
Universidade de Aveiro
2009

Departamento de Electrónica, Telecomunicações e
Informática

David João Gonçalves
Pacheco

Ciência 2.0: Partilha de dados científicos na Grid

Science 2.0: Sharing Scientific Data on the Grid

Universidade de Aveiro
2009

Departamento de Electrónica, Telecomunicações e
Informática

David João Gonçalves
Pacheco

Ciência 2.0: Partilha de dados científicos na Grid

Science 2.0: Sharing Scientific Data on the Grid

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática (M.I.E.C.T.), realizada sob a orientação científica
do Professor Doutor José Maria Amaral Fernandes, Professor Auxiliar do
Departamento de Electrónica, Telecomunicações e Informática da Universidade
de Aveiro e do Mestre Ilídio Fernando de Castro Oliveira, Professor Assistente
Convidado do Departamento de Electrónica, Telecomunicações e Informática
da Universidade de Aveiro

Dedico este trabalho à minha família.

o júri

presidente Prof. Doutor Joaquim Arnaldo Carvalho Martins
professor catedrático do Departamento de Electrónica Telecomunicações e Informática da
Universidade de Aveiro

Profª. Doutora Inês de Castro Dutra
professora auxiliar do Departamento de Ciências de Computadores da Faculdade de Ciências da
Universidade do Porto

Prof. Doutor José Maria Amaral Fernandes
professor auxiliar do Departamento de Electrónica Telecomunicações e Informática da
Universidade de Aveiro

Mestre Ilídio Fernando de Castro Oliveira
professor assistente convidado do Departamento de Electrónica Telecomunicações e Informática
da Universidade de Aveiro

agradecimentos Mestre Ilídio Oliveira, Professor Doutor José Maria Fernandes, Professor
Doutor João Paulo Cunha, Eng. Luís Alves, Eng. Micael Pedrosa, Sérgio Lima.

palavras-chave Computação Grid, Repositórios de dados científicos, Imagem médica, e­
Ciência

resumo A computação assume­se cada vez mais como um recurso essencial em
ciência, levando ao surgimento do termo e­Ciência para designar a utilização
de tecnologias de computação avançada para suportar a realização de
experiências científicas, a preservação e partilha do conhecimento.
Uma das áreas de aplicação do conceito de e­Ciência é o tratamento e análise
de imagens médicas. Os processos que lidam com imagem médica, tanto ao
nível clínico como de investigação, são exigentes em relação ao suporte
computacional, devido aos algoritmos de processamento de imagem que
requerem e à elevada capacidade de armazenamento relacionada com volume
das imagens geradas.
As políticas públicas e os avanços tecnológicos recentes orientados para a e­
Ciência, têm vindo a apoiar o desenvolvimento da computação em Grid, tanto
a nível dos middlewares como da instalação de capacidade de produção, como
um sistema de computação avançado que permite a partilha de recursos,
instrumentos científicos e boas práticas em comunidades virtuais.
Este trabalho tem como objectivo desenvolver uma estratégia e um protótipo
para o armazenamento de dados médicos na Grid, visando a sua utilização em
investigação. Uma preocupação diferenciadora prende­se com o objectivo de
colocar as potencialidades da Grid ao serviço de utilizadores não técnicos (e.g.
médicos, investigadores), que acedem a serviços de processamento e de
armazenamento e catalogação de dados de forma transparente, através de um
portal Web.
O protótipo desenvolvido permite a investigadores na área das neurociências,
sem conhecimentos específicos da tecnologia Grid, armazenar imagens e
analisá­las em Grids de produção existentes, baseadas no middleware gLite.

keywords Grid Computing, Cientific Data Repositories, Medical Imaging, eScience

abstract Computing has become an essential tool in modern science, leading to the
appearance of the term e­Science to designate the usage of advanced
computing technologies to support the execution of scientific experiments, and
the preservation and sharing of knowledge.
One of e­Science domain areas is the medical imaging analysis. The processes
that deal with medical images, both at clinical and investigation level, are very
demanding in terms of computational support, due to the analysis algorithms
that involve large volumes of generated images, requiring high storage
capabilities.
The recent public policies and technological advances are e­Science oriented,
and have been supporting the development of Grid computing, both at the
middleware level and at the installation of production capabilities in an
advanced computing system, that allows the sharing of resources, scientific
instrumentation and good practices among virtual communities.
The main objective of this work is to develop a strategy and a prototype to allow
the storage of medical data on the Grid, targeting a research environment. The
differentiating concern of this work is the ability to provide the non­experts
users (e.g: doctors, researchers) access to the Grid services, like storage and
processing, through a friendly Web interface.
The developed prototype allows researchers in the field of neuroscience,
without any specific knowledge of Grid technology, to store images and analyse
them in production Grid infrastructures, based on the gLite middleware.

Contents

1. Introduction..1

1.1. Motivation and context...1

1.2. Objectives...2

1.3. Dissertation structure..3

2. Background Concepts and State of the Art..5

2.1. The emergence of e-Science and the Grid..5

2.1.1. The Grid concept and its role in modern science..6

2.1.2. The Grid architecture..9

2.1.3. Using the Grid...11

2.2. Grid enabling technologies...11

2.2.1. Grid middleware...12

2.2.2. Robust storage on the Grid...21

2.2.3. Grid community and standards...24

2.2.4. Grid-enabled portals development..25

2.2.5. Enabling technologies for Grid repositories...26

2.3. Life sciences as an application domain..28

2.3.1. Medical imaging overview...28

2.3.2. HealthGrid: at the intersection of Grid and e-Health..29

2.3.3. Selected HealthGrid repositories projects...31

3. Supporting brain imaging research workflows ...33

3.1. The case for Grid enabled brain research ..34

3.2. Requirements for Grid-enabled virtual labs...35

4. Grid interfacing framework..37

4.1. Why an interfacing layer..37

4.2. IEETA Grid Framework (IGF) architecture...38

4.3. Middleware services implementation...39

4.3.1. IGDM: Storage Package...39

i David Pacheco

4.3.2. IGDM: Virtual File System Package ...41

4.3.3. IGDM: Asynchronous Package...44

4.3.4. Computing Package..46

4.3.5. Proxy Package...47

4.3.6. Security Package...47

4.4. Using the IGF API..47

4.4.1. Virtual File System API..48

4.4.2. Computing API...52

5. e-Science Portal for brain imaging research...55

5.1. The MAGI Portal as scientific community enabler ...55

5.2. Brain imaging research portal use-cases...56

5.3. Domain concepts model...57

5.4. MAGI System architecture...59

5.5. Portal services implementation...61

5.5.1. Security design..63

5.5.2. MAGI Integration with the IGF Framework..63

5.6. Experimental results...64

5.6.1. Storage level..64

5.6.2. Jobs execution...67

6. Conclusions and Future Work..69

ii David Pacheco

List of Figures

Figure 2.1: Virtual Organizations...7

Figure 2.2: Grid Architecture...10

Figure 2.3: Detailed Grid architecture - In GridCafé website:

http://www.gridcafe.org/version1/gridatwork/architecture.html..10

Figure 2.4: gLite Services..16

Figure 2.5: JDL file example..18

Figure 2.6: States of a normal (on the left) and DAG (on the right) job during execution..19

Figure 2.7: DMS Services architecture view..22

Figure 2.8: Relation between the LFN, SURL and GUID...23

Figure 2.9: Image produced by a MRI brain scan..28

Figure 4.1: IEETA Grid Framework architecture – UML package diagram........................38

Figure 4.2: Storage package class diagram..40

Figure 4.3: Main use-cases provided by the Virtual File System and Computing packages

of the IGF Framework - (VGF stands for Virtual Grid Folder)...41

Figure 4.4: Relationships between Virtual Grid Folder (VGF), Grid Files and Tags, and

workflow example of creating a VGF, followed by the copy of a file to that VGF.............42

Figure 4.5: Virtual File System package class diagram...43

Figure 4.6: Asynchronous package class diagram..44

Figure 4.7: Asynchronous storage operation sequence diagram..45

Figure 4.8: Computing package class diagram..46

Figure 4.9: Java-like pseudo-code example of the IGF AP - CTX (VirtualFSContext) object

instantiation and initialization..48

Figure 4.10: Java-like pseudo-code example of the IGF API – Copy file gfile to Virtual

Grid Folder vgf ..49

Figure 4.11: Java-like pseudo-code example of the IGF API – Remove file testFile.dcm

from VGF MAGIRoot/UserX..49

iii David Pacheco

Figure 4.12: Java-like pseudo-code example of the IGF API – List contents of Virtual Grid

Folder MAGIRoot..50

Figure 4.13: Java-like pseudo-code example of the IGF API – Search files stored in the

Virtual Grid Folder MAGIRoot..51

Figure 4.14: Java-like pseudo-code example of the IGF API – Creation of the Virtual Grid

Folder MAGIRoot/UserX...52

Figure 4.15: Java-like pseudo-code example of the IGF API – CTX (ComputingContext)

object instantiation and initialization...53

Figure 4.16: Java-like pseudo-code example of the IGF API – Submit a job, configured

with the CTX context variable...53

Figure 4.17: Java-like pseudo-code example of the IGF API – Update the job status of a

specific job, with an ID defined by the middleware upon the job submission.....................54

Figure 4.18: Java-like pseudo-code example of the IGF API – Fetch the job output from a

specific job, with an ID defined by the middleware upon the job submission.....................54

Figure 5.1: Brain imaging research portal use-cases..56

Figure 5.2: Domain model class diagram...58

Figure 5.3: MAGI system architecture...59

Figure 5.4: Detailed architecture of the MAGI, containing all the packages and IGF.........59

Figure 5.5: Controllers package class diagram, showing the most important methods and

attributes...60

Figure 5.6: MAGI login page...61

Figure 5.7: Web portal pages, demonstrating the data import use-case...............................62

Figure 5.8: Chart representing the file transfer times, comparing the usage of the command

line (CL) the IGF and the MAGI system...64

Figure 5.9: Chart comparing the maximum, minimum and average times of each of the file

copy tests..65

Figure 5.10: Chart representing the file download times, comparing the usage of the

command line (CL) the IGF and the MAGI system...66

Figure 5.11: Chart comparing the maximum, minimum and average times of each of the

file download tests..66

Figure 5.12: Map of the Grid nodes used during the tests...67

iv David Pacheco

List of Tables
Table 2.1: Main middleware Stacks...12

Table 2.2: Job States...20

Table 5.1: MAGI Portal use-cases details..57

v David Pacheco

List of Acronyms

AC Attribute Certificate

ACL Access Control List

AJAX. Asynchronous Javascript And XML

AMGA. ARDA Metadata Catalogue

APEL Accounting Processor for Event Logs

APGridPMA Asia Pacific Grid Policy Management Authority

API Application Programming Interface

BDII Berkeley Database Information Index

BIRN Biomedical Informatics Research Network

BIRN-CC BIRN Coordinating Center

C-OMEGA Open Middleware Enabling Grid Applications

CA Certification authority

caBIG cancer Biomedical Informatics Grid

CASTOR CERN Advanced STORage manager

CE Computing Element

CERN European Organization for Nuclear Research

CGSP ChinaGrid Supporting Platform

CLI Command Line Interface

CRUD Create, Read, Update and Delete

CT Computed Tomography

DAG Directed Acyclic Graph

DAGMan DAG Manager

DGAS Distributed Grid Accounting System

DICOM Digital Imaging and Communications in Medicine

DPM Disk Pool Manager

DRS Data Replication Service

vii David Pacheco

EC European Commission

EDG European Data Grid Project

EDT DataTAG–Data TransAtlantic Grid Project

EEG Electroencephalogram

EELA E-infrastructure shared between Europe and Latin America

EGA Enterprise Grid Alliance

EGEE Enabling Grids for E-sciencE

EuGridPMA European Grid Policy Management Authority

fMRI functional MRI

GAT Grid Application Toolkit

GFAL Grid File Access Library

GG. Grid Gate

GGF Global Grid Forum

GIIS Grid Index Information Server

GLUE Grid Laboratory Uniform Environment

GMA Grid Monitoring Architecture

GRAM. Grid Resource Allocation Manager

GRIDCC Grid Enabled Remote Instrumentation with Distributed Control and

Computation

GRIS Grid Resource Information Server

GSIDCAP GSI dCache Access Protocol

GT Globus Toolkit

GUID Grid Unique Identifier

HEP High Energy Physics

HPC High Performance Computing

IEETA Instituto de Engenharia, Electrónica e Telemática de Aveiro

IGDM IEETA Grid Data Middleware

IGF IEETA Grid Framework

IGTF International Trust Grid Federation

INFN. Italy’s National Institute for Nuclear Physics

IS Information System

iVDGL. International Virtual Data Grid Laboratory

J2EE Java 2 Enterprise Edition

viii David Pacheco

JDL Job Description Language

JP Job Provenance

JSDL Job Submission Description Language

JSDL-WG JSDL Working Group

JSF. Java Server Faces

LB Logging and Bookkeeping

LCG LHC Computing Grid

LDAP. Lightweight Directory Access Protocol

LFC. LCG File Catalogue

LFN Logical File Name

LHC Large Hadron Collider

LRMS Local Resource Managing System

MDS Monitoring and Discovery System

MPI Message Passing Interface

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

NS Network Server

OASIS Organization for the Advancement of Structured Information

Standards

OGF Open Grid Forum

OGSA Open Grid Services Architecture

OGSA-DAI OGSA–Data Access and Integration

OGSI Open Grid Service interface

OMII-China Open Middleware Infrastructure Institute for

OMII-Europe Open Middleware Infrastructure Institute for Europe

OMII-UK Open Middleware Infrastructure Institute for United Kingdom

OpenLDAP Open source implementation of LDAP

PERMIS PrivilEge and Role Management Infrastructure Standards validation

PET Positron Emission Tomography

PFN Physical File Name

PIC Port d'Informatió Cientifica

PLS Partial Least Square

PM Package Manager

ix David Pacheco

PPS Pre-Production Service

PVM Parallel Virtual Machine

R-GMA Relational GMA

RA Registration Authority

RB Resource Broker

RFIO Remote File Input/Output protocol

RFT Reliable File Transfer

RLS Replica Location Service

SARS Severe Acute Respiratory Syndrome

SARSGrid. SARS Grid

SE Storage Element

Share. Supporting and structuring Healthgrid Activities and Research in

Europe

SIAS Sistemas de Informação na Área da Saúde

SOA Service Oriented Architecture

SPM Statistical Parametric Mapping

SRB Storage Resource Broker

SRM Storage Resource Manager

SURL Storage URL

TAGPMA The Americas Grid Policy Management Authority

TGCP TeraGrid Copy

TURL Transport URL

UI User Interface

UML Unified Modeling Language

UNICORE. UNiform Interface to COmputing REsources

URI Uniform Resource Identifier

UUID Universally Unique Identifier

VDT Virtual Data Toolkit

VFS Virtual File System

VGF Virtual Grid Folder

VO Virtual Organization

VOMS Virtual Organization Management System

WISDOM. Wide In Silico Docking On Malaria

x David Pacheco

WLCG Worldwide LHC Computing Grid Project

WMS Workload Manager Service

WN Worker Node

WS. Web Service

WS-GRAM Web Service–Grid Resource Allocation and Management

WSRF WS-Resource Framework

XML eXtensible Markup Language

XUL XML User interface Language

xi David Pacheco

Glossary

AccessGrid is an ensemble of resources including multimedia large-format displays,

presentation and interactive environments, and interfaces to Grid middleware and to

visualization environments. These resources are used to support group-to-group

interactions across the Grid.

Condor project develops and evaluates policies and mechanisms to enable High

Throughput Computing. The Condor is a specialized workload management system for

computer-intensive jobs. It provides a job queuing mechanism, scheduling policy, priority

scheme, resource monitoring and resource management.

D-Grid is the German National Grid Initiative (see http://www.d-grid.de/). This project is

composed by two phases (D-Grid I (2005-2008) and D-Grid II (2007-2010)).

DataGrid was a project funded by European Union whose objective was to build the next

generation computing infrastructure providing intensive computation and analysis of

shared large-scale databases (see http://eu-datagrid.web.cern.ch/). The project time span

was three years (2001-2004).

DataTag Project that aims the creation of a large-scale intercontinental grid testbed

between the European Community and the USA, focusing mainly in the interoperability

issues (see http://datatag.web.cern.ch/datatag/).

dCache is a system for storing and retrieving huge amounts of data, distributed among a

xii David Pacheco

http://www.d-grid.de/
http://datatag.web.cern.ch/datatag/
http://eu-datagrid.web.cern.ch/

large number of heterogeneous server nodes, under a single virtual filesystem tree with a

variety of standard access methods.

e-Health is the term given to modern information and communication technologies that

support healthcare services and practice.

EGEE Project aims the creation of a seamless Grid infrastructure for e-Science. (see

http://www.eu-egee.org/). The EGEE project is composed by three phases (EGEE I (2004-

2006), EGEE II (2006-2008) and EGEE III (2008-2010)), being currently at the third and

last phase of the project.

EELA-2 Project aims at building a high capacity, production-quality, scalable Grid

Facility, providing round-the-clock, worldwide access to distributed computing, storage

and network resources needed by the wide spectrum of Applications from European - Latin

American Scientific Collaborations.

Embrace is a project that aims to integrate the major databases and software tools in

bioinformatics, using existing methods and emerging Grid service technologies (see

http://www.embracegrid.info/).

gLite is the codename of the middleware that is currently being developed in the EGEE

project (see http://glite.web.cern.ch/glite/).

GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high

bandwidth networks.

GridSphere is a standards based portlet framework for building web portals. It also

provides a set of portlet web applications that work seamlessly with the GridSphere

framework to provide a complete Grid portal development solution.

GSI is a Grid Security Infrastructure based in the public key cryptography. It allows,

among other things, the use of certificates to authenticate users and services (see

http://www.globus.org/security/).

xiii David Pacheco

http://www.globus.org/security/
http://www.embracegrid.info/
http://www.eu-egee.org/

HealthGrid initiative is a community composed by specialists from different areas that

aim to create a fully operational European/International Grid to support health projects.

MyProxy is a credential management service. It manages X.509 Public Key Infrastructure

service credentials and combines a online credential repository and a online certificate

authority.

NAREGI is the Japanese National Research Grid Initiative.

Shibboleth is a standards-based, open source middleware software which provides Web

Single SignOn (SSO) across or within organizational boundaries. It allows sites to make

informed authorization decisions for individual access of protected online resources in a

privacy-preserving manner (see http://shibboleth.internet2.edu/).

TeraGrid is a Grid infrastructure that connects the United States of America National

Science Foundation Supercomputer Centers (see http://www.teragrid.org/).

xiv David Pacheco

http://shibboleth.internet2.edu/

1. Introduction

1.1. Motivation and context

A great concern among the medical community is the development of new and better

methods for the improvement of our society's healthcare. In the last few years we have

witnessed a great evolution in the areas of medical science namely in diagnosis methods, in

particular in medical imaging techniques that can provide valuable information for the

doctors and medical researchers. As a result of these evolutions, nowadays in all major

medical institutions, the use of medical imaging based techniques is becoming mandatory.

This has also been translated in a great demand for the development of solutions to make

efficient use of the technological resources to support and make available medical imaging

in medical environments. One example is the size and number of medical images,

increasing the need to store and share these images for diagnosis and research purposes.

With the support of digital systems to store medical images, it is possible to share these

images among several institutions to improve diagnosis, and allow investigations by the

medical community among different institutions. However there are issues concerning

privacy, security and technological solutions making the sharing of medical images a

delicate matter [1]. Simultaneously, new solutions provide the potential of accessing the

digital resources computing power, to run advanced image analysis algorithms, improving

the clinical diagnosis and consequently affect the final decision.

To face the new needs of the scientific and medical community in particular, Grid

computing is emerging as an interesting solution to store, share and process the huge

1 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

volumes of medical images, generated by normal day-to-day routines in medical

institutions, as it is already used in several scientific fields, like nuclear physics and

biomedical [2,3].

Scientific disciplines like astronomy, physics, biology, medicine, etc, are feeling the need

to improve their research methods with advanced computational resources [4]. Examples

of projects that experience the compelling need for enhanced computational resources,

both for the storage of large quantities of information, and/or run intensive algorithms are

projects like the LHC (Large Hadron Collider) [5] located at CERN, that will generate

huge amounts of data that needs to be stored and processed [6], or projects like BING [7],

related with brain imaging research methods, being currently developed by group SIAS

(Sistemas de Informação na Área da Saúde) at IEETA. SIAS research interests include

medical imaging and the group has naturally included the advanced computing support

provided by Grid in its research agenda.

Nevertheless, Grids still expose many technical idiosyncrasies, making it difficult for

regular users to harness their true potential, as a resource to store large amounts of data and

execute computationally intensive algorithms. We believe that end-users should be

shielded from the underlying complexities by friendly domain applications [8].

1.2. Objectives

Storage of large amounts of data in Grid environments is still a very complex issue due to

the heterogeneity and distributed nature of the Grid environment. One example is the lack

of simple unified concepts such as shared file system or a common name-space, which

adds complexity to any transparent and ubiquitous Grid based storage solution. Another

example is the storage of metadata within a Grid ”entity”, that is, the data about the stored

files that allow categorizing and querying the information on the Grid. It is required to

develop custom solutions to find the stored files and describe their contents. There are

already some Grid middleware technologies allowing the user to perform “low-level”

operations on the Grid, like submitting jobs or storing data, and manage the files metadata,

but those still lack in easy to use API's and user friendly interfaces, like Web Portals for

specific tasks.

The main goal of this work is to develop a set of software components to facilitate the

access to Grid-enabled infrastructures, allowing end-users to benefit from the Grid without

being exposed to its underlying complexities. This will be achieved at two levels:

David Pacheco 2

Science 2.0: Sharing Scientific Data on the Grid

− for the application developer, we propose a services Framework (IGF that stands for

IEETA Grid Framework), facilitating the “gridification” of applications;

− for the end-user, we propose a Web portal (MAGI, that stands for Medical Application

Grid Interfacing portal) directed to non-expert users, like doctors and scientists.

Through MAGI, users will be able to perform their medical imaging analysis tasks, like

storing, sharing and running analysis algorithms, without having to worry about the

underlying complexity of the system that are managed by IGF. Ideally the user should not

need to know that he is using a Grid environment.

The MAGI should offer a user friendly interface, and an attractive look. Ideally the portal

should have a drag-and-drop look and feel, to give the users the idea that they are dragging

the objects (e.g: files) to containers (e.g: folders), and provide a very intuitive interface.

To support MAGI, IGF will provide high-level programming abstractions and have good

documentation to support it. Currently there aren't many frameworks available in the area

of Grid storage, and the ones that exist lack in documentation and/or easy to use

approaches.

Both MAGI and IGF will be deployed and validated in the context of the European project

EGEE (Enabling Grids for E-sciencE) [9], which is the largest Grid infrastructure in the

world.

1.3. Dissertation structure

This dissertation is divided into the following chapters, excluding this one:

• Chapter 2 - Background Concepts and State of the Art, presents the emergence

of e-Science and Science 2.0 and their great importance in life sciences. The chapter also

contains an introduction to the Grid itself, including the concept behind the technology, its

architecture and the community. It discusses the main Grid middleware technologies and

frameworks in the area of storage and metadata, as well as the main projects that existed or

are currently undergoing in the area of data Grids. It also presents a brief introduction to

the medical imaging research state of the art, and the relation of this scientific area with

computing;

• Chapter 3 – Supporting brain imaging research workflows, discusses the

specific requirements and use cases of a brain imaging research portal, and possible

improvements that can be introduced with the usage of Grids to execute brain imaging

 3 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

research workflows;

• Chapter 4 – Grid interfacing framework, presents a new framework called IGF

(IEETA Grid Framework) created to tackle the problems discussed earlier. This chapter

presents the framework's architecture, as well as all the design choices and software

methodologies used;

• Chapter 5 – e-Science Portal for brain imaging research, presents the

integration of the previously discussed framework IGF, with the MAGI (Medical

Applications Grid Interfacing) system Web portal to provide a high-level interface to the

basic Grid services. This section presents the implemented architecture and the technology

choices used to implement the portal, as well as practical results obtained with the usage of

the portal;

• Chapter 6 – Conclusions and Future Work, presents the sum up of the most

important aspects during the development of this work, discusses the results obtained and

presents some of the lessons learned as well as possible future work within this area of

research.

David Pacheco 4

2. Background Concepts and State of
the Art

2.1. The emergence of e-Science and the Grid

The term e-Science (or eScience) appeared in 1999, and it is used to denote the systematic

development of research methods that exploit advanced computational resources. Such

methods enable researchers the access to computational resources held on widely-dispersed

computers as if they were on their own desktops. The resources can include data

collections, very large-scale computing resources, scientific instruments and high

performance visualization. Examples of the scientific areas include social simulations,

particle physics, earth sciences and bioinformatics.

Another important concept that can be considered as an evolution of e-Science is Science

2.0. The term Science 2.0 comes from the application of Web 2.0 technologies to improve

and facilitate scientific research tasks. The term Web 2.0 [10] is widely used to denote the

technologies, applications, and business models that underlie success stories such as

YouTube (http://www.youtube.com), Twitter (http://twitter.com), eBay (http://ebay.com),

and Flickr (http://www.flickr.com). Web 2.0 websites are typically developed using

technologies like AJAX [11], that gives the web pages an interaction model similar to

desktop applications. Through Web 2.0 it is possible to provide powerful services (search,

maps, product information, videos, etc) accessible through simple network protocols. They

also provide ways for the clients to access a powerful programming platform (the ensemble

of available services), a trend that proved to be revolutionary in terms of its impact on just

about every aspect of the computer industry. By a similar approach, the term Science 2.0

5 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

can denote new approaches to research, enabled by a quasi-ubiquitous Internet and

Internet-based protocols for discovering and accessing services [12]. Scientific

communities like astronomy, have already demonstrated the potential of such approaches,

via virtual observatories that provide online access to digital sky surveys and that have

enabled both new discoveries and new approaches to education [13].

What is new and empowering with Science 2.0 is not only the fact the data is online, but

the fact nowadays already exists enough uniformity in access protocols, and sufficient

server-side computing power, to support access to services not only by people but by

programs. One example of this kind of access of services by programs, is through the

usage of web services using BPEL (Business Process Execution Language) [14]. BPEL is

an executable language for specifying interactions with web services, allowing the

execution of processes in a uniform way, that import or export information exclusively

using web services.

Due to the advantages described above, we see an explosion in data access, as scientists

write programs that process large quantities of data automatically. Increasingly, scientists

can also publish useful programs as services. The services are published as service catalogs

that list the available services and encourage the resulting rapid expansion in the scope and

power of computational tools [12].

Although Science 2.0 provides great potentialities to the scientific community, it also raises

many challenging methodological, sociological, and technical issues, that must be carefully

analyzed before implementing a system that provides online scientific services to great

scientific, large-scale projects like LHC [5], or other peta-byte scale projects [15].

2.1.1. The Grid concept and its role in modern science

In the latest years we have witnessed big advances in modern science and because of these

advances, the methods and techniques used, have become more and more dependent on

computers. In various fields of science, like physics, biology, mathematics or astronomy,

the use of computationally heavy algorithms and/ or large datasets is unavoidable.

The term “The Grid” appeared in the mid 1990s to a proposed distributed computing

infrastructure for advanced science and engineering . This infrastructure main goal is to try

to solve the coordinated resource sharing and problem solving, in a dynamic, multi-

institutional virtual organization. The Grid technology appeared to complement the

existing solutions of distributed technologies, and not to compete with them [16].

With the emergence of Grid computing, many organizations related with these fields of

David Pacheco 6

Science 2.0: Sharing Scientific Data on the Grid

science have turned to the Grid, to improve computational throughput, execution times of

distributed algorithms and store and share data, using a secure environment provided by

the Grid itself. Grid computing turns its focus on large-scale resource sharing, innovative

applications, and, in some cases, high-performance orientation.

Although Grid computing provides many advantages in terms of computing, it inherits the

complexities and threats of massive distributed systems. The use of grids involves many

issues, like the protection of stored data, or the democratic use of available resources. Grid

computing turns its focus on large-scale resource sharing, innovative applications, and, in

some cases, high-performance orientation.

Grid can provide us with an incredible amount of resources. The access to these resources

by users has to be made in a highly controlled environment. Assuming we have a single

Grid were groups of users running experiments related with high energy physics,

bioinformatics or earth sciences, each group will have different software needs i.e. some

might need to run data intensive processes during a small period of time while others only

need access to large distributed sets of data.

The real and specific problem that underlies the Grid concept is coordinated resource

sharing and problem solving in dynamic, multi-institutional virtual organizations [16]. The

sharing that we are concerned with is not primarily file exchange but rather direct access to

computers, software, data, and other resources like scientific instruments or sensors, since

 7 David Pacheco

Figure 2.1: Virtual Organizations.

Science 2.0: Sharing Scientific Data on the Grid

these resources are required by a range of collaborative problem-solving and resource

brokering strategies emerging in industry, science, and engineering. This sharing must be,

necessarily, highly controlled, with resource providers and consumers defining clearly

what is shared, who is allowed to share, and the conditions under which sharing occurs. A

set of individuals and/or institutions defined by such sharing rules form a Virtual

Organization (VO) [16]. Good examples of VO's are: medical researchers working on the

cure or investigation of a specific disease; members of an industrial consortium bidding on

a new aircraft; a crisis management team and the databases and simulation systems that

they use to plan a response to an emergency situation; and members of a large,

international, multiyear high-energy physics collaboration. Each of these examples

represents an approach to computing and problem solving based on collaboration in

computation and data-rich environments (Figure 2.1).

As the examples show, VO's can vary in their purpose, scope, size, duration, structure,

community, and sociology, but all of them share a common set of concerns and

requirements:

• The need for highly flexible sharing relationships, ranging from client server to

peer-to-peer;

• Sophisticated and precise levels of control over how shared resources are used,

including fine-grained and multi-stakeholder access control, delegation, and

application of local and global policies;

• Sharing various resources, ranging from programs, files, and data to computers,

sensors, and networks;

• Diverse usage modes, ranging from single user to multi-user and from performance

sensitive to cost sensitive and hence embracing issues of quality of service,

scheduling, co-allocation, and accounting.

Regular distributed technologies do not address the concerns and requirements listed

above, because they do not accommodate the range of resource types or do not provide the

flexibility and control on sharing relationships needed to establish VO's. It is here that Grid

technologies enter the scene. In the last few years, research and development efforts within

the Grid community have produced protocols, services, and tools that address precisely the

challenges that arise when we seek to build scalable VO's.

David Pacheco 8

Science 2.0: Sharing Scientific Data on the Grid

2.1.2. The Grid architecture

Since the appearance of Grid computing in the mid 1990's, the evolutions in its technology

has been constant. In 1997 the GT (Globus Toolkit), an open source project was considered

as the standard for Grid computing. With the start of a increased interest in Grids, new

projects appeared and the Grid community started to search for standards to guarantee that

the interoperability of the existing and future projects. In 2000 several existing Grid

Forums merged to create the GGF (Global Grid Forum) that became a standards body.

Finally in 2002 the OGSA (Open Grid Services Architecture) appeared as the true

community standard for Grid infrastructures [17,18]. OGSA is a reference architecture in

the area of Grid computing and defines a set of standards for Grid infrastructures. Some of

the existing Grid infrastructures have architectures that implement or evolve OGSA, but

always maintaining a Service Oriented Architecture (SOA) [19].

Most of all solutions follow a basic three tier layered architecture (Figure 2.2). From the

architecture point of view, the Grid provides an abstraction layer to all the resources

available to the user that wants to access the services (run an application or store data)

(Figure 2.3). The group of services that compose this abstraction layer is called the Grid

middleware. From a user perspective the middleware provides a set of API (Application

Programming Interface) and CLI (Command Line Interface) that allow the access to

several services.

At user level (top layer), it is possible to access scheduling and brokering services that

allow the request and allocation of one or more resources. Other services like monitoring

and diagnostic help prevent problems related with security, failure and other problems that

might affect the infrastructure resources.

The services that compose the Grid middleware have very specific functions and interact

among each other to provide the capabilities of the infrastructure to the user. Some services

allow resource discovery and provide management mechanisms that are specific to the

resource type. For instance, a computational resource should provide the mechanisms to

start, monitor and retrieve results of an application that runs on the Grid, and should also

(optionally) provide advance reservation capabilities.

 9 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

Finally the bottom layer, consists of the resources that can vary from simple data to

software or scientific instruments that can be owned by different organizations. This layer

must be able to constrain the access to these resources to authorized users only. For

instance, in the case of a storage resource they need to provide, for example, mechanisms

for data movement and replication [17].

David Pacheco 10

Figure 2.2: Grid Architecture.

Figure 2.3: Detailed Grid architecture - In GridCafé website:
http://www.gridcafe.org/version1/gridatwork/architecture.html

Science 2.0: Sharing Scientific Data on the Grid

2.1.3. Using the Grid

The access to these resources has to be necessarily highly controlled, and to enable this, the

Grid VO concept (Virtual Organization) was created to identify a particular group of users

that have access to a specific set of resources [20]. This kind of controlled environment,

implies that each user must be authenticated. It is important that users authenticate only

once when they are accessing multiple remote resources. For this to be possible there must

exist methods that allow the users authentication to be delegated between services or

resources [17]. For a user to be allowed to access a Grid, he/she must obtain a security

certificate, from a proper certificate authority. Nowadays the majority of well known Grid

middlewares use X.509 certificates [21] to authenticate the users, and also all the resources

(machines, instrumentation, etc.). After obtaining the certificate, the user must be

associated with one or more VO's to create the Grid proxy, and be able to access the

available services.

Another important aspect of a distributed shared environment is the accounting. Besides

giving access to their resources, organizations must be able to measure the amount of

resources that were used by, for instance, a specific VO. This is quite difficult due to the

heterogeneity of the resources presented in a Grid infrastructure.

The applications that run in these type of infrastructures have special requirements. We can

divide them into five major classes: distributed supercomputing, high throughput, on-

demand, data intensive and collaborative [4].

The aspects presented above are the technical and theoretical details, necessary for the

usage of a Grid environment. In the real world, Grid nodes are scattered all around the

world and are normally used by developers, administrators and end-users like scientists.

The access to the major Grid infrastructures like EGEE or EELA isn't available to

everyone, and only the duly authorized persons can access these kinds of infrastructures. In

order to access these Grids, the new users must obtain the security certificate, generated by

the proper CA (Certification Authority). The users must also be associated with at least one

VO. The process to join one Grid infrastructure normally takes from a few days to one or

two weeks.

2.2. Grid enabling technologies

In this section we present the major middleware technologies being used nowadays, with

special emphasis on the data repositories technologies, as well as some known projects

 11 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

being developed on top of the gLite middleware to provide an easier Grid interface to both

developers and end-users.

2.2.1. Grid middleware

The Grid infrastructure offers a transparent access to computing power in addition to an

aggregation of distributed storage and heterogeneous resources. It is important that the

various members of a VO can transparently use all the resources available (data, sensors,

computing nodes, etc.) in collaborative terms. To achieve this interoperability, several

implementations of standards-based architecture commonly named as Grid middleware are

used. The Grid middleware manages and controls physical and logical resources that can

be geographically separated. Examples of Grid middleware are gLite, Globus Toolkit (GT)

and UNICORE (UNiform Interface to Computing REsources).

Grid projects rely on one or more grid middleware solutions from using only a specific

middleware like GT to creating their own middleware. As we can see in Table 2.1 that

presents the middleware stacks used by some of the largest Grid projects in the world, the

diversity is high.

Projects Middleware Stacks

EGEE gLite middleware uses components from several Grid projects
namely EGEE, EDG, EDT, INFN-GRID, GT and Condor

D-Grid GT, UNICORE, gLite, dCache, SRB, OGSA-DAI, GridSphere,
GAT, VOMS and Shibboleth

NAREGI NAREGI middleware, GT 4.0.1, GSI and WS-GRAM

Open Science Grid VDT is based in GT, Condor

UK e-Science 2001-2003 – GT, Condor, SRB
2003-Present – GT, OGSA-DAI, Web Services

TeraGrid GT: GRAM, MDS, GridFTP, TGCP, RLS and MyProxy

ChinaGrid CGSP (ChinaGrid Supporting Platform) based on GT

Table 2.1: Main middleware Stacks

Globus Toolkit

GT (Globus Toolkit) is an open source middleware that is being developed since the mid

1990s. It is presently being developed by a large community of organizations and

individual users named Globus Alliance. The GT 4 provides a set of OGSA capabilities

based on WSRF (Web Services Resource Framework). It is important to understand that

GT services can be used to solve simple distributed problems but they are generally used in

David Pacheco 12

Science 2.0: Sharing Scientific Data on the Grid

conjunction with other services for more complex situations [22].

Nowadays, GT services are being used in several Grid projects like EGEE, NAREGI or

Tera-Grid (see Table 2.1). These services address Grid specific concerns like execution

management, data access and transfer, replica management, monitoring and discovery,

credential and instrument management. Most of the services are implemented using Java

WS. Besides these services, there are also containers to host user-developed services

written in Python, C or Java, providing them with a common interface and mechanisms

that allow, for example, management and discovery functions. Client programs (written in

Python, C or Java) can use GT4 and user-developed services through a set of client

libraries [23].

To run a specific task the service used is the GRAM (Grid Resource Allocation Manager).

This service offers a WS interface that permits initiating, managing and monitoring the

execution of tasks. It also allows the user to select some parameters related with execution

such as the number and types of resources used and the data that is needed for the

execution or that is going to be retrieved after the execution ends. It is also used in other

scenarios like service deployment and management where it controls the execution of

services and resources consumption [23].

GT also provides data management services. These services can be used individually or in

conjunction depending of the requirements. The GT data management services are:

● GT GridFTP implementation – Optimized for reliable and secure, data transfer on

high bandwidth networks;

● RFT (Reliable File Transfer) service – Manages multiple GridFTP transfers;

● RLS (Replica Location Service) service – Decentralized service that manages the

information and location of replicated files;

● DRS (Data Replication Service) service – Uses GridFTP and RLS to manage data

replication.

● OGSA-DAI (OGSA–Data Access and Integration) tools – Provide data access and

integration using relational and XML (eXtensible Markup Language) data.

The monitor and discovery in GT4 can be done through standardized mechanisms, based in

the WSRF and WS-Notification implementations, built in every GT4 service. These

provide the access to resources properties, based in XML. The information is collected and

published by the aggregator service Index. Another service, named Trigger, collects

information in an event-based. All of this information can be viewed through the WebMDS

service [23].

 13 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

GT4 security components are also highly based on standards. Despite the fact that it

supports several security protocols (The protocols supported are: Message level with X.509

credentials - WS-Security-compliant implementation; or username/password (WS-I Base

Security Profile compliant) and Transport-level security with X.509 credentials), by default

it is used the Transport-Level based security with X.509 public key credentials because it is

faster. Besides the GT4 components described above, other services are used in

conjunction to support credential management (e.g. MyProxy, PERMIS (PrivilEge and

Role Management Infrastructure Standards validation) and VOMS (Virtual Organization

Management System)) [23].

UNICORE

UNICORE is another open-source Grid middleware technology that provides seamless,

secure and intuitive access to distributed Grid resources such as supercomputers or cluster

systems and information stored in databases. The development of UNICORE started in

1997 and was developed in two projects funded by the German ministry for education and

research. In various European-funded projects UNICORE has evolved to a full-grown and

well-tested Grid middleware technology, and is used in daily production at several

supercomputer centers world-wide. Beyond this production usage, UNICORE serves as a

solid basis in many European and international research projects [24].

UNICORE was fully written in Java and has an architecture based on web services

(WSRF) to establish the communication between its services, under SSL (Secure Sockets

Layer) secure connections. The architecture of UNICORE consists of three layers, namely

user, server, and target system tier. The user tier is represented by the UNICORE Client, a

Graphical User Interface (GUI) that exploits all services offered by the underlying server

tier. Abstract Job Objects (AJO), the implementation of UNICORE's job model concept,

are used to communicate with the server tier. An AJO contains platform and site

independent descriptions of computational and data related tasks, resource information,

and workflow specifications. The sending and receiving of AJOs and attached files within

UNICORE is managed by the UNICORE Protocol Layer (UPL) that is placed on top of the

Secure Socket Layer (SSL) protocol. The user of an UNICORE Grid does not need to

know how these protocols are implemented, as the UNICORE Client assists the user in

creating complex, interdependent jobs. For more experienced users a Command Line

Interface (CLI) is also available. Both, the UNICORE Client and CLI, provide the

functionalities to create and monitor jobs that can be executed on any UNICORE site

(Usite) without requiring any modifications, including data management functions like

import, export, or transfer of files from one target system to another. In addition, the

David Pacheco 14

Science 2.0: Sharing Scientific Data on the Grid

UNICORE plugin technology allows the creation of application-specific interfaces inside

the UNICORE client.

gLite

The gLite middleware has been introduced by the EGEE project as a result of contributions

from many other projects. The EGEE project, is the Europe's flagship Research

Infrastructure Grid project funded by the EC (European Commission), that aims at the

creation of a Grid infrastructure to support e-Science, and it is the world's largest Grid

infrastructure of its kind. This project includes members from various scientific areas, like

biomedicine, physics, computational chemistry and Life Sciences, and is supported by

more than 240 institutions from 48 countries world-wide with more than 68.000 CPU's.

Due to the large amount of people, data and resources involved in this project, one of its

main goals is the development of a Grid middleware that can support this kind of large

infrastructure with so many scientific fields [25].

The gLite middleware is based on a wide number of Grid projects like DataGrid, DataTag,

Globus Toolkit, GriPhyN, iVDGL (International Virtual Data Grid Laboratory), EGEE and

LCG (LHC Computing Grid). This middleware provides high level services that enable the

scheduling and analysis of computational jobs, data storage, replication and retrieval, and

information gathering about the infrastructure. All these service share a common security

framework.

The gLite services are usually grouped as access, security, information and monitoring, job

management and data services (Figure 2.4).

gLite Access and Security

The access to a Grid infrastructure using gLite is done through the UI (User Interface). The

UI, is usually a dedicated machine, installed with the set of CLIs and APIs that provide

access to services available in the Grid.

The security services provide the tools for authorization, authentication and auditing. These

services are responsible to control the access to Grid resources, and provide information

for analysis in case of security threats. Only authorized users can access the Grid resources,

and only a defined set of the resources is available to the user, normally bounded by the

VO.

Each user, Grid resource or service is identified by a digital X.509 certificate. These

certificates are composed by a public and private key. These certificates are used to

generate and sign a temporary certificate (called temporary Grid proxy), that in turn is used

 15 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

to authenticate the user, each time he/she wants to access Grid services or resources.

During a Grid operation there are several services that might be used, and that request the

user's authentication with the temporary proxy. To avoid the user to sign in every time the

proxy is requested, there have been implemented methods that allow the proxy to be

delegated between services. After the user submits its request he cannot cancel the proxy,

so usually user proxies have a short life time, normally 12 hours.

To manage the user's permissions inside each VO, gLite uses the VOMS service. This

service allows a more controlled access to resources. When a user creates a proxy, the

VOMS service is contacted and returns a signed AC (Attribute Certificate) that contains

the information relative to that user. Then an extension is added to the generated proxy file

where it is described the user's permissions inside each VO. The authentication in the

resource can be done through two mechanisms. The first compares the subject name

contained in the proxy with a local Grid-mapfile that maps users to local accounts. The

second method relies on the VOMS and the LCAS/LCMAPS mechanism and allows a

more detailed control of the user “rights”.

Due to the distributed nature of Grid infrastructures, the issuing of certificates besides

being a highly secure and controlled process, must be widely available to users world wide.

The International Grid Trust Federation (IGTF) is the international organization, composed

by the EuGridPMA (European Grid Policy Management Authority), APGridPMA (Asia

Pacific Grid Policy Management Authority) and TAGPMA (The Americas Grid Policy

David Pacheco 16

Figure 2.4: gLite Services

[
Type = "job";
JobType = "normal";
RetryCount = 3;
ShallowRetryCount = 10;
Requirements = other.GlueCEStateStatus == "Production";
StdOutput = "std.out";
StdError = "std.err";
Rank = other.GlueCEStateFreeCPUs;
Executable = "IGFInputData_davidp.sh";
InputSandbox = {"/usr/GridApps/sumarize","/tmp/IGFData.sh"};
OutputSandbox = {"std.out","std.err","v50_summarize.out"};
DataRequirements = {

 [
 DataCatalogType = "DLI";
 InputData = {"guid:b0040940-f6b5-4656-9f32f58fc7dbb8496",

 "guid:a2d36082-6ddf-4553-bade-a4b34c183619"};
]

};
DataAccessProtocol = {"gsiftp","rfio"};

]

Science 2.0: Sharing Scientific Data on the Grid

Management Authority) that aims at the establishment and maintenance of a global trust

relationship between its members. Inside each region we have several CA (Certification

authority), one for each country, that are responsible for providing the X.509 certificates in

the corresponding country. But before this can be done a procedure must be followed to

guarantee, for example, the identity of a user. This process is usually done by a RA

(Registration Authority) that are normally distributed throughout each country.

In gLite, the access to computer and data resources, is provided by two elements called CE

(Computing Element) and SE (Storage Element) respectively. The CE (Computing

Element) enables an abstraction of the computing resources available in a site. This enables

the use of different computing resources, from batch queues of clusters to simple

workstations, but providing a common interface for job management and information

gathering. It includes the GG (Grid Gate), LRMS (Local Resource Managing System) and

a collection of WN (Worker Node). The GG is responsible for accepting and dispatching

jobs to the WN through the LRMS, acting as an interface between the CE and the rest of

Grid services. The jobs are executed in the WNs of a site, that provide most of the CLI

command and API's also available in the UI.

gLite Storage

The Storage Element (SE) provides the virtualization of a storage resource (ranging from

simple disk servers to tape-based storage) much as the CE does for computational

resources. There are currently three types of storage elements: DPM (Disk Pool Manager),

dCache and CASTOR (CERN Advanced STORage manager). Every one of these SE's can

be accessed through a common interface – the SRM (Storage Resource Manager).

The protocol used for file transferring is the gsiftp (GridFTP). For file I/O operations the

protocols used are GSIDCAP (GSI dCache Access Protocol) and RFIO (Remote File

Input/Output protocol) depending of the type of SE used. RFIO has an insecure and a

secure version (gsirfio).

gLite Job Management

Job management is a fundamental part in Grid computing, because it allows job

monitoring, accounting, scheduling and execution according to the availability of

resources. gLite has several services that are responsible for job management like the

already discussed CE, the WMS and accounting services.

To control and monitor the job submission to the CE, the gLite has a meta-scheduler

named WMS (Workload Manager Service). Besides managing jobs execution, it also

monitors job state through the LB (Logging and Bookkeeping) service. The WMS is

composed by several components that are responsible for matchmaking resources and jobs,

 17 David Pacheco

[
Type = "job";
JobType = "normal";
RetryCount = 3;
ShallowRetryCount = 10;
Requirements = other.GlueCEStateStatus == "Production";
StdOutput = "std.out";
StdError = "std.err";
Rank = other.GlueCEStateFreeCPUs;
Executable = "IGFInputData_davidp.sh";
InputSandbox = {"/usr/GridApps/sumarize","/tmp/IGFData.sh"};
OutputSandbox = {"std.out","std.err","v50_summarize.out"};
DataRequirements = {

 [
 DataCatalogType = "DLI";
 InputData = {"guid:b0040940-f6b5-4656-9f32f58fc7dbb8496",

 "guid:a2d36082-6ddf-4553-bade-a4b34c183619"};
]

};
DataAccessProtocol = {"gsiftp","rfio"};

]

Science 2.0: Sharing Scientific Data on the Grid

submit, cancel, monitor and keep a record of the state of each job (LB). The access to the

WMS can be made through the WMProxy service that together with the LB provide a WS

based interface with similar functionalities, enabling the user to run job execution related

commands (e.g. job submission, cancellation or monitoring). Another important

component of the WMS is the DAGMan (DAG Manager), a meta-scheduler responsible

for managing groups of jobs with special dependencies among each other. The WMS is

also responsible for the proxy renewal using the MyProxy service. The node where the

WMS runs is called the RB (Resource Broker).

gLite JDL

Before submitting a job, a user has to create a file that describes among other things the

type of job, rank, file to execute, input data, output data and requirements. These

parameters are described using the JDL (Job Description Language) [26]. One of the

parameters that can be defined is the Input and Output Sandbox that correspond to the

location of the files that will be transferred to the WN where the job will be executed and

the files that will be retrieved from the WN. The WMS is responsible for the transfer of

these files that can be local or remote. Other parameters are related with the target resource

to be chosen upon the job submission, like the Requirements and Rank. The first allows a

user to define the requirements a resource must fulfill like the LRMS type or software

installed. Rank allows the user to define rules so that the WMS is able to decide among the

David Pacheco 18

Figure 2.5: JDL file example.

[
Type = "job";
JobType = "normal";
RetryCount = 3;
ShallowRetryCount = 10;
Requirements = other.GlueCEStateStatus == "Production";
StdOutput = "std.out";
StdError = "std.err";
Rank = other.GlueCEStateFreeCPUs;
Executable = "IGFInputData_davidp.sh";
InputSandbox = {"/usr/GridApps/sumarize","/tmp/IGFData.sh"};
OutputSandbox = {"std.out","std.err","v50_summarize.out"};
DataRequirements = {

 [
 DataCatalogType = "DLI";
 InputData = {"guid:b0040940-f6b5-4656-9f32f58fc7dbb8496",

 "guid:a2d36082-6ddf-4553-bade-a4b34c183619"};
]

};
DataAccessProtocol = {"gsiftp","rfio"};

]

Science 2.0: Sharing Scientific Data on the Grid

resources that satisfy the Requirements. An example could simply be the number of CPU's

available for the submitted job [27].

The JDL also allows to define special types of jobs with specific attributes [26]. The

different types available are:

● Job – Simple job that can be one of the following subtypes:

– Normal – Simple batch job;

– Interactive – Simple job with its standard streams forwarded to submitting client;

– MPICH – Parallel application that uses MPICH-P4 implementation;

– Partitionable – Job that can be divided into smaller independent jobs ;

– Checkpointable – This type of job allows the execution of the program to be

paused by defining pause flags in its code, and if necessary resume the job

on those defined positions without losing the execution that was performed

before the flags.

– Parametric – Job that has parametric attributes that can be defined with several

values. A job instance is created for each value of each attribute.

● DAG – Job with dependencies among each other, described by a DAG (Directed

Acyclic Graph);

● Collection – Group of independent jobs.

A new approach to the job description is the JSDL (Job Submission Description Language)

that uses an XML-based language to describe jobs. JSDL was proposed by the OGF were it

is being developed by the JSDL-WG (JSDL Working Group). Currently the JSDL is

already supported by the gLite WMS.

 19 David Pacheco

Figure 2.6: States of a normal (on the left) and DAG (on the right) job during execution.

Science 2.0: Sharing Scientific Data on the Grid

A user can get information about the job state through the LB service (see Table 2.2). The

transition states that a job can go through during its execution are shown in Figure 2.6.

State Description

Submitted User submits a job in the UI

Waiting Job is accessed by the WMS and is waiting for resource
allocation

Ready A resource as been allocated for the job

Scheduled LRMS has accepted the job and is in queue

Running Job is sent to the WN as is being executed

Done The job has finished its execution and its output is available

Cleared The output has been transferred to the user and the job has
been freed

Aborted Job was aborted by the system

Canceled User canceled the job

Unknown Status cannot be determined

Purged The job has been deleted from the LB server

Table 2.2: Job States

gLite Information System and Monitoring

All the information regarding Grid resources and their status is managed by the IS

(Information System). gLite has two different IS where much of the data published

conforms with the GLUE (Grid Laboratory Uniform Environment) schema, a common

information model for resource discovery and monitoring [28]. The two information

models being used are R-GMA (Relational GMA) and MDS (Monitoring and Discovery

System). The first is used to publish accounting, monitoring and user related information

while the MDS is used for resource discovery and status.

The MDS uses the OpenLDAP (Open source implementation of LDAP) information model

to implement the GLUE schema. It does not allow secure access. MDS architecture is

based on Information Providers installed in each site that gather static and dynamic

information relative to that site that is them published by the GRIS (Grid Resource

Information Server). The GRIS is an LDAP (Lightweight Directory Access Protocol)

server that is normally installed locally in the resource. Then in each site a GIIS (Grid

Index Information Server) collects the information published by the existing GRIS and

republishes this information to a higher level GIIS. The information gathered by the GIIS

David Pacheco 20

Science 2.0: Sharing Scientific Data on the Grid

is stored in a BDII (Berkeley Database Information Index).

The R-GMA is based on the GMA (Grid Monitoring Architecture) initially proposed by the

GGF. R-GMA architecture is based in three main components:

● Producers are responsible for gathering information and informing the Registry

about the information they are publishing and how it is accessed;

● Consumers contact the Registry to discover what Producers publish the target data

and how it can be retrieved. Them they contact directly the Producers for the target

data;

● Registry contains the information about the data and structure that each Producer

has.

The information presented by the R-GMA is in the form of virtual database of virtual

tables which structure is defined by the Schema. The R-GMA system is defined by the

Registry and Schema.

gLite has two services, APEL (Accounting Processor for Event Logs) and DGAS

(Distributed Grid Accounting System), that are responsible for accounting.

2.2.2. Robust storage on the Grid

Since the main focus of this work is on storage and sharing of medical images on the Grid,

we decided to explore in more depth middleware components related with storage and

metadata.

In order to make efficient use of the large amount of available disk space, spread across all

the resources in a Grid infrastructure, the middleware technologies must have robust

systems to deal with all the resources and the large amounts of data and metadata that need

to be stored. In this chapter we will present some of the most important middleware “sub-

systems” that deal with storage on the Grid.

glite DMS

The Data Management System (DMS) is an essential part of the Grid middleware for

enabling users and applications to handle their data without having to worry about the

complex details of the computing environment, and enabling them to look at the distributed

data as it was a single pool of files. The main capabilities provided by the DMS are

locating, accessing and moving files stored in the SEs.

 21 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

From the functional point of view DMS offers two fundamental macro features: File

Management and Metadata Management. The first one involves the typical file system

functionalities (save file, copy file, read file, list files), placing functionalities (replicate

file, transfer file) and security services (ACL for files, users roles). The second one

involves database schema virtualization (metadata handling, intelligent search), file

cataloging and file searching.

From the users perspective, the DMS provides all the usual data operations:

uploading/downloading files, creating file/directories, renaming file/directories, deleting

file/directories, moving file, listing directories, creating symbolic links. Figure 2.7 shows

the DMS subsystems and their interrelations. The Data Storage is the Grid service that

takes care of data manipulation in order to make users and/or applications to access and

manage their own files. The Data Movement service enables both the Grid services

themselves and/or any clients (users and/or applications) to move files from/to a site, (a

site is the smallest, complete and auto consistent hardware/software resource organization

within a Grid infrastructure, then, think of Grid as a union of one or more sites). The Data

Catalogs service has in charge to keep trace about files location into the distributed file

system and store any kind of information about them.

In terms of file identification, Grid files can be identified by a GUID (Grid Unique

Identifier), LFN (Logical File Name), SURL (Storage URL) or TURL (Transport URL).

The GUID is unique identifier, based on the UUID (Universally Unique Identifier)

standard, that identifies every single file. Every file stored on the Grid (registered in the

David Pacheco 22

Figure 2.7: DMS Services architecture view.

Science 2.0: Sharing Scientific Data on the Grid

file catalog, and stored in a SE) has a corresponding GUID (e.g. guid:81adf875-ccd7-44fa-

89b5-0fef8ae9cd34).

LFN provides files with a human readable name similar to the ones found in computers file

systems (e.g. lfn:///grid/dteam/Data/ex.nii.gz).

SURL or PFN (Physical File Name) is used to identify files or replicas that are in a specific

SE. The name has a prefix (srm or sfn) that identifies the SE with or without an SRM

interface.

In the case of SEs that do not have an SRM-based interface, the SURL has a specific

structure that identifies the host and the physical location of the file (e.g.

sfn://xst.ieeta.pt/data/dteam /grid/dteam/Data/ex.nii.gz).

On the other side, in SRM-based SE’s the SURL can or cannot include the files physical

location. Normally, an SRM-based SE uses virtual file systems to map files (e.g.

srm://xst.ieeta.pt/dpm /ieeta.pt/home/dteam/grid/dteam/Data/ex.nii.gz).

TURLs provide the necessary information for accessing files in SE like hostname, path,

protocol and port. Due to the fact that TURLs are obtained dynamically, users should be

aware that they may change over time. In an SE there can be more than a TURL for each

file, because the SE can have multiple access protocols and the SE might have several

copies of each file for load-balancing.

The data management can be made through the use of CLIs or APIs available in the WN

and UI.

LFC (LCG File Catalogue) is the file catalogue adopted by gLite. This service provides

several file related functions like mapping between the GUID, SURL and LFN (Figure

2.8), system (e.g. file size and checksum) and user metadata and replicas information. It

also allows a user to attach an ACL to a file.

Although LFC provides some basic metadata capabilities, there is a need for more complex

 23 David Pacheco

Figure 2.8: Relation between the LFN, SURL and GUID

Science 2.0: Sharing Scientific Data on the Grid

metadata. To overcome this problem gLite chose as its official metadata catalogue, the

AMGA (ARDA Metadata Catalogue) [29].

The Metadata support allows the user to associate descriptive attributes with files

(metadata schema), publish these attributes on catalogs and finally make catalogs available

to end users and client application. The user is able to define a schema as a set of attributes

associated with an entry. An attribute is composed by a name, a data type and the

respective value. An entry is an identifier for the instance of the metadata schema, meaning

the values of its attributes. Finally, a metadata collection can be defined as a set of entries.

For instance if you have a collection called Images you can define a schema containing the

attributes width and height of type float. Each of the entries stored in the collection

(typically one entry corresponds to one file stored on the Grid), must have the attributes

width and height defined with the respective values. This way the files stored on the Grid

can have custom metadata associated.

OGSA-DAI

The OGSA-DAI project began in 2002. OGSA-DAI main goal is to develop an effective

solution to the data management challenge and in particular to data access and integration

problems. This middleware solution allows resources, such as relational or XML databases

to be accessed via the Grid [30].

OGSA-DAI provides a simple way of wrapping data resources, such as databases and files,

with a web service interface which consume data centric workflows. These workflows

encapsulate multiple client-services interaction into a single one, move computation close

to the data and reduce the amount of data movement necessary to achieve a given end.

The out-of-the-box base functionality provided by OGSA-DAI enables powerful access

and integration scenarios to be constructed. The OGSA-DAI architecture is modular,

customizable and extensible allowing OGSA-DAI to meet the data access and integration

requirements of other middleware projects.

2.2.3. Grid community and standards

Due to the large heterogeneity of resources, people and software involved in the large Grid

infrastructures, there is the need for the definition of standards and the creation of

communities for a better interoperability of all the resources involved in this kind of

massive infrastructures.

David Pacheco 24

Science 2.0: Sharing Scientific Data on the Grid

In 1998 the United States, European and Asia-Pacific Grid Forums were established by the

Grid community. In the year 2000 they merged to create the GGF that became a standards

body. The main goal of this organization was to create new standards to guarantee the

interoperability of the existing and future Grid projects [31]. A few years later, in 2002, the

Open Grid Services Architecture (OGSA) finally appeared as the true community standard

for Grid infrastructures [17,18]. In 2004, due to the growing potential and importance of

Grid technology, several industry leaders decided to form the EGA (Enterprise Grid

Alliance), a consortium created to accelerate the development of enterprise Grid solutions

and deployment of Grid computing [32]. In 2006 the OGF (Open Grid Forum) was formed

from the merge between the GGF and the EGA in an attempt to focus the development of

standards.

In this context it is worth mentioning that one of the major accomplishments of the OGF

was the OGSA. OGSA consists of a service-oriented architecture built on top of WS (Web

Service) standards, and addresses some aspects that are relevant to Grid services such as

service creation, life-time and several others. Initially it was supported by a core set of

interfaces called OGSI (Open Grid Service interface) [33], that was later abandoned to be

replaced by the WSRF (WS-Resource Framework) [34]. The WSRF is a set of WS

specifications being developed by the OASIS (Organization for the Advancement of

Structured Information Standards) [35] that describes how to implement OGSA capabilities

using WS [19]. The GT 4 middleware [23] is an example of a software providing some

OGSA capabilities based on WSRF.

2.2.4. Grid-enabled portals development

In this section we include a brief introduction to projects directly related to this work, that

involve the development of technologies or frameworks for the construction of Grid-

enabled web portals.

P-GRADE

The P-GRADE project [8] main goal, is to provide a high-level graphical environment to

develop parallel applications transparently both for parallel systems and the Grid, so that

the users do not need to learn programming methodologies for different parallel and

distributed platforms. It supports the interactive execution of parallel programs as well as

the creation of a Condor, Condor-G or Globus job to execute parallel programs in the Grid.

With P-GRADE, the user can generate either PVM (Parallel Virtual Machine) or MPI code

according to the underlying Grid where the parallel application should be executed. P-

GRADE supports workflow definition and coordinated multi-job execution for the Grid.

 25 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

Such workflow management can provide parallel execution at both inter-job and intra-job

level. Automatic checkpoint mechanism for parallel programs supports the migration of

parallel jobs inside the workflow providing a fault-tolerant workflow execution

mechanism.

Vine toolkit

The Vine toolkit [36] is a modular, extensible Java library that offers developers an easy-

to-use, high-level Application Programmer Interface (API) for Grid-enabling applications.

Vine can be deployed for use in desktop, Java Web Start, Java Servlet 2.3 and Java Portlet

1.0 environments with ease. One of Vine's main features and advantages is the support for

a wide array of middleware (like gLite, GT 4 or UNICORE) and third-party services,

abstracting the user from the problems and complexities of typical Grid middleware

technologies.

2.2.5. Enabling technologies for Grid repositories

In every Grid infrastructure, a huge amount of distributed storage resources is available to

store the user's data. However, if you don't associate specific metadata with the stored data,

finding a specific file can become very difficult. In this section we are going to present

some of the most important technologies used nowadays, when dealing with Grid storage,

and more specifically using the gLite middleware.

GSAF

Developed by the Consorzio COMETA, GSAF is an object oriented programming

framework written in Java, built with the purpose of providing a uniform programming

interface for Data Grid oriented applications, working as a wrapper for the Grid data

management system. GSAF was built to work on top of the gLite middleware, used by the

EGEE Grid.

The Grid architecture respects the principles of SOA (Service Oriented Architecture),

therefore the Grid Data Management subsystem is built by several Data Services (File

Catalog, Metadata catalog, Disk Pool Name Server, GridFTP, etc), that are independent

from each other, and can work in a stand alone mode. This diversification of services

produces a consequent API's fragmentation, makes life much harder for the software

engineers that have to develop Grid storage applications. This fragmentation also requires

that engineers and developers have a solid skill on Grid programming and a great technical

knowledge about the services details. To counter this fact, GSAF main philosophy, is to

David Pacheco 26

Science 2.0: Sharing Scientific Data on the Grid

mask the complexity and the fragmentation of the middleware, hiding all APIs details and

troubles, and exposing a unified interface closer to the developer's mind rather than the

Grid programming details.

During the development of the project, several problems were encountered, related with

the middleware software (gLite), because this is still a research project and it is not closed

neither stable yet. The lack of available low level API's and the existing bugs in the gLite

was also a problem in the development of this project [37].

gLibrary: Digital Asset Management System for the Grid

The gLibrary project was developed by a team at the INFN (Italy’s National Institute for

Nuclear Physics), with the purpose to create an extensible, robust, secure and easy to-use

system, to handle digital assets widespread across a distributed Grid infrastructure [38].

gLibrary was developed on top of the Grid services of EGEE gLite middleware [39].

The system offers an intuitive web interface to browse the available entries, and search for

the stored assets. According to the proposed architecture, the assets are hierarchically

organized by types. Upon the registration /upload process the assets are associated with a

proper type. The asset can be registered with a type that inherits from another,

automatically acquiring the attributes of the parent type. Each type has its own set of

attributes, and can be defined according to the users needs. The type's attributes can also be

used to create search filters, so that the user can find the files easier. Once the asset has

been found, the user can retrieve the file replica from one of the Grid Storage Elements

into his/her own desktop.

To implement the proposed architecture, the AMGA Metadata Catalog takes a central role,

being used as the repository for all asset's attributes, types and categories hierarchies,

available libraries and physical file locations. It also uses the AMGA catalog authorization

system, to provide the security for the stored information, ensuring that only the authorized

users can access it. User requests, like browsing and searching, are transformed into SQL-

like queries, and sent to the AMGA server, that searches its back-end database for the

corresponding data. Benchmark studies on performance, demonstrated that AMGA's

overhead is very low [40], and this guarantees short response times by the gLibrary

interface.

In conclusion, gLibrary is a system that can be used for many different purposes. Thanks to

its modular architecture, different communities can easily adopt this tool to build their own

digital libraries defining types and categories according to their needs [38].

 27 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

2.3. Life sciences as an application domain

Since this work was proposed by the SIAS group at IEETA, with the purpose to explore the

possibility to extend the scope of the BING project [7] to use major Grid infrastructures,

we think it is important to make a brief introduction to the current medical imaging state of

the art, as well as the real application of Grid infrastructures to support e-Health projects

fulfilling the so called HealthGrid concept.

2.3.1. Medical imaging overview

Medical imaging has taken an essential role in healthcare [41-43]. It is mainly used

nowadays, to support clinical diagnosis namely by helping the assessment and progression

of a disease in response to a specific treatment. Several medical imaging techniques are

wide spread like ultrasound, radiography, CT (Computed Tomography), MRI (Magnetic

Resonance Imaging) and nuclear medicine images [44]. Despite the proved value of

medical imaging in the clinical environment, to explore its full potential implies some

expertise and depends highly on medical education and training of clinical experts. [45].

Different imaging modalities are used in different types of analysis. For instance some are

more suited for soft tissues and others offer a better trade off between spatial and time

resolution. In some cases data from different types of imaging are being combined to allow

a better interpretation of the data. This approach called multimodal imaging is used for

example with High resolution Electroencephalogram (HR-EEG or EEG), Magnetic

Resonance Imaging (MRI and fMRI), Spectroscopy (MRS) or Single Photon/Positron

Emitting Tomography (SPECT/PET). In case of the EEG provides a very good temporal

resolution while the MRI provides the high level spacial resolution. This is specially

important in brain studies [46].

David Pacheco 28

Figure 2.9: Image produced by a MRI brain scan.

Science 2.0: Sharing Scientific Data on the Grid

A good example is the support to epilepsy surgery [47] where is extremely important for a

surgeon to be able to identify critical areas of the brain (e.g. associated with movement,

language and epilepsy) in order to remove epilepsy specific areas of the brain without

interfering with other healthy brain functions. In this process a multimodal approach is the

only solution relying in several non-invasive imaging techniques such magnetic resonance

imaging (MRI) (Figure 2.9) to characterize the brain morphology and functional mapping

supported in functional MRI that allows the establishment of relations between specific

images and particular functions of the Human body [48].

2.3.2. HealthGrid: at the intersection of Grid and e-Health

Grid computing is being used in the scientific community as a key technology to solve

large scientific challenges due to its ability to bring together distributed capabilities (large

storage capability, computing resources, scientific instruments) and use them in an

integrated virtual environment (e.g: [49]).

The emergence of Grids enabled the inter-disciplinary research in biomedical areas such as

medical informatics, bioinformatics or system biology, creating new opportunities for

research. An infrastructure that allows sharing heterogeneous and disperse medical relevant

data, that can be used for processing and can be accessed by actors of healthcare in a

secure manner, according to their authorization, is called a HealthGrid [50,51]. To support

the development of HealthGrids it was created the HealthGrid initiative (http://

community.healthgrid.org/).

The application of Grid computing technologies in life sciences can be generically referred

as HealthGrids [52]. The HealthGrid vision stands for the use of Grid infrastructures for

Medical Research, Healthcare and Life Sciences, which implies the availability of Grid

services and the definition and adoption of international standards and interoperability

mechanisms [50]. The HealthGrid concept defines a Grid that is able to manage, relate and

process information from multiple levels (molecules, organ, tissue, individual,

populations), as explored in the HealthGrid white paper [52].

In life sciences the Grid technology is specially important in addressing biological data

complexity and in allowing the interoperability between the large number of databases that

provide specific representations of biological data like Embrace [53]. In molecular biology,

Grid also plays an important part in comparative data analysis, mandatory in most of

molecular biology data analysis workflows. Also important, is the constant need for

molecular biologists to access databases to retrieve information related with their research.

Because of this it is important to make existing databases, accessible to biologists and

 29 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

provide the resources to analyse them.

Another area of research closely related with healthcare is medical research in imagiology.

Since imagiology plays a key role in diagnosis, therapy planning and treatment follow-ups,

the amount of data produced in hospitals is increasing every year [54]. Moreover in some

countries this data must be accessible to patients and so hospitals are forced to keep

archives for 7 to 20 years. In Europe it is estimated that the volume of data produced in

hospitals is comparable with the one expected for CERN (European Organization for

Nuclear Research) LHC (Large Hadron Collider) which is in the order of Peta Bytes per

year [55,1].The amount of medical data available, if accessible, could improve

epidemiology and pathology studies.

Grid technology appears as the ideal candidate to create medical federated storage and

provide the resources necessary to analyse this data [52], because it provides the basic

information platform for a reliable and dependable solution over distributed data sources

(e.g. [56,57]), maintaining simultaneously the existing domains (either organizational,

geographical), and access to processing intensive methods.

Nevertheless the use of Grid technologies in the creation of medical federated storage has

special requirements. There are some major issues that need to be addressed before the

HealthGrid vision can be fulfilled [58]:

• Grid middleware: The current middleware solutions, like gLite or UNICORE, are

all still a “work in progress”, and therefore can be problematic to run healthcare

applications on top of these platforms;

• Deployment: There exist several limitations to deploy grid nodes in healthcare

facilities like hospitals. These limitations are the security requirements, the lack of

friendly interfaces, the interoperability between Grid services and existing data

management solutions already adopted and the difficulty in installing the grid

nodes;

• Standards: Before the data can be shared there must be defined international

standards and mechanisms that allow for example the anonymization and

pseudonymization of the information;

• Management: The concept of VO is not flexible enough in managing healthgrids.

It should be possible, for example, to define VO of VOs.

Regarding the specific work of this dissertation, it can be related with the HealthGrid

concept, because it shares common goals with it. Our work is focused on the development

David Pacheco 30

Science 2.0: Sharing Scientific Data on the Grid

of a Grid enabled web portal that will provide services to medical researchers, contributing

to the improvement of medical research methods. This work, was also developed having in

mind the possible integration with the GERES-med [49] and BING [7] projects being

currently developed by the SIAS group. The goal is to provide a Grid “plug-in” for these

projects, allowing the respective users to access the Grid seamlessly. Both projects propose

the creation of medical repositories, with support for medical applications, ranging from

simple to more complex workflows. The developed work could be a great asset, not only

for the BING and GERES-med projects themselves, but also to other health specific Grids.

2.3.3. Selected HealthGrid repositories projects

Although there are special requirements in the implementation of healthgrids (see section

2.3.2.), specially the ones that deal with medical data, there exist several projects that are

developing solutions to some of these problems. Examples are caBIG (cancer Biomedical

Informatics Grid), BIRN (Biomedical Informatics Research Network), the SARSGrid

(SARS Grid), and the Medical Data Manager project.

caBIG [3] is an initiative that wants to link researchers, physicians and patients in the

cancer community to foster the research in the medical research area. This way they are

able to share research results, information and foster the collaboration between researchers.

The BIRN [56], is an infrastructure that supports neuroimaging research. Its is divided in

three testbeds that research specific areas in neuroimaging:

• Function BIRN: Develop tools and methods that solve problems associated with

multi- site functional MRI;

• Morphometry BIRN: Analyze data from a large group of subjects, suffering from

memory dysfunction or depression, provenient from different neuroimaging sites

and study structural differences;

• Mouse BIRN: Use mice to study neurodegeneratives diseases. Analyze multi-scale

structural, functional, genomic and gene expression data acquired from mice’s

brain.

The information technology infrastructure that enables the research in BIRN is managed

and supported by the BIRN-CC (BIRN Coordinating Center).

The SARSGrid [59] is an AccessGrid based collaborative platform that was used, in 2003,

to share and discuss SARS (Severe Acute Respiratory Syndrome) patient’s medical data

between healthcare professionals to diagnose, treat and monitor home and hospital

 31 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

quarantined SARS patients in Taiwan.

The Medical Data Manager project [60] was developed with the purpose to create a secure

medical data management system that takes advantage of the advanced gLite data

management services, developed in the context of the EGEE project [9], to fulfill the

demanding needs of the medical community. The main goals are, to ensure medical data

protection through strict data access control, anonymization and encryption, and to provide

a grid Storage Resource Manager (SRM) interface to standard medical DICOM servers

thereby enabling transparent access to medical data without interfering with medical

practice. The multi-level access control provides the flexibility needed for implementing

complex medical use-cases. Data anonymization prevents the exposure of most sensitive

data to unauthorized users, and data encryption guarantees data protection even when they

are stored at remote sites.

David Pacheco 32

3. Supporting brain imaging research
workflows

Brain Imaging (BI) is essential in the neuroscience research, which can be considered to be

in the frontier between neurology, engineering and physics. Multimodal medical imaging

techniques, such as Magnetic Resonance Imaging (MRI and fMRI) and Spectroscopy

(MRS), Single Photon/Positron Emitting Tomography (SPECT/PET) among others, are

emerging medical research tools that can provide valuable information for characterizing

healthy and abnormal brain function namely in brain diseases such as epilepsy [61,62] or

neurodegenerative diseases [63,64]. The problem is that using these multimodal medical

imaging techniques, also generates large amounts of data that need to be processed,

analyzed and stored. From the researcher perspective, the sharing of the generated data can

also be an extra requirement, so it can be processed and later accessed by the medical and

research community members.

The multimodal analysis consists on combining information from several sources within a

common referential, establishing spatial and temporal reasoning, that contextualized by a

clinical and/or clinical protocol, can guide a diagnosis or a scientific conclusion. Good

examples are voxel based morphometry where structural comparison enables the detection

of changes in brain morphology along the time [65] or the fMRI based analysis of simple

paradigms, like finger tapping that can be used to establish functional pathways associated

to healthy condition [66,67] or associated to specific pathologies [68].

Another fact that increases the complexity of the BI scenario is that, typically

computationally intensive algorithms are used to process the generated data. Usually this is

according to the analysis of workflows that are both data and/or research objective

33 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

dependent. Therefore two main issues arise. The first is the computational complexity of

the methods used and the second is the usage of the methods that are conditioned by

existing data/processing dependencies.

Regarding the intensive computational complexity, the range of processing methods used

in these steps is wide and may present simple algorithms (e.g. thresholding the values of a

given image) to more elaborated filtering [69], registration solutions or more complex and

research oriented methods [70,71]. For that reason, it is only possible to determine if this

issue is relevant or not taking into consideration the specificities of the application taking

into consideration the size of datasets (from KB to GB), or the usage (applied once or to

thousands of images in a given protocol) among several other factors.

The data/processing dependencies are typically associated with both processing and

analysis protocols and related workflows. In neuroimaging, for instance, it is common to

use a workflow based approach to the analysis supported in a scripting and/or

programming support (including pre-processing stages) as it is clearly illustrated by the

widely used SPM (Spatial Parametric Mapping) [72] and FSL (FMRIB Software Library)

[73], that combines native applications and TCL based scripting packages. These

packages, given the computational complexity of the methods, already consider some

optimized methods which resource to Grid environments, namely to Sun Grid engine [74].

3.1. The case for Grid enabled brain research

Grid infrastructures appear as a good candidate to support a brain imaging scenario, and

are already being successfully used in medical image processing to handle the demanding

requirements of large images storage and communication, and to enable complex analysis

workflows [52,1]. In order to make the use of the Grid environment, as a useful platform,

there are two main aspects that must be considered before implementing a Grid enabled

brain imaging research portal. These aspects are the storage and computing services that

must be provided by the system.

A Grid based solution should have special requirements in relation to data security, due to

the delicate nature of the medical images. The data should be stored in a secured

environment, and only accessible to the brain researchers community members. It should

also ensure the availability of processing applications, to run simple or complex analysis

workflows. Providing a basic brain imaging research oriented semantic, and also be able to

accommodate other possible research scenarios, is one of the main goals of this project.

Such solution, should be accessible through a friendly user interface, like a web portal

following the Science 2.0 fundamentals.

David Pacheco 34

Science 2.0: Sharing Scientific Data on the Grid

The Portuguese Brain Imaging Network (BING) [7] is an example of work being

developed to provide such an environment to support the brain imaging research

community, using the Grid as the computational environment to support storage and

processing. The main goals of BING are:

• Develop an IT infrastructure to support collaborative use and sharing of

neuroimaging data collections, analysis and modeling software and visualization

tools.

• Provide a “neuroscientist-friendly” web portal to enable secure access to the

available tools.

• Encourage scientific collaborations among participants from different research

institutions and different areas of science that typically work independently,

providing a virtual environment that promotes pluri-disciplinary studies on

neuroimaging issues.

• Establish standards for multi-vendor biomedical data exchange between

participants and enable equipment and procedures quality control.

There also some international efforts in terms of brain imaging Grid research. The

NeuroLOG project is an example of work being done to enable neuroscientists to use the

Grid potentialities, for brain imaging research, adopting the HealthGrid vision. This project

aims to design a middleware, targeting a focused application area and adopting a user-

centric perspective, to meet the neuroscientists demands [75]. Other example is the

neuGRID project. The neuGRID project aims to create a user-friendly Grid-based research

e-Infrastructure enabling the European neuroscience community to carry out research in

the area of degenerative brain diseases. In neuGRID, the collection/archiving of large

amounts of imaging data will be paired with computationally intensive data analyses [76].

And finally, another example is the NeuroGrid project. The Neurogrid aims at using the

experience of other UK e-Science projects to assemble a Grid infrastructure, to conduct

collaborative neuroscience research, and apply this to three exemplar areas: stroke,

dementia and psychosis [77].

3.2. Requirements for Grid-enabled virtual labs

In the previous sections, some requirements were clearly identified. In terms of storage, the

brain researcher should be able to store the images and associated metadata with the

images, so they can be queried and accessed later by the researcher, and they should be

stored in a secured environment, due to privacy issues associated with medical images. It

 35 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

must be considered the community or VO concept as a basis for data access policy. The

data should only be available to that community (or to other communities, but only if

allowed). The Grids fulfill this requirement through the usage of VO's defining virtual

boundaries throughout its resources.

The security in the usage of medical images is also paramount, due to anonymity issues

that must be considered, so a solution must be used to provide the anonymization or

pseudo-anonymization of the stored data. Another important requirement to consider, is the

necessity for the brain image researcher to organize his data in studies. This must be

considered in the use-cases and the domain model of the system, as a way to organize the

stored information.

Regarding the computing requirements, the user should be able to run computational

analysis using the stored data as input. The Grid, through its middleware, provides the

necessary tools to run custom applications that can range from simple application to more

advanced scenarios like workflows. For instance, the Multi voxel fMRI analysis technique

[71], used to calculate the association measure between two fMRI series, involves a

sequence of processing steps (workflow). Normally the processing sub-steps are inter-

dependent, and the resulting files from one step are the input to the following step(s). The

main Grid middlewares, like gLite [39], GT Toolkit [23] or UNICORE [24], provide the

necessary tools to run workflows, and thus transforming the Grid into an attractive

platform to develop this kind of research platform. Another important issue to consider is

the fact that these medical analysis algorithms are very heavy in terms of computation.

Preferably, the system should have a great amount of computational resources, so the tasks

can be divided, and therefore greatly diminishing the execution time of the application.

Once again, the Grid appears as the ideal candidate.

Given this context, our objective was to explore the use of a Grid based solution for a brain

imaging scenario, that could support the BING project integration with the Grid. The

following chapters will present the work developed to support the brain imaging scenario.

Chapter 4., presents the IGF Grid framework which is a semantic independent framework

developed to support the MAGI web portal presented, in chapter 5.

David Pacheco 36

4. Grid interfacing framework1

This chapter will present in detail the architecture and implementation of the IGF (IEETA

Grid Framework), providing wrapping services to the Grid to support the e-Science portal

(Figure 4.1). In this chapter all the diagrams presented will use the UML notation [78].

4.1. Why an interfacing layer

Our main motivation was to provide a Grid framework that provides an easy access to the

Grid services by non-expert users but, to achieve such result, we needed to create an

effective Grid enabled platform to make a bridge between our specific services and the

Grid - the IGF (IEETA Grid Framework).

The IGF was developed with the purpose to create a Grid access layer independent from

any of the semantic aspects of the portal, so it could be easily extendable, and possibly

support other kind of Grid applications. Another reason to develop this framework, was to

create a good alternative to the existing frameworks that work on top of gLite, that lack

documentation and/or provide a more low-level approach and sometimes are of difficult

usage.

The main objectives of IGF are:

• Provide basic services for storage and sharing of data on the Grid;

• Create a more high-level approach to the Grid, than the existing frameworks, and

possibly use some of these frameworks to implement the low-level services;

• Provide good documentation.

1 The contents of this chapter were partly published in the Proceedings of Ibergrid 2009

37 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

• Provide a comprehensive framework solution, that supported a vast number of

services (Computing, Storage, Proxy, Security).

4.2. IEETA Grid Framework (IGF) architecture

The IGF was developed to provide a developer-friendly Grid access layer, so it can be used

in other Grid applications. It provides a clear Java [79] object-oriented API [80], with high-

level abstractions.

The main focus of IGF is the storage and sharing of information on the Grid, and the

proposed architecture reflects that. The package IGDM (IEETA Grid Data Middleware)

contains all the necessary services for the data Grid operations like copying, retrieving or

searching files, etc. A Computing Services package is also available to provide the basic

services to submit, and monitor jobs, a Proxy Services package to start and destroy user

proxies, and a Security Package to provide a higher security layer for the data and

computing operations.

Regarding design options, the API services are accessed through a main Factory class [81],

that is responsible to construct the objects that implement the main services of the

framework. For each of the interfaces there is a corresponding context class that is

responsible for holding all the necessary information for the services to work (e.g. paths,

environment variables, or other configuration options necessary for the Grid environment).

These context classes were created to organize and centralize the necessary configuration

options for the Grid environment. Every package has its own context class that is necessary

David Pacheco 38

Figure 4.1: IEETA Grid Framework architecture – UML package diagram.

Science 2.0: Sharing Scientific Data on the Grid

for the respective service class to be instantiated. Through the API it is possible to select

the type of service that is going to be instantiated. For instance, in the case of the IGDM

Virtual File System Services, the developer can choose between the asynchronous service,

or the normal (synchronous) service.

Another important feature of the framework, is the fact that every public IGF method

(except for a few exceptions), from every class returns an object that implements the same

interface, containing a return status, an output message and an error message. This feature

improves the usability, because the user can easily access the all the information about the

result of the method. It also improves the debugging because the possible error messages

that appear in the results from the methods, of the packages top interfaces, are “filtered”

throughout the layers of the package, appearing to the user the information that really

matters.

4.3. Middleware services implementation

4.3.1. IGDM: Storage Package

The Storage Services contains all the operations responsible for dealing with both the File

Catalog and Storage Elements (SE). All the operations that involve file transfers to and

from SEs, and direct access to the File Catalog, including:

• Copying a file to a specific SE and registering the file in the File Catalog;

• Deleting a file from the catalog and from the SE;

• Retrieving a file to the User Interface (UI) ;

• Creating file replicas;

• Listing available Storage Elements (SE's).

To provide the Storage and File Catalog access, an internal module was implemented to

interface the storage Grid services; the current implementation is based on delegating on

the gLite system command line interface (CLI), instead of service interfaces. While this

implementation can easily be replaced by a more convenient one, we decided to use this

approach because it proved to be more stable and less error prone than using the existing

scarcely documented Grid storage programming frameworks. The package was built

having in mind the possibility to switch the CLI module to another kind of access to the

storage and file catalog operations. The only service from this package that was

 39 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

implemented using another framework, was the GridFTP operations, on top of GSAF [37].

The IGDM package was also built having in mind, the possibility to provide the user

several alternatives to execute the storage related operations. For instance, the user can call

a File Catalog service that automatically transfers the file and registers it in the catalog, or

alternatively, the user can “manually” transfer the file using GridFTP, and afterwards,

register the file in the catalog using one of the available File Catalog service.

As depicted in Figure 4.2, the Storage package contains one main class that implements the

IGDMStorageServices interface with the main methods from the package responsible for

the basic storage operations: copy a file to a SE, retrieve a file, replicate a file, delete a file,

create an LFC directory, etc. The diagram also depicts the usage of interfaces in some of

the core services, to provide the possibility to extend or switch these modules.

David Pacheco 40

Figure 4.2: Storage package class diagram.

Science 2.0: Sharing Scientific Data on the Grid

4.3.2. IGDM: Virtual File System Package

This package was created with the intent to provide a more high-level approach to the Grid

storage, providing an abstraction closer to a regular file system, with files and folders. The

services from this package depend on the Storage package services to work.

The Virtual File System (VFS) package main services are (Figure 4.3):

• Create a Virtual Grid Folder;

• Copy a file to a Virtual Grid Folder (with the possibility of creating replicas);

• List a Virtual Grid Folder;

• Search for file inside a Virtual Folder;

• Delete a file from a Virtual Folder;

• Delete a Virtual Folder;

The main purpose of this package is to provide a more intuitive way, for the users of this

framework, to store and share their data on the Grid. To create this easy approach, we

introduced a concept called Virtual Grid Folder (VGF), that basically is intended to

represent a folder on the Grid (Figure 4.4). This virtual folder is composed by a real folder

in the File Catalog, and a Collection in the AMGA catalog. The VFS core services rely on

the AMGA metadata catalog [29].

 41 David Pacheco

Figure 4.3: Main use-cases provided by the Virtual File System and Computing
packages of the IGF Framework - (VGF stands for Virtual Grid Folder).

Science 2.0: Sharing Scientific Data on the Grid

The Virtual Grid Folder uses the AMGA catalog to maintain the association between the

file catalog and the related metadata. This association is ensured by the unique file GUID

that is included as part of the entry name in the AMGA catalog, so that the retrieval of

stored files can be easily done. This can be overridden by the developer if he wants to use

the file GUID, or if he wants to manually set the entry name in the AMGA catalog.

Associated to the Virtual Grid Folder there is also the Tag concept that consists on an

AMGA Schema that every Virtual Grid Folder must have. Every files stored in that folder

must have the same schema as the folder.

As depicted in Figure 4.4, when a new Virtual Folder is created, the user must define a set

of Tags to associate with that folder (AMGA schema), and the files that are stored in that

same folder, must also have that same set of Tags, with the specific values for the files. For

instance, we have a Virtual Folder called 'Images', and the defined schema for this folder is

composed by two tags, 'size' and 'date'. If one wants to store a file inside this folder, he/she

must also define the tags 'size' and 'date' with the corresponding values for that file. This

way, one can search the files by using Tags (in the example, 'date' or 'size'), because the

framework provides a method for searching the files by tags. Internally it queries the

AMGA catalog, to select the respective entries that match the search. Also note, that you

David Pacheco 42

Figure 4.4: Relationships between Virtual Grid Folder (VGF), Grid Files and Tags,
and workflow example of creating a VGF, followed by the copy of a file to that VGF.

Science 2.0: Sharing Scientific Data on the Grid

can create Virtual Folders inside other Virtual Folders, and that child Virtual Folder's don't

need to have the same schema as the parent Folders.

All the main operations of the Virtual File System package have a transaction control that

ensures the operations consistency. For instance if the user calls the method to copy a file

to a certain virtual folder, and the operation responsible for copying the file and registering

it in the catalog is successful, but the storing of the tags in the AMGA catalog fails, the first

operation will be reversed, and the file will be deleted from the SE and from the file

catalog.

This package also allows the user to access the lower level services, to perform more

specific operations, like dealing directly with the AMGA catalog. The AMGA catalog

access is performed using the GSAF framework AMGA API.

 43 David Pacheco

Figure 4.5: Virtual File System package class diagram.

Science 2.0: Sharing Scientific Data on the Grid

Similar to the Storage package, this package also contains one main class that implements

the IGDMVirtualFSServices interface, that contains the main methods from the package:

create Virtual Grid Folder, copy file to Virtual Grid Folder, retrieve file, search files, etc.

(Figure 4.5).

4.3.3. IGDM: Asynchronous Package

The Asynchronous Services package was created with the purpose of providing an

asynchronous execution mode for services of the Virtual File System and the Storage. As

some of the Grid storage operations like storing, deleting or retrieving a file, can suffer

random delays due to various factors, an asynchronous service provider would facilitate in

David Pacheco 44

Figure 4.6: Asynchronous package class diagram

Science 2.0: Sharing Scientific Data on the Grid

the construction of interactive interfaces that do not block waiting for results of running

operations. This package ensures that individual calls to storage or virtual file system are

executed on individual threads. When the corresponding thread finishes, it reports the

result of the operation to a controller class that observes the running/executed operations.

In order to maintain a consistent and easy to use approach, this package was designed with

the objective of providing asynchronous implementations to the IGDMStorageServices,

and IGDMVirtualFSServices interfaces. The same methods presented in the previous

sections from the Storage and Virtual FS packages are provided in this package in

asynchronous mode (Figure 4.6).

As depicted in Figure 4.6, the classes AsyncVirtualFSOpRunner and

AsyncStorageOpRunner, are the thread classes responsible for running the methods

asynchronously, that report the results to an instance of the class AsyncController. This

class contains a list of AsyncResult objects that hold the entire information corresponding

to the execution of the thread with the operation. The classes AsyncVirtualFSServices and

AsyncStorageServices contain a reference to an AsyncController object that contains the

list of executed operations. To better understand the interactions between the classes of the

 45 David Pacheco

Figure 4.7: Asynchronous storage operation sequence diagram.

Science 2.0: Sharing Scientific Data on the Grid

package, a sequence diagram is presented, with a generic asynchronous storage operation

(Figure 4.7). In case of a Virtual File System operation the interactions between are very

similar, so the diagram also applies to that case.

4.3.4. Computing Package

This package provides basic computing services, and enables to develop applications that

could integrate both storage and computing services provided by the same framework. The

current release still doesn't support complex computing scenarios, like the usage of DAG

jobs, but we plan to develop this feature in the future.

Like in the IGDM packages, this package also contains a main class (ComputingServices)

that implements the IGFComputingServices interface, with the main services provided.

The complexity of the package is centered in the class JobDescription, responsible for

generating the job JDL, and if necessary, auxiliary scripts, based on the attributes defined

in the ComputingContext object.

As depicted in Figure 4.8 the core services of the package have two alternate

David Pacheco 46

Figure 4.8: Computing package class diagram.

 VirtualFSContext CTX = new VirtualFSContext();

 CTX.setCA_CERT_LOCATION("/etc/grid-security/certificates/");
 CTX.setUSER_PROXY_LOCATION("/tmp/x509up_u502");
 CTX.setLCG_CATALOG_TYPE("lfc");
 CTX.setLCG_GFAL_INFOSYS("lcg-bdii.cern.ch:2170");
 CTX.setLCG_GFAL_VO("dteam");
 CTX.setLFC_HOST("prod-lfc-shared-central.cern.ch");
 CTX.setLFC_HOME("/grid/dteam/ieeta.pt");
 CTX.setLCG_RFIO_TYPE("dpm");

 CTX.setAMGA_HOME("/grid/dteam/ieeta.pt");
 CTX.setAMGA_HOST("localhost");
 CTX.setAMGA_PORT(8822);
 CTX.setAMGA_PASS("******");
 CTX.setAMGA_USER("********");

Science 2.0: Sharing Scientific Data on the Grid

implementations provided by the classes JobCLIProxy and JobServicesJLite. The first one

provides the calls to the glite-wms CLI commands, while the second uses one new

experimental API called JLite [82]. When the user accesses the main factory object to

create the Computing services object, he can choose between these two services.

4.3.5. Proxy Package

The Proxy package provides basic services related with Grid proxies. At this moment this

is the “smallest” package and only has two operations available: create a VOMS proxy and

destroying that proxy. In the future, this package could be extended to support more

advanced proxy services like the usage of MyProxy servers [83].

4.3.6. Security Package

The Security package was created to provide a higher-level and alternative security

solution to the ones already provided by the Grid environment itself. This package is still

under development and its design is still an incomplete work. The basic idea is to create a

Unix style user system. The Virtual Grid Folders and Grid Files, have a user and a group

(like a VO inside the application domain) associated with it, each of them having the

respective read, write and execute permissions. With these permissions, the developer can

control the access to the Grid files and folders within the developed application itself.

4.4. Using the IGF API

As it was referred in the previous sections, one of the main objectives of this framework is

to provide the users with an easy and well documented API to develop Grid enabled

applications (see section 4.1.). To accomplish that goal we designed a “lightweight”,

“developer-friendly” API supported with documentation. The IGF was written in Java

language, and uses some well known software design patterns.

In order to provide an easy-to-use approach, a main factory class was created to centralize

the access to the services. To instantiate a service class, the user just has to access the

factory object, select the desired service and pass the corresponding context object with the

necessary Grid environment configurations. After that, a reference to the new object that

provides the selected services is returned, and the user can start using the desired functions.

Another feature provided by the framework, is the ability to easily debug the applications.

 47 David Pacheco

VirtualGridFolder vgf = new VirtualGridFolder();

vgf.setVirtualGridFolderPath("MAGIRoot/UserX”);

GridFile gfile = new GridFile();
gfile.setGuid(FILE_GUID); //
gfile.setEntryName("guid");
gfile.setName(“testFile.dcm”);

IGDMVirtualFSServices vfs =
IGFServicesFactory.factoryVitualFSServices
(IGFService.VIRTUALFS_SERVICES, CTX);

IGDMResult res = vfs.removeFileFromVirtualGridFolder(gfile,
 vgf);

if(res.getReturnStatus() != 0) {
System.out.println(res.getReturnError);

}

 VirtualFSContext CTX = new VirtualFSContext();

 CTX.setCA_CERT_LOCATION("/etc/grid-security/certificates/");
 CTX.setUSER_PROXY_LOCATION("/tmp/x509up_u502");
 CTX.setLCG_CATALOG_TYPE("lfc");
 CTX.setLCG_GFAL_INFOSYS("lcg-bdii.cern.ch:2170");
 CTX.setLCG_GFAL_VO("dteam");
 CTX.setLFC_HOST("prod-lfc-shared-central.cern.ch");
 CTX.setLFC_HOME("/grid/dteam/ieeta.pt");
 CTX.setLCG_RFIO_TYPE("dpm");

 CTX.setAMGA_HOME("/grid/dteam/ieeta.pt");
 CTX.setAMGA_HOST("localhost");
 CTX.setAMGA_PORT(8822);
 CTX.setAMGA_PASS("******");
 CTX.setAMGA_USER("********");

// Creates the folder information
VirtualGridFolder vgf = new VirtualGridFolder();
vgf.setVirtualGridFolderPath("MAGIRoot/UserX");

//Grid File information
GridFile gfile = new GridFile();

gfile.setName(“TestFileName.img”);

 // Sets the location of the temp file in the UI
gfile.setUi_location(“/tmp/TestFileName.img”);

AMGASchema schema = new AMGASchema();
schema.add(new Tag("Subject", "varchar", “John Doe”));
schema.add(new Tag("Modality",“varchar”,“fMRI”));
schema.add(new Tag("Date", "timestamp", now()));

gfile.setSchema(schema);

IGDMVirtualFSServices vfs =
IGFServicesFactory.factoryVitualFSServices
(IGFService.ASYNC_VIRTUALFS_SERVICES, CTX);

IGDMResult res = vfs.copyFileToVirtualGridFolder(gfile,vgf,
StoragElementsList);

Science 2.0: Sharing Scientific Data on the Grid

To accomplish that, every method of the framework returns an object that implements a

common interface. That interface provides a return status, an output string, and the most

important in terms of debugging, an error message, in case any error occurs in the

execution. Some of the methods also need to return other objects (e.g: Collections), and in

that case, these objects are contained within the return object (that implements the common

return interface (IGFResult or IGDMResult), and to access them the user just has to use the

available method to retrieve that object from the return object. For a better understanding

of these specific cases and operations, the respective javadoc documentation was created.

4.4.1. Virtual File System API

We will now present a few examples on how to use the API, more specifically the Virtual

File System package, which is the most important package of the whole framework. The

other packages follow the same methodology for the usage of the respective services. Note

that in the examples, a variable called CTX will appear. Every time this variable appears, it

represents the respective context object for the package, with the necessary attributes

defined in it. Figure 4.9 depicts the instantiation and initialization of the CTX variable that

will be used throughout the other examples.

Figure 4.10 presents an example (using Java-like pseudo-code) of using the API, for a

simple operation of copying a file to a VGF (Virtual Grid Folder), assuming that the virtual

folder was created previously in the Virtual File System. In the example we can see the

instantiation of a VirtualFSServices object, that implements the IGDMVirtualFSServices

interface (variable vfs) through the main factory object. After that the user executes the

operation, and the return results are stored in the variable res, that implements an

David Pacheco 48

VirtualGridFolder vgf = new VirtualGridFolder();

vgf.setVirtualGridFolderPath("MAGIRoot/UserX”);

GridFile gfile = new GridFile();
gfile.setGuid(FILE_GUID); //
gfile.setEntryName("guid");
gfile.setName(“testFile.dcm”);

IGDMVirtualFSServices vfs =
IGFServicesFactory.factoryVitualFSServices
(IGFService.VIRTUALFS_SERVICES, CTX);

IGDMResult res = vfs.removeFileFromVirtualGridFolder(gfile,
 vgf);

if(res.getReturnStatus() != 0) {
System.out.println(res.getReturnError);

}

Figure 4.9: Java-like pseudo-code example of the IGF AP - CTX
(VirtualFSContext) object instantiation and initialization.

 VirtualFSContext CTX = new VirtualFSContext();

 CTX.setCA_CERT_LOCATION("/etc/grid-security/certificates/");
 CTX.setUSER_PROXY_LOCATION("/tmp/x509up_u502");
 CTX.setLCG_CATALOG_TYPE("lfc");
 CTX.setLCG_GFAL_INFOSYS("lcg-bdii.cern.ch:2170");
 CTX.setLCG_GFAL_VO("dteam");
 CTX.setLFC_HOST("prod-lfc-shared-central.cern.ch");
 CTX.setLFC_HOME("/grid/dteam/ieeta.pt");
 CTX.setLCG_RFIO_TYPE("dpm");

 CTX.setAMGA_HOME("/grid/dteam/ieeta.pt");
 CTX.setAMGA_HOST("localhost");
 CTX.setAMGA_PORT(8822);
 CTX.setAMGA_PASS("******");
 CTX.setAMGA_USER("********");

// Creates the folder information
VirtualGridFolder vgf = new VirtualGridFolder();
vgf.setVirtualGridFolderPath("MAGIRoot/UserX");

//Grid File information
GridFile gfile = new GridFile();

gfile.setName(“TestFileName.img”);

 // Sets the location of the temp file in the UI
gfile.setUi_location(“/tmp/TestFileName.img”);

AMGASchema schema = new AMGASchema();
schema.add(new Tag("Subject", "varchar", “John Doe”));
schema.add(new Tag("Modality",“varchar”,“fMRI”));
schema.add(new Tag("Date", "timestamp", now()));

gfile.setSchema(schema);

IGDMVirtualFSServices vfs =
IGFServicesFactory.factoryVitualFSServices
(IGFService.ASYNC_VIRTUALFS_SERVICES, CTX);

IGDMResult res = vfs.copyFileToVirtualGridFolder(gfile,vgf,
StoragElementsList);

Science 2.0: Sharing Scientific Data on the Grid

IGDMResult interface.

The approach to the other available functions, is pretty similar to the one described above.

Figure 4.11 depicts a Java pseudo-code excerpt, containing the necessary code to remove a

file from the Virtual Grid folder. Note that after the remove file operation is performed, the

 49 David Pacheco

Figure 4.11: Java-like pseudo-code example of the IGF API – Remove file
testFile.dcm from VGF MAGIRoot/UserX.

VirtualGridFolder vgf = new VirtualGridFolder();

vgf.setVirtualGridFolderPath("MAGIRoot/UserX”);

GridFile gfile = new GridFile();
gfile.setGuid(FILE_GUID); //
gfile.setEntryName("guid");
gfile.setName(“testFile.dcm”);

IGDMVirtualFSServices vfs =
IGFServicesFactory.factoryVitualFSServices
(IGFService.VIRTUALFS_SERVICES, CTX);

IGDMResult res = vfs.removeFileFromVirtualGridFolder(gfile,
 vgf);

if(res.getReturnStatus() != 0) {
System.out.println(res.getReturnError);

}

Figure 4.10: Java-like pseudo-code example of the IGF API – Copy file gfile
to Virtual Grid Folder vgf .

// Creates the folder information
VirtualGridFolder vgf = new VirtualGridFolder();
vgf.setVirtualGridFolderPath("MAGIRoot/UserX");

//Grid File information
GridFile gfile = new GridFile();

gfile.setName(“TestFileName.img”);

 // Sets the location of the temp file in the UI
gfile.setUi_location(“/tmp/TestFileName.img”);

AMGASchema schema = new AMGASchema();
schema.add(new Tag("Subject", "varchar", “John Doe”));
schema.add(new Tag("Modality",“varchar”,“fMRI”));
schema.add(new Tag("Date", "timestamp", now()));

gfile.setSchema(schema);

IGDMVirtualFSServices vfs =
IGFServicesFactory.factoryVitualFSServices
(IGFService.ASYNC_VIRTUALFS_SERVICES, CTX);

IGDMResult res = vfs.copyFileToVirtualGridFolder(gfile,vgf,
StoragElementsList);

Science 2.0: Sharing Scientific Data on the Grid

result is stored in an object that implements the IGDMResult interface, and the verification

for the success of the operation is performed. If the result is different from zero, it means

that an error occurred, and that error can be accessed by the getReturnError method. Also

note that the factory operation is different from the copy file operation (Figure 4.10). In

this example a different services class is instantiated. This time the services selected are

VIRTUALFS_SERVICES that provide synchronous operations, in contrast to the previous

example that uses asynchronous operations.

Figure 4.12 presents the necessary code to list the contents of a VGF. Note that the

definition of the AMGA schema for the folder is present. If the AMGA schema is not

defined, the operation will only return the name of the files and folders within the target

VGF without the tags. If the user wants to obtain the tags associated with the files, the

AMGA schema must be defined, containing the attributes that the user wants to select.

Also note that to obtain the results the user has two alternatives. In the first one

(uncommented line at the end of the code in Figure 4.12), the VGF object passed to the

method will be “loaded” with its contents, that can later be accessed by calling the

getFileList or getFolderList methods of the VGF object. The other alternative (see

commented lines at the bottom of Figure 4.12), consists of using the IGDMResult interface

to obtain the results, like in the previous presented operations, but this time using a cast to

convert to a specific results object (in this example the VirtualFSResult), and then access

the methods to obtain the specific results.

Figure 4.13 presents another operation example, this time for the search of files stored in a

David Pacheco 50

Figure 4.12: Java-like pseudo-code example of the IGF API – List contents
of Virtual Grid Folder MAGIRoot.

IGDMVirtualFSServices
vfs=IGFServicesFactory.factoryVitualFSServices
(IGFService.VIRTUALFS_SERVICES, CTX);

VirtualGridFolder vgf = new VirtualGridFolder();

vgf.setVirtualGridFolderPath("MAGIRoot");
List<AMGAKey> keylist = new ArrayList<AMGAKey>();
keylist.add(new Tag("Description", "varchar", ""));
keylist.add(new Tag("Subject", "varchar", ""));
keylist.add(new Tag("Modality", "varchar", ""));
keylist.add(new Tag("Equipment", "varchar", ""));
keylist.add(new Tag("Date", "timestamp", ""));
AMGASchema schema = new AMGASchema(keylist);
vgf.setSchema(schema);

vfs.listVirtualGridFolder(vgf);

List files = vgf.getFileList();

// IGDMResult res = vfs.listVirtualGridFolder(vgf);
// Collection files = ((VirtualFSResult)res).
// getResultFolder().
// getFileList();

Science 2.0: Sharing Scientific Data on the Grid

VGF. The operation is very similar to the previous one, that listed the contents of a VGF, in

terms of code. The user also has to define the AMGA schema for the folder. This schema is

used to define the tags that the user wants to have in the returning files from the operation.

The major difference between the previous operation (List contents), and the search

operation, lays in the definition of a list of Tag objects that will be used in the search. The

operation will try to find all the files within the selected VGF, that match the tags passed in

the list. Note that the result of the search operation can be obtained using a cast to the

VirtualFSResult object (instead of using the normal IGDMResult interface) to store the

results, and then use the getCol method to obtain the collection of files found.

Finally we also present an example (see Figure 4.14) of how to create a VGF with IGF.

The user must define the folder path that will be used both in the file catalog path and in

the AMGA catalog collection, and the respective AMGA schema that the folder will

support.

 51 David Pacheco

Figure 4.13: Java-like pseudo-code example of the IGF API – Search files
stored in the Virtual Grid Folder MAGIRoot.

IGDMVirtualFSServices
vfs=IGFServicesFactory.factoryVitualFSServices
(IGFService.VIRTUALFS_SERVICES, CTX);

VirtualGridFolder vgf = new VirtualGridFolder();

vgf.setVirtualGridFolderPath("MAGIRoot");
List<AMGAKey> keylist = new ArrayList<AMGAKey>();
keylist.add(new Tag("Description", "varchar", ""));
keylist.add(new Tag("Subject", "varchar", ""));
keylist.add(new Tag("Modality", "varchar", ""));
keylist.add(new Tag("Equipment", "varchar", ""));
keylist.add(new Tag("Date", "timestamp", ""));
AMGASchema schema = new AMGASchema(keylist);
vgf.setSchema(schema);

List<Tag> tags = new ArrayList<Tag>();

tags.add(new Tag("Description", "varchar", "XPTO123”));

tags.add(new Tag("Subject", "varchar", “S32JPinto”));

tags.add(new Tag("Modality", "varchar",”fMRI”));

VirtualFSResult res = (VirtualFSResult) vfs
.searchGridFiles(vgf, tags);

List results = res.getCol();

Science 2.0: Sharing Scientific Data on the Grid

4.4.2. Computing API

In this section we'll present a brief example on how to use the Computing package of the

IGF API. The overall strategy for using the Computing package follows the same principle

as the Virtual File System package presented before. There is a ComputingContext class,

responsible for holding the parameters necessary to configure the environment and

generate the job JDL file. Figure 4.15 shows the instantiation and initialization of the CTX

variable that will be used in the next computing examples. Figure 4.16 shows the necessary

code to create a new Job object and submit that job to the Grid. Note that there are more

parameters that can be configured in the ComputingContext object, but in order to simplify

the example we only show the most important ones. For instance the user can define the

specific CE where the job will run, or specify other kind of special requirements. Figure

4.17 shows the code to update the job status of the job launched in the previous example.

Finally in Figure 4.18, we present the example of how to retrieve the job output files from

the previously submitted job, and store these files in a specific directory in the UI machine.

David Pacheco 52

Figure 4.14: Java-like pseudo-code example of the IGF API – Creation of
the Virtual Grid Folder MAGIRoot/UserX.

IGDMVirtualFSServices
vfs=IGFServicesFactory.factoryVitualFSServices
(IGFService.VIRTUALFS_SERVICES, CTX);

// Creates the folder information
VirtualGridFolder vgf = new VirtualGridFolder();

List<AMGAKey> fkeys = new ArrayList<AMGAKey>();
fkeys.add(new Tag("Description", "varchar", ""));
fkeys.add(new Tag("Subject", "varchar", ""));
fkeys.add(new Tag("Modality", "varchar", ""));
fkeys.add(new Tag("Equipment", "varchar", ""));
fkeys.add(new Tag("Date", "timestamp", ""));

AMGASchema fschema = new AMGASchema(fkeys);

vgf.setVirtualGridFolderPath("MAGIRoot/UserX”);
vgf.setSchema(fschema);

IGDMResult res = vfs.createVirtualGridFolder(vgf);

System.out.println(res.getReturnString());

Science 2.0: Sharing Scientific Data on the Grid

 53 David Pacheco

Figure 4.15: Java-like pseudo-code example of the IGF API – CTX
(ComputingContext) object instantiation and initialization.

ComputingContext CTX = new ComputingContext();

CTX.setUID(this.sharedinfo.getLoggedUser().getUsername());

CTX.setJDL_STORE_FOLDER("/tmp");
CTX.setJDL_FILENAME("MAGIJob");
CTX.setWMS_PROXY_SERVER("https://wms01.lip.pt:7443/

glite_wms_wmproxy_server");
CTX.setRANK("other.GlueCEStateFreeCPUs");

CTX.setEXECUTABLE(/home/User/GridApps/association);
CTX.setSTD_OUTPUT("std.out");
CTX.setSTD_ERROR("std.err");
CTX.setARGS(“ input_file V2 2 45 output.txt”); //String with

the application arguments

List insandbox = new ArraList();
insandbox.add(“/tmp/data/input_file.hdr”);
CTX.setINPUT_SANDBOX_LIST(insandbox);

//Data stored in SE's
Collection<GridFile> inputData = new ArrayList<GridFile>();
GridFile inputtest = new GridFile();
inputtest.setName(“input_file.img”);
inputtest.setGuid(FILE_GUID);
inputData.add(inputtest);
CTX.setINPUT_DATA(inputData);

List outsandbox = new ArraList();
outsandbox.add(“std.out”); outsandbox.add(“std.err”);
outsandbox.add(“output.txt”);
CTX.setOUPUT_SANDBOX_LIST(outsandbox);

Figure 4.16: Java-like pseudo-code example of the IGF API – Submit a job,
configured with the CTX context variable.

IGFComputingServices cs =
IGFServicesFactory.factoryComputingServices(

IGFService.COMPUTING_SERVICES_CLI, CTX);

Job job = new Job(CTX.getJDL_STORE_FOLDER() + "/" +
CTX.getJDL_FILENAME() + UID +".jdl", CTX);

ComputingResult res = cs.submitJob(job);

if(res.getReturnStatus() != 0) {
//Process error
System.out.println(res.getReturnError();

}

https://wms01.lip.pt:7443/

Science 2.0: Sharing Scientific Data on the Grid

In this section, we presented the IGF API together with a small tutorial exemplifying its

use. In the next chapter it will be presented the MAGI web portal, which makes use of the

IGF API to implement the basic Grid services and therefore demonstrate the real potential

of this framework.

David Pacheco 54

Figure 4.17: Java-like pseudo-code example of the IGF API – Update the job
status of a specific job, with an ID defined by the middleware upon the job

submission.

// ... Code from job submission here...

ComputingResults ures = cs.updateJobStatus(job.getId());
int jobStatus = job.getJobStatus().getStatus();

if(ures.getReturnStatus() != 0) {
//Process error
System.out.println(ures.getReturnError();

}

// Convert the jobstatus from int to String
if(jobStatus == 2)

String STATUS = “RUNNING”;
// Just an example not real status codes

Figure 4.18: Java-like pseudo-code example of the IGF API – Fetch the job
output from a specific job, with an ID defined by the middleware upon the

job submission.

// ... Code from job submission here...

int jobStatus;
//checks if the job has finished
do {

jobStatus = cs.updateJobStatus(job.getId());
Sleep(POOLING_TIME);

if(jobStatus == JobStatus.SUCCESS ||
jobStatus == JobStatus.CLEAR ||
this.jobStatus == JobStatus.ERROR)

break;
} while(true);

String outputPath = "/tmp/" + job.getShortJobId();

if(job.getJobStatus().getStatus() == JobStatus.SUCCESS) {

res = cs.fetchJobOutput(job.getId(),outputPath);

. . .
}

5. e-Science Portal for brain imaging
research2

In this chapter we will present an e-Science brain imaging research portal called MAGI,

which stands for Medical Application Grid Interface together with details on its

implementation. It will also be discussed the integration of the MAGI with the IGF

framework, described in the previous chapter, to enable the access to the Grid environment.

5.1. The MAGI Portal as scientific community enabler

In order to provide the non-experts users (e.g: scientists, medical researchers) the great

storage capabilities and computational power of the Grid, we propose a web portal, that

enables these users to access Grid resources. The portal will act as a scientific community

enabler by, disseminating good practices, making expensive resources available to the

scientific community, and by facilitating the sharing of data and experimental results. The

construction of this portal is meant to be a prototype approach for the BING [7] and

GERES-med [49] projects integration with the Grid environment. The developed web

portal is called MAGI, that stands for Medical Applications Grid Interfacing portal.

The definition of the MAGI system was centered in the following objectives:

• support domain-oriented semantics, allowing researchers to express their

experiments with concepts they are familiar with (never needing to handle

computational infrastructure issues);

• provide intuitive, friendly user interfaces for the end-users;

2 The contents of this chapter were partly published in the Proceedings of Ibergrid 2009

55 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

• seamlessly integrate basic Grid services (currently over gLite), covering both storage

and job execution and security.

Our present focus is on modeling common medical imaging research requirements and

support them in the web portal. These scenarios have been already identified in previous

works, like the BING and GERES-med projects [49,7]. The system is still in a prototype

phase, but it was developed having in mind the need for extensibility, for instance, to

support more advanced functionalities or complex processing workflows, like in

MOTEUR [84], or more sophisticated query engines (e.g. content based querying).

5.2. Brain imaging research portal use-cases

Based on our group experience in the context of previous projects [49,7] we were able to

identify basic use cases to develop a community research portal (Figure 5.1), to support

medical researchers, specially with respect to biosignal processing and medical imaging

modalities, with special focus on brain imaging.

The main use cases, can be divided into three main groups, as we can see by the colors in

Figure 5.1 and are described in detail in Table 5.1.

David Pacheco 56

Figure 5.1: Brain imaging research portal use-cases.

Science 2.0: Sharing Scientific Data on the Grid

Group Use-Case Details

Data related
Use-Cases

Upload dataset The user uploads a file to the storage environment.

Search/List

datasets

The user selects a filter or defines a search parameter to

obtain a list of Datasets, and possibly retrieve the

correspondent files.

Execute research

algorithms

The user selects dataset(s) as input for an available research

oriented algorithm, that is available in the interface.

User and
Subject
Management
Use-Cases

Manage Subjects Typical (CRUD) create, read, update and delete operations,

on the user subjects.

Manage Users Typical (CRUD) create, read, update and delete operations,

on the system users. (Can only be performed by system

administrators)

Studies Use-
Cases

Create Study The user creates a new study, and “owns” it. Only that user

can add more users to that study.

Associate

User/Subject/Dat

aset/ with studies

The user selects items (Users, Subjects or Datasets) to

associate with studies. The study entity possesses a group of

users, subjects and datasets associated with it.

Table 5.1: MAGI Portal use-cases details.

5.3. Domain concepts model

After defining the basic use cases for a brain imaging research portal (see section 3.2.), we

identified the most important concepts to map them in the MAGI domain model (see

Figure 5.2). In MAGI, a researcher (User) belonging to a specific Organization may be

responsible for several Subjects that he can gather in one or more research studies (Study).

Most of his research activity is centered in analyzing Datasets of a specific Modality,

corresponding to a Subject, obtained using a specific Equipment. We decided to add two

more classes (Mail and Task) to the domain model that can be considered “strangers” to the

 57 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

medical research context. Both of these classes were created to support the interaction

between the user and the execution of Jobs on the Grid via web portal. The class Mail, is

used to map the concept mail (or message), and it is used for interconnection between the

users of the system, or for sending automatic messages from the system to the users. For

instance, upon a task completion on the Grid, the user receives a message with the final

result of the execution. This prevents the user to be logged on while waiting for a task to

complete. The Task class is used to map the task concept (or Grid job), and it was created

for monitoring and statistical reasons. The user has a list of his tasks, and can see

information, like the current status of the task, submission date or a running time, etc.

This schema with simple modifications is able to accommodate a wide set of application

scenarios, and allows different research fields that make use of medical imaging techniques

to use this application and harness the Grid benefits. It fits our brain imaging research

goals, but with further refinements it can suit specific medical analysis applications.

David Pacheco 58

Figure 5.2: Domain model class diagram.

Science 2.0: Sharing Scientific Data on the Grid

5.4. MAGI System architecture

MAGI has a classic three tier layered architecture composed by a top package (User

Interface layer), a middle package (Domain Logic layer) and a lower package, which is the

Grid interfacing layer called IGF, described previously (see chapter 4.).

The top layers contain the application specific semantic, while the bottom layer (IGF) is

the semantic independent framework that allows the users to access the Grid's core

services, like storage and computing.

 59 David Pacheco

Figure 5.3: MAGI system architecture.

Figure 5.4: Detailed architecture of the MAGI, containing all the packages and IGF.

Science 2.0: Sharing Scientific Data on the Grid

The domain logic layer was created to make the bridge between the use-cases available in

the web portal and the Grid interfacing layer. This package was subdivided into 3

packages: Controllers package, Model Package and Helpers package (Figure 5.4).

The Controllers package contains all the main classes responsible for the interaction

between the interface and both the system's database and the Grid interfacing layer. As

depicted in Figure 5.5 , the package is composed by a parent class called BaseController,

that holds the common methods for all the other controller classes. There is also another

class in this model that plays a central role in the operations of the portal, which is the

SharedInfoController class. This class centralizes all the important information necessary

to display in the web interface, essentially the lists of objects (Subjects, Studies, Files,

etc.), and also provides the necessary methods to fetch and update these lists. All the other

controller classes were created and organized based on the defined use-cases that had to be

implemented.

David Pacheco 60

Figure 5.5: Controllers package class diagram, showing the most important methods and
attributes.

Science 2.0: Sharing Scientific Data on the Grid

The Model package contains the domain model classes (section 5.3.) and finally the

Helpers package contains a few classes created to help in the execution of some of the

operations that involve the Controllers and Model packages (from the Domain logic layer)

and the Grid access layer.

5.5. Portal services implementation

The MAGI Web portal was designed to be user friendly and to have an attractive look. The

portal supports visual rich interactions, such as intuitive drag-and-drop functionalities that

give the users the idea that they are dragging the information (e.g subjects, datasets,

objects, files) between semantic rich containers (e.g: folders, studies, subject groups),

hiding the task details, like moving, copying files between specific file system/Grid

location, while maintaining the coherence of the semantic data model. We also tried to

maintain a coherent, similar look and interactions methods throughout the pages, so the

human interfacing interaction could be more intuitive.

The Web portal was developed using open technologies: JSF (Java Server Faces) [85], and

the Richfaces framework [86] to provide some of the functionalities that require the use of

AJAX. JSF is a Java-based Web application framework intended to simplify development

of user interfaces for Java Enterprise applications (J2EE). Unlike the request-driven MVC

 61 David Pacheco

Figure 5.6: MAGI login page.

Science 2.0: Sharing Scientific Data on the Grid

(Model-View-Controller) [87] web frameworks, JSF uses a component-based approach.

The state of the UI components is saved when the client requests a new page and restored

when the request is returned. We used JavaServer Pages (JSP) for JSP display technology,

but there are applications that use other technologies, such as XUL (XML User Interface

Language). The other technology used, Richfaces, is a rich component library for JSF and

an advanced framework for easily integrating AJAX capabilities into applications.

RichFaces takes advantage of the benefits of the JSF framework including lifecycle,

validation, and conversion facilities, along with the management of static and dynamic

resources.

For the back-end supporting database, the technologies chosen were PorstgreSQL [88] as

database management system, and Hibernate Annotations [89] to execute the mappings

between the domain model classes and the relational database tables.

In Figure 5.7, the flow of events when uploading a data file is illustrated: (1) the user

chooses to upload a file; (2) then he/she picks a local file to transfer, (3) enters descriptive

file metadata and (4) “drags” the file icon into to the Grid container (thus triggering

seamlessly underlying Grid operations).

David Pacheco 62

Figure 5.7: Web portal pages, demonstrating the data import use-case.

Science 2.0: Sharing Scientific Data on the Grid

5.5.1. Security design

Regarding security and authorization, the MAGI system grants the users access to the Grid

using a delegation approach. This means that the users are authenticated when they log-in

to the portal, and they can only use the Grid services through the portal. Another important

security issue is the one related with Grid certificates and user proxies. For now, we use a

single X.509 certificate to the whole system. Since the user's actions on the Grid are

limited by the portal's use cases, we don't see the usage of a single certificate as a downfall.

In the future, if proper isolation of user data or tasks is advised, one should consider the

usage of proxy repositories to provide an alternative solution [83].

In a shared research environment, especially in those involving human subjects, the

privacy and anonymity of data is always an issue. Our system was created with a research

oriented semantic, and the target datasets are only for research purposes and not medical

care scenarios; still, the system needs to adopt solutions to provide anonymization. To

address this problem, we store pseudo-anonymized data, so it is not possible to associate a

dataset with a subject, using only the information stored on the Grid. To create the pseudo-

anonymization, we store the subject's Id (a surrogate key, free from domain semantics)

instead of the name, as one of the file Tags, to preserve the subject's privacy, and only

using the MAGI's private database it is possible to associate the data with the subject. To

harden the security of the system, we also plan to develop and make use of the Security

package from the IGF framework (Figure 4.1) or consider more advanced security

scenarios (like in [90]).

5.5.2. MAGI Integration with the IGF Framework

The domain model presented in section 5.3. was used to create a back-end database to

support the MAGI portal. This database has a scope different from the Grid storage. While

the database is used to store the tables correspondent to the domain model, the Grid storage

is used to store the files and the respective associated metadata in the AMGA catalog.

The concept Dataset is used as a generalization for medical images. In order to make use of

the IGF framework and store the datasets on the Grid, we had to define an AMGA schema

to associate with the files. The schema used for the medical datasets is composed by the

file name, a description, the patient Id, the modality, the medical equipment and a time-

stamp. Also note, that the concept Dataset used in the domain model has an attribute

'shared' (Figure 5.2), that is used to define whether the dataset will be stored in the pool of

shared datasets (accessible to everyone within a given community), or in the user's private

 63 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

Virtual Grid folder, and only accessible to that user, responsible for uploading the file. The

user can therefore decide if the dataset will be public or not.

To make the bridging between the Web portal and the Grid environment, the services from

the Domain Logic layer of the MAGI architecture (Figure 5.3), access the Grid using the

IGF API calls, similar to the one presented in Figure 4.10. The user interacts with the Web

interface, performing the necessary tasks (filling forms, uploading files, etc.), and the

respective Domain Logic services use the information from the user, to create the

necessary variables (e.g: creating an AMGA schema with a set of Tags – Figure 4.4), or

call the Grid services from the IGF API, to perform the necessary tasks. After the execution

of the Grid operations, the Domain Logic services can use the information returned from

the IGF calls, to show the necessary information in the Web interface.

5.6. Experimental results

5.6.1. Storage level

Since the main focus of this work is on storage, we decided to run performance tests on

both the IGF framework and the MAGI portal storage capabilities, in order to conclude if

David Pacheco 64

Figure 5.8: Chart representing the file transfer times, comparing the usage of the command
line (CL) the IGF and the MAGI system.

Science 2.0: Sharing Scientific Data on the Grid

the developed software introduced any delay, when comparing with the command line

interface operations. The storage tests, consisted on the transfer of two files (real brain

imaging research files), one with 18 Mega-bytes and another one with 165 Mega-bytes,

from the UI node to a storage element (file copy), and the inverse operation (download

file).

Both the UI node and the storage element were on the same local network. Note that the

file copy operation consisted not only in copying the file from the UI to the SE, but also in

registering the file in the LFC file catalog (remote server located in CERN). In the specific

case of the MAGI portal, the files were also registered in the AMGA metadata catalog.

Although this last operation differs from the storage operations performed with the

command line and the IGF, it was deliberately done in order to conclude if the delay

introduced by the metadata registration was considerable or not.

In terms of results, the delay introduced both by the IGF and the MAGI portal is in average

less than 0.5 seconds. We can see the difference between the three systems in Figure 5.8,

for the file copy operation and in Figure 5.10, for the file download operation. The charts

in Figure 5.9 and Figure 5.11, show the the comparison between the maximum, minimum

and average times for each case, proving that there aren't any discrepant values in the

results and that the average values are accurate.

 65 David Pacheco

Figure 5.9: Chart comparing the maximum, minimum and average times of each of the file
copy tests.

Science 2.0: Sharing Scientific Data on the Grid

David Pacheco 66

Figure 5.10: Chart representing the file download times, comparing the usage of the
command line (CL) the IGF and the MAGI system.

Figure 5.11: Chart comparing the maximum, minimum and average times of each of the
file download tests.

Science 2.0: Sharing Scientific Data on the Grid

5.6.2. Jobs execution

To illustrate the use of MAGI within the wider Grid environment, we tested two

applications both locally and at the PIC (Port d'Informatió Cientifica) node at Barcelona.

We were able to successfully integrate and run with MAGI, two brain imaging research

applications, and run them on the Grid. One of the applications is called association and

basically takes one fMRI analyse file as input, and generates the association maps between

one input position (x,y,z), and other voxels in the given volume time series. The other

application is called summarize, and generates a sum up of a multi volume analyse fMRI

file.

To test the applications we stored the input test files both in our local storage at IEETA and

replicated to the storage element in PIC (Port d'Informatió Cientifica) at Barcelona, Spain.

When the jobs are created, the gLite middleware automatically selects the best CE to send

the jobs, according to the proximity with the SE's, where the data input files defined in the

job JDL file are stored. With this scenario we were able to obtain fairly good results from

running both the association and summarize applications. Each of the applications took in

average about eight minutes to perform the complete cycle (the job is submitted, scheduled

in the selected CE, runs in a WN, and finally the results are transferred from the WN to the

UI), from which of these eight minutes, six were spent during the running phase in the

WN. Note that these average execution times were obtained with “perfect” conditions,

which means, with the minimal waiting time in the queue (queue empty) and without any

errors along the execution cycle. All the tests were performed with the dteam VO, in the

EGEE infrastructure.

 67 David Pacheco

Figure 5.12: Map of the Grid nodes used during the tests.

6. Conclusions and Future Work

The presented MAGI web portal supported by the IGF framework, fulfills the proposed

objectives of enabling non Grid experts to benefit from the Grid's processing power and

scalable data management. The MAGI system similarly to other Grid oriented Web portal

projects [8,56,75], provides a way for the non-experts users to access the Grid, in a

transparent and easy way. However, not only it provides the same easy access to the Grid,

but was also built with a semantic model that can accommodate a large variety of medical

related research projects, with an attractive look and with intuitive and easy-to use

functionalities, like drag-and-drop, to execute the main use cases.

In terms of implementation options, we decided to create the IGF framework, to isolate the

MAGI system from the complexities of the Grid, shielding it from possible changes in the

Grid middleware. The IGF also provides another alternative development framework to the

Grid community. As demonstrated in the integration with the MAGI web portal, the IGF

framework was flexible and easy to use, as proposed in its definition. Through IGF we

created an isolation between the upper software layers of the MAGI and the Grid

environment, being possible to access this environment, with just a few lines of code more,

and even connect to different middleware stacks, in the future.

In IGF implementation, we decided to use the AMGA catalog to implement the sharing and

description of stored Grid files, like in the gLibrary project [38]. The use of the AMGA

catalog to support the sharing of information on the Grid as proven to be a good choice,

since early tests using our framework have demonstrated that the response times for

querying the catalog are low; this confirms other previous benchmark studies that have

demonstrated that AMGA's overhead is very low, providing short response times [40].

In contrast to existing API's in the area of Grid storage, like GFAL [91] or SEE-GRID File

Management Java API [92], that provide a more fine-grained and low-level programming

69 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

interface (still lacking in documentation), IGF was created with the aim to provide a more

high-level framework, like the Vine toolkit [36] (partially integrating other existing

solutions, like GSAF [37]) that, while supporting our own efforts, could provide to other

interested parties, an easy to use API with good documentation. We also plan to make our

framework available, to public use as the system matures.

The IGF framework architecture was conceived having in mind a complete framework

solution for the Grid, providing services for storage, computing and security. While the

storage package of IGF is in a more advanced state of development, providing various

services for storing and sharing files on the Grid, both the computing and security

packages are still a work in progress. At this stage the computing package only supports

basic job services, like creating and launching simple jobs, updating status, output retrieval

and cancellation of jobs. As future work it would be very interesting to develop the support

for more complex jobs, like DAGJobs (see gLite section in chapter 2.2.1.), since they

enable the use of workflows, which is a mandatory feature in terms of medical imaging

analysis. The security package is also a mandatory feature in terms of Grid environments,

because providing security for scientific data, and especially medical research data is

paramount. Further developing of this package would be an important aspect for the

acceptance of the solution in production environments.. For the scope of this work, we

decided to implement the security on the domain logic layer of the MAGI portal, providing

pseudo-anonymization for the medical datasets. In the future, the security feature could be

provided by the IGF Security package.

Regarding technological choices, the usage of object-relational mapping solutions based on

Hibernate Annotations (using a PostgreSQL back-end database), proved to be a good

choice for a quick and effective development of the data access application layer. The

Hibernate Annotations allow a very organized and easy way to bind the domain model

classes with the respective tables in the relational database. In terms of web interface

development choices, the decision to use JavaServer Faces, combined with Richfaces, has

proved to be a good choice for web development, since it allowed quick, intuitive and easy

development of an advanced web based portal. This quick and easy development was also

possible because of the good documentation and code examples that Richfaces provides.

However the usage of this kind of web frameworks can also bring some disadvantages to

the development process. If the developer wants to implement some functionality that

requires a more specific approach that is not supported by the available framework

controls, the development of new custom controls or the customization of the available

ones can be a painful task.

In order to verify if the developed work achieved the proposed objectives, we performed

David Pacheco 70

Science 2.0: Sharing Scientific Data on the Grid

tests using both the IGF and the MAGI portal, and compared the results with the usage of

the CLI, which can be considered the “old way” of using Grids. The tests were run in a real

production Grid, the EGEE Grid, using the dteam VO. The results obtained can be

considered very positive. The users were able to use a web 2.0 portal to access the Grid,

store, share, run scientific applications and retrieve the results, without having to know any

technical aspects of the Grid itself. The results obtained also encourage to further develop

both the MAGI portal, and especially the IGF framework, extending its services to support

the execution of workflows and improved storage and security features.

 71 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

References

[1] J. Montagnat, F. Bellet, H. Benoit-Cattin, V. Breton, L. Brunie, H. Duque, Y. Legré,
I.E. Magnin, L. Maigne, S. Miguet, J.-. Pierson, L. Seitz, and T. Tweed, “Medical
Images Simulation, Storage, and Processing on the European DataGrid Testbed,”
Journal of Grid Computing, vol. 2, Dec. 2004, pp. 387-400.

[2] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda, “Mapping Abstract Complex
Workflows onto Grid Environments,” Journal of Grid Computing, vol. 1, Mar. 2003,
pp. 25-39.

[3] K.K. Kakazu, L.W.K. Cheung, and W. Lynne, “The Cancer Biomedical Informatics
Grid (caBIG): pioneering an expansive network of information and tools for
collaborative cancer research,” Hawaii Medical Journal, vol. 63, Sep. 2004, pp. 273-
5.

[4] I. Foster and C. Kesselman, “Computational Grids,” The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kauffman, 1999, pp. pages 15–51.

[5] “LHC_Homepage” , http://lhc.web.cern.ch/lhc/ [accessed April 29, 2009].

[6] H.B. Newman, M.H. Ellisman, and J.A. Orcutt, “Data-intensive e-science frontier
research,” Commun. ACM, vol. 46, 2003, pp. 68-77.

[7] J.P.S. Cunha, I. Oliveira, J.M. Fernandes, A. Campilho, M. Castelo-Branco, N. Sousa,
and A. Sousa Pereira, “BING: The Portuguese Brain Imaging Network Grid,”
IberGrid, 2007.

[8] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, and G.
Gombás, “P-GRADE: A Grid Programming Environment,” Journal of Grid
Computing, vol. 1, Jun. 2003, pp. 171-197.

David Pacheco 72

Science 2.0: Sharing Scientific Data on the Grid

[9] “EGEE: Enabling Grids for E-sciencE phase I and II, FP6 European IST project,
contract number INFSO-RI-508833” , http://www.eu-egee.org/ [accessed February
26, 2009].

[10] T. Oreilly, “What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software,” SSRN eLibrary.

[11] L. Paulson, “Building rich web applications with Ajax,” Computer, vol. 38, 2005, pp.
14-17.

[12] I. Foster, “Service-Oriented Science,” Science, vol. 308, May. 2005, pp. 814-817.

[13] “International Virtual Observatory Alliance” , http://www.ivoa.net/ [accessed April
29, 2009].

[14] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web services,”
Proceedings of the 13th international conference on World Wide Web, New York,
NY, USA: ACM, 2004, pp. 621-630.

[15] A.S. Szalay, J. Gray, and J. vandenBerg, “Petabyte Scale Data Mining: Dream or
Reality?,” Aug. 2002.

[16] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International Journal of High Performance Computing
Applications, vol. 15, Aug. 2001, pp. 200-222.

[17] I. Foster and C. Kesselman, “Concepts and Architecture,” The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kauffman, 2005, pp. pages 37–63.

[18] I. Foster, C. Kesselman, and S. Tuecke, “The Open Grid Services Architecture,” The
Grid: Blueprint for a New Computing Infrastructure, Morgan Kauffman, 2005.

[19] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the grid: An open
grid services architecture for distributed systems integration, Open Grid Service
Infrastructure WG, Global Grid Forum,” 2002.

[20] R. Alfieri, R. Cecchini, V. Ciaschini, Á. Frohner, A. Gianoli, K. Lőrentey, and F.
Spataro, “An Authorization System for Virtual Organizations,” in Proceedings of the
1st European Across Grids Conference, Santiago de Compostela, 2003, pp. 13--14.

[21] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 Public Key Infrastructure
Certificate and CRL Profile,” 1999.

[22] “The Globus Alliance” , http://www.globus.org/ [accessed April 14, 2009].

[23] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems,”
Journal of Computer Science and Technology, vol. 21, Jul. 2006, pp. 513-520.

[24] D. Erwin and D. Snelling, “UNICORE: A Grid Computing Environment,” Euro-Par

 73 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

2001 Parallel Processing, 2001, pp. 825-834.

[25] E. Laure, C. Gr, S. Fisher, A. Frohner, P. Kunszt, A. Krenek, O. Mulmo, F. Pacini, F.
Prelz, J. White, M. Barroso, P. Buncic, R. Byrom, L. Cornwall, M. Craig, A. Di
Meglio, A. Djaoui, F. Giacomini, J. Hahkala, F. Hemmer, S. Hicks, A. Edlund, A.
Maraschini, R. Middleton, M. Sgaravatto, M. Steenbakkers, J. Walk, and A. Wilson,
“Programming the Grid with gLite,” Computational Methods in Science and
Technology, vol. 12, 2006, p. 2006.

[26] “EGEE-Project. Job description language (jdl) attributes specification.” , Available at
https://edms.cern.ch/document/590869/1/ [accessed April 12, 2009].

[27] F. Pacini, “EGEE User’s Guide - WMS Service.” ,
https://edms.cern.ch/document/572489/ [accessed April 12, 2009].

[28] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya, M. Mambelli, J. Shopf, M.
Viljoen, and A. Wilson, “GLUE Schema Specification-Version 1.2,” Technical report.
2005.

[29] “AMGA: The gLite Grid Metadata Catalogue” , http://amga.web.cern.ch/amga/
[accessed February 21, 2009].

[30] “OGSA-DAI” , http://www.ogsadai.org.uk/ [accessed April 15, 2009].

[31] C. Catlett, “Standards for grid computing: Global grid forum,” Journal of Grid
Computing, 2003, pp. 1(1):3–7.

[32] “Accelerating the adoption of grid solutions in the enterprise, available at
http://www.ogf.org,” Dec. 2004.

[33] H.G.O.K. Czajkowski, I.F. Anl, J.F. Ibm, C.K. Usc/isi, D. Snelling, F. Labs, and P.V.
Nasa, “GWD-R (draft-ggf-ogsi-gridservice-23) Editors: Open Grid Services
Infrastructure (OGSI) S. Tuecke, ANL.”

[34] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham, T. Maguire, D. Snelling,
and S. Tuecke, “Modeling and Managing State in Distributed Systems: The Role of
OGSI and WSRF,” Proceedings of the IEEE, vol. 93, 2005, pp. 604-612.

[35] “OASIS: Advancing open standards for the global information society” ,
http://www.oasis-open.org/home/index.php [accessed April 5, 2009].

[36] M. Russell, P. Dziubecki, P. Grabowski, M. Krysinśki, T. Kuczyński, D. Szjenfeld, D.
Tarnawczyk, G. Wolniewicz, and J. Nabrzyski, “The Vine Toolkit: A Java Framework
for Developing Grid Applications,” Parallel Processing and Applied Mathematics,
2008, pp. 331-340.

[37] S. Scifo, “GSAF Grid Storage Access Framework,” Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2007, pp. 296-297.

David Pacheco 74

Science 2.0: Sharing Scientific Data on the Grid

[38] A. Calanducci, C. Cherubino, L. Ciuffo, M. Fargetta, and D. Scardaci, “A Digital
Library Management System for Grid,” Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2007. WETICE 2007. 16th IEEE International Workshops,
2007, pp. 269-272.

[39] “gLite, (Lightweight Middleware for Grid Computing)” ,
http://glite.web.cern.ch/glite/ [accessed February 21, 2009].

[40] N. Santos and B. Koblitz, “Distributed Metadata with the AMGA Metadata Catalog,”
Apr. 2006.

[41] C. Costa, A. Silva, and J. Oliveira, “Current Perspectives on PACS and a Cardiology
Case Study,” Advanced Computational Intelligence Paradigms in Healthcare-2,
2007, pp. 79-108.

[42] The Editors, “Looking Back on the Millennium in Medicine,” N Engl J Med, vol.
342, Jan. 2000, pp. 42-49.

[43] R. Acharya, R. Wasserman, J. Stevens, and C. Hinojosa, “Biomedical imaging
modalities: a tutorial,” Computerized Medical Imaging and Graphics: The Official
Journal of the Computerized Medical Imaging Society, vol. 19, pp. 3-25.

[44] J.D. Bronzino, The Biomedical Engineering Handbook, 2000.

[45] R.A. Geenes and James F. Brinkley, Medical Informatics: Computer Applications in
Health Care and Biomedicine, Springer, 2001.

[46] R. Andrade, “Multi-voxel fMRI Analysis Using an High Throughput
Grid Framework,” Universidade de Aveiro, 2007.

[47] J. Engel, “Update on surgical treatment of the epilepsies: Summary of The Second
International Palm Desert Conference on the Surgical Treatment of the Epilepsies
(1992),” Neurology, vol. 43, Aug. 1993, p. 1612.

[48] F. Rosenow and H. Luders, “Presurgical evaluation of epilepsy,” Brain, vol. 124,
Sep. 2001, pp. 1683-1700.

[49] I.C. Oliveira, J.M. Fernandes, L. Alves, A. Sousa Pereira, and J.P.S. Cunha, “GERES-
med : An Architecture for Grid-Enabled scientific REpositorieS for medical
applications,” Proceedings of IberGrid, 2008.

[50] V. Breton, I. Blanquer, V. Hernandez, Y. Legré, and T. Solomonidés, “Proposing a
roadmap for HealthGrids,” 2006.

[51] I. Andoulsi, I. Blanquer, V. Breton, A. Dobrev, C. van Doosselaere, V. Hernandez, J.
Herveg, N. Jacq, Y. Legré, M. Olive, H. Rahmouni, T. Solomonides, K. Stroetmann,
V. Stroetmann, and P. Wilson, “The SHARE road map: Healthgrids for biomedical
research and healthcare,” Studies in Health Technology and Informatics, vol. 138,

 75 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

2008, pp. 238-78.

[52] V. Breton, K. Dean, T. Solomonides, I. Blanquer, V. Hernandez, E. Medico, N.
Maglaveras, S. Benkner, G. Lonsdale, S. Lloyd, K. Hassan, R. McClatchey, S.
Miguet, J. Montagnat, X. Pennec, W. De Neve, C. De Wagter, G. Heeren, L. Maigne,
K. Nozaki, M. Taillet, H. Bilofsky, R. Ziegler, M. Hoffman, C. Jones, M. Cannataro,
P. Veltri, G. Aloisio, S. Fiore, M. Mirto, I. Chouvarda, V. Koutkias, A. Malousi, V.
Lopez, I. Oliveira, J.P. Sanchez, F. Martin-Sanchez, G. De Moor, B. Claerhout, and
J.A.M. Herveg, “The Healthgrid White Paper,” Studies in Health Technology and
Informatics, vol. 112, 2005, pp. 249-321.

[53] “Embrace Network of Excellence” , Available at
http://www.embracegrid.info/page.php?page=home [accessed April 13, 2009].

[54] J.K. Iglehart, “The New Era of Medical Imaging -- Progress and Pitfalls,” Jun. 2006.

[55] J. Montagnat, D. Jouvenot, C. Pera, Á. Frohner, P. Kunszt, B. Koblitz, N. Santos, and
C. Loomis, “Bridging clinical information systems and grid middleware: a Medical
Data Manager,” Challenges and Opportunities of HealthGrids: Proceedings of
Healthgrid 2006, 2006.

[56] “BIRN - Biomedical Informatics Research Network” , http://www.nbirn.net/
[accessed March 4, 2009].

[57] J. Saltz, S. Oster, S. Hastings, S. Langella, T. Kurc, W. Sanchez, M. Kher, A.
Manisundaram, K. Shanbhag, and P. Covitz, “caGrid: design and implementation of
the core architecture of the cancer biomedical informatics grid,” Bioinformatics, vol.
22, Aug. 2006, pp. 1910-1916.

[58] V. Breton, I. Blanquer, V.H. Hernandez, N. Jacq, Y. Legré, M. Olive, and T.
Solomonides, “Roadmap for a European Healthgrid,” HealthGrid, 2007.

[59] S. Hung, T. Hung, and J. Juang, “SARS Grid--An AG-Based Disease Management
and Collaborative Platform,” Challenges and Opportunities of HealthGrids:
Proceedings of Healthgrid 2006, 2006.

[60] J. Montagnat, Á. Frohner, D. Jouvenot, C. Pera, P. Kunszt, B. Koblitz, N. Santos, C.
Loomis, R. Texier, D. Lingrand, P. Guio, R. Brito Da Rocha, A. Sobreira de Almeida,
and Z. Farkas, “A Secure Grid Medical Data Manager Interfaced to the gLite
Middleware,” Journal of Grid Computing, vol. 6, Mar. 2008, pp. 45-59.

[61] J. Duncan, “Imaging and epilepsy,” Brain, vol. 120, Feb. 1997, pp. 377, 339.

[62] M. Richardson, “Epilepsy and surgical mapping,” Br Med Bull. 65, 2003, pp. 179-
192.

[63] P. Vemuri, J.L. Gunter, M.L. Senjem, J.L. Whitwell, K. Kantarci, D.S. Knopman, B.F.
Boeve, R.C. Petersen, and C.R.J. Jr, “Alzheimer's disease diagnosis in individual

David Pacheco 76

Science 2.0: Sharing Scientific Data on the Grid

subjects using structural MR images: Validation studies,” NeuroImage, vol. 39, Feb.
2008, pp. 1186-1197.

[64] J.L. Whitwell, M.M. Shiung, S.A. Przybelski, S.D. Weigand, D.S. Knopman, B.F.
Boeve, R.C. Petersen, and C.R. Jack, “MRI patterns of atrophy associated with
progression to AD in amnestic mild cognitive impairment,” Neurology, vol. 70, Feb.
2008, pp. 512-520.

[65] A. Hamalainen, S. Tervo, M. Grau-Olivares, E. Niskanen, C. Pennanen, J.
Huuskonen, M. Kivipelto, T. Hanninen, M. Tapiola, M. Vanhanen, M. Hallikainen, E.
Helkala, A. Nissinen, R. Vanninen, and H. Soininen, “Voxel-based morphometry to
detect brain atrophy in progressive mild cognitive impairment,” NeuroImage, vol. 37,
Oct. 2007, pp. 1122-1131.

[66] C. Horenstein, M.J. Lowe, K.A. Koenig, and M.D. Phillips, “Comparison of
unilateral and bilateral complex finger tapping-related activation in premotor and
primary motor cortex,” Human Brain Mapping, vol. 30, 2009, pp. 1397-1412.

[67] T. Hanakawa, M.A. Dimyan, and M. Hallett, “Motor Planning, Imagery, and
Execution in the Distributed Motor Network: A Time-Course Study with Functional
MRI,” Cereb. Cortex, Mar. 2008, p. bhn036.

[68] A. Michell, A. Goodman, A. Silva, S. Lazic, A. Morton, and R. Barker, “Hand
tapping: A simple, reproducible, objective marker of motor dysfunction in
Huntington’s disease,” Journal of Neurology, vol. 255, 2008, pp. 1145-1152.

[69] J. Jovicich, S. Czanner, D. Greve, E. Haley, A.V.D. Kouwe, R, Y. Gollub, D.
Kennedy, F. Schmitt, G. Brown, J. MacFall, B. Fischl, and A. Dale, “Reliability in
multi-site structural MRI studies: Effects of gradient non-linearity correction on
phantom and human data,” NeuroImage, vol. 30, Apr. 2006, pp. 436-443.

[70] Y. Wang, R. Schultz, R. Constable, and L. Staib, “Nonlinear Estimation and Modeling
of fMRI Data Using Spatio-temporal Support Vector Regression,” Information
Processing in Medical Imaging, 2003, pp. 647-659.

[71] R. Andrade, I. Oliveira, J.M. Fernandes, and J.P.S. Cunha, “A Grid Framework for
Non-Linear Brain fMRI Analysis,”
 Proceedings of HealthGrid, Geneva. 2007.

[72] “SPM - Statistical Parametric Mapping” , http://www.fil.ion.ucl.ac.uk/spm/ [accessed
May 3, 2009].

[73] “FSL” , http://www.fmrib.ox.ac.uk/fsl/ [accessed May 4, 2009].

[74] “Sun Grid Engine: Home” , http://gridengine.sunsource.net/ [accessed June 2, 2009].

[75] J. Montagnat, A. Gaignard, D. Lingrand, J.R. Balderrama, P. Collet, and P. Lahire,
“NeuroLOG: a community-driven middleware design,” Studies in Health Technology

 77 David Pacheco

Science 2.0: Sharing Scientific Data on the Grid

and Informatics, Global Healthgrid: e-Science Meets Biomedical Informatics -
Proceedings of HealthGrid 2008, 2008.

[76] “neuGRID” , http://www.neugrid.eu/pagine/home.php [accessed May 26, 2009].

[77] J. Geddes, S. Lloyd, A. Simpson, M. Rossor, N. Fox, D. Hill, J. Hajnal, S. Lawrie, A.
Mclntosh, E. Johnstone, J. Wardlaw, D. Perry, R. Procter, P. Bath, and E. Bullmore,
“NeuroGrid: using grid technology to advance neuroscience,” Computer-Based
Medical Systems, 2005. Proceedings. 18th IEEE Symposium on, 2005, pp. 570-572.

[78] M. Fowler and K. Scott, UML distilled: applying the standard object modeling
language, Addison-Wesley Longman Ltd., 1997 , http://portal.acm.org/citation.cfm?
id=270005 [accessed June 23, 2009].

[79] K. Arnold, J. Gosling, and D. Holmes, Java(TM) Programming Language, The (4th
Edition), Addison-Wesley Professional, 2005 , http://portal.acm.org/citation.cfm?
id=1051069 [accessed June 23, 2009].

[80] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and K. Houston,
Object-oriented analysis and design with applications, third edition, Addison-Wesley
Professional, 2007 , http://portal.acm.org/citation.cfm?id=1407387 [accessed June
23, 2009].

[81] E. Gamma, R. Helm, R. Johnson, and J.M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1994.

[82] “jlite Java API” , http://code.google.com/p/jlite/ [accessed April 18, 2009].

[83] J. Novotny, S. Tuecke, and V. Welch, “An online credential repository for the Grid:
MyProxy,” 2001, pp. 104-111.

[84] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and Efficient
Workflow Deployment of Data-Intensive Applications On Grids With MOTEUR,”
International Journal of High Performance Computing Applications, vol. 22, Aug.
2008, pp. 347-360.

[85] “JavaServer Faces Technology” , http://java.sun.com/javaee/javaserverfaces/
[accessed March 3, 2009].

[86] “jBoss Richfaces” , http://www.jboss.org/jbossrichfaces/ [accessed March 3, 2009].

[87] D. Distante, P. Pedone, G. Rossi, and G. Canfora, “Model-Driven Development of
Web Applications with UWA, MVC and JavaServer Faces,” Web Engineering, 2007,
pp. 457-472.

[88] “PostgreSQL: The world's most advanced open source database” ,
http://www.postgresql.org/ [accessed March 3, 2009].

[89] “hibernate.org - Java Persistence with Hibernate” , http://www.hibernate.org/397.html

David Pacheco 78

Science 2.0: Sharing Scientific Data on the Grid

[accessed March 3, 2009].

[90] I. Blanquer, V. Hernandez, D. Segrelles, and E. Torres, “Enhancing Privacy and
Authorization Control Scalability in the Grid Through Ontologies,” Information
Technology in Biomedicine, IEEE Transactions on, vol. 13, 2009, pp. 16-24.

[91] “GFAL Java API” , https://grid.ct.infn.it/twiki/bin/view/GILDA/APIGFAL [accessed
March 1, 2009].

[92] “SEE-GRID File Management Java API - EGEE” , http://wiki.egee-
see.org/index.php/SEE-GRID_File_Management_Java_API [accessed March 1,
2009].

 79 David Pacheco

	1. Introduction
	1.1. Motivation and context
	1.2. Objectives
	1.3. Dissertation structure

	2. Background Concepts and State of the Art
	2.1. The emergence of e-Science and the Grid
	2.1.1. The Grid concept and its role in modern science
	2.1.2. The Grid architecture
	2.1.3. Using the Grid

	2.2. Grid enabling technologies
	2.2.1. Grid middleware
	2.2.2. Robust storage on the Grid
	2.2.3. Grid community and standards
	2.2.4. Grid-enabled portals development
	2.2.5. Enabling technologies for Grid repositories
	gLibrary: Digital Asset Management System for the Grid

	2.3. Life sciences as an application domain
	2.3.1. Medical imaging overview
	2.3.2. HealthGrid: at the intersection of Grid and e-Health
	2.3.3. Selected HealthGrid repositories projects

	3. Supporting brain imaging research workflows
	3.1. The case for Grid enabled brain research
	3.2. Requirements for Grid-enabled virtual labs

	4. Grid interfacing framework1
	4.1. Why an interfacing layer
	4.2. IEETA Grid Framework (IGF) architecture
	4.3. Middleware services implementation
	4.3.1. IGDM: Storage Package
	4.3.2. IGDM: Virtual File System Package
	4.3.3. IGDM: Asynchronous Package
	4.3.4. Computing Package
	4.3.5. Proxy Package
	4.3.6. Security Package

	4.4. Using the IGF API
	4.4.1. Virtual File System API
	4.4.2. Computing API

	5. e-Science Portal for brain imaging research2
	5.1. The MAGI Portal as scientific community enabler
	5.2. Brain imaging research portal use-cases
	5.3. Domain concepts model
	5.4. MAGI System architecture
	5.5. Portal services implementation
	5.5.1. Security design
	5.5.2. MAGI Integration with the IGF Framework

	5.6. Experimental results
	5.6.1. Storage level
	5.6.2. Jobs execution

	6. Conclusions and Future Work

