
 Universidade de Aveiro
2009

Departamento de Electrónica e Telecomunicações e
Informática

Luís Filipe Nunes
Quaresma de Oliveira

NAVEGAÇÃO EM ROBÔS MÓVEIS BASEADA EM
COMUNICAÇÃO RF AD-HOC

MOBILE ROBOT NAVIGATION BASED ON AD-HOC
RF COMMUNICATION

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15562318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Universidade de Aveiro

2009
Departamento de Electrónica e Telecomunicações e
Informática

Luís Filipe Nunes
Quaresma de Oliveira

NAVEGAÇÃO EM ROBÔS MÓVEIS BASEADA EM
COMUNICAÇÃO RF AD-HOC

MOBILE ROBOT NAVIGATION BASED ON AD-HOC
RF COMMUNICATION

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações, realizada sob a orientação científica do Prof.
Doutor Luís Almeida, Professor Associado da Faculdade de Engenharia da
Universidade do Porto e co-orientação científica do Prof. Doutor Paulo
Pedreiras, Professor Auxiliar do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro.

Dedico este trabalho a todos os meus amigos e família por todo o apoio
e amizade dados ao longo destes anos.

O júri

Presidente Professor Doutor Nuno Miguel Gonçalves Borges de
Carvalho
Professor Associado da Universidade de Aveiro

Vogais Professor Doutor Paulo José Lopes Machado Portugal
Professor Auxiliar do Departamento de Engenharia Electrotécnica e de
Computadores da Faculdade de Engenharia da Universidade do Porto

 Professor Doutor Luís Miguel Pinho de Almeida (Orientador)
Professor Associado da Faculdade de Engenharia da Universidade do
Porto

 Professor Doutor Paulo Bacelar Reis Pedreiras (Co-
Orientador)
Professor Auxiliar do Departamento de Electrónica, Telecomunicações
e Informática da Universidade de Aveiro

Agradecimentos

Aqui deixo os agradecimentos a todos os que contribuíram para o
desenvolvimento desta dissertação:

Em primeiro lugar, gostaria de agradecer ao meu orientador, Prof.
Doutor Luís Almeida. Apesar de se encontrar a longa distância
sempre se disponibilizou a prestar o apoio necessário.

Em segundo lugar, ao meu Co-orientador, Prof. Doutor Paulo
Pedreiras. Pelo constante apoio e pelas “dicas” que sempre
ajudaram a resolver problemas que foram surgindo.

Gostaria de agradecer também à “malta” da 234, em especial
Nuno Marujo, Luís Farinha, Rui Sancho e José Santos. Todos
eles sempre disponíveis para ajudar e grandes companheiros da
“hora da bucha”.

Agradeço também ao meu colega de casa Pedro Brochado por
me aturar até nos dias de pior humor.

Não me posso esquecer dos companheiros de laboratório
Ricardo, Alexandre, Rui e Milton pelos bons momentos passados
no decorrer deste ano.

Ao meu amigo Pedro Silva pelo papel fundamental no final deste
trabalho.

Aos amigos e colegas Jorge Rodrigues e Margarida Fernandes
pelos fins-de-semana de descontracção proporcionados no
decorrer deste ultimo ano.

A toda a minha família pelo constante apoio e incentivo que
sempre me deu.

Por fim aos meus amigos que não estando tão envolvidos tão
directamente neste trabalho sempre me apoiaram e não devem
ser esquecidos.

A todos muito obrigado.

Palavras-chave

RSSI, localização relativa, MLE, multidimensional scaling, RF, MicaZ, rede de
sensores sem fios.

Resumo

Actualmente a utilização de redes de sensores sem fios, com nós quer
estáticos quer moveis, é cada vez mais apelativa. Desde simples aplicações
de monitorização, como por exemplo parâmetros ambientais, até aplicações
complexas de busca e salvamento, a localização dos vários nós da rede é
fundamental. No caso de mobilidade na rede acresce ainda a necessidade de
uma capacidade de navegação eficiente.
Dado o facto de que em muitas das aplicações de redes de sensores sem fios,
como por exemplo operações de busca e salvamento em que o tempo de
resposta tem de ser obrigatoriamente curto, é impossível fazer previamente o
planeamento e a implementação de uma infra-estrutura, torna-se
imprescindível a utilização de métodos de localização que não dependam de
pontos conhecidos.
No âmbito desta dissertação são estudadas técnicas de localização e
navegação relativas, baseadas simplesmente no sinal RF das comunicações
sem fios. Relativamente à localização foram realizados testes com diferentes
parâmetros relacionados com as comunicações. Estes são importantes devido
à necessidade de estudar o impacto destes factores no cálculo da topologia da
rede. O trabalho desenvolvido relativamente à navegação foi avaliado
experimentalmente, com incidência na avaliação comparativa dos diversos
métodos propostos, i.e., um método oblívio baseado em direcções aleatórias e
outro baseado na técnica MLE - Maximum Likelihood Estimator. Apresentam-
se nesta dissertação os respectivos resultados que permitem verificar o melhor
desempenho em convergência para o objectivo usando MLE à custa de maior
custo computacional. Em particular, foi possível fazer um robô móvel percorrer
um trajecto entre dois faróis de RF, navegando apenas com informação de
RSS.

Keywords

RSSI, relative localization, MLE, multidimensional scaling, RF, MicaZ, wireless
sensor network.

Abstract

Nowadays the usage of wireless sensor networks, with either static or mobile
nodes, has been an area of growing interest. From the simplest applications of
monitoring, i.e. environmental parameters, to the most complex search and
rescue applications, the localization of the various nodes of the network is
fundamental. In the situation at which the network has mobility there is
additionally a need of the ability to efficiently navigate.
Due to the fact that in many of the applications, i.e. search and rescue
situations where the time of action is critical, is impossible to perform a
previous planning and building of a framework, anchor free relative localization
methods become indispensable.
In this dissertation several relative localization and navigation techniques,
based only on the RF signal of the wireless communications, are studied. On
the subject of localization, different parameters related with the
communications were tested. These are significant because of the necessity of
studying the impact of such factors in calculating the network topology. On the
subject of navigation the resulting work was experimentally evaluated, with
emphasis on the comparative evaluation of the several methods presented in
this dissertation, namely a simple oblivious method based on random directions
and another one based on MLE - Maximum Likelihood Estimator. The results
show the superiority of MLE concerning the speed of getting to the target at the
cost of extra computations. In particular, in the scope of this dissertation we
have made a small autonomous robot move between to RF beacons, using
RSS information, only.

 i

Table of Contents

1 Introduction ... 1

1.1 The appeal for cooperating robot teams .. 1

1.2 Relative localization for coordination .. 2

1.3 RSSI based localization and navigation ... 3

1.4 Objectives ... 4

1.5 Dissertation structure .. 5

2 Related work .. 7

2.1 Relative localization .. 7

2.1.1 MDS-based relative localization .. 7

2.2 Navigation ... 10

2.2.1 Using MDS ... 10

2.2.2 Using an oblivious method .. 11

2.2.3 Using MLE .. 11

3 Experimental framework ... 15

3.1 The nodes ... 15

3.1.1 Wireless communications ... 16

3.2 The robot .. 19

3.3 Programming the robot ... 19

3.3.1 Obstacle sensors ... 20

3.3.2 Motors ... 21

ii Table of Contents

3.4 System architecture ... 21

3.4.1 Executing complex computations ... 22

4 Experiments with the extended connectivity matrix using MDS 23

4.1 Implementation and Set up.. 24

4.1.1 Mote’s side .. 24

4.1.2 Computer’s side .. 25

4.2 Obtained Results ... 26

4.2.1 Tables of experiments results ... 33

4.3 Conclusions ... 35

4.3.1 Testing maximum RSSI .. 35

4.3.2 Testing the use of Adaptive-TDMA (Time Division Multiple Access) 35

4.3.3 Testing the use of different sample window sizes and sample selection
algorithms .. 35

4.3.4 Final Considerations .. 36

5 Implementing the navigation strategy ... 37

5.1 Implementation description ... 37

5.1.1 The beacons .. 37

5.1.2 The robot ... 40

5.1.3 The computer .. 41

5.1.4 Condition of arrival at the beacon .. 47

5.2 Obtained Results ... 48

5.2.1 Oblivious method results .. 49

5.2.2 MLE method results .. 52

5.2.3 Final Considerations .. 55

6 Conclusions and future work ... 57

6.1 Conclusions ... 57

6.2 Future work ... 58

6.2.1 Improving the MLE algorithm ... 58

6.2.2 Multi-Robot experiment ... 58

6.2.3 Wide space experiment .. 59

Table of Contents iii

7 Bibliography .. 61

 v

List of Figures

Introduction .. 1

Figure 1 - MOSRO MINI on Patrol[8] .. 2

Figure 2 - 'MOSROs' on Patrol in Shopping Mall[8] ... 2

Figure 3 - OFRO on Outdoor Patrol[8] ... 2

Figure 4 - Collision Warning Auto Brake [9] ... 3

Figure 5 – Pedestrian detection – illustration [9] .. 4

Related work .. 7

Figure 6 – Connectivity Matrix (left); Units topology (right) .. 8

Figure 7 – Extended Connectivity Matrix (left); Units topology (right) 9

Figure 8 – MDS navigations using motion vectors [2] ... 10

Figure 9 – The Oblivious algorithm .. 11

Figure 10 – The MLE algorithm .. 12

Figure 11 – Estimator illustration using four samples ... 13

Experimental framework .. 15

Figure 12 – MicaZ mote .. 16

Figure 13 – MDA300CA board .. 16

Figure 14 - MIB600 - Ethernet Gateway... 16

Figure 15 – IEEE802.11 and IEEE802.15.4 channels [17] ... 17

Figure 16 – Piggyback Message .. 18

Figure 17 – Piggyback Byte ... 18

Figure 18 – Robot created to perform the experiments .. 20

vi List of Figures

Experiments with the extended connectivity matrix using MDS 23

Figure 19 – RSSI table example .. 23

Figure 20 – Node distribution .. 25

Figure 21 – MDS experiment 1 .. 26

Figure 22 – MDS experiment 2 .. 27

Figure 23 – MDS experiment 3 .. 28

Figure 24 – MDS experiment 4 .. 29

Figure 25 – MDS experiment 5 .. 30

Figure 26 – MDS experiment 6 .. 31

Figure 27 – MDS experiment 7 .. 32

Implementing the navigation strategy ... 37

Figure 28 – The MicaZ beacons setup.. 38

Figure 29 – The robot setup ... 40

Figure 30 – The computer setup .. 41

Figure 31 – Single-node beacon (left); Multi-node beacon (right) 43

Figure 32 – Arrival Condition ... 48

Figure 33 – Oblivious method path- experiment 1 .. 49

Figure 34 – Oblivious method RSSI received by node 2- experiment 1....................... 49

Figure 35 – Oblivious method path- experiment 2 .. 50

Figure 36 – Oblivious method RSSI received by node 2- experiment 2....................... 50

Figure 37 – Oblivious method path- experiment 3 .. 51

Figure 38 – Oblivious method RSSI received by node 2- experiment 3....................... 51

Figure 39 – MLE method path- experiment 1 .. 52

Figure 40 – MLE method RSSI received by node 2- experiment 1 52

Figure 41 – MLE method path- experiment 2 .. 53

Figure 42 – MLE method RSSI received by node 2- experiment 2 53

Figure 43 – MLE method path- experiment 3 .. 54

Figure 44 – MLE method RSSI received by node 2- experiment 3 54

Conclusions and future work ... 57

Bibliography .. 61

 vii

List of Tables

Introduction .. 1

Related work .. 7

Experimental framework .. 15

Experiments with the extended connectivity matrix using MDS 23

Table 1 – MDS node 0 .. 33

Table 2 – MDS node 1 .. 33

Table 3 – MDS node 2 .. 33

Table 4 – MDS node 3 .. 34

Table 5 – MDS node 4 .. 34

Table 6 – MDS node 5 .. 34

Implementing the navigation strategy ... 37

Table 7 – Number of steps needed with oblivious .. 55

Table 8 – Number of steps needed with MLE .. 55

Conclusions and future work ... 57

Bibliography ... 61

 ix

List of Algorithms

Introduction .. 1

Related work .. 7

Experimental framework .. 15

Experiments with the extended connectivity matrix using MDS 23

Implementing the navigation strategy ... 37

Algorithm 1 – New message processing by MicaZ ... 38

Algorithm 2 – Robot’s moving algorithm ... 40

Algorithm 3 – Matlab code... 42

Algorithm 4 – getNewData method ... 43

Algorithm 5 – moveDone method ... 44

Algorithm 6 – generateMove method with oblivious .. 45

Algorithm 7 – generateMove method with MLE ... 47

Conclusions and future work ... 57

Bibliography ... 61

 1

Chapter 1

Introduction

The work is part of a larger framework involving the studies [1], [2], [3], [4] and involves
the study, as well as the comparative experimental evaluation of RSSI-based relative
localization and navigation algorithms.

This chapter begins with a small introduction to the subject of this dissertation pointing
out the growing interest for teams of robots cooperating with each other; then it refers to
relative localization; and concludes with RSSI-based navigation and localization.

1.1 The appeal for cooperating robot teams

It is said in [5] that “multiple-robot systems can accomplish tasks that no single robot can
accomplish”, and that is why a cooperating team of mobile robots joining together to
accomplish a common objective is an eye-catching possibility. Some of the applications
they can be used in include surveillance, exploration, manufacturing, and large volume
transportation. Adding to this, in situations where operator presence is impossible or
involves too high risks, an autonomous solution is even more appealing.

A good example of this is a team of vacuum cleaner robots [6], each one of them being
equipped with a wireless transceiver and communicating with each other. This enables
them to distribute according to a pattern and quickly perform the task, covering a large
area.

Adding to that and having the cost and feasibility in mind, the various robots may have
different acting capabilities, as in a mine field. As mentioned in [7], some of the team
elements may have detecting abilities and, while searching for mines in a formation, they

2 Chapter 1 - Introduction

guarantee coverage. The other elements, a smaller number of them, have in turn
sweeping abilities and are summoned after detection.

Figure 1 - MOSRO MINI on

Patrol[8]

Figure 2 - 'MOSROs' on Patrol

in Shopping Mall[8]

Figure 3 - OFRO on Outdoor

Patrol[8]

1.2 Relative localization for coordination

In what localization is concerned there are two major options. The first one is to know the
absolute localization; this means that there is the knowledge of an exact location, e.g. a
car in a motorway that is at kilometer 12.2. The other is to know the relative localization;
this means there is only the knowledge of a location based on the perception one has of
the environment, e.g. a car in a motorway traveled 12.2km relatively to the starting point.

As to the first one, and focusing on robots, some of the used localization methods are to
build a reference infrastructure or to use GPS (Global Positioning System). But, as it is
mentioned in [2], building an infrastructure is expensive, and even impossible in an
emergency situation, like search and rescue. The GPS, being satellite dependent and only
providing coarse-grained positions, is not an option in every situation.

The second one, on the other hand, doesn’t need any infrastructure and as such it can be
used in any place rapidly and with smaller costs. Being independent from exterior means
allows it to be used at any location and, using changes on the MANET (Mobile Adhoc
Network) topology, to cover larger areas.

There are multiple possible applications to relative localization. Some of them are indoors
or outdoors residential patrolling, airports, seaports, warehouses or even shopping mall
patrolling, as mentioned in [8] and as it can be seen in Figure 1, Figure 2 and Figure 3. In
those applications, it’s possible to position robots with different capabilities, as
mentioned by [1], so that an actuator robot, with a fire extinguisher, can approach a
probe robot that can detect a fire and interact according to the needs. Upscale this and
one can have a team of flying robots detecting and fighting forest fires.

1.3 RSSI based localization and navigation 3

Figure 4 - Collision Warning Auto Brake [9]

But the use of relative localization is not limited to robots. In addition, relative localization
can be used by humans. As with FINDER [10] with which firefighters can follow a signal to
another firefighter in trouble. Another example is monitoring people inside a hospital,
where patients can be located in case of an emergency. Additionally, radar systems found
on airplanes, or on submarines, and even a compass are means of relative localization.

Another area where relative localization can also have a useful application is Inter-Vehicle
Communication. In this area, different categories of applications are defined in [11]. ATIS
(advanced traveler information systems) where the targets, of communications
containing traffic situation, congestion and regulation, can be selected according to their
location; management of groups of vehicles, e.g. taxis; the messages exchanged between
drivers; and safety systems based on information from the vehicles, like the driver’s
intention to accelerate or break. Some of the existing applications, which can be seen in
[9], are adaptive cruise control, collision warning with auto brake, and even a prototype
for pedestrian detection, as in Figure 4 and Figure 5.

1.3 RSSI based localization and navigation

One of the possible information, which can be used to relatively locate different objects,
is the RSSI (Received Signal Strength Indicator) information. This is possible because RSSI
is a distance dependent value, although coarse, and can be obtained by the messages

4 Chapter 1 - Introduction

normally exchanged between the elements on a team of robots. This allows the creation
of a concept of signal space distance that, though not “meter” exact, is proportional to
the real distance and can be used to map a network using point-to-point measurement,
as presented in [2],[3] and [12].

Figure 5 – Pedestrian detection – illustration [9]

This information can be used in both mobile and static robot networks to various
purposes. One of them is to extrapolate the node topology of a static sensor network to
optimize communications sequence, and even, with enabled auto reconfigurations, to
allow optimizations on new node entries and exits. Another application in which this
information can be used, this time with a team of mobile robots, is to obtain the topology
of the network, [2], enabling the possibility of movement to maintain robot connectivity
or to perform a given task as in [3], [4] and [1]. Finally, using a RSSI based map obtained
from transceivers placed on containers in a freighter ship, can turn the difficult task of
monitoring and finding a specific container into a much easier one.

1.4 Objectives

There are many different ways of getting a relative localization, among them visual
recognition, distance measurement sensors using light or sound emissions and TOA (time
of arrival) of messages transmitted.

1.5 Dissertation structure 5

The objective of this dissertation is to study, implement, and, comparatively, experiment
techniques of relative localization and navigation in a multi-beacon environment, using
solely the RSSI information of the RF signal of the wireless communications.

The localization itself will be carried out by making changes to different message
configuration and RSSI data filtering parameters with the MDS (Multidimensional Scaling)
algorithm in order to probe its capabilities. Furthermore, by guiding a robot back and
forth between two beacons in an indoor environment, with obstacles, using several
navigation algorithms, the navigation will be put to practice.

1.5 Dissertation structure

This dissertation is organized in six chapters. In chapter two, some of the previous work in
relative localization and navigation, based on RSSI, will be discussed, starting with an
algorithm to derive the topology of the network and proceeding with the description of
three navigation methods.

In chapter three there is the description of the framework, i.e. nodes, robot, and
computer. There, the framework will be described starting with the setup of the wireless
communications, going through the various components such as the motors, and finishing
on the architecture of the team.

Chapter four is about the first experiment on localization (topology derivation), using the
multidimensional scaling algorithm. Tests affecting some of the wireless transmission
parameters, RSSI filtering, and the MDS algorithm inputs will be presented, compared,
and discussed.

Chapter five deals with the results of the experimental navigation tests evaluation. Here
two methods of navigation based solely in RSSI are presented, compared, and discussed.
One, the oblivious method, is a simple method of navigation while the second, the
Maximum Likelihood Estimation (MLE) method, is an iterative one, being more effective
but more costly in computing requirements.

Finally, chapter six presents the conclusion and future work.

 7

Chapter 2

Related work

In this chapter, the previous work made on relative RSSI localization and navigation will
be discussed. The points focused will be: first, for localization, the MDS (multidimensional
scaling); then, for navigation, the MDS, an oblivious, and an iterative mode.

2.1 Relative localization

2.1.1 MDS-based relative localization

The MDS (multidimensional scaling) algorithm is a method which can be used to obtain a
spatial distribution that has shown fairly good capabilities, [13] [2] [3]. This algorithm uses
an n-by-n symmetrical hollow matrix, in which each element represents the distance
between every two nodes. This matrix is then used to obtain a compatible configuration
matrix in a p-dimensional space, for some p<n. For this work only 2 dimensions are
considered.

First of all, to use this method, the node must know the state of the network. To cope
with this, in [14], it’s suggested the broadcast of a connectivity matrix among the units,
Figure 6. This matrix alone is a representation of the topology of the network showing the
connection status (1 – connected; 0 - not connected) between every pair of units. The
problem here is that this connected or not connected status doesn’t give information on
how far or close the units are from one another.

In order to solve this problem, in [2], it’s suggested the use of a new set of data much
more meaningful to populate the matrix, the distance dependent RSSI values. This is
called extended connectivity matrix. This solution, Figure 7, can represent not only the

8 Chapter 2 - Related work

status of a connection between two nodes but also whether one unit is closer or farther
from another one. These values come directly from the wireless communication interface
and are used according to the following expression:

𝑀𝑀𝑘𝑘(𝑖𝑖, 𝑗𝑗) = �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗→𝑖𝑖 + 60, 𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 𝑝𝑝𝑝𝑝𝑅𝑅𝑘𝑘𝑅𝑅𝑝𝑝 ≥ 𝐿𝐿𝐿𝐿𝑅𝑅𝑝𝑝ℎ𝑟𝑟𝑅𝑅𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑅𝑅

0, 𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 𝑝𝑝𝑝𝑝𝑅𝑅𝑘𝑘𝑅𝑅𝑝𝑝 < 𝐿𝐿𝐿𝐿𝑅𝑅𝑝𝑝ℎ𝑟𝑟𝑅𝑅𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑅𝑅
�

As can be seen, in the previous expression, an offset of sixty is added to the RSSI reading.
This is done in order to make it positive, as required by the MDS algorithm.

As stated in [1] the versatility of the extended connectivity matrix comes from the
contents that, when correctly manipulated, can serve as support to mobile autonomous
robot relative localization, based on ad-hoc RF communications. In [2] are presented 2D
graphics showing the spatial distribution of the nodes based on the values of the
extended connectivity matrix alone, values which are looked at as a signal space distance.
In order to obtain these graphics, [2, 3] firstly filtered the values by using a sliding window
and a kalman filter to produce smooth results. After that, the distance was calculated
from the RSSI filtered data and, finally, the MDS (multidimensional scaling) algorithm was
used to perform a spatial distribution. Notice that due to several reasons the RSSI values
may take different values in each direction of the link.

 0 1 2 3 4 5 Sending nodes

0 0 1 1 1 1 0 Receiving node 0

1 1 0 0 0 0 0 Receiving node 1

2 1 0 0 0 0 1 Receiving node 2

3 1 0 0 0 1 1 Receiving node 3

4 1 0 0 1 0 0 Receiving node 4

5 0 0 1 1 0 0 Receiving node 5

Figure 6 – Connectivity Matrix (left); Units topology (right)

Since the values change with time and some links may even disappear because of changes
in the topology, which is usual in mobile robot teams, some strategy must be
implemented to proceed with the maintenance of the extended connectivity matrix. The
solution proposed, [2], to check if the values received are newer, is to send along with the
matrix an aging-vector which creates a timeline to the received RSSI values; adding to

1

2

3

5

4

0

2.1 Relative localization 9

this, when connection from other nodes is lost the solution to update the matrix is, in
each node, to check its own aging vector and, if the samples are outdated, remove the old
values.

One of the drawbacks of this method is the amount of information needed to be
exchanged in the network. The information in the extended connectivity matrix must be
kept and broadcasted through the network. This means that for n nodes the number of
values to be transmitted is n squared. But, since it is necessary, for each node, to know
the topology of the entire network this information must be transmitted. So, [1] suggests
to consider the matrix symmetrical so that the number of values transmitted for n nodes
is only n*(n-1)/2.

 0 1 2 3 4 5 Sending nodes

0 0 50 50 50 20 0 RSSI values received by node 0

1 48 0 0 0 0 0 RSSI values received by node 1

2 52 0 0 0 0 60 RSSI values received by node 2

3 50 0 0 0 90 10 RSSI values received by node 3

4 25 0 0 88 0 0 RSSI values received by node 4

5 0 0 59 14 0 0 RSSI values received by node 5

Figure 7 – Extended Connectivity Matrix (left); Units topology (right)

The issue of not fully linked networks, which are networks where one node cannot
communicate directly with every other node, was explored in [2]. Due to the problems
that this situation caused to the MDS algorithm, some solutions were compared. The
result was that it’s effective to approximate the distance between two non
communicating nodes by the smaller sum of paths connecting them. What happens is
that the signal space distance is calculated by using the following expression:

𝑅𝑅𝑖𝑖𝑆𝑆𝑆𝑆𝑝𝑝𝑜𝑜𝑆𝑆𝑖𝑖𝑟𝑟𝑝𝑝(𝑖𝑖, 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑝𝑝𝑚𝑚 − 𝑀𝑀𝑘𝑘(𝑖𝑖, 𝑗𝑗), 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖𝑟𝑟 𝑅𝑅𝑜𝑜𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑝𝑝𝑅𝑅𝑅𝑅 𝑝𝑝𝑜𝑜 𝑗𝑗

𝑚𝑚𝑖𝑖𝑆𝑆� � 𝑅𝑅𝑖𝑖𝑆𝑆𝑆𝑆𝑝𝑝𝑜𝑜𝑆𝑆𝑖𝑖𝑟𝑟𝑝𝑝
∀(𝑝𝑝 ,𝑏𝑏)∈𝐸𝐸

(𝑝𝑝, 𝑏𝑏)� , 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖𝑟𝑟 𝑆𝑆𝑜𝑜𝑝𝑝 𝑅𝑅𝑜𝑜𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑝𝑝𝑅𝑅𝑅𝑅 𝑝𝑝𝑜𝑜 𝑗𝑗
�

1

2

3

5 4

0

10 Chapter 2 - Related work

In the above expression, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑝𝑝𝑚𝑚 represents the maximum RSSI reading that is possible
to be received, E denotes a route between i and j, containing several links, and the pair (a,
b) represents the extremes of a generic link in E. This solution creates a small deformation
on the nodes relative positioning but this is not a problem, since signal strength space
positioning is already not very accurate to physical positions.

2.2 Navigation

2.2.1 Using MDS

Resuming from MDS relative localization, on the previous topic, it is possible to go further
and use the collected topology information to navigate. In [3] a method is proposed
where motion vectors, which represent the movement of the network nodes, are
generated, Figure 8. This solution is not as simple as it might look, at first. It must be kept
in mind that a robot, initially, does not have any clue to where it is heading. So, it must
make some test moves in order to deduce where it is facing, based on the topology
changes visible on the motion vectors. After the robot has the notion of where it is facing,
it can begin to make decisions on how to approach the objective. Due to time constraints
this method wasn’t tested.

Figure 8 – MDS navigations using motion vectors [2]

2.2 Navigation 11

2.2.2 Using an oblivious method

Notice that this is quite a simple method. The algorithm basically uses the current RSSI
reading and the previous one to decide on which direction to head to. This method has
been used in both [3] and [4] as a possibility to be applied to a very simple robot. The
decisions are merely based on three premisses: the robot approached; the robot moved
away; the robot didn’t either approach or move away. This algorithm is illustrated in
Figure 9.

Figure 9 – The Oblivious algorithm

2.2.3 Using MLE

The last method to be discussed is MLE (maximum likelihood estimation) which, based on
collected data, estimates the most likely position of the objective. This method is iterative
and, as such, it requires a larger capacity in both memory and processing. For instance,
since this method is based on multi-position data acquisitions to perform calculations, it is
necessary to know the locations where data is acquired, relatively to each other.
Therefore, a more sophisticated robot with encoders to measure movement is required.

Abs(RSSI_difference)
<RSSI_Threshold

T

Random
Move Keep Going

Save current
RSSI value

RSSI_difference
> 0

F

F

T

Turn Around

Perform
Move

Get current
RSSI reading

12 Chapter 2 - Related work

It must be pointed out that this method has been tested in [4] both theoretically, in a
Matlab simulation, and experimentally, using a moving platform. In [4] it has also been
proven that by tuning some parameters this method is feasible in either noiseless or noisy
environments with a faster or slower convergence velocity. For example, in a low noise
environment, with a small set of data, which is basically robot positions and the
respective RSSI measurements, the pursuer would quickly go to the objective. With a
large set of data, however, it would take too long before even trying to approach the
objective. In a high noise environment, on the other hand, a small set of data would prove
insufficient and a larger number of measurements are needed to make a successful
approach. For this method to step between both situations, the solution, described in [4],
is to use a small initial set of data (𝑁𝑁𝑝𝑝𝑅𝑅𝑆𝑆), in order to start the approach quickly, and, after
each approximation, add more data in a circular buffer up to a set number(𝑁𝑁𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑅𝑅) to
reduce the error of the estimate. This algorithm is illustrated in Figure 10.

Figure 10 – The MLE algorithm

Finally, the estimator uses the least squares method to calculate the most likely position
of the beacon. This method, using the sampled data held in the circular buffer, estimates
the intersection point that minimizes the residual, as illustrated in Figure 11. The exact
estimation method will be explained in the experimental chapter.

Number of stored
samples <Nten

T

Random
Move

Get
distances
from RSSI

MLE

Compute
Angle

Perform
Move

F

Add new
position and
RSSI samples

Number of
stored samples

<Nqueue

T

Discard
oldest sample

F

2.2 Navigation 13

Figure 11 – Estimator illustration using four samples

 15

Chapter 3

Experimental framework

In this chapter the framework will be discussed in what the hardware and the software
used to perform the experiments are concerned.

First there is a description of the nodes used and of the wireless communication system.
Further on there will be a description of the robot created to perform the experiments
followed by some information about its programming. Finally the system architecture and
the task distribution amongst elements will be dealt with.

3.1 The nodes

The nodes used in this work are the Crossbow’s MicaZ motes (Figure 12) and, as an
interface between the nodes and the robot the MDA300CA (Figure 13) expansion board
[15]. The MicaZ motes are embedded systems that possess a microcontroller Atmel
ATMega128L and a IEEE 802.15.4 compliant radio transceiver, CC2420 [16], which is used
on the 2.4GHz band. The MIB600 - Ethernet Gateway (Figure 14) is used to both upload
compiled programs to each node and function as a link between the MicaZ and the
computer. The former allows communication with the computer via TCP/IP.

These nodes have been programmed in nesC, which is an extension to the C programming
language made to program TinyOS – an open-source operating system made to be used in
embedded wireless sensor networks. This operative system is event driven and minimizes
code size trying to avoid memory constraints becoming an issue. The version of TinyOS
used is 1.x.

16 Chapter 3 - Experimental framework

Figure 12 – MicaZ mote

Figure 13 – MDA300CA board

Figure 14 - MIB600 - Ethernet Gateway

3.1.1 Wireless communications

All the experiments revolve around RSSI based relative localization. Consequently the
nodes used must possess the means to do so.

As mentioned before, the MicaZ motes communicate with each other using a CC2420
transceiver. They do this through an omnidirectional antenna and the information is
always broadcasted so that every node within range receives information relative to all
nodes.

Adding to this the CC2420 chip can give two important message parameters to the
localization. The first parameter is the LQI (link quality indication), which allows knowing
whether the sending node is well or barely within reach. This allows rejection of values
sent from too far away, which could be fallacious. According to observations in [2] a good
link presents a LQI value typically above 100. The second parameter made available by

3.1 The nodes 17

the CC2420 is the important RSSI. The RSSI value can be obtained, according to [16], from
a register in the transceiver which makes available a value between -60 and 40,
corresponding to an RSSI between -100dBm and 0dBm. So to make it positive, and ease
the transmission, an offset of 60 is added setting this value between 0 and 100.

Figure 15 – IEEE802.11 and IEEE802.15.4 channels [17]

The nodes communicate using the wireless medium, obviously. This medium is heavily
loaded with communications, especially in the 2.4GHz band. This happens because the
IEEE 802.15.4 protocol shares the frequency spectrum with the widely used IEEE 802.11,
which almost all computers, and increasingly numbers of cell phones and PDAs use. One
way to prevent this is using a channel that doesn’t overlap with the IEEE 802.11 protocol.
This channel, as it can be seen in Figure 15, is channel 26.

At this point it must be again stressed that the amount of information to be transmitted is
an important issue for the communications. For instance, the (extensive) extended
connectivity matrix, the requested move to the robot (one per moving robot) and the
performed move by the robot (one per moving robot), as illustrated in Figure 16 in which
a piggybacked message was defined so as to transmit only the necessary information. In
the piggyback byte, Figure 17, the bits inform the receiver of the contents of the message
enabling it to recover that information. This allows not only transmitting multiple and
variable information in the same message but also transmitting everything in one
transmission optimizing the bandwidth and reducing the number of possible collisions.

18 Chapter 3 - Experimental framework

Robot ID Piggyback
Byte

Extended Connectivity
Matrix + Aging Vectors Requested Moves Performed Moves

1 Byte 1 Byte ((Number of nodes)2+
Number of nodes) Bytes

((2+2+2)*Number
of moving nodes)

Bytes

((2+2+2)*Number
of moving nodes)

Bytes
Figure 16 – Piggyback Message

Once a message is received, the information in it must be processed. First, the receiving
node gets the LQI of the message. If this value is above the threshold, the RSSI is saved.
Otherwise, it will be considered 0. Secondly, the receiving node goes to the data
contained on the message getting the extended connectivity matrix and the aging vector.
Having this information it compares the age of the local information, saved in a local
aging vector, with the age of the received information then replacing it where the first is
older. Thirdly, the node checks the requested and performed moves, these contain an
aging element, a forward step amount, and a rotation step amount. This information is
intended to the moving nodes and, as such, it is forwarded until it reaches them. If the
requested moves received are newer than the local ones, they are replaced. The same
applies to the performed moves. Finally, the node, in case it has receiving either
requested or performed moves checks, for each moving node, which of these needs to be
sent. For example, if all the requested moves are more recent than all the performed
moves, then the information on the performed moves has been spread and reached the
move coordinator, which has issued a new order of movement to every moving node. As
such, the information on performed moves is obsolete.

 Piggyback
Byte

7 6 5 4 3 2 1 0

Not Used Not Used Not Used Not Used Not Used
Performed

Moves
Data

Requested
Moves
Data

RSSI
Data

Figure 17 – Piggyback Byte

3.2 The robot 19

Finally, on this matter, the order and times of transmissions. To avoid collisions, which
can delay and interfere with the spreading of information, an Adaptive-TDMA algorithm
(Time Division Multiple Access) [18] has been used. This algorithm considers the
communications failures that may easily happen with wireless communications in moving
robots. To deal with it a period of communication is initially set, for instance 500ms, this
time frame is then divided by the number of nodes. If they are 5, it means every node
transmits every 100ms. This algorithm sets the time of the next transmission to 500ms
after the last one. But, if another node is late to transmit then the remaining nodes
readjust their transmitting times in order to minimize the impact of this delay and
continue to avoid collisions.

3.2 The robot

In order to enable the execution of some of the tests, which require a mobile platform, a
robot was created to be controlled by a MicaZ mote, as shown in Figure 18.

The robot developed for this work has two wheels attached to motors mounted on each
side, both equipped with a quadrature encoder. These encoders are in turn connected to
two 32bit quadrature counters LS7366 [19], which possess a spi interface used to
communicate with the expansion board (MDA300CA). The motors are controlled by two
PWM (pulse width modulation) applied to a current driver L293E [20].

Adding to this, a set of three sensors GP2D12 [21] was attached to the robot in order to
detect and avoid obstacles, making it possible to execute the experiment in an indoor
environment. As it can be seen in Figure 18, the sensors are placed outwards and
forwards. The decision to place the sensors in such manner was made, based on the study
presented on [22], because the width of the robot is quite large – to avoid hitting
obstacles with the wheels the small area covered by the sensors had to be pointed
outwards. Although the robot will get some large blind angles, which might be regarded
as a disadvantage, this should not be a problem throughout the experiments.

3.3 Programming the robot

Since the robot is controlled by a MicaZ mote, it is also programmed in nesC and uses
TinyOS as well. The open source community has made available software that allows
programming the expansion board MDA300CA and the MicaZ motes.

The MDA300CA board has multiple ADC’s available, so they allow the use of obstacle
avoidance algorithms from the measure of analog obstacle sensors. Adding to this the
digital I/O, that are only a few and four were needed to control the motors, made it

20 Chapter 3 - Experimental framework

imperative the use of serial interfaced multi-slave quadrature counters to count the
motors’ shaft turns.

3.3.1 Obstacle sensors

As mentioned above, the robot has three obstacle sensors. One is pointed forwards, one
outwards to the left and the final one outwards to the right. These sensors are connected
to the MDA300CA board ADC’s 0, 1 and 2.

The sensors put out larger voltage values than those that the ADC’s can read but, since
the maximum read voltage is enough, and the safety limits mentioned in the datasheet
are met, Vdd+0.5V, this is not an issue, so nothing was done to prevent it.

According to the device datasheet [21], the sensors put out a new value every 50ms but
due to time constraints this is done every 100ms. The read value is then saved in a global
variable and used to decide whether to stop or not to stop. That is, if the robot is going
forward, it stops so that it doesn’t hit the obstacle; and if the robot is rotating, it
continues until it clears all obstacles.

Figure 18 – Robot created to perform the experiments

3.4 System architecture 21

3.3.2 Motors

The motors used in the robot are EMG30, which, as mentioned above, have built in
quadrature encoders.

In order to control the velocity of the motors, a current driver L293E was used and two
digital outputs per motor were the controllers. One output was meant to set the direction
of movement and the other to generate a PWM to control the speed at which the robot
moves.

Moreover, since some of the experiments require the knowledge of movement, the two
quadrature counters feed each one a LS7366 quadrature counter, which was used as a
16bit counter monitoring the movement of each wheel. A spi communication system
using five digital outputs was developed to be used with the MDA300CA board. The chip
enable selects one chip or the other (this signal feeds one chip directly and the other
through an inverter); the MISO (master input slave output) receives data; the MOSI
(master output slave input) sends data; the clock signal; and an interruption line to signal
the end of the movement.

Since the robot only closes the loop with the counters when the movement ends, and
same values of PWM on different motors have different results, a simple algorithm was
developed to try and match the speed of the wheels. Basically, in the end of each
movement, if one wheel traveled too slowly, the respective speed is increased; if the
maximum speed has been reached, the other wheel is slowed down. Finally, since the
movement is never stopped immediately when the order is given, the robot doesn’t
travel the distance it was ordered to. To avoid this, the robot reads the difference and
adjusts an offset, notice that this is not a key feature since what is important is to know
how much it traveled rather than the exact distance it was ordered to.

3.4 System architecture

It is worth stressing that the set of nodes in the experiment has a low capacity with
respect to processing. So, in order to both collect and easily analyze data, and to be able
to perform complex processing, one of the nodes is connected to a computer. This
connection, as previously referred to, is made by TCP/IP and the computer is the “brain”
of all the navigation and localization on the system.

22 Chapter 3 - Experimental framework

3.4.1 Executing complex computations

First of all, as stated above, the complex computations are made by a computer. This
computer uses the java programming language to execute all the code and, in order to
analyze data graphically, it runs on the Matlab virtual machine, which allows easy access
to the data and respective graphic register.

The nodes of the network have relatively small intelligence, i.e. they only collect/spread
information and, if it is a mobile node it moves were ordered to. This is made possible by
making all the spread information reach the computer. One of the nodes is connected to
the computer, via the MIB600 board, and every time it receives a message it sends the
information through the Ethernet port. The computer then filters the information and
makes all the necessary calculations in order to decide the next step to take. Finally, the
information about the step is sent, again through the Ethernet port, to the node, which
then spreads it throughout the network.

 23

Chapter 4

Experiments with the extended connectivity matrix
using MDS

One possible method to compute relative positions in signal strength space, using the
extended connectivity matrix, is the MDS (Multidimensional Scaling) algorithm, which, by
using a hollow symmetric matrix, generates one compatible space distribution. This
algorithm transfers a known n-by-n matrix of dissimilarities to n points of a p-dimensional
Euclidean space so that the pairwise distances between points are compatible with the
dissimilarities matrix. In this work only the two first dimensions are considered.

The fact that the matrix must be symmetric creates a problem: due to communication
interference, slightly different transmission power in different nodes, etc., the extended
connectivity matrix is not symmetric, as shown in Figure 19.

 0 1 2 3 4 5 Sending nodes

0 0 35 22 31 31 33 RSSI values received by node 0

1 38 0 35 24 52 34 RSSI values received by node 1

2 23 35 0 29 23 42 RSSI values received by node 2

3 0 23 29 0 19 36 RSSI values received by node 3

4 31 51 24 21 0 27 RSSI values received by node 4

5 31 33 43 37 26 0 RSSI values received by node 5

Figure 19 – RSSI table example

24 Chapter 4 - Experiments with the extended connectivity matrix using MDS

That being said, in order to create and feed a symmetric distance matrix (distance =
RSSImax – RSSI) to the MDS algorithm, we have the following options:

• Use the top triangle of the matrix;
• Use the bottom triangle of the matrix;
• Use the mean between the top and the bottom triangles of the matrix (e.g.: mean

between the value 0 received from 1 and 1 received from 0);
• Use the maximum value between the top and the bottom triangles of the matrix

(e.g.: maximum value between the value 0 received from 1 and 1 received from
0);

• Use the minimum value between the top and the bottom triangles of the matrix
(e.g.: minimum value between the value 0 received from 1 and 1 received from 0).

Adding to this, a study of the impact various factors on the data used in the MDS
algorithm is important information, such as maximum RSSI considered, communications
period and synchronization, and data sampling and selection. Since there’s none, to our
best knowledge, in this chapter experiments concerning these issues will be displayed,
compared and discussed.

4.1 Implementation and Set up

In order to analyze the previous possibilities, the following was set up.

4.1.1 Mote’s side

On this side, six crossbow’s MicaZ motes, which were placed according with the diagram
presented in Figure 20, send a periodic beacon with the RSSI table they have and the
aging vector mentioned in chapter 2. When the other motes receive this beacon, they
update their RSSI table accordingly and save the information the CC2420 chip provides
about the transmission (Link Quality Indicator and Received Signal Strength Indicator) for
future input of their own information in the table.

All the received transmissions with a LQI inferior to a threshold, in our case 100, are
disregarded; so, neither LQI nor RSSI are saved (according to CC2420 datasheet, RSSI is
above -60 and below 40, so, in order to make it positive an offset of 60 is added).

Also periodically, the values on the RSSI table are first cleaned up (if too old), and new
values (previously saved) are included in the table.

This information is dispatched by one node connected via MIB600 board to a PC .

Due to hardware issues, an adaption of the Adaptive-TDMA algorithm has been
implemented. This adaption makes the nodes synchronize with the preceding in the order

4.1 Implementation and Set up 25

of communication. If this synchronization is not possible, then the node will transmit one
transmission cycle after it last transmitted.

Figure 20 – Node distribution

4.1.2 Computer’s side

On the computer we have MATLAB running Java code.

This program receives information (the RSSI table) from the MIB600 board via TCP/IP, and
writes it on a sampling table which holds the information of some of previous tables
(sampling window). I.e.:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑆𝑆𝑅𝑅𝑜𝑜𝑅𝑅(𝑝𝑝 − 𝑆𝑆) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑆𝑆𝑅𝑅𝑜𝑜𝑅𝑅�𝑝𝑝 − (𝑆𝑆 − 1)�,𝑆𝑆 = 1. . 𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝐿𝐿𝑅𝑅𝑁𝑁𝑆𝑆_𝑊𝑊𝑅𝑅𝑁𝑁𝑆𝑆𝑊𝑊𝑊𝑊

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑆𝑆𝑅𝑅𝑜𝑜𝑅𝑅(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑅𝑅𝑝𝑝𝑅𝑅𝑖𝑖𝑆𝑆𝑆𝑆

Then, with this information a mean is calculated for each element in the sampling table,
creating the RSSI sample. I.e.:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑜𝑜𝑅𝑅𝑝𝑝 = 𝑚𝑚𝑅𝑅𝑝𝑝𝑆𝑆(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑜𝑜𝑅𝑅(𝑝𝑝),𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑜𝑜𝑅𝑅(𝑝𝑝 − 1), …)

This calculated data is then put through a kalman filter in order to further soften the data.

Finally, the data is used to compute the Signal Strength Space positioning with Classical
MDS algorithm.

Also, in order to obtain a more perceptible view of the various outputs the nodes are
moved so that node 0 is in the origin of the referential and rotated so that node 1 is in the
vertical axis. If necessary, the nodes are flipped around the vertical axis so that node 2 is
on the right.

26 Chapter 4 - Experiments with the extended connectivity matrix using MDS

4.2 Obtained Results

On the following figures, containing the experiments’ outputs, the dots represent the
MDS positions estimation result, and the ellipses are centered on the average of these
estimations, its size representing the standard deviation, in each run (one color per run).
In each run a different sub-matrix was used, top bottom, mean, maximum, and minimum,
as mentioned above. The Max RSSI value it’s a user-defined parameter and it represents
the maximum RSSI which is expected to be received. Note that the transmission power
was set to -10dBm.

Parameters of the experiment:

Experiment 1

• Max RSSI value: 250
• Adaptive-TDMA: Yes
• Message transmitting cycle: 500ms
• Number of samples in sampling window: 3
• Sample rejection: No

Figure 21 represents the result of this experiment.

Figure 21 – MDS experiment 1

4.2 Obtained Results 27

Parameters of the experiment:

Experiment 2

• Max RSSI value: 100
• Adaptive-TDMA: Yes
• Message transmitting cycle: 500ms
• Number of samples in sampling window: 3
• Sample rejection: No

Figure 22 represents the result of this experiment.

Figure 22 – MDS experiment 2

28 Chapter 4 - Experiments with the extended connectivity matrix using MDS

Parameters of the experiment:

Experiment 3

• Max RSSI value: 100
• Adaptive-TDMA: No
• Message transmitting cycle: 500ms
• Number of samples in sampling window: 3
• Sample rejection: No

Figure 23 represents the result of this experiment.

Figure 23 – MDS experiment 3

4.2 Obtained Results 29

Parameters of the experiment:

Experiment 4

• Max RSSI value: 100
• Adaptive-TDMA: Yes
• Message transmitting cycle: 100ms
• Number of samples in sampling window: 3
• Sample rejection: No

Figure 24 represents the result of this experiment.

Figure 24 – MDS experiment 4

30 Chapter 4 - Experiments with the extended connectivity matrix using MDS

Parameters of the experiment:

Experiment 5

• Max RSSI value: 100
• Adaptive-TDMA: No
• Message transmitting cycle: 100ms
• Number of samples in sampling window: 3
• Sample rejection: No

Figure 25 represents the result of this experiment.

Figure 25 – MDS experiment 5

4.2 Obtained Results 31

Parameters of the experiment:

Experiment 6

• Max RSSI value: 100
• Adaptive-TDMA: Yes
• Message transmitting cycle: 100ms
• Number of samples in sampling window: 5
• Sample rejection: Yes

Figure 26 represents the result of this experiment.

Figure 26 – MDS experiment 6

32 Chapter 4 - Experiments with the extended connectivity matrix using MDS

Parameters of the experiment:

Experiment 7

• Max RSSI value: 100
• Adaptive-TDMA: No
• Message transmitting cycle: 100ms
• Number of samples in sampling window: 5
• Sample rejection: Yes

Figure 27 represents the result of this experiment.

Figure 27 – MDS experiment 7

4.2 Obtained Results 33

4.2.1 Tables of experiments results

Table 1 – MDS node 0

Node 0

 Mean Values (x, y) Standard Deviation Values (x, y)
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min
Experiment

1
0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

Experiment
2

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

Experiment
3

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

Experiment
4

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

Experiment
5

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

Experiment
6

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

Experiment
7

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

0.000,
0.000

Table 2 – MDS node 1

Node 1

 Mean Values (x, y) Standard Deviation Values (x, y)
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min
Experiment

1
0.000,

116.852
0.000,

109.876
0.000,

113.675
0.000,

114.321
0.000,

112.776
0.000,
7.369

0.000,
7.868

0.000,
7.277

0.000,
8.499

0.000,
6.585

Experiment
2

0.000,
36.961

0.000,
35.267

0.000,
36.104

0.000,
36.534

0.000,
35.799

0.000,
2.581

0.000,
2.581

0.000,
2.708

0.000,
2.902

0.000,
2.329

Experiment
3

-0.000,
44.714

-0.000,
40.941

-0.000,
42.901

-0.000,
44.034

-0.000,
41.567

0.000,
6.684

0.000,
6.503

0.000,
6.187

0.000,
6.553

0.000,
6.660

Experiment
4

0.000,
41.547

0.000,
39.108

-0.000,
40.260

0.000,
40.226

-0.000,
40.533

0.000,
6.546

0.000,
6.932

0.000,
6.687

0.000,
7.317

0.000,
6.132

Experiment
5

-0.000,
44.461

-0.000,
46.331

-0.000,
46.432

-0.000,
45.693

-0.000,
46.697

0.000,
13.089

0.000,
11.543

0.000,
11.330

0.000,
12.659

0.000,
10.968

Experiment
6

-0.000,
41.953

0.000,
39.374

-0.000,
40.560

-0.000,
40.507

-0.000,
40.840

0.000,
5.497

0.000,
5.987

0.000,
5.691

0.000,
6.260

0.000,
5.170

Experiment
7

0.000,
45.094

-0.000,
45.703

-0.000,
46.996

-0.000,
46.600

-0.000,
46.885

0.000,
11.840

0.000,
9.521

0.000,
8.849

0.000,
10.580

0.000,
8.096

Table 3 – MDS node 2

Node 2

 Mean Values (x, y) Standard Deviation Values (x, y)
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min
Experiment

1
95.089,
175.918

105.452,
171.218

100.217,
173.975

99.776,
172.490

100.555,
175.399

5.629,
9.440

5.126,
9.619

5.157,
9.339

5.505,
9.934

4.954,
9.001

Experiment
2

34.860,
53.845

38.583,
51.562

36.701,
52.759

36.716,
52.465

36.668,
53.132

2.029,
3.343

1.814,
3.595

1.830,
3.538

1.961,
3.570

1.801,
3.299

Experiment
3

42.613,
43.011

42.872,
41.561

42.783,
42.278

43.242,
42.230

42.200,
42.260

3.492,
2.602

2.793,
2.375

2.912,
2.305

2.986,
2.260

3.134,
2.505

Experiment
4

41.839,
52.034

42.907,
49.507

42.374,
50.633

42.473,
50.969

42.236,
50.725

2.202,
9.222

2.266,
10.002

2.198,
9.554

2.331,
9.936

2.151,
9.081

Experiment
5

39.441,
43.943

41.753,
43.408

40.680,
44.346

40.640,
44.767

41.186,
43.401

10.169,
19.732

10.270,
21.213

9.659,
19.314

10.335,
23.399

8.248,
14.027

Experiment
6

41.902,
52.307

42.917,
49.748

42.383,
50.939

42.523,
51.150

42.248,
50.952

2.130,
7.787

2.192,
8.585

2.156,
8.204

2.229,
8.563

2.117,
7.688

Experiment
7

39.813,
41.718

40.589,
41.796

40.707,
42.099

40.723,
43.601

40.886,
40.884

8.551,
13.449

8.451,
13.868

7.268,
12.864

8.608,
15.307

6.056,
8.462

34 Chapter 4 - Experiments with the extended connectivity matrix using MDS

Table 4 – MDS node 3

Node 3

 Mean Values (x, y) Standard Deviation Values (x, y)
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min
Experiment

1
158.930,

9.565
156.871,

-6.073
158.102,

2.045
158.389,

2.072
157.845,

2.176
4.410,
9.049

4.821,
10.523

4.549,
9.541

4.724,
9.680

4.406,
9.694

Experiment
2

60.088,
0.050

59.372,
-6.104

59.816,
-2.980

59.986,
-3.122

59.653,
-2.709

1.956,
3.967

2.261,
4.461

2.054,
4.147

2.181,
4.320

2.004,
4.020

Experiment
3

72.268,
-8.004

71.662,
-9.968

71.979,
-8.968

72.357,
-9.792

71.613,
-8.165

2.346,
5.344

2.192,
4.331

2.197,
4.488

2.081,
4.279

2.296,
5.056

Experiment
4

60.759,
41.762

62.741,
39.428

61.771,
40.678

62.136,
40.016

61.353,
41.175

5.966,
8.997

5.686,
8.889

5.731,
8.840

6.366,
9.910

5.432,
8.003

Experiment
5

69.242,
-10.504

65.676,
-12.918

68.061,
-12.614

69.585,
-10.297

66.669,
-12.230

19.150,
20.271

17.509,
19.350

15.348,
18.184

20.549,
19.389

13.755,
16.572

Experiment
6

60.938,
41.351

62.894,
39.266

61.873,
40.520

62.342,
39.680

61.477,
41.031

5.611,
8.228

5.610,
8.326

5.612,
8.181

5.882,
9.178

5.455,
7.542

Experiment
7

68.283,
-11.816

64.494,
-14.079

67.470,
-13.211

69.657,
-10.815

64.510,
-14.131

16.302,
15.142

13.505,
16.388

8.854,
13.825

11.488,
16.504

11.759,
13.440

Table 5 – MDS node 4

Node 4

 Mean Values (x, y) Standard Deviation Values (x, y)
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min
Experiment

1
-3.701,
119.261

2.601,
108.350

-0.315,
114.023

-0.085,
116.728

-0.814,
111.176

6.328,
13.555

6.399,
16.247

6.283,
14.606

6.765,
14.470

6.086,
15.207

Experiment
2

-1.557,
39.848

1.094,
36.152

-0.226,
38.234

-0.017,
39.190

-0.355,
37.034

2.813,
4.969

2.845,
6.011

2.848,
5.470

2.976,
5.352

2.692,
5.522

Experiment
3

4.203,
58.375

4.496,
59.006

4.465,
58.797

5.037,
58.741

3.631,
58.764

5.387,
2.943

4.714,
2.687

4.677,
2.695

4.750,
2.743

5.291,
2.955

Experiment
4

0.459,
50.838

3.497,
50.373

1.962,
50.563

2.412,
50.792

1.512,
50.402

4.173,
5.564

4.706,
5.163

4.392,
5.344

4.600,
5.663

4.221,
5.151

Experiment
5

3.108,
16.169

-0.551,
20.964

1.160,
18.952

1.809,
18.440

1.523,
19.280

11.600,
18.173

13.630,
20.438

10.752,
16.307

11.265,
19.456

10.264,
16.104

Experiment
6

0.497,
51.158

3.529,
50.718

1.924,
50.870

2.428,
51.026

1.573,
50.847

4.066,
3.812

4.619,
3.800

4.251,
3.696

4.497,
3.950

4.229,
3.705

Experiment
7

3.276,
16.483

-0.112,
19.516

1.810,
19.429

1.740,
19.153

0.928,
19.345

9.207,
18.100

10.568,
17.280

8.443,
13.852

8.744,
18.081

8.514,
12.221

Table 6 – MDS node 5

Node 5

 Mean Values (x, y) Standard Deviation Values (x, y)
Matrix Part Top Bottom Mean Max Min Top Bottom Mean Max Min
Experiment

1
147.999,
111.239

152.073,
93.247

150.260,
102.481

150.617,
106.293

149.721,
98.406

5.187,
13.685

4.896,
14.516

4.902,
13.744

5.090,
13.811

4.846,
14.270

Experiment
2

54.930,
34.104

56.539,
26.837

55.822,
30.636

56.128,
31.810

55.529,
29.325

1.881,
5.066

1.766,
5.139

1.770,
4.933

1.818,
4.963

1.757,
5.101

Experiment
3

59.394,
39.378

59.865,
37.128

59.706,
38.180

60.119,
38.247

59.160,
38.323

2.754,
3.836

2.148,
3.384

2.285,
3.353

2.267,
3.403

2.511,
3.724

Experiment
4

47.395,
8.802

47.997,
6.019

47.689,
7.225

47.540,
8.170

47.891,
6.957

5.449,
10.115

5.298,
9.788

5.347,
9.987

5.606,
10.971

5.056,
9.155

Experiment
5

57.887,
37.436

56.636,
34.243

58.265,
36.427

58.480,
36.479

57.464,
36.363

11.775,
20.548

11.542,
25.529

10.239,
21.819

11.570,
23.888

10.200,
19.467

Experiment
6

47.245,
8.883

47.936,
6.159

47.610,
7.309

47.394,
8.155

47.805,
7.135

5.276,
8.897

5.119,
8.786

5.215,
8.798

5.365,
10.061

5.071,
7.724

Experiment
7

57.167,
35.897

55.645,
33.589

57.176,
35.446

57.595,
36.504

56.364,
34.408

10.360,
17.279

9.792,
19.971

7.148,
17.875

7.262,
17.806

8.451,
16.483

4.3 Conclusions 35

4.3 Conclusions

4.3.1 Testing maximum RSSI

On this matter, the maximum RSSI value, which is the base of the transformation from
RSSI to signal space distance (distance = RSSImax – RSSI), is tested with a big value and,
based on the CC2420 datasheet, with a more realistic approach.

The graphic disposition of the nodes is clearly alike in experiments one and two, but, the
standard deviation (STD) is larger in the first. However, this is not significant since the
ratio is about the same.

This is the expected outcome, since the values of RSSI and the filtering was the same, so
the distribution should be the same as well.

4.3.2 Testing the use of Adaptive-TDMA (Time Division Multiple Access)

On this matter, Adaptive-TDMA is turned on and off and the results are compared.
Furthermore, two values of message transmitting cycle are compared.

As can be easily seen, from experiments two and three vs. four and five, the message
cycle 500ms produces the best results. This is usually due to the mean occupancy. But,
since the messages transmitted are relatively short (6*6 byte matrix and 6*1 byte aging
vector plus message header and tail), at a transmission rate of 250Kbps the time of 6
messages is in the order of 10-20 millisecond, much smaller than the window of 100ms.
So, in this case, the results were not fully expected. At any rate, the larger transmitting
window produces the best results.

As far as the Adaptive-TDMA influence in the results is concerned, it can be seen that in
the 500ms case the difference is not even close to significant. But, if the 100ms case is
considered, the Adaptive-TDMA experiment produces results with a much smaller STD
than the no Adaptive-TDMA. Once again, we can infer that the organization of the
communications produces less noise on the environment creating better RSSI readings.

Notice that with a 500ms window the results come with less scattering but the system
dynamic is slower than with the 100ms.

4.3.3 Testing the use of different sample window sizes and sample
selection algorithms

On this matter, two different cases have been studied: a sampling window of 3, where all
non-zero samples are taken into account, and a sample window of 5, where some

36 Chapter 4 - Experiments with the extended connectivity matrix using MDS

samples are rejected. The rejection rule is: If only one non-zero value exists, it is used; if
two exist, the smaller is rejected; if more than two exist, the highest and the lowest are
rejected and the others are taken into account.

In experiments six and seven, these rules were put to the test. First, by using Adaptive-
TDMA and, in the latter, not using Adaptive-TDMA. In the first, and comparing it with
experiment four, the results were very improved, making these values usable in the
algorithm. On the other hand, comparing experiments five and seven the scattering still
exists in approximately the same scale.

4.3.4 Final Considerations

In the end, neither of the different approaches, each using different parts of the extended
connectivity matrix, shows an improvement to another. This means that in order to use
MDS the extended connectivity matrix can be considered symmetrical and, as such, the
number of values transmitted can be reduced.

On the other hand, the factors tested (Max RSSI considered, communications cycle
duration and synchronization, and data sampling and selection) are very significant to the
results. After these experiments, it is possible to conclude that when accurate results are
required, a large window of transmission is a good option. Also, when fast dynamics are
required, a smaller window, a synchronizing algorithm, a sample window, and rejection
algorithm should be used in order to reduce scattering.

 37

Chapter 5

Implementing the navigation strategy

To perform the navigation tests with the robot two methods were tested. The first one is
the oblivious method that, as already described, is a very simple method that only needs
to know the current and the previous RSSI reading. The second one is the MLE (maximum
likelihood estimation) method, that, as previously described, is an iterative method that
needs to know the steps taken by the robot and, in addition, a larger set of RSSI readings
than the oblivious one. In spite of different implementations, the algorithm is very similar,
being the only difference the move decision made.

In this chapter, the setup, the implementation, and the experiment are explained and the
experimental results are shown and commented.

5.1 Implementation description

This implementation has three important elements which will be described below – the
beacons, the robot and the computer.

5.1.1 The beacons

To begin with, crossbow’s MicaZ motes, Figure 28, were placed as two beacons. Each
beacon is actually a set of 3 nodes separated by 5cm. This was done as to reduce the
impact of RSSI noise, as suggested by [4]. These nodes, which have one antenna each, are
properly synchronized and their purpose is to emulate a single node with three antennas.
The synchronization is made in the following way. Each beacon has a master node, that
triggers the beacon transmission, and two slaves. It’s just the masters of each beacon that
synchronize between them using the Adaptive-TDMA method. The slaves are
synchronized in each beacon by the respective master, transmitting after a short interval.

38 Chapter 5 - Implementing the navigation strategy

In each node, a periodic beacon containing the RSSI table, an aging vector and, if needed,
requested moves and performed moves, is sent with a period of 500ms. When the other
motes receive this beacon, they update their RSSI table accordingly and save the
information the CC2420 chip provides about the transmission (Link Quality Indicator and
Received Signal Strength Indicator) for future input of their own information in the table.
Additionally the received transmissions with a LQI inferior to a threshold, in our case 100,
are disregarded; so, RSSI is not saved (according to CC2420 datasheet, RSSI is above -60
and below 40, so, in order to make it positive, for a simpler transmission, an offset of 60 is
added). This is shown in Algorithm 1.

Also periodically, the values on the RSSI table are first cleaned up (if too old), and new
values (previously saved) are included in the table.

Finally once the node connected to the computer receives a message, it dispatches the
information to the computer via the MIB600 board.

The following experiments were all done with the transmission power set to -19.17dBm.

Algorithm 1 – New message processing by MicaZ
/* TDMA */
if(source is the master of this group)
 set_send_time;
else
 if(source is another master and i am a master)
 resync;
 endif
endif

/* Get RSSI data from message */
if(receivedLQI>LQI_THRESHOLD)

MicaZ

TinyOS
with nesC

IEEE802.15.4

Spread information

Figure 28 – The MicaZ beacons setup

5.1 Implementation description 39

 RSSI=getRSSI;
else
 RSSI=0;
endif
LQI=receivedLQI;

/* Get RSSI table */
if(piggyback has RSSI table)
 get_data_from_message;
 for i=other_nodes
 if(received_table_age[i] is newer)
 replace_local_table[i];
 replace_local_age[i];
 endif
 endfor
endif

/* Get requested moves */
if(piggyback has requested moves)
 if(received_requested_move[i].step is newer)
 get_requested_move[i];
 if(is for me) start_moving;
 endif
endif

/* Get perdformed moves */
if(piggyback has performed moves)
 if(received_performed_move[i].step is newer)
 get_performed_move[i];
 endif
endif

/* Check and set send moves status */
if(performed_moves_steps >= requested_moves_steps)
 send_only_performed_move;
else
 send_only_requested_move;
endif

/* Send data to computer */
if(connected to computer)
 send_data_to_computer;
endif

40 Chapter 5 - Implementing the navigation strategy

5.1.2 The robot

To begin with, since these experiments include a moving robot controlled by a MicaZ
mote, as seen in Figure 29, the above explanation is still valid. The only difference resides
in the fact that only one node, and not a set of nodes, is present on the robot.

Algorithm 2 – Robot’s moving algorithm
/* Move Robot */
if(robotState is IDLE)
 robotState = ROTATING;
 reset_counters;
 rotate;
else
 if(robotState is ROTATING)
 go_forward;
 else
 robotState = IDLE;
 endif
endif

Adding to the previous, there is the task of putting the robot in motion. This task has been
simplified by making the moves very simple: rotate and move forward, Algorithm 2; but it
still has a problem associated the existence of obstacles in the way of the robot. To cope
with this nuisance the obstacle sensors were embedded in the robot and their usage is
also very simple, as described below.

Left
Motor

Right
Motor

L293E

LS7366 LS7366

Left
Sensor

MDA300C

Front
Sensor

Right
Sensor

MicaZ

TinyOS
with nesC

SPI
I2C

IEEE802.15.4

Spread information

Perform requested moves

Figure 29 – The robot setup

5.1 Implementation description 41

Initially, the robot receives a message containing the orders issued by the computer (step
sequence number, forward distance, and spin angle) and, if the sequence number on the
message is greater than the previous one it follows those instructions (see Algorithm 1).
First, the robot starts to rotate and when the desired angle has been reached it stops. If
an obstacle is in front of the robot the forward movement will be impossible. So, in order
to avoid this situation, the robot, continues to rotate until the way is clear. After that, the
forward move is performed. In this case, the solution is even simpler. If an obstacle is too
close, it stops.

Once this is done the robot didn’t follow exactly the instructions issued by the computer.
So, in order to have a correct assessment of the robots’ movement on the computer, a
message containing the values of spin angle and forward distance is sent back to the
computer through the network.

5.1.3 The computer

The computer setup is as shown in Figure 30 and its functions go from filter the RSSI data
to control the progress of the robot throughout the experiments. The program runs in
Matlab, Algorithm 3, and calls Java methods.

TCP/IP
MIB600

MicaZ

TinyOS
with nesC

IEEE802.15.4

TCP/IP Computer

Matlab

Java Visualization

Spread information

Send information to computer

Filter RSSI data

Generate new moves

Decide when to change target/stop

 Figure 30 – The computer setup

42 Chapter 5 - Implementing the navigation strategy

Note that up to this point the emulation of a three antenna node is not concluded since
the received information is still from 7 different nodes. So, in order to finalize this
emulation, the mean of the several non-zero RSSI values, that integrate a set of nodes in
the extended connectivity matrix, is calculated like it is shown in

RSSI data Processing

Figure 31.

Finally, to conclude the RSSI data acquisition, Algorithm 4, each time this program
receives the extended connectivity matrix, from the MIB600 board via TCP/IP, it writes it
on a sampling table, which holds the information of three previous matrixes (sampling
window). Then, this information is used to calculate a mean for each element in the
sampling table creating the RSSI sample.

Algorithm 3 – Matlab code
RunStep=1;
currentBeacon=0;
generateMove(RunStep, currentBeacon);
while(RunStep<500)
 requested_move_done=getNewData(); % Includes Filtering
 if(trequested_move_done)
 RunStep=RunStep+1
 moveDone(currentBeacon);
 generateMove(RunStep, currentBeacon);

 {...get log...}

 if(RSSI_reading>35)
 counter=counter+1

 if(counter==3)
 if(theend)
 break;
 endif

 counter=0;

 currentBeacon=currentBeacon+1

 currentBeacon=mod(currentBeacon,2);
 if(currentBeacon == last_beacon)
 theend=true;
 endif
 endif
 elseif(RSSI(movingCluster+1,currentBeacon+1,RunStep)<30)
 counter=0;
 endif
 endif
endwhile

5.1 Implementation description 43

Adding to the extended connectivity matrix, the information about the performed moves
also arrives to the computer. This information, if newer than the previous one, is saved
and a set of operations is triggered.

Movement Planning

First, since this means the previous move is done, the information on the new position
and angle is calculated and saved (note that this information is only important in the MLE
method as the oblivious does not need to know the position or angle). The current RSSI
data is also saved associated with the position, Algorithm 5.

Once this is done, there is finally time to perform the new move. This will be done in
different manners, depending on the method in use.

Algorithm 4 – getNewData method
Outputs: newPerformedMoveArrived

data=readDataFromMIB();
if(piggyback has RSSI table)
 receivedRSSI=data.RSSI;
endif

 0 1 2 3 4 5 6

 0 1 2

0 0 35 22 31 31 33 25

0 0 33,2(2) 31 1 38 0 35 24 52 34 24

2 23 35 0 29 23 42 44

3 0 23 29 0 19 36 12

1 33,125 0 15.6(6) 4 31 51 24 21 0 27 11

5 31 33 43 37 26 0 23

6 26 24 43 13 11 23 0 2 31 15.6(6) 0

Figure 31 – Single-node beacon (left); Multi-node beacon (right)

44 Chapter 5 - Implementing the navigation strategy

/* No requested moves return to computer*/

/* Get perdformed moves */
if(piggyback has performed moves)
 performedMoves=data.performedMoves;
endif

RSSI = calculate_multi_node_beacon_RSSI(receivedRSSI);
Samples[SampleCounter] = RSSI;

SampleCounter++;
SampleCounter%=SAMPLE_SIZE; //SAMPLE_SIZE=3
SampleRSSI=mean(Samples);

if(new_performed_move)
 return true;
else
 return false;
endif

Movement with the oblivious method

In the beginning of the run, the robot goes to a random direction. If the difference
between the RSSI reading in this new location and the reading in the previous location
proves to be positively greater than a set threshold, then the robot proceeds in the same
direction, since it means the robot is approaching the beacon. If, on the other hand, the
value is negatively greater than the threshold, the robot turns around, since the beacon is
further. Finally, if the threshold is not met, the robot rotates randomly and proceeds.
Once the computer decides what to do, it sends the information to the robot, which will
perform the step. This is shown in Algorithm 6.

Algorithm 5 – moveDone method
Inputs: currentDestination

 calculate_new_angle_from_performed move;
 calculate_new_position from performed move;
 writeLog();

Movement with the MLE method

To begin with, the MLE method, Algorithm 7, needs some information to start the
iterations, which will, eventually, lead to the objective. This is done by making a small
number of random tentative moves, 𝑁𝑁𝑝𝑝𝑅𝑅𝑆𝑆 , in order to acquire data to feed to the

5.1 Implementation description 45

algorithm. After this data is available, the iterations start, and the pursuer starts to
approach the beacon.

Algorithm 6 – generateMove method with oblivious
Inputs: RunStep
 currentDestination

if (abs(RSSI-RSSI_old)<RSSI_THRESHOLD)
 Random_Move;
else
 if(RSSI-RSSI_old>0.0)
 Keep_Going;
 else
 Turn_Around;
 endif
endif
RSSI_old= RSSI;
while(angle>180.0)
 angle-=360.0;
endwhile
while(angle<-180.0)
 angle+=360.0;
endwhile
send_move_request();

As mentioned before this is not enough in high noise environments and as such, after
each step is taken, more data is collected filling a queue until a maximum size, 𝑁𝑁𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑅𝑅 .
This queue is used as a circular buffer, in which newer information replaces the oldest
one. This allows the collection of more data while already approaching the objective, and,
in a low noise environment, the quick approach to the objective.

The experiments in [4] suggest the use of 𝑁𝑁𝑝𝑝𝑅𝑅𝑆𝑆 = 4 and 𝑁𝑁𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑅𝑅 = 12 so that, in a low
noise environment, after four steps, the pursuer is already chasing the objective; in a high
noise environment, the pursuer collects data up to twelve steps and is still able to reach
the objective.

Note that, since the computer has all the data regarding the RSSI readings from all the
nodes, once the robot changes target, the data fed into the MLE algorithm is data
previously collected. So, instead of beginning with zero entries in the queue, it begins
with the most recent entries already collected, up to a maximum of twelve.

This data, which is composed by positions and RSSI readings, is used during the iterations
to estimate the position of the beacon. The first thing to is do, is to transform the RSSI

46 Chapter 5 - Implementing the navigation strategy

reading in signal space distances and then feed the positions and these calculated
distances to the MLE algorithm. This algorithm uses the system with n equations that
describe the distance between two points:

�
(�̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑚𝑚1)2 + (𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑦𝑦1)2 = 𝑅𝑅1

2

⋮
(�̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑚𝑚𝑆𝑆)2 + (𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 − 𝑦𝑦𝑆𝑆)2 = 𝑅𝑅𝑆𝑆

2
�

Then, the n-th equation is subtracted from the others, resulting in the n-1 equation
system:

⎩
⎪
⎨

⎪
⎧

2 ∗ �̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚1) + 2 ∗ 𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦1) =
= 𝑅𝑅1

2 − 𝑚𝑚1
2 + 𝑚𝑚𝑆𝑆2 − 𝑦𝑦1

2 + 𝑦𝑦𝑆𝑆2

⋮
2 ∗ �̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚𝑆𝑆−1) + 2 ∗ 𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦𝑆𝑆−1) =

= 𝑅𝑅𝑆𝑆−1
2 − 𝑚𝑚𝑆𝑆−1

2 + 𝑚𝑚𝑆𝑆2 − 𝑦𝑦𝑆𝑆−1
2 + 𝑦𝑦𝑆𝑆2

�

This allows writing:

𝑆𝑆�̅�𝑚 = 𝑏𝑏

𝑅𝑅ℎ𝑅𝑅𝑟𝑟𝑅𝑅,

𝑆𝑆 = �
2 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚1)

⋮
2 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦1)

⋮
2 ∗ (𝑚𝑚𝑆𝑆 − 𝑚𝑚𝑆𝑆−1) 2 ∗ (𝑦𝑦𝑆𝑆 − 𝑦𝑦𝑆𝑆−1)

�

�̅�𝑚 = ��̅�𝑚𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆𝑦𝑦�𝑏𝑏𝑅𝑅𝑝𝑝𝑅𝑅𝑜𝑜𝑆𝑆
�

𝑏𝑏 = �
𝑅𝑅1

2 − 𝑚𝑚1
2 + 𝑚𝑚𝑆𝑆2 − 𝑦𝑦1

2 + 𝑦𝑦𝑆𝑆2

⋮
𝑅𝑅𝑆𝑆−1

2 − 𝑚𝑚𝑆𝑆−1
2 + 𝑚𝑚𝑆𝑆2 − 𝑦𝑦𝑆𝑆−1

2 + 𝑦𝑦𝑆𝑆2
�

The next step is to solve the system in order to get the estimate beacon position:

𝑆𝑆�̅�𝑚 = 𝑏𝑏 ⟺ 𝑆𝑆𝑇𝑇𝑆𝑆�̅�𝑚 = 𝑆𝑆𝑇𝑇𝑏𝑏 ⟺ �̅�𝑚 = (𝑆𝑆𝑇𝑇𝑆𝑆)−1𝑆𝑆𝑇𝑇𝑏𝑏

5.1 Implementation description 47

Note that this is actually the least squares method, which minimizes the residual of the
beacon position estimate.

Finally, once the beacon estimate position is calculated, the computer can calculate how
much the robot needs to rotate. This is done by transforming the Cartesian coordinates
(x, y) into polar coordinates (distance, angle) and, finally, by subtracting to this calculated
angle the angle the robot is currently pointing to. This new requested move is then sent
back to the robot.

Algorithm 7 – generateMove method with MLE
Inputs: RunStep
 currentDestination

if(Nsamples<=Nten)
 random_move();
else
 positions=getPositions(Nsamples);
 distances=getDistances(Nsamples);
 Beacon = MLE(Nsamples,positions, distances);
 angle = Math.atan2(y_Beacon-y_RobotPosition, x_Beacon-x_RobotPosition);
 angle = angle-currentDirection;
 while(angle>180.0)
 angle-=360.0;
 endwhile
 while(angle<-180.0)
 angle+=360.0;
 endwhile
endif
send_move_request();

5.1.4 Condition of arrival at the beacon

The final issue to be taken into account by the computer is the arrival at the beacon. The
strategy to consider a valid arrival at the beacon was based on observation of the
behavior of the RSSI with the distance. The conclusions from observation were that near
the beacon the RSSI values would easily be above thirty five. This value was then made
into a threshold so that, when the RSSI rises above it, the robot is in the vicinity of the
beacon. A problem still persists at this point. The interferences allow such a high reading

48 Chapter 5 - Implementing the navigation strategy

to be received far away from the beacon. So, one reading above the threshold is not
enough to validate the arrival. Three readings above that threshold were then made
compulsory so that the program considers a successful arrival. But, adding to this, one last
issue remains since the robot can move away from the beacon or even go to an area that
has destructive interference. Therefore, in order to finally settle this, a second lower
threshold, with the value of thirty, was created so that the count does not reset while the
RSSI doesn’t drop below that value. This is illustrated in Figure 32 and Algorithm 3.

Figure 32 – Arrival Condition

5.2 Obtained Results

Here, the results of the navigation experiments will be shown. The objective of this
experiment is to test the capability of navigation in a multi-beacon environment using the
two methods described before, oblivious and MLE. The setup, as mentioned above, is two
beacons, one robot and one computer. The task the robot has to perform is to go from
the starting point (0, 0), to beacon zero (0, 300), then go to beacon one (45, 75) and,
finally, return to beacon zero (0, 300). All this based only on the received RSSI readings,
i.e. no encoder readings will be used to return to beacon zero.

All the following experiments were made in the same conditions and repeated several
times, both with the oblivious and MLE methods. Bellow, three samples of each are
presented and discussed.

5.2 Obtained Results 49

5.2.1 Oblivious method results

Experiment 1

Figure 33 – Oblivious method path- experiment 1

Figure 34 – Oblivious method RSSI received by node 2- experiment 1

50 Chapter 5 - Implementing the navigation strategy

Experiment 2

Figure 35 – Oblivious method path- experiment 2

Figure 36 – Oblivious method RSSI received by node 2- experiment 2

5.2 Obtained Results 51

Experiment 3

Figure 37 – Oblivious method path- experiment 3

Figure 38 – Oblivious method RSSI received by node 2- experiment 3

52 Chapter 5 - Implementing the navigation strategy

5.2.2 MLE method results

Experiment 1

Figure 39 – MLE method path- experiment 1

Figure 40 – MLE method RSSI received by node 2- experiment 1

5.2 Obtained Results 53

Experiment 2

Figure 41 – MLE method path- experiment 2

Figure 42 – MLE method RSSI received by node 2- experiment 2

54 Chapter 5 - Implementing the navigation strategy

Experiment 3

Figure 43 – MLE method path- experiment 3

Figure 44 – MLE method RSSI received by node 2- experiment 3

5.2 Obtained Results 55

5.2.3 Final Considerations

By a quick analysis of the above graphics above, it becomes clear clear that the number of
steps needed to make the first approach, using the MLE method, is much larger than in
the second and third approaches. This is easily explained. While in the first approach
there is a lack of values, on the queue of data fed to the MLE, in the following approaches
there are 12 values available to feed the algorithm, which makes a much more precise
estimation possible. Another point of interest is the constant rise of the RSSI values with
this method, which shows how effective the algorithm is.

On the oblivious method, on the other hand, there are rises and falls in the readings and
the results are much more inconstant. While with the MLE, the first approach is slow and
the subsequent are faster, with the oblivious method sometimes they are faster and
sometimes they are slower. This is not at all unexpected due to the random nature of the
oblivious algorithm.

Table 7 – Number of steps needed with oblivious
Number of steps needed Experiment 1 Experiment 2 Experiment 3
Beacon 0 8 12 13
Beacon 1 16 10 22
Beacon 0 5 14 16

Table 8 – Number of steps needed with MLE
Number of steps needed Experiment 1 Experiment 2 Experiment 3
Beacon 0 15 23 31
Beacon 1 11 15 6
Beacon 0 10 7 8

Finally in experiment 3, with the MLE, a lot of going back and forward is visible. Although
this seems contradictory to the algorithm, by observing the experiment, it is possible to
see that that was caused by the existence of obstacles which did not allow the robot to
move where it wanted to and, therefore, collect RSSI values with a larger difference. This
shows a possible weak point of the MLE algorithm – the big dependence on a good
relationship between the RSSI with the distance – which makes the robot, if trapped in a
location where the readings are very similar, to take a while or not be able to proceed.
Although a similar pattern exists in experiment 3, with the oblivious method, this was not
created by the obstacles but by the natural randomness of this method.

A possible solution for the MLE problem mentioned above is to check the positions the
robot was at, and where it is. Based on that, and on the beacon estimates, is possible to
make the robot move somewhere he hasn’t been in recent time so that it can collect
more and different information. Also interesting would be to perform these experiments

56 Chapter 5 - Implementing the navigation strategy

in an obstacle free environment. This would avoid interferences caused by the obstacles
in the algorithms, either helpful or detrimental.

 57

Chapter 6

Conclusions and future work

6.1 Conclusions

The objective of this dissertation was to study, implement and test several relative
localization and navigation techniques on a multi-beacon environment, based only on the
RF signal of wireless communications.

On the subject of localization, the MDS algorithm was tested with different transmission
synchronization, RSSI filtering, and bandwidth parameters and the results were given
comparative evaluation. This test, to the best of our knowledge, had never been done
and confirmed that the tuning of these parameters has a significant toll on the
performance of this algorithm. Other tests were conducted on the MDS algorithm and on
these the intent was to check if using the different parts of the extended connectivity
matrix, e.g. top triangle or bottom triangle, would make any improvements or, on the
downside, make the behavior worse. But, unlike the parameters adjustment, the
difference on the results these tests produced proved to be too little to be considered
either a benefit or a drawback.

On the subject of navigation, the resulting work was experimentally evaluated, with
emphasis on the comparative evaluation of the oblivious method and the MLE method. In
the performed experiments it was perceived that neither method is quicker than the
other, which was not expected, since the iterative method was thought to be faster to
complete the experiment than the oblivious method. However, this was clearly due to the
relatively large number of initial steps taken by the MLE method. After the initial steps,
needed to acquire a good notion of the target direction, MLE was much faster, with

58 Chapter 6 - Conclusions and future work

relatively little deviations, directed to the position where the beacon was. The oblivious
method, on the other hand, shows a constant and higher tendency to deviate from the
beacon due to its randomness. Finally, the MLE´s big dependence on a good relationship
between the RSSI and the distance was exposed as a weak point when using this method.

6.2 Future work

Some ideas, either by lack of means of lack of time, were not experimented on. Thus, they
will be dealt with in this section.

6.2.1 Improving the MLE algorithm

The MLE algorithm used only moves according to the beacon estimate position. But, since
the robot already has encoders, it is possible to go beyond this.

The suggestion left here is to use the already equipped platform of the robot to map the
positions the robot has visited before. Using this information, together with the beacon
estimate, makes it possible to plan the movement, which can avoid the collection of data
in the same points over and over. This will not only help avoid the dependence issued in
the experiments, which can have detrimental effects on the algorithm, but, possibly, will
also reduce the time the robot takes to go to the beacon, since the samples will be taken
with a larger distance from one another.

6.2.2 Multi-Robot experiment

Due to hardware constraints, in the work developed it was only possible to build a robot.
So, the second suggestion is that it would be interesting to compare the results of a robot
approaching a beacon with a robot approaching a robot.

These tests are appealing because a larger queue of data to feed the MLE reduces the
error of the estimate. Nevertheless, if the target moves, the system will be slower to react
to that change. So, the feasibility of applying MLE in a noisy environment with a moving
target is not as straightforward as it is with a static beacon. On the other hand, a reactive
method, like the oblivious, should react very much in the same way either with static or
moving nodes.

6.2 Future work 59

6.2.3 Wide space experiment

It has been mentioned before that the obstacles interfere with the movement of the
robots. This happens in both ways, either helping the robot reach the target as well as
making it harder. The point is, to be able to really test the efficiency of the algorithms and
compare them, without any help or hinder from the obstacles, it would be necessary to
perform the experiments with the algorithms in a large area. This could bring precious
extra information that could help to further differentiate the performance between the
algorithms.

 61

Bibliography

[1] F. F. d. N. D. Carramate, "Localização Relativa de Robôs Móveis Baseada no RSS de
Comunicações RF," 2008.

[2] H. Li, L. Almeida, Z. Whang, and Y. Sun, "Relative Positions Within Small Teams of
Mobile Units," 2007.

[3] H. Li, L. Almeida, F. Carramate, Z. Whang, and Y. Sun, "Connectivity-Aware Motion
Control among Autonomous Mobile Units," 2008.

[4] H. Li, L. Almeida, F. Carramate, Z. Wang, and Y. Sun, "Using Low-Power Radios for
Mobile Robots Navigation," in FET 2009 - 8th IFAC Conference on Fieldbuses and
Networks in industrial and embedded systems, 2009.

[5] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, "Cooperative Mobile Robotics:
Antecedents and Directions," 1997.

[6] S. Baek, S. Ahn, and S.-Y. Oh, "Fast Localization Algorithm for The Cleaning Robot By
Using Self-Organization Map," International Symposium on Computational
Intelligence in Robotics and Automation, pp. 19-24, 2007.

[7] H. Li, L. Almeida, Z. Whang, and Y. Sun, "Relative Positions Within Small Teams of
Mobile Units," 2007.

[8] "QUADRATEC Limited," in http://www.quadratec-
ltd.co.uk/Security_Surveillance_systems.htm, 14-10-2009.

[9] V. Cars, "https://www.media.volvocars.com/global/enhanced/en-
gb/Home/Welcome.aspx," 16-10-2009.

[10] "Finder system for fire-fighter location," in http://www.i-a-
i.com/view.asp?aid=105, 15-10-2009.

[11] M. Aoki and H. Fujii, "Inter-Vehicle Communication: Technical Issues on Vehicle
Control Application," in IEEE Communications Magazine, 1996, pp. 90-93.

[12] Y. Shang, W. Ruml, T. Zhang, and M. P. J. Fromherz, "Location From Mere
Connectivity," in Proceedings of the ACM International Symposium on Mobile Ad
Hoc Networking and Computing (Mobihoc), 2003, pp. 201-212.

[13] X. Ji and H. Zha, "Sensor Positioning in Wireless Ad-hoc Sensor Networks Using
Multidimensional Scaling," 2004.

[14] T. Fracchinetti, G. Buttazzo, and L. Almeida, "Dynamic Resource Reservation and
Connectivity Tracking to Support Real-Time Communication among Units," in
EURASIP Journal on Wireless Communications and Networking, May 2005, pp.
712-730.

[15] Crossbow, "http://www.xbow.com/," 22-10-2009.
[16] T. Instruments, "C2420 - 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,"

2007.
[17] Crossbow, "Avoiding RF Interference Between WiFi and Zigbee."

62 Bibliography

[18] F. Santos, G. Currente, L. Almeida, N. Lau, and L. S. Lopes, "Self-configuration of an
Adaptive TDMA wireless communication protocol for teams of mobile robots,"
2007.

[19] I. LSI Computer Systems, "LS7366 - 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver," 2009.

[20] S.-T. MICROELECTRONICS, "L293E - Push-pull four channel drivers," 1993.
[21] S. Corporation, "GP2D12 Optoelectronic Device," 2005.
[22] M. Ruas and J. L. Azevedo, "Robot Voyager II – Reactividade e eficiência." vol. 4:

REVISTA DO DETUA, September 2005.

	Modelo_dissertacao
	dissertação - Corrigida apos Juri
	1.1 The appeal for cooperating robot teams
	1.2 Relative localization for coordination
	1.3 RSSI based localization and navigation
	1.4 Objectives
	1.5 Dissertation structure
	2.1 Relative localization
	2.1.1 MDS-based relative localization

	2.2 Navigation
	2.2.1 Using MDS
	2.2.2 Using an oblivious method
	2.2.3 Using MLE

	The nodes
	3.1.1 Wireless communications

	3.2 The robot
	3.3 Programming the robot
	3.3.1 Obstacle sensors
	3.3.2 Motors

	3.4 System architecture
	3.4.1 Executing complex computations

	Implementation and Set up
	4.1.1 Mote’s side
	4.1.2 Computer’s side

	4.2 Obtained Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7
	4.2.1 Tables of experiments results
	Node 0
	Node 1
	Node 2
	Node 3
	Node 4
	Node 5

	4.3 Conclusions
	4.3.1 Testing maximum RSSI
	4.3.2 Testing the use of Adaptive-TDMA (Time Division Multiple Access)
	4.3.3 Testing the use of different sample window sizes and sample selection algorithms
	4.3.4 Final Considerations

	Implementation description
	5.1.1 The beacons
	5.1.2 The robot
	5.1.3 The computer
	RSSI data Processing
	Movement Planning
	Movement with the oblivious method
	Movement with the MLE method

	5.1.4 Condition of arrival at the beacon

	5.2 Obtained Results
	5.2.1 Oblivious method results
	Experiment 1
	Experiment 2
	Experiment 3

	5.2.2 MLE method results
	Experiment 1
	Experiment 2
	Experiment 3

	5.2.3 Final Considerations

	6.1 Conclusions
	6.2 Future work
	6.2.1 Improving the MLE algorithm
	6.2.2 Multi-Robot experiment
	6.2.3 Wide space experiment

