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Adaptação de Modelos de Linguagem, Técnicas de Extracção de Informação. 
 

resumo 
 
 

Actualmente muitas das metodologias utilizadas para transcrição e indexação 
de transmissões noticiosas são baseadas em processos manuais. Com o 
processamento e transcrição deste tipo de dados os prestadores de serviços 
noticiosos procuram extrair informação semântica que permita a sua 
interpretação, sumarização, indexação e posterior disseminação selectiva. 
Pelo que, o desenvolvimento e implementação de técnicas automáticas para 
suporte deste tipo de tarefas têm suscitado ao longo dos últimos anos o 
interesse pela utilização de sistemas de reconhecimento automático de fala. 
Contudo, as especificidades que caracterizam este tipo de tarefas, 
nomeadamente a diversidade de tópicos presentes nos blocos de notícias, 
originam um elevado número de ocorrência de novas palavras não incluídas 
no vocabulário finito do sistema de reconhecimento, o que se traduz 
negativamente na qualidade das transcrições automáticas produzidas pelo 
mesmo. Para línguas altamente flexivas, como é o caso do Português 
Europeu, este problema torna-se ainda mais relevante. 
 
Para colmatar este tipo de problemas no sistema de reconhecimento, várias 
abordagens podem ser exploradas: a utilização de informações específicas de 
cada um dos blocos noticiosos a ser transcrito, como por exemplo os scripts 
previamente produzidos pelo pivot e restantes jornalistas, e outro tipo de fontes 
como notícias escritas diariamente disponibilizadas na Internet. 
 
Este trabalho engloba essencialmente três contribuições: um novo algoritmo 
para selecção e optimização do vocabulário, utilizando informação morfo-
sintáctica de forma a compensar as diferenças linguísticas existentes entre os 
diferentes conjuntos de dados; uma metodologia diária para adaptação 
dinâmica e não supervisionada do modelo de linguagem, utilizando múltiplos 
passos de reconhecimento; metodologia para inclusão de novas palavras no 
vocabulário do sistema, mesmo em situações de não existência de dados de 
adaptação e sem necessidade re-estimação global do modelo de linguagem. 

 



 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords 
 

Vocabulary Selection, Language Model Adaptation, Morpho-syntactic 
Knowledge, Information Retrieval Techniques, Automatic Speech Recognition, 
Broadcast News. 
 

abstract 
 

Most of today methods for transcription and indexation of broadcast audio data 
are manual. Broadcasters process thousands hours of audio and video data on 
a daily basis, in order to transcribe that data, to extract semantic information, 
and to interpret and summarize the content of those documents. The 
development of automatic and efficient support for these manual tasks has 
been a great challenge and over the last decade there has been a growing 
interest in the usage of automatic speech recognition as a tool to provide 
automatic transcription and indexation of broadcast news and random and 
relevant access to large broadcast news databases. However, due to the 
common topic changing over time which characterizes this kind of tasks, the 
appearance of new events leads to high out-of-vocabulary (OOV) word rates 
and consequently to degradation of recognition performance. This is especially 
true for highly inflected languages like the European Portuguese language. 
 
Several innovative techniques can be exploited to reduce those errors. The use 
of news shows specific information, such as topic-based lexicons, pivot working 
script, and other sources such as the online written news daily available in the 
Internet can be added to the information sources employed by the automatic 
speech recognizer. In this thesis we are exploring the use of additional sources 
of information for vocabulary optimization and language model adaptation of a 
European Portuguese broadcast news transcription system. 
 
Hence, this thesis has 3 different main contributions: a novel approach for 
vocabulary selection using Part-Of-Speech (POS) tags to compensate for word 
usage differences across the various training corpora; language model 
adaptation frameworks performed on a daily basis for single-stage and multi-
stage recognition approaches; a new method for inclusion of new words in the 
system vocabulary without the need of additional data or language model 
retraining. 
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1 

Introduction 

Ever since humans started to interact with computers, research efforts have been done to 

allow communication between the two to occur in a more natural way. Over the last thirty 

years, devices like keyboards and mice have been used as the means of entering data and 

commands into computers. In the late 1990s it has become realistic to expect to be able to 

interact with machines in a more human-like way. With significant developments in 

Human Language Technologies users would like computers to be able to recognize their 

speech and to understand their language. 

 Automatic Speech Recognition (ASR) technology has been experiencing large 

advances over the last two decades. ASR technology has moved from speaker dependent 

and isolated digit recognition applications to speaker independent large vocabulary 

continuous speech recognition systems. It has been applied to various different practical 

applications, such as dictation systems, spoken dialog systems, broadcast news 

transcription systems, etc, allowing users to transcribe audio data automatically and in a 

natural way. The automatic recognition of spoken data reduces the computational time and 

the cost to transcribe audio data when compared with a manual transcription process. Over 

the last years, investigation and development of integrated speech recognition systems has 

been carried out by many research institutions and commercial companies like BBN, 

Cambridge, Carnegie Mellon University (CMU), IBM, LIMSI, Nuance, etc. 

 Since the middle of the 1990s, and especially with the rapid expansion and importance 

of the Internet, there has been a growing need for fast and automatic processing of many 

different multimedia contents (audio and video sources). There are many examples in 
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which speech recognition would be useful - for instance to provide transcripts of meetings, 

lectures, Broadcast News (BN) and Broadcast Conversations (BC) streams, etc. Every day 

thousands of TV and radio stations broadcast many hours of information (news, interviews, 

documentaries, etc.). In emerging applications such as News on Demand and Internet 

News Services, users would expect to actively explore the information by finding sections 

of content relevant to their targeted search, rather than by following someone else path 

through the data stream or by viewing a large chunk of pre-produced material. Using such 

applications, large audio and video databases can be searched with very little effort, 

reducing the time spent reading or listening to large amounts of data. Technologies that 

make the management and the access of multimedia archives easier are receiving more and 

more attention due to the increasing availability of large multimedia digital libraries. 

Technologies for audio transcription and indexing of multimedia archives are among the 

emerging technologies.  

 Most of today’s methods for transcription and indexation of broadcast audio data are 

manual. Broadcasters process thousands hours of audio and video data on a daily basis, in 

order to transcribe that data, to extract semantic information, and to interpret and 

summarize the content of those documents. The development of automatic and efficient 

support for these manual tasks has been a great challenge and over the last decade there has 

been a growing interest in the usage of automatic speech recognition as a tool to provide 

automatic transcription and indexation of broadcast news and random and relevant access 

to large BN databases [Gauvain et al., 2001][Neto et al., 2003][Nguyen et al., 2005][Gales 

et al., 2006]. Moreover, different companies and institutions are pursuing research on 

"human-friendly broadcasting services" to ensure that elderly viewers and people with 

visual or hearing impairments can enjoy those services. 

 Transcribing audio data is a necessary step in order to provide access to BN content 

and large vocabulary continuous speech recognition is a key technology for automatic 

processing. Commonly, broadcast news transcription systems have two main components 

(figure 1.1): an audio partitioner and a speech recognizer. The goal of audio pre-processing 

is to divide the acoustic signal into homogeneous segments, labeling and structuring the 

acoustic content of the data, and identifying and removing non-speech segments. For each 

speech segment, the ASR component determines the sequence of words in the segment, 

associating start and end times with each one of them. 
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Figure 1.1: General architecture of a broadcast news transcription system. 

 

 This chapter gives some insight into automatic speech recognition and language 

modeling, briefly describing the Broadcast News transcription system used in this thesis. 

Next, we explain our motivation for the thesis work. Finally, the chapter concludes with an 

outline of our main contributions and a brief description of how this document is 

organized. 

1.1 Automatic Speech Recognition 

Speech recognition is concerned with the process of converting an acoustic signal 

containing speech data into the appropriate text transcription (figure 1.2). 

 

 
Figure 1.2: ASR process. 

 

 In the mainstream statistical formulation of the speech recognition problem [Bahl et 

al., 1983] the recognizer seeks to find the most probable word string, W , given an acoustic 
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observation, O , by computing the probability ( )P W O  for all possible sentences and 

choosing the sentence, Ŵ , which produces the highest probability 

 

 ( )ˆ arg max
W

W P W O=  (1.1) 

 

 To model ( )P W O  in this probabilistic framework, a variety of assumptions must be 

made. In a first assumption, words are typically decomposed into sequences of phonetic 

units (or phones) representing the specific sounds used to distinguish between different 

words. For example, the Portuguese word dia (day) contains the phones /d/, /i/, and /A/. By 

applying Bayes’ theorem and decomposing the sequence of words W  into a sequence of 

small phonetic units U , the problem is reduced to finding Ŵ  such that 

 

 ( ) ( ) ( ) ( )
,

ˆ arg max arg max
W W U

W P W O P O U P U W P W= =  (1.2) 

  

 Hence, in the speech recognition problem there are four broad sub-problems to be 

solved: 

 decide on a feature extraction algorithm and model the channel probability 

( )P O U  - commonly referred to as acoustic modeling; 

 model the source probability ( )P U W  referred to as the lexical pronunciation 

model 

 model the source probability ( )P W  commonly referred to as language modeling; 

 search over all possible word strings W  that could have given rise to O, finding 

out the most likely one Ŵ . 

 

 The aim of this work is concerned with statistical language models and their use in a 

system for transcription of broadcast news data. In the next section, we will give an 

overview of the basic language modeling problem. 
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1.2 Language Modeling Basics 

The task of language modeling is to assign a probability value to every possible word in a 

text stream based on its likelihood of occurrence in the context in which it finds itself. Let 

W  be a sequence of n  words, i.e. 1, , nW w w= … . Hence, the source probability ( )P W  is 

approximated by 

 ( ) ( )1 1
1

, ,
n

i i
i

P W P w w w −
=

=∏ …  (1.3) 

where ( )1 1, ,i iP w w w −…  is the probability that the word iw  has been spoken immediately 

following the preceding word sequence 1 1( , , )iw w −… . In this case, the word string 

1 1( , , )iw w −…  is usually referred to as the history of the word iw . In general, this 

probability ( )P W  is estimated by examining large corpora of text for patterns and 

regularities, in a process known as training.  

 A first choice to face when constructing language models is the vocabulary V  in 

which the iw  symbols take value. For practical purposes one has to limit the size of the 

vocabulary. A common choice is to use a finite set of words V . A second choice is the 

type of source model to be used. In fact, it is not feasible to compute the probability of a 

word given a long history of words. It should be noted that for a vocabulary of size V  

there are 1iV −  possible distinct histories and iV  values are needed for complete 

specification of probabilities ( )1 1, ,i iP w w w −… . Even for practical vocabulary sizes such 

an astronomical number of estimates can neither be stored nor accessed in an efficient way. 

For this reason, word histories 1 1( , , )iw w −…  are partitioned into equivalence classes 

1, , mK K… such that each possible word history belongs to one and only one equivalence 

class. Hence, if  1 1( , , )i tw w K− ∈… , we have 

 

 ( ) ( )1 1, ,i i i tP w w w P w K− =…  (1.4) 
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 The most common method of partitioning the word histories is by the use of n-grams, 

where the histories are partitioned according to their final 1N −  words. Currently the most 

successful model assumes a Markov source of a given order N  leading to the called n-

gram language model [Rabiner and Juang, 1993][Jelinek, 1997]: 

 

 ( ) ( )1 1 1 1, , , ,i i i i N iP w w w P w w w− − + −=… …  (1.5) 

 

 The n-gram model attempts to capture the syntactic and semantic linguistic constraints 

by estimating the probability of a word in a sentence given its preceding 1N −  words. The 

word string 1 1, ,i N iw w− + −…  is usually referred to as history ( h ) of word iw . The n-gram 

probability estimates can then be computed during the training process using the relative 

word frequencies, estimated according to the maximum likelihood method [Ney et al., 

1997] as follows: 

 

 ( ) ( )
( )

1
1 1

1 1

, ,
, ,

, ,
i N i

i i N i
i N i

C w w
P w w w

C w w
− +

− + −
− + −

=
…

…
…

 (1.6) 

 

where ( )1, ,i N iC w w− + …  is the frequency at which ( )1, ,i N iw w− + …  occurs in the training 

corpora. The most widely used n-gram models are obtained for N = 2 (bi-grams), N = 3 

(tri-grams) and N = 4 (four-grams). 

 However, sometimes there are some mismatches between training and testing data, for 

example different tasks. For some tasks it can be very hard and expansive, and time 

consuming to obtain a sufficient amount of task related training data. The task of broadcast 

news transcription is a typical example. In fact, there are some significant differences in 

language modeling between the broadcast news speech transcripts and written texts 

collected for instance from newspapers. In these cases, language model adaptation 

provides a mean to deal with these mismatches. Using a certain amount of task specific 

data to adapt the ASR language model component, two or more language models trained 

on different datasets can be mixed to produce a task adapted language model. In chapter 

two we give an overview of the state of the art in terms of language model adaptation 
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strategies, high-lighting the special case of broadcast news transcription systems and their 

evaluation measures. 

  In the next section, we briefly describe the overall system we used and which we 

improved with the work done in this thesis. 

1.3 BN Transcription System for European 

Portuguese 

This thesis presents part of the work done in the update and improvement of a fully 

functional prototype system for the selective dissemination of multimedia information 

[Meinedo et al., 2003][Meinedo, 2008]. This system was developed for BN data, 

specifically for European Portuguese TV news shows, being currently deployed in a real-

life application. It is daily running since May 2002, successfully processing the 8 o’clock 

evening news of the Portuguese public TV broadcast company (RTP), and sending alert 

messages for registered users (http://ssnt.l2f.inesc-id.pt). The system automatically 

recognizes an announcer’s speech, allowing closed-captioning to be created live and in 

real-time for that TV broadcaster (RTP). 

  

Figure 1.3: Media monitoring system. 

(extracted from [Meinedo, 2008]) 

 

 This media monitoring system is composed by several modules that allow to index and 

catalogue BN data (see figure 1.3). The system has a set of news shows to monitor from 
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different BN TV stations and a set of registered users each one with a profile regarding the 

news topics that are of his/her interest. After processing a news show, the media 

monitoring system compares the topics automatically detected for each story identified in 

that news show against the users profiles. If matches are detected then it sends alert emails 

to the corresponding users with the title, short summary and video link to the relevant news 

stories detected. 

 The most important modules of this system are the Audio Pre-Processing (APP), 

Automatic Speech Recognition (ASR) and Topic Segmentation and Indexation (Topic 

Detection, TD). This thesis describes the work done to specifically update and improve the 

ASR module. Hence, in chapter three we give a short overview of its baseline system. 

Further details about the overall system and other modules can be found in the PhD work 

presented in [Meinedo, 2008]. 

1.4 Motivation 

The daily and real-time transcription of broadcast news is a challenging task both in 

acoustic and in language modeling. To achieve optimal performance in news transcription, 

several problems have to be overcome: variety of acoustic conditions (signal quality, 

environmental noise, music), variety of speakers (news anchors, interviews with a variety 

of speakers, outside studio reporters, etc.), many different speaking styles (from 

spontaneous conversation to prepared speech close in style to written texts), and topic 

changing over time leading to unlimited vocabulary and many new topics appearing 

everyday.  

 Even though the linguistic properties of broadcast news data change over time, most 

ASR components use static language models with the vocabulary selected from a large and 

fixed training corpus, which was the case of the BN transcription system described in 

section 1.3 and used in our work. This means there is usually a significant gap between the 

epoch of the LM training process and the use of that system for audio data processing. 

However, the broadcast news domain is characterized by rapid changes in topic, which 

means changes in vocabulary items and linguistic styles to be recognized and transcript. 

Particularly, when transcribing broadcast news data in highly inflected languages, like the 
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European Portuguese one, the vocabulary growth leads to high out-of-vocabulary (OOV) 

word rates (here, OOV means words that are not included in the recognizer lexicon, with 

the OOV word rate defined as the ratio between the number of words not covered by the 

vocabulary and the total number of words in the recognized texts). Hence, the structure of 

language indirectly influences speech recognition efficiency.  

 The European Portuguese language shares its characteristics with many other 

inflectional languages, especially those of the Romance family. European Portuguese 

words often exhibit clearer morphological patterns in comparison to English words. 

Morpheme is the smallest part of a word with its own meaning. In order to form different 

morphological patterns (derivations, conjugations, gender, number inflections, etc.), two 

parts of a word are distinguished: stem and ending. Stem is the part of the inflected word 

that carries its meaning, while the ending specifically denotes categories of person, gender 

and number, or the final part of a word, regardless of its morphemic structure. To outline 

the European Portuguese language characteristics, we show in table 1.1 an example of two 

semantically equal sentences differing in subject gender, but being identical in English. 

 

masculine feminine 
European Portuguese 

O meu amigo é professor A minha amiga é professora 

 

undefined 
English 

My friend is a teacher 

 

Table 1.1: An example of two semantically equal sentences differing in subject gender, but 

being identical in English. 

 

 European Portuguese language distinguishes between three types of gender: masculine, 

feminine and neuter, while English only has one form. All nouns, adjectives and verbs in 

European Portuguese have a gender. They present far more variant forms than their 

English counterparts. Words have augmentative, diminutive and superlative forms (e.g. 

“small house” = casinha, where –inha is the suffix that indicates a diminutive). Moreover, 

European Portuguese is a very rich language in terms of verbal forms. While the regular 

verbs in English have just 4 variations (e.g. talk, talks, talked, talking), the European 

Portuguese regular verbs have over 50 different forms, with each one having its specific 
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suffix [Orengo and Huyck, 2001]. The verbs can vary according to gender, person, 

number, tense and mood. Three types for the grammatical category of person (1st, 2nd, 3rd 

person) reflect the relationship between communication participants. There are five tenses: 

present, past, past perfect, past imperfect, past pluperfect and future. Another grammatical 

category, mood, denotes the feeling of the speaker towards the act, which is defined by the 

verb. There are eight different types of mood in European Portuguese: indicative, 

subjunctive, imperative, conditional, infinitive, inflected infinitive, participle, and gerund. 

 The rich morphology of the European Portuguese language causes a large number of 

possible words, which in turn decreases the quality of language models (higher OOV 

rates). To illustrate this peculiarity of the European Portuguese, we plot in figure 1.4 the 

vocabulary growth for two BN corpora: an European Portuguese BN corpus used in this 

thesis (ALERT-SR corpus) and consisting of about 500K word tokens and a subset of the 

1997 English Broadcast News Speech corpus (HUB4) with the same size. As one can 

observe, for the European Portuguese corpus the vocabulary growth is faster than for the 

English one. For a corpus size of about 500K word tokens, HUB4 subset has a vocabulary 

size of 19K words, while the vocabulary size for the ALERT-SR corpus is 26K, i.e. about 

37% more. 
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Figure 1.4: Vocabulary growth comparison between two Broadcast News corpora: the 1997 

English BN Speech corpus (HUB4) and the European Portuguese BN corpus (ALERT-SR). 
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 European Portuguese demands a larger vocabulary to get the same degree of text 

corpus coverage than for English. It contains many different word forms, all derived from 

the same basis (lemma). This property has already been studied and used in language 

modeling for European Portuguese in the author Master’s thesis [Martins, 1998]. 

 From the work we have done in [Martins et al., 2005] we could derive a qualitative 

performance analysis which indicated some type of recognition errors present in the BN 

transcription system used in this thesis and briefly described in section 1.3: 

 

 Errors due to speech disfluencies, especially common in spontaneous speech, which 

is frequent in our BN corpora. The frequency of disfluencies is very high for this 

style of speech, with values of about 20% as cited in [Shriberg, 2005]. In our BN 

corpora only filled pauses account for about 2% of total words. 

 Errors due to insufficient or incorrect phonetic transcriptions. Some automatic 

phonetic transcriptions in the pronunciation dictionary are incomplete or were 

incorrectly produced. This occurs mainly in case of foreign words, whose 

automatic transcriptions are not reliable (“Al-qaeda” is an example of a foreign 

word whose automatically generated phonetic transcription is incorrect. 

 Errors due to inconsistent spelling of orthographic transcriptions both in BN 

manual transcriptions and written news. The most common inconsistencies occur 

for foreign names (for example, “Madeleine” and “Medeleine”), or consists of 

writing the same word entities both as separate words and as a single word (for 

example, “secretário geral” and “secretário-geral”). 

 Errors due to out-of-vocabulary (OOV) words. On average, one OOV word could 

cause more than one error, with an average rate of 1.5 additional errors 

[Hetherington, 1995]. 

 

 For a live running closed-captioning service for news programs, like the one currently 

based on the broadcast news transcription system used in this work, the ability to correctly 

address new words appearing on a daily basis, mainly name entities, is an important factor 

to take into account for its performance. Hence, the problem of OOV words is a common 

and important one.  
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 For a task like broadcast news transcription, it is practically impossible to define in 

advance and in a static way a word vocabulary that could cover all words that may appear 

in a news show, which means the system is constantly faced with new words spoken by 

different users. Typical examples of such words are proper and common names. However, 

the magnitude of the problem mainly depends both on the vocabulary size and the temporal 

gap between the training data epoch used to construct that vocabulary and the speech it is 

used on. 

 

74.0%

21.9%

100.0%

39.5%
WER

SER

IV sentences OOV sentences
 

Figure 1.5: Word Error Rate (WER) and Sentence Error Rate (SER) for in-vocabulary (IV) 

and out-of-vocabulary (OOV) sentences. 

 

 Figure 1.5 shows the importance of the OOV problem in our BN transcription system. 

As one can observe, the word error rate (WER) is almost two times higher for sentences 

with OOV words than it is for in-vocabulary (IV) sentences. The increase in WER for 

OOV sentences can be related to three factors [Jurafsky and Martin, 2000]. The first one 

and most obvious is the fact that OOV words are wrongly recognized since they are not in 

the lexicon. The second one is the fact that some errors resulting from OOV words 

correspond to in-vocabulary words being wrongly recognized due to their proximity to 

unknown words. The third factor is related to the high correlation between out-of-domain 

sentences and sentences containing OOV words whose n-gram sequences tend to be out-

of-domain and consequently harder to be correctly recognized. In the same figure, one can 

observe the sentence error rate (SER) too. By SER one means the percentage of sentences 

with at least one recognition error, and of course for OOV sentences this value is always 
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100%. Moreover, even though the use of a very large vocabulary in the ASR component 

could reduce the OOV word rate in broadcast news data, the number of sentences having at 

least one OOV word is still high, approximately 10-15% with a 57K vocabulary for 

English broadcast news data [Palmer et al., 2005]. However, for highly inflected languages 

like European Portuguese, that number tends to be even higher. For our BN data it is about 

26%, i.e. a quarter of the sentences have at least one OOV word. 

 In this thesis, we address the problem of language model adaptation over time, by 

proposing and developing various frameworks for vocabulary selection and language 

model adaptation for the European Portuguese. In the next section we summarize the 

proposed adaptation methods. 

1.5 Contributions 

The aim of this thesis is to develop automatic language model adaptation frameworks for a 

European Portuguese broadcast news transcription system. Language model adaptation 

consists of selecting an appropriate word list to include in the recognizer lexicon and 

reducing the mismatch in language model due to possible linguistic and temporal gaps 

between the training corpora and the BN data to be processed. 

 We propose a novel approach for vocabulary selection, extensible to any number of 

available training corpora. This approach relies on using Part-Of-Speech (POS) tags to 

compensate for word usage differences across the various training corpora. Its performance 

is compared in terms of expected OOV word rate with the performance of the conventional 

and most used word frequency based approach, showing to be more efficient especially for 

selection of large-sized vocabularies as in case of BN transcription task. 

 To adapt the ASR language model component of our BN transcription system, we 

propose a daily and unsupervised adaptation approach which is done in a multi-stage 

recognition framework. The idea of vocabulary and language model adaptation is to use 

written news daily available on the Internet to be able to model the lexical content of the 

news, reducing the impact of linguistic differences over time. 

 In a first stage, using the proposed vocabulary selection algorithm and written news 

collected from the Internet, the vocabulary and language model of the ASR component are 
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adapted on a daily basis to be used by the live closed-captioning system. In a second stage 

and using the recognition results from the first stage, a new adaptation step is performed 

which dynamically adapts the active vocabulary and language model to the topic of the 

current news segment. Hence, based on the texts collected on the Web, a story-based 

vocabulary is selected using again the proposed vocabulary selection algorithm. Using an 

Information Retrieval engine [Strohman et al., 2005] and the ASR hypotheses generated on 

the first stage as query material, relevant documents are extracted from a dynamic and 

large-size dataset to generate a story-based language model. Since those hypotheses are 

quite small and may contain recognition errors, a relevance feedback method for automatic 

query expansion is used [Lavrenko et al., 2001].  

 Finally, the proposed LM adaptation framework is complemented with a new method 

that allows including new words in the system vocabulary without the need of additional 

adaptation data or language model retraining. This method uses morpho-syntatic 

information about an in-domain corpus and part-of-speech (POS) word classes to define a 

new language model unigram distribution associated to the updated system vocabulary. 

1.5.1 Published Results 

During this work we published a number of articles describing the work done in 

vocabulary selection algorithms and in language modeling adaptation for ASR, specifically 

applied to a Broadcast News Transcription system for the European Portuguese language. 

A complete list of articles published in international conferences and one National Journal 

is given bellow: 

 

 Article describing the work done with the updating and improvement of the 

language model component of a continuous speech recognition system for the 

European Portuguese and integrated in the BN transcription system used in this 

thesis. Two sources of performance improvement have been studied: the inclusion 

of more training data to better estimate the language model parameters, and the use 

of different discounting and pruning techniques. 
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Martins, C., Teixeira, A. and Neto, J. (2005). “Language Models in Automatic 

Speech Recognition”. In Revista do Departamento de Electrónica e 

Telecomunicações da Universidade de Aveiro. 

 

 Article proposing a daily vocabulary and LM adaptation framework which directly 

extracts new words based on contemporary written news available on the Internet 

and some linguistic knowledge (lemmas-based) about the words found on those 

news. 

 

Martins, C., Teixeira, A., and Neto, J. (2006). “Dynamic Vocabulary Adaptation 

for a daily and real-time Broadcast News Transcription System”. In Proceedings of 

IEEE/ACL Workshop on Spoken Language Technology, Aruba. 

 

 Article introducing a modified vocabulary selection technique which uses part-of-

speech (POS) word classification to compensate for word usage differences across 

the various training corpora. This approach is based on the hypothesis that the 

similarities between different domains can be characterized in terms of style 

(represented by the POS sequences). 

 

Martins, C., Teixeira, A., and Neto, J. (2007). “Vocabulary Selection for a 

Broadcast News Transcription System using a Morpho-syntatic Approach”. In 

Proceedings of Interspeech 2007, Antwerp, Belgium. 

 

 Article proposing a daily and unsupervised adaptation approach which dynamically 

adapts the active vocabulary and LM to the topic of the current news segment 

during a multi-pass speech recognition process. Based on texts daily available on 

the Web, a story-based vocabulary is selected using the morpho-syntatic technique 

previously introduced. Using an Information Retrieval engine, relevant documents 

are extracted from a large corpus to generate a story-based LM. 

 



16 

Martins, C., Teixeira, A., and Neto, J. (2007). “Dynamic Language Modeling for a 

Daily Broadcast News Transcription System”. In Proceedings of ASRU 2007, 

Kyoto, Japan. 

 

 Article presenting the evaluation and comparison of the two previously proposed 

vocabulary adaptation approaches and their integration into the multi-pass LM 

adaptation framework. 

 

Martins, C., Teixeira, A., and Neto, J. (2008). “Dynamic Language Modeling for 

the European Portuguese”. In Proceedings of PROPOR 2008, Curia, Portugal. 

 

 Article proposing a new method that allows including new words in the vocabulary 

even if no well suited training data is available, as is the case of archived 

documents, and without the need of LM retraining. It uses morpho-syntactic 

information about an in-domain corpus and part-of-speech word classes to define a 

new LM unigram distribution associated to the updated vocabulary. 

 

Martins, C., Teixeira, A., and Neto, J. (2008). “Automatic Estimation of Language 

Model parameters for unseen Words using Morpho-syntactic Contextual 

Information”. In Proceedings of InterSpeech 2008, Brisbane, Australia. 

1.6 Outline 

The remainder of this thesis is organized in seven chapters. Following is a brief description 

of each chapter: 

 

Chapter 2: State of the Art 

This chapter is intended to provide the basic background needed throughout the thesis and 

the related state of the art. A short overview of language modeling and its use for speech 

recognition is given. We present a survey of approaches to the vocabulary and language 

model adaptation problem, with special focus on Broadcast News/Conversations tasks. The 



17 

chapter also provides a short overview of Information Retrieval Techniques (IR) and their 

use in the field of ASR. 

  

Chapter 3: Resources and Baseline System 

Chapter 3 provides a description of the fundamental resources used in this thesis for 

training and evaluation of all the proposed algorithms and adaptation approaches. The 

chapter briefly describes the ASR baseline system (AUDIMUS.media) used in our work. It 

also gives an overview of the remaining processing tools used. 

 

Chapter 4: Vocabulary Selection 

This chapter describes in detail the work done in the scope of our thesis, where we are 

exploring the use of additional sources of information for vocabulary adaptation of a 

European Portuguese broadcast news transcription system. Since the vocabulary 

optimization problem is mainly dependant on the specific linguistic characteristics of the 

target language, we present an analysis of the vocabulary growth, coverage and OOV 

words for the European Portuguese language using the datasets described in chapter 3. 

Based on that analysis and its conclusions, we devised new vocabulary selection 

approaches. Across this chapter a set of experiments on using these approaches are 

presented and their results reported and compared. 

 

Chapter 5: Language Model Adaptation 

This chapter presents the proposed dynamic vocabulary and language modeling adaptation 

framework, describing the experimental work carried out for this thesis. The chapter 

presents two approaches for language model adaptation. The first one is a single-stage 

recognition procedure which relies on the presented vocabulary selection algorithm. The 

second one is a multi-stage procedure using some Information Retrieval techniques on top 

of the new vocabulary selection algorithm to estimate the adapted language model. A set of 

experiments are presented and their results reported and compared to the baseline system. 

Finally, we briefly describe the integration and implementation of the proposed framework 

into a fully functional prototype system for the selective dissemination of multimedia 

information. 
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Chapter 6: Handling Unseen Words 

To complement the approaches proposed in chapter 5, we describe in this chapter a new 

method that allows including new words in the vocabulary even if no well suited 

adaptation data is available, as is the case of archived documents. We conclude this chapter 

with an experimental evaluation of the proposed approach, drawing some conclusions at 

the end. 

 

Chapter 7: Conclusions and Future Directions 

Finally, chapter 7 presents the contributions and conclusions of the thesis. It concludes 

with a discussion of future directions. 
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2 

State of the Art 

The previous chapter introduced the basic concepts of language modeling and its 

application to large vocabulary speech recognition. In this chapter, we provide an overview 

of the theory of language modeling, outlining the traditional problems inherent in statistical 

language modeling and the techniques commonly used to overcome them. We present a 

brief summary of the state-of-art, giving an overview about the current state in terms of 

vocabulary and language model adaptation. Next, we describe the use of Information 

Retrieval (IR) techniques for speech recognition tasks, focusing on the techniques we used 

in the proposed adaptation framework. Finally, we summarize current approaches in terms 

of language models applied to the Broadcast News speech recognition task. 

2.1 Language Modeling for Speech Recognition 

Techniques for language modeling mainly fall into two categories. The first type of models 

are the traditional linguistic grammars, such as context free and unification based 

grammars [Cole et al., 1995], which although being rigorously defined from linguistic 

perspective, suffer from the typical limitations of rule-based systems: coverage, predictive 

power and computational requirements. Complex hand-built grammars often lack coverage 

of sentences structures going beyond its given linguistic theory, being difficult to adapt to 

new domains and languages. Moreover, their computation complexity is too high to be 
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efficiently employed in time critical applications, such as large vocabulary continuous 

speech recognition. 

 The second language model category (data-oriented grammars) is based on a statistical 

representation of the natural language and has gained common usage. A statistical 

language model probabilistically describes the constraints on word order found in 

language: typical word sequences are assigned high probabilities, while atypical ones are 

assigned low probabilities. In the next sub-sections we give an overview about the 

vocabulary selection approaches, describing the mostly used statistical LM, the n-gram 

model, its major advantages and drawbacks, the discounting and smoothing techniques 

used to better estimate probabilities when there is insufficient data, and some of the 

alternative extensions to the n-gram language model which have been proposed by the 

research community. Finally, we give an overview about the current state in terms of 

language model adaptation, especially in case of the BN transcription task. 

2.1.1 Vocabulary Selection/Adaptation 

The first step in language model construction is the selection of the vocabulary, i.e. the set 

of words that can be recognized by the ASR component. The size and performance of a 

language model or speech recognition system are often strongly influenced by the size of 

its vocabulary. The most common approaches to vocabulary selection and optimization are 

typically based on word frequency, including words from each training corpus that exceed 

some empirically defined threshold, which mainly depends on the relevance of the corpus 

to the target task [Gauvain et al., 2002]. 

 Although the vocabularies of ASR systems are designed to achieve high coverage for 

the expected domain, out-of-vocabulary (OOV) words cannot be avoided. Hence, 

depending on the way that the language model handles the occurrence of such OOV words, 

its vocabulary can be called to be either open or closed. A closed vocabulary model makes 

no provision for OOV words. So, those words will not be recognized and an error will be 

reported. On the other side, an open vocabulary model allows for OOV words to occur 

with those words being mapped to the same symbol, typically denoted as <unk>. In each 

case, every OOV word in the input utterance is guaranteed to result in one or more output 

errors. However, some of those recognition errors will affect applications performance, as 
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the case of incorrectly recognized spoken names in tasks like broadcast news transcription 

and/or indexation, where this type of content words play an important role for the overall 

systems performance. To deal with the OOV words problem different approaches have 

been suggested by the research community. These approaches can be classified into 

different categories [Bazzi, 2002]: 

 

Vocabulary Optimization 

One approach to the OOV word problem might be to choose the vocabulary in such a way 

to reduce the OOV word rate by as much as possible - Vocabulary Optimization. This 

optimization could either involve increasing the vocabulary size of the ASR component, or 

it could also be selecting those words most representative for the target domain/task. 

Speech recognition systems can have a range of vocabulary sizes, depending on the target 

domain, the generality required, as well as the availability of computational resources. For 

instance, current systems for unconstrained tasks such as the transcription/indexation of 

broadcast news programs frequently have vocabularies between 25,000 and 64,000 words 

or even more as in case of highly inflected languages. Increasing the vocabulary size of a 

speech recognition system can result in lower error rates, in part by decreasing the 

percentage of OOV words in the input utterance. However, systems with larger 

vocabularies require more memory and run slower than those with smaller vocabularies. In 

addition to increased computational cost, adding words to a vocabulary increases the 

potential confusability with other vocabulary words [Rosenfeld, 1995].  

 The need for unlimited language vocabulary despite a limited ASR vocabulary 

suggests an alternative in which rather than trying to include all possible words in the ASR 

vocabulary we instead develop techniques for dynamically adapting the overall system 

vocabulary – dynamic vocabularies - using lexical resources, without requiring a larger 

ASR vocabulary and the problems this entails. In [Geutner et al., 1998] an approach 

targeted at reducing the OOV word rates for heavily inflected languages is suggested. 

Their work uses a multi-pass recognition strategy to generate morphological variations of 

the list of all words in the lattice generated in a first-pass, thus dynamically adapting the 

recognition vocabulary for a second-pass of the speech recognition process. The basic idea 

of this so-called adaptation algorithm (HDLA – Hypothesis Driven Lexical Adaptation) is 

that a large number of words in the hypotheses generated with a baseline vocabulary are 
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wrongly recognized because only the inflectional ending is wrong whereas the stem was 

recognized correctly. Hence, all words with the same stem are then incorporated into the 

adapted vocabulary for a second recognition pass, with the new words replacing the least 

frequent ones that did not appeared in the first recognition pass. By applying this 

adaptation algorithm both on Serbo-Croatian and German news data, OOV word rates 

were reduced by 35-45%. 

 In [Venkataraman and Wang, 2003] the authors propose and evaluate three different 

methods for selecting a single vocabulary from many corpora of varying origins, sizes and 

recencies such that the vocabulary is optimized for both size and OOV word rate in the 

target domain. They concluded that a maximum-likelihood-based approach is a robust way 

to select a domain’s vocabulary especially when reasonable amounts of in-domain texts are 

available. In this approach, the normalized unigram counts of each word in each of the 

available training corpora are linearly interpolated, choosing the mixture coefficients 

which maximize the probability of the in-domain corpus. This technique scalable and 

extensible to any number of corpora showed to be robust especially for selection of small 

vocabularies. 

 More recently, researchers are using the Word Wide Web (WWW) as an additional 

resource of training data for dynamic vocabulary and language modeling adaptation 

procedures [Schwarm et al., 2004]. In [Federico and Bertoldi, 2004] the problem of 

updating over time the LM component of an Italian broadcast news transcription system is 

addressed. In particular, vocabulary adaptation, done on a daily basis, is carried out by 

adding words to the active vocabulary according to frequency and recency in contemporary 

written news, which allowed achieving significantly lower OOV word rates. Reported 

experiments showed a relative reduction of 58% in OOV word rate. The work presented in 

[Oger et al., 2008] suggests that the local context of the OOV words contains relevant 

information about them. Using that information and the Web, different methods were 

proposed to build locally-augmented lexicons which are used in a final local decoding 

pass. This technique allowed recovering 7.6% of the significant OOV words and the 

accuracy of the system was improved. 

 In [Allauzen and Gauvain, 2005a] an automatic adaptation method which makes use of 

contemporaneous texts available on the Internet to model the lexical and linguistic content 

of the news on a daily basis was proposed. A vectorial algorithm for vocabulary adaptation 
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is used which combines word frequencies vectors estimated on adaptation corpora to 

directly maximize lexical coverage on a development corpus, thus eliminating the need for 

human intervention during the vocabulary selection process. Authors’ experiments showed 

a significant reduction of the OOV word rate compared with the baseline vocabulary: a 

relative decrease of 61 % in French and 56% in English. 

 A similar framework to the one presented in [Geutner et al., 1998] is proposed by 

Palmer and Ostendorf [Palmer and Ostendorf, 2005], but focusing on names rather 

morphological word differences. They proposed an approach for generating targeted name 

lists for candidate OOV words, which can be used in a second pass of recognition. The 

approach involves offline generation of a large list of names and online pruning of that list 

by using a phonetic distance to rank the items in a vocabulary list according to their 

similarity to the hypothesized word. Their reported experiments showed that OOV word 

coverage could be improved by nearly a factor or two with only 10% increase in the 

vocabulary size. 

 Finally, other approaches have been used for dynamic adaptation of vocabulary and/or 

language model to the topics present in a BN show using different Information Retrieval 

(IR) techniques to extract relevant documents from a large general corpus or from the Web 

for adaptation proposes [Bigi et al., 2004] [Chen et al., 2004] [Boulianne et al., 2006]. 

These multi-pass speech recognition approaches use the ASR hypotheses as queries to an 

IR system in order to select additional on-topic adaptation data. 

 

Confidence Scoring 

The use of confidence scoring measures to predict whether a recognized word is actually a 

substitution for an OOV word is another strategy to deal with the OOV words problem. 

The ability to estimate the confidence of the recognized hypothesis allows the ASR system 

to either reject all or part of the sentence if the confidence value is bellow some pre-

defined threshold. However, this approach has some drawbacks too. Confidence measures 

can be good at predicting whether a hypothesized word is correct or not, but unable to 

differentiate between errors due to OOV words and those errors due to other problems such 

as degraded acoustical conditions. Moreover, confidence measures are only used to detect 

possible sentence segments with OOV words. To identify those OOV words other 

techniques must be used. 
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 Different methods on how to estimate confidence scores to detect possible OOV words 

have been proposed (e.g. [Carpenter et al., 2001]) but the most interesting part is how to 

use these confidence scores to correct input segments detected as OOV words. In [Palmer 

and Ostendorf, 2005] an approach that involves the integration of word confidences into a 

probabilistic model, which can jointly identify names and errors, is used to improve OOV 

name resolution for applications in language processing, particularly speech recognition. 

 

Multi-Stage Sub-Word Recognition 

This strategy uses two or more stages during the recognition process [Rotovnik, 2004] 

[Creutz et al., 2007]. In a first stage, a sub-word recognition is performed and phonetic 

sequences are obtained. This way, the ASR system is able to hypothesize novel phonetic 

sequences which could potentially belong to OOV words. In the second stage, those sub-

word sequences are mapped to word sequences using word-level information. This kind of 

strategies can involve many variations. For instance, the output from the first stage (which 

is passed to the second recognition stage) can be the single best hypothesis, the N best 

hypotheses, or a graph representing the search space. Moreover, the sub-word recognition 

can be done at different levels: phonetic level, syllable level, morpheme level, or even 

using automatically derived sub-word units. A major weakness of this approach derives 

from the fact that an important source of information, the word level constraints, is 

removed from the first stage, causing significant degradation in terms of WER for words in 

the vocabulary.  

 English has relatively little inflectional morphology (endings expressing case number 

and gender agreement) and prefers to express complex concepts as a phrase, or a 

hyphenated compound, rather than as a closed compound. However, other European 

languages exhibit a greater degree of compounding/inflection than English. A lexicon for 

this kind of languages needs to contain considerably more words in the ASR vocabulary 

than the English language in order to attain the same coverage [Gauvain et al., 2005]. To 

overcome this problem some ASR systems have been proposed which eschew the 

orthographic word as the basic unit of the language model, and instead choose morphemes 

or other sub-word units created through data driven processes. Most research on 

morpheme-based systems has been developed for inflected/compounded languages such as 

Turkish and Finish [Kurimo et al., 2006], German [Geutner et al., 1998], Slovenian 
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[Rotovnik et al., 2003], Check [Ircing and Psutka, 2002], Arabic [Choueiter et al., 2006] 

[Xiang et al., 2006], Korean [Kwon and Park, 2003], etc. These works report some 

improvements in terms of OOV word rates and/or WER, especially when combining these 

models with the standard ones based on words. The problem of acoustic confusability 

arises when larger sub-word vocabularies are used. In fact, sub-word language model units 

alleviate the problem of rapid vocabulary growth, especially for this kind of highly 

inflectional languages. But as the base units of the language model become fewer and 

smaller, the language model becomes less constrained and the acoustic confusability 

increases. 

 

Filler Models 

One of the most commonly used approaches for handling OOV words is the addition of a 

generic unknown word both in acoustic and language models – the so called filler model, 

sometimes known as garbage model. This generic word model competes during the 

recognition process with the remaining models of in-vocabulary words, with its presence in 

the hypothesis signaling the presence of an OOV word. As in the case of confidence 

scoring approach, filler models can potentially classify segments of the input signal 

corresponding to in-vocabulary words as OOV words. 

 In [Bazzi, 2002] the author proposes a novel approach for handling OOV words in a 

single-stage framework, which uses an explicit and detailed model of OOV words to 

augment the closed-vocabulary recognizer search space. The author explore several 

research issues related to designing the sub-word lexicon, language model and OOV word 

model topology in order to ensure that the OOV word model does not degrade system 

performance for in-vocabulary words. In [Hazen and Bazzi, 2001] a combination of this 

model with confidence scoring is given. In order to improve the transcription readability, 

an approach to transcribe OOV input segments identified as OOV words based on 

phoneme-to-grapheme conversion is presented in [Decadt et al., 2002]. 

 

OOV Word Class 

In some approaches an open vocabulary language model is introduced by assuming a 

special OOV word class, where the addition of new words is done by extending that OOV 
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class and re-estimating its unigram distribution ( )oovP w . This unigram distribution takes 

into account the word frequencies of the adaptation texts. 

 In [Federico and Bertoldi, 2004], an approach of this kind was introduced. The 

baseline vocabulary of 62K words is extended by adding to that special OOV word class 

60K new words selected from the contemporary written news on a daily basis. 

 In [Allauzen and Gauvain, 2005] another open vocabulary approach was reported. 

Special forms called back-off word classes (BOW) were used to introduce a word in the 

vocabulary without retraining the language model. Thus, during language model training 

one of these forms replaces one or more words which are not yet known, by discounting a 

mass of probability from the OOV words. Then, prior to decoding, new words can be 

added as alternate orthographic forms of these special classes. Words are linked with their 

lexical BOW according to their POS tag. An oracle experiment was performed to estimate 

an upper-bound on the gain that could be obtained with that method. This experiment was 

carried out by adding all the OOV words in the manual transcripts to the baseline 

vocabulary via their associated BOW. Reported results showed that about 80% of all new 

words introduced by this method were correctly recognized. 

2.1.2 Word-based n-gram Models 

In chapter 1 it was shown that the role of the language model in ASR is to provide an 

estimate of ( )P W . Currently the most successful model assumes a Markov source of a 

given order N  leading to the called n-gram model [Rabiner and Juang, 1993], in which an 

estimate of the likelihood of a word iw  is made solely on the identity of the preceding 

1N −  words in the sentence, with the choice of N being based on a trade-off between 

detail and reliability. Hence, this choice will be dependent on the quantity of training data 

available. For the quantities of training data typically available from newspapers written 

texts and BN data, N=4 (4-gram models) seems to be the best balance between precision 

and robustness for task like broadcast news transcription [Goodman, 2001]. 

 The strengths of the n-gram model come from its success at capturing local syntactic 

and semantic constraints, from the simplicity of its training process, and from its 

computational efficiency within the recognition framework. One drawback, however, is 
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that the current word iw  is clearly dependent on much more words than the previous two 

or three words. In fact, it is easy to construct a nonsense sentence or at least an 

ungrammatical one, but which has a high probability according to a 3-gram or 4-gram 

language model. Table 2.1 shows an example of a recognized sentence which is 

ungrammatical, but consists of very plausible 4-grams. This drawback clearly shows the 

inability of n-gram language models to take into account the long-range syntactic and 

semantic dependencies. 

 

Type Transcription 

Reference 
a lei que regulamenta o código do trabalho foi 

APROVADA no parlamento 

Hypothesis a lei que regulamenta o código do trabalho foi 

APROVADO no parlamento 

 

Table 2.1: Example showing the ASR output for a BN sentence and its correct transcription. 

 

 Of course, the most obvious extension to 4-gram models would be to simply move to 

higher order n-grams, such as 5-grams and so on. In [Goodman, 2001] it is shown that in 

fact, significant improvements can be gotten from moving to n-grams of higher order if 

sufficient training data and computational power is available. However, to overcome this 

limitation of n-gram models other extensions have been proposed. In the next sub-section 

we give an overview of them. 

2.1.3 Extensions to Word-based n-gram Models 

Class-based n-gram models 

An extension to n-gram models are Class-based n-grams (also called Clustering models). 

Clustering models differ from standard n-gram models since they attempt to make use of 

the similarities between words to define a mapping of the vocabulary words into a smaller 

number of classes. For instance, if we have seen occurrences of sentences blocks like 

“novas eleições no sábado” and “novas eleições no domingo”, then we might think that the 
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word “sexta-feira”, being semantically similar to both “sábado” and “domingo”, is also 

likely to follow the sentence block “novas eleições no”. Thus, the n-grams are then based 

on classes rather than on words.  

 There are different approaches concerning the problem of how to get the best classes 

(clusters). Some of those approaches are linguistically motivated, and correspond to the 

word's part-of-speech (POS). On other approaches classes are automatically derived from 

the language model training data using data-driven techniques. Many automatic clustering 

approaches have been investigated, for example in [Ney et al., 1994]. 

 Another question related to class-based n-gram models is how to use those classes. For 

example, when dealing with a trigram, the class-based model could be defined in any of 

the following ways [Goodman, 2001]: 

 

 ( ) ( ) ( )( )2 1 2 1i i i i i iP w w w P w c w c w− − − −=  (2.1) 

 ( ) ( )( )2 1 2 1i i i i i iP w w w P w c w w− − − −=  (2.2) 

 ( ) ( ) ( ) ( )( ) ( )( )2 1 2 1i i i i i i i iP w w w P c w c w c w P w c w− − − −=  (2.3) 

 

where ( )ic w  represents the cluster for word iw . 

 Class-based n-gram models have several advantages over word-based n-gram models: 

much more compact models due to the reduction in the number of contexts; reduction in 

the problem of data sparsity since the number of potential n-grams in greatly reduced; and 

more reliable probability estimates for events which were not seen in the training data. A 

clear disadvantage of this type of models is that they lose some of the semantic information 

that makes the word-based model more powerful. Thus, this latter model is probably not as 

good as the word-based one, but mixing both may lead to some improvements. 

 Different research works have reported some improvements when class-based models 

were mixed with the standard word-based models. In [Moore and Young, 2000] a 

statistically significant improvement in word recognition accuracy was obtained using a 

topic-dependent class-based language model interpolated with a word-based n-gram 

language model. In [Yokoyama et al., 2003] a class-based LM was built based on 

recognition hypotheses obtained using a general word-based LM, and linearly interpolated 
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with that general LM. The proposed method was applied to the recognition of spontaneous 

presentations and was found to be effective in improving the recognition accuracy. 

 

Skipping or Intermediate-distance n-gram models 

Another simple extension to the word-based n-gram models are the Skipping or 

Intermediate-distance models [Rosenfeld, 1994], in which we condition the probability on 

a different context than the previous 1N −  words according to a pre-defined distance d . 

For instance, considering 2d =  and 3N = , then ( ) ( )2 1 3 2i i i i i iP w w w P w w w− − − −= . 

These models attempt to capture directly the dependence of the predicted word on (N-1)–

grams which are some distance back. 

 However, intermediate-distance n-grams alone do not perform well. Although they 

capture word sequence correlations even when the sequences are separated by distance d , 

they fail to appropriately merge training instances that are based on different values of d  

[Rosenfeld, 1994]. 

 

Caching n-gram models 

Caching models make use of the observation that if you use a word, you are likely to use it 

again. In [Kuhn et al., 1992] it was shown that words that have occurred recently have a 

higher probability of occurring in the immediate future than would be predicted by a 

standard word-based language model. These models tend to be easy to implement and to 

lead to relatively large perplexity improvements, but relatively small word error rate 

improvements [Goodman, 2001]. 

 

Sentence Mixture n-gram models 

Sentence Mixture models make use of the observation that there are many different 

sentence types. Thus, making models for each type of sentence would be better than using 

one global model. Traditionally, only 4 to 8 types of sentences are used, but in [Goodman, 

2001] it was shown that improvements can be obtained by going to 64 mixtures and more. 

An insightful review of mixture models can be found in [Iyer et al., 1999]. 
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Trigger Pairs n-gram models 

An interesting enhancement, facilitated by the maximum entropy estimation methodology, 

has been the use of triggers [Rosenfeld, 1994] as the basic information elements for 

extracting information from the long-distance document history. In this approach, words in 

the context outside the range of the n-gram model are identified as “triggers” and retained 

together with the “target” word in the predicted position. These pairs (trigger, target) are 

then treated as complementary sources of information and combined with the standard n-

gram probability estimates using the maximum entropy methodology. This approach has 

proven successful, however computationally very demanding. 

 

Factored language models 

More recently, a new enhancement to the conventional n-gram models was introduced – 

the so called factored language models (FLM) and the generalized parallel backoff (GPB) 

technique which generalizes backoff to arbitrary and even multiple parallel conditional 

probability paths [Kirchhoff, 2002] [Bilmes and Kirchhoff, 2003]. 

 In a factored language model, each word is viewed as a vector of k  factors: 

{ }1, , k
i i iw f f= … , where those factors can be anything, including linguistic knowledge 

such as morphological information (POS classes, stems, roots, etc.). Hence, an FLM 

provides the probabilistic model ( )1, , NP f f f…  where the prediction of factor f  is 

based on N parent factors { }1, , Nf f… . For instance, if iw  is a word and ic  its POS tag, 

then the probabilistic model ( )2 1 1, ,i i i iP w w w c− − −  predicts the current word iw  based on 

the conventional 3-gram model as well as the POS tag of the previous word. 

 Two features make an FLM distinct from a conventional n-gram model. First, the 

factors { }1, , Nf f…  can include heterogeneous information other than single words (e.g., 

word classes, morphological features, etc.). Second, there is no temporal backoff order as 

in conventional models. In fact, many of the parent factors { }1, , Nf f…  might be the same 

age, and the GPB does not necessarily drop the oldest factors first. 

 In [Vergyri et al., 2004] the authors explore the use of factored language models in a 

first-pass recognition system for conversational Arabic, obtaining perplexity and word 

error rate reductions on a large vocabulary recognition task.  
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Other Models 

There are other types of language models which are not based on the conventional n-

grams. They hardly are being used in large vocabulary speech recognition tasks. A number 

of alternative models have been developed over the past decade, e.g. application of 

decision trees for clustering of the word histories [Jelinek, 2000], and connexionist models 

based on neural networks [Bengio et al., 2003]. 

2.1.4 Discounting and Smoothing Techniques 

One of the problems inherent to statistical prediction of natural language is the problem of 

data sparseness. For n-gram language models, most of the possible n-gram sequences are 

never encountered in the training data, regardless of the corpora size. Thus, in order for 

such models to be reliable, one ensure that the probabilities they assign to word sequences 

are nonzero. Otherwise the “unseen" word sequences would not be recognized at all. 

Hence, when the n-gram estimates are poor, a technique called smoothing is applied to 

adjust those estimates, hoping to produce more accurate models.  

 Generally, these techniques can be divided in two steps: in a first step some probability 

mass is removed (discounting) from the observed events, being assigned (smoothing) in a 

second step to events which were “unseen” during the training phase. This section will 

discuss the techniques which are mostly used to smooth the data to correct the bias of the 

maximum likelihood estimate, and to ensure that no word strings are assigned zero 

probabilities. 

2.1.4.1 Discounting Techniques 

The basic idea behind the following discounting approaches is to remove some probability 

mass from the observed events and assign it to events which were “unseen” during the 

training phase. In the proposed techniques the count ( )C Ε  of an n-gram event 

( ), ih wΕ =  is discounted by multiplying it by a discount coefficient ( )Cd Ε , where 

( ) ( )0 1, 1Cd C EΕ≤ ≤ ∀ ≥ : 
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 ( ) ( ) ( )*
C EC E d C E=  (2.4) 

with the remaining probability mass being distributed among “unseen” events. 

 One of these discounting schemes is based on Good-Turing discounting, and was first 

applied to language modeling by Katz [Katz, 1987]. Absolute discounting [Ney et al., 

1994] is another technique, which involves subtracting a constant from each of the counts, 

a simple technique with modest performance that formed the basis for the Kneser-Ney 

discounting [Kneser and Ney, 1995], which showed to perform very well.  

 In [Chen and Goodman, 1998] and [Chen and Goodman, 1999] the authors carried out 

an extensive empirical comparison of the most widely-used discounting techniques for 

( )Cd Ε  estimation. On those experiments Kneser-Ney discouting and some variants 

proposed by the authors (modified Kneser-Ney discouting) were found to consistently 

outperform all other approaches. 

2.1.4.2 Smoothing Techniques 

Smoothing techniques may be mainly divided into the following categories: backing-off 

and interpolation. In the first case, given a certain context, the best n-gram model is 

selected, whereas in the second case all the n-gram models of eventual different 

specificities are mixed together to form a better model for language modeling prediction. 

 

Backing-off 

In the principle behind backing-off [Katz, 1987] the most detailed model that is able to 

provide sufficiently reliable information about the current context is used and models are 

defined recursively in terms of lower order models. One could, for example, backing-off 

from 2-gram to 1-gram models. Normally, the condition for backing-off is that the 2-gram 

event does not occur in the model. Thus, 

 

 ( )
( )
( ) ( )

( ) ( )

*
1

1
11

1

,
, 1i i

i i
ii i

i i

C w w
if C w w

C wP w w
w P w otherwiseα

−
−

−−

−

⎧
≥⎪

= ⎨
⎪
⎩

 (2.5) 
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where ( )*
1,i iC w w−  is the discounted count, ( )1iwα −  is the back-off weight, being chosen 

so that ( )1 1i
w V

P w w
ε

− =∑ , and V  the vocabulary set. 

 

Deleted Interpolation Method 

A common alternative to back-off models previously described is the deleted interpolation 

technique [Jelinek and Mercer, 1980][Jelinek, 1990], in which higher-order models are 

mixed with lower-order models. Considering the same 2-gram example, that probability is 

a linear combination of the unigram and bigram probabilities estimates as follows: 

 

 ( ) ( ) ( )
( )

1
1 1 2

1

,i i i
i i

i

C w C w w
P w w

T C w
λ λ −

−
−

= +  (2.6) 

where 1j
j
λ =∑ , T  is the number of words in the language model training dataset, and the 

jλ are chosen to maximize the likelihood of some held-out dataset. 

2.1.5 Combining Language Models 

This sub-section describes various methods of combining different information sources (in 

this case n-gram probability estimates), discussing their advantages and drawbacks.  

2.1.5.1 Mixture Models 

One of the most widely used techniques for combining language models is the so called 

linear interpolation or mixture models [Kneser et al., 1993]. Its simplicity comes from the 

fact that it is easy to use and any kind of model can be included in the combination 

process. The most basic way to linearly combine a set of m  language models 

1 2, , , mM M M…  is to take for each word iw  and context h , 

 

 ( ) ( )
1

j

m

LI i j M i
j

P w h P w hλ
=

=∑  (2.7) 
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where 
1

1
m

j
j
λ

=

=∑  and 0 1jλ≤ ≤  for all 1, ,j m= … . 

 To obtain the interpolation coefficients jλ  which maximize the likelihood of some 

held-out data the expectation maximization (EM) algorithm [Dempster et al., 1977] can be 

used. If the held-out data is large enough and representative, these coefficients will be 

close to optimal for the test data. 

 This general technique has been frequently applied to combine statistical models of 

different types. Some examples include combination of back-off and maximum entropy 

models [Martin et al., 1999] and interpolation of cache, high-order n-grams, skipping and 

sentence-based models [Goodman, 2000]. 

2.1.5.2 Log-Linear Interpolation 

In [Klakow, 1998] a method for combining information sources called log-linear 

interpolation has been introduced. This method and can be viewed as linear interpolation 

in the log domain, where in contrast with regular linear interpolation described in the 

preceding sub-section, no explicit constraints appear on the interpolation coefficients. 

 This method exploits the constrained conditional relative entropy approach. Given the 

m  language models jM  to be combined and their corresponding probability distributions 

( )
jM iP w h , 1, ,j m= … , the conditional relative entropy of the unknown target model 

( )LLI iP w h  with respect to each of the given language models is defined by the following 

Kullback-Leibler distance measure: 

 

( ) ( )( ) ( ) ( ) ( )
( )1

log
j

j

V
LLI i

LLI i M i LLI LLI i j
h i M i

P w h
D P w h P w h P h P w h d

P w h=

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

∑ ∑  (2.8) 

 

where ( ).D  is the relative entropy between conditional probability distributions 

( )LLI iP w h  and ( )
jM iP w h , jd  are the constraints on the system, and V  the vocabulary 

set. The target probability distribution should be minimized in terms of its conditional 
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relative entropy with respect to some additional model. The combined language model 

probability estimates introduced by Klakow is then defined as 

 

 ( ) ( ) ( )
1

1 j

j

m

LLI i M i
j

P w h P w h
Z h

λ

=

= ∏  (2.9) 

where ( )Z h  is a normalization factor chosen to ensure that ( )
1

1
V

LLI i
i

P w h
=

=∑ , being V  

the vocabulary set. The computation of ( )Z h  is very expensive and can usually be 

dropped without significant loss in performance [Martin et al., 2000]. To estimate the 

optimal values for the interpolation coefficients jλ , the generalized iterative scaling 

algorithm or the simplex method can be employed [Malouf, 2002]. In [Gutkin, 2006] a 

theoretical framework for smoothing the n-gram probability estimates obtained by log-

linear interpolation was formulated and has shown to outperform the conventional linear 

interpolation and back-off techniques when applied to n-gram smoothing tasks. 

 This approach has been used to combine language models of different type, 

outperforming linear interpolation as reported in some works where standard n-gram 

models were combined with more specific models like distance-based models [Peters and 

Klakow, 2000] [Beyerlein et al., 2002] [He and Young, 2004]. 

2.1.5.3 Maximum Entropy 

In the methods described in the previous sub-sections, each information source is used 

separately to construct a model, and the models are then combined. In the Maximum 

Entropy approach [Rosenfeld, 1994], one does not construct those separate models. 

Instead, a single model, which attempts to capture all the information provided by the 

various information sources (features), is constructed. Each such feature gives rise to a set 

of constraints to be imposed on the combined model. These constraints are typically 

expressed in terms of marginal distributions. Maximum entropy modeling produces a 

probability model that is as uniform as possible while matching empirical feature 

expectations exactly. It combines multiple overlapping information sources as follows: 
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 ( )
( )

( )
'

exp

exp '

i i
i

i j
o j

f o h
P o h

f o h

λ

λ

⎛ ⎞
⎜ ⎟
⎝ ⎠=
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⎜ ⎟
⎝ ⎠

∑

∑ ∑
 (2.10) 

 

which describes the probability of a particular outcome o  given the history or context h . 

The denominator includes a sum over all possible outcomes, 'o , which is essentially a 

normalization factor for probabilities to sum to 1. The indicator functions if  (features) are 

“activated” when certain outcomes are generated for certain context: 

 

 ( ) ( )1 1
0

i i
i

if o o and q h
f o h

otherwise
⎧ = =

= ⎨
⎩

 (2.11) 

 

where io  is the outcome associated with feature if  and ( )iq h  is an indicator function on 

histories. As an example, a bigram feature if  representing the word sequence “BOA 

NOITE” in the Maximum Entropy approach would have "NOITE"io =  and ( )iq h  would 

be the question “Does the context h  contains the word “BOA” as the previous word of the 

current word ?”. 

 The next step in the Maximum Entropy approach is to choose, from among the models 

in that set, the one which has the highest entropy, i.e. the maximum entropy model. This 

can be achieved using the Generalized Iterative Scaling (GIS) algorithm [Malouf, 2002]. 

 The Maximum Entropy formalism allows to fully integrate complementary statistical 

properties of limited training data. However, the training algorithm for this approach is 

computationally very demanding, which explains the lack of widespread use of this 

language modeling technique. Further issues involved in maximum entropy language 

modeling can be found in [Rosenfeld, 1994]. 

2.1.6 Language Models Adaptation 

Training an n-gram language model requires large quantities of text matching the target 

recognition task both in terms of style and topic. In tasks involving conversational speech 
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like broadcast news, the ideal training material, i.e. transcripts of spoken speech, is costly 

to obtain, which limits the amount of training data currently available. Methods have been 

developed for the purpose of language model adaptation, i.e. the adaptation of an existing 

model to new topics, domains, or tasks for which little or no training material may be 

available. A general LM adaptation framework is depicted in figure 2.1. Two datasets are 

considered: an adaptation dataset (in-domain data), relevant to the target recognition task, 

and a background dataset (out-of-domain data), associated with a related but perhaps 

somewhat different task and/or out-dated data. The general idea is to dynamically modify 

the background model probability estimates on the basis of what can be extracted from the 

adaptation data (task/domain specific knowledge). 
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Figure 2.1: A general framework for LM adaptation. 

(adapted from [Bellegarda, 2004]) 

 

 Language model adaptation can take several forms. Adaptation can be performed 

offline, in which the language models are adapted in advance to their use, in opposed to an 

online approach where the language models change at run-time. Moreover, adaptation can 

be classified as supervised adaptation (a priori) when using data chosen for a particular 

and known domain. This is different from the unsupervised adaptation approach, where 

the language model is adapted in some form based on the sentences that have been 

recognized already. 

 The various adaptation techniques that have been proposed along the time can be 

generically classified into three major categories [Bellegarda, 2004]:  
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Model Interpolation 

A common approach for LM adaptation is the mixture model (see section 2.1.5), i.e., the 

interpolation of two or more component models considered at the n-gram level. The 

simplest and more used way to do so is by means of linear interpolation, with a large 

number of variants depending on the type of models interpolated. It is common to use a 

background model based on words, interpolated with class-based models, or distance 

models, or cache models, etc.  

 For instance, in [Zhu and Rosenfeld, 2001], the n-gram counts estimated from the Web 

are interpolated with traditional corpus-based estimates, resulting in a significant reduction 

in ASR word error rate. In [Beyerlein et al., 2002], the Philips/RWTH system for 

transcription of broadcast news was improved by means of logarithmic interpolation. A 

standard n-gram model was combined with various “distance” language models, reporting 

better results. In [Federico and Bertoldi, 2004], a rolling language model with an updated 

vocabulary was implemented for an Italian broadcast news transcription system using a 

single-step adaptation framework. The baseline vocabulary of 62K words is extended by 

adding 60K new words selected from the contemporary written news and the baseline 

language model is interpolated with a new language model estimated from those written 

news on a daily basis. This approach allowed an average relative reduction of 58% in terms 

of OOV word rate and 3.4% in terms of WER. In [Lavecchia et al., 2006] the authors 

introduce an original cache model called Features-Cache (FC) to estimate the gender and 

the number of the word to predict. Henceforth, in their model a word depends not only on 

its left context, but also on the gender and number present in left contexts. This model is 

linearly interpolated with a classical n-gram model, with the new model outperforming the 

baseline one, in terms of word error, by 3%. 

 

Constraint Specification 

For this approach, the in-domain dataset is used to extract some pre-defined features, with 

the background language model being constrained to satisfy them. Historically, constrained 

based techniques have been associated with exponential models trained using the 

maximum entropy (ME) method, being commonly referred as minimum discrimination 

information (MDI) estimation. This adaptation technique has been investigated in 

[Federico, 1999], and can be expressed as follows: given a background model ( )BackP w h  
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and an adaptive corpus Adapt , we aim to find a model ( )P w h  satisfying a set of linear 

constraints extracted from Adapt  and minimizing the Kullback-Leibler distance between 

( )P w h  and ( )BackP w h . The MDI model can be trained by using the GIS (Generalized 

Iterative Scaling) algorithm. 

 A special case of this approach is the MDI adaptation with unigram constraints. The 

basic approach is to choose the adaptive model as close as possible to the background 

model estimates while constraining them to respect the locally estimated unigram 

probabilities of the adaptation dataset. In fact, given the typically small amount of 

adaptation data available, it is often the case that only unigram features can be reliable 

extracted from the adaptation dataset. In [Kneser et al., 1997] the authors describe and 

evaluate a new method to quickly modify a given static n-gram model such that the local 

unigram properties are correctly modeled without destroying the full context dependency 

of the original model.  

 In [Chen et al., 2004] the performance of 5 widely used LM adaptation methods using 

the same broadcast news adaptation data are compared, with the experimental results 

showing that MDI method yields the best performance. Experiments carried out for BN 

transcription in English and Mandarin showed a relative word error rate reduction of 4.7% 

in English and 5.6% relative character error rate reduction in Mandarin with MDI 

adaptation. 

 In [Boulianne et al., 2006] an adaptation approach was implemented for closed-

captioning of live TV broadcast in French, which uses texts from a number of websites, 

newswire feeds and broadcaster’s internal archives to adapt its language model component. 

To generate the baseline model, texts are automatically classified into 8 pre-defined topics 

using a Naïve Bayes classifier. Using those topic-specific vocabularies of 20K words, a 3-

gram language model is estimated for each topic partition. Each day, newly collected texts 

are compared against the current topic-specific vocabularies and potential new words 

associated to each one of them. This association has a limited lifetime, so words become 

inactive in a topic after 60 days, with the exception that words from the baseline 

vocabularies never become inactive. This vocabulary adaptation procedure showed to be 

effective, allowing the dynamic vocabulary to produce only around half the static 

vocabulary OOV word rate. The topic-specific language models are adapted in an 
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unsupervised way with texts classified into topics automatically. The unigrams of the 

baseline language model are interpolated with a unigram language model estimated from 

the adaptation data, and then higher-order n-gram probabilities in the baseline language 

model are re-estimated according to the MDI method, which attempts to adapt the baseline 

LM by minimizing the Kullback-Leibler divergence between the adapted LM and the 

baseline LM subject to a constraint that the marginal unigram distribution of the adapted 

LM is equal to the adaptation unigram distribution. This procedure showed to provide good 

recognition results for words added with very small quantity of adaptation data. 

 In [Tam and Schultz, 2006] the same MDI method was used into a similar adaptation 

approach but using the Latent Dirichlet Allocation (LDA) model [Blei and Jordan, 2003], a 

Bayesian latent semantic analysis approach, to estimate the marginal unigram distribution 

based on the ASR hypotheses. Results computed on a Mandarin Broadcast News test set 

showed a relative character error rate reduction of 2% when compared to the un-adapted 

baseline language model. 

 In [Wang and Stolcke, 2007] the integration of various language model adaptation 

approaches are investigated for a cross-genre adaptation task to improve the performance 

of Mandarin ASR system performance on a recently introduced new genre, broadcast 

conversation (BC). Various language model adaptation strategies were investigated, 

including unsupervised language model adaptation from ASR hypotheses and ways to 

integrate supervised Maximum a Posteriori (MAP) and marginal adaptation within an 

unsupervised adaptation framework. By combining these adaptation approaches on a 

multi-phase ASR system, a relative gain of 1.3% on the final recognition error rate in the 

BC genre was achieved. 

 

Meta-Information Extraction 

One common approach is exploiting the underlying topic of the discourse. Thus, the 

adaptation dataset is used to extract information about the related subject matter, being that 

information used to improve the background model. Considering a set of T  topics, 

manually defined or data-driven obtained, a smaller model for each one those topics is 

trained on the relevant portion of the background dataset. The simplest approach is based 

on linear interpolation. Hence, those T  n-gram models are linearly interpolated in such a 

way that the resulting mixture bet matches the adaptation dataset. In [Iyer et al., 1999] a 
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review of topic dependent mixture models is given, showing improvements both in terms 

of perplexity and WER comparing with the conventional n-gram models. 

 Approaches taking advantage of semantic knowledge try to exploit not just the topic 

information, but the entire semantics present in the adaptation dataset. As seen before, the 

word trigger pairs approach exploit correlations between the current word and features of 

the long-range context [Rosenfeld, 1994]. Latent Semantic Analysis (LSA) [Deerwester et 

al., 1990], a paradigm formulated in the field of Information Retrieval, has extended the 

word trigger concept by defining a more general framework to handle the trigger pair 

selection. In this paradigm, co-occurrence analysis still takes place across the span of an 

entire document, but every combination of words from the vocabulary is viewed as a 

potential trigger combination. This leads to the systematic integration of long-term 

semantic dependencies into the analysis. For this approach it is assumed that the available 

training data is tagged at the document level, i.e., there is a way to identify article 

boundaries.  

 Hybrid n-gram+LSA language models, constructed by embedding PLSA 

(Probabilistic Latent Semantic Analysis) into the standard n-gram formulation, showed to 

result in a substantial reduction in both perplexity and average word error rate [Bellegarda, 

2000]. In this work, the author proposes the following integrated language model 

probability:  

 

 �( ) ( ) �( )
�( )

,
,

,

P w h w h
P w h h

Z h h

β
=  (2.12) 

 

where �h  represents the global document history which in most cases can have a much 

larger span than the n-gram history h , �( ),w hβ  is a measure of the correlation between 

the current word w  and the global history �h  defined by the PLSA paradigm, and �( ),Z h h  

being a normalization factor. Experiments conducted on the Wall Street Journal domain 

showed a relative reduction in average word error rate of over 20%. 

 In [Mrva and Woodland, 2006] a PLSA-based approach was investigated for 

unsupervised language model adaptation of a broadcast conversation transcription system. 
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Results showed a relative improvement in the system performance when the PLSA 

framework was embedded within the conventional n-gram language model. For a task of 

Mandarin broadcast conversation transcription, this language model adaptation done with 

PLSA and LDA brought 1.3% absolute character error rate gain. 

 

Generally, the adaptation dataset may already be available. However, if it is too small, or 

some form of dynamic data updating is necessary, like in tasks as broadcast news 

transcription/indexation or spoken dialogues, it is possible to use document retrieval 

techniques to collect up-to-date data by dynamically searching online databases and/or the 

Word Wide Web [Schwarm et al., 2004]. In section 2.2 we give a brief overview about 

Information Retrieval methods and their use for language model adaptation. 

2.2 Information Retrieval and LM Adaptation 

In our work we propose a multi-pass adaptation approach using Information Retrieval 

techniques. Hence, for a general overview, we will briefly introduce the standard 

techniques developed for Information Retrieval systems and its use for LM adaptation.  

2.2.1 Brief Introduction to IR 

Primarily Information Retrieval is concerned with the identification of information sources 

that are related to a user’s request: automatically retrieving documents that are most likely 

relevant to a user’s query by selecting those that contain terms (for example, words) that 

identify such relevance. Figure 2.2 illustrates the procedure for retrieving documents ( d ) 

according to a user’s query ( q ), presenting them in order of decreasing rank. 

 Text normalization is a very common and important procedure to normalize the 

documents for IR, allowing to reduce the set of terms that could represent the content of 

documents. Stopping and stemming are two common ways of doing this. The first 

operation is a standard processing, which removes common terms and irrelevant terms (for 

example, most of the functional words are often discarded). Stemming is another common 

procedure, which transforms each word stem (word stemming). However, contradictory 
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results have been reported concerning the use of stemming in IR related tasks [Lo and 

Gauvain, 2005]. 

 

um ministro como membro do 
governo não deve interferir em 

processos  disciplinares.
é preciso filmar  depressa e às 

escondidas pois os militares não

não vou aqui falar da ota para não 
ter de falar das inqualificáveis 

declarações do ministro das obras
públicas que em matéria de 

disparates rivaliza com o ministro
da economia ou ministro da saúde

documents d

fale-me sobre o processo da ota

query q

1

2

3

n

...
d

Information
Retrieval

d rel(d)
1 1,23
2 0,34
3 4,98
... ...

estimated relevance rel

r d
1 3
2 1
3 2
... ...

ranked retrieval r
 

Figure 2.2: A Typical Information Retrieval (IR) System. 

 

 Early IR systems were Boolean systems which allowed users to specify their 

information need using a complex combination of Boolean operators: ANDs, ORs and 

NOTs. However, Boolean systems have several shortcomings, e.g., there is no inherent 

notion of document ranking, and it is very hard for a user to form a good search query. 

Hence, nowadays most IR systems assign a numeric score to every document and rank 

them by this score. Several models have been proposed for this process. The three most 

used models in IR research are the vector space model, the probabilistic models, and the 

inference network model [Singhal, 2001], that we briefly describe in the next sub-sections. 

2.2.2 IR Model Types 

 In the vector space model each document and query are represented as a vector with 

each dimension corresponding to a separate term. Thus, if a term occurs in the document, 

its value in the vector is non-zero. Different approaches for computing those vector values 

(known as term weights) have been proposed [Jurafsky and Martin, 2000]. In the classical 

model the term weights in the document vectors are products of local and global 
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parameters. The model is known as term frequency-inverse document frequency model (tf-

idf) [Salton et al., 1975]. To assign a numeric score to a document for a query, the model 

measures the similarity between the query vector and the document vector. Typically, the 

angle between two vectors is used as a measure of divergence between the vectors, and 

cosine of the angle is used as the similarity measure. However, most of the current IR 

systems use other state-of-the-art scoring methods like the Okapi weighting or the pivoted 

normalization weighting [Singhal, 2001], which showed to be especially powerful. 

 Another classic retrieval method is the probabilistic models, where the probability that 

a specific document will be judged relevant to a specific query, is based on the assumption 

that the terms are distributed differently in relevant and non relevant documents. This is 

often called the probabilistic ranking principle [Robertson, 1977]. Since true probabilities 

are not available to an IR system, probabilistic IR models are used to estimate the 

probability of relevance of documents for a query. This estimation is the key part of the 

model, and this is where most probabilistic models differ from one another. More recently, 

statistical language model was suggested for Information Retrieval [Ponte, 1998]. When 

used in IR, a language model is associated with a document in a collection. Thus, given a 

query q  as input, retrieved documents are ranked based on the probability ( )dP q M , the 

probability that the document's language model would generate the terms of the query. As 

in speech recognition, various smoothing techniques have been proposed to deal with the 

sparseness data problem [Song and Croft, 1999]. 

 The inference network model approach to Information Retrieval, first introduced in 

[Turtle and Croft, 1991], provides a theoretical framework to combine many sources of 

evidence of document relevance. In this approach, a query is viewed as a series of 

concepts, which can be terms, phrases, or more complex entities. Hence, one document is 

relevant precisely when it contains the concepts present in the query. 

2.2.3 Query Expansion 

Another technique that has been shown to be effective in improving document ranking is 

query modification via relevance feedback. The idea behind relevance feedback is to take 

the results that are initially returned from a given query and to use information about 

whether or not those results are relevant to perform a new expanded query. In general, the 
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user is asked to judge the relevance of the top few documents retrieved by the system. 

Based on these judgments, the system modifies the query and issues the new query for 

finding more relevant documents from the collection. This is the called explicit relevance 

feedback. 

 However, for the majority of practical applications those judgments do not exist, and 

new techniques to do meaningful query expansion in absence of any user feedback were 

developed. One of these techniques, the so called pseudo relevance feedback, has been 

shown to be a very effective technique, especially for short user queries [Buckley et al., 

1995] [Lavrenko et al., 2001]. With pseudo relevance feedback the IR system retrieves and 

ranks documents according to the initial user’s query, extracts relevant terms from the top 

T  documents, which are then added to the initial query. With this new expanded query, 

the IR system assigns similarity scores to each one of the documents ranking them. 

2.2.4 LM Adaptation using IR 

As seen in the previous section, language model adaptation is recognized to be an 

important research area in speech recognition. However, despite the numerous efforts to 

improve upon the commonly used n-gram language models, adaptation approaches have 

been only moderately successful for complex tasks such as broadcast news transcription, 

with different reasons accounting for this observation [Chen et al., 2001]: the wide variety 

of BN data, with a given audio segment almost always related to more than one topic; the 

content of BN data is open, i.e., new stories appearing on a daily basis, which makes it 

impossible to obtain adaptation data in advance; and large linguistic differences in style 

between the training and input data to be recognized.  

 To solve the linguistic problem in adaptive language modeling for BN transcription, 

various approaches using Information Retrieval (IR) technology have been proposed, with 

various Information Retrieval techniques being applied to both vocabulary and language 

model adaptation problems. These multi-phase speech recognition approaches use the ASR 

hypotheses as queries to an IR system in order to select additional on-topic adaptation data. 

 In [Kemp and Waibel, 1998] and [Yu et al., 2000] IR techniques were applied to the 

OOV problem by dynamically adapting the active vocabulary to the current news topic. A 

similar approach was implemented in [Chen et al., 2004]. In this case the vocabulary 
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remains static, with only the language model being updated. To address the changing 

property of broadcast news data, static and dynamic language models for language model 

adaptation were investigated. In static modeling the language model is updated once for the 

all BN show. Dynamic modeling updates the language model at each automatically 

detected story of the BN show, which means estimating multiple story-based language 

models for each BN show. Experiments were carried out for broadcast news transcription 

in English and Mandarin Chinese. A relative WER reduction of 4.7% was obtained in 

English and a 5.6% relative character error rate reduction in Mandarin with story-based 

language model update and using the MDI adaptation technique. 

 In [Bigi et al., 2004] an approach of this type using the Kullback-Leibler symmetric 

distance to retrieve documents was implemented to select a dynamic vocabulary instead of 

a static one, obtaining an OOV word rate reduction of about 28% with the same vocabulary 

size as the baseline vocabulary. Moreover, a new topic language model was trained on the 

retrieved data, and interpolated with the baseline language model, allowing for a relative 

improvement of 1.8% in terms of WER. 

2.3 Evaluating Language Models Quality 

The ultimate measure of the quality of a language model is its impact on the performance 

of the application it was designed for. Thus, in speech recognition, we would evaluate a 

language model based on its effect on the recognition word error rate (WER). However, all 

attempts to derive an algorithm that would directly estimate the model parameters so as to 

minimize WER have failed. As an alternative, a statistical language model is evaluated by 

how well it predicts a string of words W  (commonly referred to as test dataset) generated 

by the information source to be modeled. Next we present a brief review of the common 

measure of ASR accuracy – the word error rate (WER), and the perplexity (PP). 

2.3.1 Word Error Rate (WER) 

The performance of an ASR system is commonly evaluated by the word error rate (WER). 

This measure is based on the comparison of a reference transcription of the test dataset, 
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with the corresponding output of the ASR system which is referred to as the hypothesis 

transcription. Thus, a scoring algorithm searches for the minimum edit distance (in words) 

between the reference and the hypothesis transcriptions, returning the number of word 

mismatches: substitutions (Sub), deletions (Del) and insertions (Ins). Hence, the WER is 

defined as: 

 

 
total number of words in reference

Sub Del InsWER + +
=  (2.13) 

 

 A related measure is the rate of words correct, which measures the proportion of words 

that were correctly recognized, and therefore ignores insertion errors. 

 However, this WER measure has a number of drawbacks. For example, reliably 

measuring the word error rate entails the processing of large amounts of test data, which is 

very time consuming and forces to manually transcribe that data which is very costly. 

Moreover, the count of errors is done independently of the words wrongly recognized, i.e., 

this measure considers that all errors are equally harmful independently of the task domain. 

However, for some applications words play different roles, being more important to 

correctly recognize content words like names than generic words as the functional ones. 

2.3.2 Perplexity 

The most common metric for evaluating a language model is the perplexity (PP) concept, 

which measures the LM capability to predict an unseen sequence of words, i.e., a sequence 

of words not used for model training. 

 Assume we compare two models 1M  and 2M , which assign probabilities ( )
1MP W  

and ( )
2MP W , respectively, to a word string 1, , nW w w= …  that has not been seen at the 

training step of either models and that was supposedly generated by the same information 

source that we are trying to model. As it would be “natural”, we can consider 1M  being a 

better model than 2M  if ( ) ( )
1 2M MP W P W> . Hence, a quality measure under the name of 

perplexity was introduced [Bahl et al., 1977][Bahl et al., 1983], which relates the quality of 
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a given model M  to the entropy of its underlying information source, formulating 

perplexity as 

 

 ( ) ( ) 1
1 1

1
exp 1 ln ,...,

n
n

M M i i M
i

PP n P w w w P W −
−

=

⎛ ⎞⎡ ⎤= − =⎜ ⎟⎣ ⎦⎝ ⎠
∑  (2.14) 

 

 To get an intuitive understanding for PP (2.14) we can state that it measures the 

average surprise of model M when it predicts the next word iw  in the current context 

1 1, , iw w −… . The goal of statistical language modeling therefore can be viewed as 

minimizing the perplexity so as to bring it down as close as possible to the true entropy of 

the language. 

 When comparing perplexity numbers for different texts and/or different models one 

fact should be taken into consideration: the perplexity measure is a function of both the 

model and the text. Thus, a meaningful comparison can only be made between perplexities 

of several models, all with respect to the same text and the same vocabulary. Vocabularies 

must be the same, or else a smaller vocabulary will bias the model towards a lower 

perplexity value. Even if vocabularies are identical, different texts will not produce a 

meaningful comparison, since texts could have different out-of-vocabulary word rates. 

2.4 Summary 

Statistical Language Models have been successfully applied to many state-of-the-art ASR 

systems, with the n-gram models being the dominant technology in language modeling. 

Usually large training corpora are used to estimate the language model parameters, with 

different smoothing techniques, such as discounting, backing-off and interpolation, being 

applied to better estimate probabilities when there is insufficient data to estimate 

probabilities accurately. However, the collection of those suitable training corpora is an 

expensive, time-consuming and sometimes unfeasible task. Moreover, it is also recognized 

that generic language models trained on large amounts of textual data can be 

advantageously adapted to more specific domains in order to improve their accuracy 

related to a particular domain [Schwarm et al., 2004]. 
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 Therefore, the idea of language model adaptation is to use a small amount of domain 

specific data (in-domain data) to adjust the LM and reduce the impact of linguistic 

differences between the training and testing data over time. For that propose, several 

techniques have been developed by the research community. In [Bellegarda, 2004] these 

techniques are classified into three major categories: interpolation based approaches, such 

as the cache model and maximum a posteriori adaptation (MAP); constraints based 

models, such as the maximum entropy (ME) and minimum discrimination information 

(MDI); and meta-information based frameworks, such as the trigger model, latent semantic 

analysis (LSA) and structured language models. 

 In terms of vocabulary selection, one approach is to choose the words in such a way to 

reduce the OOV word rate by as much as possible – a strategy usually called by vocabulary 

optimization. This optimization could either involve increasing the vocabulary size of the 

ASR component, or it could also be selecting those words most representative for the 

target domain/task. The most common approaches are typically based on word frequency, 

including words from each training corpus that exceed some empirically defined threshold, 

which mainly depends on the relevance of the corpus to the target task [Gauvain et al., 

2002]. Thus, to eliminate the need for human intervention during the vocabulary selection 

process various approaches have been suggested.  

 During the last decade other strategies have been proposed to address the OOV word 

rate problem. To achieve a usable OOV word rate, morphemes or other sub-word units 

(namely stems and endings) have been used instead of words, with those units defined 

through data driven processes. Most research on morpheme-based systems has been 

developed for inflected languages. These works report some improvements in terms of 

OOV word rates and/or WER, especially when combining these models with the standard 

ones based on words. The problem of acoustic confusability arises when larger sub-word 

vocabularies are used. In fact, sub-word language model units alleviate the problem of 

rapid vocabulary growth, especially for this kind of highly inflectional languages. But as 

the base units of the language model become fewer and smaller, the language model 

becomes less constrained and the acoustic confusability increases. 

 For broadcast news and conversational speech applications there have been various 

works using data from the Web as an additional source of training data for unsupervised 

language modeling adaptation over time, also referred to as dynamic vocabulary and LM 



50 

adaptation. Some of those works have been using different Information Retrieval (IR) 

techniques for dynamic LM adaptation to the topics present in a BN show using relevant 

documents obtained from a large general corpus or from the Web. These multi-pass speech 

recognition approaches use the ASR hypotheses as queries to an IR system in order to 

select additional on-topic adaptation data. 
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3 

Resources and Baseline System 

In this chapter we present the experimental setup under which the work for this thesis was 

carried out. This chapter describes the corpora used for the task focused on this work - 

broadcast news transcription for the European Portuguese language. Details of the various 

speech and text corpora used for training, adaptation and evaluation propose are given. 

Next, the baseline system used for our empirical studies is briefly described in terms of it 

ASR module, presenting details of the vocabulary and language model used. The chapter 

concludes with a description of the various processing tools used on this work for language 

modeling, Information Retrieval extraction and morpho-syntactic tagging. 

3.1 The Corpora 

These corpora are constituted mainly by news reports from two sources: television 

Broadcast News (BN) and Web Text News (TN). 

 The speech and text BN corpus is composed by news shows transmitted by the 

Portuguese public television broadcast company (RTP). The BN resources were used for 

training the ASR module of the baseline system (both acoustic and language model).  

 The text TN corpus called WEBNEWS-PT is composed by Web journal articles from 

several European Portuguese daily newspapers. The TN resources were used as training 

material for the language model component of the baseline system. Some datasets from 

both BN and TN corpora were used as adaptation and evaluation data for the work 
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presented in this thesis. The next subsections describe in detail each of these speech and 

text resources. 

3.1.1 Broadcast News Corpus (ALERT-SR) 

The ALERT-SR BN corpus [Neto et al., 2003] was the first Broadcast News corpus 

collected for the European Portuguese language. The collection process started in April 

2000 and lasted until the end of 2001. It is entirely constituted by European Portuguese BN 

shows transmissions from the main public Portuguese channel, RTP, and includes both the 

speech signal and its orthographic transcription which were manually provided by 

specialized transcribers following the LDC Hub4 [LDC-Hub4, 2000] (Broadcast Speech) 

transcription conventions. 

 Initially this corpus was divided into five different datasets. Two datasets were used 

for training proposes (pilot and train datasets) and three datasets were used for testing 

purposes (devel, eval, and jeval datasets). Table 3.1 gives an overview of the ALERT-SR 

corpus in terms of quantity (number of news shows), duration (speech signal) and purpose 

of the datasets. 

 

datasets #shows audio  Propose 

pilot 11 5 h Training (cross-validation) 

train 99 46 h Training 

devel 13 6 h Development (parameters estimation) 

eval 12 4 h ASR evaluation 

jeval 14 13 h Media monitoring evaluation 

11march 7 5 h Evaluate daily LM adaptation 

RTP-07 2 2 h Evaluate daily LM adaptation 

Total 158 81 h    
 

Table 3.1: ALERT-SR datasets: speech statistics. 

 

 As can be seen in Table 3.1 ALERT-SR has approximately 51 hours for training 

purposes, 6 hours for parameters estimation and 17 hours for evaluation purposes.  
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 In terms of orthographic transcriptions the training datasets consist of a total of 

roughly 34.3 K sentences and 531.7 K tokens (see table 3.2). The word statistics are shown 

in terms of “tokens”, in which all occurrences of a word are counted, and in terms of 

“types”, in which only unique words are counted. 

 Each point in the datasets where the topic being discussed changes was labeled, 

allowing each dataset to be partitioned into topic-homogeneous segments. This was 

important for the construction of the multi-pass recognition approach described in Chapter 

4. By using such partition, it resulted in approximately 1,651 news segments in the training 

set. 

 

Datasets #segments  #sentences  #types #tokens

pilot 116 3.2 K 6.9 K 50.0 K

train 1535 31.1 K 25.0 K 481.7 K

devel 221 4.1 K 8.5 K 66.4 K

eval 169 3.1 K 7.0 K 47.4 K

jeval 387 8.0 K 12.9 K 137.7 K

11march 151 3.1 K 7.0 K 53.0 K

RTP-07 52  0.4 K  3.7 K 16.1 K
 

Table 3.2: ALERT-SR datasets: text statistics. 

 

 Later on, and for proposes of our work, two more evaluation datasets were added: the 

11march and the RTP-07 datasets. To evaluate the adaptation approaches proposed in this 

thesis we started by choosing the week starting on March 8th and ending on March 14th as 

our target dataset. Due to the unexpected and awful events occurring on March 11th of 

2004 in Madrid, we would expect to cover a typical situation of rich content and topic 

changing over time. Thus, we collected the “11march” dataset consisting of seven BN 

shows from the 8 o’clock pm (prime time) news from the main public Portuguese channel, 

RTP. These BN shows had a total duration of about 5 hours of speech signal (roughly 53 K 

tokens). Finally, and to evaluate the practical implementation of our adaptation algorithms 

in the current online BN transcription system, we selected another two BN shows, the 

“RTP-07” dataset. The selected BN shows had a total duration of two hours of speech, 
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consisting of about 16.1 K tokens. These BN shows were collected on May 24th and 31st of 

2007. 

 

 8th 9th 10th 11th 12th 13th 14th 

#tokens 8.7 K 1.9 K 8.4 K 8.3 K 8.8 K 7.0 K 9.4 K 

#types 2.4 K 0.7 K 2.4 K 2.0 K 2.1 K 1.8 K 2.1 K 
 

Table 3.3: ALERT-SR.11march dataset: text statistics. 

 

 May 24th May 31st 

#tokens 8.1 K 7.9 K 

#types 2.3 K 2.3 K 
 

Table 3.4: ALERT-SR.RTP-07 dataset: text statistics. 

 

 In tables 3.3 and 3.4 we present more detailed statistics related to these two last 

datasets (“11march” and “RTP-07” respectively). As one can observe, each BN show had 

an average size of about 8.3 K tokens and only 2.2 K different words (types). Related to 

day 9th of “11march” dataset due to a technical problem only 12 minutes of speech was 

collected. For that reason, this day has different statistics considering the average values. 

3.1.2 Web Text News Corpus (WEBNEWS-PT) 

Despite all the research done in the last two decades, n-gram language models still 

dominate as the technology of choice for state-of-the-art speech recognizers. Typically, n-

gram language models for large vocabulary speech recognizers are trained on hundred of 

millions or billions of word strings for better estimation of their parameters. For training 

the language model component of an ASR system for tasks like BN transcription, the best 

approach would be to use transcriptions from BN news shows. However, due to the small 

quantity of transcribed BN news shows available, it is common to use other sources like 

newspapers written texts.  
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 Since 1995 we had been collecting on a daily basis the online editions of all major 

Portuguese newspapers. This Web text news corpus called WEBNEWS-PT and collected 

until the end of 2005 includes texts selected from newspapers of different styles (daily 

newspapers covering all topics, weekly newspapers also with a broad coverage of topics, 

economics newspapers and sports news). The newspapers were selected for their content 

and reliability to better reflect the lexical and linguistic content of current news events. 

This corpus has over 42 million sentences and 740 million words (tokens). Table 3.5 gives 

a brief summary of this text corpus. 

 

Newspaper #sentences #tokens  Style 

A Bola 1.9 M 32.2 M daily, sports 

Diário de Notícias 5.2 M 88.9 M daily, generic 

Diário Económico 5.9 M 66.6 M daily, economics 

Expresso 2.0 M 39.9 M weekly, generic 

Jornal de Notícias 5.4 M 94.5 M daily, generic 

O Jogo 6.9 M 91.0 M daily, sports 

O Independente 0.2 M 2.4 M weekly, generic 

O Público 14.9 M 325.8 M Daily, generic 

Total 42.4 M 741.3 M  
 

Table 3.5: WEBNEWS-PT corpus: text statistics. 

 

 After collecting the daily web edition of a given newspaper, scripts were used to 

convert the text from html format into simple text format. At this stage the processing 

scripts checked to see if there were repeated news articles by comparing each article with 

last day articles from the same newspaper. Due to the heterogeneous variety of sources, a 

normalization process is applied to the collected texts in order to clean errors due to 

common misspellings, expanding abbreviations and acronyms, processing ambiguous 

punctuation marks, and converting numbers to word sequences. The resulting normalized 

texts are then sgml tagged and compressed to save disk space with the text now being 

ready for use.  

 After all these processing stages, information like the topic of the article is preserved. 

For our work this information will be used by an Information Retrieval engine to 
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dynamically index, store and retrieve those articles. The WEBNEWS-PT corpus is split 

into 1,554,156 different files, each containing text from a different news article. 

 Finally, in tables 3.6 and 3.7 we present more detailed statistics related to the two 

datasets (“11march” and “RTP-07” respectively) of the WEBNEWS-PT corpus. The 

WEBNEWS-PT.11march contains the written news collected during the same week as the 

ALERT-SR.11march dataset, with WEBNEWS-PT.RTP-07 collected on the same days as 

the ALERT-SR.RTP-07 dataset. For evaluation proposes, these two datasets were only 

used during the proposed adaptation processes. As one can observe, the WEBNEWS-

PT.11march dataset had an average size of about 280 K tokens and only 25 K different 

words (types). The WEBNEWS-PT.RTP-07 dataset had an average size of about 80 K 

tokens and 11 K types. 

 

 8th 9th 10th 11th 12th 13th 14th 

#tokens 280 K 270 K 286 K 232 K 250 K 319 K 310 K 

#types 24 K 23 K 25 K 24 K 25 K 27 K 26 K 
 

Table 3.6: WEBNEWS-PT.11march dataset: text statistics. 

 

 May 24th May 31st 

#tokens 120 K 98 K 

#types 12 K 10 K 
 

Table 3.7: WEBNEWS-PT.RTP-07 dataset: text statistics. 

3.2 The Baseline System (AUDIMUS.media) 

All the speech recognition work reported in this thesis is done within the 

AUDIMUS.media ASR system [Meinedo et al., 2003][Meinedo, 2008]. This system is part 

of a closed-captioning system of live TV broadcasts in European Portuguese that is daily 

producing online captions for the main news show of one Portuguese Broadcaster - RTP. 
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Figure 3.1 presents an overview of the AUDIMUS.media ASR system in terms of its main 

components. 

 

 

 
Figure 3.1: AUDIMUS.media ASR system.  

(extracted from [Meinedo, 2008]) 

  

 The next subsections give a brief overview of AUDIMUS.media baseline system in 

terms of it main components: acoustic modeling, lexical modeling, language modeling, 

decoding process and its confidence features and associated confidence scoring. 

3.2.1 Acoustic Modeling 

The AUDIMUS.media acoustic model features a hybrid Hidden Markov Models (HMMs) / 

Multi-Layer Perceptrons (MLPs) system [Bourlard and Morgan, 1994], using three MLPs, 

each of them associated with a different feature extraction process, where the MLPs are 

used to estimate the context independent posterior phone probabilities given the acoustic 

data at each frame. The phone probabilities generated at the output of the MLPs classifiers 

are combined using an appropriate algorithm [Meinedo and Neto, 2000]. All MLPs use the 

same phone set constituted by 38 phones for the Portuguese language plus the silence and 

breath noises. The training and development of this system was based on the European 

Portuguese ALERT-SR BN corpus. The acoustic models were trained over 46h of 

transcribed speech (ALERT-SR.train dataset).  
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3.2.2 Lexical Modeling 

Knowledge about the allowed set of words and their respective pronunciations is 

represented through the lexical model, or simply the lexicon. Commonly, BN ASR systems 

developed for the English language are based on vocabularies of 64 K words in size. The 

vocabulary selection for this baseline system followed the same approach although the 

European Portuguese language is more inflectional than the English language. From the 

604.2 M words of newspaper texts that composed the WEBNEWS-PT corpus at that time, 

427 K different words were extracted. From those words around 100 K had an occurrence 

frequency higher than 50 in the newspapers texts. These 100 K words were selected and 

classified according to their syntactic classes. From that set of words a subset was selected 

according to their weighted class frequencies of occurrence. Different weights were used 

for each syntactic class of words. This subset was augmented with all new words found in 

the training datasets of ALERT-SR BN corpus giving a final vocabulary of 57,564 words 

(called in our work as the 57K baseline vocabulary). 

 This word list was then phonetically transcribed by a rule grapheme to phone system 

generating an initial set of pronunciations. This automatically generated lexicon was then 

hand revised by a specialized linguist generating a multi-pronunciation lexicon with 65,585 

different pronunciations. 

3.2.3 Language Modeling 

The AUDIMUS.media baseline language model generated in our research work presented 

in [Martins et al., 2005] combines a 4-gram backoff LM generated from the WEBNEWS-

PT corpus (a total of 604.2 M words consisting of all the newspaper texts collected until 

the end of 2003), and a 3-gram backoff LM estimated on the 531.7 K word corpus of 

broadcast news transcripts (ALERT-SR.pilot and ALERT-SR.train datasets). The 4-gram 

backoff LM was generated using the absolute discounting method and applying cutoff 

values of 2, 3 and 4 respectively for 2-grams, 3-grams and 4-grams. The 3-gram backoff 

LM was generated using the Kneser-Ney discounting method without applying any kind of 

cutoffs. 

 The two models were combined by means of linear interpolation, generating a mixed 

model. The optimal interpolation weights were estimated via the Expectation-
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Maximization algorithm (EM), using the ALERT-SR.devel dataset as a held-out corpus. 

The interpolation weights obtained were 0.796 for the newspapers LM and 0.204 for the 

Broadcast News LM. Figure 3.2 summarizes the details of the lexical and LM components. 

 

 
Figure 3.2: Baseline system: lexicon and LM details. 

 

 Finally, for the online implementation of our adaptation framework we used an 

entropy-based pruning technique [Stolcke, 1998], i.e., pruning all the n-grams that would 

increase the relative perplexity by less than a given threshold. Simultaneously, we pruned 

all the n-grams having probabilities lower than the corresponding backed-off estimates. 

This last pruning, applied to all the language models generated, is especially useful to 

create language models that can be correctly converted into probabilistic finite-state 

grammars. 

3.2.4 Decoding 

The decoder used under this baseline system is based on a weighted finite-state transducer 

(WFST) approach to large vocabulary speech recognition [Caseiro, 2003]. In this 

approach, the decoder search space is a large WFST that maps observation distributions to 

words. This WFST consists of the composition of various transducers representing 
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components such as: the acoustic model topology H; context dependency C; the lexicon L 

and the language model G. The search space is thus H ◦ C ◦ L ◦G, which is built “on-the-

fly” [Caseiro and Trancoso, 2001][Caseiro and Trancoso, 2002], in opposition to 

traditional approaches that compile it outside of the decoder and use it statically during the 

decoding process. 

3.2.5 Confidence Scoring 

Confidence measures assign a degree of confidence to the recognized words. Hence, using 

these measures, ASR system can identify the words which are likely to be erroneous and 

the application using the ASR system can then use corrective actions. A variety of 

possibilities have been proposed in the past for the confidence score problem, including 

model-based, word-based, and utterance-based confidence measures (see e.g. [Carpenter et 

al, 2001]). 

 The AUDIMUS.media ASR system produces in its decoding process a set of 

confidence features for each recognized phone of the best hypothesis. These phone 

confidence features are then combined into word level confidence features, and finally a 

maximum entropy classifier is used to classify words as correct or incorrect. The maximum 

entropy classifier [Berger et al., 1996] combines all the word level confidence features 

according to: 

 

 ( ) ( ) ( )
1

1 exp
F

i j j i
ji

P correct w f w
Z w

λ
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑  (3.1) 

 

where iw  is the word, F is the number of features, jf  is a feature, ( )iZ w  is a 

normalization factor and jλ  the model parameters. For the AUDIMUS.media ASR system 

this classifier was trained on the ALERT-SR.train dataset. 

 In the proposed adaptation approaches presented in our work we used this confidence 

scoring process to select the most accurately recognized speech segments and reuse them 

as additional data for unsupervised adaptation purposes. 
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3.3 Evaluation Metrics 

To evaluate the performance of the adaptation approaches proposed in this thesis we used 

various evaluation metrics. As stated in section 2.3.2, the most common metric for 

evaluating a language model is the perplexity. However, a meaningful comparison between 

perplexities of several models can only be made if they have the same vocabulary. For that 

reason, and since almost all our experiments evaluate and compare language models of 

different vocabularies, we have not used the perplexity as an evaluation metric. 

 Thus, for the experimental results we present here we used the WER to consistently 

evaluate and compare the relative language models performance. For these evaluations the 

NIST toolkit sclite [NIST, 2000] was used. This software calculates the WER metric given 

a set of reference sentences and a corresponding set of recognized sentences generated 

during the decoding process. To evaluate the performance of the vocabulary adaptation 

algorithms we used out-of-vocabulary (OOV) word rate as another metric. 

3.4 Processing Tools 

This section briefly describes the processing tools used to implement the various stages of 

the adaptation framework proposed in this thesis: language modeling, morpho-syntactic 

tagging and Information Retrieval extraction. 

3.4.1 Language Modeling Toolkit 

To generate the language models used in this work and evaluate their performance in terms 

of perplexity values, we used the SRILM Toolkit [Stolcke, 2002], a Language Model 

Toolkit designed to allow both production of and experimentation with statistical language 

models for speech recognition and other applications. SRILM is freely available for 

noncommercial purposes (http://www.speech.sri.com).  

 Beyond LM production and evaluation, the SRILM toolkit allows us to manipulate 

LMs in a variety of ways that we needed for our work: 

 renormalize a model (recomputing backoff weights); 
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 approximate an interpolated n-gram with a standard word-based backoff LM; 

 prune n-gram parameters, using an entropy criterion [Stolcke, 1998]; 

 prepare LMs for conversion to finite-state graphs by removing n-grams that would 

be superseded by backoffs. 

  

 Moreover, besides the standard word-based n-gram backoff LM models, the SRILM 

Toolkit supports creation and evaluation of several other LM types, most of them based on 

n-grams as basic building blocks: class-based models, cache models, skip language 

models, dynamically interpolated LMs, etc. 

3.4.2 Morpho-syntactic Tagger 

The information obtained by a morpho-syntactic tagging system can be relevant in several 

areas of natural language processing. For example, knowing the part-of-speech (POS) of a 

given word allows us to predict which words (or word classes) can occur in its 

neighborhood. That kind of information maybe useful in the language models used for 

speech recognition. 

 For the vocabulary selection algorithm derived in this work we used statistical 

information related to the distribution of POS tags of some training and adaptation 

datasets. Those datasets were morpho-syntactically tagged using a morpho-syntactic 

tagging system developed for the European Portuguese language [Ribeiro et al., 2004]. 

This morpho-syntactic tagger consists of two sequential modules as illustrated in figure 

3.3: 

 The morphological analysis module “Palavroso” [Medeiros, 1995], a 

morphological analyzer developed to address specific problems of the European 

Portuguese language. As output it gives all possible part-of-speech tags for a given 

word. If a word is not known, it tries to guess possible part-of-speech tags, always 

giving an answer; 

 The disambiguation module “MARv” [Ribeiro, 2003], a morpho-syntactic 

ambiguity resolver whose architecture comprehends two components: a linguistic-

oriented disambiguation rules component and a probabilistic disambiguation 
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component. The ambiguity is first reduced by the disambiguation rules component 

and then the probabilistic component produces a fully disambiguated output. 

 

Morphological analyzer
(Palavroso)

Ambiguity resolver
(MARv)

Text

Tagged text with ambiguity

Tagged text without ambiguity

 
Figure 3.3: Architecture of the morpho-syntactic tagging system. 

(extracted from [Ribeiro et al., 2004]) 

 

 The information coded by the tagset is presented in appendix A. 

3.4.3 Information Retrieval Engine 

For our framework we looked for an Information Retrieval engine addressing the following 

requirements: the system architecture should support large-scale text databases, multiple 

databases, concurrent indexing and querying, fast indexing, different retrieval models, and 

relevance feedback models support. According to these requirements we chose the Indri 

search engine [Strohman et al., 2005]. The retrieval model implemented in the Indri search 

engine combines the best features of inference networks and language modeling in an 

architecture designed for large-scale applications. The Indri query language can handle 

both simple keyword queries and extremely complex queries, allowing complex phrase 



64 

matching, synonyms, weighted expressions, Boolean filtering, numeric (and dated) fields, 

and the extensive use of document structure (fields), among others. 

 Indri is part of the Lemur Toolkit [LEMUR, 2007], an open-source toolkit for 

language modeling and Information Retrieval.  

3.5 Summary 

In this chapter we briefly covered the resources relevant to this thesis. We first presented a 

description of the two corpora used for our experimental studies and to train the 

AUDIMUS.media ASR system, the baseline system used for those studies. We described 

each of the components of the system including the lexicon and language model 

components. 

 The AUDIMUS.media ASR baseline system is part of a closed-captioning system of 

live TV broadcasts in European Portuguese that is daily producing online captions for the 

main news show of one Portuguese Broadcaster - RTP. The current BN ASR system is 

working in “real time” in a P4 dual core machine @ 2.8 GHz computer with 2 GB 

memory. 

 We concluded this chapter by briefly describing other processing tools we used: the 

modular morpho-syntactic tagger, the language model toolkit (SRILM) and the IR search 

engine (INDRI).  
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4 

Vocabulary Selection 

The daily and real-time transcription of broadcast news is a challenging task both in terms 

of acoustic, lexical and language modeling. To achieve optimal performance in news 

transcription, several problems have to be overcome: variety of acoustic conditions, many 

different speaking styles (from spontaneous conversation to prepared speech close in style 

to written texts), and topic changing over time leading to unlimited vocabulary. 

Particularly, when transcribing BN data in highly inflected languages, the vocabulary 

growth leads to high OOV word rates [Geutner et al., 1998]. 

 In these daily transcription systems the appearance of some new important events 

brings an increase of OOV. This increase of unknown words leads to degradation in 

recognition performance. This way, lexical coverage of a vocabulary should be as high as 

possible to minimize the side effects of OOV on system recognition performance. As 

stated in [Bigi et al., 2004], vocabulary optimization is mainly dependent on the task, the 

amount of training data used, and the source and recency of that data. Actually, assuming 

an open task like the BN data transcription, the topic changing over time leads to unlimited 

vocabulary. Hence, while a large vocabulary may be desirable from the point of view of 

lexical coverage, there is also the additional problem of increased acoustic confusability 

[Rosenfeld, 1995]. Since new words are constantly being introduced into common usage, it 

is impossible to ever have a complete vocabulary of all spoken words. Thus, the treatment 

of new lexical items is an essential element. 

 Several innovative techniques can be exploited to reduce those problems. Various 

research works show that improvement in system accuracy can be obtained by dynamically 



66 

adapting the vocabulary and language model based on additional training data resources. 

The use of news shows specific information, such as topic-based lexicons, pivot working 

script, and other sources such as the online written news daily available in the Internet can 

be added to the information sources employed by the ASR component [Schwarm et al., 

2004]. Using multi-phase recognition approaches, word hypotheses can be improved by 

using adaptive vocabularies and language models [Chen et al., 2004] [Boulianne et al., 

2006] [Oger et al., 2008]. 

 This chapter describes in detail the work done in the scope of our thesis, where we are 

exploring the use of additional sources of information for vocabulary selection of an 

European Portuguese broadcast news transcription system. Since the vocabulary 

optimization problem is mainly dependent on the specific linguistic characteristics of the 

target language, in sections 4.1 and 4.2 we present an analysis of the vocabulary growth, 

coverage and OOV words for the European Portuguese language using the datasets 

described in chapter 3. Based on that analysis and its conclusions, we devised new 

vocabulary selection strategies which take into account the specific characteristics of the 

European Portuguese language. Thus, in section 4.3 and 4.4 we give a detailed description 

of the different approaches we derived to improve the automatic selection of the word list 

for the ASR vocabulary done on a daily basis, presenting some evaluation and comparison 

results. 

4.1 Analysis of Vocabulary Growth and Coverage 

A major part of building a language model is to select the vocabulary of the ASR 

component which will have maximal coverage for the expected task/domain. Thus, the 

appearance of OOV words during the recognition process is closely related to the way the 

system vocabulary is chosen. Hence, the growth of the vocabulary as a function of the 

training corpora plays an important role in the magnitude of the OOV problem. In 

[Hetherington, 1995] and [Rosenfeld, 1995] the authors present extensive studies related to 

the vocabulary growth and coverage for different domains. Based on its studies, 

Hetherington classified the training corpora in three different groups: 
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 human-to-human written communication, which represents the corpora with the 

highest vocabulary growth. The Web text news corpus (WEBNEWS-PT) used in 

this work belongs to this group;  

 human-to-human spoken communication, representing the corpora with medium 

vocabulary growth. The broadcast news corpus ALERT-SR is an example which 

follows in this category; 

 and finally, the human-to-machine communication, encompassing corpora related 

to spoken dialog systems, being the group with the lowest rate of vocabulary 

growth. 

 

 In figure 4.1 we present the vocabulary growth for the two corpora used in this thesis. 

For the broadcast news domain (ALERT-SR corpus), the vocabulary growth is plotted for 

the two training datasets (pilot and train) consisting of about 500K word tokens. For 

analysis and comparison purposes we plotted the vocabulary growth for a random subset of 

WEBNEWS-PT corpus, consisting of about 1.5M word tokens. As one can observe, for the 

WEBNEWS-PT corpus the vocabulary growth is faster than for the ALERT-SR corpus. 

For a corpus size of about 0.5M word tokens, the ALERT-SR corpus has a vocabulary size 

of 26K words, while the vocabulary size for the WEBNEWS-PT is 38K, i.e. about 46% 

more. 

 

 
Figure 4.1: Vocabulary growth for the two corpora used in our work: Web text news corpus 

and broadcast news corpus (pilot and train datasets). 
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 Moreover, another important aspect to take in account for vocabulary design is to 

identify and rank the most relevant vocabulary words in order to improve the coverage rate 

of that vocabulary on unseen data. Figure 4.2 shows the coverage statistics related to the 

ALERT-SR.11march and WEBNEWS-PT.11march datasets for the baseline vocabulary of 

57K words. For this vocabulary the OOV rate measured on the broadcast news dataset 

averages 1.25%, while the average OOV rate for the Web text news dataset is about 

3.16%. These results are consistent with Hetherington and Rosenfeld findings that 

vocabulary growth and coverage is domain dependent.  

 The coverage results show a small increase in the OOV rate after the March 11th. We 

would expect this kind of behavior, with a clear and strong topic change, mainly due to the 

unexpected and awful events occurring on March 11th of 2004 in Madrid. To figure out 

what kind of words mainly contributes to these OOV rates, and which adaptation 

procedures we should pursuit in order to better address this problem specific of highly 

inflected languages such as the European Portuguese, we derived various analyses at the 

OOV level which are presented in the next section. 
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Figure 4.2: OOV rate in the ALERT-SR.11march and WEBNEWS-PT.11march datasets for 

the 57K words baseline vocabulary. 
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4.2 Analysis of OOV Words 

In this section, we look at some characteristics of OOV words in the broadcast news 

dataset (ALERT-SR.11march). 

 First, we examine their classification into part-of-speech (POS) classes. In table 4.1 we 

break down OOV words into three different categories using the morpho-syntactic tagging 

system developed for the European Portuguese language and briefly described in section 

3.4.2: names (including proper and common names), adjectives and verbs. Other type of 

words, such as function words, are absent from the list shown in table 4.1 because almost 

all those words are already in the 57K baseline vocabulary. We simply merged all together 

(“Others” category in table 4.1) 

 

Class 8th 9th 10th 11th 12th 13th 14th Week
Names 27.3 15.4 19.0 20.6 28.2 43.1 34.8 28.8
Adjectives 10.1 7.7 18.1 16.8 16.4 8.9 9.6 13.2
Verbs 61.6 69.2 62.9 57.9 53.6 47.2 53.9 56.2
Others 1.0 7.7 0.0 4.7 1.8 0.8 1.7 1.8

 

Table 4.1: Distribution (in %) of OOV words by POS-classes in the ALERT-SR.11march 

dataset.  

 

 According to findings reported in the literature, OOV words are mostly names. In 

[Hetherington, 1995], [Bazzi, 2002] and [Allauzen and Gauvain, 2005] a strong correlation 

between names and OOV words is reported. A similar conclusion is reported in [Palmer 

and Ostendorf, 2005], with names accounting for 43.66% of the OOV word types. Hence, 

as a first idea, we would be expecting to observe a similar behavior for ALERT-

SR.11march dataset, i.e. a strong relation between names and OOV words, especially for 

this specific week with new and infrequent words appearing (train station names, terrorist 

names, journalist names, etc.). However, as one can observe from table 4.1, verbs make up 

for the largest portion of OOV words. In fact, although verbs represent only 17.5% (see 

figure 4.3) of the words in the ALERT-SR.11march dataset, they account for 56.2% of the 

OOV words. Moreover, in this dataset, verbs are also very frequently the source of 
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recognition errors, representing the largest portion of wrongly recognized words - about 

25% (see figure 4.4). 
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Figure 4.3: Distribution (in %) of words by POS-classes in the ALERT-SR.11march dataset. 
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Figure 4.4: Distribution (in %) by POS-classes of the words wrongly recognized in the 

ALERT-SR.11march dataset. Recognition results obtained with the baseline system. 

 

 In a second analysis, and since our adaptation proposal is to take advantage of 

contemporary written news to dynamically adapt the system vocabulary, we examined the 

effect of augmenting the vocabulary with new words found in the same day of each tested 
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BN show. As we have described in section 3.2, the WEBNEWS-PT.11march dataset had 

an average size of about 280 K tokens collected per day. Thus, taking into account these 

written text news collected for each day and the 57K words baseline vocabulary, an 

average of 5K new words was found on a daily basis, accounting for an upgraded 

vocabulary of 62K words.  

 

  8th 9th 10th 11th 12th 13th 14th

OOV reduction 20.2 15.4 21.6 29.6 36.4 20.3 33.9
 

Table 4.2: OOV word reduction (in %) in the ALERT-SR.11march dataset by adding new 

words found in written news on a daily basis. 

 

 From table 4.2, one can observe an OOV word reduction ranging between 15.4% (for 

March 9th) and 36.4% (for March 12th), with an average value around 28.6%. The graph 

in figure 4.5 gives us an overview about the kind of words (POS-classes) we covered by 

adding those 5K extra new words. From that, we conclude that a significant OOV word 

reduction was obtained in the class of names. Remarkably, on the news show of March 

12th more than 72% reduction was achieved in the class of names.  
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Figure 4.5: OOV word reduction (in %) by POS-classes in the ALERT-SR.11march dataset 

when adding new words found in written text news on a daily basis. 
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 Based on the above observations, we conclude that the strategy of using contemporary 

written text news to adapt the baseline vocabulary seems to be useful specially to cover the 

new names appearing over time. However, even though verbs represent the largest portion 

of OOV words, the reduction for this class by using contemporary written texts is not so 

significant. Moreover, the differences in terms of vocabulary growth and coverage for 

different domains and time periods, makes it necessary to devise new vocabulary selection 

strategies which take into account those specific characteristics. 

 In the next sections, we describe the vocabulary optimization techniques proposed in 

this thesis, and their evaluation. 

4.3 Vocabulary Adaptation based on Linguistic 

Knowledge (Lemmas) 

As stated before, just generically increasing the system vocabulary size can improve the 

accuracy for many common words but degrades the recognition rate for less common 

words [Rosenfeld, 1995]. In our preliminary work [Martins et al., 2005] we tried using a 

large vocabulary of 213K words selected with an ad-hoc approach (all words from the 

training corpora occurring more than 15 times), obtaining an OOV word rate reduction of 

67%. However, this approach does not solve the problem of newly appearing words and 

infrequent words related to some important events, which are critical and therefore need to 

be recognized accurately. This is especially true for the broadcast news domain due to the 

large variety of topics discussed over time. Moreover, looking at tables 3.3 and 3.4 in 

section 3.1.1, one observes a maximum of 2.2K word types occurring by day. Thus, 

defining a more rational approach to expand the vocabulary other than by simple frequency 

of occurrence is need. 

4.3.1 Vocabulary Adaptation Algorithm 

In [Martins et al., 2006] we proposed a procedure for dealing with the OOV problem by 

dynamically increasing the baseline system vocabulary, reducing the impact of linguistic 
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differences over time. Based on the OOV analysis, we focused our work in correcting 

errors resulting from OOV words mainly on verbs class. Our approach to compensate and 

reduce the OOV word rate related with verbs was supported by the fact that almost all the 

OOV verbs were inflections of verbs whose lemmas were already among the lemmas set 

dL  of the verbs found in contemporary written news of each day d . In fact, using the 

morphological tool reported in section 3.4.2 we performed a lemmatization over all the 

words of ALERT-SR.11march and WEBNEWS-PT.11march datasets, concluding that in 

average 83.1% of the verbal lemmas belonging to the OOV words were present in dL  set 

(table 4.3). 

 

8th 9th 10th 11th 12th 13th 14th Week 

88.5 77.8 85.8 85.2 84.7 82.7 77.0 83.1 
 

Table 4.3: Percentage of verbal lemmas, derived from the OOV verbs present in the ALERT-

SR.11march dataset, included on the verbal lemmas set dL  derived from the written news. 

 

 On tables 4.4 and 4.5 we present some examples of those verbal lemmas on both 

ALERT-SR.11march dataset and WEBNEWS-PT.11march dataset (examples selected 

from the news show of March 13th).  

 

Words Morpho-syntactic Information Verbal Lemma 

acautelar [V=f=1s] [V=f=3s] [V=sf1s] [V=sf3s] [V=n] Acautelar 
descarta [V=ip3s] [V=m2s] Descartar 

ilegalizada [A=pfs] [V=p==sf] Ilegalizar 

intriga [Ncfs] [V=ip3s] [V=m2s] Intrigar 

sereno [Ncms] [A=pms] [V=ip1s] Serenar 
 

Table 4.4: Examples of verbs present in the WEBNEWS-PT.11march dataset (March 13th). 
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OOV Words Morpho-syntactic Information Verbal Lemma 

acauteladas [A=pfp] [V=p==pf] Acautelar 
descartou [V=is3s] Descartar 

ilegalizado [A=pms] [V=p==sm] Ilegalizar 

intrigou [V=is3s] Intrigar 

serenou [V=is3s] Serenar 
 

Table 4.5: Examples of OOV verbs present in the ALERT-SR.11march dataset (March 13th). 

 

 The results of table 4.3 motivated our idea of using this linguistic behavior to 

automatically expand the baseline vocabulary. Thus, the baseline vocabulary of each day 

d  is automatically extended by adding the following words: 

 all the new words appearing in the written texts of day d , and 

 all the verbal infections observed in the language model training corpora and whose 

lemmas belong to dL . 

 

 Thus, supposing the baseline vocabulary 0V , the proposed adaptation approach is 

performed on a daily basis according to the following procedure (see figure 4.6): 

 

1. Every day d , online written news ( )O d  are downloaded from the Internet; 

2. A vocabulary list 1V  consisting of the words found in ( )O d  is created; 

3. The words of 1V  are grammatically classified and lemmatized, and the list of verbal 

lemmas dL  generated; 

4. A new vocabulary list 2V  is generated by selecting all the verbal inflections 

observed in the language model training corpora and whose lemmas belong to dL ; 

5. Vocabulary lists 0V , 1V  and 2V  are merged together to form the adapted 

vocabulary list 3V . 
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Figure 4.6: Vocabulary adaptation procedure based on linguistic knowledge (lemmas). 

 

 Next we present some evaluation results by applying this vocabulary adaptation on the 

ALERT-SR.11march dataset. 

4.3.2 Evaluation Results 

To compare the performance of this vocabulary adaptation approach we used the OOV 

word rate as an evaluation metric. Hence, we applied it on the seven news shows of the 

ALET-SR.11march dataset, comparing the OOV word rate for different vocabulary sets: 

 0V : baseline vocabulary ( 0V ) consisting of 57K words; 

 0 1V V+ : baseline vocabulary extended with 1V , the list of words appearing on the 

written news ( )O d  extracted from the Internet for each day d . In this case the 

baseline vocabulary was expanded by an average of 5K new words each day, 

giving a final vocabulary of 62K words per day; 

 3 0 1 2V V V V= + + : baseline vocabulary extended with 1V  and 2V  according the 

procedure here proposed. Applying this adaptation approach, the baseline system 

vocabulary was expanded by an average of 43K new words each day, resulting in a 

final vocabulary of 100K words per day; 
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 0 1 2 'V V V+ + : baseline vocabulary extended with 1V  and 2V ’. The selection of 2 'V  

is done only by means of word frequency and such that the final vocabulary size of 

0 1 2 'V V V+ +  is the same as 0 1 2V V V+ + , i.e., 100K words per day. 

 

 In figure 4.7 we plot the daily OOV word rate on the ALERT-SR.11march dataset 

using those four vocabularies. As one can observe this adaptation procedure generated a 

significant improvement in terms of OOV word rate, which was reduced in average by 

65.7%, i.e. from 1.25% to 0.43%. Moreover, this approach outperformed all the other 

methods, being more effective than the common word frequency approach. This 

improvement was almost uniform across all the seven BN test shows, with the lemmas-

based approach being outperformed only for the BN show of March 13th (see figure 4.7). 

In fact, from table 4.1 one can observe that BN show of March 13th has the lowest 

percentage of OOV words as verbs. 
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Figure 4.7: OOV word rate comparison for different vocabularies: 

0V (57K), 0 1V V+ (62K), 0 1 2 'V V V+ + (100K) and 0 1 2V V V+ + (100K). 
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 As stated before, the procedure we presented here tries to deal with the OOV problem 

by dynamically increasing the baseline vocabulary over time. As we would expect, by 

additionally applying the morphological analysis over the verbal inflections found in the 

written news, we achieved an OOV word rate reduction of 65.7% (derived vocabulary 

0 1 2V V V+ + ), against the 28.6% reduction we could obtain by using only the new words 

found in the written news (derived vocabulary 0 1V V+ ). 

 

Vocabulary Names Adjectives Verbs Others Total 

Baseline ( 0V ) 187 87 376 12 662 
Adapted ( 0 1V V+ ) 98 49 324 2 473 
Adapted ( 0 1 2V V V+ + ) 98 47 80 2 227 

OOV reduction: 47.6% 46.0% 78.7% 83.3% 65.7% 
 

Table 4.6: Distribution of OOV words using the baseline and adapted vocabularies for all the 

seven BN shows of ALERT-SR.11march dataset. 

 

 Table 4.6 shows the distribution of OOV words by grammatical classes (POS) for both 

baseline vocabulary and extended vocabularies, which indicates a significant reduction on 

the OOV words classified as verbs in case of 3V  vocabulary. In fact, using the adapted 

vocabulary 0 1V V+  we could obtain an average reduction of 13.8%, against 78.7% 

reduction when applying the proposed vocabulary adaptation algorithm. 

4.3.3 Summary 

Using the broadcast news dataset formed by the seven news shows (ALERT-SR.11march) 

we performed some analyses of the type OOV words obtained when applying the baseline 

vocabulary. From these analyses, we were able to conclude that verbs turned to be the most 

significant grammatical class in terms of OOV. Hence, a vocabulary adaptation algorithm 

was proposed that showed to be effective to cope with this specific problem, allowing an 

average relative reduction of more than 65% compared to the baseline vocabulary. 

 However, the proposed approach assumes an a priori selected static list of words - the 

baseline vocabulary, just adding new words on a daily basis. This way, the system 
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vocabulary is always extended resulting in a vocabulary with an average size of 100K 

words. In the following section a new algorithm for selection and adaptation is proposed. It 

allows defining the size of the target vocabulary, selecting it from scratch. 

4.4 Vocabulary Selection using Morpho-Syntactic 

Tagging (POS) 

When various training corpora of different origins, sizes and recencies are available, we 

face the problem of how to infer the target vocabulary. In our case, we would like to define 

an automatic and optimized procedure to daily select the system vocabulary from three 

different corpora: an out-of-domain dataset (WEBNEWS-PT.train), an in-domain dataset 

(ALERT-SR.train+pilot) and the adaptation dataset daily collected from the Internet 

(WEBNEWS-PT.11march). For this purpose, in [Martins et al., 2007] we introduced a 

modified vocabulary selection technique that takes into account the differences in style 

across the various corpora, especially in case of written versus spoken style. 

 In a first step, and using the same morpho-syntatic analysis tool as before, we 

annotated both the in-domain corpus (ALERT-SR.train+pilot) and a segment of the out-of-

domain corpus (WEBNEWS-PT.train) with a similar size, i.e., about 531K word tokens. 

This segment consisted of news articles randomly selected from the WEBNEWS-PT.train 

dataset. 

 In figure 4.8, we summarize the POS statistics obtained for both datasets by breaking 

down words into four main classes: names (including proper and common names), verbs, 

adjectives and adverbs. Other type of words, such as functional words, are absent from the 

list shown in figure 4.8 because they represent closed grammatical classes in the European 

Portuguese language. These statistics are related to word types and not word tokens, i.e., 

only unique occurrences of a word/class are counted. As one can see, there is a significant 

difference in POS distribution when comparing in-domain and out-of-domain datasets, 

especially in terms of names and verbs. For in-domain data we observe a significant 

increment (from 30.5% to 36.9%) in the relative percentage of verbs when compared with 

the out-of-domain data, with the percentage of names decreasing from 45% to 40.6%. 
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Figure 4.8: Distribution of words types by POS classes (in %). 

 

 Based on the above observations, we proposed a new approach for vocabulary 

selection that uses the part-of-speech word classification to compensate for word usage 

differences across the various training and adaptation corpora. This approach is based on 

the hypothesis that the similarities between different domains can be characterized in terms 

of style (represented by the POS sequences). In [Iyer et Ostendorf, 1997] these similarities 

have already been integrated to more effectively use out-of-domain data in sparse domains 

by introducing a modified representation of the standard word n-gram model using part-of-

speech labels that compensates for word usage differences across domains. So, in this new 

approach, instead of simply adding new words to the fixed baseline system vocabulary, as 

the previously proposed approach, we use now the statistical information related to the 

distribution of POS word classes on the in-domain corpus to dynamically select words 

from the various training corpora available.  
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4.4.1 Vocabulary Selection Algorithm 

Assuming we want to select a vocabulary V  with V  words from n  training corpora jT , 

with 1, ,j n= … . The proposed approach can be summarized as follows: 

 

1. Definition of the POS classes to use 

In our implementation we used the following set of POS classes: 

{ }names, verbs, adjectives, adverbsPOSset =  (4.1) 

All the remaining words (mainly functional words) are automatically added to the 

vocabulary. In fact, in the training corpus used in this work we obtained only 468 

words which POS class did not belong to POSset . 

 

2. Estimation of POS distribution using an in-domain corpus 

Using an in-domain dataset the distribution of words by POS classes, ( )M p  with 

p POSset∈ , is computed through the maximum likelihood estimation (MLE). 

Thus, the in-domain is POS-tagged, and its statistics used to estimate the class 

probability as ( ) ( )
( )

i POSset

N p
M p

N i
∈

=
∑

, with ( )N p  being the count of occurrences 

of class p  on that dataset. 

 

3. Computation of normalized counts 

Let ,i jc  be the counts from each one of the available training corpus jT , for the 

word iw . Due to the differences in the amount of available data for each training 

corpus, we start by normalizing the counts according to their respective corpus 

length, getting ,i jη  as the normalized counts. The Witten-Bell discounting strategy 

is used to ensure non-zero frequency words in the normalization process. 

 

4. Estimation of a word weighting factor 
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From the normalized counts ,i jη  we want to estimate some kind of weighting factor 

iη  for each word iw  in order to select a vocabulary from the union of the 

vocabularies of 1T  through nT  that minimizes the OOV word rate for the in-domain 

task. In [Venkataraman and Wang, 2003] this weighting is obtained by means of 

linear interpolation of the different counts, with the mixture coefficients calculated 

in order to maximize the probability of the in-domain corpus. In our work we use a 

similar method but simply assigning identical values to all the mixture coefficients. 

Hence, 

 ,
1

1with
n

i j i j j
j n

η λ η λ
=

= =∑  (4.2) 

 

5. Generation of an ordered word list W  

 All the words iw  are sorted in descending order according to the weighting factor iη . 

 

6. Selection of V  words from the word list W  

According to ( )M p , the number of words selected from each class p  will be 

( )V M p× . Hence, for each class p , the first ( )V M p×  words of W  belonging 

to class p  are selected and included in the target vocabulary V . 

However, since a word can belong to more than one class, the first run of this 

process can produce a vocabulary list with less than V  words. In that case, the 

selection process is iterated until the target number of words is achieved. 

4.4.2 Evaluation Results 

As before, we used the OOV word rate as an evaluation metric to evaluate the performance 

of this new approach, applying it on the seven news shows of the ALET-SR.11march 

dataset. As a first test, we started by comparing the OOV word rate for four different 

vocabulary sets: 

 Baseline: baseline vocabulary consisting of 57K words; 
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 Baseline+day: baseline vocabulary extended with the new words appearing on the 

written news ( )O d  extracted from the Internet for each day d . In this case the 

baseline vocabulary was expanded by an average of 5K new words each day, 

giving a final vocabulary of 62K words per day; 

 Adapted_WF: selecting a new vocabulary based on all the training/adaptation 

corpora and using word frequency as the only selection criteria. In this case, the 

vocabulary is selected on a daily basis, using the two training datasets (in-domain 

dataset ALERT-SR.train+pilot and out-of-domain datatset WEBNEWS-PT.train) 

and the adaptation dataset formed by the written news ( )O d  collected day-by-day 

(WEBNEWS-PT.11march); 

 Adapted_POS: selecting a new vocabulary based on all the training corpora and 

using the new approach proposed in this section. As in Adapted_WF approach, the 

two training datasets, plus the adaptation one, were used in the vocabulary selection 

process (in steps 3 and 4 of our algorithm). To estimate the distribution of POS 

classes (step 2) we used the in-domain dataset ALERT-SR.train+pilot. Table 4.7 

presents the ( )M p  distribution used. 

 

p  names Verbs adjectives adverbs 

( )M p  40.6 36.9 20.9 1.6 
 

Table 4.7: POS distribution used in our experiments. 

 

 In both Adapted_WF and Adapted_POS approaches we used 62V K=  in order to 

make results comparisons with Baseline+day approach. Notice that the results presented in 

table 4.8 correspond to macro-averages over the 7 news shows of the test dataset. As one 

can observe from table 4.8, the new proposed Adapted_POS approach yields a relative 

average reduction of 37.8% in OOV word rate, when compared to the results obtained with 

the baseline vocabulary. Moreover, this approach outperformed all the other methods, 

being more effective than the common word frequency approach (from 0.82% to 0.78%). 

This improvement was almost uniform across all the seven BN test shows, with the 
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Adapted_POS approach being outperformed only for the BN show of March 10th (see 

figure 4.9). 

 

 Approach  %OOV %reduction 

Baseline (57K)  1.25 - 
Baseline+day (62K)  0.89 28.5 
Adapted_WF (62K)  0.82 34.1 

Adapted_POS (62K)  0.78 37.8 
 

Table 4.8: Average OOV word rate for the ALERT-SR.11march dataset applying different 

methods of vocabulary selection ( 62V K= ). 
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Figure 4.9: OOV word rate for the seven BN shows of the ALERT-SR.11march dataset when 

applying different methods of vocabulary selection ( 62V K= ). 
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 On table 4.9 we present the distribution (in percentage) of words by POS classes for 

the different vocabularies produced by each one of the selection procedures. One can 

clearly observe the differences in POS class distribution. By examining the distribution of 

POS classes and OOV word rates over the test shows for the various vocabulary selection 

approaches, a correlation between these two values is observed. In fact, the new approach 

selects words in a more balanced way, especially in the case of names and verbs classes. 

 

Vocabulary  Names Verbs Adjectives Adverbs 

Baseline+day 61.6 22.5 14.1 1.8 
Adapted_WF 56.3 26.9 15.6 1.2 

Adapted_POS 40.6 36.9 20.9 1.6 
 

Table 4.9: Distribution (in %) of words by POS classes for different vocabularies 

( 62V K= ). 

 

 To better understand the performance of this new vocabulary selection procedure for 

different values of V  (vocabulary size), we calculated the OOV word rate results for 

vocabularies of 5K, 25K, 50K, 100K, 150K and 200K words (see table 4.10). 

 We compared the common word frequency approach with the proposed POS-based 

approach. Results in table 4.10 show the relative good performance of the Adapted_POS 

approach for the selection of large-sized vocabularies. Furthermore, as we would expect, 

for the selection of small vocabularies better results are achieved by using the 

Adapted_WF method. As one can see, for the vocabulary sizes of 5K and 25K words the 

Adapted_POS approach does not perform so well. After analyzing the type of OOV words 

generated by both approaches, one could conclude that for small values of V , the 

probability value ( )M adverbs  is very small, and consequently the Adapted_POS 

approach does not include in vocabulary some highly frequent adverbs (for example, 

“demasiado” – too much, “particularmente” – particulary, “todavia” – nevertheless, …). 
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 V   Approach  %OOV %reduction 
Adapted_WF 10.235K Adapted _POS 10.89 -6.4 
Adapted _WF 2.4525K Adapted _POS 2.49 -1.8 
Adapted _WF 1.1150K Adapted _POS 1.05 5.8 
Adapted _WF 0.8262K Adapted _POS 0.78 5.5 
Adapted _WF 0.39100K Adapted _POS 0.36 6.8 
Adapted _WF 0.22150K Adapted _POS 0.20 8.8 
Adapted _WF 0.14200K Adapted _POS 0.13 7.9 

 

Table 4.10: Word Frequency vs. POS approach results for different values of V . 

4.4.3 Summary 

In this section we described a dynamic vocabulary adaptation framework that tries to 

optimize the trade-off between the expected OOV word rate and the number of added 

words. It uses POS class information about an in-domain training corpus to select an 

optimal vocabulary for domain-specific language modeling tasks. When applied to a daily 

and real-time broadcast transcription task, this procedure showed to be effective in 

reducing the OOV word rate (a relative average reduction of more than 37%) when 

compared with the one obtained for the baseline vocabulary, with an increment of 5K 

words in the vocabulary size (from 57K to 62K). Even with a vocabulary of 50K words, 

we could get a relative average decrease of 16% (from 1.25% to 1.05%) in the OOV word 

rate. 

 In the next section, we compare the performance of the two vocabulary adaptation 

approaches proposed in this work. 
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4.5 Comparison of Lemmas-based and POS-based 

Algorithms  

To compare the proposed algorithms for vocabulary selection/adaptation (lemmas and POS 

approaches) we used two evaluation metrics: OOV word rate and WER over the seven BN 

shows of ALERT-SR.11march dataset. As stated before, applying the lemmas-based 

procedure, the baseline vocabulary of 57K was expanded by an average of 43K new words 

for each day, giving a final vocabulary size of 100K words per day. Thus, to fairly 

compare the two approaches, we used a vocabulary size of 100K for both. 

4.5.1 OOV Rate Results 

As one can observe from figure 4.10, the proposed POS-based approach yields a relative 

reduction of 71.2% in OOV word rate, when compared to the results obtained with the 

baseline vocabulary, which shows the good performance of this new selection/adaptation 

technique.  
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Figure 4.10: OOV word rate for the seven BN shows of the ALERT-SR.11march dataset 

when applying Lemmas-based and POS-based algorithm for a vocabulary with 100K words. 
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 Moreover, this approach outperformed the other proposed method (lemmas-based), 

which yields a relative reduction of 65.6%.  

4.5.2 WER Results 

Adapting the language model of an ASR system requires identifying and adding new 

words in the system vocabulary, generating proper phonetic transcriptions for those new 

vocabulary items, and learning the corresponding linguistic constraints to be represented 

by the language model itself. To evaluate both vocabulary adaptation algorithms in terms 

of WER, the following language model adaptation procedure was used. Using the 100K 

words vocabularies, previously selected by each one of the adaptation algorithms, new 

language models were estimated. They combine a backoff 4-gram language model trained 

on WEBNEWS-PT.train dataset, a backoff 3-gram language model estimated on ALERT-

SR.train+pilot dataset and a backoff 3-gram language model estimated on the adaptation 

dataset formed by the written news ( )O d  collected day-by-day (WEBNEWS-

PT.11march). These three models were then combined by means of linear interpolation, 

generating a mixed model. Mixture weights were estimated on ALERT-SR.devel BN 

dataset. For each vocabulary, the new words were phonetically transcribed using a rule-

based phonetizer [Caseiro et al., 2002]. Those phonetic transcriptions were then manually 

revised by some linguistic specialists, especially in case of foreign names. Thus, the 

updated language model and vocabulary replace the baseline ones in the automatic 

transcription system. 

 Table 4.11 shows the WER results over the seven BN shows of ALERT-SR.11march 

dataset, using three different vocabularies: baseline (57K words), Lemmas-based and POS-

based (the two last ones with 100K words). These adaptation frameworks produced a 

significant improvement in terms of word error rate, which was reduced on average by 

3.2% for Lemmas-based and 4.3% for POS-based approach. Moreover, we would be also 

expecting that the POS-based algorithm outperformed the Lemmas-based one in terms of 

recognition results. In fact, we got an average relative reduction in the WER of 1.1% (see 

table 4.11). 
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vocabulary 8th 9th 10th 11th 12th 13th 14th Week 

Baseline 29.4 17.7 28.5 28.7 24.2 33.9 27.3 28.1 
Lemmas-based  28.3 17.5 28.2 28.2 22.9 32.3 26.4 27.2 

POS-based 28.0 17.5 28.0 27.3 22.9 32.1 26.4 26.9 
 

Table 4.11: WER results over the seven BN shows of ALERT-SR.11march dataset using three 

different vocabularies: Baseline (57K words), Lemmas-based (100K words) and POS-based 

(100K words). 

 

 Analyzing the ASR output produced by each one of the adapted language models, we 

could conclude that this marginal difference in terms of WER was due to the correct 

recognition of additional new words in case of POS-based vocabulary when compared to 

the Lemmas-based one. As shown in table 4.12, for POS-based vocabulary, the average 

absolute WER reduction was 1.2%, with a ratio between absolute improvement in WER 

and the OOV rate of 1.4. This conforms to the empirical evidence stated by Hetherington 

that on average 1.5-2 errors are obtained per OOV [Hetherington, 1995]. However, for 

Lemmas-based vocabulary, this ratio was only 1.1. In fact, analyzing the relative 

percentage of new words added to each one of the vocabularies and correctly recognized, 

we observed a percentage of 55.1% for the POS-based vocabulary and a slightly small 

percentage of 54.5% for the Lemmas-based one. This difference is mainly due to the fact 

that in the Lemmas-based approach there are more verbal forms wrongly recognized due to 

the way the vocabulary is selected (all verbal forms with the same lemma), increasing the 

acoustic confusability between some verbal forms sharing the same lemma. 

 

Vocabulary %OOV WER ∆WER ∆OOV  

Baseline 1.25 28.1 - 
Lemmas-based  0.43 27.2 1.1 
POS-based 0.36 26.9 1.4 

 

Table 4.12: Ratio of the absolute error reduction in WER and OOV rate for the ALERT-

SR.11march dataset using the Lemmas-based (100K words) and POS-based (100K words) 

vocabularies. 
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4.6 Summary 

In this section we proposed and described two methods for daily adapting the vocabulary 

of a speech recognizer to the broadcast news content. While the first approach extends the 

vocabulary with additional words extracted from written news daily collected from the 

Internet, the second approach dynamically generates a new vocabulary from scratch on a 

daily basis, selecting words from various training/adaptation corpora to maximize its 

lexical coverage. This second approach showed to be more robust both in terms of OOV 

word rate and WER, allowing to directly defining the desired size of the target vocabulary. 

Moreover, this adaptation procedure is simple, extensible to any number of available 

training corpora and experimental results showed that when compared with the common 

word frequency based approach it gives better results, especially for selection of large-

sized vocabularies. 

 Hence, for the proposed language model adaptation framework we present in next 

chapter, we used the POS-based algorithm for vocabulary selection. 
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5 

Language Model Adaptation 

An up-to-date language model is recognized to be a critical aspect of maintaining the level 

of performance for a speech recognizer over time for most applications. In particular, for 

applications such as transcription of broadcast news and conversations where the 

occurrence of new words is very frequent. 

 As described in section 2.1.6, language model adaptation can take several forms. One 

approach might be to perform an offline adaptation, in which the language models are 

adapted in advance to their use. This adaptation could either be done in a supervised way, 

or it could also be performed in an unsupervised approach where the language model is 

adapted in some form based on the sentences that have been recognized already. 

 Language modeling typically requires large quantities of in-domain training data, i.e., 

data that matches the task in both topic and style. For broadcast news and conversational 

speech applications, this is often unrealistic since topics change frequently, and collecting 

training data is time-consuming and expensive. Thus, the ability to adapt an existing 

language model over time, also referred to as dynamic LM adaptation, is desirable. As 

summarized in section 2.1.6, there have been various works using data from the Internet as 

an additional source of training data for unsupervised language modeling. 

 This chapter addresses the problem of dynamically adapting over time the language 

model of our European Portuguese BN transcription system, using adaptation texts 

extracted from the Internet and the previously described POS-based vocabulary selection 

algorithm. The next sections present the unsupervised language model adaptation 

framework proposed in this thesis, and its evaluation. Finally, we briefly describe the 



92 

integration and implementation of the proposed approach into a fully functional prototype 

system for the selective dissemination of multimedia information. 

5.1 Multi-phase Adaptation Framework 

In [Martins et al., 2007a] we proposed a daily and unsupervised adaptation approach which 

dynamically adapts the active vocabulary and language model to the topic of the current 

news segment using a multi-phase speech recognition process. Based on contemporary 

texts daily available on the Web, a story-based vocabulary is selected using the morpho-

syntactic technique described in section 4.4. Using an Information Retrieval engine and the 

ASR hypotheses as query material, relevant documents are extracted from a dynamic and 

large-size dataset to generate a story-based language model. 

 In the next sub-sections we will describe each one of the speech recognition phases. 

5.1.1 First-phase (online) 

As stated in section 3.2, the baseline AUDIMUS.media ASR system is part of a closed-

captioning system of live TV broadcasts, being the state-of-the-art in terms of broadcast 

news transcription systems for European Portuguese. However, the language modeling 

component of this baseline system uses a static vocabulary and language model (see figure 

5.1), not being able to cope with vocabulary and linguistic content changes over time. To 

overcome this limitation we proposed and implemented an adaptation approach, which 

creates from scratch both vocabulary and language model components on a daily basis. 

Hence, for each day d  this approach is performed according to the following steps: 

 

1. Vocabulary Selection 

A new vocabulary 0V  is selected for each day d  applying the POS-based 

algorithm described in section 4.4 and using three corpora as training data: the 

newspaper texts from WEBNEWS-PT.train dataset (out-of-domain data), the 

broadcast news transcriptions from ALERT-SR.train+pilot dataset (in-domain data) 

and the contemporary texts daily extracted from the Web (as adaptation data). 
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However, only an average of 80K words is being collected per day as adaptation 

data. Thus, to construct a more homogeneous adaptation dataset and collect enough 

n-grams containing new words, we merge Web data from several consecutive days. 

In our work we considered a heuristic time span of seven days. Similar approaches 

were taken in [Federico and Bertoldi, 2004] and [Allauzen and Gauvain, 2005a]. 

Hence, for each day ,d  we use the texts from the current day and the six preceding 

days (we will denote this adaptation subset as ( )7O d  - 7 days of online written 

news). For the POS-based algorithm, we use the ALERT-SR.train+pilot as the in-

domain corpus to estimate the POS distribution function. 

 

2. Language Model Training 

Using the selected vocabulary 0V , three language models are estimated: a generic 

backoff 4-gram language model (NP-LM) trained on WEBNEWS-PT.train; an in-

domain backoff 3-gram language model (BN-LM) trained on ALERT-

SR.train+pilot; and an adaptation backoff 3-gram language model (OL-LM) trained 

on ( )7O d . The generic language model (NP-LM) was estimated using the 

modified Kneser-Ney smoothing, with the absolute discounting being used to 

estimate the other two language models, BN-LM and OL-LM. 

 

3. Unsupervised Language Model Adaptation 

We use ( )NPP w h  to denote the conditional probability of word w  based on 

history h  estimated for the NP-LM, ( )BNP w h  for the BN-LM, ( )OLP w h  for the 

OL-LM, and ( )
0MIXP w h  for the conditional probabilities according to the adapted 

language model (MIX0-LM) we want to generate. To perform the unsupervised 

language model adaptation, we optimize the linear interpolation weights α  and β  

between NP-LM, BN-LM and OL-LM based on the maximum likelihood criterion. 

The adapted mixture model probabilities ( )
0MIXP w h  are as follows: 

 

 ( ) ( ) ( ) ( ) ( )
0

1MIX NP BN OLP w h P w h P w h P w hα β α β= + + − −  (5.1) 
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The mixture coefficients α  and β  are estimated using the Expectation-

Maximization (EM) algorithm to maximize the likelihood of a held-out dataset. For 

that propose, we defined as our held-out dataset the set of ASR transcriptions 

generated by the broadcast news transcription system itself for the 21 preceding 

days (noted here as ( )21T d ), i.e., 3 weeks of automatically generated captions. 

However, the confidence measure described in section 3.2.5 is used to select only 

the most accurately recognized transcription segments. Thus, all the words iw  with 

a confidence value ( )iP correct w  higher than 91.5% are included in the ( )21T d  

dataset. This is an important issue, since recognition errors can skew the n-gram 

estimates and thus deteriorate the adapted language model. In fact, in [Tam and 

Schultz, 2006] and [Wang and Stolcke, 2007] a degradation on the recognition 

performance was reported when the baseline language model was adapted based on 

automatic transcriptions, with the authors postulating that this may be caused by the 

recognition errors that were not smoothed properly. At first, in our experiments, we 

started by using only 7 days, which showed to produce a small held-out dataset due 

to the rejection rate imposed by the confidence threshold. Hence, to collect a more 

homogeneous ( )21T d  dataset, we used a time span of 21 days. Finally, the mixed 

language model (MIX0-LM) is pruned to a reasonable size using entropy-based 

pruning [Stolcke, 1998]. 

 

4. Phonetic Transcriptions Generation 

Finally, the phonetic transcriptions for new words appearing in 0V  vocabulary are 

automatically derived with a rule-based phonetizer [Caseiro et al., 2002], 

augmented with a set of exceptions manually revised by some linguistic specialists. 

 

 This adaptation framework (figure 5.2) generates from scratch both the vocabulary 

( 0V ) and language model (MIX0-LM), which are then used by the first run of the ASR to 

produce the live captions for the TV broadcast on a daily basis. 
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Figure 5.1: Static LM component of the baseline BN transcription system running on a daily basis to produce live captions for European 

Portuguese TV broadcasts. 
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Figure 5.2: Multi-phase adaptation framework: first-pass (online). 
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Figure 5.3: Multi-phase adaptation framework: second-pass (offline). 
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5.1.2 Second-phase (offline) 

In this multi-pass adaptation framework, a second-pass is being used to produce improved 

transcriptions for each day using the initial set of ASR hypotheses generated during the 

live version.  

 The initial set of ASR hypotheses (the result of the first decoding pass), which include 

texts on multiple topics, is automatically segmented into individual stories with each story 

ideally concerning a single topic. These segmentation boundaries are located by the audio 

partitioner [Meinedo and Neto, 2005] and topic segmentation procedure [Amaral et al., 

2006] currently implemented on the baseline system. The text of each segment can then be 

used as a query for an Information Retrieval engine to extract relevant documents from a 

dynamic and large-size database (table 5.1). This way, a story-based dataset is extracted for 

each segment and used to dynamically build an adapted vocabulary and language model 

for each story present in the news show being recognized.  

 In our framework we used the Information Retrieval engine described in section 3.4.3, 

INDRI - a language-based search engine. For the indexing process we defined as term the 

concept of word. During the indexing/retrieval process we removed all the function words 

and the 500 most frequent words, creating a stoplist of 800 words. As the starting point, the 

indexing of all training datasets (WEBNEWS-PT.train and ALERT-SR.train+pilot) has 

been done, generating a total of about 1.5M articles indexed (called story-segments in case 

of broadcast news shows). In table 5.1 we present some statistics related to the produced 

IR-database. After this initial indexation process, the IR database is being updated on a 

daily basis with the contemporary texts collected for the WEBNEWS-PT corpus, i.e. the 

texts used to generate the ( )7O d dataset. Thus, for each day d , the texts collected from 

the Web are provided in an article basis, being dynamically indexed and stored by the 

Information Retrieval engine (an average of 50K tokens per day). 

 

 #segments #types #tokens size (GB) 

IR-database 1,555,807 1,140,429 617,694,657 2.7 
 

Table 5.1: Text statistics for the IR-database. 
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 For the experiments presented in this thesis we used the standard similarity measure 

for the retrieval phase – the cosine measure. During the retrieval process, all articles with 

an IR score exceeding an empirically determined threshold are extracted for each news 

story. After some experiments, and to collect enough data for adaptation, we extract the 

first 1,000 articles with the highest IR score for each one of the queries. However, since the 

number of words in the hypothesized transcript of each story is usually small and contains 

transcription errors, one uses a pseudo-relevance feedback mechanism for automatic query 

expansion [Lavrenko et al., 2001]. This method uses the ASR hypotheses as an initial 

query, do some processing, and then return a list of expansion terms. The original query is 

then augmented with the expansion terms and rerun. 

 Thus, using 0H  to denote the initial set of ASR hypotheses produced by the live 

version of the BN transcription system, for each day d  this second-pass of the ASR 

system is performed according to the following steps (see figure 5.3): 

 

1. Story Segmentation 

0H  and the corresponding broadcast news audio are automatically segmented into 

stories using the topic detection procedure, generating an individual transcript file 

SH  for each story S . 

 

2. Information Retrieval 

Using the INDRI search engine, and the pseudo-relevance feedback mechanism 

described above, a topic-related dataset ( SD ) is extracted for each story S  from 

the IR dynamic database.  

 

3. Vocabulary Adaptation 

For each story S , all new words found in the corresponding SD  dataset are added 

to 0V , generating this way a story-specific vocabulary SV . Note that, for each word 

added, the vocabulary size is kept constant by removing from 0V  the word with the 

lowest frequency. 
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4. Unsupervised Language Model Adaptation 

For each story S , and using its specific vocabulary SV , an adaptation backoff 3-

gram language model trained on SD  is estimated using the modified Kneser-Ney 

smoothing. As in the first-pass, this new language model is linearly combined with 

the MIX0-LM language model to generate a story-specific language model (MIXS-

LM). The SH  set is used to estimate the mixture weights.  

 

5. Phonetic Transcriptions Generation 

As before, the phonetic transcriptions for new words appearing in SV  vocabulary 

are automatically derived. 

 

 Using SV  and MIXS-LM in a second decoding pass, the final set of ASR hypotheses is 

generated for each story .S  By applying this multi-phase adaptation approach we would be 

expecting to improve the system performance over the first-pass. In the next section we 

will describe the experiments we have done for its evaluation. 

5.2 Evaluation Results 

As before, to evaluate and compare the performance of the proposed adaptation framework 

we used two evaluation metrics: OOV word rate and WER over the two BN shows of the 

ALERT-SR.RTP-07 dataset. To fairly compare its performance, with the one obtained for 

the baseline system, we used a vocabulary size of 57K words. 

 In addition, comparison of results for both live and offline approaches using different 

vocabulary sizes is also described. Starting from the baseline vocabulary size of 57K words 

we defined two new vocabulary sizes to test: a smaller one with about fifty percent of 57K 

(30K words) and another one with almost the double of the size (100K words). Thus, three 

different vocabulary sizes are tested: 30K, 57K and 100K words vocabularies. 
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5.2.1 OOV Rate Results 

In figure 5.4 we present the average OOV rate for the two BN shows of the ALERT-

SR.RTP-07 dataset when applying the multi-phase adaptation framework for a vocabulary 

size of 57K words. As one can observe, the proposed second-pass speech recognition 

approach (2-PASS-POS-IR) using the morpho-syntactic algorithm for vocabulary 

adaptation (POS-based) and the Information Retrieval engine (IR) for language model 

adaptation, yields a relative reduction of 65% in OOV word rate, i.e. from 1.40% to 0.49%, 

when compared to the results obtained for the baseline system. Moreover, this approach 

outperformed the one based on one single-pass (1-PASS-POS). 
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Figure 5.4: OOV word rate for the two BN shows of the ALERT-SR.RTP-07 dataset when 

applying the multi-phase adaptation framework (vocabulary size of 57K words). 

 

 Analyzing the set of OOV words produced by the 2-PASS-POS-IR according to their 

classification into part-of-speech (POS) classes, we could observe a similar distribution to 
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the one obtained in section 4.2. In fact, as one can observe from figure 5.5, the verbs class 

remains the predominant one, with 58.2% of the OOV words belonging to that POS class. 

 

58.2%
(45 verbs) 16.0%

(13 adject.)

25.7%
(20 names)

Names Adjectives Verbs

 
Figure 5.5: Distribution (in %) of OOV words by POS-classes in the ALERT-SR.RTP-07 

dataset, after applying the second-pass adaptation approach.  

 

 To better understand the performance of this new adaptation procedure we compared 

the OOV rate results for three different vocabulary sizes (30K, 57K and 100K words). 
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Figure 5.6: OOV rate for the two BN shows of the ALERT-SR.RTP-07 dataset when 

applying the multi-phase framework with 3 different vocabulary sizes (30K, 57K and 100K). 
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 The graph in figure 5.6 shows the relative good performance of 1-PASS-POS and 2-

PASS-POS-IR approaches for the selection of large-sized vocabularies. Furthermore, as we 

would expect, for the selection of small vocabularies better results are achieved by using 

the 2-PASS-POS-IR method. In fact, as one can see, with a vocabulary of 30K words we 

were able to get a better lexical coverage than the one obtained for the baseline system 

with a vocabulary of 57K words. 

5.2.2 WER Results 

In table 5.2 we present the average WER for the two BN shows of the ALERT-SR.RTP-07 

dataset when applying the multi-phase adaptation framework for a vocabulary size of 57K 

words. In terms of WER, the new approach (1-PASS-POS-IR) resulted in a 5.7% relative 

gain, from 21.1% to 19.9%, for a vocabulary size of 57K words. As we would be 

expecting, the proposed second-pass approach yields a relative reduction of 6.6% in WER 

when compared to the WER obtained for the baseline system, outperforming the 1-PASS-

POS-IR approach (a slight decrease in WER, from 19.9% to 19.7%). 

 

 approach WER %reduction 

Baseline 21.1 - 
1-PASS-POS 19.9 5.7 
2-PASS-POS-IR 19.7 6.6 

 

Table 5.2: WER for the two BN shows of the ALERT-SR.RTP-07 dataset when applying the 

multi-phase adaptation framework (vocabulary size of 57K words). 

 

 In figure 5.7 we present an WER analysis in terms of word mismatch (substitutions, 

deletions and insertions). From this analysis, we could conclude that the WER reduction 

was mainly due to a decrease in the number of word substitutions, i.e. an absolute decrease 

of 1.1%. 
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Figure 5.7: Analysis of WER in terms word mismatch (substitutions, deletions and insertions) 

for the two BN shows of the ALERT-SR.RTP-07 dataset when applying the multi-phase 

adaptation framework (with a vocabulary size of 57K words). 

 

 To better evaluate the accuracy of our approach we performed a more detailed analysis 

of the WER obtained by the 2-PASS-POS-IR approach with a vocabulary of 57K words. 

For that analysis, we divided the adapted vocabulary SV  of each story S  into 2 sets: the 

set of word types that were already present in the baseline vocabulary 0V , and the set of all 

new word types. From this last set (denoted by SN ), we removed all the word types except 

the ones occurring in the reference transcripts of the tested BN dataset (ALERT-SR.RTP-

07). The number of word types in SN  was 86, with 156 occurrences in the reference 

transcripts. From these 156 occurrences, 108 were correctly recognized by the 2-PASS-

POS-IR approach, which means 69.2% of new words found by our IR-based framework 

were correctly recognized. 

 In table 5.3 we present the distribution of those 156 occurrences by grammatical 

category. In the “Names” category we generically include both proper and common names, 

even the foreign ones. The “Others” category includes other foreign words, acronyms and 

abbreviations. 
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POS % of occurrences % correctly recognized 

Names 60.3 74.5 
Adjectives 10.9 70.6 

Verbs 21.2 57.6 

Others 7.7 58.3 
 

Table 5.3: Distribution (in %) of new words by grammatical category, and percentage of them 

correctly recognized by the 2-PASS-POS-IR approach (vocabulary size of 57K words). 

 

 As one can observe, more than 60% of those new words found by our algorithm 

belong to the names class. Moreover, the class of names is the one with the best 

recognition rate (74.5% of new names were correctly recognized), slightly outperforming 

the average value (69.2%). This shows that a significant number of relevant terms like 

proper and common names (including names of persons, locations and organizations) were 

correctly recognized, making the framework especially useful for novel applications like 

the information dissemination ones, where those types of words contain a great deal of 

information. 

 Finally, we compared the accuracy of the proposed framework for three different 

vocabulary sizes. Figure 5.8 draws the average WER for the two BN shows of the ALERT-

SR.RTP-07 dataset when applying the multi-phase adaptation approach with those 3 

different vocabularies (30K, 57K and 100K words). As one can observe that, even using a 

vocabulary with only 30K words, we were able to get a better WER (20.4%) with our 

adaptation framework than the one obtained for the baseline system with a 57K words 

vocabulary (21.1%). Therefore, implementing the proposed multi-pass adaptation approach 

and increasing the vocabulary size to 100K words we could obtain a relative gain of 8.5% 

in terms of WER, with a final WER of 19.3% against the 21.1% of the baseline system. 
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Figure 5.8: WER for the two BN shows of the ALERT-SR.RTP-07 dataset when applying the 

multi-phase adaptation framework with 3 different vocabulary sizes (30K, 57K and 100K). 

5.3 Framework Integration 

The work presented in this thesis has been integrated into the fully functional prototype 

system initially described in section 1.3. Its ASR module were updated and improved by 

implementing the proposed multi-pass adaptation approach and increasing the vocabulary 

size to 100K words. Therefore, instead of using a static vocabulary and language model, 

the updated ASR component takes advantage from that dynamic procedure to better deal 

with new words appearing in BN data on a daily basis. 

 For this new framework, the following daily steps have been implemented in the 

current system: 

 

 Using the RSS News feeds services of 6 different Portuguese news channels, latest 

news are being collected from the Web, normalized, stored and indexed by the IR 

engine. This process checks for more news blocks every hour; 
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 At 5 o’clock in the evening a new vocabulary and LM are generated according the 

first-pass of the proposed adaptation approach, being used by the ASR module at 8 

o’clock to generate closed-captions for the TV news show; 

 At the end of the TV news show, the second-pass is processed, generating this way 

improved BN transcriptions. 

 

 The system is fully functional and is processing every day the 8 o’clock evening news 

show of the Portuguese public broadcast company RTP (http://ssnt.l2f.inesc-id.pt). The 

live system is generating closed-captions in real-time. 

5.4 Summary 

In this chapter we presented the work we have done in terms of vocabulary and LM 

adaptation for European Portuguese ASR. The proposal takes into account the European 

Portuguese language characteristics such as the high number of verbal inflections. A multi-

phase speech recognition framework, using contemporary written texts available on the 

Web and relevant documents extracted from a general corpus using an IR engine, is 

proposed. It uses POS class information about an in-domain training corpus to select an 

optimal vocabulary. When applied to a daily broadcast news transcription task, it showed 

to be effective, with a relative reduction of OOV word rate (more than 65%) and WER 

(about 6.6%) when compared to the results obtained for the baseline system with the same 

vocabulary size (57K words). Moreover, implementing the proposed multi-pass adaptation 

approach and increasing the vocabulary size to 100K words we could obtain a relative gain 

of 8.5% in WER. 

 The baseline transcription system used in this work has been updated according to this 

multi-phase speech recognition framework. Therefore, instead of using a static vocabulary 

and language model, the new system takes advantage from this dynamic procedure to 

better deal with new words appearing in BN shows on a daily basis. 

 Thus, the first-pass is being used to produce online captions for the closed-captioning 

system of live TV broadcasts, while the second-pass is being used to improve those 

captions. On this multi-phase framework, the final set of closed-captions is obtained only 
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after the end of each live TV show. However, even if this second-pass can not directly 

benefit the closed-captioning system of live TV broadcasts, it can indirectly improve the 

overall system performance. First, by reducing the recognition errors we are improving the 

word accuracy of the held-out dataset ( ( )21T d ), which will be used for the unsupervised 

adaptation performed by the first-pass during the recognition of the next broadcast shows. 

Moreover, the set of closed-captions obtained by this offline version can be used for other 

applications where the real-time issue is not important. It is the case of the media 

monitoring prototype system for the selective dissemination of multimedia information 

[Meinedo, 2008], which is using the AUDIMUS.media ASR system. For this type of 

application, our framework showed to be especially useful. In fact, for the ALERT-

SR.RTP-07 test dataset, a significant percentage (74.5%) of new words like proper and 

common names was correctly recognized. 

 In the next chapter we describe a new method we have proposed to complement the 

language modeling adaptation framework reported in this chapter that allows including 

new words in the system vocabulary, even if no well suited training data is available, as is 

the case of archived documents. 
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6 

Handling Unseen Words 

As we described before, different vocabulary and language model adaptation procedures 

have been proposed to dynamically adapt the language model component of ASR systems, 

especially for tasks where new words appear on a daily basis as is the case of closed-

captioning or information dissemination. Usually, those procedures assume that some kind 

of well suited sources of data are available to estimate the language model parameters. 

 However, sometimes we would like to manually add new words to the system 

vocabulary which are likely to appear on certain broadcast shows, even if no well suited 

data is available at all, as is the case of archived broadcast news documents [Allauzen, 

2003], or just a small amount of data is available but not sufficient to apply the language 

model adaptation procedures presented in the previous sections. Thus, in this situation 

estimating the language model parameters for those words is problematic. For example, 

small amount of data like the anchor working scripts and other prior knowledge 

information, such as the speakers’ names and show summary, can be available and used to 

extract new words with high probability to appear during the broadcast news show, but not 

sufficient to extract language model parameters. 

 As described in section 2.1.1, one of the most commonly used approaches for handling 

OOV words is the addition of a generic unknown word both in acoustic and language 

models – the so called filler model [Bazzi, 2002]. However, these filler models can 

potentially classify segments of the input signal corresponding to in-vocabulary words as 

OOV words. Moreover, usually an additional step is necessary to transcribe OOV input 

segments based on phoneme-to-grapheme conversion. 
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 The approach proposed in this thesis is different since we want to explicitly include in 

the system vocabulary new words, whose orthographic and phonetic transcriptions are 

known a priori, i.e. we just want to know how to incorporate them in the language model, 

even if no training data is available. The idea is that if no training data is available for the 

new word, then we will take advantage of morpho-syntactic information related to words 

which have similar properties in terms of language modeling. In our proposal we use POS 

word classes to define a new language model unigram distribution associated to the 

updated vocabulary, assigning probabilities to new words according to their POS 

classification. Next, we present the proposed method and its evaluation, drawing some 

conclusions at the end. 

6.1 Proposed Method 

From an ASR system point of view, adding a new word to its vocabulary implies the 

following tasks: deriving the possible phonetic transcription(s) associated to that word, and 

estimating its n-gram distributions within the language model. 

 Usually, the first task is accomplished by a rule-based phonetizer that automatically 

derives one or more lexical pronunciations using grapheme-to-phoneme rules. However, 

estimating the language model parameters for new words is more problematic, especially 

in cases where no data or insufficient relevant training data is available. As far as no 

additional training data is available, a new word is no more than an unseen event, which 

implies estimating n-gram distributions related to unseen words. In a standard approach, 

various classical smoothing techniques [Chen and Goodman, 1999] exist which can be 

applied during language model parameters estimation. But, they treat unseen words in the 

same way, not taking in consideration theirs types or linguistic roles. 

 By using the BOW classes, the framework proposed in [Allauzen and Gauvain, 2005] 

takes into account those linguistic differences by clustering words according to their POS 

tag. However, the estimation of the probability of each new word inside its BOW class 

relies on some additional adaptation data. The new approach proposed by us allows 

including new words in the vocabulary even if no well suited training data is available. 
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Next sub-sections describe the algorithm proposed to define a new LM unigram 

distribution associated to the updated vocabulary. 

6.1.1 Updating Unigram Probabilities 

For a standard back-off language model, the n-gram probabilities ( )0P w h  related to 

unseen words 0w  and given the word history h  are derived in the same way, using the 

unigram estimation ( )0P w . However, as no contextual information is available, classical 

smoothing techniques treat all those 0w  words in a similar basis. Thus, we propose to use 

classes of words as an alternative to better estimate those unigram probabilities. An 

additional advantage of classes is that we can gather statistics on the frequency of 

occurrence of words similar to the unseen ones. The idea is to build a unigram model that 

uses grammatical information to give a probability to words according to some predefined 

notion of similarity. 

 A class-based unigram model is used to implement this idea, where the classes are the 

parts-of-speech (POS). Therefore, the morpho-syntactic analyzer developed for European 

Portuguese [Ribeiro et al., 2004] was used to tag all the vocabulary words with their 

complete morpho-syntactic information. The information coded by this analyzer is 

described in Appendix A. As an example, for the Portuguese word “fala” (speech) that 

information consists of five possible tags (see table 6.1), respectively referring to the 

feminine singular common noun, and four different flexions of the verb “falar” (to speak).  

 

word morpho-syntactic information 

fala 

Nc...sf... 
V.ip3s=... 
V.sp1s=... 
V.sp3s=... 
V.m=2s==.. 

 

Table 6.1: Complete morpho-syntactic information for the Portuguese word “fala” (speech). 

 

 Since keeping all type of morpho-syntactic information for each word would result in 

too many tags and the training data would be insufficient, we focused only on the syntactic 
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category of the tag to map words in their corresponding classes. In table 6.2 we list the 

final tag set used in this work and consisting of 11 grammatical categories. The “Others” 

category includes foreign words, abbreviations, acronyms and symbols. Hence, the word 

“fala” in our example, is classified into 2 different classes: class of names (N) and class of 

verbs (V). 

Category POS   Category POS
Nouns N   Prepositions S 
Adjectives A   Conjunctions C 
Verbs V   Numerals M 
Pronouns P   Interjections I 
Articles T   Others X 
Adverbs R     

 

Table 6.2: Part-of-Speech for European Portuguese and their corresponding grammatical 

categories used in our work. 

 

 In the context of a class-based language model, an unseen word can be affected to one 

or more of these POS classes in order to inherit the contextual properties of the words 

belonging to these same classes. Thus, in this framework the unigram probabilities ( )P w  

are re-estimated as 

 

 ( ) ( ) ( )
( )i

i i
c C w

P w P w c P c
∈

= ∑  (6.1) 

 

where ( )C w  represents the set of POS classes ic  assigned to word w . Therefore, after 

defining ( )C w  for all the vocabulary words, the corresponding unigram distribution needs 

to be re-estimated. The next subsection describes the proposed method for its estimation 

that allows assigning non-zero probabilities for unseen words. 

6.1.2 Parameters Estimation 

In (6.1) the emission probability of a word given its class ( )iP w c  and the class 

probability ( )iP c  are both computed through the maximum likelihood estimation (MLE) 
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approach. For ( )iP c  estimation, only the in-domain dataset (ALERT-SR.train+pilot) was 

used. This decision was based on findings of section 4.4, where we could observe a 

significant difference in POS distribution when comparing in-domain and out-of-domain 

datasets, especially in terms of names and verbs. Hence, the in-domain corpus was POS-

tagged using the morpho-syntactic ambiguity resolver [Ribeiro, 2003] which gives the POS 

of a word in its context (table 6.3 presents an example of a tagged sentence). The statistics 

of occurrence of POS classes in this in-domain corpus were then used to estimate ( )iP c , 

for 1, ,11i = … .  

 

 Sentence 
original text tenha um bom fim de semana 
tagged text tenha/V um/T bom/A fim/N de/S semana/N 

 

Table 6.3: Example of a sentence tagged by the morpho-syntactic ambiguity resolver. 

  

 Due to the small size of the ALERT-SR.train+pilot training dataset, a sub-corpus of 

WEBNEWS-PT.train and the ( )7O d  subset of WEBNEWS-PT corpus were also POS-

tagged, and their statistics used for maximum likelihood estimation of the emission 

probability of a word given its class as 

 

 ( ) ( )
( )

i
i

i

N w c
P w c

N c
=  (6.2) 

 

with ( )iN w c  being the count of occurrences of word w  in the context of ic  class. 

However, the most problematic task is to estimate this probability distribution for new 

words since we assume that no additional data is available for training. To overcome this 

problem, we derived a heuristic approach to affect non-zero probabilities for those words 

by using the morpho-syntactic information of each word. Thus, considering 0w  as an 

unseen word to be introduced in the system vocabulary, ( )0M w  as its complete morpho-
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syntactic information, and ( ) ( ){ }0:S w M w M w= =  as the set of all vocabulary words 

sharing the same morpho-syntactic information as 0w , we define 

 

 ( ) ( )( )0 maxi iw S
N w c N w c

∈
=  (6.3) 

 

 In our experiments, we studied other functions as min and average functions, being the 

max function the one that produced the best results. In fact, choosing the max function we 

heuristically assign a probabilistic mass to new words within classes, turning those words 

as probable as the ones with the highest probabilistic value in the same contextual position. 

Finally, for the estimation of ( )iP w c  we applied the Kneser-Ney discounting method 

[Chen and Goodman, 1999] for smoothing purposes. 

 Next, we will report the experiments we performed to assess the effectiveness of this 

new method. 

6.2 Evaluation Results 

To evaluate and compare the performance of our framework, experimental results are 

reported according to two evaluation metrics: the word error rate (WER) and the 

percentage of new words introduced in the vocabulary and correctly recognized. The 

recognition experiments were carried out using the two BN shows of the ALERT-SR.RTP-

07 dataset. For these experiments we compared three approaches: 

 Baseline: in this case, as our baseline system, we used the vocabulary and language 

model resulting from the 1-PASS-POS adaptation approach described in section 

5.1.1, with a vocabulary of 57K words; 

 Standard-addition: baseline vocabulary extended with the unseen words, and re-

estimating the language model as it has been done in the 1-PASS-POS approach. In 

this case, and to simulate our assumption of no additional data available for training 

the new words being added to the vocabulary, we removed from all the training 

corpora all the n-grams containing at least one of those new words. 



115 

 POS-addition: baseline vocabulary extended with the unseen words, and just re-

estimating the unigram probabilities of the baseline language model according to 

the proposed method. 

   

 As explained before, the main goal of the proposed method is to easily and effectively 

allow the introduction in the system vocabulary of small amount of new words like the 

ones provided by the anchor working scripts and other prior knowledge information. 

However, since for the work reported in this thesis we did not have access to this kind of 

data, we performed an oracle experiment to simulate the use of the proposed method. In 

this oracle experiment and considering the baseline vocabulary of 57K words, all the OOV 

words contained in the manual orthographic transcripts of the evaluation dataset (ALERT-

SR.RTP-07) were added to the vocabulary. Hence, an average of 48 new words per BN 

show were added to the baseline vocabulary of 57K words. With this experiment an upper-

bound on the gain that could be obtained by applying our approach is estimated. 

 The WER results are summarized in figure 6.1. As a reference, we present the WER 

obtained for the baseline system with a vocabulary size of 57K words (Baseline). As said 

before, the baseline system is exactly the one defined by the 1-PASS-POS approach. 

However, due to some improvements to the acoustic model [Meinedo, 2008] done after we 

have run the multi-phase adaptation experiments, the WER obtained for the baseline was 

different from the previous one (19.0% against the 19.9% reported on table 5.2). 

 As one can observe, applying the proposed LM updating framework (POS-addition) 

for the addition of new words to the baseline vocabulary, yields a relative reduction of 

6.3% in terms of WER, from 19.0% to 17.8%, with a ratio between absolute improvement 

in WER and the OOV word rate of about 1.6, which conforms with the assertion: in 

average 1.5 to 2 errors are obtained per OOV. Moreover, this new approach clearly 

outperformed the standard one (Standard-addition). Thus, applying the POS-addition 

approach we could get an absolute improvement of 0.8% over the standard one. 
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Figure 6.1: WER for the two BN shows of the ALERT-SR.RTP-07 dataset when applying 

different approaches to estimate LM parameters for unseen words (57K words vocabulary). 

 

 The relative percentage of new words introduced in the vocabulary and correctly 

recognized, is another important metric to measure the performance of the proposed 

framework. In table 6.4 we present these statistics, by evaluation show, for both language 

model updating strategies. While only 31.8% of new words were correctly recognized 

when applying the standard LM approach, a significant improvement has been observed 

when we used the POS-addition one, with 78.2% of those words being correctly 

recognized.  

 

Approach May 24th May 31st Average 

Standard-addition 25.9 37.5 31.8 

POS-addition 72.2 83.9 78.2 
 

Table 6.4: Percentage of new words correctly recognized with both LM updating strategies: 

standard-addition and POS-addition. 
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 After analyzing the ASR results (presented in figure 6.1) we could observe that both 

names and adjectives classes had a recognition rate above the 80%, with only 71.2% of 

verbs being correctly recognized (table 6.5). In table 6.5 one can also observe the 

distribution of the new words introduced in the vocabulary by the oracle experiment. This 

distribution conforms to all the previously reported results, i.e. verbs make up for the 

largest portion of OOV words (in this case 47.3%). 

 

POS % of occurrences  % correctly recognized 

Names 31.8  80.0 
Adjectives 20.9  91.3 
Verbs 47.3  71.2 

 

Table 6.5: Distribution (in %) of unseen words by grammatical category, and percentage of 

them correctly recognized by the POS-addition approach (vocabulary size of 57K words). 

 

 Analyzing the words wrongly recognized, we could observe that some new words were 

wrongly recognized. This occurs mainly in case of foreign words (especially names), 

abbreviations, and acronyms. However, in case of verbs, globally the phonetic 

transcription is not the major source of errors. Acoustical conditions, overlapped speech, 

spontaneous speech style, and the proper statistics of the LM contribute for those errors.  

 

REF: A MIM CORREU-ME BEM só QUE SÓ não fiz foi a primeira a primeira pergunta 

HYP: DE INCUMBEM só SE EU não fiz foi a primeira a primeira pergunta 

REF: E NESTA altura FAZ razão nós CHAMARMOS a atenção AQUELA CÉLEBRE frase 

HYP: NESSA altura A FAVA razão nós CHAMAMOS a atenção À COLAÇÃO frase 

REF: o tribunal não acreditou no arrependimento e CONDENOU-O a seis anos de prisão 

HYP: o tribunal não acreditou no arrependimento e CONDENOU a seis anos de prisão 

REF: se o primeiro-ministro e a ministra da educação querem que os LEVEMOS a sério 

HYP: se o primeiro-ministro e a ministra da educação querem que os GOVERNOS a sério 

 

Table 6.6: Examples of some ASR transcripts containing new words wrongly recognized. 



118 

  

 In table 6.6 we present 4 examples of ASR transcripts produced by the POS-addition 

approach containing new words wrongly recognized. The last two examples represent a 

typical situation where the language model contributed to the recognition error. In fact, the 

perplexity values for the reference sentences are 104.6 and 41.5, while the corresponding 

perplexity values for the ASR hypotheses are 85.1 and 33.8, respectively. 

6.3 Summary 

The results of our experiments showed us the effectiveness of this new approach for 

language model re-estimation when new words need to be added to the ASR system in an 

easy and automatic way, even if no adaptation data is available for that. This is especially 

useful for inclusion of new words with high probability to appear during the BN show, as 

is the case of words contained in anchor scripts for example.  

 The proposed approach assigns non-zero probabilities for those words by using the 

morpho-syntactic information of each word and POS classes. This way, the LM unigram 

distribution associated to the updated vocabulary is re-estimated, even if no sufficient data 

is available. The re-estimation process can be done in a couple of minutes, which allows 

updating the language model just some minutes before the BN show starts. 

 However, as shown in table 6.5, our approach does not perform so well for verbs. 

Hence, 62.5% of those wrongly recognized words were verbs. This last observation 

suggests us that special focus should be given to this syntactic category of words in our 

future research trends. 
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7 

Conclusions and Future Directions 

In this chapter we briefly discuss the results obtained, providing the main conclusions of 

the work done in this thesis, and deriving some directions about future research lines. 

7.1 Results Discussion 

The transcription of broadcast news is a challenging task due to several problems. In terms 

of language modeling, the topic changes over time and the frequent occurrence of new 

words appearing every day (out-of-vocabulary words), are two of those problems. The 

appearance of new words is even more problematic when transcribing BN data in highly 

inflected languages. To recognize those new words, the vocabulary and the language 

model of the speech recognition system need to be periodically updated. In this thesis, we 

addressed the task of incremental language modeling for automatic transcription of 

European Portuguese broadcast news speech, proposing a framework to dynamically adapt 

both vocabulary and language model on a daily basis. 

 In our work, we proposed two vocabulary optimization algorithms. In a first step, we 

expanded the baseline system vocabulary of 57K words with new words found on texts 

collected from the Internet, on a daily basis. However, with this procedure we could only 

reduce the OOV word rate by an average of 28.6%. Moreover, analyzing the distribution of 

OOV words according to their grammatical property in a given sentence (i.e. their POS), 

we found that more than 56% of them were verbs. This was an important result since from 
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other findings published in the literature, OOV words are mostly names. This suggested us 

to study the interest of using specific linguistic knowledge (POS tagging) to improve the 

lexical coverage of a selected vocabulary. In fact, all the remaining work of this thesis was 

motivated and influenced by this finding. Hence, both vocabulary optimization and 

language model adaptation approaches were based on the integration of different 

knowledge sources and techniques (language modeling, Information Retrieval and 

morphological knowledge). 

 Our first approach to compensate and reduce the OOV word rate related with verbs 

was supported by the fact that almost all the OOV verb tokens were inflections of verbs 

whose lemmas were already among the lemmas set (L) of the words found in 

contemporary written news of each day. Thus, the baseline system vocabulary is 

additionally extended with all the words observed in the language model training texts and 

whose lemmas belong to L. This lemmas-based approach achieved an OOV word rate 

reduction of 65.6%. However, it assumes an a priori selected static list of words - the 

baseline vocabulary, just adding new words on a daily basis. This way, the system 

vocabulary is always extended, resulting in a vocabulary with an average size of 100K 

words. Thus we derived a new approach defining a vocabulary from scratch and allowing 

the selection of its size. 

 This second approach automatically induces the vocabulary from various training 

corpora, possibly from different domains, taking the implicit assumption that at least an in-

domain corpus is available. It is based on the hypothesis that the linguistic similarities 

between different domains can be characterized in terms of style (represented by their POS 

sequences). Hence, instead of simply adding new words to the fixed baseline vocabulary, 

we use the statistical information related to the distribution of POS word classes on the in-

domain corpus to dynamically select words from the various training corpora available. 

For the ALERT-SR.11march test dataset this POS-based approach yields a relative 

reduction of 71.2% in OOV word rate, outperforming the lemmas-based one that yields a 

relative reduction of 65.6% for the same vocabulary size (100K words). Additionally, this 

last approach is more versatile, allowing the automatic selection of a vocabulary from any 

number of available training corpora. However, we think there is space to improve the 

result of our POS-based approach. If more in-domain data was available, we could define a 

held-out corpus to estimate the mixture coefficients for linear interpolation in equation 4.1 
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instead of assigning identical weights to all the training corpora. Moreover, we could 

define the word classes set ( POSset ) with a finer level of granularity as we will discuss in 

the next section. Unfortunately, as we can observe from section 3.1, we have more than 

740 million words of newspapers texts (out-of-domain data), but a maximum of 852K 

words of broadcast news transcripts (in-domain data), where only about 531K of them are 

being used as training data by the current ASR system. Comparing these linguistic 

resources with the ones reported for other languages one can conclude that we have one of 

the largest corpora in terms of newspaper texts, but a quite small in-domain corpus. State 

of the art ASR systems for English and French were trained at least with 190 h of manually 

transcribed training data. Given this we clearly would benefit from more broadcast news 

training data. 

 Using adaptation texts extracted from the Internet and the previously described POS-

based vocabulary selection algorithm, we proposed and implemented a multi-pass speech 

recognition approach which creates from scratch both vocabulary and LM components on 

a daily basis. Therefore, a generic LM is linearly interpolated with a small LM estimated 

from the adaptation data. This first-pass is being used to produce online captions for a 

closed-captioning system of live European Portuguese TV broadcasts. In this multi-pass 

adaptation framework, a second-pass is being used to produce offline transcripts for each 

day using the initial set of ASR hypotheses generated on the first-pass and automatically 

segmented into individual stories, with each story ideally concerning a single topic. Using 

an Information Retrieval engine and the text of each story segment as query material, 

relevant documents are extracted from a dynamic and large-size database to generate a 

story-based vocabulary and LM. For the ALERT-SR.RTP-07 test dataset, and considering 

the same vocabulary size as the baseline one (57K words), a relative gain of 6.6% in the 

WER and relative reduction of 65.2% in OOV word rate were observed. Moreover, 69.2% 

of new words found by our IR-based framework were correctly recognized, with slightly 

better recognition rate (74.5%) for names, which makes this framework especially useful 

for novel applications like the information dissemination ones, where those type of words 

contain a great deal of information. In our multi-pass approach we can identify some points 

which can be improved, namely the estimation of each story-specific language model 

(MIXS-LM). In the current approach that LM is generated by means of linear interpolation 

using the SH  set for cross-validation. However, due to the small size of SH , we think our 
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approach could be improved by using other strategies for this LM estimation as we will 

propose in the next section. Concluding, the proposed multi-pass framework allowed an 

average relative OOV word rate reduction of 65% with the same vocabulary size as the 

baseline vocabulary, and 6.6% in terms of WER. These results compare favorably with the 

ones reported in the related research (section 2.1.6), where a maximum reduction of 58% 

in OOV word rate and 4.7% in WER were obtained. 

 In addition to that multi-pass framework, we proposed a language model adaptation 

scheme that allows us to include unseen words in the vocabulary and providing a heuristic 

estimation for their probability of appearance, without the need of additional data or LM 

retraining. As in the vocabulary selection algorithm, it uses morpho-syntactic knowledge 

about the in-domain corpus and POS tagging to estimate a new unigram distribution 

associated to the update vocabulary. Our experiments showed that 78.2% of new words 

were correctly recognized, with both names and adjectives classes reporting a recognition 

rate above 80%, with only 71.2% of verbs being correctly recognized. This last observation 

suggests us that a special focus should be given to this syntactic category of words in our 

future research trends. As in case of vocabulary optimization, the use of more in-domain 

data and a POS set with a finer level of granularity would likely lead to a higher rate of 

new words correctly recognized. Comparing our results with the ones reported for the 

similar approach described in section 2.1.1, one can observe a slightly worst performance 

for our approach, i.e. 80% against the 78.2% of new words correctly recognized. However, 

in our approach no additional data is used to estimate the LM probabilities for those new 

words. 

7.2 Main Conclusions 

In this work we have investigated the use of additional sources of information to 

dynamically adapt the language model component of a European Portuguese broadcast 

news transcription system. 

 A first conclusion, and the one that influenced the here proposed framework, was the 

finding that verbs were the dominant source of OOV words for our BN transcription 

system. Based on this finding a new algorithm for vocabulary selection has been derived, 
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which showed to be effective in dealing with this specific characteristic of the European 

Portuguese. This new algorithm has been integrated in a multi-pass ASR framework using 

an Information Retrieval engine to improve the language model estimation process. Our 

experiments showed the effectiveness of this adaptation framework by allowing to 

dynamically incorporate new words in the system vocabulary and to re-estimate its 

probabilities. As our initial proposal, this framework allows to dynamically and 

automatically adapt the language model component of our BN transcription system. 

Moreover, we also showed that a significant number of relevant terms like proper and 

common names (including names of persons, locations and organizations) were correctly 

recognized, making the framework especially useful. Lastly, in a pilot study, the proposed 

algorithm for inclusion of unseen words in the system vocabulary using the morpho-

syntactic information of each word and POS classes showed to be effective, allowing an 

easy update of the system vocabulary even when no additional adaptation data is available. 

 From the results obtained in our work, we could conclude that the usage of 

morphological knowledge, as it has been shown, seems to be a promising technique which 

can be successfully employed both for vocabulary optimization and language model 

estimation. As suggested in the next section, further research can be taken in order to study 

its usage for language model probabilities estimation and their smoothing. Additionally, 

the integration of this morphological knowledge with IR-based techniques would lead to 

further performance gains. In particular, by exploring the POS class of verbs. 

 While our focus was on European Portuguese broadcast news, where morphological 

variants such as inflectional verb endings showed to be an important problem to address, 

we believe the here proposed framework would likely lead to improved performance for 

other inflectional languages and/or applications, specially the POS-based vocabulary 

selection procedure and the suggested algorithm for inclusion of unseen words in the 

system vocabulary. 

 In the next section we conclude this thesis by presenting some future research 

directions. 
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7.3 Future Work 

While we have been able to made progress in tackling the language modeling adaptation 

problem for European Portuguese by defining a dynamic and unsupervised adaptation 

framework, there are other extensions that in our opinion can be investigated to enhance 

the global performance of the language model component. Especially in case of the task 

addressed in this thesis – broadcast news speech transcription, but extensible to other 

challenging domains like meetings, course lectures and broadcast conversation (BC). 

 Next, we summarize some of the research trends we judge to be worth addressing in 

future works and related to: vocabulary optimization, data selection and language 

model adaptation. 

 

Using large-sized vocabularies may be desirable from the point of view of lexical 

coverage. However, there is always the additional problem of increased acoustic 

confusability [Rosenfeld, 1995]. Moreover, as we reported in section 3.1.1, each BN show 

comprises an average of 8,300 word tokens and only 2,200 word types. Thus, the majority 

of the vocabulary words are irrelevant when adapting to a single BN show. Therefore, in 

our opinion, future research should focuses on methods to better constrain vocabulary 

growth while preserving adaptation performance. Thus, related to vocabulary selection we 

highlight two research trends: 

 Using a small amount of data like anchor working scripts, BN show subtitles and 

summaries together with IR techniques to select more accurate adapted 

vocabularies; 

 Improving POS-based vocabulary selection algorithm by defining the word classes 

set ( POSset ) with a finer level of granularity. 

 

Therefore, we believe that better results can be achieved by exploring more deeply the 

linguistic knowledge of the in-domain corpus. We can use not only the grammatical 

property of words (POS), but also its morphological information (gender, number, 

conjugation, etc.). However, to follow this research trend, two resource constraints must be 

overcome: more in-domain data and a morphological analyzer for European Portuguese 

which could give us that level of morphological information with an acceptable accuracy. 
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One solution to increase the BN training data would be to use the confidence scores for 

unsupervised selection of text segments from the BN transcripts produced by the ASR 

system during a pre-defined time span. In fact, the current implemented framework uses 

this data but only for estimation of the mixture coefficients. 

 

In the speech recognition community, there is a long-standing belief that “there is no data 

like more data”. However, different works have reported significant gains by defining 

topic-specific subsets and prune less useful documents from training data, both for acoustic 

and language model adaptation [Hwang et al., 2007] [Ramabhadran et al., 2007] [Wu et al., 

2007]. Thus, we can investigate the use of the IR techniques implemented in our multi-pass 

framework to select and cluster data, reducing its redundancy and improving the generic 

language model estimation. 

 

Context setting is an important aspect of spoken language communication. In [Zue, 2007] 

context awareness is enumerated as one of the research challenges to address in order to 

turn today’s speech-based interfaces more organic. For BN transcription, for example, the 

use of audio segmentation to mark changes in environment, topic and talker, are all 

attempts to establish context in order to improve speech recognition performance. The 

entire LM adaptation framework proposed in this thesis is in fact an attempt to take 

advantage of context. 

 One strategy for improving the ASR performance of the BN transcription system used 

in our work was to build speaker adapted acoustic models for certain important speakers 

like news anchors [Meinedo, 2008]. Therefore, in a similar way, the system can make use 

of the audio pre-processing information to adapt not only the acoustic model, but also the 

vocabulary and language model. Since news shows consist of “talking head” style 

broadcasts (generally one person reading a news script), and other blocks more interactive 

and spontaneous in style, one can investigate the use of different language models for each 

one these two genres – broadcast news (BN) and broadcast conversation (BC) [Mrva and 

Woodland, 2006] [Hwang et al., 2007a] [Wang, 2007]. 

 Approaches taking advantage of semantic and syntactic knowledge are expected to 

lead to more effective solutions for language model adaptation [Bellegard, 2004]. In the 

adaptation framework proposed in this thesis, morpho-syntactic knowledge showed to 
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produce good results both for vocabulary and language model adaptation. To extend the 

effectiveness of the new method proposed for automatic estimation of LM parameters for 

unseen words, we can investigate its application as a smoothing method for n-grams of 

higher order. Using the minimum discrimination information (MDI) based LM adaptation 

approach, the POS-based unigram marginals can be used to restrict the allowed adaptive n-

grams. Moreover, we can try to redefine the word classes by using more details from the 

morpho-syntactic information available for each word, and giving special attention to 

verbs. Thus, related to language model adaptation we highlight three research trends: 

 Using “context-dependent” language models: BN versus BC language model 

adaptation; 

 Define word classes with a finer level of granularity; 

 Unsupervised language model adaptation using POS-based Marginals. 
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A 

Morpho-Syntactic Tagset 

The tagset used by the Morpho-syntactic tagger used in our work has about 200 tags with 

information that varies from grammatical category to morphological features that can be 

combined to form composed tags (resulting in about 400 different tags) [Ribeiro et al., 

2004]. The information coded by this tagset is presented in Table A.1 (in Portuguese). 

 Each tag is an array, and each position of the array codes one of the features presented 

in Table A.1, saving the first position for the grammatical category and the second position 

for the subcategory. When a position (category, subcategory or feature) is not used, its 

code is replaced by an equal sign. For example, R=n means adverb with no subcategory, in 

normal degree. 
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Table A.1: Tagset: morpho-syntactic information. 
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