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resumo 

 
Os Sistemas Computacionais de Controlo Distribuído (SCCD) estão muito
disseminados em aplicações que vão desde o controlo de processos e 
manufactura a automóveis, aviões e robôs. Muitas aplicações são de 
natureza tempo-real, ou seja, impõem fortes restrições às propriedades 
subjacentes aos sistemas de controlo, gerando a necessidade de fornecer um 
comportamento temporal previsível durante períodos alargados de tempo. Em 
particular, dependendo da aplicação, uma falha em garantir as restrições 
pode causar importantes perdas económicas ou mesmo pôr vidas humanas 
em risco. 
Actualmente, a quantidade e funcionalidade dos modernos SCCD têm 
crescido firmemente. Esta evolução é motivada por uma nova classe de 
aplicações que requer maior demanda de recursos tais como aplicações de 
multimedia (por exemplo visão), bem como pela tendência em usar grande 
número de processadres simples e interconectados, em vez de poucos e 
poderosos processadores, encapsulando cada funcionalidade num único 
processador. Consequentemente, a quantidade de informação que deve ser 
trocada entre os nós da rede também cresceu drasticamente nos últimos 
anos e está agora atingindo os limites que podem ser obtidos por tradicionais 
barramentos de campo, como por exempo CAN, WorldFIP, PROFIBUS. 
Outras alternativas são pois requeridas para suportar a necessidade de 
largura de banda e a manutenção de exigências dos sistemas de 
comunicação tempo-real: previsibilidade, pontualidade, atraso e variação de 
período limitados.  
Uma das linhas de trabalho tem apostado na Ethernet, tirando vantagem dos 
baixos custos dos circuitos, da elevada largura de banda, da fácil integração 
com a Internet, e da simplicidade em promover expansões e compatibilidade 
com redes usadas na estrutura administrativa das empresas industriais. 
Porém, o mecanismo padronizado de acesso ao meio da Ethernet 
(CSMA/CD) é destrutivo e não determinístico, o que impede seu uso directo 
ao nível de campo ou pelo menos em aplicações de comunicação tempo-real. 
Apesar disso, muitas abordagens diferentes têm sido propostas e usadas 
para obter comportamento tempo-real em Ethernet. 
As abordagens actuais para dotar de comportamento tempo-real Ethernet 
partilhada apresentam desvantagens tais como: exigência de hardware 
especializado, fornecimento de garantias temporais estatísticas, ineficiência 
na utilização da largura de banda ou na reposta tempo-real. São ainda por 
vezes inflexíveis com respeito às propriedades de tráfego bem como com as 
políticas de escalonamento. Podem exigir processadores com elevado poder 
de cálculo. Finalmente não permitem que estações tempo-real possam 
coexistir com estações Ethernet standard no mesmo segmento. Uma 
proposta recente, o algoritmo hBEB, permite a coexistência de estações 
tempo-real e standard no mesmo segmento. Contudo, apenas uma estação 
tempo-real pode estar activa, o que é inaceitável para aplicações de
automação e controlo. 
Esta tese discute uma nova solução para promover tempo-real em Ethernet 
partilhada, baseando-se na passagem implícita de testemunho de forma
similar à usada pelo protocolo P-NET. Esta técnica é um mecanismo de 
acesso ao meio físico pouco exigente em termos de processamento, sendo 
portanto adequada para implementar uma rede de dispositivos baseados em 
processadores de baixo poder de cálculo  e controladores Ethernet standard.  



 

  

  
 

 

 
Esta tese apresenta ainda uma proposta de implementação do VTPE em IP 
core para superar algumas dificuldades derivadas de funcionalidades que 
não são suportadas por controladores standard, nomeadamente a 
arbitragem do meio físico durante a transmissão de uma trama. Esta nova 
proposta pode aumentar muito a eficiência do VTPE no uso da largura de 
banda. 
O VTPE, assim como P-NET ou protocolos similares, permite a uma estação 
apenas comunicar uma vez por cada circulação do testemunho. Esta 
imposição pode causar bloqueios de comunicação por períodos inaceitáveis 
em aplicações com tráfego isócrono, por exemplo multimedia. Uma solução 
proposta permite que uma estação possa aceder ao meio físico mais de uma 
vez por cada circulação do token. Os resultados experimentais a as análises 
desenvolvidas mostram que o bloqueio pode ser drasticamente reduzido. 
Por último esta tese discute uma variante do protocolo VTPE, o VTPE/h-
BEB, que permite que mais de uma estação hBEB possa coexistir com 
diversas estações Ethernet standard num mesmo segmento partilhado. Um 
demonstrador para prova de conceito bem como uma aplicação foram 
também implementados. 
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Distributed Computer-Control Systems (DCCS) are widely disseminated in 
applications ranging from automation and control to automotive, avionics and 
robotics. Many of these applications are real-time, posing stringent constraints 
to the properties of underlying control systems, which arise from the need to 
provide predictable behaviour during extended time periods. Depending on 
the particular type of application, a failure to meet these constraints can cause 
important economic losses or can even put human life in risk. 
Currently the number and functionality of modern DCCSs have been 
increasing steadily. This evolution has been motivated for a new class of 
applications of more resource demanding applications, such as multimedia 
(e.g. machine vision), as well as by the trend to use large numbers of simple 
interconnected processors, instead of a few powerful ones, encapsulating 
each functionality in one single processor. Consequently, the amount of 
information that must be exchanged among the network nodes has also 
increased dramatically and is now reaching the limits achievable by traditional 
fieldbuses. 
Therefore, other alternatives are required to support higher bandwidth 
demands while keeping the main requirements of a real-time communication 
system: predictability, timeliness, bounded delays and jitter. 
Efforts have been made with Ethernet to take advantage of the low cost of the 
silicon, high bandwidth, easy integration with the Internet, easy expansion and 
compatibility with the networks used at higher layers in the factory structure. 
However its standardized media access control (CSMA/CD) is destructive and 
not deterministic, impairing its direct use at field level at least for real-time 
communication. 
Despite this, many solutions have been proposed to achieve real-time 
behavior in Ethernet. However they present several disadvantages: requiring 
specialized hardware, providing statistical timeliness guarantees only, being
bandwidth or response-time inefficient, being inflexible concerning traffic 
properties and/or scheduling policy, or finally not allowing real-time stations to 
coexist with standard Ethernet stations in the same segment. A recent 
proposal, the hBEB algorithm, allows the coexistence of real-time and
standard Ethernet stations in the same shared segment. However hBEB limits 
at most one real-time station per segment which is unacceptable for
applications in industrial automation and process control. 
This thesis discusses a new real-time shared Ethernet solution based on the 
virtual token passing technique similarly to the one used by the P-NET 
protocol. This technique is a medium access control mechanism that requires 
small processing power, being suitable to implement devices based on 
processors with small processing power. The solution is called Virtual Token 
Passing Ethernet or VTPE. This proposal discusses the modifications required 
in the Ethernet frame format, the temporal analysis to guarantee real-time 
communication and the implementation of two demonstrators based on 
microcontrollers and standard Ethernet controllers. 
  
 

 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This thesis also presents a proposal to implement VTPE in an IP Core to 
overcome some difficulties derived from limitations of standard Ethernet 
controllers, namely to allow medium access control during a frame transmission. 
This proposal can increase the bandwidth efficiency of VTPE.  
VTPE, as well as P-NET or any other protocol based on circular token rotation 
technique, only allows a station to communicate once for each token round. This 
design imposition can cause unacceptable communication blocking in 
applications with isochronous traffic such as multimedia. An improvement in the 
VTPE proposal enables a station to access the medium more than once per 
token round. The experimental results as well as the temporal analysis show
that the blocking can be drastically reduced. This improvement can also be used 
in the P-NET protocol. 
Finally this thesis proposes a variant of VTPE, named VTPE/hBEB, to be 
implemented in Ethernet controllers that are able to support the hBEB algorithm. 
The VTPE/hBEB allows more than one hBEB station to coexist with several 
standard Ethernet stations in the same shared Ethernet segment. A 
demonstrator for the VTPE/hBEB validation, as well as an application, are also 
presented and discussed. 
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Chapter 1 

 

Introduction 
 

1.1 The problem 

Distributed Computer-Control Systems (DCCS) are widely disseminated, appearing in 

applications ranging from automated process and manufacturing control to automotive, 

avionics and robotics. Many of these applications have real-time nature, i.e., pose stringent 

constraints to the properties of the underlying control systems, which arise from the need 

to provide predictable behaviour during extended time periods. Depending on the 

particular type of application, failure to meet these constraints can cause important 

economic losses or can even put human life in risk [1].  

 Nowadays, the quantity and functionality of microprocessor-based nodes in modern 

DCCS have been increasing steadily [2]. This evolution has been motivated by new classes 

of more resource demanding applications, such as multimedia applications (e.g. machine 

vision), as well as by the trend to use large numbers of simple interconnected processors, 

instead of few powerful ones [3], encapsulating each functionality in one single processor 

[3]. Consequently, the amount of information that must be exchanged among the network 

nodes has also increased dramatically over the last years and it is now reaching the limits 

that are achievable using traditional fieldbuses [4], e.g. CAN, WorldFIP, PROFIBUS. 

Therefore, other alternatives are required to support higher bandwidth demands 

while keeping the main requirements of a real-time communication system: predictability, 

timeliness, bounded delays and jitter.  

 Well-known networks, such as FDDI and ATM, have been extensively analysed for 

both hard and soft real-time communication systems [4]. However, due to high complexity, 
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high cost, lack of flexibility and interconnection capacity, they have not gained general 

acceptance for the use at the field level [4].  

 Similar efforts have been done with Ethernet, trying to take advantage of the 

availability of cheap silicon, easy integration with Internet, clear path for future 

expandability, and compatibility with networks used at higher layers in the factory 

structure [5]. However, its standardized non-deterministic arbitration mechanism 

(CSMA/CD) prevents its direct use at field level, at least for hard real-time 

communications. Despite of this, there are many different approaches for achieving real-

time behaviour on Ethernet.   

 The techniques that have been used to achieve deterministic message transmission 

on Ethernet are the well-known medium access control techniques for shared broadcast 

networks such as Modified CSMA protocols, Time Division Multiple Access – TDMA, 

Token-passing, Master/slave technique, and Switched Ethernet.  

 Since roughly one decade ago that the interest on using Ethernet switches has been 

growing as a means to improve global throughput, traffic isolation and to reduce the 

impact of the non-deterministic features of the original CSMA/CD arbitration mechanism. 

However a common misconception is that the use of switches, due to the elimination of 

collisions, is enough to enforce real-time behaviour in Ethernet networks, but this is not 

true in the general case.  

 Despite of the recent proposals consisting in using switched Ethernet to replace 

fieldbuses in control and factory automation, the interest on shared Ethernet is not over, 

yet, either for applications requiring frequent multicasting, in which case the benefits of 

using switches are substantially reduced, as well as for applications requiring precise 

control of transmission timing, such as high speed servoing (Almeida and Pedreiras [6]).  

 Solving the collision problem however is only part of a useful shared Ethernet 

solution to field level application. There are many other important requirement that a real-

time Ethernet solution must have, or at least, that it is desirable to have. For example some 

of those are the introduction of operational flexibility, like to add and to remove nodes, to 

have an online bandwidth allocation scheme, to have an efficient support of multicast 

messages, and to be fault tolerant.  

 Nowadays there are many approaches to achieve real-time on shared Ethernet, but 

it is interesting to notice that such approaches either require specialized hardware, or just 
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provide statistical timeliness guarantees, or are bandwidth or response-time inefficient, or 

are inflexible concerning the properties of the network traffic as well as the traffic 

scheduling policy, or finally, they are costly in terms of processing power and memory 

requirements. Also, recent proposals such as hBEB [9] limit the number of real-time nodes 

to just a single transmission station which is unacceptable for automation applications. 

Thus they are not well suited for use in small sensors, actuators and controllers with 

communications capability. So there is a need to find Ethernet deterministic solutions, so 

that it becomes possible to take profit of its higher data-communication capacity to 

interconnect sensors, controllers and actuators at the field level. 

 This thesis discourses about a new real-time Ethernet solution based on the virtual 

token-passing in order to override the destructive and non-deterministic CSMA/CD 

medium access arbitration mechanism of Ethernet. Virtual token-passing technique is a 

real-time bus arbitration mechanism especially suitable for shared networks which use 

small processing power processors in most of the nodes. 

1.2 The thesis 

This thesis presents a proposal and the development of the Virtual Tokenpassing Ethernet 

(VTPE), a new real-time implementation to support real-time traffic on shared Ethernet, 

and the VTPE-hBEB protocol, an improvement of VTPE to support real-time 

communication in unconstrained shared Ethernet, i.e., an environment comprised of an 

unlimited number of Ethernet standard stations and real-time stations (hBEB). 

EQuB and hBEB, according our best knowledge are the unique solutions that 

provide traffic separation, allowing real-time devices to coexist with standard Ethernet 

devices in the same network segment. 

1.3 Contributions 

Two general contributions of this thesis are summarized in the following subsections. The 

first one is the proposal and development of the VTPE protocol, and the second one is the 

VTPE-hBEB protocol a variant of VTPE, to support real-time communication in 

unconstraint shared Ethernet.  
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1.3.1 The VTPE protocol  

The VTPE [7] is a real-time Ethernet approach based on implicit token rotation (virtual 

token passing) like the one used in the P-NET fieldbus protocol [8]. The virtual token-

passing approach is a simple and efficient technique suitable for shared bus networks, 

especially when small processing power processors are used as CPUs. 

 The following goals have been established to develop VTPE: 

• Support on the same bus of slow and cheap devices based in microcontrollers, as 

well as more demanding devices integrating powerful processors; 

• Low processing overhead in order to be implemented in microcontrollers with low 

processing power;  

• Hardware based in COTs components; 

• Online bandwidth allocation scheme 

• Support for hBEB protocol to work as multi-node (VTPE-hBEB protocol); 

• Efficient support of multicast messages; 

1.3.2 The VTPE-hBEB 

The VTPE-hBEB protocol, as the name indicates, is an implementation of VTPE over 

hBEB protocol. hBEB is a real-time shared Ethernet protocol proposed in [9] which main 

advantage is to support real-time traffic separation on a shared Ethernet bus. However 

hBEB has a disadvantage: it is single-node, i.e., it just allows one node with real-time 

privileges. hBEB lacks a mechanism to support multi-node implementation and the VTPE 

is indicated as the principal bus arbitration mechanism to solve this problem. So the VTPE-

hBEB is other important contribution of this thesis. 

1.4 Organization of the dissertation 

In order to support the thesis previously stated this dissertation is organized in the 

following chapters. 

Chapter 2 - Presents a background on the Ethernet protocol and discusses the main 

Ethernet approaches proposed for real-time communication on shared Ethernet networks 

throughout Ethernet evolution. Chapter 2 also presents some discussions and approaches 

for real-time communication on switched Ethernet considering its current popularity. 

However it is focused on shared Ethernet that is the context of this thesis. 
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Chapter 3 – Presents the Virtual Token-Passing Ethernet protocol - VTPE. In the Chapter 

3 are presented the VTPE classic approach similar to the P-NET protocol and an adaptation 

of VTPE in order to support isochronous traffic. 

Chapter 4 - Presents the VTPE-hBEB protocol. VTPE-hBEB is an improvement of VTPE 

aimed for real-time communication on shared Ethernet. VTPE-hBEB allows the 

coexistence of real-time devices as well as standards Ethernet devices in the same network 

segment.    

Chapter 5 - Presents the implementations of VTPE and VTPE-hBEB protocol. 

Implementation aspects as well as software and hardware are presented and discussed. 

Chapter 6 - Presents the experimental results obtained for both implementations. 

Chapter 7 - This chapter presents the conclusions and future works. As future works are 

proposed the implementation of VTPE and its variants on IP cores and a new version of 

VTPE for power line communication. 
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Chapter 2 

 

Achieving real-time communication on ethernet 

 

2.1 Introduction 

Ethernet is the most frequently used wired local area network technology today. The Main 

factors that favour the use of the Ethernet protocol are [6]:  

• It is cheap, due to mass production; 

• Integration with Internet is easy (TCP/IP stacks over Ethernet are widely available, 

allowing the use of application layer protocols such as FTP, HTTP and so on); 

• Steady increases on the transmission speed have happened in the past, and are 

expected to occur in the near future; 

• Due to its inherent compatibility with the communication protocols used at higher 

levels, the information exchange with the plant level becomes easier; 

• The bandwidth made available by existing fieldbuses is insufficient to support 

some recent developments, like the use of multimedia (e.g. machine vision) at the 

field level; 

• Availability of technicians familiar with this protocol; 

• Wide availability of test equipment from different sources; 

• Mature technology, well specified and with equipment available from many 

sources, without incompatibility issues. 

However Ethernet does not fulfil some fundamental requirements that are expected from a 

communication protocol operating at the field level. In particular, the destructive and non-

deterministic arbitration mechanism has been regarded as the main obstacle faced by 

Ethernet concerning this applications domain. The answer to this concern is the use of 
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switched Ethernet, which allows bypassing the native CSMA/CD arbitration mechanism. 

In these cases, provided that a single network interface card (NIC) is connected to each 

port, and the operation is full duplex, no collisions occur. However, just avoiding collisions 

does not make Ethernet deterministic: for example, if a burst of messages destined to a 

single port arrive at the switch in a given time interval, they must be serialized and 

transmitted one after the other. If the arriving rate is greater that the transmission rate, 

buffers will be exhausted and messages will be lost. Therefore, even with switched 

Ethernet, some kind of higher-level coordination is required. Moreover, bounded 

transmission delay is not the only requirement of a fieldbus, some other important factors 

commonly referred to in the literature are: temporal consistency indication, precedence 

constraints, efficient handling of periodic and sporadic traffic. Clearly, Ethernet, even with 

switches, does not provide answers to all these demands [6]. 

 This chapter presents and discusses the state of the art of the main real-time 

protocols based on Ethernet, proposed during Ethernet evolution. It is focused on shared 

Ethernet. However, a brief overview on switched Ethernet is also presented, considering its 

current popularity.  

The remaining of this chapter is as follows: Section 2.2 presents an overview on the 

Ethernet protocol. Section 2.3 presents the main medium access control techniques for 

shared broadcast networks that are commonly used to guarantee real-time communication. 

Section 2.4 to section 2.8 discusses each one of the medium access control techniques and 

the main shared Ethernet real-time approaches based on these techniques. Section 2.9 

presents some discussions and techniques related to switched Ethernet and section 2.10 

presents the recent advances in the Ethernet issues. Finally section 2.11 presents the 

conclusions. 

2.2 Overview on the ethernet protocol  

2.2.1 Ethernet roots 

Ethernet was born about 30 years ago, invented by Bob Metcalfe at the Xerox’s Palo Alto 

Research Center. Its initial purpose was to connect two products developed by Xerox: a 

personal computer and a brand new laser printer. Since then, this protocol has evolved in 

many ways. For instance, concerning the transmission speed, it has grown from the 
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original 2.94Mbps to 10Mbps [10] [11] [12] [13] [14] then to 100Mbps [15] and more 

recently to 1Gbps [16] and 10Gbps [17]. Concerning physical medium and network 

topology, Ethernet also has evolved: it started by a bus topology based firstly on thick 

coaxial cable [11]and afterwards on thin coaxial cable [12]. In the mid 80’s a more 

structured and fault-tolerant approach, based on a star topology, was standardized [13], 

running however only at 1Mbps. In the beginning of the 90’s an improvement of this latter 

technology was standardized [14], running at 10Mbps over category 5 unshielded twisted 

pair cable. 

 Along this way, two fundamental properties have been kept unchanged:  

• Single collision domain, that is, frames are broadcast on the physical medium and 

all the network interface cards (NIC) connected to it receive them; 

• The arbitration mechanism, which is called Carrier Sense Multiple Access with 

Collision detection (CSMA/CD).  

The use of a single broadcast domain and the CSMA/CD arbitration mechanism has 

created a bottleneck when facing highly loaded networks: above a certain threshold, when 

the submitted load increases the throughput of the bus decreases, a phenomenon referred to 

as thrashing. In the beginning of the 90’s, the use of switches in place of hubs has been 

proposed as an effective way to deal with thrashing. A switch creates a single collision 

domain for each of its ports. If a single node is connected to each port, collisions never 

actually occur unless they are created on purpose, e.g. for flow control. Switches also keep 

track of the addresses of the NICs connected at each port by inspecting the source address 

in the incoming messages. This allows forwarding incoming messages directly to the 

respective outgoing ports according to the respective destination address, a mechanism 

generally known as forwarding. When a match between a destination address and a port 

cannot be established, the switch forwards the respective message to all ports, a process 

commonly referred to as flooding. The former mechanism, forwarding, allows a higher 

degree of traffic isolation so that each NIC receives the traffic addressed to it, only. 

Moreover, since each forwarding action uses a single output port, several of these actions 

can be carried out in parallel, resulting in multiple simultaneous transmission paths across 

the switch and, consequently, in a significant increase in the global throughput. 
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2.2.2 The CSMA/CD protocol and the BEB collision resolution algorithm 

The CSMA/CD (Carrier Sense Multiple Access with Collision Detection) protocol is the 

protocol implemented at the MAC layer of Ethernet. 

 Basically the CSMA/CD protocol works as shown in Figure 2.1. When a station 

wants to transmit it listens the transmission medium. If the transmission medium is busy, 

the station waits until it goes idle, otherwise it transmits immediately. If two or more 

stations begin simultaneously to transmit, the transmitted frames will collide. Upon the 

collision detection, all the transmitting stations will terminate their own transmission and 

send a jamming sequence. When the transmission is aborted due to a collision, it will be 

repeatedly retried after a randomly evaluated delay (backoff time), until it is either 

successfully transmitted, or definitely aborted (after a maximum number of 16 attempts). 

 

Figure 2.1: CSMA/CD protocol with BEB algorithm. 

 
The backoff delay is evaluated by locally executing the Binary Exponential Backoff (BEB) 

algorithm, which operates as follows: after the end of the jamming sequence, the time is 
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divided into discrete slots, whose length is equal to the slot time1. The backoff time is 

given by tbackoff = r x T, where r is a random integer in the range 120 −≤≤ k
r , k is the smaller 

of n or 10 (n is the number of retransmission attempts) and T is the slot time in seconds. 

This means that the station will wait between 0 and 2k–1 slot times. After 10 attempts, the 

waiting interval is fixed at 1023 slot times, and finally, after 16 attempts, the transmission 

is discarded. 

 The CSMA/CD protocol seems to have a random queue service discipline, i.e., the 

message to be transferred after a successful transmission seems to be randomly chosen 

among the N hosts with ready messages. However, Christensen [18] demonstrated that the 

BEB algorithm imposes a last come first serve policy, as a station with the more recently 

queued packet, will have a higher probability for the acquisition of the medium. 

Another particularity of the CSMA/CD protocol is the Packet Starvation Effect. 

Wheten et al. [19] demonstrated that, in heavily loaded networks, an older packet will have 

a smaller probability to be transferred than a newer one. For example: consider that 2 

stations have packets ready to be transmitted (station1 and station2), which will be 

transmitted at approximately the same time; a collision will occur and then both stations 

will backoff during a randomly selected delay between 0 and 2n-1 slot times, where n is the 

number of previous collisions. In the first collision resolution interval, if station1 waits 0 

slot times and station2 waits 1 slot time, station1 will transmit its packet while station2 will 

wait. Supposing that station1 has other packets to be transferred, then, in the following 

collision, the backoff time of station1 will be 0 or 1, and the backoff time of the station2 

will be 0, 1, 2 or 3. Therefore, station1 will have a higher transmission probability. Such 

Packet Starvation Effect will occur whenever a station has a sequence of packets to be 

consecutively transferred, if the network interface adapter is able to effectively contend for 

the network access at the end of every transmitted frame. Otherwise, another station will 

acquire the transmission medium. 

                                                
1 For Ethernet and Fast Ethernet (10/100 Mbps) networks, one slot time is the time required for transmitting 

the minimum frame size (512 bits), that is, respectively, 51.2 and 5.12 µsec. For Gigabit Ethernet (1Gbps), 

one slot time corresponds to the transmission time of 4096 bits. 
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2.2.3 Analytical study of the BEB algorithm 

In order to analyse the BEB Algorithm many performance analyses have been proposed. 

One of the first Ethernet performance analyses was presented by Metcalfe and Boggs in 

[20], where the authors draw up a set of formulas to execute the exact analysis in heavily 

loaded Ethernet networks. In that analysis, a constant retransmission probability on each 

slot has been assumed, and the successful retransmission probability (on the next slot) has 

been considered to be equal to a constant: p. Therefore, for the case of K active hosts 

(hosts with packets ready to be transmitted), the probability that only one host will transmit 

in the beginning of a slot (thus avoiding a collision), according to [20] is: 

1)1( −
−××=

K
ppKA  (2.1) 

Such probability A is maximized when p=1/K. (equal probability of successful 

retransmission). Such assumption is an interesting approximation for the real backoff 

function, as it has been shown in multiple simulation studies by Lam and Kleinrock [21], 

and by Almes and Lazowska [22]. Thus, 
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The probability that a host will wait during just 1 slot is )1( AA − , while the probability that 

the contention interval will be exactly n slots is: 
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The estimated number of stations trying to transmit is truncated to 1023. Truncating 

imposes an upper bound to the time interval (backoff delay) that any station must wait 

before trying to transmit again. Therefore, it results on an upper bound of 1024 potential 

slots for transmission. Such upper bound imposes a maximum number of 1024 stations that 

can be supported by a half duplex Ethernet system (Spurgeon [23]). 

 The average number of contention slots is given by Metcalfe and Boggs [20]: 
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Considering P as the packet length (expressed in bits) and C as the network data rate 

(expressed in bps), the ratio P/C represents the transmission time of an average packet 

(expressed in seconds). Therefore, the channel efficiency E (time during which packets are 

being effectively transmitted) can be evaluated as the ratio between the transmission time 

and the transmission plus contention intervals: 
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where Z×T represents the average acquisition time before effectively transmitting (T is the 

slot time in seconds). Figure 2.2 illustrates the “channel efficiency” in heavily loaded 

networks, assuming a 10Mbps Ethernet network (C=10 Mbps; T=51.2ms). 

 

Figure 2.2: Chanel Efficiency. 
 

According to Boggs et al. [24], one of the most widely accepted Ethernet myths is that it 

saturates at an offered load of 37%. Such assertion is well founded when dealing with short 

sized frames and a significant number of hosts. However, for longer frames, the channel 

efficiency is significantly improved. Schoch and Hupp [25] presented measurements 

results indicating that for 4096 bit frames and small number of hosts, the channel 

utilization approaches 97%; however, for small packets and larger number of hosts the 

utilization approaches 1/e, that is, approaches the 37% bound. These results are consistent 

with the Metcalfe and Boggs analysis [20], as it can be observed in the channel efficiency 

results represented in Figure 2.2. 

2.3 Achieving real-time communication on ethernet 

In the quest for real-time communication over Ethernet several approaches have been 

developed and used. Many of them override the Ethernet CSMA/CD medium access 

control by setting an upper transmission control layer that eliminates, or at least reduces, 

the occurrence of collisions at the medium access. Other approaches propose the 
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modification of the CSMA/CD medium access control layer so that collisions either occur 

seldom or when they do, the collision resolution is deterministic and takes a bounded 

worst-case time.  

 Moreover, some approaches support such deterministic reasoning on the network 

access delay while other ones allow a probabilistic characterization, only. 

The solutions to make shared Ethernet real time are mainly based on the usual medium 

access control techniques for shared broadcast networks. For the sake of clarity, they are 

classified and presented as follows in the remainder of this chapter: 

• Modified CSMA protocols; 

• Token-passing; 

• Virtual token passing; 

• Time Division Multiple Access - TDMA; 

• Master/slave techniques; 

Switched Ethernet doesn’t enable the use of a shared Ethernet bus because the switch 

creates a single collision domain. In spite of this large difference, Switched Ethernet is also 

discussed, considering its current popularity. 

2.4 Modified CSMA protocols 

In this category the CSMA mechanism is adequately modified in order to improve the 

temporal behaviour of the network (e.g. [26] [27] [28]). The result is still a fully distributed 

arbitration protocol of the CSMA family (Carrier Sense, Multiple Access) that determines 

when to transmit based on local information and on the current state of the bus, only. 

 There are two most common options, either sorting out collisions in a more 

deterministic way than the Ethernet original BEB mechanism (truncated Binary 

Exponential Backoff) or reducing the probability of collisions. This section presents five 

modified CSMA/CD protocols, the first four, i.e., hBEB algorithm, EQuB, Windows 

protocol and the CSMA/DCR follow the first option. The last one, that is, the Virtual Time 

CSMA follows the second option by implementing a type of CSMA/CA (Collision 

Avoidance) that delays message transmissions according to a temporal parameter.  
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2.4.1 hBEB algorithm 

Moraes and Vasques [9] proposed the “high priority Binary Exponential Backoff (hBEB)” 

collision resolution algorithm. The main advantage of hBEB is allowing Ethernet standard 

devices to coexist with one hBEB modified station. As a consequence, it becomes possible 

the implementation of traffic separation policies, which are the foundation for the support 

of real-time communication, in heterogeneous Ethernet environments. 

 A station implementing the hBEB algorithm has the same operating behavior of 

BEB algorithm, except for the backoff delay, which is set to 0. In such case, an hBEB 

station starts immediately to transmit after the end of the jamming sequence. This behavior 

guarantees the highest transmitting probability to the hBEB station, in a shared Ethernet 

segment with multiple BEB stations. The hBEB station will always try to transmit its 

frame in the first available slot after the jamming sequence, while all the other stations 

implementing the BEB algorithm will wait between 0 and 2n-1 slot times, where n is the 

number of collision resolution rounds. Figure 2.3 summarize the dynamic behavior of the 

CSMA/CD protocol with the hBEB collision resolution algorithms. 
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Figure 2.3: Control Flow Summary – hBEB. 
  

The hBEB collision resolution algorithm is therefore able to impose real-time 

traffic separation, as the traffic generated by the hBEB station will always be transferred 

before the traffic generated by the other stations. Therefore, this algorithm is adequate to 

support real-time communications in shared Ethernet segments, as long as all the real-time 

traffic in the network is generate by the hBEB station.  According to Moraes and Vasques 

this behavior is highly adequate for real-time video/voice transferring applications in 
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legacy shared Ethernet networks. By simply plugging a notebook computer with the 

modified hardware to the shared Ethernet segment, it becomes possible to transfer traffic at 

a higher priority than the traffic generated by all the other stations. 

In [9] Moraes and Vasques show that the probability that the hBEB station sends a 

message in the nth collision round (after an initial collision) is given by: 
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where the coefficients of the Pascal Triangle are given by: 
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n is the number of collision resolution rounds, and N is the number of BEB stations in the 

network (N+1 is the total number of stations). 

A comparative analysis of BEB and hBEB algorithms has been performed and 

presented in [29]. This analysis considers a shared Ethernet environment where 64 

standard Ethernet stations are interconnected with a special station implementing either the 

hBEB (enhanced Ethernet mode) or the BEB (traditional Ethernet mode) collision 

resolution algorithms. Probabilistic analytical results obtained from Equation (2.3) were 

compared with those obtained from Equation (2.6). The results show that approximately 

95% of the messages from the hBEB station are transferred before 8 collision rounds. On 

the other hand, the probability to transfer a message, in the same heavily loaded network 

scenario, using the BEB algorithm (traditional mode) is smaller than 2%, whatever the 

considered collision round. 

 For more realistic network load scenarios a simulation analysis has been done. A 

simulation model was implemented using the Network Simulator tool [30], considering a 

10 Mbps Ethernet network, where each station has a Poisson traffic source with a fixed 

packet length of 250 bytes. For each simulated load value, 75x104 packets are successfully 

transmitted. The performance measures included: throughput, average packet delay and 

standard deviation of the average packet delay. It has be shown in [31] that the hBEB 

collision resolution algorithm guarantees, whatever the network load, an average access 

delay significantly smaller for the hBEB station, when compared with the access delay for 

the BEB stations. More significantly, almost constant values for both the average access 

delay and the related standard deviation have been observed for the traffic transferred by 
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the hBEB station. This is a very important result, as it forecasts a predictable 

communication delay when supporting real-time communications. 

 The authors of hBEB showed by simulation analysis that the hBEB traffic must be 

tightly controlled, as it has a high interference level over the non-real-time traffic [32], 

otherwise, if the load generated by the hBEB station is not closely controlled, the standard 

Ethernet stations may experience extended access delays. 

 A probabilistic timing analysis of hBEB was presented in [33] for two cases. 

Firstly, the analytical study for a heavily loaded network scenario shows that the maximum 

access delay for 95% of the messages is smaller than 1,86ms. Secondly, for more realistic 

load scenarios (intermediate load cases), the simulation analysis shows that the maximum 

access delay for 98% of the messages is always smaller than 1ms. More importantly, it 

shows a nearly constant message transfer jitter, which is one order of magnitude smaller 

than the maximum access delay for 98% of the messages. Also it is shown that concerning 

the probability of a message frame being discarded by the hBEB algorithm, for the heavily 

loaded network scenario, such probability is always smaller than 2x10-3 and for more 

realistic load scenarios, the simulation analysis never detected any discarded frame. 

According to Moraes and Vasques these are important results, as they forecast a 

predictable communication delay when supporting real-time communications with the 

hBEB collision resolution algorithm. These results are also consistent with the claim that 

the hBEB algorithm is adequate to support most part of the soft real-time applications.   

 The main drawback of the hBEB algorithm is that it allows at most one hBEB 

station per shared Ethernet segment. However, this mechanism has been extended by the 

use of a virtual token passing procedure in [34], allowing multiple hBEB (real-time) 

stations to coexist with multiple standard Ethernet stations in the same network segment, 

and still imposing a higher priority for the transfer of privileged traffic. This new version 

of hBEB is named Virtual Token Passing over hBEB or VTPE-hBEB for short and is 

presented in Chapter 4.  

2.4.2 EQuB  

Sobrinho and Krishnakumar [35] propose the EQuB protocol, which allows achieving 

predictable behaviour on shared Ethernet networks. EQuB consists on an overlay 

mechanism to the native CSMA/CD while providing privileged access to the former over 
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the latter, with a FCFS (First-Come-First-Served) access discipline between contending 

real-time sources. 

The collision resolution mechanism for real-time sources (EQuB hosts) requires the 

disabling of the native exponential backoff mechanism of Ethernet and the transmission of 

jamming sequences with pre-defined durations. Both features are configured in the 

network interface card of the respective hosts. The underlying real-time traffic model 

assumes that, during long intervals of time called sessions, real-time hosts generate 

continuously periodic streams of data to be transmitted over the network. 

Collisions involving non-real-time hosts, only, are sorted out by the native 

CSMA/CD mechanism of Ethernet. However, when real-time hosts participate in a 

collision, they start transmitting a jamming signal, as specified in the Ethernet MAC 

protocol, but with duration different from the specified 32 bit times. These crafted 

jamming signals are called black bursts and their maximum duration is set proportionally 

to the time a given host has been waiting to transmit a given message, i.e. the duration of 

the collision resolution process. During the transmission of a black burst, the bus state is 

continuously monitored. If, at some moment, a real-time host contending for the bus 

detects that no other nodes are sending black bursts, it infers that itself is the host having 

the oldest ready message (highest priority according to FCFS), subsequently aborts the 

transmission of its own black burst and immediately after it transmits the data message. If 

a real-time host transmits its black burst completely and still feels the bus jammed it infers 

that other hosts having longer black bursts, and consequently having a longer waiting 

times, are also disputing the bus. In these circumstances the host relinquishes the bus 

access, waiting for it to become idle for the duration of an IFS. At this time the black burst 

duration is recomputed, to reflect the increased waiting time.  

Figure 2.4 illustrates the mechanism explained before. Two hosts have one real-

time message each, 1 and 2, scheduled for transmission at instants t0 and t1, respectively, 

while a third data message is being transmitted (Figure 2.4). Since both hosts feel the bus 

busy, they wait for the end of the message transmission and for the IFS, which occurs at 

instant t3. According to EQuB, both nodes attempt to transmit their message at time t3 but 

feel a collision and start the transmission of black bursts (t4). Since message 2 has a shorter 

waiting time than message 1, its black burst is completely transmitted, terminating at 

instant t5, and the respective host backs-off, waiting for the bus to become idle again, 
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before retrying the message transmission. Simultaneously, the winning host, having the 

oldest message, feels that the bus is not being jammed anymore and thus initiates the 

transmission of its data message immediately after, at instant t6. 

 

Figure 2.4: Black burst contention resolution mechanism. 
 

It is important to realize that non real-time data messages always loose the arbitration 

against any real-time messages because real-time hosts transmit their messages right after 

the jamming signal without further delay, while the non-real-time messages follow the 

standard Ethernet back-off process (BEB). On the other hand, among real-time messages, 

the ones with longer waiting time lead to longer black bursts and thus are transmitted 

before other real-time messages with shorter waiting times, which results in the FCFS 

serialization as referred before. 

An advantage of EQuB is allowing real-time and non-real-time traffic to coexist on 

the same Ethernet segment. Moreover, the EQuB protocol also takes advantage of the 

underlying periodic model of the real-time traffic and schedules the next transmission in 

each host based on the transmission instant of the current instance. Thus, in some 

circumstances, particularly when the message periods in all real-time hosts are equal or 

harmonic, the future instances of the respective messages will not collide again, leading to 
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a high efficiency in bus utilization and to a round-robin service of real-time hosts. 

However the implementation of EQuB requires special hardware because, according to our 

best knowledge, there are no Ethernet controllers able to disable the backoff algorithm and 

to perform timing control of the jamming sequence. 

2.4.3 Windows protocol 

The Windows protocol has been proposed both for CSMA/CD and token ring networks 

[36]. Concerning the CSMA/CD implementation, the operation is as follows. The nodes on 

a network agree on a common time interval (referred to as window). All nodes synchronize 

upon a successful transmission, restarting the respective window. The bus state is used to 

assess the number of nodes with messages to be transmitted within the window: 

• If the bus remains idle, there are no messages to be transmitted in the window; 

• If only one message is in the window, it will be transmitted; 

• If two or more messages are within the window, a collision occurs. 

Depending on the bus state, several actions can be performed: 

• If the bus remains idle, the window duration is increased in all nodes; 

• In the case of a collision, the time window is shortened in all nodes; 

• In case of a successful transmission, the window is restarted and its duration is 

kept as it is. 

In the first two cases, the window duration is changed but the window is not 

restarted. Moreover, the window duration varies between a maximum (initial) and 

minimum values. Whenever there is a sufficiently long idle period in the bus, the window 

will return to its original maximum length. If a new node enters dynamically in the system, 

it may have instantaneous window duration different from the remaining nodes. This may 

cause some perturbation during an initial period, with more collisions than expected. 

However, as soon as an idle period occurs, all windows will converge to the initial length. 

A probabilistic retry mechanism may also be necessary when the windows are shrunk to 

their minimum and collisions still occur (e.g. when two messages have the same 

transmission time). 
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Figure 2.5: Resolving collisions with the Windows protocol. 
 

Figure 2.5 shows an example of the operation of the windows protocol used to 

implement MLF message scheduling. The top axis represents the latest send times (lst) of 

messages A, B and C. The lst of a message is the latest time instant by which the message 

transmission must start so that the respective deadline is met. The first window (Step 1) 

includes the lst of the three messages, thus leading to a collision. The intervenient nodes 

feel the collision and the window is shrunk (Step 2). However, the lst of messages A and B 

are still inside the window, causing another collision. In response to this event the window 

size is shrunk again (Step 3). In this case only message A has its lst within the window, 

leading to a successful transmission. 

This method exhibits properties that are very similar to those of the previous 

method (virtual time protocol). However, it is somewhat more efficient due to its adaptive 

behaviour. In general, it also aims at soft real-time systems and uses a fully distributed 

symmetrical approach with relatively low computational overhead. Notice that all message 

parameters are relative and that there is no global time base again. Moreover, the protocol 

efficiency is substantially influenced by the magnitude of variations in the window 

duration, either when increasing or decreasing it. 

2.4.4 CSMA/DCR 

In [27], LeLann and Rivierre present the CSMA/DCR protocol, where DCR stands for 

Deterministic Collision Resolution. This protocol implements a fully deterministic network 

access scheme that consists on a binary tree search of colliding messages, i.e. there is a 
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hierarchy of priorities in the retry that allows calculating the maximum network delay a 

message can suffer. 

During normal operation, the CSMA/DCR follows the standard IEEE 802.3 

protocol (Random Access mode). However, whenever a collision is detected the protocol 

switches to the Epoch mode. In this mode, lower priority message sources voluntarily 

cease contending for the bus, and higher priority ones try again. This process in repeated 

until a successful transmission occurs. After all frames involved in the collision are 

transmitted, the protocol switches back to random access mode. 

Figure 2.6 together with Table 2.1 depict the CSMA/DCR operation in a situation 

where 6 messages collide. Considering that lower indexes correspond to higher priorities, 

after the initial collision the right branch of the tree (messages 12, 14 and 15) cease 

contending for the bus. Since there are still three messages on the left branch, a new 

collision appears, between messages 2, 3 and 5. Thus, the left sub-branch is selected again, 

leaving message 5 out. In the following slot, messages 2 and 3 will collide again. The sub-

branch selected after this collision has no active message sources, and thus in the following 

time slot the bus will be idle (step 4). This causes a move to the right sub-branch, where 

messages 3 and 5 reside, resulting in a new collision. Finally, in step 6 the branch 

containing only the message with index 5 is selected, resulting in a successful 

transmission. The algorithm continues this way until all messages are successfully 

transmitted. 
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Figure 2.6: Example of tree search with CSMA/DCR. 

 
Searcher Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Channel Status C C C V C X X X C V C X C X X 

2 2 2  2 2 3 5 12  12 12 14 14 15 

3 3 3  3    14  14  15   

5 5       15  15     

12               

14               

Source Index 

15               

Table 2.1: Tree search example (contending sequence). 
 

Despite assuring a bounded access time to the transmission medium, this approach 

exhibits two main drawbacks: 

• In some cases (e.g. [27]) the firmware must be modified, therefore the economy 

of scale obtained when using standard Ethernet hardware is lost; 

• The worst-case transmission time, which is the main factor considered when 

designing real-time systems, can be orders of magnitude greater than the 

average transmission time. This forces any kind of analysis to be very 
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pessimistic, and therefore leads to low bandwidth utilization, at least concerning 

real-time traffic. 

2.4.5 Virtual time CSMA 

The Virtual Time CSMA protocol has been presented in [39] and [40]. It allows 

implementing different scheduling policies (e.g. minimum-laxity first), and bases its 

decisions on the assessment of the communication channel status, only. When the bus 

becomes idle and a node has a message to transmit, it waits for a given amount of time, 

related to the scheduling policy implemented. For example, if MLF (minimum laxity first) 

scheduling is used, the waiting time is derived directly from the laxity using a proportional 

constant. When this amount of time expires, and if the bus is still idle, the node tries to 

transmit the message. If the scheduler outcome results in more than one message having 

permission to be transmitted at the same time (e.g. when two messages have the same 

laxity in MLF) then a collision occur. In this case the protocol can either recalculate the 

waiting time using the same rule or use a probabilistic approach according to which the 

messages involved in a collision are retransmitted with probability p (p-persistent). This 

last option is important to sort out situations in which the scheduler cannot differentiate 

messages, e.g. messages with the same laxity would always collide. 

Figure 2.7 shows the operation of the Virtual-Time CSMA protocol, with MLF 

scheduling.  

 

Figure 2.7: Example of Virtual-Time CSMA operation using MLF. 
 

As it is shown in Figure 2.7 during the transmission of message m, messages a and 

b become ready and since the laxity of message a (i.e. deadline minus message 

transmission time) is shorter than the laxity of message b, message a is transmitted first. 
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However during the transmission of message a, message c arrives and the messages b and c 

have the same deadline and the same laxity. Therefore, an attempt will be made to transmit 

them at the same time, causing a collision. Then the algorithm uses the probabilistic 

approach, with message b having a lower waiting time than message c, and thus being 

transmitted next. Finally, message c is transmitted on the bus. Since the only global 

information is the channel status, there is no way to know that there is only a single 

message pending. For this reason, after the transmission of message b the waiting time 

corresponding to message c is computed, and only after the expiration of this interval 

message c is finally transmitted. 

Beyond the advantage of using standard Ethernet hardware, this approach also has 

the advantage of not requiring any other global information but the channel status, which is 

readily available at all Network Interface Cards (NICs). Thus, a fully distributed and 

symmetric implementation is possible, which, in this case, also incurs in relatively low 

computational overhead. Nevertheless, this approach presents some important drawbacks: 

1- Performance highly dependent on the proportional constant value used to relate the 

waiting time with the scheduling policy in use, leading to: 

• Collisions if it is too short; 

• Large amount of idle time if it is too long; 

2- Proportional constant depends on the properties of the message set; therefore on-line 

changes to that set can lead to poor performance; 

3- The waiting times are computed locally using relative parameters, only. There is no 

global time base and thus, relative phasing is hard to implement; 

4- Due to possible collisions, worst-case transmission time is much higher than average 

transmission time and only probabilistic timeliness guarantees can be given (soft real-

time systems). 

2.5 Token passing technique 

Token passing is other well-know medium access control technique suited for shared 

broadcast bus or ring networks. The token is a special kind of network frame to regulate 

network access of the individual nodes. The token flows from node to node and each node 

may transmit a message only when it has acquired the token. In the simplest and more 

common way, the token rotates in a circular fashion, which tends to divide the bandwidth 
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equally among all nodes in high traffic load conditions. For asymmetrical bandwidth 

distribution some protocols allow the token to visit the same node more than once in each 

token round as proposed by Cheng et al in [41]. In both cases, a basic condition for real-

time operation is that the time spent by the token at each node must be bounded. This can 

be achieved by using a timed-token protocol [42] as in the well-known cases of FDDI, 

IEEE 802.4 Token Bus and PROFIBUS (this one still belonging to the same class but 

exhibiting a few differences). 

The token passing technique is frequently used to override the native Ethernet 

CSMA/CD arbitration mechanism. This subsection presents three approaches using the 

token passing technique.     

2.5.1 RETHER 

The RETHER protocol was proposed by Venkatramani and Chiueh in [43]. This protocol 

operates in normal Ethernet CSMA/CD mode until the arrival of real-time requests upon 

which it switches to token-bus mode. 

In token-bus mode real-time data is considered to be periodic and the time is 

divided in cycles of fixed duration. During the cycle duration the access to the bus is 

regulated by a token, both for real-time and non-real-time traffic. First the token visits all 

nodes that are sources of RT messages. After, if there is enough time until the end of the 

cycle, the token visits the sources of NRT data. An on-line admission control policy 

assures that all accepted RT requests can always be served and that new RT requests 

cannot jeopardize the guarantees of existing RT messages. Therefore, in each cycle all RT 

nodes can send their RT messages. However, concerning the NRT traffic, no timeliness 

guarantees are granted. 

Figure 2.8 illustrates a possible network configuration with 6 nodes. Nodes 1 and 4 

are sources of RT messages, forming the RT set. The remaining nodes have no such RT 

requirements and constitute the NRT set. The token first visits all the members of the RT 

set and after, if possible, the members of the NRT set.  
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Figure 2.8: Sample network configuration for RETHER. 
 

A possible token visit sequence could be: cycle i {1 – 4 – 1 – 2 – 3 – 4 – 5 – 6}, cycle i+1 

{1 – 4 – 1 – 2}, cycle i+2 {1 – 4 – 1 – 2 – 3 – 4}…. In the ith
 cycle the load is low enough 

so that the token has time to visit the RT set plus all nodes in the NRT set, too. In the 

following cycle, besides the RT set, the token only visits nodes 1 and 2 of the NRT set and, 

in the next cycle, only nodes 1 through 4 of the NRT set are visited. 

Due to the complete elimination of collisions, this approach supports deterministic 

analysis of the worst-case network access delay, particularly for the RT traffic. 

Furthermore, if the NRT traffic is known a priori, it is also possible to determine a bound 

to the respective network access delay, which can be important for example, for sporadic 

real-time messages. However, since the bandwidth available for NRT messages is 

distributed according to the nodes order established in the token circulation list, the first 

nodes always get precedence over the following ones, which end up with too long worst-

case network delays. Moreover, this method involves a considerable communication 

overhead caused by the circulation of the token. 

2.5.2 RT-EP: Real-Time Ethernet Protocol 

The Real-Time Ethernet Protocol (RT-EP) [44] [45] is a token-passing protocol which 

operates over Ethernet and which was designed to be easily analyzable using well-known 

schedulability analysis techniques. 
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 An RT-EP network is logically organized as a ring, each node knowing which other 

nodes are its predecessor and successor. The token circulates from node to node within this 

logical ring. 

Access to the bus is carried in two phases, arbitration and application message 

transmission. In the arbitration phase the token visits all the nodes engaged in the logical 

ring. Upon token reception, each node compares the priority of its own highest priority 

ready message, if any, with the priority carried in the token. If higher, the token priority is 

updated. The token also carries the identity of the node that contains the highest priority 

message found so far. 

After one token round the arbitration phase is concluded and the token is sent 

directly to the node having the highest priority ready message so that it can transmit it 

(application message transmission phase). After concluding the application message 

transmission, the same node starts a new arbitration phase. 

RT-EP packets are carried in the Data filed of the Ethernet frames. There are two 

distinct types of RT-EP packets, Token Packets and Info Packets. 

The Token Packets are used during the arbitration phase, and contain: a packet 

identifier, specifying the functionality of the packet; priority and station address fields, 

identifying the highest priority ready message as well as the respective station ID; a set of 

fields used to handle faults. 

The Info Packets carry the actual application data, and contain: a packet identifier 

field, specifying the packet’s type; a priority field, which contains the priority of the 

message being carried; a channel ID field, identifying the receiver node; a length field, 

defining the message data size; an info field, carrying the actual message data; and a packet 

number field, which is a sequence number used by the fault-tolerance mechanism. 

The fault-tolerance mechanism [45] allows reducing the negative impact of 

message losses, particularly tokens, recovering from them within bounded time. This 

mechanism is based on forcing all stations to permanently listen to the bus. Following any 

transaction, the predecessor station monitors the bus waiting for the transmission of the 

next frame by the receiving station. If the receiving station does not transmit any frame 

within a given time window, the predecessor one assumes a message loss and retransmits 

it. After a predefined number of unsuccessful retries, the receiving station is considered as 

a “failing station” and it is excluded from the logical ring. This mechanism may lead to the 
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occurrence of message duplicates. The sequence number field, present both in Token and 

Info packets, is used to discard the duplicate messages at the receiving nodes. 

2.5.3 Other 

Steffen et al [46] present an implementation of a token-passing over Ethernet.  Although 

aiming particularly shared Ethernet, the method may also be applied to networks like 

HomePNA [47] and Power line [48]. 

All the nodes connected to the network have a QoS sub layer (Token-Passing 

Protocol), which interfaces the Logical Link Control and the Medium Access Control 

layers. The QoS sub layer overrides the native arbitration mechanism, controlling the 

access to the bus via a token passing mechanism. 

This protocol defines two distinct types of message streams, synchronous and 

asynchronous. Synchronous traffic is assumed to be periodic, and is granted real-time 

guarantees. Synchronous streams are defined by a frame transmission time, a period and a 

deadline. Asynchronous traffic is handled according to a best-effort policy, and thus no 

real-time guarantees are provided. Asynchronous streams are defined by frame 

transmission time and a desired average bandwidth. 

Whenever the token arrives at a node, the synchronous frames are sent in first 

place. All nodes are granted at least a pre-defined synchronous bandwidth in all token 

visits to send such type of traffic. After the synchronous bandwidth is exhausted, a node 

can continue to transmit up to the exhaustion of its token holding time. After that, the token 

is forwarded to the next node in the circulation list. 

2.6 Virtual token passing  

In essence the virtual token passing medium access control technique is a token passing. 

However, rather than passing an actual data token message between masters, as is the case 

in some protocol types, sufficient information is present within a normal message for each 

master to assess whether it has the authority to communicate (Jenkins [49]).  

This section presents the virtual token-passing bus arbitration technique according 

to the implementation on the P-NET fieldbus as presented in [49], P-NET website [50] and 

Tovar [51]. 
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P-NET is a multi-master system that can have up to 32 masters with equal priority, 

and no hierarchy needs to be managed. In P-NET all communication is based on a message 

cycle principle, where a master sends a request and the addressed slave immediately 

returns a response. P-NET works with the fixed data rate of 76,800 bps 

The virtual token passing is implemented using two protocol counters. The first 

one, the access counter (AC), holds the node address of the currently transmitting master. 

When a request has been completed and the bus has been idle for τ = 40 bit periods (520µs 

at 76.8Kbps), each one of the access counters is incremented by one. The master whose 

access counter value equals its own unique node address is said to be holding the token, 

and is allowed to access the bus. When, as the access counter is incremented, it exceeds the 

“maximum number of masters”, the access counter in each master is reset to one. This 

allows the first master in the cycling chain to gain access again.  

The second counter, the idle bus bit period counter (IBBPC), increments for each 

inactive bus bit period. Should any transactions occur, the counter is reset to zero. As 

explained above, when the bus has been idle for 40 bit periods following a transfer, all the 

access counters are incremented by one, and the next master is thus allowed to access the 

bus. 

If a master has nothing to transmit (or indeed is not even present), the bus will 

continue to be inactive. Following a further period of σ = 10 bit periods (130µs), the idle 

bus bit period counter will have reached 50, (60, 70…) so all the access counters will be 

incremented again, allowing the next master access. The virtual token passing will 

continue every 10 bit periods, until a master does require access. 

The P-NET standard allows each master to perform at most one message cycle per 

token visit. After receiving the token, the master must transmit a request before a certain 

time has elapsed. This is denoted as the master’s reaction time, and the standard imposes a 

worst-case value of up to ρ = 7 bit periods. A slave is allowed to access the bus between 11 

and 30 bit periods after receiving a request, measured from the beginning of the stop bit in 

the last byte of the request frame. The maximum allowed delay is then 30 bit periods 

(390µs). This delay is denoted as the slave's turnaround time. To illustrate these basic 

MAC procedures and the notation used, refer to Figure 2.9. 
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Figure 2.9: Concepts of message cycle, token holding time (H), slave's turnaround time, 
master's reaction time (ρ), idle token time (σ) and token passing time (τ) in P-NET. 

 

Figure 2.9 shows an example of the virtual token passing principle as it is 

implemented in P-NET for a system with 4 masters. According with the Figure 2.9, master 

3 has the virtual token, and is receiving a response from a slave, and then the bus becomes 

idle. When 40 idle bit periods have been counted, all access counters are incremented by 1, 

and master 4 is allowed to access the bus. Since master 4 has not anything to send, and 

after 50 bit periods, master 1 is allowed to access the bus. Master 1 does not need to use 

the bus either (it may not even be present), so the virtual token is passed to master 2, when 

the idle bus bit period counter reaches 60.  

Since masters 2 and 3 do not require the access, the token is eventually passed on to 

master 4, when the idle bus bit period counter is equal to 80. This time, master 4 does 

require access. Data appears on the bus, so all idle bus bit period counters are reset to zero, 

all access counters are preset to 1 and a new token cycle starts with master 1 holding the 

virtual token. 

All communication in P-NET is structured in a frame that consists of a series of 

asynchronously transmitted 9-bit bytes (Jenkins [52]). The byte structure is shown in 

Figure 2.10. 
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Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Address/

Data
Stop Bit

Begin End

0
IF Add=1

0=Dest.ination

1=Source

0=Data

1=Address
1

 

Figure 2.10: Byte structure in a P-NET frame. 
 

In Figure 2.10 each bit has the meaning as follows: 

• One start bit (logical 0) 

• Eight data bits with least significant bit (LSB) first (bits 0 to 7) 

• One address/data bit 

• One stop bit (logical 1) 

A P-NET frame is divided up into a number of variable- and fixed-length fields as 

it is shown in Figure 2.11. 

 

Figure 2.11: Frame of P-NET. 
 

The start of a frame can always be recognized by the fact that the first byte has the 

Address/Data bit set to 1. In addition, the first address-identified byte in the frame having 

bit 7 set true will contain the node address (bits 0 to 6) of the token-holding master. This 

introduces the fact that P-NET addressing also includes the requesting node address, as 

well as the destination node address from which a response is expected. Bit 7 of each 

address byte is thus used to indicate whether it is associated with the (slave) address from 

which a response is expected or is being made (bit 7=0) or the requesting (master) source 

address of the transmission to which a response is expected or is being received (bit 7=1).  

The P-NET addressing method allows each master to identify the current token-

holding master only reading the first byte of each transmitted frame. As the current access 

counter is equal to the node address of current transmitting master, all masters synchronise 

their access counter to the same number as the node address of the transmitting master. 

The other bytes in the addressing field, as well as, the other fields of P-NET frame 

are not discussed because they are out of scope of this work. 
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It is interesting to observe that, despite the virtual token passing behaves as a token 

passing and TDMA (see next section), it differs from a token passing because no explicit 

token is sent in the bus and differs from a general TDMA because the time slots between 

masters can be shortened when a node isn’t present or, being present, has not anything to 

transmit. In a general TDMA the time slots are fixed and the bandwidth allocated to a node 

can not be saved if the node doesn’t use it. 

2.7 Time division multiple access – TDMA 

Another well-known technique to achieve predictable temporal behaviour on shared 

communication networks is to assign exclusive time slots to different rate data sources, 

either nodes or devices, in a cyclic fashion. This is known as Time Division Multiple 

Access (TDMA) and it implies a global synchronization framework so that all nodes agree 

on their respective transmission slots. Hence, this is also a collision free medium access 

protocol that can be used on top of shared Ethernet to override its native CSMA/CD 

mechanism and prevent the negative impact of collisions. TDMA mechanisms are widely 

used, mainly in safety-critical applications. Examples of TDMA-based protocols include 

TTP/C, TT-CAN, SAFEBus and SWIFTNET. The remainder of this section addresses two 

particular TDMA implementations on shared Ethernet. 

2.7.1 The MARS bus 

The MARS bus was the networking infrastructure used in the MARS (MAintenable Real-

time System) architecture developed in the Technical University of Vienna in the late 80s ( 

Kopetz [53]). Soon after, the MARS bus evolved into what is nowadays the TTP/C 

protocol. The MARS architecture aimed at fault-tolerant distributed systems providing 

active redundancy mechanisms to achieve high predictability and ease of maintenance. 

In MARS all activities are scheduled off-line, including tasks and messages. The 

resulting schedule is then used on-line to trigger the system transactions at the appropriate 

instants in time. Interactions among tasks, either local or remote, are carried out via MARS 

messages. It is the role of the MARS bus to convey MARS messages between distinct 

nodes (cluster components). 

The MARS bus was based on a 10BASE2 Ethernet using standard Ethernet 

interface cards. A TDMA scheme was used to override Ethernet’s native CSMA/CD 
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medium access control. The TDMA round consisted of a sequence of slots of equal 

duration, each assigned to one node in a circular fashion. Moreover, during each slot the 

tasks in each node were scheduled in a way to prevent contention between tasks on bus 

access (Schabl [54]). 

2.7.2 Variable bandwidth allocation scheme 

The Variable Bandwidth Allocation Scheme has been proposed in [55] for Ethernet 

networks by Lee and Shin. Basically, it is a TDMA transmission control mechanism in 

which the slots assigned to each node in the TDMA round can have different durations. 

This feature allows tailoring the bandwidth distribution among nodes according to their 

effective communication requirements and thus it is more bandwidth efficient than other 

TDMA-based mechanisms relying on equal duration slots, as it was the case in the MARS 

bus. Nowadays, this feature has been incorporated in most of the existing TDMA-based 

protocols, e.g. TTP/C and TT-CAN, improving their bandwidth efficiency. 

Moreover, this technique also comprises the possibility of changing the system 

configuration on-line, namely adding or removing nodes, a feature that is sometimes 

referred to as Flexible TDMA (FTDMA) [56]. 

The nomenclature used in [55] uses the expression frame to refer to the TDMA 

round. Both the frame duration (frame time - F) together with the slot durations (slot times 

- Hi) are computed according to the specific traffic characteristics. The first slot in each 

frame (Tc) is reserved for control purposes such as time synchronization and 

addition/deletion of nodes. The structure of a TDMA frame is depicted in Figure 2.12. 

  

 

Figure 2.12: The structure of a TDMA frame. 

 
The transmission of the control slot, Tc, as well as the inter-slot times, represents 

communication overhead. The inter-slot time must be sufficient to accommodate a residual 
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global clock inaccuracy and to allow nodes to process incoming messages before the start 

of the following slot. 

In their work, the authors derive a set of necessary conditions that a given 

allocation scheme f has to fulfil to compute both the frame (F) and slot durations (Hi) 

according to the communication requirements, i.e. message transmission times (Ci), 

periods (Pi) and system overhead (γ). 

f: ( {Ci}, {Pi}, γ ) → ( {Hi}, F ) 

Based on those conditions, the authors present an algorithmic approach for carrying the 

computation of F and Hi, and compare the results of this methodology with other TDMA 

approaches, namely MARS. The results obtained show the improvement in bandwidth 

utilization that may be achieved with this variable bandwidth allocation scheme. 

2.8 Master/slave techniques 

One of the simplest ways of enforcing real-time communication over a shared broadcast 

bus, including Ethernet, consists on using a master/slave approach, in which a special 

node, the master, controls the access to the medium of all other nodes, the slaves. The 

traffic timeliness is then reduced to a problem of scheduling that is local to the master. 

However, this approach typically leads to a considerable under-exploitation of the network 

bandwidth because every data message must be preceded by a control message issued by 

the master, resulting in a substantial communication overhead. Moreover, there is some 

extra overhead related to the turnaround time, i.e. the time that must elapse between 

consecutive messages, since every node must fully receive and decode the control message 

before transmitting the respective data message. Nevertheless, it is a rugged transmission 

control strategy that has been used in many protocols. This section will describe two 

examples, namely ETHERNET Powerlink [48]and FTT-Ethernet [57]. 

The case of FTT-Ethernet deserves a particular reference because it implements a 

variant of the master/slave technique that allows a substantial reduction in the protocol 

communication overhead. This is called the master/multi-slave approach [58]according to 

which the bus time is broken in cycles and the master issues one control message each 

cycle, only, indicating which data messages must be transmitted therein. This mechanism 

has been developed within the Flexible Time-Triggered communication framework (FTT) 
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[59], and has been implemented over different network protocols, such as Controller Area 

Network [60]and Ethernet [57]. 

2.8.1 FTT-Ethernet protocol 

The FTT-Ethernet protocol [57] combines the master/multi-slave transmission control 

technique with centralized scheduling, maintaining both the communication requirements 

and the message scheduling policy localized in one single node, the Master, and facilitating 

on-line changes to both, thus supporting a high level of operational flexibility. 

The bus time is divided in fixed duration time-slots called Elementary Cycles (ECs) 

that are further decomposed in two phases, the synchronous and asynchronous windows 

(Figure 2.13), which have different characteristics. 

 

 

Figure 2.13: FTT-Ethernet traffic structure. 
 

The synchronous window carries the periodic time-triggered traffic that is 

scheduled by the master node. The expression time-triggered implies that this traffic is 

synchronized to a common time reference, which in this case is imposed by the master. 

The asynchronous window carries the sporadic traffic either related to protocol control 

messages, such as those conveying change requests for the time-triggered traffic, event-

triggered messages, such as those related to alarms, and other non-real-time traffic. There 

is a strict temporal isolation between both phases so that the sporadic traffic does not 

interfere with the time-triggered one. 

Despite allowing on-line changes to the attributes of the time-triggered traffic, 

global timeliness is enforced by the FTT-Ethernet protocol by means of on-line admission 

control. Due to the global knowledge and centralized control of the time-triggered traffic, 

the protocol supports arbitrary scheduling policies (e.g. RM and EDF), and may easily 

support dynamic QoS management complementary to admission control. 
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Beyond the flexibility and timeliness properties that this protocol exhibits, there are 

also some drawbacks that concern the computational overhead required in the master to 

execute both the message scheduling and the schedulability analysis on-line. This is, 

however, confined to one node. The computational power required by the slaves in what 

concerns the communication protocol is just to decode the trigger message in time and start 

the due transmissions in the right moments. Finally, in safety-critical applications the 

master must be replicated, for which there are specific mechanisms to ensure coherency 

between their internal databases that hold the system communication requirements. 

2.8.2 ETHERNET Powerlink 

ETHERNET Powerlink [77] is a commercial protocol providing deterministic isochronous 

real-time communication, operating over hub-based Fast-Ethernet networks. The protocol 

supports either periodic (isochronous) as well as event (asynchronous) data exchanges, a 

very tight time synchronization (accuracy better than 1µs) and fast update cycles (in the 

order of 500µs) for the periodic traffic. From architectural and functional points of view, 

this protocol bears many resemblances with the WorldFIP fieldbus. 

The ETHERNET Powerlink protocol uses a Master-Slave transmission control 

technique, which completely prevents the occurrence of collisions at the bus access [61]. 

The network architecture is asymmetric, comprising a so-called Powerlink Manager 

(Master), and a set of Powerlink Controllers (Slaves). The former device controls all the 

communication activities, assigning time slots to all the remaining stations. The latter 

devices, Controllers, are passive bus stations, sending information only after explicit 

request from the Manager. 

The Powerlink protocol operates isochronously, with the data exchanges occurring 

in a cyclic framework based on a micro cycle of fixed duration, i.e. the Powerlink cycle. 

Each cycle is divided in four distinct phases, called Start, Cyclic, Asynchronous and Idle 

Periods (Figure 2.14). 
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Figure 2.14: Powerlink cycle structure. 
 

A Powerlink cycle starts with a Start of Cycle message, sent by the Manager. This 

is a broadcast message, which instructs Controllers that a new cycle will start, and thus 

allows them to carry the preparation of the necessary data. 

After the Start-Period follows the Cyclic-Period, where the Controllers transmit the 

isochronous traffic. The transactions carried on this period (window) are fully controlled 

by the Manager, which issues poll requests (PollRequest) to the Controllers. Upon 

reception of a PollRequest, controllers respond by transmitting the corresponding data 

message (PollResponse). The PollRequest message is a unicast message, directly addressed 

to the Controller node involved in the transaction. The corresponding PollResponse is a 

broadcast message, thus facilitating the distribution of data among all system nodes that 

may need it (producers-distributor-consumers communication model). Isochronous 

messages may be issued every cycle or every given number of cycles according to the 

application communication requirements. After completing all isochronous transactions of 

one cycle, the Manager transmits an End of Cycle message, signaling the end of the 

Cyclic-Period. 

Asynchronous transactions may be carried out between the end of the Cycle-Period 

and the end of the Powerlink Cycle. These messages may be asynchronous data messages 

(Invite/Send) or management messages, like Ident/AsyncSend, issued by the Manager to 

detect active stations. Since these transactions are still triggered by the Powerlink Manager, 

any node having asynchronous data to send must first notifies the Manager of that fact. 

This is performed during an isochronous transaction involving that particular node, using 

piggybacked signaling in the respective PollResponse message. The Manager maintains a 

set of queues for the different asynchronous request sources, and schedules the respective 
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transactions within the Asynch-Period, if there is time enough up to the end of the cycle. In 

case there is not time enough to complete a given asynchronous transaction or there is no 

scheduled asynchronous transaction then the protocol inserts idle-time in the cycle (Idle-

Period) in order to strictly respect the period of the Start of Cycle message. 

ETHERNET Powerlink also handles Ethernet packets with foreign protocols, such 

as TCP/IP. This traffic is conveyed within the asynchronous period. Powerlink provides a 

special-purpose device driver that interfaces with such upper protocol stacks. 

2.9 Switched ethernet 

Since roughly one decade ago that the interest on using Ethernet switches has been 

growing as a means to improve global throughput, traffic isolation and reduce the impact 

of the non-deterministic features of the original CSMA/CD arbitration mechanism. 

Switches, unlike hubs, provide a private collision domain for each of its ports, i.e., there is 

no direct connection between its ports. When a message arrives at a switch port, it is 

buffered, analyzed concerning its destination, and moved to the buffer of the destination 

port (Figure 2.15). The “packet handling” block in the figure, commonly referred to as 

switch fabrics, transfers messages from input to output ports. When the arrival rate of 

messages at each port, either input or output, is greater than the rate of departure, the 

messages are queued. Currently, most switches are fast enough handling message arrivals 

so that queues do not build up at the input ports (these are commonly referred to as non-

blocking switches). However, queues may always build up at the output ports whenever 

several messages arrive in a short interval and are routed to the same port. In such case, 

queued messages are transmitted sequentially, normally in FCFS order. This queue 

handling policy may, however, lead to substantial network-induced delays because higher-

priority or more important messages may be blocked in the queue while lower priority or 

less important ones are being transmitted. Therefore, the use of several parallel queues for 

different priority levels has been proposed (IEEE 802.1p). The number of distinct priority 

levels is limited to 8 but many current switches that support traffic prioritization offer even 

a further limited number. The scheduling policy used to handle the messages queued at 

each port also impacts strongly on the network timing behavior [62]. 
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Figure 2.15: Switch internal architecture. 
 

A common misconception is that the use of switches, due to the elimination of 

collisions, is enough to enforce real-time behaviour in Ethernet networks. However, this is 

not true in the general case. For instance, if a burst of messages destined to the same port 

arrives at the switch, output queues can overflow thus losing messages. This situation, 

despite seeming somewhat unrealistic, can occur with a non-negligible probability in 

certain communication protocols based on the producer-consumer model, e.g. CIP – 

Control Information Protocol and its lower level protocols such as Ethernet/IP (Industrial 

Protocol) [63], or based on the publisher-subscriber model such as RTPS [65]used within 

IDA – Interface for Distributed Automation. In fact, according to these models, each node 

that produces a given datum (producer or publisher) transmits it to potentially several 

nodes (consumers or subscribers) that need it. This model is efficiently supported in 

Ethernet by means of special addresses, called multicast addresses. Each network interface 

card can define the multicast addresses related to the information that it should receive. 

However, the switch has no knowledge about such addresses and thus, treats all the 

multicast traffic as broadcasts, i.e., messages with multicast destination addresses are 

transmitted to all ports (flooding). 

Therefore, when the predominant type of traffic is multicast/broadcast instead of 

unicast, one can expect a substantial increase of peak traffic at each output port that 

increases the probability of queue overflow, causing degradation in network performance. 

Furthermore, in these circumstances, one of the main benefits of using switched Ethernet, 



 49 

i.e. multiple simultaneous transmission paths, can be compromised. A possible way to limit 

the impact of multicasts is using virtual LANs (VLANs) so that flooding affects only the 

ports of the respective VLAN [63]. 

Other problems concerning the use of switched Ethernet are referred in [5]such as 

the additional latency introduced by the switch in absence of collisions as well as the low 

number of available priority levels that hardly supports the implementation of efficient 

priority based scheduling. 

According to Almeida and Pedreiras these problems are, however, essentially 

technological and are expected to be attenuated in the near future. Moreover, switched 

Ethernet does alleviate the non-determinism inherent to CSMA/CD medium access control 

and opens to the way to efficient implementations of real-time communication over 

Ethernet. 

The remainder of this section presents two protocols that operate over switched 

Ethernet to support real-time communication. 

2.9.1 EDF scheduled switch 

Hoang et al [66] [67] developed a technique that supports a mix of real-time (RT) and non-

real-time (standard IP) traffic coexisting in a switch-based Ethernet network. The RT 

traffic is scheduled according to the Earliest Deadline First policy and is granted with 

timeliness guarantees by means of adequate on-line admission control. 

The proposed system architecture, depicted in Figure 2.16, requires the addition of 

a real-time layer (RT-l) on network components, either end nodes as well as the switch. 

The RT-l is responsible for establishing real-time connections, performing their admission 

control, providing time synchronization, and finally managing the message transmission 

and reception of both real-time and non-real-time traffic classes. 



 50 

 

Figure 2.16: System architecture. 
 

The switch RT channel management layer is responsible for providing time 

synchronization through the periodic transmission of a time reference message. Moreover, 

this layer also takes part in the admission control process, both by assessing the internal 

state of the switch, and consequently its ability to fulfil the timeliness requirements of the 

real-time message streams, as well as by acting as a broker between the nodes requesting 

RT channels and the targets of such requests. Finally, this layer also disseminates the 

internal switch state, namely in what concerns the queues status, to allow flow-control of 

non-real-time traffic on the end nodes. 

Real-time communication is carried out within real-time channels, a point-to-point 

logical connection with reserved bandwidth. Whenever a node needs to send real-time 

data, it issues a request to the switch, indicating both the source and destination addresses 

(both MAC and IP), and the period, transmission time and deadline of the message. Upon 

reception of one such request, the switch performs the first part of the admission control 

mechanism, which consists in evaluating the feasibility of the communication between the 

source node and the switch (uplink) and between the switch and the target node 

(downlink). If the switch finds the request feasible, forwards the request to the destination 

node. The target node analyses the request and informs the switch about its will on 

accepting or not the real-time connection. The switch, then, forwards this answer to the 

originator node. If the RT channel is accepted, it is assigned with a system wide channel ID 

that univocally identifies the connection. 
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The real-time layer comprises two distinct queues, one for the real-time traffic, and 

the other for the non-real-time traffic. The former is a priority queue, where messages are 

kept according to the distance to their deadlines. The non-real-time queue holds the 

messages in a First-In-First-Out scheme. Thus, real-time messages are transmitted 

according to their deadlines, while non-real-time messages are transmitted according to 

their arrival instant. 

The feasibility analysis proposed by the authors is derived from EDF task scheduling 

analysis, but with adaptations to account for some system specifics, such as including the 

overheads due to control messages and the impact of non-preemptive message 

transmission. Deadlines are defined in an end-to-end basis. Since the traffic is transmitted 

in two separate steps (uplink and downlink), the analysis must assure that the total delay 

induced by these steps together does not exceed the total end-to-end deadline. For a given 

real-time message stream i, if diu is the deadline for the uplink and did the deadline for the 

downlink, then the end-to-end deadline diee must be at least as large as the sum of the 

previous two: diu + did  ≤ diee. In [68] Hoang et al assume end-to-end deadlines equal to 

periods, and a symmetric partitioning of the deadline between the uplink and the downlink. 

An improvement is presented in [67], where the authors propose an asymmetric deadline 

partition scheme. Although more complex, this method allows a higher efficiency in the 

bandwidth usage, because more loaded links can receive a higher portion of the deadline, 

thus increasing the overall schedulability level. 

2.9.2 EtheReal 

The EtheReal protocol [70] is another proposal to achieve real-time behaviour on switched 

Ethernet networks. In this approach, the authors decided to leave end nodes’ operating 

system and network layers untouched. The protocol is supported by services implemented 

on the switch, only, and its services are accessible to the end nodes by means of user-level 

libraries. 

EtheReal has been designed to support both real-time and non-real-time traffic via 

two distinct classes. The Real-Time Variable Bit Rate service class (RT-VBR) is meant to 

support real-time applications. These services use reserved bandwidth and try to minimize 

the packet delay and packet delay variation (jitter). Applications must provide the traffic 

characteristics during the connection set-up, namely average traffic rate and maximum 

burst length. If these parameters are violated at run-time, the real-time guarantees do not 
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hold, and packets may be dropped. The second service class is Best-Effort (BE), and it was 

developed specifically to support existing non-real-time applications like telnet, http, etc., 

without requiring any modification. No guarantees are provided for this type of traffic. 

Real-time services in EtheReal are connection-oriented, which means that 

applications have to follow a connection setup protocol before being able to send data to 

the real-time channels. The connection setup procedure is started by sending a reservation 

request to a user-level process called Real-Time Communication Daemon (RTCD), 

running on the same host (Figure 2.17). This daemon is responsible for the set-up and tear 

down of all connections in which the host node is engaged in. The reservation request for 

RT connections contains the respective Quality-of-Service (QoS) requirements, namely 

average traffic rate and maximum burst length. 

 

Figure 2.17: Connection set-up procedure in the EtheReal architecture. 
 

Upon reception of a connection set-up request, the RTCD contacts the neighbour 

EtheReal switch that evaluates whether it has enough resources to meet the QoS 

requirements of the new RT connection without jeopardizing the existing ones, namely 

switch fabrics bandwidth, CPU bandwidth for packet scheduling and data buffers for 

packet queuing. If it has such resources and if the destination node is directly attached to 

the same switch it positively acknowledges the request. If the destination node is in another 

segment, i.e. connected to another switch, the switch that received the request forwards it 
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to the next switch in the path. A successful connection is achieved if and only if all the 

switches in the path between the source and the target node have enough resources to 

accommodate the new RT connection. If some switch has not enough resources, it sends 

back a reject message, which is propagated down to the requester node. This procedure 

serves to notify the requester application about the result of the operation, as well as to let 

the intermediate EtheReal switches to de-allocate the resources associated with that 

connection request. 

The EtheReal architecture employs traffic shaping and policing, both at hosts and 

switches. The traffic shaping is performed to smooth the inter-packet arrival time, 

generating a constant rate flow of traffic. Traffic policing is used to ensure that the 

declared QoS parameters are met during runtime. Those functions are also implemented on 

the switches to ensure that an ill-behaved node, either due to malfunction or malicious 

software, does not harm the other connections on the network. 

With respect to the packet scheduling inside the switch, the EtheReal architecture 

employs a cyclic round-robin scheduling algorithm. All real-time connections are served 

within a predefined cycle. A part of that cycle is also reserved to best-effort traffic, to 

avoid starvation and subsequent time-outs on the upper layer protocols. 

Applications access the real-time services by means of a Real-Time Data 

Transmission/Reception library (RTTR), which, besides other internal functions, like the 

traffic shaping and policing, provides services to connection set-up and tear down and data 

transmission and reception. 

Another interesting feature of this protocol is its scalability and high recovery 

capability, when compared with standard switches. For example, the spanning tree protocol 

(IEEE 802.3D) is used in networks of standard switches to allow redundant paths and 

automatic reconfiguration upon a link/switch failure. However, such reconfiguration may 

take up to 30s with the network down, which is intolerable for most real-time applications. 

On the other hand, the authors claim that EtheReal networks may recover nearly 1000 

times faster, within 32 ms [71]. 

2.10 Recent advances 

Most of the recent work performed on real-time Ethernet targets switch-based 

implementations. However, as discussed before, just replacing a hub by a switch is not 
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enough to make an Ethernet network exhibit real-time behaviour. One of the issues 

recently addressed in the literature concerns the way packets are handled by the protocol 

software (protocol stack) within the system nodes. Most of the operating systems 

implement a single queue, usually working according to a First-Come First-Served policy, 

for both real and non-real-time traffic. This approach induces important delays and priority 

inversions. A methodology that has been proposed to solve this problem is the 

implementations of multiple transmit/receive queues [72]. With this approach, the real-

time traffic is intrinsically separated from the non-real-time traffic. Non-real-time traffic is 

only sent/processed when the real-time queues are empty. It is also possible to build 

separate queues for each traffic class, providing internal priority-aware scheduling. 

Other important issue concerns the degree of freedom in the network topology (e.g. 

bus, star). The topology impacts on the number of switches that messages have to cross 

before reaching the target, which impacts on the temporal properties of the traffic [73][74].  

For instance, the bus (or line) topology, in which each device integrates a simplified switch 

eases the cabling, but is the most unfavourable topology for real-time behaviour. 

Another aspect concerning switch-based Ethernet networks respects the scheduling 

policy within the switch itself. Switches support up to eight distinct statically prioritized 

traffic classes. Different message scheduling strategies have a strong impact on the real-

time behaviour of the switch [75]. Particularly, strategies oriented towards average 

performance and fairness, which is relevant for general-purpose networks, may impact 

negatively on the switch real-time performance. 

Finally, the interest on shared Ethernet is not over, yet, either for applications 

requiring frequent multicasting, in which case the benefits of using switches are 

substantially reduced, as well as for applications requiring precise control of transmission 

timing, such as high speed visual servoing. In fact, switches induce higher delay and jitter 

in message forwarding than hubs, caused by internal mechanisms such as MAC address to 

port translation in forwarding and spanning-tree management protocol. In the previous 

sections, several examples of this interest were discussed, such as the recent work on 

adaptive traffic smoothing [76]and master/slave techniques including both the 

ETHERNET Powerlink [77]as well as FTT-Ethernet [57]protocols. This last protocol is 

also being analyzed for implementation on switched Ethernet, taking advantage of the 

message queuing in the switch ports and thus simplifying the transmission control. This 
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has the potential to ease the implementation of slave nodes since then it would not be 

necessary to enforce fine control of the transmission instants of both synchronous and 

asynchronous messages, strongly reducing the computational overhead. Several existing 

Ethernet-based industrial protocols, such as Ethernet/IP, are also taking advantage of 

switches to improve their real-time capabilities [78][79]. Particularly this protocol is now 

receiving unprecedented support from major international associations of industrial 

automation suppliers, such as Open DeviceNet Vendor Association (ODVA), ControlNet 

International (CNI), Industrial Ethernet Association (IEA) and Industrial Automation Open 

Networking Alliance (IAONA). 

2.11 Conclusion 

Due to several reasons, Ethernet became the most popular technology for LANs, today. 

This makes it very attractive even in application domains for which it was not originally 

designed, in order to benefit from its low cost, high availability and easy integration with 

other networks, just to name a few arguments. Some of such application domains, e.g. 

industrial automation, impose real-time constraints on the communication services that 

must be delivered to the applications. These conflicts with the original medium access 

control technique embedded in the protocol, CSMA/CD, which is non-deterministic and 

behaves very poorly with medium to high network loads. Therefore, along its near 30 years 

of existence, many adaptations and technologies for Ethernet have been proposed in order 

to support the desired real-time behaviour. 

This chapter has presented some real-time Ethernet approaches, ranging from 

changes to the bus arbitration, to the addition of transmission control layers and also, to the 

use of special networking equipment, such as switches. Such techniques have been 

described and analyzed in what concerned their pros and cons for different types of 

application. By last is presented a reference to recent trends where the growing impact of 

switches is clear. However, shared Ethernet might still be preferable, such as when the 

traffic is mainly of a multicast nature or a precise transmission timing control is required. 

With the current high pressure to bring Ethernet more and more into the world of 

distributed automation systems, it is likely that such technology will end up taking the 

place of existing fieldbuses and establishing itself as the de facto communication standard 

for this area. Although its efficiency in terms of bandwidth utilization is still low when 
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considering short messages, particularly lower than with several fieldbuses, its high and 

still growing bandwidth seems more than enough to supplant such aspect. Ethernet will 

then become the long awaited single networking technology within automation systems, 

which will support the integration of all levels, from the plant floor to the management, 

maintenance and supply-chain. 
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Chapter 3 
 

Virtual Token Passing Ethernet –VTPE  
 

3.1 Introduction 

Chapter 2 presented and discussed the most relevant approaches to achieve real-time 

communication over Ethernet. It is interesting to remember that such approaches have 

some drawbacks such as specialized hardware is required, or it is a single node solution as 

the hBEB protocol, or they are not well suited to be implemented in devices with small 

processing power due to the overhead imposed and the memory requirements, or finally 

they are not able to separate the standard Ethernet traffic from the real-time traffic. We 

believe that shared Ethernet is yet a promising solution to interconnect devices at the field 

level due to the numerous advantages discussed in the previous chapters. We advocate then 

that there is a need to find a real-time shared Ethernet solution adequate to be installed in 

sensors, controllers and actuators used in distributed embedded systems. We also believe 

that the VTPE protocol can be one of those solutions.  

So, in order to develop the VTPE protocol, the following goals have been defined: 

• Support, on the same bus, of slow and low cost devices based in 

microcontrollers, as well as more demanding devices integrating powerful 

processors; 

• Low processing overhead in order to be implemented in microcontrollers 

with low processing power; 

• Implementation based on COTS components; 
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• Support of the hBEB protocol in order to allow multi-node operation 

(VTPE-hBEB protocol) and the cohexistence of legacy Ethernet stations 

and VTPE stations. 

VTPE is a collision-free protocol built on top of Ethernet hardware. VTPE overlays 

the standard medium access controller of Ethernet by controlling the access to the bus 

based on the virtual token passing technique. 

The remaining of this Chapter is as follows: Section 3.2 presents the classic VTPE 

proposal; Section 3.3 presents some improvements for supporting isochronous traffic as 

multimedia and Section 3.4 presents the conclusions. 

3.2 The classic virtual token-passing approach   

The VTPE [7] is an Ethernet deterministic proposal based on implicit token rotation 

(virtual token-passing) like the one used in the P-NET fieldbus protocol. VTPE uses the 

producer-consumer cooperation model to exchange data over the bus instead of the master 

slave architecture of P-NET. Producers, in terms of the bus, are active devices that can 

access the bus when they are allowed to do it. On the other hand, consumers are passive 

devices and can only consume the data on the bus2. 

The VTPE system architecture consists of a producer’s logical ring like the one 

depicted in the Figure 3.1.  

 
PLC

Prod./Cons

PC

Prod./Cons

Display

Display

Sensor

Productor
Actuator

Prod./Cons

  

 

Logical and Virtual Token Ring

 

Figure 3.1: The Virtual Token-passing in a VTPE system. 

 

                                                
2A device can be simultaneously producer and consumer  
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In the example of Figure 3.1, the distributed system is composed of six nodes, one 

producer (sensor), three producer/consumers (actuator, PC and PLC) and two consumers 

(Displays). The hardware of each node consists of a processor or microcontroller attached 

to an Ethernet controller.  

This proposal of VTPE uses broadcast destination addressing. The reasons for 

broadcast addressing are to simplify the hardware, to reduce costs, and to allow the VTPE 

to be implemented in a wide range of available Ethernet controllers. When using broadcast 

addressing an interrupt is generated whenever a frame is transmitted in the bus and the 

interrupts are used to do the system synchronisation.  

In a VTPE system each producer node has a node address (NA), between 1 and the 

number of producers expected within a system. All producers have an Access Counter 

(AC), which identifies the node that can access the bus in a specific time interval. 

Whenever a frame is sent to the bus, an interrupt must be generated in all producer nodes. 

After the interrupt all nodes increase their ACs and the producer node whose AC value is 

equal to its own unique address, is allowed to access the bus. If the actual node doesn’t 

have anything to transmit (or indeed is not present), the bus becomes idle and, after a 

certain time, all the access counters are increased by one. The next producer is then 

allowed to access the bus. If, again, it has nothing to transmit, the bus continues idle and 

the described procedure is repeated until a producer effectively uses the bus. 

The procedure described in the previous paragraph accelerates token rotation time 

when producers have nothing to transmit. However, if it is used just like described, it can 

lead to a long idle time in the bus. The absence of bus activity can result in clock drift, 

which, in turn, could lead to AC inconsistencies among system nodes. To prevent this 

situation the VTPE forces the periodic transmission of a frame with k period to 

synchronize all access counters. To do this all producers must have an Idle Bus Counter 

IBC, which indicates how many times the bus became idle and no message was sent. All 

producers also have a timer, which can be programmed with time value t1 or t2. t1 must be 

long enough to enable the slowest processor in the system to decode the VTPE frame (read 

the frame). t2 is used to guarantee the token passing when one or more producers don’t 

have something to transmit. t1 and t2 will be discussed further as well as the k value. 

To explain the VTPE operation lets see the flow chart depicted in Figure 3.2. 
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Figure 3.2: VTPE flowchart. 
 

After a frame transmission all producers must reset their IBCs to zero and initialise their 

timers with the t1 value. After t1 expires each producer node sets its timer with the t2 value, 

increases its AC and checks if it is equal to its own node address. Two possibilities can 

occur: 

• The node whose AC is equal to NA must immediately start a frame 

transmission if it has something to transmit and must set the timer with the 

t2 value; 

• The nodes with NA different from the current AC value must only set their 

timers with the t2 value.  
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After t2 expires each producer must check the Bus Status register of the Ethernet controller 

to verify if there is a frame being transmitted. If true, all producers will wait for the 

interrupt that will occur. If the bus is idle all producers increase the IBC and compare it 

with k. If IBC is smaller than k all producers increase the AC and repeat the last procedure 

until a producer does require access to the bus or the IBC becomes equal or greater than k. 

However, if IBC ≥ k, the node that holds the token must send immediately a special frame 

to synchronize the access counters. The use of the condition IBC ≥ k instead of only IBC = 

k solves the problem of an eventual absence of the node that would be holding the token 

when IBC = k. When the access counter exceeds the maximum number of producers, it is 

preset to 1 and the cycle is repeated again. 

Although the VTPE uses the same bus arbitration principle as P-NET (EN 50170 Volume 

1), there are important differences, some due to new features of the protocol and others to 

the use of Ethernet as the transmission medium: 

• In VTPE the cooperation model used is the producer-consumer replacing the P-

NET master-slave approach; 

• In VTPE it is possible to send more than one message in the same frame; 

• The VTPE data rate (10 or 100Mbps) is much greater than the P-NET data 

transmission (fixed on 76.8Kbps); 

• The VTPE may carry more data per frame (1500 bytes maximum) than P-NET 

(63 bytes maximum). 

3.2.1 The VTPE format frame 

The VTPE protocol uses the MAC Ethernet frame encapsulating a special frame (VTPE 

frame) inside the Ethernet data field. This is shown in Figure 3.3. 

Alternating

1s/0s
SFD DA SA

Type or

length
Data Pad FCS

VTPE frame

Preamble
Frame length (min. 64 bytes e

max. 1518 bytes

 

Figure 3.3: Virtual Token-Passing Ethernet MAC frame. 
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The VTPE uses the type field instead of the length. It represents a reserved constant 

value, which must be used by all the VTPE messages on the network. The use of this field 

allows supporting the coexistence, in the same network, of other protocols. On frame 

reception, the nodes check the type field and only perform further processing if the frame 

is relevant. Nevertheless, the nodes producing non-VTPE frames must implement the 

VTPE access control, and transmit frames only if its AC is equal to its NA. 

The VTPE frame carries one control field and one or more messages as it is 

depicted in the Figure 3.4. 

NI,GI R Identifier Length TTD Data

Control field Message field

 

Figure 3.4: VTPE frame format. 

 

Since VTPE can send more than one message inside a single Ethernet frame more 

efficient bandwidth utilization is achieved due to the reduction on padding in case of small 

messages. Like it is shown in Figure 3.4, the VTPE frame is composed of two parts: the 

control field and the messages field.  

 

Control field 

The control field is two bytes long and the first byte is divided in two parts. The four less 

significant bits (NI) identify the number of messages inside the Ethernet frame (up to 16 

messages). However this number can be reduced to bind the amount of information that 

each node must handle on frame reception, favouring the use of small processing power 

devices. The remaining four bits are the Group Identifier (GI), which will be used to create 

different producer groups, i.e, sub-networks. The GI idea permits to reduce processing 

overhead in the nodes by isolating devices that do not belong to the same group. In fact, on 

frame reception, the nodes check the GI field and only perform further processing if the 

frame is relevant. Nevertheless, the node must implement the VTPE medium access 

control. The second byte of the control field (R) is reserved for future use. 

 

Message field 



 63 

The message field is composed of the identifier, the length, the TTD (Time To Deadline) 

and the Data. The identifier is unique and identifies the VTPE message in the system. It is 

2 bytes long and thus can address 65536 different messages. The field is two bytes long 

and is reserved to contain an indication of the time remaining to the message’s deadline. 

The length is two bytes long and indicates the number of bytes in a VTPE message. The 

VTPE data field is variable, so it can be so small as one byte or so long as 1492 bytes. 

Observe that the Length field is two-byte long and theoretically it can indicate 65536 

bytes. However the maximum data possible per frame in a VTPE message is 1493 bytes 

(1500 bytes of the maximum data inside a single Ethernet frame minus 7 bytes of the 

control field and of the VTPE message’s header). 

To minimize overhead on small processing power devices the messages from and to these 

nodes must be compatible with their processing capacity. The maximum VTPE message 

length for these nodes will be fixed further. 

3.2.2 The VTPE parameters t1 and t2 

To establish these parameters it is necessary to determine the nodes processing workload to 

run the VTPE protocol, i.e, the workload of communication tasks on frame transmission 

and reception. This workload is presented next. 

 

On frame reception 

The host must execute three basic communication tasks: to attend immediately the 

Ethernet’s controller request, to reset to zero the IBC, to program the timer to the value t1, 

and, after t1 expires, to increment the AC and to check if it is equal to NA. The remaining 

activities depend of the protocol type, of the group identifier and of the number of VTPE 

messages. Table 3.1 resumes the remaining tasks after a frame reception. 

 

Frame Type Tasks 

No VTPE Resets the Ethernet’s buffer controller and transmits if it is its chance 

(AC=NA)   

VTPE The host compares the GI in the frame incoming with the one programmed 

in its table. If equal, it continues and checks if any messages belong to its 
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message’s table. In this case, the messages are transferred to its buffers   

Table 3.1: Tasks on received frame. 
 

On frame transmission 

To reduce the t1 value the host transfers the VTPE frame to the Ethernet controller before 

holding the token. Then, when it holds the token, it must just authorize the Ethernet 

controller to send the frame. 

The t1 parameter is the time required by the host to decode the incoming frame, i.e, 

to execute the actions shown in table 1. Observe that the time t1 is processor dependent as 

well as, indirectly, the number of messages inside the VTPE frame. 

The second time, t2 is the guard time needed to detect nodes absent from the 

network or that, despite being present, don’t have anything to transmit. However, as the 

Ethernet controller response can differ from one controller to another one, some care must 

be taken. A higher value of t2 leads to bandwidth spoiling, and a short value can be difficult 

to meet in low processing power microcontrollers. A value around 25µS has been found 

adequate for most situations, but this parameter can be adapted according to the particular 

system characteristics. 

3.2.3 VTPE real-time worst-case computation 

The virtual token-passing technique facilitates to determine the MAC real-time behavior. 

To explain the MAC real-time behaviour lets see the Figure 3.5. 
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Figure 3.5: VTPE real-time behavior. 
 

As it is shown in Figure 3.5, each node transmits a single frame per token holding 

time, starting at node 1. After node 1 transmission, node 2 gets the right to transmit and, 

after node 2, node 3 may transmit. However node 3 has nothing to transmit, or is not even 
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connected to the bus, thus no transmission occurs and then only t1 appears in the timeline. 

After node 3 some other nodes are not present or have nothing to transmit and the bus 

remains silent until a node in the chain gets the right to transmit and transmits. When node 

N, the last node, transmits a frame the AC is preset to 1 and the node 1 gets the right of 

transmission again. The TRT(n) is the time between the nth and (n+1)th token visits of a 

specific node, i.e., the time between two consecutive transmissions. Its value can be found 

based on the scenario depicted in the Figure 3.5. 

Thus from Eq 3.1 it is possible to calculate the TRT(n) where N is the number of 

nodes, t1 is as mentioned before, and tfd(k,n) is the duration of the frame transmitted by 

node k in the nth token visit. The term f(k,n) is a flag which is equal to 1 if node k 

transmits during the nth token visit and is 0 otherwise. 
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The maximum Token Rotation Time TRTmax can be calculated by equation Eq 3.2 

where tfd max(k) is the time to transmit the largest VTPE frame from node k. It is assumed 

that all nodes transmit during this worst case round. 
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The equation (3.1) and equation (3.2) show that the VTPE MAC behaviour is 

deterministic, besides being very simple to determine the TRT. 

 VTPE, as well as P-NET, were designed to ensure that any particular master has no 

hierarchical priority over any other. In VTPE the virtual token rotates in a circular list 

according to the increasing addresses of masters and each master can access the bus once 

per each token rotation cycle. VTPE, as well as P-NET, due to the nature of token-passing 

in a circular list, has the potential to create large blocking periods between consecutive 

token arrivals. In VTPE the blocking is strongly dependent of the quantity of nodes and of 

the length of each transmitted message during a token rotation. The blocking B, in the 

worst case, can be calculated by the equation (3.3).  As it shown in equation (3.3) each 

node is blocked by (N-1) times per each rotation time. 

∑
−

=

+−=
1

1
max1 )(*)1(

N

k
fd

ktNB t  (3.3) 



 66 

A solution to avoid or, at least, to limit this blocking will be discussed further in this 

document. 

3.2.4 Some experimental results  

An implementation of VTPE over an Ethernet 10Mbps hub was reported in [80]. An 

enlarged description of the experimental setup can be found in the Chapter 6. In this 

implementation the nodes are based on a PIC microcontroller 18F458 with full processing 

capacity allocated to run VTPE. Some results of this implementation are summarised in 

Table 3.2. 

Table 3.2 shows the t1 values according to the maximum length of the transmitted 

frames and the network utilisation achieved for the implementation presented in the 

Section 3.2. The modest network throughput is due to the low processing power of the 

microcontrollers and to the overhead imposed to the nodes in order to accept all 

transmitted frames and to do some processing on each frame. In fact, using current 

standard Ethernet controllers, it becomes heavy to implement the VTPE, because it is 

impossible to read a frame during its transmission and to execute the VTPE procedure 

simultaneously. This can be minimised with adapted controllers, e.g., using dual controller 

architectures, or can be solved using FPGAs and IP cores [81]. 

Data 

(Bytes) 

Frame Length including preamble 

(Bytes) and Start Frame Delimiter 

tfdmax   (µS) t1 (µS) Network  Utilisation 

U=(1-t1/(t1+tfd)) 

46 72 57.6 297.60 16.2  

138 164 131.2 693.60 15.9 

276 302 241.6 1288.8 15.8 

414 440 352.0 1883.2 15.8 

552 578 462.4 2476.8 15.7 

690 716 572.8 3071.2 15.7 

828 854 683.2 3665.6 15.7 

966 992 793.6 4260.0 15.7 

1104 1130 904.0 4854.4 15.7 

1242 1268 1014.4 5448.0 15.7 

Table 3.2: VTPE experimental results. 
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Using the values from the implementation referred above, we can highlight the 

problem associated to the blocking caused by the circular token rotation. For example, 

consider a system comprised of 5 nodes with the frame parameters shown in the bold line 

of Table 3.2. The maximum token rotation time, TRTmax, calculated by equation (3.2) is 

14.696ms. This means that a node can only transmit about 68 frames per second, which is 

clearly insufficient for bandwidth and timeliness demanding streams such as those of 

multimedia applications. 

Therefore, the classic version of VTPE is not well suited to support multimedia traffic that 

is becoming more frequent in control and monitoring applications. The two main 

disadvantages are: 

• The token rotation time depends on the processing power of the processors 

used because t1 must be long enough to enable the decoding of the 

maximum frame broadcasted; 

• By protocol definition there is no priority among the nodes; 

The first disadvantage can be solved if nodes are restricted to be implemented with 

high processing power processors and 100Mbps Ethernet controllers. However, to 

overcome the last restriction, enhancements in the VTPE protocol must be made. 

3.3. Adapting VTPE to support isochronous traffic 

Besides the usual control loops where sensors, controllers and actuators must exchange 

information, the use of more resource demanding applications, such as multimedia for 

control and monitoring has increased significantly in modern Digital Computer Control 

Systems (DCCS). This means that the communication link among the different system 

elements must allow the coexistence of multimedia traffic and control traffic. These 

communications needs have been already pointed out by Javier Blanes [82], Stankovic 

[83], Pimentel [84], Dietrich [85], and Neumann [86], among others. 

At the field level, a network capable to perform the integration of multimedia and 

control traffic must be able to handle large frames in a bounded time, besides supporting 

the generic requirements of DCCSs pointed out by Pimentel [84] and Decotignie [5], such 

as the indication of temporal consistency, point-to-point and multicast communication, 

robustness in terms of interference and vibration, etc. Then the network protocol must 

allocate the network bandwidth so that the nodes that are source of multimedia traffic or 
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any other control traffic with stringent timing constraints have guaranteed access to the 

medium in the time specified by the application. To alleviate the blocking problem caused 

by the circular list, two main approaches have been followed: using a sufficiently small 

target token rotation time, with appropriate design of synchronous bandwidths [87] and 

creating non-circular lists where a given node can be visited several times in a full token 

rotation [41]. 

In order to alleviate the blockings caused by the circular token rotation, we decided 

to follow an approach similar to the one proposed in [41], which consists in using a non-

circular token rotation so that the token may visit the same node more than once in each 

rotation. In order to support this feature an extension of VTPE is proposed which 

implements a bandwidth allocation scheme that gives higher priority to the nodes that are 

source of isochronous traffic or, at least, gives them the right to access the network more 

often than regular nodes. This more frequent access can be accomplished with an almost 

regular period, which may be different from node to node and which seems adequate for 

isochronous traffic. 

3.3.1 The bandwidth allocation scheme 

The bandwidth allocation scheme proposed is a simple mechanism that can be readily 

added to both VTPE and P-NET protocols. This scheme also uses an access counter which 

value must be similar in all nodes and which must also be incremented simultaneously in 

each node, either after a time out or after the end of transmission of a frame. Instead of 

comparing the access counter AC value with the node address, as in the referred protocols, 

masters will use this value to check the status of a flag located in the correspondent 

position within a table. This table has been named Bandwidth Allocation Table (BAT) and 

it consists of an array of flags with a dimension M (Table 3.3). If a master finds a flag ON 

in the position corresponding to its current AC counter value then it is allowed to access 

the network. The AC value is then now a pointer to a position in the BAT table when the 

correspondent flag indicates if there is or not the right to transmit. This means that all other 

masters must have their flags OFF in the same position. In order to reuse the software from 

the virtual token passing scheme, the ON flags can be integer numbers from 1 to M. It 

means that, in a real implementation, the BAT table in every node contains not a “0” or “1” 

value, i.e. a flag, but a 0 or n figure n being the current BAT position. For instance, BAT1 

in the exempla of Table 3.3 that follows would be 1,0,3,0 instead of 1,0,1,0. From now on 
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this implementation detail will be ignored and the “0” or “1” flag value will be used 

instead. Finally, as in normal virtual token passing protocols, whenever the access counter 

AC attains the M+1 value it is reset to 1. 

The BAT can be organized in such a way that some masters can access the bus 

more often than others, during a global token rotation time. This is defined by the number 

of ON flags in a master’s BAT and by the spacing between them. A scheduler can prepare 

the BAT prior to the start of the system operation in order to reflect the needs of the 

masters in what concerns transmission of data. 

In virtual token passing protocols it is possible that a master that has nothing to 

transmit doesn’t use its window when it receives the token. Also, if the master has a 

failure, a similar situation occurs. This means that the token holding time in a master can 

be highly variable, between a minimum, the time out, and a maximum, the maximum 

frame duration. However, masters transmitting isochronous traffic will normally use the 

right to access the bus, except if they fail. Failures in masters, lack of use of the right to 

access the bus and frame length variation will obviously affect the isochronous periodicity 

defined in the BAT. 

Figure 3.6 shows the scheme to allocate bandwidth in a state machine form. Each 

arc denotes a transition of the access counter AC, K is the node address and the circle 

denotes the node with address K.  

1 2 3

AC=2

AC=4

AC=1

AC=3

K Node

AC= Access Counter

 

Figure 3.6: State machine of the bandwidth allocation scheme. 
 

 

As it is shown in Figure 3.6 the virtual token starts at node 1 (AC=1), then it is sent to node 

2 (AC=2), and afterwards it returns to the node 1 (AC=3). Now the virtual token goes to 

node 3 (AC=4) and returns again to node 1 (AC=1). It should be noticed that the virtual 

token visits more often node 1 than the other nodes in the global token rotation sequence. 
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Observe that in Figure 3.6 there are two small token cycles (or a sort of mini-cycles), one 

between node 1 and node 2 and other between node 1 and node 3. Also there is a large 

token cycle (a sort of macro-cycle) that includes all nodes. 

For this simple example the versions of the BAT for each node are presented in 

Table 3.3. 

Access Counter 1 2 3 4 Bandwidth (%) 

BAT1 1 0 1 0 50 

BAT2 0 1 0 0 25 

BAT3 0 0 0 1 25 

Token Rotation Sequence (TRS) 1 2 1 3  

Table 3.3: Bandwidth allocation table for the example of Figure 3.6. 
 

If the frame duration is similar for each node, node 1 gets 50% of the bandwidth, 

whereas node 2 and 3 obtain both 25% of the available bandwidth. Differently from the 

normal virtual token rotation scheme, this scheme allocates asymmetrically the network 

bandwidth resulting in the reduction of blocking caused by the token rotation, that is, it can 

significantly reduce the time that a node is delayed before transmitting. Observe in Table 3 

that the node 1 is delayed just one frame time by the nodes 02 and 03. This delay could be 

kept even with a larger number of nodes whereas in a normal virtual token passing scheme 

the delay would increase with the number of nodes. 

3.3.2 Timing analysis 

In order to derive the timing analysis for this version of VTPE let us see first some 

parameters and definitions. 

N – Number of nodes 

M – Number of positions in the BAT (Bus Allocation Table) 

t1 – VTPE time parameter 

The BAT is an array of flags with dimension M. In each master the BAT is defined as a 

vector fK(i) where: 

  0)( =if K
 if master K is not allowed to access the bus in window i, Mi ...1= . 

  1)( =if K
 if it is allowed to use the bus in window i. 

The bus can just be used by one Master at a time, i.e.: 
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[ ] [ ]NKjMiifif jK ,1,,1,0)(1)( ∈≠∀∈∀=⇒=  (3.4) 

So, the overall bus allocation can be represented by the array of binary flags indicated in 

eq.3.5. In each position the flag will be 1 when there is a master that has the right to 

transmit with AC=i and 0 otherwise: 
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0 ==∑
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 (3.5) 

 

The token rotation time is not anymore identical for all masters. If a master K is just 

allowed to access the bus once per full count of the Access Counter AC, then the token 

rotation cycle has a duration given by equation (3.6). 
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In equation (3.6) the tfd(i) are the durations of the frames transmitted by the nodes with 

AC=i, if they have something to transmit. These are considered identical in every token 

cycle n, and then this index is dropped in tfd. If the tfd values are unknown then tfdmax, the 

maximum frame duration, can be used. Also notice that f0(0) = f0(M) by definition. 

The tRTmc figure measures the time it takes to repeat the token visit sequence 

pattern. It is independent of the specific master considered. It is similar to what is called a 

macro-cycle in communication schedules. Because of that a mc subscript is added. 

If the bus is fully used, then every element of the array of eq. 3.5 will be 1. The 

maximum rotation time of a master that transmits only once during this sort of macro cycle 

(i.e. the maximum macro cycle duration), happens when all masters transmit a frame with 

maximum duration and when the macro-cycle is fully used. Equation (3.7) can then be 

applied: 

)(* max1max fdRTmc ttMt +=  (3.7) 

Masters with isochronous traffic will be authorized to access the bus more than 

once per macro-cycle. The number of accesses per macro-cycle is given by: 

 ∑
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A maximum bound for the average value of the token rotation time for these 

masters can be obtained using the worst case macro-cycle duration: 

K

RTmc
KRTavg

Nacc

t
t max

, =  (3.9) 

 

An average value can be obtained using a tRTmcavg that results from replacing in 

equation (3.7) tfdmax with tfdavg, which is the average frame duration. 

In normal situations different periodicity requirements of isochronous traffic of the 

masters will result in mutual interference between traffic flows. A bus schedule without 

period jitter will be practically impossible to obtain as it is typical in token-based system. 

In order to analyze the period variations for a master, it is required to determine the 

minimum and maximum time between consecutive token visits for that specific master. 

One possibility is to determine the number of the BAT positions between consecutive flags 

ON for that master. This leads to NaccK number of LK(i) values as given by equation 

(3.10). 

[ ]KMMODK NacciabiL ,1)()( ∈∀−=  

where 

(3.10) 

( ) bjajfbfaf KKK <<=∧== ,0)(1)(  (3.11) 

 

Using modulus M arithmetic it is easy to obtain the value for the interval between 

the last access in the current macro-cycle and the first in the next one. 

The minimum and maximum values for the token rotation time of master K can 

then be obtained either using a pessimistic view that ignores the schedule of the bus 

between two successive accesses of the master or using a more accurate estimate resulting 

from the analysis of the effective bus usage between the a and b points of the LK(i) 

calculation. 

For the first case, considering that t2 < t1 + tfd min, i.e., that the time out to detect the 

bus idle when a node has nothing to transmit is always smaller than the minimum 

occupation of the bus when the nodes are transmitting, the minimum token rotation time is:  

)1))(((min(* ...121minmin, −++= = NaccKiKfdKRT iLtttt  (3.12) 
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And the maximum is 

NaccKiKfdKRT
iLttt ...1max1max, ))(max(*)( =+=  (3.13) 

 

For the second case it is required to compute an estimate of each individual token 

rotation time by an analysis of the schedule similar to the one used to determine LK(i). For 

the same conditions, we have: 
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(3.14) 

 

Jitter figures can then be easily obtained from the sequence of token rotation time values.  

This analysis can be directly adapted to isochronous traffic flows instead of masters if 

there can be more than one flow per master. To adapt the equations it is just required to 

redefine N which becomes the number of flows and K which becomes the index to the flow 

BAT. Of course a BAT will be required also for each flow. 

3.3.3 Example 

In order to apply the real-time analysis derived in section 3.2 we show a larger example 

than the one shown in Table 3.4. The system is comprised of five nodes with the 

bandwidth allocated differently to all nodes. 

 

 

 

For this example the system parameters are: 

 N=5 t1  = 2476.8 µs 

AC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 B (%) 

BAT1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 33.333 

BAT2 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 27.777 

BAT3 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 16.666 

BAT4 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 11.111 

BAT5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 5.5555 

Token  Rotation 

Sequence 
1 2 3 1 4 2 1 3 5 1 2 4 1 2 3 1 …... 2 

Total 

allocation 

Table 3.4: Bandwidth allocation table for an example with 5 nodes 
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 t2 = 25µS tfdmax = 462.4 µs 

 
Choosing node 2 as an example to demonstrate the real-time analysis presented 

above, the maximum token rotation time per macro-cycle tRTmc max can be derived: 
 

( ) ( )

49.9914msor  s49991.4

4.4628.2476*1254.4628.2476*16
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RTmc

t
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Observe that, when AC=17, the bus is idle and only t2 must be added in the 

equation. Also observe that all the other AC values correspond to previewed transmissions 

which must be taken into account with the maximum frame duration. The equation (3.7) 

was not used directly as it represents the situation where all AC values correspond to 

effective transmissions. 

The number of accesses per macro-cycle can be obtained from equation (3.8). 

52 =Nacc  

The average token rotation time is given by equation (3.9): 

9.998msor   s9998.28
5

49991.4
2, µ==RTavgt  

The minimum LK(i) can be deduced from inspecting the BAT2 vector and noticing 

that the minimum L2(i) occurs between AC=11 and AC=13. Then minL2(i)=3. 

Similarly, the maximum LK(i) occurs between AC=6 and AC=10. Then maxL2(i)=5. 

The minimum token rotation time can be deduced applying equation (3.12) for 

node 2 (considering that the frame transmitted by the node is one with a maximum 

duration) which results in: 

ms 2.989or   29892*254.4628.24762min, stRT µ=++=  

The maximum token rotation time is obtained from equation (3.13):  

ms 14.696or  146965*) 462.4 2476.8(2max, st RT µ=+=  

Finally, Table 3.5 summarises the results for all nodes of the example. 

Nodes Nacck tRTavg,k 

(ms) 

minLk(i) maxLk(i) tRTmin,K 

(ms) 

tRTmax,K 

(ms) 

Node1 6 8.332 3 3 2.989 8.818 

Node2 5 9.998 3 5 2.989 14.696 

Node3 3 16.664 5 7 3.039 20.574 

Node4 2 24.996 7 11 3.114 32.331 

Node5 1 49.991 17 17 3.339 49.966 
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   Table 3.5:Real-time analysis results for the example of Table 3.4 
The nodes transmission schedule for this example was chosen only to clarify the 

application of the derived real-time analysis. It shows a possible asymmetric bandwidth 

distribution among the 5 nodes that was not possible with the common circular token 

rotation. For example, in this case, the bandwidth allocated to node 1 has been 

substantially improved, with a maximum blocking caused by the token circulation of 

8.818ms. With circular token rotation, this blocking would be 14.969ms if the same 

operational parameters were used. 

Table 3.5 also allows deducing the maximum jitter in the token arrivals, which is 

substantial for nodes with less bandwidth but smaller for nodes with high bandwidth, 

which are the most demanding ones. 

3.3.4 Adapting the classic VTPE frame 

In order to implement this new feature in VTPE the real value of the access counter must 

be sent inside each frame. This is because the access counter can be different of the node 

address due to the fact that a node can be visited more than once by token rotation time. A 

little modification in the definition of the VTPE frame should be done. The new VTPE 

frame is shown in the Figure 3.7. 

 

Figure 3.7: New VTPE frame. 
 

In Figure 3.7 the AC field is one byte long, the reserved field, R, is two bytes long 

and all other fields remain according to Section 3.2. Being AC one byte long than 256 

different values per token rotation time can be addressed and this value is enough for the 

aimed application of VTPE. 

3.4. Conclusions 

The VTPE classic approach in which a master sends just a frame per token rotation was the 

first version presented in this chapter. It is simple and easy to be implemented. However in 

this approach there is no prioritized bandwidth allocation among the nodes and this lack 

can cause blocking depending of the number of masters in the system.  If this number 
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increases this approach becomes unsuited for application such as multimedia because it can 

lead to significant blocking. The improved VTPE approach alleviates the blocking caused 

by the circular token rotation because the token may visit the same node more than once in 

each rotation. This improvement gives higher priority to the nodes that are source of 

isochronous traffic or, at least, gives them the right to access the network more often than 

regular nodes. This more frequent access can be accomplished with an almost regular 

period, which may be different from node to node and which seems adequate for 

isochronous traffic. Then the bandwidth can be differently allocated to the masters 

depending on their communication needs. This technique does not require significant 

changes to the “normal” scheme, thus inheriting its advantages and being suited to VTPE 

and P-NET protocols. By making a careful schedule of the traffic and an adequate choice 

of parameters it is possible to limit the jitter of periodic traffic. Isochronous traffic flows 

can then be transmitted. However, some additional work must yet be done on this issue. 
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Chapter 4 

 

The VTPE-hBEB Protocol 
 

4.1 Introduction 

Despite the increasing use of switches to interconnect Ethernet devices, the vast majority 

of Ethernet networks still operate in heterogeneous environments. Figure 4.1 shows a 

heterogeneous environment with Ethernet Switching Hubs interconnecting both 

independent node stations and Ethernet Repeater Hubs with multiple interconnected node 

stations (equivalent to shared Ethernet segments).  

 

Figure 4.1: Heterogeneous Ethernet environment. 
 

In such heterogeneous environments, the Switching Hubs impose separate collision 

domains at each port (network segmentation), allowing the implementation of service 



 78 

policies with different priorities. However, within each of the collision domains (i.e., 

among node stations interconnected by each Repeater Hub), the network still operates in 

the traditional shared Ethernet mode; that is, collisions are solved by means of a 

probabilistic contention resolution algorithm, i.e., the medium access is inherently non-

deterministic. 

Several approaches and techniques have been developed to provide real-time 

behaviour to Ethernet-supported applications. However, few of those techniques allow 

standard devices to coexist with enhanced stations in the same network segment. Relevant 

exceptions such as [9] and [35] have strong limitations related to the number of allowed 

real-time stations [9] or the requirement for the use of specific hardware [35]. 

This chapter proposes a shared Ethernet deterministic architecture, able to 

interconnect sensors, controllers and actuators at the field level, allowing the coexistence 

of standard Ethernet devices with enhanced (real-time) devices. Such solution is based on 

the control of the medium access right, by means of the virtual token passing technique 

among enhanced stations, complemented by the underlying prioritization mechanism, the 

hBEB algorithm. Such underlying mechanism, as presented in the Chapter 2, guarantees 

that, whenever an enhanced (real-time) station is contending for the bus access, it will be 

able to access the bus prior to any other station. Thus, it enables the traffic separation 

between standard and enhanced (real-time) stations, being able to guarantee real-time 

communication in unconstrained traffic environments. This proposal has been named 

Virtual Token Passing Ethernet over hBEB algorithm or VTPE-hBEB for short. 

The development of this proposal joining VTPE with hBEB resulted from a fruitful 

collaboration with the University of Porto, Faculty of Engineering. The team in Porto was 

responsible for the validation through simulation of some of the proposals discussed in this 

thesis. A PhD Thesis including some of the correpondent results can be found in [102]. 

The remaining of this chapter is as follows: Section 4.2 presents two VTPE-hBEB 

proposals: a general one considering that VTPE-hBEB can be implemented in any Ethernet 

controller that supports the BEB algorithm disabling and interrupts, and an adaptation 

leading to an implementation of VTPE-hBEB in a specific Ethernet controller. Finally, 

section 4.3 presents the conclusions. 
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4.2 The VTPE-hBEB protocol  

4.2.1 VTPE-hBEB topology 

The topology of a VTPE-hBEB system is basically as the heterogeneous Ethernet 

environment shown in Figure 4.1. Figure 4.2 shows a VTPE-hBEB topology with real-time 

devices (a sensor, a controller and an actuator) and PCs interconnected by a hub. The 

media access of the real-time devices is guaranteed by the virtual token passing technique 

whereas the communication of the other Ethernet devices is done by using the BEB 

standard algorithm. 

 

 

Figure 4.2: VTPE-hBEB Topology. 

 

4.2.2 VTPE-hBEB protocol 

A proposal of the VTPE-hBEB protocol was presented in [97]. The VTPE-hBEB protocol 

works as shown in Figure 4.3. According to Figure 4.3, whenever a frame finishes to be 

transferred, an interrupt occurs simultaneously in all nodes. Therefore, the interrupt event 

is used to synchronize the AC counters. Whatever the VTPE-hBEB station, when its 
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Access Counter (AC) is equal to the Node address (NA), it means that the station is 

holding the token. If the station has something to transmit, the hBEB algorithm will 

immediately start, guaranteeing that the station will win the medium access in a bounded 

time. 

If the station holding the virtual token does not have any message to be transferred, 

it will allow Ethernet standard stations to contend for accessing the bus, during a time 

interval t2. If the bus remains idle during t2, an interrupt will be generated in all the stations 

and all the AC counters will be incremented, which corresponds to an implicit token 

passing.  
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Figure 4.3: Control Flow Summary – VTPE-hBEB. 
 

If an Ethernet standard station tries to transmit during the time interval t2, two 

different situations can arise: either the message is normally transmitted or a collision 
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resolution procedure starts. If a transmission occurs, then the algorithm just waits for the 

interrupt at the end of the message transfer. If a collision resolution starts, then it can be 

either generated just by standard Ethernet stations or it can also include an active hBEB 

station holding the token. The first scenario, i.e., a collision involving just standard 

Ethernet stations, can be detected if a bus idle occurs with duration greater than 51,2µs 

(slot time duration at 10Mbps). In such case, the VTPE-hBEB stations can pass the virtual 

token as the hBEB station that is holding the token has nothing to transmit. 

As deduced in [9] and also as presented in Chapter 2, the hBEB algorithm solves 

collisions in a bounded time, or it eventually discards the message. This enables the 

definition of a time interval t3, greater than the hBEB collision resolution interval. If a 

message does not start to be transferred during the t3 interval, then a collision between 

messages from multiple standard Ethernet stations has occurred (as the hBEB collision 

resolution algorithm would have succeeded during that interval). If the t3 interval expires, 

it is then possible to pass again the token and thus an interrupt is generated. 

The VTPE-hBEB frame format is the same as the VTPE discussed in the Section 

3.3.3 and no modification is necessary in it.  

4.2.3 Timing analysis 

In this section, it is presented the timing analysis of an Ethernet network interconnecting 

multiple VTPE-hBEB stations with Ethernet standard stations. This analysis clearly 

illustrates the real-time behaviour of the proposed VTPE-hBEB architecture. 

Consider a network with n VTPE-hBEB stations, with addresses ranging from 1 to 

N. Each VTPE-hBEB station accesses the network according to the VTPE-hBEB scheme, 

i.e., first station 1, then station 2, 3,… until station N, and then again station 1, 2,…N. The 

standard Ethernet stations implement the traditional BEB collision resolution algorithm. 

First of all, consider a two-collision scenario. In such case, the maximum delay to 

transfer a real-time message, when the VTPE-hBEB station is holding the token, is 

illustrated in Figure 4.4.  
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Figure 4.4: Collision scenario solved by the hBEB collision resolution algorithm. 
 

According to the VTPE-hBEB scheme, such station transmits its message using the 

hBEB algorithm; that is, it always tries to transmit its message in the first time slot. 

Therefore, when a VTPE-hBEB station holding the token has a message ready to be 

transferred (PA), it will wait an Inter Frame Gap (I1: 12 byte times) before starting to 

transmit. If a collision occurs during the transfer of the first 64 bytes of message PA, a 

jamming sequence will be broadcasted (J1: 4 byte times). Afterwards, the station will wait 

again during an Inter Frame Gap (I2: 12 byte times) and, according to the hBEB algorithm, 

it will immediately start to transmit its message. If a second collision occurs, a new 

jamming sequence (J2) will be broadcasted and station A will wait again for the Inter 

Frame Gap (I3), before starting to transmit. The cumulative result (from t0 up to the 

beginning of the third attempt) is 160 bytes or 0.128ms (at a 10 Mbps bit rate). The 

maximum time that a VTPE-hBEB station holding the token will wait before starting to 

transfer a message, or eventually to discard it, is 0.960ms as shown in Table 4.1. 

Retry 
Number 

Max delay  
(# slots) 

Max cumulative  
delay (# slots) 

Max delay  
(ms) 

1 1 1 0,064 

2 1 2 0,128 

3 1 3 0,192 

…    

9 1 9 0,576 

10 1 10 0,640 

…    

14 1 14 0,896 

15 1 15 0,960 

16 discard frame 

Table 4.1: Maximum delay to start transferring a message in the hBEB algorithm. 
 

Table 4.1 shows that the hBEB algorithm solves collisions in a bounded time, or it 

eventually discards the message. Therefore, it is of utmost importance to focus on the 
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probability of a message frame being discarded by the hBEB algorithm, whenever the 

number of collision resolution rounds exceeds 15. 

Such probability has been analytically evaluated in [31] for a highly loaded network 

scenario. This probability is equal to 1.22×10-4 for a small population scenario (5 stations) 

and 1.95×10-3 for a large population scenario (65 stations). For more realistic load 

scenarios, it has been verified by simulation that a hBEB station never discards any packet, 

whatever the simulated network load (simulation scenario: 75×104 hBEB simulated 

messages in a 10Mbps network with 64 standard Ethernet stations and one hBEB station, 

with a network load ranging from 40% to 110%) [31]. Such results are consistent with the 

claim that the hBEB algorithm is able to support most part of the soft real-time 

applications, as they confirm a rather small probability of any message being discarded. 

Therefore, if it is considered that no message is discarded by the VTPE-hBEB 

station holding the token, the maximum time that a VTPE-hBEB station holding the token 

waits to transfer a real-time message is given by: 

fdcolhBEB tIFGtT ++=  (4.1) 

where tcol is the worst-case delay to start transferring a message (0.960 ms), IFG is the Inter 

Frame Gap (12 byte-times) and tfd is the time to transfer a frame from the VTPE-hBEB 

station, which is the maximum message length. 

On the other hand, when the VTPE-hBEB station holding the token does not have 

any real-time message ready to be transferred, the standard Ethernet stations in the network 

segment can try to start transferring their own messages. In such case, all the VTPE-hBEB 

stations will wait during a time interval t2, within which any Ethernet standard station may 

try to start transferring a message. If the collision resolution round is longer than t3 

(0,96ms), or if the bus remains idle during a time interval equal to t2, an interrupt will be 

generated and all the AC counters will be incremented (i.e., there will be a Virtual Token 

Passing). 

In Figure 4.5 it is exemplified the maximum time interval that a VTPE-hBEB 

station is allowed to hold the token, even if it does not have any real-time message ready to 

be transferred. Such worst-case arises when multiple collisions occur. In such case the time 

interval t3 must be long enough to allow an hBEB message transfer, as the VTPE-hBEB 

stations that are not holding the token do not known if the colliding messages are from just 
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Ethernet standard stations, or if there is also a message from a VTPE-hBEB station holding 

the token. In the latter, the time interval t3 guarantees that the VTPE-hBEB station that 

holds the token will be able to transmit its message and an interrupt will occur when the 

message transfer is finished. Otherwise, if the collision resolution is not solved during the 

time interval t3, it means that the collisions are occurring just among standard Ethernet 

stations. Therefore, an interrupt will be generated after t3 and the next VTPE-hBEB station 

in the logical ring will be able to contend for the medium access. 

 

Figure 4.5: VTPE-hBEB token holding time. 
 

The worst-case for the token holding time occurs when, at instant (t3 - ε), a standard 

Ethernet station starts to transmit a 1518-byte message (tover), which is the longest message 

that can be transferred in an Ethernet network. 

Therefore, the maximum time that a VTPE-hBEB station may hold the token is 

given by: 

overTH ttT += 3  (4.2) 

As the token rotation time is the time interval between two consecutive token visits 

to a particular station, the worst-case token rotation time, denoted as TRT, is given by: 

THTNTRT *=  (4.3) 

where TTH is as defined in equation 4.2. The value TRT represents the worst-case time 

interval between two consecutive token arrivals to any VTPE-hBEB station (M=1… N). 

4.2.4 Adapting the VTPE-hBEB proposal 

The VTPE-hBEB protocol essentially requires both interrupt and BEB algorithm disabling 

support in order to be implemented in COTS hardware. Due to the fact that the BEB 

algorithm disabling does not belong to the IEEE 802.3 standard, this feature is not usually 

supported in the Ethernet controllers aimed for general purpose applications. In fact, when 
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this work has been started, there was a lack of Ethernet controllers able to support backoff 

disabling and only the CS8900A-CQ [88] Ethernet controller was found. However the 

BEB disabling feature is becoming common in those Ethernet controllers aimed for 

embedded application. More recently some new embedded Ethernet controllers, able to 

support backoff disabling, were launched such as the ENC28J60 from Microchip [89] and 

the CP2200-GQ and CP2201-GM from Silabs [90]. The BEB disabling support seems now 

to be a common feature in the Ethernet controllers aimed for embedded application. 

  The CS8900A-CQ controller allows BEB disabling but interrupt is not well 

supported when it is used with an 8-bit host processor. According to Ayres [91] the polling 

method to a receive event register must be used instead of the interrupt for sensing and 

getting received frames. Eady [94] points out that CS8900A-CQ will work in 8-bit mode 

since the Ethernet traffic is kept very light. However VTPE-hBEB is aimed to be used 

either in small processing power controllers and or in powerful ones as well, working in 

very loaded traffic environments. These drawbacks imply some changes in the proposal 

presented in Section 4.2.2 and in the hardware as well. 

 Our hardware solution uses a couple of CS8900A-CQ/microcontroller per node, 

that is, one couple of CS8900A-CQ/microcontroller runs the VTPE-hBEB and the other 

runs the application. A detailed explanation of hardware will be presented in the Chapter 5.  

A flowchart for adaptation of VTPE-hBEB proposal is shown in Figure 4.6.  
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Figure 4.6: VTPE flowchart for a dual Ethernet controller implementation. 

 

As shown in Figure 4.6, VTPE-hBEB runs in Microcontroller 1 while the application runs 

in Microcontroller 2. According to Figure 4.6, the Microcontroller 1 (left side) starts a 

timer with t1 and polls continuously looking for received Ethernet frames in the receive 

event register. Whenever a new frame is received the microcontroller initiates the 

transference and the frame decoding immediately. The frame decoding process checks the 

access counter (AC) in the VTPE-hBEB header field (the same as the VTPE header field – 

Section 3.3.3), refreshes its own AC with the received AC, increases AC and checks AC 

against its NA or BAT table. If (AC=NA or AC=BAT(i)) a level logic transition is 

signalised in a pin of Microcontroller 1. This pin is the source of interruption and then it is 

tied to an external interrupt pin of Microcontroller 2. If the application in the 

Microcontroller 2 has a ready frame to transmit it starts transmitting as soon as the 

interrupt is serviced and the bus is free, otherwise, having nothing to transmit, t1 is allowed 
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to timeout and the next node of the virtual ring gets the right to access the bus according to 

the VTPE fashion. 

In order to evaluate the timing behaviour, targeting the best network performance, it 

is considered that the application produces and loads a ready frame into the CS8900A-CQ 

until the last but one byte and that it waits for the interrupt. When interrupted, the two 

remaining bytes of the ready frame are loaded into the CS8900A-CQ and the frame is 

dispatched on the bus as soon as the bus is free. 

 In order to find the bounded VTPE-hBEB arbitration time, it is required to 

determine the elapsed time since the Microcontroller 1 senses a received frame until the 

Microcontroller 2 starts transmitting a frame on the bus. This time can be obtained by 

measuring the time intervals involved in the VTPE-hBEB implementation. These time 

intervals are as follows:  

• The time spent in the polling cycle, tpoll, in Microcontroller 1; 

• The decoding time of Microcontroller 1, td. The decoding time td  is the  sum 

of the time to transfer and check a received frame until checking the VTPE-

hBEB header field, the time to get the AC of the received frame and to 

refresh the node AC variable, the time to increase AC and to compare to NA 

or BAT table and the time signalising the interrupt in the pin of  

Microcontroller 1.  

• The interrupt service routine time, tisr, in Microcontroller 2.  

 

The VTPE-hBEB arbitration time is the sum of the three time intervals reported 

above and it is represented by equation (4.4). 

isrdpollVTPE tttt ++=  (4.4) 

In order to measure each time interval of equation (4.4) a method commonly used is 

to count the amount of assembly instructions provided by the compiler in the assembly list 

and to convert the figure to machine cycle times of the used microcontroller. This method 

and the time results are detailed in the Chapter 6. 
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4.3 Conclusions 

As referred in the section 4.1 the major motivation of this chapter is to propose a solution 

enabling the support of real-time communications in shared Ethernet environments, where 

Ethernet standards devices can coexist with multiple enhanced devices. 

To address this problem, it was proposed a solution based on the Virtual Token-

Passing procedure, where an underlying high priority Binary Exponential Backoff (hBEB) 

algorithm guarantees the medium access right to the VTPE station that is holding the 

token. This allows Ethernet standard devices to coexist with multiple VTPE enhanced 

stations, imposing a higher priority for the transfer of VTPE-hBEB related traffic and 

guaranteeing the required traffic separation. Initially it was presented a general proposal 

considering that the VTPE-hBEB protocol can be implemented in any Ethernet controller 

that supports the BEB algorithm disabling. After, an adaptation was proposed considering 

its implementation with an available Ethernet controller. Also it was presented the timing 

analysis of VTPE-hBEB for a shared Ethernet segment with a moderate number of nodes. 

In this case the token rotation can be in the order of several milliseconds. This figure seems 

adequate for real-time applications in the automation domain. 
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Chapter 5 
 

 

VTPE and VTPE-hBEB Implementations  
 

5.1 Introduction 

The virtual token passing implementation in the P-NET protocol allows each master to 

identify if an in progress frame is coming from a master or a slave, only by reading the first 

byte of the frame being transmitted. This procedure allows the masters to always maintain 

their access counters synchronised. Even though increasing the processing overhead of the 

masters due to large number of frames that must be read, this procedure allows to reduce 

further processing, because they must only accept and perform further processing if the in 

progress frame is meaningful. 

The above procedure can not be implemented using current standard Ethernet 

controllers because they don’t support the facility of reading the content of frames before 

the end of their transmissions. Then any implementation of the virtual token passing 

principle using standard Ethernet controllers requires that any transmitted frame must be 

accepted first and checked after by a software layer over the Ethernet layer.  

To implement the VTPE or VTPE-hBEB protocol allowing the masters to identify 

the frames during their transmission requires a special Ethernet controller. An 

implementation of the Ethernet controller using an IP core solves this because the frame 

decoding and the virtual token passing procedure can be executed during the frame 

transmission. 

The implementation of VTPE or VTPE-hBEB using a standard Ethernet controller 

is basically the same in terms of hardware. However a slight distinction can be pointed out 

according to some Ethernet controller features. VTPE can be implemented using any 
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controller but VTPE-hBEB can only be implemented if the Ethernet controller offers BEB 

disabling support. 

This chapter discusses two implementations for proof of concept of VTPE and 

VTPE-hBEB protocols based on standard Ethernet controllers. The first one uses a single 

Ethernet controller per node and the other uses a dual Ethernet controller architecture. It is 

also presented a proposal for future implementation of VTPE and VTPE-hBEB based on 

an IP core. 

The remaining of this chapter is as follows: Section 5.2 presents an implementation 

of VTPE based on a single Ethernet controller. Section 5.3 presents an implementation of 

VTPE and VTPE-hBEB proposals based on a dual Ethernet controller architecture. Section 

5.4 presents a proposal for the implementation of VTPE and VTPE-hBEB using an IP core 

and section 5.5 presents the conclusions. 

5.2 Implementation based on single ethernet controller 

The implementation discussed in this section is based on a classic Realtek RTL8019AS 

Ethernet controller [93]. It is aimed only for VTPE because RTL8019AS doesn’t support 

the BEB algorithm disabling. The microcontroller used is the PIC 18F458 [89], working at 

40 MHz frequency. 

5.2.1 System architecture based on single ethernet controller  

An implementation of the VTPE protocol using a single Ethernet controller was carried out 

and reported in [80]. The VTPE system architecture based on single Ethernet controller is 

shown in Figure 5.1.  

Master 

1
Master 

2

Master 

3

Virtual 

Token

HUB

 

Figure 5.1: VTPE system architecture 
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As shown in Figure 5.1 the VTPE system architecture is comprised of three 

masters, labelled from left to right as Master 1, Master 2 and Master 3. All masters are 

interconnected by a HUB. 

A picture of the correspondent experimental setup of the VTPE system architecture 

is shown in Figure 5.2.   

 

 

Figure 5.2: Experimental setup 
 

5.2.2 Hardware of master based on single controller  

The hardware of a VTPE master includes basically a microcontroller and the Ethernet 

controller with their accessory parts. An EPROM to hold the master’s MAC address is not 

required because the MAC address can be provided by the microcontroller. The 

implementation carried out uses the PIC 18F458 microcontroller and the Packed Whacker 

board [92]. Packed Whacker is no more than the RTL8018AS controller, a 20MHz crystal, 

some power supply bypass capacitors and a few resistors, designed to be integrated with 

the microcontroller. 
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Figure 5. 3: Hardware of a VTPE master 

 
 Figure 5. 3 shows a diagram with the main connections between the RTL8019AS 

and the PIC18F458 microcontroller. The RTL8019AS controller was originally designed 

for major Ethernet applications in desktop personal computers and some of its functionality 

will be useless when attached to the 8-bit microcontroller. This useless functionality allows 

the simplification of the hardware, namely: 

• The EPROM can be unnecessary. This feature allows simplifying the 

hardware and makes easier the modification of the MAC address value;  

• Only 5 addresses lines (SA0 – SA4) are necessary to manage all the 

RTL8019AS internal registers available for operation in 8-bit mode; 

• Only 8 data lines (SD0 - SD7) are necessary to transfer data between the 

RTL8019AS and the processor/microcontroller.   

 
In order to prevent the RTL8019AS from expecting data from an external 

EEPROM at initialization, the RTL8019AS’s EEDO (EEPROM Data Output) line must be 

low at startup and left low forever. 

The RTL8019AS raises the INT0 I/O line to signal to the microcontroller the 

reception of an Ethernet frame. The IOW and IORB are I/O lines that allow the 
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microcontroller to write to and to read from the RTL8019AS controller. The RSTDRV line 

is used to reset the RTL8019AS. 

5.2.3 The VTPE stack architecture 

Although based on a proof of concept implementation, VTPE can be arranged in layers as 

any stratified protocol. VTPE is a small suite of programs that provides services to be used 

with a custom VTPE-based application, and it is implemented in a modular fashion, with 

all of its services creating abstracted layers. 

VTPE has a monolithic implementation but in essence it is equal to an 

implementation based on two tasks, that is, the VTPE protocol and the user application. 

The microcontroller is switched between VTPE and the user application having VTPE the 

highest priority. 

Figure 5. 4 shows the software architecture to be implemented in the VTPE 

masters. 

 

Figure 5. 4:VTPE master software architecture 
   

According to Figure 5. 4 the VTPE stack is comprised of the Ethernet Layer, the 

VTPE Layer and the Application. The Ethernet Layer is implemented according to 

Ethernet standard. The VTPE Layer is a thin software layer to control the access to the bus 

in order to avoid collisions, and the Application Layer is intended for the interface with the 

customised user application. 

Unlike common stratified software implementations, the Application Layer can 

directly access the Ethernet Layer, which is not imediately below it, to write a ready frame 

to the RTL8019AS NIC. This procedure allows to reduce the overhead in the VTPE Layer 

because the time to load a frame is transferred to the application. 
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The VTPE suite is written in the C programming language using the Custom 

Computer Services C Compiler (CCS). The code implementing for each layer resides in a 

separate source file, while the services and APIs (Application Programming Interfaces) are 

defined through header/include files. The source and header files are presented in the 

media attached to this thesis.  

Each layer of the VTPE architecture is presented as follows. 

 

The Ethernet Layer 

This version of the Ethernet Layer has been specifically written to make use of the Realtek 

RTL8019AS NIC. RTL8019AS is a NE2000 compatible NIC that implements both the 

Ethernet physical (PHY) and MAC layers. The on-chip SRAM memory of RTL8019AS is 

used as a holding buffer for an incoming frame until the VTPE layer reads it, and for an 

outgoing frame until the master dispatches it to the bus. In order to control the outgoing 

traffic according to the VTPE protocol only one frame can be stored in the RTL8019AS at 

a time. This is because VTPE can not control the instant to start transmiting each frame 

when more than one is loaded in the RTL8019AS. On the other hand, only one received 

frame can be stored at a time to avoid overflow in the receive buffer memory of the 

RTL8019AS. In order to understand the RTL8019AS set up a lot of information on 

internal registers is required. A detailed description of the RTL8019AS controller can be 

found in the datasheet [93]. A detailed description of the step-by-step style on how to write 

code to RTL8019AS can be found in [94]. The application notes for National DP8390 

Ethernet controller are also very useful for the development [95] [96]. 

The Ethernet Layer is implemented by means of the rtl8019as.c source file. The rtl8019as.c 

source file has a set of functions to put the RTL8019AS ready to receive and transmit 

frames. Table 5. 1 summarises the functions for RTL8019AS initialisation.  

 

Module/ 

Dependence 

Function Purpose 



 95 

 

 

 

void init_RTL8019AS() 

Sets all parameters required before the 

RTL8019AS becomes operational, such as 

data bus width, physical address, types of 

interrupts that may be serviced, size of the 

Receive Buffer Ring, types of packets that 

may be received. 

 

 

int8 read_creg(int regaddr) 

Reads the registers and data from the 

receive buffer of the RTL8019AS.  

 

 

 

 

 

rtl8019as.c 

 

void write_creg(int 

regaddr, int regdata) 

Writes data to registers and to the transmit 

buffer of the RTL8019AS.  

 

Table 5. 1:Set of functions for RTL8019AS initialisation. 
 

The VTPE Layer 

A state machine of the VTPE layer is shown in the Figure 5. 5. This state machine is 

comprised of three states: Application, VTPE procedure and Transmitting. 

In the VTPE procedure state, whenever a frame is received, the VTPE Layer 

services the interrupt, starts t1, gets the frame and decodes it, increases the access counter 

(AC)  and compares it to its node address (NA) or BAT(i) table to decide if the master has 

the right to transmit. If the received frame has some interest to the master it is transferred 

to the memory of the microcontroller to supply data to the application, otherwise it is 

discarded. If no frame is transmitted by the current allowed node, t1 is allowed to timeout 

and an interrupt will occur after t1 expires and the next master in the chain can access the 

bus. If the bus continues idle the following interrupt will be based on t2. On the other hand, 

if the master has the right to transmit and there is a loaded frame in the RTL8019AS, the 

VTPE Layer dispatches the frame (Transmitting) and the CPU is switched to process the 

application. 
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Figure 5. 5: Path of application to the VTPE 

 
The VTPE Layer is implemented by the vtpe.c source file, which includes a set of 

functions to execute the VTPE procedure. Table 5. 2 shows the set of functions regarding 

this Layer. 

Module/ 

Dependence 

Function Purpose 

 

 

 

void ext_int() 

This function is an Interrupt Service Routine 

(ISR). Then, whenever RTL8019AS rises on 

the INT0 pin, the ISR sets t1, and dispatches a 

previously loaded frame if AC is equal to NA 

or BAT(i). After, AC is increased and 

compared with M. If AC=M, it is preset to 1, 

otherwise the ISR is terminated.   

 

 

 

 

 

 

 

 

vtpe.c  

  

 

 

 

void isrt1 () 

This function is another Interrupt Service 

Routine. Whenever t1 expires, the ISR sets t1 

again, and dispatches a previously loaded frame 

if AC is equal to NA or BAT(i). After AC is 

increased and compared to M. If AC=M, it is 

preset to 1, otherwise the ISR is terminated. 
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This ISR is also used to control the t2 timer.  

 

Table 5. 2:VTPE Layer. 
 

 As it is shown in Table 5. 2 VTPE uses two ISRs to attend the interrupts that will 

occur either in the sequence of the reception of a frame or of a timer (t1 or t2) expiration. 

This makes VTPE a thin software layer. 

Currently, the user application, as mentioned before, is responsible to load the 

frame to be transmitted. After loading the frame, the user application must access the 

VTPE Layer setting a flag to 1 (flag1=1). The VTPE Layer will then be responsible for the 

frame transmission which will only occur when the node holds the token. 

5.2.4 Using VTPE with application program 

Since each of the modules comprising the stack resides in its own file, users must be 

certain to include all of the appropriate files in their project for correct compilation. 

Once a project is set up with the appropriate files included, the main application 

source file must be modified to include the programming sentences shown as follow. 

 

//Declare this file as main application file 

#include <18F458.h>//CCS include file for PIC 18F458  

#include <f458.h>//Some additional definitions for 18F458 

#include <vtpe.h> //Some CCS and VTPE headers definitions 

#include <RTL8019AS.h> //RTL8019AS definitions 

#include <vtpe.c> //VTPE Layer 

#include <ethernet.c> //Ethernet Layer 

//Other application specific include files 

//must be added here 

// Main entry point 

void main() 

{ 

//Some specific microcontroller setups such as port 

//direction, watch dog, timers, etc  

init_RTL8019AS();//Initialise the RTL8019AS controller 

// Perform application specific initialization 

// Set up to external interrupt 
// Set up to timer 1  

// Enter into infinite loop 

While(1) 

{ 

//The user application code must be here 
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//The application produces and loads a VTPE frame 

//When the frame is loaded flag1 is set to 1  

flag1=1;//Signalise to VTPE that a frame wait for 

//transmission 

While(flag1);//waits for the transmission right 

} 

 

 

5.3 Implementation based on a dual ethernet controller architecture 

5.3.1 The dual ethernet controller architecture 

The VTPE implementation based on a dual Ethernet controller architecture uses two 

microcontroller/Ethernet-controllers per master as shown in Figure 5.6. The 

microcontroller is the PIC 18F458 working at a 40 MHz frequency and the Ethernet 

controller is the CS8900A-CQ [88]. The dual Ethernet controller architecture 

implementation allows to run either VTPE or VTPE-hBEB because the referred Ethernet 

controller allows BEB algorithm disabling.  

The main reasons for an implementation based on a dual Ethernet controller 

architecture are: 

• Resolving the CS8900A-CQ interrupt problem when it works in 8-bit mode; 

• Increasing the processing power because it uses two microcontrollers; 

• Separating the VTPE or VTPE-hBEB from the application; 

• Reducing the processing overhead in the microcontroller that hosts the 

application due to: 

o The application is interrupted only when the master has the right to 

access the bus; 

o The broadcasting traffic is not necessary for all frames because 

unicast and multicast addressing can be used. 

  

An essential feature of the Ethernet controller for VTPE-hBEB implementation is 

to allow the BEB algorithm disabling. The CS8900A-CQ controller was the unique found 

with support to this feature when this work has been started. However the CS8900A-CQ 



 99 

controller doesn’t support interrupt in 8-bit mode and interrupt is a very important issue for 

protocol synchronisation either for VTPE or VTPE-hBEB. According to the application 

note AN181 [91], when the CS8900A-CQ operates in 8-bit mode, it is mandatory to use 

the polling method instead of interrupts, to access the receive event register. Our hardware 

uses two CS8900A-CQ/microcontrollers per master in order to overcome this drawback. 

One of the CS8900A-CQ/microcontroller sets is responsible to run VTPE or VTPE-hBEB 

(bus arbitration) and to generate an interrupt. The other hosts the application. 

 

Figure 5.6: Dual Ethernet controller architecture. 
 

Recently some new Ethernet controllers with support to BEB disabling and 

intended for embedded applications were launched in the market. According to our best 

knowledge there is no problem reported with the interrupt support in 8-bit mode. Then 

these controllers would also be suitable for VTPE-hBEB implementation using a single 

controller per node instead of two. The ENC28J60 from Microchip [89], and the CP2200-

GQ and CP2201-GM from Silabs [90] are just some examples. 

An experimental setup for the dual Ethernet controller was developed during this 

work. Figure 5. 7 shows a picture of the actual setup.  



 100 

 

Figure 5. 7:Experimental setup for dual Ethernet controller architecture. 

 
According to Figure 5. 7 the system is comprised of three similar masters, labelled, 

from left to right, as Master 1, Mater 2 and Master 3. Observe that there is a couple of 

microcontroller/Ethernet-controllers per master as it is also shown in Figure 5. 7. The first 

half of the node’s hardware (left side) runs the protocol and the second half of the master 

(right side) runs an interface of the protocol to the application and the application as well.   

5.3.2 Hardware of master based on dual ethernet controller architecture  

A simplified hardware schematic intended for a master based on dual Ethernet controllers 

is shown in Figure 5. 8.   

Master 1 Master 2 Master 3 

Runs the Application  

Runs VTPE or VTPE-hBEB  

HUB 
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Figure 5. 8: Hardware of master based on dual Ethernet controllers. 
 

According to Figure 5. 8 the hardware is comprised of two PIC 18F458 

microcontroller/Nicki boards. The Nicki board [92] is no more than a CS8900A-CQ 

controller, a 20MHz crystal, some power supply bypass capacitors and a few resistors, 

designed to be integrated with the microcontroller. The microcontroller PIC 18F458 drives 

the control lines AEN, IOR, IOW and RESET, to enable, read, write and reset the 

CS8900A-CQ controller. Observe in Figure 5. 8  that no interrupt line of the CS8900A-CQ 

controller is used: a received packet is detected by polling an internal register of the 

CS8900A-CQ controller. When VTPE identifies that the master has the right to access the 

bus, a level logic transition is raised at the RA1 pin of PIC1 to indicate to PIC2 (second 

half of master) that it can access the bus. Also observe in Figure 5. 8 that no EPROM is 

used because the CS8900A-CQ does not require one when working in 8-bit mode. The 

addressing bus uses four address lines to access all registers available for 8-bit mode and 

the address bus is 8-bit in length. 

The Ethernet controller intended for the bus arbitration (on the left side of Figure 5. 

8) must be programmed in promiscuous mode because all transmitted frames must be 

accepted in order to perform the traffic separation among frames belonging to VTPE-
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hBEB and frames belonging to standard Ethernet. On the other hand, the Ethernet 

controller intended for the application (right side) can use any type of Ethernet protocol 

addressing, such as unicasting, multicasting or broadcasting.  

5.3.3 VTPE or VTPE-hBEB software for the dual ethernet controllers architecture  

The VTPE-hBEB presented in Chapter 4 is based on both BEB algorithm disabling and 

interrupt supports in the same Ethernet controller. According to the explained in Section 

5.3.2 these features were not possible together. Then the proposal presented in Chapter 4 

needs to be adapted to the hardware based on the dual Ethernet controller architecture. 

A flowchart of the VTPE / VTPE-hBEB firmware develloped for a dual Ethernet 

controller is shown in Figure 5. 9. According to Figure 5. 9 the firmware in PIC1 starts a 

timer with t1 and polls continuously the receive event register, looking for a received 

Ethernet frame. Whenever a frame is received the frame transference and decoding is 

started immediately. Then, the access counter is increased, and it is checked if the node has 

the right to transmit. If the node is allowed to transmit the logic level of pin 2 (RA1) is 

raised in PIC1. This pin is the interrupt source for PIC2, being tied to the external interrupt 

pin RB0 of PIC2. If the application in the PIC2 has a ready frame to be transmitted its 

transmission starts as soon as the interrupt is serviced. Otherwise, having not anything to 

transmit, t1 is allowed to timeout and the next node of the virtual ring is allowed to access 

the bus according to the virtual token passing fashion. 
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Figure 5. 9:VTPE or VTPE-hBEB based on dual Ethernet controller architecture. 
 

The software for the VTPE / VTPE-hBEB master can be presented in two parts. 

The first one is the protocol that is implemented in the PIC1 and the second part is the 

application implemented in the PIC2. 

Part 1 – Implementation in PIC1  

The software architecture of the VTPE or VTPE-hBEB protocol is implemented in PIC1 as 

shown in Figure 5. 10.  

 

Figure 5. 10: VTPE or VTPE-hBEB for dual Ethernet controller architecture. 
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As shown in Figure 5. 10 the software implemented in PIC1 doesn’t include the 

application because it is executed in the PIC2. Then the software architecture is comprised 

only of the Ethernet Layer and the VTPE or VTPE-hBEB Layer. Remember that VTPE 

differs from VTPE-hBEB because VTPE-hBEB requires the BEB algorithm disabling to 

allow traffic separation in order to work in unconstrained environment. The Ethernet Layer 

and the VTPE or VTPE-hBEB Layer are presented bellow. 

The Ethernet Layer 

The Ethernet Layer is implemented with the firmware included in the cs8900.c 

source file. The cs8900.c source file has a set of functions to put the CS8900A-CQ ready to 

receive and transmit frames.  

Table 5. 3 summarises the set of functions for the CS8900A-CQ initialisation and 

to write data into and read data from the controller.  

Module/ 

Dependence 

Function Purpose 

 

 

 

void init_CS8900AC() 

Sets all parameters required before the 

CS8900A-CQ becomes operational, such 

as data bus width, physical address, types 

of interrupts that may be serviced, size of 

the Receive Buffer Ring, types of packets 

that may be received. 

 

 

void PPRead() 

 

Reads data from a Packet Page of the 

registers of the CS8900A-CQ controller. 

 

 

 

void PPWrite() 

 

Writes data to a Packet Page of the 

registers of the CS8900A-CQ Ethernet 

controller. 

 

 

 

 

 

 

 

 

 

 

cs8900.c 

 

 

 

void RPP(int16 ppoffset) 

 

Reads data from the Packet Page 

specified by the offset in the argument of 

the function. 
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void WPP(int16 ppoffset, 

int16 datum) 

 

Writes data to the Packet Page specified 

by the offsets in the arguments of the 

function. 

 

Table 5. 3: Set of functions for CS8900A-CQ initialisation. 
 

The functions in cs8900.c are used to CS8900A-CQ initialisation by the Ethernet 

Layer (write and read parameters of CS8900A-CQ) as well as by the VTPE Layer to 

receive frames. Remember that no frame is transmitted because this part of the software is 

only responsible for bus arbitration. 

   

The VTPE or VTPE-hBEB layer 

This layer follows the same principle as the one presented in the single Ethernet controller 

architecture. The main difference is that, instead of transmitting a frame, an interrupt is 

raised to the part that runs the application. A summary of the functions of the VTPE or 

VTPE-hBEB Layer is presented in Table 5. 4.  

  

Module/ 

Dependence 

Function Purpose 

 

 

void vtpe ( ) 

 

Gets and decodes frames according to the VTPE 

definition and raises an interruption in the RA1 

pin of PIC1 if the master has the right to 

transmit. 

 

 

 

 

Depends of  

cs8900.c 

  

void isrt1( ) 

 

Passes the virtual token after t1 finishes 

according to the VTPE scheme already 

explained. Raises an interruption in the RA1 pin 

of PIC1 if the master has the right to transmit. 

Table 5. 4: Set of functions for the VTPE or VTPE-hBEB Layer. 
 

The timer t2 of the virtual token procedure is made equal to t1. This is a reasonable 

assumption because t1 can be as short as 15.6µs and it is not convenient to have t2 smaller 
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than 15.6µs. This is because in this hardware it will increase unnecessarily the overhead in 

the application. The application must be compatible with the processing capacity of the 

microcontroller. 

Chapter 6 discusses the timing behavior of implementations based on single and 

dual Ethernet controllers as well. 

A summary of the software that must be programmed in the Part 1 of the master is 

as follows: 

 

#include <18F458.h>//CCS include file for PIC 18F458  

#include <vtpe.h> //Some CCS and VTPE header definitions 

#include <cs8900a.h> //CS8900A-CQ pin and registers 

//definitions 

#include <cs890a.c> // Include the Ethernet Layer here 

//according to CCS compiler ruler 

#include <vtpe.c> //Include the VTPE Layer here 

according //to CCS compiler ruler 

 

// Main entry point 

{ 

//Some specific microcontroller setups such as port 

//direction, watch dog, timers, etc  

void init_CS8900AC();//Initialise the CS890A-CQ 

// Enter into infinite loop 

While(1) 

{ 

void vtpe (); //polling for receiving frame, decoding of 

//received frame according to the VTPE procedure and 

//signalise with RA1=1 when the master can access the 

bus. 

 

} 

 
  

Part 2 – Implementation in PIC2  

The software architecture for the second part of VTPE or VTPE-hBEB implementation 

based on the dual Ethernet controller architecture is shown in Figure 5. 11   
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Figure 5. 11: Software for the second part of the dual Ethernet Controller architecture. 
 

As it can be observed in the Figure 5. 11 the software is comprised of only the 

Ethernet Layer and the Application. 

The Ethernet Layer is implemented according to the description presented in the 

first part. The unique difference that can be pointed out is that the CS8900A-CQ of this 

part is not programmed in promiscuous mode because it doesn’t run the protocol. Instead 

of the promiscuous mode it can be programmed to accept unicast, multicast or even 

broadcast addressing. The type of addressing will depend on the application requirements. 

The Application is comprised of the user source code. The user source code which 

is also responsible to receive the frames addressed to the master and to transmit frames. 

The user application is interrupted whenever the protocol running in the Part 1 signalises 

an interrupt in the INT0, indicating that the application must access the bus. If there is a 

frame ready to be transmitted it is dispatched immediately, otherwise the return to the 

application is done immediately. 

The application must also contain the function to get and transmit frames. 

5.3.4 Using VTPE with an application program 

Once a project is set up with the appropriate files included, the main application source file 

must be modified to include the programming sentences shown as follow. 

//Declare this file as main application file 

#include <18F458.h>//CCS include file for PIC 18F458  

#include <vtpe.h> //Some CCS and VTPE header definitions 

#include <cs8900a.h> //CS8900A-CQ definitions 

#include <cs890a.c> //Ethernet Layer 

//Other application specific include files 

//must be added here 

// Main entry point 

void main() 

{ 

//Some specific microcontroller setups such as port 
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//direction, watch dog, timers, etc  

init_CS8900AC();//Initialise the CS890A-CQ 

// Perform application specific initialization 

// Set up to external interrupt 
// Enter into infinite loop 

While(1) 

{ 

get_frame ();//Looks for received frame 

//The user application code must be here 

//The application produces and loads a VTPE frame. 

//When the frame is loaded flag1 is set to 1  

flag1=1; 

While(flag1); //wait for VTPE  

} 

 
  

5.4 Implementation based on an IP core 

This is a work in progress approach. It consists in embedding the VTPE and 

Ethernet protocols in a single-chip.  The main advantage of this solution is to run the 

VTPE and Ethernet protocols simultaneously.  In this proposal the VTPE arbitrates the bus 

during the frame transmission and the inter-frame gap (IFG), so no extra arbitration time is 

wasted. Consequently, the saved time is reverted in the efficiency throughput. This 

improvement is possible due to the low VTPE processing requirements, to the processing 

power of FPGAs and to the use of the transceiver, which makes possible to run VTPE 

during the frame transmission. Then this new proposal will permit to reach, 

deterministically, the theoretical limits of Ethernet 10/100Mbps efficiency throughput 

(54.6% for minimal size frame and 97.5% for maximum size frame) that is found when 

there is a single transmitting node in the bus. On the other hand, it should be remembered 

that, in a shared Ethernet segment with more than one node, these throughput values are 

unreachable due to the collisions and the probabilistic resolution algorithm (back-off 

algorithm). This proposal was presented in [81] and is summarized as follows. A 

simplified block diagram of the VTPE IP core is shown in Figure 5. 12. 
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Figure 5. 12:VTPE IP core block diagram 
 

In the VTPE IP core proposal a node is composed of an Ethernet transceiver and its 

accessory parts (magnetic transformers and RJ45 connector), a FPGA where the VTPE-

MAC firmware is implemented and a processor/microcontroller where the application 

runs. It is focused in the VTPE IP core, so the Ethernet transceiver and the 

microcontroller/processor aren’t presented. 

The Receive Control Block controls the frame’s reception from the Ethernet 

transceiver and delivers the received frame to the VTPE Frame Decoder and signalises to 

the AC Counter and NA=AC Checker that a frame was received.  
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The VTPE frame decoder checks the Source Address to actualise the node’s active 

table, the Data/Type field, and the data field. If there is relevant data (VTPE messages) it 

delivers them to the memory, otherwise it discards the frame. 

The AC and NA Checker block increments the AC and compares its value with NA 

in accordance to the classic VTPE proposal or with some value in the Bandwidth 

Allocation Table (BAT) in accordance to the improved VTPE proposal. It sets a flag to “1” 

if AC=NA or AC=BAT(i), otherwise it sets a flag to “0” if AC ≠ NA or AC≠BAT(i).  

The Transmission Control Block gets a frame to be transmitted from the VTPE 

Frame Generator, controls the t1 and t2 timers, and controls the frame transmission. 

The VTPE Frame Generator gets data from the Memory (VTPE messages), 

generates the CRC, adds padding bits to complete the 46 minimum bytes, if necessary, and 

encapsulates all this data in the Ethernet frame and delivers it to the Transmission Control 

Block so that it can be transmitted to the bus.  

The memory consists of two memory blocks in ring format: The Received Data 

Ring and the Transmit Data Ring. Two local DMA (Direct Memory Access Controller) 

channels, not shown in Figure 5. 12, are used to manage received data and to manage the 

transmission of data. The first one, during a frame reception, stores the received data from 

the VTPE Frame Decoder into the Received Data Ring and, during a frame transmission, 

transfers data from the Transmit Data Ring to the VTPE Frame Generator to be transmitted 

to the controller. The second DMA channel is used to transfer data between memory 

(Received Data Ring or Transmit Data Ring) and the host processor. 

5.5 Conclusions 

This chapter presents two implementation carried out during the VTPE and VTPE-hBEB 

development. The first implementation is based on a single Ethernet controller and it is 

aimed for VTPE because the used Ethernet controller doesn’t support BEB algorithm 

disabling. A similar implementation can be suitable for VTPE-hBEB protocol if the 

Ethernet controller is changed to one that supports the BEB algorithm disabling. The 

implementation based on a single Ethernet controller is simpler and cheaper than the one 

based on a dual controller.  

The implementation based on dual Ethernet controller architecture uses Ethernet 

controllers that support BEB disabling, then it is suitable to implement the VTPE-hBEB 
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protocol. The dual Ethernet controller architecture is also suitable to implement VTPE 

because VTPE can also work with the BEB algorithm disabled. 

The VTPE-hBEB protocol avoids the collision of frames coming from masters 

(hBEB algorithm) and the hBEB algorithm solves the collisions that can occur among 

standard Ethernet stations and VTPE-hBEB masters. This procedure allows separating the 

real-time traffic from the non real-time. 

The implementation based on a dual Ethernet has the advantages to solve the 

interrupt problem of CS8900A-CQ when it works in 8-bit mode, to increase the processing 

power, because it uses two microcontrollers, and to reduce the processing overhead in the 

microcontroller (PIC2) because the interruption is raised on only when the master has the 

right to access the bus. However this implementation has a disadvantage, that is being 

more expensive than the one based on a single Ethernet controller because it uses a couple 

of microcontroller/Ethernet-controller per node and requires more cabling. 

The implementation based on a dual Ethernet controller architecture doesn’t 

invalidate the implementation of VTPE or VTPE-hBEB protocols because, conceptually, it 

is equivalent to a node with more processing power with an Ethernet controller able to 

support the BEB algorithm disabling and interrupt. 

 The implementation based on IP core is not finished yet but it seems a very 

promising proposal. This implementation will permit deterministically to reach the 

maximum bus utilization that can be achieved on a shared Ethernet segment without 

collisions.  
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Chapter 6 

 

Timing Behavior and Validation of VTPE and 

VTPE-hBEB 
 

 

6.1 Introduction 

This chapter discusses the arbitration time of VTPE and VTPE-hBEB and the timing 

behavior of these protocols regarding to the transmission of a time sensitive data flow. The 

discussion is according to the implementations carried out in the demonstrators discussed 

in the Chapter 5.  

In order to evaluate the timing behavior of VTPE and VTPE-hBEB, the medium 

arbitration time, i.e., the required time to run these protocols was determined. 

Two methods are envisaged to determine the time to execute the VTPE and VTPE-

hBEB protocols: 

• The first method consists in starting an internal timer of the microcontroller to 

count the number of machine cycles between an interrupt of the Ethernet controller 

and the instant when the master can access the bus and dispatch the frame. The 

number of instruction cycles to start and to stop must be discounted from the 

obtained number of machine cycles. The total of machine cycles is then converted 

to time using the time taken to execute a machine cycle in the specific hardware 

architecture. The measured time is exactly the lower bound for t1. 

• The second method consists in totalising the number of machine cycles using the 

assembly list provided by the compiler and, after, in converting the total number of 
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machine cycles to time using the time taken to execute a machine cycle in the 

specific hardware architecture. 

Both methods have shown to be adequate and have produced similar results. 

To validate VTPE and VTPE-hBEB, the transmission of a time sensitive data flow 

was used. The choice was the MIDI protocol which is a de facto standard for the 

interconnection of musical instruments. MIDI data flows use an exclusive communication 

channel and time is implicitly encoded in the transmission instant. The MIDI hardware 

uses a RS-232 like character oriented transmission with a baud rate of 31.25kbps, thus it is 

suitable for validation of VTPE and VTPE-hBEB protocols because it is not too heavy in 

bandwidth requirements and it is also compatible with the processing capacity of the 

microcontrollers used in the demonstrators. 

The remaining of this chapter is as follows: Section 6.2 presents the timing 

behavior of VTPE in the implementation based on single controller. Section 6.3 presents 

the timing behavior of VTPE and VTPE-hBEB implementations based on the dual 

controller architecture. Section 6.4 presents an overview of the MIDI protocol, describes 

the application setup for the validation of the protocols, and discusses some results. Section 

6.5 presents the conclusions. 

 

6.2 Timing behavior of VTPE in the implementation based on single 

controller 

The tests carried out in the implementation based on a single Ethernet controller were 

aimed to show the system working according to the virtual token-passing procedure and to 

determine the minimum t1 value to run the VTPE, as well as to determine the bus 

utilization. For this particular test it was defined that: 

• Each master must transmit a predefined Ethernet frame; 

• The Ethernet frame carries a VTPE frame inside the data field. The VTPE frame 

(header plus data) varies from the smallest Ethernet data field (46 bytes of data) to 

1242 bytes. The limit of 1242 bytes is due to the built in RAM memory of the 

microcontroller used to store the frame and the other variables regarding the VTPE 

implementation; 
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• All masters must receive each transmitted frame and transfer it to the PIC memory. 

 

The bus utilisation will be calculated using the t1 value and the time to transmit the 

correspondent Ethernet frame. The bus utilisation is calculated according to the following 

equation (6.1). 

))/(1( 11 fdtttU +−=  (6.1) 

 

The t1 and tfd parameters are as already defined. The tfd includes the time to transmit the 

Ethernet frame including the preamble bytes and the start frame delimiter.  

Table 6.1 summarises the experimental results of the tests carried out.  

 

 

Data 

(Bytes) 

 

Frame Length including preamble 

(Bytes) and Start Frame Delimiter 

 

tfdmax   

(µS) 

 

t1 (µS) 

Network  Utilisation 

U=(1-t1/(t1+tfd)) 

46 72 57.6 297.60 16.2  

138 164 131.2 693.60 15.9 

276 302 241.6 1288.8 15.8 

414 440 352.0 1883.2 15.8 

552 578 462.4 2476.8 15.7 

690 716 572.8 3071.2 15.7 

828 854 683.2 3665.6 15.7 

966 992 793.6 4260.0 15.7 

1104 1130 904.0 4854.4 15.7 

1242 1268 1014.4 5448.0 15.7 

 

Table 6.1: t1 and bus utilisation in the implementation based on a single Ethernet controller. 

 The data of  

Table 6.1 are plotted in Figure 6. 1.  
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Figure 6. 1: t1 (µs) x bus utilisation (%). 
 

 

Table 6.1 and Figure 6. 1 show that the obtained utilisation is quite modest and 

decreases when the Ethernet frame length increases. The modest network utilisation is due 

to the low processing power of the microcontrollers and to the overhead imposed to the 

nodes in order to accept all transmitted frames and to do some processing on each frame. 

In order to minimise the impact of the processing overhead in the small processing power 

processors a solution was foreseen in the classic proposal as presented in the Chapter 3. 

This solution consists in avoiding that these masters transmit long frames and receive long 

frames as well. To implement this solution, it was provided the NI,GI field in the VTPE 

header. This field enables the creation of sub networks to which can be connected small 

processing power processors. However, in the implementation based on a single Ethernet 

controller presented in the Chapter 5, the best utilisation is bounded to 16.2 %. 

     

6.3 Timing behavior of VTPE in the implementation based on the dual 

controller architecture 

To determine the arbitration time of VTPE or VTPE-hBEB in the dual Ethernet 

controller architecture, the elapsed time since PIC1 senses a received frame until a new 

frame starts being transmitted on the bus by PIC2, must be determined. The time portions 

involved with the implementation based on the dual Ethernet controller were presented in 

Chapter 4 and now repeated for clarity reason. The time portions involved in the arbitration 

time are: 
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• The time spent in the polling cycle, tpoll, in PIC1; 

• The decoding time td which is the sum of the time to transfer and check a received 

frame until checking the VTPE type, of the time to get the AC of the received 

frame and to refresh the node AC variable, of the time to increase the AC and to 

compare it with NA or BAT(i) and of the time to rise the interrupt in the pin RA1. 

td is summarised by the Equation 6.2. 

 

isrACgACtcd ttttt +++= ++  (6.2) 

where  

ttc is the time to transfer and check a received frame until checking the VTPE type, 

tgAC is the time to get the AC of the received frame and to refresh the node AC 

variable, 

tAC is the time to get the AC of the received frame and to refresh the node AC 

variable, 

tAC++ is the time to increase the AC and to compare it with NA or BAT(i) and finaly 

tisr is the the time to rise the interrupt in the pin RA1 

• The interrupt service routine time, tisr, in PIC2.  

 

To calculate the VTPE arbitration time equation 6.3 can be used: 

isrdpollVTPE tttt ++=  (6.3) 

 

In order to determine each time portion of the arbitration time, the method based in 

counting the number of machine cycle was chosen. 

The number of machine cycles found according to the assembly list provided by the 

CCS compiler is summarised in the Table 6. 2.    

Time parcels Machine Cycles Spent time (µs) 

Polling cycle, tpoll 11 1.1 

Decoding time, td 124 12.4 
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Interrupt service routine time, tisr (PIC2) 21 2.1 

VTPE arbitration time tVTPE 156 15.6 

Table 6. 2: Arbitration time on the dual Ethernet controller architecture. 
 

Observe in Table 6. 2 that the number of machine cycles is converted to time taking 

into account 0.1µs (100ns) per machine cycle. 0.1µs is the machine cycle time for the PIC 

18F458 at 40 MHz. 

As shown in Table 6. 2, VTPE requires at least 15.6µs to arbitrate the bus when 

implemented in the dual Ethernet controller architecture reported in the Chapter 5. Then t1 

must be equal or greater than 15.6µs and should be chosen taking into account the 

processing capacity of the microcontroller that hosts the application. A small value of t1, 

near 15.6µs, can cause unnecessary overhead in the application. 

Remember that, according to the dual Ethernet controller architecture, the VTPE 

and the application run in different microcontrollers. Then the application is interrupted 

only when the node has the right to transmit. Then, if the application has a ready frame to 

transmit whenever it is interrupted, VTPE will be able to transmit a frame with an inter-

frame gap of 15.6µs. If the application in PIC2 is not able to dispatch a frame with 15.6µs 

of inter-frame gap the protocol’s velocity is not reduced because, when the master can 

access the bus but it is not ready to transmit, the token will be passed after t2 expires. Also 

remember that, according to the VTPE definition, t2 is smaller then t1 but, due to the small 

value of t1, it can be done equal to t1. This is a reasonable assumption because t1 can be as 

short as 15.6µs and it is not convenient to have t2 smaller than 15.6µs because this 

increases unnecessarily the overhead in the application. 

A possible transmission scenario in VTPE when implemented in the dual Ethernet 

controller architecture is depicted in Figure 6. 2. 
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Figure 6. 2: VTPE transmission scenario in the dual Ethernet controller architecture. 
 

According to Figure 6. 2, when a master does not have anything to transmit the 

token will passed after time t1+15.6µs or at every 15.6µs if the following nodes also do not 

have anything to transmit. It means that, when a master does not have anything to transmit, 

the token runs quicker than when a master has something to transmit. This happens 

because either t1+t2 (31.2µs) or t2 (15.6µs) are smaller than the time it takes to transmit the 

smallest Ethernet frame. Indeed, at 10MHz, the minimum time to transmit a frame is tfdmin 

which is equal to 57.6µs and the maximum time to transmit a frame is tfdmax which is equal 

to 1220.8µs. 

The best bus utilization that can be achieved in the implementation based on the 

dual Ethernet controller architecture occurs when the microcontroller where the application 

runs is able to transmit frames with an inter-frame gap of 15.6µs. This is a reasonable 

assumption because it depends only the processing power of the microcontroller used to 

run the application. 

The utilisation is then calculated for the scenario when the smallest and the largest 

Ethernet frames are transmitted. Using equation 6.1, the bus utilisation is as follows:  

a) Scenario with the smallest Ethernet frame  

%68.78))6.576.15/(6.151( =+−=U    

 b) Scenario with the largest Ethernet frame 

%74.98))8.12206.15/(6.151( =+−=U  

Network utilizations of 78.68% and 98.74% for VTPE seem very optimistic but 

they can be achieved in the dual Ethernet controller architecture since the node is able to 

transmit frames with 15.6µs of inter-frame gap. Also, if this supposition is not true, the 

protocol performance is not affected because VTPE continues working and and the token 

passes more rapidly than when the masters have something to transmit.  
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For the VTPE-hBEB protocol, t1 must be chosen according to the time required by 

the hBEB algorithm to win the collisions that can occur due to the nature of the 

unconstrained environment. As presented in the Section 4.2.3 of Chapter 4, if no frame is 

discarded, the maximum time that a VTPE-hBEB station holding the token waits to 

transfer a real-time message is given by the equation (4.1): 

fdcolhBEB tIFGtT ++=  4.1 

where tcol is the worst-case delay to start transferring a message (0.960 ms as shown in 

Table 4.1), IFG is the Inter Frame Gap (12 byte-times) and tfd is the time to transfer a 

frame from the VTPE-hBEB station, which is the maximum message length. 

The equation 4.1 can be adapted to include the arbitration time of the 

implementation based on a dual Ethernet controller architecture. Then, equation 4.1 can be 

rewritten as shown bellow: 

 

ustIFGtt fdcol 6.151 +++=  

 

6.4 

 

Remember that, according to the hBEB algorithm (Chapter 2 Section 2.4.1), the 

probabilistic timing analysis had shown that, in a heavily loaded network scenario, the 

maximum access delay for 95% of the messages is smaller than 1.86ms. Secondly, and for 

more realistic load scenarios (intermediate load cases), the simulation analysis shows that 

the maximum access delay for 98% of the messages is always smaller than 1ms (1000µs). 

Then, including the arbitration time required in the dual Ethernet controller architecture, 

the access delay t1 can be bounded to 1875.6µs for a heavily loaded network scenario and 

to 1015.6µs for more realistic load scenarios (intermediate load cases). 

In order to guarantee that no collisions between VTPE-hBEB frames will occur, t1 

must be set equal to the bound found for VTPE-hBEB as stated above. However, if the 

node doesn’t have anything to transmit, the system must wait that t1 expires in order to 

pass the virtual token. If the bounded for t1 is too long then the network utilisation is 

reduced. A solution is to use two bounds for t1. One is uded when a VTPE-hBEB frame 

contends for the medium with a standard Ethernet frame, and other, is used otherwise. 

However, the current Ethernet controllers don’t support this feature. An implementation of 



 121 

VTPE-hBEB based on FPGA and IP core, as the one proposed in the Chapter 5, can solve 

this problem because it can identify a frame during its transmission. 

An indirect identification method based on a timer using standard Ethernet is being 

studied. 

6.4 Demonstration system for validation of VTPE-hBEB   

In order to validate the protocol, the transmission of a time sensitive data flow will be used. 

The choice was the MIDI protocol used for the interconnection of musical instruments. 

MIDI data flows use an exclusive communication channel and time is implicitly encoded 

in the transmission instant. However, MIDI uses a RS-232 like character oriented 

transmission, with a baud rate of 31.25kbps, thus it is not too heavy in bandwidth 

requirements. 

The demonstration will consist in tunnelling a MIDI flow through a shared Ethernet 

channel in which a traffic generator will be imposing different levels of traffic load. Two 

outcomes will be obtained: 

a) A subjective assessment of the music quality in different situations 

b) A numerical measure of the delays suffered by MIDI transmissions. 

The first experiment is quite adequate for a public presentation. It consists in using 

a computer to produce a MIDI flow, e.g., a popular song pre-recorded or similar. This 

MIDI flow will be sent to an USB-MIDI interface. Another computer will receive the 

MIDI flow by another USB-MIDI interface and will play it. In this case we are using a 

standard MIDI channel, so the timeliness requirements will be respected and, in 

consequence the song will be played with quality. Figure 6. 3 illustrates a standard MIDI 

channel. 

 

Figure 6. 3: Testing a dedicated MIDI link. 
   

In the continuation, the MIDI out (normal designation in MIDI) flow will be 

transformed into RS-232 by a RS232 to MIDI interface (MRA) as shown in Figure 6. 4.  
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Figure 6. 4: MIDI to RS232 level logic adaptation. 
 

In order to insert a MIDI data flow in a VTPE-BEB system, the MRA will be 

connected to the serial port of the microprocessor used in the VTPE-hBEB Master modules 

(VMMs) as shown in Figure 6. 5. 

 

Figure 6. 5: MIDI to VTPE-hBEB link. 
 

As it is also depicted in Figure 6. 5, an application running in the VMM will pack 

each MIDI character incoming from the computer (left side) into an Ethernet packet 

(padding bytes will be required) and will transmit the packet at once. This operation should 

be very fast in order to avoid introducing excessive delay in the MIDI flow. 

The inverse operation will be done in another system similar to the VMM which 

will operate just as a consumer of the information. This device will receive the Ethernet 

frame, extract the character and send it to its serial port. A RS232 to MIDI electrical 

adaptation is also required in order to connect the serial port to the USB-MIDI interface. A 

second computer (right side) will receive the MIDI flow and play the song. 

In this experiment the Ethernet channel will be undisturbed by injected traffic. If 

the delays introduced are negligible there will be again a good quality output. Figure 6.6 

illustrates the MIDI to VTPE-hBEB link with Ethernet traffic injection. 
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Figure 6.6: MIDI to VTPE-hBEB link with Ethernet traffic injection. 
 

This experiment will continue by perturbing now the shared Ethernet channel with 

random traffic produced by a traffic injector, in our case the Distributed Internet Traffic 

Generator (D-ITG). 

The D-ITG [99] traffic generator allows injecting traffic in the Ethernet shared 

channel in a controlled way. The main features of D-ITG concerning timing in the traffic 

generation are: 

• The traffic load can be controlled by setting the length and number of frames to 

send; 

• It is capable to produce traffic at packet level accurately replicating appropriate 

stochastic processes for both IDT (Inter Departure Time) and PS (Packet Size) 

random variables (exponential, uniform, cauchy, normal, pareto,). 

 

 In order to validate the VTPE-hBEB protocol, the following experiment will use 

the VTPE-hBEB middleware in two VMMs, each transmitting a MIDI traffic flow. A 

consumer (or two) can be switched to receive the MIDI flow. Now, by using the VTPE-

hBEB protocol, the timeliness of the flow will, in principle, be substantially improved. 

A qualitative assessment can be made by playing the MIDI traffic flows in the 

consumer computer. 

In order to quantify the results, an additional unit is required to measure the delay 

between the MIDI traffic flow in the producing node and the received flow in the 

consumer node. The measuring unit measures the end-to-end time between the start bit at 

the producer and at the consumer. The measuring unit will be described in the Section 

6.4.1. 

In order to complement the experiment to validate the VTPE-hBEB, a PC will be 

used to capture all transmitted Ethernet frames during the experiment using the Ethereal 
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Network analyser [99]. Ethereal records each received frame with the arrival instant of the 

frame. 

Using the time instant of the arrived frames a performance evaluation of VTPE-

hBEB can be performed. The main analyses to be carried out are: 

a) Average Delay 

b) Minimum and Maximum Delay 

c) Average TRT 

d) Minimum and Maximum TRT   

  The described experiments until now cover a MIDI channel and a disturbance 

source. A realistic unconstrained environment, in order to validate the VTPE-hBEB 

protocol, requires several VTPE-hBEB nodes and disturbance sources. A realistic 

unconstrained environment will be described in the evaluation setup in the next subsection. 

6.4.1 The Evaluation setup 

The setup designed to evaluate the timeliness of the VTPE-hBEB protocol contains both 

VTPE-hBEB (RT) and Standard (ST) Ethernet stations connected to a 10 Mbit HUB 

(Figure 6. 7). ST stations are configured to load the network with UDP unicast traffic while 

RT stations periodically conduct transmissions of real-time data (MIDI data flow). 

 

Figure 6. 7: Evaluation test-bed. 
 

The timeliness assessment consists on measuring, among other parameters, the 

latency that a real-time data flow experiences when transmitted across an Ethernet 
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network. This assessment is performed using a Delay Measurement System (DMS) [10] 

specially developed for this purpose.  

a) Application 

As it was presented in Chapter 5, a VTPE-hBEB node or, shortly, VMM is composed of 

protocol and application sub-nodes. In order to transmit the MIDI data flow over VTPE-

hBEB no changes in the protocol sub-node are required. However the application firmware 

in the application sub-node should be written to handle MIDI and Ethernet packets. 

The application firmware in the VMM handles two different tasks: it conveys data 

received from the RS232 port to the Ethernet bus and it transmits data from the Ethernet to 

the RS232 port as shown in Figure 6. 8.  

 

 

Figure 6. 8: Application sub-node flowchart. 
 

The main function starts by resetting both the token flag and the valid data count. 

So, if no token is received (token=0), the Ethernet controller is polled and, if a data frame 

was received, its payload is transmitted to the RS232 port. Otherwise, no action takes 

place. However, if the token is received and detected by the protocol sub-node, it will 

trigger the INT0 ISR, running on the application sub-node as shown in Figure 6. 9. 
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Figure 6. 9: Application sub-node ISRs flowchart. 
 

In this scenario the token flag is set to 1 and the main function will verify if there is data in 

the reception FIFO. If there isn’t, a dummy frame is transmitted and the token is released 

(token=0). 

When a character is received in the serial port, the RX RS232 ISR is executed. This 

Interrupt Service Routine stores the received character in a FIFO structure and increments 

the number of available data characters in one unity. Therefore, when the token will be 

available, an Ethernet data frame will be sent, the token will be released (token=0) and the 

character count will be decreased in one unity (data--). 

The justification for sending a dummy frame when in possession of the token but 

without data for transmission is related with achieving the minimum Token Rotation Time. 

So, if a RT node didn’t have data for transmission but didn’t transmit anything instead, the 

token would only pass to the following node (in the logical ring) by timeout, which is 

usually larger than the transmission of a VTPE-hBEB message (in this example, as the 

frame is short). 

 

b) Data flow 

The data flow is a serial RS232 character stream. The serial port is programmed with a 

31250 bit/s bit rate, 1 start bit, 8 data bits, 1 stop bit and no parity. A different character is 

transmitted each 10ms, in an isochronous form. 

In Figure 6.7 it is shown the described data source tied to the RT station RT1. 

When RT1 receives a character, a (VTPE-hBEB) transmission to station RT3 occurs. The 

original (character) data flow is thus converted to a VTPE-hBEB packet flow between 

stations RT1 and RT3. 

 

c) Standard stations and network load 

Standard stations are personal computers (PCs) running the Distributed Internet Traffic 

Generator (D-ITG) [99]. This traffic generator was configured to produce UDP packets 
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with constant maximum length (1538 bytes, including IFG, preamble and SFD). A 

standard (ST) station running the D-ITG generator is capable of producing network loads 

ranging from 0% to 100% of the network bandwidth (10Mbit). These values can be 

obtained by increasing or decreasing the inter-departure packet rate (Poisson distributed).  

The maximum offered network load occurs when the 3 ST stations are sending 

approximately 813 UDP packets per second each. 

d) Measurement system 

The Delay Measurement System (DMS) [101] depicted in Figure 6. 10 was built to assess 

the VTPE-hBEB protocol timeliness. The DMS is composed by a Microchip 

DSPIC30F6012A microcontroller with appropriate RS232 level converters, among other 

components. 

 

Figure 6. 10: Delay Measurement System. 
 

The DMS built-in serial ports are used for byte monitoring, allowing registering the 

instants in which bytes are transmitted by the data source or received at the data sink. 

Therefore, it is possible to measure the latency that a byte experiences in the Ethernet bus, 

as well as its variation and loss. Following, the DMS is able to compute several variables, 

namely Average, Minimum and Maximum Delay, Average, Minimum and Maximum 

Token Rotation Time (TRT), and the Delay and TRT Histogram.  

The DMS operates in two different modes: measurement and command. In 

measurement mode, the DMS listens to COM1, registering the received byte values and 

the corresponding instants. When a byte is received in COM2, the receiving instant is 

recorded and a search for the matching transmit instant is started. If a match occurs, the 

individual byte delay is computed and all related variables are updated. Otherwise, an error 

is signaled.  
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A measurement trial ends when one of the following events occur: automatic time-

out, automatic number of bytes or manual trigger. Any of them will cause the DMS to 

commute to command mode. The automatic time-out (duration of the trial) and the number 

of bytes can be setup by the user. The manual trigger event is generated by switching a 

knob on the DMS, and overrides any of the automatic ending mechanisms. 

In command mode the DMS operates by accepting character sequences from the PC 

(“commands”) and replying with status messages or with statistical information. The DMS 

also allows the configuration of statistical related parameters. Both (Delay and TRT) 

histograms can be customized by changing the beginning time, the number of used points 

and resolution. The user is then able to change the appearance of the histogram to fit 

his/her requirements. 

6.5 Timing analysis 

Considering a real-time data flow connected to an RT node, e.g. the RS-232 stream in the 

example used the instances of the flow messages can be represented by: 

Mn,i, where n is the number of the RT node and i the instance of the message. 

As the external system (the RS-232 source) and the VTPE-hBEB evaluation system 

are independent and thus not synchronized, the activation instant of the message Mn,i is 

asynchronous relatively to the VTPE token rotation. 

The connection between the external system and the RT node is point to point. If 

the end of the reception at the RT node is considered the activation instant of Mn,i within 

the VTPE system, then the time it takes to transmit the payload between the external 

system and the RT node can be ignored. 

However, after the activation, two time intervals must be taken into consideration 

before Mn,i can be transmitted in the Ethernet network. These are the time required to 

handle the reception of Mn,i from the external system, thr,i, and the time it takes to transfer 

the payload of Mn,i to the Ethernet controller of the RT node, ttc,i. 

After thr,i two situations can occur: 

a) The Ethernet controller is busy transmitting a previous message Mn,i-1 from the node and 

thus the loading of the message in the controller is delayed. 

b) The Ethernet controller is available and Mn,i can be loaded at once. 
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In situation a), the transmission of Mn,i-1 can be considered a part of the token 

rotation time. In this case the token rotation counting starts right after the start of the 

transmission of Mn,i-1. The delay in a) doesn’t need to be taken into account provided that 

the time to transfer Mn,i to the Ethernet controller is sufficiently low to fit within the slack 

obtained by the token rotation time subtracted from the transmission time of Mn,i-1. That is: 

[ ]Nttt iitRTiitc .....1,1,1, ∈∀−= −−  (6.5) 

Where: 

N is the maximum number of messages 

ttc,i is the time required to transfer the message Mn,i from the reception buffer of the 

RT node to its Ethernet controller. This time can not be ignored due to the use of 

low-processing power microcontrollers. 

tRTi-1 is the token rotation time that occurred in the sequence of the transmission of 

message Mn,i-1. 

tt,i-1 is the transmission time of message Mn,i-1. 

 

This condition can be made completely general by using the worst case concerning 

the loading of the payload in the Ethernet controller, the length of the transmitted messages 

and the minimum token rotation time. The general condition is then the following: 

 

tMAXRTMINItcMAX TTT −<  (6.6) 

 

Where: 

TtcMAX.= Max(ttc,i), [1.. ]i N∀ ∈ , is the maximum time it takes to transfer the payload 

to the Ethernet controller. 

TRTMIN .= Min(trt,i), [1.. ]i N∀ ∈ , is the minimum token rotation time. 

TtMAX = Max(tt,i), [1.. ]i N∀ ∈ , is the maximum transmission time of every Ethernet 

frame from the RT node. 

The worst case delay concerning scenario a), till the start of transmission of 

message Mn,i is then: 

  T  tD RTwcihr,i(a)wc, +=  (6.7) 
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Considering now scenario b), the worst case occurs when the loading of the 

Ethernet controller finishes immediately after the exhausting of the time out (named t2 in 

the original VTPE protocol specification) [4], when node n had nothing to transmit in the 

previous token round. That means then that the token has been just released by node n. 

This situation doesn’t happen in the application example as we are forcing the RT stations 

to transmit a dummy frame even when there are no RT messages. 

If it is avoided to perform a fine tuning of the token rotation time (as it was done for 

scenario a)), then the maximum time between the release of the token and its next 

reception can be limited by the maximum token rotation time. Then, for this case, we have: 

RTwcitc,ihr,iwc, T  t  t (b)D ++=  ( 8.6 ) 

 

That is, without fine tuning of the token rotation time, one must consider D’wc,i(b) 

as the worst case delay. 

The maximum time that a RT station holding the token waits to transfer a real-time 

message is given by [33]: 

ThBEB = tcol +InterFrameGap+TtMAX 

where tcol is the worst-case delay to start transferring a message (0.960 ms) due to blocking 

in the network in the sequence of 15 collision rounds. 

and TtMAX is the maximum time to transfer a message from the VTPE-hBEB station, 

which is the maximum message length, as defined above. 

After the D’ interval, Mn,i is ready to start competing for the bus and then the 

ThBEB equation gives the time it takes to be transmitted. In consequence, the worst case 

delay till the end of transmission for Mn,i is: 

RTwcihBEB,itc,ihr,iwc, T  t  t  t D +++=  ( 9.6 ) 

Where thBEB,i is the time it takes to transmit the message Mn,i once the token is in 

possession of the station n. 

The use of low-processing power microcontrollers has also other implications in the 

VTPE-hBEB protocol implementation. Recalling the VTPE protocol, after a successful 

transmission of a VTPE RT message or after a time out called t2 [80], an interrupt will be 

generated in every RT node in order to increment the AC counters. After this increment, 
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one of the RT nodes will become in possession of the token. If it has an RT message to 

transmit, it must start contending for the bus right after the Inter Frame Gap. 

However, the microcontroller has to perform a couple of operations which duration 

depends on its characteristics, namely its processing power, clock, etc. The overhead 

introduced by these operations can be measured by: 

tRTmISRuCo T  T  T +=  ( 10.6 ) 

 

Where TuCo is the maximum time required to execute the operations, i.e., the 

microcontroller overhead. 

TISR is the worst case time required to execute the Interrupt Service Routine in the 

sequence of the end of transmission of the previous VTPE message or of the interrupt after 

t2. 

TtRTm is the worst case time required to trigger the Real Time message at the 

Ethernet controller. 

If the microcontrollers are not able to perform those operations within an Inter 

Frame Gap, i.e. if: 

TuCo > InterFrameGap (IFG) 

Then two scenarios can occur: 

a) One standard Ethernet message can gain access to the bus. 

b) A competition between two or more standard Ethernet messages can start after 

the IFG. 

Considering that the microcontroller overhead delay will be bounded by the 

following limit (which was verified in the case of this experiment): 

 

EminuCo T  GapInterFrame  T +<  ( 11.6 ) 

 

Where TEmin is the time to transmit the smallest Ethernet frame (72 bytes), i.e., 

57.6 µs at 10Mbps. 

Then, in scenario a), just one standard Ethernet message is able to gain access to the 

bus before the RT node can compete. So, the worst case would be the transmission of a 

maximum length standard Ethernet message.  
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However, in scenario b), a worst situation can occur. It consists in the end of a 

contention process followed by the start of a transmission of a standard Ethernet message 

immediately before the end of the overhead interval. So, scenario b) leads to the worst case 

situation arising from these microcontroller non-idealities. The maximum delay, maximum 

overhead time, is then: 

EmaxuCoMAXoMAX T  T  T +=  ( 12.6 ) 

 

Where TuCoMAX is the maximum microcontroller overhead handling the interrupt. 

TEmax is the time to transmit the largest Ethernet message (1526 bytes), i.e., 1220.8 

µs at 10Mbps. 

 

This delay must be added to the worst case delay identified in the ThBEB equation, giving 

origin to a corrected value for the non-ideal case of small processing power 

microcontrollers: 

hBEBoMAXhBEB T  T  T +=  ( 6.13 ) 

 

We can now derive the maximum delay that suffers, in a real VTPE-hBEB system, 

the Mn,i instance of an external RT flow, considering the asynchrony between the external 

system and the VTPE-hBEB evaluation system and the non-idealities of the RT nodes. It 

is: 
 

RTwcihBEB,oMAXitc,ihr,iwc, T   t T   t  t D ++++=  ( 14.6 ) 
 

 

This is the value that must be verified experimentally. 

 

6.6 Results 

This section presents a preliminary evaluation of the VTPE-hBEB practical 

implementation. A test-bed similar to the arrangement shown in Figure 6.7 was used 

altogether with the Delay Measurement System shown in Figure 6.10. All trials were 

conducted using the following settings: 
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• The RS232 interface between RT stations and the data source (or sink) is 

configured with a baudrate of 31250 bps, 1 start, 1 stop and no parity; 

• A RS232 character stream with a fixed period of 10 msec is fed to RT1 

[00:00:00:00:00:01]; 

• RT1 [00:00:00:00:00:01] transmits an Ethernet packet to RT3 [00:00:00:00:00:03] 

containing the received character when it is in possession of the virtual token. If it 

has nothing to transmit, it sends a dummy frame. 

• RT2 [00:00:00:00:00:02] and RT3 [00:00:00:00: 00:03] transmit dummy Ethernet 

frames whenever they are in possession of the token. 

• All Ethernet packets transmitted by RT stations have the minimum length, i.e. 72 

bytes. 

Using these specifications two scenarios were evaluated: unloaded network (best 

case) and fully loaded network. 

6.6.1 Unloaded network 

 

In this scenario, standard stations ST1 [IP:10.0.0.100], ST2 [IP:10.0.0.61] and ST3 

[IP:10.0.0.62] do not transmit packets to the network. Therefore, as it can be seen in Figure 

6. 11, only VTPE-hBEB packets flow through the network, whether data frames from RT1 

[MAC:00:00:00:00:00:01] to RT3 [MAC:00:00:00:00: 00:03], whether dummy frames 

from RT1, RT2 [MAC:00:00:00:00:00:02] and RT3. 

 

Figure 6. 11: Ethereal capture – unloaded network. 
 

The external RS232 data source generates a character each 10 milliseconds. So, 

Figure 6. 11 only shows one data frame because it covers just a much smaller time 

window. The illustrated broadcast packets are dummy frames, i.e., frames sent when no 

valid data was available but the token had been received. In order to observe another data 

frame, the time window would have to be increased above the period of the data source. 
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Figure 6.12 shows the delay distribution for an unloaded Ethernet network and 

Figure 6.13 shows the TRT histogram for the same scenario. Delays are spread between 430 

µs and 930 µs while the token rotation time is almost always in the range of 420 µs to 460 

µs. 

 

Figure 6.12: Delay histogram - unloaded network. 

 

Figure 6.13: TRT histogram - unloaded network. 
 

Table 6. 3 resumes the statistical results obtained for the Delay and Token Rotation 

Time experienced on an unloaded Ethernet network. 
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Average Delay 0.69 ms 

Minimum Delay 0.43 ms 

Maximum Delay 0.93 ms 

Average TRT 0.43 ms 

Minimum TRT 0.37 ms 

Maximum TRT 0.49 ms 

Table 6. 3: Unloaded network – summary. 
 

The TRT is the sum of the RT frame transmission time (76.2µs including the IFG), 

the time taken to read, process and transmit a VTPE frame, multiplied by three (number of 

RT stations). The TRT exhibits jitter due to the polling nature of reading and writing the 

Ethernet frame. 

Experimentally it was observed that the sum of the write, read and process times 

varies from 56µs to 96µs. Summing this value multiplied by three with the transmission 

time of three Ethernet frames, the results presented in Table 6.3 for the token rotation time 

are validated. 

The delay is measured between the RS232 data source and the RS232 data sink. 

Thus, this delay is also affected by the jitter introduced by the asynchronous nature of the 

data stream coming from the external system, regarding the token possession. 

6.6.2 Full loaded ethernet 

In this scenario, the three standard stations (ST1 to ST3) load the network to 100% of its 

capacity. In this sense, each station contributes with ⅓ of the overall load. As presented, 

the load offered by each station is produced by a traffic generator that sends UDP packets 

with constant maximum length and variable inter-departure rate (Poisson distributed). This 

experiment consists on the transmission and successful reception of 15000 characters. The 

delay is measured between the instant where the character is generated by the source in the 

RS232 line and the instant where the character arrives at the sink RS232 line (Figure 6.7). 

It can be seen in Figure 6.14 that standard Ethernet frames gain access to the 

network between two RT messages (in the figure, packets from ST1 [192.168.9. 100]). 

This occurs because, since TuCo is larger than the IFG, a standard station is able to start a 

transmission before the RT station handles the token reception. 
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Figure 6.14: Ethereal capture – fully loaded network. 
 

 

Figure 6.15: Delay histogram – fully loaded network. 
 

The delay distribution shown in Figure 6.15 has become wider and ranging from 

430µs to 5.77ms. 
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Figure 6. 16: TRT histogram – fully loaded network. 
 

 Figure 6. 16 shows TRT occurrence peaks between 420 and 460µs, 1.58 and 

1.62ms, 2.87 and 2.92ms, and 3.94 and 3.98ms. These peaks indicate strong determinism 

in the delay between two consecutive possessions of the token by the same RT station. The 

justification for this phenomenon is that, in a complete token rotation, a variable number of 

standard messages (0, 1, 2 or 3) can gain access to the network, thus delaying RT messages 

and increasing the TRT. Therefore, the delay experienced by a data flow is affected by a 

variable TRT that is a function of the number of standard frames that gain access to the 

network (0 to 3). Additionally, because the data source is not synchronized with the 

transmitting RT station, it can transmit a character within a time window that goes from the 

instant where the token has just been released or the instant just before the token has been 

received. These two factors justify the delay distribution profile in Figure 6.15, where the 

delay is spread over a wide range of values. 

In fact, the higher occurrence rate of delays above 1.58 ms is inline with the fact 

that 85% of the TRTs are above the 1.54 ms threshold. 

Table 6.4 shows a resume of the statistical results obtained for the Delay and Token 

Rotation Time experienced on a fully loaded Ethernet network. 

 

Average Delay 3.25 ms 

Minimum Delay 0.43 ms 

Maximum Delay 5.77 ms 
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Average TRT 3.02 ms 

Minimum TRT 0.38 ms 

Maximum TRT 4.23 ms 

Table 6.4: Fully loaded network – summary. 
 

The minimum token rotation time is similar to the one obtained for the unloaded 

case. The minimum rotation time occurs when three real-time frames are sent 

consecutively. For the maximum TRT, it is required to account for the transmission of the 

real time frames, the transmission of standard frames and the time spent by the 

microcontroller to read (∆R)/ write (∆L) one frame from/ to the Ethernet controller, as 

shown in Figure 6. 17. 

 

Figure 6. 17: Worst case TRT time line. 
 

 The worst case happens when a maximum duration Ethernet frame takes the bus 

just before the RT node controller that holds the token is ready to transmit and when the 

CPU spends the maximum time in handling the Ethernet interface. Getting the maximum 

TRT in the unloaded case, i.e., 0.49 msec and adding the duration of 3 maximum length 

frames (3 x 1.22 msec) one obtains 4.15 msec, quite close to the measured maximum TRT. 

Considering now the delay, one would like to validate the Dwc,i equation derived in 

Section 6.5. An indirect measure of the worst case overhead time (96µsec were measured) 

can be obtained from the maximum TRT of the unloaded case. It is: 
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Now, decomposing the Dwc,i equation, we have: 
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Ignoring thr,i, which must be small as it corresponds just to a small ISR and a write in a 

buffer, and InterFrameGap which is around 10µsec, we have: 

   tcol 5.614  D

4.230  0.058   tcol 1.221  0.105  D

wc

wc

+=

++++=
 

tcol represents the possible collision resolution of the hBEB process, with a worst case of 

0.96 msec. It seems that, in our experiment, RT nodes were able to win the collision in one 

of the first back off slots (which last 64, 128, 196, ... µsec). This is a reasonable 

assumption since we are just using three stations to induce traffic load. 

6.7 Conclusions 

The conclusions are presented according to the implementations and the experimental 

setup for VTPE-hBEB validation. 

About the Implementations 

The implementation of VTPE based on a single Ethernet controller has a very small 

footprint. It occupies approximately 9% of the available flash memory of the 

microcontroller used. This is an important result because this VTPE version is to be used in 

small processing power processors. A modest network utilisation (16.2% with minimum 

frame size) was obtained. However, this is can be considered a good result since a small 

processing power microcontroller is used. The utilisation decreases noticeably with the 

Ethernet frame length due to the interface between the microcontroller and the Ethernet 

controller which is 8 bits in length. This interface requires a significant time to transfer a 

frame from the Ethernet controller to the PIC memory and to write a frame to the Ethernet 

controller. This overhead has consequences in the VTPE performance. 

The implementation based on the dual Ethernet controller architecture presents an 

excellent network utilisation. The network utilisations of 78.68% and 98.74% for the 

smallest and the longest Ethernet frame, respectively, can be achieved since the master is 

able to transmit frames with 15.6µs of inter-frame gap. On the other hand, if this 
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assumption is not true, the protocol performance is not affected because VTPE continues 

working and, if the nodes have nothing to transmit, the virtual token can be passed at each 

15.6µs. 

About the validation of VTPE-hBEB 

 

The VTPE-hBEB protocol enables the co-exhistence of standard and real-time stations in a 

shared Ethernet network without imposing excessive overhead even for reduced processing 

power microcontrollers. In this Chapter the impact of the non-idealities of such processors 

and of the overall protocol operation was studied. This study includes a theoretical analysis 

and an experimental validation to confirm the equations derived. The experimental 

validation was done with small nodes based in PIC Microchip processors and legacy 

Ethernet controllers. A specifically developed delay measurement system was used to 

obtain the required parameters. 
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Chapter 7 

 

Conclusions and Future Works 
 

 

The central propositions of the thesis stated throughout this dissertation were: 

• The development of the Virtual Token Passing Ethernet protocol or VTPE, 

which enables the support of real-time traffic on shared Ethernet networks; 

• The development of the VTPE-hBEB mechanism, an improvement of the 

VTPE proposal to support real-time communication in unconstrained shared 

Ethernet environment, i.e., an environment where Ethernet standard stations 

are able to coexist with VTPE-hBEB real-time stations; 

• The development of a set of equations enabling the assessment of the timing 

determinism of both the VTPE and VTPE-hBEB protocols and 

demonstrating its suitability to support real-time communication. 

• The adaptation of the VTPE proposal, allowing the token to be addressed to 

a node more than once per token rotation. This adaptation enables a better 

match between the nodes’ transmission requirements and the bandwidth 

allocated to each one of them. 

 

The VTPE proposal is aimed to be used in networks which use small processing 

power processors in most of the nodes. VTPE is based on the virtual token passing 

technique, which is a real-time bus arbitration mechanism especially suitable for shared 

networks that use small processing power processors.  

The VTPE-hBEB protocol is an implementation of the VTPE mechanism over the 

hBEB algorithm. This VTPE-hBEB implementation allows the support of real-time 

communication in open communication environments, where real-time stations coexist 



 142 

with Ethernet standard stations, prioritizing the real-time traffic, enhancing the VTPE 

mechanism. 

7.1 Thesis validation 

The VTPE and VTPE-hBEB proposals have been experimentally validated in order to 

confirm the real-time analytical models of VTPE and VTPE-hBEB. The results of 

experimental setup and analytical models confrontation are discussed as follows. 

 

The experimental validation setups 

 

The first experimental setup consists on a single Ethernet controller, whether the second 

one is based on a dual Ethernet controller architecture. For both implementations, the 

defined target was to develop experimental setups enabling the assessment of both VTPE 

and VTPE-hBEB proposals presented in the Chapter 1. 

The implementation based on a single Ethernet controller presents a rather reduced 

network utilisation: 16.2%. Such reduced utilisation threshold corresponds to an useful 

data rate of 1.62 Mbps. Despite of such small network utilisation, it can be considered a 

useful result because: 

• Very small processing power microcontroller were used; 

• The achieved bandwidth of 16.2% is larger than the better usage that can be 

obtained when using a widespread fieldbus such as the Controller Area Network, 

where the hardware of the nodes is almost similar in price, processing power; in 

this case the payload per frame is larger; 

• The 1.62Mbps is the lower bound for the VTPE implementation upon a 8-bit 

microcontrollers with a 10Mbps Ethernet controller. So, there is a large freedom 

degree to increase the bandwidth with the use of more powerful processors and 

100Mbps Ethernet controllers. 

 

The implementation based on the dual Ethernet controller architecture presents a 

much higher network utilisation, namely: 

• 78.68% when transmitting the smallest Ethernet frame (46 data bytes); 
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• 98.74% when transmitting the longest Ethernet frame (1500 data bytes); 

 

The above depicted utilisation bounds are directly tied to the ability of the low processing 

power microcontroller to transmit frames with an inter-frame gap of just 15.6µs. However, 

if this assumption is not true, VTPE is not severely affected because the virtual token can 

be passed at every 15.6µs in the worst case. 

The implementation based on the dual Ethernet controller architecture has a cost 

disadvantage, because it uses two microcontrollers and two Ethernet controllers per node 

and requires more cabling. However, this architecture doesn’t invalidate the 

implementation of VTPE or VTPE-hBEB protocols because, conceptually, it is equivalent 

to a node with higher processing power, with an Ethernet controller able to support the 

BEB algorithm disabling and interrupt. 

 

The real-time analytical models 

 

Two analytical timing models were derived to highlight the VTPE capability to meet the 

determinism required for real-time applications. A similar timing model was also presented 

for the VTPE-hBEB protocol. 

The first model is intended to derive the timeliness of the classical VTPE proposal. 

It consists of a set of equations that enable the evaluation of the token rotation time for the 

average and the worst case. The second model derives the timeliness of the enhanced 

VTPE proposal intended to support real-time isochronous traffic. This analytical model 

allows the evaluation of the token rotation time for the average and worst-case, considering 

a macro-cycle, i.e., the token rotation after performing all the dispatching table, and mini-

cycles, i.e., the token rotation time observed by a specific node which is visited several 

times by the token during the macro-cycle. 

Finally, an analytical timing model for VTPE-hBEB was also presented. It includes 

a set of equations that enable the evaluation of the token rotation time and the time interval 

t1, which is a fundamental parameter in the protocol.  

 

Validation of VTPE-hBEB protocol in an unconstrained environment 
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The VTPE-hBEB protocol enables the co-existence of standard and real-time stations in a 

shared Ethernet network, prioritizing the real-time traffic upon the timing unconstrained 

traffic. The VTPE-hBEB protocol is able to support such kind of traffic separation, without 

imposing an excessive amount of overhead, even for reduced processing power 

microcontrollers. An experimental setup and a theoretical analysis confirm the assumption 

that led to the VTPE-hBEB development. This means that VTPE-hBEB can be considered 

as a protocol able to allow the co-existence of real-time and non real-time stations in an 

unconstrained environment. 

7.2 Future work  

The work carried out throughout this thesis fulfils the targets initially proposed. However 

some developments should still be done to continue the VTPE development. Some 

suggestions are pointed out to future work namely: an implementation of VTPE and 

VTPE/h-BEB in FPGA using IP cores and the implementation of the VTPE protocol over 

power line communication. 

 

Implementation of VTPE and VTPE/h-BEB in FPGA using IP cores 

  

The implementations of VTPE and VTPE/h-BEB protocols using FPGA and IP cores was 

proposed in this thesis but they were not yet implemented. These implementations will 

support some features not supported by the current Ethernet standard controllers, as to 

integrate these protocols in the same Ethernet controller. As a consequence, this integration 

will allow running VTPE or VTPE-hBEB much faster than the implementation based on 

single and dual Ethernet controller implementations. The implementation based on IP core 

will improve the network utilisation to the theoretical limits of Ethernet. It is interesting to 

point out that this limit can not be found in the traditional shared Ethernet implementations 

due to the probabilistic BEB algorithm used in the CSMA/CD medium access. 

This implementation requires a programmable hardware as a FPGA and an Ethernet 

physical layer chipset with MII (Media Independent Interface) interface. 

 

VTPE for power line communication (VTPE-PLC) 

 



 145 

The power line for communication purposes is an attractive solution because it allows the 

use of the existing power cabling to deliver both electrical power and a data 

communication medium. The ubiquity of electrical outlets in the buildings and simplicity 

to use the power outlets as communication points are an important issue to consider. 

However due to the hostile power line environment for communication purposes such as 

impulsive noise, distortion and attenuation, reflections, randomly time-varying, it has been 

difficult the use of power lines as a communication medium, at least, for application 

requiring high bandwidth utilisation. 

The interest for power line communication has been increasingly motivated by the 

current support of high speed communication that allows application such as multimedia 

and internet. On the other hand, applications aimed for home automation, home security, 

and lighting control must share the same communication medium working with different 

protocols. So there is the need to find a power line communication protocol suitable to 

interconnect home automation devices and multimedia devices. 

Well known MAC techniques suited for wired networks are not well suited for 

power line communication. Polling can handle heavy traffic and inherently provides 

quality of service guarantees. However, polling can be highly inefficient under light or 

highly asymmetric traffic patterns or when polling lists must he update frequently as 

network terminals are added or removed. 

The token passing techniques (token ring, token bus) are efficient under heavy 

symmetric loads, but can be expensive to implement and serious problems could arise with 

lost tokens on noisy unreliable media such as the power grid used in PLC. 

On the other hand, the use of collision detection (CSMA/CD) techniques upon 

power line networks is a difficult task, due to the wide variation of the received signal and 

noise levels that makes the collision detection difficult. An alternative to collision 

detection that can be easily employed in PLC is the collision avoidance (CSMA/CA) 

technique. Such CSMA/CA techniques are usually used in the implementation of 

powerline chips. 

We believe that the VTPE and CSMA/CA combination can be highly suitable for 

Power Line Communication because: 

• The VTPE protocol does not require explicit token for protocol’s synchronisation 

purpose, therefore there is no explicit token loss; 
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• The transmitted frames are used in the protocol synchronisation instead of time 

slices resulted of a clock agreement among the nodes as it is done in TDMA based 

protocols. 

 

Nevertheless due to the hostile power line environment, frame loss can occur and 

can cause loss of synchronisation in the VTPE over PLC. However as each transmitted 

frame carries the source MAC address or eventually the Access Counter, there is 

information at each frame enough to implement an efficient token loss recovery 

mechanism. We also believe that VTPE over PLC is suitable to interconnect small 

processing power devices, such as those devices used in home automation as well as more 

powerful processing devices as those used in multimedia communication.           

Currently there are physical layer chipsets aimed to PLC and able to communicate 

with data rates up to 14Mbps and, more recently, up to more than 100Mbps. These chipsets 

have support on-chip of the standardised Ethernet MII interface. Then we believe that 

using the VTPE implementation on IP core with a physical layer power line chipset is 

possible to develop an efficient version of VTPE over power line. 
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