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palavras-chave 

 
Gerenciador de recursos, Rádio definido por Software, 

Sistema heterogéneo de Multi-processadores. 
 

 
resumo 
 

 

         Esta tese reporta a implementação de um módulo 

gerenciador de recursos para uma plataforma heterogénea 

multi-processador de rádio para equipamento movel. 

Nessa plataforma os rádios são definidos como data flows 

e são dinamicamente alocados, ou libertados consuante a 

necessidade da aplicação. 

         Os rádios são alocados em runtime e requerem 

vários recursos que podem ou não estar livres na 

plataforma. Quando uma tentativa de alocação de um 

rádio falha, todos os recursos até ai reservados têm que ser 

libertados. Esta metodologia requer tempo e não é 

eficiente. O objectivo desta dissertação é investigar 

diferentes metodologias e algoritmos para tornar o 

processo de alocação mais eficiente. A abordagem 

escolhida foi baseada na modelação dos recursos, opção 

que permite controle de admissão e é independente da 

plataforma. Este trabalho foi desenvolvido o mais 

genericamente possível para abranger a maior variedade 

de aplicações. 

         No estado actual do projecto são suportados até 5 

standards de rádio simultaneamente, cada um com 

diferentes taxas de entrada/saída e com requisitos real-

time. Em conclusão, este projecto contrói o caminho para 

a quarta geração (4G) de tecnologia de comunicação. 
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abstract 

 
         This dissertation addresses the project and 

implementation of a Resource Manager module for 

heterogeneous multi-processor radio platforms. In the 

target platform the radios are defined as data flows and are 

dynamically allocated and released, according to the 

application needs.  

         Radios are allocated at runtime and require the 

sequential allocation of several resources that may or may 

not be available. Whenever the allocation of any necessary 

resource fails, the radio allocation procedure has to be 

aborted and the eventually allocated resources released. 

Allocating and de-allocating resources is costly and thus 

this methodology is not efficient. In the scope of this 

dissertation are investigated different methods and 

algorithms to make the radio allocation process more 

efficient. Four different possibilities are considered and 

assessed. The chosen approach is based in the use of a 

resource model, which permits fast admission control and 

is platform-independent, since it does not require any 

modification on the platform-specific modules. This 

application is being developed as generically as possible 

to be able to embrace the largest possible group of 

applications.  

         In its current status this project supports up to 5 

different radio standards concurrently, each one exhibiting 

specific input/output rates and real-time requirements. In 

conclusion, it is the path to fourth generation (4G) 

communication technology. 

 

  



7 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

Contents 

1. INTRODUCTION 13 

A. SOFTWARE-DEFINED RADIO 14 

B. THIS PROJECT 15 

C. BASE-BAND RESOURCE MANAGER 15 

D. THESIS OVERVIEW 16 

2. BACKGROUND 17 

A. REAL-TIME SYSTEMS 17 

B. MULTI-PROCESSOR SYSTEM 17 

C. MULTI SKILLS SYSTEMS 18 

D. SINGLE-RATE DATAFLOW 18 

3. SOFTWARE-DEFINED RADIO FRAMEWORK AND RADIO DESCRIPTION 21 

A. HARDWARE FRAMEWORK 21 

B. SOFTWARE FRAMEWORK 24 

C. RADIO MODEL 29 

D. RADIO STRUCTURE AND DESIGN 31 

E. RADIO EXAMPLE 32 

4. DESIGN SPACE, PROBLEMS AND SOLUTIONS 33 

A. GOALS OF BB-RM 33 

B. DESIGN SPACE 34 

C. SOLUTIONS 36 

D. SOLUTION ASSESSMENT 38 

5. IMPLEMENTATION OF THE BB-RM 39 

A. JOB – RADIO INSTANCE 39 

B. BB-RM FUNCTIONS 40 

C. DATA STRUCTURE OF BB-RM 40 

D. JOB STATES 43 

E. INTERFACE G-RM <-> BB-RM 44 

F. INTERFACE BB-RM <-> SOD 48 

G. RESOURCE ALLOCATION PROBLEM 49 

H. SORT STRATEGY 51 

I. COMPLETE RAP HEURISTICS, INCLUDING COMMUNICATION 53 

J. DEBUG 54 

K. BB-RM VERSIONS 55 

L. SOURCE CODE 56 



8 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

6. EXPERIMENTAL RESULTS 59 

A. OPTIMIZATIONS 59 

B. MW VS RW RESULTS 62 

C. BF VS FF RESULTS 63 

D. COMPLETE RESOURCE ALLOCATION PROBLEM RESULTS 65 

E. FRAGMENTATION RESULTS 65 

7. CONCLUSIONS AND FUTURE WORK 67 

A. FUTURE WORK 68 

8. BIBLIOGRAPHY 69 

9. APPENDICES 71 

A. DOXYGEN API CODE DOCUMENTATION 71 

B. FUNCTIONS PERFORMANCES IN VERSION 1.2 75 

C. FUNCTIONS PERFORMANCES IN VERSION 1.3 78 

  



9 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

Abbreviations 

0G - Zero Generation 

1G - First Generation 

2G - Second Generation 

3G - Third Generation 

3GPP - Third Generation Partnership Project 

4G - Fourth Generation 

ADC - Analog-to-Digital Converter 

AHB - Advanced High-performance Bus 

API - Application Programmer’s Interface 

ARM - Advanced RISC Machine 

AXI - Advanced eXtensible Interface 

BB-RM - Baseband Resource Manager 

BF - Best Fit 

CM - Configuration Manager 

CPU - Central Processor Unit 

DAC - Digital-to-Analog Converter 

DSP - Digital Signal Processing 

EVP - Embedded Vector Processor 

F-ARM - FPGA ARM 

FF - First Fit 

FIFO - First In First Out 

FPGA - Field-Programmable Gate Array 

G-RM - Global Resource Manager 

GSM - Groupe Special Mobile 

J-ARM - JEOME ARM 

J-ARM - JEOME ARM 

J-EVP - JEOME EVP 

J-EVP - JEOME EVP 

J-Tile - JEOME tile 

LTE - Long Term Evolution 

MPS - Multi-Processor System 

MW - Module Weights 

NM - Network Manager 

OS - Operating System 

PC - Personal Computer 

RAP - Resource Allocation Problem 

RISC - Reduced Instruction Set Computer 

RM - Resource manager 



10 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

RR - Round Robin 

RT - Real-Time 

RTOS - Real-Time Operating System 

RTS - Real-Time System 

RW - Relative Weights 

RX - Receive 

SDR - Software-Defined Radio 

SK - Streaming Kernel 

SoC - System On Chip 

SoD - Sea of DSP 

SRDF - Single Rate Dataflow 

TX - Transmit 

UART - Universal Asynchronous Receiver/Transmitter 

uC/OS - Micro-Controller Operating System 

USB - Universal Serial Protocol 

VBP - Vector Bin-Packing 

WLAN - Wireless Local Area Network 

  



11 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

List of tables 

 
TABLE 1 : RESOURCE OPTIMIZATION ......................................................................................................................... 60 

TABLE 2 : JOB OPTIMIZATION .................................................................................................................................. 60 

TABLE 3 : OPTIMIZATION RESULTS ........................................................................................................................... 60 

TABLE 4 : FUNCTIONS PERFORMANCES ..................................................................................................................... 61 

TABLE 5 : MW AND RW RESULTS ........................................................................................................................... 63 

TABLE 6 : BF AND FF RESULTS ................................................................................................................................ 64 

List of figures 

FIGURE 1 : ORDINARY RADIO ARCHITTECTURE FROM [14] ............................................................................................ 13 

FIGURE 2 : SOD RADIO SYSTEMATIC FROM [14] ......................................................................................................... 14 

FIGURE 3 : SINGLE-RATE DATAFLOW ........................................................................................................................ 19 

FIGURE 4 : TILE STRUCURE ..................................................................................................................................... 21 

FIGURE 5 : JEOME STRUCTURE .............................................................................................................................. 22 

FIGURE 6 : PLATFORM STRUCTURE ........................................................................................................................... 22 

FIGURE 7 : AEROPROTO2 BOARD ............................................................................................................................ 23 

FIGURE 8 : SOFTWARE STRUCTURE ........................................................................................................................... 25 

FIGURE 9 : SOD CONCEPTUAL VIEW FROM [5] ........................................................................................................... 27 

FIGURE 10 : SOD EXECUTION ARCHITECTURE FROM [5] ............................................................................................... 27 

FIGURE 11 : WLAN DATFLOW ................................................................................................................................ 29 

FIGURE 12 : RADIO STRUCTURE ............................................................................................................................... 31 

FIGURE 13 : WLAN 802.11A EXAMPLE FROM [12] ................................................................................................... 32 

FIGURE 14 : BB-RM DESIGN SPACE ......................................................................................................................... 34 

FIGURE 15 : BB-RM SOLUTION-1 ........................................................................................................................... 36 

FIGURE 16 : BB-RM SOLUTION-2 ........................................................................................................................... 37 

FIGURE 17 : BB-RM SOLUTION-3 ........................................................................................................................... 37 

FIGURE 18 : BB-RM SOLUTION-4 ........................................................................................................................... 38 

FIGURE 19 : BB-RM DATA STRUCTURE ..................................................................................................................... 41 

FIGURE 20 : JOB STATES ........................................................................................................................................ 44 

FIGURE 21 : BBRM_INICIALIZE FUNCTION ................................................................................................................ 45 

FIGURE 22 : BBRM_JOB_TEST FUNCTION ................................................................................................................ 45 

FIGURE 23 : BBRM_JOB_CREATE FUNCTION ............................................................................................................ 46 

FIGURE 24 : BBRM_JOB_RESUME FUNCTION ........................................................................................................... 47 

FIGURE 25 : BBRM_JOB_SUSPEND......................................................................................................................... 47 

FIGURE 26 : BBRM_JOB_REMOVE ......................................................................................................................... 48 

FIGURE 27 : VBP EXAMPLE .................................................................................................................................... 50 

FIGURE 28 : MW EXAMPLE .................................................................................................................................... 52 

FIGURE 29 : RW EXAMPLE ..................................................................................................................................... 52 

FIGURE 30 : DEBUG MESSAGES ............................................................................................................................... 55 

FIGURE 31 : ERROR MESSAGES ................................................................................................................................ 55 

FIGURE 32 : FILES STRUCTURE ................................................................................................................................. 57 

FIGURE 33 : RADIO TO TEST THE MW AND RW METHODS ........................................................................................... 62 

FIGURE 34 : RADIO TO TEST THE BF AND FF ALGORITHMS ............................................................................................ 64 

FIGURE 35 : RADIOS TO TEST THE FIFO FRAGMENTATION ............................................................................................ 65 

FIGURE 36 : FIFO MEMORY ................................................................................................................................... 66 



12 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

 

  

(This page was left blank delivered) 



13 | P a g e  

  

1. Introduction

The way to the future is built on knowledge from the past, so a brief description of 

the cellular mobile radio history will be given next.

As early as 1921 the first communications were done via the mobile radios rigs and 

used in vehicles such as taxicabs, police cruisers and ambulances. These devices were not 

considered as mobile phones because they were not normally connected to the telepho

network (1).   

 During the early 1940s, Motorola developed a backpacked two

Walkie-Talkie and later developed a large hand

was in 1945 when the zero generation (0G) o

mobile phone just worked in one station, so the cellular concept did not exist. At this time 

several prototypes were invented 

Firstly in Tokyo, Japan (1979) and two year latter in De

and Sweden, the first commercial cellular phone networks, called as first generation (1G), 

were launched. 

In 1982 the Groupe Spécial Mobile

phones, and in 1990 the first GSM mobile communication infrastructure was deployed. 

This new release was called second generation (2G). This new variant brought the SMS 

service, which permits sending text messages in addition to the voice calls.

Not long after and with th

systems began to develop. There were many different standards created by different 

contenders. The meaning of 3G was the standardization of the requirements (maximum 

data rate indoors/outdoors) instead o

standards were introduced. 

 

Figure 

 

Current ordinary radio devices have a similar

Figure 1. The control element is the Operating System (OS) that runs on a Central 

Processor Unit (CPU). It manages all the device activities on the platform. It should be 

 U A - D E T I - R e s o u r c e  M a n a g e r

 Emanuel Miranda

  

Introduction 

The way to the future is built on knowledge from the past, so a brief description of 

the cellular mobile radio history will be given next. 

As early as 1921 the first communications were done via the mobile radios rigs and 

used in vehicles such as taxicabs, police cruisers and ambulances. These devices were not 

considered as mobile phones because they were not normally connected to the telepho

During the early 1940s, Motorola developed a backpacked two

Talkie and later developed a large hand-held two-way radio for the US military. It 

was in 1945 when the zero generation (0G) of mobiles phones was invented. There the 

mobile phone just worked in one station, so the cellular concept did not exist. At this time 

several prototypes were invented (2).  

Firstly in Tokyo, Japan (1979) and two year latter in Denmark, Finland, Norway 

and Sweden, the first commercial cellular phone networks, called as first generation (1G), 

Groupe Spécial Mobile (GSM) (3) created the first standard for mobile 

990 the first GSM mobile communication infrastructure was deployed. 

This new release was called second generation (2G). This new variant brought the SMS 

service, which permits sending text messages in addition to the voice calls.

Not long after and with the introduction of 2G networks, third generation 

systems began to develop. There were many different standards created by different 

contenders. The meaning of 3G was the standardization of the requirements (maximum 

data rate indoors/outdoors) instead of technology standards. At this point, several different 
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remarked that each radio has 

standard is supported by dedicated hardware. 

that supports M radio standards with M dedicated hardware modules.

The number of applications supported by mobile devices is growing day by day. Most of 

them use remote databases and/or services. The need to make an efficient use of the 

communication bandwidth led to th

 Nowadays, mobile cell system

Furthermore, some of them (e.g. GSM) have several versions. This imposes a constraint on 

the radio devices. If a radio device aims at supporting the

it would need dedicated hardware for each one and so it becomes big and complex. 

Another drawback of this radio architecture is that it is not upgradeable, and thus cannot 

evolve to support radio standards than are create

Finally, it should be noted that the “classical” architecture depicted in 

mobile devices, and thus subject to strict size 

number of dedicated HW radios and, consequently, the number of standards supported. 

In face of all of these trends, the ordinary phone platform is starting to become obsolete. 

Following the personal computer (PC)

heading to Multi-Processor Systems (MPS), called 4G 

 Multiprocessor systems present several advantages in terms of flexibility, power 

efficiency and cost (5). 

In conclusion, the balance between installed uni and multi

upcoming years. 

A. Software-

The negative aspects pointed out to the current radio platforms can be traced to the 

dedicated hardware implementation of the radio components. This observation led to the 

development of the Software

revolution in the field of hardware devices. The use of SDR is completely compatible with 

the existing network infrastructure and standards, however changes significantly the 

internal architecture of the mobile devices.

 The major difference between the conventional and SDR radio platforms is the fact 

that instead of having dedicated hardware for each radio standard, the radios are 

programmable software entities, similar to application programs in a personal computer. 
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Thus, provided that enough resources are available, it becomes possible running multiple 

radios simultaneously as well as replacing radios dynamically, according to the needs. 

 As depicted in Figure 2, the SDR architecture comprises an OS that manages the 

platform resources, namely supporting run-time reconfiguration by installing, loading and 

activating new radios.  

 In this approach, the radios are now engineered in software, easily allowing 

platform updates with the objective of supporting new radios and standards. Thus, the 

platforms become flexible and evolutive.  

B.  This project 

In SDR architectures, the instantiation of radios requires resources such as CPU, 

memory and communication channels. These services are provided by the so-called Base-

Band Resource Manager (BB-RM) module. The main target of this master’s dissertation is 

to develop a BB-RM module able to manage efficiently the different resources.  

The platform used in this work is based in a multi-processor system. Furthermore, 

each CPU board has local memory, which is partially used by the local processes and 

partially shared, for communication. Hence, the BB-RM has to take in account the 

available computational and memory resources available in each processor. 

In addition, the platform is heterogeneous, meaning that it uses diverse processor 

types. Specifically, the platform has Reduced Instruction Set Computer (RISC) processors 

and Embedded Vector Processors (EVP). In this type of systems some functions can be 

executed more efficiently in one particular type of processors than in others. Hence, the 

BB-RM must also be aware of these possibilities and permit allocating the computation to 

the best suited execution platforms. The main purpose of this platform is infotainment 

applications. Many of these applications have soft real-time (RT) requirements, and thus 

the BB-RM must also guarantee that radio applications meet the associated deadlines. 

C. Base-Band Resource Manager 

Embedded platforms for media streaming have to handle several streams at the 

same time, each one with its own properties (7). Typically the radio can be divided in 

minimal groups of components, called processing components that are controlled 

independently by an external source. These processing components that form the radio 

communicate through First-in-First-out (FIFO) buffers. 
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Working on the radio operating system layer, the BB-RM has the responsibility to 

allocate these radios on the platform. It uses a strong policy to ensure: 

 

� Strict admission control - a radio is just allowed to run on the platform if the system 

can support the resource budget and RT requirements of each radio component. 

� Strict resource reservation - each radio can only use the resources that have been 

allocated to it. 

 

To provide these policies the BB-RM copes with several issues like: 

 

� Heterogeneous multi-processor platform - several processors of different types. 

� Multiple radios simultaneously active - the platform should provide different radios 

and radios standards at the same type. 

� Different rates of operation - each component in the radio has its own rate. 

� Unpredictable start/stop times - the start/stop of the radios are independent 

among them. 

� Must provide RT guarantees - radio functions require real-time guarantees. 

D. Thesis overview 

This master’s thesis is split into six main chapters. The “Background” chapter 

introduces basic concepts associated with the work developed. The “Software-Defined 

Radio framework and radio description” chapter presents a detailed description of the 

platform hardware and software architecture.  In the “Design space, problems and 

solutions” chapter it is shown the workspace of BB-RM, its problems and possible 

solutions. The core chapter of this thesis is “Implementation of the BB-RM”, in which it is 

explained the BB-RM implementation, functions and API. The implemented solution to 

solve the resource allocation problem and the file structure is also described. The tests and 

analysis of the BB-RM implementation are presented in chapter “Experimental results and 

analysis”. Finally, an overview and global assessment of the work developed is presented 

in chapter “Conclusions and future work”. 
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2. Background 

 This chapter reviews some fundamental concepts that are associated with the work 

developed in this dissertation. 

A. Real-Time Systems 

Real-Time Systems (RTS) are systems with time constraints. This means that the 

system activities have associated temporal constraints. The most common temporal 

constraint is called deadline, and indicates an upper bound to the conclusion of a task. 

Deadlines can be classified according to the relevance and potential consequences of 

failing to meet them. A deadline is classified as Firm if, when violated, the results 

obtained are useless to the system. Conversely, deadlines are classified as Soft when 

computations obtained after the deadline keep some level utility. A firm deadline is 

classified as Hard when its violation can result in catastrophic consequences, e.g. by 

threatening human lives or causing significant economical impact. Systems may also be 

classified according to the deadlines of the associated tasks. Soft Real-Time Systems 

contain only non real-time or real-time tasks having soft or firm deadlines. Hard Real-

Time Systems contain at least one task having a hard deadline (8). 

B. Multi-Processor System 

 MPS is a computational system which has at least two processors, also designated 

by cores (9).  

The advantage of such system is to increase the computational power, but it doesn't mean 

that two processors running the same code as one processor will run in half the time! 

One MPS can be composed of several cores of the same type, being designated in this case 

by homogeneous system or composed of different core types, in which case is called 

heterogeneous system. 
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C. Multi skills systems 

Nowadays almost all real-time applications, i.e., applications where the time 

response is required are supported by RTOS. These systems became trivial in such a way 

that even simple applications where the time response is not hard are frequently based on 

RTOS. 

On the industry field there are some systems which contain RT behavior running on 

a uni-processor system. On a uni-processor system the OS does not need to handle shared 

resources or duplicated resources. Early on, most of these platforms were migrated to 

MPS. Due to the shared resources and duplicated resources required, a RM was used to 

handle them. The MPS can have all processors of a same type, or processors of a different 

type (10). To the system which gives RT guaranties and running on a MPS it’s called multi 

skill systems. 

In summary, to handle the multi skills systems it is necessary to add an additional 

background software to manage the shared and duplicated resources in the platform. This 

additional software is pretty important. If the resources are not properly handled, a 

heterogeneous MPS can be worst than a uni-processor platform in performance terms. 

D. Single-Rate Dataflow 

Single rate dataflow (SRDF) is a computational model that can be used for the 

specification and implementation of Digital Signal Processing (DSP) applications. Its main 

advantage over other computational models is that it uses a strict data-driven rule to decide 

when each computation can be performed. This allows for rigorous RT analysis, and the 

computation of static schedules and buffer sizes that are guaranteed to meet the RT 

requirements of the application. As represented in Figure 3, an SRDF graph is a directed 

graph where the nodes (normally referred to as actors in the context of SRDF) represent a 

block of computation, and edges represent FIFO queues used by actors to communicate 

amongst themselves. Each actor has a strict rule for activation; whenever a pre-specified 

amount of data – referred to as a token - is available at each of its inputs, it can be 

activated. In dataflow jargon this activation is frequently referred to as a firing. When an 

SRDF actor fires, it consumes a token from each one of its inputs, and produces a token on 

each one of its outputs. The model allows the specification of an arbitrary number of 

tokens which have to be stored in the queues prior to the beginning of execution. This 

initial number of tokens per edge is often referred to as the delay of that edge.  By default, 

actors hold no internal state from one firing to another. An edge from an actor to itself, 

with a delay of one is frequently used to represent the passage of state between consecutive 

firings. For more details see (11). 
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Figure 3 : Single-Rate dataflow 
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3. Software

and Radio description

 This section presents a general overview of the platform hardware, from the 

smallest conceptual unit, calle

global platform. An explanation about the physical connections and the logical relations 

between each component will be given further ahead.

A. Hardware Framework

Tile

 

 

 The smallest conceptual unit defined in the system is designated by tile, being 

composed by a core and dedicated local memory. The core can be an Advanced RISC 

Machine (ARM) or an EVP. The dedicated memory is split in to three parts: code memory, 

data/state memory and FIFO memory. The function of each one of these memory blocks 

will be detailed in section C

four tiles, two of them having ARM processors and the other two with EVP

 The communication among processes can be either, local when the processes reside 

in the same tile, or remote, when the processes reside in different tiles. Local 

communications are carried directly over the tile's own FIFO memory block, which is 

directly addressable by both processes. When the two processes are executed in different 
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Software-Defined Radio Framework 

and Radio description 

This section presents a general overview of the platform hardware, from the 

smallest conceptual unit, called tile, crossing over the JEOME hardware and arriving to the 

global platform. An explanation about the physical connections and the logical relations 

between each component will be given further ahead. 

Hardware Framework 

Tile 

 
Figure 4 : Tile strucure 

The smallest conceptual unit defined in the system is designated by tile, being 

composed by a core and dedicated local memory. The core can be an Advanced RISC 

Machine (ARM) or an EVP. The dedicated memory is split in to three parts: code memory, 

e memory and FIFO memory. The function of each one of these memory blocks 

C of this chapter. The platform used in this work is composed

four tiles, two of them having ARM processors and the other two with EVP

The communication among processes can be either, local when the processes reside 

in the same tile, or remote, when the processes reside in different tiles. Local 

are carried directly over the tile's own FIFO memory block, which is 

directly addressable by both processes. When the two processes are executed in different 
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Defined Radio Framework 

This section presents a general overview of the platform hardware, from the 

d tile, crossing over the JEOME hardware and arriving to the 

global platform. An explanation about the physical connections and the logical relations 

The smallest conceptual unit defined in the system is designated by tile, being 

composed by a core and dedicated local memory. The core can be an Advanced RISC 

Machine (ARM) or an EVP. The dedicated memory is split in to three parts: code memory, 

e memory and FIFO memory. The function of each one of these memory blocks 

of this chapter. The platform used in this work is composed by 

four tiles, two of them having ARM processors and the other two with EVPs. 

The communication among processes can be either, local when the processes reside 

in the same tile, or remote, when the processes reside in different tiles. Local 

are carried directly over the tile's own FIFO memory block, which is 

directly addressable by both processes. When the two processes are executed in different 
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tiles the communication is carried out via the Advanced eXtensible Interface (AXI) (

4). In this case the FIFO memory is allocated only in the tile of one of the processes. 

Consider for instance a process A running on tile #1 that needs to transfer data to a

B that will execute in tile #2. In the example the FIFO memory is allocated in tile B and, 

consequently, when process A issues a write operation the data is actually written in FIFO 

memory of the tile #2. Process B reads the data it from its own l

operations are more costly than local operations, a factor that has to be taken into account 

during the system design. Therefore, communicating processes should, whenever possible, 

be allocated to the same tile to minimize the communica

 For the sake of performance, the FIFO memory is preferably allocated to the tile of 

the consumer process. As stated above, remote operations, carried out via that AXI bus, are 

more costly than local operations, issued on local memory. Writin

succeed, provided that the buffers are properly dimensioned. On the other hand, the reader 

process has to pool the memory to detect the arrival of new data. Thus, a single data 

transaction typically involves a single write operation and

consequently, the complexity of the reading operation end up having a higher impact on 

the system performance than the complexity of the write operation.

 

JEOME

                              

 

JEOME is a NXP’s System On Chip (SoC) specifically developed for SDR. Its 

internal structure is depicted in 

JEOME contains two tiles,

an EVP. The communication between 

Advanced High-performance 

Platform

 

 The SDR platform is composed by two JEOME chips, one 

Gate Array (FPGA) and the external connections. There is a clear separation between the 
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tiles the communication is carried out via the Advanced eXtensible Interface (AXI) (

). In this case the FIFO memory is allocated only in the tile of one of the processes. 

Consider for instance a process A running on tile #1 that needs to transfer data to a

B that will execute in tile #2. In the example the FIFO memory is allocated in tile B and, 

consequently, when process A issues a write operation the data is actually written in FIFO 

memory of the tile #2. Process B reads the data it from its own local memory. Remote 

operations are more costly than local operations, a factor that has to be taken into account 

during the system design. Therefore, communicating processes should, whenever possible, 

be allocated to the same tile to minimize the communication latency. 

For the sake of performance, the FIFO memory is preferably allocated to the tile of 

the consumer process. As stated above, remote operations, carried out via that AXI bus, are 

more costly than local operations, issued on local memory. Writing operations always 

succeed, provided that the buffers are properly dimensioned. On the other hand, the reader 

process has to pool the memory to detect the arrival of new data. Thus, a single data 

transaction typically involves a single write operation and several reading operations and, 

consequently, the complexity of the reading operation end up having a higher impact on 

the system performance than the complexity of the write operation. 

JEOME 

                               
Figure 5 : JEOME structure 

JEOME is a NXP’s System On Chip (SoC) specifically developed for SDR. Its 

internal structure is depicted in Figure 5.  

JEOME contains two tiles, one based on an ARM processor and the other based on 

EVP. The communication between JEOME Tiles (J-Tiles) is carried out via the 

performance Bus (AHB) and AXI protocol. 

Platform 

 
Figure 6 : Platform structure 

The SDR platform is composed by two JEOME chips, one Field

(FPGA) and the external connections. There is a clear separation between the 

R e s o u r c e  M a n a g e r  

Emanuel Miranda 2008 

tiles the communication is carried out via the Advanced eXtensible Interface (AXI) (Figure 

). In this case the FIFO memory is allocated only in the tile of one of the processes. 

Consider for instance a process A running on tile #1 that needs to transfer data to a process 

B that will execute in tile #2. In the example the FIFO memory is allocated in tile B and, 

consequently, when process A issues a write operation the data is actually written in FIFO 

ocal memory. Remote 

operations are more costly than local operations, a factor that has to be taken into account 

during the system design. Therefore, communicating processes should, whenever possible, 

For the sake of performance, the FIFO memory is preferably allocated to the tile of 

the consumer process. As stated above, remote operations, carried out via that AXI bus, are 

g operations always 

succeed, provided that the buffers are properly dimensioned. On the other hand, the reader 

process has to pool the memory to detect the arrival of new data. Thus, a single data 

several reading operations and, 

consequently, the complexity of the reading operation end up having a higher impact on 

JEOME is a NXP’s System On Chip (SoC) specifically developed for SDR. Its 

one based on an ARM processor and the other based on 

is carried out via the 

Field-Programmable 

(FPGA) and the external connections. There is a clear separation between the 
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hardware devoted to the system management and the hardware dedicated to support the 

actual radio system. The hardware dedicated to manage the system, identified by the purple 

color in Figure 6, is based on an FPGA. The FPGA integrates an ARM processor core 

which supports the Data Communication Dispatcher, BB-RM and Sea of Digital Signal 

Processor (SoD) software modules. The purpose and structure of these modules will be 

detailed in the section B.   

 The two JEOME chips, identified by the green color in Figure 6, form the radio 

system, which is the hardware where the SoD Streaming Kernel (SK) and radio functions 

are executed. These services can be executed either in the ARM or the EVP processor, 

depending on several reasons that will be detailed in section C. 

 To make the distinction among the different ARM processors, the FPGA ARM is 

called F-ARM while J-ARM refers to the ARM processors in the JEOME SoC. 

 The block identified as “Host” in Figure 6, also called PC, is a general purpose 

computer where the configuration modules are executed. More specifically, this hardware 

executes the configuration manager and the Global Resource Manager (G-RM). The 

purpose of these software modules is detailed in section B as well. 

 These different modules form a distributed system. The communication between 

the JEOME tiles and the FPGA tiles is based on the AXI bus, while the communication 

with the host is made through Universal Serial Bus (USB) link. This path is used to upload 

the manager software system on the platform. 

 In terms of visibility, the F-ARM is the manager of all others tiles and thus can 

communicate (send and receive data) with all the other tiles. The J-Tiles with EVP 

processors have the same view of the platform. However, the J-Tiles with ARM processors 

just see the EVP within the same JEOME. That is, within the JEOME board the tile with 

an EVP processor sees everyone in platform and the tile with an ARM just sees the other 

tile in JEOME board. This constrain limits the number of possibilities to allocate radio 

components in the platform. On the next board generation this problem is fixed. 

Hardware description 

 
Figure 7 : AeroProto2 board 
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 Figure 7 depicts an AeroProto2. This is a NXP’s board built for development with 

the third Generation Partnership Project in Long Term Evolution (3GPP LTE) and other 

communication standards. 

 In addition to the two JEOME and FPGA tiles, this board integrates interfaces such 

as Digital-to-Analog Converters (DACs) and Analog-to-Digital Converters (ADCs). 

Additionally it incorporates several hosts and a debug interface. As stated above, each 

JEOME SoC has one ARM and one EVP (12). 

External connections 

 The AeroProto2 provides several external connections. The most important ones 

are the following: 

 

� Ethernet (Fast) - RJ45 

� USB connector - USB B-type jack 

� Debug UART RX JEOME - DSUB9 male  

� Debug UART TX JEOME - DSUB9 male 

� USB host controller - USB A-Type plug 

� External reference clock input - SMA jack 

� Base band clock output - SMA jack 

B. Software Framework 

With respect to the radio signal frequency, the software is split into two major 

groups, one dealing with the radio band and the other with the baseband processing. 

Associated with the radio band can be seen all radio systems, the G-RM and the 

configuration manager. On the baseband side there are the BB-RM, SoD, and RTOS. 

These modules are described below. 

Compile-Time environment 

LIME    As started in section C, a radio application is described by a set of software radio 

components written in “C” language, and a radio graph description, in XML. The software 

components, although written in C, conform to the LIME dataflow-based programming 

model, and correspond to dataflow actors. LIME prescribes certain rules that the prototype 

of the head function in each software radio component must adhere to. This function 

prototype informs the LIME compiler about the input and output ports, and the data-

availability dependent activation patterns of the actor. The Radio Graph Description file 

describes how the Software Components are connected with others to form a radio. This 

information can be used by the LIME compiler to generate code for the underlying 

platform. This includes the automatic generation of task wrappers, and automatic 

generation of communication between tasks, using the communication primitives of the 
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underlying multi-processor operating system, which, in the current setup is SoD. The 

LIME compiler also generates a dataflow analysis model, that can be used to compute the 

amount of platform resources (processor cycles per period, buffer sizes) that ar

for the application to meet its real

sourced by NXP. The code and documentation detailing the usage of the language can be 

found in (13).Furthermore, there is not a one

software components and tasks in the platform

compiler may decide –if possible

relative to each other, and merge them onto a single task, as described in 

disadvantage that it reduce the run

also reduces the number of tasks in the radio, the tas

the bounds of worst-case timing analysis, which in turn allows the computation of smaller 

resource requirements. This is described in detail in 

 

Run-Time environment

 

The mapping between the hardware structure, depicted in 

software layer, represented in

right): 

 

� The Configuration Manager (CM) and G

mapped on the host block on the 

the SoC via the USB link. The second vertical block, composed by BB

NM, and RTOS are executed on 

� The RT blocks (last two vertical blocks), are in one of the two JEOMEs running on 

J-ARM or J-EVP. For the sake of simpli

JEOME; both have the same structure
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processor operating system, which, in the current setup is SoD. The 

LIME compiler also generates a dataflow analysis model, that can be used to compute the 

amount of platform resources (processor cycles per period, buffer sizes) that ar

for the application to meet its real-time requirements. The LIME language has been open

sourced by NXP. The code and documentation detailing the usage of the language can be 

Furthermore, there is not a one-to-one correspondence between LIME 

software components and tasks in the platform-specific generated code. This is because the 

if possible- to take groups of actors, schedule them in static order 

to each other, and merge them onto a single task, as described in 

disadvantage that it reduce the run-time mapping options of the Resource Manager, but it 

also reduces the number of tasks in the radio, the task-switching overheads, and tightens 

case timing analysis, which in turn allows the computation of smaller 

resource requirements. This is described in detail in (14). 

 

Time environment 

Figure 8 : Software structure 

The mapping between the hardware structure, depicted in 

software layer, represented in Figure 8, is listed as follows (walking from the left to the 

The Configuration Manager (CM) and G-RM blocks are executed in a PC and are 

mapped on the host block on the Figure 6. The host establishes a connection with 

he SoC via the USB link. The second vertical block, composed by BB

RTOS are executed on the F-ARM processor (FPGA tile)

The RT blocks (last two vertical blocks), are in one of the two JEOMEs running on 

EVP. For the sake of simplicity the software figure represents only one 

E; both have the same structure 
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processor operating system, which, in the current setup is SoD. The 

LIME compiler also generates a dataflow analysis model, that can be used to compute the 

amount of platform resources (processor cycles per period, buffer sizes) that are required 

time requirements. The LIME language has been open-

sourced by NXP. The code and documentation detailing the usage of the language can be 

one correspondence between LIME 

specific generated code. This is because the 

to take groups of actors, schedule them in static order 

to each other, and merge them onto a single task, as described in (14). This has the 

time mapping options of the Resource Manager, but it 

switching overheads, and tightens 

case timing analysis, which in turn allows the computation of smaller 

 

The mapping between the hardware structure, depicted in Figure 6, and the 

, is listed as follows (walking from the left to the 

RM blocks are executed in a PC and are 

. The host establishes a connection with 

he SoC via the USB link. The second vertical block, composed by BB-RM, SoD 

ARM processor (FPGA tile) 

The RT blocks (last two vertical blocks), are in one of the two JEOMEs running on 

city the software figure represents only one 
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 The remaining of this section presents an overview of the functionality of each one 

of the software components that compose the system software architecture. 

 

 

Global RM    The G-RM is the component responsible for controlling the BB-RM. It was 

designed to manage multiple platforms, each with one BB-RM responsible for managing 

the resources of its own platform. Thus the BB-RMs provide, for each platform, admission 

control and resource reservation that are used by the G-RM. Furthermore, the G-RM also 

interacts with the CM, where the radio definitions are stored.  

As illustrated in orange in Figure 8, the G-RM is executed in the host block and 

provides the following services: 

 

� Registration of the radio - stores the radio on CM 

� Load a radio - loads the radio from CM 

� Operation state change - manage the radio’s state, as described in section C 

 

Configuration manager    The CM permits installing, uninstalling and loading different 

radio systems into the radio computer as well as managing the radio system parameters. It 

works as a shelf where the radios and respective configurations are stored. 

 

 

BB-RM    As depicted in Figure 8, the Base Band Resource Manager (BB-RM) is driven 

by the Global RM, supporting the creation, suspension, resume and elimination of radios in 

the corresponding platform. The other way around, the BB-RM uses the SoD Network 

Manager (NM) Application Programmer’s Interface (API) to allocate the radio. Due to its 

importance to this work, the BB-RM component will be described with more detailed 

further ahead in this document. 

 

 

SoD     Nowadays the hardware of multiple and heterogeneous systems changes rapidly, 

and with it the software needed to go along with this evolution. 

The SoD streaming infrastructure provides an environment that enables the reuse of the 

software in different hardware topologies. Such hardware abstraction is related to many 

architecture parameters, such as how and which type of DSP’s are available, how the 

DSP’s are interconnect, whether or not there is a CPU dedicated to execute control, if such 

a CPU is available, whether or not it will execute some signal processing as well, etc (15). 

 Typical heterogeneous systems comprise both DSP’s and CPU’s. The DSP’s are 

developed to execute specialized compute-intensive code efficiently, while CPU’s are 

developed to execute more general control code. SoD takes into account this property to 

create a cost-effective system. 

 The SoD is structured in two main components, the NM and the SK.  

 The NM provides the API with the ability to manage the signal processing tasks 

running on a signal processor (CPU). This API implements the following services: 

 

� Create/delete processing tasks 

� Set up the task graphs by connecting/disconnecting tasks via communication 

channels 
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� Suspend/resume tasks 

� Provide exchange of commands and status information with tasks 

 

The SK executes the task scheduler and supports the data communication required 

by the processing tasks by doing the following: 

 
� Dispatching the signal processing tasks on the DSP or control processor 

� Controlling the flow of signal data by managing the data dependencies between the 

processing tasks 

� Handling data exchange between tasks through communication buffers 

 

As depicted in Figure 9 the SoD has a conceptual view of the system as a streaming graph 

bound by processing tasks. The application control code is exchanging commands and 

status information with the signal processing tasks that cooperate in a streaming graph. 

 

 

 
Figure 9 : SoD conceptual view from [5] 

 

The execution architecture is depicted in Figure 10, where it can be seen that the 

tasks are not connected with each other. The streaming kernel provides the connections 

among the processing tasks. 

 

 
Figure 10 : SoD execution architecture from [5] 

 

The SoD system architecture was designed to support data-flow applications. In this 

data-flow the SoD supports three types of processing tasks: 

task1
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� Streaming tasks - These signal processing tasks are dispatched by the Streaming Kernel 

� ISR tasks - An ISR task detects whether a certain interrupt has occurred and service it 

� Control tasks - A control task detects whether a certain control event has occurred and 

defines how to service it 

 

 The communication between producer tasks and consumer tasks occurs by data 

streaming and requires synchronization between them to make sure that the data is sent 

correctly.  The SoD supports these synchronization types: 

 

� Implicit synchronization - The processing function simply assumes that when the 

task is dispatched, the required input data and the required room to write the output 

data are available 

� Explicit synchronization - Checks if the required data is available before reading 

and checks if data can be written prior issuing the write 

 

 

Data communication dispatcher    This module is responsible for several functions, the 

most important two being: 

 

� PC communication - This function allows the communication among the radio 

components and the PC depicted in Figure 8 as FIFO Comm(1); 

� Antenna communication - Provides the communication among the radio 

components, more exactly the processing components, and the board’s antenna 

through the same FIFO Comm(1). 

 

 

Real-Time Operating System    During runtime, the data communication dispatcher and 

SoD dispute access to the platform resources. The function of the Real-Time Operating 

System (RTOS) is scheduling properly these components to allow met their real-time 

requirements. 

The RTOS used in the platform is the Micro-Controller Operating System - II 

(uC/OS - II) by Micrium Inc (16).  

The most important features of uC/OS – II are: 

 

� Small memory footprint is about 20KB for a fully functional kernel 

� Thread aware debugging - in debug time, the uC/OS – II allows the observation of 

the current state of all threads within the application; even the back traces and 

registers values 

� Preemptible priority-driven real-time scheduling: 

� 64 priority levels (max 64 tasks), 8 of them reserved for uC/OS-II 

� Each task is an infinite loop 

� Nested interrupts can go up to 256 levels 

� Supports of various 8-bit to 64-bit platforms: x86, 68x, MIPS, 8051, etc 

� Easy for development 

 

 

Radio functions    As will be referred in section C, a radio is represented as a SRDF. 

Figure 11 depicts an example of one WLAN radio. There it can see the radios functions, 
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ahead called processing components, and connecting components. To form a radio 

processor components are connected with each other, communicating via the 

communication components, which are depicted in 

The SRDF graph includes, inside each individual processing component, the name 

of the function and the number of CPU cycles necessary for executing such function. The 

communication components label describes the input/output tokens relation.

 

C. Radio model

 A radio is composed by a set of functions that have to be dispatched in a sequential 

order, defined by the data availability

and each node is a processing component for BB

input data for the next function. The data transport, represented in SRDF by the edges, 

corresponds to a communication

Processing component

 A processing component is fired (dispatched) when all of it inputs have tokens 

(radio data) to process. When 

output tokens in all of its outputs.

Each component has a component ID which identifies the functions of the processing 

component in the radio. Each radio can have more than one processing component of same 

ID. That means the radio can use the same functions sev

the radio dataflow. 

Since the radio is supported by heterogeneous multi

decide on the mapping between the processing components and the target execution cores. 

For instance, some radio functions run quicker in a vector processor (EVP) than in a RISC 

processor (ARM). Therefore the processing component must be specified to the particular 

core in which it should be executed. This information is specified on the component 
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processing components, and connecting components. To form a radio 

processor components are connected with each other, communicating via the 

communication components, which are depicted in Figure 8 as FIFO Comm(2).

The SRDF graph includes, inside each individual processing component, the name 

of the function and the number of CPU cycles necessary for executing such function. The 

tion components label describes the input/output tokens relation.

Figure 11 : WLAN datflow 

Radio model 

A radio is composed by a set of functions that have to be dispatched in a sequential 

order, defined by the data availability dependencies. Each radio function is a node in SRDF 

and each node is a processing component for BB-RM. The result of one function is the 

input data for the next function. The data transport, represented in SRDF by the edges, 

corresponds to a communication component in the BB-RM (7).  

Processing component 

A processing component is fired (dispatched) when all of it inputs have tokens 

(radio data) to process. When execution is finished, the processing component 

tokens in all of its outputs. 

Each component has a component ID which identifies the functions of the processing 

component in the radio. Each radio can have more than one processing component of same 

ID. That means the radio can use the same functions several times in different places on 

Since the radio is supported by heterogeneous multi-processor systems, it is necessary to 

decide on the mapping between the processing components and the target execution cores. 

functions run quicker in a vector processor (EVP) than in a RISC 

processor (ARM). Therefore the processing component must be specified to the particular 

core in which it should be executed. This information is specified on the component 
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processing components, and connecting components. To form a radio 

processor components are connected with each other, communicating via the 

as FIFO Comm(2). 

The SRDF graph includes, inside each individual processing component, the name 

of the function and the number of CPU cycles necessary for executing such function. The 

tion components label describes the input/output tokens relation. 

 

A radio is composed by a set of functions that have to be dispatched in a sequential 

dependencies. Each radio function is a node in SRDF 

RM. The result of one function is the 

input data for the next function. The data transport, represented in SRDF by the edges, 

A processing component is fired (dispatched) when all of it inputs have tokens 

, the processing component places 

Each component has a component ID which identifies the functions of the processing 

component in the radio. Each radio can have more than one processing component of same 

eral times in different places on 

processor systems, it is necessary to 

decide on the mapping between the processing components and the target execution cores. 

functions run quicker in a vector processor (EVP) than in a RISC 

processor (ARM). Therefore the processing component must be specified to the particular 

core in which it should be executed. This information is specified on the component 
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structure. For this reason the radio structure (section D), comprises a field that permits 

specifying the permitted execution hardware of the processing components. Each 

processing component can either be allocated to a specific core or to a core type of the 

available core types in the platform. 

 

 The instantiation of a processing component requires different types of resources: 

code memory, where the instructions of the processing component are already stored; data 

state memory to store the temporary variables and component state; and a CPU to execute 

the code. 

Communication component 

 This platform is based on a distributed architecture, thus communication channels 

are required to allow the proper cooperation between the diverse system components. This 

service is provided by the communication components. Making the analogy between the 

radio description and a SRDF graph, the communication component in radio description 

corresponds to an arrow in a SRDF.  

The communication components implement a FIFO discipline and are responsible for 

handling the tokens from each producer processing component to the corresponding 

consumer processing component. Communication components have the information about 

who are the producer and consumer processing components, as well as their port IDs. 

Depending on the placement of the involved nodes the communication process may be 

local or involve two different tiles. When the communication is on the same tile, the 

reserved FIFO memory is also on the same tile and is directly addressable by both 

processes. On the other hand, if the communication is among two components placed in 

different tiles the FIFO memory must reside physically on only one of those two tiles. In 

this case the communication component can have already defined in which tile the FIFO 

memory shall be created or, if this information is not provided in advance, the BB-RM at 

allocation time chooses in which tile it will reserve the FIFO memory. In both cases each 

communication component has to reserve enough memory resources to guarantee lossless 

token delivery. 

 

 The radio activity has disparate behaviors, depending on which function is being 

executed in each instant. The radios might be receiving data, sending data or just waiting 

for some synchronous signal. Such behaviors produce different radio functions, i.e., the 

radio data flow is different for each behavior. These different behaviors experienced by the 

radios are called radio states. Besides the operating states, associated with the specific 

tasks that have to be carried out by the processing nodes, additional radio states are created 

explicitly in order to optimize the platform resources. For example, when the radio is not 

processing data its state can change to some specific idle state that allows saving battery. 
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D. Radio structure and design

 The radio structure design has as its main driving directions modularity, simplicity 

and low runtime overheads. These requirements have impact in diverse

implementation aspects.  

 Fixed size structures, independent of the number of components and even of the 

topology (component connections), have been used to simplify and reduce the overhead 

associated with the memory management. The radi

particular radio characteristics to facilitate the radio management by the G

RM. Another desirable feature that the radio should exhibit is a clear separation among 

resources and topology. This separation allo

having to be aware of the topology as well as traverse the radios without needing to be 

aware of the component resources.

 

 

 Figure 12 depicts the organization of the radio structure. It is composed by a radio 

ID which identifies the radio type and state, and the following three main structures:

 

� Component list - 

communication components. The first field contains the component ID. The 

component ID also codes its type. If the component ID ends with a “0”, that means 

it’s a communication component, otherwise it

processing component case, the ID identifies the function executed by the 

processing component.

Besides the ID/type field, this entry also defines the target core. For processing 

components it permits identifying a speci

components, the core field defines the tile in wh

� Requirements list -

Some requirements need more than one parameter. For

the number of execution cycles and the number of cycles to deadline. So, for each 

requirement there exists a list of parameters, as illustrated in 

� Edge list - in order to separate the topology from the requirements, it was created an 

independent edge structure. The edge structures stores the producer component ID, 

the consumer component ID and correspond
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Radio structure and design 

The radio structure design has as its main driving directions modularity, simplicity 

and low runtime overheads. These requirements have impact in diverse

Fixed size structures, independent of the number of components and even of the 

topology (component connections), have been used to simplify and reduce the overhead 

associated with the memory management. The radio access was made independent of the 

particular radio characteristics to facilitate the radio management by the G

RM. Another desirable feature that the radio should exhibit is a clear separation among 

resources and topology. This separation allows the manager to handle radios without 

having to be aware of the topology as well as traverse the radios without needing to be 

aware of the component resources. 

 
Figure 12 : Radio structure 

depicts the organization of the radio structure. It is composed by a radio 

ID which identifies the radio type and state, and the following three main structures:

 this entry holds information about the processing and 

communication components. The first field contains the component ID. The 

component ID also codes its type. If the component ID ends with a “0”, that means 

it’s a communication component, otherwise it is a processing component. For the 

processing component case, the ID identifies the function executed by the 

processing component. 

Besides the ID/type field, this entry also defines the target core. For processing 

components it permits identifying a specific core or a core type. For communication 

components, the core field defines the tile in which the FIFO memory is reserved

- this entry holds the list of requirements of each component. 

Some requirements need more than one parameter. For example, the CPU requires 

the number of execution cycles and the number of cycles to deadline. So, for each 

requirement there exists a list of parameters, as illustrated in Figure 

in order to separate the topology from the requirements, it was created an 

independent edge structure. The edge structures stores the producer component ID, 

the consumer component ID and correspondent producer and consumer 
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The radio structure design has as its main driving directions modularity, simplicity 

and low runtime overheads. These requirements have impact in diverse architectural and 

Fixed size structures, independent of the number of components and even of the 

topology (component connections), have been used to simplify and reduce the overhead 

o access was made independent of the 

particular radio characteristics to facilitate the radio management by the G-RM and BB-

RM. Another desirable feature that the radio should exhibit is a clear separation among 

ws the manager to handle radios without 

having to be aware of the topology as well as traverse the radios without needing to be 

depicts the organization of the radio structure. It is composed by a radio 

ID which identifies the radio type and state, and the following three main structures: 

this entry holds information about the processing and 

communication components. The first field contains the component ID. The 

component ID also codes its type. If the component ID ends with a “0”, that means 

is a processing component. For the 

processing component case, the ID identifies the function executed by the 

Besides the ID/type field, this entry also defines the target core. For processing 

fic core or a core type. For communication 

ich the FIFO memory is reserved 

this entry holds the list of requirements of each component. 

example, the CPU requires 

the number of execution cycles and the number of cycles to deadline. So, for each 

Figure 12 

in order to separate the topology from the requirements, it was created an 

independent edge structure. The edge structures stores the producer component ID, 

ent producer and consumer ports 
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E. Radio example

The example on Figure 

represented as a SRDF, where the processing components are 

instructions executing a radio function

implement FIFO semantics.
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Radio example 

Figure 13 is a Wireless Local Area Network (WLAN) radio 

represented as a SRDF, where the processing components are group

ions executing a radio function. The edges are communication components and 

implement FIFO semantics. 

Figure 13 : WLAN 802.11a example from [12] 
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is a Wireless Local Area Network (WLAN) radio 

groups of “C” language 

. The edges are communication components and 
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4. Design space, problems and solutions 

This chapter presents the implementation of the BB-RM. It will start by describing 

the functionality provided by the BB-RM, followed by a description of the interfaces 

between the BB-RM and the other software components of the radio system.  Having 

described both the intended functionality and interfaces of the BB-RM, the attention is 

turned to the practical problem of implementing this functionality within the existing 

framework, while taking into account all sorts of constraints, such as the ones imposed by 

the hardware and limitations of the software that it must re-use. Four different 

implementation solutions are proposed and assessed, one of them being selected for 

implementation. 

A. Goals of BB-RM 

As was explained in chapter 3 section B, the BB-RM functionality establishes an 

interface between the G-RM and the SoD modules.  

BB-RM must support a wide variety of radios and radio combinations, with 

different software components, topologies and temporal requirements. Furthermore, it must 

also provide RT guarantees for each running radio, even without having at compile-time 

the complete knowledge of all the possible radio combinations that may be active in the 

device. Each radio needs to meet its timing requirements, and it must do it independently 

of other radios that are running simultaneously. To turn this possible, the BB-RM has to 

guarantee to each different radio that a certain amount of system resources (processor 

cycles, memory, communication), that match its resource requirements as computed at 

compile-time, are available at runtime.   

There are two main features that the BB-RM needs to support in order to provide 

this functionality: 

 

� Strict admission control - radio instances can only start if there are enough 

resources available in the platform to guarantee the RT behavior 

� Strict resource reservation - each radio is only allowed to use the resources that 

have been allocated to it by BB-RM 
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The BB-RM functionality is distinct from the G

RM is platform independent and, therefore, not aware of the specific hardware resources of 

the BB platform.  

The SoD Network Manager API, on the other hand, only allows for tasks to be 

started, stopped and connected via FIFO queues. Although it does allocate memory 

resources for the tasks and queues, it does not 

whole that must be admitted or rejected atomically, depending on resource availability. It 

merely checks for the availability of resources for a single task. Also, the SoD does not 

allocate processor cycles to a task. It simply adds it to a processor’s streaming 

running tasks, without checking if the CPU demand of the tasks is small enough to allow 

each task to get enough cycles per schedule period to meet its deadlines, i.e., without 

carrying out any kind of scheduling

decide on the mapping of tasks to processors. It merely provides the primitives that allow

starting tasks on processors

mapping. Therefore, the BB

allocation of multiple jobs

multiprocessor while allowing real

  

 Since as many radio combinations as possible should be s

must be equipped with algorithms and methods that allow it to make good decisions about 

where allocate radio components, where a “good” decisions means that a feasible 

allocation should be found if there is one, and that if several feas

possible, then the one that increases the likelihood that a feasible allocation exists for 

subsequent radio start requests should be chosen. This objective, however, must be 

achieved while taking into account that the BB

the search for a feasible allocation should be fast.

B. Design space

As depicted in Figure 

remove radios from the G-RM block. Its request must be processed in an atomic way, i.e., 

all the components of the radio must fit in the available platform resources, or the radio is 

rejected. On the other hand, the interface with SoD is made a

level. 
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RM functionality is distinct from the G-RM functionality because the G

RM is platform independent and, therefore, not aware of the specific hardware resources of 

he SoD Network Manager API, on the other hand, only allows for tasks to be 

started, stopped and connected via FIFO queues. Although it does allocate memory 

resources for the tasks and queues, it does not consider groups of interconnected tasks as a 

hat must be admitted or rejected atomically, depending on resource availability. It 

merely checks for the availability of resources for a single task. Also, the SoD does not 

allocate processor cycles to a task. It simply adds it to a processor’s streaming 

running tasks, without checking if the CPU demand of the tasks is small enough to allow 

each task to get enough cycles per schedule period to meet its deadlines, i.e., without 

g out any kind of scheduling test.  The SoD also lacks any sort

decide on the mapping of tasks to processors. It merely provides the primitives that allow

s, and it is the user code that must decide on the actual processor 

mapping. Therefore, the BB-RM must take care of all of these tasks, in order to allow 

allocation of multiple jobs, with job combinations unknown at c

while allowing real-time guarantees to be given for running jobs.

Since as many radio combinations as possible should be supported, the BB

must be equipped with algorithms and methods that allow it to make good decisions about 

where allocate radio components, where a “good” decisions means that a feasible 

allocation should be found if there is one, and that if several feasible allocations are 

possible, then the one that increases the likelihood that a feasible allocation exists for 

subsequent radio start requests should be chosen. This objective, however, must be 

king into account that the BB-RM is a run-time component, and thus that 

the search for a feasible allocation should be fast. 

Design space 

Figure 14, BB-RM receives commands to add, resume, 

RM block. Its request must be processed in an atomic way, i.e., 

all the components of the radio must fit in the available platform resources, or the radio is 

rejected. On the other hand, the interface with SoD is made at the task and connection 

Figure 14 : BB-RM design space 
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RM functionality because the G-

RM is platform independent and, therefore, not aware of the specific hardware resources of 

he SoD Network Manager API, on the other hand, only allows for tasks to be 

started, stopped and connected via FIFO queues. Although it does allocate memory 

of interconnected tasks as a 

hat must be admitted or rejected atomically, depending on resource availability. It 

merely checks for the availability of resources for a single task. Also, the SoD does not 

allocate processor cycles to a task. It simply adds it to a processor’s streaming kernel of 

running tasks, without checking if the CPU demand of the tasks is small enough to allow 

each task to get enough cycles per schedule period to meet its deadlines, i.e., without 

test.  The SoD also lacks any sort of intelligence to 

decide on the mapping of tasks to processors. It merely provides the primitives that allow 

, and it is the user code that must decide on the actual processor 

l of these tasks, in order to allow 

with job combinations unknown at compile-time to a 

time guarantees to be given for running jobs. 

upported, the BB-RM 

must be equipped with algorithms and methods that allow it to make good decisions about 

where allocate radio components, where a “good” decisions means that a feasible 

ible allocations are 

possible, then the one that increases the likelihood that a feasible allocation exists for 

subsequent radio start requests should be chosen. This objective, however, must be 

me component, and thus that 

RM receives commands to add, resume, suspend and 

RM block. Its request must be processed in an atomic way, i.e., 

all the components of the radio must fit in the available platform resources, or the radio is 

t the task and connection 
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 Before thinking about possible implementations of the required functionality it is 

useful to present an overview of the main issues and constraints involved. The following 

list enumerates the most relevant issues that have been initially identified: 

 

� BB-RM’s API must allocate full radios atomically and SoD’s API works only at 

component level (processing components and communication components). 

� A radio can only be admitted if all of its components (processing and 

communication components) and they requirements fit in the platform without 

disturbing any radios that are already running. 

� The SoD’s API does not allow access to the status of the platform resources that are 

allocated by the SoD itself. This includes task state and FIFO state allocation. For 

these resource types the BB-RM cannot know what amount of resources is free on 

the platform, and must delegate resource management to the SoD. 

� The SoD does not offer code memory allocation for the processing components, 

since it assumes that the code for all tasks is already pre-loaded in each processor. 

Since it wants to add the possibility of dynamically loading and linking tasks, this 

service must also be provided by the BB-RM module. 

� As was explained in section B of the last chapter, the RTOS just provides RT 

behavior among SoD NM and the data communications dispatcher. Thus, at the 

component level no entity provides RT behavior support services, which thus must 

be into BB-RM account. 

� In section A of the last chapter it was referred the issues around the time access to 

the FIFO allocation when the components are in different tiles. The FIFO should be 

physically placed in the same tile as the reader process, which is an important 

optimization factor that the BB-RM should also take care. 

� Another aspect that has to be taken into account is the inter-tile resource 

fragmentation. For example assume that a bunch of radios are already running on a 

platform and that each tile has 20% of its memory available. If the BB-RM module 

needs allocate one new processing component requiring more than 20% of the tile's 

memory it will not fit in any single tile despite the fact that total amount of memory 

(i.e. the sum of the free memory blocks in the diverse tiles) is considerably higher 

than the amount requested. 

� Using the above example, after some allocations and releases the platform memory 

in each tile eventually becomes fragmented. The data reservations associated with 

the components need to be physically continuous, thus chances are that at a given 

point in time the allocation of a block of memory with a size smaller than the total 

amount of free memory in the tile fails. This source of fragmentation is designated 

by intra-tile fragmentation. 
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C. Solutions 

Having in mind the problems 

interfaces between the diverse software modules, the following candidate approaches have 

been identified. 

Solution

As the BB-RM does not know the status of the resources in the platform, the easiest 

and simplest solution to solve the problem is depicted in 

receives a radio request it tries allocating each radio component, one by one. If all

components fit in the platform, the BB

At a first look, this solution seams easy to implement and does not require changes 

on the other software modules. Thus this BB

platform independent. But, 

radio component allocation and so testing (from the BB

resources (on the SoD side). The problem is that the SoD NM allocation tak

considerable amount of time, because SoD NM needs to communicate with SoD SK and 

afterwards, allocate the comp

non-negligible amount of time. Thus, despite conceptually simple, this approach is

extremely inefficient in case of failures, incurring in a high latency and overhead. 

Furthermore, in this approach ther

wrong or about the status of the platform. Hence the BB

to allocate the radio components.

 

Solution

A second possible solution considered in the scope of this work consists in 

integrating the BB-RM into the SoD, as depicted in 

previously considered approach, this solution has one big advantage since in this case BB

RM has complete knowledge about the platform status and, therefore,   can m

choices according to the effective platform resource usage. However, this view is more 

complex to implement because it requires changing the SoD API and many internal 

structures. This solution is also less modular since the BB

particular SoD and each SoD only works in a specific platform. Thus the BB

have to be rebuilt for each platform, which is inconvenient and requires a significant 

amount of development and debug effort.
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Having in mind the problems above listed, the global system architecture and the 

interfaces between the diverse software modules, the following candidate approaches have 

Solution-1 

RM does not know the status of the resources in the platform, the easiest 

d simplest solution to solve the problem is depicted in Figure 15. When the BB

receives a radio request it tries allocating each radio component, one by one. If all

components fit in the platform, the BB-RM consider that the radio can run in the platform.

At a first look, this solution seams easy to implement and does not require changes 

on the other software modules. Thus this BB-RM is SoD independent and, con

platform independent. But, on the other hand, the SoD module does not permit testing the 

radio component allocation and so testing (from the BB-RM side) already allocates 

resources (on the SoD side). The problem is that the SoD NM allocation tak

considerable amount of time, because SoD NM needs to communicate with SoD SK and 

afterwards, allocate the component in platform. Releasing the resources also requires a 

negligible amount of time. Thus, despite conceptually simple, this approach is

extremely inefficient in case of failures, incurring in a high latency and overhead. 

Furthermore, in this approach there is no precise information about what went 

or about the status of the platform. Hence the BB-RM has no means to decide where 

allocate the radio components. 

Figure 15 : BB-RM solution-1 

Solution-2 

A second possible solution considered in the scope of this work consists in 

RM into the SoD, as depicted in Figure 16.  With respect to the 

previously considered approach, this solution has one big advantage since in this case BB

RM has complete knowledge about the platform status and, therefore,   can m

choices according to the effective platform resource usage. However, this view is more 

complex to implement because it requires changing the SoD API and many internal 

structures. This solution is also less modular since the BB-RM would be tied

particular SoD and each SoD only works in a specific platform. Thus the BB

have to be rebuilt for each platform, which is inconvenient and requires a significant 

amount of development and debug effort. 
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interfaces between the diverse software modules, the following candidate approaches have 

RM does not know the status of the resources in the platform, the easiest 

. When the BB-RM 

receives a radio request it tries allocating each radio component, one by one. If all radio 

RM consider that the radio can run in the platform. 

At a first look, this solution seams easy to implement and does not require changes 

RM is SoD independent and, consequently, 

n the other hand, the SoD module does not permit testing the 

RM side) already allocates 

resources (on the SoD side). The problem is that the SoD NM allocation takes a 

considerable amount of time, because SoD NM needs to communicate with SoD SK and 

resources also requires a 

negligible amount of time. Thus, despite conceptually simple, this approach is 

extremely inefficient in case of failures, incurring in a high latency and overhead.  

ormation about what went 

RM has no means to decide where 

 

A second possible solution considered in the scope of this work consists in 

.  With respect to the 

previously considered approach, this solution has one big advantage since in this case BB-

RM has complete knowledge about the platform status and, therefore,   can make informed 

choices according to the effective platform resource usage. However, this view is more 

complex to implement because it requires changing the SoD API and many internal 

RM would be tied to the 

particular SoD and each SoD only works in a specific platform. Thus the BB-RM would 

have to be rebuilt for each platform, which is inconvenient and requires a significant 
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Solution

 Another possible solution consists in adding a second virtual SoD module to the 

platform. This virtual SoD module is incomplete, having a NM but no SK (

explained in chapter 3 section 

SK allocates the components in the tile. Thus, the virtual SoD cannot allocate components, 

because the absence of SK, thus enabling the BB

incomplete SoD and allocate the resources, via the complete SoD only when all radio 

components fit. The code is still modular, so the BB

easy to implement. 

As was explained in chapter 

the second SoD doubles the memory requirements in the FPGA tile. In addit

increased memory consumption, the BB

resources on the platform. So there is no room for planning, and each request has to be 

handled in a trial basis, which is expensive in terms of memory and CPU utiliza

 

Solution

 One problem common to all of the approaches above mentioned is the lack of 

information about the available resources. A possible way to solve this problem is 

equipping the BB-RM wit

BB-RM resources, are one image of the real resources present in the platform. In this case 

the BB-RM tests the availability of radio c

only when they fit, allocates them both in SoD and in the BB

model consistent. There is an issue regarding the memory, because the BB

take into it account the memory fragmentation problem. This problem will be addressed 

latter on. 

 This solution has two main advantages. The first one is that the code still is 

modular, so this BB-RM is SoD independent. The second is 
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Figure 16 : BB-RM solution-2 

Solution-3 

Another possible solution consists in adding a second virtual SoD module to the 

platform. This virtual SoD module is incomplete, having a NM but no SK (

section B the SoD NM knows the status of the platform and the SoD 

SK allocates the components in the tile. Thus, the virtual SoD cannot allocate components, 

because the absence of SK, thus enabling the BB-RM to test the radio components in the 

locate the resources, via the complete SoD only when all radio 

components fit. The code is still modular, so the BB-RM can work in any SoD and it’s 

As was explained in chapter 3 section B the SoD is allocated in the F-ARM. Implementing 

the second SoD doubles the memory requirements in the FPGA tile. In addit

umption, the BB-RM still has no knowledge about the free 

resources on the platform. So there is no room for planning, and each request has to be 

handled in a trial basis, which is expensive in terms of memory and CPU utiliza

Figure 17 : BB-RM solution-3 

Solution-4 

One problem common to all of the approaches above mentioned is the lack of 

information about the available resources. A possible way to solve this problem is 

RM with resource models (Figure 18). Those resource models, called 

RM resources, are one image of the real resources present in the platform. In this case 

s the availability of radio components in the BB-RM resource models

only when they fit, allocates them both in SoD and in the BB-RM resources, to keep the 

model consistent. There is an issue regarding the memory, because the BB

t account the memory fragmentation problem. This problem will be addressed 

This solution has two main advantages. The first one is that the code still is 

RM is SoD independent. The second is that now
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). Those resource models, called 

RM resources, are one image of the real resources present in the platform. In this case 
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This solution has two main advantages. The first one is that the code still is 

that now the BB-RM has a 
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complete knowledge about the platform resources status and thus can make decisions to 

optimize the allocation through algorithms that will be detailed ahead.

 As referred before, the memory model has some issues with the memory 

fragmentation and thus the image of 

problems may still arise during the radio allocation. One example is the memory intra

fragmentation problem that may lead to false

component passes the test in BB

possible solution to fix this issue is proposed in chapter 

 

 

D. Solution assessment

Among the four solutions presented in 

solution. Each one has advantages and drawbacks. 

must be chosen based on priorities. 

The first most important feature is the modularity of the code. This feature has two 

great advantages. One of them is that BB

other models are built, which means any upper or lower software can be created 

independently and vice-versa, and still interact with each other. The second one is related 

with the usability of the code in other systems. As referred before, in one modular system, 

the code can run in different platforms, with different core configurations. Hence the 

second solution is undesirable

An additional important feature for BB

components allocation. In a heterogeneous multi

allocation possibilities is high, although if the BB

resource in the platform, it cannot adjudicate one component to one tile, based on the 

resources required by the component. Then in this case the first s

undesirable. 

SoD is software that’s still in construction and with new features built each week. 

Most of the work still remains to be done on the SoD, and it is not a priority to build a 

virtual SoD when the real SoD is still under construc

hard task that will take up too much time.

Thus, due to its higher modularity, the treated 

compared with the third one and, consequently is the chosen solution.
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knowledge about the platform resources status and thus can make decisions to 

optimize the allocation through algorithms that will be detailed ahead. 

As referred before, the memory model has some issues with the memory 

fragmentation and thus the image of the SoD resources is not exact. Consequently, 

problems may still arise during the radio allocation. One example is the memory intra

fragmentation problem that may lead to false-positive situations, in which a radio 

component passes the test in BB-RM resources but fails to fit in the real platform. A 

possible solution to fix this issue is proposed in chapter 7 section A. 

Figure 18 : BB-RM solution-4 

assessment 

four solutions presented in this chapter, none of them is

ach one has advantages and drawbacks. Which means that the best solution 

must be chosen based on priorities.  

The first most important feature is the modularity of the code. This feature has two 

great advantages. One of them is that BB-RM works without taking in account how the 

e built, which means any upper or lower software can be created 

versa, and still interact with each other. The second one is related 

with the usability of the code in other systems. As referred before, in one modular system, 

can run in different platforms, with different core configurations. Hence the 

is undesirable.  

An additional important feature for BB-RM is the capability to choose the radio 

components allocation. In a heterogeneous multi-processor system

allocation possibilities is high, although if the BB-RM doesn’t know the status of each 

resource in the platform, it cannot adjudicate one component to one tile, based on the 

resources required by the component. Then in this case the first s

SoD is software that’s still in construction and with new features built each week. 

Most of the work still remains to be done on the SoD, and it is not a priority to build a 

virtual SoD when the real SoD is still under construction. Furthermore the virtual SoD is a 

hard task that will take up too much time. 

Thus, due to its higher modularity, the treated solution appears advantages 

compared with the third one and, consequently is the chosen solution. 
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knowledge about the platform resources status and thus can make decisions to 

As referred before, the memory model has some issues with the memory 

the SoD resources is not exact. Consequently, 

problems may still arise during the radio allocation. One example is the memory intra-tile 

positive situations, in which a radio 

esources but fails to fit in the real platform. A 

 

this chapter, none of them is an ideal 

hat the best solution 

The first most important feature is the modularity of the code. This feature has two 

RM works without taking in account how the 

e built, which means any upper or lower software can be created 

versa, and still interact with each other. The second one is related 

with the usability of the code in other systems. As referred before, in one modular system, 

can run in different platforms, with different core configurations. Hence the 

RM is the capability to choose the radio 

processor system the amount of 

RM doesn’t know the status of each 

resource in the platform, it cannot adjudicate one component to one tile, based on the 

resources required by the component. Then in this case the first solution is also 

SoD is software that’s still in construction and with new features built each week. 

Most of the work still remains to be done on the SoD, and it is not a priority to build a 

tion. Furthermore the virtual SoD is a 

solution appears advantages 
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5. Implementation of the BB-RM  

 In the last chapter it was described four feasible solutions to implement a BB-RM. 

Here it will dig a little deeper into the details. In its essence, the BB-RM is an allocator of 

instances of radio applications. These instances are called jobs. In the following text, it will 

further refine the concept of job in section A. 

Section B briefly examines the main functions of the BB-RM. 

 One of the actions the BB-RM needs to perform is mapping the radio to the 

hardware platform.  Since the problem is NP-complete, BB-RM uses an approach based on 

adapting heuristics used to solve the VBP Problem (section G) to allocate the radio 

components to the hardware resources. Most heuristics for VBP define a couple of 

strategies to solve sub-problems. One of the sub-problems is how to define the order in 

which the components are mapped.  The other sub-problem is   choosing on which tile a 

radio component should be allocated to. The strategies used in this work are described in 

sections H and J of this chapter. 

 Finally, section K, describes the evolution of features across different versions of 

BB-RM and the directory tree of the project. 

A. Job – radio instance 

As mentioned before, the main purpose of this project is to run multiple radios, 

sharing resources with each other, and allow for many combinations of radios as possible.  

Note that multiple instances of the same radio can be active simultaneously. 

In chapter 3 at section C, a radio is described as a unique entity. To distinguish 

between the unique unallocated radio and the allocated radio instances, it is defined the 

concept of job.  

Each time a radio is allocated to the platform, a different radio instance – a Job -is 

created. The same logic is used when a radio software component is allocated to the 

platform; it gets a radio processor component instance, which it refers to as a task. The 

instance of a communication component is referred to as a FIFO. In summary, a radio is 

composed of processing components and communication components. A job is composed 

of tasks and FIFOs. 
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B. BB-RM functions 

 Until now, the BB-RM has been described as a black box with an input and an 

output. This section will provide some brief information about each BB-RM function. 

Further ahead the BBRM functions are described in more detail. 

 

� BBRM_initialize - fills the job list with null values. 

� BBRM_Job_test - tests if the given radio requirements can run in the HW platform 

but will not allocate it. 

� BBRM_Job_create - tests the radio requirements and allocates the radio in the 

hardware platform; the created job is left on suspended mode.  

� BBRM_Job_resume - runs the allocated job. 

� BBRM_Job_suspend - suspends the running job. 

� BBRM_Job_remove - removes the suspended job from the hardware platform. 

C. Data structure of BB-RM 

This section will show how the BB-RM stores and manages the information 

concerning to jobs.  

In the field, G-RM will provide the radio information when the BBRM_Job_create 

function is called. Due to that, the BB-RM should store all information that it will need to 

resume, suspend and remove a job.  

After calling BBRM_Job_create, BB-RM returns a new job ID. This handler is used 

to call the additional functions (job resume, job suspend, job remove). 

Job list 

Figure 19 shows the major internal structures of BB-RM. The job list, where BB-

RM stores all the information about jobs is depicted on the left side of this figure. In the 

job list, one job entry is composed by a job settings and a task list. The job settings 

structure has a pointer to the radio source and the radio ID; through it BB-RM can get 

information about the radio components, its requirements, and the radio topology. Another 

field of job settings structure is the job state, which save the status of the job (suspended, 

running, resumed and invalid). These states will be detailed in the next section. 

As explained before, BB-RM receives a complete radio from G-RM to allocate, but 

SoD allocates components one by one. In this level each allocated component is called a 

task and saved on a task list. BB-RM can choose where to allocate each component among 

the different tiles. The algorithms to choose one tile for each component will be detailed in 

section I. From this point on BB-RM should take care of the requirements of this 

component to fit in the tile. This information is on the task settings structure. The source 

component ID is saved in task settings. 
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On the SoD side, each task has a unique ID. This task ID identifies one specific 

function belonging to a specific job. As a reminder, one radio can have some components 

doing the same functions and even using

allocated, the attributed ID is unique and identifies the specific task belonging to a specific 

job. The task ID is saved in task setting as well.

One task has several requirements, like CPU cycles, data memory, and so forth. 

Each requirement is tested and allocated one by one in BB

allocation, the requirement parameter in the requirement list is filled.

 

 

BB-RM Memory resource

This paragraph describes how t

The memory model structure is composed of a memory configuration for each tile, 

composing a memory list. The memory model has two modes, described as follows:

 

� Running mode - blocking the access to the memory res

not permitted to add or remove memory resources.

� Simulation mode - 

image. Then it’s allowed to add and remove requirements.

 

Each memory has a stored memory state. 

components one by one and for each component to test all the resources. The objective of 

these two states is to facilitate the memory test. For instance, to create a radio with 3 

processing components and 2 commun

only memory requirements, the memory is set in simulation mode. After this, a test of all 

the component requirements is done. If all components fit in the memory it can be set to 

running mode. 
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On the SoD side, each task has a unique ID. This task ID identifies one specific 

function belonging to a specific job. As a reminder, one radio can have some components 

and even using the same component ID. But when th

allocated, the attributed ID is unique and identifies the specific task belonging to a specific 

job. The task ID is saved in task setting as well. 

One task has several requirements, like CPU cycles, data memory, and so forth. 

tested and allocated one by one in BB-RM resources. Thus, after each 

allocation, the requirement parameter in the requirement list is filled. 

Figure 19 : BB-RM data structure 

RM Memory resource 

This paragraph describes how the BB-RM memory resources are represented. 

emory model structure is composed of a memory configuration for each tile, 

composing a memory list. The memory model has two modes, described as follows:

blocking the access to the memory resource. This means that it is 

not permitted to add or remove memory resources. 

 in this state the current status of the memory is saved as an 

image. Then it’s allowed to add and remove requirements. 

Each memory has a stored memory state. To add a radio it is necessary to test the 

components one by one and for each component to test all the resources. The objective of 

these two states is to facilitate the memory test. For instance, to create a radio with 3 

processing components and 2 communication components, where all the components have 

only memory requirements, the memory is set in simulation mode. After this, a test of all 

the component requirements is done. If all components fit in the memory it can be set to 
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On the SoD side, each task has a unique ID. This task ID identifies one specific 

function belonging to a specific job. As a reminder, one radio can have some components 

the same component ID. But when the task is 

allocated, the attributed ID is unique and identifies the specific task belonging to a specific 

One task has several requirements, like CPU cycles, data memory, and so forth. 

RM resources. Thus, after each 

 

RM memory resources are represented.  

emory model structure is composed of a memory configuration for each tile, 

composing a memory list. The memory model has two modes, described as follows: 

ource. This means that it is 

in this state the current status of the memory is saved as an 

To add a radio it is necessary to test the 

components one by one and for each component to test all the resources. The objective of 

these two states is to facilitate the memory test. For instance, to create a radio with 3 

ication components, where all the components have 

only memory requirements, the memory is set in simulation mode. After this, a test of all 

the component requirements is done. If all components fit in the memory it can be set to 
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The other parameters stored in the memory structure are the free data and FIFO 

memory counter. The data memory counter has the number of free blocks in data memory. 

The FIFO memory counter has the number of free blocks in FIFO memory. 

This is the simplest way to implement a memory resource. As adverted in Solution-

4 in section C of the chapter 4, this solution does not take into account the intra-tile 

memory fragmentation problem. 

A new memory resource model was being built that includes a memory map and 

algorithms that account for and try to avoid fragmentation, but it is still unfinished.  

A set of functions (API) was created to implement the functionality of BB-RM: 

 

� Mem_initialize - initialize the memory structure. 

� Mem_set_simulation - backup an image of the actual memory status and set the 

memory resource in simulation mode. 

� Mem_add_comp - add a component memory resource decreasing the number of 

free blocks. 

� Mem_rem_comp - remove a component memory resource increasing the number of 

free blocks. 

� Mem_set_restore - restore the previous image of the memory model and set the 

memory in running mode. 

� Mem_set_run - remove the backup memory image and set the memory model in 

running mode. 

 

The memory requests are done in a number of blocks. A component specifies 

certain requirement parameters, for example, 15 blocks of data memory or 10 blocks of 

FIFO memory. 

BB-RM CPU resource 

The scheduler, represented by the CPU model, is a Round Robin scheduling.   

 

 

Round Robin scheduling    The Round Robin (RR) scheduler is one of the simplest 

schedulers. Without any priority, the tasks are sorted by request order. The RR scheduler 

time slice for each task, its adjustable depending only of the task requirements (17) (18). 

When a new task (NT) requires an amount of CPU execution cycles ( NTE ) and a 

deadline ( NTD ), the RR scheduler model verifies the conditions mathematically expressed 

in Equation 1.  

The minimum deadline between the smallest deadline of a running task deadline (

LRD ) and the deadline of the new task ( NTD ) has to be less or equal than the sum of the 

execution cycles ( E ) of the J running tasks, added to the execution cycles of the new task (

NTE ). 

 

                    
NT

J

JNTLR EEDD +≥∑
1

),min(  

Equation 1 : Round Robin rule 

 



43 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

If this condition is accomplished, the RR scheduler guarantees that the new task fits 

in the CPU, meeting its deadline and the remaining running tasks still meet their deadlines. 

This implementation has one CPU scheduler per tile creating a CPU list. Like in the 

Memory Resource Model described above, if the CPU resource model is in running mode, 

one cannot add or remove components to the CPU. In simulation mode, an image is stored 

of the actual status of the CPU, and then it is allowed to add or remove components 

to\from CPU to test a radio. This status is the first field of the CPU structure. 

As stated in section C, the two parameters that are needed to apply the add rule are 

the sum of the execution cycles and the smallest deadline. These parameters are exactly 

what the CPU structure saves for each scheduler. 

The interface created to manage the CPU resource is elaborated below. 

� CPU_initialize - initialize the CPU model. 

� CPU_test_comp - test the component CPU requests. 

� CPU_set_simulation - backup an image of the actual status of the CPU schedulers 

and set the CPU schedulers into simulation mode. 

� CPU_add_comp - add a CPU requirement to the RR scheduler. 

� CPU_rem_comp - remove a CPU requirement from the RR scheduler 

� CPU_set_restore - restore a saved image to the CPU schedulers and set it to 

running mode. 

� CPU_set_run - erase the saved CPU image and set the CPU schedulers in running 

mode. 

D. Job states 

Let’s look at how the functions interoperate. A sequence of function calls and the 

related job states are depicted in the Figure 20. As described in section B, BBRM_initialize 

initializes the job list. As the example depicted in Figure 20 is for a unique job the 

BBRM_initialize function was not represented. The functions procedures will be detailed 

in section E. 

Supposing that the BBRM_initialize function was called before and is calling the 

BBRM_Job_test function the radio was given as argument. Meanwhile the BB-RM tests 

all radio components and for each component tests all requirements. In this point the job 

state remains in simulation state. After finishing the test, the BBRM_Job_test function 

returns the result (accept or reject), and changes the job state back to invalid state. During 

this process, transactions are internal to the BB-RM because the test is done in BB-RM 

resources and not in the platform. 

When the BBRM_Job_create function is called, the state of the job changes to 

simulation state and the BB-RM tests the radio requirements in it resources. After test the 

resource in BB-RM resources with success the job state is changed to tested state. The 

next step allocates the radio on the hardware platform. Whenever everything goes well, the 

job is changed to suspended state. Now the job is loaded on platform and ready to run. 

While in this state, two operations can be performed, resume or remove. Resume triggers 
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the job on platform and it starts running. The job state becomes 

option is to remove the job from the 

invalid state. 

The last available function is the BBRM_Job_suspend. This f

but keeps it installed on the platform, changing the job state from 

state as well. 

 

E. Interface G

In this section the BB

functional description and not in 

or type of outputs. Those details can be explored in the doxygen C documentation provided

in appendix [A]. Each function is described by essential functional blocks connected

each other by result dependencies. These high level functions are used by 

BBRM_initialize( )

 BB-RM reserves a fixed data memory to allocate it

variables. The main reason for this procedure is because the dynamic memory 

needs turns the memory access slower and complex. When the system st

the memory is unpredictable.

The procedure flow of BBRM_initialize is shown in 

BBRM_initialize function has the responsibilit

initializing the SoD NM and SoD SK. In BB

the BB-RM resources parameters. In the end if all processes had success the function 
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the job on platform and it starts running. The job state becomes run state

option is to remove the job from the platform; this causes the job state to be change to 

The last available function is the BBRM_Job_suspend. This function stops the job 

but keeps it installed on the platform, changing the job state from run state

Figure 20 : Job states 

Interface G-RM <-> BB-RM  

In this section the BB-RM will be further detailed, while keeping focus on 

functional description and not in “C” language implementation details such as arguments 

or type of outputs. Those details can be explored in the doxygen C documentation provided

]. Each function is described by essential functional blocks connected

each other by result dependencies. These high level functions are used by 

BRM_initialize( ) 

RM reserves a fixed data memory to allocate its internal structures and 

variables. The main reason for this procedure is because the dynamic memory 

needs turns the memory access slower and complex. When the system st

the memory is unpredictable. 

The procedure flow of BBRM_initialize is shown in Figure 

BBRM_initialize function has the responsibility to initialize the SoD framework by 

initializing the SoD NM and SoD SK. In BB-RM side this function reset

RM resources parameters. In the end if all processes had success the function 

R e s o u r c e  M a n a g e r  

Emanuel Miranda 2008 

run state as well. Another 

this causes the job state to be change to 

unction stops the job 

run state to suspended 

 

RM will be further detailed, while keeping focus on the 

language implementation details such as arguments 

or type of outputs. Those details can be explored in the doxygen C documentation provided 

]. Each function is described by essential functional blocks connected to 

each other by result dependencies. These high level functions are used by G-RM. 

internal structures and 

variables. The main reason for this procedure is because the dynamic memory allocation 

needs turns the memory access slower and complex. When the system starts the contents of 

Figure 21. There the 

y to initialize the SoD framework by 

RM side this function resets the job list and 

RM resources parameters. In the end if all processes had success the function 
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returns a state message, or an error message i

two types; a normal error if the program can live with this problem, or a fatal error if is a 

critical problem has occurred 

 

 

BBRM_Job_test( )

 G-RM should take some decisions about radio allocations and radio states (chapter 

3 section C). For instance, if G

WLAN radio the platform 

BBRM_Job_test function G

platform and decide which radio will go to platfo

Depicted in Figure 

RM has a fixed number of jobs

seek for a free entry in job list, which means seek for a job at invalid state. Going forward, 

the next step is set all BB-RM

the radio requirements. If all radio requirements fit in BB

strong probability to fit in platform. It’s not sure because BB

into account the intra-fragmentation problems 

To finalize BB-RM restore

invalid and returns the test result.
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returns a state message, or an error message in other way around. The error message has 

two types; a normal error if the program can live with this problem, or a fatal error if is a 

has occurred and it cannot continue by normal procedure.

Figure 21 : BBRM_inicialize function 

BBRM_Job_test( ) 

RM should take some decisions about radio allocations and radio states (chapter 

ance, if G-RM has two radios to allocate; one GSM radio and one 

he platform may not has enough resources for run both radios. Then with 

on G-RM can test both radios to see if both fit separately in 

platform and decide which radio will go to platform based on the radio priority.

Figure 22 is the procedure flow of BBRM_Job_test function. The BB

RM has a fixed number of jobs entries, consequently the first step before test the job is 

seek for a free entry in job list, which means seek for a job at invalid state. Going forward, 

RM resources to simulation mode to get the authorization to test 

the radio requirements. If all radio requirements fit in BB-RM resources the radio has a 

strong probability to fit in platform. It’s not sure because BB-RM resources does not take 

fragmentation problems as referred in previous chapter at section 

RM restores the previous status of the BB-RM resources, sets the job 

invalid and returns the test result. 

Figure 22 : BBRM_Job_test function 
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n other way around. The error message has 

two types; a normal error if the program can live with this problem, or a fatal error if is a 

and it cannot continue by normal procedure. 

 

RM should take some decisions about radio allocations and radio states (chapter 

ne GSM radio and one 

resources for run both radios. Then with 

both radios to see if both fit separately in 

rm based on the radio priority. 

e flow of BBRM_Job_test function. The BB-

, consequently the first step before test the job is 

seek for a free entry in job list, which means seek for a job at invalid state. Going forward, 

resources to simulation mode to get the authorization to test 

RM resources the radio has a 

RM resources does not take 

referred in previous chapter at section B. 

RM resources, sets the job as 
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BBRM_Job_create( ) 

BBRM_Job_create is the most complex function in BB

number of aggregated sub functions

BBRM_Job_create function allocates the job in the platform should certify if the radio is 

consistent. For example, if there are some unconne

communication components have source/sink and so on. This is done in the first functional 

block. Subsequently BB-RM will search for an invalid job in job list and set

to simulation state. Now the job is rea

block is more complex than it seems, and important as well. 

in the next three sections. 

After testing the radio in BB

explained in chapter 4, section 

processing components are allocated before the communication components, represented 

also in functional blocks.  

 In that section it is also stated

the tasks. These addresses are obtaine

 As the job is already in the platform, BB

running mode and change the job s

the job ID of this new allocated job and one of these three types of output message; state 

message to report the result veracity, an error message if the progr

violating the resources veracity

the stability of the system. 

 

BBRM_Job_resume( ) 

As explained before, when the job is created it is allocated on the platform but 

remains in suspended mode. G

calling BBRM_Job_resume function. 
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BBRM_Job_create( )  

BBRM_Job_create is the most complex function in BB-RM. 

of aggregated sub functions as is depicted in Figure 23. 

BBRM_Job_create function allocates the job in the platform should certify if the radio is 

consistent. For example, if there are some unconnected processing components, if all 

communication components have source/sink and so on. This is done in the first functional 

RM will search for an invalid job in job list and set

to simulation state. Now the job is ready to be tested in BB-RM resources. This functional 

block is more complex than it seems, and important as well. Its relevance will be explained 

the radio in BB-RM resources, BB-RM sets the job to tested state. As 

section B, the SoD allocation is done in the components level. The 

processing components are allocated before the communication components, represented 

In that section it is also stated that the SoD manages the code memory addresses of 

are obtained through one SoD API, better reported in section 

As the job is already in the platform, BB-RM can set the BB

running mode and change the job state to suspended state. At the end the BB

the job ID of this new allocated job and one of these three types of output message; state 

message to report the result veracity, an error message if the program can still run without 

urces veracity, or a fatal error when the problem is critical and can affect 

 

Figure 23 : BBRM_Job_create function 

BBRM_Job_resume( )  

xplained before, when the job is created it is allocated on the platform but 

remains in suspended mode. G-BM decides when it should put the job in running

calling BBRM_Job_resume function.  
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RM. Having a large 

. The way how the 

BBRM_Job_create function allocates the job in the platform should certify if the radio is 

cted processing components, if all 

communication components have source/sink and so on. This is done in the first functional 

RM will search for an invalid job in job list and sets the job state 

RM resources. This functional 

relevance will be explained 

the job to tested state. As 

mponents level. The 

processing components are allocated before the communication components, represented 

that the SoD manages the code memory addresses of 

through one SoD API, better reported in section F. 

RM can set the BB-RM resources to 

tate to suspended state. At the end the BB-RM returns 

the job ID of this new allocated job and one of these three types of output message; state 

am can still run without 

, or a fatal error when the problem is critical and can affect 

 

xplained before, when the job is created it is allocated on the platform but 

in running mode by 
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As depicted in Figure 

checking if the job state is in suspended mode. If the job state is in suspended mode BB

RM puts the tasks running on the platform resuming each 

After that it sets the job state to run state and returns one of the three possible error 

codes explained before. 

 

BBRM_Job_suspend( )

 In some instances, the job manager can susp

moment. This decision can be taken according to several factors like energy saving, radio 

priority and so forth. In addition

first. As described in Figure 

whether the job is in run state. Later it suspends each task on SoD and finishes by returning 

the already explained three types of messages

 

BBRM_Job_remove( )

Radios may change

do. For BB-RM one radio state change

BB-RM one radio with two states is actually two different radios. In order to change the 

radio in the platform G-RM needs to first remove the running job (radio instance) and 

afterwards add the new radio sta

Moreover one job can be simply removed from the platform when 

needed. 

Removing a Job from the platform is made by BBRM_Job_remove function. In 

Figure 26 the functional blocks of the BBRM_Job_remove function are described. The 

first step of this function is to certify if the job can be removed from the platform, 
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Figure 24, BBRM_Job_resume is a simple function which starts by 

checking if the job state is in suspended mode. If the job state is in suspended mode BB

RM puts the tasks running on the platform resuming each task in SoD. 

After that it sets the job state to run state and returns one of the three possible error 

Figure 24 : BBRM_Job_resume function 

BBRM_Job_suspend( ) 

In some instances, the job manager can suspend a job that is not being used at that 

moment. This decision can be taken according to several factors like energy saving, radio 

priority and so forth. In addition, to remove a job from the platform G

Figure 25, the first operation of BBRM_Job_suspend is to confirm 

whether the job is in run state. Later it suspends each task on SoD and finishes by returning 

d three types of messages (state, error or fatal error).

Figure 25 : BBRM_Job_suspend 

BBRM_Job_remove( ) 

may change its state depending on what sort of operation the radio should 

RM one radio state change is actually a change of radios. In other words, for 

RM one radio with two states is actually two different radios. In order to change the 

RM needs to first remove the running job (radio instance) and 

afterwards add the new radio state. 

Moreover one job can be simply removed from the platform when 

from the platform is made by BBRM_Job_remove function. In 

the functional blocks of the BBRM_Job_remove function are described. The 

first step of this function is to certify if the job can be removed from the platform, 
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, BBRM_Job_resume is a simple function which starts by 

checking if the job state is in suspended mode. If the job state is in suspended mode BB-

After that it sets the job state to run state and returns one of the three possible error 

 

end a job that is not being used at that 

moment. This decision can be taken according to several factors like energy saving, radio 

to remove a job from the platform G-RM needs stop it 

, the first operation of BBRM_Job_suspend is to confirm 

whether the job is in run state. Later it suspends each task on SoD and finishes by returning 

. 

 

its state depending on what sort of operation the radio should 

a change of radios. In other words, for 

RM one radio with two states is actually two different radios. In order to change the 

RM needs to first remove the running job (radio instance) and 

Moreover one job can be simply removed from the platform when it’s no longer 

from the platform is made by BBRM_Job_remove function. In 

the functional blocks of the BBRM_Job_remove function are described. The 

first step of this function is to certify if the job can be removed from the platform, that’s if 
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the job state is suspended. If it is, the next step is to release the connections between the 

tasks, FIFOs, and then release the tasks. Whether both release procedures ran well or not, 

BB-RM can remove the job requirements in its BB

longer in the platform and the BB

released and changed to invalid. At the end, BBRM_Job_remove returns the code message 

to G-RM. 

 

F. Interface BB

The following functions are used in some functional blocks explained above. 

 

� phSodNmTask_Create( ) 

code of the task is already allocated in memory.

� phSodNmPort_Connect( ) 

an input of a consum

consumer are the same. The connection is made through a buffer (FIFO).

� phSodNmTask_resume( ) 

� phSodNmTask_suspend( ) 

� phSodNmTask_GetParameterLocatio

parameters of a task.

� phSodNmTask_Delete( ) 

� phSodNmPort_Disconnect( ) 

the input port of the consumer task.
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ended. If it is, the next step is to release the connections between the 

tasks, FIFOs, and then release the tasks. Whether both release procedures ran well or not, 

RM can remove the job requirements in its BB-RM resources. After that, the job is no 

er in the platform and the BB-RM allocated resources are freed. Now the job can be 

released and changed to invalid. At the end, BBRM_Job_remove returns the code message 

Figure 26 : BBRM_Job_remove 

Interface BB-RM <-> SoD 

The following functions are used in some functional blocks explained above. 

phSodNmTask_Create( ) - Allocate a task on the specified tile in the platform. The 

task is already allocated in memory. 

phSodNmPort_Connect( ) - This function connects an output of a producer task to 

an input of a consumer task. In case the connection is a loop, the task producer and 

consumer are the same. The connection is made through a buffer (FIFO).

phSodNmTask_resume( ) - Dispatching the task to the Streaming Ke

phSodNmTask_suspend( ) - Deny the dispatching of the task to the SK.

phSodNmTask_GetParameterLocation() - Obtain the pointer to the in

task. 

SodNmTask_Delete( ) - Delete a suspended task from the platform.

Disconnect( ) - Disconnect the output port of the producer task and 

the input port of the consumer task. 
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ended. If it is, the next step is to release the connections between the 

tasks, FIFOs, and then release the tasks. Whether both release procedures ran well or not, 

RM resources. After that, the job is no 

resources are freed. Now the job can be 

released and changed to invalid. At the end, BBRM_Job_remove returns the code message 

 

The following functions are used in some functional blocks explained above.  

n the platform. The 

cts an output of a producer task to 

task. In case the connection is a loop, the task producer and 

consumer are the same. The connection is made through a buffer (FIFO). 

Dispatching the task to the Streaming Kernel. 

Deny the dispatching of the task to the SK. 

Obtain the pointer to the input and output 

suspended task from the platform. 

Disconnect the output port of the producer task and 
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G. Resource allocation problem 

As stated in section D of chapter 3, radio components are referred to an aimed core 

which can be a specific core or a group of cores. 

If G-RM orders BB-RM to allocate a radio where all radio components are aimed 

for a specific core, it has only a dispatcher function, because it cannot make any choices. 

Just receives a radio, sees if the radio fits and allocates it or not. Thus, in this case BB-RM 

is completely limited by the radio parameters. 

 On the other hand, when the target is only restricts the core type the BB-RM has 

some freedom to decide where to allocate the component. For instance, if one radio 

component has defined in its core structure that it can run in either EVP core in the 

platform, then BB-RM can choose which EVP is better for this component. 

To sum up, the BB-RM has to compute which is the best tile to allocate the radio 

component. Such problem just depends on the radio component requirements, and the 

decision is based on these requirements. 

Whenever a radio creation request arrives, BB-RM has to find a suitable 

assignment for all radio components onto the tiles. Different combinations of suitable 

assignments can be created, resulting in different mappings. 

The algorithms that choose the best mapping should not be too complex because 

the mapping creation and the mapping choice are made at run time. The algorithms which 

have to try find a mapping such that radios arriving in the future have a higher chance of 

being mapped as well. 

As discussed in the beginning of this chapter, the Resource Allocation Problem 

(RAP) is quite similar to a Vector Bin-Packing (VBP) (19) problem. 

 

Vector Bin-Packing 

The resource allocation problem (RAP) can be transformed into a VBP problem, 

where the bins are the BB-RM resources in each tile that can bear the component 

requirements, which are called items in the original VBP problem. From here, the VBP has 

the same dimension as the resources. In Figure 27 there is a two dimension example for 

one platform with two tiles. Each bin (resource) has already some allocated requirements 

and now needs to allocate one more component with two requirements (items). 

There are many heuristics algorithms like First Fit (FF), Best Fit (BF) and so forth 

to accomplish these results. 

 This model does not account for the bandwidth used by the radio components 

which communicate with each other among the distinct tiles. 
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In order to choose 

the connection between components in the distinct tiles will be neglected. In section 

description is given on how to minimize the connection bandwidth. After some jobs have 

been created and released, the memory resource in the platform starts t

internally to each tile. The VBP approach does not take this problem into account.

This situation can cause problems to the components mapping. VBP does not 

validate the state of the fragmented memory on a BB

real platform, component allocation could not occur. Since the real number of mapping 

possibilities could be less than what the BB

always be the best choice.  

Next is shown the heuristics im

First Fit

The FF algorithm takes the requirements of a component and tries to allocate it in 

the first available tile. In the case that it does not fit, FF tries the next tile until it finds a 

suitable tile where all componen

 Because FF does not test all the tiles available for a possible fit, it is faster than the 

BF solution. But the solution thus obtained can 

would. 

Best Fit

 The best fit strategy

software component using the smallest space available which is big enough to allocate the 

requirement. 

To know which is the best tile to allocate the requirement in the whole platform, the 

algorithm needs to try all of 

strategy. This can be a big drawback. On the other hand, it guarantees the best allocation of 

a given software component on the platform. Note however that this may not b

allocation when one considers the complete radio job.

The dimension of the problem is another issue to take into account. In two 

dimensions (CPU and memory) the problem becomes more complex. For each resource 
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Figure 27 : VBP example 

 

 in which tile to allocate each radio component based on VBP, 

the connection between components in the distinct tiles will be neglected. In section 

description is given on how to minimize the connection bandwidth. After some jobs have 

been created and released, the memory resource in the platform starts t

internally to each tile. The VBP approach does not take this problem into account.

This situation can cause problems to the components mapping. VBP does not 

validate the state of the fragmented memory on a BB-RM Resources, although if run 

real platform, component allocation could not occur. Since the real number of mapping 

possibilities could be less than what the BB-RM calculates, its final choice might not 

 

Next is shown the heuristics implemented in BB-RM, namely First Fit (FF) and

First Fit 

The FF algorithm takes the requirements of a component and tries to allocate it in 

the first available tile. In the case that it does not fit, FF tries the next tile until it finds a 

suitable tile where all component requirements can be accommodated. 

Because FF does not test all the tiles available for a possible fit, it is faster than the 

BF solution. But the solution thus obtained can waste more resources tha

Best Fit 

The best fit strategy tries to minimize the space wasted by the allo

using the smallest space available which is big enough to allocate the 

To know which is the best tile to allocate the requirement in the whole platform, the 

of the tiles. Because of this, it takes more time than a First Fit 

strategy. This can be a big drawback. On the other hand, it guarantees the best allocation of 

a given software component on the platform. Note however that this may not b

allocation when one considers the complete radio job. 

The dimension of the problem is another issue to take into account. In two 

dimensions (CPU and memory) the problem becomes more complex. For each resource 
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which tile to allocate each radio component based on VBP, 

the connection between components in the distinct tiles will be neglected. In section I, a 

description is given on how to minimize the connection bandwidth. After some jobs have 

been created and released, the memory resource in the platform starts to be fragmented, 

internally to each tile. The VBP approach does not take this problem into account. 

This situation can cause problems to the components mapping. VBP does not 

RM Resources, although if run on a 

real platform, component allocation could not occur. Since the real number of mapping 

RM calculates, its final choice might not 

namely First Fit (FF) and BF. 

The FF algorithm takes the requirements of a component and tries to allocate it in 

the first available tile. In the case that it does not fit, FF tries the next tile until it finds a 

Because FF does not test all the tiles available for a possible fit, it is faster than the 

waste more resources than other solutions 

tries to minimize the space wasted by the allocation of a 

using the smallest space available which is big enough to allocate the 

To know which is the best tile to allocate the requirement in the whole platform, the 

the tiles. Because of this, it takes more time than a First Fit 

strategy. This can be a big drawback. On the other hand, it guarantees the best allocation of 

a given software component on the platform. Note however that this may not be the best 

The dimension of the problem is another issue to take into account. In two 

dimensions (CPU and memory) the problem becomes more complex. For each resource 
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and for each tile the BF algorithm determines the remaining free space through a resource 

matrix. In the end it merges all the information in order to choose which tile will offer the 

best solution. 

H. Sort strategy 

In the last section, it was explained that the algorithms to determine which the best 

tile to allocate a specific component is based on its requirements. These algorithms are 

used in one component, but the radio has more than one component. Thus it’s necessary to 

know in which order the BB-RM should allocate the components. 

Firstly, it is relevant to analyze what kind of order can optimize the platform 

resources. The radio components have different requirements in several dimensions. That 

is, in a two dimensional problem, (CPU and memory) a component has different 

requirements in each dimension. Keeping the bin package analogy, it has several bins 

representing hardware resources and a list of radio components to put in such bins. In (19) 

it was proven that, in general, better results will be obtained (i.e. less bins will be 

necessary) if items with bigger requirements are allocated first. The intuitive idea behind 

this theory is simple: when the bigger items are first allocated, the smallest components 

can fill the free holes in the bins. This technique reduces the inter-tile fragmentation 

described on section B of the previous chapter. 

To summarize it’s needed to implement methods to sort the components based on 

their requirements and from the biggest to smallest, for items that are multidimensional. 

To sort out the order of the components two different methods were implemented, 

the first is Module Weights (MW) and the other is Relative Weights (RW). 

Module Weights 

 One way to implement a method to sort the radio components is taking the vector 

module as the weight of the component requirements resource vector. In Figure 28 it’s 

shown a small radio example. The radio has three components, and, for each component, 

the requirements are listed. To calculate the MW for a component, is used the N 

component requirements of the component. The vector sum is calculated by the following 

formula: 

 
22 )_(...)1_( NresourceresourceMW ++=  

Equation 2 : Module Weight 

 

After obtaining the MW for all components, the components can be sorted. The 

order is made from the heaviest component to lightest one in terms of the MW. In the 

depicted example, the first component that will be allocated is component 3, followed by 

component 1 and finally component 2. 
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Relative Weights

An additional method to sort the radio components is the relation between the 

component requirements and the platform resources. The balance between the radio 

requirements and the platform resources is not perfect, that is, some radios need more than 

one resource (dimension) than the other and the platform has more than one type of 

resources. To normalize the resources among both components this method was 

implemented. Depicted in 

(MW). In this platform, the memory is the scarcest resource and so the RM method must 

give more weight to memory resources than to CPU resources. To manage this, 30% of the 

weight was configured for the CPU resource and 70% for memory resource. 

RW will calculate the relative weight based on the relation between the needed 

resource and the platform resource

used formula for N resources is

 

RW

 

 

 

As seen in this example, it returns a different result than the MW method. In this 

case the allocation order is co

The static resource dimensions can be converted to dynamic resource weights. At 

run time the most required resource is only dependent on the radio allocations and their 
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Figure 28 : MW example 

Relative Weights 

An additional method to sort the radio components is the relation between the 

component requirements and the platform resources. The balance between the radio 

requirements and the platform resources is not perfect, that is, some radios need more than 

esource (dimension) than the other and the platform has more than one type of 

resources. To normalize the resources among both components this method was 

implemented. Depicted in Figure 29 it has the same example than the previous method 

(MW). In this platform, the memory is the scarcest resource and so the RM method must 

give more weight to memory resources than to CPU resources. To manage this, 30% of the 

configured for the CPU resource and 70% for memory resource. 

RW will calculate the relative weight based on the relation between the needed 

resource and the platform resource availability and give the weight for this relation. The 

rces is. 

∑= NN weightresourceresourcerequire _*)/(

Equation 3 : Relative Weight 

Figure 29 : RW example 

As seen in this example, it returns a different result than the MW method. In this 

case the allocation order is component 1 then, component 3 and component 2.

he static resource dimensions can be converted to dynamic resource weights. At 

run time the most required resource is only dependent on the radio allocations and their 
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An additional method to sort the radio components is the relation between the 

component requirements and the platform resources. The balance between the radio 

requirements and the platform resources is not perfect, that is, some radios need more than 

esource (dimension) than the other and the platform has more than one type of 

resources. To normalize the resources among both components this method was 

the same example than the previous method 

(MW). In this platform, the memory is the scarcest resource and so the RM method must 

give more weight to memory resources than to CPU resources. To manage this, 30% of the 

configured for the CPU resource and 70% for memory resource.  

RW will calculate the relative weight based on the relation between the needed 

the weight for this relation. The 

Nweight  

 

As seen in this example, it returns a different result than the MW method. In this 

mponent 1 then, component 3 and component 2. 

he static resource dimensions can be converted to dynamic resource weights. At 

run time the most required resource is only dependent on the radio allocations and their 
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requirements. This means that the most used resource can be difficult to predict. Using 

dynamic weights, the weight values for each resource type change at run-time. This change 

is according to the current resource availability across the platform. 

I. Complete RAP heuristics, including 

communication 

Section G described the strategies implemented for selecting the tile for allocating 

one specific component based on its requirements, and section H describes the strategies 

implemented to choose in which order to allocate components to the platform – the “sort 

strategy”.  

 

In the radio structure presented in the section C of chapter 3, the radio is defined as 

a set of processing components and communication components. Until now, the focus has 

been on the processing components, but now the communication components will come 

into play. 

 A communication component is the mechanism that delivers tokens (data 

containers of fixed sized) from the source to the sink software components.  As explained 

in (19), communication component require resources at both endpoints, i.e., buffers on 

both sides, were tokens can be stored. However, if those endpoints are in the same tile, 

the communication is completely internal. That means that the communication 

component does not require bus resources, or separate send and receive buffers. 

The complete RAP is a solution to allocate the radio, taking into account the 

processing components and the communication components. Using expert knowledge 

and heuristics, the complete RAP can do two main optimizations when mapping a radio. 

One is to minimize bus bandwidth usage, since lower bandwidth requirements means 

lower chances of network congestion. The other is to minimize fragmentation or tile 

resources. 

Two RAP heuristics have been implemented in the BB-RM. 

Best Fit with Decreasing Module Weights (BFDMW) 
  

This heuristic is to optimize the inter-tile resources fragmentation. Even when the 

sums of available resources are bigger than the radio requirements, the fragmentation 

problem may private the radio activation. So, the fragmentation reduces the number of 

running radios at the same time. Using the module weight methods, it orders the radio 

processing components from the bigger to the smaller (section H). Tracing the components 

by that order, it allocates each processing component by Best Fit algorithm. 
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First Fit with Clustering (FFC) 

As mentioned above, when two radio components are in the same tile they do not 

need a network channel or separate buffers. To reduce the bandwidth among the tiles the 

First Fit with Clustering (FFC) algorithm was implemented. A detailed explanation of this 

algorithm is available in (19). It is a First Fit Decreasing algorithm that, after assigning an 

actor to a tile, looks at the neighbors of that actor in the radio job graph, to see if any of 

them can be placed in the same tile. 

J. Debug 

The BB-RM was developed in an incremental manner; with each change, a new 

feature was added. To make the work more independent of other modules that are still in 

development, the BB-RM was built in a simulation framework. In the real platform, the 

SoD NM process runs on top of uC/OS – II and a SoD SK runs on each core. On the 

simulation framework all processes run on the PC’s Operating System. In fact, the OS 

simulates the behavior of the real hardware platform.  

To help the developing process a three level debug system was put in place. At 

compilation, a debug level is chosen depending on the level of information that is required 

from the following execution. These debug levels are listed next. 

 

� Debug level 1 - shows the info, error or fatal error messages from BB-RM API 

explained in section E. 

� Debug level 2 - shows the info, error or fatal error messages from the internal 

functions of BB-RM. That means the first functions instance internal of BB-RM. 

� Debug level 3 - shows the messages from the BB-RM library which has the most 

used function of BB-RM, modules weight to order the components, the 

requirements algorithms to choose the tile and BB-RM resources, that is, all 

external modules of BB-RM. 

 

The debug messages were chosen in such a way as to easily identify their error 

source. First they show the origin file, i.e. Resource Manage, Resource Manage Library, 

Emulate, CPU Library and so forth. The second information is about the type of message; 

information, error or fatal error. The information messages show the trace of the running 

code.  

The error messages, when shown mean that something not expected happened but 

the program can still run without inconsistency. The fatal error appears when the code 

becomes corrupt. One example is when the content of BB-RM resource is different than 

real resources in platform. 

The next item shown in debug messages is the function that prints the debug 

message and the message content. Normally the information messages contents tells us 

about the input arguments or a returned value. The error messages and fatal error messages 

content is a problem description. 
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Figure 30 has one example where it

Manager. The first function to be called was BBRM_Job_create (), to create the job from 

the radio ID #3. The next infor

section E. At the end, BB-

this example. 

Among the debug messages, an info message from Emulate is shown. 

Emulate is a file which contains a small example to test the BB

two radio examples created to call the BB

BBRM_Job_create function is successful because it returns the information code 0x200, 

shown in appendix [A]. 

 

 

In the next example, the output file of the third debug level is shown,

well as the indent BB-RM library The first message is one error message from SoD, the 

second message is from BB

which called the SoD function returns a error message reporting the error description, third 

and forth messages. The procedure to report error messages from SoD is always like th

one. It first reports the returned code from SoD (

description of the error dependently of it decision according to the So

line 3 and 4). 

 

K. BB-RM versions

The BB-RM building process was incremental. Each step was tested in the 

simulation framework first, and then in real platform. Every improvement was tagged with 

a version number after testing. Starting with version 1.0 and finish in version 1.7, each one 

has a new feature. There are several things worth mentioning. 

 The major idea of the version 1.0 was to just define what arguments are passed and 

which message is returned in the interface with the G
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has one example where it can see some info messages from the Resource 

Manager. The first function to be called was BBRM_Job_create (), to create the job from 

the radio ID #3. The next information messages are from functions that were described in 

-RM returns the number of the created job ID, which is zero in 

Among the debug messages, an info message from Emulate is shown. 

Emulate is a file which contains a small example to test the BB-

two radio examples created to call the BB-RM APIs and analyze the return messages. The 

ion is successful because it returns the information code 0x200, 

Figure 30 : Debug messages 

example, the output file of the third debug level is shown,

RM library The first message is one error message from SoD, the 

message is from BB-RM library reporting the returned error then the functions 

which called the SoD function returns a error message reporting the error description, third 

and forth messages. The procedure to report error messages from SoD is always like th

one. It first reports the returned code from SoD (Figure 31 line 2) then reports a detailed 

description of the error dependently of it decision according to the So

Figure 31 : Error messages  

RM versions 

RM building process was incremental. Each step was tested in the 

simulation framework first, and then in real platform. Every improvement was tagged with 

a version number after testing. Starting with version 1.0 and finish in version 1.7, each one 

as a new feature. There are several things worth mentioning.  

The major idea of the version 1.0 was to just define what arguments are passed and 

which message is returned in the interface with the G-RM. For the input arguments was 
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can see some info messages from the Resource 

Manager. The first function to be called was BBRM_Job_create (), to create the job from 

mation messages are from functions that were described in 

RM returns the number of the created job ID, which is zero in 

Among the debug messages, an info message from Emulate is shown.  

-RM API. There are 

RM APIs and analyze the return messages. The 

ion is successful because it returns the information code 0x200, 

 

example, the output file of the third debug level is shown, Figure 31, as 

RM library The first message is one error message from SoD, the 

RM library reporting the returned error then the functions 

which called the SoD function returns a error message reporting the error description, third 

and forth messages. The procedure to report error messages from SoD is always like this 

line 2) then reports a detailed 

description of the error dependently of it decision according to the SoD error (Figure 31 

 

RM building process was incremental. Each step was tested in the 

simulation framework first, and then in real platform. Every improvement was tagged with 

a version number after testing. Starting with version 1.0 and finish in version 1.7, each one 

The major idea of the version 1.0 was to just define what arguments are passed and 

RM. For the input arguments was 
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created a file with all BB-RM structures. To handle the return messages, a Debug module 

was created, as explained in section J. BB-RM does not have any interaction with SoD. 

 In order to explore the SoD API, version 1.1 was developed. There, the BB-RM 

just picks up the radio components given from G-RM and allocates them in SoD.  

 To implement a real functional block, i.e. some code that receives something and 

acts with something it builds the version 1.2. There, the given radio is allocated in SoD 

without any method or algorithm. Was implemented as well the CPU model and the 

memory model to BB-RM has the knowledge of the platform resources. 

 With the referred modules the BB-RM code became too big, occupying around 

80% of the dedicated memory for it. By that reason was necessary making some 

optimization in code. Those optimizations will be better described in next section. For this 

section is just interesting know that the version 1.3 is one optimization code of version 1.2. 

 As explained before, the first step when the BB-RM receives a radio, more specific 

when BBRM_Job_create function receives a radio, is order the components. The relative 

weight and the module weight order methods were created in version 1.4. 

 In version 1.5, the algorithms to allocate the component requirements were 

implemented as well as the complete RAP algorithms. There is combined the methods to 

order the radio components and the algorithms to allocate them requirements. 

 Line by line the code became bigger. As a result the debug task turns hard as well. 

To minimize this issue the debug module was improved with three types of messages, 

state, error and fatal error. This change was saved as version 1.6. 

 Finally, using two radios with a structure similar to a real one, a stress test was 

done. Due to the results of this stress test, some settings were tuned in version 1.7 to adjust 

the behavior of the BB-RM to the real environment. 

L. Source code 

The file structure was constructed according to the modules structure. All shared 

files were placed in the root. Example of this is the Platform.h which contains the platform 

configuration, or de radio structure definition on Radio.h file, the Resource Manager API 

on BBResourcemanger.h file, and the API return codes in BBRM_code_return.h file. 

Describing the folders from the top to the bottom in Figure 32, is formed the 

BBRMResources folder, which contains the CPU and memory resources. Each resource 

has three files; the first one is a source file contains all functions of this resource, a code 

return file which contains the code definitions, and the last one the header file containing 

the functions prototypes. 

The adjacent folder is the BBRMsrc folder that leads to the source files of BB-RM. 

Such folder has the BBRM library which contains the internal functions of BB-RM. Has 

also the BB-RM configuration file where it can be chosen the allocation algorithms and 

methods, and finally the debug file which takes into account the debug functions. 

The CompWeight folder has the files to order the components by weight. It 

contains the two implemented methods, relative weight and module weight explained 

before. 



57 | P a g e   U A - D E T I - R e s o u r c e  M a n a g e r  

   Emanuel Miranda 2008 

  

Created by the doxygen tool the docs’ folder has the code documentation. Each 

function is documented with the following items: 

 

� A brief description about the function 

� Simplified list of the internal procedures 

� A list of the input parameters description 

� A list of the possible return messages. 

 

The two Complete RAP heuristics specified in section I are in JobTestAlloc folder. 

Each one has the source file which contains the functional code and the library file with the 

function prototypes. 

Last but not the least there is the RequireAlgorithm folder. There it has the two 

implemented algorithms; First Fit and Best Fit. Those algorithms are to choose the tile for 

each processor component based on the processor component requirement.  

 

 
Figure 32 : Files structure 
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6. Experimental results 

 The work developed in the scope of this dissertation has been extensively assessed 

and verified. This section presents some experimental results addressing several aspects of 

the work, namely optimizations that have to been carried out to reduce the code size, 

resource allocation strategies assessment and verification of the occurrence of 

fragmentation. 

A. Optimizations 

In the beginning the BB-RM operation was relatively simple, consisting only in   

allocating radio components without any global strategy. As the work progressed; several 

features have been added and the BB-RM became more efficient but, at the same time, 

more complex and bigger. 

Eventually, in BB-RM version 1.2, the code became too big, using about 80% of 

the reserved F-ARM memory for itself. To reduce the code size several optimizations were 

done, some of them ending up in execution time improvements as well. This section 

presents the main optimizations that have been implemented. 

 

 The first optimization addressed the data structures used by the BB-RM. An 

exhaustive study about each variable's usage permitted to establish its bounds in the value 

domain.  The conclusion was that some variables were oversized. Resizing the variables 

permitted a considerable gain in memory utilization, which went from the original 1.776 

KB per radio to 1.103KB per radio, that is, a reduction of approximately 37.9%. 

The same process was applied to all the other structures in the BB-RM resources. 

 

 Another kind of optimization consisted in the reduction of the components state 

data (Table 1). Originally, when a radio component needed CPU resources to be allocated, 

all relevant information about the component was saved on the CPU resource database. 

Similarly, when the component required memory, the relevant information was saved on 

the memory resource database. This approach drives to the existence of duplicated 

information in memory. To avoid this situation it was developed a new approach, in which 

only relevant information about the allocations is saved in the job structure. The new 

approach consists of just signalizing in the job list structure where the component is 
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allocated, so it is not necessary anymore to save the component’s information in each 

resource database. This approach permitted a significant improvement on the resource 

memory, as expected, but at expenses of an increase of the size of the job structure, as 

shown in Table 1 and Table 2, respectively. 

 

Resource per tile Before optimization After optimization Gain 

Memory 616 Bytes 9 Bytes 98.5% 

CPU 816 Bytes 9 Bytes 98.9% 
Table 1 : Resource optimization 

 

Structure Before optimization After optimization Loss 

Job list 1260 Bytes 1745 Bytes 72.2% 
Table 2 : Job optimization 

 

The amount of bytes saved in the resources is done per tile and the platform has 

four tiles in total. On the other hand, the job list structure is common. Thus, the global 

balance is positive. Table 3 shows that the total amount of bytes saved is 5171, 

corresponding to a reduction of 73.9% comparatively with the total amount of memory 

originally used. 

 

 Total size of the 

structure before 

optimization 

Total size of the 

structure after 

optimization 

Difference in 

Bytes 

Difference in % 

Memory 

resource 

2464 Bytes 36 Bytes - 2428 Bytes - 98.5 % 

CPU resource 3264 Bytes 36 Bytes - 3228 Bytes - 98.9 % 

Job list 1260 Bytes 1745 Bytes + 485 Bytes + 72.2 % 

Total 6988 Bytes 1817 Bytes - 5171 Bytes - 73.9 % 
Table 3 : Optimization results 

 

 

 The BB-RM module was developed as modular as possible. This means that each 

functional block is logically separated, has a specific function and a well defined interface. 

This approach has several well documented advantages, but incurs in memory and CPU 

overheads. A thorough code analysis has permitted identifying the existence of memory 

reserved for variables in several functions that in fact had the same contents. Thus, 

physically, the memory had duplicated variables with the same contents. 

 To minimize this problem, common (global) variables were used in several places. The 

size of these variables was also optimized to accommodate, as tightly as possible, the value 

domain bounds. 

 

 In the first BB-RM version, just the allocation information was saved in the job list, 

i.e., the tile where the component was allocated and it’s ID. 

In order to make the connections in the SoD, the BB-RM needed to search the radio 

topology. This imposed that the BB-RM had to save the complete radio when it was given 

to BBRM_Job_create function. So, when the BBRM_Job_create function is called BB-RM 

must keep the radio and create an instance of it (job) when it’s allocated. 

Despite simple, this approach is expensive in terms of memory because a radio 

structure and a job structure have to be saved. So a more memory-efficient approach was 
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sought. The optimization that was implemented consists in having the BB-RM saving only 

the relevant fields of the radio in the job list structure instead of saving the whole radio, 

when calling Job-create function. Consequently the radio list from BB-RM is removed and 

some memory is saved. 

 

 In one brief look at the arguments of the BB-RM functions it is possible to note that 

the types of arguments are homogeneous among the internal functions of the BB-RM. The 

three mostly used arguments in functions are a radio component, a radio component 

requirement or a whole job. Instead of having a big radio structure with all its contents 

inside, the structure is split into several sub-structures. Now the job structure can use 

individually these radio sub-structures, even as arguments for the internal functions. 

 

 The optimization with higher impact consisted in changing the arguments of the 

functions to pointers. Now, every function has as arguments pointers and, when necessary, 

returns values in pointers.  

Besides saving memory, this modification also has a significant impact in terms of CPU 

utilization, as shown in Table 4. 

 

To assess the actual improvement in the runtime performance of these 

optimizations, it was carried out a stress test. This test consists in allocating four radios and 

removing them again. This procedure was repeated 500 000 times, resulting in 2 000 000 

radio allocations and releases. Detailed results for the versions 1.2 and 1.3 are presented in 

appendixes B and C. Table 4 summarizes these results. 

 

Functions BB-RM 

Version 

Cumulative 

seconds 

Self seconds Time per radio 

(µs) 

BBRM_Job_create 1.2 23.82 0.32 11.91 
1.3 22.66 0.25 11.33 

1.4 25.93 0.20 12.97 

BBRM_Job_remove 1.2 27.02 0.20 13.51 

1.3 24.28 0.15 12.14 
1.4 28.31 0.14 14.16 

Table 4 : Functions performances 

 

In the above table, the cumulative seconds are running sums of the number of 

seconds accounted for by the function itself and those called by it. The self seconds are the 

number of seconds accounted for the function alone.  

Using the 1.2 version as a reference, because the optimization process started at this 

version, there are some aspects that worth noticing here. The first, and the most important 

one in the performance context, is the fact that the version 1.3 is in both functions quicker 

than the following 1.4 version. Looking at the figures, the BBRM_Job_create function is 

quicker by about 0.58 us per radio, while the BBRM_Job_remove won 1.37 us per radio, 

representing an improvement of 4.8% and 10.1%, respectively. Another aspect that 

deserves a specific comment is related with the performance degradation seen in version 

1.4. The self time of both functions is lower. The cumulative time increased in 

consequence of a higher complexity of the sub-functions, which in this version started to 

implement the sort strategy referred in chapter 5, section H. Thus, in version 1.4 the 

cumulative time becomes bigger in result of the addition of new algorithms that result in 

higher computational complexity. 
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B. MW Vs RW results

The first step that BB

the radio components. The sort operation defines the order in which the components will 

be allocated in the platform.

A specific test was developed to assess the effectiveness of the sorting methods. 

This test was done over the simulation framework. There, a simulated platform with three 

cores of the same type was used. As the target of this test is to analyze the results

different processing components allocation orders, the radio topology is not important. For 

allocating the radios the BB

algorithms explained in chapter 

algorithms. 

The basic idea is to allocate an amount of ra

the limit in the resource domain. To get this effect a radio depicted in 

 

 

Figure 

 

This radio uses a total of 65% of a CPU resource (red) and 70% of a memory 

resource (green). It has three processing components, each one describing the amount of 

resources needed. As the sorting methods o

processing components in the created radios have different resource amounts. In order to 

give to BB-RM the full freedom to choose the allocation mapping of the radio components 

the cores are not aimed to a spe

(Figure 33) as many times as possible.

The platform has 300% of free resources to allocate the radios. This 

potentially can be allocated up to 4 radios (

tightest for this radio configuration.
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MW Vs RW results 

The first step that BB-RM does when mapping a plan to allocate

the radio components. The sort operation defines the order in which the components will 

be allocated in the platform. 

A specific test was developed to assess the effectiveness of the sorting methods. 

This test was done over the simulation framework. There, a simulated platform with three 

cores of the same type was used. As the target of this test is to analyze the results

different processing components allocation orders, the radio topology is not important. For 

allocating the radios the BB-RM must sort the components and use the allocation 

algorithms explained in chapter 5, section G. The test is done using each one of these 

The basic idea is to allocate an amount of radios in such a way that the platform reaches 

the limit in the resource domain. To get this effect a radio depicted in Figure 

 
Figure 33 : Radio to test the MW and RW methods 

This radio uses a total of 65% of a CPU resource (red) and 70% of a memory 

resource (green). It has three processing components, each one describing the amount of 

resources needed. As the sorting methods order the components by their requirements, the 

processing components in the created radios have different resource amounts. In order to 

RM the full freedom to choose the allocation mapping of the radio components 

the cores are not aimed to a specific tile. The test consists in allocating the same radio 

) as many times as possible. 

The platform has 300% of free resources to allocate the radios. This 

potentially can be allocated up to 4 radios (Equation 4). The memory resource is the 

tightest for this radio configuration. 

61.4
65

300
==

∑
∑

CPU

P

R

R
 

28.4
70

300
==

∑
∑

Mem

P

R

R
 

Equation 4 : MW and RW theorical notes 
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to allocate a radio is sorting 

the radio components. The sort operation defines the order in which the components will 

A specific test was developed to assess the effectiveness of the sorting methods. 

This test was done over the simulation framework. There, a simulated platform with three 

cores of the same type was used. As the target of this test is to analyze the results of using 

different processing components allocation orders, the radio topology is not important. For 

RM must sort the components and use the allocation 

. The test is done using each one of these 

dios in such a way that the platform reaches 

Figure 33 is created. 

This radio uses a total of 65% of a CPU resource (red) and 70% of a memory 

resource (green). It has three processing components, each one describing the amount of 

rder the components by their requirements, the 

processing components in the created radios have different resource amounts. In order to 

RM the full freedom to choose the allocation mapping of the radio components 

cific tile. The test consists in allocating the same radio 

The platform has 300% of free resources to allocate the radios. This means that 

). The memory resource is the 
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As referred in chapter 5 section H, the RW method is adjustable to the platform 

needs. In order to save memory it is given a higher importance to this resource, by 

balancing 30% to the CPU and 70% to the memory.  

 

Component order Requirements 

allocation algorithm 

Number of allocated 

radios 

MW FF 3 

BF 3 

RW 

(30% - 70%) 

FF 4 
BF 4 

Table 5 : MW and RW results 

 

Table 5 presents the obtained results. It’s clear that the RW method had better 

results independently of the requirements allocation algorithm. It can allocate four radios 

against three allocated by MW.  

The difference between these two methods is that RW sorts the components in a 

way that minimizes the inter-tile fragmentation in memory. As the memory is the most 

required resource by the radio, the RW takes better decisions.  

The MW method does not care about unbalanced resource needs, looking for each 

resource equally. This method of operation results in an increased inter-tile fragmentation, 

which penalizes its efficiency. This fragmentation type is detailed in chapter 4 section B. 

These tests show that the RW algorithm is more efficient in ordering the radio 

components. It needs approximately the same computational resources, but achieves better 

results. With this algorithm it is possible to balance the weight of each resource. This 

feature allows the BB-RM to adjust these weights to favor the resources that are scarcer. 

C. BF Vs FF results  

According to the quote about BBRM_Job_create function in chapter 5 section E, 

after sorting the radio components the second step of BB-RM is to allocate each 

component. To allocate a component it is necessary to reserve resources for it. It is at this 

point that the requirements algorithms come in. 

To appraise if these two algorithms are useful and which algorithm is better, a custom test 

was created. Using the same simulation framework used before, it was created the radio 

depicted in Figure 34. 
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Figure 

 

The radio uses a total 54% of the CPU and 55% of the memory. It still has three 

components and no radio topology, which means there are no communication components. 

The idea is not to test the methods used to sort

algorithms to allocate the processing components in the radio (

amount of resource requests will be used amo

Equation 5, the platform can support up to 5 radios. 

 

Method to order the 

components 

MW 

RW 

 

Looking to the results presented in 

algorithm is the best mapping allocation strategy, allocating one more radio than the FF 

algorithm. Once again it is pos

problem (see chapter 4 section 

radios and in some cases only four have been allocated in practice. Further ahead, this 

scenario will be tested more intensely. 

The BF algorithm is, in almost all the cases, the best algorithm, although it spends more 

computational resources than FF. This drawback may turn the use of the BF algorithm 

undesirable, despite its better resource allocation efficiency, for instance when the p

has strict time constraints in the radio creation time.
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Figure 34 : Radio to test the BF and FF algorithms 

The radio uses a total 54% of the CPU and 55% of the memory. It still has three 

components and no radio topology, which means there are no communication components. 

The idea is not to test the methods used to sort the radio components, but to test the 

algorithms to allocate the processing components in the radio (Figure 

amount of resource requests will be used among them in each component. As indicated in 

, the platform can support up to 5 radios.  
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Equation 5 : BF and FF theorical notes 

Requirements algorithm Number of allocated radios

FF 

BF 

FF 

BF 
Table 6 : BF and FF results 

Looking to the results presented in Table 6 it is possible to conclude that the BF 

algorithm is the best mapping allocation strategy, allocating one more radio than the FF 

algorithm. Once again it is possible to note that the inter-tile fragmentation is a real 
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radios and in some cases only four have been allocated in practice. Further ahead, this 
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F algorithm is, in almost all the cases, the best algorithm, although it spends more 

computational resources than FF. This drawback may turn the use of the BF algorithm 

undesirable, despite its better resource allocation efficiency, for instance when the p

has strict time constraints in the radio creation time. 
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The radio uses a total 54% of the CPU and 55% of the memory. It still has three 

components and no radio topology, which means there are no communication components. 

the radio components, but to test the 

Figure 34). The same 

ng them in each component. As indicated in 

Number of allocated radios 

4 

5 

4 

5 

it is possible to conclude that the BF 

algorithm is the best mapping allocation strategy, allocating one more radio than the FF 

tile fragmentation is a real 

). The platform has resources than can support up to five 

radios and in some cases only four have been allocated in practice. Further ahead, this 

F algorithm is, in almost all the cases, the best algorithm, although it spends more 

computational resources than FF. This drawback may turn the use of the BF algorithm 

undesirable, despite its better resource allocation efficiency, for instance when the platform 
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D. Complete 

There are two types of RAP heuristics worth noticing. The first type is when it uses 

one of the two implemented methods to sort the radio component

algorithms to allocate the component requirements. Thus, this type of heuristic is a strict 

combination among various methods and algorithms. One example of this heuristic is the 

BFDMW explained in chapter 

method and an algorithm as well, but add

latter class is the FFC complete RAP, presented in chapter 

The performance assessment of the BFDMW does not need specific testing because 

the results are a combination of the base sorting method and algorithm results. On the other 

hand, the FFC was developed to save 

Consequently the connection times are reduced and the radio becomes faster. Thus, it 

would be relevant to measure the resulting performance improvement of this strategy. 

However, the simulation framework has a t

code but is unable to measure the radio performance, preventing the possibility of testing 

the complete RAP. 

E. Fragmentation results

The tests done in the last two sections proved the actual appearance of inter

fragmentation, which caused allocation problems. A paradigmatic example was the FF 

results (section C), where the platform had enough resources to allocate five 

practice was only able to allocate four. This section presents a test that addresses the 

experimental verification of the inter

One problem of the BB

fragmentation problem in its resource model. Due to this fact, the BB

approval to a radio that, in the real platform, will not fit. This situation can happen in two 

memory parts of the tile: data & status memory and FIFO memory (see chapter 

A). The problem is similar in both cases, thus our tests have been directed

memory fragmentation, only. In this case the test uses both on the simulation and the real 

platform, since the simulation framework does not model the fragmentation problems.

 

Figure 
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Complete Resource Allocation Problem

There are two types of RAP heuristics worth noticing. The first type is when it uses 

one of the two implemented methods to sort the radio components and one of the two 

algorithms to allocate the component requirements. Thus, this type of heuristic is a strict 

combination among various methods and algorithms. One example of this heuristic is the 

BFDMW explained in chapter 5 section I. The other type of heuristic uses 

method and an algorithm as well, but adds specific optimizations. As an example of this 

latter class is the FFC complete RAP, presented in chapter 5 section I. 

The performance assessment of the BFDMW does not need specific testing because 

the results are a combination of the base sorting method and algorithm results. On the other 

hand, the FFC was developed to save the bandwidth communication among the tiles. 

Consequently the connection times are reduced and the radio becomes faster. Thus, it 

would be relevant to measure the resulting performance improvement of this strategy. 

However, the simulation framework has a tool to measure the time of the management 

code but is unable to measure the radio performance, preventing the possibility of testing 

Fragmentation results 

The tests done in the last two sections proved the actual appearance of inter

fragmentation, which caused allocation problems. A paradigmatic example was the FF 

), where the platform had enough resources to allocate five 

practice was only able to allocate four. This section presents a test that addresses the 

experimental verification of the inter-tile fragmentation problem. 

One problem of the BB-RM is that it does not account for the intra

problem in its resource model. Due to this fact, the BB

approval to a radio that, in the real platform, will not fit. This situation can happen in two 

memory parts of the tile: data & status memory and FIFO memory (see chapter 

). The problem is similar in both cases, thus our tests have been directed

memory fragmentation, only. In this case the test uses both on the simulation and the real 

platform, since the simulation framework does not model the fragmentation problems.

Figure 35 : Radios to test the FIFO fragmentation 
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roblem results 

There are two types of RAP heuristics worth noticing. The first type is when it uses 

s and one of the two 

algorithms to allocate the component requirements. Thus, this type of heuristic is a strict 

combination among various methods and algorithms. One example of this heuristic is the 

. The other type of heuristic uses an implemented 

s specific optimizations. As an example of this 

The performance assessment of the BFDMW does not need specific testing because 

the results are a combination of the base sorting method and algorithm results. On the other 

the bandwidth communication among the tiles. 

Consequently the connection times are reduced and the radio becomes faster. Thus, it 

would be relevant to measure the resulting performance improvement of this strategy. 

ool to measure the time of the management 

code but is unable to measure the radio performance, preventing the possibility of testing 

The tests done in the last two sections proved the actual appearance of inter-tile 

fragmentation, which caused allocation problems. A paradigmatic example was the FF 

), where the platform had enough resources to allocate five radios and in 

practice was only able to allocate four. This section presents a test that addresses the 

RM is that it does not account for the intra-tile 

problem in its resource model. Due to this fact, the BB-RM can give an 

approval to a radio that, in the real platform, will not fit. This situation can happen in two 

memory parts of the tile: data & status memory and FIFO memory (see chapter 3 section 

). The problem is similar in both cases, thus our tests have been directed to the FIFO 

memory fragmentation, only. In this case the test uses both on the simulation and the real 

platform, since the simulation framework does not model the fragmentation problems. 
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Two different radios were created, Radio #1 that needs a FIFO size of 250 bytes to 

transport the information from the first processing component to the second processing 

component, and Radio #2 that needs a FIFO si

the objective is to test the FIFO memory fragmentation, the requirements of the processing 

components are not considered. 

 

 

The simulation framework was configur

in each tile. Depicted in Figure 

Radio #1 occupies 1/4 of the tota

The test starts by allocating five radios according to the top to bottom order shown 

in Figure 36. In this moment the FIFO memory is completely full. The next step is to 

release Radio #2_2 and Radio #2_4. Afterwards it tries to allocate a new instance of Radio 

#1 that needs the double of 

BB-RM resources (without fragmentation) but failed in the real platform (inter

fragmentation problem). Thus, this experiment shown that the inter

affect the performance of the BB
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Two different radios were created, Radio #1 that needs a FIFO size of 250 bytes to 

transport the information from the first processing component to the second processing 

component, and Radio #2 that needs a FIFO size with 125 bytes for the same purpose. As 

the objective is to test the FIFO memory fragmentation, the requirements of the processing 

components are not considered.  

 
Figure 36 : FIFO memory 

The simulation framework was configured to have 1000 bytes in the FIFO memory 

Figure 36 it is a tile memory with five radios already allocated. 

Radio #1 occupies 1/4 of the total FIFO memory and radio #2 occupies 1/8.

The test starts by allocating five radios according to the top to bottom order shown 

. In this moment the FIFO memory is completely full. The next step is to 

release Radio #2_2 and Radio #2_4. Afterwards it tries to allocate a new instance of Radio 

#1 that needs the double of the FIFO memory as Radio #2. This allocation was a success in 

RM resources (without fragmentation) but failed in the real platform (inter

fragmentation problem). Thus, this experiment shown that the inter-tile fragmentation may 

ce of the BB-RM by reducing the number of possible radio allocations.
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transport the information from the first processing component to the second processing 

ze with 125 bytes for the same purpose. As 

the objective is to test the FIFO memory fragmentation, the requirements of the processing 
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l FIFO memory and radio #2 occupies 1/8. 

The test starts by allocating five radios according to the top to bottom order shown 

. In this moment the FIFO memory is completely full. The next step is to 

release Radio #2_2 and Radio #2_4. Afterwards it tries to allocate a new instance of Radio 

the FIFO memory as Radio #2. This allocation was a success in 

RM resources (without fragmentation) but failed in the real platform (inter-tile 

tile fragmentation may 

RM by reducing the number of possible radio allocations. 
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7. Conclusions and future work  

 The main objective of this dissertation was the development of a Baseband 

Resource Manager module for heterogeneous multi-processor radio platforms. The 

developed BB-RM provides: 

 

� Admission control - The BB-RM only allows the creation of additional radios only 

if enough resources are available. Thus, new radios do not disturb the already 

running radios. As the radios have RT requirements, the BB-RM guarantees that 

the deadlines associated with the computations of all the radios (the already running 

radios as well as newly added ones) are met.  

� Resource reservation - Each radio can only use the resources that have been 

reserved for it. 

 

The BB-RM allows and guarantees different rates of operation among functions 

within the radio and even among radios. The unpredictable start/stop times of a radio will 

not disturb the requirement of the running radios. 

In order to be applied in several infotainment mediums, the BB-RM supports a 

wide variety of radios and even radio combinations, which makes it completely adjustable 

to the platform. The tile configuration or even the processor type is configurable as well. 

For instance, in the future it will be possible to run this BB-RM in a platform with the 

double or triple of the number of processors. This was accomplished without changing the 

SoD, turning the BB-RM autonomous from the SoD platform. 

 It is estimated that for the current platform, called AeroProto2, it is possible to run 

at least five radios simultaneously. In this context BB-RM allows dynamically changing 

the radios executed in each instant. 

 

The BB-RM has proven to have a good performance despite using limited 

computational resources. In the simulation framework the whole system needs around 

14µs to allocate a radio. This time is acceptable in land radio platforms. 

 

The implemented heuristics to allocate the radio components are working perfectly. 

In this land radio platform, the RW proved to be the best method to order the radio 

components, being able to allocate one more radio than MW (Table 5). The BF allocation 

algorithm has proved to be better than FF. In the tests, the BF algorithm allocated one more 

radio than FF (Table 6). In conclusion, if the platform has enough computation resources, 

the best combination to a complete RAP is RW with BF. On the other hand, if the 

computation resources are scarce, the best combination to solve the complete RAP is RW 

with FF. In theory the FFC complete RAP should to be a good solution to reduce the 
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communications bandwidth but it was not possible to prove it on the real platform or even 

in simulation framework. 

 

A. Future work 

Despite all the effort put in this project, some aspects remain to be solved.  

 

Within each tile the memory can become fragmented (intra-tile fragmentation). The 

amount of fragmentation increases with memory usage. In its current state the BB-RM   

cannot model fragmentation, potentially leading to allocation inconsistencies. This 

inconsistency is created when the radio passes the BB-RM tests and it does not fit in the 

real platform. This inconsistency is caused by the VBP algorithm used by BB-RM which 

does not account with the fragmentation problem, as detailed in chapter 5, section I. To 

solve this issue, the BB-RM should implement in the same memory allocation algorithm as 

the one used in the real platform. This way the BB-RM would have an exact copy of the 

memory mapping of the real platform, solving the inconsistency problem. 

 

Another improvement that can be done in BB-RM is on the RW sort strategy. This 

method is used to order the components in an efficient way, this if the resource weights are 

properly defined. It is possible to set the right resource weight in the beginning and, after 

some allocations, the resource weights may need to be adjusted. This happens because 

different radios use different amounts of each resource. To solve this issue the resource 

weight should be dynamically adjusted in run-time. Having the knowledge of the resource 

status, the resource weights could to be manipulated to save the more scarce resources in 

each instant. 
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9. Appendices 

A. Doxygen API code documentation 

bbrm_code_return_t BBRM_initialize (void) 

This function must be called in the system starter. 

This function initializes: 

• the Streaming Kernel in SoD by calling phSodEmulateInit() function; 

• the job list, by calling BBRM_initialize() function; 

• the CPU BB-RM resource model, by calling CPU_initialize() function; 

• the memory BB-RM resource model, by calling Mem_initialize() function. 

Returns: 

 

• BBRM_FATAL_ERROR_SOD_FAILED - Fatal SOD function failed. 

• BBRM_FATAL_ERROR_CPU_FAILED - Round Robin function failed. 

• BBRM_FATAL_ERROR_MEM_FAILED - Memory function failed. 

• BBRM_OK - Operation successful.  

 

bbrm_code_return_t BBRM_Job_test (const radio_t * 

radio_p) 

The BBRM_Job_test function tests whether instantiation of a job is possible 

The internal procedures are: 

• finds the free entry in job list; 

• fills the job entry with: 

• source radio pointer; 

• source radio ID; 

• changes the job state to SIMULATION MODE; 
• sets all BB-RM resources in a simulation mode by calling the BBRM_Set_res_simul() function; 

• if failed clean the job in job list by calling BBRM_initialize() function; 
• allocates the radio requirements by calling the BBRM_Simul_job() function; 

• restores the resources by calling BBRM_Set_res_restore() function; 
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• cleans the job in job list by calling BBRM_initialize() function; 

Parameters: 

radio_p (IN) Pointer to the radio.  

Returns: 

 

• BBRM_FATAL_ERROR_RES_STATE - Error while change the BB-RM 

resources states. 

• BBRM_ERROR_SIMUL - This radio fail in requirements simulation. 

• BBRM_OK - Operation successful.  

 

bbrm_code_return_t BBRM_Job_create (const 

radio_t * radio_p,   uint8_t *const  created_job_id) 

The BBRM_Job_create function creates a job, (radio instance) and sets it on suspend mode, to 

put the job running it needs call the BBRM_Job_resume() function. 

The internal procedures are: 

• validates the radio by calling the BBRM_Test_radio() function; 

• finds the free entry in job list; 

• fills the job entry with: 

• source radio pointer; 

• source radio ID; 

• changes the job state to SIMULATION MODE; 
• sets all resources in a simulation mode by calling the BBRM_Set_res_simul() function; 

• if failed cleans the job in job list by calling BBRM_initialize() function; 
• allocates the radio requirements by calling the BBRM_Simul_job() function; 

• if the test failed: 

• restores the resources by calling BBRM_Set_res_restore() function; 

• cleans the job in job list by calling BBRM_initialize() function; 

• in case of success sets the job state as TESTED MODE; 
• allocates the radio tasks in SoD by calling the BBRM_Alloc_sod_c_comps() function; 

• if the test failed: 

• restores the BB-RM resources by calling BBRM_Set_res_restore() 

function; 

• cleans the job in job list by calling BBRM_initialize() function; 

•  
• allocates the radio FIFOs in SoD by calling the BBRM_Alloc_sod_c_comps() function; 

• if the test failed: 

• restores the BB-RM resources by calling BBRM_Set_res_restore() 

function; 

• cleans the job in job list by calling BBRM_initialize() function; 

•  
• sets the task parameters in SoD by calling the BBRM_Sod_parameters() function; 

• if the test failed: 

• restores the BB-RM resources by calling BBRM_Set_res_restore() 

function; 
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• cleans the job in job list by calling BBRM_initialize() function; 

•  
• sets all resources in RUNNING MODE; 

• sets the job state at SUSPEND MODE; 

• returns the created job ID. 

Parameters: 

radio_p (IN) Radio pointer with all Radio parameters.  

created_job_id (OUT) Returns the created job ID.  

Returns: 

 

• BBRM_FATAL_ERROR_RADIO - This radio can't to be run. 

• BBRM_FATAL_ERROR_RES_STATE - Error while change the BB-RM 

resources states. 

• BBRM_ERROR_SIMUL - This radio fail in requirements simulation. 

• BBRM_FATAL_ERROR_UNAL_T - Tasks release fail. 

• BBRM_ERROR_SOD_FAILED - SOD function failed. 

• BBRM_FATAL_ERROR_ALLOC_F - Error while allocating the FIFOs in Sod 

platform. 

• BBRM_ERROR_PARAM - Error while set the task parameters in SoD. 

• BBRM_OK - Operation successful.  

 

bbrm_code_return_t BBRM_Job_resume (const 

uint8_t job_id) 

This function sets the given job running in the platform. 

The internal procedures are: 

• Validates if the job state, must be in suspend mode; 

• For each task in job: 

• resumes the task in SoD by calling phSodNmTask_Resume() function; 

• validates the result; 
• Changes the job state. 

Parameters: 

job_id (IN) ID of the job that will be resumed.  

Returns: 

 

• BBRM_ERROR_JOB_RES - Job is not ready to be resumed. 

• BBRM_FATAL_ERROR_SOD_FAILED - SOD function failed. 

• BBRM_OK - Operation successful.  
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bbrm_code_return_t BBRM_Job_suspend (const 

uint8_t job_id) 

This function changes the running job to a suspended job, but the job still in the platform, that 

means, all requirements of this job still reserved for it. 

The internal procedures are: 

• verifies if the given job ID is on running mode; 

• determines the number of components in radio by calling the BBRM_Nr_of_p_comps() function; 

• traces all components inside the given job and suspend each one by calling the 

phSodNmTask_Suspend() function. 

• sets the job state as suspend mode. 

Parameters: 

job_id (IN) ID of the job that will be suspended.  

Returns: 

 

• BBRM_ERROR_JOB_SUS - Job is not ready to be suspended (must be in run 

state). 

• BBRM_FATAL_ERROR_SOD_FAILED - SOD function failed. 

• BBRM_OK - Operation successful.  

 

bbrm_code_return_t BBRM_Job_remove (const 

uint8_t job_id) 

The BBRM_Job_remove function removes the suspended job and remove it from the SoD. 

That means all resources used by this job are released in BB-RM. 

The internal procedures are: 

• verifies if the job state is in suspended mode; 

• release from SoD: 

• calls BBRM_Release_sod_fifos() function to remove all FIFOs of this job; 

• calls BBRM_Release_sod_tasks() function to remove all Tasks of this job; 
• releases the BB-RM resources: by calling BBRM_Release_comp_reqs() function; 

• cleans the job in job list by calling BBRM_initialize() function; 

Parameters: 

job_id (IN) ID of the job that will be removed.  

Returns: 

 

• BBRM_ERROR_JOB_NREADY - Job is not ready to be removed (must be in 

SUSPEND state). 

• BBRM_FATAL_ERROR_CPU_FAILED - Round Robin function failed. 

• BBRM_FATAL_ERROR_MEM_FAILED - Memory function failed. 

• BBRM_FATAL_ERROR_UNALLOC - (At least one) requirement did not be 

release. 
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• BBRM_FATAL_ERROR_UNAL_F - FIFOs unallocated failed. 

• BBRM_FATAL_ERROR_UNAL_T - Tasks unallocated failed. 

• BBRM_OK - Operation successful.  

 

B. Functions performances in version 1.2 

To measure the performance of the BB-RM functions the GNU Profiling (gprof) 

program was used. A stress test was created to calls 2000000 times each BB-RM function. 

The results of the version 1.2 are next. 

 

Flat profile: 

 

Each sample counts as 0.01 seconds. 

 

  %   cumulative   self                       self      total            

 time   seconds   seconds    calls      us/call  us/call  name     

  1.04     23.82     0.32     2000000     0.16     4.28    BBRM_Job_create 

  1.04     24.14     0.32                                               phSodNmPort_Connect 

  1.04     24.46     0.32                                               phSodNmTask_Delete 

  0.98     24.77     0.30                                               phSodMgr_TileInitialized 

  0.95     25.05     0.29                                               phSodNmPort_Disconnect 

  0.65     27.02     0.20     2000000     0.10     1.00    BBRM_Job_remove 

  0.64     27.21     0.20                                               phSodMgr_MemStateBlockAlloc 

  0.00     30.63     0.00        1              0.00     0.00    BBRM_initialize 
 
 

 % time - the percentage of the total running time of the program used by this function. 

 

cumulative seconds - a running sum of the number of seconds accounted for by this 

function and those listed above it. 

 

self seconds - the number of seconds accounted for by this function alone.  This is the 

major sort for this listing. 

 

calls - the number of times this function was invoked, if this function is profiled, else 

blank. 

  

self ms/call - the average number of milliseconds spent in this function per call, if this 

function is profiled, else blank. 

 

total ms/call - the average number of milliseconds spent in this function and its 

descendents per call, if this function is profiled, else blank. 
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name - the name of the function.  This is the minor sort for this listing. The index shows 

the location of the function in the gprof listing. If the index is in parenthesis it shows where 

it would appear in the gprof listing if it were to be printed. 

 

       Call graph (explanation follows) 

 

 

granularity: each sample hit covers 4 byte(s) for 0.03% of 30.63 seconds 
 

index % time    self  children    called     name 

                                                 <spontaneous> 

[1]     35.0    0.17   10.54                 main [1] 

                0.32    8.23 2000000/2000000     BBRM_Job_create [2] 

                0.20    1.79 2000000/2000000     BBRM_Job_remove [6] 

                0.00    0.00       1/1           BBRM_initialize [76] 

----------------------------------------------- 

                0.32    8.23 2000000/2000000     main [1] 

[2]     27.9    0.32    8.23 2000000         BBRM_Job_create [2] 

                0.19    4.46 2000000/2000000     BBRM_Simul_radio_reqs [4] 

                1.65    0.00 2000000/2000000     BBRM_Test_radio [8] 

                0.74    0.00 2000000/2000000     BBRM_Alloc_sod_fifos [15] 

                0.05    0.50 2000000/2000000     BBRM_Set_res_simul [20] 

                0.01    0.35 2000000/2000000     BBRM_Set_res_run [25] 

                0.19    0.00 2000000/2000000     BBRM_Alloc_sod_tasks [42] 

                0.09    0.00 2000000/2000000     BBRM_Sod_parameters [57] 

----------------------------------------------- 

                0.20    1.79 2000000/2000000     main [1] 

[6]      6.5    0.20    1.79 2000000         BBRM_Job_remove [6] 

                0.56    0.81 10000000/10000000     BBRM_Unalloc_node_reqs [9] 

                0.33    0.00 2000000/2000000     BBRM_Unalloc_sod_fifos [28] 

                0.09    0.00 2000000/2000000     BBRM_Unalloc_sod_tasks [58] 

----------------------------------------------- 

 [76]     0.0    0.00    0.00       1         BBRM_initialize [76] 

----------------------------------------------- 
 

This table describes the call tree of the program, and was sorted by the total amount of time 

spent in each function and its children. 

 

Each entry in this table consists of several lines.  The line with the index number at the left 

hand margin lists the current function. The lines above it list the functions that called this 

function, and the lines below it list the functions this one called. 

 

This line lists: 

     Index - A unique number given to each element of the table. Index numbers are sorted 

numerically. The index number is printed next to every function name so  it is easier to look 

up where the function in the table. 
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     % time - This is the percentage of the `total' time that was spent in this function and its 

children.  Note that due to different viewpoints, functions excluded by options, etc, these 

numbers will NOT add up to 100%. 

 

     self - This is the total amount of time spent in this function. 

 

     children - This is the total amount of time propagated into this  function by its children. 

 

     called - This is the number of times the function was called. If the function called itself 

recursively, the number  only includes non-recursive calls, and is followed by a `+' 

and the number of recursive calls. 

 

     name - The name of the current function.  The index number is printed after it.  If the 

function is a member of a cycle, the cycle number is printed between the  function's name 

and the index number. 

 

 

 For the function's parents, the fields have the following meanings: 

 

     self - This is the amount of time that was propagated directly from the function into this 

parent. 

 

     children - This is the amount of time that was propagated from  the function's 

children into this parent. 

 

     called - This is the number of times this parent called the function `/' the total number of 

times the function was called.  Recursive calls to the function are not included in the 

number after the `/'. 

 

     name - This is the name of the parent.  The parent's index number is printed after it.  If 

the parent is a member of a cycle, the cycle number is printed between  the name and the 

index number. 

 

 If the parents of the function cannot be determined, the word `<spontaneous>' is printed in 

the `name' field, and all the other fields are blank. 

 

 For the function's children, the fields have the following meanings: 

 

     self - This is the amount of time that was propagated directly from the child into the 

function. 

 

     children - This is the amount of time that was propagated from the child's children to 

the function. 

 

     called - This is the number of times the function called  this child `/' the total number of 

times the child was called.  Recursive calls by the child are not  listed in the number after 

the `/'. 
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     name - This is the name of the child.  The child's index  number is printed after it.  If the 

child is a member of a cycle, the cycle number is printed between the name and the index 

number. 

 

 If there are any cycles (circles) in the call graph, there is an entry for the cycle-as-a-whole.  

This entry shows who called the cycle (as parents) and the members of the cycle (as 

children.) 

 The `+' recursive calls entry shows the number of function calls that were internal to the 

cycle, and the calls entry for each member shows, for that member, how many times it was 

called from other members of the cycle. 

 

Index by function name 

 

   [1] main 

   [2] BBRM_Job_create 

   [6] BBRM_Job_remove 

  [76] BBRM_initialize 
 

C. Functions performances in version 1.3 

The same example was used to test the version 1.3 and the results are listed next. 

 

Flat profile: 

 

Each sample counts as 0.01 seconds. 

  %   cumulative   self                        self       total            

 time   seconds   seconds    calls     ms/call  ms/call  name     

  0.93     22.66     0.25      2000000     0.00     0.00     BBRM_Job_create 

  0.90     22.89     0.24                                                 phSodMgr_TileInitialized 

  0.78     23.11     0.21                                                 phSodNmPort_Connect 

  0.56     24.28     0.15      2000000     0.00     0.00     BBRM_Job_remove 

  0.56     24.43     0.15                                                 phSodMgr_MemFifoBlockAlloc 

  0.56     24.58     0.15                                                 phSodMgr_MemTaskAlloc 

  0.00     26.76     0.00           1            0.00     0.00     BBRM_initialize 

 

% time - the percentage of the total running time of the program used by this function. 

 

cumulative seconds - a running sum of the number of seconds accounted for by this 

function and those listed above it. 

 

self seconds - the number of seconds accounted for by this function alone.  This is the 

major sort for this listing. 
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calls - the number of times this function was invoked, if this function is profiled, else 

blank. 

  

self ms/call - the average number of milliseconds spent in this function per call, if this 

function is profiled, else blank. 

 

total ms/call - the average number of milliseconds spent in this function and its 

descendents per call, if this function is profiled, else blank. 

 

name - the name of the function.  This is the minor sort for this listing. The index shows 

the location of the function in the gprof listing. If the index is in parenthesis it shows where 

it would appear in the gprof listing if it were to be printed. 
 

       Call graph (explanation follows) 

 

 

granularity: each sample hit covers 4 byte(s) for 0.04% of 26.76 seconds 

 

index % time    self  children    called     name 

                                                 <spontaneous> 

[2]     25.9    0.02    6.91                 main [2] 

                0.25    5.12 2000000/2000000     BBRM_Job_create [3] 

                0.15    1.39 2000000/2000000     BBRM_Job_remove [6] 

                0.00    0.00       1/1           BBRM_initialize [79] 

----------------------------------------------- 

                0.25    5.12 2000000/2000000     main [2] 

[3]     20.1    0.25    5.12 2000000         BBRM_Job_create [3] 

                0.14    3.00 2000000/2000000     BBRM_Simul_radio_reqs [4] 

                1.01    0.00 2000000/2000000     BBRM_Test_radio [10] 

                0.40    0.00 2000000/2000000     BBRM_Alloc_sod_fifos [19] 

                0.03    0.21 2000000/2000000     BBRM_Set_res_simul [32] 

                0.00    0.18 2000000/2000000     BBRM_Set_res_run [35] 

                0.10    0.00 2000000/2000000     BBRM_Alloc_sod_tasks [50] 

                0.05    0.00 2000000/2000000     BBRM_Sod_parameters [60] 

----------------------------------------------- 

                0.15    1.39 2000000/2000000     main [2] 

[6]      5.7    0.15    1.39 2000000         BBRM_Job_remove [6] 

                0.28    0.84 10000000/10000000     BBRM_Release_node_reqs [9] 

                0.18    0.00 2000000/2000000     BBRM_Release_sod_fifos [37] 

                0.09    0.00 2000000/2000000     BBRM_Release_sod_tasks [55] 

----------------------------------------------- 

 [77]     0.0    0.00    0.00       1         BBRM_initialize [77] 

----------------------------------------------- 

 

This table describes the call tree of the program, and was sorted by the total amount of time 

spent in each function and its children. 
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Each entry in this table consists of several lines.  The line with the index number at the left 

hand margin lists the current function. The lines above it list the functions that called this 

function, and the lines below it list the functions this one called. 

 

This line lists: 

     Index - A unique number given to each element of the table. Index numbers are sorted 

numerically. The index number is printed next to every function name so  it is easier to look 

up where the function in the table. 

 

     % time - This is the percentage of the `total' time that was spent in this function and its 

children.  Note that due to different viewpoints, functions excluded by options, etc, these 

numbers will NOT add up to 100%. 

 

     self - This is the total amount of time spent in this function. 

 

     children - This is the total amount of time propagated into this  function by its children. 

 

     called - This is the number of times the function was called. If the function called itself 

recursively, the number  only includes non-recursive calls, and is followed by a `+' 

and the number of recursive calls. 

 

     name - The name of the current function.  The index number is printed after it.  If the 

function is a member of a cycle, the cycle number is printed between the  function's name 

and the index number. 

 

 

 For the function's parents, the fields have the following meanings: 

 

     self - This is the amount of time that was propagated directly from the function into this 

parent. 

 

     children - This is the amount of time that was propagated from  the function's 

children into this parent. 

 

     called - This is the number of times this parent called the function `/' the total number of 

times the function was called.  Recursive calls to the function are not included in the 

number after the `/'. 

 

     name - This is the name of the parent.  The parent's index number is printed after it.  If 

the parent is a member of a cycle, the cycle number is printed between  the name and the 

index number. 

 

 If the parents of the function cannot be determined, the word `<spontaneous>' is printed in 

the `name' field, and all the other fields are blank. 

 

 For the function's children, the fields have the following meanings: 
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     self - This is the amount of time that was propagated directly from the child into the 

function. 

 

     children - This is the amount of time that was propagated from the child's children to 

the function. 

 

     called - This is the number of times the function called  this child `/' the total number of 

times the child was called.  Recursive calls by the child are not  listed in the number after 

the `/'. 

 

     name - This is the name of the child.  The child's index  number is printed after it.  If the 

child is a member of a cycle, the cycle number is printed between the name and the index 

number. 

 

 If there are any cycles (circles) in the call graph, there is an entry for the cycle-as-a-whole.  

This entry shows who called the cycle (as parents) and the members of the cycle (as 

children.) 

 The `+' recursive calls entry shows the number of function calls that were internal to the 

cycle, and the calls entry for each member shows, for that member, how many times it was 

called from other members of the cycle. 

 

Index by function name 

 

   [2] main  

   [3] BBRM_Job_create           

   [6] BBRM_Job_remove 

   [77] BBRM_initialize 
   
 

 


