
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2009

Arturo Miguel Batista

Rodrigues

Codificação de v́ıdeo com um único plano de

informação

Coding of video with a single information plane

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15562322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2009

Arturo Miguel Batista

Rodrigues

Codificação de V́ıdeo com um único plano de

informação

Coding of video with a single information plane

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2009

Arturo Miguel Batista

Rodrigues

Codificação de V́ıdeo com um único plano de

informação

Coding of video with a single information plane

Dissertação apresentada à Universidade de Aveiro para cumprimento dos

requisitos necessários à obtenção do grau de Mestre em Engenharia

Electrónica e Telecomunicações, realizada sob a orientação cient́ıfica do

Doutor António José Ribeiro Neves, Professor Auxiliar Convidado do De-

partamento de Electrónica, Telecomunicações e Informática da Universidade

de Aveiro e do Doutor Armando José Formoso de Pinho, Professor Asso-

ciado do Departamento de Electrónica, Telecomunicações e Informática da

Universidade de Aveiro.

o júri

Presidente Prof. Dr. Tomás António Mendes Oliveira e Silva

Professor Associado do Departamento de Electrónica, Telecomunicações e In-

formática da Universidade de Aveiro

Co-Orientador Prof. Dr. Armando José Formoso de Pinho

Professor Associado do Departamento de Electrónica, Telecomunicações e In-

formática da Universidade de Aveiro

Orientador Prof. Dr. António José Ribeiro Neves

Professor Auxiliar Convidado do Departamento de Electrónica, Telecomunicações

e Informática da Universidade de Aveiro

Arguente Prof. Dr. José Manuel de Castro Torres

Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade Fernando

Pessoa

Agradecimentos Desde logo gostaria de agradecer de forma especial aos meus pais por acred-

itarem em mim e por terem feito um esforço incansável para me levarem a

bom porto a ńıvel académico. Um enorme muito obrigado à minha mãe,

por tudo o que me ensinou ao longo destes anos da minha vida. Agradeço

também à minha irmã pelo enorme apoio, compreensão e força dada ao

longo deste percurso universitário. Sem dúvida, a faḿılia é uma pedra

basilar no meu sucesso académico.

A todos os meus amigos em Aveiro, que me acompanharam ao longo desta

caminhada, com muitos bons momentos de diversão, mas que também

estiveram lá nos momentos de maior dificuldade. Tenho de salientar o

contributo do meu amigo Ivo Pinheiro, por toda a ajuda dispensada sempre

que me surgia alguma dúvida sobre programação!

Endereço também os meus agradecimentos aos meus orientadores, Profes-

sor Doutor António José Ribeiro Neves e Professor Doutor Armando José

Formoso de Pinho por terem acreditado em mim que poderia levar esta

tese a bom porto, assim como pela constante disponibilidade e orientação

cient́ıfica.

Por fim, agradeço também a todos aqueles que possa estar a esquecer-me!

keywords V́ıdeo com um único plano de informação, escala de cinzento, v́ıdeos com

palete de cores indexada, codificação de Golomb, codificação Aritmética,

predição de movimento, reordenação da palete de cores, codificação de

v́ıdeo sem perdas.

abstract As actuais normas para codificação de v́ıdeo, tais como os MPEG2/4 ou

H.263/4, foram desenvolvidas para codificação de v́ıdeo com cor. A in-

formação de cor é representada usando um espaço apropriado, como, por

exemplo, o YCbCr. Estes espaços de cor são constitúıdos por três planos:

um para a luminância (no exemplo dado, o Y) e dois para a informação

de crominância (neste caso, o Cb e o Cr). Contudo, há aplicações onde a

informação a codificar é composta apenas por um plano de informação que

pode, por exemplo, representar ńıveis de cinzento em imagem médica, ou

ı́ndices para tabelas de cores. A motivação desta tese prende-se com dois

factos: a produção de imagens médicas em formato digital estar a crescer,

impondo técnicas eficazes para o tratamento e a compressão de dados e,

embora os modelos de cor indexada sejam há muito utilizados para repre-

sentar imagens, não têm sido convenientemente explorados em v́ıdeo. Com

esta dissertação pretende-se investigar novas estratégias de compressão sem

perdas que explorem a redundância entre imagens consecutivas que car-

acterizam estas modalidades de imagem. Portanto, ao longo do trabalho

implementou-se dois codificadores de v́ıdeo para um só plano de informação,

baseados num modelo h́ıbrido. Um deles utiliza codificação de Golomb e

o outro codificação aritmética, estudando-se assim a eficácia de cada um,

quer para a escala de cinzentos, quer para v́ıdeos com tabela de cores in-

dexadas. Adicionalmente, para v́ıdeos de cor indexada, implementou-se um

algoritmo de reordenação da tabela de cores, o que torna a codificação mais

eficaz.

keywords Video with a single information plane, gray scale, color indexed videos,

Golomb coding, Arithmetic coding, motion prediction, palette reordering,

lossless video coding.

abstract The current standards for video encoding, such as MPEG2/4 or H.263/4,

have been developed for encoding video with color. The color information

is represented using an appropriate space, such as YCbCr. These color

spaces are made of three planes: one for luminance (in the given example,

the Y) and two for the chrominance information (in this case, the Cb and

Cr). However, there are applications where the information lies in a single

information plane that may, for example, represent shades of gray (medical

imaging) or indexes to color tables (color indexed video). The motivation

of this thesis is related with two points: the production of medical images

in digital format has been growing, imposing efficient techniques for the

treatment and compression of data and, although color indexed models have

been used for a long time to represent images, it has not been adequately

explored in video. With this thesis, we intended to investigate new strategies

for lossless compression which exploits the redundancy between consecutive

images that characterize these types of images. Therefore, during this work,

it has been implemented two video encoders with one information plane,

based on a hybrid model. One of them uses Golomb codes and the other

arithmetic coding. It has been studied the efficiency of each one, both using

gray scale and color indexed videos. In addition, for color indexed videos, it

has been implemented a palette reordering algorithm, making the encoding

more efficient.

Contents

1 Introduction 1

1.1 Objectives and main contribution . 2

1.2 Thesis structure . 3

2 Video coding 5

2.1 Golomb codes . 6

2.2 Arithmetic coding . 6

2.3 Motion prediction . 9

2.4 A little of MPEG’s history . 10

2.5 H.264 . 11

2.5.1 VCL . 12

2.6 Lossless image compression standards . 17

2.6.1 The JPEG standard . 17

2.6.2 The JPEG-LS standard . 19

2.6.3 The JPEG-2000 standard . 21

2.6.4 The JBIG standard . 23

2.6.5 The PNG standard . 24

2.7 Lossless Video Coding algorithms . 27

2.7.1 FFV1 . 27

2.7.2 HuffYUV . 28

2.7.3 Lagarith . 29

i

3 Color Quantization 31

3.1 Pre-clustering algorithms . 32

3.1.1 Popularity algorithm . 32

3.1.2 Median-cut algorithm . 32

3.1.3 Octree algorithm . 33

3.2 Post-clustering algorithms . 33

3.2.1 K-means algorithm . 33

3.2.2 Local K-means algorithm . 34

3.2.3 NeuQuant neural-net image quantization algorithm 34

3.3 Inverse color-mapping algorithms . 35

3.3.1 Improvements of the trivial inverse colormap method 35

3.3.2 The locally sorted search algorithm . 36

3.3.3 Inverse colormap operation using a three-dimensional Voronoi diagram 36

3.3.4 Inverse colormap operation using a two-dimensional Voronoi diagram 37

3.4 Palette-reordering algorithms . 38

3.4.1 Color-based Methods . 39

3.4.2 Index-based Methods . 40

3.5 Dithering . 42

3.5.1 Noise and Ordered Dithering . 43

3.5.2 Error Diffusion Technique . 43

3.6 Color quantization in video . 44

4 Proposed video coding algorithm 45

4.1 The single plane video bitstream . 45

4.1.1 Header information . 46

4.1.2 Frame structure . 47

4.1.3 Color palette . 47

4.2 Overview of the proposed method . 48

4.2.1 Adapting the data into a gray scale video 49

ii

4.2.2 Adapting the data into a color-indexed video 50

4.3 Encoding the bitstream . 52

4.3.1 Encoding the bitstream with the Golomb codes 55

4.3.2 Encoding the bitstream with the Arithmetic coding 55

5 Experimental Results 57

5.1 Entropy Values . 58

5.1.1 First Order Entropy . 58

5.1.2 Residuals and Motion Vectors Entropy 62

5.1.3 Overall Results . 65

5.2 Encoding results with Golomb codes . 65

5.3 Encoding results with Arithmetic coding . 67

5.4 Encoding results with JPEG-2000 standard 70

5.5 Encoding results with H.264/AVC standard 72

5.6 Comparing the results . 74

6 Conclusions and future work 75

A Video test sets 77

B Video Tools 85

B.1 Data Structure . 85

B.2 File List . 85

B.3 VideoCompare.c File Reference . 88

B.3.1 Function Documentation . 88

B.4 YuvConv.c File Reference . 89

B.4.1 Function Documentation . 90

B.5 YuvSplitFrames.c File Reference . 90

B.5.1 Function Documentation . 91

B.6 YuvJoinFrames.c File Reference . 92

iii

B.6.1 Function Documentation . 92

B.7 PaletteReordering.c File Reference . 93

B.7.1 Function Documentation . 93

B.8 YuvJoinFramesRGB.c File Reference . 93

B.8.1 Function Documentation . 94

B.9 ShowOneInfPlan.c File Reference . 94

B.9.1 Function Documentation . 95

B.10 EntropyCalculator.c File Reference . 96

B.10.1 Function Documentation . 96

B.11 Entropy1Calculator.c File Reference . 97

B.11.1 Function Documentation . 97

B.12 BlockEnc.c File Reference . 98

B.12.1 Function Documentation . 99

B.13 BlockDec.c File Reference . 99

B.13.1 Function Documentation . 100

B.14 BlockEncArith.c File Reference . 100

B.14.1 Function Documentation . 101

B.15 BlockDecArith.c File Reference . 101

B.15.1 Function Documentation . 102

B.16 Developed shell scripts . 102

B.16.1 Ppmquant shell script . 102

B.16.2 Jasper shell script . 103

iv

Chapter 1

Introduction

The current standards for video coding have been developed to deal with color video. The

color information is represented using an appropriate space, such as YUV or RGB. Both of

them are composed by three planes of information: in the case of YUV, Y represents the

luminance and U and V the chrominance information; and in the case of RGB, they represent

the three additive primary colors: Red, Green and Blue, respectively.

However, sometimes the color information is composed by various shades of gray or a

reduced number of colors. On both cases, there is no need to represent the color information

in a three plane space, only one is enough. Those are the types of video that we are interested

to study: gray scale and color indexed videos.

One example of data in a gray scale format are some data provided in medical diagnosis

(an example can be seen in Fig. 1.1). Their production in digital format has been growing

and nowadays they are an important and indispensable element of medical decision. With the

data increasing, the space to store all those records also increases. Therefore, it is necessary

to compress the data to reduce the occupied space but, on the other hand, it is also necessary

to maintain the information equal to the original. So, the development of efficient lossless

video coding methods is very important. Another example of gray scale videos are the video

surveillance tapes that can be found in retail parks, important buildings, malls and even in

highways.

Color-indexed images are represented by a matrix of indexes (the index image) and by a

color-map or palette (an example is presented in Fig. 1.2). The indexes in the matrix point

to positions in the color-map and, therefore, establish the colors of the corresponding pixels.

This type of images are obtained by quantizing a full color image to an image with, generally,

no more than 256 colors carefully selected. This process is usually considered in two parts:

1

Figure 1.1: Two examples of medical images in gray scale. The first one is a sonography [1]

and the second is a CT Scan [2].

the selection of an optimal color palette and the optimal mapping of each pixel of the image

to a color from the palette. The limited ability of humans to differentiate between the full

range of representable colors allows the selection of a limited number of colors.

Figure 1.2: Two examples of color indexed images. Both images are the first frame from

the video News, found at [3], where the first one has been reduced to a palette of 8 colors,

whereas the second one has a colormap of 256.

Even though it is usual to find color-indexed images, such as PNG and GIF images, the

same has not been adequately explored in video. As with gray scale videos, encoding this

information must be made without loss of information, as the suppression of large quantities

of information has been already made with the quantization of the original images.

1.1 Objectives and main contribution

The main objectives of this thesis are the development of several algorithms using different

coding methods and then study them in order to assess which one can be more effective,

whether in gray scale or in color-indexed videos. We present two video coding methods based

on a hybrid approach that use Golomb coding and arithmetic coding.

2

Moreover, it is important that both types of video can be stored in a common bitstream. In

this thesis, it is proposed a bitstream format that contains a common header, which specifies

the number of rows, columns, frames per second and the number of colors, followed by the

encoded frames. If the encoded video is a color indexed one, all the colormaps are placed

right after the corresponding frame.

1.2 Thesis structure

This thesis is divided into six chapters. The second chapter offers an extensive review of the

most important theoretical contents about coding, explaining the Golomb and the arithmetic

coding, the hybrid approach using motion prediction, the evolution of the MPEG’s video

coding standards, with special focus in the H.264/MPEG4-AVC standard, the most important

lossless image compression standards and, finally, some lossless video coding methods. The

third chapter describes the color quantization methods to convert a full color image into a

reduced set of colors. It is explained the most important methods of color reduction, inverse

colormapping, palette-reordering and dithering. In the fourth chapter, the bitstream and

the two developed algorithms are explained in better detail, as well as the conversion of the

original source videos into a single plane space, both for gray scale and the color-indexed

format. In the fifth chapter, the experimental results with the two developed algorithms are

shown, as well as the compression results using the H.264/MPEG4-AVC and the JPEG2000

video and image standards, respectively. Comparisons are made between them in order to

see if the developed algorithms are more efficient for encoding gray scale and color-indexed

videos using the new proposed model. Finally, in the sixth chapter, some conclusions are

made and we present some possible future work.

3

Chapter 2

Video coding

Nowadays, the constant use of information technologies is unquestionable. The majority

of the data are being replaced into a digital format. Even though the storing equipments of

digital data are also improving and increasing their capacity, decreasing the size of the data

to be stored is still a goal.

Encoding relies on a exploitation of perceptual or statistical redundancy. Perceptual

redundancy tries to exploit the limitations of human perceptions, such as the vision and the

audition. On the other hand, statistical redundancy occurs when it is possible to define a

value with fewer bits than the original. Because this thesis relies on lossless video coding,

only the statistical redundancy will be focused.

Statistical methods can use variable length codes, which allow an encoding with zero error

and still be read back symbol by symbol. When using these types of codes, the most frequent

data symbols will be encoded with less number of bits while less frequent symbols will be

represented with longer code words. Another approach usually used is arithmetic coding,

which encodes the entire message altogether. Using the right coding strategy, the original

data may be compressed close to its entropy. In order to achieve a better efficiency in the

compression rate, it is usual to use a hybrid encoder, which mixes spatial coding with motion

prediction.

During the elaboration of this thesis it was developed two encoders, one using the Golomb

codes and the other the arithmetic coding along with motion prediction, and studied their

efficiency when applied in one information plane videos. In this chapter, we describe these

concepts. Moreover, it will also be presented the most important video coding methods

supporting lossless coding. The description of the standards for lossless coding of images is

also presented, due to the fact that they will be used in this thesis to compare the results

5

with the developed algorithms.

2.1 Golomb codes

The main idea of the Golomb code [4] relies on separating a positive integer into two parts:

one of them is represented with an unary code and the other with a binary code. These two

parts represent the quotient and the remainder of the initial value to encode. Therefore, the

initial value is divided by a previously defined number and the quotient is represented by the

unary code and the remainder by the binary code. Let n be an integer greater or equal than

0. It can be represent by two numbers, q and r, in such a way that

q =
n

m
and r = n − q m

The quotient, q, can have the values 0, 1, 2,. . . , and the remainder of the division, r, can

have the values 0, 1, 2, . . . ,m-1. The remainder, if written in binary code, is represented by

⌈log2(m)⌉ bits.

In order to achieve a better efficiency, it is necessary to choose the best value of m. This

number must be chosen according to the entropy of the data, which is given by

E = −
N−1∑

i=0

P(i)log(P(i))

where N is the number of possible symbols and P(i) is the probability of each symbol.

According to the entropy value, m should be close to E. If m is not chosen accordingly to

the entropy, it must be preferentially a power of 2, otherwise the binary code is not efficient.

2.2 Arithmetic coding

This method [5], opposing to other entropy encoding techniques that separate the input

message into its component symbols and replace each symbol with a code word, encodes the

entire message into a single number.

Arithmetic coding uses an one-dimensional table of probabilities. The single number to

be encoded will be a value inside the probability range. All probabilities fall into the range

[0,1) while their sum equals 1 in every case. The [0, 1) interval is partitioned according to

the probability distribution of the symbols and then, after iterating this step for each symbol

in the message, a value inside the final interval is chosen for representing the message.

6

To better understand how does the Arithmetic coding work, let’s assume the alphabet

A = {a, b, c, d}. Let the probabilities of the symbols in the message be

P (a) = 0.5, P (b) = 0.25, P (c) = 0.125 and P (d) = 0.125.

Now the interval [0,1) will be partitioned according to the probability of the symbols,

according to Table 2.1.

Symbol Prob. Interval

a 0.5 [0, 0.5)

b 0.25 [0.5, 0.75)

c 0.125 [0.75, 0.875)

d 0.125 [0.875,1)

Table 2.1: The [0, 1) interval partitioned according to the probability distribution of the

symbols.

Let S be the message to be encoded. The first step in encoding is the initialization of

the interval I = [low, high) by low = 0 and high = 1. When the first symbol of S is read,

the interval I is resized to a new interval according to the symbol. For instance, if the first

symbol of S is b, the new boundaries of I are, according to the Table 2.1: low = 0.5 and

high = 0.75. All the following numbers generated by the next iterations will be located in

the interval I.

Proceeding with the second symbol of S, it is necessary to scale and shift the boundaries to

match the new interval. Scaling is accomplished by a multiplication of the boundaries of the

symbol to encode with the difference between high and low, that is, the length of the interval.

Shifting is performed by adding low to the result of scaling. Therefore, the equations to find

the new boundaries are

low′ = low + l × (high − low) and high′ = low + h × (high − low),

where l and h represent the lower and upper limits of the symbol to encode, respectively.

This rule is valid for all steps, including the first one. Replacing low with 0 and high− low

with 1, it is easy to see that the result will be the same as assigning directly the boundaries

of the first encoded symbol.

To decode the message, the encoder will be applied backwards. The final value of the

encoding algorithm is received by the decoder to restore the original message S. In the first

7

iteration, it is made a comparison between the encoded value with each interval of the initial

partition, to find the one that contains that value. It will correspond to the first symbol of

the sequence. To compute the next symbol, the probability partition is modified using the

same way as encoding, that is, it will be used the equations referred above.

Although this method is efficient when encoding short messages, the same does not oc-

cur with long messages, which may require a infinite precision computer. Even with those

computers, it certainly would not be efficient to perform arithmetic operations with several

thousands or even millions of decimal places. Therefore, it is necessary to find a way to

re-scale the interval.

Analyzing the calculated intervals, it is possible to see a tendency that the limits are

getting closer as the new symbols are being encoded. This means that, sooner or later, it will

happen one of three situations:

• both limits are under 0.5;

• both limits are above 0.5;

• the limits belong to the interval [0.25, 0.75).

When the first two possibilities happen, looking to the number representation in binary,

the most significant bit of the lower and upper limit will always be 0 or 1, if the limits are

under or above 0.5, respectively. Therefore, this bit can be sent. Now, the limits will be

expanded, according with the following equations:

• l = 2l and h = 2h, if the sent bit was 0;

• l = 2(l − 0.5) and h = 2(h − 0.5), if the sent bit was 1.

When the third option happens, in binary it means that the second most significant bit

in the lower limit is always 1 and in the upper limit always 0. So, this bit will be deleted in

order to re-scale the limits and allow a new calculation of them. This expanding can also be

represented by the following equations:

• l = 2(l − 0.25) and h = 2(h − 0.25).

A counter will take note how many times these situations happen between two sent bits

and, when one of the other situations happen, after the sending of the corresponding bit to

the encoded message, it is also sent a bit to sign that the third situation happened. It will

8

be sent the 0 bit as many times as the number of the counter, if the sent bit was 1 and vice

versa if 0 was the sent one.

There are two ways of applying the one-dimensional table of probabilities, which is also

known as finite-context models: statically and dynamically. In this thesis, we used the dy-

namic method, because using the static method would require the previous knowledge and

storage of the data information. Using the dynamic method, the statistical information is

adapted along with the encoding process.

A finite-context model [4, 5] of an information source assigns probability estimates to the

symbols of an alphabet A, according to a conditioning context computed over a finite and fixed

number, M, of past outcomes (order-M finite-context model). The number of conditioning

states of the model is |A|M . The probability will be the number of times that, in the past,

the value to encode had appeared with that M past outcomes, divided by the number of

all the symbols already encoded. The counters are updated each time a symbol is encoded.

Since the context template is causal, the decoder is able to reproduce the same probability

estimates without needing additional information. At the beginning of the encoding process,

the counters of all the possible conditioning states will be initialized with the value 1. In

the decoding algorithm, the same method was applied. This method avoids the previous

knowledge of the statistics of the message to encode or decode, and can be learned along with

the development of the encoding/decoding process.

2.3 Motion prediction

A video sequence is composed by several images, also known as frames. Usually, the

difference between two consecutive frames of a video sequence are due to the motion of some

elements of the scene (Fig. 2.1). Exceptions occur when there are scene changes, zoom-in or

zoom-out operations and camera translation.

Hence, this motion of some elements is another redundancy that can be exploited. The

basic steps of video coding based on motion prediction are:

• Estimation of the motion vectors.

• Compensation, i.e., temporal prediction.

• Encoding of the motion vectors.

• Encoding of the prediction residuals.

9

Figure 2.1: Example of motion between two consecutive frames.

There are several techniques where motion prediction is applied. The most common and

also the one that was used in this thesis divides the frame in blocks with dimensions chosen

previously and, for each block, seeks the position where the difference with the reference block

of the previous frame is minimum. For each block, there might be two displacements: one

in the horizontal direction and the other in the vertical direction. This forms the motion

vector. Usually the search for the best value is limited to a neighborhood of a number of

pixels around the block previously chosen, otherwise the computation of this algorithm would

be too demanding.

2.4 A little of MPEG’s history

MPEG, which stands for Moving Picture Experts Group [6], is the name of a family of

standards used for coding audio-visual information in a digital compressed format.

It has started in 1988 as a working group within ISO/IEC with the aim of defining

standards for digital compression of audio-visual signals. MPEG’s first project, MPEG-1,

was published in 1993 as ISO/IEC 11172. It is a three-part standard defining audio and

video compression coding methods and a multiplexing system for interleaving audio and

video data, so that they can be played back together. MPEG-1 mainly supports video coding

up to about 1.5 Mbit/s, giving quality similar to VHS, and stereo audio at 192 bit/s. It is

used in the CD-i and Video-CD systems for storing video and audio in CD-ROM.

During 1990, MPEG recognized the need for a second standard for encoding video for

broadcast formats at higher data rates. MPEG-2 [7], which is formally known as ISO/IEC-

13818, is capable of coding standard-definition television at bit rates from about 3-15 Mbit/s

10

and high-definition television at 15-30 Mbit/s. MPEG-2 extends the stereo audio capabilities

of MPEG-1 to multi-channel surround sound coding. MPEG-2 decoders can also decode

MPEG-1 bitstreams. This new standard has been approved in November 1994 and the final

text was published in 1995.

A MPEG-3 project was anticipated to be aimed at HDTV, but MPEG-2 was shown to

be capable of filling that need and MPEG-3 never occurred.

In October 1998, as a result of an international effort involving hundreds of researchers

and engineers from all over the world, it was published as ISO/IEC 14496, the new codec

MPEG-4 [8], becoming an International Standard in the first months of 1999. This standard

was initially specified for very low bit rates but now it supports much higher bit rates. MPEG-

4 is designed for use in broadcast, interactive and conversational environments, allowing to

be used in television and Web environments. The second version of this standard, which

also includes the entire technical content of the first version of the standard, became an

international standard in 2000. After these two versions, more parts were developed, and new

tools and profiles were introduced.

An example was the development of Part 10, better known as H.264 or Advanced Video

Coding (AVC), which substantially improves MPEG-4’s video compression efficiency. This

standard will be focused with better detail in the following section.

2.5 H.264

H.264/MPEG4-AVC [9] is a video coding standard developed by the ITU-T Video Coding

Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG), and it

became an International Standard in 2003. H.264/MPEG4-AVC has recently become the

most widely accepted video coding standard since the deployment of MPEG-2 at the dawn

of digital television, and it may soon overtake MPEG-2 in common use. It covers all common

video applications ranging from mobile services and videoconferencing to IPTV, HDTV, and

HD video storage. This standard is divided into a Video Coding Layer (VCL), whose block

diagram is shown in Fig. 2.2, and a Network Abstraction Layer (NAL). NAL’s main goal is

to provide appropriate headers and system information for each particular network or storage

media, which is out of the thesis goal and thus, it will not be explained with more details.

11

Figure 2.2: VCL block diagram [9].

2.5.1 VCL

The typical encoding operation for a picture begins with splitting the picture into blocks

of samples, each one covering a rectangular picture area of 16 × 16 samples of the luma

component and, in the case of video in 4:2:0 chroma sampling format, 8 × 8 samples of each

of the two chroma components. The macroblocks are organized in slices, which represent

regions of a given picture that can be decoded independently of each other. In this standard,

the allocation of macroblocks into slices is made completely flexible. With this feature, which

is informally known as flexible macroblock ordering (FMO), a single slice may contain all of

the data necessary for decoding a number of macroblocks that are scattered throughout the

picture, which can be useful on error recovery due to packet loss. In contrast with previous

standards in which the picture type determined the macroblock prediction modes available,

it is the slice type that determine which prediction modes are available for the macroblocks.

H.264/MPEG4-AVC supports five different slice types. The simplest is the I slice (where

I stands for intra). In I slices all macroblocks are coded without referring to any other

pictures of the video sequence. Prior coded images can be used to form a prediction signal

for macroblocks of the predictive-coded P and B slice types (where P stands for predictive

and B stands for bi-predictive). The remaining two slice types are SP (switching P) and SI

(switching I) slices, which are specified for efficient switching between bitstreams coded at

various bit rates. Slices of different types can be mixed within a single picture.

The first picture of a sequence is typically coded in Intra mode. H.264/AVC uses spatial

12

directional prediction, in which individual sample values are predicted based on neighboring

sample values that have already been decoded and fully reconstructed. Two different modes

are supported for the luma block: 4 × 4 and 16 × 16 pixels/sample. However, the intra

prediction process for chroma blocks uses prediction block size equal to the block size of the

entire macroblock’s chroma arrays.

In the 4 × 4 intra coding mode, each 4 × 4 luma block within a macroblock can use a

different prediction mode. Eight different prediction directions plus an additional averaging

(so-called DC) prediction mode can be selected by the encoder. Fig. 2.3 and 2.4 illustrate

those prediction directions.

8

1

6

4

5
0

3

7

Figure 2.3: Spatial prediction for the 4 × 4 intra mode [10].

The 16×16 intra prediction mode, depicted in Fig. 2.5, operates similarly to the 4×4 intra

mode, except that the entire luma block is predicted at once, based on the samples above

and to the left of the macroblock. Also, in this mode there are only four modes available

for prediction: DC, horizontal, vertical and planar. This mode is most useful in relatively

smooth picture areas.

For all the remaining pictures of a sequence or between random access points, typically

Inter coding is used. Inter coding employs inter-picture temporal prediction (motion com-

pensation) using other previously decoded pictures. For P-slice macroblocks, the motion

compensation model in H.264/AVC is more powerful and flexible than those defined in ear-

lier standards, which typically allowed motion compensation block sizes of only 16 × 16 or

possibly 8×8 luma samples, whereas this standard allows seven different block sizes: 16×16,

16 × 8, 8 × 16, 8 × 8 (Fig. 2.6), with this last block being further partitioned in 8 × 8, 8 × 4,

4 × 8 and 4 × 4 samples, as depicted in Fig. 2.7.

The prediction signal for each predictive coded M ×N luma block is obtained by displac-

ing a corresponding area of a previously decoded reference picture, where the displacement

is specified by a translational motion vector and a picture reference index. Thus, if the mac-

roblock is coded using four 8 × 8 sub-macroblocks, and each sub-macroblock is coded using

13

Figure 2.4: The nine prediction types of the 4 × 4 intra mode, according to the spatial

prediction directions shown in Fig. 2.3 [10], adapted from [11].

Figure 2.5: Spatial prediction for the 16 × 16 intra prediction mode [10], adapted from [11].

16x16

16

16

8 8

0 1
0

1

8x16 16x8 8x8

32

0 1
0

Figure 2.6: Partitioning of a macroblock in 16×16, 16×8, 8×16, 8×8 for motion-compensated

prediction [10], adapted from [11].

four 4 × 4 luma blocks, a maximum of 16 motion vectors may be transmitted for a single

P -slice macroblock. The motion vector precision is at the granularity of one quarter of the

distance between luma samples. If the motion vector points to an integer-sample position,

14

0
1

8

8 4 4

0 1

4x88x8 8x4

1

0 0

32

4x4

Figure 2.7: Partitioning of the 8×8 macroblock into a 8×8, 8×4, 4×8 or 4×4 sub-macroblock

for motion-compensated prediction [10], adapted from [11].

the prediction signal is formed by the corresponding samples of the reference picture. Other-

wise, the prediction signal is obtained using interpolation between integer-sample positions.

The prediction values at half-sample positions are obtained by separable application of a

one-dimensional six-tap finite impulse response (FIR) filter, and prediction values at quarter-

sample positions are generated by averaging samples at integer- and half-sample positions.

The prediction values for the chroma components are obtained by bilinear interpolation.

H.264/AVC supports multi-picture motion-compensated prediction, which means that,

more than one prior-coded picture can be used as a reference for motion-compensated predic-

tion. For multi-frame motion-compensated prediction, the encoder stores decoded reference

pictures in a multi-picture buffer. In Fig. 2.8, it is depicted an example of usage of multiple

frames to encode the blocks of the current frame.

Figure 2.8: Multiframe motion compensation. This concept is applied both to P or B slices

[9].

In addition to the motion-compensated macroblock modes described above, a P -slice mac-

roblock can also be coded in the so-called SKIP mode. For this mode, neither a quantized

prediction error signal, nor a motion vector or reference index parameter, has to be trans-

15

mitted. The reconstructed signal is computed in a manner similar to the prediction of a

macroblock with partition size 16 × 16 and fixed reference picture index equal to 0. In con-

trast to previous video coding standards, the motion vector used for reconstructing a skipped

macroblock is inferred from motion properties of neighboring macroblocks rather than being

inferred as zero.

The main difference between B and P slices is that B slices may use a weighted average

of two distinct motion-compensated prediction values for building the prediction signal, to

encode the sample value. Motion compensation in B -slices is supported by four different

types of inter-picture prediction: list 0, list 1, bi-predictive, and direct prediction. While list

0 prediction indicates that the prediction signal is formed by utilizing motion compensation

from a picture of the first reference picture buffer, a picture of the second reference picture

buffer is used for building the prediction signal if list 1 prediction is used. In the bi-predictive

mode, the prediction signal is formed by a weighted average of a motion-compensated list 0

and list 1 prediction signal. The direct prediction mode is inferred from previously transmitted

syntax elements and can be either list 0 or list 1 prediction or bi-predictive.

The residual of the prediction, which is the difference between the original input samples

and the predicted samples for the block, is transformed. H.264/MPEG4-AVC specifies a set

of integer transforms of different block sizes. A 4 × 4 integer transform is applied to both

the luma and chroma components of the prediction residual signal. An additional M × N

transform is applied to the DC coefficients of each chroma component, with the values of

N, M ∈ 2, 4, depending on the format. If a macroblock is coded in Intra-16 × 16 mode, a

similar 4 × 4 transform is performed for the 4 × 4 DC coefficients of the luma signal.

The transform coefficients are then scaled and approximated using scalar quantization.

This standard uses uniform-reconstruction quantizers (URQs). One of 52 quantizers factors

is selected for each macroblock by a quantization parameter (QP). The scaling operations are

arranged so that there is a doubling in quantization step size for each increment of six in the

value of QP.

The quantized transform coefficients of a block are generally scanned in a zig-zag fashion

and further entropy coded and transmitted together with the entropy-coded prediction in-

formation for either Intra or Inter-frame prediction. In H.264/AVC, two methods of entropy

coding are supported. The default entropy coding method uses a single infinite-extend code-

word set for all syntax elements, except the quantized transform coefficients. Thus, instead of

designing a different VLC table for each syntax element, only the mapping to the single code-

word table is customized according to the data statistics. The single codeword table chosen

is an exp-Golomb code with very simple and regular decoding properties. For transmitting

16

the quantized transform coefficients, a more sophisticated method called Context-Adaptive

Variable Length Coding (CAVLC) is employed. In this scheme, VLC tables for various syntax

elements are switched, depending on already-transmitted syntax elements. Since the VLC

tables are well designed to match the corresponding conditioned statistics, the entropy coding

performance is improved in comparison to schemes using just a single VLC table.

The efficiency of entropy coding can be improved further if Context-Adaptive Binary

Arithmetic Coding (CABAC) is used. As referred in 2.2, arithmetic coding is extremelly

efficient once it permits adaptation to non-stationary symbol statistics. Another important

property of CABAC is its context modeling. The statistics of already coded syntax elements

are used to estimate the conditional probabilities.

Compared to CAVLC, CABAC can typically provide reductions in bit rate of 10 to 20

percent for the same objective video quality when coding SDTV/HDTV signals [9].

The decoder inverts the entropy coding processes, performs the prediction process as

indicated by the encoder using the prediction type information and motion data. It also

inverse-scales and inverse-transforms the quantized transform coefficients to form the ap-

proximated residual and adds this to the prediction. The result of that addition is then fed

into a deblocking filter, which provides the decoded video as its output.

2.6 Lossless image compression standards

In this thesis, we used lossless image coding standards to compare the efficiency of the

developed methods or to obtain reference values. Therefore, in this section, it will be described

the most common image coding standards available.

2.6.1 The JPEG standard

JPEG [13], which stands for Joint Photographic Experts Group, is the name of the com-

mittee that created the standard. It is an ISO/IEC group of experts that was organized

in 1986. In computing, JPEG is a commonly used method of compression for photographic

images. The degree of compression can be adjusted, allowing a selectable trade off between

storage size and image quality.

The JPEG standard specifies only how an image is transformed into a stream of bytes.

JFIF (JPEG File Interchange Format), another standard developed by the JPEG Group,

specifies how to create a file suitable for computer storage and transmission from a JPEG

stream. This compression method is usually lossy, which means that some original image

17

information is lost and cannot be restored. However, this standard also allows lossless com-

pression. The JPEG standard was developed to compress still and gray scale pictures, real

world scenes and natural images. However, its performance in images with big discontinuities

whether in color or in shades of gray is low.

JFIF encoding process usually starts with the conversion of the image color space from

RGB to a color space consisting of one component that represents brightness, and two compo-

nents representing chrominance, such as YCbCr or YUV. The image is then split into blocks

of 8×8 pixels, and for each block, each of the Y, Cb, and Cr data undergoes a discrete cosine

transform (DCT). The amplitudes of the frequency components are quantized. Regarding

that the human eye is good at seeing small differences in brightness over a relatively large

area, but not so good at distinguishing the exact strength of a high frequency brightness varia-

tion, this allows a reduction in the amount of information in the high frequency components.

If an excessively low quality setting is used, the high-frequency components are discarded

altogether. This is done by simply dividing each component in the frequency domain by a

constant for that component, and then rounding to the nearest integer. This is the main lossy

operation in the whole process. The resulting data of all 8 × 8 blocks is further compressed

with a lossless algorithm. The image components are scanned in a ”zigzag” order applying

a run-length encoding (RLE) algorithm that groups similar frequencies together, inserting

length coding zeros, and then using Huffman coding on what is left to finish the compressing

method.

JPEG standard possesses four different compression methods: sequential, progressive,

hierarchic and lossless. In the sequential mode, each color component is encoded at once,

whereas in both progressive and hierarchic mode, image components are encoded in multiple

scans. These three mentioned methods are lossy and, therefore, it isn’t necessary to profound

them.

The JPEG lossless mode is based on a predictor that estimates the value of the actual

pixel based on the values of the neighboring pixels. The value that is going to be encoded is

the difference between the estimated value by the predictor and the value of the pixel that is

being scanned. JPEG provides seven linear predictors, as shown in Table 2.2.

Generally, the performance of the several predictors may vary considerably from image

to image. If encoding time is not a problem, then all of them can be tested and the one

with the best compression rate chosen. This mode preserves the image, however it has lower

compression rates.

18

c b

a X

Mode Predictor

1 a

2 b

3 c

4 a + b - c

5 a + (b - c)/2

6 b + (a - c)/2

7 (a + b)/2

Table 2.2: On the left side, the actual pixel marked as ”X” and its neighboring pixels: a, b

and c. On the right side, the table with the seven Prediction Modes of JPEG standard.

2.6.2 The JPEG-LS standard

JPEG-LS [12, 15] is the state-of-the-art International Standard for lossless and near-

lossless coding of continuous tone still images. It has been developed by the Joint Photo-

graphic Experts Group (JPEG) with the aim of providing a low complexity lossless image

standard that could be able to offer better compression efficiency than lossless JPEG. The

core of JPEG-LS is based on the LOw COmplexity LOssless COmpression for Images (LOCO-

I) [14] algorithm, that relies on prediction, residual modeling and context-based coding of the

residuals. Most of the low complexity of this technique comes from the assumption that pre-

diction residuals follow a two-sided geometric probability distribution (TSGD) and from the

use of Golomb codes, which are known to be optimal for this kind of distributions. Besides

lossless compression, JPEG-LS also provides a lossy mode where the maximum absolute error

can be controlled by the encoder. The basic block diagram of JPEG-LS is given in Fig. 2.9.

Gradients

Region?
Flat

+

−

b d
x

c
a

.

Context
Modeler

Golomb
Coder

Fixed
Predictor

Correction
Adaptive

Counter
Run Run

Coder

.

.

.

. .

Predictor

Modeler

image
samples

regular

mode run image
samples

prediction
errorssamples

image

context

predicted
values

bitstream
compressed

Coder

regular

run mode

pred. errors
code spec.

run lengths
code spec.

Figure 2.9: JPEG-LS block diagram [16].

19

The prediction and modeling units in JPEG-LS are based on the causal template depicted

in Fig. 2.10, which is also known as MED predictor.

c b d

a X

Figure 2.10: The pixel marked as “X” denotes the current sample, and a, b, c and d are the

neighboring pixels.

The MED predictor uses, instead of a linear predictor like the JPEG standard, a nonlinear

predictor given by

X̂ =

min(a, b) if c ≥ max(a, b)

max(a, b) c ≤ min(a, b)

a + b − c otherwise

The predictor switches between three simple predictors: it tends to choose b in the case

where a vertical edge exists on the left of the current location, a in cases of a horizontal edge

above the current location, or a + b− c if no edge is detected. The latter choice would be the

value of X if the current pixel belongs to the plane defined by the three neighboring pixels

with heights a, b and c. This expresses the expected smoothness of the image in the absence

of edges.

LOCO-I algorithm shows relatively simplicity by assuming that the global statistics of

residuals from a fixed predictor in continuous tone images are well modeled by a two-sided

geometric distribution (TSGD) centered at zero. However, for context-conditioned predictors,

TGSG is centered in an offset and hence, JPEG-LS will build those offsets using the following

differences: g1 = d − b, g2 = b − c and g3 = c − a.

In order to use Golomb codes, the TSGD has to be first mapped into one-sided geometric

distributions. In JPEG-LS, this mapping is done using

M(ǫ) = 2|ǫ| − µ(ǫ),

where function µ(ǫ) = 1 if ǫ < 0 or 0 otherwise.

JPEG-LS has a run mode, when a = b = c = d, which indicates a flat zone.

20

2.6.3 The JPEG-2000 standard

JPEG2000 [12, 17] is the most recent international standard for still image compression

(Part 1 was published as an International Standard in the year 2000). This standard is based

on wavelet technology and embedded block coding (EBCOT) of the wavelet coefficients,

providing very good compression performance for a wide range of bit rates, including lossless

coding. Moreover, JPEG2000 allows the generation of embedded codestreams, meaning that

from a higher bit rate stream it is possible to extract lower bit rate instances without the

need for re-encoding.

This compression system allows great flexibility, not only for the compression of images

but also for the access into the compressed data. The codestream provides a number of

mechanisms for locating and extracting data for the purpose of retransmission, storage, display

or editing. This access allows storage and retrieval of data appropriate for a given application,

without decoding.

The block diagram of the JPEG2000 encoder is illustrated in Fig. 2.11. The discrete

wavelet transform (DWT) is first applied to the source image data. The transform coefficients

are then quantized and entropy encoded, before forming the output codestream (bitstream).

The decoder is the reverse of the encoder: the codestream is first entropy decoded, dequantized

and inverse discrete transformed, thus resulting in the reconstructed image data.

Figure 2.11: JPEG 2000: Block Diagram [12].

The source image data is first partitioned into rectangular nonoverlapping blocks, also

known as tiles, which are compressed independently. Prior to computation of the discrete

wavelet transform on each image tile, all samples of the image tile component are DC level

shifted by subtracting 2b−1 to the pixels, where b is the component depth. DC level shifting

is performed on samples of components that are unsigned only. Hereafter, an optional step

can be also placed into the image: a component transformation. It is intended to undo

the correlation between the colors and there are two types of transformation, depending on

a requirement of a lossy or a lossless compression: Irreversible Component Transformation

(ICT) and Reversible Component Transformation (RCT), respectively. The RCT performs

an approximate transformation of the RGB space in Y CbCr. These three pre-processing steps

are depicted in Fig. 2.12.

21

Figure 2.12: Pre-processing steps in the JPEG 2000 standard [12].

After these pre-processing steps, DWT is then applied. JPEG2000 uses two different types

of wavelets: one for lossless (Le Gall 5/3 filter) and the other for lossy coding (Daubechies

9/7 filter). One of these filters is used in each tile, decomposing them into different levels.

Those levels represent sub-bands, containing coefficients that describe the horizontal and

vertical characteristics of the original tile. Since the DWT is unidimensional by nature,

then, for bi-dimensional objects like images, DWT is applied in the horizontal and in the

vertical directions, which result in four different blocks: one block with low resolution on

both directions, one with high vertical resolution and low horizontal resolution, one with

low vertical resolution and high horizontal resolution and one with high resolution on both

directions. This process of applying DWT is then repeated a number of times on the low-

resolution image block using the dyadic decomposition represented in Fig. 2.13.

Figure 2.13: A representation of the dyadic decomposition, where L indicates low-pass

filtering, whereas H means high-pass filtering [12].

After transformation, all coefficients are quantized. Quantization is the process by which

the coefficients are reduced in precision. This operation is lossy, unless the quantization step

is 1 and the coefficients are integers, as produced by the reversible integer 5/3 wavelet. After

quantization, each sub-band is divided into rectangular blocks. Three spatially consistent

22

rectangles (one from each sub-band at each resolution level) comprise a packet partition.

Each packet partition location is further divided into non-overlapping rectangles, called “code-

blocks”, which form the input to the entropy coder. The individual bitplanes of the coefficients

in a code-block are coded within three coding passes. Each of these coding passes collects

contextual information about the bitplane data. An arithmetic coder uses this contextual

information and its internal state to decode a compressed bit-stream. These “code-blocks”

are encoded independently from the others, which allows random access to the image content

and efficient geometric manipulations. JPEG-2000 standard offers, comparing to JPEG or

even JPEG-LS, a higher compression rate but, this better performance is due to a higher

complexity of the algorithm.

2.6.4 The JBIG standard

The Joint Bi-level Image Experts Group (JBIG) [12] was issued in 1993 by the In-

ternational Organization for Standardization / International Electrotechnical Commission

(ISO/IEC) and Telecommunication Standardization Sector of the International Telecommu-

nication Union (ITU-T) for the progressive lossless compression of binary images. The major

advantages of JBIG over other existing standards, such as FAX Group 3/4, are its capability

of progressive encoding and its superior compression efficiency. The term “progressive en-

coding” means that the image is saved in several “layers” in the compressed stream. When

an image is decompressed and viewed, the viewer first sees an imprecise image (first layer)

followed by improved versions (higher layers).

Even though JBIG was designed for bi-level images, it is possible to apply it to gray-scale

images by separating the bitplanes and compressing each individually, as if it was a bi-level

image. In this case, the use of Gray Code, instead of the standard binary code, may improve

the compression efficiency.

The core of JBIG consists of an adaptive finite-context model followed by arithmetic

coding. The context model used here relies on 1024 contexts when operating in sequential

mode or on low resolution layers of the progressive mode, or 4096 contexts when encoding

high resolution layers. For each pixel, JBIG examines a template made of the 10 neighboring

pixels, marked as “X” and “A”, and based on the value of these pixels choose the respective

statistical model that will be used to encode the current pixel, marked as “?”.

Figure 2.14 shows the two templates used for the sequential mode and for the low res-

olution mode. The encoder decides whether to use the three-line or the two-line template

and indicates this choice in the bitstream (the two-line template results in a somewhat faster

23

X X X

X X X X A

X X ?

X X X X X A

X X X X ?

Figure 2.14: Templates for the lowest resolution layer. On the left, the three lines template.

On the right, the two lines template [12].

execution and the three-line template produces slightly better compression). The template

pixel labeled “A” is called adaptive pixel (AP). The encoder is allowed to use AP as a pixel

outside the template and it uses two parameters in each layer to indicate the position of the

AP in that layer.

More recently, a new version, named JBIG2 has been published [18], introducing addi-

tional functionalities to the standard, such as multipage document compression, two modes

of progressive compression, lossy compression and differentiated compression methods for

different regions of the image (e.g., text or halftones).

2.6.5 The PNG standard

Portable Network Graphics (PNG) [19] is an extensible file format for the lossless, portable,

well-compressed storage of raster images. Color-indexed, gray-scale, and true color images are

supported, with optional transparency (alpha channel). The images can have sample depths

range from 1 to 16 bits.

PNG is designed to work well in online viewing applications, such as the World Wide

Web and is robust, providing both full file integrity checking and simple detection of common

transmission errors. Also, PNG can store gamma and chromaticity data for improved color

matching on heterogeneous platforms.

Before compressing, a number of transformations are applied to the reference image to

create the PNG image to be encoded. These transformations on the reference image will

result in one of five types of a PNG image:

1. Truecolour with alpha: each pixel consists of four samples: red, green, blue, and alpha.

2. Grayscale with alpha: each pixel consists of two samples: gray and alpha.

3. Truecolour: each pixel consists of three samples: red, green, and blue. The alpha channel

may be represented by a single pixel value. Matching pixels are fully transparent, and

all others are fully opaque. If the alpha channel is not represented in this way, all pixels

are fully opaque.

24

4. Grayscale: each pixel consists of a single sample: gray. The alpha channel may be

represented by a single pixel value as in the previous case. If the alpha channel is not

represented in this way, all pixels are fully opaque.

5. Indexed-color: each pixel consists of an index into a palette (and into an associated

table of alpha values, if present).

A conceptual model of the process of encoding a PNG image can be described by the

following steps:

• Pass extraction and scanline serialization;

• Filtering;

• Compression;

• Chunking;

• Datastream construction.

The palette and alpha table are not encoded in this way.

Pass extraction splits a PNG image into a sequence of reduced images where the first

image defines a coarse view and subsequent images enhance this coarse view until the last

image completes the PNG image. The set of reduced images is also called an interlaced PNG

image. There are defined two interlace methods:

• Null method: pixels are stored sequentially from left to right and scanlines from top to

bottom;

• Adam7: makes multiple scans over the image to produce a sequence of seven reduced

images. In the first pass only 1 out of 64 pixels is transmitted, which results in a good

approximation of the original image. It is this method that makes PNG work so well in

web platforms.

After interlacing, each row of pixels, called a scanline, is represented as a sequence of bytes.

Filtering is applied right after, which transforms the PNG image with the goal of improving

compression. As a simple example, consider a sequence of bytes increasing uniformly from 1

to 255. Since there is no repetition in the sequence, it compresses either very poorly or not

at all. But a trivial modification of the sequence, namely, leaving the first byte alone but

replacing each subsequent byte by the difference between it and its predecessor, transforms

25

the sequence into an extremely compressible set of 255 identical bytes, each having the value

1.

Filters are applied to bytes, not to pixels, regardless of the bit depth or color type of

the image. The filters operate on the byte sequence formed by the scanline that has been

explained before. If the image includes an alpha channel, the alpha data is filtered in the

same way as the image data.

PNG supports five types of filters, and an encoder may choose to use a different filter for

each scanline in the image:

• None: each byte is unchanged;

• Sub: each byte is replaced with the difference between it and the ”corresponding byte”

to its left.

• Up: each byte is replaced with the difference between it and the byte above it (in the

previous row, as it was before filtering).

• Average: each byte is replaced with the difference between it and the average of the

corresponding bytes to its left and above it, truncating any fractional part.

• Paeth: each byte is replaced with the difference between it and the Paeth predictor of

the corresponding bytes to its left, above it, and to its upper left.

The last method requires some explanation. Invented by Alan Paeth, the Paeth predictor

is computed by first calculating a base value, equal to the sum of the corresponding bytes

to the left and above, minus the byte to the upper left. Then, the difference between the

base value and each of the three corresponding bytes is calculated, and the byte that gave

the smallest absolute difference, that is, the one that was closest to the base value, is used as

the predictor and subtracted from the target byte to give the filtered value. In case of ties,

the corresponding byte to the left has precedence as the predicted value, followed by the one

directly above. Note that all calculations to produce the Paeth predictor are done using exact

integer arithmetic.

For all filters, the bytes ”to the left of” the first pixel in a scanline shall be treated as

being zero. For filters that refer to the prior scanline, the entire prior scanline and bytes ”to

the left of” the first pixel in the prior scanline shall be treated as being zeroes for the first

scanline of a reduced image.

Unsigned arithmetic modulo 256 is also used in all filters, so that both the inputs and

outputs fit into bytes.

26

The core of PNG’s [12] compression scheme is a descendant of the LZ77 algorithm, known

as the deflate algorithm. Deflate is comparable to LZW in both encoding and decoding speed

and generally compresses better. In simplest terms, deflate uses a sliding window of up to 32

kilobytes, with a Huffman encoder on the back end. Encoding involves finding the longest

matching string (or at least a long string) in the 32 KB window immediately prior to the

current position, storing it as a pointer (distance backward) and a length, and advancing the

current position and the window accordingly.

A marker bit in the final block identifies it as the last block, allowing the decoder to

recognize the end of the compressed datastream.

To finish the encoding process, the compressed image is divided into conveniently sized

chunks and inserted into the datastream.

2.7 Lossless Video Coding algorithms

There are a few methods proposed in the literature for lossless video coding, besides the

H.264/MPEG4-AVC already described. The most important are the FFV1, HuffYUV and

Lagarith coding methods.

2.7.1 FFV1

FFV1 [22], which stands for ”FF video codec 1”, is a lossless intra-frame video format.

The encoder and decoder are part of the free, open-source library libavcodec in the project

FFmpeg. FFV1 is included in ffdshow.

FFV1 is not strictly an intra-frame format. Despite not using inter-frame prediction, it

allows the context model to adapt over multiple frames. This can be useful for compression

due to the very large size of the context table, but can be disabled to force the encoder

to generate a strictly intra-frame bitstream. During progressive scanning of a frame, the

difference between a current pixel and its predicted value, judging by neighboring pixels, is

sent to the entropy-coding process. The predicted value will be the mean value of a, b and

a+b−c, according to the distribution shown in the Fig. 2.15. This predictor tries to estimate

the local gradient in the image.

For improved performance and simplicity, the edges of the frame are assumed to be zero,

to avoid special cases. The prediction in encoding and decoding is managed using a ring

buffer.

27

f

c b d

e a X

Figure 2.15: The causal template used in FFV1 for prediction.

The residuals are coded using either variable-length coding or arithmetic coding. Both

options use a very large context model. There are two contexts models available. One of

them uses a 3-order context model, based in the difference of a and c, c and b and b and

d. The second is a 5-order context model and, besides the other three values, also uses the

difference between f and b and between e and a.

2.7.2 HuffYUV

HuffYUV [23] is a lossless video compressor for AVI files written by Ben Rudiak-Gould.

Source code is available and mostly distributed under the GNU General Public License. Its

main goal is to temporarily store video data coming from a capture card for later editing. All

the frames are encoded by intra-frame prediction so there are no inter-frame dependencies.

HuffYUV’s algorithm is roughly the same as lossless JPEG: it predicts each sample and the

error is encoded using Huffman codes. This error is calculated by the following predictors,

the same as shown in the Fig. 2.15:

• a;

• a + b − c, also known as the gradient;

• Median(a, b, a + b − c).

The error signal in each channel is encoded with its own Huffman table. During compres-

sion, HuffYUV picks appropriate tables from its built-in collection. These tables are then

indicated in the output file and used when decompressing. There are three different Huffman

tables: YUV, RGB and RGB with decorrelation table. The channels of this last table are

actually, R-G, G, and B-G. This yields much better compression than R, G, B.

The decoding process is the opposite of this process: the error value is extracted from

the compressed Huffman stream. Then, the pixel value is reconstructed by computing the

predictor value and adding it to the error value. The reconstruction of B and R values, when

using the RGB with decorrelation, is made by just summing the value of G taken from the

same pixel.

28

2.7.3 Lagarith

Lagarith [24] is a lossless video codec which offers better compression than HuffYUV, but

worse than FFV1. However, Lagarith tends to be faster than these codecs. Lagarith is able to

operate in several color spaces - RGB24, RGB32, RGBA, YUY2, and YV12. For DVD video,

the compression is typically only 10-30% better than HuffYUV. However, for high static scenes

or highly compressible scenes, Lagarith significantly outperforms HuffYUV. Lagarith is able

to outperform HuffYUV due to the fact that it uses a much better compression method. Pixel

values are first predicted using median prediction. Then, the bitstream may be subjected to a

modified Run Length Encoding if it will result in better compression. The resulting bitstream

from that is then compressed using Arithmetic compression, allowing the compressed size be

very close to the entropy of the data. Additionally, Lagarith has support for null frames; if

the previous frame is mathematically identical to the current, the current frame is discarded

and the decoder will simply use the previous frame again.

29

Chapter 3

Color Quantization

In full color images, based on the RGB image color space, pixels are represented by 24

bits, 8 for each color component. Hence, a pixel can have one of about 16 million different

colors available (224). However, sometimes this huge amount of colors can be too demanding.

Moreover, in some cases, the image does not need to be so accurate, such as in web applica-

tions. Therefore, choosing an appropriate set of colors and to map the image into these colors

might be a good option. This process of reducing the set of colors into a restrict number is

called color quantization [26]. Two examples of color quantization can be seen in Fig. 3.1.

Figure 3.1: Two examples of color indexed images. Both images are the first frame from the

video News, found at [3]. The picture on the left side is the full color image, which has been

reduced to a palette of 8 colors (in the middle) and to 256, as it can be seen on the right side

of the figure.

Usually, color quantization is made by taking the 256 most-common colors in the full

color image. For each color in the input image, the algorithm searches for the closest color in

the set of 256 colors, and displays that color instead. This algorithm transforms a full color

image into a color-indexed one. Clearly, color quantization is a lossy process. It turns out

that for most images, the details of the color quantization algorithm have more impact on

31

the final image quality than any errors introduced by compression algorithms, such as JPEG.

Making a good color quantization method is a tough task and no single algorithm is best for

all images.

There are several techniques available for reducing the number of colors in an image and,

usually, these techniques take one of two possible approaches: pre or post-clustering.

3.1 Pre-clustering algorithms

Pre-clustering schemes are widely used and the first algorithms were based on this scheme.

It simply divides the color space into a set of clusters and the centroids of these clusters define

the resulting color map. Some of the most important algorithms which use this scheme are:

popularity, median cut and octree.

3.1.1 Popularity algorithm

This algorithm [25] is implemented by first computing a color histogram of the image in

RGB color space. Then, it simply chooses the K colors with the highest frequencies from

the histogram, to yield a color palette. Its time and space complexity is high, and performs

poorly on images with a wide range of colors, which are discarded due to low frequencies.

Hence, the essential details cannot be preserved properly.

3.1.2 Median-cut algorithm

The Median-cut algorithm was originally described by P. Heckbert [27] and implementa-

tions are given by A. Kruger [28] and in the open source JFIF JPEG library. Its aim is to

have each of the K output colors representing the same number of pixels in the input image.

The starting point is the RGB cube that corresponds to the whole image, around which a

tight-fitting cube is placed. The cube is then cut at the median of the longest axis and hence

the name of the algorithm. This ensures that about the same number of colors is assigned

to each of the new cubes. The procedure is recursively applied to the two new cubes until K

cubes are generated and the centroids of the cubes become the K output colors. This algo-

rithm performs better results than the popularity algorithm and, if properly implemented, it

is also quite fast.

32

3.1.3 Octree algorithm

The algorithm proposed in [29] relies on a tree structured partitioning of the color space,

where the root of the tree represents the entire space. As its name implies, an octree is an

8-way tree, that is, each node has up to eight leaf nodes. The main idea is that, after scanning

the whole image, the color octree can have as many as the number of pixels in it. Each unique

color would be represented by a leaf node in the tree. To get the number of colors down to

K, the tree must be reduced by somehow merging colors. Colors that are very close together,

that is, leaf nodes that share a parent, will be combined into a single average color. Those

close colors will be deleted, and the new average color inserted into the tree. This will be

repeated until the tree contains K colors. This implementation is improved by the following

way: instead of building an entire octree containing all image colors, the tree can be reduced

immediately whenever the number of leaves exceeds K. Thus, there are never more than K

leaf nodes in the tree, saving considerable memory. This method has the advantage that only

up to K colors need be stored at any time, which gives good efficiency both in time and space.

However, the complicated merging operations may distort the essential details.

3.2 Post-clustering algorithms

The Post-clustering schemes consist on defining an initial selection of a palette followed

by iterative refinement of it. These schemes may be computationally intensive due to the

unlimited number of iterations. Some of the most important algorithms which use this scheme

are: K-means, local K-means and NeuQuant.

3.2.1 K-means algorithm

This algorithm [30] starts by choosing K cluster centers randomly. During the first it-

eration, all the colors of the original image are assigned to the cluster whose center is the

closest to the color and then, the cluster center will be recalculated. Following iterations will

happen until it converges to a local minimum solution, that is, until the cluster centers of the

K generated clusters do not change from one iteration to another.

The number of iterations required by the algorithm depends on the distribution of the

color points, the number of requested clusters, the size of the color space and the choice of

the initial clusters centers. Therefore, the computation of this algorithm can be very time

consuming.

33

3.2.2 Local K-means algorithm

The local K-means algorithm [30] is a technique that approximates an optimal palette

using multiple subsets of image points and it is based on a combination of the K-means

algorithm and the Kohonen self-organizing map. The aim of this method is to simultaneously

minimize both the TSE (Total Squared Error) and the standard deviation of squared error of

pixels.

Let an image I be an array of M pixels (x, y). Then, c(x,y) is the color of each image pixel

and q(c(x,y)) is the quantized pixel. The total squared error is given by

ǫq(C,I) =
1

M

∑

(x,y)∈I

‖c(x,y) − q(c(x,y))‖.

Small values of ǫq(C,I) guarantee that the quantization process accurately represents colors

of the original image. However, it can be also misleading if an image has a non-uniformly

distribution in the color space histogram. Thus, only with the total squared error function,

less frequent colors in the image will be lost.

In order to avoid losing the information of less frequent colors, local K-means also tries to

minimize the value of the standard deviation of squared error of pixels, which is given by

σ =

√∑
(x,y)∈I

(
‖c(x,y) − q(c(x,y))‖ − ǫq(C,I)

)2

M
.

Minimizing both approximation measures simultaneously, the K-means algorithm will be

able to represent the most frequent colors of the original image and, at the same time, to

preserve variations of colors in the quantized image.

However, ǫq(C,I) and σ are image dependent measures. They treat each pixel independently

and hence, spatial correlations among colors are not taken into account.

3.2.3 NeuQuant neural-net image quantization algorithm

This algorithm [30] has been developed to improve the median cut algorithm. It operates

using a self-organizing Kohonen neural network, which self-organizes through learning to

match the distribution of colors in an input image. NeuQuant algorithm offers a high-quality

colormap in which adjacent colors are similar. By adjusting a sampling factor, the network

can produce either extremely high-quality images slowly or good images within reasonable

times.

34

3.3 Inverse color-mapping algorithms

Those techniques detailed above try to find the best color table for the quantized image.

Once the color table is selected, the image must be scanned and all pixels assigned to an index

in the color table. This requires an inverse color map. Transforming the 24 bits of a RGB pixel

into an index table will require too many memory because the table will have approximately

16 million entries. Likewise, the trivial method performed by calculating the distance between

each pixel of the image and the K colors of the palette to compute the smallest is impractical

because it requires too much computation. In order to achieve an efficiently performance

with the inverse color map, several methods have been designed to optimize the search of

the closest representative. Examples of those methods are some improvements of the trivial

method, the Locally sorted search and the three- and the two-dimensional Voronoi algorithm.

3.3.1 Improvements of the trivial inverse colormap method

Improvements of the trivial inverse colormap [30] algorithm are numerous. Poskanzer

proposed improving the search by using a hash table, avoiding the search of the nearest rep-

resentative for any color already found. However, this optimization is still inefficient, specially

for images with a large number of colors, such as outdoor scenes. Another inconvenient is

that this method can not be used after a post-clustering color quantization method, because

the hash table must be recomputed after every iteration.

Another approach is to use a less expensive distance metric. Chaudhuri et al. proposed

the Lα norm as an approximation of the Euclidean distance, with the Lα norm of a color c

being defined by

‖c‖α = (1 − α) ‖c‖1 + α‖c‖∞

= (1 − α)
3∑

j=1

|cj | + α max
j∈{1,2,3}

|cj |.

According to experiments performed by Verevka [31], the L2 norm significantly speeds up

the search and the introduced misclassification do not noticeably influence the quality of the

input image.

The search cost can be further reduced using the following considerations:

• Calculation of the partial sum: the partial sum should be compared to the current

35

minimal distance before each new addition. The distance calculation finishes if the

partial sum is greater than the current minimal distance.

• Sorting on one coordinate: the palette colors are sorted using one of the coordinates.

The search starts with the palette entry whose first coordinate is the closest to the

input color and continues in the increasing first coordinate distance order. The process

finishes when the first coordinate distance between the next palette entry and the input

color is greater than the current minimal distance.

• Nearest neighbor distance (NND): the search for the nearest color should finish when the

current minimal distance is less than one half of the distance from the current palette

color to its closest palette neighbor.

Using the above considerations, the algorithm’s performance is improved, having a faster

computation.

3.3.2 The locally sorted search algorithm

The locally sorted search algorithm [30] has been developed by Heckbert [27] and it is

based on a uniform decomposition of the RGB cub into a lattice of N cubical cells, whose

optimal number is still difficult to estimate. Each cell of this lattice contains the entries of

the palette which could be the nearest representative of a color inside the cell. Each cell’s

list is defined by computing the distance r between the palette entry closest from the center

of the cell and the farthest corner of the cell. Therefore, any palette entry whose distance

to the cell greater than r is not included on the list. Given an input color c, Heckbert’s

method determines which cell contains c and traverses its associated list to determine its

closest palette entry.

This algorithm has a good performance when the palette entry is large and also when the

input image has a wide range of colors. Therefore, the preprocessing time to build the cell’s

list is worth by the savings in search time.

3.3.3 Inverse colormap operation using a three-dimensional Voronoi dia-

gram

The method described in [30, 32] computes the palette entries according to a three-

dimensional discrete Voronoi diagram. This diagram is a special kind of decomposition of

36

a metric space determined by distances to a specified discrete set of objects in the space.

Applying this diagram to an image defined by a RGB color space, a set of K colors belonging

to the colormap are defined as Voronoi sites. Each site has a Voronoi cell, consisting of all

RGB colors closer to a given palette entry than to any other. This will split an image into a

set of K cells, all pixels of one cell being closer to one palette entry than the other.

The Voronoi diagram is encoded with the help of a three-dimensional array of integers,

which represents a RGB color and contains the index of its closest representative. Hence, dur-

ing a scan of an input image’s pixel, its RGB value will be the index of the three-dimensional

array and it will be assigned to that pixel the value contained in that array index. The main

advantage of this method is that, once the three-dimensional array has been computed, the

color index in the palette is retrieved without any computation. However, this algorithm

involves the computation of all the displayable colors, which is useless if an image does not

have represented all the colors of the RGB space. Besides that, it will be required to store

2563 indexes.

3.3.4 Inverse colormap operation using a two-dimensional Voronoi diagram

This method has been proposed by Brun [33] and its main idea is to approximate the

three-dimensional image color space into one of its two-dimensional projections so as to per-

form the inverse colormap operation with a two-dimensional Voronoi diagram instead of a

three-dimensional. This method has been inspired by the fact that up to 99% of an image

information is contained in the plane defined by the first two eigenvectors of the covariance

matrix, as it was shown up by Ohta [34]. Moreover, the transformation matrix from the

original color space to the eigenvector system is orthogonal.

Given an image color set, the first two eigenvectors of the covariance matrix are com-

puted and then, an operator p is defined onto the plane Pprinc, which is defined by these

two eigenvectors. Given a three-dimensional Voronoi diagram associated with the colormap

{c1, . . . , cK}, it is then approximated by a two-dimensional diagram defined VI by the sites

{p(c1), . . . , p(cK)}.

The computation VI implies going through the input image twice: first, the three-dimensional

distances are approximated by two-dimensional ones. In the second step, each projected color

p(c) is rounded to the nearest pixel VI .

These two steps often fail to map the input colors into their closest representatives. How-

ever, the errors caused are minor since the errors often affect the indexes of adjacent Voronoi

cells. In order to correct those errors, it is evaluated, during the computation of the two-

37

dimensional Voronoi diagram VI , the associated Delaunay graph DI . These two data struc-

tures are then combined in the following manner: given an input color c the index VI [p(c)]

is read in VI and then, the set DI [VI [p(c)]] containing VI [p(c)] and the index of its adjacent

cells it is read from DI . The color c is then mapped to its closest representative among DI

[VI [p(c)]],

Q(c) = argmini∈DI [VI [p(c)]]‖ci − c‖,

where ci denotes the representative color of the palette {p(c1), . . . , p(cK)} and ‖ci−c‖ denotes

the Euclidean norm of the 3D vector ci - c.

Note that Q(c) is computed from the 3D distances. The 2D Voronoi diagram is only used

to restrict the number of distance computations.

3.4 Palette-reordering algorithms

After a limited number of K colors have been chosen to represent a true color image and all

pixels have been assigned an index according to the entry of their representative in the color

table, there is another technique which increases the compression of color indexed-images.

Palette reordering has shown to be very effective at aiming that goal. An example of palette

reordering can be seen in Fig. 3.2.

Figure 3.2: Two images of indexes of the same frame after color quantization. On the left, it

is presented the image without palette reordering and on the right, the same image after the

reordering process.

Since the mapping between index values and available colors is not unique, a proper

indexing of the color mapping can be achieved by permuting the palette color entries, under

the condition that the corresponding index image is changed accordingly. This new assignment

is based on the global characteristics or statistics of the image. There are various palette

38

reordering algorithms that have been developed. Those algorithms can be divided in two

groups: color-based and index-based methods.

3.4.1 Color-based Methods

Color-based methods rely only on the information provided by the color palette. Examples

of this type of palette reordering method are the Intensity-based method and Po’s Method.

Intensity-based method

This method [35] is the simplest among the color-based methods and one of the simplest

among all the reordering methods. Like its name denounces, this method reorders by the

pixel’s intensity, that is, its luminance. Being proposed by Zaccarin et al., it relies on the

assumption that, if a given pixel has neighbors of similar luminance, then colors with similar

luminance should have similar indexes.

For instance, if the image is based on a RGB color space, for each color, it will be calculated

its luminance, according to

Y = 0.299R + 0.587G + 0.114B,

where R,G and B denote the intensities of the red, green and blue components, respectively.

Then, all the colors in the palette will be sorted according with their luminance values. The

main advantage of this method is its fast computation, being the fastest one amongst all the

palette-reordering methods.

Po’s method

Also referred to as the “closest pairs ordering”, Po et al. [36] proposed this reordering

technique, with the aim of assigning close indexes to colors that are close in three-dimensional

(3-D) color space. This algorithm starts by assigning index zero to the closest color to the

origin of the color space and then proceeds by finding the color that is the closest to the color

corresponding to the previous index and assigns the current index to it. This algorithm is a

simple technique. However, it generally generates poor solutions [35].

39

3.4.2 Index-based Methods

Another group of palette reordering methods are based on the indexes information. Their

main idea is that colors that occur frequently close to each other should have close indexes.

Therefore, based on this principle, the assignment of the indexes is usually guided by measur-

ing the number of occurrences of a pixel that is spatially adjacent to another pixel, according

to some predefined neighborhood. Examples of this type of methods are Memon’s Method,

Zeng’s Method and Modified Zeng’s Method.

Memon’s Method

Memon et al. formulated the problem of palette reordering within the framework of linear

predictive coding [37]. In that context, the objective is to minimize the zero-order entropy

of the prediction residuals. They noticed that, for image data, the prediction residuals are

often well modeled by a Laplacian distribution and hence, minimizing the absolute sum of

the prediction residuals leads to the minimization of the zero-order entropy of those residuals.

For the case of a first-order prediction scheme, the absolute sum of the prediction residuals

reduces to

E =
M−1∑

i=0

M−1∑

j=0

N(i, j)|i − j|,

where N(i,j) denotes the number of times index i is used as the predicted value for a pixel

whose color is indexed by j, and M denotes the number of colors of the image. The problem

of finding the bijection that minimizes E can be formulated as the optimization version of

the optimal linear ordering problem, which is known to be NP-complete [37].

The so-called pairwise merge heuristic is one of the Heuristics proposed by Memon et al.

for finding a good solution to the above stated problem. The main idea is to repeatedly merge

ordered sets of colors until obtaining a single reordered set. Initially, each color is assigned

to a different set. Then, the two sets, Sa and Sb, maximizing

∑

i∈Sa

∑

j∈Sb

(
N(i, j) + N(j, i)

)
|i − j|

are merged together. This procedure should be repeated until having a single set. To alleviate

the computational burden involved in selecting the best way of merging the two sets, only a

limited number of possibilities are generally tested [37]. Amongst all the methods described

40

in this section, Memon’s time computation is the slowest one but, on the other hand, it has

the highest average compression improvement.

Zeng’s Method

Zeng [38] proposed a one-step look-ahead greedy approach, which begins by finding the

index that is most frequently located adjacent to the other different indexes and the index

most frequently found adjacent to it. This pair of indexes is the starting base for an index

list Pn that will be constructed, one index at a time, during the operation of the reindexing

algorithm. This process will be iterative and new indexes will only be attached to the left or

to the right extremity of the list. Before the first iteration, P0=(l0, l1), where l0 and l1 are the

starting base mentioned above. During the following iterations, the new unassigned index ui

to be attached will be the one which satisfies:

uL = argmaxui
· DL(ui, N), (3.1)

where

DL(ui, N) =
N∑

j=1

wj · C(ui, lj),

and

uR = argmaxui
· DR(ui, N), (3.2)

where

DR(ui, N) =
N∑

j=1

wN−j · C(ui, lj)[35].

The function C(i, j) = C(j, i) denotes the number of occurrences, measured in the initial

index image, corresponding to pixels with index i that are spatially adjacent to pixels with

index j. The wj are weights controlling the impact of the C(i, j) on DL(ui, N) and DR(ui, N),

and the sums are performed over all the N indexes already located in the next list PN =

(l1, l2, . . . , lN). The new index list will be given by (uL, l1, l2, . . . , lN) if DL(ui, N) > DR(ui, N)

or by (l1, l2, . . . , lN , uR) otherwise. Finally, the indexes in the list are relabeled, creating PN+1

= (l1, l2, . . . , lN+1) and a new iteration starts, until all indexes are attached to PN .

Then, the reindexed image is constructed by applying the mapping lj 7→ j−1 to all image

pixels, and changing the color-map accordingly.

Finally, Zeng et al. [38] suggested that a reasonable choice for the weight wj is given by

41

wj = log2

(
1 +

1

j

)
,

where j corresponds to the distance between the current left end position of the index list

and the position of index lj in the index list.

Modified Zeng’s Method

This modified version has been developed by Pinho and Neves [39], where their theoretical

analysis of Zeng’s method for the case of Laplacian distributed differences of neighboring

pixels lead to a set of parameters that differs from the one originally suggested by [38] and

explained previously. It is suggested that, under that Laplacian model, the process of building

PN+1 from PN should be conducted in two steps. First, the index u satisfying 3.1 (or 3.2) is

determined using the weights wj (or wN−j) all having the same value. Then, the correct side

in PN where the new index u should be attached is determined based on the sign of

∆ =
N∑

j=1

(N + 1 − 2j) C(u, lj).

If ∆ > 0, the left-side should be chosen, otherwise choose the right-hand side of PN .

Experiments made by Pinho and Neves shown that, usually, the Modified Zeng’s Method has

a better performance than Zeng’s Method.

3.5 Dithering

After choosing the best set of K colors and after assigning to all pixels of the image the

proper indexes of the colormap, there are still many images that look bad. They have visible

contouring in regions where the color changes slowly. However, the capability of the human

visual system to distinguish different colors declines rapidly for high spatial frequencies and,

therefore, the human visual system may produce additional perceived color by averaging colors

in the neighborhood of each pixel. Thus, this eye redundancy can be exploited to enhance a

posteriori quantization processes. It has been shown that excellent image quality with color

palettes of very small size can be achieved with this basic idea. A variety of techniques have

been proposed such as noise and ordered dithering or error diffusion techniques. However,

those techniques have a disadvantage: since they consider each color component an individual

gray scale image, color shifts and false textural contours appear on the resulting image, due

to the correlation between the color components.

42

3.5.1 Noise and Ordered Dithering

The main idea of noise dithering is very simple: it consists on the addition of a random

number to each pixel of the original image. However, this process introduces some “noisy”.

In the ordered dithering technique, it is added a pseudo-random two-dimensional periodic

dither signal to each color component of the pixel prior to finding its best match in the

colormap [41]. The main disadvantage of these algorithms is that the processed images lose

their natural aspect, because certain textures generated in the dithering process can be easily

observed.

3.5.2 Error Diffusion Technique

Error diffusion algorithms build dithering patterns dynamically, based on error dispersion.

One example of this technique is the Floyd-Steinberg Dithering algorithm, which is depicted

in Fig. 3.3.

Figure 3.3: Floyd-Steinberg Dithering algorithm applied to the frames with a set of 8 and

256 colors.

This algorithm is one of the algorithms which generates the best results despite being

computationally too slow. In fact, there are many variants of this technique as well, and the

better they get, the slower they are. This algorithm starts by calculating the error between

the original pixel and its representative in the palette, during the mapping process. This error

43

is distributed to neighboring pixels which have not been mapped yet. The Floyd-Steinberg

method gives 7/16 to the next pixel to the right, 3/16 to the previous pixel on the next

scanline, 5/16 to the adjacent pixel on the next scanline and 1/16 to the next pixel on the

next scanline. An advantage of error-diffusion techniques over ordered dithering is that it can

use an arbitrary colormap, allowing to be processed at the same time with inverse colormap

algorithms.

3.6 Color quantization in video

All of those techniques explained and detailed in the sections above are used in images.

However, those techniques can also be applied to video, although it has not been adequately

exploited yet. One part of this thesis focuses on reducing the set of colors of each video

frame, mapping them to each pixel and later reordering its palette. The way we implemented

these three steps will be better explained in the next chapter of this thesis. One of the main

problems that stood out during this process was that, between two consecutive frames, some

flickering was notorious. This is due to a different assign of colors between two pixels that had

the same original value, as shown in Fig. 3.4. Once they belong to different frames and each

frame has different color statistics, their processes of quantization and inverse colormapping

produce different results. One possible way to prevent this situation can be using an adaptive

palette throughout the frames of the video.

Figure 3.4: An example of flickering, from the frames number 90 and 91 of the video News

with a set of 256 colors. Here, it is notorious a difference of colors applied to the hosts faces

from one frame to another.

44

Chapter 4

Proposed video coding algorithm

In this thesis, we developed two video coding algorithms: one using Golomb coding and

the other based on Arithmetic coding. The bitstream generated for both encoders is basically

the same and both of them will be described below.

4.1 The single plane video bitstream

The bitstream proposed in this thesis allows the storage of two different types of video:

gray-scale and color-indexed. As depicted in Fig. 4.1, it is formed by a header, which contains

some information about the video, followed by the data of the frame and, if the video is color-

indexed, by the palette of colors.

Figure 4.1: Overview of the bitstream before being sent to the encoder.

This bitstream is sent to the encoder and then a new bitstream is obtained. This new

bitstream has also the header followed by the encoded frames. In color indexed videos, the

palette is stored after its respective frame. However, it can be encoded before being stored

45

or being sent directly to the bitstream. This is due to the fact that, after some tests that

we have made, we found out that the compression rate did not improve when encoding

the palette with the Golomb codes. However, when encoding the palette with Arithmetic

coding the compression rates have been slightly better than sending the palette directly to

the bitstream. Due to these facts, it was decided that, for the Golomb codes, the palette is

written directly to the bitstream, whereas when encoding with Arithmetic coding, it will be

encoded as well as the rest of the data, as shown in Fig. 4.2.

Figure 4.2: The bitstream after being encoded, using the Golomb codes or Arithmetic coding.

4.1.1 Header information

The header of the bitstream is composed by sixteen bytes, as depicted in the lower part of

Fig. 4.1, each one containing a value represented in the decimal format. The first eight bytes

contain the video dimensions, where the first four bytes represent the number of columns

and the second the number of rows. The next value in the header is the number of frames

that have been captured during the recording, divided by the elapsed time of the video, that

is, the number of frames per second. This value is important when displaying the video,

because without it there will not be any reference to display the image in the correct motion.

Moreover, multiplying or dividing it will produce the effect of fast or slow motion, respectively.

The last four bytes of the header indicate whether the video is color-indexed or gray scale. A

non-zero value of n indicates that the stored data belongs to a video with a reduced set of n

colors, otherwise it belongs to a video only characterized by luminance values (gray scale).

46

4.1.2 Frame structure

As the video format in this thesis is represented only by a single information plane, a

single frame structure will occupy a total of rows×columns bytes, as indicated in the header.

The image data is stored in the bitstream from left to right, top to bottom, and each byte

represents one pixel of the frame. The value of each pixel can be its luminance or an index

to its representative color in the palette, if the data represents a gray scale or a color indexed

video, respectively. However, the main goal is to reduce the size using lossless coding and,

therefore, it is expected that each pixel can be represented by less than one byte, otherwise

the compression method is not efficient.

4.1.3 Color palette

When a video is color-indexed, the palette of colors is attached to the bitstream after its

respective frame structure. This palette of n colors will have a size of 3n bytes. Each one

of these n colors are represented in a RGB format and, therefore, three bytes are needed,

one for each component (Red, Green and Blue). The palette is stored by writing the color

components together, from the first to the last color.

Not all the palettes in the video sequence contain n colors. The program used to quantize

the input image, based on the Median Cut algorithm, allows a previous definition of how

many colors the output image will have. Nevertheless, this program might not choose a n

colors palette for a given frame. That situation happens mostly in palettes with a set of 256

or more colors. In the other cases, all the palettes had the same number of colors. Using a

sub-header in all the frames, indicating how many colors the palette contains, could be an

idea. However, in videos with hundreds of frames, this approach might increase the size of

the video in hundreds of bytes, when the palette has a reduced set of colors. Furthermore, in

color-indexed videos resulting from a video with a wide set of colors, such as natural videos,

certainly the quantization process will choose the n colors defined in the initial parameters.

Hence, it was decided that all the palettes of the video should occupy the same size in the

bitstream, and the indexes which store empty colors are assigned with value 0.

It is necessary to refer that the choice of a program that reduces the set of colors based on

the Median Cut algorithm was easy, because it is one of the most simple algorithms available

and the study of the performance of Color Quantization Methods was not a goal in this thesis.

47

4.2 Overview of the proposed method

The contents of the bitstream detailed above are preceded by several processes in order

to transform the original video information into data that fits the single information plane

proposed here (see Fig. 4.3). When dealing with medical videos, the process is simple, because

the captured components contain only luminance information that is, the video is gray scale.

Figure 4.3: The procedure taken from the capture of a color image to the final step of encoding

into the proposed bitstream.

However, if the video was captured by a digital camera, the transforming process will

require more steps. A digital camera is a device that records the frames captured by a light

sensitive sensor. It is formed basically by a lens, a color sensor, software for image treatment

and hardware capable of processing and transmitting the captured images. The component in

the digital camera that is responsible for capturing colors is the color sensor (CCD). Almost

all the CCD sensors exploit the particularity of most of the colors of the visible spectrum

could be reproduced by adding distinct parts of red, green and blue light. It consists of a

square grid of capacitors, which are charged by a photosensitive element covered by a filter

that only allows one component of light (red, green and blue) to reach the sensor. The image

is formed measuring the charge of each capacitor by a control circuit.

For each pixel, the CCD does not acquire the information of the three components. In-

stead, a Bayer pattern is used, as depicted in Fig. 4.4. It is a repeating 2×2 mosaic pattern of

light filters, with green ones at opposite corners and red and blue in the other two positions.

The predominance of green takes advantage of properties of the human visual system, which

determines brightness mostly from green information and is far more sensitive to brightness

than to hue or saturation [40].

After capturing the video with a digital camera or a scanner, the video frames are repre-

sented by a RGB colorspace. The next step is to transform this RGB video into one according

with the proposed model. The remaining process is different for color-indexed and for gray

48

Figure 4.4: The Bayer pattern [42].

scale videos.

4.2.1 Adapting the data into a gray scale video

Gray scale videos do not have any color information, only luminance. It is the luminance

that generates various shades of gray. Full luminance generates white and decreasing its value

darkens the color until it reaches black. RGB is not the proper color space to handle this

case because its three components are correlated. One possible color space which separates

luminance from chrominance is YUV. Transforming a YUV video into a gray scale one is a

simple process: it is only needed to maintain the luma component, Y, and discard U and V

information. Thus, the following step is to transform the RGB video into a YUV format and

then discard the U and V components. The relation between those color spaces is given by:

Y = 0.299R + 0.587G + 0.114B (4.1)

U = −0.147R − 0.289G + 0.436B

V = 0.615R − 0.515G − 0.100B

In order to perform this transformation, it has been developed an algorithm in C code

(see Annex B.4). The video file is loaded and all the video frames are scanned, from top to

bottom, left to right. During the scan, the value of Y as a function of R, G and B components

is computed for each pixel of the frame. After writing the header with the values of the rows,

columns, frames per second and the zero value, indicating that the video is gray scale, the

luminance values are dumped to the bitstream in the same order as the pixels were scanned.

49

4.2.2 Adapting the data into a color-indexed video

This process of transformation is more complex than to produce a gray scale video. Al-

though the original video data is in the correct color space to perform the proper adaptation,

it will require a few more steps. Since the color quantization algorithms are optimized to be

applied to images, a process of splitting the video frame by frame is required. An algorithm

has been developed to split all the video frames (Annex B.5). The program used to perform

the image quantization only supports image files in a PPM format (Portable Pixmap Format)

and it is included in the Netpbm library.

Hence, the developed algorithm performs a transformation of all the video frames into

PPM image files. This is achieved by writing in all images a header containing a two-byte

file descriptor, in ASCII, that explains the type of file. The descriptor is a capital P followed

by a single digit number, which in this case, will be the number 6, indicating that it will be

used 24 bits per pixel: 8 for red, 8 for green and 8 for blue. Then, in the second line, it is

written the number of columns, rows and finally, in the third row, the highest value possible.

A cycle scanning all the video frames is performed and, during one cycle, it is open a

new file where it is written the header explained above. The name of this new file is a

concatenation between an initial parameter passed in the command line with the number of

the frame that is being processed in this cycle. The pixels of the frame are scanned, from top

to bottom, left to right, and their values of R, G and B are dumped in the PPM file in that

order.

Now that all the frames are split, the program based on the Heckbert’s “median cut”

algorithm, ppmquant, is used to perform color quantization. However, performing this process

to all the frames will take too long if it is done manually, calling the command to every single

frame. In order to solve this problem, it has been developed a shell script in which ppmquant

is called as many times as the number of frames to be processed (Annex B.16.1). This shell

script performs as follow:

1. It asks how many colors are desired to the new color set;

2. It is read that value;

3. It asks what is the name of the new quantized images;

4. It is read that name;

5. It asks what is the name of the folder to save all the new quantized images;

6. It is read the name of the folder;

7. It is created the folder with the indicated name;

8. It is made a scan of all the images to be quantized;

50

9. A cycle from the first PPM file to the last one begins, where:

9.1 For each PPM file, the quantization process is performed;

9.2 Each PPM file will be stored in the given folder and its name will be

a concatenation of the given name, the original image name and its

respective frame number in the original video.

Note that this shell script is called inside the folder where all the original frames are placed

but the shell script itself is not placed inside that folder. Otherwise, when scanning all the

images to be quantized in the folder, the file containing the shell script would be considered

another file to be quantized and it would report an error. The same happens with the folder

to save the quantized images, being created outside the folder.

After having quantized all the frames, the next step is to assemble them and re-build the

video again. Another algorithm has been developed and besides assembling all the frames

together, this algorithm also builds the color table of each frame (Annex B.6). This program

starts by opening a new file, where the bitstream will be dumped. The header of the bitstream

is written in the file with the number of rows, columns and frames per second that were

known previously, followed by the number of colors in the palette, which is given to the

algorithm by the command line as a initial parameter. A cycle begins by scanning all the

images to assemble. During a cycle, all the pixels of the frame are scanned and their three

color components are assigned to the palette if they haven’t been found on previous pixels,

occupying the first available entrance of the palette. With the palette built, another scan

pixel by pixel begins again in the PPM file. According to the value of the components of the

pixel, it is made a search in the palette to find that values. When those values are found,

the search stops and their index is assigned to the corresponding pixel in the frame structure.

The files are closed and the algorithm ends.

After all these transformations, a color-indexed video represented by the proposed bit-

stream is accomplished. However, to achieve higher compression rates, a palette reordering

can be made. We implemented a program (Annex B.7) in which the reordering algorithm is

the fastest one, even though it is not the most efficient: reordering according to luminance,

which was explained in 3.4.1. After sorting all the colors from the lowest to the highest value

of luminance, an adjustment of the indexes stored in the frame structure must be made by

scanning all the pixels of the frame to replace the old index value with the new one.

51

4.3 Encoding the bitstream

After having the video information in accordance with the proposed model, the next step

is to encode all the data in a lossless mode. For this purpose, we developed two algorithms,

using two diferent encoding methods: Golomb codes and Arithmetic coding, already detailed

in Chapter 2. Both of the algorithms have basically the same encoding structure when dealing

with the video frames. They encode the first frame in intra mode and the remaining frames

in inter mode. The block diagrams of the intra and inter modes are depicted in Figs. 4.5 and

4.6, respectively.

Figure 4.5: Block diagram of the Intra mode.

Intra mode prediction implies that the frames are encoded independently from the others.

According to Fig. 4.5, the intra prediction is first applied, where the frame is scanned from

top to bottom, left to right and the value of the pixels are subtracted by the value of the

previous one and then sent to the next step of the encoding process. The only exception is the

first pixel, which is sent with its original value to the encoder. If we are using the algorithm

which encodes with the Golomb method, the residuals can have a middle step before being

encoded: they can pass into another predictor, the MED predictor, which was previously

explained in Section 2.6.2. Encoding is the last step before sending the data to the bitstream.

52

Figure 4.6: Block diagram of the Inter mode.

The decoding process of the intra mode is made by applying the encoding process backwards,

as depicted on the left side of the figure.

In inter mode, it is necessary to have a reference frame. In this case, we decided that the

reference frame should always be the previous one. Besides this option, another one valid

would be the first frame of the video and the following ones in a range of K frames encoded

in intra mode. In this case, the reference would always be the closest frame to the one that

is being encoded in that moment.

The inter mode prediction starts by performing motion prediction, already explained in

Section 2.3. The motion vectors are used to calculate the residuals of the frame and then

sent to the encoder. As in the intra mode, these residuals can pass in the MED predictor

before being sent to the encoder, when the algorithm uses the Golomb method. The decoding

53

process uses the encoding process backwards to restore the original data.

Basically, the process of encoding the video frames follows the mechanism depicted in

Fig. 4.7.

Figure 4.7: Diagram which reflects the mechanism used by both encoding methods follow.

Despite all these similarities in the encoding process, those methods have some differences

between them. One of those differences is how they deal with the colormap when the video

is color-indexed. This and other specific particularities of each method will be detailed next.

54

4.3.1 Encoding the bitstream with the Golomb codes

Besides encoding the data with a high compression rate, it is also necessary to assure

that the decoding process will occur successfully. Therefore, it is necessary to write in the

bitstream some information about the encoding process, which will be placed after the header.

This sub-header, which is depicted in Fig. 4.8, contains the following data: the number of

bits to encode the residuals and the motion vectors, which is given by log2(m) (Section 2.1),

the size of the block, the interval to seek in the neighborhood around the block, and a flag to

indicate if the MED predictor was used.

Figure 4.8: The sub-header stored in the bitstream containing the relevant encoding

configuration values.

Moreover, before storing data from a determined frame and its respective colormap, a

16-bit marker flag is also written with the value 0xFFFF.

Once Golomb codes only process absolute values, it is necessary to distinguish whether

a value is positive or negative. Hence, before dumping the result of encoding the absolute

value, an one bit flag is sent to the bitstream: 1 if the value is negative and 0 if it is positive.

Finally, if the video is color-indexed, the palette is not encoded, being sent to the com-

pressed file without any transformation, as it was already explained in Section 4.1.

4.3.2 Encoding the bitstream with the Arithmetic coding

This algorithm can use three different finite-context model orders: 0, 1 or 2. As well as

in the algorithm with Golomb codes, it is necessary to write the size of the block and the

seeking interval, along with the order of the finite-context model, in order to guarantee that

the decoding process will occur successfully (Fig. 4.9).

Every time a new frame is sent to the encoder, all the values of the table of probabilities

is set to 1. There will be three different table of probabilities: one for the residuals of the

frame, one for the motion vectors and one for the palette.

For the residual values, this table has 511order entries if it is a gray scale video or 2n−1order

55

Figure 4.9: The sub-header stored in the bitstream containing the relevant encoding

configuration values.

if it is a color-indexed video. These values require some explanation: as the values are

predicted, they can be either negative or positive. In a gray scale video, which has values

from 0 to 255, after prediction the residuals can assume values from -255 to 255. This is

also the same idea in the color indexed videos with a palette of n colors. The indexes to the

colormap can assume values from 0 to n-1 and the residuals will be within a range of −(n−1)

to n − 1.

However, it is not possible to construct a table with statistics for negative values. So, it

is necessary to add a fixed offset to shift all the negative values. This offset will be 255 for

gray scale videos and n − 1 for color indexed videos with a set of n colors.

Motion vectors can assume a value from 0 to the range of seeking around the neighborhood

of the reference block. Once the search can be made in any direction within the seek range,

motion vectors can also be negative. Therefore, there are 2× seek range +1 possible values.

Once again, it is necessary to shift the negative values with an offset and, for the motion

vectors, this offset is the seeking range.

The palette is not predicted, it is sent directly to the encoder. Its table of probabilities

has 256order entries, which is the number of possible values that each R, G and B component

can assume. This table must be of this size because, even though the set of colors have

been reduced, those three components have unknown values and they can assume one of

256 possible values, which can originate one of 2563 possible colors. The statistics of the

three components are updated without any distinction, in the same statistics table. Each

component of the same palette is encoded one after another and then, another palette entry

can be sent to the encoder in order to repeat the process until all the palette entries have

been processed.

56

Chapter 5

Experimental Results

In this chapter, we present experimental results obtained by developed video codecs in this

thesis and with the H.264 and JPEG-2000 codecs providing a comparison among them. The

video sequences used in our experiments can be found at [3]. In Table 5.1 it is presented the

information of the videos. Those videos are in YUV format and therefore, they were adapted

whether to gray scale or to color indexed video sequences. Three frames of each video (the

first, the middle and the last one) are presented in Annex A, where from Fig. A.1 to Fig. A.7

are from Gray Scale videos, from Fig. A.8 to Fig. A.14 are from Color Indexed videos limited

to a palette of 8 colors and from Fig. A.15 to Fig. A.21 are from color indexed videos limited

to a palette of 256 colors.

Video Resolution Nr. of Frames Frequency(Hz)

Akyio QCIF (176 × 144) 300 30

Bus CIF (352 × 288) 150 30

Carphone QCIF (176 × 144) 382 30

Claire QCIF (176 × 144) 494 30

Coastguard QCIF (176 × 144) 300 30

Mobile QCIF (176 × 144) 300 30

News QCIF (176 × 144) 300 30

Table 5.1: Information of the video sequences.

57

5.1 Entropy Values

In this section, we present the entropy of the videos used in the experimental results. We

will start by the first order entropy for gray scale and videos with a set of 8 and 256 colors

and then the entropy of the residuals and the motion vectors.

5.1.1 First Order Entropy

Table 5.2 expresses the mean of the first order entropy of gray scale videos. The variation

of the first order entropy along the frames of the video is presented in Fig. 5.1.

As it can be seen, the most complex video to encode is the “Mobile”. On the other hand,

“Claire” is the less complex to encode.

Video Entropy (bits per symbol)

Akiyo 7.14

Bus 7.16

Carphone 7.19

Claire 6.28

Coastguard 7.30

Mobile 7.68

News 6.99

Table 5.2: Mean of the first order entropy of gray scale videos.

58

Figure 5.1: First order entropy of the gray scale videos along all their frames.

Table 5.3 expresses the mean of the first order entropy of videos with a set of 8 colors.

The first column reflects the entropy of the indexes assigned to each pixel and the second is

related to the entropy of the palette. The variation of the first order entropy of the indexes

along all the frames of the video is presented in Fig. 5.2.

According to the obtained results, the entropy of the indexes is very low. This is due to

the values of the indexes, which vary from 0 to 7. Regarding the colormap entropy, the values

are higher than the indexes, which indicates that the palette is more complex to encode than

the indexes.

Table 5.4 expresses the mean of the first order entropy of videos with a palette of 256

colors. The first column reflects the entropy of the indexes assigned to each pixel and the

second is related to the entropy of the palette. The first order entropy of the indexes for

each frame is depicted in the graphic presented in Fig. 5.3 for all the videos used in the

experimental results.

Analyzing these results, the entropy has reached higher values for the indexes than the ones

obtained for videos with a set of 8 colors. This result was expected, once there are 256 colors,

and the less frequent colors are also displayed, which increases the entropy value. Regarding

59

Video Entropy (bits per symbol) Palette Entropy

Akiyo 2.90 4.42

Bus 2.98 4.41

Carphone 2.98 4.50

Claire 2.85 4.39

Coastguard 2.95 4.44

Mobile 2.95 4.53

News 2.94 4.31

Table 5.3: Mean of the first order entropy of color indexed videos with a set of 8 Colors.

Figure 5.2: First order entropy of videos with a set of 8 colors along frames.

the colormap, the entropy is also high, which shows that achieving great compression results

with the palette could be difficult.

60

Video Entropy (bits per symbol) Palette Entropy

Akiyo 6.10 6.87

Bus 7.46 7.15

Carphone 7.11 7.29

Claire 6.48 6.97

Coastguard 7.50 7.33

Mobile 6.19 7.42

News 7.11 7.18

Table 5.4: Mean of the first order entropy of color indexed videos with a set of 256 colors.

Figure 5.3: First order entropy of videos with a set of 256 colors along frames.

61

5.1.2 Residuals and Motion Vectors Entropy

As explained in Section 4.3, the video information is predicted before being encoded.

Therefore, the values that are sent to the encoder are the residuals, with or without the MED

prediction step, and the motion vectors. Hence, to better analyze how much can the file size

be reduced, we calculated the entropy of those values for each video.

Table 5.5 shows those values for gray scale videos. The entropy values for the motion

vectors are lower than the residuals in all the cases. The use of the MED Predictor does not

decrease the entropy of the residuals in most of the times and, when it does, the improvement

is not too substantial.

Video R. E. R. E. MED M. V. E.
(bps) (bps) (bps)

Akiyo 1.66 1.76 0.66

Bus 4.91 4.59 3.03

Carphone 3.69 3.67 2.41

Claire 2.04 2.25 1.24

Coastguard 4.20 4.17 1.63

Mobile 5.33 5.57 0.95

News 2.4 2.45 0.88

Table 5.5: Mean of the residuals entropy of gray scale videos.

Description: R. E. : Residuals entropy; R. E. MED: Residuals entropy after using the MED

predictor; M. V. E. : Motion vectors entropy; bps: bits per symbol

It is well known that for color-indexed videos the palette reordering can also improve

the efficiency of the encoder. Therefore, we calculated the results for pre and post palette-

reordered videos.

Tables 5.6 and 5.7 show the results for videos with a colormap of 8 colors.

Here, the entropy values for the residuals are very low and, once again, MED Predictor

does not bring any improvement. Although it was expected to have some improvements in

the entropy after reordering the palette, the results in post palette-reordering videos were

even lower than the expected. Color-indexed videos with a set of 8 colors can achieve great

compression rates.

62

Video R. E. R. E. MED M. V. E.
(bps) (bps) (bps)

Akiyo 0.32 0.47 2.45

Bus 2.37 2.52 4.38

Carphone 1.08 1.35 3.47

Claire 0.79 0.87 3.49

Coastguard 1.58 1.84 3.12

Mobile 2.45 2.72 3.63

News 0.60 0.83 2.15

Table 5.6: Mean of the residuals entropy of color indexed videos with a set of 8 colors.

Description: R. E. : Residuals entropy; R. E. MED: Residuals entropy after using the MED

predictor; M. V. E. : Motion vectors entropy; bps: bits per symbol

Video R. E. R. E. MED M. V. E.
(bps) (bps) (bps)

Akiyo 0.27 0.42 2.40

Bus 1.34 1.57 3.27

Carphone 0.63 0.91 3.24

Claire 0.28 0.49 3.34

Coastguard 0.90 1.24 1.92

Mobile 1.24 1.70 1.36

News 0.49 0.63 2.09

Table 5.7: Mean of the residuals entropy of color indexed videos with a set of 8 colors after

being palette reordering.

Description: R. E. : Residuals entropy; R. E. MED: Residuals entropy after using the MED

predictor; M. V. E. : Motion vectors entropy; bps: bits per symbol

Analyzing the results for the videos with 256 colors (Tables 5.8 and 5.9), reordering the

palette reduced the entropy substantially. In these videos, using the MED predictor sometimes

decreased the entropy. However, that improvement was not significant.

63

Video R. E. R. E. MED M. V. E.
(bps) (bps) (bps)

Akiyo 4.98 4.60 3.04

Bus 7.59 8.02 4.83

Carphone 6.71 6.74 4.37

Claire 5.18 4.83 3.89

Coastguard 7.22 7.78 4.37

Mobile 6.74 6.93 4.31

News 6.08 6.10 2.99

Table 5.8: Mean of the residuals entropy of color indexed videos with 256 colors.

Description: R. E. : Residuals entropy; R. E. MED: Residuals entropy after being predicted

with MED; M. V. E. : Motion vectors entropy; bps: bits per symbol

Video R. E. R. E. MED M. V. E.
(bps) (bps) (bps)

Akiyo 3.95 3.50 2.33

Bus 5.91 5.85 3.11

Carphone 4.74 4.79 2.91

Claire 4.24 4.10 2.84

Coastguard 5.22 5.39 1.65

Mobile 5.59 5.86 1.27

News 4.38 4.32 1.54

Table 5.9: Mean of the residuals entropy of color indexed videos with a set of 256 colors after

being reordered the palette.

Description: R. E. : Residuals entropy; R. E. MED: Residuals entropy after being predicted

with MED; M. V. E. : Motion vectors entropy; bps: bits per symbol

64

5.1.3 Overall Results

Observing these results, it can be deduced that the files that are going to accomplish a

higher compression rate will be the color indexed videos with a set of 8 colors, which is due

to the indexes of the palette assume values only from 0 to 7. On the other hand, videos with

a palette of 256 colors seems to be the ones which will not achieve a big compression rate.

However, one thing is consensual: the palette, whether is 8 or 256, has a significant entropy

and it is not easy to encode it. It was due to this reason that the strategy for the algorithm

using the Golomb codes was to send straight to the bitstream the palette without encoding

it.

Most of the gray scale videos have also a great redundancy to exploit and hence, good

results can be accomplished, using a proper encoding method.

It can also be implied from these results that reordering the palette of color indexed videos

can bring an improvement in the final size of the video, specially for the 256 colors videos,

with a slight decreasing in the entropy values.

5.2 Encoding results with Golomb codes

In this section we present encoding results with the Golomb codes. The encoding process

was made according with the information obtained by the entropy values depicted from Ta-

ble 5.5 to 5.9, to decide which was the best number of bits to encode the residuals and the

motion vectors, as well as if it was better to use the MED predictor or not. The values of the

block size and the seeking range were always set as 8 × 8 and 16 × 16, respectively.

The encoding results for gray scale videos, videos with a set of 8 and 256 colors are detailed

in Tables 5.10, 5.11 and 5.12, respectively.

Looking into these results, the objective of reducing the original size of the video has

been accomplished. However, it was expected values closer to the entropy, specially for color

indexed videos with a colormap of 8 colors. These results are due to the fact that the palette

is a difficult source of data to explore some redundancy. Nevertheless, encoding the palette

would not be the solution, on the contrary, it would increase the size of the compressed file.

About videos with the palette reordered, the compression results were better, specially

for videos with 256 colors, as expected.

65

Video Original size
Compressed Size

(bits) (bits) (bpp)

Akiyo 60 825 704 25 337 104 3.33

Bus 121 651 304 75 895 760 4.99

Carphone 77 451 368 41 662 112 4.30

Claire 100 159 600 41 707 984 3.33

Coastguard 60 825 704 35 103 912 4.62

Mobile 60 825 704 44 031 952 5.79

News 60 825 704 29 145 232 3.83

Table 5.10: Encoding results with the Golomb codes for gray scale videos.

Video
Original size Compressed Size

Pre Palette Reordering Post Palette Reordering
(bits)

(bits) (bpp) (bits) (bpp)

Akiyo 60 883 304 24 097 904 3.17 24 015 512 3.16

Bus 121 680 104 52 510 112 3.45 48 448 336 3.19

Carphone 77 524 712 31 537 352 3.26 30 525 496 3.15

Claire 100 254 440 40 230 152 3.21 40 035 336 3.20

Coastguard 60 883 304 24 795 128 3.26 23 799 960 3.13

Mobile 60 883 304 26 605 928 3.50 24 135 112 3.17

News 60 883 304 24 142 512 3.18 23 885 928 3.14

Table 5.11: Encoding results with the Golomb codes for videos with a palette of 8 colors.

Video
Original size Compressed Size

Pre Palette Reordering Post Palette Reordering

(bits) (bits) (bpp) (bits) (bpp)

Akiyo 62 668 920 48 514 016 6.38 37 579 968 4.95

Bus 122 572 920 121 753 448 8.01 100 698 016 6.62

Carphone 79 798 392 72 757 744 7.52 52 732 840 5.45

Claire 103 194 744 80 988 400 6.47 64 779 648 5.17

Coastguard 62 668 920 59 957 632 7.89 45 213 312 5.99

Mobile 62 668 920 58 143 344 7.65 49 484 504 6.51

News 62 668 920 55 849 768 7.35 40 297 840 5.30

Table 5.12: Encoding results with the Golomb codes for videos with a palette of 256 colors.

66

5.3 Encoding results with Arithmetic coding

In this section we present the results obtained with our encoder based on arithmetic

coding. With this encoding method, it was used for each video three three finite-context

model orders: 0, 1 and 2. The size of the reference block was set to 8 × 8 and the size of the

seek block to 16 × 16.

The encoding results for gray scale videos, videos with a set of 8 and 256 colors are detailed

in Tables 5.13, 5.14 and 5.15, respectively.

Video
Original size

Order
Compressed Size

(bits) (bits) (bpp)

0 13 940 968 1.83

Akiyo 60 825 704 1 23 874 592 3.14

2 31 865 576 4.19

0 76 759 144 5.05

Bus 121 651 304 1 143 250 448 9.42

2 191 516 560 12.59

0 37 724 384 3.90

Carphone 77 451 368 1 68 160 688 7.04

2 91 521 072 9.45

0 27 895 128 2.23

Claire 100 159 600 1 50 125 392 4.01

2 69 820 792 5.58

0 33 367 136 4.39

Coastguard 60 825 704 1 60 794 024 7.99

2 81 191 872 10.68

0 41 735 720 5.49

Mobile 60 825 704 1 75 709 712 9.96

2 93 001 544 12.23

0 19 523 504 2.57

News 60 825 704 1 33 353 872 4.39

2 43 768 944 5.76

Table 5.13: Encoding results for gray scale videos.

67

Video Original size Order
Compressed Size

Pre Palette Reord. Post Palette Reord.

(bits) (bits) (bpp) (bits) (bpp)

0 3 134 000 0.41 2 768 488 0.36

Akiyo 60 883 304 1 5 604 176 0.74 5 017 832 0.66

2 7 822 584 1.03 7 046 544 0.93

0 38 143 624 2.51 22 112 232 1.45

Bus 121 680 104 1 72 115 096 4.74 42 214 960 2.78

2 103 721 296 6.82 61 182 224 4.02

0 11 664 904 1.20 7 230 160 0.75

Carphone 77 524 712 1 20 672 600 2.14 13 423 592 1.39

2 28 743 896 2.97 19 144 424 1.98

0 11 519 056 0.92 5 022 504 0.40

Claire 100 254 440 1 18 310 160 1.46 9 149 480 0.73

2 24 135 512 1.93 12 702 552 1.01

0 12 861 848 1.69 7 459 464 0.98

Coastguard 60 883 304 1 23 216 072 3.05 13 974 040 1.84

2 32 856 064 4.32 20 240 280 2.66

0 19 567 888 2.57 9 886 208 1.30

Mobile 60 883 304 1 36 007 768 4.74 19 089 192 2.51

2 50 798 776 6.68 27 904 784 3.67

0 5 198 400 0.68 4 362 240 0.57

News 60 883 304 1 9 484 264 1.25 8 026 024 1.06

2 13 350 224 1.76 11 418 592 1.50

Table 5.14: Encoding results for videos with a set of 8 colors.

68

Video Original size Order
Compressed Size

Pre Palette Reord. Post Palette Reord.

(bits) (bits) (bpp) (bits) (bpp)

0 41 222 304 5.42 33 311 944 4.38

Akiyo 62 668 920 1 66 751 928 8.78 55 699 632 7.33

2 80 727 064 10.62 72 670 752 9.56

0 118 946 072 7.82 92 761 672 6.10

Bus 122 572 920 1 212 521 408 13.98 171 977 344 11.31

2 233 511 872 15.36 21 6993 632 14.27

0 69 553 120 7.18 50 335 864 5.20

Carphone 79 798 392 1 112 155 184 11.59 88 506 992 9.14

2 125 048 152 12.92 113 532 040 11.73

0 70 731 664 5.65 58 730 680 4.69

Claire 103 194 744 1 117 344 248 9.37 101 877 008 8.13

2 142 065 632 11.35 131 610 080 10.51

0 58 462 184 7.69 42 793 488 5.63

Coastguard 62 668 920 1 97 313 352 12.80 76 191 272 10.02

2 104 334 824 13.72 95 565 360 12.57

0 54 847 296 7.21 45 547 208 5.99

Mobile 62 668 920 1 87 755 208 11.54 76 616 352 10.08

2 96 754 672 12.73 90 691 120 11.93

0 49 420 168 6.50 36 430 904 4.79

News 62 668 920 1 79 028 560 10.39 62 793 200 8.26

2 90 899 784 11.96 80 914 032 10.64

Table 5.15: Encoding results for videos with a set of 256 colors.

69

Analyzing the results, we can see that using a order-1 or 2 finite-context model does not

bring any improvement to the compression rate. Moreover, in some cases, the compressed

files are bigger than the original one, like with the “Bus” or the “Mobile” video for gray scale

format and for videos with a palette of 256 colors. With videos with a set of 8 colors, it

did not happen, once the entropy values were low. However, the increase tendency of the

compression rate with the increasing of the order did happen anyway.

This developed algorithm is extremely efficient for color indexed videos with a set of 8

colors and, for gray scale and videos with 256 colors, it is also efficient when the entropy of

the data is low.

5.4 Encoding results with JPEG-2000 standard

In this section we present the results of the encoding process when it was applied the

JPEG 2000 codec. It was used an open source program provided by the Jasper project [43],

which offers a software based on Part 1 of the standard. The used version was the 1.900.1.

As it was detailed on Section 2.6.3, this codec is applied only to images. So, in order

to perform an encoding process to all the videos, it was necessary to split all the frames.

For color indexed videos, the frames used were the ones produced after being applied the

ppmquant command to quantize them, which was one of the middle steps to transform a

color video into a color indexed one, as it was described in Section 4.2.2. In the case of gray

scale videos, the same program developed to split all the frames (B.5) of color videos had

an option, which allows to split gray scale videos. These split frames were transformed into

PGM files.

After having all the frames split and converted into images, compressing all the frames is

the next step. Another shell script (Annex B.16.2) was developed to compress all the frames

of the same video in just one command call, once if it was done manually, it would take too

much time. The compression results are the sum of all frames of the video, and they are

presented in Table 5.16, 5.17 and 5.18, for gray scale, color indexed with a set of 8 and 256

colors, respectively.

70

Video
Original size Compressed Size

(bits) (bits) (bpp)

Akiyo 60 825 704 27 188 040 3.58

Bus 121 651 304 74 426 520 4.89

Carphone 77 451 368 40 444 600 4.18

Claire 100 159 600 35 689 504 2.85

Coastguard 60 825 704 39 158 384 5.15

Mobile 60 825 704 48 565 224 6.38

News 60 825 704 32 460 048 4.27

Table 5.16: Encoding results for gray scale videos.

The results obtained for gray scale videos are good, being quite similar to the ones achieved

with the two proposed encoding algorithms. However, they were always higher on almost

cases, except in the results of the “Bus” video.

Video
Original size Compressed Size

(bits) (bits) (bpp)

Akiyo 182 611 104 59 078 632 7.77

Bus 365 004 368 158 472 456 10.42

Carphone 232 563 472 93 306 552 9.64

Claire 300 701 584 65 101 872 5.20

Coastguard 182 611 104 76 800 144 10.10

Mobile 182 676 640 133 951 880 17.62

News 182 611 104 72 267 472 9.50

Table 5.17: Encoding results for videos with a set of 8 colors.

The results shown in Table 5.17 are good, taking into account that the files sent to encode

were composed by 24 bits per pixel. All the compression rates were good, the only exception

was with the Mobile video, which had a bad performance.

71

Video
Original size Compressed Size

(bits) (bits) (bpp)

Akiyo 182 611 104 76 795 048 10.10

Bus 365 004 368 173 123 592 11.38

Carphone 232 563 472 108 287 688 11.19

Claire 300 701 584 110 309 344 8.81

Coastguard 182 611 104 85 505 008 11.25

Mobile 182 676 640 140 536 992 18.48

News 182 611 104 88 345 768 11.62

Table 5.18: Encoding results for videos with a set of 256 colors.

The results shown in Table 5.18 indicates that this standard has a reasonable performance.

However, these results are higher than the ones obtained with the two proposed algorithms

in this thesis, which attains the objective of this work.

5.5 Encoding results with H.264/AVC standard

The results of the encoding process with the H.264/AVC standard in a lossless mode

are depicted in this section. The software used in this thesis to encode with this standard

was provided by JVT [44]. We used the version 14.2. Once this standard is not capable of

receiving a single information plane, as proposed during this thesis, all the gray scale videos

files have been converted to the YUV color-space and for the RGB color-space, when the

videos have a reduced set of colors.

If the encoding process is focused on gray scale videos, the input file that is sent to the

encoder is the original YUV file found at [3]. This standard has an option that, when enabled,

will send to the encoder all the chrominance information set to zero.

When dealing with files with a reduced set of colors, a program has been developed

(Annex B.8) to receive all the frames that have been quantized with the ppmquant command

and, instead of building a palette and assigning an index to each pixel, it will assemble all

the frames altogether in order to construct a RGB file which can be accepted as a input file

for the H.264 standard to encode it.

The following tables show the obtained results. In Table 5.19 it is presented the encoding

results of the gray scale videos and in Table 5.20 and 5.20 are depicted the results when

encoding videos with a reduced set of 8 and 256 colors, respectively.

72

Video
Original size Compressed Size

(bits) (bits) (bpp)

Akiyo 182 476 800 6 813 904 0.90

Bus 364 953 600 61 248 768 4.03

Carphone 232 353 792 29 581 376 3.06

Claire 300 478 464 20 744 264 1.66

Coastguard 182 476 800 27 102 824 3.56

Mobile 182 476 800 29 349 104 3.86

News 182 476 800 11 332 304 1.49

Table 5.19: Encoding results for gray scale videos.

Analyzing Table 5.19, the results are very satisfactory. Taking into account that each

pixel of the original video has a 24 bit per pixel representation, and after encoding, having

been obtained such high compression rate, this standard shows that performs very well with

these kind of videos.

Video
Original size Compressed Size

(bits) (bits) (bpp)

Akiyo 182 476 800 12 875 640 1.69

Bus 364 953 600 203 383 456 13.38

Carphone 232 353 792 63 500 720 6.56

Claire 300 478 464 26 565 424 2.12

Coastguard 182 476 800 74 190 736 9.76

Mobile 182 476 800 104 582 840 13.76

News 182 476 800 23 071 400 3.03

Table 5.20: Encoding results for videos with a set of 8 colors.

Looking into the results shown in Table 5.20, it is notorious that H.264/AVC has also a

good performance with this kind of videos. However, when dealing with videos which have

higher entropy values, the compression rates are not as good as when dealing with the same

videos but in a gray scale format.

The results in Table 5.21 show that the performance for videos with high entropy values

is a little poor, specially when looking to the result of the “Mobile” video. Videos with low

entropy values are within the range of the results obtained with the proposed algorithms in

this thesis, but a somewhat higher.

73

Video
Original size Compressed Size

(bits) (bits) (bpp)

Akiyo 182 476 800 51 466 568 6.77

Bus 364 953 600 206 602 416 13.59

Carphone 232 353 792 103 294 144 10.67

Claire 300 478 464 85 475 056 6.82

Coastguard 182 476 800 94 496 792 12.43

Mobile 182 476 800 144 359 640 18.99

News 182 476 800 62 930 240 8.27

Table 5.21: Encoding results for videos with a set of 256 colors.

5.6 Comparing the results

In this section we discuss the results obtained by the two proposed methods based on

a hybrid model, one with the Golomb codes and the other with arithmetic coding, and the

standard used for images (JPEG2000), and by the one used for videos (H.264/AVC).

Starting by comparing the two proposed models in this thesis, the performance of the

method based on arithmetic coding was always better, except for the “Bus” video in gray

scale format. This better performance was even more notorious for videos with a reduced set

of 8 colors, where arithmetic coding has shown to be, by far, the best choice to encode these

type of videos.

Comparing the results of the two proposed encoders with the JPEG-2000 standard, the

proposed methods were better in almost all videos. Exceptions happened when encoding

gray scale videos, where JPEG-2000 had a better performance than the hybrid model with

the Golomb codes with “Bus”, “Carphone” and “Claire” videos. JPEG-2000 was only better

than the arithmetic coding when encoding the “Bus” video, also in a gray scale format.

The results of the H.264/AVC standard for gray scale videos were outstanding. Its great

performance was even better than the ones achieved by the arithmetic coding. These results

indicate that the proposed encoders have to be improved, in order to be better efficient to

use a single information plane to represent gray scale videos than YUV. For color-indexed

videos, the results were better when encoding with the arithmetic coding, which demonstrate

that representing videos with a small set of colors having an indexed palette with those colors

might be a valid option, as it brings better compression rates.

74

Chapter 6

Conclusions and future work

An approach to represent videos with a single information plane have been studied in

this thesis, as well as two proposed encoding algorithms. Analyzing and comparing these two

developed algorithms, the one that has shown to be most effective, whether for gray scale or

color-indexed videos, has been arithmetic coding. Even though the hybrid model using the

Golomb codes has shown a good performance, the option of using the MED predictor rarely

brought improvements to the algorithm. As future work, another predictor can be developed

in order to see if can be more efficient than the MED predictor.

As mentioned above, arithmetic coding was the best of the two developed encoding meth-

ods. However, the results when using a 1 or 2-order finite context model were below average

and, in some cases, the size of the compressed file was higher than the original one. Further-

more, its high performance has happened when using a 0-order finite context model. This

issue should also be referred in a future work.

Comparing those results with the ones obtained when using well known standards, such

as JPEG-2000 and H.264/AVC, the results were better in most of the cases. It has been

notorious that, for gray scale files, JPEG-2000 sometimes was better and, by far, H.264/AVC

has demonstrated that it has a good performance when encoding gray scale videos in a lossless

mode.

Therefore, the proposed model of characterizing video information with a single informa-

tion plane is very effective for videos with a reduced set of colors, specially when they are

used a small number of colors, such as 8 colors. Hence, this approach can be applied for

web applications when the quality of the videos does not need to be that demanding. On

the other hand, representing gray scale videos with this model has not shown to be the best

choice, once H.264/AVC still has a better performance. As future work, in order to use this

75

model for medical information, such as CT Scans or sonography, another approaches for the

encoding algorithms can be studied, and maybe, trying to adapt the H.264/AVC standard

to receive videos with a single information plane, which could improve even more the results

obtained.

76

Appendix A

Video test sets

This Appendix provides three frames of the videos used to evaluate the performance of

the video codecs presented in this thesis, namely the first, the middle and the last frames.

Figure A.1: Frames of the video Akiyo

77

Figure A.2: Frames of the video Bus

Figure A.3: Frames of the video Carphone

Figure A.4: Frames of the video Claire

78

Figure A.5: Frames of the video Coastguard

Figure A.6: Frames of the video Mobile

Figure A.7: Frames of the video News

79

Figure A.8: Frames of the video Akiyo with a set of 8 colors.

Figure A.9: Frames of the video Bus with a set of 8 colors.

Figure A.10: Frames of the video Carphone with a set of 8 colors.

80

Figure A.11: Frames of the video Claire with a set of 8 colors.

Figure A.12: Frames of the video Coastguard with a set of 8 colors.

Figure A.13: Frames of the video Mobile with a set of 8 colors.

81

Figure A.14: Frames of the video News with a set of 8 colors.

Figure A.15: Frames of the video Akiyo with a set of 256 colors.

82

Figure A.16: Frames of the video Bus with a set of 256 colors.

Figure A.17: Frames of the video Carphone with a set of 256 colors.

Figure A.18: Frames of the video Claire with a set of 256 colors.

83

Figure A.19: Frames of the video Coastguard with a set of 256 colors.

Figure A.20: Frames of the video Mobile with a set of 256 colors.

Figure A.21: Frames of the video News with a set of 256 colors.

84

Appendix B

Video Tools

B.1 Data Structure

The data structures used in this thesis are the following ones:

• OnePlanFrame (this structure represents the video information characterized by the one

plane proposed model);

• RGBFrame (this is a structure that represents the video information in a RGB mode.

Used specially in some algorithms to adpat that information into One Plane Information

videos);

• Yuv420Frame (this is a structure that represents the video information in a YUV 4:2:0

mode. Used specially in some algorithms to adpat that information into One Plane

Information videos);

• Yuv444Frame (this is a structure that represents the video information in a YUV 4:4:4

mode. Used specially in some algorithms to adpat that information into One Plane

Information videos);

B.2 File List

Here is a list of all the documented files which provide the basic functions used in the

developed programs in this thesis:

• conversions.c (This module handles the basic operation of video sequences);

85

• conversions.h (This is the header file for the basic conversions of video sequences and

another helpful functions);

• rgb.c (This module handles the basic operations on RGB video sequences);

• rgb.h (This is header file for the basic operations on RGB video sequences);

• yuv420.c (This module handles the basic operations on YUV 4:2:0 video sequences);

• yuv420.h (This is header file for the basic operations on YUV 4:2:0 video sequences);

• yuv444.c (This module handles the basic operations on YUV 4:4:4 video sequences);

• yuv444.h (This is header file for the basic operations on YUV 4:4:4 video sequences);

• one plan.c (This module handles the basic operations on One Information Plane video

sequences);

• one plan.h (This is header file for the basic operations on One Information Plane video

sequences);

• golomb.c (This module handles the basic operations to encode with the Golomb method);

• golomb.h (This is header file for the basic operations to encode with the Golomb

method);

• arith aux.c (This module handles the basic operations to encode with the Arithmetic

coding);

• arith aux.h (This is header file for the basic operations to encode with the Arithmetic

coding);

• arithmetic.c (This module handles the basic operations to create the table of probabil-

ities and select the index according with finite-context model);

• arithmetic.h (This is header file for the basic operations to create the table of probabil-

ities and select the index according with finite-context model);

• block.c (This module handles the basic operations of the motion prediction);

• block.h (This is header file for the basic operations of the motion prediction);

• bits.c (This module handles the basic operations of the Golomb codes bitstream read/write

);

86

• bits.h (This is header file for the basic operations of the Golomb codes bitstream

read/write);

• bitio.c (This module handles the basic operations of the Arithmetic coding bitstream

read/write);

• bitio.h (This is header file for the basic operations of the Arithmetic coding bitstream

read/write);

All the developed programs used in thesis are described below:

• VideoCompare.c (This application compares two One Information Plane video sequences

and prints the PSNR and RMSE resulting of the comparison process);

• YuvConv.c (This application converts YUV or RGB video sequences into One Informa-

tion Plane videos in gray scale format);

• YuvSplitFrames.c (This application splits all the video sequences (in RGB, YUV 4:2:0,

YUV 4:4:4 and One Information Plane) and transform them into PPM or PGM files, if

the video is gray scale);

• YuvJoinFrames.c (This application assembles all the PPM files after having been quan-

tized into an One Information Plane video file with a set of n colors);

• PaletteReordering.c (This program applies palette reordering to color indexed videos

according to the Luminance);

• YuvJoinFramesRGB.c (This application assembles all the PPM files after having been

quantized into a RGB video file with a set of n colors);

• ShowOneInfPlan.c (This program plays One Information Plane video sequences (using

SDL));

• EntropyCalculator.c (This application calculates the entropy values for the residuals,

the motion vectors and the colormap);

• Entropy1Calculator.c (This application calculates the first order entropy of a video

sequence);

• BlockEnc.c (This program applies the Golomb codes into a video sequence and send

the encoded values into a bitstream);

87

• BlockDec.c(This program receives the encoded bitstream and performs the decoding

algorithm according with the Golomb method);

• BlockEncArith.c (This program applies the Arithmetic coding into a video sequence

and send the encoded values into a bitstream);

• BlockDecArith.c(This program receives the encoded bitstream and performs the de-

coding algorithm according with the Arithmetic coding);

B.3 VideoCompare.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "rgb.h"

#include "conversions.h"

Author: Arturo Rodrigues

Version: 1.2

Date: Creation: 27/01/2009

Last Modification: 27/02/2009

B.3.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./VideoCompare [OPTIONS] FileName1 FileName2

OPTIONS:

88

[-fh (If video contains file header)]

[-h (Videos Height)]

[-SIF] [-CIF] [-QCIF]

Base video sizes

[-gray]

[-index]

[-rgb]

NOTES:

∗ FileName1 in Gray Scale or Color Indexed Format

∗ FileName2 in RGB, YUV444, Gray Scale or Color Indexed Format

∗ QCIF (177x144)

∗ CIF (352x288)

∗ SIF (NTSC) (177x144)

B.4 YuvConv.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "yuv420.h"

#include "yuv444.h"

#include "one plan.h"

#include "conversions.h"

Enumerations

typedef enum {

YUV420 ONEPLAN,

YUV444 ONEPLAN,

EMPTY

89

} T CONV;

Author: Arturo Rodrigues

Version: 1.2

Date: Creation: 27/01/2009

Last Modification: 27/02/2009

B.4.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./YuvConv [OPTIONS] FileName1 FileName2

OPTIONS:

[-SIF] [-CIF] [-QCIF]

∗ Base video sizes

[-fh (If the YUV file has header with w and h)]

[-420 (YUV420 format to Gray Scale)]

[-444 (YUV444 format to Gray Scale)]

NOTES:

∗ FileName1 YUV format

∗ FileName2 the new file in Gray Scale

∗ QCIF (177x144)

∗ CIF (352x288)

∗ SIF (NTSC) (177x144)

B.5 YuvSplitFrames.c File Reference

#include <stdio.h>

90

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "yuv420.h"

#include "yuv444.h"

#include "rgb.h"

#include "conversions.h"

Author: Arturo Rodrigues

Version: 1.2

Date: Creation: 09/03/2009

Last Modification: 17/03/2009

B.5.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./YuvSplitFrames [OPTIONS] FileName1 FileName2

OPTIONS:

[-SIF] [-CIF] [-QCIF]

∗ Base video sizes

[-fh (If the YUV file has header with w and h)]

[-420 (Video format)]

[-444 (Video format)]

[-rgb (Video format)]

NOTES:

91

∗ FileName1 RGB or YUV format

∗ FileName2 is the picture in PPM format

∗ QCIF (177x144)

∗ CIF (352x288)

∗ SIF (NTSC) (177x144)

B.6 YuvJoinFrames.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "rgb.h"

#include "conversions.h"

Author: Arturo Rodrigues

Version: 1.1

Date: Creation: 12/03/2009

Last Modification: 17/03/2009

B.6.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./YuvJoinFrames [OPTIONS] FileName1 FileName2

OPTIONS:

[-fn (Number of frames to join)]

92

[-nr (number of colors of the PPM)]

NOTES:

∗ FileName1 in PPM format

∗ FileName2 is the name of the video

B.7 PaletteReordering.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "one plan.h"

Author: Arturo Rodrigues

Version: 1.0

Date: Creation: 19/04/2009

Last Modification: 19/04/2009

B.7.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./PaletteReordering FileName1 Filename2

NOTES:

∗ FileName1 and FileName2 are One Information Plane videos

B.8 YuvJoinFramesRGB.c File Reference

#include <stdio.h>

93

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "rgb.h"

#include "conversions.h"

Author: Arturo Rodrigues

Version: 1.0

Date: Creation: 14/09/2009

Last Modification: 14/09/2009

B.8.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./YuvJoinFramesRGB [OPTIONS] FileName1 FileName2

OPTIONS:

[-fn (Number of frames to join)]

NOTES:

∗ FileName1 in PPM format

∗ FileName2 is the name of the output RGB file

B.9 ShowOneInfPlan.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <SDL.h>

94

#include "one plan.h"

#include "conversions.h"

Author: Arturo Rodrigues

Version: 1.1

Date: Creation: 12/02/2009

Last Modification: 27/02/2009

B.9.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./ShowOneInfPlan [OPTIONS] FileName

OPTIONS:

[-SIF] [-CIF] [-QCIF]

∗ Base video sizes

[-fh (If the file has header with w and h)]

[-nr (The number of colors of the video)]

[-wait (stop after first frame)]

[-2 (display in double size)]

[-v (verbose)]

NOTES:

∗ FileName is the One Information Plane video

∗ QCIF (177x144)

∗ CIF (352x288)

∗ SIF (NTSC) (177x144)

95

B.10 EntropyCalculator.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "conversions.h"

#include "golomb.h"

Author: Arturo Rodrigues

Version: 1.0

Date: Creation: 27/07/2009

Last Modification: 27/07/2009

B.10.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./EntropyCalculator [OPTIONS] FileName1 FileName2

OPTIONS:

[-SIF] [-CIF] [-QCIF]

∗ Base video sizes

[-fh (If video contains file header)]

[-clr If video is color indexed(def. 0)]

[-bs blockSize(def. 8 × 8)]

[-seek seekSize(def. 16 × 16)]

NOTES:

96

∗ FileName1 in One Plane format

∗ FileName2 the file with Entropy Data

∗ QCIF (177x144)

∗ CIF (352x288)

∗ SIF (NTSC) (177x144)

B.11 Entropy1Calculator.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "conversions.h"

#include "golomb.h"

Author: Arturo Rodrigues

Version: 1.1

Date: Creation: 12/06/2009

Last Modification: 27/07/2009

B.11.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./Entropy1Calculator [OPTIONS] FileName1 FileName2

OPTIONS:

[-SIF] [-CIF] [-QCIF]

97

∗ Base video sizes

[-fh (If video contains file header)]

[-clr If video is color indexed(def. 0)]

NOTES:

∗ FileName1 in One Plane format

∗ FileName2 the file with Entropy Data

∗ QCIF (177x144)

∗ CIF (352x288)

∗ SIF (NTSC) (177x144)

B.12 BlockEnc.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "bits.h"

#include "golomb.h"

#include "block.h"

#define START OF FRAME 0xffff

Author: Arturo Rodrigues

Version: 1.1

Date: Creation: 12/03/2009

Last Modification: 27/03/2009

98

B.12.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./BlockEnc [OPTIONS] FileName1 FileName2

OPTIONS:

[-b nBits (def.4)]

[-vector nBitsVector(def. 1)]

[-bs blockSize(def. 8 × 8)]

[-seek seekSize(def. 16 × 16)]

[-med (enables MED predictor)]

NOTES:

∗ FileName1 the One Information Plane video

∗ FileName2 the encoded file

B.13 BlockDec.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "bits.h"

#include "golomb.h"

#include "block.h"

#define START OF FRAME 0xffff

Author: Arturo Rodrigues

Version: 1.1

99

Date: Creation: 12/03/2009

Last Modification: 27/03/2009

B.13.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./BlockDec FileName1 FileName2

NOTES:

∗ FileName1 the encoded file

∗ FileName2 the decoded One Information Plane video

B.14 BlockEncArith.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "arith.h"

#include "arith aux.h"

#include "arithmetic.h"

#include "bitio.h"

#include "block.h"

Author: Arturo Rodrigues

Version: 1.4

Date: Creation: 12/04/2009

100

Last Modification: 02/08/2009

B.14.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./BlockEncArith [OPTIONS] FileName1 FileName2

OPTIONS:

[-o (Finite Context Model order)]

[-bs blockSize(def. 8 × 8)]

[-seek seekSize(def. 16 × 16)]

NOTES:

∗ FileName1 the One Information Plane video

∗ FileName2 the encoded file

B.15 BlockDecArith.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "one plan.h"

#include "arith.h"

#include "arith aux.h"

#include "arithmetic.h"

#include "bitio.h"

#include "block.h"

Author: Arturo Rodrigues

101

Version: 1.3

Date: Creation: 12/04/2009

Last Modification: 02/08/2009

B.15.1 Function Documentation

int main (int argc, char ∗ argv[])

Main function

Usage:

./BlockDecArith FileName1 FileName2

NOTES:

∗ FileName1 the encoded file

∗ FileName2 the One Information Plane decoded video

B.16 Developed shell scripts

We developed two shell scripts during this thesis: one to call the ppmquant command as

many times as the number of frames of the video to quantize and other with the same idea

but using the command to encode the images with the JPEG-2000 standard. Their code is

depicted on the following subsections.

B.16.1 Ppmquant shell script

#!/bin/bash

echo ‘‘How many colors to the palette?’’

read valor

echo ‘‘What is the name of the output file?’’

read name

echo ‘‘What is the name of the folder?’’

read folder

102

mkdir ../$folder

ls

for i in ∗

do

ppmquant $valor $i > ../$folder/$name$i

done

B.16.2 Jasper shell script

#!/bin/bash

echo ‘‘What is the name for the output folder?’’

read folder2

echo ‘‘What is the name of the output file?’’

read name

x = 0

mkdir ../$folder2

ls

for i in ∗

do

x = $((x+1))

jasper −f $i −F ../$folder2/$name$x.jp2 −T jp2

done

103

Bibliography

[1] http://www.institutoforlanini.com.br/teste/images/ecografia.jpg

[2] http://commons.wikimedia.org/wiki/File:Head CT scan.jpg

[3] http://trace.eas.asu.edu/yuv/index.html

[4] A. J. Pinho. Codificação de Áudio e Vı́deo. http://www.ieeta.pt/˜ ap/cav .

[5] E. Bodden, M. Clasen and J. Kneis. Arithmetic Coding revealed - A guided tour from

theory to praxis. Technical report, School of Computer Science, Sable Research Group,

May 25,2007. McGill University.

[6] MPEG.ORG - MPEG Home http://www.mpeg.org .

[7] History of MPEG http://www2.sims.berkeley.edu/courses/is224/s99/GroupG/report1.html

[8] R. Koenen. Overview of the MPEG-4 Standard.

http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm .

[9] D. Marpe and T. Wiegand. G. J. Sullivan. The H.264/MPEG4 Advanced Video

Coding Standard and its Applications. Standards Report, Heinrich Hertz Institute

(HHI),Microsoft Corporation,August 2006.

[10] L. Matos. Estudo e aplicações da norma de codificação de v́ıdeo H.264/AVC. Master’s

thesis, Universidade de Aveiro, 2009.

[11] I. E. G. Richardson. H.264 and MPEG-4 Video Compression. Wiley, 1st Edition, 2003.

[12] A. J. R. Neves. Lossless compression of images with specific characteristics. PhD thesis,

Universidade de Aveiro, 2007.

[13] JPEG Committee home page. JPEG, 2004. http://www.jpeg.org/index.html.

[14] M. J. Weinberger, G. Seroussi and G. Sapiro. LOCO-I: A low complexity, context-based,

lossless image compression algorithm. In Proc. of the Data Compression Conf., DCC-96,

pages 140-149, Snowbird, Utah, March 1996.

104

[15] ISO/IEC. Information technology - Lossless and near-lossless compression of continuous

tone still images. ISO/IEC 14495-1 and ITU Recommendation T.87, 1999.

[16] M. J. Weinberger, G. Seroussi and G. Sapiro. The LOCO-I lossless image compres-

sion algorithm: principles and standardization into JPEG-LS. IEEE Trans. on Image

Processing, 9(8):1309-1324, August 2000.

[17] ISO/IEC. Information technology - JPEG 2000 image coding system. ISO/IEC Inter-

national Standard 15444-1, ITU-T Recommendation T.800, 2000.

[18] ISO/IEC. JBIG2 bi-level image compression standard. International Standard ISO/IEC,

14492 and ITU-T Recommendation T.88, 2000.

[19] Portable Network Graphics (PNG) Specification (Second Edition). Information tech-

nology, Computer graphics and image processing - Portable Network Graphics (PNG):

Functional specification. ISO/IEC 15948:2003 (E), November 2003.

[20] A. C. Bovik Handbook of Image & Video Processing. Second Edition.

[21] I. Richardson H.264 and MPEG-4 video compression - Video Coding for Next-generation

Multimedia.

[22] FFV1, Wikipedia Article. http://en.wikipedia.org/wiki/ffv1.

[23] R. Togni Description of the HuffYUV (HFYU) Codec. http://multimedia.cx/huffyuv.txt

[24] Lagarith home page. http://lags.leetcode.net/codec.html

[25] D. Clark. The popularity algorithm Dr. Dobb’s Journal, pp. 121-128, July 1995.

[26] S. Segenchuk. An Overview of Color Quantization Techniques.

http://web.cs.wpi.edu/ matt/courses/cs563/talks/color quant/CQindex.html .

[27] P. Heckbert. Color image quantization for frame buffer display. Computer Graphics Lab.

New York Institute of Technology.

[28] A. Kruger. Median-Cut Color Quantization: Fitting true-color images onto VGA dis-

plays. Dr. Dobb’s Journal, September 1994.

[29] D. Clark. Color Quantization using Octrees: Mapping 24-bit images to 8-bit palettes.

Dr. Dobb’s Journal, January 1st, 1996.

[30] G. Sharma. Digital Color Imaging Handbook. CRC Press.

105

[31] O. Verevka, J. W. Buchanan. Local K-means Algorithm for Colour Image Quantization.

Department of Computing Science, University of Alberta.

[32] S. W. Thomas. Efficient Inverse Color Map Computation. Graphic Gems II, pp. 116-125.

Cambridge, Academic Press Professional (1991).

[33] L. Brun C. Secroun. A fast algorithm for inverse color map computation.

[34] Y. L. Ohta, T. Kanade and T. Sakai. Color information for region segmentation. Com-

puter Vision, Graphics and Image Processing, 13, pp. 222-241 (1980).

[35] A. J. Pinho and A. R. Neves. A Survey on Palette Reordering Methods for Improving

the Compression of Color-Indexed Images. IEEE Transactions Image Processing, Vol.

13, Nr. 11. November 2004

[36] L. M. Po and W. T. Tan. Block address predictive color quantization image compression.

Electron. Lett., vol. 30, no. 2, pp. 120-121. January 1994.

[37] N. D. Memon, A. Venkateswaran. On ordering color maps for lossless predictive coding.

IEEE Trans. on Image Processing (5), 1996, pp. 1522-1527.

[38] W. Zeng, J. Li and S. Lei. an Efficient color re-indexing scheme for palette-based com-

pression. Proc. 7th IEEE Int. Conf. Image Processing. Vancouver, Canada, September,

2000, pp 476-479.

[39] A. J. Pinho and A. R. Neves. A Note on Zeng’s Technique for Color Reindexing of

Palette-Based Images, 2004

[40] I. Pinheiro. Automatic Calibration of the Cambada Team Vision System. Master’s thesis,

Universidade de Aveiro, 2008.

[41] O. Cosma. Image Dithering Based on the Wavelet Transform. Proceedings of the In-

ternational Conference on Theory and Applications of Mathematics and Informatics.

Thessaloniky, Greece, 2004.

[42] Bayer filter, Wikipedia article. http://en.wikipedia.org/Bayer filter.

[43] http://www.ece.uvic.ca/ mdadams/jasper/

[44] http://iphome.hhi.de/suehring/tml/

106

	Introduction
	Objectives and main contribution
	Thesis structure

	Video coding
	Golomb codes
	Arithmetic coding
	Motion prediction
	A little of MPEG's history
	H.264
	VCL

	Lossless image compression standards
	The JPEG standard
	The JPEG-LS standard
	The JPEG-2000 standard
	The JBIG standard
	The PNG standard

	Lossless Video Coding algorithms
	FFV1
	HuffYUV
	Lagarith

	Color Quantization
	Pre-clustering algorithms
	Popularity algorithm
	Median-cut algorithm
	Octree algorithm

	Post-clustering algorithms
	K-means algorithm
	Local K-means algorithm
	NeuQuant neural-net image quantization algorithm

	Inverse color-mapping algorithms
	Improvements of the trivial inverse colormap method
	The locally sorted search algorithm
	Inverse colormap operation using a three-dimensional Voronoi diagram
	Inverse colormap operation using a two-dimensional Voronoi diagram

	Palette-reordering algorithms
	Color-based Methods
	Index-based Methods

	Dithering
	Noise and Ordered Dithering
	Error Diffusion Technique

	Color quantization in video

	Proposed video coding algorithm
	The single plane video bitstream
	Header information
	Frame structure
	Color palette

	Overview of the proposed method
	Adapting the data into a gray scale video
	Adapting the data into a color-indexed video

	Encoding the bitstream
	Encoding the bitstream with the Golomb codes
	Encoding the bitstream with the Arithmetic coding

	Experimental Results
	Entropy Values
	First Order Entropy
	Residuals and Motion Vectors Entropy
	Overall Results

	Encoding results with Golomb codes
	Encoding results with Arithmetic coding
	Encoding results with JPEG-2000 standard
	Encoding results with H.264/AVC standard
	Comparing the results

	Conclusions and future work
	Video test sets
	Video Tools
	Data Structure
	File List
	VideoCompare.c File Reference
	Function Documentation

	YuvConv.c File Reference
	Function Documentation

	YuvSplitFrames.c File Reference
	Function Documentation

	YuvJoinFrames.c File Reference
	Function Documentation

	PaletteReordering.c File Reference
	Function Documentation

	YuvJoinFramesRGB.c File Reference
	Function Documentation

	ShowOneInfPlan.c File Reference
	Function Documentation

	EntropyCalculator.c File Reference
	Function Documentation

	Entropy1Calculator.c File Reference
	Function Documentation

	BlockEnc.c File Reference
	Function Documentation

	BlockDec.c File Reference
	Function Documentation

	BlockEncArith.c File Reference
	Function Documentation

	BlockDecArith.c File Reference
	Function Documentation

	Developed shell scripts
	Ppmquant shell script
	Jasper shell script

