

 Universidade de
Aveiro
2008

Departamento de Electrónica,
Telecomunicações e Informática

Emanuel Filipe Cunha
Miranda

 Gerenciador de Recursos

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Electrónica e
Telecomunicações (300-9365), realizada sob a orientação científica do Dr.
Paulo Pedreiras, Professor Auxiliar do Departamento de Electrónica,
Telecomunicações e Informática (DETI) da Universidade de Aveiro (UA).

2 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

o júri

presidente Doutor António Ferreira Pereira de Melo
Professor Catedrático da Universidade de Aveiro

 Doutor Paulo Bacelar Reis Pedreiras

Professor Auxiliar da Universidade de Aveiro

 Doutor Joaquim José Castro Ferreira

Professor Adjunto do Departamento de Engenharia Informática da Escola Superior de

Tecnologia do Instituto Politécnico de Castelo Branco

 Prof. Dr. João Antunes da Silva
professor associado da Faculdade de Engenharia da Universidade do Porto

 Prof. Dr. João Antunes da Silva
professor associado da Faculdade de Engenharia da Universidade do Porto

 Prof. Dr. João Antunes da Silva
professor associado da Faculdade de Engenharia da Universidade do Porto

3 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

agradecimentos

Gostaria de agradecer aos meus pais e irmã, Emanuel, Ana e

Anita, que me ajudaram na minha estadia na Holanda e sempre

seguiram de perto os meus passos académicos.

Aos meus amigos na Holanda, João, Rodrigo e Bibiana, que

sempre me apoiaram em todo o processo de adaptação.

Ao Orlando Moreira (NXP) e ao Prof. Paulo Pedreiras (UA),

pela oportunidade e auxílio.

Por último, mas não menos importante, ao meu amigo Luis

Silva que me ajudou na revisão da tese.

4 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

acknowledgements

I would like to thank my parents and sister, Emanuel, Ana and

Anita, who made my journey to the Netherlands possible and

followed my life and my studies closely.

To my friends in the Netherlands, João, Rodrigo and Bibiana,

who supported me in several milestones during my stay.

To Orlando Moreira (NXP) and Prof. Paulo Pedreiras (UA), who

gave me the opportunity and guidance to help me succeed.

Last but not least, to Luis Silva who reviewed my thesis. No one

could hope for a better friend.

5 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

palavras-chave

Gerenciador de recursos, Rádio definido por Software,

Sistema heterogéneo de Multi-processadores.

resumo

 Esta tese reporta a implementação de um módulo

gerenciador de recursos para uma plataforma heterogénea

multi-processador de rádio para equipamento movel.

Nessa plataforma os rádios são definidos como data flows

e são dinamicamente alocados, ou libertados consuante a

necessidade da aplicação.

 Os rádios são alocados em runtime e requerem

vários recursos que podem ou não estar livres na

plataforma. Quando uma tentativa de alocação de um

rádio falha, todos os recursos até ai reservados têm que ser

libertados. Esta metodologia requer tempo e não é

eficiente. O objectivo desta dissertação é investigar

diferentes metodologias e algoritmos para tornar o

processo de alocação mais eficiente. A abordagem

escolhida foi baseada na modelação dos recursos, opção

que permite controle de admissão e é independente da

plataforma. Este trabalho foi desenvolvido o mais

genericamente possível para abranger a maior variedade

de aplicações.

 No estado actual do projecto são suportados até 5

standards de rádio simultaneamente, cada um com

diferentes taxas de entrada/saída e com requisitos real-

time. Em conclusão, este projecto contrói o caminho para

a quarta geração (4G) de tecnologia de comunicação.

6 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

keywords

Resource Manager, Software-Defined Radio,

Heterogeneous Multi-processor system.

abstract

 This dissertation addresses the project and

implementation of a Resource Manager module for

heterogeneous multi-processor radio platforms. In the

target platform the radios are defined as data flows and are

dynamically allocated and released, according to the

application needs.

 Radios are allocated at runtime and require the

sequential allocation of several resources that may or may

not be available. Whenever the allocation of any necessary

resource fails, the radio allocation procedure has to be

aborted and the eventually allocated resources released.

Allocating and de-allocating resources is costly and thus

this methodology is not efficient. In the scope of this

dissertation are investigated different methods and

algorithms to make the radio allocation process more

efficient. Four different possibilities are considered and

assessed. The chosen approach is based in the use of a

resource model, which permits fast admission control and

is platform-independent, since it does not require any

modification on the platform-specific modules. This

application is being developed as generically as possible

to be able to embrace the largest possible group of

applications.

 In its current status this project supports up to 5

different radio standards concurrently, each one exhibiting

specific input/output rates and real-time requirements. In

conclusion, it is the path to fourth generation (4G)

communication technology.

7 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

Contents

1. INTRODUCTION 13

A. SOFTWARE-DEFINED RADIO 14

B. THIS PROJECT 15

C. BASE-BAND RESOURCE MANAGER 15

D. THESIS OVERVIEW 16

2. BACKGROUND 17

A. REAL-TIME SYSTEMS 17

B. MULTI-PROCESSOR SYSTEM 17

C. MULTI SKILLS SYSTEMS 18

D. SINGLE-RATE DATAFLOW 18

3. SOFTWARE-DEFINED RADIO FRAMEWORK AND RADIO DESCRIPTION 21

A. HARDWARE FRAMEWORK 21

B. SOFTWARE FRAMEWORK 24

C. RADIO MODEL 29

D. RADIO STRUCTURE AND DESIGN 31

E. RADIO EXAMPLE 32

4. DESIGN SPACE, PROBLEMS AND SOLUTIONS 33

A. GOALS OF BB-RM 33

B. DESIGN SPACE 34

C. SOLUTIONS 36

D. SOLUTION ASSESSMENT 38

5. IMPLEMENTATION OF THE BB-RM 39

A. JOB – RADIO INSTANCE 39

B. BB-RM FUNCTIONS 40

C. DATA STRUCTURE OF BB-RM 40

D. JOB STATES 43

E. INTERFACE G-RM <-> BB-RM 44

F. INTERFACE BB-RM <-> SOD 48

G. RESOURCE ALLOCATION PROBLEM 49

H. SORT STRATEGY 51

I. COMPLETE RAP HEURISTICS, INCLUDING COMMUNICATION 53

J. DEBUG 54

K. BB-RM VERSIONS 55

L. SOURCE CODE 56

8 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

6. EXPERIMENTAL RESULTS 59

A. OPTIMIZATIONS 59

B. MW VS RW RESULTS 62

C. BF VS FF RESULTS 63

D. COMPLETE RESOURCE ALLOCATION PROBLEM RESULTS 65

E. FRAGMENTATION RESULTS 65

7. CONCLUSIONS AND FUTURE WORK 67

A. FUTURE WORK 68

8. BIBLIOGRAPHY 69

9. APPENDICES 71

A. DOXYGEN API CODE DOCUMENTATION 71

B. FUNCTIONS PERFORMANCES IN VERSION 1.2 75

C. FUNCTIONS PERFORMANCES IN VERSION 1.3 78

9 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

Abbreviations

0G - Zero Generation

1G - First Generation

2G - Second Generation

3G - Third Generation

3GPP - Third Generation Partnership Project

4G - Fourth Generation

ADC - Analog-to-Digital Converter

AHB - Advanced High-performance Bus

API - Application Programmer’s Interface

ARM - Advanced RISC Machine

AXI - Advanced eXtensible Interface

BB-RM - Baseband Resource Manager

BF - Best Fit

CM - Configuration Manager

CPU - Central Processor Unit

DAC - Digital-to-Analog Converter

DSP - Digital Signal Processing

EVP - Embedded Vector Processor

F-ARM - FPGA ARM

FF - First Fit

FIFO - First In First Out

FPGA - Field-Programmable Gate Array

G-RM - Global Resource Manager

GSM - Groupe Special Mobile

J-ARM - JEOME ARM

J-ARM - JEOME ARM

J-EVP - JEOME EVP

J-EVP - JEOME EVP

J-Tile - JEOME tile

LTE - Long Term Evolution

MPS - Multi-Processor System

MW - Module Weights

NM - Network Manager

OS - Operating System

PC - Personal Computer

RAP - Resource Allocation Problem

RISC - Reduced Instruction Set Computer

RM - Resource manager

10 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

RR - Round Robin

RT - Real-Time

RTOS - Real-Time Operating System

RTS - Real-Time System

RW - Relative Weights

RX - Receive

SDR - Software-Defined Radio

SK - Streaming Kernel

SoC - System On Chip

SoD - Sea of DSP

SRDF - Single Rate Dataflow

TX - Transmit

UART - Universal Asynchronous Receiver/Transmitter

uC/OS - Micro-Controller Operating System

USB - Universal Serial Protocol

VBP - Vector Bin-Packing

WLAN - Wireless Local Area Network

11 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

List of tables

TABLE 1 : RESOURCE OPTIMIZATION ... 60

TABLE 2 : JOB OPTIMIZATION .. 60

TABLE 3 : OPTIMIZATION RESULTS ... 60

TABLE 4 : FUNCTIONS PERFORMANCES ... 61

TABLE 5 : MW AND RW RESULTS ... 63

TABLE 6 : BF AND FF RESULTS .. 64

List of figures

FIGURE 1 : ORDINARY RADIO ARCHITTECTURE FROM [14] .. 13

FIGURE 2 : SOD RADIO SYSTEMATIC FROM [14] ... 14

FIGURE 3 : SINGLE-RATE DATAFLOW .. 19

FIGURE 4 : TILE STRUCURE ... 21

FIGURE 5 : JEOME STRUCTURE .. 22

FIGURE 6 : PLATFORM STRUCTURE ... 22

FIGURE 7 : AEROPROTO2 BOARD .. 23

FIGURE 8 : SOFTWARE STRUCTURE ... 25

FIGURE 9 : SOD CONCEPTUAL VIEW FROM [5] ... 27

FIGURE 10 : SOD EXECUTION ARCHITECTURE FROM [5] ... 27

FIGURE 11 : WLAN DATFLOW .. 29

FIGURE 12 : RADIO STRUCTURE ... 31

FIGURE 13 : WLAN 802.11A EXAMPLE FROM [12] ... 32

FIGURE 14 : BB-RM DESIGN SPACE ... 34

FIGURE 15 : BB-RM SOLUTION-1 ... 36

FIGURE 16 : BB-RM SOLUTION-2 ... 37

FIGURE 17 : BB-RM SOLUTION-3 ... 37

FIGURE 18 : BB-RM SOLUTION-4 ... 38

FIGURE 19 : BB-RM DATA STRUCTURE ... 41

FIGURE 20 : JOB STATES .. 44

FIGURE 21 : BBRM_INICIALIZE FUNCTION .. 45

FIGURE 22 : BBRM_JOB_TEST FUNCTION .. 45

FIGURE 23 : BBRM_JOB_CREATE FUNCTION .. 46

FIGURE 24 : BBRM_JOB_RESUME FUNCTION ... 47

FIGURE 25 : BBRM_JOB_SUSPEND... 47

FIGURE 26 : BBRM_JOB_REMOVE ... 48

FIGURE 27 : VBP EXAMPLE .. 50

FIGURE 28 : MW EXAMPLE .. 52

FIGURE 29 : RW EXAMPLE ... 52

FIGURE 30 : DEBUG MESSAGES ... 55

FIGURE 31 : ERROR MESSAGES .. 55

FIGURE 32 : FILES STRUCTURE ... 57

FIGURE 33 : RADIO TO TEST THE MW AND RW METHODS ... 62

FIGURE 34 : RADIO TO TEST THE BF AND FF ALGORITHMS .. 64

FIGURE 35 : RADIOS TO TEST THE FIFO FRAGMENTATION .. 65

FIGURE 36 : FIFO MEMORY ... 66

12 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

(This page was left blank delivered)

13 | P a g e

1. Introduction

The way to the future is built on knowledge from the past, so a brief description of

the cellular mobile radio history will be given next.

As early as 1921 the first communications were done via the mobile radios rigs and

used in vehicles such as taxicabs, police cruisers and ambulances. These devices were not

considered as mobile phones because they were not normally connected to the telepho

network (1).

 During the early 1940s, Motorola developed a backpacked two

Walkie-Talkie and later developed a large hand

was in 1945 when the zero generation (0G) o

mobile phone just worked in one station, so the cellular concept did not exist. At this time

several prototypes were invented

Firstly in Tokyo, Japan (1979) and two year latter in De

and Sweden, the first commercial cellular phone networks, called as first generation (1G),

were launched.

In 1982 the Groupe Spécial Mobile

phones, and in 1990 the first GSM mobile communication infrastructure was deployed.

This new release was called second generation (2G). This new variant brought the SMS

service, which permits sending text messages in addition to the voice calls.

Not long after and with th

systems began to develop. There were many different standards created by different

contenders. The meaning of 3G was the standardization of the requirements (maximum

data rate indoors/outdoors) instead o

standards were introduced.

Figure

Current ordinary radio devices have a similar

Figure 1. The control element is the Operating System (OS) that runs on a Central

Processor Unit (CPU). It manages all the device activities on the platform. It should be

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Introduction

The way to the future is built on knowledge from the past, so a brief description of

the cellular mobile radio history will be given next.

As early as 1921 the first communications were done via the mobile radios rigs and

used in vehicles such as taxicabs, police cruisers and ambulances. These devices were not

considered as mobile phones because they were not normally connected to the telepho

During the early 1940s, Motorola developed a backpacked two

Talkie and later developed a large hand-held two-way radio for the US military. It

was in 1945 when the zero generation (0G) of mobiles phones was invented. There the

mobile phone just worked in one station, so the cellular concept did not exist. At this time

several prototypes were invented (2).

Firstly in Tokyo, Japan (1979) and two year latter in Denmark, Finland, Norway

and Sweden, the first commercial cellular phone networks, called as first generation (1G),

Groupe Spécial Mobile (GSM) (3) created the first standard for mobile

990 the first GSM mobile communication infrastructure was deployed.

This new release was called second generation (2G). This new variant brought the SMS

service, which permits sending text messages in addition to the voice calls.

Not long after and with the introduction of 2G networks, third generation

systems began to develop. There were many different standards created by different

contenders. The meaning of 3G was the standardization of the requirements (maximum

data rate indoors/outdoors) instead of technology standards. At this point, several different

Figure 1 : Ordinary radio archittecture from [14]

t ordinary radio devices have a similar architecture to the one depicted in

. The control element is the Operating System (OS) that runs on a Central

Processor Unit (CPU). It manages all the device activities on the platform. It should be

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

The way to the future is built on knowledge from the past, so a brief description of

As early as 1921 the first communications were done via the mobile radios rigs and

used in vehicles such as taxicabs, police cruisers and ambulances. These devices were not

considered as mobile phones because they were not normally connected to the telephone

During the early 1940s, Motorola developed a backpacked two-way radio, the

way radio for the US military. It

f mobiles phones was invented. There the

mobile phone just worked in one station, so the cellular concept did not exist. At this time

nmark, Finland, Norway

and Sweden, the first commercial cellular phone networks, called as first generation (1G),

created the first standard for mobile

990 the first GSM mobile communication infrastructure was deployed.

This new release was called second generation (2G). This new variant brought the SMS

service, which permits sending text messages in addition to the voice calls.

e introduction of 2G networks, third generation (3G)

systems began to develop. There were many different standards created by different

contenders. The meaning of 3G was the standardization of the requirements (maximum

f technology standards. At this point, several different

architecture to the one depicted in

. The control element is the Operating System (OS) that runs on a Central

Processor Unit (CPU). It manages all the device activities on the platform. It should be

14 | P a g e

remarked that each radio has

standard is supported by dedicated hardware.

that supports M radio standards with M dedicated hardware modules.

The number of applications supported by mobile devices is growing day by day. Most of

them use remote databases and/or services. The need to make an efficient use of the

communication bandwidth led to th

 Nowadays, mobile cell system

Furthermore, some of them (e.g. GSM) have several versions. This imposes a constraint on

the radio devices. If a radio device aims at supporting the

it would need dedicated hardware for each one and so it becomes big and complex.

Another drawback of this radio architecture is that it is not upgradeable, and thus cannot

evolve to support radio standards than are create

Finally, it should be noted that the “classical” architecture depicted in

mobile devices, and thus subject to strict size

number of dedicated HW radios and, consequently, the number of standards supported.

In face of all of these trends, the ordinary phone platform is starting to become obsolete.

Following the personal computer (PC)

heading to Multi-Processor Systems (MPS), called 4G

 Multiprocessor systems present several advantages in terms of flexibility, power

efficiency and cost (5).

In conclusion, the balance between installed uni and multi

upcoming years.

A. Software-

The negative aspects pointed out to the current radio platforms can be traced to the

dedicated hardware implementation of the radio components. This observation led to the

development of the Software

revolution in the field of hardware devices. The use of SDR is completely compatible with

the existing network infrastructure and standards, however changes significantly the

internal architecture of the mobile devices.

 The major difference between the conventional and SDR radio platforms is the fact

that instead of having dedicated hardware for each radio standard, the radios are

programmable software entities, similar to application programs in a personal computer.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

remarked that each radio has specific hardware to support it and, consequently, each radio

standard is supported by dedicated hardware. Figure 1 depicts a radio architecture example

M radio standards with M dedicated hardware modules.

The number of applications supported by mobile devices is growing day by day. Most of

them use remote databases and/or services. The need to make an efficient use of the

communication bandwidth led to the development of different standards.

Nowadays, mobile cell systems support more than ten radio standards.

Furthermore, some of them (e.g. GSM) have several versions. This imposes a constraint on

the radio devices. If a radio device aims at supporting the majority of these radio standards

it would need dedicated hardware for each one and so it becomes big and complex.

Another drawback of this radio architecture is that it is not upgradeable, and thus cannot

evolve to support radio standards than are created after its development.

Finally, it should be noted that the “classical” architecture depicted in

mobile devices, and thus subject to strict size limitations, which can also constraint the

number of dedicated HW radios and, consequently, the number of standards supported.

In face of all of these trends, the ordinary phone platform is starting to become obsolete.

Following the personal computer (PC) innovation, mobile phone platforms are going

Processor Systems (MPS), called 4G (4).

Multiprocessor systems present several advantages in terms of flexibility, power

In conclusion, the balance between installed uni and multi-processors wi

-Defined Radio

Figure 2 : SDR radio systematic from [14]

The negative aspects pointed out to the current radio platforms can be traced to the

dedicated hardware implementation of the radio components. This observation led to the

development of the Software-Defined Radio (SDR) (6) concept. This concept was a small

revolution in the field of hardware devices. The use of SDR is completely compatible with

the existing network infrastructure and standards, however changes significantly the

internal architecture of the mobile devices.

The major difference between the conventional and SDR radio platforms is the fact

that instead of having dedicated hardware for each radio standard, the radios are

programmable software entities, similar to application programs in a personal computer.

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

specific hardware to support it and, consequently, each radio

depicts a radio architecture example

The number of applications supported by mobile devices is growing day by day. Most of

them use remote databases and/or services. The need to make an efficient use of the

e development of different standards.

support more than ten radio standards.

Furthermore, some of them (e.g. GSM) have several versions. This imposes a constraint on

majority of these radio standards

it would need dedicated hardware for each one and so it becomes big and complex.

Another drawback of this radio architecture is that it is not upgradeable, and thus cannot

d after its development.

Finally, it should be noted that the “classical” architecture depicted in Figure 1 is used in

limitations, which can also constraint the

number of dedicated HW radios and, consequently, the number of standards supported.

In face of all of these trends, the ordinary phone platform is starting to become obsolete.

innovation, mobile phone platforms are going

Multiprocessor systems present several advantages in terms of flexibility, power

processors will change in the

The negative aspects pointed out to the current radio platforms can be traced to the

dedicated hardware implementation of the radio components. This observation led to the

cept. This concept was a small

revolution in the field of hardware devices. The use of SDR is completely compatible with

the existing network infrastructure and standards, however changes significantly the

The major difference between the conventional and SDR radio platforms is the fact

that instead of having dedicated hardware for each radio standard, the radios are

programmable software entities, similar to application programs in a personal computer.

15 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

Thus, provided that enough resources are available, it becomes possible running multiple

radios simultaneously as well as replacing radios dynamically, according to the needs.

 As depicted in Figure 2, the SDR architecture comprises an OS that manages the

platform resources, namely supporting run-time reconfiguration by installing, loading and

activating new radios.

 In this approach, the radios are now engineered in software, easily allowing

platform updates with the objective of supporting new radios and standards. Thus, the

platforms become flexible and evolutive.

B. This project

In SDR architectures, the instantiation of radios requires resources such as CPU,

memory and communication channels. These services are provided by the so-called Base-

Band Resource Manager (BB-RM) module. The main target of this master’s dissertation is

to develop a BB-RM module able to manage efficiently the different resources.

The platform used in this work is based in a multi-processor system. Furthermore,

each CPU board has local memory, which is partially used by the local processes and

partially shared, for communication. Hence, the BB-RM has to take in account the

available computational and memory resources available in each processor.

In addition, the platform is heterogeneous, meaning that it uses diverse processor

types. Specifically, the platform has Reduced Instruction Set Computer (RISC) processors

and Embedded Vector Processors (EVP). In this type of systems some functions can be

executed more efficiently in one particular type of processors than in others. Hence, the

BB-RM must also be aware of these possibilities and permit allocating the computation to

the best suited execution platforms. The main purpose of this platform is infotainment

applications. Many of these applications have soft real-time (RT) requirements, and thus

the BB-RM must also guarantee that radio applications meet the associated deadlines.

C. Base-Band Resource Manager

Embedded platforms for media streaming have to handle several streams at the

same time, each one with its own properties (7). Typically the radio can be divided in

minimal groups of components, called processing components that are controlled

independently by an external source. These processing components that form the radio

communicate through First-in-First-out (FIFO) buffers.

16 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

Working on the radio operating system layer, the BB-RM has the responsibility to

allocate these radios on the platform. It uses a strong policy to ensure:

� Strict admission control - a radio is just allowed to run on the platform if the system

can support the resource budget and RT requirements of each radio component.

� Strict resource reservation - each radio can only use the resources that have been

allocated to it.

To provide these policies the BB-RM copes with several issues like:

� Heterogeneous multi-processor platform - several processors of different types.

� Multiple radios simultaneously active - the platform should provide different radios

and radios standards at the same type.

� Different rates of operation - each component in the radio has its own rate.

� Unpredictable start/stop times - the start/stop of the radios are independent

among them.

� Must provide RT guarantees - radio functions require real-time guarantees.

D. Thesis overview

This master’s thesis is split into six main chapters. The “Background” chapter

introduces basic concepts associated with the work developed. The “Software-Defined

Radio framework and radio description” chapter presents a detailed description of the

platform hardware and software architecture. In the “Design space, problems and

solutions” chapter it is shown the workspace of BB-RM, its problems and possible

solutions. The core chapter of this thesis is “Implementation of the BB-RM”, in which it is

explained the BB-RM implementation, functions and API. The implemented solution to

solve the resource allocation problem and the file structure is also described. The tests and

analysis of the BB-RM implementation are presented in chapter “Experimental results and

analysis”. Finally, an overview and global assessment of the work developed is presented

in chapter “Conclusions and future work”.

17 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

2. Background

 This chapter reviews some fundamental concepts that are associated with the work

developed in this dissertation.

A. Real-Time Systems

Real-Time Systems (RTS) are systems with time constraints. This means that the

system activities have associated temporal constraints. The most common temporal

constraint is called deadline, and indicates an upper bound to the conclusion of a task.

Deadlines can be classified according to the relevance and potential consequences of

failing to meet them. A deadline is classified as Firm if, when violated, the results

obtained are useless to the system. Conversely, deadlines are classified as Soft when

computations obtained after the deadline keep some level utility. A firm deadline is

classified as Hard when its violation can result in catastrophic consequences, e.g. by

threatening human lives or causing significant economical impact. Systems may also be

classified according to the deadlines of the associated tasks. Soft Real-Time Systems

contain only non real-time or real-time tasks having soft or firm deadlines. Hard Real-

Time Systems contain at least one task having a hard deadline (8).

B. Multi-Processor System

 MPS is a computational system which has at least two processors, also designated

by cores (9).

The advantage of such system is to increase the computational power, but it doesn't mean

that two processors running the same code as one processor will run in half the time!

One MPS can be composed of several cores of the same type, being designated in this case

by homogeneous system or composed of different core types, in which case is called

heterogeneous system.

18 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

C. Multi skills systems

Nowadays almost all real-time applications, i.e., applications where the time

response is required are supported by RTOS. These systems became trivial in such a way

that even simple applications where the time response is not hard are frequently based on

RTOS.

On the industry field there are some systems which contain RT behavior running on

a uni-processor system. On a uni-processor system the OS does not need to handle shared

resources or duplicated resources. Early on, most of these platforms were migrated to

MPS. Due to the shared resources and duplicated resources required, a RM was used to

handle them. The MPS can have all processors of a same type, or processors of a different

type (10). To the system which gives RT guaranties and running on a MPS it’s called multi

skill systems.

In summary, to handle the multi skills systems it is necessary to add an additional

background software to manage the shared and duplicated resources in the platform. This

additional software is pretty important. If the resources are not properly handled, a

heterogeneous MPS can be worst than a uni-processor platform in performance terms.

D. Single-Rate Dataflow

Single rate dataflow (SRDF) is a computational model that can be used for the

specification and implementation of Digital Signal Processing (DSP) applications. Its main

advantage over other computational models is that it uses a strict data-driven rule to decide

when each computation can be performed. This allows for rigorous RT analysis, and the

computation of static schedules and buffer sizes that are guaranteed to meet the RT

requirements of the application. As represented in Figure 3, an SRDF graph is a directed

graph where the nodes (normally referred to as actors in the context of SRDF) represent a

block of computation, and edges represent FIFO queues used by actors to communicate

amongst themselves. Each actor has a strict rule for activation; whenever a pre-specified

amount of data – referred to as a token - is available at each of its inputs, it can be

activated. In dataflow jargon this activation is frequently referred to as a firing. When an

SRDF actor fires, it consumes a token from each one of its inputs, and produces a token on

each one of its outputs. The model allows the specification of an arbitrary number of

tokens which have to be stored in the queues prior to the beginning of execution. This

initial number of tokens per edge is often referred to as the delay of that edge. By default,

actors hold no internal state from one firing to another. An edge from an actor to itself,

with a delay of one is frequently used to represent the passage of state between consecutive

firings. For more details see (11).

19 | P a g e

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Figure 3 : Single-Rate dataflow

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

20 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

(This page was left blank delivered)

21 | P a g e

3. Software

and Radio description

 This section presents a general overview of the platform hardware, from the

smallest conceptual unit, calle

global platform. An explanation about the physical connections and the logical relations

between each component will be given further ahead.

A. Hardware Framework

Tile

 The smallest conceptual unit defined in the system is designated by tile, being

composed by a core and dedicated local memory. The core can be an Advanced RISC

Machine (ARM) or an EVP. The dedicated memory is split in to three parts: code memory,

data/state memory and FIFO memory. The function of each one of these memory blocks

will be detailed in section C

four tiles, two of them having ARM processors and the other two with EVP

 The communication among processes can be either, local when the processes reside

in the same tile, or remote, when the processes reside in different tiles. Local

communications are carried directly over the tile's own FIFO memory block, which is

directly addressable by both processes. When the two processes are executed in different

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Software-Defined Radio Framework

and Radio description

This section presents a general overview of the platform hardware, from the

smallest conceptual unit, called tile, crossing over the JEOME hardware and arriving to the

global platform. An explanation about the physical connections and the logical relations

between each component will be given further ahead.

Hardware Framework

Tile

Figure 4 : Tile strucure

The smallest conceptual unit defined in the system is designated by tile, being

composed by a core and dedicated local memory. The core can be an Advanced RISC

Machine (ARM) or an EVP. The dedicated memory is split in to three parts: code memory,

e memory and FIFO memory. The function of each one of these memory blocks

C of this chapter. The platform used in this work is composed

four tiles, two of them having ARM processors and the other two with EVP

The communication among processes can be either, local when the processes reside

in the same tile, or remote, when the processes reside in different tiles. Local

are carried directly over the tile's own FIFO memory block, which is

directly addressable by both processes. When the two processes are executed in different

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

Defined Radio Framework

This section presents a general overview of the platform hardware, from the

d tile, crossing over the JEOME hardware and arriving to the

global platform. An explanation about the physical connections and the logical relations

The smallest conceptual unit defined in the system is designated by tile, being

composed by a core and dedicated local memory. The core can be an Advanced RISC

Machine (ARM) or an EVP. The dedicated memory is split in to three parts: code memory,

e memory and FIFO memory. The function of each one of these memory blocks

of this chapter. The platform used in this work is composed by

four tiles, two of them having ARM processors and the other two with EVPs.

The communication among processes can be either, local when the processes reside

in the same tile, or remote, when the processes reside in different tiles. Local

are carried directly over the tile's own FIFO memory block, which is

directly addressable by both processes. When the two processes are executed in different

22 | P a g e

tiles the communication is carried out via the Advanced eXtensible Interface (AXI) (

4). In this case the FIFO memory is allocated only in the tile of one of the processes.

Consider for instance a process A running on tile #1 that needs to transfer data to a

B that will execute in tile #2. In the example the FIFO memory is allocated in tile B and,

consequently, when process A issues a write operation the data is actually written in FIFO

memory of the tile #2. Process B reads the data it from its own l

operations are more costly than local operations, a factor that has to be taken into account

during the system design. Therefore, communicating processes should, whenever possible,

be allocated to the same tile to minimize the communica

 For the sake of performance, the FIFO memory is preferably allocated to the tile of

the consumer process. As stated above, remote operations, carried out via that AXI bus, are

more costly than local operations, issued on local memory. Writin

succeed, provided that the buffers are properly dimensioned. On the other hand, the reader

process has to pool the memory to detect the arrival of new data. Thus, a single data

transaction typically involves a single write operation and

consequently, the complexity of the reading operation end up having a higher impact on

the system performance than the complexity of the write operation.

JEOME

JEOME is a NXP’s System On Chip (SoC) specifically developed for SDR. Its

internal structure is depicted in

JEOME contains two tiles,

an EVP. The communication between

Advanced High-performance

Platform

 The SDR platform is composed by two JEOME chips, one

Gate Array (FPGA) and the external connections. There is a clear separation between the

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

tiles the communication is carried out via the Advanced eXtensible Interface (AXI) (

). In this case the FIFO memory is allocated only in the tile of one of the processes.

Consider for instance a process A running on tile #1 that needs to transfer data to a

B that will execute in tile #2. In the example the FIFO memory is allocated in tile B and,

consequently, when process A issues a write operation the data is actually written in FIFO

memory of the tile #2. Process B reads the data it from its own local memory. Remote

operations are more costly than local operations, a factor that has to be taken into account

during the system design. Therefore, communicating processes should, whenever possible,

be allocated to the same tile to minimize the communication latency.

For the sake of performance, the FIFO memory is preferably allocated to the tile of

the consumer process. As stated above, remote operations, carried out via that AXI bus, are

more costly than local operations, issued on local memory. Writing operations always

succeed, provided that the buffers are properly dimensioned. On the other hand, the reader

process has to pool the memory to detect the arrival of new data. Thus, a single data

transaction typically involves a single write operation and several reading operations and,

consequently, the complexity of the reading operation end up having a higher impact on

the system performance than the complexity of the write operation.

JEOME

Figure 5 : JEOME structure

JEOME is a NXP’s System On Chip (SoC) specifically developed for SDR. Its

internal structure is depicted in Figure 5.

JEOME contains two tiles, one based on an ARM processor and the other based on

EVP. The communication between JEOME Tiles (J-Tiles) is carried out via the

performance Bus (AHB) and AXI protocol.

Platform

Figure 6 : Platform structure

The SDR platform is composed by two JEOME chips, one Field

(FPGA) and the external connections. There is a clear separation between the

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

tiles the communication is carried out via the Advanced eXtensible Interface (AXI) (Figure

). In this case the FIFO memory is allocated only in the tile of one of the processes.

Consider for instance a process A running on tile #1 that needs to transfer data to a process

B that will execute in tile #2. In the example the FIFO memory is allocated in tile B and,

consequently, when process A issues a write operation the data is actually written in FIFO

ocal memory. Remote

operations are more costly than local operations, a factor that has to be taken into account

during the system design. Therefore, communicating processes should, whenever possible,

For the sake of performance, the FIFO memory is preferably allocated to the tile of

the consumer process. As stated above, remote operations, carried out via that AXI bus, are

g operations always

succeed, provided that the buffers are properly dimensioned. On the other hand, the reader

process has to pool the memory to detect the arrival of new data. Thus, a single data

several reading operations and,

consequently, the complexity of the reading operation end up having a higher impact on

JEOME is a NXP’s System On Chip (SoC) specifically developed for SDR. Its

one based on an ARM processor and the other based on

is carried out via the

Field-Programmable

(FPGA) and the external connections. There is a clear separation between the

23 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

hardware devoted to the system management and the hardware dedicated to support the

actual radio system. The hardware dedicated to manage the system, identified by the purple

color in Figure 6, is based on an FPGA. The FPGA integrates an ARM processor core

which supports the Data Communication Dispatcher, BB-RM and Sea of Digital Signal

Processor (SoD) software modules. The purpose and structure of these modules will be

detailed in the section B.

 The two JEOME chips, identified by the green color in Figure 6, form the radio

system, which is the hardware where the SoD Streaming Kernel (SK) and radio functions

are executed. These services can be executed either in the ARM or the EVP processor,

depending on several reasons that will be detailed in section C.

 To make the distinction among the different ARM processors, the FPGA ARM is

called F-ARM while J-ARM refers to the ARM processors in the JEOME SoC.

 The block identified as “Host” in Figure 6, also called PC, is a general purpose

computer where the configuration modules are executed. More specifically, this hardware

executes the configuration manager and the Global Resource Manager (G-RM). The

purpose of these software modules is detailed in section B as well.

 These different modules form a distributed system. The communication between

the JEOME tiles and the FPGA tiles is based on the AXI bus, while the communication

with the host is made through Universal Serial Bus (USB) link. This path is used to upload

the manager software system on the platform.

 In terms of visibility, the F-ARM is the manager of all others tiles and thus can

communicate (send and receive data) with all the other tiles. The J-Tiles with EVP

processors have the same view of the platform. However, the J-Tiles with ARM processors

just see the EVP within the same JEOME. That is, within the JEOME board the tile with

an EVP processor sees everyone in platform and the tile with an ARM just sees the other

tile in JEOME board. This constrain limits the number of possibilities to allocate radio

components in the platform. On the next board generation this problem is fixed.

Hardware description

Figure 7 : AeroProto2 board

24 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

 Figure 7 depicts an AeroProto2. This is a NXP’s board built for development with

the third Generation Partnership Project in Long Term Evolution (3GPP LTE) and other

communication standards.

 In addition to the two JEOME and FPGA tiles, this board integrates interfaces such

as Digital-to-Analog Converters (DACs) and Analog-to-Digital Converters (ADCs).

Additionally it incorporates several hosts and a debug interface. As stated above, each

JEOME SoC has one ARM and one EVP (12).

External connections

 The AeroProto2 provides several external connections. The most important ones

are the following:

� Ethernet (Fast) - RJ45

� USB connector - USB B-type jack

� Debug UART RX JEOME - DSUB9 male

� Debug UART TX JEOME - DSUB9 male

� USB host controller - USB A-Type plug

� External reference clock input - SMA jack

� Base band clock output - SMA jack

B. Software Framework

With respect to the radio signal frequency, the software is split into two major

groups, one dealing with the radio band and the other with the baseband processing.

Associated with the radio band can be seen all radio systems, the G-RM and the

configuration manager. On the baseband side there are the BB-RM, SoD, and RTOS.

These modules are described below.

Compile-Time environment

LIME As started in section C, a radio application is described by a set of software radio

components written in “C” language, and a radio graph description, in XML. The software

components, although written in C, conform to the LIME dataflow-based programming

model, and correspond to dataflow actors. LIME prescribes certain rules that the prototype

of the head function in each software radio component must adhere to. This function

prototype informs the LIME compiler about the input and output ports, and the data-

availability dependent activation patterns of the actor. The Radio Graph Description file

describes how the Software Components are connected with others to form a radio. This

information can be used by the LIME compiler to generate code for the underlying

platform. This includes the automatic generation of task wrappers, and automatic

generation of communication between tasks, using the communication primitives of the

25 | P a g e

underlying multi-processor operating system, which, in the current setup is SoD. The

LIME compiler also generates a dataflow analysis model, that can be used to compute the

amount of platform resources (processor cycles per period, buffer sizes) that ar

for the application to meet its real

sourced by NXP. The code and documentation detailing the usage of the language can be

found in (13).Furthermore, there is not a one

software components and tasks in the platform

compiler may decide –if possible

relative to each other, and merge them onto a single task, as described in

disadvantage that it reduce the run

also reduces the number of tasks in the radio, the tas

the bounds of worst-case timing analysis, which in turn allows the computation of smaller

resource requirements. This is described in detail in

Run-Time environment

The mapping between the hardware structure, depicted in

software layer, represented in

right):

� The Configuration Manager (CM) and G

mapped on the host block on the

the SoC via the USB link. The second vertical block, composed by BB

NM, and RTOS are executed on

� The RT blocks (last two vertical blocks), are in one of the two JEOMEs running on

J-ARM or J-EVP. For the sake of simpli

JEOME; both have the same structure

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

processor operating system, which, in the current setup is SoD. The

LIME compiler also generates a dataflow analysis model, that can be used to compute the

amount of platform resources (processor cycles per period, buffer sizes) that ar

for the application to meet its real-time requirements. The LIME language has been open

sourced by NXP. The code and documentation detailing the usage of the language can be

Furthermore, there is not a one-to-one correspondence between LIME

software components and tasks in the platform-specific generated code. This is because the

if possible- to take groups of actors, schedule them in static order

to each other, and merge them onto a single task, as described in

disadvantage that it reduce the run-time mapping options of the Resource Manager, but it

also reduces the number of tasks in the radio, the task-switching overheads, and tightens

case timing analysis, which in turn allows the computation of smaller

resource requirements. This is described in detail in (14).

Time environment

Figure 8 : Software structure

The mapping between the hardware structure, depicted in

software layer, represented in Figure 8, is listed as follows (walking from the left to the

The Configuration Manager (CM) and G-RM blocks are executed in a PC and are

mapped on the host block on the Figure 6. The host establishes a connection with

he SoC via the USB link. The second vertical block, composed by BB

RTOS are executed on the F-ARM processor (FPGA tile)

The RT blocks (last two vertical blocks), are in one of the two JEOMEs running on

EVP. For the sake of simplicity the software figure represents only one

E; both have the same structure

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

processor operating system, which, in the current setup is SoD. The

LIME compiler also generates a dataflow analysis model, that can be used to compute the

amount of platform resources (processor cycles per period, buffer sizes) that are required

time requirements. The LIME language has been open-

sourced by NXP. The code and documentation detailing the usage of the language can be

one correspondence between LIME

specific generated code. This is because the

to take groups of actors, schedule them in static order

to each other, and merge them onto a single task, as described in (14). This has the

time mapping options of the Resource Manager, but it

switching overheads, and tightens

case timing analysis, which in turn allows the computation of smaller

The mapping between the hardware structure, depicted in Figure 6, and the

, is listed as follows (walking from the left to the

RM blocks are executed in a PC and are

. The host establishes a connection with

he SoC via the USB link. The second vertical block, composed by BB-RM, SoD

ARM processor (FPGA tile)

The RT blocks (last two vertical blocks), are in one of the two JEOMEs running on

city the software figure represents only one

26 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

 The remaining of this section presents an overview of the functionality of each one

of the software components that compose the system software architecture.

Global RM The G-RM is the component responsible for controlling the BB-RM. It was

designed to manage multiple platforms, each with one BB-RM responsible for managing

the resources of its own platform. Thus the BB-RMs provide, for each platform, admission

control and resource reservation that are used by the G-RM. Furthermore, the G-RM also

interacts with the CM, where the radio definitions are stored.

As illustrated in orange in Figure 8, the G-RM is executed in the host block and

provides the following services:

� Registration of the radio - stores the radio on CM

� Load a radio - loads the radio from CM

� Operation state change - manage the radio’s state, as described in section C

Configuration manager The CM permits installing, uninstalling and loading different

radio systems into the radio computer as well as managing the radio system parameters. It

works as a shelf where the radios and respective configurations are stored.

BB-RM As depicted in Figure 8, the Base Band Resource Manager (BB-RM) is driven

by the Global RM, supporting the creation, suspension, resume and elimination of radios in

the corresponding platform. The other way around, the BB-RM uses the SoD Network

Manager (NM) Application Programmer’s Interface (API) to allocate the radio. Due to its

importance to this work, the BB-RM component will be described with more detailed

further ahead in this document.

SoD Nowadays the hardware of multiple and heterogeneous systems changes rapidly,

and with it the software needed to go along with this evolution.

The SoD streaming infrastructure provides an environment that enables the reuse of the

software in different hardware topologies. Such hardware abstraction is related to many

architecture parameters, such as how and which type of DSP’s are available, how the

DSP’s are interconnect, whether or not there is a CPU dedicated to execute control, if such

a CPU is available, whether or not it will execute some signal processing as well, etc (15).

 Typical heterogeneous systems comprise both DSP’s and CPU’s. The DSP’s are

developed to execute specialized compute-intensive code efficiently, while CPU’s are

developed to execute more general control code. SoD takes into account this property to

create a cost-effective system.

 The SoD is structured in two main components, the NM and the SK.

 The NM provides the API with the ability to manage the signal processing tasks

running on a signal processor (CPU). This API implements the following services:

� Create/delete processing tasks

� Set up the task graphs by connecting/disconnecting tasks via communication

channels

27 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

� Suspend/resume tasks

� Provide exchange of commands and status information with tasks

The SK executes the task scheduler and supports the data communication required

by the processing tasks by doing the following:

� Dispatching the signal processing tasks on the DSP or control processor

� Controlling the flow of signal data by managing the data dependencies between the

processing tasks

� Handling data exchange between tasks through communication buffers

As depicted in Figure 9 the SoD has a conceptual view of the system as a streaming graph

bound by processing tasks. The application control code is exchanging commands and

status information with the signal processing tasks that cooperate in a streaming graph.

Figure 9 : SoD conceptual view from [5]

The execution architecture is depicted in Figure 10, where it can be seen that the

tasks are not connected with each other. The streaming kernel provides the connections

among the processing tasks.

Figure 10 : SoD execution architecture from [5]

The SoD system architecture was designed to support data-flow applications. In this

data-flow the SoD supports three types of processing tasks:

task1

task2

task3

task4application
control code

application
control code

unidirectional stream of signal data

bidirectional exchange of control and status

Network

Manager

Streaming

Kernel
Streaming

Kernel
Streaming

Kernel

task1

task2

task3

task4application

control code

application

control code

functional interface

data structure interface

28 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

� Streaming tasks - These signal processing tasks are dispatched by the Streaming Kernel

� ISR tasks - An ISR task detects whether a certain interrupt has occurred and service it

� Control tasks - A control task detects whether a certain control event has occurred and

defines how to service it

 The communication between producer tasks and consumer tasks occurs by data

streaming and requires synchronization between them to make sure that the data is sent

correctly. The SoD supports these synchronization types:

� Implicit synchronization - The processing function simply assumes that when the

task is dispatched, the required input data and the required room to write the output

data are available

� Explicit synchronization - Checks if the required data is available before reading

and checks if data can be written prior issuing the write

Data communication dispatcher This module is responsible for several functions, the

most important two being:

� PC communication - This function allows the communication among the radio

components and the PC depicted in Figure 8 as FIFO Comm(1);

� Antenna communication - Provides the communication among the radio

components, more exactly the processing components, and the board’s antenna

through the same FIFO Comm(1).

Real-Time Operating System During runtime, the data communication dispatcher and

SoD dispute access to the platform resources. The function of the Real-Time Operating

System (RTOS) is scheduling properly these components to allow met their real-time

requirements.

The RTOS used in the platform is the Micro-Controller Operating System - II

(uC/OS - II) by Micrium Inc (16).

The most important features of uC/OS – II are:

� Small memory footprint is about 20KB for a fully functional kernel

� Thread aware debugging - in debug time, the uC/OS – II allows the observation of

the current state of all threads within the application; even the back traces and

registers values

� Preemptible priority-driven real-time scheduling:

� 64 priority levels (max 64 tasks), 8 of them reserved for uC/OS-II

� Each task is an infinite loop

� Nested interrupts can go up to 256 levels

� Supports of various 8-bit to 64-bit platforms: x86, 68x, MIPS, 8051, etc

� Easy for development

Radio functions As will be referred in section C, a radio is represented as a SRDF.

Figure 11 depicts an example of one WLAN radio. There it can see the radios functions,

29 | P a g e

ahead called processing components, and connecting components. To form a radio

processor components are connected with each other, communicating via the

communication components, which are depicted in

The SRDF graph includes, inside each individual processing component, the name

of the function and the number of CPU cycles necessary for executing such function. The

communication components label describes the input/output tokens relation.

C. Radio model

 A radio is composed by a set of functions that have to be dispatched in a sequential

order, defined by the data availability

and each node is a processing component for BB

input data for the next function. The data transport, represented in SRDF by the edges,

corresponds to a communication

Processing component

 A processing component is fired (dispatched) when all of it inputs have tokens

(radio data) to process. When

output tokens in all of its outputs.

Each component has a component ID which identifies the functions of the processing

component in the radio. Each radio can have more than one processing component of same

ID. That means the radio can use the same functions sev

the radio dataflow.

Since the radio is supported by heterogeneous multi

decide on the mapping between the processing components and the target execution cores.

For instance, some radio functions run quicker in a vector processor (EVP) than in a RISC

processor (ARM). Therefore the processing component must be specified to the particular

core in which it should be executed. This information is specified on the component

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

processing components, and connecting components. To form a radio

processor components are connected with each other, communicating via the

communication components, which are depicted in Figure 8 as FIFO Comm(2).

The SRDF graph includes, inside each individual processing component, the name

of the function and the number of CPU cycles necessary for executing such function. The

tion components label describes the input/output tokens relation.

Figure 11 : WLAN datflow

Radio model

A radio is composed by a set of functions that have to be dispatched in a sequential

order, defined by the data availability dependencies. Each radio function is a node in SRDF

and each node is a processing component for BB-RM. The result of one function is the

input data for the next function. The data transport, represented in SRDF by the edges,

corresponds to a communication component in the BB-RM (7).

Processing component

A processing component is fired (dispatched) when all of it inputs have tokens

(radio data) to process. When execution is finished, the processing component

tokens in all of its outputs.

Each component has a component ID which identifies the functions of the processing

component in the radio. Each radio can have more than one processing component of same

ID. That means the radio can use the same functions several times in different places on

Since the radio is supported by heterogeneous multi-processor systems, it is necessary to

decide on the mapping between the processing components and the target execution cores.

functions run quicker in a vector processor (EVP) than in a RISC

processor (ARM). Therefore the processing component must be specified to the particular

core in which it should be executed. This information is specified on the component

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

processing components, and connecting components. To form a radio

processor components are connected with each other, communicating via the

as FIFO Comm(2).

The SRDF graph includes, inside each individual processing component, the name

of the function and the number of CPU cycles necessary for executing such function. The

tion components label describes the input/output tokens relation.

A radio is composed by a set of functions that have to be dispatched in a sequential

dependencies. Each radio function is a node in SRDF

RM. The result of one function is the

input data for the next function. The data transport, represented in SRDF by the edges,

A processing component is fired (dispatched) when all of it inputs have tokens

, the processing component places

Each component has a component ID which identifies the functions of the processing

component in the radio. Each radio can have more than one processing component of same

eral times in different places on

processor systems, it is necessary to

decide on the mapping between the processing components and the target execution cores.

functions run quicker in a vector processor (EVP) than in a RISC

processor (ARM). Therefore the processing component must be specified to the particular

core in which it should be executed. This information is specified on the component

30 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

structure. For this reason the radio structure (section D), comprises a field that permits

specifying the permitted execution hardware of the processing components. Each

processing component can either be allocated to a specific core or to a core type of the

available core types in the platform.

 The instantiation of a processing component requires different types of resources:

code memory, where the instructions of the processing component are already stored; data

state memory to store the temporary variables and component state; and a CPU to execute

the code.

Communication component

 This platform is based on a distributed architecture, thus communication channels

are required to allow the proper cooperation between the diverse system components. This

service is provided by the communication components. Making the analogy between the

radio description and a SRDF graph, the communication component in radio description

corresponds to an arrow in a SRDF.

The communication components implement a FIFO discipline and are responsible for

handling the tokens from each producer processing component to the corresponding

consumer processing component. Communication components have the information about

who are the producer and consumer processing components, as well as their port IDs.

Depending on the placement of the involved nodes the communication process may be

local or involve two different tiles. When the communication is on the same tile, the

reserved FIFO memory is also on the same tile and is directly addressable by both

processes. On the other hand, if the communication is among two components placed in

different tiles the FIFO memory must reside physically on only one of those two tiles. In

this case the communication component can have already defined in which tile the FIFO

memory shall be created or, if this information is not provided in advance, the BB-RM at

allocation time chooses in which tile it will reserve the FIFO memory. In both cases each

communication component has to reserve enough memory resources to guarantee lossless

token delivery.

 The radio activity has disparate behaviors, depending on which function is being

executed in each instant. The radios might be receiving data, sending data or just waiting

for some synchronous signal. Such behaviors produce different radio functions, i.e., the

radio data flow is different for each behavior. These different behaviors experienced by the

radios are called radio states. Besides the operating states, associated with the specific

tasks that have to be carried out by the processing nodes, additional radio states are created

explicitly in order to optimize the platform resources. For example, when the radio is not

processing data its state can change to some specific idle state that allows saving battery.

31 | P a g e

D. Radio structure and design

 The radio structure design has as its main driving directions modularity, simplicity

and low runtime overheads. These requirements have impact in diverse

implementation aspects.

 Fixed size structures, independent of the number of components and even of the

topology (component connections), have been used to simplify and reduce the overhead

associated with the memory management. The radi

particular radio characteristics to facilitate the radio management by the G

RM. Another desirable feature that the radio should exhibit is a clear separation among

resources and topology. This separation allo

having to be aware of the topology as well as traverse the radios without needing to be

aware of the component resources.

 Figure 12 depicts the organization of the radio structure. It is composed by a radio

ID which identifies the radio type and state, and the following three main structures:

� Component list -

communication components. The first field contains the component ID. The

component ID also codes its type. If the component ID ends with a “0”, that means

it’s a communication component, otherwise it

processing component case, the ID identifies the function executed by the

processing component.

Besides the ID/type field, this entry also defines the target core. For processing

components it permits identifying a speci

components, the core field defines the tile in wh

� Requirements list -

Some requirements need more than one parameter. For

the number of execution cycles and the number of cycles to deadline. So, for each

requirement there exists a list of parameters, as illustrated in

� Edge list - in order to separate the topology from the requirements, it was created an

independent edge structure. The edge structures stores the producer component ID,

the consumer component ID and correspond

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Radio structure and design

The radio structure design has as its main driving directions modularity, simplicity

and low runtime overheads. These requirements have impact in diverse

Fixed size structures, independent of the number of components and even of the

topology (component connections), have been used to simplify and reduce the overhead

associated with the memory management. The radio access was made independent of the

particular radio characteristics to facilitate the radio management by the G

RM. Another desirable feature that the radio should exhibit is a clear separation among

resources and topology. This separation allows the manager to handle radios without

having to be aware of the topology as well as traverse the radios without needing to be

aware of the component resources.

Figure 12 : Radio structure

depicts the organization of the radio structure. It is composed by a radio

ID which identifies the radio type and state, and the following three main structures:

 this entry holds information about the processing and

communication components. The first field contains the component ID. The

component ID also codes its type. If the component ID ends with a “0”, that means

it’s a communication component, otherwise it is a processing component. For the

processing component case, the ID identifies the function executed by the

processing component.

Besides the ID/type field, this entry also defines the target core. For processing

components it permits identifying a specific core or a core type. For communication

components, the core field defines the tile in which the FIFO memory is reserved

- this entry holds the list of requirements of each component.

Some requirements need more than one parameter. For example, the CPU requires

the number of execution cycles and the number of cycles to deadline. So, for each

requirement there exists a list of parameters, as illustrated in Figure

in order to separate the topology from the requirements, it was created an

independent edge structure. The edge structures stores the producer component ID,

the consumer component ID and correspondent producer and consumer

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

The radio structure design has as its main driving directions modularity, simplicity

and low runtime overheads. These requirements have impact in diverse architectural and

Fixed size structures, independent of the number of components and even of the

topology (component connections), have been used to simplify and reduce the overhead

o access was made independent of the

particular radio characteristics to facilitate the radio management by the G-RM and BB-

RM. Another desirable feature that the radio should exhibit is a clear separation among

ws the manager to handle radios without

having to be aware of the topology as well as traverse the radios without needing to be

depicts the organization of the radio structure. It is composed by a radio

ID which identifies the radio type and state, and the following three main structures:

this entry holds information about the processing and

communication components. The first field contains the component ID. The

component ID also codes its type. If the component ID ends with a “0”, that means

is a processing component. For the

processing component case, the ID identifies the function executed by the

Besides the ID/type field, this entry also defines the target core. For processing

fic core or a core type. For communication

ich the FIFO memory is reserved

this entry holds the list of requirements of each component.

example, the CPU requires

the number of execution cycles and the number of cycles to deadline. So, for each

Figure 12

in order to separate the topology from the requirements, it was created an

independent edge structure. The edge structures stores the producer component ID,

ent producer and consumer ports

32 | P a g e

E. Radio example

The example on Figure

represented as a SRDF, where the processing components are

instructions executing a radio function

implement FIFO semantics.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Radio example

Figure 13 is a Wireless Local Area Network (WLAN) radio

represented as a SRDF, where the processing components are group

ions executing a radio function. The edges are communication components and

implement FIFO semantics.

Figure 13 : WLAN 802.11a example from [12]

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

is a Wireless Local Area Network (WLAN) radio

groups of “C” language

. The edges are communication components and

33 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

4. Design space, problems and solutions

This chapter presents the implementation of the BB-RM. It will start by describing

the functionality provided by the BB-RM, followed by a description of the interfaces

between the BB-RM and the other software components of the radio system. Having

described both the intended functionality and interfaces of the BB-RM, the attention is

turned to the practical problem of implementing this functionality within the existing

framework, while taking into account all sorts of constraints, such as the ones imposed by

the hardware and limitations of the software that it must re-use. Four different

implementation solutions are proposed and assessed, one of them being selected for

implementation.

A. Goals of BB-RM

As was explained in chapter 3 section B, the BB-RM functionality establishes an

interface between the G-RM and the SoD modules.

BB-RM must support a wide variety of radios and radio combinations, with

different software components, topologies and temporal requirements. Furthermore, it must

also provide RT guarantees for each running radio, even without having at compile-time

the complete knowledge of all the possible radio combinations that may be active in the

device. Each radio needs to meet its timing requirements, and it must do it independently

of other radios that are running simultaneously. To turn this possible, the BB-RM has to

guarantee to each different radio that a certain amount of system resources (processor

cycles, memory, communication), that match its resource requirements as computed at

compile-time, are available at runtime.

There are two main features that the BB-RM needs to support in order to provide

this functionality:

� Strict admission control - radio instances can only start if there are enough

resources available in the platform to guarantee the RT behavior

� Strict resource reservation - each radio is only allowed to use the resources that

have been allocated to it by BB-RM

34 | P a g e

The BB-RM functionality is distinct from the G

RM is platform independent and, therefore, not aware of the specific hardware resources of

the BB platform.

The SoD Network Manager API, on the other hand, only allows for tasks to be

started, stopped and connected via FIFO queues. Although it does allocate memory

resources for the tasks and queues, it does not

whole that must be admitted or rejected atomically, depending on resource availability. It

merely checks for the availability of resources for a single task. Also, the SoD does not

allocate processor cycles to a task. It simply adds it to a processor’s streaming

running tasks, without checking if the CPU demand of the tasks is small enough to allow

each task to get enough cycles per schedule period to meet its deadlines, i.e., without

carrying out any kind of scheduling

decide on the mapping of tasks to processors. It merely provides the primitives that allow

starting tasks on processors

mapping. Therefore, the BB

allocation of multiple jobs

multiprocessor while allowing real

 Since as many radio combinations as possible should be s

must be equipped with algorithms and methods that allow it to make good decisions about

where allocate radio components, where a “good” decisions means that a feasible

allocation should be found if there is one, and that if several feas

possible, then the one that increases the likelihood that a feasible allocation exists for

subsequent radio start requests should be chosen. This objective, however, must be

achieved while taking into account that the BB

the search for a feasible allocation should be fast.

B. Design space

As depicted in Figure

remove radios from the G-RM block. Its request must be processed in an atomic way, i.e.,

all the components of the radio must fit in the available platform resources, or the radio is

rejected. On the other hand, the interface with SoD is made a

level.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

RM functionality is distinct from the G-RM functionality because the G

RM is platform independent and, therefore, not aware of the specific hardware resources of

he SoD Network Manager API, on the other hand, only allows for tasks to be

started, stopped and connected via FIFO queues. Although it does allocate memory

resources for the tasks and queues, it does not consider groups of interconnected tasks as a

hat must be admitted or rejected atomically, depending on resource availability. It

merely checks for the availability of resources for a single task. Also, the SoD does not

allocate processor cycles to a task. It simply adds it to a processor’s streaming

running tasks, without checking if the CPU demand of the tasks is small enough to allow

each task to get enough cycles per schedule period to meet its deadlines, i.e., without

g out any kind of scheduling test. The SoD also lacks any sort

decide on the mapping of tasks to processors. It merely provides the primitives that allow

s, and it is the user code that must decide on the actual processor

mapping. Therefore, the BB-RM must take care of all of these tasks, in order to allow

allocation of multiple jobs, with job combinations unknown at c

while allowing real-time guarantees to be given for running jobs.

Since as many radio combinations as possible should be supported, the BB

must be equipped with algorithms and methods that allow it to make good decisions about

where allocate radio components, where a “good” decisions means that a feasible

allocation should be found if there is one, and that if several feasible allocations are

possible, then the one that increases the likelihood that a feasible allocation exists for

subsequent radio start requests should be chosen. This objective, however, must be

king into account that the BB-RM is a run-time component, and thus that

the search for a feasible allocation should be fast.

Design space

Figure 14, BB-RM receives commands to add, resume,

RM block. Its request must be processed in an atomic way, i.e.,

all the components of the radio must fit in the available platform resources, or the radio is

rejected. On the other hand, the interface with SoD is made at the task and connection

Figure 14 : BB-RM design space

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

RM functionality because the G-

RM is platform independent and, therefore, not aware of the specific hardware resources of

he SoD Network Manager API, on the other hand, only allows for tasks to be

started, stopped and connected via FIFO queues. Although it does allocate memory

of interconnected tasks as a

hat must be admitted or rejected atomically, depending on resource availability. It

merely checks for the availability of resources for a single task. Also, the SoD does not

allocate processor cycles to a task. It simply adds it to a processor’s streaming kernel of

running tasks, without checking if the CPU demand of the tasks is small enough to allow

each task to get enough cycles per schedule period to meet its deadlines, i.e., without

test. The SoD also lacks any sort of intelligence to

decide on the mapping of tasks to processors. It merely provides the primitives that allow

, and it is the user code that must decide on the actual processor

l of these tasks, in order to allow

with job combinations unknown at compile-time to a

time guarantees to be given for running jobs.

upported, the BB-RM

must be equipped with algorithms and methods that allow it to make good decisions about

where allocate radio components, where a “good” decisions means that a feasible

ible allocations are

possible, then the one that increases the likelihood that a feasible allocation exists for

subsequent radio start requests should be chosen. This objective, however, must be

me component, and thus that

RM receives commands to add, resume, suspend and

RM block. Its request must be processed in an atomic way, i.e.,

all the components of the radio must fit in the available platform resources, or the radio is

t the task and connection

35 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

 Before thinking about possible implementations of the required functionality it is

useful to present an overview of the main issues and constraints involved. The following

list enumerates the most relevant issues that have been initially identified:

� BB-RM’s API must allocate full radios atomically and SoD’s API works only at

component level (processing components and communication components).

� A radio can only be admitted if all of its components (processing and

communication components) and they requirements fit in the platform without

disturbing any radios that are already running.

� The SoD’s API does not allow access to the status of the platform resources that are

allocated by the SoD itself. This includes task state and FIFO state allocation. For

these resource types the BB-RM cannot know what amount of resources is free on

the platform, and must delegate resource management to the SoD.

� The SoD does not offer code memory allocation for the processing components,

since it assumes that the code for all tasks is already pre-loaded in each processor.

Since it wants to add the possibility of dynamically loading and linking tasks, this

service must also be provided by the BB-RM module.

� As was explained in section B of the last chapter, the RTOS just provides RT

behavior among SoD NM and the data communications dispatcher. Thus, at the

component level no entity provides RT behavior support services, which thus must

be into BB-RM account.

� In section A of the last chapter it was referred the issues around the time access to

the FIFO allocation when the components are in different tiles. The FIFO should be

physically placed in the same tile as the reader process, which is an important

optimization factor that the BB-RM should also take care.

� Another aspect that has to be taken into account is the inter-tile resource

fragmentation. For example assume that a bunch of radios are already running on a

platform and that each tile has 20% of its memory available. If the BB-RM module

needs allocate one new processing component requiring more than 20% of the tile's

memory it will not fit in any single tile despite the fact that total amount of memory

(i.e. the sum of the free memory blocks in the diverse tiles) is considerably higher

than the amount requested.

� Using the above example, after some allocations and releases the platform memory

in each tile eventually becomes fragmented. The data reservations associated with

the components need to be physically continuous, thus chances are that at a given

point in time the allocation of a block of memory with a size smaller than the total

amount of free memory in the tile fails. This source of fragmentation is designated

by intra-tile fragmentation.

36 | P a g e

C. Solutions

Having in mind the problems

interfaces between the diverse software modules, the following candidate approaches have

been identified.

Solution

As the BB-RM does not know the status of the resources in the platform, the easiest

and simplest solution to solve the problem is depicted in

receives a radio request it tries allocating each radio component, one by one. If all

components fit in the platform, the BB

At a first look, this solution seams easy to implement and does not require changes

on the other software modules. Thus this BB

platform independent. But,

radio component allocation and so testing (from the BB

resources (on the SoD side). The problem is that the SoD NM allocation tak

considerable amount of time, because SoD NM needs to communicate with SoD SK and

afterwards, allocate the comp

non-negligible amount of time. Thus, despite conceptually simple, this approach is

extremely inefficient in case of failures, incurring in a high latency and overhead.

Furthermore, in this approach ther

wrong or about the status of the platform. Hence the BB

to allocate the radio components.

Solution

A second possible solution considered in the scope of this work consists in

integrating the BB-RM into the SoD, as depicted in

previously considered approach, this solution has one big advantage since in this case BB

RM has complete knowledge about the platform status and, therefore, can m

choices according to the effective platform resource usage. However, this view is more

complex to implement because it requires changing the SoD API and many internal

structures. This solution is also less modular since the BB

particular SoD and each SoD only works in a specific platform. Thus the BB

have to be rebuilt for each platform, which is inconvenient and requires a significant

amount of development and debug effort.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Having in mind the problems above listed, the global system architecture and the

interfaces between the diverse software modules, the following candidate approaches have

Solution-1

RM does not know the status of the resources in the platform, the easiest

d simplest solution to solve the problem is depicted in Figure 15. When the BB

receives a radio request it tries allocating each radio component, one by one. If all

components fit in the platform, the BB-RM consider that the radio can run in the platform.

At a first look, this solution seams easy to implement and does not require changes

on the other software modules. Thus this BB-RM is SoD independent and, con

platform independent. But, on the other hand, the SoD module does not permit testing the

radio component allocation and so testing (from the BB-RM side) already allocates

resources (on the SoD side). The problem is that the SoD NM allocation tak

considerable amount of time, because SoD NM needs to communicate with SoD SK and

afterwards, allocate the component in platform. Releasing the resources also requires a

negligible amount of time. Thus, despite conceptually simple, this approach is

extremely inefficient in case of failures, incurring in a high latency and overhead.

Furthermore, in this approach there is no precise information about what went

or about the status of the platform. Hence the BB-RM has no means to decide where

allocate the radio components.

Figure 15 : BB-RM solution-1

Solution-2

A second possible solution considered in the scope of this work consists in

RM into the SoD, as depicted in Figure 16. With respect to the

previously considered approach, this solution has one big advantage since in this case BB

RM has complete knowledge about the platform status and, therefore, can m

choices according to the effective platform resource usage. However, this view is more

complex to implement because it requires changing the SoD API and many internal

structures. This solution is also less modular since the BB-RM would be tied

particular SoD and each SoD only works in a specific platform. Thus the BB

have to be rebuilt for each platform, which is inconvenient and requires a significant

amount of development and debug effort.

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

above listed, the global system architecture and the

interfaces between the diverse software modules, the following candidate approaches have

RM does not know the status of the resources in the platform, the easiest

. When the BB-RM

receives a radio request it tries allocating each radio component, one by one. If all radio

RM consider that the radio can run in the platform.

At a first look, this solution seams easy to implement and does not require changes

RM is SoD independent and, consequently,

n the other hand, the SoD module does not permit testing the

RM side) already allocates

resources (on the SoD side). The problem is that the SoD NM allocation takes a

considerable amount of time, because SoD NM needs to communicate with SoD SK and

resources also requires a

negligible amount of time. Thus, despite conceptually simple, this approach is

extremely inefficient in case of failures, incurring in a high latency and overhead.

ormation about what went

RM has no means to decide where

A second possible solution considered in the scope of this work consists in

. With respect to the

previously considered approach, this solution has one big advantage since in this case BB-

RM has complete knowledge about the platform status and, therefore, can make informed

choices according to the effective platform resource usage. However, this view is more

complex to implement because it requires changing the SoD API and many internal

RM would be tied to the

particular SoD and each SoD only works in a specific platform. Thus the BB-RM would

have to be rebuilt for each platform, which is inconvenient and requires a significant

37 | P a g e

Solution

 Another possible solution consists in adding a second virtual SoD module to the

platform. This virtual SoD module is incomplete, having a NM but no SK (

explained in chapter 3 section

SK allocates the components in the tile. Thus, the virtual SoD cannot allocate components,

because the absence of SK, thus enabling the BB

incomplete SoD and allocate the resources, via the complete SoD only when all radio

components fit. The code is still modular, so the BB

easy to implement.

As was explained in chapter

the second SoD doubles the memory requirements in the FPGA tile. In addit

increased memory consumption, the BB

resources on the platform. So there is no room for planning, and each request has to be

handled in a trial basis, which is expensive in terms of memory and CPU utiliza

Solution

 One problem common to all of the approaches above mentioned is the lack of

information about the available resources. A possible way to solve this problem is

equipping the BB-RM wit

BB-RM resources, are one image of the real resources present in the platform. In this case

the BB-RM tests the availability of radio c

only when they fit, allocates them both in SoD and in the BB

model consistent. There is an issue regarding the memory, because the BB

take into it account the memory fragmentation problem. This problem will be addressed

latter on.

 This solution has two main advantages. The first one is that the code still is

modular, so this BB-RM is SoD independent. The second is

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Figure 16 : BB-RM solution-2

Solution-3

Another possible solution consists in adding a second virtual SoD module to the

platform. This virtual SoD module is incomplete, having a NM but no SK (

section B the SoD NM knows the status of the platform and the SoD

SK allocates the components in the tile. Thus, the virtual SoD cannot allocate components,

because the absence of SK, thus enabling the BB-RM to test the radio components in the

locate the resources, via the complete SoD only when all radio

components fit. The code is still modular, so the BB-RM can work in any SoD and it’s

As was explained in chapter 3 section B the SoD is allocated in the F-ARM. Implementing

the second SoD doubles the memory requirements in the FPGA tile. In addit

umption, the BB-RM still has no knowledge about the free

resources on the platform. So there is no room for planning, and each request has to be

handled in a trial basis, which is expensive in terms of memory and CPU utiliza

Figure 17 : BB-RM solution-3

Solution-4

One problem common to all of the approaches above mentioned is the lack of

information about the available resources. A possible way to solve this problem is

RM with resource models (Figure 18). Those resource models, called

RM resources, are one image of the real resources present in the platform. In this case

s the availability of radio components in the BB-RM resource models

only when they fit, allocates them both in SoD and in the BB-RM resources, to keep the

model consistent. There is an issue regarding the memory, because the BB

t account the memory fragmentation problem. This problem will be addressed

This solution has two main advantages. The first one is that the code still is

RM is SoD independent. The second is that now

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

Another possible solution consists in adding a second virtual SoD module to the

platform. This virtual SoD module is incomplete, having a NM but no SK (Figure 17). As

the SoD NM knows the status of the platform and the SoD

SK allocates the components in the tile. Thus, the virtual SoD cannot allocate components,

RM to test the radio components in the

locate the resources, via the complete SoD only when all radio

RM can work in any SoD and it’s

ARM. Implementing

the second SoD doubles the memory requirements in the FPGA tile. In addition to the

knowledge about the free

resources on the platform. So there is no room for planning, and each request has to be

handled in a trial basis, which is expensive in terms of memory and CPU utilization.

One problem common to all of the approaches above mentioned is the lack of

information about the available resources. A possible way to solve this problem is

). Those resource models, called

RM resources, are one image of the real resources present in the platform. In this case

RM resource models and,

RM resources, to keep the

model consistent. There is an issue regarding the memory, because the BB-RM does not

t account the memory fragmentation problem. This problem will be addressed

This solution has two main advantages. The first one is that the code still is

that now the BB-RM has a

38 | P a g e

complete knowledge about the platform resources status and thus can make decisions to

optimize the allocation through algorithms that will be detailed ahead.

 As referred before, the memory model has some issues with the memory

fragmentation and thus the image of

problems may still arise during the radio allocation. One example is the memory intra

fragmentation problem that may lead to false

component passes the test in BB

possible solution to fix this issue is proposed in chapter

D. Solution assessment

Among the four solutions presented in

solution. Each one has advantages and drawbacks.

must be chosen based on priorities.

The first most important feature is the modularity of the code. This feature has two

great advantages. One of them is that BB

other models are built, which means any upper or lower software can be created

independently and vice-versa, and still interact with each other. The second one is related

with the usability of the code in other systems. As referred before, in one modular system,

the code can run in different platforms, with different core configurations. Hence the

second solution is undesirable

An additional important feature for BB

components allocation. In a heterogeneous multi

allocation possibilities is high, although if the BB

resource in the platform, it cannot adjudicate one component to one tile, based on the

resources required by the component. Then in this case the first s

undesirable.

SoD is software that’s still in construction and with new features built each week.

Most of the work still remains to be done on the SoD, and it is not a priority to build a

virtual SoD when the real SoD is still under construc

hard task that will take up too much time.

Thus, due to its higher modularity, the treated

compared with the third one and, consequently is the chosen solution.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

knowledge about the platform resources status and thus can make decisions to

optimize the allocation through algorithms that will be detailed ahead.

As referred before, the memory model has some issues with the memory

fragmentation and thus the image of the SoD resources is not exact. Consequently,

problems may still arise during the radio allocation. One example is the memory intra

fragmentation problem that may lead to false-positive situations, in which a radio

component passes the test in BB-RM resources but fails to fit in the real platform. A

possible solution to fix this issue is proposed in chapter 7 section A.

Figure 18 : BB-RM solution-4

assessment

four solutions presented in this chapter, none of them is

ach one has advantages and drawbacks. Which means that the best solution

must be chosen based on priorities.

The first most important feature is the modularity of the code. This feature has two

great advantages. One of them is that BB-RM works without taking in account how the

e built, which means any upper or lower software can be created

versa, and still interact with each other. The second one is related

with the usability of the code in other systems. As referred before, in one modular system,

can run in different platforms, with different core configurations. Hence the

is undesirable.

An additional important feature for BB-RM is the capability to choose the radio

components allocation. In a heterogeneous multi-processor system

allocation possibilities is high, although if the BB-RM doesn’t know the status of each

resource in the platform, it cannot adjudicate one component to one tile, based on the

resources required by the component. Then in this case the first s

SoD is software that’s still in construction and with new features built each week.

Most of the work still remains to be done on the SoD, and it is not a priority to build a

virtual SoD when the real SoD is still under construction. Furthermore the virtual SoD is a

hard task that will take up too much time.

Thus, due to its higher modularity, the treated solution appears advantages

compared with the third one and, consequently is the chosen solution.

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

knowledge about the platform resources status and thus can make decisions to

As referred before, the memory model has some issues with the memory

the SoD resources is not exact. Consequently,

problems may still arise during the radio allocation. One example is the memory intra-tile

positive situations, in which a radio

esources but fails to fit in the real platform. A

this chapter, none of them is an ideal

hat the best solution

The first most important feature is the modularity of the code. This feature has two

RM works without taking in account how the

e built, which means any upper or lower software can be created

versa, and still interact with each other. The second one is related

with the usability of the code in other systems. As referred before, in one modular system,

can run in different platforms, with different core configurations. Hence the

RM is the capability to choose the radio

processor system the amount of

RM doesn’t know the status of each

resource in the platform, it cannot adjudicate one component to one tile, based on the

resources required by the component. Then in this case the first solution is also

SoD is software that’s still in construction and with new features built each week.

Most of the work still remains to be done on the SoD, and it is not a priority to build a

tion. Furthermore the virtual SoD is a

solution appears advantages

39 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

5. Implementation of the BB-RM

 In the last chapter it was described four feasible solutions to implement a BB-RM.

Here it will dig a little deeper into the details. In its essence, the BB-RM is an allocator of

instances of radio applications. These instances are called jobs. In the following text, it will

further refine the concept of job in section A.

Section B briefly examines the main functions of the BB-RM.

 One of the actions the BB-RM needs to perform is mapping the radio to the

hardware platform. Since the problem is NP-complete, BB-RM uses an approach based on

adapting heuristics used to solve the VBP Problem (section G) to allocate the radio

components to the hardware resources. Most heuristics for VBP define a couple of

strategies to solve sub-problems. One of the sub-problems is how to define the order in

which the components are mapped. The other sub-problem is choosing on which tile a

radio component should be allocated to. The strategies used in this work are described in

sections H and J of this chapter.

 Finally, section K, describes the evolution of features across different versions of

BB-RM and the directory tree of the project.

A. Job – radio instance

As mentioned before, the main purpose of this project is to run multiple radios,

sharing resources with each other, and allow for many combinations of radios as possible.

Note that multiple instances of the same radio can be active simultaneously.

In chapter 3 at section C, a radio is described as a unique entity. To distinguish

between the unique unallocated radio and the allocated radio instances, it is defined the

concept of job.

Each time a radio is allocated to the platform, a different radio instance – a Job -is

created. The same logic is used when a radio software component is allocated to the

platform; it gets a radio processor component instance, which it refers to as a task. The

instance of a communication component is referred to as a FIFO. In summary, a radio is

composed of processing components and communication components. A job is composed

of tasks and FIFOs.

40 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

B. BB-RM functions

 Until now, the BB-RM has been described as a black box with an input and an

output. This section will provide some brief information about each BB-RM function.

Further ahead the BBRM functions are described in more detail.

� BBRM_initialize - fills the job list with null values.

� BBRM_Job_test - tests if the given radio requirements can run in the HW platform

but will not allocate it.

� BBRM_Job_create - tests the radio requirements and allocates the radio in the

hardware platform; the created job is left on suspended mode.

� BBRM_Job_resume - runs the allocated job.

� BBRM_Job_suspend - suspends the running job.

� BBRM_Job_remove - removes the suspended job from the hardware platform.

C. Data structure of BB-RM

This section will show how the BB-RM stores and manages the information

concerning to jobs.

In the field, G-RM will provide the radio information when the BBRM_Job_create

function is called. Due to that, the BB-RM should store all information that it will need to

resume, suspend and remove a job.

After calling BBRM_Job_create, BB-RM returns a new job ID. This handler is used

to call the additional functions (job resume, job suspend, job remove).

Job list

Figure 19 shows the major internal structures of BB-RM. The job list, where BB-

RM stores all the information about jobs is depicted on the left side of this figure. In the

job list, one job entry is composed by a job settings and a task list. The job settings

structure has a pointer to the radio source and the radio ID; through it BB-RM can get

information about the radio components, its requirements, and the radio topology. Another

field of job settings structure is the job state, which save the status of the job (suspended,

running, resumed and invalid). These states will be detailed in the next section.

As explained before, BB-RM receives a complete radio from G-RM to allocate, but

SoD allocates components one by one. In this level each allocated component is called a

task and saved on a task list. BB-RM can choose where to allocate each component among

the different tiles. The algorithms to choose one tile for each component will be detailed in

section I. From this point on BB-RM should take care of the requirements of this

component to fit in the tile. This information is on the task settings structure. The source

component ID is saved in task settings.

41 | P a g e

On the SoD side, each task has a unique ID. This task ID identifies one specific

function belonging to a specific job. As a reminder, one radio can have some components

doing the same functions and even using

allocated, the attributed ID is unique and identifies the specific task belonging to a specific

job. The task ID is saved in task setting as well.

One task has several requirements, like CPU cycles, data memory, and so forth.

Each requirement is tested and allocated one by one in BB

allocation, the requirement parameter in the requirement list is filled.

BB-RM Memory resource

This paragraph describes how t

The memory model structure is composed of a memory configuration for each tile,

composing a memory list. The memory model has two modes, described as follows:

� Running mode - blocking the access to the memory res

not permitted to add or remove memory resources.

� Simulation mode -

image. Then it’s allowed to add and remove requirements.

Each memory has a stored memory state.

components one by one and for each component to test all the resources. The objective of

these two states is to facilitate the memory test. For instance, to create a radio with 3

processing components and 2 commun

only memory requirements, the memory is set in simulation mode. After this, a test of all

the component requirements is done. If all components fit in the memory it can be set to

running mode.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

On the SoD side, each task has a unique ID. This task ID identifies one specific

function belonging to a specific job. As a reminder, one radio can have some components

and even using the same component ID. But when th

allocated, the attributed ID is unique and identifies the specific task belonging to a specific

job. The task ID is saved in task setting as well.

One task has several requirements, like CPU cycles, data memory, and so forth.

tested and allocated one by one in BB-RM resources. Thus, after each

allocation, the requirement parameter in the requirement list is filled.

Figure 19 : BB-RM data structure

RM Memory resource

This paragraph describes how the BB-RM memory resources are represented.

emory model structure is composed of a memory configuration for each tile,

composing a memory list. The memory model has two modes, described as follows:

blocking the access to the memory resource. This means that it is

not permitted to add or remove memory resources.

 in this state the current status of the memory is saved as an

image. Then it’s allowed to add and remove requirements.

Each memory has a stored memory state. To add a radio it is necessary to test the

components one by one and for each component to test all the resources. The objective of

these two states is to facilitate the memory test. For instance, to create a radio with 3

processing components and 2 communication components, where all the components have

only memory requirements, the memory is set in simulation mode. After this, a test of all

the component requirements is done. If all components fit in the memory it can be set to

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

On the SoD side, each task has a unique ID. This task ID identifies one specific

function belonging to a specific job. As a reminder, one radio can have some components

the same component ID. But when the task is

allocated, the attributed ID is unique and identifies the specific task belonging to a specific

One task has several requirements, like CPU cycles, data memory, and so forth.

RM resources. Thus, after each

RM memory resources are represented.

emory model structure is composed of a memory configuration for each tile,

composing a memory list. The memory model has two modes, described as follows:

ource. This means that it is

in this state the current status of the memory is saved as an

To add a radio it is necessary to test the

components one by one and for each component to test all the resources. The objective of

these two states is to facilitate the memory test. For instance, to create a radio with 3

ication components, where all the components have

only memory requirements, the memory is set in simulation mode. After this, a test of all

the component requirements is done. If all components fit in the memory it can be set to

42 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

The other parameters stored in the memory structure are the free data and FIFO

memory counter. The data memory counter has the number of free blocks in data memory.

The FIFO memory counter has the number of free blocks in FIFO memory.

This is the simplest way to implement a memory resource. As adverted in Solution-

4 in section C of the chapter 4, this solution does not take into account the intra-tile

memory fragmentation problem.

A new memory resource model was being built that includes a memory map and

algorithms that account for and try to avoid fragmentation, but it is still unfinished.

A set of functions (API) was created to implement the functionality of BB-RM:

� Mem_initialize - initialize the memory structure.

� Mem_set_simulation - backup an image of the actual memory status and set the

memory resource in simulation mode.

� Mem_add_comp - add a component memory resource decreasing the number of

free blocks.

� Mem_rem_comp - remove a component memory resource increasing the number of

free blocks.

� Mem_set_restore - restore the previous image of the memory model and set the

memory in running mode.

� Mem_set_run - remove the backup memory image and set the memory model in

running mode.

The memory requests are done in a number of blocks. A component specifies

certain requirement parameters, for example, 15 blocks of data memory or 10 blocks of

FIFO memory.

BB-RM CPU resource

The scheduler, represented by the CPU model, is a Round Robin scheduling.

Round Robin scheduling The Round Robin (RR) scheduler is one of the simplest

schedulers. Without any priority, the tasks are sorted by request order. The RR scheduler

time slice for each task, its adjustable depending only of the task requirements (17) (18).

When a new task (NT) requires an amount of CPU execution cycles (NTE) and a

deadline (NTD), the RR scheduler model verifies the conditions mathematically expressed

in Equation 1.

The minimum deadline between the smallest deadline of a running task deadline (

LRD) and the deadline of the new task (NTD) has to be less or equal than the sum of the

execution cycles (E) of the J running tasks, added to the execution cycles of the new task (

NTE).

NT

J

JNTLR EEDD +≥∑
1

),min(

Equation 1 : Round Robin rule

43 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

If this condition is accomplished, the RR scheduler guarantees that the new task fits

in the CPU, meeting its deadline and the remaining running tasks still meet their deadlines.

This implementation has one CPU scheduler per tile creating a CPU list. Like in the

Memory Resource Model described above, if the CPU resource model is in running mode,

one cannot add or remove components to the CPU. In simulation mode, an image is stored

of the actual status of the CPU, and then it is allowed to add or remove components

to\from CPU to test a radio. This status is the first field of the CPU structure.

As stated in section C, the two parameters that are needed to apply the add rule are

the sum of the execution cycles and the smallest deadline. These parameters are exactly

what the CPU structure saves for each scheduler.

The interface created to manage the CPU resource is elaborated below.

� CPU_initialize - initialize the CPU model.

� CPU_test_comp - test the component CPU requests.

� CPU_set_simulation - backup an image of the actual status of the CPU schedulers

and set the CPU schedulers into simulation mode.

� CPU_add_comp - add a CPU requirement to the RR scheduler.

� CPU_rem_comp - remove a CPU requirement from the RR scheduler

� CPU_set_restore - restore a saved image to the CPU schedulers and set it to

running mode.

� CPU_set_run - erase the saved CPU image and set the CPU schedulers in running

mode.

D. Job states

Let’s look at how the functions interoperate. A sequence of function calls and the

related job states are depicted in the Figure 20. As described in section B, BBRM_initialize

initializes the job list. As the example depicted in Figure 20 is for a unique job the

BBRM_initialize function was not represented. The functions procedures will be detailed

in section E.

Supposing that the BBRM_initialize function was called before and is calling the

BBRM_Job_test function the radio was given as argument. Meanwhile the BB-RM tests

all radio components and for each component tests all requirements. In this point the job

state remains in simulation state. After finishing the test, the BBRM_Job_test function

returns the result (accept or reject), and changes the job state back to invalid state. During

this process, transactions are internal to the BB-RM because the test is done in BB-RM

resources and not in the platform.

When the BBRM_Job_create function is called, the state of the job changes to

simulation state and the BB-RM tests the radio requirements in it resources. After test the

resource in BB-RM resources with success the job state is changed to tested state. The

next step allocates the radio on the hardware platform. Whenever everything goes well, the

job is changed to suspended state. Now the job is loaded on platform and ready to run.

While in this state, two operations can be performed, resume or remove. Resume triggers

44 | P a g e

the job on platform and it starts running. The job state becomes

option is to remove the job from the

invalid state.

The last available function is the BBRM_Job_suspend. This f

but keeps it installed on the platform, changing the job state from

state as well.

E. Interface G

In this section the BB

functional description and not in

or type of outputs. Those details can be explored in the doxygen C documentation provided

in appendix [A]. Each function is described by essential functional blocks connected

each other by result dependencies. These high level functions are used by

BBRM_initialize()

 BB-RM reserves a fixed data memory to allocate it

variables. The main reason for this procedure is because the dynamic memory

needs turns the memory access slower and complex. When the system st

the memory is unpredictable.

The procedure flow of BBRM_initialize is shown in

BBRM_initialize function has the responsibilit

initializing the SoD NM and SoD SK. In BB

the BB-RM resources parameters. In the end if all processes had success the function

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

the job on platform and it starts running. The job state becomes run state

option is to remove the job from the platform; this causes the job state to be change to

The last available function is the BBRM_Job_suspend. This function stops the job

but keeps it installed on the platform, changing the job state from run state

Figure 20 : Job states

Interface G-RM <-> BB-RM

In this section the BB-RM will be further detailed, while keeping focus on

functional description and not in “C” language implementation details such as arguments

or type of outputs. Those details can be explored in the doxygen C documentation provided

]. Each function is described by essential functional blocks connected

each other by result dependencies. These high level functions are used by

BRM_initialize()

RM reserves a fixed data memory to allocate its internal structures and

variables. The main reason for this procedure is because the dynamic memory

needs turns the memory access slower and complex. When the system st

the memory is unpredictable.

The procedure flow of BBRM_initialize is shown in Figure

BBRM_initialize function has the responsibility to initialize the SoD framework by

initializing the SoD NM and SoD SK. In BB-RM side this function reset

RM resources parameters. In the end if all processes had success the function

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

run state as well. Another

this causes the job state to be change to

unction stops the job

run state to suspended

RM will be further detailed, while keeping focus on the

language implementation details such as arguments

or type of outputs. Those details can be explored in the doxygen C documentation provided

]. Each function is described by essential functional blocks connected to

each other by result dependencies. These high level functions are used by G-RM.

internal structures and

variables. The main reason for this procedure is because the dynamic memory allocation

needs turns the memory access slower and complex. When the system starts the contents of

Figure 21. There the

y to initialize the SoD framework by

RM side this function resets the job list and

RM resources parameters. In the end if all processes had success the function

45 | P a g e

returns a state message, or an error message i

two types; a normal error if the program can live with this problem, or a fatal error if is a

critical problem has occurred

BBRM_Job_test()

 G-RM should take some decisions about radio allocations and radio states (chapter

3 section C). For instance, if G

WLAN radio the platform

BBRM_Job_test function G

platform and decide which radio will go to platfo

Depicted in Figure

RM has a fixed number of jobs

seek for a free entry in job list, which means seek for a job at invalid state. Going forward,

the next step is set all BB-RM

the radio requirements. If all radio requirements fit in BB

strong probability to fit in platform. It’s not sure because BB

into account the intra-fragmentation problems

To finalize BB-RM restore

invalid and returns the test result.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

returns a state message, or an error message in other way around. The error message has

two types; a normal error if the program can live with this problem, or a fatal error if is a

has occurred and it cannot continue by normal procedure.

Figure 21 : BBRM_inicialize function

BBRM_Job_test()

RM should take some decisions about radio allocations and radio states (chapter

ance, if G-RM has two radios to allocate; one GSM radio and one

he platform may not has enough resources for run both radios. Then with

on G-RM can test both radios to see if both fit separately in

platform and decide which radio will go to platform based on the radio priority.

Figure 22 is the procedure flow of BBRM_Job_test function. The BB

RM has a fixed number of jobs entries, consequently the first step before test the job is

seek for a free entry in job list, which means seek for a job at invalid state. Going forward,

RM resources to simulation mode to get the authorization to test

the radio requirements. If all radio requirements fit in BB-RM resources the radio has a

strong probability to fit in platform. It’s not sure because BB-RM resources does not take

fragmentation problems as referred in previous chapter at section

RM restores the previous status of the BB-RM resources, sets the job

invalid and returns the test result.

Figure 22 : BBRM_Job_test function

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

n other way around. The error message has

two types; a normal error if the program can live with this problem, or a fatal error if is a

and it cannot continue by normal procedure.

RM should take some decisions about radio allocations and radio states (chapter

ne GSM radio and one

resources for run both radios. Then with

both radios to see if both fit separately in

rm based on the radio priority.

e flow of BBRM_Job_test function. The BB-

, consequently the first step before test the job is

seek for a free entry in job list, which means seek for a job at invalid state. Going forward,

resources to simulation mode to get the authorization to test

RM resources the radio has a

RM resources does not take

referred in previous chapter at section B.

RM resources, sets the job as

46 | P a g e

BBRM_Job_create()

BBRM_Job_create is the most complex function in BB

number of aggregated sub functions

BBRM_Job_create function allocates the job in the platform should certify if the radio is

consistent. For example, if there are some unconne

communication components have source/sink and so on. This is done in the first functional

block. Subsequently BB-RM will search for an invalid job in job list and set

to simulation state. Now the job is rea

block is more complex than it seems, and important as well.

in the next three sections.

After testing the radio in BB

explained in chapter 4, section

processing components are allocated before the communication components, represented

also in functional blocks.

 In that section it is also stated

the tasks. These addresses are obtaine

 As the job is already in the platform, BB

running mode and change the job s

the job ID of this new allocated job and one of these three types of output message; state

message to report the result veracity, an error message if the progr

violating the resources veracity

the stability of the system.

BBRM_Job_resume()

As explained before, when the job is created it is allocated on the platform but

remains in suspended mode. G

calling BBRM_Job_resume function.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

BBRM_Job_create()

BBRM_Job_create is the most complex function in BB-RM.

of aggregated sub functions as is depicted in Figure 23.

BBRM_Job_create function allocates the job in the platform should certify if the radio is

consistent. For example, if there are some unconnected processing components, if all

communication components have source/sink and so on. This is done in the first functional

RM will search for an invalid job in job list and set

to simulation state. Now the job is ready to be tested in BB-RM resources. This functional

block is more complex than it seems, and important as well. Its relevance will be explained

the radio in BB-RM resources, BB-RM sets the job to tested state. As

section B, the SoD allocation is done in the components level. The

processing components are allocated before the communication components, represented

In that section it is also stated that the SoD manages the code memory addresses of

are obtained through one SoD API, better reported in section

As the job is already in the platform, BB-RM can set the BB

running mode and change the job state to suspended state. At the end the BB

the job ID of this new allocated job and one of these three types of output message; state

message to report the result veracity, an error message if the program can still run without

urces veracity, or a fatal error when the problem is critical and can affect

Figure 23 : BBRM_Job_create function

BBRM_Job_resume()

xplained before, when the job is created it is allocated on the platform but

remains in suspended mode. G-BM decides when it should put the job in running

calling BBRM_Job_resume function.

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

RM. Having a large

. The way how the

BBRM_Job_create function allocates the job in the platform should certify if the radio is

cted processing components, if all

communication components have source/sink and so on. This is done in the first functional

RM will search for an invalid job in job list and sets the job state

RM resources. This functional

relevance will be explained

the job to tested state. As

mponents level. The

processing components are allocated before the communication components, represented

that the SoD manages the code memory addresses of

through one SoD API, better reported in section F.

RM can set the BB-RM resources to

tate to suspended state. At the end the BB-RM returns

the job ID of this new allocated job and one of these three types of output message; state

am can still run without

, or a fatal error when the problem is critical and can affect

xplained before, when the job is created it is allocated on the platform but

in running mode by

47 | P a g e

As depicted in Figure

checking if the job state is in suspended mode. If the job state is in suspended mode BB

RM puts the tasks running on the platform resuming each

After that it sets the job state to run state and returns one of the three possible error

codes explained before.

BBRM_Job_suspend()

 In some instances, the job manager can susp

moment. This decision can be taken according to several factors like energy saving, radio

priority and so forth. In addition

first. As described in Figure

whether the job is in run state. Later it suspends each task on SoD and finishes by returning

the already explained three types of messages

BBRM_Job_remove()

Radios may change

do. For BB-RM one radio state change

BB-RM one radio with two states is actually two different radios. In order to change the

radio in the platform G-RM needs to first remove the running job (radio instance) and

afterwards add the new radio sta

Moreover one job can be simply removed from the platform when

needed.

Removing a Job from the platform is made by BBRM_Job_remove function. In

Figure 26 the functional blocks of the BBRM_Job_remove function are described. The

first step of this function is to certify if the job can be removed from the platform,

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Figure 24, BBRM_Job_resume is a simple function which starts by

checking if the job state is in suspended mode. If the job state is in suspended mode BB

RM puts the tasks running on the platform resuming each task in SoD.

After that it sets the job state to run state and returns one of the three possible error

Figure 24 : BBRM_Job_resume function

BBRM_Job_suspend()

In some instances, the job manager can suspend a job that is not being used at that

moment. This decision can be taken according to several factors like energy saving, radio

priority and so forth. In addition, to remove a job from the platform G

Figure 25, the first operation of BBRM_Job_suspend is to confirm

whether the job is in run state. Later it suspends each task on SoD and finishes by returning

d three types of messages (state, error or fatal error).

Figure 25 : BBRM_Job_suspend

BBRM_Job_remove()

may change its state depending on what sort of operation the radio should

RM one radio state change is actually a change of radios. In other words, for

RM one radio with two states is actually two different radios. In order to change the

RM needs to first remove the running job (radio instance) and

afterwards add the new radio state.

Moreover one job can be simply removed from the platform when

from the platform is made by BBRM_Job_remove function. In

the functional blocks of the BBRM_Job_remove function are described. The

first step of this function is to certify if the job can be removed from the platform,

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

, BBRM_Job_resume is a simple function which starts by

checking if the job state is in suspended mode. If the job state is in suspended mode BB-

After that it sets the job state to run state and returns one of the three possible error

end a job that is not being used at that

moment. This decision can be taken according to several factors like energy saving, radio

to remove a job from the platform G-RM needs stop it

, the first operation of BBRM_Job_suspend is to confirm

whether the job is in run state. Later it suspends each task on SoD and finishes by returning

.

its state depending on what sort of operation the radio should

a change of radios. In other words, for

RM one radio with two states is actually two different radios. In order to change the

RM needs to first remove the running job (radio instance) and

Moreover one job can be simply removed from the platform when it’s no longer

from the platform is made by BBRM_Job_remove function. In

the functional blocks of the BBRM_Job_remove function are described. The

first step of this function is to certify if the job can be removed from the platform, that’s if

48 | P a g e

the job state is suspended. If it is, the next step is to release the connections between the

tasks, FIFOs, and then release the tasks. Whether both release procedures ran well or not,

BB-RM can remove the job requirements in its BB

longer in the platform and the BB

released and changed to invalid. At the end, BBRM_Job_remove returns the code message

to G-RM.

F. Interface BB

The following functions are used in some functional blocks explained above.

� phSodNmTask_Create()

code of the task is already allocated in memory.

� phSodNmPort_Connect()

an input of a consum

consumer are the same. The connection is made through a buffer (FIFO).

� phSodNmTask_resume()

� phSodNmTask_suspend()

� phSodNmTask_GetParameterLocatio

parameters of a task.

� phSodNmTask_Delete()

� phSodNmPort_Disconnect()

the input port of the consumer task.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

ended. If it is, the next step is to release the connections between the

tasks, FIFOs, and then release the tasks. Whether both release procedures ran well or not,

RM can remove the job requirements in its BB-RM resources. After that, the job is no

er in the platform and the BB-RM allocated resources are freed. Now the job can be

released and changed to invalid. At the end, BBRM_Job_remove returns the code message

Figure 26 : BBRM_Job_remove

Interface BB-RM <-> SoD

The following functions are used in some functional blocks explained above.

phSodNmTask_Create() - Allocate a task on the specified tile in the platform. The

task is already allocated in memory.

phSodNmPort_Connect() - This function connects an output of a producer task to

an input of a consumer task. In case the connection is a loop, the task producer and

consumer are the same. The connection is made through a buffer (FIFO).

phSodNmTask_resume() - Dispatching the task to the Streaming Ke

phSodNmTask_suspend() - Deny the dispatching of the task to the SK.

phSodNmTask_GetParameterLocation() - Obtain the pointer to the in

task.

SodNmTask_Delete() - Delete a suspended task from the platform.

Disconnect() - Disconnect the output port of the producer task and

the input port of the consumer task.

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

ended. If it is, the next step is to release the connections between the

tasks, FIFOs, and then release the tasks. Whether both release procedures ran well or not,

RM resources. After that, the job is no

resources are freed. Now the job can be

released and changed to invalid. At the end, BBRM_Job_remove returns the code message

The following functions are used in some functional blocks explained above.

n the platform. The

cts an output of a producer task to

task. In case the connection is a loop, the task producer and

consumer are the same. The connection is made through a buffer (FIFO).

Dispatching the task to the Streaming Kernel.

Deny the dispatching of the task to the SK.

Obtain the pointer to the input and output

suspended task from the platform.

Disconnect the output port of the producer task and

49 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

G. Resource allocation problem

As stated in section D of chapter 3, radio components are referred to an aimed core

which can be a specific core or a group of cores.

If G-RM orders BB-RM to allocate a radio where all radio components are aimed

for a specific core, it has only a dispatcher function, because it cannot make any choices.

Just receives a radio, sees if the radio fits and allocates it or not. Thus, in this case BB-RM

is completely limited by the radio parameters.

 On the other hand, when the target is only restricts the core type the BB-RM has

some freedom to decide where to allocate the component. For instance, if one radio

component has defined in its core structure that it can run in either EVP core in the

platform, then BB-RM can choose which EVP is better for this component.

To sum up, the BB-RM has to compute which is the best tile to allocate the radio

component. Such problem just depends on the radio component requirements, and the

decision is based on these requirements.

Whenever a radio creation request arrives, BB-RM has to find a suitable

assignment for all radio components onto the tiles. Different combinations of suitable

assignments can be created, resulting in different mappings.

The algorithms that choose the best mapping should not be too complex because

the mapping creation and the mapping choice are made at run time. The algorithms which

have to try find a mapping such that radios arriving in the future have a higher chance of

being mapped as well.

As discussed in the beginning of this chapter, the Resource Allocation Problem

(RAP) is quite similar to a Vector Bin-Packing (VBP) (19) problem.

Vector Bin-Packing

The resource allocation problem (RAP) can be transformed into a VBP problem,

where the bins are the BB-RM resources in each tile that can bear the component

requirements, which are called items in the original VBP problem. From here, the VBP has

the same dimension as the resources. In Figure 27 there is a two dimension example for

one platform with two tiles. Each bin (resource) has already some allocated requirements

and now needs to allocate one more component with two requirements (items).

There are many heuristics algorithms like First Fit (FF), Best Fit (BF) and so forth

to accomplish these results.

 This model does not account for the bandwidth used by the radio components

which communicate with each other among the distinct tiles.

50 | P a g e

In order to choose

the connection between components in the distinct tiles will be neglected. In section

description is given on how to minimize the connection bandwidth. After some jobs have

been created and released, the memory resource in the platform starts t

internally to each tile. The VBP approach does not take this problem into account.

This situation can cause problems to the components mapping. VBP does not

validate the state of the fragmented memory on a BB

real platform, component allocation could not occur. Since the real number of mapping

possibilities could be less than what the BB

always be the best choice.

Next is shown the heuristics im

First Fit

The FF algorithm takes the requirements of a component and tries to allocate it in

the first available tile. In the case that it does not fit, FF tries the next tile until it finds a

suitable tile where all componen

 Because FF does not test all the tiles available for a possible fit, it is faster than the

BF solution. But the solution thus obtained can

would.

Best Fit

 The best fit strategy

software component using the smallest space available which is big enough to allocate the

requirement.

To know which is the best tile to allocate the requirement in the whole platform, the

algorithm needs to try all of

strategy. This can be a big drawback. On the other hand, it guarantees the best allocation of

a given software component on the platform. Note however that this may not b

allocation when one considers the complete radio job.

The dimension of the problem is another issue to take into account. In two

dimensions (CPU and memory) the problem becomes more complex. For each resource

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Figure 27 : VBP example

 in which tile to allocate each radio component based on VBP,

the connection between components in the distinct tiles will be neglected. In section

description is given on how to minimize the connection bandwidth. After some jobs have

been created and released, the memory resource in the platform starts t

internally to each tile. The VBP approach does not take this problem into account.

This situation can cause problems to the components mapping. VBP does not

validate the state of the fragmented memory on a BB-RM Resources, although if run

real platform, component allocation could not occur. Since the real number of mapping

possibilities could be less than what the BB-RM calculates, its final choice might not

Next is shown the heuristics implemented in BB-RM, namely First Fit (FF) and

First Fit

The FF algorithm takes the requirements of a component and tries to allocate it in

the first available tile. In the case that it does not fit, FF tries the next tile until it finds a

suitable tile where all component requirements can be accommodated.

Because FF does not test all the tiles available for a possible fit, it is faster than the

BF solution. But the solution thus obtained can waste more resources tha

Best Fit

The best fit strategy tries to minimize the space wasted by the allo

using the smallest space available which is big enough to allocate the

To know which is the best tile to allocate the requirement in the whole platform, the

of the tiles. Because of this, it takes more time than a First Fit

strategy. This can be a big drawback. On the other hand, it guarantees the best allocation of

a given software component on the platform. Note however that this may not b

allocation when one considers the complete radio job.

The dimension of the problem is another issue to take into account. In two

dimensions (CPU and memory) the problem becomes more complex. For each resource

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

which tile to allocate each radio component based on VBP,

the connection between components in the distinct tiles will be neglected. In section I, a

description is given on how to minimize the connection bandwidth. After some jobs have

been created and released, the memory resource in the platform starts to be fragmented,

internally to each tile. The VBP approach does not take this problem into account.

This situation can cause problems to the components mapping. VBP does not

RM Resources, although if run on a

real platform, component allocation could not occur. Since the real number of mapping

RM calculates, its final choice might not

namely First Fit (FF) and BF.

The FF algorithm takes the requirements of a component and tries to allocate it in

the first available tile. In the case that it does not fit, FF tries the next tile until it finds a

Because FF does not test all the tiles available for a possible fit, it is faster than the

waste more resources than other solutions

tries to minimize the space wasted by the allocation of a

using the smallest space available which is big enough to allocate the

To know which is the best tile to allocate the requirement in the whole platform, the

the tiles. Because of this, it takes more time than a First Fit

strategy. This can be a big drawback. On the other hand, it guarantees the best allocation of

a given software component on the platform. Note however that this may not be the best

The dimension of the problem is another issue to take into account. In two

dimensions (CPU and memory) the problem becomes more complex. For each resource

51 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

and for each tile the BF algorithm determines the remaining free space through a resource

matrix. In the end it merges all the information in order to choose which tile will offer the

best solution.

H. Sort strategy

In the last section, it was explained that the algorithms to determine which the best

tile to allocate a specific component is based on its requirements. These algorithms are

used in one component, but the radio has more than one component. Thus it’s necessary to

know in which order the BB-RM should allocate the components.

Firstly, it is relevant to analyze what kind of order can optimize the platform

resources. The radio components have different requirements in several dimensions. That

is, in a two dimensional problem, (CPU and memory) a component has different

requirements in each dimension. Keeping the bin package analogy, it has several bins

representing hardware resources and a list of radio components to put in such bins. In (19)

it was proven that, in general, better results will be obtained (i.e. less bins will be

necessary) if items with bigger requirements are allocated first. The intuitive idea behind

this theory is simple: when the bigger items are first allocated, the smallest components

can fill the free holes in the bins. This technique reduces the inter-tile fragmentation

described on section B of the previous chapter.

To summarize it’s needed to implement methods to sort the components based on

their requirements and from the biggest to smallest, for items that are multidimensional.

To sort out the order of the components two different methods were implemented,

the first is Module Weights (MW) and the other is Relative Weights (RW).

Module Weights

 One way to implement a method to sort the radio components is taking the vector

module as the weight of the component requirements resource vector. In Figure 28 it’s

shown a small radio example. The radio has three components, and, for each component,

the requirements are listed. To calculate the MW for a component, is used the N

component requirements of the component. The vector sum is calculated by the following

formula:

22)_(...)1_(NresourceresourceMW ++=

Equation 2 : Module Weight

After obtaining the MW for all components, the components can be sorted. The

order is made from the heaviest component to lightest one in terms of the MW. In the

depicted example, the first component that will be allocated is component 3, followed by

component 1 and finally component 2.

52 | P a g e

Relative Weights

An additional method to sort the radio components is the relation between the

component requirements and the platform resources. The balance between the radio

requirements and the platform resources is not perfect, that is, some radios need more than

one resource (dimension) than the other and the platform has more than one type of

resources. To normalize the resources among both components this method was

implemented. Depicted in

(MW). In this platform, the memory is the scarcest resource and so the RM method must

give more weight to memory resources than to CPU resources. To manage this, 30% of the

weight was configured for the CPU resource and 70% for memory resource.

RW will calculate the relative weight based on the relation between the needed

resource and the platform resource

used formula for N resources is

RW

As seen in this example, it returns a different result than the MW method. In this

case the allocation order is co

The static resource dimensions can be converted to dynamic resource weights. At

run time the most required resource is only dependent on the radio allocations and their

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Figure 28 : MW example

Relative Weights

An additional method to sort the radio components is the relation between the

component requirements and the platform resources. The balance between the radio

requirements and the platform resources is not perfect, that is, some radios need more than

esource (dimension) than the other and the platform has more than one type of

resources. To normalize the resources among both components this method was

implemented. Depicted in Figure 29 it has the same example than the previous method

(MW). In this platform, the memory is the scarcest resource and so the RM method must

give more weight to memory resources than to CPU resources. To manage this, 30% of the

configured for the CPU resource and 70% for memory resource.

RW will calculate the relative weight based on the relation between the needed

resource and the platform resource availability and give the weight for this relation. The

rces is.

∑= NN weightresourceresourcerequire _*)/(

Equation 3 : Relative Weight

Figure 29 : RW example

As seen in this example, it returns a different result than the MW method. In this

case the allocation order is component 1 then, component 3 and component 2.

he static resource dimensions can be converted to dynamic resource weights. At

run time the most required resource is only dependent on the radio allocations and their

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

An additional method to sort the radio components is the relation between the

component requirements and the platform resources. The balance between the radio

requirements and the platform resources is not perfect, that is, some radios need more than

esource (dimension) than the other and the platform has more than one type of

resources. To normalize the resources among both components this method was

the same example than the previous method

(MW). In this platform, the memory is the scarcest resource and so the RM method must

give more weight to memory resources than to CPU resources. To manage this, 30% of the

configured for the CPU resource and 70% for memory resource.

RW will calculate the relative weight based on the relation between the needed

the weight for this relation. The

Nweight

As seen in this example, it returns a different result than the MW method. In this

mponent 1 then, component 3 and component 2.

he static resource dimensions can be converted to dynamic resource weights. At

run time the most required resource is only dependent on the radio allocations and their

53 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

requirements. This means that the most used resource can be difficult to predict. Using

dynamic weights, the weight values for each resource type change at run-time. This change

is according to the current resource availability across the platform.

I. Complete RAP heuristics, including

communication

Section G described the strategies implemented for selecting the tile for allocating

one specific component based on its requirements, and section H describes the strategies

implemented to choose in which order to allocate components to the platform – the “sort

strategy”.

In the radio structure presented in the section C of chapter 3, the radio is defined as

a set of processing components and communication components. Until now, the focus has

been on the processing components, but now the communication components will come

into play.

 A communication component is the mechanism that delivers tokens (data

containers of fixed sized) from the source to the sink software components. As explained

in (19), communication component require resources at both endpoints, i.e., buffers on

both sides, were tokens can be stored. However, if those endpoints are in the same tile,

the communication is completely internal. That means that the communication

component does not require bus resources, or separate send and receive buffers.

The complete RAP is a solution to allocate the radio, taking into account the

processing components and the communication components. Using expert knowledge

and heuristics, the complete RAP can do two main optimizations when mapping a radio.

One is to minimize bus bandwidth usage, since lower bandwidth requirements means

lower chances of network congestion. The other is to minimize fragmentation or tile

resources.

Two RAP heuristics have been implemented in the BB-RM.

Best Fit with Decreasing Module Weights (BFDMW)

This heuristic is to optimize the inter-tile resources fragmentation. Even when the

sums of available resources are bigger than the radio requirements, the fragmentation

problem may private the radio activation. So, the fragmentation reduces the number of

running radios at the same time. Using the module weight methods, it orders the radio

processing components from the bigger to the smaller (section H). Tracing the components

by that order, it allocates each processing component by Best Fit algorithm.

54 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

First Fit with Clustering (FFC)

As mentioned above, when two radio components are in the same tile they do not

need a network channel or separate buffers. To reduce the bandwidth among the tiles the

First Fit with Clustering (FFC) algorithm was implemented. A detailed explanation of this

algorithm is available in (19). It is a First Fit Decreasing algorithm that, after assigning an

actor to a tile, looks at the neighbors of that actor in the radio job graph, to see if any of

them can be placed in the same tile.

J. Debug

The BB-RM was developed in an incremental manner; with each change, a new

feature was added. To make the work more independent of other modules that are still in

development, the BB-RM was built in a simulation framework. In the real platform, the

SoD NM process runs on top of uC/OS – II and a SoD SK runs on each core. On the

simulation framework all processes run on the PC’s Operating System. In fact, the OS

simulates the behavior of the real hardware platform.

To help the developing process a three level debug system was put in place. At

compilation, a debug level is chosen depending on the level of information that is required

from the following execution. These debug levels are listed next.

� Debug level 1 - shows the info, error or fatal error messages from BB-RM API

explained in section E.

� Debug level 2 - shows the info, error or fatal error messages from the internal

functions of BB-RM. That means the first functions instance internal of BB-RM.

� Debug level 3 - shows the messages from the BB-RM library which has the most

used function of BB-RM, modules weight to order the components, the

requirements algorithms to choose the tile and BB-RM resources, that is, all

external modules of BB-RM.

The debug messages were chosen in such a way as to easily identify their error

source. First they show the origin file, i.e. Resource Manage, Resource Manage Library,

Emulate, CPU Library and so forth. The second information is about the type of message;

information, error or fatal error. The information messages show the trace of the running

code.

The error messages, when shown mean that something not expected happened but

the program can still run without inconsistency. The fatal error appears when the code

becomes corrupt. One example is when the content of BB-RM resource is different than

real resources in platform.

The next item shown in debug messages is the function that prints the debug

message and the message content. Normally the information messages contents tells us

about the input arguments or a returned value. The error messages and fatal error messages

content is a problem description.

55 | P a g e

Figure 30 has one example where it

Manager. The first function to be called was BBRM_Job_create (), to create the job from

the radio ID #3. The next infor

section E. At the end, BB-

this example.

Among the debug messages, an info message from Emulate is shown.

Emulate is a file which contains a small example to test the BB

two radio examples created to call the BB

BBRM_Job_create function is successful because it returns the information code 0x200,

shown in appendix [A].

In the next example, the output file of the third debug level is shown,

well as the indent BB-RM library The first message is one error message from SoD, the

second message is from BB

which called the SoD function returns a error message reporting the error description, third

and forth messages. The procedure to report error messages from SoD is always like th

one. It first reports the returned code from SoD (

description of the error dependently of it decision according to the So

line 3 and 4).

K. BB-RM versions

The BB-RM building process was incremental. Each step was tested in the

simulation framework first, and then in real platform. Every improvement was tagged with

a version number after testing. Starting with version 1.0 and finish in version 1.7, each one

has a new feature. There are several things worth mentioning.

 The major idea of the version 1.0 was to just define what arguments are passed and

which message is returned in the interface with the G

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

has one example where it can see some info messages from the Resource

Manager. The first function to be called was BBRM_Job_create (), to create the job from

the radio ID #3. The next information messages are from functions that were described in

-RM returns the number of the created job ID, which is zero in

Among the debug messages, an info message from Emulate is shown.

Emulate is a file which contains a small example to test the BB-

two radio examples created to call the BB-RM APIs and analyze the return messages. The

ion is successful because it returns the information code 0x200,

Figure 30 : Debug messages

example, the output file of the third debug level is shown,

RM library The first message is one error message from SoD, the

message is from BB-RM library reporting the returned error then the functions

which called the SoD function returns a error message reporting the error description, third

and forth messages. The procedure to report error messages from SoD is always like th

one. It first reports the returned code from SoD (Figure 31 line 2) then reports a detailed

description of the error dependently of it decision according to the So

Figure 31 : Error messages

RM versions

RM building process was incremental. Each step was tested in the

simulation framework first, and then in real platform. Every improvement was tagged with

a version number after testing. Starting with version 1.0 and finish in version 1.7, each one

as a new feature. There are several things worth mentioning.

The major idea of the version 1.0 was to just define what arguments are passed and

which message is returned in the interface with the G-RM. For the input arguments was

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

can see some info messages from the Resource

Manager. The first function to be called was BBRM_Job_create (), to create the job from

mation messages are from functions that were described in

RM returns the number of the created job ID, which is zero in

Among the debug messages, an info message from Emulate is shown.

-RM API. There are

RM APIs and analyze the return messages. The

ion is successful because it returns the information code 0x200,

example, the output file of the third debug level is shown, Figure 31, as

RM library The first message is one error message from SoD, the

RM library reporting the returned error then the functions

which called the SoD function returns a error message reporting the error description, third

and forth messages. The procedure to report error messages from SoD is always like this

line 2) then reports a detailed

description of the error dependently of it decision according to the SoD error (Figure 31

RM building process was incremental. Each step was tested in the

simulation framework first, and then in real platform. Every improvement was tagged with

a version number after testing. Starting with version 1.0 and finish in version 1.7, each one

The major idea of the version 1.0 was to just define what arguments are passed and

RM. For the input arguments was

56 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

created a file with all BB-RM structures. To handle the return messages, a Debug module

was created, as explained in section J. BB-RM does not have any interaction with SoD.

 In order to explore the SoD API, version 1.1 was developed. There, the BB-RM

just picks up the radio components given from G-RM and allocates them in SoD.

 To implement a real functional block, i.e. some code that receives something and

acts with something it builds the version 1.2. There, the given radio is allocated in SoD

without any method or algorithm. Was implemented as well the CPU model and the

memory model to BB-RM has the knowledge of the platform resources.

 With the referred modules the BB-RM code became too big, occupying around

80% of the dedicated memory for it. By that reason was necessary making some

optimization in code. Those optimizations will be better described in next section. For this

section is just interesting know that the version 1.3 is one optimization code of version 1.2.

 As explained before, the first step when the BB-RM receives a radio, more specific

when BBRM_Job_create function receives a radio, is order the components. The relative

weight and the module weight order methods were created in version 1.4.

 In version 1.5, the algorithms to allocate the component requirements were

implemented as well as the complete RAP algorithms. There is combined the methods to

order the radio components and the algorithms to allocate them requirements.

 Line by line the code became bigger. As a result the debug task turns hard as well.

To minimize this issue the debug module was improved with three types of messages,

state, error and fatal error. This change was saved as version 1.6.

 Finally, using two radios with a structure similar to a real one, a stress test was

done. Due to the results of this stress test, some settings were tuned in version 1.7 to adjust

the behavior of the BB-RM to the real environment.

L. Source code

The file structure was constructed according to the modules structure. All shared

files were placed in the root. Example of this is the Platform.h which contains the platform

configuration, or de radio structure definition on Radio.h file, the Resource Manager API

on BBResourcemanger.h file, and the API return codes in BBRM_code_return.h file.

Describing the folders from the top to the bottom in Figure 32, is formed the

BBRMResources folder, which contains the CPU and memory resources. Each resource

has three files; the first one is a source file contains all functions of this resource, a code

return file which contains the code definitions, and the last one the header file containing

the functions prototypes.

The adjacent folder is the BBRMsrc folder that leads to the source files of BB-RM.

Such folder has the BBRM library which contains the internal functions of BB-RM. Has

also the BB-RM configuration file where it can be chosen the allocation algorithms and

methods, and finally the debug file which takes into account the debug functions.

The CompWeight folder has the files to order the components by weight. It

contains the two implemented methods, relative weight and module weight explained

before.

57 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

Created by the doxygen tool the docs’ folder has the code documentation. Each

function is documented with the following items:

� A brief description about the function

� Simplified list of the internal procedures

� A list of the input parameters description

� A list of the possible return messages.

The two Complete RAP heuristics specified in section I are in JobTestAlloc folder.

Each one has the source file which contains the functional code and the library file with the

function prototypes.

Last but not the least there is the RequireAlgorithm folder. There it has the two

implemented algorithms; First Fit and Best Fit. Those algorithms are to choose the tile for

each processor component based on the processor component requirement.

Figure 32 : Files structure

58 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

(This page was left blank delivered)

59 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

6. Experimental results

 The work developed in the scope of this dissertation has been extensively assessed

and verified. This section presents some experimental results addressing several aspects of

the work, namely optimizations that have to been carried out to reduce the code size,

resource allocation strategies assessment and verification of the occurrence of

fragmentation.

A. Optimizations

In the beginning the BB-RM operation was relatively simple, consisting only in

allocating radio components without any global strategy. As the work progressed; several

features have been added and the BB-RM became more efficient but, at the same time,

more complex and bigger.

Eventually, in BB-RM version 1.2, the code became too big, using about 80% of

the reserved F-ARM memory for itself. To reduce the code size several optimizations were

done, some of them ending up in execution time improvements as well. This section

presents the main optimizations that have been implemented.

 The first optimization addressed the data structures used by the BB-RM. An

exhaustive study about each variable's usage permitted to establish its bounds in the value

domain. The conclusion was that some variables were oversized. Resizing the variables

permitted a considerable gain in memory utilization, which went from the original 1.776

KB per radio to 1.103KB per radio, that is, a reduction of approximately 37.9%.

The same process was applied to all the other structures in the BB-RM resources.

 Another kind of optimization consisted in the reduction of the components state

data (Table 1). Originally, when a radio component needed CPU resources to be allocated,

all relevant information about the component was saved on the CPU resource database.

Similarly, when the component required memory, the relevant information was saved on

the memory resource database. This approach drives to the existence of duplicated

information in memory. To avoid this situation it was developed a new approach, in which

only relevant information about the allocations is saved in the job structure. The new

approach consists of just signalizing in the job list structure where the component is

60 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

allocated, so it is not necessary anymore to save the component’s information in each

resource database. This approach permitted a significant improvement on the resource

memory, as expected, but at expenses of an increase of the size of the job structure, as

shown in Table 1 and Table 2, respectively.

Resource per tile Before optimization After optimization Gain

Memory 616 Bytes 9 Bytes 98.5%

CPU 816 Bytes 9 Bytes 98.9%
Table 1 : Resource optimization

Structure Before optimization After optimization Loss

Job list 1260 Bytes 1745 Bytes 72.2%
Table 2 : Job optimization

The amount of bytes saved in the resources is done per tile and the platform has

four tiles in total. On the other hand, the job list structure is common. Thus, the global

balance is positive. Table 3 shows that the total amount of bytes saved is 5171,

corresponding to a reduction of 73.9% comparatively with the total amount of memory

originally used.

 Total size of the

structure before

optimization

Total size of the

structure after

optimization

Difference in

Bytes

Difference in %

Memory

resource

2464 Bytes 36 Bytes - 2428 Bytes - 98.5 %

CPU resource 3264 Bytes 36 Bytes - 3228 Bytes - 98.9 %

Job list 1260 Bytes 1745 Bytes + 485 Bytes + 72.2 %

Total 6988 Bytes 1817 Bytes - 5171 Bytes - 73.9 %
Table 3 : Optimization results

 The BB-RM module was developed as modular as possible. This means that each

functional block is logically separated, has a specific function and a well defined interface.

This approach has several well documented advantages, but incurs in memory and CPU

overheads. A thorough code analysis has permitted identifying the existence of memory

reserved for variables in several functions that in fact had the same contents. Thus,

physically, the memory had duplicated variables with the same contents.

 To minimize this problem, common (global) variables were used in several places. The

size of these variables was also optimized to accommodate, as tightly as possible, the value

domain bounds.

 In the first BB-RM version, just the allocation information was saved in the job list,

i.e., the tile where the component was allocated and it’s ID.

In order to make the connections in the SoD, the BB-RM needed to search the radio

topology. This imposed that the BB-RM had to save the complete radio when it was given

to BBRM_Job_create function. So, when the BBRM_Job_create function is called BB-RM

must keep the radio and create an instance of it (job) when it’s allocated.

Despite simple, this approach is expensive in terms of memory because a radio

structure and a job structure have to be saved. So a more memory-efficient approach was

61 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

sought. The optimization that was implemented consists in having the BB-RM saving only

the relevant fields of the radio in the job list structure instead of saving the whole radio,

when calling Job-create function. Consequently the radio list from BB-RM is removed and

some memory is saved.

 In one brief look at the arguments of the BB-RM functions it is possible to note that

the types of arguments are homogeneous among the internal functions of the BB-RM. The

three mostly used arguments in functions are a radio component, a radio component

requirement or a whole job. Instead of having a big radio structure with all its contents

inside, the structure is split into several sub-structures. Now the job structure can use

individually these radio sub-structures, even as arguments for the internal functions.

 The optimization with higher impact consisted in changing the arguments of the

functions to pointers. Now, every function has as arguments pointers and, when necessary,

returns values in pointers.

Besides saving memory, this modification also has a significant impact in terms of CPU

utilization, as shown in Table 4.

To assess the actual improvement in the runtime performance of these

optimizations, it was carried out a stress test. This test consists in allocating four radios and

removing them again. This procedure was repeated 500 000 times, resulting in 2 000 000

radio allocations and releases. Detailed results for the versions 1.2 and 1.3 are presented in

appendixes B and C. Table 4 summarizes these results.

Functions BB-RM

Version

Cumulative

seconds

Self seconds Time per radio

(µs)

BBRM_Job_create 1.2 23.82 0.32 11.91
1.3 22.66 0.25 11.33

1.4 25.93 0.20 12.97

BBRM_Job_remove 1.2 27.02 0.20 13.51

1.3 24.28 0.15 12.14
1.4 28.31 0.14 14.16

Table 4 : Functions performances

In the above table, the cumulative seconds are running sums of the number of

seconds accounted for by the function itself and those called by it. The self seconds are the

number of seconds accounted for the function alone.

Using the 1.2 version as a reference, because the optimization process started at this

version, there are some aspects that worth noticing here. The first, and the most important

one in the performance context, is the fact that the version 1.3 is in both functions quicker

than the following 1.4 version. Looking at the figures, the BBRM_Job_create function is

quicker by about 0.58 us per radio, while the BBRM_Job_remove won 1.37 us per radio,

representing an improvement of 4.8% and 10.1%, respectively. Another aspect that

deserves a specific comment is related with the performance degradation seen in version

1.4. The self time of both functions is lower. The cumulative time increased in

consequence of a higher complexity of the sub-functions, which in this version started to

implement the sort strategy referred in chapter 5, section H. Thus, in version 1.4 the

cumulative time becomes bigger in result of the addition of new algorithms that result in

higher computational complexity.

62 | P a g e

B. MW Vs RW results

The first step that BB

the radio components. The sort operation defines the order in which the components will

be allocated in the platform.

A specific test was developed to assess the effectiveness of the sorting methods.

This test was done over the simulation framework. There, a simulated platform with three

cores of the same type was used. As the target of this test is to analyze the results

different processing components allocation orders, the radio topology is not important. For

allocating the radios the BB

algorithms explained in chapter

algorithms.

The basic idea is to allocate an amount of ra

the limit in the resource domain. To get this effect a radio depicted in

Figure

This radio uses a total of 65% of a CPU resource (red) and 70% of a memory

resource (green). It has three processing components, each one describing the amount of

resources needed. As the sorting methods o

processing components in the created radios have different resource amounts. In order to

give to BB-RM the full freedom to choose the allocation mapping of the radio components

the cores are not aimed to a spe

(Figure 33) as many times as possible.

The platform has 300% of free resources to allocate the radios. This

potentially can be allocated up to 4 radios (

tightest for this radio configuration.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

MW Vs RW results

The first step that BB-RM does when mapping a plan to allocate

the radio components. The sort operation defines the order in which the components will

be allocated in the platform.

A specific test was developed to assess the effectiveness of the sorting methods.

This test was done over the simulation framework. There, a simulated platform with three

cores of the same type was used. As the target of this test is to analyze the results

different processing components allocation orders, the radio topology is not important. For

allocating the radios the BB-RM must sort the components and use the allocation

algorithms explained in chapter 5, section G. The test is done using each one of these

The basic idea is to allocate an amount of radios in such a way that the platform reaches

the limit in the resource domain. To get this effect a radio depicted in Figure

Figure 33 : Radio to test the MW and RW methods

This radio uses a total of 65% of a CPU resource (red) and 70% of a memory

resource (green). It has three processing components, each one describing the amount of

resources needed. As the sorting methods order the components by their requirements, the

processing components in the created radios have different resource amounts. In order to

RM the full freedom to choose the allocation mapping of the radio components

the cores are not aimed to a specific tile. The test consists in allocating the same radio

) as many times as possible.

The platform has 300% of free resources to allocate the radios. This

potentially can be allocated up to 4 radios (Equation 4). The memory resource is the

tightest for this radio configuration.

61.4
65

300
==

∑
∑

CPU

P

R

R

28.4
70

300
==

∑
∑

Mem

P

R

R

Equation 4 : MW and RW theorical notes

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

to allocate a radio is sorting

the radio components. The sort operation defines the order in which the components will

A specific test was developed to assess the effectiveness of the sorting methods.

This test was done over the simulation framework. There, a simulated platform with three

cores of the same type was used. As the target of this test is to analyze the results of using

different processing components allocation orders, the radio topology is not important. For

RM must sort the components and use the allocation

. The test is done using each one of these

dios in such a way that the platform reaches

Figure 33 is created.

This radio uses a total of 65% of a CPU resource (red) and 70% of a memory

resource (green). It has three processing components, each one describing the amount of

rder the components by their requirements, the

processing components in the created radios have different resource amounts. In order to

RM the full freedom to choose the allocation mapping of the radio components

cific tile. The test consists in allocating the same radio

The platform has 300% of free resources to allocate the radios. This means that

). The memory resource is the

63 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

As referred in chapter 5 section H, the RW method is adjustable to the platform

needs. In order to save memory it is given a higher importance to this resource, by

balancing 30% to the CPU and 70% to the memory.

Component order Requirements

allocation algorithm

Number of allocated

radios

MW FF 3

BF 3

RW

(30% - 70%)

FF 4
BF 4

Table 5 : MW and RW results

Table 5 presents the obtained results. It’s clear that the RW method had better

results independently of the requirements allocation algorithm. It can allocate four radios

against three allocated by MW.

The difference between these two methods is that RW sorts the components in a

way that minimizes the inter-tile fragmentation in memory. As the memory is the most

required resource by the radio, the RW takes better decisions.

The MW method does not care about unbalanced resource needs, looking for each

resource equally. This method of operation results in an increased inter-tile fragmentation,

which penalizes its efficiency. This fragmentation type is detailed in chapter 4 section B.

These tests show that the RW algorithm is more efficient in ordering the radio

components. It needs approximately the same computational resources, but achieves better

results. With this algorithm it is possible to balance the weight of each resource. This

feature allows the BB-RM to adjust these weights to favor the resources that are scarcer.

C. BF Vs FF results

According to the quote about BBRM_Job_create function in chapter 5 section E,

after sorting the radio components the second step of BB-RM is to allocate each

component. To allocate a component it is necessary to reserve resources for it. It is at this

point that the requirements algorithms come in.

To appraise if these two algorithms are useful and which algorithm is better, a custom test

was created. Using the same simulation framework used before, it was created the radio

depicted in Figure 34.

64 | P a g e

Figure

The radio uses a total 54% of the CPU and 55% of the memory. It still has three

components and no radio topology, which means there are no communication components.

The idea is not to test the methods used to sort

algorithms to allocate the processing components in the radio (

amount of resource requests will be used amo

Equation 5, the platform can support up to 5 radios.

Method to order the

components

MW

RW

Looking to the results presented in

algorithm is the best mapping allocation strategy, allocating one more radio than the FF

algorithm. Once again it is pos

problem (see chapter 4 section

radios and in some cases only four have been allocated in practice. Further ahead, this

scenario will be tested more intensely.

The BF algorithm is, in almost all the cases, the best algorithm, although it spends more

computational resources than FF. This drawback may turn the use of the BF algorithm

undesirable, despite its better resource allocation efficiency, for instance when the p

has strict time constraints in the radio creation time.

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Figure 34 : Radio to test the BF and FF algorithms

The radio uses a total 54% of the CPU and 55% of the memory. It still has three

components and no radio topology, which means there are no communication components.

The idea is not to test the methods used to sort the radio components, but to test the

algorithms to allocate the processing components in the radio (Figure

amount of resource requests will be used among them in each component. As indicated in

, the platform can support up to 5 radios.

)5(5.5
54

300
==

∑
∑

CPU

P

R

R

45.5
55

300
==

∑
∑

Mem

P

R

R

Equation 5 : BF and FF theorical notes

Requirements algorithm Number of allocated radios

FF

BF

FF

BF
Table 6 : BF and FF results

Looking to the results presented in Table 6 it is possible to conclude that the BF

algorithm is the best mapping allocation strategy, allocating one more radio than the FF

algorithm. Once again it is possible to note that the inter-tile fragmentation is a real

section B). The platform has resources than can support up to five

radios and in some cases only four have been allocated in practice. Further ahead, this

scenario will be tested more intensely.

F algorithm is, in almost all the cases, the best algorithm, although it spends more

computational resources than FF. This drawback may turn the use of the BF algorithm

undesirable, despite its better resource allocation efficiency, for instance when the p

has strict time constraints in the radio creation time.

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

The radio uses a total 54% of the CPU and 55% of the memory. It still has three

components and no radio topology, which means there are no communication components.

the radio components, but to test the

Figure 34). The same

ng them in each component. As indicated in

Number of allocated radios

4

5

4

5

it is possible to conclude that the BF

algorithm is the best mapping allocation strategy, allocating one more radio than the FF

tile fragmentation is a real

). The platform has resources than can support up to five

radios and in some cases only four have been allocated in practice. Further ahead, this

F algorithm is, in almost all the cases, the best algorithm, although it spends more

computational resources than FF. This drawback may turn the use of the BF algorithm

undesirable, despite its better resource allocation efficiency, for instance when the platform

65 | P a g e

D. Complete

There are two types of RAP heuristics worth noticing. The first type is when it uses

one of the two implemented methods to sort the radio component

algorithms to allocate the component requirements. Thus, this type of heuristic is a strict

combination among various methods and algorithms. One example of this heuristic is the

BFDMW explained in chapter

method and an algorithm as well, but add

latter class is the FFC complete RAP, presented in chapter

The performance assessment of the BFDMW does not need specific testing because

the results are a combination of the base sorting method and algorithm results. On the other

hand, the FFC was developed to save

Consequently the connection times are reduced and the radio becomes faster. Thus, it

would be relevant to measure the resulting performance improvement of this strategy.

However, the simulation framework has a t

code but is unable to measure the radio performance, preventing the possibility of testing

the complete RAP.

E. Fragmentation results

The tests done in the last two sections proved the actual appearance of inter

fragmentation, which caused allocation problems. A paradigmatic example was the FF

results (section C), where the platform had enough resources to allocate five

practice was only able to allocate four. This section presents a test that addresses the

experimental verification of the inter

One problem of the BB

fragmentation problem in its resource model. Due to this fact, the BB

approval to a radio that, in the real platform, will not fit. This situation can happen in two

memory parts of the tile: data & status memory and FIFO memory (see chapter

A). The problem is similar in both cases, thus our tests have been directed

memory fragmentation, only. In this case the test uses both on the simulation and the real

platform, since the simulation framework does not model the fragmentation problems.

Figure

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Complete Resource Allocation Problem

There are two types of RAP heuristics worth noticing. The first type is when it uses

one of the two implemented methods to sort the radio components and one of the two

algorithms to allocate the component requirements. Thus, this type of heuristic is a strict

combination among various methods and algorithms. One example of this heuristic is the

BFDMW explained in chapter 5 section I. The other type of heuristic uses

method and an algorithm as well, but adds specific optimizations. As an example of this

latter class is the FFC complete RAP, presented in chapter 5 section I.

The performance assessment of the BFDMW does not need specific testing because

the results are a combination of the base sorting method and algorithm results. On the other

hand, the FFC was developed to save the bandwidth communication among the tiles.

Consequently the connection times are reduced and the radio becomes faster. Thus, it

would be relevant to measure the resulting performance improvement of this strategy.

However, the simulation framework has a tool to measure the time of the management

code but is unable to measure the radio performance, preventing the possibility of testing

Fragmentation results

The tests done in the last two sections proved the actual appearance of inter

fragmentation, which caused allocation problems. A paradigmatic example was the FF

), where the platform had enough resources to allocate five

practice was only able to allocate four. This section presents a test that addresses the

experimental verification of the inter-tile fragmentation problem.

One problem of the BB-RM is that it does not account for the intra

problem in its resource model. Due to this fact, the BB

approval to a radio that, in the real platform, will not fit. This situation can happen in two

memory parts of the tile: data & status memory and FIFO memory (see chapter

). The problem is similar in both cases, thus our tests have been directed

memory fragmentation, only. In this case the test uses both on the simulation and the real

platform, since the simulation framework does not model the fragmentation problems.

Figure 35 : Radios to test the FIFO fragmentation

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

roblem results

There are two types of RAP heuristics worth noticing. The first type is when it uses

s and one of the two

algorithms to allocate the component requirements. Thus, this type of heuristic is a strict

combination among various methods and algorithms. One example of this heuristic is the

. The other type of heuristic uses an implemented

s specific optimizations. As an example of this

The performance assessment of the BFDMW does not need specific testing because

the results are a combination of the base sorting method and algorithm results. On the other

the bandwidth communication among the tiles.

Consequently the connection times are reduced and the radio becomes faster. Thus, it

would be relevant to measure the resulting performance improvement of this strategy.

ool to measure the time of the management

code but is unable to measure the radio performance, preventing the possibility of testing

The tests done in the last two sections proved the actual appearance of inter-tile

fragmentation, which caused allocation problems. A paradigmatic example was the FF

), where the platform had enough resources to allocate five radios and in

practice was only able to allocate four. This section presents a test that addresses the

RM is that it does not account for the intra-tile

problem in its resource model. Due to this fact, the BB-RM can give an

approval to a radio that, in the real platform, will not fit. This situation can happen in two

memory parts of the tile: data & status memory and FIFO memory (see chapter 3 section

). The problem is similar in both cases, thus our tests have been directed to the FIFO

memory fragmentation, only. In this case the test uses both on the simulation and the real

platform, since the simulation framework does not model the fragmentation problems.

66 | P a g e

Two different radios were created, Radio #1 that needs a FIFO size of 250 bytes to

transport the information from the first processing component to the second processing

component, and Radio #2 that needs a FIFO si

the objective is to test the FIFO memory fragmentation, the requirements of the processing

components are not considered.

The simulation framework was configur

in each tile. Depicted in Figure

Radio #1 occupies 1/4 of the tota

The test starts by allocating five radios according to the top to bottom order shown

in Figure 36. In this moment the FIFO memory is completely full. The next step is to

release Radio #2_2 and Radio #2_4. Afterwards it tries to allocate a new instance of Radio

#1 that needs the double of

BB-RM resources (without fragmentation) but failed in the real platform (inter

fragmentation problem). Thus, this experiment shown that the inter

affect the performance of the BB

 U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda

Two different radios were created, Radio #1 that needs a FIFO size of 250 bytes to

transport the information from the first processing component to the second processing

component, and Radio #2 that needs a FIFO size with 125 bytes for the same purpose. As

the objective is to test the FIFO memory fragmentation, the requirements of the processing

components are not considered.

Figure 36 : FIFO memory

The simulation framework was configured to have 1000 bytes in the FIFO memory

Figure 36 it is a tile memory with five radios already allocated.

Radio #1 occupies 1/4 of the total FIFO memory and radio #2 occupies 1/8.

The test starts by allocating five radios according to the top to bottom order shown

. In this moment the FIFO memory is completely full. The next step is to

release Radio #2_2 and Radio #2_4. Afterwards it tries to allocate a new instance of Radio

#1 that needs the double of the FIFO memory as Radio #2. This allocation was a success in

RM resources (without fragmentation) but failed in the real platform (inter

fragmentation problem). Thus, this experiment shown that the inter-tile fragmentation may

ce of the BB-RM by reducing the number of possible radio allocations.

R e s o u r c e M a n a g e r

Emanuel Miranda 2008

Two different radios were created, Radio #1 that needs a FIFO size of 250 bytes to

transport the information from the first processing component to the second processing

ze with 125 bytes for the same purpose. As

the objective is to test the FIFO memory fragmentation, the requirements of the processing

ed to have 1000 bytes in the FIFO memory

it is a tile memory with five radios already allocated.

l FIFO memory and radio #2 occupies 1/8.

The test starts by allocating five radios according to the top to bottom order shown

. In this moment the FIFO memory is completely full. The next step is to

release Radio #2_2 and Radio #2_4. Afterwards it tries to allocate a new instance of Radio

the FIFO memory as Radio #2. This allocation was a success in

RM resources (without fragmentation) but failed in the real platform (inter-tile

tile fragmentation may

RM by reducing the number of possible radio allocations.

67 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

7. Conclusions and future work

 The main objective of this dissertation was the development of a Baseband

Resource Manager module for heterogeneous multi-processor radio platforms. The

developed BB-RM provides:

� Admission control - The BB-RM only allows the creation of additional radios only

if enough resources are available. Thus, new radios do not disturb the already

running radios. As the radios have RT requirements, the BB-RM guarantees that

the deadlines associated with the computations of all the radios (the already running

radios as well as newly added ones) are met.

� Resource reservation - Each radio can only use the resources that have been

reserved for it.

The BB-RM allows and guarantees different rates of operation among functions

within the radio and even among radios. The unpredictable start/stop times of a radio will

not disturb the requirement of the running radios.

In order to be applied in several infotainment mediums, the BB-RM supports a

wide variety of radios and even radio combinations, which makes it completely adjustable

to the platform. The tile configuration or even the processor type is configurable as well.

For instance, in the future it will be possible to run this BB-RM in a platform with the

double or triple of the number of processors. This was accomplished without changing the

SoD, turning the BB-RM autonomous from the SoD platform.

 It is estimated that for the current platform, called AeroProto2, it is possible to run

at least five radios simultaneously. In this context BB-RM allows dynamically changing

the radios executed in each instant.

The BB-RM has proven to have a good performance despite using limited

computational resources. In the simulation framework the whole system needs around

14µs to allocate a radio. This time is acceptable in land radio platforms.

The implemented heuristics to allocate the radio components are working perfectly.

In this land radio platform, the RW proved to be the best method to order the radio

components, being able to allocate one more radio than MW (Table 5). The BF allocation

algorithm has proved to be better than FF. In the tests, the BF algorithm allocated one more

radio than FF (Table 6). In conclusion, if the platform has enough computation resources,

the best combination to a complete RAP is RW with BF. On the other hand, if the

computation resources are scarce, the best combination to solve the complete RAP is RW

with FF. In theory the FFC complete RAP should to be a good solution to reduce the

68 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

communications bandwidth but it was not possible to prove it on the real platform or even

in simulation framework.

A. Future work

Despite all the effort put in this project, some aspects remain to be solved.

Within each tile the memory can become fragmented (intra-tile fragmentation). The

amount of fragmentation increases with memory usage. In its current state the BB-RM

cannot model fragmentation, potentially leading to allocation inconsistencies. This

inconsistency is created when the radio passes the BB-RM tests and it does not fit in the

real platform. This inconsistency is caused by the VBP algorithm used by BB-RM which

does not account with the fragmentation problem, as detailed in chapter 5, section I. To

solve this issue, the BB-RM should implement in the same memory allocation algorithm as

the one used in the real platform. This way the BB-RM would have an exact copy of the

memory mapping of the real platform, solving the inconsistency problem.

Another improvement that can be done in BB-RM is on the RW sort strategy. This

method is used to order the components in an efficient way, this if the resource weights are

properly defined. It is possible to set the right resource weight in the beginning and, after

some allocations, the resource weights may need to be adjusted. This happens because

different radios use different amounts of each resource. To solve this issue the resource

weight should be dynamically adjusted in run-time. Having the knowledge of the resource

status, the resource weights could to be manipulated to save the more scarce resources in

each instant.

69 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

8. Bibliography

1. Mehrotra, Asha. Cellular radio performance engineering. s.l. : Artech House, 1994.

2. Radio computer: vision, value, stakeholder views, Radio Programming Interface

scenarios. Tolonen, Pertti and Berkel, Kess van.

3. gsmworld. [Online] [Cited: October 12, 2008.]

http://www.gsmworld.com/about/history.shtml.

4. Hennessy, John L. and Patterson, David A. Computer Architecture. s.l. : third edition.

5. Sepillo, A. L. A Comparative Study on Symmetric and Asymmetric Multiprocessors.

Diliman : University of the Philippines.

6. Ahtiainen, Ari, et al. SDR Functional Architecture Overview. 2008.

7. Self-Timed Scheduling Analysis for a Real-Time Applications. Moreira, Orlando and

Bekooij, Marco.
8. Pedreiras, Paulo e Almeida, Luis. Sistemas de Tempo-Real. Aveiro : s.n., 2008.

9. Herlihy, Maurice and Shavit, Nir. The Art of Multiprocessor Programming.

10. Tanenbaum, Andrew S. Operating Systems Design and Implementation. s.l. : third

edition.

11. Timothy, O'Neil W., Edwin, H. and Sha, M. Retiming Synchronous Data-Flow

Graphs to Reduce Execution Time.

12. NXP. User's manuel for AeroSOFT development board. Netherlands : NXP, 2008.

13. Kourzanov, Pjotr. [Online] [Cited: 11 5, 2008.] ://www.bitbucket.org/pjotr/lime/src/.

14. LIME: a future-proof programming model for multi-core. Kouranov, Pjotr, Moreira,

Orlando and Sips, Henk.
15. Pol, E. J., Rutten, M. and Splunter, M. van. Sea of DSP Programmer's user manual.

16. Labrosse, Jean J. MicroC/OS-II - The Real Time Kernel. CMP.

17. Scheduling Multiple Independet Hard-Real-Time Jobs on a Heterogeneous

Multiprocessor. Moreira, Olando, Valente, Frederico and Bekooij, Marco.

18. Online Resource Management in a Multiprocessor with a Network-on-Chip. Moreira,

Orlando, Mol, Jacob Jan-David and Bekooij, Marco.
19. Moreira, Orlando, et al. Multiprocessor resource allocator for Hard-real-time

Streaming with a Dynamic job-mix.

20. Douglass, Bruce Powel. Real-Time design Pattens: Robust Scalable Architecture for

Real-Time Systems.

70 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

(This page was left blank delivered)

71 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

9. Appendices

A. Doxygen API code documentation

bbrm_code_return_t BBRM_initialize (void)

This function must be called in the system starter.

This function initializes:

• the Streaming Kernel in SoD by calling phSodEmulateInit() function;

• the job list, by calling BBRM_initialize() function;

• the CPU BB-RM resource model, by calling CPU_initialize() function;

• the memory BB-RM resource model, by calling Mem_initialize() function.

Returns:

• BBRM_FATAL_ERROR_SOD_FAILED - Fatal SOD function failed.

• BBRM_FATAL_ERROR_CPU_FAILED - Round Robin function failed.

• BBRM_FATAL_ERROR_MEM_FAILED - Memory function failed.

• BBRM_OK - Operation successful.

bbrm_code_return_t BBRM_Job_test (const radio_t *

radio_p)

The BBRM_Job_test function tests whether instantiation of a job is possible

The internal procedures are:

• finds the free entry in job list;

• fills the job entry with:

• source radio pointer;

• source radio ID;

• changes the job state to SIMULATION MODE;
• sets all BB-RM resources in a simulation mode by calling the BBRM_Set_res_simul() function;

• if failed clean the job in job list by calling BBRM_initialize() function;
• allocates the radio requirements by calling the BBRM_Simul_job() function;

• restores the resources by calling BBRM_Set_res_restore() function;

72 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

• cleans the job in job list by calling BBRM_initialize() function;

Parameters:

radio_p (IN) Pointer to the radio.

Returns:

• BBRM_FATAL_ERROR_RES_STATE - Error while change the BB-RM

resources states.

• BBRM_ERROR_SIMUL - This radio fail in requirements simulation.

• BBRM_OK - Operation successful.

bbrm_code_return_t BBRM_Job_create (const

radio_t * radio_p, uint8_t *const created_job_id)

The BBRM_Job_create function creates a job, (radio instance) and sets it on suspend mode, to

put the job running it needs call the BBRM_Job_resume() function.

The internal procedures are:

• validates the radio by calling the BBRM_Test_radio() function;

• finds the free entry in job list;

• fills the job entry with:

• source radio pointer;

• source radio ID;

• changes the job state to SIMULATION MODE;
• sets all resources in a simulation mode by calling the BBRM_Set_res_simul() function;

• if failed cleans the job in job list by calling BBRM_initialize() function;
• allocates the radio requirements by calling the BBRM_Simul_job() function;

• if the test failed:

• restores the resources by calling BBRM_Set_res_restore() function;

• cleans the job in job list by calling BBRM_initialize() function;

• in case of success sets the job state as TESTED MODE;
• allocates the radio tasks in SoD by calling the BBRM_Alloc_sod_c_comps() function;

• if the test failed:

• restores the BB-RM resources by calling BBRM_Set_res_restore()

function;

• cleans the job in job list by calling BBRM_initialize() function;

•
• allocates the radio FIFOs in SoD by calling the BBRM_Alloc_sod_c_comps() function;

• if the test failed:

• restores the BB-RM resources by calling BBRM_Set_res_restore()

function;

• cleans the job in job list by calling BBRM_initialize() function;

•
• sets the task parameters in SoD by calling the BBRM_Sod_parameters() function;

• if the test failed:

• restores the BB-RM resources by calling BBRM_Set_res_restore()

function;

73 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

• cleans the job in job list by calling BBRM_initialize() function;

•
• sets all resources in RUNNING MODE;

• sets the job state at SUSPEND MODE;

• returns the created job ID.

Parameters:

radio_p (IN) Radio pointer with all Radio parameters.

created_job_id (OUT) Returns the created job ID.

Returns:

• BBRM_FATAL_ERROR_RADIO - This radio can't to be run.

• BBRM_FATAL_ERROR_RES_STATE - Error while change the BB-RM

resources states.

• BBRM_ERROR_SIMUL - This radio fail in requirements simulation.

• BBRM_FATAL_ERROR_UNAL_T - Tasks release fail.

• BBRM_ERROR_SOD_FAILED - SOD function failed.

• BBRM_FATAL_ERROR_ALLOC_F - Error while allocating the FIFOs in Sod

platform.

• BBRM_ERROR_PARAM - Error while set the task parameters in SoD.

• BBRM_OK - Operation successful.

bbrm_code_return_t BBRM_Job_resume (const

uint8_t job_id)

This function sets the given job running in the platform.

The internal procedures are:

• Validates if the job state, must be in suspend mode;

• For each task in job:

• resumes the task in SoD by calling phSodNmTask_Resume() function;

• validates the result;
• Changes the job state.

Parameters:

job_id (IN) ID of the job that will be resumed.

Returns:

• BBRM_ERROR_JOB_RES - Job is not ready to be resumed.

• BBRM_FATAL_ERROR_SOD_FAILED - SOD function failed.

• BBRM_OK - Operation successful.

74 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

bbrm_code_return_t BBRM_Job_suspend (const

uint8_t job_id)

This function changes the running job to a suspended job, but the job still in the platform, that

means, all requirements of this job still reserved for it.

The internal procedures are:

• verifies if the given job ID is on running mode;

• determines the number of components in radio by calling the BBRM_Nr_of_p_comps() function;

• traces all components inside the given job and suspend each one by calling the

phSodNmTask_Suspend() function.

• sets the job state as suspend mode.

Parameters:

job_id (IN) ID of the job that will be suspended.

Returns:

• BBRM_ERROR_JOB_SUS - Job is not ready to be suspended (must be in run

state).

• BBRM_FATAL_ERROR_SOD_FAILED - SOD function failed.

• BBRM_OK - Operation successful.

bbrm_code_return_t BBRM_Job_remove (const

uint8_t job_id)

The BBRM_Job_remove function removes the suspended job and remove it from the SoD.

That means all resources used by this job are released in BB-RM.

The internal procedures are:

• verifies if the job state is in suspended mode;

• release from SoD:

• calls BBRM_Release_sod_fifos() function to remove all FIFOs of this job;

• calls BBRM_Release_sod_tasks() function to remove all Tasks of this job;
• releases the BB-RM resources: by calling BBRM_Release_comp_reqs() function;

• cleans the job in job list by calling BBRM_initialize() function;

Parameters:

job_id (IN) ID of the job that will be removed.

Returns:

• BBRM_ERROR_JOB_NREADY - Job is not ready to be removed (must be in

SUSPEND state).

• BBRM_FATAL_ERROR_CPU_FAILED - Round Robin function failed.

• BBRM_FATAL_ERROR_MEM_FAILED - Memory function failed.

• BBRM_FATAL_ERROR_UNALLOC - (At least one) requirement did not be

release.

75 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

• BBRM_FATAL_ERROR_UNAL_F - FIFOs unallocated failed.

• BBRM_FATAL_ERROR_UNAL_T - Tasks unallocated failed.

• BBRM_OK - Operation successful.

B. Functions performances in version 1.2

To measure the performance of the BB-RM functions the GNU Profiling (gprof)

program was used. A stress test was created to calls 2000000 times each BB-RM function.

The results of the version 1.2 are next.

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls us/call us/call name

 1.04 23.82 0.32 2000000 0.16 4.28 BBRM_Job_create

 1.04 24.14 0.32 phSodNmPort_Connect

 1.04 24.46 0.32 phSodNmTask_Delete

 0.98 24.77 0.30 phSodMgr_TileInitialized

 0.95 25.05 0.29 phSodNmPort_Disconnect

 0.65 27.02 0.20 2000000 0.10 1.00 BBRM_Job_remove

 0.64 27.21 0.20 phSodMgr_MemStateBlockAlloc

 0.00 30.63 0.00 1 0.00 0.00 BBRM_initialize

 % time - the percentage of the total running time of the program used by this function.

cumulative seconds - a running sum of the number of seconds accounted for by this

function and those listed above it.

self seconds - the number of seconds accounted for by this function alone. This is the

major sort for this listing.

calls - the number of times this function was invoked, if this function is profiled, else

blank.

self ms/call - the average number of milliseconds spent in this function per call, if this

function is profiled, else blank.

total ms/call - the average number of milliseconds spent in this function and its

descendents per call, if this function is profiled, else blank.

76 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

name - the name of the function. This is the minor sort for this listing. The index shows

the location of the function in the gprof listing. If the index is in parenthesis it shows where

it would appear in the gprof listing if it were to be printed.

 Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.03% of 30.63 seconds

index % time self children called name

 <spontaneous>

[1] 35.0 0.17 10.54 main [1]

 0.32 8.23 2000000/2000000 BBRM_Job_create [2]

 0.20 1.79 2000000/2000000 BBRM_Job_remove [6]

 0.00 0.00 1/1 BBRM_initialize [76]

 0.32 8.23 2000000/2000000 main [1]

[2] 27.9 0.32 8.23 2000000 BBRM_Job_create [2]

 0.19 4.46 2000000/2000000 BBRM_Simul_radio_reqs [4]

 1.65 0.00 2000000/2000000 BBRM_Test_radio [8]

 0.74 0.00 2000000/2000000 BBRM_Alloc_sod_fifos [15]

 0.05 0.50 2000000/2000000 BBRM_Set_res_simul [20]

 0.01 0.35 2000000/2000000 BBRM_Set_res_run [25]

 0.19 0.00 2000000/2000000 BBRM_Alloc_sod_tasks [42]

 0.09 0.00 2000000/2000000 BBRM_Sod_parameters [57]

 0.20 1.79 2000000/2000000 main [1]

[6] 6.5 0.20 1.79 2000000 BBRM_Job_remove [6]

 0.56 0.81 10000000/10000000 BBRM_Unalloc_node_reqs [9]

 0.33 0.00 2000000/2000000 BBRM_Unalloc_sod_fifos [28]

 0.09 0.00 2000000/2000000 BBRM_Unalloc_sod_tasks [58]

 [76] 0.0 0.00 0.00 1 BBRM_initialize [76]

This table describes the call tree of the program, and was sorted by the total amount of time

spent in each function and its children.

Each entry in this table consists of several lines. The line with the index number at the left

hand margin lists the current function. The lines above it list the functions that called this

function, and the lines below it list the functions this one called.

This line lists:

 Index - A unique number given to each element of the table. Index numbers are sorted

numerically. The index number is printed next to every function name so it is easier to look

up where the function in the table.

77 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

 % time - This is the percentage of the `total' time that was spent in this function and its

children. Note that due to different viewpoints, functions excluded by options, etc, these

numbers will NOT add up to 100%.

 self - This is the total amount of time spent in this function.

 children - This is the total amount of time propagated into this function by its children.

 called - This is the number of times the function was called. If the function called itself

recursively, the number only includes non-recursive calls, and is followed by a `+'

and the number of recursive calls.

 name - The name of the current function. The index number is printed after it. If the

function is a member of a cycle, the cycle number is printed between the function's name

and the index number.

 For the function's parents, the fields have the following meanings:

 self - This is the amount of time that was propagated directly from the function into this

parent.

 children - This is the amount of time that was propagated from the function's

children into this parent.

 called - This is the number of times this parent called the function `/' the total number of

times the function was called. Recursive calls to the function are not included in the

number after the `/'.

 name - This is the name of the parent. The parent's index number is printed after it. If

the parent is a member of a cycle, the cycle number is printed between the name and the

index number.

 If the parents of the function cannot be determined, the word `<spontaneous>' is printed in

the `name' field, and all the other fields are blank.

 For the function's children, the fields have the following meanings:

 self - This is the amount of time that was propagated directly from the child into the

function.

 children - This is the amount of time that was propagated from the child's children to

the function.

 called - This is the number of times the function called this child `/' the total number of

times the child was called. Recursive calls by the child are not listed in the number after

the `/'.

78 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

 name - This is the name of the child. The child's index number is printed after it. If the

child is a member of a cycle, the cycle number is printed between the name and the index

number.

 If there are any cycles (circles) in the call graph, there is an entry for the cycle-as-a-whole.

This entry shows who called the cycle (as parents) and the members of the cycle (as

children.)

 The `+' recursive calls entry shows the number of function calls that were internal to the

cycle, and the calls entry for each member shows, for that member, how many times it was

called from other members of the cycle.

Index by function name

 [1] main

 [2] BBRM_Job_create

 [6] BBRM_Job_remove

 [76] BBRM_initialize

C. Functions performances in version 1.3

The same example was used to test the version 1.3 and the results are listed next.

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 0.93 22.66 0.25 2000000 0.00 0.00 BBRM_Job_create

 0.90 22.89 0.24 phSodMgr_TileInitialized

 0.78 23.11 0.21 phSodNmPort_Connect

 0.56 24.28 0.15 2000000 0.00 0.00 BBRM_Job_remove

 0.56 24.43 0.15 phSodMgr_MemFifoBlockAlloc

 0.56 24.58 0.15 phSodMgr_MemTaskAlloc

 0.00 26.76 0.00 1 0.00 0.00 BBRM_initialize

% time - the percentage of the total running time of the program used by this function.

cumulative seconds - a running sum of the number of seconds accounted for by this

function and those listed above it.

self seconds - the number of seconds accounted for by this function alone. This is the

major sort for this listing.

79 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

calls - the number of times this function was invoked, if this function is profiled, else

blank.

self ms/call - the average number of milliseconds spent in this function per call, if this

function is profiled, else blank.

total ms/call - the average number of milliseconds spent in this function and its

descendents per call, if this function is profiled, else blank.

name - the name of the function. This is the minor sort for this listing. The index shows

the location of the function in the gprof listing. If the index is in parenthesis it shows where

it would appear in the gprof listing if it were to be printed.

 Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.04% of 26.76 seconds

index % time self children called name

 <spontaneous>

[2] 25.9 0.02 6.91 main [2]

 0.25 5.12 2000000/2000000 BBRM_Job_create [3]

 0.15 1.39 2000000/2000000 BBRM_Job_remove [6]

 0.00 0.00 1/1 BBRM_initialize [79]

 0.25 5.12 2000000/2000000 main [2]

[3] 20.1 0.25 5.12 2000000 BBRM_Job_create [3]

 0.14 3.00 2000000/2000000 BBRM_Simul_radio_reqs [4]

 1.01 0.00 2000000/2000000 BBRM_Test_radio [10]

 0.40 0.00 2000000/2000000 BBRM_Alloc_sod_fifos [19]

 0.03 0.21 2000000/2000000 BBRM_Set_res_simul [32]

 0.00 0.18 2000000/2000000 BBRM_Set_res_run [35]

 0.10 0.00 2000000/2000000 BBRM_Alloc_sod_tasks [50]

 0.05 0.00 2000000/2000000 BBRM_Sod_parameters [60]

 0.15 1.39 2000000/2000000 main [2]

[6] 5.7 0.15 1.39 2000000 BBRM_Job_remove [6]

 0.28 0.84 10000000/10000000 BBRM_Release_node_reqs [9]

 0.18 0.00 2000000/2000000 BBRM_Release_sod_fifos [37]

 0.09 0.00 2000000/2000000 BBRM_Release_sod_tasks [55]

 [77] 0.0 0.00 0.00 1 BBRM_initialize [77]

This table describes the call tree of the program, and was sorted by the total amount of time

spent in each function and its children.

80 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

Each entry in this table consists of several lines. The line with the index number at the left

hand margin lists the current function. The lines above it list the functions that called this

function, and the lines below it list the functions this one called.

This line lists:

 Index - A unique number given to each element of the table. Index numbers are sorted

numerically. The index number is printed next to every function name so it is easier to look

up where the function in the table.

 % time - This is the percentage of the `total' time that was spent in this function and its

children. Note that due to different viewpoints, functions excluded by options, etc, these

numbers will NOT add up to 100%.

 self - This is the total amount of time spent in this function.

 children - This is the total amount of time propagated into this function by its children.

 called - This is the number of times the function was called. If the function called itself

recursively, the number only includes non-recursive calls, and is followed by a `+'

and the number of recursive calls.

 name - The name of the current function. The index number is printed after it. If the

function is a member of a cycle, the cycle number is printed between the function's name

and the index number.

 For the function's parents, the fields have the following meanings:

 self - This is the amount of time that was propagated directly from the function into this

parent.

 children - This is the amount of time that was propagated from the function's

children into this parent.

 called - This is the number of times this parent called the function `/' the total number of

times the function was called. Recursive calls to the function are not included in the

number after the `/'.

 name - This is the name of the parent. The parent's index number is printed after it. If

the parent is a member of a cycle, the cycle number is printed between the name and the

index number.

 If the parents of the function cannot be determined, the word `<spontaneous>' is printed in

the `name' field, and all the other fields are blank.

 For the function's children, the fields have the following meanings:

81 | P a g e U A - D E T I - R e s o u r c e M a n a g e r

 Emanuel Miranda 2008

 self - This is the amount of time that was propagated directly from the child into the

function.

 children - This is the amount of time that was propagated from the child's children to

the function.

 called - This is the number of times the function called this child `/' the total number of

times the child was called. Recursive calls by the child are not listed in the number after

the `/'.

 name - This is the name of the child. The child's index number is printed after it. If the

child is a member of a cycle, the cycle number is printed between the name and the index

number.

 If there are any cycles (circles) in the call graph, there is an entry for the cycle-as-a-whole.

This entry shows who called the cycle (as parents) and the members of the cycle (as

children.)

 The `+' recursive calls entry shows the number of function calls that were internal to the

cycle, and the calls entry for each member shows, for that member, how many times it was

called from other members of the cycle.

Index by function name

 [2] main

 [3] BBRM_Job_create

 [6] BBRM_Job_remove

 [77] BBRM_initialize

