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Palavras-chave 
 

RSSI, localização relativa, MLE, multidimensional scaling, RF, MicaZ, rede de 
sensores sem fios. 
 

Resumo 
 
 

Actualmente a utilização de redes de sensores sem fios, com nós quer 
estáticos quer moveis, é cada vez mais apelativa. Desde simples aplicações 
de monitorização, como por exemplo parâmetros ambientais, até aplicações 
complexas de busca e salvamento, a localização dos vários nós da rede é 
fundamental. No caso de mobilidade na rede acresce ainda a necessidade de 
uma capacidade de navegação eficiente. 
Dado o facto de que em muitas das aplicações de redes de sensores sem fios, 
como por exemplo operações de busca e salvamento em que o tempo de 
resposta tem de ser obrigatoriamente curto, é impossível fazer previamente o 
planeamento e a implementação de uma infra-estrutura, torna-se 
imprescindível a utilização de métodos de localização que não dependam de 
pontos conhecidos. 
No âmbito desta dissertação são estudadas técnicas de localização e 
navegação relativas, baseadas simplesmente no sinal RF das comunicações 
sem fios. Relativamente à localização foram realizados testes com diferentes 
parâmetros relacionados com as comunicações. Estes são importantes devido 
à necessidade de estudar o impacto destes factores no cálculo da topologia da 
rede. O trabalho desenvolvido relativamente à navegação foi avaliado 
experimentalmente, com incidência na avaliação comparativa dos diversos 
métodos propostos, i.e., um método oblívio baseado em direcções aleatórias e 
outro baseado na técnica MLE - Maximum Likelihood Estimator. Apresentam-
se nesta dissertação os respectivos resultados que permitem verificar o melhor 
desempenho em convergência para o objectivo usando MLE à custa de maior 
custo computacional. Em particular, foi possível fazer um robô móvel percorrer 
um trajecto entre dois faróis de RF, navegando apenas com informação de 
RSS. 
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RSSI, relative localization, MLE, multidimensional scaling, RF, MicaZ, wireless 
sensor network. 
 

Abstract 
 

Nowadays the usage of wireless sensor networks, with either static or mobile 
nodes, has been an area of growing interest. From the simplest applications of 
monitoring, i.e. environmental parameters, to the most complex search and 
rescue applications, the localization of the various nodes of the network is 
fundamental. In the situation at which the network has mobility there is 
additionally a need of the ability to efficiently navigate. 
Due to the fact that in many of the applications, i.e. search and rescue 
situations where the time of action is critical, is impossible to perform a 
previous planning and building of a framework, anchor free relative localization 
methods become indispensable. 
In this dissertation several relative localization and navigation techniques, 
based only on the RF signal of the wireless communications, are studied. On 
the subject of localization, different parameters related with the 
communications were tested. These are significant because of the necessity of 
studying the impact of such factors in calculating the network topology. On the 
subject of navigation the resulting work was experimentally evaluated, with 
emphasis on the comparative evaluation of the several methods presented in 
this dissertation, namely a simple oblivious method based on random directions 
and another one based on MLE - Maximum Likelihood Estimator. The results 
show the superiority of MLE concerning the speed of getting to the target at the 
cost of extra computations. In particular, in the scope of this dissertation we 
have made a small autonomous robot move between to RF beacons, using 
RSS information, only. 
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Chapter 1 

Introduction 

The work is part of a larger framework involving the studies [1], [2], [3], [4] and involves 
the study, as well as the comparative experimental evaluation of RSSI-based relative 
localization and navigation algorithms. 

This chapter begins with a small introduction to the subject of this dissertation pointing 
out the growing interest for teams of robots cooperating with each other; then it refers to 
relative localization; and concludes with RSSI-based navigation and localization. 

 

1.1 The appeal for cooperating robot teams 

It is said in [5] that “multiple-robot systems can accomplish tasks that no single robot can 
accomplish”, and that is why a cooperating team of mobile robots joining together to 
accomplish a common objective is an eye-catching possibility. Some of the applications 
they can be used in include surveillance, exploration, manufacturing, and large volume 
transportation. Adding to this, in situations where operator presence is impossible or 
involves too high risks, an autonomous solution is even more appealing. 

A good example of this is a team of vacuum cleaner robots [6], each one of them being 
equipped with a wireless transceiver and communicating with each other. This enables 
them to distribute according to a pattern and quickly perform the task, covering a large 
area. 

Adding to that and having the cost and feasibility in mind, the various robots may have 
different acting capabilities, as in a mine field. As mentioned in [7], some of the team 
elements may have detecting abilities and, while searching for mines in a formation, they 
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guarantee coverage. The other elements, a smaller number of them, have in turn 
sweeping abilities and are summoned after detection. 

 

 
Figure 1 - MOSRO MINI on 

Patrol[8] 

 
Figure 2 - 'MOSROs' on Patrol 

in Shopping Mall[8] 

 
Figure 3 - OFRO on Outdoor 

Patrol[8] 
 

1.2 Relative localization for coordination 

In what localization is concerned there are two major options. The first one is to know the 
absolute localization; this means that there is the knowledge of an exact location, e.g. a 
car in a motorway that is at kilometer 12.2. The other is to know the relative localization; 
this means there is only the knowledge of a location based on the perception one has of 
the environment, e.g. a car in a motorway traveled 12.2km relatively to the starting point. 

As to the first one, and focusing on robots, some of the used localization methods are to 
build a reference infrastructure or to use GPS (Global Positioning System). But, as it is 
mentioned in [2], building an infrastructure is expensive, and even impossible in an 
emergency situation, like search and rescue. The GPS, being satellite dependent and only 
providing coarse-grained positions, is not an option in every situation. 

The second one, on the other hand, doesn’t need any infrastructure and as such it can be 
used in any place rapidly and with smaller costs. Being independent from exterior means 
allows it to be used at any location and, using changes on the MANET (Mobile Adhoc 
Network) topology, to cover larger areas. 

There are multiple possible applications to relative localization. Some of them are indoors 
or outdoors residential patrolling, airports, seaports, warehouses or even shopping mall 
patrolling, as mentioned in [8] and as it can be seen in Figure 1, Figure 2 and Figure 3. In 
those applications, it’s possible to position robots with different capabilities, as 
mentioned by [1], so that an actuator robot, with a fire extinguisher, can approach a 
probe robot that can detect a fire and interact according to the needs. Upscale this and 
one can have a team of flying robots detecting and fighting forest fires. 
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Figure 4 - Collision Warning Auto Brake [9] 

 

But the use of relative localization is not limited to robots. In addition, relative localization 
can be used by humans. As with FINDER [10] with which firefighters can follow a signal to 
another firefighter in trouble. Another example is monitoring people inside a hospital, 
where patients can be located in case of an emergency. Additionally, radar systems found 
on airplanes, or on submarines, and even a compass are means of relative localization. 

Another area where relative localization can also have a useful application is Inter-Vehicle 
Communication. In this area, different categories of applications are defined in [11]. ATIS 
(advanced traveler information systems) where the targets, of communications 
containing traffic situation, congestion and regulation, can be selected according to their 
location; management of groups of vehicles, e.g. taxis; the messages exchanged between 
drivers; and safety systems based on information from the vehicles, like the driver’s 
intention to accelerate or break. Some of the existing applications, which can be seen in 
[9], are adaptive cruise control, collision warning with auto brake, and even a prototype 
for pedestrian detection, as in Figure 4 and Figure 5.  

 

1.3 RSSI based localization and navigation 

One of the possible information, which can be used to relatively locate different objects, 
is the RSSI (Received Signal Strength Indicator) information. This is possible because RSSI 
is a distance dependent value, although coarse, and can be obtained by the messages 
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normally exchanged between the elements on a team of robots. This allows the creation 
of a concept of signal space distance that, though not “meter” exact, is proportional to 
the real distance and can be used to map a network using point-to-point measurement, 
as presented in [2],[3] and [12]. 

 
Figure 5 – Pedestrian detection – illustration [9] 

 

This information can be used in both mobile and static robot networks to various 
purposes. One of them is to extrapolate the node topology of a static sensor network to 
optimize communications sequence, and even, with enabled auto reconfigurations, to 
allow optimizations on new node entries and exits. Another application in which this 
information can be used, this time with a team of mobile robots, is to obtain the topology 
of the network, [2], enabling the possibility of movement to maintain robot connectivity 
or to perform a given task as in [3], [4] and [1]. Finally, using a RSSI based map obtained 
from transceivers placed on containers in a freighter ship, can turn the difficult task of 
monitoring and finding a specific container into a much easier one. 

 

1.4 Objectives 

There are many different ways of getting a relative localization, among them visual 
recognition, distance measurement sensors using light or sound emissions and TOA (time 
of arrival) of messages transmitted. 
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The objective of this dissertation is to study, implement, and, comparatively, experiment 
techniques of relative localization and navigation in a multi-beacon environment, using 
solely the RSSI information of the RF signal of the wireless communications. 

The localization itself will be carried out by making changes to different message 
configuration and RSSI data filtering parameters with the MDS (Multidimensional Scaling) 
algorithm in order to probe its capabilities. Furthermore, by guiding a robot back and 
forth between two beacons in an indoor environment, with obstacles, using several 
navigation algorithms, the navigation will be put to practice. 

 

1.5 Dissertation structure 

This dissertation is organized in six chapters. In chapter two, some of the previous work in 
relative localization and navigation, based on RSSI, will be discussed, starting with an 
algorithm to derive the topology of the network and proceeding with the description of 
three navigation methods. 

In chapter three there is the description of the framework, i.e. nodes, robot, and 
computer. There, the framework will be described starting with the setup of the wireless 
communications, going through the various components such as the motors, and finishing 
on the architecture of the team. 

Chapter four is about the first experiment on localization (topology derivation), using the 
multidimensional scaling algorithm. Tests affecting some of the wireless transmission 
parameters, RSSI filtering, and the MDS algorithm inputs will be presented, compared, 
and discussed. 

Chapter five deals with the results of the experimental navigation tests evaluation. Here 
two methods of navigation based solely in RSSI are presented, compared, and discussed. 
One, the oblivious method, is a simple method of navigation while the second, the 
Maximum Likelihood Estimation (MLE) method, is an iterative one, being more effective 
but more costly in computing requirements. 

Finally, chapter six presents the conclusion and future work. 
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Chapter 2 

Related work 

In this chapter, the previous work made on relative RSSI localization and navigation will 
be discussed. The points focused will be: first, for localization, the MDS (multidimensional 
scaling); then, for navigation, the MDS, an oblivious, and an iterative mode. 

 

2.1 Relative localization 

2.1.1 MDS-based relative localization 

The MDS (multidimensional scaling) algorithm is a method which can be used to obtain a 
spatial distribution that has shown fairly good capabilities, [13] [2] [3]. This algorithm uses 
an n-by-n symmetrical hollow matrix, in which each element represents the distance 
between every two nodes. This matrix is then used to obtain a compatible configuration 
matrix in a p-dimensional space, for some p<n. For this work only 2 dimensions are 
considered. 

First of all, to use this method, the node must know the state of the network. To cope 
with this, in [14], it’s suggested the broadcast of a connectivity matrix among the units, 
Figure 6. This matrix alone is a representation of the topology of the network showing the 
connection status (1 – connected; 0 - not connected) between every pair of units. The 
problem here is that this connected or not connected status doesn’t give information on 
how far or close the units are from one another. 

In order to solve this problem, in [2], it’s suggested the use of a new set of data much 
more meaningful to populate the matrix, the distance dependent RSSI values. This is 
called extended connectivity matrix. This solution, Figure 7, can represent not only the 
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status of a connection between two nodes but also whether one unit is closer or farther 
from another one. These values come directly from the wireless communication interface 
and are used according to the following expression: 

𝑀𝑀𝑘𝑘(𝑖𝑖, 𝑗𝑗) = �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗→𝑖𝑖 + 60, 𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅  𝑝𝑝𝑝𝑝𝑅𝑅𝑘𝑘𝑅𝑅𝑝𝑝 ≥ 𝐿𝐿𝐿𝐿𝑅𝑅𝑝𝑝ℎ𝑟𝑟𝑅𝑅𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑅𝑅

0, 𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅  𝑝𝑝𝑝𝑝𝑅𝑅𝑘𝑘𝑅𝑅𝑝𝑝 < 𝐿𝐿𝐿𝐿𝑅𝑅𝑝𝑝ℎ𝑟𝑟𝑅𝑅𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑅𝑅
� 

As can be seen, in the previous expression, an offset of sixty is added to the RSSI reading. 
This is done in order to make it positive, as required by the MDS algorithm. 

 

As stated in [1] the versatility of the extended connectivity matrix comes from the 
contents that, when correctly manipulated, can serve as support to mobile autonomous 
robot relative localization, based on ad-hoc RF communications. In [2] are presented 2D 
graphics showing the spatial distribution of the nodes based on the values of the 
extended connectivity matrix alone, values which are looked at as a signal space distance. 
In order to obtain these graphics, [2, 3] firstly filtered the values by using a sliding window 
and a kalman filter to produce smooth results. After that, the distance was calculated 
from the RSSI filtered data and, finally, the MDS (multidimensional scaling) algorithm was 
used to perform a spatial distribution. Notice that due to several reasons the RSSI values 
may take different values in each direction of the link. 

 

 0 1 2 3 4 5 Sending nodes 

 

0 0 1 1 1 1 0 Receiving node 0 

1 1 0 0 0 0 0 Receiving node 1 

2 1 0 0 0 0 1 Receiving node 2 

3 1 0 0 0 1 1 Receiving node 3 

4 1 0 0 1 0 0 Receiving node 4 

5 0 0 1 1 0 0 Receiving node 5 

Figure 6 – Connectivity Matrix (left); Units topology (right) 
 

Since the values change with time and some links may even disappear because of changes 
in the topology, which is usual in mobile robot teams, some strategy must be 
implemented to proceed with the maintenance of the extended connectivity matrix. The 
solution proposed, [2], to check if the values received are newer, is to send along with the 
matrix an aging-vector which creates a timeline to the received RSSI values; adding to 

1 

2 

3
 

5 

4 

0 
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this, when connection from other nodes is lost the solution to update the matrix is, in 
each node, to check its own aging vector and, if the samples are outdated, remove the old 
values. 

One of the drawbacks of this method is the amount of information needed to be 
exchanged in the network. The information in the extended connectivity matrix must be 
kept and broadcasted through the network. This means that for n nodes the number of 
values to be transmitted is n squared. But, since it is necessary, for each node, to know 
the topology of the entire network this information must be transmitted. So, [1] suggests 
to consider the matrix symmetrical so that the number of values transmitted for n nodes 
is only n*(n-1)/2. 

 

 0 1 2 3 4 5 Sending nodes 

 

0 0 50 50 50 20 0 RSSI values received by node 0 

1 48 0 0 0 0 0 RSSI values received by node 1 

2 52 0 0 0 0 60 RSSI values received by node 2 

3 50 0 0 0 90 10 RSSI values received by node 3 

4 25 0 0 88 0 0 RSSI values received by node 4 

5 0 0 59 14 0 0 RSSI values received by node 5 

Figure 7 – Extended Connectivity Matrix (left); Units topology (right) 
 

The issue of not fully linked networks, which are networks where one node cannot 
communicate directly with every other node, was explored in [2]. Due to the problems 
that this situation caused to the MDS algorithm, some solutions were compared. The 
result was that it’s effective to approximate the distance between two non 
communicating nodes by the smaller sum of paths connecting them. What happens is 
that the signal space distance is calculated by using the following expression: 
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In the above expression, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑝𝑝𝑚𝑚  represents the maximum RSSI reading that is possible 
to be received, E denotes a route between i and j, containing several links, and the pair (a, 
b) represents the extremes of a generic link in E. This solution creates a small deformation 
on the nodes relative positioning but this is not a problem, since signal strength space 
positioning is already not very accurate to physical positions. 

 

2.2 Navigation 

2.2.1 Using MDS 

Resuming from MDS relative localization, on the previous topic, it is possible to go further 
and use the collected topology information to navigate. In [3] a method is proposed 
where motion vectors, which represent the movement of the network nodes, are 
generated, Figure 8. This solution is not as simple as it might look, at first. It must be kept 
in mind that a robot, initially, does not have any clue to where it is heading. So, it must 
make some test moves in order to deduce where it is facing, based on the topology 
changes visible on the motion vectors. After the robot has the notion of where it is facing, 
it can begin to make decisions on how to approach the objective. Due to time constraints 
this method wasn’t tested. 

 

 
Figure 8 – MDS navigations using motion vectors [2] 
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2.2.2 Using an oblivious method 

Notice that this is quite a simple method. The algorithm basically uses the current RSSI 
reading and the previous one to decide on which direction to head to. This method has 
been used in both [3] and [4] as a possibility to be applied to a very simple robot. The 
decisions are merely based on three premisses: the robot approached; the robot moved 
away; the robot didn’t either approach or move away. This algorithm is illustrated in 
Figure 9. 

 

 
Figure 9 – The Oblivious algorithm 

 

2.2.3 Using MLE 

The last method to be discussed is MLE (maximum likelihood estimation) which, based on 
collected data, estimates the most likely position of the objective. This method is iterative 
and, as such, it requires a larger capacity in both memory and processing. For instance, 
since this method is based on multi-position data acquisitions to perform calculations, it is 
necessary to know the locations where data is acquired, relatively to each other. 
Therefore, a more sophisticated robot with encoders to measure movement is required. 
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It must be pointed out that this method has been tested in [4] both theoretically, in a 
Matlab simulation, and experimentally, using a moving platform. In [4] it has also been 
proven that by tuning some parameters this method is feasible in either noiseless or noisy 
environments with a faster or slower convergence velocity. For example, in a low noise 
environment, with a small set of data, which is basically robot positions and the 
respective RSSI measurements, the pursuer would quickly go to the objective. With a 
large set of data, however, it would take too long before even trying to approach the 
objective. In a high noise environment, on the other hand, a small set of data would prove 
insufficient and a larger number of measurements are needed to make a successful 
approach. For this method to step between both situations, the solution, described in [4], 
is to use a small initial set of data (𝑁𝑁𝑝𝑝𝑅𝑅𝑆𝑆 ), in order to start the approach quickly, and, after 
each approximation, add more data in a circular buffer up to a set number(𝑁𝑁𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑅𝑅 ) to 
reduce the error of the estimate. This algorithm is illustrated in Figure 10. 

 

 
Figure 10 – The MLE algorithm 

 

Finally, the estimator uses the least squares method to calculate the most likely position 
of the beacon. This method, using the sampled data held in the circular buffer, estimates 
the intersection point that minimizes the residual, as illustrated in Figure 11. The exact 
estimation method will be explained in the experimental chapter. 
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Figure 11 – Estimator illustration using four samples 
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Chapter 3 

Experimental framework 

In this chapter the framework will be discussed in what the hardware and the software 
used to perform the experiments are concerned. 

First there is a description of the nodes used and of the wireless communication system. 
Further on there will be a description of the robot created to perform the experiments 
followed by some information about its programming. Finally the system architecture and 
the task distribution amongst elements will be dealt with. 

3.1 The nodes 

The nodes used in this work are the Crossbow’s MicaZ motes (Figure 12) and, as an 
interface between the nodes and the robot the MDA300CA (Figure 13) expansion board 
[15]. The MicaZ motes are embedded systems that possess a microcontroller Atmel 
ATMega128L and a IEEE 802.15.4 compliant radio transceiver, CC2420 [16], which is used 
on the 2.4GHz band. The MIB600 - Ethernet Gateway (Figure 14) is used to both upload 
compiled programs to each node and function as a link between the MicaZ and the 
computer. The former allows communication with the computer via TCP/IP. 

These nodes have been programmed in nesC, which is an extension to the C programming 
language made to program TinyOS – an open-source operating system made to be used in 
embedded wireless sensor networks. This operative system is event driven and minimizes 
code size trying to avoid memory constraints becoming an issue. The version of TinyOS 
used is 1.x. 
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Figure 12 – MicaZ mote 

 
Figure 13 – MDA300CA board 

 
Figure 14 - MIB600 - Ethernet Gateway 

 

3.1.1 Wireless communications 

All the experiments revolve around RSSI based relative localization. Consequently the 
nodes used must possess the means to do so. 

As mentioned before, the MicaZ motes communicate with each other using a CC2420 
transceiver. They do this through an omnidirectional antenna and the information is 
always broadcasted so that every node within range receives information relative to all 
nodes. 

Adding to this the CC2420 chip can give two important message parameters to the 
localization. The first parameter is the LQI (link quality indication), which allows knowing 
whether the sending node is well or barely within reach. This allows rejection of values 
sent from too far away, which could be fallacious. According to observations in [2] a good 
link presents a LQI value typically above 100. The second parameter made available by 
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the CC2420 is the important RSSI. The RSSI value can be obtained, according to [16], from 
a register in the transceiver which makes available a value between -60 and 40, 
corresponding to an RSSI between -100dBm and 0dBm. So to make it positive, and ease 
the transmission, an offset of 60 is added setting this value between 0 and 100. 

 

 
Figure 15 – IEEE802.11 and IEEE802.15.4 channels [17] 

 
 

The nodes communicate using the wireless medium, obviously. This medium is heavily 
loaded with communications, especially in the 2.4GHz band. This happens because the 
IEEE 802.15.4 protocol shares the frequency spectrum with the widely used IEEE 802.11, 
which almost all computers, and increasingly numbers of cell phones and PDAs use. One 
way to prevent this is using a channel that doesn’t overlap with the IEEE 802.11 protocol. 
This channel, as it can be seen in Figure 15, is channel 26. 

At this point it must be again stressed that the amount of information to be transmitted is 
an important issue for the communications. For instance, the (extensive) extended 
connectivity matrix, the requested move to the robot (one per moving robot) and the 
performed move by the robot (one per moving robot), as illustrated in Figure 16 in which  
a piggybacked message was defined so as to transmit only the necessary information. In 
the piggyback byte, Figure 17, the bits inform the receiver of the contents of the message 
enabling it to recover that information. This allows not only transmitting multiple and 
variable information in the same message but also transmitting everything in one 
transmission optimizing the bandwidth and reducing the number of possible collisions.  
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Robot ID Piggyback 
Byte 

Extended Connectivity 
Matrix + Aging Vectors Requested Moves Performed Moves 

1 Byte 1 Byte ((Number of nodes)2+ 
Number of nodes) Bytes 

((2+2+2)*Number 
of moving nodes) 

Bytes 

((2+2+2)*Number 
of moving nodes) 

Bytes 
Figure 16 – Piggyback Message 

 

Once a message is received, the information in it must be processed. First, the receiving 
node gets the LQI of the message. If this value is above the threshold, the RSSI is saved. 
Otherwise, it will be considered 0. Secondly, the receiving node goes to the data 
contained on the message getting the extended connectivity matrix and the aging vector. 
Having this information it compares the age of the local information, saved in a local 
aging vector, with the age of the received information then replacing it where the first is 
older. Thirdly, the node checks the requested and performed moves, these contain an 
aging element, a forward step amount, and a rotation step amount. This information is 
intended to the moving nodes and, as such, it is forwarded until it reaches them. If the 
requested moves received are newer than the local ones, they are replaced. The same 
applies to the performed moves. Finally, the node, in case it has receiving either 
requested or performed moves checks, for each moving node, which of these needs to be 
sent. For example, if all the requested moves are more recent than all the performed 
moves, then the information on the performed moves has been spread and reached the 
move coordinator, which has issued a new order of movement to every moving node. As 
such, the information on performed moves is obsolete. 
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Figure 17 – Piggyback Byte 
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Finally, on this matter, the order and times of transmissions. To avoid collisions, which 
can delay and interfere with the spreading of information, an Adaptive-TDMA algorithm 
(Time Division Multiple Access) [18] has been used. This algorithm considers the 
communications failures that may easily happen with wireless communications in moving 
robots. To deal with it a period of communication is initially set, for instance 500ms, this 
time frame is then divided by the number of nodes. If they are 5, it means every node 
transmits every 100ms. This algorithm sets the time of the next transmission to 500ms 
after the last one. But, if another node is late to transmit then the remaining nodes 
readjust their transmitting times in order to minimize the impact of this delay and 
continue to avoid collisions. 

 

3.2 The robot 

In order to enable the execution of some of the tests, which require a mobile platform, a 
robot was created to be controlled by a MicaZ mote, as shown in Figure 18. 

The robot developed for this work has two wheels attached to motors mounted on each 
side, both equipped with a quadrature encoder. These encoders are in turn connected to 
two 32bit quadrature counters LS7366 [19], which possess a spi interface used to 
communicate with the expansion board (MDA300CA). The motors are controlled by two 
PWM (pulse width modulation) applied to a current driver L293E [20]. 

Adding  to this, a set of three sensors GP2D12 [21] was attached to the robot in order to 
detect and avoid obstacles, making it possible to execute the experiment in an indoor 
environment. As it can be seen in Figure 18, the sensors are placed outwards and 
forwards. The decision to place the sensors in such manner was made, based on the study 
presented on [22], because the width of the robot is quite large – to avoid hitting 
obstacles with the wheels the small area covered by the sensors had to be pointed 
outwards. Although the robot will get some large blind angles, which might be regarded 
as a disadvantage, this should not be a problem throughout the experiments. 

 

3.3 Programming the robot 

Since the robot is controlled by a MicaZ mote, it is also programmed in nesC and uses 
TinyOS as well. The open source community has made available software that allows 
programming the expansion board MDA300CA and the MicaZ motes. 

The MDA300CA board has multiple ADC’s available, so they allow the use of obstacle 
avoidance algorithms from the measure of analog obstacle sensors. Adding to this the 
digital I/O, that are only a few and four were needed to control the motors, made it 
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imperative the use of serial interfaced multi-slave quadrature counters to count the 
motors’ shaft turns. 

 

 

3.3.1 Obstacle sensors 

As mentioned above, the robot has three obstacle sensors. One is pointed forwards, one 
outwards to the left and the final one outwards to the right. These sensors are connected 
to the MDA300CA board ADC’s 0, 1 and 2. 

The sensors put out larger voltage values than those that the ADC’s can read but, since 
the maximum read voltage is enough, and the safety limits mentioned in the datasheet 
are met, Vdd+0.5V, this is not an issue, so nothing was done to prevent it. 

According to the device datasheet [21], the sensors put out a new value every 50ms but 
due to time constraints this is done every 100ms. The read value is then saved in a global 
variable and used to decide whether to stop or not to stop. That is, if the robot is going 
forward, it stops so that it doesn’t hit the obstacle; and if the robot is rotating, it 
continues until it clears all obstacles. 

 

 
Figure 18 – Robot created to perform the experiments 
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3.3.2 Motors 

The motors used in the robot are EMG30, which, as mentioned above, have built in 
quadrature encoders. 

In order to control the velocity of the motors, a current driver L293E was used and two 
digital outputs per motor were the controllers. One output was meant to set the direction 
of movement and the other to generate a PWM to control the speed at which the robot 
moves.  

Moreover, since some of the experiments require the knowledge of movement, the two 
quadrature counters feed each one a LS7366 quadrature counter, which was used as a 
16bit counter monitoring the movement of each wheel. A spi communication system 
using five digital outputs was developed to be used with the MDA300CA board. The chip 
enable selects one chip or the other (this signal feeds one chip directly and the other 
through an inverter); the MISO (master input slave output) receives data; the MOSI 
(master output slave input) sends data; the clock signal; and an interruption line to signal 
the end of the movement. 

Since the robot only closes the loop with the counters when the movement ends, and 
same values of PWM on different motors have different results, a simple algorithm was 
developed to try and match the speed of the wheels. Basically, in the end of each 
movement, if one wheel traveled too slowly, the respective speed is increased; if the 
maximum speed has been reached, the other wheel is slowed down. Finally, since the 
movement is never stopped immediately when the order is given, the robot doesn’t 
travel the distance it was ordered to. To avoid this, the robot reads the difference and 
adjusts an offset, notice that this is not a key feature since what is important is to know 
how much it traveled rather than the exact distance it was ordered to. 

 

3.4 System architecture 

 

It is worth stressing that the set of nodes in the experiment has a low capacity with 
respect to processing. So, in order to both collect and easily analyze data, and to be able 
to perform complex processing, one of the nodes is connected to a computer. This 
connection, as previously referred to, is made by TCP/IP and the computer is the “brain” 
of all the navigation and localization on the system. 
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3.4.1 Executing complex computations 

First of all, as stated above, the complex computations are made by a computer. This 
computer uses the java programming language to execute all the code and, in order to 
analyze data graphically, it runs on the Matlab virtual machine, which allows easy access 
to the data and respective graphic register. 

The nodes of the network have relatively small intelligence, i.e. they only collect/spread 
information and, if it is a mobile node it moves were ordered to. This is made possible by 
making all the spread information reach the computer. One of the nodes is connected to 
the computer, via the MIB600 board, and every time it receives a message it sends the 
information through the Ethernet port. The computer then filters the information and 
makes all the necessary calculations in order to decide the next step to take. Finally, the 
information about the step is sent, again through the Ethernet port, to the node, which 
then spreads it throughout the network. 
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Chapter 4 

Experiments with the extended connectivity matrix 
using MDS 

One possible method to compute relative positions in signal strength space, using the 
extended connectivity matrix, is the MDS (Multidimensional Scaling) algorithm, which, by 
using a hollow symmetric matrix, generates one compatible space distribution. This 
algorithm transfers a known n-by-n matrix of dissimilarities to n points of a p-dimensional 
Euclidean space so that the pairwise distances between points are compatible with the 
dissimilarities matrix. In this work only the two first dimensions are considered. 

The fact that the matrix must be symmetric creates a problem: due to communication 
interference, slightly different transmission power in different nodes, etc., the extended 
connectivity matrix is not symmetric, as shown in Figure 19. 

 0 1 2 3 4 5 Sending nodes 

0 0 35 22 31 31 33 RSSI values received by node 0 

1 38 0 35 24 52 34 RSSI values received by node 1 

2 23 35 0 29 23 42 RSSI values received by node 2 

3 0 23 29 0 19 36 RSSI values received by node 3 

4 31 51 24 21 0 27 RSSI values received by node 4 

5 31 33 43 37 26 0 RSSI values received by node 5 

Figure 19 – RSSI table example 
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That being said, in order to create and feed a symmetric distance matrix (distance = 
RSSImax – RSSI) to the MDS algorithm, we have the following options: 

• Use the top triangle of the matrix; 
• Use the bottom triangle of the matrix; 
• Use the mean between the top and the bottom triangles of the matrix (e.g.: mean 

between the value 0 received from 1 and 1 received from 0); 
• Use the maximum value between the top and the bottom triangles of the matrix 

(e.g.: maximum value between the value 0 received from 1 and 1 received from 
0); 

• Use the minimum value between the top and the bottom triangles of the matrix 
(e.g.: minimum value between the value 0 received from 1 and 1 received from 0). 

Adding to this, a study of the impact various factors on the data used in the MDS 
algorithm is important information, such as maximum RSSI considered, communications 
period and synchronization, and data sampling and selection. Since there’s none, to our 
best knowledge, in this chapter experiments concerning these issues will be displayed, 
compared and discussed. 

4.1 Implementation and Set up 

In order to analyze the previous possibilities, the following was set up. 

4.1.1 Mote’s side 

On this side, six crossbow’s MicaZ motes, which were placed according with the diagram 
presented in Figure 20, send a periodic beacon with the RSSI table they have and the 
aging vector mentioned in chapter 2. When the other motes receive this beacon, they 
update their RSSI table accordingly and save the information the CC2420 chip provides 
about the transmission (Link Quality Indicator and Received Signal Strength Indicator) for 
future input of their own information in the table. 

All the received transmissions with a LQI inferior to a threshold, in our case 100, are 
disregarded; so, neither LQI nor RSSI are saved (according to CC2420 datasheet, RSSI is 
above -60 and below 40, so, in order to make it positive an offset of 60 is added).  

Also periodically, the values on the RSSI table are first cleaned up (if too old), and new 
values (previously saved) are included in the table. 

This information is dispatched by one node connected via MIB600 board to a PC . 

Due to hardware issues, an adaption of the Adaptive-TDMA algorithm has been 
implemented. This adaption makes the nodes synchronize with the preceding in the order 
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of communication. If this synchronization is not possible, then the node will transmit one 
transmission cycle after it last transmitted. 

 

Figure 20 – Node distribution 

 

4.1.2 Computer’s side 

On the computer we have MATLAB running Java code.  

This program receives information (the RSSI table) from the MIB600 board via TCP/IP, and 
writes it on a sampling table which holds the information of some of previous tables 
(sampling window). I.e.: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑆𝑆𝑅𝑅𝑜𝑜𝑅𝑅(𝑝𝑝 − 𝑆𝑆) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑆𝑆𝑅𝑅𝑜𝑜𝑅𝑅�𝑝𝑝 − (𝑆𝑆 − 1)�,𝑆𝑆 = 1. . 𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝐿𝐿𝑅𝑅𝑁𝑁𝑆𝑆_𝑊𝑊𝑅𝑅𝑁𝑁𝑆𝑆𝑊𝑊𝑊𝑊 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑆𝑆𝑅𝑅𝑜𝑜𝑅𝑅(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑅𝑅𝑝𝑝𝑅𝑅𝑖𝑖𝑆𝑆𝑆𝑆 

Then, with this information a mean is calculated for each element in the sampling table, 
creating the RSSI sample. I.e.: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑜𝑜𝑅𝑅𝑝𝑝 = 𝑚𝑚𝑅𝑅𝑝𝑝𝑆𝑆(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑜𝑜𝑅𝑅(𝑝𝑝),𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑜𝑜𝑅𝑅(𝑝𝑝 − 1), … ) 

This calculated data is then put through a kalman filter in order to further soften the data. 

Finally, the data is used to compute the Signal Strength Space positioning with Classical 
MDS algorithm. 

Also, in order to obtain a more perceptible view of the various outputs the nodes are 
moved so that node 0 is in the origin of the referential and rotated so that node 1 is in the 
vertical axis. If necessary, the nodes are flipped around the vertical axis so that node 2 is 
on the right.  
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4.2 Obtained Results 

On the following figures, containing the experiments’ outputs, the dots represent the 
MDS positions estimation result, and the ellipses are centered on the average of these 
estimations, its size representing the standard deviation, in each run (one color per run). 
In each run a different sub-matrix was used, top bottom, mean, maximum, and minimum, 
as mentioned above. The Max RSSI value it’s a user-defined parameter and it represents 
the maximum RSSI which is expected to be received. Note that the transmission power 
was set to -10dBm. 

Parameters of the experiment: 

Experiment 1 

• Max RSSI value: 250 
• Adaptive-TDMA: Yes 
• Message transmitting cycle: 500ms 
• Number of samples in sampling window: 3 
• Sample rejection: No 

Figure 21 represents the result of this experiment.  

 

 
Figure 21 – MDS experiment 1 
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Parameters of the experiment: 

Experiment 2 

• Max RSSI value: 100 
• Adaptive-TDMA: Yes 
• Message transmitting cycle: 500ms 
• Number of samples in sampling window: 3 
• Sample rejection: No 

 

Figure 22 represents the result of this experiment.  

 

 
Figure 22 – MDS experiment 2 
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Parameters of the experiment: 

Experiment 3 

• Max RSSI value: 100 
• Adaptive-TDMA: No 
• Message transmitting cycle: 500ms 
• Number of samples in sampling window: 3 
• Sample rejection: No 

 

Figure 23 represents the result of this experiment.  

 

 
Figure 23 – MDS experiment 3 
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Parameters of the experiment: 

Experiment 4 

• Max RSSI value: 100 
• Adaptive-TDMA: Yes 
• Message transmitting cycle: 100ms 
• Number of samples in sampling window: 3 
• Sample rejection: No 

 

Figure 24 represents the result of this experiment.  

 

 
Figure 24 – MDS experiment 4 
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Parameters of the experiment: 

Experiment 5 

• Max RSSI value: 100 
• Adaptive-TDMA: No 
• Message transmitting cycle: 100ms 
• Number of samples in sampling window: 3 
• Sample rejection: No 

 

Figure 25 represents the result of this experiment.  

 

 
Figure 25 – MDS experiment 5 
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Parameters of the experiment: 

Experiment 6 

• Max RSSI value: 100 
• Adaptive-TDMA: Yes 
• Message transmitting cycle: 100ms 
• Number of samples in sampling window: 5 
• Sample rejection: Yes 

 

Figure 26 represents the result of this experiment.  

 

 
Figure 26 – MDS experiment 6 
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Parameters of the experiment: 

Experiment 7 

• Max RSSI value: 100 
• Adaptive-TDMA: No 
• Message transmitting cycle: 100ms 
• Number of samples in sampling window: 5 
• Sample rejection: Yes 

 

Figure 27 represents the result of this experiment.  

 

 
Figure 27 – MDS experiment 7 
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4.2.1 Tables of experiments results 

Table 1 – MDS node 0 

Node 0 

 Mean Values (x, y) Standard Deviation Values (x, y) 
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min 
Experiment 

1 
0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

Experiment 
2 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

Experiment 
3 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

Experiment 
4 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

Experiment 
5 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

Experiment 
6 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

Experiment 
7 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

0.000, 
0.000 

 

Table 2 – MDS node 1 

Node 1 

 Mean Values (x, y) Standard Deviation Values (x, y) 
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min 
Experiment 

1 
0.000, 

116.852 
0.000, 

109.876 
0.000, 

113.675 
0.000, 

114.321 
0.000, 

112.776 
0.000, 
7.369 

0.000, 
7.868 

0.000, 
7.277 

0.000, 
8.499 

0.000, 
6.585 

Experiment 
2 

0.000, 
36.961 

0.000, 
35.267 

0.000, 
36.104 

0.000, 
36.534 

0.000, 
35.799 

0.000, 
2.581 

0.000, 
2.581 

0.000, 
2.708 

0.000, 
2.902 

0.000, 
2.329 

Experiment 
3 

-0.000, 
44.714 

-0.000, 
40.941 

-0.000, 
42.901 

-0.000, 
44.034 

-0.000, 
41.567 

0.000, 
6.684 

0.000, 
6.503 

0.000, 
6.187 

0.000, 
6.553 

0.000, 
6.660 

Experiment 
4 

0.000, 
41.547 

0.000, 
39.108 

-0.000, 
40.260 

0.000, 
40.226 

-0.000, 
40.533 

0.000, 
6.546 

0.000, 
6.932 

0.000, 
6.687 

0.000, 
7.317 

0.000, 
6.132 

Experiment 
5 

-0.000, 
44.461 

-0.000, 
46.331 

-0.000, 
46.432 

-0.000, 
45.693 

-0.000, 
46.697 

0.000, 
13.089 

0.000, 
11.543 

0.000, 
11.330 

0.000, 
12.659 

0.000, 
10.968 

Experiment 
6 

-0.000, 
41.953 

0.000, 
39.374 

-0.000, 
40.560 

-0.000, 
40.507 

-0.000, 
40.840 

0.000, 
5.497 

0.000, 
5.987 

0.000, 
5.691 

0.000, 
6.260 

0.000, 
5.170 

Experiment 
7 

0.000, 
45.094 

-0.000, 
45.703 

-0.000, 
46.996 

-0.000, 
46.600 

-0.000, 
46.885 

0.000, 
11.840 

0.000, 
9.521 

0.000, 
8.849 

0.000, 
10.580 

0.000, 
8.096 

 

Table 3 – MDS node 2 

Node 2 

 Mean Values (x, y) Standard Deviation Values (x, y) 
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min 
Experiment 

1 
95.089, 
175.918 

105.452, 
171.218 

100.217, 
173.975 

99.776, 
172.490 

100.555, 
175.399 

5.629, 
9.440 

5.126, 
9.619 

5.157, 
9.339 

5.505, 
9.934 

4.954, 
9.001 

Experiment 
2 

34.860, 
53.845 

38.583, 
51.562 

36.701, 
52.759 

36.716, 
52.465 

36.668, 
53.132 

2.029, 
3.343 

1.814, 
3.595 

1.830, 
3.538 

1.961, 
3.570 

1.801, 
3.299 

Experiment 
3 

42.613, 
43.011 

42.872, 
41.561 

42.783, 
42.278 

43.242, 
42.230 

42.200, 
42.260 

3.492, 
2.602 

2.793, 
2.375 

2.912, 
2.305 

2.986, 
2.260 

3.134, 
2.505 

Experiment 
4 

41.839, 
52.034 

42.907, 
49.507 

42.374, 
50.633 

42.473, 
50.969 

42.236, 
50.725 

2.202, 
9.222 

2.266, 
10.002 

2.198, 
9.554 

2.331, 
9.936 

2.151, 
9.081 

Experiment 
5 

39.441, 
43.943 

41.753, 
43.408 

40.680, 
44.346 

40.640, 
44.767 

41.186, 
43.401 

10.169, 
19.732 

10.270, 
21.213 

9.659, 
19.314 

10.335, 
23.399 

8.248, 
14.027 

Experiment 
6 

41.902, 
52.307 

42.917, 
49.748 

42.383, 
50.939 

42.523, 
51.150 

42.248, 
50.952 

2.130, 
7.787 

2.192, 
8.585 

2.156, 
8.204 

2.229, 
8.563 

2.117, 
7.688 

Experiment 
7 

39.813, 
41.718 

40.589, 
41.796 

40.707, 
42.099 

40.723, 
43.601 

40.886, 
40.884 

8.551, 
13.449 

8.451, 
13.868 

7.268, 
12.864 

8.608, 
15.307 

6.056, 
8.462 
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Table 4 – MDS node 3 

Node 3 

 Mean Values (x, y) Standard Deviation Values (x, y) 
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min 
Experiment 

1 
158.930, 

9.565 
156.871, 

-6.073 
158.102, 

2.045 
158.389, 

2.072 
157.845, 

2.176 
4.410, 
9.049 

4.821, 
10.523 

4.549, 
9.541 

4.724, 
9.680 

4.406, 
9.694 

Experiment 
2 

60.088, 
0.050 

59.372, 
-6.104 

59.816, 
-2.980 

59.986, 
-3.122 

59.653, 
-2.709 

1.956, 
3.967 

2.261, 
4.461 

2.054, 
4.147 

2.181, 
4.320 

2.004, 
4.020 

Experiment 
3 

72.268, 
-8.004 

71.662, 
-9.968 

71.979, 
-8.968 

72.357, 
-9.792 

71.613, 
-8.165 

2.346, 
5.344 

2.192, 
4.331 

2.197, 
4.488 

2.081, 
4.279 

2.296, 
5.056 

Experiment 
4 

60.759, 
41.762 

62.741, 
39.428 

61.771, 
40.678 

62.136, 
40.016 

61.353, 
41.175 

5.966, 
8.997 

5.686, 
8.889 

5.731, 
8.840 

6.366, 
9.910 

5.432, 
8.003 

Experiment 
5 

69.242, 
-10.504 

65.676, 
-12.918 

68.061, 
-12.614 

69.585, 
-10.297 

66.669, 
-12.230 

19.150, 
20.271 

17.509, 
19.350 

15.348, 
18.184 

20.549, 
19.389 

13.755, 
16.572 

Experiment 
6 

60.938, 
41.351 

62.894, 
39.266 

61.873, 
40.520 

62.342, 
39.680 

61.477, 
41.031 

5.611, 
8.228 

5.610, 
8.326 

5.612, 
8.181 

5.882, 
9.178 

5.455, 
7.542 

Experiment 
7 

68.283, 
-11.816 

64.494, 
-14.079 

67.470, 
-13.211 

69.657, 
-10.815 

64.510, 
-14.131 

16.302, 
15.142 

13.505, 
16.388 

8.854, 
13.825 

11.488, 
16.504 

11.759, 
13.440 

 

Table 5 – MDS node 4 

Node 4 

 Mean Values (x, y) Standard Deviation Values (x, y) 
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min 
Experiment 

1 
-3.701, 
119.261 

2.601, 
108.350 

-0.315, 
114.023 

-0.085, 
116.728 

-0.814, 
111.176 

6.328, 
13.555 

6.399, 
16.247 

6.283, 
14.606 

6.765, 
14.470 

6.086, 
15.207 

Experiment 
2 

-1.557, 
39.848 

1.094, 
36.152 

-0.226, 
38.234 

-0.017, 
39.190 

-0.355, 
37.034 

2.813, 
4.969 

2.845, 
6.011 

2.848, 
5.470 

2.976, 
5.352 

2.692, 
5.522 

Experiment 
3 

4.203, 
58.375 

4.496, 
59.006 

4.465, 
58.797 

5.037, 
58.741 

3.631, 
58.764 

5.387, 
2.943 

4.714, 
2.687 

4.677, 
2.695 

4.750, 
2.743 

5.291, 
2.955 

Experiment 
4 

0.459, 
50.838 

3.497, 
50.373 

1.962, 
50.563 

2.412, 
50.792 

1.512, 
50.402 

4.173, 
5.564 

4.706, 
5.163 

4.392, 
5.344 

4.600, 
5.663 

4.221, 
5.151 

Experiment 
5 

3.108, 
16.169 

-0.551, 
20.964 

1.160, 
18.952 

1.809, 
18.440 

1.523, 
19.280 

11.600, 
18.173 

13.630, 
20.438 

10.752, 
16.307 

11.265, 
19.456 

10.264, 
16.104 

Experiment 
6 

0.497, 
51.158 

3.529, 
50.718 

1.924, 
50.870 

2.428, 
51.026 

1.573, 
50.847 

4.066, 
3.812 

4.619, 
3.800 

4.251, 
3.696 

4.497, 
3.950 

4.229, 
3.705 

Experiment 
7 

3.276, 
16.483 

-0.112, 
19.516 

1.810, 
19.429 

1.740, 
19.153 

0.928, 
19.345 

9.207, 
18.100 

10.568, 
17.280 

8.443, 
13.852 

8.744, 
18.081 

8.514, 
12.221 

 

Table 6 – MDS node 5 

Node 5 

 Mean Values (x, y) Standard Deviation Values (x, y) 
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min 
Experiment 

1 
147.999, 
111.239 

152.073, 
93.247 

150.260, 
102.481 

150.617, 
106.293 

149.721, 
98.406 

5.187, 
13.685 

4.896, 
14.516 

4.902, 
13.744 

5.090, 
13.811 

4.846, 
14.270 

Experiment 
2 

54.930, 
34.104 

56.539, 
26.837 

55.822, 
30.636 

56.128, 
31.810 

55.529, 
29.325 

1.881, 
5.066 

1.766, 
5.139 

1.770, 
4.933 

1.818, 
4.963 

1.757, 
5.101 

Experiment 
3 

59.394, 
39.378 

59.865, 
37.128 

59.706, 
38.180 

60.119, 
38.247 

59.160, 
38.323 

2.754, 
3.836 

2.148, 
3.384 

2.285, 
3.353 

2.267, 
3.403 

2.511, 
3.724 

Experiment 
4 

47.395, 
8.802 

47.997, 
6.019 

47.689, 
7.225 

47.540, 
8.170 

47.891, 
6.957 

5.449, 
10.115 

5.298, 
9.788 

5.347, 
9.987 

5.606, 
10.971 

5.056, 
9.155 

Experiment 
5 

57.887, 
37.436 

56.636, 
34.243 

58.265, 
36.427 

58.480, 
36.479 

57.464, 
36.363 

11.775, 
20.548 

11.542, 
25.529 

10.239, 
21.819 

11.570, 
23.888 

10.200, 
19.467 

Experiment 
6 

47.245, 
8.883 

47.936, 
6.159 

47.610, 
7.309 

47.394, 
8.155 

47.805, 
7.135 

5.276, 
8.897 

5.119, 
8.786 

5.215, 
8.798 

5.365, 
10.061 

5.071, 
7.724 

Experiment 
7 

57.167, 
35.897 

55.645, 
33.589 

57.176, 
35.446 

57.595, 
36.504 

56.364, 
34.408 

10.360, 
17.279 

9.792, 
19.971 

7.148, 
17.875 

7.262, 
17.806 

8.451, 
16.483 
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4.3 Conclusions 

4.3.1 Testing maximum RSSI 

On this matter, the maximum RSSI value, which is the base of the transformation from 
RSSI to signal space distance (distance = RSSImax – RSSI), is tested with a big value and, 
based on the CC2420 datasheet, with a more realistic approach. 

The graphic disposition of the nodes is clearly alike in experiments one and two, but, the 
standard deviation (STD) is larger in the first. However, this is not significant since the 
ratio is about the same. 

This is the expected outcome, since the values of RSSI and the filtering was the same, so 
the distribution should be the same as well. 

 

4.3.2 Testing the use of Adaptive-TDMA (Time Division Multiple Access) 

On this matter, Adaptive-TDMA is turned on and off and the results are compared. 
Furthermore, two values of message transmitting cycle are compared. 

As can be easily seen, from experiments two and three vs. four and five, the message 
cycle 500ms produces the best results. This is usually due to the mean occupancy. But, 
since the messages transmitted are relatively short (6*6 byte matrix and 6*1 byte aging 
vector plus message header and tail), at a transmission rate of 250Kbps the time of 6 
messages is in the order of 10-20 millisecond, much smaller than the window of 100ms. 
So, in this case, the results were not fully expected. At any rate, the larger transmitting 
window produces the best results. 

As far as the Adaptive-TDMA influence in the results is concerned, it can be seen that in 
the 500ms case the difference is not even close to significant. But, if the 100ms case is 
considered, the Adaptive-TDMA experiment produces results with a much smaller STD 
than the no Adaptive-TDMA. Once again, we can infer that the organization of the 
communications produces less noise on the environment creating better RSSI readings. 

Notice that with a 500ms window the results come with less scattering but the system 
dynamic is slower than with the 100ms. 

 

4.3.3 Testing the use of different sample window sizes and sample 
selection algorithms 

On this matter, two different cases have been studied: a sampling window of 3, where all 
non-zero samples are taken into account, and a sample window of 5, where some 
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samples are rejected. The rejection rule is: If only one non-zero value exists, it is used; if 
two exist, the smaller is rejected; if more than two exist, the highest and the lowest are 
rejected and the others are taken into account. 

In experiments six and seven, these rules were put to the test. First, by using Adaptive-
TDMA and, in the latter, not using Adaptive-TDMA. In the first, and comparing it with 
experiment four, the results were very improved, making these values usable in the 
algorithm. On the other hand, comparing experiments five and seven the scattering still 
exists in approximately the same scale. 

 

4.3.4 Final Considerations 

In the end, neither of the different approaches, each using different parts of the extended 
connectivity matrix, shows an improvement to another. This means that in order to use 
MDS the extended connectivity matrix can be considered symmetrical and, as such, the 
number of values transmitted can be reduced. 

On the other hand, the factors tested (Max RSSI considered, communications cycle 
duration and synchronization, and data sampling and selection) are very significant to the 
results. After these experiments, it is possible to conclude that when accurate results are 
required, a large window of transmission is a good option. Also, when fast dynamics are 
required, a smaller window, a synchronizing algorithm, a sample window, and rejection 
algorithm should be used in order to reduce scattering. 

 



 37 

Chapter 5 

Implementing the navigation strategy 

To perform the navigation tests with the robot two methods were tested. The first one is 
the oblivious method that, as already described, is a very simple method that only needs 
to know the current and the previous RSSI reading. The second one is the MLE (maximum 
likelihood estimation) method, that, as previously described, is an iterative method that 
needs to know the steps taken by the robot and, in addition, a larger set of RSSI readings 
than the oblivious one. In spite of different implementations, the algorithm is very similar, 
being the only difference the move decision made.  

In this chapter, the setup, the implementation, and the experiment are explained and the 
experimental results are shown and commented. 

5.1 Implementation description 

This implementation has three important elements which will be described below – the 
beacons, the robot and the computer. 

 

5.1.1 The beacons 

To begin with, crossbow’s MicaZ motes, Figure 28, were placed as two beacons. Each 
beacon is actually a set of 3 nodes separated by 5cm. This was done as to reduce the 
impact of RSSI noise, as suggested by [4]. These nodes, which have one antenna each, are 
properly synchronized and their purpose is to emulate a single node with three antennas. 
The synchronization is made in the following way. Each beacon has a master node, that 
triggers the beacon transmission, and two slaves. It’s just the masters of each beacon that 
synchronize between them using the Adaptive-TDMA method. The slaves are 
synchronized in each beacon by the respective master, transmitting after a short interval. 
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In each node, a periodic beacon containing the RSSI table, an aging vector and, if needed, 
requested moves and performed moves, is sent with a period of 500ms. When the other 
motes receive this beacon, they update their RSSI table accordingly and save the 
information the CC2420 chip provides about the transmission (Link Quality Indicator and 
Received Signal Strength Indicator) for future input of their own information in the table. 
Additionally the received transmissions with a LQI inferior to a threshold, in our case 100, 
are disregarded; so, RSSI is not saved (according to CC2420 datasheet, RSSI is above -60 
and below 40, so, in order to make it positive, for a simpler transmission, an offset of 60 is 
added). This is shown in Algorithm 1. 

Also periodically, the values on the RSSI table are first cleaned up (if too old), and new 
values (previously saved) are included in the table. 

Finally once the node connected to the computer receives a message, it dispatches the 
information to the computer via the MIB600 board. 

The following experiments were all done with the transmission power set to -19.17dBm. 

 

 

Algorithm 1 – New message processing by MicaZ 
/* TDMA */ 
if(source is the master of this group) 
 set_send_time; 
else 
 if(source is another master and  i am a master) 
  resync; 
 endif 
endif  
 
 
/* Get RSSI data from message */ 
if(receivedLQI>LQI_THRESHOLD) 

MicaZ 

TinyOS 
with nesC 

IEEE802.15.4 

Spread information 

 

Figure 28 – The MicaZ beacons setup 
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 RSSI=getRSSI; 
else  
 RSSI=0; 
endif 
LQI=receivedLQI; 
 
/* Get RSSI table */ 
if(piggyback has RSSI table) 
 get_data_from_message; 
 for i=other_nodes 
  if(received_table_age[i] is newer) 
   replace_local_table[i]; 
   replace_local_age[i]; 
  endif 
 endfor 
endif 
 
/* Get requested moves */ 
if(piggyback has requested moves) 
 if(received_requested_move[i].step is newer) 
  get_requested_move[i]; 
  if(is for me) start_moving; 
 endif 
endif 
 
/* Get perdformed moves */ 
if(piggyback has performed moves) 
 if(received_performed_move[i].step is newer) 
  get_performed_move[i]; 
 endif 
endif 
 
/* Check and set send moves status */ 
if(performed_moves_steps >= requested_moves_steps) 
 send_only_performed_move; 
else 
 send_only_requested_move; 
endif 
 
/* Send data to computer */ 
if(connected to computer) 
 send_data_to_computer; 
endif 
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5.1.2 The robot 

To begin with, since these experiments include a moving robot controlled by a MicaZ 
mote, as seen in Figure 29, the above explanation is still valid. The only difference resides 
in the fact that only one node, and not a set of nodes, is present on the robot. 

Algorithm 2 – Robot’s moving algorithm 
/* Move Robot */ 
if(robotState is IDLE) 
 robotState = ROTATING; 
 reset_counters; 
 rotate; 
else  
 if(robotState is ROTATING) 
  go_forward; 
 else 
  robotState = IDLE; 
 endif 
endif  
 

Adding to the previous, there is the task of putting the robot in motion. This task has been 
simplified by making the moves very simple: rotate and move forward, Algorithm 2; but it 
still has a problem associated the existence of obstacles in the way of the robot. To cope 
with this nuisance the obstacle sensors were embedded in the robot and their usage is 
also very simple, as described below. 

 

Left 
Motor 

Right 
Motor 

L293E 

LS7366 LS7366 

Left 
Sensor 
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Figure 29 – The robot setup 
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Initially, the robot receives a message containing the orders issued by the computer (step 
sequence number, forward distance, and spin angle) and, if the sequence number on the 
message is greater than the previous one it follows those instructions (see Algorithm 1). 
First, the robot starts to rotate and when the desired angle has been reached it stops. If 
an obstacle is in front of the robot the forward movement will be impossible. So, in order 
to avoid this situation, the robot, continues to rotate until the way is clear. After that, the 
forward move is performed. In this case, the solution is even simpler. If an obstacle is too 
close, it stops. 

Once this is done the robot didn’t follow exactly the instructions issued by the computer. 
So, in order to have a correct assessment of the robots’ movement on the computer, a 
message containing the values of spin angle and forward distance is sent back to the 
computer through the network. 

 

 

5.1.3 The computer 

The computer setup is as shown in Figure 30 and its functions go from filter the RSSI data 
to control the progress of the robot throughout the experiments. The program runs in 
Matlab, Algorithm 3, and calls Java methods. 
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 Figure 30 – The computer setup 



42 Chapter 5 - Implementing the navigation strategy 

Note that up to this point the emulation of a three antenna node is not concluded since 
the received information is still from 7 different nodes. So, in order to finalize this 
emulation, the mean of the several non-zero RSSI values, that integrate a set of nodes in 
the extended connectivity matrix, is calculated like it is shown in 

RSSI data Processing 

Figure 31. 

Finally, to conclude the RSSI data acquisition, Algorithm 4, each time this program 
receives the extended connectivity matrix, from the MIB600 board via TCP/IP, it writes it 
on a sampling table, which holds the information of three previous matrixes (sampling 
window). Then, this information is used to calculate a mean for each element in the 
sampling table creating the RSSI sample. 

Algorithm 3 – Matlab code 
RunStep=1; 
currentBeacon=0; 
generateMove(RunStep, currentBeacon); 
while(RunStep<500) 
    requested_move_done=getNewData(); % Includes Filtering 
    if(trequested_move_done) 
        RunStep=RunStep+1 
        moveDone(currentBeacon); 
        generateMove(RunStep, currentBeacon); 
  
 {...get log...} 
 
        if(RSSI_reading>35) 
            counter=counter+1 
             
            if(counter==3) 
                if(theend) 
                    break; 
                endif 
 
                counter=0; 
 
                currentBeacon=currentBeacon+1 
 
                currentBeacon=mod(currentBeacon,2); 
                if(currentBeacon == last_beacon) 
                    theend=true; 
                endif 
            endif 
        elseif(RSSI(movingCluster+1,currentBeacon+1,RunStep)<30) 
            counter=0; 
        endif 
    endif 
endwhile 
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Adding to the extended connectivity matrix, the information about the performed moves 
also arrives to the computer. This information, if newer than the previous one, is saved 
and a set of operations is triggered. 

Movement Planning 

 

 

 

First, since this means the previous move is done, the information on the new position 
and angle is calculated and saved (note that this information is only important in the MLE 
method as the oblivious does not need to know the position or angle). The current RSSI 
data is also saved associated with the position, Algorithm 5. 

Once this is done, there is finally time to perform the new move. This will be done in 
different manners, depending on the method in use. 

 

Algorithm 4 – getNewData method 
Outputs: newPerformedMoveArrived 
 
data=readDataFromMIB(); 
if(piggyback has RSSI table) 
 receivedRSSI=data.RSSI; 
endif 
 

 0 1 2 3 4 5 6 

 

 0 1 2 

0 0 35 22 31 31 33 25 

0 0 33,2(2) 31 1 38 0 35 24 52 34 24 

2 23 35 0 29 23 42 44 

3 0 23 29 0 19 36 12 

1 33,125 0 15.6(6) 4 31 51 24 21 0 27 11 

5 31 33 43 37 26 0 23 

6 26 24 43 13 11 23 0 2 31 15.6(6) 0 

Figure 31 – Single-node beacon (left); Multi-node beacon (right) 
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/* No requested moves return to computer*/ 
 
/* Get perdformed moves */  
if(piggyback has performed moves) 
 performedMoves=data.performedMoves; 
endif 
 
RSSI = calculate_multi_node_beacon_RSSI(receivedRSSI);   
Samples[SampleCounter] = RSSI; 
 
SampleCounter++; 
SampleCounter%=SAMPLE_SIZE; //SAMPLE_SIZE=3 
SampleRSSI=mean(Samples); 
 
if(new_performed_move) 
 return true; 
else 
 return false; 
endif 
 
 

Movement with the oblivious method 

In the beginning of the run, the robot goes to a random direction. If the difference 
between the RSSI reading in this new location and the reading in the previous location 
proves to be positively greater than a set threshold, then the robot proceeds in the same 
direction, since it means the robot is approaching the beacon. If, on the other hand, the 
value is negatively greater than the threshold, the robot turns around, since the beacon is 
further. Finally, if the threshold is not met, the robot rotates randomly and proceeds. 
Once the computer decides what to do, it sends the information to the robot, which will 
perform the step. This is shown in Algorithm 6. 

 

Algorithm 5 – moveDone method 
Inputs: currentDestination 
 
 calculate_new_angle_from_performed move; 
 calculate_new_position from performed move; 
 writeLog(); 
 

Movement with the MLE method 

To begin with, the MLE method, Algorithm 7, needs some information to start the 
iterations, which will, eventually, lead to the objective. This is done by making a small 
number of random tentative moves, 𝑁𝑁𝑝𝑝𝑅𝑅𝑆𝑆 , in order to acquire data to feed to the 
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algorithm. After this data is available, the iterations start, and the pursuer starts to 
approach the beacon. 

 

Algorithm 6 – generateMove method with oblivious 
Inputs: RunStep 
 currentDestination 
 
if (abs(RSSI-RSSI_old)<RSSI_THRESHOLD) 
 Random_Move; 
else 
 if(RSSI-RSSI_old>0.0) 
  Keep_Going; 
 else 
  Turn_Around; 
 endif 
endif 
RSSI_old= RSSI; 
while(angle>180.0) 
 angle-=360.0; 
endwhile 
while(angle<-180.0) 
 angle+=360.0; 
endwhile 
send_move_request(); 
 

As mentioned before this is not enough in high noise environments and as such, after 
each step is taken, more data is collected filling a queue until a maximum size, 𝑁𝑁𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑅𝑅 . 
This queue is used as a circular buffer, in which newer information replaces the oldest 
one. This allows the collection of more data while already approaching the objective, and, 
in a low noise environment, the quick approach to the objective. 

The experiments in [4] suggest the use of 𝑁𝑁𝑝𝑝𝑅𝑅𝑆𝑆 = 4 and 𝑁𝑁𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑅𝑅 = 12 so that, in a low 
noise environment, after four steps, the pursuer is already chasing the objective; in a high 
noise environment, the pursuer collects data up to twelve steps and is still able to reach 
the objective. 

Note that, since the computer has all the data regarding the RSSI readings from all the 
nodes, once the robot changes target, the data fed into the MLE algorithm is data 
previously collected. So, instead of beginning with zero entries in the queue, it begins 
with the most recent entries already collected, up to a maximum of twelve. 

This data, which is composed by positions and RSSI readings, is used during the iterations 
to estimate the position of the beacon. The first thing to is do, is to transform the RSSI 
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reading in signal space distances and then feed the positions and these calculated 
distances to the MLE algorithm. This algorithm uses the system with n equations that 
describe the distance between two points:  

�
(�̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑚𝑚1)2 + (𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑦𝑦1)2 = 𝑅𝑅1

2

⋮
(�̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑚𝑚𝑆𝑆)2 + (𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑦𝑦𝑆𝑆)2 = 𝑅𝑅𝑆𝑆

2
� 

 

Then, the n-th equation is subtracted from the others, resulting in the n-1 equation 
system: 

⎩
⎪
⎨

⎪
⎧

2 ∗ �̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚1) + 2 ∗ 𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦1) =
= 𝑅𝑅1

2 − 𝑚𝑚1
2 + 𝑚𝑚𝑆𝑆2 − 𝑦𝑦1

2 + 𝑦𝑦𝑆𝑆2

⋮
2 ∗ �̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚𝑆𝑆−1) + 2 ∗ 𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦𝑆𝑆−1) =

= 𝑅𝑅𝑆𝑆−1
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This allows writing: 

𝑆𝑆�̅�𝑚 = 𝑏𝑏 

𝑅𝑅ℎ𝑅𝑅𝑟𝑟𝑅𝑅, 

𝑆𝑆 = �
2 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚1)

⋮
2 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦1)

⋮
2 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚𝑆𝑆−1) 2 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦𝑆𝑆−1)

� 

 

�̅�𝑚 = ��̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆
� 

 

𝑏𝑏 = �
𝑅𝑅1

2 − 𝑚𝑚1
2 + 𝑚𝑚𝑆𝑆2 − 𝑦𝑦1

2 + 𝑦𝑦𝑆𝑆2

⋮
𝑅𝑅𝑆𝑆−1
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The next step is to solve the system in order to get the estimate beacon position: 

𝑆𝑆�̅�𝑚 = 𝑏𝑏 ⟺ 𝑆𝑆𝑇𝑇𝑆𝑆�̅�𝑚 = 𝑆𝑆𝑇𝑇𝑏𝑏 ⟺ �̅�𝑚 = (𝑆𝑆𝑇𝑇𝑆𝑆)−1𝑆𝑆𝑇𝑇𝑏𝑏 
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Note that this is actually the least squares method, which minimizes the residual of the 
beacon position estimate. 

Finally, once the beacon estimate position is calculated, the computer can calculate how 
much the robot needs to rotate. This is done by transforming the Cartesian coordinates 
(x, y) into polar coordinates (distance, angle) and, finally, by subtracting to this calculated 
angle the angle the robot is currently pointing to. This new requested move is then sent 
back to the robot. 

 

 

Algorithm 7 – generateMove method with MLE 
Inputs: RunStep 
 currentDestination 
 
if(Nsamples<=Nten) 
 random_move(); 
else 
 positions=getPositions(Nsamples); 
 distances=getDistances(Nsamples); 
 Beacon = MLE(Nsamples,positions, distances); 
 angle = Math.atan2(y_Beacon-y_RobotPosition, x_Beacon-x_RobotPosition); 
 angle = angle-currentDirection; 
 while(angle>180.0) 
  angle-=360.0; 
 endwhile 
 while(angle<-180.0) 
  angle+=360.0; 
 endwhile 
endif 
send_move_request(); 
 

 

5.1.4 Condition of arrival at the beacon 

The final issue to be taken into account by the computer is the arrival at the beacon. The 
strategy to consider a valid arrival at the beacon was based on observation of the 
behavior of the RSSI with the distance. The conclusions from observation were that near 
the beacon the RSSI values would easily be above thirty five. This value was then made 
into a threshold so that, when the RSSI rises above it, the robot is in the vicinity of the 
beacon. A problem still persists at this point. The interferences allow such a high reading 
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to be received far away from the beacon. So, one reading above the threshold is not 
enough to validate the arrival. Three readings above that threshold were then made 
compulsory so that the program considers a successful arrival. But, adding to this, one last 
issue remains since the robot can move away from the beacon or even go to an area that 
has destructive interference. Therefore, in order to finally settle this, a second lower 
threshold, with the value of thirty, was created so that the count does not reset while the 
RSSI doesn’t drop below that value. This is illustrated in Figure 32 and Algorithm 3. 

 

 
Figure 32 – Arrival Condition 

 
 

5.2 Obtained Results 

Here, the results of the navigation experiments will be shown. The objective of this 
experiment is to test the capability of navigation in a multi-beacon environment using the 
two methods described before, oblivious and MLE. The setup, as mentioned above, is two 
beacons, one robot and one computer. The task the robot has to perform is to go from 
the starting point (0, 0), to beacon zero (0, 300), then go to beacon one (45, 75) and, 
finally, return to beacon zero (0, 300). All this based only on the received RSSI readings, 
i.e. no encoder readings will be used to return to beacon zero. 

All the following experiments were made in the same conditions and repeated several 
times, both with the oblivious and MLE methods. Bellow, three samples of each are 
presented and discussed.  
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5.2.1 Oblivious method results 

Experiment 1 

 
Figure 33 – Oblivious method path- experiment 1 

 

 
Figure 34 – Oblivious method RSSI received by node 2- experiment 1 
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Experiment 2 

 
Figure 35 – Oblivious method path- experiment 2 

 

 
Figure 36 – Oblivious method RSSI received by node 2- experiment 2 
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Experiment 3 

 
Figure 37 – Oblivious method path- experiment 3 

 

 
Figure 38 – Oblivious method RSSI received by node 2- experiment 3 
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5.2.2 MLE method results 

Experiment 1 

 
Figure 39 – MLE method path- experiment 1 

 

 
Figure 40 – MLE method RSSI received by node 2- experiment 1 
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Experiment 2 

 
Figure 41 – MLE method path- experiment 2 

 

 
Figure 42 – MLE method RSSI received by node 2- experiment 2 
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Experiment 3 

 
Figure 43 – MLE method path- experiment 3 

 

 
Figure 44 – MLE method RSSI received by node 2- experiment 3 
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5.2.3 Final Considerations 

By a quick analysis of the above graphics above, it becomes clear clear that the number of 
steps needed to make the first approach, using the MLE method, is much larger than in 
the second and third approaches. This is easily explained. While in the first approach 
there is a lack of values, on the queue of data fed to the MLE, in the following approaches 
there are 12 values available to feed the algorithm, which makes a much more precise 
estimation possible. Another point of interest is the constant rise of the RSSI values with 
this method, which shows how effective the algorithm is. 

On the oblivious method, on the other hand, there are rises and falls in the readings and 
the results are much more inconstant. While with the MLE, the first approach is slow and 
the subsequent are faster, with the oblivious method sometimes they are faster and 
sometimes they are slower. This is not at all unexpected due to the random nature of the 
oblivious algorithm. 

Table 7 – Number of steps needed with oblivious 
Number of steps needed Experiment 1 Experiment 2 Experiment 3 
Beacon 0 8 12 13 
Beacon 1 16 10 22 
Beacon 0 5 14 16 
 

Table 8 – Number of steps needed with MLE 
Number of steps needed Experiment 1 Experiment 2 Experiment 3 
Beacon 0 15 23 31 
Beacon 1 11 15 6 
Beacon 0 10 7 8 
 

Finally in experiment 3, with the MLE, a lot of going back and forward is visible. Although 
this seems contradictory to the algorithm, by observing the experiment, it is possible to 
see that that was caused by the existence of obstacles which did not allow the robot to 
move where it wanted to and, therefore, collect RSSI values with a larger difference. This 
shows a possible weak point of the MLE algorithm – the big dependence on a good 
relationship between the RSSI with the distance – which makes the robot, if trapped in a 
location where the readings are very similar, to take a while or not be able to proceed. 
Although a similar pattern exists in experiment 3, with the oblivious method, this was not 
created by the obstacles but by the natural randomness of this method. 

A possible solution for the MLE problem mentioned above is to check the positions the 
robot was at, and where it is. Based on that, and on the beacon estimates, is possible to 
make the robot move somewhere he hasn’t been in recent time so that it can collect 
more and different information. Also interesting would be to perform these experiments 
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in an obstacle free environment. This would avoid interferences caused by the obstacles 
in the algorithms, either helpful or detrimental. 
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Chapter 6 

Conclusions and future work 

6.1 Conclusions 

The objective of this dissertation was to study, implement and test several relative 
localization and navigation techniques on a multi-beacon environment, based only on the 
RF signal of wireless communications. 

On the subject of localization, the MDS algorithm was tested with different transmission 
synchronization, RSSI filtering, and bandwidth parameters and the results were given 
comparative evaluation. This test, to the best of our knowledge, had never been done 
and confirmed that the tuning of these parameters has a significant toll on the 
performance of this algorithm. Other tests were conducted on the MDS algorithm and on 
these the intent was to check if using the different parts of the extended connectivity 
matrix, e.g. top triangle or bottom triangle, would make any improvements or, on the 
downside, make the behavior worse. But, unlike the parameters adjustment, the 
difference on the results these tests produced proved to be too little to be considered 
either a benefit or a drawback. 

 

On the subject of navigation, the resulting work was experimentally evaluated, with 
emphasis on the comparative evaluation of the oblivious method and the MLE method. In 
the performed experiments it was perceived that neither method is quicker than the 
other, which was not expected, since the iterative method was thought to be faster to 
complete the experiment than the oblivious method. However, this was clearly due to the 
relatively large number of initial steps taken by the MLE method. After the initial steps, 
needed to acquire a good notion of the target direction, MLE was much faster, with 
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relatively little deviations, directed to the position where the beacon was. The oblivious 
method, on the other hand, shows a constant and higher tendency to deviate from the 
beacon due to its randomness. Finally, the MLE´s big dependence on a good relationship 
between the RSSI and the distance was exposed as a weak point when using this method. 

 

6.2 Future work 

Some ideas, either by lack of means of lack of time, were not experimented on. Thus, they 
will be dealt with in this section. 

 

6.2.1 Improving the MLE algorithm 

The MLE algorithm used only moves according to the beacon estimate position. But, since 
the robot already has encoders, it is possible to go beyond this. 

The suggestion left here is to use the already equipped platform of the robot to map the 
positions the robot has visited before. Using this information, together with the beacon 
estimate, makes it possible to plan the movement, which can avoid the collection of data 
in the same points over and over. This will not only help avoid the dependence issued in 
the experiments, which can have detrimental effects on the algorithm, but, possibly, will 
also reduce the time the robot takes to go to the beacon, since the samples will be taken 
with a larger distance from one another. 

 

6.2.2 Multi-Robot experiment 

Due to hardware constraints, in the work developed it was only possible to build a robot. 
So, the second suggestion is that it would be interesting to compare the results of a robot 
approaching a beacon with a robot approaching a robot. 

These tests are appealing because a larger queue of data to feed the MLE reduces the 
error of the estimate. Nevertheless, if the target moves, the system will be slower to react 
to that change. So, the feasibility of applying MLE in a noisy environment with a moving 
target is not as straightforward as it is with a static beacon. On the other hand, a reactive 
method, like the oblivious, should react very much in the same way either with static or 
moving nodes. 
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6.2.3 Wide space experiment 

It has been mentioned before that the obstacles interfere with the movement of the 
robots. This happens in both ways, either helping the robot reach the target as well as 
making it harder. The point is, to be able to really test the efficiency of the algorithms and 
compare them, without any help or hinder from the obstacles, it would be necessary to 
perform the experiments with the algorithms in a large area. This could bring precious 
extra information that could help to further differentiate the performance between the 
algorithms. 
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