are not masked by m. 

BV, BV, Mask None None Implicit 

TV, TV, Mask None None Explicit 

Build the transpose of a matrix. 

SABM Implicit** Implicit** Implicit** 

DABM Explicit** None None 

SATM None Implicit** Implicit** 

DATM None Explicit** Explicit** 

Push (pop*) a vector/mask onto (from) the 
top of a stack. 

Stack, BV Explicit Implicit Explicit 

Stack, Mask Explicit Explicit Explicit 

Stack, TV None Explicit Explicit 
* in another version of the method (typically used in combination in an algorithm) 
** only for problem instance initialization purposes (not part of the solving algorithm) 

 

Table 6.7 reveals that some of the developed functional blocks have not been used. 

Nevertheless, they can be helpful for implementing matrix-based combinatorial search 

algorithms which have not been addressed here. 
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6.3. Assessment of the developed prototyping tools and 
summary of potential applications 

PBM has been tested in various ways. Furthermore, this tool is subject to an on-going 

continuous testing and improvement process. The software has been made available 

through the internet [Pimentel] and installed in classroom computers at the 

Department of Electronics, Telecommunications and Informatics of the University of 

Aveiro. Some of the disciplines taught at the department already use several DETIUA-

S3 boards and PBM as working tools, and important feedback is accessible from 

students. 

The fact that DETIUA-S3 and PBM have been used in practical classes reveals to some 

extent the reliability and the practical potential of this set of tools. Many projects of 

undergraduate students consisted of extension boards which implement different 

interfaces for peripherals, such as a keyboard, a mouse, and a VGA monitor. 

Moving on to usability issues, some experiments have been carried out in order to 

determine the expected execution time for PBM’s most basic operations with respect 

to the DETIUA-S3 board. Several measurements have been made through USB and 

Bluetooth interfaces, using a few different computers. 

Table 6.8 - Average execution time in function of task and interface used 

Interface 
Task 

USB Bluetooth 

Erase a sector 0.7 sec 1 sec 

Read an entire sector 0.4 sec 11 sec 

Write an entire sector 1.5 sec 28 sec 

Write a bitstream 5.5 sec 1 min 27 sec 

 

Table 6.8 presents the average time by task and by interface which resulted from 

those measurements. When reading the table values, one should take into 

consideration the following: 

a) Each flash memory sector has 64 KB; 

b) Writing a bitstream involves 4 sectors; 
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c) Writing tasks require previous erasure of the targeted sectors, and 

this overhead is included in the time values presented. 

As previously mentioned, PBM offers the possibility of sending multiple bitstreams to 

DETIUA-S3 and storing them in the third logical section of the flash memory (see 

Figure 4.3) in a format that is ready to be loaded onto an FPGA. This feature allows for 

the following potential applications: 

1. Autonomous experiments with different single bitstream projects 

without connection to a host computer. In particular, this mode allows 

for the comparison and validation of alternative implementations. A 

simple additional switch, attached through expansion connectors, can 

be used to select the logic subsection that keeps the bitstream to be 

loaded to the FPGA. 

2. FPGA run-time reconfiguration, permitting to implement circuits that 

require more resources than the resources available in the FPGA. 

3. Programming FPGAs installed on additional extension boards. In this 

case, the core FPGA is considered to be a controller (manager) for a 

runtime reconfigurable system which includes multiple FPGAs. 

The first two possibilities have already been tested and found successful. 

6.4. Conclusion 

In the beginning, a limited number of problems were examined and a comparison of 

relevant recursive and iterative algorithms was done. Synthesis was carried out on the 

basis of Handel-C and VHDL languages. Similar comparison for the same problems 

was done in software using C#. The obtained results were compared, revealing that a 

similar tendency was taking place for particular algorithms described at different 

levels. Analysis of different algorithms permitted to draw out algorithmic 

characteristics that allow potential benefits to be predicted, as a tendency always took 

place for the considered backtracking search algorithms. Thus, for many experiments, 

it was possible to avoid very complicated design and implementation steps required 

for synthesis of hardware and rely considerably on modeling in software. Finally, only 

some of the studied problems were implemented and tested in hardware and the 
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remaining problems were modeled just in software in order to validate the correctness 

of the respective algorithms. 

In order to compare iterative and recursive hardware implementations, a set of 

experiments was carried out using the following four algorithms: sorting based on a 

binary tree, approximate algorithm for solving the set covering problem, exact 

algorithm for solving the knapsack problem, and calculus of the greatest common 

divisor between two integers. The first and third use context data stacks, whereas the 

other two do not. 

The recursive and iterative versions of each of these four algorithms was carefully 

modeled and debugged in C#, and then specified both in VHDL and in Handel-C, with 

the exception of the approximate set covering algorithm which has not been specified 

in VHDL. Moreover, different versions of each of the VHDL-based implementations 

have been prepared in order to obtain some additional criteria regarding design 

modularity and embedded memory usage. Recursive solutions must always be 

modular, as recursion is achieved by means of an HFSM. 

The results of the experiments indicate the following general criteria: 

1. The number of FPGA slices occupied by VHDL implementations is 

higher if using pure logic and modularity simultaneously; 

2. When designing solvers with non-backtracking tree-based algorithms 

in Handel-C, both the average number of occupied FPGA slices and 

the average maximum allowed clock frequency are more 

advantageous when implemented iteratively; 

3. When designing solvers with tree-based algorithms in VHDL, the 

average number of clock cycles required to reach a solution is lower if 

implemented recursively; 

4. When designing solvers with cyclic or backtracking tree-based 

algorithms in Handel-C, iterative and recursive implementations 

require the same average number of clock cycles and the same 

average time to reach a solution. 

From examining the complexity of the resulting circuits one concludes that the use of 

embedded memory allows recursive algorithms to be nearly as resource-demanding as 
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iterative ones. Each new FPGA family put on the market has usually more embedded 

memory than the previous ones. This memory can therefore be used to store more 

stack data virtually without increasing the number of occupied FPGA slices, and this 

allows much more complex algorithms to be implemented. Thus, one can expect 

modular implementations to be significantly more advantageous for very complex 

problem instances. Moreover, a highly integrated stack memory for HFSMs might 

potentially be included as an embedded block in future generations of FPGAs, 

encouraging the generalization of hierarchical implementations (recursive ones 

included) which, in turn, would encourage FPGA manufacturers to generalize that 

feature. 

Other important project characteristics, such as design time, clarity of the algorithm’s 

description, and ease of modification, can be improved through strategies such as 

divide and conquer, modularity, and design of reusable components. HFSM-based 

hierarchical modular implementations possess strong design advantages, which are 

particularly important when developing complex projects. They provide direct support 

for reusability, significantly reducing the design time and, in some cases, the hardware 

resources required. Furthermore, if hierarchy is applied on the basis of an HFSM, 

recursive calls are inherently supported without any additional hardware.  

The operational component of the architecture for generic matrix-oriented solvers, and 

all interaction between its functional blocks have been validated in a software 

application modeled in C#. Each functional block was described by a class that 

emulates the behavior which is expected from its hardware implementation. A special 

class emulates the reprogrammable control unit behavior in order to validate the 

execution of different algorithms. The application was able to correctly solve different 

sequences of problems (from set covering, Boolean satisfiability, and graph coloring) 

and problem instances, reusing its functional block-emulating objects instantiated only 

once. After validation, the architecture’s operational component was implemented and 

successfully tested using Handel-C and DETIUA-S3. A USB interface was used for data 

exchange. Hardware reprogrammable control unit and user agent modules were 

designed using VHDL, whilst a software application to interact with the user agent was 

developed in C#. The expected run-time control unit reprogramming, for 

implementing different algorithms, was tested and successfully achieved.  

Detailed analysis reveals that binary vectors, masks, simple access binary matrices 

and stacks are explicitly or implicitly used across the three implemented combinatorial 

search algorithms, whereas dual access binary matrices are used less often. Some of 
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the developed functional blocks have not been used but they can be helpful for 

implementing matrix-based combinatorial search algorithms which have not been 

addressed here. 

Prototyping Board Manager has been tested in various ways and it is subject to an on-

going continuous testing and improvement process. Some of the disciplines taught at 

the Department of Electronics, Telecommunications and Informatics of the University 

of Aveiro already use several DETIUA-S3 boards and PBM as working tools and 

important feedback is accessible from students. Many projects of undergraduate 

students consisted of extension boards which implement different interfaces for 

peripherals. We can therefore claim that this software has a significant practical 

usefulness.  

The possibility of sending multiple bitstreams to DETIUA-S3 and storing them in the 

flash memory, ready to be loaded onto an FPGA allows for: autonomous experiments 

with different single bitstream projects without connection to a host computer; FPGA 

run-time reconfiguration (permitting to implement circuits that require more resources 

than the resources available in the FPGA); and programming FPGAs installed on 

additional extension boards. The first two possibilities have already been tested and 

found successful. 
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77..  CCoonncclluussiioonn  

This chapter summarizes the author’s contribution, lists the most important results 

and suggests future work in the considered area. When some results are described, 

the relevant references to the thesis chapters (where the proper contribution is 

presented) are done. 

7.1. Contributions 

Basic contributions of the thesis are provided within the following three areas: 

1. Analysis of recursive and iterative implementations of computational 

algorithms in hardware. 

2. Synthesis and FPGA-based prototyping of computationally intensive 

algorithms applying recursive and iterative techniques. Note that the 

analysis of previous results, obtained in software development, has 

allowed us to select an area (namely tree-based computations) where 

recursive algorithms might be better than the iterative ones. The 

thesis presents analysis and implementation of tree-based 

computations that are used in combinatorial search algorithms applied 

to binary and ternary matrices. In addition, some other applications 

(such as tree-based data sorting) are studied. 

3. Software tools for an FPGA-based prototyping system with the 

primary objective of satisfying research-specific requirements. Such 

tools are convenient for implementing circuits, demonstrating its 

advantages and carry out various experiments with them. The 

hardware of the FPGA-based prototyping system has been designed 
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by Manuel Almeida [Almeida08], whereas all the necessary software 

and relevant experiments were made within this thesis. 

The most important results within each area of the thesis indicated above are as 

follows. 

Within the first area: 

1.1. Analysis of recursive and iterative implementations of different 

algorithms and comparison of their advantages and disadvantages 

(chapter 2). 

1.2. Review of known approaches and presenting the state of the art in 

the scope of hardware implementation of recursive algorithms 

(chapter 2). 

1.3. Applying recursive and iterative techniques to the computationally 

intensive algorithms selected, namely set covering, Boolean 

satisfiability, graph coloring, and data sorting. Some simple 

computational algorithms (such as discovering the greatest common 

divisor of integers) have been presented for illustrative purposes, 

making it easier to demonstrate implementation and other 

necessary details (chapter 5). 

1.4. Prototyping and experiments with the algorithms mentioned in the 

previous point. Results and conclusions allow to estimate which 

technique (recursive or iterative) is more likely to be the most 

advantageous for particular applications (chapter 6).  

Within the second area: 

2.1. Selection and analysis of computationally intensive algorithms for 

further design space exploration targeted to recursive and iterative 

implementations and comparison of the relevant characteristics 

(chapter 3). 

2.2. Software modeling and analysis of recursive and iterative 

implementations for algorithms mentioned in point 2.1 (chapter 5). 
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2.3. Hardware implementation and analysis of recursive and iterative 

algorithms referenced in point 2.1 on the basis of Handel-C 

specifications and VHDL descriptions (chapter 6). 

2.4. Conclusions from experiments. Given the importance of these 

conclusions, they will be separately emphasized after presenting the 

results in the scope of area 3 below.    

Within the third area: 

3.1. A set of software tools incorporated in PBM has been designed for 

FPGA-based prototyping system DETIUA-S3 [Almeida08] developed 

at the department of Electronics, Telecommunications and 

Informatics of Aveiro University. The tools include the necessary 

drivers as well as user-friendly interface for configuring and 

interacting with the system and for experimental purposes. Support 

for both wired and wireless interactions between a host computer 

and the system is provided. Contributions of point 3.1 are presented 

in chapter 4. 

3.2. The tool set also provides support for co-simulation, enabling local 

and remote users to construct digital systems in such a way that 

they are partially implemented in FPGA and partially modeled in 

software of a user computer.  

3.3. A set of tools that provide remote users with most of the PBM 

functionality through the Internet. The tool set also provides support 

for co-simulation, enabling local and remote users to construct 

digital systems in such a way that they are partially implemented in 

FPGA and partially modeled in software of a user computer. This 

work was not initially planned for the thesis. Since this work has not 

been finished yet (and the completion is not required by the thesis 

objectives), we consider it as a useful direction of future work. 

3.4. A set of experiments that have been done with the aid of the 

proposed methods and software/hardware tools (chapter 4). 
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The results of experiments and analysis of alternative recursive and iterative 

specifications and the relevant circuits permit to present the following summary for 

the considered hardware implementations: 

a) The number of FPGA slices occupied by VHDL implementations is 

higher if using pure logic and modularity simultaneously. This 

drawback can be imputed to the circuitry supporting the HFSM. Such 

overhead practically disappears when making use of block or 

distributed memory, to which most of this support circuitry is 

synthesized. 

b)  When designing solvers with tree-based algorithms in VHDL, the 

average number of clock cycles required to reach a solution is lower if 

implemented recursively. However, the corresponding execution time 

is not necessarily shorter. 

c) When designing solvers with non-backtracking tree-based algorithms 

in Handel-C, both the average number of occupied FPGA slices and 

the average maximum allowed clock frequency are less advantageous 

when implemented recursively. Because these drawbacks emerge 

with the use of stacks, recursive and iterative versions of either cyclic 

or backtracking tree-based algorithms lead to equally advantageous 

results. 

d) When designing solvers with cyclic or backtracking tree-based 

algorithms in Handel-C, iterative and recursive implementations 

require the same average number of clock cycles and the same 

average time to reach a solution. 

e) The use of embedded (block or distributed) memory significantly 

reduces the amount of FPGA resources that are occupied by solvers. 

This memory can be used to store stack data virtually without 

occupied more FPGA slices, allowing recursive algorithms to be nearly 

as resource-demanding as iterative ones. Overall, one can expect 

modular implementations to be significantly more advantageous for 

very complex problem instances. 

f) For many applications, additional circuit complexity is not as 

important as clearness of the algorithm. In particular, we can benefit 
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from using a divide-and-conquer strategy, which can be applied by 

means of hierarchical specification. Hierarchical modular specifications 

provide direct support for reusability, which leads to significant 

reductions in the design time and, in some cases, in the required 

hardware resources. If hierarchy is applied on the basis of an HFSM, 

recursive calls are inherently supported without any additional 

hardware. In such cases, the use of recursion or iteration should be 

assessed on the basis of algorithm clearness. For the majority of tree-

based algorithms, recursion leads to clearer and more easily 

understandable specifications.  

g) Analysis that was carried out in previous publications [Sklyarov05] 

and summarized in the thesis has shown that extra hardware 

complexity for recursive calls usually appears due to the 

implementation of stack memories (especially for allowing deep 

recursive calls). However, this memory is very regular and it can be 

constructed from FPGA embedded memory blocks. We found out that 

this technique significantly reduces the number of FPGA slices for 

such implementations. A highly integrated stack memory for HFSMs 

might potentially be implemented as an embedded block in future 

generations of FPGAs and this would attract additional attention to 

hierarchical and even recursive, implementations. 

The results of the design and implementation of FPGA-based hardware accelerators 

can be reused in the following directions: 

• The general architecture for hardware solvers described in section 5.2 is reusable 

and thus, can be selected for potential future algorithms which require the relevant 

search techniques. 

• The use of dynamically reprogrammable HFSMs enables to change the algorithm 

which is executed, providing a base for the design and implementation of 

customizable hardware accelerators. This work is very promising and can be 

postponed for future (see the next section).  

• Many object-oriented software classes which were developed, tested, and 

described in chapter 5 can be reused in future applications. They are a useful basis 

for developing algorithms such as those discussed in chapter 5. 
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• Many developed software/hardware tools have been successfully used in 

educational process at the Department of Electronics, Telecommunications and 

Informatics of Aveiro University for students of two specialties, namely Electronics 

and Telecommunications, and Computers and Telematics. These tools include the 

prototyping FPGA-based system, prototyping board manager (PBM), and 

hardware/software partition frameworks. We can mention various student 

publications, such as [Silva09], [Dias08], and [Silva08], which explicitly indicate 

the use of the developed tools, confirming their usefulness and successful 

utilization. Furthermore, reusable library modules which are developed by students 

for communication between DETIUA-S3 FPGA and peripheral devices are made 

available in a dedicated online repository [Sousa]. 

7.2. Future work 

We believe that the following directions are important for future work: 

• Developing automatic software tools for detecting recursive fragments in hardware 

description code and system-level specifications and generating the respective 

hierarchical finite state machines. The integration of this functionality in CAD tools 

could promote the use of recursion and consequently motivate reconfigurable 

hardware manufacturers to include highly integrated stack memories for 

hierarchical finite state machines as an embedded block in future generations of 

FPGAs. 

• Exploring parallel architectures of hardware-accelerators on the basis of recently 

proposed parallel hierarchical finite state machines [Sklyarov08b]. 

• Examining the results of the thesis for other types of hardware accelerators 

implementing tree-based computations. This is interesting in two following 

aspects: additional validation of the thesis results; and exploring potential 

extensions of applicability for recursive algorithms in hardware implementations. 

• Developing a full set of tools that enable the designed hardware/software systems 

(FPGA-based prototyping system, PBM, etc.) to be used remotely (see chapter 4). 

Many basic results have been obtained in this thesis but this work has not been 

finished yet. 
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