
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2009

Lúıs Alberto

Capote Ribeiro

Portal de Gestão de Competições

Robóticas Simuladas

Simulated Robotic Competitions

Management Portal

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2009

Lúıs Alberto

Capote Ribeiro

Portal de Gestão de Competições

Robóticas Simuladas

Simulated Robotic Competitions

Management Portal

Dissertação apresentada à Universidade de Aveiro, para cumprimento dos

requisitos necessários à obtenção do grau de Mestre em Engenharia de

Computadores e Telemática, realizada sob a orientação cient́ıfica de Prof.

Doutor Artur Pereira e Prof. Doutor Nuno Lau, professores auxiliares do

Departamento de Electrónica, Telecomunicações e Informática da Universi-

dade de Aveiro.

o júri

presidente Doutor Tomás António Mendes Oliveira e Silva
professor associado da Universidade de Aveiro

1o vogal Doutor José Manuel Castro Torres
professor auxiliar da Universidade Fernando Pessoa

orientador Doutor Artur José Carneiro Pereira
professor auxiliar da Universidade de Aveiro

co-orientador Doutor José Nuno Panelas Nunes Lau
professor auxiliar da Universidade de Aveiro

acknowledgements /
agradecimentos

À minha famiĺıa, em especial aos meus pais, Carlos e Conceição, e à
minha irmã, Ana, por todo o apoio, carinho e força ao longo da minha
vida e por todas as oportunidades que me proporcionaram para chegar
onde estou, sem eles tudo isto não passaria de um sonho.
À Nancy, por todo o carinho, amizade, força e paciência, obrigado pela
pessoa que és.
Aos meus orientadores, Artur Pereira e Nuno Lau, por toda a disponi-
lidade, apoio e conselhos ao longo do desenvolvimento deste projecto.
Foram essenciais no decorrer da dissertação.
A todos os meus amigos pela amizade e companhia, especialmente ao
Alex e Ricardo, pelos momentos relaxados e pela ajuda nos momentos
mais complicados.

Abstract Robotic competitions’ popularity, both hardware and software based
types, has been growing over the years due to the continuous evolution
of the robotic and computer technologies.
The University of Aveiro, more specifically DETI, has played a relevant
part in the propagation and development of these robotic competitions,
since it introduced the Micro-Rato robotic competition to motivate the
students to learn more about robotic environments.
These competitions’ initial stage was at a physical level, that is, the
robots had to be built, the developed agents had to be applied to the
robots and the actual competition would have to occur in a physical
unique location.
Later, these robotic competitions’ responsible teachers decided to pro-
vide new competition platforms to reach a higher number of interes-
ted people, so a new modality called Ciber-Rato was launched restric-
ting the competition to a simulated environment where the developed
agents would run in an application created to simulate the physical
environment and relative variable components.
Since then, Ciber-Rato has been more disseminated, expanding into
high-schools and into worldwide robotic events, being nowadays asso-
ciated with the international RTSS event. Unfortunately it still requires
the gathering of the participants in a unique physical location in order
to compete.
Evidently, it is time to advance to the Internet field, which would allow
reaching more participants, internationally promote the competition
and also provide a new stage of competitions, since remote participa-
tions on physical and online events would be a near reality.
This project aims the development of an autonomous simulated robotic
competitions management portal, which would be extremely useful as
an auxiliary tool for physical events management and also empower the
realization of online events with full autonomous management (except
in critical situations).
With this in mind, this thesis formalizes and describes the simulated
robotic competitions management portal structure, development tech-
niques and resulting interfaces, as well as discuss the current technolo-
gies and how they are used to connect the various components of the
simulation.

Resumo A popularidade das competições robóticas simuladas, em ambos os ti-
pos baseados em hardware e software, tem vindo a crescer com o passar
dos anos devido à cont́ınua evolução das tecnologias da robótica e da
informática.
A Universidade de Aveiro, mais especificamente o DETI, desempe-
nhou um papel relevante na propagação e desenvolvimento destas
competições robóticas, visto que introduziu a competição robótica
Micro-Rato para motivar os estudantes a aprender mais sobre ambien-
tes robóticos.
A etapa inicial destas competições era a um ńıvel f́ısico, isto é, os robôs
tinham que ser constrúıdos, os agentes tinham que ser introduzidos nos
robôs e a competição teria que decorrer num local f́ısico único.
Mais tarde, os professores responsáveis pelas competições robóticas de-
cidiram possibilitar novas plataformas de competição para atingir um
maior número de interessados, assim uma nova modalidade denomi-
nada Ciber-Rato foi lançada restringindo a competição a um ambiente
simulado, onde os agentes seriam executados numa aplicação criada
para simular o ambiente f́ısico e as variáveis dos componentes relati-
vos.
Desde então, o Ciber-Rato tem sido mais propagado, expandindo-se
para escolas secundárias e eventos de robótica pelo mundo, sendo ac-
tualmente associado com o evento internacional RTSS. Infelizmente,
a competição ainda requer a reunião dos participantes num único local
f́ısico para competir.
Evidentemente, está na altura de avançar para o campo da Internet,
que possibilitaria alcançar mais participantes, promover a competição
internacionalmente e também disponibilizar uma nova etapa de com-
petição, uma vez que participações remotas em eventos f́ısicos e online
seriam uma posśıvel realidade.
Este projecto visa o desenvolvimento de um portal autónomo de gestão
de competições robóticas simuladas, que seria extremamente útil como
uma ferramenta auxiliar na gestão de eventos f́ısicos e também potenci-
aria a realização de eventos online com uma gestão autónoma completa
(excepto em situações cŕıticas).
Com isto em mente, esta dissertação formaliza e descreve a estru-
tura, técnicas de desenvolvimento e interfaces resultantes do portal
de gestão de competições robóticas simuladas, assim como discute as
tecnologias Web actuais e de que forma são usadas para interligar as
diversas componentes da simulação.

Contents

1 Introduction 1
1.1 Simulation Environment . 1

1.1.1 Robot Body . 2
1.1.2 Simulation System . 5

1.2 Competition Modalities . 5
1.2.1 Competitive Modality . 6
1.2.2 Collaborative Modality . 6
1.2.3 High-School Modality . 7

1.3 Objectives . 8
1.4 Thesis Structure . 8

2 Web Development and Publishing 11
2.1 Current Technologies . 11

2.1.1 Web 2.0 . 11
2.1.2 Servers . 13
2.1.3 DataBase Management Systems (DBMS) 16
2.1.4 Dynamic Pages . 24

2.2 Content Management Systems (CMS) . 37
2.2.1 Types . 37
2.2.2 Web Content Management Systems 38
2.2.3 Existent Web Content Management Systems Examples and Descrip-

tions . 39
2.3 Online Discussion Methods . 41

2.3.1 News Boards . 41
2.3.2 Forum . 41
2.3.3 Chat . 42
2.3.4 Message Boards . 43
2.3.5 ShoutBoxes . 43
2.3.6 Social Networking . 44
2.3.7 Blog-Wikis . 44

2.4 Development Methods . 45
2.4.1 Three Layer Web Development . 45
2.4.2 Three-Tier Application Development 47

i

2.5 Summary . 48

3 Structural Definition 49
3.1 System Requirements . 49

3.1.1 Functional Requirements . 49
3.1.2 Usability Requirements . 50
3.1.3 Hardware Requirements . 52
3.1.4 External Systems Interface Requirements 53

3.2 Architecture Description . 53
3.2.1 Applicational . 53
3.2.2 Installation . 54

3.3 Actors Description . 54
3.3.1 Guest . 55
3.3.2 Member . 55
3.3.3 Moderator . 55
3.3.4 Administrator . 56

3.4 Actions Description . 56
3.4.1 Action Distribution Among Actors 56
3.4.2 Use Cases . 57
3.4.3 Some Task Descriptions . 57

3.5 Model Definition . 61
3.5.1 Domain Model . 61
3.5.2 Class Model . 61

3.6 Summary . 61

4 Development and Implementation 65
4.1 Business Layer Logic . 66

4.1.1 Database Implementation . 66
4.1.2 Competitions Management . 66
4.1.3 Users and Teams Management . 67
4.1.4 Scoreboards Generation . 68
4.1.5 Media and Log Gallery Generation 68
4.1.6 Online Discussion Tools’ Integration 68

4.2 Interface’s Development . 69
4.2.1 Restrictions . 69
4.2.2 Workspace Description . 72
4.2.3 Some Relevant Aspects . 73

4.3 Interface’s Implementation Overview . 74
4.3.1 Member Implementation . 75
4.3.2 Moderator Implementation . 76
4.3.3 Administrator Implementation . 77

4.4 Online Discussion Implementation . 77
4.5 Security Measures . 80

ii

4.6 Summary . 81

5 Conclusion and Future Work 83
5.1 Conclusions . 83

5.1.1 Objectives . 83
5.1.2 Personal Evolution . 85

5.2 Future Work . 86

iii

List of Figures

1.1 Virtual arena created by the simulation system, courtesy of the CiberMouse
Organization. 2

1.2 Virtual body of a CiberMouse agent, courtesy of the CiberMouse Organization. 3

1.3 Competition’s Simulation System Overview, courtesy of the CiberMouse
Organization. 6

2.1 Web 2.0 cloud-map picture, courtesy of Luca Cremonini. 12

2.2 A Web Server’s sample operation with its users and administrators, courtesy
of the iServe Corporation. 13

2.3 Apache HTTP Server logo, courtesy of the Apache Software Foundation. . 14

2.4 Microsoft IIS logo, courtesy of the Microsoft Corporation. 15

2.5 A database management system’s operations scheme, courtesy of the Sys-
temsView Website. 16

2.6 Microsoft SQL Server 2008 logo, courtesy of the Microsoft Corporation. . . 19

2.7 MySQL logo, courtesy of the Sun Microsystems Corporation. 20

2.8 Oracle logo, courtesy of the Oracle Corporation. 22

2.9 PostgreSQL logo, courtesy of the PostgreSQL Organization. 23

2.10 Interaction between client and server for static webpages, courtesy of the
WebHosting Website. 25

2.11 Interaction between client and server for dynamic webpages, courtesy of the
WebHosting Website. 25

2.12 An example of a client-side scripting operation, from an unknown source. . 26

2.13 An example of a server-side scripting operation, from an unknown source. . 26

2.14 ASP.NET logo, courtesy of the Microsoft Corporation. 28

2.15 PHP logo, courtesy of The PHP Group Organization. 29

2.16 JSP logo, courtesy of the Sun Microsystems Corporation. 30

2.17 ECMA International logo, responsible for the ECMAScript standard, cour-
tesy of the ECMA International Organization. 31

2.18 AJAX logo, courtesy of the AJAX Organization. 32

2.19 Interactions between client and server using traditional methods and AJAX,
courtesy of Jesse James Garrett from Adaptive Path Website. 33

2.20 Adobe Flash CS4 logo, courtesy of the Adobe Corporation. 34

2.21 Microsoft Silverlight logo, courtesy of the Microsoft Corporation. 36

v

2.22 The Three Layer Web Development model’s graphical representation, cour-
tesy of Kevin Yank for SitePoint. 46

2.23 The Three-Tier Application Development methodology’s graphical repre-
sentation, courtesy of Bartledan for the Wikipedia Project. 47

3.1 The system’s applicational architecture diagram. 54
3.2 The system’s installation architecture diagram. 55
3.3 The application’s actions distributed between actors as a package diagram. 56
3.4 Use Case Diagrams divided by actors: figure (a) displays the guests’ use

cases diagram; figure (b) displays the members’ use cases diagram; finally,
figure (c) displays the moderators’ use cases diagram. 58

3.5 Use Case Diagrams divided by actors: figure (a) displays the administrators’
use cases diagram and figure (b) displays a full view of all the system’s use
cases and their respective actors as a diagram. 59

3.6 Some tasks descriptions’ diagrams: figure (a) presents an activity diagram
of the operation of registering a new team in the system; figure (b) presents
an activity diagram of the operation of entering a team into an active event;
figure (c) presents an activity diagram of the operation of viewing the media
gallery. 60

3.7 The system’s domain model diagram. 62
3.8 The application’s class model diagram. 63

4.1 The application’s workspace. 72
4.2 An overview of the complete interface implementation. 74
4.3 A close-up of the application interface’s components: figure (a) displays a

close-up of the application interface’s header; figure (b) displays a close-up of
the application interface’s menu; figure (c) displays a close-up of the applica-
tion interface’s extra panel; figure (d) displays a close-up of the application
interface’s footer. 75

4.4 A close-up of the application interface’s menu as seen by a member. 76
4.5 An overview of the application interface’s administration panel for modera-

tors and its inner options. 77
4.6 An overview of the application interface’s administration panel for admin-

istrators and its inner options. 78
4.7 An overview of the application interface’s forum feature implementation. . 79
4.8 An overview of the application interface’s news feature implementation. . . 79

vi

List of Tables

1.1 Robot’s sensors characteristics summary. 4
1.2 Competitive and collaborative modalities robot’s actuators characteristics

summary. 5

2.1 NetCraft’s August 2009 Web Server survey results, courtesy of the NetCraft
Organization. 14

3.1 The application’s main functional requirements. 51

4.1 W3Schools web survey[55] results concerning the display resolutions used in
2000-2009. 70

4.2 W3Schools web survey results concerning the color depth used in 2000-
2009[55]. 71

4.3 W3Schools web survey results concerning the web browsers used in year
2009[56]. 71

vii

List of Acronyms

ABM Automated Banking Machine

AJAX Asynchronous JavaScript and XML

ANSI American National Standards Institute

AOLServer America OnLine Server

API Application Programming Interface

ASP Active Server Pages

ATM Automated Teller Machine

BBCodes Bulletin Board Codes

BSD Berkeley Software Distribution

CGI Common Gateway Interface

CMS Content Management System

CPSS Cyber-Physical Systems Simulator

CSS Cascading StyleSheets

DBMS DataBase Management System

DETI Department of Electronics, Telecommunications and Informatics

DET Department of Electronics and Telecommunications

DMS Document Management System

DOM Document Object Model

EMWAC European Microsoft Windows NT Academic Center

FAQ Frequently Asked Questions

ix

FTP File Transfer Protocol

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business Machines corporation

IDE Integrated Development Environment

IIS Former Internet Information Server, current Internet Information
Services

IPv6 Internet Protocol version 6

ISO International Standardization Organization

J2EE Java 2 Enterprise Edition

JSON JavaScript Object Notation

JSP Java Server Pages

JVM Java Virtual Machine

LAMP Linux, Apache, MySQL and PHP

LAN Large Area Network

LED Light-Emitting Diode

MMORPG Massively Multiplayer Online Role-Playing Game

MUD Multi-User Dungeons

NCSA HTTPd National Center for SuperComputing Applications HTTP Daemon

NNTP Network News Transfer Protocol

ODBC Open DataBase Connectivity

ORDBMS Object-Relational DataBase Management System

OS/2 Operating System/2 created by Microsoft and IBM

OS Operating System

PHP Former Personal Home Page, current recursive PHP:Hypertext
Preprocessor

x

PL/pgSQL PL/postgreSQL

PSM Persistent Stored Modules

PSQL Procedural SQL

RDBMS Relational DataBase Management System

RSS Really Simple Syndication or, less commonly, Rich Site Summary

RTSS Real-Time Systems Symposium

SMTP Simple Mail Transfer Protocol

SQL PL SQL Procedural Language

SQL Structured Query Language

SSL Secure Sockets Layer

T-SQL Transact-SQL

TCL Tool Command Language

TLS Transport Layer Protocol

UA University of Aveiro

UML Unified Modeling Language

UPS Uninterrupted Power Supply

URL Uniform Resource Locator

VBScript Visual Basic Scripting

W3C World Wide Web Consortium

WCMS Web Content Management System

WWW World Wide Web

WYSIWYG What You See Is What You Get

XAML Former eXtensible Avalon Markup Language, current eXtensible
Application Markup Language

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

xi

XSLT eXtensible Stylesheet Language Transformations

Y2K Year 2000 bug, originated from the abbreviation of 4-digit years to
2-digit years

xii

Chapter 1

Introduction

Since 1995 the UA, by initiative of a few teachers of the, at the time, DET and currently
DETI, has been developing a physical robotic competition, with certain fixed rules, named
Micro-Rato[1] as a mean of motivating and complementing the department students’ skills.

As the years passed by, the number of competition participants increased and the com-
petition’s popularity growth was evident, and became, not only a students competition,
but also an important method for developing the desire to work in vanguard technological
areas, and for contributing to a better understanding and usage of the seized knowledge
with the participations. A proof of this was the propagation of this new kind of competi-
tion all around the country, also having been developed some other robotic competitions
nationally based in the same principles as Micro-Rato at various stages of education.

With the popularity growth mentioned above, the competition itself would have to be
adapted in order to meet its defined goals. Although Micro-Rato had ran with the same
rules in the first five editions, the rules had to be significantly altered in order to better
objectify the main goal (promote the robot’s learning ability). In this sixth edition, that
occurred in 2001, a new competition modality was also released, named Ciber-Rato[2]
which reflected, basically, the same rules and ideals as its predecessor with the difference
that this new competition wasn’t physical, it ran in a simulated environment with virtual
agents competing with each other.

1.1 Simulation Environment

The CiberMouse Design Competition is a simulated robotic competition based on the
Ciber-Rato’s Simulation Environment running in a network of computers, whose purpose is
to develop an agent or multi-agents which will participate in a mission similar to a regular
rescue mission. Each agent, or several agents as a team, have to find a certain spot, during
a given amount of time, in an unknown maze and return to the initial spot or gather at
the final spot, depending on the kind and level of competition.

The simulation system is responsible for the virtual arena which is composed of a initial
position grid, a target area signaled by a beacon and a number of walls and obstacles as

1

pictured in figure 1.1. The simulation also modulates the robot’s body which will afterwards
be controlled by the software agents developed by every participant team.

Every robot has the same composition, a cylindrical shape and a number of sensors,
actuators and command buttons. The simulation system emulates these sensor measures
sent to agents and the actions sent by them as a response.

Figure 1.1: Virtual arena created by the simulation system, courtesy of the CiberMouse Organization.

The organizers main goal is to help improve the students ability to handle real-time
challenges and to develop their overall robotic experience and knowledge through the com-
petition.

The competition has several modalities within the above mentioned purpose, a high-
school modality which is basically the regular Ciber-Rato competition but more simplified,
a competitive modality which is the regular Ciber-Rato competition and a collaborative
modality which was introduced recently, having an application available for download from
the CPSS website which simulates this environment. The rules to each of these modalities
will be explained in the following sections.

1.1.1 Robot Body

As mentioned before, the robot’s body is composed of a cylindrical shape and various
sensors, actuators and command buttons.

Each robot body includes up to four obstacle sensors, one beacon sensor, one compass,
one bumper, one ground sensor and one GPS, as seen on figure 1.2. The bumper and
the GPS are always available without the need to request them, but the other sensors are
requestable sensors, which means they have to be requested in a previous cycle to be used,
having a request limit for sensors of this kind per cycle. Since the competition is trying to
simulate a real robotic environment, the measures given to the agents through the sensors
are a bit noisy and suffer from a time latency, depending on the sensor requested, making
the challenge more real.

The obstacle sensors receive the distance between the robot’s body and an obstacle
(walls or other robots), having each sensor sixty degrees of aperture angle. These

2

Figure 1.2: Virtual body of a CiberMouse agent, courtesy of the CiberMouse Organization.

sensors measurements are inversely proportional to the shortest distance to the ob-
stacle, as the obstacle becomes closer the measures increase, with a range of [0,100]
and a 0.1 resolution. These sensors are all movable around the robots periphery,
being its default positions represented on figure 1.2.

The beacon sensor is omnidirectional and is positioned on the center of the robot’s
body. It measures the angle between the beacon’s position and the robot’s frontal
axis, with a range of [-180,180] degrees and 1 degree resolution. A beacon may only
be detected at a certain distance and if not behind a high wall through which it can’t
be seen.

The compass is also positioned on the center of the robot’s body and it measures the
angle between the robot’s frontal axis and the simulation environment’s virtual North,
which is assumed as the X axis on the grid. This sensor also ranges in [-180,180] with
1 degree resolution.

The bumper or collision sensor acts as a ring around the robot’s body, being activated
whenever the robot collides with an obstacle. This sensor is always available with no
time latency and its measures have no noise since it’s basically a boolean variable.

The ground sensor simply detects whether a robot is completely over the targeted area,
indicating either not over the area or completely over the area. This sensor is re-
questable, but has no time latency and no noise.

The GPS is a sensor located at the center of the robot’s body and indicates its global
position within the arena, also having a latency of 0 time units.

A summary of the above sensor characteristics can be seen in table 1.1.

3

Sensor Range Resolution Noise Type Deviation Latency On Request

Obstacle [0.0, 100.0] 0.1 Additive 0.1 0 Yes

Beacon [-180, 180] 1 Additive 2.0 4 Yes

Compass [-180, 180] 1 Additive 2.0 4 Yes

GPS - 1 Additive 0.5 0 No

Bumper Yes/No - N/A - 0 No

Ground Yes/No - N/A - 0 Yes

Table 1.1: Robot’s sensors characteristics summary.

The buttons referred above are a Start button and a Stop button and are actuated
uniquely by the simulator. The Start button is used to start or restart a previously inter-
rupted competition and the Stop button is used to suspend the robots movement, being
the robots duty to read these buttons’ status and act according to it.

The actuators referred will be explained later on as the available actuators depend on
the modality of the competition.

The game arena, depicted on figure 1.1, is a rectangular outer delimited maze with
several inner walls, obstacles and one or more target areas. The maze is 14µm high and
28µm wide, all obstacles/inner walls are at least 0.4µm wide, although they can be larger,
corners’ angles between inner walls must be ranged in [90;270] degrees, some inner walls
may be higher than others and, when parallel, forming a corridor, must be, at least, 1.5µm

apart.
The target area’s radius must be at least 2.0µm wide with the beacon in its center,

acting as a simple symbol in the maze and not an obstacle. Since this is a purely virtual
environment, all measures of the arena and its objects are related to the robot’s size which
is 1µm (one MicroMouse) and all time measures are related to the cycle time (varies with
competition) which is µt.

As mentioned above, the actuators in the robot’s body, although they are all present
in every modality, each one of them uses only some of the actuators according to their
actions’ needs, namely:

The motors drive two independent wheels, one on each side of the robot as seen on
figure 1.2, that depend on the power applied to them in order to move the robot
around. The power applied to the wheels ranges in [-0.15;0.15] with a resolution of
0.001 units, although this isn’t the actual power applied due to the inertia, and it is
continuously effective until a new power is inserted. These actuators always have the
same behaviour regardless of the modality.

The three LED’s are a Beacon LED, a Return LED and an End LED. In the competitive
modality the Beacon LED must be activated when a robot is visiting the targeted
area and deactivated before the robot leaves, the Return LED must be activated
before the robot leaves the targeted area and stay activated throughout the return

4

Actuator Range Resolution Noise Type Deviation

Motor [-0.15; 0.15] 0.001 Multiplicative 1.5%

End LED On/Off - N/A -

Return LED On/Off - N/A -

Beacon LED On/Off - N/A -

Table 1.2: Competitive and collaborative modalities robot’s actuators characteristics summary.

trip to the initial position. Once the robot reaches its approximate initial position,
the Return LED must be deactivated and the End LED must be activated, indicating
that the robot has finished. In the collaborative modality merely the End LED is
used and it must only be activated once the robot is completely parked inside the
target area, signalling the end of its goal.

A summary of the competitive and collaborative modalities robot’s actuators can be
seen in table 1.2.

1.1.2 Simulation System

The CiberMouse’s virtual environment is based on a distributed architecture, composed
of one simulator, one or more visualizers and exactly three or five agents per trial, depending
on the competition modality, as depicted on figure 1.3.

The simulator is responsible for implementation of the robots’ bodies, estimating sensor
measures with noise and sending them to the respective agents, moving an agent around
the arena but taking in account the environment’s restrictions, setting and updating the
robot’s score according to the completed goals, time used for completion and occurred
penalties, sending all environment and competition related information to the visualizer(s),
and also responsible for routing the messages sent by robots, having in consideration the
communication constraints (message size and communication radius).

Each visualizer, on the other hand, is responsible for all the graphical representation
of the competition on screen (robots, arena, scores, etc.) and making available a control
panel to control the simulation (may be visible or not).

1.2 Competition Modalities

Such as was mentioned before, the CiberMouse competition is divided into several
modalities, each with its own goal and specific parameters, but sharing common main
characteristics, which allow the globalization of a simulation tool.

Since all these modalities share the same main features, only one application is needed
to simulate them, so the CiberMouse Organization developed the CPSS’ simulator, which,
by defining the modality’s challenge and its noise, latency and number of requestable
sensors, can be applied to any of the CiberMouse’s modalities.

5

Figure 1.3: Competition’s Simulation System Overview, courtesy of the CiberMouse Organization.

1.2.1 Competitive Modality

Continuing the previous rules explanation, in this modality each team is represented
by one robot competing with two other teams simultaneously in the same arena.

Each robot has to accomplish two goals in order to conclude successfully this compe-
tition, find and visit the targeted area, and afterwards return to its initial position in the
arena.

Challenge

As explained above, this competition has three teams competing simultaneously with
one robot each and its challenge is to complete successfully two goals, visit the target area
and return to the initial position.

Each robot must find the target area and visit it and once there the agent must activate
the Beacon LED to indicate it has reached the target area and deactivate it before leaving.
Afterwards the agent must activate the Return LED before exiting the target area and
then begin the return journey to its initial position in the arena, having the Return LED
activated throughout the trip. Once the robot reaches its approximate initial position, the
agent must deactivate the Return LED and afterwards activate the End LED indicating the
end of the challenge. The time limit in this competition varies in [1800;3600]µt depending
on the scenario.

At the beginning, to each robot is assigned a score, that will be partly removed if the
robot completes successfully some tasks. In addition, each collision or mistake the robot
makes increases its score. At the end of each trial the robots are aligned by descending
score, the best score being always the lower.

1.2.2 Collaborative Modality

Continuing the specific modalities’ rules explanation, in this modality each team is
represented by five robots working together to achieve one goal as a team. In this modality

6

there is only one team of robots per trial, meaning there is no direct confrontation in the
arena.

The goal of the team is to organize itself, ideally communicate with each other (not
mandatory), find the beacon and gather inside the target area. The presence of all robots
inside the target area is also not mandatory to complete the goal, but more robots inside
the area means better score.

Challenge

As mentioned, this competition has only one team per trial competing with five robots
simultaneously and its challenge is to complete successfully only one goal, unlike the other
modalities, which is to find the beacon and park inside the target area. Team collaboration
with communication is ideal but not mandatory to complete the goal successfully.

Each robot starts in a different part of the map with their positions less than 8µm

apart so that connectivity between robots is present. Ideally, the robots should explore
the maze by going into different areas, in order to minimize the time to find the beacon.
Since communication is possible, they would be able to communicate whatever they wanted
throughout the trial, as long as the communication radius isn’t exceeded (8µm).

In this modality there are two time limits to accomplish the goal, the key time and the
total time. The key time is lower than the total time and is used to benefit the robots that
signal their ending first, the total time is the time limit to conclude the trial and varies in
[1800;3600]µt depending on the scenario.

As the other modalities, to each robot is assigned an initial score, that will be partly or
fully removed if the robot completes the goal successfully (fully removed in case the robots
completes within the key time, otherwise only part of the score is removed). In addition,
each robot’s collision increases its own score.

At the end of each trial each robot has a score and the team’s score is the sum of the
team’s robots’ scores. Afterwards the teams’ score are descendingly aligned and, again,
the best score is always the lower.

1.2.3 High-School Modality

This modality, although it is being referenced as a different modality of the competition,
is actually just a particular of the other above presented modalities, since it can be applied
to either one of them and is only separated to distinguish the different levels of the relative
modality.

Since the above described modalities require a certain level of programming knowledge
and skills, it would a bit difficult for people other than University students of a program-
ming area to participate in these events with success. So, the High-School modality was
created as a way to simplify the existent competitions, lowering their level of difficulty, by
removing certain relevant aspects which would augment the complexity of the developed
agents and their data.

7

In this manner, the usual CiberMouse modalities could be open to anyone who was
interested in participating, whether they are University students from non-programming
areas, high-school programming enthusiasts or any other non-schoolers who wanted to
learn, improve or test their programming knowledge in a real-time simulation challenge.

At the moment this modality is only applied to the Competitive modality, inheriting
all the robot body’s specifications, the challenge’s rules and the simulation system’s en-
vironment definitions, excluding only the environment variables’ noise, the sensors’ data
noise, deviation and latency, the actuators’ noise and deviation, and also unlimiting the
number of requestable sensors per cycle.

Even though this modality is only implemented for the above mentioned modality, it can
easily be applied to the Collaborative modality or to any other kind of future CiberMouse
competition modalities, since it inherits all the competition’s relative specification and
definition data from its parent modality, only removing the noise, deviation and latency
from the measured data, and also its number of requests limit per cycle.

1.3 Objectives

These competitions have an increasingly higher level of work to organize and diffuse,
making it continuously difficult to carry them out more frequently, and since Ciber-Rato
competition is already spreading internationally, the need to have a centralized manage-
ment portal which would embrace these competitions is extremely elevated.

The objective of this project is to develop a centralized management portal in order
to run simulated competitions more frequently and completely autonomously, but also
in order to be an important support tool for international and localized events, such as
RTSS’s Students Design Competition named CiberMouse, which occurs once a year, and
UA’s own Ciber-Rato Competition, which also occurs once a year on university grounds.

The portal would need to play two roles in the competitions. The role of active entity
which regulates the players, teams and competitions, and is responsible for the presentation
of these competitions’ results, whatever level of difficulty or frequency of the competitions.
But also the role of passive entity which functions as tool for players and teams to take
part of the localized competitions, and to help organizers and judges with the presentation
of results.

1.4 Thesis Structure

This thesis has the following structure:

In chapter 2 is presented an overview of the state of the art in Web development, namely
methods, technologies and some specific applications (Content Management Systems, dis-
cussion applications and virtualization applications).

In chapter 3 is described the structural definition of the management portal solution.
There are requirements explanations, actors and actions descriptions, and some applica-

8

tions integrated in the portal.
Chapter 4 analyzes the business logic layer and the portal’s interface regarding some

development aspects and implementations overview.
Lastly, chapter 5 discusses the conclusions achieved at the end of this project and

presents some suggestions for future work on the portal.

9

Chapter 2

Web Development and Publishing

In this chapter an overview of the Web development technologies, methodologies and
tools is presented. Several current technologies are discussed as well as some develop-
ment methodologies used regularly nowadays. Some applications used as web development
or publishing tools are also presented, namely CMS and other online discussion meth-
ods/applications.

2.1 Current Technologies

Ever since the beginning of the World Wide Web up until now, the WWW and the
technologies around it have been constantly changing and extended from the simplest way
of communication and information display to a new complex way of interacting and doing
business, affecting every area in the information technology industry.

With this evident evolution, it quickly becomes critical to the companies’ survival
the implementation of a new breed of web applications. Consequently, these applications
demand a platform providing production-quality tools for content management, application
development and integration, so developers had to constantly adapt their knowledge in
order to meet the additional requirements of this new generation of internet websites and
applications.

An overview of some of the most important technologies and designs that are affecting
the current web development market is hereafter presented in the following subsections,
such as web servers, database management systems, dynamic webpages technologies for
server and client sides scripting, content management systems, online discussion methods
and some development methodologies and concepts.

2.1.1 Web 2.0

The Web 2.0 (figure 2.1) term was used for the first time by Darcy DiNucci on her
article “Fragmented Future” in 1999[6] and later again in 2003[7][8], but the concept was
only fully introduced with a conference in 2004[9], by the companies O’Reilly Media[10]

11

and MediaLive, and reflects the basic ideas of web development and web design as a form
of interactive sharing, interoperability and also design and collaboration centered on the
user.

In fact, although the name connotes a new version of Web 1.0, it doesn’t refer to any
kind of technical specifications’ update, it’s a series of changes on how software devel-
opers and users interact with the Web. Still, this concept is not generally accepted by
some technology experts such as Tim Berners-Lee, inventor or the World Wide Web, who
defends[11] that most of this newly created Web 2.0’s technological components had been
created even before the appearance of the Web 1.0. Some critics also call this concept a
kind of marketing move or a “piece of jargon”.

Figure 2.1: Web 2.0 cloud-map picture, courtesy of Luca Cremonini.

Characteristics

The main idea of Web 2.0 is to allow users to do more than just retrieve information. It
takes advantage of the Web 1.0’s capabilities to provide a “Network as a platform” concept,
enabling the users to run software applications entirely through a browser window.

Normally, the websites built following this concept have a participation architecture that
invites users to, not only retrieve information, as said before, but also add information to
the application in order to increasingly enrich it through an AJAX interface and similar
client-side interface frameworks, or even through full client-server application frameworks.

The essential attributes within the Web 2.0 concept, according to David Best from the
University of Eindhoven[12], are its rich user experience and participation, dynamic con-
tent, web standards, scalability, openness and freedom and collective intelligence through
user contribution. It also has the downside that not all users contribute to enrich the
information provided throughout the web, but rather withhold their contribution of effort
and free-ride on the others’ contributions. This, of course, is a step back towards the Web
2.0 ideal and, sometimes, forces website managers to apply a Radical Trust policy, which
consists on crediting the information according to the confidence level an organization or
individual has in an online community.

The Web 2.0 also has some development rules which should be followed[13]:

12

Eternal Beta meaning software shouldn’t be treated as a completed artifact, but rather
as a commitment process with its users, providing the software as a service that is
constantly being improved without the need to install any software on the end-user’s
equipment.

Loosely bonded modular programming which empowers the sharing of own data and
services and also the reuse of others’ data and services.

Device independent software in order to implement web applications that aren’t lim-
ited to a single client or a single server environment, using them both as a team to
improve the applications’ interface and information exchange, bringing the Web as
Platform concept more real and closer to desktop applications.

Data is the new “Intel Inside” as a analogy to, probably, the most important feature
in Web 2.0, comparing the CPU as a computer’s heart to website data as an appli-
cation’s heart, pointing to applications as simply tools to manipulate its data.

2.1.2 Servers

Web Servers can be described as software that is installed on a machine and whose
purpose is to accept HTTP requests from clients, such as web browsers, and serve them
their respective HTTP responses and some optional data contents, such as HTML webpages
and linked objects (images and other media). A Web Server commonly also refers to, not
only the software, but also the machine in which it is installed and running (a sample
operation of this second notion of web server can be seen in figure 2.2, where a computer,
considered as Web Server Machine that includes the respective web server software, serves
the web users’ computers and the server administrators’ computers through the public
internet network).

Figure 2.2: A Web Server’s sample operation with its users and administrators, courtesy of the iServe
Corporation.

13

Web Server Percentage

Apache HTTP Server 54.32%

Microsoft IIS 20.05%

Google Web Server 14.53%

Nginx Web Server 5.22%

LightTPD Server 0.34%

Others 5.54%

Table 2.1: NetCraft’s August 2009 Web Server survey results, courtesy of the NetCraft Organization.

In the context of this thesis, the notion of Web Server only concerns the software area
of this field, so the future references to the notion of Web Server are always connected to
the first notion described above, describing Web Server as a software application.

According to a Web Server survey in August 2009 led by NetCraft[14], the top servers
with active pages are Apache HTTP Server [15], Microsoft IIS [16],Google Web Server [17][18],
Nginx Web Server [19] and LightTPD Server [20]. Table 2.1 presents the survey’s results in
percentage and it shows that, currently, Apache HTTP Server, Microsoft IIS and Google
Web Server are the most popular web servers. Since Google Web Server has been con-
firmed as a new compilation of Apache HTTP Server with some minor changes, it will be
dropped from discussion and only Apache HTTP Server and Microsoft IIS will be better
discussed ahead.

Apache HTTP Server

Apache HTTP Server[15] (figure 2.3), or more commonly just Apache, was initially
created by Robert McCool, who had been involved in NCSA HTTPd, and a number of
other contributers that developed some patches for the server, and later joined and founded
the Apache Software Foundation.

Figure 2.3: Apache HTTP Server logo, courtesy of the Apache Software Foundation.

In fact, one of the two theories for the naming of this server derives from the patches
made for the server, since the group called it a patchy web server. The other theory is
that the name was chosen as a tribute and sign of respect for the Native American tribe
of Apache. Both theories have been backed up by the Apache Software Foundation, so,
although they’ve both been stated true by the group, there isn’t a conclusive idea of which
is the inspiration.

The web server is currently at a 2.2 version, which seems low, but there is a lot of history
behind its development and the server is still being improved, developed and maintained

14

by the Apache Software Foundation. Its main characteristics are the fact that it is an open
source software and is completely OS independent.

This web server has the ability to extend its core functionality by adding some compiled
modules, such as server-side programming language support (PHP, Perl, CGI, Java, C++,
ASP - still at its beginning but improving its support, etc.), authentication schemes, SSL
and TLS support, a proxy, a URL rewriter, custom log files and filtering support. There
are also some other popular features which can be integrated in Apache, like compression
methods modules and intrusion detection and prevention for web applications1.

Apache HTTP Server is mainly used for creating dynamic pages in PHP language and,
since it is free to use, it is often used with the popular environment LAMP, although it
supports other languages and environments, for example, this server is integrated into Mac
OS X as its built-in web server.

Microsoft IIS

IIS[16] (figure 2.4) was created by Microsoft as a response to the launch of the Apache
HTTP Server by the Apache Software Foundation. It has been distributed as an optional
application for use solely in Microsoft’s Windows environment, since Microsoft Windows
NT 3.51 up to Microsoft Windows Server 2008 R2 and Windows 7, providing FTP, SMTP,
NNTP, HTTP services and some others.

Figure 2.4: Microsoft IIS logo, courtesy of the Microsoft Corporation.

This project was initially researched by EMWAC and distributed as freeware, however,
Microsoft was forced to develop its own server due to the increasing volume of traffic going
to microsoft.com. At the beginning the web server was just an additional set of Inter-
net services, but, as it became popular, Microsoft introduced the ASP dynamic scripting
environment with IIS’s version 3.

This server’s latest version is 7.0 which is distributed for use in Windows Vista, Win-
dows 7 and Windows Server 2008, not working on any of the other windows versions. In
order to allow the former Windows’ users to keep their OS and still use IIS, versions 6.0
and 5.1 are still available and being maintained. Version 6.0 already supports IPv6 and is
only for use with Windows Server 2003 and Windows XP Professional x64 Edition; version
5.1 lacks IPv6 support and also only supports 10 simultaneous connections and one single
website, this version is only for use with other distributions of Windows XP.

1ModSecurity is an example of an open source module of this type

15

Although this server is highly limited in its OS compatibility (only works in Windows
environments), it still supports a wide variety of programming languages, such as VBScript,
Java, C++, Python, ASP, CGI, PHP, JSP, Perl, among others. In concern to its security
features, since it is highly integrated with its base OS, it is as simple and as secure as the
OS.

IIS 7.0 has the advantage of allowing an unlimited number of simultaneous connections,
only limiting the concurrent requests up to 10 (depending on the Windows distribution it
is installed in), unlike IIS 5.1 on Windows XP, that limited the number of connections to
10, rejecting all others. Since IIS 7.0 and 6.0 have their own HTTP.SYS kernel driver they
can be much faster than its predecessor IIS 5.1, yet, some benchmarks show that they are
still slower than other servers that run in user-mode.

2.1.3 DataBase Management Systems (DBMS)

DataBase Management System (DBMS) is an application or applications whose objec-
tive is to control the creation, maintenance and use of an organization’s database by its
own applications or end-users.

Figure 2.5: A database management system’s operations scheme, courtesy of the SystemsView Web-
site.

An organization’s database is a collection of the its information organized into logically
related records or files consolidated in a common pool of data records in order to be easily
accessed, managed and updated. These data records are persistent (meaning that they are
stored regardless of terminating the users’ sessions, terminating the management applica-
tions or shutting down the databases’ computers) and organized according to a database
model, which can be the flat model, the hierarchical model, the network model, the re-
lational model (the most common currently), the dimensional model or other objectional
database models.

As seen on figure 2.5, the database holds the organization’s data persistently and is
managed by a DBMS which, by communicating with several possible applications through

16

a certain language (databases and applications must communicate through the same lan-
guage in order to exchange data successfully), receives information and provides informa-
tion to the end-users of those applications.

Although there are several database query languages, the most common worldwide and
the most widely used in relational databases is SQL, as it is a set-based, declarative query
language which provides an easy method of communication with relational databases to
perform several tasks, such as data query and update, schema creation and alteration, and
also data access control. However, in order to add a procedural programming language
functionality to SQL, some extensions where developed by several organizations to better
adapt to their needs, such as:

• PL/PSM by PostgreSQL, which implements the SQL/PSM from ANSI/ISO Stan-
dard;

• PL/SQL by Oracle which resembles Ada, a structured, statically typed, imperative
and object-oriented high-level programming language extended from several other
languages, mainly Pascal;

• PL/pgSQL by PostgreSQL, which is based on the above PL/SQL from Oracle;

• PSQL by Interbase/Firebird;

• SQL PL by IBM which implements the SQL/PSM from ANSI/ISO Standard;

• SQL/PSM by ANSI/ISO Standard;

• SQL/PSM by MySQL which also implements the SQL/PSM from ANSI/ISO Stan-
dard mentioned above;

• T-SQL by Microsoft/Sybase;

The usage of these DBMS’s has as main capabilities:

• The increase of the data storage’s efficiency by enabling the access, process and
altering of large data efficiently and orderly;

• Persistence feature, allowing to maintain the data on a physical storage indefinitely,
regardless of the number of applications that use it and regardless of the system’s
availability (the system could be powered down and the data would remain un-
touched);

• Increased robustness, so in case of a hardware or software failure, the data remains
consistent;

• Improved access control in order to allow access to multiple users with possible mul-
tiple access rules, raising the security level and consistent data access.

17

Along with these main capabilities, there are a lot of other features which empower
these DBMS’s even more, such as:

• The ability to perform queries to retrieve, update or remove information from the
database;

• A backup and replication feature which enables the database administrator or similar
privileged user to make copies of the database’s structure and information in case of a
a system failure or in case of a server migration or extension, keeping the consistency
of the saved data;

• Rule enforcement techniques which allows the database users with appropriate priv-
ileges to apply rules to attributes in order to ensure that they are always cleanly
inserted or updated and that they are reliable, allowing the modification or removal
of those same rules later with ease;

• The capability to perform computations on the data or query results (like count-
ing, summing and averaging, among others), relieving the client’s application form
implementing those calculations;

• An alteration and access logging capacity in order to keep a record of all actions
performed by and through the DBMS;

• An automated optimization feature which monitors occurring patterns or requests
and adjusts the DBMS providing a speed increase on those interactions or informs
a database administrator of the statistics allowing him to perform the necessary
adjustments.

Since the most common DBMS’s used are Microsoft SQL Server, MySQL, Oracle and
PostgreSQL, they will be more specifically discussed ahead. A small reference to DBLite
will be made ahead too as a light weight DBMS solution.

DBLite

The DBLite is a light weight Relational DataBase Management System (RDBMS), since
its main objective is not to compete with other real world RDBMS, but rather provide
a simple standalone and single-user DBMS with relational features that don’t have to be
installed separately and enable its use without requiring an individual complex RDBMS.

In fact, DBLite was written in 1999 with the purpose of being included within other
projects with no other dependencies, being able to reside in memory or disk for embedding
with other resources.

This DBMS allows the application’s developer to manipulate tables consisting of rows
of data which are serialized vectors of objects. These tables may be designed in an ad-
ministrative application, used in a desktop or web application and queried back in the
administrative application, or any other combination of the above order. As features it

18

provides a SQL-like syntax, an GUI table designer and administration application, a test
suite, some pre-compiled statements and the possibility to perform transactions with roll-
back.

On the upside, this DBMS doesn’t have a separate install and is distributed embedded
within the application, has important relational features for single-user applications and
provides the ability to share compatible binary data files with other applications. On
the downside, the SQL-like syntax is very basic and weak, it doesn’t provide sorting or
grouping capabilities, it has no support for aggregations, and at the moment its syntax
parser is flawed and the management GUI is a bit slow.

Microsoft SQL Server

The SQL Server[21] (figure 2.6) was initially developed by Microsoft in 1989 and its
code base was originated in Sybase’s SQL Server. It was Microsoft’s entry to the enterprise-
level database market and was launched for OS/22, being later launched, in 1993, for the
Windows NT 3.1.

Figure 2.6: Microsoft SQL Server 2008 logo, courtesy of the Microsoft Corporation.

In 1995, Microsoft abandoned its former Sybase design and redesigned a new SQL
Server from scratch, launching the version 6 for Windows NT (the first version specifically
for NT). Ever since then, Microsoft has been continuously improving the SQL Server and
also creating and improving some other complementary applications which were packaged
with the server, and still are with the new SQL Server 2008 R2.

As all of Microsoft’s applications, SQL Server also suffers from a lack of compatibility
with OS’s other than Microsoft Windows, only working under Windows environment.

The SQL Server 2008 R2 version (codenamed SQL Server “Kilimanjaro”) claims to be
a self-tuning, self-organizing and self-maintaining data management solution due to the
development of Microsoft’s SQL Server Always On technologies, in order to reduce the
percentage of failures and downtime in this field.

It supports a new variety of support for structured and semi-structured data, such as
digital media, allowing an easy access to this data through the use of newly developed data
types in the DB. It also supports stored procedures, triggers, cursors and updatable views,
SSL support and a GUI administration tool which is, as expected, limited to Windows
environments and can get a bit heavy on some machines.

2Operating System/2 created by Microsoft and IBM

19

This SQL Server is a very powerful application and also includes in its package a
large variety of other applications that, used along side with the DBMS, empower it even
more and make it very easy to use without much database knowledge. The downside
of this application is the fact that it must be used under Windows environment and its
functionality is very restrict in terms of language.

It supports a lot of server-side programming languages, open-source and proprietary,
but in order to take full advantage of its power and its complementary applications, it must
be used with Microsoft’s server-side programming language, ASP. In concern to hardware,
it is very demanding due to the number of features it lays at the users disposal, but allows
a great scalability power with a lot of ease, in terms of database growth and hardware
replication.

MySQL

MySQL[22] (figure 2.7) is currently one of the most popular and successful RDBMS’s
in the world, as it has over 6 million installations. It stands for My Structured Query
Language and has an open-source distribution (the most common) along with some other
proprietary agreements.

Figure 2.7: MySQL logo, courtesy of the Sun Microsystems Corporation.

This server was initially developed by a single for-profit Swedish company, MySQL AB,
and was recently acquired by Sun Microsystems in 2008, which now hold the copyright to
the application’s codebase. It is commonly used under the LAMP software stack which
includes the famous PHP server-side language.

On the contrary of its rival, Microsoft SQL Server, this application is platform indepen-
dent, which means it works on many different OS’s, such as FreeBSD, Linux, MacOS X,
SunOS and also Microsoft Windows. It also allows its use with a wide variety of server-side
programming languages through language specific API’s and an ODBC interface named
MyODBC which allows additional programming languages that support the ODBC inter-
face to communicate with the MySQL database, such as ASP and ColdFusion.

Another great benefit of this server’s open-source policy is the number of commercial
and non-commercial tools available developed by MySQL AB and other companies or users
around the Web.

This DBMS also has a lot of history on its back; it was developed by Michael Widenius
and David Axmark in C and C++ languages beginning in 1994, launching its initial release
around May 1995. It’s constantly being updated as every other DBMS, but as fallen a bit
behind when most of the other DBMS developed the support for stored procedures, views

20

and triggers, recovering with the stable release of MySQL version 5 which introduced,
among other technologies, the support for stored procedures, views and triggers.

Its main features, in addition to those referenced by most DBMS, are the following:

• Cross-platform support;

• Major languages support for accessing MySQL databases and an ODBC called My-
ODBC for languages that lack the MySQL standard support;

• Support for stored procedures, triggers, cursors and updatable views;

• A true VARCHAR support;

• Independent storage engines (MyISAM for read speed, Oracle’s InnoDB for transac-
tions and referential integrity, MySQL Archive for storing);

• SSL support;

• Embedded database library;

• Replication support (that is, Master-Master replication and Master-Slave replica-
tion);

• Included administration command-line tool;

• Various GUI administration tools, such as MySQL Administrator, MySQL Migration
Toolkit, MySQL Query Browser and phpMyAdmin.

among others, and it also has some features that distinguish it from other DBMS, such
as multiple storage engines, allowing its choice for each table in the application, having
a wide variety of native, partner-developed, community-developed and custom storage
engines; and such as commit grouping, allowing an increase of the number of commits per
second.

Oracle

The Oracle Database[23] (figure 2.8) is, as the above RDBMS, an open-source DB
application, including also proprietary distributions, developed by the RSIAcronym for
Relational Software, Inc. company in 1979. Their first version of the RDBMS was named
Oracle V2, although they never released a version 1, being considered as a marketing
gimmick. Later in 1982, RSI changed its name to Oracle Corporation and they’ve been
improving their RDBMS under that name ever since.

The Oracle Database was the first company to develop a commercially available SQL-
based database in 1979, and the first to support symmetric multiprocessing in 1983. In
1986 the company introduced the concept of a distributed database system and in 1995
introduced the first 64-bit database. Later, in 1998, the company claims to be the first

21

Figure 2.8: Oracle logo, courtesy of the Oracle Corporation.

to incorporate a native JRE in its package and, in the same year, the first to develop a
RDBMS available in Linux OS, also introducing in 1999 the first XML supporting database.

As evident in the above paragraph, the Oracle Database company was a pioneer in the
database software market, being responsible for the introduction of several major technolo-
gies which, in today’s software development techniques, are a must-have and a must-use
for any kind of software applications and that facilitate and empower every database’s use.

This RDBMS is also a very powerful database application and it remains one of the
major presences in the market of database computing. It is characterized as a platform in-
dependent application, which supports most of the available OS’s such as Linux, Microsoft
Windows, Mac OS X and Sun Solaris, among others, just like its competitor MySQL
RDBMS.

It is also very well known for its integration with the Java programming language,
although it supports several other programming languages, as its rivals. The first Oracle
Database versions, except version 2, were written using C programming language, and later
in 1997, C++ programming language, but since 1999, the Oracle Corporation incorporated
a native JVM in Oracle 8i version, which empowered its functionalities for use with the
Java server-side programming language. Ever since then, the Oracle Database has been
closely paired with the Java programming language for Internet and Desktop software
development.

The Oracle Database application includes, among others, the following features within
their standard package:

Active Session History (ASH) which stores recent database activity for monitoring
purposes;

Automatic Workload Repository (AWR) which provides monitoring services to Or-
acle Database installations;

Data Aggregation and Consolidation to improve the quality of the stored data;

Data Guard to ensure a high database availability;

Generic Connectivity in order to easily connect to non-Oracle systems;

Data Pump Utilities to aid in the import and export of data between databases;

Database Resource Manager to control the use of computational resources;

Flashback to selectively recover and reconstruct data;

22

iSQL*Plus which is a web-browser based GUI for database manipulation;

Oracle Data Access Components which consist in tools to help access database infor-
mation;

Fine-Grained Auditing which supplements the database’s standard security-auditing
features;

SQL*Plus which is a command-line application to interact with the database via SQL
and PL/SQL commands.

PostgreSQL

PostgreSQL[24] (figure 2.9) is an Object-Relational DataBase Management System
(ORDBMS), distributed under a BSD license and, therefore, free to use and open-source
application. Unlike the above DBMS’s described, the PostgreSQL application was and
still is completely developed by a community of software developers and companies, not
belonging to any specific company or person except the MySQL DBMS (which complies
with both community and proprietary development techniques).

Figure 2.9: PostgreSQL logo, courtesy of the PostgreSQL Organization.

This DBMS has evolved from the Ingres database project started at the University of
California, Berkeley, and later, in 1985, Michael Stonebraker who was the Ingres project
leader began working on a post-Ingres project, named Postgres (from which the current
PostgreSQL name was originated) that addressed the problems of the various database
systems which became increasingly evident in the previous years. Although this new
project used several ideas provided by its predecessor Ingres, its codebase was entirely
developed from scratch.

As mentioned earlier, this project was early released under a BSD license by Berkeley,
so, in 1994, graduate students Andrew Yu and Jolly Chen replaced the standard Ingres
QUEL query language interpreter with the much more popular SQL query language inter-
preter, distributing this project and its codebase freely on the web as Postgres95.

Like the above graduate students, several others developed their own open-source or
proprietary database applications based on the PostgreSQL project (named, in 1996, to
PostgreSQL in order to reflect its standard support for SQL), such as Paula Hawthorn and
Michael Stonebraker, who had worked in the Ingres project, the company Great Bridges,

23

which was created by some former Red Hat investors, the Command Prompt, Inc., and
others. Even despite this, the main force of development of this project is still a group of
database developers and volunteers around the world, via the internet.

As for this DBMS’s features, it includes a wide variety of capabilities that place it on
the top of the most used RDBMS’s in the world, such as:

Functions which allow the database programmer to develop blocks of code to be executed
by the server in several programming languages, like PL/pgSQL, PL/Lua, PL/Perl,
plPHP, PL/Python, PL/Ruby, C/C++, PL/Java, among others;

Indexes which support scanning indexes backwards eliminating the need for a separate
index, usage of expression indexes for indexing results of an expression or function,
usage of partial indexes for indexing only parts of tables and usage of multiple indexes
together to satisfy complex queries;

Triggers which are, as normal triggers, events triggered by the action of SQL statements,
but these triggers can also invoke functions within it that can be written in several
languages, as referred above;

Multi-Version Concurrency Control (MVCC) which is a system that manages database
access concurrency, giving the users a snapshot of the database allowing them to make
changes invisibly to others until the changes are committed, eliminating read locks;

A wide variety of data types which includes variable length arrays of up to 1GB, IPv4
and IPv6 addresses, CIDR blocks, MAC addresses, UUID, geometric primitives and
arbitrary precision numerics, among others, and also custom data types created by
the users;

User-defined objects which include new casts, conversions, data types, domains, func-
tions, indexes, operators and procedural languages, among others;

Inheritance which allows to set tables to inherit their characteristics from a parent table;

Add-ons which allows the database administrators to add new functionalities and objects,
created either by them or by others that share them openly.

2.1.4 Dynamic Pages

There are several ways to create webpages, some are completely static in which the user
requests a webpage from a webserver and the server simply responds by sending the pre-
written HTML content to the users browser, and some are dynamic in which it interacts
with the user.

Static webpages, as can be seen in figure 2.10, are files which content is already de-
termined before the client requests the webpage to the server, they are created by the
webdesigner through HTML and CSS commands and stored in the webserver. These web-
pages are easy to construct, but, since its aspect and content will always be the same

24

Figure 2.10: Interaction between client and server for static webpages, courtesy of the WebHosting
Website.

independently of the viewing user, they are mostly used in websites with valid information
that are rarely altered, like institutional webpages.

Figure 2.11: Interaction between client and server for dynamic webpages, courtesy of the WebHosting
Website.

Dynamic webpages, as depicted in figure 2.11, are basically statically coded webpages
which include, not only static HTML and CSS content, but also some other elements that
interact with the user through several ways, like rollover events, popup windows, database
information retrieval and presentation, or data operations’ results.

Although these webpages are initially created in a static manner (every bit of code
is created before the files’ deployment to the server), the content viewed by the user is
generated, through the interactive elements pre-defined at webpage creation, by the server
before it sends the content to user or by the user’s computer when it receives the content
from the server.

25

These two ways of creating interactive webpages are called client-side scripting and
server-side scripting. Throughout the years many technologies were used to include this
kind of interactivity within the webpages sent to the users, such as Java programming
language and ActiveX objects and components. Since these technologies require reason-
ably complex programming skills and excessive memory and processing capacity in the
client’s side, they were traded over the years by some other technologies which enabled
the same interactiveness without the excessive requirements and programming skills, such
as JavaScript/JScript, Adobe Flash, Microsoft SilverLight, among others that will be de-
scribed ahead.

Figure 2.12: An example of a client-side scripting operation, from an unknown source.

Figure 2.13: An example of a server-side scripting operation, from an unknown source.

As mentioned above, there are two ways of developing dynamic webpages, through
client-side scripting and server-side scripting. The earlier written technologies belong to
the client-side scripting techniques, as for the server-side scripting technique uses mainly
web programming languages such as the more common ASP, PHP or JSP, and also the
falling CGI, which will be described next. Sometimes, as a way to disguise their choice of
programming languages for security reasons, some websites still use the common .htm or
.html extension while including scripting commands within the code.

26

Common Gateway Interface (CGI)

The Common Gateway Interface[25], or more commonly CGI, is a standard protocol
used as an interface between external application software and web servers. This protocol’s
purpose is to define a standard way of requesting the execution of a command to the server
and afterwards return its output, by establishing how the information related to the server
and the request is sent to the command as arguments and environment variables, and
how the command can send back the output’s related information in the form of HTML
headers.

CGI was one of the first dynamic webpage presentation techniques approached, since
it appeared in 1993, the early beginning of the WWW. It uses the web browser’s URL
as a path to a program that is executed via CGI, and when its request is received by
the server the program indicated by the URL is executed. As mentioned above, data is
normally sent to the program as environment variables, but in case HTTP PUT or POST
techniques are used, that data is sent to the program in the form of arguments through
the standard input. The result of this program’s execution is, as stated above, sent back
via the standard output prefixed by a HTTP header and a blank line.

Since this technology was becoming a bit underachieving due to its excessive memory
needs and time requirements, and also due to an increasingly higher traffic load on the web
servers, a different solution would have to followed in order to meet the higher demands in
current networks, so, FastCGI was developed as a variation of the former CGI, whose main
objective is to reduce the CGI’s overhead associated with interfacing the web servers and
CGI executed programs, enabling the web server to handle more page requests at once,
consequently responding better to the higher traffic load and allowing a better system
scalability.

The FastCGI protocol allows a single long-running process to handle more than one
request at a time, still following closely the CGI’s programming model, retaining its sim-
plicity and remaining independent of the web server, but eliminating most of the overhead
incurred by CGI, which created a new process for each request. Although this concept
is not as used nowadays as it was before, it is still partially used and implemented by
other very common server-side scripting languages, being available for standalone use or
integrated with them.

As mentioned above, this technique’s basic purpose is to be the most simple it can be
and to provide the crucial communication basis between the client’s web browser and the
web server, but remaining independent of each other. So, its advantages and disadvantages
vary from developer to developer, since, for some developers, FastCGI serves their every
purposes and intentions, as for example the implementation of a wiki (the request references
a name entry and the resulting HTML from the command executed is sent back to the
browser), and for other developers a closer integration with the core web server is a highly
important part of their application’s implementation, ultimately using other tools for their
development.

27

Active Server Pages (ASP)

Active Server Pages[26], also known as Classic ASP, is Microsoft’s first server-side script
engine for dynamically generated webpages and was, initially, released as a IIS add-on, later
became included as a free component of Windows Server, and is currently superseded by
ASP.NET (figure 2.14) . These files’ extensions can be .asp for ASP webpages, or .aspx for
ASP.NET webpages which are based on Microsoft’s .NET framework and, therefore need
another languages as base backend code which must be pre-compiled, making it faster and
more robust than regular ASP, which is interpreted at runtime.

Figure 2.14: ASP.NET logo, courtesy of the Microsoft Corporation.

The Classic ASP was based on the dbWeb and iBasic tools, which were created by As-
pect Software Engineering, and was one of the first development environments to integrate
the execution of web applications directly in the client’s browser. Most ASP webpages
are written in VBScript, but Classic ASP supports development in several other Active
Scripting engines, such as JScript or PerlScript.

The ASP.NET is the new version of the former Classic ASP, released in January 2002
with version 1.0 of Microsoft’s .NET Framework, and is built on the Common Language
Runtime, which allows the development of code to be made in a wide variety of program-
ming languages, as much as the languages supported by the .NET framework itself.

These Classic ASP and ASP.NET are very powerful web application frameworks for
creation of dynamic websites, web applications and web services, but, when Microsoft
developed these frameworks had the intention that they would be restricted, as most of
Microsoft’s software projects, to usage in Web Servers running Windows environments.
Another restriction in the development of web pages with Classic ASP or ASP.NET is the
need to pay Microsoft’s IDE license fees to develop.

Fortunately, although Microsoft developed these frameworks for Windows environment
only, a lot of web servers, besides Microsoft’s IIS, are introducing new features which allows
to include support for Classic ASP and ASP.NET dynamic webpages, such as Apache
HTTP Server, FastCGI and XSP. A lot of other application frameworks, such as the Mono
Project[27] support Classic ASP and ASP.NET development, and, used with the web
servers described above, allow web developers to built dynamic webpages independent of
the runtime environment with little or no cost at all.

PHP:HyperText Preprocessor

Hypertext Preprocessor[28] or, more commonly PHP (figure 2.15) , is a server-side
scripting language created by Rasmus Lerdorf in 1995 and has been continually developed

28

ever since, being, at the moment, developed by The PHP Group and released as a free
software under the PHP License (a special license due to some restrictions in the general
GNU General Public License).

Figure 2.15: PHP logo, courtesy of The PHP Group Organization.

It is a widely used and general-purposed scripting language, which was originally de-
veloped bearing has main objective the construction of dynamic webpages embedded into
an HTML page, running on almost any web server available, on almost every operating
system in the world and with a lot of development tools which support this language, with
the possibility of developing a project absolutely free of charge (the developer may also
choose to use a proprietary licensed platform, web server or IDE, in which case the costs
are associated directly to the license fees).

In fact, this project first started as a personal project in 1994 as Common Gateway
Interfaces written in C programming language in order to replace a set of Perl scripts he was
using to maintain his personal webpage. The PHP acronym actually came from Personal
Home Page and the tools he created were called Personal Home Page Tools, initially used
to display his résumé and record the amount of traffic on the webpage.

Later, this personal project evolved into PHP/FI, which included his own Form In-
terpreter binaries, allowing the communication with databases and, thus, enabling the
building of simple and simultaneously dynamic, webpages. This was the version released
in 1995 as version 2 of the PHP programming language as we know it.

In 1997 the PHP parser was rewritten by Zeev Suraski and Andi Gutmans, and formed
the PHP version 3 with a change of the PHP’s acronym meaning (now it stands for
PHP:Hypertext Preprocessor, as described above). These two former developers at the
Technion IIT founded, in 1999, the Zend Technologies company with the release of the
new PHP’s core, called Zend engine.

The PHP4 and PHP5 were already released under the new Zend engine and are the
main currently used distributions of the PHP interpreter, which currently includes an inde-
pendent command line interface capability and may also be used as addition to standalone
graphical applications. Also, a new version PHP6 is, at the moment, being developed by
The PHP Group, but the release date is not yet set.

This server-side scripting language is very powerful, since it is extremely easy to learn
and use, it has an excellent performance due to its reduced use of the system’s resources
and because there is no need to compile the PHP code in runtime (it is just interpreted
when a webpage is requested), and, since it is completely free and portable, the developers
are given a wide variety of choices of web servers and operating systems, allowing them to
build webpages with absolutely no cost.

29

Java Server Pages (JSP)

JSP[29] (figure 2.16) is a server-side Java technology for building dynamic webpages in
response to a client’s request to a Java Application container (in this context corresponds
to a web server). The JSP webpages are a simplified abstraction of Java servlets, they are
deployed to the server and then operated by a J2EE normally packaged as .war or .ear file.

Figure 2.16: JSP logo, courtesy of the Sun Microsystems Corporation.

This technology allows Java code to be embedded into static HTML content and com-
piled at runtime, being operated by a virtual machine that is integrated with the client’s
operating system, in this case called Java Virtual Machine (JVM), although it still needs
backend server-side Java code as a base support.

The first JSP version (JSP 1.0 specification) was released in 1999 as a response to
ASP and PHP programming languages, by Sun Microsystems who developed both servlets
and JSP. When the JSP 1.2 was released, the development became a responsibility of all
interested third party developers under the Java Community Process, which regulated and
described the developing process.

As mentioned before, this programming language is operated by a virtual machine
integrated into the client’s operating system, which enables it to be platform independent,
running without problems on any operating systems that integrate a Java Virtual Machine,
such as Microsoft Windows, Linux, MacOS X, among others.

On the other hand, although the OS is variable according to how much the developers
intend to spend on licenses, the web servers may not allow the same liberty. However,
this programming language is already supported by many of the available web servers
mentioned, such as Microsoft IIS. There are also some web servers which were specifically
designed and developed for use with JSP, like Apache Tomcat[30] by the Apache Software
Foundation, Glassfish[31] by Sun Microsystems and JBoss[32] by JBoss Inc., which was
bought by Red Hat in 2006 and is being developed by the JBoss Community.

As far as IDE goes, this programming language is also supported by a lot of development
tools that range from some license cost to absolutely free, such as NetBeans[33], Eclipse[34]
or MyEclipse[35], IntelliJ IDEA[36], among others, also giving the choice of whatever cost
the developer wants.

Similarly to what was mentioned for the above languages, this framework has some ad-
vantages and disadvantages, depending on the developers point of view (some developers’

30

advantages may be others’ disadvantages and vice-versa). That said, this programming
language has a good performance, since, like ASP.NET, it pre-compiles the base server-side
code before deployment in the server, meaning there is only simple runtime interpreting
needed, being more laborious at the time of development. However, although Java intro-
duced the term JavaBeans and J2EE introduced Enterprise JavaBeans as a way of reusing
components and developing modular enterprise applications, unskilled Java, J2EE or JSP
developers might find these technologies a bit hard to learn, unlike PHP.

ECMAScript

ECMAScript[37] is a client-side scripting language regulation standardized by ECMA
International (figure 2.17) in the ECMA-262 specification[38]. This language standard is
widely used on the web and is best known as JavaScript, ActionScript and JScript (the
current most popular dialects of ECMAScript).

Figure 2.17: ECMA International logo, responsible for the ECMAScript standard, courtesy of the
ECMA International Organization.

ActionScript is a scripting language used on the client’s side, which is integrated in the
Adobe Flash platform (in the form of SWF files embedded in webpages) for the creation
of dynamic websites and is also used in some database applications such as Alpha Five.
Since this scripting language is mostly used with Adobe Flash and it needs the Adobe
Flash Player plugin to be used, it will be discussed later in following sections.

JavaScript is a client-scripting language and, since it is implemented as an integrated
component of the web browser, it enables the development of enhanced graphical user
interfaces and dynamic webpages. As referenced above, JavaScript is a dialect of the
ECMAScript standard ECMA-262 and was influenced by many languages, being designed
to be similar to Java, but easier to learn and operate for not very skilled programmers to
work with.

JavaScript was initially developed by Brendan Eich for Netscape and was introduced
and deployed in the Netscape Navigator web browser in December 1995 which coincided
with adding support for the Java technology in this browser’s version. Although the
JavaScript scripting language and the Java programming language share several similari-
ties, the JavaScript is essentially unrelated to Java and was named as JavaScript as a result
of a marketing deal between Netscape and Sun Microsystems, in exchange for the addition
of the Java technology into the, at the time, market dominant web browser.

Due to the great success of the JavaScript as a client-side scripting language for dynamic
webpages and since Netscape refused to license JavaScript for use with Microsoft’s Internet

31

Explorer web browser, Microsoft was compelled to create its own version of the JavaScript
scripting language based on the ECMA-262 specification, and so, Microsoft’s new scripting
language was born as another ECMAScript dialect, named JScript to avoid trademark
issues and used only in the Internet Explorer web browser, since Microsoft also denied
licensing it to others.

The launch of Microsoft’s JScript also added and corrected a few features present
in JavaScript, namely new date methods to fix the Y2K bug3 which was still present in
Netscape’s scripting language. Still, with the advance of these scripting engines throughout
the years, JScript became increasingly more a kind of Microsoft standard instead of an
ECMA standard, being, in many points, non ECMA-compliant.

Netscape, however, in order to transform JavaScript into a universal scripting lan-
guage, submitted it to ECMA International for standardization. Although many profes-
sional programmers denigrated JavaScript because it targeted web authors and amateur
programmers, with the integration of this fully standardized version of JavaScript into
many technologies, such as AJAX which will be discussed ahead, it became one of the
most popular programming languages on the web and is nowadays used in conjunction
with others server-side scripting engines and is also expanding as a server-side JavaScript
platform.

Asynchronous JavaScript and XML (AJAX)

AJAX[39] (figure 2.18) stands for Asynchronous JavaScript and XML, and, although
it sometimes can be mistaken for a client-side scripting technology, it is, in fact, a group
of technologies combined together to be used on the client-side to create interactive web
applications, with the advantage of these technologies already being standardly compatible
with any browser and platform, since no additional plugins are normally needed.

Figure 2.18: AJAX logo, courtesy of the AJAX Organization.

AJAX’s constituents are XHTML/HTML and CSS for marking up and styling infor-
mation; DOM which, used through JavaScript, can dynamically display and interact with
the information presented to the client; XMLHTTPRequest (XHR) objects, IFrame ob-
jects or dynamically added <script> tags for exchanging data asynchronously between the

3Year 2000 bug originated from the abbreviation of 4 digit years to 2 digit years

32

server and the client’s browser, avoiding constant page reloads; XML, XSLT, pre-formatted
HTML, plain text or JSON as a format for the data sent to the browser, this data can also
be created by server-side scripting.

In the traditional webpages developed in an either static or dynamic technique, each
time the client performs an action on the webpage, the information relative to that action
is sent to the server and, according to the scripting technology used (client-side, server-side
or both), the response is calculated and transformed into HTML and CSS content to be
presented in the client’s browser.

This, obviously, can be a very sluggish task, specially at times of high network traffic
or in the case of high volumes of information being exchanged between client and server.
Also these times can be even more augmented if there is the need to connect to various
systems to perform a certain operation (either simultaneously or individually).

Figure 2.19: Interactions between client and server using traditional methods and AJAX, courtesy of
Jesse James Garrett from Adaptive Path Website.

With the use of AJAX in the development of the webpages, the operations described
above act a bit differently. Each time the client performs an action on the webpage, the
information relative to that action is sent to the AJAX module developed by the author of
the webpage and operating in the client’s platform (the exchange of information between
the client and the AJAX module is completely transparent), in case the response is already
available in the module the resulting HTML and CSS content is generated and displayed
in the browser, in case the response is unavailable, a request is made to the server only for

33

the needed information and the needed information is sent to the AJAX module where it
will then form the response to be presented in the browser.

A simple interaction sketch can be seen in figure 2.19. The integration of the AJAX
technologies in the development of dynamic webpages can effectively decrease the amount
of unnecessary traffic in a network, since only the crucial information to the performed
actions are exchanged, avoiding the need to resend information already sent earlier to the
client; and also a decrease of the time the user has to wait for the server’s response, since
this method is asynchronous, the user can continue interacting with the webpage until the
AJAX module receives the information to present in the browser.

Adobe Flash

Formerly known as Macromedia Flash until it was acquired by Adobe Systems, Adobe
Flash[40] (figure 2.20) is a multimedia platform for adding animation and interactivity to
webpages. It is currently being developed and distributed by the Adobe Systems company,
and is integrated into the webpages through the use of a plugin installed on the client’s
computer, being presented in a normal browser.

Figure 2.20: Adobe Flash CS4 logo, courtesy of the Adobe Corporation.

Adobe Flash is a platform to manipulate vector and raster graphics, also supporting
bidirectional streaming of audio and video. It is normally used to create animations,
advertisements and various other flash components which can, for example, integrate video
and audio into a webpage, also being used to develop rich internet applications.

As mentioned earlier, this platform includes a dialect of the ECMAScript standard
named ActionScript, which was initially designed for controlling basic two-dimensional
vector animations made in Adobe Flash, evolving, eventually through the addition of other
functionalities, to the development of web based games and web applications integrating
streaming media.

As written in the beginning of this chapter, Adobe Flash requires a plugin installed
in the client’s computer to operate, which is called Adobe Flash Player available free for
most of web browsers and operating systems. Some mobile phones and electronic devices
also support this platform’s format, through the use of Flash Lite, which is also free, but
isn’t yet supported by every device of this kind. A standalone Flash Player may also
be used to visualize Adobe Flash content through an .swf file (supported by all major

34

operating system’s since it’s cross-platform) and it may also be incorporated into an .exe,
for Windows environments, or .hqx, for MacOS environments, called a Projector, which
consists of a self-executing Flash movie containing an integrated Flash Player into the
Projector (supported only by the earlier mentioned environments due to its self-executing
ability, which hasn’t yet been investigated by Adobe under other environments).

In what IDE is concerned, this platform requires the use of the Adobe Flash Professional[41]
multimedia authoring application in order to have full access to all the platform’s function-
alities for development of content for the Adobe Engagement Platform, which consists in
the web applications, games and movies mentioned earlier, as well as the mobile phone’s and
other embedded device’s content. Several other Flash authoring tools have been released
over the years by third-party developers, but could never integrate the full capabilities
of the multimedia authoring application provided by Adobe, since the company hid the
files’ specifications very closely, only releasing part of them recently with its Open Source
Project[42].

Unfortunately, although the Flash Players, both standalone and web browser integrated
Flash Player, are free to download and use in any client’s computer, the multimedia au-
thoring application that allows the development with the full functionality provided by
the platform, is a proprietary development framework, available for both Mac OS X and
Microsoft Windows, which is absolutely necessary for the creation of the web applications,
games and movies mentioned above with full freedom.

This platform started off as just a drawing application for pen computers running the
PenPoint OS named SmartSketch, which aimed to make the creation of computer graphics
as easy as drawing on a piece of paper, being later transported to Microsoft Windows
and Mac OS. Later in 1996, FutureWave, which had been developing SmartSketch since
its beginning, modified their application by adding frame-by-frame animation features,
re-releasing it as FutureSplash Animator for both Microsoft Windows and Mac OS.

As the product evolved, other features were also developed for it, such as the authoring
tool user interface, the graphics renderer, curve and shape math code, and also the browser
plugin. Since the product was bought by Macromedia in 1996, its focus was mainly the
designers point-of-view, seeing that its interface has a time-oriented line of action (a frame-
by-frame interface has mentioned above) and a wide variety of 2D and 3D vectoring and
designing tools.

After the product was sold to Adobe, and since, by the moment it was sold in 2005, its
usage was very high, there was an emerging need to take this application to the next level
by developing its programming ability, through the evolution of the ActionScript already
available in the previous versions of Flash. So, in 2007, the new ActionScript 3.0 was then
presented for the client’s logic creation and new programming features and a new MXML
modeling language were introduced to describe interfaces’ behaviours and appearance.

Microsoft SilverLight

Microsoft SilverLight[43] (figure 2.21), much like the above described Adobe Flash, is
also a web application framework which integrates multimedia, graphics, animations and

35

interactivity into a runtime environment. In fact, Microsoft SilverLight was released to
compete with Flash since, up until SilverLight’s appearance, it didn’t have any direct
competitor, dominating the web design market.

Figure 2.21: Microsoft Silverlight logo, courtesy of the Microsoft Corporation.

Although many similarities can be found between Microsoft SilverLight and Adobe
Flash, and although their main objective is the same, Microsoft still claims that SilverLight
is not Microsoft’s own version of Flash. Nevertheless, since the products are very much
alike, SilverLight may be also be used to create web applications integrating multimedia
streaming, develop web games and build interactive interfaces and animations, like its
competitor Flash.

Like the previous product, this framework also lacks standard support for its developed
applications, requiring a web browser plugin to operate the animations or interfaces. Unlike
other Microsoft products, this actually doesn’t require a Microsoft Windows environment
to operate and can be installed in a wide variety of operating systems, such as Microsoft
Windows and Mac OS X (web browser plugin developed by Microsoft), and also many
open source platforms (through the use of Moonlight[44], a web browser plugin developed
by Novell Netware in cooperation with Microsoft). Added support for mobile devices
operating Windows Mobile 6 and Symbian OS is expected in 2010, but is still, at the
moment, unavailable.

Unlike the Flash product, Microsoft didn’t release a standalone version of the web
browser plugin nor does SilverLight support a single file publication like Projector (Flash
file format), restricting SilverLight’s use for web browsing only, since its format is always
subdivided into several types of files. Despite of this fact, SilverLight can still be used
outside the web browser concept, as it may also be used to develop Windows Sidebar
gadgets for Microsoft Windows Vista.

As far as IDE goes, SilverLight’s development follows the rules of most of Microsoft’s
products, requiring a .NET framework compatible authoring application, allowing, as Mi-
crosoft has accustomed its developers, to develop code for SilverLight in any .NET sup-
ported language, provided that they can target the SilverLight CoreCLR for hosting the
application, instead of the usual .NET Framework CLR. For this objective, Microsoft has
released two authoring applications, the well known Visual Studio[45] (now in its version
2008) and the recently developed Expression Blend Studio[46] (now in its early version 2

36

SP1).
With the release of SilverLight version 2, the also very well known IDE Eclipse[34],

an open-source application, was added as an alternative open-source development tool for
developing SilverLight web applications. The emerging development tool Mono, which is
known for its versatile development languages and frameworks support, is also currently
developing and evolving support for the above mentioned Moonlight, which will eventually
support the development of SilverLight applications as well.

As was partly mentioned before, in SilverLight applications user interfaces are pro-
grammed using a subset of the .NET Framework languages and declared in XAML. The
XAML was recently introduced by Microsoft in its .NET Framework 3.0 and is used in
SilverLight to markup the vector graphics and animations, allowing textual content to be
searched and indexed by search bots, since it is not compiled, being represented as text in
the XAML format.

2.2 Content Management Systems (CMS)

Content Management Systems are basically computer applications used to aid in the
management of companies’ workflows, important for the creation, edition, publication and
archiving of several types of digital media and text with no or little knowledge of what’s
behind it. CMS’s are commonly compared to Document Management Systems (DMS’s),
although, in reality, despite the common basic objective, the CMS’s are a bit more powerful.

These systems’ greatest characteristic is its large amount of available tools and functions
integrated in the applications and used to store, control and publish various company
specific documents, which may include manuals, guides and other important information
in the form of image, audio, video, electronic documents or web content.

2.2.1 Types

There are three main types of CMS’s, Enterprise CMS’s, Web CMS’s and Component
CMS’s.

The Enterprise CMS’s are specially indicated for managing content and documents
related to organizational processes, including several specific applications that allow the
management of an enterprise level organization’s information.

The Component CMS’s are used to manage content at a granular level, as opposed to
the Enterprise CMS that operates at document level. They are organized in components
and each one represents a single topic, concept or asset, such as an image, table or prod-
uct description, and are later assembled and can be viewed as components or traditional
documents.

The Web CMS’s are content management systems normally implemented as web appli-
cations used to create, manage and publish HTML content in a fast, easy and automated
manner with no programming skills necessary, including many tools to simplify this pro-
cess and to add functionalities to an already existing web portal. This type of content

37

management system will be discussed again ahead.

2.2.2 Web Content Management Systems

As mentioned before, this type of CMS enables the creation of web pages in several
programming languages with little or no knowledge of them at all. The majority of these
system’s uses data bases to store content, metadata or other required objects. XML is
used very frequently to facilitate the reuse of the data and allow flexibility.

The management is normally carried out through web interfaces on a browser, but it
may, at times, be necessary, in some systems, the usage of a fat client. A fat client is
basically a computer client in a client-server architecture, which provides all the essential
functionality, independently of the central server. It simply requires a periodical connection
(non constant) with the server, allowing it to carry out all the necessary actions without
that connection.

The presentation layer of the Web CMS’s content is generated through a set of pre-
defined templates. Unlike the other website creation applications (Microsoft FrontPage,
Adobe Dreamweaver, ZendStudio, PHPEdit, etc.), the Web CMSs can be used by any
person without the need of any special training or previous technical knowledge, requiring
some technical experience configuring and adding new functionalities to the system, but
still being mainly a management tool for non technical users.

A WCMS lays at the users disposal a wide set of automated templates to facilitate their
application both on new content to be generated and already existent content, making the
transition automatically. It also allows simple and fast content editing, module addition
to extend the systems’ functionalities, automatic upgrades, workflows management with
ease, the creation and management of user groups with different access levels, document
management and content visualization.

Types of WCMS’s

These WCMS’s can be sorted into three main types, the Offline processing systems, the
Online processing systems and the Hybrid systems.

Offline processing systems are, as the name implies, WCMS’s that pre-process all the
content before its publication (such as Sagar Vignette CMS and Brigolage). Since
these systems don’t require a server to process actions, apply templates or generate
content, they are often used simply as design-time tools like Adobe Contribute.

The Online processing systems are CMS’s which process actions and apply templates
on demand, generating the content when a user visits a webpage or when a webpage
is retrieved from a cache memory such as:

• Hosted CMS’s that belong to companies and are only available on company
servers, like Aspire CMS, Bravenet, UcosZ, Freewebs ;

38

• Open Source CMS’s are free to use and can be installed in any server, like
Mambo, Joomla, Drupal, TYPO3, Zikula, Plone;

• Web Application Frameworks that can be Hosted or Open Source, but differ
from normal CMS since they follow strict online models and don’t allow work-
flows, like Wikis, MediaWiki, Twiki.

The Hybrid systems are CMS’s which combine both Offline processing systems char-
acteristics and Online processing systems characteristics (like Blosxom).

A small description of the some of the above mentioned CMS is presented in the next
section, along with some other popular CMS.

2.2.3 Existent Web Content Management Systems Examples and
Descriptions

There are several Content Management Systems, proprietary and open source, that
can be used for many purposes without any programming knowledge or knowledge of how
it works, but they are often more specific to serve a certain objective or, in some cases,
include the ability to add new extensions and resources to support a specific purpose,
allowing them to be more universal.

The following list presents a few of them along with their categories and respective
description[47][48]:

• Open Source WCMS’s:

– Joomla is based on PHP language and fits in the Portal category which consists
in a common website that may be extended with a FAQ manager or a forum,
like mentioned above;

– Mambo is a very popular CMS based on the PHP language too and that also
fits in the Portal category as Joomla;

– B2Evolution is also based on PHP language and is in the Blog category which
consists in a basic online diary;

– TikiWiki is a PHP based Blog-Wiki or, more commonly, Bliki and consists of
a basic Blog with user contributing abilities;

– Drigg is PHP based as well and belongs to the category Digg-like which allows
the contribution and marking of news;

– PHPMyFAQ is, as the name suggests, built over PHP and fits into the FAQ
category which consists in a manager for questions from users and answers from
webmasters;

– Current CMS is a Java based Groupware application which consists, basically,
in a collaborative work website;

39

– Xiawe is BBCodes based and fits in the Templates category, consists in a static
CMS where pages are defined by codes;

– PHPMotion has PHP as root language and is in the Media Sharing category
and is used to display and manage media content such as video and audio;

– Coppermine also has PHP as root and belongs to the Image Gallery category
and is used to, as the name implies, create and manage image galleries;

– OpenACS is TCL based over AOLServer and fits into the Web Application
category and is a toolkit for building community-oriented web applications,
functions like a sort of an extended CMS;

– KWiki is a multi-language based Wiki CMS, which is formed mainly through
user contributions;

– Slash is a Perl based News CMS and is used to display and manage news’
archives;

– SMF is, as most of the above, PHP based and fits into the Forum category,
consisting in a community based discussion website;

– PrestaShop is also PHP based and belongs to the e-Shop category and is,
basically, a toolkit for creating an electronic shop for online shopping;

– Graffito is Java based and is a Universal CMS, meaning it’s a toolkit for build-
ing any kind of CMS;

– Elgg is a PHP based Social Network CMS, used uniquely to create and manage
social environment networks;

– Freeglobes is also PHP based and fits into the Directory category, since its
function is to manage directory listings;

– IntraLibre is PHP based as well and sits in the Intranet category, being used
to create and manage workflows and collaborative work within an intranet.

• Proprietary WCMS’s:

– SurgeBlog is multi-language based and belongs to the Hub-Blog category,
which consists, basically, in a server of blogs used to create and manage several
blogs;

– ForBrains is a PHP based Web Portal, used to create and structure a full
website, also having the ability to extend its functionality through ForBrains’
Company developed modules;

– Elixon WCMS is PHP, AJAX and XUL based, and has the ability to create
and manage a full website, dividing the client’s and administrator’s interface into
different technologies, also allowing the addition of supplementary modules;

– Microsoft Office SharePoint Server is a .NET and ASP based Web Portal
WCMS, but a bit different from the above since it is integrated with Microsoft’s

40

Office Applications to organize and built webpages, being able to create web-
pages from simple Microsoft Word, Microsoft Excel or Microsoft PowerPoint
documents, also having the ability to maintain the created website easily.

2.3 Online Discussion Methods

With the introduction of the Web 2.0 concept, discussed in the beginning of this chapter,
the web changed from an information presentation platform to a rich-application web
browser environment platform, allowing the users, not only to retrieve information, but
also to interact with the webpages in many ways.

It is in the same Web 2.0 concept that the online discussion methods fit, since through
these discussion methods everyone may interact with a webpage and also interact with
many other users all around the world, bringing to life the Network as a Platform concept
to connect people, sharing ideas, discussing topics and displaying all kinds of multimedia
all around the world.

There are a lot of online discussing methods presently available, each one with a main
objective and different capabilities, according to the goal of the method, but they all share
the same common idea to connect people and share information dynamically and with a
lot of ease. Several examples of these methods are news boards, web forums, web chat
interfaces, message boards, web shoutboxes, social networking platforms and blog-wikis,
among others, which will be discussed ahead.

2.3.1 News Boards

A News Board, as the name implies, has the same purpose as a traditional cork bulletin
board, with the difference that this news board is actually an online virtual bulletin board
scripted into a webpage, where people can browse news set either by any visitor browsing
the website or only by the website’s administrators as a form of displaying relevant news
of a certain subject, controlling news insertions and their couriers.

There are several open-source and proprietary scripts and CMS available on the inter-
net that implement the News Boards with a lot of ease and with no programming skills
necessary at all, but a common situation nowadays is to have the News Boards integrated
into other platforms, allowing users to have an “all-in-one” dynamic platform with all their
needs.

2.3.2 Forum

The original Forum has its beginnings in the Roman Empire and was, at the time, a
gathering place with an enormous social significance to the roman civilization (“Forum
Magnum” as the citizens called it), being often used as center for diverse activities, such
as political discussions and meetings, among others.

41

The Internet Forum inherited the same basic idea implemented by the Roman Forums
in 600 BC, but directing this old idea into the new internet fields. In this way, the basic
ideas of an ordinary forum were maintained and the fixed gathering location evolved into
a multipoint gathering place available to anyone using the internet, with the Web 2.0
Network as a Platform concept.

In this way, an Internet Forum is a web application that manages user-generated con-
tent, more specifically, it is an online discussion website, where people can participate in
topics or create fresh own topics, explaining and expressing their ideas, exchanging knowl-
edge of a certain subject and cultivating social bonds and interest groups of a discussed
topic.

There are several open-source and proprietary forum implementations available for
download on the internet and they have evolved a lot from their first sketch, since nowadays
they include a high number of features which improve the discussions’ quality, introduce a
wide variety of posting control and effectively implement roles to regulate the forum.

The most common implementations of internet forums used around the web are vBul-
letin, PHPBB, SMF and Kunena (formerly known as FireBoard and integrated into the
Joomla CMS), which are already implemented by an elevated number of websites and
companies, such as the UbuntuForums for Linux/Ubuntu related discussions, MacRu-
morsForums for Apple related discussions, mozillaZine Forums for Mozilla’s Foundation
discussions, Gamedev.net for game programming discussions and Overclock.net for over-
clocking discussions, among others with other specific discussion themes or various discus-
sions themes simultaneously.

2.3.3 Chat

The chat room or chat line has existed for many years and is a form of synchronous
(occasionally asynchronous) conferencing, enabling the people using this service to, as the
name implies, chat in a virtual room over the internet with people all around the world
or even chat in a private room, normally with one single person or in a conference with
several people, with a difference from before of being a closed entry room which allows the
entry of authorized users only.

This online discussion method has been around since the 1980’s through a chat system
called Talkers and is still currently best known for its standalone applications used all
around the internet by people of a wide variety of ages and backgrounds. The most
common tools available for this kind of chatting are instant messengers, such as Windows
Live Messenger and Yahoo Messenger, internet relay chats, such as mIRC and XChat,
talkers, available in MMORPG’s and other virtual worlds, and possibly some MUD’s which
are multi-user real-time virtual worlds described entirely in text.

More recently these forms of chatting have been moving towards new fields, being
integrated into websites as a form of member chatting, enabling the use of the above im-
plementations without the need to install standalone applications in the client’s computer,
being already available several scripts to support these methods. Although these discussion
methods have the basic objective of communication between users all around the world,

42

they are also currently very used by minors, and if not correctly controlled may facilitate
illegal sexual contacts.

2.3.4 Message Boards

Message Boards are a lot like News Boards as they share a wide variety of features, and
even considering they both have the main goal of propagating information throughout the
community of board browsers, the main interest is a bit different, since the News Boards
are systems which contain news and important facts about real incidents and the Message
Boards are systems which can contain any kind of messages a visitor or administrator
wishes to present.

So, it can be concluded that Message Boards are also a virtual version of the traditional
cork bulletin boards, in which, according to the rules set by the Message Boards’ admin-
istrators, either any visitor or just members with permissions, can publish any kind of
messages, from simple job opportunity ads to even new product releases with optional au-
thors contacts for possible discussions, with or without control over the published content,
depending on the Message Board’s rules.

The latest Message Boards implemented and available on the internet, not only allow
the publishing of various messages from users, but also allow the division of the messages
according to their subject, enabling the browsing of messages through sections according
to the subject of the user’s interest.

Although these Message Boards may be mistaken for Internet Forums due to this sub-
ject division feature, they are not the same method, since Internet Forums allow a real
discussion between members within the same topic, keeping a continuous topic through-
out the discussion, and the Message Boards don’t allow a real discussion between board
browsers, allowing the user to create a reply which contains the previous message and so
on, thus creating the illusion of a discussion.

This is the reason why people often confuse the two methods and even use the Message
Boards as if they were Internet Forums. Some websites are also implementing Internet
Forums and using them instead of Message Boards although their use in the website would
be actually the same, since the purpose of those websites is just to publish messages for
users instead of allowing real discussions between them.

2.3.5 ShoutBoxes

ShoutBoxes are very simple chat-like systems integrated as features into some websites.
They share the basic idea of the chat systems described above, but, since the main goal of
these systems is to keep it simple, the number of features implemented on the ShoutBoxes
are normally a lot lower than the chat systems’ features.

ShoutBoxes basically allow people to quickly leave messages on the website, normally
without the need to previously register on the website, acting as simple lists of short
messages, possibly containing website information or message authors’ information, which
will be visible to other people browsing the website.

43

The websites containing these ShoutBoxes generally implement a refresh method that
allows to keep new messages visible, either by an automatic webpage refresh after a certain
interval or through dynamic poll of the messages’ storage space source. Since the objective
of this method is to simply present short immediate messages, the older messages are
normally deleted once the total number of messages reaches a certain limit, in order to
preserve space on the server.

2.3.6 Social Networking

Social Networking is a system that focuses on building online communities of people
sharing the same interests and activities or who are simply inspired to explore the interests
and activities of other members of the community.

These online social networks are normally web based systems which provide a wide
collection of features that allow the interaction between community members, such as e-
mail and instant messaging services, as well as some other methods mentioned above and
others non-mentioned, such as game and multimedia sharing.

Basically, these social networks are, in some way, a combination of many online available
discussion methods and multimedia applications integrated into one single website, allowing
the members of the community represented by the social network to interact in a high
number of ways without the need to resort to numerous websites to achieve the same
objective. In fact, the social networks have encouraged the elaboration of new forms
of communication and information sharing on the internet and, as a result, proprietary
encapsulated services have been gaining popularity.

Although these social networks normally aim for a more casual kind of community, like
a friends community, they are currently also roaming towards more specific communities,
such as government agencies’ groups trying to get in touch with the public, business en-
trepreneurs and small businesses looking to expand their contact bases, dating groups to
exchange personal information for dating purposes, educational school board associations
as a way of discussing school related topics and exchange schoolwork knowledge, and also
medical networks updated by healthcare professionals as a means to manage institutional
knowledge.

2.3.7 Blog-Wikis

Blogs are websites, normally maintained by an individual or a small group of individuals
with regular entries of commentary, descriptions of events or other multimedia material,
being usually displayed in reverse chronological order (from the last to the first), with
subject specific news or commentaries, or even as personal online diaries, combining text,
multimedia and links to different blogs or websites related to a certain topic, and allowing
visitors to leave comments in an interactive form.

Wikis are websites which allow the creation and editing of large number of inter-
connected webpages with ease, using a simplified markup language or a WYSIWYG text
editor within the web browser, being often employed to create collaborative websites, to

44

empower community websites, to enable personal note-taking and to improve corporate
intranets and knowledge management systems. These Wikis, as many other online dis-
cussion methods, may implement several publishing rules over user permissions and added
content.

Blog-Wikis are groupware platforms that fuse the collaborative editing features of Wikis
with the user friendly publishing characteristics of blogs, enabling the use of one single
website that allows users to share their knowledge or even discuss certain presented subjects
in a wide variety of forms, such as pure text of multimedia content, also having a lot of
CMS and scripts available on the internet, both open-source and proprietary.

2.4 Development Methods

With the increasingly more demanding web users, the progressively higher demand
for effective traffic organization for data exchange and the continuously elevated raise of
the number of users browsing the internet, the web developers have to face the challenge
of developing websites which are able to provide an acceptable quality of service and
workaround the evident current web technologies limitations.

In order to overcome this challenge web developers must elaborate methods which
allow them to develop websites considering the situations above described, being the most
common development methods preferred by the web developers the Three Layer Web
Development model for universal user access and the Three-Tier Application Development
methodology for a better traffic organization, which will be discussed below.

2.4.1 Three Layer Web Development

It must be a general assumption that all users are different and, as so, all users like
and want to browse through the internet in their own specific way, searching for the most
convenient method for them to retrieve the information they seek or view the data they
look for.

With that thought in mind, the website developers must create webpages susceptible
of accommodating the highest number of users possible, regardless of how the users wish
to view or retrieve information from the webpages, and regardless of how the users access
the developed websites.

A common way to achieve this goal is to develop websites according to the Three Layer
Web Development model recommended by the W3C, which is the entity responsible for
most regulations that manage the internet. This Three Layer Web Development model
is distributed into a Content Layer, which consists of HTML, XHTML and XML scripts,
among others; a Presentation Layer, which integrates CSS, XSL and XSLT scripts, among
others; and finally a Behaviour Layer, comprising JavaScript/JScript, DOM, Flash and
SilverLight scripts, among others. These layers’ representation can be seen in figure 2.22
and will be better described ahead.

45

Figure 2.22: The Three Layer Web Development model’s graphical representation, courtesy of Kevin
Yank for SitePoint.

Content Layer

The Content Layer is the first layer to be developed and is where the user inserts the
webpage’s content and structures the webpage according to his needs through the use of a
markup language, like HTML, among others.

The web developers must not implement any visual aspect scripts, concentrating on
the content and its structure, since this is the layer that every visitor will have access to
and will retrieve information from, regardless of the web browsing technique he chooses to
use.

Presentation Layer

The Presentation Layer is the second layer to be implemented by the web developers
and, assuming the Content Layer is already complete, it is the layer responsible for the
presentation’s visual information, being normally implemented through CSS scripts.

The CSS scripts allow the web developers to define every visual aspect of the webpage’s
presentation, from letter type, size, alignment and color to many other properties of the
existing objects in the webpage, such as tables’ formatting and images’ manipulation,
among others.

Behaviour Layer

The Behaviour Layer is the third and final layer to be developed and is responsible for
all the interactivity and dynamic behaviour between the webpages’ objects and the user
actions performed in the webpage.

This layer is normally implemented through JavaScript or JScript, which enable simple
and fast methods for user to webpage interaction and vice-versa, with very little program-
ming knowledge, such as changing images or text on mouseover events or clicks.

Nowadays, with the evolution of the technology and web developers knowledge, this
layer is becoming more frequently implemented through the use of other client-side scripting
languages and frameworks, such as AJAX, Adobe Flash and Microsoft SilverLight, which

46

allow a higher lever of interactivity between the users and the webpage and a improvement
on the visual effects.

2.4.2 Three-Tier Application Development

Nowadays, with the continuous development of a higher number of increasingly more
elaborate websites, the level of internet traffic is becoming eventually a bigger concern all
around the world.

So, in order to improve the quality of the services provided by the websites and, at the
same time, reduce the very elevated level of internet traffic, web developers are advised to
create their web applications using the Three-Tier Application Development methodology,
implementing a client-server architecture where the Presentation Tier, Logic Tier and
Data Tier are developed and maintained as independent modules, most of the times even
in distinct physical machines.

Figure 2.23: The Three-Tier Application Development methodology’s graphical representation, cour-
tesy of Bartledan for the Wikipedia Project.

A graphical representation of the Three-Tier Application Development methodology is
depicted in figure 2.23 and each tier will be described next.

Presentation Tier

The Presentation Tier consists of a user interface which translates tasks and results into
a more user-friendly information presentation structure, in order for the users to understand

47

the information easily.
This user interface is typically executed in the user’s computer through the use of a

web browser and a standard graphical interface integrated into the operating system, such
as Microsoft Windows, Linux or MacOS X graphical environments.

Logic Tier

The Logic Tier is responsible for the coordination of the application, processing of
commands, making evaluation and logical decisions, and calculating operation results,
being also responsible for the exchange and processing of data between the Presentation
Tier described above and the Data Tier described below.

The processes’ functional logic may consist of one or more separated modules which
are executed in a server (either physical or virtual) and may also be sub-divided into inner
layers within the Logic Tier which is known as an n-Tier architecture.

Data Tier

The Data Tier is where all the information relative to the system is stored to and
extracted from either a database or the filesystem. The data is transfered to the Logic
Tier to be processed and afterwards, if necessary, that processed data is passed to the
Presentation Tier where it will be translated to user-friendly information.

The storage and access to data and its associated logic are placed in a database server,
which may be a physical or virtual server, being managed by a DataBase Management
System, such as the systems described in the DBMS section.

2.5 Summary

This chapter presented a general view of the state of the art in Web developing tech-
niques. The, increasingly more commonly used, CMS applications were described as well
as presented the most known tools. The main current technologies in web developing
were discussed, namely the Web 2.0 concept, web servers and DBMS’s and also client-side
and server-side scripting languages and technologies. There is also a brief overview of the
currently most common online discussion methods and web development methods.

48

Chapter 3

Structural Definition

The management portal’s structural definition will be presented in this chapter, includ-
ing the system requirements description, an overview of the solution’s architecture and a
presentation of the model’s definition. This information is crucial to the developer in order
for him to understand the needs of the project and also to start implementing the actual
application.

The system’s actors, as seen by the application, will also be described and their respec-
tive allowed actions in the system, as well as some step-by-step task presentations, which
also have a very relevant importance in the implementation of the project, since they allow
the developer to know who will be the final users of the application, how it should be used
by them and what they need from it.

Finally, some model definitions of the application’s information management layer will
be shown and discussed in the end of this chapter. This section is the most important part
of the project’s development, as it is the base structure of the application and it’s from
these models that the developer will build-up the rest of the application.

3.1 System Requirements

In this section are presented all the system’s requirements, from the physical require-
ments to successfully operate with the application to the functional requirements which
are the applications’ most important actions for the users.

3.1.1 Functional Requirements

The functional requirements are used to describe the main functionalities which are a
must have in the application’s user allowed actions and the respective system’s descriptive
responses to those functionalities, that is, how the system interacts with the user in order
to provide the feature.

Since the main objective of this portal is the diffusion of the robotic events to a commu-
nity of interested players and sympathizers, it is extremely important that the application

49

allows the addition of events and also the registration of the players in these events, partic-
ipating through the internet without the need to relocate themselves to attend the event.

Another important feature would be a way to communicate with the portal’s guests and
members, and also to discuss among them several topics of their interest, so these discussion
features should also be available for anyone to view and every member, moderator and
administrator to use.

A way to navigate through the past events and view their respective media (pho-
tographs, videos and real-time arena screens) and logs from the simulations is also a rel-
evant section of the portal, so the application’s users may view other teams’ simulation
results and some images from the events environment and participants.

All the above features, although they are must be implemented in the application, there
should also be performance and scalability guarantees from the developer’s solution, so the
system as a minimum acceptable response time, high online availability and also a good
system’s growth adaptability.

Summarizing, table 3.1 displays the application’s main desired functionalities and their
respective system’s responses which were described above.

3.1.2 Usability Requirements

The usability requirements’ description’s main purpose is to specify a certain set of
rules which the application’s developer must follow in the implementation of the project
in order to allow the future system users a clean and simple usage of the web application
without confusion and also an easy way of interacting with the application without much
previous knowledge of it.

The usability requirements for this type of applications are not so different from one
application to another, so, the main usability requirements for the system are:

• The developer must use fonts and colors which facilitate information legibility for
any kind of user;

• The application’s design must have a clear interface to simplify the navigation through-
out the system;

• The developer must apply the three-layer-model implementation advised by the W3C
for a better interpretation by any users independently of the browsing techniques
used, such as RSS readers and screen readers, also providing an acceptable visualiza-
tion of the application’s interface on older browsers which don’t support all current
web technologies. The application’s implementation must, therefore, be divided into
three development layers:

– The structure layer (through the use of HTML/XHTML);

– The presentation layer (through the use of CSS);

– The behaviour layer (through the use of JavaScript);

50

Functionality System’s Response

Diffusion of robotic events
through a central and unique
portal.

The application will allow administrators to add one or more
events in a simple and fast way (also allowing the closure of
invalidly added events).

Allow members to participate
remotely in existing Ciber-
Mouse events.

The application will allow the registration of any person for
possible participation in the tournaments (creating a new
team or simply joining an existent team in order to par-
ticipate). The team’s binary code will be sent through the
portal and stored locally in order to be run at the respective
competition.

Diffusion of website and event
related news.

The application will have a news panel, easily updated by
any administrator or moderator through the use of a simple
news editing tool. The portal will also display a right side
panel with the latest news constantly updated.

Navigation through a media
and log gallery and visualiza-
tion of these media files and
logs.

The application will allow any person (either member, mod-
erator, administrator or even just a guest) to navigate
through a gallery of media files and logs from past events,
and visualize them online or download them for storage and
offline visualization purposes.

Scoreboard presentation fea-
ture.

The application will have a constantly updated scoreboard
according to the results of the finished events, divided by
levels and competitions (each level must have its own score-
board to avoid unfair score positions and each different com-
petition must have its unique scoreboard avoid confusions).

Participation in online discus-
sion forums.

The application will have a discussion forum with several
threads and categories, allowing the members, moderators
and administrators to participate in discussions or open new
threads. The system’s guests will only be allowed to view
the forum and not to participate in any way.

Chat feature with online sys-
tem users.

The application will include an in-site chat feature in order
to exchange ideas directly between currently online users,
allowing a real-time conversation method of discussion.

Performance guarantees. The application should guarantee that the pages load fast
enough (the ideal would be less than thirty seconds) and that
the performance of the event’s simulations is not affected by
the usage of the website and vice versa.

Scalability guarantees. The application’s development must guarantee that the final
application has a high scalability in order to allow a satis-
fying system growth without damaging the performance. It
must also guarantee that the various parts of the application
may be divided into different physical locations if necessary.

Table 3.1: The application’s main functional requirements.

51

• The developer must implement the system based on the three-tier-application devel-
opment model in order to ensure a minimum quality of the system’s functionality
even in cases of greater network traffic, without breaking down the server.

3.1.3 Hardware Requirements

This section defines the hardware requirements to develop, maintain and run the ap-
plication in order to provide a good performance of the system.

For now, since the system is at its beginning and therefore may be considered as a small
application project, the required hardware is as follows:

• One powerful computer which acts as a web server that responds to the users’ re-
quests, as an application server that runs active events’ simulations and as database
server that stores and retrieves the application’s data, all on one machine;

• One Ethernet 10/100 Mbit capable network board with internet access in order re-
ceive and respond to the users’ HTTP requests;

• One UPS in order to prevent computer powerdowns when electric failures occur;

• One backup system with its own data storage in order to backup the system’s data,
preventing data loss.

At a later time, with the application’s activity growth due to the increased popularity
of the website and its number of accesses, the system requirements may be as follows:

• Three powerful computers, one acting as a web server to respond to the users’ re-
quests, another acting as an application server to run the active events’ simulations
and the other computer acting as a database server to store and retrieve the relevant
application’s data;

• One Switch/Router capable of at least 3 Ethernet 10/100 Mbit connections to connect
the three above described computers and one connection to the internet in order to
receive and respond to HTTP requests from the users;

• Three Ethernet 10/100 Mbit capable network boards, one for each computer, in order
to connect each computer to the above described Switch/Router, to create a LAN;

• Three UPS, one for each computer, in order to prevent computer powerdowns when
electric failures occur;

• One large backup system with its own data storage capable of backing up the three
systems’ data to prevent data loss.

52

3.1.4 External Systems Interface Requirements

This section describes the external systems which are required for the implementation
and future use of this application, and they normally vary depending on the developers
choice or the application’s needs. For this application the requirements chosen were:

• The utilization of the Linux OS, since it is an open-source operating system, com-
pletely free of charge, with great security measurements and which grants a high level
of power to the OS administrator;

• The utilization of the MySQL DBMS, since it is a platform independent open-source
DBMS, also free of charge and which has a great power of usage and a great simplicity;

• The utilization of Apache webserver was chosen, also due to it being a platform inde-
pendent open-source web server and free of charge, also having great functionalities;

• The utilization of the PHP interpreter, because it is also a completely free to use
and develop server-side scripting language due to its needs in terms of IDE and some
external systems mentioned above, and because it is a very simple language and very
easy to learn and develop in;

• The possible utilization of an external authentication system through the UU’s (Uni-
versal User) used around the University of Aveiro’s Campus. This feature is still
being evaluated and isn’t part of the main development plans.

3.2 Architecture Description

The architecture description is a conceptual design which defines the system’s compo-
nents and provides an idea of how these components interact with each other, helping the
developers in the implementation of the overall system and the system planners understand
the business needs. Below are presented and further described this system’s applicational
and installational architecture.

3.2.1 Applicational

In this section the applicational architecture is presented, which describes the interac-
tion between the different components of the system’s implementation, helping the devel-
opers to understand better the system’s distribution and identify faster any integration
problems in the system. As can be seen in figure 3.1, this application is divided into three
layers, in accordance with the Three-Tier Application Development methodology advised
by the W3C, the presentation layer which consists of the application’s webpage operating
in the user’s browser, the logic layer which performs all the actions requested by the user
on the server, and the data layer which comprises all the necessary data to present to the
user of perform the requested operations.

53

Figure 3.1: The system’s applicational architecture diagram.

3.2.2 Installation

This section presents the installation architecture, which describes the physical distri-
bution of the application, defining the several components that constitute the system and
the ways they use to interact with each other in order to perform the needed actions. In
figure 3.2 are displayed four components, the DBServer which is responsible for all the
data storing and gathering, the AppServer which is responsible for the execution of robotic
competitions’ events, the WebServer which comprises the web application and is respon-
sible for the interaction between the users and the rest of the system, and the User’s PC
which is responsible for the presentation of the web application to the users through their
web browser. In this figure is also defined how the different components interact with
each other, the server-side components communicating via a LAN connection (they can
separated into different physical machines or gathered all into one) and those components
communicating via an internet connection to the user’s terminal.

3.3 Actors Description

This section describes the users and their respective roles in the system, including their
allowed actions and permitted access locations. These descriptions are used to aid the de-
veloper in the implementation of the application as they specify the system’s intervenients,
their access permissions and their required functionalities.

54

Figure 3.2: The system’s installation architecture diagram.

3.3.1 Guest

This actor is not a real member of the application, since it consists of every single
person around the world that can access the application through the internet, but it still
can visualize the competition’s rules and each events’ scoreboards, navigate through the
media and log gallery, download the competition tools to run single simulations locally and
view the system’s latest news. This actor can register anytime it wants in order to have
access to more functionalities, such as participate in an event.

3.3.2 Member

This actor is the registered user with the lowest access permissions in the system,
inheriting all the actions and access permissions from the guest, it is also allowed to register
a new team and add other members to it, join one of the existing teams in the system
(in case of acceptance by the team’s leader), participate in events, submit team code for
participation purposes, join or start forum discussions and use the application’s chat feature
to have real-time conversations with other online actors (except with guests).

3.3.3 Moderator

This actor is not a simple user as the above mentioned, but still doesn’t have the
highest level of access permissions in the system. It inherits the actions from the guest and
member actor classes, but, unlike the members, it can’t participate in the events or create
teams. It may, however, manage the news board, validate legs and trials, moderate forum
discussions when necessary and also validate event entries (when a payment registration is
needed to participate in an event).

55

3.3.4 Administrator

This actor is responsible for all the administrative functions in the application and has
the highest access permissions in the system, inheriting all the actions from the inferior
class actors. Although this type of actor can’t participate in any event or create teams,
it is responsible for all the management tools (events management, news management,
forum management, users management, teams management, etc.) and it must intervene
whenever human supervision is necessary, such as leg and trial validations, scoreboards
corrections, among others.

3.4 Actions Description

This section presents the actions that can be performed in the application and the
respective actors with sufficient permissions to perform these actions. This description
helps the developers to understand the various sections necessary in the system and their
division depending on the class of user that accesses the application.

3.4.1 Action Distribution Among Actors

Here the connections among the different users and their respective permitted actions
organized into packages are presented, where each package contains all the actions that a
user is allowed to perform, helping to understand how the users of the application may
be related to each other. Figure 3.3 shows the different packages containing their respec-
tive actions and the connection between those packages (the solid line arrows indicate an
inheritance relation and the dotted arrows indicate an include relation). Each packages’
actions will be presented ahead.

Figure 3.3: The application’s actions distributed between actors as a package diagram.

56

3.4.2 Use Cases

This section, as mentioned above, will present each packages’ actions from each user.
These diagrams are useful for the developer to identify what to implement and how to do
it. It is a powerful aid in understanding both small and large projects, since it provides a
full view of the application’s functionalities and respective permissions.

Figure 3.4(a) presents the basic actions which can be performed by anyone that visits
the web application and which is not registered or logged in. These actions can also be
performed by the other registered and consequently logged in users.

Figure 3.4(b) shows all the registered member allowed actions, providing that those
users are logged in at the time of navigation, otherwise they will be considered simple
guests and won’t have access to these functionalities.

In figure 3.4(c) the moderator allowed actions are displayed. Although this actor in-
herits from member and therefore is able to perform any actions allowed to members, it
can’t participate in events, having some other minor responsibilities in the system.

Figure 3.5(a) depicts all the administrative actions of the web application. This actor
inherits all the allowed actions the other classes own, plus all the administrative responsi-
bilities of the system. This actor has the highest level of access in the system.

A full diagram with the complete actions and their respective actors can be seen in
figure 3.5(b), which consists, basically, in an integration of all the above displayed actors’
actions with the respective relations between the different system intervenients.

3.4.3 Some Task Descriptions

Since not all of the application’s operations are completely straightforward, the activity
diagrams help a lot, not only the user but also the developer. These diagrams help the
user since with them he can visualize the steps to go through in order to perform a certain
operation, and also help the developer since he can use them as a guide to develop that
certain operation step by step.

Below some activity diagrams with step-by-step guides of some more complex opera-
tions in the system are displayed, namely the operation of viewing the media gallery in
figure 3.6(c), the operation of registering a new team in the system in figure 3.6(a) and the
operation of entering a team into an active event in figure 3.6(b).

57

(a) (b)

(c)

Figure 3.4: Use Case Diagrams divided by actors: figure (a) displays the guests’ use cases diagram;
figure (b) displays the members’ use cases diagram; finally, figure (c) displays the moderators’ use cases
diagram.

58

(a)

(b)

Figure 3.5: Use Case Diagrams divided by actors: figure (a) displays the administrators’ use cases
diagram and figure (b) displays a full view of all the system’s use cases and their respective actors as a
diagram.

59

(a) (b)

(c)

Figure 3.6: Some tasks descriptions’ diagrams: figure (a) presents an activity diagram of the operation
of registering a new team in the system; figure (b) presents an activity diagram of the operation of
entering a team into an active event; figure (c) presents an activity diagram of the operation of viewing
the media gallery.

60

3.5 Model Definition

This section presents the model definitions of the system structure, which were used as
a basic building block and developing guide throughout the application’s implementation
procedures. These models’ purpose is actually to aid in development of a certain application
or even in understanding a certain application, as they describe the system’s structure.
Below are described the domain and class models for this application.

3.5.1 Domain Model

A domain model is just a plain conceptual model representation of the system which
describes the various entities involved in the development and also their respective rela-
tionships with each other. This model’s purpose is just to give the developers a general
idea of the system’s components and their connections, also describing each entities main
attributes for the implementation step. Below, in figure 3.7, is displayed a diagram of this
application’s domain model integrating the main entities of the system.

As is depicted, each user may be associated to a team or not, eitheir as a team member
or as a team leader; the users with administrative priviledges may add news and events
to the system; the teams may enter the active events in the system; the running events
will have associated legs and trials according to the teams’ distributions when an event is
launched; the team’s score and each robot score are associated with their own participation
in a trial.

3.5.2 Class Model

A class model is a static structure diagram which describes the system’s basic struc-
ture, presenting the application’s data classes, respective attributes and the relationships
between them. This model acts as a complement of the above explained model, since the
basic purpose is the same, except this model introduces some other important information
for the development of the application, making this model crucial during the system’s im-
plementation step. Figure 3.8 shows a diagram of the system’s class model which presents
the data structures as they are known to the application.

Here are depicted the extra enumeration classes that represent the users’ class and state,
the events’ level and type, and the event entries’ state. Some more information about the
linkage between the classes is also represented in each entity, such as the primary keys.

3.6 Summary

In this chapter the robotic competitions management portal’s full structure was de-
scribed. It presents the application’s functional, usability, hardware and external system’s
requirements, consisting of the basic system’s requirements. The architecture models for

61

Figure 3.7: The system’s domain model diagram.

the project were also explained as well as a brief description of the type of actors which
will interact with the application.

After this introduction of the actors, their respective possible actions with the appli-
cation were specified and some of the more complex actions were explained step-by-step.
Finally the basic data structure models were described, that is, the domain and class
models for the application.

62

Figure 3.8: The application’s class model diagram.

63

Chapter 4

Development and Implementation

After all the base structure is defined, the next step is to start the business layer and
respective interface’s development and implementation, so, this chapter will present some
issues relative to the development of the application and will also describe an overview
of the implementation of the different sections of the application, according to its actor
permissions.

This is an extremely important part of an application’s development since it the business
layer is responsible of performing all the system’s actions, and the interface is the only
form of interaction between the actors and the system’s business implementation, which,
combined, allow the actors to perform their functions in the application.

The system’s business layer’s base structure is already defined in the models presented
earlier, but these models’ definitions must be followed from the beginning to the end, so
that the created code is clean and can easily be modified or updated by the developer,
or continued by other developers, and also to ensure a good system’s performance and
satisfactory behaviour.

In order to create a fully functional interface, it is crucial to keep in mind some imple-
mentation aspects and restrictions, such as the availability of visual space for the interface,
always give feedback of all the actions to the actor, allow the actor to control the appli-
cation but always be prepared to prevent error prone situations, and others which will be
discussed ahead.

Afterwards, the online discussion methods’ interfaces included in the application will
be presented and its implementation’s processes will be described, along with some simple
uses of their allowed actions with various actors. Also included in this chapter is a brief
description and walkthrough of some basic actions as they are performed by their respective
actors in the web application, and also a small discussion of the implemented security
measures and how they aid in protecting the application and its users’ data.

65

4.1 Business Layer Logic

The business layer logic is a crucial part of the development of this project, since its the
part of the application that actually performs all the necessary actions in the system. This
layer is responsible for the interaction with the interface, which will present the actions’
results to the user through the web browser.

In order to provide these functionalities to the actors, the business layer implements
some methods that, interacting with the interface to request information to the adminis-
trator, perform the mentioned actions in the system and store the handled results in the
application’s database. Whenever, in this process, the system must return feedback of the
actions to the actor, the business layer implements methods that interact with the interface
again to display the actions’ results to the actor.

This section describes the different parts of the business layer logic implementation and
explains some aspects of how it was implemented.

4.1.1 Database Implementation

This part of the project’s development is the most important for the application’s
implementation, since it is the base point of the system. It is responsible for the applica-
tion’s data storage and retrieval, so, as considered by the Web 2.0, it is the heart of this
application.

For this part of the system’s implementation, the models specified in the previous
chapter were crucial and were strictly followed to create the required data entities and
their relations in the DataBase Management System.

In order to guarantee these models specifications’ competent behaviour in a real life
situation, the database implementation was tested against the information provided by past
events from different level categories, having a good overall performance and satisfactorily
serving the application’s needs in concern to the data handling.

4.1.2 Competitions Management

This section of the application includes all the competitions’ related actions, from the
users’ point of view for event participations, to the moderators and administrators point
of view for the management of the event related informations.

As is described in the previous chapter in concern to the competitions, the administrator
has full power to open, close or edit events’ informations, validate leg and trial simulations
to ensure that valid resulting data is used in the competition, block the submission of code
when the deadline for each delivery is reached and block entries into events to ensure that
the teams’ can’t entry during a running event.

The moderators don’t have the same access permissions for this section as the admin-
istrators, but they are allowed to validate leg and trial simulations, block the submission
of code and block the event entries, as mentioned above for the administrators, but only

66

if they are not participating in the specific event, otherwise their allowed behaviour is the
same as the users.

The users, which act on the other side of the competitions, are allowed to view event
details and, in case the user’s state is set to “ACTIVE”, are allowed to participate in events
by entering a team into an event (only teams may compete, so every single user that wishes
to participate must register a team even if it only has one member).

When a team wishes to participate in an event, it must pass some conditions in order
to be able to entry the event, namely the team is only allowed to entry a high-school level
event if it isn’t already registered for participation in higher level events, whenever an entry
fee is required for an event the team must pay it before the payment deadline, the team
can participate if it has delivered the binary code before the delivery deadline otherwise
its entry is invalidated, among others.

For the actual events, the business layer provides methods that function as tools for
the events’ organizers to perform all the actions needed before running the simulations,
such as retrieve the participating teams’ data and each team’s users’ data, gather all the
submitted binary code for the simulations and distribute the teams’ into legs and trials,
and provides methods to display the simulations’ results to the application’s users, such as
the scoreboard tools and the media and log gallery discussed below, storing the resulting
data in the system.

4.1.3 Users and Teams Management

The business layer is also responsible for providing the user management and team
management tools to the users and administrators of the application.

The users are allowed to view and edit their own profile details, to register new teams
if they are not part of a team already and having a limit of one team per user (when a user
register a team he is, by default, the team’s leader), change the current team leader (only
the team leader is allowed to perform this alteration, or an administrator in exceptional
cases with reasonable justifications), to view and edit their own team’s profile details, to
add new members to the team or accept current offers and view other users’ profiles.

In this context, the moderators don’t have any power of management except for the
same access permissions as the users, and the administrators are also allowed to perform
the same actions as the users, being restricted in actions involving teams and event partici-
pations (the administrators are not allowed to register a team nor are allowed to participate
in events).

However, the administrators have the power to manage the users, in order to deactivate
and later activate them again if needed, suspend or irradiate users that don’t follow the
organization’s rules and edit some user details if strictly necessary. For the management
of the users’ teams, the administrators are allowed to change team leader’s in exceptional
cases, as mentioned above, remove team members from teams when they don’t follow the
rules, edit team details if absolutely necessary and remove illegally registered teams from
the system.

67

4.1.4 Scoreboards Generation

This section of the application, in concern to the business logic only the administrators
are allowed to perform actions, since this is a delicate part of the events where little mistake
should happen.

So, the business layer interacts with the interface to request the log files from the
simulation to the administrators, either all together in a compressed format or one by one
as regular log files, and afterwards parses each log file to retrieve the relevant informations
from the simulation, storing the results in the database.

When this process is completed, the users, moderators and administrators are allowed
to visualize the scoreboards by accessing the specific event and entering the scores section.
In order to minimize the possible flaws that could emerge with a manual introduction of
the information, the whole process is completely autonomous, only requesting the log files,
however, if erroneous situations occur, the business layer provides a tool to correct the
scoreboards (only by administrators).

4.1.5 Media and Log Gallery Generation

Such as the above described section for scoreboards generation, this gallery generation
is also restricted to use by the administrators, whenever an event terminates or during a
running event, in case the administrator wishes to display event related media.

This tool is also completely autonomous, since the business layer interacts with the
interface only to request the media and/or log files to the administrators, either in a
compressed format or one by one, building the gallery automatically according to the files
sent to the application.

After this process ends, the users, moderators and administrators may navigate through
the gallery, being able to view and download the media for storing and offline visualization
purposes, and the log files for storing and simulation reproduction purposes. Once again,
another tool is also provided that allows only the administrators to change some aspects
of the gallery, such as certain media and/or log removal, or a correction of the galleries’
items in case of generation errors.

4.1.6 Online Discussion Tools’ Integration

The online discussion tools, as already mentioned in previous chapters, are a crucial
part of the application in order to allow the communication between the users of the
website, so, the initial requirement was a news board to diffuse news, a forum to allow the
discussion of topics related to events or others and a chat tool which allowed the real-time
communication between online users.

The news board is implemented from scratch, and therefore, is completely integrated
with the application in all aspects. The moderators and administrators have full manage-
ment power over the news board and, thus, are allowed to add news items, remove news

68

items and edit the parts of the existing news items through the use of a tool provided by
the business layer.

For the forum, since the complexity of this tool is a lot greater than the news board
and the security and permission issues that apply to it are a bit different from the rest of
the application, I decided to use a forum CMS which already implements the forum related
features. After a bit of investigation on the forum CMS area, I found the phpBB3 CMS
to be very simple to use, highly configurable and having great integration possibilities.

However, this integration is only partly implemented yet, since some problems have
arose during the implementation of the business layer’s tools which allow the full integration
with the forum. However, the forum is now integrated with the application, in concern to
the users’ and teams’ data, only remaining unlinked for the login feature, which is not yet
synchronous with the application’s login feature.

In concern to the chat tool, although some research has been done in this area and
some implementation attempts have been tried, a complete release of a chat tool has not
yet been completed successfully, so, for now, the integration of a chat feature with the
application is still unavailable for the moment.

4.2 Interface’s Development

Before and during the development of the actor interfaces and respective business layer
actions, some key points have arose, which dictated the limitations and possible accom-
plishments of both the server-side and client-side of the application.

These points are not only relevant in the presentation layer of the interface, but also
in the underlying processes in the client-side’s implementation, since it is a very limited
environment. On the other hand, on the application’s server-side business layer, there
are also some limitations to what can be done for the actors and how certain actions are
allowed to be performed by the OS behind the application.

4.2.1 Restrictions

Since a part of the web application is intended to run on the client-side, some restrictions
to the development of the system must be imposed in order to maintain good level of user’s
satisfaction with the overall application and a good level of performance even during the
highest network traffic times.

First of all, the developer must have in mind that not all users are the same, that is, each
user has different ways to access the website, browse it and visualize it on the screen, so,
it is extremely important to define some parameters before starting the implementation of
the application in order to try to meet most of the users expectations, needs and demands.

As mentioned before in previous sections, the users methods of browsing the web and
navigating through a website are not always the same and, sometimes, not even identical,
so it is important to conceive an implementation plan divided into layers with content,
presentation formating and behavioural definitions, as described earlier in the Three Layer

69

Date Higher 1024x768 800x600 640x480 Unknown

January 2009 57% 36% 4% 0% 3%

January 2008 38% 48% 8% 0% 6%

January 2007 26% 54% 14% 0% 6%

January 2006 17% 57% 20% 0% 6%

January 2005 12% 53% 30% 0% 5%

January 2004 10% 47% 37% 1% 5%

January 2003 6% 40% 47% 2% 5%

January 2002 6% 34% 52% 3% 5%

January 2001 5% 29% 55% 6% 5%

January 2000 4% 25% 56% 11% 4%

Table 4.1: W3Schools web survey[55] results concerning the display resolutions used in 2000-2009.

Web Development method, allowing any user with any browsing technique to navigate
through the website without experiencing a distortion of the interface.

Another very relevant parameter is the screen configurations, since not all users have
the same computers and use the same screen resolution and screen color and depth defi-
nitions. So it is crucial to define a minimum screen resolution, color and depth which the
client’s computer should have to visualize the interface without having any size or color
abnormalities. In order to establish these values, the developer must take into account the
most used screen definitions among the web users as a way to meet the highest number of
satisfied users, remembering that a solution to everyone is still quite impossible.

In table 4.1 are displayed a W3Schools web survey results, from the year 2000 up to the
year 2009[55], which present the percentage of inquired web users that use the specified
display resolution on their computers, showing that currently most of the web users have a
resolution of 1024x768 or even higher, meaning that the developer should define a minimum
screen resolution of 1024x768 for the visualization of the interface and design it to fit the
defined resolution.

As for color depth, table 4.2 displays a W3Schools web survey, taken from year 2000
up to year 2009[55], which presents the percentage of inquired web users that have a color
depth definition capable of displaying the specified number of colors on their computer
screens, showing that most web users have a color depth of at least 24 or 32 bits, capable
of displaying perfectly 16,777,216 colors on the screen, giving the developer a vast range
of colors which can be used on the interface.

One last restriction when implementing web client-side interfaces is the amount of
processing power which is available and the web browser’s accepted behaviour language,
not only due to the fact that each web user has different computers with different processing
powers and different web browsers, but also the fact that the web browsers architecture is
quite limited in concern to the computer’s resources usage and its interpreted behaviour
language, that, although it must be normalized, in some points differ from its standard
definition.

70

Date 16,777,216 65,536 256

January 2009 95% 4% 1%

January 2008 90% 8% 2%

January 2007 86% 11% 2%

January 2006 81% 16% 3%

January 2005 72% 25% 3%

January 2004 65% 31% 4%

January 2003 51% 44% 5%

January 2002 43% 50% 7%

January 2001 37% 55% 8%

January 2000 34% 54% 12%

Table 4.2: W3Schools web survey results concerning the color depth used in 2000-2009[55].

Year 2009 IE8 IE7 IE6 Firefox Chrome Safari Opera

October 12.8% 14.1% 10.6% 47.5% 8.0% 3.8% 2.3%

September 12.2% 15.3% 12.1% 46.6% 7.1% 3.6% 2.2%

August 10.6% 15.1% 13.6% 47.4% 7.0% 3.3% 2.1%

July 9.1% 15.9% 14.4% 47.9% 6.5% 3.3% 2.1%

June 7.1% 18.7% 14.9% 47.3% 6.0% 3.1% 2.1%

May 5.2% 21.3% 14.5% 47.7% 5.5% 3.0% 2.2%

April 3.5% 23.2% 15.4% 47.1% 4.9% 3.0% 2.2%

March 1.4% 24.9% 17.0% 46.5% 4.2% 3.1% 2.3%

February 0.8% 25.4% 17.4% 46.4% 4.0% 3.0% 2.2%

January 0.6% 25.7% 18.5% 45.5% 3.9% 3.0% 2.3%

Table 4.3: W3Schools web survey results concerning the web browsers used in year 2009[56].

In regard to the client-side processing power available, the developer must always have
that in mind and realize that every web browser limits its resource usages and that no
user would want to wait endlessly for an action to occur if the process takes too long, so
the developer must try to build simple and light behaviours for the interface to lower its
processing needs. Involving the definition of the behaviour language’s dialect, as can be
seen in table 4.3 which presents the results of a W3Schools web survey results of the web
browser’s usage in the year 2009[56], the most used web browser is Firefox, allowing the
developer to implement the interface’s behaviours in the normalized JavaScript standard
dialect, since Firefox is fully compatible with it and follows its language rules.

71

4.2.2 Workspace Description

The application’s workspace has a great importance since it is the users only way of
interacting with the underlying business processes and performing actions in the applica-
tion, so it is crucial not only that the user finds it visually satisfying, but also that it has
a good performance and meets the users’ needs.

In order to accomplish these goals, the workspace’s design must be clean and simple, but
also allowing the user to perform all the major needed actions fast and easily, summarizing,
everything must be in near reach without crowding too much the visual interface, so the
users don’t feel smothered by the application.

Figure 4.1 presents the proposed design for the interface’s workspace, dividing the
interface into 5 essential blocks, the header, the menu, the content panel, an extra panel
and the footer. The header will be used simply to display to the user the application’s
banner and the current system date; the menu is the main website’s navigation form and
is used to navigate through the various sections of the website; the content panel is used to
display the requested information by the user and, occasionally, an options menu relative
to the requested information when needed; the extra panel will be used to display relevant
events or website information, and possibly include a poll on a certain subject; and finally,
the footer will be used simply to display copyright information, authors’ information or
even to include a small website map-like menu to navigate through the most important
sections.

Since the adopted development method was a modular development, this workspace
can be easily changed later or even have other divisions or components inserted with only
a few or no changes at all to the workspace definitions.

Figure 4.1: The application’s workspace.

72

4.2.3 Some Relevant Aspects

With all applications, big or small, there are always some points in their development
which can pass us by, if they are not taken into account while designing the application.
So, ahead will be presented some aspects which, as small or insignificant as they may seem
to be, have some importance on the users experience of the application and also on the
system’s protection for unwanted actions.

DBMS abstraction layer for the communication between the business logic layer and
the data layer, so the developer doesn’t depend on the used DBMS to implement the
business logic, also allowing the change of the used DBMS without having to change
the rest of the application’s implementation;

Submitted data to the underlying business logic is always concealed from nearby snoop-
ers in order to protect the application’s users’ information;

Action verification is always performed twice during a submission process, once in the
client’s side through JavaScript and once on the server’s side through PHP, as a way
to protect the system against unwanted or misused accesses, and also to remind the
user in case he forgot to input some requested data;

Data validation on the client’s side to diminish the time spent by the user waiting for a
result in case of a validation failure, and on the server’s side in case the client-side
scripting is disabled, so the invalid data won’t pass through the business logic;

The news panel displays the last news (the number of news is configurable) and enables
the user to simply click the desired news item in order to read the full news item,
being automatically redirected to the news section on the selected news item;

Concealable menu items according to the section being viewed by the user as a way to
simplify the user’s menu;

Remember me feature that enables the system to identify a user on his next visit to the
application without the need to perform the login again;

News listing with several options for listing the latest news by days, by number of simply
to list all the current system’s news;

Online discussion methods are embedded into the application, so the user doesn’t need
to navigate away from the application or have several different windows for discussion
purposes.

73

4.3 Interface’s Implementation Overview

After all the above described considerations were defined and taken into account, it is
time to start implementing the actual interface, so the goal of this section is to provide
an overview of the interface and explain how it was conceived theoretically and how that
theory was accomplished.

First of all, the starting base point of the implementation is the base structure of the
application. With the workspace already defined it becomes easier to draw a sketch of
the interface, since the components disposition is already set. Figure 4.2 shows the base
application’s interface, which corresponds to the website’s homepage that is displayed to
every web user that requests the website.

Figure 4.2: An overview of the complete interface implementation.

As described in the workspace definition above, the different components of the appli-
cation’s interface can easily be seen when visiting the website. Starting off with the header,
which can be seen in every page of the interface, including figure 4.2, since it is a common
component of all the sections of the application.

By examining figure 4.3(a), which displays the application interface’s header, the inner
component divisions are clear, at the left the application’s banner and at the right the
system’s current date. Looking at figure 4.3(b) we can see the application’s navigation
menu as it is seen by the guests visiting the website (certain items also unfold when inner
sections exist). Figure 4.3(c) displays the application interface’s extra panel, which is
primarily used to display the latest news to every guest that requests the website.

In the middle section is the application’s content panel, which can be seen above in
figure 4.2 and where the information requested by the user is displayed and possible options
menus in case of a need for an inner section navigation. At the bottom of the application’s
interface is a small footer, depicted in figure 4.3(d), that describes the organization involved
and the people responsible for the application’s administration.

74

(a)

(b) (c)

(d)

Figure 4.3: A close-up of the application interface’s components: figure (a) displays a close-up of the
application interface’s header; figure (b) displays a close-up of the application interface’s menu; figure
(c) displays a close-up of the application interface’s extra panel; figure (d) displays a close-up of the
application interface’s footer.

4.3.1 Member Implementation

Since the users of the interface inherit all the actions from the guest actor, the previously
described implementation sections also apply to the member actor of the application, but
obviously with some differences.

As mentioned in earlier sections, this actor is allowed, not only to view past event’s
media gallery, but also to view the current events, register a team and access its information,
and view or edit his profile. Figure 4.4 displays the menu as it is seen by a member who
is navigating the website. As is depicted, the member has access to a new section named

75

Profile which incorporates the player’s data and the team’s data, in case the member has
an associated team, otherwise a team registration or join page. The member also has access
to the inner sections of the Events section, which includes the entry in active events and
other info.

Figure 4.4: A close-up of the application interface’s menu as seen by a member.

Another relevant point shown in this figure that has been already mentioned before is
the differentiation between the section’s main links and its inner links, separated by level
(level 1 is considered as the main section and has a lower indentation, level 2 is considered
a section’s inner link and has a higher indentation), and the unfolding of the inner links
whenever the main section’s link is clicked (in this case the main section selected is Profile).

4.3.2 Moderator Implementation

As mentioned above, since every user inherits from the earlier, the moderator actor
would not be different, having access to everything the member has, but also having a
new section named Admin Panel. This new section is an administration panel with the
administrative options the user has access to. In this case, since the actor is a moderator,
and, according to what was described before, can only perform some management actions
on the event’s, news’ and forum’s data.

Figure 4.5 displays an example of the moderator’s administration interface, which
shows, in the menu, the administration link, and, in the content panel, the occasional

76

options menu described in the workspace that lead to the respective administrative sub-
section when clicked.

Figure 4.5: An overview of the application interface’s administration panel for moderators and its
inner options.

4.3.3 Administrator Implementation

The administrator actor, since, as referred previously, has the top level of power on
the application, it is granted full access to all sections of the application’s interface. The
above mentioned Admin Panel that can be used by the moderator actor, is also used by
the administrator with a few more allowed management actions, due to its high level of
access.

So, as the moderator, this actor also has a new section added to its menu which in-
cludes the link to the administrative section. Figure 4.6 shows that both moderator and
administrator share the same menu items, but it also shows, in the content panel, the
occasional options menu which contemplates two more links, one for the management of
users and another for the management of teams.

4.4 Online Discussion Implementation

In the previous chapter, in the functional requirement’s definition section, some of the
online discussion methods were described as being a very important part of the application
for the users to communicate.

So, the implemented methods were an internet forum, as depicted in figure 4.7, through
which the logged in users could discuss event related topics, help solve each others pro-
gramming problems or even talk about any other subjects they desire, and also a news
panel, as seen in 4.8, through which the administrators and moderators could diffuse event
or website related news to all the website’s community.

77

Figure 4.6: An overview of the application interface’s administration panel for administrators and its
inner options.

The displayed forum’s interface, is implemented through the use of a Forum CMS named
phpBB version 3, and it was chosen due to its great security features, its simplicity and the
already built-in administrative, moderation and discussion functions available according to
the users’ level. Another very relevant fact that incited the use of this CMS was its easily
customizable interface and its ability to be fully integrated into larger systems with few
knowledge.

As for the displayed news’ interface, it was completely implemented by scratch, although
there are several News CMS which could provide the needed functionality. Since the goal
was a simple news board for users to view and a simple backend news administration tool,
it seemed the CMS solution would be a bit heavier for use on the desired features and,
although, it required a bit more knowledge than the CMS, its interface would be much
more moldable.

78

Figure 4.7: An overview of the application interface’s forum feature implementation.

Figure 4.8: An overview of the application interface’s news feature implementation.

79

4.5 Security Measures

In the current days, and with the evolution of the computer technologies, the computers
are constantly being more used to access and store personal or confidential data, and the
integration of these technologies with the internet was obviously a very important step for
achieving the ideal of data sharing and remote usage of information of data structures.

However, this ideal is not as it was thought to be, and could, in fact, provide abusive
accesses, such as mal-intended web users who roamed around the internet just looking for
other users’ crucial informations, but also to provide higher security features, since some
web users actually cared about finding weak spots so the involved parties may fix them.

As many security measures concerning the web servers and other computers in general,
already include several basic security features, there are still a lot of methods which help
the developers increase their website’s level of security at the range of the application’s
maneuver.

Although this application doesn’t store any crucial data about the website’s users, it
is still very important to ensure a certain level of security, giving the web users a bit more
safety and confidence when using the application.

So, the following measures were taken into account at the time of development:

• With the use of a login system, the application, not only knows who is navigating
through the website, but is also capable of performing user related actions without
the need to request identification constantly. As for the client-side, this login system
also allows the users to have more confidence with the application’s usage by always
requesting some credentials in order to access its own data;

• Throughout all the development of the application, the possibility of others to upload
content to the web server or execute some code on it was always considered, and this,
obviously isn’t the planned behaviour for the application’s users, so every submition
to the web server is always checked twice to ensure that there are no mistakes;

• Although the internet is logically used to connect people, sometimes it is also used
by other people as a way to snoop around looking for unsecured transmitted data
over the internet. Since this is a major concern on an web application, all the crucial
data for the user is securely encrypted for transmission over the internet and even
storage on a database;

• Through the implemented class differentiation within the application, another level
of security was also achieved, since users must have certain permissions to perform
delicate actions or access vital application’s information, restricting this responsibility
only to trustworthy members.

80

4.6 Summary

Over this chapter was described the development and implementation of the business
layer logic and the portal’s interface, presenting some relevant development considerations
and definitions, and also a brief overview of the application’s real interface, highlighting
some particular sections of each actors view of the interface.

Afterwards, a small description of the actual online discussion methods used in the
system was presented along with some real representations of each of them. Finally the
importance of security measures in current web development was addressed and some
simple cases of used security measures in the application were presented.

81

Chapter 5

Conclusion and Future Work

5.1 Conclusions

This section presents the project’s objectives which were satisfactorily met with the
development of the application and the personal evolution that I, as the application’s
developer, experienced throughout the various stages of this project.

5.1.1 Objectives

This thesis’ main objective was to develop a centralized management portal which
would be able to run simulated robotic competitions, giving support as a supplementary
tool for use in localized events to aid the event organizers perform the simulations, and
also allowing the organization of online events as a fully autonomous application.

At the beginning of this project’s, with the raising of the application’s requirements, it
became clear that the defined objectives were a bit ambitious, since it was highly noticeable
that the desired application would take a considerable amount of time, knowledge and
experience in order to be fully implemented with all the needed functionalities.

So, at this point of the application’s implementation, the state of development of the
application may be considered satisfactory, since the defined main objective was partially
accomplished with the implementation of the application for use as a supplementary tool
to support the organization of localized robotic events.

As was mentioned in this thesis introduction, the application was expected to play two
roles in the competitions, and the above described role, that was satisfactorily achieved, is
the role of passive entity, whose purpose is to allow:

• The diffusion of localized robotic events, through the use of the news board to prop-
agate the newly open event, the website’s forum to discuss the opening of the event
or other event related topics, or just by adding the event in the active events listing,
making it available for participation by active teams;

• The registration of players on the web portal, through a simple application’s form

83

which collects the users information, stores it in the system’s database and simulta-
neously registers the player of the website’s forum for immediate discussion purposes;

• The creation of teams with registered members as players, again through the use
of a simple application’s form which gathers the teams information, and allows the
invitation of active website members or acceptance of other members’ spontaneous
candidature;

• The entry of active teams in active events, through a simple enrollment process that
retrieves the necessary information for the team’s participation in the event, setting
the entry state according to the payment of a participation fee when required by the
organizers;

• The submission of binary code for a specific event entry of a team, also giving the
opportunity of submitting new binary code before the execution of a leg, enabling
the remote participation of distant teams in localized events;

• The retrieval of all teams’ binary code by the events’ organizers for the actual execu-
tion of the event’s simulations, arranging the binary files according their respective
team and event;

• The diffusion of the events simulations’ results online through the use of a scoreboard
feature which enables the organizers to publish every simulations’ results immediately
after the simulation ends, being instantly available online;

• The elaboration of a media and log gallery of previously ended events, in order for
guests to get familiar with the events’ environment, view several media of the event
and reproduce simulations locally through the use of the log files.

In concern to the chosen technologies, as is partly defined in chapter 3, the OS used
as the application’s base system is the LinuxOS, since it is very reliable, it has several
different distributions to choose from, it is an open-source implementation, it is completely
free to use and it gives the system’s administrator a lot of power to operate.

As for the web server, the Apache HTTP Server was chosen due to its multi-platform
feature, since it was supposed to be installed on a LinuxOS distribution, and also because
it is also highly reliable, very powerful and free to use. The fact that this web server is
extremely popular was another reason for this choice.

For the DBMS, MySQL was the first choice because it is also platform-independent,
free of charge, has a very intuitive SQL syntax and works extremely well when integrated
with the chosen web server. Although other choices also could be applied for this part,
this was the best in terms of simplicity and computational power requirements, given the
complexity of the application to be developed.

Finally, in concern to the base language for the application, the best choice, given the
previous defined technologies, was PHP, since it is very easy to learn, it is completely

84

interpreted in runtime, it is extremely powerful when combined with the rest of the choices
and has absolutely no cost associated with the development using it.

With the choices mentioned above, it is clear that the top priority when analyzing
the possible candidates was to select the options which had a multi-platform or platform-
independent implementation, and had little cost or absolutely no cost at all in licensing.
This main priority was attained, since the defined environment was completely free to use
with no charge, which is also called a LAMP environment.

In the implementation itself, as was presented before, a CMS could be used to build
the web interface for the application, but that option was declined in favor of an imple-
mentation from scratch, since it allowed a higher freedom for development of the interface
as it was thought by the developer and a better integration with the underlying business
logic. However, for the implementation of the web forum, since it didn’t require a deep
connection to the underlying business logic relative to the competitions and several Forum
CMS capable of providing the needed functionalities were already implemented, I chose to
use a Forum CMS, namely, the phpBB3 CMS due to its great features and easy integration
with external systems.

5.1.2 Personal Evolution

During the definition of the application’s structure and its development, it was ex-
tremely necessary to acquire knowledge about the development and publishing of web
applications using the chosen technologies described above.

In concern to the programming languages used to develop the application, I was re-
quired to obtain and improve my knowledge of HTML, CSS, XML, PHP, JavaScript and
SQL/PSM (MySQL’s version of SQL).

As for the used development tools and IDE’s, vim and gEdit were used in LinuxOS for
small alterations, but the major IDE used in the overall implementation of the application
was Adobe DreamWeaver CS3 in MacOS, which required the improvement of my knowledge
on using it. For the design of the UML diagrams the NetBeans IDE was also used due to
its UML features, also requiring some improvement in that specific area.

For the DBMS, besides the SQL/PSM acquired knowledge, as stated above, some
knowledge was also required to configure MySQL on the LinuxOS and to use the command-
line tool. The web-based GUI phpMyAdmin was also used, but since it is highly intuitive,
didn’t require much knowledge or skills.

In the publishing of the application, I also developed some knowledge and experience
on the configuration of the LinuxOS and the Apache HTTP Server.

Besides the technological knowledge acquired and improved, I also made an extremely
important evolution in my programming and project organization skills, as I learned, first
hand, the importance of following the structural definitions from bottom to top and the
importance of the code organization with large projects, in order to develop an applica-
tion with clean, reusable and easy to understand code, so I wouldn’t get lost in my own
implementation and so other developers could easily continue the project’s development.

85

5.2 Future Work

Like all large implementation projects, this project required a lot of work from the
start of the investigation to the development of the application. However, several other
functionalities which were idealized in the beginning of the application’s requirements
definition weren’t developed in the current release of the project and some development
techniques used in the development may also be improved, such as:

Fully integrate the forum feature by developing a method to synchronously login on
the web portal and the portal’s forum;

The chat feature to allow real-time communication between online users was already
investigated for development purposes, but, due to several failed implementation
attempts, this tool has not yet been successfully;

Who is online feature as a way of informing the online users who else is online at the
moment;

Automatic online event management to allow the creation of online events and han-
dle the teams’ entries in these events, distribute the teams’ automatically into legs
and trials and prepare each team’s binary code for actual simulations without the
need for human intervention;

Autonomously run simulations by preparing and launching each trial from each leg of
an event in the simulator server, subsequently gathering the resulting log files, pars-
ing them automatically and reuniting the information from the logs, and afterwards
generating the scoreboard, the media and log gallery and storing the data in the ap-
plication’s database, completely autonomously without ever needing the intervention
of the administration;

Automatic users and teams state management by calculating the users’ and/or teams’
state alteration conditions and automatically changing the state if the conditions are
met;

Fee payment implementation in order to allow a payment through several online avail-
able methods, like PayPal for example, or provide methods for payment through
ATM/ABM or bank transfers;

Online testing simulations to provide the application’s users a platform for testing of
the code when it is submitted to the server;

Improve security measures to provide a better and safer application for protected use
by users worldwide;

URL rewriting in order to simplify the web portal’s URL displayed in the users’ web
browsers, allowing the users to remember it more easily, increasing the website’s
security and easing the indexing by search bots;

86

Improve web portal’s design to evolve the interface’s design according to the current
technological trends and user needs;

Implement AJAX features to improve the communication between the client’s web
browser and the server, diminishing the traffic in the network and improving the
feedback techniques;

Automatic backup to provide the feature without the need to unleash it first through
human interaction, saving all the application’s data to prevent its loss in case of
system failures;

Allow the introduction of new kinds of competitions by providing a platform for
the execution of other robotic competitions other than CiberMouse, such as CAM-
BADA or ROTA;

Develop transfer methods to export data from this application into other applications
easily and without losing any information;

among other functionalities and improvements that the application may need along its
course of life.

87

Bibliography

[1] Micro-Rato Organization Micro-Rato Competition Website http://microrato.ua.pt/
[Online on November 2009].

[2] Micro-Rato Organization Ciber-Rato’s first edition website
http://microrato.ua.pt/main/Historia/historia-edic2001-CiberRato.htm [Online
on November 2009].

[3] Nuno Lau, Artur Pereira, Andreia Melo, António Neves and João
Figueiredo Ciber-Rato: Um Ambiente de Simulação de Robots Móveis e
Autónomos DETUA Magazine, vol. 3, nr. 7, pages 647-650 [September 2002]
http://microrato.ua.pt/main/docs/artigos/ciberRato2002.pdf [Online on November
2009].

[4] António Neves, João Figueiredo, Nuno lau, Artur Pereira and An-
dreia Melo O Visualizador do Ambiente de Simulação Ciber-Rato
DETUA Magazine, vol. 3, nr. 7, pages 651-654 [September 2002]
http://microrato.ua.pt/main/docs/artigos/VisualizadorDet.pdf [Online on November
2009].

[5] Tim O’Reilly What Is Web 2.0 O’Reilly Network [September 2005]
http://oreilly.com/web2/archive/what-is-web-20.html [Online on November 2009].

[6] Darcy DiNucci Fragmented Future Article for Print
magazine, Design & New Media column [April 1999]
http://www.cdinucci.com/Darcy2/articles/Print/Printarticle7.html [Online on
November 2009].

[7] Kingsley Uyi Idehen RSS: INJAN (It’s not just about news),
August 2003 and Jeff Bezos Comments about Web Services,
September 2003 Kingsley Idehen’s Blog Data Space online
http://www.openlinksw.com/weblog/kidehen@openlinksw.com/127/index.vspx
[Online on November 2009].

[8] Eric Knorr The Year of Web Services CIO [December 2003].

[9] Tim O’Reilly and John Battelle Opening Welcome: State of the Internet Industry
Conference in San Francisco, California [October 2004].

89

[10] O’Reilly Media, Inc. O’Reilly − Spreading the Knowledge of Technology Innovators
http://oreilly.com/ [Online on November 2009].

[11] Tim Bernners-Lee Interview developerWorks Interviews [August 2006]
http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html [Online on
November 2009].

[12] David Best Web 2.0 Next Big Thing or Next Big Internet Bubble? Lecture Web
Information Systems, Technical University of Eindhoven [2006].

[13] Tim O’Reilly Web 2.0 Compact Definition: Trying Again O’Reilly Network [Oc-
tober 2006] http://radar.oreilly.com/archives/2006/12/web-20-compact.html [Online
on November 2009].

[14] NetCraft August 2009 Web Server Survey NetCraft Web Surveys’ Archive
http://news.netcraft.com/archives/2009/08/31/august 2009 web server survey.html
[Online on November 2009].

[15] Apache Software Foundation Apache HTTP Server Project official website
http://httpd.apache.org/ [Online on November 2009].

[16] Microsoft Corporation Microsoft IIS official website http://www.iis.net/ [Online on
November 2009].

[17] Google Corporation Google Web Toolkit http://code.google.com/webtoolkit/ [Online
on November 2009].

[18] Data Center Knowledge Google’s Custom Web Server, Revealed
http://www.datacenterknowledge.com/archives/2009/04/01/googles-custom-web-
server-revealed/ [Online on November 2009].

[19] Nginx Corporation Nginx WebServer http://wiki.nginx.org/ [Online on November
2009].

[20] LightTPD Organization LightTPD fly light http://www.lighttpd.net/ [Online on
November 2009].

[21] Microsoft Corporation Microsoft SQL Server official website
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx [Online on November
2009].

[22] Sun Microsystems MySQL official website http://www.mysql.com/ [Online on Novem-
ber 2009].

[23] Oracle Corporation Oracle official website http://www.oracle.com/technology/index.html
[Online on November 2009].

90

[24] PostgreSQL Organization PostgreSQL official website http://www.postgresql.org/
[Online on November 2009].

[25] W3 Organization CGI Specs and Documentation by W3 http://www.w3.org/CGI/
[Online on November 2009].

[26] Microsoft Corporation ASP.NET official website http://www.asp.net/ [Online on
November 2009].

[27] Mono Organization Mono Platform official website http://mono-project.com/Start
[Online on November 2009].

[28] PHP Group PHP official website http://php.net/index.php [Online on November
2009].

[29] Sun Microsystems JSP official website http://java.sun.com/products/jsp/ [Online on
November 2009].

[30] The Apache Software Foundation Apache Tomcat Webserver
http://tomcat.apache.org/ [Online on November 2009].

[31] Sun Microsystems GlassFish − OpenSource Application Server
https://glassfish.dev.java.net/ [Online on November 2009].

[32] JBoss Community JBoss OpenSource Middleware http://www.jboss.org/ [Online on
November 2009].

[33] Sun Microsystems NetBeans IDE http://netbeans.org/ [Online on November 2009].

[34] Eclipse Foundation Eclipse IDE http://www.eclipse.org/ [Online on November 2009].

[35] GenuiTec MyEclipse − Eclipse Plugin Development Tools IDE
http://www.myeclipseide.com/ [Online on November 2009].

[36] JetBrains IntelliJ IDEA IDE http://www.jetbrains.com/idea/ [Online on November
2009].

[37] ECMA International ECMAScript official website http://www.ecmascript.org/ [On-
line on November 2009].

[38] ECMA International Standard ECMA-262 ECMAScript Language Specification
[December 1999] http://www.ecma-international.org/publications/standards/Ecma-
262.htm [Online on November 2009].

[39] Jesse James Garrett Ajax: A New Approach to Web Applications
http://www.adaptivepath.com/ideas/essays/archives/000385.php [Online on Novem-
ber 2009].

91

[40] Adobe Systems Adobe Flash Platform official website
http://www.adobe.com/flashplatform/ [Online on November 2009].

[41] Adobe Systems Adobe Flash Professional official website
http://www.adobe.com/products/flash/ [Online on November 2009].

[42] Adobe Systems Adobe Open Source Project http://opensource.adobe.com/ [Online
on November 2009].

[43] Microsoft Corporation Microsoft SilverLight official website http://silverlight.net/
[Online on November 2009].

[44] Mono Organization MoonLight official website http://mono-project.com/Moonlight
[Online on November 2009].

[45] Microsoft Corporation Microsoft Visual Studio 2008 Professional Edition
http://www.microsoft.com/visualstudio/en-us/products/professional/ [Online on
November 2009].

[46] Microsoft Corporation Microsoft Expression Studio
http://www.microsoft.com/expression/ [Online on November 2009].

[47] opensourceCMS Organization Open Source CMS directory website
http://php.opensourcecms.com/ [Online on November 2009].

[48] commercialCMS Organization Proprietary CMS directory website
http://commercialcms.com/ [Online on November 2009].

[49] Kevin Yank Simply JavaScript: The Three Layers of the Web
http://articles.sitepoint.com/article/simply-javascript [Online on November 2009].

[50] Triple-Networks Three Tier Architecture http://triple-
networks.com/documents/three-tier-architecture/ [Online on November 2009].

[51] Carlos Serrão and Joaquim Marques Programação com PHP5 2nd Edition, FCA −

Editora de Informática, Lda..

[52] Pedro Remoaldo O Guia Prático do DreamWeaver CS3 com PHP, JavaScript e Ajax
1ft Edition, Centro Atlântico, Lda..

[53] Refsnes Data Organization W3Schools Online Web Tutorials
http://www.w3schools.com/ [Online on November 2009].

[54] Users Community Wikipedia http://www.wikipedia.org/ [Online on November 2009].

[55] Refsnes Data Organization W3Schools Browser Display Statistics and Color
Depth Surveys http://www.w3schools.com/browsers/browsers display.asp [Online on
November 2009].

92

[56] Refsnes Data Organization W3Schoos Browser Statistics Survey
http://www.w3schools.com/browsers/browsers stats.asp [Online on November
2009].

93

