
 Universidade de Aveiro

2008

Departamento de Electrónica, Telecomunicações e
Informática (DETI)

Francisco Borges
Carreiro

Usando o Protocolo Ethernet em Sistemas de
Comunicação Tempo-Real Embutidos

Using the Ethernet Protocol for Real-Time
Communications in Embedded Systems

Francisco Borges
Carreiro

Usando o Protocolo Ethernet em Sistemas de
Comunicação Tempo-Real Embutidos

Using the Ethernet Protocol for Real-Time
Communications in Embedded Systems

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Engenharia Electrotécnica,
realizada sob a orientação científica do Dr. José Alberto Gouveia Fonseca,
Professor Associado do Departamento de Electrónica, Telecomunicações e
Informática (DETI) da Universidade de Aveiro e do Dr. Francisco Manuel
Madureira e Castro Vasques de Carvalho, Professor Associado da Faculdade
de Engenharia da Universidade do Porto.

Apoio financeiro da Unidade de Investigação IEETA da Universidade de Aveiro

O júri / The Jury

Presidente / President

Vogais / Examiners committee

Prof. Dr. Jorge Carvalho Arroteia
Professor Catedrático do Departamento de Ciências da Educação da Universidade de Aveiro.

Prof. Dr. Carlos Eduardo Pereira
Professor Associado do Departamento de Engenharia Eléctrica da Universidade Federal do
Rio Grande do Sul - UFRGS, Brasil.

Prof. Dr. Francisco Manuel Madureira e Castro Vasques de Carvalho
Professor Associado do Departamento de Engenharia Mecânica da Faculdade de Engenharia
da Universidade do Porto (Co-orientador).

Prof. Dr. José Alberto Gouveia Fonseca
Professor Associado do Departamento de Electrónica, Telecomunicações e Informática da
Universidade de Aveiro (Orientador).

Prof. Paulo José Lopes Machado Portugal
Professor Auxiliar do Departamento de Engenharia Electrotécnica e de Computadores da
Faculdade de Engenharia da Universidade do Porto.

Prof. Dr. Luís Miguel Pinho de Almeida
Professor Auxiliar do Departamento de Electrónica, Telecomunicações e Informática da
Universidade de Aveiro.

Prof. Dr. Paulo Bacelar dos Reis Pedreiras
Professor Auxiliar do Departamento de Electrónica, Telecomunicações e Informática da
Universidade de Aveiro.

agradecimentos

A realização de uma tese de doutoramento conta com a colaboração directa e
indirecta de diversas pessoas. Bem sei que corro o risco de não dar conta de
expressar nominalmente o meu ‘muitíssimo obrigado’ a todos aqueles que
colaboraram. Contudo devido ao seu especial envolvimento, gostaria de
particularizar os seguintes agradecimentos.
A José Alberto Fonseca, Professor da Universidade de Aveiro e meu
orientador, a quem quero expressar meu profundo reconhecimento pelo
empenho, amizade, disponibilidade, estímulo, sugestões, e apoio incondicional
nos momentos mais difíceis.
A Francisco Vasques, Professor da Universidade do Porto e meu co-orientador,
pela disponibilidade e inestimáveis contribuições que em muito ajudaram a
valorizar o meu trabalho.
A Luis Almeida e Paulo Pedreiras pelas sugestões e clarificações em diversos
assuntos discutidos ao longo deste trabalho.
A Joaquim Ferreira pela amizade e discussões científicas. A Valter Silva pelas
sugestões, discussões científicas e principalmente em programação dos
microcontroladores e por sua amizade.
Aos colegas Ricardo Marau, Filipe, Vasco, Maxmauro, Manuel Barranco, Iria,
Arnaldo, Whatney e muitos outros que tive contacto no DETI durante o
desenvolvimento deste trabalho.
E por últimos mas não os últimos quero agradecer a minha esposa e filhos. A
Neldeci pelo suporte incansável de esposa e aos filhos Francisco Filho e
Elioena que me conferem o orgulho de ser pai.

palavras-chave

Tempo-real, ethernet, barramentos de campo, passagem de testemunho
virtual, VTPE

resumo

Os Sistemas Computacionais de Controlo Distribuído (SCCD) estão muito
disseminados em aplicações que vão desde o controlo de processos e
manufactura a automóveis, aviões e robôs. Muitas aplicações são de
natureza tempo-real, ou seja, impõem fortes restrições às propriedades
subjacentes aos sistemas de controlo, gerando a necessidade de fornecer um
comportamento temporal previsível durante períodos alargados de tempo. Em
particular, dependendo da aplicação, uma falha em garantir as restrições
pode causar importantes perdas económicas ou mesmo pôr vidas humanas
em risco.
Actualmente, a quantidade e funcionalidade dos modernos SCCD têm
crescido firmemente. Esta evolução é motivada por uma nova classe de
aplicações que requer maior demanda de recursos tais como aplicações de
multimedia (por exemplo visão), bem como pela tendência em usar grande
número de processadres simples e interconectados, em vez de poucos e
poderosos processadores, encapsulando cada funcionalidade num único
processador. Consequentemente, a quantidade de informação que deve ser
trocada entre os nós da rede também cresceu drasticamente nos últimos
anos e está agora atingindo os limites que podem ser obtidos por tradicionais
barramentos de campo, como por exempo CAN, WorldFIP, PROFIBUS.
Outras alternativas são pois requeridas para suportar a necessidade de
largura de banda e a manutenção de exigências dos sistemas de
comunicação tempo-real: previsibilidade, pontualidade, atraso e variação de
período limitados.
Uma das linhas de trabalho tem apostado na Ethernet, tirando vantagem dos
baixos custos dos circuitos, da elevada largura de banda, da fácil integração
com a Internet, e da simplicidade em promover expansões e compatibilidade
com redes usadas na estrutura administrativa das empresas industriais.
Porém, o mecanismo padronizado de acesso ao meio da Ethernet
(CSMA/CD) é destrutivo e não determinístico, o que impede seu uso directo
ao nível de campo ou pelo menos em aplicações de comunicação tempo-real.
Apesar disso, muitas abordagens diferentes têm sido propostas e usadas
para obter comportamento tempo-real em Ethernet.
As abordagens actuais para dotar de comportamento tempo-real Ethernet
partilhada apresentam desvantagens tais como: exigência de hardware
especializado, fornecimento de garantias temporais estatísticas, ineficiência
na utilização da largura de banda ou na reposta tempo-real. São ainda por
vezes inflexíveis com respeito às propriedades de tráfego bem como com as
políticas de escalonamento. Podem exigir processadores com elevado poder
de cálculo. Finalmente não permitem que estações tempo-real possam
coexistir com estações Ethernet standard no mesmo segmento. Uma
proposta recente, o algoritmo hBEB, permite a coexistência de estações
tempo-real e standard no mesmo segmento. Contudo, apenas uma estação
tempo-real pode estar activa, o que é inaceitável para aplicações de
automação e controlo.
Esta tese discute uma nova solução para promover tempo-real em Ethernet
partilhada, baseando-se na passagem implícita de testemunho de forma
similar à usada pelo protocolo P-NET. Esta técnica é um mecanismo de
acesso ao meio físico pouco exigente em termos de processamento, sendo
portanto adequada para implementar uma rede de dispositivos baseados em
processadores de baixo poder de cálculo e controladores Ethernet standard.

Esta tese apresenta ainda uma proposta de implementação do VTPE em IP
core para superar algumas dificuldades derivadas de funcionalidades que
não são suportadas por controladores standard, nomeadamente a
arbitragem do meio físico durante a transmissão de uma trama. Esta nova
proposta pode aumentar muito a eficiência do VTPE no uso da largura de
banda.
O VTPE, assim como P-NET ou protocolos similares, permite a uma estação
apenas comunicar uma vez por cada circulação do testemunho. Esta
imposição pode causar bloqueios de comunicação por períodos inaceitáveis
em aplicações com tráfego isócrono, por exemplo multimedia. Uma solução
proposta permite que uma estação possa aceder ao meio físico mais de uma
vez por cada circulação do token. Os resultados experimentais a as análises
desenvolvidas mostram que o bloqueio pode ser drasticamente reduzido.
Por último esta tese discute uma variante do protocolo VTPE, o VTPE/h-
BEB, que permite que mais de uma estação hBEB possa coexistir com
diversas estações Ethernet standard num mesmo segmento partilhado. Um
demonstrador para prova de conceito bem como uma aplicação foram
também implementados.

keywords

abstract

Real-time, ethernet, fieldbus, virtual token passing, VTPE

Distributed Computer-Control Systems (DCCS) are widely disseminated in
applications ranging from automation and control to automotive, avionics and
robotics. Many of these applications are real-time, posing stringent constraints
to the properties of underlying control systems, which arise from the need to
provide predictable behaviour during extended time periods. Depending on
the particular type of application, a failure to meet these constraints can cause
important economic losses or can even put human life in risk.
Currently the number and functionality of modern DCCSs have been
increasing steadily. This evolution has been motivated for a new class of
applications of more resource demanding applications, such as multimedia
(e.g. machine vision), as well as by the trend to use large numbers of simple
interconnected processors, instead of a few powerful ones, encapsulating
each functionality in one single processor. Consequently, the amount of
information that must be exchanged among the network nodes has also
increased dramatically and is now reaching the limits achievable by traditional
fieldbuses.
Therefore, other alternatives are required to support higher bandwidth
demands while keeping the main requirements of a real-time communication
system: predictability, timeliness, bounded delays and jitter.
Efforts have been made with Ethernet to take advantage of the low cost of the
silicon, high bandwidth, easy integration with the Internet, easy expansion and
compatibility with the networks used at higher layers in the factory structure.
However its standardized media access control (CSMA/CD) is destructive and
not deterministic, impairing its direct use at field level at least for real-time
communication.
Despite this, many solutions have been proposed to achieve real-time
behavior in Ethernet. However they present several disadvantages: requiring
specialized hardware, providing statistical timeliness guarantees only, being
bandwidth or response-time inefficient, being inflexible concerning traffic
properties and/or scheduling policy, or finally not allowing real-time stations to
coexist with standard Ethernet stations in the same segment. A recent
proposal, the hBEB algorithm, allows the coexistence of real-time and
standard Ethernet stations in the same shared segment. However hBEB limits
at most one real-time station per segment which is unacceptable for
applications in industrial automation and process control.
This thesis discusses a new real-time shared Ethernet solution based on the
virtual token passing technique similarly to the one used by the P-NET
protocol. This technique is a medium access control mechanism that requires
small processing power, being suitable to implement devices based on
processors with small processing power. The solution is called Virtual Token
Passing Ethernet or VTPE. This proposal discusses the modifications required
in the Ethernet frame format, the temporal analysis to guarantee real-time
communication and the implementation of two demonstrators based on
microcontrollers and standard Ethernet controllers.

This thesis also presents a proposal to implement VTPE in an IP Core to
overcome some difficulties derived from limitations of standard Ethernet
controllers, namely to allow medium access control during a frame transmission.
This proposal can increase the bandwidth efficiency of VTPE.
VTPE, as well as P-NET or any other protocol based on circular token rotation
technique, only allows a station to communicate once for each token round. This
design imposition can cause unacceptable communication blocking in
applications with isochronous traffic such as multimedia. An improvement in the
VTPE proposal enables a station to access the medium more than once per
token round. The experimental results as well as the temporal analysis show
that the blocking can be drastically reduced. This improvement can also be used
in the P-NET protocol.
Finally this thesis proposes a variant of VTPE, named VTPE/hBEB, to be
implemented in Ethernet controllers that are able to support the hBEB algorithm.
The VTPE/hBEB allows more than one hBEB station to coexist with several
standard Ethernet stations in the same shared Ethernet segment. A
demonstrator for the VTPE/hBEB validation, as well as an application, are also
presented and discussed.

apoios

Este trabalho foi apoiado pelas seguintes instituições:

Unidade de Investigação IEETA da Universidade de Aveiro, que me apoiou
financeiramente com uma bolsa de investigação científica, bem como, para
participação em várias conferências internacionais para apresentação de
resultados parciais obtidos no âmbito desta tese.

Centro Federal de Educação Tecnológica do Maranhão CEFET-MA (Brasil),
que me dispensou de serviço docente durante quatro anos.

 1

Index

Index ...1

List of Figures..4

List of Tables ...6

Chapter 1 ...9

Introduction ...9

1.1 The problem...9

1.2 The thesis ...11

1.3 Contributions ...11

1.3.1 The VTPE protocol..12

1.3.2 The VTPE-hBEB...12

1.4 Organization of the dissertation ..12

Chapter 2 ...15

Achieving real-time communication on ethernet ..15

2.1 Introduction..15

2.2 Overview on the ethernet protocol..16

2.2.1 Ethernet roots ..16

2.2.2 The CSMA/CD protocol and the BEB collision resolution algorithm...............18

2.2.3 Analytical study of the BEB algorithm ..20

2.3 Achieving real-time communication on ethernet...21

2.4 Modified CSMA protocols ...22

2.4.1 hBEB algorithm...23

2.4.2 EQuB ..25

2.4.3 Windows protocol ...28

2.4.4 CSMA/DCR..29

2.4.5 Virtual time CSMA ...32

 2

2.5 Token passing technique ..33

2.5.1 RETHER...34

2.5.2 RT-EP: Real-Time Ethernet Protocol...35

2.5.3 Other ...37

2.6 Virtual token passing..37

2.7 Time division multiple access – TDMA ...41

2.7.1 The MARS bus..41

2.7.2 Variable bandwidth allocation scheme...42

2.8 Master/slave techniques..43

2.8.1 FTT-Ethernet protocol ...44

2.8.2 ETHERNET Powerlink ...45

2.9 Switched ethernet ...47

2.9.1 EDF scheduled switch ...49

2.9.2 EtheReal..51

2.10 Recent advances ...53

2.11 Conclusion ...55

Chapter 3 ...57

Virtual Token Passing Ethernet –VTPE ...57

3.1 Introduction..57

3.2 The classic virtual token-passing approach ...58

3.2.1 The VTPE format frame ..61

3.2.2 The VTPE parameters t1 and t2 ..63

3.2.3 VTPE real-time worst-case computation..64

3.2.4 Some experimental results ...66

3.3. Adapting VTPE to support isochronous traffic ..67

3.3.1 The bandwidth allocation scheme ..68

3.3.2 Timing analysis ...70

3.3.3 Example ..73

3.3.4 Adapting the classic VTPE frame ..75

3.4. Conclusions...75

Chapter 4 ...77

The VTPE-hBEB Protocol ...77

 3

4.1 Introduction..77

4.2 The VTPE-hBEB protocol..79

4.2.1 VTPE-hBEB topology ...79

4.2.2 VTPE-hBEB protocol..79

4.2.3 Timing analysis ...81

4.2.4 Adapting the VTPE-hBEB proposal ..84

4.3 Conclusions..88

Chapter 5 ...89

VTPE and VTPE-hBEB Implementations ..89

5.1 Introduction..89

5.2 Implementation based on single ethernet controller ..90

5.2.1 System architecture based on single ethernet controller....................................90

5.2.2 Hardware of master based on single controller...91

5.2.3 The VTPE stack architecture ...93

5.2.4 Using VTPE with application program ..97

5.3 Implementation based on a dual ethernet controller architecture98

5.3.1 The dual ethernet controller architecture ..98

5.3.2 Hardware of master based on dual ethernet controller architecture.................100

5.3.3 VTPE or VTPE-hBEB software for the dual ethernet controllers architecture 102

5.3.4 Using VTPE with an application program..107

5.4 Implementation based on an IP core ...108

5.5 Conclusions..110

Chapter 6 ...113

Timing Behavior and Validation of VTPE and VTPE-hBEB..113

6.1 Introduction..113

6.2 Timing behavior of VTPE in the implementation based on single controller.........114

6.3 Timing behavior of VTPE in the implementation based on the dual controller

architecture ..116

6.4 Demonstration system for validation of VTPE-hBEB...121

6.4.1 The Evaluation setup ...124

6.5 Timing analysis ..128

6.6 Results ...132

 4

6.6.1 Unloaded network ...133

6.6.2 Full loaded ethernet ...135

6.7 Conclusions..139

Chapter 7 ...141

Conclusions and Future Works ..141

7.1 Thesis validation ..142

7.2 Future work..144

Bibliography..147

List of Figures

Figure 2.1: CSMA/CD protocol with BEB algorithm. ..18

Figure 2.2: Chanel Efficiency...21

Figure 2.3: Control Flow Summary – hBEB...23

Figure 2.4: Black burst contention resolution mechanism...27

Figure 2.5: Resolving collisions with the Windows protocol. ...29

Figure 2.6: Example of tree search with CSMA/DCR. ...31

Figure 2.7: Example of Virtual-Time CSMA operation using MLF..................................32

Figure 2.8: Sample network configuration for RETHER. ...35

Figure 2.9: Concepts of message cycle, token holding time (H), slave's turnaround time,

master's reaction time (ρ), idle token time (σ) and token passing time (τ) in P-NET.39

Figure 2.10: Byte structure in a P-NET frame. ...40

Figure 2.11: Frame of P-NET...40

Figure 2.12: The structure of a TDMA frame. ..42

Figure 2.13: FTT-Ethernet traffic structure...44

Figure 2.14: Powerlink cycle structure. ..46

Figure 2.15: Switch internal architecture. ...48

Figure 2.16: System architecture. ...50

Figure 2.17: Connection set-up procedure in the EtheReal architecture.52

Figure 3.1: The Virtual Token-passing in a VTPE system. ...58

Figure 3.2: VTPE flowchart. ..60

 5

Figure 3.3: Virtual Token-Passing Ethernet MAC frame. ...61

Figure 3.4: VTPE frame format..62

Figure 3.5: VTPE real-time behavior..64

Figure 3.6: State machine of the bandwidth allocation scheme. ..69

Figure 3.7: New VTPE frame...75

Figure 4.1: Heterogeneous Ethernet environment. ..77

Figure 4.2: VTPE-hBEB Topology. ...79

Figure 4.3: Control Flow Summary – VTPE-hBEB..80

Figure 4.4: Collision scenario solved by the hBEB collision resolution algorithm.82

Figure 4.5: VTPE-hBEB token holding time. ...84

Figure 4.6: VTPE flowchart for a dual Ethernet controller implementation.86

Figure 5.1: VTPE system architecture ..90

Figure 5.2: Experimental setup...91

Figure 5. 3: Hardware of a VTPE master..92

Figure 5. 4:VTPE master software architecture ..93

Figure 5. 5: Path of application to the VTPE ..96

Figure 5.6: Dual Ethernet controller architecture. ...99

Figure 5. 7:Experimental setup for dual Ethernet controller architecture.........................100

Figure 5. 8: Hardware of master based on dual Ethernet controllers.101

Figure 5. 9:VTPE or VTPE-hBEB based on dual Ethernet controller architecture.103

Figure 5. 10: VTPE or VTPE-hBEB for dual Ethernet controller architecture.103

Figure 5. 11: Software for the second part of the dual Ethernet Controller architecture...107

Figure 5. 12:VTPE IP core block diagram..109

Figure 6. 1: t1 (µs) x bus utilisation (%)..116

Figure 6. 2: VTPE transmission scenario in the dual Ethernet controller architecture......119

Figure 6. 3: Testing a dedicated MIDI link. ..121

Figure 6. 4: MIDI to RS232 level logic adaptation. ..122

Figure 6. 5: MIDI to VTPE-hBEB link...122

Figure 6.6: MIDI to VTPE-hBEB link with Ethernet traffic injection.123

 6

Figure 6. 7: Evaluation test-bed..124

Figure 6. 8: Application sub-node flowchart...125

Figure 6. 9: Application sub-node ISRs flowchart. ...126

Figure 6. 10: Delay Measurement System. ...127

Figure 6. 11: Ethereal capture – unloaded network. ..133

Figure 6.12: Delay histogram - unloaded network. ...134

Figure 6.13: TRT histogram - unloaded network. ...134

Figure 6.14: Ethereal capture – fully loaded network..136

Figure 6.15: Delay histogram – fully loaded network. ..136

Figure 6. 16: TRT histogram – fully loaded network. ...137

Figure 6. 17: Worst case TRT time line..138

List of Tables

Table 2.1: Tree search example (contending sequence). ...31

Table 3.1: Tasks on received frame. ...64

Table 3.2: VTPE experimental results. ...66

Table 3.3: Bandwidth allocation table for the example of Figure 3.6.70

Table 3.4: Bandwidth allocation table for an example with 5 nodes..................................73

Table 3.5:Real-time analysis results for the example of Table 3.475

Table 4.1: Maximum delay to start transferring a message in the hBEB algorithm.82

Table 5. 1:Set of functions for RTL8019AS initialisation. ..95

Table 5. 2:VTPE Layer. ...97

Table 5. 3: Set of functions for CS8900A-CQ initialisation. ...105

Table 5. 4: Set of functions for the VTPE or VTPE-hBEB Layer.105

Table 6.1: t1 and bus utilisation in the implementation based on a single Ethernet controller.

..115

Table 6. 2: Arbitration time on the dual Ethernet controller architecture.........................118

 7

Table 6. 3: Unloaded network – summary. ...135

Table 6.4: Fully loaded network – summary...138

 8

 9

Chapter 1

Introduction

1.1 The problem

Distributed Computer-Control Systems (DCCS) are widely disseminated, appearing in

applications ranging from automated process and manufacturing control to automotive,

avionics and robotics. Many of these applications have real-time nature, i.e., pose stringent

constraints to the properties of the underlying control systems, which arise from the need

to provide predictable behaviour during extended time periods. Depending on the

particular type of application, failure to meet these constraints can cause important

economic losses or can even put human life in risk [1].

 Nowadays, the quantity and functionality of microprocessor-based nodes in modern

DCCS have been increasing steadily [2]. This evolution has been motivated by new classes

of more resource demanding applications, such as multimedia applications (e.g. machine

vision), as well as by the trend to use large numbers of simple interconnected processors,

instead of few powerful ones [3], encapsulating each functionality in one single processor

[3]. Consequently, the amount of information that must be exchanged among the network

nodes has also increased dramatically over the last years and it is now reaching the limits

that are achievable using traditional fieldbuses [4], e.g. CAN, WorldFIP, PROFIBUS.

Therefore, other alternatives are required to support higher bandwidth demands

while keeping the main requirements of a real-time communication system: predictability,

timeliness, bounded delays and jitter.

 Well-known networks, such as FDDI and ATM, have been extensively analysed for

both hard and soft real-time communication systems [4]. However, due to high complexity,

 10

high cost, lack of flexibility and interconnection capacity, they have not gained general

acceptance for the use at the field level [4].

 Similar efforts have been done with Ethernet, trying to take advantage of the

availability of cheap silicon, easy integration with Internet, clear path for future

expandability, and compatibility with networks used at higher layers in the factory

structure [5]. However, its standardized non-deterministic arbitration mechanism

(CSMA/CD) prevents its direct use at field level, at least for hard real-time

communications. Despite of this, there are many different approaches for achieving real-

time behaviour on Ethernet.

 The techniques that have been used to achieve deterministic message transmission

on Ethernet are the well-known medium access control techniques for shared broadcast

networks such as Modified CSMA protocols, Time Division Multiple Access – TDMA,

Token-passing, Master/slave technique, and Switched Ethernet.

 Since roughly one decade ago that the interest on using Ethernet switches has been

growing as a means to improve global throughput, traffic isolation and to reduce the

impact of the non-deterministic features of the original CSMA/CD arbitration mechanism.

However a common misconception is that the use of switches, due to the elimination of

collisions, is enough to enforce real-time behaviour in Ethernet networks, but this is not

true in the general case.

 Despite of the recent proposals consisting in using switched Ethernet to replace

fieldbuses in control and factory automation, the interest on shared Ethernet is not over,

yet, either for applications requiring frequent multicasting, in which case the benefits of

using switches are substantially reduced, as well as for applications requiring precise

control of transmission timing, such as high speed servoing (Almeida and Pedreiras [6]).

 Solving the collision problem however is only part of a useful shared Ethernet

solution to field level application. There are many other important requirement that a real-

time Ethernet solution must have, or at least, that it is desirable to have. For example some

of those are the introduction of operational flexibility, like to add and to remove nodes, to

have an online bandwidth allocation scheme, to have an efficient support of multicast

messages, and to be fault tolerant.

 Nowadays there are many approaches to achieve real-time on shared Ethernet, but

it is interesting to notice that such approaches either require specialized hardware, or just

 11

provide statistical timeliness guarantees, or are bandwidth or response-time inefficient, or

are inflexible concerning the properties of the network traffic as well as the traffic

scheduling policy, or finally, they are costly in terms of processing power and memory

requirements. Also, recent proposals such as hBEB [9] limit the number of real-time nodes

to just a single transmission station which is unacceptable for automation applications.

Thus they are not well suited for use in small sensors, actuators and controllers with

communications capability. So there is a need to find Ethernet deterministic solutions, so

that it becomes possible to take profit of its higher data-communication capacity to

interconnect sensors, controllers and actuators at the field level.

 This thesis discourses about a new real-time Ethernet solution based on the virtual

token-passing in order to override the destructive and non-deterministic CSMA/CD

medium access arbitration mechanism of Ethernet. Virtual token-passing technique is a

real-time bus arbitration mechanism especially suitable for shared networks which use

small processing power processors in most of the nodes.

1.2 The thesis

This thesis presents a proposal and the development of the Virtual Tokenpassing Ethernet

(VTPE), a new real-time implementation to support real-time traffic on shared Ethernet,

and the VTPE-hBEB protocol, an improvement of VTPE to support real-time

communication in unconstrained shared Ethernet, i.e., an environment comprised of an

unlimited number of Ethernet standard stations and real-time stations (hBEB).

EQuB and hBEB, according our best knowledge are the unique solutions that

provide traffic separation, allowing real-time devices to coexist with standard Ethernet

devices in the same network segment.

1.3 Contributions

Two general contributions of this thesis are summarized in the following subsections. The

first one is the proposal and development of the VTPE protocol, and the second one is the

VTPE-hBEB protocol a variant of VTPE, to support real-time communication in

unconstraint shared Ethernet.

 12

1.3.1 The VTPE protocol

The VTPE [7] is a real-time Ethernet approach based on implicit token rotation (virtual

token passing) like the one used in the P-NET fieldbus protocol [8]. The virtual token-

passing approach is a simple and efficient technique suitable for shared bus networks,

especially when small processing power processors are used as CPUs.

 The following goals have been established to develop VTPE:

• Support on the same bus of slow and cheap devices based in microcontrollers, as

well as more demanding devices integrating powerful processors;

• Low processing overhead in order to be implemented in microcontrollers with low

processing power;

• Hardware based in COTs components;

• Online bandwidth allocation scheme

• Support for hBEB protocol to work as multi-node (VTPE-hBEB protocol);

• Efficient support of multicast messages;

1.3.2 The VTPE-hBEB

The VTPE-hBEB protocol, as the name indicates, is an implementation of VTPE over

hBEB protocol. hBEB is a real-time shared Ethernet protocol proposed in [9] which main

advantage is to support real-time traffic separation on a shared Ethernet bus. However

hBEB has a disadvantage: it is single-node, i.e., it just allows one node with real-time

privileges. hBEB lacks a mechanism to support multi-node implementation and the VTPE

is indicated as the principal bus arbitration mechanism to solve this problem. So the VTPE-

hBEB is other important contribution of this thesis.

1.4 Organization of the dissertation

In order to support the thesis previously stated this dissertation is organized in the

following chapters.

Chapter 2 - Presents a background on the Ethernet protocol and discusses the main

Ethernet approaches proposed for real-time communication on shared Ethernet networks

throughout Ethernet evolution. Chapter 2 also presents some discussions and approaches

for real-time communication on switched Ethernet considering its current popularity.

However it is focused on shared Ethernet that is the context of this thesis.

 13

Chapter 3 – Presents the Virtual Token-Passing Ethernet protocol - VTPE. In the Chapter

3 are presented the VTPE classic approach similar to the P-NET protocol and an adaptation

of VTPE in order to support isochronous traffic.

Chapter 4 - Presents the VTPE-hBEB protocol. VTPE-hBEB is an improvement of VTPE

aimed for real-time communication on shared Ethernet. VTPE-hBEB allows the

coexistence of real-time devices as well as standards Ethernet devices in the same network

segment.

Chapter 5 - Presents the implementations of VTPE and VTPE-hBEB protocol.

Implementation aspects as well as software and hardware are presented and discussed.

Chapter 6 - Presents the experimental results obtained for both implementations.

Chapter 7 - This chapter presents the conclusions and future works. As future works are

proposed the implementation of VTPE and its variants on IP cores and a new version of

VTPE for power line communication.

 14

 15

Chapter 2

Achieving real-time communication on ethernet

2.1 Introduction

Ethernet is the most frequently used wired local area network technology today. The Main

factors that favour the use of the Ethernet protocol are [6]:

• It is cheap, due to mass production;

• Integration with Internet is easy (TCP/IP stacks over Ethernet are widely available,

allowing the use of application layer protocols such as FTP, HTTP and so on);

• Steady increases on the transmission speed have happened in the past, and are

expected to occur in the near future;

• Due to its inherent compatibility with the communication protocols used at higher

levels, the information exchange with the plant level becomes easier;

• The bandwidth made available by existing fieldbuses is insufficient to support

some recent developments, like the use of multimedia (e.g. machine vision) at the

field level;

• Availability of technicians familiar with this protocol;

• Wide availability of test equipment from different sources;

• Mature technology, well specified and with equipment available from many

sources, without incompatibility issues.

However Ethernet does not fulfil some fundamental requirements that are expected from a

communication protocol operating at the field level. In particular, the destructive and non-

deterministic arbitration mechanism has been regarded as the main obstacle faced by

Ethernet concerning this applications domain. The answer to this concern is the use of

 16

switched Ethernet, which allows bypassing the native CSMA/CD arbitration mechanism.

In these cases, provided that a single network interface card (NIC) is connected to each

port, and the operation is full duplex, no collisions occur. However, just avoiding collisions

does not make Ethernet deterministic: for example, if a burst of messages destined to a

single port arrive at the switch in a given time interval, they must be serialized and

transmitted one after the other. If the arriving rate is greater that the transmission rate,

buffers will be exhausted and messages will be lost. Therefore, even with switched

Ethernet, some kind of higher-level coordination is required. Moreover, bounded

transmission delay is not the only requirement of a fieldbus, some other important factors

commonly referred to in the literature are: temporal consistency indication, precedence

constraints, efficient handling of periodic and sporadic traffic. Clearly, Ethernet, even with

switches, does not provide answers to all these demands [6].

 This chapter presents and discusses the state of the art of the main real-time

protocols based on Ethernet, proposed during Ethernet evolution. It is focused on shared

Ethernet. However, a brief overview on switched Ethernet is also presented, considering its

current popularity.

The remaining of this chapter is as follows: Section 2.2 presents an overview on the

Ethernet protocol. Section 2.3 presents the main medium access control techniques for

shared broadcast networks that are commonly used to guarantee real-time communication.

Section 2.4 to section 2.8 discusses each one of the medium access control techniques and

the main shared Ethernet real-time approaches based on these techniques. Section 2.9

presents some discussions and techniques related to switched Ethernet and section 2.10

presents the recent advances in the Ethernet issues. Finally section 2.11 presents the

conclusions.

2.2 Overview on the ethernet protocol

2.2.1 Ethernet roots

Ethernet was born about 30 years ago, invented by Bob Metcalfe at the Xerox’s Palo Alto

Research Center. Its initial purpose was to connect two products developed by Xerox: a

personal computer and a brand new laser printer. Since then, this protocol has evolved in

many ways. For instance, concerning the transmission speed, it has grown from the

 17

original 2.94Mbps to 10Mbps [10] [11] [12] [13] [14] then to 100Mbps [15] and more

recently to 1Gbps [16] and 10Gbps [17]. Concerning physical medium and network

topology, Ethernet also has evolved: it started by a bus topology based firstly on thick

coaxial cable [11]and afterwards on thin coaxial cable [12]. In the mid 80’s a more

structured and fault-tolerant approach, based on a star topology, was standardized [13],

running however only at 1Mbps. In the beginning of the 90’s an improvement of this latter

technology was standardized [14], running at 10Mbps over category 5 unshielded twisted

pair cable.

 Along this way, two fundamental properties have been kept unchanged:

• Single collision domain, that is, frames are broadcast on the physical medium and

all the network interface cards (NIC) connected to it receive them;

• The arbitration mechanism, which is called Carrier Sense Multiple Access with

Collision detection (CSMA/CD).

The use of a single broadcast domain and the CSMA/CD arbitration mechanism has

created a bottleneck when facing highly loaded networks: above a certain threshold, when

the submitted load increases the throughput of the bus decreases, a phenomenon referred to

as thrashing. In the beginning of the 90’s, the use of switches in place of hubs has been

proposed as an effective way to deal with thrashing. A switch creates a single collision

domain for each of its ports. If a single node is connected to each port, collisions never

actually occur unless they are created on purpose, e.g. for flow control. Switches also keep

track of the addresses of the NICs connected at each port by inspecting the source address

in the incoming messages. This allows forwarding incoming messages directly to the

respective outgoing ports according to the respective destination address, a mechanism

generally known as forwarding. When a match between a destination address and a port

cannot be established, the switch forwards the respective message to all ports, a process

commonly referred to as flooding. The former mechanism, forwarding, allows a higher

degree of traffic isolation so that each NIC receives the traffic addressed to it, only.

Moreover, since each forwarding action uses a single output port, several of these actions

can be carried out in parallel, resulting in multiple simultaneous transmission paths across

the switch and, consequently, in a significant increase in the global throughput.

 18

2.2.2 The CSMA/CD protocol and the BEB collision resolution algorithm

The CSMA/CD (Carrier Sense Multiple Access with Collision Detection) protocol is the

protocol implemented at the MAC layer of Ethernet.

 Basically the CSMA/CD protocol works as shown in Figure 2.1. When a station

wants to transmit it listens the transmission medium. If the transmission medium is busy,

the station waits until it goes idle, otherwise it transmits immediately. If two or more

stations begin simultaneously to transmit, the transmitted frames will collide. Upon the

collision detection, all the transmitting stations will terminate their own transmission and

send a jamming sequence. When the transmission is aborted due to a collision, it will be

repeatedly retried after a randomly evaluated delay (backoff time), until it is either

successfully transmitted, or definitely aborted (after a maximum number of 16 attempts).

Figure 2.1: CSMA/CD protocol with BEB algorithm.

The backoff delay is evaluated by locally executing the Binary Exponential Backoff (BEB)

algorithm, which operates as follows: after the end of the jamming sequence, the time is

 19

divided into discrete slots, whose length is equal to the slot time1. The backoff time is

given by tbackoff = r x T, where r is a random integer in the range 120 −≤≤ k
r , k is the smaller

of n or 10 (n is the number of retransmission attempts) and T is the slot time in seconds.

This means that the station will wait between 0 and 2k–1 slot times. After 10 attempts, the

waiting interval is fixed at 1023 slot times, and finally, after 16 attempts, the transmission

is discarded.

 The CSMA/CD protocol seems to have a random queue service discipline, i.e., the

message to be transferred after a successful transmission seems to be randomly chosen

among the N hosts with ready messages. However, Christensen [18] demonstrated that the

BEB algorithm imposes a last come first serve policy, as a station with the more recently

queued packet, will have a higher probability for the acquisition of the medium.

Another particularity of the CSMA/CD protocol is the Packet Starvation Effect.

Wheten et al. [19] demonstrated that, in heavily loaded networks, an older packet will have

a smaller probability to be transferred than a newer one. For example: consider that 2

stations have packets ready to be transmitted (station1 and station2), which will be

transmitted at approximately the same time; a collision will occur and then both stations

will backoff during a randomly selected delay between 0 and 2n-1 slot times, where n is the

number of previous collisions. In the first collision resolution interval, if station1 waits 0

slot times and station2 waits 1 slot time, station1 will transmit its packet while station2 will

wait. Supposing that station1 has other packets to be transferred, then, in the following

collision, the backoff time of station1 will be 0 or 1, and the backoff time of the station2

will be 0, 1, 2 or 3. Therefore, station1 will have a higher transmission probability. Such

Packet Starvation Effect will occur whenever a station has a sequence of packets to be

consecutively transferred, if the network interface adapter is able to effectively contend for

the network access at the end of every transmitted frame. Otherwise, another station will

acquire the transmission medium.

1 For Ethernet and Fast Ethernet (10/100 Mbps) networks, one slot time is the time required for transmitting

the minimum frame size (512 bits), that is, respectively, 51.2 and 5.12 µsec. For Gigabit Ethernet (1Gbps),

one slot time corresponds to the transmission time of 4096 bits.

 20

2.2.3 Analytical study of the BEB algorithm

In order to analyse the BEB Algorithm many performance analyses have been proposed.

One of the first Ethernet performance analyses was presented by Metcalfe and Boggs in

[20], where the authors draw up a set of formulas to execute the exact analysis in heavily

loaded Ethernet networks. In that analysis, a constant retransmission probability on each

slot has been assumed, and the successful retransmission probability (on the next slot) has

been considered to be equal to a constant: p. Therefore, for the case of K active hosts

(hosts with packets ready to be transmitted), the probability that only one host will transmit

in the beginning of a slot (thus avoiding a collision), according to [20] is:

1)1(−
−××=

K
ppKA (2.1)

Such probability A is maximized when p=1/K. (equal probability of successful

retransmission). Such assumption is an interesting approximation for the real backoff

function, as it has been shown in multiple simulation studies by Lam and Kleinrock [21],

and by Almes and Lazowska [22]. Thus,

1)
1

1(−−= K

K
A (2.2)

The probability that a host will wait during just 1 slot is)1(AA − , while the probability that

the contention interval will be exactly n slots is:

1)1(−−×= n

n AAP n >=1 (2.3)

The estimated number of stations trying to transmit is truncated to 1023. Truncating

imposes an upper bound to the time interval (backoff delay) that any station must wait

before trying to transmit again. Therefore, it results on an upper bound of 1024 potential

slots for transmission. Such upper bound imposes a maximum number of 1024 stations that

can be supported by a half duplex Ethernet system (Spurgeon [23]).

 The average number of contention slots is given by Metcalfe and Boggs [20]:

A

A
AAnZ n

n

−
=−××=∑

∞

=

1
)1(

0

 (2.4)

Considering P as the packet length (expressed in bits) and C as the network data rate

(expressed in bps), the ratio P/C represents the transmission time of an average packet

(expressed in seconds). Therefore, the channel efficiency E (time during which packets are

being effectively transmitted) can be evaluated as the ratio between the transmission time

and the transmission plus contention intervals:

 21

()TZCP

CP
E

×+
= (2.5)

where Z×T represents the average acquisition time before effectively transmitting (T is the

slot time in seconds). Figure 2.2 illustrates the “channel efficiency” in heavily loaded

networks, assuming a 10Mbps Ethernet network (C=10 Mbps; T=51.2ms).

Figure 2.2: Chanel Efficiency.

According to Boggs et al. [24], one of the most widely accepted Ethernet myths is that it

saturates at an offered load of 37%. Such assertion is well founded when dealing with short

sized frames and a significant number of hosts. However, for longer frames, the channel

efficiency is significantly improved. Schoch and Hupp [25] presented measurements

results indicating that for 4096 bit frames and small number of hosts, the channel

utilization approaches 97%; however, for small packets and larger number of hosts the

utilization approaches 1/e, that is, approaches the 37% bound. These results are consistent

with the Metcalfe and Boggs analysis [20], as it can be observed in the channel efficiency

results represented in Figure 2.2.

2.3 Achieving real-time communication on ethernet

In the quest for real-time communication over Ethernet several approaches have been

developed and used. Many of them override the Ethernet CSMA/CD medium access

control by setting an upper transmission control layer that eliminates, or at least reduces,

the occurrence of collisions at the medium access. Other approaches propose the

 22

modification of the CSMA/CD medium access control layer so that collisions either occur

seldom or when they do, the collision resolution is deterministic and takes a bounded

worst-case time.

 Moreover, some approaches support such deterministic reasoning on the network

access delay while other ones allow a probabilistic characterization, only.

The solutions to make shared Ethernet real time are mainly based on the usual medium

access control techniques for shared broadcast networks. For the sake of clarity, they are

classified and presented as follows in the remainder of this chapter:

• Modified CSMA protocols;

• Token-passing;

• Virtual token passing;

• Time Division Multiple Access - TDMA;

• Master/slave techniques;

Switched Ethernet doesn’t enable the use of a shared Ethernet bus because the switch

creates a single collision domain. In spite of this large difference, Switched Ethernet is also

discussed, considering its current popularity.

2.4 Modified CSMA protocols

In this category the CSMA mechanism is adequately modified in order to improve the

temporal behaviour of the network (e.g. [26] [27] [28]). The result is still a fully distributed

arbitration protocol of the CSMA family (Carrier Sense, Multiple Access) that determines

when to transmit based on local information and on the current state of the bus, only.

 There are two most common options, either sorting out collisions in a more

deterministic way than the Ethernet original BEB mechanism (truncated Binary

Exponential Backoff) or reducing the probability of collisions. This section presents five

modified CSMA/CD protocols, the first four, i.e., hBEB algorithm, EQuB, Windows

protocol and the CSMA/DCR follow the first option. The last one, that is, the Virtual Time

CSMA follows the second option by implementing a type of CSMA/CA (Collision

Avoidance) that delays message transmissions according to a temporal parameter.

 23

2.4.1 hBEB algorithm

Moraes and Vasques [9] proposed the “high priority Binary Exponential Backoff (hBEB)”

collision resolution algorithm. The main advantage of hBEB is allowing Ethernet standard

devices to coexist with one hBEB modified station. As a consequence, it becomes possible

the implementation of traffic separation policies, which are the foundation for the support

of real-time communication, in heterogeneous Ethernet environments.

 A station implementing the hBEB algorithm has the same operating behavior of

BEB algorithm, except for the backoff delay, which is set to 0. In such case, an hBEB

station starts immediately to transmit after the end of the jamming sequence. This behavior

guarantees the highest transmitting probability to the hBEB station, in a shared Ethernet

segment with multiple BEB stations. The hBEB station will always try to transmit its

frame in the first available slot after the jamming sequence, while all the other stations

implementing the BEB algorithm will wait between 0 and 2n-1 slot times, where n is the

number of collision resolution rounds. Figure 2.3 summarize the dynamic behavior of the

CSMA/CD protocol with the hBEB collision resolution algorithms.

Transmit Frame

Bus
Busy?

Colision
Detect

Start
Transmission

W ait
Finish

yes

yes

no

Transmission
Done?

no

send jam

Done:
TransmitOk

yes

Increment
Attempts

too many
attempts?

Done:
ExcessiveCollision

Error

yes

no

no

Figure 2.3: Control Flow Summary – hBEB.

The hBEB collision resolution algorithm is therefore able to impose real-time

traffic separation, as the traffic generated by the hBEB station will always be transferred

before the traffic generated by the other stations. Therefore, this algorithm is adequate to

support real-time communications in shared Ethernet segments, as long as all the real-time

traffic in the network is generate by the hBEB station. According to Moraes and Vasques

this behavior is highly adequate for real-time video/voice transferring applications in

 24

legacy shared Ethernet networks. By simply plugging a notebook computer with the

modified hardware to the shared Ethernet segment, it becomes possible to transfer traffic at

a higher priority than the traffic generated by all the other stations.

In [9] Moraes and Vasques show that the probability that the hBEB station sends a

message in the nth collision round (after an initial collision) is given by:

()∑
=

−
×







−=

N

j

jnj

j

N
NnP

0

21),((2.6)

where the coefficients of the Pascal Triangle are given by:










j

N
 =

)!(!

!

jNj

N

−
 (2.7)

n is the number of collision resolution rounds, and N is the number of BEB stations in the

network (N+1 is the total number of stations).

A comparative analysis of BEB and hBEB algorithms has been performed and

presented in [29]. This analysis considers a shared Ethernet environment where 64

standard Ethernet stations are interconnected with a special station implementing either the

hBEB (enhanced Ethernet mode) or the BEB (traditional Ethernet mode) collision

resolution algorithms. Probabilistic analytical results obtained from Equation (2.3) were

compared with those obtained from Equation (2.6). The results show that approximately

95% of the messages from the hBEB station are transferred before 8 collision rounds. On

the other hand, the probability to transfer a message, in the same heavily loaded network

scenario, using the BEB algorithm (traditional mode) is smaller than 2%, whatever the

considered collision round.

 For more realistic network load scenarios a simulation analysis has been done. A

simulation model was implemented using the Network Simulator tool [30], considering a

10 Mbps Ethernet network, where each station has a Poisson traffic source with a fixed

packet length of 250 bytes. For each simulated load value, 75x104 packets are successfully

transmitted. The performance measures included: throughput, average packet delay and

standard deviation of the average packet delay. It has be shown in [31] that the hBEB

collision resolution algorithm guarantees, whatever the network load, an average access

delay significantly smaller for the hBEB station, when compared with the access delay for

the BEB stations. More significantly, almost constant values for both the average access

delay and the related standard deviation have been observed for the traffic transferred by

 25

the hBEB station. This is a very important result, as it forecasts a predictable

communication delay when supporting real-time communications.

 The authors of hBEB showed by simulation analysis that the hBEB traffic must be

tightly controlled, as it has a high interference level over the non-real-time traffic [32],

otherwise, if the load generated by the hBEB station is not closely controlled, the standard

Ethernet stations may experience extended access delays.

 A probabilistic timing analysis of hBEB was presented in [33] for two cases.

Firstly, the analytical study for a heavily loaded network scenario shows that the maximum

access delay for 95% of the messages is smaller than 1,86ms. Secondly, for more realistic

load scenarios (intermediate load cases), the simulation analysis shows that the maximum

access delay for 98% of the messages is always smaller than 1ms. More importantly, it

shows a nearly constant message transfer jitter, which is one order of magnitude smaller

than the maximum access delay for 98% of the messages. Also it is shown that concerning

the probability of a message frame being discarded by the hBEB algorithm, for the heavily

loaded network scenario, such probability is always smaller than 2x10-3 and for more

realistic load scenarios, the simulation analysis never detected any discarded frame.

According to Moraes and Vasques these are important results, as they forecast a

predictable communication delay when supporting real-time communications with the

hBEB collision resolution algorithm. These results are also consistent with the claim that

the hBEB algorithm is adequate to support most part of the soft real-time applications.

 The main drawback of the hBEB algorithm is that it allows at most one hBEB

station per shared Ethernet segment. However, this mechanism has been extended by the

use of a virtual token passing procedure in [34], allowing multiple hBEB (real-time)

stations to coexist with multiple standard Ethernet stations in the same network segment,

and still imposing a higher priority for the transfer of privileged traffic. This new version

of hBEB is named Virtual Token Passing over hBEB or VTPE-hBEB for short and is

presented in Chapter 4.

2.4.2 EQuB

Sobrinho and Krishnakumar [35] propose the EQuB protocol, which allows achieving

predictable behaviour on shared Ethernet networks. EQuB consists on an overlay

mechanism to the native CSMA/CD while providing privileged access to the former over

 26

the latter, with a FCFS (First-Come-First-Served) access discipline between contending

real-time sources.

The collision resolution mechanism for real-time sources (EQuB hosts) requires the

disabling of the native exponential backoff mechanism of Ethernet and the transmission of

jamming sequences with pre-defined durations. Both features are configured in the

network interface card of the respective hosts. The underlying real-time traffic model

assumes that, during long intervals of time called sessions, real-time hosts generate

continuously periodic streams of data to be transmitted over the network.

Collisions involving non-real-time hosts, only, are sorted out by the native

CSMA/CD mechanism of Ethernet. However, when real-time hosts participate in a

collision, they start transmitting a jamming signal, as specified in the Ethernet MAC

protocol, but with duration different from the specified 32 bit times. These crafted

jamming signals are called black bursts and their maximum duration is set proportionally

to the time a given host has been waiting to transmit a given message, i.e. the duration of

the collision resolution process. During the transmission of a black burst, the bus state is

continuously monitored. If, at some moment, a real-time host contending for the bus

detects that no other nodes are sending black bursts, it infers that itself is the host having

the oldest ready message (highest priority according to FCFS), subsequently aborts the

transmission of its own black burst and immediately after it transmits the data message. If

a real-time host transmits its black burst completely and still feels the bus jammed it infers

that other hosts having longer black bursts, and consequently having a longer waiting

times, are also disputing the bus. In these circumstances the host relinquishes the bus

access, waiting for it to become idle for the duration of an IFS. At this time the black burst

duration is recomputed, to reflect the increased waiting time.

Figure 2.4 illustrates the mechanism explained before. Two hosts have one real-

time message each, 1 and 2, scheduled for transmission at instants t0 and t1, respectively,

while a third data message is being transmitted (Figure 2.4). Since both hosts feel the bus

busy, they wait for the end of the message transmission and for the IFS, which occurs at

instant t3. According to EQuB, both nodes attempt to transmit their message at time t3 but

feel a collision and start the transmission of black bursts (t4). Since message 2 has a shorter

waiting time than message 1, its black burst is completely transmitted, terminating at

instant t5, and the respective host backs-off, waiting for the bus to become idle again,

 27

before retrying the message transmission. Simultaneously, the winning host, having the

oldest message, feels that the bus is not being jammed anymore and thus initiates the

transmission of its data message immediately after, at instant t6.

Figure 2.4: Black burst contention resolution mechanism.

It is important to realize that non real-time data messages always loose the arbitration

against any real-time messages because real-time hosts transmit their messages right after

the jamming signal without further delay, while the non-real-time messages follow the

standard Ethernet back-off process (BEB). On the other hand, among real-time messages,

the ones with longer waiting time lead to longer black bursts and thus are transmitted

before other real-time messages with shorter waiting times, which results in the FCFS

serialization as referred before.

An advantage of EQuB is allowing real-time and non-real-time traffic to coexist on

the same Ethernet segment. Moreover, the EQuB protocol also takes advantage of the

underlying periodic model of the real-time traffic and schedules the next transmission in

each host based on the transmission instant of the current instance. Thus, in some

circumstances, particularly when the message periods in all real-time hosts are equal or

harmonic, the future instances of the respective messages will not collide again, leading to

 28

a high efficiency in bus utilization and to a round-robin service of real-time hosts.

However the implementation of EQuB requires special hardware because, according to our

best knowledge, there are no Ethernet controllers able to disable the backoff algorithm and

to perform timing control of the jamming sequence.

2.4.3 Windows protocol

The Windows protocol has been proposed both for CSMA/CD and token ring networks

[36]. Concerning the CSMA/CD implementation, the operation is as follows. The nodes on

a network agree on a common time interval (referred to as window). All nodes synchronize

upon a successful transmission, restarting the respective window. The bus state is used to

assess the number of nodes with messages to be transmitted within the window:

• If the bus remains idle, there are no messages to be transmitted in the window;

• If only one message is in the window, it will be transmitted;

• If two or more messages are within the window, a collision occurs.

Depending on the bus state, several actions can be performed:

• If the bus remains idle, the window duration is increased in all nodes;

• In the case of a collision, the time window is shortened in all nodes;

• In case of a successful transmission, the window is restarted and its duration is

kept as it is.

In the first two cases, the window duration is changed but the window is not

restarted. Moreover, the window duration varies between a maximum (initial) and

minimum values. Whenever there is a sufficiently long idle period in the bus, the window

will return to its original maximum length. If a new node enters dynamically in the system,

it may have instantaneous window duration different from the remaining nodes. This may

cause some perturbation during an initial period, with more collisions than expected.

However, as soon as an idle period occurs, all windows will converge to the initial length.

A probabilistic retry mechanism may also be necessary when the windows are shrunk to

their minimum and collisions still occur (e.g. when two messages have the same

transmission time).

 29

Figure 2.5: Resolving collisions with the Windows protocol.

Figure 2.5 shows an example of the operation of the windows protocol used to

implement MLF message scheduling. The top axis represents the latest send times (lst) of

messages A, B and C. The lst of a message is the latest time instant by which the message

transmission must start so that the respective deadline is met. The first window (Step 1)

includes the lst of the three messages, thus leading to a collision. The intervenient nodes

feel the collision and the window is shrunk (Step 2). However, the lst of messages A and B

are still inside the window, causing another collision. In response to this event the window

size is shrunk again (Step 3). In this case only message A has its lst within the window,

leading to a successful transmission.

This method exhibits properties that are very similar to those of the previous

method (virtual time protocol). However, it is somewhat more efficient due to its adaptive

behaviour. In general, it also aims at soft real-time systems and uses a fully distributed

symmetrical approach with relatively low computational overhead. Notice that all message

parameters are relative and that there is no global time base again. Moreover, the protocol

efficiency is substantially influenced by the magnitude of variations in the window

duration, either when increasing or decreasing it.

2.4.4 CSMA/DCR

In [27], LeLann and Rivierre present the CSMA/DCR protocol, where DCR stands for

Deterministic Collision Resolution. This protocol implements a fully deterministic network

access scheme that consists on a binary tree search of colliding messages, i.e. there is a

 30

hierarchy of priorities in the retry that allows calculating the maximum network delay a

message can suffer.

During normal operation, the CSMA/DCR follows the standard IEEE 802.3

protocol (Random Access mode). However, whenever a collision is detected the protocol

switches to the Epoch mode. In this mode, lower priority message sources voluntarily

cease contending for the bus, and higher priority ones try again. This process in repeated

until a successful transmission occurs. After all frames involved in the collision are

transmitted, the protocol switches back to random access mode.

Figure 2.6 together with Table 2.1 depict the CSMA/DCR operation in a situation

where 6 messages collide. Considering that lower indexes correspond to higher priorities,

after the initial collision the right branch of the tree (messages 12, 14 and 15) cease

contending for the bus. Since there are still three messages on the left branch, a new

collision appears, between messages 2, 3 and 5. Thus, the left sub-branch is selected again,

leaving message 5 out. In the following slot, messages 2 and 3 will collide again. The sub-

branch selected after this collision has no active message sources, and thus in the following

time slot the bus will be idle (step 4). This causes a move to the right sub-branch, where

messages 3 and 5 reside, resulting in a new collision. Finally, in step 6 the branch

containing only the message with index 5 is selected, resulting in a successful

transmission. The algorithm continues this way until all messages are successfully

transmitted.

 31

Figure 2.6: Example of tree search with CSMA/DCR.

Searcher Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Channel Status C C C V C X X X C V C X C X X

2 2 2 2 2 3 5 12 12 12 14 14 15

3 3 3 3 14 14 15

5 5 15 15

12

14

Source Index

15

Table 2.1: Tree search example (contending sequence).

Despite assuring a bounded access time to the transmission medium, this approach

exhibits two main drawbacks:

• In some cases (e.g. [27]) the firmware must be modified, therefore the economy

of scale obtained when using standard Ethernet hardware is lost;

• The worst-case transmission time, which is the main factor considered when

designing real-time systems, can be orders of magnitude greater than the

average transmission time. This forces any kind of analysis to be very

 32

pessimistic, and therefore leads to low bandwidth utilization, at least concerning

real-time traffic.

2.4.5 Virtual time CSMA

The Virtual Time CSMA protocol has been presented in [39] and [40]. It allows

implementing different scheduling policies (e.g. minimum-laxity first), and bases its

decisions on the assessment of the communication channel status, only. When the bus

becomes idle and a node has a message to transmit, it waits for a given amount of time,

related to the scheduling policy implemented. For example, if MLF (minimum laxity first)

scheduling is used, the waiting time is derived directly from the laxity using a proportional

constant. When this amount of time expires, and if the bus is still idle, the node tries to

transmit the message. If the scheduler outcome results in more than one message having

permission to be transmitted at the same time (e.g. when two messages have the same

laxity in MLF) then a collision occur. In this case the protocol can either recalculate the

waiting time using the same rule or use a probabilistic approach according to which the

messages involved in a collision are retransmitted with probability p (p-persistent). This

last option is important to sort out situations in which the scheduler cannot differentiate

messages, e.g. messages with the same laxity would always collide.

Figure 2.7 shows the operation of the Virtual-Time CSMA protocol, with MLF

scheduling.

Figure 2.7: Example of Virtual-Time CSMA operation using MLF.

As it is shown in Figure 2.7 during the transmission of message m, messages a and

b become ready and since the laxity of message a (i.e. deadline minus message

transmission time) is shorter than the laxity of message b, message a is transmitted first.

 33

However during the transmission of message a, message c arrives and the messages b and c

have the same deadline and the same laxity. Therefore, an attempt will be made to transmit

them at the same time, causing a collision. Then the algorithm uses the probabilistic

approach, with message b having a lower waiting time than message c, and thus being

transmitted next. Finally, message c is transmitted on the bus. Since the only global

information is the channel status, there is no way to know that there is only a single

message pending. For this reason, after the transmission of message b the waiting time

corresponding to message c is computed, and only after the expiration of this interval

message c is finally transmitted.

Beyond the advantage of using standard Ethernet hardware, this approach also has

the advantage of not requiring any other global information but the channel status, which is

readily available at all Network Interface Cards (NICs). Thus, a fully distributed and

symmetric implementation is possible, which, in this case, also incurs in relatively low

computational overhead. Nevertheless, this approach presents some important drawbacks:

1- Performance highly dependent on the proportional constant value used to relate the

waiting time with the scheduling policy in use, leading to:

• Collisions if it is too short;

• Large amount of idle time if it is too long;

2- Proportional constant depends on the properties of the message set; therefore on-line

changes to that set can lead to poor performance;

3- The waiting times are computed locally using relative parameters, only. There is no

global time base and thus, relative phasing is hard to implement;

4- Due to possible collisions, worst-case transmission time is much higher than average

transmission time and only probabilistic timeliness guarantees can be given (soft real-

time systems).

2.5 Token passing technique

Token passing is other well-know medium access control technique suited for shared

broadcast bus or ring networks. The token is a special kind of network frame to regulate

network access of the individual nodes. The token flows from node to node and each node

may transmit a message only when it has acquired the token. In the simplest and more

common way, the token rotates in a circular fashion, which tends to divide the bandwidth

 34

equally among all nodes in high traffic load conditions. For asymmetrical bandwidth

distribution some protocols allow the token to visit the same node more than once in each

token round as proposed by Cheng et al in [41]. In both cases, a basic condition for real-

time operation is that the time spent by the token at each node must be bounded. This can

be achieved by using a timed-token protocol [42] as in the well-known cases of FDDI,

IEEE 802.4 Token Bus and PROFIBUS (this one still belonging to the same class but

exhibiting a few differences).

The token passing technique is frequently used to override the native Ethernet

CSMA/CD arbitration mechanism. This subsection presents three approaches using the

token passing technique.

2.5.1 RETHER

The RETHER protocol was proposed by Venkatramani and Chiueh in [43]. This protocol

operates in normal Ethernet CSMA/CD mode until the arrival of real-time requests upon

which it switches to token-bus mode.

In token-bus mode real-time data is considered to be periodic and the time is

divided in cycles of fixed duration. During the cycle duration the access to the bus is

regulated by a token, both for real-time and non-real-time traffic. First the token visits all

nodes that are sources of RT messages. After, if there is enough time until the end of the

cycle, the token visits the sources of NRT data. An on-line admission control policy

assures that all accepted RT requests can always be served and that new RT requests

cannot jeopardize the guarantees of existing RT messages. Therefore, in each cycle all RT

nodes can send their RT messages. However, concerning the NRT traffic, no timeliness

guarantees are granted.

Figure 2.8 illustrates a possible network configuration with 6 nodes. Nodes 1 and 4

are sources of RT messages, forming the RT set. The remaining nodes have no such RT

requirements and constitute the NRT set. The token first visits all the members of the RT

set and after, if possible, the members of the NRT set.

 35

Figure 2.8: Sample network configuration for RETHER.

A possible token visit sequence could be: cycle i {1 – 4 – 1 – 2 – 3 – 4 – 5 – 6}, cycle i+1

{1 – 4 – 1 – 2}, cycle i+2 {1 – 4 – 1 – 2 – 3 – 4}…. In the ith
 cycle the load is low enough

so that the token has time to visit the RT set plus all nodes in the NRT set, too. In the

following cycle, besides the RT set, the token only visits nodes 1 and 2 of the NRT set and,

in the next cycle, only nodes 1 through 4 of the NRT set are visited.

Due to the complete elimination of collisions, this approach supports deterministic

analysis of the worst-case network access delay, particularly for the RT traffic.

Furthermore, if the NRT traffic is known a priori, it is also possible to determine a bound

to the respective network access delay, which can be important for example, for sporadic

real-time messages. However, since the bandwidth available for NRT messages is

distributed according to the nodes order established in the token circulation list, the first

nodes always get precedence over the following ones, which end up with too long worst-

case network delays. Moreover, this method involves a considerable communication

overhead caused by the circulation of the token.

2.5.2 RT-EP: Real-Time Ethernet Protocol

The Real-Time Ethernet Protocol (RT-EP) [44] [45] is a token-passing protocol which

operates over Ethernet and which was designed to be easily analyzable using well-known

schedulability analysis techniques.

 36

 An RT-EP network is logically organized as a ring, each node knowing which other

nodes are its predecessor and successor. The token circulates from node to node within this

logical ring.

Access to the bus is carried in two phases, arbitration and application message

transmission. In the arbitration phase the token visits all the nodes engaged in the logical

ring. Upon token reception, each node compares the priority of its own highest priority

ready message, if any, with the priority carried in the token. If higher, the token priority is

updated. The token also carries the identity of the node that contains the highest priority

message found so far.

After one token round the arbitration phase is concluded and the token is sent

directly to the node having the highest priority ready message so that it can transmit it

(application message transmission phase). After concluding the application message

transmission, the same node starts a new arbitration phase.

RT-EP packets are carried in the Data filed of the Ethernet frames. There are two

distinct types of RT-EP packets, Token Packets and Info Packets.

The Token Packets are used during the arbitration phase, and contain: a packet

identifier, specifying the functionality of the packet; priority and station address fields,

identifying the highest priority ready message as well as the respective station ID; a set of

fields used to handle faults.

The Info Packets carry the actual application data, and contain: a packet identifier

field, specifying the packet’s type; a priority field, which contains the priority of the

message being carried; a channel ID field, identifying the receiver node; a length field,

defining the message data size; an info field, carrying the actual message data; and a packet

number field, which is a sequence number used by the fault-tolerance mechanism.

The fault-tolerance mechanism [45] allows reducing the negative impact of

message losses, particularly tokens, recovering from them within bounded time. This

mechanism is based on forcing all stations to permanently listen to the bus. Following any

transaction, the predecessor station monitors the bus waiting for the transmission of the

next frame by the receiving station. If the receiving station does not transmit any frame

within a given time window, the predecessor one assumes a message loss and retransmits

it. After a predefined number of unsuccessful retries, the receiving station is considered as

a “failing station” and it is excluded from the logical ring. This mechanism may lead to the

 37

occurrence of message duplicates. The sequence number field, present both in Token and

Info packets, is used to discard the duplicate messages at the receiving nodes.

2.5.3 Other

Steffen et al [46] present an implementation of a token-passing over Ethernet. Although

aiming particularly shared Ethernet, the method may also be applied to networks like

HomePNA [47] and Power line [48].

All the nodes connected to the network have a QoS sub layer (Token-Passing

Protocol), which interfaces the Logical Link Control and the Medium Access Control

layers. The QoS sub layer overrides the native arbitration mechanism, controlling the

access to the bus via a token passing mechanism.

This protocol defines two distinct types of message streams, synchronous and

asynchronous. Synchronous traffic is assumed to be periodic, and is granted real-time

guarantees. Synchronous streams are defined by a frame transmission time, a period and a

deadline. Asynchronous traffic is handled according to a best-effort policy, and thus no

real-time guarantees are provided. Asynchronous streams are defined by frame

transmission time and a desired average bandwidth.

Whenever the token arrives at a node, the synchronous frames are sent in first

place. All nodes are granted at least a pre-defined synchronous bandwidth in all token

visits to send such type of traffic. After the synchronous bandwidth is exhausted, a node

can continue to transmit up to the exhaustion of its token holding time. After that, the token

is forwarded to the next node in the circulation list.

2.6 Virtual token passing

In essence the virtual token passing medium access control technique is a token passing.

However, rather than passing an actual data token message between masters, as is the case

in some protocol types, sufficient information is present within a normal message for each

master to assess whether it has the authority to communicate (Jenkins [49]).

This section presents the virtual token-passing bus arbitration technique according

to the implementation on the P-NET fieldbus as presented in [49], P-NET website [50] and

Tovar [51].

 38

P-NET is a multi-master system that can have up to 32 masters with equal priority,

and no hierarchy needs to be managed. In P-NET all communication is based on a message

cycle principle, where a master sends a request and the addressed slave immediately

returns a response. P-NET works with the fixed data rate of 76,800 bps

The virtual token passing is implemented using two protocol counters. The first

one, the access counter (AC), holds the node address of the currently transmitting master.

When a request has been completed and the bus has been idle for τ = 40 bit periods (520µs

at 76.8Kbps), each one of the access counters is incremented by one. The master whose

access counter value equals its own unique node address is said to be holding the token,

and is allowed to access the bus. When, as the access counter is incremented, it exceeds the

“maximum number of masters”, the access counter in each master is reset to one. This

allows the first master in the cycling chain to gain access again.

The second counter, the idle bus bit period counter (IBBPC), increments for each

inactive bus bit period. Should any transactions occur, the counter is reset to zero. As

explained above, when the bus has been idle for 40 bit periods following a transfer, all the

access counters are incremented by one, and the next master is thus allowed to access the

bus.

If a master has nothing to transmit (or indeed is not even present), the bus will

continue to be inactive. Following a further period of σ = 10 bit periods (130µs), the idle

bus bit period counter will have reached 50, (60, 70…) so all the access counters will be

incremented again, allowing the next master access. The virtual token passing will

continue every 10 bit periods, until a master does require access.

The P-NET standard allows each master to perform at most one message cycle per

token visit. After receiving the token, the master must transmit a request before a certain

time has elapsed. This is denoted as the master’s reaction time, and the standard imposes a

worst-case value of up to ρ = 7 bit periods. A slave is allowed to access the bus between 11

and 30 bit periods after receiving a request, measured from the beginning of the stop bit in

the last byte of the request frame. The maximum allowed delay is then 30 bit periods

(390µs). This delay is denoted as the slave's turnaround time. To illustrate these basic

MAC procedures and the notation used, refer to Figure 2.9.

 39

Figure 2.9: Concepts of message cycle, token holding time (H), slave's turnaround time,
master's reaction time (ρ), idle token time (σ) and token passing time (τ) in P-NET.

Figure 2.9 shows an example of the virtual token passing principle as it is

implemented in P-NET for a system with 4 masters. According with the Figure 2.9, master

3 has the virtual token, and is receiving a response from a slave, and then the bus becomes

idle. When 40 idle bit periods have been counted, all access counters are incremented by 1,

and master 4 is allowed to access the bus. Since master 4 has not anything to send, and

after 50 bit periods, master 1 is allowed to access the bus. Master 1 does not need to use

the bus either (it may not even be present), so the virtual token is passed to master 2, when

the idle bus bit period counter reaches 60.

Since masters 2 and 3 do not require the access, the token is eventually passed on to

master 4, when the idle bus bit period counter is equal to 80. This time, master 4 does

require access. Data appears on the bus, so all idle bus bit period counters are reset to zero,

all access counters are preset to 1 and a new token cycle starts with master 1 holding the

virtual token.

All communication in P-NET is structured in a frame that consists of a series of

asynchronously transmitted 9-bit bytes (Jenkins [52]). The byte structure is shown in

Figure 2.10.

 40

Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Address/

Data
Stop Bit

Begin End

0
IF Add=1

0=Dest.ination

1=Source

0=Data

1=Address
1

Figure 2.10: Byte structure in a P-NET frame.

In Figure 2.10 each bit has the meaning as follows:

• One start bit (logical 0)

• Eight data bits with least significant bit (LSB) first (bits 0 to 7)

• One address/data bit

• One stop bit (logical 1)

A P-NET frame is divided up into a number of variable- and fixed-length fields as

it is shown in Figure 2.11.

Figure 2.11: Frame of P-NET.

The start of a frame can always be recognized by the fact that the first byte has the

Address/Data bit set to 1. In addition, the first address-identified byte in the frame having

bit 7 set true will contain the node address (bits 0 to 6) of the token-holding master. This

introduces the fact that P-NET addressing also includes the requesting node address, as

well as the destination node address from which a response is expected. Bit 7 of each

address byte is thus used to indicate whether it is associated with the (slave) address from

which a response is expected or is being made (bit 7=0) or the requesting (master) source

address of the transmission to which a response is expected or is being received (bit 7=1).

The P-NET addressing method allows each master to identify the current token-

holding master only reading the first byte of each transmitted frame. As the current access

counter is equal to the node address of current transmitting master, all masters synchronise

their access counter to the same number as the node address of the transmitting master.

The other bytes in the addressing field, as well as, the other fields of P-NET frame

are not discussed because they are out of scope of this work.

 41

It is interesting to observe that, despite the virtual token passing behaves as a token

passing and TDMA (see next section), it differs from a token passing because no explicit

token is sent in the bus and differs from a general TDMA because the time slots between

masters can be shortened when a node isn’t present or, being present, has not anything to

transmit. In a general TDMA the time slots are fixed and the bandwidth allocated to a node

can not be saved if the node doesn’t use it.

2.7 Time division multiple access – TDMA

Another well-known technique to achieve predictable temporal behaviour on shared

communication networks is to assign exclusive time slots to different rate data sources,

either nodes or devices, in a cyclic fashion. This is known as Time Division Multiple

Access (TDMA) and it implies a global synchronization framework so that all nodes agree

on their respective transmission slots. Hence, this is also a collision free medium access

protocol that can be used on top of shared Ethernet to override its native CSMA/CD

mechanism and prevent the negative impact of collisions. TDMA mechanisms are widely

used, mainly in safety-critical applications. Examples of TDMA-based protocols include

TTP/C, TT-CAN, SAFEBus and SWIFTNET. The remainder of this section addresses two

particular TDMA implementations on shared Ethernet.

2.7.1 The MARS bus

The MARS bus was the networking infrastructure used in the MARS (MAintenable Real-

time System) architecture developed in the Technical University of Vienna in the late 80s (

Kopetz [53]). Soon after, the MARS bus evolved into what is nowadays the TTP/C

protocol. The MARS architecture aimed at fault-tolerant distributed systems providing

active redundancy mechanisms to achieve high predictability and ease of maintenance.

In MARS all activities are scheduled off-line, including tasks and messages. The

resulting schedule is then used on-line to trigger the system transactions at the appropriate

instants in time. Interactions among tasks, either local or remote, are carried out via MARS

messages. It is the role of the MARS bus to convey MARS messages between distinct

nodes (cluster components).

The MARS bus was based on a 10BASE2 Ethernet using standard Ethernet

interface cards. A TDMA scheme was used to override Ethernet’s native CSMA/CD

 42

medium access control. The TDMA round consisted of a sequence of slots of equal

duration, each assigned to one node in a circular fashion. Moreover, during each slot the

tasks in each node were scheduled in a way to prevent contention between tasks on bus

access (Schabl [54]).

2.7.2 Variable bandwidth allocation scheme

The Variable Bandwidth Allocation Scheme has been proposed in [55] for Ethernet

networks by Lee and Shin. Basically, it is a TDMA transmission control mechanism in

which the slots assigned to each node in the TDMA round can have different durations.

This feature allows tailoring the bandwidth distribution among nodes according to their

effective communication requirements and thus it is more bandwidth efficient than other

TDMA-based mechanisms relying on equal duration slots, as it was the case in the MARS

bus. Nowadays, this feature has been incorporated in most of the existing TDMA-based

protocols, e.g. TTP/C and TT-CAN, improving their bandwidth efficiency.

Moreover, this technique also comprises the possibility of changing the system

configuration on-line, namely adding or removing nodes, a feature that is sometimes

referred to as Flexible TDMA (FTDMA) [56].

The nomenclature used in [55] uses the expression frame to refer to the TDMA

round. Both the frame duration (frame time - F) together with the slot durations (slot times

- Hi) are computed according to the specific traffic characteristics. The first slot in each

frame (Tc) is reserved for control purposes such as time synchronization and

addition/deletion of nodes. The structure of a TDMA frame is depicted in Figure 2.12.

Figure 2.12: The structure of a TDMA frame.

The transmission of the control slot, Tc, as well as the inter-slot times, represents

communication overhead. The inter-slot time must be sufficient to accommodate a residual

 43

global clock inaccuracy and to allow nodes to process incoming messages before the start

of the following slot.

In their work, the authors derive a set of necessary conditions that a given

allocation scheme f has to fulfil to compute both the frame (F) and slot durations (Hi)

according to the communication requirements, i.e. message transmission times (Ci),

periods (Pi) and system overhead (γ).

f: ({Ci}, {Pi}, γ) → ({Hi}, F)

Based on those conditions, the authors present an algorithmic approach for carrying the

computation of F and Hi, and compare the results of this methodology with other TDMA

approaches, namely MARS. The results obtained show the improvement in bandwidth

utilization that may be achieved with this variable bandwidth allocation scheme.

2.8 Master/slave techniques

One of the simplest ways of enforcing real-time communication over a shared broadcast

bus, including Ethernet, consists on using a master/slave approach, in which a special

node, the master, controls the access to the medium of all other nodes, the slaves. The

traffic timeliness is then reduced to a problem of scheduling that is local to the master.

However, this approach typically leads to a considerable under-exploitation of the network

bandwidth because every data message must be preceded by a control message issued by

the master, resulting in a substantial communication overhead. Moreover, there is some

extra overhead related to the turnaround time, i.e. the time that must elapse between

consecutive messages, since every node must fully receive and decode the control message

before transmitting the respective data message. Nevertheless, it is a rugged transmission

control strategy that has been used in many protocols. This section will describe two

examples, namely ETHERNET Powerlink [48]and FTT-Ethernet [57].

The case of FTT-Ethernet deserves a particular reference because it implements a

variant of the master/slave technique that allows a substantial reduction in the protocol

communication overhead. This is called the master/multi-slave approach [58]according to

which the bus time is broken in cycles and the master issues one control message each

cycle, only, indicating which data messages must be transmitted therein. This mechanism

has been developed within the Flexible Time-Triggered communication framework (FTT)

 44

[59], and has been implemented over different network protocols, such as Controller Area

Network [60]and Ethernet [57].

2.8.1 FTT-Ethernet protocol

The FTT-Ethernet protocol [57] combines the master/multi-slave transmission control

technique with centralized scheduling, maintaining both the communication requirements

and the message scheduling policy localized in one single node, the Master, and facilitating

on-line changes to both, thus supporting a high level of operational flexibility.

The bus time is divided in fixed duration time-slots called Elementary Cycles (ECs)

that are further decomposed in two phases, the synchronous and asynchronous windows

(Figure 2.13), which have different characteristics.

Figure 2.13: FTT-Ethernet traffic structure.

The synchronous window carries the periodic time-triggered traffic that is

scheduled by the master node. The expression time-triggered implies that this traffic is

synchronized to a common time reference, which in this case is imposed by the master.

The asynchronous window carries the sporadic traffic either related to protocol control

messages, such as those conveying change requests for the time-triggered traffic, event-

triggered messages, such as those related to alarms, and other non-real-time traffic. There

is a strict temporal isolation between both phases so that the sporadic traffic does not

interfere with the time-triggered one.

Despite allowing on-line changes to the attributes of the time-triggered traffic,

global timeliness is enforced by the FTT-Ethernet protocol by means of on-line admission

control. Due to the global knowledge and centralized control of the time-triggered traffic,

the protocol supports arbitrary scheduling policies (e.g. RM and EDF), and may easily

support dynamic QoS management complementary to admission control.

 45

Beyond the flexibility and timeliness properties that this protocol exhibits, there are

also some drawbacks that concern the computational overhead required in the master to

execute both the message scheduling and the schedulability analysis on-line. This is,

however, confined to one node. The computational power required by the slaves in what

concerns the communication protocol is just to decode the trigger message in time and start

the due transmissions in the right moments. Finally, in safety-critical applications the

master must be replicated, for which there are specific mechanisms to ensure coherency

between their internal databases that hold the system communication requirements.

2.8.2 ETHERNET Powerlink

ETHERNET Powerlink [77] is a commercial protocol providing deterministic isochronous

real-time communication, operating over hub-based Fast-Ethernet networks. The protocol

supports either periodic (isochronous) as well as event (asynchronous) data exchanges, a

very tight time synchronization (accuracy better than 1µs) and fast update cycles (in the

order of 500µs) for the periodic traffic. From architectural and functional points of view,

this protocol bears many resemblances with the WorldFIP fieldbus.

The ETHERNET Powerlink protocol uses a Master-Slave transmission control

technique, which completely prevents the occurrence of collisions at the bus access [61].

The network architecture is asymmetric, comprising a so-called Powerlink Manager

(Master), and a set of Powerlink Controllers (Slaves). The former device controls all the

communication activities, assigning time slots to all the remaining stations. The latter

devices, Controllers, are passive bus stations, sending information only after explicit

request from the Manager.

The Powerlink protocol operates isochronously, with the data exchanges occurring

in a cyclic framework based on a micro cycle of fixed duration, i.e. the Powerlink cycle.

Each cycle is divided in four distinct phases, called Start, Cyclic, Asynchronous and Idle

Periods (Figure 2.14).

 46

Figure 2.14: Powerlink cycle structure.

A Powerlink cycle starts with a Start of Cycle message, sent by the Manager. This

is a broadcast message, which instructs Controllers that a new cycle will start, and thus

allows them to carry the preparation of the necessary data.

After the Start-Period follows the Cyclic-Period, where the Controllers transmit the

isochronous traffic. The transactions carried on this period (window) are fully controlled

by the Manager, which issues poll requests (PollRequest) to the Controllers. Upon

reception of a PollRequest, controllers respond by transmitting the corresponding data

message (PollResponse). The PollRequest message is a unicast message, directly addressed

to the Controller node involved in the transaction. The corresponding PollResponse is a

broadcast message, thus facilitating the distribution of data among all system nodes that

may need it (producers-distributor-consumers communication model). Isochronous

messages may be issued every cycle or every given number of cycles according to the

application communication requirements. After completing all isochronous transactions of

one cycle, the Manager transmits an End of Cycle message, signaling the end of the

Cyclic-Period.

Asynchronous transactions may be carried out between the end of the Cycle-Period

and the end of the Powerlink Cycle. These messages may be asynchronous data messages

(Invite/Send) or management messages, like Ident/AsyncSend, issued by the Manager to

detect active stations. Since these transactions are still triggered by the Powerlink Manager,

any node having asynchronous data to send must first notifies the Manager of that fact.

This is performed during an isochronous transaction involving that particular node, using

piggybacked signaling in the respective PollResponse message. The Manager maintains a

set of queues for the different asynchronous request sources, and schedules the respective

 47

transactions within the Asynch-Period, if there is time enough up to the end of the cycle. In

case there is not time enough to complete a given asynchronous transaction or there is no

scheduled asynchronous transaction then the protocol inserts idle-time in the cycle (Idle-

Period) in order to strictly respect the period of the Start of Cycle message.

ETHERNET Powerlink also handles Ethernet packets with foreign protocols, such

as TCP/IP. This traffic is conveyed within the asynchronous period. Powerlink provides a

special-purpose device driver that interfaces with such upper protocol stacks.

2.9 Switched ethernet

Since roughly one decade ago that the interest on using Ethernet switches has been

growing as a means to improve global throughput, traffic isolation and reduce the impact

of the non-deterministic features of the original CSMA/CD arbitration mechanism.

Switches, unlike hubs, provide a private collision domain for each of its ports, i.e., there is

no direct connection between its ports. When a message arrives at a switch port, it is

buffered, analyzed concerning its destination, and moved to the buffer of the destination

port (Figure 2.15). The “packet handling” block in the figure, commonly referred to as

switch fabrics, transfers messages from input to output ports. When the arrival rate of

messages at each port, either input or output, is greater than the rate of departure, the

messages are queued. Currently, most switches are fast enough handling message arrivals

so that queues do not build up at the input ports (these are commonly referred to as non-

blocking switches). However, queues may always build up at the output ports whenever

several messages arrive in a short interval and are routed to the same port. In such case,

queued messages are transmitted sequentially, normally in FCFS order. This queue

handling policy may, however, lead to substantial network-induced delays because higher-

priority or more important messages may be blocked in the queue while lower priority or

less important ones are being transmitted. Therefore, the use of several parallel queues for

different priority levels has been proposed (IEEE 802.1p). The number of distinct priority

levels is limited to 8 but many current switches that support traffic prioritization offer even

a further limited number. The scheduling policy used to handle the messages queued at

each port also impacts strongly on the network timing behavior [62].

 48

Figure 2.15: Switch internal architecture.

A common misconception is that the use of switches, due to the elimination of

collisions, is enough to enforce real-time behaviour in Ethernet networks. However, this is

not true in the general case. For instance, if a burst of messages destined to the same port

arrives at the switch, output queues can overflow thus losing messages. This situation,

despite seeming somewhat unrealistic, can occur with a non-negligible probability in

certain communication protocols based on the producer-consumer model, e.g. CIP –

Control Information Protocol and its lower level protocols such as Ethernet/IP (Industrial

Protocol) [63], or based on the publisher-subscriber model such as RTPS [65]used within

IDA – Interface for Distributed Automation. In fact, according to these models, each node

that produces a given datum (producer or publisher) transmits it to potentially several

nodes (consumers or subscribers) that need it. This model is efficiently supported in

Ethernet by means of special addresses, called multicast addresses. Each network interface

card can define the multicast addresses related to the information that it should receive.

However, the switch has no knowledge about such addresses and thus, treats all the

multicast traffic as broadcasts, i.e., messages with multicast destination addresses are

transmitted to all ports (flooding).

Therefore, when the predominant type of traffic is multicast/broadcast instead of

unicast, one can expect a substantial increase of peak traffic at each output port that

increases the probability of queue overflow, causing degradation in network performance.

Furthermore, in these circumstances, one of the main benefits of using switched Ethernet,

 49

i.e. multiple simultaneous transmission paths, can be compromised. A possible way to limit

the impact of multicasts is using virtual LANs (VLANs) so that flooding affects only the

ports of the respective VLAN [63].

Other problems concerning the use of switched Ethernet are referred in [5]such as

the additional latency introduced by the switch in absence of collisions as well as the low

number of available priority levels that hardly supports the implementation of efficient

priority based scheduling.

According to Almeida and Pedreiras these problems are, however, essentially

technological and are expected to be attenuated in the near future. Moreover, switched

Ethernet does alleviate the non-determinism inherent to CSMA/CD medium access control

and opens to the way to efficient implementations of real-time communication over

Ethernet.

The remainder of this section presents two protocols that operate over switched

Ethernet to support real-time communication.

2.9.1 EDF scheduled switch

Hoang et al [66] [67] developed a technique that supports a mix of real-time (RT) and non-

real-time (standard IP) traffic coexisting in a switch-based Ethernet network. The RT

traffic is scheduled according to the Earliest Deadline First policy and is granted with

timeliness guarantees by means of adequate on-line admission control.

The proposed system architecture, depicted in Figure 2.16, requires the addition of

a real-time layer (RT-l) on network components, either end nodes as well as the switch.

The RT-l is responsible for establishing real-time connections, performing their admission

control, providing time synchronization, and finally managing the message transmission

and reception of both real-time and non-real-time traffic classes.

 50

Figure 2.16: System architecture.

The switch RT channel management layer is responsible for providing time

synchronization through the periodic transmission of a time reference message. Moreover,

this layer also takes part in the admission control process, both by assessing the internal

state of the switch, and consequently its ability to fulfil the timeliness requirements of the

real-time message streams, as well as by acting as a broker between the nodes requesting

RT channels and the targets of such requests. Finally, this layer also disseminates the

internal switch state, namely in what concerns the queues status, to allow flow-control of

non-real-time traffic on the end nodes.

Real-time communication is carried out within real-time channels, a point-to-point

logical connection with reserved bandwidth. Whenever a node needs to send real-time

data, it issues a request to the switch, indicating both the source and destination addresses

(both MAC and IP), and the period, transmission time and deadline of the message. Upon

reception of one such request, the switch performs the first part of the admission control

mechanism, which consists in evaluating the feasibility of the communication between the

source node and the switch (uplink) and between the switch and the target node

(downlink). If the switch finds the request feasible, forwards the request to the destination

node. The target node analyses the request and informs the switch about its will on

accepting or not the real-time connection. The switch, then, forwards this answer to the

originator node. If the RT channel is accepted, it is assigned with a system wide channel ID

that univocally identifies the connection.

 51

The real-time layer comprises two distinct queues, one for the real-time traffic, and

the other for the non-real-time traffic. The former is a priority queue, where messages are

kept according to the distance to their deadlines. The non-real-time queue holds the

messages in a First-In-First-Out scheme. Thus, real-time messages are transmitted

according to their deadlines, while non-real-time messages are transmitted according to

their arrival instant.

The feasibility analysis proposed by the authors is derived from EDF task scheduling

analysis, but with adaptations to account for some system specifics, such as including the

overheads due to control messages and the impact of non-preemptive message

transmission. Deadlines are defined in an end-to-end basis. Since the traffic is transmitted

in two separate steps (uplink and downlink), the analysis must assure that the total delay

induced by these steps together does not exceed the total end-to-end deadline. For a given

real-time message stream i, if diu is the deadline for the uplink and did the deadline for the

downlink, then the end-to-end deadline diee must be at least as large as the sum of the

previous two: diu + did ≤ diee. In [68] Hoang et al assume end-to-end deadlines equal to

periods, and a symmetric partitioning of the deadline between the uplink and the downlink.

An improvement is presented in [67], where the authors propose an asymmetric deadline

partition scheme. Although more complex, this method allows a higher efficiency in the

bandwidth usage, because more loaded links can receive a higher portion of the deadline,

thus increasing the overall schedulability level.

2.9.2 EtheReal

The EtheReal protocol [70] is another proposal to achieve real-time behaviour on switched

Ethernet networks. In this approach, the authors decided to leave end nodes’ operating

system and network layers untouched. The protocol is supported by services implemented

on the switch, only, and its services are accessible to the end nodes by means of user-level

libraries.

EtheReal has been designed to support both real-time and non-real-time traffic via

two distinct classes. The Real-Time Variable Bit Rate service class (RT-VBR) is meant to

support real-time applications. These services use reserved bandwidth and try to minimize

the packet delay and packet delay variation (jitter). Applications must provide the traffic

characteristics during the connection set-up, namely average traffic rate and maximum

burst length. If these parameters are violated at run-time, the real-time guarantees do not

 52

hold, and packets may be dropped. The second service class is Best-Effort (BE), and it was

developed specifically to support existing non-real-time applications like telnet, http, etc.,

without requiring any modification. No guarantees are provided for this type of traffic.

Real-time services in EtheReal are connection-oriented, which means that

applications have to follow a connection setup protocol before being able to send data to

the real-time channels. The connection setup procedure is started by sending a reservation

request to a user-level process called Real-Time Communication Daemon (RTCD),

running on the same host (Figure 2.17). This daemon is responsible for the set-up and tear

down of all connections in which the host node is engaged in. The reservation request for

RT connections contains the respective Quality-of-Service (QoS) requirements, namely

average traffic rate and maximum burst length.

Figure 2.17: Connection set-up procedure in the EtheReal architecture.

Upon reception of a connection set-up request, the RTCD contacts the neighbour

EtheReal switch that evaluates whether it has enough resources to meet the QoS

requirements of the new RT connection without jeopardizing the existing ones, namely

switch fabrics bandwidth, CPU bandwidth for packet scheduling and data buffers for

packet queuing. If it has such resources and if the destination node is directly attached to

the same switch it positively acknowledges the request. If the destination node is in another

segment, i.e. connected to another switch, the switch that received the request forwards it

 53

to the next switch in the path. A successful connection is achieved if and only if all the

switches in the path between the source and the target node have enough resources to

accommodate the new RT connection. If some switch has not enough resources, it sends

back a reject message, which is propagated down to the requester node. This procedure

serves to notify the requester application about the result of the operation, as well as to let

the intermediate EtheReal switches to de-allocate the resources associated with that

connection request.

The EtheReal architecture employs traffic shaping and policing, both at hosts and

switches. The traffic shaping is performed to smooth the inter-packet arrival time,

generating a constant rate flow of traffic. Traffic policing is used to ensure that the

declared QoS parameters are met during runtime. Those functions are also implemented on

the switches to ensure that an ill-behaved node, either due to malfunction or malicious

software, does not harm the other connections on the network.

With respect to the packet scheduling inside the switch, the EtheReal architecture

employs a cyclic round-robin scheduling algorithm. All real-time connections are served

within a predefined cycle. A part of that cycle is also reserved to best-effort traffic, to

avoid starvation and subsequent time-outs on the upper layer protocols.

Applications access the real-time services by means of a Real-Time Data

Transmission/Reception library (RTTR), which, besides other internal functions, like the

traffic shaping and policing, provides services to connection set-up and tear down and data

transmission and reception.

Another interesting feature of this protocol is its scalability and high recovery

capability, when compared with standard switches. For example, the spanning tree protocol

(IEEE 802.3D) is used in networks of standard switches to allow redundant paths and

automatic reconfiguration upon a link/switch failure. However, such reconfiguration may

take up to 30s with the network down, which is intolerable for most real-time applications.

On the other hand, the authors claim that EtheReal networks may recover nearly 1000

times faster, within 32 ms [71].

2.10 Recent advances

Most of the recent work performed on real-time Ethernet targets switch-based

implementations. However, as discussed before, just replacing a hub by a switch is not

 54

enough to make an Ethernet network exhibit real-time behaviour. One of the issues

recently addressed in the literature concerns the way packets are handled by the protocol

software (protocol stack) within the system nodes. Most of the operating systems

implement a single queue, usually working according to a First-Come First-Served policy,

for both real and non-real-time traffic. This approach induces important delays and priority

inversions. A methodology that has been proposed to solve this problem is the

implementations of multiple transmit/receive queues [72]. With this approach, the real-

time traffic is intrinsically separated from the non-real-time traffic. Non-real-time traffic is

only sent/processed when the real-time queues are empty. It is also possible to build

separate queues for each traffic class, providing internal priority-aware scheduling.

Other important issue concerns the degree of freedom in the network topology (e.g.

bus, star). The topology impacts on the number of switches that messages have to cross

before reaching the target, which impacts on the temporal properties of the traffic [73][74].

For instance, the bus (or line) topology, in which each device integrates a simplified switch

eases the cabling, but is the most unfavourable topology for real-time behaviour.

Another aspect concerning switch-based Ethernet networks respects the scheduling

policy within the switch itself. Switches support up to eight distinct statically prioritized

traffic classes. Different message scheduling strategies have a strong impact on the real-

time behaviour of the switch [75]. Particularly, strategies oriented towards average

performance and fairness, which is relevant for general-purpose networks, may impact

negatively on the switch real-time performance.

Finally, the interest on shared Ethernet is not over, yet, either for applications

requiring frequent multicasting, in which case the benefits of using switches are

substantially reduced, as well as for applications requiring precise control of transmission

timing, such as high speed visual servoing. In fact, switches induce higher delay and jitter

in message forwarding than hubs, caused by internal mechanisms such as MAC address to

port translation in forwarding and spanning-tree management protocol. In the previous

sections, several examples of this interest were discussed, such as the recent work on

adaptive traffic smoothing [76]and master/slave techniques including both the

ETHERNET Powerlink [77]as well as FTT-Ethernet [57]protocols. This last protocol is

also being analyzed for implementation on switched Ethernet, taking advantage of the

message queuing in the switch ports and thus simplifying the transmission control. This

 55

has the potential to ease the implementation of slave nodes since then it would not be

necessary to enforce fine control of the transmission instants of both synchronous and

asynchronous messages, strongly reducing the computational overhead. Several existing

Ethernet-based industrial protocols, such as Ethernet/IP, are also taking advantage of

switches to improve their real-time capabilities [78][79]. Particularly this protocol is now

receiving unprecedented support from major international associations of industrial

automation suppliers, such as Open DeviceNet Vendor Association (ODVA), ControlNet

International (CNI), Industrial Ethernet Association (IEA) and Industrial Automation Open

Networking Alliance (IAONA).

2.11 Conclusion

Due to several reasons, Ethernet became the most popular technology for LANs, today.

This makes it very attractive even in application domains for which it was not originally

designed, in order to benefit from its low cost, high availability and easy integration with

other networks, just to name a few arguments. Some of such application domains, e.g.

industrial automation, impose real-time constraints on the communication services that

must be delivered to the applications. These conflicts with the original medium access

control technique embedded in the protocol, CSMA/CD, which is non-deterministic and

behaves very poorly with medium to high network loads. Therefore, along its near 30 years

of existence, many adaptations and technologies for Ethernet have been proposed in order

to support the desired real-time behaviour.

This chapter has presented some real-time Ethernet approaches, ranging from

changes to the bus arbitration, to the addition of transmission control layers and also, to the

use of special networking equipment, such as switches. Such techniques have been

described and analyzed in what concerned their pros and cons for different types of

application. By last is presented a reference to recent trends where the growing impact of

switches is clear. However, shared Ethernet might still be preferable, such as when the

traffic is mainly of a multicast nature or a precise transmission timing control is required.

With the current high pressure to bring Ethernet more and more into the world of

distributed automation systems, it is likely that such technology will end up taking the

place of existing fieldbuses and establishing itself as the de facto communication standard

for this area. Although its efficiency in terms of bandwidth utilization is still low when

 56

considering short messages, particularly lower than with several fieldbuses, its high and

still growing bandwidth seems more than enough to supplant such aspect. Ethernet will

then become the long awaited single networking technology within automation systems,

which will support the integration of all levels, from the plant floor to the management,

maintenance and supply-chain.

 57

Chapter 3

Virtual Token Passing Ethernet –VTPE

3.1 Introduction

Chapter 2 presented and discussed the most relevant approaches to achieve real-time

communication over Ethernet. It is interesting to remember that such approaches have

some drawbacks such as specialized hardware is required, or it is a single node solution as

the hBEB protocol, or they are not well suited to be implemented in devices with small

processing power due to the overhead imposed and the memory requirements, or finally

they are not able to separate the standard Ethernet traffic from the real-time traffic. We

believe that shared Ethernet is yet a promising solution to interconnect devices at the field

level due to the numerous advantages discussed in the previous chapters. We advocate then

that there is a need to find a real-time shared Ethernet solution adequate to be installed in

sensors, controllers and actuators used in distributed embedded systems. We also believe

that the VTPE protocol can be one of those solutions.

So, in order to develop the VTPE protocol, the following goals have been defined:

• Support, on the same bus, of slow and low cost devices based in

microcontrollers, as well as more demanding devices integrating powerful

processors;

• Low processing overhead in order to be implemented in microcontrollers

with low processing power;

• Implementation based on COTS components;

 58

• Support of the hBEB protocol in order to allow multi-node operation

(VTPE-hBEB protocol) and the cohexistence of legacy Ethernet stations

and VTPE stations.

VTPE is a collision-free protocol built on top of Ethernet hardware. VTPE overlays

the standard medium access controller of Ethernet by controlling the access to the bus

based on the virtual token passing technique.

The remaining of this Chapter is as follows: Section 3.2 presents the classic VTPE

proposal; Section 3.3 presents some improvements for supporting isochronous traffic as

multimedia and Section 3.4 presents the conclusions.

3.2 The classic virtual token-passing approach

The VTPE [7] is an Ethernet deterministic proposal based on implicit token rotation

(virtual token-passing) like the one used in the P-NET fieldbus protocol. VTPE uses the

producer-consumer cooperation model to exchange data over the bus instead of the master

slave architecture of P-NET. Producers, in terms of the bus, are active devices that can

access the bus when they are allowed to do it. On the other hand, consumers are passive

devices and can only consume the data on the bus2.

The VTPE system architecture consists of a producer’s logical ring like the one

depicted in the Figure 3.1.

PLC

Prod./Cons

PC

Prod./Cons

Display

Display

Sensor

Productor
Actuator

Prod./Cons

Logical and Virtual Token Ring

Figure 3.1: The Virtual Token-passing in a VTPE system.

2A device can be simultaneously producer and consumer

 59

In the example of Figure 3.1, the distributed system is composed of six nodes, one

producer (sensor), three producer/consumers (actuator, PC and PLC) and two consumers

(Displays). The hardware of each node consists of a processor or microcontroller attached

to an Ethernet controller.

This proposal of VTPE uses broadcast destination addressing. The reasons for

broadcast addressing are to simplify the hardware, to reduce costs, and to allow the VTPE

to be implemented in a wide range of available Ethernet controllers. When using broadcast

addressing an interrupt is generated whenever a frame is transmitted in the bus and the

interrupts are used to do the system synchronisation.

In a VTPE system each producer node has a node address (NA), between 1 and the

number of producers expected within a system. All producers have an Access Counter

(AC), which identifies the node that can access the bus in a specific time interval.

Whenever a frame is sent to the bus, an interrupt must be generated in all producer nodes.

After the interrupt all nodes increase their ACs and the producer node whose AC value is

equal to its own unique address, is allowed to access the bus. If the actual node doesn’t

have anything to transmit (or indeed is not present), the bus becomes idle and, after a

certain time, all the access counters are increased by one. The next producer is then

allowed to access the bus. If, again, it has nothing to transmit, the bus continues idle and

the described procedure is repeated until a producer effectively uses the bus.

The procedure described in the previous paragraph accelerates token rotation time

when producers have nothing to transmit. However, if it is used just like described, it can

lead to a long idle time in the bus. The absence of bus activity can result in clock drift,

which, in turn, could lead to AC inconsistencies among system nodes. To prevent this

situation the VTPE forces the periodic transmission of a frame with k period to

synchronize all access counters. To do this all producers must have an Idle Bus Counter

IBC, which indicates how many times the bus became idle and no message was sent. All

producers also have a timer, which can be programmed with time value t1 or t2. t1 must be

long enough to enable the slowest processor in the system to decode the VTPE frame (read

the frame). t2 is used to guarantee the token passing when one or more producers don’t

have something to transmit. t1 and t2 will be discussed further as well as the k value.

To explain the VTPE operation lets see the flow chart depicted in Figure 3.2.

 60

Figure 3.2: VTPE flowchart.

After a frame transmission all producers must reset their IBCs to zero and initialise their

timers with the t1 value. After t1 expires each producer node sets its timer with the t2 value,

increases its AC and checks if it is equal to its own node address. Two possibilities can

occur:

• The node whose AC is equal to NA must immediately start a frame

transmission if it has something to transmit and must set the timer with the

t2 value;

• The nodes with NA different from the current AC value must only set their

timers with the t2 value.

 61

After t2 expires each producer must check the Bus Status register of the Ethernet controller

to verify if there is a frame being transmitted. If true, all producers will wait for the

interrupt that will occur. If the bus is idle all producers increase the IBC and compare it

with k. If IBC is smaller than k all producers increase the AC and repeat the last procedure

until a producer does require access to the bus or the IBC becomes equal or greater than k.

However, if IBC ≥ k, the node that holds the token must send immediately a special frame

to synchronize the access counters. The use of the condition IBC ≥ k instead of only IBC =

k solves the problem of an eventual absence of the node that would be holding the token

when IBC = k. When the access counter exceeds the maximum number of producers, it is

preset to 1 and the cycle is repeated again.

Although the VTPE uses the same bus arbitration principle as P-NET (EN 50170 Volume

1), there are important differences, some due to new features of the protocol and others to

the use of Ethernet as the transmission medium:

• In VTPE the cooperation model used is the producer-consumer replacing the P-

NET master-slave approach;

• In VTPE it is possible to send more than one message in the same frame;

• The VTPE data rate (10 or 100Mbps) is much greater than the P-NET data

transmission (fixed on 76.8Kbps);

• The VTPE may carry more data per frame (1500 bytes maximum) than P-NET

(63 bytes maximum).

3.2.1 The VTPE format frame

The VTPE protocol uses the MAC Ethernet frame encapsulating a special frame (VTPE

frame) inside the Ethernet data field. This is shown in Figure 3.3.

Alternating

1s/0s
SFD DA SA

Type or

length
Data Pad FCS

VTPE frame

Preamble
Frame length (min. 64 bytes e

max. 1518 bytes

Figure 3.3: Virtual Token-Passing Ethernet MAC frame.

 62

The VTPE uses the type field instead of the length. It represents a reserved constant

value, which must be used by all the VTPE messages on the network. The use of this field

allows supporting the coexistence, in the same network, of other protocols. On frame

reception, the nodes check the type field and only perform further processing if the frame

is relevant. Nevertheless, the nodes producing non-VTPE frames must implement the

VTPE access control, and transmit frames only if its AC is equal to its NA.

The VTPE frame carries one control field and one or more messages as it is

depicted in the Figure 3.4.

NI,GI R Identifier Length TTD Data

Control field Message field

Figure 3.4: VTPE frame format.

Since VTPE can send more than one message inside a single Ethernet frame more

efficient bandwidth utilization is achieved due to the reduction on padding in case of small

messages. Like it is shown in Figure 3.4, the VTPE frame is composed of two parts: the

control field and the messages field.

Control field

The control field is two bytes long and the first byte is divided in two parts. The four less

significant bits (NI) identify the number of messages inside the Ethernet frame (up to 16

messages). However this number can be reduced to bind the amount of information that

each node must handle on frame reception, favouring the use of small processing power

devices. The remaining four bits are the Group Identifier (GI), which will be used to create

different producer groups, i.e, sub-networks. The GI idea permits to reduce processing

overhead in the nodes by isolating devices that do not belong to the same group. In fact, on

frame reception, the nodes check the GI field and only perform further processing if the

frame is relevant. Nevertheless, the node must implement the VTPE medium access

control. The second byte of the control field (R) is reserved for future use.

Message field

 63

The message field is composed of the identifier, the length, the TTD (Time To Deadline)

and the Data. The identifier is unique and identifies the VTPE message in the system. It is

2 bytes long and thus can address 65536 different messages. The field is two bytes long

and is reserved to contain an indication of the time remaining to the message’s deadline.

The length is two bytes long and indicates the number of bytes in a VTPE message. The

VTPE data field is variable, so it can be so small as one byte or so long as 1492 bytes.

Observe that the Length field is two-byte long and theoretically it can indicate 65536

bytes. However the maximum data possible per frame in a VTPE message is 1493 bytes

(1500 bytes of the maximum data inside a single Ethernet frame minus 7 bytes of the

control field and of the VTPE message’s header).

To minimize overhead on small processing power devices the messages from and to these

nodes must be compatible with their processing capacity. The maximum VTPE message

length for these nodes will be fixed further.

3.2.2 The VTPE parameters t1 and t2

To establish these parameters it is necessary to determine the nodes processing workload to

run the VTPE protocol, i.e, the workload of communication tasks on frame transmission

and reception. This workload is presented next.

On frame reception

The host must execute three basic communication tasks: to attend immediately the

Ethernet’s controller request, to reset to zero the IBC, to program the timer to the value t1,

and, after t1 expires, to increment the AC and to check if it is equal to NA. The remaining

activities depend of the protocol type, of the group identifier and of the number of VTPE

messages. Table 3.1 resumes the remaining tasks after a frame reception.

Frame Type Tasks

No VTPE Resets the Ethernet’s buffer controller and transmits if it is its chance

(AC=NA)

VTPE The host compares the GI in the frame incoming with the one programmed

in its table. If equal, it continues and checks if any messages belong to its

 64

message’s table. In this case, the messages are transferred to its buffers

Table 3.1: Tasks on received frame.

On frame transmission

To reduce the t1 value the host transfers the VTPE frame to the Ethernet controller before

holding the token. Then, when it holds the token, it must just authorize the Ethernet

controller to send the frame.

The t1 parameter is the time required by the host to decode the incoming frame, i.e,

to execute the actions shown in table 1. Observe that the time t1 is processor dependent as

well as, indirectly, the number of messages inside the VTPE frame.

The second time, t2 is the guard time needed to detect nodes absent from the

network or that, despite being present, don’t have anything to transmit. However, as the

Ethernet controller response can differ from one controller to another one, some care must

be taken. A higher value of t2 leads to bandwidth spoiling, and a short value can be difficult

to meet in low processing power microcontrollers. A value around 25µS has been found

adequate for most situations, but this parameter can be adapted according to the particular

system characteristics.

3.2.3 VTPE real-time worst-case computation

The virtual token-passing technique facilitates to determine the MAC real-time behavior.

To explain the MAC real-time behaviour lets see the Figure 3.5.

t
1 t

2
t
2

t
1

Node 1 Node 2

t
1

t
2

t
2

t
2

t
fd T

RT

Node

N-1

t
1

Node

N

t
2

Node

3

t
2

Figure 3.5: VTPE real-time behavior.

As it is shown in Figure 3.5, each node transmits a single frame per token holding

time, starting at node 1. After node 1 transmission, node 2 gets the right to transmit and,

after node 2, node 3 may transmit. However node 3 has nothing to transmit, or is not even

 65

connected to the bus, thus no transmission occurs and then only t1 appears in the timeline.

After node 3 some other nodes are not present or have nothing to transmit and the bus

remains silent until a node in the chain gets the right to transmit and transmits. When node

N, the last node, transmits a frame the AC is preset to 1 and the node 1 gets the right of

transmission again. The TRT(n) is the time between the nth and (n+1)th token visits of a

specific node, i.e., the time between two consecutive transmissions. Its value can be found

based on the scenario depicted in the Figure 3.5.

Thus from Eq 3.1 it is possible to calculate the TRT(n) where N is the number of

nodes, t1 is as mentioned before, and tfd(k,n) is the duration of the frame transmitted by

node k in the nth token visit. The term f(k,n) is a flag which is equal to 1 if node k

transmits during the nth token visit and is 0 otherwise.

[]∑
=

−++=
N

k

fdRT nkftnkfnkttnT
1

21)),(1(*),(*)),(()((3.1)

The maximum Token Rotation Time TRTmax can be calculated by equation Eq 3.2

where tfd max(k) is the time to transmit the largest VTPE frame from node k. It is assumed

that all nodes transmit during this worst case round.

∑
=

+=
N

k

fdRT kttNT
1

max1max)(* (3.2)

The equation (3.1) and equation (3.2) show that the VTPE MAC behaviour is

deterministic, besides being very simple to determine the TRT.

 VTPE, as well as P-NET, were designed to ensure that any particular master has no

hierarchical priority over any other. In VTPE the virtual token rotates in a circular list

according to the increasing addresses of masters and each master can access the bus once

per each token rotation cycle. VTPE, as well as P-NET, due to the nature of token-passing

in a circular list, has the potential to create large blocking periods between consecutive

token arrivals. In VTPE the blocking is strongly dependent of the quantity of nodes and of

the length of each transmitted message during a token rotation. The blocking B, in the

worst case, can be calculated by the equation (3.3). As it shown in equation (3.3) each

node is blocked by (N-1) times per each rotation time.

∑
−

=

+−=
1

1
max1)(*)1(

N

k
fd

ktNB t (3.3)

 66

A solution to avoid or, at least, to limit this blocking will be discussed further in this

document.

3.2.4 Some experimental results

An implementation of VTPE over an Ethernet 10Mbps hub was reported in [80]. An

enlarged description of the experimental setup can be found in the Chapter 6. In this

implementation the nodes are based on a PIC microcontroller 18F458 with full processing

capacity allocated to run VTPE. Some results of this implementation are summarised in

Table 3.2.

Table 3.2 shows the t1 values according to the maximum length of the transmitted

frames and the network utilisation achieved for the implementation presented in the

Section 3.2. The modest network throughput is due to the low processing power of the

microcontrollers and to the overhead imposed to the nodes in order to accept all

transmitted frames and to do some processing on each frame. In fact, using current

standard Ethernet controllers, it becomes heavy to implement the VTPE, because it is

impossible to read a frame during its transmission and to execute the VTPE procedure

simultaneously. This can be minimised with adapted controllers, e.g., using dual controller

architectures, or can be solved using FPGAs and IP cores [81].

Data

(Bytes)

Frame Length including preamble

(Bytes) and Start Frame Delimiter

tfdmax (µS) t1 (µS) Network Utilisation

U=(1-t1/(t1+tfd))

46 72 57.6 297.60 16.2

138 164 131.2 693.60 15.9

276 302 241.6 1288.8 15.8

414 440 352.0 1883.2 15.8

552 578 462.4 2476.8 15.7

690 716 572.8 3071.2 15.7

828 854 683.2 3665.6 15.7

966 992 793.6 4260.0 15.7

1104 1130 904.0 4854.4 15.7

1242 1268 1014.4 5448.0 15.7

Table 3.2: VTPE experimental results.

 67

Using the values from the implementation referred above, we can highlight the

problem associated to the blocking caused by the circular token rotation. For example,

consider a system comprised of 5 nodes with the frame parameters shown in the bold line

of Table 3.2. The maximum token rotation time, TRTmax, calculated by equation (3.2) is

14.696ms. This means that a node can only transmit about 68 frames per second, which is

clearly insufficient for bandwidth and timeliness demanding streams such as those of

multimedia applications.

Therefore, the classic version of VTPE is not well suited to support multimedia traffic that

is becoming more frequent in control and monitoring applications. The two main

disadvantages are:

• The token rotation time depends on the processing power of the processors

used because t1 must be long enough to enable the decoding of the

maximum frame broadcasted;

• By protocol definition there is no priority among the nodes;

The first disadvantage can be solved if nodes are restricted to be implemented with

high processing power processors and 100Mbps Ethernet controllers. However, to

overcome the last restriction, enhancements in the VTPE protocol must be made.

3.3. Adapting VTPE to support isochronous traffic

Besides the usual control loops where sensors, controllers and actuators must exchange

information, the use of more resource demanding applications, such as multimedia for

control and monitoring has increased significantly in modern Digital Computer Control

Systems (DCCS). This means that the communication link among the different system

elements must allow the coexistence of multimedia traffic and control traffic. These

communications needs have been already pointed out by Javier Blanes [82], Stankovic

[83], Pimentel [84], Dietrich [85], and Neumann [86], among others.

At the field level, a network capable to perform the integration of multimedia and

control traffic must be able to handle large frames in a bounded time, besides supporting

the generic requirements of DCCSs pointed out by Pimentel [84] and Decotignie [5], such

as the indication of temporal consistency, point-to-point and multicast communication,

robustness in terms of interference and vibration, etc. Then the network protocol must

allocate the network bandwidth so that the nodes that are source of multimedia traffic or

 68

any other control traffic with stringent timing constraints have guaranteed access to the

medium in the time specified by the application. To alleviate the blocking problem caused

by the circular list, two main approaches have been followed: using a sufficiently small

target token rotation time, with appropriate design of synchronous bandwidths [87] and

creating non-circular lists where a given node can be visited several times in a full token

rotation [41].

In order to alleviate the blockings caused by the circular token rotation, we decided

to follow an approach similar to the one proposed in [41], which consists in using a non-

circular token rotation so that the token may visit the same node more than once in each

rotation. In order to support this feature an extension of VTPE is proposed which

implements a bandwidth allocation scheme that gives higher priority to the nodes that are

source of isochronous traffic or, at least, gives them the right to access the network more

often than regular nodes. This more frequent access can be accomplished with an almost

regular period, which may be different from node to node and which seems adequate for

isochronous traffic.

3.3.1 The bandwidth allocation scheme

The bandwidth allocation scheme proposed is a simple mechanism that can be readily

added to both VTPE and P-NET protocols. This scheme also uses an access counter which

value must be similar in all nodes and which must also be incremented simultaneously in

each node, either after a time out or after the end of transmission of a frame. Instead of

comparing the access counter AC value with the node address, as in the referred protocols,

masters will use this value to check the status of a flag located in the correspondent

position within a table. This table has been named Bandwidth Allocation Table (BAT) and

it consists of an array of flags with a dimension M (Table 3.3). If a master finds a flag ON

in the position corresponding to its current AC counter value then it is allowed to access

the network. The AC value is then now a pointer to a position in the BAT table when the

correspondent flag indicates if there is or not the right to transmit. This means that all other

masters must have their flags OFF in the same position. In order to reuse the software from

the virtual token passing scheme, the ON flags can be integer numbers from 1 to M. It

means that, in a real implementation, the BAT table in every node contains not a “0” or “1”

value, i.e. a flag, but a 0 or n figure n being the current BAT position. For instance, BAT1

in the exempla of Table 3.3 that follows would be 1,0,3,0 instead of 1,0,1,0. From now on

 69

this implementation detail will be ignored and the “0” or “1” flag value will be used

instead. Finally, as in normal virtual token passing protocols, whenever the access counter

AC attains the M+1 value it is reset to 1.

The BAT can be organized in such a way that some masters can access the bus

more often than others, during a global token rotation time. This is defined by the number

of ON flags in a master’s BAT and by the spacing between them. A scheduler can prepare

the BAT prior to the start of the system operation in order to reflect the needs of the

masters in what concerns transmission of data.

In virtual token passing protocols it is possible that a master that has nothing to

transmit doesn’t use its window when it receives the token. Also, if the master has a

failure, a similar situation occurs. This means that the token holding time in a master can

be highly variable, between a minimum, the time out, and a maximum, the maximum

frame duration. However, masters transmitting isochronous traffic will normally use the

right to access the bus, except if they fail. Failures in masters, lack of use of the right to

access the bus and frame length variation will obviously affect the isochronous periodicity

defined in the BAT.

Figure 3.6 shows the scheme to allocate bandwidth in a state machine form. Each

arc denotes a transition of the access counter AC, K is the node address and the circle

denotes the node with address K.

1 2 3

AC=2

AC=4

AC=1

AC=3

K Node

AC= Access Counter

Figure 3.6: State machine of the bandwidth allocation scheme.

As it is shown in Figure 3.6 the virtual token starts at node 1 (AC=1), then it is sent to node

2 (AC=2), and afterwards it returns to the node 1 (AC=3). Now the virtual token goes to

node 3 (AC=4) and returns again to node 1 (AC=1). It should be noticed that the virtual

token visits more often node 1 than the other nodes in the global token rotation sequence.

 70

Observe that in Figure 3.6 there are two small token cycles (or a sort of mini-cycles), one

between node 1 and node 2 and other between node 1 and node 3. Also there is a large

token cycle (a sort of macro-cycle) that includes all nodes.

For this simple example the versions of the BAT for each node are presented in

Table 3.3.

Access Counter 1 2 3 4 Bandwidth (%)

BAT1 1 0 1 0 50

BAT2 0 1 0 0 25

BAT3 0 0 0 1 25

Token Rotation Sequence (TRS) 1 2 1 3

Table 3.3: Bandwidth allocation table for the example of Figure 3.6.

If the frame duration is similar for each node, node 1 gets 50% of the bandwidth,

whereas node 2 and 3 obtain both 25% of the available bandwidth. Differently from the

normal virtual token rotation scheme, this scheme allocates asymmetrically the network

bandwidth resulting in the reduction of blocking caused by the token rotation, that is, it can

significantly reduce the time that a node is delayed before transmitting. Observe in Table 3

that the node 1 is delayed just one frame time by the nodes 02 and 03. This delay could be

kept even with a larger number of nodes whereas in a normal virtual token passing scheme

the delay would increase with the number of nodes.

3.3.2 Timing analysis

In order to derive the timing analysis for this version of VTPE let us see first some

parameters and definitions.

N – Number of nodes

M – Number of positions in the BAT (Bus Allocation Table)

t1 – VTPE time parameter

The BAT is an array of flags with dimension M. In each master the BAT is defined as a

vector fK(i) where:

 0)(=if K
 if master K is not allowed to access the bus in window i, Mi ...1= .

 1)(=if K
 if it is allowed to use the bus in window i.

The bus can just be used by one Master at a time, i.e.:

 71

[] []NKjMiifif jK ,1,,1,0)(1)(∈≠∀∈∀=⇒= (3.4)

So, the overall bus allocation can be represented by the array of binary flags indicated in

eq.3.5. In each position the flag will be 1 when there is a master that has the right to

transmit with AC=i and 0 otherwise:

 Miifif
N

j

j ...1,)()(
1

0 ==∑
=

 (3.5)

The token rotation time is not anymore identical for all masters. If a master K is just

allowed to access the bus once per full count of the Access Counter AC, then the token

rotation cycle has a duration given by equation (3.6).

 ()[]∑
=

+−−++−=
M

i

fdRTmc ttififittifift
1

2100100)*)1((*))(1()(*)1(*)((3.6)

In equation (3.6) the tfd(i) are the durations of the frames transmitted by the nodes with

AC=i, if they have something to transmit. These are considered identical in every token

cycle n, and then this index is dropped in tfd. If the tfd values are unknown then tfdmax, the

maximum frame duration, can be used. Also notice that f0(0) = f0(M) by definition.

The tRTmc figure measures the time it takes to repeat the token visit sequence

pattern. It is independent of the specific master considered. It is similar to what is called a

macro-cycle in communication schedules. Because of that a mc subscript is added.

If the bus is fully used, then every element of the array of eq. 3.5 will be 1. The

maximum rotation time of a master that transmits only once during this sort of macro cycle

(i.e. the maximum macro cycle duration), happens when all masters transmit a frame with

maximum duration and when the macro-cycle is fully used. Equation (3.7) can then be

applied:

)(* max1max fdRTmc ttMt += (3.7)

Masters with isochronous traffic will be authorized to access the bus more than

once per macro-cycle. The number of accesses per macro-cycle is given by:

 ∑
=

=
M

i

KK ifNacc
1

)((3.8)

 72

A maximum bound for the average value of the token rotation time for these

masters can be obtained using the worst case macro-cycle duration:

K

RTmc
KRTavg

Nacc

t
t max

, = (3.9)

An average value can be obtained using a tRTmcavg that results from replacing in

equation (3.7) tfdmax with tfdavg, which is the average frame duration.

In normal situations different periodicity requirements of isochronous traffic of the

masters will result in mutual interference between traffic flows. A bus schedule without

period jitter will be practically impossible to obtain as it is typical in token-based system.

In order to analyze the period variations for a master, it is required to determine the

minimum and maximum time between consecutive token visits for that specific master.

One possibility is to determine the number of the BAT positions between consecutive flags

ON for that master. This leads to NaccK number of LK(i) values as given by equation

(3.10).

[]KMMODK NacciabiL ,1)()(∈∀−=

where

(3.10)

() bjajfbfaf KKK <<=∧== ,0)(1)((3.11)

Using modulus M arithmetic it is easy to obtain the value for the interval between

the last access in the current macro-cycle and the first in the next one.

The minimum and maximum values for the token rotation time of master K can

then be obtained either using a pessimistic view that ignores the schedule of the bus

between two successive accesses of the master or using a more accurate estimate resulting

from the analysis of the effective bus usage between the a and b points of the LK(i)

calculation.

For the first case, considering that t2 < t1 + tfd min, i.e., that the time out to detect the

bus idle when a node has nothing to transmit is always smaller than the minimum

occupation of the bus when the nodes are transmitting, the minimum token rotation time is:

)1))(((min(* ...121minmin, −++= = NaccKiKfdKRT iLtttt (3.12)

 73

And the maximum is

NaccKiKfdKRT
iLttt ...1max1max,))(max(*)(=+= (3.13)

For the second case it is required to compute an estimate of each individual token

rotation time by an analysis of the schedule similar to the one used to determine LK(i). For

the same conditions, we have:

()[]

K

b

aj

fdKRT

Nacci

tiftjfttjfit

..1

)*)1((*))(1(*)()(
1

102010,

=

−+−++= ∑
−

=

(3.14)

Jitter figures can then be easily obtained from the sequence of token rotation time values.

This analysis can be directly adapted to isochronous traffic flows instead of masters if

there can be more than one flow per master. To adapt the equations it is just required to

redefine N which becomes the number of flows and K which becomes the index to the flow

BAT. Of course a BAT will be required also for each flow.

3.3.3 Example

In order to apply the real-time analysis derived in section 3.2 we show a larger example

than the one shown in Table 3.4. The system is comprised of five nodes with the

bandwidth allocated differently to all nodes.

For this example the system parameters are:

 N=5 t1 = 2476.8 µs

AC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 B (%)

BAT1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 33.333

BAT2 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 27.777

BAT3 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 16.666

BAT4 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 11.111

BAT5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 5.5555

Token Rotation

Sequence
1 2 3 1 4 2 1 3 5 1 2 4 1 2 3 1 …... 2

Total

allocation

Table 3.4: Bandwidth allocation table for an example with 5 nodes

 74

 t2 = 25µS tfdmax = 462.4 µs

Choosing node 2 as an example to demonstrate the real-time analysis presented

above, the maximum token rotation time per macro-cycle tRTmc max can be derived:

() ()

49.9914msor s49991.4

4.4628.2476*1254.4628.2476*16

max

max

µ=

++++=

RTmc

RTmc

t

t

Observe that, when AC=17, the bus is idle and only t2 must be added in the

equation. Also observe that all the other AC values correspond to previewed transmissions

which must be taken into account with the maximum frame duration. The equation (3.7)

was not used directly as it represents the situation where all AC values correspond to

effective transmissions.

The number of accesses per macro-cycle can be obtained from equation (3.8).

52 =Nacc

The average token rotation time is given by equation (3.9):

9.998msor s9998.28
5

49991.4
2, µ==RTavgt

The minimum LK(i) can be deduced from inspecting the BAT2 vector and noticing

that the minimum L2(i) occurs between AC=11 and AC=13. Then minL2(i)=3.

Similarly, the maximum LK(i) occurs between AC=6 and AC=10. Then maxL2(i)=5.

The minimum token rotation time can be deduced applying equation (3.12) for

node 2 (considering that the frame transmitted by the node is one with a maximum

duration) which results in:

ms 2.989or 29892*254.4628.24762min, stRT µ=++=

The maximum token rotation time is obtained from equation (3.13):

ms 14.696or 146965*) 462.4 2476.8(2max, st RT µ=+=

Finally, Table 3.5 summarises the results for all nodes of the example.

Nodes Nacck tRTavg,k

(ms)

minLk(i) maxLk(i) tRTmin,K

(ms)

tRTmax,K

(ms)

Node1 6 8.332 3 3 2.989 8.818

Node2 5 9.998 3 5 2.989 14.696

Node3 3 16.664 5 7 3.039 20.574

Node4 2 24.996 7 11 3.114 32.331

Node5 1 49.991 17 17 3.339 49.966

 75

 Table 3.5:Real-time analysis results for the example of Table 3.4
The nodes transmission schedule for this example was chosen only to clarify the

application of the derived real-time analysis. It shows a possible asymmetric bandwidth

distribution among the 5 nodes that was not possible with the common circular token

rotation. For example, in this case, the bandwidth allocated to node 1 has been

substantially improved, with a maximum blocking caused by the token circulation of

8.818ms. With circular token rotation, this blocking would be 14.969ms if the same

operational parameters were used.

Table 3.5 also allows deducing the maximum jitter in the token arrivals, which is

substantial for nodes with less bandwidth but smaller for nodes with high bandwidth,

which are the most demanding ones.

3.3.4 Adapting the classic VTPE frame

In order to implement this new feature in VTPE the real value of the access counter must

be sent inside each frame. This is because the access counter can be different of the node

address due to the fact that a node can be visited more than once by token rotation time. A

little modification in the definition of the VTPE frame should be done. The new VTPE

frame is shown in the Figure 3.7.

Figure 3.7: New VTPE frame.

In Figure 3.7 the AC field is one byte long, the reserved field, R, is two bytes long

and all other fields remain according to Section 3.2. Being AC one byte long than 256

different values per token rotation time can be addressed and this value is enough for the

aimed application of VTPE.

3.4. Conclusions

The VTPE classic approach in which a master sends just a frame per token rotation was the

first version presented in this chapter. It is simple and easy to be implemented. However in

this approach there is no prioritized bandwidth allocation among the nodes and this lack

can cause blocking depending of the number of masters in the system. If this number

 76

increases this approach becomes unsuited for application such as multimedia because it can

lead to significant blocking. The improved VTPE approach alleviates the blocking caused

by the circular token rotation because the token may visit the same node more than once in

each rotation. This improvement gives higher priority to the nodes that are source of

isochronous traffic or, at least, gives them the right to access the network more often than

regular nodes. This more frequent access can be accomplished with an almost regular

period, which may be different from node to node and which seems adequate for

isochronous traffic. Then the bandwidth can be differently allocated to the masters

depending on their communication needs. This technique does not require significant

changes to the “normal” scheme, thus inheriting its advantages and being suited to VTPE

and P-NET protocols. By making a careful schedule of the traffic and an adequate choice

of parameters it is possible to limit the jitter of periodic traffic. Isochronous traffic flows

can then be transmitted. However, some additional work must yet be done on this issue.

 77

Chapter 4

The VTPE-hBEB Protocol

4.1 Introduction

Despite the increasing use of switches to interconnect Ethernet devices, the vast majority

of Ethernet networks still operate in heterogeneous environments. Figure 4.1 shows a

heterogeneous environment with Ethernet Switching Hubs interconnecting both

independent node stations and Ethernet Repeater Hubs with multiple interconnected node

stations (equivalent to shared Ethernet segments).

Figure 4.1: Heterogeneous Ethernet environment.

In such heterogeneous environments, the Switching Hubs impose separate collision

domains at each port (network segmentation), allowing the implementation of service

 78

policies with different priorities. However, within each of the collision domains (i.e.,

among node stations interconnected by each Repeater Hub), the network still operates in

the traditional shared Ethernet mode; that is, collisions are solved by means of a

probabilistic contention resolution algorithm, i.e., the medium access is inherently non-

deterministic.

Several approaches and techniques have been developed to provide real-time

behaviour to Ethernet-supported applications. However, few of those techniques allow

standard devices to coexist with enhanced stations in the same network segment. Relevant

exceptions such as [9] and [35] have strong limitations related to the number of allowed

real-time stations [9] or the requirement for the use of specific hardware [35].

This chapter proposes a shared Ethernet deterministic architecture, able to

interconnect sensors, controllers and actuators at the field level, allowing the coexistence

of standard Ethernet devices with enhanced (real-time) devices. Such solution is based on

the control of the medium access right, by means of the virtual token passing technique

among enhanced stations, complemented by the underlying prioritization mechanism, the

hBEB algorithm. Such underlying mechanism, as presented in the Chapter 2, guarantees

that, whenever an enhanced (real-time) station is contending for the bus access, it will be

able to access the bus prior to any other station. Thus, it enables the traffic separation

between standard and enhanced (real-time) stations, being able to guarantee real-time

communication in unconstrained traffic environments. This proposal has been named

Virtual Token Passing Ethernet over hBEB algorithm or VTPE-hBEB for short.

The development of this proposal joining VTPE with hBEB resulted from a fruitful

collaboration with the University of Porto, Faculty of Engineering. The team in Porto was

responsible for the validation through simulation of some of the proposals discussed in this

thesis. A PhD Thesis including some of the correpondent results can be found in [102].

The remaining of this chapter is as follows: Section 4.2 presents two VTPE-hBEB

proposals: a general one considering that VTPE-hBEB can be implemented in any Ethernet

controller that supports the BEB algorithm disabling and interrupts, and an adaptation

leading to an implementation of VTPE-hBEB in a specific Ethernet controller. Finally,

section 4.3 presents the conclusions.

 79

4.2 The VTPE-hBEB protocol

4.2.1 VTPE-hBEB topology

The topology of a VTPE-hBEB system is basically as the heterogeneous Ethernet

environment shown in Figure 4.1. Figure 4.2 shows a VTPE-hBEB topology with real-time

devices (a sensor, a controller and an actuator) and PCs interconnected by a hub. The

media access of the real-time devices is guaranteed by the virtual token passing technique

whereas the communication of the other Ethernet devices is done by using the BEB

standard algorithm.

Figure 4.2: VTPE-hBEB Topology.

4.2.2 VTPE-hBEB protocol

A proposal of the VTPE-hBEB protocol was presented in [97]. The VTPE-hBEB protocol

works as shown in Figure 4.3. According to Figure 4.3, whenever a frame finishes to be

transferred, an interrupt occurs simultaneously in all nodes. Therefore, the interrupt event

is used to synchronize the AC counters. Whatever the VTPE-hBEB station, when its

 80

Access Counter (AC) is equal to the Node address (NA), it means that the station is

holding the token. If the station has something to transmit, the hBEB algorithm will

immediately start, guaranteeing that the station will win the medium access in a bounded

time.

If the station holding the virtual token does not have any message to be transferred,

it will allow Ethernet standard stations to contend for accessing the bus, during a time

interval t2. If the bus remains idle during t2, an interrupt will be generated in all the stations

and all the AC counters will be incremented, which corresponds to an implicit token

passing.

Interrupt

Increment

AC

AC=NA

?

Yes No

Has message to

be transmitted
Set

t2

No

Bus

Idle

t2

 elapsed?

Yes No

Set

t3

t3

Expired?

Set

H-BEB

Algorithm

h-BEB

Finished ?

Message being

transferred ?

Message

Transf.

Finished?
Bus

Idle during

More than

9.6µs

Yes

No

Yes

No

Yes

No

Yes No

No

Yes

No
Yes

1

1
2

3
4

5

6

7

Nothing happens during

t2, i.e., bus is idle, no

station is transmitting.

1

2 Collisions or

transmission of

a message

were detected

3 Collisions were solved

and a message is

being transmitted.

Collisions not yed

solved.

4

No VTPE/h-BEB node is

involved in the colisions,

otherwise the contention

interval would be shorter.

5

Collision resolution still in

progress. It is not possible

to know if a VTPE/h-BEB

node is involved or not.

6

7 No VTPE/h-BEB node is

involved otherwise

contention resolution would

be solved in less than t3.

Figure 4.3: Control Flow Summary – VTPE-hBEB.

If an Ethernet standard station tries to transmit during the time interval t2, two

different situations can arise: either the message is normally transmitted or a collision

 81

resolution procedure starts. If a transmission occurs, then the algorithm just waits for the

interrupt at the end of the message transfer. If a collision resolution starts, then it can be

either generated just by standard Ethernet stations or it can also include an active hBEB

station holding the token. The first scenario, i.e., a collision involving just standard

Ethernet stations, can be detected if a bus idle occurs with duration greater than 51,2µs

(slot time duration at 10Mbps). In such case, the VTPE-hBEB stations can pass the virtual

token as the hBEB station that is holding the token has nothing to transmit.

As deduced in [9] and also as presented in Chapter 2, the hBEB algorithm solves

collisions in a bounded time, or it eventually discards the message. This enables the

definition of a time interval t3, greater than the hBEB collision resolution interval. If a

message does not start to be transferred during the t3 interval, then a collision between

messages from multiple standard Ethernet stations has occurred (as the hBEB collision

resolution algorithm would have succeeded during that interval). If the t3 interval expires,

it is then possible to pass again the token and thus an interrupt is generated.

The VTPE-hBEB frame format is the same as the VTPE discussed in the Section

3.3.3 and no modification is necessary in it.

4.2.3 Timing analysis

In this section, it is presented the timing analysis of an Ethernet network interconnecting

multiple VTPE-hBEB stations with Ethernet standard stations. This analysis clearly

illustrates the real-time behaviour of the proposed VTPE-hBEB architecture.

Consider a network with n VTPE-hBEB stations, with addresses ranging from 1 to

N. Each VTPE-hBEB station accesses the network according to the VTPE-hBEB scheme,

i.e., first station 1, then station 2, 3,… until station N, and then again station 1, 2,…N. The

standard Ethernet stations implement the traditional BEB collision resolution algorithm.

First of all, consider a two-collision scenario. In such case, the maximum delay to

transfer a real-time message, when the VTPE-hBEB station is holding the token, is

illustrated in Figure 4.4.

 82

Figure 4.4: Collision scenario solved by the hBEB collision resolution algorithm.

According to the VTPE-hBEB scheme, such station transmits its message using the

hBEB algorithm; that is, it always tries to transmit its message in the first time slot.

Therefore, when a VTPE-hBEB station holding the token has a message ready to be

transferred (PA), it will wait an Inter Frame Gap (I1: 12 byte times) before starting to

transmit. If a collision occurs during the transfer of the first 64 bytes of message PA, a

jamming sequence will be broadcasted (J1: 4 byte times). Afterwards, the station will wait

again during an Inter Frame Gap (I2: 12 byte times) and, according to the hBEB algorithm,

it will immediately start to transmit its message. If a second collision occurs, a new

jamming sequence (J2) will be broadcasted and station A will wait again for the Inter

Frame Gap (I3), before starting to transmit. The cumulative result (from t0 up to the

beginning of the third attempt) is 160 bytes or 0.128ms (at a 10 Mbps bit rate). The

maximum time that a VTPE-hBEB station holding the token will wait before starting to

transfer a message, or eventually to discard it, is 0.960ms as shown in Table 4.1.

Retry
Number

Max delay
(# slots)

Max cumulative
delay (# slots)

Max delay
(ms)

1 1 1 0,064

2 1 2 0,128

3 1 3 0,192

…

9 1 9 0,576

10 1 10 0,640

…

14 1 14 0,896

15 1 15 0,960

16 discard frame

Table 4.1: Maximum delay to start transferring a message in the hBEB algorithm.

Table 4.1 shows that the hBEB algorithm solves collisions in a bounded time, or it

eventually discards the message. Therefore, it is of utmost importance to focus on the

 83

probability of a message frame being discarded by the hBEB algorithm, whenever the

number of collision resolution rounds exceeds 15.

Such probability has been analytically evaluated in [31] for a highly loaded network

scenario. This probability is equal to 1.22×10-4 for a small population scenario (5 stations)

and 1.95×10-3 for a large population scenario (65 stations). For more realistic load

scenarios, it has been verified by simulation that a hBEB station never discards any packet,

whatever the simulated network load (simulation scenario: 75×104 hBEB simulated

messages in a 10Mbps network with 64 standard Ethernet stations and one hBEB station,

with a network load ranging from 40% to 110%) [31]. Such results are consistent with the

claim that the hBEB algorithm is able to support most part of the soft real-time

applications, as they confirm a rather small probability of any message being discarded.

Therefore, if it is considered that no message is discarded by the VTPE-hBEB

station holding the token, the maximum time that a VTPE-hBEB station holding the token

waits to transfer a real-time message is given by:

fdcolhBEB tIFGtT ++= (4.1)

where tcol is the worst-case delay to start transferring a message (0.960 ms), IFG is the Inter

Frame Gap (12 byte-times) and tfd is the time to transfer a frame from the VTPE-hBEB

station, which is the maximum message length.

On the other hand, when the VTPE-hBEB station holding the token does not have

any real-time message ready to be transferred, the standard Ethernet stations in the network

segment can try to start transferring their own messages. In such case, all the VTPE-hBEB

stations will wait during a time interval t2, within which any Ethernet standard station may

try to start transferring a message. If the collision resolution round is longer than t3

(0,96ms), or if the bus remains idle during a time interval equal to t2, an interrupt will be

generated and all the AC counters will be incremented (i.e., there will be a Virtual Token

Passing).

In Figure 4.5 it is exemplified the maximum time interval that a VTPE-hBEB

station is allowed to hold the token, even if it does not have any real-time message ready to

be transferred. Such worst-case arises when multiple collisions occur. In such case the time

interval t3 must be long enough to allow an hBEB message transfer, as the VTPE-hBEB

stations that are not holding the token do not known if the colliding messages are from just

 84

Ethernet standard stations, or if there is also a message from a VTPE-hBEB station holding

the token. In the latter, the time interval t3 guarantees that the VTPE-hBEB station that

holds the token will be able to transmit its message and an interrupt will occur when the

message transfer is finished. Otherwise, if the collision resolution is not solved during the

time interval t3, it means that the collisions are occurring just among standard Ethernet

stations. Therefore, an interrupt will be generated after t3 and the next VTPE-hBEB station

in the logical ring will be able to contend for the medium access.

Figure 4.5: VTPE-hBEB token holding time.

The worst-case for the token holding time occurs when, at instant (t3 - ε), a standard

Ethernet station starts to transmit a 1518-byte message (tover), which is the longest message

that can be transferred in an Ethernet network.

Therefore, the maximum time that a VTPE-hBEB station may hold the token is

given by:

overTH ttT += 3 (4.2)

As the token rotation time is the time interval between two consecutive token visits

to a particular station, the worst-case token rotation time, denoted as TRT, is given by:

THTNTRT *= (4.3)

where TTH is as defined in equation 4.2. The value TRT represents the worst-case time

interval between two consecutive token arrivals to any VTPE-hBEB station (M=1… N).

4.2.4 Adapting the VTPE-hBEB proposal

The VTPE-hBEB protocol essentially requires both interrupt and BEB algorithm disabling

support in order to be implemented in COTS hardware. Due to the fact that the BEB

algorithm disabling does not belong to the IEEE 802.3 standard, this feature is not usually

supported in the Ethernet controllers aimed for general purpose applications. In fact, when

 85

this work has been started, there was a lack of Ethernet controllers able to support backoff

disabling and only the CS8900A-CQ [88] Ethernet controller was found. However the

BEB disabling feature is becoming common in those Ethernet controllers aimed for

embedded application. More recently some new embedded Ethernet controllers, able to

support backoff disabling, were launched such as the ENC28J60 from Microchip [89] and

the CP2200-GQ and CP2201-GM from Silabs [90]. The BEB disabling support seems now

to be a common feature in the Ethernet controllers aimed for embedded application.

 The CS8900A-CQ controller allows BEB disabling but interrupt is not well

supported when it is used with an 8-bit host processor. According to Ayres [91] the polling

method to a receive event register must be used instead of the interrupt for sensing and

getting received frames. Eady [94] points out that CS8900A-CQ will work in 8-bit mode

since the Ethernet traffic is kept very light. However VTPE-hBEB is aimed to be used

either in small processing power controllers and or in powerful ones as well, working in

very loaded traffic environments. These drawbacks imply some changes in the proposal

presented in Section 4.2.2 and in the hardware as well.

 Our hardware solution uses a couple of CS8900A-CQ/microcontroller per node,

that is, one couple of CS8900A-CQ/microcontroller runs the VTPE-hBEB and the other

runs the application. A detailed explanation of hardware will be presented in the Chapter 5.

A flowchart for adaptation of VTPE-hBEB proposal is shown in Figure 4.6.

 86

Figure 4.6: VTPE flowchart for a dual Ethernet controller implementation.

As shown in Figure 4.6, VTPE-hBEB runs in Microcontroller 1 while the application runs

in Microcontroller 2. According to Figure 4.6, the Microcontroller 1 (left side) starts a

timer with t1 and polls continuously looking for received Ethernet frames in the receive

event register. Whenever a new frame is received the microcontroller initiates the

transference and the frame decoding immediately. The frame decoding process checks the

access counter (AC) in the VTPE-hBEB header field (the same as the VTPE header field –

Section 3.3.3), refreshes its own AC with the received AC, increases AC and checks AC

against its NA or BAT table. If (AC=NA or AC=BAT(i)) a level logic transition is

signalised in a pin of Microcontroller 1. This pin is the source of interruption and then it is

tied to an external interrupt pin of Microcontroller 2. If the application in the

Microcontroller 2 has a ready frame to transmit it starts transmitting as soon as the

interrupt is serviced and the bus is free, otherwise, having nothing to transmit, t1 is allowed

 87

to timeout and the next node of the virtual ring gets the right to access the bus according to

the VTPE fashion.

In order to evaluate the timing behaviour, targeting the best network performance, it

is considered that the application produces and loads a ready frame into the CS8900A-CQ

until the last but one byte and that it waits for the interrupt. When interrupted, the two

remaining bytes of the ready frame are loaded into the CS8900A-CQ and the frame is

dispatched on the bus as soon as the bus is free.

 In order to find the bounded VTPE-hBEB arbitration time, it is required to

determine the elapsed time since the Microcontroller 1 senses a received frame until the

Microcontroller 2 starts transmitting a frame on the bus. This time can be obtained by

measuring the time intervals involved in the VTPE-hBEB implementation. These time

intervals are as follows:

• The time spent in the polling cycle, tpoll, in Microcontroller 1;

• The decoding time of Microcontroller 1, td. The decoding time td is the sum

of the time to transfer and check a received frame until checking the VTPE-

hBEB header field, the time to get the AC of the received frame and to

refresh the node AC variable, the time to increase AC and to compare to NA

or BAT table and the time signalising the interrupt in the pin of

Microcontroller 1.

• The interrupt service routine time, tisr, in Microcontroller 2.

The VTPE-hBEB arbitration time is the sum of the three time intervals reported

above and it is represented by equation (4.4).

isrdpollVTPE tttt ++= (4.4)

In order to measure each time interval of equation (4.4) a method commonly used is

to count the amount of assembly instructions provided by the compiler in the assembly list

and to convert the figure to machine cycle times of the used microcontroller. This method

and the time results are detailed in the Chapter 6.

 88

4.3 Conclusions

As referred in the section 4.1 the major motivation of this chapter is to propose a solution

enabling the support of real-time communications in shared Ethernet environments, where

Ethernet standards devices can coexist with multiple enhanced devices.

To address this problem, it was proposed a solution based on the Virtual Token-

Passing procedure, where an underlying high priority Binary Exponential Backoff (hBEB)

algorithm guarantees the medium access right to the VTPE station that is holding the

token. This allows Ethernet standard devices to coexist with multiple VTPE enhanced

stations, imposing a higher priority for the transfer of VTPE-hBEB related traffic and

guaranteeing the required traffic separation. Initially it was presented a general proposal

considering that the VTPE-hBEB protocol can be implemented in any Ethernet controller

that supports the BEB algorithm disabling. After, an adaptation was proposed considering

its implementation with an available Ethernet controller. Also it was presented the timing

analysis of VTPE-hBEB for a shared Ethernet segment with a moderate number of nodes.

In this case the token rotation can be in the order of several milliseconds. This figure seems

adequate for real-time applications in the automation domain.

 89

Chapter 5

VTPE and VTPE-hBEB Implementations

5.1 Introduction

The virtual token passing implementation in the P-NET protocol allows each master to

identify if an in progress frame is coming from a master or a slave, only by reading the first

byte of the frame being transmitted. This procedure allows the masters to always maintain

their access counters synchronised. Even though increasing the processing overhead of the

masters due to large number of frames that must be read, this procedure allows to reduce

further processing, because they must only accept and perform further processing if the in

progress frame is meaningful.

The above procedure can not be implemented using current standard Ethernet

controllers because they don’t support the facility of reading the content of frames before

the end of their transmissions. Then any implementation of the virtual token passing

principle using standard Ethernet controllers requires that any transmitted frame must be

accepted first and checked after by a software layer over the Ethernet layer.

To implement the VTPE or VTPE-hBEB protocol allowing the masters to identify

the frames during their transmission requires a special Ethernet controller. An

implementation of the Ethernet controller using an IP core solves this because the frame

decoding and the virtual token passing procedure can be executed during the frame

transmission.

The implementation of VTPE or VTPE-hBEB using a standard Ethernet controller

is basically the same in terms of hardware. However a slight distinction can be pointed out

according to some Ethernet controller features. VTPE can be implemented using any

 90

controller but VTPE-hBEB can only be implemented if the Ethernet controller offers BEB

disabling support.

This chapter discusses two implementations for proof of concept of VTPE and

VTPE-hBEB protocols based on standard Ethernet controllers. The first one uses a single

Ethernet controller per node and the other uses a dual Ethernet controller architecture. It is

also presented a proposal for future implementation of VTPE and VTPE-hBEB based on

an IP core.

The remaining of this chapter is as follows: Section 5.2 presents an implementation

of VTPE based on a single Ethernet controller. Section 5.3 presents an implementation of

VTPE and VTPE-hBEB proposals based on a dual Ethernet controller architecture. Section

5.4 presents a proposal for the implementation of VTPE and VTPE-hBEB using an IP core

and section 5.5 presents the conclusions.

5.2 Implementation based on single ethernet controller

The implementation discussed in this section is based on a classic Realtek RTL8019AS

Ethernet controller [93]. It is aimed only for VTPE because RTL8019AS doesn’t support

the BEB algorithm disabling. The microcontroller used is the PIC 18F458 [89], working at

40 MHz frequency.

5.2.1 System architecture based on single ethernet controller

An implementation of the VTPE protocol using a single Ethernet controller was carried out

and reported in [80]. The VTPE system architecture based on single Ethernet controller is

shown in Figure 5.1.

Master

1
Master

2

Master

3

Virtual

Token

HUB

Figure 5.1: VTPE system architecture

 91

As shown in Figure 5.1 the VTPE system architecture is comprised of three

masters, labelled from left to right as Master 1, Master 2 and Master 3. All masters are

interconnected by a HUB.

A picture of the correspondent experimental setup of the VTPE system architecture

is shown in Figure 5.2.

Figure 5.2: Experimental setup

5.2.2 Hardware of master based on single controller

The hardware of a VTPE master includes basically a microcontroller and the Ethernet

controller with their accessory parts. An EPROM to hold the master’s MAC address is not

required because the MAC address can be provided by the microcontroller. The

implementation carried out uses the PIC 18F458 microcontroller and the Packed Whacker

board [92]. Packed Whacker is no more than the RTL8018AS controller, a 20MHz crystal,

some power supply bypass capacitors and a few resistors, designed to be integrated with

the microcontroller.

HUB

Microcontroller

Ethernet

Controller

Microcontroller

Ethernet

Controller

Master 1 Master 2 Master 3

Microcontroller

Ethernet

 Controller

 92

Packed

Whacker
PIC

18F458

SA0:SA4

RSTDRV

IOW

IORB

EED0

INT0

RE2

To HUB

RB0

RA1

RE0

RE1

SD0:SD7 RD0:RD7

RB1:RB5

Figure 5. 3: Hardware of a VTPE master

 Figure 5. 3 shows a diagram with the main connections between the RTL8019AS

and the PIC18F458 microcontroller. The RTL8019AS controller was originally designed

for major Ethernet applications in desktop personal computers and some of its functionality

will be useless when attached to the 8-bit microcontroller. This useless functionality allows

the simplification of the hardware, namely:

• The EPROM can be unnecessary. This feature allows simplifying the

hardware and makes easier the modification of the MAC address value;

• Only 5 addresses lines (SA0 – SA4) are necessary to manage all the

RTL8019AS internal registers available for operation in 8-bit mode;

• Only 8 data lines (SD0 - SD7) are necessary to transfer data between the

RTL8019AS and the processor/microcontroller.

In order to prevent the RTL8019AS from expecting data from an external

EEPROM at initialization, the RTL8019AS’s EEDO (EEPROM Data Output) line must be

low at startup and left low forever.

The RTL8019AS raises the INT0 I/O line to signal to the microcontroller the

reception of an Ethernet frame. The IOW and IORB are I/O lines that allow the

 93

microcontroller to write to and to read from the RTL8019AS controller. The RSTDRV line

is used to reset the RTL8019AS.

5.2.3 The VTPE stack architecture

Although based on a proof of concept implementation, VTPE can be arranged in layers as

any stratified protocol. VTPE is a small suite of programs that provides services to be used

with a custom VTPE-based application, and it is implemented in a modular fashion, with

all of its services creating abstracted layers.

VTPE has a monolithic implementation but in essence it is equal to an

implementation based on two tasks, that is, the VTPE protocol and the user application.

The microcontroller is switched between VTPE and the user application having VTPE the

highest priority.

Figure 5. 4 shows the software architecture to be implemented in the VTPE

masters.

Figure 5. 4:VTPE master software architecture

According to Figure 5. 4 the VTPE stack is comprised of the Ethernet Layer, the

VTPE Layer and the Application. The Ethernet Layer is implemented according to

Ethernet standard. The VTPE Layer is a thin software layer to control the access to the bus

in order to avoid collisions, and the Application Layer is intended for the interface with the

customised user application.

Unlike common stratified software implementations, the Application Layer can

directly access the Ethernet Layer, which is not imediately below it, to write a ready frame

to the RTL8019AS NIC. This procedure allows to reduce the overhead in the VTPE Layer

because the time to load a frame is transferred to the application.

 94

The VTPE suite is written in the C programming language using the Custom

Computer Services C Compiler (CCS). The code implementing for each layer resides in a

separate source file, while the services and APIs (Application Programming Interfaces) are

defined through header/include files. The source and header files are presented in the

media attached to this thesis.

Each layer of the VTPE architecture is presented as follows.

The Ethernet Layer

This version of the Ethernet Layer has been specifically written to make use of the Realtek

RTL8019AS NIC. RTL8019AS is a NE2000 compatible NIC that implements both the

Ethernet physical (PHY) and MAC layers. The on-chip SRAM memory of RTL8019AS is

used as a holding buffer for an incoming frame until the VTPE layer reads it, and for an

outgoing frame until the master dispatches it to the bus. In order to control the outgoing

traffic according to the VTPE protocol only one frame can be stored in the RTL8019AS at

a time. This is because VTPE can not control the instant to start transmiting each frame

when more than one is loaded in the RTL8019AS. On the other hand, only one received

frame can be stored at a time to avoid overflow in the receive buffer memory of the

RTL8019AS. In order to understand the RTL8019AS set up a lot of information on

internal registers is required. A detailed description of the RTL8019AS controller can be

found in the datasheet [93]. A detailed description of the step-by-step style on how to write

code to RTL8019AS can be found in [94]. The application notes for National DP8390

Ethernet controller are also very useful for the development [95] [96].

The Ethernet Layer is implemented by means of the rtl8019as.c source file. The rtl8019as.c

source file has a set of functions to put the RTL8019AS ready to receive and transmit

frames. Table 5. 1 summarises the functions for RTL8019AS initialisation.

Module/

Dependence

Function Purpose

 95

void init_RTL8019AS()

Sets all parameters required before the

RTL8019AS becomes operational, such as

data bus width, physical address, types of

interrupts that may be serviced, size of the

Receive Buffer Ring, types of packets that

may be received.

int8 read_creg(int regaddr)

Reads the registers and data from the

receive buffer of the RTL8019AS.

rtl8019as.c

void write_creg(int

regaddr, int regdata)

Writes data to registers and to the transmit

buffer of the RTL8019AS.

Table 5. 1:Set of functions for RTL8019AS initialisation.

The VTPE Layer

A state machine of the VTPE layer is shown in the Figure 5. 5. This state machine is

comprised of three states: Application, VTPE procedure and Transmitting.

In the VTPE procedure state, whenever a frame is received, the VTPE Layer

services the interrupt, starts t1, gets the frame and decodes it, increases the access counter

(AC) and compares it to its node address (NA) or BAT(i) table to decide if the master has

the right to transmit. If the received frame has some interest to the master it is transferred

to the memory of the microcontroller to supply data to the application, otherwise it is

discarded. If no frame is transmitted by the current allowed node, t1 is allowed to timeout

and an interrupt will occur after t1 expires and the next master in the chain can access the

bus. If the bus continues idle the following interrupt will be based on t2. On the other hand,

if the master has the right to transmit and there is a loaded frame in the RTL8019AS, the

VTPE Layer dispatches the frame (Transmitting) and the CPU is switched to process the

application.

 96

Figure 5. 5: Path of application to the VTPE

The VTPE Layer is implemented by the vtpe.c source file, which includes a set of

functions to execute the VTPE procedure. Table 5. 2 shows the set of functions regarding

this Layer.

Module/

Dependence

Function Purpose

void ext_int()

This function is an Interrupt Service Routine

(ISR). Then, whenever RTL8019AS rises on

the INT0 pin, the ISR sets t1, and dispatches a

previously loaded frame if AC is equal to NA

or BAT(i). After, AC is increased and

compared with M. If AC=M, it is preset to 1,

otherwise the ISR is terminated.

vtpe.c

void isrt1 ()

This function is another Interrupt Service

Routine. Whenever t1 expires, the ISR sets t1

again, and dispatches a previously loaded frame

if AC is equal to NA or BAT(i). After AC is

increased and compared to M. If AC=M, it is

preset to 1, otherwise the ISR is terminated.

 97

This ISR is also used to control the t2 timer.

Table 5. 2:VTPE Layer.

 As it is shown in Table 5. 2 VTPE uses two ISRs to attend the interrupts that will

occur either in the sequence of the reception of a frame or of a timer (t1 or t2) expiration.

This makes VTPE a thin software layer.

Currently, the user application, as mentioned before, is responsible to load the

frame to be transmitted. After loading the frame, the user application must access the

VTPE Layer setting a flag to 1 (flag1=1). The VTPE Layer will then be responsible for the

frame transmission which will only occur when the node holds the token.

5.2.4 Using VTPE with application program

Since each of the modules comprising the stack resides in its own file, users must be

certain to include all of the appropriate files in their project for correct compilation.

Once a project is set up with the appropriate files included, the main application

source file must be modified to include the programming sentences shown as follow.

//Declare this file as main application file

#include <18F458.h>//CCS include file for PIC 18F458

#include <f458.h>//Some additional definitions for 18F458

#include <vtpe.h> //Some CCS and VTPE headers definitions

#include <RTL8019AS.h> //RTL8019AS definitions

#include <vtpe.c> //VTPE Layer

#include <ethernet.c> //Ethernet Layer

//Other application specific include files

//must be added here

// Main entry point

void main()

{

//Some specific microcontroller setups such as port

//direction, watch dog, timers, etc

init_RTL8019AS();//Initialise the RTL8019AS controller

// Perform application specific initialization

// Set up to external interrupt
// Set up to timer 1

// Enter into infinite loop

While(1)

{

//The user application code must be here

 98

//The application produces and loads a VTPE frame

//When the frame is loaded flag1 is set to 1

flag1=1;//Signalise to VTPE that a frame wait for

//transmission

While(flag1);//waits for the transmission right

}

5.3 Implementation based on a dual ethernet controller architecture

5.3.1 The dual ethernet controller architecture

The VTPE implementation based on a dual Ethernet controller architecture uses two

microcontroller/Ethernet-controllers per master as shown in Figure 5.6. The

microcontroller is the PIC 18F458 working at a 40 MHz frequency and the Ethernet

controller is the CS8900A-CQ [88]. The dual Ethernet controller architecture

implementation allows to run either VTPE or VTPE-hBEB because the referred Ethernet

controller allows BEB algorithm disabling.

The main reasons for an implementation based on a dual Ethernet controller

architecture are:

• Resolving the CS8900A-CQ interrupt problem when it works in 8-bit mode;

• Increasing the processing power because it uses two microcontrollers;

• Separating the VTPE or VTPE-hBEB from the application;

• Reducing the processing overhead in the microcontroller that hosts the

application due to:

o The application is interrupted only when the master has the right to

access the bus;

o The broadcasting traffic is not necessary for all frames because

unicast and multicast addressing can be used.

An essential feature of the Ethernet controller for VTPE-hBEB implementation is

to allow the BEB algorithm disabling. The CS8900A-CQ controller was the unique found

with support to this feature when this work has been started. However the CS8900A-CQ

 99

controller doesn’t support interrupt in 8-bit mode and interrupt is a very important issue for

protocol synchronisation either for VTPE or VTPE-hBEB. According to the application

note AN181 [91], when the CS8900A-CQ operates in 8-bit mode, it is mandatory to use

the polling method instead of interrupts, to access the receive event register. Our hardware

uses two CS8900A-CQ/microcontrollers per master in order to overcome this drawback.

One of the CS8900A-CQ/microcontroller sets is responsible to run VTPE or VTPE-hBEB

(bus arbitration) and to generate an interrupt. The other hosts the application.

Figure 5.6: Dual Ethernet controller architecture.

Recently some new Ethernet controllers with support to BEB disabling and

intended for embedded applications were launched in the market. According to our best

knowledge there is no problem reported with the interrupt support in 8-bit mode. Then

these controllers would also be suitable for VTPE-hBEB implementation using a single

controller per node instead of two. The ENC28J60 from Microchip [89], and the CP2200-

GQ and CP2201-GM from Silabs [90] are just some examples.

An experimental setup for the dual Ethernet controller was developed during this

work. Figure 5. 7 shows a picture of the actual setup.

 100

Figure 5. 7:Experimental setup for dual Ethernet controller architecture.

According to Figure 5. 7 the system is comprised of three similar masters, labelled,

from left to right, as Master 1, Mater 2 and Master 3. Observe that there is a couple of

microcontroller/Ethernet-controllers per master as it is also shown in Figure 5. 7. The first

half of the node’s hardware (left side) runs the protocol and the second half of the master

(right side) runs an interface of the protocol to the application and the application as well.

5.3.2 Hardware of master based on dual ethernet controller architecture

A simplified hardware schematic intended for a master based on dual Ethernet controllers

is shown in Figure 5. 8.

Master 1 Master 2 Master 3

Runs the Application

Runs VTPE or VTPE-hBEB

HUB

 101

Nicki

(CS8900A-CQ)

Nicki

(CS8900A-CQ)

PIC1

18F458

PIC2

18F458

HUB HUB

Interrupt

RESET

IOR

IOW

AEN

RB0RA1

VTPE or VTPE -BEB Application

RESET

IOR

IOW

AEN

RE3

RE1

RE2

RB6

RE3

RE1

RE2

RB6

SA0:SA4

RB1:RB5

SA0:SA4

RB1:RB5

SD0:SD7

RD0:RD7

SD0:SD7

RD0:RD7

Figure 5. 8: Hardware of master based on dual Ethernet controllers.

According to Figure 5. 8 the hardware is comprised of two PIC 18F458

microcontroller/Nicki boards. The Nicki board [92] is no more than a CS8900A-CQ

controller, a 20MHz crystal, some power supply bypass capacitors and a few resistors,

designed to be integrated with the microcontroller. The microcontroller PIC 18F458 drives

the control lines AEN, IOR, IOW and RESET, to enable, read, write and reset the

CS8900A-CQ controller. Observe in Figure 5. 8 that no interrupt line of the CS8900A-CQ

controller is used: a received packet is detected by polling an internal register of the

CS8900A-CQ controller. When VTPE identifies that the master has the right to access the

bus, a level logic transition is raised at the RA1 pin of PIC1 to indicate to PIC2 (second

half of master) that it can access the bus. Also observe in Figure 5. 8 that no EPROM is

used because the CS8900A-CQ does not require one when working in 8-bit mode. The

addressing bus uses four address lines to access all registers available for 8-bit mode and

the address bus is 8-bit in length.

The Ethernet controller intended for the bus arbitration (on the left side of Figure 5.

8) must be programmed in promiscuous mode because all transmitted frames must be

accepted in order to perform the traffic separation among frames belonging to VTPE-

 102

hBEB and frames belonging to standard Ethernet. On the other hand, the Ethernet

controller intended for the application (right side) can use any type of Ethernet protocol

addressing, such as unicasting, multicasting or broadcasting.

5.3.3 VTPE or VTPE-hBEB software for the dual ethernet controllers architecture

The VTPE-hBEB presented in Chapter 4 is based on both BEB algorithm disabling and

interrupt supports in the same Ethernet controller. According to the explained in Section

5.3.2 these features were not possible together. Then the proposal presented in Chapter 4

needs to be adapted to the hardware based on the dual Ethernet controller architecture.

A flowchart of the VTPE / VTPE-hBEB firmware develloped for a dual Ethernet

controller is shown in Figure 5. 9. According to Figure 5. 9 the firmware in PIC1 starts a

timer with t1 and polls continuously the receive event register, looking for a received

Ethernet frame. Whenever a frame is received the frame transference and decoding is

started immediately. Then, the access counter is increased, and it is checked if the node has

the right to transmit. If the node is allowed to transmit the logic level of pin 2 (RA1) is

raised in PIC1. This pin is the interrupt source for PIC2, being tied to the external interrupt

pin RB0 of PIC2. If the application in the PIC2 has a ready frame to be transmitted its

transmission starts as soon as the interrupt is serviced. Otherwise, having not anything to

transmit, t1 is allowed to timeout and the next node of the virtual ring is allowed to access

the bus according to the virtual token passing fashion.

 103

Figure 5. 9:VTPE or VTPE-hBEB based on dual Ethernet controller architecture.

The software for the VTPE / VTPE-hBEB master can be presented in two parts.

The first one is the protocol that is implemented in the PIC1 and the second part is the

application implemented in the PIC2.

Part 1 – Implementation in PIC1

The software architecture of the VTPE or VTPE-hBEB protocol is implemented in PIC1 as

shown in Figure 5. 10.

Figure 5. 10: VTPE or VTPE-hBEB for dual Ethernet controller architecture.

 104

As shown in Figure 5. 10 the software implemented in PIC1 doesn’t include the

application because it is executed in the PIC2. Then the software architecture is comprised

only of the Ethernet Layer and the VTPE or VTPE-hBEB Layer. Remember that VTPE

differs from VTPE-hBEB because VTPE-hBEB requires the BEB algorithm disabling to

allow traffic separation in order to work in unconstrained environment. The Ethernet Layer

and the VTPE or VTPE-hBEB Layer are presented bellow.

The Ethernet Layer

The Ethernet Layer is implemented with the firmware included in the cs8900.c

source file. The cs8900.c source file has a set of functions to put the CS8900A-CQ ready to

receive and transmit frames.

Table 5. 3 summarises the set of functions for the CS8900A-CQ initialisation and

to write data into and read data from the controller.

Module/

Dependence

Function Purpose

void init_CS8900AC()

Sets all parameters required before the

CS8900A-CQ becomes operational, such

as data bus width, physical address, types

of interrupts that may be serviced, size of

the Receive Buffer Ring, types of packets

that may be received.

void PPRead()

Reads data from a Packet Page of the

registers of the CS8900A-CQ controller.

void PPWrite()

Writes data to a Packet Page of the

registers of the CS8900A-CQ Ethernet

controller.

cs8900.c

void RPP(int16 ppoffset)

Reads data from the Packet Page

specified by the offset in the argument of

the function.

 105

void WPP(int16 ppoffset,

int16 datum)

Writes data to the Packet Page specified

by the offsets in the arguments of the

function.

Table 5. 3: Set of functions for CS8900A-CQ initialisation.

The functions in cs8900.c are used to CS8900A-CQ initialisation by the Ethernet

Layer (write and read parameters of CS8900A-CQ) as well as by the VTPE Layer to

receive frames. Remember that no frame is transmitted because this part of the software is

only responsible for bus arbitration.

The VTPE or VTPE-hBEB layer

This layer follows the same principle as the one presented in the single Ethernet controller

architecture. The main difference is that, instead of transmitting a frame, an interrupt is

raised to the part that runs the application. A summary of the functions of the VTPE or

VTPE-hBEB Layer is presented in Table 5. 4.

Module/

Dependence

Function Purpose

void vtpe ()

Gets and decodes frames according to the VTPE

definition and raises an interruption in the RA1

pin of PIC1 if the master has the right to

transmit.

Depends of

cs8900.c

void isrt1()

Passes the virtual token after t1 finishes

according to the VTPE scheme already

explained. Raises an interruption in the RA1 pin

of PIC1 if the master has the right to transmit.

Table 5. 4: Set of functions for the VTPE or VTPE-hBEB Layer.

The timer t2 of the virtual token procedure is made equal to t1. This is a reasonable

assumption because t1 can be as short as 15.6µs and it is not convenient to have t2 smaller

 106

than 15.6µs. This is because in this hardware it will increase unnecessarily the overhead in

the application. The application must be compatible with the processing capacity of the

microcontroller.

Chapter 6 discusses the timing behavior of implementations based on single and

dual Ethernet controllers as well.

A summary of the software that must be programmed in the Part 1 of the master is

as follows:

#include <18F458.h>//CCS include file for PIC 18F458

#include <vtpe.h> //Some CCS and VTPE header definitions

#include <cs8900a.h> //CS8900A-CQ pin and registers

//definitions

#include <cs890a.c> // Include the Ethernet Layer here

//according to CCS compiler ruler

#include <vtpe.c> //Include the VTPE Layer here

according //to CCS compiler ruler

// Main entry point

{

//Some specific microcontroller setups such as port

//direction, watch dog, timers, etc

void init_CS8900AC();//Initialise the CS890A-CQ

// Enter into infinite loop

While(1)

{

void vtpe (); //polling for receiving frame, decoding of

//received frame according to the VTPE procedure and

//signalise with RA1=1 when the master can access the

bus.

}

Part 2 – Implementation in PIC2

The software architecture for the second part of VTPE or VTPE-hBEB implementation

based on the dual Ethernet controller architecture is shown in Figure 5. 11

 107

Figure 5. 11: Software for the second part of the dual Ethernet Controller architecture.

As it can be observed in the Figure 5. 11 the software is comprised of only the

Ethernet Layer and the Application.

The Ethernet Layer is implemented according to the description presented in the

first part. The unique difference that can be pointed out is that the CS8900A-CQ of this

part is not programmed in promiscuous mode because it doesn’t run the protocol. Instead

of the promiscuous mode it can be programmed to accept unicast, multicast or even

broadcast addressing. The type of addressing will depend on the application requirements.

The Application is comprised of the user source code. The user source code which

is also responsible to receive the frames addressed to the master and to transmit frames.

The user application is interrupted whenever the protocol running in the Part 1 signalises

an interrupt in the INT0, indicating that the application must access the bus. If there is a

frame ready to be transmitted it is dispatched immediately, otherwise the return to the

application is done immediately.

The application must also contain the function to get and transmit frames.

5.3.4 Using VTPE with an application program

Once a project is set up with the appropriate files included, the main application source file

must be modified to include the programming sentences shown as follow.

//Declare this file as main application file

#include <18F458.h>//CCS include file for PIC 18F458

#include <vtpe.h> //Some CCS and VTPE header definitions

#include <cs8900a.h> //CS8900A-CQ definitions

#include <cs890a.c> //Ethernet Layer

//Other application specific include files

//must be added here

// Main entry point

void main()

{

//Some specific microcontroller setups such as port

 108

//direction, watch dog, timers, etc

init_CS8900AC();//Initialise the CS890A-CQ

// Perform application specific initialization

// Set up to external interrupt
// Enter into infinite loop

While(1)

{

get_frame ();//Looks for received frame

//The user application code must be here

//The application produces and loads a VTPE frame.

//When the frame is loaded flag1 is set to 1

flag1=1;

While(flag1); //wait for VTPE

}

5.4 Implementation based on an IP core

This is a work in progress approach. It consists in embedding the VTPE and

Ethernet protocols in a single-chip. The main advantage of this solution is to run the

VTPE and Ethernet protocols simultaneously. In this proposal the VTPE arbitrates the bus

during the frame transmission and the inter-frame gap (IFG), so no extra arbitration time is

wasted. Consequently, the saved time is reverted in the efficiency throughput. This

improvement is possible due to the low VTPE processing requirements, to the processing

power of FPGAs and to the use of the transceiver, which makes possible to run VTPE

during the frame transmission. Then this new proposal will permit to reach,

deterministically, the theoretical limits of Ethernet 10/100Mbps efficiency throughput

(54.6% for minimal size frame and 97.5% for maximum size frame) that is found when

there is a single transmitting node in the bus. On the other hand, it should be remembered

that, in a shared Ethernet segment with more than one node, these throughput values are

unreachable due to the collisions and the probabilistic resolution algorithm (back-off

algorithm). This proposal was presented in [81] and is summarized as follows. A

simplified block diagram of the VTPE IP core is shown in Figure 5. 12.

 109

Microcontroller or Processor

Memory

Data

Bus

Address

Bus

 Control

Bus

VTPE

Frame Decoder

VTPE

Frame Generator

AC and NA

Checker

Receiver Control Block Transmission Control Block

Ethernet Transceiver

Receive

Signals

Transmit

Signals

t1 timer

t2 timer

t1 control t1 timeout

t2 control t2 timeout

Shared Ethernet Segment

Figure 5. 12:VTPE IP core block diagram

In the VTPE IP core proposal a node is composed of an Ethernet transceiver and its

accessory parts (magnetic transformers and RJ45 connector), a FPGA where the VTPE-

MAC firmware is implemented and a processor/microcontroller where the application

runs. It is focused in the VTPE IP core, so the Ethernet transceiver and the

microcontroller/processor aren’t presented.

The Receive Control Block controls the frame’s reception from the Ethernet

transceiver and delivers the received frame to the VTPE Frame Decoder and signalises to

the AC Counter and NA=AC Checker that a frame was received.

 110

The VTPE frame decoder checks the Source Address to actualise the node’s active

table, the Data/Type field, and the data field. If there is relevant data (VTPE messages) it

delivers them to the memory, otherwise it discards the frame.

The AC and NA Checker block increments the AC and compares its value with NA

in accordance to the classic VTPE proposal or with some value in the Bandwidth

Allocation Table (BAT) in accordance to the improved VTPE proposal. It sets a flag to “1”

if AC=NA or AC=BAT(i), otherwise it sets a flag to “0” if AC ≠ NA or AC≠BAT(i).

The Transmission Control Block gets a frame to be transmitted from the VTPE

Frame Generator, controls the t1 and t2 timers, and controls the frame transmission.

The VTPE Frame Generator gets data from the Memory (VTPE messages),

generates the CRC, adds padding bits to complete the 46 minimum bytes, if necessary, and

encapsulates all this data in the Ethernet frame and delivers it to the Transmission Control

Block so that it can be transmitted to the bus.

The memory consists of two memory blocks in ring format: The Received Data

Ring and the Transmit Data Ring. Two local DMA (Direct Memory Access Controller)

channels, not shown in Figure 5. 12, are used to manage received data and to manage the

transmission of data. The first one, during a frame reception, stores the received data from

the VTPE Frame Decoder into the Received Data Ring and, during a frame transmission,

transfers data from the Transmit Data Ring to the VTPE Frame Generator to be transmitted

to the controller. The second DMA channel is used to transfer data between memory

(Received Data Ring or Transmit Data Ring) and the host processor.

5.5 Conclusions

This chapter presents two implementation carried out during the VTPE and VTPE-hBEB

development. The first implementation is based on a single Ethernet controller and it is

aimed for VTPE because the used Ethernet controller doesn’t support BEB algorithm

disabling. A similar implementation can be suitable for VTPE-hBEB protocol if the

Ethernet controller is changed to one that supports the BEB algorithm disabling. The

implementation based on a single Ethernet controller is simpler and cheaper than the one

based on a dual controller.

The implementation based on dual Ethernet controller architecture uses Ethernet

controllers that support BEB disabling, then it is suitable to implement the VTPE-hBEB

 111

protocol. The dual Ethernet controller architecture is also suitable to implement VTPE

because VTPE can also work with the BEB algorithm disabled.

The VTPE-hBEB protocol avoids the collision of frames coming from masters

(hBEB algorithm) and the hBEB algorithm solves the collisions that can occur among

standard Ethernet stations and VTPE-hBEB masters. This procedure allows separating the

real-time traffic from the non real-time.

The implementation based on a dual Ethernet has the advantages to solve the

interrupt problem of CS8900A-CQ when it works in 8-bit mode, to increase the processing

power, because it uses two microcontrollers, and to reduce the processing overhead in the

microcontroller (PIC2) because the interruption is raised on only when the master has the

right to access the bus. However this implementation has a disadvantage, that is being

more expensive than the one based on a single Ethernet controller because it uses a couple

of microcontroller/Ethernet-controller per node and requires more cabling.

The implementation based on a dual Ethernet controller architecture doesn’t

invalidate the implementation of VTPE or VTPE-hBEB protocols because, conceptually, it

is equivalent to a node with more processing power with an Ethernet controller able to

support the BEB algorithm disabling and interrupt.

 The implementation based on IP core is not finished yet but it seems a very

promising proposal. This implementation will permit deterministically to reach the

maximum bus utilization that can be achieved on a shared Ethernet segment without

collisions.

 112

 113

Chapter 6

Timing Behavior and Validation of VTPE and

VTPE-hBEB

6.1 Introduction

This chapter discusses the arbitration time of VTPE and VTPE-hBEB and the timing

behavior of these protocols regarding to the transmission of a time sensitive data flow. The

discussion is according to the implementations carried out in the demonstrators discussed

in the Chapter 5.

In order to evaluate the timing behavior of VTPE and VTPE-hBEB, the medium

arbitration time, i.e., the required time to run these protocols was determined.

Two methods are envisaged to determine the time to execute the VTPE and VTPE-

hBEB protocols:

• The first method consists in starting an internal timer of the microcontroller to

count the number of machine cycles between an interrupt of the Ethernet controller

and the instant when the master can access the bus and dispatch the frame. The

number of instruction cycles to start and to stop must be discounted from the

obtained number of machine cycles. The total of machine cycles is then converted

to time using the time taken to execute a machine cycle in the specific hardware

architecture. The measured time is exactly the lower bound for t1.

• The second method consists in totalising the number of machine cycles using the

assembly list provided by the compiler and, after, in converting the total number of

 114

machine cycles to time using the time taken to execute a machine cycle in the

specific hardware architecture.

Both methods have shown to be adequate and have produced similar results.

To validate VTPE and VTPE-hBEB, the transmission of a time sensitive data flow

was used. The choice was the MIDI protocol which is a de facto standard for the

interconnection of musical instruments. MIDI data flows use an exclusive communication

channel and time is implicitly encoded in the transmission instant. The MIDI hardware

uses a RS-232 like character oriented transmission with a baud rate of 31.25kbps, thus it is

suitable for validation of VTPE and VTPE-hBEB protocols because it is not too heavy in

bandwidth requirements and it is also compatible with the processing capacity of the

microcontrollers used in the demonstrators.

The remaining of this chapter is as follows: Section 6.2 presents the timing

behavior of VTPE in the implementation based on single controller. Section 6.3 presents

the timing behavior of VTPE and VTPE-hBEB implementations based on the dual

controller architecture. Section 6.4 presents an overview of the MIDI protocol, describes

the application setup for the validation of the protocols, and discusses some results. Section

6.5 presents the conclusions.

6.2 Timing behavior of VTPE in the implementation based on single

controller

The tests carried out in the implementation based on a single Ethernet controller were

aimed to show the system working according to the virtual token-passing procedure and to

determine the minimum t1 value to run the VTPE, as well as to determine the bus

utilization. For this particular test it was defined that:

• Each master must transmit a predefined Ethernet frame;

• The Ethernet frame carries a VTPE frame inside the data field. The VTPE frame

(header plus data) varies from the smallest Ethernet data field (46 bytes of data) to

1242 bytes. The limit of 1242 bytes is due to the built in RAM memory of the

microcontroller used to store the frame and the other variables regarding the VTPE

implementation;

 115

• All masters must receive each transmitted frame and transfer it to the PIC memory.

The bus utilisation will be calculated using the t1 value and the time to transmit the

correspondent Ethernet frame. The bus utilisation is calculated according to the following

equation (6.1).

))/(1(11 fdtttU +−= (6.1)

The t1 and tfd parameters are as already defined. The tfd includes the time to transmit the

Ethernet frame including the preamble bytes and the start frame delimiter.

Table 6.1 summarises the experimental results of the tests carried out.

Data

(Bytes)

Frame Length including preamble

(Bytes) and Start Frame Delimiter

tfdmax

(µS)

t1 (µS)

Network Utilisation

U=(1-t1/(t1+tfd))

46 72 57.6 297.60 16.2

138 164 131.2 693.60 15.9

276 302 241.6 1288.8 15.8

414 440 352.0 1883.2 15.8

552 578 462.4 2476.8 15.7

690 716 572.8 3071.2 15.7

828 854 683.2 3665.6 15.7

966 992 793.6 4260.0 15.7

1104 1130 904.0 4854.4 15.7

1242 1268 1014.4 5448.0 15.7

Table 6.1: t1 and bus utilisation in the implementation based on a single Ethernet controller.

 The data of

Table 6.1 are plotted in Figure 6. 1.

 116

t1 x Utilisation

15,6

15,7

15,8

15,9

16

16,1

16,2

16,3

0 2 4 6 8 10 12

t1 (ms)

U
ti

li
s
a
ti

o
n

 (
%

)

Series1

Figure 6. 1: t1 (µs) x bus utilisation (%).

Table 6.1 and Figure 6. 1 show that the obtained utilisation is quite modest and

decreases when the Ethernet frame length increases. The modest network utilisation is due

to the low processing power of the microcontrollers and to the overhead imposed to the

nodes in order to accept all transmitted frames and to do some processing on each frame.

In order to minimise the impact of the processing overhead in the small processing power

processors a solution was foreseen in the classic proposal as presented in the Chapter 3.

This solution consists in avoiding that these masters transmit long frames and receive long

frames as well. To implement this solution, it was provided the NI,GI field in the VTPE

header. This field enables the creation of sub networks to which can be connected small

processing power processors. However, in the implementation based on a single Ethernet

controller presented in the Chapter 5, the best utilisation is bounded to 16.2 %.

6.3 Timing behavior of VTPE in the implementation based on the dual

controller architecture

To determine the arbitration time of VTPE or VTPE-hBEB in the dual Ethernet

controller architecture, the elapsed time since PIC1 senses a received frame until a new

frame starts being transmitted on the bus by PIC2, must be determined. The time portions

involved with the implementation based on the dual Ethernet controller were presented in

Chapter 4 and now repeated for clarity reason. The time portions involved in the arbitration

time are:

 117

• The time spent in the polling cycle, tpoll, in PIC1;

• The decoding time td which is the sum of the time to transfer and check a received

frame until checking the VTPE type, of the time to get the AC of the received

frame and to refresh the node AC variable, of the time to increase the AC and to

compare it with NA or BAT(i) and of the time to rise the interrupt in the pin RA1.

td is summarised by the Equation 6.2.

isrACgACtcd ttttt +++= ++ (6.2)

where

ttc is the time to transfer and check a received frame until checking the VTPE type,

tgAC is the time to get the AC of the received frame and to refresh the node AC

variable,

tAC is the time to get the AC of the received frame and to refresh the node AC

variable,

tAC++ is the time to increase the AC and to compare it with NA or BAT(i) and finaly

tisr is the the time to rise the interrupt in the pin RA1

• The interrupt service routine time, tisr, in PIC2.

To calculate the VTPE arbitration time equation 6.3 can be used:

isrdpollVTPE tttt ++= (6.3)

In order to determine each time portion of the arbitration time, the method based in

counting the number of machine cycle was chosen.

The number of machine cycles found according to the assembly list provided by the

CCS compiler is summarised in the Table 6. 2.

Time parcels Machine Cycles Spent time (µs)

Polling cycle, tpoll 11 1.1

Decoding time, td 124 12.4

 118

Interrupt service routine time, tisr (PIC2) 21 2.1

VTPE arbitration time tVTPE 156 15.6

Table 6. 2: Arbitration time on the dual Ethernet controller architecture.

Observe in Table 6. 2 that the number of machine cycles is converted to time taking

into account 0.1µs (100ns) per machine cycle. 0.1µs is the machine cycle time for the PIC

18F458 at 40 MHz.

As shown in Table 6. 2, VTPE requires at least 15.6µs to arbitrate the bus when

implemented in the dual Ethernet controller architecture reported in the Chapter 5. Then t1

must be equal or greater than 15.6µs and should be chosen taking into account the

processing capacity of the microcontroller that hosts the application. A small value of t1,

near 15.6µs, can cause unnecessary overhead in the application.

Remember that, according to the dual Ethernet controller architecture, the VTPE

and the application run in different microcontrollers. Then the application is interrupted

only when the node has the right to transmit. Then, if the application has a ready frame to

transmit whenever it is interrupted, VTPE will be able to transmit a frame with an inter-

frame gap of 15.6µs. If the application in PIC2 is not able to dispatch a frame with 15.6µs

of inter-frame gap the protocol’s velocity is not reduced because, when the master can

access the bus but it is not ready to transmit, the token will be passed after t2 expires. Also

remember that, according to the VTPE definition, t2 is smaller then t1 but, due to the small

value of t1, it can be done equal to t1. This is a reasonable assumption because t1 can be as

short as 15.6µs and it is not convenient to have t2 smaller than 15.6µs because this

increases unnecessarily the overhead in the application.

A possible transmission scenario in VTPE when implemented in the dual Ethernet

controller architecture is depicted in Figure 6. 2.

 119

Figure 6. 2: VTPE transmission scenario in the dual Ethernet controller architecture.

According to Figure 6. 2, when a master does not have anything to transmit the

token will passed after time t1+15.6µs or at every 15.6µs if the following nodes also do not

have anything to transmit. It means that, when a master does not have anything to transmit,

the token runs quicker than when a master has something to transmit. This happens

because either t1+t2 (31.2µs) or t2 (15.6µs) are smaller than the time it takes to transmit the

smallest Ethernet frame. Indeed, at 10MHz, the minimum time to transmit a frame is tfdmin

which is equal to 57.6µs and the maximum time to transmit a frame is tfdmax which is equal

to 1220.8µs.

The best bus utilization that can be achieved in the implementation based on the

dual Ethernet controller architecture occurs when the microcontroller where the application

runs is able to transmit frames with an inter-frame gap of 15.6µs. This is a reasonable

assumption because it depends only the processing power of the microcontroller used to

run the application.

The utilisation is then calculated for the scenario when the smallest and the largest

Ethernet frames are transmitted. Using equation 6.1, the bus utilisation is as follows:

a) Scenario with the smallest Ethernet frame

%68.78))6.576.15/(6.151(=+−=U

 b) Scenario with the largest Ethernet frame

%74.98))8.12206.15/(6.151(=+−=U

Network utilizations of 78.68% and 98.74% for VTPE seem very optimistic but

they can be achieved in the dual Ethernet controller architecture since the node is able to

transmit frames with 15.6µs of inter-frame gap. Also, if this supposition is not true, the

protocol performance is not affected because VTPE continues working and and the token

passes more rapidly than when the masters have something to transmit.

 120

For the VTPE-hBEB protocol, t1 must be chosen according to the time required by

the hBEB algorithm to win the collisions that can occur due to the nature of the

unconstrained environment. As presented in the Section 4.2.3 of Chapter 4, if no frame is

discarded, the maximum time that a VTPE-hBEB station holding the token waits to

transfer a real-time message is given by the equation (4.1):

fdcolhBEB tIFGtT ++= 4.1

where tcol is the worst-case delay to start transferring a message (0.960 ms as shown in

Table 4.1), IFG is the Inter Frame Gap (12 byte-times) and tfd is the time to transfer a

frame from the VTPE-hBEB station, which is the maximum message length.

The equation 4.1 can be adapted to include the arbitration time of the

implementation based on a dual Ethernet controller architecture. Then, equation 4.1 can be

rewritten as shown bellow:

ustIFGtt fdcol 6.151 +++=

6.4

Remember that, according to the hBEB algorithm (Chapter 2 Section 2.4.1), the

probabilistic timing analysis had shown that, in a heavily loaded network scenario, the

maximum access delay for 95% of the messages is smaller than 1.86ms. Secondly, and for

more realistic load scenarios (intermediate load cases), the simulation analysis shows that

the maximum access delay for 98% of the messages is always smaller than 1ms (1000µs).

Then, including the arbitration time required in the dual Ethernet controller architecture,

the access delay t1 can be bounded to 1875.6µs for a heavily loaded network scenario and

to 1015.6µs for more realistic load scenarios (intermediate load cases).

In order to guarantee that no collisions between VTPE-hBEB frames will occur, t1

must be set equal to the bound found for VTPE-hBEB as stated above. However, if the

node doesn’t have anything to transmit, the system must wait that t1 expires in order to

pass the virtual token. If the bounded for t1 is too long then the network utilisation is

reduced. A solution is to use two bounds for t1. One is uded when a VTPE-hBEB frame

contends for the medium with a standard Ethernet frame, and other, is used otherwise.

However, the current Ethernet controllers don’t support this feature. An implementation of

 121

VTPE-hBEB based on FPGA and IP core, as the one proposed in the Chapter 5, can solve

this problem because it can identify a frame during its transmission.

An indirect identification method based on a timer using standard Ethernet is being

studied.

6.4 Demonstration system for validation of VTPE-hBEB

In order to validate the protocol, the transmission of a time sensitive data flow will be used.

The choice was the MIDI protocol used for the interconnection of musical instruments.

MIDI data flows use an exclusive communication channel and time is implicitly encoded

in the transmission instant. However, MIDI uses a RS-232 like character oriented

transmission, with a baud rate of 31.25kbps, thus it is not too heavy in bandwidth

requirements.

The demonstration will consist in tunnelling a MIDI flow through a shared Ethernet

channel in which a traffic generator will be imposing different levels of traffic load. Two

outcomes will be obtained:

a) A subjective assessment of the music quality in different situations

b) A numerical measure of the delays suffered by MIDI transmissions.

The first experiment is quite adequate for a public presentation. It consists in using

a computer to produce a MIDI flow, e.g., a popular song pre-recorded or similar. This

MIDI flow will be sent to an USB-MIDI interface. Another computer will receive the

MIDI flow by another USB-MIDI interface and will play it. In this case we are using a

standard MIDI channel, so the timeliness requirements will be respected and, in

consequence the song will be played with quality. Figure 6. 3 illustrates a standard MIDI

channel.

Figure 6. 3: Testing a dedicated MIDI link.

In the continuation, the MIDI out (normal designation in MIDI) flow will be

transformed into RS-232 by a RS232 to MIDI interface (MRA) as shown in Figure 6. 4.

 122

Figure 6. 4: MIDI to RS232 level logic adaptation.

In order to insert a MIDI data flow in a VTPE-BEB system, the MRA will be

connected to the serial port of the microprocessor used in the VTPE-hBEB Master modules

(VMMs) as shown in Figure 6. 5.

Figure 6. 5: MIDI to VTPE-hBEB link.

As it is also depicted in Figure 6. 5, an application running in the VMM will pack

each MIDI character incoming from the computer (left side) into an Ethernet packet

(padding bytes will be required) and will transmit the packet at once. This operation should

be very fast in order to avoid introducing excessive delay in the MIDI flow.

The inverse operation will be done in another system similar to the VMM which

will operate just as a consumer of the information. This device will receive the Ethernet

frame, extract the character and send it to its serial port. A RS232 to MIDI electrical

adaptation is also required in order to connect the serial port to the USB-MIDI interface. A

second computer (right side) will receive the MIDI flow and play the song.

In this experiment the Ethernet channel will be undisturbed by injected traffic. If

the delays introduced are negligible there will be again a good quality output. Figure 6.6

illustrates the MIDI to VTPE-hBEB link with Ethernet traffic injection.

 123

Figure 6.6: MIDI to VTPE-hBEB link with Ethernet traffic injection.

This experiment will continue by perturbing now the shared Ethernet channel with

random traffic produced by a traffic injector, in our case the Distributed Internet Traffic

Generator (D-ITG).

The D-ITG [99] traffic generator allows injecting traffic in the Ethernet shared

channel in a controlled way. The main features of D-ITG concerning timing in the traffic

generation are:

• The traffic load can be controlled by setting the length and number of frames to

send;

• It is capable to produce traffic at packet level accurately replicating appropriate

stochastic processes for both IDT (Inter Departure Time) and PS (Packet Size)

random variables (exponential, uniform, cauchy, normal, pareto,).

 In order to validate the VTPE-hBEB protocol, the following experiment will use

the VTPE-hBEB middleware in two VMMs, each transmitting a MIDI traffic flow. A

consumer (or two) can be switched to receive the MIDI flow. Now, by using the VTPE-

hBEB protocol, the timeliness of the flow will, in principle, be substantially improved.

A qualitative assessment can be made by playing the MIDI traffic flows in the

consumer computer.

In order to quantify the results, an additional unit is required to measure the delay

between the MIDI traffic flow in the producing node and the received flow in the

consumer node. The measuring unit measures the end-to-end time between the start bit at

the producer and at the consumer. The measuring unit will be described in the Section

6.4.1.

In order to complement the experiment to validate the VTPE-hBEB, a PC will be

used to capture all transmitted Ethernet frames during the experiment using the Ethereal

 124

Network analyser [99]. Ethereal records each received frame with the arrival instant of the

frame.

Using the time instant of the arrived frames a performance evaluation of VTPE-

hBEB can be performed. The main analyses to be carried out are:

a) Average Delay

b) Minimum and Maximum Delay

c) Average TRT

d) Minimum and Maximum TRT

 The described experiments until now cover a MIDI channel and a disturbance

source. A realistic unconstrained environment, in order to validate the VTPE-hBEB

protocol, requires several VTPE-hBEB nodes and disturbance sources. A realistic

unconstrained environment will be described in the evaluation setup in the next subsection.

6.4.1 The Evaluation setup

The setup designed to evaluate the timeliness of the VTPE-hBEB protocol contains both

VTPE-hBEB (RT) and Standard (ST) Ethernet stations connected to a 10 Mbit HUB

(Figure 6. 7). ST stations are configured to load the network with UDP unicast traffic while

RT stations periodically conduct transmissions of real-time data (MIDI data flow).

Figure 6. 7: Evaluation test-bed.

The timeliness assessment consists on measuring, among other parameters, the

latency that a real-time data flow experiences when transmitted across an Ethernet

 125

network. This assessment is performed using a Delay Measurement System (DMS) [10]

specially developed for this purpose.

a) Application

As it was presented in Chapter 5, a VTPE-hBEB node or, shortly, VMM is composed of

protocol and application sub-nodes. In order to transmit the MIDI data flow over VTPE-

hBEB no changes in the protocol sub-node are required. However the application firmware

in the application sub-node should be written to handle MIDI and Ethernet packets.

The application firmware in the VMM handles two different tasks: it conveys data

received from the RS232 port to the Ethernet bus and it transmits data from the Ethernet to

the RS232 port as shown in Figure 6. 8.

Figure 6. 8: Application sub-node flowchart.

The main function starts by resetting both the token flag and the valid data count.

So, if no token is received (token=0), the Ethernet controller is polled and, if a data frame

was received, its payload is transmitted to the RS232 port. Otherwise, no action takes

place. However, if the token is received and detected by the protocol sub-node, it will

trigger the INT0 ISR, running on the application sub-node as shown in Figure 6. 9.

 126

Figure 6. 9: Application sub-node ISRs flowchart.

In this scenario the token flag is set to 1 and the main function will verify if there is data in

the reception FIFO. If there isn’t, a dummy frame is transmitted and the token is released

(token=0).

When a character is received in the serial port, the RX RS232 ISR is executed. This

Interrupt Service Routine stores the received character in a FIFO structure and increments

the number of available data characters in one unity. Therefore, when the token will be

available, an Ethernet data frame will be sent, the token will be released (token=0) and the

character count will be decreased in one unity (data--).

The justification for sending a dummy frame when in possession of the token but

without data for transmission is related with achieving the minimum Token Rotation Time.

So, if a RT node didn’t have data for transmission but didn’t transmit anything instead, the

token would only pass to the following node (in the logical ring) by timeout, which is

usually larger than the transmission of a VTPE-hBEB message (in this example, as the

frame is short).

b) Data flow

The data flow is a serial RS232 character stream. The serial port is programmed with a

31250 bit/s bit rate, 1 start bit, 8 data bits, 1 stop bit and no parity. A different character is

transmitted each 10ms, in an isochronous form.

In Figure 6.7 it is shown the described data source tied to the RT station RT1.

When RT1 receives a character, a (VTPE-hBEB) transmission to station RT3 occurs. The

original (character) data flow is thus converted to a VTPE-hBEB packet flow between

stations RT1 and RT3.

c) Standard stations and network load

Standard stations are personal computers (PCs) running the Distributed Internet Traffic

Generator (D-ITG) [99]. This traffic generator was configured to produce UDP packets

 127

with constant maximum length (1538 bytes, including IFG, preamble and SFD). A

standard (ST) station running the D-ITG generator is capable of producing network loads

ranging from 0% to 100% of the network bandwidth (10Mbit). These values can be

obtained by increasing or decreasing the inter-departure packet rate (Poisson distributed).

The maximum offered network load occurs when the 3 ST stations are sending

approximately 813 UDP packets per second each.

d) Measurement system

The Delay Measurement System (DMS) [101] depicted in Figure 6. 10 was built to assess

the VTPE-hBEB protocol timeliness. The DMS is composed by a Microchip

DSPIC30F6012A microcontroller with appropriate RS232 level converters, among other

components.

Figure 6. 10: Delay Measurement System.

The DMS built-in serial ports are used for byte monitoring, allowing registering the

instants in which bytes are transmitted by the data source or received at the data sink.

Therefore, it is possible to measure the latency that a byte experiences in the Ethernet bus,

as well as its variation and loss. Following, the DMS is able to compute several variables,

namely Average, Minimum and Maximum Delay, Average, Minimum and Maximum

Token Rotation Time (TRT), and the Delay and TRT Histogram.

The DMS operates in two different modes: measurement and command. In

measurement mode, the DMS listens to COM1, registering the received byte values and

the corresponding instants. When a byte is received in COM2, the receiving instant is

recorded and a search for the matching transmit instant is started. If a match occurs, the

individual byte delay is computed and all related variables are updated. Otherwise, an error

is signaled.

 128

A measurement trial ends when one of the following events occur: automatic time-

out, automatic number of bytes or manual trigger. Any of them will cause the DMS to

commute to command mode. The automatic time-out (duration of the trial) and the number

of bytes can be setup by the user. The manual trigger event is generated by switching a

knob on the DMS, and overrides any of the automatic ending mechanisms.

In command mode the DMS operates by accepting character sequences from the PC

(“commands”) and replying with status messages or with statistical information. The DMS

also allows the configuration of statistical related parameters. Both (Delay and TRT)

histograms can be customized by changing the beginning time, the number of used points

and resolution. The user is then able to change the appearance of the histogram to fit

his/her requirements.

6.5 Timing analysis

Considering a real-time data flow connected to an RT node, e.g. the RS-232 stream in the

example used the instances of the flow messages can be represented by:

Mn,i, where n is the number of the RT node and i the instance of the message.

As the external system (the RS-232 source) and the VTPE-hBEB evaluation system

are independent and thus not synchronized, the activation instant of the message Mn,i is

asynchronous relatively to the VTPE token rotation.

The connection between the external system and the RT node is point to point. If

the end of the reception at the RT node is considered the activation instant of Mn,i within

the VTPE system, then the time it takes to transmit the payload between the external

system and the RT node can be ignored.

However, after the activation, two time intervals must be taken into consideration

before Mn,i can be transmitted in the Ethernet network. These are the time required to

handle the reception of Mn,i from the external system, thr,i, and the time it takes to transfer

the payload of Mn,i to the Ethernet controller of the RT node, ttc,i.

After thr,i two situations can occur:

a) The Ethernet controller is busy transmitting a previous message Mn,i-1 from the node and

thus the loading of the message in the controller is delayed.

b) The Ethernet controller is available and Mn,i can be loaded at once.

 129

In situation a), the transmission of Mn,i-1 can be considered a part of the token

rotation time. In this case the token rotation counting starts right after the start of the

transmission of Mn,i-1. The delay in a) doesn’t need to be taken into account provided that

the time to transfer Mn,i to the Ethernet controller is sufficiently low to fit within the slack

obtained by the token rotation time subtracted from the transmission time of Mn,i-1. That is:

[]Nttt iitRTiitc1,1,1, ∈∀−= −− (6.5)

Where:

N is the maximum number of messages

ttc,i is the time required to transfer the message Mn,i from the reception buffer of the

RT node to its Ethernet controller. This time can not be ignored due to the use of

low-processing power microcontrollers.

tRTi-1 is the token rotation time that occurred in the sequence of the transmission of

message Mn,i-1.

tt,i-1 is the transmission time of message Mn,i-1.

This condition can be made completely general by using the worst case concerning

the loading of the payload in the Ethernet controller, the length of the transmitted messages

and the minimum token rotation time. The general condition is then the following:

tMAXRTMINItcMAX TTT −< (6.6)

Where:

TtcMAX.= Max(ttc,i), [1..]i N∀ ∈ , is the maximum time it takes to transfer the payload

to the Ethernet controller.

TRTMIN .= Min(trt,i), [1..]i N∀ ∈ , is the minimum token rotation time.

TtMAX = Max(tt,i), [1..]i N∀ ∈ , is the maximum transmission time of every Ethernet

frame from the RT node.

The worst case delay concerning scenario a), till the start of transmission of

message Mn,i is then:

 T tD RTwcihr,i(a)wc, += (6.7)

 130

Considering now scenario b), the worst case occurs when the loading of the

Ethernet controller finishes immediately after the exhausting of the time out (named t2 in

the original VTPE protocol specification) [4], when node n had nothing to transmit in the

previous token round. That means then that the token has been just released by node n.

This situation doesn’t happen in the application example as we are forcing the RT stations

to transmit a dummy frame even when there are no RT messages.

If it is avoided to perform a fine tuning of the token rotation time (as it was done for

scenario a)), then the maximum time between the release of the token and its next

reception can be limited by the maximum token rotation time. Then, for this case, we have:

RTwcitc,ihr,iwc, T t t (b)D ++= (8.6)

That is, without fine tuning of the token rotation time, one must consider D’wc,i(b)

as the worst case delay.

The maximum time that a RT station holding the token waits to transfer a real-time

message is given by [33]:

ThBEB = tcol +InterFrameGap+TtMAX

where tcol is the worst-case delay to start transferring a message (0.960 ms) due to blocking

in the network in the sequence of 15 collision rounds.

and TtMAX is the maximum time to transfer a message from the VTPE-hBEB station,

which is the maximum message length, as defined above.

After the D’ interval, Mn,i is ready to start competing for the bus and then the

ThBEB equation gives the time it takes to be transmitted. In consequence, the worst case

delay till the end of transmission for Mn,i is:

RTwcihBEB,itc,ihr,iwc, T t t t D +++= (9.6)

Where thBEB,i is the time it takes to transmit the message Mn,i once the token is in

possession of the station n.

The use of low-processing power microcontrollers has also other implications in the

VTPE-hBEB protocol implementation. Recalling the VTPE protocol, after a successful

transmission of a VTPE RT message or after a time out called t2 [80], an interrupt will be

generated in every RT node in order to increment the AC counters. After this increment,

 131

one of the RT nodes will become in possession of the token. If it has an RT message to

transmit, it must start contending for the bus right after the Inter Frame Gap.

However, the microcontroller has to perform a couple of operations which duration

depends on its characteristics, namely its processing power, clock, etc. The overhead

introduced by these operations can be measured by:

tRTmISRuCo T T T += (10.6)

Where TuCo is the maximum time required to execute the operations, i.e., the

microcontroller overhead.

TISR is the worst case time required to execute the Interrupt Service Routine in the

sequence of the end of transmission of the previous VTPE message or of the interrupt after

t2.

TtRTm is the worst case time required to trigger the Real Time message at the

Ethernet controller.

If the microcontrollers are not able to perform those operations within an Inter

Frame Gap, i.e. if:

TuCo > InterFrameGap (IFG)

Then two scenarios can occur:

a) One standard Ethernet message can gain access to the bus.

b) A competition between two or more standard Ethernet messages can start after

the IFG.

Considering that the microcontroller overhead delay will be bounded by the

following limit (which was verified in the case of this experiment):

EminuCo T GapInterFrame T +< (11.6)

Where TEmin is the time to transmit the smallest Ethernet frame (72 bytes), i.e.,

57.6 µs at 10Mbps.

Then, in scenario a), just one standard Ethernet message is able to gain access to the

bus before the RT node can compete. So, the worst case would be the transmission of a

maximum length standard Ethernet message.

 132

However, in scenario b), a worst situation can occur. It consists in the end of a

contention process followed by the start of a transmission of a standard Ethernet message

immediately before the end of the overhead interval. So, scenario b) leads to the worst case

situation arising from these microcontroller non-idealities. The maximum delay, maximum

overhead time, is then:

EmaxuCoMAXoMAX T T T += (12.6)

Where TuCoMAX is the maximum microcontroller overhead handling the interrupt.

TEmax is the time to transmit the largest Ethernet message (1526 bytes), i.e., 1220.8

µs at 10Mbps.

This delay must be added to the worst case delay identified in the ThBEB equation, giving

origin to a corrected value for the non-ideal case of small processing power

microcontrollers:

hBEBoMAXhBEB T T T += (6.13)

We can now derive the maximum delay that suffers, in a real VTPE-hBEB system,

the Mn,i instance of an external RT flow, considering the asynchrony between the external

system and the VTPE-hBEB evaluation system and the non-idealities of the RT nodes. It

is:

RTwcihBEB,oMAXitc,ihr,iwc, T t T t t D ++++= (14.6)

This is the value that must be verified experimentally.

6.6 Results

This section presents a preliminary evaluation of the VTPE-hBEB practical

implementation. A test-bed similar to the arrangement shown in Figure 6.7 was used

altogether with the Delay Measurement System shown in Figure 6.10. All trials were

conducted using the following settings:

 133

• The RS232 interface between RT stations and the data source (or sink) is

configured with a baudrate of 31250 bps, 1 start, 1 stop and no parity;

• A RS232 character stream with a fixed period of 10 msec is fed to RT1

[00:00:00:00:00:01];

• RT1 [00:00:00:00:00:01] transmits an Ethernet packet to RT3 [00:00:00:00:00:03]

containing the received character when it is in possession of the virtual token. If it

has nothing to transmit, it sends a dummy frame.

• RT2 [00:00:00:00:00:02] and RT3 [00:00:00:00: 00:03] transmit dummy Ethernet

frames whenever they are in possession of the token.

• All Ethernet packets transmitted by RT stations have the minimum length, i.e. 72

bytes.

Using these specifications two scenarios were evaluated: unloaded network (best

case) and fully loaded network.

6.6.1 Unloaded network

In this scenario, standard stations ST1 [IP:10.0.0.100], ST2 [IP:10.0.0.61] and ST3

[IP:10.0.0.62] do not transmit packets to the network. Therefore, as it can be seen in Figure

6. 11, only VTPE-hBEB packets flow through the network, whether data frames from RT1

[MAC:00:00:00:00:00:01] to RT3 [MAC:00:00:00:00: 00:03], whether dummy frames

from RT1, RT2 [MAC:00:00:00:00:00:02] and RT3.

Figure 6. 11: Ethereal capture – unloaded network.

The external RS232 data source generates a character each 10 milliseconds. So,

Figure 6. 11 only shows one data frame because it covers just a much smaller time

window. The illustrated broadcast packets are dummy frames, i.e., frames sent when no

valid data was available but the token had been received. In order to observe another data

frame, the time window would have to be increased above the period of the data source.

 134

Figure 6.12 shows the delay distribution for an unloaded Ethernet network and

Figure 6.13 shows the TRT histogram for the same scenario. Delays are spread between 430

µs and 930 µs while the token rotation time is almost always in the range of 420 µs to 460

µs.

Figure 6.12: Delay histogram - unloaded network.

Figure 6.13: TRT histogram - unloaded network.

Table 6. 3 resumes the statistical results obtained for the Delay and Token Rotation

Time experienced on an unloaded Ethernet network.

 135

Average Delay 0.69 ms

Minimum Delay 0.43 ms

Maximum Delay 0.93 ms

Average TRT 0.43 ms

Minimum TRT 0.37 ms

Maximum TRT 0.49 ms

Table 6. 3: Unloaded network – summary.

The TRT is the sum of the RT frame transmission time (76.2µs including the IFG),

the time taken to read, process and transmit a VTPE frame, multiplied by three (number of

RT stations). The TRT exhibits jitter due to the polling nature of reading and writing the

Ethernet frame.

Experimentally it was observed that the sum of the write, read and process times

varies from 56µs to 96µs. Summing this value multiplied by three with the transmission

time of three Ethernet frames, the results presented in Table 6.3 for the token rotation time

are validated.

The delay is measured between the RS232 data source and the RS232 data sink.

Thus, this delay is also affected by the jitter introduced by the asynchronous nature of the

data stream coming from the external system, regarding the token possession.

6.6.2 Full loaded ethernet

In this scenario, the three standard stations (ST1 to ST3) load the network to 100% of its

capacity. In this sense, each station contributes with ⅓ of the overall load. As presented,

the load offered by each station is produced by a traffic generator that sends UDP packets

with constant maximum length and variable inter-departure rate (Poisson distributed). This

experiment consists on the transmission and successful reception of 15000 characters. The

delay is measured between the instant where the character is generated by the source in the

RS232 line and the instant where the character arrives at the sink RS232 line (Figure 6.7).

It can be seen in Figure 6.14 that standard Ethernet frames gain access to the

network between two RT messages (in the figure, packets from ST1 [192.168.9. 100]).

This occurs because, since TuCo is larger than the IFG, a standard station is able to start a

transmission before the RT station handles the token reception.

 136

Figure 6.14: Ethereal capture – fully loaded network.

Figure 6.15: Delay histogram – fully loaded network.

The delay distribution shown in Figure 6.15 has become wider and ranging from

430µs to 5.77ms.

 137

Figure 6. 16: TRT histogram – fully loaded network.

 Figure 6. 16 shows TRT occurrence peaks between 420 and 460µs, 1.58 and

1.62ms, 2.87 and 2.92ms, and 3.94 and 3.98ms. These peaks indicate strong determinism

in the delay between two consecutive possessions of the token by the same RT station. The

justification for this phenomenon is that, in a complete token rotation, a variable number of

standard messages (0, 1, 2 or 3) can gain access to the network, thus delaying RT messages

and increasing the TRT. Therefore, the delay experienced by a data flow is affected by a

variable TRT that is a function of the number of standard frames that gain access to the

network (0 to 3). Additionally, because the data source is not synchronized with the

transmitting RT station, it can transmit a character within a time window that goes from the

instant where the token has just been released or the instant just before the token has been

received. These two factors justify the delay distribution profile in Figure 6.15, where the

delay is spread over a wide range of values.

In fact, the higher occurrence rate of delays above 1.58 ms is inline with the fact

that 85% of the TRTs are above the 1.54 ms threshold.

Table 6.4 shows a resume of the statistical results obtained for the Delay and Token

Rotation Time experienced on a fully loaded Ethernet network.

Average Delay 3.25 ms

Minimum Delay 0.43 ms

Maximum Delay 5.77 ms

 138

Average TRT 3.02 ms

Minimum TRT 0.38 ms

Maximum TRT 4.23 ms

Table 6.4: Fully loaded network – summary.

The minimum token rotation time is similar to the one obtained for the unloaded

case. The minimum rotation time occurs when three real-time frames are sent

consecutively. For the maximum TRT, it is required to account for the transmission of the

real time frames, the transmission of standard frames and the time spent by the

microcontroller to read (∆R)/ write (∆L) one frame from/ to the Ethernet controller, as

shown in Figure 6. 17.

Figure 6. 17: Worst case TRT time line.

 The worst case happens when a maximum duration Ethernet frame takes the bus

just before the RT node controller that holds the token is ready to transmit and when the

CPU spends the maximum time in handling the Ethernet interface. Getting the maximum

TRT in the unloaded case, i.e., 0.49 msec and adding the duration of 3 maximum length

frames (3 x 1.22 msec) one obtains 4.15 msec, quite close to the measured maximum TRT.

Considering now the delay, one would like to validate the Dwc,i equation derived in

Section 6.5. An indirect measure of the worst case overhead time (96µsec were measured)

can be obtained from the maximum TRT of the unloaded case. It is:

 139

0.105msec 3 / 0.058) . 3 (0.490 T

N)/ T . NS - (T t T T

omax

SEminRTumaxtcmaxuCoMAXomax

==

=+=

Now, decomposing the Dwc,i equation, we have:

RTwctMAXcol

EmaxuCoMAXitc,ihr,iwc,

T T GapInterFrame t

 T T t t D

++++

++++=

Ignoring thr,i, which must be small as it corresponds just to a small ISR and a write in a

buffer, and InterFrameGap which is around 10µsec, we have:

 tcol 5.614 D

4.230 0.058 tcol 1.221 0.105 D

wc

wc

+=

++++=

tcol represents the possible collision resolution of the hBEB process, with a worst case of

0.96 msec. It seems that, in our experiment, RT nodes were able to win the collision in one

of the first back off slots (which last 64, 128, 196, ... µsec). This is a reasonable

assumption since we are just using three stations to induce traffic load.

6.7 Conclusions

The conclusions are presented according to the implementations and the experimental

setup for VTPE-hBEB validation.

About the Implementations

The implementation of VTPE based on a single Ethernet controller has a very small

footprint. It occupies approximately 9% of the available flash memory of the

microcontroller used. This is an important result because this VTPE version is to be used in

small processing power processors. A modest network utilisation (16.2% with minimum

frame size) was obtained. However, this is can be considered a good result since a small

processing power microcontroller is used. The utilisation decreases noticeably with the

Ethernet frame length due to the interface between the microcontroller and the Ethernet

controller which is 8 bits in length. This interface requires a significant time to transfer a

frame from the Ethernet controller to the PIC memory and to write a frame to the Ethernet

controller. This overhead has consequences in the VTPE performance.

The implementation based on the dual Ethernet controller architecture presents an

excellent network utilisation. The network utilisations of 78.68% and 98.74% for the

smallest and the longest Ethernet frame, respectively, can be achieved since the master is

able to transmit frames with 15.6µs of inter-frame gap. On the other hand, if this

 140

assumption is not true, the protocol performance is not affected because VTPE continues

working and, if the nodes have nothing to transmit, the virtual token can be passed at each

15.6µs.

About the validation of VTPE-hBEB

The VTPE-hBEB protocol enables the co-exhistence of standard and real-time stations in a

shared Ethernet network without imposing excessive overhead even for reduced processing

power microcontrollers. In this Chapter the impact of the non-idealities of such processors

and of the overall protocol operation was studied. This study includes a theoretical analysis

and an experimental validation to confirm the equations derived. The experimental

validation was done with small nodes based in PIC Microchip processors and legacy

Ethernet controllers. A specifically developed delay measurement system was used to

obtain the required parameters.

 141

Chapter 7

Conclusions and Future Works

The central propositions of the thesis stated throughout this dissertation were:

• The development of the Virtual Token Passing Ethernet protocol or VTPE,

which enables the support of real-time traffic on shared Ethernet networks;

• The development of the VTPE-hBEB mechanism, an improvement of the

VTPE proposal to support real-time communication in unconstrained shared

Ethernet environment, i.e., an environment where Ethernet standard stations

are able to coexist with VTPE-hBEB real-time stations;

• The development of a set of equations enabling the assessment of the timing

determinism of both the VTPE and VTPE-hBEB protocols and

demonstrating its suitability to support real-time communication.

• The adaptation of the VTPE proposal, allowing the token to be addressed to

a node more than once per token rotation. This adaptation enables a better

match between the nodes’ transmission requirements and the bandwidth

allocated to each one of them.

The VTPE proposal is aimed to be used in networks which use small processing

power processors in most of the nodes. VTPE is based on the virtual token passing

technique, which is a real-time bus arbitration mechanism especially suitable for shared

networks that use small processing power processors.

The VTPE-hBEB protocol is an implementation of the VTPE mechanism over the

hBEB algorithm. This VTPE-hBEB implementation allows the support of real-time

communication in open communication environments, where real-time stations coexist

 142

with Ethernet standard stations, prioritizing the real-time traffic, enhancing the VTPE

mechanism.

7.1 Thesis validation

The VTPE and VTPE-hBEB proposals have been experimentally validated in order to

confirm the real-time analytical models of VTPE and VTPE-hBEB. The results of

experimental setup and analytical models confrontation are discussed as follows.

The experimental validation setups

The first experimental setup consists on a single Ethernet controller, whether the second

one is based on a dual Ethernet controller architecture. For both implementations, the

defined target was to develop experimental setups enabling the assessment of both VTPE

and VTPE-hBEB proposals presented in the Chapter 1.

The implementation based on a single Ethernet controller presents a rather reduced

network utilisation: 16.2%. Such reduced utilisation threshold corresponds to an useful

data rate of 1.62 Mbps. Despite of such small network utilisation, it can be considered a

useful result because:

• Very small processing power microcontroller were used;

• The achieved bandwidth of 16.2% is larger than the better usage that can be

obtained when using a widespread fieldbus such as the Controller Area Network,

where the hardware of the nodes is almost similar in price, processing power; in

this case the payload per frame is larger;

• The 1.62Mbps is the lower bound for the VTPE implementation upon a 8-bit

microcontrollers with a 10Mbps Ethernet controller. So, there is a large freedom

degree to increase the bandwidth with the use of more powerful processors and

100Mbps Ethernet controllers.

The implementation based on the dual Ethernet controller architecture presents a

much higher network utilisation, namely:

• 78.68% when transmitting the smallest Ethernet frame (46 data bytes);

 143

• 98.74% when transmitting the longest Ethernet frame (1500 data bytes);

The above depicted utilisation bounds are directly tied to the ability of the low processing

power microcontroller to transmit frames with an inter-frame gap of just 15.6µs. However,

if this assumption is not true, VTPE is not severely affected because the virtual token can

be passed at every 15.6µs in the worst case.

The implementation based on the dual Ethernet controller architecture has a cost

disadvantage, because it uses two microcontrollers and two Ethernet controllers per node

and requires more cabling. However, this architecture doesn’t invalidate the

implementation of VTPE or VTPE-hBEB protocols because, conceptually, it is equivalent

to a node with higher processing power, with an Ethernet controller able to support the

BEB algorithm disabling and interrupt.

The real-time analytical models

Two analytical timing models were derived to highlight the VTPE capability to meet the

determinism required for real-time applications. A similar timing model was also presented

for the VTPE-hBEB protocol.

The first model is intended to derive the timeliness of the classical VTPE proposal.

It consists of a set of equations that enable the evaluation of the token rotation time for the

average and the worst case. The second model derives the timeliness of the enhanced

VTPE proposal intended to support real-time isochronous traffic. This analytical model

allows the evaluation of the token rotation time for the average and worst-case, considering

a macro-cycle, i.e., the token rotation after performing all the dispatching table, and mini-

cycles, i.e., the token rotation time observed by a specific node which is visited several

times by the token during the macro-cycle.

Finally, an analytical timing model for VTPE-hBEB was also presented. It includes

a set of equations that enable the evaluation of the token rotation time and the time interval

t1, which is a fundamental parameter in the protocol.

Validation of VTPE-hBEB protocol in an unconstrained environment

 144

The VTPE-hBEB protocol enables the co-existence of standard and real-time stations in a

shared Ethernet network, prioritizing the real-time traffic upon the timing unconstrained

traffic. The VTPE-hBEB protocol is able to support such kind of traffic separation, without

imposing an excessive amount of overhead, even for reduced processing power

microcontrollers. An experimental setup and a theoretical analysis confirm the assumption

that led to the VTPE-hBEB development. This means that VTPE-hBEB can be considered

as a protocol able to allow the co-existence of real-time and non real-time stations in an

unconstrained environment.

7.2 Future work

The work carried out throughout this thesis fulfils the targets initially proposed. However

some developments should still be done to continue the VTPE development. Some

suggestions are pointed out to future work namely: an implementation of VTPE and

VTPE/h-BEB in FPGA using IP cores and the implementation of the VTPE protocol over

power line communication.

Implementation of VTPE and VTPE/h-BEB in FPGA using IP cores

The implementations of VTPE and VTPE/h-BEB protocols using FPGA and IP cores was

proposed in this thesis but they were not yet implemented. These implementations will

support some features not supported by the current Ethernet standard controllers, as to

integrate these protocols in the same Ethernet controller. As a consequence, this integration

will allow running VTPE or VTPE-hBEB much faster than the implementation based on

single and dual Ethernet controller implementations. The implementation based on IP core

will improve the network utilisation to the theoretical limits of Ethernet. It is interesting to

point out that this limit can not be found in the traditional shared Ethernet implementations

due to the probabilistic BEB algorithm used in the CSMA/CD medium access.

This implementation requires a programmable hardware as a FPGA and an Ethernet

physical layer chipset with MII (Media Independent Interface) interface.

VTPE for power line communication (VTPE-PLC)

 145

The power line for communication purposes is an attractive solution because it allows the

use of the existing power cabling to deliver both electrical power and a data

communication medium. The ubiquity of electrical outlets in the buildings and simplicity

to use the power outlets as communication points are an important issue to consider.

However due to the hostile power line environment for communication purposes such as

impulsive noise, distortion and attenuation, reflections, randomly time-varying, it has been

difficult the use of power lines as a communication medium, at least, for application

requiring high bandwidth utilisation.

The interest for power line communication has been increasingly motivated by the

current support of high speed communication that allows application such as multimedia

and internet. On the other hand, applications aimed for home automation, home security,

and lighting control must share the same communication medium working with different

protocols. So there is the need to find a power line communication protocol suitable to

interconnect home automation devices and multimedia devices.

Well known MAC techniques suited for wired networks are not well suited for

power line communication. Polling can handle heavy traffic and inherently provides

quality of service guarantees. However, polling can be highly inefficient under light or

highly asymmetric traffic patterns or when polling lists must he update frequently as

network terminals are added or removed.

The token passing techniques (token ring, token bus) are efficient under heavy

symmetric loads, but can be expensive to implement and serious problems could arise with

lost tokens on noisy unreliable media such as the power grid used in PLC.

On the other hand, the use of collision detection (CSMA/CD) techniques upon

power line networks is a difficult task, due to the wide variation of the received signal and

noise levels that makes the collision detection difficult. An alternative to collision

detection that can be easily employed in PLC is the collision avoidance (CSMA/CA)

technique. Such CSMA/CA techniques are usually used in the implementation of

powerline chips.

We believe that the VTPE and CSMA/CA combination can be highly suitable for

Power Line Communication because:

• The VTPE protocol does not require explicit token for protocol’s synchronisation

purpose, therefore there is no explicit token loss;

 146

• The transmitted frames are used in the protocol synchronisation instead of time

slices resulted of a clock agreement among the nodes as it is done in TDMA based

protocols.

Nevertheless due to the hostile power line environment, frame loss can occur and

can cause loss of synchronisation in the VTPE over PLC. However as each transmitted

frame carries the source MAC address or eventually the Access Counter, there is

information at each frame enough to implement an efficient token loss recovery

mechanism. We also believe that VTPE over PLC is suitable to interconnect small

processing power devices, such as those devices used in home automation as well as more

powerful processing devices as those used in multimedia communication.

Currently there are physical layer chipsets aimed to PLC and able to communicate

with data rates up to 14Mbps and, more recently, up to more than 100Mbps. These chipsets

have support on-chip of the standardised Ethernet MII interface. Then we believe that

using the VTPE implementation on IP core with a physical layer power line chipset is

possible to develop an efficient version of VTPE over power line.

 147

Bibliography

[1] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, Massachusetts, 1997.

[2] Dietrich, D., Sauter, T.. Evolution Potentials for Fieldbus Systems. WFCS 2000,

IEEE Workshop on Factory Communication Systems. Porto, Portugal, September

2000.

[3] Pedreiras, P., L. Almeida, and P. Gai, The FTT- Ethernet protocol: Merging

flexibility, timeliness and efficiency, Proceedings of the 14th Euromicro Conference

on Real-Time Systems, Viena, Austria, June 19-21, 2001.

[4] Song, Y. Time Constrained Communication over Switched Ethernet. FeT’01, 4th Int.

Conf. on Fieldbus Systems and their Applications. Nancy, France. Nov. 2001.

Shimokawa, Y. and Y. Shiobara. Real-Time Ethernet.

[5] Decotignie, J-D. A perspective on Ethernet as a Fieldbus. FeT’01, 4th Int. Conf. on

Fieldbus Systems and their Applications. Nancy, France. Nov. 2001.

[6] Almeida L., Pedreiras P. “Approaches to Enforce Real-Time Behavior in Ethernet” -

The Industrial Communication Technology Handbook”, ISBN 0-8493-3077-7 Edited

by Richard Zurawski, pp 20-1 – 2-28, 2005.

[7] Carreiro, F. Borges, Fonseca, J. Alberto, and Pedreiras, P, “Virtual Token-Passing

Ethernet-VTPE”, FET 2003 5th IFAC International Conference on Fieldbus Systems

and their Applications, Aveiro, Portugal, July 2003.

[8] EN 50170, Volume 1- European Fieldbus Standard

[9] R. Moraes and F. Vasques, "A Probabilistic Analysis of Traffic Separation in Shared

Ethernet Systems Using the hBEB Collision Resolution Algorithm," presented at 13th

International Conference on Real-Time Systems - RTS'2005, Paris - France, 2005.

[10] DIX Ethernet V2.0 specification, 1982.

[11] IEEE 802.3 10BASE5 standard

 148

[12] IEEE 802.3 10BASE2 standard

[13] IEEE 802.3c 1BASE5 StarLan standard

[14] IEEE 802.3i 10BASE-T.

[15] IEEE 802.3u 100BASE-T.

[16] IEEE802.3z 1000BASE-T.

[17] IEEE 802.3ae-2002 – 10Gbps.

[18] K. J. Christensen, "Performance evaluation of the binary logarithmic arbitration

method (BLAM)," presented at Proceedings of LCN - 21st Annual Conference on

Local Computer Networks, 13-16 Oct. 1996, Minneapolis, MN, USA, 1996.

[19] B. Whetten, S. Steinberg, and D. Ferrari, "The packet starvation effect in CSMA/CD

LANs and a solution," presented at Proceedings of 19th Conference on Local

Computer Networks, 2-5 Oct. 1994, Minneapolis, MN, USA, 1994.

[20] R. M. Metcalfe and D. R. Boggs, "Ethernet: distributed packet switching for local

computer networks," Communications of the ACM, vol. 19, pp. 395-404, 1976.

[21] S. S. Lam and L. Kleinrock, "Packet Switching in a Multiaccess Broadcast Channel:

Dynamic Control Procedures," vol. CM-23, pp. 891-904, 1975.

[22] G. T. Almes and E. D. Lazowska, "The behavior of Ethernet-like computer

communications networks," presented at Proceedings of the Seventh Symposium on

Operating Systems Principles, 10-12 Dec. 1979, Pacific Grove, CA, USA, 1979.

[23] C. E. Spurgeon, Ethernet: The definitive Guide: O´Reilly & Associates, Inc., 2000.

[24] D. R. Boggs, J. C. Mogul, and C. A. Kent, "Measured capacity of an Ethernet:

myths and reality," Computer Communication Review, vol. 25, pp. 123-136, 1995.

[25] J. F. Shoch and J. A. Hupp, "Measured performance of an Ethernet local network,"

Commun. ACM, vol. 23, pp. 711-721, 1980.

[26] Court, R..“Real-Time Ethernet”. Computer Communications, vol. 15 pp. 198-201.

April 1992.

[27] LeLann, G, N. Rivierre. Real-Time Communications over Broadcast Networks: the

CSMA-DCR and the DOD-CSMA-CD Protocols. INRIA Report RR1863. 1993.

[28] Shimokawa, Y., Y. Shiobara. “Real-Time Ethernet for Industrial Applications”.

Proceedings of IECON, pp829-834. 1985.

 149

[29] R. Moraes and F. Vasques, "High Priority Traffic Separation in Shared Ethernet

Networks," presented at 4th International Workshop on Real- Time Networks -

RTN´2005, Palma Mallorca, Spain, 2005.

[30] "ns-2 Network Simulator," 2.27 ed, 2004. Available at: http://www.isi.edu/nsnam/ns

[31] R. Moraes and F. Vasques, "Real-Time Traffic Separation in Shared Ethernet

Networks: Simulation Analysis of the hBEB Collision Resolution Algorithm,"

presented at 11th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, Hong Kong, China, 2005.

[32] R. Moraes and F. Vasques, "Interference Caused by the Insertion of an hBEB Station

in Standard Shared-Ethernet Networks: Simulation Analysis," presented at ESM

Conference - Simulation Methodology and Tools, Porto, Portugal, 2005.

[33] R. Moraes and F. Vasques, "Probabilistic Timing Analysis of the hBEB Collision

Resolution Algorithm," presented at 6th IFAC International Conference on Fieldbus

System and thei Application, Puebla, México, 2005.

[34] F. Carreiro, R. Moraes, J. A. Fonseca, and F. Vasques, "Real-Time Communication

in Unconstrained Shared Ethernet Networks: The Virtual Token-Passing Approach,"

presented at 10th IEEE International Conference on Emerging Technologies and

Factory Automation - ETFA, Catania, Italy, 2005.

[35] Sobrinho, J. L., A. S. Krishnakumar. "EQuB-Ethernet Quality of Service Using

Black Bursts," in Proc. 23rd Conference on Local Computer Networks, pp. 286-296,

Boston, Massachusetts, October 1998.

[36] Malcolm, N., W. Zhao. Hard Real-Time Communications in Multiple-Access

Networks. Real Time Systems 9, 75-107. Kluwer Academic Publishers. 1995.

[37] Court, R..“Real-Time Ethernet”. Computer Communications, vol. 15 pp. 198-201.

April 1992.

[38] LeLann, G, N. Rivierre. Real-Time Communications over Broadcast Networks: the

CSMA-DCR and the DOD-CSMA-CD Protocols. INRIA Report RR1863. 1993.

[39] Malcolm, N., W. Zhao. Hard Real-Time Communications in Multiple-Access

Networks. Real Time Systems 9, 75-107. Kluwer Academic Publishers. 1995.

[40] Molle, M., L. Kleinrock. “Virtual Time CSMA: Why two clocks are better than

one.”. IEEE Transactions on Communications. COM-33(9):919-933. 1985.

 150

[41] T. Cheng, J.Y. Chung, and C.J. Georgiou. Enhancement of token bus protocols for

multimedia applications. In Digest of papers, IEEE COMPCON Spring, pages 30–

36, 1993.

[42] Steffen, R., Zeller, M. Knorr, R. “Real-Time Communication over Shared Media

Local Area Networks”. Proceedings of the 2nd Int. Workshop on Real-Time LANs in

the Internet Age, RTLIA’03. Porto, Portugal. July 2003.

[43] Venkatramani, C., T. Chiueh. Supporting Real-Time Traffic on Ethernet.

Proceedings of IEEE Real-Time Systems Symposium. San Juan, Puerto Rico.

December 94.

[44] Martínez, J., Harbour, M., Gutiérrez, J.”A Multipoint Communication Protocol

Based on Ethernet for Analyzable Distributed Applications”. Proc. of the 1st Int.

Workshop on Real-Time LANs in the Internet Age, RTLIA’02, Vienna, Austria.

Published by Edições Politema, Porto, Portugal, 2002.

[45] Martínez, J., Harbour, M., Gutiérrez, J. “RT-EP: Real-Time Ethernet Protocol for

Analyzable Distributed Applications on a Minimum Real-Time POSIX Kernel”.

Proceedings of the 2nd Int. Workshop on Real-Time LANs in the Internet Age,

RTLIA’03. Porto, Portugal. July 2003.

[46] Steffen, R., Zeller, M. Knorr, R. “Real-Time Communication over Shared Media

Local Area Networks”. Proceedings of the 2nd Int. Workshop on Real-Time LANs in

the Internet Age, RTLIA’03. Porto, Portugal. July 2003.

[47] Home Phoneline Association. http://www.homepna.org

[48] Powerline Alliance. http://www.powerlineworld.com

[49] C. Jenkins, “P-NET as a European Fieldbus Standard EN 50170 vol. 1”, in Institute

of Measurement + Control Journal, 1997.

[50] P-NET organization http://www.p-net.org/booklet/bookpg13.html

[51] Eduardo Tovar. Supporting Real-Time Communications with Standard Factory-Floor

Networks. PhD thesis, Faculdade de Engenharia da Universidade do Porto, Portugal,

July 1999.

[52] C. Jenkins., “The Anatomy of the P-NET Fieldbus” - The Industrial Communication

Technology Handbook”, ISBN 0-8493-3077-7 Edited by Richard Zurawski, pp 20-1

– 20-28, 2005.

 151

[53] Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., Zainlinger,

R. “Distributed Fault-Tolerant Real-Time Systems: The MARS approach”. IEEE

Micro, 9(1):25-40. February 1989.

[54] Schabl, W., Reisinger, J., Grunsteidl, G. “A Survey of MARS”. Vienna University of

Technology, Austria. Research Report Nr. 16/89. October 1989.

[55] Lee, J., Shin, H. “A Variable Bandwidth Allocation Scheme for Ethernet-Based

Real-Time Communication”. Proceedings of the 2nd International Workshop on

Real-Time Computing Systems and Applications, pp. 28-33. Tokyo, Japan. October

1995.

[56] Willig A. A MAC Protocol and a Scheduling Approach as Elements of a Lower

Layers Architecture in Wireless Industrial LANs. Proceedings of WFCS '97 (IEEE

Int. Works. on Factory Communication Systems). Barcelona, Spain. October, 1997.

[57] Pedreiras, P., Gai, P., Almeida, L.. “The FTT-Ethernet Protocol: Merging Flexibility,

Timeliness and Efficiency”, pp.152-160. Proceedings of the 14th Euromicro

Conference on Real-Time Systems. Vienna, Austria. IEEE Press, 2002.

[58] Almeida L., Pedreiras P. and Fonseca J. A.. “The FTT-CAN protocol: Why and

How”. IEEE Transactions on Industrial Electronics, 49(6), December 2002.

[59] FTT web page, available a http://www.ieeta.pt/lse/ftt

[60] Almeida L., Pedreiras P. and Fonseca J. A.. “The FTT-CAN protocol: Why and

How”. IEEE Transactions on Industrial Electronics, 49(6), December 2002.

[61] “ETHERNET Powerlink Data Transport Services White-Paper Ver. 0005”.

Bernecker + Rainer Industrie-Elektronic Ges.m.b.H, available at

http://www.ethernet-powerlink.org . September 2002.

[62] Jasperneit, J., P. Neumann. “Switched Ethernet for Factory Communication”.

Proceedings of ETFA2001 – 8th IEEE International Conference on Emerging

Technologies and Factory Automation. Antibes, France. October 2001.

[63] Moldovansky, A., Utilization of Modern Switching Technology in Ethernet/IP

Networks, Proc. of the 1st Int. Workshop on Real-Time LANs in the Internet Age,

RTLIA’02, Vienna, Austria. Published by Edições Politema, Porto, Portugal, 2002.

[64] RTPS (Real-Time Publisher/Subscriber protocol) part of the IDA (Interface for

Distributed Automation) specification, available on www.ida-group.org.

 152

[65] RTPS (Real-Time Publisher/Subscriber protocol) part of the IDA (Interface for

Distributed Automation) specification, available on www.ida-group.org.

[66] Hoang, H. Jonsson, M., Hagstrom, U., Kallerdahl, A. "Switched Real-Time Ethernet

with Earliest Deadline First Scheduling - Protocols and Traffic Handling".

Proceedings of WPDRTS 2002, the 10th Intl. Workshop on Parallel and Distributed

Real-Time Systems. Fort Lauderdale, Florida, USA. April 2002.

[67] Hoang, H. Jonsson, M. "Switched Real-Time Ethernet in Industrial Applications –

Asymmetric Deadline Partitioning Scheme”. Proceedings of the 2nd Int. Workshop

on Real-Time LANs in the Internet Age, RTLIA’03. Porto, Portugal. July 2003.

[68] Hoang, H. Jonsson, M., Hagstrom, U., Kallerdahl, A. "Switched Real-Time Ethernet

with Earliest Deadline First Scheduling - Protocols and Traffic Handling".

Proceedings of WPDRTS 2002, the 10th Intl. Workshop on Parallel and Distributed

Real-Time Systems. Fort Lauderdale, Florida, USA. April 2002.

[69] Hoang, H. Jonsson, M. "Switched Real-Time Ethernet in Industrial Applications –

Asymmetric Deadline Partitioning Scheme”. Proceedings of the 2nd Int. Workshop

on Real-Time LANs in the Internet Age, RTLIA’03. Porto, Portugal. July 2003.

[70] Varadarajan, S., Chiueh, T. “EtheReal: A Host-Transparent Real-Time Fast Ethernet

Switch”. Proceedings of the 6th International Conference on Network Protocols, pp.

12-21. Austin, USA. October 1998.

[71] Varadarajan, S. “Experiences with EtheReal: A Fault-Tolerant Real-Time Ethernet

Switch”. Proceedings of the 8th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA). pp. 184-195. Antibes, France.

October 2001.

[72] Skeie, T., Johannesses, S., Holmeide, O.. “The road to an end-to-end Deterministic

Ethernert”. Proc of WFCS’02 - 4th IEEE International Workshop on Factory

Communication Systems”, pp. 3-9. Västeras, Sweden, August 2002.

[73] Jasperneit, J., Neumann, P., Theis, M. and Watson, K.. “Deterministic Real-Time

Communication with Switched Ethernet”. Proc of WFCS’02 - 4th IEEE Workshop

on Factory Communication Systems”, pp. 11--18. Västeras, Sweden, August 2002.

[74] Rondeau, E., Divoux, T., Adoud, H.. “Study and method of Ethernet architecture

segmentation for Industrial applications”, pp. 165-172. 4th IFAC Conference on

Fieldbus Systems and Their Applications. Nancy, France, November 2001.

 153

[75] Jasperneit, J., Neumann, P., Theis, M. and Watson, K.. “Deterministic Real-Time

Communication with Switched Ethernet”. Proc of WFCS’02 - 4th IEEE Workshop

on Factory Communication Systems”, pp. 11--18. Västeras, Sweden, August 2002.

[76] Lo Bello, L., Mirabella, O., et al., “Fuzzy Traffic Smoothing: an Approach for Real-

time Communication over Ethernet Networks”, Proc of WFCS 2002, 4th IEEE

Workshop on Factory Communication Systems”, Västeras, Sweden, August 2002.

[77] ETHERNET Powerlink protocol, available at www.ethernet-powerlink.org

[78] Ethernet/IP (Industrial Protocol) specification, available on www.odva.org

[79] Moldovansky, A., Utilization of Modern Switching Technology in Ethernet/IP

Networks, Proc. of the 1st Int. Workshop on Real-Time LANs in the Internet Age,

RTLIA’02, Vienna, Austria. Published by Edições Politema, Porto, Portugal, 2002.

[80] Carreiro F., et al, "The Virtual Token Passing Ethernet: Implementation and

Experimental Results" Proc. 3rd Workshop on Real-Time Networks, Catania, Italy,

2004.

[81] Carreiro F., et al, "Virtual Token-Passing Ethernet Proposal using Programmable

Hardware," Proc. VII Workshop de Tempo Real, May 13, Fortaleza, Brazil.

[82] J. Silvestre “Diseño, Implementación y Evaluación de Estrategias para el Transporte

de Imagens sobre Redes Industriales Profibus”, PhD Thesis, Escuela Politécnica

Superior de Alcoy, Spain, October 2004.

[83] J. A. Stankovic et al., Strategic directions in real-time and embedded systems, ACM

Computer Surveys 28 (1996), no. 4, 751–763.

[84] J.R Pimentel, Industrial multimedia systems, IES Industrial Electronics News Letter

45 (1998), no. 2.

[85] D. Dietrich and T. Sauter, Evolution potentials for fieldbus systems, Proc.

WFCS’2000, IEEE International Workshop on Factory Communications Systems,

Oporto, Portugal, 2000.

[86] P. Neumann, Integration of fieldbus systems and telecommunication systems in the

field of industrial automation, Proceedings V. Simpósio Brasileiro de Automação

Inteligente (2001).

[87] Nicholas Malcolm and Wei Zhao, “Protocol for Real-Time Communications”,

Computer 27(1), January 1994.

[88] Cyrrus Logig website http://www.cirrus.com/en/

 154

[89] Microchip website www.microchip.com

[90] Silabs website www.silabs.com

[91] Ayres, J. “Using the Crystal CS8900A in 8-bit Mode”, Cirrus application note

AN181, available in http://www.cirrus.com/en/

[92] Edtp website www.edtp.com

[93] RTL8019 Realtek Full-Duplex Ethernet Controller with Plug and Play Function

(RealPNP)

[94] Eady, F. “Networking and Internetworking with Microcontrollers”, ISBN 0-7506-

7698-1, ELSEVIER, 2004.

[95] Application Note AN-47, “DP8390 Network Interface Controller: An Introductory

Guide”. National Semiconductors, May 1993.

[96] Application Note 874, “Writing Drivers for the DP8390 NIC Family of Ethernet

Controllers”. National Semiconductor, National Semiconductor.

[97] Carreiro. F., R. Moraes, J. A. Fonseca, and F. Vasques, "Real-Time Communication

in Unconstrained Shared Ethernet Networks: The Virtual Token-Passing Approach,"

presented at 10th IEEE International Conference on Emerging Technologies and

Factory Automation - ETFA, Catania, Italy, 2005.

[98] Bartolomeu P., “Evaluating Bluetooth® for the wireless transmission of MIDI”, MsC

dissertation, University of Aveiro - Portugal, 2005.

[99] D-ITG, Distributed Internet Traffic Generator,

http://www.grid.unina.it/software/ITG/, April 2007.

[100] Ethereal network analyser www.ethereal.org

[101] P. Bartolomeu, V. Silva, J. Fonseca, “Delay Measurement System for Serial Data

Flows”, subm. to 12th IEEE Conference on Emerging Technologies and Factory

Automation, Greece, September 2007.

[102] R. Moraes “Supporting Real-Time Communication in CSMA-Based Networks: The

VTP-CSMA Virtual Token Passing Approach”, PhD Thesis, University of Porto,

Portugal, July 2007.

	paginas iniciais.pdf
	tese.pdf

