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palavras-chave

resumo

Comunicações ópticas, redes ópticas passivas de nova geração, anel de dupla 
fibra, árvore mono fibra, nó remoto, reconfigurabilidade, optimização de redes.

O presente documento tem por objectivo demonstrar, analisar e optimizar nós 
remotos passivos para redes ópticas passivas baseadas numa topologia de 
anel de dupla fibra com multiplexagem no comprimento de onda onde estão 
penduradas árvores mono fibra baseadas na multiplexagem no tempo. A rede 
‘Scalable Advanced Ring-based passive Dense Access Network Architecture’
(SARDANA) baseada nesta topologia é apresentada e demonstrada.

Na rede SARDANA a interligação entre o anel e as árvores é realizada pelo 
intermédio de um nó especial denominado de nó remoto. Esse nó remoto é um 
elemento fundamental para o funcionamento, resiliência e escalabilidade da 
rede. Neste documento são apresentadas e comparadas diferentes topologias 
para a implementação desse nó remoto. É também apresentada a 
reconfigurabilidade remota desses mesmos nós remotos através de módulos 
de conversão energética e controlo, implementada nos nós remotos.

Um factor importante para a optimização dos nós remotos é a amplificação 
remota realizada por intermédio de fibras dopadas de érbio pelo que o seu 
estudo é também apresentado.

Finalmente é demonstrado um protótipo de um nó remotamente reconfigurado 
e eficiente.





keywords

abstract

Optical communications, new generation passive optical networks, double fiber 
ring, single fiber tree, remote node, reconfigurability, network optimization.

The objective of this document is to demonstrate, analyze and optimize remote 
nodes for passive optical networks based on double fiber ring multiplexed in 
wavelength connected to single fiber trees multiplexed in time. The network
‘Scalable Advanced Ring-based passive Dense Access Network Architecture’ 
(SARDANA) based on this topology is presented and demonstrated.

In the SARDANA network the interconnection between the ring and the trees is 
done by means of a special node, the remote node. This node is a fundamental 
element to the operation, resiliency and scalability of the network. This 
document presents and compares different topologies to the implementation of 
the remote node. Remotely reconfigurability of the remote nodes is also 
demonstrated by means of optical conversion and control modules.

An important factor to the optimization of the remote nodes is the remote 
amplification done by means of erbium doped fibers being presented the 
analysis of the amplifier.

Finally is demonstrated a prototype of a node remotely reconfigured and 
efficient.
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Chapter 1. Introduction

1.1. Context

Since the ancient times that the principal need of the human kind is to 

communicate transmitting information from one place to the other. There was a constant 

motivation to improve the fidelity, increase the data rate and increase the total transmission 

distance. One of the first related ancestral communications was made by means of fire 

signals by the Greeks in the 8th century B.C. used to send alarms, demanding help and 

announcing some special events [Aschoff, 1977]. Until the 19th century A.C. 

communications provide very low information and were based just on optics and acoustic.

The invention of the telegraph by Samuel Morse in 1838 created a new era of 

communications, the Electric Era [Busignied, 1972]. The Morse code was the most 

important coding technique used by the telegraph. It was able to communicate 10b/s of 

electric pulses in a digital scheme through intermediate stations until 1000km [Jones, 

1852]. Later, in the year of 1876, the telephone was invented by Bell, being the dominant 

communication system for about hundred years [Bell, 1876]. The telephone made possible 

to communicate analog signals varying continuously the electric current. The development 

of the telephone leads to the use of coaxial cables instead of the wired pair, increasing the 

total capacity. The first implemented coaxial cable, in 1940, was a 3 MHz system able to 

transport until 300 voice channels or a television channel. The amount of information that 

can be transmitted is directly related to the frequency of the carrier, so, increasing the 
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carrier frequency theoretically increases the available transmission bandwidth. This 

increase of the frequency leads to the birth of radio, television, radar and microwave using 

a larger portion of the electromagnetic spectrum. The limitations of the coaxial cables 

operating at 10 MHz resulted on the implementation of microwaves with carrier 

frequencies of 1-10 GHz. The first coaxial cable operating with microwaves in 1948 was 

able to communicate 100 Mb/s at a carrier frequency of 4 GHz. Almost 30 years after, in 

1975, an advanced coaxial cable system communicated at 274Mb/s but repeaters were 

necessary each km, being the communication links relatively expensive [Agrawal, 2002].

In 1960, with the development of a coherent optical source, the laser [Maiman, 

1960], and in 1966 a suitable transmission medium, the optical fiber [Kao, 1966], made 

possible the development of optical communication with higher transmission rate and 

higher distance reach [Willner, 2000]. The first optical fibers, in the sixties, had 

1000dB/km of losses, being this value decreased to about 20dB/km in the seventies 

[Kapron, 1970]. The optical communication systems by means of optical fibers had an 

evolution of five generations [Kogelnik, 2000]. In the first generation, in 1980, a 

communication of 45Mb/s was possible by means of a carrier at 800nm requiring repeaters 

each 10km [Sanferrare, 1987]. The develop of new optical fibers in 1987 providing less 

than 1dB/km of losses at 1300nm and lower dispersion than previous wavelength carrier 

made possible the second generation, achieving 1.7Gb/s in a MMF with repeaters each 

50km [Globe, 1980]. In the third generation, the optical carrier has a wavelength of 

1550nm, where the new fibers developed in 1990 had a low loss of 0,2dB/km. For this 

spectrum the distortion was higher than the previous generation, but it was compensated 

with DSF and limiting the laser spectrum, achieving communications at 10Gb/s with 

regenerators spaced by 60-70km [Nakagawa, 1995]. In 1992, the implementation of a 

efficient amplifier, the EDFA and the use of WDM signals made possible the fourth 

generation, where regenerators spaced by 60-80km  made possible to reach distances as 

high as 35000Km or data rates as high as 10Tb/s in 2001 [Marra, 2001]. The current 

generation, the fifth, is concerned with the extension to more than 1000 WDM channels to 

the band C, L and S, using Raman amplification and a new generation dry fiber with low 

attenuation for 1300 to 1650nm [Thomas, 2000].
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Early optical communications links were used for trunking telephone lines 

aggregated in TDM. In 1990, an tremendous demand on communication networks for 

services such as database, shopping, remote education, telemedicine, video on demand, 

video conference among others and a rapid proliferation of personal computers with 

increased storage capacity, processing capabilities and provided with internet, made 

possible a migration of the services of telecommunications companies worldwide to the 

optical networks systems [Driel, 1997],[Hill, 1997],[Holler 1998],[Stone, 1999].

1.2. Motivation

There is a growing need for bandwidth driven for the demand from residential 

and business users. It causes a demand from the scientific community for infrastructure 

that support large scale data transport and processing [Ash, 2008]. 

Figure 1.1: Evolution of the Optical Networks capacity in long of the years [Ash, 2008].

The figure 1.1 represents the evolution of the product bandwidth and length of 

the link in function of the Year. It demonstrates clearly an exponential increase.  

Telecomm carriers are also quite aware that they need to deal with a continuous and 

exponential grow of services requiring large bandwidth and that the transportation of data 

must be provided in a more efficient manner. These bandwidth requirements are mainly 

driven by IP traffic which now include IP video flavors that have migrated from the initial 

closed IPTV to a more open internet based model and intensive transaction web 2.0 
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applications [Cvijetic, 2007]. The residential broadband IP rates are increasing from 1-

6Mb/s to 25-30Mb/s over copper pairs, or up to 100Mb/s via FTTH. The current and future 

increase in number of end users requiring these data rates in access area will eventually 

result in a one or two order of magnitude increase in aggregate bandwidth demand for the 

ISP.

Figure 1.2: Internet and broadband penetration in Sweden per household [Forzati, 2008]

Figure 1.2 presents the Internet access and the broadband penetration in 

Sweden. It demonstrates that in last years the Internet access tends to stabilize although the 

broadband access as video on demand is increasing considerably together with the high 

speed data rates connection.

Figure 1.3: Increase in the capacity of lightwave system after 1980 [Agrawal, 2002].

The figure 1.3 shows the comparison between the research data rate per link 

and the required commercially. It can be seen an approximation of the both lines 

representing a saturation of the fiber links and the need to improve for higher data rates 

links and networks. With the constant grow of bandwidth demand it is necessary to 

develop new optical networks designs able to support the already deployed equipment and 

providing lower costs, reduced operation efforts, scalability and adaptation to the future 

services and applications requirements in terms of bandwidth and QoS.
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1.3. Structure and Objectives

This document is divided in eight chapters all related to Optical Networks, its 

different architectures, the optical components, the SARDANA network and practical 

implementations.

In this first chapter is presented the description of the context of this work and 

its main proposed objectives together with the chapter division and the studied topics.

Second chapter describes more extensively the optical networks, the evolution 

along the years, the different architectures and different ways to provide fiber to the user.

The third chapter presents different Next Generation ring based optical 

networks comparing the architectures. It aims providing the reader with the actual state of 

art of developed networks based on ring topology as an introduction to a clearly view of 

the SARDANA network.

The fourth chapter presents the Scalable Advanced Ring Based Passive Dense 

Access Network Architecture (SARDANA). It presents a brief introduction to the main 

components of the network as the Central Office (CO), the Optical Network Unit (ONU), 

the Remote Node (RN) and the fiber structures.

The fifth chapter presents the Remote Node (RN) of the SARDANA network 

that is the main subject of the whole document. As the RN requires optical pump power to 

operate is crucial to optimize and reach a high efficient topology. Different topologies are 

presented and improved in order to increase the efficiency of the network

The sixth chapter presents the main components that required analysis and

potentially improvement. The first component is the Erbium Doped Fiber (EDF) 

responsible for the provision of gain to the data signals requiring an intensive study to 

optimize length, concentration, pump power and control. The second component is the 

control module responsible to adjust the optical pump power supplied to the EDF and the 

amplification/non-amplification selection.
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The seventh chapter presents a comparison between the different RNs 

topologies in terms of required pump power and number of operational RNs for different 

ring lengths and network’s resiliency modes.

The last chapter, the eight, presents the conclusion of the document and work 

performed and suggests future work in order to improve even more the total efficiency of 

the network.

1.4. Main Contributions

In the author’s opinion, the main contributions of this work may be 

summarized as follows:

 Understanding the main aspects of the SARDANA network and the main 

objectives and impairments.

 Understanding the evolution of the Remote Nodes topologies and implementation 

of different approaches to increase significantly the total efficiency of the network. 

This aimed reducing the total pump power produced for the Central Office, 

increase the scalability and provide full resiliency.

 Providing an extensive analysis of the Erbium Doped Fibers amplification by 

means of analysis of previous documentation, simulating and implementing 

experimentally tests in order to select the higher efficiency EDFA parameters.

Besides this final work, other documents were done and submitted for the proceedings of 

some conferences:

 Albano Baptista, Nataša B. Pavlović, Paulo André, David Forin , Giorgio Tosi 

Beleffi, Jose A. Lázaro, Josep Prat and António Teixeira, “Improved remote node 

configuration for passive ring-tree architectures”, ECOC 2008, Brussels, Belgium, 

2008.
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 Albano Baptista, Nataša B. Pavlović, Paulo André, David Forin , Giorgio Tosi 

Beleffi, Jose A. Lázaro, Josep Prat and António Teixeira, “Reconfigurable Remote 

Node for Hybrid WDM Dual-Fiber-Ring with TDM Single-Fiber-Trees Passive 

Optical Network”, ICTON 2008, Athens, Greece, 2008.

 Albano Baptista, Nataša B. Pavlović, Paulo André, David Forin, Giorgio Tosi 

Beleffi, Jose A. Lázaro, Josep Prat and António Teixeira, “Hybrid WDM Dual-

Fiber-Ring with TDM Single-Fiber-Trees Passive Optical Network”, CLME 2008, 

Maputo, Mozambique, 2008.

 Albano Baptista, M. Lima, J. Lázaro, J. Prat, G. Tosi. Beleffi, D. Forin, A. Teixeira, 

“Remotely Reconfigurable Remote Node for Hybrid Ring-Tree Passive Optical 

Network”, OFC 2009, San Diego, USA, 2009.

 Albano Baptista, M. Ferreira, A. Quintas, M. Lima, A. Teixeira, “Remote Nodes 

topologies for hybrid WDM-ring TDM-tree passive optical networks”, Revista do 

Departamento de Electrónica e Telecomunicações da Universidade de Aveiro, 

Aveiro, 2008.
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Chapter 2. Optical Networks

2.1. Evolution of Optical Networks

The evolution of the optical networks along the years can be divided into three 

steps, opaque, managed reach and transparent as demonstrated in figure 2.1.

Figure 2.1: Optical Networks Evolution [Ioannis, 2008].

The opaque networks are characterized by the use of Optical Electrical Optical 

(OEO) conversion enabling the optical signal to reach longer distances. However, the 

amplification of optical signals by means of OEO requires a high number of regenerators 

in the network (one per operational wavelength) and the conversion is dependent of the 

connection bit rate and modulation format, leading to very high costs. In order to reduce 

these costs, transparent networks were proposed. In these networks, the signal is 

transported end to end fully optically, without any OEO conversion. The propagation of a 

signal through a transparent network suffers the impact of a variety of degradation 
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phenomenons that are introduced by different types of signal distortions as GVD, ASE, 

FWM, XPM, crosstalk, and they get accumulated along the path limiting the system reach 

and the overall network performance being regeneration necessary in optical domain. All 

optical regenerators are being developed and are not still commercially available in large 

scale [Agrawal, 2002]. Managed reach approach has been proposed as a compromise 

between transparent networks and opaque networks as a better approach. In this approach, 

regeneration is implemented selective at specific network locations keeping the quality of 

the transmitted signals acceptable from the source until the destination point. The number 

of regenerators is lower but complex management and monitoring of the signal quality is 

introduced. Realization of a fully automated and dynamically transparent optical network 

is difficult to achieve but extremely desirable due to the expected cost and performance 

benefits [Wagner, 2000].

The improvement of network resources must have in consideration the 

increasing demand of bandwidth (dedicated and symmetric), subscriber’s environment and 

economical aspects being most critical in the access part of the networks. Improving the 

reliability performance by duplication of the network resources implementing extra fibers 

can be too expensive. Future objective of development and implementation of networks 

will be the migration towards minimizing the CAPEX and OPEX during the access 

network lifetime [Chrissan, 2004].

2.2. Optical Network Architectures

Single mode fiber can provide almost unlimited transmission bandwidth over 

extremely long distances being the future end goal to provide optical fiber to each 

customer premise or home. Fiber to the home (FTTH) can be divided into two main 

categories according to the fiber distribution as point to point or point to multipoint. In 

point to point architecture based on fibers, the number of fibers is equal to the number of 

subscribers being extremely expensive to install and handle. In point to multipoint 

architecture, many subscribers share one fiber line through a special node, the RN that 

performs active switching or passive power splitting or wavelength mux/demux functions. 

[Makinow, 1997]. 
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Point to Point links

The simplest solution to implement fiber connection between the ISP and the 

user is implementing point to point links. It can have distance reach of less than 1 Km to 

thousands of Kms. Point to point links are implemented in the transatlantic systems due to 

the low loss and the large bandwidth [Agrawal, 2002]. For fiber links with distances higher 

from 20-100km it is necessary to compensate the fiber losses depending on the operation 

wavelength due to the signal being too weak.

Figure 2.2: Point to point fiber links with periodic loss compensation through (a) regenerators and (b) 
optical amplifiers [Agrawal, 2002].

The figure 2.2 presents the OEO conversion and amplification in point to point 

links and the regeneration made by optical amplifiers that was introduced in the nineties. 

The introduction of optical amplifiers such as SOA or EDFA has revolutionized the optical 

fiber communication system amplifying WDM transmission with almost no complexity. 

Optical point to point links can now reach more than 3000Km with no regeneration with a 

bandwidth distance product as high as 100Tb/s*Km [Agrawal, 2002]. Despite of the 

simplicity to provide FTTH due to the almost unlimited bandwidth, it is not considered the 

best solution due to the required large number of fibers, connectors, splices, the installation 

costs and maintenance.

Point to Multipoint links

The point to point architecture present some disadvantages: the total resources 

of the fiber are not fully used and each link requires an independent laser on the 

transmitter. To face these impairments point to multipoint architectures are preferred. In 

this architecture the data traffic present in a main fiber is used and shared for several
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hundreds of users. There are four distinct topologies to implement point to multipoint 

systems: Hub, Bus, Ring and Star presented in figure 2.3.

Figure 2.3: (a) Hub topology, (b) bus topology, (c) Ring topology and (c) star topology [Agrawal, 2002].

Hub topology

In a Hub topology, the data channel distribution takes place at central locations. 

Several offices can share a single fiber from the main hub, increasing the total amount of 

data required by a single hub office. The main problem present on this kind of topology is 

the reliability in case of malfunction or fiber cut since it can affect a large portion of the 

network. To reduce this problem extra links can be implemented to prevent against fiber 

cut, but reducing the total efficiency of the network [Ghani, 2002].

Bus Topology

In a Bus topology, a single fiber carry multichannel optical signal and the 

distribution is done by using optical taps, splitting a part of the total optical power present 

in the fiber to each subscriber. It is more difficult to implement than a coaxial bus. One 

limitation is the increase of the signal loss as the number of users and taps increase, 

a)

b)

c)

d)
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limiting strongly the number of users served by a single optical bus. The implementation of 

optical amplifiers boosting periodically on the bus, increases the number of subscribers 

compensating the losses as long as the signal quality remains acceptable. An Ethernet 

protocol based on a CSMA-CD can provide speeds up to 1Gb/s [Green, 1996].

Ring topology

In a ring topology approach, consecutive nodes are connected by point to point 

links to form a closed ring. Each of those nodes is able to transmit and receive data using a 

fiber pair. The nodes listen a predefined bit pattern to recognize its own address and 

receive the data and transmit by appending the data to an empty token. It is designed to 

provide backbone services such as interconnection between LANs with lower speed or 

mainframe computers [Ross, 1989].

Star topology

The last topology is the star where all nodes are connected through point to 

point links to a central node called a hub. For an active star configuration, all incoming 

optical signals are converted to electrical domain and then distributed to individual node 

transmitters. In case of being passive, distribution takes place in the optical domain by 

means of optical couplers. The power required per each node depends on the number of 

users that the RN feeds [Ross, 1989].

Figure 2.4: Cost for repair for several network scenarios [Verbrugge, 2008].

The figure 2.4 demonstrates the reparation costs for copper and fiber point to 

point and point to multipoint. It can be seen that point to point fiber links provide higher 

bandwidth per user however requires higher costs for repairing.
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2.3. Multiplexing Optical Signals

The two most important ways to multiplex the channels correspondent to each 

user in a point to multipoint passive scheme is Time Division Multiplexing (TDM) and 

Wavelength Division Multiplexing (WDM) [Agrawal, 2002]. In figure 2.5 are presented 

four different approaches to provide FTTH as point-to-point links, point to multipoint by 

means of active optical switching, TDM-PON and WDM-PON.

Figure 2.5: Four different approaches of FTTH/P a) Point to point connection, b) Active Optical network 
with Ethernet switch, c) TDM passive optical network and d) WDM active optical network [Lee, 2006].

Time Division Multiplexing and Time Division Multiple Access

TDM is the most popular FTTH approach and has significant deployments in 

various regions of the world [Lee, 2006]. It is the selected method for access networks 

since it allows a single transmitter and receiver shared in the CO and a single transceiver in 

the OLT, resulting in a cost effective solution. A single wavelength is shared for several 

ONT that select the specific portion of the broadcast data. Is particularly easy to assign 

bandwidth to the users due to the fact that the OLTs are able to control the user address and 

the data packets length. All ONUs are synchronized to a common time reference and have 

allocated a time slot (capable of carrying several Ethernet frames). 

For the Upstream direction the time multiplexing used is TDMA. Dedicated 

time slots are assigned to each of the multiple subscribers connected to the PON. Each of 
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the subscribers can use the full upstream bandwidth assigned for the duration of its allotted 

time slot. To connect the multiple subscribers to a single feeder fiber an optical power 

splitter is used at the RN, combining part of the power to each subscriber. Is required burst 

mode optical receiver at the OLT that needs to synchronize for each data packet from 

different users. A useful characteristic using TDMA is Dynamically Bandwidth Allocation 

(DBA), where not used channel bandwidth for an ONT can be given to other ONTs 

[Kramer, 2005].

A complex algorithm is necessary for management and control of the multiple 

users over a single fiber to avoid collisions. An incorrect time transmission from a 

subscriber can shut down the entire network. To avoid collisions of signals in TDMA, 

access control protocol is used [FSAN]. There are two main standards, the G-PON and the 

E-PON [Lin, 2002]. E-PON standard proves a better handle packet data traffic, reduces the 

cost of the transmission equipment [IEEE, 2002]. Is questionable that EPON can deliver 

enough bandwidth and QoS so the G-PON standard was developed providing 2,5Gb/s for 

DS and 1,25Gb/s for US [ITU-T, 2003].

Standardization of TDM is difficult because information and communication 

technologies are changing at very fast rates. By the time the technology is ready for full 

scale deployment, it is already outdated. A problem with TDM is that the optical power 

loss increases as the number of ONU increases due to the increased power splitter ratio. 

Other problem is the security, as each ONT has access to all the data sent to any of the 

users. The solution is suitable as long as the bandwidth requirements per subscriber do not 

become too high.

Wavelength Division Multiplexing and Wavelength Division Multiple Access

In WDM multiple optical carriers at different wavelengths are multiplexed 

together onto the same fiber and demultiplexed at the RN into separated channels by means 

of optical techniques and sent to the correspondent receiver. This technique allows

exploiting the large bandwidth offered by the optical fibers in an efficient way. The

resources of the WDM fiber link depends on the density of the channels in the wavelength 

domain and the length of the link [Kaiser, 2003]. The minimum channel spacing is 

determined by the inter channel cross talk and four wave mixing (FWM). Thousands of 
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Gb/s channels can be transmitted over the same fiber when spaced bellow 100 GHz. WDM 

wavelength channels have been standardized by the international telecommunication union 

ITU on 50GHz spacing between 186 and 196 THz. Each of the channels present on the 

WDM fiber can carry any transmission format being the network completely transparent

[Agrawal, 2002]. Figure 2.6 presents a comparation between point to point fiber link, 

WDM dual fiber link and WDM bidirectional fiber link. Implementing the WDM network 

with double fiber allows higher number of users connected to it since the spectrum is better 

used.

Figure 2.6: Simplification of network that supports point to point connectivity with WDM-
PON a) point to point fiber; b) point to point US and DS wavelength in different fibers and 

c) point to point US and US wavelength [Lee, 2006]

WDM networks can be divided into two categories: single and multi hop. In 

single hop all the nodes are connected to all other nodes, leading to a fully connected 

network. A N set of transmitters and receivers are attached to either a start coupler or a 

passive bus. Each transmitter sends its information at a different fixed wavelength. All the 

transmissions from the various nodes are combined in a passive star coupler or coupled 

onto a bus and the result is sent out to all receivers. Each receiver sees all wavelength and 

use tunable filter to select the wavelength addressed to it, being able to support multicast 

and broadcast. A star passive coupler can be transparent. Different communicating nodes 

use different information exchange rules without affecting the other nodes in the network

[Chraplyvy, 1990]. Single hop is a simple solution, but there needs to be carefully dynamic 

coordination between nodes and need for rapidly tunable lasers or receiver optical filters. 

In the other hand there is the multi hop topology that is only partially interconnected and is 
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able to avoid single hop drawbacks.  Each node has a small number of fixed tuned optical 

transmitters and receivers. Stations can send information directly only to those nodes that 

have a receiver tuned to one of the two transmitted wavelengths. Information destined to

other nodes will have to be routed through intermediate stations, converting to electric 

format. It does not require direct paths between each node pair, being necessary multiple 

hops for a signal to reach the destination. There is a penalty due to the electronic switching 

maximal speed. Extending broadcast and selecting to the networks cause two problems,

more wavelengths are needed as the number of nodes grow and the use of passive star 

couplers increase the splitting losses. Separate dedicated wavelength is used for the 

downstream transmission to each user requiring separated laser sources at the CO for each 

subscriber. 

Security issues in WDM networks come only from the physical access to other 

wavelengths. Due to the demultiplexing in the RN that directs different wavelength to each 

user the security is highly guaranteed by the architecture of the physical network. It 

provides virtual dedicated point to point channels to each user without concerns associated 

with multiple users sharing a channel. While being a simple solution, it remains costly for 

an access network. An array of receivers or a tunable receiver is required at the ONU and 

an array of transmitters at the CO.

In the Upstream signals is used WDMA. It is much simpler than TDMA since 

each subscriber is assigned with a pair of dedicated wavelengths. The user can send data 

anytime without disturbing or causing collisions with the other users. Each subscriber has a 

dedicated point to point virtual channel to the OLT sharing a point to multipoint physical 

architecture so to each user can be provided different data rates and modulations. A WDM 

multiplexer is used instead of power splitter by means of an AWG or thin film filter. The 

US as the DS channel spacing can be as narrow as 50 or 100Ghz. With WDM topology 

there are no QoS issues related to sharing the PON and the IL at the RN is smaller and 

independent of the splitting ratio. Unused capacity cannot be distributed and WDM 

networks have an higher CAPEX due to increased number of transmitters in the CO

[Agrawal, 2002]. 

WDM networks has inherent advantages over TDM PON in terms of 

bandwidth, protocol transparency, security and simplicity in electronics, however the 
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bandwidth for the dedicated wavelength is not fully utilized. The cost of the system is the 

main concern for the proposed PON networks. The efficiency of the network increases as 

the number of users increase [Kaminow, 1997].

2.4. Passive Optical Networks

Networks making use of passive couplers (TDM) or passive demultiplexers 

(WDM) are called Passive Optical Networks (PON). There are not active elements

between the CO and the ONU. The main advantages of PONs are the lower cost to 

implement a structure in the field, reduced OPEX, no need to supply and monitor electric 

suppliers, higher feasibility and transparency to the modulation format and data rate of the 

signals [Lee, 2006]. The transparency property of the PON enables to upgrade the network 

without rectifying the deployed network.

Figure 2.7: History of TDM-PON development [Lee, 2006].

The first deployed PON was TDM based and was referred to as Asynchronous 

Passive Optical Network (APON) since it was based on ATM protocol. This topology was 

implemented widely in Germany between 1990 and 1996. It used a shared 54Mb/s fiber

and was implemented for compatibility with the existing voice and phone services 

[Engineer, 1990]. The evolution of requested data rate and the emergence of the Internet 

lead for the new generation of APON able to support until 155MB and further to the 

Broadband Passive Optical Network (BPON). It was able to supply 155Mb/s in the 

beginning of the implementation [Plas, 1995] being upgraded to 622Mb/s later [ITU-T, 

1998]. The next approach was developed to optimize the packet based data traffic 

compared to the A/BPON standard that was optimized for voice traffic. It consists on the 
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Ethernet Protocol applied in PONs developed by IEEE and referred as the Ethernet PON 

(EPON). EPON technology provides bidirectional 1,25Gb/s with 1490nm for DS and 1310 

nm for US with 1550nm reserved for future demands [IEEE, 2002]. Having in mind the 

exponential grow of data traffic demand, and considering that the EPON was not enough to 

support the needs, the Gigabit PON (G-PON) was developed. The preferred G-PON bit 

rate was selected to be 2,488Gb/s for DS signals and 1,244Gb/s for US signals [Kimura, 

2003]. A diagram with the evolution of the TDM based PONs can be seen in the figure 2.7.

Improving Passive Optical Networks

A simple method to upgrade already deployed TDM-PONs is to keep the PON 

architecture fixed and increase the data rate to be shared for all the users. IEEE is already 

considering to increase the EPON transmission data rate from 1,25 to 10Gb/s [Yoon, 

2006]. It is still unclear if it is possible to implement a cost effective solution for this data 

rate due to the high data rate challenges. The second issue related to the improvement of 

the data rate is that all the ONT must upgrade the equipment at the same time, what can be 

inconvenient if some of the subscribers have to pay more for a service they do not require. 

A different approach to upgrade the networks would be to add extra 

wavelengths for US and DS and insert WDM filters at both the CO and ONU locations. In 

order to avoid data-remodulation crosstalk, all the subscribers are required to simultaneous 

upgrade the ONT equipment what is still an inconvenient for users that do not require 

higher speed. It can be solved by previous implemented blocking filters into the design of 

the ONT allowing a wavelength upgrade without affecting the PON users. It allows also a 

easier upgrade from a TDM-PON into a WDM-PON [Kramer, 2005]. The main problem 

of this solution is that the total cost of the network is increased in advance being in some 

times never used the extra equipment deployed. 

Other approach can be seen as reducing the number of subscribers that use the 

PON as the bandwidth demand increases. This solution is not cost effective since it 

requires extra feeder fibers installed in the field, extra power splitters and extra OLT in the 

CO reducing the benefits from a shared network. 

The fourth scenario to upgrade a TDM-PON is to convert it into a WDM-PON 

replacing the power splitter present on the RN by an AWG providing 
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multiplexing/demultiplexing functions and upgrading also the OLT and the ONT. 

Upgrading to a WDM-PON will provide a virtual point to point link between the CO and 

the ONU being future bandwidth upgrades easy and case independent situation. 

Implementing WDM-PONs can also reduce the number of CO between metro and access 

networks, reducing the total cost of the network [Lee, 2005].

2.5. Conclusions

In this chapter is made a short introduction to optical communications 

networks and the evolution in components that lead to very high speed links. The 

introduction of all optical regeneration allows very high rate links with reduced costs when 

compared to links with OEO conversion.

In this chapter is also presented and compared the two main data multiplexing, 

TDM and WDM and the different network topologies: Hub, Bus, Ring and Star. The 

evolution of TDM-PON and the migration to WDM-PON is also presented.
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Chapter 3. Next Generation Optical Networks

3.1. Introduction

While already standardized TDM optical networks are currently under 

deployment, recent research is focused on the next generation access networks [Davey, 

2005], [An, 2004]. Next generation Access Networks are aiming at offering higher user 

density, extended reach,  scalability, flexibility and resiliency while keeping the network 

simple and economically feasible [Sananes, 2005].

Figure 3.1: a) Network segment definition in terms of Bit rate, interface number and distance served and 
b) evolution of access technologies [Prat, 2007].

The figure 3.1 presents the evolution of the optical networks towards New 

Generation optical networks. Research activities are focusing on possible extensions of 

a)

b)
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current GPON and EPON since these systems may suffer bandwidth limitations in the 

future, and they do not make full use of the optical bandwidth. The high initial CAPEX 

required in new FTTH deployments compels network designers and operators to assure 

migration paths that guaranties future full usage of infrastructure investments, avoiding 

bottlenecks at any demand increase. Thus, the major goal is to reduce the overall access 

network cost while assuring a remarkable symmetrical bandwidth per user, establishing an 

optical passive transparent infrastructure over a dense extended-range area, capable of 

supporting unknown future demands. This is driven the research towards extended 

practically unlimited bandwidth next generation optical networks. The time scale for the 

migration of current optical networks systems towards it can be highly variable, perhaps in 

a 2-8 years timeframe, although driven by the mentioned unpredictable user demands. A 

wide range of operators and system vendors are aiming their R&D interests towards this 

field considering this [Prat, 2007].

WDM Technology offers a new dimension for this upgrade. Coarse 

Wavelength Division Multiplexing (CWDM) has been recently commercially offered, 

while (Dense Wavelength Division Multiplexing) DWDM is under R&D, although an 

operator in Easter Asia is offering a simplified version of it [Prat, 2008]. A future 

implementation of Next Generation Optical Networks can be only foreseen if new cost 

effective techniques and devices are used. WDM access can be pure WDM-PON or hybrid 

WDM/TDM-PON, being the later offering a higher level of granularity and scalability, so 

it constitute one of the main research focus. There are however relevant barriers in the 

migration towards WDM in FTTH, the increased cost of WDM components in the access 

field and the availability of technological solutions to guarantee the robust and unlimited 

usage of the extended PON. There is, for example, the lack of truly passive resilient 

architectures, the availability of effective colorless devices for single fiber transmission, 

the lack of tolerance against impairments of extended PONs and the lack of a monitoring 

system able to detect and locate faults and impairments at any position of the passive 

FTTH network [Prat, 2007].
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3.2. Developed New Generation Optical Networks

In order to understand the current developments in optical communications 

networks and the different topologies implemented there are present some New Generation 

optical networks ring based:

Data and Voice integration over DWDM - DAVID

Figure 3.2: a) The DAVID network architecture; b) structure of the broadcast and select switch matrix 
adopted in DAVID [Dittmann, 2003];

The first approach is the project DAVID – Data and Voice integration over 

DWDM. It aims at proposing a viable approach towards Optical Packet Switching (OPS)

by developing networking concepts and technologies for future optical networks, including 

traffic studies and control aspects. The network covers MAN and WAN, with a distinct 

operational structure. The topology of the network can be seen in figure 3.2. It consists on 

multi unidirectional optical rings interconnected by a Hub. The ring is build with one or 

more fibers operating in WDM and TDM. The WDM rings are interconnected by means of 

a bufferless hub that controls the resources without limitations between node counts and 

number of wavelengths. Each WDM channels operate at 10Gb/s and there are 32 of them 

operating in the ring with a channels spacing of 100Ghz [Dittmann, 2003].

a)

b)
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Dual Bus Optical Ring Network - DBORN

Figure 3.3: a) DBORN architecture; b) functional model of transmitter interface in 
edge nodes [Hu, 2003].

Other approach is the DBORN-Dual Bus Optical Ring Network. It consists on 

a WDM MAN with metro clients connected to a ring by means of edge nodes that do not 

require any active switching elements sharing the wavelengths on the ring as seen in figure 

3.3. The ring is implemented with double fibers one being the operational and the other 

being implemented just for protection in case of fiber failure being the ring resilient. The 

ring is WDM topology carry independent wavelengths for DS and US. The edge nodes 

inserted on the ring share one or more of the US and DS wavelengths in an Asynchronous 

Time Division Multiplexing (ATDM) basis. The edge nodes interfaces are kept as simple 

as possible by implementing a central hub. The US and DS channels can be modeled as 

shared unidirectional buses. Simple 1x2 couplers allow Add&Drop functions to the traffic 

transmission fiber. The network has been demonstrated using cascadable EDFs and 10 

transparent nodes spread over more than 200Km providing until 320Gb/s [Sauze, 2003].

FLAMINGO

FLAMINGO – Flexible Multiwavelength Optical Local Access Network 

Supporting Multimedia Broadband Services is based also in a ring WDM topology with 

special nodes, the Access Point as demonstrated in figure 3.4. The bandwidth of each 

WDM wavelength is divided in a TDM topology. One of the WDM channels is reserved 

and used for control information and as the header of all the payload channels and the 

others WDM channels carry the payload.  
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Figure 3.4: a) The FLAMINGO network; b) FLAMINGO Access point [Dey].

Each node is able to transmit and receive in any wavelength. High throughputs 

at the nodes can be achieved as a result of the high degree of network utilization. The 

outside plant is completely bit rate and protocol transparent and helps the operators with 

almost any heterogeneous type of network. The simulated network consists on a 35Km 

unidirectional ring and 10 nodes, transmitting 4 wavelengths at 2.5Gb/s for a total fiber 

capacity of 10Gb/s [Dey].

HORNET

Figure 3.5: HORNET network architecture and node [Ian, 2003].

HORNET is a hybrid optoelectronic ring network topology designed to be 

cost-effective scale beyond 1Tb/s while efficiently transporting bursty, packet based 

randomly fluctuating traffic. The ring is implemented with double and bidirectional fibers 

designed to leverage the currently deployed fiber infrastructure [White, 2002]. The 

network was developed to operate in fiber or node failure. The MAC protocol was 

designed to efficiently transport variable sized packets, and to provide fair access to the 

network for all users. The nodes use fast tunable packet transmitters to insert packets onto 

the ring. The packets are transmitted on the wavelength that is received by the destination 
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node. A special wavelength drop is used to drop one or more assigned wavelength into 

each node, being completely transparent to the packets not destined to that particular node 

just requiring enough equipment to process the packets to and from its local users. The 

network can be scaled until 1,28Tb/s with 64 wavelengths at 10Gb/s each. The optical 

amplifiers for this network must provide constant gain in dynamic conditions [Ian, 2003].

RingO

Figure 3.6: a) Scalable architecture of RingO network based on 2 fibers ring; b) Structure of 
RingO nodes [Carena].

RingO is a WDM ring based optical packet network suitable for a high 

capacity Metro environment. The first version of the network is based on unidirectional 

WDM fiber ring with nodes equipped with an interface between the domains 

optoelectronics. The number of nodes is equal to the number of wavelengths and each of 

the nodes just operates with the specific wavelength removing it from the ring by a optical 

drop filter. Each node is implemented with a tunable transmitter to communicate with a 

specific node in other wavelength. The nods, before transmitting are able to check the 

busy/free state of the wavelengths to avoid collisions. It does not require any complex 

optical component such as fast optical switches or wavelength converters and optical 

buffering is not present. The nodes provide amplification, demultiplexing after 

amplification, slot monitoring and local packet traffic generation. Transmission and 

reception of the nodes is done by means of double fiber ring. The network is implemented 

with 16 nodes with 16 wavelengths working at 10Gb/s each, with a distance of 25km 

between nodes. The distance of the ring is limited by the amplification ASE accumulation

[Carena].
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RINGOSTAR

Figure 3.7: RINGOSTAR network and node architecture [Herzog, 2005].

RINGOSTAR is an hybrid ring star architecture. The network uses WDM on 

the central single hop start exploiting the large spatial wavelength reuse capability of the 

wavelength routing AWG. Only a subset of ring nodes is directly connected to the star 

network causing less fiber requirements and node interfaces. The nodes are connected to 

the central router by means of 1 or 2 fiber pairs. The ring nodes are interconnected with a 

small number of fibers that can be subdivided into 2 categories: ring and star homed nodes 

and ring homed nodes. The nodes are connected to a bidirectional dual fiber ring by means 

of 2 fixed tuned transceivers, 1 per single channel fiber. The ring and star homed nodes are 

also connected to the central star network using additional tunable transceiver. When 

necessary an EDFA is implemented to compensate fiber losses, splitting and insertion 

losses in the star network [Herzog, 2005].

WONDER

Figure 3.8:WONDER network and node architecture [Antonio].
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WONDER architecture is based on a bidirectional optical ring in a WDM 

technique folded at one node resulting in a folded bus with fault protection capabilities. It 

limits the optical complexity and uses only commercially available components. The 

access to WDM chanels adopts the paradigm of tunable transmitters and fixed wavelength 

receivers. It provides efficient and dynamic packet multiplexing and maximum 

simplification of the physical layer minimizing the accumulation of physical layer 

impairments and electronic complexity largely independent from the number of 

wavelengths. The network, in the transmitting side uses an array of standard DFB lasers, 

on the optical path only optical amplifiers and passive optical couplers and in the receiver 

side a standard DWDM demultiplexer and GPON burst mode receivers [Antonio].

3.3. Metro Access Convergence

Large optical networks are typically partitioned into core (inter-city), metro 

(intra-city) and access networks. It is essential that the core, metro and access networks are 

able to work interconnected to release the fast provisioning potential of these sub-

networks, since a larger part of the anticipated connections will need to traverse both core 

and metro sub-networks and finally reach the access requiring signal and routing 

information exchange [Prat, 2008].

While access and metro sub-networks handle local traffic and service-specific 

features, the core network transports relatively homogeneous connections across long 

distances leading the core network to be based on different technologies than the others. 

Simpler optical nodes may be used in access and metro transport [Wang, 2001].

Ring topology is assumed in the metro network to provide resilience while in 

the access the ring may be combined with the tree topology. The optical node 

interconnecting the ring and the tree depends on the interface role. Optical Cross-Connect 

(OXC) and Reconfigurable Optical Add&Drop Multiplexer (ROADM) allow input 

channel ports being routed to output channel ports by means of optical switches. In access 

networks a simple OXC architecture can also be used for managing several PONs 

providing the laser sources and receivers to be shared among thousands of users. PONs can 
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be connected with ROADM in a metro ring to reach a distant router controller in an all-

optical connection, but this architecture has a distance limit, not only due to power budget 

but also due to signaling propagation delays in the DBA. The distant router controller will 

interoperate with the next hierarchy metro or core network exchanging routing information 

[Prat, 2008].

3.4. Conclusions

This chapter focused specially on the evolution of the current deployed 

TDM/WDM optical networks to the Next Generation optical networks revealing the main 

aspects and requirements of the migration. It presents the state of art of some developed 

New Generation optical networks based on ring topology. Finally it presents the current 

convergence of the Metro and Access networks.

From the presented networks while some can provide high number of users, 

extended reach, high data rate, scalability, flexibility and resiliency, none of them can 

provide all in a efficient manner, since most of them are not Passive Optical Networks.

These presented optical networks are an introduction to the next chapter where 

the SARDANA network, an NG-PON metro access network is presented.
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Chapter 4. SARDANA network

4.1. Introduction

Scalable Advanced Ring Based Passive Dense Access Network Architecture

(SARDANA) is an effort to demonstrate how to exploit the NG-PON in a cost effective 

and reliable way [Lazaro, 2008], it is an FP7 project and provides the main objectives of 

this document. It consists of a Metro-Access convergence network able to supply at least 

100Mb/s to 1024 users spread over more than 100Km [Lazaro, 2007]. There were 

proposed two different topologies to SARDANA, the first consists on a single fiber ring 

[Bock, 2006:1] and the second a double ring [Lazaro, 2006]. In figure 4.1 is presented the 

main structure of the double fiber ring and the respective equipment general scheme.

4.2. SARDANA Topology

This novel PON topology is based on a main ring and secondary trees 

connected by means of a special node denominated as Remote Node (RN) [Bock, 2007]. In 

order to achieve the highest efficiency from the implemented fibers, in the main ring are

present WDM signals that are distributed to each secondary tree serving the users in a 

TDM topology by means of the RN. When the main ring is implemented with double fiber, 

one fiber carries the DS signals and other the US signals in order to reduce the total signal 
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degradation imposed in a major part by Rayleigh and Brillouin Backscattering distortions. 

Two trees are connected to each RN with a splitting ratio of 1:K providing a flexible 

number of users [Lazaro, 2006].

Figure 4.1: a) SARDANA network architecture and b) equipment general scheme [Prat, 2007].

Operating in TDM basis in the trees provide special features to the network: 

migration from the currently deployed infrastructures overlaying E-PON and G-PON into 

this novel topology and supplying different services and operators on different 

wavelengths. With these features the network is flexible and serve users with different 

transmission requirements [Bock, 2006:2].

Robustness is achieved by the passive ring, monitoring techniques and 

compensation strategies intelligently supervising and managing the impairments of the 

PON. Due to the ring, the network is able to provide traffic balance through the shorter 

path and resiliency in case of fiber, splice, connector or component failure, being the 

signals redirected to the alternative path

The network scalability is guaranteed by inserting supplementary RN to the 

ring that is wavelength transparent is a simple task. The network can be scaled to reach a 

large number of subscribers. DS and US are wavelength multiplexed, so each RN drops 2 

DS signals and insert 2 US signals from/to the ring (1 per tree). The number of RNs is a 
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key parameter in terms of network performance because it determines the number of 

wavelengths of the network and the total network capacity. The optimal and most efficient 

number of RNs in the ring is independent from the number of users per RN and the number 

of users is limited by the PB and the link loss between respective CO and ONU. As the 

PON grows, the link losses also increase becoming a very important parameter and 

limitation to consider [Bock, 2007]. When designing the network a compromise should be 

made between optimizing power losses and optimizing network performances. Single fiber 

bidirectional access to the user simplifies the outside plant and cable management, also 

reducing micro blending risks at user premises [Polo, 2007]. The network, allowing the 

convergence between metro and access simplifies the outside plant and reduces the 

equipment at the RNs.

4.3. Central Office

Figure 4.2: Central Office main structure [Prat, 2007].

In order to maintain a completely passive and simple outside plant, all the light 

generation and control is placed together in the CO. All the complexity is placed in the CO, 

since its cost is shared among the all users of the PON. The CO uses a stack of tunable 

lasers for serving the different tree network segments on a TDM basis. Each of the lasers 

can tune to the appropriate wavelength, use WDM routing and by means of Geographic 

Bandwidth Allocation (GBA) techniques concentrate resources at the more demanding 

networks sections [Prat, 2005]. The CO can achieve traffic balance and resilience by 

means of optical switching, selecting the most appropriate path for the DS signals that 
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maximize the PB margins and providing always a path to reach all the RNs even in case of 

fiber failure. The optical switching can be controlled monitoring the US signals that arrive 

to the CO to redundant photoreceivers through different sides of the ring, allowing the 

switching to the path of the higher received signal. A SARDANA CO architecture is 

shown in figure 4.2 [Lazaro, 2006].

4.4. Optical Network Unit

Figure 4.3: Optical Network Unit main structure [Prat, 2007].

Colorless identical ONU avoids colored laser sources at the end user side, 

decreasing the maintenance and inventory issues. A much more convenient ONU should 

be based on agnostic wavelength transmission and Reflective Semiconductor Optical 

Amplifiers (RSOAs) are good candidate due to their reflective and wavelength 

independent properties. Despite of being the most cost effective candidate for ONU the 

RSOA also allows the reduction of Rayleigh Backscattering. The RSOA is able to provide 

amplification and remodulation of the arriving signal, allowing the network to be full 

duplex [Lazaro, 2006]. An ONU based in a RSOA is presented in figure 4.3.

4.5. Remote Node and Remote Amplification

The overlay between the WDM ring and the TDM trees is made by the passive 

RN. It implements cascadable 2 to 1 fiber optical Add&Drop functions distributing 

different wavelengths to each of the access trees. The RN with reduced footprint, does not 

require any environmentally controlled location. The RNs are completely transparent in the 

ring and compatible with the already deployed fiber structures being no modification 

required as the network grows. The introduction of a new RN in the ring is a simple task 

just transmitting 2 more wavelengths from the CO. In order to increase the PB margins 
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each RN is implemented with 2 trees, each with a correspondent wavelength [Lazaro, 

2007]. The RN Add&Drop signals independent of the direction of the ring provide 

resilience in case of fiber failure in the main ring. A basic diagram of the main blocks 

present in the RN is demonstrated in figure 4.4.

Figure 4.4: Remote Node main structure [Baptista, 2008:2].

To compensate distance, dropping and filtering losses in the outside plant, 

amplification is convenient [Lazaro, 2006]. It allows significant improvement in the 

scalability of the network, geographical flexibility and average bandwidth per user but 

decreasing the OSNR [Bock, 2006:2].  Amplification is provided by means of EDFs 

present on the RN remotely pumped from the CO by means of two 1480nm pumping 

lasers, one for each ring direction, balancing the total power in the ring and providing 

resiliency in case of fiber failure [Bock, 2006:1]. The pump power is provided through the 

US fiber in order to produce extra Raman gain. The pump power present on the US fiber is 

previously demultiplexed from the fiber and led to the EDFs for amplification.

4.6. Conclusions

In this chapter the SARDANA network was presented. A brief introduction 

was made to the main components and structures of the network as the Central Office, the 

Optical Network Unit and the Remote Node as the different fiber deployments 

architectures.
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Chapter 5. Remote Node Topology

5.1. Introduction

As described in chapter 4.4 the Remote Node (RN) is a very important 

component in the SARDANA network. It provides three main functions: Add&Drop;

amplification; and filtering, of the correspondent WDM channels to each of its trees. This 

chapter presents and optimizes RN topologies. The different topologies aim to reduce the 

total amount of pump power produced by the CO, reduce the Insertion Loss (IL) and allow 

higher scalability and resiliency.

5.2. Remote Node Pump Architectures

The amplification provided by the RN is an important limitation to the total 

efficiency of the network. It is important to optimize the amplification modules in the RNs, 

reducing the total amount of pump power required per RN. A second optimization consists 

on a fairer pump power distribution among the entire network, do not dropping excess 

pump power to the RNs. Different pump topologies are presented in this chapter: based in 

couplers, optical switches, tunable power splitters and reconfigurable.
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5.2.1. Pump topology 1

The first and easier pump configuration is present in figure 5.1. It consists on 

simply drop the pump power at 1480nm from the US fiber and directs it to the EDF being 

the remaining pump power supplied to the other EDF(s). It requires reduced number of

optical components to implement but it is not efficient. 

Figure 5.1: Simple Remote node topology to supply pump power to the EDFs [Baptista, 2008:2].

Increasing the pump power supplied to the EDF leads to the saturation of the 

amplification while keep increasing the consumption of that pump power. The efficiency 

of the network decreases drastically, leading to the impossibility to supply all the RNs with 

pump power [Baptista, 2008:2].

5.2.2. Pump topology 2

Figure 5.2: Second approach to supply pump power to the EDF[Baptista, 2008:2].

A better approach is to provide the EDFs with a fraction of the total pump 

power available in the network. For that the RN pump topology is proposed in figure 5.2. It 
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consists of three power couplers being two of them inserted in the pump ring path with 

coupling factors (X / 100-X and Y / 100-Y) and the other a 50/50 for resiliency and power 

balancing mode. The two power couplers inserted in the pump ring path have different 

ratios due to the fact that the pump power can arrive from the both sides of the ring. 

This topology compared to the previous increases the efficiency. The EDFs are 

supplied just with a fraction of the total pump power available in the ring. Although with 

this topology extra IL is introduced due to the two pump power splitters and pump power 

is wasted [Baptista, 2008:2].

5.2.3. Pump topology 3

DownStream Fiber

UpStream Fiber
WDMWDM

WDM WDM

WDM WDM

EDF EDF

Signal
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Pump
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X/100-X

Figure 5.3: Third approach to supply the EDF with pump power based on 
a single power splitting [Baptista, 2008:2]

A third approach consists on a single power coupler with a ratio adjusted to be

the most efficient for scalability and resilience purposes. This new configuration is 

presented in figure 5.3. With this, no pump power is wasted in the pump power coupler 

and the total IL in the pump ring path is reduced reducing the number of power couplers 

from two to one leading to a fairer pump distribution and higher network pump efficiency.

A problem arises now: which is the appropriate ratio for the power coupler 

having in consideration the number of RNs, the number of users per tree, the scalability of 

the network and the resilient operation. It is impossible to select that value being the most 

efficient for all the situations individually[Baptista, 2008:3]. A pumping configuration 

proposed that considers all power splitters ratios equal to 90/10 provide resilient and 
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scalable network. A second approach is to provide each RN with a different splitting ratio 

as 13, 14, 17, 20, 25, 33, 50, and 100. A third approach is to provide each RN with a 

different splitting ratio as 10, 13, 17, 20, 25, 30, 40, and 50 as it can be seen in figure 5.4.

Figure 5.4: Comparison of variable and 90/10 power couplers for different states of the network 
[Baptista, 2008:1].

The first approach is the simplest to implement and the one that provides better 

resilience and scalability compared to the others but for normal operation mode, it requires 

higher pump power from the CO than the other approaches. The second approach is the 

best one for normal operation mode as it requires less pump power demand from the CO. 

By the other hand it is not resilient, since in case of fiber cut no pump power pass at the 

central RN to the reminiscent RNs and the scalability is not guaranteed since an  

introduction of more RNs require all the pump power ratios from all RNs require to be 

readjusted. The third approach is not scalable as the previous one, is not the best option for 

the normal operation mode (the intermediate approach) but it provides some resilience in 

case of fiber cut. The second and third approach require power coupler ratios not available 

commercially [Baptista, 2008:1].

5.2.4 Pump topology 4

The selection of the appropriate power coupler ratio depends on the operational 

mode: normal or resilient; for this reason, in order to comply with the requirements of both 

modes one coupler of average value must be chosen. 
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An alternative propose for the previous configuration is to select between the 

best option for normal operation and the best option for extreme resilient mode (fiber cut at 

RN 16) by means of optical switching as presented in figure 5.5.

Figure 5.5: Proposed approach to supply EDFs by dual case switching [Baptista, 2008:1].

For the normal operation the ratios would be 13, 14, 17, 20, 25, 33, 50, and 100 

and for resilient mode all ratios equal to 90/10 as presented in [Bock, 2007]. The 

introduction of RNs in the ring until a total number of 16 requires a readjustment of the 

normal mode power couplers ratios. This readjustment does not allow the network to be 

fully scalable.

With this topology resiliency is achieved independent of the link failure. Since 

the resilient mode power couplers are equal to 90/10 to all RNs, increasing the number of 

RNs does not affect these couplers. Although when operating in resilient mode, excess 

pump power will be dropped to some RNs being required higher total pump power from 

the CO reducing the total efficiency of the network.

The implementation of two optical switches introduces extra IL when 

compared with the previous topologies increasing significantly the total losses in the pump 

path ring. Higher pump power is required from the CO degrading the efficiency of the 

network [Baptista, 2008:3].
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5.2.5. Pump topology 5

A better approach both in scalability and resilience can be achieved with the 

introduction of a tunable power splitter instead of the optical switches as presented in 

figure 5.6. With this approach the RN can adjust the ratio factor to the most appropriate 

ratio eliminating the extra pump power dropped to the RN and providing complete

scalability, resiliency and higher efficiency reducing the total pump power supplied from 

the CO [Baptista, 2008:3].
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WDM WDM
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X/100-X

Figure 5.6: Proposed approach to supply EDFs by multi case switching [Baptista, 2008:1].

Despite of the apparently simple implementation of this configuration it 

increases the ring IL in the pump path when compared to the main topology, figure 5.3. 

Even more, it is difficult to implement a passive optical tunable power splitter controlled 

precisely and which consume very low optical converted energy.

5.2.6. Pump topology 6

Another approach to make the pump power usage more efficient is the 

topology that has in consideration the distance from the RNs to the CO. EDFs supplied 

with signals to be amplified with high power, will not be able to provide gain although it 

will attenuate and degrade the signals [Baptista, 2008:2]. Also, the pump power 

consumption will increase being required higher pump power for that RN decreasing the 

efficiency of the network. 
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Figure 5.7: Proposed approach to supply EDFs by multi case switching and amplification module 
selection [Baptista, 2008:1].

With these characteristics, RNs close to the CO where the signals have enough 

power to reach the ONU do not require providing of gain. A simple solution would be to 

omit the tunable power coupler and the EDFs in the RN. It allows reducing the components

and the cost of the network. Since there are no EDFs, no pump power is required at the RN 

reducing the total pump power demanded by the CO. Although, it must be considered the 

scalability and the resilience of the network, where the RN that is the closer to the CO can 

be the farthest in case of network grow or fiber cut and resiliency. For those cases,

amplification must be provided in some situations. The proposed RN in figure 5.7

implements two distinct modules, one of them providing gain to the signal and the other 

establishing a direct connection without passing the EDF. The selection between those two 

modules can be achieved by means of an extra stage of optical switching. This approach is 

the most efficient in terms of pump consumption [Baptista, 2008:2].

5.3. Remote Node Signal Architectures

The signal path topologies are also an important optimization. Reducing the 

signal losses and reducing the number of EDFs allow dropping lower pump power per RN, 

increasing the total efficiency. 
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5.3.1. Signal topology 1

The first and simpler RN signal architecture comprising a single fiber ring is 

presented in figure 5.8. Each RN provides Add&Drop functions by means of three optical 

couplers. The first two, introduced in the ring, are designed depending on the number of 

RNs, to minimize the pass through losses. It is demonstrated in [Bock, 2007] that the most 

efficient solution commercially available able to provide scalability and resiliency is the 

90/10 ratio. The third coupler, 50/50, is responsible for traffic balance and resilience 

operation since it provides the signals to be Add&Drop from both sides of the ring. The 

90/10 couplers drop a fraction of the entire spectrum that is then divided 50/50 to each of 

the trees. Filtering is then required in order to select the appropriate DS and US wavelength 

to each of the two trees connected to RNs and avoid Amplified Spontaneous Emission 

(ASE) to interfere with the WDM signals presented in the ring. This filtering is 

implemented by means of two thin film filters.

Figure 5.8: Simple Remote Node proposed in [Baptista, 2008:2].

In order to compensate the distance, drop and filtering losses, amplification to 

the signals is required. Amplification is done by means of EDFs remotely pumped from the 

CO. Two WDM couplers 1480/1550 are introduced in the RN to previous drop the pump 

power from the ring and provide it to the EDFs. With this design, the ONU just require 

some change from the commercially available EPON/GPON ONU. That is the substitution 

of the 1310nm upstream transmission laser by a laser to transmit on the wavelength 

assigned to that specific PON segment remaining the rest of the equipment and logical 

control invariant. Important design parameters to make the network compatible with the 
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EPON/GPON standards are related to Power Burst (PB) restrictions [Baptista, 2008:2].

These topologies based on a single fiber ring are appropriate for non reflective ONU since 

DS and US signals require different frequencies.

The relationship between the number of RNs (N) and the number of 

wavelengths (M) is a fixed design parameter which is M/N = 4 [Bock, 2007]. The number 

of RNs is an important parameter in terms of network performance since it determines the 

number of wavelengths (M) of the network and the total network capacity. Other important 

factor that limit the network performance is the splitting ratio of the ring couplers, the 

number of users on each tree and the data rate. The number of users (U) is determined by 

the number of RNs and the splitting ratio (K) in the network sub segment. Considering an 

equal power splitting factor for all the RNs, the number of users can be given by (5.1):

U = 2 ・ N ・ K (5.1)

Increasing the number of RN will require an increase in the network used 

bandwidth but at the same time increases the power losses in the ring due to the insertion 

losses of each RN. Minimizing the total power losses in the outside plant can be achieved 

minimizing the equation (5.2):

LT = (N − 1) ・ 20 ・ log x−1 + 10 ・ log y−1 + N ・ LEX + 3 ・ log2 K + LS (5.2)

with LS representing the fiber losses, insertion losses of optical equipment and wavelength 

filtering in the outside plant, x and y are the coupling factors of the optical splitter in the 

ring being the pass through and drop branch respectively (x + y = 1)and LEX represents 

coupling excess losses at each RN due to manufacturing, aligning and installing process. 

The number of RNs (N) that minimizes the total losses is (5.3):

N =3 / ln 2 ・ (20 ・ log x−1 + LEX)−1 (5.3)

It can be seen that the most efficient number of RNs is independent from the 

total number of users being the number of users just limited by the PB. To increase the 

number of users in the network it is more efficient to increase the splitting ratio than to 
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insert extra RNs although it reduces the total data rate per user. However it depends on the 

geographical arrangement of the network.

Considering a constant K for all the RNs, an increasing of the number of users 

U in the system reduces the PB margin in a constant value. When the coupling factor x 

tends to 1, the curve of LT flattens and incrementing the number of RNs does not affect the 

power losses dramatically [Bock, 2006:1].

The geographical distribution of the users also determines the number of RNs. 

The best option would be to fix the number of RNs and the bandwidth per user and then 

calculate the other parameters of the network. However it requires a whole established 

network in order to minimize the network reconfigurability.

The network capacity depends on the splitting ratio K in the trees. 

Experimental results demonstrate that, for a K= 16, 32 and 64 the data rate per user is 125, 

62.5 and 32.25Mb/s respectively in a GPON at 2.5Gb/s [Bock, 2007].

The main ring couplers ratio (figure 5.8) is also an important parameter to 

optimize. For the reduction of the ring path attenuation leads to a optimization of x and y 

according to the equation (5.4):

x =(2・N  – 2) / (2 ・ N  – 1) ;  y =1 / (2・N  – 1) (5.4)

The equation (5.4) demonstrates that the coupling factor stabilizes for N > 3 

and that the coupling factors commercially available 90/10 provide a efficient solution for 

flexible and scalable solution keeping the total losses low [Bock, 2006:1].

The equation (5.5) demonstrates the PB for the network with gain (G) provided 

by the RN:

PB ≥ (N − 1) ・20 ・log x−1 + 10 ・log y−1 + N ・LEX + 3 ・ log2 (U / 2N) + LS – G (5.5)

Remotely optical amplification by means of the remotely pumped EDFs 

improve the PBs in PONs but for the other hand it produces a reduction of the OSNR that 

is higher than 26dB for DS and higher than 34dB for US.
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Despite the simplicity of the implementation of this RN topology, it requires 

US and DS signals to have different wavelengths to avoid Rayleigh Backscattering 

distortions not utilizing the spectrum in a efficient way [Bock, 2006:1].

5.3.2 Signal Topology 2

To avoid the previous impairments of efficient optical spectrum handling and 

use of non reflective ONU a new topology was proposed in figure 5.9. In this new 

configuration the main WDM ring is implemented with 2 fibers instead of 1. One of the 

fibers is used for DS signals and the other for US signals. The US signals follow a similar 

path to the DS but they pass through different EDFs and different fiber rings. 

With this topology requirements related to Rayleigh Backscattering distortions 

in the ring are relaxed and more efficient utilization of the spectrum can be achieved. Since 

in the access tree the DS and US signals are present in the fiber with the same wavelength 

those distortions still remain.

The pump power to the EDFs is present in the US fiber producing extra Raman 

gain to the signals with lower power, the US signals. With this RN architecture, the 

transition from double fiber ring to single fiber tree section is provided by means of a 2:2 

optical coupler and two isolators as a more cost effective solution than a circulator. Then 

the TDM trees are implemented with two 1:16 power splitters per tree. 

Four EDFs are implemented in the RN, two for US and two for DS for each 

tree, increasing the total pump consumption compared with the previous architecture where 

just two EDFs were implemented. After the remote amplification, a second filter avoids 

addition of ASE noise to other channels which would result in decreasing the OSNR. 

Finally, for a much more convenient network implementation with identical ONUs, a 

wavelength agnostic transmission device is implemented. Reflective Semiconductor 

Optical Amplifiers (RSOAs) are suitable devices due to their capabilities for re-modulation 

and amplification, as well as their wavelength independence. An ONU has been 

implemented with a power splitter, an RSOA and a receiver similar to the one user in the 

CO [Baptista, 2008:2].
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Figure 5.9: Double ring fiber Remote Node simple topology proposed in [Baptista, 2008:2]

The figure 5.10 presents the BER sensitivity measurements for a network with 

the referred RN topology. The four curves represent Back to Back CO-ONU, ONU at 

RN4, RN8 and RN 12 reaching almost 800 ONUs for 50km. It can be observed a penalty 

to the most distant ONUs but no floor level was found.

Figure 5.10: Bit error rate measured to the Upstream signal [Bock, 2007].

It has been experimentally demonstrated for 512 ONUs and 50kms ring, 512 

ONUs and 100kms ring and 1024 ONUs and 50kms ring with guaranteed downstream 

bandwidths of 155Mb/s per user [Lazaro, 2006].

5.3.3 Signal Topology 3

With the RN architecture of figure 5.9, the Add&Drop function is still made 

recurring to couplers 90/10. Usage of those couplers causes the network to be easily 
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scalable and simple to implement, however there are important limitations related to the 

RN insertion loss in the ring. To solve this limitation a new topology was proposed: the 

Add&Drop function was made now by means of thin-film filters, which is a very mature 

technology able to provide very good performances at low cost. 

Figure 5.11: Remote Node topology based on OADM thin filters [Baptista, 2008:2].

The advantage of this RN configuration is its complete transparency for the 

WDM channels present in the ring being the RN just dropping the assigned wavelengths 

and not dropping 10% of the total power as the previous and reducing the drop attenuation 

from 10,2dB to only 0,8dB and the pass IL from 1,4dB to 0,8dB. Each DS EDF amplifies 

both the DS signals and other thin-film filter is used forward to limit the ASE noise and 

select the appropriate wavelength for the corresponding tree. Experimental results had 

demonstrated that with this RN implementation is possible to achieve 1024 ONUs by 

means of 16RN spread over a ring with 100Km [Lazaro, 2007].

5.3.4. Signal topology 4

Despite of the topology used for pumping, improvements can be made in terms 

of signal topology in the RN. The RN topologies proposed previously were implemented 

with 4 EDFs requiring, therefore, higher pump power and not using one of the properties 

of the amplifiers based on EDFs that is the multichannel amplification. To solve that 

limitation several RNs approaches were proposed based on 2 EDFs RNs [Baptista, 

2008:2]. 
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UpStream 
Fiber

50/50

Figure 5.12: RN topology based on 2 EDFs and tunable tree gain [Baptista, 2008:2].

The first solution is presented in figure 5.12. This architecture provides 

independent gain to each tree of the RN. It can be adjusted depending on the distance of 

the ONUs from the RN and the number of ONUs per tree. By means of optical circulators, 

each EDF is supplied with the US and the DS signals of each tree, this means, with the 

same wavelength. Therefore, the Rayleigh Backscattering distortion in the EDF becomes 

an important limitation for this RN configuration by causing significant signals 

degradation [Baptista, 2008:2].

5.3.5. Signal topology 5

A second proposed architecture with 2 EDFs is presented in figure 5.14. Each 

EDF is supplied with the DS signal of one tree and the US signal of the other tree, 

transmitting the two signals at different wavelengths, reducing the Rayleigh Backscattering 

distortions. This architecture also provides a better stabilization of the transient burst gain. 

The main disadvantage of this configuration is that the gain of each signal cannot be 

adjusted independently [Baptista, 2008:2].
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Figure 5.13: RN topology based on 2 EDFs and no tunable independent gain [Baptista, 2008:2].

5.3.6. Signal topology 6

DownStream Fiber

UpStream Fiber

50/50

50/50

Signal

Pump

Signal

Pump

ADD
DROP

ADD
DROP

WDM WDM

WDM WDM

WDM WDM

EDF EDF

Signal

Pump X/100-X

Figure 5.14: RN topology based on 2 EDFs and tunable independent gain to Upstream and Downstream 
signals [Baptista, 2008:2].

A third alternative to the previous architectures is presented in figure 5.14. An 

EDF is supplied with the DS signals and the other with the US signals. Since the signals 
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are at different wavelengths, Rayleigh Backscattering distortions is not a limitation. It can 

also provide independent gain for DS and US signals. This configuration is the adopted as 

the most appropriated to implement optical switching to select between amplification and 

non amplification modules since it can operate differently for fiber failure in the US and 

DS domain [Baptista, 2008:2].

5.4. Remote Node Proposed

Considering the operation points with highest efficiency for different EDFs 

demonstrated in [Baptista 2008:3], some improvements can be applied to the previous RN 

topology. Despite the ability of the RN to select between amplification and non 

amplification modules, for different distances from the CO, different gains are required. 

Having in mind the previous goal, an improved RN topology is presented in figure 5.15 b).

Figure 5.15: a) Proposed Remote node topology based on two EDF, amplification or non amplification 
modules and tunable pump power splitting [Baptista, 2008:3]. b) Upgrade from previous remote node 

architecture reducing the losses in the trees filtering and providing multiple reconfigurability.

This proposed RN topology is able to select a different EDF optimized to the 

necessary gain for the operation mode of the network, reducing the total amount of pump 

a) b)
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power required per RN, increasing the total efficiency of the network. Another 

improvement presented is related to the usage of circulators instead of power splitters at 

the tree side of the RN saving extra 3dB thinning the required gain per RN.

5.5. CONCLUSION

This chapter presented the studied topologies of Remote Nodes for the 

SARDANA network comparing between each other. It starts to present a simplified 

version of the RN implemented for a single fiber ring requiring an non Reflective ONU 

since US and DS signals require to be in different frequencies to avoid Rayleigh 

Backscattering distortions. Although its simplicity, it does not use the optical spectrum in 

an efficient manner requiring the more sophisticated ONU, so, new topologies were 

proposed and observed. Alternative topologies are based on double fiber ring. There were 

studied two different optimizations, the pump and the signal paths. 

Pump path topologies started with simple supplying the EDFs present in the 

RNs with all the pump power available in the ring thus reducing the total network 

efficiency. To solve this impairment, topologies based on pump power splitting were 

presented. The RN just drops a fraction of the total pump power available in the ring and 

supplies it to the EDFs. The main goal here is to optimize the pump power coupling ratios

in order to allow the network to operate efficiently in resilient mode and provide 

scalability.  The problem with these topologies is that the optimization of the ratios for 

normal mode is not efficient for resilient mode. Topologies based on remote 

reconfigurability solve this problem. The first approach is able to select between 2 distinct 

power couplers ratios by means of optical switching. One power coupler ratio is optimized 

for normal mode and the other for resilient mode. Despite of the optimization of this 

topology, the network is not fully scalable since inserting an extra RN requires 

modification of the power coupler ratios The second approach is implemented with a 

tunable power splitter instead of optical switching, allowing an fully scalable and resilient 

network, dropping just the necessary amount of pump power from the ring. A final 

optimization consists on reconfigure the RN between two modules: amplification modules 

and direct link not providing gain. These last pump path topologies consider the distance 
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between the RNs and the CO. It allow a substantially save in terms of pump power for the 

RNs close the CO, since they do not require gain.

The signal path topologies were also an important optimization demonstrated 

in this chapter. The first evolution is related to the Add&Drop function, made by means of 

thin film filters instead of power couplers. With this, the introduction of RNs is almost 

transparent for the WDM channels present in the ring. A further improvement consists on 

applying the multi channel amplification characteristics of the EDFs, reducing the number 

of EDFs from 4 to 2. Three topologies were presented and compared each of them with 2 

EDFs. The preferred topology allows adjust independent gain for US and DS signals 

depending on the operation mode.
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Chapter 6. Optical Components analysis

6.1. Erbium Doped Fiber

6.1.1. Theoretical Introduction

A very important component to analyze, understand and optimize is the 

remotely pumped EDF in the RN. It is crucial for the efficient operation of the network 

that the EDFs operate at the maximum efficiency point for the requested gain.

Figure 6.1: Erbium doped fibers energy levels [André, 2002].
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The Erbium ions can be used as a system with three energy levels suitable for 

amplification of C-band (1550nm). In the figure 6.1 the Erbium (Er3+) energy levels are 

demonstrated [André, 2002]. The level 4I13/2 has a high energy band, that is metastable and 

presents a high average lifetime of some milliseconds. Ions at this level drop radioactively 

to the 4I15/2 level, emitting photons in the band 1520-1580nm, corresponding to the C band. 

The population in the 4I13/2 level is indirectly pumped with 980nm photons or directly 

pumped with 1480nm photons. The photons with 980nm are absorbed by the fundamental 

level and the carriers transit to the 4I11/2 level. The non radioactive transition from 4I11/2 to 
4I13/2 occurs within approximately 7µs, increasing the population of the metastable level 
4I13/2. The EDFs energy transitions can be interpreted as a 3 level system [Agrawal, 2002].

The 3 level system requires high pumping powers to achieve inversion of the 

population. A continuous pump radiation causes transition from the E0 level to the E2 

level and at same time from E2 level to the E1 level. If the transitions from the E2 level to 

the E1 level are fast enough , the population in the E1 level increases compared to the E0 

level referenced as inverted population. Spontaneous emission of photons occurs when the 

population in E0 level is higher than in the E1. When the pump is enough to keep the 

population in the E1 level higher than E0, the stimulated emission is predominant.

Figure 6.2: Erbium doped fiber absorption and gain dependent on the signal wavelength [Agrawal, 
2002].

The gain spectrum and absorption is given in figure 6.2. It is the most 

important feature of an EDFA as it determines the amplification of individual channels 

when a WDM signal is amplified. The shape of the gain is affected considerably by the 
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amorphous nature of silica and by the presence of other codopants within the fiber core 

such as Germania and alumina. Mathematically, the total gain of the EDFA is give by the 

equation [Agrawal, 2002]:

(6.1)

where L is the length of the fiber, N1 and N2 are the population density in the level,  E0 

and level E1 respectively, Γs is the confinement factor, σe
s and σa

s are the emission and 

absorption cross sections.

Figure 6.3: Gain Spectrum to low power signals to different pump powers a) 0.4 mW, b) 0.6 mW, c) 1.0 
mW, d) 2.0 mW, e) 2.5 mW, f) 3.0 mW, g) 5.0 mW, h) 10.0 mW, i) 20.0 mW, j) 30.0 mW e k) 70.0 mW.

[André, 2002].

The figure 6.3. presents the signal gain in the EDF for different values of pump 

power at 980nm and input signal low. For pumping powers higher than the transparency 

the gain region is higher than 20nm. This characteristic is very important when developing 

amplifiers since it is able to provide equal gain for signal in 1540 and 1560nm (for this 

special fiber).

The figure 6.4 shown for the signal gain and signal output power depending on 

the input signal power for pumping power at 980nm of 15.8, 40.1, 65.8 and 90mW. It 

demonstrates the saturation effect of the amplifier. For these cases, the efficiency of the 

amplification decreases for input signal power higher than -20dBm due to the saturation of 

the amplifier. Lower the input signal power provided to the EDF higher the signal gain

until saturation. Further the amplification goes into saturation an exponential increase in 

the noise figure is achieved. For an efficient amplification, one should not get further into 
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the saturation mode due to the lowering of the gain, higher pump consumption and higher 

degradation of the signal [Andre, 2002].

       

   
Figure 6.4: a) Output signal power in function of the input signal power to various supplied pump 

power;b) Gain in function of the input signal power for different supplied pump power;c) Noise figure
in function of the input signal power to various supplied pump power;d) Gain in function of the pump 
power to different values of signal input power( a) –44 dBm, b) –34 dBm,c) –24 dBm, d) –14 dBm e e) –4 dBm.) 

[André, 2002].

The figure 6.5 shows the small signal gain at 1550nm as function of the pump 

power and the amplifier length by using typical parameter values. For a given amplifier 

length L, the amplifier gain initially increases exponentially with the pump power, but the 

increase becomes much smaller when the pump power exceeds a certain value. For a given 

pump power, the amplifier gain becomes maximum at an optimum value of L and drops 

sharply when L exceeds this optimum value. The reason is that the latter portion of the 

amplifier remains unpumped and absorbs the amplified signal. Since the optimum value of 

L depends on the pump power Pp, it is necessary to choose both L and Pp appropriately. It 

is possible to design amplifiers such that high gain is obtained for amplifier length as short 

as a few meters or even cm for EDFs with peak absorption of 130 dB/m. The output 

a) b)

c) d)
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saturation power is smaller than the output pump power expected in the absence of signal

[Agrawal, 2002].

Figure 6.5: Signal gain in function of supplied pump power and EDF length [Agrawal, 2002].

The amplifier noise is the ultimate limiting factor for system applications 

[Agrawal, 2002]. The ASE noise, can be expressed by the following equation:

(6.2)

where the ρASE represents the ASE spectral density, that propagates in the same direction of 

the signal. The impact of ASE is quantified through the noise figure Fn given by Fn = 2nsp. 

The spontaneous emission factor nsp depends on the relative populations N1 and N2 of the 

ground and excited states as nsp = N2 / (N2-N1). Since EDFAs operate on the basis of a 

three level pumping scheme, N1 ≠ 0 and nsp > 1. Thus, the noise figure of EDFAs is 

expected to be larger than the ideal value of 3dB. 

Figure 6.6: Noise figure and amplifier gain in function of supplied pump power and EDF length 
[Agrawal, 2002].
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Figure 6.6 shows the variation of the NF with the amplifier length for several 

values of Pp/Pp
sat and for a 1530nm signal is amplified with an input power of 0dBm. The 

amplifier gain under the same conditions is present in the same figure. The results show 

that a noise figure close to 3dB can be obtained for a high gain amplifier pumped such that 

Pp>>Pp
sat. The relatively low noise levels of EDFAs make them an ideal choice for WDM 

lightwave systems. In spite of low noise, the performance of long haul fiber optic 

communication systems employing multiple EDFAs is often limited by the amplifier noise

[Agrawal, 2002].

The differences of the pumping with 980nm and 1480nm are: Pumping at 

980nm allows higher gain for higher pumping powers due to a higher population inversion, 

the pump power required for transparency is lower for 1480nm due to the higher quantum 

efficiency, the ASE produced pumping at 980nm is lower due to the higher inversion of 

population, is easier to tune the laser for 1480nm due to the larger band level [Andre, 

2002].

There are three types of amplification schemes: co propagating (signal and 

pump travelling in same direction), where the NF is lower due to the higher population 

inversion in the input of the amplifier, the counter propagating (signal and pump travel in 

opposite directions) allows higher gain due to the higher population inversion in the output 

of the amplifier and the bi propagation (bi directionally pumping), that allows an 

intermediate situation. An hybrid bi propagation scheme with 980nm co propagated and 

1480nm counter propagated allows an EDF with low noise and high output power [Andre, 

2002].

6.1.2. EDF’s analysis State of Art in SARDANA 

network.

EDF measurements and comparisons were demonstrated. It is compared the 

Gain (G) and the Noise Figure (NF) for a relatively low Erbium concentration EDF the 

HE980 from OFS with peak absorption at 1530nm of 2,5 to 4,5dB/m. 
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Figure 6.7:Schematic of the experimental analysis of EDF applied in SARDANA [Bonada, 2007].

The system is described in figure 6.7. It consists on the pump source and signal 

source connected to optical attenuators and multiplexed together by means of an 

1480/1550 WDM coupler. The common port of the WDM is then connected to the EDF 

and then connected to a Optical Spectrum Analyzer.

The measurements were made for 5, 10, 15 and 20m at a signal wavelength of 

1543.73nm (42th ITU-T C band channel) with low power, -40dBm and for the pump 

power varying from -24 to 16 dBm.

Figure 6.8: a) Signal gain in function of the EDF length and  supplied pump power and b) OSNR in 
function of the EDF length and  supplied pump power [Bonada, 2007].

The figure 6.8 demonstrates the gain and OSNR for the different lengths. It can 

be seen that the transparency of amplification is achieved for approximately 5dBm of 

pump power and the OSNR is approximately equal to 12 dB/0.1nm for 10, 15 and 20m and 

15 dB/0.1nm for 5m for pump power higher than the transparency. The gain is 

approximately 10dB for 5m of EDF and 30dB for 20m. 

The Noise Figure can be defined as the relation between the input SNR and the 

output SNR of the EDF [Polo, 2007]. Considering the main limitation of the signal 

detection the signal spontaneous noise power (NS-SP), the Noise Figure can be calculated by 

the forward equation:
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(6.3)

where PASE is the ASE power, hv is the energy of photon, v is the resolution 

bandwidth of the Optical Spectrum Analyzer (0.1nm in the referenced case) and G is the 

Gain of the EDF.

Considering also the shot noise (Nshot) and the spontaneous-spontaneous noise 

(NSP-SP) powers, the NF is calculated respectively with the equations:

(6.4)

(6.5)

where Bo is the optical bandwidth of the filter after the EDF, Be the bandwidth of the 

electrical filter in the receiving circuit and Pin is the optical power at the input of the 

amplifier.

Figure 6.9: Noise figure in function of the supplied pump power and the method used to quantify for a) 
5m and b) 15m of EDF length [Bonada, 2007].

From the figure 6.9 it can be seen that considering the three equations for the 

NF between 5 and 16dBm of pump power the NF achieve values near 3dB for 5m and 5dB 

for 15m of EDF, although, when no optical filter is used after amplification with equation 

3, the NF increased 10dB due to the dependence of the third term in equation with 

bandwidth of the optical filter Bo. For low pump power supplied to the EDFs it can be seen 

different behaviors of the NF for the equations.
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The highest efficiency is achieved for 10m of EDF, providing 15dB of gain for 

a signal at -20dBm pumped with 14dBm providing an power conversion efficiency of 

about 2%.

The figure shows the measured gain curve and pump attenuation for 10m of 

EDF for pumping power varying from -25 to 16dBm and small signal (-42dBm). The gain 

saturates for 15dB with an input pump power of 16dBm leading to a pump power 

consumption of 14dBm. For an input pump power of 11dBm the gain decreases 3dB. A 

reduction in the supplied pump power also decreases the OSNR after the amplification. For 

16dBm of pump power the NF is 5,3dB and reducing the pump power for 11dBm (-3dB of 

gain) the NF increases to 5,7dB [Bonada, 2007].

  
Figure 6.10: a) Signal gain and pump attenuation for 10m EDF in function of the supplied pump power 

and b) OSNR and Noise figure in function of the supplied pump power [Lazaro, 2007].

6.1.3. Simulation VPI

Analysis of the EDFs characteristics by means of simulation with the VPI. It 

pretends to study the EDFs for different possible cases and situations possible to be 

implemented in the real network, and adjust the parameters to the most efficient.

The EDF considered is the HE980 from the OFS. The parameters responsible 

for a characterization of an EDF by means of optical simulation can be expressed as the 

Giles Parameters. The figure 6.11 and the table express those parameters for the respective 

fiber.
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Wavelength Gain Attenuation
(nm) (dB/m) (dB/m)
1400 0,00 0,00
1455 0,09 0,69
1480 0,61 1,88
1484 0,69 2,08
1510 1,56 2,43
1519 2,43 3,30
1528 4,00 4,34
1530 4,08 4,08
1534 3,26 3,21
1544 3,08 2,56
1559 2,78 1,48
1585 1,17 0,35
1614 0,52 0,13
1629 0,00 0,00
1656 0,00 0,00

Figure 6.11: Giles parameters (Gain/Attenuation) for the EDF HE980 [OFS].

These Giles parameters can be inserted in the EDF characteristics in the EDF 

properties in the VPI. The saturation factor is kept constant and equal to the default value, 

2.4e15*1/(m*s). 

Figure 6.12:a) Schematic for the single direction pumping and b) schematic for bidirectional EDF 
pumping used in VPI simulation

In order to simulate the EDF in VPI with the same conditions that were 

demonstrated experimentally in [Lazaro, 2007], the schematic is presented in figure 6.12. 

It consists on an EDF connected at both sides by two WDM couplers 1480/1550nm. These

WDM couplers are not default components since they do not implement bi-directionality, 

so they were implemented providing bi-directionality.  The first WDM is supplied with a 

signal at 194.4THz, the same frequency of the state of art analysis modulated with an 

MZM, and a NRZ signal at 5Gb/s, and the pump signal at 1480nm. In the second WDM 

the signal and the pump are separated in order to achieve a better comparison of the real 

case. The figure implement a second version of simulation that consists of 2 EDFs bi 

a) b)
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directionally pumped being the reminiscent pump power of and EDF supplied to the other 

EDF. 

Figure 6.13:a) Signal gain, b) pump consumption and c) Noise Figure in function of the input signal 
power for the both mono directional and bidirectional schematics.

Figure 6.13 presents the results of a simulation pretending to optimize the 

EDF’s parameters. It consists on adjusting the EDF length for 10m, the pump power to 

16dBm and adjusting the signal power from -30dBm to 0dBm analysing the signal gain, 

pump attenuation and noise figure. It can be seen in figure 6.13a) that, as expected,  the 

gain starts to decrease for signals higher than -15dBm also leading to an increase in the 

pump attenuation and noise figure, diminishing the signal quality. It demonstrates that, for 

the specific Giles parameters, the gain efficiency decreases drastically for signals higher 

than -15dBm. It can be also noticed that higher amplification and better results are 

achieved for the second schematic where EDFs are bi directionally pumped. In saturation 

gain mode, for signals with low power, the gain achieved is approximately 16dBm and the 

pump attenuation is 1.5dB. These values are stricly higher than the presented in [Lazaro, 

2007] due to the optimal system considered in simulation.

a) b)

c)
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Figure 6.14: a) Signal gain, b) pump consumption and c) Noise Figure in function of the input pump
power for the both mono directional and bidirectional schematics.

A second simulation consists on varying the supplied pump power to the EDF 

from 0 to 20dBm keeping the EDF length at 10m and the input signal power at -30dBm. It 

can be seen from figure 6.14 that for these Giles parameters, the amplifier saturates for 

11dBm of input pump power causing a pump consumption of aproximately -2.5dB,

providing a signal gain of approximately 16dB. The Noise figure saturates for of around 

6dB. 

The graphs demonstrate that the EDF should be just supplied with the 

minimum pump power responsible for saturate the amplifier. Increasing the pump power 

for higher values does not increase the gain considerably, decreasing the efficiency of the 

amplifier. On the other hand, it is desirable option to operate the amplifier in the saturation 

mode as it does not change significantly the gain for changes of the supplied pump power.

Further analysis describe the points of higher efficiency for different gain. It can be seen 

also that for saturation operation, the bi directionally pumping does not provide significant 

improvement and increases the pump demand.

a) b)

c)
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Figure 6.15: a) Signal gain, b) pump consumption and c) Noise Figure in function of the EDF length for 
the both mono directional and bidirectional schematics.

A third simulation consists on keeping constant the pump power supplied to the 

EDF at 16dBm and the signal power at -30dBm and varying the length from 1 to 32m as 

presented in figure 6.15. As the EDF length increases the gain also increases linearly until 

the 19m where the gain starts to saturate achieving the peak for 25m. The pump 

consumption is kept mainly constant (about -1dB) until the 19m where it starts to increase. 

In what regards for the noise figure, it has an initial exponential increase saturating for 

lengths higher than 7m, starting to increase smoothly after 19m. 

This can show that the EDFs length is the most important parameter to 

optimize in an amplification stage. An extensive analysis will be provided further by 

means of analysing different lenghts in order to achieve the most efficient amplification.

The forth simulation consists on studying the Rayleigh Backscattering (RB) 

distortion in an EDF. The schematic of the simulation is presented in figure 6.16. The EDF 

is supplied with two signals counter propagating in the same wavelength.  

The simulation consists in varying the signal’s power from -21dBm to -3dBm 

keeping the other signal with a constant power of -21dBm. The input pump power is 

16dBm and the EDF’s length is 10m. Figure 6.17 shows the results of the simulation in 

terms of the OSNR and Extinction Ratio.

a)
b)

c)
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Figure 6.16: Schematic of bidirectional bi pumped EDF to analyse Rayleigh Distortions.

It can be seen that the degradation of the signal, that is mainly limited by the 

RB power, is linear for the increase of the power difference. It can be easily seen that the 

best quality signal is achieved for the EDF amplifying both signals in the opposite 

direction with the same power. In the figure is presented an analysis of the frequency 

deviation of the signals present on the EDF. Both input signals are kept with constant 

power of -18dBm and 0dBm, the pump power at 16dBm and the EDFs length at 10m. It 

can be seen that a simple 2GHz of signal deviation provides an improvement of the signal 

quality. For signal deviation of 10GHz and further, the signal characteristics are kept 

constant. An EDF is able to amplify bi directional signals without limitations imposed by 

RB distortions if they are shift at least 10GHz. Comparing the results of both graphs of 

figure 6.17, it can be concluded that for these Giles parameters, the EDF provides better 

efficiency in terms of signal quality for bi directionally amplification for signals with the 

same input power in the EDF shifted at least 10GHz from each other.

Figure 6.17: OSNR, NF and ER in function of the a) difference between US and DS signal powers and b) 
US/DS frequency deviation.
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6.1.4. Experimental Analysis

As described previously it is very important to optimize the EDF’s parameters 

to achieve the highest efficiency. Experimental analyses were demonstrated for different 

Erbium concentration EDFs with different lengths [Baptista, 2008:3]. The system was

implemented as the one described in the schematic present in figure 6.12 a).

Peak Absorption
(dB/m)

M5-980-125 4,5-5,5
M12-980-125 11-13
ER30-4/125 27-33

Figure 6.18:Giles parameters from the experimental fibers [Thorlabs].

The figure 6.18 and the table show the Giles parameters for the three different 

fibers used in the experimental. In the laboratory at the moment of this experience there 

were not the same fibers as used in simulation and analyzed in the state of art. Therefore

were used other fibers for the experimental implementation from Thorlabs, the M5-980-

125, the M12-980-125 and the ER30-4/125. In the experience is kept constant the signal 

power at -20dBm and the supplied pump power varied between 6 and 16dBm. In order to 

match the results of the previous chapters the product Peak Absorption and EDF length is 

50 (dB/m x m) and this value is kept constant for the three EDF types. The four products 

for the fibers are 37.5, 50, 62.5 and 75 (dB/m x m).

The figure 6.19 shows the ratio Gain/Pump (dB/dBm) as an efficiency ratio 

and the curves of efficiency for 7, 11 and 15 dB of signal gain. It can be seen that for 7dB 

of gain the higher efficiency is for 37.5 (dB/m x m) for the 5dB/m EDF resulting on 7.5m 

of fiber. For 11dB and 15dB of gain, the higher efficiency is for the same fiber type but for 

10m, resulting on a 50 (dB/m x m) product.



- 70 -

Figure 6.19: Gain/Pump (dB/dBm) in function of the input pump power.

Since 10m of the EDF with 5dB/m is the most efficient for 11 and 15 dB of 

gain a more extensive analysis is presented in the figure 6.20. For these cases the figure 

shows the gain and the pump power reminiscent for the EDF with 5dB/m of peak 

absorption for 7.5, 10, 12.5 and 15 m. For 7, 11 and 15dB of signal gain the EDF with 10m 

must be supplied with 7, 8 and 10dBm leading to reminiscent pump power of 3, 3 and 

7dBm respectively. From these results, it can be seen that the reminiscent pump power 

from the 7 and 11dB of gain is not enough to supply a second EDF, although the 

reminiscent pump power from the 15dB gain is able to be redirected to a second EDF. This 

is an important factor developing the amplifiers configuration since it can lead to an 

optimal low pump requirement multiple amplifiers.
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Figure 6.20: Signal Gain and pump reminiscent in function of the input pump power and EDF length.

6.2. Harvesting and Control in RNs

The most important component in the reconfigurability of the network is the 

power converter, control and harvesting module [Ramanitra, 2006], [Ramanitra, 2007]. 

Figure 6.21: Schematic of the harvesting and control module and the micro controller states.

The figure 6.21 represents a block diagram of the equipment in the module and 

the operational states. An optical signal is supplied to the photodiode in the module. Part of 

the converted electrical signal is lead to a control unit by means of an RF component and 

the mainly part of the energy is supplied to an Energy Reclamation Circuit that will be 

stored (battery or capacitor). On the other hand, the control module is listening tones coded
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until it recognizes a pre allocated pattern and turn on the microcontroller that is on sleep 

mode. After the pattern, an operation is communicated and the microcontroller will act 

over external components, in this case optical switches, with the power stored in the 

battery/capacitor going back to sleep mode after. 

Figure 6.22: Power efficiency in function of the load voltage and the input optical power and the Output 
power in function of the load resistance and the input signal power.

Figure 6.22 presents the power conversion efficiency optical-electrical in 

function of the load voltage and the input optical power and the output electrical power as 

a function of the load resistance and the input optical power. It can be seen that the 

efficiency is higher for input optical powers between -7 and 0dBm and the output electrical 

power is higher for higher input optical power, so, the best operation point of this 

conversion unit is for 0dBm. Experimental tests made on this modules demonstrated the a 

possibility to control the unit with power as low as -25dBm, although, the minimum power 

for harvesting is much higher than that, what can be difficult to achieve if multiple

modules of those are implemented in a very large network. Different topologies are being 

considered in order to increase the efficiency of the module and allow harvesting with 

lower input powers. Some similar equipment had been proposed in [Ramanitra, 2007]. A 

prototype of our module can be seen in the figure 6.23. In the left side is the input fiber 

with the optical control signal and energy supplier and in the right side the three optical 

switches 1 to 4 controlled remotely.
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Figure 6.23: Module of harvesting and control developed at Instituto de Telecomunicações, able to 
control until 3 switches one to four.

6.3. Conclusions

In this chapter an analysis on one of the critical component, the EDF, is 

presented. It started with a theoretical review, presentation of the state of art made by 

SARDANA team, some simulation to predict behavior and experimental tests to obtain the 

higher efficiency operation points. From experimental it was concluded that the EDF that 

provides better efficiency was the low doped with peak absorption of 5dB/m.

The second component presented was the power converter, harvesting and 

control module. This module is responsible for the optimization of the network since it 

controls the optical switches and the tunable power splitters. The control and the energy is 

supplied by means of an specific WDM signal emitted from the CO keeping the network 

fully passive. Experimental testes made on this module demonstrated the possibility to 

control the unit with powers as low as -25dBm. Although, the minimum power for 

harvesting is much higher than that, what can be difficult to achieve if multiple modules of 

those are implemented in a very large network.
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Chapter 7. Remote Nodes 
Comparison and Analysis.

7.1. System description and comparison

Figure 7.1: System description to analyze the RNs efficiency. Fiber cuts described at  RN 8, 12 AND 16
[Baptista, 2008:3].

In order to compare all the referred RN topologies, the SARDANA network 

was simulated. The figure 7.1 demonstrates the simulated scheme. The ring was

implemented with 20, 40 and 60km with 16RNs, each with 2 trees and 32 users per tree 

2km distant from the RN, for a total of 1024 users. There are compared the Non Optical 

Switching (NOS) architecture, the Optical Switching (OS), the Tunable Drop (TD) and the 

Reconfigurable RN (REC) all present in figure 7.2. The comparison between four RNs is 

presented in figure 7.3.



- 76 -

Figure 7.2: a) Non Optical Switching RN topology proposed in [Lazaro, 2007]; b) Optical Switching RN 
topology proposed in [Baptista, 2008:1]; c) Tunable Drop RN topology proposed in [Baptista, 2008:3]

and d) Reconfigurable RN proposed in [Baptista, 2008:3].

In order to compare the different efficiencies of each RN topology, three fiber 

cuts are simulated. The first cut is for the RN 8, simulating the normal operability of the 

network. The traffic is balanced for both sides of the ring guaranteeing the signals to travel 

through the shorter path, reducing the non linear effects and attenuation. The pump power 

is also supplied equally from both sides of the US ring fiber. Regard the power converter, 

harvesting and control module is operating in sleep mode, harvesting energy for potentially 

acts on the network reconfigurability.

For fiber cut at the RN 12 an intermediate resilience mode is simulated. The 

control modules of some RNs will receive command from the CO to act on the optical 

switches and tunable power splitters. The network reconfigures and four of the total twelve 

RNs receive the signals and the pump power through the farthest path, resulting on extra 

attenuation and signal degradation.

For fiber cut at RN 16 is simulated the extreme mode of operation. The control 

modules of the RNs will receive also command from the CO to act on the optical switches 

and tunable power splitters. The network reconfigures and eight of the total twelve RNs 

receive the signals and the pump power through the farthest path. All the traffic signals and 

pump power travel through the same side of the ring resulting on the worst case of signal 

attenuation and degradation. 

The comparison between the four RNs topologies and the three operation 

modes is made calculating the total requirements of the network in terms of pump power 

and the number of RNs that are not supplied with enough pumping power to operate. It 
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should be noticed that the maximum pump power allowed to be produced by the CO is 

44dBm. This value is extremely high, however is used in previous analysis.

Figure 7.3: Pump power supplied by the CO on both directions and the number of RN with not enough 
pump power for amplification (dead RN) for the four different configurations of RN. (a) 20km, (b) 40km 

and (c) 60Km networks [Baptista, 2008:3].

Figure 7.3 demonstrate the results of the comparison between the RNs. For 

fiber cut at RN 8, the OS topology requires higher pump power than all the others 

topologies since the IL is higher being therefore not an efficient alternative. Implementing

the TD topology the required pump power is the same than for NOS. The REC topology 

requires the lower pump power, respectively 26, 31 and 33 dBm for 20, 40 and 60Km. All 

the RNs have enough pump power to operate for fiber cut at RN 8.

For fiber cut at RN 12, the OS topology continues to require higher pump 

power due to the extra IL and is not able to provide enough pump power for all the RNs, 

being 2, 3 and 4 RNs out of operation respectively for 20, 40 and 60Km. The NOS 

topology presents similar results, supplying just 1 more RN with pump power to operate 

for 60Km comparing to OS topology. TD and REC topologies are able to supply all the 

RNs with enough pump power however the REC topology requires lower pump power, 

respectively 36, 41 and 44 dBm for 20, 40 and 60Km of ring’s length.
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For fiber cut at RN 16 all the topologies require the maximum pump power 

however substantial difference can be observed in the number of RNs that do not operate. 

The NOS topology does not supply enough pump power to 6, 7 and 7 RNs to operate 

respectively for 20, 40 and 60Km. The OS topology follows similar results, however it 

does not supply with enough pump power one more RN for 60Km. Substantial 

improvements are observed for TD and REC topologies. The TD topology just does not 

supply enough pump power for 1, 4 and 5 RNs respectively for 20, 40 and 60. The REC 

topology is able to operate all the RNs for 20Km, however for 40 and 60Kms there are 3 

and 4 RNs respectively without enough pump power to operate.

The REC topology provides higher efficiency for all the four RNs topologies. 

For fiber cut at RN8 the total pump power required decreases in 5, 3 and 4 dB respectively 

for 20, 40 and 60Km and for the extreme case, fiber cut at RN16 the number of RNs that 

do not have enough pump power decreases at 6, 4 and 3 respectively for 20, 40 and 60Km.

Figure 7.4: RN topology and the respective experimental implementation.

The complete REC topology is present in figure 7.4. Since in the laboratory 

there was no tunable power splitter, a discrete version was implemented by means of 1 to 4 

optical switches, allowing the selection of a non dropping pump power, an all dropping 

pump power and 2 intermediate levels by means of power couplers. The implemented REC 

topology pretends to analyze the RN independently for DS and US signals being the RN 

provided with just one EDF. The implemented RN prototype is seen in figure 7.5.
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Figure 7.5: Reconfigurable RN implemented and tested.

Since there was just a 21dBm pump power source in the laboratory and 

connectors were used instead of splices it was impossible to demonstrate all the RNs and 

resilience modes.

Figure 7.6: a) Proposed Remote node topology based on two EDF, amplification or non amplification 
modules and tunable pump power splitting [Baptista, 2008:3]. b) Upgrade from previous remote node

architecture reducing the losses in the trees filtering and providing multiple reconfigurability.

Considering the same schematic of figure 7.1 and described operations for the 

previous RN comparisons, further RN comparison between the REC RN and the novel

a) b)
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structure presented in figure 7.6 b) was demonstrated in figure 7.7. As it can be easily seen, 

there is a reduction on the required pump power from the CO when the fiber cut is in RN8 

of 1, 3 and 3 dB respectively for 20, 40 and 60Km. For fiber cut at RN 16 a reduction of 

4dB of pump power is achieved for 20Km and for 40 and 60km there is a reduction of RNs 

without enough pump power (dead RN) of 3 and 2 respectively. 

Figure 7.7: Pump Power supplied by the CO and the number of RNs with not enough pump power for 
amplification for different network operations.

7.2. Conclusions

The introduction of a tunable pump power splitter and optical switching can 

lead to significant improvements in the usage of the total pump power produced by the CO, 

reducing 5, 3 and 4dB for 20, 40 and 60km respectively, at normal operation mode (fiber 

cut at RN 8). In extreme resilience mode (fiber cut at RN 16), for the same pump power 

supplied by the CO, the number of RNs with no pump power available (dead RN) 

decreases 6, 4 and 3 unities for 20, 40 and 60km, respectively. Implementation of the 

reconfigurable RN increases the network scalability, resiliency and robustness, leading to a  

more efficient NG-PON.

The characterization of different EDF’s pump usage efficiency led to the 

conception of an improved RN design where both pump power and fiber characteristics 

(length and gain/m) are reconfigurable in order to improve the pump usage and decrease 

the total power in the fiber for granting full resilience and improved functioning. The 

network can be totally resilient for 20 and 40km, and reduce in 2 the number of dead RNs 
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for 60km in extreme resiliency. At normal operation mode, the network demands less 1, 3 

and 3dB of pump power from the CO respectively for 20, 40 and 60km.



- 82 -



- 83 -

Chapter 8. Conclusions and future work

8.1. Conclusions

This work has been presented in 8 chapters, with themes related to optical 

networks architectures, new generation optical networks, SARDANA network and its 

components. The main component studied is the Remote Node which is the limiting factor 

that limits the networks by the different topologies by the pump power required. Two main 

components from the RN where then presented and studied the EDF and the optical 

converter, harvesting and control module.

The SARDANA project architecture provides flexibility, scalability, resiliency, 

higher user density and bandwidth, robustness and extended reach that are important 

features for next generation dense FTTH networks also called NG-PONs. It operates in a 

WDM ring TDM tree topology. Two different main topologies can be applied, one consists 

on a single fiber ring and the other and more efficient consists on a double fiber ring. To 

keep simplicity all the light generation and control is placed in the CO and the ONUs are

based on reflective devices such as RSOAs.

The RN, as the main theme of this document, is presented in several 

topologies, some of them referenced as state of art and others as proposed. There are two 

distinct evolutions in the RNs, the signal and the pump paths.
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The pump path optimization aims on reducing the pump losses in each RN and 

distribute it fairly, just dropping to the RN the enough amount of pump power to its 

operation. 

Pump path topologies started with simple supplying the EDFs present in the

RNs with all the pump power available in the ring thus reducing the total network 

efficiency. To solve this impairment, topologies based on pump power splitting were 

presented. The RN just drops a fraction of the total pump power available in the ring and

supplies it to the EDFs. The main goal here is to optimize the pump power coupling ratios 

in order to allow the network to operate efficiently in resilient mode and provide 

scalability.  The problem with these topologies is that the optimization of the ratios for 

normal mode is not efficient for resilient mode. 

Topologies based on remote reconfigurability solve this problem. The first 

approach is able to select between 2 distinct power couplers ratios by means of optical 

switching. One power coupler ratio is optimized for normal mode and the other for 

resilient mode. Despite of the optimization of this topology, the network is not fully 

scalable since inserting an extra RN requires modification of the power coupler ratios.

The second approach is implemented with a tunable power splitter instead of 

optical switching, allowing a fully scalable and resilient network, dropping just the 

necessary amount of pump power from the ring. A final optimization consists on 

reconfigure the RN between two modules: amplification modules and direct link not 

providing gain. These last pump path topologies consider the distance between the RNs 

and the CO. It allow a substantially save in terms of pump power for the RNs close the CO, 

since they do not require gain.

The signal path topologies are also an important optimization. Reducing the 

signal losses and reducing the number of EDFs allow dropping lower pump power per RN, 

increasing the total efficiency. 

The first evolution is related to the Add&Drop function, made by means of thin 

film filters instead of power couplers. With this, the introduction of RNs is almost 

transparent for the WDM channels present in the ring. 
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A further improvement consists on applying the multi channel amplification 

characteristics of the EDFs, reducing the number of EDFs from 4 to 2. Three topologies 

were presented and compared each of them with 2 EDFs. The preferred topology allows 

adjust independent gain for US and DS signals depending on the operation mode.

An optimized version of the RN is implemented with 2 EDFs, one responsible 

for the DS signals and the other responsible for the US signals. The RN selects between 

amplification and non amplification modules allowing the independent reconfigurability of 

gain for DS and US signals depending on the distance from CO and resiliency mode.

EDFs are important components in the RNs, since they limit the efficiency of 

the network. An analysis to different EDFs with different parameters has been 

demonstrated. Low doped erbium concentration (5dB/m of peak absorption) is the most 

efficient solution. For input signal powers higher than -20dBm, the amplifier saturates 

leading to a reduction of efficiency. In order to provide 7, 11 and 15dB of gain is required 

7, 8 and 10 dBm of pump power, for a reminiscent pump power of 3, 3 and 7 respectively.

The control of the tunable power splitter and the optical switches is done by 

means of a power converter, harvesting and control module. That module is briefly 

introduced and presented. Further improvements are required to increase the efficiency of 

power conversion.

From all the presented RNs, the last proposed is able to provide a completely 

resilient network for 20 and 40km and reduce 2 RNs with not enough pump power to 

provide amplification.

8.2. Future work

In the next years the data rate demands will continue to increase and it is 

necessary to start developing faster and faster access networks. SARDANA is a good 

vision to the future, although it still can improve to higher reach, users and data rate with a 

lower CAPEX and OPEX.
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It is important for future work to keep analyzing different amplification 

strategies in order to achieve even higher efficiency in amplification leading to a lower 

pump requirement. As 44dBm is necessary to keep the network working in the worst case 

of fiber failure it is convenient to develop new solutions, as:

 The first proposal is to implement each RN with the possibility to provide 

connection to higher number of users with the same rate. A solution for that is to 

increase number of wavelengths dropped per RN.

 A second proposal is to study amplification by means of remotely pumped EDFs 

but installed in the ring, providing gain to all the WDM channels present on the 

ring. The main disadvantage with this configuration will be the addition of extra 

noise degrading the signals.

 A third proposal is to implement a mixed implementation of Raman and EDF 

gain, allowing the signals to travel in the ring with higher power reaching longer 

distances.
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