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resumo 
 
 

Os desenvolvimentos científicos vindo do campo da biologia 
molecular dependem em grande parte da capacidade de análise 
de resultados laboratoriais por parte de aplicações informáticas. 
Uma análise completa de uma experiência requer, tipicamente, o 
estudo simultâneo dos resultados obtidos a par com dados 
disponíveis em várias bases de dados públicas. Fornecer uma 
visão unificada deste tipo de dados tem sido um problema 
fundamental na investigação ao nível de bases de dados desde o 
aparecimento da Bioinformática. 
 
Esta dissertação apresenta o GeNS, um data warehouse híbrido 
com uma abordagem simples e inovadora que pretende resolver 
diversos problemas de integração de dados biológicos. 
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abstract 
 

The scientific achievements coming from molecular biology 
depend greatly on the capability of computational applications to 
analyze the laboratorial results. A comprehensive analysis of an 
experiment requires, typically, the simultaneous study of the 
obtained results with data that is available from distinct public 
databases. Being able to provide a unified view of this data has 
been a fundamental problem in database research since the dawn 
of Bioinformatics.  
 
This dissertation introduces GeNS, a hybrid data warehouse that 
presents a simple, yet innovative approach to address several 
biological data integration issues. 
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1. Chapter 1 - Introduction 
1.1.  Bioinformatics: an historical perspective 

Over the last thirty years, several advances in molecular biology and in genomic technologies, 

such as the Sanger sequencing method [1] or the polymerase chain reaction [2] technique, for 

example, have been pushing the boundaries of life sciences. The need to store and catalogue an 

ever-increasing amount of biological information was a daunting task for which the traditional 

integration methods were simply too cumbersome to be of practical use. This issue, along with 

the propagation of affordable personal computers and graphical workstations, led to the creation 

of computerized databases and specialized tools for viewing, maintaining and analyzing data. A 

new and exciting field of research and development had emerged: Bioinformatics, a term 

popularized by Paulie Hogeweg [3]  in 1978.  

These advances paved the way for the Human Genome Program [4] (HGP), an international 

scientific research project that aimed to map all the genes in the human genome. This historical 

effort sparked the Genomic Revolution [5] around 1999, which translated into an enormous 

increase of the number of mapped genes (Figure 1.1, taken from [5]); by 2003, the genome map 

was virtually complete.  

This discovery is one of the greatest achievements in Bioinformatics and the human genome 

map has become the cornerstone of many research projects, particularly in molecular biology; it 

is and will be a vital component in the development of new medical technologies, for example. 

The HGP effectively streamlined the field of Bioinformatics, which kept evolving at an 

astonishing rate and, eventually, established itself as one of the most promising and exciting 

areas of research and development. 
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Figure 1.1 – A timeline showing the Genomic Revolution’s effects on GenBank [5] 

1.2.Overview

According to the latest release of the Nucleic Acids Research there are about 1170 databases in 

the field of molecular biology [6]. Each database corresponds to the output of a specific study or 

community and represents a huge investment whose potential has not been fully explored. For a 

scientist working in the area of molecular biology, being able to retrieve, analyze and combine 

data from multiple sources is of vital importance, as the data about one biological entity may be 

dispersed over several databases. For instance, for a gene, the nucleotide sequence is stored in 

GenBank [7], the pathway in KEGG Pathway [8] and the expression data in ArrayExpress [9]. 

By placing several distinct pieces of information in context, a much broader view is achieved. 

Hence, in order to fully understand the role of a gene, a unified view of the data is required and 

this task may require a considerable amount of time, as it is manually performed. 

The integration of heterogeneous data sources has been a fundamental problem in database 

research since the dawn of Bioinformatics [10-15]. The goal is to achieve better methods to 

combine data residing at different sources, under different schemas and with different formats in 

order to provide the user with a unified view of the data. Although simple in principle, this is a 

very challenging task where both the academic and the commercial communities have been 

working and proposing several solutions that span a wide range of fields. Notwithstanding, no 
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solution is perfect and the limitations found globally across solutions (extensively discussed 

along this document) reflect the difficulty to obtain a simple but comprehensive schema capable 

of accommodating the heterogeneity of the biological domain while maintaining an acceptable 

level of performance.  

1.3.  Objectives 

The objective of this work is to develop a biological data integration platform called GeNS 

(Genomic Name Server) that provides centralized access to heterogeneous data distributed 

across public databases, as well as the possibility to act as a name server by converting 

identifiers from a given gene. 

This task rises up a set of technical challenges such as what is the best integration strategy, how 

to solve nomenclature clashes, how to solve database-overlapping data and how to deal with 

huge data sets. In addition, the system should have an easy to understand (and maintain) 

relational database schema, and flexible enough to allow the integration of large set of 

heterogeneous biological data. GeNS’ performance is another issue that must be addressed if the 

system is to be of any practical use.  

Furthermore, access layers should be created to allow transparent data integration from external 

sources. Methods to retrieve, modify and integrate data from external sources (e.g. tabular file 

parsers, Web Services retrievers and SQL scripts) must be implemented if the system is to 

provide a unified view of biological data. 

Web Services methods are also quite important, as they provide easy and instant access to the 

data thus skipping the need to have a local copy of the database in order to use the system 

(while dodging considerable disk space restrictions in the process). Moreover, the Web Services 

also free users from operating system restrictions.  

1.4.Structure

This thesis is divided in five chapters: the second chapter provides a description of the state-of-

the-art regarding biological data integration issues and strategies, along with detailed 

descriptions of third-party data integration tools. 
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Chapter three, the longest chapter in this thesis, describes past work, GeNS’ requirements and 

the system’s architecture. In addition, database enhancements, data integration techniques and 

data accessibility are also extensively described in this chapter, along with the problems 

detected while developing the system. 

Chapter four describes validation tests regarding GeNS’ manual and programmatic utilization. 

Finally, chapter five provides a global insight on the accomplished work and points out new 

possibilities for GeNS regarding future work. 
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2. Chapter 2 – Integrating biological data 

Conceptual and technical issues hinder heterogeneous biological data integration. These 

difficulties will be summarized in the following sections, along with a set of integration 

techniques organized in three main strategies: Links, Mediators and Warehouses. Finally, 

several preeminent third-party biological data integration tools will be analysed. 

2.1.Conceptual Issues 

Biological data sets possess certain characteristics prone to raise conceptual problems in the 

development of a centralized data integration solution.  

To begin with, their very nature makes data modelling a hard task. Data modelling is the first 

step towards the construction of a data integration system. In this process, several data models 

that accurately define the problem and represent the data (along with their relationships) are 

created. These models are blueprints that specify which and how elements of the data will be 

stored inside a database. This process is of crucial importance in the development of any data 

integration system, especially when dealing with heterogeneous biological data; a lot of these 

system’s performance relies on solid, organized, carefully planned - and, usually, hierarchical - 

data structures. 

The inherent complexity of living organisms, along with the complexity of the biological 

systems themselves, often translates into a large number of concepts inserted into the system, 

along with the multiple relationships between themselves that must also be stored [16]. 

Figure 2.1, taken from [17], is a good example; here, the extent of the pathways associated with 

the citrate cycle is shown. If mapping all of these relationships for this cycle alone is not an easy 

task by itself, correctly mapping the myriad of pathways, related with a given organism, for all 

of its cycles is an immensely more complex task. Due to the heavy number of relationships 

between concepts, this kind of databases tends to grow at an impressive rate, easily reaching 

hundreds of millions of stored objects and gobbling up several hundred gigabytes of disk space. 

Moreover, new types of data continue to appear on a regular basis.  

As a consequence, and quoting Frédéric Achard et all [18]: “Not only must these new types of 

data be modelled properly but they also modify our perception of the old types of data”.
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Figure 2.1 –A pathway map for the citrate cycle [17] 

This means that the system must be flexible enough to allow the insertion of new concepts and 

provide means to update and/or delete all the objects related to old types of data being replaced 

by newer ones. This is especially important, as this kind of data is updated quite often (e.g., 

Uniprot [19, 20] spawns a new release set approximately every month). Being able to 

automatically collect and import new sets of data is also crucial to any data integration system 

because manually performed tasks can become rather costly, especially when dealing with this 

kind of complex, large sets of data.  

Additionally, post-integration data processing methods – generating new, computationally 

derived data that must also be integrated – are a need for many scientists in this field.  

The way in which all these objects and relationships are mapped is, beyond a shadow of a 

doubt, vital for the system’s success. One of two main strategies are usually followed: 

hierarchical [21] or graph [22] models. The former, as its name indicates, organizes the 

concepts hierarchically; while easier to comprehend, hierarchical models allow property 

inheritance from the parent concepts and tend to translate themselves to well-defined, 

expandable systems.  

Graph models, on the other hand, allow for a much greater flexibility, as concepts no longer 

need to be as strictly categorized and ordered as in hierarchical models. This is quite important, 

as heterogeneous biological data does not easily fit into a hierarchical schema.  
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The advantages/disadvantages of these two systems are, in fact, a dichotomy: while the former 

is easy to understand and expand (but may encounter fundamental design problems), the latter’s 

nature makes it the ideal choice for modelling complex data structures and their relationships (at 

the cost of the system’s intelligibility and expandability). 

Another possible issue that may arise during this kind of data integration is the organism’s 

taxonomical classification; organizing biological entities according to the organism they belong 

to is a very reasonable and common approach that allows for a structured view of the data. Each 

living organism has a taxonomical classification – except for some very specific situations, e.g., 

a recently discovered organism or a suspected new species – that groups organisms in a 

hierarchical structure, according to their common ancestors, biological, biochemical and 

physical characteristics.  

This taxonomical classification system, called the Linnaean taxonomic system, is based on the 

work of the Swedish biologist Carl Linnaeus and groups organisms into seven main categories1:

Kingdom, Phylum, Class, Order, Family, Genus and Species.  

Figure 2.2 shows Linnaeus’ table of the Animal Kingdom from the first edition of Systema 

Naturae [23].  Two hundred and seventy four years later, the taxonomic tree has grown so large 

that it can no longer be assembled in a single book: NCBI taxonomy statistics shows that their 

entire taxonomy tree had over 325.000 nodes in May, 2009 (a number that has been growing 

steadily over the past few years).  

As a comparative example, Figure 2.3 presents a segment of a taxonomical tree-view regarding 

three chosen species, highlighted in bold: humans (Homo sapiens), fox squirrels (Sciurus niger)

and sprot prawns (Pandalus platyceros). The fourth field in bold – Sciurus niger rutiventer – is

actually a subspecies of the fox squirrel. A subspecies is a taxonomic subdivision of a species 

and, as such, cannot exist without one; it represents a group of organisms separated from an 

original population of a given species.  

It is a product of the continual process of evolution and, given enough time, a subspecies will 

eventually become a species (a descendent of the original species it was once a part of).  

                                                     

1 Although several intermediate super- and subdivisions exist inside these main categories, they 
are not listed for simplification purposes.  
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Although NCBI’s excellent taxonomy tree can be freely downloaded from their website, any 

heterogeneous data integration system must have a database capable of incorporating not just 

the current taxonomic tree data, but also future versions of it.  On a more practical level, this 

would include introducing new species into the tree and deleting old ones, always keeping the 

coherence of the data. Hence, if a data integration solution is to incorporate this kind of 

information, content scalability is, once more, the keyword. 

Adding it all up, the peculiarities of heterogeneous biological data sets make data modelling a 

large-scale organizational task [24], always balancing flexibility and content scalability [25] 

with performance and simplicity, while attempting to minimize data redundancy and overly 

complicated database schemas. Up to this day, this task remains a challenge in bioinformatics 

[14]. 

2.2.Technical Issues 

From a technical point of view, several matters present themselves when developing this kind of 

systems. To begin with, the biological data sets, spread out across a large number of sources, 

must be retrieved [6]. 

The most common ways to access biological data are flat file download via FTP servers, 

consuming Web Service’s methods and remote database access by SQL. Although each way has 

its own advantages, disadvantages and typical use cases, each source decides which methods to 

implement and which to ignore, according to its data availability polices. Regarding the first 

(direct download), UniProt and KEGG, for example, publish their data as compressed flat files 

on FTP servers. Flat files are plain text files that contain one record per line (usually, from a 

single table only). This method provides bioinformaticians and users alike easy, fast access to a 

very large set of data. Nonetheless, if the amount of data to retrieve were small (or even 

moderate), then this method would not be appropriate because users would still have to wait for 

the retrieval and parsing of irrelevant data. The flat files format also depends of the source; it 

can be either in XML format (e.g., Uniprot), tabular - separating the data fields by tabs – format 

(e.g., KEGG), or even in a very friendly human-readable format such as the one used by Gene 

Ontology [22] (which, unfortunately, is particularly bad for parsers due to its unstructured 

form). 

Another way to access this data is by means of Web Services. Web Services empower mediator-

based data integration systems by entirely skipping the need to locally store information. 
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KEGG, Biomart [26] and ArrayExpress [27], for example, developed a Web Services API that 

allows users to query and retrieve information either programmatically or via web browser. This 

method allows quick access to small or moderate amounts of data. On the other hand, it is 

inappropriate for larger amounts mainly due to performance-related motives: it is too slow, 

especially when compared to the transfer rates that can be achieved by direct downloads. Still, 

Web Services are reasonable alternative due to their “popularity” amongst sources, especially in 

the absence of better retrieval methods. 

Likewise, accessing remote databases via SQL Access [28] is another valid alternative. SQL 

Access is an implementation of the RDA standard protocol that allows access to resources on 

remote database servers, as if the database was running locally. Similarly to Web Services, SQL 

Access enables its users to avoid certain software restrictions (e.g. operating system restrictions) 

by providing a common interface for data retrieval. In addition, by enabling SQL Access to a 

remote database its users are able to pose custom, complex queries and to obtain the data 

directly from the DBMS. PublicHouse - a set of biological databases constructed using the 

BioWarehouse [29] open-source data integration tool – is an example of such case. As if using 

the Web Services API’s, this method should not be used for large data sets.  

Database loaders, responsible for obtaining and parsing data from all external sources of 

interest, must be implemented for all access methods. They should also be as generic as 

possible, in order to facilitate integration from new sources and coping with changes in older 

ones.

Another option is the use of Web Crawlers [30]. Web Crawlers are software programs that 

browse the World Wide Web methodically, retrieving HTML pages and collecting their content. 

This content can, subsequently, be indexed either by the Web Crawler itself or by external 

programs. By repeatedly downloading and processing the content of a large amount of websites, 

Web Crawlers are very good in data mining operations and, as such, are pivotal tools for some 

larger systems (e.g. search engines). Due to their modus operandi, in which these programs run 

for long periods of time because of the enormous amount of websites that must be analysed), 

Web Crawlers can provide an interesting feature for biological data integration systems: 

continually inserting and/or updating data in real-time without human interaction. If correctly 

implemented, such a feature could bestow GeNS with an always-updated set of data (with 

minimum maintenance).  

Provided that the system can access and transfer the desired data sets, their integration poses 

both short and long-term issues. While the former have already been detailed in section 2.1 
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(conceptual issues regarding how to map some many fundamentally different concepts and the 

relationships between themselves), the latter refers to the serious physical scalability issues 

(regarding disk space, memory constraints, etc) [18] imposed by  the sheer volume of biological 

data sets and their continual, extraordinary growth on the long run. This is especially important, 

as over the past few years high-throughput data sequencing techniques have been producing 

larger and larger amounts of data [31]. 

2.3.Data Integration Strategies 

Although it is consensual that the use of biological data spread over the web is essential to 

extract knowledge from local datasets, it isn’t always clear what is the best method to access the 

data [12]. In this section we review a set of integration techniques organized in three main 

strategies: Link-based, Mediators and Warehouses.  

2.3.1. Link-based

Navigational or link-based integration has been the first and the most successful approach to 

data integration. This approach consists mainly of web-based systems that offer an interface that 

provides navigation and searching operations across several data sources. The reason for the 

success of this approach is that it sticks very closely to the nature of the web. In the context of 

molecular biology the problem is that an increasing number of sources on the web require users 

to manually browse through several web pages and data sources in order to obtain the desired 

information. In addition, since each database has its own interface the user has to “learn” how to 

navigate in every single database.   

In order to solve those problems and to simplify the researcher’s task, a system that aggregates 

all the direct links to the existent database is provided, so the user only needs to access a single 

web site and provide the query string only once, in order to get all the available information 

about a specific subject. In some implementations no database is used; the identifiers, needed to 

construct the URL query, are obtained in runtime by parsing the initial query, or the web page.  

However, in others implementations of this technique, a local database is used to store the 

identifiers that have been previously obtained. One of the biggest advantages of those systems is 

that the data is always updated due to the fact that little or no local data storage is done 

(according to each previously mentioned variation). As a consequence, the development process 

is simplified. 
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cope with as many concepts as its sources can store. Simply put, there is no need to organize the 

data because the system does not have a local database and nothing is locally stored. Instead, the 

results are already organized in their remote sources. If one were to add a new data source to the 

system, only the mediator engine (responsible for translating the original query to the sub 

queries that form the view) would need adjusting.  

On the other hand, the lack of performance derived from parsing the original query and 

retrieving the data in runtime from the sources is a serious drawback, as the system’s total delay 

corresponds to the sum of the initial parsing operation with the delay of each sub query. What’s 

more, the system’s reliability is also a considerable disadvantage since all of the results come 

straight from their sources. If an external data source ceases to be available for any reason at all 

(e.g., maintenance issues), the mediator based integration system will not be able to retrieve all 

of the data it is supposed to.  

On top of that, the system is also vulnerable to network failures, as it loses contact with the 

external sources and has no way to present the requested results. Finally, the query translators 

are difficult to create and update, undermining the system’s scalability. 

Using the mediator approach is particularly interesting when the sources are considered to be 

reliable, have moderate to large dimensions and the access is not intensive. Some examples are 

BioMediator [35] and SEMEDA [36].  

Adding it all up: 

� Flexibility (multiple views from the same 

data) 

� Data is always updated 

� Low hardware requirements 

� Performance 

� Reliability 

� Derived data cannot be stored 

� Scalability  

� Difficult to implement a version 

control system 

2.3.3. Warehouse

A data warehouse is a “subject-oriented, integrated, time-varying, non-volatile collection of data 

that is used primarily in organizational decision making” [37]. Although at first sight this 

definition may seem quite similar to that of an ordinary database, data warehouses differ on 

their purpose: answering abstract, complex questions that cannot be answered by a single 
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database. Instead, warehouse integration consists in physical integrating data from multiple 

external sources into a local database and executing all the queries directly on it. In order to use 

data warehouses, a unified data model that can accommodate heterogeneous information has to 

be developed, along with software loaders that fetch and transform data (to match the local 

unified schema) and load them into the warehouse itself.  

After this initial setup phase, the warehouse can be used as a single interface to answer any of 

the questions that the source databases can handle (assuming no information is discarded during 

the integration process), as well as those that require the interlink of several concepts that are 

not present in any single database, thus proving a unified view of the data. Data warehouses are 

high-performance, reliable systems (two key features for biologists and bioinformaticians). In 

addition, version control is another important factor easily implemented in data warehouses, 

crucial in large databases.

However, the potential cost associated with the development of this kind of systems should not 

be taken lightly. As seen in section 2.1, developing a global data schema that encompasses all 

the desired types of data and their relationships is a hard task. Some usual errors are the 

development of complex schemas that tend to be difficult to understand, to maintain and to use, 

or the development of simple and plain schemas that hardly reflect the domain of the problem 

and be compatible with future database releases. Data replication is also frequent in these 

databases, as the same entity can exist in multiple sources.  

On top of that, new kinds of data types are constantly emerging. This fact, when combined with 

the occasional changes in an external data source may cause inconsistencies or even errors that 

(tend to) require human interaction. 

Another problem is that once as the data is locally stored, considerable hardware resources - 

such as disk space and memory - are required. These will grow steeper over time, as the volume 

of data in UniProt, EMBL and KEGG, for example, keeps increasing over the years. 

Furthermore, trained personal that will maintain and update the system are also a necessity.  

Usually, warehouses are pointed to be best suited for the creation of highly curated datasets 

focused on a specific and narrow area of research. Successful implementations of warehouses in 

the domain of molecular biology are Biozon [38] and BioWarehouse [29]. 

There are two opposing theories regarding how to build a data warehouse: Online Transaction 

Processing (OLTP) [39] and Online Analytical Processing (OLAP) systems [40]. 



Data Integration Strategies

15 

OLTP are distributed systems that typically deal with a heavy transactional loads [39] [41]. 

These systems are used to store critical business tasks and are the primary point of entrance for 

new data. As such, they store small, always updated sets of data that reflect the current state of 

the system. 

The development of this kind of warehouses follows a thoroughly defined plan, complete with 

milestones and deadlines. These systems employ tight, rigorous data modeling techniques that 

fully apply Codd’s data normalization rules [42] to break down data to its most simple 

structures.

As a consequence, the database schema is optimized for consistency, always seeking data 

integrity and easily creating a large number of tables in the process. New data can be quickly 

inserted as well as updated, although joining data from distinct tables might prove more difficult 

than expected due to the resulting complexity of the schema; having to merge data from twenty 

or more tables is bound to take its toll on the system. As a result, retrieving data from these 

databases may take longer than their OLAP counterparts [43]. 

Furthermore, their poor intelligibility is automatically translated into low user-friendliness, 

making it hard for new users to grasp how the database works. OLTP databases are also 

frequently content specific, hence incorporating limited amounts of data, and services running 

on top of them frequently need to access multiple databases at a time in order to merge 

information on different subjects, thus creating a global panorama. 

On the other hand, there’s OLAP – Online Analytical Processing – based systems. OLAP 

systems are centralized systems (e.g. data warehouses) that collect data from multiple (OLTP) 

sources, consolidating and merging data on several aspects [41]. These systems keep track of 

the status of its sources’ data over time, enabling the creation of a timeline keeping track the 

progress of a given aspect. 

Systems running on top of OLAP databases typically do not need to access more than one 

resource in order to get a unified view of the data. Moreover, their disk space requirements are 

also much larger due to the need to store old data. 

Regarding its database schema and unlike OLTP based systems, this new approach relies not on 

a detailed, structured plan, but on consecutive iterations that serve to build a thoroughly tested 

system. Quoting Ronald Gage Allen [43]: “An effective and robust design can’t be planned; it 

must be iterated”.
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The data is stored either on star or on flake schemas [40] (whether it needs to be ordered 

hierarchically or not). These schemas favor performance and intelligibility over normalization2,

albeit if the price to pay is a certain level data replication in the database. As a direct result, 

inserting or updating information in the database requires a greater deal of data transformation, 

thus taking longer for its completion (compared to OLTP based schemas). However, as merging 

data from different tables becomes a much easier task, the database is able to retrieve the results 

faster [43]. 

While opposing ends of a spectrum several intermediate levels from these two approaches can 

be drawn, as neither is always the right choice. Instead, the answer lies in the characteristics of 

the problem itself: these must be identified and carefully weighted in order to determine the best 

solution towards a unified data integration system. 

In sum: 

2.4.Third-party Data Integration Solutions 

In this section, several preeminent third-party data integration solutions will be described, along 

with their advantages and disadvantages. These tools will be either link-based, mediator-based 

or data warehouses, although many successfully manage to accumulate characteristics from 

mixed architectures. 

                                                     

2 Data is still normalized, although not as much as in OLTP based schemas 

� Performance 

� Reliability 

� Version control support 

� Post-integration derived data support 

� Ideal for large data sets 

� Steep hardware requirements 

� Maintenance (human interaction is required 

for updating the data) 

� Hard to design and main database schemas 

� Data loaders must be developed 

� Integration operations suffer from 

unavoidable long delays in data retrieval and 

storage; the data must be previously parsed 

before it can be used 
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2.4.1. BioWarehouse 

BioWarehouse is “an open source toolkit for constructing bioinformatics database warehouses 

using the MySQL and Oracle relational database managers”, developed by SRI International’s 

Artificial Intelligence Centre. A component of the Bio-SPICE project, BioWarehouse’s main 

goal is “to enable different investigators to create different warehouse instances that combine 

collections of DBs relevant to their interests” [29]. 

 BioWarehouse provides its users all the benefits from the data warehousing architecture while 

attempting to minimize two of its greatest defects: the need to design a stable and correct 

relational database schema and having to develop software loaders that retrieve, transform and 

integrate the data.

Currently supporting fourteen distinct databases (including UniProt, KEGG, Gene Ontology and 

GenBank, among others), the provided schema was designed to integrate several 

morphologically different types of data (e.g., genes, proteins, nucleic acids, pathways), not only 

from external data sources but also from locally produced data. However, such flexibility comes 

at a price: complexity. BioWarehouse’s relational database schema has four types of tables: 

constant tables, object tables, linking tables, and special tables. While the first type – constant 

tables - is used to contain scientific constants (e.g., controlled vocabulary terminology), the 

second groups all the tables storing entities (i.e. types of data, such as pathways) in the database. 

The third type is used to store all the relationships between entities and, finally, the fourth type 

stores data warehousing specific information (encompassing meta-data, loader specifications, 

cross-references, etc). All in all, nearly two hundred tables exist in this schema, as depicted in 

Figure 2.5. 

Fortunately, the set of tools provided by SRI considerable minimizes this repercussion, as most 

of the users no longer need to fully understand the schema itself in order to use the system. 

These tools range from database loaders (written in either C for the MySQL DBMS or Java for 

the Oracle DBMS) to data mining utilities (written in Perl; several example scripts are also 

provided to allow the creation of user-customized scripts).  

The database loaders parse and transform data found in flat files to the relational database’s 

schema. Along the process, only a minor amount of database-specific information is discarded 

and, in addition, some of the data suffers negligible changes during its translation to the current 

schema. These loaders do not tackle the problem of data replication, found when two or more 

databases contain information about the same element; this task would make data loaders not 
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All things considered: 

� Performance 

� Reliability 

� Version control support 

� Large datasets 

� Robust database schema, complex yet 

usable due to the provided tools 

� Supports MySQL and Oracle DBMS 

� Large community of users 

� Extensive documentation, including 

developer support 

� Availability (local or remote instances) 

� Steep hardware requirements 

� Maintenance (human interaction required 

for updating the data) 

� Integration operations suffer from 

unavoidable long delays in data retrieval 

and storage 

� Some data sources are yet to be supported 

(e.g. RefSeq) 

� Certain databases cannot be found in 

remote, public servers (e.g., KEGG) due 

to licensing restrictions 

� Microsoft SQL Server DBMS is currently 

not supported 

2.4.2. BN++

BN++  is an open-source biochemical network library and “a powerful software package for

integrating, analyzing, and visualizing biochemical data in the context of networks” [44]. 

Developed by the Centre for Bioinformatics Saar and the Centre for Bioinformatics Tübingen, 

BN++ was designed for biologists and bioinformaticians alike and its purpose is to allow the 

visualization of complex biochemical processes and networks.  

BN++ uses a comprehensible object-oriented data model (called BioCore [45]) that can model 

nearly all biochemical processes. Built with extensibility in mind, BioCore has two distinct 

frameworks (in C++ and Java) that enable rapid application development, an important feature 

for software developers. 

From this data model, a data warehouse, that stores biochemical data and its processes, was 

created using MySQL. Several data loaders that allow data retrieval from about ten different 

sources (including KEGG, RefSeq [46] and BioCyc [47]) were implemented. During multiple 

source data integration tasks, some heuristics that prevent data replication have been provided; 

these allow for controlled, customizable replicated entry removal and play an important part in 

keeping the database clean and healthy. Nonetheless, manual curation is a still a necessity in 

these cases. Figure 2.6 (taken from [44]) shows BN++’s architecture: 
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able to implement a two-tier model that retrieves and translates data. BioMediator uses four 

independent components: the query processor, the Source Knowledge Base (SKB), the 

metawrapper and a set of wrappers. BioMediator’s query processor provides an API that allows 

users to communicate with the rest of the system via URL parameter passing.  

The metawrapper, developed in Java, is responsible for semantically transform incoming 

queries and outgoing results according to the mapping rules residing in the Source Knowledge 

Base (SKB). This component is the heart of the system and acts as a broker between the query 

formulator and the wrapper responsible for retrieving the results. 

BioMediator does not rely on the creation of views or complex queries that tend to slow down 

these systems. In lieu, a simplified ontology that contains only the shared entities from each 

source was developed which, in turn, acts as a basis for the creation of a mediated schema. 

Because of the ontology it is based on, this schema inherently provides content filtering as 

undesired sources were filtered at birth. This mediated schema is stored on the system’s Source 

Knowledge Base (implemented in the open-source Protégé Framework), along with all the 

possible data sources, their respective elements and the mapping rules. Due to this module’s 

importance, the SKB must be used locally as a set of class libraries that the users can use to 

modify the modeled schema via Protégé’s GUI. Finally, independent data source specific 

wrappers (also implemented in Java) allow the metawrapper to connect to the external sources, 

to pose queries and to retrieve the desired data (in XML format). Subsequently, these results 

will be integrated into a single XML document in the metawrapper component and returned to 

the user. 

This modular approach renders BioMediator a very flexible and extensible system: the 

mediation schema can easily be altered; the independent wrappers make the process of adding 

and updating sources trivial; several instances of the same component may run at the same time 

in a given computer. All in all, it is a solid system designed with the user’s exploration search 

behavior in mind. 

Summarising: 

� Data is always updated 

� Low hardware requirements 

� Modular, extensible architecture 

� User-friendly and efficient 

� Reliability 

� Maintenance (human interaction required 

for updating the data) 

� Lacks data analysis tools 
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2.4.4. Biozon

Biozon is “a unified biological database that integrates heterogeneous data types such as 

proteins, structures, domain families, protein-protein interactions and cellular pathways, and 

establishes the relations between them” [38]. Although originally develop in the Department of 

Computer Science in Cornell University, Biozon has moved to Stanford University since late 

2007.  

Biozon implemented a data warehouse system that holds a large number of entries and 

relationships in a complex, detailed and tight graph schema (Figure 2.9 taken from [38]) built 

around a hierarchical ontology. In its hybrid schema, each type of data (called a document)

corresponds to a node and its relationships to edges.  

Every type of data can be broken down into smaller subsets (for example, protein sequences 

into amino acids), a fact that clearly demonstrates the system’s high granularity. The system’s 

documents are associated in knowledge domains by means of a hierarchical classification 

system that orders them according to their origin and content. As a result, each document in the 

graph is grouped in classes that can relate to their parent classes though an inheritance 

association. Similarly, a relational classification hierarchy was developed in order to ascertain 

exactly how two given documents are related; each relation has an associated class that 

describes its semantics. 

The use of these three systems (graph model, document and relation hierarchy) confers a high 

degree of versatility to the system: Biozon is able to correctly characterize both the global 

structure of interrelated data and the nature of each data entity, both currently and in the future. 

Storing derived data is also possible with this implementation, as is running graph search 

algorithms such as A* or Dijkstra – an important feature unique to this architecture.  

 Biozon incorporates data from UniProt, RefSeq, PDB, KEGG and GO, among others sources 

via set of data loaders written in C. During integration procedures, every source’s data is 

converted to a new graph and compared with the current schema, in order to keep data 

replication to a minimum. This process is also used during database updating operations.  
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Figure 2.9 - Biozon's schema [38] 

Concluding: 

2.4.5. BioMart 

BioMart, formerly known as EnsMart [49],  is “a query-oriented data management system 

developed jointly by the Ontario Institute for Cancer Research (OICR) and the European 

Bioinformatics Institute (EBI)” [26]. 

While an open-source solution, this cross-platform system provides access to a large set of data 

through a series of query interfaces. Despite the fact that, architecturally speaking, an instance 

of BioMart is a data warehousing solution, this system offers a unique set of features that make 

� Performance 

� Reliability 

� Thorough, expansible, non-redundant and 

coherent architecture 

� Post-integration data processing and 

analysis algorithms 

� Web interface: http://biozon.org

� Complex schema makes it hard to develop 

new applications 

� Steep hardware resources 

� DBMS: PostgreSQL only 

� The DB is not available for download 
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it an excellent choice for the task at hand since BioMart was developed to work with multiple 

instances of itself. As a whole, it is a set of distributed instances that communicate amongst 

themselves. 

 Hence, BioMart can be used as both data source and a Web portal that retrieves data from other 

sources of data (either local or remote). This unique implementation issues a wide-variety of 

possibilities, such as enabling the development of domain-specific databases, which can be 

queried and linked to other instances (if they possess a common identifier). In addition, this 

system also supports other third-party data sources due to its integration in Taverna [50], 

Cytoscape [51] and BioConductor [52] (among others), further expanding the range of the data 

sets. 

BioMart uses a very simple three-tier architecture that confers modularity to the system. Firstly, 

the data integration module: composed of one or more databases (where each database may 

contain multiple “marts”) supporting MySQL, Postgres SQL and Oracle DBMS, this module 

performs data storage under a reversed star model [49]. 

The second tier is the Perl API that bridges the gap between the configured datasets and the 

available data sources. Without this API, BioMart instances would not be able to communicate 

with each other and, therefore, the system would no longer be distributed.  

Finally, the third tier implements the four query interfaces that BioMart yields: MartView, 

MartService, MartServiceSOAP and MartURLAccess. MartView (Figure 2.10) is the name of 

the Web interface that enables users to pose complex queries and to retrieve the results, either 

by displaying them on the website or by downloading them in a compressed file format. In 

addition, MartView also allows URL/XML requests which can either be constructed 

programmatically or via the Web interface itself. For the latter, one must click the “XML” 

button on the top right corner after building the query, copy the results and paste them in the 

following URL: http://www.biomart.org/biomart/martservice?query=XML3.

Finally, the results can either be viewed directly on the browser or downloaded via downloader 

applications (e.g. wget). 

                                                     

3 The user must replace “XML” with the previously obtained XML code. 
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had two modus operandi: linked and unlinked. Figure 2.11, taken from [53], shows TAMBIS’ 

architecture: 

Figure 2.11 - TAMBIS' architecture 

While the former enabled querying and browsing remote sources (but its terminology was 

restricted to 250 concepts), the latter supported around a thousand and eight hundred concepts 

but could only access local resources. 

Unfortunately, the project eventually ran out of funding and ceased its activities. Nevertheless, 

TAMBIS is still historically relevant due to its innovative, intuitive interface. 

As such, the following table presents an overview of the TAMBIS project: 

2.5.Summary

Mapping numerous biological concepts and the relationships between themselves – whilst 

overcoming their typically large volume – is a difficult task for which no consensual solution 

exists. While several distinct architectural approaches exist, each has its own set of advantages 

and disadvantages; as such, the requirements for the problem at hand should be carefully 

analysed in order to choose the most appropriate architecture, as should be third-party data 

integration tools.

� Data is always updated 

� Low hardware requirements 

� OS independent 

� The project ran out of funding 

� Performance and reliabilty 

� Limited data sources 
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3. Chapter 3 – The GeNS platform 

This chapter contains a detailed overview of the GeNS platform in all its aspects, along with a 

comparison of the previous work.  

3.1.Previous Work 

GeNS is based on a previously existing biological data integration platform codenamed 

BioPortal, also developed in the UA.PT Bioinformatics groups. BioPortal attempted to combine 

the best characteristics of all three data integration methods (data warehouses, mediators and 

link-based systems), in order to boost the system’s performance and user-friendliness. To do so, 

BioPortal relied on a flexible and reconfigurable architecture that could access data by means of 

local integration of selected data sets (e.g. Entrez Gene, Gene Ontology), mediated queries (e.g. 

KEGG Gene, UniProt) and by providing link-based navigation to third party data sources (e.g. 

KEGG Orthology, KEGG, Pathway, ArrayExpress), according its nature. Figure 3.1 describes 

BioPortal’s proposed architecture. 

Figure 3.1 - BioPortal's architecture 

BioPortal’s architecture describes the use of four distinct database loaders – a concept still 

present in GeNS, as is its local storage component and Web Services provider.  

As mentioned, the data would either incorporated in its local storage database or retrieved in 

real time, according to its nature: large, frequently accessed data sets should be locally stored in 

order to minimize the system’s delay, while other smaller, less used data sets should be either 

mediated or made accessible via links. If the data was truly relevant (i.e. critical, frequently 
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accessed data) it would be integrated in the local database. Therefore, it would require pre-

integration processing. This processing was, in fact, dynamically performed, as an external 

XML file (containing the transformation rules) would be accessed, its contents read and applied. 

As a consequence, adding new data to the system would prove much easier due to the added 

flexibility of only having to update the reference file. Likewise, it would be very easy to alter 

the way the data would be mapped in the database. 

If, on the other hand, the data were to be retrieved remotely, then the system would have to 

know all the possible identifiers of a given object in the database (as these tend to have multiple 

names, according to the sources). To do so, BioPortal required a nameserver that performed that 

task. This component is, in fact, a database dedicated to the single task of converting identifiers. 

As an auxiliary performance booster, a cache of the retrieved data would be kept in order to 

accelerate BioPortal’s latency by keeping a copy of recently performed requests. If a user were 

to repeat a request, there would be no need to contact the third-party data source because 

BioPortal would still have the results. Thus, the cache would provide a copy of them and the 

system’s latency would be minimal. 

Finally, the data would be made accessible by REST based Web Services that could present the 

results either in XML or JSON format. 

However, BioPortal had a design flaw that effectively crippled the system: scalability. 

Figure 3.2 - BioPortal's physical database schema 
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BioPortal’s database uses a protein-based hierarchical model. Each organism in the database’s 

taxonomical table has a list of associated proteins, each of them belonging to a single organism. 

The database followed an OLAP approach, as it hierarchically stored data on a centralized, 

flake-inspired schema. This hierarchical method of organization not only simplifies the database 

schema (thus making it easier to understand and maintain) but also greatly improves the 

system’s performance upon queries.  

The SpeciesList table is at the root of the schema, storing specie related data. Each species has 

an unlimited number of proteins stored in the Specie2UniProtEntryRelation table, which, in 

turn, can have multiple identifiers (in the EntryGeneIdentifier table) and multiple mappings to 

other biological entities (e.g. pathways). Every entry associated with a protein must have a 

referring EntryType Id (that keeps track of the kind of data) and may have a corresponding 

description.

Despite having a low number of tables, this schema can efficiently store multiple kinds of data. 

However, it is not very easy to understand (mostly due to the names of the tables), nor will it 

avoid data replication issues with large sets of data because of its low data normalization. If the 

same protein could be found on a multitude of species (a common occurrence in biology), 

several distinct entries of that same protein would be created on our protein table (one for each 

specie on which that protein could be found). For example, if protein X were associated with 

species Y and Z, there would be two distinct entries for protein X on the protein table. This is a 

big problem due to the fact that each protein has two different types of relation - one to its 

protein identifier and another to the related biological entities (which account for large bulks of 

data). Consequently, adding a new protein to the system could imply the copy the associated 

biological processes from one protein to another even though these might contain exactly the 

same data, wasting resources.  

This implementation would directly translate in serious data replication. On a long enough 

timeline, the sheer size of the database would make the system rather useless, making it 

virtually impossible to add or update any significant amount of data thus seriously crippling its 

scalability.  

In addition, its nameserver relied on a one-to-one mapping structure that made each pair of 

concepts to be mapped on a table generated during runtime. Hence, if a user wanted to get a list 

of all the PubMed entries regarding all the genes belonging to the Saccharomyces cerevisiae

organism (commonly known as Baker’s yeast), for example, each gene identifier would have to 

be stored inside a table called sce_gene2Pubmed.
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Given the complexity of biological entities, their relationships and the number of third-party 

data sources, any query that passed through the nameserver would create a large number of 

tables during its execution, making it impossible for the nameserver to efficiently store and 

retrieve the required data due to its own size. Simply put, the nameserver was also prone to 

scalability issues – probably even larger than the ones affecting the database - and, as such, so 

was BioPortal.

As a result, the platform was placed on hold and only the local storage and its related loaders 

were implemented. 

3.2.Requirements

In order for GeNS be usable, one of the main requirements was that its schema should be easy

to understand and maintain. To address this issue, we have focused many of our efforts to 

achieve a comprehensible schema, with a limited number of tables. 

Another vital requirement was that the system should be scalable in size, in order to contain 

several gigabytes of data and hundreds of millions of biological entities relationships. The 

system should also be scalable in terms of the number of databases that it stores. This should 

be obtained without having any changes in the schema. Even containing a huge leap of data, the 

system should be efficient in order to give short response times to the most typical queries.

This is especially important because we want this tool to be used to answer user-defined queries 

and also to be a platform that could be used by other software tools. To attain this requirement, 

we have stored the gene identifiers and the bio entity entries in separated tables and have 

optimized the database with the addition of indexes. 

The data stored in the database should be accessible through the use of several methods. To 

achieve this we have implemented a set of web services, which can be used to query and extract 

data from the database, in addition to SQL queries. 

In addition, the possibility to track the current version of the inserted data, as well as being 

able to update the existent data without having to change the entire database are two interesting 

features that should be achieved. 
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3.3.Architecture

Guided by the previously mentioned project requirements and priotizing query response times, 

scalability, coherency – and due to the particularities of semi-structured data – the following 

architecture was defined (Figure 3.3): 

Figure 3.3 - GeNS' architecture 

GeNS uses a three-tier, database centric architecture that separates data acquisition, data 

integration and storage, and data presentation into distinct, non-overlapping processes.  

This separation translates into system-wide modularity and data encapsulation (thus 

implementing Dijkstra’s separation of concerns [54]). While the former trait presents improved 

maintainability, faster development and flexibility by dividing the tasks into modules, the latter 

increases the system’s stability by providing well-defined, solid interfaces that maintain the 

consistency of the system (even after changes in the lower layers) and restrict the user’s queries 

to a set of pre-defined methods (thus, increasing the system’s security).  

GeNS eschewed the nameserver approach that flawed BioPortal. Instead, the data warehouse 

facet rose to prominency by storing a larger set of types of data and uniting them under an 

internal identifier, ensuring their consistency.  

In the following sections, each tier of the model will be extensively described. 
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3.4.Data Acquisition Tier 

As its name clearly indicates, the Data Acquisition tier encompasses data retrieval and 

transformation operations. Owing to the fact that biological data sets are spread across several 

databases - each with its own schema and accessibility options – methods to retrieve the desired 

information had to be developed, in order to populate GeNS’ database.  

About the data sources 

Selecting the most representative external data sources and determining how their data can be 

retrieved are the first two steps towards providing a unified view of the information. Any 

external data source will only be suitable for GeNS if these two very important conditions are 

met.  

Regarding the former, selecting the correct sources goes a long way in determining the overall 

quality –and usefulness – of the data integration system. The sources should provide interesting 

data sets (preferably large, curated and of high-quality), as the system would surely lose its 

usefulness if its data were incorrect or rather limited. In addition, a certain level of correlation 

between the sources must exist in order to successfully map cross-references amongst entries of 

distinct sources, i.e., the sources must provide references from their entries to correspondent 

entries in other databases if a unified view of the data is to be created. Typically, molecular 

biology databases already provide references from their entries to the correspondent ones in 

other databases, albeit incomplete in both numbers of entries and of sources.  

Not surprisingly, correctly correlating entries from different sources is yet another classical 

problem in this field of work for which no consensual solution has been found [55]. 

The sources must also present adequate data retrieval methods if the source is to be of any 

practical use; after all, even with very interesting data sets, a source is still rather useless if one 

cannot access its data satisfactorily. As seen in chapter 2.2, there are three methods through 

which external sources can publish their data: 

� Flat files

� Web Services 

� SQL Access 
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Flat files are an ideal choice for transferring and importing large chunks of data, as the high-

bandwidth of the servers in which these files are stored allows for quick, painless access. When 

taking into account GeNS’s data warehouse based architecture, where the users only have to 

wait once for the parsing procedures (after which, the data is integrated in the local database 

thus no longer requiring any transformations), the benefits clearly outweigh the drawbacks. 

Unfortunately, not all sources choose to publish their data this way (e.g. Biomart), pushing its 

users towards other options such as Web Services and SQL Access via RDA. Due to the fact 

that the former is much more common amongst third-party data sources, developing Web 

Services data loaders was deemed an important objective for GeNS (superseded only by flat-

files loaders) and was given priority over SQL Access scripts.  

Having identified the main selection requirements, the following data sources were selected: 

UniProt [19], KEGG [21], OMIM [56], NCBI Taxonomy [57], Biomart [26], ArrayExpress 

[27], PubMed [58]. 

UniProt, born from the fusion of Swiss-Prot [59], TrEMBL [59] and PIR [60], is and will be a 

top pick for any biological data integration system. Containing over a hundred and thirty types 

of data, it provides a publicly available, very comprehensive and frequently updated set of 

proteinic data that, simply put, cannot be ignored. Although comprised of several databases, 

only UniProtKB (UniProt’s Protein Knowledgebase) is currently being integrated in GeNS. 

UniProtKB encompasses two very important sources of data: Swiss-Prot and TrEMBL. While 

the former provides high-quality, manually curated proteinic annotations, the latter presents a 

very large set of unreviewed, automatically annotated data.  

All in all, over five gigabytes of compressed data - which grow to thirty gigabytes, after 

uncompressing - are periodically published (more specifically, two XML flat files) in each 

release of Swiss-Prot and TrEMBL in UniProt’s FTP server. UniProt’s data must be parsed 

before integration procedures, in order to filter out unnecessary the XML overhead and 

unnecessary data. 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is another very important source of data 

that aggregates over nineteen different databases. Presently, GeNS incorporates four of them: 

KEGG Gene, Orthology, Pathway and Drug.  

While the first source publishes its data in tabular formatted Flat files (that do not require 

parsing before integration procedures), data from the other three sources is in a loosely 

structured, human recognizable format that must be parsed in order to enable its integration. In 
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addition, each source has its own content specific format, due to the need to store different 

fields.

For example, KEGG Drug must store atom-related data, while KEGG Orthology does not due 

to the nature of the data itself. As a consequence, KEGG Orthology Flat files do not possess the 

“ATOM” tag found in KEGG Drug’s. As a result, each source must have its own modified 

parser, perfectly adapted to the flat file’s format. 

Despite the fact that these sources already encompass a large variety of concepts (UniProt alone 

has over a hundred and twenty different types of data), some important concepts are still 

missing (such as gene locus information and expression data), while others are indeed present 

yet incomplete (e.g. genetic disorders, literature references, taxonomical details). 

NCBI’s OMIM [56] (Online Mendelian Inheritance in Man), a thorough, curated human genes 

and genetic phenotypes database. As previously mentioned, in spite of the fact that UniProt 

already comprises this kind of data to some level, the possibility of integrating data straight 

from OMIM bestowed GeNS with a much more detailed level of knowledge. OMIM allows 

direct data retrieval via its FTP server, where Flat files (with its specific loosely structured, 

human recognizable text format) containing phenotypes, gene and disease names, among others, 

can be found. 

Similarly, UniProt (more specifically, SwissProt) also possesses a manually selected set of high-

quality literature citations. Nonetheless, quality comes at a price: quantity. The need to link 

more and more articles regarding a given entry in the database is a possibility that should not be 

ignored. As such, GeNS also integrates data directly from NCBI’s PubMed in order to map as 

much information as possible.  

PubMed is a quality search engine for biomedical articles that contains millions of entries and is 

powered by the Entrez retrieval system. PubMed has several tabular formatted flat files in its 

FTP server that allow direct gene to article mapping, facilitating its integration in GeNS. 

UniProt also provides rather rudimentary taxonomical data (by keeping track of the organism’s 

taxonomical id only); in order to solve this issue, this data was complemented with NCBI 

Taxonomy data. As a result, the organism’s scientific name and short name are now fully 

integrated in GeNS. In addition, clinical trial data is also being integrated through the Arabella 

crawler [61]. Using a web crawler enables retrieving data only available on web sites, albeit at a 

slower pace than via parsing flat-files or even Web Services. After crawling through the U.S. 
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National Institutes of Health’s Clinical Trials website 4, the data is returned in an XML 

formatted flat-file. This file is subsequently parsed and imported to the database via an SQL 

script. Finally, the last two chosen sources: Biomart and ArrayExpress both incorporated via 

Web Services. Biomart was selected due to its extensive gene locus information (that UniProt 

did not have) and ArrayExpress was because of its expression data (also missing in UniProt). 

Altogether these databases represent a very healthy set of data that span over 150 different data 

types. By merging all of this data, almost 7 million unique gene entries and over 120 million 

biological relationships were obtained. 

Figure 3.4 shows the most relevant of GeNS’ sources. Some of these are being indirectly 

integrated, as they are already present in UniProt. Hence, UniProt, KEGG Gene, Pathway, 

Orthology and Drug, NCBI Taxonomy, PubMed, BioMart, ArrayExpress and OMIM are being 

directly integrated, while NCBI Entrez, RefSeq, GenBank, ExPASy, PharmGKB, Gene 

Ontology and InterPro (among others) are not. 

Figure 3.4 - Schematic representation of the databases integrated in GeNS 

The data loaders 

Having chosen the sources and how their data will be retrieved, multiple flat files loaders - 

supporting XML (e.g. UniProt, clinical trials), tabular (e.g. KEGG Pathway) and even human-

recognizable, loosely structured text files (e.g. KEGG Drug, KEGG Orthology) - were 
                                                     

4 Available at http://clinicaltrials.gov/
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flexibility, making it very easy to cope with changes in the format of external sources: simply 

update the external reference file correspondingly. Nonetheless, the former option was chosen 

over the latter due to its greater complexity, which would slow down the development process. 

Moreover, the format of a source’s flat files tends to suffer few changes along the years because 

of stability purposes, a fact that tipped the balance even further towards static loaders.  

This decision proved to be correct as the flat files’ format effectively remained the same along 

the development of this system. Nonetheless, in the uncommon event of a data source changing 

the format of its flat-files, the code must be reassessed if the data is to be correctly parsed again. 

In that case, since each loader is, in fact, a module the entire application will not stop importing 

whichever data it cans, nor should it raise problems in the insertion of the new loader. 

The UniProt loader is probably the most important loader of the whole set, because of the sheer 

amount of data it must process: over thirty gigabytes in two XML files, one for SwissProt and 

another one for TrEMBL. After parsing the relevant data, the output files (in tabular format) 

still occupy four gigabytes of data (an amount that surpasses by far the other sources; KEGG 

Pathway, even before being parsed, is the second largest source and only needs three hundred 

and fifty megabytes). Hence, performance is a crucial factor if the database is to be built and 

populated in a reasonable amount of time.  

Despite the fact that BioPortal had intended to access UniProt’s data by means of a mediator, 

when it became apparent that the platform could not support its designed architecture (mostly 

due to its nameserver) the data warehouse approach gained momentum – in order to circumvent 

the issue – and, as such, UniProt’s data now had to be parsed and stored locally.  

To do so, a parser was built. This parser is not the currently used one because of two reasons: its 

performance and reliability. The older UniProt parser took over twelve hours to parse and load 

the data on the local database and, in some cases, the data contained foreign characters that 

effectively corrupted its original value.  

The reasons behind these issues were twofold: firstly, the results for each entry in the source’s 

XML file were being directly inserted in the database (after checking for duplicates) by an 

active SQL connection; this meant that every protein in UniProt would require at least one SQL 

Insert command - in fact, more than one as the insertion would occasionally fail (and four 

insertion attempts per entry were manually defined in the loader’s source code). 
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This is a major bottleneck to the platform’s performance because running multiple insertion 

statements will always be slower than running a single insert statement with the other (multiple) 

statement’s data. Therefore, the first and foremost optimisation was to use efficient data 

structures (hash tables) which stored large blocks of parsed data until their manually defined 

threshold (a hundred thousand entries) was met; then, the data would be written to tabular 

formatted flat files (thus flushing these structures) and could be imported to the database.  

Secondly, the methods used to access, navigate and retrieve the desired information through the 

XML fields were analysed. At the time, the entire file would be loaded into an XMLTextReader 

class instance and, for each detected entry; an XMLDocument class instance would be created. 

The elements for each entry would then be collected via the SelectNodes method, whose output 

would be used to create XMLNodeList class instances that would directly inserted into the 

database.  

After having investigated all the possibilities regarding the task at hand, the XMLDocument 

class was deemed inappropriate due to its poor performance [62] and was replaced by the 

XPathNavigator class due to its combination of query-based access to the data and superior 

performance. 

Having performed these optimisations, a testing period followed. The new UniProt loader took 

four hours to parse the XML files; even with the addition of an extra hour - required to import 

the data to the local database (a task performed by Microsoft’s SQL Server, GeNS’ DBMS) – 

parsing and integrating UniProt data now only requires five hours instead of the twelve it used 

to, roughly a sixty percent improvement. In addition, the data corruption that plagued the old 

parser’s results from time to time was purged with the arrival of the new parser. The bug was 

never found, mostly because the new parser was built from scratch.  

UniProt releases new updates on a monthly basis and, occasionally, new kinds of data are added 

to its data set, usually from the integration of new third-party data sources. As such, it is 

important to check if GeNS already has these new sources referenced. Fortunately, UniProt has 

a public list5, which states all the currently cross-referenced third-party sources, that enables this 

operation in a very simple manner. 

                                                     

5 Available at http://www.uniprot.org/docs/dbxref
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As such, every time that a UniProt flat file is ran through the parser, GeNS’ list of known data 

types must be compared to UniProt’s list of referenced data sources – downloaded in real-time 

directly from UniProt to ensure that the file is updated –  in order to detect if data from new 

sources has been added. If that is the case, then GeNS’ list will be updated and dumped to a flat 

file (in tabular format), which will subsequently be imported through SQL scripts. This task – 

source synchronization - can also be performed without having to parse any UniProt flat-files; 

to do so, one only has to access the “Misc Settings” tab and click on “Update Data Type CVS 

File”.

Biomart and ArrayExpress Atlas’ loaders are also noteworthy; the former works by retrieving 

the data from MartView’s URL/XML requests; the users must select the desired species, gene-

related information and a maximum of three external reference identifiers from the GUI 

depicted in Figure 3.6. Biomart itself imposes this limit and in the event of choosing, for 

example, four external references an error message will be returned (which, due to the way the 

parser is built, will be downloaded and stored inside a text file).  

Programmatically speaking, each active checkbox has a corresponding XML string that will be 

concatenated into a single string after clicking the “Get Data” button. Then, the resulting XML 

string will be passed along to Biomart’s MartView, which will validate, process and return the 

results, which the loader will store in a flat file (one for each species). These tasks are 

performed by a BackgroundWorker class instance that provides multithreading capabilities to 

the system. Finally, a progress bar keeps track of the overall progress. 

Finally, the ArrayExpress Atlas loader can be access by clicking on “Launch Atlas Retriever”. 

This loader was not implemented as a module, but as a Web Service procedure instead that 

allows the users to select the output directory, the desired taxonomical organism and, 

subsequently, to download all the desired expression data.  

However, Atlas’ API only allows retrieving data by gene. As a consequent, the loader has to 

open an SQL connection with the database, retrieve all the gene names for the human species 

and to run them through Atlas in order to get all the experimental data for human genes.  
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Figure 3.6 - The activity diagram for parsing flat files 
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In order to speed up the process, this loader breaks the list of genes names into multiple parts 

and passes them to threaded processes (eight) that collect expression data for each gene. The 

results are stored in a single hash table and if the number of entries in this structure passes a 

manually defined threshold (currently at a hundred thousand entries), the hash table is dumped 

to a file. As this operation (dumping to a file) is not thread safe, a semaphore restricts the 

thread’s access to this shared resource during the dump. As usual, the output file is a plain text, 

tabular formatted file that can be easily imported into the database. 

Regarding PubMed and NCBI Taxonomy, there is no need to parse these results as they already 

are in a tabular format that the DBMS can directly import. 

Finally, SQL queries that allow the DBMS to synchronize the database with the content of these 

flat files were developed. It takes one hour to import UniProt’s data; it is the slowest procedure 

of all, mostly due to its size. The remaining sources range from fifteen minutes (PubMed) to a 

matter of seconds (KEGG Gene). 

3.5.Data Storage Tier 

The data storage tier is responsible for storing data retrieved from multiple sources. To do so, a 

relational database was created using SQL Server 2008 mainly due to its good trade-off between 

performance and easiness of use. The schema evolved from BioPortal’s database, following 

OLAP’s directives regarding iterational improvements. 

Once more, providing a correct representation of biological data without sacrificing the 

system’s performance or scalability, among a long list of requirements, is still a challenge in 

bioinformatics [14]. In order to address this issue, one of two opposing schema design 

principles is typically applied: generalization or specialization.  

A general schema prioritizes flexibility, scalability and the integration of several types and large 

volumes of data. It uses a large, dynamic set of data sources (which may vary throughout the 

time) in order to encompass as much diverse data as possible. A database designed according to 

this principle will allow its users to correlate heterogeneous data and to, eventually, extract 

conclusions that would otherwise hardly be visible.  

On the other hand, a specialized schema accommodates only a limited number of datasets. 

Usually, only a handful of sources of data are used: these sources were chosen from the very 

beginning and usually remain unaltered for long periods of time. This schema is usually 
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considered as more suited to address more specific issues once that unlike general database 

schemas, scalability and flexibility are secondary aspects.  

Practically speaking, either the schema is adapted to fit the data or the data is adapted to fit the 

schema; from these two approaches, several intermediate levels can be derived. GeNS manages 

to take advantage of both methods, adapting both schema and data to one another: to physically 

store the data a general schema that certifies the scalability and flexibility of the database is 

used, drawing strength from a concrete meta-model where all the entities and relationships are 

specified.

3.5.1. Meta-model design 

GeNS’ meta-model is essentially gene-centric because, biologically speaking, it is the simplest 

and most effective way of mapping the vast majority of concepts and their relationships 

together.

Figure 3.7 - GeNS' meta-model

As one can see in Figure 3.7, related with each gene there is a network of data types that can be 

directly associated with it, such as pathways, transcription factors, proteins, etc. These data 

types would, otherwise, hardly be mappable between themselves. Adding new kinds of data 

only requires changing the meta-model, not the physical schema. 
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3.5.2. Physical schema design 

Despite the fact that on a conceptual level a gene-centric approach is the most logical choice, 

the physical model is protein-centric (Figure 3.8) instead because of the difficulties encountered 

in implementing the gene as the “heart” of the database. Biological peculiarities, in the end, 

rendered a gene-centric physical schema unviable.  

For example, Homo Sapiens has over twenty five thousand unique genes. However, some genes 

can be duplicated in the genome – paralogous genes – thus occupying two different 

chromosomal locations in the same organism. Paralogous genes tend to share the same function, 

but in some cases the copy may have altered its original function or even picked up a new one 

during a mutation or even from simply having swapped its position (due to possible interactions 

with other codons); as such, these genes can be functionally different. In fact, this process is so 

important that many authors believe that it is the underlying factor that powers evolution [63] 

[64]. 

 In this particular case, the same gene could be synthezing different proteins – how could these 

proteins be accurately represented in the database if the same (gene) identifier was responsible 

for generating two very different sets of results? By adding another piece of information to the 

gene identifier, such as its position within the genome (locus) for example. 

Therefore, using the gene as the basis for the physical schema is not a good choice because of 

the complications derived from their very nature. Instead, proteins make a better basis for 

physical schemas because they are biologically a more coherent choice, less prone to 

peculiarities. Since each gene synthesizes a number of proteins, the relation between gene and 

proteins can easily be stored inside the database.  

This direct protein-gene relation also enables mapping the remaining concepts seen in the meta-

model; when retrieving a gene related concept from the database, the gene identifier is looked 

up, translated into the corresponding protein identifiers and the desired data can now be easily 

accessed. This way, all the inherent biological issues of using gene-centric physical schemas are 

avoided and the solid gene-centric meta-model can still be used.  

Although it might make sense to swap the metal-model to proteins in order to match the 

physical model, certain concepts cannot easily be associated with proteins instead of genes. 

OMIM, for example, contains a catalog of human genes and genetic disorders. As expected, this 

kind of data has a direct relation with genes and swapping it relation for proteins would not 
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make the conceptual model easy to understand. As such, it is preferable to maintain the current 

meta-model.The database’s tables will now be explained: 

� Organism: Stores taxonomic information; each entry corresponds to an organism with any given 

number of associated proteins. This table is the root of the hierarchical model. For each 

organism, we store organism detailed information such as its scientific names and reference 

sequence.  

� Protein: This table stores information regarding each protein entry. This information includes 

gene locus, gene and protein sequence and the relation to two distinct tables: Identifier and 

BioEntity.  

� Identifier: Contains all the synonyms, alternative names and identifiers for each entry.  

� BioEntity: This table stores unique identifiers belonging to the biological entities associated 

with a given protein; this includes, among other things, pathway, gene ontology and gene 

expression identifiers. Detailed data regarding a specific entry in this table will reside in the 

Description table.  

� BioEntityDescription: The description table stores structured data related to a specific 

biological entity. Examples of usage include the detailed description of a pathway or the 

mutation of a genetic disease.  

� DataType: Contains a list with all the types of data retrieved from external databases, 

encompassing both identifiers and biological entities. Every entry in either Identifier and/or 

BioEntity tables references this table, so that we may easily determine the type of the data, thus 

preventing semantic related errors (e.g. comparing two completely unrelated objects).   

Figure 3.8 - GeNS' physical schema 
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GeNS’ physical schema is an improvement over BioPortal’s mainly because of its intuitive, 

user-friendly OLAP-like database and due to its new improved mapping system between protein 

and biological entities (e.g. pathways). 

 Regarding the first, nearly all tables and their respective fields were renamed; as such, they 

now possess meaningful, easily memorizable names. When combined with the database’s 

simple yet effective structure, developing applications that run on top of GeNS becomes a quick 

and painless task, as developers are able to focus on the visualization and analysis levels instead 

of the database itself.  

The former issue was also quite relevant for BioPortal, as it ensured that the system would not 

be usable given a long enough period of time. As mentioned, BioPortal’s physical schema did 

not store relationships, but biological entities instead. Each biological entity associated with a 

protein would have to be stored locally, thus increasing the level of data replication.  

The answer was to increase the level of data normalization: GeNS stores associations between 

biological entities and proteins instead of the actual entities. Each biological entity in the 

BioEntity table is unique and, thanks to a correlation table, multiple to multiple connections 

between proteins and biological entities keep data replication down to a bare minimum, while 

ensuring that the system’s scalability and performance remain unaffected, along with all the 

benefits provided by the hierarchical model.  

3.5.3. Exemplifying 

The following example demonstrates one of many possible scenarios in GeNS: a researcher 

wants to obtain the network of concepts related with the gene: ‘sce:Q0085’ (Figure 3.9). 

The system starts by determining the internal protein identifier through the Identifier table. With 

this identifier, we can now determine the alternative gene identifiers (still within the Identifier 

table).

Subsequently, the system will ascertain the corresponding organism; in this particular case, we 

already know the answer due to the first three letters of the identifier (sce, the short name for 

Saccharomyces cerevisiae) but this fact will not affect the process. In order to do so, GeNS 

looks up the Protein table and uses the taxonomic id to identify the organism in the Organism 

table. In the Protein table it is also possible to find the gene locus, its sequence and a general 

description.



Data Storage Tier  

 

48

Following this procedure, GeNS maps every biological entity associated to our pre-determined 

protein identifier by looking up the ProteinBioEntity table (that contains all the relationships 

between the two). This allows GeNS to retrieve the biological entities in the BioEntity table 

which, in turn, contains homology, bibliography, expression, ontology, pathway and enzyme 

related data, among others. Finally, more details about each biological entity can be obtained by 

looking up its description in the BioEntityDescription table.  

Extending this example, the researcher wants to obtain all others genes related with the KEGG 

pathway ‘sce00190’ where the gene ‘sce:Q0085’ was initially present. To do so, he searches the 

Protein table for all the entries that contain a relation to the table BioEntity that matches the 

required pathway.  

Figure 3.9 - An example of a typical query to obtain the network of concepts related with the gene ‘sce:Q0085’. 

Moving along to the SQL queries - if another researcher wanted to find out which genes are 

associated with the pathway ‘path:aae00010’, for example, then the code would be: 

SELECT DISTINCT Alias FROM Identifier where DataTypeId = 1 and ProteinId in (SELECT 

ProteinId from ProteinBioEntity WHERE BioEntityId in (SELECT BioEntityId from BioEntity 

where BioEntityName like 'path:aae00010')) 

Likewise, if the task at hand were to retrieve all the known synonyms for a given protein (e.g. 

HLA-B), the query would be: 
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SELECT DISTINCT Alias, DataTypeId FROM Identifier WHERE ProteinId in (SELECT 

ProteinId FROM Identifier where Alias like 'HLA-B') 

3.5.4. Loading the data 

As mentioned, a common issue when integrating heterogeneous datasets consists in correctly 

correlating them [13]. This is particularly important in GeNS because of the large number of 

sources, where new data coming from multiple sources must be correctly mapped to the 

corresponding entry in the GeNS’ database; the identifiers from the new datasets must have a 

direct match with the identifiers already present in local database, in order to ensure that the 

new information is correctly associated with the right objects.  

Not surprisingly, after retrieving and parsing the desired data sets (in the previous tier), the 

resulting data must be loaded via SQL scripts in any order, provided that UniProt’s is the first 

and foremost. This is because of UniProt’s excellent identifier coverage, referencing over a 

hundred distinct objects thus providing a solid base for directly mapping objects from other 

dataset to another. 

3.5.5. Cross database mapping 

Although molecular biology databases already provide references from their entries to 

correspondent entries in other databases, these references tend to be incomplete both in number 

of entries as well as in the number of databases covered.  

To address this, a methodology that spans a tree of alternative paths between two databases was 

explored. The idea is to look for alternative identifiers in other sources of data that may already 

have a direct correspondence with the identifier(s) in the desired database. To do so, an 

algorithm that attempts to retrieve corresponding entries in other databases was developed 

(Figure 3.10). 
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Figure 3.10 – Schematic representation of the cross database mapping algorithm 

used to improve the coverage of databases.  

Considering each database as a node, and each database reference as a connection, a digraph 

that represents real linkage across databases was created for each entry. The first step of the 

algorithm consists in verifying the existence of a direct connection from DB1 to DB2. In case it 

fails, the next step consists in testing the reverse connection, as DB2 may hold a correspondence 

between the identifiers even if DB1 did not. If it also fails, the list of directly connected nodes is 

obtained, and, for each, the same procedure is followed. This procedure can be seen in step 3 of 

the example shown in Figure 3.10.  

Hence, DB3 is the next tested node after checking that neither DB1 nor DB2 had a direct 

correspondence. As DB3 contains a direct link to DB2, the algorithm finalizes by returning this 

value to DB1. The algorithm stops after having found a valid path, skipping DB4 altogether 

because a direct match between the identifiers has been established. 

If the algorithm were to continue, it would have to transverse the entire graph to search the 

deepest node and, subsequently, to backtrack it in order to follow all the available nodes. This 

behavior is not required because, as mentioned, by being able to establish a direct connection 

between identifiers the new data can now be inserted, thus avoiding the need to look for further 

correspondences. The complexity of the task at hand is directly related with the number of 

available sources, hence selecting a handful of sources that contain good identifier coverage 

between themselves is heavily recommended, as the algorithm already requires several hours 

even with a relatively small number of sources. 
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In GeNS, this method is currently not yet implemented because it was superseded by other tasks 

(e.g. developing the Web Services layer). Nevertheless, an experiment was made in order to 

determine its usefulness.  

Four of the most relevant databases present in GeNS were selected: UniProt, KEGG Gene, 

Ensembl and Entrez Gene. These four databases store links to more than one hundred and 

twenty distinct biological entities, proving a very good coverage regarding identifiers. In 

addition, this analysis was restricted to the Homo Sapiens organism, in order to make it as 

simple as possible. 

The initial step consisted in measuring the coverage - the percentage of entries in the origin 

database that have direct and explicit correspondence in the target database - value of each 

database. To prevent tainting the results, no inference was performed in the calculations (such 

as knowing that, for the human species, concatenating “hsa:” with the Entrez gene identifier will 

lead to the KEGG identifier, for example). 

Table 3.1 - Comparison of the average coverage values with and without the use of the cross database mapping 
algorithm.
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TO

B
ef

or
e 

A
ft

er
 

B
ef

or
e 

A
ft

er
 

B
ef

or
e 

A
ft

er
 

B
ef

or
e 

A
ft

er
 

FROM
UniProt - - 83,8% 83,9% 97,1% 97,4% 85,7% 93,1% 

KEGG 76,8% 80,5% - - 77,2% 79,8% 100% 100% 

Ensembl 97,7% 97,9% 0% 73,2% - - 88,9% 89,2% 

Entrez 

Gene 47% 57,4% 0% 34,3% 46,8% 57% - - 

Table 3.1 shows the coverage values obtained before and after running the algorithm. A 

significant improvement in the coverage has been obtained in pratically every relation. Entrez 

Gene in particular saw its coverage to other databases significantly increased, essentially due to 

its initial low values; Entrez Gene to UniProt has noticed a positive difference of 10,4% and to 

Ensembl 10,2%, along with a 34,3% increase to KEGG Gene. Other relevant improvements 

have been registered for the Ensembl to KEGG Gene relation (73,2%), KEGG to UniProt 

relation (3,7%) and for the UniProt to Entrez Gene relation (7,7%). 

Therefore, the cross database mapping algorithm is a valid method to increase the coverage of 

the system and further efforts should be made towards its implementation. Ideally, this 
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algorithm should be executed after the initial UniProt integration but before other data sets, in 

order to maximize the identifier coverage by attempting to map unknown identifiers, thus 

attempting to integrate as much data as possible. 

Finally, although this method is currently only used to assure the maximum coverage of the 

stored identifiers with minor changes it could also be used to detect and remove mismatched 

and overlapping identifiers.  

3.5.6. Optimizing the database 

Providing an efficient physical schema was only the first step towards building a high-

performance data integration system. Given the large volume of the integrated data sets, further 

tuning was required. The creation of indexes – missing in BioPortal – followed. 

Indexes are auxiliary performance-boosting data structures (more specifically, B-Trees in 

Microsoft SQL Server) that provide intelligent table lookup over a number of columns and 

ordered access to the desired information by avoiding the previous, meagre lookup method of 

having to read through the entire table, thus minimizing the amount of required I/O (the main 

bottleneck of any database). Indexes can be as relevant as complex as the databases’ schema 

(and equally hard to correctly implement).  

 However, implementing indexes come at a cost: they require a large deal of storage and tend to 

slow data insertion and updating operation due to the fact that the indexes have to be rebuilt 

afterwards.  

Indexes can be either clustered on non-clustered: clustered indexes occupy more disk space 

because the data is physically reordered, similarly to the way a dictionary orders its information, 

but provide an even greater performance booster when compared to non-clustered indexes. A 

significant downside of this kind of indexes is the fact that SQL Server has a maximum of one 

clustered index per table.  

Non-clustered indexes, on the other hand, are similar to an index in the last pages of a book. 

The data is never physically reorganized; instead, pointers that show where the data is being 

stored are created. Since the data itself is not present in their B-Tree, they are also much smaller 

and slower than clustered indexes. Finally, each table can have up to 249 non-clustered indexes. 

Indexes can also store data from two distinct fields at once: covered indexes. These indexes can 

provide fast access to data for queries that must lookup values in multiple columns at once. The 
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order by which these fields are ordered is also relevant towards the performance of the covered 

indexes.

Initially, the following indexes were created on the most commonly accessed fields of all tables 

(each bullet point is a distinct index inside a specific table): 

Organism: 

� TaxonomicId (Primary Key) – Unique, clustered index 

� Organism Short Name and Organism “Long” Name – Unique, non-clustered covering index 

Protein:

� ProteinId (Primary Key) – Unique, clustered index 

� TaxonomicId– Non-unique, non-clustered index 

� Locus – Non-unique, non -clustered covering index 

Identifier: 

� IdentifierId (Primary Key) – Unique, clustered index 

� DataTypeId and Alias– Non-unique, non -clustered covering index 

� ProteinId – Non-unique, non -clustered index 

ProteinBioEntity:

� ProteinBioEntityId (Primary Key) – Unique, clustered index 

� ProteinId – Non-unique, non-clustered index 

� BioEntityId – Non-unique, non-clustered index 

� DataTypeId – Non-unique, non-clustered index 

BioEntity:

� BioEntityId (Primary Key) – Unique, clustered index 

� DataTypeId and BioEntityName – Non-unique, non-clustered covering index 

BioEntityDescriptiom: 

� BioEntityDescriptionId (Primary Key) – Unique, clustered index 

� Type and Name – Non-unique, non-clustered covering index 

� Value – Non-unique, non-clustered index 
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DataType:

� DataTypeId (Primary Key) – Unique, clustered index 

After implementing these indexes, a testing period followed. Although some queries, such as 

inner joining data from distinct tables, were now much faster, others clearly did not. Some of 

these cases – where indexes could never be used to retrieve the data – stand as expected; for 

example getting all gene names that end with ‘a1’ where the index was useless due to the fact 

the indexes order strings from left to right. Since in this particular case only the last two letters 

mattered, having a column of strings ordered by their first letter would be pointless. 

However, in other cases, better results were expected. For instance, little or no changes were 

noticed while obtaining all the existing gene names from the Identifier table, despite the 

presence of a non-fragmented, non-clustered covered index. It became apparent that adequately 

creating indexes is a complex issue and that the initial approach was clearly flawed; further 

tuning was required. 

SQL Server has a built-in tool designed specifically for database optimisation: the DTA 

(Database Tuning Advisor). As such, this tool was chosen to aid in the development of proper 

indexes. In order to use the DTA, one of two approaches could be taken: either the tool analysed 

a set of pre-defined queries and suggested the corresponding database optimisations or the 

database and its requests could be monitored for a number of hours during a typical workload. 

After pondering both options, the former was chosen over the latter due to the fact that GeNS 

still has a rather small userbase and the results could have been tainted by this. 

As such, five typical queries were chosen as benchmarks and executed three times in order to 

obtain more precise results: 

1. All Gene Names 

2. All Human Gene Names 

3. All Human Protein 

4. Convert HUGO Identifier HGNC:23600 the corresponding gene name 

5. Search Pubmed entries for the human gene HLA-A 

These workloads represent the most commonly performed operations for the GeNS databases, 

reaching almost every table and a very large number of concepts. The workloads were analysed 

by the Database Tuning Advisor, which suggested the creation of several covered indexes (on 

top of the already existing indexes) spawning multiple fields, as well as favoring some clustered 
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indexes on other fields, rather than on the unique identifier. In the Identifier table, for example, 

the DataType column was deemed appropriate for the creation of a clustered index; as such, the 

primary key clustered index was manually replaced with a non-clustered one. 

The Tuning Advisor also proposed creating more statistics on multiple tables; these are vital in 

the determination of the optimal execution plan, thus making a decisive contribute regarding the 

fastest way to resolve a query. By default, SQL Server already keeps statistics over the data 

residing in individual columns but the Tuning Advisor can optimize the statistical generation 

process if, for a given workflow, it determines that additional statistics are required. 

The following results were obtained: 

Table 3.2 - Benchmarks 

Query 
Without Indexes (ms) With Indexes (ms) 

DTA's suggested indexes 

(ms) 

#1 #2 #3 #1 #2 #3 #1 #2 #3 

All Gene Names 26949 27198 27248 27174 26862 26698 17188 17560 16986

All Human Gene 

Names 
27698 28447 27942 24971 25359 25311 1869 1856 1743

All Human Proteins 2401 2405 2523 4558 4525 4548 885 779 778

Convert Identifier 66943 67254 67167 52849 53320 52825 166 187 190

Search Pubmed 46012 46802 46014 7505 7422 6896 2756 2716 2573

Table 3.3 - Average query response time and improvements over the non-indexed version 

Query 
Average (ms) Improvement (%) 

No Indexes With Indexes DTA's indexes With Indexes DTA's indexes 

All Gene Names 27132 26911 17245 1% 57% 

All Human Gene Names 28029 25214 1823 11% 1438% 

All Human Proteins 2443 4544 814 -46% 200%

Convert Identifier 67121 52998 181 27% 36984%

Search Pubmed 46276 7274 2682 536% 1626% 
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Either way, an alternative solution for this issue would be to force SQL Server to ignore the 

indexes and to perform a table scan (as if no index existed) by means of hints. Using hints is not 

recommended because SQL Server is usually very efficient in determining the optimal way of 

accessing the table rows. Nevertheless, in this particular case, a query hint would likely solve 

the issue. To do so, the SQL query would have to be slightly modified to the following (where 

bold indicates the changes): 

SELECT * from Protein WITH (INDEX(0)) where TaxonomicId = 9606 

Adding it all up, the Database Tuning Advisor played a crucial role towards GeNS performance. 

As expected, however, this huge performance boost came at a price: disk space. The DTA led to 

the creation of six gigabytes of indexed data, roughly a quarter of the size of the database. 

Nevertheless, the advantages are so big that the added disk space requirements are nothing more 

than a nuisance. 

The full list of indexes – where the suggested indexes are underlined – follows: 

Organism: 

� TaxonomicId (Primary Key) – Unique, clustered index 

� Organism Short Name and Organism “Long” Name – Non-unique, non-clustered covering index 

Protein:

� ProteinId (Primary Key) – Unique, clustered index 

� TaxonomicId – Non-unique, non-clustered index 

� Locus – Non-unique, non-clustered covering index 

Identifier: 

� IdentifierId (Primary Key) –Unique, non-clustered index

� DataTypeId – Non-unique, clustered index

� Alias, DataTypeId and ProteinId – Non-unique, non-clustered covering index

� DataTypeId and ProteinId – Non-unique, non-clustered covering index

� DataTypeId and Alias – Non-unique, non-clustered covering index

ProteinBioEntity:

� ProteinId and BioEntityId – Non-unique, non-clustered covering index
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� DataTypeId – Non-unique, non-clustered index 

BioEntity:

� BioEntityId (Primary Key) – Unique, clustered index 

� DataTypeId and BioEntityName – Non-unique, non-clustered covering index 

BioEntityDescriptiom: 

� BioEntityDescriptionId (Primary Key) – Unique, clustered index 

� Type and Name – Non-unique, non-clustered covering index 

� Value – Non-unique, non-clustered index 

DataType:

� DataTypeId (Primary Key) – Unique, clustered index 

Concluding, creating adequate indexes is a complex task that requires a lot of adjustments and 

considerations. Even with the help of the DTA, there is still room for future improvements. The 

increasing userbase may prove fundamental in determining what can and should be optimized 

during a typical workload. 

Finally, an additional measure could have been taken towards increasing GeNS’ performance: 

table partitioning [65]. Table partitioning consists in splitting data from a table into smaller 

sections, thus improving the table’s scalability due to the fact that the DBMS no longer has to 

transverse through the entire table or through an index in order to access the desired records. 

Instead, the DMBS can jump to a specific section and read a much smaller amount of data. On 

top of this, indexes in each section can be created in order to further enhance the system’s 

performance. 

GeNS has not implemented table partitioning because the indexes have bestowed the system 

with very good query response times, skipping the need to do so entirely. This technique can, 

however, be easily implemented in the future; the DTA, for example, has a built-in support for 

this kind of analysis that may shed some light on the matter. 

3.5.7. Maintenance and data recovery 

It is necessary to apply maintenance operations on the database if the system is to work properly 

in the long run. Due to their repetitive nature, these tasks can and should be automatically 
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processed, especially since SQL Server already supports them via SQL Server Agent’s jobs and 

maintenance plans.  

Two SQL maintenance scripts were implemented in order to keep the database running 

smoothly over long periods of time. The first script runs on daily basis and purges the database 

of any temporary tables that may linger, while the latter one is ran weekly during low-usage 

hours (starting every Saturday at midnight) and performs several important tasks such as 

checking the database integrity, rebuilding indexes and updating statistics (Figure 3.12). 

Figure 3.12 - Creating GeNS’ maintenance task in SQL Server 

In addition, a compressed backup of the database is formed every Sunday at midnight on two 

distinct physical drives: the slave hard disk and an external hard disk (if connected to the 

computer). Compressing a backup of a database this large is a CPU-intensive task that must be 

controlled in order to ensure the system’s usability during the procedure. To do so, a new 

account with severe CPU restrictions (using a maximum of twenty percent of the CPU’s 

capacity) was created and implemented via SQL Server’s Resource Governor. This 

implementation allows the users to keep using the database, despite of the complex task being 

executed in background. 

Finally, all of these scheduled tasks send an email notifying the database administrator of the 

outcome of their latest execution. 
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3.5.8. Flaws

This tier has three problems: updating large sets of data, integrating complex biological entities’ 

descriptions and mapping relationships between biological entities. 

Regarding the first, updating the data sets is the most relevant problem in this tier. The main 

issue is the sheer size of the dataset and the transformations the data suffers before its actual 

integration in the database; because of these two factors, comparing two sets of data becomes a 

very CPU intensive task. As such, although a valid option for smaller data sets (e.g. KEGG 

Drug), this method is not feasible for considerably larger data sets such as UniProt’s.  

Therefore, the only currently available way of updating a large data set is to simply delete the 

older data and to integrate the new one instead. This process can cause serious problems to 

applications running on top of GeNS that have static references to the entries in the database, 

since both internal identifiers and the objects themselves are subject to change with the update. 

A possible solution for this issue is to perform a differential update by comparing the last 

modified date in UniProt’s source files with the one inside GeNS’ database, thus performing a 

selective update instead. This is, however, a theoretical solution because no current 

implementation of this method is in practice. 

As for the second issue, certain kinds of descriptions are simply too complex for the current 

implementation of the BioEntityDescription table. Practically speaking, only three fields are 

available to store this kind of data – Type, Name and Value – and some descriptions may require 

additional fields, such as ArrayExpress Atlas’ gene expression data; in this particular case, the 

data has to be concatenated in order to fit the available fields. A greater degree of data 

normalization is required in order to provide a better way of mapping these descriptions, quite 

possibly envolving the DataType table as well. 

Finally, relationships linking one biological entity to another are not being integrated due to the 

lack of support in the physical schema. These relationships are important because a number of 

biological entities are directly related with other ones, such as the pathways involved in a 

particular disease, for example. Being able to map these relationships directly would allow 

GeNS’ users to quickly gain a detailed overview on a particular matter without using complex 

queries. This could be achieved by either adding an extra field in this table that referenced other 

biological entities or by introducing a correlation table.  
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While the former option is presents a rather simple way of mapping a one to one relation 

between two biological entities, it cannot be used in this case because of the multiple to multiple 

nature of the relationships.  

Adding a correlation table, on the other hand, not only solves the problem but it also accounts 

for a more flexible, consistent and easy to maintain implementation that follows good 

normalization practices.  

3.6.Data Presentation Tier

The data presentation tier is responsible for making the integrated data available to any user 

who so desires. To do so, two distinct access methods are available: direct SQL access and a 

Web Services interface. While the former enables third-party applications to access the 

database, the latter allows users to access GeNS’ data without having installed a local instance 

of the platform.  

GeNS’ Web Services can be found at http://bioinformatics.ua.pt/GeNS/WS/ and can be used by 

any Web Browser or accessed directly by programs developed in any language that supports 

SOAP/WSDL. While supported by Microsoft’s Internet Information Services (IIS), these Web 

Services return the data in XML format. Online documentation is also available in GeNS’ 

website. The following methods are available to use: 

� List Data Types 

� Search Protein 

� SearchProteinStartsWith 

� SearchProteinMatches 

� Search Biological Entity 

� Search Organism 

� Convert Protein Identifier 

However, there is more than meets the eye: each of these methods accepts a large number of 

parameters and, according to their input, performs a different operation. This implementation 

makes the Web Services layer easier to use, although inexperienced users may find it confusing 

because of the hidden functionalities. As such, GeNS’ web site at 

http://bioinformatics.ua.pt/applications/gens contains an online documentation section that gives 

an insight on the flexibility of these Web Services methods. 
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Table 3.4 - The ListDataType method 

Method Results 
ListDataType() Returns all known datatypes. 

ListDataType(search_name_string) 
Returns all known data types matching the 

search_name_string variable 

ListDataType(“Identifier”) Returns all data types present in the Identifier table 

ListDataType(“BioEntity”) Returns all data types present in the BioEntity table 

As the name points out, these methods are used to list GeNS’ data types (used to indicate the 

nature of the data itself for protein identifiers and biological entities). The two last methods 

enable GeNS’ users to quickly determine what kind of data is being stored in the Identifier and 

BioEntity tables.  

Table 3.5 - The SearchOrganism method 

Method Results 

SearchOrganism(): 
Returns the first one thousand organisms that have both 

scientific and short name in the database 

SearchOrganism(search_name): 
Returns all organisms that have either a scientific or a 

short name matching the search_name variable 

SearchOrganism(search_taxonomicid): 
Returns all organisms that have a matching taxonomical Id 

with a matching search_name variable 

These methods allow the users to search for an organism’s scientific name, short name or 

taxonomical id, providing organism related data.The first method provides an insight regarding 

the organisms integrated in the GeNS platform (which range 180.000 entries). 

Table 3.6 - The SearchProtein method 

Method Results 

SearchProtein(): 
Returns the names of the first one thousand proteins of the 

Homo Sapiens organism 

SearchProtein(taxonomic_id, datatype): 

Returns data of the specified data type of the first one 

thousand proteins of the organism that has a matching 

taxonomic id. 

SearchProtein(taxonomic_id, datatype, limit): 

Returns data of the specified data of the first X proteins 

(where X is defined by the limit parameter) of the 

organism that has a matching taxonomic id. 

SearchProtein(taxonomic_id, datatype, lower_limit, 

upper_limit): 

Returns data of the specified data type of all proteins 

between the lower and top limit (defined by the last two 
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parameters) of the organism that has a matching 

taxonomic id. 

SearchProteinStartsWith(alias) 

Returns the first one thousand (proteinic) alias that match 

the user-inputted text. In practical terms, it’s an SQL 

wildcard search that will look for <alias value>*

SearchProteinMatches (alias) 

Similar to the SearchProteinStartsWith method, but the 

user-inputted text will be searched everywhere inside the 

alias. In practical terms, it’s an SQL wildcard search that 

will look for *<alias value>*. This method may take 

some time. 

ConvertIdentifier(taxonomic_id, alias, datatype) 

Returns all identifiers of the specified data type for any 

protein (belonging to the organism with a matching 

taxonomic id) that has a matching alias 

The last method - Convertdentifier - is one the main features of GeNS; being able to convert an 

identifier from one data type to another, yet related to the same protein, is a very important 

attribute as it enables the creation of a unified view of data coming from distinct sources. 

In a typical scenario, a user - Bob - is trying to determine the HUGO Gene identifier for the 

human protein KRTAP5-6, for instance. After determining the Homo Sapiens’ taxonomic id – 

9606 – (by accessing the Organism table) and looking up HGNC’s datatype – 34 – (through the 

DataType table) Bob uses his Web Browser to execute: ConvertIdentifier(9606, KRTAP5-6, 

34) 

GeNS returns: 

 � <ArrayOfProteinIdentifier> 

   � <ProteinIdentifier> 

      <Alias>HGNC:23600</Alias> 

      <DataTypeId>34</DataTypeId> 

   </ProteinIdentifier> 

 </ArrayOfProteinIdentifier> 

As we can see, the human protein KRTAP5-6 has an HGNC identifier: HGNC:23600. 
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Table 3.7 - The SearchBioEntity method 

Method Results 

SearchBioEntity(): 
Returns the names of the first one thousand biological 

entities belonging to the Homo Sapiens organism 

SearchBioEntity(bioentityname); 
Returns all the biological entities matching the user-

inputted BioEntityName. 

SearchBioEntity(search_taxonomicid, datatype): 
Returns data of the specified data type for all proteins 

belonging to an organism with a matching taxonomic id. 

SearchBioEntity (search_taxonomicid, alias, datatype): 

Returns data of the specified data type for any protein 

(belonging to the organism with a matching taxonomic id) 

that has a matching alias. 

Each method’s input parameters are validated and, according to their number and kind, the 

appropriate sub-method will be selected and performed. Each sub-method creates an SQL 

connection (if none exists) to the local database and executes the desired query. Some of these 

sub-methods also require multiple sub queries and the creation of temporary tables in order to 

enhance their performance.  

Finally, the data is stored into DataView instances and used to create a statically defined type of 

data which, in turn, will be returned in XML format to the user. 

Security 

While the implementation of these Web Services greatly improved GeNS’ accessibility, it also 

opened a doorway for malicious users who may wish to tamper with the database. Initially (and 

not surprisingly), the Web Services were vulnerable to all kinds of attacks (e.g. SQL injection 

[66]). For example, if a malicious user were to execute the ListDataType method with the 

following input: 

 ‘; DROP DATABASE GeNS -- 

Then SQL Server would effectively drop the entire database thus rendering the entire system 

unusable and requiring manual intervention to restore the database (assuming a backup copy 

existed); this is an unacceptable risk for the platform. 

However, due to the fact that efficient application hardening is a rigorous, time-consuming task 

that is out of the scope of this thesis, a set of simple measures were implemented in order to 

minimize the issue: 
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� Perform basic server-side input validation  

� Prevent the execution of arbitrary code by restricting the Web Services SQL commands to 

parameterized Stored Procedures, executed by a user with limited permissions 

� Disabling the guest account inside SQL Server 2008 

Regarding the first, validating the inputted text on the server prevents malicious users from 

circumventing the client-side validation process, albeit at the cost of additional workload for the 

server; despite effectively shutting down the former attack, this decision may pave the way for a 

Denial of Service attack if a skilled, malicious user so desired. Even so, it raises the difficulty 

bar and, as such, it is still preferable to client-side validation since only validated parameters are 

passed along to SQL Server’s stored procedures. 

About the validation process itself, upon receiving a request from a Web Service that accepts a 

string in its input parameters (the gateway for most SQL injection attacks). Subsequently, a 

validation method is invoked in order to sanitize the user-inputted string.  

More specifically, a number of characters and substrings typically used in SQL injection attacks 

were blacklisted; these will be removed from the input string, if found, thus effectively stopping 

the SQL Injection attacks. Amidst the blacklisted items one can find the single quote character 

(‘), the comment operators (--), and a number of key SQL commands (e.g. DROP, DELETE, 

SELECT, INSERT, BACKUP, xp_cmdshell, TAKE CONTROL). All the user-inputted integers 

must also be validated. 

Regarding the second measure, a user with a very restricted set of permissions was created in 

order to further restrict malicious intents; all operations are executed by means of parameterized 

stored procedures, following recommended practices [67] and conferring a second layer of 

protection to the system. 

Finally, disabling the guest account may prove useful if the attacker manages to overcome the 

remaining protections; a guest account would allow anyone to connect to the database, an 

irrelevant feature for the time being. 

These measures appeared to solve the problem regarding the most commonly used SQL 

Injection attacks. Nevertheless, one can never be too careful and performing penetration testing 

may prove quite useful in the future as this would certainly put the implemented measures to the 

test (if lead by an experienced user, obviously). 
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3.7.Summary

In this chapter, the GeNS platform was presented as a multi-tier, database-centric data 

integration system that is able to combine features from link-based, mediators and, especially, 

data warehousing strategies to integrate large sets of data, composed of numerous biological 

concepts along with their relationships.  

Several loaders were developed in order to provide access to multiple sources, along with SQL 

scripts that import the data to the DB.  

The physical database schema improved BioPortal’s schema regarding data replication 

(minimized by the new protein-to-biological entity correlation table), intelligibility and 

performance. In addition, indexes and statistics were created in order to boost performance even 

further. Maintenance scripts were developed in order to keep the database up and running for 

long periods of time.  

The data was made accessible by direct SQL access and a SOAP based Web Services layer that 

provides multiple functionalities and whose data is returned in XML format.  
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4. Chapter 4 – Validation procedures 

This chapter describes the validation procedures and the concrete applications using the GeNS 

platform. These are particularly important, because a system such as this one cannot be correct 

in itself; it requires a working application working on top of it in order to judge if the concrete 

level of abstraction, for example, is suitable for the task at hand.  

4.1.Programmatic utilization 

By June, 2009, GeNS was being used in two distinct applications: QuExT [68] and 

GeneBrowser [69].  

QuExT (Query Expansion Tool) is a web application designed to search biomedical literature in 

order to find relationships among sets of genes. For a given list of genes, it expands the initial 

search in several biological domains using a mesh of co-related terms, extracts the most relevant 

document from the literature, and organizes them according to domain weighted factors. The 

role of GeNS database is to retrieve the network of concepts related with each gene entry in 

order to perform the query expansion. 

Figure 4.1 - QuExT’s search results for its example query 
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GeneBrowser, on the other hand, is a web-based application that offers to the user several 

interpretation perspectives to help giving biological significance to the result coming from a 

DNA-microarray experiment.  

For a given set of genes the system obtains and shows to the user relevant information extracted 

from external databases. Other features of the system include the possibility to see the 

accumulation of genes into several categories (Pathways, Gene Ontology terms and KEGG 

Orthology terms). 

Figure 4.2 - GeneBrowser's Gene Explorer in action 

These tools are a test to GeNS’ accuracy; both were able to audit the results provided by the 

GeNS platform, confirming the correctness of the inserted data. 

4.2.Comparing with DiseaseCard 

DiseaseCard  is “an information retrieval tool for accessing and integrating genetic and 

medical information for health applications” developed in the UA.PT Bioinformatics Group in 

collaboration with the Institute of Health Carlos III Bio-Computing and Public Health Unit [33]. 

DiseaseCard receives data exclusively from NCBI OMIM and Clinical Trials databases via the 

Arabella crawler and compiles all the data into disease cards that group all the data regarding a 

given disease into a single entry point. This is a mature, well established system and, as such, a 
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side by side comparison would provide a clear indication of GeNS’ correctness regarding data 

integration (for the human species only, as DiseaseCard only integrates Homo Sapiens data

only). For this purpose, five diseases were selected: 

� Alzheimer’s disease 

� Renal tubular dysgenesis 

� Glioblastoma 

� Gastric cancer 

� Osteosarcoma 

All of these diseases have complete cards in DiseaseCard (20 out of 20 informational nodes, the 

maximum amount of information available); this is important because if a disease with an 

incomplete set of data was selected then the results may not have been accurate, especially since 

DiseaseCard has a low number of sources (unlike GeNS).  

Having selected the diseases, their OMIM number was looked up and ran through DiseaseCard 

and GeNS. A small software application (built in C#) was also developed in order to deliver 

automatic processing of the results.

Figure 4.3 - A comparative analysis for Alzheimer's Disease 
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Figure 4.4 - A comparative analysis for Renal Tubular Dysgenesis 

Figure 4.5 - A comparative analysis for Glioblastoma 
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Figure 4.6 - A comparative analysis for Gastric Cancer 

Figure 4.7 - A comparative analysis for Osteosarcoma 
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Figure 4.8 – The coverage rate between GeNS and DiseaseCard 

As the graphics clearly demonstrate, the GeNS platform is able to provide a good coverage of 

the data already in DiseaseCard (in terms of common entries), while presenting even more 

results in nearly all of the queries - an expected result due to the large number of sources 

feeding its database. Although theoretically GeNS and DiseaseCard should have an a hundred 

percent coverage rate, these databases integrate information with different timestamps. As a 

consequence, this rate falls to an average coverage of eighty percent (Figure 4.8). 

Therefore, one can conclude that GeNS is correctly integrating human-related disease data. Also 

visible is the importance of a periodic update for its database, as the coverage rate between both 

systems will eventually decline if GeNS does not update its data regularly. 

4.3.Comparing with Bio2RDF 

Bio2RDF is a semantic web mashup system developed at Laval University that integrates 

biological knowledge from different data sources (GeneID,  OMIM, UniProt, KEGG, Ligand, 

OBO, PDB and MGI, among others) whose goal is “to solve the problem of knowledge 

integration in biology by applying a semantic web approach” [70]. It is this semantic web 

approach that makes Bio2RDF an interesting choice in comparison to GeNS. 

Bio2RDF converts and stores data in RDF (Resource Description Framework) data model [71] 

format in order to implement the semantic web technology. This W3C recommended standard 

model is flexible enough to support conceptual description or modeling of information from 
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different data sources. A morphological equivalent to a collection of RDF statements would be 

a labeled multi-graph that clearly indicates the flexibility of this approach. As such, 

implementing a web semantics layer bestows any system with complex query searches, along 

with full text search, due to the large amount of metadata associated with a given biological 

concept; this is one of the pillars of Bio2RDF. 

Architecture 

Figure 4.9 - Bio2RDF's architecture 

Briefly summarizing its complex architecture, Bio2RDF integrates data from a number of 

sources (PDB, OMIM, UniProt, KEGG and Ligand, among others) in RDF format only. As 

such, data being retrieved not in RDF format needs to be converted to it via an Rdfizer program 

developed using the JSP 6 toolbox. The data is subsequently stored in a local MySQL database 

and made available via several graphic user interfaces.  

This represents the data warehouse facet of this system, used to store the metadata that will not 

only show some results but also provide an effective inference method of retrieving new data 

from other third-party databases on a per request basis, the mediator facet of Bio2RDF. 

                                                     

6 Available at http://java.sun.com/products/jsp/jstl/
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This greatly increases Bio2RDF’s namespace, even though its performance drops due to the 

obvious need to contact other sources of information. Nevertheless, the resulting data can be 

subsequently integrated in the database in order to avoid waiting long periods of time in the 

future.

Bio2RDF supports very powerful queries that enable answering both technical and abstract 

question such as7:

� Who is Jean Morissette? 

� Who are Dr Labrie collaborators? 

� Which MeSH terms are associated to Dr Labrie papers? 

These queries prove Bio2RDf’s powerful querying capacities; as it is, they cannot be answered 

by GeNS. As one can see, Bio2RDF follows a different approach than the one being used in 

GeNS. Its RDF based implementation is inherently more complex in nearly all aspects (Figure 

4.9 taken from [70]).  

Developers wanting implement applications that run on top of it either use one of the existing 

services or acess the database directly via SPARQL [72]. Creating SPARQL queries for 

unexperienced developers in this area may prove cumbersome at the beginning due to the low 

intelligibility of the language itself; for example, Bio2RDF’s script for retrieving all the genes 

involved in the KEGG Pathway ‘path:mmu0010’ is: 

SELECT distinct ?label1, ?sameAs5, ?xobject4 

WHERE { 

 ?Pathway1 <http://www.w3.org/2000/01/rdf-schema#label> ?label1 . 

 ?Pathway1 <http://bio2rdf.org/kegg#xrelation> ?xrelation2 . 

 ?xrelation2 <http://bio2rdf.org/kegg#xentry1> ?xentry3 . 

 ?xentry3 <http://bio2rdf.org/kegg#xobject> ?xobject4 . 

 ?xobject4 <http://www.w3.org/2002/07/owl#sameAs> ?sameAs5 . 

FILTER (?Pathway1 = <http://bio2rdf.org/path:mmu00010>) 

}

                                                     

7 Taken from http://bio2rdf.wiki.sourceforge.net/Demo+queries
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As a result, developing applications on top of this system may take considerable longer when 

compared to the same task while using GeNS. Additionally, modifying a query to deal with 

recently added types of data should not pose problems in either GeNS or Bio2RDF. 

The results are typically published in RDF format, even when manually querying the system via 

its main website (http://www.bio2rdf.org/), a fact that may cause some “discomfort” to 

unexperienced users as RDF is, nevertheless, still rather unknown to the general public and, 

albeit human-recognizable, it requires some effort to be read. This issue was minimized with the 

implementation of a number of alternative interfaces that simplify the system’s usage. 

Both systems have a similar amount of conceptually different types of data, mostly due to the 

also similar number of third-party sources. Nevertheless, Bio2RDF has much stricter disk 

requirements (occupying 141 GB of disk space in 2007, according to [70]). This is direct 

consequence of the RDF approach; having to store such a large metadata, along with the 

verbosity of the RDF format itself translates into a massive volume of data. GeNS, on the other 

hand, requires 26GB for storing data about 180.000 species – the main differente is that a large 

percentage of the data is comprised of identifiers and no metadata (to the obvious exception of 

the data type identifier that specifies the nature of a given entry in the database) is stored. 

4.4.Summary

All things considered, the GeNS platform provides a solid, coherent foundation for a wide range 

of applications; it returns a vast amount of scientifically correct data (as proved with the 

DiseaseCard comparison) in a short response time (as proved with the GeneBrowser 

application). 

GeNS and Bio2RDF use distinct strategies towards the same goal; while the power of the 

semantic web technology makes Bio2RDF rather interesting, its limited set of data regarding 

species, the heavy disk space requirements and its complexity may drive away potential users. 

On the other hand, GeNS only supports “semanticless” queries that cannot offer the same raw 

searching power; as such, implementing even a simple semantic layer on top of the database 

may be able to fill this gap and provide interesting options for this platform. 
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5. Chapter 5 – Conclusions and future work 

The integration of heterogeneous data sources is a classic problem in Bioinformatics, where the 

ability to provide a unified view of conceptually different sets of data offers scientists a much 

broader view of a given subject, thus making it much easier to extract conclusions that may not 

have been visible otherwise.

In this thesis, the GeNS platform is introduced as an alternative solution. Having identified the 

main requirements, potential data sources and the characteristics of a large number of third-

party solutions, a detailed architecture was proposed, implemented and polished. The main 

contributions of this tool are its easiness to use and maintain while offering great performance. 

Moreover, its coverage and scalability – both in terms of number of sources and types of data – 

can easily be verified by the sheer number of distinct types of data already integrated. Adding 

new ones is a trivial procedure and, in all odds, new kinds of data will be incorporated in a 

nearby future. The large coverage also enables GeNS to act as a name server by converting an 

identifier to one of a different nature but associated with the same object; this feature is directly 

available via Web Services. 

The proposed methodology to improve the coverage of the database will likely play a vital role 

in the nearby future in order to ensure the completeness of the stored data. This claim is 

corroborated by the promising experimental results that clearly show that substantial 

improvements were made in almost all database relationships. No third-party solution has 

implemented an equivalent methodology, a fact that increases its relevance even more. As such, 

more work should be placed in this vertent in order to improve the platform even further.  

 The current instance of GeNS integrates some of the most relevant molecular biology databases 

available and nearly 180 million entries in the local database, occupying 26 GB of disk space. 

To show its functionality, two distinct applications – GeneBrowser and QuExT - are supported 

by GeNS services.  

The first one is a tool that performs the functional analysis of microarray data and the second 

uses GeNS data to improve text mining results over PubMed. 

All things considered, it becomes clear that nearly all proposed objectives were achieved, the 

only exception being the lack of an efficient update system. However, this operation is 

theoretically viable because the largest set of data (UniProt) always has a modification time 
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associated with every entry, which can be used to verify if the data regarding a given protein has 

been updated since it its last integration in the local database. 

All in all, GeNS represents a major improvement regarding its predecessor and has a set of 

features that allows it to compete head-to-head with many third-party data integration solutions. 

5.1.Developed skills 

A lot was learned during the development of the GeNS platform, starting with a deeper 

knowledge of C#, XML, ASP.NET and SOAP-based Web Services, as well as effective 

database design, maintenance task and database optimisation. 

Microsoft’s Visual Studio and SQL Server Management Studio in particular were two crucial 

tools for GeNS’ successful deployment; the latter one required further exploration in order to 

gain benefit of several of its features (e.g. Resource Governor, DTA).  

Substancial knowledge was also drawn from the operating system running GeNS: Microsoft’s 

Windows Server 2007 Enterprise, along with the IIS web server that supports the Web Services 

layer.  

Finally, the collaborative group work performed within the Bioinformatics group was a 

rewarding experience that sharpened my social skills and effectively provided a solid basis for 

corporate life. 

5.2.A SWOT Analysis 

The following SWOT analysis evaluates all the aspects of the developed work by identifying its 

strengths, weaknesses, opportunities and threats. This facilitates future work by making it easy 

to identify all both immediate and potential issues. 
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Figure 5.1 - GeNS' SWOT analysis 

5.3.Future Work 

GeNS is able to accommodate heterogeneous biological data under a simple yet flexible 

schema, thus providing a unified view of the data and boosting the process of knowledge 

discovery. However, as seem in Figure 5.1, several aspects of this system still need to be 

refined.

Firstly, the physical schema of the local database needs to be refined in order to fully and 

correctly integrate certain kinds of data (e.g. gene expression data from ArrayExpress Atlas). 

Given the characterists of heterogeneous data, this problem will likely grow larger as new, 

complex types of data emerge. In addition, the direct relationships from one biological entity to 

multiple others are an interesting set of information that should also be mapped. For both 

entries, the solution lies in increasing the level of data normalization – the types of data in the 

description table should be added to the DataType table. As for the direct relationships, a 

correlation table would clearly solve the issue while following good normalization practices. 

Secondly, more work should be placed regarding updating the data sets. While a complex task 

for the UniProt set (due to its very large size), a differential update strategy could be 

implemented by associating a timestamp with each protein; during the update procedure, the 
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timestamp would be compared to the one provided by UniProt, restricting the update to the 

affected proteins only. This would ensure the consistency of the database even for applications 

running on top of GeNS that have statically referenced the internal identifiers.  

Thirdly, despite the fact that the applications already using GeNS already furnish a front-end to 

the platform, the lack of a Web Semantics layer places GeNS behind other third-party 

applications (e.g. Bio2RDF). Implementing this layer would enable GeNS users’ to pose 

expressive queries that empower data contextualization even further. This would facilitate the 

process of extracting new conclusions through larger and more complex sets of data confering a 

significant competitive advantage. To do so, a method to RDFize the integrated data should be 

explored in a nearby future. 

Moreover, new sources of data should be inserted in order to extend the already existing 

coverage. Integrating more variation related data is a particularly interesting option (due to its 

current low volume in the database); NCBI’s dbSNP [73] and PharmGKB are two prime 

candidates for this task, even though the latter is already being partially integrated via UniProt’s 

data set. Being able to provide genotype and phenotype interaction data is another interesting 

prospect that could easily be achieved by integrating NCBI’s dgGaP [74], as is the possibility of 

adding even further sets of data from KEGG; KEGG Disease’s data, for example, would be a 

perfect complement to the existing data. 

Finally, with such a large amount of data present in the database, being able to perform data 

mining operations over it may provide an interesting feature to GeNS’ users due to the potential 

connections that may be revealed by them. For example, implementing a post-integration data 

coverage amplifier based on the theoretically demonstrated method described in section 3.5.5 

would bestow GeNS with a unique feature that would automatically translate into a noteworthy 

competitive advantage. Another option would be to run a BLAST [75] algorithm over the 

integrated data, for example. 
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